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Abstract  

With over 830,000 km of operating pipeline in Canada alone, their safe and continued 

functioning underpins much of daily life. A key type of risk associated with pipelines is third-

party damage, damage caused by actions not associated with the pipelines normal operation. The 

question of whether the pressurized structure like pipeline or pressure vessel would undergo 

“unzipping” due to the third-party impact is crucial for the safety of pipelines or pressure vessels 

in service needs to be answered. Thus, we endeavour to develop a methodology for assessment 

of design solutions effectiveness to prevent a pipeline or pressure vessel failure in an abrupt 

explosion-like fashion due to third-party damage. 

Model of crack propagation determining whether the “unzipping” rupture will occur is 

viewed as a key element in the safety-driven design procedure providing significant effect on the 

safety of operation. The crack propagation modeling is achieved through the use of nonlinear 

fracture mechanics technique. The method of singular integral equations is used to calculate the 

critical stress required for the catastrophic failure of pipeline or pressure vessel damaged due to 

third-party interference. The model was implemented as a FORTRAN program. Testing of the 

developed numerical tool was performed using experimental data available in the literature, with 

the results showing promising agreement. 
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1. Introduction 

1.1. Third-Party Damage in Oil and Gas Pipelines – Definition of a Problem 

According to the Canadian Energy Pipeline Association estimate, 830,000 km of pipelines 

transport natural gas, oil, and other hazardous liquids across Canada [1]. This pipeline network 

which includes gathering, transmission and delivery lines is a key component of the national 

energy supply which has vital links to other Canadian infrastructure. Pipeline safety is a national 

priority for Canada aiming to provide the protection of human life and environment. The 

pipelines are vulnerable to the so-called third-party damage which can vary from mechanical 

damage occurred during the pipeline installation to the accidental damage due to the impact of 

excavation shovel, or foreign object, e.g., such as rock in the trench. In addition to the 

unintentional accidents, the pipelines are vulnerable to sabotage and theft of product. The 

purpose of this thesis is to justify and establish a methodology to simulate the damage and 

immediate structural effects incurred by pipelines during impact loading caused by third parties 

and to predict future structural behaviour due to that damage. With the ultimate goal of this 

thesis to be used in design and maintenance of pipelines in effort to avoid pipeline burst and 

uncontrolled crack propagation; reducing catastrophic worst case scenario damage to less sever 

leaking without burst. 

1.2. Accidental Damage 

In an effort to demonstrate the very real risk of an accidental third-party damage and its 

relevance to pipeline operation a review of statistics from six agencies from around the world has 

been conducted. The agencies covered are the National Energy Board of Canada (NEB), the 
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Transportation Safety board of Canada (TSB), and the Alberta Energy Regulator (AER) from 

Canada; the Pipeline and Hazardous Material Safety Administration of the Department of 

Transportation (PHMSA) from the United States of America; and the European Gas Pipeline 

Incident Data Group (EGIG) and the European Oil Company Organisation for Environment, 

Health and Safety (CONCAWE) from Europe. Data from each agency is taken either from their 

most recent applicable report or their up to date archives as applicable. 

Taking data and observations from the discussed agencies an overall assessment of pipelines 

can be drawn. This assessment will let us draw conclusions regarding the current state of the 

North American and European pipeline networks and the scale of current risk to which they are 

exposed.  

NEB/TSB Data: The NEB and the TSB are the Canadian governmental agencies responsible 

for the safe operations of pipelines in Canada [2]. NEB data shows an overall there were 37 

ruptures during this time and 12 over the period of 2001 through 2009 and an average of 1.947 

ruptures per year during this time and a 1.33 rupture per year average over this past decade [3]. 

The causes of pipeline rupture are shown by percentage below. 

 

Figure 1-1 NEB data: Pipeline ruptures by cause [3] 
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The NEB is using the term “External Interference” which is equivalent to the third-party 

damage term. The Table 1-1 summarizes the TSB data by cause for the past decade [4, 5]. The 

incidents are broken up into the following occurrence types: third-party damage, disturbance of 

supporting environment; corrosion/environmental cracking; fire/ignition/explosion; and other. 

The “uncontained release” category was discounted from the analysis since it does not include 

occurrences that result in any damage to the pipeline, and gives more representative measure of 

the remaining damage causing occurrences. 

Table 1-1 TSB data: Pipeline occurrences by cause in 2003-2012 [4] 

# of Occurrences Total % 

Total 247 100.0% 

Third-Party damage 39 15.8% 

Disturbance of 
supporting environment 9 3.6% 

Corrosion/Environmental 
cracking 1 0.4% 

Fire/Ignition/Explosion 65 26.3% 

Other 133 53.9% 

From the NEB and the TSB data we can see that third-party damage accounts for 8% and 

15.8% respectively overall of all occurrences, and is the third most frequent type of occurrence 

for the TSN statistics. 

ERCB: The Energy Resource Conservation Board (ECRB) also known as the Alberta 

Energy Regulator is a provincially mandated agency that regulates and monitors the safety and 

environmental impact of Alberta’s energy resources and is responsible for Alberta’s intra 

provincial petroleum pipeline networks [3, 6]. The ERCB reports cover 415,152 Km of pipeline 

over the 22 year period [7]. According to the ERCB the most common material for pipeline 

construction is steel at 83.5% of all pipelines, while natural gas is the most common product 
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transported by pipeline length at 57.5% of pipelines [7]. Damage reported on pipelines over the 

22 year period is classified by the ERCB into one of thirteen categories including “damage by 

others”, their term for third-party damage [7].  

In the ERCB report high percentage of incidents associated with internal corrosion can be 

attributed to the presence of water in pipelines. [7]. When compared with other products not 

prone to the presence of water incidents of internal corrosion drop significantly. Ignoring the 

contribution incidents of internal corrosion, damage by others emerges as a significant 

contributor of incidents (Figure 1-2). Damage by others is the third most common incident cause 

in water and multiphase pipelines at 3.4% and 8.0%; second most common incident cause in 

crude oil pipelines, sour gas pipelines, and natural gas pipelines at 19.7%, 9.6%, and 15.2% 

respectively; and is the most common cause of incidents in other product pipelines at 30.7% [7]. 

 

Figure 1-2 ERCB data: Percentage of incidents associated with third-party damage 

(without internal corrosion data) [8] 

PHMSA: The PHMSA compiles extensive statistical pipeline incidents records; the time 

span of the data covers the years 1993 through 2012 [8]. The major incident types are corrosion, 
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excavation damage, incorrect operation, material/weld or equipment failure, natural force 

damage, other outside force damage, and all other causes. Two subcategories namely, the 

excavation damage and the other outside force damage, can be considered as the contributors to 

the third-party damage. Thus, together they accounts for 26% of all reported incidents during the 

past two decades making it the second most common incident type behind material, weld or 

equipment failure (Figure 1-3). According to the PHMSA data the third-party damage represents 

a particularly dangerous type of pipeline incident since it accounts for almost 50% of both 

fatalities and injuries in the past two decades. 

 

Figure 1-3 PHMSA data: Percentage of incidents by cause [8] 

EGIG: The European Gas pipeline Incident data Group (EGIG) is formal organisation made 

through the cooperation of fifteen major gas transmission operators throughout Europe and is 

responsible for the safety monitoring of some 135 211 km [9]. Figure 1-4 presents the percentage 

of pipeline incidents by cause over the time 1970 through 2010. 
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Figure 1-4 EGIG data: Percentage of incidents by cause [9] 

It shows that external inference is by far the most prevalent cause of pipeline damage in the 

EGIG jurisdiction, accounting for 48.4% of all incidents [9]. By EGIG data third-party damage 

has historically and continues to account for a large percentage of annual spill incidents [10]. 

CONCAWE: The European Oil Company Organisation for Environment, Health and Safety 

(CONCAWE) is a similar body to EGIG but is made up of Europe’s major liquid petroleum 

producers and is responsible for monitoring the liquid and crude petroleum pipelines across 

Europe [10]. By CONCAWE statistics the third-party damage is associated with the largest hole 

sizes [10]. It is also the largest cause of spills and accounting for 37% of (180 out of 485) events 

[10]. 

Unlike many other oversight bodies the CONCAWE collects data on the location where 

incidents occur. The higher number of incidents in residential areas (56%) demonstrates that the 

general public is disproportionately at increased risk from third-party damage [10]. 
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Figure 1-5 CONCAWE data: Average spill volume by cause [10] 

1.3. Malicious Damage 

The national pipeline network may also be intentionally damaged by vandals, thieves and 

terrorists. According to the CONCAWE data the malicious damage is the second largest 

subcategory of third-party damage. Terrorism and vandalism account for 7.7% and 20% of the 

intentional third-party events respectively while the remaining percentages were due to theft and 

piracy [10]. 

Recent pipeline accidents on the EnCana pipelines in British Colombia, the Trans-Alaskan 

pipeline system and other US pipelines have demonstrated the pipeline vulnerability to the 

malicious third-party damage. 

EnCana incidents: The EnCana natural gas pipelines in British Colombia during 2001, 2008 

and 2009 were subjected to a series of bombings [11]. The criminal investigation concluded that 

the bombings were not acts of terrorism but of sabotage [12]. The BC bombing case shows the 

difficulty in sourcing and predicting of the malicious third-party damage events. 
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Trans-Alaskan incidents: The Trans-Alaska Pipeline System is one of the world's largest 

pipeline systems with a history of terrorist activity and vandalism. In 2006 and 2007 US federal 

authorities acknowledged the discovery of plans to attack the pipeline using weapons or hidden 

explosives [13].  

 

Figure 1-6 Trans-Alaskan spill location [14] 

Five years earlier (in 2001) the Trans-Alaskan pipeline system was shot several times with a 

high-powered rifle leading to the pipe perforation including the protective layers and coating. 

This vandal’s attack caused extensive economic and ecological damage: it was ultimately 

calculated that 285,000 gallons of crude oil was lost due to the incident, the associated damage 

was 17 million dollars [2, 15]. 

Other incidents: The pipeline accidents in other countries have demonstrated their 

vulnerability to the malicious damage, e.g. 

 Colombia: 950 attempts of bombing the oil pipeline and other pipelines in 1993-1998; 

 UK: plot by the Irish Republican Army to bomb gas pipelines in London in 1996; 

 Nigeria: simultaneous bombing of three oil pipelines in 2007; 
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 Mexico: bombing of oil and natural gas pipelines in July and September 2007; 

 US: plan to attack jet fuel pipelines and storage tanks at the International Airport in 

New York. 

 

1.4. Thesis Objectives and Content 

Problem statement: Taking data and observations from the discussed agencies an overall 

assessment of pipelines can be drawn. This assessment allows to draw conclusions on the current 

state of the North American and European pipeline networks and the scale of current risk to 

which they are exposed. From Figure 1-1 through Figure 1-5 and Table 1-1 it can be clearly seen 

that third-party damage is a major concern for many oversight bodies, being the largest single 

cause of rupture for two agencies and the second largest cause for other two [3]. Since “no burst” 

due to the third party impact is crucial for the safety of pipeline or pressure vessel in service, the 

improvement of pipeline sustainability to the external interference has become a high priority 

problem among the oil-producing nations including Canada. Because third-party damage is 

inherently unpredictable, protection for pipeline structures and systems must occur in the design 

phase of the pipeline. To that end this thesis puts forth a design methodology that can be used to 

mitigate third-party damage when used as a design tool. 

Thesis objectives: The primary objectives of this thesis are twofold: (1) developing a 

methodology to predict the structural effects incurred by pipelines due to third party damage and 

(2) implementing this methodology in design of pipelines to avoid pipeline burst and 

uncontrolled crack propagation 
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Research questions: To properly develop the methodology put forth three important 

questions need to be resolved 

1. What role does impact loading play is third-party damage formation? And how is 

this damage can be modeled in a meaningful engineering sense?  

2. How to assess the third-party damage in an engineering sense? What tools and 

models are to be used to describe crack propagation and fracture mechanics? 

3. How is the methodology implemented in a generalized and useable way? What 

considerations need to be taken when designing this implementation? 

Organization of the Thesis: This thesis is structured as follows. The first chapter describes 

the general problem of third-party damage in oil and gas pipelines. It reviews the pipeline 

accidents statistics and identifies major contributing factors of third-party damage. 

The second chapter explains the physics behind the impact damage formation and reviews 

fracture mechanics methods suitable for the simulation of crack propagation. It also describes the 

selected model of impact damage. 

The third chapter describes the quasi-static simulation approach based on singular integral 

equations method. A detailed description of the procedure is given, followed by the application 

examples. 

The fourth chapter considers the application of the model. The simulation results 

demonstrating the effect of impact damage parameters on the residual strength of the pipeline are 

presented. 

Finally, the conclusions, limitations and recommended future work are presented.  
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2. Review on Impact Damage Formation and Analysis 

2.1. Physics of Impact Damage Formation  

Within this chapter several aspects of impact damage formation and its effect on the 

structural integrity of pipes are outlined.  

The information about the impact loading of pipeline is transmitted by waves propagating 

through the medium. For stresses below the yield strength of the material only elastic stress 

waves are generated. Stress waves exist in three distinct mode forms: transverse, longitudinal 

and surface (also known as Rayleigh waves). If stresses exceed the yield strength both inelastic 

as well as elastic waves are generated. Elastic waves are limited in their velocity; while in 

contrast, the plastic waves continue to increase in velocity with respect to the strain rate piling up 

behind the leading elastic wave. As this wave pile up continues to increase the leading front of 

the plastic wave becomes increasingly steep forming eventually a shockwave.  

Most materials demonstrate the fundamental sensitivity to both the amplitude and time 

duration of the loading processes. The rapidness of deformation processes is characterized the 

strain rate which measures the time rate of change of strain taken in units of s
-1

. Closely related 

to strain rate, impact velocity is an important attribute for the classification of dynamic 

processes. Based on the resulting damage impact events can be classified as one of three velocity 

categories:  

 Quasi-statics and low velocity. The accidental damage by excavation shovel or by rock in 

the trench is formed quasi-statically or at low velocity. Photo in Figure 2-1 presents a failed 

pipeline struck during road excavation by heavy machinery. 

 Ballistic velocity corresponds to the malicious type of impact damage. Photo in Figure 2-2 

presents an example of a damaged oil pipeline shot with a civilian firearm.  
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Figure 2-1 Excavation damage at low velocity [16] 

 

Figure 2-2 Firearm damage to oil pipeline, ballistic velocity [17] 
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 High velocity. The single explosion incident on the pressure vessel or a pipeline (Figure 

2-3a) can result in impact damage at high velocity and cause the multiple explosions of 

adjacent pressurized components of infrastructure (Figure 2-3b). 

  
(a) (b) 

Figure 2-3 Single explosion causing impact damage at high velocity (a); BP's Renegade 

Refinery after explosion (b) [18] 

When the rate of loading is of similar magnitude to the rate of the wave’s propagation then 

the stress wave effects of the material should be considered. Under less severe loading conditions 

the wave nature of stress is inconsequential and stress distribution near the point of contact can 

be evaluated employing the quasi-static approach. Following from Hertz’s theory of contact, 

Boussinesq developed indentation stress fields under a variety of indenters vs. a semi-infinite 

half plane which can be observed experimentally in birefringent materials (Figure 2-4) [19, 20, 

21, 22, 23]. This approach is used for the quantitative analysis of the damage formation when the 

loading duration is long enough to ignore the wave effects. The quasi-static stress distributions is 

also useful for the qualitative analysis of the initial stage of impact when the wave nature of 

impact loading is not ignorable.  
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Low velocity impact, despite the name can occur at quiet elevated velocities; depending on 

the material in question low velocity behaviour can be readily observed up to ~250 m/s [24].  

 

Figure 2-4 Stress field produced by a contact with a loads made visible by polarization 

optics [23] 

In the low velocity regime the perforation of the pressurized wall is strongly coupled to the 

overall deformation of structure. It is accompanied by bulging, cracking and bending of the 

material adjacent to the hole resulting in a number of petals (petalling). At the lower end of the 

low velocity impact, impacts result in dishing (Figure 2-5a). This divot becomes increasingly 

deep and has an increasing radius with respect to the impact velocity. Additionally cracking 

begins to form as shown in the Figure 2-5. The dishing damage is caused by local plastic 

deformation in the area of impact and residual elastic deformation in the surrounding area. Once 

the impact velocity is high enough such that full penetration of the impact surface is achieved, 

petalling can be observed (Figure 2-5c, d).  
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At ballistic and higher velocities (500-2000 m/s) the structural response becomes secondary 

to the contribution of the material directly involved into the penetration resistance. The impacted 

material fails mostly via two dominant failure mechanisms: plugging and spallation.  

  
(a) (b) (c) (d) 

Figure 2-5 Perforation of mild steel, effects of increasing velocity (left to right) low 

velocity range [25] 

Plugging results from the shear bands forming in the material near the periphery and ahead of 

the projectile. Once the shear stress is sufficient to form a narrow band of intense plastic strain, 

the process continues and results in propagation of crack through the material. This forms a 

“plug” pushed through by the projectile (Figure 2-6). The separation of the plug from the target 

material may occur either via the conventional fracture mode or by adiabatic shearing. The 

adiabatic shearing is characterized by the presence of elevated temperature within the adiabatic-

shear band due to localized high deformation rates. The work of plastic deformation is converted 

into the heat which intensifies the process of local plastic strain formation. 

 

Figure 2-6 Perforation of mild steel, partial (left) and full (right) [25]  
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Spallation is a mechanism of failure caused by a tensile wave generated after reflection of the 

impact-induced shock wave from the free surface at the rear of the target as is sketched in Figure 

2-7. The backward running tensile wave (2) and oncoming compression wave (1) contributes to 

the instantaneous pressure of the target material being subjected by these waves.  

 

Figure 2-7 Tensile wave production on reflection of compression wave at a free surface  

1 – Compression wave; 2 – Tensile wave; 3 – Spall cracks [26] 

At any point in the target material where the critical value of stress is exceeded, a spall crack 

is formed. Failure of the material forms a new rear surface of the target on which the entire 

process can be repeated several times producing the multiple spall cracks (Figure 2-8) [26, 27]. 

1 

1 2 

3 

2 
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Figure 2-8 Cross-sections of damaged area near the impact hole [27] 

2.2. Model of Impact Damage 

Experimental studies have shown that under certain conditions the pressurized structures 

perforation can lead to the unstable, rapid crack growth [27].  

 
 

 
(a) (b) (c) 

 

 
(d) 

Figure 2-9 Modeling the impact holes: petal hole (a); “cookie-cutter hole” (b); hole with 

adjacent spall cracks(c); model of impact hole (d) 
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A variability in the structure design parameters and impact conditions leads to a variety of 

impact damages such as petal hole (Figure 2-9a), “cookie-cutter hole” (Figure 2-9b) and a hole 

accompanied by the adjacent spall cracks  (Figure 2-9c) as it is shown in Figure 2-9. 

Model of impact hole proposed by Telichev [27] provides a universal approach which fits all 

penetration scenarios to replicate the observed fracture behaviour of the impact damaged 

structures. In general, the impact damage has the form of a hole surrounded by a zone of the 

crack-like defects. In order to accommodate the diversity of the impact damage pattern it is 

suggested to model the cracked area around the penetrated hole by two radial cracks emanating 

from the rim of the hole along the expected fracture path (Figure 2-9d). The diameter of the 

model hole is equal to the diameter of the impact hole (Dhole) and the length of the fictitious 

radial cracks is bounded by a damage zone (Dcrack). 

Pipelines are obviously cylindrical. So, from this we can draw the conclusion that since the 

hoop stress in a pressurized cylinder shell are twice the longitudinal stresses then the cracks tend 

to run longitudinally.  

 

(a) (b) 

Figure 2-10 Model of impact hole [27] 
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By this reason the fictitious radial cracks in pipelines and cylindrical pressure vessels are set 

to be normal to the hoop stress (Figure 2-10a), i.e. along the expected fracture path [27]. As it 

will be shown in Chapter 4 the extended crack-like petal damage can be considered as a thin slit 

having an overall length equal to the axial distance between the petal tips (Figure 2-10b). 

2.3. Review of Fracture Mechanics Techniques 

The fracture process in impact-damaged pressurized shell starts from the rim of the damage 

zone and involves three basic stages, namely crack initiation, propagation and possible crack 

arrest. Crack arrest may occur due to lack of energy required to continue crack propagation or 

because of the structural (geometric or/and material) features which serve to contain the stress 

cracking. The methods of analysis of crack nucleation, propagation and arrest belong to the 

branch of applied mechanics called “Fracture Mechanics”. Several techniques exist in fracture 

mechanics to analyze the states of stress at the tip of a crack, and to gauge a materials resistance. 

In general, they fall into one of two broad categories: linear-elastic fracture mechanics (LEFM) 

and elastic-plastic fracture mechanics (EPFM). Some of these techniques choose a single 

physical parameter they consider the dominant controlling variable such as the stress intensity 

factor in the KIC-based methods like the crack growth resistance curve (R-curve), or the crack’s 

opening distance or angle for the CTOD and CTOA methods respectively; and others rely on 

calculating the strain energy release rate as with the J integral, or, the cohesive zone model 

which seeks to describe the forces present as material elements are pulled apart. In order to select 

a tool for the failure analysis in case of the third-party damage, the major fracture mechanics 

techniques are reviewed and discussed below. 
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2.3.1. Linear Elastic Fracture Mechanics Techniques 

Background: Linear Elastic Fracture Mechanics is based on Griffith’s theory which was 

developed 1920 to explain the observed failure of brittle materials at loads far less than the loads 

predicted by the atomic modeling of material [21, 28, 29]. Spurred by the observation that 

smaller diameter specimens of glass fiber showed greater measures of tensile strength Griffith 

theorized that the reduction from theoretical strength of materials was caused by the presence of 

micro flaws in the material [28]. To confirm this Griffith performed addition tests using the 

specimens with artificially induced flaws that dwarfed any pre-existing flaws in the material. 

Two observations were noted from these experiments, first that failure always originated from 

the induced flaw, second that the stress at failure could be related to the root of the flaw size [28, 

29]. This value, stress at failure multiplied by the root of the length of the flaw was observed to 

be constant regardless of specimen size and could be readily predicted based off established 

material properties. Griffith’s work led to the development of the energy balance concept based 

on the on the energy conservation principle and thermodynamics. Later during World War II, 

while working at the Naval Research Laboratory, George Irwin expanded of the works of 

Griffith [28, 30, 31]. This largely consisted of the inclusion of an additional term representing the 

energy dissipated through the plastic deformation observed in advance of the tip of the crack in 

most materials. Irwin latter developed an asymptotic expression for the stress field at the tip of 

the crack; this was to be named the stress intensity factor [28]. 

𝜎𝑖𝑗 =
𝐾

√2𝜋𝑟
𝑓𝑖𝑗(𝜃)  (2.1) 

Where σi,j is the stress field in terms of i and j coordinates, K  is stress intensity factor, r and θ 

are polar coordinates whose origin is centred on the crack tip, and fij(θ) is the angular stress 
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function. As r goes to zero the stress field tends to infinity, isolating the above equation for K as 

r goes to zero; K is equal to the intensity of stress singularity at the crack tip, or stress intensity 

factor. Mode of K is determined by the values of i and j. 

𝐾𝐼 = lim
𝑟→0

√2𝜋𝑟𝜎𝑦𝑦(𝑟, 0)

𝐾𝐼𝐼 = lim
𝑟→0

√2𝜋𝑟𝜎𝑦𝑥(𝑟, 0)

𝐾𝐼𝐼𝐼 = lim
𝑟→0

√2𝜋𝑟𝜎𝑦𝑧(𝑟, 0)

 (2.2) 

Mode I is known as the Opening mode, in this mode tensile stress is applied normal to the 

plane of the crack (Figure 2-11). Mode I is the most important mode of crack failure because as 

cracks propagate they reorient themselves to Mode I fracture; the crack orients itself with the 

major principal stress acting as the tensile normal stress. Mode II is the Sliding mode also known 

as the In-Plane Shear mode and is caused by shear stress acting parallel to the plane of the crack 

and perpendicular to the crack front. Finally Mode III is the Tearing mode or Out-of-Plane shear 

mode, it is also dominated by shear stress, but is differently oriented than Mode II, with shear 

stress acting parallel to the plane of the crack and parallel to the crack front. The concept of the 

stress intensity factor along with the KIC fracture criterion (known as the fracture toughness or 

the critical Mode I stress intensity factor) represent the most prominent technique of the linear 

elastic fracture mechanics [21, 28]. 

 

Figure 2-11 Facture modes [32] 
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Procedure: KIC-based methods are relying on a simple relationship established by Griffith 

that related the stress intensity factor to the strain energy release rate [21, 29, 30]. 

𝐾𝐼
2

𝐸′
= 𝐺 (2.3) 

Where KI is the stress intensity factor (under Mode I loading), G is the strain energy release 

rate and E’ is the effective Young’s modulus (equal to E for plane stress and E/(1-ν
2
) for plane 

strain conditions). The strain energy release rate is the change in elastic strain energy per unit 

area of crack growth. Griffith observed that there is a characteristic material value or critical 

value of G which will cause further crack growth. Using the above equation it can easily be seen 

how this lead to establishing critical stress intensity factor, KIC. 

KIC only predicts the load sufficient to induce further crack growth, not necessarily the state 

of the resultant growth being either stable or unstable. In order to accomplish this R (resistance) 

curves became a useful tool [21, 28]. R-curves are simple graphs of applied stress intensity factor 

at which crack length occurs vs. crack length. Most materials exhibit one of two behaviours 

during these tests: 

1) R-curve is flat; this indicates a single K value will cause continuous crack growth, or 

unstable fracture.  

2) R-curve shows a rising behaviour, this indicates stable crack growth. 

Pros:  KIC methods enjoy wide engineering use due to the fact that KIC relate two highly 

desirable parameters, the stress conditions at the tip of the crack and the strain energy release rate 

associated with crack propagation. KIC methods also enjoy a vast quantity of associated literature 

and that had solutions developed for many geometric and load configurations. 
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Cons: The development of KIC was based off the assumption of fracture in a brittle material. 

From this assumption two negative implications occur. First that KIC does not include any 

considerations to account for plasticity in materials. Second the KIC parameter sets the upper 

limit for the initiation of crack propagation, the fracture that KIC predicts is assumed to be brittle; 

KIC therefore makes no distinction once crack propagation has initiated between unstable and 

stable crack growth. The development of R-curves attempts to alleviate this problem, but the 

resultant data is only valid for similar states of stress and geometry of the test specimen. 

2.3.2. Elastic-Plastic Fracture Mechanics Techniques 

The Linear-Elastic Fracture Mechanics (LEFM) is limited to a case of small scale yielding 

formed near the crack tip. Elastic-Plastic Fracture Mechanics (EPFM) extends the LEFM into the 

range of large plastic deformation where material exhibits nonlinear behavior. The most 

prominent parameters characterizing the nonlinear behavior at the crack tip are J-integral, and 

crack tip opening displacement (CTOD) or crack tip opening angle (CTOA). 

2.3.3. J-integral 

Background: Stemming from the observation of large scale plasticity in steels, thus 

invalidating the application of LEFM a new nonlinear fracture mechanics model was developed 

to account for the presence of the plasticity during fracture. Working independently Cherepanov 

in 1967 and Rice in 1968 developed the theoretical concept of J-integral, a contour path integral 

used to calculate the strain energy release rate of a crack [21, 28, 33]. 
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𝐽 = ∮ (𝑤𝑑𝑦 − 𝑇𝑖
𝜕𝑢𝑖
𝜕𝑥

𝑑𝑠)
Γ

 (2.4) 

Where Γ is an arbitrary path around the tip of the crack, w is the strain energy density, Ti are the 

components of the traction vector, ui are the displacement vector components, ds is the length 

increment along the contour, x and y are the Cartesian coordinates with the y-direction taken 

normal to the crack line and the origin at the crack tip. Cherepanov and Rice initially proved the 

path independence of the J-integral what was later reconfirmed through finite element analysis 

(FEA) by Kobayashi [28]. 

Later work by Rice found that much like with K, the stress field near the tip of a crack varied 

with J by a factor of 1/r. At the same tip similar but independent work was being conducted by 

Hutchinson who ultimately obtained a J based asymptotic expression for the stress field at the tip 

of the crack for elastic plastic materials [28]. 

𝜎𝑖𝑗 = 𝜎0 (
𝐽 ∙ 𝐸

𝛼𝜎0
2𝐼𝑛𝑟

)

1
𝑛+1

𝜎𝑖𝑗̃(𝑛, 𝜃) 
(2.5) 

where σ0 is a reference stress, α is a dimensionless material constant, E is Young’s modulus, n is 

the strain hardening exponent, In is an integration constant, and σ͂ij is a dimensionless function. 

For linear elastic materials n = 1, therefore from equations (2.1) and (2.5) 

𝜎𝑖𝑗 =
𝐾

√2𝜋𝑟
𝑓𝑖𝑗(𝜃)  (2.1) 

 it is seen that the stress field varies with respect to (J/r)
1/2

 which is analogues to the LEFM 

model that states the stress field would varies with respect to K/(r
1/2

). 
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Procedure: Similar to K-based methods J integral based methods of crack analysis rely on 

establishing a critical J value, JIC. Rice developed an analytical framework for a single specimen 

test to determine JIC. The work of Joyce et al. resulted in two equivalent equations that could be 

used to calculate JIC from the experimentally controllable parameters such as the specimen 

thickness (B), the total generalized load (P), the associated local point load (Δ) and the crack’s 

length (a) [28]. 

𝐽 = −
1

𝐵
∫ (

𝜕𝑃

𝜕𝑎
)

∆

0

𝑑∆

𝐽 =
1

𝐵
∫ (

𝜕∆

𝜕𝑎
)

𝑃

0

𝑑𝑃

 (2.6) 

Later it was found that the accuracy of the predicted value of J could be further improved by 

splitting its calculation into two portions, an elastic portion and a plastic one. Later Sumpter and 

Turner put forth a simplified general relationship for the calculation of J [16]: 

𝐽 =
𝜒𝑒𝐴𝑒
𝐵𝑏

+
𝜒𝑝𝐴𝑝

𝐵𝑏
 (2.7) 

where A is the area under the load displacement curve as denoted by the subscript, e for elastic, p 

for plastic; B is the material thickness, b is the width of the remaining material, and χ  is a 

geometric factor.  

When elastic the J-integral is equal to the strain energy release rate the elastic term can be 

simplified by using equation (2.3) resulting in 

𝐽 =
𝐾𝐼
2

𝐸′
+
𝜂𝑝𝐴𝑝

𝐵𝑏
 (2.8) 

Pros:  The J-integral is analogues to the K, in that it is a parameter that can both describe the 

stress field and the resistance to crack extension of a structure. Its similarity to K also allows 
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methods developed for K to be easily adapted for J-integral approach. Finally the J-integral can 

be easily implemented into finite element software. 

Cons: Determination of J-integral requires the current length of the crack, a, thus for 

problems involving growing cracks an incremental solution is required. Incremental solutions to 

the J-integral are much more complex both computationally and experimentally. 

2.3.4. Crack Tip Opening Displacement 

Background: Developed by Wells at the British Welding Institute the crack tip opening 

displacement, or CTOD, is a model that relates a single physical parameter, the crack tip opening 

displacement, CTOD, to the stress intensity factor, and therefore through relationships 

established by Griffith and Irwin to the strain energy release rate and the stress field at the rack’s 

tip [28]. CTOD predates the development of the J-integral and its associated analysis techniques 

and received wide use during the 1960’s many industries including oil and gas pipelines, and 

pressure vessels [28]. 

Building on work previously established by Irwin, Wells was able to use the size estimates 

for the plastic zone and elastic displacement solutions to provide a first approximation of the 

CTOD for a centre cracked infinite plate subjected to tensile loading [28]. 

𝐶𝑇𝑂𝐷 =
4 ∙ 𝐾𝐼

2

𝜋 ∙ 𝐸 ∙ 𝜎𝑦𝑠
 (2.9) 

𝐽 = 𝑚𝜎𝑦𝑠𝐶𝑇𝑂𝐷 (2.10) 

where KI is the applied stress intensity factor, E is the Young’s modulus, σys is the yield strength, 

J is the J integral, σys is the yield strength, CTOD is the crack tip opening displacement, and m is 

a constant factor ranging between 1 and 2, with m=1 for plane stress conditions [28, 34]. Like the 
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K and J-integral based models CTOD relies on establishing a critical CTODc. The latter two 

expressions allow determining the critical CTOD based on the critical KI and J-integral values. 

Procedure: Use of CTOD as a useful fracture parameter extends from its demonstrated 

equivalency with the previously established fracture characterisation parameters, K and J [28, 

35]. A most frequently used definition for the CTOD is the span between the two point generated 

by intersecting the fracture surface with two lines extending from the crack tip at a right angle to 

each other. Below is Figure 2-12 illustrating this measurement method. 

Pros:  CTOD has few but prominent advantages as a method of crack characterization and 

analysis; first CTOD is a single parameter whose characterisation of the crack also account for 

the effects of plasticity. Second the CTOD represents and easily observable physical phenomena, 

making it an easily measureable value in both laboratory and industrial settings. 

 

Figure 2-12 Measurement method for mode I and II CTOD [36] 
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Cons: CTOD disadvantages and limitations stem from its highly physical nature since the 

direct measurement of CTOD is difficult (but possible). However it can be obtained indirectly by 

measuring of K and J and using the equations (2.9) and (2.10) respectively. 

2.3.5. Crack Tip Opening Angle 

Background: Similar to CTOD crack tip opening angle, CTOA, also relies of a single 

physical parameter o describe a crack. CTOA relies of determining the average angle between 

the two crack surfaces as measured 1 mm behind the crack tip [28, 35]. Development of CTOA 

originates from the FEA work of Kanninen, who along with his colleagues, showed that CTOA 

provides a steady state condition over a wide range of crack extensions.  

Procedure: Contrary to its name the CTOA is not measured directly by comparing the angles 

of the fracture surfaces, but by measuring the surface to surface opening displacement at a given 

distance behind the crack tip. This can be seen in Figure 2-13. 

These two parameters are then input into equation (2.1) to calculate the CTOA [37]. 

𝜃𝐶𝑇𝑂𝐴 = 2 ∙ tan−1 (
(𝐶𝑇𝑂𝐷 2⁄ )

𝑑
) (2.11) 

The steady state nature of CTOA leads to CTOA primary application in modeling sable crack 

behaviour in thin walled materials, and its use in aerospace and pipeline industries. CTOA can be 

used as a material property to characterize a large range of crack extensions, as a material 

specific critical CTOA has been experimentally proven to exist given that the length of the crack 

is exceeds the thickness of the material. Determination of the critical CTOA has recently been 

standardized by designation ASTM E2472-06e1 [28, 35]. 
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Figure 2-13 Measurement method for CTOA [37] 

Pros: The advantages of CTOA resemble those of CTOD. CTOA can be easily measured as 

it is a physical parameter. CTOA predictions have shown experimentally to accurately model 

crack behavior in thin walled brittle and ductile structures. CTOA remains constant over a wide 

range of crack extensions. 

Cons: CTOA is less mature than other crack behavior models and thus lacks the depth of 

corroborative literature and experimental verification that other techniques and models possess. 

In ductile rack growth CTOA must be combined with FEA simulations, increasing the 

complexity and cost associated with its use. 

2.3.6. Conclusions 

1. Ballistic and higher velocity impact holes are simulated by two radial cracks emanating 

from the rim of a hole. The diameter of the model hole is equal to the diameter of the front 

impact hole (Dhole); the length of the crack is bounded by a damage zone (Dcrack), which is a zone 

of spall cracks adjacent to the perforated hole.  

2. Low-velocity extended crack-like petal damage is considered as a thin slit having an 

overall length equal to the axial distance between the petal tips. 

CTOA 
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3. Fracture Mechanics methods are employed for the analysis of impact damage. 

4. The Linear Elastic Fracture Mechanics technique is limiting its application to a case of 

small scale yielding formed near the crack tip. Since the material for pipes and pressure vessels 

can potentially demonstrate a ductile mode of failure an Elastic-Plastic Fracture Mechanics was 

selected as a tool for the failure simulation and analysis. 

5. Both J-integral and CTOD/CTOA fracture criteria are used extensively. The J-integral can 

be used for both small-scale and large-scale yielding deformations; however at large-scale 

deformation the J-integral is losing its original physical meaning. The CTOD and CTOA have 

well-defined physical meaning for the entire range of the plastic deformation. It should also be 

noted that the CTOD criterion is widely used in the oil and gas industry. Based on the above 

arguments the critical CTOD/CTOA was selected as criteria for the modeling of fracture process.  
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3. Fracture Analysis of Impact-Damaged Structure 

3.1. Determining of Impact Damage Parameters 

In order to proceed with analysis we need a way to determine the initial hole diameter and 

damaged area size, the two key parameters used to describe the impact damage. So, how data can 

be generated? Ultimately it comes down to two methods; either the data can be generated 

through physical experimentation or through computer simulation. Each of these methods has 

pros and cons, and thus it is necessary to identify these points so that the appropriate method can 

be chosen for a given application. 

3.1.1. Physical Experimentation 

Physical experimentation often yields the best results; you can use the same materials, use 

the same manufacturing processes, or duplicate the same loading conditions as the intended 

service object. This lets you generate data that is directly usable and, assuming proper 

experiment design, there is little possibility of the experiment giving false results. Additionally 

the measurements that can be taken can be very accurate, limited only to the resolution of the 

measurement tool used. The schematic impact testing setup for the pre-loaded specimens is 

shown in Figure 3-1.  

 

Figure 3-1 Impact test setup 
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For the pro of simple implementation there is the corollary con that measurements related to 

non-surface properties or features are difficult to take.  Our application is for a dynamic process 

and this introduces new difficulties with physical experimentation. Physical experimentation data 

for impact events tends to be quite rare; there are several reasons for this. First, while it is easy to 

accelerate a projectile to high velocity it is quite difficult to do so in a controlled, measurable and 

repeatable way that is useful for scientific inquiry. Therefore there are an extremely limited 

number of facilities available that have the necessary equipment to perform these experiments. 

Second as a consequence of the first, utilising these facilities becomes difficult, the small number 

of facilities and their low throughput   makes any access to them extremely competitive both is 

temporal sense; as time slots available for experimentation are not at a convenient time with 

regards to state of the research or researcher; and economic cost. The final con in obtaining 

physical experimentation data follows from their high economic cost. It is not unusual for each 

data point in such an experiment to cost $8000 to $10 000 or more, plus ancillary and personnel 

costs, as such funding through industry is often required for these experiments. Often as a caveat 

of this funding the raw data generated is either partially or wholly property of the funder who 

may consider it a fiscal asset and so not release it for publication and dissemination. 

3.1.2. Computer Simulation 

These difficulties with physical experimentation seem to lead to the conclusion that physical 

experimentation is too onerous and computer simulation is more efficient method for data 

generation, but this method is not without its flaws. But first what are the benefits of computer 

simulation? Foremost is cost, software is relatively cheap, and hardware, though less so, is still 

fairly inexpensive and can be readily repurposed and reused in later applications and experiments. 
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Second is that most software is very versatile; most commercial software (ANSYS, Abaqus, 

Autodesk, CATIA, Solidworks) have very robust code libraries covering a large number of 

phenomena and simulation behaviour models. Third is reproducibility, since the software is 

typically deterministic (although if the proper seed is recorded then any chaotic or random 

behaviour can be reproduced as well) experiments can be infinitely repeated and the same 

measurements can be taken, so it becomes significantly easier if an interested party wishes to 

reproduce your results. Finally measurements in computer simulations can be taken to high 

accuracy, and in contrast to physical experiments measurements can be taken quite easily of 

subsurface or abstract features, as well as take measurements of such features during an 

experiment whereas during a physical experiment the timescale may be too brief to accurately 

measure a feature.  

As for the flaws of computer simulation, it is complex; the experimenter requires a familiarity 

with not just the physics and mathematics of their experiment but also with the program. Coding 

and limitations of the software, for advanced software like ANSYS this can mean specialised 

training, a time consuming endeavour. Second in the experiment proper, each phenomenon must 

be explicitly selected for, if an appropriate model is not included in the simulation’s setup then the 

phenomenon’s effects will be absent in the simulation. This is in contrast to physical 

experimentation where great contrivance on part of the experiment design is required to supress 

phenomena. To this flaw there exists a corollary, each added model increases the complexity of 

the simulation, and with it increases the computational runtime, so the experimenter must make a 

decision whether the potential gain in accuracy and verisimilitude of the simulation justifies the 

increase in runtime. The forth flaw of computer simulations is with regards to the temporal cost of 

conducting them; even with powerful machines and relatively simple experiments the run time for 
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simulations can be days or weeks, thus data is generated slowly and apparent flaws in the 

experimental design take longer to catch. The final flaw is that every computer simulation must be 

in some way physically validated, even if a simulation is proven to remain internally consistent it 

in some way must be proven externally consistent also, having its results conform to reality. 

More specifically in regards to generating our initial data via computer simulation two models 

need to be considered. These models are considered because they are designed to deal with 

dynamic simulations.  

The first is the Explicit Dynamics package; this is a finite elements package that specialises in 

simulations that have mechanical impact, and short duration/high pressure loading. The explicit 

dynamics is the least sophisticated of the two models but this comes with the advantage having a 

significantly smaller runtime that the second model. Also since it is a finite element based model 

it is easily integrated with the other modules and packages in the ANSYS environment. Because 

of its ease of use and reliability explicit dynamics is an attractive model for simple experiments. 

The downsides of explicit dynamics come from its finite element limitations. As elements exist as 

a mathematical mesh they have difficulty dealing with the formation of new surfaces. This 

behaviour is important to our simulation because we are interested in two distinct surface 

formations. First the penetration of the impacted object (in our simulation it is a plate) this is 

solved simply by controlling the ‘Erosion’ parameter of the mesh. This parameter sets an upper 

limit to the allowable geometric deformation of each element. As an element deforms its 

geometric strain increases; after it passes the erosion limit the element is removed. This is a fine 

solution of determining hole size, as the hole is large relative to the elements, but cracks are small 

(specifically narrow) relative to the elements so this proves to be a  unsuitable solution for 

simulating crack growth. To measure cracks an additional damage model must be included in the 
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simulation, this model grades each element on a normalized damage scale (from 0 no damage to 1 

complete damage) then in post processing the geometric model can be coloured based off this 

grading then areas of high or complete damage can be interpreted as being cracked. This is less 

than ideal as the cracking behaviour must be explicitly added the certainty of its results is 

questionable without additional simulations.  

The second model is Smooth Particle Hydrodynamics or SPH, initially developed for 

astrophysical problems, and later adapted to a large variety of physical phenomena. SPH is 

Lagrangian, mesh free model that relies on the behaviour of large numbers of small spheres used 

to simulate the macroscopic behaviour of a body (Figure 3-2). 

 

Figure 3-2 SPH-particles 

SPH model is much more complex than the explicit dynamics model due to the relative 

independence of each smooth particle compared to each finite element. The gain for this increase 

computational cost is that many desired feature become emergent properties of the model rather 

than added on, like in explicit dynamics. Each SPH-particle can interact with all other 

neighboring particle within a given distance 2h. Since each smooth particle is not ‘joined’ to each 

adjacent particle is the way a finite element is ‘joined’ to its neighbours creation of new surfaces 

is no longer an issue and the formation of the hole and radial cracks can be directly observed. The 

2h 
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SPH-particles “naturally” form discontinuities in the continuum such as cracking, penetration, 

and fragmentation as particles are forced to separate during the penetration event. 

3.2. Model of Crack Propagation 

3.2.1. Problem Statement 

In line with proposed model of the impact damage it is assumed that a single hole with two 

radial cracks is located in the infinite plate made of an isotropic elastic perfectly plastic material, 

the zones of plasticity are localized along the crack prolongations and the compressive stresses 

within the plastic zones pz are equal to the tensile yield limit y (Figure 3-3a). The distribution 

of the traction function p(t) along the crack surfaces is shown in Figure 3-3b.  

 

Figure 3-3 5-link crack (a), (b) and Chebyshev’s nodes on the crack face (c), (d) 

The critical crack tip opening displacement (CTOD) is used as a fracture criterion. The 

problem to be solved involves the definition of the unknown plastic zones size and CTOD to 

determine if there is a case of simple perforation without crack growth from the impact hole or 

crack propagation and subsequently catastrophic rupture. 
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A practical method for solving plane elasticity crack problems is the one which reduces the 

problem to a Cauchy type singular integral equation. 

∫[𝐾(𝑡, 𝑡′)𝑔′(𝑡)𝑑𝑡 + 𝐿(𝑡, 𝑡′)𝑔′(𝑡)̅̅ ̅̅ ̅̅ ̅𝑑𝑡̅]

𝛤

= 𝜋𝑝(𝑡′),       𝑡′ ∈ 𝛤 (3.1) 

where Γ is a crack contour; t is a coordinate of point on the crack contour; p is traction acting 

along the crack faces; t’ is the coordinates of points where traction is applied;  𝑔 is a complex 

function of displacement of crack points  expressed via the jump of displacements across the 

crack contour [38]: 

2𝐺
𝑑[(𝑢 + 𝑖v)+ − (𝑢 + 𝑖v)−]

𝑑𝑡
= 𝑖(1 + æ)𝑔′(𝑡),   𝑡 ∈ Γ (3.2) 

Here 𝐺 =
𝐸

2(1+𝜈)
 is shear modulus; E is modulus of elasticity; 𝜈 is Poisson’s ratio; æ is elastic 

parameter, where æ =
3−𝜈

1+𝜈
 for the plane stress state and æ = 3 − 4𝜈 for the plane strain state. 

The kernels 𝐾(𝑡, 𝑡′) and 𝐿(𝑡, 𝑡′) are given by  

𝐾(𝑡, 𝑡′) =
1

𝑡 − 𝑡′
+
1

2

𝑑

𝑑𝑡′
[𝑙𝑛(

𝑡−𝑡′

𝑡̅−𝑡 ′̅
)]   and  𝐿(𝑡, 𝑡′) = −

1

2

𝑑

𝑑𝑡′
(
𝑡−𝑡′

𝑡̅−𝑡 ′̅
) (3.3) 

The singular integral equation technique is a powerful alternative to the finite element 

method in the non-linear analysis of crack propagation [27, 38, 39, 40, 41, 42, 43]. This 

computationally efficient technique combines both analytic and numerical approaches. Unlike 

the finite element method it is free of mesh generation and only nodes are needed.  

The right-hand side of the equation contains the traction p(t) acting along the crack faces. 

Presence of jump discontinuities of the function p(t) in Figure 3-3b substantially complicates the 

numerical solution of the integral equation (3.1) leading to numerical instability and lack of 

convergence.  
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An efficient approach to cope with such numerical difficulties was proposed in [27, 39]. 

Following [39] and [27], the load distribution is divided into 5 portions where, in line with 

developed load scheme (Figure 3-3b), the traction is a monotonic function. Accordingly, the 

contour Γ is divided into five straight sections (links) forming a piecewise contour 

Γ0+Γ1+…+Γ4. Here the traction-free central circular hole is replaced by a straight cut (Γ0) as it 

was suggested by Panasyuk and Koboyashi [44, 45]. Links (Γ1, Γ3) and (Γ2, Γ4) represent the 

radial cracks and plastic zones respectively. 

For each straight section it is convenient to introduce a local coordinate system xi, yi (i= 

0,1,..,4). Following the developments of references [27, 39], the definition of stress for the case 

of 5-link crack is then reduced to the solution of the system of singular integral equations: 
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(3.4) 

Where the kernels Knk, Lnk are expressed by equation (3.5): 

{
 
 
 

 
 
 𝐾𝑛𝑘(𝑡𝑘, 𝑡′𝑛) =

1

2
exp(𝑖𝛼𝑘) [

1

𝑇𝑘 − 𝑇′𝑛
+
𝑑𝑡′𝑛̅̅ ̅̅ ̅̅

𝑑𝑡′𝑛
exp(−2𝑖𝛼𝑛)

1

𝑇𝑘̅̅ ̅ − 𝑇′𝑛̅̅ ̅̅
]

𝐿𝑛𝑘(𝑡𝑘, 𝑡′𝑛) =
1

2
exp(−𝑖𝛼𝑘) [

1

𝑇𝑘̅̅ ̅ − 𝑇′𝑛̅̅ ̅̅
−
𝑑𝑡′𝑛̅̅ ̅̅ ̅̅

𝑑𝑡′𝑛
(𝑇𝑘 − 𝑇′𝑛)

exp(−2𝑖𝛼𝑛)

𝑇𝑘̅̅ ̅ − 𝑇′𝑛̅̅ ̅̅
]

𝑇′𝑛 = 𝑡′𝑛exp(−𝑖𝛼𝑛) + 𝑧𝑛
0

𝑇′𝑘 = 𝑡′𝑘exp(−𝑖𝛼𝑘) + 𝑧𝑘
0

 

(3.5) 

Where n, k are the current numbers of link; T’n and t’n are the load coordinate in the global 

and local system of coordinate respectively; T’k and tk are the crack point coordinate in the global 

and local system of coordinate respectively; gk(tk) is the function of displacement of crack points; 

𝑧𝑛
0, 𝑧𝑘

0- the coordinates of centers of local system of coordinates in the global system of 
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coordinate; αk, αn - the angles of link inclination to the positive direction of the x-axis in global 

system of coordinate.  

The solution of system (3.4) must satisfy the conditions of the uniqueness of displacements 

for the polygonal crack contour L0  + L1 +…+ LH: 

 

(3.6) 

For the polygonal line composed of 5 straight connected segments (H=4) this condition takes 

the form:  

 

(3.7) 

Where the length of each link is 2li (i = 0, 1,..,4). Because of the geometry and load 

symmetry with respect to the crack centre the following boundary conditions take place 

 

(3.8) 

Performing the changes tq=lq,  tn
’
=lnq (n = 0, 1, 2;  ,   [-1,1]) and taking into account 

the symmetry of the problem, link angular positions (α0=α1=α2=0, α3=α4=π) and the condition of 

the uniqueness of displacements (3.6) and (3.8) we obtain the following system of four equations  

 

(3.9) 

Expanding this system of equations, it becomes: 
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 (3.10) 

We now define the normalized kernel Mnk(ξ, η) using the expressions (3.5) 

𝛼0 = 0,   𝑒𝑥𝑝(𝑖𝛼0) =    1

𝛼1 = 0,   𝑒𝑥𝑝(𝑖𝛼1) =    1

𝛼2 = 0,   𝑒𝑥𝑝(𝑖𝛼2) =    1

𝛼3 = 𝜋,   𝑒𝑥𝑝(𝑖𝛼3) = −1

𝛼4 = 𝜋,   𝑒𝑥𝑝(𝑖𝛼4) = −1}
 
 

 
 

(𝑎)

𝑧0
0 = 0                        

𝑧1
0 = 𝑙0 + 𝑙1              

𝑧2
0 = 𝑙0 + 2𝑙1 + 𝑙2   

𝑧3
0 = −𝑙0 − 𝑙1           

𝑧4
0 = −𝑙0 − 2𝑙1 − 𝑙2}

 
 

 
 

(𝑏)

𝑇0
′ = 𝑡0

′ exp(𝑖 ∝0 ) +  𝑧0
0 = 𝑡0

′                                 

𝑇1
′ = 𝑡1

′ exp(𝑖 ∝1 ) +  𝑧1
0 = 𝑡1

′ + 𝑙0 + 𝑙1               

𝑇2
′ = 𝑡2

′ exp(𝑖 ∝2 ) +  𝑧2
0 = 𝑡2

′ + 𝑙0 + 2𝑙1 + 𝑙2   

𝑇3
′ = 𝑡3

′ exp(𝑖 ∝3 ) +  𝑧3
0 = −𝑡3

′ − 𝑙0 − 𝑙1           

𝑇4
′ = 𝑡4

′ exp(𝑖 ∝4 ) +  𝑧4
0 = −𝑡4

′ − 𝑙0 − 2𝑙1 − 𝑙2}
 
 

 
 

(𝑐)

𝑇0 = 𝑡0                                
𝑇1 = 𝑡1 + 𝑙0 + 𝑙1               
𝑇2 = 𝑡2 + 𝑙0 + 2𝑙1 + 𝑙2   
𝑇3 = −𝑡3 − 𝑙0 − 𝑙1           
𝑇4 = −𝑡4 − 𝑙0 − 2𝑙1 − 𝑙2}

 
 

 
 

(𝑑)

 

 

(3.11) 

Then kernels Mnk(ξ, η) have the form: 



41 

 

𝑀00(𝜉, 𝜂) =
𝑙0 exp(𝑖𝛼0)

𝑇0 − 𝑇0
′ =

1

𝜉 − 𝜂
                  

𝑀01(𝜉, 𝜂) =
𝑙1 exp(𝑖𝛼1)

𝑇1 − 𝑇0
′ =

1

𝜉 +
𝑙0
𝑙1
+ 1 −

𝑙0𝜂
𝑙1

      

𝑀02(𝜉, 𝜂) =
𝑙2 exp(𝑖𝛼2)

𝑇2 − 𝑇0
′ =

1

𝜉 +
𝑙0
𝑙2
+
2𝑙1
𝑙2
+ 1 −

𝑙0𝜂
𝑙2

𝑀03(𝜉, 𝜂) =
𝑙3 exp(𝑖𝛼3)

𝑇3 − 𝑇0
′ =

1

𝜉 +
𝑙0
𝑙1
+ 1 +

𝑙0𝜂
𝑙1

      

𝑀04(𝜉, 𝜂) =
𝑙4 exp(𝑖𝛼4)

𝑇4 − 𝑇0
′ =

1

𝜉 +
𝑙0
𝑙2
+
2𝑙1
𝑙2
+ 1 +

𝑙0𝜂
𝑙2 }
 
 
 
 
 
 
 

 
 
 
 
 
 
 

(𝑎)

𝑀10(𝜉, 𝜂) =
𝑙0 exp(𝑖𝛼0)

𝑇0 − 𝑇1
′ =

1

𝜉 −
𝑙1
𝑙0
− 1 −

𝑙1𝜂
𝑙0

        

𝑀11(𝜉, 𝜂) =
𝑙1 exp(𝑖𝛼1)

𝑇1 − 𝑇1
′ =

1

𝜉 − 𝜂
                   

𝑀12(𝜉, 𝜂) =
𝑙2 exp(𝑖𝛼2)

𝑇2 − 𝑇1
′ =

1

𝜉 +
𝑙1
𝑙2
+ 1 −

𝑙1𝜂
𝑙2

        

𝑀13(𝜉, 𝜂) =
𝑙3 exp(𝑖𝛼3)

𝑇3 − 𝑇1
′ =

1

𝜉 +
2𝑙0
𝑙1
+ 2 + 𝜂

         

𝑀14(𝜉, 𝜂) =
𝑙4 exp(𝑖𝛼4)

𝑇4 − 𝑇1
′ =

1

𝜉 +
2𝑙0
𝑙2
+
3𝑙1
𝑙2
+ 1 +

𝑙1𝜂
𝑙2 }
 
 
 
 
 
 
 

 
 
 
 
 
 
 

(𝑏)

𝑀20(𝜉, 𝜂) =
𝑙0 exp(𝑖𝛼0)

𝑇0 − 𝑇2
′ =

1

𝜉 −
2𝑙1
𝑙0
−
𝑙2
𝑙0
− 1 −

𝑙2𝜂
𝑙0

𝑀21(𝜉, 𝜂) =
𝑙1 exp(𝑖𝛼1)

𝑇1 − 𝑇2
′ =

1

𝜉 −
𝑙2
𝑙1
− 1 −

𝑙2𝜂
𝑙1

      

𝑀22(𝜉, 𝜂) =
𝑙2 exp(𝑖𝛼2)

𝑇2 − 𝑇2
′ =

1

𝜉 − 𝜂
                  

𝑀23(𝜉, 𝜂) =
𝑙3 exp(𝑖𝛼3)

𝑇3 − 𝑇2
′ =

1

𝜉 +
2𝑙0
𝑙1
+
𝑙2
𝑙1
+ 3 +

𝑙2𝜂
𝑙1

𝑀24(𝜉, 𝜂) =
𝑙4 exp(𝑖𝛼4)

𝑇4 − 𝑇2
′ =

1

𝜉 +
2𝑙0
𝑙2
+
4𝑙1
𝑙2
+ 2 + 𝜂}

 
 
 
 
 
 
 

 
 
 
 
 
 
 

(𝑐)

 (3.12) 
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3.2.2. Numerical Solution of Singular Integral Equations 

We seek n(), n = ̅0̅,̅2 in the class of functions unbounded at the ends of intervals 

{
 
 
 

 
 
 φ0(𝜉) =

𝑢0(𝜉)

√1 − 𝜉2

φ1(𝜉) =
𝑢1(𝜉)

√1 − 𝜉2

φ2(𝜉) =
𝑢2(𝜉)

√1 − 𝜉2

; 𝜉 ∈ [−1,1] (3.13) 

un() are unknown continuous functions, we assume their values: 

𝑢0(1) = 0 (𝑎)

𝑢1(1) = 0 (𝑏)

𝑢2(−1) = 0 (𝑐)
 (3.14) 

The numerical solution of the system of singular integral equations (3.10) is obtained by the 

method of mechanical quadrature [46]. We express the functions u0(), u1(), u2() in terms of 

the Lagrange interpolation polynomials over the Chebyshev nodes  

k=cos[(2k-1)/(2N)], : 

𝑢0(𝜉) =
1

𝑁
∑{𝑢0(𝜉𝑘) [1 + 2∑ 𝑇𝑟(𝜉𝑘)𝑇𝑟(𝜉)

𝑁−1

𝑟=1

]}

𝑁

𝑘=1

(𝑎)

𝑢1(𝜉) =
1

𝑁
∑{𝑢1(𝜉𝑘) [1 + 2∑ 𝑇𝑟(𝜉𝑘)𝑇𝑟(𝜉)

𝑁−1

𝑟=1

]}

𝑁

𝑘=1

(𝑏)

𝑢2(𝜉) =
1

𝑁
∑{𝑢2(𝜉𝑘) [1 + 2∑ 𝑇𝑟(𝜉𝑘)𝑇𝑟(𝜉)

𝑁−1

𝑟=1

]}

𝑁

𝑘=1

(𝑐)

 (3.15) 

Where 𝑇𝑟(𝜉) = 𝑐𝑜𝑠[𝑟 𝑎𝑟𝑐𝑐𝑜𝑠(𝜉)] is a first kind Chebyshev polynomial. 

Applying the Gauss-Chebyshev quadrature formulas to the singular integral equations (3.10) 

we can obtain the system of (3N-2) linear algebraic equations with N unknowns. 

Nk ,1
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∫𝑤(𝜉)𝑢(𝜉)

1

−1

𝑑𝜉 = ∑𝑎𝑘𝑢(𝜉𝑘)

𝑁

𝑘=1

 (3.16) 

∫
𝑤(𝜉)𝑢(𝜉)

𝜉 − 𝜂

1

−1

𝑑𝜉 = ∑
𝑎𝑘𝑢(𝜉𝑘)

𝜉𝑘 − 𝜂𝑚

𝑁

𝑘=1

 , (3.17) 

Here 𝑢(𝜉𝑘) is a regular function, 𝑤(𝜉𝑘) is a weight function and 𝑎𝑘 = 𝜋/𝑁, 
𝑘
=

𝑐𝑜𝑠[(2𝑘 − 1)/(2𝑁)], 𝜂𝑚 = 𝑐𝑜𝑠[𝑚/(2𝑁)], 𝑘 = 1,𝑁̅̅ ̅̅ ̅ ,  𝑚 = 1, (𝑁 − 1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. The Chebyshev’s 

nodes are generated on each link of the contour (Figure 3-3c, d). The open circles indicate the 

points ξ1,.., ξN on the crack faces where displacements are calculated. The closed circles 

correspond to the traction nodes η1, .., ηN-1. 

To complete the system we use the boundary conditions (3.14 

𝑢0(1) = 0 (𝑎)

𝑢1(1) = 0 (𝑏)

𝑢2(−1) = 0 (𝑐)
 (3.14) 

b) and (3.14c). Using the Christoffel-Darboux formula for the Chebyshev polynomials the 

un(±1) can be determined as  

𝑢𝑛(1) =
1

𝑁
∑𝑢𝑛(𝜉𝑘)

𝑁

𝑘=1

(−1)𝑘+1𝑐𝑜𝑡 (
2𝑘 − 1

4𝑁
𝜋) (3.18) 

𝑢𝑛(−1) =
1

𝑁
∑𝑢𝑛(𝜉𝑘)

𝑁

𝑘=1

(−1)𝑁+𝑘𝑡𝑎𝑛 (
2𝑘 − 1

4𝑁
𝜋) (3.19) 

Thus we obtain the complete system of linear algebraic equations with 3N unknowns where 

N is a number of the Chebyshev nodes: 
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(3.20) 

The numerical solution of closed normalized and linearized system of equations (3.20) is 

obtained by Gauss elimination. Once it is done, the stress intensity factor at the end of the plastic 

strip can KI(l2) be evaluated using the equation (3.21): 

𝐾𝐼(𝑙2) = −√𝜋𝑙2𝑢𝑛(+1) =
√𝜋𝑙2
𝑁

∑(−1)𝑘
𝑁

𝑘=1

𝑢2(𝜉𝑘) cot (
2𝑘 − 1

2𝑁
𝜋) (3.21) 

3.2.3. Length of Plastic Zones 

The stress at the crack tips is considered to be finite. So, the unknown length of the plastic 

zones (2l2) can be determined from the condition that the stress intensity factor is equal to zero at 

the end of the plastic strip. The procedure of search of the unknown l2 includes the numerical 

solution of the system (3.20), evaluation of stress intensity factor at the end of the plastic strip by 
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equation (3.21) and narrowing the search interval (e.g. by golden section method) until condition 

KI(l2)=0 is met with the initially specified tolerance. 

3.2.4. CTOD Calculation 

Once a numerical solution of the singular integral equation is obtained and the length of 

plastic zones is determined, the displacement can be calculated at any point on the crack faces. 

For the arbitrary point 𝑥2
∗ = 𝑥2 𝑙2⁄  of the segment L2 we have the following expression: 

𝑔2(𝑥2) − 𝑔2(𝑙2) = −∫ 𝑔2
′

𝑙2

𝑥2

(𝑡2)𝑑𝑡2 = −𝑙2∫
𝑢2(𝜉)

√1 − 𝜉2

1

𝑥2
∗

𝑑𝜉 = 𝑙2𝑔2
∗(𝑥2

∗) − 𝑙2𝑔2
∗(1) ,

𝑥2
∗ = 𝑥2 𝑙2⁄ ,    𝑥2 ∈ 𝐿2

 (3.22) 

Using the expansion of the function u2(ξ) in terms of Lagrange interpolation polynomials 

over the Chebyshev nodes (3.15c) we obtain the expression for the function 𝑔2
∗(𝑥2

∗): 

𝑔2
∗(𝑥2

∗) − 𝑔2
∗(1) = −

1

𝑁
∫

1

√1 − 𝜉2
∑{𝑢2(𝜉𝑘) [1 + 2∑{𝑇𝑟(𝜉𝑘)𝑇𝑟(𝜉)}

𝑁−1

𝑟=1

]}

𝑁

𝑘=1

1

𝑥2
∗

𝑑𝜉 (3.23) 

After integration  ∫
𝑑𝜉

√1−𝜉2

1

𝑥2
∗ = 𝑎𝑟𝑐𝑐𝑜𝑠(𝑥2

∗)  and  ∫
𝑇𝑟(𝜉)

√1−𝜉2

1

𝑥2
∗ 𝑑𝜉 =

1

𝑟
𝑠𝑖𝑛[𝑟 𝑎𝑟𝑐𝑐𝑜𝑠(𝑥2

∗)] we get 

𝑔2
∗(𝑥2

∗) − 𝑔2
∗(1) =    −

1

𝑁
∑{𝑢2(𝜉𝑘) [𝑎𝑟𝑐𝑐𝑜𝑠(𝑥2

∗) + 2∑ {
1

𝑟
𝑇𝑟(𝜉𝑘)𝑠𝑖𝑛[𝑟 𝑎𝑟𝑐𝑐𝑜𝑠(𝑥2

∗)]}

𝑁−1

𝑟=1

]}

𝑁

𝑘=1

 

(3.24) 

Analogously we obtain the expressions for 𝑔0
∗(𝑥0

∗): and 𝑔1
∗(𝑥1

∗): 
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𝑔0
∗(𝑥0

∗) − 𝑔0
∗(1) = [g0(x0) − g0(l0)] l0⁄ =

= −
1

𝑁
∑{𝑢0(𝜉𝑘) [arccos(𝑥0

∗) + 2∑ {
1

𝑟
𝑇𝑟(𝜉𝑘) sin[𝑟 arccos(𝑥0

∗)]}

𝑁−1

𝑟=1

]}

𝑁

𝑘=1

,

𝑥0
∗ = 𝑥0 𝑙0⁄ ,    𝑥0 ∈ 𝐿0  

 (3.25) 

𝑔1
∗(𝑥1

∗) − 𝑔1
∗(1) = [𝑔1(𝑥1) − 𝑔1(𝑙1)] 𝑙1⁄ =

= −
1

𝑁
∑{𝑢1(𝜉𝑘) [𝑎𝑟𝑐𝑐𝑜𝑠(𝑥1

∗) + 2∑ {
1

𝑟
𝑇𝑟(𝜉𝑘)𝑠𝑖𝑛[𝑟 𝑎𝑟𝑐𝑐𝑜𝑠(𝑥1

∗)]}

𝑁−1

𝑟=1

]}

𝑁

𝑘=1

,

𝑥1
∗ = 𝑥1 𝑙1⁄ ,    𝑥1 ∈ 𝐿1

 (3.26) 

In the symmetric case we have 

v′(𝑥) = [v′(𝑥)]+ = −[v′(𝑥)]− =
(1 + æ)𝑔′(𝑥)

4𝐺
 (3.27) 

Integrating we obtain the relation: 

v(𝑥) =
v+ − v−

2
=
(1 + æ)𝑔𝑛(𝑥)

4𝐺
+ 𝐶𝑛,    𝑛 = {

0,     𝑥 ≤ 𝑙0                    
1,    𝑙0 < 𝑥 ≤ 𝑙0 + 2𝑙1
2,     𝑥 > 𝑙0 + 2𝑙1        

 (3.28) 

Where n is a segment number. The constants of integration Cn are determined by 

displacement at the end of the corresponding segment: 

𝐶2 = 0 (𝑎)

𝐶1 =
(1 + æ)𝑔2(−𝑙2)

4𝐺
(𝑏)

𝐶0 =
(1 + æ)𝑔1(−𝑙1)

4𝐺
+ 𝐶1 =

(1 + æ)

4𝐺
[𝑔1(−𝑙1) + 𝑔2(−𝑙2)] (𝑐)

 (3.29) 

Thus the crack opening displacement for the segment Ln is defined as following 

𝐶𝑂𝐷(𝑥𝑛
∗) = 2v(𝑥𝑛

∗) =
(1 + æ)𝑙𝑛𝑔𝑛

∗(𝑥𝑛
∗)

2𝐺
+ 2𝐶𝑛 (3.30) 

Since for the plane stress  
(1+æ)

4𝐺
=

2

𝐸
 , the expression for 𝐶𝑂𝐷(𝑥𝑛

∗) takes the form 
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𝐶𝑂𝐷(𝑥𝑛
∗) = 2𝐶𝑛 −

4𝑙𝑛𝜎𝑌
𝐸 𝑁

𝑆

𝜎𝑌
∑{

𝑢𝑛(𝜉𝑘)

𝑆
[𝑎𝑟𝑐𝑐𝑜𝑠(𝑥𝑛

∗)

𝑁

𝑘=1

+ 2∑ {
1

𝑟
𝑇𝑟(𝜉𝑘)𝑠𝑖𝑛[𝑟 𝑎𝑟𝑐𝑐𝑜𝑠(𝑥𝑛

∗)]}

𝑁−1

𝑟=1

]} ,

𝑛 = 0, 1, 2

 

(3.31) 

The obtained formula (3.31) allows calculating the crack tip opening displacement: 

𝐶𝑇𝑂𝐷 = 𝐶𝑂𝐷(𝑥2
∗ = −1) = −

4𝑙2𝜎𝑌
𝐸 𝑁

𝑆

𝜎𝑌
∑

𝑢2(𝜉𝑘)𝜋

𝑆

𝑁

𝑘=1

 (3.32) 

In a like manner we can determine the crack opening displacement on the hole boundary 

(Figure 3-4): 

CTOD = 𝐶𝑂𝐷(𝑥1
∗ = −1) = −

4𝑙2𝜎𝑌
𝐸 𝑁

𝜋𝑆

𝜎𝑌
∑

𝑢2(𝜉𝑘)

𝑆

𝑁

𝑘=1

−
4𝑙1𝜎𝑌
𝐸 𝑁

𝜋𝑆

𝜎𝑌
∑

𝑢1(𝜉𝑘)

𝑆

𝑁

𝑘=1

 (3.33) 

Figure 3-4 shows how the crack profile can be visualised, up to and including the CTOD. It 

allows calculating the crack tip opening angle as well.  

Figure 3-5 illustrates the convergence of the numerical procedure. As the number of 

Chebyshev nodes increases the successive value of each CTOD iteration decreases; this shows 

convergence and is the behaviour we would expect for a numerical approximation. 
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Figure 3-4 Crack profile 

 

Figure 3-5 Convergence of CTOD calculation 

The critical crack tip opening displacement is used as a fracture criterion (CTODc). Once the 

value of CTOD has been determined and compared with the value of CTODc it is possible to 

answer the main question if there is a case of simple perforation without crack growth from the 
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impact hole or crack propagation and subsequently catastrophic rupture. We have thus obtained 

the complete solution of the problem. 

3.3. Conclusions 

1. Impact damage parameters can be obtained through physical experimentation or through 

computer simulation using explicit FEM or SPH-technique. 

2. Method of singular integral equations is applied for simulation of crack propagating from the 

impact hole. 

3. The applied model demonstrated convergence and qualitatively adequate results.
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4. Implementation of Model 

4.1. Safety-Driven Design Procedure 

As it was discussed in Chapter 1, the third-party damage presents a potential for the pressure 

wall failure in an abrupt fashion [27, 31, 47, 48]. The answer to the question whether the 

pressurized structure like pipeline or pressure vessel would undergo “unzipping” due to the third-

party impact is crucial for the safety of pipeline or pressure vessel in service. Essentially, it 

quantifies the structural integrity of pressurized structures. Figure 4-1 illustrates the safety-driven 

design logic where it is assumed that the pressure wall is damaged by a third-party. This design 

concept requires that when developing pipeline or pressure vessel, all attempts are made to 

prevent the accidental explosion-like breakups. The design decisions are assessed for 

effectiveness through the fracture analysis (Figure 4-1, module 5). The results of the fracture 

analysis then predict the outcome of the event; either catastrophic failure of the pipeline, or 

localised failure and leaking of pipeline contents. In the event that a pressure wall is predicted to 

“unzip”, the structural integrity improvements can be achieved by varying the design parameters 

of the pressurized structure. New design is evaluated by repeating the steps in the above design 

procedure until the “no rupture” conditions is verified. 

The applied engineering methodology allows determining the border between the simple 

perforation and catastrophic fracture of impact-damaged pressure vessel or pipeline-in-service. 

This methodology is viewed as a key element in the safety-driven design procedure providing 

that under no circumstances the explosion-like rupture would occur. Addressing this problem 
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does not only improve the structural integrity of pressurized equipment but also provides the 

significant effect on the safety of operation.  

 

Figure 4-1 Procedure of analysis of impacted pipeline 

Implementation of the model was performed in Intel Fortran Composer XE. The Fortran 

programing language was chosen because it remains the fastest runtime computer language for 
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the array handling and supports link to the extensive Fortran Numerical Library; as such it is 

frequently the language of choice for scientific and numerical computing. All major program 

sub-tasks were placed into their own independent modules allowing sequestration of .f90-code 

functionality and information hiding, which are fundamental aspects of modern coding. These 

techniques minimises code vulnerability to cross talk and overwritten addresses. Figure 4-3 

summarizes the implemented procedure and includes the following modules: 

 

Figure 4-2  Expanded breakdown of fracture analysis 
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Modules 1-2: An input reader is implemented allowing for more rapid program testing and 

eliminating the factor of human error in input data. The analysis starts with specifying the design 

and material characteristics of the pressure wall and determining the impact hole parameters (see 

Appendix I). The latter can either be generated experimentally or through additional numerical 

simulation through a software package like Autodyn. The penetration process lasts for a matter 

of microseconds and this process is essentially dynamic. After the appearance of an impact hole 

in the pre-loaded plate, the field of stress distribution around this hole does not change 

immediately. This transition process flows as the stress wave travels away from rim of hole. The 

evolution of the stress field near the hole in the perforated plate can be evaluated either explicitly 

using the Autodyn® code (Figure 4-3) or using the numerical solution of the non-steady-state 

problem of Kirsh [49]. During the transition process the dynamic stress concentration factor 

K()=() /  increases reaching the maximum value of 3.33 and then asymptotically drops to 

the static value. For the case of cylindrical shell the stress distribution is estimated from the 

superposition of two uniaxial solutions obtained separately for the hoop stress and for the 

longitudinal stress. 

 

Figure 4-3 Snapshot of the evolution of the stress field after the hole was instantly 

formed in the loaded plate 
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Module 3: The piecewise traction distribution p(x) is applied to the crack surface as it shown in 

Figure 3-3b. It divides the contour into 5 portions (links) L0, L1, L2, L3 and L4, where each piece 

of the traction function is differentiable throughout each individual link. The traction-free link L0 

corresponds to the hole, links L1 and L3 are radial cracks and links L2 and L4 represent the plastic 

zones. The solution of the singular integral equation (3.1) 

∫[𝐾(𝑡, 𝑡′)𝑔′(𝑡)𝑑𝑡 + 𝐿(𝑡, 𝑡′)𝑔′(𝑡)̅̅ ̅̅ ̅̅ ̅𝑑𝑡̅]

𝛤

= 𝜋𝑝(𝑡′),       𝑡′ ∈ 𝛤 (3.1) 

 must satisfy the condition (3.6) of single-valuedness of displacements for the crack contour. 

Also, the symmetry of the problem and link angular positions (α1=α2=0, α3=α4=π) are taken into 

account. 

Module 4: Unlike the finite element method the method of singular integral equations is free 

of mesh generation and only nodes are needed. The Chebyshev’s nodes with normalized 

coordinates  and  changing from -1 to 1 are generated on each link of the contour (Figure 3-3c, 

d).  

Module 5: The equation (3.1) for the cas e of 5-link crack is replaced by the system of 

singular integral equations (3.10) with a condition of single-valuedness of displacements for the 

crack contour. Also, the symmetry of the problem and link angular position is taken into account. 

Module 6: The numerical solution of the system of singular integral equations (3.10) is 

obtained by the method of mechanical quadratures [39, 27]. Functions 0(), 1(), 2() are 

sought in the class of functions (3.13) unbounded at the ends of intervals. Boundary conditions 

(3.14b, c) are applied to complete the system of equations (3.10). By applying the Gauss-

http://en.wikipedia.org/wiki/Differentiable
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Chebyshev quadrature expressions the system of singular integral equations (3.10) is transformed 

to the closed system of linear algebraic equations (3.20) with 3N unknowns where N is number 

of the Chebyshev nodes. The developed computer code constructs the matrix A of known 

coefficients in the left side of system (3.20).  

Module 7: The solution of closed normalized and linearized system of equations (3.20) is 

obtained by Gauss elimination solver subroutine via the Intel math linear algebra library 

(lapack95). Initially A-matrix is generated as quadratic (3N)×(3N) matrix. To provide the 

compatibility to the Intel Math Kernel math library the former A-matrix is then converted into 

one-dimensional A-array to be used locally within the module. 

A multi-dimensional array can be mapped to a one dimensional array, with a being a 

constant integer used to specify the indexing range (FORTRAN defaults to a = 1, although in 

other applications a = 0, such as in C languages and Java, is also common). This is a 

mathematical transformation called a vectorization. The indexing conversion for an n 

dimensional matrix can be seen in equation (4.1), 

𝑀𝑎𝑡𝑟𝑖𝑥[𝑖1, 𝑖2, ⋯ , 𝑖𝑛] = 𝐴𝑟𝑟𝑎𝑦[𝑚] → 𝑚 = (∑((𝑖𝑗 − 1) ∙∏𝑑𝑘

𝑗−1

𝑘=1

)

𝑛

𝑗=1

) + 𝑎 (4.1) 

Where n is the number of indexing dimensions of the matrix, i is each index’s value (in a 2 

dimensional matrix the i1, i2 indices traditionally notated as the i and j indices), d is the rank 

(length) of each of the n dimensions, and m is the index value of the resulting single dimension 

array. An illustrative example of a 2 dimensional array can be seen below where d (dimension is 

2) and the rank of i and k are 3 and 5. (i.e. a matrix of form A[i,j]) 
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j 

i 1 2 3 4 5 

1 1 4 7 10 13 

2 2 5 8 11 14 

3 3 6 9 12 15 

Figure 4-4 Column major ordered read sequence 

To return a one dimensional array to a multi-dimensional matrix is more computationally 

expensive and requires knowing the dimensions of the multidimensional matrix. 

To update the code the A array constructor was left unchanged, leaving it to construct a one 

dimensional array. That array was declared only locally and mapped to the true A array. 

Modules 8-9: Once a solution of the linearized system of equations (3.20) is obtained, the 

stress intensity factor at the end of the plastic strip can be evaluated using equation (3.21). 

Modules 8-9-10: The unknown length of the plastic zones is determined from the condition 

that the stress intensity factor is equal to zero at the end of the plastic strip. A traditional way to 

localize the tip of the plastic zone is to use the bisection or golden section methods. Here, the 

search is performed by golden section method, a simple and robust general purpose search 

technique which does not require derivative information. The procedure includes evaluation of 

stress intensity factor at the end of the plastic strip by equation (3.21) and narrowing the search 

interval until condition KI(l2)=0 is met with the initially specified tolerance. 

In order to reduce repeated information in the developed code the golden section search 

algorithm is applied twice: not only for the plastic strip length calculations but for search of the 

point of crack start/arrest as well. This was more difficult that simply creating a generic golden 

search subroutine that would have accepted the key parameters: lower bound, upper bound, and 
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evaluation function. This difficulty arises from the pre-emptive termination in its second use and 

need to re-evaluate the length of the plastic zone. The solution used was to create a generic 

second golden ratio search subroutine (hidden through a single access interface) identical to the 

first except for additional parameters to pre-emptively terminate the search and return the code to 

the plastic zone search while saving the state (bounds, logical evaluations, etc.) of search. 

Module 11: Once a numerical solution of the singular integral equation is obtained, the 

displacement can be calculated by equation (3.31) at any point on the crack faces. This module 

allows determining the crack opening profile for the entire crack. Finally, the opening 

displacement (CTOD) specifically at the crack tip is calculated using equation (3.32). 

𝐶𝑇𝑂𝐷 = 𝐶𝑂𝐷(𝑥2
∗ = −1) = −

4𝑙2𝜎𝑌
𝐸 𝑁

𝑆

𝜎𝑌
∑

𝑢2(𝜉𝑘)𝜋

𝑆

𝑁

𝑘=1

 (3.32) 

Modules 12-14: The critical crack tip opening displacement is used as a fracture criterion 

(CTODc). The comparison of obtained CTOD with the value of CTODc predicts the outcome of 

the event: either catastrophic failure of the pipeline, or localised failure and leaking of pipeline 

contents. 

Modules 15: The output format prints out the key data points written to time coded output 

file, this is so that successive test could be compared more easily and could be imported into 

other programs (i.e. Excel) for deeper analysis, e.g. to see the evolution of the crack tip opening 

displacement after an impact (Figure 4-5). Additionally a running summation of the crack 

opening displacement is printed to an independent file; this allows later printing of the crack tip 

profile which can be used as a qualitative measure of the outputs accuracy (see Figure 3-4). 
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4.2. Numerical Results 

This section gives the numerical examples which illustrate the application of the developed 

code for the structures with crack-like impact holes. The presented singular integral equation 

technique allows us to determine the crack opening profile for the entire crack (Figure 3-4) and 

calculate the opening displacement specifically at the crack tip. The developed numerical 

algorithm provides the convergence for calculating the CTOD value up to a high level of loading 

(Figure 3-5). 

The Figure 4-5 illustrates the evolution of the crack tip opening displacement after an impact 

hole was suddenly introduced in the loaded plate made of aluminum alloy 2024. Once CTOD has 

reached the critical value, the crack starts to propagate. This shows that for a given state of stress 

there is some critical initial crack length that under which crack propagation will not occur. 

Likewise this implies that for a given crack length there is some critical state of stress that can be 

calculated. The estimated speed of crack propagation in the metal (Vcr) varies in a range of 

(0.2c0) to (0.29c0), where c0 is the speed of sound [31, 47, 48]. For the calculations it was 

assumed that Vcr ≈ 0.27c0. 

It is known that the ratio of the radial crack length (Lrad.cr.) to the hole diameter (Dhole) has a 

considerable effect on the critical stress. Figure 4-6 illustrates that the applied method allows 

obtaining the accurate result for any specific case of (Lrad.cr./Dhole)-ratio. The obtained results 

illustrate the fact that for Lrad.cr./Dhole>0.25, the hole with two radial cracks can be considered as a 

straight crack. 



59 

 

 

Figure 4-5  Evolution of the crack tip opening displacement 

 

Figure 4-6 Critical stress for various (Lrad.cr./Dhole) - ratio 

In order to verify above method and illustrate its application, numerical calculations were 

performed for the model impact hole embedded in a thin-wall aluminum specimen. The obtained 
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results were compared with the results given in references [27, 49, 50, 51]. All the calculations 

were performed in a 2.7 GHz Intel® Core i7-46000 personal computer with 8GB of RAM. The 

simulation time for each numerical test did not exceed 30 seconds. 

The Table 4-1 contains the results of calculations and experimental data [27] obtained from 

the impact and tensile tests of the 3-mm thickness specimens fabricated from aluminum alloy 

2024 with ultimate tensile strength of 446 MPa, yield strength of 370 MPa, modulus of elasticity 

of 70000 MPa, Poisson’s ratio of 0.33 and fracture toughness of 53.9 MPa·m
1/2

. The critical 

CTOD was determined assuming the plane stress state and using the relation [31]: 

𝐶𝑇𝑂𝐷𝑐 =
(𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒 𝑡𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠)2

(𝑦𝑖𝑒𝑙𝑑 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ) × (𝑚𝑜𝑑𝑢𝑙𝑢𝑠 𝑜𝑓 𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦)
 (4.2) 

To account the strain hardening effects the yield strength was interpreted as an average of the 

nominal yield stress and ultimate tensile strength. Comparison of the numerical and test data 

showed that maximum deviation did not exceed 5 %. The Table 4-1 presents a comparison with 

the computational results obtained by the finite element method [31] to quantify the critical crack 

length in the cylindrical pressurized module experiencing 68.6 MPa hoop and 34.3 MPa 

longitudinal stresses respectively. The numerical analysis was performed for 2219-T87 

aluminum alloy shell with the following parameters: ultimate tensile strength of 430 MPa, yield 

strength of 343 MPa, modulus of elasticity of 73800 MPa, Poisson’s ratio of 0.33, wall thickness 

of 3.17 mm, toughness at the crack initiation of 68 MPaˑm
1/2

 and fracture toughness at the 

maximum load of 92 MPaˑm
1/2

 [31]. The comparisons shows that the computational results 

obtained by the finite element and singular integral equations methods are in a good agreement.  

Table 4-1 Critical stress (specimen: 2024, ts=3.0 mm) 

Impact velocity m/s 500 1000 1500 2000 
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Test data [27](σc) MPa 303.0 301.1 290.3 294.9 

Numerical data [47] (σc) MPa 317.1 305.4 295.9 286.4 

Deviation % 4.4 1.4 1.9 3.0 

The Figure 4-7 and Figure 4-8 illustrate fair agreement of the obtained computational results 

with test data [49] where the specimens were perforated by 0.5 Ball projectile at ballistic 

velocities of 206-308 m/s and then subjected to the tensile tests. The specimens with thickness of 

4.8 mm and dimension of 460×910 mm were fabricated from 7075-T6 alloy. Power regression 

lines calculated for the experimental data points in Figure 4-7 and Figure 4-8 were used for the 

comparison with numerical results.  

 

Figure 4-7 Computational results vs test data [49](7075-T6 Transverse grain) 
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Figure 4-8 Computational results vs test data [49](7075-T6 Longitudinal grain) 

The following input data were used for the analysis: ultimate tensile strength of 535 MPa, 

yield strength of 468 MPa, modulus of elasticity of 72000 MPa, Poisson’s ratio of 0.33 and 

fracture toughness of 63 MPa·m
1/2

 for transverse grain and 81.6 MPa·m
1/2

 for longitudinal grain. 

Comparison of numerical and test data obtained for the transverse grain reveals a difference of 

3.4%, 2.2%, and 15.4 % for each point with a mean difference of 7% . For the longitudinal grain 

results a difference of 11%, 8.2%, 7.4% and 7.2% for each point with a mean difference of 8.4%. 

If we exclude the outlier (second data point at TLD = 72.4mm) then the difference is 10.3%, 

6.4%, and 6.2%, with a mean difference of 7.7%. 

Due to limited test data on critical stress in impact damaged pipes and pressure vessels the 

available experiments obtained for the straight axial cracks were used for judging the adequacy 

of a model. The Figure 4-9 presents the comparison of computation results with tests on 1.524-

m-diameter 0.36% C steel cylindrical vessel [50] with axial cracks through the wall thickness of 
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strength of 227.5 MPa, modulus of elasticity of 200 GPa, Poisson’s ratio of 0.3 and toughness of 

196.7 MPaˑm
1/2

. The differences between the experimental and numerical data at the three crack 

length point are 2.1%, 6.0%, and 9.8%, with a mean difference of 6.0%.  

 

Figure 4-9 Computational results vs test data [50] 

The results on 0.76-m-diameter and 9.5-mm-thick X-52 plain carbon pipes with through 

cracks are also used for the model testing.  

 

Figure 4-10 Computational results vs test data [52] 
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Material properties are the following: ultimate tensile strength of 537.8 MPa, yield strength 

of 386.1 MPa, modulus of elasticity of 200 GPa, Poisson’s ratio of 0.3 and toughness of 281.3 

MPaˑm
1/2

. Test and computational data are plotted in Figure 4-10; the differences between the 

experimental and numerical results at the three crack length points are 9.3%, 8.5%, 1.1%, 6.3%, 

9.7%, 10.0%,with a mean difference of 7.0%. 

4.3. Conclusions 

1. Safety-driven design concept is presented providing that under no circumstances the 

explosion-like rupture will occur in case of third-party damage 

2. Implementation of the above methodology was performed in Intel Fortran programing 

language 

3. Calculated results showed good agreement with available test data. 
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5. Conclusions, Limitations and Recommended Future Work 

5.1. Conclusions 

Throughout this document we have proceeded from the initial problem statement; that third-

party damage is a present and serious concern for pipeline operators, accounting for 15.8% of 

pipeline events in Canada, to 26% in the United States, and even greater in Europe. A safety-

driven design procedure is proposed providing that under no circumstances the pipeline or 

pressure vessel would undergo the explosion-like rupture due to the third-party damage. 

Addressing this problem will not only improve the structural integrity of pressurized equipment 

but also will provide the significant effect on the safety of operation. Specifically the 

accomplishments of this thesis are: 

1. Review of statistics from six agencies from around the world on pipelines incidents has 

been conducted. The agencies covered are the National Energy Board of Canada (NEB), 

the Transportation Safety board of Canada (TSB), and the Alberta Energy Regulator 

(AER) from Canada; the Pipeline and Hazardous Material Safety Administration of the 

Department of Transportation (PHMSA) from the United States of America; and the 

European Gas Pipeline Incident Data Group (EGIG) and the European Oil Company 

Organisation for Environment, Health and Safety (CONCAWE) from Europe. Performed 

data analysis demonstrated that third-party damage is a major concern for of the North 

American and European pipeline networks, being the largest single cause of rupture for 

two agencies and the second largest cause for other two [3]. 



66 

 

2. The survey on physics of impact damage was conducted. A novel model of impact hole 

was applied for the failure analysis of the pressurized components of the oil/gas 

infrastructure with impact damage due to the external interference.  

3. A review of fracture mechanics techniques was performed. Ultimately a non-linear elastic-

plastic fracture mechanics and the crack tip opening displacement (CTOD) were selected 

as a tool and fracture criterion respectively for modeling of the fracture process. 

4. Method of singular integral equations is applied for simulation of crack propagating from 

the impact hole. Established crack propagation model translates the physical impact 

damage into the mathematical link system, followed by a lengthy description of 

mathematics by way of single integral equations in determination of the length of the 

plastic zone, and calculation of the CTOD. The model was implemented as a computer 

program. 

5. Calculated results demonstrated convergence and good agreement with available test data 

available in the literature. Taken in its totality it can be concluded that the developed 

engineering methodology is a robust, light weight computation tool for predicting the 

outcome of the third-party damage event; either catastrophic failure of the pipeline, or 

localised failure and leaking of pipeline contents. 

6. The developed numerical tool is integrated into the safety-driven design procedure. The 

design concept requires that when developing pipeline or pressure vessel, all attempts are 

made to prevent the accidental explosion-like breakups. New designs will be evaluated by 

repeating the steps in the developed design procedure until the no explosion-like conditions 

will be verified. 
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5.2. Limitations and Recommended Future Work 

The testing of the developed numerical tool was performed using available test data obtained 

for the flat specimens only. Future research should be directed at expanding the experimental 

data to include cylindrical pressurized samples representing segment of the typical pipelines or 

pressure vessels fore oil/gas application. 
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Appendix I. Example of Impact Damage Parameters Calculation 

This section illustrates an example of how impact damage parameters can be reproduced 

through computer simulation. This can be chosen to be done for many reasons, in the absence of 

physical experimental data, numerically generate data may be more economical or quicker to 

generate. So effort has been made, as an example to show how the initial conditions can be 

simulated by widely available simulation software. First an explicit dynamics approach is 

conducted showing that computer simulation is sufficient to generate the needed initial data. 

After a more sophisticated SPH simulation is conducted on a single data point, this shows 

qualitatively that there is a convergence in the generated data; as the sophistication of the 

simulation is increased then so too does the accuracy and resemblance of the generated data to 

physical experimentation increase. 

AI.1. Description of model 

In total, seven data points were selected for simulation, they were selected for having similar 

materials, the same impact angle (0°), same ammunition (.50 ball ammunition, a general type of 

50 calibre machine gun ammunition), and similar plate dimensions. 

Table A I-1 Selected experimental data points for ANSYS simulation [52] 

Test No. Target Mat. 

Target 
thickness, 

mm 
Width 

mm 
Length, 

mm 

Impact 
velocity, 

m/s TLD, mm 

18 7075-T6 
Transverse grain 

4.83 457.0 914.4 338.60 121.92 

19 4.83 457.0 660.4 343.50 66.04 

20 4.83 457.0 914.4 381.00 68.58 

25 7075-T6 
Longitudinal grain 

4.83 457.2 914.4 206.35 87.63 

26 4.83 457.2 914.4 358.14 72.39 

27 4.83 457.2 914.4 336.80 43.18 

28 4.83 457.2 914.4 385.57 85.09 
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Due to the impact nature of the simulation we expect the potential for a high change in 

system state between time iterations. Therefore, solver based on explicit time integration scheme 

was employed. The simulation is constructed using finite element methods; this can be done as 

the impact velocities are relatively low and we are not concerned with tracking ejected debris so 

a more sophisticated like smooth-particle hydrodynamics is not required. The Solution method 

used is a Lagrangeian finite element method. Fracture mechanics is not natively supported in 

finite element methods. To accommodate the formation of cracks and the creation of new object 

surfaces elements are selectively removed. This removal mechanic is called Erosion, after each 

cycle elements that have a geometric strain greater than a set threshold (set to 0.9 in the 

simulations) are culled. This exposes the edges of other elements that then act as a new surface. 

Seen below is an image showing the completed two body geometry. 

 

Figure I-1 Full two body geometry 

The model is simple the plate are extruded rectangular prism.  
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Figure I-2 Plate geometry 

The projectile is modeled as a ‘slug’, or a revolved profile. The dimensions of the slug are 

pulled off published standards for .50 ball ammunition. ANSYS. Not all features of the slug are 

modeled as they were deemed extraneous and represent insignificant contributors to the 

simulation behavior. 
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Figure I-3 Bullet geometry 

The omitted features are a crimping ridge with along the cylindrical base, a minor convex 

curvature on the back face, and an internal layering of materials. Since the internal materials are 

proprietary, and vary by manufacturer of the ammunition the slug used in the simulation was 

modelled as a single piece of steel. 

The mesh model was explicitly defined with the key parameters beginning with a Coarse 

setting Relevance Center and 5 mm Element size. The plate body is then subjected to a single 
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refinement. Ultimately this results in a mesh of 149236 nodes and 589632 elements, with an 

average element quality of 0.8448 and a standard deviation of 0.07687. 

 

Figure I-4 Mesh element quality 

A simulation time of 0.001 second was selected to balance the necessities of the simulation 

(allowing enough time for full penetration) and reducing the runtime to acceptable levels. The 

time step being calculated automatically, with an upper set to 10
6
 cycles, so that the Courant–

Friedrichs–Lewy condition is met. 

The steel used to model the bullet was steel 4340, an existing ANSYS explicit material 

model; this material is consistent with manufacturer data for .50 caliber ball ammunition and 



77 

 

previous simulations. [53] The steel 4340 material model is replete with mechanical and thermal 

properties, these are shown below. 

Table A I-2 Steel 4340 ANSYS property table [54, 55] 

Property Value Unit 

Density 7.83E-06 Kg/mm3 

Specific Heat 4.77E+05 mJ/kgC 

Strain Rate Correction First-Order  

Initial Yield Stress 792 MPa 

Hardening Constant 510 MPa 

Hardening Exponent 0.26  

Strain Rate Constant 0.014  

Thermal Softening 
Exponent 

1.03  

Melting Temperature 1519.9 C 

Reference Stain Rate (/sec) 1  

Bulk Modulus 1.59E+05 MPa 

Shear Modulus 81800 MPa 

Similarly the aluminum used to model the plate is also an existing material model. 

Fortunately ANSYS has the AL 7075-T6, the same material used experimental data. The key 

difference between the modeled material and the experimental material is the assumption of 

homogeneity in the material strength. The experimental data was generated with aluminum 

manufactured to have a strong directionality to the grain structure. A preliminary simulation was 

run, implementing this grain directionality compared to the default homogeneous material 

configuration; this was accomplished using the methodology and techniques described by R 

Vignjevic et al. [56]. Since the loading force is quasi circular and sufficiently small in applied 

area and sufficiently distant from the plate boundary supports the grain directionality had 

minimal effect on the transverse length of the damaged zone. Including the directional grain 

properties introduced only a slight orthogonal asymmetry to the observed damage at the cost of 

an increase in simulation runtime due to the additional complexity added. For that reason the 
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simulation were later run using only the homogeneous configuration of the AL 7075-T6. Like 

the steel, the aluminum had its mechanics and thermal properties pre-implemented in ANSYS; 

they can be seen below. 

Table A I-3 AL 7074-T6 ANSYS material properties [54, 55] 

Property Value Unit 

Density 2.804E-06 Kg/mm3 

Specific Heat 8.48E+05 mJ/kg °C 

Initial Yield Stress Y 420 MPa 

Maximum Yield Stress Ymax 810 Mpa 

Hardening Constant B 965  

Hardening Exponent n 0.260.1  

Derivative dG/dP G’P 1.741  

Derivative dG/dT G’T -16.45 Mpa/°C 

Derivative dY/dP Y’P 0.02738  

Melting Temperature Tmelt 946.85 °C 

Shear Modulus 26700 Mpa 

Shock EOS Linear   

Gruneisen Coefficient 2.2  

Parameter C1 5.2E+06 mm/s 

Parameter S1 1.36  

Parameter Quadratic S2 0 s/mm 

The failure models for the used material falls under the auspices of their respective strength 

models. The Steel 4340 utilises the Johnson Cook Strength formulation, and fails primarily by 

plasticity. The AL 7570-T6 utilises Steinberg Guinan Strength model; the ANSYS 

documentation states that this formulation is appropriate for shock induced free surface 

velocities, as they appear in our simulation. 

AI.2. ANSYS Numerical Results  

Once the simulations had completed each was visually inspected to determine the transverse 

length of the damaged zone. As ANSYS does not readily include specific analysis tool 

appropriate to this endeavour and independent procedure was developed. For each sample the 
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results included Von Mises stress analysis of the plate. When determining the TLD the length of 

this area was taken to be regions that are greater than 0.5σy and the outer most boarders of such 

regions encircle the bullet hole. In the ANSYS simulation this value fell reliably in between the 

green and chartreuse coloured regions’ limiting values, as such the green region was chosen to be 

the outermost limit of the TLD. 

Below is presented the results of the ANSYS simulation. 

Table A I-4 Collection of ANSYS graphic results 

Test No. 

Length of Scale 
(bottom of 
image, mm) 

TLD 
experimental, 

mm 

TLD simulation, 
mm 

[err ±1mm] 
Relative 

Error 

18 60 121.92 79 -0.352 

19 70 66.04 80 0.211 

20 80 68.58 75 0.094 

25 50 87.63 89 0.016 

26 50 72.39 69 -0.047 

27 60 43.18 80 0.853 

28 90 85.09 74 -0.130 

 

Figure I-5 TLD of Al plates, experimental vs. ANSYS simulation 
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Performing statistical analysis on the TLD measurement gives some insight to the validity to 

the simulation. Treating the results as a population sample we are able to produce meaningful 

statistical measures. 

Table A I-5 Simulation statistical Measures 

Absolute Mean 0.243 

Absolute Median 0.130 

Standard Deviation, Sample 0.3796 

As seen above the absolute mean of the simulation TLD is 24.3%, while the absolute median 

is 13%. The standard deviation of the samples is 37.96%. Based off the median and the standard 

deviation it can be concluded that the ANSYS simulation provides an accurate description of the 

experimental results. From this it stands to strengthen the previously established model so as to 

provide a supplementary method to arrive at the initial conditions free of expensive, physical 

experimentation. 

As further verification another, more sophisticated simulation was run. This simulation was 

only run on specimen sample 28. This more sophisticated simulation added Johnson Cook 

Failure parameters to the steel and aluminum materials, and was solvers using a SPH model 

(Smoothed Particle Hydrodynamics). This more sophisticated simulation shows explicitly the 

damage that the bullet causes to the plate and can be used to visualize the cracks and petalling 

that occurs. The beginning of the petalling can be seen below. 
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Figure I-6 SPH simulation, crack formation 

In the Figure I-6 it can be seen the initiation of cracks. These cracks form along the 

horizontal and vertical axis and as they develop establish the damaged zone. This is qualitatively 

consistent with our predictions. Later under the pressurized load of the pipeline system the 

horizontal crack will be forced open due to the resulting the hoop stress, and become the locus of 

failure. 

  



82 

 

Appendix II. Full Code 

AII.1. Code Development  

The code was developed in three hierarchical levels; the top most level is a project sequencer, 

this block accepts and parses external input and runs multiple iterations of the main program; the 

next level is that of the main program, and the third level are the subroutine functions of the main 

program. 

Below can be seen, in full, the source code of the implementation of the applied model. 

AII.2. MainProject_v1_3_Fork_D_BLOCKINPUT 

!  MainProject.f90  
! 
!  FUNCTIONS: 
!  MainProject - Entry point of console application. 
! 
 
!**************************************************************************** 
! 
!  PROGRAM: MainProject 
! 
!  PURPOSE:  Entry point for the console application. 
! 
!**************************************************************************** 
! 
! 
program MainProject 
        use mainProg 
        integer testnum, listnum, i, k 
        character (len=99) listfile 
        real keyVal!key value pulled from each program cyle, in this case sigmaCrit 
 
        testnum=80! number of tests to run 
        listnum=10!number of test sets 
         
        do k=1, listnum 
            write (listfile, 0001) K 
0001        format('OUTPUT/',i2.2,'_List.txt')                
            open (unit = 5, file = trim(adjustl(listfile))) 
         
            do i=1,testnum 
                call RunMain(i, k, keyVal) 
                write(5,*) keyVal          
            end do 
            close (5) 
        end do 
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    end program MainProject 
 

AII.3. MainProg 

module mainProg 
       
      Contains 
        subroutine RunMain (CC, inV, S) 
    use alfa_mod 
    use answer_mod 
    use delta_mod 
    use gelg_mod 
    !use global_mod 
    use impact_mod 
    use kin_mod 
    use load_mod 
    USE search 
    use input_mod 
    use output_mod 
     
    use common_Var 
    !use koef 
    use Empty_array 
    use A_array 
    use Left 
     
    implicit none 
!      ************************************************* 
!           5-link Crack Model 
!      ************************************************* 
! 
!      .................................................. 
!        INPUT  - data input; 
!        OUTPUT – results output; 
!        ALFA   - solution of singular integral with Caushy kernel 
!                 using Gauss-type formulae; 
!        IMPACT – dynamic factor calculation; 
!        LOAD   - load calculation; 
!        KIN    - stress intensity factor calculation; 
!        DELTA  - CTOD calculation; 
! 
!        GELG   - solution of a general system of simultaneous linear 
!                 equations by Gauss-elimination method; 
! 
!      Variables: 
!      ................................................................ 
!        S     - design load; 
!        So    - relative design load; 
!        L     - crack length (including plastic zones); 
!        L0    - half-length of the central crack link(#0); 
!        L1    - half-length of the radial crack (link #1); 
!        L2    - half-length of the plastic zone(link #2); 
!        Lsum  - crack length with plastic zone (table); 
!        Lcr   - cut length; 
!        Lmcr  - length of micro-crack adjacent to the impact hole; 
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!        D     - impact hole diameter; 
!        SIGMt – Yield strength; 
!        V     - Poisson ratio; 
!        zTIME – current relative time; 
!        TIMEo – name for zTIME in final table; 
!        TIME1 – step for zTIME; 
!        JUMPL – step for change of Lcr; 
!        PZ    - plastic zone length; 
!        PZo   - relative length of plastic zone; 
!        Kdin  - dynamic factor; 
!        Kconc – stress concentration factor (near the hole); 
!        KPT   - CTOD; 
!        KPTc  - CTODc (critical CTOD); 
!        РТmax – COD; 
!        PTr   - similar to PTmax (used for calculation); 
!        RAZ   - =CTOD-CTODc; 
!        N     - Chebyshev’s node number; 
!        N3    - order of linear equation system; 
!        ATA   - matrix of load application coordinates (in dimensionless coordinates); 
!        A     - matrix (3N x 3N) of linear equation system coefficients; 
!        R     - column matrix of right side of linear equation system, 
!                also after subroutine GELG – solution matrix of linear 
!                equation system; 
!        KINo  - relative stress intensity factor; 
!        MOVE  - current crack status: 
!                MOVE=0 – case of stationary crack; 
!                MOVE=10- case of crack starting point search; 
!                MOVE=1 – case of crack propagation; 
!                MOVE=2 – case of crack arrest; 
!        GOLD  - index of crack tip search by golden section method: 
!                GOLD=111 – beginning of search, calculation of │KINo│ at 
!                           left point of interval; cutting the both left 
!                           and right parts of interval; 
!                GOLD=222 – calculation of │KINo│ at right point of  
!                           interval; cutting the left part of interval; 
!                GOLD=333 - cutting the right part of interval;  
!                GOLD=444 – search termination; 
!        TAU   - golden ratio; 
!        II    - exponent for W-formula; 
!        XL    - left bracket of interval; 
!        XR    - right bracket of interval; 
!        W     - current position of │KINo│ calculation; 
!        WL    - left W; 
!        WR    - right W; 
!        FL    - │KINo│ at WL; 
!        FR    - │KINo│ at WR; 
!        GOLD1 - index of crack start/arrest search by golden section method: 
!                GOLD=111 – beginning of search, calculation of │RAZ│ at 
!                           left point of interval; cutting the both left 
!                           and right parts of interval; 
!                GOLD=222 – calculation of │RAZ│ at right point of  
!                           interval; cutting the left part of interval; 
!                GOLD=333 - cutting the right part of interval;  
!                GOLD=444 – search termination; 
!        JJ    - exponent for WW-formula; 
!        XXL   - left bracket of interval; 
!        XXR   - right bracket of interval; 
!        WW    - current position of │RAZ│ calculation; 
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!        WWL   - left WW; 
!        WWR   - right WW  
!        FFL   - │RAZ│ at WWL; 
!        FFR   - │RAZ│ at WWR; 
!      ................................................. 
 
 
    ! Variables 
            INTEGER  sample, N, move, restart, CC, inV!, GOLD,GOLD1, N3, II,JJ, IER,  
Task 
            character (len=99) outfile 
            REAL JUMPL, SIGMt, SIGMt1, E, E1, S, S1, D, Lmcr, Lcr, L0, L1, L2, L, KPT, 
PTr, So, c, Cp, zTIME, zzTIME, Kdin, Kconc, PZ, PZo, RAZ, KPTc!,ATA, KINo, EPS,  TAU, XL, 
XR, WL, WR, W, FL, FR, WM, XXL, XXR, WW, WWL, WWR, WWM, FFL, FFR, Lopt, zTopt, deltXX, 
TIME1, A!, Empty!,R, 
            ! removed REAL, PARAMETER :: pi=3.14159265 
            !DIMENSION ATA(31)!, A(96,96)!,empty(6144),!, R(96), 
             
            !COMMON /KOEF/A!,EMPTY 
            !COMMON /LEFT/R 
            cop=0 
             
            call GenOut 
            inver=inV 
            outver=CC 
            write (outfile, 0088)REAL_CLOCK (1), outver 
0088        format('OUTPUT/',a8,'_output_',I4.4,'.txt') 
                 
            open (unit = 1, file = trim(adjustl(outfile))) 
 
            write (outfile, 0098)REAL_CLOCK (1), outver 
0098        format('CTOD/',a8,'_PathContour_',I4.4,'.txt') 
                 
            open (unit = 8, file = trim(adjustl(outfile)))             
             
            !OPEN(1,FILE='output_00.txt') 
             
             
! Body of MainProject 
!      ***Initial data input 
            CALL INPUT(CC,SIGMt,E,c,Cp,S,D,Lmcr,JUMPL,KPTc,sample) 
        
            SIGMt1=SIGMt 
            E1=E 
            S1=S 
        
            SIGMt=SIGMt*0.1020 
            E=E*0.1020 
            S=S*0.1020 
        
            N=32 
            !TAU=0.618!03399!original 0.618 
            L0=D/2. 
            L1=Lmcr/2. 
                IF(TASK.EQ.2) then 
                    restart=2 
                    GOTO 141 
                endif 
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                IF(TASK.GE.1) GOTO 7 
            TIME1=7.407*JumpL/D!Different to match PVFrac_v12_2 
            TIME1=TIME1*(Cp/c) 
            zTIME=0. 
            zzTIME=0. 
            MOVE=0 
        
            CALL HEADER(N,SIGMt1,E1,KPTc,S1,c,Cp,D,Lmcr) 
!      .................................................... 
 
0007            cop=cop+1                 
 
        call golden(N, SAMPLE, L0,L1,L2, Kconc,Kdin, KPT,KPTc, Cp,C, S, SIGMt, zTIME)             
!junk block 1 
0100        CALL DELTA(KPT,PTr,E,N,SIGMt,S,So,L1,L2) 
 
!       write(*,*)'  KPT=',KPT 
!       write(*,*)'  PTr=',PTr 
! $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$  
                Lcr=D+4*L1 
                PZ=2.*L2 
                L=Lcr+2.*PZ 
                PZo=2.*PZ/L 
                if (task.gt.0) then 
                    WRITE(*,*)'   PZ=',PZ,'mm' 
                    WRITE(*,*)'  PZo=',PZo 
                endif 
 
! $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
0141        call golden(MOVE, L1,L2,LCR,jumpL, Kconc,Kdin, KPT,KPTc, PZ,PZo, PTr, D,Cp,C, 
S, SIGMt, zTIME, zzTIME,restart) 
            if(restart.eq.1) goto 0007 
!junk block 2 
!!!!!!!!!!!!!      ***      Analysis of results  
0270        CALL ANSWER(MOVE,Lcr,TASK,RAZ,S) 
 
            CLOSE(1) 
            close(3) 
0280        RETURN 
 
        end subroutine RunMain 

      end module mainProg 

AII.4. Input_mod 

module input_mod 
    use common_Var 
    implicit none 
    Contains 
    SUBROUTINE HEADER(A,B,C,D,E,AUNIT,BUNIT,CUNIT,DUNIT) 
            INTEGER A 
            REAL B,C,D,E,AUNIT,BUNIT,CUNIT,DUNIT 
        !      ***Table of results 
            WRITE(*,991)A,B,C,D,E 
            WRITE(*,992)AUNIT,BUNIT,CUNIT,DUNIT 
0991        FORMAT(1X, 'N=', I2, ';', 1X, 'SIGMo=', F7.3,1X, 'MPa;', 1X, 'E=', F7.1, 1X, 
'MPa;', 1X, 'CTODc=', F5.3, 1X, 'mm;', 2X, 'S=', F5.1, 1X, 'MPa;') 
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0992        FORMAT(1X, 'c=', F6.1, 1X, 'm/s;', 3X, 'Cp=', F6.1,1X, 'm/s;', 3X, 'Dhole=', 
F4.1, 1X, 'mm;', 4X, 'Lrad.cr.', F4.2, 1X, 'mm.') 
            WRITE(*,998) 
!0998        FORMAT(1X, '╔', 5('═'), '╦', 6('═'), '╦', 7('═'), '╦', 7('═'), '╦', 4('═'), 
'╦', 5('═'), '╦', 7('═'), '╦', 4('═'), '╦', 6('═'), '╦', 6('═'), '╗'/, 1X, '║', 'TIMEo', 
'│', 1X, 'TIME', 1X, '│', 1X, 'Lcrack', '│', 2X, 'Lsum', 1X, '│', 'Kdin', '│', 'Kconc', 
'│', 3X, 'PZ', 2X, '│', 1X, 'PZo', '│', X, 'PTmax', '│', 1X, 'KPT', 2X, '║'/, 1X, '║', 
1X, '[-]', 1X, '│', 1X, '[mcs]', '│', 2X, '[mm]', 1X, '│', 2X, '[mm]', 1X, '│', '[-]', 
1X, '│', 1X, '[-]', 1X, '│', 2X, '[mm]', 1X, '│', 1X, '[-]', '│', 1X, '[mm]', 1X, '│', 
1X, '[mm]', 1X, '║')!ORIGINAL 
0998        FORMAT(1X, '|', 5('='), '|', 6('='), '|', 7('='), '|', 7('='), '|', 4('='), 
'|', 5('='), '|', 7('='), '|', 4('='), '|', 6('='), '|', 6('='), '|'/, 1X, '|', 'TIMEo', 
'|', 1X, 'TIME', 1X, '|', 1X, 'Lcrack', '|', 2X, 'Lsum', 1X, '|', 'Kdin', '|', 'Kconc', 
'|', 3X, 'PZ', 2X, '|', 1X, 'PZo', '|', X, 'PTmax', '|', 1X, 'CTOD', 2X, '|'/, 1X, '|', 
1X, '[-]', 1X, '|', 1X, '[mcs]', '|', 2X, '[mm]', 1X, '|', 2X, '[mm]', 1X, '|', '[-]', 
1X, '|', 1X, '[-]', 1X, '|', 2X, '[mm]', 1X, '|', 1X, '[-]', '|', 1X, '[mm]', 1X, '|', 
1X, '[mm]', 1X, '|')!For console print 
 
            WRITE(1,9991)A,B,C,D,E 
            WRITE(1,9992)AUNIT,BUNIT,CUNIT,DUNIT 
9991        FORMAT(1X, 'N=', I2, ';', 1X, 'SIGMo=', F7.3, 1X, 'MPa;', 1X, 'E=', F7.1, 1X, 
'MPa;', 1X, 'CTODc=', F5.3, 1X, 'mm;', 2X, 'S=', F5.1, 1X, 'MPa;') 
9992        FORMAT(1X, 'c=', F6.1, 1X, 'm/s;', 3X, 'Cp=', F6.1, 1X, 'm/s;', 3X, 'Dhole=', 
F4.1, 1X, 'mm;', 4X, 'Lrad.cr.=', F4.2, 1X, 'mm.') 
            WRITE(1,9998) 
9998        FORMAT(1X, '╔', 5('═'), '╦', 6('═'), '╦', 7('═'), '╦', 7('═'), '╦', 4('═'), 
'╦', 5('═'), '╦', 7('═'), '╦', 4('═'), '╦', 6('═'), '╦', 6('═'), '╗'/, 1X, '║', 'TIMEo', 
'│', 1X, 'TIME', 1X, '│', 1X, 'Lcrack', '│', 2X, 'Lsum', 1X, '│', 'Kdin', '│', 'Kconc', 
'│', 3X, 'PZ', 2X, '│', 1X, 'PZo', '│', 1X,'PTmax','│',1X,'CTOD',2X,'║'/, 1X, '║', 1X, 
'(-)', 1X, '│', 1X, '(mcs)', '│', 2X, '(mm)', 1X, '│', 2X, '(mm)', 1X,'│', '(-)', 1X, 
'│', 1X, '(-)', 1X, '│', 2X, '(mm)', 1X, '│', 1X, '(-)', '│', 1X, '(mm)', 1X, '│', 1X, 
'(mm)', 1X, '║') 
        END SUBROUTINE HEADER 
        SUBROUTINE INPUT(CC, SIGMt,E,c,Cp,S,D,Lmcr,JUMPL,KPTc, sample) 
 
!      *************************************************** 
!               Initial data input 
!      Variables: 
!      ................................................................ 
!        S     - design load; 
!        E     - Young's modulus 
!        c     - Speed of sound, in m/s 
!        Cp    - Adiabatic speed of sound in m/s    
!        Lmcr  - length of micro-crack adjacent to the impact hole; 
!        D     - impact hole diameter; 
!        SIGMt – Yield strength; 
 
!        JUMPL – step for change of Lcr; 
!        KPTc  - CTODc (critical CTOD); 
 
!      *************************************************** 
 
                INTEGER Sample, CC, i 
                REAL SIGMt,E,c,Cp,S,D,Lmcr,JUMPL,KPTc 
                character (len=99) infile 
                 
                write (infile, 0077)inver 
0077            format('input_',I2.2,'.txt') 
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                write(*,*)infile 
                open (unit = 2, file = trim(infile)) 
                S=0 
                JUMPL=0 
                 
                read(2,*) 
                do i=1, cc 
                    read(2,*) sample, task, SIGMt,E,KPTc, D, lmcr, s, c, cp, jumpL 
                end do 
                close(2) 
                 
                if (task.eq.0) stop! disable of full simulation 
                 
                print *, 'read successful' 
                 
                WRITE(*,162) 
                WRITE(*,163) 
                WRITE(*,164) 
0162            FORMAT(1X,' Specify the type of sample') 
0163            FORMAT(5X,'SAMPLE=0 - plane sample under uniaxial tensile load') 
0164            FORMAT(5X,'SAMPLE=1 - inflated cylinder pressure vessel') 
                WRITE(*,*)'                                                   ' 
                WRITE(*,144) 
0144            FORMAT(5X,'SAMPLE=',$) 
                !READ(*,*)SAMPLE 
                WRITE(*,*)SAMPLE 
             WRITE(*,*)'                       ' 
!      ................................................. 
 
!      ................................................. 
                WRITE(*,62) 
                WRITE(*,63) 
                WRITE(*,64) 
                WRITE(*,65) 
0062            FORMAT(1X,'Input the mode of computing') 
0063            FORMAT(5X,'TASK=0 - simulation mode') 
0064            FORMAT(5X,'TASK=1 - survivability analysis') 
0065            FORMAT(5X,'TASK=2 - computing the critical load') 
                WRITE(*,44) 
0044            FORMAT(5X,'TASK=',$) 
                !READ(*,*)TASK 
                WRITE(*,*)TASK 
 
!      ................................................. 
                WRITE(*,6) 
0006            FORMAT(1X,'                                        ', '                        
') 
 
                write(*,22) 
0022            FORMAT(5X,'SIGMo=',$) 
                !READ(*,*)SIGMt 
                WRITE(*,*)SIGMt 
 
!       ................................................... 
                WRITE(*,8) 
0008            FORMAT(1X,'                                                  ') 
                WRITE(*,23) 
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0023            FORMAT(5X,'E=',$) 
                !READ(*,*)E 
                WRITE(*,*)E 
!       ................................................. 
                WRITE(*,12) 
                WRITE(*,14) 
0012            FORMAT(1X,'                                         ') 
0014            FORMAT(1X,'                                          ') 
                WRITE(*,25) 
0025            FORMAT(5X,'CTODc=',$) 
                !READ(*,*)KPTc 
                WRITE(*,*)KPTc 
!       .................................................... 
                WRITE(*,18) 
0018            FORMAT(1X,'                                                   ') 
                WRITE(*,19) 
0019            FORMAT(5X,'Dhole=',$) 
                !READ(*,*)D 
                WRITE(*,*)D 
!       ................................................. 
                WRITE(*,54) 
0054            FORMAT(1X,'                                               ') 
                WRITE(*,28) 
0028            FORMAT(5X,'Lrad.cr.=',$) 
                !READ(*,*)Lmcr 
                WRITE(*,*)Lmcr 
!       ................................................. 
                IF(TASK.EQ.1) GOTO 66 
                IF(TASK.EQ.2) GOTO 67 
!       ................................................. 
                WRITE(*,68) 
0068            FORMAT(1X,'                                    ', '                  ') 
                WRITE(*,69) 
0069            FORMAT(5X,'(sound speed) c=',$) 
                !READ(*,*)c 
                WRITE(*,*)c 
!       ................................................. 
                WRITE(*,70) 
0070            FORMAT(1X,'                                                   ') 
                WRITE(*,71) 
0071            FORMAT(1X,'                                           ') 
                WRITE(*,72) 
0072            FORMAT(5X,'(adiabatic sound of speed) Cp=',$) 
                !READ(*,*)Cp 
                WRITE(*,*)Cp 
!       ................................................. 
                WRITE(*,60) 
0060            FORMAT(1X,'                                         ') 
                WRITE(*,41) 
0041            FORMAT(5X,'JUMPL=',$) 
                !READ(*,*)JUMPL 
                WRITE(*,*)JUMPL 
!       ................................................. 
0066            WRITE(*,16) 
0016            FORMAT(1X,'                                                   ') 
                WRITE(*,26) 
0026            FORMAT(5X,'(hoop stress) S=',$) 
                !READ(*,*)S 
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                WRITE(*,*)S 
!       ................................................. 
0067            RETURN 
      
            END subroutine input     
 

    end module input_mod 

AII.5. Search 

module search 
    USE common_Var 
    !use Left 
    !use A_array 
    !use Empty_array 
    !use koef 
     
    USE alfa_mod 
    USE impact_mod 
    USE load_mod 
    USE gelg_mod 
    USE kin_mod 
    use output_mod 
    use ShapeFunc 
    IMPLICIT NONE 
     
    INTERFACE GOLDEN 
            MODULE PROCEDURE GOLD1,GOLD2 
    END INTERFACE 
    contains 
         
        subroutine kick (N, SAMPLE, L0,L1,L2, Kconc,Kdin, KPT,KPTc,Cp,C, S, SIGMt, zTIME) 
            integer N,N3, SAMPLE, IER 
            real ATA, L0,L1,L2, Kconc,Kdin, KPT,KPTc, Cp,C, S, SIGMt, EPS, zTIME 
            DIMENSION ATA(31) 
         
!      ***Integral equation system transform 
            CALL ALFA(ATA,N,L0,L1,L2, KPTc) 
!      similar write(*,*)  calls exsist throughout the code, these exist as tracking 
points 
!          write(*,*)'  A from ALFA =',A 
            IF(TASK.EQ.0) THEN 
                CALL IMPACT(zTIME,Kdin,Kconc,Cp,c) 
                ELSE 
                    Kdin=1.!different PV 1. original 1.11!check 
                ENDIF 
!      ***Calculation of stress concentration factor 
!            CALL IMPACT(zTIME,Kdin,Kconc,Cp,c) 
!      ***Load calculation 
                 
 
            CALL LOAD(S,N,L0,L1,L2,ATA,SIGMt,Kdin,sample) 
 
!          write(*,*)'  R from LOAD =',R 
            N3=N*3 
!           write(*,*)'  N3=',N3 
!       ***Solution of linear equation system by Gauss-elimination method  
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            call GELG(N3,1,EPS,IER) 
        end subroutine kick 
        subroutine GOLD1 (N, SAMPLE, L0,L1,L2, Kconc,Kdin, KPT,KPTc,Cp,C, S, SIGMt, 
zTIME) 
            integer gold, n, sample, II 
            real Cp,C, l0,l1,l2, kconc,kdin,kino, S, SIGMt, zTIME, XL, XR, WL, WR, W, FL, 
FR, WM, VAL, KPT,KPTc 
             
            !trip=1 
            GOLD=111 
            XL=0. 
            XR=1. 
            WL=1.-TAU 
            WR=TAU 
            II=2 
            W=WL 
0001        L2=W*1000. 
             
            CALL kick (N, SAMPLE, L0,L1,L2, Kconc,Kdin, KPT,KPTc,Cp,C, S, SIGMt, zTIME) 
            IF(GOLD.EQ.444) then 
                return 
            endif 
!      ***Calculation of stress intensity factor 
            CALL KIN(KINo,N,S,L0,L1,L2) 
            VAL=KINo 
!      .................................................... 
!      ***      Plastic zone calculation - Block 2 
            IF(ABS(VAL).LE.(acc)) then 
                return 
            endif 
            IF(GOLD.GT.111) then 
                IF(GOLD.EQ.222) then 
                    FR=ABS(VAL) 
                    else 
                        FL=ABS(VAL) 
                endif 
                else 
                    FL=ABS(VAL) 
                    W=WR 
                    GOLD=222 
                    GOTO 1 
            endif 
            II=II+1 
            IF(FR-FL) 10,20,30 
0010            XL=WL 
                XR=XR!-TAU**II!Added -TAU**II!Check 
                IF((XR-XL).LE.(acc)) GOTO 100 
                WL=WR 
                FL=FR 
                WR=XR-TAU**II 
                W=WR 
                GOLD=222 
                GOTO 1 
             
0020            XL=WL 
                XR=WR 
                IF((XR-XL).LE.(acc)) GOTO 100 
                WL=XL+TAU**II 
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                WR=XR-TAU**II 
                GOLD=111 
                W=WL 
                GOTO 1 
             
0030            XL=XL 
                XR=WR 
                IF((XR-XL).LE.(acc)) GOTO 100 
                WR=WL 
                FR=FL 
                WL=XL+TAU**II 
                GOLD=333 
                W=WL 
                GOTO 1 
             
0100        WM=(XL+XR)/2. 
 
            W=WM 
            GOLD=444 
            GOTO 1 
 
        end subroutine GOLD1 
        subroutine GOLD2 (MOVE, L1,L2,LCR,jumpL, Kconc,Kdin, KPT,KPTc, PZ,PZo, PTr, 
D,Cp,C, S, SIGMt, zTIME, zzTIME,restart) 
            integer gold, MOVE, II, restart 
            real Cp,C, l1,l2, kconc,kdin, S, SIGMt, zTIME, XL, XR, WL, WR, W, FL, FR, WM, 
D, KPT,KPTC, JUMPL, L,LCR, LOPT, PZ,PZo, PTR,RAZ, ZZTIME,ZTOPT, VAL 
            save XL, XR, WL, WR, W, FL, FR, WM 
            save GOLD, II 
            save zTopt, Lopt 
 
             
            if (restart.eq.2) goto 1400 
            restart=0 
!--------------------------------------------------------------------------------- 
!--------------------------------------------------------------------------------- 
!--------------------------------------------------------------------------------- 
            IF(TASK.EQ.1) then  
                GOTO 1000 
            endif 
            IF(TASK.EQ.2) then 
                IF(GOLD.LT.444) GOTO 1000 
                IF(TASK.EQ.2) return!GOTO 270 
                if(move.eq.2) return!goto 270 
                gold=0 
                move=1 
                goto 1200 
            endif 
            Lcr=D+4*L1 
            PZ=2.*L2 
            L=Lcr+2.*PZ 
            PZo=2.*PZ/L 
            IF(L2.GT.1995) STOP!GOTO 280!check PV has .gt.1995 !different !original 995 
            if(move.gt.1.and.gold.ne.444) THEN 
                IF(GOLD.LT.444) GOTO 1000 
                IF(TASK.EQ.2) return!GOTO 270 
                if(move.eq.2) return!goto 270 
                gold=0 
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                move=1 
                goto 1200 
            ENDIF 
 
!        ***Result output 
            CALL OUTPUT(zTIME,zzTIME,Lcr,L,Kdin,Kconc,PZ,PZo,PTr,KPT) 
! 
 
                IF(GOLD.LT.444) GOTO 1000 
                IF(TASK.EQ.2) return!GOTO 270 
                if(move.eq.2) return!goto 270 
                gold=0 
                move=1 
                goto 1200             
             
1000        RAZ=KPT-KPTc 
            VAL=RAZ 
!       write(*,*)'  mainRAZ=',RAZ 
            IF(TASK.EQ.2) GOTO 1600 
            IF(TASK.EQ.1) THEN 
                GOTO 1100 
            ENDIF 
            IF(MOVE.ge.2) GOTO 1600 
            Lopt=L1 
            zTopt=zTIME 
1100        IF(VAL.LT.0) THEN 
                IF(TASK.EQ.1) return!GOTO 270 
                IF(MOVE.NE.0) THEN 
                    MOVE=2 
                    GOTO 1400 
                ENDIF 
                IF(zTIME.LT.(limit*Cp/c)) THEN 
                    GOTO 1300! changed from 7.0*Cp/c for change from upperlimit 
                ENDIF 
                return!GOTO 270 
            ENDIF 
            IF(TASK.EQ.1) return!GOTO 270 
            if(move.ne.0) THEN 
                IF(zTIME.LE.(limit*Cp/c)) GOTO 1200! changed from 7.0*Cp/c for change 
from upperlimit 
                return!GOTO 270  
            ENDIF 
            move=10 
            if(zTopt.eq.0) return!goto 270 
            goto 1400 
!      MOVE=1 !!CHECK IF SHOULD BE COMMENT 
 
1200        L1=L1+JUMPL/2 
1300        zTIME=zTIME+TIME1 
            zzTIME=zTIME*D*1000./(2.*c) 
            zzTIME=zzTIME*(c/Cp) 
            restart=1!call golden 
            return 
 
 
!--------------------------------------------------------------------------------- 
!--------------------------------------------------------------------------------- 
!--------------------------------------------------------------------------------- 
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1400        GOLD=111 
            XL=0. 
            XR=1. 
            WL=1.-TAU 
            WR=TAU 
            II=2 
            W=WL 
 
1500        IF(TASK.EQ.0)then 
                if(move.ne.2) then 
                    else 
                        L1=Lopt-JUMPL*(1-W)/2 
                endif 
                zTIME=zTopt-TIME1*(1-W) 
                zzTIME=zTIME*D*1000./(2.*c) 
                zzTIME=zzTIME*(c/Cp) 
                restart=1!call golden 
                return 
                else 
                    S=W*SIGMt 
                    !call shapeF(S, KPT,KPTc) 
                    restart=1!call golden 
                    return 
            endif 
 
1600        IF(GOLD.GT.111) then 
                IF(GOLD.EQ.222) then 
                    FR=ABS(VAL) 
                    else 
                        FL=ABS(VAL) 
                endif                
                else 
                    FL=ABS(VAL) 
                    W=WR 
!      write(*,*)'  WW=WWR=',WW 
                    GOLD=222 
                    IF(TASK.EQ.0)then 
                        if(move.ne.2) then 
                            else 
                               L1=Lopt-JUMPL*(1-W)/2 
                        endif 
                        zTIME=zTopt-TIME1*(1-W) 
                        zzTIME=zTIME*D*1000./(2.*c) 
                        zzTIME=zzTIME*(c/Cp) 
                        restart=1!call golden 
                        return 
                        else 
                            S=W*SIGMt 
                            !call shapeF(S, KPT,KPTc) 
                            restart=1!call golden 
                            return 
                    endif 
            endif 
            II=II+1 
             
            IF(FR-FL) 10,20,30 
0010            XL=WL 
                XR=XR!-TAU**II!Added -TAU**II!Check 
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                !deltXX=XR-XL 
                IF((XR-XL).LE.(acc)) GOTO 100 
                WL=WR 
                FL=FR 
                WR=XR-TAU**II 
                W=WR 
                GOLD=222 
                GOTO 1500 
             
0020            XL=WL 
                XR=WR 
                !deltXX=XR-XL 
                IF((XR-XL).LE.(acc)) GOTO 100 
                WL=XL+TAU**II 
                WR=XR-TAU**II 
                GOLD=111 
                W=WL 
                GOTO 1500 
             
0030            XL=XL 
                XR=WR 
                !deltXX=XR-XL 
                IF((XR-XL).LE.(acc)) GOTO 100 
                WR=WL 
                FR=FL 
                WL=XL+TAU**II 
                GOLD=333 
                W=WL 
                GOTO 1500 
             
0100        WM=(XL+XR)/2. 
            W=WM 
            GOLD=444 
            GOTO 1500 
 
        end subroutine GOLD2 

end module search 

AII.6. Alfa_mod 

module alfa_mod 
    use global_mod 
    use common_Var 
    use Koef 
    use Empty_array 
    use A_array 
     
    implicit none 
    Contains 
        SUBROUTINE ALFA(ATA,N,L0,L1,L2, KPTc) 
    use global_mod 
    use common_Var 
    use Koef 
    use Empty_array 
    use A_array 
    use shapeFunc 
!      *************************************************** 



96 

 

!        METHOD OF MECHANICAL QUADRATURES  
!      *************************************************** 
! 
!      Variables of *ALFA* 
!      ................................................. 
!        N     - Chebyshev’s node number; 
!        L0    - half-length of the central crack link(#0); 
!        L1    - half-length of the radial crack (link #1); 
!        L2    - half-length of the plastic zone(link #2); 
!        KSI   - column matrix (N*1) of Chebyshev’s node  
!                dimensionless coordinates; 
!        WAR   - argument of *COS* function in calculation of *KSI*; 
!        ATA   - matrix of load coordinates (dimensionless); 
!        WAR1  - argument of *COS* function in calculation of *ATA*; 
!        A     - matrix (N x N) of linear equation system coefficients;  
!        MGlob - global matrix (3N*5N); 
!          F    - column matrix (N*1) of load in nodes; 
!          R    - column matrix (N*1) of right side of linear equation 
!                 system; 
!          N1   - Chebyshev’s node number for *ALFA*; 
!          N2   - number of load application points *ALFA*; 
!          N3   - Chebyshev’s node number for *TAU*; 
!          N4   - node number where the “empty” zone ends; 
!          N5   - number of nodes in plastic zone; 
!          N6   - number of node where the application of load starts; 
!          N7   - number of node where the “empty” zone starts starts; 
!          N8   - number of load application points; 
! 
!      ................................................. 
                REAL WAR,WAR1,WAR2,KSI,ATA,L0,L1,L2, cod_local, a_Local, KPTc!, MGLOB!, 
A!, empty 
                !PARAMETER (PI=3.14159265) 
                DIMENSION KSI(32),ATA(31), cod_local(96), a_local(96,96)!, 
MGLOB(96,160)!, A(96,96)!,EMPTY(6144), 
                !COMMON /KOEF/ MGlob 
                !EQUIVALENCE (MGlob(1,1),A(1,1)) 
                integer n, n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12, n13, n14, 
n15, n16, n17, n18, n19, n20, n21, n22, n23, n24, n25, n26, n27, n28, n29, n30, n31, n32, 
n33, n34, n36, n37, n38, n40, i, j, k, m 
                 
                cod_local=cod 
                a_local=A 
                 
                N1=N 
                N2=N-1 
                N3=N-1 
                N4=N 
                N5=N-1 
                N6=N 
                N7=N+1 
                N8=2*N 
                N9=2*N+1 
                N10=3*N 
                N11=N 
                N12=2*N-2 
                N13=N 
                N14=N+1 
                N15=2*N 
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                N16=2*N+1 
                N17=3*N 
                N18=2*N-1 
                N19=3*N-3 
                N20=N 
                N21=N+1 
                N22=2*N 
                N23=2*N+1 
                N24=3*N 
                N25=N 
                N26=3*N-2 
                N27=N+1 
                N28=3*N 
                N29=N 
                N30=3*N-1 
!             write(*,*)'   N30=',N30 
                N31=N+1 
                N32=2*N 
                N33=2*N+1 
                N34=3*N 
!               N35=3*N-1 
!             write(*,*)'   N35=',N35 
                N36=2*N 
                N37=3*N 
!             write(*,*)'   N37=',N37 
                N38=2*N+1 
!      sigmt=sigmt*1. 
!      ................................................. 
                DO 5 K=1,N1 
                    WAR=(2*K-1)*PI/(2*N)*1. 
                    KSI(K)=COS(WAR) 
!         write(*,*)'  I=',I,'   KSI=',KSI(I) 
0005            CONTINUE 
!      ................................................. 
                DO 10 M=1,N2 
                    WAR1=PI*M/N*1. 
                     
                     
                    ATA(M)=COS(WAR1) 
                    !if(ATA(M).ge.(0.0))then 
                    !    ATA(M)=sqrt(COS(WAR1)*tempR) 
                    !else 
                    !    ATA(M)=-1.0*sqrt(-1.0*COS(WAR1)*tempR) 
                    !endif 
                     
!        write(*,*)'   K=',K,'   ATA=',ATA(K) 
0010            CONTINUE 
!      ................................................ 
 
                CALL GLOBAL(KSI,ATA,L0,L1,L2,N) 
!       write(*,*)'  MGlob=',mglob 
 
!      ************************************************************ 
                DO 40 I=1,N5 
                    DO 25 J=1,N6 
                        K=J 
                        A(I,J)=MGlob(I,K) 
!               write(*,*)'  I=',I,'J=',J,'A=',A(I,J) 
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0025                CONTINUE 
!      ........................................................ 
                    DO 30 J=N7,N8 
                        K=J+2*N 
                        A(I,J)=MGlob(I,J)+MGlob(I,K) 
!               write(*,*)'  I=',I,'J=',J,'A=',A(I,J) 
0030                CONTINUE 
!      ................................................. 
                    DO 35 J=N9,N10 
                        K=J+2*N 
                        A(I,J)=MGlob(I,J)+MGlob(I,K) 
!               write(*,*)'  I=',I,'J=',J,'A=',A(I,J) 
0035                CONTINUE 
0040            CONTINUE 
!      ********************************************************** 
                DO 60 I=N11,N12 
                    DO 45 J=1,N13 
                         K=J 
                         A(I,J)=MGlob(I,K) 
!               write(*,*)'  I=',I,'J=',J,'A=',A(I,J) 
0045                CONTINUE 
!      ................................................. 
                    DO 50 J=N14,N15 
                        K=J+2*N 
                        A(I,J)=MGlob(I,J)+MGlob(I,K) 
!               write(*,*)'  I=',I,'J=',J,'A=',A(I,J) 
0050                CONTINUE 
!               write(*,*)'  M11(1,3)=',M11(1,3) 
!               write(*,*)'  M13(1,3)=',M13(1,3) 
!      ................................................. 
                    DO 55 J=N16,N17 
                        K=J+2*N 
                        A(I,J)=MGlob(I,J)+MGlob(I,K) 
!               write(*,*)'  I=',I,'J=',J,'A=',A(I,J) 
0055                CONTINUE 
0060            CONTINUE 
!      ************************************************** 
                DO 80 I=N18,N19 
                    DO 65 J=1,N20 
                        K=J 
                        A(I,J)=MGlob(I,J) 
!               write(*,*)'   I=',I,'J=',J,'A=',A(I,J) 
0065                CONTINUE 
!      ................................................. 
                    DO 70 J=N21,N22 
                        K=J+2*N 
                        A(I,J)=MGlob(I,J)+MGlob(I,K) 
!               write(*,*)'   I=',I,'J=',J,'A=',A(I,J) 
0070                CONTINUE 
!      ................................................. 
                    DO 75 J=N23,N24 
                        K=J+2*N 
                        A(I,J)=MGlob(I,J)+MGlob(I,K) 
!               write(*,*)'   I=',I,'J=',J,'A=',A(I,J) 
0075                CONTINUE 
0080            CONTINUE 
!      ************************************************* 
                I=N26 
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                DO 85 J=1,N25 
                    A(I,J)=1. 
!            write(*,*)'   I=',I,'J=',J,'A=',A(I,J) 
0085            CONTINUE 
!      ................................................. 
                DO 90 J=N27,N28 
                    A(I,J)=0 
!            write(*,*)'   I=',I,'J=',J,'A=',A(I,J) 
0090            CONTINUE 
!      ................................................. 
                I=N30 
                DO 95 J=1,N29 
                    A(I,J)=0 
!            write(*,*)'   I=',I,'J=',J,'A=',A(I,J) 
0095            CONTINUE 
!      ................................................. 
                DO 100 J=N31,N32 
                    K=J-N 
                    WAR2=(2*K-1.)*PI/(4*N) 
                    A(I,J)=(-1)**K*COS(WAR2)/SIN(WAR2) 
!            write(*,*)'   I=',I,'J=',J,'A=',A(I,J) 
0100            CONTINUE 
!      ................................................. 
                DO 105 J=N33,N34 
                    A(I,J)=0 
!            write(*,*)'   I=',I,'J=',J,'A=',A(I,J) 
0105            CONTINUE 
!      ................................................. 
                I=N37 
                DO 110 J=1,N 
                    A(I,J)=0 
!            write(*,*)'   I=',I,'J=',J,'A=',A(I,J) 
0110            CONTINUE 
!      ................................................. 
                DO 115 J=(N+1),(2*N) 
                    K=J-N 
                    WAR2=(2*K-1)*PI/(4*N)*1. 
                    A(I,J)=(-1)**K*SIN(WAR2)/COS(WAR2) 
!            write(*,*)'   I=',I,'J=',J,'A=',A(I,J) 
0115            CONTINUE 
!      ................................................. 
                DO 120 J=(2*N+1),(3*N) 
                    A(I,J)=0 
!             write(*,*)'  I=',I,'J=',J,'A=',A(I,J) 
0120            CONTINUE 
!      ................................................. 
!       write(*,*)'  A(I)=',A 
!        write(*,*)'  M11(1,3)=',M11(1,3),'  M12(1,3)=',M12(1,3) 
!        WRITE(*,*)'  M14(1,3)=',M14(1,3),'  M21(1,2)=',M21(1,2) 
!        WRITE(*,*)'  M23(1,2)=',M23(1,2),'  M21(2,2)=',M21(2,2) 
!        WRITE(*,*)'  M23(2,2)=',M23(2,2) 
                N40=6*N*N 
                DO 250 I=1,N40 
                    EMPTY(I)=0. 
0250            CONTINUE 
                call shapeF(KPTc) 
!          write(*,*)'   Aтрансп.=',A 
                RETURN 
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    END subroutine alfa 
    end module alfa_mod 

AII.7. Global 

module alfa_mod 
    use global_mod 
    use common_Var 
    use Koef 
    use Empty_array 
    use A_array 
     
    implicit none 
    Contains 
        SUBROUTINE ALFA(ATA,N,L0,L1,L2, KPTc) 
    use global_mod 
    use common_Var 
    use Koef 
    use Empty_array 
    use A_array 
    use shapeFunc 
!      *************************************************** 
!        METHOD OF MECHANICAL QUADRATURES  
!      *************************************************** 
! 
!      Variables of *ALFA* 
!      ................................................. 
!        N     - Chebyshev’s node number; 
!        L0    - half-length of the central crack link(#0); 
!        L1    - half-length of the radial crack (link #1); 
!        L2    - half-length of the plastic zone(link #2); 
!        KSI   - column matrix (N*1) of Chebyshev’s node  
!                dimensionless coordinates; 
!        WAR   - argument of *COS* function in calculation of *KSI*; 
!        ATA   - matrix of load coordinates (dimensionless); 
!        WAR1  - argument of *COS* function in calculation of *ATA*; 
!        A     - matrix (N x N) of linear equation system coefficients;  
!        MGlob - global matrix (3N*5N); 
!          F    - column matrix (N*1) of load in nodes; 
!          R    - column matrix (N*1) of right side of linear equation 
!                 system; 
!          N1   - Chebyshev’s node number for *ALFA*; 
!          N2   - number of load application points *ALFA*; 
!          N3   - Chebyshev’s node number for *TAU*; 
!          N4   - node number where the “empty” zone ends; 
!          N5   - number of nodes in plastic zone; 
!          N6   - number of node where the application of load starts; 
!          N7   - number of node where the “empty” zone starts starts; 
!          N8   - number of load application points; 
! 
!      ................................................. 
                REAL WAR,WAR1,WAR2,KSI,ATA,L0,L1,L2, cod_local, a_Local, KPTc!, MGLOB!, 
A!, empty 
                !PARAMETER (PI=3.14159265) 
                DIMENSION KSI(32),ATA(31), cod_local(96), a_local(96,96)!, 
MGLOB(96,160)!, A(96,96)!,EMPTY(6144), 
                !COMMON /KOEF/ MGlob 
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                !EQUIVALENCE (MGlob(1,1),A(1,1)) 
                integer n, n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12, n13, n14, 
n15, n16, n17, n18, n19, n20, n21, n22, n23, n24, n25, n26, n27, n28, n29, n30, n31, n32, 
n33, n34, n36, n37, n38, n40, i, j, k, m 
                 
                cod_local=cod 
                a_local=A 
                 
                N1=N 
                N2=N-1 
                N3=N-1 
                N4=N 
                N5=N-1 
                N6=N 
                N7=N+1 
                N8=2*N 
                N9=2*N+1 
                N10=3*N 
                N11=N 
                N12=2*N-2 
                N13=N 
                N14=N+1 
                N15=2*N 
                N16=2*N+1 
                N17=3*N 
                N18=2*N-1 
                N19=3*N-3 
                N20=N 
                N21=N+1 
                N22=2*N 
                N23=2*N+1 
                N24=3*N 
                N25=N 
                N26=3*N-2 
                N27=N+1 
                N28=3*N 
                N29=N 
                N30=3*N-1 
!             write(*,*)'   N30=',N30 
                N31=N+1 
                N32=2*N 
                N33=2*N+1 
                N34=3*N 
!               N35=3*N-1 
!             write(*,*)'   N35=',N35 
                N36=2*N 
                N37=3*N 
!             write(*,*)'   N37=',N37 
                N38=2*N+1 
!      sigmt=sigmt*1. 
!      ................................................. 
                DO 5 K=1,N1 
                    WAR=(2*K-1)*PI/(2*N)*1. 
                    KSI(K)=COS(WAR) 
!         write(*,*)'  I=',I,'   KSI=',KSI(I) 
0005            CONTINUE 
!      ................................................. 
                DO 10 M=1,N2 
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                    WAR1=PI*M/N*1. 
                     
                     
                    ATA(M)=COS(WAR1) 
                    !if(ATA(M).ge.(0.0))then 
                    !    ATA(M)=sqrt(COS(WAR1)*tempR) 
                    !else 
                    !    ATA(M)=-1.0*sqrt(-1.0*COS(WAR1)*tempR) 
                    !endif 
                     
!        write(*,*)'   K=',K,'   ATA=',ATA(K) 
0010            CONTINUE 
!      ................................................ 
 
                CALL GLOBAL(KSI,ATA,L0,L1,L2,N) 
!       write(*,*)'  MGlob=',mglob 
 
!      ************************************************************ 
                DO 40 I=1,N5 
                    DO 25 J=1,N6 
                        K=J 
                        A(I,J)=MGlob(I,K) 
!               write(*,*)'  I=',I,'J=',J,'A=',A(I,J) 
0025                CONTINUE 
!      ........................................................ 
                    DO 30 J=N7,N8 
                        K=J+2*N 
                        A(I,J)=MGlob(I,J)+MGlob(I,K) 
!               write(*,*)'  I=',I,'J=',J,'A=',A(I,J) 
0030                CONTINUE 
!      ................................................. 
                    DO 35 J=N9,N10 
                        K=J+2*N 
                        A(I,J)=MGlob(I,J)+MGlob(I,K) 
!               write(*,*)'  I=',I,'J=',J,'A=',A(I,J) 
0035                CONTINUE 
0040            CONTINUE 
!      ********************************************************** 
                DO 60 I=N11,N12 
                    DO 45 J=1,N13 
                         K=J 
                         A(I,J)=MGlob(I,K) 
!               write(*,*)'  I=',I,'J=',J,'A=',A(I,J) 
0045                CONTINUE 
!      ................................................. 
                    DO 50 J=N14,N15 
                        K=J+2*N 
                        A(I,J)=MGlob(I,J)+MGlob(I,K) 
!               write(*,*)'  I=',I,'J=',J,'A=',A(I,J) 
0050                CONTINUE 
!               write(*,*)'  M11(1,3)=',M11(1,3) 
!               write(*,*)'  M13(1,3)=',M13(1,3) 
!      ................................................. 
                    DO 55 J=N16,N17 
                        K=J+2*N 
                        A(I,J)=MGlob(I,J)+MGlob(I,K) 
!               write(*,*)'  I=',I,'J=',J,'A=',A(I,J) 
0055                CONTINUE 
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0060            CONTINUE 
!      ************************************************** 
                DO 80 I=N18,N19 
                    DO 65 J=1,N20 
                        K=J 
                        A(I,J)=MGlob(I,J) 
!               write(*,*)'   I=',I,'J=',J,'A=',A(I,J) 
0065                CONTINUE 
!      ................................................. 
                    DO 70 J=N21,N22 
                        K=J+2*N 
                        A(I,J)=MGlob(I,J)+MGlob(I,K) 
!               write(*,*)'   I=',I,'J=',J,'A=',A(I,J) 
0070                CONTINUE 
!      ................................................. 
                    DO 75 J=N23,N24 
                        K=J+2*N 
                        A(I,J)=MGlob(I,J)+MGlob(I,K) 
!               write(*,*)'   I=',I,'J=',J,'A=',A(I,J) 
0075                CONTINUE 
0080            CONTINUE 
!      ************************************************* 
                I=N26 
                DO 85 J=1,N25 
                    A(I,J)=1. 
!            write(*,*)'   I=',I,'J=',J,'A=',A(I,J) 
0085            CONTINUE 
!      ................................................. 
                DO 90 J=N27,N28 
                    A(I,J)=0 
!            write(*,*)'   I=',I,'J=',J,'A=',A(I,J) 
0090            CONTINUE 
!      ................................................. 
                I=N30 
                DO 95 J=1,N29 
                    A(I,J)=0 
!            write(*,*)'   I=',I,'J=',J,'A=',A(I,J) 
0095            CONTINUE 
!      ................................................. 
                DO 100 J=N31,N32 
                    K=J-N 
                    WAR2=(2*K-1.)*PI/(4*N) 
                    A(I,J)=(-1)**K*COS(WAR2)/SIN(WAR2) 
!            write(*,*)'   I=',I,'J=',J,'A=',A(I,J) 
0100            CONTINUE 
!      ................................................. 
                DO 105 J=N33,N34 
                    A(I,J)=0 
!            write(*,*)'   I=',I,'J=',J,'A=',A(I,J) 
0105            CONTINUE 
!      ................................................. 
                I=N37 
                DO 110 J=1,N 
                    A(I,J)=0 
!            write(*,*)'   I=',I,'J=',J,'A=',A(I,J) 
0110            CONTINUE 
!      ................................................. 
                DO 115 J=(N+1),(2*N) 
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                    K=J-N 
                    WAR2=(2*K-1)*PI/(4*N)*1. 
                    A(I,J)=(-1)**K*SIN(WAR2)/COS(WAR2) 
!            write(*,*)'   I=',I,'J=',J,'A=',A(I,J) 
0115            CONTINUE 
!      ................................................. 
                DO 120 J=(2*N+1),(3*N) 
                    A(I,J)=0 
!             write(*,*)'  I=',I,'J=',J,'A=',A(I,J) 
0120            CONTINUE 
!      ................................................. 
!       write(*,*)'  A(I)=',A 
!        write(*,*)'  M11(1,3)=',M11(1,3),'  M12(1,3)=',M12(1,3) 
!        WRITE(*,*)'  M14(1,3)=',M14(1,3),'  M21(1,2)=',M21(1,2) 
!        WRITE(*,*)'  M23(1,2)=',M23(1,2),'  M21(2,2)=',M21(2,2) 
!        WRITE(*,*)'  M23(2,2)=',M23(2,2) 
                N40=6*N*N 
                DO 250 I=1,N40 
                    EMPTY(I)=0. 
0250            CONTINUE 
                call shapeF(KPTc) 
!          write(*,*)'   Aтрансп.=',A 
                RETURN 
    END subroutine alfa 

    end module alfa_mod 

AII.8. Impact_mod 

module impact_mod 
    implicit none 
    Contains 
        SUBROUTINE IMPACT(zTIME,Kdin,Kconc,Cp,c) 
    use common_Var 
!      ************************************************* 
!       Calculation of stress concentration factor 
!      ************************************************* 
 
!      Variables of *IMPACT*: 
!      ................................................................. 
!        zTIME – current relative time; 
!        zTIMEi - current relative time without taking into account the 
!                 change of sound speed behind the shock wave front; 
!        Kdin  - dynamic factor; 
!        Kconc – stress concentration factor near the hole; 
!        A1...A7, B1...B5 – coefficients for Kconc=f(time) approximation; 
!      ................................................................. 
 
            REAL A1,A2,A3,A4,A5,A6,A7 
            REAL B1,B2,B3,B4,B5,zTIME,zTIMEi,Kdin,Kconc 
            Real c, cp 
                 
            zTIMEi=zTIME*c/Cp 
 
            A1=1.003535 
            A2=1.487873 
            A3=-0.7400411 
            A4=0.2788296 
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            A5=-5.6660146E-2 
            A6=5.4292236E-3 
            A7=-1.9277200E-4 
            B1=-5.872105 
            B2=3.247749 
            B3=-0.4179149 
            B4=2.3053829E-2 
            B5=-4.6608824E-4 
            IF(zTIMEi.GT.(limit)) GOTO 20! changed from 7.0 for change from upperlimit 
            
Kdin=(A1+A2*zTIMEi+A3*zTIMEi*zTIMEi+A4*zTIMEi**3+A5*zTIMEi**4+A6*zTIMEi**5+A7*zTIMEi**6)/
3. 
            GOTO 30 
0020        IF(zTIMEi.GE.(limit2)) GOTO 24! changed from 15.0 for change from upperlimit 
0022        Kdin=(B1+B2*zTIMEi+B3*zTIMEi*zTIMEi+B4*zTIMEi**3+B5*zTIMEi**4)/3. 
            GOTO 30 
0024        Kdin=1. 
0030        Kconc=Kdin*3. 
            RETURN 
            END subroutine impact     

    end module impact_mod 

AII.9. Load_mod 

module load_mod 
    !use common_Var 
    use Left 
    implicit none 
    Contains 
        SUBROUTINE LOAD(S,N,L0,L1,L2,ATA,SIGMt,Kdin,sample) 
    use common_Var, only : COD, FAC 
    use Left        
!      ********************************************* 
!                   Load calculation 
!      ********************************************* 
! 
!      Variables of *LOAD*: 
!      .................................................................. 
!        N     - Chebyshev’s node number; 
!        S     - design load; 
!        L0    - half-length of the central crack link(#0); 
!        L1    - half-length of the radial crack (link #1); 
!        L2    - half-length of the plastic zone(link #2); 
!        SIGMt – Yield strength; 
!        ATA   - matrix of load coordinates (dimensionless); 
!        Kconc – concentration factor; 
!          R    - column matrix (3N*1) of right side of linear equation 
!                 system; 
!          F    - column matrix (3N*1) of load in nodes; 
!        F0,F1,F2 – variables for calculation of F; 
!        N1    - load points in central link (#0); 
!        N2    - load points in link #1; 
!        N3    - load points in link #2; 
!        M     - current point number within the link; 
!        I     - current point number (counting from the right tip to the 
!                center of crack); 
!      .................................................................... 
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            integer sample, n, n1, n2 ,n3, m, i 
            REAL F,S,ATA,L0,L1,L2,SIGMt,F1,F2,f3, f4, F0,Kdin, Pi_local, del,R_local!, 
tempR 
            DIMENSION F(96),ATA(N-1), R_local(96) 
            !COMMON /LEFT/R 
                 
            Pi_local=3.14159265 
            R_local=R 
            del=1.0 
            N1=N-1 
            N2=N1 
            N3=N1 
!      ................................................. 
            DO 5 M=1,N1 
                F(M)=0. 
                I=2*N-2+M 
                R(I)=N*F(M) 
!               write(*,*)'    I=',I,'  R=',R(I) 
0005        CONTINUE 
!      ................................................. 
!loop of load describing the 
            DO 10 M=1,N2 
!               write(*,*)'  M=',M,'  ATA=',ATA(M) 
!               write(*,*)'  L0=',L0,'  L1=',L1 
                F0=L0/(L0+L1+L1*ATA(M)) 
                F1=F0*F0 
!               write(*,*)'   F1=',F1 
                F2=F1*F1 
!               write(*,*)'   F2=',F2 
                F3=(Kdin-1.)*F0+1. 
                IF (SAMPLE.EQ.1) then 
                    F(M)=(-S*(1.+0.5*F1+1.5*F2)-S/4.*F1*(1.-3.*F1))*F3 
                    else 
                        F(M)=-S*(1.+0.5*F1+1.5*F2)*F3 
                endif 
!               IF(ABS(F(M)).GT.SIGMt) F(M)=-SIGMt 
!               write(*,*)'    M=',M,'  F=',F(M) 
                I=N-1+M 
                R(I)=N*F(M) 
!               write(*,*)'   I=',I,'   R=',R(I) 
0010        CONTINUE 
!      ................................................. 
!loop of load describing the plastic zone 
            DO 15 M=1,N3 
                F0=L0/(L0+2*L1+L2+L2*ATA(M)) 
                F1=F0*F0 
                F2=F1*F1 
                F3=(Kdin-1.)*F0+1. 
                IF (SAMPLE.EQ.1) then 
                    F4=(-S*(1.+0.5*F1+1.5*F2)-S/4.*F1*(1.-3.*F1))*F3 
                    else 
                        F4=-S*(1.+0.5*F1+1.5*F2)*F3 
                    endif 
                F(M)=SIGMt*del+F4 
 
!               write(*,*)'   M=',M,'  F=',F(M) 
                I=M 



107 

 

                R(I)=N*F(M) 
!               write(*,*)'   I=',I,'   R=',R(I) 
0015        CONTINUE 
!      ................................................. 
            I=3*N-2 
            R(I)=0 
!           write(*,*)'   I=',I,'   R=',R(I) 
            I=3*N-1 
            R(I)=0 
!           write(*,*)'   I=',I,'   R=',R(I) 
            I=3*N 
            R(I)=0 
!           write(*,*)'   I=',I,'   R=',R(I) 
!           write(*,*)'   R from LOAD   ',R 
! 
            RETURN 
        END subroutine load     

    end module load_mod 

AII.10. GELG 

module gelg_mod 
 
     
    implicit none 
    Contains 
        subroutine gelg(m,n,eps,ier) 
                 
            !use common_Var 
            !use Koef 
            use Left 
            use Empty_array 
            use A_array 
            use New_gelg 
                 
                real eps 
                !Dimension A(96,96)!, empty(6144)!, r(96), 
                !common /koef/A 
                integer m, n, ier 
                 
            call newGelg(A,R) 
            !call oldgelg(m,n,eps,ier,A) 
 
        end subroutine gelg 
        subroutine oldgelg(m,n,eps,ier,A) 
             
!      .............................................................. 
!      PURPOSE 
!         TO SOLVE A GENERAL SYSTEM OF SIMULTANEOUS LINEA EQUATIONS. 
! 
!      USAGE 
!         CALL GELG(R,A,M,N,EPS,IER) 
! 
!      DESCRIPTION OF PARAMETERS 
!         R      - THE M BY N MATRIX OF RIGHT HAND SIDES. (DESTROYED) 
!                  ON RETURN R CONTAINS THE SOLUTION OF THE EQUATIONS. 
!         A      - THE M BY M COEFFICIENT MATRIX. (DESTROYED) 
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!         M      - THE NUMBER OF EQUATIONS IN THE SYSTEM. 
!         N      - THE NUMBER OF RIGHT HAND SIDE VECTORS. 
!         EPS    - AN INPUT CONSTANT WHICH IS USED AS REL.TIVE 
!                  TOLERANCE FOR TEST ON LOSS OF SIGNIFIC.NCE. 
!         IER    - RESULTING ERROR PARAMETER CODED AS FOL.OWS 
!                  IER=0  - NO ERROR, 
!                  IER=-1 - NO RESULT BECAUSE OF M LESS T AN 1 OR 
!                           PIVOT ELEMENT AT ANY ELIMINATION STEP 
!                           EQUAL TO 0, 
!                  IER=K  - WARNING DUE TO POSSIBLE LOSS F SIGNIFICA- 
!                           NCE INDICATED AT ELIMINATION STEP K+1, 
!                           WHERE PIVOT ELEMENT WAS LESS HANDOR 
!                           EQUAL TO THE INTERNAL TOLERAN.E EPS TIMES 
!                           ABSOLUTELY GREATEST ELEMENT MATRIX A. 
! 
!      REMARKS 
!         INPUT MATRICES R AND A ARE ASSUMED TO BE.STORED COLUMNWISE 
!         IN M*N RESP. M*M SUCCESSIVE STORAGE LOCATIONS. N RETURN 
!         SOLUTION MATRIX R IS STORED COLUMNWISE TOO. 
!         THE PROCEDURE GIVES RESULTS IF THE NUMBER OF EQUATIONS M IS 
!         GREATER THAN 0 AND PIVOT ELEMENTS AT ALL ELIMINATION STEPS 
!         ARE DIFFERENT FROM 0. HOWEVER WARNING IER=K-I GIVEN 
!         INDICATES POSSIBLE LOSS OF SIGNIFICANCE. IN CAS OF A WELL 
!         SCALED MATRIX A AND APPROPRIATE TOLERANCE EPS, IER=K MAY.BE 
!         INTERPRETED THAT MATRIX A HAS THE RANK K. NO WARNING IS 
!         GIVEN IN CASE M=1. 
! 
!      SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED 
!         NONE 
! 
!      METHOD 
!         SOLUTION IS DONE BY MEANS OF GAUSS-ELIMINATION WITH 
!         COMPLETE PIVOTING. 
!      .............................................................. 
 
!      DIMENSION A(1),R(1) 
                use Left 
                use Empty_array 
                !integer, parameter :: rk = selected_real_kind(15,307) !commented out due 
to common use 
                real eps, piv, pivi, tol, tb, A 
                Dimension A(9216)!, empty(6144)!, r(96), 
                !common /koef/A!,empty 
                !common /left/r 
                integer m, mm, n, nm, l, ll, lst, lend,  i, ii, ist, j, k, ier 
                 
                IF(M)23,23,1 
                 
!      SEARCH FOR GREATEST ELEMENT IN MATRIX A 
0001            IER=0 
                PIV=0. 
                MM=M*M 
                NM=N*M 
                DO 3 L=1,MM 
                    TB=ABS(A(L)) 
                    IF(TB-PIV)3,3,2 
0002                PIV=TB 
                    I=L 



109 

 

0003            CONTINUE 
                TOL=EPS*PIV 
!      A(I) IS PIVOT ELEMENT. PIV CONTAINS THE ABSOLUTE VALUM OF A(I). 
 
!      START ELIMINATION LOPP 
                LST=1 
                DO 17 K=1,M 
!      TEST ON SINGULARITY 
                    IF(PIV)23,23,4 
0004                IF(IER)7,5,7 
0005                IF(PIV-TOL)6,6,7 
0006                IER=K-1 
0007                PIVI=1./A(I) 
                    J=(I-1)/M 
                    I=I-J*M-K 
                    J=J+1-K 
!      I+K IS ROW-INDEX, J+K COLUMN-INDEX OF PIVOT ELEMENT 
 
!      PIVOT ROW REDUCTION AND ROW INTERCHANCE IN RICHT HAND SIDE R 
                    DO 8 L=K,NM,M 
                        LL=L+I 
                        TB=PIVI*R(LL) 
                        R(LL)=R(L) 
0008                R(L)=TB 
 
!      IS ELIMINATION TERMINATED 
                    IF(K-M)9,18,18 
 
!      COLUMN INTERCHANCE IN MATRIX A 
0009                LEND=LST+M-K 
                    IF(J)12,12,10 
0010                II=J*M 
                    DO 11 L=LST,LEND 
                        TB=A(L) 
                        LL=L+II 
                        A(L)=A(LL) 
0011                A(LL)=TB 
 
!      ROW INTERCHANGE AND PIVOT ROW REDUCTION IN MATRIX A 
0012                DO 13 L=LST,MM,M 
                        LL=L+I 
                        TB=PIVI*A(LL) 
                        A(LL)=A(L) 
0013                A(L)=TB 
 
!      SAVE COLUMN INTERCHANGE INFORMATION 
                    A(LST)=J 
 
!      ELEMENT REDUCTION AND NEXT PIVOT SEARCH 
                    PIV=0. 
                    LST=LST+1 
                    J=0 
                    DO 16 II=LST,LEND 
                        PIVI=-A(II) 
                        IST=II+M 
                        J=J+1 
                        DO 15 L=IST,MM,M 
                            LL=L-J 
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                            A(L)=A(L)+PIVI*A(LL) 
                            TB=ABS(A(L)) 
                            IF(TB-PIV)15,15,14 
0014                        PIV=TB 
                            I=L 
0015                    CONTINUE 
                        DO 16 L=K,NM,M 
                            LL=L+J 
0016                    R(LL)=R(LL)+PIVI*R(L) 
0017                LST=LST+M 
!      END OF ELIMINATION LOOP 
 
!      BACK SUBSTITUTION AND BACK INTERCHANGE 
0018            IF (M-1)23,22,19 
0019            IST=MM+M 
                LST=M+1 
                DO 21 I=2,M 
                    II=LST-I 
                    IST=IST-LST 
                    L=IST-M 
                    L=A(L)+.5 
                    DO 21 J=II,NM,M 
                        TB=R(J) 
                        LL=J 
                        DO 20 K=IST,MM,M 
                            LL=LL+1 
0020                    TB=TB-A(K)*R(LL) 
                        K=J+L 
                        R(J)=R(K) 
0021            R(K)=TB 
0022            return!call Aa2A(Aa)! new subroutine equate A matrix (96,96) with A(9216) 
!                RETURN 
 
!      ERROR RETURN 
0023            IER=-1 
      
      
                RETURN 
        end subroutine oldgelg 

    end module gelg_mod 

AII.11. New_GELG 

module New_gelg 
    USE lapack95 
    implicit none 
     
    contains 
        subroutine Newgelg(a,b) 
     
            real a(:,:),b(:) 
            integer piv(size(b)) 
     
            call getrf(a,piv) 
! 
            call getrs(a,piv,b) 
        end subroutine Newgelg 
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end module new_Gelg 

AII.12. Kin_mod 

module kin_mod 
    use common_Var 
    use Left 
    implicit none 
    Contains 
        SUBROUTINE KIN(KINo,N,S,L0,L1,L2) 
 
!      ************************************************** 
!      Calculation of stress intensity factor 
!      ************************************************** 
    use common_Var 
    use Left 
!      Variables of *KIN*: 
!      ................................................................ 
!        N     - Chebyshev’s node number; 
!        N1    - Chebyshev’s node number; 
!        S     - design load; 
!        L0    - half-length of the central crack link(#0); 
!        L1    - half-length of the radial crack (link #1); 
!        L2    - half-length of the plastic zone(link #2); 
!        KINo  - relative stress intensity factor; 
!        R     - solution matrix of linear equation system (3N*1);  
!        U2    - current node value of weight function of link #2; 
!        WAR3  - argument of arctg(x) function for calculation of *U2*; 
!        SUMU2 – sum of  *U2* values; 
!        K     - current value of N1 in link #2; 
!        I     - element number in R matrix (corresponding to K); 
!      ................................................................ 
 
                !DIMENSION R(96) 
                REAL SUMU2,U2,WAR3,S,L0,L1,L2,KINo!, R!,PI 
                real, dimension(96) :: R_local 
                !PARAMETER (PI=3.14159265) 
                !COMMON /LEFT/R 
                integer n, n1, k, i 
                 
                R_local=R 
                 
                N1=N 
                SUMU2=0 
!      ................................................. 
                DO 5 K=1,N1 
                    WAR3=(2*K-1.)*PI/(4*N)*1. 
                    I=2*N+K 
                    U2=(-1)**K*R(I)*COS(WAR3)/SIN(WAR3) 
                    SUMU2=SUMU2+U2 
0005            CONTINUE 
!      ................................................. 
                KINo=SQRT(L2/(L0+2*L1))*SUMU2/N/S 
!            write(*,*)'  KINo=',KINo 
!                write(*,*) R 
                RETURN 
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            end subroutine kin     
    end module kin_mod 

AII.13. Delta_mod 

module delta_mod 
    use common_Var 
    use Left 
    implicit none 
    Contains 
!      *************************************************** 
        SUBROUTINE DELTA(KPT,PTr,E,N,SIGMt,S,So,L1,L2) 
    use common_Var 
    use Left 
!      *************************************************** 
!       Variables of *DELTA* 
!      ................................................... 
!          DELT  - COD 
!          DELT1 - CTOD; 
!          N,N1,N2,N3 - Chebyshev’s node numbers; 
!          J,M,K – current values for N1,N2,N3; 
!          TAU   - column matrix of Chebyshev’s node coordinates; 
!          TAU1  - coordinate of Chebyshev’s node with number *N*; 
!          TAU2  - coordinate of Chebyshev’s node with number *J*; 
!          Y     - column matrix of Chebyshev polynomials values; 
!          T1    - column matrix of Chebyshev polynomials value for node  
!                  with number  *M*; 
!          TTK   - multiplication of Chebyshev polynomial values;  
!          SUMT  - summation of *TTK*; 
!          F1    - value of *SUMT*; 
!          WTT   - multiplication of *R* and *F1*; 
!          SUMW  - sum of *WTT*; 
!          SUMJ  - sum of *SUMW*; 
!          SUMJ1 - sum of *SUMW* within the plastic zone; 
!          G     - value of displacement function (at crack center); 
!          G1    - value of displacement function (at crack tip); 
!          CONST – constant factor for CTOD and COD calculation; 
!      ................................................... 
                !DIMENSION R(96) 
                REAL C1,SIGMt,E,S,So,L1,L2!, R 
                REAL SUMU1,SUMU2,KPT ,PTr 
                !real, PARAMETER :: PI=3.14159265 
                !COMMON /LEFT/R 
                integer n, n1, n2, n3, n4, i 
                real  PI_local, tempR,X2, R_local, cod_local!, alphacr, zcr 
                integer tempI 
                dimension x2(96), R_local(96), cod_local(96) 
                character (len=99) outfile 
                 
                write (outfile, 0088)REAL_CLOCK (1), outver 
0088            format('CTOD/',a8,'_TipContour_',I4.4,'.txt') 
                 
                open (unit = 9, file = trim(adjustl(outfile)), STATUS='REPLACE') 
                PI_local=PI 
                R_local=R 
                cod_local=cod 
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                N1=N+1 
                N2=N*2 
                N3=N*2+1 
                N4=N*3 
 
                SUMU1=0 
                SUMU2=0 
                tempR=0. 
                 
                write(9,1110)'NODE','NODE PROJECTION','PROJECTIONxCRACK LENGTH','COD' 
1110            format(A,', ,',A,',',A,', ,',A)                 
!!1110            format(F,',',F) 
 
                DO 10 I=N1,N2 
                    tempR=1.0 
                    !if ((cop.gt.1)) then 
                    !!    tempI=i-(n1-1) 
                    !!    tempI=(N-tempI) 
                    !!    tempR=PI_local*tempI/N 
                    !!    tempR=COS(tempR) 
                    !!    tempR=1+tempR 
                    !! 
                    !!    X2(i)=tempR*L2 
                    !! 
                    !!     
                    !!     
                    !!    alphacr=atan(kpt/(2*(2*L1+2*L2))) 
                    !!    tempR=alphacr*X2(i) 
                    !!    tempR=(COD(I))/tempR 
                    !!    tempR=abs(tempR) 
                    !!     
                    !!    zcr=1.260 
                    !!    !Bilinear 
                    !!    if (tempR.le.1) then   
                    !!        tempR=tempR*zcr 
                    !!        else if (tempR.le.2) then 
                    !!            tempR=(2.0-tempR) 
                    !!            else 
                    !!                tempR=0.0 
                    !!    endif 
                    !!     
                    !!     
                    !!    !zcr=1.3333 
                    !!    !tempR=tempR*zcr 
                    !!    !Parabolic 
                    !!    !if (tempR.le.2) then 
                    !!    !tempR=2.0*tempR-tempR*tempR 
                    !!    !else 
                    !!    !tempR=0.0 
                    !!    !end if 
                    !!     
                    !!    !zcr=1.325 
                    !!    !tempR=tempR*zcr 
                    !!    !Sine 
                    !!    !if (tempR.le.2) then 
                    !!    !tempR=sin(Pi_local*tempR*0.5) 
                    !!    !else 
                    !!    !tempR=0.0 
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                    !!    !end if 
                    !!    ! 
                    !! 
                    !!    !zcr=1.451 
                    !!    !tempR=tempR*zcr 
                    !!    !Exponential 
                    !!    !tempR=tempR*exp(1-tempR) 
                    !!     
                    !!    !tempR=1.0 
                    !!else 
                    !!    tempR=1.0 
                    !end if 
                     
                    SUMU1=SUMU1+R(I)*tempR 
                     
 
                    X2(I)=0 
 
                    COD(I)=-(4.*(SIGMt/E)/N)*(S/SIGMt)*PI/S*L2*SUMU1 
                     
0010            CONTINUE 
                if (task.gt.0) then 
                    write(*,*)'  SUMU1=',SUMU1 
                endif 
                DO 20 I=N3,N4 
                    tempR=1.0 
                    !if ((cop.gt.1)) then 
                    !    tempI=i-(n3-1) 
                    !    tempI=(N-tempI) 
                    !    tempR=PI_local*tempI/N 
                    !    tempR=COS(tempR) 
                    !    tempR=1+tempR 
                    ! 
                    !    X2(i)=tempR*L1+L2 
                    ! 
                    !     
                    !     
                    !    alphacr=atan(kpt/(2*(2*L1+2*L2))) 
                    !    tempR=alphacr*X2(i) 
                    !    tempR=(COD(I))/tempR 
                    !    tempR=abs(tempR) 
                    !     
                    !    zcr=1.260 
                    !    !Bilinear 
                    !    if (tempR.le.1) then   
                    !        tempR=tempR*zcr 
                    !        else if (tempR.le.2) then 
                    !            tempR=(2.0-tempR) 
                    !            else 
                    !                tempR=0.0 
                    !    endif 
                    !     
                    !     
                    !    !zcr=1.3333 
                    !    !tempR=tempR*zcr 
                    !    !Parabolic 
                    !    !if (tempR.le.2) then 
                    !    !tempR=2.0*tempR-tempR*tempR 
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                    !    !else 
                    !    !tempR=0.0 
                    !    !end if 
                    !     
                    !    !zcr=1.325 
                    !    !tempR=tempR*zcr 
                    !    !Sine 
                    !    !if (tempR.le.2) then 
                    !    !tempR=sin(Pi_local*tempR*0.5) 
                    !    !else 
                    !    !tempR=0.0 
                    !    !end if 
                    !    ! 
                    ! 
                    !    !zcr=1.451 
                    !    !tempR=tempR*zcr 
                    !    !Exponential 
                    !    !tempR=tempR*exp(1-tempR) 
                    !     
                    !    !TempR=1.0 
                    !     
                    !else 
                    !    tempR=1.0 
                    !end if 
                     
                    SUMU2=SUMU2+R(I)*tempR 
                     
                    !!!!!tempR=.5*(0+L1*2)+0.5*(0-L1*2)*COS(PI*(2*(i-(N3-1))-1)/(2*N)) 
                    tempI=i-(n3-1) 
                    tempI=(N-tempI) 
                    tempR=PI_local*tempI/N 
                    tempR=COS(tempR) 
                    tempR=1+tempR 
                     
                    X2(i)=tempR 
 
                    COD(I)=-((4.*(SIGMt/E)/N)*(S/SIGMt)*PI/S*L2*SUMU2)/2 
                     
0020            CONTINUE 
                if (task.gt.0) then 
                    write(*,*)'  SUMU2=',SUMU2 
                endif 
                 
                tempR=0 
                write(9,*)L1 
                Do i=N3, N4 
 
                    tempI=i-(n3-1) 
                    write(9,1111)tempI, X2(i), (x2(i)*L1), COD(i)! 
1111                format(i,', ,',F,',',F,', ,',F) 
                end do 
                 
                C1=4.*SIGMt/E/N 
                So=S/SIGMt 
                KPT=-C1*So*PI/S*L2*SUMU2 
                PTr=-C1*So*PI/S*(L2*SUMU2+L1*SUMU1) 
                if (task.gt.0) then 
                    write(*,*)'  CTOD=',KPT 
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                    write(*,*)'  PTr=',PTr 
                endif 
                     
                close(9) 
                RETURN 
 
    end subroutine delta 

    end module delta_mod 

AII.14. Ouput_mod 

module output_mod 
    use common_Var 
    implicit none 
    Contains 
        subroutine trace (trc) 
            real trc 
 
         
            if (count.eq.1) then 
                open (unit = 3, file = 'track.txt') 
            endif 
            write(3,3) count, trc 
0003        format(i, ',',f) 
            count =count+1 
        end subroutine trace 
        subroutine genOut () 
         
            CALL DATE_AND_TIME (REAL_CLOCK (1), REAL_CLOCK (2), REAL_CLOCK (3), 
DATE_TIME) 
!           REAL_CLOCK (1) is the date in string in of form  CCYYMMDD 
!           REAL_CLOCK (2) is the time in string of form hhmmss.sss 
!           REAL_CLOCK (3) is the time zone in form +hhmm or -hhmm 
!           DATE_TIME are integer values 
!           DATE_TIME(1) Is the 4-digit year  
!           DATE_TIME(2) Is the month of the year 
!           DATE_TIME(3) Is the day of the month 
!           DATE_TIME(4) Is the time difference with respect to Coordinated Universal 
Time (UTC) in minutes 
!           DATE_TIME(5) Is the hour of the day (range 0 to 23) - local time 
!           DATE_TIME(6) Is the minutes of the hour (range 0 to 59) - local time 
!           DATE_TIME(7) Is the seconds of the minute (range 0 to 59) - local time 
!           DATE_TIME(8) Is the milliseconds of the second (range 0 to 999) - local time 
 
            outVer=DATE_TIME(5) * 10**(ceiling(log10(real(DATE_TIME(6))))) + DATE_TIME(6) 
            
!write(outver,0066)DATE_TIME(1),DATE_TIME(2),DATE_TIME(3),DATE_TIME(5),DATE_TIME(6) 
!0066       format(i4,'_',i2.2,'_',i2.2,'_',i2.2,'_',i2.2)     
            PRINT *, 'OUTPUT', OUTVER 
        end subroutine genout 
!      *************************************************** 
        SUBROUTINE OUTPUT(zTIME,zzTIME,Lcr,L,Kdin,Kconc,PZ,PZo,PTr,KPT) 
!      *************************************************** 
!      ................................................... 
!          P    - applied load; 
!          L    - crack length; 
!          DELT - =COD; 
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!          DELT1- =CTOD; 
!          ZEPS – length of plastic zone; 
! 
!      ................................................... 
            REAL zTIME,zzTIME,Lcr,L,Kdin,Kconc,PZ,PZo,PTr,KPT 
 
            WRITE(*,990) 
!0990            FORMAT(1X, '╠', 5('─'), '┼', 6('─'), '┼', 7('─'), '┼', 7('─'), '┼', 
4('─'), '┼', 5('─'), '┼', 7('─'), '┼', 4('─'), '┼', 6('─'), '┼', 6('─'), '╣')!Original 
0990        FORMAT(1X, '|', 5('_'), '|', 6('_'), '|', 7('_'), '|', 7('_'), '|', 4('_'), 
'|', 5('_'), '|', 7('_'), '|', 4('_'), '|', 6('_'), '|', 6('_'), '|')!for console print 
            WRITE(*,999) zTIME,zzTIME,Lcr,L,Kdin,Kconc,PZ,PZo,PTr,KPT 
!0999            FORMAT(1X, '║', F5.2, '│', F6.2, '│', 1X, F6.2, '│', F7.2, '│', F4.2, 
'│', 1X, F4.2, '│', F7.2, '│', F4.2, '│', F6.3, '│', F6.3, '║')!Original 
0999        FORMAT(1X, '|', F5.2, '|', F6.2, '|', 1X, F6.2, '|', F7.2, '|', F4.2, '|', 
1X, F4.2, '|', F7.2, '|', F4.2, '|', F6.3, '|', F6.3, '|')!For console prit 
!    * 1X,'├',7('─'),'┼',8('─'),'┼',8('─'),'┼',7('─'),'┼',7('─'),'┼' 
!    * 8('─'),'┼',6('─'),'┼',9('─'),'┼',9('─'),'┤') 
!     * 1X,79('-')) 
 
            WRITE(1,9990) 
9990        FORMAT(1X, '╠', 5('─'), '┼', 6('─'), '┼', 7('─'), '┼', 7('─'), '┼', 4('─'), 
'┼', 5('─'), '┼', 7('─'), '┼', 4('─'), '┼', 6('─'), '┼', 6('─'), '╣') 
            WRITE(1,9999) zTIME, zzTIME, Lcr, L, Kdin, Kconc, PZ, PZo, PTr, KPT 
9999        FORMAT(1X, '║', F5.2, '│', F6.2, '│', 1X, F6.2, '│', F7.2, '│', F4.2, '│', 
1X, F4.2, '│', F7.2, '│', F4.2, '│',  F6.3, '│', F6.3, '║') 
!    * 1X,'├',7('─'),'┼',8('─'),'┼',8('─'),'┼',7('─'),'┼',7('─'),'┼' 
!    * 8('─'),'┼',6('─'),'┼',9('─'),'┼',9('─'),'┤') 
!     * 1X,79('-')) 
 
            WRITE(8,0089)Lcr,KPT 
0089        Format(F,',',F)             
             
            RETURN 
 
        end subroutine output      

    end module output_mod 

AII.15. Answer_mod 

module answer_mod 
    implicit none 
    Contains 
!      **************************************************** 
        SUBROUTINE ANSWER(MOVE,Lcr,TASK,RAZ,S) 
!      **************************************************** 
                INTEGER TASK 
                integer move 
                REAL Lcr,RAZ,S 
 
                IF(TASK.GE.1) GOTO 110 
                WRITE(*,10) 
!0010            FORMAT(1X, '╚', 5('═'), '╩', 6('═'), '╩', 7('═'), '╩', 7('═'), '╩', 
4('═'), '╩', 5('═'), '╩', 7('═'), '╩', 4('═'), '╩', 6('═'), '╩', 6('═'), '╝')!Original 
0010            FORMAT(1X, '|', 5('_'), '|', 6('_'), '|', 7('_'), '|', 7('_'), '|', 
4('_'), '|', 5('_'), '|', 7('_'), '|', 4('_'), '|', 6('_'), '|', 6('_'), '|')!for console 
print 
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                WRITE(1,20) 
0020            FORMAT(1X, '╚', 5('═'), '╩', 6('═'), '╩', 7('═'), '╩', 7('═'), '╩', 
4('═'), '╩', 5('═'), '╩', 7('═'), '╩', 4('═'), '╩', 6('═'), '╩', 6('═'), '╝') 
 
                IF(MOVE.GT.0) GOTO 50 
                WRITE(*,30) 
0030            FORMAT(5X,'THERE IS NO CRACK') 
                WRITE(1,40) 
0040            FORMAT(5X,'THERE IS NO CRACK') 
                GOTO 170 
0050            IF(MOVE.EQ.2) GOTO 80 
                WRITE(*,60) 
0060            FORMAT(5X,'TOTAL FRACTURE') 
                WRITE(1,70) 
0070            FORMAT(5X,'TOTAL FRACTURE') 
                GOTO 170 
0080            WRITE(*,90)Lcr 
0090            FORMAT(5X,'CRACK LENGTH Lcr=',F6.2) 
                WRITE(1,100)Lcr 
0100            FORMAT(5X,'CRACK LENGTH Lcr=',F6.2) 
                GOTO 170 
 
0110            IF(TASK.EQ.2) GOTO 150 
                IF(RAZ.LT.0) GOTO 130 
                WRITE(*,120) 
0120            FORMAT(5X,'SURVIVABILITY INDEX=0') 
             WRITE(1,125) 
0125      FORMAT(5X,'SURVIVABILITY INDEX=0') 
                GOTO 170 
0130            WRITE(*,140) 
0140            FORMAT(5X,'SURVIVABILITY INDEX=1') 
                WRITE(1,145) 
0145         FORMAT(5X,'SURVIVABILITY INDEX=1') 
!         write(*,*)'  RAZ=',RAZ 
                GOTO 170 
 
0150            S=9.807*S 
                WRITE(*,*)'   S_crit=',S,'MPa' 
             WRITE(1,*)'   S_crit=',S,'MPa' 
0170            RETURN 
 
    end subroutine answer         

    end module answer_mod 

AII.16. ShapeFunc 

module shapeFunc 
    use common_Var 
    use A_array 
    contains 
    subroutine shapeF(KPTc) 
             
             
            real tempR, KPTc, Pi_local,shapeM 
            dimension ShapeM(96,96) 
             
            do i=1,96 
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                shapeM(i,i)=1.0 
            end do 
             
            Pi_local=pi 
             
                    if ((cop.lt.1)) then 
                        return 
                    else 
                        do i=1,96 
                            tempR=1.0 
                            !tempI=M 
                            !tempI=(N-tempI) 
                            !tempR=PI_local*tempI/N 
                            !tempR=COS(tempR) 
                            !tempR=1+tempR 
                            ! 
                            !X2(N9+M)=tempR*L2 
                            ! 
                            ! 
                            ! 
                            !alphacr=atan(kpt/(2*(2*L1+2*L2))) 
                            !tempR=alphacr*X2(N9+M) 
                            !tempR=(COD(N9+M))/tempR 
                            !tempR=abs(tempR) 
                            ! 
                            tempR=2*COD(i)/KPTc 
                            !tempR=abs(tempR) 
                            ! 
                            ! 
                            !zcr=1.260 
                            !Bilinear 
                            !if (abs(tempR).le.1) then   
                            !    !tempR=tempR*zcr 
                            !    else if (abs(tempR).le.2) then 
                            !        tempR=(2.0-tempR) 
                            !        else 
                            !            tempR=0.0 
                            !endif 
                         
                         
                            !zcr=1.3333 
                            !tempR=tempR*zcr 
                            !Parabolic 
                            !if (abs(tempR).le.2) then 
                            !tempR=2.0*tempR-tempR*tempR 
                            !else 
                            !tempR=0.0 
                            !end if 
                            ! 
                            !zcr=1.325 
                            !tempR=tempR*zcr 
                            !Sine 
                            !if (abs(tempR).le.2) then 
                            !tempR=sin(Pi_local*tempR*0.5) 
                            !else 
                            !tempR=0.0 
                            !end if 
                            ! 
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                            !zcr=1.451 
                            !tempR=tempR*zcr 
                            !Exponential 
                            !tempR=tempR*exp(1-tempR) 
                         
                            tempR=0.0!uncomment for flat shape function 
                            if (isnan(tempR)) tempR=0.0!tempR.eq.0.OR. 
                        end do 
                        do i=1,96 
                            shapeM(i,i)=shapeM(i,i)+tempR 
                        end do 
                    end if 
                A=MATMUL (A,ShapeM) 
                return 
    end subroutine shapeF 

    end module shapeFunc 

AII.17. Common_var 

module common_Var 
    !integer, parameter :: rk = selected_real_kind(15,307) !commented out due to common 
use 
    !real, DIMENSION(96,96) :: A 
    !real, DIMENSION(96) :: R 
    !real, DIMENSION(6144) :: empty 
    !real, DIMENSION(96,160) :: MGlob 
    !EQUIVALENCE (MGlob(1,1),A(1,1)) 
    REAL, PARAMETER :: pi=3.14159265 
    real, PARAMETER :: TAU=0.618!03399!original 0.618 
    real :: acc = 0.001 
    real :: const = 1.0 
    real :: limit = 7.0! simulation time limit!original 7.0 
    real :: limit2 = 15.0!2*limit+1!original 15.0 
    real :: fac = 1.0 
    real TIME1 
    real COD 
    dimension cod(96) 
    INTEGER TASK, cop 
    INTEGER DATE_TIME (8) 
    CHARACTER (LEN = 12) REAL_CLOCK (3) 
    character(len=205) line 
    integer :: inVer = 0 
    integer :: outVer 
    integer, save :: count =1 
     
     
    save 
end module common_Var 

AII.18. A_array 

module A_array 
    real A 
    DIMENSION A(96,96) 
    save A 
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end module A_array 

AII.19. Left 

module Left 
    real, dimension(96) :: R 
    save R 

end module left 

AII.20. Koef 

module koef 
 
    !real, DIMENSION(96,96) :: A 
    !real, DIMENSION(6144) :: empty 
    real MGlob(96,160) 
 
    save MGlob !A, EMPTY 

end module koef 

AII.21. Empty_array 

module Empty_array 
    real Empty 
    DIMENSION Empty(6144) 
    save Empty 

end module Empty_array 
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