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A]JSTiìACT

TÌre H,e¿lciion concept oÍ- v. H. R.rrn"ulr, as ei:tendecl bo

antennas by Roger F. Harrin,3ton, is usecl to d.eterraine

tire seLf-resistance and ser-f-reactance of a linear
dinol-e. values are given for arrtenna harlf-leirgths
var;,-ing from 0.05À to 1.1 tr, the half-Iength to raoius
ratio being 74.2 (corresponding to an0of IO). The

calcnla'uions are d.one u-sing tv¡o differenË current
assuniptions, one 0"1 tO c.T. Tai and. one suggesied.

bJr R. F. Harringtoir, ancl the resur-ts are corapared with
val-ues from the ]i-ierature. The cloubre iniegrals
invol-ved in the equat,ions are solved..numerically on

an rBM )6o/rnod.er J0 oigit,al cornpu'cer, using a ciouble

air;olicaiion of the Trapezoicìal Rr-ile. A single
calculal,ion yielding self-resistance and self-reactance
for one parbícurar length dipore antenna requires about
U seconds of computer time on the model 50.
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CI-IÄPTER T

INTRODUCTIOIÙ

ThÍs thesis is intended primariry as a contribution
to a much larger overalL project, that of analyzíng
certain antenna arrays theoreticalry. The intention
of the overalr project is to find expressions for array
characteristicsrsuch as input irnpedance anci radiation
pattern, ancl l,hen place these expressi.ons into a digi-bal
computer. Design lvorl< coul-d proceed by changing various
anienna elernent lengths and spacings and. observing
over"all array changes.

The first antenna io be analyzed is the log-periocric
dipole antenna in¡irich is composed. of a speci,al array of
parallel dipoles. I{owever, greater ci.irectivity from
log-periodic arrays can be obtaineci by using v-shaped,

eleinenis and eventual-fy an atteinpt wilt be macle to
analyze the log-perioctic V-anl,ennac

A study of - ante-nna theory showed an", Har-ren,r s íntegral
equati-on method for obtaining an integral equation for
the current clistribution on antennas $¡as alread.y werl
accepteci, ancÌ c.T. Tairåo ,r""i*tional solution of the

* I'he nurneral_ denot es

bibliography
reference nuinber as lisiecL in



2

equation was known to yield good resul-ts for the self-
impedance of d,ipoles. Furthermore, Levis and Tai2

expressed confidence in the variational- approach for
yielding good results for the irnpedance parameters

of two parallel dipoles of arbitrary J-engths as well
as for an array of trnrt parallel dipoles of arbitrary
lengths. The Reaction Concept promised to combine

both the integral equation method and the variational
solution into one direct approach. Ïndeed, Levis and

Tai2 say with regard to their equations for the two

dipoles; trFinal-Ìy we may mention that (these results)
can be ol¡tained by applying V. H. RumseytsL Reactj-on

Principle to our problem. This method indeed leads

to the admittance result more directly, but was not

chosen here because the concepts are not as widely

knownt?.

Thus the Reaction Concept seemed to offer a very

real,istic and practical- method on which to base eventual

array analysis and design.

I'low, both the variational method and the Reaction

concept yield doubre integral equations and to sor-ve ühem

requires that current distributions be assumed on the
antennas" Answers will be good only if good choices

are made for the current approximations, For the dipole
case, c. T. TairsÌ current approximation works extremely
wel,l and also is such that the impedance equation can



be obtained in cl-osed form through analytical integration.
However, it is to be expected that when more general

antenna configurations are attacked great difficul-ties
wilL likely be encountered in finding suitable current

distributions that give both expressions in closed form

and also good results. Furthernore, for each neu¡ con-

figuration several- different current approximations v¡ould

probably have to be tried before finding a suitable one

for the problem.

Thus it was decided to investigate the feasibility
of solving the doubl-e integrals numerically on a digital
computer. This eliminates the need for worrying about

distributions leading to closed form expressions, and

aLso, since similar program logic for the Í.ntegration
wouLd apply regardless of the distribution assumed,

different approximations could be tried with relative
ease.

Such, then, is the nature of this thesis - a study

of the Reaction concept coupled with numerical double

integration as a practicaf method of finding antenna

inpedances. The scope of the thesis is quite rimited,
being essentially a ttfirst-orderrt investigation. one

particuJ-ar case only is studied - that of fÍnding the
self-impedance of a linear dipore. This case is chosen

as it has been done using the variationar method, and a
good current approximation is known. However, it is felt
that self-impedance will be more difficul-t to determÍne
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than mutual- impedance since the inl,egrands have a much

more singular nature in the self-impedance case. A1so,

no attempt is made to evolve a sophistlcated method of
digital integration. Instead., a straightforlvard double

applicaùion of the Trapezoidal Rule is used.. A simÍlar
approach (simpsonrs Rule) tras been used. by Balcer and.

La Grone3 to fÍnd mutual imped.ance betr,reen thin cÌipoles

using an assumed sinusoídal current approximatíon.

Horvever, Balcer and La Grone only performed single
integration by digital means and only needed a single
application of Simpsonr s RuIe.

To fndicate horv the success of the Reactfon method

depends on the current assumption, the self-impedance is
determined using trnio dÍfferent currenb approximations.

It is seen that one approximation yields good results
only for the shorb and intermediate length antennas

investigated.

This thesÍs, of .orr""u, has implications for any

problem involving the evaluatíon of sÍmiLar double

integrals.



CHAPTT]R II

THE REACTIOi{ CONCEPT

In this chapter, the Reaction Concept is.introduced and

the method of utilizÍng it to determine self-impedance of an

antenna is explaÍ-ned.

I BRIEF HTSTORÏ OF ANTENI'JA THEORY

In order to gain perspective regarding the position of

the Reaction Concept in antenna theory, a brief history of

antenna theory is incl-uded here. A much more comprehensive

history can be found forming the introduction to the book by

R. lt. P. King7.

ÀIthough many different approaches r4rere attempted over

the years to analyze antennas theoretically, the earliest
treatments of the cyJ-indrical center-driven antenna as a
boundary-vaLue problem are those of L. V. xingl9 in l93Z and

2TE. HalÌén in 1938. using essentially the retarded-potential
method of Pocklingtonz3, Harlén derived an integral equation

for the current distribution along the antenna. Ha11én solvêd

his integral equation by a method of iteration in reciprocal
powers of a parameterfl:2 J-n 2h where h is the hal-f-rength
of the antenna and a is its radius. rmpedances are easiry
found once the current is known. (A good explanaLion of Hsll{¡ts

27
method can be found in the book by Kraus ' ).
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2l+In l-941, Schelkunoff presented a different treatment-

his so-caÌled non-uniform transmission l-ine method. His startÍng
point was the thin biconical antenna, which he solved as a

boundary value problem concentrating.on the fields rather than

the current distributions. To apply the biconical antenna

solution to the cylindrical case, Schelkunoff used a perturbation

method. The conicaL boundary was considered perturbed into
the cyLindrical shape, and the perturbed wave functions calculated.
In his article, Schelkunoff also discussed the shortcomings of
previous works and since that time much of the interest in
cylindrical antennas has been centered on the dÍfference between

Schelkunoffr s and Hall6nt s method.
25

Ha116n finally showed, in 19¿+8, that the first order

impedance formula derj-ved from Schel-kunoff I s theory can also be

obtained by a so-cal-l- ed, /lfl2- expansion from the general- solution
of the integral equation method.

rn 1946, King and l{iddleton26 used a different expansion

parameter in the iteration of Halldnt s integral equation in
order to achieve more rapid convergence. This is the so-cal1ed
Ki ng-i,ii ddl- et on 

¡ú - expa ns i on .

searching for a more practical way of solving Hallenr s

integral equation, storer9 ,.r ry5o developed a variational
formutation. This method. invoLved modifying the integral equation
so that a specified quantity such as impedance is insensitive to
errors in an assumed trial function for the current along the
antenna. fn the language of the calculus of variations, the first
variation in impedance with respect to the current is zeîor so
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that the impedance is stationary with respect to smal-l changes

in Èhe cument. iulore simpJ-y, the impedance is an integral
equation in the current; with the inbegrar stationary with
respect to fÍrst-order changes in the current it follows that
if the trial function of current is a good approximation to the
true current, the approxÍmate impedánce wil] be a stil] better
approximation to the true val-ue of impedance. The more accurate
the trial current, the better the val-ue of irnpedance obtained.
The triaL current is chosen by considering it to be a l-inear
combination of functions each multiplied by an adjustable
constant or variational parameter. The parameters are adjusted
by the Rayleigh-Ritz procedure which requíres the partial
derivation of the impedance with respect to each parameter be
zero.

m .1I'ai , al-so in 1950, improved on storerf s resurts by using
a better approximation for the current distribution in the
variational methoi.

Then, in 1954, Rumsey presented his Reaction concept.
This method provided a more generar and more straÍghtforward
means of obtaining stationary equations than did the variatj.onal
nethod. T/hereas variationaL techni.ques to obtain sbationary
equations varied for each problem, the reaction method determined
süationary equati-ons directJ-y from l,{axwellr s equations. The
reaction method arso assumed a trial function that was a rinear
combination of functÍons each multiplieã uy an adjustable
constant' A quantity calfed the reaction was defined. By forcing
the assumed source to have the same reaction with certaÍn rr¿s"¿il

sources as the correct source would have, the constants were
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eval-uated. This procedure will be explained in more detail
presently.

Comments on the DrivinE Conditions

The theoretical- analyses for the cylindrical antennas

assumed the antennas to be driven by a sl-ice generator which

mainùained a dÍscontinuity in scalar potential at the center

of the antenna. since such a driving source is not physically
real.izable, it might appear that the theoreticaL results are

quite unrel-ated to practical antennas. Indeed, experiments

readiiy showed that the impedance an antenna presented. to a

transmission line was greatly dependent on the line used and

the orientation of the rine with respect to the antenna. In
other words, the theoretical analyses did not account for the

coupJ"ing effects and boundary conditions introduced by practical
feed systems. Howeverr the theoreti.cal analyses still- proved

to be inportant and useful. Between lgLZ and I95O, King and

winüermit'urL, King and Tomiy"",rl3, and E. oo Hartigl5 bridgd
the gap between experj.ment and theory. They measured the
apparent impedance of a dipole using many different transmission
lines and orientations. For each case, the impedance was

measured for various spacings of the conductors of the trans-
mission line as the spacing between the conductors r¡ras decreased.
It was found that, regardless of the l-ine or orienüation usedo

if the measured varues were extrapolated to zero line spacirg
the values so obtained were in complete agreement with the
theoretical resul-ts of the King-lvliddleton expansion or Tairs
varÍational- formulation.
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Thus, the theoretical impedance of the antenna driven by a

slice generator across an infinitesimal gap is independent of
the feed line, and dependent only upon the ]ength and radius
of the antenna. The theoretical" resul-ts are useful, since the

researchers mentioned in this section found that lumped, terminal-
zone networks could be designed to transform ideal theoretical
val-ues into measurable apparent values for different transmission
lines and connectiorrs r

Though Tai obtained his variational soLution using a Dirac
delta function for the driving source field, he mentioned that
the same equation results by assuming an impressed field
distributed over a very smarL but finite gap at the center of
the antenna, and assuming that the current is practically constant
w-ithin this gap. (TI" derivation is simil-ar to thar presented

28
by AJ"bert and Synge ).

Harrington utitized this idea by assuming his antenna driven
by a constant current source in the gap - that i", by a short
filament of irnpressed electric current across the gap. Essentially,
the antenna is assumed driven by a current source in the circuit
sense, which can be used in the fiel-d probrem because the Ínput
region - the gap - is of dimensions small compared to a wavelength.

The current source is particularJ-y convenient for the
reaction method, and was adopted as the method of exciting the
dipole for this thesis.

The theoretical results of the King-lr[1¿dleton expansion and
Taits variational formulation are the best theoreti-ca1 results
yet calculated for the dipole self-impedance. Results based. on
schelkunoffts first order theory are arso considered by Tai
to be good. The reaction concept as applied in this thesis
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Ìeads to resuLts aLmost identicar to the results of Tai.

rI F"ETTPROCTTY Â}ID I?.EAC.FICII

fn this section, the development leading up to the definition
of Reaction follows for the most part that presented by
_.ÕHarrington . Extensions to the theory can be found in Richr¡ond18
and Rums "y29. Good references on reciprocity theorems include
crowf ey5, Richmondl8r30 and cr."or,16 .

Consider two monochromatic âoco sources, namely the vol-ume
distributions of electric current {a and Jb. consider then to
exist in the same linear medium. The fields due to {" acting.
aLone we denote as 8", Et and the fier-ds due to ¡lb acting arone
we denote as EbrHb. The fierd equations, written in comprex
form, are:

VxHa = Ll, E" * J"
o

- V x Ea = q, Had :-:

and

VrHb = ,tE'*Jå
-Vtt E'= 7 A'

where, t =ct-+j-. ; t= j,ò/
0f course ttf,and ?are functions of position in the sense

that they can have different values at different points in space
if various types of material are present. The important point
is that y and 

ã' 
are the same functions of position when J" i"

acting alone as when {b is acting alone.
Next, scalarly multiply equation (Z.I) Uy Eb an¿ equation

(2.4) Uy [a and add the equations to obtain:

(z.t)

(z.z)

(z.rJ

(z.tn)
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Eb-(v*Ha)- H".(v*çb)=TL6.E" * L'-J'*?H1 H' (2,5)

Use vector identity V'(Ax E) = Q'VxA - A'Vx E
to sinrplify equation (2.5)to i

(2.6)

SimilarJ-y, scalarly multiply equatj-on Q.3)by 8", equation
b

(2.2¡by H , add the two equations and simplify to obtain:

-v" (EtxHb ) = ? 8". E' + Ea.Jt * t Hb.Ht

Subtract (2"6 )from (2.? )

-v. ( Ea* Ht- Et" H¿) : E""Jo - Eo, J."

rntegrate both sides throughout the regi.on containing the
sourcesr and apply the divergence theorem to the left-hand side
to obtain.

-#,Ea*H'-Ebx H").r-s = jjlE".J '- E1 J") ¿v

ühere volume V is the region containing the sources, and S is a

(2.7)

(2.8 )

(z.g)
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cl-osed surface surrounding that regj.on.

Iriext postulate that alL sources and matter are finite in
extent. Distant from the sources and matter, using spherical

co-ordinates îr0, þ :

E þ -- -r(H"Ee = \H/

where

Integrating the left-hand sid.e of equation (Z,g) over a

sphe¡e of radius f-tæ the s-ources appear as point sources giving:

(z.to)

(z"tt)

(z,tz)

So equation

equation

IIf,'""r'
JJJ -

1# ( H.'H"' * Hø' H; -Hr'Hi - H6'rru)ds =e

(2.9) - reduces to the foLlowing reciprocÍty

Jv €f
dV

where the integrations extend: ovêr âIl- space but, of course,
will have val-ues onry over regions where {b"nd J" existo

The integrals of equation (z.tz) are carled reactions,
By definition, then, reactj.on of field a on source b is:

iÍl s' r
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Illr'. Io dv(a'b) = 
JJJ

(z .t3 )

In this notation, the reciprocity theorem expressed by

equation (2.J2) becomesr

( a, b) = ( b, l) (z.ttr)

lhat is, the reaction of field a on source b is equar to
the reaction of field"Ë'on source â.

Because the fiel-d equations are rinear, the following two

identities hoLd true.

(a, b+c) = (a, b> + ( l¡C) (2.t5)

(Aa, b) = A(qb> (2.t6)

where A represents any scalar and Aa represents the source a
increased in strength by the factor A"

The term seLf-reaction d.enotes the reaction of a fieLd on

its own sources, that is, (ara).
If the source ¡¡b i" . surface d.istribution of current over a

cl'osed surface s, then by taking the rimiting case of equati.on
(2.13) as the voLume distributions approach surface distributions
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the form of the reaction for surface currents becomes:

(a,b) =
t Js-ö[ Tts .J (2.t7)

b
where J is now a surface distribution of current.

rf the source b is a circuit current source, that is, is a

short filament of impressed current fbof constant value extending
over an incremental length d.!. p.nen the reaction 4,arb) of a field
wÍth a curuent source is i

eL rdL -(a,b)= [ E".rb¿J = Ib \ g1¿¿
Jo Jo

or (ärb)= Vd Tb (2.t8)

where Va is the voltage across the b source due to somee not
yet specified, a sollrc€r

Some Comments on Reaction

The reaction (arb) is of course

However, it should be noted that the
quantities from different situations.
exÍsts at an entirely different time than does ¡lb, since E,a was

prod.uced by ¡la acting alone, and ¡[b arso acted by itserf.
Nevertheless the definition proves to be an extremely practical
and useful oner since many parameters and measurable quantitj.es
of interest in electromagnetism can be expressed in terms of
reactions" For instance, if source b is a unit current generator
across the terminal"s of some antenna then reaction (arb) is

just a scalar quantity"

definition brings together
For instance, field !a
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seen to be equal to the open circuit voitage generated at the
antennafs terminaLs by some source a. As another exampre, the
impedance parameters of a multiport network can be shown to be

proportionaL to reactions.
Because the reaction definition is in terms of an integral,

mathematicar advantages are gained when dealing with singuÌar
fierds and singular source functions as pointed out by Rums 

"y29.Perhaps the most important feature of the reaction concept
is that it leads to a general procedure for establ-ishing stationary
formulasr âs explained in the next section"

consider that some quantity of interest can be determined
if the reaction(".r.b)can be found, where the symbol c indicates
that correct or true source distributions and fields for the
problem are involved, However, in nany probJ-ems the correct
fields and sources are unknor/vn, .and approximate sources (or fields)
and their corresponding fieLds (or sources) must be assumed to
obtain a sol-ution" Thus, a and b are assumed as approximations
for "" and .b respectively and reaction (arb) then determined as
an approximaüion to reaction aa"r"b).

rt wil-t now be shown that if the folJ-owing conditions can
be' enforced, namely:.,

(arb) = (Cerb) = (e,Co> (2.t9)

thaü the reaction (arb) is stationary for small vari.ations of



a and b about ca and "b. Again, the proof

by Harrington. The theory of the calculus

found in books such as Pipes3l and Davi 
"32.

16

follows that given

of variations can be

To proceed, let

d,-- C"+ Pe€a
(z.zo)

where e. and eb are functions of the variableS of integration

but must be zero at the end points of the range of integration.
The functions e" and e¡ are lferrorf? functi-ons that account for
the difference between a and c", and b and cb. A1sor p" and pb

are constants such that when they are snall-, a and b closely

approximate c" and cb. If <arb> is stationary, first order changes

b= cb n pueu

in p" and pb, when p. and pO are extremely small to begin with,
should cause only a second order change in (arb) .

(arb) stationary means:

Mathematically,

à <arb> ð <a, b>
âPe

To show this,

P¡= pr=o

start with

apu

equati.on (Z

=O
P¿'1r=o

.2O) to obtain

(z.zt)

( z.z2)(a, b2 = ( Ca* p¿€"rCb* pbeb)
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Using the identities of equation (2.l-5) and (2.]-6):

(drb)= (C¿,Cb)f pr(€¿,Cb) *pu(9",eb) + pa pa(€¿,€u) (2.23)

From the equalities of equation (2.t9):

(a, b> = ( c¿, þ¡ = ( Ca,Cb* pe eg)

= (c.,cr)+ Puacr,€5) (z.zt*)

and

( a, b) = 1 ârcu| = 1 Ca+ p, er, Cg)

= (cr,Cr) + Pr1 e"rca)

Substiruting equarions (Z.Zt+) and (Z.Zj ) into (2.23)

1ârb> = (C¿,Ca) - papa(€e,€s)

=O
Pa--o

(2.25)

(2.26)

(2.27 )

(2.28)

Thus Ð(a,b>l = -pb(€a,€¡)
Ð P" lrr=o 

' I

Similarty: 
à (a,b>
åpu =O

Pa=o
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so that:

t_
lr. = ,r=o

J (a, b) (2.29)
ap5

?3=P6= O

and (arb) is stationary.

Nowrthe stationary nature of (arb) is not by itself
necessaril-y of any heJ-p in obtaining good answers if the approx-

imate distributions,differ gneatty from the correct distributions.
However, the conditions of equation (Z.tg) can be thought of as

more than just a means of obtaining stationary equationso They

are realÌy the conditions expected to do the most to force the
approximate reaction to be the best approximati-on for the prob-
lem at hand. That isrsuppose 4arb) is to approximate (c¡ rc5).
Then the condition <arb)=(c"rb) can be thought of as meaning

that b is being used as a test source to test that a acts the
same as the correct source as fan as its reaction w'ith the test
source b is concerned.simil-ari]y, in (arb) =(årcb) a is reaIly
testing b to make sure that b is equi-vaLent to cb for the

reaction with test source a.

AIl this is still no guarantee of course that (arb) will
cJ"osely approximate (c" rca) but al-I possible constraints inherent
in the problem have been applied.That is, sources involved in the
problem have been used as tests for other sources involved in the
problemrand the tests applied have been directed as far as poss-
ibre to making <arb) equar (".rca).Essential-ryrthe Reaction

ì4ethod applies necessary conditions for <arb) to equal <cercb>
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but cannot apply suffici-ent conditions (unl-ess-as is noü practical-
a complete orthogonaÌ set of trial functions could be assumed for
the approximate sources, as explained in Rumsey4 ).

As a point of terminoJ-ogy, equation (Z.Lg) is thought of as

saying that all trial sources look the same to themsel-ves as

they look to the correct sources.

III DIPOLI, SELF-II,{PEDANCE TN TERI-ÍS OF, REACTIONS

The Reaction lilethod will now be used to obtain an express-

ion for the input or self-impedance of an isoLated cylindrical
dipole driven by a current source at its terminal gapras in
Figure 2.I.

DIPOLE EXCITED BT A CURRENT SOURCE
Figure 2.I
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Here the source of the fiel-ds is the current along the
anbenna as weÌl as in the gap.The antenna structure is assuned

to be perfectly conducting.Thus, the correct current dlstribution
Jc will distribute itself as a surface current along the antenna.
ALso, ¡lc must be distributed such that the tangential- conponent

of its total- erectrÍc fieldr$c, wilr vanish on the concluctor

sur.face.Hence, with the antenna terminals close togetherrthe
reaction of lcwith Jc is just the reaction of the fie].d with the
current source at the terminal-s and is of the form -VÏ.,Iin.That is:

(c,c) = -Y; I,n (z .¡o)
c

rvhere v.n is the correct input voltage to the dipole when rin
is the input current.Equation (zlo) can be rearranged to give:

<c,c> -v;
r ¡rl I¡n

(z.¡t)

(zJz)

But the ratio of S is by definition the input impedance
T.

of the ciipol-er so, 
-'n

Zc _(CrC)
fn -2I*in

Next, just {o" conveniencerconsider the current source to
be an equivalent surface current of constanü value across the gap
and uniformly distributed. around the gap as in Figure z.z,
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Ìff J¡,,

Figure 2.2 SURPACE CURRENT EQUTVALENT OF TH,E

FILA}iENTARY INPUT CURRENT

this avoj.ds breaking the integration into two parts- one

across the gap and the other around the antenna structure. The

resuLt is identical providing:

21( a J,n, = I¡n (z .¡i)

where a is the antenna radius. Howeverrnow the gap can be included
as part of the antenna surface and one surface integral can be

written for the reactions that fol1ow.(In Chapter fllrthe surface
currents will aL1 be replaced by equivalent filamentary currents
for calculating fields).

To continuersince the correct current distribution cannot
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be found v¡ithout knowing the correct electromagnetic fieldrand

the correct field cannot be found without knor.¡ing the correct

current distributionr (crc) cannot be calculated.Thusrthe Reaction

i';ethod seeks an approximation to (crc).4 triaÌ surface-current

distribution :]a iô assumed on the antennarthe electric field
corresponding to J" being Ea.The approxi-mate input impedance can

now be expressed in terms of the sel-f-reaction <ara>.

(z.itr)

where S is the antenna surface. Afsorsince neither Zfn or Zln
are dependent on the magnitude and phase of Il.,rthe same Ínput

curyent source is considered when talking about either the

correct or approxi-mate distribution.
Nextrto force the approximation to be good the following

equality can be imposed:

(â,a) = <c,a> (z J5)

Since 4cra)=(ârc)by reciprocity the constraints of equation (Z.tg)
have been met and z1r, is stationary about the true currento

To proceecirthe Reaction l,[ethod assumes the trial source to
be a linear combination of functi-ons , a:Uu* Vv + r.. ,where
U, Vr ..' t are adjústable constants to be determined.ChoosÍng

the current on the antenna to be represented by two functÍons,
the trial current is then a surface current of the form:
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J" = üJ* + VJ'

Equation (2.j5) then becomesi

(z J6)

(zJ?)

(2,38)

(z ð9)

or:

(Erê) = (cra)= (c¡ Uu*Vn¡)

( a,a> = tt(c,c> + V<c,a>

(ary> = l.crt>

u and v ¡nust, be adjusted to suit the problemrand. this is accomp-

Lished by introducing test sources.The approximate source is
forced to look the same to the test sources as does the correct
source as far as reacüion is concerned. irlow, even though many test
sour.ces could be invented for testing purposes, with only two
adjustabJ-e parameters in the approximate source only two test
sources can be used. Otherwise, inconsistent equations wi1l most
ÌikeIy result since there wil-l be more equations than unknowns.
Hencerconsider introducing two test sources x and y and adjust
source a using the fol-LowÍng test equations:

(3,x> = (crx)

The question is, which test sources x and y to use?
Obviously, a test source is really onry avail,abr,e for testing if
its reactions of equations (2.39) and (2.3g) can be cal-cu1ated..
AIso, to make the tests pertinent to the problem under consider-
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ation, the general guide is to use as test sourcesr sources

involveci in the problem. For the dipole case, the only sources

available and inherent in the problem are the sources u and vr

Thus, test as follows:

Both tests, it must be notecl, are consi.stent with the aim of

imposing equation (2 .35) .

To adjust U and V using equations (2"4O) and (ZrUt) tfre
procedure is:

( a, ol) = (Crtt)

( Ltr¿+ Vn , u) = ( c,u)

(aru>= (cru¡

( il, ,rr) -- (Crt>.

ú < uru> + V(ar, tt) = ( crll>;

and

(.a, at> = lCt ry)

Q.tro)

(z. tnl)

(z,lrz)

(Uø *Vt, a¡7 -- 1Q,,nr)

[l < u, nr) + V<*,ar2 -- lcrar> (z.tú)
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Solving for U and

in matrix notation

V from equations (2,42) and

is;
(2.43), the resul-t

( z " lnt,)

Substibuting equation (Z.!tr) into equarion (ZJ7) :

(â,?r= [(crtr)
(z.tn5)

By reciprocity lurv) :(vru).
Expanding equation (2.4j) gives:

(ara7 =
(cra)¿( u,ry) - Z1c,u)1g,t)<u,4Ì>+ (c ,ry>2<4,ú) (2.L6)

< tr,r tr>< arrt) - 1. ura¡)z

^. -CSlnce E' vanishes everlnnrhere along the antenna except at
thefeed: 

r' ------o

(c,.,'> = -V; Iuro) (z.t*7 )

[i] = [.::;: ',::) t:.:;]

'"'"1L.:- ',::r) 
1..,i

.,C
v¡nlcrt) -4tI (o) (z.tni)



where rt(o) and lu(o) are

anci v respectively at the

the val-ues of the trial currents
input.Thus:

26

(z,lrg)

( z .5o)

(ara7=

Dividing both 2sLdes bV lin :

-rt 2
L (ol lar,aD

-.u;)'I In(oî< 4t, 4r> - 2 \"(o)1*tù 1tl,4r2 + Lu(o\z< u, u )
( u, u) (.ryrn¡) - <u,n¡>z

"<t*, - z r-øi^\ 
L

(*)

I1u,u1t;.r,v> + L'@)2
( uru )(atra¡) -( u.rnr7?

z I"<ol lt(d 1 u,r> + It|r¡tz< u, u)

n(o)I-(o)

-2rin

Hence:

e?
tn

( urn>( arr,¡) - ( &,ry)2

Ii
( z.5t)

If to closel-y approximate ZÏn , Z?n must be found from:

-at-Lan
(u,nr>z - < u,t¿) (ar¡ ar¡ (2.52)

I-(o)t< tt,t/.) - Z Iucol I

aZi' is

(Tf¡is equation coresponds

Harrington6, if an error in
equation )

to equation (7.99) ,

sign is corrected in
Page 353 of
Harringtont s

Chapter Iff explains how the reactions
are evaluated.

of equation (2.52)



CHAPTER IIT

EQUATI0NS FOR THE REIiCTTONS

rn this chapterl .r equation for the reaction (urv) in
terms of assumed filamentary currents fu and Iv is
derived. A simi-rar derivation would appr-y to determine
(üru¡ and 1v, v). the form of the current assumptions
to be used are discussed, and then ühe final equations
for each reaction are given.

I RijACTfON <urv>
From the definition of reaction for surface currerrts:

(u,v) = 
SE".¿vds

(3.t)

where surface S is the antenna surface. Ju and ¡lv are
assumed antenna surface current distributions, and Eu is
the electric fier-d on the surface of the antenna due üo
surface current ¡lu.

Attention wirl first be concentrated on determining
Eu. The dipole is consid.ered oriented arong Èhe z axis
as in Figure 3.1 .
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-1 'l l*

7=O

Figure 3.I THE CII,INDRIC.¡,L ANTENNA

King and Harri"or,S prove that for thin antennas

the magnetic vector potentiar A, at all points outside
a cylindrical conductor including its surface ( except

those points within distances of an end face comparable

with its radius) is given to a good approxi-nation by

assuming that the current is filamentary and distributed
along the center of the antenna. C. T. Tailr2 and.

R. F. Harringtonó consider this an excellent approximatÍon,
and it is utilized in this section to find Eu from:lu.

-r-
I

h

I

I-î.

I

h

I

_L
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Accordingllr the symbol Iu is used to represent the filamentary

equivalent current of ¿u where the two are related by:

.-u
-t¿ J
l=L zrc a

(3.2)

(¡.¡)

with a being the radius of the dipole.

With the dipole al-ong the z axis, the current is z directed,

and is some function of z ¡ Vertical distances al-ong the center of

of the axis shal-L be symbolized zt to distinguish them from vertical

distances along the antenna surface which will be synbolized zo

Thus the fil,amentary cr¡rrent can be written as lu(zt ).
An expanded view of the antenna is shown as Figure );.2

. Denote the magnetic potential- vector on the antenna surface

due to Iu by the symbol .¡[u. Since Iu is z-directed, !u must

have onJ-y 8,'z - component - that is:

A* = A-" i
L

where å is a unit vector in the z direction. Also, since Iu is
along the center of the antenna, symmetry dernands that !u and !u
be independent of ø, Thus along the antenna surface Åu and Eu

. are functions onJ-y of z, namely A'(") and nu(z) 
"

At any point zr along the center of the antenna, the current
Iu(zt ) extending over an incremental length dzt forms a current

element or electric dipole of moment Iu( zt)d,zt whj.ch is z-directed,
and shown in Figure3,.2. Al any point P (ar/rz) on the antenna
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EI(PANDED VIE!'I OF THE DIPOLE



surface the

It("t)dzt is

contribution
given by:

R 
u(z) 

due
z

3T

to el-ectric dipoledAu(z) to
L

deiø =
Iu(z') dz' (3 . Lr)

(3.6)

(3.?)

+T(

of course, as the sum¡rration of all- such dA"u'

(3.5)dz'
4rr

where h is the dipole hal-f-length.
To find Eu from ¿u the folloraring equation, true for time-

harmonic waveswith the antenna radiating into free space, is used:

ound,

j:
Auisf

z

r¡
Ar(¿l

V ( V" A
u)

lvith Au only in rhe direction, this reduces toA

E'(zr ---j r¡t,Af,cz)A,* + v(¿ Aicrt)' jrro ¿Z r¿

Furthermore, since eventual_ly the dot

be taken, and since {t i" entirel-y in the

*̂ component of E (") will enter the final-
Thus, only 

"n. 
A componenü of O (& Aiczl

product E .gt must

z direction, only the

expression for <urv> .

) is retained to obtain:

-iß ,J (z-z')2
e''
(z-z')2 + aL

(z - z'12
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,ï, ,r, Å = ( -irn" A!<zt* 
Ë"

a'Al e) ) A

-'

(3.e)

Substituting equation (3.5) into equacion

h

(3.8) glves:

I" tz'y g'Ji€l e'z')2 + a2

4r^lW
The integration is with respect to zt and the

is with respect to z, so the differentiation can be

within the integral sign. This differentiaüion is
The following equations are introduced at this

-'7roêo= (t{)

r) 2ft't=-rÀ.

ti tzt= 
r-ä 

( ø'¡'roeo - *, | 
^

dz' (3 .g)

TIo = tÆ : t?o n oh rns

Performing the differentiation along with some simple
manipulations the fol-lowing expressionsresult for the reaL
imaginary parts of E"u(z) (ru ano rv wil-r be seen later to

Re Eitz¡ = &- 
f 

tr", 

z,) l,(2,2,) dz," 8r¿ À J_h

differentiation
performed

straightforward .

poinü

(3 .lo)

(3 .rr )

(3,t2)

and

be real ) :

(3.t3)
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I^ Eicr, = L
For equations (3

are defined by

l-,(z rz')= cos¿rt ^læ L

l"czrz'): -Sin zß l(z-z')2+4.

n(r') 
lcrrz') d z'

ana(3.14) r' the functionu FÌ and F,

j:
.13

(3 .r4 )

- 217

(il (z-n\aÒ"
6n Q -z')2 -1

j-- I

ç ,[ ¿t - r'11a" )+ '

+Sin r,@. 1 -4 nz + +rr2(z-z')2* | 3(z-z')z
Çt6¡a Q67s l

(3.t5)

-zT(

ç^fffi)z

-4nz çnz (z-z')2+ I

Jftz'r4a' C,lø4'fiÐ3 çler¿ñi)s

(3.ró)

+cosznJffi t 3(z-7-')2
J+



In equations (3.13 ),

zt ,zrh, and a - åf€

The evaluation

(1.1), namely

ß

nohf

of

3l+

.14) r (3.15) , and (3.l6) all distances

expressed as a fraction of wavelength À.

(urv¡ can nobl proceed. Recall equation

1ur,v7 ds

The À factor is incl,uded so that d.z is in terms

Wit,h !u and Jv independent of ø, this reduces to

E*. J- (3.1 )

ß,tll

of wavelength.

Èome simplifications can be j.ntroduced here. Firstly, {v wÍll
be assumed such that dY=O at the ends of the antenna, so that the

integration need not be taken over.the ends. Furthenlore, dt Í"
assumed uniforml-y distributed around the antenna so that it is
not a functj-on of B but onry of zc Lastly, since {t i" z directed
we can reprace !u by Ert and hence eriminate the dot product.
j'¡athematicalJ-y these simplifications mean3

1 u¡w 7 t[<zt J-( zl a d/ dz

2î(

Àí:I
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l urnr)

From what

represents an

Hence

the

of

elør J't D dz

^ 
E; et zlra J*tzt àz

= Zrc" j: 
^

(3.t8)

(3.r9)

t:
has been discussed

assumed equivalent

previously,

filamentary

tü
zr(A J ft) just

curyent Iv( z )

currents

ince Iu is
about z= O.

and equation

¡tr
r)= \ xrltz)l*e)dz

J
-h

Because the dipole is symmetrical about p0r the

Iu and, Iv are assumed to be symnretrical about z:.O. S

symmetrical about ¿=Q,r$u and pu are also symmetrical

Thus the product t"t( ultu(z) ís an even function of z

(3.t9) can be written
nh
I(.u,r> -- z I I eiczt I*Qt dz
ì

Jo

Substituting equations ( 3.t3 ) 'and (3 .f ¿+ )

following expressions result for the real

(urv )

(3.2o)

i¡to equati.on $.zO)
and imaginary parts
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t 

[^ru,r,,L*(z) l,{r,2,) å2,dzJIo v-6

r m ( u t4t7 = !, .[t f J 
nc 

z,) r*(z,r lr{z,z,t dz,dz
4n2 Jo J-,

An aLmost identical
yielding:

36

Re < LtT) =TIo+t2
(3,2t)

(3,22.)

derivation applies for (ürü) and<vrv),

Iu(r') Í"&'t \tz,z') dr,dz (j,Ð)ß"< u,4)= #["
'f

le,z')¿z'dzl'l:

l,erz')dz'dz*[ !:

In (Lr 4) =4o
4nz

Re (,rrrar> = I*(z) r-h)

-ll1 (?,')
_t¡Iht

r m <r,t) = #f |-:t 
*(2,l ï-(zt F,cr,z,)dz,dz

(J .zu)

(j.zj)

(3,26)
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II CURRENT ASSU¡;iPTIONS

Storer9 used the following trial functions to obtain the

first order (two trial functions) variational sol-ution for
input impedance:

I * = Sin z'rr (h-lzl)

I- = I - Cos 2'rr (h-tzl)

Irczt=1,(s ínzrr<h-tzt)+V[,-.osz 7r(hlz|f lzl< h (3,28)

Thus the total current Ir at any point on the antenna would be

given by

where, again, h and z are expressed in terms of wavelength.

since ft(o) - the input current is zero when h:rrze3.,.¡
Storerrs analysis does not provide valid answers in these cases.
ñ I.2ra1 ' uses

f *= Sinen(h-lzl )

(3 'zg)I*= zft ( h-¡zl )cos z"K(.h-tzt)

so that

(j.z?)

T,ra)= u sin zT( (.h-rzl)+V¿ r(h-rzr)cos zrr (h-lzl)
lzl< h

(3.30)
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liere, f, does not vanish at z=0, for any value of h, and thus

first order soLutions based on these triaf functions are finite
for antennas of any Ìength.

Harrington6 suggests the fol-lowing trial functions

I*= s in zT (h - l?,1)

I *= h- tzt
(l .3r )

g]'vtng

Ircz) = l,t sin e r( (h-lzt) +V ( h¡tz) (j,32)
tzt<h

whÍch is finite at z=0r for all h > O.

fn each case, U and V are in general complex constants that
are to be adjusted using the Reaction Concept as explained in
Chapter fI.

Notice that each current approximation involves the sine

term. It can be shown 10 ah"a the current in any infinitely
thin perfectly conducting antenna is exactly sinusoidal.
Additional terms are added in an attempt to account for the finite
thickness of pracüical antennas.

This thesis solves for the dipole impedance using both
Taits approxirnation and Harringtonf s suggested approximation.

TII FTNAL REACTION EQUÀTIONS

It is onLy necessary now to substitute the trial functions of
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equation ¡3,2g) or equation (3.31 ) into equations (3.2L) to (3.26)

to arrive at the final- expressions for the real and inaginary parts

of the reactions <uy> ¡ <üru) , and (,vrv > .

Reactions Usins Tairs Current Dislribution

s i n er ( h -lz' D z r( ( h -tzt) c o s zr( (h-tzù[, Q,z' ldz dzR". u.,nrt=*"fl:
() J))

Ke<u,a¡ =

I m (u,,n, = gff i,rr" (h- tz'l) zr( ( h 1zt)cos zr( ( h - tzt)í, tz,z)áz'dz
+rc

(3 ðt*)

s Ín en (n-lz'l) sin zr h4zD F, (2,l,') dz'dz

I', < L,tL'= +fÏr inztr(h-tz'l)s inzr(h-rzt) lrcz,z')d z'dz
+ tuo J'r' 

( j .16'l

Re <n6->=*il 
^:orh-le1)cos¿ 

rr(haz'l) z¡t (h-tzt)cos¿n(h lzÌl (z,z)dz'dz

(3 .¡z)

fnr h

I m ( v, ry)= *t \;^ 
(n-lz'lt c os ¿ r ( h - | z1) z n (Lr - I zt) c os z r( h 4zt) lre,z' ) d z, d z

h,Ïl:
(i .¡i)

(3.3s)



Re< u,ar)--*,f !t inzn(h'tzl) ( h -t'.t) F,tz,z')dz'dz

Im ( u,t)= kf ! : 
sin en (h-tz't)( h -lzr) Fr{:z,z')dz'dz

Reactions Usinp Harrinetonr s Suegested Distribution

Tvn(+rrr) =

l+0

(3 .¡e)

(3.L0)

*.Ï [ 
(h'tz't)( h - ta)1, (z,z') dz'dz

#,f !:, h-tz'txh- t."t) fz(z,z')dz'dz

Re (u,ü) = *.!: fsín 
zn(h -tz'l)s inz¡r(h-tzt)lu tz,z')dz' rr,3 

"t*r)

ß.tß)

I na (u,u, -- *,f |}t 
nzr( ( h-tz'D s ¡ n z¡r ( h-tzt) lrtz, z' ) àz' d, 

(, 
" rr) \

Re <nrr.7--

For equations ß .33) to (3.t*4) 
,

Q.t5 ) and ß.t6) respectively.

(3 ,l*t*)

Fl and F2 are defined by equatÍons



CHAPTER IV

SELF-RESISTAI'ICE AND SELF-REACTAI.JCE EQUATIONS

Equation (2.52 ) which gives the input inipedance of the

isol-ated dipole in terms of the reactions is repeated here for
convenj-ence as equation (4.1):

/,
¿rin -

(to.t )

f tlot¿<r4u> - Z r4(o) It(d<u,rrr¡ + I *lot
14r af>

The real and imaginary parts of the reacüions have been

derived in chapter IIf . The next step is to separate Z¡n into

lts real and imaginary parts, which wílI be in terms of the real

and inraginary parts of the reactions. The real part of ZV can

then be identified, of course¡ âs the input or self-resistance
and the imaginary part of Z¡n as the input or self-reactance of

the isolated dipole.
Representing the complex number 2¡6 as the ratio of a complex

numerator and a complex denominator":

(u,z)7. = A +iB
"tn c *jD

Then self-resistance R;n is given by:

Ac+BD (tr.3)

1u,ú72- (4,l¿)1'Vrry>

Rin = C2+Pz
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and self-reactanc" X ¡n is given by

BC -AD
X,n = C^+D2

,.ì

where, ir¡ terms of reactions:

A = 
(Re lu,nz)z-(Ir< u,nr>)z -R.<*,,¿ )Re1nr,nrl * f r<*,,.> f rtr 4t,ü7 (tr.5)

(¡*.l*)

B = zRe<ur-> Im( v,ü| - R"(4,t¿) L¡n1r,ar> - Re <t qt>f m < r,!r) ( 4.6 )

C = I 
-(ott Re <e,ro - zl"cotI*(o) Re 1u,t7 + I*(ol2 Re<!*> (tr.7)

D= I-(or"I,,,<s,r¿> - Zlt(ollt(ol f ltr< ú,ar7 + I'(o)'I^<ar,ar) (L.B)

ït remains but to perform the integrations indicated in
Chapter III to obtai-n the reactions, and then to substitute the

resurts into equations (4.3 ) and (4.l+). The purpose of this
thesis is to do the integrations numerically on a dígital computerr

The method is explained in Chapter V.



CI{APTER V

THE COI,PUTER PROGRAIvI

In this chapter, the major aspects of the computer program

are discussed" The actual program as wrltten in Fortran IV for
the IBM 360 model !0 digital computer is given in Appendix A.

I DOUBLE APPLICATION OF THE ÎRAPEZOTDAL RULE

The Trapezoidal- Rul-e for the approximate integration of
single definite integral-s can be found in many introductory
calcul-us books. A simpl-e extension of this RuIe makes it applicable
for approximate integration of doubl,e definite integrals. The

method is described briefly in this section.
Consider finding an approximatj.on to the follow'ing double

integral

f'f "v=J\ su,st dxdT (5.1)

o-A

This integral of course gives the voLume encl-osed between

the x-y plane and the g(xry) curve. Figure 5.L is. an aütenpt to
depict the three-dimensional- nature of a representative g(xry)
plotted in the xryrg coordinate system. 

.



I+IÞ

!

Figure 5.1 THREE-DII{ENSIONAL SKIITCH OF A POSSIBLE g(xry)

The shaded portions marked Aor At,

areas perpendicular to the y-axis.

the y-axÍs is subdividedinto equal

...¡A_ are cross sectional
,

increment,s Afr where:

b
Nb

NO Ís an integer large enough to give a good approximate integration.
fn Flgure 5.1, tO = 5

To approximaüe the voLume under the g(*ry) curve, it is

(5.2')av=

3u'l\

ru
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assumed that the cross

Thus:

sectional- area varies linearly with y.

,- lr l" r'
v å a-t Ir# dx + 

J. 
t uds)dx- 

J, 
g(x,zt¡)dx+'

Afs are just the single

y values, that is:

sectional areas can also be a
Rule. For example, consider

or: (5.tr)Vå açlA' + A,+ Ae*Ar*Ao*+]
Zz

0f course, the

to X at the various

integrals with respect

Now, these cross

using the Trapezoidal

Subdivide the x axis into equal segments ax

AX = a (5,6)
Na

N" is an integer large enough to give a good approximate integrati-on.
For the sake of il-l-ustrat j-on, Iet N. = j.

To approximate Arr the area under the g( xrÀf) curve, it is
assumed that g( x, At ) varies rinearly with x. Then the
Trapezoidal Rule gives the folrowing approximation to A1,
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'(5.8)

(5.9)A,å o*[?(-"+axrLtt)+cce * ft(-a+9ax, otrf

v : 
"x "* { 

: : ;:î';, * ;.::ï:;, l
)I (5.t0)
)

A,--oxfo(J,orl+3(.a*ax,a[l+...+7Ga+jar,ag)-@(5.7)

However, if g(xry) is such as j.n Figure 5.I, where!

X(-a,V)= 3Ga,y) --Q

then equation (5.?) simpl-ifies to

simifar expressions hol-d for Ao ,AzrL3rA4 r and o5 and v becomes:

+ o . . * *[ f,Ça+ax,saX)r 
¡ ¡¡ + gGa+gaxrsaÍn

II PROGRAJVI FT'ATURES AND CONSIDERATIONS

The evaluation of the reactions require solvÍng double
integrals of the form
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àz'dz

Because ru and rv are zero at zr:h and zt=-h, f t zrzt) is
zero at zt=h and zr:-h. Hence the simpler form of the Trapezoidal
Rul-e, namely equation (5.9), can be usecl. Also, the last cross-
sectional ârear ât z=h, is zero. These facts simprify the program

logic somewhat by eJ-irninating three program branches otherwise
necessary to account for the factor of one-half.

The integration with respect to zr u¡as found to be sonewhat

more critical than the i-ntegration with respect to z o Satisfactory
resuLts were obtained with azt=foana az= fro. Now, for each

value or z, the inner J-ntegration with respect to zt involves
evaluation of f (Z,z') at about 2bO vaLues of zt . Thus with z

divided into 100 divisions caLcul-ations involved in evaluating
the inner integrar coul-d have to be repeated up to 20roo0 times.
Hence care must be exercised to avoid unnecessary calculation
steps, and whenever possible, to store numbers that are used
repeatedly. For exampl" FI (z rzt ) and F, (z rzt ) ( equatio n 3.r5
and 3.16) have many terms in conrjion. These terms are evaluated
just once and then used in the expressions for both F, and Fr.
Sinrilar1y, F, and F, are common to all the reactions ( see eqiations
),2r to 3.26), Thus, in a manner to be explained. next, Fr and F,
are calcurated once, stored, and then used to evaluate arI the
reactions.

[!:" 
z,z,
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A lVeiehtinE Function Techniqge

The most important feature of the program is the method by

which F, and F- are. used as types of weighting functions inI2
calcul-ating reactions .

To expJ-ai.n the procedure, consider as a specifÍ-c example

determining:

atkt

Frorn what has been said about

approximating this doubl-e integral
of the form

It{2,)

Iu(z') l,{ z,zi dz' ) d z

the Trapezoidal method,

i-nvolves a summation of terms

(z,rz') dz'

denoted

1 for each

(|,

5' 
,

o

!:' 
u(z',n

Here, of course, zr i-s a particul-ar val-ue of z between z=0 and

z=h, and is some mul-tiple of 
^2.

IJown some observations must be made regarding Ft (z rzt ) ,
similar observations can be seen to apply also to F, (z rzl )

Consider equation 3.I5 defining Fa ( z ,zt ) . It Ís to be

noted that z and. zt always appear in the form (z ,, )2. Thus

Ft can be considered. as a function of (z zt
F., (z z' ) . Using this fact, recal-cul_ation o

.t-

different value oî z, can be avoided.

)-

fF
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First, Fr(z zt) is calculated for values oî (z zt) from

0 to -2h in increments of AZ' and each value stored in an array

in the computer. Values of P, for (z zt ) from 0 to +2h can be

inferred from the val-ues calcul-ated because Fr(z zt) must be

symmetrical about (z z') = O. This syrnmetry follows because

z zt always appears as (z z')z in Fr(z zt|. Figure 5.2

ilÌustrates this calculation of Irr t"hough the shape is not

necessarily representative of the actual shape of Ft. The dotted

portion of the curve of Figure 5.2 is obtained by symrnetry

The smal-I circles represent values of F, calculated and stored.

Next, regardless of the values of¡z and Èzt, Ãz is chosen

to be a multipl-e of azl .

Iu(zt ) is then calcul-ated from zr: Oto zt=h in increments of

àz', and each val-ue obtained. is stored in an array. Val-ues for
Iu(zt) for zt:0 to zt=-h can be inferred. from the calculated

values si.nce fu is symmetrical about zt:Q, In Figure 5.3, Iu(zt )

i-s shown assumi-ng ft(rt )=Sin ?r( (h-lz:ù for a dipoJ-e with I <h<\+z
The evaluati-on of Iu(z') n(zrrz')dz'

invol-ves taking the product I value of zt

then takingwith zt varying from -h to h in increments of Azt,
the summati.on of the product terms.

The F1 (z¡rzt ) curve is obtained merely by placing the origÍn
of the F1(z zt) curve at u'=r'. This is shown in Figure 5.3.
Since ¿z is a multiple of Azt ,zI, being a- multiple of à2, is a

multiple of 
^zt. 

Hence F1 and Iu have both been calculated for
z'-zrr âs welr as at integer increments of ¿zt on both sides of
z'=zL.
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Ft(z-z')

îigure 5.2 AIJ ILLUSTRATfVE Fy(z-zt )

(z-z')

zt

Figure 5.3

;Et¿ Et

ïn(rt )Ft (zyrzt )

ì

Zr-õz' 
¡ 

Zt+alt h

TNTEGRATING
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can be found usÍng the

the following manners

+ Tn{2,+az')Ç,(a,z')lrot

thus 
"{]: 

tu(¿') l,tr,,z')dz'
summaüion of f'("t )Fr(z zt) products in

¡h

\ In (r') F,(2,,2') d z' t Az' I In<z ,)
J_h

+ Iu{r,- ^z'I
+e e - I

t
J

l
rr(z J'I = Fr(z'

h

I "("') F,t z, rz') dz' --

z) by symrnetryr this simplifies to

o^' { r"øJF(ol+ f I"{r,* ^z')

+ I*( z,-az'lf,Gad) + Íntz,+zaz')î,Qdø') +f n(r,-zaz')lcta;z')

+ . ...o

Since

F, çz'z' ) + f r. (2,+ zaz') +Tutz,-zazül Q¡z:l

(5.rt )

Because Iu(zt) and Fa(z -zr) are already stored as linear
amays, performing the operations indicated by equation (5.ff )

is a simple matter of muLtiplying the two arrays together term

by term.

Program logic is included to avoid caLculations of products

ror z'>¿h and caLculation stops when zt= -h*aze. At this point, arr
the product terms have been summed and tìris number is muttiplÍed
by ft (zy) . zlis incremented by az and the procedure repeated

until z covers the range z=Q to z=h-Lz. Conditioning_ the z:0. term

by a factor of one-harf, summing a]r terms for z from o to h-az,
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CHAPTER VI

RBSULTS

. In this chapter, the resul-ts of the computer calculations

are presented in graphical- form. Figures 6.1r'6.2r 6.3, and 6.4

were obi;ained using Taits triaL currents, while Figures 6'5 and

6.6 were obtained using Harringtonrs triaL currents. Calculations

involving Tai t s approxirnation were done for dipole half-l-engths

from 0.05À to 1.II at .05À intervals' CalcuLations involvÍng

Harringtonrs approximation were done for dipol-e half-iengths

from 0.05À to 1.4À at .o5l intervals. For aII calcuLations,

antenna half-Iength to radius ratio was taken as ?l+,2. Various

curves from the iiteratr¡,ref are plotted for the sake of conparisorle.

AI1 computer calculations l¡ere done in single precísion.

A Note 0n Antenna Thickness

The half-length to radius ratio used in all the calculations

is 74.2. For those familiar with the Hallen integral equation

r¡ethod, this ratio corresponds toO:10, where0is defined by:

fL= z ln ( +)
iriost VHF and UHF antennas that are self-supporting will be

about this thickness or likely somewhat thicker

1o analyze thinner antennas, exactly the same procedr.re as

outlined in this thesis can be used. Howeverr it is to be expected
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that as the antenrìas become thinner F, and F, wil-I become rnore

singuì-ar in nature, thus requiring the integrations to be

performed with smaller vafues of dzt and dz.



II,FF'þCT 0F

_i-.1.

Figure 6.I ll;l.i j

l;lT OF THL; NUIIiBER OF II.¡CREI,IENTS I-i_]"
i-ii

ON DIPOLE SLLF-RESISTANCE i. i.i
;1.î

-i^ liÅ/- :10 :.:
:l

- 
- 

o,zt:h/Ioo, d,z:h/Loo ' i-i'li

d,zt:h/Zoo , dz:hhoo ---_
dzt:h/zooo, dz:h/zoo i l,l i

li!:;:,..: i :_,,;.;-..:-: ,l ,.:-'-l ;;l-l
-.-..: : ...1 :......, .- i--r---i.-i-ir , i_t i_il.:, j : :.:, l : .:: -,- .-r-;

-: . i.i ì , ; : !.r..:.-..;-i l-,-: l-i i,-l-,-..1-... r

-l :-r-l r - li:.]:i : , ;'i iIi: ,-' -.t-l
:..-:-; . I , . , : . : , i i t,.l -l',r¡i.l,ii

I i I I . t.. l_r_._..i_,, .,.-..1. r.:_.__t...'.. i ;.1-t :,- .- -i-i-
,-ì,-]-'flll::-r,,-,1i1,,,,,,11, ..,1:
i-t-i-::i-iTml-ì, r i::l ì-,ìl+tlil,l;-l , :li---i:: r-.;-li'i :;:i-]i' l-r r.'; l-i i --. -l-ì- 

I
: j- +--i I -ì--t - l -r-ì --: '- r

.lri/lilrjll:r :-l; l-i-r-l .-'-l--ì i
ììil:rii_,_i-i ilt:rlr¡i I r- I , I 1-f,¡.i :i.,.i-l '----1.-.1 : ..: :...1-, .;. 1.1 ,1.:.:i::.,.' :.1-.1

.,-.1-r,]-:i-,[ .,-rL-]-! .-.,.,-..-i.-- .-i : ,., ... .-.i r t - -,-l l-
i-i-l-i-,-I 1., li l-:.: ...-,. l-. ... ... ...t.,..r L,....,1...; ...:.:-1.,jiiill'li,:.1;,.,,,11rr.,,i

,l:¡t_:j i il_L
.,-l -r-l-i i--1 ,--L-il.!....:-. i:..i:,,...-i:: .,l:ililllt':l,l:,:

,!,:tiii
. .- -l--;- .¡--,---1. i -, -.1--i -

j-: i-.l 1'.l
:-.r."i...1-i

t i i I t-l I ti-l"r
'r i-l"i-

I ' i-j





Figure 6.3

DIPOLE SELF-RESISTÁIíCE

REACTIOi{ CONC}IPT USING TAT'S CURRI'I\¡T APPROXI¡,TATION

COIIPARIID I¿IITH TAf t S VARIATIOT\AL SOLUTIOI'J

.CI =10

-+ Reaction ( d,zt =h/2O0, oz=h/100 )

-+ Taifs Variational



' Figure 6.1+

DIPOLE SELF-REACTAI{CE

REACTION CONCEPT USING TAI'S CURRENT APPROXIYiATION

COT,IPARED WITH TAI ' S VARIATIONAL SOLUTION

-(L =I0
.ú,-----{r-----6r----{, Reaction (dz, =h/ zlo, dz=h /tOo)
* Taits Variationaf



Flgure 6.5

DIPOLE S¡JLF-RT'SISTANCF]

R,EACTTON CONCEPT USING HARRTNGTOI{'S CURRENT APPROXIT,'IATION

COI'iPARED I{ITH DIFFITREI'|T Ir,ETHODS
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r i i'

l- i
rì
tt
ti
,ri_
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Tai I s Variational-
Schelkunoff , First Order
King-l4idd] eùon, Second Order
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Figure 6.6

DIPOLI] SELF-REAOTANCF]

REACTION CONCEPT USING HARRINGTONÎ S CURRENT APPROXIT4ATIOI'J

COI'IPARED WITH DIFFERENT IUETHODS

.Çl =l-o

ìi
1..l -,
II
ti"

/i .t-i-rl-l-
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Reaction (dz, =h/?ooo, az=n/zoo)
Tair s Variational
Schelkunoff ,First Order
King-l{idd1 eton, Second Order
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DISCUSSION AÌ\D C0I{CLUSIUI,ùS

The Effect 0f The Number 0f Increments

Figures 6.1 and 6.2 strikingly il-lustrate the ir,iportance

of using smal1 enough values of dz t and dz. The results for
dz r: h and dz= h show al-most no resemblance to the

to0
results obtained by merely reducing dzt to__h_ . Furtherrnore,

200
the convergence of the answers is quite abrupt. The results
for dzt: 

-L, 
dz:_À_ differ onl-y very slightly from the

2000 200
results with dzt a factor of 10 and dz a factor of z times

Iarger.
Though not plotted, results hrere obtained for many other

choices of dzf and dz, nameJ-y:

dzt = h-rr
dzr = h

T00_
dzr = hmr
dzr = hZoõf

:--À-
100

=---h_
'100

:him-
=--h.-'f00

dz

dz

dz

dz

In all cases the resul-ts fell between the
dz :-!.. , and dz | =___b-_ , dz =__b_ .100 2000 -?õO--

results for dz r =__h._
200
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The numerical- integration was found most sensitive for. the

inner integral rthe one with respect .tq at . Thus dzt must be

smaLLer than dz, Results were calculated using dz :-.h-r dzr =
5O

that differed by less than IO/o lron corresponding values

obtained with dz :- ir- , dz' =--¡-
to0 200

Since results can be dependent on the size of dzr and dr,

cal-culations using this numerical- method may have to be repeated

several times for various values of dzt and dz until- increnent

val-ues are found such that further decreases in size do not

appreciably influenc'e the results.

ResuÌts Usine Tai I s êpproximation

Figure 6.1 and 6./¡ compare the results obtained by the

Reaction Concept with the resul-ts obtained by Tai using the

VariatÍonal- I"iethod. The agreement for both resistance and

reactance is excellent.
The Reaction Concept results plotted were obtained using

dzt =_L , dz =_À_ . The results using dzt :_-¿_ , dz:å
200 100 2000 200fall even closer to T¿its results. Such close agreenent

indicates that both methods l-ead to the same equation for lmpedance.
i'lumerical integration likely accounts for calculation differences.

Besults Using HarrinEtont s Current Anoroximation

Flgures 6.1 and 6.6 il-l-ustrate that the success of the
Reaction Concept is quite dependent on the current approximation
used. These figures cornpare the resuLts obtaíned using the
Reaction Concept with Harringtonts trial currents and the results

h
500
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obtained by Tai using the variational- sol-ution. Harringtonf s
approximation is seen to yield very good agreement with Tairs
resul-ts for dipole half-lengths less than about O,T^. However,

for antennas longer than this, the Reaction concept using
Harringtonts approximation yields results that rapidly diverge
from Tai-f s resul-ts. Thi-s is particuJ-arJ-y true for the case of
reactance where the error becomes extremely large, although the
curves sti11 retain sinril_ar shapes.

Just as a point of interest, the resul-ts using the King-
¡'fiddleton Iiethod ancl ScheLkunoff ts l¡iethod are al-so plotted on

Figures 6.! and 6.6. Even though an appreciable difference is
seen to exist between the resul-ts of Schel-kunoff and those of
King-l'iiddleton ancÌ Tai, stÍl] Tai considers Schelkunoff rs First
Order Theory to yield fairly good resul-ts" For antenna half-
length Iess than O.T^, the Reaction Concept using Harringtonrs
current approximation provides resul-ts that are much more in line
with Tai and King-l{iddleton than are the results of Schelkunoff.

E""" 9f R"-Prog""*irg Fo" Diff"""nt c*"".rt Appro*ir"tio.
rt might be expected that using rv=h- lzl in Hamingtonrs

approximation, insread of fv= zî:- ( h-lzl )coS zr ( h-l4t) as used in
Taits approxir¿ation, would make analytical integration easj-er.
However, this is not sor and the integration leads to extremery
complicated expressions }ike those given i,n the final footnote of.
an article by King and Harrison Jr.l?,

0n the other händi when doing the integrations numericarly
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only four contputer cards had to be change d to change the program

from Taits approximation to Harringtonrs approximati-on. The

changes required are pointed out in Appendix A.

Cal-culation Preci si-on :

The results using Taif s approxilnation and dz' =-l- , dz:-=L=-
were caLculated using both double and single preci"ioffi ,n" 

2oo

computer. The final answers by the two different methods varied

by no more than ! I in the fourth significant digit, Hence ,

single precision was considered adequate.

Storage Requi-rements :

Appendix A shows the coraputer program to be quite short r so

it poses no storage problem in itself. The majority of the storage

is used for the Fr, FZ, It, and fv arrays, The number of values

stored depends of course on the number of increments used in the

integration with respect to z1 . Tabl-e 7,L shows the storage

requirements of the arrays for three different values of dz t .

Table 7.I $rrav Storaee Requirements For Various dzt Val-ues

.dzt 
Fl Fz Iu Iv Toral *ffi;:rOf Stored

h 400 400 200' 200 1200
200

=þ, 2000 2000 1000 1oo0 6000
r000

-!- 
l+000 4000 2000 2000 12,000

2000
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The particul-ar conpiler used would not allow dirnensioning arrays

to stort rì¡ot.e than l-2r000 values total in the central processing

unit. For values of dzt smaller than-hr-, disc storage would
2000

have to be utiÌized.

Time Considerationsi

0f prime inportance is the tir,re required to cal-culate the

resul-ts on t,he computer. With Taits current approximation, the

calculations with dz t :--h-- , dz :_-h.- offer a good compromise
200 I00

between accuracy of results on one hand and calcuLation tine on

the other. For dz' :--L, dz:-¡- calculation time for
200 100

resistance and reactance corresponding to a partícular value of

h is 15, seconds, using Fortran IV, single precision, on the

IBI'I 360/ i{ode1 50.

i¡¡hen dz I is dividefl by 10 to dzr :__L and dz is ,divided.
2000

by 2 to dz :*-, then computation time is closely 10 X I - 20

tiries as long as for dzt =_j_r dz =__h_ . That is, computation
200 100

time for dz t

value of h.

However,

calcuLations

the model 65

:__h__, dz =__¡_ is about 300 seconds for each
2000 200

the IBM 360/ Ivlodel 65 witl perform

3 to l* times faster than the t{odel

the same

50. Thus, usj-ng

could be obtaÍnedresults for dzr :__tr_r dz :___h

in less than 5 seconds for """n'13t,.," or rr100

In all cases, compilation tíme on the lulodel 50 was about 16

seconds.
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ConcLrrsions

(f ) The Reaction Concept coupled with numerical clouble

integration provides a very good method for solving
for the input Í.mpefl.ance of an isolated dipole. It
leads by a straightforward procedure to excel-lent

resul-ts wj-thin an acceptabl_e computing tJ-me.

Q) The success of the Reaction concept is dependent

upon the choice of the current approximation. using

- nur.rerical integration, different current approxinations
can be tried with relative êâs€o

(¡) unl-ess integrati-on increments are smal-1 enough,

the results obtained by the method of this thesis
are neaningJ_ess. 0n the other hand, using rnore

increments than necessary resuJ-ts in unnecessary

computer computation time.
(l) The present state of cornputer technology is such

as to make numerical double integration practical
for sorving integrals simil_ar to those encountered

in this thesis.
. (s) 0n the basis of its success in solving the dipore

problem, the Reaction Concept utilizing nunerical
double integration merits consideration as a method

for soJ-ving for impedances of other antenna conflgurations.
(6) rrre Reacrion l{ethod appears to yierd the same equation

for inpedance as does the variatiorral l,ilethod..



APPI'NDIX A

SAITIPLL; COÌ4PUTER PROGRA¡.

The conputer program presented in this section is one to
calculate self-resistance and self-reactance using Taits current
approximation with dz'=-è-, dz - h and h varying from 0.05 

^to 1.1 I . The card .nr;93" ,,"""""33y ro converr rhe program

to Harringtonts approximation are placed in parenthesis alongside
the corresponding card in the sample program.

some comrnents are important regarcling the program. Firstry,
it is to be noted that the program is v¡ritten as if two different
antenna lengths h- and h and four trial- current" rt, rt, r*, and

rn 
""" invorved. 

trn" 
t"i"on for this is that the program used for

fincling serf-impedance originally formed a portion of a program

the author was preparing to find mutual inpedance between two
parallel v - antennas of different lengths hl and h, . rt was

observed that by letting hr=hr=hrlu=Ift, and fv:It, Jn,i letting
the di-stance of separation of the two antennas equal the radius
of the single dipole, that one portion of the nrutual impedance
equation reduced to the self-impedance equation for the dipole.

.6¡tarrington makes similar observations to obtain the first order
( one trial function ) variational sol-ution for input impedance of
a dipole from his first order dipoJ-e mutual impedance solution"

By retaining the mutual impedance features of the program,
many calculations become redundant. For examfre, the real and
inaginary parts of both (urn) and (vrffi) are calculated
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even though they a;-e the same quantities for the self-inpedance

case. . However, this is felt to be a desirable feature for this
thesis as the program combines somewhat the wors! aspecLs of

impedance calculations namely, the greater number of cal-cuLations

that woul-d be invol-ved for mutual ir,pedance and the more singular

nature of the F, and F, functions in the self-impedance caÍie.

Thus, computation times using this program will be slíghtly on

the conservative side,



SELF IMPEDANCE
RESISI.AILCE AND REACTANCF

1 FoBMAT (3f2_0_-0l_Ll!l___
3 FoRMAT ( 1Fl0 r3HH1=FrB .8 tZx3HHz=F1B .B ¡2xóHRAT Io=FlB. B )

4 FORMAT ('l H r'l 'l HRFSISTANCF=F1R-R rÃX1ôl-.1 Rtr^.T^t\1.tr=F1Q - Qr
90 FORMAT ( 1 H I 4HRUM =F 25. 0 T4HCUM =F 25. O r 4HRUN=F 25. Or 4HCUN =F 25 ¡O I
91 F98_l1AI_(_1_Lt___l¿IHRVM=F25.0'aHCVM 0_r_4tIC.VX_=_EZ5_._e)

DIMENSION RF(2001) ¡CFlZ00l) rSN( 1001) rCS(1001)

9 READ ( 1r 1 ) TOPI THITRATIOTNO
DO B0 N=l r
Hl=H1+0.05
H2=HI
D=H1lRATIO
DZ?=O.C?'*_
DZ 1=0.002r+H1
DZÍ)Z= DZ 1 *DZz
TOPI2=TOPIT+*2
D2=Dxx2

20 DO 82 I=1 r500
l,1= I - I
XM =M
Z 1=XM+'DZ 1

XZL=TOPI*(H1-ZI)
.5N(I)=SIN(XZl)
CS(I)=XZ1*COS(XZl) (,cs (r )=HI-21)
Zt4Z2=Z_If i2
D I ST 2=ZI4Z2+D2
DIST=SORT(DIST2)
A1=1.000000/DIST2
A2=Zl4Z2*A L

AV=3. OU0O0U*42
A4=43/Dl512
A5=TOPl2xAz
T ER142 = ( -TOP I 2+45+A 1-44 ) /D I ST

TOPIS=TOPIìTDIST
COSR=CO.S(TOPIS)
SINR=SIN( TOPIS )

--RF ( I l=ðoc-R*TEn@
CF ( I ) =COSR*TERMz-SINRITERM1

2
3o

CONT I NUE
DO 83 I=50Ir1000
M=I-1

. IJ4=M
zt4z2= (XM*DZLt#*2
D I ST 2=ZMZZ+D2
DIST=SQRT (DISTZ I

A_t_=_l_._Q 0 Q_0_0 q
ItZ=2t47_2+ AI
A3=3. 0C000 0*
Â4=43/DlS'12
A 5 = TOP l2_* Az
TERf.î2= ( -TOP I 2+A5+41-44 ) /D I ST
_T_83!4:_Te
TOPIS=TOPI*DIST



Cô.SR=COS(TCìPISì '

SINR=5¡ ---

CF ( I ) =COSRX.TERM2-SI¡rNXr. CONT INUF
RtJV=0.0
Ct.JM=0.0
RUN=0.0
CUN=0.0
RVM=0.0
CVM= 0. O

RVN =0 .

DO 5 K=lr5O
J=K-1
XJ =J

XZ2='f OPIx lH|-ZZl
XMMUL_T=.S Ilrt( XZ
XNI'1UL T =XZZ +ÉCOS ( XZ?) (xt'¡iriut T:H2-,22)RUMN=0.0
CUi4N=0.0
RVI'1N=0.0
CVi4N= 0.0
Jl01 =J*10+1
L=-l
L=L+1
LL=L+]
IP=J'lO
I M=J 101-L
tF(

13 IF(IMl 14t14rI5
l4 lþ1=-lf,l+2

IF(lrV-500) l5r1j¡16
16 GO TO 57
15 IF(IP-500) 17r17t18

_1_7_U¡ . _sll_t ¿ )__t SNl
VX=CS(tp)+CS(IM)
GO TO 19

1B UX=SN(IMi

-JX 
=_cll_tUl

l9 RUX=RF(LL)#UX

--c!¡_1qf1L 
L f_lUX

RVX=RF(LL)r+VX
ÇVI=cF(¡¡¡xy¡
R UliiN = R Ul'¡N +RUX

-C-ul:CI 

= c_Ujl$:ÇJJI
RVIiN=RVi4N+RVX

-Ç-v 

MJ[=!-\4¡'4_N:+ ,

GO TO 84
(K-2) TrBrB7 Rui4 N 5 = n ur¡¡i* olEõõõõõ

Ç,9-Y,J!5 =CU|ÍN# 0.5 OOOOOO
R v MN 5 = Rvta N *õ.5 o o o o o o

--Cyv¿t 

5 = ev-ia l\j! r 5 O O O O O O
':4N{-0.5000c

nul¡,Ui4 = RtJt4+X l,lM ULT *n úrqN
CUl'¿ = CIJM+ X'"1tiUL T +C UMN 5
fìU N = RUt,l + x NMUrï;n¡tñ 5

-C!_þc. 
gt!+_IlttrULT #.CUMN 5

Vi4 = R Vt4+X Mi4U L T rtR W,^l 5n-v,vEH v,v, Jx v.uTî-i + r:
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CVN=CVN+XNMUI T+CVMNE 

-GOT o5
l?l ll¡1¡YMMI ll T+Ql lMNlI RUi"l=

c ut4 = cuM+ xMiq ULT rsc ut4 N

----RU¡l =ßU-r\+XNL\tU-l 
T'x R U M N

CUN =CUN+XNMULT JICUMN

RVI"1 =RVM+VIVIMIII T +TRVMN . 
,

CV 14 = CVM+Xl"1M U LT r+ CVMN

_ß vj!_¡lv N +_xlljl_u! I f8_vl!-N
CVN=CVN+XNMULT*CVMN
CONT I NUE

72 
^RG1=TOPI"'ÉHIARG2=TOP I +H
FIM=SIN(ARG2)
F I N=ARG2',rCOS (ARG2 )

(IFIN:Hl)
FIU=SIN(ARGI)
F I V=ARGI *COS ( ARG L )

( FIV:HI )

FIVIM=FIV+FIM
FIUIM=FIUrÉFIM
FIVIN=FIV*FIN
FIUIN=FIU*FIN

-iì 
N!l¡¡;-Rú ¡¡-x-RVt'l - C W x C V N

cN ui4 1 = RUMxCVN+ RVNr+CUM
RN UM2 = RUNx RVl4-CUN* CVM

cN Ui'i2 = RuN.- CVM+RVM-^CUN
R N U i"l = R N U:"1 I - R N U l'4 2

Cf\UM=CNU¡41-CNUM2
RDEN= F I V I iqxRUN-F I U I M*RVN-F I V I NrrRUM+F I U I NnRVM
CDEN= F I V I MìtCUN -F I U I Mr$CVN-F I V I N*CUM+F I U I N*CVl4

--R-D-EN2=RDENìr*2
cDEN2=CDEN*x2
D E NOM= RDEN 2+CD EN 2

B I = RNUI'IY. R DE N+C NUM*CD EN

RRRR=Bl/DENOM
B 2 = R D ENxCN UM-RN UM+f CD EN

COMPL=82 /DENOM
F A CTOR = 6 0 . 0 000 0''r Dz Dz /T oP I
RES I ST=F
REACT=FÂ

ACTOR*RRRR
C TOR'TCOMPL

'/RITE (3r3) HItH2rRATIO
WRITE (3¡41 RESISTTREACT
IJRITE ( 3r90 ) RUMTCUMTRUNTCUN
i.,RITE ( 3r91 ) RVMTCVMTRVNTCVN
COI.IT I NUE
I-E-! ¡l-oj_-9 -1e-¡-1 

0 I
t01 CALL EX I T

END
\TA
28?1 85 o.ooooo0o 1 000¡_
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