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Abstract 

During vibration of engineering structures, fatigue cracks may exhibit repetitive crack open-close 

breathing like phenomenon which ultimately result in a distinct crack type, breathing cracks. 

This breathing phenomenon generates bi-linearity and irregularities in vibration signals of the 

cracked structure which carry useful information about the crack occurrence. In this thesis, the 

concept of entropy is employed to quantify this bi-linearity/irregularity of the vibration response 

so as to evaluate crack severity. To increase the sensitivity of the entropy calculation to detect 

the damage severity, sample entropy and quantized approximation of sample entropy are merged 

with wavelet transformation (WT) which is capable of amplifying the weak irregularities in 

vibration signal caused by small and initial breathing cracks. A cantilever beam with a breathing 

crack is studied to asses proposed crack identification method under two vibration conditions 

with sinusoidal and random excitations. An iterative numerical model is established to generate 

accurate time domain vibration responses of the cantilever with a breathing crack. Through both 

numerical simulations and experimental testing, the breathing crack identification with entropy 

under sinusoidal excitation is studied first and proven to be effective. Then, the crack 

identification sensitivity under lower excitation frequencies is further improved by parametric 

optimization of sample entropy and WT. Finally, effective breathing crack identification under 

general random excitations are experimentally studied and realized using frequency response 

functions (FRFs) which adapts the proposed crack identification technique to the incurred extra 

complexity due to random nature of the excitation and structural response.  
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Chapter 1 

Introduction 

Identification of structural damages, which refers to detection and evaluation of these damages 

such as cracks, notches and delaminations, especially at their earliest stage is a vital process in 

engineering to avoid calamitous and irreparable damages. Closed fatigue cracks are a more 

evident damage type exhibited by many engineering structures. Crack breathing (repetitive 

opening and closing) is a common phenomenon and it is noted during the dynamic deformation 

of engineering structures with closed fatigue cracks. Identification of these cracks at their earliest 

stage is of utmost importance, but the bi-linear dynamic behavior of the structures with breathing 

cracks makes them difficult to be detected by traditional damage detection techniques and 

analytically more rigorous compared to their counterpart; the open cracks [1]. The recent studies 

have started to exploit the complex dynamic behavior of the breathing cracks envisioning better 

damage identification techniques [2]. In this context, entropy measures are a valuable tool for the 

quantification of complexity of dynamic systems [3]; therefore, entropy can be employed as a 

tool to develop a high sensitivity breathing crack identification technique.  

During the lifespan of an engineering structure, it can be susceptible to fatigue cracks due to 

various cyclic-fluctuating loadings acting on the structure. These fatigue cracks, do not remain 

always open during dynamic loading conditions. The collective effect of static deflection of the 
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structure due to its self-weight and dead loads, and dynamic deflection due to vibration effect, 

can cause the crack to remain open at all times, or open and close regularly, or remain 

completely close. If the crack remains open all the times during vibration, then it is considered as 

an open crack. In the situations where the vibration amplitudes are larger compared to the static 

deflection of the structure, then the crack will open and close alternatively exhibiting a 

breathing-like behavior [4]. The cracks showing this behavior are generally called breathing 

cracks and unlike the open cracks, these breathing cracks introduce bi-linear dynamic behavior to 

the system [5]. This bi-linear dynamic behavior raises three major challenges in studies related to 

breathing crack identification. The first challenge faced by the researchers is, theoretical 

modeling (or mathematical modeling) of breathing cracks is much more complex than the 

modeling of simpler open cracks [4], but development of such complex theoretical models are 

essential for more accurate damage detection techniques [6]. The second difficulty arises when 

these breathing cracks are studied experimentally. It is more difficult to initiate and propagate an 

appropriate breathing crack experimentally, which is one possible reason for the few 

experimental studies found in literature dealing with realistic breathing cracks [7]. The next 

challenge is, the changes in the dynamic characteristics of the structure due to a breathing crack 

are smaller compared to the changes caused by an open crack with the same size, which leads to 

more difficulties in detecting these breathing cracks [5]. Even though the breathing effect of 

cracks in the presence of vibration of structures had been recognized since 1940s [8], viable 

solutions for the aforementioned challenges are not yet  fully revealed.  

During the past few decades, numerous methods have been proposed in breathing crack 

identification related studies. In the literature, two distinct numerical modeling approaches are 

found facilitating this purpose. The first approach, open crack models, are the simplest modeling 
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technique among the two, but as the name implies, these models assume that the crack is open 

always, hence they avoid the complexity incurred by the bi-linear dynamic nature from crack 

opening and closing. On the other hand, it is necessary to exploit the true bi-linear nature of the 

crack for developing accurate [4] and early-detection [9] of these breathing cracks. Hence, the 

second approach of numerical modeling, breathing crack models, is developed solely to serve 

these purposes by considering the bi-linearity.  

  In this thesis, a breathing crack numerical modeling technique is employed to fully exploit 

the bi-linear dynamic characteristics of the breathing cracks to develop an early detection and 

efficient evaluation technique of breathing cracks. A mathematical modeling technique 

combined with an iterative process developed by Wu [10] is employed to numerically interpret 

breathing crack dynamics, and the method is further improved by incorporating an important 

vibration aspect, damping effect. The developed model uses fracture mechanics theorem in 

conjunction with iterative numerical scheme to accurately generate the bi-linear vibration 

response of a beam structure having a breathing crack.   

Furthermore, these breathing cracks generate irregularities in the vibration response of the 

structure. Entropy is a measure which can quantify these irregularities; therefore, in this thesis 

entropy is used as the central tool in developing the breathing crack identification technique. The 

idea of entropy was initially developed by Shannon [11] to quantify the amount of information in 

a communication signal. Then the idea was evolved to dynamical systems to quantify the system 

complexity, and today several entropy measures have been derived from the original idea and 

found useful in various applications [3].  In this thesis, sample entropy (SampEn) is employed as 

the main entropy tool to develop the high sensitivity breathing crack identification methodology; 
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this is primarily due to its capability in accurate quantification of irregularities with short and 

noisy data. In addition, to achieve smaller computational times in crack identification process, a 

derivation of sample entropy, quantized approximation of sample entropy (QASE) is used. 

Further, these two entropy measures are used in conjunction with two other signal processing 

tools, accordingly, to enhance the effectiveness of the proposed breathing crack identification 

technique.    

In this thesis, wavelet transformation (WT) and frequency response function (FRF) are used 

as breathing crack identification aiding tools collectively with the main concept of entropy 

measures. Wavelet transformation is capable of magnifying irregularities in temporal or spatial 

signals [12,13]. Therefore, WT is a valuable tool to discern or amplify the weak irregularities in 

the time domain vibration signals, which are due to the breathing phenomenon of the repetitively 

opening and closing crack. Then, these processed (using WT) time domain vibration signals of 

the structure are quantified for the irregularities using the entropy measures so as to develop an 

effective breathing crack identification method. In addition, a dedicated study is conducted on 

how entropy and WT can be optimized to obtain the best crack identification results by using the 

proposed technique. Furthermore, in this thesis, breathing crack identification under random 

vibration, perhaps the most complex type of vibration type to handle and in fact the least studied 

in the literature, is also considered using the FRFs as an add-in tool. The FRF is capable of 

extracting the dynamic characteristics from a structure, and most importantly, the FRFs are 

independent of the excitation [14]. Therefore, FRF is coupled with the proposed breathing crack 

detection methodology to extend its capabilities to tackle the most common in nature, but 

conceptually more complex and rigorous, vibration conditions experienced by engineering 

structures under random excitations.  
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A cantilever beam with a breathing crack near the fixed end is selected as an applied case 

study to demonstrate the efficiency of breathing crack identification capabilities of the proposed 

technique using entropy with WT and FRF as add-in tools. This cantilever beam with a breathing 

crack represents a challenging case study, as it is studied under two types of vibration excitations, 

which are sinusoidal and random excitations. Sinusoidal excitation can have any excitation 

frequency, and hence capable of exciting different vibration modes of the structure, which 

ultimately affects the crack identification accuracy [2]. Contrary to (simpler) sinusoidal 

excitations, random excitations present higher complexity due to their inherent dynamic 

complexities. In this thesis, experimental studies are conducted in parallel to numerical 

simulations so as to validate the numerical results obtained for breathing crack identification. 

Experimental results to assess the breathing crack identification results based on the 

numerically generated vibration response of the selected cantilever beam case study are obtained 

using an in-house laboratory test setup. Cantilever beams similar to the numerical studies are 

established, and several beams are constructed in order to achieve different crack depths. The 

location of the crack in all the beams are fixed near the clamped end of the cantilever beams, as it 

is in the numerical study. Then the experimental setup is used to obtain the dynamic responses of 

the beam under both sinusoidal and random excitations for breathing crack identification. Finally, 

the crack identification capabilities of the proposed technique is assessed through simulation and 

experimental studies to demonstrate the potential of the proposed method as a high sensitivity 

breathing crack identification technique for practical application.   
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1.1 Organization of the thesis 

The organization of this thesis is such that, it is primarily based on three research papers 

which were prepared during the study of the presented work in this thesis (the three research 

papers are given in Appendix E). The thesis is divided in to seven chapters: introduction, 

literature review, methodology, followed by three chapters covering the findings presented in the 

three research papers, and a final chapter covering the conclusions and future works. 

 The literature review covers the research milestones that it passed in the last few decades 

when general damage identification techniques evolved in to modern vibration-based breathing 

crack identification methodologies. This particular chapter elaborates the relevant past studies, 

their contributions, their advantages which helped the progress in breathing crack identification, 

and at the end of the chapter, the problems which are still prevailing in those studies are revealed 

to set the objectives of the current study presented in this thesis.  In the methodology chapter, it 

covers all the mathematical tools that are used in the proposed breathing crack identification 

technique.  

After that, the chapters 4, 5 and 6 are dedicated to present the findings of the current study. 

They, as individual chapters, are originated from the three research papers that mentioned earlier. 

These three chapters provide detailed study of the proposed breathing crack identification 

technique. Chapter 4 presents breathing crack identification capabilities of the proposed crack 

identification technique under sinusoidal excitations.  The second chapter provides further 

improvements to the proposed crack identification technique and the last chapter covers findings 

pertaining to breathing crack identification under general random excitations.   
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In the final chapter of conclusions and future works, the main findings of the thesis are 

concluded and some suggestions are given so as to further improve the proposed breathing crack 

identification technique envisioning a real world breathing crack identification methodology.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
  

 

Chapter 2 

Literature Survey 

The effect of breathing cracks under vibration responses of the cracked engineering structures 

had been recognized since 1940s [4]. Since then, a number of major development steps in 

breathing crack identification have been introduced. In this chapter, evolvement of breathing 

crack identification techniques from general damage identification schemes to advanced 

vibration-based breathing crack identification techniques are elaborated. The deployment of 

entropy measures in damage detection, and how WT and FRF have influenced the damage 

identification methodologies in the past few decades are covered to give an insight to their 

advancement and, the areas where the technical gaps are found and where new thoughts can be 

implemented are covered in the final concluding section of this chapter, which draws the 

objectives of the thesis.   

Structural health monitoring (SHM) with different damage identification techniques have 

been a largely concerned field of study for numerous researches from both industrial and 

academic communities. Local damage detection methods which are mostly referred to as non-

destructive tests (NDTs), such as X-ray test, ultrasonic, and magnetic particle test etc., have been 

proven to be unsuitable in particular cases due to long inspection times [5], expensiveness of 

some methods, inability to reach the damaged area and most importantly they are not capable of 
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on-line real-time continuous detection of damages [5]. As a result, new research frontiers in 

SHM have turned towards global vibration-based structural damage detection methodologies, 

due to their on-line real-time continuous damage detection capabilities, ability of monitoring 

literally any structural part of interest and their cost effectiveness during long runs.  

Vibration signals of a structure carries great amount of information about the healthiness of 

that particular structure. All vibration-based structural damage detection methods strive to extract these 

damage related vibration information effectively and efficiently and to interpret the damage which 

causing them. Numerous reviews [15–18] can be found in the literature on vibration based 

damage detection methodologies proposed in the past several decades. Although many vibration 

based structural damage detection techniques and methodologies have been proposed, their 

development can mainly be divided into two: traditional and modern types [19]. The traditional 

type refers to damage detection solely depending on the direct changes in the modal parameters 

of the structure; such as modal frequencies [1,20,21], modal shapes [22,23], and frequency 

response functions [24,25]. These methods generally require experimental measures, which 

require multifarious instruments or manual operation, therefore traditional type of techniques are 

not convenient for online damage detection [19]. In addition, prime issues conflict them with 

today’s engineering needs are, they have shown lesser sensitivity to initial stages of the damages 

and possess more dependence on the properties of the individual structures limiting them in 

expanding to universal methodologies. On the other hand, modern types depend on the online 

measured responses of the structure and use signal processing techniques and intelligent damage 

identification agents such as artificial neural networks (ANNs) [26–28] and genetic algorithms 

(GAs) for damage identification [29,30]. In addition to those intelligent damage identification 

agents, wavelet analysis is a signal processing technique [31],  which gained popularity during 
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the last two decades as a structural damage detection tool using both spatial and temporal signals 

[12,32]. Then, the advantages of these modern type techniques are: higher sensitivity to initial 

damage stages, online measurements avoid operational halts of the system and have higher 

flexibility in expanding these techniques as universal methodologies. In this thesis, a modern 

vibration-based high sensitivity on-line damage detection methodology is proposed to utilize the 

full potential of the modern techniques, in a dedicated damage identification area, which is 

breathing crack identification.  

Fatigue cracks are evident as breathing cracks in many occasions of structural damages. 

During vibration of the structure with sufficient amount of deflection of the structure around the 

crack, the crack undergoes opening and closing repetitively which is generally termed as 

breathing phenomenon. In the literature, many crack modeling techniques have been proposed by 

various studies to find viable vibration based methods for breathing crack identification. Broadly, 

all these crack models fall into two categories: open crack models and breathing crack models 

[1]. In open crack models, the crack is considered remain open during the vibration and it is the 

most widely used [33,34] modeling technique to avoid the complexity resulting from bi-linearity 

of the breathing crack models. These models are less sensitive to smaller crack depths [35–38] 

and lead to lesser crack severity predictions than what they really are [4]. Therefore, recent 

studies  are more in the favor of breathing models, which mitigates those problems by mimicking 

the real open-close phenomenon of breathing cracks [1,39,40]. In a recent study, a mathematical 

modeling technique combined with an iterative process has been developed by Wu [10] and the 

method claims generating accurate reproduction of bi-linear dynamic properties of the breathing 

fatigue cracks computationally. The same modeling technique is used in this thesis, with further 
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improvements by including damping to generate more accurate and realistic time series 

vibrational signals of a beam with breathing crack.  

Breathing crack models are the only way for developing more sensitive breathing crack 

detection techniques which are capable of identifying smaller initial crack depths. But even these 

crack modeling techniques still have not been able to reach effective high sensitivity breathing 

crack identification. This is due to the fact that, while development of accurate breathing crack 

modeling techniques are important for overall accurate crack detection, the analytical 

methodologies employed in analyzing the dynamic signals of a breathing crack mathematical 

model or a breathing cracked structure play a vital role in reaching higher sensitivities in 

identification of smaller initial breathing cracks. This is because of the weak signature of any 

distinguishable dynamic irregularities generated by smaller crack severities compared to 

moderate or larger crack depths; without effective analytical methods, these dynamic 

irregularities are undetectable. Cheng et al. have employed a breathing crack model to study a 

beam structure with a breathing crack [1], but the study has been limited to moderate sized 

cracks (around 30% crack depth with respect to the total thickness of the beam) due  to direct 

analysis of time and frequency domain information. This lower crack identification capabilities 

are seen in other proposed techniques [4] those belong to the breathing crack identification era of 

direct analytical methods are the way of analysis. Several years later, Douka and Hadjileontiadis 

have derived instantaneous frequencies using a breathing crack model generated dynamic signals 

[6] by which  the method deviates from direct analysis methods. Their numerical simulations 

show around 30% of crack depth identification (the percentage crack depth ratio with respect to 

the thickness of the beam) only with periodic excitations of the structure. Nguyen and 

Olatunbosun have employed wavelet transformation on strain-time history generated by a 
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breathing crack model. But the model is capable of identifying cracks larger than 19% of crack 

depth. In a recent study, Gianni et al. have conducted a numerical study on a harmonically 

excited cantilever beam using a breathing crack model and then a multi modal analysis is applied 

to realize the breathing crack identification [9]. Their numerical results claim ability in 

identifying cracks larger than 5%. But the method is based on a less-viable condition in reality 

that is, the structure is required to be excited near one of its modal frequencies. In this thesis, the 

concept of entropy is employed to develop a high sensitivity breathing crack identification 

technique which does not depend on special dynamic conditions which are hard to be realized in 

real world application stages. 

Entropy is a measure, which can quantify the irregularity in dynamic signals, and numerous 

entropy measures have been introduced since its introduction into dynamic systems by 

Kolmogorov and Sinai [41–43]. Higher the irregularity of a dynamic response of a given system, 

higher the entropy values are. Evaluation of complexity values of time-series data based on 

entropy measures are well studied in different disciplines including biomedical studies [44,45], 

in characterizing human motion [46], image processing [47,48], in financial market studies [49] 

and so on. In the damage detection perspective, in the recent studies, various entropy measures 

are being applied in rotary machines to diagnose various damages. Yan and Gao [50] have 

employed approximate entropy (ApEn) as a diagnosis tool to identify the different deterioration 

phases under several damage modes of rolling-element bearings. The authors claim more than 

200% increment in ApEn values even under light damages to the bearings. Zhang et al. [51] have 

introduced multi-scale entropy (MSE) measures for the first time in fault diagnosis. The 

mentioned work has been able to produce better results with MSE over single scale-based 
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entropy measures. Similar bearing fault diagnosis has been done using permutation entropy (PE) 

[52] and multiscale permutation entropy (MPE) [53] with improved accuracies.   

From the literature survey, only few research works have been carried out on structural 

damage detection using entropy as a tool. Yang et al. [54] have employed entropy measures in 

detecting cracks in beam-like structures. The crack they considered is limited only to open cracks, 

and direct employment of entropy limited their approaches effective only for larger cracks. The 

entropy itself alone is found to be not quite sensitive for the crack detection. This is due to the 

weak signature of the irregularities from the breathing. In this context, WT is a valuable add-in 

tool which can be used in conjunction with the entropy measures. The advantage of WT is the 

ability to perform local analysis of a signal by zooming on any desired segment of the temporal 

or special signal [55]. This key feature of WT has been merged with the entropy concept to 

reveal information concealed in signals. This idea is popular in biomedical  studies such as to 

analyze brain signals [56]. But, in the field of structural damage detection, only few studies have 

been done so far. Browne et al. have studied feature extraction from sewer pipes for crack 

detection [57]. Ren and Sun [55] introduced the wavelet-entropy technique to notch detection in 

structures. Their study is limited to analysis of the sudden change in the vibration signal to find 

the occurrence of the damage, and the method lacks in damage severity estimation during its 

operation with an existing damage.  

The ultimate goal of all these crack identification methods is, perhaps to be implemented as 

real-world crack identification methodologies. But, in the event of that, the fundamental problem 

faced by most of these crack detection methods is, the distinct vibration patterns observed by the 

structures in real world conditions by which drastically diminish the claimed crack identification 
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capabilities of the proposed methods. This is due to the fact that, these methods are not capable 

of tackling random vibrations, which is the most evident vibration pattern experienced by most 

of the structures. When it comes to handle random vibration signals, frequency response function 

(FRF) is a very useful tool. The key fact about FRFs is, the FRFs are capable of extracting the 

dynamic characteristics from a structure and most importantly, the FRFs are independent of the 

excitation type of the structure [14]. Traditionally, FRFs have been used to identify breathing 

cracks using super harmonics (or modulation lobes) of the excitation [1] which are less effective 

in the presence of noise in analyzed signals. More effective use of FRFs can be seen with 

methods using derivatives of FRFs. Owolabi et al. have employed normalized FRF amplitudes to 

locate and identify the crack depths of open cracks [24]. Luzzato has employed two distinct 

damage rates, which are derived from FRFs, to effectively identify the geometrical crack rates 

[58]. But this study is based on the damage rates, and the damage rates that he has simulated, as 

claimed by himself, have a weak probability of occurrence in the real world applications. In this 

thesis, FRFs are used as an add-in tool with main entropy tool to aid in breathing crack 

identification under random excitation of the structures.   

2.1 Research objectives  

The performed literature survey reveals that the previous crack identification techniques are 

lack in early detection of the breathing cracks due to their lower crack identification sensitivities 

to initial small crack depths. On the other hand, even though entropy is a better damage 

identification tool, it has never been employed in breathing crack identification, which is an area 

that can benefit from the core idea behind the entropy concept. In this thesis, the following 

objectives are set to achieve new steps in the breathing crack identification studies. 
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1. Development of a high sensitivity breathing crack identification technique, by 

employing the combined idea of wavelet-entropy, for the first time in breathing crack 

identification.  

2. Further improvement of practicality and sensitivity of the proposed crack 

identification technique by optimizing the entropy and wavelet transformation 

parameters.  

3. Adaptation of the proposed crack identification technique to more realistic operating 

conditions under random excitations by using derivatives of FRF as an add-in tool 

effectively with the main proposed crack identification technique, for the first time in 

breathing crack identification to identify breathing cracks.  

4. Validation of the proposed breathing crack identification methodology with 

experimental studies to evaluate the viability of the proposed methodology in realistic 

breathing crack identification.  

These objectives are realized in the next chapters of the thesis, and the progress and 

achievements of these objectives are concluded in the final chapter including some suggestions 

on future works.   

 

 



 
 
   

 

Chapter 3 

Theoretical Background and Methodology 

Breathing crack identification presents number of challenges due to inherent complex dynamic 

properties of the bi-linear behavior and the weak signature of the breathing effect for smaller 

crack depths. In this chapter, the theoretical background of the various tools used in the proposed 

breathing crack identification technique is presented. First, in Section 3.1, the applied case study 

used to elaborate the proposed crack identification method is introduced. Then in the following 

sections, the numerical iterative breathing crack model, two entropy measures of SampEn and 

QASE, WT and finally FRF are given.  

3.1 The breathing crack cantilever beam model 

To demonstrate the viability of the proposed methodology to identify breathing cracks in 

structures based on time domain vibration signals, a vibrating cantilever beam with a breathing 

crack (near the fixed end) is studied. A schematic diagram of the beam structure is shown in 

Figure 3.1. 

The beam is considered as an ASTM A36 steel beam of a unit length (in meters). The cross 

section is 𝑏 ×  ℎ, where 𝑏 and ℎ are the width and the thickness of the beam, respectively. The 



 
3.1 The breathing crack cantilever beam model         17  

 

distance to the breathing fatigue crack from the fixed end is 𝐿𝑐, and it should be noted that, in 

this thesis, the crack is considered to be on the top surface of the cuboid shaped slender beam. 

The depth of the crack or crack severity (ℎ𝑐) is varied in the analysis from zero (healthy beam) to 

half of the beam thickness (ℎ/2). The crack depth percentage is the percentage ratio of the crack 

depth, ℎ𝑐, to total thickness, ℎ, of the beam.  Young’s modulus of the beam is 𝐸 and density is 

denoted by 𝜌. The beam is excited sinusoidally (𝐹(𝑡)) at its free end. The angular frequency of 

the excitation is 𝜔 and the time elapsed is denoted using 𝑡.  

 

Figure 3. 1 - Cantilever beam with a breathing crack. 

In the next section, one of the most important steps in developing a damage identification 

methodology is presented. That is formulating of a breathing crack model for accurate 

interpretation of the dynamic characteristics of the real breathing crack. The steps in 

mathematical formulation of the numerical iterative model for the mentioned cantilever beam 

with a breathing crack are presented in the following section.  
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3.2 Mathematical modeling of the cantilever beam with a 

breathing crack 

As shown in Figure 3.1, a cantilever beam of length 𝐿 and uniform cross section of 𝑏 × ℎ is 

considered. The breathing crack is located at 𝐿𝑐 from the fixed end and the depth of the crack 

is ℎ𝑐. According to the Euler-Bernoulli beam theory, the governing dynamic beam equation is: 

                                                          

( ) ( ) ( )txF
t

w
A

x
w

EI txtx ,2
,

2

4
,

4

=
∂

∂
+

∂

∂
ρ     (3.1) 

where 𝐼  and 𝐴  are the second moment of inertia of cross section and cross sectional area 

respectively. 𝑤(𝑥, 𝑡) is the vibration deflection of the beam at a distance 𝑥 from the fixed end at 

time 𝑡 and the dynamic loading applied at the beam tip is 𝐹(𝑥, 𝑡). The detailed derivation steps of 

the dynamic beam equation are given in Appendix A. 

First, when the value of the slope on the left side of the crack is smaller than the one on the 

right side, the crack is in closed position, hence the beam can be treated as a healthy beam [10]. 

This is illustrated in the Figure 3.2. Figure 3.2 is an exaggerated view of the bending of the beam 

during vibration, and point 2 represents the crack position on the top surface of the beam and 

points 1 and 3 represent two points which are infinitesimally close to the crack point (the 

distance is marked as dx). The tangent values of angles α and θ represent the slopes of the beam 

sections to the left and to the right of the crack respectively. Both angles are measured in 

counterclockwise direction. Then, if tan𝛼 ≤ tan𝜃, then the crack is in closed stage, the beam is 

treated as a healthy beam then.   
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Figure 3. 2 - Slope discontinuity at the crack position of the cantilever beam during vibration. 

Then using variable separable method the mode shapes of the beam with the closed crack can 

be found for 𝑛𝑡ℎ mode of vibration (the derivation is given in Appendix B): 

            xAxAxAxAxWLx hnhnhnhnhn ,4,3,2,1, sinhcoshsincos)(:0 ββββ +++=≤≤   (3.2) 

where 321 ,, AAA  and 4A are unknown constants to be determined using boundary conditions and 

𝛽𝑛,ℎ is given as: 

                                                                  
2

,
4

, hnhn EI
Aωρβ =   (3.3) 

and hn,ω  is the 𝑛𝑡ℎ mode modal (natural) frequency of the ‘healthy’ beam (closed crack). 

Applying the boundary conditions of the cantilever beam in equation (3.2) give us four linear 
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equations and we can solve them to find the 𝑛th natural frequency of the beam, hn,ω , and the 

corresponding modal shape, )(, xW hn , for the closed crack position.  

Secondly, when the slope of the left side of the crack or larger than the right side, the crack is 

in open position and then the beam can be treated as an open crack beam or a damaged beam 

[10]. Now the beam is separated into two sections at the crack location to find its modal 

frequencies and the corresponding modal shapes. Let’s assume that beam section to the left of 

the crack as section 1 and the section to the right as section 2. Then, the vibration mode shapes of 

the two beam sections with open crack are: 

       xAxAxAxAxWLx dndndndndnc ,8,7,6,51, sinhcoshsincos)(:0 ββββ +++=≤≤  

      xAxAxAxAxWLxL dndndndndnc ,12,11,10,92, sinhcoshsincos)(: ββββ +++=≤≤   (3.4)                                                                                                                  

and 𝛽𝑛,𝑑 is given as: 

                                                               
2

,
4

, dndn EI
Aωρβ =  (3.5)                                                                                   

where dn,ω is the 𝑛𝑡ℎ mode modal frequency of the ‘damaged’ beam (open crack). The eight 

boundary conditions required to solve equation (4), are as follows: 
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 𝑥 = 𝐿:                     0)(,0)(
3
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dx
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dx

xWd dd

    (3.6)
 

 
The parameter Θ represents the additional non-dimensional flexibility of the beam due to the 

opening crack [10], which is defined as a function of the crack depth and calculated from 

fracture mechanics and Castigliano’s theorem [59],  

                            

dx
x

x

x

x
x

L
h hhc

2

)
2

tan(

)
2

cos(

))
2

sin(1(199.0923.0
6

2

/

0

4

π

π

π

π

π ∫














 −+
=Θ     (3.7) 

Substituting equation (3.4) into boundary conditions of the cantilever considering the crack 

opening given in equation (3.6), the 𝑛 th natural frequency of the beam, dn,ω , and the 

corresponding modal shape, )(, xW dn ,can be solved. 

Then, the full vibration response of the beam can be found using the mode superposition: 
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where 𝑛 is the mode number and 𝑞𝑛(𝑡)  is the generalized coordinate part. The process of 

obtaining full vibration response of the beam using the novel iterative method is described 

briefly in the following paragraphs.   

As it was mentioned before, during the vibration beam undergoes two structural states, open 

crack (damaged beam) and closed crack (healthy beam) stages with different stiffness at the 

crack position. Due to this bi-linear behavior of the beam, vibrational characteristics of the beam 

keep changing. Hence, it is not easy to derive accurate analytical vibration solution of the beam 
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subjected to external excitations with variable stiffness of the structure [10]. Therefore, an 

iterative numerical approach is used to find the final vibration solution (𝑤(𝑥, 𝑡)) of the beam 

[10]. The full vibration responses of the closed crack and the open crack stages of the beam at 

the 𝑖𝑡ℎ time step (𝑡𝑖), considering damping (𝜁 is damping ratio), at any position (𝑥) on the beam 

with the judgment of the crack breathing states are given below:  

If the slope on the left side of the crack is larger than the slope on the right side (i.e. the closed 

crack/ healthy stage), the deflection of the beam is given by: 
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where, damped natural frequency is given by, 𝜔𝑛,ℎ
𝑑 = �1 − 𝜁2𝜔𝑛,ℎ,  𝑄𝑛,ℎ(𝜏) is the generalized 

force function and given by, 𝑄𝑛,ℎ(𝜏) = ∫ 𝐹(𝑥, 𝑡𝑖)𝑊𝑛,ℎ(𝑥)𝑑𝑥𝐿
0 ,  𝑏𝑛,ℎ

′ = ∫ 𝑊𝑛,ℎ
2 (𝑥) 𝑑𝑥𝐿

0 , and 𝜏 is a 

variable of time in Duhamel integration. In this iterative process, hnA ,  and hnB ,  are related to the 

vibration response from the previous iteration step.  
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)( 1−in tq terms in equation (3.11) is related with either healthy or damaged beam responses 

depending on the vibration state of the beam at the previous iterative time step.  

On the other hand, if slope on the left side of the crack is smaller than the slope on the right 

side (i.e. the open crack/damaged stage), similar set of equations can be written as: 
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where, 𝜔𝑛,𝑑
𝑑 = �1 − 𝜁2𝜔𝑛,𝑑  ,  𝑄𝑛,𝑑(𝜏) = ∫ 𝐹(𝑥, 𝑡𝑖)𝑊𝑛,𝑑(𝑥)𝑑𝑥𝐿

0  ,   𝑏𝑛,𝑑
′ = ∫ 𝑊𝑛,𝑑

2 (𝑥) 𝑑𝑥𝐿
0   and 

similar to the healthy beam stage stated before, dnA ,  and dnB ,  are related to the vibration response 

from previous iteration step. 
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In equations (3.9) to (3.14), the subscripts of 𝑛 denotes the 𝑛𝑡ℎ mode of the vibration, ℎ and 𝑑 

denote the healthy and damaged vibration stages of the beam with closed and open crack, 

respectively. From the theoretical model described above, it is noticed that the beam structure 

with breathing crack keeps changing between the healthy and damaged stages repetitively with 
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different natural frequencies and mode shapes during its vibration. The change of the structure 

during the vibration introduces additional irregularity of the vibration signal compared with the 

intact structure.  

The next section presents the core technique used in the breathing crack identification 

methodology proposed in this thesis, which is entropy. The following section presents the 

SampEn, which is the main entropy tool used, and then following that section, QASE which is a 

derivative of the SampEn is presented.  

3.3 Sample entropy (SampEn) 

Entropy can quantify the irregularity of time domain signals so as to detect and evaluate the 

breathing crack, which generates irregularities in the structural vibration signals. SampEn is 

capable in well handling of short, noisy data samples with trouble-free implementation [45]. 

Let’s take a time series 𝑋 having  𝑁 number of data points such as: {𝑥(1), 𝑥(2), … . , 𝑥(𝑁)} , then 

its irregularity can be quantified as follows. 

First, template vectors of length 𝑚 (‘m’ is called embedding dimension) are defined, such as; 

)}(),....,2(),1({)1( mxxxX =  

)}1(),....,3(),2({)2( += mxxxX  

… 

                                 )}(),....,2(),1({)13( NxmNxmNxNX +−+−=+−   (3.15) 
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Then the Chebyshev distance between all template vectors are calculated, and lets denote it by 

𝑑[𝑋𝑚(𝑖),𝑋𝑚(𝑗)] and 𝑖 ≠ 𝑗. Then we define a probabilistic parameter 𝐵𝑖𝑚(𝑟) as follows, 
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where 𝑟 is a pre-determined tolerance value taken as:  

                                                                   )( XSDkr ×=   (3.17) 

In equation (3.17), 𝑘 is a constant (𝑘 > 0) and 𝑆𝐷 stands for the standard deviation. Then we 

sum-up all the probabilistic values, 
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Similarly, for template vectors of length 𝑚 + 1 
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and similar to equation (3.18), 
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SampEn is then defined as: 
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In this derivation,  𝐵𝑚(𝑟) is the probability that two sequences will match for 𝑚 points, on the 

other hand,  𝐴𝑚+1(𝑟)  is the probability of match for 𝑚 + 1  points. Therefore, the quantity  

[𝐴𝑚+1(𝑟) 𝐵𝑚(𝑟)⁄ ] is the conditional probability that two sequences within a tolerance 𝑟 for 𝑚 

points remain within 𝑟 of each other at the next point [45]. Higher the irregularity of the time 

series, then lower this value of conditional probability, hence we obtain a higher SampEn value. 

In Appendix C a detailed calculation of SampEn is presented for a numerical example, which 

will help to have a better understanding of the process.    

3.4 Quantized approximation of sample entropy (QASE) 

The main objective behind the development of this new entropy measure, QASE, is to have 

improved computational efficiency (lower computational times) while quantifying the 

irregularities meaningfully [60]. In-order to achieve this improved computational efficiency, the 

core of the entropy calculation algorithm is based on a method called ‘relative coarse 

quantization of time series data’. This coarse quantization of data hugely lowers the 

computational times over other entropy methods, and this quantization process is described 

below. 

Let’s consider a time series 𝑋 having  𝑁 number of data points; {𝑥(1), 𝑥(2), … . , 𝑥(𝑁)} , then 

relative coarse quantization of the time series is performed using a strictly positive parameter 𝑟, 

which defines the size of the quantization bins [48]. Then the quantized time series is: 
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where 𝑚𝑖𝑛(𝑋) is the minimum value of the time series and ⌊. ⌋ denotes the floor function and 

it rounds off the value inside the function (to the nearest whole number) towards the negative 

infinity. 

Then these quantized data samples are grouped (called ‘vector groups’) using an embedding 

dimension ‘m’(𝑚 ∈ ℕ1). This embedding dimension determines the length of the vector. Let’s 

call these vector groups as 𝑉𝑗  𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑗 ≤ 𝑁 −𝑚 + 1. 

The vector identifiers (𝜑𝑗) are defined on these vector groups in the next step. It is done in the 

following way, 
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Then it is possible to define the number of occurrences of each identifier as: 

            
( ) ( ) ( ) ( ) }  ]1,.......,1,[  ,11|{ #  jqqqj mjXjXjXmNjjQ ϕϕ ∈−+++−≤≤=   (3.24) 

Now, depending on these numbers of presence of each vector identifier, it is possible to construct 

the QASE in the following way. 

The probability values of  𝐵𝑚(𝑟) and 𝐴𝑚+1(𝑟) in equations (3.18) and (3.20) respectively for 

SampEn calculations are approximated using occurrences of vector identifiers 𝑄�𝜑𝑗�, as 𝐵�𝑚(2𝑟) 

and 𝐴̂𝑚+1(2𝑟) respectively. 

                                   𝐵�𝑚(2𝑟) = (𝑁 −𝑚)−1 ∑ 𝑄(𝜑𝑚) 𝑄(𝜑𝑚) −1
𝑁 −𝑚−1𝜑𝑚                                  (3.25) 

                                       𝐴̂𝑚+1(2𝑟) = (𝑁 −𝑚)−1 ∑ 𝑄(𝜑𝑚+1) 𝑄(𝜑𝑚+1) −1
𝑁 −𝑚−1𝜑𝑚+1                               (3.26)  
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Then QASE is derived as, 

                 𝑄𝐴𝑆𝐸(𝑚, 2𝑟) = − ln �𝐴
�𝑚+1(2𝑟)
𝐵�𝑚(2𝑟)

�                                                           (3.27) 

A detailed sample calculation of QASE is given in Appendix C using a numerical example. 

Now, this entropy based breathing crack identification technique requires some appropriate 

techniques to improve its crack identification capabilities and sensitivity. In this thesis, two such 

techniques, called add-in tools, are incorporated with entropy: they are WT and FRFs. In the next 

two sections these two mathematical concepts are covered. 

3.5 Wavelet transformation (WT) 

Wavelet transformation is a signal processing method, which can magnify the perturbations or 

irregularities in signals [55] and be used to further enhance/support the entropy measurement to 

quantify the signal perturbations with higher sensitivity. The wavelet is a smooth and quickly 

vanishing oscillating function. The WT maps a temporal signal, 𝑓(𝑡) , into two-dimensional 

domain (the time-scale plane) and is denoted by 𝑊𝑓(𝑎, 𝑏) given by; 
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where ℎ(𝑡) is called the mother wavelet and the subscript * denotes the complex conjugate of the 

function. The basis functions of the transform, called daughter wavelets, are given by: 
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ℎ𝑎𝑏(𝑡) is a set of basis functions obtained from the mother wavelet ℎ(𝑡) by compression or 

dilation using scaling parameter 𝑎 and temporal translation using shift parameter 𝑏 [61]. 

In the present study, we use the ‘symlet2’ as the mother wavelet function and WT is realized 

using the MatLab® software package.  

3.6 Frequency response function (FRF) – derivation for random 

vibration signals 

There are many vibration analysis and testing tools available and FRF is one of them which is 

widely used to reveal dynamic characteristics of systems. FRF is a transfer function, expressed in 

the frequency domain as the name implies. The most important fact about using FRF for 

vibration analysis is, it is capable of characterizing the dynamics of the system independently 

from the type of excitation of the system [14].    

Several forms of FRFs are available: such as receptance (or admittance), mobility, 

accelerance, etc. Receptance is the frequency domain ratio of displacement response of a 

structure to its force excitation. Mobility and accelerance share the same explanation but, the 

ratios are between velocity and force, and acceleration and force respectively. Due to readily 

available measurement techniques in accelerations, accelerance FRF is used in this thesis. Now, 

if the force input (excitation) to a system in the frequency domain is 𝑓(𝜔) and acceleration 

output (response) of the system is 𝑎(𝜔), then the accelerance FRF, ( )ωH is defined by; 

                                                                
( ) ( )

( )ω
ωω

f
aH =       (3.30) 



 
3.6 Frequency response function (FRF) – derivation for random vibration signals         30  

 

where 𝜔 denotes the frequency domain. 

In vibration analysis, the common practice is to compute the discrete Fourier transform (DFT) 

on the time domain signals acquired from experimental or analytical systems to obtain the 

frequency domain values. This requires both excitation and response to satisfy the Dirichlet 

condition, but random vibrations fail to satisfy this condition due to inherent properties of the 

random signals. This is solved using the correlation functions [14]. 

The autocorrelation function for the excitation 𝑅𝑓𝑓(𝜏)  is defined as the expected (E) or 

averaged value of the product of (𝑓(𝑡).𝑓(𝑡 + 𝜏)) for a time lag of 𝜏. 

  )]+f(t [f(t). E=)(R ff ττ                                                (3.31) 

Unlike the original excitation signal  𝑓(𝑡) , this correlation function satisfies the Dirichlet 

condition, and thus the Fourier transformation can be obtained. The resulting parameter is called 

spectral density, in this case it is called auto spectral density, )(Sff ω . The two sided auto spectral 

is defined as: 

                                                         ( )∫
∞

∞−

−= ττ
π

ω ωτ deR i
ff   

2
1)(Sff   (3.32) 

A similar concept is applied to the product of the two functions of excitation 𝑓(𝑡)  and 

response 𝑎(𝑡) to produce cross correlation )(R af τ  and cross spectral density )(Saf ω . Then, it is 

possible to calculate several FRF estimates using these auto- and cross spectral densities. The 

first estimate )(H1 ω  can be written as, 
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ff

af

S
S

=)(H1 ω                                                             (3.33) 

and, the second estimate )(H2 ω can be written as, 

                                                                 fa

aa

S
S

=)(H2 ω   (3.34) 

In this study, a third type of estimate is used, which is )(Hv ω  and derived from auto- and cross 

spectra of the signals [62], 

                                                                ff

aa

S
S

×=
af

af
v S

S)(H ω   (3.35) 

and it is found during the analysis, this particular estimate gives better results compared to the 

other two estimates in crack identification process.   

3.7 Summary 

In this chapter, the applied case study (a cantilever beam with a breathing crack) to elaborate the 

proposed breathing crack identification method is presented. Then all the mathematical tools that 

are used in this thesis for deriving the crack identification technique; i.e. mathematical model of 

the breathing crack, entropy, WT and FRF, are explained to give a mathematical insight. 

Numerical iterative model is used to accurate re-production of the vibration signal of the 

breathing crack. The entropy is capable of quantifying the irregularities of the produced vibration 

signals, while WT is a feature magnification technique. The FRF is a tool that can be used to 
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extract dynamic characteristics of a system even under complex dynamic operating conditions of 

the structure.   

In the next few chapters, these mathematical tools are appropriately used to collectively form 

the proposed breathing crack identification technique. In the next chapter, the applied case study 

is studied under sinusoidal excitation to find out the viability of the proposed crack identification 

method under these excitation conditions.  

 

 

 

 

 

 

 

 

 

 

 



 
 
   

 

Chapter 4 

Breathing Crack Identification under Sinusoidal 

Excitations 

In this chapter, the proposed breathing crack identification methodology is revealed to show both 

how the mathematical tools explained in the previous chapter are combined to form the final 

breathing crack identification methodology, and the crack identification capabilities of the 

proposed methodology under sinusoidal excitations. Both numerical and experimental results 

presented and discussed to showcase the latter mentioned.   

In Section 4.1, the overall crack identification methodology is discussed for the sinusoidally 

excited cantilever beam with a breathing crack. The in-house experimental setup for obtaining 

the experimental values for the analyzed case study is given in Section 4.2. Then the next section, 

Section 4.3, which covers the largest portion of this chapter, presents the results and discussions 

revealing both numerical and experimental results. 
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4.1 The overall process of crack identification using entropy 

with WT as an add-in tool 

Breathing phenomenon of the fatigue cracks introduces the repetitive crack opening/closing and 

the change of the structure stiffness during the vibration leading to weak bi-linearity in the 

dynamic response of the beam. This imposes irregularities/perturbations in the vibration signals, 

which can be quantified by the entropies of these signals. It is actually a measure of crack 

severity since these irregularities are directly related to the depth of the crack. It is noted entropy 

itself is not sufficient enough to correlate the severity of the crack because of the weak signatures 

of the perturbations generated by the breathing cracks. However, once these weak perturbations 

are magnified using WT, those correlations can be easily found using the entropy measures of 

respective wavelet transformed vibration signals. This proposed breathing crack identification 

method is illustrated in Figure 4.1. 

As it is shown in Figure 4.1, the first step of the derivation of the crack identification process 

is, building a mathematical model of the cantilever beam to obtain the vibration response of the 

tip of the beam considering the crack breathing with damping (refer Section 3.2). The accuracy 

of the dynamic response depends on the time step length used in the iterative process of the used 

mathematical model. Wu [10] claims the convergence of dynamic responses as long as the 

iterative time step is smaller 0.001 seconds. Therefore, a time step of 0.0001 seconds is used in 

the current study.  
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Figure 4. 1 - Flow chart of the overall crack identification process. 

Then, by considering the damping effect during the vibration of the cantilever beam, the 

steady state response of the vibration signal is obtained and used for the entropy analysis. It 

should be noted that even though it is called ‘steady state’, it is not a pure steady state, rather a 

‘semi-steady state’. The breathing phenomenon introduces extra axial force when the crack goes 

from open-to-close position during vibrating. In addition to that, the stiffness (equation (3.7)) 

around the crack varies between the open and closed crack stages of the vibrating beam (more 

details about these two stages are described in Section 3.2). Now due to these two reasons, 

perturbations appear in the vibration signal during the open-to-close and close-to-open stage 

transitions of the beam. Therefore it is never possible to have a pure steady state in the presence 

of a breathing crack. For the simplicity, this semi-steady state will be stated as ‘steady state’ 

throughout the paper.  
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The steady state vibration signal is then sent through WT, which magnifies the weak bi-

linearity due to the breathing phenomenon of the crack. The transformed signal, WT coefficient, 

is then used in entropy calculations to quantify the irregularity of the vibration signal. Two 

entropy measures, SampEn and QASE, are used in this process individually for the 

quantification of the crack severity. The convergence of the entropy calculations with the number 

of sampled vibration signal is checked and convergence results can be found in Appendix D.  

The same crack detection process is carried out repeatedly for the crack depths ranging from 

zero (i.e. healthy beam) to half of the thickness of the beam (50% crack depth percentage) in 1% 

of crack depth percentage intervals. The crack depth percentage is calculated as follows; 

                  Crack depth percentage = crack depth
Thickness of the cantilever beam

× 100% (4.1) 

Then, the percentage increment of the entropy values with respect to (w.r.t.) the healthy beam 

are calculated at each crack depth percentage in the following way; 

Percentage increment of 
Entropy w.r.t. Healthy Beam�= Entropy of the Cracked beam−Entropy of the Healthy beam

Entropy of the Healthy beam
× 100%  (4.2) 

These percentage increments of entropies with respect to healthy beam at different crack 

depth percentages of the cantilever beam with a breathing crack are used to discuss the feasibility 

of the proposed breathing crack identification methodology under sinusoidal excitation.  

  Before proceeding to the results and discussion section, the following section provides the 

details about the in-house experimental setup for obtaining the experimental results of the case 

study; which are compared with the numerical results in the results and discussion section at the 

end of this chapter.  
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4.2 Experimental setup of the breathing crack cantilever beam 

under sinusoidal excitation 

To validate the results and conclusions obtained through numerical simulations for the applied 

case study, measurements on relevant aluminum alloy (grade 6061-T6) cantilever beams are 

conducted. The breathing fatigue cracks are constructed by bonding three aluminum alloy beams 

together; the same technique has been used by Prime et al. [63] and Douka et al. [6] to 

demonstrate breathing cracks experimentally. Figure 4.2 illustrates the schematic diagram of the 

arrangement of the bonded beam pieces for constructing the beam with a 50% crack depth 

percentage.  

 

Figure 4. 2 - Schematic diagram of the constructed test beam for 50% crack depth percentage. 

The crack is located 0.01 m from the fixed end of the cantilever beam, and the beam span is 

1.00 m, these geometric parameters are same with the numerical model values which are 

presented in the next section. The healthy beam (0% crack depth percentage) is constructed by 

bonding two equivalent beams. This restricts the differences between healthy and cracked beams 

to the crack region [63]. Beams with 25% and 50% crack depth percentages are selected for the 

experimental validations due to ease of construction of those beams with the available materials. 
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The 25% crack depth percentage beam is constructed by bonding two aluminum alloy pieces of 

0.0015875 m (1/16 inches) thickness on top of a continuous piece with 0.0047625 m (3/16 

inches) thickness. The final thickness of all the constructed beams is 0.00635 m (1/4 inches) with 

0.0254 m (1.00 inch) wide. 

Figure 4.3 illustrates the experimental setup for obtaining the dynamic response from the 50% 

crack depth percentage beam. The beam is tightly clamped using four bolts to a steel clamping 

post which is solidly fixed to the concrete test bench (Figure 4.3.(b)). The free end of the beam is 

sinusoidally excited using a shaker (The Modal Shop – model 2100E11). PCB Piezotronics 

model 352A24 accelerometer weighing 0.8 g (sensitivity is 10.2 mV/(m/s2) with ± 10% 

uncertainty) is located 0.10 m away from the free end of the beam (Figure 4.3.(c)). The 

sinusoidal signal generation and data acquisition are done using LMS SCADAS Mobile (type 

SCM05) data acquisition hardware and a personal computer which are integrated with the LMS 

Test.Lab software platform.    
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(a) 

 

(b) 

Figure 4. 3 - The experimental setup for obtaining dynamic responses of damaged and healthy 
aluminum alloy cantilever beams  (a) the whole setup for testing of the beam with 50% crack 
depth percentage   (b) the clamped end of the beam   (c) the free end of the beam with shaker and 
the accelerometer   (d) the data acquisition system (continued to the next page..). 
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(c) 

 

(d) 

Figure 4. 4 - The experimental setup for obtaining dynamic responses of damaged and healthy 
aluminum alloy cantilever beams  (a) the whole setup for testing of the beam with 50% crack 
depth percentage   (b) the clamped end of the beam   (c) the free end of the beam with shaker and 
the accelerometer   (d) the data acquisition system. 
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The next section is dedicated for presenting the results and discussions related to the breathing 

crack identification under sinusoidal excitation of the applied case study. In this section, first the 

numerical results obtained using the numerical iterative breathing crack model (explained in 

Section 3.2) is presented. Then finally, the experimental results are compared with the numerical 

results.  

4.3 Results and discussions 

This section presents the results and corresponding discussions pertaining to the applied case 

study of the crack identification of the cantilever beam, which is described in Section 3.1. At first, 

the numerical simulation results are presented and discussed.  

In Table 4.1, the dimensions, material properties of the beam and vibration parameters used in 

the numerical model are given. 
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Table 4. 1 - Dimensions and material properties of the cantilever beam. 

Parameter Cantilever Beam Crack 

L (m) 1 - 

b (m) 0.05 - 

h (m) 0.01 - 

Lc (m) - 0.01 

hc (m) - varies from 0.000 to 
0.005 (in 0.0001 steps) 

Young's modulus, E (GPa) 200 - 

Density, ρ (kg/m3) 8000 - 

Equivalent damping ratio for 
the first three modes, ζ 0.01 - 

Magnitude of the sinusoidal 
excitation, f  (N) 10 - 

 

Table 4.2 provides the modal/natural frequencies of the beam at healthy and damaged beam 

stages (corresponding to closed crack and open crack stages) with different crack depth 

percentages obtained using the numerical simulations. 
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Table 4. 2 - Modal frequencies of the cantilever beam at Healthy and Damaged beam stages. 

Vibration 
modes  

Modal frequencies (rad/s) 

[difference from healthy beam stage] 

Healthy 
beam 
stage 

Damaged beam stage, crack depth percentage (%)                        

10 20 30 40 50 

1st Mode 50.7493 50.6449 
[0.104] 

50.3518 
[0.397] 

49.8451 
[0.904] 

49.0285 
[1.721] 

47.7010 
[3.048] 

2nd Mode 318.0405 317.4324 
[0.608] 

315.7480 
[2.292] 

312.9115 
[5.129] 

308.5311 
[9.509] 

301.8843 
[16.156] 

3rd Mode 890.5226 888.9328 
[1.589] 

884.5794 
[5.943] 

877.4149 
[13.108] 

866.7550 
[23.767] 

851.4848 
[39.038] 

 

During the simulation of the forced vibration response, the beam is subjected to sinusoidal 

excitation at the free end of the beam,  𝐹(𝑡) = 𝑓 sin (𝜔𝑡). The excitation frequency, 𝜔, is within 

the first two modal frequencies of the beam (40 ~ 330 rad/s), and only the first three modes of 

vibrations are hence taken into consideration. 
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4.3.1 Dynamic responses of the breathing crack beam model 

In this sub-section, several dynamic responses of the cantilever beam subjected to several 

selected excitation frequencies are presented with and without damping effect to reveal the 

accurate dynamic response re-production abilities of the iterative numerical breathing crack 

model. It is noted that more accurate vibration responses can be obtained with smaller iteration 

step length (∆𝑇 = 𝑡𝑖 −  𝑡𝑖−1) as it is given in Section 4.1; and converged time step length of 

0.0001s is used to generate the accurate vibration signals. 

 

(a) 

Figure 4. 5 - Dynamic responses at the free end of the cantilever beam, without damping  under 
excitation frequencies of (a) 45 rad/s  (b) 200 rad/s  (c) 300 rad/s, and with the damping ratio of 
0.01 under excitation frequencies of (d) 45 rad/s (e) 200 rad/s  (f) 300 rad/s (continued to the 
next page..). 
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(b) 

 

(c) 

Figure 4. 6 - Dynamic responses at the free end of the cantilever beam, without damping  under 
excitation frequencies of (a) 45 rad/s  (b) 200 rad/s  (c) 300 rad/s, and with the damping ratio of 
0.01 under excitation frequencies of (d) 45 rad/s (e) 200 rad/s  (f) 300 rad/s (continued to the 
next page..). 
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(d) 

 

(e) 

Figure 4. 7 - Dynamic responses at the free end of the cantilever beam, without damping  under 
excitation frequencies of (a) 45 rad/s  (b) 200 rad/s  (c) 300 rad/s, and with the damping ratio of 
0.01 under excitation frequencies of (d) 45 rad/s (e) 200 rad/s  (f) 300 rad/s (continued to the 
next page..). 
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(f) 

Figure 4. 8 - Dynamic responses at the free end of the cantilever beam, without damping  under 
excitation frequencies of (a) 45 rad/s  (b) 200 rad/s  (c) 300 rad/s, and with the damping ratio of 
0.01 under excitation frequencies of (d) 45 rad/s (e) 200 rad/s  (f) 300 rad/s. 

Figure 4.4 illustrates the undamped and damped vibration responses of the beam with 20% 

crack severity (20% crack depth percentage). The excitations of 45 rad/s and 300 rad/s are close 

to the first and second modal frequencies of the beam (refer Table 4.2). Beating phenomenon of 

the vibration response is expected and shown in Figure 4.4.(a) and (c). The corresponding 

damped responses under these two excitations given in Figures 4.4.(d) and (f) show the die down 

of the transient responses of the beam with beating and the process reaching the steady state after 

certain time. On the other hand, responses at 200 rad/s excitation frequency show the responses 

of the beam which are basically combined vibration responses of the first and the second modes. 

More discussions on dynamic responses relating to breathing of a cantilever beam and 

comparison of results from iterative method to the ones from finite element analysis (FEA) are 

found in [10].  
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The next sub-section introduces the results of crack identification using entropy as a 

quantification measure for the irregularities in the vibration signals. 

4.3.2 Direct calculation of SampEn from the dynamic responses of the 

beam with a breathing crack 

This section is dedicated to show the problems one has to face when the entropy is used alone for 

the breathing crack identification. Figure 4.5 illustrates the percentage increment of the SampEn 

of the cracked beams with respect to the healthy beam (the percentage SampEn of the healthy 

beam is 0%) and the percentage increment variation with different crack depth percentages.   

 

Figure 4. 9 - Variation of percentage increment of SampEn with different crack depth 
percentages. 

The results depicted in Figure 4.5 are with the excitation of 300 rad/s. This represents the 

general variation of the SampEn values for other excitation frequencies studied. The embedding 

dimension ‘m’ and tolerance value ‘r’ for SampEn (refer equations (3.15) and (3.17) for the 
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respective parameters) are 2 and 0.2 of standard deviation (SD) of data respectively. 20,000 of 

data samples from steady state dynamic response is used for the entropy calculations. It can be 

seen from Figure 4.5, when the entropy calculations are directly employed on the dynamic 

signals, the method is fairly sensitive. It is seen that even at the 50% crack depth, the increment 

in the SampEn percentage is around just 2.5%. It can be concluded that the crack breathing effect 

on the vibration response of the beam structure is small with weak perturbations, which is not 

significant enough for the damage identification with entropy measurements. In practical 

applications, the small SampEn increment can be degraded due to presence of various noise 

components. 

To improve the crack identification sensitivity of the proposed methodology using entropy, 

WT is then introduced to the crack identification process, and the results obtained using the WT 

as an add-in tool with entropy are presented in the next section. The word, ‘sensitivity’, 

represents the smallest identifiable crack depth percentage ratio to the thickness of the beam. 

4.3.3 Entropy calculations with wavelet transformation as a data pre-

processing add-in tool 

In the current analysis, the damped-dynamic response generated by the iterative numerical 

method (introduced in Section 3.2) is first pre-processed by the WT, and then these transformed 

data is used for the entropy calculations (as described in Section 4.1). Then, the crack depth and 

SampEn value correlations are revealed.  
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(c) 

Figure 4. 10 - Variation of percentage increment of Sample Entropy of the Wavelet Transformed 
dynamic responses with different excitation frequencies, (a) 45 rad/s  (b) 200 rad/s  (c) 300 rad/s. 

Figure 4.6 shows the variation of the percentage increment of the SampEn of the cracked 

beam with respect to healthy beam with different crack depth percentages. The parametric values 

of ‘m’ and ‘r’ for SampEn are 2 and 0.2 times SD of data respectively. 20,000 data points of the 

‘steady state’ dynamic response is used and data is first sent through ‘symlet2’, which is the 

wavelet family used in MatLab® WT package. The WT is repeated for 9 times one WT after 

another WT manner, in order to have reasonable amplifications of the breathing effects. This is 

then followed by the SampEn calculations on the wavelet transformed data, and same number of 

data points (20,000 data points) is used in the entropy calculations. The variations of the 

percentage increment of SampEn with different crack depth percentages are found to be sensitive 

to the scaling parameter of WT. From Figure 4.6 it is observed that, low scaling parameters work 

well with vibration signals of higher excitation frequencies and vice-versa.  
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From Figure 4.6, dramatic increments in the sensitivity in crack identification can be seen 

showing much larger entropy value increments due to the crack breathing effect after the 

introduction of WT. In Figure 4.6.(a), for the excitation of 45 rad/s, the crack depth percentage 

varies from 0% (healthy beam) to 50%, and SampEn percentage increment varies from 0% to 

around 1050%. During the analysis of the simulation results, it is assumed that the cracks are 

only identifiable when the percentage increments of entropies due to the crack effect are more 

than 10% compared to the healthy beam. This is to keep some safe margin for the presumed 

degradation of the results of the proposed crack identification method, due to the inevitable 

environmental noises during the practical operation. With this assumption, from Figure 4.6.(a), it 

is noted 22% of crack depth percentage can be detected with 11% SampEn increment compared 

to the healthy structure. Then the increment value increases slightly until the crack depth 

percentage of 26% where it shows 13% of SampEn increment compared to the healthy beam, 

and then the increment value increases almost linearly with the increment of the crack depth. 

From Figures 4.6.(b) and (c), similar trends can be found, but much higher damage identification 

sensitivity can be realized with higher excitation frequencies. In Figure 4.6.(b), With the 200 

rad/s excitation, SampEn percentage increment is about 5000% at 50% crack depth, and Figure 

7(c) shows around 27,000% increment with 300 rad/s excitation frequency at 50% crack depth. 

Both Figures 4.6.(b) and (c) show more than 10% increment in SampEn compared with the 

healthy structure at an initial crack with 3% depth percentage. Again, the 300 rad/s shows much 

higher SampEn increment (211%) than 200 rad/s case (12%) at 3% of crack depth percentage. 

The reasons for the change in SampEn increment with different crack depth percentages and the 

effect of the excitation frequencies on the damage identification sensitivity are explained in the 

following paragraphs.  
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According to equations (3.6) and (3.7), larger crack depths in the beam lead to more 

significant stiffness reductions and larger slope differences at the two sides of the crack when the 

crack opens. Therefore, larger cracks result in more significant changes in the structure response 

during the vibration with the crack breathing. This is evident in Table 4.2, where it is noticeable 

that the difference in the modal frequencies of the healthy beam and the damaged beam stages 

increases as the crack depth increases; for example in the first mode of vibration, this particular 

difference increases from 0.104 rad/s to 3.048 rad/s when the crack depth percentage increases 

from 10% to 50%. The structural change during the vibration induces more significant 

perturbations in the vibration signal and hence leads to larger entropy values. As it is seen in the 

previous section (Section 4.3.2), the perturbations are not substantial enough to make significant 

changes in the SampEn values compared to the healthy beam. However, after these perturbations 

are amplified by WT, it is evident from Figure 4.6 that entropy calculations are much more 

sensitive to the changes of the crack depths yielding much more significant SampEn increment. 

The amplification of perturbations by WT makes the proposed methodology to have superior 

sensitivities in crack identification in certain frequencies around 200~330 rad/s than the 

frequencies around 40~200 rad/s. The reasons for better sensitivities in crack identification at 

higher frequencies of excitations compared to lower excitations are explained in the following 

paragraph. 

Higher excitation frequencies lead the vibration of the beam to be dominated by higher 

vibration modes of the beam. Since the crack is closer to the fixed end of the beam, which is the 

most practical location for occurrence of fatigue cracks; the higher normalized vibration mode 

shapes provide higher curvatures distribution at the crack position compared with the normalized 

lower mode shapes which are dominant in lower excitation frequencies. These larger curvatures 
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at the crack position give rise to more significant stiffness reduction at the crack, which result in 

more significant changes in the structure and its response during the vibration with the crack 

breathing, even at the initial stages of the crack. This is again evident in Table 4.2, higher modal 

frequency difference between healthy and the damaged stages is found for higher natural modes 

of the structure with any given crack severity level; if 10% of crack depth is considered this 

difference increases as 0.104, 0.608 and 1.589 rad/s for the first, second and the third vibration 

modes, respectively. Therefore, with constant excitation amplitude, as the excitation frequency 

increases, the vibration responses with higher vibration modes lead to more significant 

perturbations in the vibration signal. In addition, in a similar cantilever beam study with a 

breathing crack, Wu [10] has observed dramatic non-linear increment in the equivalent breathing 

frequencies with the increment of the excitation frequency closer to the second natural frequency 

of the beam. Higher breathing frequencies impose more perturbations in the vibration signal 

within a certain period leading to higher entropy increments. Therefore, higher entropy 

percentage increments, which ultimately result in better crack identification sensitivities, are 

induced by higher excitation frequencies.  

Even though the SampEn shows higher sensitivities (once combined with WT) to the crack 

induced perturbations, one thing noticed in the analysis is their long computational times. This 

would be a problem during implementation of the proposed work for a real application. 

Therefore, as the next step, QASE is used to improve the computational efficiencies of the crack 

identification process, and this is covered in the next sub-section. 
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4.3.4 Speed-up of crack identification process with QASE 

QASE is an entropy measure, which is developed by keeping in mind of higher computational 

efficiencies. So, it is intended to use QASE together with SampEn to speed-up the crack 

identification process. Figure 4.7 compares the computational times for SampEn and QASE, and 

reveals the huge computational time gains of QASE over SampEn.  

 

Figure 4. 11 - Variation of computational times of SampEn and QASE with different number of 
data samples. 

The computations are done using an Intel® Core i5 3.30 GHz personal computer with 8 GB of 

random-access memory (RAM) without running any other substantial program in background. In 

Figure 4.7, X-axis shows the number of data samples used for the entropy calculations. At 

20,000 data samples, which is the number of data samples used throughout the analysis; QASE 

takes 0.04 seconds for the calculations and SampEn needs 14 seconds. QASE is about 325 times 

faster than SampEn at 20,000 data samples. This computational gain can be used to improve the 

computational speed of the crack identification process as it is explained in the following 

paragraphs. 
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Figure 4. 12 - Variation of percentage increment of SampEn and QASE with different crack 
depth percentages with excitation frequency of 300 rad/s. 

Figure 4.8 shows the variation of both percentage increments of SampEn and QASE with 

different crack depth percentages changing from 0% to 50%. The Excitation frequency is 300 

rad/s and the same WT is used prior to the entropy calculations (SampEn variation is same as the 

illustration in Figure 4.6.(c)).  The parametric values of ‘m’ and ‘r’ for both SampEn and QASE 

are 2 and 0.2 times SD of data, respectively. Figure 4.8 shows around 1900% QASE increment at 

just 5% crack depth compared with the healthy beam, although the QASE variation with 

different crack depths is not as smooth as SampEn. . The non-smooth behavior of QASE is due 

to the approximation technique called ‘relative coarse quantization of data’, which is used by the 

QASE to approximate SampEn.  

The non-smooth variation of the QASE disqualifies it as the major entropy measure to 

accurately quantify the crack depth, but its computational efficiency improvement can still 

benefit the proposed work for the high sensitivity damage detection. It is decided to use QASE as 

the initial crack detector, due to its better computational efficiencies and ability to display 
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considerable percentage entropy increments compared with the healthy structure especially at 

initial crack depths. Then once a crack is detected by QASE values, SampEn is employed to 

further evaluate the crack. This approach leads to faster crack detection with QASE, and accurate 

damage predictions with SampEn.  

Up to this section of the thesis, everything has been analyzed in a sense of pure computational 

environment, without considering any outside noises, which are inevitable in practical testing. 

Therefore as the next step, the effect of noisy-vibration signals on the current methodology is 

studied.  

4.3.5 Impact of observational noise on breathing crack identification 

The impact on the proposed method by the presence of noise in the vibration signal is studied by 

adding Gaussian white noise to the dynamic response of the beam, which has been illustrated in 

Section 4.3.1. This noisy data represents real vibration data collected from a practical vibration 

testing using a data acquisition system.  
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Figure 4. 13 - Variation of percentage increment of SampEn and QASE with different crack 
depth percentages for noisy data with 40dB SNR of noise level (the excitation frequency is 45 
rad/s). 

Figure 4.9 shows the averaged variation of percentage increments of SampEn and QASE with 

different crack depth percentages for noisy data for ten runs; the excitation frequency is 45 rad/s 

and the noise level is 40dB of signal-to-noise ratio (SNR). SNR is measured using the 

logarithmic decibel scale of the ratio between the root sum square (RSS) of signal to RSS of 

noise. The averaging of the values from the ten runs is obtained by taking the linear average of 

percentage entropy increments compared to the healthy beam value. Each run imposes randomly 

created noise on the dynamic signal; therefore slightly different results are obtained in each run 

for the percentage entropy increments. The averaging is more realistic with real world 

application of the proposed method. The excitation frequency of 45 rad/s is chosen for the study, 

because in Section 4.3.3, it can be seen that the crack identification results for lower excitation 

frequencies are not as good as for higher excitation frequencies, therefore study of the worst 

scenario in depth is given more importance.  
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From Figure 4.9, it can be seen that the range of the percentage increment of SampEn 

compared with the healthy beam is from 0% to around 560%, when crack depth increases from 0% 

to 50%; for QASE this range of the percentage increment is from 0% to about 517% (the word 

‘range’ stands for the amount of variation in the entropy increment compared with the healthy 

structure, when the crack depth percentage varies from 0% to 50% of the beam thickness). It is 

noted that, for the noiseless scenario given in Figure 4.6.(a), the particular range of the 

percentage increment is from 0% to around 1050% for SampEn. During the analysis it is noted 

that for QASE, the entropy increment range is from 0% to around 1080% as the crack depth 

percentage varies from 0% to 50%. The sensitivity of crack detection for noiseless scenario is 22% 

crack depth of total beam thickness (with 11% increment of SampEn), and for the 40dB SNR 

scenario the sensitivity has dropped down to 30% (with 132% increment of SampEn). The 

reason behind the reduction of the sensitivity due to the presence of noise in the vibration signal 

is explained in the next paragraph.  

For the excitation of 45 rad/s, for the noiseless dynamic responses, it is observed that both 

SampEn and QASE are not significantly sensitive to the crack depth percentages until around 26% 

compared to their dramatic increments for the rest of the crack depth percentages from 26% to 

50%. Therefore, once the noise is present in the dynamic signal, the noise is more dominant than 

the crack breathing effect for the crack depth percentages of 0% to 26%. This leads to more 

fluctuations in the percentage entropy increments in both SampEn and QASE in that crack 

percentage region causing a reduction in the sensitivity of crack detection.   
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The results obtained in this section for noisy dynamic signals can be compared with real 

experimental results obtained for a similar beam setup. The next section is dedicated for this 

purpose.  

4.3.6 Experimental results and comparison with the numerical values 

In this section, the numerically simulated results obtained for noisy dynamic signals (40 SNR) 

for a lower excitation (45 rad/s) in the previous sub-section are compared with the experimental 

results. The experimental results are obtained using the experimental setup described in Section 

4.2.  

The three experimental aluminum alloy cantilever beams, i.e. healthy beam, 25% crack depth 

percentage beam and 50% crack depth percentage beam, are excited with a frequency of 5.92 Hz 

which is close to the first modal frequencies of the three beams. Measurements include raw 

acceleration-time data for the three beams. Figure 4.10 shows a snapshot of the time series data 

for 50% crack depth percentage beam.  
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Figure 4. 14 - Graphical user interface of the data acquisition system for the experimental setup 
(time series is shown for the beam with 50% crack depth percentage). 

From the acceleration-time data collected for the three beams, 20,000 data is selected for 

further analysis. These data sets are then transformed using WT (same WT parameter values are 

used as the numerical simulation; i.e. scale is 240 and WT is done for nine consecutive times). 

The transformed data is then analyzed using SampEn and QASE while keeping the entropy 

parameter values same as the numerical analysis (m = 2 and k = 0.2). This procedure is repeated 

for ten times for all three beams using ten different data sets collected in different experimental 

run initiations. Table 4.3 compares the experimental and numerical results of linearly averaged 

(using ten runs) SampEn and QASE percentage increments for 25% and 50% crack depth 
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percentage beams compared to the healthy beam. Numerical results for 25% and 50% crack 

depth percentage beams are obtained from the previous section. 

Table 4. 3 - Averaged percentage increment of SampEn and QASE for the beams of 25% and 50% 
crack depth percentages. 

  
  
  
  

25% crack depth percentage 
beam 

50 % crack depth percentage 
beam 

Averaged 
percentage 
increment of 
entropy 
compared to the 
healthy beam 
(%) 

Standard 
deviation 

Averaged 
percentage 
increment of 
entropy 
compared to the 
healthy beam 
(%) 

Standard 
deviation 

SampEn 

Numerical 
method 97.5 52.4 560.4 14.3 

Experimental 
method 94.9 66.3 753.5 11.5 

Percentage 
difference of 
two methods 
(%) 

2.7  25.6  

QASE 

Numerical 
method 83.1 63.5 517.5 21.2 

Experimental 
method 87.4 62.6 633.8 15.3 

Percentage 
difference of 
two methods 
(%) 

4.9  18.3  

 

From Table 4.3 it can be seen that numerical and experimental results have a good match with 

each other for both crack depth percentages. For the 25% crack depth percentage beam, SampEn 

increment difference between numerical and experimental methods is as small as 2.7% while 

QASE shows a difference of 4.9%. On the other hand, for 50% crack depth percentage beam, 
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numerical and experimental values of SampEn shows a difference of 25.6% and QASE shows 

18.3% for the respective difference.  

In addition, from Table 4.3, it is also noted that the standard deviation values are 

comparatively larger for 25% crack depth percentage beam over the 50% crack depth percentage 

beam for both numerical and experimental results. This result further strengthen the point that, 

for the crack depth percentage region from 0% to around 26%, both SampEn and QASE are not 

very sensitive to the crack breathing for lower excitation frequencies due to the dominance of the 

noise.  

4.4 Summary 

In this chapter, the proposed breathing crack identification technique is employed to study the 

breathing crack cantilever beam (the case study) under sinusoidal excitation. At the beginning of 

the chapter, the overall crack identification methodology is elaborated followed by the in-house 

experimental setup. Then a detailed results and discussions section is given for both numerical 

simulations and experimental studies under several sub-sections. The sub-sections consecutively 

covered the followings: the dynamic response generation using the iterative numerical model; 

this is to illustrate the accuracy of the crack modeling technique which is essential in developing 

any damage identification methodology. Then the next sub-section revealed the problem related 

to standalone usage of entropy in crack identification, which is followed by the introduction of 

WT in to the crack identification process. This sub-section revealed high sensitivity crack 

identification for small and initial cracks with only 3% of the beam thickness with more than 200% 

increment in SampEn compared with the healthy beam, and it is also shown comparatively lower 
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crack identification sensitivities for lower excitations which are around the first modal frequency 

of the cantilever beam. Then QASE is introduced to show the possible computational gains in the 

crack identification process, which showed large computational gains over SampEn. As a final 

step in numerical simulations, the effect of observational noise is studied which is inevitable in 

real breathing crack identifications. Then, the results and discussion section is ended with a 

comparative study using numerical simulation results for noisy vibration data, and experimental 

results, in which a good agreement between two methods were observed.  

The final crack identification sensitivities rely on the parametric values of both entropy and 

WT calculations. As it is mentioned in this chapter, SampEn uses two parametric values; they are 

the embedding dimension ‘m’ and the positive constant of ‘k’ (this value varies the tolerance 

value ‘r’). On the other hand, WT also uses two parameters in its calculations; those are the ‘WT 

scale’ and the ‘WT repetitions’. In the next chapter, these four parameters are optimized to 

achieve better crack identification sensitivity for lower excitation frequencies, the frequency 

level which showed comparatively lower performances as it is observed in this chapter.



 
 
   

Chapter 5 

Parametric Optimization of Sample Entropy and 

Wavelet Transformation 

In the previous chapter, it was noted that the entropy calculation and WT results depend on four 

parameters: m, k, WT scale and WT repetitions, which will affect the damage identification 

accuracy and sensitivity. This chapter focuses on the improvement of the damage identification 

sensitivity by optimizing theses parametric values of SampEn and WT. In the previous chapter it 

was noted that (in Section 4.3.3) crack identification sensitivity for lower excitation frequencies 

(excitation frequencies close to the first modal frequency of the structure) was less compared to 

the higher excitation frequencies of the structure. In other words, the crack identification 

sensitivity for 45 rad/s excitation was lower compared to the higher excitations of 200 rad/s and 

300 rad/s. Therefore, a parametric study is carried out to improve the crack identification 

sensitivity for the 45 rad/s excitation frequency by optimizing the four parameters in SampEn 

and WT.  

In Section 5.1 the experimental setup is given and Section 5.2 covers the detailed parametric 

optimization process with the corresponding numerical results at each optimization stage. At the 
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end of that section, the numerical and experimental results are compared and discussed to verify 

the parametric optimization.  

5.1 Experimental setup 

It should be noted that, in this experimental analysis, the same experimental setup is used which 

is described in Section 4.2 in the previous chapter. But, for this analysis, only the healthy beam 

and the 25% crack depth beams are analyzed. Figure 5.1 illustrates the schematic arrangement of the 

bonded beam pieces for constructing the beam with a 25% crack depth percentage.  

 

Figure 5. 1 - Schematic diagram of the constructed test beam for 25% crack depth percentage. 

Figure 5.2 shows the experimental setup for obtaining the dynamic response from the 25% 

crack depth percentage beam. Both healthy and 25% crack beams are sinusoidally excited.  
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(a) 

 

(b) 

Figure 5. 2 - The experimental setup for obtaining dynamic responses of damaged and healthy 
aluminum alloy cantilever beams  (a) the whole setup for testing of the beam with 25% crack 
depth percentage   (b) the clamped end of the beam. 
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5.2 Results and discussions 

In this section, first, the numerical simulation results (for this, the iterative mathematical model 

is used to generate the vibration signals and it should be noted that no noise is added to the 

signals) are improved by the parametric optimization of SampEn and WT, and the corresponding 

crack identification sensitivities are found. Then once the optimum parametric values are found 

for SampEn and WT, these values are used to calculate the experimental results for the 

considered excitation. In the final sub-section these numerical and experimental results are 

compared so as to validate the parametric optimization. This parametric optimization is done in 

two individual steps; first the parameters of SampEn are optimized and WT parametric 

optimization is followed after that in the second step.   

5.2.1 Parametric optimization of SampEn 

In the previous chapter, the parametric values used for SampEn to analyze 45 rad/s excitation are; 

m is 2 and k is 0.2. And the parametric values for WT are; scale is 240 and WT repetitions are 9. 

In this study, to improve the crack identification sensitivity at 45 rad/s, as the first step, the 

parametric values of SampEn are optimized while keeping the WT parameters in their non-

optimized values (i.e. scale at 240 and WT repetitions at 9). This is done using a traverse 

optimization algorithm; the flowchart of the algorithm is given in Figure 5.3. The algorithm is 

implemented using MatLab® software package and the algorithm is explained in the following 

paragraphs. 
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Figure 5. 3 - Flowchart of the Traverse Optimization Algorithm for optimizing SampEn 
parametric values. 
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First, the ranges for the parametric values of m and k are pre-defined. For m, the range is 

selected from 2 to 10 with increments of 1. Therefore in Figure 5.3, m_start (starting value of m) 

is 2 and m_end (ending/ limiting value of m) is 10. m_end is chosen such that, higher the value 

of m, higher the computational time will be. For example, for a value of 2 for m, SampEn takes 

around 14 seconds to compute the calculation for 20,000 data samples (refer Section 4.3.4). Then, 

for a value of 4 for m, this time will be doubled approximately. Therefore, a value of 10 as the 

limiting value for m is considered more appropriate over a higher value than 10. For k, k_start is 

0.1 and k_end is 1 with an increment is 0.05. Once these ranges are set for the parametric values 

of SampEn, the algorithm requires a starting value for the crack depth percentage, hp_start. 

During the analysis, this hp_start is set as 3%, because that’s the best crack identification 

sensitivity achieved for higher excitation frequencies in the previous chapter.  

Then, the algorithm calculates the percentage increment of SampEn at hp_start crack depth 

percentage, initially using m_start and k_start values as the parametric values. If the percentage 

increment of SampEn is less than 10% at hp_start crack depth percentage, the m and k values are 

incremented accordingly until this condition is satisfied. If this condition is satisfied for a certain 

value of m and k, at hp_start crack depth percentage, then the same condition (i.e. whether 

percentage increment of SampEn is higher than 10%) is checked for the next 20 consecutive 

crack depth percentages, in-order to achieve a smooth and more practical SampEn percentage 

increment for the next consecutive crack depths. If this is satisfied, then the corresponding m and 

k values are displayed and the variation of percentage increment of SampEn with 0% to 50% of 

crack depth percentages is plotted (a plot similar to Figure 4.6). If the percentage increment of 

SampEn values are less than 10% for the whole range of m and k value for the crack depth 

percentage of hp_start, then the crack depth percentage (hp) is incremented by one 
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(hp=hp_start+1). Then the same checks are done for the updated crack depth percentage as it is 

described earlier in this paragraph. The algorithm goes from one crack depth percentage to the 

next crack depth percentage while looping through the parametric values of m and k, looking for 

a better plot with better crack identification sensitivity. Due to this traversing optimization nature 

of the algorithm, the name ‘traverse optimization algorithm’ is coined by the authors. Figure 5.4 

shows the resultant graph from the algorithm.   

 

Figure 5. 4 - Variation of percentage increment of sample entropy of the wavelet transformed 
dynamic response for the excitation frequency of 45 rad/s with optimized parametric values of 
SampEn. 

The algorithm produced final optimized parametric values for m and k are 6 and 0.1 

respectively. It can be seen from Figure 5.4, for the new optimized parametric values of m and k, 

the crack identification sensitivity has been improved to 16% crack depth percentage with a 12% 

percentage increment of SampEn with respect to the healthy beam. Before this parametric 

optimization for SampEn, this crack identification sensitivity was 22% with 11% in the 

percentage increment of SampEn. In addition, from Figures 4.6.(a) and 5.4, it should be noted 
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that the percentage increment of SampEn values at 50% crack depth percentage has been 

improved from around 1000% to around 5000% with the parametric optimization.  

After this parametric optimization of SampEn, parametric optimization of WT is considered. 

This study and results are given in the next sub-section. 

5.2.2 Parametric optimization of WT 

WT has two parameters; viz. WT scale and WT repetitions. During the analysis it is found that, 

these parameters have a huge impact on the final crack identification sensitivity. The parametric 

optimization of WT is done as the following paragraphs explain.  

First, the percentage increment of SampEn variation with respect to WT scale and WT 

repetitions are observed using a three dimensional plot (3D plot). The 3D plot is graphed for the 

crack depth percentage which is the crack identification sensitivity achieved with parametric 

optimization of SampEn in the previous sub-section (i.e. 16% crack depth percentage). This 3D 

plot is shown in Figure 5.5.  
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Figure 5. 5 - Variation of percentage increment of sample entropy of the wavelet transformed 
dynamic response for the excitation frequency of 45 rad/s at 16% crack depth percentage. 

It can be seen form Figure 5.5 that percentage increment of SampEn (at 16% crack depth 

percentage) has some hills and valleys with the variation of WT scale and repetitions. Then, for 

the parametric optimization process, the WT scale and repetition ranges corresponding with the 

hills of the 3D plot are selected. As the next step, these ranges are given to another traverse 

optimization algorithm, which is similar in optimization procedure to the algorithm explained in 

previous sub-section. In order to refrain from repeating similar explanations, this algorithm is not 

explained in details in this thesis. This algorithm optimizes the WT scale and repetition values 

such that the crack identification sensitivity is further improved. After the analysis, the algorithm 

produced final optimized parametric values for WT scale and WT repetitions as 240 and 40 

respectively. The graph with improved crack identification sensitivity with optimized WT 

parametric values is shown in Figure 5.6 
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Figure 5. 6 - Variation of percentage increment of sample entropy of the wavelet transformed 
dynamic response for the excitation frequency of 45 rad/s with optimized parametric values of 
SampEn and WT. 

Figure 5.6 shows that the new crack identification sensitivity is 8% crack depth percentage 

with an 11% percentage increment of SampEn with respect to the healthy beam. The crack 

identification sensitivity has been improved from 22% (for the non-optimized parametric values 

of both SampEn and WT, which is the original value shown in Figure 4.6.(a)) to 8% of crack 

depth percentage as a result of the final parametric optimization of both SampEn and WT.   

Then, as the last step in this chapter, the numerical results for percentage increment of 

SampEn values at 25% crack depth percentage values obtained from Figure 4.6.(a) (i.e. result 

from non-optimized parametric values) and Figure 5.6 (the final result from optimized 

parametric values) are compared with the experimental results for the 25% crack beam. These 

comparisons are given in the next section. 
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5.2.3 Experimental verification of parametric optimization 

In this section, the numerical results for percentage increment of SampEn using optimized and 

non-optimized parametric values for both SampEn and WT are compared with experimental 

results to verify the desired outcomes from the parametric optimization. The experimental results 

are obtained using the experimental setup described in Section 5.1.  

The two experimental aluminum alloy cantilever beams, i.e. healthy beam and 25% crack 

depth percentage beam are excited with a frequency of 5.92 Hz which is close to the first modal 

frequencies of the two beams. Measurements include raw acceleration-time data for the two 

beams. From the acceleration-time data collected for the two beams, 20,000 data is selected for 

further analysis. Then these data are analyzed for the percentage increment of SampEn with the 

two different settings of the parametric values. The first setting is the non-optimized parametric 

values: m = 2, k = 0.2, WT scale = 240 and WT repetitions = 9. And the second setting is the 

optimized parametric values: m = 6, k = 0.1, WT scale = 240 and WT repetitions = 40. Then 

these results are compared and shown in Table 5.1. 
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Table 5. 1 - Comparison of numerical and experimental results for percentage increment of 
SampEn on the beam of 25% crack depth percentage with optimized and non-optimized 
parametric values. 

Method Percentage increment of SampEn at 25% crack depth percentage 
compared with the healthy beam (%)  

Using non-optimized parametric 
values of SampEn and WT  

(m=2, k=0.2, WT scale=240, WT 
repetition=9) 

Using optimized parametric 
values of SampEn and WT  

(m=6, k=0.1, WT scale=240, WT 
repetition=40) 

 

Numerical 
Method 12 1175 

Experimental 
Method 9 59 

 

Table 5.1 reveals that both numerical and experimental results (12% and 9%) are in good 

agreement with each other for the percentage increment of SampEn at 25% crack depth 

percentage with non-optimized parametric values of SampEn and WT. On the other hand, with 

the optimized parameters, significant improvement of the detection sensitivity is noticed for the 

25% crack from both simulation and experimental studies. The SampEn increments of the 

vibration response due to the crack are enhanced to 1175% and 59% in the simulation and 

experiment results, respectively. It is noted that the experimental result is lower than the 

numerical result by a considerable value. This is due to the inevitable presence of environmental 

noise in the dynamic signal in the experimental testing. The important thing to note here is, even 

though there is a considerable difference in numerical and experimental results for the optimized 

parametric values, there is a notable rise in the percentage increment of SampEn values with 
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optimized parametric values for the experimental results. This increment will definitely lead to 

higher crack identification sensitivity and be useful in crack identification process when the 

proposed method is employed in real world crack detection scenarios. 

5.3 Summary 

In this chapter, the crack identification sensitivity of the proposed breathing crack identification 

methodology for lower sinusoidal excitation frequencies are improved by parametric 

optimization of SampEn and WT. The numerical crack identification sensitivity for 45 rad/s 

excitation is improved by optimizing the parametric values of SampEn and WT in separate 

optimization loops. The parametric Optimization of SampEn improved the respective sensitivity 

from 22% to 16%, and WT optimization further pushed it to 8%. Then the numerical percentage 

increment value of SampEn at 25% crack depth is compared with the experimental values for the 

25% crack beam. The experimental results showed an improvement due to parametric 

optimization which validates the parametric optimization process. 

Both this and previous chapters covered the crack identification of the breathing crack 

cantilever beam under sinusoidal excitations. Moving forward in the dynamic complexity in the 

study presented in this thesis, the next chapter covers one important dynamic behavior 

experienced by almost all the structures: random vibration; and specifically breathing crack 

identification under random excitations using FRF as an add-in tool.  

 

 



 
 
   

 

Chapter 6 

Breathing Crack Identification under Random 

Excitations 

Random excitation, perhaps the most common excitation type experienced by engineering 

structures, is studied in this chapter to evaluate the breathing crack identification using the 

proposed technique. In order to tackle the added complexity due to the dynamic nature of 

random signals itself, FRFs are now coupled with the entropy based crack identification 

technique. In this chapter, the results are obtained only using the experimental setup which is the 

arrangement for the applied case study, the breathing crack cantilever beam  (illustrated in 

Section 3.1), which is now undergone random excitations during testing.  

Section 6.1 explains the random excitation adapted crack identification technique, using FRF 

as an add-in tool with the existing method. The section covers a description of the overall 

technique, and the experimental setup used to obtain the results. Section 6.2 gives the 

experimental results of the breathing crack identification of the randomly excited case study 

beam, and the corresponding discussions.  
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6.1 The overall process of crack identification using entropy 

with WT and FRF as add-in tools 

The proposed crack identification methodology using entropy with WT is straight forward in the 

case of a sinusoidal excitation of a cantilever beam with a breathing crack. But when it comes to 

random excitation, the crack identification methodology proposed for the sinusoidal excitations 

(in Section 4.1) is adapted to the situation with the help of FRF to tackle the complexity occurred 

due to the random vibration. This adapted methodology is illustrated in Figure 6.1. 

 

Figure 6. 1 - Flow chart of overall crack identification process of the random excitation adapted 
breathing crack identification technique. 
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As it is shown in Figure 6.1, the first step of the crack identification process is obtaining the 

time domain signals of the excitation and the response of the healthy and the damaged cantilever 

beam having a breathing crack. This is done by obtaining the force and the acceleration temporal 

signals from the experimental setup (refer Section 6.2) for the corresponding beams. Then, these 

signals are processed further and accelerance FRFs are calculated.  

During this analysis, accelerance FRF is chosen over other FRF measures available, because 

the accelerations can be easily measured by readily available accelerometers. These 

experimentally measured FRFs have two components: magnitude and phase. These magnitude 

and phase values are used to re-generate a time domain signal, ( )tw , following a method similar 

to inverse Fourier transformation. This is done using the following equation; 

                                               ( ) ( )∑
=

−+=
fN

i
iii tfaatw

1
0   2sin φπ   (6.1) 

where, t  is any time instance in the time domain, 0a  is the magnitude of the FRF signal at the 

zero frequency value (0 Hz) in the frequency-magnitude plot (refer Figure 6.4), fN is the number 

of frequency increments in the frequency-magnitude plot, a  and φ  are FRF magnitudes, FRF 

phase values respectively at corresponding frequency values ( f ) of the corresponding 

frequency-magnitude and frequency-phase plots. Once this time domain signal is produced, it is 

now possible to follow the same crack identification procedure proposed in Section 4.1 using 

WT and entropy. The SampEn is calculated using 20,000 data samples in the generated time 

domain signal to achieve the converged results. Finally, the SampEn values at different crack 
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levels and healthy beam are calculated to find the percentage increment of SampEn at respective 

crack levels.  

In the next section, the experimental setup is illustrated which is used to obtain the 

experimental results.  

6.2 Experimental setup of the breathing crack cantilever beam 

under random excitation 

The same cantilever beam experimental setup given in Section 4.2 is used with some minor 

changes to obtain both force and acceleration signals. Beams with both 25% and 50% crack 

depth percentages are selected for the experimental testing. The constructions of the beams are 

given in Section 4.2. 

Figure 6.2 illustrates the experimental setup for obtaining the dynamic response from the 50% 

crack depth percentage beam. The beam is tightly clamped using four bolts to a steel clamping 

post which is solidly fixed to the concrete test bench. The free end of the beam is randomly 

excited using the shaker (The Modal Shop – model 2100E11). PCB Piezotronics model 352A24 

accelerometer weighing 0.8 g (sensitivity is 10.2 mV/(m/s2) with ± 10% uncertainty) is located 

0.20 m away from the free end of the beam. The force signal is measured using an integrated 

circuit piezoelectric (ICP) type force sensor from Piezotronics (model 208C01). The sensitivity 

of the force sensor is 112,410 mV/kN (± 15%) . The random signal generation and data 

acquisition are done using the same LMS SCADAS Mobile (type SCM05) data acquisition 

hardware which is integrated with the LMS Test.Lab software platform. 
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(a) 

 

(b) 

Figure 6. 2 - The experimental setup for obtaining excitation and responses of damaged and 
healthy aluminum alloy cantilever beams  (a) the whole setup for testing of the beam with 50% 
crack depth percentage  (b) the free end of the beam. 
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6.3 Results and discussions 

This section presents the results and corresponding discussions pertaining to the experimental 

study of the crack identification of the cantilever beams; the experimental setup is described in 

the previous section and the crack identification method is elaborated in Section 6.1. 

The three experimental aluminum alloy cantilever beams, i.e. healthy beam, 25% crack depth 

percentage beam and 50% crack depth percentage beam, are excited at the free end of those 

beams with a random excitation. This random excitation is a pure white noise ranging from 0 ~ 

100 Hz is used for the random excitation. This excitation range covers the first and the second 

modal frequencies of the tested beams. Measurements include raw acceleration-time (response) 

and force-time (reference) data for the three beams. Figure 6.3 shows a snapshot (taken from the 

graphical user interface of the LMS Test.Lab software platform) of one of the reference (force-

time measurements) data samples from the 50% crack depth percentage beam.   
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Figure 6. 3 - Graphical user interface snapshot of the force-time reference signal for the 50% 
crack depth percentage beam. 

The time series data of force (reference) and acceleration (response) data are used by the LMS 

Test.Lab data analysis software platform to compute the accelerance FRFs. The Hanning 

window is applied to both reference and response data before calculating the FRFs to reduce the 

effect of spectral leakage. Corresponding FRFs are calculated for 10 consecutive runs, and 

linearly averaged to reduce the noise. In this experimental study, the FRF estimator 𝐻𝑣 is used to 

compute the accelerance FRFs. Figure 6.4 illustrates one such FRFs generated for the 50% crack 

beam. The figure shows both amplitude (plot on the top) and phase (plot on the bottom) changes 

of the FRF with the frequency.  
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Figure 6. 4 - Graphical user interface snapshot of the accelerance FRF for the 50% crack depth 
percentage beam. 

For each beam (i.e. healthy, 25% crack and 50% crack), the experiment is repeated for 10 runs. 

This is done to obtain an average value for the final SampEn values for each beam. The obtained 

FRF amplitudes and phase values are substituted in equation (6.1) and the corresponding 

temporal signals are generated for two seconds. It should be noted that the FRF amplitudes and 

phase values are selected from 0 Hz to 400 Hz of the frequency range. This is done to avoid the 

noisy FRF values obtained for the higher frequency ranges (< 400 Hz) possibly due to noise 

present in the output vibration signal, when the input dynamic force is accurately generated and 

measured with 0 - 100 Hz frequency. Then, 20,000 discrete data points are selected from these 
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generated temporal signals, and first these temporal signals are transformed to wavelet 

coefficient using WT. The same WT family of ‘symlet2’ is used in the calculations, which is 

readily available in the MatLab® WT package. The scale of the WT used is 240 and the WT is 

done for 9 consecutive times one WT after another WT manner. This is then followed by the 

SampEn calculations on the wavelet transformed data, and same number of data points of the 

wavelet coefficient (20,000 data points) is used in the entropy calculations. The parametric 

values of ‘m’ and ‘r’ for SampEn are 2 and 0.2 times SD of data respectively. Finally, the 

percentage increment of SampEn values for both 25% and 50% crack beams are calculated for 

all 10 runs each. These results are tabulated in Table 6.1.  

Table 6. 1 - Percentage increment of SampEn for 25% and 50% crack beams for ten 
experimental runs. 

Run 
No. 

Sample Entropy values 
Percentage increment of SampEn 

compared to the healthy beam 
(%) 

Healthy 
beam 

25% Crack 
beam 

50% Crack 
beam 

25% Crack 
beam 

50% Crack 
beam 

1 0.00109 0.00680 0.01252 365.1 756.3 
2 0.00186 0.00914 0.01260 524.8 761.8 
3 0.00143 0.00262 0.01162 79.0 694.5 
4 0.00164 0.00932 0.01602 537.0 995.2 
5 0.00142 0.00537 0.01411 266.8 864.9 
6 0.00159 0.00821 0.01262 461.2 763.2 
7 0.00151 0.00747 0.01530 410.9 946.0 
8 0.00121 0.00803 0.01811 448.7 1138.2 
9 0.00155 0.00910 0.01250 522.2 754.7 
10 0.00132 0.00213 0.01530 45.7 946.2 

AVG  = 0.00146 
  

AVG = 366.1 AVG = 832.1 

    
    SD = 170.8    SD = 133.7 
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In Table 6.1, AVG is the average and SD is the standard deviation of the 10 runs. The second, 

third and the fourth columns give the SampEn of healthy, 25% crack and 50% crack beams 

respectively for each run. The average SampEn value of healthy beam is calculated as 0.00146 

for the healthy beam.  This value is used to calculate the percentage increment of SampEn values 

of cracked beams (which are with respect to the healthy beam) shown in the fifth and the sixth 

columns. The averaged percentage increment of SampEn for the 25% crack beam is 366.1%, on 

the other hand for 50% crack beam it is 832.1%. These averaged values show a clear increase in 

the percentage increment of SampEn values from 25% crack beam to the 50% crack beam. The 

SD values give confidence over the percentage increment of SampEn for both cracked beams. 

Smaller the SD values are, higher the confidence will be. From Table 6.1, these SD values are 

170.8% and 133.7% for 25% crack beam and 50% crack beam respectively. If percentage 

fractions of the SD values are considered with respect to the corresponding AVG values, it is 

46.7% for the 25% crack beam and 16.1% for the 50% crack beam. This is due to the fact that, 

larger crack depths produce significantly larger breathing effects compared to comparatively 

smaller crack depths. This leads to more consistent SampEn values for larger crack depths, and 

also for percentage increment of SampEn values. This leads to lower SD values for the larger 

crack depths, giving more confidence over identification of larger cracks using the proposed 

methodology. 

6.4 Summary 

This chapter covered the breathing crack identification of the applied case study under random 

excitation. The random excitation adapted crack identification methodology with FRF is given 

first, and then the randomly excited cantilever test beam setup details are given in the second 
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section. The experiment setup is used to observe the crack identification results for both 25% and 

50% crack beams, and ten similar runs are conducted to have better understanding of the 

percentage increment of SampEn for different initiations of the test runs. The final section covers 

the results and discussions of these results and it is found that, there is a distinct difference 

between the averaged percentage increments of SampEn of 25% crack beam and the 50% crack 

beam. The SD values suggest higher confidence in breathing crack identification of the 50% 

crack beam compared to the 25% crack beam.    



 

 

Chapter 7 

Conclusions and Future Works 

During the lifespan of a structure, it is subjected to various loading conditions including perhaps 

some abrupt loadings which are not even foreseen on the design board, and some absurd weather 

and operating conditions; and in addition, serving beyond their designed lifespan is not so rare 

for most of the today’s structures. Due to these facts, engineering structures are always prone to 

structural damages; where modern engineering has to go beyond its limits exceeding designing 

and manufacturing boundaries, exploring efficient and effective damage detection techniques.   

Breathing cracks are a special type of damage type evident in structures which experience 

dynamic loading conditions. During vibration of the cracked structure, the crack exhibits 

repetitive open-close breathing like phenomenon, hence the cracks are termed as breathing 

cracks. In the last few decades, vibration-based damage detection techniques have gained much 

interest among both the industrial and academic researches due to their versatile on-line damage 

detection capabilities. The same technique has evolved in to breathing crack identification, where 

it faces its own challenges. 

Breathing phenomenon, the central feature of these cracks, generates crack severity related 

irregularities in the vibration response of the cracked structure. In this thesis, the concept of 
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entropy is employed to quantify these irregularities, ultimately relating these entropy values to 

the crack severities which caused these irregularities. WT, which is able to magnify perturbations, 

is employed with entropies to aid in the crack identification process, which leads to high 

sensitivity breathing crack identification results under certain conditions of the numerical 

computations. Then FRFs are combined with the crack identification method to tackle one 

important dynamic condition experienced by structures: random vibrations.  

Breathing crack identification capabilities of the proposed methodology is studied numerically 

and experimentally, using a selected case study. A cantilever beam with a breathing crack is 

chosen as the case study due to experimental and numerical flexibility in both setting-up and 

testing/analyzing the system for different excitation conditions while exhibiting challenging 

grounds in its own. The iterative numerical model built for the applied case study is used to 

generate accurate vibrational responses, while acceleration measurements are measured from the 

experimental setup for the analysis.  

All the in-house analysis codes written using the MatLab® R2015a software package has been 

published open-source project (refer Appendix E), which can be used by anyone, modify them as 

per their requirements, and perhaps further improve them for a better future for damage detection.    

7.1 Viability and effectiveness of entropy in breathing crack 

identification 

This thesis is basically divided in to three analytical sections, Chapters 4, 5 and 6 as they are 

named. Chapter 4 covers the crack identification under sinusoidal excitation, which provides 
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basic understanding of how the proposed method is employed in crack identification. Results of 

this chapter conclude some important findings listed as below.  

1) The proposed breathing crack identification technique is capable of high sensitivity crack 

identification for small and initial crack depth of only 3% of the beam thickness with 

more than 200% increment in SampEn compared with the healthy beam. The 

experimental results are in good agreement with the numerical results and conclude the 

fact that larger crack depths generate more considerable breathing effect, leading to better 

identification grounds for them. 

2) The computational time is significantly reduced with QASE by about 325 times at 20,000 

data samples compared to SampEn.  

Chapter 5 is dedicated to find a remedy for a problem identified in chapter 4. The breathing 

crack identification sensitivities for lower excitations are not as good as for the higher excitations. 

This is rectified up to some extent by optimizing the parametric values of SampEn and WT. The 

findings of this chapter conclude:  

3) Using the parametric optimization, for sinusoidal excitations closer to the first modal 

frequency of the cantilever beam, 8% crack depth percentage can be identified which is 

much more sensitive compared with the case with non-optimized parametric values 

(22%).   

In chapter 6, the proposed breathing crack identification technique is experimentally tested for 

more realistic excitation in real world, i.e. random excitation. This added complexity is handled 

with the help of FRFs. The experimental results conclude that:  

4) There is a significant sample entropy percentage increment due to the breathing crack on 

the beam compared with the health beam. For the 25% crack beam, it is 366.1% of 
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sample entropy percentage increment in average for the ten experimental runs and for the 

50% crack beam this particular value is 832.1%.  

In addition to these conclusions, in overall, the advantages of the proposed breathing crack 

identification technique are:  

1) The proposed technique requires only two sensors for breathing crack identification in the 

case of when it is required to handle the most complex type of vibration conditions under 

random excitations. Besides that, for simple sinusoidal vibrations, only one sensor is 

required.  

2) The method can be used for damage identification under general structural dynamic 

working conditions where it does not demand any special condition on its excitations; for 

example, sinusoidal excitation can be of any frequency, and the crack identification under 

random excitations with no special requirement can be realized as well.  

3) The method is also capable of on-line real-time continuous crack identification with the 

help of the high calculation efficient QASE measurement.  

4) Furthermore, the proposed technique can also be applied to other types of complex 

structures, such as plates and shells with breathing cracks. 

These advantages highlight the effectiveness of the proposed breathing crack identification 

technique as a practical and further developable damage identification methodology. 
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7.2 Future works 

The proposed breathing crack identification technique will definitely benefit from further 

analysis. One key area is effective handling of noisy signals which would hugely increase the 

crack identification sensitivities of the proposed method. Especially for smaller crack depths, the 

breathing effect is masked by the noise presence in the vibration signals. This can be rectified by 

developing an effective filtering method, which will remove the noise effect while preserving the 

breathing effect. Another key area will be development of new entropy measures. Even though 

QASE is computationally fast, it cannot always give meaningful quantification of the breathing 

phenomenon. Therefore, a hybrid-type of entropy, which combines both good characteristics 

from SampEn and QASE, will be a better entropy measure to realize fast and accurate crack 

identification.   
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Appendix A 

Derivation of Dynamic Beam Equation of an 

Euler-Bernoulli Laterally Vibrated Beam 

Before deriving the dynamic equation, let us consider derivation of the Euler-Bernoulli 

relationship for bending moment of a slender cantilever beam.   

 

Figure A. 1 - Bending of a slender cantilever beam. 

In Figure A.1, it illustrates bending of a slender cantilever beam. Let’s consider a unit with of the 

beam (width of the beam is measured in the Y direction of the above figure). 

Excitation force 
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A point (named as ‘1’) is considered on an arbitrary cross section (illustrated in dotted lines) and 

then the deflection of the same point on the bent beam is considered to derive the bending 

moment relationship. This new position of point ‘1’ is shown in a scaled-up (not to scale) format 

in the beside line diagram.  

If the rotation of the considered cross section is a small angle ‘α’, 

From the line diagram it can obtain that,   𝛼 ≈ tan𝛼 =  𝑑𝑤
𝑑𝑥

  

If the point ‘1’ is ‘z’ amount of distance from the line of bending, then; 

Deflection of point 1,                               u1 = 𝑧 tan𝛼 = 𝑧 𝑑𝑤
𝑑𝑥

  (A.1)    

Strain at point 1,                                       𝜀1 = 𝑑𝑢1
𝑑𝑥

= 𝑧 𝑑
2𝑤
𝑑𝑥2

   (A.2) 

If, the Young’s modulus of the beam is taken as E, then using Hooke’s Law, stress at a point; 

                                                                        𝜎 = 𝐸𝜀    (A.3) 

Therefore stress at point 1,                𝜎1 = 𝐸 𝜀1 = 𝐸𝑧 𝑑
2𝑤
𝑑𝑥2

   (A.4) 

Now, bending Moment,                     𝑀 = ∫ 𝜎1.  𝑧.  𝑑𝑧ℎ
−ℎ    (A.5) 

Now, taking the moment of inertia of the beam cross section about y-axis as ‘I’ 

                                                          𝑀 = ∫ 𝐸𝑧 𝑑
2𝑤
𝑑𝑥2

.  𝑧.  𝑑𝑧ℎ
−ℎ   (A.6)  

                                                          𝑀 = 𝐸 𝑑2𝑤
𝑑𝑥2 ∫ 𝑧 .  𝑧.  𝑑𝑧ℎ

−ℎ   (A.7) 
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                                                                      𝑀 = 𝐸 𝑑2𝑤
𝑑𝑥2

ℎ3

12
  (A.8) 

Since width of the beam is ‘one unit’ then,    𝐼 = 1.ℎ3

12
 (A.9)                           

Then, bending Moment is,                            𝑴 = 𝑬𝑰 𝒅
𝟐𝒘
𝒅𝒙𝟐

 (A.10) 

 

Now, as the next step, in order to derive the dynamic beam equation for the laterally vibrating 

beam, let’s consider the free body diagram of the beam as shown in Figure A.2. 

 

Figure A. 2 - Free body diagram of a slender beam under lateral vibration [64]. 

Before going to the derivations the variables used is presented below, 

• V(x,t)  - shear force            

• M(x,t)  - bending moment  

• f(x,t)  - external force per unit length of beam 

• 𝜌   - mass density of the beam  

• A(x)  - cross sectional area of the beam at distance x 

• w   - displacement of the beam in z direction 

• t   - time 
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Let’s look at the derivation of the dynamic equation. 

Inertia force acting on the element of the beam = 𝜌𝐴(𝑥)𝑑𝑥 𝜕2𝑤
𝜕𝑡2

(𝑥, 𝑡) (A.11)  

Then, equation of motion in the z-direction gives 

                            −(𝑉 + 𝑑𝑉) + 𝑓(𝑥, 𝑡)𝑑𝑥 + 𝑉 =  𝜌𝐴(𝑥)𝑑𝑥 𝜕2𝑤
𝜕𝑡2

(𝑥, 𝑡) (A.12)  

The moment equation of motion about the y-axis passing through point O leads to, 

                             (𝑀 + 𝑑𝑀) − (𝑉 + 𝑑𝑉)𝑑𝑥 + 𝑓(𝑥, 𝑡)𝑑𝑥 𝑑𝑥
2
− 𝑀 = 0  (A.13)  

By writing,        𝑑𝑉 =  𝜕𝑣
𝜕𝑥
𝑑𝑥     𝑎𝑛𝑑      𝑑𝑀 =  𝜕𝑀

𝜕𝑥
𝑑𝑥 

Then disregarding the terms involving second power in dx, equations (A.12) and (A.13) can be 

written as, 

                                       −𝜕𝑉
𝜕𝑥

(𝑥, 𝑡) + 𝑓(𝑥, 𝑡) = 𝜌𝐴(𝑥)𝑑𝑥 𝜕2𝑤
𝜕𝑡2

(𝑥, 𝑡)  (A.14)             

                                                         𝜕𝑀
𝜕𝑥

(𝑥, 𝑡) − 𝑉(𝑥, 𝑡) = 0  (A.15)  

By using relation 𝑉 = 𝜕𝑀
𝜕𝑥

 from equation (A.15) then equation (A.14) becomes, 

                                     −𝜕2𝑀
𝜕𝑥2

(𝑥, 𝑡) + 𝑓(𝑥, 𝑡) =  𝜌𝐴(𝑥)𝑑𝑥 𝜕2𝑤
𝜕𝑡2

(𝑥, 𝑡) (A.16) 

Then from equation (A.10), 

                                                           𝑀(𝑥, 𝑡) = 𝐸𝐼 𝜕
2𝑤
𝜕𝑥2

(𝑥, 𝑡)    
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Substituting bending moment equation in equation (A.16), the dynamic equation for the laterally 

vibrating beam becomes, 

                                                𝑬𝑰 𝝏
𝟒𝒘
𝝏𝒙𝟒

(𝒙, 𝒕) +  𝝆𝑨 𝝏𝟐𝒘
𝝏𝒕𝟐

(𝒙, 𝒕) = 𝒇(𝒙, 𝒕)  (A.17)  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Appendix B 

Derivation of Characteristic Function of a 

Laterally Vibrated Beam  

At first, let us consider a single mode of vibration for the dynamic equation and for the free 

vibration of the beam, 

Now for free vibration, 𝑓(𝑥, 𝑡) = 0 in Figure A.2, and considering only one vibration mode, then 

equation (A.17) becomes; 

                                                    𝐸𝐼 𝜕
4𝑤
𝜕𝑥4

(𝑥, 𝑡) +  𝜌𝐴 𝜕2𝑤
𝜕𝑡2

(𝑥, 𝑡) = 0  (B.1) 

The solution for this can achieved using ‘variable separable’ method, 

                                                              𝑤(𝑥, 𝑡) =  𝑊(𝑥)𝑇(𝑡)   (B.2) 

Here, W(x) is the ‘x’ dependent part of the solution and T(t) is the ‘t (time)’ dependent part of the 

solution. Substituting (B.2) in (B.1),   

                                                  𝐸𝐼 𝑑
4𝑊(𝑥)

𝑑𝑥4
 𝑇(𝑡) +  𝜌𝐴𝑊(𝑥)  𝑑

2𝑇(𝑡)

𝑑𝑡2
= 0 (B.3) 

After dividing everything by 𝑊(𝑥)𝑇(𝑡) this can be re-written as,  
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                                                  𝐸𝐼 𝑑
4𝑊(𝑥)

𝑑𝑥4
 1
𝑊(𝑥)

+  𝜌𝐴 1
𝑇(𝑡)

 𝑑
2𝑇(𝑡)

𝑑𝑡2
= 0 (B.4) 

After re-arranging,                 𝐸𝐼 𝑑
4𝑊(𝑥)

𝑑𝑥4
 1
𝑊(𝑥)

= − 𝜌𝐴 1
𝑇(𝑡)

 𝑑
2𝑇(𝑡)

𝑑𝑡2
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  (B.5) 

Then taking the constant as,         𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 =  𝜌𝐴𝜔2 

Now equation (B.5) becomes, 

                                               𝐸𝐼 𝑑
4𝑊(𝑥)

𝑑𝑥4
 1
𝑊(𝑥)

= − 𝜌𝐴 1
𝑇(𝑡)

 𝑑
2𝑇(𝑡)

𝑑𝑡2
=  𝜌𝐴𝜔2 (B.6) 

Now this equation can be separated into two parts, one with 𝑊(𝑥) and another with 𝑇(𝑡) . These 

two equations are,  

                                                         𝑑
4𝑊(𝑥)

𝑑𝑥4
 1
𝑊(𝑥)

−  𝛽4𝜔2 𝑊(𝑥) = 0 (B.7) 

where,  𝛽4 =  𝜌𝐴
𝐸𝐼
𝜔2 

and                                                  𝑑
2𝑇(𝑡)

𝑑𝑡2
+  𝜔2𝑇(𝑡) = 0            (B.8) 

Let’s consider equation (B.7) because the equation with time function (i.e. equation (B.8)) is not 

an interest at this stage. 

Assuming solution to the equation (B.7) as,  𝑊(𝑥) = 𝐶𝑒𝑠𝑥   

C and s are constants to be determined. 

Then substituting back in equation (B.7) gives,  

                                                                     𝑠4 −  (𝛽)4 = 0  (B.9) 
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Then,     𝑠1,2 =  ± 𝛽                𝑠3,4 =  ±𝑖 𝛽   

Then substituting back these in the assumed solution, 

                                         𝑊(𝑥) = 𝐶1𝑒𝑠1𝑥  +  𝐶2𝑒𝑠2𝑥 +  𝐶3𝑒𝑠3𝑥 +  𝐶4𝑒𝑠4𝑥  (B.10) 

Equation (B.10) can also be expressed as;   

𝑊(𝑥) = 𝐶1(𝑐𝑜𝑠𝛽𝑥 + 𝑐𝑜𝑠ℎ𝛽𝑥) + 𝐶2(𝑐𝑜𝑠𝛽𝑥 − 𝑐𝑜𝑠ℎ𝛽𝑥) +  𝐶3(𝑠𝑖𝑛𝛽𝑥 + 𝑠𝑖𝑛ℎ𝛽𝑥) + 

                                                                                                       + 𝐶4(𝑠𝑖𝑛𝛽𝑥 − 𝑠𝑖𝑛ℎ𝛽𝑥)  (B.11) 

Then,  

 𝑊(𝑥) = 𝑐𝑜𝑠𝛽𝑥(𝐶1 + 𝐶2) + 𝑠𝑖𝑛𝛽𝑥(𝐶3 + 𝐶4) + 𝑐𝑜𝑠ℎ𝛽𝑥(𝐶1 − 𝐶2) + 𝑠𝑖𝑛ℎ𝛽𝑥(𝐶3 − 𝐶4)  (B.12) 

Taking, (𝐶1 + 𝐶2) = 𝐴1 , (𝐶3 + 𝐶4) = 𝐴2 , (𝐶1 − 𝐶2) = 𝐴3, (𝐶3 − 𝐶4) = 𝐴4  

Now,  

                         𝑊(𝑥) =  𝐴1𝑐𝑜𝑠𝛽𝑥 +  𝐴2𝑠𝑖𝑛𝛽𝑥 +  𝐴3𝑐𝑜𝑠ℎ𝛽𝑥 +  𝐴4𝑠𝑖𝑛ℎ𝛽𝑥  (B.13) 

Then for the nth mode of vibration, the Characteristic function of the beam becomes, 

                         𝑾𝒏(𝒙) =  𝑨𝟏𝒄𝒐𝒔𝜷𝒙 +  𝑨𝟐𝒔𝒊𝒏𝜷𝒙 +  𝑨𝟑𝒄𝒐𝒔𝒉𝜷𝒙 +  𝑨𝟒𝒔𝒊𝒏𝒉𝜷𝒙 (B.14) 

Where, 𝐴1,𝐴2,𝐴3𝑎𝑛𝑑 𝐴4 are new constants to be determined using boundary conditions.  

 

 



 

 

Appendix C 

Numerical Examples in Entropy Calculations 

In this appendix, detailed calculation steps in calculating the two entropy measures used in this 

thesis, SampEn and QASE are given using a simple numerical example. Let’s take a simple time 

domain data set as; 

𝑋(𝑡) = {0.825, 0.726,0.538,0.467,0.825, 0.726,0.538,0.467} 

Now the number of data samples, 𝑁 = 8 and let us take 𝑚 = 3 and r = 0.1 for the entropy 

calculations. 

C.1 Sample entropy calculation 

Then according to equation (3.15) the template vectors are; 

𝑋(1) = {0.825, 0.726,0.538} 

𝑋(2) = {0.726,0.538,0.467} 

𝑋(3) = {0.538,0.467,0.825} 

𝑋(4) = {0.467,0.825,0.726} 
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𝑋(5) = {0.825, 0.726,0.538} 

𝑋(6) = {0.726,0.538,0.467} 

Then for 𝑖 = 1 in equation (3.16), let’s calculate the number of template vector matches using 

the Chebyshev distance; 

𝑑�𝑋3(1),  𝑋3(2)� = max��𝑋3(1) − 𝑋3(2)�� = |0.726 − 0.538| = 0.188 > 0.1  Not a match 

𝑑[𝑋3(1),  𝑋3(3)] = max(|𝑋3(1) − 𝑋3(3)|) = |0.825 − 0.538| = 0.287 > 0.1 

𝑑[𝑋3(1),  𝑋3(4)] = max(|𝑋3(1) − 𝑋3(4)|) = |0.825 − 0.467| = 0.358 > 0.1 

𝑑�𝑋3(1),  𝑋3(5)� = max��𝑋3(1) − 𝑋3(5)�� = |0.825 − 0.825| = 0.000 < 0.1 A match 

𝑑[𝑋3(1),  𝑋3(6)] = max(|𝑋3(1) − 𝑋3(6)|) = |0.726 − 0.538| = 0.188 > 0.1 

Then, recalling equation (3.16), the probabilistic values are, 

𝐵13(0.1) =  
# 𝑜𝑓 𝑗 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑑[𝑋3(1),  𝑋3(𝑗)] ≤ r 

8 − 3 − 1
=  

1
(8 − 3 − 1)

=  
1
4

 

Similarly,  

𝐵23(0.1) =  
# 𝑜𝑓 𝑗 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑑[𝑋3(2),  𝑋3(𝑗)] ≤ r 

8 − 3 − 1
=  

1
(8 − 3 − 1)

=  
1
4

 

𝐵33(0.1) =  
# 𝑜𝑓 𝑗 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑑[𝑋3(3),  𝑋3(𝑗)] ≤ r 

8 − 3 − 1
=  

0
(8 − 3 − 1)

=  0 

𝐵43(0.1) =  
# 𝑜𝑓 𝑗 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑑[𝑋3(4),  𝑋3(𝑗)] ≤ r 

8 − 3 − 1
=  

0
(8 − 3 − 1)

=  0 
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𝐵53(0.1) =  
# 𝑜𝑓 𝑗 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑑[𝑋3(5),  𝑋3(𝑗)] ≤ r 

8 − 3 − 1
=  

0
(8 − 3 − 1)

=  0 

Then summing up all the above probabilistic values and we get, 

𝐵3(0.1) = (𝑁 −𝑚)−1 � 𝐵𝑖𝑚(𝑟)
𝑁−𝑚

𝑖=1

=  
1
5

 ∗  
(1 + 1)

4
=  

2
5 ∗ 4

 

Now, for 𝑚 = 4, similar calculations are done to obtain 𝐴4(0.1), which is found as; 

𝐴4(0.1) = (𝑁 −𝑚)−1 � 𝐴𝑖𝑚+1(𝑟)
𝑁−𝑚

𝑖=1

=
1
4

 ∗  
(1)
3

=
1

4 ∗ 3
 

Then, sample entropy can be calculated as,  

𝑺𝒂𝒎𝒑𝑬𝒏(𝟑,𝟎.𝟏,𝟖) = − 𝑙𝑛 �
𝐴4(0.1)
𝐵3(0.1)� = − 𝑙𝑛 �

1
4  ∗  1

3  
1
5  ∗  2

4  
� = 𝟎.𝟏𝟖 

C.2 QASE calculation 

At first it is necessary to calculate the quantized time series using equation (3.22). For QASE it is 

necessary use 2𝑟 value instead of 𝑟 in calculating quantized time series [3]. In the chosen time 

series, min(𝑋) = 0.467 and then, the quantized time series is; 

𝑋𝑞 = {1, 1, 0, 0, 1, 1, 0, 0} 

Then the vector groups are created as follows for 𝑚 = 3 condition. 

𝑋𝑞(1) = {1, 1, 0} 
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𝑋𝑞(2) = {1, 0, 0} 

𝑋𝑞(3) = {0, 0, 1} 

𝑋𝑞(4) = {0, 1, 1} 

𝑋𝑞(5) = {1, 1, 0} 

𝑋𝑞(6) = {1, 0, 0} 

Then vector identifiers are allocated for each vector group (recall equation (3.23)). According to 

equation (3.23), now 𝜆 = 1. 

(𝟏 ×  𝟏𝟎) +  (𝟏 ×  𝟏𝟏) + (𝟎 ×  𝟏𝟐) = 𝟐 

(𝟏 ×  𝟏𝟎) +  (𝟎 ×  𝟏𝟏) + (𝟎 ×  𝟏𝟐) = 𝟏 

(𝟎 ×  𝟏𝟎) +  (𝟎 ×  𝟏𝟏) + (𝟏 ×  𝟏𝟐) = 𝟏 

(𝟎 ×  𝟏𝟎) +  (𝟏 ×  𝟏𝟏) + (𝟏 ×  𝟏𝟐) = 𝟐 

(𝟏 ×  𝟏𝟎) +  (𝟏 ×  𝟏𝟏) + (𝟎 ×  𝟏𝟐) = 𝟐 

(𝟏 ×  𝟏𝟎) +  (𝟎 ×  𝟏𝟏) + (𝟎 ×  𝟏𝟐) = 𝟏 

Now, let us create a matrix𝐺3, in which the first column gives the vector identifiers and the 

second column gives the number of occurrence if corresponding vector identifiers. 

𝐺3 = �1 3
2 3� 
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Similarly, the same matrix can be calculated for the case of 𝑚 = 3 + 1 = 4. Let us call the 

corresponding matrix as 𝐺4 and it is given below, 

𝐺4 = [2 5] 

Now using the occurrences of vector identifiers in 𝐺3 and 𝐺4 matrices it is possible to calculate 

𝐵�𝑚(2𝑟) and 𝐴̂𝑚+1(2𝑟) values (recall equations (3.25) and (3.26)).  

𝐵�3(0.2) = (8 − 3)−1 × ��3 ×
3 − 1

8 − 3 − 1�
+ �3 ×

3 − 1
8 − 3 − 1�

� =  
3
5

 

𝐴̂4(0.2) = (8 − 3)−1 × �5 ×
5 − 1

8 − 3 − 1�
= 1 

Then, QASE can be calculated as; 

𝑸𝑨𝑺𝑬(𝟑,𝟎.𝟐) = − 𝑙𝑛 �
𝐴̂4(0.2)
𝐵�3(0.2)

� = − 𝑙𝑛 �
1
3
5
� = −𝟎.𝟓𝟏  

 

 

 

 

 



 

 

Appendix D 

Entropy Convergence Check 

Figure D.1 shows the entropy convergence results. It is observed that, SampEn converges when 

the number of data samples are around 18,000. During the analysis 20,000 data samples are used 

in all the calculations. 

 

Figure D. 1 - Variation of sample entropy with different number of data samples showing the 
Entropy convergence. 
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Appendix E 

The Outcome Research Materials  

During the research, three research papers are completed. They are mentioned below 

chronologically;  

1) Wimarshana B., Wu N., Wu C., 2016, “Application of entropy in identification of 

breathing cracks in a beam structure – simulation and experimental studies,” Journal of 

Structural Health Monitoring, (under review).  

2) Wimarshana B., Wu N., Wu C., 2016, “Application of entropy in identification of 

breathing cracks in a beam structure – parametric study of sample entropy and wavelet 

transformation,” Journal of Structural Monitoring and Maintenance, (submitted). 

3) Wimarshana B., Wu N., Wu C., 2016, “Identification of Breathing Cracks in a Beam 

Structure with Entropy,” In Proceedings of the SPIE, March 2016, Las Vegas, Vol. 9804, 

USA. 

Then, in addition, all the MatLab® codes prepared for the proposed breathing crack identification 

technique have been published online as an open source project. The relevant codes can be found 

in the following Google drive link; 
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https://drive.google.com/folderview?id=0BzWbOFnPmyKwZUJ0MEVFblZFVTA&usp=sharing

_eid&ts=577551c5   

https://drive.google.com/folderview?id=0BzWbOFnPmyKwZUJ0MEVFblZFVTA&usp=sharing_eid&ts=577551c5
https://drive.google.com/folderview?id=0BzWbOFnPmyKwZUJ0MEVFblZFVTA&usp=sharing_eid&ts=577551c5
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