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ABSTRACT

The increasing requirement for the power transfer capability has raised the possibility
of dc transmission lines operating on an existing ac transmission corridor. Corona
effects in such hybrid ac/dc lines become much more complicated due to the
interaction between the ac and dc fields. This thesis presents a method to investigate
the ionized field of such hybrid ac/dc lines and evaluate the shielding effect of the ac
conductors on the electric field intensity and the ionic dc current density at ground
level from the point of view of environmental impact. The method is based on an

iterative finite element procedure to solve the time invariant ionized field.

A comparison between the calculated and experimental results for a laboratory line is
presented. The calculated values of the current density at ground level agree

satisfactorily with the experimental results.

The calculated data, including the ground level lateral profiles of the electric field
intensity and the current density for practical hybrid transmission line configurations,
are also given in this thesis. For further discussion of the shielding effect of the ac
conductors on the electric environment in the hybrid ac/dc lines, the calculated data for
a bipolar dc transmission line configuration are presented as well. The results show
that with a proper ac line arrangement, the hybrid ac/dc line geometries have the

advantage of reducing the ionized field and the current density at ground level.



ACKNOWLEDGEMENTS

The author would like to express deep gratitude to Professor 1. M. R. Ciric and
Professor M. R. Raghuveer for their invaluable guidance and support through the

course of this work.

The author would also like to acknowledge the financial support from Manitoba

Hydro and the National Science and Engineering Research Council.



TABLE OF CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS
LIST OF FIGURES

LIST OF TABLES

CHAPTER 1. INTRODUCTION .

1.1 Physical Characteristics of Corona .

1.2 Objective of the Thesis .

1.3 Line Configurations

CHAPTER 2. LITERATURE REVIEW

2.1 Analysis of DC Corona .

2.1.1 Equations and Assumptions

2.1.2 Review of Methods of Calculation .
2.2 Analysis of Corona on Hybrid AC/DC Lines .

2.3 Conclusions .

CHAPTER 3. ITERATIVE FINITE ELEMENT PROCEDURE.

3.1 Mathematical Formulation for DC Corona .

vi

Page

v

ix

xi

. 10

.14

.15

17

.17




vii

Page

3.1.1 Equations . . . . . . . . . . . . . . . .. .. .17

3.1.2 Boundary Conditions . . . . . . . . . . . . . . . . 18

3.2 Outline of Iterative Finite Element Procedure . . . . . . . . . . . 20
3.3 Determination of the Problem Domain . . . . ., . . . . . . . . 22
3.3.1 Determination of the Space-Charge-Free Field . . . . . . . . 23

3.3.2 Determination of the Problem Domain . . . . . . . . . . 24

3.4 Mesh GenerationProcedure . . . . . . . . . . . . . . .. . 32
3.5 Application to Coaxial Cylinder Geometry . . . . . . . . . . . . 36
3.5.1 Geometry and Mesh Generation . . . . . . . . . . . . 36

3.5.2 Evaluationof the FE Procedure . . . . . . . . . . . . .38
CHAPTER 4. APPLICATION TO HYBRID AC/DCLINES . . . . . .42
4.1 Mesh Generation and Evalwation . . . . . . . . . . . . . . . .4
4.2 Initial Approximation for the Space Charge Density . . . . . . . . . 46
4.3 Update Algorithms . . . . . . . . . . . . . . . . . . . . 48
4.3.1 Update Algorithm for Geometry 1 . . . . . . . . . . . . 49

4.3.2 Update Algorithm for Geometries2t05. . . . . . . . . . 53

4.4 Computed Resultsand Analysis . . . . . . . . . . . . . . . . 55

4.4.1 Comparison of the Computed Results with Experimental Data for
Geometryl . . . . . . . . . . . . . .. .. ..55
4.4.2 Computed Results for Geometries2to5 . . . . . . . . . .63



CHAPTER 5. CONCLUSIONS
REFERENCES.
APPENDIX A. MISCELLANEOUS EQUATIONS
A.1 Determination of Space-Charge-Free Fields by the Method of Images .
A.1.1 Solutions for Geometry 1.
A.1.2 Solutions for Geometries 2 to 4.

A.1.3 Solutions for Geometry 5

A.2 Analytical Solutions for the Ionized Field in Coaxial Cylinder Geometry .

APPENDIX B. PROGRAM LISTING

B.1 Mesh Generation Program

B.2 Iterative Finite Element Program

viii

Page
. 69
.71
77
77
77
78

. 80

. 83

83
96



Figure
1.1
1.2
1.3
3.1

3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

4.1(a)
4.1(b)
4.1(c)
4.2

LIST OF FIGURES

Geometry 1, Laboratory Line .
Geometries 2, 3, and 4

Geometry 5

Ion Trajectories in the Laboratory Line System (Geometry 1), Vae =0,

Vac=60kV.

Ton Trajectories in Geometry 2 System, Ve =0, Vo =300 kV
Ion Trajectories in Geometry 3 System, Ve =0, Ve =300 kV
Ton Trajectories in Geometry 4 System, Ve =0, Ve = 300 kV
Ion Trajectories in Geometry 5 System, V. =300kV .

Finite Element Mesh for Geometry 1, IN = 160, NT =264 .
Finite Element Mesh for Geometry 2, IN = 115, NT = 175
Finite Element Mesh for Geometry 3, IN = 117, NT = 178 .
Finite Element Mesh for Geometry 4, IN = 117, NT = 178
Finite Element Mesh for Geometry 5, IN = 114, NT = 173
Coaxial Cylindrical Configuration

Problem Domain for the Coaxial Cylinder Geometry

Finite Element Mesh for the Coaxial Cylinder Geometry,
IN=98,NT =156 .

Deviation 8V vs Number of Iterations

Deviation 8E vs Number of Iterations

Deviation &p vs Number of Iterations

Deviation 8E, , and 6EC2 vs Number of Iterations

ix

Page

27
28
29
30
31
33
34
34
35

36
37

38

. 51

52
52

. 53



Figure

4.3

4.4

4.5

4.6

4.7

4.8

4.9(a) Lateral Profile of Electric Field Intensity at Ground Level, Geometry 2,

Current Density Profile at Ground Level for Geometry 1, Vg =0,
Vdc=60kV . .

Current Density Profile at Ground Level for Geometry 1, Ve = 10kV,
Vdc =60kV.

Current Density Profile at Ground Level for Geometry 1, Vg = 20 kV,
Vdc=60kV.

Current Density Profile at Ground Level for Geometry 1, Ve =25 kV,
Vdc =60kV.

Current Density Profiles at Ground Level by FEM for Geometry 1,
Vac =0, 10, 20, and 25 kV, Vg =60 kV .

Current Density Profiles at Ground Level by Experiments for Geometry 1,

Vae =0, 10, 20, and 25 kV, Vg, = 60 kV

4.9(b) Lateral Profile of Current Density at Ground Level, Geometry 2,

4.10(a) Lateral Profile of Electric Field Intensity at Ground Level, Geometry 3,

Vac = O, Vdc = 300 kV .

4.10(b) Lateral Profile of Current Density at Ground Level, Geometry 3,

4.11(a) Lateral Profile of Electric Field Intensity at Ground Level, Geometry 4,

Vac = O, Vdc =300 kv .

Vac = O, Vdc = 300 kV .

Page

57

58

59

60

61

62

. 64

65

. 05

. 66

. 66



Figure

4.11(b) Lateral Profile of Current Density at Ground Level, Geometry 4,
Vac =0, Ve =300kV .

4.12(a) Lateral Profile of Electric Field Intensity at Ground Level, Geometry 5,
Vde=300kV .

4.12(b) Lateral Profile of Current Density at Ground Level, Geometry 5,
Vde=300kV .

xi

Page

. 67

67

68



LIST OF TABLES

Table
1.1 Dimensions for Various Configurations .
3.1 Errors in the Evaluation of the FE Procedure .

4.1 Errors for Various Meshes, Geometry 1, Vo =0, Vge = 60kV .

4.2 Errors for Various Meshes, Geometry 2 &3, Ve =0, Ve =+ 300kV .

4.3 Convergence for Different Constants a, o, and vy, Geometry 1,

Page

. 38
44
. 45

49

Xii




Chapterl
INTRODUCTION

With the increasing demand for the supply of electric power, the possibility of using
hybrid ac/dc transmission lines has been sought [1,2,3,4,5]. A hybrid ac/dc
transmission line is a transmission line with both ac and dc conductors on the same
tower or adjacent towers sharing the same right-of-way (ROW). It may be created by
adding a bipolar dc transmission line to an existing three phase ac transmission
system. Thus, a hybrid ac/dc system will not only increase the power transfer
capacity of the existing transmission corridor, but also improve the stability and

controllability of the ac network [1, 2].

It is well-known that the corona effect of a HVDC transmission line requires serious
consideration due to the power loss (PL), radio interference (RI), audible noise (AN),
and the electrification of isolated objects or human bodies associated with it [6,7]. Tn
hybrid ac/dc lines, the interaction of ac and dc fields affects the corona activity,
making the jonized field problem even more complicated. Thus, a thorough study of

the ionized field of hybrid ac/dc lines is needed before they are put into practical use.
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1.1 PHYSICAL CHARACTERISTICS OF CORONA

Corona is a self-sustained partial breakdown of air in the nonuniform field
surrounding the conductor of a power transmission line. In positive dc corona, it is
usually assumed that an electron starts an avalanche from the edge of the ionization
zone where the field intensity is sufficiently high that the ionization coefficient is
greater than the coefficient of electron attachment. A series of successive electron
avalanches is developed towards the conductor surface, under the combined influence
of its own space charge and the applied electric field. Positive ions and excited
molecules are produced due to the jonizing collisions and are left behind by the
electrons. The excited molecules reverting to their stable states give up their energy in
the form of photon radiation. Therefore, the electrons necessary for maintaining the
self-sustained discharge are provided by the photonization of gas molecules. As a
result, the electrons are neutralized on the conductor and the positive ions drift away
from the conductor spreading all over the inter-electrode region. Similarly, a negative

dc corona results in negative ions filling the entire inter-electrode region.

In the case of bipolar dc transmission line in corona, the ions generated by each
conductor drift either to the conductor of opposite polarity, or to the ground. Thus,
ions of either positive or negative polarity fill the regions between each conductor and
ground, and ions of both polarities are mixed in the region between the two

conductors.

In the case of ac transmission line in corona, however, the space charge created by

corona is constrained to the vicinity of the conductors because of the periodic reversal
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of the applied voltage. Consequently, ac corona has negligible impact on the electrical

environment at ground level.

1.2 OBJECTIVE OF THE THESIS

As mentioned earlier, the creation and movement of the space charges cause power
loss (PL), audible noise (AN), and radio and television (RI & TVI) interference.
Another very important effect of corona is the environmental impact. Any object
located under transmission lines intercepts the ion flow between the conductors and
the ground. If the object is perfectly insulated from the ground, the magnitude of its
potential above ground gradually increases until it approaches the equilibrium space
potential or until the insulation breaks down. In practice, the potential to which the
object is raised will be limited by its insulation resistance to ground. If a grounded
person touches the object, he may receive an initial carpet-type shock of extremely
short duration followed by a small steady current. Similar induction effects are also
produced when a well-insulated person located under the line touches a grounded
object. A well-grounded person standing under a dc line will also experience a steady
flow of very small current. Thus, the electrification of isolated objects or human
bodies by space charges is one of the most important factors in designing overhead
power transmission lines. The electric field intensity (E) and the ion current density
(I) on the ground are significant environmental factors related to the biological effects.
To study these problems, the electric field distribution distorted by the ion space

charge (p) flowing from dc conductors must be calculated.
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The aim of this thesis is to discuss such a computational procedure for hybrid ac/dc
transmission lines. The electric quantities (E, p, I) at ground level have been
calculated for different line geometries. The effect of ac conductor voltages and the
shielding effect of ac conductors on the dc corona activities at ground level have also

been investigated.

These studies are based on a numerical solution for the ionized field by an iterative
Finite Element (FE) procedure. Since the ac corona has negligible impact on the
electrical environment and a prohibitively large computational effort is required to
analyze the time varying ionized field, all solutions for corona on hybrid ac/dc lines

are based on computations for unipolar dc corona.

1.3 LINE CONFIGURATIONS

Five line geometries are analyzed to study the arrangement and the shielding effect of

the ac conductors.

The first is a laboratory line consisting of a positive dc conductor directly above an ac

conductor, as shown in Figure 1.1

The second geometry is based on the Manitoba Hydro Gulfport power line with a

bipolar dc transmission line replacing the ground wires of a three phase ac line.

The third geometry is the same as the second one except that the dc line is situated at a

greater height,
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The fourth geometry is also similar to the second one except that the outer phases of

the ac lines (phases A & C) are situated further away from the center phase (phase B).
Figure 1.2 shows the line configuration for Geometries 2, 3, and 4.
The fifth geometry is again the same as the second one, but with the ac conductors

removed as shown in Figure 1.3, ie., Geometry 5 is a bipolar dc system for

comparing the shielding effect of ac conductors in hybrid line configurations.

o @ R 4.=0815mm

—]‘— - "‘s Rac= 0.815 mm
800 mm
550 mm
> >
A P o A L A LR AR A

Figure 1.1: Geometry I, Laboratory Line

Introduction



Y A
@ phaseB
@ @ Roc™ 1.599 cm
phase A phase C

A o o O o o o o o o o o e

Figure 1.2: Geometry 2, 3, and 4
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The experimental results giving the ionic current density at ground level are available
for the laboratory line (Geometry 1) with the dc applied voltage Vg = 60 kV aﬁd the
ac applied voltages of root mean square (RMS) values V4. =0, 10kV, 20 kV, and 25
kV, respectively [5]. The computational results will be discussed with the same

applied voltages in order to compare them with the available experimental results.

For Geometries 2 to 5, the computational results are based on the dc applied voltage

Vde =+ 300 kV and the ac voltage zero.
Table 1.1 shows the line dimensions for these geometries (Geometries 2 to 5).

Table L.1: Dimensions for Various Configurations

Conductor -dc +dc phase A phase B phase C
Geometry xm) | -4.57 4.57 -5.49 0.0 5.49
2 ym) | 1634 | 16.34 12.38 14.20 12.38
Geomeiry | X | -4.57 4.57 -5.49 0.0 5.49
> ym) | 1734 17.34 12.38 14.20 12.38
Geometry | X(m) | -4.57 4.57 -6.49 0.0 6.49
4 yam) | 16.34 | 1634 | 1238 | 1420 | 12.38
Geometry | x(m) -4.57 4.57 —_— L L
> y(m) | 16.34 16.34 — . _
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Chapter 2
LITERATURE REVIEW

2.1 ANALYSIS OF DC CORONA

2.1.1 Equations and Assumptions

As mentioned in Chapter 1, unipolar dc corona is characterized by a steady flow of
ions from coronating conductors with the same polarity as the applied voltages. The
flow of ions, i.e., the ionic current density J, is determined by the local electric field
intensity E. This quantity is in turn governed by both the potentials applied to the
conductors and the special distribution of the corona-generated space charge density

p. This mutval interaction between E and p for an unipolar dc corona is described by

the following equations:

P
V-E=F 2.1
e (2.1)
V-J=0 (2.2)
J=kpE (2.3)
E=-VO | (2.4)
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Equation (2.1) is Gauss's law, where €, is the permittivity of free space. Equation
(2.2) is the continuity equation for the current density J. Equation (2.3) is the relation
between E and J, where k is the mobility of ions. Equation (2.4) is the electric field

intensity If in terms of the potential @.

Combining Equations (2.1) - (2.3), the ionized electric field is described by the

following equation,

E-V(V-E)+(V-E)2=0 (2.5)
Or, using Equation (2.4), in terms of potential,

V. (VOV2D) = 0 (2.6)
Equations (2.5) and (2.6) are the general equations describing a unipolar ionized field.
They are nonlinear third-order partial differential equations and there is no known
method available for solving them for a general case. Some basic assumptions are
necessary in order to make the solution of these equations possible. The following
are the commonly used assumptions and simplifications [8]:

1. Ionic mobilities are constant, independent of the electric field intensity.

2. Mobilities of positive and negative ions are equal, and the corona onset

voltage for positive and negative cases are the same for the bipolar case.
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3. Diffusion of ions is neglected.

4. The effect of wind on space charge distribution is not considered.

5. The thickness of the ionization layer around the conductors in corona is

assumed to be insignificant in comparison with other geometric parameters.

6. An equivalent steady state is assumed (i.e. temporal variations are

neglected).

The above six assumptions have been well justified in literature. The problem is still
too complex to solve even with these simplifications. Some further approximations

are needed, which are different in different solution methods.

2.1.2 Review of Methods of Calculation

As mentioned above, Equation (2.6) is a nonlinear third-order partial differential
equation. Thus, three boundary conditions are needed to solve the problem uniquely.
However, only the potentials on the conductors and at ground are known precisely.
A third boundary condition must be added to the coronating conductors. The choice

of the third boundary condition varies with different solution methods.

Townsend [9] was the first to solve analytically for the ionized field in a coaxial

cylindrical configuration, where due to the cylindrical symmetry, the unipolar ionized
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field problem is reduced to a one dimensional problem. In his analysis, Townsend
used the value of the electric field intensity on the surface of the coronating conductor
as the third boundary condition, which is known as the Kaptzov's assumption. It
states that the magnitude of the electric field intensity at the coronating conductor
surface remains constant at its onset value regardless of the level of the applied

voltage. It can be expressed as,

do

an = Eo (2.7)

where E, is the value of the electric field intensity on the surface of the conductor at

the onset of corona; n is the outward unit norm of the coronating conductor.

Deutsch [10] extended the analysis of unipolar ionized field to the two dimensional
problem of a cylindrical conductor above an infinite ground plane. The basic
assumption made by Deutsch is that space charge affects only the magnitude but not
the direction of the electric field, which is now known as Deutsch's assumption.
Thus, the two dimensional ionized field problem is reduced to a one dimensional
problem again. He also assumed that the space charge density in the electrode space
is constant and the field at the electrode not in corona is unaffected by the space

charge. These are valid only for vanishingly small corona currents.

Popkov [11,12] proposed an improved analysis for the conductor-plane geometry by
retaining Deutsch's and Kaptzov's assumptions. In addition, he introduced an
additional assumption regarding the distribution of the corona current on ground

plane. Based on laboratory measurements and Townsend's work for the concentric
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cylinder case, Popkov presented a semi-empirical expression of the voltage-current
relationship for the conductor-plane geometry, assuming that the conductor-plane

configuration can be approximated by an equivalent cylindrical system.

A method of analyzing both unipolar and bipolar DC ionized fields has been proposed
by Maruvada and Janischewskyj [13,14] by employing Deutsch's and Kaptzov's
assumptions. They adopted the concept of iterations, originally suggested by Felici
[15], and developed an algorithm applicable for corona computations on practical

HVDC transmission lines.

A detailed investigation of the mathematical aspects of the DC ionized fields has been
carried out by Atten [16]. He proved that the problem is "properly posed" if the third
boundary condition is chosen to be the value of charge density on the coronating
conductor. By assuming that the charge distribution around the coronating conductor
surface was known, Atten developed a finite difference method of solving unipolar
DC ionized fields without adopting Deutsch's assumption. However, accurate
determination of the space charge distribution beforehand is impossible in practical

cases [13].

Some researchers have employed the charge density as the third boundary condition.
Takuma et al. [17}] assumed a constant charge density on the conductor surface. The
value of the charge density was determined by using an iterative procedure which
matched the calculated current with the corresponding measured one. But the
assumption of constant charge density is not realistic itself, especially for the case of
bundled conductors where the charge density shows a significant change around the

periphery of subconductors [18].

Literature Review
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In order to study the effects of space charges on RI, Sunaga et al. [19] proposed a
higher order boundary condition described by an empirical relation of the ion current
density (J) with the surface field intensity (E) on the conductor, J = b exp(@aE),in
addition to Deutsch's assumption. But a lot of experimental work has to be done in

order to determine the empirical constants ¢ and b,

Khalifa et al. [20] replaced Kaptzov boundary condition by using the space charge
distribution on the surface of the coronating conductor as the third boundary
condition. They assumed the ion charge density at each point on the conductor
surface to be proportional to the average ion density inside the head of the avalanche
developed at the same point. But in their analysis, the space-charge-free field was

used in the avalanche calculations.

Gela and Janischewskyj [21] proposed a Finite Element Method (FEM), for the first
time, to solve the ionized field in a simple coaxial cylindrical configuration without

recourse to Deutsch's assumption, but to Kaptzov's assumption.

Abdel - Salam et al. [22] claimed that they applied FEM to analyze the unipolar dc
ionized field without retaining both Deutsch's and Kaptzov's assumptions by using
the known field quantities along the axis of symmetry as the third boundary condition.
Their results showed a decrease of the surface field intensity of the conductor with the

applied voltage in the same manner as reported by others [19, 23, 24, 25].

The charge simulation method (CSM) has been applied by many researchers for
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14

calculating the space-charge-free field [26, 27]. For the first time, Horenstein [28]
has applied CSM to approximate the electric field and space charge around a single
conductor in corona and to compute the V-I relationship for the discharge. More
recently, Qin et al. [29] claimed that they had developed an iterative numerical method
for accurate calculation of the ionized field quantities associated with HVDC bipolar
lines. The computational procedure employed the CSM for calculating the ionized
field and a weighted residual method for calculating the space charge densities. Very
recently, Abdel - Salam and Abdel - Scattar [30] have applied CSM for modelling the
V-1 characteristics of corona for unipolar bundled transmission lines. Their main
concern is to remove Deutsch’s assumption in their analysis. By comparing their
computational results with the experimental ones, they conclude that their proposed

methed (CSM) is more accurate than the previous iterative method [13] .

2.2 ANALYSIS OF CORONA ON HYBRID AC / DC LINES

Chartier et al. [1] were the first who published the analysis of corona on hybrid ac/dc
lines. In their studies, they calculated the space-charge-free fields on the conductor
surfaces and at the ground level of a hybrid ac/dc system. They also obtained the

important corona performance parameters such as RI and AN.

Maruvada and Drogi [3] were the first who analyzed the effects of space charge on the
ionized field of hybrid ac/dc lines operating on both a same tower as well as on two
adjacent towers. In their approach, they employed Deutsch's assumption and
considered that the presence of the alternating field component has negligible influence

on the ion trajectories. This allowed them to assume the ac conductors to be at zero
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potential, and thus reduce the problem to a time-independent dc corona problem as
before. Then they employed the numerical procedure developed earlier [13,14] to
obtain the dc corona component in the ac conductors and the values of the ionic

current density and electric field intensity at ground level.

Penner [4] has applied finite element method (FEM) to evaluate the ionic de current
injected from a dc line into an ac conductor during corona in a hybrid ac/dc
transmission lines operating on a same tower. In his analysis, Deutsch's assumption
was applied only on the artificial boundary and Kaptzov's assumption was used as the
third boundary condition. The analysis is also based on the solutions to unipolar dc
ionized field problem. A comparison of the calculated and experimental results for a
laboratory line was presented in his studies along with the calculated data for a

practical hybrid transmission line configuration.

2.3 CONCLUSIONS

In the solution methods of analyzing the ionized field problems of overhead
transmission lines discussed above, the two fundamental assumptions usually
employed by previous researchers are Deutsch's and Kaptzov's assumption. The
validity of these assumptions has been repeatedly questioned in the literature [17-25].
Especially when Deutsch's assumption is employed, the distortion of the flux lines of
dc transmission lines in corona is ignored, namely, the natural (equilibrium) relations

among space charge, electric field intensity and space potential is destroyed.
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The finite element method has been recognized as one of the most appropriate
numerical techniques for the ionized field analysis because of both its generality and
tlexibility [17,21]. It does not rely on Deutsch's assumption. Therefore, a proposed
computational algorithm that is based on the FEM will be discussed and implemented

in the later chapters of this thesis.
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Chapter 3
ITERATIVE FINITE ELEMENT PROCEDURE

This chapter introduces an iterative finite element procedure for the dc ionized field
problem by using MANFEP [31]. First, the mathematical formulation has been done
by employing Kaptzov's assumption as the third boundary condition and Deutsch's
assumption on the artificial boundaries. Then by using triangular elements, the finite
element (FE) procedure has been checked by applying it to a coaxial cylinder case.
The different orders of polynomial approximations have also been compared in the

procedure evaluation,

3.1 MATHEMATICAL FORMULATION FOR DC CORONA
PROBLEM

3.1.1 Eqguations

Equations (2.1) - (2.4) can be combined in terms of @ as follows:

Iterative Finite Element Procedure
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V. (V) =- 2 3.1)
€

V- (kpV®D)=0 (3.2)
Equations (3.1) and (3.2) are two coupled second order partial differential equations
where the potential @ and the charge density p are functions of the space coordinates.

The simultaneous solutions of these two equations for @ and p, being subject to

proper boundary conditions, provides the solutions for the dc corona problem.
3.1.2 Boundary Conditions
As mentioned in Chapter 2, Equations (3.1) and (3.2) can be reduced to a nonlinear
third order differential equation -- Equation (2.6). Thus, three boundary conditions
are needed to determine the solutions for the boundary value problem,
The boundary conditions used in this method are as follows:
1. The potentials on the coronating dc conductors are known,
D =Veq (3.3)

where Veq is the equivalent de potential to account for the ac potential in

Geometry 1; Veq = V(¢ in all the other geometries.
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2. The potential on the non-coronating ac conductors and ground plane is

known
O=0 (3.4)

3. The electric field intensity on the coronating dc conductors is assumed

constant at the onset value Eg, i. e.,

] ao

n

=Eq, (3.5)
where the value of E, is determined by Peek's Law [28],
— 0.301
Eg=30m( 1+——E) ( kV/cm) (3.6)

in which r; is the radius of the coronating conductor (in cm) and m is
the surface factor which accounts for the degree of the roughness of the
conductor. For Geometry 1, the surface factor is chosen to be 0.97
according to the ratio of the measured onset gradient and the one from
Peek's Law when m = 1.0. For other full scale configurations

(Geometries 2 to 5), fair weather conditions are assumed with m = 0.5

[3].
4. Appropriate space-charge-free field lines are taken as the artificial

boundaries. This results in a natural Neumann boundary condition on

these boundaries,
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do _ g (3.7)

However, when triangular elements with different densities are used to
construct the mesh in the problem domain, as shown later on, the
artificial boundary will be modelled by the straight sides of some of
these triangles. The nodes of the big triangles, which are far away from
the coronating conductor and used for modelling the farther part of the
artificial boundary, will be displaced from the space-charge-free field
line, and the boundary condition will not be the natural Neumann
condition. Since this part of the boundary is far away from the
coronating conductor, the spacc-chafge-free potential is taken as the

boundary condition,

D = ch'rce (3-8)

3.2 OUTLINE OF ITERATIVE FINITE ELEMENT PROCEDURE

Since the exact distribution of the space charge density p in Equations (3.1) and (3.2)
is not known initially, the algorithm begins with generating an approximated

distribution for p. Then by solving Equations (3.1) and (3.2) iteratively, the final p

Tterative Finite Element Procedure



21

and the solutions of E and @ would be reached with some tolerable errors. The

following shows the logical iterative scheme using FEM:

1. Determine the problem domain.

2. Discretize the problem domain into triangular elements -- Mesh
generation,

3. Specify initial values of p in the problem domain at all nodes.

4. Solve Equations (3.1) and (3.2) for the electric potential (®;, ®,) and
thus for the electric field intensity (E;, E,) in the problem domain by
FEM, respectively. They will differ if the initiation of p is incorrect.

5. Update p at all nodes based on the differences between the solutions of
Equations (3.1) and (3.2), i.e., between @, and @, E, and E,, as

well as the third boundary condition -- Equation (3.5)
6. Evaluate the differences of the solutions from Equations (3.1) and

(3.2); then repeat steps 4 - 6 until the following convergence criteria are

satisfied simultaneously,

Iq)l - (I)Zi < 8I(I)f:u.r

[Prew-Pord| € 82pP 01
|E1 - Ep| €83 Eqy

IEcl' Ec2| S 84 Eo
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where p,.,, and p,4 are the new and the old approximations for the
space charge density; E.; and E_, are the magnitudes of the electric field
intensity at the conductor solved from Equations (3.1) and (3.2),
respectively; 81, 8, 83 and 3, are small deviations specified according
to the desired accuracy. In this work the values assigned to 81, 8, 83
and 84 were 0.01, 0.01, 0.01, and 0.05, respectively; @, and Eqy are

the average value of @) and @), and of E; and E, respectively.

7. Determine the field quantities ( E, p, J ) at ground level from the final

solutions for the ionized field.

Based on the above steps, by using MANFEP in step 4, an iterative finite element
program has been written. An automatic mesh generation program has first been

developed.

3.3 DETERMINATION OF THE PROBLEM DOMAIN

It is well-known that FEM has to be applied to bounded regions where the solutions
are required. One effective and simple way to determine the problem domains is to
trace the space-charge-free field lines leaving the coronating dc conductors [4].
Generally, in a hybrid ac/dc line geometry as shown in Fig. 1.2, the problem domain

can be divided into the following regions by assuming ac conductors at zero potential;
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» Between positive and negative dc conductors;
* Between positive (negative) dc conductor and each of the three phase ac
conductors;

° Between positive (negative) dc conductor and ground.

The last region is the problem domain in which the solutions will be discussed in this

thesis since the aim of the work is to calculate E, p, and J at ground level.

3.3.1 Determination of the Space-Charge-Free Field

The space-charge-free field is the electric field determined without considering the
effect of corona-generated space charges. Since the ratios H/r (height / radius) for all
the line geometries in this thesis are greater than ten, the Method of Images can be
used to determine the space-charge-free field. Assuming that each conductor can be
approximated by an infinite line of charge located at the center of the conductor, the
magnitude of the charges for each lines is obtained from the following set of

simultaneous equations:

N g
Vi=g -3 g i=1,.,N (3.9)

where V;is the potential on the conductor i; DEJ- represents the distance from the ith
conductor to the image of the jth line charge; D is the distance between the ith and

jth conductors; N is the set of all conductors without including the imaged ones.
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Knowing the charges Q; on each conductor, the space-charge-free potential and field

intensity at any point P in the problem domain can be determined as follows:

N D..
O, =1 iIn —2d 3.10
b ZMOFZIQJHD;J_ (3.10)
and
N
d
L% e (3.11)

E, = i
p j
2T (7 7 |djpl?

where dj, is the distance vector from the line of charge j to the point P, N' is the set
of all conductors including the imaged ones.
The derived formula for the space-charge-free fields of the line geometries are given
in Appendix A.
3.3.2 Determination of the Problem Domain

The drift of ions generated by corona on the dc line conductors is described by the

following equation:

[O...

V= §=kE(r,t) (3.12)

[o1
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where E is the space-charge-free field intensity at any point in space, V is the velocity

of the ion at that point, r is the position vector, and k is the mobility of the ions.

Equation (3.12) can be separated into the following two scalar equations:

vx=%—’:~=kEx(x,y,t) (3.13)
d
vy=d—3t’=kEy(x,y,t) (3.14)

The trajectories of ions can be determined by integrating the above equations

numerically with respect to time t using the Runge-Kutta method [29].

Figures 3.1 - 3.5 show the ion trajectories of the boundaries for the different regions,
where 6 is the angle of the dc conductor node on the dc conductor where the field line
originates. 0=0 corresponds to the lowest point on the dc conductor. Due to the
symmetry, only half of the line geometry is considered. The shaded regions are the
problem domain of interest. Since the space-charge-free field lines are taken as the

artificial boundaries, Deustch’s assumption is resorted on the boundaries only,
In Figure 3.1, Line 2 is next to the field line on the ac conductor (Line 1). The flux
line that intersects the ground plane far enough from the ori gin has been chosen as

Line 3, to ensure that the ionized field at the intersection point is very small. In this
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way, the shaded problem domain covers the region of interest, i.e., the area where the
field quantities at ground ( E, p, J) is to be determined. Similarly, in Figure 3.2,
Figure 3.3, and Figure 3.5, Line 2 is right next to the field line terminated at -dc
conductor (Line 1) as one part of the artificial boundary, while Line 3 has been chosen
in the same way as in Figure 3.1 as the other part of the artificial boundary. In Figure
3.4, however, Line 2 is right next to the field line terminated at the ac (phase C)
conductor (Line 1). In Figure 3.2 to 3.5, Line 4 is part of the flux line terminated at -
dc conductor. From the 6 values of Line 2 in these figures, it can be seen that even
for space-charge-free electric field, the shielding effect of the ac conductors is
different with the different arrangement of the conductors, i.e., with the bigger
shielding effect in Geometry 4 compared with the ones in Geometries 2 and 3. In the
laboratory line (Geometry 1), it has been found out that the shaded region in Figure
3.1 is approximately irrespective of the ac applied voltages[4]. Therefore, this region

can also be used as the problem domain when the ac voltage is not zero.
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Figure 3.1: Ion Trajectories in the Laboratory Line System (Geometry 1), V 4,=0,
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Figure 3.2: Ion Trajectories in Geometry 2 System, V=0, Vg, = 300 kV
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3.4 MESH GENERATION PROCEDURE

Triangular elements are used in the iterative finite element program. In order to reduce
the tedious work in formulating the triangle mesh, an automatic mesh generation
program has been developed. Initially, a number of nodes ( triangle vertices ) are
chosen evenly on the conductor surface. Starting from one conductor node, the
second node is placed on the field line by a distance L,=r,(A8) from the conductor
node, where A is the angle subtended at the conductor center by a chord joining two
consecutive conductor nodes, and 1, is the conductor radius. BEach segment, moving

away from the conductor, increases in length by a weighting factor, WF.

Length of segmenti=(WF) -1(r,A8)

where i =1 corresponds to the first node away from the conductor and is increased by

1 for the subsequent nodes.

The input data to the program consists of the total number of the conductor nodes
(Ngc), the radius of the conductor (r;), and the weighting factor (WF). The output
consists of firstly the x and y coordinates of each point with its corresponding
number, and secondly the element number with its element definition in the counter-
clockwise direction in order to match with MANFEP. Both nodal numbers and

element numbers are arranged in sequential order.

By using the mesh generation program, the triangular meshes for Geometries 1 to 5

are generated and shown in Figures 3.6 - 3.10, where IN represents the number of
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the initial nodes or triangle vertices; NT is the total number of the elements.

Figure 3.6: Finite Element Mesh for Geometry 1, IN = 160, NT = 264
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Figure 3.7: Finite Element Mesh for Geometry 2, IN = 115, NT = 175

Figure 3.8: Finite Element Mesh for Geometry 3, IN = 117, NT = 178
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Figure 3.9: Finite Element Mesh for Geometry 4, IN = 117, NT = 178

Figure 3.10: Finite Element Mesh for Geometry 5,IN = 114, NT =173
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3.5 APPLICATION TO COAXIAL CYLINDER GEOMETRY

Since the unipolar de corona problem described by Equation (2.6) can only be solved
analytically for a simple case of coaxial cylinder geometry, the numerical algorithm of
FE procedure presented above can be checked by applying it to such a case and

comparing the numerical results with the exact ones.

3.5.1 Geometry and Mesh Generation

Chosen from reference [21], the coaxial cylindrical conductor is shown in Figure

3.11.

Figure 3.11: Coaxial Cylindrical Configuration
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where 1, = (.1 cm, Iy = 2.0 cm. From Peek's Law, the onset field intensity Ej is
equal to 58.56 kV/ cm, which corresponds the onset voltage Vo to 17.542 kV. The
applied voltage on the inner conductor V is 1.42Vo, i.e., Ve =24.909 kV.

Due to symmetry of the problem, only a quarter of the geometry is considered.

Figures 3.12 and 3.13 show the problem domain and the finite element mesh.

Figure 3.12: Problem Domain for the Coaxial Cylinder Geometry
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Figure 3.13: Finite Element Mesh for the Coaxial Cylinder Geometry, IN =98,
NT = 156

3.5.2 Evaluation of the FE Procedure

The initial space charge density p has been chosen by using the closed-form (A.2.3)
from the Appendix A. Then the solutions by FEM of Equation (3.1) should not differ

much from the ones of Equation (3.2) since p is close to the real charge distribution.
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Table 3.1 shows the errors after solving the Equations (3.1) and (3.2) at the centroid

of each element only once. (1. e., one iteration )

Table 3.1: Errors in the Evaluation of the FE Procedure

NDEG OF v dp EDIFF | VDIFF | RDIFF CPU
(%) (%) (%) (%) (%) (%) (sec)
2 1.67 2.26 0.0 1.80 | 4.63 1.25 45
3 1.66 2.23 0.0 1.80 | 4.41 1.25 106
where

§ { (Ey; - By ]2
SEz[M] — i= (E1i+E21)/2 ,
Eavi IrMs NT
(Da“ RMS , Pold i RMS

EDIFF = [Eex i~ Eavi

:| , VDIFF = Dey i - Py ,
Eexi  JrMs RMS

(Dex i

Tterative Finite Element Procedure



40

Pex i }RMS

1

where, RMS represents the root mean square value and the difference is

determined over all the triangle centroids.
Eji, E2; : the magnitudes of the electric field intensity at the centroid of

element i, determined from Equations (3.1) and (3.2),

respectively.

®1;, Dy; : the potentials at the centroid of element i from Equations (3.1)

and (3.2), respectively,

Eavi» @avi : the average values of Ey; and Ey;, ®@;; and @, ;, respectively.

Pnewis Poldi: the new and the old approximations for the space charge

density of element i at the centroids, respectively.

Eexi» @exi, Pexi ¢ the exact solutions from the equations (A.2.2), (A.2.1),

and (A.2.3) from the Appendix A, respectively.

p;: the numerical approximations for the space charge density of element i.

NDEG is the degree of the approximating polynomials which refers to the order of
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polynomial approximation for the potential within an element. The higher the value of
NDEG is, the more accurate the sclutions will be. However, the computer storage
and CPU time will also increase tremendously. In Table 3.1, second and third order

polynomials were used.

From the results, it can be seen that the program is functioning properly. When the
initial charge distribution is close to the exact one, the solutions of Equation (3.1) are
very close to the ones of Equation (3.2). The relative errors of the electric field
intensity and the potential are only 1.7% and 2.3%, respectively. Moreover, the
calculated values are also very close to the exact ones, the relative errors of the electric

field and potential are within 5%.

Another conclusion is that the second-order isoparametric triangular elements with
curved elements on the coronating conductor surface provides satisfactory results and
saves a lot of computer time compared with the cubic polynomial approximation as
shown in Table 3.1. Therefore, the quadratic polynomials are used to describe the

potential variation within each element throughout this thesis.
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Chapter 4
APPLICATION TO HYBRID AC/DC LINES

This chapter details the solutions for the ionized field of the hybrid line Geometries 1
to 4 using the iterative finite element procedure discussed in Chapter 3. For the
purpose of analyzing the shielding effect of the ac conductors in the hybrid lines, one

bipolar line geometry (Geometry 5) has also been studied.

4.1 MESH GENERATION AND EVALUATION

Following the mesh generation procedure developed in Section 3.4, different meshes
were constructed and evaluated. The formulation of a mesh has a significant effect on
the accuracy of FE solutions [4]. The meshes can be evaluated by comparing the
solutions for the space-charge-free electric field determined by FEM with the ones

obtained by the method of images described in Subsection 3.3.1.

Tables 4.1 & 4.2 show the errors corresponding to various finite element meshes,

where

¢ Ngc - number of nodes on the dc conductor.
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L, - initial segment length from de conductor.

I4c - Tadius of the dc conductor.

WEF - weighting factor.

IN - initial nodes (triangle vertices) in a mesh.

NT - number of triangular elements in a mesh.

Nodal Error, Centroid Error, DC Cond. Error, Ground Nodal Error - the
relative differences between the numerical (Finite Element) and analytical
(image method) solutions for the potential and the magnitude of the
electric field intensity at all nodes, the triangle centroids, the conductor
nodes, and the ground nodes, respectively.

RMS - root mean square.

Max. - maximum nodal error.
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Mesh 1iD1Al 1D1AZ 1D1A3 1D1A4 1D1AS 1D1AG
N 9 9 9 8 9 9
dc
L r 0.3r 0.5xr 0.5 0.3 0.3r
o de dc dc dc dc dc
WF 1.5 1.5 1.5 1.5 1.6 1.4
N 162 189 180 160 170 221
NT 270 318 302 264 285 375
M RMS || 0.46 | 0.46 0.65 | 0.69 0.46 | 0.48
Noedal
Error
(%) Max. || 3.84 | 4.44 7.30 | 7.75 3.14 | 5.51
V Centroid| R4S 1.09 | 0.99 0.90 | 0.78 1.08 0.77
Error (%)
Max. || 12.16| 11.97 10.52 | 8.78 13.54 | 10.9
E RMS |l 5.96 | 3.63 4.08 3.83 4.0 3.15
Nodal
Error
(%) Max. || 21.8 21.2 17.031 16.57 16.3 25.8
RMS 1.43 1.09 1.31 1.31 1.18 0.88
E Centroid
Error (%)
Max. || 9.09 10.15 15.1 15.1 7.10 13.4
E DC cond.nodalll 15 g | 1,51 3.25 | 6.49 1.55 | 1.34
Exrror, RMS (%)
E Ground Nodal
Error, rMs (%) || 116 | 11.3 9.24 6.90 8.53 6.68
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Table 4.2: Errors for Various Meshes, Geometry 2 & 3, Vgo= 0,V g, =+ 300 kV

Geometry 2 Geom. 3
Mesh 2D3A1 |2D3A2 2D3A3 2D3A4 | 2D3A5 2D3A6 | 3D3Aa
N 4o 5 5 5 4 5 5 5
L, T 0.3r, | 0.5r, 0.5¢ [0.3x [0.3x |0.3x,
WF 1.5 1.5 1.5 1.5 1.6 1.4 1.4
IN 84 99 93 75 88 115 117
NT 125 149 140 106 132 175 178
M rMs || 0.48 0.46 0.54 | 0.51 0.58 | 0.33 | 0.44
Nodal
Error
(%) Max. || 1.38 1.30 2.30 | 2.63 1.80 | 1.28 | 1.84
] rRMS 1.09 0.99 1.59 1.19 1.11 0.83 1.04
V Centroid
Error (%)
Max. || 7.00 6.91 12.9 | 10.66 6.73 7.22 8.5
E RMS 5.09 3.4 3.97 4.25 4.60 2.79 5.76
Nodal
Error
(%) Max. || 14.5 14,2 13.1 20.1 16.9 12.8 17.7
RMS 1.39 0.99 0.99 | 0.95 1.27 0.63 0.77
E Centroid
Error (%)
Max. || 4.06 3.90 3.45 | 2.44 4.39 | 2.95 4.38
E DC cond.nodalfl g gg 2.15 5.68 | 5.32 2.05 | 2.25 | 2.20
Error, RMS (%)
E Ground Nodal
Error, rus (3) || 845 8.26 7.73 11.94 9.40 8.72 4,87
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The above two tables show that the FE procedure is more accurate at centroids than at
nodes as concluded in [4]. The maximum errors (Max.) occur at nodes on the
artificial boundary and at the centroids of triangles adjacent to the artificial boundary.
The FE procedure gives less accurate results near the artificial boundaries. The
accuracy of the electric field around the conductor surface increases as the number of
conductor nodes increase and the density of the triangles around the conductor
increases (L, decreases). In general, an increase in the number of triangular elements

(NT) improves the accuracy of a mesh but also increases the CPU time.

All the meshes in Tables 4.1 & 4.2 use second order elements. Mesh 1D1A6 is
chosen for the FE solution for Geometry 1. Meshes 2D3A6 and 3D3A are chosen for
Geometries 2 and 3, respectively. For Geometries 4 and 5, the same Ny, L, and WF

are used as in Mesh 2D3A6.

4.2  INITIAL APPROXIMATION FOR THE SPACE CHARGE
DENSITY

The initial distribution of the charge density p at the finite element nodes is obtained
by employing an equivalent coaxial cylindrical system with the inner radius equal to

the radius of the coronating dc conductor (1) and outer radius R determined by :

Rzrcexp(g—&c—) (4.1)

max rc

where E . is the maximum space-charge-free electric field on the surface of the dc
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conductor in the actual geometry and V4, is the potential of the dc conductor in the

actual geometry.

Therefore, the space charge density on the inner conductor in the equivalent
concentric cylinder system py can be obtained by the implicit equation (A.2.4), from

the Appendix A.

Assuming that the maximum space charge on the dc conductor surface for the actual
line is equal to pg and the space charge distribution on the dc conductor is to vary in

the following form:
Pc(0)=0.5pg ( 1+ cosb) (4.2)

where 0 is the angle of the dc conductor node on the dc conductor where the field line
originates, and 6 equals zero corresponding to the maximum space-charge-free field

on the dc conductor surface.

The space charge density at any point along a space-charge-free electric field line is

given by the known analytical solution for the coaxial cylinder geometry [21],

Vre Bo € pc(e)
VL2 +K3- 12

p(esr)=

(4.3)

where

K, = re B & X
V. pc(6)

Application to Hybrid ACIDC Lines




48

and L is the length of the field line from the dc conductor node to the point of interest

in the problem domain.

4.3 UPDATE ALGORITHMS

As mentioned in Section 3.2, the update algorithm is based on the approximation for
the space charge p and the simultancous solutions of Equations (3.1) and (3.2), along
with the third boundary condition (Kaptzov's assumption). In general, an update

algorithm has the following form,

Pnew = Pold f (AD, AE, AEC) (4_4)

where ppew is the updated charge density at the node and Pola 1s the charge density at
the same node used in the previous iteration; A®=®;~®,, AE=E,- Ey, AE.=E - B,
are the discrepancies between the solutions from Equations (3.1) and (3.2) for the
potential, field intensity and the field intensity on the dc¢ conductor surface,

respectively. The function f (A®, AE, AE,) should be 1 when CONVErgence occurs.

Different approaches have been employed in the literature. Abdel-Salam et al. [18]
used an updating formula based on the differences between ®; and @, only. No
information was given on the enforcement of the third boundary condition. Gela [30]
used a correction formula based only on the deviations of E., and E;, from the
Kaptzov's boundary condition. In the present work, two different update algorithms

have been examined for the different line geometries.
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4.3.1 Update Algorithm for Geometry 1

The following equation was used in the update algorithm for Geometry 1,

0.5 (E1j+E2j)

Pacwi = Poti [~ 221 [ 1+ o B2y gy Lre®ai gy s
0

E1i+Ea; @15+ Do;

where a, 0, and 7y are parameters chosen to ensure convergence. Different choices of
these parameters affect the speed of convergence significantly as shown in Table 4.3.

SE, 8V, and 8p in Table 4.3 are the RMS errors at the triangle centroids which have

the same expressions as given in Subsection 3.5.2; 8E,; and OE, are defined as:

E, - Ey;
SEclz[ o IJ

} E, - By;
Eo JrMs

and OB = {TJ
0 RMS

where Ey; and Ey; are the magnitudes of the electric field intensity at dc conductor
node j obtained from equations (3.1) and (3.2), respectively; the RMS error is

computed over the dc conductor nodes.

The last column in Table 4.3 gives the number of iterations.
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Table 4.3: Convergence for Different Constants a, ¢, and Y, Geometry 1, Vge = 0,

Vde =60kV
a o Y OF v dp OE o; | OE, Tter.
_ (%) (%) (%) (%) (%L #
-0.1 -2.4 0.0 0.83 0.91 0.96 4.5 4.0 5
0.5 -2.4 0.0 0.81 0.99 2.4 3.6 3.0 4
1.0 -2.4 0.0 0.80 0.89 2.8 3.0 2.5 4
-0.1 -2.4 -1.0 0.93 0.74 1.0 4.5 3.0 4
-0.1 -2.4 -1.5 Diverge
-0.1 -1.0 -1.0 0.80 0.76 0.82 4.9 3.3 10
-0.1 -2.0 -1.0 0.78 0.87 0.87 4.6 3.1 5
0.5 -2.4 -1.0 0.72 1.0 2.2 3.0 3.6 5
-0.1 -3.0 -1.0 Diverge
1.2 -2.4 0.0 0.79 0.86 2.8 1.8 3.0 4
-0.5 -2.4 0.0 Diverge
-0.1 2.2 -1.0 0.96 0.77 1.0 4.4 3.0 4
1.0 -2.4 0.5 0.88 1.0 2.5 1.8 3.1 6
-0.1 -1.5 -1.0 0.9%90 0.80 0.81 4.9 4.6 6
1.5 -2.4 -1.0 0.84 1.0 4.0 2.1 2.0 19
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Figure 4.1(a) - Figure 4.2 show the convergence of the iterative procedure, i.e., the

changes in 8V, 8E, &p, SECI, and 5E02 with respect to the number of iterations for
a=-0.1, o=-1.0, and y=-1.0. Figure 4.1(a) - Figure 4.1(c) also compare the
convergence of the iterative procedure with two different initial space charge
distributions. The solid curve represents the results with an initial charge distribution
given by Equation (4.3) and the dashed curve with an initial charge distribution
obtained by increasing the first one by 50%. It can been seen that in spite of the

significant initial errors, the algorithm works its way through to convergence.
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21

|
24
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Figure 4.1(a): Deviation OV vs Number of Iterations
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Figure 4.2: Deviations 8E,; and 8E ., vs Number of Iterations

4.3.2 Update Algorithm for Geometries 2 to §

When Equation (4.5) is applied to Geometries 2 to 5, the parameters a, ¢, and y
cannot be easily found to ensure convergence. Since the update algorithm is not
unique for a certain geometry, the following equation is used for updating the space

charge density for Geometries 2 to 5,

K-k

_ Eii- By P Dy;-Dy; Eo- Eyj Bo- Baj ;10K
P = i[1+a 101+ L1+ 1+nN———
Prewi = Pold B L Vg g ([ p=F 101+ =21}

(4.6)

where o, 3,7, N, and b are the convergent parameters. K is the total number of
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elements in one of the corridors, which are formed by space-charge-free field lines
from dc¢ conductor nodes to the ground nodes. The value of k is determined by the
relative position of an element in a corridor, which starts at 1 for elements adjacent to
the dc conductor and increases linearly to K for the elements adjacent to the ground
level. The last term ensures that the correction to enforce the Kaptzov's boundary

condition has a greater effect near the dc conductor.

By using the same trial-and-error procedure as for Geometry 1, it was found that the
convergence could be achieved for the following values of the parameters: o between
-2.5 and -0.8, B between -1.5 and -0.5, 1 between -1.0 and -0.2, y between -1.2 and
0.5, and b between 1.5 and 3.5. The optimum values depend on the geometry and/or
the mesh. For Geometries 2 & 3, the solutions were obtained for o, = -1.0, B = -0.5,
M =-0.25,b =25, and y=-0.5. For Geometry 4, the same values of the parameters
were used, except b = 2.0 and ¥ = 0.0. For Geometry 5, the same values as in

Geometries 2 & 3 were used, except b= 2.0 and y = -0.5.
It can be seen from the two update algorithm Equations (4.5) and (4.6) that upon

convergence, i.e., when @y;= Og;, Ej;= By, Eyj= Egj = E,, the correction to p

tends to vanish and ppewi = Poldi.
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44 COMPUTED RESULTS AND ANALYSIS

4.4.1 Comparison of the Computed Results with Experimental Data

for Geometry 1

The computed results for the laboratory line are based on the solutions of the time-
invariant ionized field problem described before, i. e., V,.=0. The effect of the ac
voltages is included by replacing the dc voltage with an equivalent voltage Veq’ which
is obtained by keeping the maximum space-charge-free field intensity constant on the
dc conductor surface irrespective of the ac voltages [4]. By the method of images
described in Subsection 3.3.1, the relationship between the maximum field intensity
on the dc conductor surface, which occurs when the ac voltage is set to its maximum

negative value, and the applied dc and ac voltages can be expressed as

Enax = 1.71 Vo +0.57 V. (4.6)

where Vge = 60 kV and V, is the RMS value of the ac voltage, which is 10 kV, 20
kV, and 25 kV, respectively. When V. = 10kV, B, equals 108.19 kV/cm from
Equation (4.6). Setting V,, at zero potential and keeping Enax unchanged, the
equivalent dc voltage can be obtained by replacing V4, by Veq in Equation (4.6), i.e.,
Veq = 63.35 kV. Replacing Vg, by Veq in the iterative FEM, the ionized field problem
can be solved corresponding to V,. = 10 kV. Similarly, the effect of ac voltage of 20

kV and 25 kV can also be simulated in the same manner.

Figures 4.3 - 4.6 show the comparison of the computed results with the experimental

ones for V=0, 10 kV, 20 kV, and 25 kV, respectively. The results agree quite well
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for V=10 and 20 kV. However, when V=0, the position of the peak value of the
current density at ground level calculated by FEM does not agree well with the
experimental data, as shown in Figure 4.3. This is due to the fact that the ac
conductor is replaced by a line charge when the method of images is applied to
calculate the space-charge-free field. Consequently, the dimension of the ac
conductor, which may have some shielding effect on the ionized field, has been

neglected.

With the increase of ac voltages, the calculated values of the current density (J)
increase as shown in Figure 4.7, whereas the measured values have a tendency of
decrease as shown in Figure 4.8. The reason for this is that when the ac voltage is
increased above a certain value, the ac conductors will be in corona too. This
phenomena, however, is very difficult to simulate by the FEM. This explains the

bigger differences between the calculated and the measured values in Figure 4.6.
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Figure 4.3: Current Density Profile at Ground Level for Geometry 1, V =0,
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4.4.2 Computed Results for Geometries 2 to 5

The purpose here is to analyze the effects of hybrid line geometries on the
corresponding lateral profiles of the electric field intensity and the current density at
ground level from point of view of environmental impact. For simplicity, the ac

conductors are assumed to be at zero potential only.

The ground level lateral profiles of electric field intensity and current density for
Geometries 2 to 5 are shown in Figures 4.9(a) to 4.11(a) and 4.9(b) to 4.11(b),
respectively. In Geometry 3, the maximum electric field intensity and current density
are reduced by 4% and 17% respectively, compared with Geometry 5. By
comparing Figure 4.9 (a) & (b) with Figure 4.11 (a) & (b), respectively, it can be
seen that Geometry 2 does not show the obvious shielding effect of the ac
conductors, whereas its influence is much more pronounced for Geometry 4 where
the maximum electric field intensity and current density are reduced by 11% and 32%,
respectively, compared with Geometry 5. The reason is that when outer phase ac
conductors are relatively close to the center phase as compared with the distance
between the bipolar dc conductors (Geometry 2), the area screened by the ac
conductors is within the problem domain when the ac lines are not present (Geometry
5). However, the dc corona activities are increased by lifting the zero potential from
ground to the position of the ac conductors. When the outer phases of ac lines are
moved further apart from the center phase (Geometry 4), the area screened by the ac

lines increases and the electric quantities (E, p, J) at ground level therefore decrease.

By comparing Figure 4.10 (a) & (b) and Figure 4.11 (a) &(b) with Figure 4.9 (a) &
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(b), respectively, it can be seen that the maximum electric field intensity and current
density at ground level in Geometry 3 are reduced by 4% and 14%, respectively,
compared with the ones in Geometry 2; the ones in Geometry 4 are reduced by 11%

and 29%, respectively, compared with the ones in Geometry 2.

It can be concluded that with a proper ac line arrangement, the hybrid line geometries
have the advantage for reducing the electric field intensity and current density to
values lower than those which would be expected by increasing the height of the dc

conductors alone.
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Chapter 5
CONCLUSIONS

An iterative FE program has been developed and applied to different geometries in this
work. The procedures for constructing the finite element mesh and approximating the
initial space charge distribution have also been presented. Initially, the program was
checked by applying it to the case of a coaxial cylindrical configuration, then extended

to four hybrid ac/dc geometries and one bipolar dc geometry.

The itcfative FEM works very well in converging to a solution of the ionized ﬁeld
problems even with significantly inaccurate initial approximations for the space charge
distribution. Comparison of the calculated results of the ionic current density at
ground level for the single-phase laboratory ac/dc configuration (Geometry 1) with

available experimental data showed satisfactory agreement.

The calculated results of the ground level lateral profiles of electric field intensity and
the current density for the various practical hybrid ac/dc transmission lines have also
been obtained. For further discussion of the shielding effect of the ac conductors on
the electric environment, the lateral profiles of electric field intensity and the current

density for the bipolar geometry (Geometry 5) have also been calculated. It can be
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concluded that with a proper arrangement of the ac circuit in a hybrid ac/dc line
configuration, there is a significant shielding effect of the ac conductors on the jonized
field intensity and the current density at ground level. The hybrid ac/dc lines have the
advantage for reducing the electric quantities to the values lower than those by

increasing the height of the dc conductors alone.

Based on the research work carried out in this thesis, it is recommended that the
present analysis be extended to the case of bundled hybrid ac/dc transmission lines.
In addition, it was found that the final values for the space charge distribution at
ground level were different when the initial approximations were different even
through convergence of solution was reached as specified. It is recommended that an
improved analysis by employing the space charge density on the coeronating conductor
surface as the third boundary condition be developed in the future to ensure the
unique solutions not only for the ionized field but also for the final space charge

distribution.
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Appendix A
MISCELLANEOUS EQUATIONS

A.1 DETERMINATION OF SPACE-CHARGE-FREE FIELDS BY THE

METHOD OF IMAGES

A.1.1 Solutions for Geometry 1

Veg=Qun 2HL 4 9y 1n H1+H2 =Q,C+QyB
1

Vo= Qllni11+H°+Q21 I QB+QA=0
where A=In2?2,B=ln%ilj_:%,andC IHZH1 )
_ CBl_ 2 Veq Veq
ET = =AC-B A 9 Oy=.B
Let DET ]B A|=AC-B% nowwehave Qr=A =L, Qu=-BL

The potential at any point (, y) can be expressed as,

Miscellaneous Equations
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X2+(y-H)* 2 x4 (y- Hy)?

2 2 2 2
@(x,y)zgmx O HHDT QX2 (v + Hy)

The magnitude of the space-charge-free field intensity at any point (x, y) is,

E=vE}+E}

where
EBx=Ex1+ Ex2+ Exa +Eya.,. Ey=Ey) + Eyp + Ey3 + By
B = Q1 x By = Q1 Hy-y)
(Hy -y )2 +x2 (Hi-y)?+x2
Bppm 2% Byp=— Q2 - y)
(Hp -y )2 + x2 (Hy -y )2 +x2
B = - Qe x B = - Qa2 (Hot+ y)

(g +y )+ 2 T,y )2+ x2

By=—  UX By = it y)
(Hy +y)2+x2 T H y R

A.1.2 Solutions for Geometries 2 to 4

24 12 2 2
vdc=Q1[1n2H1 #lp @S0 Ta }Lg%m Si+ (H; + 1)

Me 27082+ QHp2| 2§24 (H - Hy)?
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e [ 1 S1-8)% (Hy +Hg)? - (Sy + S3)%+ (M - Hs)z]
2 (St - S3)%+ ( Hj - Ha)? (Sy + S3)%+ (Hj + H3)?

0=QyIn=2

rac

0= [ n S1- 8%+ (Hy +Hy)? | (S) + 83> (Hy + H3>2]
2 (St - S3)%+ ( H - Hj)2 (S1 + S3)2+ (Hj - Hz)?

2 2 2 2
+ Q24 S37+ (Hy + Hy) +Q3{In2rH3+l1n (2 53)7+ 1 }
2 83+ (H; - Hy)? 12 (2 83)%+ (2 Ha)?

_ AV - — R Vi — AC_R2
:>Q1—ADET,Q2 0, and Q3 BDET,whereDET A-C-B~,

1 2 S3)2+ ra%
2 @S @)

B =_1_{ n 1= 8%+ (Fy + H3)? | (S5 + $3)% (H + H3)?
’ 2 (S - S3)%+ (Hj - H3)? (S1 + S3)%+ ( Hj - Hz)?

2 2
C—In——er1 +Llig @ Sy 14,
d 2 (28)%+ @2 Hy)?

Then the potential at any point (x, y) is given by,

Miscellaneous Equations
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® y)=&(m (1 - S+ (y+H1)? (o +Sp (v - Hy )?]
2 (- S+ (y-Hi?  (xy+ S92 (y +Hy)2

. _Q}_[ I 1-82% (y +H3 (31 + S (y - Hy )?|
2 (- S3%+ (y-Ha)® (g + S3)%+ (y + H3)?

and the magnitude of the space-charge-free ficld intensity is,
E=+vE;+E} ,
where E, is the sum of x component of the electric field of each line charge including

the imaged ones, Ey is the sum of y component of the electric field of each line charge

including the imaged ones.

A.1.3 Solutions for Geometry 5

2H; 1, (2S)%r1l J
Vac=Q In=—=L+ Ll ¢ =Q;C,
T T e T2 s o Hp?| T

24 42
where C=h12‘-1;&+l1n (2 S+ 14,
e 2 (2 S+ (2 H;)?

Then the potential at any point (x, y) is given by,

Miscellaneous Equations
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n 1= S0P+ (y + H? G + 80 (y - Hy )ZJ

O
D, y)=L
Gy 2 [ (x1 - SO (y - Hp)? (x1 + S+ (y + Hy)?

and the magnitude of the space-charge-free field intensity is,
E=vE}+E} ,

where E, and E, have the same definitions as in A.1.2.

A2 ANALYTICAL SOLUTIONS FOR THE IONIZED FIELD IN
COAXIAL CYLINDER GEOMETRY

For the case depicted in Fig. 3.1-1, the analytical solutions for @, E, and p in the

region of interest (r, r, ) are given by the following closed form equations by Gela

[17],
Q) =V, - Kl{fl(r) -Ko +K3 [ In fr: +1n (Ks+ Ky ) - In ( Kz+ f1(0) )} } (A.2.1)

E@ =510 (A2.2)

¥1e Eo € Po

p@= e (A.2.3)

where

K1=LE9‘EQ‘ s f1(I’)=‘V1‘2+K22-1‘% R

-Miscellaneous Equations
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K2=____\’feg-)‘30&) , Ky =VKZ-12 |
0

and po = p (rc) determined implicitly by the following equation,

Ve= Ki{fi(r) - Ko + Ka [ In 3+ In ( Ky Ky ) - In (Ka+ £1(rp) |} a2z

Miscellaneous Equations
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1

Appendix B
PROGRAM LISTING

B.1 MESH GENERATION PROGRAM

[WANG JOB *,,, T=2M,L=351=20''DC-AC FEPMAP',CLASS=1
// EXEC WATFIV SIZE=2048K
//SYSIN DD *
$JOB WATFIV WANG,NOEXT
C
C DETERMINING A FE MESH FOR THE FIVE CONDUCTOR PROBLEM
C
IMPLICIT REAL*8 (A-H,0-Z)
REAL#*8 TH,VDC,VAC,TSTEP,H1,H2,R PHI,THS,THM,TD,PI, TNW(800,3),
& X(28000),Y(28000),D(28000),XN(200),YN(200),A,B,C,DET, W, TH2, TNMIN,
& TNMAX,G,XA(100),YA(100),XS (2000),Y S$(2000),DLP(800),XP(500),
& YP(500),TN(200),ROE(200),T(28000),DL(200)
INTEGER NL,NN(20),NP,L,J,K,L,M,IT(800,3),NT,NL1
COMMON A,B,C,DET,VDC,VAC,H1,H2,W H3,51,53
C
C THM=111.0-69.0
C2  THM=108.0-66.0
THM=1006.0-63.0
VDC=300000.0
VAC=0.0D0
DI=4.0D-6
TSTEP=0.0000001
PI=3.141592653
c2 Hi=16.34
H1=17.34
S51=4.57
H2=14.20
H3=12.38
53=5.49

Program listing



84

C $3=6.49
RDC=0.01755
RAC=0.01599
L=0
W=60.0*P1
TNMIN=0.0000001
TNMAX=0.000001
G=14
NL=5

C NL=4
NL1=NL-1
THS=THM/NL1

DO 10 I=1,NL
TH=THS*(I-1)+63.0
CALL RKP(TH,TSTEP RDC,NP,TD,X,Y,T,D,TNMIN, TNMAX)

CALL PATH(TSTEP,NP,TD,NN(I),XN,YN,TN,DL,RDC,X,Y,T,D,G,D)
C CALL INROE(TH,RDC,PL,XN,YN,TN,NN(I},ROE)
CALL CINROE(TH,RDC,PIXN,YN,DL NN(I),ROE)
M=NN(D)
PRINT,NN='M
PO 70 J=1M
70 PRINT ,ROE(])
DO 20 J=1,M
K=1+]
XSEK)=XN()
20 YS(EK)=YN{)
10 L=L+NN()
C
- C PRINT NODES
C
PRINTS0
DO 30 I=1,L
XP(D)=1000.0%XS(D)
YP()=1000.0*YS(I)
30 PRINT60,XS(I),YS(1)
C

Program listing
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CALL TRIANG(NL,NN,IT,NT)
C CALL MESH(XS,YS,NOD,T,NT)
CALL DIRI{VDC,NN,NL)
CALL ALT2(NL,NN,RDC,THS,S1)
STOP
50  FORMAT(1X,'NODES"
60 FORMAT(1X,F19.15F20.15)
END
C
C TAKING THE PATH AND RETURNING THE NODES
C
SUBROUTINE PATH(TSTEP,NP,TD,NN,XN,YN,TN,DL,RDC,X,Y,T,.D,G,))
C
IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 X(28000),Y(28000),D(28000),TD,XN(200),Y N(200),R, TEMP,G
REAL*8 TN(200), TSTEP,T(28000),DL(200)
INTEGER LK,NN,NP,NH,J

TEMP=DLOG(1.0+TD*(G-1.0)/(0.3*RDC))/DLOG(G)
NN=TEMP )

NN=NN+1

NH=NN/2+1

XN(1)=X(1)

YN()=Y(1)

TN(1)=T(1)

DL{1)=D(1)

K=2

TEMP=0.3*RDC

DO 220 J=1,NP
IF(D(J).LE.TEMP) GOTO 220
XNEK)=X(D)
YNEK)=Y({J)
TN(K)=T(J)
DL(K)=D(J}
TEMP=D({I)+(0.3*RDC)*G**(K-1)
K=K+1

220 CONTINUE

230 CONTINUE

Program listing
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o
C235  CONTINUE
C237  CONTINUE
C
IR(Y(NP).LT.1.0) Y(NP)=0.0D0
XNAN)=X(NP)
YN(NN)=Y(NP)
TNNN)=T(NP)
DL(NN)=D(NP)
NN=NN+1
ELSE DO
IF(Y(NP).LT.0.0) Y(NP)=0.0D0
XN(NN)=X(NFP)
YN(NN)=Y(NP)
TN@NN)=T(NP)
DLNN)=D(NP)
END IF

Qo000 0an

RETURN
END
s
C DETERMINING THE INITIAL DISTRIBUTION OF THE CHARGE DENSITY
C
SUBROUTINE INROE(TH,RDC,PL,XN,YN,TN,NN,ROE)
IMPLICIT REAL*8 (A-H,0-Z) ,
REAL*8 XN(200),YN(200),TN(200),ROE(200),EPSO,FK,CI. TH,EST,
& EON,RDC,T,PI,EEX,EEY
INTEGER NN,LJ,K
EPSO=8.854D-12
FK=1.5D-4
CI=1.222D-5
EEX=EX(XN(1),YN(1),0.0D0)
EEY=EY(XN(1),YN(1),0.0D0)
EST=DSQRT(EEX**2+EEY**2)
ROEM=0.236134D-6
EON=5.981D+6
C  ROE(1)=Cl/(4.0*RDC*FK*EST)*DCOS(TH/2.0+P1/180.0)
ROE(1)=ROEM*(0.5*(1.0+DCOS(TH*PI/180.0))

@]
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C ROE(1)=ROEM*DCOS(TH/2.0*P1/180.0)

DO 10 J=2,NN
10 ROE()=ROE(1)/(1.0+ROE(1)*EK*TN(J)/EPSO)
RETURN
END
C
C

SUBROUTINE CINROE(TH,RDC,PI, XN, YN,DL,NN,ROE)
IMPLICIT REAL*S (A-H,0-Z)
REAL*8 XN(200), YN(200),DL(200),ROE(200),EPSO,FK,ROEM.TH,
& EON,RDC,T,PI,FK2,DS(200),EEX EEY EST
INTEGER NN,I,J.K
EPS0=38.854D-12
FK=1.5D-4
EON=2.209D+6
EEX=EX(XN(1),YN(1),0.0D0)
EEY=EY(XN(1),YN(1),0.0D0)
EST=DSQRT(EEX**2+EEY**2)
C  ROEM=0.0714/(FK*EST)
PRINT,ROEM='ROEM
C  ROEM=0.136134D-06
ROEM=0.46134D-07
C  ROE(1)=ROEM*DCOS(TH/2.0*P1/180.0)
ROE(1)=ROEM*0.5%(1.0+DCOS(TH*P1/180.0))
FK2=DSQRT(RDC*EON*EPSO/ROE(1))
DO 10 J=2,NN
DS(I)=DSQRT(XN{)**2+(16.34-YN(I))**2)
C10  ROE()=DSQRT((EPSO*EON*RDC*ROE(1))/(DSU)**2+FK2##2- RDC**2))
10 ROE()=DSQRT((EPSO*EON*RDC*ROE(1))/(DL{J)**2+EK2#*2-RDC**2))

9]

RETURN :
END
C
C DEFINING THE TRIANGLES
C
SUBROUTINE TRIANG(NL,NN,IT,NT)
C
IMPLICIT REAL*§ (A-H,0-Z)
INTEGER IT(800,3),NL,NN{(20),NT,I,J,K,L,NL2 NN1,NND
C

Program listing
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C

330
310

K=0

NT=0

NL1=NL-1

DO 3101=1,NL1
NNI1=2*NN(D)-NN(I+1)-1

DO 320 J=1,NN1

IT(NT+1,1)=K+J
IT(NT+1,2)=K+NN(D)+J
IT(NT+1,3)=K+NN(D+J+1

IT(NT+2,1)=K+J

ITINT+2,2)=K+NN(I)+J+1

IT(NT+2,3)=K+J+1
NT=NT+2

K=K+NN(I)
IF(NN(I+1).EQ.NN(I)) GOTO 310
NND=TABS(NN(I+1)-NN(I))

DO 330 L=1,NND
IT(NT+1,1)=K-NND+L-1
IT(NT+1,2)=K+NN(I)-NND+2%L-2
IT(NT+1,3)=K+NN(I)-NND+2¥L-1

IT(NT+2,1)=K-NND+L-1
IT(NT+2,2)=K+NN(I)-NND+2*L-1
IT(NT+2,3)=K-NND+L

IT(NT+3,1)=K+NN(I)-NND+2*L-1

IT(NT+3,2)=K+NN(1)-NND+2*L,

IT(NT+3,3)=K-NND+L
NT=NT+3

CONTINUE

NT=0
PRINT370
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DO 340 I=1,NL1
NT=NT-+(NN()-1)*2
340 NT=NT+NN({+1)-NN()

C

DO 350 I=1,NT
350  PRINT 360,IT(,1),IT(1,2),IT(L,3)
C

RETURN

360 FORMAT(1X,13,214)
370 FORMAT(1X, TRIANGLES")
END

C ,
C DETERMINING THE PATH OF A PARTICLE USING A RUNGE-KUTTA 4TH ORDER
C

SUBROUTINE RKP(TH,TSTEP,RDC,NP,TD,X,Y,T,D, TNMIN,TNMAX)

IMPLICIT REAL*8 (A-H,0-Z)

REAL*8 HLH2,W,RDC,TOT,TNMIN,TNMAX,TSTEP,

& RH,X(28000),Y(28000),T(28000),H,TN1,TH,PL,FK ,D(28000),TD,DS,YSTEP
INTEGER LIND
COMMON A,B,C,DET,VDC,VACPHIH1,H2,W,H3,51,53

RAC=0.01599
RDC=0.01755
P1=3.141592654
FK=0.00015
A:DLOG(Q.O*H3/RAC)J}O.’S*DLOG((Q*S3)**2+RAC**2)/((2*83)**2
& +(2¥H3y¥*2))
B=0.5*DLOG(((SL1-S3)**2+(H1+H3)**2)*((S1+S3)**2+ (H1-H3)**2)
& H((S1-S3y**2+(H1-H3)**2)*((S1+S3)**2+(H1+H3)**2)))
C=DLOG(2*H1/RDC)+0.5*DLOG(((2*S 1)**24+RDC**2)/((2*S 1 )¥* 2+
& (2%H1)*%2))
DET=A*C-B**2
H=FK*TSTEP
c
C MAXIMUM AND MINIMUM DISTANCES BETWEEN SUCCESIVE POINTS
C
X(1)=S1+RDC*DSIN(PT*TH/180.0)
Y (1)=H1-RDC*DCOS(PI*TH/180.0)

Program listing
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T(1)=0.0
D(1)=0.0

DO 110 I=1,28000
C PRINT, X="X(I),'Y="Y (D, TN1='"TN1
RH=DSQRT((Y{)-H3y**2+(X(1)-S3)**2)
IE(Y(I).LE.0.0) GOTO 150
120 CALL RK4(X(D), YD), X(I+1),Y(I+1),T(1),H,TN1,FK)
IF(TN1.LT.TNMAX) GOTO 130
C DECREASE STEP SIZE
C
H=H*0.5
GOTO 120
130 DS=DSQRT((X({I+1)-X(D)**2+(Y (I+1)-Y(D))**2)
IF(DS.LT.RDC) GOTO 170
H=H*0.5
GOTO 120
C
C INCREASE STEP SIZE
170 IR(TN1.GT.TNMIN) GOTO 140

H=H*2.0
C
C INCREMENT TIME
C

140 TA+1)=T@)+H/FK
D(I+1)=D(D)+DS

C

110 CONTINUE

C

C HIT

c

150 NP=I
TOT=T(NP)

C  PRINT,TOT=,TOT
TD=D(NP)
RETURN

END

Program listing
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c
C A SINGLE STEP OF THE R-K METHOD
SUBROUTINE RK4(XN,YN,XN1,YNL,T,H,TN1,K)
C
IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 T,H,XN,YN,XN1,YN1,TN1,KX1,KX2,KX3KX4 KX5KX6
REAL*8 KY1,KY2,KY3 KY4,KY5KY6K,TT,XP,YP

KX1=EX(XN,YN,T)
KY1=EY(XN,YN,T)

XP=XN+H*KX1/2.0
YP=YN+H*KY1/2.0
TT=T+H/2.0/K

KX2=EX(XP,YP,TT)
KY2=EY(XP,YP,TT)

KP=XN+H*(KX1+KX2)/4.0
YP=YN+H*(KY1+KY2)/4.0
TT=T+H/2.0/K
KX3=EX(XP,YP,TT)
KY3=EY{(XP,YP.TT)

XP=XN-H*KX2+2.0*H*KX3
YP=YN-H*KY2+2.0*H*KY3
TT=T+H/K
KX4=EX(XP,YP,TT)
KY4=EY(XP,YP,TT)

XP=XN+H*(7.0KX 1+10.0*K X2+ K X4)/27.0
YP=YN+H*(7.0vKY 1+10.0*K Y2+ K Y4)/27.0
TT=T+H/1.5/K

KX5=EX(XP,YP.TT)

KY5=EY(XP,YP,TT)

- XP=XN+H*(28.0¥KX1-125.0*KX2+546.0*KX3+54.0*K X4-378.0¥KX 5)/625.0

YP=YN+H*(28.0*KY1-125 .O*KY2+546.0*KY3+54.0*KY4-378.0*KYS)/625.0
TT=T+H/5.0/K

. Program listing



KX6=EX(XP,YP,TT)
KY6=EY(XP,YP,TT)

KN1=XN+H*(KX1+4.0*KX3+KX4)/6.0
YNI=YN+H*(KY 1+4.0*KY3+KY4)/6.0
C
C CALCULATION OF ESTIMATE OF TRUNCATION ERROR
C
XP=(-42.0*KX1-224.0*KX3-21.0*KX4+162.0*KX5+125.0¥KX6)
YP=(-42.0*KY 1-224.0*KY3-21.0*KY4+162.0*K Y5+125.0*KY6)
TN1=H*DSQRT(XP**2+YP**2)/336.0
C PRINT,XNI="XN1,'YN!1='YNI],' TN1="TN1
RETURN
END
C
C DETERMINING THE DIRI B.C.
C
SUBROUTINE DIRI(VDC,NN,NL)
REAL*8 VDC,V
INTEGER NN(20),NL,NL1,LLJ, N1 N2
PRINT 630
NL1=NL-1
I=0
DG 620 I=1,NL1
N1=J+1
N2=J+NN(D+1
PRINT 610,N1,N2,VvDC
J=J+NN(D)
N2=J+NN({I+1)
V=0.0D0
620 PRINT 610, N2,V
RETURN
610 FORMAT(1X,13,14,4X,F10.3)
630 FORMAT(1X,DIRI")

END
C
C DETERMINING THE CURVED BOUNDARY
C

SUBROUTINE ALT2(NL,NN,RDC,THS,S1)
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10
50

REAL#*8 TH,THS,XA,YARDC,S1
INTEGER NN(20),NL,NL1,I,J,LN
H1=16.34
Hi=17.34
NL1=NL-1
PI=3.141592653
LN=4
K=1
PRINT 50
DO 101=14
TH=THS/2.0+(I-1)*THS+63.0
XA=S51+RDC*DSIN(PI*TH/180.0)
YA=H1-RDC*DCOS(PI*TH/180.0)
PRINT 100K, LN XA, YA
K=I*34+1

FORMAT(1X,'ALTERED NODES")

100 FORMAT(1X,I3,14,4X,2F20.15)

Cc

RETURN
END
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C EVALUATING THE FIELD IN THE X DIRECTION AT A GIVEN TIME AND POSITION

C

C

C

C CALCULATING CHARGE ON CONDUCTORS

C

FUNCTION EX(X,Y,T)

IMPLICIT REAL*8 {A-H,0-Z)

COMMON A,B,C,DET,VDC,VAC,H1,H2,W H3,51,53

Q1=(A*VDC+B*VAC*DSIN(W*T))/DET
Q3=(-B*VDC+C*VAC*DSIN(W*T))/DET

D1=(X-S1)**2+(Y-H1)**2
D11=(X-S1)**2+(Y+H1)#**2
D2=(X+S 1)**2+(Y-H1)*¥2
D21=(X+S1)**2+(Y+H1)**2
D3=(X-83)**2+(Y-H3)%2

Program listing
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D31=(X-S3)**2+(Y+H3)**2
D4=(X+53)* 2+ (Y-H3)**2
D41=(X+83)**2+(Y-+H3)#%2

EX1=Q1*(X-S1)/D1
EX11=-QI*(X-S1)/D11
EX2=-Q1*(X+S1)/D2
EX21=Q1%(X+S1)/D21
EX3=Q3*(X-S3)/D3
EX31=-Q3*(X-S3)/D31
EX4=-Q3*(X+53)/D4
EX41=0Q3*(X+$3)/D41

EX=EXI+EX24EX3+EX4+EX11+EX21+EX3 [+EX41
RETURN
END
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C EVALUATING THE ELECTRIC FIELD IN THE Y DIRECTION FOR A GIVEN TIME
C AND POSITION

C

C

C

FUNCTION EY(X,Y.T)

IMPLICIT REAL*8(A-H,0-Z)

COMMON A,B,C,DET,VDC,VAC,H1,H2,W,H3,51,53

C CALCULATING CHARGE ON CONDUCTORS

C

" Q1=(A*VDC+B*VAC*DSIN(W*T))/DET
Q3=(-B*VDC+C*VAC*DSIN(W*T))/DET

D1=(X-S1y**2+(Y-H1)**2
D11=(X-S1)**2+(Y+H1)**2
D2=(X+S 1y**2+(Y-H1)**2
D21=(X+S1)**2+(Y+H1)**2

D3=(X-53)**2+(Y-H3)**2

D31=(X-S3)**2+(Y+H3)**2
D4=(X+S3)F*2+(Y-H3)**2
D41=(X+S3)*#2+(Y+H3)**2

Program listing



EY1=-QI*(HI-Y)/D1
EY11=-QI*(H1+Y)/D11
EY2=Q1*(H1-Y)/D2
EY21=QI*(H1+Y)/D21
EY3=-Q3*(H3-Y)/D3
EY31=-Q3%(H3+Y)/D31
EY4=Q3*(H3-Y)/D4
EY41=Q3*(H3+Y)/D41

EY=EYI+EY2+EY3+EY4+EY114EY21+EY31+EY41
RETURN
END

C

$ENTRY

95
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B.2 ITERATIVE FINITE ELEMENT PROGRAM

//IWANG JOB ', T=35M,L=50,1=100',CLASS=1
// EXEC WATFIV,SIZE=2000K ,P=D
//GO.FTO8F001 DD DSN=WANG.ROEAD?2,DISP=SHR
//GO.FTO9F001 DD DSN=WANG.TRIAD?2,DISP=SHR
//GO.FT10F001 DD DSN=WANG.XYAD2,DISP=SHR
//GO.FT11F001 DD DSN=WANG .DIRIAD2,DISP=SHR
//GO.FT12F001 DD DSN=WANG.ALTAD2,DISP=SHR
//GO.FT13F001 DD DSN=WANG .EQUT2,DISP=0OLD
//SYSIN DD *
SJOB WATFIV WANGNOEXT
CSOPTIONS TIME=100
C
C
C THIS IS THE MAIN PROGRAMM FOR HYBRID AC/DC #2 TRANSMISSION LINE
C
IMPLICIT REAL*8 (A-H,0-Z)
DOUBLE PRECISION S(60000),X(2000), Y(2000), DIR(2000),B(2000),
& A1(54),A2(54),A3(54),SUB(5),EPCN(50), ELCN(50),EPGN(50),ELGN(50)
DOUBLE PRECISION EICN(20),EIG(50),FJ(20),
& FP(800),FA(800),ROT(800),PEX(800),PEY (800),EX(300),EY(800),
& XN(800), YN(800),PV(800), VL(800), TNW(800,3),RON(300), X T(800),
& YT(800),XCN(20),YCN(20),DTRI(800),ROC(20),DV (100), DRO(100),
& DE(100),EFG(20),XGN(50),Y GN(50), VCN(20), VLCN(20), VGN(50), VLGN(50)
DIMENSION IL1(60000),IL2(60000),1S 1{2000),1S2(2000),IS3(2000),

Program Listing
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& IS4(2000), INODE(6000),IT(800,3)
COMMON /DATA/ VDC,PLRAC,RDC,H1,51,H2,H3,53,A,B1,C,DET,Q1,Q3

COMMON /PA/FP,FA

VDC=300000.0

VAC=0.0

PI=3.14159265

FK=1.5D-4

H1=16.34

H2=14.20

H3=12.38

S1=4.57

$3=5.49

RDC=0.01755

RAC=0.01599

=DLOG(2.0*H3/RAC)+0.5*DLOG(((2*S3)**2+RACH*2)/((2*53)**2

& +(2*H3)*¥2))

B1=0.5*DLOG(((S 1-S3)**2+(H I+ H3Y**2)*((S1+S3)**2+(H1-H3)**2)
& H((S1-S3Y**2+(H1-H3Y**2)* ((S1+S3)**2+(H1+H3)**2)))

C=DLOG(2*HI/RDC)+0.5*DLOG(((2*S1)**2+RDC**2)/((2*S 1 }**2+
& (2¥H1)**2))

DET=A*C-B1¥%2

Q1=A*VDC/DET

Q3=-B1*VDC/DET

M=60000
N=2000

L=54

Program Listing



1=6000
NT=175
NNT=115
NL=5
NL1=NL-1

C

C

C INPUT DATA

C CARD 1
NDEG=2
NUNO=115
NTRI=175
NF=1
IPAS=0
NEIG=0
NG=0

C CARD2
NSOR=0
NMIX=0
NDIR=11
NALT=4
NFREE=0
NEQUI=0
NFILM=0

C CARD3
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NGRID=0
NBOUND=0
IWRITE=0

IPRSUP=0

ONSET ELECTRIC FIELD IN VOLTS/METER

EON=1.84082D+6
DIFF=1.0D+2

CALL FINP(NT,NNT,NL,NL1,IT,RON,X,Y)
CALL TDIST(IT,NT,X,Y, TNW)
WRITE(13,901)
WRITE(13,910)
DO 10 J=1,NT
XTO)=(XATY, L)+XATP,2))+X(AT{F,3)))/3.0D0
YT=(Y AT, D)+ YATT,2)+YATJ,3)))/3.0D0
ROT())=RON(T({, Dy*TNW(J,1)+RON(IT(, 2))*TNW(J 2)+RON
& (ITJ3)*TNW({,3)

C10 WRITE(13,90) XTJ),YT(I)

10 WRITE(13,91) ROT(J)

C
C

WRITE(13,900)
THM=108.0-66.0
THS=THM/NL1

DO 20 J=1,NL
TH=(J-1)*THS+66.0
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11

12

C CALCULATE E-FIELD BY IMAGE METHOD

C

KXCN@)=RDC*DSIN(PI*TH/180.0)+51
YCN(J)=H1-RDC*DCOS({PI*TH/180.0)

WRITE(13,90) XCN@),YCN(J)

WRITE(13,92)

NOI=22

K=NOI

DO 11J=12

XGN@)=X(K)

YGND=Y(K)

WRITE(13,90) XGN(@J),YGN()
K=K+NOIL

K=67

DO i21=34

XGNQ)=X(K)

YGNN=Y(K)

WRITE(13,90) XGN(1),YGN({)
K=K~:»23

J=5

K=115

XGNJ)=X(X)

YGND=Y(K)

WRITE(13,90) XGN(),YGN()

WRITE(13,210)

210 FORMAT(1X,EICN")

DO 21 J=1,NL1
EEX=EXI(XCN@),YCN{))

100
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EEY=EYI(XCN(J),YCN®))
EICN(J)=DSQRT(EEX**2+EEY*%2)
WRITE(13,211) EICN())
211 FORMAT(1X,G20.5)
21 CONTINUE
WRITE(13,212)
212 FORMAT(1X,EIG)
DO 22 J=1,NL
EEX=EXI(XGN(T),YGN())
EEY=EYI(XGN(),YGN())
EIG(J)=DSQRT(EEX**2+4EEY**2)
WRITE(13,213) EIG()
22 CONTINUE
C
C
NK=30
DO 30 J=1,NK
CCC  IR(DIFF.LE.1.0D-2) GOTO 200
400  CALL TOP(NT,ROT,RON,TNW,IT)
'CALL MAIND(S,IL1,IL2,X,Y,DIR,B,IS1,1S2,1S3,1S4,A1,A2,A3,INODE,
& M,N,L,LIT)
REWIND 11
REWIND 12
CALL PEOUT(X,Y,B,INODE,SUB,PEX,PEY XN,YN,NNT,], PV ,NT XT,YT,
& XCN,YCN,XGN,YGN,EPCN,VCN,NL,EPGN,VGN)
C  CALL EDIFF(NOLNLI1,NNT,XCN,YCN,XGN,YGN EICN,EIG,
C & EPCN,PEX,PEY,PV,VCN,

C & EFGEDCEDGXT,YT.X.Y)
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CALL PTOL(NT,ROT,RON,TNW,IT)
CALL MAIND(S,IL1,IL2,X,Y,DIR,B,IS1,1S2,1S3,1S4,A1,A2,A3,INODE,
& MN,L.LIT)
REWIND 11
REWIND 12
CALL LEOUT(X,Y,B,INODE,SUB EX EY,XN,YN,NNT,J,VLNT,XT,YT,
& XCN,YCN,XGN,YGN,ELCN,VLCN,NL ELGN,VLGN)
C  CALL EDIFF(NOILNLI,NT,XCN,YCN,EICN,EIG,ELCN,EX,EY,VL VLCN,
C & EFG,EDCEDGX.Y,XT,YT)
CALL NEWROE (NT,NOLROT,PEX ,PEY EX,EY,DIFF,NL1,JEPCN,
& ELCN,PV,VL,DV,DRO,DE)
C  IF(.GT.1) THEN DO
C  IF(DRO(T).GT.DRO(-1)) GOTO 400
C  ELSEDO
C ENDIF
30 CONTINUE
200 EJ(1)=FK*ROT(42)*0.5*(EPGN(1)+ELGN(1))
FI(2)=FK*(ROT(41)}+ROT(42)+ROT(84)+ROT(85))/4.0%0.5*
& (EPGN(2)+ELGN(2))
FJ(3)=FK*(ROT(85)+ROT(129))/2.0%0.5*
& (EPGN(3)+ELGN(3))
FJ(4)=FK*(ROT(128)+ROT(129)+ROT(174)+ROT(175))/4.0
& *0.5*(EPGN(4)+ELGN(4))
FI(5)=FK*ROT(175)*0.5*(EPGN(5)+ELGN(5))
DO 60 J=1,NL
60  WRITE(13,70) XGNQ),FI(T)
DO 61 J=1,NL
EGN=0,5*(EPGN(J)+ELGN())
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61 WRITE(13,71) XGN(J).EGN
STOP
213 FORMAT(1X,G20.5)
70  FORMAT(1X,2G20.5)
71 FORMAT(1X,2G20.5)
90 FORMAT(1X,2G20.10)
900 FORMAT(IX, XCN YCN')
901 FORMAT(IX,’XT, YT)
91 FORMAT(1X,G20.10)
92 FORMAT(1X,XGN YGN)
910 FORMAT(1X,ROT)
END
C
'
C READ INITIAL VALUE FOR INITIAL CHARGE DISTRL,XYCOOD,VERTICES OF
C TRIANGLES
C
* SUBROUTINE FINP(NT,NNT,NL,NL1,IT,RON,X,Y)
IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 RON(800),X(2000),Y (2000),ROC(20)
INTEGER 1T(800,3)
COMMON /PA/FP,FA
C  WRITE(13,162)
DO 10 J=1,NNT
READ(8,*) RON(J)
10 WRITE(13,161) RON())
C DOI11J=1NL

C  READ(1,¥) ROC()
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C 11 WRITE(13,160) ROC()

DO 20 J=1,NNT
20 READ(10,%) X(3),Y(J)
C20  WRITE(13,170) X(5),Y()

DO 30 J=1,NT
30 READ(9,*) IT(J,1),IT(J,2),IT(,3)
C30 WRITE(13,180) IT{,1),IT{,2),IT{J.3)

RETURN
160 FORMAT(G20.10)
161 FORMAT(1X,G20.10)
162 FORMAT(1X,RON)
170 FORMAT(2G20.10)
C180 FORMAT(1X,314)

"END

C
C DETERMINING THE WEIGHT OF EACH OF THE NODES IN
C FINDING TEH AVERAGE CHARACTERISTICS OF THE TRIANGLES
C

SUBROUTINE TDIST(IT,NT,X,Y, TNW)

IMPLICIT REAL*8(A-H,0-Z)
REAL*8 X(2000),Y(2000), TNW(800,3)

INTEGER IT(800,3)

WRITE(13,11)
DO 10 J=1,NT

D12=DSQRT((XITJ, 1))-XATU,2)**2+(Y (AT, 1))-Y
& (IT(T,2))**2)
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D23=DSQRT((X(TJ,2))-XATJ 3))**2+(YATY 2))-Y
& (ITQJ,30))**2)

D31=DSQRT(XITJ,3)-XATJ, 1)))**2+(Y 1T 3)-Y
& (T, 1)**2)

DD=D12+D23+D31

TNW(I,1)=0.5D0*(D12+D31)/DD

TNW(J,2)=0.5D0%(D12+D23)/DD

TNW(J,3)=0.5D0*(D23+D31)/DD

Cl0  WRITE(13,12) TNW(J,1), TNW(J,2), INW({.3)

11

FORMAT(1X, TNW")

12 FORMAT(1X,3G20.10)

O 0O 0 0

RETURN
END

THE CODFFICIENTS OF THE PDE

SUBROUTINE ABC(ITR,FX,FY,A1,B1,C1,D1,E1,P1)

IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 FP(300),FA(800)
COMMON /PA/FP,FA
A1=FA(ITR)

B1=0.0

C1=FA(ITR)

D1=0.0

P1=FP(ITR)

RETURN
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END
C
C
C CHANGING THE COEFFICIENTS OF THE PDE SO THAT
C POISSON'S EQUATION IS SOLVED
C
SUBROUTINE TOP(NT,ROT,RON,TNW.IT)
IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 ROT(800),RON(800),FP(800),FA(800), TNW(800,3)
INTEGER IT(800,3)
COMMON /PA/FP,FA
PI=3.141592654
EPSO=8.854D-12
DO 10 J=1,NT
FP()=ROT(J)/EPSO
10 FAQ)=1.0D0
RETURN

END

CALCULATING THE ELECTRIC FIELD FROM THE SOLUTION
OF POISSON'S EQUATION '

Qo0 G 0O 0

SUBROUTINE PEOUT(X,Y,B,INODE,SUB,PEX,PEY, XN, YN NNT.J PV.NT
& XT,YT,XCN,YCN,XGN,YGN,EPCN,VCN,NL.EPGN,VGN)

IMPLICIT REAL*8 (A-H,0-7)

REAL*8 X(2000),Y(2000),B(2000),SUB(5).PEX(800),PEY (800).PV(300),
& XN(800),YN(800),XT(800),Y T(800), XCN(20), YCN(20), EPCN(20),VCN(20),
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& VG(50),EPGN(50),VGN(50),XGN(50),YGN(50)

INTEGER INODE(6000)

WRITE(13,250) J
DO 10 K=1,NT
XN(K)=X{(K)
YNE)=Y(K)

WRITE(13,50) XN(K), YN(K)
PEX(K)=PHI(XT(K),YT(K),1,X,Y,B,INODE,SUR)
PEY/(K)=PHI(XT(K),Y T(K).2.X,Y,B,INODE SUB)
PV(K)=PHI(XT(K),YT(K),0,X,Y,B,INODE,SUB)

WRITE(13,30) PV(K), VI(XN(K), YN(K))

CONTINUE
NL1=NL-1
WRITE(13,31)

DO 20 K=1,NL1
PEX(800)=PHI(XCN(K),YCN(K),1,X,Y,B,INODE,SUB)
PEY (800)=PHI(XCN(K),YCN(K),2,X,Y,B,INODE,SUB)
VCN(K)=PHI(XCN(K),YCN(K),0,X,Y,B,INODE,SUB)
EPCN(K)=DSQRT(PEX(800)**2+PE Y (800)**2)

WRITE(13,40) EPCN(K), VCN(K), VI(XCN(K), YCN(K))
WRITE(13,41)

DO 21 K=1,NL
PEX(800)=PHI(XGN(K),YGN(K),1,X,YB,INODE,SUB)
PEY(800)=PHI(XGN(K),YGN(K),2,X,Y,B,INODE,SUB)
VGN(K)=PHI(XGN(K),YGN(K),0,X,Y,B,INODE,SUB)
EPGN(K)=DSQRT(PEX(800)**2+PEY (800)**2)
WRITE(13,40) EPGN(K),VGN(K), VI(XGN(K), Y GN(K))
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31
40
41
50

FORMAT(1X,2G20.5)

FORMAT(1X,’EPCN VCN V1)
FORMAT(1X,3G20.5)

FORMAT(X,EPGN VGN VI
FORMAT(1X,'XN=",G20.5,5X,"YN=',G20.5)

RETURN

250 FORMAT(1X,POISSON ELECTRIC FIELD ITERATION #,13)

O o O a0

END

PRINTING OUT THE DIFFERENCE OF ELECTROSTATIC E-FIELD

AT BOTH CONDUCTOR SURFACE AND THE GROUND LEVEL

SUBROUTINE EDIFF(NOILNL1NXY,XCN,YCN,XGN,YGN,EICN,EIG,
& EPCN,PEX,PEY PV,
& VCN,EFG,EDC.EDG,XT,YT,XN,YN)
IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 EICN(20),EIG(20),EPCN(20),PEX(800),PEY(800),PV(800),
& EFG(20),XCN tZO),YCN (20),VCN(20),EE(SOO),EEI(SOO),XT(SOO) , Y T(800),

& XIN(800), YN(800), XGN(20) ,YGN (20)

NGR=4

J1=1

K1=NOI

K2=NGR*NOI

WRITE(13,40)

DO 10 J=K1,K2,NOI
EFG(J1)=DSQRT(PEX(J)**2+PEY (J)**2)
VG(J1)=PV(3)
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30

WRITE(13,50) EFG(J1),EIG('1), VG(1)
T1=T1+1
CONTINUE
WRITE(13,100)
EDC=0.0D0
VDCN=0.0D0
DO 20 J=1,NL1
EDC=EDC+((RICN())-EPCN{)}/EICN())*#2
VDCN=VDCN+((VCN()-VI(XCN(), YCN@)))/ VICXCN(), YCN)))*#2
WRITE(13,200) JEPCN(I),EICN(T)
EDC=DSQRT(EDC/NL1)
VDCN=DSQRT(VDCN/NL1)
WRITE(13,201) EDC,VDCN
WRITE(13,300)
EDG=0.0
DO 30 J=1,NGR
EDG=EDG+((EIG(J)-EEG)/EIGU))**2
WRITE(13,400) J EDG
EDG=DSQRT(EDG/NGR)
WRITE(13,401) EDG
VD=0.0D0
ED=0.0D0
WRITE(13,11)
DO 60 J=1,NXY
EE()=DSQRT(PEX())**2+PEY (J)**2)
EEI(J)=DSQRTEXI(XN(), YN(I))** 2+ EYI(XN{), YN(I))**2)
ED=ED+((EE()-EEI0)/0.5*(EEW)+EERI()))**2

109

Program Listing



VD=VD+((PV(J)-VIXN{T), YNONA0.5*(VIKNJ), YN+

& PV(J)+1.0D-9)))**2

60

11
40
50
51
61
100
200
201
300
400

401

C
C

WRITE(13,51) EE(J).EEI(J)
ED=DSQRT(ED/NXY)
VD=DSQRT(VD/NXY)

WRITE(13,61) ED,VD

RETURN

FORMAT(1X, EE EEI')

FORMAT(1X, EFG EIG VG)

FORMAT(1X,3G20.5)

FORMAT(1X,2G20.5,G20.10)

FORMAT(1X, ED=',G20.10, VD=",G20.10)

FORMAT(IX,' J, EPCN EICNY)
FORMAT(1X,13,3X,G20.5,2X,G20.5)
FORMAT(1X,'EDC=",G20.10,' VDCN=",G20.10)
FORMAT(1X,' J, EDG"
FORMAT(1X,13,3X,G20.10)
FORMAT(1X,EDG=",G20.10)

END

C CHANGING THE COFFICIENTS OF THE PDE SO THAT THE

C INHOMOGENOUS EQUATION IS SOLVED

C

SUBROUTINE PTOL(NT,ROT,RON,TNW.IT)

IMPLICIT REAL#*§ (A-H,0-Z)

REAL*8 ROT(800),RON(800),FP(800),FA(800), TNW(800,3)
INTEGER IT(800,3)
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COMMON /PA/EP,FA
DO 10 J=1,NT
FP(J)=0.0D0
10 FA()=ROT(Q)
RETURN
END
C
C CALCULATING THE ELECTRIC FIELD FROM THE SOLUTION
C OF INHOMOGENEOUS EQUATION
C .
SUBROUTINE LEOUT(X,Y,B,INODE,SUB EX,EY,XN,YN,NNT,J,VL,NT
& XT,YT,XCN,YCN,XGN,YGN,ELCN,VLCN,NL ELGN,VLGN)
IMPLICIT REAL*8 (A-H,0-Z)
REAL*$ X(2000),Y(2000),B(2000),SUB(5),EX(800),E Y (800), VL(800),
& XN(800),YN(800), X T(800), Y T(800), XCN(20),Y CN(20),ELCN(20) ,VLCN(zd)
& JELGN(50),VLGN(50), XGN(50), YGN(50)

INTEGER INODE(6000)

WRITE(13,250) J

DO 10 K=1,NT

EX(K)=PHI(XT(K),YT(K), 1 X,Y.B,INODE,SUE)

EY(K)=PHI(XT(K),YT(K),2,X,Y,B,INODE,SUB)

VL(K)=PHI(XT(K),YT(K),0,X,Y,B,INODE,SUB)
10 CONTINUE '

NEL1=NL-1

WRITE(13,22)

DO 20 K=1,NL1

EX(800)=PHI(XCN(K),YCN(X),1,X,Y,B,INODE,SUB)
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31
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EY(800)=PHI(XCN(K),YCN(K),2,X,Y,B,INODE,SUB)

VLCN(K)=PHI(XCN(K), YCN(K),0,X,Y,B,INODE,SUB)

ELCN(K)=DSQRT(EX(800)**2+EY (800)**2)
WRITE(13,30) ELCN(K),VLCN(K)

WRITE(13,31)

DO 21 K=1,NL

EX(800)=PHI(XGN(K),YGN(K),1,X,Y,B,INODE,SUB)

EY/(800)=PHI(XGN(K),YGN(K),2,X,Y,B,INODE,SUB)

VLGN(K)=PHI(XGN(K), YGN(K),0,X,Y,B,INODE,SUB)

ELGN(K)=DSQRT(EX(800)**2+E Y (800)**2)

WRITE(13,30) ELGN(K),VLGN(K)

FORMAT(1X,ELCN VLCNY

FORMAT(1X,2G20.5)

FORMAT(1X,ELGN VLGN
RETURN

250 FORMAT(1X,LAPLACE ELECTRIC FIELD ITERATION #',I3)

END

DEFINING THE B.C.OF THE ARTIFICIAL BOUNDARY

FUNCTION FDIR(IF,ITR,X,Y)
IMPLICIT REAL*8 (A-H,0-Z)

COMMON /DATA/ VDC,PLRAC,RDC,H1,51,H2,H3,53,A B1,C,DET,Q1,Q3

DI=(X-S1)**2+(Y-H1)**2
D11=(X-S1)¥*2+(Y+H1)**2

D2=(X+S1)**2+ (Y -H1)**2

D21=(X+S 2+ (Y+H1y**2
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D3=(X-S3)**2+(Y-H3)**2
D31=(X-$3)**2+(Y+H3)**2
Dé=(X+53y**2+(Y-H3y+*2

D41=(X+83)y**2+(Y+H3)**2
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FDIR=Q1*0.5*DLOG(D11*D2/(D1*D21))+Q3*0.5*DLOG(D31*D4/D3*D41))

RETURN

END

FUNCTION EXI(X,Y)

IMPLICIT REAL*8(A-H,0-Z)

COMMON /DATA/ VDC,PLRAC,RDC,H1,51,H2,H3,53,A,B1,C,DET,Q1,Q3

D1=(X-S1)**2+(Y-H1)**2
D11=(X-S1)**2+(Y+H1)%%2
D2=(X+S1)**2+(Y-H1)**2
D21=0K+S 1)**24+(Y+H1)*%2
D3=(X-S3YF*2+(Y-H3)*+2
D31=(X-83)**2+(Y+H3)*52
D4=(X+S3)**2+(Y-H3)**2

D41=(X+83)**2+(Y+H3)**2

EX1=Q1%(X-S1)/D1
EX11=-Q1*(X-S1)/D11
EX2=-QI*(X+S1)/D2
EX21=Q1*(X+S1)/D21
EX3=Q3*(X-$3)/D3
EX31=-Q3*(X-$3)/D31
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EX4=-Q3*(X+S3)/D4
EX41=Q3*(X+S83)/D41

EXI=EXI+EX24+EX3+EX4+EX114+EX214+EX314EX41
RETURN

END

FUNCTION EYI(X,Y)
IMPLICIT REAL*8(A-H,0-Z)

COMMON /DATA/ VDC,PLRAC,RDC,H1,51,H2,H3,53,A,B1,C,DET,Q1,Q3

D1=(X-S1)**2+(Y-H1)*%2
D11=(X-S1)** 2+ (Y+H1)*2
D2=(X+S 1424 (Y-H1)y#%2
D21=(X+S 1)**2+(Y+H1)#*2
D3=(X-S3)**2+(Y-H3)**2
D31=(X-S3)**2+(Y+H3)**2
DA=(X+S3y%424(Y-H3)**2

DA1=(X+S3)**2:+(Y+H3)**2

EY 1=-QU*(HI-Y)/D1
EY11=-QI*(H1+Y)/D11
EY2=Q1*(H1-Y)/D2
EY21=QI*(HI+Y)/D21
EY3=-Q3*(H3-Y)/D3
EY31=-Q3*(H3+Y)/D31
EY4=Q3*(H3-Y)/D4
EY41=Q3*(H3+Y)/D41
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EYI=EYI1+EY2+EY3+EY44+EY114+EY214EY31+EY41

RETURN
END

FUNCTION VI(X,Y)
IMPLICIT REAL*8 (A-H,0-Z)
COMMON /DATA/ VDC,PL,RAC,RDC,H1,51,H2,H3,53,A,B1,C,DET,Q1,03
D1=(X-S1)*%2+(Y-H1)**2
D11=(X-S 1)**2+(Y+H1)**2
D2=(X+S 1y *24(Y-H1)#%2
D21=(X+S 1524+ (Y+H1)**2
D3=(X-S3)#*2+(Y-H3)**2
D31=(X-S3)**2+(Y+H3)**2
D4=(X+83)#*2+(Y-H3)+¥2

D41=(X+S3)* 24 (Y+H3)**2

VI=Q1*0.5*DLOG(D11*D2/(D1*D21))+Q3*0.5*DLOG(D3 1¥D4/(D3*D41))
RETURN
END
C
C THIS SUBROUTINE UPDATES SPACE CHARGE DISTRIBUTION
C
SUBROUTINE NEWROE(NT,NOLROT,PEX,PEY,EX,EY,DIFF,NL1,J,EPCN,
& ELCN,PV,VL,DV,DRO,DE)
IMPLICIT REAL*§ (A-H,0-Z)

REAL*8 ROT(800),PEX(800),PEY(800),EX(800),EY(800),ROT1(800),
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& EP(800),E(800),EPCN(20), ELCN(20),PV(800), VL(800),DLON(100),
& DV(100),DRO(100),DE(100),EDI(800), VDI(800),R DI(300), DEON(100)
INTEGER NN(20)
NN(1)=22
NN(2)=22
NN(3)=23
NN(4)=23
NN(5)=25
EON=1.84082D+6
DIFF=0.0
ARFA=-1.0
BETA=-0.5
GAMA=-0.25
CITA=0.0
A=2.5D0
C=1.0
D=1.0
DV(1)=0.0
DRO(J)=0.0
DPON(J)=0.0
DLON()=0.0
DEM=0.0
DVM=0.0
DRM=0.0
DO 10 J1=1,NT
DV(N)=DV{I)+((VLI1)-PVJ 1)AVL{I1)+1.0D-9))**2
EP(1)=DSQRT(PEX(J1)**2+PEY (J1)**2)
E(J1)=DSQRTEX(1)**2+EY(J1)**2)
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ROTI1(F1)=ROT(1)
EDI(1)=DABS(EPJ 1)-EF1)A0.5*EPUL)+ET1))
VDI(1)=DABS(VLE1)-PV(I1))/(VLU1)+1.0D-9)
IF(EDI(J1).GE.DEM) DEM=EDI(J1)
IF(VDI( 1).GE.DVM) DVM=VDI(1)
10 DIFF=DIFF+((EQ1)-EPF1)A0.5%(BU1)+EPQ 1))))**2
DIFF=DSQRT(DIFE/NT)
DV(})=DSQRT(DV(J)/NT)
DE(})=DIEF
K=0
DO 20 I1=1,NL1
DPON(J)=DPON(I) +((EON-EPCN(J 1))/EONY**2
DLON()=DLON(/)+((EON-ELCN( 1)EON)**2
K1=NNQ 1)+NNJ1+1)-2
DO 30 12=1 K1
K=K+1
C  PRINT 'ROT='ROT()2),ROT1="ROTI(}2)
C  PRINT,EPCN=,EPCN(1),ELCN='ELCN(/1)
c .
ROT(K)=ROT1(K)
& *(1.0+ ARFA*(EP(K)-E(K))/EP()+EK)))**A
& *(1.0+CITA*(PV(K)-VLE)YPVEK)+VLEK))
& *((1.0+BETA*(EON-EPCN(J1))/EON)
& *(1.0+GAMA*(EON-ELCN( 1))/EON))
& **(FLOAT(K1-J2)/FLOAT(K1)/20.0)
C
C5  ROT(K)=ROTI(K)*(0.5*(EPCN( 1)+ELCNJ L)) EON)**A
C5 & *(10+ARFA*EP(K)-EK)/(EPK)+EK)))
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C5 & *(1.0+GAMA*(PV(K)- VL)) (P VEK)+ VLKD)
30 CONTINUE
20 CONTINUE
DPON(J)=DSQRT(DPON(I)/NL1)
DLON()=DSQRT(DLON()/NL1)
C  WRITE (1341)
DO 40 J1=1,NT
DRO(J)=DRO{J)+((ROT(J1)-ROT1(J1))/ROTI(J1))**2
RDI(J1)=DABS(ROT(1)-ROTIJYROTI(TL)
IFRDI(1).GE.DRM) DRM=RDI(J1)
C  WRITE(13,50) J1,ROT(@F1),ROT1(1),PVJ1),VLU1),EPU1)EJ D)
40 CONTINUE
DRO{J)=DSQRT(DRO{)/NT)
WRITE(13,60) J,DV(J),DRO(J),DE()
WRITE(13,61) DVM,DEM,DRM
WRITE(13,70) J,DPON(J),DLON()
IF(J.GT.1) THEN DO
IF(DRO(J).GT.DRO(-1)) THEN DO
cc ARFA=1.02*ARFA
cc BETA=1.02*BETA
cc GAMA=GAMA+0.5
ELSE DO
END IF
ELSE DO
END IF
C  PRINT,/GAMA=,GAMA,J="J
RETURN

41 FORMAT(1X,# OF ELEMENT 7X,ROT,10X,ROT1',10X,PV",/2X,'V',
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& 10X,PE,10X,E")
50 FORMAT(1X,13,2(1X,E12.5),1X,F10.2,/1X,1X,F10.2,2(2X,G20.5))
60 FORMAT(IX,ITERATION # '13,3X,DV="E12.5,/1X,DROE="E12.5,1X,
& 'DE="E12.5)
61 FORMAT(1X,DVM=',G20.10, DEM=",G20.10, DRM=",G20.10)
70 FORMAT(1X,1TER. #="13, DPEON='G20.10, DLEON=",G20.10)
END

Program Listing



