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ABSTRACT

.

The Reaction Concept of V. H, Runmsey, as extended to
antennas by Roger F. Harrington, is used to determine
the self-resistance and self-reactance of a linear
dipole. Values are given for antennc helf-lengths
varying from 0.05) to 1.1 N, the half-length to radius
ratio being 74.2 (corresponding to anQof 10). The
calculations are done using two different current
assumptions, one due to C.T. Tai and one suggested

O
v

by R. F. Harrington, and the results are compared with
values from the literature. The double integrals
involved in the equations are solved numerically on

an IBM 360/model 50 digital computer, using a double
application of the Trapezoidal Rule. A single
calculation yielding self-resistance and self-reactance
for one particular length dipole antenna requires about

15 seconds of computer time on the model 50,
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CHAPTER I

INTRODUCTION

This thesis is intended primarily as a contribution
to a much larger overall projébt, that of analyzing
certain antenna arrays theoretically. The intention
of the overall project is to find expressions for array
characteristics,such as invut impedance and radiation
pattern, and then place these expressions into a digital
computer. Design work could proceed by changing various
antenna element lengths and spacings and observing
overall array changes.

The first antenna to be analyzed is the log-periodic
dipole antenna which is composed of a special array of
parallel dipoles., However, greater directivity from
log=periodic arrays can be obtained by using V-shaped
- elements and eventually an attempt will be made to
analyze the log-periodic V-anténna.

A study of " antenna theory showed'phathallenfs integral ;ff
equation'method for obtaining an integral equation for
the current distribution on antennas was already well

. . L R .
accepted, and C.T. Tai's variational solution of the

* The numeral denotes reference number as listed in

bibliography



equation was known to yield good results for the self-
impedance of dipoles. Furthermore, Levis and Tai?
expressed confidence in the variational approach for
yielding good results for the impedance parameters

of two parallel dipoles of arbitrary lengths as well
as for an array of "n" parallel dipoles of arbitrary
lengths. The Reaction Concept promised to combine
both the integral equation method.and the variational
solution into one direct approach. Indeed, Levis and
Tai? say with regard to their equations for the two
dipoles: "Finally we may mention that (these results)
can be obtained by applying V. H. Rumsey'sh Reaction
Principle to our problem. This method indeed leads
to the admittance result more directly, but was not
chosen here because the concepts are not as widely
known'".

Thus the Reaction Concept seemed to offer a very

~realistic and practical method on which to base eventual

array analysis and design.

Now, both the variational method and the Reaction

Concept yield double integral equations and to solve them

requires that current distributions be assumed on the
antennas. Answers will be good only if good choices

are made for the current approximations. For the dipole

case, C, T.,Tai'sl current approximation works extremely

well and also is such that the impedance equation can



be obtained in closed form through analytical integration.
However, it is to be expected that when more general
antenna configurations are attacked great difficulties
will likely be encountered in finding suitable current
distributions thaﬁ give both expressions in closed form
and also good results. Furthermore, for each new con-
figuration several different current approximations would
probably have to be tried before finding a suitable one
for the problem.

Thus it was decided to investigate the feasibility
of solving the double integrals numerically on a digital
computer., This eliminates the need fof worrying about
distributions leading to closed form expressions, and
also, since similar program logic for the integration
would apply regardless of the distribution assumed,
different approximations could be tried with relative
ease.

Such, then, is the néture of this thesis - a study
of the Reaction Concept coupled with numerical double
integration as avpractical method of finding antenna
impedances. The scope of the thesis is quite limited,
being essentially a "first-order" investigation. One
particular case only is studied - that of finding the
self-impedance of a linear dipole. This case is chosen
as it has been done using the variational method, and a
good current approximation is known. However, it is felt

that self-impedance will be more difficult to determine




than mutual impedance since the integrands have a much
more singular nature in the self-impedance case. Also,
no attempt is made to evolve a sophisticated method of
digital integration. Instead, a straightforward double
application of the Trapezoidal Rule is used. A similar
approach {Simpson's Rule) has been used by Baker and
La Grone? to find mutual impedance between thin dipoles
using an assumed sinusoidal current approximation.
However, Baker and La Grone only performed single
integration by digital means and only needed a single
application of Simpson's Rule.

To indicate how the success of the Reaction method
depends on the current assumption, the self-impedance is
determined using two different current approximations,
It is seen that one approximation yields good results
| only for the short and intermediate length antennas
investigated,

This thesis, of course, has implications for any
problem involving the evaluation of similar double

integrals,




CHAPTER II
THE REACTION CONCEPT

In this chapter, the Reaction Concept is.introduced and
the method of utilizing it to deternine self-impedance of an

antenna is explained.

I BRIEF HISTORY OF ANTENNA THEORY

In order to gain perspective regarding the position of
the Reaction Concept in antenna theory, a brief history of
antenna theory is included here., A much more comprehensive
history can be found forming the introduction to the book by
R. W, P, King7.
- Although many different approaches were attempted over
the years to analyze antennas theoretically, the earliest
treatments of the cylindrical center-driven antenna as a
boundary-value problem are those of L. V. King19 in 1937 and
E. HallénZl in 1938, Using essentially the retarded-potential
method of PocklingtOnZB, Hallén derived an integral equation
for the current distribution along the antenna. Hallén solved
his integral equation by a method of iteration in reciprocal
powers of a parameter]1= 2 1n 2h where h is the half-length
of the anteﬁna and a is its ra;;us. Impedances are easily
found once the current is known. (A good explanation of Hallénfs

27
method can be found in the book by Kraus ).




In 1941, Schelkunoffzh presented a different treatment-
his so=-called non-uniform transmission line method. His starting
point was the thin biconical antenna, which he solved as a
boundary value problem concentrating.on the fields rather than
the current distributions. To apply the biconical antenna
solution to the cylindrical case, Schelkunoff used a perturbation
method. The conical boundary was considered perturbed into
the cylindrical shape, and the perturbed wave functions calculated.
In his article, Schelkunoff also discussed the shortcomings of
previous works and since that time much of the interest in
cylindrical antennas has been centered on the difference between
Schelkunoff's and Hallén's method.

Hallén25 finally showed, in 1948, that the first order
impedance formula derived from Schelkunoff's theory can also be
obtained by a so-called/aflz- expansion from the general solution

of the integral equation method.

In 1946, King and Middleton26 used a different expansion
parameter in the iteration of Hallén's integral equation in
order to achieve more rapid convergehce. This is the so-called
 King-Middleton y -expansion.

Searching for a more practical way of solving Hallen's
integral equation, Storer9 in 1950 developed a variational
formulation. This method involved modifying.the integral equation
so that a specified quantity such as impedance is insensitive to
errors in an assumed trial function for the current along the

antenna. In the language of the calculus of variations, the first

variation in impedance with respect to the current is zero, so



that the impedance is stationary with respect to small changes
in the current. More simply, the impedance is an integral
equation in the current; with the integral stationary with
respect to first-order changes in the current it follows that

- if the trial function of current is a good approximation to the
true current, the approximate impedance will be a still better
approximation to the true value of impedance., The more accurate
the trial cufrent, the better the value of impedance obtained.
The trial current is chosen by considering it to be a linear
combination of functions each multiplied by an adjustable
constant or variational parameter. The parameters are adjusted
by the Rayleigh-Ritz procedure which requires the partial
derivation of the impedance with respect to each parameter be
zero.

Tail, also in 1950, improved on Storer's results by using
a'better approximation for the current distribution in the
variational method.

Then, in 1954, Rumsey presented his Reaction Concept,

This method provided a more general and more straightforward

means of obtaining stationary equations than did the variational
method. Whereas variational techniques to obtain stationary
equations varied for each problem, the reaction method determined
stationary equations directly from Maxwell's equations. The
reaction method also assumed a trial function that was a linear
combination of functions each multiplied by an adjustable
constant. A quantity called the reaction was defined. By forcing

the assumed source to have the same reaction with certain "test"

Sources as the correct source would have, the constants were




evaluated. This procedure will be explained in more detail

presently.

Comments on the Driving Conditions

The theoretical analyses for the cylindrical antennas
assumed the antennas to be driven by a slice generator which
maintained a discontinuity in scalar potential at the center
of the antenna. Since such a driving source is not physically
realizable, it might appear that the theoretical results are
quite unrelated to practical antennas. Indeed, experiments
readily showed that the impedance an antenna presented to a
transmission line was greatly dependent on the line used and
the orientation of the line with respect to the antenna. In

other words, the theoretical analyses did not account for the
coupling effects and boundary conditions introduced by practical
feed systems. However, the theoretical analyses still proved

to be important and useful. Between 1947 and 1950, King and

1
Wintermitz h, King and TomiyasulB, and E. O, Hartigl5

bridged

the gap between experiment and theory. They measured the
apparent impedance of a dipole using many different transmission
lines and orientations. For each case, the impedance was
measured for various spacings of the conductors of the trang-
mission line as the spacing between the conductors was decreased.
It was found that, regardless of the line or orientation used,

if the measured values were extrapolated to zero line spacirg

the values so obtained were in complete égreement with the

theoretical results of the King-Middleton expansion or Tai's

variational formulation.




Thus, the theoretical impedance of the antenna driven by a

slice generator across an infinitesimal gap is independent of

the feed line, and dependent only upon the length and radius

of the antenna. The theoretical results are useful, since the
researchers mentioned in this section found that lumped, terminal=-
zone networks could be designed to transform ideal theoretical
values into measurable apparent values for different transmission
lines and connections.

Though Tai obtained his variational solution using a Dirac
delta function for the driving source field, he mentioned that
the same equation results by assuming an impressed field
distributed over a very small but finite gap at the center of
the antenna, and assuming that the current is practically constant
within this gap. (gge derivation is similar to that presented
by Albert and Synge ).

Harrington utilized this idea by assuming his antenna driven
by a éonstant current source in the gap - that is, by a short
filament of impressed electric current across the gap. Essentially,
the antenna is assumed driven by a current source in the circuit
sense, which can be used in the field problem because the input
region - the gap - is of dimensions small compared to a wavelength.

The current source is particularly convenient for the
reaction method, and was adopted as the method of exciting the
dipole for this thesis.

The theoretical'results of the King-Middleton expansion and

Tai's variational formulation are the best theoretical results

yet calculated for the dipole self-impedance. Results based on
Schelkunoff's first order theory are also considered by Tai

to b? goode. The reaction concept as applied in this thesis
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leads to results almost identical to the results of Tai.

IT RECIPROCITY AND REACTICN
In this section, the development leading up to the definition
of Reaction follows for the most part that presented by
Harrington . Extensions to the theory can be found in Richmond18
and Rumseyzg. Good referénces on féciprocity theorems include

> 18,30 and Carsonlé. |

Crowley”, Richmond

Consider two monochromatic a.c. sources, namely the volume
distributions of electric current J? and ib. Consider them to
exist in the same linear medium. The fields due to J2 acting -
alone we denote as E2, H® and the fields aue to ib acting alone
we denote as Eb,ﬂb. The field equations, written in complex

form, are:

VxH® = ¢ £%+ J° (2.1)

-;Vx_E_a = 3 H< (2.2)
and |

ViH® = 4 E°+ J° | (2.3)

-IxE®= 3 H*® (2.4)

where: nd,:d"-*-j‘*’é s F T JwM

of course,%enui?are functions of position in the sense
that they can have different values at different points in space
if various types of material are present. The important point
is that %and yare the same functions of position when ;I_a is
acting alone as when ip is acting alone.

Next, scalarly multiply equation (2.1) by'Ep,and;equation
(2.4) by ﬁa and add the equations to obtain:
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E%(vxH )~ B (vxED) =g £°E" + E%J% + 2 HIH"  (2.5)

V-(AxB)= B-VxA — A'VXB

Use vector identity

to simplify equation (2.5)to :
V(ESHY = g EMEY rESIT 4 g HHY (2.6)

a .
Similarly, scalarly multiply equation(2.3)by E , equation

b
(2.2)by H , add the two equations and simplify to obtain:
a . b a cb a b b Ha ( )
"Ve(EXH®) = ¢ ESE” +E°-J +3 H™-H 2.7
Subtract (2.6 ) from (2.7 )

-V (E*xHP-E%H®)= E247"- ER]? | (2.8)

Integrate both sides throughout the region containing the

sources, and apply the divergence theorem to the left-hand side

to obtain.
-(D(gXH-E*«H%)-dS = H (E%I°-E%J¥JV (2.9)
gy o

vihere volume V is the region containing the sources, and S is a




12

closed surface surrounding that region.
Next postulate that all sources and matter are finite in
extent. Distant from the sources and matter, using spherical

co-ordinates r,0, § :

E6=’YlHﬁ E¢ =—’)?H6 (2.10)

where 71 = 1/{2&

Integrating the left-hand side of‘equation (2.9) over a

sphere of radius r-ee the sources appear as point sources giving:.
a, b a,,b b, b, a
- (P CHo He + HgHy = Hy "Hy - Hg"H ') dS =0 (2.11)

So equation (2.9). reduces to the following reciprocity

equation
E*J%dv = E%J%dv (2.12)

where the integrations extend: over all space but, of course,
" b a
will have values only over regions where d and J exist,
The integrals of equation (2.12) are called reactions.

By definition, then, reaction of field a on source b is:
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b
<a,b> = ES 1 dv (2.13)

In this notation, the reciprocity theorem expressed by

equation (2.12) becomes:
<a,b>=<bh,a> (2.14)

That is, the reaction of field a on source b is equal to
the reaction of field"b on source a.
Because the field equations are linear, the following two

identities hold true,
<3, brc> = <a, b> + <a,C» | (2.15)
<Aa,‘b> = A<a, by (2.16)

where A represents anybscalar and Aa represents the source a
increased in strength by the factor A,

The term self-reaction denotes the reaction of a field on
its own sources, that is, <a,a).

If the source g? is a surface distribution of current over a
closed surface S, then by taking the limiting case'of equation

(2.13) as the volume distributions approach surface distributions
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the form of the reaction for surface currents becomes:

<a,b> = (D E2-J°dS (2.17)

b -
where J 1s now a surface distribution of current.

If the source b is a circuit current source, that is, is a
short filament of impressed current Ibof constant value extending
over an incremental lengmudﬂ then the reaction <a,b> of a field

with a current source is :

dd dL
j da
<a,b>=§§a'lbcl.£ =1° | ESdL
‘ o o .
or <a,b>= - V¢ Ib (2.18)
where V2 is the voltage across the b source due to some, not

yet specified, a source.

Some Comments on Reaction

The reaction <a,b>» is of course just a scalar quantity.,
However, it should be noted that the definition brings together
quantities from different situations. For instance, field E?
exists at an entirely different time than does g?, since E? was
produced by J2 acting alone, and QP also acted by itself.
Nevertheless the definition proves to bé an extremely practical
and useful one, since many parameters and measurable quantities
of interest in electromagnetism can be expressed in terms of
reactions. For instance, if source b is a unit current generator

across the terminals of some antenna then reaction La,by is
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seen to be equal to the open circuit voltage generated at the
antenna's terminals by some source a, As another example, the
impedance parameters of a multiport network can be shown to be
proportional to reactions., _ |
Because the reaction definition is in terms of an integral,
mathematical advantages are gained when dealing with singular‘
fields and singular source functions as pointed out by Rumseyzg.
Perhaps the most important feature of the reaction concept
is that it leads to a general procedure for establishing stationary

formulas, as explained in the next section.

Stationary Nature of <a,b) .

Consider that some quantity of interest can be determined
if the reaction(ba,cﬂ>can be found, where the symbol ¢ indicates
that correct or true source distributions and fields for the
problem are involved, However, in many problems the correct
fields and sources are unknown, and approximate sources (or fields)
and their corresponding fields (or sources) must be assumed to
obtain a solution., Thus, a and b are assumed as approximations
for c, and cé respectively and reaction <a,b> then determined as

an approximation to reaction <c ,cb?.
a

It will now be shown that if the following conditions can

be enforced, namely,
<&,b> = <Cy,b> = <a,¢c,> (2.19)

that the reaction <a,b) is stationary for small variations of
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'a and b about ¢ and cb. Again, the proof follows that given

a
by Harrington. The theory of the calculus of variations can be
found in books such as Pipes31 and DavisBz.

To proceed, let
d=Ca+ P, €, b=C +p €, (2.20)

where e, and e, are functions of the variablesof integration

a
but must be zero at the end points of the range of integration.
The functions e,y and ey are "error" functions that account for

the difference between a and Ca’ and b and ¢ Also, P, and pb

b.
are constants suéh that when they are small, a and b closely

approximate c, and cy. If ¢a,b> is stationary, first order changes

a
in p, and Py» when p, and p, are extremely small to begin with,
should cause only a second order change in <a,b> . Mathematically,

{a,b> stationary means:

S<ab> | = I <&b> =0 (2.21)
JP, 3P
4 Ra=P,=0 ° Pa-szo

To show this, start with equation (2.20) to obtain

<§, b>= < Ca+pye,,C v P> (2.22)



Using the identities of equation (2.15) and (2.16):

<&,br=<Cq,C>+ p,<€3,C> +p, <Ca,€p> + Py p, <€4,C,7

From the equalities of equation (2.19):
<8, b>= <Cq,b>=<Cyq,C+p e

and

<3,b> = £a,¢,> = <Cz+p,e, C>

<CaCr + Piceg, 0
Substituting equations (2.24) and (2.25) into (2.23)

<3 b> = <Ca,0,> — pg P, <€a,€.>

Th-us aa<Pa:b> - - Pb < ea’ €b> = 0
(-]
P:,’O Pb""o
Simi :
imilarly 3 <ab> - 0
° Pb

Pa=o

17

(2.23)

(2.24)

(2.25)

. (2.26)

(2.27)

(2.28)
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so that:
3<a,b> | _ o<ab> =0 (2.29)

Pa= P, =0 Pa=Fy=0

and <a,b> is stationary.

Now,the stationary nature of <a,b> is not by itself
necessarily of any help in obtaining good answers if the approx-
imate distributions: differ greatly from the correct distributions.
However, the conditions of equation (2.19) can be thought of as
more than just a means of obtaining stationary equations. They
are really the conditions expected to do the most to force the
approximate reaction to be the best approximation for the prob-

lem at hand. That is,suppose <a,b> is to approximate <Ca yCy> e
Then the condition <a,b>=(ca,b> can be thought of as meaning
that b is being used as a test source to test that a acts the
same as the correct source as far as its reaction with the test
source b is concerned.Similarily, in <a,bd> =<a,c,> a is really
testing b to make sure that b is equivalent to ¢, for the
reaction with test source a.

All this is still no guarantee of course that <a,b> will
closely approximate <C; ,¢,> but all possible constraints inherent
in the problem have 6;en applied.That is, sources involved in the
problem have been used as tests for other sources involved in the

problem,and the tests applied have been directed aslfar as poss=-
ible to making <a,b> equal <C;,Cy> «Essentially,the Reaction

Method applies necessary conditions for <a,b> to equal <Cz3,C, >



19

but cannot apply sufficient conditions (unless-as is not practical-
a complete orthogonal set of trial functions could be assumed for
the approximate sources, as explained in Rumseyh ).
As a point of terminology, equation (2.19) is thought of as
saying that all trial sources look the same to themselves as

they look to the correct sources.

III DIPOLE SELF-IMPEDANCE IN TERNMS OF REACTIONS
The Reaction Method will now be used to obtain an express-
ion for the input or self-impedance of an isolated cylindrical
dipole driven by a current source at its terminal gap,as in

Figure 2.1.

—

Figure 2,1 A DIPOLE EXCITED BY A CURRENT SOURCE
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Here the soﬁrce of the fields is the current along the
antenna as well as in the gap.The antenna structure is assumed
to be perrectly conducting.Thus, the correct current distribution
J% will distribute itself as a surface current along the antenna.,

Also, J° must be distributed such that the tangential component

of its total electric field,Ec, will vanish on the conductor
surface.Hence, with the antenna terminals close together,the
reaction of Ecwith J€ is just the reaction of the field with the

c
current source at the terminals and is of the form -Vi,I; .That is:

<e,e> = =V7 I, (2.30)
where Vzn is the correct input voltage to the dipole when Iin
is the input current.Equation (2.30) can be rearranged to give:
\<c,c>‘ _ -Vin
1.2 _I_T (2.31)

in

e
But the ratio of =2 is by definition the input impedance

of the dipole, so:

. ¢ _ =<c¢,c>
Zin s I 2 (2.32)
in

Next, just for convenience,consider the current source to
be an equivalent surface current of constant value across the gap

and uniformly distributed around the gap'as in Figure 2.2.
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—> 23 [ e

Figure 2.2 SURFACE CURRENT EQUIVALENT OF THE
FILAMENTARY INPUT CURRENT

This avoids’breaking the integration into two parts- one
across the gap and the other around the antenna structure. The

result is identical providing:
zra J,, = I, . (2.33)

wheére a is the antenna radius. However,now the gap can be included
as part of ﬁhe antenna surface and one surface integral can be
written for the reactions that follow.(In Chapter III,the surface
currents will all be replaced py equivalent filamentary currents

‘ for calculating fields).

To continue,since the correct current distribution cannot
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be found without knowing the correct electromagnetic field,and
the correct field cannot be found without knowing the correct
current distribution,(c,é> cannot be calculated.Thus,the Reaction
nethod seeks an approximation to <c,c>.A trial surface-current
distribution J% is assumed on the antenna,the electric field
corresponding to ga being EZ.The approximate input impedance can

now be expressed in terms of the self-reaction <a,a>.

Zii=—-—-—-——-.<al’i> = - -__..:Ez Ea'la dS' , (2.3L)
in in
Cc

where S is the antenna surface. Also,since neither Z?n or Zin
are dependent on the magnitudeband phase of I;,,the same input
current source is considered when talking about either the
correct or approximate distribution.

Next,to force the approximation to be good the following

equality can be imposed:
<a,a» = <c¢,a> (2.35)

-Since (c,ay=<a,c>by reciprocity the constraints of equation (2.19)
have been met and Zin is stationary about the true current.

To proceed,the Reaction Method assumes the trial source to
be a linear combination of functions , a=Uu+ Vv + e.e ywhere
U, V, **+ » are adjustable constants to be determined.Choosing
the current on the antenna to be represented by two functions,

the trial current is theﬁ a surface current of the form:
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Ji= ug*+ vJv (2.36)

Equation (2.35) then becomes:

<3,a> = <c,a>=<c,Uu+ Vau>

or: <aa> = U<eu> + Ve, ‘ (2.37)

U and V must be adjusted to suit the problem,and this is accomp-
lished by introducing test sources.The approximate source is
forced to look the same to the test sources as does the correct
source as far as reaction is concerned. Now, even though many test
sources could be invented for testing purposes, with only two
adjustable parameters in the approximate source only two test
sources can be used. Otherwise, inconsistent equations will most
likely result since there will be more equations than unknowns.
Hence,consider introducing two test sources x and y and adjust

source a using the following test equations:
<, x>= <¢,xX> (2.38)

<a,y>=<c,y> | (2.39)

The queéﬁion is, which test sources x and y to use?
Obviously, a test source is really only available for testing if
its reactions of equations (2.38) and (2.39) can be calculated.,

Also, to make the tests pertinent to the problem under consider-
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ation, the general guide is to use as test sources, sources
involved in the problem. For the dipole case, the only sources

available and inherent in the problem are the sources u and v.

Thus, test as follows:

<a,u>= <c,u> | (2.40)

<a,w>=<C > (2.41)

Both tests, it must be ndted, are consistent with the aim of

imposing equation (2.35).

To adjust U and V using equations (2.40) and (2,41) the
procedure is: '

<a,u>=<cu>
< Uu+rVar, ud> = <c,u>

U<u,up + V<a, ur =<c,u> (2.42)

and

{d,v> =<C,r>

&Uu + Va, > = <>

U<u,ar> + Vo> =<c,a> (2.43)




25

Solving for U and V from equations (2.42) and (2.43), the result

in matrix notation is:
-l . /

U cu,uy  <wnuy> | [eeuwd

= - (2o44)

\Y <w,vr> K <e,ar>
Substituting equation (2.44) into equation (2.37)

-1
<3, 3>= [ <c,u> (C,'v'):l <uu> - Ly u> <cu> )
. _ (2.45

<w,v)> <v,v) <c,v>

By reciprocity <u,v)> =4 ,ud.

Expanding equation (2.45) gives:

e, up v, > = 24C,ud<e, > U + <e wd¥u, uy (2.46)

<a,ar= Lu,ud< v,y =< w,ud?

. c .
Since E° vanishes everywhere along the antenna except at

the feed:

,<C,u> = -V-c Iu(OJ ‘ . : ”(z.hr])

{c,v>= - Vif, I”(O):- | ‘ (2.48)
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where Iu(O) and IV(O) are the values of the trial currents u

and v respectively at the input.Thus:

2 . 2
— c\2 Iu(o)<nr,ar>—2 I"(o)I”(o)<u,'v>+ 1< u,u> (2.49)
<a,a>= -(V) ~ - -
<u,wr> v - Lw,v>

2
Dividing both sides by I,

I.2 I.

in h

2
a,a> _ (Vc) I(o) <> -2 1% ] o< ur> + I Tork u,ud (2.50)
<uup< > - < w,ard?

Hence:

A (Zicn)z[ L't *<mvy =2 1% "0 < u, > + IV (0% <u,u> (2.51) -
' Luud><vvrd> =< w,vry?

a
If Zin is to closely approximate Zln , Z?n must be found.from:

72 _ <> - <u,ud <y > (2.52)
" I <u,u> -2 1% [ (o) <u, > + 10 <>

(This equatlon corresponds to equatlon (7 99), page 353 of
Harrlngtoné, 1f an error in sign is corrected 1n Harrlngton ]
equation) \

Chapter III explains how the reactions of equatlon (2. 52)

are evaluated.




CHAPTER III
EQUATIONS FOR THE RE4ACTIONS

In this chapter, an equation for the reaction €u,v) in

*

‘terms of assumed filamentary currents IY and IV is
derived. A similar derivation would apply to determine
{u,u) and (v, v>. The form of the current assumptions
to be used are discussed, and then the final equations

for each reaction are given.

I REACTION <u,v>

From the definition of reaction for surface currents:

<u, vy =ﬁ§u._{"ds (3.1)

where surface S is the antenna surface. JU and JV are
assumed antenna surface current distributions, and EU is
the electric field on the surface of the antenna due to
surface current JY,

Attention will first be concentrated on determining
EY. The dipole is considered oriented along the z axis

as in Figure 3.1 .
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{
~
.‘I\

Figure 3.1l = THE CYLINDRICAL ANTENNA

King and Harrison prove that for thin antennas
‘the magnetic vector potential A, at all points outside
a cylindrical conductor including its surface (except
those points within distances of an end face comparable
with its radius) is given to a good approximation by
assuming that the current is filamentary and distributed
along the center of the antenna. C. T. Tai‘’? and

6

R. F, Hafrington consider this an excellent approximation,

and it is utilized in this section t0 find E" from Ju,
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Accordingly, the symbol IY is used to represent the filamentary
equivalent current of J" where the two are related by:

. el
“ e

14 = (3.2)

2 a

with a being the radius of the dipole.

With the dipole along the z axis, the current is z directed,
and is some function of z. Vertical distances along the center of
of the axis shall be symbolized z' to distinguish them from vertical

distances along the antenna surface which will be symbolized z.
Thus the filamentary current can be written as IU(z').

An expanded view of the antenna is shown as Figure 3.2

‘Denote the magnetic potential vector on the antenna surface
due to IY by the symbol AY. Since IY is z-directed, AP must

have only a z - component - that is:

A = A k- (3.3)

w
z
A _

‘where Kk is a unit vector in the z direction. Also, since I is
along the center of the antenna, symmetry demands that AY and EY
be independenﬁ of ¥§. Thus along the antenna surface AP and Eu
are functions only of z, namely A%(z) and E%(z).

At any point z' along the center of the antenna, the current
I%(2') extending over an incremental length dz' forms a current’
element or electric dipole of moment I%(z')dz" which is z-directed,

and shown in Figure 3.2.At any point P (a,d,z) on the antenna
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. Figure3.2 EXPANDED VIEW OF THE DIPOLE
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‘ u . .
surface the contribution dAZ(z) to A (z) due to electric dipole

I%(z')dz' is given by:

- -iBA(2Z-2)% + a%
dA; (z) = L'ty &F ' dz’ (3.4)
4T A(z2-2)%+ a* ‘ .

Azu is found, of course, as the summation of all such dAzu,
h
w uo
41 N@z-29% + a2

pAz-2)* + a* |
dz’ (3.5)

~h
where h is the dipole half-length.
To find Eu from AY the following equation, true for time-

harmonic waveswith the antenna radiating into free space, is used:

E'= ~jop A+ L_g(v-A") (3.6)
J(‘Jeo

A

With Au only in the & direction, this reduces to

A u
gu(z) — ._.J' w/qo A:(Z)A +Jaie v (-éaz Az (Z)) (3 -7)

Furthermore, since eventually the dot product Eu.iv must

be taken, and since dV is entirely in the z direction, only the
A ‘

& component of EY(z) will enter the finél expression for <u,v) .,
A : A 7}
Thus, only the & component of V(-aa-z- Az (2) ) is retained to obtain:
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“ o h e Can Apye 1 3 Am (D) |
E, (2) A= ( J%AZQHJM 2 el A (3.8)

Substituting equation (3.5) into equation (3.8) gives:

h
- J(z-z')2+ ar
e+3 ) 14z) eF dz’ (3.9
J“"E oz? . 47 J(z-2)%+ 3%

w
Ez (z) =

The integration is with respect to z' and the differentiation
is with respect to z, 80 the differentiation can be performed
within the integral sign. This differentiation is straightforward.

The following equations are introduced at this point

: wzﬂo eo = ( 2; )‘Z ('3.10)
B = 21T © (3.11)
A

71054/%"' = 120 1t Oohms (3.12)
(o]

Performing the differentiation along with some simple

manipulations the following expressionsresult for the real and

) . u
imaginary parts of EZ (z) (I and IV will be seen later to be real):

h

Re E:(z) = 2%:—}‘ 1%2") F,(z,2) dz’ (3.13)



33

h .
u .
Im EZ(Z) = ﬂ"z I%z" Fz_(z,z’)dz' (3.14)
g4\
~h
For equations (3.13) and(3.14), the functions F, and F,
are dei‘ined by - '
- z -7 2
F,(z,z')E cos ZR/J(Z-Z.')z-raZ [ 21 - + 6m(Z2-2') 4__-]
| | Wz-z*+az) (J(z-z9*a*)
2 2 - N Ly 2
+Sm21rf(zz)+aa[ =4n L AT z)""a _ _3(z-2) 5]
A (z-7)%+a? (W(z-2)% &%) (Wiz-z)%+a*)
(3.15)
/ .
F(z zh)= —Sansz(z VAP REY- [ -z Tt + 61T (Z—Z')2¢]
Wez-z0%+a2)? (Jz-79%+ )
' - 2 2 ’ 2
+Coszm(z-Z0% at [: il 4 Am ez - 3(z-2") ']
¢ diz-zyead (Wz-z72+at)’  (Wiz-z2)%+a2)’

(3.16)
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In equations (3.13), (3.14), (3.15), and (3.16) all distances -
z',2,h, and a - are now expressed as a fraction of wavelength A.

The evaluation of <u,v> can now proceed. Recall equation

(3.1), namely

Cuyur> = E*-J¥ds (3.1)

Some simplifications can be introduced here. Firstly, iv will

be assumed such that J'=0 at the ends of the antenna, so that the
integration need not be taken over the ends. Furthermore, g? is
assumed uniformly distributed around the antenna so that it is

not a function of @ but only of z. Lastly, since gY is z directed
we can replace EY by EZu and hence eliminate the dot product.

Mathematically these simplifications mean:

h p2n

<u.,4r>=‘ AE:(Z) JV(Z) ad¢dz (3.17)
~h Y%

The A factor is included so that dz is in terms of wavelength.

With EY and JV independent of @, this reduces to
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h .
v
{uw>=21a )\E:(z) J (Z)fdz
- T=h

i

A E: (z) 2mra J "(z) dz (3.18)
), .,

e
From what has been discussed previously, ZTTa'\J (Z) Just
represents an assumed equivalent filamentary current IV(z)

Hence

<uyr> = | NES (2 1T(2)dz (3.19)
Zh

Because the dipole is symmetrical about z=Q, the currents
I¥ and IV are assumed to be symmetrical about z=0., Since Y is
symmetrical about z=(b,AP and EP are also symmetrical about 2z=0,
Thus the product Ezu(z)Iv(z) is an even function of z and equation
(3.19) can be written
| h
upw>=2 | aE (mIadz (3.20)
| 0

Substituting equations (3.13) 'and (3.14) into equation (3.20)
the followingAexpressionsVresult for the real and imaginary parts

of <u,v)
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h ~h
Re <u,v> =2k Iz 1) F,(z,z’) dz’'dz - (3.21)
412 .
0 “h
hArh _
Im<uoy= To . 1%z 1%z F,(z,2"7dz'd=z (3.22)
42\ | |
0 “-h

An almost identical derivation applies for <u,u> and<v,v),

yielding: _
h rh
Re<uuy = o I%z9 1% F(z,2)dz'dz (3.23)
2 ‘ 41:" i
0 “n
Im<u,us= 77°2J 1%z Iu(z) F;(z,z')dz'dz (3.24)
4r b Jn : : .
h nh
Re <> = }7—"—2 Iar(z')l"r(zf F,(z,z')dz’di (3.25)
T |
o -h

| Im<rr>= 'n"g g I%z)1 (Z)F(z z')dz'dz - (3.26)
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II CURRENT ASSUMPTIONS

Storer? used the followingbtrial functions to obtain the
first order (two trial functions) variational solution for

input impedance:

ILL

Sinzrw Ch-1z|) | ‘ \ - (3.27)
IV = | - cosza2m (h-zl)

Thus the total current 11- at any point on the antenna would be

given by

[r@=UsinznCh-1z)+ V[ I-cos2mch-zl)] Izi<h (3.28)

where, again, h and z are expressed in terms of wavelength.

Since I4(0) - the input current - is zero when h=1,2,3...,

Storer's analysis does not provide valid answers in these cases.

Tai 1,2 uses
I“=sinzrCh -1z
' | (3.29)
1=z 2r Ch-1zl)coszw(h-I1Z!)

so that

Ly¢zy=Usinzr Ch-lzl)+ Var(Ch-12)cos 2 (h-|2) (3.30)

2] < h
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Here,ITdoes not vanish at 2z=0 for any value of h, and thus
first order solutions based on these trial functions are finite
for antennas of any length.

6

Harrington~ suggests the following trial functions

I“= sinzn (h-zl)

(3.31)
I1V= h-lzl

giving

I;z) = Usinzr Ch-1zD) +V(h-120) | (3.32)
izl h

which is finitelat z=(Q for all h> 0.

In each case, U and V are in géneral complex constants that
are to be adjusted using the Reaction Concept as explained in
Chapter II,

Notice that eaoh current approximation involves the sine
term. It can be shown 10 that the current in any infinitely
thin perfectly conducting antenna is exactly sinusoidal.
Additional terms are added in an attempt to account for the finite
thickness of practical antennas.

This thesis solves for the dipole impedance using both

Tai's approximation and Harrington's suggested approximation.,

III FINAL REACTION EQUATIONS . /

It is only necessary now to substitute the trial functions of
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equation (3.29) or equation (3.31l) into equations (3.21) to (3.26)
to arrive at the final expressions for the real and imaginary parts

of the reactions <uy> , <u,u> , and <v,v> .

Reactions Using Tai's Current Distribution

4

h ~h 4 .
Recuv>= e : g sinzr Ch-1z'l) 27 Ch-lzl)coszn(h-1z1)F, (z,2)dzdz
¢]

(3.33)

Im<un> —%X S|nz1r(h iz1)zmw(h-lz) coszanCh- izt)F (z, 7dz'dz

(3434)

Re<uuy = n° sinan (h-12'1) Sin 27v (h-|2l) F (z,72')dz'dz

hgh
(3.35)

(3.36)

Re<vw>= .7_73 zn(h lz’l)Coszn’(h-lz h 27 (h- lzl)cosz;r(h ¥4)] F(z z")dz dz

416

hrh
Imcuuy = ﬂ_&g j sinzm(h-1z)Sinzn (h-zl) F,(z,2)dz'dz

(3.37)

Im<viv ‘”"S gzn(h Izlicoszmch-1z) 2n(h-izl)coszn(h-1z))F,(z,2')dz'dz

(3.38)
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Reactions Using Harrington's Suggested Distribution

Re<u,fv>-—— g & sinzn(h-1z1) Ch-1z) F(z,2)dzdz (3

Im Lur>= °

sinzm Ch-1z1) Ch-1z1) F (z,z.)c\z dz (
4r? 3

sin 2 (h-lzDsinzm(h-1z) F, (z,2°)dz’ dz

Re<uu>—ﬂi
4’1‘1 (3

)
=l

Im<y, =~ i3 g Ssmm(h iz)sinzn(h-1z)) F, (2, z')dz'dz

39)

.L0)

hl)

(3.42)
Re<v,w>= %S X (h-1Zh ( h- lzl)F (z,2')dz'dz (3.43)
Im('v"\f)— g S (h-121)(h-1z1) F,(z,2dz’ dz (3.44)

For equations (3.33) to (3.44), F) and F, are defined by equations

(3.15) and (3.16) respectively.



CHAPTER IV
SELF-RESISTANCE AND SELF-REACTANCE EQUATIONS

Equation (2.52 ) which gives the input impedance of the
isolated dipole in terms of the reactions is repeated here for

convenience as equation (4.1):

2 .
7 = <u,r>" - <u,u>L v, v> (4.1)

in T v Zuud> = 2 T4 L7 ku > + 1Yo 2 (anar>

The real and imaginary parts of the reactions have been
derived in chapter III. The next step is to separate Zﬁn into
its real and imaginary parts, which will be in terms of the real
and imaginary parts of the reactions. The real part 6f .Z\n can
then be identified, of course, as the input or self-resistance
and the imaginary part of Z;, as the input or self-reactance of
the isolated dipolé.

Representing the complex number Z“,as the ratio of a complex

numerator and a complex denominator::

I3

c +JD
Then self—resisténcer?;n is given by:

C2+D2
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and self-reactancexin is given by

X. = BC -AD ' (Lok)

in ™ C?* + D?

where, in terms of reactions:

A = (Re<uw)®=(Im<u,v)° —Re<u,u>Re<wr> + Im<uwy Im <> (4.5)
B = 2Re<wu,w> Im<u,ar = Re<u,ud I m<vivr> - Re <y Im.< wwy  (4.6)
C=1"0" Re<wuw -2 1“0 0 Re <ur> + I1%0)? Re <y (4e7)

D= IV(O)zIm <u,u> - ZI“(O)I”'(OJ Im<ur> + I u(o)z Im LD (4.8)

It remains but to perform the integrations indicated in
Chapter III to obtain the reactions, and then to substitute the
results into equations (h.B) and (h.h). The purpose of this

thesis is to do the integrations numerically on a digital computer.

The method is explained in Chépter V.



CHAPTER V

THE COlPUTER PROGRAM

In this chapter, the major aspects of the computer program

are discussed. The actual program as written in Fortran IV for

the IBM 360 model 50 digital computer is given in Appendix A.
I DOUBLE APPLICATION OF THE TRAPEZOIDAL RULE

The Trapezoidal Rule for the approximate integration of

single definite integrals can be found in many introductory
calculus books. A simple extension of this Rule makes it applicable
for approximate integration of doublevdefinite integrals. The
method is described briefly in this section.

Consider finding an apﬁroximation to the following double

integral

V= g(xy) dxdy (5.1)
o -a ' |
This integral of course gives the volume énclosed between
the x-y plane énd the g(x,y) curve. Figure 5.1 is an attempt to
depict the three-dimensional'nature of a representativé g(x,y)

plotted in the x,y,g coordinate system.
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Figure 5.1 THREE*DIMENSIONAL SKETCH OF A POSSIBLE g(x,y)

The shaded portions marked A , Al, ...,A5 are cross sectional
: o
areas perpendicular to the y-axis.

The y-axis is subdividedinto equal increments AY, where:

Nb is an integer large enough to give a good approximate integration,
In Figure 5.1, Nb =5

To approximate the volume under the g{x,y) curve, it is
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assumed that the cross sectional area varies linearly with y.

Thus:

< (A,+A) (A,+ A,) (A,+ A3 | (AsrAd)  (Ast As) (5.3)

or: V= Ay E&+ A+ A2+A3+A4”’%j | (5.4)

Of course, the A's are just the single integrals with respect

to X at the various y values, that is:

a ‘na a
(%,0) (x,304)
= Alt[ % 29 dx + 3(x,Ag.)dx+ %(x,zz\%)dx+---+ i_z_é‘.dg(s.ﬂ,
~a -a -d

Now, these cross sectional areas can also be approx%&ated
using the Trapezoidal Rule. For example, consider Al= g %(Xuﬁ%)dx
-d

Subdivide the x axis into equal segments ax where:

Na is an integer large enough to give a good approximate integration.
For the sake of illustration, let Na = 5. |

To approximate Al, the area under the g( X,8%) curve, it is
assumed that gl X, Ay ) varies linearly with X. Then the |

Trapezoidal Rule gives the following approximation to Alz
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A| = AX [M + %(-amx,a%)-r oo %(~a+94x,A%)+ w (5.7)
2 2

However, if g(x,y) is such as in Figure 5.1, where:

g(-a,4)= §(+a,y) =0 (5.8)

then equation (5.7) simplifies to
A = ax [%(-a+Ax,A%)+ co o+ g(-a+qox, A%)] (5.9)

Similar expressions hold for AO’AZ’AB’AA’ and A5 and V becomes:

V:':‘Acan { .2!__ [t}(—a-»-Ax,o)-c- R %(-aMAx,o) ]
+ E%(—8+AX,A%)+-”-f%(-a-f-‘?Ax,A(‘f) :l

o _:lz[ G (-8+AX, 584+ ¥ 3,(-a+qAX,5Ayf)] _ } (5.10)

II PROGRAM FEATURES AND CONSIDERATIONS

The evaluation of the reactions require solving double

integrals of the form
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hph
£¢z,27dz dz

0 -h

Because I” and I' are zero at z'=h and z'=-h, f (z,2') is
zero at z'=h and z'=-h. Hence the simpler form of the Trapezoidal
Rule, namely equation (5.9), can be used. Also, the last cross-
sectional area, at z=h, is zero. These facts simplify the program
logic somewhat by eliminating three program branches otherwise
necessary to account for the factor of one-half,

The integration with respect to z' was found to be sonewhat
more critical than the integration with respect to z. Satisfactory

results were obtained with Az'=2 and Az- ;%‘-o. Now, for each

200
value of z, the inner integration with respect to z' involves

evaluation of (2,27 at about 200 values of z'. Thus with 2
divided into 100 divisions calculations involved in evaluating
the inner integral could have to be repeated up to 20,000 times.
Hence care must be exercised to avoid unnecessary calculation
steps, and whenever possible, to store numbers that are used

repeatedly. For example F_(z,z') and Fz(z,z') (equation 3.15

1
and 3.16) have many terms in cormmon. These terms are evaluated

Just once and then used in the expressions for both Fl and F2.

Similarly, Fl and F2 are common to all the reactions (see equations

3421 to 3.26). Thus, in a manner to be explained next, F. and F

1
are calculated once, stored, and then used to evaluate all the

2

reactions.
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A Weighting Function Technigue

The most important feature of the program is the method by
which Fl and F2 are used as types of weighting functions in
calculating reactions.

To explain the procedure, consider as a specific example

determining:

h h
1" (| 1% F (z,2)dz") dz
an "

From what has been said about the Trapezoidal method,
approximating this double integral involves a summation of terms

of the form
h

1%z, 17z F (z,,z")dz"
“h

Here, of course, zliis a particular value of z between z=0 and
z=h, and is some multiple of az. |
Now, some observations must be made regarding Fl(z,z').

Similar observations can be seen to apply also to F_(z,z")

2
Consider equation 3.15 defining Fl(z,z'). It is to be

noted that z and z' always appear in the fofm (z --z')z. Thus

F, can be considered as a function of (z = 2') - denoted

F (z - z'). Using this fact, recalculation of Fl for each

1 v
different value of z1 can be avoided.
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First, Fl(z - z') is calculated for values of (z - z') from
O to -2h in increments of AZ' and each value stored in an array
in the computer. Values of F; for (z - z') from O to +2h can be
inferred from the values calcuiated because Fl(z - z') must be
symmetrical about (z - z') =0, This symmetr? follows because

z - z' always appears as (z - z')2 in Fl(z - z'). Figure 5.2

illustrates this calculation of F_, though  the shape is not

l’
necessarily representative of the actual shape of Fl. The dotted
portion of»the curve of Figure 5.2 is obtained by symmetry.
The small circles represent values of Fl calculated and stored.
Next, regardless of the values of Az and &az', Az is chosen
to be a multiple of az',
I%(z') is then calculated from z'=Oto z'=h in increments of
- Az', and each value obtained is stored in an array. Values for
I%(z') for z'=0 to z'=-h can be inferred from the calculated
values since I" is symmetrical about z'=0. In Figure 5.3, I%(z")
is shown assuming I%(z' )=8in2m (h-IZ1) for a dipole with _2_. <h<'>§"
The evaluation of Sh 1% ¢z F (z,,z)dz’
involves taking the producﬂ+&u(z')Fl(zl,z') at each value of z'
with z' varying from -h to h in increments of AZ', then taking
the summation of the product terms.
The F,(z,,2"') curve is obtained merely by placing the origin
of the Fi(z - z') curve at z'=zl. This is shown in Figure 5.3.
Since Az is a multiple of Az',z,, being a multiple of Az, is a
multiple of az'. Hence F, and IY have bo£h been calculated for
z'=2,, as well as at integer increments of Az' on both sides of

z'=z7,
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- az’
|

z-2)

1
|
!

] .Z'

174
-h 0 2-s2 , z,iaz' h-

#'=Z,

Figure 5.3  INTEGRATING Iu'(z')Fl(zl,z')

£
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h
Thus, j\-h 1%z F‘ (z,,Z’)dz’ can be found using the
summation of Iu(z')Fl(z - 2z') products in the following manner:
h
w . u ) u ’
I"(z) Rz, 2hdz = az' [ 1%y F + I%z+a2"F (az)
-h '

r I*%z,-82)F (-22) + 1%z, +242') F, (242) +1%@,-202)F -287")

e ]

Since Fy(z -z') = Fy(2' - 2) by symmetry, this simplifies to
h

Iu(z')l'_,(z,,_z')dz’ = AZ { Iu(z,\F(o)-!- [Iu(z,-mz’)
-h

+ I“(z,—Az')j Feaz) + [I“(z,+zAz')+I“(z,-2Az')]F,(-zA'z’)

+ oo ;} ' “ (5.11)

Because I%(z') and F,(z -z') are already stored as linear
arrays, performing the operations indicated by equation (5.11)
is a simple matter of multiplying the two arrays together term
by term.

Program logic is included to avoid calculations of products
for z'>h and calculation stops when‘ z'= -h+Az', At this point, all
the product terms have been summed and this nﬁmber is multiplied
bY'Iv(zl). z1is incremented by az and the procedure repeated
until z covers the range 2=0 to z=h-az. Conditioning the 2z=0 term

by a factor of one-half, summing all terms‘for‘z from O to h-az,
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and then multiplying by az'az results in the approximation to
h h
(g u -
| I () F(z,2)dzdz .
0 “-h
Similar logic follows for the other double integrals.

The remainder of the computer program is relatively

straightforward.




CHAPTER VI

RESULTS

In this chapter, the results of the computer calculations
are presented in“graphical form. Figures 6.1, 6.2, 6.3, and 6.4
were obtained using Tai's trial curréhts, while Figures 6.5 and
6.6 were obtained using Harrington's trial currents. Calculations
involving Tai's approximation were done for diﬁole half-lengths
from 0.05A to 1.1\ at .05\ intervals. Calculations involving
Harrington'éiapproximation were done for dipole half-lengths
from 0.05A to l.4A at .05X intervals. For all calculations,
antenna half-length to radius ratio was taken as 7L4.2. Various
curves from the 1iteratwrel are plotted for the sake of comparisons.

All computer calculations were done in single precision.

-A Note On Antenna Thickness

The halfflength to radius ratio used in all the calculations
is 74.2. For those familiar with the Hallen integral - equation

method, this ratio corresponds to (1= 10, where(lis defined by:
ﬂ=2’n(%)

Most VHF ‘and UHF antennas that are self-supporting will be

about this thickness or likely somewhat thicker.

To analyze thinner antennas, exactly the same prbcedu&e as

outlined in this thesis can be used. However, it is to be expected
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that as the antennas become thinner Fl and F2 will become more

singular in nature, thus requiring the integrations to be

_performed with smaller values of dz' and dz.
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Figure 6.2
EFFECT OF THE NUMBER OF INCREMENTS
ON DIPOLE SELF-REACTANCE
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REACTION CONCEPT USING TAI'S CURRENT APPROXIMATION
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Figure 6.4
DIPOLE SELF-REACTANCE

REACTION CONCEPT USING TAI'S CURRENT APPROXIMATION
COMPARED WITH TAI'S VARIATIONAL SOLUTION
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Figure 6.6
DIPOLE SELF-REACTANCE

REACTION CONCLPT USING HARRINGTON'S CURRENT APPROXIMATION

COMPARED WITH DIFFERENT METHODS
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o o o- Reaction (dz'=h/2000, dz—h/200

Tai's Variational
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VII

DISCUSSION ALD CONCLUSIONS

The Effect Of The Number Of Inc}ements

Figures 6.1 and 6.2_strikingly illustrate the importance

of using small enough values of dz' and dz. The results for

dz'=_h and dz=__h show almost no resemblance to the
100 100
results obtained by merely reducing dz' to__h « Furthermore,
200

~ the convergencé of the answers is quite abrupt. The results
for dz'= _h , dz=_h differ only very slightly from the
2000 200
results with dz' a factor of 10 and dz a factor of 2 times
larger.
Though not plotted, results were obtained for many other

choices of dz' and dz, namely:

dz! = h dz = h
: LO0 ~ 100
dz' = _h dz =_h
. T500 - <100
dz! = h dz = h
~ 1000 . 100
dz' = h dz = h
2000 100
In all cases the results fell between the results for dz' = h

dz =_h__, and dz' =_h__, dz =_h .
100 - 2000 200
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The numerical integration was found most sensitive for the

inner integral the one with respect to z'. Thus dz' must be

smaller than dz. Results were calculated using dz =5g , dz' = 580

that differed by less than 10% from corresponding values

obtained with dz =__h , dz' =_h .
100 200 |
Since results can be dependent on the size of dz' and dz,

calculations using this numerical method may have to be repeated
several times for various values of dzf and dz until increment
values are found such'that further decreases in size do not

appreciably influence the results.

Results Using Tai's Approximation

Figure 6.3 and 6.4 compare the results obtained by the
Reaction Concept with the results_obtained by Tai using the
Variational Method. The agreement fbr both resistance and
reactance is excellent.

The Reaction Cpncept results plotted were obtained using
dz' =_h , dz =_h . The results using dz' =_h _, dz =_h

200 100 | 2000 200
fall even closer to Tai's results. Such close agreement

indicates that both methods lead to the same equdtion for impedance.
‘Numerical integration likely accounts for calculation differences.

Results Using Harrington's Current Approximation

Figures 6.5 and 6.6 illustrate that the success of the
Reaction Concept is quite dependent on the current approximation
used. These figures compare the results obtained using the

Reaction Concept with Harrington's trial currents and the results
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obtained by Tai using the variational solution. Harrington's
approximation is seen to yield very good agreement with Tai's
results for dipole half—lengths less than about 0.7 A. However,
for antennas longer than this, the Reaction Concept using
Harrington's approximation yields results that rapidly diverge
from Tai'sbresults. This is particularly true for the case of
reactance where the error becomes extremely large, although the
curves still retain similar shapes. |

Just as a point of interest, the results using the King-
Middleton Method and Schelkunoff's Method are also plotted 6n
Figures 6.5 and 6.6. Even though an appreciable difference is
seen to exist between the results of Schelkunoff and those of
King-Middleton and Tai, still Tai considers Schelkunoff's First
Order Theory to yield fairly good results. For antenna half-
length less than 0.72, the Reaction Concept using Harrington's
current approximation provides results that are much more in line

with Tai and King-Middleton than are the results of Schelkunoff,

Ease Of Re-Programming For Different Current Approximation

It might be expected that using Iv=h-|zf in Harrington's
approximation, instead of I'= 2r (h-iz) )coszn ( h-1z|) as used in
Tai's approximation, would make analytical integration easier.
However, this is not so, and the integration leads to extremely

complicated expressions Iike those given.in the finél footnote of

an article by King and Harrison Jr.lz.

On the other hand; when doing the integrations’numerically
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only four computer cards had to be changed to change the program

from Tai's approximation to Harrington's approximation. The

changes required are pointed out in Appendix A,

Calculation Precision:

The results using Tai's approximation and dz' =__h y dz

—2000 200

were calculated using both double and single precision on the

computer.

The final answers by the two different methods varied

by no more than ¥1 in the fourth significant digit. Hence,

single precision was considered adequate.

Storage Requirements:

Appendix A shows the computer program to be quite short, so

it poses no storage problem in itself.

The majority of the storage

is used for the Fl’ F2, Iu, and I' arrays. The number of values

stored depends of course on the number of increments used in the

integration with respect to z'.

Table 7.1 shows the storage

requirements of the arrays for three different values of dz'.

2000

‘ Table 7.1
dz! Fl
h L,00
200 .
h 2000
1000
h 4000

Array Storage Requirements For Various dz! Values

Fo

400
2000
4000

il

200
1000

2000

IV

200
1000
2000

Total- Number Of Stored

Values
1200
6000

12,000
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The particular compiler used would not allow dimensioning arrays
to store more than 12,000 values total in the central processing
unit. For values of dz'! smaller than__h , disc storage would

2000
have to be utilized.,

Time Considerations: -

Of prime inportance is the time required to calculate the
results on the computer. With Tai's current approximation, the
calculations with dz' = _h , dz = _h offer a good compromise

200 100
between accuracy of results on one hand and calculation time on

the other. For dz' =_h _, dz =_h _ calculation time for

) 200 100
resistance and reactance corresponding to a particular value of
h is 15 seconds, using Fortran IV, single precision, on the
IBM 360/ Model 50.

When dz' is ‘divided by 10 to dz' =_h and dz is ,divided

2000
by 2 to dz =_h _, then computation time is closely 10 X 2 = 20
200 ‘
times as long as for dz' =_h , dz =_h . That is, computation
200 100
time for dz' =_h y dz2 =_h is about 300 seconds for each

2000 200
value of h. »

However, the IBM 360/ Model 65 will perform the same
calculations 3 to 4 times faster than the Model 50, Thus, using
the model 65 results for dz' = _h , dz =_h could be obtained

: 200 100
in less than 5 seconds for each value of h.

In all cases, compilation time on the Model 50 was about 16

"seconds.
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Conclusions

(1)

(2)

(1)

(5)

(6)

The Reaction Concept coupled with numerical double
integration provides a very good method for solving
for the input impedance of an isolated dipole. It
leads by a straightférward'procedufe to excellent
results within an acceptable computing time,

The success of the Reaction Concept is dependent
upon the choice of the current approximation. Using
numerical integration, different current approximations
can be tried with relative ease.

Unless integration increments are small enough,

the results obtained by the method of this thesis
are neaningless. On the other hand, using more
increments than necessary results in.unnecessary
computer computation time.

The present state of computer technology is such

as to make numerical double integration préctical
for solving integrals similar to those encountered
in this thesis.

On the basis of its success in solving the dipole
problem, the Reaction Concept utilizing numerical

double integration merits consideration as a method

for solving for impedances of other antenna configurations.

The Reaction Method appears to yield the same equation

for impedance as does the Variational Methbd.



APPENDIX A

SAMPLE CUMPUTER PROGRAM

The computer program presented in this section is one to
calculate self-resistance and self-reactance ﬁsing Tai's current
approximation with dz'=_h_, dz = _h_ and h varying from 0.05 A
to 1.1 A . The card chagggs necessggy to convert the program
to Harrington's approximation are placed in parenthesis alongside
the corresponding card in the sample program.

Some comments are important regarding the program. Firstly,

it is to be noted that the program is written as if two different

m

, and

antenna lengths hl and h2 and four trial currents Iu, IV, I
In are involved. The reason for this is that the program used for
finding self-impedanée originally formed a portion of a program
the author was preparing to find mutual impedance between two
parallel V - antennas of different lengths h; and h2 o It was
observed that by letting hl=h2=h,Iu=Im, and Iv=In, and letting
the distance of separation of the two antennas equal the radius
of the single dipole, that one portion of the nmutual impedance
equation reduced to the self-impedance equation for the dipole.
Harrington6 makes similar obsefvaﬁions'to obtain the first order
( one trial function ) variational solution for input impedance of
a dipole from his first order dipole mutual impedance solution.

By retaining the mutual impedance features'of the program,

many calculations become redundant. For examﬁle, the real and

imaginary parts of both <u,n» and <v,m>» are calculated
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even though they are the same quantities for the self-impedance
case. However, this is felt to be a desirable feature for this
thesis as the program combines somewhat.the worst aspects of
impedance calculations - namely, the greater number of calculations
that would be involved for mutual iﬁpedance’aﬁd the more singular
nature of the Fl and F2 functions in the selffimpedance case,

Thus, computation times using this program will be slightly on

the conservative side.
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SELF IMPEDANCE
RESISTANCE AND REACTANCE

FORMAT(3F20,0,110Y

FORMAT(1HO$3HH1=F184892X3HH2=F184832X6HRATIO=F18,8)

FORMAT (1 H

2 1 IHRESISTANCE=F18+895X10HRFACTANCE=F184.8)

0 O

— O W

FORMAT (1H
FORMAT (1H

s 4HRUM=F 254 0+s4HCUM=F 25409 4HRUN=F 25409 4HCUN=F25,0)
s 4HRVM=F 25409 4HCVM=F 25 409 4HRVN=F 25409 4HCYN=F25,0)

DIMENSION

RF(2001)sCF(2001)9SN(1001)5CS(1001)°

JO

READ (1s1) TOPIsH1sRATIOSNO
DO 80U N=1+22

H1=H1+0,05
H2=H1

D=H1/RATIO
D22=0,02%H2

DZ21=0,002#%H1
DZDZ=DZ1%*DZ2

TOP12=TOPI%#%2
D2=D%*%2

DO 82 I=1,500
M=1-1

XM=M
Z1=XM*DZ1

XZ1=TOPI*(H1-Z1)
SN(TI)=SINI(XZ1)

CS{I)=XZ1%#COS(XZ1)
IMZ2=21%%2

(cS(I)=H1-21)

DIST2=2ZMZ2+D2
DIST=SQRTI(DIST?2)

Al=1.000000/DIST2
A2=2MZ2#A1

A3=3,000000%A2
A4=A3/DIST2

AS5=TOPI2%*A2

TFRMZ-(—TOP12+A5+A1 ~A4)/DIST

TERM1=TOPI#*A1%(-1.000000+A3)
TOPIS=TOPI*DIST

COSR=COS(TOPIS)
SINR=SIN(TOPIS)

RF(I)-COSR*TERM1+SINR*TERM2
CF(I)=COSR*¥TERM2-SINR#TERM1

- CONTINUE

DO 83 1=501,1000

M=1-1
XM=M

LMZ2=(XM%*DZ1)##%2
DIST2=2MZ2+D2

DIST=SQRT(DIST2)
A1=1.000000/DIST2

A2=ZM22%A1
A3=3,000000#A2

A4=A3/DIST2
AS=TOP12%A2

TERM2=(-TOPI2+A5+A1-A4)/DIST
TERM1=TOPI*A1%#(-1,000000+A3)

TOPIS=TOPI#DIST




COSR=COS(TIOPIS)

SINR=SIN(TOPIS)

RF(I)=COSR*TERM1+SINR*TERM2

i

CF(I)=COSR*TERM2-SINR*TERM1

CONTINUE

RUM°—'OQO
CUM=0,0

RUN=O.O
CUN=0.0

RVM=0,0
CVM=0.0

RVN=0.0
CVN=0,0

DO 5 K=1,50
J=K=-1

XJ=J
22=D22%xJ

XZ2=TOPI*(H2-22)
XMMULT=SIN(XZ2)

XNMULT=XZ2%#C0S(X22)
RUMN‘:O.O

(XNMULT=H2-22)

CUMN=0,0
RVMN:'0.0

CVMN=0,0
J101=U#10+1

==1
L=L+1

LL=L+1
IP=J101+|

IM=J101-~L
TF(1) 13518913

13
la

IFCIM) 14914915
IM==1M+2

16

IF(IM=-500) 15515416
GO TO 57

15

IF(IP-500) 17517518

17 UX=SNUIP)+SN(IM)

VX=CS{IP)+CS(IM)
GO TO 19

18

UX=SN(IM)
VX=CS(IM)

19

RUX=RF (LL)*UX
CUX=CF(LL)*UX

RVX=RF (LL)*VX
CVX=CF(LL)#*VX

RUMN=RUMN+RUX

RVMN=RVMN+RVX
CVMN=CVMN+CVX

GO 70O 84
IF(K=2) 7,8,8

7 RUMNS5=RUMN#*0,5000000
CUMNS5=CUMN#0.,5000000

RVMNS=RV¥N¥0.5000000
CVMN5=CVMN*045000000

RUM=RUM+XMMULT*RUMN5
CUM=CUM+XMMULT *CUMNS

RUN=RUN+XNMULT*RUNMNS
CUN=CUN+XNMULT *#CUMNS.

RVM=RVM+XMMULT ¥RVNNG

B L —




TRYNSRVNTENVGE ?iﬁi“/ iNg
LT #CVMNS,

CVN=CVN+XNMUI

8

GO 7O 5
RUM=RUM+XMMUL T#RUMN

CUM=CUM+XMMULT #CUMN

_ RUN=RUN+XNMUL T *RUMN

CUN=CUN+XNMULT*CUMN - )
RYM=RVM+XMMUL T #RVMN

CVM=CVM+XMMULT*CVMN : ' '

__ RVN=RVN+XNMULT *RVMN

CVN=CVN+XNMULT #CVMN
CONTINUE

72

ARG1=TOPI #H1
ARG2=TOP 1 #*H?2

FIM=SIN(ARG2) . RS
FIN=ARG2#COS(ARG2) @FIN=H1)

FIU=SIN(ARGI) '
FIV=ARG1*COS(ARG1) (FIV=H1)

FIVIM=FIV*FIM
FIUIM=FIU*FIM

FIVIN=FIV*FIN
FIUIN=FIU*FIN

RNUM1=RUM*RVN=~CUM¥CVN
CNUM1=RUM*CVN+RVN#*CUM

RNUM2=RUN*RVM=CUN*¥CVM
CNUM2=RUN*CVM+RVM*CUN

RNUM=RNUM1-RNUM2
CNUM=CNUM1-CNUM2

RDEN=FIVIM*RUN-F TUIM*RVN~F IVIN#RUM+F IUIN*RVM
CDEN=FIVIM*CUN-FIUIM*CVN-FIVIN*¥CUM+FIUIN*CVM

RDEN2=RDEN#*#*2
CDENZ2=CDEN*#%2

DENOM=RDENZ+CDEN2
B1=RNUM*RDEN+CNUM*CDEN

RRRR=B1/DENOM
B2=RDEN*CNUM-RNUM*CDEN

COMPL=B2/DENOM ‘ —
FACTOR=60, OOOOO*DZDZ/TOPI o

RESIST=FACTOR*RRRR ‘
REACT=FACTOR*COMPL ' !

WRITE (393) HlsH2sRATIO
WRITE (3s4) RESISTHSREACT

WRITE (3,90) RUMsCUMSRUNs CUN

101

WRITE (3+91) RVMsCVMIRVNICVN
CONTINUE C
____IF(NO) 9599101

CALL EXIT
END

\TA

10000

283185 0,0000000 - : 74420000




1.
2e
3e

Lo

S

9.
10,

1l.

1z2.

—

BIBLIOGRAPHY

Ce Te Tai. A Variational Solution to the Problem
of Cvlindrical Antennas, Stanford Research Institute,

Technical Report No. 12, Air Force Contract -
Noe AFl9(122§78 SRI Progect No. 188; August, 1950,

Ce Ao Levis an C. T, Tai. A Method of Analvyzing
Coupled Antennas of Unegual Sizes, JLRE Trans A&P

P.Ll28; 19506,

H., C. Baker and A. H. La Grone., Digital Computation
of the Mutual- Impedance Between-Thin Uipoles,
TiE Trans A&P, Vol AP-10, No. 2, March 1907.

V. He Rumsey. Reaction’Concept-in Electromagnetic
Theory, Physical Review, Vol.9k4, No. 0, June 15, 195k;
PelL&3.

T. He Crowly. On Reciprocity Theorems in Electromagnetic

Theory, Journal of Applied Physics, Vol. 25, No. 1,
Jan., 1954; p. 119.

Roger F. Harrington: Time-Harmonic Electromagnetic
Fields, McGraw-Hill, 1961.15C edition.

Ronald W. P, Kinge The Theory of Linear Antennas
Harvard University Press, 1950.

Ronald King and C. W. Harrison Jr. The Distribution-
of Current Alonfr a Symmetrical Center-Driven Antenna,
IRE Proc., vol 31, 1943; pe548.

Je E. Storer, Variational Solution to'the Problem
of the‘Svmmetrical Cylindrical Antenna, Cruft Labe. Rep.
TR 101, Cambridge, Mass., 1950,

S. A, Schelkunoff and H. T, Friis. Antenna TheQ_y and
Practice, Wiley, New York, 1952, ps 453,

v

He M. Bacon: Differential and Integral Calculus,
McGraw-Hill, 1955, Pe3L40, :

Ronald King and C. W. Harrison‘Jdr. IMutual and Self=
Impedance for Coupled-Antennas, Journal of Applied
Physics, Vol 15, dJune, 194k, p.. 451




13.
14,

15.
16.

17.

18.

19.

20,

21.
22,
23.
Rl .

25,

26.

27,

73

R. King and K. Tomiyasu. ZTerminal Impedance and Generalized
Two-Wire-Line Theory, Proc. IRE, vol. 37, 1949, p. 1134

R. King and T. W. Winternitz. The Cvlindrical Antenna With
Gap, uart. Appl. Math., vol. 5, 1947, p. 403.

b. 0. Hartig. Circular Apertures and Their Effects on Half-
Dipole Impedances. Doctoral Dissertation, Harvard University,
June 1950,

J. R, Carson., Reciprocal Theorems in Radio Comrunication.
Proc. IRE, vol. 17, June, 1929, p. 952.

R, G. Kouyoumjian. The Calculation of the Echo Areas of
Perfectly Conducting Objects by the Variational Method.
Technical Report 44L-13, Antenna Laboratory, Ohio State
University Research Foundation, November 15, 1953,

J. H. Richmond. A Reaction Theorem and Its Apolication
to Antenna Impedance Calculations. IRE Trans A&P | Vol ,AP-9,
No.6, Nov., 1961, p. 515.

L. V. King. On the Radiation Field of a Perfectly Conducting
Base Insulated Cvlindrical Antenna Over a Perfectly Conducting
Plane barth, and the Calculation of Radiation Resistance and
Heactance. Trans. Roy. Soc. (London) (A) 236, 1937, p.381.

Erik Hallen. Theoretical Investigations into Transmitting
and Receiving Antennae. Nova Acta Regiate Soc. Sci. Upsaliensis
(4) 11, 1, 1938.

Erik Hallen. On Antenna Inpedances. Acta Polytech. No. 16~
Trans.Roy. Inst. Technol. Stockholm, 1947.

Erik Hallen. Properties of a Long Antenna. J. Appl. Phys.,
Vol.19, 1948, p. 1140,

H. C. Pocklington. Electric Oscillations in Wires. Camb,
Phil, Soc., 9, 1897, p.324.

S. A. Schelkunoff. Theory of Antennas of Arbitrary Shape
and Size. Proc. IRE, Vol. 29, 1941, p. 511.

Erik Hallen. Admittance Diagrams for Antennas and the
Relation Between Antenna Theories. Tech. Report No. 46 ,
Cruft Laboratory, Harvard University, Cambridge, Mass. (1948) .

R, King and D. Middleton. The Thin Cylindrical Antenna:
A Comparison of Theories . dJ. Appl. Physics, Vol. 17, 1946,
po 2730 ’ B

John D. Kraus. Antennas. McGraw-Hill, 1950,




28.

29,

30.

31.

32.

7h

G. E. Albert and J. L. Synge. The General Problem of
Antenna Radiation and the Fundamental integral bquation,
With Application to an Antenna of Revolution. - Part L;

Yuart. Appl. Math., Vol.6, 1948, p. 117: PartII., J. L, Synge,
Vol. 6, 1948, p.133.

V. H. Rumsey. A Short Way of Solving Advanced Problems in
Electromagnetic Fields and Other Linear Systems. AIELE Trans
A and P. Vol. 11, No. 1, Jan., 1963, p. 73.

J. H. Richmond. On the Theory of Scattering By Dielectric
and Metal Objects. Ohio State Univ. Res. Foundation, Columbus,
Chio, Antenna Lab. Rept. 786-3, April, 1958.

Louis A. Pipes. Applied Mathematics for Engineers and

- Physieists.  McGraw-Hill, 1958, p. 326.

Harold T. Davis. Introduction to Nonlinear Differential
and Integral Equations. United States Atomic Energy
Commission, Sept., 1960. :




