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ABSTRACT St R iy

1f we consider a subset of a lathice and the lattice B   each
operations restricted to that subset, the resulting ’ ) .:wumber
algebraic structure is not necessarily a 1” ttice, but - j@
instead a partlal algebra which is called a partial lattice, . rs,

Partiel lattices are of interest because,ﬁheir study solves

certaln problems in lattice theory,

o - - Yo m Tt
ctempt by Yu, I, Sorkin, Dokl

is in error, Chapter one is an extension of Funayanma's

‘regults which gives 2 minima 1 system of identities to charac-

The second paper reviewed is "On the problem of isomore

phism of lattices" by M. M, Gluhov {5) in which CGluhov ; o s

U
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S

ed heavily on the incorrect identities given in So?kinga‘
paper, Chapter two characterizes the free extehsi@m ofka
rartial lattice using the identities of Chapter One, Unfors
tunately, the final result that a partial lattice haé a

unique basis could not be proven although it 1s bhelleved %o

The third paper reviewed, "On a lattice-theoretical
theorem of a king similar to Grusko's theorem" by M, M, Gludu
(&4) studies the free rroduct of lattices, The maln result
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ls that 1T a lattice 1s a free product of k lattlices, each
with a finite number of generators, then the minimum number
of generators of the lattice ig equal to the sum of the

corresponding number of generators of the k free factors.,
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CHAPTER ONE

Let ¥ be & lattice, We may consider subsets of L and
the lattice operations restricted to this subget, If we
have chosen a sublattice, then the resulting algebraic
structure is a lattice, But, in general, when we consider
a subset of the lattice, the restricted operations are

merely partial operations znd this algebralic structure is

called a partisl lattice.

artial lattices but 4id not
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e

Funayvama {(3) characterize

w
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present a minimal system of definin vtions for partial
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lattices, The object of Chapter One is to extend Funayamals
results,

N .
Definition, Let < =<L; V,~n)be a lattice, We consider

P, & subset of L, and define two partial binary operations,
v andson P as follows: |
if a,bc P

1) a v b exists if and only if a v be P and then

L

avb=avh
L

2) a~b exists if and only if a?;b<iP and then

b then = (P; v, 1is called a

Bk




We shall now define two partial orderings on P,

Define 2 41 b if zng only if a v b exists @nd a v h = b,
a éﬁ b if end only if a ~ b exists and & ~ b = a,

Ve shall now prove that these two partial orderings are

equlvalent,
Lemma, & 237 b if 2nd only if a <y b

v
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i ¢ 1f eand only if a £ ¢, b< ¢, and
if there exists d such that a < d, b2 &, then ¢ < 4,

In & similar manner we can define glb'{agbﬁ = ¢ if and
<

only if ¢ 2 a, ¢ £ b, and if there exists d such that 4 < a,

& < b, then & < ¢

[+

Imbedding Theorem for Partial Lattices

It is known that any partially ordered set can be embedded

in a complete lattice preserving the inclusion relation and =il

Consider an algebraic structure with two binary partial
Operations v and ~ , {P; v,~ ), If {(P; v,~A ) satisfies the

following eight identities then it is called & weak partial
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l) ava-=a ' 2) ana=a
3 avi{bve) ={avhb)ve by a ~ (b~ ¢) = (a ~ b}~ o
5) avb=Dbva 6)‘8:ﬁ b = b,a a
7) av {a~A b) =g 8) an (avw b) = a

The above identities are read as follows: if the lefsg
hand side exists and if the inner segment of the right hand

]

glde exists then the entire right hand side exi

P ] '] e
C8 and equels

Jn B ~ 2
& hand side,

Example, ITavibveg)and av b exist, then (& v b) v ¢

exlsts and 2 v (b v e) = {a v b) v o,

Note that in the terminology of Funayama such an alge-
braic structure is called a partial lattice, What we call
a partial lattice, Funayama called a strong partial lattice,

It is clear that any partisl lattice is a weak partisl
lattice, Ekecall that a rartial order on an algebraic structufb

P;v,~) was defined as follows:
for 211 a,b ¢ P

e
=

& =g b 1f 2nd only if 2 v b exists and a v b = b,

b if and only if & ~ b exists and 2~ b = a,

&
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Lemma, 2 S3 b if and only if a b in a weak partial lattic

Proof, Assume a$7; b, Then a v b exists and a v b = b,

Thus a v b exists and so a = a~(a v b) = a ~ b,

Therefore a <y b,
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n, Then a~ b exlists and a ~ b = a,

implies that @ (x) v¢({y) =©4(z) in L,

A ¥ ¥ o= :
% implies that «({x) ~ «{y) = ¥(z) in L,

s
<
T
O
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Lo on strong embedding of P into L If in addit

{z) in L implies that x v y = g in P,

<

14
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D

= . {z) in L implies that =~ ¥
~a,b,c be an algebraic structure (P;

-

[y

and ave=2a, Le

ttice defined by ¢(b) v @

P into L in the weak sense but not in the strong

< 1% 2n ideal of a partial lattice P if I is a

two conditionsg

s S X, implies that y ¢ I;

=+ %2¥ %1 end x vy is defined then x vy ¢ I,
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prime ideal if in sddition
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[
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(111} x ~ 3y exists 2nd ig in T implies that = ¢« I or

y £ L.

Definition, D is a dual ideal of a partial lattice P ir B

is a subset of P satisfying the two conditions:

(i} = ¢ D, y > %, implies that ¥y € Dj
(13) if %,y ¢ D znd x -~ ¥ exists then = ~ ¥ 2 D,

D is a prime dual ideal if in addition

fod
e

(111) x v y exists and is in D then x ¢ D or vy ¢ D,

We shall establish a partial order on ideals and dual
T a partial lattice,

ifr Iy, I, are ldeals of a partisl lattice then I < 22 if an

If Dy, Dy are dual ideals then Dy 2 Dy if and only if

We shall now establish a minimal system of identities

Ve

on en algebraic structure (P; v, ~ ) such that it can be
embedded strongly in a lattice,

o



Iv) a2 va=a I~y an~a=2g
Av) av{bvag)=(av b) v ¢ Ar) an(b ~ o) = (a8~ bl 6
Cv) avb=>bmva ~ CA) a~b="nhan~a
plv) a v (2~ B) =a 1n} a nf{avh) =2
EZV) (2 A b)) vae =a Bga) {2 v D)a 2 =g
DXv) a v (bAa)=a Dl e~ (bva)=a
o) (ba ey va =a D) (bveal a=a

Fv) (2l v (bD = (c¢] implies P.) L&)~ (b) = o) implics

Vv D exlsts and a v b = ¢ a ~ b exists end & ~ b = =&

<
=
W
<
j$Y]

3

The above identities are to be read as before,

Which of the above identities form a minimal system for
the embedding of an algebralic structure into a lattice?
Theoren, ““fj’ = 1Iv), Av), &), Cv), Cn), plv), DAy, By), Pa)’

—a 2 2 ,
;i = Cvj, C~), Dv), DA}, PV}, P}t

is a minimal

-

embedded in a lattice L

Proof. TFirst, to show that ¥ is minimal,

l..l

Without loss of generality we will show that the systex
o 4
is minimzl, To establish the minimality of Ly vie must

exhibit nine algebraic structures esch of which failg to

O

satlisfy one of the identities of ?% but which satisfies the

3
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=
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o
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Aning eight identities of 7



o 1I¥v) does not hold,

where a v 2 and a ~~ 2 are not

o
4

¥

1 P all other identitiles are vacuously gatisfiled,

Do
°

Cv) does not hold,

Consider P = 1a,b,c]

bve=54b, brnec=0, cvb=D>b avaes=a a6 = 8,
3 3 ] 4 jil

Censlder P = 1a,b,c,d,e7 where a ve =06, & A G = &,
avd=a,and=4, bvoes=c, 8 vb=gc
e N

il
™
-1
o
<
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e

il
s
(wy
2
il
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p
P

ete, v

5. Av} does not hold, ca~b = e



Consider P =" 2a,b,c,d,e] where
a “¢,d%¢c, ¢cie, bvcsc=e
avd=c¢c,anb=4d4d, barc=4d,
avb=c¢

"1- b) -
7. D,) does not hold,

Consider P = &,b,c,d,e; where
céLa, ¢t d, e fc, bv¥vc=4dq,
avbhb=4, arnd=¢, bh ¢ =g,

a ~b =@

Conglider P = éaabszpﬁﬂﬁynpgqafsSg
where p v r=u, Qv s =W,
uv W= a, Do not define x vy to be &,

g, P~) does not hold,

i ] _ I
= 28,b,X,U,W,¥,P,4,T,8.]

where p . = U, 4 ~ 8 = ¥,

u A W= Db, Do not defime x Ay to be b,
Now we must establish

(P; v, A) satisfying T is a partisl latt
Recall the definition of < on (P; v,

N




Lemma, If a v b exists, then lub la,b| = ¢ if and only if
a v b= C,
Proof, First, assume that ¢ = lub {a,b} ,
Then a £ ¢ and b ¢ ¢, That is, a vec =c¢c and bv e = C.
Also by Iv) and av) a < a v b and b< a v b,
Thus a v b is an upper bound of %a,b} e Therefore ¢ £ a v b,
That is, ¢ v (a v b) = a v b,

By Av) we have that c v (avb) =(cva)vb=cvb= e,
Thus & v b = ¢,

Now assume that a v b = ¢,

We know that a v b = ¢ 1s an upper bound of {a,b} as agbove,
If there exists dc¢ P such that d is an upper bound of {a,b}
then we must show that 4 > ¢,
a v (bvd) and a v b exist so that av (bvd) ={(a vb)vas=
¢c v 4,

Assume that 4 £ ¢, 1.e, c v d = ¢,

Thenc=cvd=(avbdb)vd=av(bvd =avd-=4d,
Therefore ¢ = lub {a,bl , e
Similarly we can prove glb {a,b} = ¢ if and only if

a b= ¢,

To proceed with the proof of the imbedding theorem we
need the following concept of ideals in a partial lattice,

Tet o = {x1§ be a subset of a partial lattice P, We define

o

| TR A e AL PR e e i B et € 8 s e B st
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o iy ‘t<x for some x € v }

& n &t It <a v b where a,b an—li

The following are lemmas on the ideals of partial
lattices,
Lgmmg.i/krn = I(7) where I(s) is the ideal generated by <,
Proof, By the definition of< B, 1f -Pc I(-) then % 1. 1(5),
eratI(T)g Therefore - Pc I(v),

It will be sufficlent to prove LT is an ideal,

Consider the definition of an ideal of a partial lattice
Condition (1) is satisfied for ‘i D,

Now for condition (ii),

Let x,yakj;n and let x v y exlst, There must exist s,t such

t

S and Yoy,

that x¢o

Therefore x v y ¢ g% where u = max i s,t: + 1,

Lenma, /\o? is an ideal of P,

Proof, Let x:/:.B, Let y £ x, For each n, xec™, Thus

yeoB,  Therefore ye/}:%,

Let x,y¢/{ \¢™ and let x v y exist., Then for each n, x,y¢ a2,

And so x v ye B, Thus x v ye N2,

Lemma, The set of ideals generated by finlte subsets of a

d

partial lattice P form a lattice under = ,

Vi

e Sl i
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Proof, Let %1,7, be two finite subsets of P, Then 79 o,
is also finite, I(Clafcz) s the least ideal containing

I(gl) and I(fs'z)° Similarly for meets,

The necessity condition:

Assume that P is strongly embedded in a lattice L and
that the strong embedding mapping 1s ¢, We must show that
I(x,y) = I(z) implies that z = x v Y. (1.2, we must show Pv) ),
I(z) = I(x,y) implies that z« {x,y,® for some n,
elz)eg(x,yi B e Lo x), iy B e Tle (x),2ly) ).
Since L 1s a lattice, @ (z)<d(x) v (y) in L, But I(z) =
I(x,y) implies z>x and z >y, Thus ¢(z)> ¢(x) and f(z) 2 €(y)a

Therefore < (z) ={(x) v ¢(y),

P 1s embedded strongly in L so z = x v Ve
That 1s I(z) = I(x,y) implies z = x v y.
The necesslity of PA) is proved in an analogous manner,
The sufficiency condition:
Assume that P 1s an algebraic structure satlisfying one of
Z% or ii\, Without loss of generality we will consider E% o
Let L be the set of all pairs of ideals and dual ideals
(I,,D;) of P such that x¢ I. and y¢ Do imply x4y, where I
and D may be void, We define a partial ordering 2 in L as

follows:

(I@,D&)EE(IS,DS) if and only if IE'Iﬁ and D,E D .

s
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Under the partial ordering > L is g complete lattice,
t E(Ic»Delk be any subset of L, Then (“I ,"D, ) =

lub ?(I; Dcli where I 1is the least ideal eontaining every
I and\JD is the largest dual ideal contained in every D; s
In a similar manner (A /\D ) = glb é(I D )

Now we must show that P is strongly embedded in L,
Let I(x) ( D(x) ) be the principal (dual) ideal generated by
Xo Let ¢ be 2 mapping from P into L such thatag(x)
( I(x),D(x) ), v 1s a one-to-one mapping of P into L,
If z = x v y then I(z) = I(x) v I(y). D(z) = D(x) v D(y),
Then ((z) = ( I(z),D(z) ) = ( I(x) v I(y), D(x) v D(y) )
%(x) Vt{(y). Now ¢ (z) =§(x) v (y) implies that
I(z) = I(x) v I(y), Using the ldentity Pv) z = x v y,
Similarly using the identity Pr) ©(z) = (x)~ U (y) implies
Z = XAY, This completes the proof of the theorem in

Chapter One,




CHAPTER TWO

The purpose of this chapter is to give an algorithm for
the extension of a partial lattice to a lattice,

Consider an algebralc structure P(x,...,%, ; S ) con-
sisting of elements {xl,...,xﬁ} and a partial (or incomplete)
Cayley table S where S satisfies the following identities for
all a,“b, c <P

1) a ¥ a =g

2) a * b=Db*a

3) a ¥ (b#*¢c) = (a*b)*c¢

b) a ®# (a *' b) = a

5) (al v (bl = (¢] 1implies a'b exists and a v b = ¢,

6) [2) A Ib) = {c) implies a A b exists and a A b = C,

where * 1s either v or A and #' ig the alternate operation to

¥*

We define the completion of S, §, to be the Cayley
table forced under the identities 1) through 6),

Then P(X3,...,%, ; S ) is a partial lattice,

A Cayley table, S , is called irreducible if x is a

relation in S then S - x: # S ,

Using the results of Chapter One, a free extension of a
partial lattice P(xl,...,xn ; 3) is a lattice, defined by the
generating elements X1s0e05%X, 8nd a system of defining
relations S, Denote the free extension by FL(P),

Conversely, if L is a finite lattice, then it is a free

extenslon of some finite partial lattice., This partial

13
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lattice can be found using Evans algorithm (1),

Evans Algorithm for the Construction of FL(P)

If we are given an algebraic structure P(X1,..05%y 1 S),

then we complete S to obtain S, If all the entries of the

i

table S are filled, then P is a lattice and FL(P) = P,

But suppose some entry, say (1,3) 1s empty. Then we add
@ new element xp ., to P and add to S either the relation
X{ V X3 = Xpi7 OP X4 A Xy = Zp4) depending which one is
undefined., Now we must substitute Xn+1 into the identities
1) through 6) and thereby fi1l1l the entries that we are forced
to define (i1.e, we must complete the new Cayley table).

The result of this operation is a partial lattice
Pi(Xyy 0000, X, Xpni1 3 S1).

If 211 the entries of the table S1 are filled, then the
process 1s complete., That is FL(P) = Pq, Otherwise, we must
£111 another empty entry in S and so construct a partial
lattice P, in a similar manner,

In this filling proceedure we get either a finite or a

countable sequence of partial lattices, each of which can

be embedded in the following one,

A partiel lattice Py 1s sald to be weakly embedded in a
partial lattice P, by an embedding mapping if X,¥,2 <Py and

x *y =z implies «(x) * ((y) = ¢ (z),
P1 Py k

LA oidi
“pite T
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A partial lattice Py 1s said to be strongly embedded

in a partial lattice P, by an embedding mapping <1f Py is
weakly embedded in P, and for X,¥,25 Py 1f d(x) * ¢(y) = (2)
1Y P . A
implies that x # y = 2z, 2
B

If the strong embedding of a partial lattice P, into a
partial lattice P, 1s denoted by Py = P, then we obtain a
sequence of partial lattices P =) Py = Py, => ,,, =5 Py =>,..

This sequence of partial lattices will be called the sequence

of extensions of the partial lattice P,

Theorem 1, (Funayama (3) ). A partial lattice can be strongly
embedded in a lattice L i1f and only 1f identities 1) through 6)
hold for the partial lattice,

Corollary, If a partial lattice Py belongs to a certain
sequence of extensions of a partial lattice P, then

FL(Py) '= FL(P),

Proof; By theorem 1 FL(Py) ¥ FL(P),

The remainder of the theorem i1s proved by induction on k.,

Let us assume the element X1 and the relation Xgy V Xy = Xy,
have been added at each step 1 of the extension,

Assume the theorem is true for k = m - 1, Now for k = m,

Use the ldentity map ¥: Pp.y = Pp o This map extends to a

map 7 defined by T(x3) = x4

K(xsm V Xgo) = Xp e
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Then‘z-is the required isomorphism,

Conclusion: If the sequence P => P = Py =) ..., Of &
partial lattice P is finite and ends at Py then FL(P) = Pke
\OC'

1f, however, the sequence is infinite then FL(P) ¥ \ / Pi,
i=1

Definition, A partial lattice Q@ will be called a free exten-

sion of a finite partial latiice P if Q belongs to some

sequence of extensions of a partial lattice P,
We shall now establish the concept of basis for a
partial lattice,

Definition, A partial lattice Po will be called a basis of a

partial lattice P if P is a finitely free extension of Py, and

Po 1s not a finitely free extension of any partial lattice

different from itself,

Theorem 2, If Pl(xl,,.,,xm_l 3 81) =7 PoX150000,%Xy 5 So)
then for any partial lattice Po to be a finitely free exten-
slon of a partial lattice Py 1t is necessary and sufficient
that any irreducible system of defining relations of the
partial lattice P, which includes the system of defining
relations of the partial lattice Py, contains a relation of
the form x3 * xy = xp where x; # x , Xy # Xp, and S, does
not contain any other relation with xp,

Proof.(Necessity) Assume that Py => P, and suppose the new
relation added 1s x4 * Xy = Xp (1)

Suppose Ty 1s an irreducible system of defining relatioms of
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P1e Let T2 be an Irreducible system of defining relations

of Po which containg T1. We are required to prove that To
contalins exactly one relation of the form Xil * le = Xpe
First, T, must contain at least one relation involving X
because Tp - all relations involving xp} # Sp. Let a
relation containing x; be denoted byt , If (1) is a relation
of To then we are finished as T2 is irreducible, i,e, the
relations of T, are the relations of T7 and (1),

If (1) 1s not a relation of T, then we know that (1) is
& consequence of T, because (1) 1s a relation in So. I we
are now able to show that (1) is a consequence of Ty and
then we will be finished because Ty _ Ty, 18 a relation of
Tr, and Tq + 1s essentially a basis of the consequences of
Ts.

Assume the statement is false. That is, in the extension
from Py to P, in which we added the new element Xy and the
relation A, that xy * Xy was not defined, Note that x; * Xy
could not have been defined as anything different because there
1s no collapsing in the finitely free extension of P, The
extension is Py =» Py +4 . Let us perform snother extension
which f£1ills (1,J) square,

| Py =2 Pp +0=> Py +4+ x4 % X3 = Xpiy e
If we are able to show that A must have the form X34 * X391 T Zms
then xy * xy = xp47 implies that xi; * Xj; = Xp4 (because A is

& consequence of Tq + (1) ), which 1s a contradiction,




Now we must show that A has the form x * x = X o,
Assume the contrary, i,e, A is not in the form

X3, ¥ %31 = *m where 17,31 <{ m,

1
Then the tabular system S1 consists of relations of the form

gxi * Xy =X 1,J,k<m

&

{Xy * Xy = Xg 1< m

If we are able to prove that 87 is closed under the identities
1) - 6) then =y * Xy = Xy where 1,3<m will not be a coﬁsequence
of 37.

it 1s obvious that Sq 18 closed under 1) and 2),

Now we must show 57 1s closed under 4), If an(a v xp) = a
then xp ~(xy v a) = xp 1.e., if the (1,)) position is filled
then 4) forces the (J,1) position to be filled by the opposite
element, Therefore 37 1s closed under 4),

We next show Sy 1s closed under 3), Let * = v, Let
us assume a v (xp v ¢) = (a v xg) v ¢ where Xp V¢ = 4 and
a Vv Xp = €, Also assume that a v d exlists and a v 4 is =

relation of S Therefore e v ¢ exists and e ve =a v 4,

1°
Now we assume that e v ¢ is not a relation of Sy. i,e, e v ¢ = Xp
where e # xp and ¢ # Xy, Therefore a v d =e v ¢ = Xp. But |
@ v d 1s a relation of Sy. Thus, either a = xp or & = Xy,
The statement is obvious if a = xp,

If & = xp thenavd=avzx, =e, Thus e = xp

This is a contradiction, In a gimilar manner we can show

that 59 is closed under * A/,
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Finally, we must show that S1 1s closed under 5) (Note

that 6) will be the dual case,):

(a2 v (bl = (x5} implies a v b exists and a v b = X, Where
a # xp and b # xp.

To prove the above we must describe (g} v (b)

A L]
Define Ko = 1 (a1 (b]}

Ky 1= % } X2c v d where ¢,d <Ky and ¢ v & exists%

Then (a] v (b] =1¢7K1 .
0]

The proof of the above statement is by induction on 1,

(1) 1 =0. xpcKy o 1.e, xpe (d] or xpe(b] .

tatavhb=x S0 a = Xme. This 1s a contradiction,

m.
1) 1 =1, =xp: Ky. Then xp<c v d where ¢ £a and d £b,
a b If ¢ # Xpy 4 # Xp then xp¢c v d<a v b = Xpe

Therefore ¢ v 4 = Xme

This 1s a contradiction,

If ¢

Xp then (11) reduces to (1),

Assume true for k = 1,
(111) k¥ =1 + 1, =xp¢Kyy. Then x3<c v d where c,d ¢ Ky

and ¢ v 4 exists,
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0<5K1 d<3K1
C T cy Vvey a < d; v d2 where cl,cz,dl,dzﬁKi_l
0115011 v 021 dlg'dll v d21 where cll,czl,dll,dgl&Ki_z
o - L] 3 ’ ~
cli_l..cl1 v 021 dli—lf dli v d21 where cli,czi,dli,dzieKo

If ¢ # xp, 4 # x_ then Xpfcvdfa vb=x_ implies

m m

that xp = ¢ v d, This 1s a contradiction, If ¢ = x, (111)

reduces to Eqilq.

Thus Sy 1s closed under the identities 1) through 6),
Hence x4 * xj = Xp where 1,3< m is not a consequence of S1.
This is a contradiction, Thus A must be in the form

le * le = X, where 13,33 <m. The sufficiency is evident,

Theorem 3, There exists an algorithm to find a basis of a
finite partial lattice P(X1,408y,%y ¢ S) in a finite number
of steps, The algorithm is:
Remove from P an element X4 and remove from S all relations
in which X4 occur, The result P<1)(X1,,oe,xi_l,xi,x1+1,.,'
cosXy S(i) ) is a partial lattice,

Use Theorem 2 to determine whether P is a finite free
extension of P(i).

If P is not the finite free extension of P(1) for
1 =1,...,n then P is its own basis,

If P is a finite free extension of P(i) for some 1 then

apply the above proceedure to the rartial lattice P(i).

el
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Bach time this process 1is completed the number of
elements of the resulting pértial lattice 1s decreased by
one, The nunber of elements in P is finite, Therefore in
a finite number of steps we will get a partial lattice,
P, which is a basis for P,
We shall now establish that a basis is unique,

Definition, An element X3 of a partial lattice

P(X],e0003Xpn ;3 S ) will be called k-removable if P is a finite

free extension of some partisl lattice with (n - k) elements not
containing x4.

An element x4 will be called removable if 1t 1s removable
for some k; in that case k will be called the order of

removability of the element xjy.

The following is belleved to be a true statement but as
yet no proof exists:

Theorem 4, A removable element of a finite partial lattice

cannot be a member of 1its basis, Using this conjecture

we could prove the following interesting results:

Theorem 5, Any partial lattice has a unique basls,
Proof, Let P have bases R and S, If x¢R and x4 S then X
must be a removable element of P, Using theorem 4, x4 R,

Corollary 1, Let Py and P, be two partial lattices, A

necessary and sufficient condition for the lattices FL(Py) 1
and FL(P,) to be isomorphic 1s that the bases of the partial

lattices Py and P, must be isomorphic,
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Proof, The sufficiency follows from the uniqueness of a
free extension and the necessity from the uniqueness of the

basis in a partial lattice,

Corollary 2, The group of automorphisms of the lattice

FL(P) is isomorphic to the group of automorphisms of the :
basis of the partial lattice P, This group will be isomorphic i
to & certain subgroup of the Symmetric group Sy, Wwhere n is |

the number of elements in the basis of P, ,  §




CHAPTER THREE

The purpose of Chapter Three is to consider the free’
product of lattlices with a finite number of generators,

A, G, Grusko (6) proved that if a free group S with
a flnite number of generators can be mapped homomorphically
onto a group G, which can be decomposed into a free product
of 1ts subgroups Ay,Ap,...,A; then it is possible to
choose in S a system of free factors such that under the
given homomorphism, each generator can be mapped into one
of the free factors Ay, Ao,...,Ap. A, I.\éukov (10) proved
a similar theorem for non associative algebrss,

In lattice theory, the analogous theorem is false,
P. M, Whitman (9) proved that under the homomorphism mapping
from the free lattice with three generators, FL(3), onto the
free lattice with two generators, FL(2), there does not
exist a system of generators of FL(3) such that each generator, 
can be mapped into one of the free factors of the lattice
FL(2) = FL(1) * FL(1l). Therefore, i1t is not possible to map
each generator of a lattice into one of the free factors,

We shall prove a theorem for lattices which is analogous
to one of the basic corollaries of Grufko's theorem one,

nanmely:

Theorem, If L =15 * L, * ,,, % Ly 1s an arbitrary decom-
position into a free product of a lattice L with a finite
number of generators, then the minimum number of generators
of the lattice L is equal to the sum of the number of
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generators of each of the free factors Lq, esesslpe

We will consider the case when k = 2 i,e, L = Ll * L2.

Definition. An element u ¢ L will be called intrinsic with

respect t0 Lj 1f there exist xj, x, ¢ Ly such that
X; £€u <x, where 1 = 1 or 2, We shall say an element

u <L i1s Intrinsic if u 1s intrinsic with respect to Iy or

to L2. We note, by the definition of free product of lattices,

that elements of the lattices Ll and L2 are intrinsic and

that no element can be intrinsic with respect to both lattices,

It i1s obvious that the free product of the lattices
L, and L, coincides with the free extension FL(P) of the

partial lattice P where P is the cardinal sum In + L2 of

the lattices I, and Lj. Recall that Chapter Two characterized

the free extension of the partial lattice P,

Definition, The minimum number of generators of a partial

lattlce P, will be called its rank, denoted by rank P, ,
Consider the sequence of partial lattices in the exten-

sion of the partial lattice P:

_ . . R N N
P=Py 2P & Py Feeee FP 3 F Py eens

Suppose that the relation added to the irreducible set
of defining relations in the extemsion P,_; = P, is of the

form x4 v xJ = X, where 1, j<n,
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Lemma 1, In the partial lattice Pn, the element Xy cannot ‘
be decomposed into an intersection of two elements distinct

from x,, i.e. if in P, there is a relation of the form

Xg A Xt = X, then elther Xg = Xp Or Xy = Xp.

Proof. This follows immediately from theorem two of

Chapter Two,

Lemma 2, If the relation Xp A Xg = Xy where Xg # Xp,
Xt # X, occurs in P, then there exists a set of elements

W1, W2ye0e,Wg 10 Py such that:

1, W1>Xni=1,...-,q

Ze Z\l (wy ~xg) = x¢

Proof, Assume there does not exist y ¢ Pp such that y > X,
where x, 1s added in the extension Pn—l => P, by the relation
Xy V Xy = Xp. Then 1f the relation X A Xg = Xy Where
Xg # Xp, Xy F Xy, Xg # xy occurs in P, then x81§~xn. We also
know that xp » xg. Therefore xp must be incomparable with
Xg. In the éxtension P,.y = Py how could the relation
En A Xg = Xg have been forced? It is evident that 1t was
not by 1), 2), 4), or 6), The only possibility ls 3), i.e,
a A(bAc) = (aAab) A ¢ where the right hand side 1s defined
and b A ¢ 1s defined.

Consider the case when b A Cc = X, By Lemma 1 thils can

occur only if either b = x, or if ¢ = Xp, Assume b = Xp.
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Then a = xg and (8 AD) ~ne = X¢, So Xp A C =X, i.e;
¢ » X,, which 1s a contradlction,

When a = xp, bA ¢ = Xg 1s defined, x, ~ b is defined,
and (x, A b) A ¢ = Xy 1s defined then we must determine the
way in which x,; A b was defined in P,, By theorem two of
Chapter Two, there exlst y > x, in P,. The set of all such

elements in P, 1s ‘{yl,....,ym¥. Now we consider the set

of all covers of x,; call them {wl,wz,.,,,wq}, We note

that {wl,,...,wdgc;{yl,...,ym} o AlSO Uy = Wy /A Xg > Xt. Xg =

Xn A Xg = Xg A (XgAauy) = (Fg A Xg) A ug = Xp A uy. And
\ ( )

Wa N X = Xio
N s t

Lemma 3, If ué¢ Py 9 and in Py u =¢(ay,...,8y,%,) where

a3 # X, then u = W(al,..,,am,wl,wz,...;) where Wi ,Wo,eseo

is the set W of all elements which cover x, in Py,

Proof, The proof is by induction on 1 (Q).

If 1 (@) = 2 then either u = aA X, Or u = a v X, When

u=aA x, we know by lemma 2 that there exist wy,wW2,...€ Py
such that wy > x, and /z\(wiih\a) = u, LetY¥have the form
w= /N (wy N 8),

When u = a v x, we know that there exists a smallest
w such that u > w > x,, and such that w covers xp. Let ¥
have the form u =w v &,

Assume true for 1 (@) =n -1,

1}

when 1 (¢) = n, %’has two possibilities:
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either u =%i VLQZ

or u =§&,«<g2 where 1 (§1), 1 (%b)<~n'

Thls case has been covered if neither ¢ = x, nor
G2 = e
Without loss of generality we may consider @2 = Xpe
Thencgeither has the form u =%)lﬁ\xn or u =<€1 V X, where
1 (¢3)< n,
When u = §; v x, there exlsts a smallest w such that
uy w> X, such that w covers x,. Let Y have the form
u=¢; vw, |
When u =¢; A Xp then letY be of the form u = /§ (wi./\cely)'

where Wy are covers of xn.

Lemma 4, If T =’[u1,u2,...,ur,xﬁ¥ 15 a system of gemerators
of the partial lattlce Py them Ty = (U1,Up,eeesUp,Wi,Wo,eees§
where wy W is also a system of generators of P,. The

proof follows immediately from lemma 3,

lemma 5, If an element u appears in an irreducible system of fA'§ ’
generators of the lattice L, then it is an intrimnsic element, %
Proof, Every irreducible system of generators of a lattice L
appears in some partial lattice R{‘ of the extension

Ly + Lo =Pg => P1 = oo = Pyog B T oo
Hence to prove this lemma we can induct on of , The induction

will be of the form if T ={uy,...,Uup,Xp§ 15 an irreducible
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system of generators of P, then x, is intrinsiec,

=0, Here Pg = Ip + Lp, Every element of a cardinal
sum 18 intrinsic by definition,

Assume the statement is true when = n-1, 1i,e, every
element of an irreducible system of generators of Pp-y 1s
intrinsic, ConsiderX= n, Assume, without loss of general-
ity, that x, and the relation xg v Xy = X, has been added
to the partial lattlce Py_y. Let T = {uj,...,up,Xy be an
irreducible system of generators of Pn, 1.e. T < Pp. First,
{ul,..,,uf} does not generate P,_y. Secondly, {ul,...,ur}
U W generates Pp.] where W is the set of covers of Xp in
Pp. Therefore there exists T", an irreducible set of
generators of Py_jy, and thére exists some Wi, € T" such that
Wy, covers xp, i,e. Wi, is intrinslc,

Now we assume there does not exist an element ue¢ "
such that xp)y u, l,e, for all elements y€ T" either xu<y
or x, is incomparable with y, Thus neilther xg nor xy¢€ T"
and s0 Xg =(Q(y1,...,yr) and xg =Y (¥y3,¢.0,¥p)s Nelther

¥ nor ¥ has the form yy v yy for any i or j, Therefore
we cen say that ¢ has the form xg = y3 A ¥Jp and Xy = y3A Ty
In this case T" is reducible, This is a contradictlonm,

Thus there exists an intrinsic element u ¢T" such that

Xn > u, Therefore X, is also intrinsic,

Lemma 6 There does not exist a set of four intrinsic elements
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ut,u",v',v" in any partial lattice P &Py Py = .., %fé;%;i;,
satisfying the following three conditions:

1) ut #u", v' # v

2) u! covers v" , u" covers v'

3) ut>v' , u">v"
Proof, u! cbvers v" therefore u® > vﬁ. ut> v" and u"y vv,
Suppose that u"< u', Thls 1s imposslble as u' covers v",
Suppose that u'< u®", This is impossible as u" covers v',k
Therefore u' must be incomparable to u®", ©Since u' and u"
are intrinsic elements define u'~ u" = u, Now u> v", This
is impossible since u' covers v", Therefore u'sA u" = v",
In a similar manner we can show that u' A u" = v!', Therefore

v! = v, This 1s a contradiction,

Lemma 7. Rank L = rank P,

Proof, It will be sufficient to prove that rank P, = rank pn_i°

Every system of generators of the partial lattice Pp.j is
also a system of generators of the partial lattice Pp, ‘
Therefore, we have rank Pnéirank Pp-i. We nugt now show that
rank P,y < rank P,, It will be sufficlent to prove that if
T =‘{u1,...,ur,xn} is an irreducible system of generators
of P, then there exists a system of generators of Pn—1.
which does not contain more than r+l elements,
Let T be a system of generators of P, and let X, = Xg V X¢.

Then T! =‘{u1,...,ur,xs,xt} is also a system of generators of
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Fp.y. The theorem is proved if T' 1is reducible, Suppose
that T' is irreducible, Then every element of T' is intrin-

sic, i.,e, X, and X¢ are intrinsic, Using lemma L we kmow

8
that Tp = {U],e0e;Up, W1, W2,.000] 15 8 system of generating‘
elements of P,_y where wi ¢ W 1s the set of covers of xp In
P,. Let T, € T; be an irreducible system of generators of
Pre Using the same argument as in lemma 5 we know that
at least one element of W must occur in T, Suppose there
are two elements, wy, Wy ¢ W which belong to Tp. Then we
have four intrinsic elements Of;Pn-l such that wy covers
X5, Wp COVErs Xy, X3 > Xy, Wz Xg, Xg # Xy, W # Woo BY
lemma 6 this 1s impossible., Therefore w = wp, l.e. Ty
contains only one element from W, T2 & Pp.j. Therefore
rank Pp_q < renk Pp. |
Lemma 7 states that the minimum number of generators
of the lattice L 1s equal to the minimum number of generators

of the partial lattice P = Ly + L, and this proves the

theorem of Chapter Three,
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