
Intelligent Content-Based Routing for

Enhanced Internet Services

By

Suresh Jayaraman

A Thesis

Submitted to the Faculty of Graduate Studies at University of Manitoba

in Partial fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Department of Computer Science

University of Manitoba

Winnipeg, Manitoba

O Suresh Jayaraman, 2001

l*l nt¡$onatr-iurav
!,:o["jffiå:"

nationare

Acquisitions and Acquisitions et
Bibiiographic Services services bibliographiques

395 Wellingrton Street 395, rue Wellington
OttawaoN K1A0t.¡4 OttawaON K1A0N4
Canada Canada

ta Volte rélèmæ

Outãle Noistélérencâ

The author has granted a non- L'auteur a accordé une licence non
exclusive licence allowing the exclusive permettant à la
National Library of Canada to Bibliothèque nationale du Canada de
reproduce, loan" distribute or sell reproduire, prêter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thèse sous
paper or electronic formats. la forme de microfiche/fiIm" de

reproduction sur papier ou snr format
électronique.

The author retains oumership of the L'auteur conserve la propriété du
copynght in this thesis. Neither the droit d'auteur qui protège cette thèse.
thesis nor substantial extacts from it Ni la thèse ni des exfraits substantíels
may be printed or otherwise de celle-ci ne doivent êûe imprimés
reproduced without the author's ou autrement reproduits sâns son
permission. autorisation.

0-612-76965-8

Canad'ä

THT I¡1Y¡1¡BRSITY OF MÄNITOBA

FACULTY OF GR.A.DUATE STT]DTES

COPYRIGHT PERMISSION PAGE

TNTELLIGENT CONTENT-BASED ROUTING FOR ENHANCED INTERNET
SERVICES

BY

Suresh Jayaraman

A ThesisÆracticum submitted to the Faculty of Graduate Studies of The University

of Manitoba in partial fulfÌIlment of the requirements of the degree

of

Master of Science

Suresh Jayaraman @2001

Permission has been granted to the Library of The University of Manitoba to lend or sell copies
of this thesÍs/practicum, to the National Library of Canada to microfilm this thesis and to lend
or sell copies of the film, and to Dissertations Abstracts International to publish an abstract of
this thesis/practicum.

The author reserves other publication rights, and neither this thesis/practicum nor extensive
extracts fron it may be printed or otherwise reproduced without the authorrs written
permission.

To Mom and Dad tuith Loue...

Abstract

An Intelligent content-based router should be designed to analyze data and find a suitable

server for processing a client's request quickly and efficiently. Current content routers

examine only the HTTP based URL request and routes the request to the "best" server for

processing. These routers fail to examine different types of TCP-based user requests. The

content router developed in this thesis examines all type of TCP-based requests. The

content router is a core router that simply forwards packets to the edge routers for

delivery after performing its content based processing. This router can be replicated to

achieve higher performance in large networks. Moreover, by adopting a formal design

approach, which is subject to mechanical evaluation using the Z-EVES tool, the

correctness ofthe design is ascertained.

The objectives of this thesis are to:

Provide an object-oriented design of an intelligent content-based router (a

network device that routes packets based on their contents) for e-commerce

applications using the UML paradigm.

Model the design using the Z specification language to guarantee correctness and

prove the reliability of the design. In particular, Z notation will provide the

capability to capture both dynamic and static features and operations of the

proposed content-based router.

Provide a prototype implementation of the design as a proof of concept.

Acknowledgements

First I would like to thank my supervisor Dr. Sylvanus Ehikioya for generating the initial

ideas for this thesis and for guiding me through out my thesis and being there when I
needed him.

My special thanks to Dr. Jose A. Rueda of TRLabs for providing me with a great research

environment. Thank you also for providing me moral and technical support through out

my research period atTRLabs.

I would also like to thank Dr. Muthucumaru Maheswaran for making his lab (Advanced

Network Research Lab) available for implementation of the concepts in this thesis and

providing initial network programming assistance.

I also thank Dr. Peter Graham for providing useful comments and excellent editing of the

initial thesis proposal.

A special thanks to Dr. Ruppa Thulasiraman for attending all my mock presentations and

providing a feedback for the work I had done. I also thank him for reading my thesis and

providing me his comments.

I would also like to thank the members of my thesis committee Dr. Sylvanus Ehikioya,

Dr. Muthucumaru Maheswaran and Dr. Jose A. Rueda for accepting to examine this

thesis.

Finally, a thanks to TRLabs as an organization for providing the necessary financial

support.

I thank everyone at the offices of the Department of Computer Science at the U of M,

particularly Ms. Lynne and Ms. Susan for all the administrative suppott they provided

during my study.

I thank my friends (Chintu, Rajesh M, Rajesh R, Arvind V, Arvind S, Shony, Kumaran,

Ganesh and Gayathri) for their friendship and suppoÍ in completing this thesis. I also

thank Deepa for proofreading my thesis module by module. A big "thank you" to

everyone for being good friends and supporting me in many different ways.

This section would be incomplete if I do not thank my family. I thank my brother

(Prasad), mom and dad for all the support, patience, perseverance, affection, confidence

and prayers without which I would not have made it this far.

I finally thank GOD for everything he has given me.

lu

Contents

2. RELATED WORK AND BACKGROUND LITERATURE6

2.1 Exrsrwc MpcseNrsMs6

2.2 Pnopucr SuRvpy11

2.3 SurvrveRy.............12

3. SYSTEM DESIGN............. L3

3.1 CoNrpNr RourpR: DEscRpuoN............ 13

3.2 N¡rwonr DesrcNI4

3.2.1 Intelligent Content Router for Metropolitan Networks - Optíon A. I4
3.2.2 Intelligent Content Router for Metropolitan Networks - Option B. I6
3.2.3 IntelLigent Content Router for Metropolitan Networks - Option C. 17

3.2.4 Advantages18

3.2.5 Intelligent Content Routing for Wide Area Networks...........18

3.2.6 Global Network Structure...20

3.3 Sysr¡u ARcnn¡cruR8...........22

3.4 Sutr¿lvlnRY............24

lv

4. SPECIFICATION OF INTELLIGENT CONTENT.BASED ROUTING.25
4.1 Pnoel-pu Moosl aNo DescRrprroN25

4.2 Sp¡cmlcATroN26

4.3 Surr¿rr¿aRy.............44

5. OBJECT MODEL AND FUNCTIONALITY45

5.1 Pacxsr I^rsp¡croR50

5.1.1 Functíonality.....50

5.1.2 Implementation Strategies.52

5.2 Resouncp INsp¡croR.............54

5.2.1 Functionality.....55

5.2.2 Assumptions..........58

5.2.3 Implementation Strategies.59

5.3 ScHBour-pR UNrr59

5.3.1 Load Inspector..60

5.3.2 Cost Manager..63

5.3.3 Scheduler...........64

5.3.4 Cache Manager68

5.4 Surr¿rr¿aRy............68

6. IMPLEMENTATION........69

6.1 Sysr¡u OvsRvmw69

6.2 Uspn Sceruezuo14

6.3 Ivrpl-¡vrENTATroN Resulrs16

6.4 SuuvaRy............78

7. CONCLUSTON...79

7.1 Corr,rpnRrsoN BETwEEN Exlsrmc CoNrsNr RoursRs AND NEwLy

DESTcNED CoNreNr Rourpn....g0

7.2 SuuuaRy oF CoNrnreurroNs...........g0

7.3 FurunpDn¡crroNs...............g1

List of Figures

3.1

3.2

3.3

3.4

3.5

3.6

4.1

4.2

4.3

4.4

4.5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

Design for Metropolitan type of Network - Option A

Design for Metropolitan type of Network - Oprion B

Design for Metropolitan type of Network - Option B

Intelligent Content Routing - Wide Area Network.

Global Network Structure

Intelligent Content - Based Routing Architecture......

Resource Table

Data Location Table.

System Status Table

Proximity Table

Schedule Table.

I3

15

I6

18

20

22

32

JJ

35

36

38

44Class diagram for Content-Based Router

Activity diagram for Content-Based Router. 46

Sequence diagram for Content-Based Router. 47

Deployment diagram for Content-Based Router. 4g

Packet Inspector - Class Diagram. 49

Packet Inspector - Sequence Diagram. 50

Packet Inspector - Activity Diagram. 52

Resource Inspector - Class Diagram. 53

Resource Inspector - Sequence Diagram. 54

Resource Table. 56

Resource Inspector - Activity Diagram. 5l
Data Location Table. Sj

Scheduler Unit - Class Diagram. 58

Scheduler Unit - Sequence Diagram. 59

System Status Table. 60

Activity Diagram fol Load Inspector. 6l
Proximity Table. 62

vll

5.18 Activity Diagram for Cost Manager. 63

5.19 Schedule Table. 64

5.20 Activity Diagram for Scheduler.... 64

6.1 User Request and Tokenized Data.. 6g

6.2 Screenshot-Resource Table. 69

6.3 Screenshot-Data Location Table. l0
6.4 Screenshot-System Status Table. 7l
6.5 Screenshot-Proximity Table. 7 |
6.6 Screenshot-Schedule Table. j2
6.7 Best Selected Server. 13

6.8 Overview of the Intelligent Content Based Routing Architecture............ i4
6.9 Performance test results for Load Inspector Algorithm. 15

6.10 Performance test results for Proximity Algorithm..... j6

vlll

Chapter 1

Introduction

As the number of Internet users and sites continues to increase rapidly, demands on

network transmission bandwidths keep growing and the networks connected to the

Internet often become heavily loaded. As a result, locating and accessing relevant

information in large distributed systems is sometimes difficult and slow. This limits the

practical applicability of wide area distributed systems. To address this problem, efforts

must be made to use the available bandwidth more effectively.

1.1 Motivation

Transmission links alone do not make a network. Other components such as switches,

routers, etc. (and the software that run them) are also parts of a network. Of particular

interest to this thesis is the router. A router is a device that is used for forwarding packets

from one network to another. Every packet must pass through, typically, many routers.

The increase in demand for network bandwidth also places a huge demand on network

routers [GLM98] and router saturation has an impact on the performance of many

distributed computing applications, including Electronic Commerce. One way to
overcome this problem is to develop innovative new router architectures that do routing

based on packet content in an effort to minimize wasted bandwidth. The design and

prototyping of such router architecture is the focus of this thesis.

Current routers do not examine packet data; rather they blindly forward packets based

solely on their destination address (which is contained in each packet header). While this

minimizes router processing and thereby increases potential router throughput, it also

limits routing flexibility. With content-based routing, it is possible to optimize routing

based on application characteristics. This is not possible with conventional routers. Such

optimizations can be applied to increase the efficiency of bandwidth use in the Internet.

1.2 Goal of the Study

The main goal of the thesis is to develop an intelligent content-based router that examines

the data in a packet, and then routes the packet to a destination where it can be most

quickly, cheaply, and efficiently processed. Before forwarding packets to their respective

destinations, the router examines the data in each packet and based on the data itself as

well as the network state, will determine a suitable destination address that can optimize

processing of the packet. Thus, a packet may be redirected to a different destination

address than was originally specified. This can be used to improve network bandwidth

utilization by replicating network services (e.g. web servers) and doing in-network

selection of the "optimal" replica to use for a particular packet/request.

The ¡outing mechanism proposed in this thesis uses a set of metrics (including such

network state information as the cost, speed, and traffic over various links as well as

server proximity and workload) in making decisions about which destination to forward

packets to. The job size is not considered as a metric in this thesis. The transmission cost

of each packet depends upon various factors like network bandwidth, general health of
the network (i.e.) status of participating servers and size of each packet. This routing

mechanism, which we refer to, as Intelligent Content-based Routing will also be useful

for any distributed system which, can offer the required data at different network

locations. It is also extendable to other optimizations based on packet content. Providing

fast response, scalability, and consistent operational behaviour will be the key challenges

in my router design.

1.3 Contributions

This thesis proposes a new design for

addresses the various problems, such

intelligent content-based router. This design

network traffic, load on different servers,

an

AS

replication of data on different servers and implements a new solution to overcome these

problems.

The main contributions of this thesis are:

Provides a new architecture for an Intelligent Content-Based Router.

Provides various network designs where the newly designed content router can be

used effectively and efficiently.

Provides an object Model for the newly designed content-based router.

Provides a Formal Specification of Intelligent Content-based router using the Z

specification language to prove the correctness and reliability of the design.

Provides a prototype implementation of the proposed design.

The content router proposed in this thesis consists of three major components embedded

within the content router. They are the Packet Inspector, the Resource Inspector and the

Scheduler Unit. We developed new algorithms for implementing the Resource Inspector

and the Scheduler. The complete details of each component are discussed in Chapter 3

(System Design).In this thesis, we utilize much of the application information from the

participating servers and from their status. The designed router is capable of finding the

load and resource information on each sever dynamically and provides the collected

information to other components of the router in order to process the user's request. It
must be noted that the implementation of this thesis has some assumptions, which is

described in Chapter 5 (Object Model and Functionality). Finally a user scenario is

provided with some screenshots to explain how the newly designed content router can be

utilized in real time E-Commerce applications.

1.4 Benefits

The proposed architecture provides a verified, content-based routing technology that can

be used to build application-specific intelligent software routing environments. Such

environments can be exploited to create more efficient geographically distributed

databases and other similar applications [E00].

Intelligent content-based routing can provide the following key services: (i) content-

based routing, (ii) traffic optimization, (iii) economically scalable services that provide

appropriate response to varying processing loads, and (iv) the ability to track content

requests and respond with appropriate content.

Of particular current interest, content-based routing can be used to deliver optimized Web

response time, which is critical to the success of e-commerce applications. That is,

content routing enables the transparent selection of the best site and server for

processing/delivering the requested content thereby, providing an enabling technology for

more efficient distributed Web site processing.

It is expected that this thesis will also lead to other application-level content routing

applications and, potentially, to the development of a hardware intelligent content - based

router.

1.5 General Assumptions

To develop an efficient Intelligent Content-Based router, our architecture makes the

following assumptions.

Cost of Transmission: In this thesis transmission cost was not considered while designing

the content router. We assumed that the transmission cost is minimal and equal for every

packet that is being processed. But, in general, in order to consider transmission cost

various factors like packet size and network bandwidth have to be considered also.

Nature of applications: Since this thesis focuses on issues in E-Commerce, our

architecture was exclusively designed for different applications of E-Commerce. Our

architecture is made flexible to support other distributed applications.

Job size: The size of the job and time taken to transmit the user request is not considered

as a metric in this thesis. The main reason for not considering these two metrics is they

will inc¡ease the processing time of each packet. Therefore to avoid the processing delay

job size was ignored.

MPLS: The concept of Multiprotocol Label Switching is used in this thesis ro label a

processed packet. This approach avoids multiple processing of the same packet.

Health of the network: ln general the health of the network is evaluated based on the

status of the participating servers. In this thesis, status of each participating server is

obtained before routing the user request to the appropriate server.

Data compression and encryption: In this thesis, security issues are ignored because they

are not crucial to the central objective of the router design. So a user's request is not

compressed or encrypted for transmission over the network.

1.6 Organization of Thesis

The rest of the thesis is organized as follows. Chapter 2 (Related Work and Background

Literature) provides some necessary background and related work in the area of content

routing design and architecture. Chapter 3 (System Design) discusses the various network

designs and new architecture for the content router. A formal specification for the

proposed content routing architecture is presented in Chapter 4 (Specification of
Intelligent Content-Based Router). This chapter provides a formal design approach where

the designed system is mathematically proved to be correct, which helps in developing a

robust and fail-safe system. Chapter 5 (Object Model and Functionality) presents various

object models for the designed content router and explains the functionality of newly

designed content router. Chapter 6 (Itnplementation) contains the implementation details

and some screenshots explained with a user scenario. In Chapter 7 (Conclusion and

Future Work) we present a summary of our work and contributions. We conclude

Chapter J, and this dissertation by providing an outline for future research directions.

Chapter 2

Related Work and Background Literature

This chapter introduces the reader to the necessary background and related research work
in content-based routing. Several mechanisms to improve the speed of information

retrieval and message delivery and to enhance the efficiency of network applications have

been proposed. After surveying the issues in conventional router design, in Section 2.1

we discuss several such mechanisms. Some of the approaches incorporate router

technology while others do not. Section 2.2 gives a summary of the different products

that were developed and section 2.3 concludes this chapter with a summary.

2.1 Existing Mechanisms

Sheldon [DS94] discusses content routing using content tags /labels for documents in a
Wide Area Information Service (WAIS) server using a semantic file system, and a source

and a catalog file. A query, posed as a predicate, is used to identify keywords in a

document. The source file contains the details of host name, host address, database name,

port number, and a short description of the database. The catalog file contains a list of
short headlines for each file in the database. The architecture described in this paper is

similar to the one in [SDW+94]. The content routing system has a collection of
documents and each document has a content label associated with it. Each content label

contains a brief abstract of the documents related to that particular collection. Each query

predicate contains a field name and the value to be searched. The mechanism of the

design is that the user tries to refine the query as much as possible and then forwards it to
the remote servels to find the result. This architecture uses the brute-force searching

technique. This architecture is however not efficient and slow. In addition, the

implementation cost is high because it requires to maintain large number of files.

Keshav and Sharma [KS98] discuss general design issues for routers including speed,

scalability, consistency, cost, configuration and bandwidth. The primary design issues are

speed and reliability. Reliability is attained using techniques such as: "hot spares, dual

power supplies and duplicate data paths through the routers"[KS98]. The time taken to do

lookups in the routing table typically has the greatest effect on the performance of a

router. Decreasing the time required to lookup the destination address can increase the

speed of the router. As the packet size decreases the number and hence cost of route

lookups increases. Gupta, et al [GL}i498], Srinivasan, et at lSY97l, and Waldvogel, et al

[WVT+97] are all examples of work addressing efficient routing table lookups. To

increase the speed of packet forwarding (including route lookup), architecture with

multiple parallel forwarding engines can also be used. A detailed scheme for load

balancing parallel forwarding processing is discussed in [GLH95].

Another consideration in designing a router is the scheduling of incoming packets. A
simple method is First Come First Serve (FCFS). This method, however, is nor an

efficient one because the chances of losing packets are high. Design of a fair queuing

method by Demers et.al. [DKS89], however, resolves these problems at a somewhat

higher implementation cost.

Another method used in increasing router performance is differentiated processing based

on packet type. The increase in performance is achieved by using different schemes for

the buffering and forwarding, filtering and classifying, and queuing and scheduling of
different packets. These mechanisms can be applied at various levels. The mechanisms

proposed in this thesis will differentiate between packets based on their data content and

will allocate resources and customize processing accordingly.

Partridge, et al lP+981, Asthana, et al [ADJ+92], and Konsrantinidou tK94l discussed

hardware design issues related to very high performance (multi-Gigabit) routers.

To provide better performance, service and security in the face of increased demand for

Internet bandwidth, network providers are turning to "differentiated services". Kumar, et

a/ [KLS98] concluded that the current Internet architecture is not meeting market

demands and proposed the use of packet classification, packet scheduling, and buffer

management tools to provide enhanced performance. They discussed router-based

mechanisms for providing such differentiated services.

Challenger, et al [CID+00] survey various techniques for improving the performance of
highly accessed web sites including the use of multiple processors, the caching of
dynamic data, and efficient web site design. To reduce traffic to a web server, multiple

servers running on different machines may be used to share the load. Such systems are,

however, still addressed at a single location. Some sites also use replication to create

copies of entire web sites (which may be geographically distributed). Unfortunately, if a

replicated site fails, it cannot route incoming requests to other sites. A key issue with

such systems is locating the sites. One method is to use Round Robin Domain Name

Service (RR-DNS) 126, 271, which allows a single domain name to be associated with

multiple IP addresses (one per site). But this technique has drawbacks including possible

load imbalance and lost requests if a server fails because the client and name server

cannot detect this. To avoid these problems, a TCP (Transmission Control protocol)

router can be used. The function of a TCP router is to accept requests from clients and

forward them to the corresponding servers in a round robin fashion (possibly taking

server load into account). Servers then respond directly to clients without router

involvement. When a server node fails the TCP router can re-direct requests to other web

servers. Another technique is the use of web-server accelerators. A web accelerator

caches web documents and has a TCP router running on it. When a request from a client

amives, the accelerator first looks in its cache. If the requested object is found it is

returned to the client, otherwise the router selects a server node to process the request.

Various modifications have been made to these basic ideas.

Hunt, et al [HGK+98] discuss a TCP router, called a "Network Dispatcher", which

supports load sharing over several TCP servers. The dispatcher is placed between the

front-end clients and the back-end server and forwards requests from the clients to the

server nodes. Responses from servers are

dispatcher. Though the performance of the

packet data but merely forwards packets

Cardellini, et al lCCY00l discuss a similar

scalable distributed web systems.

returned directly, bypassing the network

"router" is good, it does not analyze the

to the most lightly loaded server node.

system for geographic load balancing for

Andresen and McCune tAM98l discuss a model for hierarchical scheduling of
Distributed World Wide Web Server clusters, which process the data dynamically. This

model has a group of clusters, servers and clients. The server nodes in the clusters are

aware of one another's existence. The system maintains information about the load and

cache characteristics of all the clusters that are connected through the cluster server as

well as network bandwidth information. Each server node in the cluster runs a scheduler

algorithm (e.g. Crovella, et al lCFHggl) and one of the processes is responsible for

linking these schedulers in a hierarchical way. A client's request is routed to the closest

server for processing. If one node fails the system can dynamically change the connection

process to any of the other nodes or other clusters using the cluster server.

Pai, et al [PAB+98] discuss a simple strategy, Locality-Aware Request Distribution
(LARD), which is a content-based request distribution system. LARD focuses on static

content. One of the advantages of this strategy/method over normal cluster-based network

servers is that it offers enhanced performance due to its high cache hit rates. The

architecture of LARD consists of back-end nodes and a front-end. The front-end is

responsible for forwarding requests to the back-end nodes, which constitute the server. In

routing a request, this strategy focuses on the content requested and the load on the back-

end nodes. LARD uses hashing techniques to locate the requested data. Based on the load

on each node, the front-end decides which node should process the given request. When a

request arrives, it sends the request to a lightly loaded node, which caches the needed

data. If the requested node is fully loaded it will send the request to a new node, which is

not heavily loaded.

Song, et al [GC00l describe an architecture for a scalable and highly available web server

accelerator based on caching data from frequently visited sites. These caches are also

known as HTTP (HyperText Transfer Protocol) accelerators. The web server accelerators

use multiple processors to provide more cache memory and higher throughput. The

system works as follows: First the client sends a request into the network. A TCp router

receives the request and passes it on to a nearby caching site. If the first site is not the

owner of the requested object, it determines the owner and sends the request to the owner

along with the TCP connection detaits. The owner fetches the object from its cache or

from the back-end server if it is not in the cache. Finally the primary owner returns the

requested object either directly or indirectly (through caching sites) to the client.

Song, et al [SLI+00] also provide an alternative design to [SLI+99] that includes a load

balancer as a separate node, which may also choose to route the requests using content-

based information. The load balancer has information about the availability and load

details of each caching site. When the load balancer acts as a content router, it analyzes

the content and directly routes the requests to the owner site, which will fetch the

requested object either from its cache or from the back-end server.

Genova and Christensen [GC00] describe a layer 5 switch for implementing distributed

web sites. A distributed web site consists of multiple local sites and the switch acts as a

front-end for each local site. Each local site has one or more servers and caches

information about the load on, and content available from, the server nodes. When a

client makes a request, the switch consults the cache to see if the requested object is
available in that local site and what the load information is for the server node. If the

node is fully loaded and the request data is not available, the request is passed on to the

next closest switch. After processing, the requested object is sent back to the client. The

routing depends mainly on the data stored in the cache. In a globally distributed site, one

can have any number of local sites. Each local site can have any number of server nodes.

So, every time a new local site is created or a new servel node is added a new cache

should be created or the cache size should be increased.

10

2.2 Product Survey

Commercial systems for improving web access times are now becoming available. Cisco

[C00] for example, discusses various protocols, such as Dynamic Feedback Protocol

(DFP), Director Response Protocol (DRP), Web Cache Communication Protocol

(WCCP), and Boomerang Control Protocol (BCP) that can be exploited for content

routing. The DFP dynamically provides statistical information about the load on and

availability of a server. The DRP gives information about the distance between a client

and a server and it determines the server that is best capable of processing requested data.

The WCCP redirects data to other servers based on information present in the cache. The

BCP uses agents to provide network information for routing. The Cisco content router

uses information supplied by these protocols to carry out its processing.

IntelliDNS [ID] provides a solution for Internet traffic management. The design acts as a

global load balancer with intelligence for managing Internet traffic and for content

redirection. The set of metrics used for managing the traffic and content redirection are

network performance, clients proximity and server status to choose the optimal site to

serve clients requests. IntelliDNS supports both DNS based and HTTP based traffic

redirection. If the request is a DNS based request from the client the IntelliDNS gives its

own alternate IP address and redirects the client to the best and efficient content server

based on the set of metrics listed above. It also supports protocol re-mapping from HTTP

to Hypertext Transfer Protocol Security (HTTPS), Real - Time Streaming Protocol

(RTSP) and Microsoft Media Server (MMS). The main drawbacks are the design

supports only DNS and HTTP based request and it uses a large database to store the

client's geographical location and the server location.

Arowpoint's [AP] Web Network Services (WebNS) provides a solution for URL and

cookie based intelligent switching. WebNS is designed for name based switching. It uses

the full URL and cookie to select the best server or site for the user's request. The

WebNS switch knows the full information about the client from the cookie and it also

knows the user's request and the server to process the client's request based on network

information and server status. The Web switch parses the URL to identify the client's

ll

request. Based on the request the switch finds a suitable server or site. The Web switch

periodically checks for the status of the servers. The client is switched to the new server

or site that is selected for processing the request. The requested data is sent back to the

client through the shortest path.

2.3 Summary

This chapter discussed the history of the work done related to content routers. Section 2.1

outlines various existing mechanisms and Section 2.2 discusses various product surveys.

We observe that the past research work do not address the entire range of problems that

were identified. We used the material discussed in this chapter as one of our motivation

for our work.

12

Chapter 3

System Design

This chapter describes our architecture for the content-based router and proposes various

network designs where the designed content router can be used efficiently. Section 3.1

gives a brief description of content router and discusses the various components of the

newly designed content router briefly. Section 3.2 proposes the various network designs.

Section 3.3 explains in detail the architecture of our content router and Section 3.4

concludes with a summary of the chapter.

3.1 Content Router: Description

The existing content routers fail to deliver correct information to the right people in

appropriate time. So a need for an intelligent-content based router arises. A content router

analyzes the data present in a packet before forwarding the packet to the appropriate

server. The main reason for developing a new intelligent content-based router is to reduce

network t¡affic and to optimize routing cost, which in turn could potentially increase the

performance and decrease the latency of the content router. The different components

present in our content router are Packet Inspector, Resource Inspector and Scheduler unit.

The Scheduler has the load and distance information between the content router and the

server. Based on these informations a user's requests are forwarded to the appropriate

server. The above mentioned components are embedded in the Intelligent Content router

that I have implemented. Even though some existing content routers possess these

components, they fail to examine different types of TCP-based request. The content

router implemented in this thesis examines all types of TCP-based user requests. These

new features make this design unique when compared with current content-based routers.

l3

3.2 Network Design

The content router proposed in this thesis can be

Each design has its own advantages. The various

are:

used in varíous network design models.

network designs proposed in this thesis

1. Intelligent content routing for metropolitan type of networks - Option A, B and

Option C.

2. Intelligent content routing for wide area networks.

The network designs mentioned above are discussed in detail in the following section.

lnternet Seruice Provider
(rsP)

Figure 3.1 Designfor Metropolitan type of Network - Option A

3.2.1 Intelligent content Router for Metropolitan Networks - option A.

Figure 3.1 shows one design for metropolitan networks. The components present in

Option A are: the different clients connected to a switch. The Internet Service Provider

(ISP) network has a content router connected to an ISP server. The Layer 3 switch, which

is outside the ISP network, is connected to the content router. A bypass router is

14

connected to the content router. The ISP server may have many differentiated servers

connected to it, which offers different services. Each server has different databases on it.

The content router is also connected to the Internet. This model is specifically designed

for registered services with the ISP. The registered services can be a single company with

different branches or it can be different companies with a single major server.

3.2.1.1Functionality

This section discusses the functionality of the design for metropolitan network - option A.

The clients send requests into the network. The Layer 3 switch captures the user request

in a packet format and forwards the packets to the content router present in the ISp

network. The main function of aLayer 3 switch is to collect all user requests on a queue

basis. The content router reads the header and tokenizes the data. If the request is a URL

based request the content router sends the request to the Internet and continues to process

the next request. If it is a registered service request, the content router finds a suitable

server for processing the request based on the information given by the ISP server. The

client's request is forwarded to the best appropriate server through the bypass router

connected to the content router. The ISP server sends the processed request back to the

client via the content router. The response is sent back using different queuing strategies.

The three different queuing strategies are

1. High Priority Queuing (HPQ).

2. Low Priority Queuing (LPQ).

3. Unprocessed Queuing (UQ).

The requests for registered services and their responses are sent through the Hp eueue.

The ISP server sends the response to the content router, which sends it back to the Layer

3 switch, which forwards the response to the client. The URL response from the Internet

to the content router is stored in the LP Queue. The LP Queue is processed only when the

HP Queue is empty. The remaining requests and responses are sent to the Unprocessed

Queue. The Unprocessed Queue is processed when the HP and LP Queues are empty.

The next design discussed in detail is Metropolitan Network - option B.

l5

3.2.2lntelligent content Router for Metropolitan Networks - option B.

Figure 3.2 shows another design for metropolitan network - Option B. The various

components present in Option B network are: different clients connected to the Layer 3

switch. The Layer 3 switch is connected to the content router present in the Internet

Service Provider network. The content router is connected to an ISP router as well as to

the Bypass router. The ISP router is connected to the ISP server. The ISP router is also

connected to Internet and to other network routers. The ISP server has many

differentiated servers connected to it, which offer different services. Each server has

different databases on it. The next section discusses the functionality of this network.

lr¡ternet Seruice Provider
(rsP)

Figure 3.2 Designfor Metropolitan type of Network - Option B

3.2.2.1Functionality

The clients send request into the network. The Layer 3 switch captures the user request in

a packet format and forwards the packet to the content router inside the ISP network. The

main function of aLayer 3 switch is to collect all userrequests from different clients on a

queue basis. The content router reads the header and tokenizes the data. If the client's

t6

request is an URL request, the content router forwards the packet to the ISP router. The

ISP router forwards the request to the Internet and waits for the response. The ISp router

also forwards the requests to their respective destination, which comes from other routers

that are connected to it. Once a response is obtained from Internet the ISP router forwards

the response back to the content router. If the request is a registered service requests the

content router finds a suitable server for processing the request based on the information

given by the ISP server. The client's request is forwarded to the best appropriate server

through the bypass router connected to content router. The processed request is sent back

to the client via the content router. The response is sent back to the client using different

queuing strategies discussed in Option A network. The next section discusses Option C

network in detail.

3.2.3 rntelligent content Router for Metropolitan Networks - option c.

Figure 3.3 shows another design for metropolitan network-option C. The different

components present in Option C network are: clients connected to a network, the ISp has

a content router, which is connected to a Layer 3 switch as well as to the Internet. The

Layer 3 switch has some content routers connected to it. The content routers present in

the ISP network are connected to the ISP network's gateway. The ISP server has many

registered servers connected to it. Each server has some data of interest in it.

lnternet Seruice Prwider

Figure 3.3 Designfor Metropolitan type of Network - Option C

t7

3.2.3.l Functionality

Clients send in their request and the content router present at the entrance of the ISp

network captures the user request in the packet format. The content router reads the

header of the captured packets and tokenizes the data present in the packet. If the request

is an URL request the content router forwards the packet to the Internet for further

processing. If the request is for a registered service the content router forwards the packet

to the Layer 3 switch. The main function of the Layer 3 switch is to collect all user

requests from the content router and forwards them to different content routers that are

connected to the gateway of the ISP network. The Layer 3 switch forwards the user

request to the content routers in a weighted round robin fashion. The length of the router

queue is the weight used for forwarding the user request. Once the content router captures

the user request the content router finds a suitable server for processing the request based

on the information given by the ISP server. The client's request is forwarded to the best

appropriate server through the gateway of the ISP network.

3.2.4 Ãdvantages

t. The different designs discussed above are efficient because

present inside the ISP Network.

Routing is cheap, quicker and efficient for the registered

Network.

of the Content Router

servers within an ISP

3.2.5Intelligent Content Routing for Wide Area Networks.

Figure 3.4 shows the design for wide area networks. The various components present in

this design are clients, a client side content router, a server side content router and servers

with different databases on them. The client side content router is connected to the

Internet. A Server side content router has different servers connected to it. Each server

has different databases on it. In addition to the two routers there is a Gigabit Network

connected to the server side content router and the client side content router. This design

is well suited for a big company with many branches around the globe. Section 3.2.5.L

discusses the functionality of this design.

2.

t8

Gigabit Netxorl

Corrtent RoLrter Serr.er- Side
Comerrt Router

Figure 3.4 Intelligent Content Routing - Wide Area Network

3.2.5.1Functionality

Clients send in their request and the content router captures the request in the form of
packets. The data present in the packet is analyzed and tokenized. The tokenized data is

sent to the server-side content router through the Internet to find an efficient server for
processing the client's request. The content router forwards the packet with the tokenized

data to the server-side router. The tokenized data sent by the client-side content router is

read by the server-side router and finds an efficient Server based on a set of metrics, like

system resources, ploximity of the client and the server and the status of the server.

Based on the metrics the server router selects a server and forwards the client request to

the appropriate server. After processing the request the server sends the response back to

the server-side content router. The server-side router captures the processed packet.

19

While sending the response back to the client-side content router the server-side router

labels the processed packet and forwards them to the Gigabit network for a quicker

response from the server. The Gigabit network captures the labeled packet and forwards

the packet back to the client-side content router. The content router captures the response

and looks for a label in the packet. If the packet is labeled the content router forwards the

packet back to the client without processing the packet. If there is no label the content

router starts the processing of packet and forwards the packet to the server router.

The labeling of the packet is done through the Multiprotocol Label Switching (MPLS).

The main advantage of using this system is to avoid heavy traffic on the Internet and

process requests in an efficient and fast approach. The content router starts processing the

packets without knowing the status of the packet that is processed or unprocessed. To

avoid multiple processing the processed packets are labeled. So when the content router

captures a packet it looks for the label and forwards the packet to the client, thereby

enhancing processing time. The main functionality of using MPLS in this thesis is to
label the processed packets.

3.2.5.2 Advantages

This design is efficient and fast because the response from the server is sent

through a different path instead of the same forwarding path.

Traffic is reduced and time taken for processing each packet is minimized.

3.2.6 Global Network Structure

Figure 3.5 shows the design of Global Network Structure. This design is an extension of
The Wide Area Network design with replication of intelligent content routers in different

areas. The different components present in this design are four different networks, which

are interconnected through edge routers. Each network has different clients connected to

a switch, and a content router connected to different servers. Each server has different

databases on it. The edge routers act as the communication media between these areas.

1.

2.

20

ÆuØäÐ
ÊruET3

--
to [g

Æ *æ"p- fui

Æ Jkl

u4

Ë

ü

3
*rr

I
Ara

,¿

æ&l-V \ú)

Æ

Æ
EÉE
Elltr

E€E
Eortr

:: æ@ si" ErÆ ú tuì

Figure 3.5 Global Network Structure

3.2.6.1Functionality

The main functionality of this design is sharing of resources between locations.

Each location has a Resource Agent. These agents are mobile i.e., they are capable of
moving from one place to another. The resource agents move from place to place and

coilect all the available resource's information update the resource table present in each

local area. When the clients send requests into the network the content router reads the

header and analyzes the data and finds a suitable server for processing the request. If the

requested data in unavailable in the local area it finds a suitable server in remote a

location from the resource table maintained by the resource agent. Once a remote server

is selected the user request is forwarded to the appropriate server through the edge

routers. If there is any change in resources, all the resource tables are updated by the

resource agents. The update operation can also be performed by sending a broadcast

message to all location. But the main disadvantage of sending a broadcast message is that

the local agent does not get any acknowiedgement from other resource agents. So the

message can even be lost during the data transmission if the network connection is bad.

2t

3.3 System Architecture

The high-level system architecture of the proposed intelligent content-based router is

shown in Figure 3.6.Eachcomponent is briefly described below.

The Packet Capture and Packet Data Extraction / Analysis module enables the unit to
capture and extract the data in each packet of a user's request. This data is the content that

is routed to the appropriate server at that moment based on a set of metrics. This

component of the system intercepts the user's request data stream in the form of packets

and then extracts the data content (i.e., the payload) it contains for routing.

A core component of the system is the Resource Manager. The main job of the Resource

Manager is to assemble vital information about the resources available in the system for

ease of access and fast decision-making. The resources for e-commerce and other Internet

applications are often stored in databases (at the participating servers). The Resource

Manager collects resource information about the number of databases available in the

system, the addresses of these databases, and permission data (such as who can obtain the

database addresses) and stores the data collected in a resource table. This resource table is

used to feed the load-balancing unit (discussed below). To implement this component, we

adopted intelligent mobile agent technology. Mobile agents are suitable because they

enable us to seamlessly and transparently assess servers (at remote locations) and retrieve

appropriate data of interest. The agents only need to know the address (IP address or full
domain name) of the resource and a known set of database types. The agents can ¡etrieve

the metadata of each database, such as the name of the schemas, the description of the

schemas, and table definitions, etc. This information is necessary to make informed

judgements on where to find the available resources for the application. The databases are

transparent to the system.

The Load Balancing System, a major part of system, uses the information assembled by

the Resource Manager to facilitate content-based routing. It is responsible for scheduling

and allocating transactions to the various servers for execution based on the cunent

22

processing / work load information of each server. This unit answers questions such as:

(i) How busy is each server? (ii) Which server can process the request in the shortest

time? I used existing queuing and scheduling algorithms (as in operating systems and

other distributed systems) to realize an efficient and robust system.

Finally, the Content Routing Unit is responsible for the actual redirection of the user

payload based on the contents of the packets. Using the assembled data of the Resource

Manager and the recommended scheduling plans of the Load Balancing System (routing

tables, network nodes, application resources, etc), the Content Routing Unit selects the

specific destination to route the user payload to. The decision about where to go is based

on the accumulated and cached information from the Resource Manager and the Load

Balancing System.

Packet lnspector Resource lnspector

[t-.k", I
I capture

I

l-r-""k"
-l

I nnarvzer
I

tR";;--l
I r-o""to'

I

F"."-;l
I Manaser

I

Figure 3.6. Intelligent Content - Based Routing Architecture

23

3.4 Summary

This chapter began with the discussion of a short description of content router and

mentioned the different components of the newly designed content router. Section 3.2

presented the different network designs and their functionality. The advantages of the

different designs are also presented. Section 3.3 presented the architecture of our content

router. Chapter 4 presents a formal specification for the designed content-based router.

24

Chapter 4

Specification of Intelligent Content-Based Routing

This chapter presents a formal specification for the newly designed content-based router.

To develop a robust and fail safe system, formal specification is one of the approaches

that can be used. This section discusses formal specification of Intelligent Content-Based

Routing for E-Commerce Applications. The specification describes the requirements and

functionality of the system and controls the software complexity and enhances the quality

and reliability of the system. A formal specification is usually written using a formal

specification language. This language has a well defined syntax and semantics. The

formal specification language used in this thesis is Z. The main reason for using Z is it
has tool support for typechecking the syntax and semantics of Z - based specifications.

Section 4.1 discusses the problem model and description of the system. Section 4.2 gives

the Z-specification, before it ends with a summary.

4.1 Problem Model and Description

This specification mainly deals with one of the important functionalities of networking

concepts i.e. routing. The specification is done for Content-Based Routing for E-

Commerce Applications. Router is a device, which forwards packets from one machine

i.e. source to the other machine i.e. destination. In normal IP routing the router checks the

destination address of the packet and forwards the packet to its corresponding destination.

But a Content-based router analyzes the data in the packet before forwarding it to a

destination where the data can be reached. This concept of routing is specified using Z-

specification language. The different operations that are perfolmed are: defining the

structure of a packet, creating a packet, creating a user list, adding new users, logging

into the system, list for logged users, sending a request. Section 4.2 gives the

specification of the routing system.

25

4.2 Specification

This section gives the specification for Content-Based Routing. The basic set types that

are used in this specification are defined below. The first few set types upto DATA are the

different fields present in an IP packet. Each set type is explained in the packetDef

schema.

II P H EAD E RLEN, TY P E O F S ERV I C E, F LAG S, F RAG O F F S ET, IDENTI F I CATI O N,
TIM ETO LIVE, P ROTO C O L, H EAD ERC H E C KS U M, TOTALLEN GTH, O PTI O N S,
DATA, VERSION

The name and passwd types are used to store the registered users list and password.

INA M E, P A S SWD, S ERV E RADDRES.S, RE S O U RC E NAM Ef

The CPUAvail, MEMAvail and QueueLEN are the load details of different servers and the

DISTANCE is the distance between the server and the client.

CPUAvail == N

MEMAvail == N

QueueLEN == N

DISTANCE == N

The se¡verstatus type gives the status of the participating server.

SERVERSTATUS ::= Active I Down

BOOLEAN ::= True I False

A RETPONSE is a message or a result given by the system after each operation

performed on it. The different responses given by the content router specify the network

administrator about the router's performance. The different responses given by the system

are defined below.

26

RESP ONSE ::= PacketDefined

I PacketCreated

I NewUserAdded

I Lo g gedlnsucces sfully
I RequestSent

I ResourceTableUpdated

I SeruerAddressFound

I SystemstatusObtained

I DistanceObtained

I ScheduleTableFormed

I DestAddressChanged

I CacheUpdated

The first aspect of the system is to describe its state space. Each operation in the system is

defined within a schema. A schema has two parts, the declaration part and the predicate

part. The parts are separated by a central line. The part above the central line is the

declaration and below the central line is the predicate. The predicate part specifies the

requirements of the values of the variables defined in the declaration part. The PacketDef

schema defined below gives the structure of an Internet Protocol (IP) packet. Each packet

contains the version of IP currently used, IP header length indicates the header length,

Type of Service, Total length of the IP packet, Identification indicates the current packet,

Flags, Fragment Offset, Time-to-Live is a counter which gradually decrements down to

zero, and the packet is discarded. The Protocol indicates the next level protocol of packet

such as TCP, UDP etc. Header checksum ensures IP header integrity, Source Address

specifies where the packet is coming from, Dest Address specifies the packet's

destination address, Options provides additional security and finally the packet has the

Data. The result for this schema is "PacketDefined".

2l

acketDef-

ver: VERSION

ipheaderlen : IP HEADERLEN
tos: WPEOFSERVICE
tl: TOTALLENGTH

id: IDENTIFICATION

fls: FLAGS

frgoff: FRAGOFFSET
tol: TIMETOLIVE
proto: PROTOCOL
hc: HEADERCHECKSUM
s o ur c e ip : S E RV E RADDRESS

desrip: SERVERADDRESS

op: P OPTIONS

data: F DATA

Re!: RESPONSE

verØØ
ipheaderlen e Ø
toseØ
tleØ
ideØ
fls eØ
frgoff e Ø
toleØ
proto e Ø
hceØ
sourceip e Ø
destip e Ø
Re! = PacketDefined

The next schema opetation is PacketCreation. The PacketCreation schema captures the

inputs needed for creating the packet. The fields discussed in the previous schema cannot

be empty except the op (options) and data fields. A packet can be an empty packet

without any data or it can carry some data for transmission. Once all the fields are filled
up the packet is created and it is ready for transmission. The result for this schema

operation is " PacketCreated".

28

acketCreation

A,PacketDef

vers?: VERSION

iph?: IPHEADERLEN

Qpos?: TYPEOFSERVICE

totlen?: TOTALLENGTH
identi ? : IDENTI F I CATI ON

flag?: FLAGS

fragoff?: FRAGOFFSET
tímerol?: TIMETOLIVE
prototype?: PROTOCOL

hcheck? : HEADERCHECKSUM
Sip?: SERVERADDRESS

diP?: SERVERADDRESS

opt?: F OPTIONS

req?: P DATA

Re!: RESPONSE

ver = vers?

ipheaderlen = iph?

tos - typos?

tl = totlen?

id = identi?

¡1g = fl.ag?

frgoff = fragoff?
tol = timetol?

proto - prototype?
hc = hcheck?

sourceip = sip?

destip = dip?
op - opt?

data = req?

Re! = PacketCreated

The next schema operation is maintaining a user list and a login list for those people who

login to the system. Each user has a username and a password to login. The main reason

for maintaining a user list is that in all E-Commerce applications only registered users are

29

allowed to perform some of the core transactions. In order to commit the transactions a

user list is maintained and verified. Each time a user logs in his/her password is verified

before committing a transaction. The next set of schemas describes the maintenance of
registered user list.

UserList

users: NAME -.+ PASSWD

loggedusers: P NAME

The Initial User List schema contains the initial value of the users list and login list.

Initially there are no users. So the two fields are empty.

The AddUser schema captures the operation of adding a new user to the system. This

operation has a change in the class (JserLisr. When a new user is added there are two

inputs name and password and Re! is the resurt obtained for this schema.

,--AddUser.
AUserList

name?: NAME
passwd?: PASSWD

Re!: RESPONSE

name? e dom users

Ltsers' = users v l(name? *> passwd?)l
Re! = NewUserAdded

The name that is

give a new name

given by the user must not be

for registering. The name and

in the User List. If it exists the user has to

password field should not be empty. Once

nitialUserList

users = Ø
loggedusers =

30

the user registers by supplying the name and password it is added to the users list. The

result obtained is NewUserAdded.

The next schema is the Login operation. All the registered users can try to login to the

system. The inputs given are name and password and the output Re! is the result.

EUserList

name?: NAME
passwd?: PASSWD

Re!: RESPONSE

name? e dom users

passwd? e ran {(name? ,--> passwd?)}

Io g gedus ers' = lo g gedusers u {name ?}

Re ! = Lo g gedlnSuccessfully

The name given by the user is checked in the users list for the registered user. If it is a

registered user the name is checked for its corresponding password which is mapped to

the user name. If both are valid, the user name is added to the loggedin users list and the

result obtained is " LoggedlnSuccessfully".

The User Request schema discusses sending a user request to the network. The input

supplied for this operation are, the user name and the data to send. Re! is the result

obtained.

8tn

31

-UserRequestEUserList
name?: NAME
request?: DATA
Re!: RESPONSE

name? e loggedusers

Re! = RequestSent

The name given by the user is checked in the loggedin users list. If the user name is

present in the loggedin user list the user has to login first. If the user is loggedin

request is sent to the network. The result obtained is "Requestsent".

The next schema operation is to maintain a server list, which has the list of all the

registered servers.

rverAddressList
serverlist: P SERVERADDRESS

The Resource Table schema maintains a list of resource name and its corresponding

server address.

esourceTable

r e s o urc e li s t : RE S O U RC EN AM E --,+ S E RV E RADDRESS

The Initial Resource Table list contains the initial value of the resource iist.

nitialResourceTable

ResourceTable

resourcelist = Ø

not

the

32

The AddEntries schema describes

affects the ResourceTable. When a

obtained.

adding new resources to the system. This operation

new resource is added, two inputs and a response are

dEntries

A,ResourceTable

re s ourc ename ? : RES OURCENAME
IOc?: SERVERADDRESS

Re!: RESPONSE

Ioc? e ran resourcelist
resourcelíst'= resourcelist v l(resourcename? *> loc?)]
Re! = ResourceTableUpdated

The two inputs are resource name and server address. The condition to add the resources

to the table is that the server address should not be in the resource list. If the server

address exists the conesponding resource name is checked. If the resource name is

different, the ¡esource and the address are added else they are discarded. If the resource

name exists in the list the corresponding server address is checked with the input server

address. If both the addresses are different the resource name and the server address are

added to the list else the resource is discarded. The result obtained is

"ResourceTableUpdated". Figure 4.1 shows the structure of the Resource Table.

Resu¡rce Table

l3ü.t 7s.2t.2t 1

t30.tr$.2r.2t2

t30.t7s.2r.2t3

l3tl.t7s.2¡.214

Figure 4.1 Resource Table

-1.5

The Data Location Table schema has two components; matched.entries and the

dltsenterlisl. The matchedentries maintains a list of all instances of resources and server

address from R¿sourceTable based on users request. The dltsenterlíst maintains a

separate list for all the servel address stored in the matchedentires.

aLocationTable
mat c he d e nt r i e s : RE S O U RC E N AM E --,+ S ERVE RAD D RE S S

dlt s e rv e rli st : F S ERVERAD D RE S S

The Initial Data Location table has zero entries when the system is activated.

Each entry in the Data Location table has a resource name and its corresponding server

address. Figure 4.2 shows the structure of the Data Location Table.

Figure 4.2 Data Location Table

The Find Server Address schema

table list for the tokenized data.

output is server address.

describes finding a server

The input for this schema

address from the Resource

is tokenized data and the

i.tialDLTable

matchedentries = Ø
dltserverlist = Ø

| 30.1r$.2?.21I

130..t 79.r¡.2t 4

34

'indServerAddress

A,DataLocationTable

EResourceTable

tokenize ddata ? : RE S O U RC ENAM E
loc!: SERVERADDRESS

Re!: RESPONSE

tokenizeddata? e dom res ourc elist
loc! = resourcelist (tokenizeddata?)
matchedentries' = matchedentries v {(tokenizeddata? r-+ 16çt)}

dltserverlist' = dltsen¡erlist o {loc!}
Re ! = ServerAddressFound

The input is checked in the resource list maintained by the resource table. If the tokenized

data is not in the list, the packet is routed to the original destination address present in the

packet. If the tokenized data exists in the list the corresponding server address is

obtained. Both the data and the server address are stored in the data location table and the

server address is also stored in a separate server list maintained by the Data Location

Table. The result for this schema is "serverAddressFound".

The next schema gives the structure of the System Status Table. It has the server address

and the status of the server i.e. active or down.

temStatusTable-

s tatus entrie s : S ERVERAD D RE S S --,+ SERVERSTATU S

The Initial System status list is empty.

SystemStatusTable

statusentries = Ø

Figure 4.3 shows the structure of the System Status Table.

35

13D.175.7r.U1

130.t 7S.U¡.280

1Ê0.17s.æ.114

Figure 4.3 System Status Table

The Ping function defined below is used to find the status of a server.

I ni"g' SERVERADDRES.T -,+ SERVERSTATUS

The Find System Status schema gives the status of the system. This schema takes the

serverip as the input and gives the server status as output. The response is stored in Re!.

.-FindSystetnStatus
ASystemStatusTable

ESeryerAddressList

s e rv e r ip ? : S E RV E RADDRE'S.!

servstatus ! : SERVERSTATU S

Re!: RESPONSE

serverip? e serverlist
serustatus! = ping(serverip?)
statusentries' = statusentries v {(serverip? -> serystatus!)}
Re! = SystemStatusObtained

The input serverip is checked in the server list maintained by the ServerAddresslist

schema. If the serverip is found, the ping function is applied on the server to find the

server's status. The status is stored in serustat¿¿sl. The final status with its corresponding

server address is stored in the system status table. The result otained is

" Sy s t emS tatus Obtaine d" .

36

The ProximityTable schema defines the structure of the Proximity table. It has two

columns server address and distance.

roximityTable

S E RV E RA DDRESS: S E RV E RA DDRE.çS

DISTANCE: DISTANCE

distenrries : SERVERADDR¿'SS -o DISTANCE

Initially the Proximity table is empty.

Traceroute is the function used to find the distance between the content router and the
SETVET.

I rorrroute: SERVERADDRESS --,+ DISTANCE

Figure 4.4 shows the structure of the Proximity Table.

Proximity Table

Serr,r=r Address Didance (in nodes)

130.175.7r.211

13t.173.27.280

1 80.17S.3t.114

10

25

E

Figure 4.4 Proximity Table

The FindDistance schema gives the distance between the content router and the server.

takes one input (i.e. serverip?) and produces one output (i.e. distance!) and the response

stored in Re!.

It

is

nitialPT-

ProximityTable

distentries = Ø

3t

.----FindDistance

I LProximityTabte

ZServerAddressList

s erverip ? : SERVERADDRESS

distance!: DISTANCE
Re!: RESPONSE

senterip? e serverlist
serverip? e dom traceroute

distance ! = traceroLtte(serverip ?)
distentries' = distentries v {(sertterip? ,-+ distance!)}
Re! = DistanceObtained

The input serverip is checked in the server list to find whether the input serverip is valid.

If it exists in the server list the traceroute function is applied to the input serverip and the

distance is stored in the output variable. Once the distance is obtained the Proximity table

is updated with the distance and the corresponding server address. The response obtained

is " Distanceobtained".

The LoadDetails schema encapsulates the structure of the load details. The different

components that are necessary for obtaining the load details are: percentage of free CPU

available (CPUAvail), percentage of free memory available (MEMAuail), processor

queue length (QueueLEll), and the distance between the router and the server

@ISTANCE). This encapsulated structure is used by the loadinþlisr function defined in

ScheduleTable schema.

Details-
Cpulnfo: CPUAvail
Memlnfo: MEMAvail

QueueLen: QueueLEN
Dist: DISTANCE

38

I loadinfo: SERVERADDRESS --r+ LoadDetails

The Schedule Table schema gives the structure of the schedule table. The different fields

present are serveraddress, percentage of CPU avialable, percentage of memory available,

length of the processor queue and the distance between the router and the server.

heduleTable

I o adinfo Ii s t : S E RV E RA D D RE S S --,> Lo adD e r ail s

Figure 4.5 shows the structure of the Schedule Table.

Schedde Trfle

IP %FTTE CPU %Free trtrn Qua-e length tlida-*e

.t 3r,t 7s.2?.2t I
l3t,l rs.2r.2l t
{ 30,t 19.27.213

st.4

sû.t

ss.3

68

74

B3

0

0

'l

20

t0

2ã

Figure 4.5 Schedule Table

The next schema, FormscheduleTable describes forming the schedule table. The input

for this schema is the server address and the output is the load details discussed above.

The input is checked in the server list maintained in the data location table. If the server

address exists in the data location table, the status of the server is checked in the system

status table. The precondition for finding the load details is that the server status should

be active. If the server status is down the corresponding server address is discarded and

the next server address is processed. Once the server status is active, the load details of
the input server are obtained by applying the loadinfo function, which is defined above.

After obtaining the load details the schedule table is updated with the load information

with the conesponding server address mapped to it. The result obtained for this schema is

" S cheduleTab I e F o rmed" .

39

.-FormScheduleTable
I tsrnrauteTable

EDataLocationTable

EProximityTable
F SystemStatusTable

s e ru e rip ? : S ERVERADDRES.T

cpuinfo!: CPUAvail
meminfo!: MEMAvail
qlen!: QueueLEN
dist!: DISTANCE
s e rv e rstatus ! : S E RV ERSTATU S

ld: LoadDetails
Re!: RESPONSE

serverip ? e dltserverlist
sen)erstatus ! = statusentries (serverip ?)
serverstatus! = Active
ld = loadinfo(seruerip ?)
cpuinfo! = ld. Cpulnfo
meminfo! = ld. Memlnfo
qlen! = ld. QueueLen
dist! = ld. Dist
Ioadinfolist' = loadinfolist u {(serverip? ,-+ td)}
Re! = ScheduleTableFormed

Different functions used to find the best destination address

and theBestlP. The getLoadDetails returns load details

address present in the ScheduleTable.

are: getLoadDetaíls, isBetter,

for the corresponding server

I SetLoadOetails: SERVERADDRETS --r+ LoadDetails

40

The isBett¿r function returns the better server address between two different servers

based on the load information obtained from the ScheduleTable. The different load

details used for comparison are percentage of CPUAvailable, percentage of free

MEMAvail, length of the processor queue i.e. QueueLEN and the DISTANCE between the

content router and the server.

isBetter: LoadDetails x LoadDetails ---+ BOOLEAN

YldL, ld2: LoadDetails I (1d1, ld2) e dom isBetter
. isBetter (ldL, ld2) = True

= IdI . Cpulnfo > ld2 . Cpulnfo
v ldl . Dist < ld2 . Dist
v ldl . QueueLen < ld2 . QueueLen
v ldL . Memlnfo > Id2 . Memlnfo
v IdI . LoadDetails = ld2 . LoadDetails

The next function, theBestlP, uses the isBetter function to find the best destination server

for processing the user request. The inputs supplied for this function are two server

addresses and the output obtained is the best server address.

theBestIP: P SERVERADDRESS -.+ SERVERADDRESS

Vsa: F SERVERADDRESS
. lTbip: SERVERADDREçS I Tbip a sa

. theBestlP (sa) = 76¡O

= (Yip: SERVERADDRESS I ip e sa
. isBetter ((getLoadDetails (fbip)), (getLoadDetails(ip)))

= True)

4l

The next schema operation is RewritelPHeader. The main function of the

RewritelPHeader schema is to rewrite the original packet's destination address with the

new server address. The inputs for this operation are newdestip? and packet id (i.e. pid?).

The original packet's id is checked with the input pid?. If both ids are equal the packet's

destination address is changed to the new server address. The result for this schema is

" D e stAddre s s Chan g e d " .

, RewriteIPHeader.

I nfacketCreation

EScheduleTable

new destip ? : SERVERADDRES S

pid?: IDENTIFICATION
Re!: RESPONSE

píd? = id
newdestip? = theBestlP (dom loadinfolist)
destiP = newdestip?

Re ! = DestAddress Changed

The CacheManager schema maintains a list in the cache. The list has the resource name

and best-selected server address.

eManager

c achelist : RES OU RCENAME --,> S ERVERADDRETS

The initial list of the CacheManager is empry.

CacheManager

cachelist = Ø

42

The UpdateCache schema updates the CacheManager's list by adding the best server

address and its resource name. The input supplied for this operation is serverip?. The

theBestlP function is applied to select the best server address from the list maintained by

the ScheduleTable. The resource name and the server address are updated in the

cacheManager's list. The response from this operation is "cache(Jpdated".

--UpdateCache
I LCacheManager

F ScheduleTable

data!: RESOURCENAME

s eruerip ? : S ERVERADDRESS

Re!: RESPONSE

dom loadinfolisr e dom theBestlP
serverip? = theBestlP (dom loadinfolist)
cachelist' = cachelist v (data! ,-+ serverip?)]
Re! = CacheUpdated

Using the different operations defined in the system, the Content Router can be defined

as follows.

ContentRouter ? ((ResourceTable n systemstatusTable n proximityTabte)
:

UserRequest ; FindServerAddress ; Findsystemstatus
FindDistance : LoadDetails ; FormscheduleTable ;

RewritelP Header ; UpdateCache)

While some of the operations mentioned above are executed sequentially others are

executed in parallel. When the system is started the ResourceTable, SystemstatusTable,

and ProximijtTable operations are executed in parallel. These three operations are

executed continuously until the system is stopped. The rest of the operations are executed

sequentially and are done based on the UserRequest.

43

4.3 Summary

This chapter presented a formal specification for the designed content-based router.

Section 4.1 discussed the problem model and presented a short description. In Section 4.2

we presented the Z-specification and explained the functionality of each schema, and

gave us examples of the different tables that were used. Chapter 5 presents an object

model and explains the functionality of each of the components present in the newly

designed content router.

44

Chapter 5

Object Model and Functionality

This chapter presents an Object Model for the designed content router and explains the

different functionalities of the design. Developing a software system is becoming

complex and expensive due to the change from single-tier to multi-tier architecture and

distributed systems. To develop sophisticated software system one requires creativity,

ability to learn and analyze the problem and should have knowledge or experience in

different programming languages. To avoid the complexity and to maintain the quality

and reliability of the system the concept of object orientation comes into existence. The

object models in this thesis are developed using Unified Modeling Language (UML). The

UML has many object-oriented notations, which is used to analyze and design

sophisticated applications. The main reason for using UML for developing the object

models is, it has many specialized notational elements, which supports complex

applications. The different types of UML diagrams I have used in this thesis are: class

diagram, activity diagram, sequence diagram and depioyment diagram. Figure 5.1 shows

the class diagram for content-based router.

Figure 5.1 Class diagramfor Content-Based Router

45

The class diagram in Figure 5.1 shows the different classes present in the application. It
also specifies the relationship between different classes. While creating alarge complex

system, the application is divided into different modules. The different modules present

in this thesis are Packet Inspector, Resource Inspector and Scheduler. Each module is

further divided into sub-modules. Each module has it's own class diagram.

Figure 5.2 shows the activity diagram for content-based router. The activity diagram

shows the different activities and flows of data or decisions between the activities.

Activity diagram is used in workflow analysis. It is also called as flowchart. Activity

diagram shows different activities handled by different objects. It can support parallel

execution. Activity diagrams are used for detailed specification of complex systems with

respect to implementation. Figure 5.3 shows the sequence diagram of the system. The

sequence diagram shows the relationship between two different objects. Each object is

represented as vertical lines and shows how messages are sent between two objects. The

sequence diagram is also known as interaction diagram. The messages that are sent

between two objects are also called as events. An event takes place only when the target

object replies back to its message.

46

user requests

Capture Packel

search for
tlte resource

Analyze the Data

Resource Localor

Resource Manager

[data not found]

[data found]
Route the packet to the Or¡g¡nùl Det¡naf¡on

F¡nd al¡ rhe local¡ons

Find lhe load for each locat¡on

Form a Schedule Table

8el Location is
Selecled

Re - writes the lP - Header us¡ng the new lP Addres

Packet ¡s Reinjected ¡nto the N,Mt

Figure 5.2 Activity diagramfor Content-Based Router

41

F
igure 5.3 S

equence diagram
for C

ontent-B
ased R

outer

48

Figure 5.4 shows the deployment diagram for content-based router. The deployment

diagrams are used to describe the architecture of the system. A three-dimensional box

represents each node in deployment diagram. Each node represents different components

of the system. The different nodes present in this system are the different clients, a

network hub, which connects different computers together, a content router and different

servers with different databases on it.

Figure 5.4 Deployment diagramfor Content-Based Router

49

5.1 Packet Inspector

The Packet Inspector module enables the router to capture and extract the data in each

packet of a user's request. This data is the content that is routed to the appropriate server

at that moment based on a set of metrics. This component of the system intercepts the

user's request data stream in the form of packets and then extracts the data content (i.e.,

the payload) it contains for routing. Figure 5.5 shows the class diagram for packet

inspector.

+Receive_Data():
+ Tokenize_Data ()
+ sends data {) :

Figure 5.5 Packet Inspector - Class Diagram

5.1.1 Functionality

The Packet Capture and Packet Data Extraction / Analysis are the two sub-components of
the Packet Inspector. The Packet Inspector unit captures and extracts the data in each

packet of a user request. This extracted data is used for routing the packet to the

appropriate server. Figure 5.6 gives the Sequence diagram for the Packet Inspector. The

Packet Capture component takes care of capturing the packet and sending the data to the

Packet Analyzer. The Packet Capture component opens a socket connection and listens

for the packet that flows in the network.

:Packet_lnsp e c{or

Capture : String

+Divert():
+Read_header():
+Send_data():
+ sends the packet () :

Packet_Analyzer

1 ..* Anal!ñis / E¡ttraction 1

50

Wails for Request Wâits for Request Wâ¡ls for Pâckel Wails for Dala Wails for Tokenized Dalâ

reads the header

tokenize the data

Figure 5.6 Packet Inspector - Sequence Diagram

When the user sends in a request the socket grabs or captures the packet, and stops the

packet flow from the current node or hop to the next node. The Packet Capture collects

the captured packet, scans the header and the data field. By scanning the header and data

field the Packet Capture finds the source address, destination address and the data in the

packet. If the data field is empty the packet is discarded without any further processing. If
the packet contains data, it is forwarded to the Packet Analyzer for processing. The

Packet Analyzer converts the extracted data from the machine code to readable string

format. The converted data is tokenized and a keyword or set of keywords is selected,

which is sent to the next component of the system, the Resource Inspector. Algorithm 5.1

and Figure 5.7 gives the pseudo code and Activity diagram for the Packet Inspector.

Thus, the Packet Inspector intercepts the users request data stream in the form of packets

and then extracts the data content, which is used for routing.

Algorithm 5.1 Packet Inspector

INPUT: User Request;

OUTPUT: Tokenized data in string format;

WHILE (Network is active) DO

51

Open a socket connection S;

IF ¡s = -l) THEN
Socket open eror;
Exit the system;

IF 15 >= 0) THEN
Open a divert socket;
Listen to a port for receiving the packets;

FOREACH packet DO
SWITCH (ether_type) IN

CASE IP Packet:
Divert the packet to the user level;
Read the header and data;
IF (data - null) THEN

Discard the packet;
ELSE convert the data to string format;

Tokenize the data;
CASE ARP Packer:

Read the header;
Forward the packet to the original destination;

CASE RARP Packet:
Read the header;
Forward the packet to the original destination;

OTHERWISE:
IF (unknown packet type) THEN

Forward the packet to the original destination;

END {SWTTCH};
END {WHTLE};

End of Algorithm;

5.1.2 lmplementation Strategies

The Packet Inspector component is implemented in C and Java. The components

implemented in C are integrated into the other parts using Java's Native Interface facility.

The protocol used for capturing the packets is the divert socket. The libpcap library file in
C was used to capture the packets. The drawback in using libpcap is, it just gives a copy

of the packet and forwards the packet to the next node. This drawback is avoided in

divert sockets, because it actually grabs the packet from the network. The content of the

52

packet is converted and analyzed using Java because it supports many classes and

methods than any other language.

Figure 5.7 Packet Inspector - Actívity Diagram

.r Empty Pad<
Disærd tfE P ad<d

.r URL Requed

C aptuEs f he P ack et

Reads the Heacr=r

Send the data to Packet Arìal}æer

Foffird the Packet to the reqæsted URL

T okenize the D ate

Send the Tokenized chta to Resæræ lnspedor

53

5.2 Resource lnspector

A core component of the system is the Resource Inspector. The main job of the Resource

Inspector is to assemble vital information about the resources available in the system for

ease of access and fast decision-making. To implement this component, we adopted

intelligent mobile agent technology. Mobile agents are suitable because they enable us to

seamlessly and transparently assess servers (at remote iocations) and retrieve appropriate

data of interest. The agents only need to know the address (IP address or full domain

name) of the resource and a known set of database types. The agents can retrieve the

metadata of each database, such as the name of the schemas, the description of the

schemas, and table definitions, etc. This information is necessary to make informed

judgements on where to find the available resources for the application. The databases ar.e

transparent to the system. Figure 5.8 shows the class diagram for resource inspector.

:Resource_lnspector

Resource_Manager

1.,.*
inds

0...*

:Resources

Figure 5.8 Resource Inspectot'- Class Diagram

fs-¡t"r'l

- Resources : String

Resource_Locator

Resources : String

+ Connect to servers () :

+ Search resources () :

+ Send Resourcelnfo () :

+ Receive Resourcelnfo () :

+ Schedule Table () :

+ send resourceinfo () :

+ sends tokennized daia () :

54

:Resou rce_M ana g er

mect to different server

lookfor data

selects tfre

Figure 5.9 Resource Inspector - Sequence Diagram

5.2.1 Functionality

The Resource Locator and Resource Manager are the two sub components of the

Resource Inspector. The main job of the Resource Inspector is to assemble vital

information about the resources available in the system for ease of access and fast

decision making. Figure 5.9 gives the Sequence diagram for the Resource Inspector. The

Resource Locator collects the resource information. When the switching unit is started,

the Resource Locator creates resource agents. These agents are capable of moving from

one location to other location. Because of their mobile property, these agents are called

Mobile Agents. The Mobile Agents are sent to different machines to look for resources.

The resources for E-Commerce applications are often stored in databases at participating

servers. The resources are heterogeneous because they are build using different database

systems (e.g., Microsoft Access, oracle, sQL server, DB2, sybase, etc). The Resource

Agents enter the appropriate designated server and retrieves the data of interest. The

agents extract the metadata of each database, such as the name of the schemas, the

description of the schemas, and table definitions etc. These informations are given to the

Resource Manager to make informed judgements on where to find the available resources

for the application. Based on the metadata information and the server address, the

Resource Manager collects resource information about the number of databases available

in the system, the address of these databases, and permissions on the databases and stores

55

the collected data in a resource table. Algorithm 5.2 and 5.3 gives the pseudo code for

Resource Locator and Resource Manager. Figure 5.11 gives the Activity diagram for the

Resource Inspector.

Algorithm 5.2 Resource Locator

INPUT: Server addresses;

OUTPUT: Resource information of various servers;

// Abbreviations used and there corresponding meaning.

RM: Resource Manager;

FOREACH server DO
Create resource agents;

WHILE (network is active) DO
Open a connection with all servers;
IF (server is active) THEN

Send the resource agents to the assigned server;
Collect the resource information for each server.
Exit the system;

ELSE wait for active connection with the server;
END {rF};
Send all the collected resource informations to RM;

END {WHTLE};
End of Algorithm;

Algorithm 5.3 Resource Manager

INPUT: Tokenized data from Packet Inspecror;
Resource Informations from Resource Locator;

OUTPUT: Server address or addresses for the tokenized data;

// Abbreviations used and there corresponding meaning.

RT: Resource table;
SA: Server address or addresses;
TD: Tokenized data:
DL: Data Location;

RT is formed using the resource informations;

FOREACH tokenized data DO
Look for SA;

WHILE (network is active) D0
Search for TD in RT;

56

IF (TD nor found in RT) THEN
Forward the packet to the original destination;

ELSEIF (TD found in RT) THEN
Find SA;
Form a DL rable using rhe SA;
Send the DL table to the Scheduler unit;

END {rF};
END {WHTLE};

End of Algorithm;

While collecting the resources in the resource table the resource informations are also

copied into a file as backup information. The advantage of following this process is, even

when the system is down or switched off all the informations are stored, which can be

used as soon as the system is recovered. The resource table has tow columns and n -
number of rows. The Resource table is shown in Figure 5.10.

Rry.¡-E:e -l-able

R.ffiJrc€: tp

ffiÉrffiJr
zellerrs

6qrãs*üE!
sãærffiJf

a3t-a7s_27-2aa
a3t-a7fJ-zt_2a2
lSfr_t 7g_2ft_21 3
a3t_¿a¡g_zT_2/a 4

Figure S.l0 Resource Table

The two columns in the resource table are the server address and the resources available
in the server. The resource table is scanned for the tokenized data obtained from packet

Inspector to find the appropriate server or servers for processing the user request. The
obtained server address or addresses are stored in a Data Location table. The data

location table is shown in Figure 5.12. The Data Location table is sent to the Scheduler
unit for further processing.

57

l-oken¡zed data

Resource lulanager(Rltjl) rece¡ves data

RM Forms Resource Tafrte(RT)

Checks¡ data ¡n R-¡-

Route the packet to the Original Dest¡nat¡on

Find all dest¡nat¡ons

Send tlre destinations to Sctreduler Un¡t

Connected to different seruers

Lool,s for resources

Collests the resource ¡nformat¡on

Figure 5.ll Resource Inspector _ Activity Diagram

5.2.2 Assumptions

The implementation assumes that

o All Server Addresses are known.

o Permissions are granted on the servers.

. Data Source Names for all the databases are known.

o The databases are transparent to the system.

{3t.{Ts.2?.2t{
l3t.trs.2¡.2{4

Figure 5.12 Data Location Table

58

5.2.3 lmplementation Strategies

The Resource Inspector component is impremented using Java.

5.3 Scheduler Unit

The Scheduler Unit is a major part of the system, uses the information assembled by the
Resource Manager to facilitate content-based routing. It is responsible for scheduling and
allocating transactions to the various servers for execution based on the current
processing / work load information of each server. This unit answers questions such as:
how busy is each server and which server can process the request in the shortest time.
Figure 5.13 gives the class diagram for scheduler.

Figure 5.13 Scheduler Unit - Class Diagram

59

ænds Load Iñlbo

collects the Load & Cost
I nfo

Figure 5.14 Scheduler [Jnit - Sequence Diagram

Functionality

The different components of the scheduler unit are the Load Inspector, cost Manager,
cache Manager and the Scheduler. The scheduler selects a best and efficient destination
address based on a set of metrics' The sets of metrics are the load on the server and the
distance between the client and the server. The foilowing section discusses the
functionality of each component elaborately. Figure 5.14 gives the sequence diagram of
the Scheduler Unit.

5.3.1 Load lnspector

The Scheduler receives the Data Location Table from the Resource Inspector. For each
entry in the table the Load Inspector creates Load Detector Agents. The agents are
capable of moving from one location to another. Each entry in the Data Location Table

60

has a server address.

appropriate server to
Detector Agent checks

The SST has rhe srarus

SST.

The Detector Agent reads the server address and enters theretrieve the Load information. Befo¡e entering the server thefor the status of the server from the system Status Tabre (ssT).information of all the participating servers. Figure 5.15 shows the

Figure S.IS System Stutus Table
If the system is active the agent checks the percentage of cpu ava'abre for the nextprocess' free Memory available and the length of the processor

eueue to find the totarnumber of jobs waiting to get processed by the server. If the server is down or inactivethe Detector Agent ignores the server and looks for the next Server Address in the DataLocation table' The Detector Agent coilects the road information and sends it to thescheduler for furtherprocessing. Algorithm 5.4 gives the pseudo code and Figure 5.I6gives the activity diagram for the Load Inspector.

Algorithm 5.4 Load Inspector

INPUT: Data Location table from Resource Inspector;

ouTpuT: Load info¡mation of at servers in Data Locarion rabre;
// Abbreviations used and there corresponding meaning.

SA: Server address;
DL: Data Location;
MEM: Memory;
pe: processor

eueue;

FOREA_CH entry in DL rable DO
Read SA:

IVHILE (sysrem is active) DO

sysranstat,ìEE

13A.175.2r.211

130.t 7s.?.280

1t0.t 79.3G.114

61

IF (first row nor empty) THEN
Check the CpU status for the SA;
Check the MEM starus for the SA;
Check rhe pe lengrh for the SA;

BND {rF};
Collect all the above information;
Send the load information to the Scheduler;

BND {WHILE};

End of Algorithm;

Parallel E)æcúion

Figure 5.16 Activity Diagramfor Load Inspector

lmplementation Strategies

The Scheduler is implemented using Java. This component is implemented using Java
Remote Method Invocation (RMÐ. The other approaches for implementing this module
ate lava Aglets and Simple Network Management Protocol (sNMp). In all the three
approaches a server should be running for the Resource Agents to collect the Resource
information. The SNMP approach is very similar to the Remote Method Invocation. The
SNMP server is same as the RMI se¡ver. The SNMP is the standard protocol used for
remote communication. The Java Aglets has its own Tahiti Server, which is built in with

Receive Dãta Location TÊble

Read the Sen¡er A.ddress

Check CPU Status Check ME M Status Checft Frocesûr Gueue

Send Loûd lnfÐ to ScfEduler

62

the Aglets Kit that has to be installed to use the Aglets. Aglets can create Mobile Agents

that can roam from one machine to another. The advantage of using RMI is, we can have

our own specification in creating the Server, which supports our application reducing the

workload on the Server. In the case of Aglets and SNMP they have a built in Server,

which is created to support all the applications. This increases the workload on the

Server.

5.3.2 Cost Manager

The next component in the Scheduler unit is the Cost manager. Cost Manager finds the

distance between the client and the server. The Cost Manager creates a simple traceroute

procedure, which is used to find the total number of hops, or nodes in between the client

and the given server address and form a Proximity Table. Figure 5.17 shows the

Proximity Table. The Cost Manager reads the Data Location Table. Each row

Figure 5.17 Proximity Table

in the table is scanned for server address. For each scanned Server address, the distance

information is obtained by looking into the Proximity Table. The distance information is

sent to the Scheduler for further processing. Algorithm 5.5 gives the pseudo code and

Figure 5.18 gives the activity diagram for Cost Manager.

Algorithm 5.5 Cost Manager

INPUT: Data Location table from Resource Inspector;

OUTPUT: Number of nodes in between the content switch and each Server in Data
Location table;

130.175.T.211

13û.173.2¡.2Ê0

180.17S.31.114

1û

E

// Abbreviations used and there corresponding meaning.

63

SA: Server address;
DL: Data Location;

FOREACH entry in DL table DO
Read SA;

WHILE (system is active) DO
IF (first row not empty) THEN

Find the total number of nodes present in
given server;

END {rFh
Send the information to the Scheduler;

END {WHrLEh

End of Algorithm;

between the switch and the

Figure 5.18 Activity Diagramfor Cost Manager

The Cost Manager is implemented using Java.

5.3.3 Scheduler

The next important component is the Scheduler. The Scheduler selects the best and

efficient server address for routing the user request. The Scheduler collects the

information from the Load Inspector and Cost Manager. Based on the collected

information a Schedule table is formed. The Schedule table is shown in Figure 5.19.

Read the Dãta Locât¡on Table

Get the Server Address or Addresses

Find the DiSance bdv'Éen the Sv\itdl end the Ser\,Er

Send the lnfo to Scheduler

64

Sch€dr.le Tatie

TP FtæCPU låFræ f!Þm quæ]sìgth Oidæe

¿13lù.175-27_211

13lJ,179.¿t-212
¿13lJ.179-2¡-2n3

!ì4.4
sa-8
99.3

6A
-t4

0

û

1

2(t
1l}
2ã

Figure 5.19 Schedule Table

the pseudo code and Figure 5.20 gives the activity diagram forAlgorithm 5.6 gives

Scheduler.

Figure 5.20 Activity Diagramfor Scheduler

Algorithm 5.6 Scheduler

INPUT: Load Information from Load Inspector;
Cost Information from Cost Manager;

OUTPUT: Server Address for Routing user request;

// Abbreviations used and there corresponding meaning.

SA: Server address;
ST: Schedule Table;

WHILE (system is active) DO

Colleststhe Load and Cod lnfo

Forms a Sdledule Tqble

Best Server Address is Selested

Server Address is sent to S$itd.ìing Unit

6s

Collect all the information;
Form a ST;

Best and Efficient SA is selected based on set of metrics.
Send the selected SA to Switching Unit;

END {WHTLE};

End of Algorithm;

An efficient server address is selected from the Schedule table based on algorithm 5.7.

The runtime for this algorithm is O(n2). The selected server address is sent to the

switching unit for routing the user request.

Algorithm 5.1 Selecting the Best Server Address

INPUT: Schedule Table formed by Scheduler;

OUTPUT: Best and Efficient Server Address is selected;

SA: Server address;
ST: Schedule Table;
CPU: Vo CPU Available;
MEM : VoMemory Available;
QL: Queue Length;
DIST: Distance between the switch and the server;

FOREACH columns in ST assign different anays
DO
{

Assign the 1't row element of each array to a temporary variable T;
Compare the T row elements with the next row (N) in ST;
IF ((ldiff (r (cpu), N (cpu)l) > 0.s) THEN
{

IF (r (Drsr) < N (Drsr)) THEN
{

Tth row elements are selected and the SA is selected as best destination
Address;

)
ELSE
{

Select the N row elements and assign SA as best destination
Address;

Ì
END {rF};
IF (T (DIST) = = N (DIST)) THEN
{

The server, which has more CPU available, is selected as best destination

66

address;

Ì
ELSE (ignore the CPU available and compare the DIST)
{

IF (r (Drsr) < N (Drsr)) THEN
{

Tth row elements are selected and the SA is selected as best destination
Address;

)
ELSBIF (r (Drsr) > N (Drsr)) THEN
{

Assign the temporary row to the next row elements and select
the SA;

Ì
ELSE (ignore the DIST and compare the QL)
END {rF};
IF (r (QL) < N (QL)) THEN
{

Tth row elements are selected and the SA is selected as best destination
Address;

Ì
ELSEIF (r (QL) > N (QL)) THEN
t

Assign the temporary row to the next row elements and select
the SA;

Ì
ELSE (ignore the QL and compare the MEM)
END {rF};
IF (r (MEM) > N (MEM)) THEN
{

Tth row elements are selected and the SA is selected as best destination
Address;

)
ELSEIF (r (MEM) < N (MEM)) THEN
{

Assign the temporary row to the next row elements and select
the SA;

Ì
ELSE (ignore the MEM and find which server has more CPU available among

the two rows);
END {rF};
IF (T (CPU) > N (cPU)) THEN
{

Tth row elements are selected and the SA is selected as best destination
Address;

Ì
ELSEIF (r (cPU) < N (cPU)) THEN
{

61

Assign the temporary row to the next row elements and select
the SA;

Ì
ELSE (select any row among the two compared rows and select the SA as the

best destination address);
END {IF};

Ì
END {rF};

UNTIL all rows are compared;
END {DO};
End of Algorithm;

Java is used for implementing this component.

5.3.4 Cache Manager

The next component in the Scheduler Unit is Cache Manager. It is a separate component

inside the Scheduler Unit. The main functionality of the Cache is to get the best and

efficient destination address from the Scheduler and puts it into the cache with the

corresponding data of interest for that server. When the request comes in from the client

the router checks the cache for the requested data and its corresponding Server address. If
the data is cached the router picks up the Server address and sends it to the Scheduler

Unit for further processing. If the data is not available in the cache the router sends the

tokenized data to the Resource Inspector to obtain an appropriate server address. This

component is implemented in Java. The Cache is maintained in two different ways. The

Sumogate Server or just a file can be maintained as a cache. Surrogate Server is similar to

a cache where, the most frequently requested data is stored. The storage capacity in this

server is very huge when compared to a file. In my thesis I am just using a file as my

cache.

5.4 Summary

This chapter presented an object model, sequence diagrams and activity diagrams for the

different components of the designed content router. Section 5.1 to 5.3 explains the

functionality and presents the algorithm and implementation strategies for the different

components of the content router. Chapter 6 presents some of the screenshots and

explains them with a user scenario.

68

Chapter 6

Implementation

This chapter discusses different implementation strategies and explains different runtime

screenshots of the implementation of the content-based router design. The different

screenshots shown in this chapter are captured by running different modules of the

implementation separately in order to show all the implemented components of the

designed content router. Section 6.1 gives an overview of the overall system and Section

6.2 presents the user scenario of the full working model. Section 6.3 shows the

implementation results for the designed content router and Section 6.4 presents a brief

summary of the chapter.

6.1 System Overview

Figure 6.1 shows the screenshot of user request and how packet inspector captures the

request.

Figure 6.1User Request and Tokenized Data

69

Recall the Packet Inspector present in the content router has two components, packet

capture and packet analyzer. The packet capture component captures the user request and

extract the data sent by the user. From Figure 6.1, shows an example of how the user

requests is sent and captured. The packet capture captures the packet and finds the

address of the user and extracts the data sent by the user. The packet analyzer analyzes

the data and tokenizes the data to select the keywords for finding a suitable server for

processing the client's request. Figure 6.1 shows an example of how the tokenized data is

extracted from the user request. The tokenized data is sent to the next module for further

processing.

Figure 6.2 shows the structure of the resource table. The resource table is maintained by

the resource inspector component of the content router. The resource table has two

columns, resource name and server address. The resource locator, a module in the

resource inspector, looks for different resources in the participating servers and collects

the information. The collected information is given to the resource manager module

present in resource inspector. The resource manager stores the collected data in a

resource table maintained by it.

Figure 6,2 S creenshot-Re sourc e Table

10

The resource table is scanned for the tokenized data obtained from the packet inspector to

find different servers suitable for processing the user request. The scrutinized server

address or addresses are stored in the data location table maintained by the scheduler

component of the content router. Figure 6.3 shows an example of the data location table.

The data location table has two columns tokenized data and server address. The content

of the data location table changes dynamically each time based on the tokenized data

forwarded by packet inspector. The main reason for having a data location table is to

reduce the processing time of the content router for each user request, by avoiding the

scanning of the resource table more than once for finding the load details. The data

location table is sent to the scheduler unit for further processing.

Figure 6.3 Screenshot-Data Location Table

Figure 6.4 shows the system status table maintained by the scheduler unit. The scheduler

is one of the core components of the routing system. It uses the information collected

from the resource manager to facilitate content-based routing. The system status table

contains the status of the participating servers, whether the participating servers are active

or down. The scrutinized server address or addresses present in the data location table is

checked with the system status table by the scheduler. If any of the server or servers is

71

down they are eliminated from further processing. The

processed further in order to process the user request.

different p articipating servers.

remaining server or servers are

Figure 6.4 shows the status of

Figure 6.4 Screenshot-System Status Table

Figure 6.5 gives the proximity table maintained by the cost manager module in the

scheduler component.

Figure 6.5 Screenshot- Proxímity Table

72

The proximity table maintains the distance information between the client and different

participating servers. The distance that is calculated here is the number of nodes or hops

in between the client and the participating server. It has two columns: server address and

distance. The distance information is one of the load details. Cost manager maintains the

proximity table. The cost manager gives the distance information for different servers

present in the data location table. The distance information is sent to the scheduler along

with other load details like percentage of CPU available, available memory and the length

of the processing queue for further processing. The scheduler collects all the information

and forms the schedule table shown in Figure 6.6.

Figure 6.6 S creenshot- Schedule Tab Ie

Figure 6.6 shows the load details of each server present in the data location table. The

different load details shown above are obtained from different components of the

scheduler unit. The load inspector gives the percentage of free cpu, memory available,

and length of the processor queue. The cost manager gives the distance information.

Based on the results present in the schedule table the best server for processing is

selected. The best server address is selected based on the set of metrics mentioned in

previous Object model and Functionality chapter. Figure 6.7 shows the screenshot of the

best-selected server.

73

Figure 6.7 Best Selected Server

The above figure shows the screen shot of how the best efficient server is selected.

Algorithm 4.1 in object model and functionality chapter explains how the best and

efficient server address is selected from the schedule table.

6.2 User Scenario

This section discusses the user scenario of the designed intelligent system. Figure 6.8

shows an overview of the prototype of the intelligent content-based routing.

14

B
User

fl5J
User

Figure 6.8 Overview of the Intelligent Content Based Routing Architecture

To test the prototype the necessary components are an intelligent content router, different

participating servers and some clients connected to the network. When the system is

started, the clients connected to the network may send their requests. The content router

has different components embedded with it. The packet inspector component captures the

request in the form of packets. It uses the divert sockets API to grab the packet from the

network. The packet inspector extracts the data, tokenize it and forwards it to the resource

inspector, which is the next component, embedded in the content router. When the system

is switched on the resource inspector looks for the resources by sending queries to the

participating servers. The different databases on the servers are accessed by using JDBC

driver. Java has lots of JDBC API's for accessing the data present in different databases.

Using JDBC we can access any type of data source. The resource locator in the resource

inspector component collects all the resources. The user request is searched in the

resource list maintained by the resource inspector to locate different servers. The user

request is forwarded to the selected server and response is sent back to the client. The

load information is obtained by using JAVA RML RMI supports different API's to send

agents to different machines to collect load information. The above mentioned procedure

is used to process the client's request quickly and efficiently in a short span of time. The

full implementation of the content router is done in JAVA and C. We choose JAVA for

implementation because of platform independence it enjoys. The packet capture is

implemented in C.

75

6.3 lmplementation Results

Many factors affect the performance of a router. Examples of such factors are network

traffic, load on network nodes, and system configuration. A small change in any of these

factors can drastically affect the performance of a router. To measure the performance of

the content-based router designed in this thesis, test wele performed on various

algorithms and time taken to complete their execution is calculated in milliseconds. For

each tests we experimented 20 different test cases and we took the average of the 20

cases to find the time taken. The network used for the test has 12 different cluster nodes.

We converted the cluster nodes as 12 different servers and we measured the time taken

by each algorithm to complete its functionality. The algorithms were implemented in

Java. The first test measured the Load Inspector algorithm. We start by finding the time

taken to find load information for one node and we increase the number of server nodes

incrementally, until all the 12 nodes are included. Finally we tested the algorithm for 12

server nodes. Figure 6.9 shows the graph for time taken to find the load on nodes versus

number of different nodes.

ttõ
o
trtr
LvE.
oo
c(!9E
6ã
FboE
E
tr

1 600

1 400
't200

1 000

800

600

400

200

0

456789
Cluster of Server Nodes

10

Figure 6.9 Peformance test results for Load Inspector Algorithm

The load information that the algorithm looks for are free percentage of cpu and memory

available and length of processor queue. In the graph, most of the processing time is

spent on parsing the result of load details.

16

Next we measured the performance of the Ploximity algorithm. This test was performed

for the traceroute implementation used in our algorithm. Similar to the previous test we

started the test by finding the distance between the client and server for two nodes and we

extend the test to 12 nodes with an interval of two. Figure 6.10 shows the performance

for the proximity algorithm.

Figure 6.10 Peformance test results for Proximity Algorithm

The execution of the algorithm takes place in parallel, which reduces the execution time.

The elapse time is spent on finding the size of the result vector that stores the distance

between a client and server.

The performance of the router can be improved by implementing the different algorithms

using C instead of Java. The initial overhead that is seen in the above graphs is might be,

due to the time taken by Java to load the Java Virtual Machine, time it takes to load

different libraries included in the program as well as the time taken to handshake with

other network nodes.

^ 300
o¡2oÈ
F;250iry
1H'ooÊtt
fFrso
þ'# 1oo
(Ev
l-ccE 50ts=
Fo)-o0

6.4 Summary

Section 6.1 presented some of the screenshots and explained how the actual system will

work in real time. Section 6.2 presents a user scenario and explains the interaction

between the users and Section 6.3 gives the performance result for the designed content

router. Chapter 7 presents conclusion and summary of various contributions presented in

this dissertation and gives some future research directions.

18

Chapter 7

Conclusion

In this thesis, we present the design and implementation of an Intelligent Content-based

router that finds a suitable server for processing a client's request quickly and efficiently.

The main reason for developing a new intelligent content-based router is that the current

routers fail to deliver information to users in right time due to the large increase in

Internet users. This led to the increase in network traffic and load on different servers.

The newly developed content router could potentially reduce network traffic and

optimizes routing cost. By reducing the network traffic and optimizing the routing cost

the performance of the router might be increased. The different components present in

my content router are Packet Inspector, Resource Inspector and Scheduler. The key

features of the newly designed content router are, existing content routers handle the data

present in the servers in a monotonous way. The newly developed content router handles

different data based on their classification obtained from the Resource Locator. The other

key feature of the architecture is that the execution of each of the components is done in

parallel. The functionality of these components is explained in detail in Chapter 5. Based

on the information obtained from these components a user's requests are forwarded to the

appropriate server.

79

7.1 Gomparison between Existing Content Routers and newly Designed

Content Router

The main difference between the newiy designed content router and the existing routers

are:

This design is also mathematically proved to be robust and fail-safe. The conectness of

the design is done using a formal specification language (Z), and the specification is

verified using Z-Eves tool.

7.2 Summary of Contributions

This thesis addresses different problems like network traffic, load on different servers,

replication of data, status of the servers, and performance of the router. The list of

contributions that were made for this dissertation is listed below.

o Provided a new architecture for Intelligent Content-Based Router.

Existing Content Routers Newly Designed Content Router

1. Static Routing 1. Dynamic Routing.

2. Consider only one or two components

for routing.

2. Consider all the specified components

for routing.
3. Examines only the HTTP based request 3. Examines all types of TCP - based

requests.
4. Replicates data. 4. No replication of data.

5. Maintains a single large database for
storing the resource information, which
in turn increases the access time for
accessing the resources.

5. Have heterogeneous databases for
storing the resources. Uses cache as one
of the components for locating server
addresses which decreases access time.

80

o Provided different network designs to utilize the services of the newly designed

Intelligent Content Router efficiently.

o Provided an Object Model for the developed content router.

o Provided a Formal Specification for the newly developed Content-Based Router.

o Provided a prototype implementation of the newly proposed architecture.

7.3 Future Directions

This thesis provides a verified, content-based routing technology that can be used to build

application-specific intelligent software routing environments. Such environments can be

exploited to create more efficient geographically distributed databases and other similar

applications. The areas of applications are vast, ranging from e-commerce to intelligent

network switches and call-center processing.

Intelligent content-based routing provides the following key services: (i) content-based

routing, (ii) traffic optimization, (iii) economically scalable services that provide

appropriate response to varying processing loads, and (iv) the ability to track content

requests and respond with appropriate content.

We conclude this thesis by identifying some of the important issues to be addressed as an

extension of this research. The future work suggested here is based on this work

combined with directions to address the general problem of content-based routing with

respect to Internet applications like E-Commerce.

. The different network designs that were proposed in this thesis can be simulated

to study the performance and obtain best design for different applications.

o This thesis has provided some of the background research for implementing the

different network designs using MPLS. In this thesis we have not implemented

the different network designs.

8r

Using some standard optimization techniques the different algorithms such as

load inspector algorithm, proximity algorithm and system status algorithm that

were implemented might potentially be optimized to obtain a better performance.

Another interesting direction for future work would be in the area of wireless

access of resource data from remote locations. We need to assess the performance

of the content-router in a wireless environment.

In this thesis, I did not consider security problems. If this factor is considered, the

encryption and decryption of data that is passed in the network has to be done.

This is potentially one of the future works that is suggested because all the

transactions done in an E-Commerce application should be secured.

The content router design proposed in this thesis lays a solid foundation for future

work where different E-Commerce applications can be built over it. As a final

comment, it is expected that the report presented in this thesis will also lead to the

development of a hardware intelligent content - based router.

82

Bibliography

tKLS9sl

lGLHesl

lGLMesl

Isve7]

IKSe8]

IDKSs9l

lP+981

[ADJ+92]

IKe4]

V. P. Kumar, T. V. Lakshman, and D. Stiliadis, "Beyond Best Effort:
Router Architecture for the Differentiated Services of Tomorrow's
Internet", IEEE Communications MagaTine, 36(5): L52-164, May I998.

D. Ghosal, T. V. Lakshman, and Y. Huang, "Parallel Architectures for
Processing High Speed Network Signaling Protocols", IEEE / ACM
Transactions on Networking, pages 116 -J28,December 1995.

Pankaj Gupta, Steven Lin, and Nick McKeown, "Routing Lookups in
Hardware at Memory Access Speeds", IEEE INFOCOM, April 1998.

V. Srinivasan and G. Varghese, "Efficient Best Matching Prefix Using
Tries", Pre- Publication Manuscript, January 1997.

S. Keshav and R. Sharma, "Issues and trends in Router Design", IEEE
COMMUNICATONS Magafine,35(6) : 144-151, May 1998.

A. Demers, S. Keshav, and S. Shenker, "Design and Analysis of a Fair
Queuing Algorithm", Proceedings of ACM SIGCOMM '89, Austin,
September 1989.

Craig Partridge et al, "A 50-Gb/s IP Router", IEEE / ACM Transactions on
Networking, Vol. 6 No. 3, June 1998.

A. Asthana, C. Delph, H. V. Jagadish, and P. Krzyzanowski, "Toward a
Gigabit IP Router", Journal of High Speed Networks, Vol. i, No. 4, pp.
28r -288, Lggz.

S. Konstantindou, "Segment Router - A Novel Router Design for Parallel
Computers", IBM T. J. Watson Research Center, Yorktown Heights, NY
10598. (Also published in the Proceedings of ACM SPAA-94, Cape May,
N.J., USA, 1gg4).

83

[WVT+97] Marcel Waldvogel, George Varghese, Jon Turner, Bernhard Plattner,
"Scalable High Speed IP Routing Lookups", In Proceedings of
SIGCOMM' 97, September 1997.

[APP+99] G. Apostolopoulos, V. Peris, P. Pradhan, and D. Saha, "L5: A Self-
Learning Layer-S Switch", IBM Research Report RC2L46I, T.J. Watson
Research Center, 1999.

ls88l J. M. Spivey,lntroducing Z: A Specffication Language and its Semantics.
Cambridge University Press, 1988.

VEVES Version 2.0, ORA Canada, Ottawa, Ontario, KlZ6X3, CANADA
(available at http://www.ora.on.calz-eves/welcome.html). (Also associated
with this is The VEVES Reference Manual by Mark Saaltink and Irwin
Meisels, ORA Canada, December 1995; revised September 1997 and
October 1999).

Unified Modeling Language Specification (draft), Version 1.3 alpha R5,
Object Management Group, Inc., March 1999.

S. A. Ehikioya, "Formal Specification of Intelligent Routing Infrastructure
for Electronic Commerce Systems", Technical Report # TR-CS-22-2000,
Dept of Computer Science, University of Manitoba, Winnipeg, Canada,
June 2000.

G. Hunt, G. Goldszmidt, R. King, and R. Mukherjee, "Network
Dispatcher: A Connection Router for Scalable Internet Services",
Proceedings of the 7th International World Wide Web Conference,
Brisbane, Australia, April 1998.

D. Andresen and T. McCune, "Towards a Hierarchical System for
Distributed WWW Server Clusters", Proceedings of the Seventh IEEE
International Symposium on High Performance Distributed Computing
(HPDC7), Chicago, IL, July 1998, pp. 301-309.

V. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel, W. Zwaenepoel,
and E. Nahum, "Locality-Aware Request Distribution in Cluster-based
Network Servers", Proceedings of the Eighth International Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS-V[I), San Jose, California, October 1998.

lsMeel

[uML99]

lE00l

[HGK+98]

tAM98l

IPAB+98]

84

ISLI+00]

ISLI+991

IGC00]

[cFH99]

lc00l

[ccY00]

ICID+00]

tBe5l

J. Song, E. Levy-Abegnoli, A. Iyengar, and D. Dias, "Design Alternatives
for Scalable Web Server Accelerators", Proceedings of IEEE International
Symposium on Performance Analysis of Systems and Software, Austin,
TX, April2000.

J. Song, E. Levy-Abegnoli, A. Iyengar, and D. Dias, "A Scalable and

Highly Available Web Server Accelerator", IBM Research Report RC
21371, Shorter version appeared in Poster Proceedings of the 8th
International World Wide Web Conference (WWW8), Toronto, Canada,
llfay 1999.

Z. Genova and K. Christensen, "Challenges in URL Switching
Implementing Globally Distributed Web Sites". Proceedings of
Workshop on Scalable Web Services, August 2000, pp. 89 - 94.

M. Crovella, R. Frangioso, and M. Harchol-Balte. "Connection
Scheduling in Web Servers". In Proceedings of the 1999 USENIX
Symposium on Internet Technologies and Systems (USITS 99), October
1999.

Cisco Systems Inc,. "Content Routing Protocols", White Paper, Cisco
Systems Inc, October 31, 2000.

http ://www.cisco.com/warp/publi cl ccl pdl cxsr / cxrt/tecUccrp-wp.htm.

V. Cardellini, M. Colajanni, and P. S. Yu. "Geographic Load Balancing
for Scalable Distributed Web Systems". Proc. IEEE Mascots 2000, San

Francisco, CA, Aug./Sept. 2000.

J. Challenger, A. Iyengar, P.Dantzig, D. Dias, and N. Mills. "Engineering
Highly Accessed Web Sites for Performance". V/eb Engineering, Y.
Deshpande and S. Murugesan editors, Springer-Verlag, 2000.

T. Brisco. "DNS Support for Load Balancing". Technical Report RFC
1974, Rutgers University, April 1995.

P. Mockapetris. "Domain Names - Implementation and

Specification".Technical Report RFC 1035, USC Information Sciences

Institute, November 1987.

for
the

tM87l

85

tDS94l Andrzej Duda and Mark A. Sheldon, "Content Routing in a Network of
WAIS Servers", 14"' International Conference on Distributed Systems,

Poznan, Poland, June 1994.

[SDW+94] Mark. A. Sheldon, Andrzej Duda, Ron Weiss, James W. O'Toole, Jr., and

David K. Gifford, "A Content Routing System for Distributed Information

Servers", Proceedings Fourth International Conference on Extending

D atab as e T echnolo gY, };{.arch I99 4.

lD] Iittp://www.unitechnetworks.com/IntelliDNS/understanding/

tAP] http://www.knowware.co.uk/ArrowPoint/solutions/wliitepapersAMebNS.html

86

