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Abstract 

Presently in ground vehicle industry, conducting durability tests are an essential step in 

evaluating the life of full vehicle, subsystem and component design. By moving the durability 

tests from the proving ground to the test laboratory, one can improve quality, reduce the cost 

associated with the testing and accelerate the product development process. The procedure of 

durability testing includes measuring the accelerations/strain data in a test track, generating the 

accelerated loading profiles (desired reference signal) and implementing them by using hydraulic 

actuators. In a laboratory such actuators are mounted in a fixed configuration, referred to here as 

a multiaxial simulation table (MAST). The time waveform replication algorithm is used, which 

iteratively produces an input signal used to excite a structure such that its response replicates a 

desired reference. The time waveform replication algorithm essentially estimates the unknown 

input by the inversion of the frequency response function. However, due to the presence of 

nonlinearities (stiffness and damping) of the test structure, the error between the test output 

signal and the desired reference signal is large. This results in poor reference replication whereby 

the validity of the test may be put into question. For such cases, the nonlinear system 

identification of the test structure is of essence. Such an approach is presented in this thesis, 

where the concept of nonlinear system identification in a test structure that is excited by using a 

hydraulic actuated shaker table is presented. 

The methods for nonlinear system identification strictly depend on the types of excitation. The 

traditional nonlinear parameter identification techniques described in the existing literature are 

based on the excitation of forces as an input. For cases, where the excitation comes from the base 

motion, the above mentioned methods cannot be applied as it is impossible to measure the 
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motion at all degrees of freedom (DOFs) from an experiment and the mass distribution of the 

structure is not known a-priori.  

In this thesis, two new methods, specific to the nonlinear system identification of the base 

excited structure, are presented. The proposed new methodologies are based on the theory of 

force reconstruction, base excitation and nonlinear system identification. A reverse explicit 

formulation is presented to reconstruct the force vector using the base excitation as an input. The 

formulated theory is verified by a simulated example of five degree of freedom lumped 

parameter model and demonstrated through experimentations. A hybrid model space is 

developed to determine the nonlinear restoring force at the nonlinear degrees of freedom. The 

first methodology shows the extraction of nonlinear parameters in the physical coordinate system 

while the second method shows the extraction of nonlinear parameters in the modal space.  

Using a cantilever beam as an example, the proposed modal space based methodology is 

demonstrated. The experimental set-up, testing procedure, data acquisition and data processing 

are also presented. The example shows that the methods proposed here are systematic and 

constructive for nonlinear parameter identification for based excited structure. 

As most of the vehicle components are mechanically connected, it is crucial to study the effect of 

joints on the dynamical behavior of assembled structures. A numerical and experimental study is 

carried out in a structure with bolted joint connection. Several input loading profiles are used to 

detect and characterize the nonlinearity. Once the nonlinearity is detected and characterized, the 

modal space based method is used to identify the nonlinear stiffness and damping parameters. A 

particular result from the experimentations is the identification of viscous damping coefficients 

dependent upon displacement amplitudes. The significance of this result is that the complex 
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phenomenon of energy dissipation in lap joints can be represented by a simple analytical model 

in modal space, capable of producing results that are close to the experimentally observed 

results. 
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Latin symbols  

       Viscous damping matrix  

      Excitation force vector  

       Equivalent excitation force vector   

       Nonlinear restoring force related to cubic stiffness nonlinearity  

       Nonlinear restoring force related to clearance nonlinearity  

        Nonlinear restoring force corresponding to friction nonlinearity  

      Nonlinear restoring force vector  

[K]   Stiffness matrix  

     Tangential stiffness for stick friction  

     Clearance stiffness  

    Number of measured degrees of freedom  

      Mass matrix  

     Number of identified modes 

    Sample measured data from the time series 

                    Pseudo excited force vector 
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     Total number of samples 

       Residual Vector 

     Time  

     Number of unmeasured degrees of freedom  

{  }   Vector of nonlinear relative displacement amplitude  

     Number of unidentified modes 

      Displacement vector  

       Nonlinear modal response 

     Clearance gap distance  

    Linear modal response 

Symbols 

     Error in estimation  

    Modal damping ratio  

      Complex eigenvalues matrix  

    Coefficient of friction  

      Vector containing     column from mode shape matrix  

       Mode shape matrix  
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                   Variance of the measured restoring force 

     Excitation Frequency  

      Resonance frequency of the      mode  

Subscripts 

    Index representing measured degrees of freedom  

     Index representing the identified modes  

    Index representing un-measured degrees of freedom  

     Index representing the un-identified modes 

Superscripts  

    Transpose of a matrix  

     Inverse of a square matrix  

     Pseudo-inverse of a rectangular matrix 
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Abbreviations 

AS:   Auto Spectrum 

CTH:   Corrected Time History 

DTH:   Desired Time History 

ETH:   Error Time History 

DOFs:   Degrees of Freedom 

EMA:   Experimental Modal Analysis 

ERS:   Extreme Response Spectrum 

ETH:   Error Time History 

FDS:   Fatigue Damage Spectrum 

FEA:   Finite Element Analysis 

FEM:   Finite Element Method 

FFT:   Fast Fourier Transform 

FRF:   Frequency Response Function 

ID:   Initial Drive 

IFFT:   Inverse Fast Fourier Transform 

IFM:   Inverse Frequency Response Function Model 

MAST:  Multiaxial Simulation Table 
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MDOF:  Multi Degree-of-freedom 

MSE:   Mean square Error 

RPC:   Remote Parameter Control 

MTS:   Multipurpose Test Ware 

RTH:   Response Time History 

SAST:   Single Axis Simulation Table 

SRS:   Shock Response Spectrum 

PSD:   Power Spectrum Density 
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Chapter 1 

Introduction 

This chapter presents a brief introduction to the subject of ground vehicle durability testing, the 

importance of the research in this area and its relevance to industrial applications. The 

terminology specific to durability testing, which is frequently used in the thesis, is explained in 

order to facilitate the discussion presented in the thesis. The statement of the problem along with 

the objectives of the research program are presented in this chapter. 

1.1 Background  

Newly designed commercial vehicles have to pass a number of durability tests as a pre-launch 

requirement in compliance with the necessary standards for safety, reliability, durability and 

comfort. These durability tests (field tests) are usually conducted in the proving grounds, which 

are designed to simulate real road environments (events). An example of a vehicle testing facility 

located at the Pennsylvania Transportation Institute is presented in Figure 1.1, where the vehicle 

durability course is shown. The vehicle durability course consists of seven different events that 

are expected to be encountered during the transit service. The seven events are staggered bumps; 

railroad crossing; one inch random chuck holes; chatter bumps; four inch chuck hole; high crown 

intersection; and frame twist. The geometry of the seven events is shown in Figure 1.2. During 

the durability test the ground vehicles need to be driven a certain distance in a durability course 

without exhibiting any failure, including any crack initiation, in the critical suspension, the frame 

and the cab systems to certify the marketability of the vehicles.  
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Figure 1.1: The Altoona Bus Research and Testing Center (© Pennsylvania Transportation 

Institute) (http://www.larson.psu.edu/testTrack) 

Testing full scale vehicles in a real test track, however, is time consuming, non-repeatable and 

costly. A typical field test requires drivers to drive thousands of miles in a variety of operating 

conditions, which takes months to complete. As a result, an alternate methodology for durability 

testing needs to be developed.         

Such an alternate to method involves testing in a laboratory set-up to simulate the driving 

conditions of the field tests but over a shorter period of time. To achieve successful durability 

results in a laboratory, certain requirements must be met [1], including : (a) the test must be 

suitable for the item in question, examples include a single component, sub-component, sub-

assembly or the complete vehicle; (b) the test must be able to replicate the same failure 

mechanisms observed in the real loading environment; (c) the test should be representative of the 

real loading environment within known statistical margins; and, (d) the test should be 

accelerated, where possible, to shorten the testing process and reduce cost. However, the test 

should not incur unrealistically high loads that might alter the failure mechanism. Conducting 
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durability tests in a laboratory that satisfies the above criteria, involves two stages: in the first 

stage, an accelerated loading profile (test signal) is generated in the form of the power spectrum 

density (PSD), which has the same damage potential as that of the real environment, but in a 

fraction of the time. The second stage of the durability tests consists of implementing the driving 

test signal to the components under testing.  

 

Figure 1.2: Geometry of the Seven Events (© Pennsylvania Transportation Institute) 

The “Test Tailoring Approach” originally developed by Halfpenny in 2006 [2] is commonly 

used to generate the accelerated loading profile. The “Test Tailoring Approach” essentially 

consists of a two-step procedure in generating the loading profile for an accelerated test. The first 

Staggered Bumps

Railroad Crossing

Random Chuck Holes

Chatter Bumps

Chuck Hole

High Crown Intersection

Frame Twist

Direction of Travel



 

4 

 

step is the Mission Profiling and the second step is the Test Synthesis. A Mission Profile 

comprises of recorded loading data from the field test, such as accelerations. Such loading data 

are correlated to the corresponding event and the PSD for each event is calculated with an 

estimate of the duration the vehicle might be expected to experience this event in-service. The 

second step is the Test Synthesis, where an accelerated loading profile is generated which has the 

same fatigue damage content as the Mission Profile but over a shortened test period. More 

detailed discussions on the “Test Tailoring Approach” are provided in references [1-3].   

In the second stage of the durability tests, the accelerated test signal is replicated at the specific 

location of the test component. This is usually performed by using a controlled hydraulic 

actuator in a Multi-Axial Simulation Table (MAST). This is illustrated in Figure 1.3 for the 

physical testing, where the actuator is driven to replicate accelerations on the vehicle body that 

were previously measured for a specific road surface. 

The problem of the test signal replication represents an extremely challenging problem that 

cannot, in most cases, be solved with current actuator controllers. As a result, an alternative 

methodology is widely utilized whereby the controller command signal is modified in an 

iterative series of experiments until the measured signal on the test component closely matches 

that required. All of the major suppliers of servo-hydraulic test equipment offer controller design 

software that can perform this iterative approach to drive file generation. Examples include MTS 

Systems Corporation with remote parameter control (RPC) and Instron’s time waveform 

replication (TWR) from Illinois Tool Works Inc. Despite the variety of software packages 

available, all are based on the same fundamental approach that utilizes the “inverse algorithm” 

that was developed by engineers at General Motors in the 1970s [4]. The durability testing 
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companies, such as MIRA and DYNATEX use the RPC software to replicate the test signal at a 

specific location of the component under testing. 

 

Figure 1.3: Durability Testing of Variety of Components or Assemblies (© Westest, Canada) 

(http://www.westest.ca/) 

The algorithm for the test signal replication works on the frequency domain data and consists of 

two parts. In the first part, the frequency response function (FRF), also known as the forward 

system model (MAST and the test component), is calculated. The calculated FRF is based on the 

assumption that the behavior of the whole system is linear. The second part of the test signal 

replication involves the calculation of the excitation (driving signal) to the MAST from the 

accelerated loading profile using the inverse of the above FRF. Another test methodology, which 

is used by Western Canada Testing Inc. (Westest), is that the test signal is replicated in the 

MAST instead of the component under testing. However, the principle behind the test signal 

replication remains the same. 
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In spite of advancements in durability testing technologies, the accuracy in implementing the 

desired accelerated loading profile is often unsatisfactory. The engineering problem associated 

with the replication of accelerated loading profile is due to (a) the unknown dynamics of the test 

component; (b) the presence of significant structural resonance in the test component; and, (c) 

the poor performance of the controller. There are two ways of addressing this problem. The first 

is to develop robust control algorithms that can minimize the error between the desired loading 

profile and the achieved one. The second is to improve the performance of the controller by 

identifying the unknown dynamics of the test component such as, stiffness and damping through 

nonlinear system identification. There are several companies and academic institutions working 

to address the first of these approaches. Examples include Turbo RPC developed by MTS and 

New Iterative Control Methods which is under development at the Automatic Control and 

Systems Engineering department at the University of Sheffield, UK [4]. The Turbo RPC is found 

to be working properly if there is significant structural resonance presence in the test component 

and if the nonlinearity (dynamics) of the structure is known a-priori [5]. The research presented 

in this thesis focuses on the second approach; namely, to identify the dynamics of the test 

component, such that the accelerated test signals can be implemented with satisfactory accuracy.  

1.2  Nonlinear System Identification 

The term ‘Nonlinear’ is quite a broad term and has different meanings in the context of different 

engineering disciplines. From a structural dynamics point of view, nonlinearity refers to the 

dynamics which causes the system to violate the principle of superposition, homogeneity and 

reciprocity.  Mathematically, nonlinear systems are represented by a set of differential equations 

with nonlinear terms. The natural frequencies and the mode shapes of such systems are 

dependent on the excitation amplitude. Various domains of engineering, like aerospace, 
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automobile, civil and structural engineering encounter nonlinear systems in one form or other 

[6]. Some common occurrence of nonlinearities in engineering are the friction induced 

nonlinearities in bolted joints and the polynomial stiffness nonlinearities observed in beams, 

plates and engine-wing of an aero structure etc.  

Linear system identification, which attempts to determine mathematical models of linear 

dynamic systems from vibration measurements, is an established area of study. The tool like 

modal testing and analysis [6-8] is the powerful and universally accepted tool for linear system 

identification. For linear systems, the transfer function, relating the input of the system to its 

output, remains constant at all excitation levels. Thus, the mathematical model obtained through 

the identification at one operating point can later be used for prediction at any other operating 

point. For a nonlinear system, it is impossible to obtain a universal mathematical model of the 

system by performing the system identification only at a single excitation level. A model 

obtained at a given operating condition can, at best, provide the equivalent linear system at that 

point with some contribution of nonlinearities. Figure 1.4 shows the difference between linear 

and nonlinear systems. From the system identification perspective, the transfer function is 

dependent upon the input for a nonlinear system, as indicated by Figure 1.4. 

  
 

 

Figure 1.4: Difference between Linear and Nonlinear Systems 
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1.2 Objectives of the Thesis 

The overall goal of this thesis is to address the problem associated with the test signal replication 

at a specific location of the component in a typical durability test. In this thesis, at first, the 

available methodologies and their limitations for the nonlinear system identification are 

investigated. The current literature shows that, the available methodologies are only useful for 

the cases where the excitation is in the form of forces. While, the most testing components under 

durability testing are structures excited with base motion, the methodology developed for force 

excited system, as described in the existing literature, cannot be applied to base excited structure. 

The specific objectives of this research project are: 

(a) To develop a nonlinear system identification methodology, such that it bridges the 

gap between force excited systems and base excited systems 

(b) To develop the methodology for force reconstruction in a vibrating structure, where 

the excitation comes from the moving base 

(c) To develop the methodology for the nonlinear parameter identification in a base 

excited system such that the well known force state mapping principle can be used in 

the modal space 

(d) To develop an experimental approach to demonstrate the proposed methodology 

(e) To develop the nonlinearity detection, characterization, and identification algorithm 

for a joint structure and validate this algorithm through numerical simulations and 

experimentations 
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1.2 Organization of the Thesis 

The material in the thesis is arranged sequentially, starting with the survey of the literature in the 

area of nonlinear structural identification, which is presented in Chapter 2. Chapter 3 presents the 

force reconstruction procedure in base excited structure. The new methodology for the nonlinear 

system identification in base excited structure is presented in Chapter 4. Chapter 5 presents the 

design of experimental setup and the demonstration of the nonlinear system identification 

through experimental observations. The application of this method to the joint structure is 

presented in Chapter 6. In the last chapter of the thesis, Chapter 7, some concluding remarks on 

the research, contributions of the thesis and suggestion for the future works are listed. 
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Chapter 2 

Literature Review 

This chapter presents a survey of the literature in the area of nonlinear structural dynamics. The 

survey presented is not at all comprehensive but more specific to the topics related to the thesis. 

The literature, which helped me to develop the new methodology for nonlinear system 

identification, and is closely related to the research presented in the thesis is dealt with in detail. 

The excellent review articles [9-12] on this topic and the books by Nayfeh and Mook [13] and 

Worden and Tomlinson [14] serve as a good starting point for the researchers who are new to 

this area. The review in this chapter is organized methodologically. In the last section of this 

chapter, the summary of the literature review describing the gaps in current knowledge is 

presented. 

Nonlinear structural dynamics has been of interest to the researchers for more than four decades. 

Tremendous efforts have been devoted to predict the accurate methods for nonlinear system 

identification in order to reduce the time and cost involved with the durability testing of ground 

vehicles. Such a need coupled with the availability of computational resources acted as a 

stimulus to the research in this area.  

The nonlinear system identification is an inverse problem. It attempts to identify the system in its 

mathematical form by knowing the input and output. The nonlinear system identification has 

three steps: (i) nonlinearity detection, (ii) nonlinearity characterization and (iii) nonlinear 

parameter extraction. The methods for nonlinearity detection are well established and are widely 

used in the aerospace and automobile industries. The methods for the characterization of 

nonlinearity types are still not reliable for industrial applications. An experience based subjective 
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judgments is widely used in the industry for nonlinearity characterization. Extraction of the 

nonlinear parameters poses even the large scale of challenges. Since my research focuses on 

nonlinear parameter identification, the review of relevant literature is presented here.   

Many approaches for linear system identification are in practice, such as output only analysis for 

linear system identification [15], complex mode shapes analysis for non-proportional damped 

structures [16] and mode shapes identification for geometrical discontinuous structures [17]. All 

those analyses yield a final model based on modal parameters, such as natural frequencies, mode 

shapes, modal damping ratios and modal masses. Therefore, it would not be injustice to say that 

the methods for linear system identification are mature. In practice, most structures show some 

nonlinear behaviors and there is a considerable interest in the identification of the nonlinear 

dynamic systems. However, methods developed for linear system identification cannot be 

directly applied to nonlinear system identification. 

The research in the field of nonlinear system identification started more then four decades ago 

[18-20]. During the early stage, due to limited mathematical tools and experimental techniques, it 

was perceived that the linear system identification is enough for the practical applications of 

structures. The research later gained the popularity and general acceptance when it was 

understood that the behaviors of all engineering structures are nonlinear to some extents. 

Rosenberg [21] in the 1960s proposed a new concept of nonlinear normal modes (NNMs) as a 

motion in which all points of the system vibrate with the same phase. This theory is the extension 

of the definition of normal modes used for linear systems. Later Shaw [22] and Pierre [23] 

generalized Rosenberg’s definition by proposing the concept of an invariant manifold. They 

represented nonlinear normal modes as surfaces in a phase plane. This invariant manifold 

concept is used to find out the amplitude dependent mode shapes. The Nonlinear normal modes 
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theory is based on rigorous mathematics, and it explains various nonlinear phenomena, such as 

internal resonance and mode bifurcations. Since the introduction of this concept, a number of 

articles have been published that deals with NNMs. Nayfeh and Nayfeh [24-26] used two 

dimensional manifold concepts to formulate the nonlinear natural frequencies and mode shapes 

of a cantilever beam.  This study was extended by Khadem and Mahmoodi [27] by including the 

nonlinear damping terms. The nonlinear normal modes theory enables one to describe complex 

physics, but it is difficult to apply in practical engineering applications. It is due to the fact that 

nonlinear phenomenon such as internal resonance and mode bifurcations are difficult to capture 

during the experimental observation. 

Addressing the challenge of implementation, many researchers have attempted to express the 

nonlinearities either in a modal space or in a physical coordinate system. Marsi and Caughey 

developed a pioneer theory which is essentially nonparametric and expressed the nonlinearities 

in a physical coordinate system [28]. They proposed a method called restoring force surface 

(RFS) in which the restoring force is plotted against instantaneous values of displacement and 

velocity in a phase plane. The surface is then approximated by the double chebyshev 

polynomials to identify the nonlinear parameters. The most important restriction made on their 

method is that, it is not suitable for a nonlinear system with discontinuous nonlinearities.   

Richard and Singh [29] proposed a method for nonlinear system identification named as 

conditioned reverse path (CRP). The idea of this method is to separate the nonlinear distortions 

from the measured FRFs using spectral conditioning. The method is applicable to such structures 

where the location and the type of nonlinearities are known. Another method similar to CRP 

method is presented in reference [30], which is commonly known as nonlinear identification 

through feedback of the output (NIFO). In this method, nonlinear restoring forces are modeled as 
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an internal feedback into a closed loop linear system. The compact formulation of this method 

makes it easier to implement in the real life structure. 

He and Ewins [31] proposed a new method based on the inverse receptance analysis. Their 

method attempted to find the natural frequency and the damping ratio for each mode based on a 

single DOF assumption that one and only one mode is excited. The effects due to other modes 

were neglected. While dealing with large MDOF systems it is almost impossible to separate the 

cross coupling terms, which is the limitation of this method in a practical situation. The method 

proposed by He and Ewins [31] also assumed that the mode shapes of the nonlinear system are 

the same as the mode shapes of the corresponding linear system. 

Feldman in his research [32] developed methods for free vibration and forced vibration analysis, 

named as FREEVIB and FORCEVIB.  The variation of natural frequencies and damping ratios 

with the amplitude of vibration was shown in his method [32]. Platten et al. [33-34] proposed a 

new concept of the nonlinear resonant decay method for nonlinear system identification in a 

modal space and showed the possibility to excite experimentally individual linear undamped 

modes. Their method [33-34] consists of two stages, (i) linear parameters are identified with low 

level frequency response functions (FRF) data and (ii) apply the high level force in the mode to 

excite it nonlinearly. To achieve this, an optimum force pattern is required. Platten et al. [33-34] 

found the optimum force pattern through a multivariate mode indicator function (MMIF). This 

high level force will induce nonlinearities between the individual and cross coupled modes. The 

method proposed by Platten et al. [33-34], compared to existing methods, is more accurate and 

robust in analyzing large MDOF systems. However, there are some limitations, like the force 

drop-out at resonance and shaker structure interaction, etc. Platten et.al. [33-34] further proposed 
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the acoustic excitation as an alternative to the shaker excitation to reduce those problems in 

modal testing.  

Elizalde [35] used the nonlinear modal vector approach to distinguish the level of nonlinearity in 

a nonlinear system as lightly nonlinear, moderately nonlinear and highly nonlinear. It was shown 

that for a highly nonlinear system, the ratio of nonlinear modal vectors to input forces exceeds 

10. To extract the nonlinear modal vectors, all the measured DOFs are excited by the input 

forces. These classifications are based on the extreme theoretical simulations. Elizalde [35] used 

a hybrid model to define the modes that are particularly affected by the nonlinearity and the 

modes which are linear and can be neglected from further analysis. Elizalde’s research presents 

the procedure and practical advices for readers who are interested in analyzing the nonlinear 

system in a modal space. 

Jalali [36] used the approach of “Sensitivity of Frequency Response Functions” for nonlinear 

system identification. He proposed an identification approach for nonlinear MDOF systems 

when there is a single nonlinear element in the system and its location is known. This proposed 

method is an extension of the FRF sensitivity method used in the linear system. This method 

uses measured nonlinear FRFs and employs a reduced order model for sensitivity calculations. 

Jalai in his another work [37] proposed the method called the describing functions inversion 

method. In his method the describing functions were obtained using the linearized FRFs. The 

linearized FRFs were obtained by taking the response of the system to harmonic excitation forces 

at the frequency range close to the natural frequencies. The nonlinear parameters were identified 

based on the calculation of the experimental describing functions and the system response 

corresponding to the nonlinear DOF. The method was verified using the 2 DOF lumped 

parameter model with cubic stiffness nonlinearity. The aim of the describing functions method is 
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to obtain equivalent amplitude dependent stiffness and damping coefficients at the nonlinear 

DOF. Many researchers in the past had applied the describing functions method for the 

identification of different types of nonlinearities of a nonlinear system. Kul and Chen [38] 

applied the describing functions method for the identification of the hysteretic type 

nonlinearities. Watanabe and Sato [39] used the first order describing functions and obtain the 

nonlinear stiffness of a beam structure. Kuran and Ozguven [40] used the describing functions 

method to obtain the cubic stiffness nonlinearity of a MDOF system. Besancon-Voda and Blaha 

[41] developed a multi-input describing function for the friction damping nonlinearity. Ozer 

et.al. [42] proposed a method for calculating describing functions by using the harmonic 

response of a MDOF nonlinear system. In their method the restoring forces of the nonlinear 

system was obtained using the curve fitting approach. Despite the facts of the use of describing 

functions methods by various researchers, the major drawback of this describing functions 

method is that it required the location and the functional form of the nonlinearity which may 

limits the application of this method in a practical structure. 

Rogers et.al. [43] presented the approach to detect the presence of real normal modes. A brief 

theory for generating the multivariate mode indicator function and the procedure to extract the 

modal parameters are presented in their research. They demonstrated the theory by applying in a 

typical aerospace structure which consists of closely spaced modes in a narrow frequency range. 

Wright et.al. [44] presented a method of physically exciting and measuring the undamped natural 

frequencies and normal mode shapes of a structure. They verified the method using the simulated 

response data and is demonstrated experimentally using an aluminum plate. A viscous damper 

was placed at one corner of the aluminum plate so as to yield the non-proportional damping. 

Their experimental results conclude that the proposed technique offer a way forward for 
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nonlinear system identification in a modal model form. However, the method has some 

disadvantages like: requirement of the long testing time and the need for adequate placement of 

the exciters.  

Sinapius [45-47] performed the normal mode tuning using the multiaxial base excited shaker 

table. His research presented the theoretical background on the test method with the particular 

emphasis on the estimation of damping, modal mass and on finding the suitable base axis 

combination of the 6 DOF base excited shaker table. 

One of the major difficulties of nonlinear system identification is that the functional form of  

the nonl ineari ty which maps the input signal to the output s ignal  is usually unknown 

beforehand. Physical insight is necessary to select a reasonable accurate model of the 

nonlinearity. If the physical insight is completely lacking, it is then time to move to nonlinear 

black box modeling. A nonlinear black box model of a structure is a model that is prepared to 

describe virtually any nonlinear dynamics on the basis of the measured input output data. 

Sjöberg et al. [48] presented the approach based on nonlinear black-box modeling. In their 

research the nonlinear dynamics of the structure was approximated with three black box model: 

wavelet based model, neural network based model and the fuzzy based model. Their research 

highlighted the common features of the above mentioned three black box model and the choice 

of the model that have to be made for successful system identification. 

Allison [49] used the proper orthogonal decomposition method for the identification of the 

nonlinear dynamic systems. In his method the proper orthogonal decomposition of the measured 

response data was combined with linear system theory to construct a model of an arbitrary linear 

or nonlinear system without any knowledge of the equations of motion. The method was verified 
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by using the simulated numerical data. The major disadvantage of the method proposed by 

Allison [49] is that his method is developed for the situations where the displacements are 

measured as an output and the forces are applied as an input. However, in many cases, vibration 

tests are performed by applying base excitations instead of loads. Acceleration, strain or stress 

output may be of more interest than displacements. 

Sadat et.al. [50] used an intelligent parameter varying approach for nonlinear system 

identification in a base excited structure. They used a radial basis function neural network to fit 

the measured nonlinear restoring force. In their method, the structure has been treated as a 

lumped mass system, which is beyond the scope of this research. This is the only literature 

documented so far for nonlinear system identification in a base excited structure.  

2.1 Gap in Knowledge 

In spite of the research efforts to develop methods for nonlinear parameter identification, most of 

the methods available in the literature are presented for few DOF lumped mass systems or simple 

continuous systems of academic interest. Recently, some attempts have been made to use the 

identification methods on complex engineering structures [33]. The methods discussed in the 

literature have their application region within which they succeed. Although the research in the 

field of nonlinear system identification progressed for the last four decades, the research has not 

yet proposed the universal methodology for the nonlinear system identification. The proposed 

methodologies in the literatures for nonlinear system identification depend on three parameters. 

The three parameters are: (i) type of excitations used (force, displacement, and acceleration), (ii) 

number of excitations used, for example, multi force input, and (iii) test set-up (hammer, modal 

shaker, base excited mechanical shaker). A lot of research has been progressed in developing the 

methodologies that uses the modal shaker as a test setup. However, significant research has not 
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been carried out in developing the methodologies that use the base excited shaker as the test set- 

up. There are some limitations when applying the above mentioned methods (Force excited 

system) to real-life engineering structures, such as the cases where the excitation comes from the 

base motion (base excited system). Such issue include (i) it is impossible to measure the response 

at all DOFs from the experiments, (ii) the mass distribution of the structures are not always 

known a-priori and (iii) the input force to the system is difficult or even impossible to measure. 

Even today, the testing industry is waiting for a method for nonlinear system identification which 

can be used alongside with the main-stream tools like linear modal analysis and Finite element 

analysis (FEA) and is applicable for complex real-life structures. 
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Chapter 3 

Force Reconstruction Using the Base Excitation as an Input 

It is mandatory to evaluate the dynamic performance and durability of the important mechanical 

components of aircraft structures and ground vehicles under service loading. The testing is often 

carried out by mounting the components to a shaker table, making the tested components a base 

excited mechanical system. Similarly, civil structures, like bridges, buildings, and dams, are 

often designed to resist the transmissibility of ground vibrations. For laboratory testing of civil 

structures, a scaled model of the structure is mounted on a shaker table, and it is given a 

displacements/accelerations input at the base to simulate operating conditions. In this kind of 

testing the excitation comes from the moving base which is in the form of 

displacements/accelerations. In such cases the excitation forces do not act locally, but they are 

distributed throughout the structure depending on the mass distribution of the structures. Thus, it 

is not possible and feasible to measure the excitation forces directly.  

This chapter presents a new method for the force reconstruction of a base excited structure with 

controlled displacements/accelerations input. The main contribution presented in this chapter is 

the derivation of an analytical expression for the input force vector using the base motion as an 

input. It makes more sense; at least when dealing with experimentally derived data, to be able to 

formulate the input excitation force vector at the measured DOFs only. This approach can mimic 

the conditions of incomplete measurements of motion for a continuous system and pleased for 

discrete lumped parameter system. The proposed methodology is based on previous work by 

Aditya et al. [18] and Elizalde and Imregun [35], who used the hybrid model concept for system 

identification in a force excited structure. For the sake of clarity, the methodology presented is 

validated by using the lumped parameter model and is applied to a cantilever beam for 
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demonstration. The detailed mathematical concepts, the procedure to extract the input force 

vector, and the validation of this theory are presented in this chapter. 

3.1 Theoretical Formulation for the Extraction of a Pseudo Excitation Force Vector 

In this section, the theoretical formulation for the extraction of a pseudo excitation force
1
 vector 

at the measured DOFs is presented. A linear mathematical equation developed in references [39, 

40] for a moving base system can be used if the motion, e.g., acceleration, can be measured at all 

degrees of freedom (DOFs). Since such measurements can be made only in finite DOFs, there 

are some questions that need to be addressed in order to use the methodology [45, 46]. For 

example, what is the contribution of the motion at the unmeasured DOFs to the system equation? 

How are the specific DOFs selected for measurements? What is the effect of unidentified modes 

on the estimated pseudo excitation force vector? To address these questions, the same equations 

as those in references [45, 46] are first represented in a mixed (physical/modal) form, also known 

as the hybrid model of the system. A system with a moving base configuration can be 

represented as an equivalent system to the fixed base configuration if the displacement vector is 

represented as a vector relative to the base displacement [45, 46]. Thus, the equation of motion 

for a linear multi-degree-of-freedom (MDOF) system excited by the acceleration input at the 

base can be written as the equivalent fixed base configuration as: 

                                                                                                                   (3.1) 

Where,          and     are the mass, stiffness, and proportional damping matrices of the 

system in a fixed base configuration,    is the input acceleration,     is the displacement vector 

                                                 
1
 The reconstructed input force vector using the base motion as an input is referred to as pseudo excited force vector. 
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relative to the base, and     is the transformation vector  (     =           where,      is the 

angle between the     DOF and the direction of base motion. 

Transforming Equation (3.1) to the frequency domain we have, 

                                                                                                            (3.2)         

Where        . The right hand side of Equation (3.2) represents the equivalent excitation force 

vector, which is dependent on the distribution of mass in the system. The equivalent force vector 

remains constant throughout the analysis frequencies if a constant acceleration as a function of 

frequencies is applied to the base. The equivalent force vector will vary as a quadratic function 

of the excitation frequency if the constant displacement as a function of frequencies is applied to 

the base. The linear modal analysis of Equation (3.2) yields mode shapes, natural frequencies 

and modal mass of the structure. To find out the pseudo excitation force vector at the measured 

DOFs, Equation (3.2) is analyzed in the hybrid model form, where the relative response vectors 

are in the physical coordinates and the remaining parameters in the modal space. Denoting 

          by     , Equation (3.2) can be written as,    

                                                                                                                   (3.3) 

Multiplying both sides of Equation (3.3) by modal matrix      and introducing the term 

           , Equation (3.3) becomes 

                                                                           (3.4)                              

For mass normalized mode shapes and proportional damping assumptions, the orthogonal 

properties of the linear modal matrix    , can be written as, 
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                                                                                                                                     (3.5)                                                                                                                               

              
                                                                                                                 (3.6) 

                                                                                                                              (3.7)        

Let,     
                                 

   where, the brackets        denotes a 

diagonal matrix. Using this property, Equation (3.4) can be written in a more concise form as, 

       
                                                                                                                   (3.8) 

              
  

  
                                                                                                        (3.9)                                              

Equation (3.9) is the extended form of Equation (3.1) and it represents the modal model of the 

linear system with the relative displacement vector in the physical coordinates system. Equation 

(3.9) is named as the hybrid model of the system due to the fact that the response vectors are in 

the physical coordinates while the remaining parameters are kept in the modal space. Equation 

(3.9) represents the dynamics of the system when the full model of the system is known. A full 

model refers to the response at all DOFs and all the modes are available. For making use of 

Equation (3.9) in practical cases, there are two major difficulties: (i) measurements of motion, 

e.g., accelerations, at all DOFs are impossible and (ii) the modal model derived via the 

experimental route is incomplete. So for the extraction of the pseudo excited force vector, 

Equation (3.9) is partitioned at the measured and unmeasured DOFs. Let the subscript   

represent the measured DOFs and the subscript   represent the unmeasured DOFs. Similarly,    

represents the identified modes and    represents the unidentified modes then, partitioning 

Equation (3.9) at measured and unmeasured DOFs, we have, 
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Let, 

    =        
         

    

  
                                                                                         (3.12) 

          
         

    

  
                                                                                            (3.13) 

         
         

  
  

  
                                                                                           (3.14) 

         
         

    

  
                                                                                             (3.15) 

The relative displacement vector at the measured DOFs can be written as, 

            
 
          

 
          

 
          

 
                                       (3.16)                 

Equation (3.15) represents the response of the relative displacement vector at the measured 

DOFs. Multiplying both sides by      
    to Equation (3.15), we have, 

    
           

       
          

 
        

           
 
     

     
           

 
                                                                                                                (3.16) 

    
         is the pseudo excited projected force at the measured DOFs. This can be extracted 

solely from the measured data. Denoting it by     , the final equation can be written as, 
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       (3.17)                                    

Equation (3.17) represents the closed-form expression for the pseudo excited force vector 

projected at the measured DOFs. The last three terms shown in Equation (3.17) are the linear 

residuals. These three terms of the Equation (3.17) project the force from unmeasured DOFs to 

the measured DOFs. The pseudo excited force vector      is obtained solely from the dynamics 

of the system as shown by Equation (3.16). Analyzing each term of the Equation (3.17), one can 

make a conclusion that the reconstructed input force vector is equal to the equivalent excitation 

force vector for a lumped parameter model. An example of this type of system includes: Multi-

storey building where each storey represent the floor lumped mass and that the springs and 

dampers represent the collective structural stiffness and damping between adjacent floors. The 

reconstructed force vector is not equal to the equivalent excitation force vector for a continuous 

system as the last three terms of the Equation (3.17) project the force from the unmeasured DOFs 

to the measured DOFs. Examples of a continuous system include beams, plates, and, shells. 

3.2 Illustration of Force Reconstruction Technique  

Clearly what is of interest is to show that the reverse explicit formulation theory for input force 

reconstruction presented in Section 3.1 is true. Here, a five degree of freedom (DOF) lumped 

parameter system subjected to a base excitation is used for the validation of the above mentioned 

theory.  

The system chosen is shown in Figure 3.1. The system comprises of five masses each connected 

with a spring and a damper. The two end supports are subjected to base displacement of   . The 

parameters used for this simulation are     kg,       Ns/m,        N/m and    

          . Where   is the excitation frequency. If the displacement of the mass 1, mass 2, 
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mass 3, mass 4 and mass 5 are represented by             and   , the equation of motion in 

the direction of base motion can be derived by using the Newton’s second law of motion. 

 

Figure 3.1: Five DOF Lumped Parameter System 

In accordance with Newton’s second law, the equations of motion can be expressed as: 

                                                                                  (3.18) 

                                                                                   (3.19) 

                                                                                   (3.20) 

                                                                                   (3.21) 

                                                                               (3.22) 

Alternately, these state Equations (3.18-3.22) can be written in terms of mass drifts
2
            

   and    : 

                                                                                           (3.23)                         

                                                                             (3.24)     

                                                 
2
 Relative displacement of the masses with respect to the moving base. 
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                                                                             (3.25)    

                                                                             (3.26) 

                                                                                            (3.27) 

  Where: 

                                       and                             (3.28)     

Rewriting the Equations (3.23-3.27) in a matrix form, 
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    Equation (3.29) can be written as, 

                                                                                                                (3.30)   

Where:   
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                                 (3.31) 

The resulting natural frequencies and mode shapes of the undamped system are obtained by 

solving the undamped free vibration Equation (3.30), given by Equation (3.32). The natural 

frequencies and mode shapes are tabulated in Table 3.1. 

                                                                                                                               (3.32) 

Using Equation (3.16) requires the linear response, modal damping ratio and modal stiffness. 

The experimental measurements of the signal involve measuring the acceleration response and 

integration of the acceleration response to velocity and displacement. In order to eliminate any 

phase distortion in numerically integrated displacement and velocity signal a single- frequency 

harmonic excitation is used. The response of the structure will be harmonic too and generally 

contains higher harmonics in the response. Considering that the excitation frequency is   

radian/sec, the steady state measured acceleration signal may be represented using, 

 Table 3. 1: Frequencies and Mode Shapes of 5 DOF Simulated System 

 

Modal frequencies (Hz) 

Mode shapes 

       1         2        3         4             5 

2.9429 

5.8464 

8.2187 

10.5050 

15.5550 

-0.1258 -0.2076 -0.2447 -0.3511 -0.8706 

-0.2409 -0.3452 -0.3262 -0.3198 0.3378 

-0.3147 -0.2499 0.0272 0.4081 -0.0672 

-0.3079 0.0983 0.3262 -0.1975 0.0090 

-0.1958 0.3139 -0.2447 0.0573 -0.0009 
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                                                                              (3.33) 

Writing Equation (3.33) in each time instant and using a least-square procedure the coefficients 

   and     can be identified. Once the coefficients of Equation (3.33) are known, the velocity 

and displacements are obtained by analytical integration, 

       
 

  

 
                                                                                       (3.34) 

      
 

     
 
                                                                            (3.35)   

The mean values of the velocity and the displacement signals have to be zero, which means that 

     and               

3.3 Solution Methodology 

The excitation frequency is varied in a frequency band around the first natural frequency of a 5 

DOF system and the time domain acceleration, velocity and displacement response are 

determined using a Runge-Kutta procedure. By employing Equation (3.33) the governing 

equation of the steady state acceleration is estimated and the coefficients    and     are 

calculated. By knowing these coefficients and using Equations (3.34 and 3.35), the velocity and 

displacement of the steady state response are calculated. The result of the true and least square 

fitted acceleration signal is shown in Figure 3.2. In Figure 3.2, the true acceleration signal is the 

signal obtained from Runge-Kutta integration while the least square fitted signal is the estimated 

signal obtained by using Equation (3.33) in the true signal. Similarly in Figure 3.3, the true 

velocity is the velocity obtained from Runge-Kutta integration while the analytically integrated 

velocity signal is the signal obtained by using Equation (3.34). The same procedure follows for 

Figure 3.4.  Having displacement, velocity, acceleration response and mode shapes matrix, it is 
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possible to reconstruct the input excitation force vector using Equation (3.16). The reconstructed 

force vector is than compared with the equivalent excitation force vector so as to validate the 

theory. Figures (3.2-3.6) show the plot of the reconstructed and equivalent excitation force vector 

at each excitation frequency projected at each DOF. The reconstructed force vector and the 

equivalent excitation force vector are very close to each other and are varying as a quadratic 

function of the excitation frequencies. The results (Figures 3.5-3.9) show that the theory 

presented is true and pleased for lumped parameter system. The demonstration of this theory for 

a continuous system is presented in Chapter 5 by taking the cantilever beam as an example. 

 

Figure 3.2: True and Least Square Fitted Acceleration Signal (Excitation Frequency 2.9429Hz) 
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Figure 3.3: True and Analytically Integrated Velocity Signal (Excitation Frequency 2.9429Hz) 

 

Figure 3.4: True and Analytically Integrated Displacement Signal (Excitation Frequency 

2.9429Hz) 
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Figure 3.5: Comparison of Reconstructed Force Vector and Equivalent Excitation Force Vector 

Acting at Mass 1 

 

Figure 3.6: Comparison of Reconstructed Force Vector and Equivalent Excitation Force Vector 

Acting at Mass 2 
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Figure 3.7: Comparison of Reconstructed Force Vector and Equivalent Excitation Force Vector 

Acting at Mass 3 

 

Figure 3.8: Comparison of Reconstructed Force Vector and Equivalent Excitation Force Vector 

Acting at Mass 4 

2 2.5 3 3.5 4

1500

2000

2500

3000

3500

Frequency (Hz)

F
o
rc

e 
(N

)

 

 

Equivalent Excitation Force Vector 

Reconstructed Force Vector

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8

2000

2500

3000

3500

4000

4500

Frequency (Hz)

F
o

rc
e 

(N
)

 

 

Equivalent Excitation Force Vector

Reconstructed Force Vector



 

33 

 

 

Figure 3.9: Comparison of Reconstructed Force Vector and Equivalent Excitation Force Vector 

Acting at Mass 5 

 

3.4 Summary 

A methodology for the force reconstruction technique for a base excited structure is presented in 

this section. A closed form solution is derived by partitioning the system equation at the 

measured and the unmeasured DOFs. The proposed methodology is illustrated by using a 5 DOF 

lumped parameter model with a constant displacement input at the base. Simulation results show 

that the proposed methodology is accurate for a lumped parameter model. The experimental 

demonstration of this methodology for a continuous system is presented in Chapter 5 of this 

thesis. 
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Chapter 4 

Nonlinear System Identification in Base Excited Structure 

The conventional nonlinear system identification techniques described in the existing literatures 

require force and response information at all excitation DOFs for their successful 

implementation. For cases where the excitation comes from the base motion/support motion, 

these requirements can be met only if the motions at all DOFs are measured and the mass 

distribution of the structure is known a-priori. Thus, in practical cases it is not possible to use the 

available nonlinear system identification methods directly. 

This chapter presents two new methods for nonlinear system identification of a base excited 

structure with the controlled displacement/acceleration input. Both methods are based on the 

theory of force reconstruction, base excitation and the nonlinear system identification. 

Combining these three theories, the new theory/new approach is developed which is the original 

contribution of this chapter. The first method bridges the gap of nonlinear system identification 

between the force excited systems and the base excited systems which addresses objective (a) 

and identifies the nonlinear parameters in the physical coordinates system. The second method 

addresses the objective (b) and identifies the nonlinear parameters in the modal space. The modal 

space is used to find out the maximum normal and cross-couplings nonlinear terms. Both 

methods are entirely based on measured data from the experiment with no need for a finite 

element model. The detailed mathematical concept, the procedure to extract the nonlinear 

parameters and the advantages and limitations of both methods are presented in this chapter. 
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4.1 Theoretical Formulation of Nonlinear System Identification in the Physical 

Coordinates System 

The proposed method works in three stages to estimate the nonlinear parameters of a system. The 

three stages are: (1) Reconstruction of the input force vector at the measured DOFs, (2) Recovery 

of the nonlinear restoring force vector using the reconstructed force vector in a nonlinear system 

and (3) extraction of nonlinear parameters. In chapter 3 of this thesis the closed form solution for 

the reconstructed force vector is presented so in this chapter the theory for nonlinear restoring 

force vector extraction, nonlinear parameter extraction and the new theory /approach which 

combines these three theories is presented.   

4.1.1 Theoretical Formulation for the Nonlinear Restoring Force Vector at the Measured 

DOFs 

This section illustrates the theoretical formulation for the nonlinear restoring force extraction 

from the measured data at the measured DOFs. The hybrid model for the nonlinear system is 

shown such that the linear response of the system is in the modal domain while the nonlinearities 

are expressed in the physical coordinates system. In this model the nonlinear residual are 

approximated as the linear residual. This can be achieved in practical scenario by setting the 

analysis frequency to be high [35]. The model assumes that when the magnitude of excitation to 

the base is sufficiently high, the response from the structure attached to the base is no longer 

linear [19, 35, 37, 39 and 41].  

The general Equation of motion for a MDOFs nonlinear system, subjected to base excitation can 

be written as, 

                                                                                                               (4.1) 
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Where,      is the nonlinear displacement vector relative to the base,    is the nonlinear restoring 

force vector. 

Transforming Equation (4.1) to the frequency domain we have,  

                                                                                                  (4.2)                            

Where,           is the Equivalent excitation force vector which is denoted by      in Chapter 

3. Using the same notation Equation (4.2) becomes, 

                                                                                                            (4.3)   

Multiplying both sides of Equation (4.3) by modal matrix      and introducing the term 

           , Equation (4.3) becomes, 

                                                                    

                                                                                                                                           (4.4)                      

For mass normalized mode shapes and proportional damping assumptions, the orthogonal 

properties of the linear modal matrix    , can be written as, 

                                                                                                                                    (4.5)                                                                                                                               

              
                                                                                                                (4.6) 

                                                                                                                             (4.7)        

Let,     
                                 

   where, the brackets        denotes a 

diagonal matrix. Using this property, Equation (4.4) can be written in a more concise form as, 

       
                                                                                                          (4.8) 
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                                                                                                 (4.9) 

Equation (4.9) represents the hybrid model for nonlinear MDOFs systems undergoing base 

excitation, where the nonlinear response vector is kept in the physical domain while the 

remaining parameters in the modal space.  Using Equation (4.9) directly in practical cases has 

two major difficulties: (i) the measurement of nonlinear response vector at all DOFs is 

impossible and (ii) the modal model derived via an experimental route is incomplete. In order to 

mimic the condition of incomplete measurements, Equation (4.9) is partitioned at the measured 

and the unmeasured DOFs. Partitioning Equation (4.9) at the measured and the unmeasured 

DOFs Equation (4.9) can be written as, 

 

 
   
   

   
    

    

    
    

  
       

  
  

 

        
  

  

 

  

 
        

        
   

  
 

  
 

   
  

  
    (4.10) 

Let, 

    =        
         

    

  
                                                                                         (4.11)                                                                                

          
         

    

  
                                                                                            (4.12) 

         
         

  
  

  
                                                                                           (4.13) 

         
         

    

  
                                                                                             (4.14)                                                                                                                                                                                                                                   

The nonlinear response at the measured DOFs can be written as, 
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                                                                                                                      (4.15) 

The term         
 
         is the nonlinear residual. This is the contribution of the 

unidentified modes to the response at the measured DOFs. It should be noted that the nonlinear 

residual can be approximated as a linear residual, if the analysis frequency is set to be high [35]. 

If the nonlinearities are confined to the measured zone, by using the nonlinearity detection 

methodologies      can be set to zero. Replacing nonlinear residual by the linear residual and 

multiplying both sides of the Equation (19) by    
   , we get, 

    
             

            
          

 
       

          
 
    

     
          

 
                                                                                                               (4.16)                          

   
       

          
 
       

          
 
       

          
 
    is the pseudo 

excited force vector (Reconstructed Force Vector) projected to the measured DOFs, which is 

equivalent to     . Therefore, 

               
                                                                                                        (4.17)                                                                                                            

Equation (4.17) gives the nonlinear restoring force vector at the measured DOFs. Once such a 

force vector is obtained, the nonlinear parameters can be extracted by the conventional 

technique, which is shown in the Appendix A.  The system identification strategy in a physical 

coordinate system for a base excited structure that addresses the objective (i) is illustrated in 

Figure 4.1. 
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Figure 4.1: Flow Chart for Nonlinear System Identification in a Physical Coordinate System 

4.1.2 Implementation of Nonlinear System Identification in the Physical Coordinates 

System 

The proposed method, shown in Figure 4.1, involves three stages. In the first stage, the pseudo 

excited force vector at the measured DOFs is extracted using Equation (3.16). Prior to it, the 
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modal parameters of the underlying linear structure such as modal damping ratios and the modal 

matrix are obtained by performing conventional modal analysis using Equation (3.1). In the 

second stage the nonlinear restoring force vector at the measured DOFs is extracted using 

Equation (4.17). To use Equation (4.17), the nonlinear acceleration vector is measured by 

subjecting the structure to high displacement/acceleration input at the base. In the third stage of 

this method, the nonlinear parameters are extracted according to references [18, 19 and 39]. The 

nonlinear parameter extraction technique is detailed in the Appendix A. 

4.2 Theoretical Formulation for Nonlinear System Identification in a Modal Space  

The traditional nonlinear parameter identification technique proposed in references [18, 19 and 

39] is based on the first order describing functions method. This method is well suited for 

frequency domain data. However, it is highly inaccurate for the time domain representation as 

discussed in literature [34]. It may require the location as well as the functional form of the 

nonlinearity to extract the nonlinear parameters. Though the above mentioned method [18, 19, 

39] extracts the nonlinear parameters at the physical coordinates of the system, it does not give 

any information about the model and the nonlinear coupling effect. 

A new method is proposed here to extract the nonlinear parameters along with the nonlinear 

model in a modal space. It has the advantages over other methods in that it shows the normal and 

cross coupling nonlinearity between the modes, extracts the maximum nonlinearity of the system 

and does not required the location and the functional form of the nonlinearity. The proposed 

method involves the extraction of the pseudo excited force vector at the undamped natural 

frequency of the system, the calculation of the nonlinear modal restoring force in the modal 

space and the extraction of the nonlinear parameters (normal and cross-coupling) nonlinearities 

in a modal space by using the restoring force state mapping principle. 
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Although the mathematical formulation for the pseudo force extraction and the nonlinear 

restoring force extraction remain identical as Equations (3.16) and (4.17), the transformation of 

the nonlinear restoring force in a modal space is different. Moreover, the measured nonlinear 

response data are at the physical coordinates and need to be transformed to the modal space. The 

formulation presented in this section shows the methodology to transform the nonlinear response 

data and nonlinear restoring force in a nonlinear modal space. The theoretical formulation of the 

nonlinear system identification in a modal space includes: (a) decoupling a nonlinear modal 

equation and performing the mode by mode analysis; (b) analyzing the effect of nonlinear mode 

shapes matrix on the response of the system; (c) investigating perfect and imperfect excitations 

in modal analysis; (d) evaluating nonlinear parameter extraction in the case of imperfect 

excitation for the closely spaced modes and the use of suitable basis function for the extraction of 

nonlinear parameters through curve fittings; and, (e) examining the type of established 

algorithms used for curve fitting in modal space.  

4.2.1 Theoretical Formulation for the Extraction of Nonlinear Response Data and the 

Nonlinear Restoring Force in a Modal Space                                                                                                                    

The nonlinear response of a MDOF system with base excitations can be represented as,   

                                                                                                              (4.18) 

Where     is the relative nonlinear response vector at the measured DOFs. With the single 

harmonic assumptions (the output signal is at same harmonic to input) one can write the 

Equation (4.18) in the frequency domain as, 

                                                                                                      (4.19)                                                          
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Expressing the response vector in the modal space we can write, 

        +    ]                                                                                                                    (4.20)     

Where,         is the nonlinear modal response.     is the matrix of linear eigenvectors, which is 

independent of the excitation amplitude and the frequency.     is the matrix of nonlinear 

eigenvectors, which is dependent on both the amplitude and the frequency of the excitation. 

Using the above relation (Equation (4.20)) in Equation (4.19) and multiplying both sides of 

Equation (4.19) by     , we have,  

                                                                                    (4.21) 

Further expanding Equation (4.21) the following equation is obtained, 

                                                                     

                                                                                   (4.22) 

Applying the orthogonal properties of the mass normalized mode shapes, Equation (4.22) can be 

written as, 

       
                                                                                                (4.23)      

Equation (4.23) is the mathematical representation of the MDOF nonlinear system in a modal 

space for a base excited structure. Observed that neither mathematical assumptions nor 

approximations are made in formulating this equation.    
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From the theoretical point of view, Equation (4.23) represents the model equivalent to nonlinear 

normal modes
3
, which has been the subject of research for the last four decades. The nonlinear 

normal modes are usually considered orthogonal, i.e., they are independent of each other. These 

nonlinear normal modes are affected by the nonlinearities at resonance only, otherwise they 

behave linearly. Comparing Equation (4.23) with its linear counterpart in Equation (3.9) there are 

two nonlinear terms; the nonlinear mode shapes     and the nonlinear restoring force 

vectors         . These two terms make Equation (4.23) in the coupled form and cause the 

nonlinear modal behaviors as compared to Equation (3.9) as its linear counterpart in an 

uncoupled form. To understand this scenario, it is important to analyze each term of the Equation 

(4.23) separately. 

It is clear from Equation (4.23) that the     modal coordinate response        contains 

components belonging to all other modes, caused by the nonlinear term (         ). This term is 

directly responsible for modal coupling effects by introducing non-diagonal entries in the mode 

shapes matrix. This further invalidates the assumption of modal superposition stating that modes 

are linearly independent of each other (or orthogonal). Thus, it is important to analyze the 

significance of this term with respect to the total response. 

It has been observed in the existing literature that the total nonlinear variation of        is quite 

small, between 1-20 % [35]. The term          , in the vicinity of resonance is negligible as 

compared to the modal response      . Away from the resonance,          has a higher 

magnitude, as compared to modal response       . So, if the system can be excited at the 

undamped natural frequencies (modal frequencies) of the system, the contribution due to 

                                                 
3
 The nonlinear normal mode is usually multi-harmonic in nature. 
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         can be neglected. Since the effect of          is negligible, the nonlinear modal 

equation is decoupled to each mode. The term          has the coupling effect between the 

modes. These nonlinear coupling terms between the modes are extracted by using the multilinear 

least square regression algorithm in the modal space.  This is the main concept which is used in 

this research to extend the nonlinear response in the modal space. The term          is the 

nonlinear modal restoring force. This is obtained by multiplying Equation (4.17) with the 

transpose of the mode shapes matrix     . The measured nonlinear response data is transformed 

to the nonlinear modal space by using Equation (4.20). 

The modal model formed by exciting one mode at a time (exciting at the modal frequency) may 

have cross couplings of nonlinear terms with other modes. If only one mode is excited at a time 

during a linear response corresponding to low base displacement, then we can say that the 

response in other modes during high base displacement is due to the cross coupling nonlinearity 

between the modes.  

The perfect excitation is the excitation in which a linear mode can be excited one at a time. In a 

single base motion even in a very small base displacement/acceleration, i.e. in a linear modal 

analysis, it is impossible to excite one mode only, i.e. other modes are also excited by a small 

amount. This leads to the imperfect excitation. This imperfect excitation causes linear as well as 

cross-coupling excitation during high level base displacement/acceleration. In this way, if we 

perform a linear regression in a nonlinear modal space between the modes, part of the linear 

response also appears during regression. This linear response will affect the accuracy of the 

indentified cross coupling terms, while the direct nonlinear terms associated with that mode will 
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be accurate. The true cross coupling terms can be obtained accurately when several modes are 

tested based on mode by mode analysis principle and using Equation (4.20).  

A nonlinear restoring force extracted by performing mode by mode analysis now needs to be 

fitted to the measured pseudo force and response data in the least square sense to extract the 

nonlinear parameters.  It is important to describe the nonlinear restoring force by a mathematical 

model. The usual way is to fit to the restoring force a model of the form, 

              
 
   

 
                                                                                                          (4.24)                                       

Where      
 
   

 
               

       
         

                          (4.25)                         

The least square parameter estimation technique is used to obtain the values of the 

coefficients    . The normalized Mean-Square Error (MSE) between the measured and the 

predicted restoring force is defined as, 

        
   

     
                                                                                                    (4.26)  

Where    is the total number of samples and   
   is the variance of the measured restoring force. 

Research shows that a     value of less than 5% indicates good agreement while a value of less 

than 1% reflects an excellent fit [33]. Potentially, a large number of nonlinear terms exist as 

indicated by Equation (4.25). To determine which terms are significant and which terms can be 

safely discarded in Equation (4.25), the significant factor is used which is defined as, 

      
  

 

  
 

                                                                                                                            (4.27)                     
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Where   
  corresponds to the variance of the sum of all the terms of the model and   

  is the 

variance of the considered term. A stepwise regression technique is used so as to achieve a 

desired level of MSE. The nonlinear system identification flow chart is shown in Figure 4.2. 
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Figure 4.2: Flow Chart for Nonlinear System Identification in the Modal Space 
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4.2.2 Implementation of Nonlinear System Identification in the Modal Space 

The flowchart for nonlinear system identification methodology in the modal space is shown in 

Figure 4.2, which involves three stages. During the first stage, the pseudo excited force vector at 

the measured DOFs is extracted using Equation (3.16). Prior to it, the modal parameters and the 

response at modal frequencies are needed. Such modal parameters are extracted by using 

Equation (3.1) and the response at modal frequencies is obtained by exciting the system at the 

corresponding frequencies. The second stage of this method consists of extracting the nonlinear 

modal restoring force vector. For this purpose, the system is excited with high base 

displacement/acceleration at the same modal frequencies and all the response vector and the 

nonlinear restoring force vector are transformed to the modal space. The third stage of this 

method consists of performing the multilinear least square regression in the excited mode to 

obtain the normal and cross-coupling nonlinearities. 

4.2.3 Illustration of Nonlinear System Identification in a Modal Space 

The overall methodology of nonlinear system identification which combines these three theories 

of force reconstruction, base excitation and nonlinear system identification will be illustrated at 

this stage using a 5 DOF nonlinear system where all the modes are affected by nonlinearities. A 

complex system with a maximum of 35 nonlinear terms is chosen to demonstrate the method, as 

shown by the Equations (4.34-4.38). 

The system chosen is shown in Figure 4.3. The system has hardening cubic stiffness nonlinearity 

between Masses 2 and 4. If the nonlinear relative displacements response of mass 1, mass 2, etc. 

are denoted by    ,     etc., the unforced equations of motion in terms of relative displacement 

vector can be written as, 
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Figure 4.3: Five DOF Lumped Parameter Model 

 
 
 
 
                     
                 
 
 
 
   
 
 
 

    

 
 
 

 
  
 

  
  
   

 
 
 

 
 
 

 
 
    
    
    
    
     

 
 

 
 

 

 
 
 
 
                    
                  
 
 
 
   

  
 
 

    

 
  
 

  
   
  

 
   
   

 
 
 

 
 
 

 
 
    
    
    
    
     

 
 

 
 

 

 

 
 
 
 
 
                      
                   
 
 
 
   

  
 
 

  

 
  
 

  
   
  

  
   
    

 
 
 
 

 
 
 

 
 
   
   
   
   
    

 
 

 
 

 

 
 
 

 
 

 
           

 

 
          

 

  
 
 

 
 

                                             (4.28)                                                        

Where,      and   are the mass, stiffness and damping of the system respectively.   is the 

nonlinear stiffness of the system which is connected between Masses 2 and 4. Nonlinear 

response vectors at the physical coordinate system are obtained through numerical simulation. 

The parameters used for the simulation are    kg,       Ns/m,        N/m and 

       N     The resulting natural frequencies and mode shapes of the system shown in 

Figure 4.3 is obtained by solving the undamped system equations which is tabulated in Table 4.1. 

Transformation of Equation (4.28) into a modal space by using the mode shapes matrix will yield 

a system of equations of the form, 
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                                 (4.29) 

                                                   
                                 (4.30) 

                                                
                                        (4.31)    

                                                   
                                 (4.32) 

                                                    
                               (4.33)                                                                    

Equations (4.29-4.33) show that all the modes are coupled to each other in the nonlinear modal 

space. If the nonlinear terms are expressed in modal space then Equations (4.29-4.33) becomes, 

                                                                          

                    
                                                                                                      (4.34) 

                                                                          

                    
                                                                                                                                                                                                                    

                                                                       

                    
                                                                                                          (4.36)      

                                                                          

                    
                                                                                                      (4.37)   

                                                                 

                              
                                                                                 (4.38)    
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 Table 4.1: Frequencies and Mode Shapes of 5DOF Undamped System 

 

 

Modal frequencies (Hz) 

Mode shapes 

       1         2        3         4             5 

2.9429 

5.8464 

8.2187 

10.5050 

15.5550 

-0.1258 -0.2076 -0.2447 -0.3511 -0.8706 

-0.2409 -0.3452 -0.3262 -0.3198 0.3378 

-0.3147 -0.2499 0.0272 0.4081 -0.0672 

-0.3079 0.0983 0.3262 -0.1975 0.0090 

-0.1958 0.3139 -0.2447 0.0573 -0.0009 

 

As the implementation of the nonlinear system identification shown in Figure 4.2 works in three                                                                                

stages, each stage is implemented sequentially to find out the nonlinear parameters. In stage I, 

the system is excited with low base acceleration of magnitude          which ensures that the 

nonlinearities are not excited. Exciting the system with low acceleration, the pseudo excited 

force vector at the measured DOFs is obtained by using Equation 3.16. The results of the pseudo 

excited force vector are shown in Figure 4.4. In stage II, the system is excited with the high base 

acceleration of magnitude           such that the nonlinearities are excited. As nonlinear 

parameters are independent to the mass distribution of the structure, the pseudo excited force 

vector corresponding to the acceleration           is obtained by using Equation (3.16). Figure 

4.5 shows the obtained pseudo excited force vector at the measured DOFs using the base 

acceleration of           Comparing Figures 4.4 and 4.5 it can be seen that the pseudo excited 

force at high base acceleration is exactly 40 times higher than the low base acceleration which is 

true as the input acceleration is scaled from low level acceleration magnitude of           to 

high level acceleration magnitude of         . Once the pseudo excited force vector  
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Figure 4.4: Reconstructed Force Vector at Low Base Acceleration 

Figure 4.5: Reconstructed Force Vector at High Base Acceleration 
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corresponding to the high base acceleration is obtained, the nonlinear restoring force at the 

measured DOFs is recovered by using Equation (4.17). The nonlinear restoring force vector 

obtained in such a way is transformed to the nonlinear modal space by using mode shapes 

matrix. In stage III, the nonlinear parameters are obtained by performing multilinear least square 

regression in a modal space using Equations (4.25-4.27). For the first mode excitation, Figure 4.6 

shows the measured and the fitted modal restoring force in a time domain.  The Goodness-of-fit 

in terms of mean square error change is over 99%. The true and the least square fitted modal 

stiffness coefficient are compared and are tabulated in Table 4.2. The true nonlinear coefficients 

are the stiffness coefficients given by Equation (4.34) whereas the least square fitted coefficients 

are the coefficients obtained from using Equation (4.25).  

 

Figure 4.6: Measured and Fitted Mode1 Nonlinear Restoring Force 
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As shown in Table 4.2, the direct stiffness coefficient for Mode 1 is accurate with the percentage 

error being less than 0.1%. However, the cross-couplings stiffness terms with Mode 1 are not 

accurate. The major cause of inaccuracy is due to the imperfect excitation which is shown in 

Figure 4.7. As shown in Figure 4.7, the excitation is made on Mode 1 with the base acceleration 

of         , however there are forces in Mode 2, Mode 3, Mode 4 and Mode 5, respectively. 

These forces indicate that the mode 1 is not clearly isolated. Since Mode 1 is not isolated, the 

responses in Mode 2, Mode 3, Mode 4 and Mode 5 are due to: (i) cross-coupling response 

between the modes and (ii) due to the force in each mode.  The presence of force in Mode 2, 

Mode 3, Mode 4 and Mode 5 perhaps causes some linear response in the corresponding modes 

and which affect the accuracy of the identified cross-coupling coefficients. However, the 

presence of forces in other modes doesn’t affect the direct nonlinear stiffness coefficient 

associated with the excited mode. 
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Table 4. 2: Nonlinear Stiffness Coefficients Corresponding to Mode 1 Excitation 

Parameters Exact Stiffness  
 

    Identified Stiffness   
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    4.942546                

  
    7.279549               
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Figure 4.7: Modal Force and Response at each Mode Resulting from the Base Acceleration of 4 

m/sec2 

In order to identify the stiffness coefficients associated with Mode 2, 3, 4 and 5, each stage of the 

methodology shown in Figure 4.2 is applied at each modal frequency. Figure 4.8 shows the 

measured and the fitted nonlinear restoring force for Mode 2 excitation in a 3D surface. The 

measured Restoring force is the force obtained by using Equation (4.17) whereas the fitted 

restoring force is the force obtained by performing least square regression including all the 

modes to Mode 2. Figure 4.8 clearly shows the cross-coupling stiffness terms. Since the cross-

coupling terms are not accurate, they are removed by subtracting from the measured nonlinear 

restoring force given by Equation (4.17). This results in the direct stiffness term for Mode 2. The 

RFS for the Mode 2 with direct stiffness term is shown in Figure 4.9A. Figure 4.9 B shows the 

slice view of the Figure 4.9 A in XZ plane. Figure 4.9 B clearly shows the cubic stiffness 
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nonlinearity associated with the Mode 2. Figure 4.9B indicates that, even the modes are cross-

coupled to each other, this method can accurately identify the true direct stiffness nonlinearity 

associated with the excited mode.    

 

Figure 4.8: Measure and Fitted Modal Restoring Force (Mode 2 Excitation) 

 

 
 

Figure 4.9: Restoring Force Surface Obtained from Least Square Regression for Mode 2 with 
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well as the cross-coupling terms. The direct stiffness terms obtained for each mode from 

regression is tabulated in Table 4.3. 

 

Figure 4.10: Measured and Fitted Modal Restoring Force (Mode 3 Excitation) 

 

 

Figure 4.11: Measured and Fitted Modal Restoring Force (Mode 4 Excitation) 
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Figure 4.12: Measured and Fitted Modal Restoring Force (Mode 5 Excitation) 

Table 4.3: Exact and Identified Direct Stiffness for Each Mode 

Mode No Exact Stiffness Identified Stiffness Percentage Error 

Mode 1                       0.16% 

Mode 2                      0.537% 

Mode 3                       3.35% 

Mode 4                      0.59% 

Mode 5                      3.88% 

 

4.3 Summary  

Two methodologies are proposed for the identification of large multi-degree-of-freedom 

nonlinear systems where the excitation comes from the moving base. The first methodology 

works on the frequency domain data and extracts the parameters in a physical coordinate system. 

In the first methodology, the theoretical formulation of the pseudo force vector and the nonlinear 
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restoring force vector is presented, which is applicable to base excited structure. The formulation 

is based on presenting the system equation in the mixed (physical/modal) model form. Presenting 

the system into the mixed model form has been previously applied for a multi force excited 

structure [12, 34]. However, this concept has never been used in a base excited structure. In the 

second methodology, the same formulated concept is used for the reconstruction of force vector. 

However, the analysis is presented in a modal space. As compared to first method, the second 

method has several advantages. For example, the advantages are:  the method does not need the 

location and the functional form of the nonlinearity. The excitation is done at the particular mode 

so it has the potential to show whether the mode is coupled or not. The most promising 

advantage is that it aids in studying the structural stability analysis problems in the modal 

domain. Both methodologies presented in this chapter are applicable to base excited structure 

using experimentally measured data. Since closed form expressions are presented for the 

extraction of the nonlinear restoring force and the pseudo force vector, the methodologies are not 

restricted to the test component used in the following chapter.  
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Chapter 5 

Experiment for Nonlinear System Identification 

The methodologies developed for identification of nonlinear systems, discussed in Chapter 4, 

aim at real-world engineering applications and are based on measured testing data. Thus, 

experimental demonstration of the proposed methods is essential. Since such test facility was not 

available at the University of Manitoba, a test facility was designed and erected which has the 

same configuration as the industrial test rig, but with a lower power range. This chapter is 

divided into three sections. Section 5.1 presents the details of test set- up and requirements for 

vibration testing of a structure using a mechanical shaker, Section 5.2 presents the demonstration 

of force reconstruction technique using the base excitation as an input and Section 5.3 presents 

the demonstration of the nonlinear system identification in base excited structure. 

5.1 Experimental Set-up for Nonlinear System Identification 

In the field of nonlinear system identification, the interaction between the structure being tested 

and the testing facility is a critical issue. This is particularly true when testing massive structures 

(e.g. engine components). The reason is that due to the design and manufacturing limitations, the 

frequencies of the testing facility often overlap, at least partially, with those of the test specimen. 

The key issues affecting the table performance include the shaker table which should not vibrate 

into resonance with the input signal and should have high stiffness with moderate mass. Also, the 

motion of the table should not be in the unwanted degrees of freedom. These issues were 

addressed while designing the table. This chapter presents the innovative guidelines for 

designing the table platform, its assembly and the investigations to provide insight into its 

response characteristics.  
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The shaker table is an essential testing facility for conducting durability tests in the laboratory. 

The shaker table is a platform driven by servo-hydraulic actuators to simulate different types of 

periodic and random motions, such as artificial ground motions and other dynamic testing signal 

of interest. In a typical durability test, the testing is often carried out by exciting the shaker table 

in multiaxial directions. Developing such a shaker table is complex and costly. Moreover, to 

interpret the results from the multiaxial table is more complex. A single-axis table is the simplest 

form of the durability test simulator, which is not only useful for many investigations but also 

simplifies subsequent interpretation of the results. For a similar reason, a single axis shaker table 

has been chosen for the large outdoor facility developed under the NEES program at University 

of California, Sandiego [75]. A smaller sized shaker table is also better suited for the small scale 

model analysis. In addition, it avoids high operational costs, but is versatile enough in the case of 

dynamic experiments for instrumental and research purposes. However, like every system, the 

single axis table also has certain limitations. The rest of the chapter discusses the construction, 

waveform replication and performance analysis of a single axis simulation table. 

5.1.1 Shaker Table Assembly 

The shaker table developed for the purpose of nonlinear system identification is uniaxial 

(horizontal) and servo-hydraulic operated. It was constructed with the in-house knowledge and 

the fabrication capability. The shaker table system comprises of the table platform, servo-

hydraulic actuator with controls, ball bushing bearing support systems (linear mechanism) and 

the reaction mass. A full view of the installed shaker table is shown in Figure 5.1. The overall 

characteristics of the system as well as individual components are summarized in Table 5.1.  

The criteria that were set to design the table were high stiffness, high natural frequencies and low 

mass. To minimize the mass of the table, the table was designed to build from several  
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Figure 5.1: Installed View of the Shaker Table 

Table 5.1: Specification of the Installed Shaker Table 

Table Size 0.6     m 

Weight of the table 0.60kN 

Maximum pay load 5kN 

Maximum  

displacement 
   mm 

Maximum acceleration 3g 

Frequency range 0.1-80Hz 

Actuator Specifications 

Actuator model MTS 242.02 

Thrust 10kN 

Stroke length 150mm 

Servo valve Two stage four- way 

Specification of supports 

Ball bearing Thomson,USA(model:XPBO-

32-OPN) 

Linear system Thomson, USA (model:XSR-

32), extra rigid 

Shaft diameter 2.54 cm 

Travel life 50 km 

 

Sevo-hydraulic Actuator 

Reaction Mass 

Table Platform 

Linearamechanism 

mechanismMechanism 

I Beam 
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components. The design process consists of several steps. They are: selecting the material, 

setting the initial dimensions for each component of the table, developing a geometrical model 

and implementing this geometrical model into the FEA software to perform the modal analysis. 

Mild steel and stainless steel were selected as the material of the shaker table. Stainless steel was 

used because it has high stiffness and high resistance to corrosion as well as wear and tear. 

 Selecting the dimensions of the table is one of the important steps for the table design. The 

length and the width of the table depend on the type of the mechanism used to provide the linear 

motion to the table and the power of the actuator used to impart motion to the table. On the basis 

of the specifications of the actuator and the linear mechanism, the overall length and the width of 

the table were calculated as               respectively. To find out the dimensions of the 

individual components, an iterative approach was carried out by changing the dimensions of each 

component until the first natural frequency of the shaker table is at least three times higher than 

the operating frequency range (0.1-80) Hz [75-77]. 

To determine the natural frequencies of the table, modal analysis was carried out using ANSYS 

Workbench. The first natural frequency of 350 Hz was obtained for the table with restrained 

translations (Figure 5.2) of the supports. Thus, the lowest frequency of the table is sufficiently 

higher than the operating frequency range (0.1–80 Hz) for which the table was designed. 
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Figure 5.2: Deflection of Table in First Two Modes 

The table platform was assembled by welding plates of stainless steel and mild steel (Figure 5.3). 

The top plate and the side plates are made of stainless steel, while the inner plates are made of 

mild steel. Threaded holes in the top surface of the table were made for mounting the test 

structure. Provisions were also made to extend the table to accommodate larger-sized specimens. 

Figure 5.4 shows the complete table with holes drilled at the desired locations. 

 

 

Figure 5.3: Longitudinal and Transverse Plate Welded to the Base Plate 
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Figure 5.4: Complete Table with Holes at Desired Location 

The servo-hydraulic actuator (MTS, USA) is responsible for creating the movement of the table. 

A full view of the actuator and its specification is shown in Figure 5.5. The actuator has the same 

configuration as the actuator used in industry but with a lower power range. 

 

 

                                                                                                                       

 

Figure 5.5: Servo-hydraulic Actuator Detail (http://www.mts.com/en) 

The shaker table platform is supported on the ball bush bearing and the linear rail guide system 

shown in Figure 5.6. The linear rail guide system facilitates the movement of the table in the 

Actuator  Model   242.02 MTS  

Stroke Length  6 inch  

Actuator Maximum Force  9.8kN  

Servo valve  Two stage, four way  

Pump flow rate  26.5 l/min  

Sound pressure level  58dB(A)  

Hydraulic Fluid  
160 liters supplied in 

HPU 

Controller  Flex test 40  

Threaded Holes for 

 Mounting Specimen 

Side Plates 

Holes for Bearing 

Top Plate 
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horizontal direction and prevents motion in the unwanted degrees of freedom. The low-friction 

ball bushing bearing (Thomson, USA) utilizes a special ‘return ball mechanism’ which 

comprises of a sleeve and a cage mounted on a shaft member, as shown in Figure 5.6. The ball 

bushing has a number of closed ball paths and the balls are loaded between the sleeve and the 

shaft. The sleeve has a number of countersunk longitudinal profiles which define internal 

raceways for the loaded balls. The reason for choosing this kind of linear mechanism is that it is 

effective in reducing kinetic friction significantly [78].  

 

 

 

 

 

Figure 5.6: Linear Rail Guide Mechanism (http://www.thomsonlinear.com) 

5.1.2 Performance Analysis of Shaker Table 

The performance of the shaker table was analyzed using a sine wave signal, which provided a 

considerable amount of information regarding the behavior of the shaker table. Such 

performance was measured by output only analysis and by comparing the amplitudes of the input 

and the output at different frequencies of the sine wave signal. Since the developed shaker table 

is the displacement control table and the sensor used to measure the response is the 

Bearing (XPBO-

32OPN)  
Shaft (XSR-32)  

Extra rigid  
Extra strong 60 

linear case  

Coefficient of 

friction(0.001)  

Shaft diameter 

(2inch)  

Dynamic load case  
Surface finish Ra u  

in  

Travel life  50 km  Hardness 60 HRC  

Shaft 

Ball Bearing  

Bearing Cage 
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accelerometer, comparison of input and output required either differentiation of the input signal 

or the integration of the output signal. The purpose of output only analysis is to analyze the 

frequencies content of the signal. This analysis yields the capacity of the shaker table to replicate 

the input signal and identifies the shaker table frequency performance limitations. Numerous 

tests at various frequencies were conducted. Two tests reported here are the testing at a 

frequency of 2.55 Hz, and the testing at a frequency of 17.1Hz. These two frequencies were 

considered as low and high frequencies in analyzing the shaker table performance. Figure 5.7 

shows the amplitudes of the acceleration at the input displacement of 1mm and excitation 

frequency of 2.55 Hz. As shown in Figure 5.7, the peak magnitude of the acceleration is 

0.235         As the magnitude of the acceleration is related to the displacement by the square 

of the excitation frequency, for the accurate replication of the test signal, the peak magnitude of 

the input acceleration is 0.25       . The accuracy is acceptable for the testing purpose. 

Moreover, some distortions were observed in the response, as indicated by red circle shown in 

Figure 5.7. To find out the cause of the distortions, the same response signal is plotted in the 

frequency domain. Figure 5.8 shows the Auto spectrum density of the response signal. As shown 

in Figure 5.8, there are two peaks away from the excitation frequency (2.55Hz). The two peaks 

are at 5Hz and 7.5 Hz. These two peaks represent the higher order harmonics present in the 

signal. So, the distortions seen in Figure 5.7 are due to the presence of higher order harmonics in 

the signal. The causes to higher order harmonics are due to the noise from the bearing and the 

table itself. Similar results are reported in [78] that the cause to distortions is primarily due to the 

support bearings.  
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Figure 5.7: Acceleration Response of the Table at excitation Frequency of 2.55Hz (Input 

Displacement: 1mm 

 

Figure 5.8: Acceleration Auto Spectrum (Excitation Frequency 2.55Hz) 

Figure 5.9 shows the acceleration response of the table at the excitation frequency of 17.1 Hz, 

and the input displacement of 0.1mm. In order to compare the input and the output response of 
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the table, the input response to the table is integrated to obtain acceleration. The input output 

response curve of the table is shown in Figure 5.10. As shown in Figure 5.10, the input and the 

response signal matches well. Figure 5.11 shows the test conducted where the response was 

measured from the actuator, isolating the response from the table. For this, a sine wave signal at 

2.55Hz frequency and 20mm displacement was input to the system. The response was measured 

from the actuator and was compared with the input. As shown in Figure 5.11, the input signal is 

very close to the output signal. From this test it can be concluded that the distortion seen during 

low frequency testing (2.55Hz) is due to the bearing and the table platform itself. As previously 

discussed, this testing facility is primarily for the nonlinear system identification, the accuracy in 

the produced displacement of the designed shaker table needs to be tested in the wide range of 

frequencies. The test was carried out with the load of 2.5kN without the table and with the table. 

A load cell was used to measure the force output of the actuator. During the tests, the amplitude 

spectra at each excitation frequency were recorded. The frequency of the input loading varied 

from 0.1Hz to 100Hz.  Figure 5.12 shows the plot of the displacement against the frequency in a 

logarithmic scale. As shown in Figure 5.12, there are three curves: blue, green and red. The blue 

curve represents the displacement output of the actuator, when the force from the actuator was 

maintained at 2.5kN (recorded by load cell) with different frequencies. The green curve 

represents the displacement output of the actuator with varying force at different frequencies. 

The red curve represents the displacement of the table at different frequencies. As seen in Figure 

5.12, the amplitudes of displacement with and without table are fairly close to each other 

indicating the effect of the table is negligible. The displacement of the table can be achieved up 

to 40mm below 10 Hz. As seen in the literature [63] most of the vehicle components have the 
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first natural frequency below 10Hz, this test setup is very useful for the nonlinear system 

identification of the vehicle components.           

 
Figure 5.9: Acceleration Response of the Table at the Excitation Frequency of 17.1 Hz 

 

Figure 5.10: Comparison of Acceleration Time Histories of Shaker Table (Acceleration Time 

Histories with the Excitation Frequency of 17.1Hz) 
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            Figure 5.11: Comparison of Command and Response Actuator Time Histories 

 
 

Figure 5.12: Performance Curve of the Shaker Table 

5.1.3 Summary 

A single axis shaker table for the demonstration of nonlinear system identification was 

developed and installed at the University of Manitoba. The designed shaker table has the same 
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configuration and the functions as those used in the industrial setting, but with a lower range of 

power due to cost. The challenge is to avoid the interactions between the shaker table and the 

testing specimen; i.e., the natural frequencies of the table should be significantly higher than the 

operating frequencies. Other design criteria include high stiffness and moderate mass. In this 

chapter the design and fabrication of the shaker table addressing the above challenges was 

presented. The key points presented are as follows. 

 The fundamental natural frequencies of the table are well above the frequency range of 

operation, which indicates that the stiffness of the table is significantly high. 

 The tests using harmonic signals showed that the displacement, as well as the 

acceleration time histories for the input and the response matches well. However, some 

errors are noticed at the low frequencies. 

 The distortion seen in the waveform is due to the low cost support bearings and the table 

itself.  
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5.2 Demonstration of Force Reconstruction Technique in a Cantilever Beam 

 

The force reconstruction technique using the base excitation as an input proposed in Chapter 3 

was implemented in the experimental settings. A cantilever beam was used for the 

demonstration.  As vibration motion is always along the excitation DOFs, there is no scientific 

relevance/significance of testing the complex structure. So, the transverse vibration of the beam 

is a good example for the analysis and for interpretation of the results. This section provides the 

detailed testing setup, test procedure, data acquisition and processing, and the results obtained 

from the experiments.  

5.2.1 Test Setup 

The test setup consists of a shaker table platform excited with servo-hydraulic actuators to 

simulate different types of periodic and random motions, such as artificial ground motions and 

other dynamic testing signal of interest in the laboratory. The details of the test setup are shown 

in Figure 5.13. It consists of a hydraulic pump, actuator, shaker table, beam, data acquisition 

board, and a computer. The hydraulic systems are marketed by MTS Systems Corporation. The 

shaker table is the uniaxial (horizontal) table constructed with in-house knowledge and 

fabrication capability. It consists of a table platform, ball bearing with the rail guide and the 

reaction mass. The test beam is made of Aluminum T6061, which has the following dimensions: 

length: 0.97m; width: 0.0254m; and, thickness: 0.003175m. The dimensions were chosen to 

make the beam flexible so as to excite the maximum number of modes resulting from the base 

motion. Typically base motion varies from 0.1 to 60Hz. The thin cross-section of the beam made 

it possible to easily excite the first three modes of the beam. One end of the beam is fixed to the 

shaker table with the fixture and the other end remains free. A four channel data acquisition 

board “DT9837” from Data Translation [78] is used which is connected to the computer through 
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a USB cable. For the purpose of response measurements from the shaker table and the beam, 

PCB accelerometers from Dalimar Instruments Inc. are used. A multipurpose test suit is used for 

running the hydraulic system while the “VIB Point 2.0” software is used to extract the response 

data from the beam. Three accelerometers are mounted on the beam and one accelerometer is 

mounted on the table. The accelerometers are mounted at the tip, 0.67m, and 0.3m measured 

from the fixed end.  

Figure 5.13: Experimental Set-up for Vibration Testing 

5.2.2 Test Procedure  

This section describes the modal analysis procedure, types of loading used and the results 

obtained in each stage of the proposed methodology.  In chapter 3 a modal based method for the 

force reconstruction was presented. In this section the demonstration of this method is presented 

using the experimental data.  
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As shown by Equation (3.16) in Chapter 3 of this thesis, the force reconstruction procedure has 

three parts. Part I: conventional modal analysis based on the system Equation (3.1), Part II: 

measurement of the acceleration response vector at different locations of the beam and Part III: 

extraction of the pseudo excited force vector. For the implementation of Part I, the guidelines 

presented for the modal analysis in a base excited structure [39-40] is followed. The 

conventional modal analysis on system matrices shown in Equation (3.1) yields modal damping 

ratios, natural frequencies, mode shapes and modal mass of the system. To perform the modal 

analysis, two types of loadings are applied: (a) sweep sine and (b) random vibration impulse 

input. The sweep test is used to find out the modal damping ratios and natural frequencies of the 

beam, whereas the random vibration impulse input is used to extract the mode shapes. 

Homogeneity and reciprocity are verified with the above mentioned loadings. To estimate the 

natural frequencies and the modal damping ratios, a swept sine wave starting from 0.1Hz and 

ending at 50 Hz at an octave rating of 0.1octaves/min is applied. Three natural frequencies of the 

beam are observed at 2.52 Hz, 16.0, and 42.2 Hz respectively. The observed natural frequencies 

of the beam are close to the theoretically derived natural frequencies, which show that the beam 

is lightly damped. The modal damping ratio is estimated using the half power bandwidth method. 

The half power bandwidth methods yields the modal damping ratios of 0.028, 0.008 and 0.0065 

at first, second and third mode respectively. 

Part II presents the measurements of the acceleration vector at low base displacement for the 

extraction of the pseudo force vector. In this part, a sinusoidal loading profile with a base 

displacement of 0.1mm at the frequency of 16Hz is applied. Figures (5.14-5.16) show the 

absolute value of acceleration response data obtained by exciting the beam with a base 

displacement of 0.1mm. The response of the table measured by the accelerometer is shown in 
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Figure 5.17. As seen from Figures (5.14-5.16) the steady state acceleration response of the beam 

starts after 5 sec.  

                   Figure 5.14: Absolute Value of Acceleration Measured at the Tip of the Beam 

In order to use Equation (3.16) to reconstruct the force, relative acceleration, velocity and the 

displacement vector of the beam are needed. To calculate the relative acceleration vector at each 

DOF, the table acceleration response vector is subtracted from the absolute acceleration response 

vector at each DOF. Having acceleration response vector at each DOF, the steady state relative 

velocity and displacement vector can be obtained by using Equations (3.33-3.35), which shows 

the analytical integration in the measured acceleration response data. The use of Equation (3.33) 

requires multilinear least square regression at each successive time interval. A multilinear least 

square regression algorithm is applied to the steady state measured relative acceleration data at 

each DOF in order to approximate the coefficients of the measured acceleration data given by  
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Figure 5.15: Absolute Value of Acceleration Measured at the Distance of 0.67m from the Fixed 

End 

Figure 5.16: Absolute Value of Acceleration Measured at the Distance of 0.3m from the Fixed 

End 
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     Figure 5.17: Acceleration Response of the Table 

Equation (3.33). The measured and fitted steady state acceleration responses at each DOF are 

shown in Figures (5.18-5.20). Once the coefficients of the steady state acceleration at each DOF 

are obtained, the velocity and displacement at each DOF are obtained by using Equations (3.34-

3.35). Once these parameters are obtained along with the mode shape matrix, Equation (3.16) is 

used to reconstruct the force. Figures (5.21 -5.23) show the reconstructed force at each DOF. 

These reconstructed force vector shown in Figures (5.21-5.23) has the effect of unmeasured 

DOFs and unidentified modes projected at the measured DOFs. Since the objective in this 

research study is to explore the effect of unmeasured DOFs and unidentified modes, the force 

vectors are reconstructed at each DOF by exciting the system in a frequency band around the 

natural frequencies of the system. For a first mode test, the system is excited with a step sine test 

varying around the first natural frequency of the system. 
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Figure 5.18: Measured and Fitted Steady State Acceleration Data at the Tip of the Beam 

Figure 5.19: Measured and Fitted Steady State Acceleration Data at the Distance of 0.67m from 

the Fixed End 
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Figure 5.20: Measured and Fitted Steady State Acceleration Data at the Distance of 0.3m from 

the Fixed End 

Figure 5.21: Reconstructed Force at the Tip of the Beam 
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Figure 5.22: Reconstructed Force at the distance of 0.67m from the Fixed End 

Figure 5.23: Reconstructed Force at the distance of 0.3mfrom the Fixed End 
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reconstructed force vector and the equivalent excitation force vector along the excitation 

frequency range. As shown in Figures (5.24-5.26), the equivalent excitation force vectors at the 

measured DOFs are varying as a quadratic function of the excitation frequencies. However, the 

reconstructed force vectors are not varying as a quadratic function of the excitation frequencies. 

This is due to the effect of the unmeasured DOFs and unidentified modes at the measured DOFs. 

This effect near the resonance is small as compared to the response away and below from the 

resonance which seems reasonable as, at resonance the response seems heavily from the excited 

mode only. As nonlinear system identification is heavily dependent upon the magnitude of the 

input force vector, this reconstruction of input force vector technique is the most valuable tool 

for nonlinear system identification. 

 
 

Figure 5.24: Comparison of Equivalent Excitation Force and Reconstructed Force at the Tip of 

the Beam 

2.45 2.5 2.55 2.6 2.65
0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

Time (Sec)

F
o

rc
e 

(N
)

 

 

Reconstructed Force

   Curve Fittings

Equivalent Excitation force 

Frequency (Hz) 

F
o
rc

e 
(N

) 



 

                                                                                                                        85 

 

 
 

Figure 5.25: Comparison of Equivalent Excitation Force and Reconstructed Force at the Distance 

of 0.67m from the Fixed End 

 

Figure 5.26: Comparison of Equivalent Excitation Force and Reconstructed Force at the Distance 

of 0.3m from the Fixed End 
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5.2.3 Summary 

This Section demonstrates the force reconstruction technique using the base excitation as an 

input. This technique is demonstrated by using a cantilever beam as an example. The 

demonstration approach follows three steps: (a) conventional linear modal analysis with random 

excitation; (b) measuring the acceleration response vector with single sinusoidal/step sine test; 

and (c) reconstruction of force vector from the measured dynamics. Several experimental results 

are shown to demonstrate the methodology. This approach mimics the conditions of incomplete 

measurements for a continuous system and concludes that it is possible to obtain the excitation 

force at the measured DOFs only. 
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5.3 Nonlinear System Identification in Base Excited Structure 

Two new methodologies for nonlinear system identification in base excited structure are 

proposed in Chapter 4. Both methods are based on the approach that combines force 

reconstruction, base excitation and nonlinear system identification. The first methodology 

identifies the system parameters in a physical coordinate system, while the second method works 

in the modal space. The proposed methods are intended to be implemented in an experimental 

setting. In chapter 4 the second method was shown in a flow chart (Figure 4.2) and was 

illustrated by a simulated example of 5 DOF model. The simulated results show that the 

proposed method is robust in estimating the nonlinearity even the modes are highly coupled. The 

same method is used for demonstration propose, using a cantilever beam as an example. This 

section presents the detail of the implementation of the method shown in Figure 4.2. Note that 

since the Section 5.1 and 5.2 of this chapter presents details about the test set-up and data 

acquisition, the implementation of this method and the results obtained from the experiments are 

presented in this section. As described in Section 5.2, three accelerometers are used to 

reconstruct the force vector. As nonlinear parameters are dependent upon the boundary 

conditions, to demonstrate the nonlinearity four accelerometers are used.  

5.3.1 Test Description 

A cantilever beam made of Aluminum T6061 is used for the demonstration purpose. The beam 

has the following dimensions: length: 1.05m; width; 0.0254m; and, thickness; 0.003175m. The 

dimensions were chosen to make the beam flexible so as to excite the maximum number of 

modes resulting from the base motion. The accelerometers are mounted at the tip, 0.63m, 0.3m, 

and 0.03m from the fixed end. The location of the accelerometers is obtained from the FE (finite 
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element) model so that there is no nodal point and the beam has the maximum vibration motion 

on those selected locations.  

5.3.2: Experimental Implementation of Nonlinear System Identification 

The implementation of the nonlinear system identification method, proposed in Figure 4.2, is 

carried out in three stages: Stage I involves first conventional modal analysis based on the 

system Equation (3.1); second, measurement of the acceleration response vector at different 

locations of the beam, and thirdly reconstruction of the force vector. All these three parts follow 

the same procedure as discussed in Section 5.2. Since the dimension of the beam, the locations of 

the accelerometers and the number of accelerometers used for analysis are different from Section 

5.2, the results obtained in this stage are different such as the natural frequencies changes with 

respect to the mass of the accelerometer. The number of accelerometers (mass) and the length of 

the beam change the natural frequency of the beam. Three natural frequencies of the beam are 

observed at 2.55Hz, 17.1Hz and 47.3Hz respectively. The modal damping ratios obtained are 

exactly as measured in Section 5.2. 

The second part of the stage I presents the measurements of the acceleration vector at low base 

displacement for the extraction of the pseudo force vector. In this part, a sinusoidal loading 

profile with a base displacement of 0.1mm at the first natural frequency was applied. The loading 

was applied for 90 sec in this test, whereas the response data are collected until the beam came to 

rest. There are two reasons to collect the data until the beam comes to rest. The first reason is 

that the accelerometers measure acceleration data, while the displacement data are required for 

using Equation (3.16). Zero initial and final conditions enable to perform leakage free 

integrations of response data in a frequency domain. The second reason is that there might be 

possible nonlinearities (normal and cross coupling) during the free decay. Figures (5.27-5.30) 
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show the relative acceleration response data (beam response data subtracted to the table response 

data) obtained by exciting the beam with a base displacement of 0.1mm. Some distortions in the 

response seen in response data were observed, as shown in Figures (5.27-5.30) at 92 sec. These 

distortions, shown by circles in Figures (5.27-5.30), are especially noticeable at low base motion. 

They are due to the changes in motion of the bearings from static to dynamic and then again back 

to static conditions. The distortion is more extreme near the fixed end of the beam as seen in 

Figure 5.30. 

 

Figure 5.27: Relative Accelerations Vectors at the tip of the Beam 
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Figure 5.28: Relative Accelerations Vectors at the Distance of 0.63m from the Fixed End 

 

Figure 5.29: Relative Accelerations Vectors at the Distance of 0.3m from the Fixed End 
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Figure 5.30: Relative Accelerations Vectors at the Distance of 0.03m from the Fixed End

In the third part, the reconstruction of the force vector at the measured degrees of freedom was 

carried out. The acceleration response data collected in Figures 5.27-5.30 are used to reconstruct 

the force vector at the measured degrees of freedom. The reconstructed force vector is obtained 

by using Equation (3.16). Figure 5.31 shows the magnitude of the force plotted against the 

analysis frequencies. As the excitation is at 2.55Hz, the peak magnitude of the force should be at 

2.55Hz, which is clearly seen in Figure 5.31. The obtained force vector has the effect of 

unmeasured DOFs projected at the measured DOFs. 
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Figure 5.31: Absolute Value of Reconstructed Force Projected at the Measured DOFs Using Low 

Base Displacement
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Equation (3.16) assuming that the nonlinearity is independent to the mass. The acceleration 

response data are shown in Figures (5.32-5.35) and the obtained reconstructed force vector is 

shown in Figure 5.36.  
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Figure 5.32: Relative Acceleration Vector at the tip of the Beam 

 

Figure 5.33: Relative Acceleration Vector at the Distance of 0.63m from the Fixed End 
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Figure 5.34: Relative Acceleration Vector at the Distance of 0.3m from the Fixed End 

 

Figure 5.35: Relative Acceleration Vector at the Distance of 0.03m from the Fixed End 

0 50 100 150
-8

-6

-4

-2

0

2

4

6

8

Time (Sec)

A
cc

el
er

at
io

n
 (

m
/s

ec
2
)

Acceleration Response at a Distance of 0.3 m From the Fixed End

0 50 100 150
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Time (Sec)

A
cc

el
er

at
io

n
 (

m
/s

ec
2
)

Accelaration Response at a Distance of 0.03m From the Fixed End

Time (Sec) 

A
cc

el
er

at
io

n
 (

m
/s

ec
2
) 

Time (Sec) 

A
cc

el
er

at
io

n
 (

m
/s

ec
2
) 



 

                                                                                                                        95 

 

 

Figure 5.36: Absolute Value of Reconstructed Force Projected at the Measured DOFs Using 

High Base Displacement 

The second part of the stage two consists of transferring the measured responses and the pseudo 

force vector into the modal space. Following the theoretical methodology presented in Section 
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Mode 2 and Mode 3, respectively, due to excitation at mode 1. The small response at Mode 2 

and Mode 3 is due to two reasons. The first reason is that the imperfect excitation linear response 

also comes into modes 2 and 3. The second reason is the cross-coupling nonlinearity between 

Mode 1 and Mode 2, and Mode 1 and Mode 3. 

 

 

Figure 5.37: Modal Response at First Mode 
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Figure 5.38: Modal Response at Second Mode 

 

Figure 5.39: Modal Response at Third Mode 
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5.3.2.2 Estimation of the Nonlinear Parameters 

The third stage of the methodology consists of the nonlinear parameter extraction in a modal 

space. A nonlinear restoring modal force in the form of discrete data for the excited mode is 

calculated in stage II. This nonlinear restoring modal force is now needed to be fitted, in a least 

square sense, by using a suitable curve fitting algorithm to identify the nonlinear parameters. A 

stepwise model building algorithm is chosen, which minimizes the error between the true and 

fitted nonlinear restoring force in the least square sense [14]. A stepwise model selection method 

is the simplest data driven model building approach. In this approach nonlinear variables are 

entered into the model one at a time. At each step, each variable that has not been in the model is 

tested for inclusion in the model. To determine which terms are significant and which terms can 

be safely discarded, the significant factor is calculated using Equation (4.27). The procedure is 

stopped when the mean square error between the fitted and the measured restoring forces is in an 

acceptable range given by Equation (4.26). The Goodness-of-Fit to the identified model is 

measured in terms of the minimum mean square error [14]. 

Figure 5.40 shows the Mode 1 restoring force calculated from the experimental raw data of the 

modal force and the acceleration in a red color. The identified modal restoring force (RFS) is 

over plotted at the same modal velocity and the displacement values in a blue color. The 

Goodness-of-Fit measured in terms of mean square error change was 0.97, which is an 

acceptable range for curve fittings [37]. The curve fit to Mode 1 showed significant cubic 

stiffness nonlinearity. When the coupling to Mode 2 and Mode 3 was included, it was found to 

be insignificant, so Mode 1 is essentially an only mode with direct nonlinearities, i.e., no cross-

coupling nonlinear terms with Mode 2 and 3. There are no significant damping nonlinearities at 

the level of excitation. The nonlinear stiffness of the Mode 1 was found to be         
 

    .  
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Figure 5.40: Measured Red and Fitted Blue Modal Restoring Force 

Figure 5.41 shows the stiffness curve, which is the projection of RFS on XZ plane. Figure 5.41 

clearly shows that the modal restoring force is significantly nonlinear. Figure 5.41 clearly 

indicates there is no nonlinear damping present in a tested cantilever beam. As nonlinear 

parameters are directly dependent on the excitation amplitude, the base excitation is increased 

to                         . The above mention procedure for the nonlinear system 

identification is repeated. RFS for a base excitation of 1.1   is shown in Figure 5.42. From 

Figure 5.42, it is clear that there is no any coupling nonlinearity term. The RFS in Figure 5.42 

shows the significant stiffness nonlinearity.  
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Figure 5.41: Projection of Restoring Force on XZ plane (Stiffness Curve) 

 

Figure 5.42: Restoring Force Surface for a base excitation of 1.1mm 
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5.3.2.3 Estimation of Nonlinear Parameters Using the Steady State Vibration Response 

The methodology presented in Section 5.3.2 utilizes transient, steady state as well as free decay 

data for the nonlinear system identification. The use of free decay data is to identify the coupling 

between the modes, if the modes are nonlinearly coupled. The above mentioned method is 

accurate theoretically. However, the vibration signal may suffer from phase distortion while 

integrating the measured data. Moreover a single harmonic assumption has been made while 

integrating the measured vibration signal, which potentially might be the serious issue when the 

higher order harmonics are present in the signal. Also it has been observed in the literature that 

the estimation of damping is 100% inaccurate when there is a phase distortion in an integrated 

signal [54]. Thus, it is essential to compare the identified parameters obtained in Section 5.3.2.2 

by using the analytical integration algorithm in the measured response data shown in Section 

5.3.2. The time domain relative acceleration response at the tip of the beam with a base 

excitation of 1mm is shown in Figure 5.43. As shown in Figure 5.43, the response consists of 

three parts: (a) transient response from (0-20) sec; (b) steady state response from (20-90) sec; 

and a free decay from (90-148) sec. The steady state response, as shown by the window in Figure 

5.43 has a constant magnitude with mean value zero. Thus, this steady state acceleration 

response can be approximated by the function shown by Equation (3.33). A multilinear least 

square regression is carried out to find out the coefficients of the steady state response. Figure 

5.44 shows the measured steady state response and the approximated function with known 

coefficients. The derived coefficients are tabulated in Table 5.2. It can be seen from Table 5.2 

that there is a significant contributions from third harmonic components. Knowing these 

coefficients, the velocity and displacement response are obtained through analytical integration 
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(Equations 3.34-3.35).  The analytically integrated velocity and displacement response at the tip 

of the beam is shown in Figures (5.45-5.46). 

 

Figure 5.43: Acceleration Response at the Tip of the Beam (Base Excitation 1mm) 

 

Figure 5.44: Measured and Approximated Steady State Acceleration Response Data (Base 

Excitation 1mm) 
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Table 5.2: Coefficients of Harmonics in the Measured Signal 

Functions Harmonic Coefficients 

 First Harmonic Second Harmonic Third Harmonic Fourth Harmonic 

Sine -25.5731 -0.0289 0.0823 0.0105 

Cosine 3.3600 -0.0353 -0.0765 -0.0074 

 

 

Figure 5.45:  Analytically Integrated Velocity Data (Base Excitation 1mm) 

The procedure is repeated at all measured DOFs and the restoring force is calculated using 

Equation (4.17) in time domain. The restoring force thus obtained is transformed to modal space 

to obtain the modal restoring force. A least square regression algorithm is used to find out the 

modal parameters. The new restoring force is regenerated based on the obtained modal 

parameters. Figure 5.47 shows the measured and the regenerated restoring force. The nonlinear 

stiffness terms obtained at different excitation with two different numerical techniques are 

tabulated in Table 5.3. The nonlinear stiffness terms obtained are reasonably close with two 
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different integration techniques. The first technique described in section 5.3.2, utilizes the motion 

to be single harmonic but the response also has significant contributions from third harmonic so 

the nonlinear stiffness terms obtained from steady state data have higher value as compared to 

single harmonic integration in frequency domain. The stiffness value increased when the 

excitation to the base is increased, it shows that the nonlinear parameters are dependent upon the 

excitation amplitude unlike the linear parameters which are independent to the excitation 

amplitude. The test for Mode 2 does not yield any significant nonlinearities at the excitation level 

tested. Hence Mode 1 is essentially the mode behaving nonlinearly, when the excitation to the 

system is increased. 

 

Figure 5.46: Analytically Integrated Displacement Data (Base Excitation 1mm) 
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Figure 5.47: Restoring Force Surface (measured and regenerated) 

Table 5.3: Nonlinear Stiffness at Different Excitations 

Nonlinear Stiffness (    ) 

Base Excitation Amplitude Transient, Steady State and Free 

Decay Vibration Response 

Steady State Vibration 

Response 

1mm                   

1.1mm                    

1.2mm                   

 

5.4 Summary 

This section demonstrates the nonlinear system identification for base excited structure from 

experimental measurements directly using the cantilever beam as an example. The identification 

procedure works in three stages to extract the nonlinear parameters, which have been discussed 

in detail. All the stages and the identification of the final nonlinear parameters are carried out 

successfully using only the experimental measurements from the base excited structure. 
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Although this method is applied in a simple cantilever beam for demonstration, it is equally 

applicable to a complex practical structure. For this, the exact form of mode shapes and modal 

mass are required. The measurement of the mode shapes can be done by output only analysis 

[40] or by a single degree of freedom method [41].In more complex base excited structure, the 

measured mode shapes may not satisfy the condition of orthogonality. To satisfy this condition, a 

finite element model defining a mass matrix can be used [41]. The measured mode shapes can be 

normalized with the mass matrix obtained from the finite element. This can be used as an 

alternative technique where the modal mass cannot be measured experimentally.  
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Chapter 6 

Nonlinear System Identification of Structures with Bolted Lap Joints 

The nonlinear system identification methodologies for structures which contain geometric 

nonlinearities are demonstrated in Chapter 5 by using the cantilever beam as an example. The 

results show the presence of a significant cubic stiffness nonlinearity when the input excitation to 

the base is increased sufficiently. One of the objectives of this research study is to demonstrate 

the presence of damping nonlinearities and the methodology for the estimating of nonlinear 

damping and stiffness parameters. It is thus crucial to test a structure which includes both 

damping and stiffness nonlinearities. Typical engineering structures which include both damping 

and stiffness nonlinearities are structures with joint connections. In this chapter, the methodology 

for nonlinearity detection and characterization in a structure with a bolted lap joint is presented. 

A collection of the frequency response functions (FRFs) for a nonlinear system with different 

contributions of stiffness and damping nonlinearities are developed. Once the nonlinearities are 

detected and characterized, the nonlinear parameter identification methodology presented in 

Chapter 4, which works in the modal space, is used to identify the nonlinear parameters. 

The body structure of ground vehicles is joined in some way, by bolting, welding, riveting or by 

more complicated fastenings such as smart joints
4
. It is known that the added flexibility 

introduced by the joint to the structure heavily affects its behavior and when subjected to 

dynamic loading, much of the energy is lost at the joints. Determining the relevant mechanics of 

each joint is critical to a validated full body model of the structure. The most common failures at 

joints are frictional slip at micro and macro levels [71-73]. As a force is applied to a joint, small 

regions of the interface area will break free and begin slipping, these localized motions are 

                                                 
4
 The piezoelectric materials embedded between two structures at the critical locations of the joint. 
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known as microslip. As the level of the force applied to the joint increases, a larger portion of the 

interface will break free and slip; eventually, the entire contact area will be slipping, which is 

termed as macroslip. For most joints excited at reasonable force levels, macroslip does not occur 

but microslip is common. The small and localized motion during microslip results in energy 

losses at the joint, which is perceived as localized damping of the structure. Neglecting these 

effects in modeling of joint structure produces error in predictions of the structure responses. So, 

it is essential to understand the dynamic behavior of the structure due to the bolted joint 

connection.  

Several experimental studies have been carried out in the past using the modal shaker and the 

hammer providing important new results (nonlinear damping and stiffness) and understanding of 

bolted joints. Goege et. al. [56] presented a test strategy that can be used to identify and 

characterize nonlinear structural behavior due to a joint during modal testing. The method 

assumes a weak nonlinear behavior and operates in modal space. Ma et. al. [71] studied the 

effects of a lap joint placed between two cantilever beams while the assembly is excited using 

concentrated force acting parallel to the bolt axis. Their method attempted to compare the overall 

dynamics of the bolted structure to that of a similar but unbolted one. Experiments were carried 

out on bolted and unbolted beams using non-contacting laser vibrometry, the identification 

revealed non-proportional damping and nonlinear softening effects due to micro-impact in the 

bolted joint. Hartiwigsen et.al. [72] experimentally studied the principle joint effects on the 

structural dynamics of two structure composed of beam elements. The two structures used were: 

a simple beam with a joint located at its centre and a rectangular frame with the joint in the 

centre of one of its longitudinal beams. They concluded with the nonlinear viscous damping as a 

function of the amplitude of the displacement. 
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Experimental observations reported in the current literatures [69-73] show that the detailed 

constitutive models describing the behavior of frictional interfaces are more complicated and that 

the simple phenomenological models having parameters obtained from the vibration 

measurements are more preferable. Thus, it is decided in this study to explore the system 

nonlinearity due to a joint using measured vibration data. In order to detect and characterize the 

nonlinearity by using measured vibration data, it is essential to know what kind of excitation is to 

be used (force excitation, base excitation and impulse hammer excitation etc.); what kind of 

input is to be used for nonlinearity detection (single sinusoidal, swept sine, and step sine etc.); 

and, what frequency range of the structure is to be tested. As the objective of this study is to 

identify the nonlinear parameters of a system using the base excitation as an input, for the 

nonlinearity detection and characterization purpose, the base excitation, step sine test and the 

frequency range around the first natural frequency of the system is taken as the test parameters.  

The rest of this chapter is organized as follows: Section 6.1 presents the numerical example to 

detect, characterize and identify the nonlinearities due to a joint connection. Following the 

numerical example, in Section 6.2, an experimental study is carried out on a structure with two 

beams connected with a bolted joint. An innovative approach using base excitation is developed 

which can detect and characterize the joint nonlinearities. The approach consists of maintaining 

the equivalent excitation force constant while changing the base displacement and the excitation 

frequency simultaneously. It is believed that maintaining the constant equivalent excitation force 

magnitude will reveal the unique FRF for a nonlinear system measured along each excitation 

frequency. Finally, in Section 6.3, the parameters associated with joint nonlinearities are 

obtained using the nonlinear system identification algorithm developed in Chapter 4. The 
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identified parameters are amplitude dependent damping with nonlinear stiffness which resembles 

that of the results found in reference [72]. 

6.1 Nonlinearity Detection Characterization and Identification Methodology 

(Numerical Example) 

 In this section, a numerical example for a base excited structure is defined accordingly to the 

experimental work by Hartwigsen et.al. [72]. The model is simulated (the Forward Approach) for 

various excitation frequencies in order to study the effect of maximum amplitude of 

displacement on damping, stiffness and natural frequencies of the structure. Following the 

numerical simulations, the nonlinear parameters of the defined model are assumed to be 

unknown and using the nonlinear response data from the simulations, the system identification 

methodology (the Reversed Approach) described in Chapter 4 is used to obtain the assumed 

parameters. The identified parameters are then compared with the initially assumed parameters 

to show the efficacy of the proposed nonlinear parameter identification method described in 

Chapter 4. 

6.1.1  Numerical Example to Demonstrate the Detection and the Characterization of 

Nonlinearity due to Joint (The Forward Approach) 

In order to demonstrate the detection and characterization of the nonlinearity of structure due to 

the joint connection, a suitable test procedure was developed such that it would be feasible to 

apply for the experimental implementation. A classical example is presented here to demonstrate 

the test procedure. A single DOF system represented in a modal coordinate with a softening 

stiffness    and the nonlinear viscous damping     due to joint slip is considered. The governing 

equation of motion in a modal space for base excited structure can be written as, 
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                                                                                      (6.1) 

Where,    is the nonlinear modal response vector,   is the natural frequency and    is the 

reconstructed force vector using the base motion as an input. Equation (6.1) is the extended form 

of Equation (4.23), where the proportional damping of the structure is replaced by amplitude 

dependent damping term     so as to represent the joint nonlinearity. It should be noted that the 

base motion can be measured either in the form of displacement or acceleration. The term     is 

dependent on the displacement amplitude of vibration and can be generalized as, 

                 
 
                                                                                                 (6.2) 

It has been reported in the current literature that the equivalent damping coefficient for a joint 

interface is a positive definite function and is dependent as a quadratic function of the maximum 

amplitude of vibration [72]. According to reference [72], Equation (6.1) can be written as,  

                     
 
                       

                                                  (6.3) 

The parameters used for the simulation are:               ,            ,      

         ,                   𝐻 ,               and       . 

It is clear from Equation (6.3) that the nonlinear viscous damping is dependent upon the 

maximum amplitude of the displacement response rather than the frequency of vibration. The 

numerical value of the maximum amplitude of displacement          initially unknown. An 

iterative approach is used to determine the value of      [69]. In order to solve the 

unknown     , an initial value is assigned for      in the first iteration and using such an 

assigned value the amplitude of vibration response is obtained by integrating Equation (6.3) 

using the Runge Kutta algorithm. In the second iteration, using the new value of     , Equation 
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(6.3) is again integrated. The integration procedure stops after     converges to the constant 

value. Figure 6.1 shows the      in a typical displacement time series data, where the maximum 

amplitude      is shown by a circle. The simulation is carried out by assuming the initial value 

of             . The simulation results converged at the fifth iteration with      

         . 
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Figure 6.1: Maximum Amplitude of Displacement (A: Ist Iteration, B: 2nd Iteration, C: 3rd 

Iteration, D: 4th Iteration and E: 5th Iteration) 
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The excitation frequency is varied around the natural frequency   of the system shown by a 

model defined by the Equation (6.3). The maximum amplitude of displacement      along with 

the time domain responses of acceleration, displacement and velocity are obtained through 

iterations for each excitation frequency. The nonlinear FRF of the system is obtained by plotting 

the maximum amplitude of the simulated response at each excitation frequency against the 

excitation frequencies. The nonlinear FRF plot is shown in Figure 6.2. From Figure 6.2 it is clear 

that the maximum amplitude of vibration is at the excitation frequency of 23.08𝐻 . As the linear 

natural frequency of the assumed model is at 23.87𝐻 , there is a shift in the natural frequency 

from the linear 23.87 𝐻  to the nonlinear 23.08𝐻  . The shift in the natural frequency is due to 

the nonlinear softening effect at the joint. The simulation is carried out including nonlinear 

stiffness and nonlinear damping; nonlinear damping only; and equivalent linear system only (all 

the nonlinear terms are removed from the assumed model). The comparisons of FRFs for each 

type of nonlinearity are shown in Figure 6.3. As shown in Figure 6.3, for the equal magnitude of 

input, the amplitude of displacement is fairly low when the system is nonlinear as compared to 

the equivalent linear system. As shown by the maximum amplitude of displacement, the shift in 

the natural frequency is from the linear 23.87Hz to the nonlinear 23.08Hz. The presence of the 

nonlinear viscous damping reduces the amplitude of displacement however it does not reduce the 

natural frequency of the system. The significance of the FRFs, shown in Figure 6.3, is that the 

shift in the natural frequency can be used as a tool to detect and characterize the nonlinearity for 

a complex structure using the measured vibration data. 
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Figure 6.2: FRF of Nonlinear System with Stiffness and Damping Nonlinearities 

 

Figure 6.3: FRFs Comparison of Linear and Nonlinear System 
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6.1.2 Identification of Nonlinear Parameters (The Reverse Approach) 

In Section 6.1.1, a simulation approach is shown for a system which has the amplitude dependent 

damping and the stiffness nonlinearity. As this research study focuses on the identification of 

nonlinear parameters (the Reverse Approach), the parameters used for the simulations are 

assumed to be unknown and the time series responses of acceleration, displacement and velocity 

with the known excitation force are taken for further analysis. The values of   ,   ,     and     

which are assumed to be unknown are obtained by using the theory described in Chapter 4 of this 

thesis. For a single excited mode Equation (4.23) can be written as, 

                                                                                                                           (6.4) 

Where,           is the nonlinear modal restoring force which contains the amplitude dependent 

damping and the stiffness term due to joint motion.           can be further written as, 

                                                                                                                          (6.5) 

As the right hand side of Equation (6.5) is known,           can be computed at each time instant 

for each excitation frequency by using Equation (6.5). Once           is obtained, a multilinear 

least square regression algorithm which utilizes Equations (4.24-4.26) described in Chapter 4 is 

used to determine the stiffness and the nonlinear damping parameters. Figure 6.4 shows the 

identified nonlinear stiffness coefficient as a function of the excitation frequency. The identified 

nonlinear stiffness coefficient is constant over the excitation frequencies, which is true as the 

response data are measured for constant nonlinear stiffness. Similarly, Figure 6.5 shows the 

identified equivalent damping coefficient     for each excitation frequency. The equivalent 

damping coefficient     has the maximum value at the nonlinear natural frequency of the system 
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23.08Hz. Once the equivalent damping coefficient at each excitation frequency is identified, the 

next step is to identify the value of   ,    and    . As previously discussed,   ,    and    are 

dependent upon the maximum amplitude of the displacement     , the least square regression of 

    on      is carried out to identify the coefficients   ,    and   . Figure 6.6 shows the plot 

between the maximum amplitude of the displacement      and the equivalent damping 

coefficient    . Figure 6.6 clearly shows that the equivalent damping coefficient is varying as a 

quadratic function to the maximum amplitude of displacement     . The exact and identified 

parameters are tabulated in Table 6.1. As shown in Table 6.1, the percentage error between the 

exact and the identified parameters for the equivalent damping coefficients is less than 2%. The 

identified stiffness coefficient is equal to the exact stiffness coefficient which indicates that the 

nonlinear parameter identification algorithm described in Chapter 4 can be used for the 

estimation of the joint nonlinearities. 

 

Figure 6.4: Identified Stiffness as a Function of Frequency 
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Figure 6.5: Identified Equivalent Damping Coefficient as a Function of Frequency 

 

Figure 6.6: Equivalent Damping Coefficient as a Function of Maximum Amplitude of 

Displacement 
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Table 6. 1: Exact and Identified Nonlinear Parameters 

 
            

Exact 0.05 65             

Identified 0.045 66.12                

Error (%) 0.5 1.69 1 0.0 

 

6.2 Experimental Demonstration of Nonlinear System Identification in a bolted Joint  

The objective of this section is to show that the theory presented in Chapter 4 can be applied to 

structures where nonlinearities arise from the joint connection. In Chapter 4, the nonlinear 

system identification methodology was divided into three sections: linear system identification, 

force reconstruction and the nonlinear parameter identification. In order to apply the same 

theory, this section is divided into four subsections: experimental setup, linear system 

identification and force reconstruction, nonlinearity detection and characterization and nonlinear 

parameter identification.  

6.2.1 Experimental Set-up 

The experimental setup consists of two Aluminum (T6061) beams (Figure 6.7) connected with a 

bolted joint in a fixed-free boundary condition. As shown in Figure 6.7, the dimensions of the 

beam are: length = 90cm; width = 2.54 cm; and thickness = 0.625 cm. The bolt material used for 

fastening the beam is mild steel with the nominal bolt diameter of 0.9525 cm. The technical data 

for the bolt material along with the tightening torque values to produce corresponding bolt 

clamping load is provided in Appendix B. The experiments are conducted for three different 

preloads (different tightening torques): 19.77 Nm, 13.55 Nm and 9.03 Nm.  
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Figure 6.7:  Bolted Beam with Fixed-Free Boundary Condition 

6.2.2 Linear System Identification 

The linear system identification methodology consists of: (a) measuring the linear response data ; 

(b) identifying the mode shapes matrix (modal vector); and, (c) measuring the natural 

frequencies of the structure. In order to measure the linear parameters, the bolt was fully 

tightened with a tightening torque of 19.77 Nm. The fully tightened bolt under a low magnitude 

of excitation will show clearly the linear behavior, as reported in reference [69-71]. Equation 

(3.16) was used to reconstruct the force under a low displacement, provided that the mode shapes 

of the bolted connection are known. One way of identifying the modal matrix (mode shapes) of 

the structure is usually done by developing the FE model of the structure. However, for a 

structure with a bolted connection the type of the bolt model that can accurately predict the mode 

shapes of the structure using the FE approach is still unknown. The alternative technique of 

Bolted Joint 

Accelerometer 
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identifying the mode shapes is to measure them experimentally. There are several established 

methods for mode shape measurements [6-8].  The procedure to normalize the measured mode 

shapes to unity mass matrix is clearly shown in reference [6]. Having made the decision to 

measure the mode shapes for a bolted beam, a PCB Piezotronics model hammer (086C03) was 

used to measure the mode shapes. Both the roving hammer tests and roving accelerometers tests 

(moving the excitations/sensors at the different locations of the test structure) were carried out 

such that the mode shapes are accurate and consistent in both tests. Figure 6.8 shows the driving 

point FRF of the roving hammer test. The three natural frequencies are at 5.9Hz, 33.6 Hz and 

105.1 Hz. Similarly, Figure 6.9 shows the FRF at the tip of the beam with roving accelerometers 

tests. The natural frequencies are in good agreements in both tests. The coherence measured is 

excellent with more than 95% at resonance. Having measured the mode shapes and the natural 

frequencies with fully tight bolt conditions, it is possible to construct the equivalent excitation 

force vector using Equation (3.1) and reconstruct the force vector from the dynamics using 

Equation (3.16) if the excitation at the base is known. 

 

Figure 6.8: Driving Point FRF (Roving Hammer Test) 
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Figure 6.9: FRF at the Tip of the Beam (Roving Sensor) 

The equivalent excitation force vector for a base displacement of 0.1mm and an excitation 

frequency of 5.9 Hz is shown in Figure 6.10. Such forces, shown in Figure 6.10, will vary as a 

quadratic function of excitation frequencies, if the constant displacement is maintained at the 

base. As presented in the numerical example in Section 6.1.2, the equivalent force is maintained 

at constant magnitude, when the excitation frequency is varied around the natural frequency of 

the system. So, in experiments it is necessary to maintain the magnitude of the equivalent 

excitation force constant over the excitation frequency range. In order to maintain the constant 

equivalent excitation force, a scaling factor for a base displacement is calculated. It is believed 

that the nonlinear stiffness due to the joint will be constant over the excitation frequency range, if 

the magnitude of the equivalent excitation force with respect to the excitation frequency range 

can be maintained constant at the base. The input base displacement that can maintain the 

constant equivalent excitation force over the excitation frequency range is tabulated in Table 6.2. 

The excitation frequency and the base displacement are now varied with a fully tight bolt 

condition. The maximum amplitude response at each excitation frequency with four 

accelerometers (locations shown in Figure 6.7) is recorded. The maximum response for each 

excitation is now transformed to the modal space using the mode shapes matrix. With the 

maximum amplitude at each excitation frequency known in the modal space and the equivalent 

modal force known, it is possible to create a FRF of the system for Mode 1. The FRF in the form 

Frequency (Hz) 

In
er

ta
n

ce
 (

m
/N

se
c2

)  



 

                                                                                                                        123 

 

of Inertance is shown in Figure 6.11. The FRF in Figure 6.11 indicates the natural frequency at 

5.9 Hz showing the system behaving linearly. As the linear FRF is known along with the mode 

shapes matrix it is possible to reconstruct the force at the measured DOFs only (Equation 3.16).  

 

Figure 6.10: Equivalent Force at the Measured DOFs (Excitation Frequency 5.9Hz) 
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Table 6.2: Input Base Displacement for the Excitation Frequency Range 

Excitation Frequency (Hz) Scaling Factor (SF) Base Displacement (mm) 

5 1 1 

5.1 0.9612 0.09612 

5.2 0.9246 0.09246 

5.3 0.8900 0.08900 

5.4 0.8573 0.08573 

5.5 0.8264 0.08264 

5.6 0.7972 0.07972 

5.7 0.7695 0.07695 

5.8 0.7432 0.07432 

5.81 0.7406 0.07406 

5.82 0.7381 0.07381 

5.83 0.7355 0.07355 

5.84 0.7330 0.07330 

5.85 0.7305 0.07305 

5.86 0.7280 0.07280 

5.87 0.7255 0.07255 

5.88 0.7231 0.07231 

5.89 0.7206 0.07206 

5.90 0.7182 0.07182 

5.91 0.7158 0.07158 

5.92 0.7133 0.07133 

5.93 0.7109 0.07109 

5.94 0.7085 0.07085 

5.95 0.7062 0.07062 

5.96 0.7038 0.07038 

5.97 0.7014 0.07014 

5.98 0.6991 0.06991 

5.99 0.6968 0.06968 

6 0.6944 0.06944 

6.10 0.6719 0.06719 
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Figure 6.11: Linear FRF Generated from a Step sine Test 

6.2.3 Nonlinearity Detection and Characterization (Experimental Approach):  

This section presents the procedure to detect and characterize the nonlinearities due to the joint 

connection. Nonlinearity is present in the structure if the FRFs of the structure at different 

excitation level are not constant. In order to detect and characterize the nonlinearity, the fully 

tightened bolt is now loosen using a torque wrench. The test is carried out in two different 

torques which will generate two different preloads. The tests are carried out at 13.55 Nm and 

9.03 Nm such that the bolt is sufficiently loosen to induce damping and stiffness nonlinearities. 

The magnitude of base excitation shown in Table 6.2 is scaled to the higher value such that it can 

induce nonlinearity when excited to the structure shown in Figure 6.7. The excitation frequency 

is varied as shown in Table 6.2. At each excitation frequency the maximum amplitude of 

acceleration at each DOF is recorded. The recorded magnitude of acceleration at each DOF is 

then transformed to the modal space using the mode shapes matrix. The equivalent excitation 

force for the scaled base excitation in the modal space is obtained from Equation (3.1) using the 
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mode shapes matrix. Having the equivalent modal force for Mode 1 and the modal acceleration it 

is possible to create FRF in the form of inertance (output acceleration/input force). This FRF is 

plotted across the excitation frequency range to show the nonlinear behavior. Figure 6.12 shows 

the nonlinear FRFs generated with various scaled base excitation shown in Table 6.2. The 

scaling up is done 10 times, 12 times and 15 times (sufficient input magnitude to induce 

nonlinear behavior) to induce different input magnitude. Due to the stiffness and damping 

nonlinearities, there is a shift in natural frequency as shown in Figure 6.12. Furthermore, the 

magnitudes of FRFs are not constant at different excitation magnitudes which show that the 

system is purely nonlinear. Similarly, Figure 6.13 shows the nonlinear FRFs generated when the 

tightening torque is reduced to 9.03Nm. Comparing Figure 6.12 and 6.13, one can conclude that 

the bolted joint induces significant nonlinearities when the bolt is loosen. 

 

Figure 6.12: Nonlinear FRF Generated from a Step sine Test (Tightening Torque 13.55Nm) 
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Figure 6.13: Nonlinear FRF Generated from a Step sine Test (Tightening Torque 9.03Nm) 

6.2.4 Nonlinear Parameter Identification 

Section 6.2.3 shows the nonlinear detection and characterization methodology in a base excited 

structure with joint connection. In this section, the nonlinear system identification methodology 

presented in Chapter 4 is applied to obtain the nonlinear parameters for each excitation frequency 

and for each preloading condition. The nonlinear parameter identification methodology consists: 

(i) reconstruction of force vector using the base excitation as an input, (ii) extraction of nonlinear 

restoring force at the measured DOFs and (iii) identification of parameters using the multilinear 

least square regression in a modal space. Since the identification of the nonlinear parameters 

involved integration of the measured acceleration signal to the displacement and velocity, the 

analytical integration algorithms is applied by using the measured steady state acceleration 

response data. Figure 6.14 shows the steady state acceleration response data, for an excitation 
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acceleration data is approximated by the analytical function by multilinear least square 

regression in each time step. Equation (3.33) is used to approximate the analytical function. The 

analytical approximated function and the measured relative acceleration are shown in Figure 

6.15. The Goodness-of-Fit measured in terms of mean square error change is over 99%. The 

analytical function thus obtained is analytically integrated to obtain the velocity and 

displacement. The analytically integrated velocity and displacement signal are shown in Figure 

6.16 and 6.17. The same procedure is repeated for each excitation frequency, each tightening 

torque, and each base displacement shown in Table 6.2. Having known the displacement, 

velocity and acceleration signal at each measured DOF and the mode shape matrix, it is possible 

to extract the nonlinear modal restoring force using Equation (4.17). The obtained nonlinear 

restoring force is then fitted with the first mode modal parameters using Equations (4.24-4.27). 

The procedure is repeated for each excitation frequency, each tightening torque and each scaled 

base displacement.  

 

Figure 6.14: Steady state Acceleration Response of the Beam at a Distance of 0.65m from the 

Fixed End (@ Tightening Torque 13.55Nm, Excitation Frequency5.7Hz) 
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Figure 6.15: Measured and Fitted Acceleration Response of the Beam at a Distance of 0.65m 

from the Fixed End (@ Tightening Torque 13.55Nm, Excitation Frequency5.7Hz) 

 

Figure 6.16: Analytically Integrated Velocity Response of the Beam at a Distance of 0.65m from 

the Fixed End (@ Tightening torque 13.55Nm, Excitation Frequency5.7Hz) 
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Figure 6.17: Analytically Integrated Displacement Response of the Beam at a Distance of 0.65m 

from the Fixed End (@ Tightening Torque 13.55Nm, Excitation Frequency 5.7Hz) 

Figures (6.18-6.20) represent the restoring force surface (A) and the hysteresis loop (B) 

generated for different excitation frequencies with the tightening torque of 13.55Nm. The base 

displacements at each excitation frequency are scaled to 12 times higher than that shown in 

Table 6.2. The obtained restoring force shown in each figure exhibits the significant softening 

effect and the energy dissipation due to slipping at the joint. The identified restoring force 
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displacement and a constant tightening torque. However, the results show the deviation of 

around 10%, the more being in resonance. Experiments are always susceptible to noise and 

uncertainty which may results in such a deviation. The maximum amplitude of displacement 

along with the identified equivalent damping coefficient for each excitation frequency is 

tabulated in Table 6.4. Having these two parameters it is possible to reconstruct the function to 

show the variations of damping as a function of maximum amplitude of displacement. Figure 

6.21 shows such a plot where the experimentally observed data are shown in the blue dot and the 

identified function is shown in red. The identified function is obtained by estimating the 

coefficients in a least square sense using norm 2 error vectors. It should be noted that, to identify 

the coefficients, one can use the standard multilinear least square regression or norm 2 error 

vector. Both of the algorithms work in the least square sense and yield the same results. 

  

 

Figure 6.18: Restoring Force Surface (A:3D Surface,B: Slice View (X-Z) Projection, Excitation 

Frequency : 5.7 Hz, Tightening Torque : 13.55Nm) 
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Figure 6.19: Restoring Force Surface (A:3D Surface,B: Slice View (X-Z) Projection, Excitation 

Frequency : 5.72 Hz, Tightening Torque : 13.55Nm) 

 

 

 
 

Figure 6.20: Restoring Force Surface (A: 3D Surface, B: Slice View (X-Z) Projection, Excitation 

Frequency: 5.80 Hz, Tightening Torque: 13.55Nm) 
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Table 6.3: Identified Nonlinear Parameters for Different Excitations (Tightening Torque 

(13.55Nm, Base Displacement 12 times Scaled) 

Excitation 

Frequency (Hz) 

Maximum 

Amplitude of 

Displacement 

        

Equivalent Damping 

Coefficient 

   (Nm\sec) 

Nonlinear Stiffness      
  ) 

5.0 0.0037561 0.3719          

5.1 0.004032564 0.3977          

5.2 0.004119441 0.3859          

5.3 0.005152218 0.4844          

5.4 0.00582531 0.5501          

5.5 0.007027474 0.6901          

5.6 0.011041567 1.0964          

5.7 0.01430621 1.5725          

5.72 0.018007602 1.9305          

5.74 0.021065172 2.3343          

5.76 0.02696584 3.1785          

5.78 0.034020338 4.3003          

5.80 0.041965147 5.7102          

5.82 0.034250879 4.3390          

5.84 0.0331549196 4.3561          

5.86 0.032892439 4.1127          

5.88 0.029781333 3.6116          

5.9 0.023627431 2.6904          

5.92 0.019767518 2.3601          

5.94 0.015829746 1.6569          

5.96 0.012329365 1.2416          
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5.98 0.009449127 0.9225          

6.0 0.005643001 0.5322          

6.1 0.003403679 0.3192          

6.2 0.002833501 0.3669          

6.3 0.002680442 0.3530          

6.4 0.002479834 0.3349          

 

 

Figure 6.21: Viscous Damping Coefficient as a Function of Maximum Amplitude of 

Displacement 

6.3 Summary 

This chapter presents the identification algorithm for nonlinear bolt lap joint parameters using 

the base excitation as an input. The identification algorithm consists of: nonlinearity detection 

and characterization and the nonlinear parameter identification. The nonlinearity detection and 

characterization is carried out by exciting the system in a frequency band around the first natural 

frequency of the system and maintaining the constant equivalent excitation force in the excitation 
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described in Chapter 4 of this thesis. A nonlinear single DOF model in the modal coordinate is 

chosen to demonstrate the approach numerically. The forward approach is carried out by 

assuming the nonlinear parameters to demonstrate the effects of the nonlinearity on the 

amplitude of vibration and the natural frequency of the system. The reverse approach is carried 

out to obtain the assumed nonlinear parameters. Following the numerical simulations, an 

experimental study is carried out on structure with two beams connected with a bolted joint.  The 

nonlinearity detection, characterization and identification are carried out following the same 

procedure that is applied in the numerical model. The most significant result obtained from the 

experiment is that the presence of viscous damping as a quadratic function of the amplitude of 

displacement. The restoring force surface and the hysteresis plots provided the considerable 

validation of the identified stiffness and the viscous damping terms dependent upon the 

displacement amplitude. 
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Chapter 7 

Conclusion and Future Work 

This chapter presents a summary of the research findings, contribution to knowledge and 

recommendation for further research in this area. 

7.1 Conclusion of the Research Work 

Ground vehicle component durability testing is an important research topic, relevant to 

automotive industries. It encompasses multiple steps, like measuring the field test data, 

generating the accelerated loading profile, and implementing the loading profile in the 

laboratory. The engineering problem in the implementation of the loading profile is the unknown 

dynamics of the test components, such as stiffness and damping of the structures. These 

dynamics have adverse effects on the durability testing, for example, changing the failure 

mechanism of the test components. 

Research in the structural dynamics includes various sub-areas, such as nonlinear system 

identification, stability studies of nonlinear systems, and the prediction of dynamic response for a 

nonlinear system. Although the research in the field of nonlinear system identification 

progressed for the last four decades, most developments have been restricted to the force excited 

structure, rather than the base excited structure. As durability tests are conducted through base 

excitation, to address the problems associated with the durability tests, the methodologies 

proposed in this thesis are specific to the parametric identification of nonlinear systems with base 

excitation. A test setup was developed such that the proposed methodologies can be 

demonstrated. The focus of this research is always kept on the practical implementation of the 
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proposed methodologies which can be integrated with the established tools like finite element 

analysis and modal analysis. The detailed conclusions on different topics are presented below. 

7.1.1 Nonlinear System Identification Method for Base Excited Structures 

For the base excited structure, the excitation force is distributed over the entire structure 

depending upon the mass distribution of the structure and is usually not feasible for 

measurements. Therefore, the conventional nonlinear system identification method cannot be 

applied in such cases. Two different strategies for nonlinear system identification of a base 

excited structure are proposed. The first methodology extracts the nonlinear parameters in the 

physical coordinates system, while the second methodology extracts the nonlinear parameters in 

the modal space. During demonstration, the second methodology is presented as it can extract 

maximum number of nonlinear terms. The crucial step in the nonlinear system identification of 

base excited structure is the extraction of the input in the form of force. A concise methodology 

based on the hybrid model technique is presented to reconstruct the force from the measured data 

where a closed-form solution is presented. The theory presented is validated with the numerical 

examples through simulations. This methodology can be used for both acceleration and 

displacement controlled tests.  

7.1.2 Development of Experimental Setup for Nonlinear System Identification 

An experimental setup specific to the proposed methodologies was designed, fabricated and 

installed. The system composes of a shaker table driven by the hydraulic system. The shaker 

table was constructed with the in-house knowledge and fabrication capability. The shaker table 

has the first natural frequency above 300Hz, which makes it significantly rigid. A procedure for 

the construction and the assembly of the small scale shaker table has been presented. The input 

to the system is displacements making it as a base excited system. The tests using harmonic 
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signals show that the displacements, as well as the acceleration time histories for the command 

and the response match well. However, some errors are noticed at low frequencies in the test 

signal which are due to the type of support bearings.  

7.1.3 Demonstration of Force Reconstruction Technique in Base Excited Structure 

Currently, in an automotive industry, prediction of the input force acting on a structure is a big 

challenge. Prediction of the input force is not only necessary for the vibration analysis of the 

structure but also for the stress-strain analysis of the structure. In this research study, the 

prediction of the input force acting on a structure is analyzed as an inverse but a well posed 

problem. A closed form solution is derived and is validated using the lumped parameter model. 

The theory is demonstrated by using a cantilever beam. A step sine input loading with constant 

base displacement is used to demonstrate the force reconstruction technique. Several results are 

shown to demonstrate the force reconstruction technique. The particular result from the 

experimentation is that the reconstructed input force vector is not equal to the equivalent 

excitation force vector. This is due to the fact that the unmeasured DOFs and unidentified modes 

project the force to the measured DOFs. 

7.1.4 Experimental Demonstration of Nonlinear System Identification 

Automotive engineers usually face difficulties when dealing with experimentally measured 

vibration data on a real life engineering structure. To overcome this difficulty, two 

methodologies specific to nonlinear system identification in a base excited structure are proposed 

in this thesis. Within the methodologies, two different integration algorithms are used to extract 

the nonlinear parameters: a single harmonic integration in frequency domain and an analytical 

integration of the measured steady state response data. The results are compared for both 

techniques using a cantilever beam as an example. The nonlinearities associated with the beam 
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are extracted by exciting the beam under high base motion. The natural frequencies found from 

the experiment are equivalent to the theoretical derived one, indicating that the beam is lightly 

damped. The modal damping ratios measured from the experiments are 0.028, 0.008 and 0.0065 

for first, second and third mode, respectively. Several experimental results are presented to 

demonstrate the proposed methodology. At the first mode nonlinear identification test, there are 

no significant nonlinear damping terms. The cubic stiffness nonlinearity for first mode using two 

different integration algorithms at different excitations is compared. Results shows that the 

analytical integration technique is the best one as it can caters for multi-harmonic signal. 

7.1.5 Nonlinear System Identification of Structures with Bolted Joint 

Most of the body structures of ground vehicles are joined by means of bolting. It is known that 

the added flexibility introduced by the joint to the structure greatly affects its behavior and much 

of the energy is lost at the joint due to microslip. The energy losses at the joint introduce 

significant damping and stiffness nonlinearities. It is thus essential to develop the algorithm for 

the detection and characterization of nonlinearities (damping and stiffness) due to the bolted 

connection. 

The nonlinearity detection and characterization methodology for the bolted lap joint structure 

using the base excitation as an input is developed. The methodology consists of exciting the 

system in a frequency band around each natural frequency of the system, while maintaining the 

constant equivalent excitation force. The proposed methodology is validated by taking a 

numerical example in the modal space using the simulation data. An experimental study is 

carried out using two beams connected with a bolted joint in the fixed free boundary condition. 

The nonlinearity detection and characterization for a bolted joint beam is carried out at several 

excitations frequencies, different base displacements and different pre-loadings (Tightening 
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Torque). Experimental results show that, when the bolt is sufficiently loosen, slipping behavior 

exist at the joints which results in the softening nonlinearity and the amplitude depending 

damping.  

From the methodology and results obtained from the experiment conducted in this research 

study, it is concluded that the nonlinearity detection and characterization method presented thesis 

can be used for the initial stages of the analysis to get an idea about the nonlinear behavior of the 

structure. Based on the operating conditions, excitation ranges and relevant frequency, the 

nonlinearity can be further characterized. Once the nonlinearity is further characterized, the 

nonlinear parameter identification algorithm presented in this thesis can be used for any structure 

to identify the nonlinear parameters. 

7.2  Limitations of the Current Work: 

The limitations of the current research work are listed below. 

 The nonlinear system identification methods proposed in this research work are based on 

the reverse explicit formulation. While formulating the theory, uncertainties in the 

dynamic systems are not considered. It is important to realize the source and type of 

uncertainties that exist in a dynamical system and a tool to cope with them. 

 Several types of nonlinearities may exist in the real practical structure. Example include: 

discontinuous nonlinearities, non-smooth nonlinearities. It is important to realize such 

type of nonlinearities and test the proposed methodologies for such type of nonlinearities.   

 Nonlinear system identification is an intermediate task. The bigger aim is the prediction 

of the system response. In order to predict the system response, it is important to 

understand the dynamics of the system in terms of stability. 
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7.3 Recommendation for Future Work  

The research presented in this thesis started with the aim of developing the solution for the 

engineering problem, which is seen in the implementation phase of ground vehicle durability 

testing. The problem associated with the implementation phase is the generated loading profile in 

the MAST, using the controller iterative software does not match with the actual loading profile. 

The engineering problem associated with the loading profile replication is due to the nonlinear 

dynamics of the structure. There are two possible research areas that can address this. The first is 

to change the controller design software or iteration algorithm. The second is to identify the 

dynamics of the structure. Research presented in this thesis progressed in the second area which 

is the nonlinear system identification of the structures. Still at the end, certain questions remain 

unanswered. The research in the area of nonlinear system identification for a base excited 

structure can be taken further in the direction of topics presented below. 

 The methods presented in this thesis are based on the normal modes concept. It would be 

an interesting research to extend the methods presented in this thesis, for a structure 

where complex modes exist. 

 The identification methodologies presented in this thesis are demonstrated by using a 

single axis simulation table (SAST) as a base excitation. As demonstrated in Chapter 4, 

the modes cannot be isolated in a SAST. It would be better, if these methodologies are 

applied to the MAST, such that the modes can be isolated. There are several challenges 

while applying the proposed methodologies to the MAST.  These includes, but not 

limited to; tuning the MAST (controlling the force at each DOF of the MAST); (ii) 

critical locations of the sensor; and, adaptation of excitation frequency and optimization 

of the base axis combination. 
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 The footprint library (collection of different nonlinearities), that address different types of 

nonlinearities for the base excited structures has not been developed yet. Developing such 

a footprint library containing different contribution of nonlinearities, would be beneficial. 

 The nonlinear parameters associated with the structure are input dependent. In this 

research study the step sine and the single harmonic sinusoidal loading are used to detect, 

characterize and identify the nonlinearity. The step sine test is an extremely time 

consuming test for nonlinearity detection and characterization. Thus, it is essential to 

design the optimum input that can accurately detect, characterize and locate the 

nonlinearity. A tool which integrates the above four tasks would be worth researching. 
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Appendix A 

Nonlinear Parameter Extraction through Conventional Technique 

This section presents how the nonlinear system identification in a base excited structure can be 

connected to the conventional nonlinear system identification strategy with multiple input force 

excited system. The algorithm follows the Figure 4.1, Stage III. If the reconstructed force vector, 

(Figure 4.1, Stage I) and the nonlinear restoring force (Figure 4.1, Stage II) are obtained, the 

conventional method can be used to estimate the nonlinear parameters. The nonzero elements of 

  in Equation (4.17) indicate nonlinearity at the corresponding degree of freedom. In [12] the 

nonlinear force extracted from the experimental data is formulated as a combined effect of three 

nonlinearities. The three nonlinearities are cubic stiffness, clearance and friction. Thus at the     

degree of freedom, the extracted nonlinear force can be written as, 

                                                                                                                      (A.1) 

Where       ,            and           are the nonlinear force for cubic stiffness, clearance, and 

friction nonlinearities obtained from a first order harmonic balance method. The expressions for 

these forces are given in Table 2. The identification problem can be posed as an optimization 

problem by formulating the residual at the     degree of freedom as 

                                                                                                                (A.2) 

Where    is the nonlinear force at the     degree of freedom obtained from Equation (4.17), and 

the nonlinear forces are the same as those given in Table A.1. The total residual to be minimized 

for    selected points can be written as, 

  
     

 
 

  
   

  
                                                                                                                             (A.3) 
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The residual given in Equation (A.3) can be minimized to find the optimized values for    

nonlinear parameters.  

The nonlinear parameters now can be searched by using a genetic algorithm approach. There are 

a lot of literatures dealing with the genetic algorithm optimization. More detailed about 

optimization can be found in [18, 42, 52, 53 54].  

Table A.1:  Expression for Nonlinear Restoring Force [18] 

Type of nonlinearity                                           Magnitude of non-linear force 

Cubic stiffness         
     

 

 
  𝑌  𝑌  

  

Where   is the coefficient of cubic stiffness nonlinearity, 𝑌  and 𝑌  are the 

amplitudes of displacement at     and     degree of freedom respectively 

Clearance 
     

    𝑌  𝑌  

  
                

   

 𝑌  𝑌  
       

 

         
  

 𝑌  𝑌  
  

Where,    is the additional stiffness after the clearance gap is closed,    is 

the gap distance. 

Friction 
Stick region:       

           

 
           

      
  

 

Slip region:       
    

 
   

  

          
  

 

                                  
   

          
  

 

Where,    is the tangential stiffness in stick region, N is the normal reaction, 

and   is the coefficient of friction. 
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Appendix B 

Technical Data for Bolt Clamping Loads (www.spaenaur.com/pdf/sectionD/D48.pdf) 

 


