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ABSTRACT

The increasing requirement for the power transfer capability has raised the possibility

of dc transmission lines operating on an existing ac transmission corridor.. Corona

effects in such hybrid acldc lines become mnch more complicated due to the

interaction between the ac and dc fields. This thesis preserìts a method to investigate

the ionized field of such hybrid acldc lines and evaluate the shielding effect of the ac

conductors on the elect¡ic field intensity and the ionic dc cnrrent density at ground

level from the point of view of environmental impact. The method is basecl on an

iterative finite element procedure to solve tlie time invariant ionized field.

A comparison between the calculated and experimental results for a laboratory line is

presented. The calculated values of the curretrt density at ground level agree

satisfactorily with the experimental results.

The calculated data, including the ground level lateral profiles of the electric fielcl

intensity and the cuuent density for practical hybrid fansmission line configurations,

are also given in this thesis. For furrher discnssion of the shielding effect of the ac

conductors on the electric environment in the hybrid acldc lines, the calculated data for

a bipolar dc Fansmission line configuration are presented as well. The results show

that with a proper ac line arrangement, the hybrid acldc line geometries have the

advantage ofreducing the ionized field and the cr.rment density at ground level.
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Chapterl

INTRODUCTION

With the increasing demand for the supply of elecrric power, the possibility of using

hybrid acldc transmission lines has been sought 11,2,3,4,51. A hybrid acldc

transmission line is a t¡ansmission line with both ac and dc conductors on the same

tower or adjacent towers sharing the same right-of-way (ROW). It may be created by

adding a bipolar dc transmission line to an existing three phase ac transmission

system. Thus, a hybrid acldc system will not only increase the power transfer

capacity of the existing transmission co¡ridor, but also improve the stability and

conuollability of the ac network [1, 2].

It is well-known that the corona effect of a FWDC transmission line requires serious

consideration due to the power loss (PL), ¡adio interference (RI), audible noise (AN),

and the electrification of isolated objects or human bodies associated with it [6,7]. In

hybrid acldc lines, the interaction of ac and dc fields affects the corona activity,

making the ionized field problem even more complicated. Thus, a thorough study of

the ionized field of hybrid acldc lines is needed befo¡e they are put into practical use.

Intoduct¡on



1.1 PHYSICAL CHARACTERISTICS OF CORONA

Corona is a self-sustained partial breakdown of air in the nonuniform field

surounding the conductor of a power transmission line. In positive dc corona, it is

usually assumed that an electron starts an avalanche from the edge of the ionization

zone whe¡e the field intensity is sufficiently high that the ionization coefficient is

greater than the coefficient of electron attachment, A series of successive electron

avalanches is developed towards the conductor surface, under the combined influence

of its own space charge and the applied electric field. positive ions and excited

molecules are produced due to the ionizing collisions and ar.e left behind by the

elecEons, The excited molecules reverting to their stable states give up their energy in

the form of photon radiation. Therefore, the electrons necessaly for maintaining the

self-sustained discharge are provided by the photonization of gas molecules. As a

result, the electrons a¡e neutralized on the corìductor and the positive ions drift away

from the conductor spreading all over the inter-electrode region. Similarly, a negative

dc corona ¡esults in negative ions filling the entire inter-elecuocle region,

In the case of bipolar dc transmission line in corona, the ions generated by each

conductor drift either to the conductor of opposite polarity, or to the ground. Thus,

ions of either positive or negative polarity fill the regions between each conductor anrl

ground, and ions of both polarities are mixecl in the region between the two

conductors.

In the case of ac Eansmission line in corona, however, the space charge created by

co¡ona is constrained to the vicinity of the conductors because of the periodic reversal

Introduct¡on



3

of the applied voltage. Consequently, ac cotona has negligible impact on the electrical

environment at ground level.

I,2 OBJECTIVE OF THE THESIS

As mentioned earlier, the creation and movement of the space charges cause power

loss (PL), audible noise (AN), and radio and relevision (RI & TVI) inrerference.

Another very important effect of corona is the environmental impact. Any object

located under transmission lines intercepts the ion flow between the conductors and

the ground. If the object is perfectly insulated from the ground, the magnitude of its

potential above ground g¡adually increases until it approaches rhe equilibrium space

potential or until the insulation breaks down. In practice, the potential to which the

object is raised will be limited by its insulation resisrance ro ground. If a grounded

person touches the object, he may receive an initial carpet-type shock of extremely

shon duration followed by a small steady current. similar induction effects a¡e also

produced when a well-insulated person located under the line touches a grounded

object. A well-grounded person standing under a dc line will also experience a steady

flow of very small cur¡ent. Thus, the electrification of isolated objects or human

bodies by space charges is one of the most impo¡tant factors in designing overhead

power transmission lines. The electric field intensity (E) and the ion current density

(J) on the ground are significant envi¡onmental factors related to the biological effects.

To study these problems, the electric field distribution distorted by the ion space

charge (p) flowing from dc conductors must be calculated.

Introùßtion
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The aim of this thesis is to discuss such a computationaÌ procedure for hybrid acldc

transmission lines. The electric quantities (E, p, J) at ground level have been

calculated for different line geometries. The effect of ac conductor voltages and the

shielding effect of ac conductors on the dc corona activities at ground level have also

been investigated.

These studies a¡e based on a numerical solution for the ionized field by an iterative

Finite Element (FE) procedure. Since the ac corona has negligible impact on the

electrical environment and a prohibitively large computational effon is required to

analyze the time varying ionized field, all solutions for corona on hybrid acldc lines

are based on computations for unipolar dc corona,

1.3 LINE CONFIGUR^A,TIONS

Five line geometries are anaìyzed to study the arangement and the shielding effect of

the ac conductors.

The first is a laboratory line consisting of a positive dc conductor directly above an ac

conductor, as shown in Figure 1. 1

The second geomeny is based on rhe Manitoba Hydro Gulfport power line with a

bipolar dc transmission line replacing the ground wires of a three phase ac line.

The third geomrtry is the same as the second one except that the dc line is situated at a

greater height.

Introduction



The fou¡th geometry is also simila¡ to the second one except that the outer phases of

the ac lines þhases A & C) are situated furthe¡ away from the center phase þhase B).

Figure 1.2 shows the line configuration for Geometries 2, 3, and 4.

The fifth geometry is again the same as the second one, but with the ac conductors

removed as shown in Figure 1.3, i.e., Geometry 5 is a bipolar dc system for

comparing the shielding effect of ac conductors in hybrid line configurations.

1

I

550 mm

R dc= o'815 mm

R."= 0.815 mm
ï

I

800 mm

Figure 1.1: Geometry I, Laboratory Line

Introduction



a
phase A

O +dc

phase B

o
phase C

R dc = 1'755 cm

n = 1.599 cm"ac

Figure 1.2: Geometry 2, 3, and 4

Figure 1,3: Geometry 5
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The experimental results giving the ionic cuûent density at ground level are available

for the laboratory line (Ceometry 1) with the dc applied voltage V¿. = 60 kV and the

ac applied voltages of root mean square (RMS) values Vac = 0, 10 kV,20 kV, and 25

kV, respectively [5]. The computational results will be discussed with the same

applied voltages in order to compa¡e them with the available experimental results.

For Geometries 2 to 5, the computational results are based on the dc applied voltage

Vdc = t 300 kV and the ac voltage zero.

Table 1 .1 shows the line dimensions for these geometries (Geometries 2 to 5).

Table 1.1: Dimensions for Various Configurations

Conductor -dc +dc phase A phase B phase C

Geometry

2

x(m) -4.57 4.57 -5.49 0.0 5.49

v(m) 16.34 16.34 12.38 14.20 12,38

Geometry

3

x(m) -4.57 4.57 -5.49 0.0 5,49

y(m) 17.34 17.34 12.38 14.20 12.38

Geometry

4

x(m) -4.57 4.57 -6.49 0.0 6.49

y(m) 16.34 16.34 12.38 14.20 12.38

Geomerry

5

x(m) -4.57 4.57

y(m) 16.34 16.34

I troduction



Chapter 2

LITERATURE REVIEW

2.1 ANA,LYSIS OF DC CORONA

2,1,,1 Equations and Assumptions

As mentioned in Chapter 1, unipolar dc corona is cha¡acterized by a steady flow of

ions from coronating conductors with the same polarity as the applied voltages. The

flow of ions, i.e., the ionic current density J, is determined by the local electric field

intensity E. This quantity is in rurn governed by both the potentiâls applied to the

conductors and the special distribution of the corona-generated space charge density

p. This mutLral interaction between E and p for an unipolar dc corona is described by

the following equations:

V.E=g
%

V.J=0

J=kpE

E=-V@

(2.t)

(2.2)

(2.3)

(2.4)

Literaîure Review



Equation (2.1) is Gauss's law, where ro is the permittivity of free space. Equation

(2.2) is the continuity equation for the current density J. Equation (2.3) is the relation

between E and J, where k is the mobility of ions. Equation (2.4) is the electric field

intensity E in terms of the potential <Þ.

Combining Equations (2.1) - (2.3), the ionized electric field is described by the

following ecluation,

E'V (V.E) + (V.E)2 = 0

Or, using Equation (2.4), in terms of potential,

(2.s)

V. (VoV2<Þ) = o (2.6\

Equations (2.5) and (2.6) are the general equations describing a unipolar ionized field.

They are nonlinea¡ third-order partial differential equations and the¡e is no known

method available for solving them for a general case. Some basic assumptions are

necessary in order to make the solution of these equations possible. The following

are the commonly used assumptions and simplifications [8]:

1 . Ionic mobilities are constant, independent of the elecric field intensity.

2. Mobilities of positive and negative ions are equal, and the corona onset

voltage for positive and negative câses are the same for the bipolar case.

Lilerature Revie'¡v
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3. Diffusion ofions is neglected.

4. The effect of wind on space charge distribution is not considered.

5. The thickness of the ionization layer around the conductors in corona is

assumed to be insignificant in conrparison with other geometric parameters.

6. An equivalent steady state is assumed (i.e. temporal variations are

neglected).

The above six assumptions have been well justif,ied in literature. The problem is still

too complex to solve even with these simplifications. Some further approximations

are needed, which a¡e different in different solution methods.

2.1.2 Revierv of Methods of Calculation

As mentioned above, Equation (2.6) is a nonlinear thi¡d-order partial differential

equation. Thus, three boundary conditions are needed to solve the problem uniquely.

However, only the potentials on the conductors and at ground are known precisely.

A third boundary condition must be added to the coronating conductors. The choice

of the thi¡d boundzuy condition varies with different solution methods.

Townsend [9] was the first to solve analytically for the ionized field in a coaxial

cylindrical configuration, where due to the cylindrical symmetry, the unipolar ionized
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field problem is reduced to a one dirnensional problem. In his analysis, Townsencl

used the value of the electric f,reld intensity on the surface of the coronating conductor

âs the third boundary condition, which is known as the Kaptzov's assumption. It

states that the magninrde of the elecr¡ic field intensity at the coronating conductor

surface remains constant at its onset value regardless of the level of the applied

voltage. It can be expressed as,

l*l=" (2.7\

where Eo is the value of the electric field intensity on the surfâce of the conductor at

the onset of corona; n is the outward unit norm of the coronating conductor.

Deutsch [10] extended the analysis of unipolar ionized field to the two dimensional

problem of a cylindrical conductor above an infinite ground plane. The basic

assumption made by Deutsch is that space charge affects only the magnitude but not

the direction of the electric field, which is now known as Deutsch's assumption.

Thus, the two dimensional ionized field problem is reduced to a one dimensional

problem again. He also assumed that the space charge density in the elecfode space

is constant and the field at the electrode not in corona is unaffected by the space

charge. These are valid only for vanishingly small corona cunents.

Popkov [11,12] proposed an improved analysis for the condnctor-plane geometry by

retaining Deutsch's and Kaptzov's assumptions. In addition, he introduced an

additional assumption regarding the distribution of the corona cuûent on gror¡nd

plane. Based on laboratory measurements and Townsend's work for the concenfric

Literalure Review
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cylinder case, Popkov presented a semi-empfuical expression of the voltage-cr.rrrent

relationship for the conductor-plane geomerry, assunring tlìat the conductor-plane

configuration can be approximated by an equivalent cylindrical system.

A methorl of analyzing both unipolar ancl bipolar DC ionized fields has been proposed

by Maruvacla and Janischewskyj t13,lal by employing Deutsch's and Kaptzov's

assumptions. They adopted the concept of iterations, or-iginally suggested by Felici

[15], and developed an algorithm applicable for corona computations on practical

HVDC transmission lines.

A detailed invesfigation ofthe mathematical aspects of the DC ionized f,relds has been

carried out by Atten [16]. LIe proved rhat the pr.oblem is "properly posed,'if the third

boundary condition is chosen fo be the value of charge density on the coronating

conductor. By assuming that the charge distribution around the coronating conductor

surface was known, Atten developed a finite difference method of solving unipolar

DC ionized fields without adopting Deutsch's assumption. However, accurate

dete¡mination of the space charge distribution beforehand is impossible in practical

cases [13].

Some resea¡chers have employed the charge clensity as the third boundary condirion.

Takunra et al. [17] assumed a constant charge density on the conductor surface. The

value of the charge density was determined by using an iterative procedure which

matched the calculated cur¡ent with the corresponding measured one. But the

assr¡mption of constant charge density is not realistic itself, especially fo¡ the case of

bundled conductors where the charge clensity shows a significant change around the

periphery of subconductors [18].

Literature Reviev
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In order to stucly tlìe effects of space charges on RI, Sunaga er al. [19] proposed Íì

higher order bounclary conclition described by an empirical relation of the ion cument

density (J) with the surface field inrensity (E) on the conductor, J = D exp (a E ), in

addition to Deutsch's assumption. But a lot of experimental work has to be done in

order to determine the empirical constants d and å.

Khalifa et al. [20] replaced Kaptzov boundary condition by using the space charge

distribr.rtion on the surface of the coronating conductor as the third boundary

condition. They assumed the ion charge density at each point on the conductor

surface to be proportional to the ave¡age ion density inside the head of the avalanche

developed at the same point. Btrt in their analysis, the space-charge-free field was

used in the avalanche calculations.

Gela and Janischewskyj [21] proposed a Finite Element Method (FEM), for the first

time, to solve the ionized field in a simple coaxial cyli,dr.ical configuration without

recourse to Deutsch's assumption, but to Kaptzov's assumption.

Abdel - Salam et al. [22] claimed that they applied FEM to analyze the unipolar dc

ionizecl field without retaining both Deutsch's and Kaptzov's asstìmptions by using

the known field quantities along the axis of symmeu:y as the thfud boundary condition.

Their results showed a decrease of the surface field intensity of the conductor with the

applied voltage in the same manner as reported by others t19,23,24,251.

The charge simulation method (CSM) has been applied by many researchers for

Literature Review
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calculating the space-charge-free field t26,27). Fo¡ the first time, I{orenstein [28]

has applied CSM to approximate the electric field and space charge around a single

conductor in corona and to compllte the V-I t.elationship for the discharge. More

recently, Qin et al. [29] claimed thar they hacl developed an iterative numerical methocl

for accurate calculation of the ionized fielcl quantities associatecl with I{VDC bipolar

lines. The conputational procedure employed the CSM fol calculating the ionizecl

field and a weighted residual method for calculating the space charge densities. Very

recently, Abdel - Salan-r and Abdel - Scattar [30] have applied CSM for modelling the

V-I characteristics of corona for unipolar bunclled transmission lines. Their main

concern is to remove Det¡tsch's assumption in their. analysis. By comparing their

computational resì.llts with the experimental ones, they conclude that their proposed

method (CSM) is more accurate than the previous iterative method [13] .

2,2 ANALYSIS OF CORONA ON HYBRID AC / DC LINES

Chartier et al. [] were the first who publishecl the analysis of <.:orona on hybrid acldc

lines. In their studies, they calculated the space-charge-free f,relds on the conductor

surfaces and at the grouncl level of a hybrid acldc system. They also obtained the

important corona performance parameters such as RI and AN.

Maruvada and Drogi [3] were the first who analyzecl the effects of space charge on the

ionized field of hybrid ac/dc lines operûting on both a same tower as well as orr two

adjacent towers. In their approach, they employed Deutsch,s assr¡mption and

considered thât the presence of the alternâting field conrponent has negligible influence

on the ion hajectories. This allowed tlìem to assume the ac conductors to be at zero

Literature Review
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potential, and thus reduce the problem to a time-independent dc coronâ problem as

before. Then they employed the numerical procedure developed earlier [13,14] to

obtain the dc corona component in the ac conductors and the values of the ionic

cuffent density and electric field intensity at ground level.

Penner [4] has applied finite element merhod (FEM) to evaluare the ionic dc curenr

injected f¡om a dc line into ân ac conductor during corona in a hybricl aclcÌc

transmission lines operating on a same tower. In his analysis, Deutsch,s assumption

was applied only on the artificial boundary and Kaptzov's assumption was used as the

third boundary condition. The analysis is also based on the solutions to unipolar dc

ionized fielcl problem. A comparison of the calculated and experimental ¡esults for a

laboratory line was presented in his studies along with the calculated data for a

practical hybrid transmission line configuration.

2.3 CONCLUSIONS

In the solution methods of analyzing the ionized field problems of ove¡head

transmission lines discussed above, the two fundamental assumptions usually

employed by previous researchers are Deutsch's and Kaptzov,s assumption. The

validity of these assumptions has been repeatedly questioned in the literature [17-251.

Especially when Deutsch's assumption is employed, the distorrion of the flux lines of

dc transmission lines in corona is ignored, namely, the natural (equilibrium) relations

among space charge, electric field intensity and space potential is desuoyed.
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The finite element method has been recognized as one of the most appropriate

numerical techniques for the ionized field analysis because of both its generality and

flexibility [I7,21]. It does not rely on Deutsch's assumption. Therefore, a proposed

computational algorithm that is based on the FEM will be discussed and inrplementetl

in the later chapters of this thesis.
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Chapter 3

ITERATIVE FINITE ELEMENT PROCEDURD

This chapter introduces an iterative finite element procedure for the dc ionized field

problem by using MANFEP t311. First, the mathematical formulation has been done

by employing Kaptzov's assumption as rhe third boundary condition and Deutsch's

assumption on the artificial boundaries. Then by using triangular elements, the finite

element (FE) procedure has been checked by applying it to a coaxial cylinder case.

The different orders of polynonrial approximations have also been compared in the

procedure evaluation.

3.1 MATFIEMATICAL FORMULATION FOR DC CORONA

PROBLBM

3.1.I Equations

Equations (2.1) - (2.4) can be combined in temrs of (Þ as follows:
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Equations (3.1) and (3.2) ue two coupled second order partial differential equations

where the potential (Þ a¡rd the charge density p are functions of the space coo¡dinates.

The simultaneous solutions of these two equations for <Þ and p, being subject to

proper boundary conditions, provides the solutions for dre dc corona problem.

3,1.2 Boundary Conditions

As mentioned in Chapter 2, Equations (3.i) and (3.2) can be reduced to a nonlinea¡

third order differential equation -- Ecluation (2.6). Thus, three boundary conditions

a¡e needed to determine the solutions for the boundary value problem.

The boundary conditions r¡sed in this method are as follows:

v (vo)=-g

V.(kpvÕ)=6

l. The potentials on the coronating dc conductors are known,

Õ =Veq

18

(3.1)

(3.2)

(3.3)

where V"O is the equivalent dc potential to account for the ac potential in

Geometry 1; V* = yo" in all the other geometries.
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2. The potential on the non-coronating ac conductors and ground plane is

known

Õ=0 (3.4)

3. The electric field intensity on the coronating dc conductors is assumed

constant at the onset value Es, i. e.,

l= u" (3.s)l¿o
ld"

where the value of Eo is determined by Peek's Law [28],

Eo=3om(1P#) (kv/cm) (3.6)

in which r" is the radius of the coronating conductor (in cm) and m is

the surface factor which accounts for the degree of the roughness of the

conductor. For Geometry 1, the surface facto¡ is chosen to be 0.97

according to the ratio of the measured onset gradient and the one from

Peek's Law when m = 1.0. For other full scale configurations

(Geometries 2 to 5), fair weather conditions are assumed with m = 0.5

t3l.

Appropriate space-charge-free field lines are taken as the artificial

boundaries. This results in a natural Neumann boundary condition on

these boundaries,
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However, when triangular elements with different densities are used to

construct the mesh in the problem domain, as shown later on, the

artificial boundary will be modelled by the straight sides of some of

these triangles. The nodes of the big triangles, which are far away from

the coronating conductor and used for modelling the fanher part of the

artificial boundary, will be displaced from the space-charge-free field

line, and the boundary condition will not be the natural Neumann

condition. Since this part of the boundary is far away from the

coronating conductor, the space-charge-free potential is taken as the

boundary condition,

(Þ = Õr"" (3.8)

3.2 OUTLINE OF ITERATIVE FINITE ELEMENT PROCEDURE

Since the exact distribution of the space charge density p in Equations (3.1) and (3.2)

is not known initially, the algorithm begins with generating an approximated

disu'ibution for p. Then by sotving Equations (3.1) and (3.2) iteratively, the final p

d(Þ -ndn

I terative Finite Eletne nt P rocedure



21

and the solutions of E and Õ would be reached with some tolerable errors. The

following shows the logical iterative scheme using FEM:

1. Determine the problem domain.

2. Disc¡etize the problem domain into triangular eloments -- Mesh

generation.

3 . Specify initial values of p in the problem domain at all nodes.

4. Solve Equations (3.1) and (3.2) for the elecffic potenrial (O1, Õ2) and

thus for the electric field intensity (E1, Q) in the problem domain by

FEM, respectively. They will diffe¡ if the initiation of p is incorrecr.

5 . Update p at all nodes based on the differences between the solutions of

Equations (3.1) and (3.2), i.e., between Õ1 and (Þ2, E1 and E2, as

well as the third boundary condition - Equation (3.5)

6. Evaluate the differences of the solutions from Equations (3.1) and

(3.2); then repeat steps 4 - 6 until the following convergence crite¡ia are

satisfied simultaneously,

lor-orl <ôr(Þ"u

lPnew-Pol¿l( ôzPor¿

lEr - Ezl < ô¡ Euu

I E"1- E"2l < ô4 Eo

Iteratíve Finite Element P rocedure
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where pnew and potd are the ne\ry and the old approximations for the

space charge density; Ect and Ec2 a¡e the magnitudes of the electric field

intensity at the conductor solved from Ecluations (3.1) and (3.2),

respectively; õ1, ô2, ô3 and ô4 are small deviations specified according

to the dested accuracy. In this wo¡k the values assigned to ô1, ô2, ô3

and ô4 were 0.01, 0.01, 0.01, and 0.05, respectively; Õ¿u and E¿u are

the average value of Õ1 and Õ2, and of E1 and E2 respectively.

7. Determine the field quanriries ( E, p, J ) at ground level from the final

solutions fo¡ the ionized field.

Based on the above steps, by using MANFEP in step 4, an iterative finite element

program has been written. An automatic mesh generation progïam has first been

developed.

3.3 DETERMINATION OF THE PROBLEM DOMAIN

It is well-known that FEM has to be applied to bounded regions where the solutions

are required. One effective and simple \r¡ay to deternine the problem domains is to

trace the space-charge-free field lines Ìeaving the coronating dc conductors [4].

Generally, in a hybrid acldc line geomerry as shown in Fig. 1.2, the problem domain

can be divided into the following regions by assuming ac conductors at zero potential:
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Between positive and negative dc conductors;

Between positive (negative) dc conductor and each of the three phase ac

conductors;

Between positive (negative) dc conductor and ground.

The last region is the problem domain in which the solurions will be discussed in this

thesis since the aim of the wo¡k is to calculate E, p, and J at ground level.

3.3.1 Determination of the Space-Cha rge-Free Fietd

The space-charge-free field is the electric field determined without consiclering the

effect of corona-generated space charges. Since the ratios H/r (height / radius) for all

the line geometries in this rhesis are greater than ten, the Merhod of Images can be

used to determine the space-charge-free fietd. Assuming that eaclt conductor can be

approximated by an infinite line of charge located at the center of the conductor, the

magnitude of the charges for each lines is obtained from the following set of

simultaneous equations:

",=#* å 
a, "+ i = 1,..., N (3.9)

where V¡is the potential on the conductor i; Dij represents the distance from the ith

conductor to the image of the jth ¡in" charge; Dl is the distance berween the ith and

jth conductors; N is the set of all conductors without including the imaged ones.
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Knowing the charges Q on each conductor, the space-charge-free potential and fiekl

intensity at any point P in the problem domain can be determined as follows:

.,=#*å q'"H

"'=#*å ai#i'

(3.10)

and

(3.11)

where d,¡ o is the distance vecror from the line of charge j to the point p, N, is the set

of all conductors including the imaged ones.

The derived formula for the space-charge-free fields of the line geonrerries are given

in Appendix A.

3,3.2 Determination of the Problem Domain

The drift of ions generated by corona on the dc line conductors is clescribed by the

following equation:

(3.12)

Iterative l¡inite Element Procedure
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where E is the space-charge-free field intensity at any point in space, v is the velocity

of the ion at that point, r is the position vector, and k is rhe mobility of the ions.

Equation (3.12) can be separated into the following two scalar equarions:

u^=#=kE*(x,Y,t)

"=*=kEr(x,v,t)

(3.13)

(3.14)

The trajectories of ions can be determined by integrating the above eqr.rations

numerically with respect to time t using the Runge-Kutta method [29].

Figures 3.1 - 3.5 show the ion trajectories of the boundaries for the different regions,

where 0 is the angle of the dc conductor node on the dc conductor where the field line

originates. 0=0 corresponds to the lowest poiDt on the dc conductor. Due to the

symmetry' only half of the line geometry is considered. The shadecl regions are the

problem domain of interest. Since the space-charge-free fielcl lines are taken as the

artificial boundaries, Deustch's assumption is resorted on the boundaries only.

In Figure 3.1, Line 2 is next to rhe field line on the ac condncror (Line 1). The flux

line that intersects the ground plane far enough from the origin has been chosen as

Line 3, to ensure that the ionized field at rhe intersection point is very small. In this
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way, the shaded problem domain covers the region of interest, i.e., the area where the

field quantities at ground ( E, p, J) is to be derermined. Similarly, in Figure 3.2,

Figure 3.3, and Figure 3.5, Line 2 is right next to the fielcl line terminated at -dc

conductor (Line 1) as one part of the ar-tificial boundary, while Line 3 has been chosen

in the same way as in Figure 3.1 as the orher part of the artificial boundary. In Figure

3.4, however, Line 2 is right next to the field line terminated at the ac (phase C)

conductor (Line 1). In Figure 3.2 to 3.5, Line 4 is part of the flux line terminated at -

dc conductor. From the 0 values ofLine 2 in these figures, it can be seen that even

for space-charge-free electric field, the shielding effect of the ac conductors is

different with the different anangement of the conductors, i.e., with the bigger

shielcling effect in ceomerry 4 compared with the ones in Geomerries 2 and 3. In the

laboratory line (Geometry 1), it has been fou.d out that the shadecl region in Figure

3.1 is approximately irrespective of rhe ac applied voltages[4]. Therefore, this region

can also be used as the problem domain when the ac voltage is not zero.
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dc

s

01234
x (-)

Figure 3.1: Ion Trajectories in the La.boratory Líne System (Geometry j ), Vac=O,

Vdc=60kV
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2: 0=66
3: 0 = 1080

4: 0 = 115o

+dc
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Figure 3.2: Ion Trajectories in Geometry 2 System,V¿¡=0,V¿¿= 300 kV

I terative F in¡te Eletne nt P roced ure



2: 0=63'
3: 0 = 106"

4: Q = lI2"E60

Figure 3.3: Ion Trajectories in Geometry 3 System, V or=0, V dc = 300 kV
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Figure 3.4: IonTrajectories in Geonetry 4 System, Vac=O, Vrtc = 300 kV
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Figure 3,5: Ion Trajectories ín Ceometry 5 System, Vdc = 300 kV
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3.4 MESH GENERATION PROCEDURE

Triangr.rlar elements a¡e used in the iterative f,inite element program. In order to reduce

the tedious work in formulating the triangle mesh, an automatic mesh generation

program has been developed. Initially, a number of nodes ( riangle vertices ) ar.e

chosen evenly on the conductor su¡face. Starting from one conductor node, the

second node is placed on the field line by a distance Lo=r"(Á0) from the conductor

node, where Â 0 is the angle subtended at the conductor center by a chord joining two

consecutive conductor nodes, and r" is the corìductor radius. Each segment, moving

away from tlìe conductor, increases in length by a weighting factor, Vy'F.

Length of segmenr i =(WF) i- 1 ( r" Â0 )

where i = 1 corresponds to the first node away from the conductor and is increased by

1 for the subsequent nodes.

The input data to the program consists of the total number of the conductor no¿les

(N¿"), the radius of the conducto¡ (r"), ancl the weighting factor (WF). The output

consists of firstly the x and y coorciinates of each point with its corresponding

number, and secondly the element number with its element definition in the counter-

clockwise di¡ection in order to match with MANFEp. Both nodal numbers and

element numbers are arranged in sequential order.

By using the mesh generation program, the triangular meshes for ceometries 1 to 5

a-re generated and shown in Figures 3.6 - 3.10, where IN represents the number of
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the initial nodes or triangle verlices; NT is the total number of the elements.

Figure 3.6: Finite Element Meshfor Geometry I, IN = 160, NT = 264
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Figure 3.7: Finite Element Mesh for Geometry 2, IN = 115, NT = 175

Figure 3.8: Finite Element Meshfor Geometry 3, IN = I 17, NT = I78
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Figure 3.9: Finite Element Mesh for Geometry 4, IN = I 17, NT = 178

Figure 3,10: Finite Element Meshfor Geometry 5, IN = 114, NT =173
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3.5 APPLICATION TO COAXIAL CYLINDER GEOMETRY

since the unipolar dc corona problem described by Equation (2.6) can only be solved

analytically for a simple case ofcoaxial cylinder geomefry, the numerical algorithm of

FE procedure presented above can be checked by applying it to s.ch a case ancl

comparing the numerical results with the exact ones.

3.5.1 Geometry and Mesh Generation

chosen from reference [21], the coaxial cylinclrical concluctor is shown in Figure

3.11.

Figure 3.11; Coaxial Cylindrical Configuration
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\ryhere rc = 0.1 cm, rg = 2.0 cm. From peek's Law, the onset field intensity Eo is

equal to 58.56 kV/ cm, which conesponds the onset voltage Vo fo 17.542 kV. The

applied voltage on the inner conductor V" is 1.42Vo, i,e., V" = 24.g}g kV.

Due to symmetry of the problem, only a quarter of the geomefry is considered.

Figures 3.12 and 3.13 show the problem domain ancl the finite element mesh.

ao

-=
ân

Figure 3.12: Problent Dotnainfor the Coaxiat Cylínder Geometry

Õ= v^ aÕc 
--0ôn
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Figure 3.13: Finite Element Meshfor the Coaxia! Cylinder Geometry,lN =gg,
NT = 156

3.5.2 Evaluatíon of the FE Procedure

The initial space charge density p has been chosen by ,sing the closed-form (A.2.3)

from the Appendix A. Then the solurions by FEM of Equation (3.1) should not differ

much from the ones of Equation (3.2) since p is close to the real charge disnibution.
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Table 3.1 shows the errors after solving the Ecluations (3.1) and (3.2) at the centroid

of each element only once. ( i. e., one iteration )

Table 3.11 Errors in the Evaluation of the FE procetlure

where

ov =fer,jeal
L (Þuui ..lnvs

EDrFF=[8""i-E*ilL Eexi lnvs

Op=[P**-i-P"r¿rl
I l)old i ]RMs

vnmn=f9*i.euril
L Õ""i I nrus
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(6,,

ôv
(3)

ôp
(å)

ED ]FF
(?)

VDTFF
(%)

RDTFF
(å)

CPU
(sec)

2 L . 6'7 0.0 1. B0 4 . 63 1 2q 45

3 )" .66 ¿ . ¿J 0.0 t . B0 4 .4L 1 .25 106



*or"a-fP"*i-Pil
L P"^i lnvs '

whe¡e, RMS represents the root mean square value and the difference is

determined over all the triangle centroids.

Eri , Ezi : the rnagnitudes of the elect¡ic field intensity at the centroid of

element i, determined from Ecluarions (3.1) and (3.2),

respectively.

(Þri, (Þzi : the potentials atthe centroid of element i from Ecluations (3.1)

and (3.2), respecrively.

Eaui , Õavi : the average values of E1i and E2 ¡ , Õ1 ¡ and O2 i, respectively.

Pnew i , Pold i : the new and the old approximations for the space charge

density of element i at the centroids, respectively.

Eexi, Õexi, pexi : rhe exacr solutions f¡om the equations (A.Z.Z), (A,.Z.I),

and (A..2.3) from the Appendix A, respectively.

pi : the numerical approximations for the space charge density of element i.

NDEG is the de$ee of the approximating polynomials which refers to the order of
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polynomial approximation for the potential within an elemenr. The higher the value of

NDEG is, the more accurate the solutions will be. However, the computer storage

and CPU time will also increase tremendously. In Table 3.1, second and third order

polynomials were used.

From the results, it can be seen that the program is functioning properly. When the

initial charge distribution is close to the exact one, the solutions of Equadon (3.1) are

very close to the ones of Equation (3.2). The relative enors of the electric field

intensity and the potential are only 7.7Vo and 2.3Vo, respectively. Moreover, the

calculated values are also very close to the exact ones, the relative errors of the electric

field and potential a¡e within 57o.

Another conclusion is that the second-orde¡ isoparametric triangula¡ elements with

curved elements on the coronating conductor surface provides satisfactory results and

saves a lot of computer time compared with the cubic polynomial approximation as

shown in Table 3.1. Therefore, the quadratic polynomials are used to describe the

potential variafion within each element tlroughout this thesis.
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Chapter 4

APPLICATION TO HYBRID AC/DC LINES

This chapter details the solutions for the ionized field of the hybrid line Geometries 1

to 4 using the iterative finite element procedure discussed in chapter 3. For the

purpose of analyzing the shielding effect of the ac conductor.s in the hybrid lines, one

bipolar line geometry (Geometry 5) has also been studied.

4.1 MESH GENERATION AND EVALUATION

Following the mesh generation procedure cleveloped in Section 3.4, different meshes

were consh'ucted and evaluated. The formulation of a mesh has a significant effect on

the accuracy of FE solutions t4l. The meshes can be evaluated by comparing the

solutions for the space-charge-free elect¡ic field cletermined by FEM with the ones

obtained by the method of images described in Subsection 3.3.1.

Tables 4.1 & 4.2 show the errors co'esponding to various finite element meshes,

whe¡e

. Ndc - number of nodes on the dc conductor.
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. Lo - initial segment length from dc conductor.

. rdc - radius of the dc conductor.

. WF - weighting factor.

. IN - initial nodes (triangle vertices) in a mesh.

. NT - number of triangular elements in a mesh.

. Nodal Error, Centroid Error, DC Cond. Error, C¡ound Nodal Error - the

relative differences between the numerical (Finite Element) and anatytical

(image method) solurions for the potential and the magnitude of the

electric field intensity at all nodes, the triangle cenffoids, the conductor

nodes, and the ground nodes, respectively.

. RMS - root mean square.

. Max, - maximum nodal error,
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Me sh 1D 1À1 IDIA2 1D1A3 1D1A4 LD1A5 l- D 1A6

N
dc

9 9 9 I 9 9

L o
r
dc 0.3r

dc
0.5 r

dc
0.5r

dc
0.3 r

dc
0.3r

dc

WF 1_.5 1.5 r.5 L.5 L.6 1.4

IN L62 189 L80 t_60 170 22r

NT 270 3L8 302 264 285 375

Nodal
Error
(v")

RMS 0.46 0.46 0.65 0.69 o .46 0.48

Max . 3.84 4 .44 7 .30 7.75 3 .1-4 5.51

V Centroic
Error (Vo)

RMS 1.09 0.99 0.90 0.78 1.08 0.71

Max. L2.L6 11.97 L0.52 B,7B L3 .54 10.9

E
Nodal
Er¡or
(vo)

RMS 5.96 3. 63 4 .08 3 .83 4.0 3.15

Max . 21 .8 2L .2 L7 .03 r6.57 16.3 25 .8

E Centroid
Errot (o/o)

RMS 1.43 1.09 1.31 1 .3r. r.18 0. 88

Max . 9.09 10 .1_5 15.1 7.10 13 .4

E DC cond. nodal
E¡ror, RMS (å)

10. B 1 .51 3.25 6 .49 1.55 T.3A

E cround Nodal
Error. RMS (å) 11_ 6 11 .3 9.24 6. 90 8.53 6. 68

Table 4.1: Errors for Various Meshes, Geometry I, Vac = 0, V¿, = gQ þy
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T able 4,2: Errors for Various Meshes, Geometry 2 &3,Vac= 0,Vdc=t 300kV

Geometry 2 3eom. 3

Mesh 2D3À1 2D3A2 2D3A3 2D3A4 2D3A5 2D3.A6 3D3A

N clc 5 4 5 5 5

L o
I

dc 0.3r 0.5r 0.5 r 0.3r 0.3 r 0.3 r.

FlF 1.5 1.5 1.5 1.6 L,A 1,.4

IN 84 99 93 88 115 11?

NT L25 1,49 740 106 t32 L75 178

Nodal
Enor
(7o)

RMS 0.48 0.46 0 .54 0.51 0.58 0 .33 o .44

Max. 1.38 1.30 2.30 2 .63 r.B0 L .28 1.84

V Centroir
Enot (Vo)

RMS 1.09 1.59 l.l_9 1.1L 0.83 1.04

Max. 7 .00 6.9L 12.9 i.0.66 b. /J 1 tt 8.5

E
Nodal
Error
(E")

RMS 5.09 3.4 3 .9't 4 .25 4.60 2.79 5. /t)

Max 14. s 14 -2 13.1 20 .7 16.9 L2.B r'1 .7

E Cennoic
Enor (Vo)

RMS 1.39 0.99 0.99 0. 9s 1.27 0.63 0.'17

Max, 4.06 3. 90 3.45 2 .44 4 .39 ') oÊ 4.38

E DC cond. nodal
Error¡ RMS (*) B, B9 2.r5 5. 68 2.05 z - la\ 2 .20

E Ground Nodal
Brror/ RMS (t) 8.45 8.26 1.13 LI ,94 9 . A0 I.'t2 4.87
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The above two tables show that the FE procedure is more accurate at centroids than at

nodes as concluded in [4]. The maximum errors (Max.) occur at nodes on the

altificial boundary and at the centroids of triangles adjacent to the a¡tificial boundary.

The FE procedure gives less accurate results near the artificial boundaries. The

accuracy of the electric field around the conductor surface increases as the number of

conductor nodes increase and the density of the triangles a¡ound the conductor

increases (Lo decreases). In general, an increase in the number of triangular elements

(NT) improves the accuracy of a mesh but also increases the CpU time.

All the meshes in Tables 4.1 &. 4.2 use second order elemenrs. Mesh lD1A6 is

chosen for the FE solution for Geometry 1. Meshes 2D346 and 3D3A are chosen for

Geometries 2 and 3, respectively. For Geometries 4 and 5, the same N¿., Lo, and WF

a¡e used as in Mesh 2D346.

4.2 INITIAL APPROXIMATION FOR THE SPACE CHARGE

DENSITY

The initial distribution of the charge density p at the finite element nodes is obtained

by employing an equivalent coaxial cylindrical system with the inner radius equal to

the radius of ùe coronating dc conductor (r") and outer radius R detemrined by :

R=rcexp (¡ff;) (4.1)

where E',,'u* is the maximum space-charge-free electric field on the surface of the dc
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conductor in the actual geometry and V¿" is the potential of the dc conductor in the

actual geometry.

Therefore, the space charge density on the inner conductor in the equivalent

concentric cylinder system p0 can l¡e obtained by the implicit equation (4.2.4), from

the Appendix A.

Assunring that dre maximum space charge on the dc conductor su¡face for the actual

line is eclual to ps and the space charge distribution on the dc conductor is to vary in

the following form:

P"(o)=0.5p6(1+cos0) (4.2)

where 0 is the angle ofthe dc conductor node on the dc conductor where the field line

originates, and 0 equals zero corresponding to the maximum space-charge-free field

on the dc conductor sutface.

The space charge density at any point along a space-charge-free electric field line is

given by the known analytical solution for the coaxial cylinder geometry [21],

p(e,r)=ltt""u"PlÐ
tlt2 +xl-rg

(4.3)

where

Kz=
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and L is the length of the field line from the dc conductor node to the point of interesr

in the problem domain.

4.3 UPDATE ALGORITHMS

As mentioned in section 3.2, the update algorithm is based on the approximation for

the space charge p and the simultaneor¡s solutions of Equations (3.1) ancl (3.2), along

with the third boundary condition (Kaptzov's assumption). In general, an update

algorithm has the following form,

pnew = pol¿ f (Áo, 
^8, ^Ec)

(4.4)

where pnerv is the updated charge density at the node and portr is the crrarge density at

the same node used in the previous iteration; ÀÕ=(Þr-Õ2, ÁE=Er- Ez, Á8"=E.1_ E"2

are the discrepancies between the solLrtions from Equations (3.1) and (3.2) for the

potential, field inrensity and the field intensity on the dc conductor surface,

respectively. The function f (^O, 
^E, 

ÂE") should be 1 when convergence occurs.

Different approaches have been employed in the lite¡ature. Abdel-salam et al. [ig]
used an updating formula based on the differences between Õ1 and <Þ2 only. No

information was given orì the enfo¡cenent of the thi'd bounclary condition. Gela [30]

lused a correction formula based only on the deviations of E.1 and 8"2 from the

Kaptzov's boundary condition. In the present work, two clifferent update algorithms

have been examined fol the different line geometries.
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4,3,I Update Algorithm for Geometry 1

The following equation was used in the update âlgorithm for Geometry 1,

pnewi = pordi,qT@,"¡ t * offi I ¡ r +^¡9raal (4.s)

where a, g, and y are parameters chosen to ensure convergence. Different choices of

these parameters affect the speed of convergence significantly as shown in Table 4.3.

ôE, õV, and ôp in Table 4.3 are the RMS errors at the triangle cenr¡oids which have

the same expressions as given in Subsection 3.5.2; ô8"1 and õE 2 are defined as:

u""'=l&È"" ]**, a'd ôt"=[e;r4" ]*r,

where E1¡ and E2¡ are the magnitudes of the electric field intensity at dc conductor

node j obtained from equarions (3.1) and (3.2), respectively; the RMS error is

computed over the dc conductor nodes.

The last column in Table 4.3 gives the number of iterations.
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Tal¡le 4.3: Convergence for Different Constants a, a, and y, Geometry I, VÕc = 0,

vac = 60 kv

a c[ v ô¡
(å)

ôv
(%)

ôp
(å)

ôE 
",(t)

ôE 
"z(å)

Iter.
#

-0. t -2.4 0.0 0. 83 0.91 0.96 4.5 4.0 5

0.5 0.0 0. B1 0. 99 3.6 3.0 4

r- .0 -2.A 0.0 0.80 0.89 2.8 3.0 4

-0.1 -2 .4 -1. 0 0.93 0.74 1.0 4.5 3.0 A

-0. L -2 .4 1.5 D iverge

-0.1 1.0 -1.0 0. B0 0 .16 o.82 4.9 10

-¿.u 1.0 0.78 0.87 0.87 4,6 3.1 5

0.5 -l - 4 -1.0 0 .72 1.0 2.2 3.0 3.6 5

-0.1 -3.0 1.0 Diverge

L.2 -l - 4 0.0 0.79 0.86 2.8 I r.u 3.0 4

-0.5 -2 .4 0.0 Diverge

-0.1 -z.z 1.0 0.96 0.7't 1.0 4.4 3.0 4

1.0 -2 .4 0.5 O. BB r..0 1.8 3.1 6

-0.1 1_,5 1.0 0.90 0. B0 0. Br. lo 4.6 6

1.5 -1.0 0.84 1.0 4,0 2.0 19
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Figure 4.1(a) - Figure 4.2 show the convergence of the iterative procedure, i.e., the

changes in ôV, ôE, ôp, ð8"r, and ôE., with respect to the number of iterations for

a=-0.1, cr,=-1.0, and p-1.0. Figure 4.1(a) - Figure 4.1(c) also compa¡e rhe

convergence of the iterative procedure with two different initial space charge

distributions. The solid cr¡rve represents the results with an initial charge distribution

given by Equation (4.3) and the dashed curve with an initial charge distribution

obtained by increasing the first one by s\vo. It can been seen that in spite of rhe

significant initial errors, the algorithm works its way through to convergence.

zt

'1 8

'l 5

bQ rz

às
6

1

0

o 3 6 I 12 15 18 21 24 27 30

N um ber ol llerotions

Figure 4.1(a): Devìation EV vs Number of lterations
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Figure 4.2: Deviations EE¿ and 68"2 vs Number of lteratíons

4.3,2 Update Algorithm for Geometries 2 fo 5

When Equation (4.5) is applied to Ceomerries 2 to 5, the parameters a, s, and y

cannot be easily found to ensure convergence. Since the update algorithm is not

unique for a certain geometry, the following equation is used for updadng the space

charge density for Geometries 2 to 5,

pnewi = pordi t 1 + ., f,# tor, * yfr# I { L r + B \} r r r + n 
E";;E'?i 

r } 
frå

(4.6)

where q,, B, y, q, and b are the convergent parameters. K is the total number of
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elements in one of the corridors, which are formed by space-charge-free field lines

from dc conductor nodes to the ground nodes. The value ofk is determined by the

relative position of an element in a corridor, which starts at 1 for elements adjacent to

the dc conductor and inc¡eases linearly to K for the elements adjacent to the $ound

level. The last term ensures that the correction to enforce the Kaptzov,s boundary

condition has a gteater effect nea¡ the dc conductor.

By using the same nial-and-error procedure as for Geometry 1, it was found that the

convergence could be achieved for the following values of the parameters: cx, between

-2.5 and -0.8, B between -1.5 and -0.5, r1 between -1.0 and -0.2,ybetween -1.2 and

0.5, and b between 1.5 and 3.5. The optimum values depend on the geomeuy and/or

the mesh. For Geometries 2 &.3,the solutions were obtained for q = -1.0, B = -0.5,

n = -0.25, b = 2.5, and Y = -0.5. For Geometry 4, the same values of the parameters

were used, except b = 2.0 and T = 0.0. For Geometry 5, the same values as in

Geomeüjes 2 &,3 were used, except b = 2.0 and y = -0.5.

It can be seen from the two update algorithm Equations (4.5) and (4.6) that upon

convergence, i.e., when Õri - Õzi, Eri = Ezi, Erj = Ezj = Eo, the coûection to p

tends to vanish and pnewi = poldi.
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4.4 COMPUTED RESULTS AND ANALYSIS

4.4.1 Comparison of the Computed Results rvith Experimcntal Data

for Geometry 1

The computed results for the laboratory line a¡e based on the solutions of the time-

invariant ionized field problem described before, i. e., Vo"=e. The effect of the ac

voltages is included by replacing the dc voltage with an equivaÌent voltage V*, which

is obtained by keeping the maximum space-charge-free field intensity constant on the

dc conductor surface irrespective of rhe ac voltages [4]. By the method of images

described in Subsection 3.3.1, the relarionship between the maximum field intensity

on the dc conductor surface, which occurs when the ac voltage is set to its maximum

negative value, and the applied dc and ac voltages can be expressed as

Emax = 1.71 V¿. + 0.57 Vu. (4.6)

where V¿. = 60 kV and Vu. is the RMS value of the ac voltage, which is l0 kV, 20

kV, and 25 kV, respectively. When Vac = 10 kV, Eru* equals 108.19 kV/cm from

Equation (4.6). Setting Vac at zero potential and keeping E,no* unchanged, the

equivalent dc voltage can be obtained by replacing V6" by V"q in Equation (4.6), i.e.,

V"q = 63.3S kV. Replacing V¿. by V* in the iterative FEM, the ionized field problem

can be solved corresponding to V.. = 10 kV. Similarly, the effect of ac voltage of 20

kV and 25 kV can also be simulated in the same manner.

Figures 4.3 - 4.6 show the comparison of the computed results with the experimental

ones for Vac=O, 10 kV,20 kV, and 25 kV, respectively. The results agree quite well

Application ro Ilyl:rid ACIDC Lines



56

for Vac=10 and 20 kV. However, when Vo.=Q, the position of the peak value of the

current density at ground level calculated.by FEM does not aglee well with the

experimental data, as shown in Figure 4.3. This is due to the fact thar tlìe ac

conductor is replaced by a line charge when the method of images is applied to

calculate the space-charge-f¡ee field. Consequently, the dimension of the ac

conductor, which may have some shielding effect on the ionized field, has been

neglected.

With the increase of ac voltages, the calculated values of the current density (J)

increase as shown in Figure 4.7, whereas the measu¡ed values have a tendency of

decrease as shown in Figure 4.8. The reason for this is that when the ac voltage is

increased above a certain value, the ac conductors will be in corona too. This

phenomena, however, is very difficult to simulate by the FEM. This explains the

bigger differences between the calculated and the measured values in Figure 4.6.

Applicst¡on to ÍIybrid ACIDC Lines
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4,4,2 Computed Results for Geometries 2 to 5

The purpose here is to analyze the effects of hybrid rine geometries o, the

comesponding lateral profiles of the elecrric field intensity ¿ìnd. the cunenr density at

ground level from point of view of environnental impact. For simplicity, the ac

conducto¡s are assumed to be at zero potential only.

The gro'nd lever lateral profiles of electric field intensity ancl cnrrent clensity for

Geometries 2 to 5 a¡e shown in Figures 4.9(a) to 4.11(a) and 4.9(b) to 4.11(b),

respectively. In Geomefy 3, the maximum etecu.ic field intensity and current density

are reduced by 4Vo and ITVo respectively, comparecl with Geometry 5. By

comparing Figure 4.9 (a) & (b) with Figure 4.11 (a) & (b), respectively, ir can be

seen that Geometry 2 does not show the obvious shielding effect of the ac

conductols, whereas its influence is much more pronounced for Geometry 4 where

the maximum electric field intensity and cur¡ent density are red'ced by lrvo and 32vo,

respectively, compared with Geometry 5. The reason is that when outer phase ac

conductors are relatively close to the center phase as compared with the distance

between the bipolar dc conducto¡s (Geometry 2), the area screened by the ac

conductors is within the problem domain whe' the ac lines are not present (ceometry

5). However, the dc corona activities are increasecl by lifting the zero potential from

ground to the position of the ac conducto¡s. when the outer phases of ac lines are

moved further apart from the center phase (Geometry 4), the area sc¡eened by the ac

lines increases a¡d the elecrric quantities (E, p, J) at ground level therefore decrease.

By comparing Figure 4. 10 (a) & (b) and Figure 4.1 1 (a) &(b) with Figure 4.9 (a) &
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(b)' respectively, it can be seen that the maximum electric fielcl intensity and current

density at gronnd level in Geometry 3 a'e rerluced by 4vo and 14vo, respectively,

compared with the ones in Geomeny 2; the ones in Geometry 4 ar.e redLrcecl by 1 1zo

and 29Vo, respectively, compared with the ones in Geomeffy 2.

It can be concluded that with â proper ac line arrangement, the hybricl line geometries

have the advantage for reducing the electric field intensity ancl cnrrent density to

values lower than those which woukl be expected by increasing the height of the clc

conductors alone.
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Chapter 5

CONCLUSIONS

An iterative FE program has been developed arìd applied to different geometries in this

work. The procedures for constructing the finite element mesh and approximating the

initial space charge distribution have also been presented. Initially, the program was

checked by applying it to the case of a coaúal cylindrical configuration, then extended

to four hybrid acldc geometries and one bipolar dc geometry.

The iterative FEM wo¡ks very well in converging to a solution of the ionized freld

ploblems even with significantly inaccurate initial approximations for the space charge

distribution. comparison of the calculated results of the ionic current density at

ground level for the single-phase laboratory acldc configuration (Geometry 1) with

available experimental data showed satisfactory agreement.

The calculated results of the ground level lateral profiles of elecric field intensity and

the cunent density for the various practical hybdd acldc transmission lines have also

been obtained. For funher discussion of the shielding effect of the ac conductors on

the electric environment, the lateral profîles of electric field intensity and the cunent

density for the bipolar geometry (Geometry 5) have also been calculated. It can be

Conclusions
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concluded that with a proper a'angement of rhe ac chcuit in a hybrid acldc line

configuration, there is a significant shielding effect of the ac conducto¡s on the ionized

field intensiry and the current density at ground level. The hybrid acldc lines have the

advantage for reducing the electric quantities to the values lower than those by

increasing the height of the dc conducto¡s alone.

Based on the ¡esearch work car¡ied out in this thesis, it is recommended that the

present analysis be extended to the case of bundled hybrid acldc tra¡smission lines.

In addition, it was found that the final values for the space charge distribution at

ground level were different when the initial approximations were different even

through convergence of solution was reached as specified. It is ¡ecommended that an

improved analysis by employing the space charge density on the coronating conductor

surface as the thi¡d boundary condition be devetoped in the future ro ensure the

unique solutions not only for the ionized field but also fo¡ the final space charge

distribution.

Conclusíons
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Appendix A

MISCELLANEOUS EQUATIONS

A..1 DETERMINATION OF SPACE.CHARGE-FREE FIELDS BY THE

METHOD OF IMAGES

4.1.1 Solutions for Geornetry I

v*= e1h 2p + arh H# = e1c + e2 B

v^"= Q1L'##+ Q2t¡ZEz= erB + e2 A = o

whe¡e A =r"'Y, e=r"ä#, andc=ln2llt

Let DEr=l ; il=^c-B2, nowwehave at =A #, qz=-B#.

The potential at any point (x, y) can be expressed as,

M i s c e I lan e ous Equat i o n s



o1x,y¡=$rn**#.y"ffi

The magnitude of the space-charge-Íìee field intensity at any point (x, y) is,

E=^/*.+q

Ex=Exr+E"2+E*3+E*4,

r - Qrx.Lryt --- -

(H1 -y)2+¡2

- O:x
(H2-y)2+P'

n,- -Q2x
lljxS - --------------- 

- 

,
(H2+y)'¿ +x2

E,o= - Qr x
(H1 +y )2+x2

Er=Eyr+E 2+Ey:+ Ey+

,r - - Qr (Hr- y)
"Yt - (H;- Ð2 + *?

,.,. - - Qz (Hz- Y)

(H2-y)2+v2

. -- - Qe (Hz+ y)
"Yt- JË'2+v)2+xz

. - -Qr(Hr+y)
Dv4 - ----------_-_---' (Hr +Y)¿+Y2

4.1.2 Solutions for Geometries 2 to 4

uo"= q,l, çy. ;l" ffiffi . $, $ffiff

M i s c e ll an e ous Eq uat í on s



*9¡[ 1n 
(Sr -S¡)2+(Hr +FI¡)2 *,n (Sr +S¡)2+ (Hr -H:)2'l

¿L (S1 - S3)2+ (Hr - H¡)2 (S1 +S3)2+ (H1 + H3)2.1

o=qrn?Þ

0 =g[ ,n (sr - Ss)1+ ( Hr + H¡)2 -,n (Sr + s¡)2+ ( Hr + H¡)2.l
¿ | (Sr-S¡)2+(Hr-H¡)2 (S1+S3)2+(Hr-H¡)2.J

.9'"$ffi$*q'Ih*.1'"ffiffi

+ Qr =aS, Q2=0, andOs =-r'ffi,whereDEr=A.C-82,

A =lu 
2=H3 + 1 ,n (2 S¡)2+ ru?
rac 2 -'- 12 gr¡z+ (2çr¡z '

s=!f 1n 
(sr -sg)1+(Hr +H¡)2 -rn (sr +s¡)2+ (Hr +H¡)2'l

zl (Sr - S¡)2+ ( Hr - Hs)2 (Sr + S¡)2+ ( Hr - Hg)21

ç = ¡¡ 
2=Hr * t ,n (2 Sr)2+ r3"
rdc 2 (2 Sù2+ (2Hù2

Then the potential at any point (x, y) is given by,

M ís c el laneous E quat io n s



E=^/É?^+82v,

where E* is the sum of x component of the electric field of each line charge including

the imaged ones, E, is the sum of y component of the electric field of each line charge

including the imaged ones.

4,I.3 Solutions for Geometry 5

Õ (x,y)=9i t (xr -sr)21(v+Hr )2 * (xr +sr)2+(y-Hr )2'lzl (x1 - S1)2+ (y-Hr)2 (x1 +S1)2+ (y+Hr)2j

* Ql ,n (xr-S¡)2+(y+n¡)2,. (xr+s¡)2+(y-H¡)21
2L (x1 -S3)2+(y- H¡)2 (x¡ + S3)2+ (y+Hs)21

and the magnitude of the space-charge-free field intensity is,

v" = a,|," zp. ;" ffifiþ",J = er c,

where C = h 2=H1 
+ !,n (2 Sr)2+ r3"

rdc z (2 Sì2+ (2HlD2

-.. - V¿.,_-' vl _lc

Then the potentíal at any point (x, y) is given by,

M ìs c ell aneous E quation s



@(x,y)=9r | 1n (*r-sr)l+(v+Hr)2 * (xr +sr)2+(y-Hr)2'l
"l (xl - S1)z+ (y-Hr)z (x1 +S1)2+(y+Hr)2J

and the magnitude of the space-charge-free field intensiry is,

r;------;E=NEi+Ei,

where E" and E, have the same definitions as in 4.1.2.

4,2 ANALYTICAL SOLUTIONS FOR

COAXIAL CYLINDER GEOMETRY

THE IONIZED FIELD IN

Fo¡ the case depicted in Fig. 3.11, the analytical solurions for Õ, E, and p in the

region of interest ( r", r, ) are given by the following closed form equations by Gela

t171,

ÕG) =%-x1{r11r¡ - K2 +K3[nfr +m (K3+K2) _ ln (K3+t(r) )] ] (A.2.1)

E(t) =+f1(') @.2z)

otl=€T",tJtu
r 1(¡)

,. {r" E" po¡-r=---.-, f¡)=li*sS-¡¿

(4.2.3)

where

M is c el I an e ous Eq ua ti ons



r, = 6FE , K, =^[t<14 ,
Po

and p6 = p (rc) determined implicitly by the following equation,

v" = K1{f1(rr) - K2 + K3 I r f . rn ( K3+ K2 ) - ln f r¡+ r,(t) )] } 6.2.4)

M is ce ll an e ous Equ a t í o n s
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Appendix B

PROGRAM LISTING

8.1 MESH GENERATION PROGRAM

/ VANG JOB',,,T=2M,L=35,I=20','DC-AC FEPMAP',CLASS=1

// E)GC V/ATFIV,SlZE=2048K

//SYSIN DD *

SJOB WATFIV IVANG,IIOEXT

c
C DETËRMINING A FE MESH FOR TI]E FIVE CONDUCTOR PROBLEM
C

IMPLICIT REAL*8 (A.H,O-Z)

REAI* 8 TH,VDC,VAC,TSTEP,Hl,TT2,R,PHI,THS,THM,TD,PI,TNW(800,3),

& x(28000),y(28000),Ð(28000),xN(200),yN(200),A,B,C,DEr,W,rH2,rNMlN,

& rNMAX,c,xA(100),yA(100),xs(2000),ys(2000),Dr,p(800),xp(500),

& \?(s00),rN(200),RoE(200),r(28000),DL(200)

TNTEGER NL,NN(20),Np,r,J,K,L,M,iT(800,3),NT,NL I
COMMON A,B,C,DET,VDC,VAC,H1,H2,1V,H3,S 1,S3

C THM=I11.0-69.0

c2 THM=I08.0-66.0

THM=106.0-63.0

VDC=300000.0

VAC=0.0D0

DI=4.0D-6

TSTEP=0.0000001

Pr=3 .r4r592653

CZ Hi=16.34

Hl=17.34

S 1=4.57

II2=14.20

FÍÌ=12.38

s?=s ¿q

Program listíng
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C

c

S3=6.49

RDC=0.01755

RAC=0.01599

L=0

W=60.0*PI

TNN,flN=0.0000001

TNMAX=0.000001

G=I.4

NL=5

NIF4
NL1=NL-1

THS=THMÂ.{L1

DO 10 I=I,NL
TH=THS*(I-1)+63.0

CALL RKP(TH,TSTEP,R,DC,NP,TD,X,Y,T,D,TNMIN,TNMAX)

C

CAIL PATH(TSTEP,NP,TD,NN(I),XN,YN,TN,DL,RDC,X,Y,T,D,G,Ð

C CALL INROE(TH,RDC,PI,}A{,YN,TN,NN(I),ROE)

cALL CTNROE(TH,RDC,pt,)ôr,yN,DL,t {N(r),ROE)

M=NN(Ð

PRINT,'NN=',M

DO 70 J=l,M
70 PRTNT,ROE(J)

DO 20 J=l,M
K=L+J

xs(K)=xN(J)

20 YS(K)=YN(J)

10 L=L+NN(I)

c
C PRINT NODES

C

PRINT5O

DO 30 I=1,L

)G(I)=1000.0*xs(D

YP(r)= 1000.0*YS(r)

30 PRTNT60,XS(Ð,YS(r)

c

Prograrn listing
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50

60

CALL TRIANG(NTL,NN,IT,NÐ

CALL MESH(XS,YS,NOÐ,T,NT)

cArL DrR(VDC,¡INJ.{L)

CArL ALT2CI\TL,NN,RDC,THS,S i)
STOP

FORMAT(iX,'NODES)

FORN4AT(1X,F19.1 5,F20. 1 5)

END

TAKING THE PATH ANÐ RETTIRNING THE NODES

SUBROUTINE PATH(TS TEP,NP,TD,NN,XN,YN,TN,DL,RDC,X,Y,T,D,G,Ð

IMPLICIT REAL*8 (A-H,O.Z)

REAr+8 x(28000),y(28000),D(28000),rD,xN(200),yN(200),R,rEMp,G

REAr+ 8 rN(200),TSTEp,T(28000),DL(200)

INTEGER I,K,NN,NP,NHJ

TEMP=DLOG (1.0+TD*(c- i.0)/(0.3*RDCyDLOc(c)
NN=TEMP

NN=NN+1

NH=NN2+1

xN(1)=x(1)

YN(1)=Y(l)

rN(1)=r(1)
DL(1)=D(1)

K=2

TEMP=0.3+RDC

c
DO 220 J=1,NP

rF(D(J).LE,TEMP) cOTO 220

)o{(K)=x(J)
YN(K)=Y(J)

rN(K)=r(J)
DL(K)=D(J)

TEMP=D(J)+(0,3*RDC)xc**(t(_ 1)

K=K+ 1

2æ CONTINUE

230 CONTINLIE

c
c
c

c

Program listing
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c
C235 CONTINUE

C237 CONTINUE

C

iF(YOiP).Lr. 1.0) Y(NP)=0.0D0

)Õ{(NI\Ð=x(NP)

YN(NI9=YOIP)

TN(NÐ=T(NP)

DL(NìÐ=D(NP)

C NN=NN+I

C ET.SE DO

c iF(Y(NP).Lr.0.0) Y(NP)=0.0D0

c xN(t{\D=x(NP)

c YNOIÌ.Ð=Y(NP)

c rN(Nr.Ð=r(NP)

c DL(N\D=D(NP)

C END IF

C

RETLTRN

END

C

C DETERMINING TI{E INITIAL DISTRIBUTION OF THE CHARGE DENSITY
c

SUBROUTINE iNROE(THßDC,PI,XN,YN,TN,NN,ROE)

IMPLICIT REAL*8 (A-H,O.Z)

REAL*8 )O{(200),yN(200),TN(200),ROE(200),EpSO,FK,Cr,TH,EST,

& EON,RDC,T,PI,EEX,EBY

INTEGER NN,I,J,K

EPSO=8.854D-12

EK=1.5D-4

cr=L.2z2D-5

EEX=EX(xfN(1),YN( l),0,0D0)

EEY=EY(xN( 1),YN(1),0.0D0)

EST=DS QRT(EEX*+2+EEY+*2)
ROEM=0.236134D-6

C EON=5.981D+6

C ROE(1)=CV(4.0*RDC*FK*ESÐ+DCOSCIIV2.["PI/180.0)

ROE(1)=ROEM*0.5*( 1.0+DCOS (IH*PI/1 80.0)

Program Iístìng
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c RoE(1)=ROEM*DCOS(THn.O*Pr/180.0)

DO 10 J=2,NN

10 ROE(J)=ROE(1)/(1.o+ROE(1)*FK4,TN(J)ÆPSO)

RETTJRN

END

C

c
SUBROUTINE CINROE(TH,RDC,PI,XN,YN,DL,NN,ROE)

IMPLICIT REAL*8 (A-H,O.Z)

REAL,k8 XN(200),yN(200),DL(200),ROE(200),EpSO,FK,ROEM,rH,

& EON,RDC,T,pr,FK2,DS(200),EEX,EEy,EST

INTEGER NN,I,J,K

EPSO=8.854D-12

FK=1.5D-4

EON=2.209D+6

EEX=EX(xN( 1),YN( Ð,0.0D0)
FEY=EY()il{( I ),YN(1),0.0D0)
EST=DSQRTGEX**2+EEY**2)

C ROËM=0.0714I(FK*ESÐ

C PRINT,'ROEM=',ROEM

C ROEM=0.136134D-06

ROEM=0.46i34D-07

c RoE(1)=ROEM*DCOS(THl2.O*PV180.0)

ROE(1)=ROEM*0.5*(1.0+DCOS(TH*pt/180.0)

FK2=O5 q¡16D"*EON*EPS OIROE(1)
DO l0 J=2,NN

DS (J)=DSQRT(XN(J)**2+( 16. 34-yN(J)**2)
c10 RoE(J)=DSQRT((EPSO*EON*RDC,*ROE(1))/@S(J)**2+FK2**2_RDC**2)

10 ROE(J)=DSQRT((EPSO*EON*RDC*ROE(1))/(DL(J)**2+FK2**2-RDC**2))

RETURN

END

C

C DEFiNING THE TRIANGLES

C

STIBROI]TINE TRIANG(NI-,NN,TT,NÐ

C

IMPLICIT REAL*8 (A-H,O-Z)

INTEGER IT(800,3),NL¡IN(20),NT,I,J,K,L,NL2¡IN1,NND

c

Program listing
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C

K=0

NT=0

lrrl-1=NL- 1

DO 310 r=i,NLl
NNt=2*NN(Ð-NN(I+ 1)- 1

DO 320 J=1,NN1

IT(NT+1,i)=K+J

ITO{T+ I,2)=K+NN(I)+J

IT(NT+ 1,3)=K+NN(I)+J+ 1

C

IT(NT+2,1)=K+J

IT(NT+2,2)=K+NN(l)+¡+ t
IT(NT+2,3)=K+J+ 1

320 NT=NT+2

c
K=K+NN(r)

IF(NN(I+i).EQ.NN(I) coro 3 10

NND=IAB S (NN(I+ Ð-t {N(I)
C

DO 330 L=l,NND
IT(NT+1,r)=K-NND+L- 1

IT(ìrlT+ i,2)=K+NN(I)-NND+2*L-2

IT(NT+1,3)=K+NN(I)-NND+2"L- 1

IT(NT+2,1)=K-NNo+L-l

IT(NT+2,2)=K+¡IN(I)-NND+2+L. 1

IT(¡IT+2,3)=K.NND+L

c
IT(NT+3, 1 )=K+NN(I)-NND+2*L- 1

IT(NT+3,2)=K+NN(1)-NND+2*L

iT(NT+3,3)=K-NND+L

330 NT=NT+3

310 CONTINUE

c
NT=0

PRINTSTO

Prograrn listìng
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ÐO 340I=i,NLl
NT=NT+O{N(I)-1)*2

340 NT=NI+NN(I+1)-NN(Ð

DO 350 I=1,NT

350 PRINT3ó0,IT(r,1),rT(r,2),rT(r,3)

c
RETURN

360 FORMAT(1X,r3,2r4)

370 FORMAT(1X,'TRIANGLES)

END

C

C DETERMINING TI-IE PATH OF A PARTICLE USING A RT]NGE-KU:|TA 4TH ORDER

c
SUBROUTINE RKP(TH,TSTEP,RDC,NP,TD,X,Y,T,D,TNMIN,TNMAX)

IMPLICIT REAT*8 (A-H,O-Z)

REAL*8 H 1,H2,W,RDC,TOT,TNMIN,TNMAX,TSTEP,

& RH,X(28000),y(28000),T(28000),H,TNi,rH,pr,FK,D(28000),TD,DS,ySTEp

INTEGER IJ,ND

COMMON A,B,C,DET,VDC,VAC.PHI,H1,H2,W,H3,S 1,S3

c
c

RAC=0.01599

RDC=0.01755

PI=3 .141592654

FK=0.00015

A=DLOG(2.0*H3/RAC)+0.5*DLOG((2*S3)+ t'l2+RAC*+2)/((2*S l¡**2
& +(2*H3)rr+2)

B=0.5*DLOG((S 1-S3)**2+(H1+H3)**2)x((S 1+S3)+*2+(H1-H3¡xx2¡

& /((S 1-S3)*x2+(Hl-H3)**2)x((S 1+S3)**2+(Hl+H3)*x2)))

C=DLOG(2*H1/RDC)+0.5*DLOG(((2*S l)**2+RDC**2)/((2*S 1)**2+

& (2*H1)**2)

DET=A*C-B*x2

H=FK*TSTEP

c
C MAXIMUM AND MIMMUM DISTANCES BETWEEN SUCCESIVE POINTS

C

X(t)=S 1 1¡Pç'*otIN(PI*TH/1 80.0)

Y(l)=Hl-RDC*DCOS(Pr+TrV180.0)

ProBram.listing
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r(1)=0.0

D(1)=0.0

c
DO 110 I= 1,28000

c PRTNT,'X="X(r),'y="y(Ð,,TN1='JN1

RH=DSQRT(Y(I).H3)**2+(X(l)-S3)* +2)

iF(Y(r).LE.0.0) coro 1s0

120 cArL RK4(K(I),Y(I),X(I+1),Y(I+1),r(I),H,rN1,FK)

rF(TN1.Lr.TNMAÐ GOTO 130

C DECREASE STEP SIZE

H=H*0.5

GOTO 120

1 30 DS=DSQRT((X(I+ 1)-x(I))**2+ff (I+ 1)-y(r¡* *2¡

rF@s.LT.RDC) GOTO 170

H=H+0.5

GOTO 120

c
C INCREASE STEP SIZE

170 m(TN l.cT.TNMnf GOTO 140

H=H*2.0

c
C INCREMENT TIME

C

140 T(I+1)=T(I)+H/FK

D(I+1)=D(Ð+DS

c
110 CONTINUE

C

C HIT

C

150 NP=I

ror=ro{P)
C PRINT,'TOT=',TOT

TD=D(NP)

RETI'RN

c
END

Program listìng
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c
C

c

A SINGLE STEP OF TI{E R-K METHOD

ST'BROUTINE RK4(XN,YN,}O{1,YN1,T,H,TN1,K)

IMPLICTT REAL*S (A-H,O.Z)

REAL*8 T,H,>ô¡,YN,)ÕÌ1,YN1,TN 1,KX i,KX2,KX3,KX4,KX5,KX6

REAL*8 KYi,KY2,KY3,KY4,KY5,KY6,K,T:I,)P,\?

Kx 1=EX()o{,YN,T)

KY1=EY(XN,YN,T)

)G=XN+H+KX12.0

YP=YN+H*KY1/2.0

rT=T+HtZ.0lK

KX2=EX(XP,YP,TÐ

KY2=EY(XP,YP,TÐ

XP=)O{+H* (KX 1 +KXZ) / 4.0

YP=YN+H* (KY 1+KY 2) / 4,0

TT=T+IV2.0/K

KX3=Ex(XP,YP,TÐ

KY3=EY(>íP,\?,TÐ

XP=XN-H*KX2+2.0*H*KX3

YP=YN-H*KY2+2.0*H*KY3

TT=T+H/K

KX4=EX(XP,YP,TÐ

KY4=EY(XP,YP,1"Ð

XP=XN+H*(7.0*KX 1+1 0.0*KX2+KX4)/27.0

YP=YN+H*(7.0*KY 1+ 10.0*KY2+KY4)/27.0

TT=T+ú1.5/t(

KX5=EX(XP,YP,TÐ

KY5=EY(>P,YP,TÐ

XP=XN+H*(28.0+KX 1 - I 25.0*KX2+546.0*KX3+54.0*KX4 -37 8.0+K)f'5) / 625.0

YP=YN+H* (28.0*KY 1 - 125.0+KY2+546.0+Ky3+54.0*Ky4-378.0*Ky5)/625,0

TT=T+H/5.01K

Progrant listing
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KX6=EX()íP,YP,TÐ

KY6=EY(XP,YP,TÐ

c
XN1=XN+H*(KX 1+4.0*KX3+KX4)/6.0
yN1=).r{+H*(Ky 1+4.0*Ky3+Ky4)/6.0

C CAICULATION OF ESTIMATE OF TRITNCATION ERROR

c
)C,=(-42.0*KX i-224.0*KX3-21.0*KX4+ 162.0*KX5+125.0"KX6)

YP=('42.0*KY1-22.0*KY3-21.0*Ky4+162.0*Ky5+ 125.0*Ky6)
TN 1=HxDS QRT()(P** 2+Y P* *2) 

I 336.0

C PRINT,'XN1=',XN1,'YN1=',YNl,'TN1=',TN1

RETLIRN

END

C

C DETERMINING THE DIRI B.C.

C

SUBROUTINE DIR(VDC,NN,NL)
REAL*8 VDC,V

INTEGER NN(20),NL,NL1,I,J,N1,N2

PRINT 630

NL1=NL-1

J=0

DO 620 I=1,NL1

N1=J+1

N2=J+NN(Ð+1

PRINT 61O,N1,N2,VDC

J=J+NN(I)

N2=J+NN(I+ 1)

V=0.0D0

620 PRINT 610, J,N2,V

RETURN

610 FORMAT(1X,t3,r4,4X,F10.3)

630 FORMAT(1X,'DrRI)

END

c
C DETERMINING TIIE CURVED BOLINDARY

C

SUBROUTINE ALT2(NI-,NN,R,DC,THS,S 1)

Program listing
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REAL*8 TH,THS,XA,YA,RDC,S 1

INTEGER NN(20),NL,NL1,i,J,LN

CZ Hl=i6.34
H1=17 .34

NLi=NL-1

Pt=3.141592653

LN=4

K=1

PRINT 50

DO 10 r=1,4

TH=rtr572. g*a- tr*THS+63.0

XA=S 1+RDC*DSIN(PI*T¡Vi80.0)

YA=Hl.RDCXDCOSGIXTH/1 8O.O)

PRINT iOO,K,LN,XA,YA

10 K=l+34+I

50 FORMAT(1X,'ALTEREDNODES)

100 FoRMAT(1X,t3,I4,4X,2F20.15)

RETIJRN

END

C

C EVALUATING TIIE FIELD IN TIIE X DIRECTION AT A CIVEN TIME AND POSITiON
c

FLINCTION EX(X,Y,Ð

c
IMPLICIT REAI*8 (A.H,O.Z)

COMMON A,B,C,DET,VDC,VAC,H1,H2,W,H3,S I,S3
C

C CALCULATING CHARGE ON CONDUCTORS

C

Q 1=(A*VDÇ+B*!AC*DSIN(W*Ð)/DET

Q3=(-B*VDC+CxVAC*DSIN(W*Ð)/DET
c

D1=(X-S 1)**2+ff-H1)x*2

D I 1=(X-S 1)**2+(Y+H I )*"*2

D2=(X+S l)*+2+(Y-Hl)**2
D21=(X+S l)*+2+(Y+H1¡x*2

D3=(X-S3)**2+(Y-H3)*+2

Program listing



D3 1=(X-S3)**2+(Y+H3)xx2

D4=(X+S3)**2+(Y-H3)**2

D4 1=(X+S3)x*2a1Y+H3)**2

EX1=Q1*(X-S 1)/D 1

EX11=-Q1*(X_Sl)lDi 1

EX2=-Q1*(X+S 1yD2

EX21=Q1*(X+S 1)/D2i

EX3=Q3*(x-S3)/D3

EX31=-Q3*(X-S3)/D31

EX4=-e3*(x+S3yD4

EX4 i=Q3*(X+S3)Þ41

EX=EX1+EX2+EX3+EX4+EX1 1+EXz1+EX3 1+8X41

RETT'RN

END

EVAIUATING TI{E ELECTRIC FIELD IN TTIE Y DIRECTION FOR A GIVEN TIME
AND POSITION

FUNCTION EY(X,Y,Ð

IMPLICIT REAL*8(A-H,O-Z)

COMMON A,B,C,DET,VDC,VAC,H1,H2,Vr',H3,S 1,S3

CAICTILATING CHARGE ON CONDUCTORS

Q1=(A*VDC+B+VAC*DSIN(W*Ð)/DET

Q3=(-B*VDC+Ç*VAC*DSIN(W*Ð)/DET

D1=(X-S 1)+*2+(Y-H1)**2

D1 l=(X-S 1)x*2+(Y+H1)+*!

D2=(X+S 1)**2+(Y-H1)**2

D21=(X+S l)*+2+(Y+Hl;+*2

D3=CX-S3)* *2+(Y-H3)x'k2

D3 1=(X-S3)**2+(Y+H3)*+2

D4=(X+S3)**2+(Y-H3)*+2

Ð41=(X+S3)*x!.a1Y+H3)**2

c
C

c
c

C

c
C

c
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c
EYl=-Q1*(H1-Y)lD1

EY11--Q1*(H1+y)lDt1

EY2=Q1*(H1_Y)/D2

EY2l=Q1*(H1+Ð/D2t

EY3=-Q3x(H3_YyD3

EY31=-Q3"(H3+Y)/D31

EY4=Q3*(r-r3-Y)/D4

EY41=Q3x(H3+Y)/D4 t
C

EY=EY1+EY2+EY3+EY4+EY1 1+EY2l+EY3 1+EY41

RETTIRN

END

SENTRY

Program listíng
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8.2 ITERATIVE FINITE ELEMENT PROGRAM

/AVANG JOB I,,T=35MJ-=50,I= 1OO',CLASS=1

// E)aËc WATFIV,S rZE=2000K,P=D

//GO.FTO8FOO1 DD DSN=WANG.ROEAD2,DISP=SHR

//GO,FTOgFOO1 DD DSN=WANG.TRIAD2,DISP=SHR

//GO.FT10F001 DD DSN=WANG.XYAD2,DISP=SHR

//GO.F.I1 1FOO1 DÐ DSN=WANG,DIRIAD2,DISP=SHR

//GO.FTi2F001 DD DSN=WANG.ALTAD2,DISP=SHR

//GO.Ff i3F001 DD DSN=WANG.EOUT2,DISP=OLD

//SYSIN DD *

$JOB WATFIV WANG,NOEXT

CSOPTIONS TIME=100

C

C

C THIS IS THE MAIN PROGRAMM FOR HYBRID ACIDC #2 TRANSMISSION LINE

c

IMPLICIT REAL*8 (A.H,O-Z)

DOUBLE pRECiStON S(60000),x(2000),y(2000),DrR(2000),8 (2000),

&. A1 (54),A2(s4),A3(54),StrB (5),EpCN(50) ELCN(50)EpcN(50),ELGN(50)

DOUBLE pRECTSTON ErCN(20),Erc(50),FJ(20),

& Fp(800),FA(800),ROr(800)¡EX(800),pEy(800),EX(800),Ey(S00),

& xN(800),yN(800),pv(800),w(800),rNw(800,3),R oN(s00),xr(800),

& yT(800),xcN(20),ycN(20),DrR(800),ROC(20),DV(1 00),DRO(l 00),

a. DEO00),EFG(20),xcN(s0),ycN(s0),vcN(20),wcN(20),vcN(s0),wcN(s0)

DTMENSTON rLl(60000),rL2(60000),rs 1(2000),rs2(2000),rs3(2000),

Progran Listing
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c

& rs4(2000), rNoDE(6000),rr(800,3)

coMMoN /DATA/ VDC,pi,RAC,RDC,H1,S 1,H2,H3,S3,A,8 1,C,DET,Qi,Q3

COI{MON ÆAIFP,FA

VDC=300000.0

VAC=0.0

Pf=3,1415926s

FK=1.5Ð-4

Hl=16.34

H2=14.20

H3=12.38

S1=4.57

S3=5.49

RDC=0.0175s

RAC=0.01599

A=DLOG(2.0xH3/RAC)+0.5*DLOG(((2*S 3)* *2+RAC* *2)/((2*S3)**2

& +(2*H3)+*2))

B 1=0.5*DLOG(((S 1-S3)**2+(H1+H3)**2)*((S 1+gl¡**21(H1-tt3¡**2¡

& /(((S 1-S3)*{'2+(H1-H3)**2)+((S 1+S3)**2+(H1+H3)*x2)))

C=DLOG(2*H1/RDC)+0.5*DLOc(((2*S 1)**2+RDC**2)/((2*S 1)**2+

& (2*Hl)**2)

DET=A*C-B 1**2

Qi=A*VDC/DET

Q3=-B 1*VDC/DET

M=60000

N=2000

L=54

Program Lísting



C

c

c

I=6000

NT=175

NNT=I15

NL=5

NL1=NL-1

INPUT DATA

CARD 1

NDEG=2

NLINO= 115

NTRI=175

NF=1

IPAS=0

NEIG=0

NG=0

CARD 2

NSOR=O

NMIX=0

NDIR=I1

NALT=4

NFREE=0

NEQUI=0

NFILM=O

c

C

C

C CARD 3

Prograrn Listing
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c

NGRID=O

NBOUND=0

IWRITE=O

IPRSUP=0

ONSET ELECTRIC FIELD IN VOLTSÀ,IETER

EON=1.84082D+6

DIFF=1.0D+2

C

CALL FINP(NT,NNT,NL,NL 1,IT,RON,X,Y)

CATL TDIST(IT,NT,X,Y,TNW)

c wRrrE(13,901)

wRrrE(13,910)

DO 10 J=1,NT

xr(J)=(x(ir(J, i))+x(Ir(J,2))+x(rr(J,3))/3.0D0

Yr(J)=(Y(Ir(J, 1 ))+Y(tr(J,2))+y(Ir(J,3))/3.0D0

Ror(J)=RoN(Ir(J, 1))*rNw(J, 1)+RoN(Ir(J,2))*TNW(J,2)+RON

& (rT(J,3)*TNW(J,3)

c10 wRrTE(13,90)XT(J),YT(J)

10 wRtTE(13,91) ROT(J)

c

C

wRrrE(13,900)

THM=108.0-66.0

THS =T}IÀ4¿IrIL I

DO 20 J=I,NL

TH=(J- 1)*THS+66.0
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XCN(Ð=RDC*DS n{GI*TH/1 80,0)+S 1

YCN(J)=H1-RDC*DCOS(pr*TtVl 80.0)

20 wRrrE(l3,90) XCN(J),YCN(J)

wRrTE(13,92)

NOI=22

K=NOI

DO 11 J=1,2

xGN(r)=x(K)

YCN(J)=Y(K)

wRrTE(13,90) XGN(J),YGN(J)

11 K=K+NOI

K=67

DQ 121=3,4

xGN(J)=x(K)

YCN(J)=Y(K)

wRrrE(13,90) XGN(J),YCN(J)

12 K=K+23

J=5

xGN(J)=x(K)

YGN(J)=Y(K)

lVRrrE(13,90) XGN(J),YGN(J)

C CAICULATE E-FIELD BY IMAGE METHOD

c

wRrTE(13,210)

210 FoRMAT(IX,ErCN)

DO 21 J=I,NLI

EEX=EX(xcN(J),YCN(J)
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EEY=EY(XCN(J),YCN(J)

EICN(J)=DSQRT(EEX'**2+EEY*x2)

wRrrE(13,21l) ErcN(J)

211 FORMAT(1X,c20.5)

21 CONTINTIE

wRtTE(13,212)

212 FORMAT(1X,'EiG)

DO 22 J=l,NL

EEX=EXI(XGN(J),YGN(J))

EEY=EY(xcN(J),YGN(J))

EIG(J)=DS QRT(EEX* *2+EEY**2)

wRrTE(13,213) EIc(J)

22 CONTINT'E

c

C

NK=30

DO 30 J=l,NK

ccc IF(DrrF.LE. l.0D-2) coTo 200

400 CALLTOP(NT,ROTßON,TNV,IÐ

CALL MAIND(S,IL1,IL2,X,Y,DIR,B,IS 1,IS2,IS3,IS4,A1,A2,A3,INODE,

& M,N,L,r,rr)

REWIND 11

REWIND 12

CALL PEOUT(X,Y,B,INODE,SUB,PEX,PEY,XN,YN,NNTJPV,NT,XT,YT,

& XCN,YCN,XGN,YGN,EPCN,VCN,NL,EPGN,VGN)

C CALLEDIFF(NOI,NLl,NNT,XCN,YCN,XGN,YGN,EICN,EIG,

C &EPCN,PEX,PEY,PV,VCN,

C &EFG,EDC,EDG,XT,YT,X,Y)
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cArL PTOL(NT,ROT,RON,Tt rW,rT)

CALL MAIND(S,IL1,IL2,X,Y,DIR,B,IS 1,IS2,IS3,IS4,A1,Ä.2,A3,INODE,

& M,N,L,I,IT)

REWIND 11

REWIND 12

CALL LEOUT(X,Y,B,INODE,SUB,EX EY,XN,YN¡{NT,J,VL,l\IT,XT,YT.

& XCN,YCN,XGN,YGN,ELCN,WCN,NL,ELGN,VLGI.Ð

C CAIL EDIFF(NOi,NL1,NT,XCN,YCN,EICN,EIG,ELCN,EX,EY,VL,\'LCN,

C &EFG,EDC,EDG,X,Y,XT,YT)

CALL NEWROE (NT,NOI,ROT,PEX,PEY,EX,EY,DlF¡,NL 1,J,EPCN,

& ELCN,PV,VL,DV,DRO,DE)

c rF(J.Gr.l) THEN DO

c rF(DRO(J).Gr.DRO(J-1) cOrO 400

C ELSE DO

C END IF

30 CONTINUE

200 FJ(1)=FK+ROT(42)"0.5*GPcN(l)+ELcN(1)

FJ(2)=FK*(ROT(4 1)+ROT(42)+ROT(84)+ROT(85)/4.0*0.5*

& (EPGN(2)+ELGN(2))

FJ(3)=FK*(ROT(85)+ROT(1 29)/2.0*0. 5*

& GPGN(3)+ELGN(3))

FJ(4)=FK*(ROr(128)+ROr( 129)+ROr(1 74)+ROr(Us))/4.0

& *0.5*(EPGN(4)+ELGN(4)

FJ(5)=FKrrROr( 17s)*0. 5*(EPGN(5)+ELGN(5)

DO 60 J=I,NL

60 wRrTE(l3,70)XGN(J),FJ(J)

DO 6i J=I,NL

EcN=0.5*@PGN(J)+ELGN(J))
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61 WRrrE(13,7i) xcN(J),EcN

STOP

213 FORMAT(1X,c20.5)

70 FORMAT(1X,2c20.5)

7r FORMAT(1X,2c20.5)

90 FORMAT(1X,2c20. i0)

900 FORMAT(1X,'XCN YCN)

901 FORMAT(1X,'XT, YT)

9r FORMAT(1X,c20.10)

92 FORMAT(1X,'XCN YGN)

910 FORMAT(1X,'ROT)

END

c

C

C READ INITIAL VALUE FOR IMTIAL CHARGE DISTRI.,XYCOOD,\'ERTICES OF

C TRIANGLES

c

SUBROUTINE FINP(NT,NNT,NL,NL I,IT,RON,X,Y)

IMPLICiT REAL*8 (A.H,O-Z)

REAL*8 RON(800),x(2000),y(2000),Roc(20)

INTEGER IT(800,3)

COMMON /PA/FP,FA

c wRrrE(l3,162)

DO i0 J=I,NNT

READ(8,*) RON(J)

10 wRrTE(13,161)RON(J)

C DO 11J=I,NL

c READ(I,*) ROC(J)
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c i1 wRrrE(l3,i60) ROC(J)

DO 20 J=I,NNT

20 READ(10,*)X(J),Y(J)

cz} wRrTE(l3,i70) x(Ð,Y(J)

DO 30 J=1,NT

30 READ(g,*)rT(J,l),rT(J,2),rT(J,3)

c30 wRrTE(l3,180) iT(J,l),rr(J,2),tT(J,3)

RETURN

160 FORMAT(G2O.10)

161 FORMAT(1X,G20.10)

162 FORMAT(1X,B.ON)

170 FORIvfAT(2c20.10)

c180 FORMAT(1X,314)

END

c

C DETERMNING TIIE WËIGHT OF EACH OF TI{E NODES IN

C FINDING TEH AVERAGE CIIARACTERISTICS OF THE TR]ANGLES

c

SUBROI.IIINE TDIST(IT,NT,X,Y,TNW)

I

IMPLICIT REAI*8(A-H,O-Z)

REAL*8 X(2000),y(2000),TN V/(800,3)

INTEGER IT(800,3)

c

WRITE(13,11)

DO l0 J=I,NT

Dr 2=DsQRr(6(ir(J, 1))-xgr(J,2))**2+(Y(Ir(J, 1)-Y

& (tT(J,2))**2)
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D23=DSQRT(6(Ir(J,2))-x(rT(J,3))**2+(y(rT(J,2))-y

& (rT(J,3))**2)

D3 1=DSQRT((X(Ir(J,3)-x(rT(J, 1))**2+(y(rr(J,3))-y

& (rT(J,1))x*2)

DD=Dl2+D23+D31

TNW(J, 1)=0.5D0*(D 12+D3 1 )/DD

TN\ry(J,2)=0. 5D0*(D I 2+D23)/DD

10 TNW(J,3)=0.5D0*(D23+D3l)lDD

c10 wRrrE(13,12)rNtV(J,i),rNW(J,2),rNw(J,3)

11 FORMAT(tX,'TNW)

r2 FORMAT(1X,3c20.10)

RETURN

END

C

C

C TI{E CODFFICIENTS OF TÊIE PDE

c

SUBROUTINE ABC(ITR,FX,FY,A1,B 1,C1,D1,E1,P1)

c

IMPLICIT REAL*8 (A-H,O.Z)

REAL*8 FP(800),FA(800)

COMMON /PA/FP,FA

A1=FAOTR)

B 1=0.0

c1=FA(rTR)

D1=0.0

P1=FP(ITR)

RETLIRN
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END

C CHANGING TT{E COEFFICIENTS OF THE PDE SO THAT

C POISSON'S EQUATION IS SOLVED

c

SUBROTJTINE TOP(NT,ROT,RON,TNW,IT)

IMPLICIT REAL*8 (A.H,O-Z)

REAL*8 ROr(800),RON(800),Fp(800),FA(800),T^fw(800,3)

TNTEGER rT(800,3)

COMMON IPAIFP,FA

PI=3 .141,592654

EPSO=8.854D-12

DO 10 J=I,NT

FP(J)=ROT(J)/EPSO

l0 FA(J)=1.0D0

RETURN

END

C

c

C CATCULATING THE ELECTRIC FIELD FROI\{ THE SOLUTiON

C OF POISSON'S EQUATION

STIBROUTINE PEOUT(X,Y,B,INODE,SIIB,PEX,PEY,)C{,YN,NNT,J,PV,NT

&,XT,YT,XCN,YCN,XGN,YGN,EPCN,VCN,NL,EPGN,VGN)

IMPLICIT REAL*8 (A-H,O-Z)

REAL*8 x(2000),y(2000),8(2000),suB (s),pEX(800),pEy(800),pv(800),

& )o,r(800),yN(800),xr(800),yT(800),xcN(20),ycN(20),EpcN(2O),vcN(20),
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& VG(50)EPGN(50),VGN(50),XGN(50),YGN(50)

INTEGER INODE(6OOO)

C

wRrrE(i3,2s0) J

DO 10 K=I,NT

cc >iN(K)=x(K)

cc YN(K)=Y(K)

c wRrrE(l3,so))o,r(K),YN(K)

PEX(K)=PHl(XT(K),YT(K), l,X,Y,B,rNODE,SUB)

PEY(K)=PHI(XT(K),YT(K),2,X,Y,B,INODE,SUB)

pv(K)=pHr(xr(K),yr(K),0,x,y,B,lNoDE,suB)

c wRrTE(13,30)pv(K),v(xN(K),yN(K)

10 CONTINI'E

NL1=NL-1

lvRrTE(13,31)

DO 20 K=l,NLl

PEX(800)=pH(xcN(K),ycN(K), 1,x,y,B,rNODE,SUB)

PEY(800)=Pru(XCN(K),YCN(K),2,X,Y,B,rNODE,SrrB)

VCN(K)=PHI(XcN(K),YcN(K),0,x,Y,B,lNoDE,SUB)

EPCN(K)=DSQRT(PEX(800)* *2+PEY(800),* *2)

20 wRrrE(l3,40) EPCN(K),VCN(K),Vr(XCN(K),YCN(K)

wRrTE(13,41)

DO 21 K=1J.ìL

PEX(800)=Prü(xGN(K),YGN(K), l,x,Y,B,rNODE,SUB)

PEY(8OO)=PHIëGN(K),YGN(K),2,X,Y,B,INODE,SUB)

VGN(K)=PH(xGN(K),YGN(K),0,x,Y,B,INODE,SUB)

EPGN(K)=DS QRT(PEX(800)+*2+PEY(800)**2)

21 WRrrE(i3,4O) EpcN(K),vcN(K),vr(xcN(K),ycN(K)

ProgramLßting



108

30 FORMAT(1x,2c20.5)

3i FORMAT(1X,'EPCN VCN Vt)

40 FORMAT(iX,3c20.s)

41 FORMAT(IX,tsPGN vcN vr)

50 FORMAT(1X,'XN=,,c20.5,5X,'yN=',c20.5)

RETURN

250 FORMAT(1X,'POISSON ELECTRIC FIELD ITERATION #"I3)

END

C

c

C PRINTING OUT TTIE DIFFERENCE OF ELECTROSTATiC E-FIELD

C AT BOTH CONDUCTOR SURFACE AND TIIE GROTIND LEVEL

SUBROUTINE EDIFF(NOI,NLl,NXY,XCN,YCN,XGN,YGN,EICN,EIG,

& EPCN,PEX,PEY,PV,

& VCN,EFG,EDC,EDG,XT,YT,XN,YI.Ð

IMPLICIT REAL"8 (A.H,O-Z)

REAL*8 ErCN(20)Erc(20),EPCN(20),pEX(800),pEy(800),pv(800),

&. EFc(20),xcN(20),ycN(20),vcN(20),EE(800),EE(800),Xr(S00),yr(s00),

& >ß{(800),yN(800),xcN(20),ycN(20)

NGR=4

J1=1

K1=NOl

K2=NGR*NOI

wRrTE(13,40)

DO 10 J=Kl,K2,NOI

EFG(J 1)=DS QRT(PEX(J)**2+PEY(Ð**2)

vG(Jr)=PV(J)
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wRrTE(13,50) EFc(J1),Erc(J1),VG(J1)

J 1=J 1+1

10 CONTINUE

wRrTE(13,100)

EDC=0.0D0

VDCN=O,ODO

DO 20 J=l,NLl

EDC=EDC+(GICN(J)-EPCN(J)IEICN(J)* *2

VDCN=VDCN+((VCN(J)-V(XCN(J),YCN(J)W(XCN(J),yCN(J))**2

20 wRrTE(13,200) J,EPCN(J),ErCN(J)

EDC=DSQRT@DC/]\L1)

VDCN=DSQRT(VDCNÂ{L1)

wRrTE(13,201) EDC,VDCN

v/RtTE(13,300)

EDG=0.0

DO 30 J=1,NGR

EDG=EDG+((EIG(J)-EFc(Ð)Ælc(Ð)**2

30 wRrTE(13,400) JEDG

EDG=DSQRT(EDG/NGR)

wRrTE(13,401) EDG

VD=0.0D0

ED=0.0D0

WRITE(13,11)

DO 60 J=I,NXY

EE(J)=DSQRT(PEX(J)**2+PEY(Ð*"2)

EE(Ð=Ds QRT@xICra\(J),YN(Ð)* *2+EY()o{(Ð,YN(Ð)* *2)

ED=ED+(@E(Ð-EEI(J))(0.5+(EE(Ð+EE(J)¡* x2
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vD=vD+((pv (J).v(xN(J),YN(J))/(O. 5* (vl0Õ{(J),yN(J))+

& PV(J)+ i.0D-9))*''2

60 wRrTE(13,51) EE(ÐEE(.r)

ED=DSQRT(ED/}IXÐ

vD=DSQRT(VD/NXY)

WRITE(13,61) ED,VD

RETLJRN

11 FORMAT(1X,'EE EEI)

40 FORMAT(IX,' EFG Erc Vc)

50 FORMAT(1X,3c20.5)

51 FORMAT(1X,2c20.5,c20.10)

61 FORMAT(1X,ED=',G20.i0,'VD=',G20.10)

100 FoRN4AT(1X,,J, EPCN EICN)

200 FoRMAT(1X,i3,3X,c20.5,2X,c20.5)

201 FORMAT(1x,'EDC=',c20.10,'VDCN=',G20.10)

300 FoRMAT(1X,'J, EDG)

400 FoRMAT(1X,r3,3X,c20.10)

401 FORMAT(1X,'EDG="G20.10)

END

c

C

C CHANGING THE COFFICIENTS OF TIIE PDE SO THAT TI{E

C INHOMOGENOUS EQUATION IS SOLVED

c

SUBROUTINE PTOL(NT,ROT,RON,TNWiÐ

IMPLICIT REAL*8 (A-H,O-Z)

REAL*8 ROr(800) ßON(800),Fp(800),FA(800),rNw(800,3)

TNTEGER rT(800,3)
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COI\ß4ON ÆAIFP,FA

DO 10 J=I,NT

FP(J)=0.0D0

10 FA(r)=ROr(I)

RETURN

END

C

C CALCULATING TIIE ELECTRIC FIELD FROM TTIE SOLUTiON

C OF INHOMOGENEOUS EQUATION

c

SUBROUTINE LEOUT(X,Y,B,INODE,SUB,EX,EY,>ÕI,YNÀINT,J,VL,NT

&,XT,YT,XCN,YCN,XGN,YGN,ELCN,WCN,NL,ELGN,VLGI9

IMPLICIT REAL*8 (A-H,O.Z)

REAL*8 X(2000),y(2000),8 (2000),suB(5) EX(800),Ey(800),\'L(800),

& )o.{(800),).N(800),xT(800),yr(800),xcN(20),ycN(20),ELCN(20),VLCN(20)

& FLGN(s0),vLGN(50),xcN(50),ycN(50)

TNTEcER rNODE(6000)

c

wRrTE(13,250) J

DO i0 K=I,NT

EX(K)=pHr(xr(K),yr(K), l,X,y,B,rNODE,SUB)

EY(K)=P}II(xr(K),YT6),2,x,Y,B,INODE,SUB)

vL(K)=pHr(xr(K),yT(K),0,x,y,B,rNoDE,suB)

10 CONTINUE

NL1=NL-1

\vRrTE(i3,22)

DO 20 K=1,NL1

EX(800)=pHr(xcN(K),ycN(K), 1,X,y,B,tNODE,SUB)
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EY(800)=PHl(xCN(K),YCN(K),2,X,Y,B,lNODE,SUB)

wcN(I()=PIII(XCN(K),YCN(I(),0,X,Y,B,INODE,SUB)

ELCNK)=DSQRT(EX(800)* *2+EY(800)**2)

20 wRrTE(13,30) ELCN(K),VLCN(K)

wRiTE(13,31)

DO 21 K=1,NL

EX(800)=pHrcxcN(K),ycN(K), 1,x,y,B,rNoDE,SUB)

EY(800)=pHrcxcN(K),ycN(K),2,x,y,B,rNODE,SUB)

VLGN(K)=PHI(XGN(K),YGN(K),O,X,Y,B,INODE,SUB)

ELGN(K)=DSQRT(EX(800)**2+EY(800)**2)

21 WRrrE(13,30) ELGN(K),vLcN(K)

22 FORMAT(iX,'ELCN wcN)

30 FORMAT(1X,2c20.5)

31 FORMA.T(IX,'ELGN vLcN)

RETURN

250 FORMAT(1X,'LAPLACE ELECTRIC FIELD ITERATION #"I3)

END

c

C DEFINING TIIE B.C,OF TT]E ARTIFiCIAL BOUNDARY

FUNCTION FD]R(IF,ITR,X,Y)

IMPLICIT REAI*8 (A-H,O.Z)

coMMoN /DATA/ VDC,pI,RAC,RDC,H1,S 1,H2,H3,S3,A,8 1,C,DET,Q1,Q3

c

D1=(X-S 1)*x2+(Y-fl l)xx!

D1 1=(X-S 1)**2+(Y+Hl)**2

D2=(X+S 1)**2+(Y-Hi)**2

D21=(X+S i)+*2a1Y+H1¡t*2
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D3=(X-S3)**2+(Y-H3)x*2

D3 1=(X-S3)**2+(Y+H3)**2

D4=(X+S 3)+ *211Y-¡¡3¡* *2

D4 1=(X+S3)+x2a1Y +H3)++2

FDR=Q1*0,5*DLOG(D 1 1*D2l@1',D21))+Q3*0.5*DLOG(D31*D4l(D3*D4 1)

RETURN

END

FUNCTTON EXr(X,Y)

IMPLICIT REAL*8(A-H,O-Z)

COMMON /DATA"/ VDC,PI,RAC,RDC,H1,S 1,H2,H3,S3,A,B1,C,DET,Q1,Q3

Dl=(X-S 1)**2+ff -!ll)x*2

D1 i=(X-S 1)**2+(Y+H1)**2

D2=(X+S 1)*x2a1Y-1¡1¡xx2

D21=Ë+S 1)**2+(Y+H1)x*2

D3=(X-S3)**2+(Y-H3)*+2

D3 l=(X-S3)t*2+(Y+H3)++2

D4=(X+S3)**2+(Y-H3)x*2

Ð4 1=(X+S 3)"x2+(Y +H37* * 2

EXl=Q 1*(X-S 1)/D1

EXI 1=_Q1*(X_S i)/D1t

EX2=-el+6+5 1)/D2

EX21=Q1*(X+S 1)/D21

EX3=Q3*(X-S3)/D3

EX31=-Q3*(x-S3)/D3l
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C

EX4=-Q3*(X+S3)þ4

EX41=Q3*(X+S3)/D41

EXI=EX1+EX2+EX3+EX4+EX I 1+EX21+EX3 1+EX4 1

RETURN

END

FLINCTION EYICX,Y)

IMPLICIT REAL*8(A-H,O-Z)

COMMON /DATA/ VDC,PI,RAC,RDC,H1,S 1,H2,H3,S3,A,B1,C,DET,Q1,Q3

D1=(X-S 1)*+2+(Y-Hl)*+2

D1 1=(X-S 1)**2+(Y+H1)**2

D2=CK+S 1)**2+(Y-Hl)**2

D21=(X+S 1)**2+(Y+H1¡xr'2

D3=(X-S3)**2+(Y-H3)**2

D3 1=(X-S3)**2+(Y+Hl)xx2

D4=(X+S3)**2+(Y-H3)**2

D41=(X+S3)+*2+(Y+H3¡**2

EY1=-Q1*(U1-Ð/Di

EY11=-Q1*(H1+y)/Dl i

EY2=Qi*(H1-Y)/D2

EY21=Qi+(H1+Ð/D21

EY3=_Q3*(H3-Ð/D3

EY31=-Q3*(H3+Y)1D31

EY4=Q3"(H3-YyD4

EY41=Q3*(H3+Ð/D41
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C

c

EYI=EY 1+EY2+EY3+EY4+EY1 1+EY21+EY3 1+EY4 I

RETURN

END

FUNCTION V(X,Y)

iMPLICIT REAL*8 (A-H,O-Z)

COMMON /DATA/ VDC,PI,RAC,RDC,H1,S1,H2,H3,S3,A,B1,C,DET,Q1,Q3

Þ1=(X-S 1)**211Y-1¡11**2

Dl 1=(X-S 1)**2+(Y+H1)+*2

D2=(X+S 1)**2+(Y-H1)**2

D2I=(X+S 1)**2+(Y+H1¡**2

D3=(X-S3)**2+(Y-Hl)xx!

D3 1=(X-S3)**2+(Y+H3)*+2

D4=(X+S3)**2+(Y-Hl)**2

D4 1=(X+S3)**2+(Y+H3¡*+2

VI=Q1*0.5*DLOG(D1 1*D2l(D 1*D21))+Q3x0,5*DLOc@3 1*D4l@3*D41)

RETURN

END

THIS SUBROUTINE UPDATES SPACE CHARGE DISTRIBUTION

SUBROUTINE NEWROE(NTNOI,R,OT,PEX,PEY,EX,EY,DIFF,NL 1,J,EPCN,

& ELCN,PV,VL,DV,DRO,DE)

IMPLICIT REAL*8 (A-H,O-Z)

REAL*8 ROT(800),pEX(800),pEy(800),EX(800),Ey(800),RoT1 (800),
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c

& EP(800),E(800),EPCN(20),ELCN(20),pV(800),w(800),DLoN(100),

& DV(100),DRO(100),DE(100),ED(800),VD(800)ßD(800),DpoN(100)

INT'EGER NN(20)

NN(1)=22

NN(2)=22

NN(3)=23

NN(4)=23

NN(s)=25

EON=1.84082D+6

DIFF=0.0

ARFA=-1.0

BETA=-0.5

GAMA=-0.25

CITA=0.0

A=2.5D0

C=1.0

D=1.0

Dv(J)=0.0

DRO(J)=0.0

DPON(J)=0.0

DLON(J)=0.0

DEM=0.0

DvM=0.0

DRM=0.0

ÐO 10 Jl=1,NT

Dv(Ð=DV(J)+(w(J 1)-Pv(J 1)/(w(J 1)+ t.0o-9¡*+2

EP(J 1)=DSQRT@EX(J 1)**2+PEY(J 1)**2)

E(J l)=D$q¡1(E¡(J 1)""2+EY(J Ð**2)
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ROrl(J1)=ROT(J1)

ED(J1)=DABs (EP(J 1)-E(J 1)/(0.5*(EP(J1 )+E(J 1 ))
vD(J Ð=DAB SO/L(J l)-PV(J Ðy(vl,(J 1)+ 1.0D-9)

IF(ED(J1),GE.DENÐ DEM=ED(J Ð

rF(vD(J i).GE.DVN.f) DVM=VD(J 1)

10 DIFF=DIFF+((E(J1)-EP(JI)/(0.5*(E(J1)+EP(J1))))*+2

DIFF=DSQRT(DIrr¡T)

Dv(J)=DSQRT(Dv(J)/|rr)

DE(J)=DiFF

K=0

DO 20 Ji=1,NLl

DPON(J)=DPoN(J)+((EON-EPCN(J 1))ÆOl\Ð*+2

DLoN(J)=DLON(J)+((EoN-ELCN(J 1))ÆO9**2

K1=NN(Jl)+NN(J1+1)-2

DO 30 J2=1,K1

K=K+1

C PRINT,'ROT=',ROT(J2),'ROTl=',ROT1(J2)

C PRINT,'EPCN=',EPCN(J1),'ELCN=',ELCN(J1)

C

ROr(K)=ROTI(K)

& *(1.0+AIiFA*(EP(IÇ-EK)/(EP(K)+E(K)))**A

& *(1.0+CITA*(PV(K)-vL(K)/(PV(K)+\¡I-(K)))

& *((1.0+BErA*(EON-EPCN(J 1)ÆON)

& *(1.O+GAMA*(EON-ELCN(Jl))ÆOf{))

& * * (FLOAT(K 1 -J4 N,O AT (Kr) / 20.0)

C

C5 ROT(K)=ROTl(K)*(0.5*@PCN(J1)+ELCN(Jl)rEOl.Ð*xA

c5 & *(1.0+ARFA*@P(K).E(K))(EP(K)+E(K)))
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C5 & *( 1.0+GAN4A*(PV(K)-\T-(K)/(PV(K)+VL(K)))

30 CONTINUE

20 CONTINUE

DPON(J)=DsQRr(DPON(J)û\rL1)

DLON(Ð=DSQRT(DLON(J)/I.{L1 )

c WRITE (13,41)

DO 40 J1=1,NT

DRO(J)=DRO(J)+((ROT(J 1)-ROT1 (J 1))/ROrt g t ¡**2

RDI(JÐ=DABS(ROT(JI)-RoTi(Jl)/ROrl(J1)

IF(RD(J l).GE.DRN.{) DRM=RDr(J 1)

c wRrTE(13,50) J1,ROT(J1),ROri(JÐ,pV(J1),VL(J1),Ep(J1),E(J1)

40 CONTINUE

DRO(J)=DSQRT(DRO(J)/l{Ð

wRrTE(1 3,60) J,DV(J),DRO(J),DE(J)

WRITE(13,6i) DVM,DEM,DRM

v/RrrE( I 3,70) J,DPON(J),DLON(J)

IF(J.GT.1) TrrEN DO

IF(DRO(J).GT.DRO(J- l) TrrEN DO

cc ARFA=1.024,AIUìA

CC BETA=1.02*BETA

CC GAN4A=GA.N4A+0.5

ELSE DO

END IF

ELSE DO

END IF

C PRINT,'GAMA=',GAMA,l=',J

RETURN

41 FORMAT(1X,'# OF ELEMENT 

"TX,'ROT"1OX,'ROT1"10X,,PV,,2X,'V"
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& 10x,'P8"10X,'E)

50 FORMAT(1X,r3,2(1X,E12.5),1X,F10.2,/1X,1X,F10.2,2(2X,c20.5))

60 FORMAT(iX,'TTERATTON #,,I3,3X,,DV=,,E12.5,/1X,'DROE="E12.5,1X,

&'DE="E12.5)

61 FORMAT(1X,'DVM=',c20.10,'DEM=',G20.10,'DRM=',G20.10)

70 FORN4AT(1X,TTER. #=',I3,'DPEON=',G20.10,'DLEON=',c20.10)

END
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