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ABSTRACT

Two aspects of positron interactions in ionic crystals
have been investigated. First, the angular correlation of
the annihilation radiation due to positrons annihilating with
electrons in LiH crystals has been calculated. Secondly, the
e

positron energy gap for the first Brilloin zone in IiF crystals
A

has been calculated,

In the calculation of the angular correlation, the
contribution from annihilation with electrons in the hydride
ion is first obtained by treating the positron wave fmnction
to be a linear combination of Bloch states while the crystal
potential is approximated by means of a sum of central field
potentials centred on the ion sites. The potential due to a
lithium ion is taken to be the form used by Verrall‘Z). The
‘ potential due to a hydride ion is obtained by first getting a
wave function for it, then an expression for the charge dis-
tribution is calculated, and finally the Poisson equation is
solved and the solution is then approximated by a Coulomb-
plus-Yukawa form, The result yielas an angular correlation
curve 2,75 times narrower than the experimental result., An
estimate of the contributions from the annihilation with the
electrons in the lithium ion is performed and the result is

too small to affect the results for the hydride ion. In the




calculation, polarisation effects and the contributions

from excited states have been neglected.

In ILiF crystals, there has been, so fary no report on

the existence of a T, - component. It is believed that if

Ly

the first forbidden gap in the positron band structure over-
laps the Ore gap to a great extent, it might shed some light
on the absence of the 7;- component. This positron energy

gap is calculated by using a method which is very much similar

(4)

to the one used by Tong in the calculation of the electron
gap in LiF. The result shows that the magnitude of this gap
amounts only to 0.07 e.v. and its effect is too small to

enable one to draw a definite conclusion as to why the L, -

component should be absent,




)

CHAPTER ONE

INTRODUCTION

Following the discovery of positrons, which were predicted
by Dirac's theory, a number of experiments have proved their
existence., It was found that positrons and electrons are
anti-particles and can annihilate one another giving rise to
Photon emission. The discovery of the positron led to numerous
investigations of its interactions in matter. It is now
generally known that a positron can annihilate with an electron
in the following manners:-

(1) It can collide and annihilate in flight with an electron in
a singlet state with the emission of two photons. The annihilation

life time is of the order of 10™1°

sec, in condensed matter,
(2) It can form positronium with an electron in a singlet
state and then annihilate to give two photons. The mean life
time of the process is 1.25 x 10~10 sec. This is known as the
T, - component,

The above two processes cannot be resolved experimentally.
Associated with the two photon annihilation, there is observed
in the condensed phase a second longer life time of the order
of 10~7 sed, It is known as the T, - component.

(3) It can form positronium with an electron in the triplet

state and then annihilate to give three vhotons, The mean life

time is 1.4 x 10-7 sec.




(2)

The Té-component associated with the two-photon anni-
hilation is now generally explained by the so-cahled "pick-
off" process, According to this, the triplet positronium formed

will be scattered continually by the material. The positron

mgy then annihilate with one of the electrons whose spin state
relative to it is singlet with the emission of two photonse.

(1)

This explanation is discussed in detail by Wallace

If the "pick-off" process is correct, then for substances
in which a ﬁf2~ component is observed, there will be a limited
range of energies over which positronium formation will take
place., This range has come t0 be known as the "Ore gap®.

Neamtan and Verra11(2> have verified theoretically the existence

of such & gap in LiH while Bisi et a1‘3)

have reported the
existence of the Jté- component in a number of ionic crystals
including LiH., Meanwhile, Tong(4) has shown that such a gap
also exists in LiPF crystals but the gap does not extend dowm
to the ground state. So far, no report has been made in regard

to the existence of the ’52— component in LiF, One aspect of

the present work is to seek an explanation of its absence in

LiF,

(1) P.R, Wallace: Solid State Physics Vol.10(1960) Academic Press

(2) Neamtan and Verrall: Phys. Rev. 134, 5A (1964) Also,
R.I.Verrall, M.Sc. Thesisj University of Manitobe (Unpublished)

(3) Bisi, Piorentini, and Zappa: Phys. Rev. 131, 1023 (1963)

(4) B. Tong, M.Sc. Thesis, University of Manitoba (Unpublished)




(3)

Another widely investigated aspect of positrons anni-
hilating with electrons in ionic crystals is the angular
correlation of the annihilation photons. The experimental data
can be fitted with a curve consisting of a central inverted

(5) (6)

parabola with a tail at larger angles . o>tewart reported
in LiH a half-width whose reciprocal is 1.2R for the angular
correlation curve. Neamtan et a1(7) did a theoretical calculation
based on the assumption that the positron is tightly bound to
the hydride ion and obtained a corresponding result of 5.28

Recently, Gol'danskii et a1(8>

were able to obtain a close fit
to the experimentally observed angular correlation curve,
However, their results are subject to some doubt. A discussion
of this will be given in Chapter 6 of this thesis, Another
aspect of this thesis is, therefore, to investigate the angular
correlation of the annihilation radiation in ILiH crystals on

the assumption that the positron is in a Bloch state prior to

annihilation.

(5) G.Lang and S. deBenedetti: Phys. Rev. 108, 914 (1957)

(6) A.T, Stewart and R.H, March: Phys. Rev, 122, 75 (1961)

(7) Neamtan, Darewych, and Oczkowski: Phys. Rev. 126, 193 (1962)

(8) V.I. Gol'danskii, A.V., Ivanova and E.P. Prokop'ev: Soviet
Physics JETP 20, 440 (1965) {(English Translation)
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CHAPTER TWO

THE CRYSTAL, POTENTIAL IN IiH

The lithium hydride crystal is composed of positive
lithium ions and negative hydride ions arranged in a regular
array. It is a face-centred cubic structure. Since the crystal
is‘an ionic one, the ion sites are relatively far apart as
compared with the extent of the electron cloud around them,

For the present purpose, the potential in the crystal is
approximated by considering it as due to an infinite sum of
contributions from the individual ion sites. Thus the potentials
due to a positive and a negative ion would have 4o be found.
These potentials can be adequately approximated by a Coulomb-

plus-Yukawa form,

The potential, at a distance R, due to a positive lithium
was obtained (2)

ion kas-been-worked-out by Verrall , according to whom it is

of the following form:

v (R) -

-

E+g_§_eXp( ""OCR) 00000000;0000000(201)
R R .

where o = 4.1523’1, and e is the electronic charge.

To get the potential due to the hydride ion, the following
procedures were adopted:- first, a wave function for the hydride
ion was found, secondly the charge density of the electron
distribution of the hydride ion was determined, and lastly the

Poisson equation was solved to obtain the potential required.




(5)

The determination of the hydride ion wave function is
severely restricted by the requirements that the evaluation of
the integrals involved in subsequent calculations should be
feasible, Besides this, it has to take into amcount the repulsion
between the two electrons in the ion and the fact thet the two

(9

electrons are identical., Darewych has worked out a form of
the wave function which is given by the following:-
Vir,,rs) = (14Yr,5) (= Nzatprs) | o=(HrytXr5)y | (5 5y
where Toy Tz are position vectors of the electrons with respect
to an origin taken at the nucleus, To3 is the distance between
the electrons, and the parameters Af,/u', ¥’ have the following

values:~

A = .9033%°1

K = 2.031587%
y'= 5898871

However, for the present purpose, this function is not
suitable because it presents severe difficulties in the evaluation
of integrals arising from the angular correlation calculations.

Thus, the above form is modified to the following:-

W (rp,rs) = (l+>f%§3) ( e~ (ATotrs) o~ (ATt ATZ)y | (5 .3) ff}f

where ), &, ¥ are a set of parameters, different from those in

(2.2), to be determined.

To determine these parameters, the expectation value of the

(9) Private communication



(6)

Hamiltonian H of the system is minimized with respect to A, 4L
and ¥ . The values of A\ , o v that correspond to the best

value of energy are to be used.

The Hamiltonian of the hydride ion is

He-l(V5+ VE)-e®(L 41 _ 1 ) .e. (2.8)
X To T3 Tog

2 2
-1 v - eV
K

il

where K = 2m/ #~ , Ve \‘72 + [7% and the subscripts 2 and 3
refer to the coordinates of the two electrons. Now, for a well-

behaved function ‘I/ » by means of Green's theorem, we héve
' f
J oy de = -] (rp)tar
T .

where the integration is taken over all wonfiguration spawe,

Thus,
Cp 29y = -1 (yyy av - vylar
s lf 2] o i ;2
=tE(cvintar - vy
1A 2 ) o
— -I-{- - e B sesas s (2.5)

where (VY )2 = ( ‘Kzﬁ‘f})z"’f“ (%75‘!;)2
b= CT7¥)Ran

B ,_J v vZat
. .a |
and L;’,f:?gj)( To, r3, r23)
. P 7\"/ D% 2%

crox, a7 2X 2, BTy Iy



(7

with similar expressions for DV and 3Y
D y2 ). Zz
VoW = })L{w Lo 2Y Lo - I3
2Ty To 2 To3 Loz
o N2 o 1 2 Sy ) 2 NI Toelrs-12)
and (¥ V) _-_(_agf_) r (\3%’ \} + 2 (\j""” =2 22723
T REZYY ro ) ”‘23r oTo3
(3 (3 + () 2 S e
0T/ \\ 33723 DI'Z K‘QTZB'J r2r23

. o 12 W Pl 8 2 2
Similarly, ( /%Q}, )2 :;‘.cf"‘i/ ;2,,, [ oY \2&_ 5\(\)@{3% \@ Tz =To ﬁ'gB
’ |95 \2Tp3/ | \aTs/ UTps) T
.o (2.7)
Thus, ( “5;’4} )2 and ("}:f )2 are symmetric with respect to inter-

change of r, and Tz, SO that we have

A= 2 ( 7\1/’) d3r2 d3r3 # ;g ( ‘73‘}/)2 d3r2 dlBJc'3

2 3 3 / .
= 2 /j/ d’r, d°’r ] l 7 0 V2 43 3
J 2 T3 8 2| (V)2 aPr, Pr; L. (280
With the form of ¥V given by (2.3), one obtains

W = =(1 7‘ ?j I‘23)()\ -( A r2’£‘ft I'3) 71 /U\e—( /("r27l’:\r3))

3T,

?Y =2 y2r23 CeChmaf rirg) o omlory A rs)

?r23

‘ KA1+ [
e ()2 o2y {\ (14 2r23) F 4t rg, - (ﬁ s ]
. S % (h‘_y}};/\,(f;»gﬁ—éz%) |
N l(/vi\»,.r?\ra)\- 2(1":')/)~$>"t‘q’y733_ oy
<

2 QI/(/"’L/M){H./ ){ \_;w%

Rl PRI S S 3% s
+ e ( oL Y I).

- - (1)



(8)

Hence the evaluation of A involves integrals of the types
L ~{atythyy)
# ow AV tin) S PR .
., o ) 4‘> """‘}/ﬁ ,Vz. 7: - A 2 A Z .7
=§§5éi o Ay Jﬂt’ SIS A )Afid%}

e
‘2

where n = 0,2,4,

Also, B - jv Ve a’r, dorg
I i i —Z(;\Yzﬁ'f'“g 3(//\" A ;) «(ﬁ'//l)(””z) 3 3
:j “712:%1;;" v )( «s-ya”s)} ‘e Le J{d L) a ]:‘.5
Thus, the integration of this term involves integrals of the
types ¢ -mg+4g> . zm/ oL W6+4G>3 3
where n = -1,1,3 and m = 0,1,2,
Furthermore, the expectation value of H,{H > , is given
by boiid
CE> = (B HPY = _a-ém
(¥ %}) C
. Zg “HApns) (R ENG) SO 3 3
where C = (yqz) J +y'3/le b Y e § a r2d T
: Aoy
which involves integrals of the type /5¢ w mlent )er P
23 = A Ty P T

Wl-th I - 0,2,4-0

Thus, the evaluation of H involves the evaluation of integrals

of the forms:-

G slanrdy)y o,
3 e A, dry

/,..—....,,.,_/‘

j - Te T (Ci""z“f'/w/}) j 4 {;3. , 2
23 € Yy, + Yy ) ¢ ot ,rj ’
) . evco0o000000 0 (2.10)
- . ~ - (C{\L{. %ﬂ.}) i
- 2z 2 2 2 2y,
ﬁ Y A ) (- s ) 2 |

oncl J ( T / ’,'3 ) ( 2 23 ) - c/r[ 'r} C;'! ‘/‘} / “;
. y),k.é- 3 o T

withn = -1,0,1,2,3%3,4 and m = 0,1,2,



(9)

In the evaluation of some of these integrals, it is
convenient to express the volume element d3r2d3r3 in terms of
Ty r3, r23 and three suitable angles. Thus, for the integration
over rz, we have to take r, as the polar axis, and referring

to fig. ﬁl)?we have

%\ Fug. 4.

O

3 3 2 .t _ LI

d’r,d T3 = Ty, sind 40 dr,d ¢ rz Sind dr3d9d¢
in which ©' ¢ Fange from O to 47 and ¢, @' from 0 to 27 .
Hence, integrating over ', ¥ and ?3' first, we have for integrands
that do not involve the azimuthal angle,

3 3 2 .2 2 .

d7rod’rs; = 87" r; rz sink de dr, dry cesessss (2,11)
Now from the triangle 023, one obtains

r%B = rg £ r% - 2r2r30089

..Q. 1'23(11’23 - rgrssing dg ® 9 ¢ 00800800 (2.12)
Substituting (2.12) into (2.11), we get

3 33 2

d’rod’rs; = 87 T, TATos AT drsdr,s ceeeeeo (2.13)

With the aid of (2.13), one can now ewaluate all the integrals
involved in (2,10). A table of the integrals is given in the
appendix, With the aid of these integrals, we have, after

omitting the factor 7(2 ’




(10)

A py V) = 2(”/‘) L1205 w2 L0k vt

O G O’
- 14O (3 i N L 256t - 153602 - saxs7evt
C oy O Ged® Coged®
48X16 )\’M'yz 5 X46X3’\/Ay4 et 00000000000 (2.14-8,)
C oape )8 ( N y10
B (Aspov) = 200) 6 PCais oy ru) 5 1AG Y :2//f~»r iy Bp)
o (A )2 Cree T e
20Nt By 2 4 s
- - Ntp) = 2y (3/‘ J'Ci/\/b‘ﬂuff *]/*}’*5/« ) - 3y (5%1-[5-)\;/*2/'“}«&”)(}4 f—z’A/:- Thp S )
(/\,*‘")2( A‘T/L\J)B ( /\f/b\ )4( A -%/M )3 ¢ ;\ L) ( }\-i—/u, )3
+88 . 388v°  e%xu1osv4
(;\\'ﬁ},’\)S ( ’:\@7/\ )7 ( /\.?«/‘/{_)9 60cocceo0cao0ec0s000 (2.l4b)
(0 ()? o)l
oAz abeeay® L aPasoy!
()\'h"»)6 (/’\”i’/bv) : (/\.17@\)10 ®eeece000s e (20140)

It is to be noted that A(y, aa /), B( \/Aﬂ/) and C(A, vy V)
are homogenlous functions in X\ , MV of degress -4, -5, and
-6 respectively. Thus, the expectation value of H can be minimized
immediately with respect to one of the varia¥les, say ¥ , and
we are left with a problem involving two variables, One has

< H :;. = i< A( ,Ap/‘/‘ }\/ ) - 82 B( *"'\/ /l‘/‘) Y )
. CCCA, My)

Y A M A o,
- _k AGCTH - ve? B($ 5. 1)
X
C( ‘// )/l'y)

Minimizing < H> with respect to V, we get



2

)/ - B(lzm) Ke = _:.I___ B(l,m)
ZA(l,m) ao A(l,m) L 2N BN N NN Y (2115)
and <H>y = - B‘&(1l,m) KeA’ = - B2(l’m) 9% (2.16)
4A(1L,m)C(1,m) A(1,m)c(1,m) 2ao
where 1 - é; , and m = é? o Thus, we need only minimize (2,16)

with respect to 1,m where now

A(l,m) = 2(12-;,-%;12)4L 12(1% 0t - 72(1*Fm ) 15(1; n?) (31% 41202 30h)

(1m)> (1m)° (1m)° (1m) 7
296l _ 1536 _ 64x576 18x16°1m  5°x4%x31m (2.17a)
TGt Tamd T am® T wm? (1rm) 10 °
B(1,m) = 2(1tm) , 6(21%1%m+1n% 2n’) 15(315r14mT213m-r21 24 1mb5md
(1m)° (1m)° (im) 7
- 2(12’;31?“’313) - 20314 91%0+111%0°% 917, 3m?)
(1m)“(1*m) (1m)4(lkm)
- 3(51 *1515mr2114m2f2313 >+211 %% 1510% 5n%) _e8
, ) ®(1em)? (Lrm)®
. 34885 , 8%x 1125 (2.17b)
(1rm) "~ (1+m)9
e(l,m) = . 1205 o) L 15014 41%0% 3nt) 108
A (1g1 (1m)° (1m) 7 " tm©
+ 4 x24 4-x150 (2.17¢)

1+m)8 (1+m)1°

It was found that the substitutions

{1:X—y

BT=xfy
) 2

and then (¢ =x
'y 2
1 =

simplified the expressions to some extent., It terms of these
new variables & s 1, (2,172),(2.17b),(2.17c) become
ACY ,7) = 4(5“7) 24 19297 . 156(f+1) ;. 1440(5+7)8N

N G AT <§vz>5 (g
pto - AN 24 156 - 487 - 3007 (2.18a)

gl g; gs g% g% 3)



(12)

B(Z,M) =flL 109 1125 . 4 ~_ _ 72 _, 510 . _96%
. (et G2 T TG (5108 (B0
- 18008, 1440%° 1 . 3 _ _9 o
G R G LA TS D TC R D ERE TS AP LS STERD
1 3
—_—=TT = T (2.18v)
15G-n)? 8§(§"’l)3}

oy ,m) = _2 424G 30, 180Gr1)% | 2 24 150
G-p° (5)° Gl (seq)T B F

(2.18c)
The expression -B2(5,1)/A(51)0(5,) was then minimized
with respect to & , ¥l with the aid of the I.B.M, 1620 computer.

The best results obtained were

A = .9123871
4 = 2.033387F
v = .33938°%

corresponding to a minimum energy of -14.14 e.,v,.
Experimentally, the hydride ion is a weakly bound system
with a binding energy for the second electron of merely O.7e.v.

Thus, the ground state energy of such a system would be

- 13,6=0,7 = =14.3 e.v. A comparison with our calculated energy

shows that our value is slightly too high. However, since we
are only interested in the angular correlation phenomenon
which involves the participation of the system as a whole, the

value we get is assumed to be good enough.

A comparison can now be made between the function we found

and the one used by Darewych, To this end, we calculate the



(13)

overlap of the two functions:
q{H(I'2’I'3> = (l 7‘ ))21'33)(6-(}‘ rgf_/["r3)‘?_ e"(/’{' I'Z'i"/\ r3))
; Vo foy . af
1{{&(1'2’1‘3) =1 £V 1’23)(6—(’\ 1‘2?;0.1'3)_.?_ e-(fu' r2"f‘/\ r3))

i.e., t0 see how close the integral

V[ [¥pl7F207r XJWH?”"dBI'zd?rﬁ

I =

is to unity. The result obtained was I = 0,99, Thus, it is
concluded that the function so chosen represents the hydride

ion fairly well,

Consider the wave function #f(rz,r3). If this is normalised
to unity, then §'\P(r2,r3)[2 d3r2d3r3 is the probability of
finding particle 2 in the volume element d3r2 and findihg
particle 3 in the volume element d3r3. Integratihg over Iz, we

obtain that

2

is the probabidity density for particle 2, The charge density

due to particle 2 is therefore

r 2 3
- j l?(rz,r3)] d7ry
where e is the magnitude of the electronic charge on the electron.

Since the two particles are identical, the total charge density
i i
. - - Ry (2 3
is P(ry) = 2ew}}¢(r2,r3)f d’ry
The potential v,(R) due to the hydride ion at distance R

is then found by solving the Poisson equation:-

Vi,R) = - 47f@®) (2.19)
Now ¢(R) = —_2%_ j gg/(rz,rB)jz Oy
i

3



(14)

where T 20 = normalisation factor of \f’(r2,r3). Integrating,

we obtained,

FR) = -_2e @ (2.20)
il
, i C
where G' = 43 e~2NRy 2 W f_482/ 2kt 10 4108 3 6*)/‘”%
1((1,&)3 <sz«u>3 <c:z/>5 (g/vﬁ 3 TR
+47e 2/““R( 2 4y “R2T48‘> . o,R4 4'>/*32 3% |
N ARTSNEARSVEN SR 3 (a\>5 (m\)"
+87e -(M“)R 4@”R2 ¥ 48y " 2VR4 + 10 4'VYR %_6'V }
IR LAY PR MR LWL R ARy

= NG

letting vo(R) = - g 4 Ye e""%R where A, Y are parameters
R R '

to be found, we have from (2.19), and (2.20)
1?lv2(R) = e'\iR/s%b e” PR - -47;(3(12)

= =4 T (-2e)F G = 8G ¢

T c
Y
o.o }Jf@e-!’%R = QER

’ C

Taking logarithms on both sides, we have
log | 8GR} = log (¥f) - AR (2.21)
\ C '

If the graph of log (8GR/C) vs. R is nearly a straight line,
then from the intercept and slope of the line, the parameters
f 4 Y can be found.
The best fit found was
¥y = 1.84
p= 1.80587%




(15)

It is to be noted that the curve fitting has been done
in the region 0.5 < r < 2 &, This should be sufficiently good
because the distance between two adjacent hgdride ions is

about 2 R.




(15R)

Cuvve f(h"ny c»]C /Bo??)n’f?ﬂ due Lo 4 /L}/ﬁ/}’/'a/@ o

Shpe = -/508

T Inferce{,bf = [ 78K
< .

& =/
OOIU P
N f‘i} (/‘)) = /\J(/A
‘\

:,f;




(16)

Fourier Analvysis of the Crystal Potential

We will find the crystal potential as seen by a positron
because we will be interested later in finding its wave function

which requires a knowledge of its potential in the lithium

hydride crystal. In this case, the wave fmnction is vanishingly
small around a positive ion site. In the Fourier analysis of the
potential, we take the origin to be at one of the negative ion
sites. The potential at a distance R is given by

v(R) = ‘i}ivl(R-R -a) + VZ(R—R )] (2.,22)

where R:J denotes the position vector of the Jth

negative ion and
a is a position vector of a positive ion with respect to the

origin.

Since v(R) = v(-R) and v(R) is periodic, having the periodicity
of the crystal, it can be Fourier analysed in the form
Z’_ Oy, o2FikK.R

k= —
If S is the side of a box of wvolume LR’ then we have

v(R) =

. -21\ 1K R
£ 7 5he 33 v(R) 4 Tp

- 1im !: 3 ILlKQ v(_g) d/“”’R

T 2
= lim 1 j 2R v(R) dTg

St

S f

- C-K

lim l J o—2Tik.R z[vl(g_gj-gn—vz(g-gj)}d-zR

e 8T j |
= lim g S o~ 2K R j%:[ 1 + 2 e'cqﬁrﬁj‘éJ
87y i b 1R -2l JEm—

o

- _—]—‘—.—_—. + 1.84 e~ a IE_B-JI] 4T
Bl TR

(2.23%)



Now | _e PIBR4l  _omixr
) e —=*= 4 LR
o |R-R.|
R’
= = = e~ 2T iK. (R+R ) dtp by a shift of origin
= e~ PR -2MiK.R dTy because X is a vector of the
R
reciprocal lattice. (2.242)
" _:;")(i -
Mso, | e="B-Rs-al 1 N
|\B=R.-a |
el T
- e XR  OWK.R -2MiKea .
R R (2.241)

To evaluate (2.23), take a coordinate system as shown in fig,2.

Ly dy K are unit vectors in the orthogonal syatem.

Fa. 2

@ 7)05[‘{‘,‘ ve ion 5117605

o '%ega“f?‘ve ion SiTes

We have,

eee. volume of the unit Bravais cell = aq .(_@2 X 23) = 212

Hence the number of vectors Bq in the summation is 33/2L3.

R ¢ \j PR, %»1.84«3‘@34.; ~2TiKea  2o0R
/ R ‘R R® «
o~2TiK.2a l a4ty
After taking into account equations (2.24a)and (2.24Db),
Now, we have e-{BR e 2TK.R 5 - g = 4T

R 4% p2

L2



and Lfl -2 i%K.R _ . [ =BFR _-2FiK.R
= e == 4T = lim e e — = -
R R {3-—»0 . j R at R
= 4T
47
Hence, QK = 2 el 1.84 - 1 4+ e-ZEig,g 2 + 1 i}
L2 L47°KAF 470 4 K2 4 oK

(2.25)

Now a is the position vector of a positive ion with respect to
the origin (a negative ion site), it can be chosen as

a £ %(_3_1”*’ ot .3.3)
A general value for a would be a Ej where

Bj = M2yt hoastmsas
We have, furthermore, X = nq by +n5b, ~+n3_133 where by, by, 33 are
basi§ vectors of the reciorocal lattice, and are related to

the a's through the relations:

bi = 25 X3 ete.
'a"l. (_@2)(_8_._3)
.. b..a. = o.. N
hl—-:-?‘-;] - © 1:] — & ;o4 N o1 R
Thus, e 2rikea =271 ny(mytd) +ny(mytd) + N (myi4)

e-“ﬁi (nl% :r12«2~n3 ) = (-1) nyt nzai-n3

Further, if we express the b's in terms of the orthogonal triad

L, 4, K, we get i

b, = _1 =_1 (I+J-K)

=1 ® — (a, x a,) —_— ST
12 T2 T D 2L,

by = _l3.(§3 X a) = _1_ (J+EK-I)
2L, - 2L,

b =__]_.__(a

= g A Fay) = 1 (E+I-))
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Hence X = 2% {(n1+n2-n3)i+(n2+n3-nl)§_+(n3+n1-n2)K:(
Letting k = 25K , we have
2 2 | > | > 2]
k g]l—i [(n1+ no-n ) (n2-+ nz-ny ) T(n3 F Np= Ny )
' _ _1 )yt nstn
and Cp = Cn1n2n3 = 236]!: 1é8(§,2 B 12+( PRt L1
L7 L x4 X 2?2
Expressing L in units of a, and «,pin units of ao'l, we have
- n-#n.tn S
1’ bk k gy b
in which Cy 1is expressed now in unitg of e/ao.
Let Nl = Ny, -Ng
N2 = 5 -i(n3 -nq
N3 = n3-~i;—n1 -No
o e 1\T1~\~1\T2‘1-1\T3 = Dy Ny thg .
Thus, it can be seen that N‘ , N"Z ’ 1\T3 are all either even or
odd, and in terms of them, we get
. + ¥+
Cq, ¥ N, = 27T1.84 1 (-1)H T EyTHA
_g °lk%+ K e 2 TR -

with k2 = T2 (N:2L+N§+N§) .
2

L
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CHAPTER THREE

WAVE FUNCTION OF POSITRON IN THE LiH CRYSTATL

Having obtained tke crystal votential, we are now in a

position to find the wave function of a vositron moving in the

field-of the crystal. This wave function is needed in the

calculation of the annihilation Y rays as a result of the

positron interaction with an electron of the negative ion.

Let us first examine the symmetries of the crystal. Since

the crystal structure is face-centred cubic, the crystal is

invariant under permutations and, or séparate inversions of

coordinate axes in Cartesian system. That means a point in the

crystal designatéd by the ordered triple (X,Y,Z) would under a

permutation of any two and, or separate inversions of the

coordinates, be transformed to a different point of the crystal

lattice, Since there are 6 ways to permute 3 numbers, and two

ways to choose either positive or negative from each coordinates,

there are altogether 6x2x2x2 = 48 wlements in the crystal group.

Following Tong

(4)

sy we use the fodlowing notations to denote

the generators of the group:

B

ny

b W

Lo N o B o |

ya

X

(X,Y,2)
(Y,X,%)
(X,2,Y)
(2,Y,%)
(-X,Y,2)
(X,-Y,2)

(XyY"‘Z)

identity element

element
element
element
element

element

element

for interchange of X,Y axes
for interchange of Y,Z axes
for interchange of X,Z axes
for inversion of X axis

fior inversion of Y axis

for inversion of % axis
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In this notation, the 48 group elements are
(x,v,2) (,2,Y) (2,Y,X) ((,X,%2) (%,%,Y) (¥,%,X)
(-Xx,Y,2) (-X,%,Y) (2,Y,-X) (Y,-X,2) (%,-X,Y) (Y¥,%,-X)
(x,-Y,2) (X,%,-Y) (%,-Y,X) (-¥,X,%) (%,X,-Y) (-Y,%,X)
(X,7,-2) (X,-2,Y) (-2,Y,X) (¥,X,-2) (~2,X,Y) (Y,-3,X)
(-X,-Y,%) (-X,%,-Y) (%,-Y,-X) (-¥,-X,%) (%,-X,-Y) (-Y,%,-X)
(-x,Y,-2) (-X,-2,Y) (-2,Y,-x) (Y¥,-X,-%2) (-%,-X,Y) (Y,-%,-X)
(X,-Y,-2) (X,-%,-Y) (-3,-Y,X) (-Y,X,-2) (-%,X,<Y) (-Y,-%,X)
(¥x,-Y,=2) (-X,-%,-Y) (-%,-Y,-X) (-¥,-X,-Z) (-%,-X,-Y) (-Y,-%,-X)

In his thesis, Tong has discussed the properties of this
crystal symmetry group. We shall, therefore, simvly state the

results concerning its properties:

P

yz’' Tzx

(1) The eigenvalues of the operators I,s Iy’ I,

and ny, P
are either 1 or -1l.

(2) The simultaneous eigenfunctions of all the elements of the
same conjugate class in a one-dimensional representation of the

group have the same eigenvalues.

Let us now come back to the physical problem. The Haﬁiltonian ,,,,,,
H of the system( the system of & positron moving in the crystal
potential_%(r)) is

H o= -3v2 4 V (3.1)

Note that atomic units have been used.
Since c72 and V are invariant under permutations and, or

separate tnversions of the X,Y,Z axgs in the Cartesien system,

H then commutes with every element of the symmetry group. In
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- the case of ground state, we require maximum symmetries on
the simultangous eigenfunction of all the group elements. Thus
we seek a wave function of all the group elements with eigenvalues

equal to unity.

Now since the positron is moving in a periodic potential, its
wave function is given by a linear combination of the Bloch type:
U= eEIg(p
with 77(3) periodic, having the same periodicity as the crystal,
For the ground state k = 0, thus
Y= ¢ (3.2)
As ?9(3) is periodic in the lattice, we may Fourier analyse it

in the form

?Nﬁ? = S Ay ooFiK.r

where K = nlpl+n2Q2+n3Q3 is a vector of the reciprocal lattice,

(3.3)

=l

Ny Ny, Ng being integers.

Referring to fig.2, we see that X can be expressed in terms

of the orthogonal triad I, J, K as

K = _l_[(nin2-n3)l+(n2+n3-n1)gf(n3+n2-n1)Kl (3.4) [
2L S
‘= 1 (N, IFN,J+N.K)
?—]-:.—- 1=""2= 3"

with N - nl%nz-n3

-
1

=
N
1]

and it is 10 be noticed that Nl’NZ’N3 are all either even or odd.

Substituting (3.4) into (3.3), we get
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s Tl (W, XN, Y4+, Z)
\V = A e I ‘1 2 3

N, NN
I R

“1 2 (v X+N2Y+N %) -
% Ay e (3.5)

where N now denotes a set of the numbers Nl; N2’ N

3.

Having obtained the form of the function.#ﬂ we now seek a
linear combination of them to give the posiron wave function.
(4

According to Tong, it is

§ = > éggqj (3.6)

. g , _
where éfg is the eigenvalue corresponging to the eigenfunction of
any group element g in the crystal symmetry group. In the present

gase, it equal to unity, i.e.,

g¢ =
We can rewrite (3.6) in the form

Ay Ly

£t

[
a-
-

ch = A

where X X

S b
b = 'Z%—(N1X+N2Y+N 2)
¥y - °
 The ?CN has been normalised to unity in this case, The convention

for the summation is chosen to be N,> NZQNB%O .

We must now determine the coefficients AN in order to get
the wave function. A total of 14 coefficients are chosen which
corresponds to varying Ni N ’ Ng from O to 4, as the numbers

| < (4,2.2)
of possible combinations are (4,4,4), (4,4,2), (4,4,0),A(4 2,0),
(49070)’(3!393)$ (3’3’1>’ (391’1)’ (2!2’2)’ (292’0)’ (290’0)7

(1,1,1), and (0,0,0), a total of 14,
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These 14 coefficients are treated as parameters in the

variation process of minimizing the expression & = <i1§ﬁ}§§)

Now, (ééi@)
il < * /
(“ﬁ}Hlﬁ’-) = ZN %' AN AN' O{NN'
where Xy, = L (=N?+N§+N5) §NN. + % Cn-g () ,
2L | Shy (N))f":«—a-éN' (Nv»;é;
(g '8 (; 2 & '
(3.6)
- Z i 2
and (E1Y) o 2 ay

The C's are the Fourier coefficients of the crystal potential
and their values are:given by (2.26). Thus, the problem reduces
to fne of finding the extremum of (%ffi&%) subject to the

condition that (&%) = 1, We have

2= (@D - A @D] - o
or §§0§WN,‘AN. - AAy = 0 for each N (3.7)

N'
Making a convention to label the AN as column vectors, so

that (3.7) is equivalent to

| A:) A
Az

C{. 1 ; : ’

o i (3.8)

1
7

S

where ¥ = (OéNN') is in fact a matrix representation of the
Hamiltonian H with respect to ﬁéN. It is symmetric with respect

to intershange of N, and N% Equation (3.8) is equivalent to

Therefore the whole problem of finding the AN reduces to one

of finding the eigenvectors of » , This process is performed with
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the aid of the I.B.M. 1620 compliter. The programme for such a
diagonalisation and finding of eigenvectors of a symmetric matrix

is a@vailable from the I.B.M. Library.




(26)

CHABTER FOUR

ANGULAR CORRELATION OF ANNIHILATION Y RAYS IN LiH

This chapter deals with the angular correlation of the
annihilation photons as a result of the singlet annihilation of
the positron with an electron of the negative ion. Since the
electronic clouds around the ion sites do not overlap appreciably,
we can treat the annihilation from the electrons in the negative
ions and those in the positive ions separately. We shall first
concern ourselves with the contribution from the negative ion
electrons and in a later section of this chapter, aﬁ estimate
of the contribution due to the electrons in the positive ions

will be given.

The wave function for the system (positron plus hydride ion)
has been assumed to be a simple product of a function of the
positron coprdinates with a function of the coordinates of the
electrons of the negative ions. If we denote the positron coordinate
by r;, the electron coordinates by rs, and ey then the spatial
wave function of the system can be written as

W= g(gl)h(y_z,_1;3)

B ecause the two electrons in the hydride ion are identical,
the wave function describing the system whould, for the singlet
ground stat, by symmetric with respect to exchange of r5, and Iz,
Thus h(rz,ra) is taken to be of the form found from Chapter2, i.e,.,

h(ry,rs) = WPl (e O Tars)y o= Gmgtizsdy (4 0)
where X3 m 5y hawe been determined. Write

Yol s
AL ed
s

R
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h(zprzz) = £(zprzg)+ £(zz,ry)
with f(£2’£3)= (1{'2)21,33)6-(’11‘27/}-:{'3) (4°lb)

f(EB 9_I'_2)= 1+ )/21'23)9-(/0'1‘2*‘/\ r3)

The positron wave function g(rl) is taken to-be of the form

found from Chapter 3. Thus,

. i o S A
where X = Zg g‘sz /(48 % SN’g(N))Z (4.1¢)
) 7i
y = oL (M) XN Y+ N 2)
o o L‘}J = g(_l;l)tf(;g ’23)“5’ f(.]:.3’£2)‘}

The Fourier transform of f(£1’£2’£3) is
¥ (R 1RpsR3) = (2r)~/ ij(zl,zgzyexzp -1/5) 8,1 TRL PR A T 47T,d
Suppose ivo denote the vacuum state and the positron is in
a "spin-up" state, then the initial state vector of the system has
to take into account the creation of the positron and of two
electrons corresponding to the ones in the hydride ion. Thus,
we canﬁtake it to be of the form(7), ,
oy = )@y P0y0ps Ploy im0 oy 1[0 (R D00 (g, D+
ol (ggoh)a’ (g, Dlw, 4.2

where we have deliberately omitted the normalization factor

because we shall be dealing only with the angular correlation.
Thus, from now on, multiplicative constants may be omitted. In
the expression, h?, éT, are the creation operators for positron

and electrons: T and L denote spin-up and spin-down respectively,

Now the positron would annihilate with either one of the



(28)

two electrons producing two photons. The electrons that is not
annihilated will be left in one of a complet® set of orthonormal

states. Thus, for the final state, we can take it as

We :_deP';%(B')a%(ﬂ',?)c%(g,gi)c+(g-§,ge)Cuo (4.3)
where (p') is the Fourier transform of the state of the electron
that is not annihilated. Suppose u(z) is the wave function, then

2@ =[P u@ex (-i/Rp'.x (4.4
Furthermore, k and p-k are the momenta of the two photons
created, ¢ 1is the photon creation operator, and p' is the
momentum of the "left-over" electron: &y &, are the polarisation

vectors of the two photons.

We need now the matrix element between the initial and
final states. Consider equation (4.2), it consists of two terms,
the first term b*(gl,?)af(nz,@)a%(gl,?) can be interpreted as
the annihilation of the positron with electron of momentam Do
leaving an electron with momentum B3 and in spin-up state,
Similarly for the term b*(pl,?)é%(g3,¢)af(22,f). Now the momenta
involved are small, so we can replace the matrix element which
normally would be a function of the momenta of the annihilating

pair by its value for zero momenta.

In view of the above considerations, the matrix element is
given by \
M = M(O O)Jd3p'd3p a%p,d%p, 1*(p') F( ) X
= 0) 19479207 p5 X (R By B0 B3
(67 -2) 8" (g2t (' -2) ¥ Copy25) | (4u5)
where M(0,0) is the matrix szement for two-photon anmmihilation

from the singlet state of electron and positron with zero
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momenta. Dropping the factor M(0,0), (4.5) reduces to
M= 5 d3p2d3p3 [X*(P-’j) (F(R"P_z 1Po yR3 )4‘2/*(22) 4 (E"Rg »Po 733 )]
= §070,0%05 {1 (2 P (230 2p 0250+ P50 250259])
after integrations over p' and p; and interchange of p, and R3e

We now reintroduce the configuration space, we hwmwe,

:(fd3p2d3p3d3rld3r2d3réd3r3 u*(gé)f(gl,gg,gs) X
exp { (-1/5)[ ozt ppe (2pmrh Rz (25-1; )]}

:afd3r1d3r2d3féd3r3u*(gé)f(;l,32,23)exp[(-i/%)R.QJSS(gz—gé)&B(EB—El

:¢5d3r2d3r3u*(£2)f(§3,£2,gs)exp((-i/ﬁ)g.g%l
Similarly, 5 d3p2d3p3 2*(Ry) P (2-PsD5Dp)

= g d3r2d5r3 u*(23)8(ry, 2y, L) exp [(-i/ﬁ)}zozg]
Hence, (4.6) becomes
M =3 d3r2d3r ' *(gz)epr(-i/h)Q.z3] f(£3,r_2,r_3) +
u*(r3)exp (—i/ﬁ)ﬁ.ze t(zps Loy §3>} (4.7)
Summing the square of the matrix element in (4.7) over all

the final states of the surviving electron, we get, with the aid

of the closure relation for u(zx),

%!MP = ) d3réd3r%d3r2d3r3e}cp [(i/ﬁ)p. (2%-'1'.'3)][:6(2%’zé’zé)”f'f(ﬁé’_I'_%,Eé.gv“f'

.-:j’d3réd3r%d3r2d3r3exp [( i/n)p.(r5-Ts ﬂ[f( vy, 28, 23N E(xs, o, rh )}—*

X [£(z50 2 25 )+ £ (z50 25 1) 57 (zp-r,)
= J d3r1d3r2d3raexp{(i/’ﬁ)ﬁ. (31—;'_3)]1_1“(31 1Ly Wrf(zy 1y ,E,QT

after inyehgrating over zé and replacing 3% by Ly
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This is.the basic equation for the angular correlation of
the annihilation photons. To make it look symmetrical with resvect

t0 electron coordinates, we write it as

1 =Jé3rld3r2d3r3exp[(i/ﬁ)g.(22-333[i(£2,31,22)+f(£l,£2,glﬂ*
X [£(25,1) 125 2(25, 25,27 )] (4.9)

where we have interchanged r, and r,.

Now from (4.1), we_ have
[f(;z,gl,£2)+f(r 1TorTy ﬁ*[f(rB,rl,r3)+f(r3,23,£li] S
- g*(zg)g(QB)(1+v rlz)(l+y 3)[e Wrptptzy)) o= QurpAro) T o o
oGy ), o Gomyeies)] o

= 8% (2)a(zg) (11, Pr8 ) (1) Prf )] o™ (AT AT T3 ), o= (o mphymgrazs )

4_6-(Uﬁm)rler2@ur3 )*_e—(awr1+Ar2+Ar3)j (4.10)
But from (4.le),

Rl 1 KN, Z)I

g(z) = %ANZ {

L48 % ¢ Nag<N>]%

operating T(N X*‘N2Y+N3Z)
where the group element g -eperates on the function e

is the same as permuting and taking the negatives of the numbers

Nl’N2’ 3 Denoting N X+N2Y+N§Z as a scalar product, we have

=, > r
80 = Mg (4.11)
%

\\48 g ’g(N)X
. S S =S [-Z@—N.r > T +&N.'r]
e e (zpe(zy) = [ Ayhyp G 8l T . 2| <. g'le T - 73

RN PR
{ Be “meanl [ N',g'(N')]

(4.12)

where g, g' operate on N, N' respectively.

The integrand in (4.9) becomes
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T

" = - _EN'I' At - |. ]
%%,AﬁAN,expL(i/ﬁ)p_. (;‘_"'3*-;1_'225 g’%‘, g};e b= _2:{ g'[e L= "'3 %

(1+y2r§2)(1+y2r§3)[e~(2Arf7&r2@ar3%‘e-(dﬁu)riﬁarszr3)nﬁ
~(Um) prr A rgtiry) | =(2xr A rstAr, )] /e S S eSS 5 =
e | 2 %374 e 1 2 3]/148 2 N,g(N)248 ' N, gt (W)

If we are dealing with a large number of crystals oriented at
random which is usually the case experimentally, the above
expression has to be averaged over all direotidns of p. Two ways
of performing the integration seem possible: (1) to average over

all directions of p first and then perform the spatial integration,

(2) to do it in the reverse order. It seems to be simpler to

adopt the first procedure.

Thus we first average over all directions of p. Td do this,
we replace the integral I by its integral over solid angles in

P space divided by 47 .

I = 148
1}? A

Tr .
" (-1/8)p. (z5-1p)

The only term in I that tontains p is e SO

we need only average this term over p and the rest is left

unchanged, Hence,

3., 3., 33 . .

I :Sd rld r2d r3 311'1}93:'23 ZE < eii]]':, (E.'~£3—_1\l._1_:2)
pr23 N N' g,g' %
(l%erfg)(lrygeig)[e (Arstprgprs) | -(Gp Tyt siry)

e-((kv011§xr2hkr31%e-(ZﬁritxrzﬁkrSﬂy{48;§i%N,g(Nﬁ%l48 éﬁ

A+

Q

“7TAa
z
(4.1%) o
where r23 :'gz—gagand the vectors N, N' are to be operated on

by g and g'.
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Rewriting (4.13) as

>
T =%

b3 P
A A g "1 (N .z5-N.xp)
=5

d3r1d3r2d r331n Er2§

48!% N g(N}gg N',gt (N § Pros
x (1+y°r 22)(1+y r13)[ =(Arpphirgipry) =) prgiir,)

+
-((}\-é-b\)rl?' Arz"r/ur3) -(2"’““1'1 '\r2“"/\r )] (4.1%a)

We can now integrate (4.,1%a) over rl. The integral involved is
7 J’dBrl (10°rf,) (1+)Prd ) 7o
where a is a constant. Now ) )
9 =ja3fl l%-y(jds T, © arl#ygjdarlrIB e—arl+yfjd3r1r12rl3e'arl
=31+V52+yj3+y54
The first three integrals are easy to evaluate, we shall try to

evaluate the fourth integral first. To integrate this, choose

rz as the polar asis (fig, 4.1)

! Fig. 41

Let ;= (x5 0y, ¥1) = (rysind cosfy, » sinésing), 1%

= (r2,92,¢2 = (r251n9200sfé, r281n9281n%§, r5c080,)
We need the expression for the angle bétween r; and r, and also

the angle between r, and r,.
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Now TjeXz = Tygcos ©1 (4.142)

IyeZp
I':LI’Z

sin6, cosy SinQZCOS?% sin@lsinﬁasingzsin?é+c039100592
= sin@lsingzcoscpl-f%}+cos@leos92 (4.14%)

.°. making use of (4il4a) and (4.14b), one gets

g ‘3.2 .2 _-ar, =t{ 2 2 :
x)4 ﬁjd riryoryz e 1 fjgrl+r2-2rlr£§inglsingzcos(?1— ?2+cos@lc089é1§

2. .2 -ar 2 . N
b4 (rI+r3 -2r1r3cosgl)e 1 r1s1n91drld91d?1

Since 2% -
R
j smn@lcoséldél

0

]
o

1
o

oo j@ yrirr2)(rlfrB)e-arlrisingldrldG P

y(rl(«J 1 s1n9%co§b co:gz 4§ 1Torodry _de?ifm
(r~%r Wr T3 ) e 1 ridr +1l6%W 4 -ar
1'-2 1 141 —3———cosgajrlr2r3e 1 drl

2 .2 2
But cos@2 - r2+r3-r23

.1 gﬂ 4ﬁj?0 +r2)(rlfr )r —ary drl¢8

= 4%|68 + (22 2241+ 23r2 2:§} 8T (rh+ri-r5s)4!
a a5 a3 3 52
Qﬂz can be evaluated by choosing ro to be the polar axis.

4 "(r2+r3-r23 j rie “8T1 drg ffiﬁf

Thus I = (rl,el,?l)

22 - (O 0 I’2)
q { 2 ~-ar
o J2 (rlt-r2 2rl 20039 )r s1nOl e” "1 dr dQldfi
J %(riirz)e ary drq 4ﬁu4 2 23 7
5 3.

a

v

Slmllarly,% = 4’[4. + r% 2:]
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a3 a ;? 5 a
4Ty4[§5 (rg r%)ﬁi;frgrg g;,+ 8nj4 (r2 % 33) 4%
T 5 31 T 3 5
a 2, a
- 2 4 2 2
= 8i(_L 424y ;36027 )4 8 (r2 3)y (1 ,20°%)
a3 a5 a a3 a5
- 8ﬁﬂr2 8 4.81y4r2r2 1 o
23 = | 273
8> a0
Thus, I is now of the form,
> > =>> " P (N r -N.r,)
I =% 3.3 . L *=3=0=2
= N § ANAN g1%' _ »L% d r2d r3 31nrprgg e
gl 2¢& 22 Z, Pros
8z M) | N',g' (W)~

< e-(br2+cr3)

where b, ¢ are constants. We have now 4 types of integrals

involved, namely,

i :
(L sin Proz e"i“(ﬂ"£3'ﬂo£2)-br2—or3 5 s
! a“r,d-r
27 73
pr23
p i _ _
(2) S sin prys T (X' .rz-N.r,)-br, Cr;-¥r2)63r2d3r
2 3
Pr23

i
-jf—(g'.gs-ﬁ.ze)-br2—cr3 2 3. d7

(3)  sin pry
3 ;
S © T23 - 3

pr23

(4) i sin pr L[E2 (N =N )-br -cr .
23 =3 ='=2 3 2.2 33, 43
} r2r3 d r2d r3
Pr23
An exact evaluation of these integrals is not practical, We

note that the value$ of Ay is largest when N = (0,0,0), and
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decreases very rapidly as NI’ NZ’ N3 increases. In fact, only the
first few terms need be considered. In all of the integrals in-
volved, we have ultimately to multiply them by the product A%Aﬁ. s
and then perform the summation. A glance of the table for the

¥ivet five ceefficients of AN shows that the products with one

factor equal to A are much larger than any other products.
(0,0,0)

Rf?fzw\véln VAzzo Azdo A“; Aooo

'TQLie S/fc‘wfytg) I ’,/\&/MOYI}
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e |7 Y m7 — ou) ~'u3‘/ 01 74,,/ A,Vi

(U,U-OB :xrzn)C[ ,07,'27 "‘ca} *—‘027
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A
A
Aroo vmm7 6027 | o[ awm? Y
A
A

oo '0’07 *~o}7 “\(33/ ~o7 cﬁ/

Furthermore, all the integrals decrease as the length of
the vector (Nl,N2,N3) increases and the value is largest for

N or N' = O. Thus, it is quite reasonable to consider those

integrals with either N or N' equal to zero.

An obvious method to perform the integration is, of course,
to expand sin pr23/pr23 in terms of a power series and then

perform the integration term by term. But it was found that the

resulting series so formed is a slowly convergent one. Thus, we
shall adopt the former procedure and in a later section indicate

the error involved in such an approximation. $
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Hence, we set N = 0 in all of the above integral types.

All of them can be evaluated if we express the volume element

d3r2d3rsin terms of three lengths and three suitable angles(lo).

The results of integrations are:

po nl
(1) ={ sin PTyoz . (N .rz-N. r2)-br2-or3

3., 42
J DT, d’rnyd Ty
= (8}()2 be
. o %Yg.
(2) ;5 sin pros ﬂ%~(ﬂ'.£3—ﬂ.32)-br2—vr (r2+r3) d3r2d3 Ty

e
pr23

Gﬁ) 12b0§ + (8“ 2be &
4 515 §}5,3

(3) =f sin pr23 L——{N’.IB—N r2)—br2-cr

3 .22
BTy e roTry

dsréd3r3
= (82 241pc P€
Apo

(4) ={ sin pr ol (N'or -N.r,)-br,y-cr
ﬂ bProz e T Lo 273 2 .33 .3
J Proz 23 2

-2
= (8‘3’?)2 12be B +-(8702 32bcp2( ﬁﬁ;N.2_p2_02)

3

o

&

= b2+p2

5 = bo-p®

where o

T 2
c~+(p— )
-

AN
§]

c2+(19+__j£_ L

2
4 2 2, .2 5 2.2 2 =2 a2
: = 6cC +6c ( e W )=9c (p°= L N'7)=6(p s TS N')x
G Y f__g EANE [ T‘—~§

L 12 I
- 2 Pl mi A (- T - T4
12 L L L 4

(10) See Chapter 2 equation (2.13%)

- 4—(8ﬁ)2 2bc &
LTV 2 43 53 x°r°s

3
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All of these integrals iﬂvalvea only the length of (N
and because g'¢|¥*|) = |¥'|, g*(&ﬁ'lg)

1:75,7%)

. |5 2, we nave for the

swamation over g andg', simply a factor of 48x48 because there

- are 48 elements xﬁlwhe group.

Having @vaxuaﬁed the integrals, we can now perform the

summation over M ead N'. For %his, s total of five coeffieients

were chosen corresponding to the vectors (0,0,0), (1,1,1), (2,0,0),

(2,2,0) and (2,2,2)s The expression for wiich the summation is to

be performed is given in the appendix, The sum&atien is performed

- with the aid of the I.B.M. 1620 computer.

 Besults

The following table shows the resul®s obtained for different

values of p. In this ealvulaﬁlan, the C OMmoT: multlnlweablve factor

of (87)3/48 has been omitted.

P 2y Integral =
{total ceatrz%uﬁmaﬁ)

(arblﬁrary vnite

Values fron different
. valuss of W.

£0,0,0)(1,1,1)92,0,0)(2,2, o)(z 2 2)
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1n48'
0.93
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graph showing the angvlar correlation as a function ofp
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peak of the graph with an inverted parabola of the form
Yy = 1 - __b2p2

we get at half height b = 1/p. In our case, b = 3.3 2.

Estimation of Error

The error introduced by the neglect of coefficients for
Nf>(2,2,2) is assumed to be negligible since the product ANAN'
is very small as compared with the rest. Thus, normally for each
value of p the result consists of a summation of 25 terms as there
are 5 coefficients altogether. In the calculation we have set
N = 0, so the summation becomes only a sum of § terms. Since the
expression is symmetrical with respect to N and N', we have in
fact obtained the summation as a sum of 9 terms. Thus we would
like to account for the effect of the remaining 16 terms. That

is, the terms with the 4 sets of products

A

Aooohoos 3 Aooolonn 9 Aooolong s Agoohyqg

Aooohonp 0 Aooohong v Aoophopn 0 Aoophiin

A

Booohooo » Ropotooo 0 Popotooo 0 Aoootiin

A A A A - A

1118222 0 A1iteso 0 Ariiteoo 0 AMnrhin

In order to do this, we assume the integrals corresponding to
the 4 products in each set be equal to one with N' = 0, This
maximizes the estimate of error because the intefral with N' = O

has the largest value. Thus for the point p = 0, the absolute

. . s —{ - cool 0003 ; t000f ;. —~icoi ccoc3  wope§ + 002/ 0027 oe3
error is - - 0008 75 T { 5% T6aE | RE dbdé) roo2jale( mt R T Tiws
s22] cag/ v o5 "’/ P
— <034 JG3iT ilﬂ*f-é:r : o f Jov i T = do3 L wof o) -
88 Vgig  VIiE  ViiE 6/ 0986 ( JEUZ 760 v YESE J

which is negligible compared with 12,%7. Similarly, we can

calculate the error for the other points. It can be seen that
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the error involved is actually negligible,

Effect of the electrons in the ILi ions

We can get a rough estimate of the effect of the Li ion
electrons on the angular correlation. Since the first term in the
wave function fo® the.positron is very big compared with the rest,
we shall try to estimate the effect by taking only this term
for the wave function of positron. For the wave fumection of the

[£2
Li ion, we use a function obtained byhvariational method, namely,

WL]'_ - ;N( r21‘-r3)

where o = Z'/aO and 7' is the effective charge on the ion as
’ the
Avariational method, It is equal to 2,69 . a, is the

first Bohr radius. Thus y = 5.088°%,

found from

To get the expression describing thes effect, we go back
to egquation (4.9). After averaging over all diredtions of p, we

get

2 ga 3 a3 i om T e T (i
11 = Aoop | 4T84 TR0 §i§;222§{ze’“(ri*rzﬂlge“*(rl rsj)
. - _ .

I
(4.15)

In order to compare the results, we have to normalimed g}Li to
the same constant as the'q’H. Thus, setting . ;4&) = (yii,¢ii)
We have the normalisation constant K for‘FLi given by

2g —24(rz 7o) ;3. 43 2.2 v u _2
K-\ e 372 drdrz = T K = (o,W¥y) =717 x 0017777
T e T HE 5t

Furthermore we have to put back the constant that has been

dropped in the case of the hydride ion. Taking all these facts

into account, (4.15) becomes



(40)

- 24 x .99° x 1,167
&x2+ ﬁ2)4

Irs

This expression has a central maximum at p = O equal to approximately

0.2 and has the half width occurring at p = 2.043'1. Comparing

this result with the one for the hydride ion, it is seen that

the efféct due to the electrons of the Li ions can be neglected.
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CHAPTER FIVE

POSITRON ENERGY AT THE BOUNDARIES OF THE FIRST BRILLOIN

ZONE IN TiF

The method and mathematical expressions used in this
calculation are very similar to those in Tong's thesés(4). Thus,
the wave function of the positron in the LiF crystal is assumed
to be a combination of Bloch states of the form

Yy = e Ee @ (5.1)
where ¢’ (r) has the periodicity of the lattice. (5.1) is the
eigenfunction with eigenvalue Ek satisfying the equation |
Eﬁ :EEWK

in which H is the Hamiltonian of the system of a positron moving
in the field of the crystal, k is the wave vector ending on the

surface of the first Brilloin zone.

We now seek the trial wave function. It must have the same
& Simultaneons ezlcjenf;mcz“:én
periodicity as the crystal and must be imwverisni—under-the
Of all the

-operations—of—every group elements, Thus, as is in Tong's thesis,

we take it to be of thelform

K 1 e (XN, Z)
> o *
w N g g -
> A
N

Sl

where ) , ¥,, ¥, are half intergers, N is a set of them, and ‘Eg is

the eigenvalue of the group element,

The symmetry properties at the bottom and top of the first

Brilloin zone are different, At these boundaries, the value of é;g
LIBRARY

OF aNIToRh
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take on the following values(11>.
e - {1 for inversions
g =11 for permutations
and €, = 31 for inversions
g (-1 for permutations

We now meed the average value of the Hamiltonian H. It is
given by ¢ =<{H> = (¢ lHIE)
(g (@)
with (I |H]$)= EzA A, (X, [ HIX,. )

o
- % (;’ A .A. jl//%f!

> ¢ :
where o o= W #2,%2 - ;§‘ ol
C —‘—g( R gg g Cu g(f/)g T
o g 8 A’,g(xv)%[ g el
€

and C .are the Fourier coefficients of the crystal potential in

LiF, PFurthermore,

1= 8] o
(EIHIF)
We can now minimize é - =T
; CEld)
parameters AW' Our problem is the same as to find the extremum

with respect to the

of (¥[HI¢) subject to the condition(L/ FJ)= 1. Thus, we have

3* [‘fi’/ (&) - }\(‘f?"”)] = 0 for each X
SAN
and so %§X5 ‘A - A&, = O for each N (5.2)

Following the same procedures as in Chapter 3, we make a convention

to label A”, as a column wector so that (5.2) becomes

ié; N

)
i

where o is the matrlx &5,. It is symmetrical with respect to
5%

R

(11) Jones: Theory of Brilloin Zones and Electronic States in
crystals Chapter 3. (North Holland Publishing Company,

Amsterdam)
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N and N¥'. The problem thus reduces to one of diagonlaizing % .
The smallest eigenvalue gives the minimum energy. Such a
diagonalization was performed with the aid of the I.B.M. 1620

computer,

Results
The results of calculation give a value for £ at the boundaries
of the first Brilloin zone equal to 1.088 and 1.09% a.u. of

| energy. This gives a gap of 0.00Sa.u.ofenmyy which s ©.07 e v.

Since the crystal on the whole is electrically nemtral, the
average value of the crystal potential over space would be zero,.

Thus, the correction due to shift of origin of the crystal potential

i1s .
shift Sous 83§ R
= Cpo0

e [ 2 . 4.7'}
12 L x3 < pe-

= 12,08 e.v.

(£/H1&)
For the case of positron, the true energy is then~7?§753~ - 12.08e.v.ﬁ;

Thus the energies at the boundaries are 2.72 and 2.79 e.V.
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CHAPTER SIX

DISCUSSIONS AND CONGIUSIONS

The angular correlation of the annihilation ¥ rays in LiH
crystals as a result of positron interaction with electrons in
the hydride ion has been calculated. The graph of angular
correlation as a function of momentum gives a width at half
height equal to 0,318 L., If the peak of the graph is fitted with
an inverted parabola of the form y = 1 - lbzpz, then at half
height we get a value of b = 3.3&. This has to be compared with
(6)

the experimental value of 1,28 by Stewart and the theoretical

value of 5.2% by Neamtan et al<7).

Gol'danskii et a1(8> in a recent paper have reported that
in IiH a close fit to the experimental angular correlation curve
is achieved. They used a self-consistent field method to calculate
the wave function of the system and obtained for the ground state
an energy of the e+H” system to be ~1.335 a.u. Neamtan et a1(7),
however, obtained a value of -1.517 a.u. by using a variational
procedure., This means that the result of Gol'danskii et al is
2,48 e.v, higher tham that obtained by Neamtan et al., However,
the results which Neamtan et al obtained is an upper béund , and
the big difference in the energies indicates that the wave

function used by Gol'danskii et al cannot be a very accurate

description of the system,

LN l ‘i—
e ctoyr ©
i it ef A Kayviwer byi I fzz v j:

The present resulty is however, 2.75 Himes—nerrower than
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the experimental value. This can be attributed to many factors.
Pirst, the contrihutions‘from the electrons of the lithium ions
have been neglected. However, as can be seen from the estimate
obtained in Chapter 4, its effect is small as far as the half
width is concerned, because the amplitude of the central maximum
of the angular correlation curve is very much smaller than in
the case of the hydride ion. Its contribution is significant

only at large values of momenta. Thus, one can regard the con-
avising

tribution to the angular correlation as axises solely from the

positrons interacting with the electrons in the negative ion.

Polarisation effects as well as the annihilation from
excited states have also been neglected. These effects would tend
to ingrease the energy and momentum of the system and as a

result, the angular correlation curve would be widened.

A remark about the positron wave function is in order. It
is to be noted that the constant term in the expansion is large
compared with the rest of the terms. Furthermore, the funcetion
does not seem to vanish at any point in the crystal lattice. oo
This is not at all too unreasonzble because, after all, the
potential of the crystal was Fourier analysed and only a finite
number of terms have been taken. Thus, the Coulomb term is no

longer present and so we do not necessarily require the wave
function to vanish,
It is interesting to see what is the average energy of the

positron if we just take the first five coefficients in the

expansion and then compare it with the value obtained when all
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the 14 coefficients were used, To this end, we pick out the
corresponding 5x5 matrix in the matrix representation of the
Hamiltonian. Thus we hawve.the average energy equal to

(‘0013—003,“009,0:]-,'99) 8.8 o75 053 "04-0 023 “'oOl
075 606 086 ""66 037 -003
053 086 307 "‘067 04‘2 .mg
"04-0 "-66 "067 304- "041 ol
23 3T W42 -4l ,53) .9%;
which is .43%1 a.u. This has to be divided by the length of the
vector (-,01,-.0%,-.09,.1,.99) which turns out to be .99. Thius
the average energy is .43l a.,u. and the value obtained from
I.B.M. computer using 14 coefficients is .429 a.u. Thus, it is

seen that the approximation which we introduced in the evaluation

of the angular correlation in Chapter 4 is justifiable,

The positron energies at the boundaries of the first
Brilloin zone in LiF have been found to be 2.72 and 2.79 e.®.
respectively making a gap of .07 e.v. The relation of this energy

gap to the Ore gap in the crystal is shown in the following

figure:- b9 ev.
A /7:49 ure S/;zowfng The
oo e e e ]90511-)/0("1 9(\/) 7_:7? 2.y /’)oS/fmm 9&/’ amdd e
“ 2.72€V-
' Ove gap
‘ ‘ Ora 9’&/9
O
—Elew, T

It is seen that the positren-gap falls within the Ore gap but is
S0 narrow as to bave little effect. Thus, no definite conclusion

can be drawn as to why the 772- component in LiF should be absent.
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APPENDIX 1

Table of the Integrals ceccurred in (2.10)
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APPENDIX 2

Fourier Coefficients for the wawe function of

vositron in ILdiH

Coefficient

Apaa

Bago

8440

Ayoo

Ag20

£200

333

Azzy

Azyq

Apoo

Aro0

A500

Ayq7

%000

Value at minimum energy

-.,00073540
-.00223532
-,00199524
~-.00500601
-.00721032
-+.00560202
~.00016465
-,00046848
~-.00012%55
-+.01143770
-.0%196170
-,09282904

«10410818

. 98958393
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APPENDIX 3

Expression for angular correlation over which summation is

to be performed

The Z:X/b vession 7S
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SUPPLEMENT

The following supplement gives a list of the computer

programmes used in this thesis, We whall give below a short

explanatory note to each of them,

‘Explanatdry notes

Programme 1

eecUyYYing

In this programme, we vary the two variables eeeuvxred in

2
- (2172) 4 k &
the expression wfizaﬂﬁgar,where ACS, 7)), B(s, ), o 5;7’) are

given by equations (2,182), (2,18b) and (2.18c) , independently.
That is, we first keep one variable fixed and vary the other until
an extremum value 1m energy is obtained. Then we keep this variable
at the value which corresponds to an energy extremum and vary

the other variable in the same fashion. This procedure is done

by means of a "Sense Switch" statement,

Programme 2

The logic in this programme is straight-forward.

Programme 3

This programme is very much similar to the one used by

(4)

in the calculation of the Fourier Coeffiecients of the
NIrN2+N3

Tong
Crystal Potential in LiF. The factor (-1) is taken

cared of by means of an "IF" statement.,
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Statements %, 16, and 17 take care of the range of the

summation, The results are being punched out.,

Programme 4

This programme is the same as the one used by Tong in
the calculation of matrix elements of positron in LiF. The
programme for the diagonalization and finding of eigenvectors

is available from I.B,M. library.

Programme 5

The logic in the summation process is straight forward,

Here the sum ;Ezmﬁ(mj has been calculated before-hand, for

4

the values of Nl s N2 , N3 used,
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200
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Programme 1

-

Programme for the variation of @ ,. in the expression

FORMAT (Fl4,.8, F14.8)
FORMAT (El4.8, El14.8, E8,2)
PORMAT (Bl4.8, El4.8, E8,2)
DIMENSION A(4), B(5), c(2), D(31), E(31), F(31), G(31)
IF (SENSE SWITCH 2)20,21
READ 4, P,Q,R

G0 TO 2

READ 10, S,T,U

70 5 I = 1,31

XTI = T

IFP (SENSE SWITCH 1)200,210

X = P (XI-16,)*R*P

Y = Q (XI-16,)¥R*Q

G0 T0 22

X = S+(XI-16,)*U*T

Y = T+(XI-16.)%¥U*S

7 = X=Y

A1) = 4.%(XHY) /(Z*T*B)+24 o [ (Z¥T*T) +192 ¥ X¥Y [ (B*ZXIXT*7)

A(2) = 1440 ¥X¥T*(XrY)/ (ZrTHTRTHTHTHT )+ 4 o F (K¥K) =4 ¥T / (X¥K*X)

A(3) = 24, /(X¥X*X)+156, / (X¥XXXXX) -48, ¥Y / (X¥X¥X¥X)
_300.%Y/(X%X%X%X%X)

ACL) = 156, %(X+Y)/(Z*L*L*T*7)

B(1) = 11./(4*X¥X¥K)+109, /(4. *¥X¥X¥X*¥X)+1125., /(8 . ¥X¥X*X¥X*X)

B(2) = =72./(Z*5%2%%)+510. / (Z*T¥E*T* %)+ 96 XK/ (Z*T*L*E¥T)
+44/(Z*T%Z)

B(3) = —1800.¥X/(ZH¥Z*G*T¥T* 7 )+ LAA40 ¥ XXX/ (AR L¥ Z*EXT¥TX )
-1,/ (X*¥X*¥X)

B(4) =,3./(X%Z*Z*Z)—9./(X*Z*Z*Z*Z)-l./(4.*X*X*Z)

B(5) = 1./(4.¥X¥X*7%7)=3, /(B ¥XXXXZXT*T)

c(1) = 2./5%*Z*Z);24.*(X'Y)/(Z*Z*Z*Z*Z)+150./(Z*Z*Z*Z*Z)
+2, [ (X¥X*X

c(2) = 720.*X*Y/(Z*Z*Z*Z*Z*Z*Z)+24,/(X%X*X*X)+150./(X*X%X*X*X)

D(I) = ACL)+A(2)+A(3)+A(4)

E(I) = B(1)+B(2)+B: (3)+B(4)+B(5)

P(I) = c(1L)+C(2)

(1) = 13.6%E(I)*E(I)*X/(D(I)*F(I))

PUNCH 1,X,Y,G(I)

PAUSE

G0 TO 11

END
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Programmg 2

Curve fitting, expression (2,21)

1 FPORMAT (E8.2, 10X, Ell.5)

G = +0017777/((.3393)%%6,)
X = 09123
Y = 2,0333
4 = 3393
2D0 31 =1,7
XI = 1
R 4 (XI-1,)%,2

W o= X+Y

Al = 1./C4 ¥T*Y*Y )+ Z*T¥RIR/ (2, ¥Y¥Y*Y )43 ¥ GX T [ (2, ¥T*Y*Y*Y*Y )
A2 = ZXZ¥ZXTFR¥RIRIR/ (4 KVRYHY )+ 5 KGR EXEXR¥R/ (2, ¥ Y #Y*Y*Y*Y )
A3 = 45 ¥ERLRTXT [ (8 ¥YHRYRYRYHT*T*Y)

Bl = 2/*X¥*R

A = (AlvA2+A3)*4 *EXP(~-E1)

Bl = Ll./(4 *¥X*X¥X)+ Z¥ZFR¥R/ (2, ¥XXXHX)+3, ¥ E¥ G/ (2 ¥XFXKX*X*K )
B2 = Z¥ZXZXTIRIR¥RIR/ (4 ¥XFXFX )+ 5, ¥GFEX LR LHR¥R/ (2, ¥X¥XHXFL*X)
B3 = 45, ¥E*Z*Z*7 /(8 ¥X¥XFLFXFX*X*Y)

B2 = 2,%¥Y¥R

B = (B1+B2+B3)*4,*EXP(-E2)
C1 = 2./ (WH*IT)+ 4, ¥ ZXZH¥RAR/ (WHWHW )+ 48 , ¥ Z%Z / (WFT*THU*T )
G2 = 2.,%ZXZXZ*ZFR¥R¥R¥R/ (WHWHW )+ 80 *AX X B* Z¥R¥R/ (WrWXW*T*W )
03 = 720, %ZxZ*Z%* 7/ (UHTW*T*A*T*y )
E% = W*R
G = (C1+C2+0%)*8,*EXP(-EF)
H = A+B+C
P = 8.¥H*R/G
Q = L0G(P)
3 PRINT 1,R,Q
PAUSE
END

nnun




WO

16

17

18
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Programme 3

Fourier Coefficients of Crystal Potential im LiH

Expression (2.26)

FORMAT (11,T1,I1,F12.8)
DIMENSION B(4)
ATPHA = (4.152%0,5292)%*2,
BETA = (1.805%0, 5292)**2/
XL = 2.04%/0.5292

8.0
8
8
T

H

als

X
(A%*3,14159%%,14159) /(XT*XL)

.0

.0
*¥X T+ XI*XJ+ XK*XK
A®3,

2,/(e+ALPHA)
1.

~
oo R

) =

) = 1.84/(C+BETA)
XT+XIJ+XK

(N-(N/2)%2)8,8,9

) = B(l)rB(2)

70 10

) = B(2)-B(1)-2./C

) = 4.¥3, 14159*B(4)/(XL*KL*XL)

XT

J XJ

K = XK

1J = I+J

JK = J+K

1P (IJ- (IJ/2)*2)2,

w (JK—(JK/Z) 2)4,4

PUNCH 1,I,J,K,B(3)

XK = K-1

1P (XX)16,7,7

XJ = J-1

XK = XJ

IF (XJ)L7,7,7

XI = I-1

XJ = XI

XK = XI

P (X1)18,7,7

PAUSE

END

HEWQUWHZE DWW
r\r\Or\lq
N P> -P

it

o~ nu
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Programme 4

Matrix elements for the ground state of e+ in LiH

(4)

This programme is the same as the one used by Tong

for the calculation of matrix elements for the ground state
of et in IiP. The only change made here is to replace the

corresponding parameters for LiH,




Summation of the angular correlation expression as given

(56)

Programme 5

in Appendix 3

9
1

130
131
132

7
10
11

FORMAT (I1,I1,T1,E14,.8)

PORMAT (F4.1,10X,74,1,P4.1,74,1,E14,8)
DIMENSION X(%),C0(3%,3,3)

WL = 3.14159%3,14159/(2,043%%2,043)

T = ,9123%

U = 2.0333

V = 03393

RAL = U¥U*(1,/(8, *T*¥T*T)43 ¥V*V/ (4 FT*T*T*T*T))

RAD = UXU¥AS, ¥V*V*V*V/ (16, ¥T*T*T*T*T*T*T )

RA = RAI+RA2

RBL = T*T%(1,/(8,*U*U*U)+3 . ¥V*V/ (4. ¥U*U*U*U*T) )
RB2 = T*T¥*45,¥T*V*V*V/ (16, *UxU*U*U*U*U*T)

RB = RB1+RB2

RCL = T¥U*(1,/(B%%%% )+ 24 ,¥V*V/(Z*Z*Z*7%7) )

RC2 T*U*360.*V*V*V*V/(Z*Z*Z*Z*Z*Z*Z)

RC = RC1+RC2

RD =.25*U*U*V*V*(1./(T*T*T)+3.*V*V/(T*T*T*T*T))
RE =, 25%T*Tx7*V* (1, /(U*U*T) + 3, *V*V/(U*U*U*T*T) )
R¥ :2.*T*U*V*V*(l./(Z*Z*Z)+lZ.*V*V/(Z*Z*Z*Z*Z))
RG = 8.*V*V*V*V*U*U/(T*T*T*T*T)

RH = 8.*V*V*V*V*T*T/(U*U*U*U*U)

RI = 256.*T*U*V*V*V*V/(Z*Z*Z*Z*Z)

RJ = 3.*V*V*V*V*U*U/(T%T*T) '

RK = 3.*V*V*V*V*T*T/(U*U*U)

Rl = 24°%V%V*V*V*T*U/(Z*Z*Z)

READ 9,1,J,K,G

I = I+1

J = J+l

K = K+l

C(I,J,K) = G

IP(K-1)1%0,130,3
I¥(J-1)1%1,131,3
IF(1-1)1%2,132,3

CONTINUE
ASOQO

QR=48,

QN = SQRTF(Q)
X(l) - 200
¥(2) = 2.0
X(%) = 2.0

TP(x(1)-%(2))10,11,10
IR(X(2)-x(3))12,13,12
IP(X(1)-X(3))14,15,14




12
13
14
15
16

17
18
19
20

21
22

TR(
Iw(
IR(
IR(
S5 =
GO
S =
GO
S =
e1o)
S =
GO
S =
G0
5 =
SN
o
X

WB
We
WD
WE
WE
WG
WH
WI
Wd
WK1
WK?2
WK
WML
M2
_WNI
Pl
P2
P3
P4
P5
P6
P
P8
P9
P10
P11

(57)

X(3))16,17,16
%(2))17,19,17
X(3))17,18,17
x(1))20,21,20
1.0
70 22
2,0
T0 22
4,0
70 22
8,0
70 22
6.0
T0 22
48,0
SQRTR(S)
x(1)
X(2)
X(3)
IX+1
MX+1
W+ '
K(L)*X(L)+X(2)*X(2)+X(3)*X(3)
SQRTF(W)-
U*U+ A*A
T*T+A¥A
U*U=-A¥A
T*D=A% A
U*U+(A-WN*WLN ) * ( A=WN*WLN)
P 4+ ( A=WN*WILN ) * ( A-WN*WLIN )
U*U + (A+WN*WILN ) % ( A+WN*WLN )
P* T ( A+WN*WLN ) * (W+WN*WLIT)
A¥ A+ WIHW
A% AWI*W
=6 FTHDHPXDHTHT 4 § K TRTRTHDHRTL G, ¥ THTRYT*YT
=T*D% (4 ¥ WIHWI-WI*TT ) =6 ¥WIXWI*¥WT
= WKL1+WK2
=6 FUXUXTXU*U*U +6 , ¥UXU*UXU*WI=Q , ¥UXU*TI*J
=U*U* (4, *WI*¥WI-WI*TT ) =6  ¥TI¥TI*WJT
= WM1+Wni2
=RA¥ (1, /(WAXWA¥WEXWG) )+ RB* (1, / (WB*WB*WF*WH) )
=RC* (1, /(UB*WB*¥WE*WG )+ 1, / (WAX¥WAXWF*WH)
=RD* (6, %W/ (WAXWARTAXWAXWEFWG )+ WM/ (WAXWARTAXWESW ExWEXUEXWE*TG ) )
—RE#( 6, *WD/ (TB*WB*WB*WB*WR*WH )+ WK/ (WB*WB*WB*
~RT* (6, *WD/ (WB*UB*WB*WR*WE*TG ) + 6 , ¥WC / (WAXWAXWA*TA*WP*TH)

“RE* (WIL/ (i B*WB TR WEXWEXWGFWGHG )+ WK/ (WA TAXWR*WRR TR IH*TH) ) -

——RG* A% A% (TLFT-WA) / (WAXTAFTAXWEXTEXWG*WG)

=~RE* AX A% (WIFW-WB ) / (WB*WB*WB* WE*WE*WH*WH)

= -RI*A% A% (TL*T-TA) / (TB*WR* TR* TEX T EX GG \
——RT*A* A% (WIFW-TB ) / (WA JARWAR TR* WE*WRNWH ) 1/ 7 N1
SRIFWOHFINM/ (TAXWAXWAXWAXWEXWEXWEX TGxG*TG)

RS FR* RS WH*WH*WH) )



24

25

26
29
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P12 — RE*WDHWK/ (TB*TB*WB*WBXWEr WE*WE*WH*WH*WH)
P13 = RIFWD*WML/ (TB*WB*WB*WB*WEXWEXWEXWG*WE*WG)
P14 RLAWCHWE / (TAXWAX WAXWA*WR*WE* WE* WH*WH*WH )
PP1 =P1+P2+P3+P4+P5+P6+P7

PP2 —P8+P9+P10+P11+P12+P13+P14

P = (PP1+PP2)*48,%¥48,%C(L,M,N)*C(1,1,1)

P = B/(QN¥*3N)

PUNCH 1,A,%(1),X(2),X(3),P

X(3)
IR(X(3)
X(2)
X(3%)
IFr (X
X(1)
X(2)

nun

e N

7~~~

2

X(3)

IF (X(1))26,7,7
A - A+O.l

Ir (A-1,.2)8,8,29
PAUSE

BEND




