Intelligent Content-Based Routing for

Enhanced Internet Services
By

Suresh Jayaraman

A Thesis

Submitted to the Faculty of Graduate Studies at University of Manitoba
in Partial fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Department of Computer Science
University of Manitoba

Winnipeg, Manitoba

© Suresh Jayaraman, 2001

g |

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada

Your file Votre référence

Our file Notre référence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

I+

Canadi

0-612-76965-8

THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES

Fkekkkk

COPYRIGHT PERMISSION PAGE

INTELLIGENT CONTENT-BASED ROUTING FOR ENHANCED INTERNET
SERVICES

BY

Suresh Jayaraman

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University
of Manitoba in partial fulfillment of the requirements of the degree

of

Master of Science

Suresh Jayaraman ©2001

Permission has been granted to the Library of The University of Manitoba to lend or sell copies
of this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend
or sell copies of the film, and to Dissertations Abstracts International to publish an abstract of
this thesis/practicum.

The author reserves other publication rights, and neither this thesis/practicum nor extensive
extracts from it may be printed or otherwise reproduced without the author's written
permission.

To Mom and Dad with love...

Abstract

An Intelligent content-based router should be designed to analyze data and find a suitable
server for processing a client’s request quickly and efficiently. Current content routers
examine only the HTTP based URL request and routes the request to the "best" server for
processing. These routers fail to examine different types of TCP-based user requests. The
content router developed in this thesis examines all type of TCP-based requests. The
content router is a core router that simply forwards packets to the edge routers for
delivery after performing its content based processing. This router can be replicated to
achieve higher performance in large networks. Moreover, by adopting a formal design
approach, which is subject to mechanical evaluation using the Z-EVES tool, the

correctness of the design is ascertained.

The objectives of this thesis are to:

e Provide an object-oriented design of an intelligent content-based router (a
network device that routes packets based on their contents) for e-commerce
applications using the UML paradigm.

* Model the design using the Z specification language to guarantee correctness and
prove the reliability of the design. In particular, Z notation will provide the
capability to capture both dynamic and static features and operations of the
proposed content-based router.

* Provide a prototype implementation of the design as a proof of concept.

Acknowledgements

First I would like to thank my supervisor Dr. Sylvanus Ehikioya for generating the initial
ideas for this thesis and for guiding me through out my thesis and being there when I

needed him.

My special thanks to Dr. Jose A. Rueda of TRLabs for providing me with a great research
environment. Thank you also for providing me moral and technical support through out

my research period at TR Labs.

I would also like to thank Dr. Muthucumaru Maheswaran for making his lab (Advanced
Network Research Lab) available for implementation of the concepts in this thesis and

providing initial network programming assistance.

I also thank Dr. Peter Graham for providing useful comments and excellent editing of the

initial thesis proposal.

A special thanks to Dr. Ruppa Thulasiraman for attending all my mock presentations and
providing a feedback for the work I had done. I also thank him for reading my thesis and

providing me his comments.

I would also like to thank the members of my thesis committee Dr. Sylvanus Ehikioya,
Dr. Muthucumaru Maheswaran and Dr. Jose A. Rueda for accepting to examine this

thesis.

Finally, a thanks to TRLabs as an organization for providing the necessary financial

support.

I thank everyone at the offices of the Department of Computer Science at the U of M,
particularly Ms. Lynne and Ms. Susan for all the administrative support they provided

during my study.

I thank my friends (Chintu, Rajesh M, Rajesh R, Arvind V, Arvind S, Shony, Kumaran,
Ganesh and Gayathri) for their friendship and support in completing this thesis. I also
thank Deepa for proofreading my thesis module by module. A big "thank you" to

everyone for being good friends and supporting me in many different ways.
This section would be incomplete if I do not thank my family. I thank my brother
(Prasad), mom and dad for all the support, patience, perseverance, affection, confidence

and prayers without which I would not have made it this far.

I finally thank GOD for everything he has given me.

il

Contents

L. INTRODUCTION ..uccuuiicciissinsisaesaesaessessessassessessssessessessessossessessesssssossssssssossoses 1
L1 MIOTIVATION ...ttt ettt ettt et sttt et et ene s eveeas et e e eseseeeeeneeseeeneenneneenes 1
1.2 GOAL OF THE STUDY ...oviteriiiinieniteieeienteireeteeseeseeseeseesseseesesssesseseseneeseaneeeesneeenesaenneans 2
1.3 CONTRIBUTIONScvuiuinienierenieneattstessesteseessesenseseeseesessssessessessesessanseneeseeseneeeseesneseenes 2
L4 BENEFITScouiitiiiiiiiiiiieite et ee st st est et stas e ese st eseeseeessetessesteessessesesenssnesaeeeeeseneeanas 3
1.5 GENERAL ASSUMPTIONS ...cuviitietintirnieientinseeteeseeseeseeseesseseestessesssosesseseesseeeesneeesessesneens 4
1.5 ORGANIZATION OF THESIS.eecteutiienieieeteeteeteeteseeeeese et ees et esaeseeeeeeeeeeneeneeeeees 5

2. RELATED WORK AND BACKGROUND LITERATURE.......cceerervereenees 6
2.1 EXISTING MECHANISMSooctirtiienientianeentetesseeseeseeseesseseesseseeesosestosssneesesseesesneeneenes 6
2.2 PRODUCT SURVEY ..cuiiiiiiiuenicietteitetestestessasstessessssesseseesesessosessesssssonesssesssaseseeseens 11
2.3 SUMMARY ..ouiiiitiiiiiiieieeieteteeatseete e sttt e s st s e seseessesessessesseseseeasensoneseeseeneeeneaees 12

3. SYSTEM DESIGN ...cuuuiiiieiiisssnsessssecsessssessssssssessessessssasssssssssssseseossesaessossens 13
3.1 CONTENT ROUTER: DESCRIPTION.....c..eeteieiietiriuierietceeereeeesieteeteeeeseessesseeeesesseeneeeenas 13
3.2 NETWORK DESIGN.......oetitiiiiintiienieeenieteteete et et ess et ereenseteseesat e eeeneeaeeneeeeeneeanns 14

3.2.1 Intelligent Content Router for Metropolitan Networks - Option A. 14
3.2.2 Intelligent Content Router for Metropolitan Networks - Option B. 16
3.2.3 Intelligent Content Router for Metropolitan Networks - Option C. 17
3. 2.4 AQVANIAGES ...ttt 18
3.2.5 Intelligent Content Routing for Wide Area Networks............ccoooeveveeeeeeeeaenn.. 18
3.2.6 Global NetwWork STFUCTUTC..........ooveeeeeeeeeereieeeeeeeeeeeeeeeeeeeeeeeee e e e e e e e e 20
3.3 SYSTEM ARCHITECTURE....c..cc.ttiteuientariiatreteneeeeereesseneeseesesssonsessesseeeeseseeseeseeneeaneens 22
3.4 SUMMARY ...ovitiiiiiiieieienieteeeeeee e te e etaste et et seeeseeseseessetetesseneseeesseseneenennesseeeeeeaens 24

v

4. SPECIFICATION OF INTELLIGENT CONTENT-BASED ROUTING. 25

4.1 PROBLEM MODEL AND DESCRIPTIONc.ccvvuieieuietiuierieteeeeeeseeeenserssseseesesesaseeeesorenees 25
4.2 SPECIFICATIONoitioteritiienueetentensessaestensansentessasssseeseeseasseseasseseensensestesesnsesssseennonnens 26
4.3 SUMMARY ..ttt etesitette e stesteentsesessastesssesaeseeseeseeseeseessesssstessensesesseeseseeeneneseeee 44
5. OBJECT MODEL AND FUNCTIONALITY ..cccocvereeerrerreecsensseossecssecssessasane 45
5.1 PACKET INSPECTORcuetiuiiiiniieienieeeetesiestest et eeteeeeteeseesseneetseseessantossensenseeeesensennens 50
5.1 1 FURCHONALIEY...c.cceeiieiiieieeseeeeeeeete ettt ettt et e s e e eeea 50
5.1.2 Implementation StrQIEQIEScuuieueeeeeeeeeieeeieeeeeeeeeeee e eeeeee 52

5.2 RESOURCE INSPECTORccuteutiuiriiriineinietniiteeresesesesessessesesseeessesessessesenseseesenesaeeneans 54
5.2.1 FURCIONALILY. ...ttt ettt 55
5.2.2 ASSUIIPDIIONS ...ttt ettt e ettt saseaesee e 58
5.2.3 Implementation StrAtegiescocumoeeceeveneeiereieeieeieseeeeeeeseesesereeseenan 59

5.3 SCHEDULER UNITctiiiiiitiniiiiieieeeieietetiet ettt ettt ere st ess s e s sneeneneones 59
5.3.1 LOAA INSPECIOTooeaiaiieieeeeeeeee ettt 60
5.3.2 COSE MORNAGET ...ttt 63
5.3 3 SCREOAUIET ...ttt 64
5.3.4 CaChE MANGGETc..ooeeeiiieeeeseeeeeeis ettt 68

5.4 SUMMARY ..oiiitiiiiiiiiinitatenie st et te st ses e et e e eseeesesereertesssesensensassesseeseenesneenesreeseneeas 68
6. IMPLEMENTATION....ccccoieeiiensaiccsessesaenansaesacssessessaessessssssessossossonsssssssssossose 69
6.1 SYSTEM OVERVIEWcctiuiiuiatintinieieietetiesenssiesesteseaseseeseseessaseesensarsssessesssssssesesensens 69
6.2 USER SCENARIOccviueienieieeeteeeeenteetetese sttt esesessesesseseseasesessesesessessssenseseseeesanenes 74
6.3 IMPLEMENTATION RESULTSootiietieiiiiiieiietei ettt ee s 76
0.4 SUMMARY ...outiuieiietenteieeetet et e et ettt se e et et ete e easeseaseaeesestessesesss s sesenessesonenenns 78
7. CONCLUSION ..ccutiriinrnsissensssessssnssssssssssssassassssensessessessasssessasssesssssesssssssssossess 79

7.1 COMPARISON BETWEEN EXISTING CONTENT ROUTERS AND NEWLY

7.2 SUMMARY OF CONTRIBUTIONS.etteeteeeteeteeeseeeseees oo e oo oo 80
7.3 FUTURE DIRECTIONSootiueieteeteeeeeeeeeee et e e e e e 81
BIBLIOGRAPHY .auuoeeeteenrrenrecsseessssesssnessssessasssssesssssssssssssssssssssssssssssssssmnnssnnssnn 83

vi

List of Figures

3.1 Design for Metropolitan type of Network - Option A
3.2 Design for Metropolitan type of Network - Option B
33 Design for Metropolitan type of Network - Option B
34 Intelligent Content Routing - Wide Area Network
35 Global Network Structure
3.6 Intelligent Content - Based Routing Architecture
4.1 Resource Table..........cooiiiiiiii
4.2 Data Location Table
4.3 System Status Table
4.4 Proximity Table...........coooiiiiii
4.5 Schedule Table.........coooiiiiiii e,
51 Class diagram for Content-Based Router
5.2 Activity diagram for Content-Based Router
5.3 Sequence diagram for Content-Based Router
54 Deployment diagram for Content-Based Router
5.5 Packet Inspector - Class Diagram
5.6 Packet Inspector - Sequence Diagram
5.7 Packet Inspector - Activity Diagram
5.8 Resource Inspector - Class Diagram
5.9 Resource Inspector - Sequence Diagram
510 Resource Table......c.oouiuiiuiiiiiiiii e,
5.11 Resource Inspector - Activity Diagram
5.12 Data Location Table
5.13 Scheduler Unit - Class Diagram
5.14 Scheduler Unit - Sequence Diagram
5.15 System Status Table
5.16 Activity Diagram for Load Inspector
517 Proximity Table........ooiiiiiii i

vii

5.18 Activity Diagram for Cost Manager..............cccoeuvueeiieueaeeeeiii, 63

5.19 Schedule Table........ocoouiiiinii e 64
5.20 Activity Diagram for Scheduler.................cooooiiiiiiiiiiini 64
6.1 User Request and Tokenized Data................o.oooiiiieiiiiniaiinin. 68
6.2 Screenshot-Resource Table..............oouiuiiiiiiei e, 69
6.3 Screenshot-Data Location Table................coooooiiiiiiiiiiiniii 70
6.4 Screenshot-System Status Table...............oouiiiieinii e, 71
6.5 Screenshot-Proximity Table............ooiuiiiiiiiii e 71
6.6 Screenshot-Schedule Table...............ooooiiiiiiii e, 72
6.7 Best Selected SerVer........o.vuviiiinii i, 73
6.8 Overview of the Intelligent Content Based Routing Architecture............ 74
6.9 Performance test results for Load Inspector Algorithm........................ 75
6.10 Performance test results for Proximity Algorithm.............................. 76

viii

Chapter 1

Introduction

As the number of Internet users and sites continues to increase rapidly, demands on
network transmission bandwidths keep growing and the networks connected to the
Internet often become heavily loaded. As a result, locating and accessing relevant
information in large distributed systems is sometimes difficult and slow. This limits the
practical applicability of wide area distributed systems. To address this problem, efforts

must be made to use the available bandwidth more effectively.

1.1 Motivation

Transmission links alone do not make a network. Other components such as switches,
routers, etc. (and the software that run them) are also parts of a network. Of particular
interest to this thesis is the router. A router is a device that is used for forwarding packets
from one network to another. Every packet must pass through, typically, many routers.
The increase in demand for network bandwidth also places a huge demand on network
routers [GLMO98] and router saturation has an impact on the performance of many
distributed computing applications, including Electronic Commerce. One way to
overcome this problem is to develop innovative new router architectures that do routing
based on packet content in an effort to minimize wasted bandwidth. The design and

prototyping of such router architecture is the focus of this thesis.

Current routers do not examine packet data; rather they blindly forward packets based
solely on their destination address (which is contained in each packet header). While this
minimizes router processing and thereby increases potential router throughput, it also

limits routing flexibility. With content-based routing, it is possible to optimize routing

based on application characteristics. This is not possible with conventional routers. Such

optimizations can be applied to increase the efficiency of bandwidth use in the Internet.

1.2 Goal of the Study

The main goal of the thesis is to develop an intelligent content-based router that examines
the data in a packet, and then routes the packet to a destination where it can be most
quickly, cheaply, and efficiently processed. Before forwarding packets to their respective
destinations, the router examines the data in each packet and based on the data itself as
well as the network state, will determine a suitable destination address that can optimize
processing of the packet. Thus, a packet may be redirected to a different destination
address than was originally specified. This can be used to improve network bandwidth
utilization by replicating network services (e.g. web servers) and doing in-network

selection of the “optimal” replica to use for a particular packet/request.

The routing mechanism proposed in this thesis uses a set of metrics (including such
network state information as the cost, speed, and traffic over various links as well as
server proximity and workload) in making decisions about which destination to forward
packets to. The job size is not considered as a metric in this thesis. The transmission cost
of each packet depends upon various factors like network bandwidth, general health of
the network (i.e.) status of participating servers and size of each packet. This routing
mechanism, which we refer to, as Intelligent Content-based Routing will also be useful
for any distributed system which, can offer the required data at different network
locations. It is also extendable to other optimizations based on packet content. Providing
fast response, scalability, and consistent operational behaviour will be the key challenges

in my router design.

1.3 Contributions

This thesis proposes a new design for an intelligent content-based router. This design

addresses the various problems, such as network traffic, load on different servers,

replication of data on different servers and implements a new solution to overcome these

problems.

The main contributions of this thesis are:

® Provides a new architecture for an Intelligent Content-Based Router.

¢ Provides various network designs where the newly designed content router can be
used effectively and efficiently.

¢ Provides an Object Model for the newly designed content-based router.

* Provides a Formal Specification of Intelligent Content-based router using the Z
specification language to prove the correctness and reliability of the design.

¢ Provides a prototype implementation of the proposed design.

The content router proposed in this thesis consists of three major components embedded
within the content router. They are the Packet Inspector, the Resource Inspector and the
Scheduler Unit. We developed new algorithms for implementing the Resource Inspector
and the Scheduler. The complete details of each component are discussed in Chapter 3
(System Design). In this thesis, we utilize much of the application information from the
participating servers and from their status. The designed router is capable of finding the
load and resource information on each sever dynamically and provides the collected
information to other components of the router in order to process the user’s request. It
must be noted that the implementation of this thesis has some assumptions, which is
described in Chapter 5 (Object Model and Functionality). Finally a user scenario is
provided with some screenshots to explain how the newly designed content router can be

utilized in real time E-Commerce applications.

1.4 Benefits

The proposed architecture provides a verified, content-based routing technology that can
be used to build application-specific intelligent software routing environments. Such
environments can be exploited to create more efficient geographically distributed

databases and other similar applications [E0Q].

Intelligent content-based routing can provide the following key services: (i) content-
based routing, (ii) traffic optimization, (iii) economically scalable services that provide
appropriate response to varying processing loads, and (iv) the ability to track content

requests and respond with appropriate content.

Of particular current interest, content-based routing can be used to deliver optimized Web
response time, which is critical to the success of e-commerce applications. That is,
content routing enables the transparent selection of the best site and server for
processing/delivering the requested content thereby, providing an enabling technology for

more efficient distributed Web site processing.

It is expected that this thesis will also lead to other application-level content routing
applications and, potentially, to the development of a hardware intelligent content - based

router.

1.5 General Assumptions

To develop an efficient Intelligent Content-Based router, our architecture makes the

following assumptions.

Cost of Transmission: In this thesis transmission cost was not considered while designing
the content router. We assumed that the transmission cost is minimal and equal for every
packet that is being processed. But, in general, in order to consider transmission cost

various factors like packet size and network bandwidth have to be considered also.
Nature of applications: Since this thesis focuses on issues in E-Commerce, our
architecture was exclusively designed for different applications of E-Commerce. Our

architecture is made flexible to support other distributed applications.

Job size: The size of the job and time taken to transmit the user request is not considered

as a metric in this thesis. The main reason for not considering these two metrics is they
will increase the processing time of each packet. Therefore to avoid the processing delay

job size was ignored.

MPLS: The concept of Multiprotocol Label Switching is used in this thesis to label a

processed packet. This approach avoids multiple processing of the same packet.

Health of the network: In general the health of the network is evaluated based on the
status of the participating servers. In this thesis, status of each participating server is

obtained before routing the user request to the appropriate server.

Data compression and encryption: In this thesis, security issues are ignored because they
are not crucial to the central objective of the router design. So a user’s request is not

compressed or encrypted for transmission over the network.

1.6 Organization of Thesis

The rest of the thesis is organized as follows. Chapter 2 (Related Work and Background
Literature) provides some necessary background and related work in the area of content
routing design and architecture. Chapter 3 (System Design) discusses the various network
designs and new architecture for the content router. A formal specification for the
proposed content routing architecture is presented in Chapter 4 (Specification of
Intelligent Content-Based Router). This chapter provides a formal design approach where
the designed system is mathematically proved to be correct, which helps in developing a
robust and fail-safe system. Chapter 5 (Object Model and Functionality) presents various
object models for the designed content router and explains the functionality of newly
designed content router. Chapter 6 (Implementation) contains the implementation details
and some screenshots explained with a user scenario. In Chapter 7 (Conclusion and
Future Work) we present a summary of our work and contributions. We conclude

Chapter 7, and this dissertation by providing an outline for future research directions.

Chapter 2
Related Work and Background Literature

This chapter introduces the reader to the necessary background and related research work
in content-based routing. Several mechanisms to improve the speed of information
retrieval and message delivery and to enhance the efficiency of network applications have
been proposed. After surveying the issues in conventional router design, in Section 2.1
we discuss several such mechanisms. Some of the approaches incorporate router
technology while others do not. Section 2.2 gives a summary of the different products

that were developed and Section 2.3 concludes this chapter with a summary.

2.1 Existing Mechanisms

Sheldon [DS94] discusses content routing using content tags / labels for documents in a
Wide Area Information Service (WAIS) server using a semantic file system, and a source
and a catalog file. A query, posed as a predicate, is used to identify keywords in a
document. The source file contains the details of host name, host address, database name,
port number, and a short description of the database. The catalog file contains a list of
short headlines for each file in the database. The architecture described in this paper is
similar to the one in [SDW-+94]. The content routing system has a collection of
documents and each document has a content label associated with it. Each content label
contains a brief abstract of the documents related to that particular collection. Each query
predicate contains a field name and the value to be searched. The mechanism of the
design is that the user tries to refine the query as much as possible and then forwards it to
the remote servers to find the result. This architecture uses the brute-force searching
technique. This architecture is however not efficient and slow. In addition, the

implementation cost is high because it requires to maintain large number of files.

Keshav and Sharma [KS98] discuss general design issues for routers including speed,
scalability, consistency, cost, configuration and bandwidth. The primary design issues are
speed and reliability. Reliability is attained using techniques such as: “hot spares, dual
power supplies and duplicate data paths through the routers”[KS98]. The time taken to do
lookups in the routing table typically has the greatest effect on the performance of a
router. Decreasing the time required to lookup the destination address can increase the
speed of the router. As the packet size decreases the number and hence cost of route
lookups increases. Gupta, et al [GLM98], Srinivasan, et al [SV97], and Waldvogel, et al
[WVT+97] are all examples of work addressing efficient routing table lookups. To
increase the speed of packet forwarding (including route lookup), architecture with
multiple parallel forwarding engines can also be used. A detailed scheme for load

balancing parallel forwarding processing is discussed in [GLH95].

Another consideration in designing a router is the scheduling of incoming packets. A
simple method is First Come First Serve (FCFS). This method, however, is not an
efficient one because the chances of losing packets are high. Design of a fair queuing
method by Demers et.al. [DKS89], however, resolves these problems at a somewhat

higher implementation cost.

Another method used in increasing router performance is differentiated processing based
on packet type. The increase in performance is achieved by using different schemes for
the buffering and forwarding, filtering and classifying, and queuing and scheduling of
different packets. These mechanisms can be applied at various levels. The mechanisms
proposed in this thesis will differentiate between packets based on their data content and

will allocate resources and customize processing accordingly.

Partridge, et al [P+98], Asthana, et al [ADJ+92], and Konstantinidou [K94] discussed

hardware design issues related to very high performance (multi-Gigabit) routers.

To provide better performance, service and security in the face of increased demand for

Internet bandwidth, network providers are turning to “differentiated services”. Kumar, et
al [KLS98] concluded that the current Internet architecture is not meeting market
demands and proposed the use of packet classification, packet scheduling, and buffer
management tools to provide enhanced performance. They discussed router-based

mechanisms for providing such differentiated services.

Challenger, er al [CID+00] survey various techniques for improving the performance of
highly accessed web sites including the use of multiple processors, the caching of
dynamic data, and efficient web site design. To reduce traffic to a web server, multiple
servers running on different machines may be used to share the load. Such systems are,
however, still addressed at a single location. Some sites also use replication to create
copies of entire web sites (which may be geographically distributed). Unfortunately, if a
replicated site fails, it cannot route incoming requests to other sites. A key issue with
such systems is locating the sites. One method is to use Round Robin Domain Name
Service (RR-DNS) [26, 27], which allows a single domain name to be associated with
multiple IP addresses (one per site). But this technique has drawbacks including possible
load imbalance and lost requests if a server fails because the client and name server
cannot detect this. To avoid these problems, a TCP (Transmission Control Protocol)
router can be used. The function of a TCP router is to accept requests from clients and
forward them to the corresponding servers in a round robin fashion (possibly taking
server load into account). Servers then respond directly to clients without router
involvement. When a server node fails the TCP router can re-direct requests to other web
servers. Another technique is the use of web-server accelerators. A web accelerator
caches web documents and has a TCP router running on it. When a request from a client
arrives, the accelerator first looks in its cache. If the requested object is found it is
returned to the client, otherwise the router selects a server node to process the request.

Various modifications have been made to these basic ideas.

Hunt, et al [HGK+98] discuss a TCP router, called a “Network Dispatcher”, which
supports load sharing over several TCP servers. The dispatcher is placed between the

front-end clients and the back-end server and forwards requests from the clients to the

server nodes. Responses from servers are returned directly, bypassing the network
dispatcher. Though the performance of the “router” is good, it does not analyze the
packet data but merely forwards packets to the most lightly loaded server node.
Cardellini, et al [CCY00] discuss a similar system for geographic load balancing for

scalable distributed web systems.

Andresen and McCune [AM98] discuss a model for hierarchical scheduling of
Distributed World Wide Web Server clusters, which process the data dynamically. This
model has a group of clusters, servers and clients. The server nodes in the clusters are
aware of one another’s existence. The system maintains information about the load and
cache characteristics of all the clusters that are connected through the cluster server as
well as network bandwidth information. Each server node in the cluster runs a scheduler
algorithm (e.g. Crovella, er al [CFH99]) and one of the processes is responsible for
linking these schedulers in a hierarchical way. A client’s request is routed to the closest
server for processing. If one node fails the system can dynamically change the connection

process to any of the other nodes or other clusters using the cluster server.

Pai, et al [PAB+98] discuss a simple strategy, Locality-Aware Request Distribution
(LARD), which is a content-based request distribution system. LARD focuses on static
content. One of the advantages of this strategy/method over normal cluster-based network
servers is that it offers enhanced performance due to its high cache hit rates. The
architecture of LARD consists of back-end nodes and a front-end. The front-end is
responsible for forwarding requests to the back-end nodes, which constitute the server. In
routing a request, this strategy focuses on the content requested and the load on the back-
end nodes. LARD uses hashing techniques to locate the requested data. Based on the load
on each node, the front-end decides which node should process the given request. When a
request arrives, it sends the request to a lightly loaded node, which caches the needed
data. If the requested node is fully loaded it will send the request to a new node, which is

not heavily loaded.

Song, et al [GCOO0] describe an architecture for a scalable and highly available web server
accelerator based on caching data from frequently visited sites. These caches are also
known as HTTP (HyperText Transfer Protocol) accelerators. The web server accelerators
use multiple processors to provide more cache memory and higher throughput. The
system works as follows: First the client sends a request into the network. A TCP router
receives the request and passes it on to a nearby caching site. If the first site is not the
owner of the requested object, it determines the owner and sends the request to the owner
along with the TCP connection details. The owner fetches the object from its cache or
from the back-end server if it is not in the cache. Finally the primary owner returns the

requested object either directly or indirectly (through caching sites) to the client.

Song, et al [SLI+00] also provide an alternative design to [SLI+99] that includes a load
balancer as a separate node, which may also choose to route the requests using content-
based information. The load balancer has information about the availability and load
details of each caching site. When the load balancer acts as a content router, it analyzes
the content and directly routes the requests to the owner site, which will fetch the

requested object either from its cache or from the back-end server.

Genova and Christensen [GCO00] describe a layer 5 switch for implementing distributed
web sites. A distributed web site consists of multiple local sites and the switch acts as a
front-end for each local site. Each local site has one or more servers and caches
information about the load on, and content available from, the server nodes. When a
client makes a request, the switch consults the cache to see if the requested object is
available in that local site and what the load information is for the server node. If the
node is fully loaded and the request data is not available, the request is passed on to the
next closest switch. After processing, the requested object is sent back to the client. The
routing depends mainly on the data stored in the cache. In a globally distributed site, one
can have any number of local sites. Each local site can have any number of server nodes.
So, every time a new local site is created or a new server node is added a new cache

should be created or the cache size should be increased.

10

2.2 Product Survey

Commercial systems for improving web access times are now becoming available. Cisco
[COO0] for example, discusses various protocols, such as Dynamic Feedback Protocol
(DFP), Director Response Protocol (DRP), Web Cache Communication Protocol
(WCCP), and Boomerang Control Protocol (BCP) that can be exploited for content
routing. The DFP dynamically provides statistical information about the load on and
availability of a server. The DRP gives information about the distance between a client
and a server and it determines the server that is best capable of processing requested data.
The WCCP redirects data to other servers based on information present in the cache. The
BCP uses agents to provide network information for routing. The Cisco content router

uses information supplied by these protocols to carry out its processing.

IntelliDNS [ID] provides a solution for Internet traffic management. The design acts as a
global load balancer with intelligence for managing Internet traffic and for content
redirection. The set of metrics used for managing the traffic and content redirection are
network performance, clients proximity and server status to choose the optimal site to
serve clients requests. IntelliDNS supports both DNS based and HTTP based traffic
redirection. If the request is a DNS based request from the client the IntelliDNS gives its
own alternate IP address and redirects the client to the best and efficient content server
based on the set of metrics listed above. It also supports protocol re-mapping from HTTP
to Hypertext Transfer Protocol Security (HTTPS), Real - Time Streaming Protocol
(RTSP) and Microsoft Media Server (MMS). The main drawbacks are the design
supports only DNS and HTTP based request and it uses a large database to store the

client’s geographical location and the server location.

Arrowpoint’s [AP] Web Network Services (WebNS) provides a solution for URL and
cookie based intelligent switching. WebNS is designed for name based switching. It uses
the full URL and cookie to select the best server or site for the user's request. The
WebNS switch knows the full information about the client from the cookie and it also
knows the user's request and the server to process the client’s request based on network

information and server status. The Web switch parses the URL to identify the client’s

11

request. Based on the request the switch finds a suitable server or site. The Web switch
periodically checks for the status of the servers. The client is switched to the new server
or site that is selected for processing the request. The requested data is sent back to the

client through the shortest path.

2.3 Summary

This chapter discussed the history of the work done related to content routers. Section 2.1
outlines various existing mechanisms and Section 2.2 discusses various product surveys.
We observe that the past research work do not address the entire range of problems that
were identified. We used the material discussed in this chapter as one of our motivation

for our work.

12

Chapter 3

System Design

This chapter describes our architecture for the content-based router and proposes various
network designs where the designed content router can be used efficiently. Section 3.1
gives a brief description of content router and discusses the various components of the
newly designed content router briefly. Section 3.2 proposes the various network designs.
Section 3.3 explains in detail the architecture of our content router and Section 3.4

concludes with a summary of the chapter.

3.1 Content Router: Description

The existing content routers fail to deliver correct information to the right people in
appropriate time. So a need for an intelligent-content based router arises. A content router
analyzes the data present in a packet before forwarding the packet to the appropriate
server. The main reason for developing a new intelligent content-based router is to reduce
network traffic and to optimize routing cost, which in turn could potentially increase the
performance and decrease the latency of the content router. The different components
present in our content router are Packet Inspector, Resource Inspector and Scheduler unit.
The Scheduler has the load and distance information between the content router and the
server. Based on these informations a user’s requests are forwarded to the appropriate
server. The above mentioned components are embedded in the Intelligent Content router
that I have implemented. Even though some existing content routers possess these
components, they fail to examine different types of TCP-based request. The content
router implemented in this thesis examines all types of TCP-based user requests. These

new features make this design unique when compared with current content-based routers.

13

3.2 Network Design

The content router proposed in this thesis can be used in various network design models.
Each design has its own advantages. The various network designs proposed in this thesis

are:
1. Intelligent content routing for metropolitan type of networks - Option A, B and
Option C.

2. Intelligent content routing for wide area networks.

The network designs mentioned above are discussed in detail in the following section.

*;_:_"ﬂ':-—r
Gt

Contant Router

Internet Senrice Provider
(ISP}

Figure 3.1 Design for Metropolitan type of Network - Option A

3.2.1 Intelligent Content Router for Metropolitan Networks - Option A.

Figure 3.1 shows one design for metropolitan networks. The components present in
Option A are: the different clients connected to a switch. The Internet Service Provider
(ISP) network has a content router connected to an ISP server. The Layer 3 switch, which

is outside the ISP network, is connected to the content router. A bypass router is

14

connected to the content router. The ISP server may have many differentiated servers
connected to it, which offers different services. Each server has different databases on it.
The content router is also connected to the Internet. This model is specifically designed
for registered services with the ISP. The registered services can be a single company with

different branches or it can be different companies with a single major server.

3.2.1.1 Functionality

This section discusses the functionality of the design for metropolitan network - option A.
The clients send requests into the network. The Layer 3 switch captures the user request
in a packet format and forwards the packets to the content router present in the ISP
network. The main function of a Layer 3 switch is to collect all user requests on a queue
basis. The content router reads the header and tokenizes the data. If the request is a URL
based request the content router sends the request to the Internet and continues to process
the next request. If it is a registered service request, the content router finds a suitable
server for processing the request based on the information given by the ISP server. The
client’s request is forwarded to the best appropriate server through the bypass router
connected to the content router. The ISP server sends the processed request back to the
client via the content router. The response is sent back using different queuing strategies.
The three different queuing strategies are

1. High Priority Queuing (HPQ).

2. Low Priority Queuing (LPQ).

3. Unprocessed Queuing (UQ).
The requests for registered services and their responses are sent through the HP Queue.
The ISP server sends the response to the content router, which sends it back to the Layer
3 switch, which forwards the response to the client. The URL response from the Internet
to the content router is stored in the LP Queue. The LP Queue is processed only when the
HP Queue is empty. The remaining requests and responses are sent to the Unprocessed
Queue. The Unprocessed Queue is processed when the HP and LP Queues are empty.

The next design discussed in detail is Metropolitan Network - Option B.

15

3.2.2 Intelligent Content Router for Metropolitan Networks - Option B.

Figure 3.2 shows another design for metropolitan network - Option B. The various
components present in Option B network are: different clients connected to the Layer 3
switch. The Layer 3 switch is connected to the content router present in the Internet
Service Provider network. The content router is connected to an ISP router as well as to
the Bypass router. The ISP router is connected to the ISP server. The ISP router is also

connected to Internet and to other network routers. The ISP server has many
differentiated servers connected to it, which offer different services. Each server has

different databases on it. The next section discusses the functionality of this network.

Other Routers

o htemet
@ |

Contert Router

Bypass Router

Internet Service Provider
(IsP)

Figure 3.2 Design for Metropolitan type of Network - Option B

3.2.2.1 Functionality

The clients send request into the network. The Layer 3 switch captures the user request in
a packet format and forwards the packet to the content router inside the ISP network. The
main function of a Layer 3 switch is to collect all user requests from different clients on a

queue basis. The content router reads the header and tokenizes the data. If the client’s

16

request is an URL request, the content router forwards the packet to the ISP router. The
ISP router forwards the request to the Internet and waits for the response. The ISP router
also forwards the requests to their respective destination, which comes from other routers
that are connected to it. Once a response is obtained from Internet the ISP router forwards
the response back to the content router. If the request is a registered service requests the
content router finds a suitable server for processing the request based on the information
given by the ISP server. The client’s request is forwarded to the best appropriate server
through the bypass router connected to content router. The processed request is sent back
to the client via the content router. The response is sent back to the client using different
queuing strategies discussed in Option A network. The next section discusses Option C

network in detail.

3.2.3 Intelligent Content Router for Metropolitan Networks - Option C.

Figure 3.3 shows another design for metropolitan network-option C. The different
components present in Option C network are: clients connected to a network, the ISP has
a content router, which is connected to a Layer 3 switch as well as to the Internet. The
Layer 3 switch has some content routers connected to it. The content routers present in
the ISP network are connected to the ISP network’s gateway. The ISP server has many

registered servers connected to it. Each server has some data of interest in it.

\Omem Routar

Content Router

Internet Sanvice Provider

(sP)

Figure 3.3 Design for Metropolitan type of Network - Option C

17

3.2.3.1 Functionality

Clients send in their request and the content router present at the entrance of the ISP
network captures the user request in the packet format. The content router reads the
header of the captured packets and tokenizes the data present in the packet. If the request
is an URL request the content router forwards the packet to the Internet for further
processing. If the request is for a registered service the content router forwards the packet
to the Layer 3 switch. The main function of the Layer 3 switch is to collect all user
requests from the content router and forwards them to different content routers that are
connected to the gateway of the ISP network. The Layer 3 switch forwards the user
request to the content routers in a weighted round robin fashion. The length of the router
queue is the weight used for forwarding the user request. Once the content router captures
the user request the content router finds a suitable server for processing the request based
on the information given by the ISP server. The client’s request is forwarded to the best

appropriate server through the gateway of the ISP network.

3.2.4 Advantages

1. The different designs discussed above are efficient because of the Content Router
present inside the ISP Network.
2. Routing is cheap, quicker and efficient for the registered servers within an ISP

Network.

3.2.5 Intelligent Content Routing for Wide Area Networks.

Figure 3.4 shows the design for wide area networks. The various components present in
this design are clients, a client side content router, a server side content router and servers
with different databases on them. The client side content router is connected to the
Internet. A Server side content router has different servers connected to it. Each server
has different databases on it. In addition to the two routers there is a Gigabit Network
connected to the server side content router and the client side content router. This design
is well suited for a big company with many branches around the globe. Section 3.2.5.1

discusses the functionality of this design.

18

Gigabit Netw ork

Content Router

Serer-Side
Content Router

Figure 3.4 Intelligent Content Routing - Wide Area Network

3.2.5.1 Functionality

Clients send in their request and the content router captures the request in the form of
packets. The data present in the packet is analyzed and tokenized. The tokenized data is
sent to the server-side content router through the Internet to find an efficient server for
processing the client’s request. The content router forwards the packet with the tokenized
data to the server-side router. The tokenized data sent by the client-side content router is
read by the server-side router and finds an efficient Server based on a set of metrics, like
system resources, proximity of the client and the server and the status of the server.
Based on the metrics the server router selects a server and forwards the client request to
the appropriate server. After processing the request the server sends the response back to

the server-side content router. The server-side router captures the processed packet.

19

While sending the response back to the client-side content router the server-side router
labels the processed packet and forwards them to the Gigabit network for a quicker
response from the server. The Gigabit network captures the labeled packet and forwards
the packet back to the client-side content router. The content router captures the response
and looks for a label in the packet. If the packet is labeled the content router forwards the
packet back to the client without processing the packet. If there is no label the content

router starts the processing of packet and forwards the packet to the server router.

The labeling of the packet is done through the Multiprotocol Label Switching (MPLS).
The main advantage of using this system is to avoid heavy traffic on the Internet and
process requests in an efficient and fast approach. The content router starts processing the
packets without knowing the status of the packet that is processed or unprocessed. To
avoid multiple processing the processed packets are labeled. So when the content router
captures a packet it looks for the label and forwards the packet to the client, thereby
enhancing processing time. The main functionality of using MPLS in this thesis is to

label the processed packets.

3.2.5.2 Advantages

1. This design is efficient and fast because the response from the server is sent
through a different path instead of the same forwarding path.

2. Traffic is reduced and time taken for processing each packet is minimized.

3.2.6 Global Network Structure

Figure 3.5 shows the design of Global Network Structure. This design is an extension of
The Wide Area Network design with replication of intelligent content routers in different
areas. The different components present in this design are four different networks, which
are interconnected through edge routers. Each network has different clients connected to
a switch, and a content router connected to different servers. Each server has different

databases on it. The edge routers act as the communication media between these areas.

20

Figure 3.5 Global Network Structure

3.2.6.1 Functionality

The main functionality of this design is sharing of resources between locations.

Each location has a Resource Agent. These agents are mobile i.e., they are capable of
moving from one place to another. The resource agents move from place to place and
collect all the available resource’s information update the resource table present in each
local area. When the clients send requests into the network the content router reads the
header and analyzes the data and finds a suitable server for processing the request. If the
requested data in unavailable in the local area it finds a suitable server in remote a
location from the resource table maintained by the resource agent. Once a remote server
is selected the user request is forwarded to the appropriate server through the edge
routers. If there is any change in resources, all the resource tables are updated by the
resource agents. The update operation can also be performed by sending a broadcast
message to all location. But the main disadvantage of sending a broadcast message is that
the local agent does not get any acknowledgement from other resource agents. So the

message can even be lost during the data transmission if the network connection is bad.

21

3.3 System Architecture

The high-level system architecture of the proposed intelligent content-based router is

shown in Figure 3.6. Each component is briefly described below.

The Packet Capture and Packet Data Extraction | Analysis module enables the unit to
capture and extract the data in each packet of a user’s request. This data is the content that
is routed to the appropriate server at that moment based on a set of metrics. This
component of the system intercepts the user’s request data stream in the form of packets

and then extracts the data content (i.e., the payload) it contains for routing.

A core component of the system is the Resource Manager. The main job of the Resource
Manager is to assemble vital information about the resources available in the system for
ease of access and fast decision-making. The resources for e-commerce and other Internet
applications are often stored in databases (at the participating servers). The Resource
Manager collects resource information about the number of databases available in the
system, the addresses of these databases, and permission data (such as who can obtain the
database addresses) and stores the data collected in a resource table. This resource table is
used to feed the load-balancing unit (discussed below). To implement this component, we
adopted intelligent mobile agent technology. Mobile agents are suitable because they
enable us to seamlessly and transparently assess servers (at remote locations) and retrieve
appropriate data of interest. The agents only need to know the address (IP address or full
domain name) of the resource and a known set of database types. The agents can retrieve
the metadata of each database, such as the name of the schemas, the description of the
schemas, and table definitions, etc. This information is necessary to make informed
judgements on where to find the available resources for the application. The databases are

transparent to the system.

The Load Balancing System, a major part of system, uses the information assembled by
the Resource Manager to facilitate content-based routing. It is responsible for scheduling

and allocating transactions to the various servers for execution based on the current

processing / work load information of each server. This unit answers questions such as:

(1) How busy is each server? (ii) Which server can process the request in the shortest

time? I used existing queuing and scheduling algorithms (as in operating systems and

other distributed systems) to realize an efficient and robust system.

Finally, the Content Routing Unit is responsible for the actual redirection of the user
payload based on the contents of the packets. Using the assembled data of the Resource

Manager and the recommended scheduling plans of the Load Balancing System (routing

tables, network nodes, application resources, etc), the Content Routing Unit selects the

specific destination to route the user payload to. The decision about where to go is based

on the accumulated and cached information from the Resource Manager and the Load

Balancing System.

Packet Inspector

Resource Inspector

Packet Resource <
Users > Capture Locator
/ Packet Resource
Application Analyzer Manager
Information
A
] Scheduler Unit
Y
Switching Unit P
(Router) Load Inspector -t
/ \ Schedule Network Application
Plans Nodes Resources
Destination Destination
: h])
A y
Cache Manager Cost Manager

Figure 3.6. Intelligent Content - Based Routing Architecture

23

3.4 Summary

This chapter began with the discussion of a short description of content router and
mentioned the different components of the newly designed content router. Section 3.2
presented the different network designs and their functionality. The advantages of the
different designs are also presented. Section 3.3 presented the architecture of our content

router. Chapter 4 presents a formal specification for the designed content-based router.

24

Chapter 4

Specification of Intelligent Content-Based Routing

This chapter presents a formal specification for the newly designed content-based router.
To develop a robust and fail safe system, formal specification is one of the approaches
that can be used. This section discusses formal specification of Intelligent Content-Based
Routing for E-Commerce Applications. The specification describes the requirements and
functionality of the system and controls the software complexity and enhances the quality
and reliability of the system. A formal specification is usually written using a formal
specification language. This language has a well defined syntax and semantics. The
formal specification language used in this thesis is Z. The main reason for using Z is it
has tool support for typechecking the syntax and semantics of Z - based specifications.
Section 4.1 discusses the problem model and description of the system. Section 4.2 gives

the Z-specification, before it ends with a summary.

4.1 Problem Model and Description

This specification mainly deals with one of the important functionalities of networking
concepts i.e. routing. The specification is done for Content-Based Routing for E-
Commerce Applications. Router is a device, which forwards packets from one machine
i.e. source to the other machine i.e. destination. In normal IP routing the router checks the
destination address of the packet and forwards the packet to its corresponding destination.
But a Content-based router analyzes the data in the packet before forwarding it to a
destination where the data can be reached. This concept of routing is specified using Z-
specification language. The different operations that are performed are: defining the
structure of a packet, creating a packet, creating a user list, adding new users, logging
into the system, list for logged users, sending a request. Section 4.2 gives the

specification of the routing system.

25

4.2 Specification

This section gives the specification for Content-Based Routing. The basic set types that
are used in this specification are defined below. The first few set types upto DATA are the
different fields present in an IP packet. Each set type is explained in the PacketDef

schema.

[IPHEADERLEN, TYPEOFSERVICE, FLAGS, FRAGOFFSET, IDENTIFICATION,
TIMETOLIVE, PROTOCOL, HEADERCHECKSUM, TOTALLENGTH, OPTIONS,
DATA, VERSION]

The name and passwd types are used to store the registered users list and password.

[NAME, PASSWD, SERVERADDRESS, RESOURCENAME]

The CPUAvail, MEMAvail and QueueLEN are the load details of different servers and the
DISTANCE is the distance between the server and the client.
CPUAvail ==

MEMAvail ==N
QueueLEN ==

DISTANCE ==N

The serverstatus type gives the status of the participating server.

SERVERSTATUS ::= Active | Down

BOOLEAN ::= True| False

A RESPONSE is a message or a result given by the system after each operation
performed on it. The different responses given by the content router specify the network
administrator about the router’s performance. The different responses given by the system

are defined below.

26

RESPONSE ::= PacketDefined
| PackerCreated
| NewUserAdded
| LoggedInSuccessfully
| RequestSent
| ResourceTableUpdated
| ServerAddressFound
| SystemStatusObtained
| DistanceObtained
| ScheduleTableFormed
| DestAddressChanged

| CacheUpdated

The first aspect of the system is to describe its state space. Each operation in the system is
defined within a schema. A schema has two parts, the declaration part and the predicate
part. The parts are separated by a central line. The part above the central line is the
declaration and below the central line is the predicate. The predicate part specifies the
requirements of the values of the variables defined in the declaration part. The PacketDef
schema defined below gives the structure of an Internet Protocol (IP) packet. Each packet
contains the version of IP currently used, IP header length indicates the header length,
Type of Service, Total length of the IP packet, Identification indicates the current packet,
Flags, Fragment Offset, Time-to-Live is a counter which gradually decrements down to
zero, and the packet is discarded. The Protocol indicates the next level protocol of packet
such as TCP, UDP etc. Header checksum ensures IP header integrity, Source Address
specifies where the packet is coming from, Dest Address specifies the packet’s
destination address, Options provides additional security and finally the packet has the

Data. The result for this schema is "PacketDefined".

27

— PacketDef-
ver: VERSION

ipheaderlen: IPHEADERLEN
tos: TYPEOFSERVICE

tl: TOTALLENGTH

id: IDENTIFICATION

flg: FLAGS

Jrgoff: FRAGOFFSET

tol: TIMETOLIVE

proto: PROTOCOL

hc: HEADERCHECKSUM
sourceip: SERVERADDRESS
destip: SERVERADDRESS
op: P OPTIONS

data: P DATA

Re!: RESPONSE

ver & &
ipheaderlen ¢ &
tos & &

e

ide

flged

frgoff e &

tole &

proto & J

hce D

sourceip & &
destip & &

Re! = PacketDefined

The next schema operation is PacketCreation. The PacketCreation schema captures the
inputs needed for creating the packet. The fields discussed in the previous schema cannot
be empty except the op (options) and data fields. A packet can be an empty packet
without any data or it can carry some data for transmission. Once all the fields are filled
up the packet is created and it is ready for transmission. The result for this schema

operation is "PacketCreated".

28

—_PacketCreation
APacketDef
vers?: VERSION
iph?: IPHEADERLEN
typos?: TYPEOFSERVICE
totlen?: TOTALLENGTH
identi?: IDENTIFICATION

flag?: FLAGS

fragoff?: FRAGOFFSET
timetol?: TIMETOLIVE

prototype?: PROTOCOL
hcheck?: HEADERCHECKSUM
sip?: SERVERADDRESS

dip?: SERVERADDRESS
opt?: P OPTIONS
req?: P DATA

Re!: RESPONSE

ver = vers?
ipheaderlen = iph?
tos = typos?

tl = totlen?

id = identi?

flg = flag?

Jrgoff = fragoff?
tol = timetol?
proto = prototype?
hc = hcheck?
sourceip = sip?
destip = dip?

op = opt?

data = req?

Re! = PacketCreated

The next schema operation is maintaining a user list and a login list for those people who
login to the system. Each user has a username and a password to login. The main reason

for maintaining a user list is that in all E-Commerce applications only registered users are

29

allowed to perform some of the core transactions. In order to commit the transactions a
user list is maintained and verified. Each time a user logs in his/her password is verified
before committing a transaction. The next set of schemas describes the maintenance of

registered user list.

— UserList
users: NAME — PASSWD
loggedusers: P NAME

The Initial User List schema contains the initial value of the users list and login list.

Initially there are no users. So the two fields are empty.

_ InitialUserList
UserList

users = &
loggedusers = &

The AddUser schema captures the operation of adding a new user to the system. This
operation has a change in the class UserList. When a new user is added there are two

inputs name and password and Re! is the result obtained for this schema.

___AddUser
AUserList
name?: NAME
passwd?: PASSWD
Re!: RESPONSE

name? ¢ dom users
users’ = users u {(name? — passwd?)}
Re! = NewUserAdded

The name that is given by the user must not be in the User List. If it exists the user has to

give a new name for registering. The name and password field should not be empty. Once

30

the user registers by supplying the name and password it is added to the users list. The

result obtained is NewUserAdded.

The next schema is the Login operation. All the registered users can try to login to the

system. The inputs given are name and password and the output Re! is the result.

Login
EUserList
name?: NAME
passwd?: PASSWD
Re!: RESPONSE

name? € dom users

passwd? e ran {(name? — passwd?)}
loggedusers’ = loggedusers u {name ?}
Re! = LoggedInSuccessfully

The name given by the user is checked in the users list for the registered user. If it is a
registered user the name is checked for its corresponding password which is mapped to
the user name. If both are valid, the user name is added to the loggedin users list and the

result obtained is "LoggedInSuccessfully”.

The User Request schema discusses sending a user request to the network. The input
supplied for this operation are, the user name and the data to send. Re! is the result

obtained.

31

—UserRequest
ZUserList
name?: NAME
request?: DATA
Re!: RESPONSE

name? € loggedusers
Re! = RequestSent

The name given by the user is checked in the loggedin users list. If the user name is not
present in the loggedin user list the user has to login first. If the user is loggedin the

request is sent to the network. The result obtained is "RequestSent".

The next schema operation is to maintain a server list, which has the list of all the

registered servers.

— ServerAddressList
serverlist: P SERVERADDRESS

The Resource Table schema maintains a list of resource name and its corresponding

server address.

_ ResourceTable
resourcelist: RESOURCENAME — SERVERADDRESS

The Initial Resource Table list contains the initial value of the resource list.

_ InitialResourceTable
ResourceTable

resourcelist = &

32

The AddEntries schema describes adding new resources to the system. This operation

affects the ResourceTable. When a new resource is added, two inputs and a response are

obtained.

—_AddEntries
AResourceTable

resourcename?: RESOURCENAME
loc?: SERVERADDRESS

Re!: RESPONSE

loc? & ran resourcelist

resourcelist’ = resourcelist v {(resourcename? — loc?)}
Re! = ResourceTableUpdated

The two inputs are resource name and server address. The condition to add the resources
to the table is that the server address should not be in the resource list. If the server
address exists the corresponding resource name is checked. If the resource name is
different, the resource and the address are added else they are discarded. If the resource
name exists in the list the corresponding server address is checked with the input server
address. If both the addresses are different the resource name and the server address are
added to the list else the resource is discarded. The result obtained is

"ResourceTableUpdated". Figure 4.1 shows the structure of the Resource Table.

Resource Table

Resource o
safeway 130.179.2¢.211
zellers 130.179.27.212
superstore 130.179.27.213
safeway 130.179.27.214

Figure 4.1 Resource Table

33

The Data Location Table schema has two components; matchedentries and the
dltserverlist. The matchedentries maintains a list of all instances of resources and server
address from ResourceTable based on users request. The ditserverlist maintains a

separate list for all the server address stored in the matchedentires.

_ DataLocationTable
matchedentries: RESOURCENAME —» SERVERADDRESS
dltserverlist: P SERVERADDRESS

The Initial Data Location table has zero entries when the system is activated.

— InitialDLTable
Datal.ocationTable

matchedentries = &
dltserverlist = O

Each entry in the Data Location table has a resource name and its corresponding server

address. Figure 4.2 shows the structure of the Data Location Table.

Data Location Table

Resource IP
safeway 130.179.27.211
safeway 130.179.27.214

Figure 4.2 Data Location Table
The Find Server Address schema describes finding a server address from the Resource

table list for the tokenized data. The input for this schema is tokenized data and the

output is server address.

34

—FindServerAddress.
ADataLocationTable
EResourceTable

tokenizeddata?: RESOURCENAME
loc!: SERVERADDRESS

Re!: RESPONSE

tokenizeddata? € dom resourcelist

loc! = resourcelist (tokenizeddata?)

matchedentries’ = matchedentries U {(tokenizeddata? — loc!)}
dltserverlist’ = dltserverlist u {loc!}

Re! = ServerAddressFound

The input is checked in the resource list maintained by the resource table. If the tokenized
data is not in the list, the packet is routed to the original destination address present in the
packet. If the tokenized data exists in the list the corresponding server address is
obtained. Both the data and the server address are stored in the data location table and the
server address is also stored in a separate server list maintained by the Data Location

Table. The result for this schema is "ServerAddressFound".

The next schema gives the structure of the System Status Table. It has the server address

and the status of the server i.e. active or down.

— SystemStatusTable
statusentries: SERVERADDRESS — SERVERSTATUS

The Initial System status list is empty.

—_InitialSST
SystemStatusTable

statusentries = &

Figure 4.3 shows the structure of the System Status Table.

35

Systern Status TaHe

Server Address Sysiam Status
130179.27 211 adive
130179.27.280 adive
180178.33.114 down

Figure 4.3 System Status Table

The Ping function defined below is used to find the status of a server.

ping: SERVERADDRESS —» SERVERSTATUS

The Find System Status schema gives the status of the system. This schema takes the

serverip as the input and gives the server status as output. The response is stored in Re!.

— FindSystemStatus
ASystemStatusTable
EServerAddressList
serverip?: SERVERADDRESS
servstatus!: SERVERSTATUS
Re!: RESPONSE

serverip? € serverlist

servstatus! = ping(serverip?)

Statusentries’ = statusentries u {(serverip? — servstatus!)}
Re! = SystemStatusObtained

The input serverip is checked in the server list maintained by the ServerAddressList
schema. If the serverip is found, the ping function is applied on the server to find the
server’s status. The status is stored in servstarus!. The final status with its corresponding
server address is stored in the system status table. The result otained is

"SystemStatusObtained".

36

The ProximityTable schema defines the structure of the Proximity table. It has two

columns server address and distance.

— ProximityTable
SERVERADDRESS: SERVERADDRESS
DISTANCE: DISTANCE

distentries: SERVERADDRESS — DISTANCE

Initially the Proximity table is empty.

—InitialPT.
ProximityTable

distentries = &

Traceroute is the function used to find the distance between the content router and the
server.

traceroute: SERVERADDRESS — DISTANCE

Figure 4.4 shows the structure of the Proximity Table.

Proximity Table

Server Acdress Distance (in nodes)
130.179.27 211 10

130.179.27.280 25

180.179.33.114 5

Figure 4.4 Proximity Table
The FindDistance schema gives the distance between the content router and the server. It

takes one input (i.e. serverip?) and produces one output (i.e. distance!) and the response is

stored in Rel.

37

____FindDistance
AProximityTable
ZServerAddressList
serverip?: SERVERADDRESS
distance!: DISTANCE

Re!: RESPONSE

serverip? € serverlist

serverip? € dom traceroute

distance! = traceroute(serverip?)

distentries’ = distentries u {(serverip? — distance!)}
Re! = DistanceObtained

The input serverip is checked in the server list to find whether the input serverip is valid.
If it exists in the server list the traceroute function is applied to the input serverip and the
distance is stored in the output variable. Once the distance is obtained the Proximity table
is updated with the distance and the corresponding server address. The response obtained

is "DistanceObrtained".

The LoadDetails schema encapsulates the structure of the load details. The different
components that are necessary for obtaining the load details are: percentage of free CPU
available (CPUAvail), percentage of free memory available (MEMAvail), processor
queue length (QueueLEN), and the distance between the router and the server
(DISTANCE). This encapsulated structure is used by the loadinfolist function defined in
ScheduleTable schema.

—LoadDetails
Cpulnfo: CPUAvail
Memlnfo: MEMAvail
QueuelLen: QueueLEN
Dist: DISTANCE

38

| loadinfo: SERVERADDRESS ~ LoadDetails

The Schedule Table schema gives the structure of the schedule table. The different fields
present are serveraddress, percentage of CPU avialable, percentage of memory available,

length of the processor queue and the distance between the router and the server.

— ScheduleTable
loadinfolist: SERVERADDRESS — LoadDetails

Figure 4.5 shows the structure of the Schedule Table.

Schedule Table

P %Free CPU | %Free Mem | Queuelength| Distance
130179.27.211 98.4 68 0 20
130179.27.212 98.4 74 0 10
130179.27.213 99.3 83 1 25

Figure 4.5 Schedule Table

The next schema, FormScheduleTable describes forming the schedule table. The input
for this schema is the server address and the output is the load details discussed above.
The input is checked in the server list maintained in the data location table. If the server
address exists in the data location table, the status of the server is checked in the system
status table. The precondition for finding the load details is that the server status should
be active. If the server status is down the corresponding server address is discarded and
the next server address is processed. Once the server status is active, the load details of
the input server are obtained by applying the loadinfo function, which is defined above.
After obtaining the load details the schedule table is updated with the load information
with the corresponding server address mapped to it. The result obtained for this schema is

"ScheduleTableFormed".

39

— FormScheduleTable
AScheduleTable
EDatal.ocationTable
EProximityTable
ESystemStatusTable
serverip?: SERVERADDRESS
cpuinfo!: CPUAvail

meminfo!: MEMAvail

glen!: QueueLEN

dist!: DISTANCE

serverstatus!: SERVERSTATUS
ld: LoadDetails

Re!: RESPONSE

serverip? e dltserverlist

serverstatus! = statusentries (serverip?)
serverstatus! = Active

ld = loadinfo(serverip?)

cpuinfo! = ld . Cpulnfo

meminfo! = ld . MemlInfo

qlen! = ld . QueueLen

dist! = ld . Dist

loadinfolist’ = loadinfolist u {(serverip? — Id)}
Re! = ScheduleTableFormed

Different functions used to find the best destination address are: getLoadDetails, isBetter,
and theBestIP. The getLoadDetails returns load details for the corresponding server

address present in the ScheduleTable.

getLoadDetails: SERVERADDRESS —» LoadDetails

40

The isBetter function returns the better server address between two different servers
based on the load information obtained from the ScheduleTable. The different load
details used for comparison are percentage of CPUAvailable, percentage of free
MEMAuvail, length of the processor queue i.e. QueueLEN and the DISTANCE between the

content router and the server.

isBetter: LoadDetails X LoadDetails - BOOLEAN

Vidl, ld2: LoadDetails | (ld1, Id2) € dom isBetter
« isBetter (Id1, ld2) = True
= ldl . Cpulnfo > 1d2 . Cpulnfo
v ldI . Dist < 1ld2 . Dist
v ldl . QueueLen < ld2 . QueueLen
v Idl . MemlInfo > 1d2 . MemlInfo
v ldl . LoadDetails = ld2 . LoadDetails

The next function, theBestIP, uses the isBetter function to find the best destination server
for processing the user request. The inputs supplied for this function are two server

addresses and the output obtained is the best server address.

theBestIP: P SERVERADDRESS ~» SERVERADDRESS

Vsa: P SERVERADDRESS
- dTbip: SERVERADDRESS | Thip € sa
- theBestIP (sa) = Thip
= (Vip: SERVERADDRESS | ip € sa
- isBetter ((getLoadDetails (Tbip)), (getLoadDetails(ip)))
= True)

41

The next schema operation is RewriteIPHeader. The main function of the
RewriteIPHeader schema is to rewrite the original packet’s destination address with the
new server address. The inputs for this operation are newdestip? and packet id (i.e. pid?).
The original packet’s id is checked with the input pid?. If both ids are equal the packet’s
destination address is changed to the new server address. The result for this schema is

"DestAddressChanged".

—RewriteIPHeader
APacketCreation
EScheduleTable
newdestip?: SERVERADDRESS
pid?: IDENTIFICATION

Re!: RESPONSE

pid? =id
newdestip? = theBestIP (dom loadinfolist)

destip = newdestip?
Re! = DestAddressChanged

The CacheManager schema maintains a list in the cache. The list has the resource name

and best-selected server address.

— CacheManager
cachelist: RESOURCENAME — SERVERADDRESS

The initial list of the CacheManager is empty.

Initial CL
CacheManager

cachelist = &

42

The UpdateCache schema updates the CacheManager’s list by adding the best server
address and its resource name. The input supplied for this operation is serverip?. The
theBestIP function is applied to select the best server address from the list maintained by
the ScheduleTable. The resource name and the server address are updated in the

CacheManager's list. The response from this operation is "CacheUpdated".

— UpdateCache
ACacheManager
ZScheduleTable

data!: RESOURCENAME
serverip?: SERVERADDRESS
Re!: RESPONSE

dom loadinfolist € dom theBestIP

serverip? = theBestIP (dom loadinfolist)
cachelist’ = cachelist u {(data! — serverip?)}
Re! = CacheUpdated

Using the different operations defined in the system, the Content Router can be defined

as follows.

ContentRouter = ((ResourceTable n SystemStatusTable A ProximityTable) ;
UserRequest ; FindServerAddress ; FindSystemStatus

FindDistance ; LoadDetails ; FormScheduleTable ;
RewriteIPHeader ; UpdateCache)
While some of the operations mentioned above are executed sequentially others are
executed in parallel. When the system is started the ResourceTable, SystemStatusTable,
and ProximityTable operations are executed in parallel. These three operations are

executed continuously until the system is stopped. The rest of the operations are executed

sequentially and are done based on the UserRequest.

43

4.3 Summary

This chapter presented a formal specification for the designed content-based router.
Section 4.1 discussed the problem model and presented a short description. In Section 4.2
we presented the Z-specification and explained the functionality of each schema, and
gave us examples of the different tables that were used. Chapter 5 presents an object
model and explains the functionality of each of the components present in the newly

designed content router.

44

Chapter 5
Object Model and Functionality

This chapter presents an Object Model for the designed content router and explains the
different functionalities of the design. Developing a software system is becoming
complex and expensive due to the change from single-tier to multi-tier architecture and
distributed systems. To develop sophisticated software system one requires creativity,
ability to learn and analyze the problem and should have knowledge or experience in
different programming languages. To avoid the complexity and to maintain the quality
and reliability of the system the concept of object orientation comes into existence. The
object models in this thesis are developed using Unified Modeling Language (UML). The
UML has many object-oriented notations, which is used to analyze and design
sophisticated applications. The main reason for using UML for developing the object
models is, it has many specialized notational elements, which supports complex
applications. The different types of UML diagrams I have used in this thesis are: class
diagram, activity diagram, sequence diagram and deployment diagram. Figure 5.1 shows

the class diagram for content-based router.

:Switch 1 Routes 1. | :Destination
IR L1

—— ™1

Captures

T*\ Sendta the Bt Dextinetion
,——:' [__l“‘
]—‘—| E r Retroboes Revonrca Location
e fen > T oo fpectt d %‘

u

cket_Analyzer,
Packet_Capture Packet, - Resource Locator | 1..* Manages 1 [Resource_Manager , | “Cacha Hanagu' | Load Dalanccl "“"‘"“" Cost Managa'
Analysis/

- Capture String - T Exract Dats():
+Divert () +Analyze Data |)

“Application_Information
Determines

Figure 5.1 Class diagram for Content-Based Router

T

Cu Statas Cat Rerexrcelnge

iFinds

0

Resources | Natwark_Nodes] [App._Resources |
[;) x — ——

45

The class diagram in Figure 5.1 shows the different classes present in the application. It
also specifies the relationship between different classes. While creating a large complex
system, the application is divided into different modules. The different modules present
in this thesis are Packet Inspector, Resource Inspector and Scheduler. Each module is

further divided into sub-modules. Each module has it’s own class diagram.

Figure 5.2 shows the activity diagram for content-based router. The activity diagram
shows the different activities and flows of data or decisions between the activities.
Activity diagram is used in workflow analysis. It is also called as flowchart. Activity
diagram shows different activities handled by different objects. It can support parallel
execution. Activity diagrams are used for detailed specification of complex systems with
respect to implementation. Figure 5.3 shows the sequence diagram of the system. The
sequence diagram shows the relationship between two different objects. Each object is
represented as vertical lines and shows how messages are sent between two objects. The
sequence diagram is also known as interaction diagram. The messages that are sent
between two objects are also called as events. An event takes place only when the target

object replies back to its message.

46

N

user requests

|

Ne

ork f

Capture Packet

search for
the resource
Analyze the Data

am
Gy

Tokenize the Data

send the resources/
Resource Locator

Resource Manager

T
J

pass the
tokenized data

[data not feund] (/

K Route the packet to the Originnl Destination l

[data found]

Find all the locations

(Find the load for each location)
(Form a Schedule Table)
Best Location is
Selected

(Re - writes the IP - Header using the new IP Address)

s

\ Packet is Reinjected into the NAW)

Figure 5.2 Activity diagram for Content-Based Router

47

User :Source_Computer Network :Packet Capture :Packet Analyzer Resource_Manager ‘Resource_Locator :Load Detector ‘Load_Analyzer :Content Switeh | | ntemnet

12]10Y pasvg-juaiuo)) 10f wp.18vip 20uanbag ¢ NS

8y

sends request)

*

sends renuest) sends the resources) _]
= .l

bl

submi packels)

»

sends dafa()

™

fokenized data)

™

submits dest_add

sends oad in)

'

ges bestaddr)

roules packet)

tesponse(

rF Y

Figure 5.4 shows the deployment diagram for content-based router. The deployment
diagrams are used to describe the architecture of the system. A three-dimensional box
represents each node in deployment diagram. Each node represents different components
of the system. The different nodes present in this system are the different clients, a
network hub, which connects different computers together, a content router and different

servers with different databases on it.

Server 1

Client 1

Client 2 . Hub ‘ Cortent Router {—.ﬁ___%‘_‘ Seruver 2

Client n

Servern

Figure 5.4 Deployment diagram for Content-Based Router

49

5.1 Packet Inspector

The Packet Inspector module enables the router to capture and extract the data in each
packet of a user’s request. This data is the content that is routed to the appropriate server
at that moment based on a set of metrics. This component of the system intercepts the
user’s request data stream in the form of packets and then extracts the data content (ie.,

the payload) it contains for routing. Figure 5.5 shows the class diagram for packet

inspector.
:Switch
:User_App
:Packet_Inspector
1.7
Captures + t
]]
Packet_Capture Packet_Analyzer
- Capture : String - Data : String
+ Divert () 1.." Analysis / Extraction 1 | + Receive_Data ():
+ Read_header () : + Tokenize_Data () :
+ Send_data {) : + sends data {):
+ sends the packet () :

Figure 5.5 Packet Inspector - Class Diagram

5.1.1 Functionality

The Packet Capture and Packet Data Extraction / Analysis are the two sub-components of
the Packet Inspector. The Packet Inspector unit captures and extracts the data in each
packet of a user request. This extracted data is used for routing the packet to the
appropriate server. Figure 5.6 gives the Sequence diagram for the Packet Inspector. The
Packet Capture component takes care of capturing the packet and sending the data to the
Packet Analyzer. The Packet Capture component opens a socket connection and listens

for the packet that flows in the network.

50

l :User :Source_Computer ! ‘Network I :Divert_Socket I ’ :Packet_Capture] ’ :Packet_Analyzer I ‘Resource_[nspector
[]

f] — [1 [|

Waits for Request :

-

Waits for Request : Listening to the NAW : | Wails for Packet : Waits for Data : _ Waits for Tokenized Data :

sends request()

sends request()

Captures the Packet()

sends the packel()

reads the header |

sends data ()

-

tokenize the data '

sends the tokenized data)

Y

Figure 5.6 Packet Inspector - Sequence Diagram

When the user sends in a request the socket grabs or captures the packet, and stops the
packet flow from the current node or hop to the next node. The Packet Capture collects
the captured packet, scans the header and the data field. By scanning the header and data
field the Packet Capture finds the source address, destination address and the data in the
packet. If the data field is empty the packet is discarded without any further processing. If
the packet contains data, it is forwarded to the Packet Analyzer for processing. The
Packet Analyzer converts the extracted data from the machine code to readable string
format. The converted data is tokenized and a keyword or set of keywords is selected,
which is sent to the next component of the system, the Resource Inspector. Algorithm 5.1
and Figure 5.7 gives the pseudo code and Activity diagram for the Packet Inspector.
Thus, the Packet Inspector intercepts the users request data stream in the form of packets

and then extracts the data content, which is used for routing.

Algorithm 5.1 Packet Inspector
INPUT: User Request;
OUTPUT: Tokenized data in string format;

WHILE (Network is active) DO

51

Open a socket connection S;
IF (S=-1) THEN
Socket open error;
Exit the system;
IF (S >=0) THEN
Open a divert socket;
Listen to a port for receiving the packets;
FOREACH packet DO
SWITCH (ether_type) IN

CASE 1P Packet:
Divert the packet to the user level;
Read the header and data;
IF (data = null) THEN
Discard the packet;
ELSE convert the data to string format;
Tokenize the data;

CASE ARP Packet:
Read the header;
Forward the packet to the original destination;

CASE RARP Packet:
Read the header;
Forward the packet to the original destination;

OTHERWISE:
IF (unknown packet type) THEN
Forward the packet to the original destination;

END {SWITCH};
END {WHILE};

End of Algorithm;

5.1.2 Implementation Strategies

The Packet Inspector component is implemented in C and Java. The components
implemented in C are integrated into the other parts using Java’s Native Interface facility.
The protocol used for capturing the packets is the divert socket. The libpcap library file in
C was used to capture the packets. The drawback in using libpcap is, it just gives a copy
of the packet and forwards the packet to the next node. This drawback is avoided in

divert sockets, because it actually grabs the packet from the network. The content of the

52

packet is converted and analyzed using Java because it supports many classes and

methods than any other language.

User

Metwork

o

Captures the P acket

Reads the Header
Readsthe Data

= Discard the P acket

ésnd the data ta Packet Analyzeb

fURL Recuest

Tokenize the Data

I\Si]d the Tokenized data to Resource Inspedor]

Fornard the Packet to the requested URL

Figure 5.7 Packet Inspector - Activity Diagram

53

5.2 Resource Inspector

A core component of the system is the Resource Inspector. The main job of the Resource

Inspector is to assemble vital information about the resources available in the system for

ease of access and fast decision-making. To implement this component, we adopted

intelligent mobile agent technology. Mobile agents are suitable because they enable us to

seamlessly and transparently assess servers (at remote locations) and retrieve appropriate

data of interest. The agents only need to know the address (IP address or full domain

name) of the resource and a known set of database types. The agents can retrieve the

metadata of each database, such as the name of the schemas, the description of the

schemas, and table definitions, etc. This information is necessary to make informed

judgements on where to find the available resources for the application. The databases are

transparent to the system. Figure 5.8 shows the class diagram for resource inspector.

Switch

T

:Resource_lnspector

F 1

Resource_L ocator

- Resources : String

1..7 Manages 1

Resource_Manager

- Resources : String

+ Connect to servers () :
+ Search resources {) :
+ Send Resourcelnfo () :

1.7
Finds
D...'&'

:Resources

+ Receive Resourcelnfo {)
+ Schedule Table { J:

+ send resourceinfa {) :

+ sends tokennized data ()

Figure 5.8 Resource Inspector - Class Diagram

54

I :Packet_Inspector l | :Resource_Leocator , I :Resource_Manager l :Scheduler

L] |] (I] A —

|Connect to different servers,
o

I Look for resources !

send resourceinfo()

sends tokennized data(}

I form resource table |

look for data

[selects the dest_addr |

submits dest_addr(

Figure 5.9 Resource Inspector - Sequence Diagram

5.2.1 Functionality

The Resource Locator and Resource Manager are the two sub components of the
Resource Inspector. The main job of the Resource Inspector is to assemble vital
information about the resources available in the system for ease of access and fast
decision making. Figure 5.9 gives the Sequence diagram for the Resource Inspector. The
Resource Locator collects the resource information. When the switching unit is started,
the Resource Locator creates resource agents. These agents are capable of moving from
one location to other location. Because of their mobile property, these agents are called
Mobile Agents. The Mobile Agents are sent to different machines to look for resources.
The resources for E-Commerce applications are often stored in databases at participating
servers. The resources are heterogeneous because they are build using different database
systems (e.g., Microsoft Access, Oracle, SQL Server, DB2, Sybase, etc). The Resource
Agents enter the appropriate designated server and retrieves the data of interest. The
agents extract the metadata of each database, such as the name of the schemas, the
description of the schemas, and table definitions etc. These informations are given to the
Resource Manager to make informed judgements on where to find the available resources
for the application. Based on the metadata information and the server address, the
Resource Manager collects resource information about the number of databases available

in the system, the address of these databases, and permissions on the databases and stores

55

the collected data in a resource table. Algorithm 5.2 and 5.3 gives the pseudo code for

Resource Locator and Resource Manager. Figure 5.11 gives the Activity diagram for the

Resource Inspector.

Algorithm 5.2 Resource Locator

INPUT: Server addresses;
OUTPUT: Resource information of various servers;

/I Abbreviations used and there corresponding meaning.

RM: Resource Manager;
FOREACH server DO

Create resource agents;
WHILE (network is active) DO
Open a connection with all servers;
IF (server is active) THEN
Send the resource agents to the assigned server;
Collect the resource information for each server;
Exit the system;
ELSE wait for active connection with the server:
END {IF};
Send all the collected resource informations to RM;
END {WHILE};
End of Algorithm;

Algorithm 5.3 Resource Manager
INPUT:: Tokenized data from Packet Inspector;

Resource Informations from Resource Locator;
OUTPUT: Server address or addresses for the tokenized data;

// Abbreviations used and there corresponding meaning.

RT: Resource table;

SA: Server address or addresses;
TD: Tokenized data;

DL: Data Location;

RT is formed using the resource informations;

FOREACH tokenized data DO
Look for SA;

WHILE (network is active) DO
Search for TD in RT;

56

IF (TD not found in RT) THEN

Forward the packet to the original destination;
ELSEIF (TD found in RT) THEN

Find SA;

Form a DL table using the SA;

Send the DL table to the Scheduler unit;
END {IF};

END {WHILE};

End of Algorithm;

While collecting the resources in the resource table the resource informations are also
copied into a file as backup information. The advantage of following this process is, even
when the system is down or switched off all the informations are stored, which can be
used as soon as the system is recovered. The resource table has tow columns and n -

number of rows. The Resource table is shown in Figure 5.10.

Resource Table

Resouance [] 24
=afewerans 130179 .27 . >11
2ellers: 130179 27 . 212>
sSLerstore: 13047927 .13
satfewwrans 130 179.27.214

Figure 5.10 Resource Table

The two columns in the resource table are the server address and the resources available
in the server. The resource table is scanned for the tokenized data obtained from Packet
Inspector to find the appropriate server or servers for processing the user request. The
obtained server address or addresses are stored in a Data Location table. The data
location table is shown in Figure 5.12. The Data Location table is sent to the Scheduler

unit for further processing.

57

% W

Qlesource Agents are Creat@

Qlesource Manager(RM) receives data) = { Connected to different seme@
Looks f
Q?M Forms Resource Table(Rﬂ) Q or resources ,

\l/ k=)
(Checks data in @ Qallems the resource information)

[data not found]
LRoute the packet to the Original Destination
[data found]

ﬁ—[Find all destinatio@

2

Gend the destinations te Scheduler Unit]

Figure 5.11 Resource Inspector - Activity Diagram

Tekenized data

5.2.2 Assumptions

The implementation assumes that

All Server Addresses are known.
Permissions are granted on the servers.
Data Source Names for all the databases are known.

The databases are transparent to the system.

Data Location Table

Resource 134
satewray 13I0ATI.27.211
safewanyr 130.179.27.214

Figure 5.12 Data Location Table

58

5.2.3 Implementation Strategies

The Resource Inspector component is implemented using Java.

5.3 Scheduler Unit

The Scheduler Unit is a major part of the system, uses the information assembled by the

Resource Manager to facilitate content-based routing. It is responsible for scheduling and

allocating transactions to the various servers for execution based on the current

processing / work load information of each server. This unit answers questions such as:

how busy is each server and which server can process the request in the shortest time.

Figure 5.13 gives the class diagram for scheduler.

Switch

i

Scheduler

Hform schedule table()

[
Load Inspector

+CPUInfo()
+MEMInfa()
+ProcessQueuelnfo()

Get Status

Network Nodes

?fL

Cost Mamager

+TraceRoutelnfo()

1

ache Manager

FCachelnfo()

Figure 5.13 Scheduler Unit - Class Diagram

59

Resouree Inspector Load Inspector Cost Manager , l Scheculer l Content Switch

sznds Cost Info()

T
H

| sends Data Location table(y
]

H H
Ll

I receive Data Locaton Table l
reads Server Address

I
[
1

checks the CPU, MEM, and
Processor Queue

kL]

1
1
1
'
!
1
]
1
]
1
|
I
'
i
1
1
i
1
i
'
i
'
i
'
i
1
i
]
1
'
1
1
1
|
i

sends Load infoQ

)
]

collects the Load & Cost
Info
1

1
'
i

)
|
1
'
)
i
1
i
1
i
1
i
'
i
I
i
1
1
)
1
I
1
|
i
1
i
1
1
|
]
|
1
1
1
i
1
i
]
:
I
i
I
I

)
]

1

forms the Schedule Table , H

i -

r il
'

selects the best H
Server Address H

'
'
sends Server AddressQ H
d
]
H

J

Figure 5.14 Scheduler Unir - Sequence Diagram

Functionality

The different components of the Scheduler Unit are the Load Inspector, Cost Manager,
Cache Manager and the Scheduler. The Scheduler selects a best and efficient destination
address based on a set of metrics. The sets of metrics are the load on the server and the
distance between the client and the server. The following section discusses the
functionality of each component elaborately. Figure 5.14 gives the sequence diagram of

the Scheduler Unit,

5.3.1 Load Inspector

The Scheduler receives the Data Location Table from the Resource Inspector. For each
entry in the table the Load Inspector creates Load Detector Agents. The agents are

capable of moving from one location to another. Each entry in the Data Location Table

60

Systemn Status Table

Servsr Address

130.179.27 214
130.179.27 280
[180479.33.114

Figure 5.15 System Status Table

Algorithm 5.4 1044 Inspector

INPUT: Data Location table from Resource Inspector;

OUTPUT: Load information of a] Servers in Data Location table;
/I Abbreviations used and there corresponding meaning,

SA: Server address;
DL: Data Location;
MEM: Memory;

PQ: Processor Queue;

FOREACH entry in DL table DO

Read SA;
WHILE (system is active) DO

61

IF (first row not empty) THEN
Check the CPU status for the SA:;
Check the MEM status for the SA;
Check the PQ length for the SA;

END {IF};

Collect all the above information;

Send the load information to the Scheduler;

END {WHILE};

End of Algorithm;

)

—~
l Receive Data Location Tsble I

@ad the Server Address
Parallel Exscution
Check CPU Status [:Chedi ME M Status :, Check Processor Qu@

il

l Send Load Info to ScheduI%

Figure 5.16 Activity Diagram Jor Load Inspector

Implementation Strategies

The Scheduler is implemented using Java. This component is implemented using Java
Remote Method Invocation (RMI). The other approaches for implementing this module
are Java Aglets and Simple Network Management Protocol (SNMP). In all the three
approaches a Server should be running for the Resource Agents to collect the Resource
information. The SNMP approach is very similar to the Remote Method Invocation. The
SNMP server is same as the RMI Server. The SNMP is the standard protocol used for

remote communication. The Java Aglets has its own Tahiti Server, which is built in with

62

the Aglets Kit that has to be installed to use the Aglets. Aglets can create Mobile Agents
that can roam from one machine to another. The advantage of using RMI is, we can have
our own specification in creating the Server, which supports our application reducing the
workload on the Server. In the case of Aglets and SNMP they have a built in Server,
which is created to support all the applications. This increases the workload on the

Server.

5.3.2 Cost Manager

The next component in the Scheduler unit is the Cost manager. Cost Manager finds the
distance between the client and the server. The Cost Manager creates a simple traceroute
procedure, which is used to find the total number of hops, or nodes in between the client
and the given server address and form a Proximity Table. Figure 5.17 shows the

Proximity Table. The Cost Manager reads the Data Location Table. Each row

Proximity Table

Server Address Distance (in nodes)
130179.27 211 10

130.179.27 280 25

180.179.33.114

Figure 5.17 Proximity Table

in the table is scanned for server address. For each scanned Server address, the distance
information is obtained by looking into the Proximity Table. The distance information is
sent to the Scheduler for further processing. Algorithm 5.5 gives the pseudo code and

Figure 5.18 gives the activity diagram for Cost Manager.
Algorithm 5.5 Cost Manager

INPUT: Data Location table from Resource Inspector;

OUTPUT: Number of nodes in between the content switch and each Server in Data
Location table;

/I Abbreviations used and there corresponding meaning.

63

SA: Server address;
DL: Data Location;

FOREACH entry in DL table DO
Read SA;
WHILE (system is active) DO
IF (first row not empty) THEN
Find the total number of nodes present in between the switch and the
given server;
END {IF};

Send the information to the Scheduler;

END {WHILE};
End of Algorithm;

4

@ad the Data Location Ta@
éet the Server Address or .&.ddressea

/
énd the Distance hetween the Switch and the Ser@

£

éend the Info to Schedule)

Figure 5.18 Activity Diagram for Cost Manager

The Cost Manager is implemented using Java.

5.3.3 Scheduler

The next important component is the Scheduler. The Scheduler selects the best and
efficient server address for routing the user request. The Scheduler collects the
information from the Load Inspector and Cost Manager. Based on the collected

information a Schedule table is formed. The Schedule table is shown in Figure 5.19.

64

Schedule Table

15 % Free CPU “wFree Mem Quesue Length Distance
130.179.27.211 98.4 68 o 20
130179.27.212 98.8 ¥4 L] 10
130.479.27.213 99.3 83 1 25

Figure 5.19 Schedule Table

Algorithm 5.6 gives the pseudo code and Figure 5.20 gives the activity diagram for
Scheduler.

?

’ I Collects the Load and Cost Infca
@rms a Schedule Tab9
/
éest Server Address is Se!ec‘t@

/
éerver Addressis sent to Swiching U@

Figure 5.20 Activity Diagram for Scheduler

Algorithm 5.6 Scheduler

INPUT: Load Information from Load Inspector;
Cost Information from Cost Manager;

OUTPUT: Server Address for Routing user request;
// Abbreviations used and there corresponding meaning.

SA: Server address;
ST: Schedule Table;

WHILE (system is active) DO

65

Collect all the information;
Form a ST;

Best and Efficient SA is selected based on set of metrics;
Send the selected SA to Switching Unit;
END {WHILE};

End of Algorithm;

An efficient server address is selected from the Schedule table based on algorithm 5.7.
The runtime for this algorithm is O(?). The selected server address is sent to the

switching unit for routing the user request.

Algorithm 5.7 Selecting the Best Server Address
INPUT: Schedule Table formed by Scheduler;
OUTPUT: Best and Efficient Server Address is selected;

SA: Server address;

ST: Schedule Table;

CPU: % CPU Auvailable;

MEM: %Memory Available;

QL: Queue Length;

DIST: Distance between the switch and the server:

FOREACH columns in ST assign different arrays
DO
{

Assign the 1% row element of each array to a temporary variable T;
Compare the T row elements with the next row (N) in ST;

IF ((|diff (T (CPU), N (CPU))) > 0.5) THEN

{

IF (T (DIST) < N (DIST)) THEN

{
Tth row elements are selected and the SA is selected as best destination
Address;

}

ELSE

{
Select the N row elements and assign SA as best destination
Address;

}

END {IF};

IF (T (DIST) == N (DIST)) THEN

{

The server, which has more CPU available, is selected as best destination

66

address;

}

ELSE (ignore the CPU available and compare the DIST)

{

IF (T (DIST) < N (DIST)) THEN

{
T’th row elements are selected and the SA is selected as best destination
Address;

}

ELSEIF (T (DIST) > N (DIST)) THEN

{
Assign the temporary row to the next row elements and select
the SA;

}

ELSE (ignore the DIST and compare the QL)

END {IF};

IF (T (QL) <N (QL)) THEN

{
T'th row elements are selected and the SA is selected as best destination
Address;

}

ELSEIF (T (QL) > N (QL)) THEN

{
Assign the temporary row to the next row elements and select
the SA;

}

ELSE (ignore the QL and compare the MEM)

END {IF};

IF (T MEM) > N (MEM)) THEN

{
T'th row elements are selected and the SA is selected as best destination
Address;

}

ELSEIF (T (MEM) < N (MEM)) THEN

{
Assign the temporary row to the next row elements and select
the SA;

}

ELSE (ignore the MEM and find which server has more CPU available among
the two rows);

END {IF};

IF (T (CPU) > N (CPU)) THEN

{

Tth row elements are selected and the SA is selected as best destination
Address;

}
ELSEIF (T (CPU) < N (CPU)) THEN

{

67

Assign the temporary row to the next row elements and select
the SA;

}

ELSE (select any row among the two compared rows and select the SA as the
best destination address);

END {IF};

}
END {IF};

UNTIL all rows are compared;
END {DO};
End of Algorithm;

Java is used for implementing this component.
5.3.4 Cache Manager

The next component in the Scheduler Unit is Cache Manager. It is a separate component
inside the Scheduler Unit. The main functionality of the Cache is to get the best and
efficient destination address from the Scheduler and puts it into the cache with the
corresponding data of interest for that server. When the request comes in from the client
the router checks the cache for the requested data and its corresponding Server address. If
the data is cached the router picks up the Server address and sends it to the Scheduler
Unit for further processing. If the data is not available in the cache the router sends the
tokenized data to the Resource Inspector to obtain an appropriate server address. This
component is implemented in Java. The Cache is maintained in two different ways. The
Surrogate Server or just a file can be maintained as a cache. Surrogate Server is similar to
a cache where, the most frequently requested data is stored. The storage capacity in this
server is very huge when compared to a file. In my thesis I am just using a file as my

cache.

5.4 Summary

This chapter presented an object model, sequence diagrams and activity diagrams for the
different components of the designed content router. Section 5.1 to 5.3 explains the
functionality and presents the algorithm and implementation strategies for the different
components of the content router. Chapter 6 presents some of the screenshots and

explains them with a user scenario.

68

Chapter 6

Implementation

This chapter discusses different implementation strategies and explains different runtime
screenshots of the implementation of the content-based router design. The different
screenshots shown in this chapter are captured by running different modules of the
implementation separately in order to show all the implemented components of the
designed content router. Section 6.1 gives an overview of the overall system and Section
6.2 presents the user scenario of the full working model. Section 6.3 shows the
implementation results for the designed content router and Section 6.4 presents a brief

summary of the chapter.

6.1 System Overview

Figure 6.1 shows the screenshot of user request and how packet inspector captures the

request.

[suresh@starliﬁQQOI"gbresh]$ From : starling-03,cs.un . .
7130.179.27.213 I[LEN: 16

Received Data : I need a bicycle liSocket : 3
Tokenized Data : bicycle liSent 16 bytes to 130.179.27.211

[[Data Sent : I need a bicycle
[suresh@starling-03 suresh$ |

|L.0E

Figure 6.1 User Request and Tokenized Data

69

Recall the Packet Inspector present in the content router has two components, packet
capture and packet analyzer. The packet capture component captures the user request and
extract the data sent by the user. From Figure 6.1, shows an example of how the user
requests is sent and captured. The packet capture captures the packet and finds the
address of the user and extracts the data sent by the user. The packet analyzer analyzes
the data and tokenizes the data to select the keywords for finding a suitable server for
processing the client’s request. Figure 6.1 shows an example of how the tokenized data is
extracted from the user request. The tokenized data is sent to the next module for further

processing.

Figure 6.2 shows the structure of the resource table. The resource table is maintained by
the resource inspector component of the content router. The resource table has two
columns, resource name and server address. The resource locator, a module in the
resource inspector, looks for different resources in the participating servers and collects
the information. The collected information is given to the resource manager module
present in resource inspector. The resource manager stores the collected data in a

resource table maintained by it.

File S
Lsur
Resource Table

'bicycle : 130.179.27.211
car : 130.179.27.213

movie : 130.179.27.213
bicycle :.130.179.27.213
clothes : 10.0.0.2
furnitures : 130.179.27.63

The Length of Resource Table is : 6

Lsuresh@starling—01 Testl1$ l

DB

Figure 6.2 Screenshot-Resource Table

70

The resource table is scanned for the tokenized data obtained from the packet inspector to
find different servers suitable for processing the user request. The scrutinized server
address or addresses are stored in the data location table maintained by the scheduler
component of the content router. Figure 6.3 shows an example of the data location table.
The data location table has two columns tokenized data and server address. The content
of the data location table changes dynamically each time based on the tokenized data

forwarded by packet inspector. The main reason for having a data location table is to
reduce the processing time of the content router for each user request, by avoiding the
scanning of the resource table more than once for finding the load details. The data

location table is sent to the scheduler unit for further processing.

File:Sessions Settings Help

Esuresl;.ég{érling 01 Test1$ java MainClass blcgcle

Data Location Table

bicycle 130.179.27.211
bicycle 130.179.27.213

IThe size of Data Location Table is: 2

| [suresh@starling-01 Test1$ [

REE

Figure 6.3 Screenshot-Data Location Table

Figure 6.4 shows the system status table maintained by the scheduler unit. The scheduler
is one of the core components of the routing system. It uses the information collected
from the resource manager to facilitate content-based routing. The system status table
contains the status of the participating servers, whether the participating servers are active
or down. The scrutinized server address or addresses present in the data location table is

checked with the system status table by the scheduler. If any of the server or servers is

71

down they are eliminated from further processing. The remaining server or servers are

processed further in order to process the user request. Figure 6.4 shows the status of

different participating servers.

A
‘File Sessions: Settings Help

[suresh@starling—01'Test]$-jé;é SgétémStétQé

| wuxsxs SYSTEM STATUS TABLE xxssxx

1 130.179.27.226
130.179.27.211
10.0.0.2 : doun
130.179.27.212
130.179.27.213
:192.168.3.167 : doun

:[suresh@starling~01 Test1$ |}

Figure 6.4 Screenshot-System Status Table

Figure 6.5 gives the proximity table maintained by the cost manager module in the

scheduler component.

;[surésh@starling~01 Testl$ java Proximity_copy
i PROXIMITY TABLE

1 130.179.24.87 - 1
1 130.179.27.211 : 1
1 130.179.27.213 : 1
130.179.27.63 : 1
10.0.0.2 : 1
207.161.1.37 : 2

t The size of the Proximity Table is: 6

 [suresh@starling—-01 Testl$ |}

Figure 6.5 Screenshot-Proximity Table

The proximity table maintains the distance information between the client and different
participating servers. The distance that is calculated here is the number of nodes or hops
in between the client and the participating server. It has two columns: server address and
distance. The distance information is one of the load details. Cost manager maintains the
proximity table. The cost manager gives the distance information for different servers
present in the data location table. The distance information is sent to the scheduler along
with other load details like percentage of CPU available, available memory and the length
of the processing queue for further processing. The scheduler collects all the information

and forms the schedule table shown in Figure 6.6.

[suresh@starling—01 Testl$ java MainClass bicycle

The Schedule Table looks like

Machine IP %4CPU Available Z%MEM Available Queue Length Distance

§1130.179.27.211 : 93.0 : 70.5 : 0 : 1
130.179.27.213 : 92.6 : -55.700000000000045 : 0 : 1

[suresh@starling-01 Test1$ |

NEEE

Figure 6.6 Screenshot-Schedule Table

Figure 6.6 shows the load details of each server present in the data location table. The
different load details shown above are obtained from different components of the
scheduler unit. The load inspector gives the percentage of free cpu, memory available,
and length of the processor queue. The cost manager gives the distance information.
Based on the results present in the schedule table the best server for processing is
selected. The best server address is selected based on the set of metrics mentioned in
previous Object model and Functionality chapter. Figure 6.7 shows the screenshot of the

best-selected server.

73

ssions -Settin:

[suresh@starling-01 Test1$ javac Béé{géé;éh.jégé“W
 [suresh@starling-01 Testl$ Jjava MainClass bicycle

The Schedule Table looks like
Machine IP- %CPU Available %ZMEM Available Queue Length DBistance

130.179.27.211 : 93.7 : 71.19999999999999 : 0 :
130.179.27.213 : 92.4 : -55.700000000000045 : O :

The Best IP Address is
1130.179.27.211 93.7 71.19999999989993 0.0 1.

[suresh@starling-01 Test1$ |

Ngne

Figure 6.7 Best Selected Server

The above figure shows the screen shot of how the best efficient server is selected.
Algorithm 4.7 in object model and functionality chapter explains how the best and

efficient server address is selected from the schedule table.

6.2 User Scenario

This section discusses the user scenario of the designed intelligent system. Figure 6.8

shows an overview of the prototype of the intelligent content-based routing.

74

<) Content

g Router

LAN / WAN Network

User

Computer

Figure 6.8 Overview of the Intelligent Content Based Routing Architecture

To test the prototype the necessary components are an intelligent content router, different
participating servers and some clients connected to the network. When the system is
started, the clients connected to the network may send their requests. The content router
has different components embedded with it. The packet inspector component captures the
request in the form of packets. It uses the divert sockets API to grab the packet from the
network. The packet inspector extracts the data, tokenize it and forwards it to the resource
inspector, which is the next component, embedded in the content router. When the system
1s switched on the resource inspector looks for the resources by sending queries to the
participating servers. The different databases on the servers are accessed by using JDBC
driver. Java has lots of JDBC API’s for accessing the data present in different databases.
Using JDBC we can access any type of data source. The resource locator in the resource
inspector component collects all the resources. The user request is searched in the
resource list maintained by the resource inspector to locate different servers. The user
request is forwarded to the selected server and response is sent back to the client. The
load information is obtained by using JAVA RMI. RMI supports different API’s to send
agents to different machines to collect load information. The above mentioned procedure
is used to process the client’s request quickly and efficiently in a short span of time. The
full implementation of the content router is done in JAVA and C. We choose JAVA for
implementation because of platform independence it enjoys. The packet capture is

implemented in C.

75

6.3 Implementation Results

Many factors affect the performance of a router. Examples of such factors are network
traffic, load on network nodes, and system configuration. A small change in any of these
factors can drastically affect the performance of a router. To measure the performance of
the content-based router designed in this thesis, test were performed on various
algorithms and time taken to complete their execution is calculated in milliseconds. For
each tests we experimented 20 different test cases and we took the average of the 20
cases to find the time taken. The network used for the test has 12 different cluster nodes.
We converted the cluster nodes as 12 different servers and we measured the time taken
by each algorithm to complete its functionality. The algorithms were implemented in
Java. The first test measured the Load Inspector algorithm. We start by finding the time
taken to find load information for one node and we increase the number of server nodes
incrementally, until all the 12 nodes are included. Finally we tested the algorithm for 12
server nodes. Figure 6.9 shows the graph for time taken to find the load on nodes versus

number of different nodes.

1600
1400
1200
1000
800
600
400 4
200 ! "

Information (ms)

Time Taken to find Load

1 2 3 4 5 6 7 8 9 10 11 12

Cluster of Server Nodes

Figure 6.9 Performance test results for Load Inspector Algorithm

The load information that the algorithm looks for are free percentage of cpu and memory
available and length of processor queue. In the graph, most of the processing time is

spent on parsing the result of load details.

76

Next we measured the performance of the Proximity algorithm. This test was performed
for the traceroute implementation used in our algorithm. Similar to the previous test we
started the test by finding the distance between the client and server for two nodes and we
extend the test to 12 nodes with an interval of two. Figure 6.10 shows the performance

for the proximity algorithm.

300

\Y]
2]
(o]

N
o
o

iy
o
o

Time Taken to find Distance
between client and server (ms)
o o
o (@

(o]

0 2 4 6 8 10 12 14

No. of Server Nodes

Figure 6.10 Performance test results for Proximity Algorithm

The execution of the algorithm takes place in parallel, which reduces the execution time.
The elapse time is spent on finding the size of the result vector that stores the distance

between a client and server.

The performance of the router can be improved by implementing the different algorithms
using C instead of Java. The initial overhead that is seen in the above graphs is might be,
due to the time taken by Java to load the Java Virtual Machine, time it takes to load
different libraries included in the program as well as the time taken to handshake with

other network nodes.

77

6.4 Summary

Section 6.1 presented some of the screenshots and explained how the actual system will
work in real time. Section 6.2 presents a user scenario and explains the interaction
between the users and Section 6.3 gives the performance result for the designed content
router. Chapter 7 presents conclusion and summary of various contributions presented in

this dissertation and gives some future research directions.

78

Chapter 7

Conclusion

In this thesis, we present the design and implementation of an Intelligent Content-based
router that finds a suitable server for processing a client’s request quickly and efficiently.
The main reason for developing a new intelligent content-based router is that the current
routers fail to deliver information to users in right time due to the large increase in
Internet users. This led to the increase in network traffic and load on different servers.
The newly developed content router could potentially reduce network traffic and
optimizes routing cost. By reducing the network traffic and optimizing the routing cost
the performance of the router might be increased. The different components present in
my content router are Packet Inspector, Resource Inspector and Scheduler. The key
features of the newly designed content router are, existing content routers handle the data
present in the servers in a monotonous way. The newly developed content router handles
different data based on their classification obtained from the Resource Locator. The other
key feature of the architecture is that the execution of each of the components is done in
parallel. The functionality of these components is explained in detail in Chapter 5. Based
on the information obtained from these components a user’s requests are forwarded to the

appropriate server.

79

7.1 Comparison between Existing Content Routers and newly Designed

Content Router

The main difference between the newly designed content router and the existing routers

are:

Existing Content Routers

Newly Designed Content Router

Static Routing

. Dynamic Routing.

2. Consider only one or two components Consider all the specified components
for routing. for routing.
3. Examines only the HTTP based request Examines all types of TCP - based
requests.
4. Replicates data. . No replication of data.
5. Maintains a single large database for Have heterogeneous databases for

storing the resource information, which
in turn increases the access time for
accessing the resources.

storing the resources. Uses cache as one
of the components for locating server
addresses which decreases access time.

This design is also mathematically proved to be robust and fail-safe. The correctness of

the design is done using a formal specification language (Z), and the specification is

verified using Z-Eves tool.

7.2 Summary of Contributions

This thesis addresses different problems like network traffic, load on different servers,

replication of data, status of the servers, and performance of the router. The list of

contributions that were made for this dissertation is listed below.

Provided a new architecture for Intelligent Content-Based Router.

80

e Provided different network designs to utilize the services of the newly designed
Intelligent Content Router efficiently.

¢ Provided an Object Model for the developed content router.

¢ Provided a Formal Specification for the newly developed Content-Based Router.

e Provided a prototype implementation of the newly proposed architecture.

7.3 Future Directions

This thesis provides a verified, content-based routing technology that can be used to build
application-specific intelligent software routing environments. Such environments can be
exploited to create more efficient geographically distributed databases and other similar
applications. The areas of applications are vast, ranging from e-commerce to intelligent

network switches and call-center processing.

Intelligent content-based routing provides the following key services: (i) content-based
routing, (i) traffic optimization, (iii) economically scalable services that provide
appropriate response to varying processing loads, and (iv) the ability to track content

requests and respond with appropriate content.

We conclude this thesis by identifying some of the important issues to be addressed as an
extension of this research. The future work suggested here is based on this work
combined with directions to address the general problem of content-based routing with

respect to Internet applications like E-Commerce.

e The different network designs that were proposed in this thesis can be simulated
to study the performance and obtain best design for different applications.

e This thesis has provided some of the background research for implementing the
different network designs using MPLS. In this thesis we have not implemented

the different network designs.

81

e Using some standard optimization techniques the different algorithms such as
load inspector algorithm, proximity algorithm and system status algorithm that
were implemented might potentially be optimized to obtain a better performance.

e Another interesting direction for future work would be in the area of wireless
access of resource data from remote locations. We need to assess the performance
of the content-router in a wireless environment.

¢ In this thesis, I did not consider security problems. If this factor is considered, the
encryption and decryption of data that is passed in the network has to be done.
This is potentially one of the future works that is suggested because all the

transactions done in an E-Commerce application should be secured.

The content router design proposed in this thesis lays a solid foundation for future
work where different E-Commerce applications can be built over it. As a final
comment, it is expected that the report presented in this thesis will also lead to the

development of a hardware intelligent content - based router.

82

Bibliography

[KLS98]

[GLH95]

[GLM98]

[SV97]

[KS98]

[DKS89]

[P+98]

[ADJ+92]

[K94]

V. P. Kumar, T. V. Lakshman, and D. Stiliadis, "Beyond Best Effort:
Router Architecture for the Differentiated Services of Tomorrow’s
Internet”, IEEE Communications Magazine, 36(5):152-164, May 1998.

D. Ghosal, T. V. Lakshman, and Y. Huang, "Parallel Architectures for
Processing High Speed Network Signaling Protocols", IEEE / ACM
Transactions on Networking, pages 716 — 728, December 1995.

Pankaj Gupta, Steven Lin, and Nick McKeown, "Routing Lookups in
Hardware at Memory Access Speeds”, IEEE INFOCOM, April 1998.

V. Srinivasan and G. Varghese, “Efficient Best Matching Prefix Using
Tries”, Pre— Publication Manuscript, January 1997.

S. Keshav and R. Sharma, "Issues and trends in Router Design", IEEE
COMMUNICATONS Magazine, 35(6) : 144-151, May 1998.

A. Demers, S. Keshav, and S. Shenker, "Design and Analysis of a Fair
Queuing Algorithm", Proceedings of ACM SIGCOMM ’89, Austin,
September 1989.

Craig Partridge et al, "A 50-Gb/s IP Router", IEEE / ACM Transactions on
Networking, Vol. 6 No. 3, June 1998.

A. Asthana, C. Delph, H. V. Jagadish, and P. Krzyzanowski, “Toward a
Gigabit IP Router”, Journal of High Speed Networks, Vol. 1, No. 4, pp.
281 — 288, 1992.

S. Konstantindou, "Segment Router — A Novel Router Design for Parallel
Computers”, IBM T. J. Watson Research Center, Yorktown Heights, NY
10598. (Also published in the Proceedings of ACM SPAA-94, Cape May,
N.J., USA, 1994).

83

[WVT+97]

[APP+99]

[S88]

[SM99]

[UML99]

[EOO]

[HGK+98]

[AMO8]

[PAB+98]

Marcel Waldvogel, George Varghese, Jon Turner, Bernhard Plattner,
"Scalable High Speed IP Routing Lookups", In Proceedings of
SIGCOMM’ 97, September 1997.

G. Apostolopoulos, V. Peris, P. Pradhan, and D. Saha, "L5: A Self-
Learning Layer-5 Switch", IBM Research Report RC21461, T.J. Watson
Research Center, 1999.

J. M. Spivey, Introducing Z: A Specification Language and its Semantics.
Cambridge University Press, 1988.

Z/EVES Version 2.0, ORA Canada, Ottawa, Ontario, K1Z 6X3, CANADA
(available at http://www.ora.on.ca/z-eves/welcome.html). (Also associated
with this is The Z/EVES Reference Manual by Mark Saaltink and Irwin
Meisels, ORA Canada, December 1995; revised September 1997 and
October 1999).

Unified Modeling Language Specification (draft), Version 1.3 alpha RS,
Object Management Group, Inc., March 1999.

S. A. Ehikioya, "Formal Specification of Intelligent Routing Infrastructure
for Electronic Commerce Systems", Technical Report # TR-CS-22-2000,
Dept of Computer Science, University of Manitoba, Winnipeg, Canada,
June 2000.

G. Hunt, G. Goldszmidt, R. King, and R. Mukherjee, "Network
Dispatcher: A Connection Router for Scalable Internet Services",
Proceedings of the 7th International World Wide Web Conference,
Brisbane, Australia, April 1998.

D. Andresen and T. McCune, "Towards a Hierarchical System for
Distributed WWW Server Clusters", Proceedings of the Seventh IEEE
International Symposium on High Performance Distributed Computing
(HPDCT7), Chicago, IL, July 1998, pp. 301-309.

V. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel, W. Zwaenepoel,
and E. Nahum, "Locality-Aware Request Distribution in Cluster-based
Network Servers", Proceedings of the Eighth International Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS-VIID), San Jose, California, October 1998.

84

[SLI+00]

[SLI+99]

[GCO00]

[CFH99]

[CO0]

[CCYO00]

[CID+00]

[B95]

[M87]

J. Song, E. Levy-Abegnoli, A. Iyengar, and D. Dias, "Design Alternatives
for Scalable Web Server Accelerators", Proceedings of IEEE International
Symposium on Performance Analysis of Systems and Software, Austin,
TX, April 2000.

J. Song, E. Levy-Abegnoli, A. Iyengar, and D. Dias, "A Scalable and
Highly Available Web Server Accelerator”, IBM Research Report RC
21377, Shorter version appeared in Poster Proceedings of the 8th
International World Wide Web Conference (WWW8), Toronto, Canada,
May 1999.

Z. Genova and K. Christensen, "Challenges in URL Switching for
Implementing Globally Distributed Web Sites". Proceedings of the
Workshop on Scalable Web Services, August 2000, pp. 89 - 94.

M. Crovella, R. Frangioso, and M. Harchol-Balte. "Connection
Scheduling in Web Servers". In Proceedings of the 1999 USENIX
Symposium on Internet Technologies and Systems (USITS 99), October
1999.

Cisco Systems Inc,. "Content Routing Protocols”, White Paper, Cisco
Systems Inc, October 31, 2000.

http://www.cisco.com/warp/public/cc/pd/cxsr/cxrt/tech/ccrp_wp.htm.

V. Cardellini, M. Colajanni, and P. S. Yu. "Geographic Load Balancing
for Scalable Distributed Web Systems". Proc. IEEE Mascots 2000, San
Francisco, CA, Aug./Sept. 2000.

J. Challenger, A. Iyengar, P. Dantzig, D. Dias, and N. Mills. "Engineering
Highly Accessed Web Sites for Performance”. Web Engineering, Y.
Deshpande and S. Murugesan editors, Springer-Verlag, 2000.

T. Brisco. “DNS Support for Load Balancing”. Technical Report RFC
1974, Rutgers University, April 1995.

P. Mockapetris. “Domain Names - Implementation and
Specification”.Technical Report RFC 1035, USC Information Sciences
Institute, November 1987.

85

[DS94]

[SDW+94]

[ID]

[AP]

Andrzej Duda and Mark A. Sheldon, "Content Routing in a Network of
WAIS Servers", 14" International Conference on Distributed Systems,
Poznan, Poland, June 1994.

Mark. A. Sheldon, Andrzej Duda, Ron Weiss, James W. O’Toole, Jr., and
David K. Gifford, "A Content Routing System for Distributed Information
Servers", Proceedings Fourth International Conference on Extending
Database Technology, March 1994.

http://www.unitechnetworks.com/IntelliDNS/Understanding/

http://www.knowware.co.uk/ArrowPoint/solutions/whitepapers/W. ebNS.html

86

