
2D to 3D Conversion with Direct

Geometrical Search and Approximation

Spaces

by

Maciej Borkowski

A Dissertation
submitted to the Faculty of Graduate Studies,

in Partial Fulfilment of the Requirements for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

c© by Maciej Borkowski, 24 August 2007

Department of Electrical and Computer Engineering
University of Manitoba

Winnipeg, Manitoba R3T 5V6 Canada

2D to 3D Conversion with Direct

Geometrical Search and Approximation

Spaces

by

Maciej Borkowski

A Dissertation
submitted to the Faculty of Graduate Studies,

in Partial Fulfilment of the Requirements for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

c© by Maciej Borkowski, 24 August 2007

Permission has been granted to the Library of the University of Manitoba to lend
or sell copies of this dissertation to the National Library of Canada to microfilm
this dissertation and to lend or sell copies of the film, and University Microfilms to
publish an abstract of this dissertation.
The author reserves other publication rights, and neither the dissertation nor exten-
sive abstracts from it may be printed or otherwise reproduced without the author’s
permission.

Abstract

This dissertation describes the design and implementation of a system that

has been designed to extract 3D information from pairs of 2D images. System

input consists of two images taken by an ordinary digital camera. System

output is a full 3D model extracted from 2D images. There are no assumptions

about the positions of the cameras during the time when the images are being

taken, but the scene must not undergo any modifications.

The process of extracting 3D information from 2D images consists of three

basic steps. First, point matching is performed. The main contribution of this

step is the introduction of an approach to matching image segments in the

context of an approximation space. The second step copes with the problem

of estimating external camera parameters. The proposed solution to this

problem uses 3D geometry rather than the fundamental matrix widely used

in 2D to 3D conversion. In the proposed approach (DirectGS), the distances

between reprojected rays for all image points are minimised. The contribution

of the approach considered in this step is a definition of an optimal search space

for solving the 2D to 3D conversion problem and introduction of an efficient

algorithm that minimises reprojection error. In the third step, the problem of

dense matching is considered. The contribution of this step is the introduction

of a proposed approach to dense matching of 3D object structures that utilises

the presence of points on lines in 3D space.

The theory and experiments developed for this dissertation demonstrate

the usefulness of the proposed system in the process of digitizing 3D informa-

tion. The main advantage of the proposed approach is its low cost, simplicity

in use for an untrained user and the high precision of reconstructed objects.

iii

Keywords: 2D to 3D conversion; 3D object structure; dense matching; cam-

era parameters; epipolar geometry; minimisation; approximation space, ge-

netic algorithm, image processing, 2D matching, rough sets, image segment.

iv

Acknowledgements

I want to thank my supervisor Prof. J. F. Peters for his help and support. This

dissertation would have never been finished without his valuable comments, direc-

tions and corrections. I also want to extend special thanks to my Ph.D. committee

members Prof. D. Gunderson, Prof. W. Lehn and Prof. M. Pawlak for very helpful

guidance, astute suggestions and incisive comments throughout my reseach project.

Special thanks are extended to my wife Hania who supported me in all aspects

of my life for the last couple of years when I was working on this dissertation.

I would also like to acknowledge my parents who helped me focus on the work

when I was doing a million other things.

I also wish to express my gratitude to the Natural Sciences and Engineering

Research Council of Canada (NSERC) and Manitoba Hydro for funding this research

project.

v

Contents

Abstract iii

Acknowledgements v

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Motivation . 3

1.2 Known Solutions . 4

1.3 Organization of the Dissertation . 6

2 Background Theory 8

2.1 Basic Definitions . 8

2.2 Photogrammetry . 10

2.3 Pinhole Camera Model . 13

2.4 Camera Matrices . 15

2.5 Camera Calibration . 16

2.6 Image Processing Terminology . 18

2.7 Hough Transform . 19

2.8 Image Warping . 21

2.9 Edge Detection . 21

2.10 Nonlinear Diffusion . 24

vi

2.11 Fundamental Matrix . 25

2.12 The Epipolar Geometry . 27

2.13 Image Rectification . 30

2.14 Rough Sets: Basic Concepts . 31

2.15 Rough Set Theory . 31

2.16 Approximation Spaces . 35

2.17 Genetic Algorithms . 36

2.18 Correlation . 38

3 2D Image Processing 40

3.1 Coarse Matching . 41

3.1.1 Image Quantization . 47

3.1.2 Image Segmentation . 51

3.1.3 Segment Selection . 54

3.1.4 Feature Generation . 58

3.1.5 Exhaustive Feature Matching 65

3.1.6 Single Point Standard (Upper Approximation) 70

3.1.7 Interval Standard (Lower Approximation) 74

3.1.8 Genetic Approach for Matching 79

3.1.9 2D Matching with Approximation Spaces 87

3.1.10 Tolerance Relation vs. Equivalence Relation 88

3.1.11 Classical vs. Rough Matching Methods 93

3.2 Point Matching . 96

3.2.1 Interest Point Detection . 97

vii

3.2.2 Scale invariant interest point detectors 98

3.2.3 Rotation invariant interest point detectors 104

3.2.4 Affine invariant interest point detectors 108

3.2.5 Interest Point Descriptors . 111

3.2.6 Matching . 122

3.3 Dense Matching . 127

3.3.1 3D Line Extraction . 131

3.3.2 Dense Matching . 134

3.3.3 Inside Point Detection . 135

3.3.4 Matching . 136

3.3.5 Merging Matches . 137

3.3.6 Removing Outliers . 138

3.3.7 Results . 140

4 2D to 3D Conversion 142

4.1 Cost Function . 144

4.1.1 Basic Definitions . 145

4.1.2 Cost Function Derivation . 153

4.1.3 Search Space . 157

4.2 Error minimisation . 166

4.3 Comparison with known methods . 180

5 Conclusions and Future Work 184

A Developed Applications 186

viii

A.1 PointMatch . 187

A.2 SPoints . 189

A.3 VisualBatch . 191

A.4 HypoDissertation . 194

A.5 Parallel Computations - The Server 196

A.6 Parallel Computations - The Client 198

A.7 TwoViews . 199

A.8 2DSearch . 201

A.9 BiCuGPU . 202

A.10 MeshReduction . 206

A.11 TexturedView . 208

A.12 UnrollLoops . 209

References 211

Notation 233

Glossary 236

Index 243

ix

List of Tables

1 Symbols used in Coarse Matching section. 41

2 Ranges of probe functions . 65

3 Voting table for Algorithm 5 . 73

4 Colour table . 77

5 Overlap table . 78

6 Z table vs. δ parameter . 78

7 Probe functions and their corresponding abstract forms. 81

8 Rules for creating genes. 84

9 Symbols used in Coarse Matching section. 97

10 Scale factor estimation for square gradient. 102

11 Interest point detector point match detection rates. 121

12 Symbols used in 2D to 3D conversion algorithm. 145

13 List of all symbols used in the error minimisation algorithm 165

14 Domains of five parameters for location C2 for camera 2. 167

15 Comparison of 8-point algorithm and DirectGS. 182

16 Two sample nested “for” loops. 208

x

List of Figures

1 Overview of the 2D to 3D conversion process 4

2 Overview of the 2D to 3D conversion system. 6

3 Pinhole camera model (left) and camera lens system (right). 12

4 Two images of the same scene with simple camera (left) and more

accurate (right) . 12

5 Pinhole Camera Model . 14

6 Camera calibration result (focal length set to 6 mm). 18

7 Black and white image (left) and corresponding Hough transform (right) 20

8 Sobel masks, horizontal Gx and vertical Gy 22

9 Original image (left) and the result of Sobel line detection (right). . . 23

10 Diffused image (left) and the result of Sobel line detection (right). . . 25

11 Epipolar geometry . 28

12 Sample representation of B∗X (dark squares), B∗X (light squares). . 34

13 2D Image Segment Matching Steps 43

14 Image of street water pump (left) and result of 2-bit quantization

(right). 50

15 Hydrant image after 7 iterations of (8) (left) and (9) (right) 53

16 Quantized images obtained by iterating (9) 55

17 The result of applying exponential into overlap function 61

18 Preliminary overlap of 2 segments (left), and best overlap (right) . . . 61

19 Three sample steps of segment matching. 62

xi

20 The process of finding the best overlap for |Pone seg|
|Ptwo seg| and overlap pa-

rameter. 64

21 Generated segments for the Wearever box scene. 70

22 Voting results. ◦ good match, + the closest match. 75

23 Voting results: ◦ good match, + the closest match. 75

24 Segments for Example 3 . 76

25 Voting results: ‘interval standard’ (left) and ‘single point standard’

(right). 80

26 The overview of the genetic algorithm. 83

27 The chromosome. Each block contains indices of matched shapes. . . 84

28 Rough coverage vs. ratio of correct matches for 2,000,000 chromosomes. 88

29 Ratio of correct matches for tolerance and equivalence relation 90

30 Rough coverage vs. ratio of correct matches (zoomed Figure 28). . . . 94

31 Overview of Point Matching steps . 97

32 Scale space filtering. Left and middle images - images taken with

a zoom factor 1 and 2.88, respectively, right image - middle image

rescaled with factor σ = 2.88 . 100

33 Harris corners . 107

34 Affine invariant interest points . 110

35 Results of SIFT detector matching. 122

36 Close-up of two insulators from Figure 35 123

37 Results of ZNCC matching. 125

38 Overview of the 2D to 3D conversion system. 129

xii

39 Overview of the algorithm extracting 3D straight lines. 131

40 Image of an electric power tower and detected edges 133

41 Sample lines and points from line in LD space 134

42 Detected line in LD space and points from original image 135

43 Sample disparity map for the ”jet plane” scene. 137

44 3D model of electric power tower . 139

45 Overview of the 2D to 3D conversion system. 141

46 Pinhole Camera Model . 146

47 Point p = (x, y, z) represented in spherical coordinate system (θ, φ, R). 149

48 First camera view (at the origin of the coordinate system) and the

second camera view on the sphere of radius R 159

49 Cost function for azimuth and altitude. 166

50 Illustration for the algorithm that determines the Ψ function. 174

51 Cost function minimisation algorithm overview. 179

52 Sample run for 11 point matches of DirectGS and 8-point algorithm. . 181

53 PointMatch application screenshots 187

54 SPoints application screenshot . 189

55 Sample script created in VisualBatch 191

56 Image quantization described in Section 3.1.1 191

57 Script for point matching described in Section 3.2.6 192

58 Script for segment matching described in Section 3 192

59 HypoDissertation application screenshots 194

60 RServer application screenshot . 196

xiii

61 TwoViews application (control pane) 198

62 TwoViews application (main pane) 199

63 Closeup for several rays and their closest approach lines 199

64 2DSearch application screenshot . 200

65 BiCuGPU application screenshot . 202

66 BiCuGPU application screenshots of 8x magnification 202

67 Fragment of a 3D model of a power tower. 206

68 UnrollLoop application screenshot . 209

xiv

1 Introduction

3D vision has a long history. Euclid is credited with discovering the principles of

binocular vision. A 3D device called a stereoscope invented during the early 1830s

by Sir Charles Wheatstone [15, 111, 189, 190] made it possible to view a different

image with each eye. Photography allowed people to capture images with cameras

separated by the same distance as human eyes. The stereoscope made it possible to

view objects in such a way that the brain would create a 3D image. The invention

of the digital camera made it possible to capture images with remarkable precision.

Additionally, such cameras made it easier to extract 3D information coded in flat,

2D images.

Considerable work has been done on solving the problem of extracting 3D infor-

mation from multiple 2D images. The most common approach uses what is known

as epipolar geometry [31, 61, 195]. In this work, the focus is on facilitating 3D de-

scriptions of objects based on 2D images obtained by one or more digital cameras.

Usually, there are no constraints on camera position in capturing 2D images. For

example, 2D images are obtained with a single camera that records the movements

of an object on a rotating turntable (see, e.g., [30]), or two cameras are used with

lateral movement (see, e.g., [45]).

In this research, 2D images are obtained by movement of a camera along a path

determined by an electric power transmission line. In effect, this research represents

a specialization of 2D to 3D image processing methods relative to the problem of

stereovision in a mobile robot equipped with one or more cameras. At the same time,

there are no limitations on the type of movement the camera undergoes between the

1

locations where the images are taken. It should be mentioned that this work1 is a

continuation of research that started earlier with the study of 2D camera images

[7, 135, 136] that resulted from studies of applications of rough sets [8, 12, 131]

based on both classical rough set theory [79] and minor extensions of rough set

theory [119, 120, 121, 137]. The focus of this dissertation is on matching points

from given images and conversion from 2D images to 3D objects.

The process of acquiring 3D information from the surrounding environment can

be classified according to three groups of methods [73]:

• Active or Passive,

• Image Based or Direct,

• Monocular or Multiple View.

An active 3D acquisition group includes methods that introduce a structured source

of energy such as light or ultrasonic waves. Passive methods are non-invasive, i.e.,

the process of recording an image does not alter the surrounding environment in any

way. Note that a camera flash unit does not emit structured light, but the direction

of illumination (actually the location of shadows) changes with the location of a

camera. Therefore, the use of a camera flash can be seen as a factor that alters the

environment and with one exception is not considered in this research2.

The second group divides the acquisition methods into ones that collect data in

form of images and direct methods that do not require such data representation like

1Point matching algorithms
2The exception is the case where a flash unit is not moving and is independent from the cameras

begin used.

2

range sensors. This project is classified as image based method.

The monocular 3D acquisition method defines a number of views used for the

data acquisition process. Interestingly, 3D information can be extracted from a

single view. But this does not mean that one image is sufficient to recover the

depth. For example, in the case of a range-from-focus approach, several images

are taken from one view. For each image, the focus is different. By identifying

the sharpest areas in each image, one can obtain information about depth of an

underlying scene. Other monocular methods like range from brightness, attenuation

or texture use some extra information that must be known a priori. This research is

classified into the multiple view category. The depth information is retrieved from

the differences between images taken from different vantage points in 3D space.

1.1 Motivation

Briefly, the motivation for this research is the need to use image processing to

detect deformations in various 3D structures that are common in electric power

transmission systems, e.g., steel towers, wooden towers, cross beams, insulators,

insulator pins, vibration dampers and so on. The proposed approach to 2D to

3D image processing makes it easier to impose constraints on camera movement.

Usually, the search space for 2D to 3D image processing is quite large (i.e., at least

6 dimensions [31, 61, 195]). As a result of the proposed approach, the size of the

search space is reduced by one dimension. The benefit of this approach means

faster calculations, which is important for robotic inspection of power transmission

equipment that is currently being investigated.

3

In addition, there is no single approach to pixel matching (i.e., discovery of

correspondence between pixels), which is needed before 3D information can be ex-

tracted from 2D images. In this research, the matching problem is solved using

approximation spaces, which underly the basic idea of classical rough sets [79].

1.2 Known Solutions

In this section, a short description of known methods for 2D to 3D conversion is

presented as way of establishing a framework for this research.

In general, the process of extracting 3D information from 2D images is performed

in two steps. First, the image registration is performed [35, 201]. This operation is

performed only in the 2D image domain. Its purpose is to match pixels from two

or more images that represent the same point in 3D space. In the second step, the

positions of cameras and the location of the points in 3D space are found. This

process in depicted in Figure 1.

Figure 1: Overview of the 2D to 3D conversion process

The first step in Figure 1 entails finding corresponding pixels in pairs of images.

The solution to the problem of identifying corresponding pixels is still being inves-

tigated by many researches [201]. At the 2D level, considerable work has been done

using various kinds of interest point detectors [153], especially the Harris detector

4

[74, 113, 175, 177] and differential invariants [50, 113]. The most commonly used

method used to find corresponding pixels is the cross-correlation [99].

The most common approach to extracting 3D information from two or more 2D

images is by using the epipolar geometry [31, 61, 195] and the fundamental matrix

[19, 31, 51, 52, 61, 147, 179, 182]. Pruning outliers (removing false matches from

the registration step) is usually achieved by the RANSAC algorithm [34], which can

also be used for post processing of extracted 3D models [18].

Some solutions make use of a priori knowledge about the scene being recon-

structed, such as the parallelism of the walls [18], existence of corners in the scene

[92] or the limited movement of the camera [99].

An example of a working system used to extract 3D information from 2D images

was introduced by Philip H. S. Torr [178]. Torr’s work concentrated on motion

segmentation and determining the maximum amount of information that can be

gained from two or three flat images. 3D information is extracted from images taken

from large sequences of images (movie frames). The differences between the images

were small enough to permit image registration using the Harris corner detector

and cross-correlation over 9 × 9 pixel windows. To extract 3D information, Torr

estimated the fundamental matrix using an algorithm based on RANSAC.

The main difficulty with most of the algorithms that estimate the fundamental

matrix is that while solving for the fundamental matrix one usually does not min-

imise a physical quantity. Such an approach is prone to special solutions, which are

not feasible in practise, but are valid mathematical solutions of the equations. This

problem can be solved by formulating the 2D to 3D conversion problem in such a

5

way that the solution includes minimisation of a physical quantity. An example of

such a formulation is the nonlinear method that minimizes distances between obser-

vation and reprojection [195, 200]. The idea behind this method is to minimize the

distance between the selected image points and their reprojections. This approach

requires the calculation of the fundamental matrix, the retrieval of 3D coordinates

of all points of interest and the reprojection of these points back into an image.

Matthies et al. in [99] proposed a new method for dense image registration

based on the Kalman filter. The matching of pixels was performed using the sum

of squared differences. The authors concentrated only on lateral movement of the

cameras. This is an example of a special case known in the literature as stereovision

[68]. Usually, in stereovision, it is assumed that one camera is translated by a

movement with respect to a second camera that is perpendicular to the optical axis

of both cameras (lateral movement).

1.3 Organization of the Dissertation

This section briefly describes the organization of this dissertation. The dissertation

consists of three main steps (see Figure 2). Each step corresponds to one section in

the dissertation.

3. Dense
Matching

Calibration Rectification

2D Image

2D Image

1. Point
Matching

2. 2D to 3D
Conversion

Figure 2: Overview of the 2D to 3D conversion system.

6

Section 2 gives a concise description of the background topics used for this re-

search. The calibration step in Figure 2 denotes the process of undistorting images.

The process of removing the distortions caused by the camera can be performed

only after the camera is calibrated (see Section 2.5). Finally, the rectification step

aligns the epipolar lines with the horizontal edges of both images (see Section 2.13).

The rectification step is performed before the dense matching.

In Section 3, 2D image processing methods used in this research are presented.

This section consists of three main parts. In Section 3.1, a coarse matching is pre-

sented. This step aims at detecting segments in both images and detecting the scale

difference and rotation angles between them. Section 3.2 gives a review of existing

methods for point matching. This is followed by a description of an algorithm used

for matching points from pairs of 2D images. An approach to dense matching is

presented in Section 3.3. Dense matching utilises the presence of points on lines

in 3D space and relies on information about camera locations and orientations. In

practise, dense matching is performed after 2D to 3D conversion.

Section 4 presents the core of 2D to 3D conversion. It incrementally describes

the design of a 2D to 3D conversion algorithm. In Section 4.1, a cost function is

derived. This section also presents the definitions and mathematics needed for the

derivation of a 2D to 3D conversion algorithm. Section 4.2 contains a description of

an optimal algorithm for minimisation of the cost function.

7

2 Background Theory

The basic definitions of technical terms as well as the fundamental methods and

theories underlying the approach to 2D to 3D conversion are presented in this section

of the dissertation.

2.1 Basic Definitions

In this dissertation, all vectors and point coordinates are always given as column

matrices. For example, if P is a point in 3D space, then P is represented as:

P = [x y z]T =

⎡
⎢⎢⎢⎢⎣
x

y

z

⎤
⎥⎥⎥⎥⎦ .

The symbol R denotes the set of all real numbers. If M is a matrix then let mij

denote an element of M , where i denotes the row and j denotes the column of M .

Definition 1. A square matrix M is called a singular matrix if it is not invertible,

i.e., if no matrix M−1 exists such that MM−1 = M−1M = I. A determinant of a

singular matrix is equal to zero.

Definition 2. A non-singular matrix is a matrix that is not singular.

Definition 3. The Mahalanobis distance is a measure of the distance between two

points x, y ∈ Rn given by

dM(x, y) =
√

(x− y)T Σ−1(x− y),

8

where Σ is any non-singular n dimensional matrix.

Usually, one of the points denotes a mean value of a set of points derived from a

normal distribution and Σ is a covariance matrix of a given normal distribution. In

such case the Mahalanobis distance measures the distance from one given point to

the centre of mass of a given distribution relative to the scatter of points from the

distribution.

The Euclidean distance is a special case of Mahalanobis distance, where the

matrix Σ is identity matrix.

Next, definitions of transformations used in this dissertation are presented [61].

Definition 4. A linear transformation is a function f : Rn → Rm that preserves

addition and scalar multiplication. For X, Y ∈ Rn and a ∈ R, a function f is linear

if and only if

f(X + Y) = f(X) + f(Y) and f(aX) = af(X).

Definition 5. An affine transformation A is a function A : Rn → Rn that preserves

collinearity and ratios of distances. In n dimensional space, an affine transformation

is described by a non-singular matrix A ∈ Rn × Rn and a vector T ∈ Rn. For any

X ∈ Rn, an affine transformation A is given by

A(X) = AX + T. (1)

Any point in X = [x1 x2 . . . xn] ∈ Rn can be represented in homogeneous co-

ordinates as [x̃1 x̃2 . . . x̃n x̃n+1] ∈ Rn+1. For xn+1 �= 0 the conversion between

9

homogeneous coordinates and Cartesian coordinates is performed using

x1 =
x̃1

x̃n+1
x2 =

x̃2

x̃n+1
. . . xn =

x̃n

x̃n+1
.

A point in homogeneous coordinates such that xn+1 = 0 represents a point at infinity.

Homogeneous coordinates are often used in context of the epipolar geometry (see

Section 2.12).

2.2 Photogrammetry

The problem of extracting 3D information from images has its roots in photogram-

metry3 [25]. Photogrammetry was developed and mainly used as a method for mea-

suring real-life objects based on images containing objects of interest. Originally,

photogrammetry did not use either computers or digital cameras. The main task

for photogrammetry is to recover real dimensions of objects being photographed.

The problem is the deformation of an object in an image caused by the way light

traverses through the camera elements. This section contains a description of impor-

tant topics from photogrammetry that apply to this project. This section is based

on [25] and [192].

The process of image creation assumed in this project is that described by the

pinhole camera model (see Section 2.3 for more details). In practise though, due

to the camera construction, the assumptions about the pinhole camera model are

violated. A pinhole camera model is a simplified mathematical model of how images

3Etymology: photogram- photograph (from phot - + -gram) + -metry; the science of making
reliable measurements by the use of photographs, from [205].

10

are created. In practise, the aperture of a pinhole camera would have to have

infinitely small diameter. This makes the exposure of images impossible. Instead,

glass lenses are used that are able to catch a bundle of rays and focus them on one

point in an image plane. This makes it possible to form an image on light-sensitive

film inside a camera.

The disadvantage of using glass lenses is that a ray of light coming from an

object refracts several times. The angle at which a ray of light enters a lens is

not the same as the angle at which the ray of light leaves the lens. As a result,

one cannot select one point and consider it the centre of the projection and points

in the image are recorded with different focal lengths (see Figure 3). The actual

focal length fθ depends on the angle between a principal ray and a given object.

The greater the angle θ, the bigger the distortion of an image. In the left part

of Figure 4, the image produced by an inexpensive web camera4 is shown. The

lens distortion causes straight lines to be recorded as non-straight lines. This effect

becomes more severe as the distance from a principal point increases. The right

part of Figure 4 shows an image taken with a digital camera equipped with a Sony

Mavica Carl-Zeiss lens system5. The accuracy of the Mavica image is much better

than the WebCam camera image in Figure 4. The superiority of the Mavica image

is due to the fact that the Mavica camera has a bigger focal length. The resulting

Mavica image has a geometry similar to that obtained when using the pinhole camera

model. Nevertheless, even images produced by high quality cameras contain some

distortions and these distortions need to be removed in order to obtain reliable

4Creative� WebCam Ultra NX, resolution 640x480 pixels.
5SONY� CD Mavica MVC-CD300 Digital Still Camera, 640x480 pixels.

11

results in 2D to 3D conversion.

Figure 3: Pinhole camera model (left) and camera lens system (right).

The distortions due to glass lens are corrected using photogrammetry techniques.

This process is called camera calibration. To produce an accurate image, a camera

is calibrated and an image is corrected. The literature is rich in camera calibration

techniques that do not impose conditions on how the images are to be taken [169,

182].

Figure 4: Two images of the same scene with simple camera (left) and more accurate
(right)

For this project, full camera calibration is described (see Section 2.5). The reason

12

for this is that despite the fact that the most common application of the system is

to process images taken using more accurate digital cameras, such cameras produce

slightly distorted images. The precision required for this project is a crucial factor

and small distortions produced by high quality off-the-shelf digital cameras are still

a concern.

2.3 Pinhole Camera Model

Geometric equations used for converting flat images into a 3D space assume that

images are obtained using a camera that conforms to the pinhole camera model.

In practise, digital camera construction violates this assumption and the resulting

images contain distortions. The most common result of these distortions is that

straight lines are mapped into curves. Section 2.5 describes a standard camera

calibration method used to remove these distortions. The notation used here is

based on [25], [26] and [192].

Figure 5 shows the pinhole camera model (also called central projection). The

image plane is shown on the left-hand side of Figure 5. In digital cameras, the

image plane is a CCD (Charged-Coupled Device) matrix used to record an image. By

contrast, in classical cameras, images are recorded on light-sensitive film. Regardless

of the media, the image plane is considered to be the actual image containing a view

of an observed scene. The straight line connecting each point Pi in 3D space with

its corresponding image point pi is called the projecting ray. The point where the

projecting ray crosses the image plane pi is described by the coordinates of the pixel

representing given point Pi in 3D space. Each projecting ray goes through a special

13

Figure 5: Pinhole Camera Model

point called the perspective centre, the lens centre or the pinhole lens. The projecting

ray that is perpendicular to the image plane is called the principal ray. It crosses the

image plane at a point called the principal point . The distance f between the image

plane and the perspective centre is called the focal length. The focal length controls

the width of a camera view. The shorter the focal length the wider the camera angle,

but also the bigger the distortion of an image due to perspective transformation.

Perspective transformation is the transformation that converts coordinates of a

3D point Pi into image plane coordinates pi. For the sake of simplicity, assume that

the world Z coordinate is aligned with the principal ray as shown in Figure 5. The

x and y coordinates of the image plane correspond to world X and Y coordinates.

Assuming that the origin of the world coordinate system is placed at the perspective

centre, the focal length equals f and the coordinates of point Pi are (Xi, Yi, Zi), the

14

coordinates of a point pi = (xi, yi) are given by

xi =
fXi

Zi
, yi =

fYi

Zi
.

2.4 Camera Matrices

In this section, image mapping from 3D space to a 2D image by a pinhole camera

is formally described using matrix notation.

Let k denote an aspect ratio, α a magnification parameter, vx and vy a principal

point coordinates and s a skew parameter. These parameters do not depend on cam-

era location and orientation (the so-called internal camera parameters or intrinsic

parameters) and they form the calibration matrix

K =

⎡
⎢⎢⎢⎢⎣
kα s vx

0 α vy

0 0 1

⎤
⎥⎥⎥⎥⎦ . (2)

Let R ∈ R3×R3 denote a camera rotation matrix (as defined in (25)). The matrix

R due to Euler’s theorem6 depends only on three parameters - rotation angles along

three coordinates X, Y and Z. Let T ∈ R3 denote a translation of the lens centre of a

given camera in 3D space (each component of a vector T is responsible for translation

along different axis). The three rotation parameters defining the rotation matrix R

and three translation parameters T are called the external camera parameters (or

extrinsic parameters) [22, 61].

6See subsection Rotations In 3D Space of Section 4 for more details about Euler’s theorem.

15

A camera projection matrix P ∈ R3 × R4 is build from internal and external

camera parameters [61, 182].

P = K

[
R | T

]
.

Let Pi ∈ R3 denote a point in 3D space and pi ∈ R2 denote the corresponding

point in the image plane. The relation between these two points is shown in

⎡
⎢⎣ pi

1

⎤
⎥⎦ = P

⎡
⎢⎣ Pi

1

⎤
⎥⎦ .

2.5 Camera Calibration

Due to the fact that digital cameras do not conform to the pinhole camera model,

it is necessary to transform digital images. This process (called camera calibration)

consists of two steps. First, all internal camera parameters describing the actual

camera model are identified. Then each digital image is transformed to the required

format.

The first step of camera calibration process requires several images of a shape

with known geometry. In the software used in [169] the calibration images show

a planar checkerboard. Each image is taken from a different angle. Then all the

corners in the checkerboard are identified and the internal parameters of a camera

are calculated. The model used in the calculations takes into account the focal

length of the camera, the principal point and skew coefficient (see (2)) as well as

radial and tangential distortion coefficients k1, k2, . . . , k5 (see, e.g., [49, 63]). An

16

image point with coordinates (x, y) is mapped to a point (xun, yun) in undistorted

image using the transformation

⎡
⎢⎣ xun

yun

⎤
⎥⎦ = (1 + k1r

2 + k2r
4 + k5r

6)

⎡
⎢⎣ x

y

⎤
⎥⎦ +

⎡
⎢⎣ 2k3xy + k4(r

2 + 2x)

k3(r2 + 2y) + 2k4xy

⎤
⎥⎦ ,

where: r2 = x2 + y2.

After all parameters have been identified, an inverse mapping from a distorted

to an undistorted image is found. Having found7 this transformation, all the images

taken by the camera need to be transformed to the undistorted form. The undis-

torted image will then conform to the pinhole camera model. For experiments for

this dissertation, only undistorted versions of images have been used.

The Figure 6 shows the result of calibrating the image taken by the digital camera

with the focal length set to 6 mm. The distortion of the original image is visible in

the corners of Figure 6(a). Straight lines in 3D space should be mapped to a straight

lines in the image plane. But, as can be seen in Figure 6(b), the lines forming a

checkerboard are bent. In Figure 6(b) the image from 6(a) was undistorted using

the information about the internal camera parameters. This image conforms to the

pinhole camera model.

7Calibration parameters are found by solving Direct Linear Transform using Levenberg-
Marquardt optimization method, see [63] for more details.

17

(a) Original image (b) Calibrated image

Figure 6: Camera calibration result (focal length set to 6 mm).

2.6 Image Processing Terminology

This section gives an introduction to the basic definitions of technical terms associ-

ated with the classical approach to 2D matching images.

Definition 6. ([48, 62, 94]) Pixel. A pixel (also referred to as an image element,

picture element, or pel) is the smallest component (a point) of a digital image. A

pixel has its fixed location and a colour that can be modified.

In a digital image, a pixel is an element that has a numerical value that represents

a greyscale (256 possible values) or RGB intensity value (2563 = 16, 777, 216 possible

values).

Definition 7. ([48, 94]) A 4-Neighbourhood of a pixel p with coordinates (x, y)

is a set of 4 pixels (2 vertical and 2 horizontal neighbours) at coordinates

(x− 1, y) , (x+ 1, y) , (x, y − 1) , (x, y + 1) .

Definition 8. ([48]) An 8-Neighbourhood of a pixel p with coordinates (x, y) is

18

a set of 8 pixels at coordinates

(x− 1, y − 1) , (x− 1, y) , (x− 1, y + 1) , (x, y − 1) ,

(x, y + 1) , (x + 1, y − 1) , (x + 1, y) , (x + 1, y + 1) .

Definition 9. Segment. A segment is a collection of 4-neighbourhood connected

pixels that have the same colour.

Definition 10. Image Segmentation. An image segmentation is a process of

identifying segments in a digital image. After image segmentation each pixel from

an image belongs to exactly one segment.

Definition 11. 2D Convolution Let I ∈ Rk×Rl be an 2D image andM ∈ Rn×Rm

2D mask8. A 2D convolution of image I with a mask M is a linear combination of

elements from mask M and image I

Conv(x, y) =

n∑
i=1

m∑
j=1

I(x− n/2 + i, y −m/2 + j)M(i, j)

2.7 Hough Transform

The most popular algorithm in digital image processing for detecting lines is Hough

transform [48, 69]. It transforms points from Cartesian coordinates into sinusoidal

functions on the plane. Lines from Cartesian space correspond to intersections of

sinusoidal functions in the Hough space. Each point in the Hough space is a counter

of points from the original image, which are part of a line defined by a given point

8Usually the dimensions of mask M are much smaller than dimensions of the image I.

19

in the Hough space. For example, in the left part of Figure 7 black and white image

is shown. All white points from this image were transformed to Hough space. The

right side of this figure shows the same image, but in the Hough space.

Figure 7: Black and white image (left) and corresponding Hough transform (right)

Let denote by (xi, yi) coordinates of an i-th pixel from a given image. The

conversion from image space to Hough space (θ, ρ) is given by

ρ = xi · cos(θ) + yi · sin(θ).

The parameters θ and ρ describe the location of the line from the original image.

The ρ parameter is equal to the distance between the line and the origin and θ

defines the angle with which the line crosses the vertical axis.

2.8 Image Warping

Image warping is an algorithm for applying geometrical transformations to digital

images. Geometrical transformations are used to remove (or add) unwanted geo-

20

metrical distortions from an image. These transformations are defined by selecting

a mesh of points, called tiepoints. One set of tiepoints is located in the input

(distorted) image and the second set in the output (corrected) image. A mapping

between input and output images is exact at specified tiepoints. If we denote the

coordinates of a pixel in the corrected image by (x, y) and coordinates of a pixel in

the input image by (x̂, ŷ) then the First Order Warp equation [48] is defined by

x̂ = c1x+ c2y + c3xy + c4,

ŷ = d1x+ d2y + d3xy + d4,

and c1, c2, c3, c4, d1, d2, d3 and d4 are real numbers. First, these parameters are cal-

culated from the above equations and known tiepoints. Then the image is warped

using the same set of equations shown above.

In certain cases the warping transformation can be defined not using a tiepoints

but explicitly by a transformation matrix.

2.9 Edge Detection

Edge point detection aims at identifying pixels with high variability. Usually, images

containing an edge of a 3D shape is represented with areas of different colours on

both sides of the edge. In most cases, this results from different lightning conditions

on both sides of an edge. For similar reasons, flat areas are represented in an image

by uniform patches. These patches do not contain much relevant information relative

to the shape of a particular object.

21

A Sobel filter is a gradient based edge detector that detects edges in an image

([167] as cited by [48]). The Sobel filter consists of two masks that are convolved

with the image (see Figure 8).

Gx =
-1 0 1
-2 0 2
-1 0 1

Gy =
-1 -2 -1
0 0 0
1 2 1

Figure 8: Sobel masks, horizontal Gx and vertical Gy

The application of the Sobel filter results in high values for pixels with high

changes of colour in their neighbourhood. In the area where colour values are ap-

proximately at the same level, the Sobel filter produces small values. But any digital

image is hardly ever ideally uniform, and as a result there are always some edges

present in the areas representing flat surfaces.

The Sobel filter works on grey-scaled images, therefore, before detecting the lines

the image is converted to grey-scale levels. The formula used for conversion uses the

guidelines from [203]. The formula

I = 0.299 · R + 0.587 ·G+ 0.114 · B,

converts the RGB colours into a grey-scale in a more natural way for human vision

system than the (R +G+B)/3 formula.

Denote by Gx(I) the result of convolving the mask Gx with an image I. An

image Isobel resulting from applying a Sobel filter to an image I is the square root

22

of sum of two squared convolved images, i.e.,

Isobel =
√
G2

x(I) +G2
y(I).

An example of the edge detection result is shown in Figure 9. Edges detected

by the Sobel filter are denoted in dark colour. As can be seen, the edge detector

selected many points on the flat surface that should not be detected. One solution to

this problem could be the thresholding of the image with low threshold, but it would

also remove some important parts of the image. What in fact is needed, is a way

of removing small details from the areas of low variability, while keeping the sharp

edges. The solution for this problem is a ”nonlinear diffusion” that is discussed in

the next section.

(a) Original Image (b) Detected Lines

Figure 9: Original image (left) and the result of Sobel line detection (right).

23

2.10 Nonlinear Diffusion

The idea behind nonlinear diffusion is to smooth relatively uniform areas of the image

while keeping the edges. It is based on a physical phenomenon called diffusion,

a process during which a change of concentration happens spontaneously so that

a steady-state of concentration is reached. For image processing applications, the

concentration is interpreted as pixel value. During the diffusion process, pixel values

are used as a quantities for which an equilibrium is sought. Colours of neighbouring

pixels are being mixed and an equilibrium means no change in colour and results in

smoother image.

The diffusion process is modelled by a diffusion equation [185], also known as

heat equation

∂tI = �(D · ∇I),

where t denotes time, I is an image and D is a ”diffusion coefficient”. The coefficient

D controls the diffusion speed. It is usually set as a function of a gradient of an

image, see [128, 185, 186]. The gradient is responsible for detecting edges (see the

discussion of Sobel filter). By setting D to be a function of the gradient one can

control the diffusion speed depending on the proximity of the pixels to the edges.

The function suggested by Perona and Malik [128] is

g(s2) =
1

1 + s2/λ2
, λ > 0,

where

D = g(‖∇I‖2).

24

As shown in the above equations the diffusion coefficient D is inversely propor-

tional to the square root of the gradient. This means that the diffusion is slow for

the pixels belonging to the edges and fast for the pixels belonging to more uniform

areas. In what follows, areas with small variability are smoothed and edges are kept

unchanged. As a result, the image is smoothed except for the edges. The result of

applying the nonlinear diffusion filter to the left part of the image from Figure 9

is shown in Figure 10. The diffusion was performed using the code by Frederico

D’Almeida available at [204].

(a) Diffused Image (b) Detected Lines

Figure 10: Diffused image (left) and the result of Sobel line detection (right).

2.11 Fundamental Matrix

Denote by p1,i ∈ R2 a point in one image and by p2,i ∈ R2 its corresponding match

in a second image. The fundamental matrix F ∈ R3 × R3 is a matrix that satisfies

the equation ⎡
⎢⎣ p2,i

1

⎤
⎥⎦F

⎡
⎢⎣ p1,i

1

⎤
⎥⎦ = 0, (3)

25

for all point matches.

The fundamental matrix contains information about the relative position and

orientation of two camera views. Therefore, given enough matched points, one

can calculate the fundamental matrix F using (3). Knowing F, it is possible to

reconstruct a 3D scene from given images (see, e.g., [195]).

Estimation of the fundamental matrix is the most common approach for deter-

mining the external camera parameters. The popularity of the fundamental matrix

approach lies in the fact that it can be used to specify a correspondence between

points from two given stereo images without the need to know the projection ma-

trices. The problem of estimating the fundamental matrix is rather complex. There

have been many attempts to solve this problem and there are many well studied

solutions. Zhang [195] reviews many known methods that fall into the following

groups.

• Exact solution with 7 point matches;

• Analytic method with 8 or more point matches;

• Analytic method with rank-2 constraint;

• Nonlinear method minimising distances of points to epipolar lines;

• Gradient-based technique;

• Nonlinear method minimising distances between observation and reprojection.

The fundamental matrix is a singular matrix and has only seven degrees of freedom.

This means that two values in the fundamental matrix depend on other seven pa-

26

rameters. By directly solving (3), one obtains the solution for the nine unknowns.

Different algorithms try to constrain external requirements to decrease the space of

possible solutions (see, e.g., [33, 199]).

2.12 The Epipolar Geometry

The description of the epipolar geometry presented in this section is based on [61].

This section contains only necessary terms needed to explain how the epipolar geom-

etry is used to perform the dense matching.

The Epipolar Geometry Theory

The epipolar geometry is the geometry between two two-dimensional views of the

same 3D scene. The main notion of the epipolar geometry is the fundamental

matrix [33, 60, 61, 195, 199, 200] that links the coordinates of two views of one

point from 3D space. In order to derive this correlation, consider the scene shown

in Figure 11 (based on Figure 9.1 from [61]). This figure shows two pinhole cameras

C1 and C2, two corresponding image planes I1 and I2, and a point P in 3D space

(P ∈ R3). The line connecting two cameras’ centres is called a baseline. A plane

containing the baseline and a point P is called the epipolar plane π. The point P is

mapped into both image planes. In the first view it maps to a point p1 and in the

second view to a point p2.

First, consider the case, when only the first mapped point p1 is known. The

point Pi lies on the line passing through the first camera centre C1 and an image

point p1, see Figure 11. In other words, point Pi is a point p1 reprojected back into

27

Figure 11: Epipolar geometry

the 3D space. The location of the point Pi in 3D space is not unique. This point

can be located anywhere on the line determined by vector
−→
C1p1. One view does

not give enough information to determine the location of this point (since it is 2D

to 3D mapping). Now, consider where this point is mapped on the second image

plane. The line connecting the lens centre C2 and the point Pi is contained in the

epipolar plane π (since both ends of the vector
−→
C2Pi are contained in π). Therefore,

the mapping of point Pi on the image plane I2 lies on the line that is an intersection

of epipolar plane π and image plane I2. This line is called epipolar line and is of a

main interest from the point of view of point matching. All epipolar lines intersect

in one point called the epipole, denoted by e1 for the first view and e2 for the second

view. This is also a point in which the baseline intersects with both image planes.

Notice, the epipole may, but does not necessarily need to lie within image plane of

28

a camera.

The coordinates of the two points p1 and p2 are correlated via the fundamental

matrix, see (3).

Application of Epipolar Geometry to Dense Matching

The epipolar geometry can be used as a means in the retrieval of the relative positions

of the two cameras. Another popular application is called ”dense matching” [177]

(see Section 3.3). For this research, the epipolar geometry is used for dense matching.

Before the epipolar geometry can be used, the relative position of the two cameras

in the 3D space must be known. This implies that the fundamental matrix F is

known as well. Using (3) one can calculate the epipolar line in the second view for

each point from the first view. The goal is to reduce the search space. In order

to reconstruct the 3D scene, one must have the information about the positions of

all pairs of points from both images. One of the problems in coarse matching is

a big search space. For each pixel from the first view, its corresponding pixel in

the second view is searched in two dimensional space. By using (3) one can reduce

the dimensionality of the search space from two to one. It is possible because the

matching point must lie somewhere on the epipolar line that can be found if the

fundamental matrix is known. After determining the epipolar line the problem of

matching a given pixel from the first view with the point on the epipolar line is

still open. But using epipolar constraint makes this task much simpler and can be

handled using correlation. In addition, the error of the match along the epipolar line

can be parametrized using a parabola, allowing for obtaining sub-pixel resolution

29

[99].

2.13 Image Rectification

Image rectification (sometimes called the epipolar rectification) is the process of

determining a mapping for two given images such that corresponding epipolar lines

become collinear and parallel to the horizontal image axes [41].

After the rectification, all corresponding epipolar lines are placed at the same

level, i.e., two corresponding epipolar lines have the same vertical position. As a

result, images are transformed to a stereo vision view, i.e., images from two cameras

are displaced only laterally [2]. This transformation is very important, because

it simplifies the problem of dense matching. After finding the epipolar lines, the

problem of matching pixels is reduced from 2 dimensions to 1 dimension, where

each matching point lies on an epipolar line that is a 1-dimensional subspace of the

2-dimensional space. Parametrization of a line is 1-dimensional, but in general, when

moving along a line, both coordinates of a point belonging to a line change. After

rectifying the images, the vertical coordinates of matched points do not change and

the search for matching point from the second image can be performed by varying

the horizontal coordinates only.

Additionally, there are no special requirements for the cameras’ locations and

orientation for the rectification to be possible. Fusiello at al. [41] show that rectifi-

cation can always be performed, except for the case where movement of the camera

is parallel to the principal ray of the camera.

30

2.14 Rough Sets: Basic Concepts

This section briefly presents some fundamental concepts in rough set theory that

provide a foundation for the image processing described in this dissertation. In addi-

tion, a brief introduction to approximation spaces is also given, since approximation

spaces are used to solve the 2D matching problem. First, definitions of tolerance

and equivalence relations are given.

Definition 12. Tolerance Relation (from [79])

A binary relation τ ⊆ X ×X is called a tolerance relation if and only if τ is

1. reflexive, an object is in relation with itself xτx,

2. symmetric, if xτy then yτx.

Definition 13. Equivalence Relation (from [79])

A binary relation R ⊆ X ×X is called an equivalence relation if and only if R is a

tolerance relation and is

1. transitive, if xRy and yRz then xRz.

2.15 Rough Set Theory

In this dissertation, the rough set approach introduced by Zdzis�law Pawlak [122,

126, 127] provides grounds for concluding to what degree a set of image segment

pairs representing a standard covers a set of similar image segment pairs. The term

“coverage” is used relative to the extent that a given set is covered by a standard

set. An overview of rough set theory and applications is given in [79, 144].

31

Let U be a non-empty finite set (called a universe) and let P(U) denote the power

set of U , i.e., the family of all subsets of U . Elements of U may be, for example,

images, image segments, physical objects, or observed behaviours of organisms. A

feature F of elements in U is measured by an associated probe function f = fF

whose range is denoted by Vf , called the value set of f ; that is, f : U → Vf . There

may be more than one probe function for each feature. For example, a feature of

an object may be its weight, and different probe functions for weight are found

by different weighing methods; or a feature might be colour, with probe functions

measuring, e.g., red, green, blue, hue, intensity, or saturation. The similarity or

equivalence of objects can be investigated quantitatively by comparing a sufficient

number of features by means of probes [118, 130]. In this dissertation, each feature

is associated with only one probe function and its value set is taken from the set of

real numbers R. Thus one can identify the set of features with the set of associated

probe functions, and hence we use f rather than fF and call Vf = VF a set of

probe function values. If F is a finite set of probe functions representing features of

elements in U , the pair (U, F) is called a data table, or information system (IS).

For each subset B ⊆ F of probe functions, define the binary relation ∼B=

{(x, x′) ∈ U ×U | ∀f ∈ B, f(x) = f(x′)}9. Since each ∼B is an equivalence relation,

for B ⊂ F and x ∈ U let [x]B denote the equivalence class, or block, containing x,

that is,

[x]B = {x′ ∈ U | ∀f ∈ B, f(x′) = f(x)} ⊆ U.

If (x, x′) ∈ ∼B (also written x ∼B x′) then x and x′ are said to be indiscernible with

9The symbol | denotes ”such that”, a notation commonly used in set theory [16].

32

respect to all feature probe functions in B, or simply, B-indiscernible.

Information about a sample X ⊆ U can be approximated from information

contained in B by constructing a B-lower approximation

B∗X =
⋃

x:[x]B⊆X

[x]B,

and a B-upper approximation

B∗X =
⋃

x:[x]B∩X �=∅
[x]B .

The B-lower approximation B∗X is a collection of blocks of sample elements that can

be classified with full certainty as members of X using the knowledge represented

by features in B. By contrast, the B-upper approximation B∗X is a collection of

blocks of sample elements representing both certain and possibly uncertain knowl-

edge aboutX. Whenever B∗X � B∗X, the sample X has been classified imperfectly,

and is considered a rough set.

Example 1. Figure 12 shows a sample upper and lower approximation of a bounded

region (call it I) in the sample image. Let U consist of pixels in the image in

Figure 12. Let fi be probe functions that determine the horizontal and vertical

locations of given point, i.e., f1(x) returns the horizontal location of an element x

and f2(x) returns the vertical location of an element x. Define δ-mesh function to

be fi,δ(x) =
fi(x)/δ�. Assume that B contains two probe functions representing

33

the feature resolution that is represented by a so-called δ-mesh [7] function

∼B,δ= {(x, x′) ∈ U2 | ∀fi,δ ∈ B.fi,δ(x) = fi,δ(x
′)}.

The relation ∼B,δ partitions U into blocks containing adjacent pixels. All pixels

within each square in the black grid are considered to be indiscernible because of the

matching probe function values. Each of the darkened squares is entirely contained

within I to form a lower approximation of I. On the other hand, the combination

of squares containing pixels having a lighter-red or dark red colour either partially

intersect with or are entirely contained inside I and, hence, constitute an upper

approximation of I.

Figure 12: Sample representation of B∗X (dark squares), B∗X (light squares).

34

2.16 Approximation Spaces

This section gives a brief introduction to approximation spaces. A very detailed

introduction to approximation spaces considered in the context of rough sets is

presented in [144]. The classical definition of an approximation space given by

Zdzis�law Pawlak in [125, 122] is represented as a triple (U , F , ∼B), where the

indiscernibility relation ∼B is defined for probe functions in B ⊆ F representing

features of objects in a universe of objects U (see, e.g., [161]). Let U/ ∼B denote a

partition of U defined by ∼B. It should be observed that any subset X of U can be

approximated in U/ ∼B.

Before defining an approximation space a notion of an neighbourhood function

and an overlap function are introduced.

The neighbourhood function N defines for every object x a set of similarly de-

fined objects [162]. In effect, N defines a neighbourhood of every sample element x

belonging to the universe U (see, e.g., [132]).

The overlap function computes the degree of overlap between two subsets of U .

Let P(U) denote the powerset of U .

A generalized approximation space was introduced by Skowron and Stepaniuk

in [163, 164, 168]. A generalized approximation space is a system GAS = (U , F , N ,

ν) where

• U , a non-empty set of objects.

• F , a set of probe functions representing features of objects in U .

• N : U → P(U), a neighbourhood function such that x ∈ N(x) for any x ∈ U .

35

• ν : P(U) x P(U) → [0, 1] is an overlap function.

Specifically, any information system (U, F) and any B ⊆ F naturally defines a

parameterized approximation space PASB = (U, F,NB, ν), where NB = [x]B , a B-

indiscernibility class in a partition of U [130]. The overlap function ν computes

the degree of overlap between two subsets of U. Standard rough inclusion (SRI) ν :

P(U) x P(U) → [0, 1] is defined in terms of the relationship between two sets as

νSRI(X, Y) =

⎧⎪⎨
⎪⎩

|X∩Y |
|X| , if X �= ∅,
1 , if X = ∅.

for any X, Y ⊆ U . We are interested in Y because we want to see how well Y

“covers” X, where Y represents a standard for evaluating pairs of image segments.

Standard rough coverage (SRC) νSRC is defined as

νSRC (X, Y) =

⎧⎪⎨
⎪⎩

|X∩Y |
|Y | , if Y �= ∅,
1 , if Y = ∅.

In other words, νSRC (X, Y) returns the degree that Y covers X. In the case where

X = Y , then νSRC (X, Y) = 1. The minimum coverage value νSRC(X, Y) = 0 is

obtained when X ∩ Y = ∅ (i.e., X and Y have no elements in common).

2.17 Genetic Algorithms

Evolution has been characterized as an optimization process [29, 66, 100]. Dar-

win [24] observed “organs of extreme perfection” that have evolved. Genetic al-

36

gorithms (GAs) belong to a class of evolutionary algorithms introduced by John

Holland in 1975 [66] as a means of studying evolving populations. A GA has three

basic features:

• Representation: each population member is coded to binary representation

in a gene,

• Method of Selection: fitness of each population member is evaluated,

• Method of Variation (Crossover): create new population member by com-

bining features from pairs of highly fit individuals.

Crossover is the fundamental operation used in classical genetic algorithms. Muta-

tion is another method used in GAs to induce variations in the genes of a chromo-

some representing a population member. The basic steps in a genetic algorithm are

described as follows. Let Pt denote an initial population of individual structures,

each with an initial fitness at time t. Then an iteration begins. Individuals in Pt

are selected for mating and copied to a mating buffer Ct at time step t. After that,

the individuals in Ct are combined and form a new mating buffer C ′
t. Next, a new

population Pt+1 is constructed from Pt and C ′
t. A desired fitness is used as a stop-

ping criterion for the iteration in a GA. A representation of a very basic GA that

uses only the crossover operation is given in Algorithm 1.

In this dissertation, GA was used for search for matching segments in pairs of

images. The details of implementation of GA is given in Section 3.1.8.

37

Algorithm 1: Basic GA

Input : population Pt, mating pool Ct

Output: evolved population PT at time T
t = 0;
Initialize fitness of members of Pt;
while (Termination condition not satisfied) do

t = t+ 1;
Construct mating pool Ct from Pt−1;
Crossover structures in Ct to construct new mating pool C ′

t;
Evaluate fitness of individuals in C ′

t;
Construct new population Pt from Pt−1 and C ′

t;
end

2.18 Correlation

Search of the best match for two points by correlation is performed using two win-

dows. One window Io (original window) is centred at the point in original image

for which one searches the match. The second window Is (search window) is placed

in different locations in the second image. The correlation value is calculated using

(from [48])

C(x, y) =
∑

s

∑
t

Io(s, t)Is(x + s, y + t). (4)

A point (x, y) in the second image for which the value C(x, y) is maximal is

assumed to be the best match. The problem with such defined correlation is that

it is influenced by the values in any of the considered windows regardless of the

correlation between them. The solution is the normalized cross correlation [146]. In

its general form it is given by

NCC(x, y) =

∑
s

∑
t Io(s, t)Is(x + s, y + t)√∑

s

∑
t[Io(s, t)]

2
∑

s

∑
t[Io(x+ s, x + t)]2

.

38

It is equal to the normalized correlation from 4. The effect of normalization is that

the correlation increases only when the similarity of the two windows increases, not

when the average level of pixels in one window increases.

Another similar measure of similarity of two windows Io and IS is the correlation

coefficient [48]

γ(x, y) =

∑
s

∑
t[Io(s, t) − Īo(s, t)][Is(x + s, y + t) − Īs]√

[
∑

s

∑
t[Io(s, t) − Īo(s, t)]2[

∑
s

∑
t[Is(x+ s, y + t) − Īs]2

,

where Īo and Īs denote averages over the entire window. This measure is also known

in the literature as Zero-Mean Normalized Cross Correlation [74, 85].

39

3 2D Image Processing

This section concentrates on two dimensional digital image processing. This means

that all processing described in this section makes no use of any 3D information.

All information available at this step are pixel locations and their RGB values.

The purpose of this step is to match all pixels from one image with corresponding

pixels from the second image. This operation is known in the literature as image

registration [35, 49, 201]. In this dissertation, the matching is performed in three

steps.

First, a coarse matching is performed, see Section 3.1. The main idea behind

coarse matching is to determine the approximate angle of rotation and scaling be-

tween both images. The subject of matching are not pixels but segments (segments

were defined in Definition 9). The matching algorithm extracts segments from the

images and detects an optimal angle of rotation and scale difference between them.

At this stage no pixels are matched.

In the second step, namely the point matching step, the information from the

coarse matching step is used. In preparation for pixel matching the images are ro-

tated and rescaled. At this step not all pixels from the images are being matched.

Instead, only several points from each image are selected and correspondences be-

tween them are found. This step is described in Section 3.2.

Finally, in the third step, namely the dense matching step, all points from both

images are matched. This step uses the information about the relative location and

orientation of both cameras in 3D space. This information allows to match pixels

by means of epipolar geometry. The benefit of using the epipolar geometry is the

40

reduction of a search space by one dimension. The dense matching step is described

in Section 3.3.

3.1 Coarse Matching

Table 1 presents all symbols used in this section.

Table 1: Symbols used in Coarse Matching section.
Symbol Description
C colour difference
O overlap
A angle of rotation
Rc ratio of cardinalities
C domain of the colour differences
O domain of the overlap
A domain of the angle of rotation

RC domain of the ratio of cardinalities
Ω subspace of R4, Ω = C × O × A × RC

ξ ideal solution for segment matching problem
Qni

quantization algorithm, given in Algorithm 2
ni - requested number of colours after quantization

AvI spatial colour averaging algorithm, given in Algorithm 3
M3×3 3 by 3 median filter
Cf convexity factor

X mean value of expression X
Z ideal solution for segment matching used in rough set approach
Ch a chromosome (in Genetic Algorithm)
G a set of genes
Cm a codebook (in Lloyd quantization)
Ci, Cj i-th or j-th segment colour
Si, Sj i-th or j-th segment
γ separation of segment pairs resulting from GA
S a set of the best genes returned by GA

Considerable work on the application of rough set methods in image processing

41

has been reported (see, e.g., [7, 65, 138, 173, 213]). This dissertation introduces

an approach to matching image segments in the context of approximation spaces

(see Section 2.16). The basic model for an approximation space was introduced by

Pawlak in 1981 [125], elaborated in [115, 122], generalized in [163, 164, 168], and

applied in a number of ways (see, e.g., [47, 133, 139, 140, 165]). An approximation

space serves as a formal counterpart of perception or observation [115], and provides

a framework for approximate reasoning about vague concepts. Image segmentation

(see, e.g., [17, 40, 54, 57, 84, 116, 158, 196, 198]), and the image segment matching

problem (see, e.g., [48, 148, 194, 197]) have been widely studied . The goal of an

image-matching system is to match the segments from the two given images. Colour

and overlap are the two features of image segments that are commonly used to solve

the matching problem. To achieve more accuracy in matching image segments,

a combination of an evolutionary approach to finding sets of similar segments and

approximation spaces are used. The evolutionary approach is realized with a genetic

algorithm (GA) that separates collections of image segments into sets of similar

image segments. Filtering out GA-produced sets of image segments with the best

match is carried out in the context of an approximation space. This approach

makes it possible to solve the image segment matching problem with larger sets of

features that yield more information about segments. This approach also results in

more accurate matching of image segments. An overview of the 2D image segment

matching method presented in this dissertation is shown in Figure 13.

The matching process begins by forming a composite of a pair of images, then

carrying out colour quantization (step 2 in Figure 13). After that, the quantized

42

Figure 13: 2D Image Segment Matching Steps

image is segmented and this results in a pair of segmented images. Next, feature

values of image segment pairs are obtained in step 5 in Figure 13. Then a GA is

applied to a collection of image segment pairs that are separated into sets. After

eliminating non-disjoint sets of segment pairs, the coverage of the remaining sets

of segment pairs is measured relative to a standard (norm) that is a set of image

segment pairs that represent certain knowledge. The end result in step 8 of Figure 13

is a collection of best matching pairs of image segments. This is in keeping with the

original view of approximation spaces as counterparts of perception (in this case,

approximations provide a framework for visual perception).

The process of matching segments described in this dissertation is based on four

parameters described in Section 3.1.4. These parameters are degree of overlap be-

tween segments, angle of rotation between segments, distance between mean colours

43

of segments and ratio of cardinalities of both segments. A combination of a genetic

algorithm and rough set-based post processing is used to combine the information

from all four parameters to find the best matches between the segments.

The problem of finding the match between image segments is not trivial. The four

parameters required for matching image segments sometimes contain contradictory

information about the quality of match. Thus, it is impossible to find proper matches

using only one or two of these parameters. The simplest approach is to find the

matches with the smallest distance in the space defined by the four parameters.

This space is denoted by Ω and consists of vectors where each coordinate value is

the difference of particular parameter values.

Definition 14. Image Segment Parameter Space. Define the space Ω to be a

subspace of R4 such that

Ω = C × O × A × RC ⊆ R4,

where C, O, A and RC denote domains of the four parameters’ values, i.e., the

distance between mean colours of segments, degree of overlap between segments, the

angle of rotation between segments and the ratio of cardinalities of both segments,

respectively.

The match between two points s, t ∈ Ω can be calculated as a weighted distance

between their parameters’ values.

Definition 15. Distance in Image Segment Parameter Space. The distance

between two vectors s and t such that s, t ∈ Ω is defined to be a distance between

44

these points in the space Ω weighted by the vector ω = (C,O,A,Rc).

‖s− t‖ω =
√
C · (s1 − t1)2 +O · (s2 − t2)2 + A · (s3 − t3)2 +Rc · (s4 − t4)2,

where s = (s1, s2, s3, s4) and t = (t1, t2, t3, t4), and s1, t1 ∈ C, s2, t2 ∈ O, s3, t3 ∈ A

and s4, t4 ∈ RC.

Here, the weight vector (C,O,A,Rc) denotes the importance of each parameter.

Each such vector and an ideal vector ξ define a measure of the quality of a match.

Definition 16. Measure of Quality. A measure of quality parametrized by the

vector ω = (C,O,A,Rc) of a match between a segment s and the ideal solution ξ is

given by the distance between points s and ξ in Ω space.

Qω,ξ(s) = ‖s− ξ‖ω .

The problem that arises after formulating Definition 16 is caused by the definition

of the ideal solution ξ. For the ideal solution ξ, it is possible to define the first

two parameters without considering any particular matches. These parameters are

the difference in colour C = 0 and the overlap between two segments O = 1. The

remaining two parameters (A and Rc) can be defined only with respect to some set

of matches. It does not make sense to define the ideal angle of rotation between

segments, since this angle depends on the images and can be different for any pair

of images. Therefore, the ideal solution cannot specify the rotation angle. By

analogy, the ideal ratio of cardinalities cannot be defined either. In order to make the

45

remaining two parameters (rotation angle and ratio of cardinalities) not influential,

the ω vector must contain zeros in the third and fourth position. As a result, the

ideal vector is defined as

ξ = (0, 1, 0, 0) , ω = (υ, ν, 0, 0) , (5)

where υ, ν ∈ R. Unfortunately, this solution uses only two parameters instead of

four. This can lead to wrong classification as shown in Figure 22 or Figure 25

(first row) (◦ denotes the correct match and + denotes the closest match using Qω,ξ

measure).

An algorithm that uses all four image segment features should generate a set

of possible good matches. A genetic algorithm (GA) is the example of such an

algorithm. It is possible to design a genetic algorithm (see, e.g., Algorithm 6 and

Algorithm 7) that orders image segments. This form of GA is considered an image

segment matching algorithm that uses all four features in the image segment feature

space.

The next few paragraphs contain detailed information about digital image pro-

cessing methods that were implemented for coarse matching. These methods are

helpful in capturing the information from images needed for pixel matching. The

main idea here is to determine the approximate rotation angle and scaling between

two images. In order to find these parameters more abstract information from the

images can be extracted, like lines, solid areas of approximately the same colour

(Section 3.1.1) or similar shapes (Section 3.1.3).

46

3.1.1 Image Quantization

Quantization has been defined as a process of converting an analog signal to a digital

signal [46]. A quantizer is defined as a mapping from an uncountably infinite space

of values into a finite set of output levels. In the proposed system the source signal is

a digital image. Its domain is a finite set (pixels) of integer numbers (colours). Since

colours are represented by three components, namely Red, Green and Blue, and each

component is described by one byte, the input signal is already finite. Thus, the

term quantization is rather used as a mapping from a finite set of numbers to another

finite set of numbers, where the cardinality of the destination set is smaller than the

source set. In what follows, the Lloyd quantization algorithm [46] has been used,

see Algorithm 2.

Algorithm 2: The Lloyd Algorithm [46] (algorithm Qn)

Input : image I, required number of colours n
Output: optimal codebook with n entries Copt

Initialize codebook C1 with n entries randomly, set m = 1
repeat

Based on codebook Cm and using nearest neighbour condition, partition
the image I into the quantization cells Rm

Using centroid condition, find optimal codebook Cm+1 for cells Rm

Set m = m+ 1
until distortion caused by Cm is small enough
Set Copt = Cm

A quantization mapping is usually expressed by a codebook. A codebook is

a set of n colours that are used to represent the original image. The mapping is

performed by replacing the original colour with the closest colour from the codebook.

The optimal codebook of size n is the set of colours that minimizes the distortion

47

caused by the codebook. Here, the distortion is calculated as the squared difference

between all components of the original colour and its nearest neighbour from the

codebook.

The Lloyd algorithm consists of main two steps that are repeated until the dis-

tortion caused by the codebook is small enough. The first step is the partitioning

of the input image based on the current codebook. The partitioning is performed

using nearest neighbour condition, i.e., each pixel is assigned to the cell closest to

the colour of given pixel. In the second step, a new codebook is created based on

the partitioning from the first step. Each codebook entry is replaced by a centroid

of all colours of pixels from the corresponding cell.

The main application for image quantization is signal compression. Since the

number of colours after quantization is much smaller than the number of colours

before, the same image can be represented using a smaller number of bits. In other

words a quantization causes some loss of information from the image. It is important

to note, that the quantization influences only the information carried by the pixels,

not the location or number of the pixels itself.

The typical context for image quantization is deflation of the image size due to

some memory constraints. The advantage of using quantization is small deteriora-

tion of image’s visual content, but significant change in an image’s size. The loss of

information is an unwanted result or a price paid for the smaller image size.

In this research, the reason for a quantization is different. There are no con-

straints regarding memory limits nor computational complexity. There is also no

interest in decreasing the size of the image either. Quantization is used as an aid

48

in image segmentation (see Section 3.1.2 for more details). There are two aspects

of quantization that are important in this research. One of them is the removal of

noise. Nearly every digital image contains some noise. The main cause of the noise

is the process of quantization performed by the light sensor mounted in the light

sensitive array in a digital camera. These sensors, due to imperfect construction and

finite space of imaged colours, map the original colours into their closest digital rep-

resentation introducing some error. As a result of this mapping, two neighbouring

pixels that should have the same value, can have slightly different colours introduc-

ing the noise. Even though this noise is very small and not detectable by the human

eye, when comparing two images it can have a huge effect on the result of matching.

The problem lies in the magnitude of the noise and the magnitude of the signal.

Real life images consist of millions of colours. In the captured image we can find

almost any transitions between any two selected colours. Usually, these transitions

are so smooth, that the magnitude of difference between two neighbouring pixels is

comparable to the magnitude of the noise. As a result, it is not possible to detect the

noise looking only at two pixels (it is possible when the context or neighbourhood

in which the two pixels are considered is introduced). Now, the result of quantiza-

tion is a smaller number of colours in the image. This means that some colours are

merged into one. But, since most useful quantizers try to preserve visual content

in the image, in the first place colours that are similar to each other are merged

together. The resulting image contains less variations in colour and less noise (it

can be argued here, that the image after quantization contains more noise, since it

has less original information, but the point is that the noise, caused by imperfection

49

of light sensitive cells is reduced).

The second aspect of quantization considered in this research is the identification

of regions of an image filled with a solid colour. In the steps following the quantiza-

tion, regions in both images are identified and matched. In the images representing

real world scenes the complexity of the scene makes it difficult to identify the same

regions in both images. By reducing the number of colours the complexity of the

scene is reduced, thus making it possible to form simple shapes.

In Figure 14 an original image of a street water pump is shown. The right part

of the image shows the result of 2-bit Lloyd quantization. The quantized image

contains only four colours. Not surprisingly, there are no large segments10. This is

because quantization did not make any use of spatial information. In the next section

it is shown how to incorporate spatial information into the process of segmentation.

Figure 14: Image of street water pump (left) and result of 2-bit quantization (right).

10One pixel surrounded by pixels of different colour is also considered a segment, but the purpose
of segmentation is creation of much bigger segments.

50

3.1.2 Image Segmentation

Colour quantization described in the previous section is used as an aid in image

segmentation. It works only in the colour space. The actual segmentation needs to

take into account spatial information, namely the position of pixels. Only the com-

bination of colour and spatial information leads to identification of image segments.

The averaging step fills the gap regarding the use of spatial information. Its only

purpose is to average information carried out by pixels representing similar colours.

The term similar is in this context precisely defined. Assume, that an original im-

age denoted by Io is given. First, quantization reducing number of colours to n1 is

performed. This step is denoted by (6) and results in a quantized image denoted by

Iqn1
(symbol Q represents the algorithm 2, where Io is the input image I, and n1 is

the required number of colours).

Io
Qn1−→ Iqn1

. (6)

As a result of quantization, the quantized image Iqn1
contains only n1 colours. In

the next step, the information from the Iqn1
image is used to average the colours

among all pixels that are connected, i.e., belong to the same segment.

In a quantized image, regions of pixels of the same colour can be identified.

These regions create segments. With each such segment is associated a colour that

is an average of all original colours from pixels belonging to this region. This step

is denoted below, see also Algorithm 3.

51

Iqn1

AvIo−→ IAvn1
. (7)

The image IAvn1
resulting from the above equation has more than n1 colours, where

pixels are grouped into segments. This procedure, namely steps defined in (6) and

(7), is repeated. The number of colours gradually decreases in consecutive iterations

and the creation of segments can be observed.

Algorithm 3: The Spatial Colour Averaging (algorithm AvIsn
)

Input : image I
Output: averaged image IA

Mark all pixels from I as not processed
foreach not processed pixel p in I do

Find segment S(p) in I containing pixel p
Assign to each corresponding pixel in IA from S(p) an average colour of
all pixels from S(p)
Set all pixels from S(p) as processed

end

The unwanted effect of the algorithm defined this way is that if a segment is

created at some step, there are no chances to change it in consecutive steps. In

other words, the first quantization plays a crucial role in the entire process. In

addition, the resulting image still contains a lot of details (even though the number

of colours was reduced). An example of an image processed using seven iterations11

described by the succession of mappings in (8), where numbers ni for i = 1, 2, ..., 6

are 256, 64, 32, 16, 12, 8 and 4, is shown in left side of Figure 15.

11For i = 0 it is assumed that Isn0
= Io, and after each iteration Isni−1

= IAvni−1
.

52

Isni−1

Qni−→ Iqni

AvIsni−1−→ IAvni
. (8)

Figure 15: Hydrant image after 7 iterations of (8) (left) and (9) (right)

To make the entire segmentation process more robust and force the creation

of bigger segments, one extra step for each stage defined by (8) is added. That

is, after the colours are recreated from the original image, a 3 by 3 median filter

is used. This causes almost uniform areas to blur even more and allows edges of

neighbouring segments to overlap. As a result, all small details from the image are

lost, and big uniform segments are formed instead. The final formula describing one

step of this iterated algorithm is

Isni−1

Qni−→ Iqni

AvIsni−1−→ IAvni

M3x3−→ Isni
. (9)

The M3×3 symbol denotes the median filter that is applied to each pixel from an

input image. The median filter is applied to 3 by 3 neighbourhood12 of given pixel

12The 3 by 3 neighbourhood differs from the 8-neighbourhood by the fact that a point (x, y)
belongs to the 3 by 3 neighbourhood and does not belong to 8-neighbourhood.

53

p(x, y).

M3×3(p) = median{p(x−1, y−1), p(x, y−1), p(x+1, y−1), p(x−1, y),

p(x, y), p(x+1, y), p(x−1, y+1), p(x, y+1), p(x+1, y+1)}. (10)

In order to find the median, all pixels are sorted by their colour value and the one

in the middle (i.e., at the 5-th place) is chosen.

The right side of Figure 15 shows the result of iterative algorithm (with the same

values as in the previous example), where each step is described by (9). There are

still many small segments, but comparing with the corresponding image, where the

median filter was not used, their number is greatly reduced.

Figure 16 shows all steps of applying (9). The image in the first row and leftmost

column is the original image. The second image in the first row, is a result of 8-bit

quantization. The third image shows the result of applying 3 by 3 median filter. In

the second row, the second iteration is shown. The leftmost image shows the result

of averaging colours in segments from the previous step. The middle image shows

the result of 7-bit quantization and the rightmost image shows the result of applying

a 3 by 3 median filter. The remaining five rows are organized the same way as the

second row, i.e., the quantization codebook uses one less bit in each iteration.

3.1.3 Segment Selection

At this stage it is assumed that a digital image is divided into segments. To increase

the chances of identifying the same segments in both images, image quantization is

54

Figure 16: Quantized images obtained by iterating (9)

55

performed on one large image that is a composite of two individual images placed

next to the other. After segmentation of the composite image, the two images in

the composite are extracted and the analysis continues on the separate images. In

this step, only some segments from all of the segments created so far are selected.

The reason for this is the high number of segments and their shape. During a

procedure to match shapes (described in Section 3.1.8), only segments from both

images that satisfy specific criteria are matched using a GA search. In addition, the

matching algorithm requires that each segment satisfies some additional properties.

The criteria evaluated in this step are

• Lower bound on segment size

• Upper bound on segment size

• Convexity factor

Segment size is measured by the number of pixels belonging to a given segment.

A lower bound on segment size is need for the following reasons. First, if there

are not too many pixels, for example less than 10, the pixels can describe only a

small number of distinctive shapes. Matching of such shapes is very difficult, since

such a small number of pixels does not have enough power to uniquely represent a

fairly distinctive shape. Second, if all tiny segments are considered, the search space

for matching segments becomes too large. There is a small chance that these tiny

shapes can be uniquely matched.

The explanation for upper bound of segment size is motivated by characteristics

of most images. Usually, images contain large areas of a solid colour. For outdoor

56

images it can be the sky, for indoor images it can be the walls of the room the image

is shot in. These solid areas function as a background for the given scene. The shape

of the background is not unique and it changes due to perspective transformation.

By setting an upper bound for segment size, all segments that can be part of the

background are filtered out. For this research, this limit is set to be 30% of the

entire image area.

The last constraint in matching image segments is the convexity factor that

deals with the effect of perspective transformation and filters out shapes that are

difficult to match. To get a deeper insight into this problem, consider what detected

segments represent and how they differ from image to image. Each image is a 2D

representation of a 3D scene. Similarly, segments that are flat, represent 3D objects.

The transformation from 3D space into 2D images flattens objects in a sense that

the information from different parts of an object is represented in a small area.

For example, consider the silhouette of a tripod. Given one segment representing an

entire tripod, each leg is separated from the other legs by some background pixels (at

least at the bottom of the tripod). Depending on the angle of the camera, some legs

can be quite close to each other. The shape of a tripod changes dramatically with

the change of view angle. Attempts to match such shapes should be avoided. This

example shows that objects that are spread in all three dimensions are separated by

some pixels not belonging to the object. This condition is expressed for flat images

in terms of convexity. A segment S is convex if each point from a straight line

connecting any two points in S also belongs to S [48].

57

Definition 17. Convexity factor. The convexity factor for a segment S is a

number Cf(S) between 0 and 1 specifying how many lines between all combinations

of points from segment S lie entirely inside the segment S.

Cf(S) =
lines entirely inside S

all possible lines
.

To filter out segments that are potentially difficult to match, a threshold for a

convexity factor is set and only segments greater than the threshold are selected.

Based on experiments, a threshold of 0.5 has worked well.

Implementation of an algorithm used to calculate a convexity factor from the

definition requires O(n2) lines to be tested, where n is the number of segment pixels.

In order to speed up the calculations the estimation is performed. The estimation

process is applied on two levels. First, not all combinations of points are checked.

Instead, randomly selected 50 · n pairs of points are chosen. Second, instead of

checking if an entire line is contained within a segment, only checks for 7 points are

performed: middle point of a line, one fourth, three fourths and remaining multiples

of 1/8, namely, 1/8th, 3/8th, 5/8th and 7/8th of the line. In order to calculate each

of these points only as few as two additions and two divisions are required, which

makes this algorithm very fast with a complexity of O(n).

3.1.4 Feature Generation

In this section, the following four features used for matching segments are elaborated

on.

58

• degree of overlap between segments,

• angle of rotation between segments,

• distance between mean colours of segments,

• ratio of cardinalities of segment pairs.

This section describes how these features are extracted from two sets of segments

(one set of segments for each image). Section 3.1.8 elaborates on how the actual

matching is performed using these features. First, recall that segments are only two

dimensional representations of 3D objects. Due to the change of view angle, seg-

ments undergo transformation that alters their shape. Therefore, simple comparison

of shapes is not enough to pair segments.

Before the matching can start, values for the four features for all combinations

of segments from both sets are generated. First two features are generated by an

algorithm that tries to find the biggest overlap between two segments.

Overlap. This parameter measures the overlap between two segments. To

calculate the overlap, two segments are plotted in one image using the same colour

(one seg denotes the number of pixels belonging to one segment). Pixels that belong

to both segments are denoted by a second colour (two seg denotes the number of

pixels belonging to both segments). A measure of the overlap between a pair of

image segments is computed using:

overlap = e
− |Pone seg |

|Ptwo seg | . (11)

59

where Pi denotes pixels of i-th colour. For |Pone seg| �= 0 and |Ptwo seg| = 0 it

is assumed that |Pone seg|
|Ptwo seg| = ∞. In other words, overlap measures how well one

segment matches the other. The minimum value for overlap is zero. In this case,

the number of pixels belonging to both segments is equal to zero, which means that

the segments do not intersect. A maximum overlap = 1 occurs when both segments

have the same same shape and are located at the same position. In such case one seg

= 0 and the overlap equals to e0 = 1. For all other cases, overlap ∈ (0, 1).

Formula (11) was chosen for two reasons. First, it rescales the range of overlap

values from (0,∞) to interval (0, 1). A finite interval is easier to handle than the

infinite one. Second, the exponential function compresses the output of the origi-

nal |Pone seg|
|Ptwo seg| function in the range where Pone seg is much greater than Ptwo seg (for

example, where |Ptwo seg|
|Pone seg| < 2.5, see Figure 17). The absolute value of the slope of

the overlap function from 11 is much smaller than the slope of the |Pone seg |
|Ptwo seg | function.

This allows for easier comparison of overlap values in the last stage of overlapping,

i.e., when there is much more common pixels than not matched ones. The smaller

slope means that small changes in the ratios of common/not matched pixels will not

cause huge changes of the overlap function.

Figure 18 illustrates the best overlap. For better visualization, the two segments

are plotted using different colours. The intersection is denoted by the brightest

shade of grey. The left-hand side of Figure 18 shows both segments with their

original rotation, scale and position. The right-hand side of Figure 18 shows the

two segments with maximum overlap = 0.85. Observe that the area occupied by

only one segment has been significantly decreased in comparison with the original

60

0 2.5 5 7.5 10 12.5 15
0

0.5

1

1.5

|Ptwo_seg| / |Pone_seg|

ov
er

la
p

|Pone_seg| / |Ptwo_seg|

overlap

Figure 17: The result of applying exponential into overlap function

configuration.

Figure 18: Preliminary overlap of 2 segments (left), and best overlap (right)

Example 2. Figure 19 shows three sample steps out of many steps performed

during segment matching of Figure 15. These three steps explain the idea behind

the overlap formula introduced in 11.

The first image in Figure 19 shows the first stage when the two segments do not

have any pixels in common. The area of the first image is 41083 pixels and the area

of the second one is 36447 pixels. Since there are no common pixels |Pone seg| =

61

41083 + 36447 = 77530 and |Ptwo seg| = 0. From the assumption for |Pone seg| �= 0

and |Ptwo seg| = 0 the fraction |Pone seg |
|Ptwo seg | = ∞. Because of 11 the overlap is equal to

e−∞ = 0.

The second image shows one of the intermediate steps, where the two segments

have a lot of pixels in common, but also a lot of non-overlapping pixels. The area

of the first segment that does not intersect with the second one is 18219 pixels.

The area of the second segment that dos not intersect with the first one is 13583

pixels. The area of overlap between these segments is 22864 pixels. Therefore,

|Pone seg| = 18219 + 13583 = 31802 and |Ptwo seg| = 22864. The overlap is equal to

overlap = e
− |Pone seg |

|Ptwo seg | = e−
31802
22864 = e−1.391 = 0.248.

The third image shows the final result of search for the best overlap. The first seg-

ment, was being translated, rotated and rescaled to maximize the overlap function.

In this position the overlap is maximum. Here, the |Pone seg| = 5540 + 1097 = 6637

and |Ptwo seg| = 35350. Thus, overlap = e−
6637
35350 = e−0.187 = 0.828.

Figure 19: Three sample steps of segment matching.

Figure 20 shows the entire process of finding the best overlap for segments from

Figure 15. The horizontal axis denotes the iteration number. In each iteration the

62

position, rotation and scale for the first segment is altered to minimize the overlap

function. In the left part of Figure 20 a ratio |Pone seg |
|Ptwo seg | is plotted. For the first several

iterations it takes on high values compared to the end of the matching process. In

fact, the ending of the matching process is more important, since it can detect small

differences in segment shapes. Therefore, the overlap function, shown in the right

part of Figure 20, is more sensitive to changes in the second half of the matching

process. When two segments do not overlap significantly, the overlap function is

close to zero. Only after there is a lot of overlap between segments (see the middle

image from Figure 19), the overlap function changes more rapidly to emphasis the

change in overlap.

Angle. The angle of rotation is the angle by which one segment must be rotated

to maximize overlap (11) between two segments.

Colour. The previous two parameters (overlap and angle) dealt with geometri-

cal properties of segments. The colour parameter takes into account the colour of a

segment. Recall that all pixels from one segment are assigned the mean value of the

colours from the original image. Cdiff(i, j) denotes the distance between the RGB

vectors of colours for a pair of segments. If the i-th segment’s colour is denoted by

Ci = (Ri, Gi, Bi) and j-th segment’s colour is denoted by Cj = (Rj, Gj , Bj), then

Cdiff (i, j) is defined by:

Cdiff (i, j) = |Ci − Cj | =
√

(Ri −Rj)2 + (Gi −Gj)2 + (Bi −Bj)2.

63

0 20 40 60 80 100 120 140 160 180
0

5

10

15

Iteration step

|P
on

e_
se

g| /
 |P

tw
o_

se
g|

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Iteration step

ov
er

la
p

Figure 20: The process of finding the best overlap for |Pone seg|
|Ptwo seg | and overlap parameter.

Ratio of Cardinalities. The Ratio of Cardinalities parameter is a measure

of the relative size of a pair of segments. Let Si, Sj denote sets of 4-neighbourhood

connected pixels for image segment i and j, respectively. Further, let RC denote a

measure of the Ratio of Cardinalities. It is defined by:

RC(i, j) =
|Si|
|Sj| . (12)

64

A summary of the segment probe functions is given in the table below.

Table 2: Ranges of probe functions
colour range [0, 1]. 0 means identical colours; 1, all channels dif-

fer by the maximal value, i.e., the colour value is 1 if one
segments has colour (0, 0, 0) in RGB space and the second
segment has colour (255, 255, 255) in RGB space (where for
each channel the range of values is from 0 to 255).

overlap range [0, 1]. 0 means no overlap between segments; 1, iden-
tical segments (after translation, rotation and scaling).

angle of
rotation

range [−1, 1]. 0 means no rotation between segments; 1,
rotation by 180 degrees, where the sign denotes the direction
of rotation.

RC range [0,∞]. 1 means that both segments have the same
area. For RC ∈ [0, 1] the second segment is greater than the
first one. For RC > 1 the first segment is greater than the
second one.

3.1.5 Exhaustive Feature Matching

The goal of a matching algorithm is to produce a set of segment pairs so that each

segment belongs to a different image. Given n1 segments identified in the first image

and n2 segments identified in the second image, the total number of possible pairs is

n1 · n2. From n1 ·n2 matches, only small number of matching segments corresponds

to the correct matches.

A hypothesis is a set of image segment matches. A hypothesis is created by

assuming that all four parameters for correctly matched segments are in the same

range of values. A hypothesis is introduced to allow for grouping of several image

segment matches.

65

Algorithm 4 searches through the space of matches using hypotheses to validate

each pair. A hypothesis is characterized by the average rotation angle between

segments and average ratio of cardinalities of both segments, where the average

is taken with respect to all pairs in the hypothesis. The rotation angle between

segments corresponds to the rotation between images and the ratio of cardinalities

corresponds to the difference in distances between object and the camera for the

two views. Thus, a hypothesis contains only pairs of segments, that are similar to

each other with respect to these two conditions. If the difference in a segments’

shapes is not caused by the change of viewpoint, then the difference comes from

the fact that non-matching segments are being considered. In that case, the values

for relative rotation and ratio of cardinalities are random for different pairs. On

the other hand, if the difference in these parameters is caused by the change of the

view point, it is the same for any two correctly paired segments. This allows for

creation of bigger hypotheses with higher probability that each hypothesis contains

only correct matches.

The four parameters are denoted by the following tables:

C(i, j): colour difference,

O(i, j): overlap,

A(i, j): angle of relative rotation,

RC(i, j): ratio of cardinalities.

where (i, j) denotes i-th segment from the first image and j-th segment from the

second image, respectively. Next, a brief description of how these parameters are

used to evaluate hypotheses, is given.

66

Ratio of cardinalities. This condition uses the ratio of cardinalities parameter

RC(i, j). If all the pairs from a given hypothesis are correct matches, then the value

of this parameter for each pair should be in the same range. The minimal and

maximal values of RC(i, j) for all pairs from a given hypothesis are found. The

minimum and maximum values should be in a ±RCth range from the mean value

of all rations of cardinality for given hypothesis. If any RC(i, j) value from given

hypothesis is outside the interval [(1−RCth) ∗RC, (1 +RCth) ∗RC]13 then a given

hypothesis is not valid and is discarded. Otherwise, the next check is performed.

Angle of rotation. This check assumes that for correct matches the angles of

rotation A(i, j) should be similar to each other for all pairs from a given hypothesis.

First, the average angle of all angles is calculated (except for the pair being added).

Then the rotation angle from the pair being added, is compared to the average angle.

If the absolute value of the difference is greater than some threshold Ath, then the

given hypothesis fails the check and is removed from the system. Otherwise, the

next check is performed.

Triangle property. After passing the Ratio of cardinalities and Angle of rota-

tion checks, a newly added pair in a given hypothesis is checked against the triangle

property. This property assures that a newly added pair preserves the order in which

any three segments are arranged in a triangle. Given three segments in one image,

one can connect the centroids of these segments creating a triangle. The vertices of

this triangle can be ordered in clockwise or counter-clockwise order. After repeating

the same procedure for corresponding segments in a second image, a second triangle

13The RC symbol denotes the mean value of all RC parameter from a given hypothesis.

67

is formed. By checking the order of the vertices in the second triangle, one can val-

idate the correctness of matches. If the order of vertices is not the same, this does

not mean that the matching is not correct. The order is preserved between two dif-

ferent views if the triangle of interest is face up on the same side. But the centroids

of segments need not lie on the plane in the real 3D space. This means that while

moving from one view to the second one, the triangle formed by these segments is

flipped to the other side, which reverses the order of the vertices. Nevertheless, this

effect is very hard to obtain. Notice, that the identified segments would have to

have identical shape from both sides. In most cases, the change in position between

the two views is too small to cause this to happen. Hence, despite this special case,

the power of discriminating bad matches is very useful for this application and is

utilized in this check to decrease the number of hypotheses.

In Algorithm 4, the centroid of a segment from a new pair is used to build

triangles with all combinations of centroids from the hypothesis. The corresponding

triangles for segments from a second image are built as well. If the order of vertices

for any of these corresponding triangles do not match, the hypothesis fails the check

and is removed from the set M . Otherwise, the algorithm finishes the pruning part

and moves to the growing step.

The last part of the matching Algorithm 4 identifies the hypothesis that is the

most likely to contain only correct matches. After applying Algorithm 4, the set

M consists of many hypotheses that satisfy all conditions. From them, only one

hypothesis is selected using the measure of correctness. The measure of correctness

is the number of hypotheses a pair is included in. To each pair a number of hy-

68

Algorithm 4: Matching Segments

Input : tables C(i, j), O(i, j), A(i, j), RC(i, j), centroids of all segments
Output: hypothesis with highest score, sets of matches M

Set the set of all hypotheses M = ∅, and NM = |M |;
for all segments Si in the first image do

Create pairs Pi =
⋃

j Pij with all segments Sj from second image;
Remove from Pi all pairs Pij such that
C(i, j) > Cth or O(i, j) < Oth;
Add NP = |Pi| pairs to NM existing hypotheses
producing total of NM +NM ·NP +NP hypotheses;
foreach hypothesis Mk ∈ M do

Set RC =
∑

i,j
RC(i,j)
|Mk|

if ∃RC(i,j).RC(i, j) /∈ [(1 −RCth) ·RC, (1 +RCth) · RC] or
|A(inew, jnew) − meanP (i,j)∈Mk\P (inew,jnew)A(i, j)| > Ath or
P (inew, jnew) changes triangle order then

Remove Mk from M ;
end

end
end

potheses that this pair is included in is assigned. Then to each hypothesis a score

is assigned that is the sum of all measures of correctness of all pairs belonging to

given hypothesis. The hypothesis with the highest score is selected as the output

of Algorithm 4. The list of pairs from the selected hypothesis consists of correctly

paired segments from both images.

In the following sections, more sophisticated methods for selecting the optimal

set of matches are presented.

69

3.1.6 Single Point Standard (Upper Approximation)

The goal of an image-matching system is to match segments from two given images.

For example, Figure 21 shows generated segments for the Wearever R©14 box scene.

The left image in Figure 21 contains 68 segments and the right image contains 51

segments.

Figure 21: Generated segments for the Wearever box scene.

Let IS = (U , F) be an information system, where U is a set of pairs of image

segments, and F is a set of image segment probe functions. The probe functions

in F , namely, degree of overlap, angle of rotation, distance between mean colours

and ratio of cardinalities, are defined relative to two segments. Hence, each probe

function value is indexed by two numbers that are the indices of the segments in

a pair from U . Most ranges of values for the segment probe functions have been

adjusted so that they are in the interval [−1, 1] (see Table 2).

14Trademark of the WearEver Company, http://www.wearever.com

70

http://www.wearever.com

The rough matching is performed relative to the upper approximation of the

standard set Z that is an ideal match of two image segments (see the discussion

of an ideal vector in (5)). In other words, Z is the optimal case for matching two

identical image segments and such case may, but does not have to exist in the real

data.

The angle of rotation and ratio of cardinalities for a proper match are unknown.

Hence, use of these probe functions does not introduce any new information and

is not considered in what follows, since the standard for these probe functions is

unknown.

All segment pairs are ranked based on the information represented by B∗Z.

Different upper approximations can be constructed by changing the equivalence

relation and subsets of probe functions used to obtain B∗Z. In the original K-means

clustering algorithm [114], data points are arranged so that they are clustered around

K centres. In this work, an equivalence relation based on the K-means clustering

algorithm has been introduced (see, e.g., [138]), and is summarized in this section.

Briefly, two segments Si and Sj are in relation ∼B,K if and only if the values of all

probe functions for Si and Sj are associated with the same cluster. ∼B,K is formally

defined in

∼B,K=

⎧⎪⎨
⎪⎩

(Si, Sj) ∈ U2 | ∀f ∈ B,

∃l.1 ≤ l ≤ K, f (Si) ∈ Cl ∧ f (Sj) ∈ Cl

⎫⎪⎬
⎪⎭ ,

where Cl denotes the l-th cluster from the set of K clusters. Let the set Z be defined

as:

71

Z = {x ∈ U × U | colour(x) = 0, overlap(x) = 1} . (13)

The set Z consists of matched pairs of segments with probe function values specified

in (13). Let [x]B be a class in the partition of U that is a set of B-indiscernible pairs

of image segments containing x. At this point, there is interest in finding the upper

approximation of Z that is described by

B∗(Z) = {x | [x]B ∩ Z �= ∅}.

Algorithm 5: Matching Segments Using Upper Approximation

Input : set of probe functions A = {C(i, j), O(i, j)}
Output: ranking of all segment pairs sij

for (all segments Si in the first image) do
for (K=2 to (# of segments in the second image)/2) do

Perform K-means clustering for each probe function separately
for (each subset B of the set of all probe functions F) do

Find B∗(Z)
for (each segment Sj from the second image) do

if (Sj ∈ B∗(Z)) then
vote for pair Sij

end
end

end
end

end

Algorithm 5 gives the steps for ranking segment matches using the upper ap-

proximation. To each vote is assigned the same unit weight. Because cases where

72

two probe functions are used include cases where one probe function is used, the

effective weights are greater for cases with multiple probe functions used. Table 3

shows the effective voting weights for the Algorithm 5.

Table 3: Voting table for Algorithm 5
of probe functions in B # of votes effective # of votes

1 1 1

2 1 3

Figures 22 and 23 show sample voting results for two segments. A circle ◦ denotes

a good match made by visual inspection of the two images, and a cross + denotes

the segment that is the closest to the standard Z. That is, for a given segment i

from the first image, a + denotes the segment jmin from the second image such that

jmin = argmin
j

|Z − {C(i, j), O(i, j)}|,

i.e., the argument j (segment number) for which the value of the expression |Z −
{C(i, j), O(i, j)}| is minimum. Figure 22 shows how the information is extracted

from the generated probe functions using the upper approximation B∗(Z) of the set

Z. The cross + shows that the best match using the distance between the given

three parameters is with segment number 44. However, the correct match is with

segment number 18. The number of votes for segment number 18 is higher than the

number of votes for segment 44. This means that using this algorithm, segment 18

is more likely to be chosen as the match than segment 44.

The problem that is still to be solved is the high number of segments with high

73

votes. For example, in Figure 22, segments 18, 20 and 33 have high votes and it

is not possible to select the best match. Hence, there is interest in considering the

lower approximation B∗(Z) of the set Z.

3.1.7 Interval Standard (Lower Approximation)

This section presents an extension of the method described in Section 3.1.6. The

lower approximation B∗(Z) is derived relative to Z that is defined as the approxi-

mation of a set of image segment pairs that constitute a perfect match. Let δ denote

a parameter used to adjust the interval to define the ideal match Z. The goal is

to find δ such that an image segment pair constitutes a match. Hence, an interval

interpretation of the probe function values of image segment pairs is introduced.

That is, the probe function values associated with image segment pairs in the set

Z are parametrized by a parameter δ > 0. In effect, each probe function value of

each image segment pair from Z belongs to a small interval containing δ. Using this

approach, Z is defined as:

Z = {x ∈ U × U | colour(x) ∈ (0, δ) , overlap(x) ∈ (1 − δ, 1)} , (14)

where the probe function values for each image segment pair x in Z belong to

intervals for colour and overlap specified in (14).

For experiments, the parameter δ was set to 0.1. The results for different δ values

did not differ significantly from the ones shown here. The formula for calculating

the lower approximation is given by

74

Figure 22: Voting results. ◦ good match, + the closest match.

Figure 23: Voting results: ◦ good match, + the closest match.

75

B∗(Z) = {x | [x]B ⊆ Z}. (15)

The new matching algorithm is essentially the same as Algorithm 5, except that a

Find B∗(Z) operation has been added.

As can be seen from Figure 25, the best results are obtained for the ‘single point

standard’. The circle ◦ in Figure 25 denotes a good match made by visual inspection

of the two images, and a cross + indicates a segment pair that is the closest to Z.

The ‘interval standard’ method fails to yield one segment pair as a good match.

Instead, it yields several segments with equally high votes. This means that this

method cannot be used by itself as the deciding method for solving the matching

problem. However, the interval standard method can be used as an aid, since the

correct solution is usually among the segment pairs with the highest votes.

The Figure 24 and the next example is used to explain in more detail the idea

of the standard Z.

Figure 24: Segments for Example 3

Example 3. Left part of Figure 24 shows the first image. It consists of twelve

segments created from the letters of a word ”Matching”. Notice, there are only

76

eight letters in the word ”Matching”. The remaining four segments are: white area

in the letter ’a’ (denoted by a.), a dot in ’i’ letter (denoted by i .), upper white area

in the letter ’g’ (denoted by g .) and lower white area in the letter ’g’ (denoted by

g .).

The right part of the image 24 shows the same letters as the first image. Only,

for the second image, they underwent geometrical transformations: image warping,

rescaling and rotation. In addition, the brightness of each letter from the second

image was randomly altered.

In order to construct the standard Z, the colour difference and overlap parame-

ters were calculated. The colour difference values are shown in Table 4 and overlap

values are shown in Table 5. Values corresponding to proper matches are denoted

by bold face font in both tables. For example, the pair of segments ’M’ from both

images is characterized by the pair (0.070,0.614), where the first number denotes

the colour difference and the second number denotes the overlap value for these two

segments.

Table 4: Colour table
M a t c h i i. n g a. g. g.

M 0.070 0.574 0.671 0.066 0.572 0.532 0.532 0.639 0.068 0.784 0.784 0.784
a 0.579 0.064 0.707 0.549 0.606 0.492 0.492 0.213 0.647 0.778 0.778 0.778
t 0.654 0.693 0.048 0.595 0.091 0.875 0.875 0.528 0.657 0.773 0.773 0.773
c 0.118 0.539 0.628 0.011 0.532 0.545 0.545 0.596 0.126 0.792 0.792 0.792
h 0.571 0.608 0.179 0.531 0.045 0.753 0.753 0.449 0.585 0.647 0.647 0.647
i 0.481 0.452 0.898 0.564 0.760 0.069 0.069 0.554 0.558 0.483 0.483 0.483
i. 0.482 0.454 0.894 0.565 0.756 0.075 0.075 0.552 0.559 0.477 0.477 0.477
n 0.649 0.305 0.556 0.636 0.449 0.551 0.551 0.108 0.710 0.579 0.579 0.579
g 0.082 0.617 0.679 0.171 0.573 0.507 0.507 0.666 0.078 0.705 0.705 0.705
a. 0.719 0.727 0.800 0.790 0.679 0.542 0.542 0.657 0.768 0.014 0.014 0.014
g. 0.715 0.726 0.799 0.786 0.677 0.540 0.540 0.657 0.764 0.017 0.017 0.017
g. 0.718 0.728 0.800 0.790 0.679 0.542 0.542 0.659 0.767 0.014 0.014 0.014

The creation of standard Z for given parameter δ is straight forward. From

(14), the standard is a set of all segment pairs for which the colour difference and the

overlap values are in some interval, i.e., colour difference is less than δ and overlap is

77

Table 5: Overlap table
M a t c h i i. n g a. g. g.

M 0.614 0.084 0.019 0.058 0.372 0.040 0.001 0.242 0.210 0.001 0.001 0.002
a 0.367 0.383 0.143 0.206 0.221 0.165 0.010 0.497 0.276 0.003 0.005 0.010
t 0.141 0.330 0.832 0.292 0.249 0.001 0.001 0.151 0.153 0.016 0.142 0.203
c 0.181 0.266 0.202 0.722 0.228 0.250 0.043 0.316 0.220 0.069 0.081 0.121
h 0.052 0.411 0.331 0.139 0.714 0.247 0.002 0.549 0.251 0.008 0.004 0.021
i 0.301 0.275 0.001 0.306 0.134 0.716 0.133 0.230 0.166 0.267 0.508 0.423
i. 0.003 0.256 0.001 0.113 0.032 0.216 0.913 0.033 0.018 0.421 0.675 0.807
n 0.333 0.390 0.116 0.368 0.239 0.149 0.012 0.847 0.280 0.001 0.002 0.024
g 0.234 0.268 0.118 0.109 0.155 0.115 0.001 0.091 0.713 0.001 0.001 0.010
a. 0.001 0.045 0.320 0.102 0.028 0.185 0.726 0.001 0.007 0.861 0.818 0.721
g. 0.001 0.060 0.152 0.054 0.015 0.274 0.730 0.003 0.002 0.675 0.931 0.873
g. 0.001 0.108 0.251 0.130 0.042 0.425 0.618 0.337 0.039 0.726 0.865 0.860

greater than 1 − δ. For example, for δ = 0.1 there are only two segments satisfying

the above requirements. These pairs are (i .,i .) for which colour(i .,i .)= 0.075 <

0.1, overlap(i .,i .)= 0.913 > 0.9, and (g .,g .) for which colour(g .,g .)= 0.017 < 0.1,

overlap(g .,g .)= 0.931 > 0.9, see Tables 4 and 5. Therefore, for δ = 0.1 the standard

Z = {(i .,i .), (g .,g .)}. This means that the segments i . and g . are the most similar

segments in both images. The matching of the remaining segments is performed

relative to this match.

Table 6: Z table vs. δ parameter
δ Z (colour, overlap)

0.05 ∅
0.1 {(i.,i.), (g.,g.)} {(0.075,0.913), (0.017,0.931)}
0.15 {(i.,i.), (a.,a.), (g.,g.), {(0.075,0.913), (0.014,0.861), (0.017,0.931),

(g.,g.), (g.,g.), (g.,g.)} (0.014,0.865), (0.017,0.873), (0.014,0.860)}
0.2 {(t,t), (i.,i.), (n,n), {(0.048,0.832), (0.075,0.913), (0.108,0.847),

(a.,a.), (a.,g.), (g.,g.), (0.014,0.861), (0.014,0.818), (0.017,0.931),
(g.,g.), (g.,g.), (g.,g.)} (0.014,0.865), (0.017,0.873), (0.014,0.860)}

0.3 {(t,t), (c,c), (h,h), {(0.048,0.832), (0.011,0.722), (0.045,0.714),
(i,i), (i.,i.), (n,n), (0.069,0.716), (0.075,0.913), (0.108,0.847),
(g,g), (a.,a.), (g.,a.), (0.078,0.713), (0.014,0.861), (0.014,0.726),
(a.,g.), (g.,g.), (g.,g.), (0.014,0.818), (0.017,0.931), (0.014,0.865),
(a.,g.), (g.,g.), (g.,g.)} (0.014,0.721), (0.017,0.873), (0.014,0.860)}

Table 6 shows several sets Z for different values of parameter δ. The bigger

the parameter δ the more matches are included in the standard Z. This is the

78

crucial property of the rough set approach, where the definition of an ’ideal match’

is not fixed, but can be adjusted based on available information and data. Notice,

for smaller δ values the standard Z is an empty set, which means that the identical

segments are not present in both images. On the other hand, bigger δ values produce

a standard that contains incorrect matches. Nevertheless, at this stage, the matching

correctness is not crucial, in fact, segments (g .,g
.) form better match than (g .,g .),

since (colour, overlap) values for the first pair are (0.014, 0.865) and for the second

pair (0.014, 0.860). The correctness of this match cannot be determined using only

colour difference and overlap values, but other parameters must be used as well.

As shown in this example, the δ parameter allows for adjusting how strict the

definition of an ideal match is. This was not possible in the Upper Approximation

based approach (see (13)).

3.1.8 Genetic Approach for Matching

A genetic approach for segment matching creates a framework for the search based

on any set of features extracted from images. Feature values are extracted using

different shapes, where a shape is a segment, line or a point in an image. A genetic

approach is used, because one of the byproducts of the genetic algorithm is a sep-

aration of the space of all possible matches (induced by chromosomes). And this

separation is used to match segments in context of approximation spaces.

The central notion of a classical, Darwinian form of genetic algorithm is a gene.

A gene is a pair of matched feature values for two images. There are many types of

features that can be used in the algorithm. More abstract forms (also called shapes)

79

Figure 25: Voting results: ‘interval standard’ (left) and ‘single point standard’
(right).

80

are sources of features, e.g., a segment has its colour, a line has its length, etc. Three

methods of deriving features have been considered so far, and are summarized in

Table 7. The simplest form of a gene considered in this research is a pair of segments,

where each segment comes from a different image. One of the functions of a gene

in genetic approach is to hide the differences between the features for the genetic

algorithm. The genetic algorithm does not discern between the genes and processes

them the same way.

A chromosome is a collection of genes. The set of features creates a chromosome

(or hypothesis as described in Section 3.1.5). A genetic algorithm tries to select the

best chromosome that consists only of correct matches. The term hypothesis is used

in the context of matching features from the images, since a hypothesis identifies

possible matches of features. The term chromosome is used in the context of the

genetic algorithm, since a chromosome is a member of the population.

Table 7: Probe functions and their corresponding abstract forms.
Abstract Form Complexity Probe Functions

point simple cross-correlation

line moderate cross-correlation, angle, RC

segment complex colour, overlap, angle, RC

The overview of the structures used in Algorithm 6 is given in Figure 26. Three

kinds of feature generators are denoted by three paths at the bottom of the image.

The tasks of image processing blocks are generation of points, lines and segments.

After this step, the identified shapes are passed to the feature extraction blocks.

These blocks use selected shapes to generate features. The term ‘feature’ needs

81

more explanation. Usually, a feature is represented by a probe function that maps

an observed object in the universe to a value. In this case, a feature is not represented

by a probe function defined relative to some aspect of a single image segment or

pixel, but, instead, is defined relative to a comparison of a pair of image segments or

pixels. In the case of the colour of a pair of image segments, a feature is represented

by the difference in the average colours of two segments. In general, a feature probe

function value F(x, y) for a pair of observed objects x and y is a scalar from some

pre-defined range [a, b], i.e., F(x, y) ∈ R and a ≤ F(x, y) ≤ b. In addition, there is

one point κ ∈ [a, b] that denotes a value for which objects x and y are not discernible

with respect to the given feature. For example, for colours of image segment pairs,

the possible range of colour differences can be defined as [0, 1], where 0 denotes two

identical colours and 1 denotes the maximum difference of colours allowed by an

image’s colour depth. In this case, κ = 0.

The fact that the features are calculated as a difference between probe function

values for pairs of digital images is denoted by the ‘fusion’ box in Figure 26. The

procedure represented by the fusion box combines the information from pairs of

images to generate feature values.

Next, the description of a chromosome is given (see Figure 27). A gene represents

a match between two shapes from a pair of images. This is indicated by a pair of

indices of two corresponding shapes. Genes in each chromosome are divided into

three blocks: point block, line block and segment block. Each block contains indices

of matched shapes of a given type, namely point, line or segment.

The number of genes in each group can be zero. The genetic algorithm does not

82

Figure 26: The overview of the genetic algorithm.

discern between different types of genes as long as both halves of the gene are of the

same type. The order of the chromosome is the sum of lengths of all blocks, i.e.,

np + nl + ns (number of points + number of lines + number of segments).

The current version of the genetic algorithm has only image segment genes imple-

mented, since the previous steps generate a number of segments from both images.

The experiments show that segments provide enough information to determine the

scale and rotation between the images. Therefore, to speed up the calculations point

and line blocks are not used and are always empty. If this system was applied to a

class of images requiring more features, lines and points can be easily added. The

83

Figure 27: The chromosome. Each block contains indices of matched shapes.

creation of the genes is constrained by the rules, which assures that only reasonable

matches are considered. These rules control the colour difference, overlap and the

ratio of cardinalities. Let colour th, overlap th, rc th denote the maximum values

allowed for the colour difference, overlap and the ratio of cardinalities for a pair of

image segments, respectively. For the ratio of cardinalities parameter, the threshold

denotes the the maximum difference of the areas of a pair of segments, e.g., for

rc th = 2 it means that 1
2
≤ RC ≤ 2. Table 8 gives constraints for feature values

during the creation of genes.

Table 8: Rules for creating genes.
Feature Condition

colour ≤ colour th

Overlap ≥ overlap th

RC ≥ 1/rc th ∧ ≤ rc th

Let Ch denote a chromosome from a population evaluated by a genetic algo-

rithm. Further, let ang, ang, rc th, ang th denote angle of rotation, average angle

of rotation, ratio of cardinalities threshold, and angle threshold, respectively. The

84

RC(ik, jk) parameter was defined in (12) and the RC symbol denotes the mean value

of ratios of cardinalities for all genes from given chromosome. The subscript k iter-

ates from 1 to the number of genes in given chromosome such that subscripts (ik, jk)

iterate through all image segments contained in the chromosome, see Figure 27. The

fitness of Ch is determined using

Fitness(Ch) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 if ∀k (1 − RCth) · RC ≤ RC(ik, jk) ≤ (1 +RCth) · RC
∧ maxk |ang(ik, jk) − ang| < ang th

∧ all genes within chromosome pass the triangle check,

0 otherwise.

The fitness function shown above is maximally selective, i.e., it causes chromo-

somes to survive and reproduce or die and be removed from the population.

Algorithm 6 is based on the standard procedure for genetic algorithms described

in [27]. The only genetic operator implemented is the crossover operation. New

genes are not created by Algorithm 6. All unique genes appearing in the population

are created before evolutionary iteration starts. The crossover operation cannot

split halves of existing genes. Two chromosomes of lengths n1 and n2 can only be

concatenated to form a new chromosome of a length n1 + n2 that contains all genes

from the original two chromosomes. The repetition of left and right handed parts

of the gene within a chromosome is not allowed either. This means that only two

chromosomes with different sets of left and right handed parts can mate and create

an offspring.

After implementing Algorithm 6, all genes are scored using the Algorithm 7. The

85

Algorithm 6: Genetic Algorithm

Input : tables C(i, j), O(i, j), A(i, j), RC(i, j), centroids of all segments
Output: ordered set of matches O
Create the set of genes S using rules from table 8
while (stop condition is not true) do

Apply genetic operator: crossover
Evaluate fitness function
Remove chromosomes with fitness function below some threshold

end
Order all genes into set O using GA based ordering algorithm, see
Algorithm 7

symbol γ denotes separation introduced by the chromosomes. Each chromosome

forms a block of genes. Genes within a block (a chromosome) are considered to

be indiscernible. Since, different chromosomes can contain the same genes this

separation forms a tolerance relation (see Definition 12).

The genes are sorted by the number of chromosomes they appear in. The chro-

mosome that contains the most common genes is selected as the output of the

simulation. All sorted genes are returned in the set O.

Algorithm 7: GA based ordering

Input : set of genes G, separation of this set γ
Output: ordered set of matches O
Create the set of counters for all genes in the set G
Set initial values of these counters to 0
for (all blocks from γ) do

for (all genes Si from given block) do
Increase counter of gene Si by 1

end
end
Return sorted in descending order list of genes O = sort(G)

86

3.1.9 2D Matching with Approximation Spaces

This section considers an approach to processing the output from the genetic algo-

rithm 6 within the context of an approximation space. Let S be a set of n best

genes returned by Algorithm 6. Let B(x) be a set of genes equivalent to x, and let

B∗S be the lower approximation of the set S. There is an advantage in using B∗S

as a standard, and measuring how well B∗S “covers” each set. This “normalized”

view of S (i.e., S considered in relation to classes in U/ ∼B that are proper subsets

of S) makes it possible to select a set of genes covered to the greatest extent by the

standard. The steps of this approach to finding the set of best matches are given in

Algorithm 8.

Algorithm 8: The algorithm for selecting best matches using rough coverage

Input : set of all possible matches
Output: ordered set of matches

Run the GA to get the separation of the genes
Create and initialize to 0 the rough coverage weights for each gene
Create a set S of top n genes
for (each set [xi]B)) do

Evaluate rough inclusion value

Rcover([xi]B, S) =
|[xi]B ∩B∗S|

|B∗S|
Increase weights of genes from [xi]B by Rcover([xi]B, S)

end

The results are shown in Figure 28. In the plot from Figure 28 a set S was

created from 114 genes. The most important result to observe in this plot is that

the rough coverage measure does better than other methods for the number of genes

87

between 37 and 49. This means Algorithm 8 sorts the genes better than the pure

GA represented in Algorithm 6. This also means that the rough coverage measure

can be used to find more correct matches than other methods.

Figure 28: Rough coverage vs. ratio of correct matches for 2,000,000 chromosomes.

3.1.10 Tolerance Relation vs. Equivalence Relation

The output of the GA in Algorithm 6 is a set of hypotheses. In other words, Algo-

rithm 6 produces sets containing pairs of image segments. Each such set (hypothesis)

corresponds to one chromosome. The crossover operation in Algorithm 6 produces

a chromosome that is a copy of two input chromosomes. Therefore, the resulting

separation is a tolerance relation (see Property 1). Algorithm 9 converts the toler-

ance relation induced by Algorithm 6 into an equivalence relation. This is done by

removing the overlapping sets in the separation created by Algorithm 6.

Observe that Algorithm 9 searches for the chromosomes with the highest weight

(starting from the longest chromosomes) and removes all chromosomes that have

88

Algorithm 9: Conversion of tolerance relation to equivalence relation

Input : set of genes G, set of chromosomes Ch, separation γ of set G
expressed by sets ChI ∈ Ch

Output: partitioning ∼B of set G

Order all genes using GA based ordering, see Algorithm 71

Set ∼B to ∅2

/* starting from the longest chromosomes */
for (all chromosomes’ lengths I) do44

for (all chromosomes ChI of the length I) do5

Find the chromosome chmax ∈ ChI with the highest score and move it6

to ∼B

for (all chromosomes chk in Ch) do7

if (chk ∩ chmax �= ∅) then8

Remove chk from Ch1010

end11

end12

end13

end14

non-empty intersection with a given chromosome. The resulting partitioning of all

genes C forms an equivalence relation (see Theorem 2).

The down side of converting the tolerance relation induced by Algorithm 6 into an

equivalence relation is the reduction of the number of chromosomes. For example,

in the case of the system consisting of ≈818,000 chromosomes with 4920 genes

where the longest chromosome has length 29, the conversion to equivalence relation

decreases the number of chromosomes with cardinality greater than one to 1229.

This means that the number of blocks after the conversion is less than 0.16% of the

number of tolerance relation separation sets.

Experimental results show that the equivalence relation does not have enough

89

power to improve the ordering produced by the GA in Algorithm 6. This is due

to the small number of blocks in the equivalence relation. Figure 29 shows sample

results for 818,000 chromosomes.

Figure 29: Ratio of correct matches for tolerance and equivalence relation

Next, several properties relating the proposed evolutionary approach with rough

set theory are given.

Property 1. The crossover operator in the GA in Algorithm 6 produces a parti-

tioning of the set of genes G.

Proof. Let Ch denote the set of all chromosomes chk such that Ch =
⋃

k chk. If L

denotes the longest chromosome in Ch, then all chromosomes can be grouped into

subsets of Ch, namely, ChL, ChL−1, . . . , ChI , . . . , Ch1, where ChI ⊆ Ch and index I

denotes the length of the chromosome15. Without the loss of generality, consider a

15The index written with a small letter by a chromosome ch does not indicate the length of the
chromosome.

90

case where a chromosome of a length I is crossed with a chromosome of a length J

producing a chromosome of a length K = I + J :

crossov : ChI × ChJ → ChK , chk = crossov(chi, chj),

where chi ∈ ChI , chj ∈ ChJ , chk ∈ ChK , K = I + J , K ≥ 2 and I, J ≥ 1.

After applying the crossover operator, the chromosomes chi and chj are not

removed from Ch. This means that a gene gt that belongs originally to chi belongs

also to the chromosome chk.

Now, for any chromosome chk of order greater than 1,

∀gt∈chk
∃l �= k | gt ∈ chl.

From the fact that the order of a chromosome chk is greater than 1, we have chk =

crossov(chi, chj). What follows is that l = i or l = j.

The above proof shows that for each chromosome chk of order K > 1 there exists

a chromosome of order smaller than K that is a part of chk. Therefore, for each

such chromosome chk there exist at least two chromosomes that have non-empty

intersection with it.

Theorem 1. The GA in Algorithm 6 produces a separation of the set of all genes,

which corresponds to a tolerance relation γ.

Proof. Chromosomes chk produced by the GA consist of the genes from the set

G. Each chromosome can be considered as a separation set of indistinguishable

91

genes. Thus, they create a separation of the set G. This separation corresponds to

the tolerance relation if the relation determined by this separation is reflexive and

symmetric. The relation γ is based on the fact that two elements belong to the same

chromosome, i.e.

xγy iff ∃i | x ∈ chi and y ∈ chi

where chi ∈ Ch and x, y ∈ G. From the definition this relation is symmetric and

reflexive.

The separation Ch covers all genes G because Ch includes the set Ch1 = G of

chromosomes of order one, so Ch1 ∈ Ch therefore G ⊆ Ch.

The relation γ is not an equivalence relation because chromosomes ch may have

non-empty intersections (from Property 1).

Theorem 2. Algorithm 9 converts the separation γ produced by the GA in Algo-

rithm 6 into a partitioning ∼B.

Proof. Since Algorithm 9 does not create new separation sets, the partition induced

by ∼B is a subset of the separation induced by γ. Thus, there are two conditions

that must be satisfied for the partitioning ∼B to be an equivalence relation:

• all blocks from ∼B must have empty intersection:

Step 10 from Algorithm 9 assures that all subsets from ∼B have empty inter-

section.

• all blocks from ∼B must cover the entire space of genes G:

The step 4 from Algorithm 9 starts with the longest chromosomes and ends

92

with the shortest ChL, ChL−1, . . . , ChI , . . . , Ch1, where L is the length of the

longest chromosome in the system. The shortest chromosome is of length one,

i.e., it is a gene. Notice, none of the genes that are not included in the set

∼B will be removed from the set Ch1 because their intersection with chmax is

empty. This means that in the last iteration of loop 4 all missing genes will

be added to the set ∼B.

3.1.11 Classical vs. Rough Matching Methods

Classical 2D image segment matching method is usually limited to two probe func-

tions, namely, colour difference and the overlap between two segments (see, e.g., [48,

94, 197]). This is a severe limitation because these two probe functions do not yield

enough information to permit accurate image segment matching. By contrast, in

designing genes in chromosomes used in evolutionary 2D segment matching, the

number of features and corresponding probe functions associated with a gene can

be quite large.

In this study, four parameters for each gene and 2,000,000 chromosomes have

been used. Similarly, using the rough coverage methods, the number of probe func-

tions associated with an image segment can be large. The probe functions used in

this study are defined in terms of the distance between mean colours of segments,

the degree of overlap between segments, the angle of rotation between segments and

the ratio of cardinalities of both segments. In addition, rough coverage values rep-

resent a comparison between a set representing a norm (e.g., B∗S) and each of the

93

separation sets containing similar pairs of image segments. This means that infor-

mation contained in separation sets generated by chromosomes is validated against

the information contained in the standard. The higher the rough coverage function

the bigger overlap between these two sets and the greater chance that genes be-

longing to a given separation set are correct matches. In effect, the rough coverage

matching method yields better results because it uses more information about the

image segments being compared. This is one way to explain the plots in Figure 28.

Figure 30: Rough coverage vs. ratio of correct matches (zoomed Figure 28).

In Figure 30, the left upper corner of the plot from Figure 28 is shown. Fig-

ure 30 illustrates the advantage of the rough coverage approach compared to the

other methods. Recall, that the problem of segment matching is considered in the

context of 2D to 3D conversion. The 2D to 3D conversion algorithm takes as an

input paired pixels that are generated from paired segments. Any mismatch at the

segment matching stage propagates to the pixel matching stage and finally into 2D

to 3D conversion. Therefore, a crucial requirement for image segment matching is

94

to generate as little wrong matches as possible. Figure 30 shows that the rough

coverage approach yields the biggest number of correct matches, i.e., the first wrong

match occurs after finding 47 good matches. For the weights generated by the

GA used in Algorithm 8, the first mismatch occurs after only 36 correct matches.

Hence, rough coverage approach reduces the number of mismatches, which improves

the robustness of the overall 2D to 3D conversion process.

95

3.2 Point Matching

In this section an approach to point matching16 is presented (see [49] and [201]

for excellent reviews of this topic). The goal of point matching is to find pairs of

matched points from both images. There is no requirement to match all possible

points from both images. Instead, it is enough to match only some small number of

points. These matches are used for 2D to 3D conversion (see Section 4). Thus, the

more points matched the better, but the crucial property of a match is the quality

not the quantity.

In the process of point matching, there are three separate problems that need

to be considered. The selection of an interest point is the first problem to consider

(see Section 3.2.1). The purpose of selecting interest points is to limit the search

space and consider only points that are somehow characteristic for an image. Next,

calculation of local descriptors must be considered (see Section 3.2.5). The purpose

of this step is to extract local information around a detected point and pre-process

it so that the image is more suitable for matching. Usually, this entails extracting

information about a given point, which is invariant relative to required image trans-

formations. Finally, the most similar points are found using the extracted features.

The main goal is to find the best distance measure to match given interest points. A

high-level view of this three-step point-matching process is depicted in Figure 3117.

This subsection contains descriptions of several of the most popular point match-

ing techniques. In general, there are no assumptions about any extra knowledge of

16A word ”point” is used interchangeably with ”pixel”
17Note, that in this dissertation local descriptors are not used, see Section 3.2.6.

96

Interest

Points

Local

Descriptors
Matching

Figure 31: Overview of Point Matching steps

approximate locations of prospective matches. Usually, no extra information about

the rotation and scaling between given images is given either. The only information

needed in this step is contained in the images.

Table 9 presents symbols used in this section.

Table 9: Symbols used in Coarse Matching section.
Symbol Description
G(σ) Gaussian kernel
L(σ) an image convolved with a Gaussian kernel
Li first derivative of an image L, i ∈ {x, y}
Lii second derivative of an image L, i ∈ {x, y}

DoG(σ) difference of Gaussian filter
H the Harris corner detector

(η, ξ) Gauge coordinates

3.2.1 Interest Point Detection

Since not all points from an image are matched, it is important to select only so-

called interest points that are distinctive in an image. Hence, a common approach

prior to point matching is to identify interest points. An interest point is a point that

is easily discernible from its background and has diverse surroundings. For example,

matching a white point on a white background is a poor choice, since all neighbour-

ing points of the white point are indiscernible from it. Interest points should also be

97

easily detectable in an image that is subjected to one or more transformations. Usu-

ally rotation and scale changes are considered. Some researchers also consider affine

invariant interest points [105]. For image registration, a required transformation is

projective transformation. Unfortunately, projective invariants require several lines

to be extracted from images [26, 60, 61], which tends to subvert the interest point

detection process. In this section, several interest point detectors are discussed.

3.2.2 Scale invariant interest point detectors

The most common approach to detect scale-invariant interest points is through the

use of a so called scale-space. The inventor of this approach is A. Witkin, who

proposed “Scale-space filtering” in 1983 (see, e.g., [56, 90, 107, 155, 193]). Other

sources suggest this idea stems from the work of Taizo Iijima in Japan, in 1959 [187].

In addition to detecting the scale of an image, the spatial location of a point must

be found. The most common approaches are the use of the Harris corner detector

and the so-called difference of Gaussian approach.

Harris-Laplace detector

A scale space is a sequence of images parametrized by a scale. Each scale corresponds

to a different resolution of an image. Rescaling is achieved by convolving an image

with a Gaussian kernel18 [107, 191]. The Gaussian kernel is a preferred smoothing

mask since Gaussian is the only filter that does not create zero-crossings as the scale

increases [3], which means that the smoothing does not introduce any artifacts. In

18When referred to a convolution mask a word kernel is used interchangeably with word filter in
image processing [48].

98

addition, a Gaussian filter is the only smoothing filter that can be applied (in one

dimension) separately in vertical and horizontal direction and produces the same

result as if 2D convolution was performed with 2D Gaussian mask. Let I(x, y)

denote a point in an image I, where x denotes the horizontal position of a pixel

and y denotes the vertical position of a pixel. Let G(x, y, σ) be a Gaussian kernel

[27, 90], where

G(x, y, σ) =
1

2πσ2
e

−(x2+y2)

2σ2 . (16)

The representation L(σ) of the image I relative to scale σ is given by a two

dimensional convolution (see Definition 11) of an image I and the Gaussian kernel

G(σ).

L(σ) = G(σ) ∗ I.

Let W denote the coordinates of a Gaussian kernel window (where point (0, 0)

denotes the centre of a window), the formula for any point at coordinates (x, y) with

scale σ is given by

L(x, y, σ) =
∑

s,t∈W

G(s, t, σ)I(x+ s, y + t). (17)

The resulting image in a higher scale is a blurred version of the original image.

An example showing an image rescaled with factor σ = 2.88 as well as two images

taken with zoom 1 and 2.88 are shown in Figure 32.

The symbols Li and Lii denote the first and the second derivatives of L in the

direction of i ∈ {x, y}. The example of the first and second derivatives in the

99

Figure 32: Scale space filtering. Left and middle images - images taken with a zoom
factor 1 and 2.88, respectively, right image - middle image rescaled with factor
σ = 2.88

horizontal direction is

Lx(x, y, σ) = L(x + 1, y, σ) − L(x− 1, y, σ),

Lxx(x, y, σ) = L(x+ 1, y, σ) − 2L(x, y, σ) + L(x− 1, y, σ).

Since L is the result of convolving the image I with Gaussian filter G(x, y, σ),

the derivatives can be calculated [156] by convolving the image with the derivatives

of the Gaussian kernel

Li1,...,iN (σ) = Gi1,...,iN (σ) ∗ I.

The notion of a scale-space is used for automatic scale selection. This approach

introduced by Lindeberg [90] is based on the fact that local extrema of spatial

derivatives in a scale-space correspond to a scale of the image. This means that a

scale-space approach allows for determining a magnification factor to each image.

100

In what follows, relative scale between two images can be found by determining the

relative scale factor between the maxima of extrema of spatial derivatives. Miko-

lajczyk et al. [107] proposed four different spatial derivatives that can be used to

determine a scale space: square gradient, Laplacian function, difference of Gaussian

and Harris corners. Experiments reported in the literature suggest that the best

results for detecting a scale of am image are obtained using the Laplacian func-

tion [90, 107, 108]. The interest point detector based on Harris corner detector and

Laplacian scale detector is called the Harris-Laplacian detector.

To evaluate the advantages of the characteristic scale in the process of matching

points, the characteristic scale algorithm has been introduced, implemented and

tested as part of the research leading to this dissertation. This was done to assess

the accuracy of an estimated scale assuming that the locations of the corresponding

points are known. Therefore, to select matched points, information about an actual

scale factor between the two images is used. That is, a smaller image is rescaled

to match the dimensions of a bigger image. After rescaling, matching points in

both images are found using a Zero-Mean Normalized Cross Correlation (for details,

see Section 2.18). Then coordinates of matched points from a rescaled image are

transformed back into the coordinates of an original image. The characteristic scale

is calculated using the original image. The algorithm for calculating the scale factor

between two images using the characteristic scale is shown in the Algorithm 10.

Table 10 shows the result of scale factor estimation using the square gradient.

F (x, y, s) = s2(L2
x(x, y, s) + L2

y(x, y, s)).

101

Algorithm 10: Determining scale factor for two images

Rescale smaller image to match the image with bigger resolution (bicubic1

interpolation is used);
Detect Harris corners in both images;2

Match Harris corners using the Zero-Mean Normalized Cross Correlation;3

Adjust location of matched points using ZNCC;4

Rescale back coordinates of matched points from the smaller image into its5

original scale;
Find characteristic scales for matched points.6

The first column in Table 10 shows the actual scale factor between two images.

The second column shows the scale factor calculated using the characteristic scale

and the third column shows the percentage of error of an estimation. The last three

columns show the number of points for which the characteristic scale was calculated,

the number of points for which the matching point was found and the percentage

of pairs for which the characteristic scale was calculated, respectively. The bigger

image had dimensions 2046 by 1215 pixels, and the smaller image dimensions varied

from 2034 × 1200 to 715 × 422 pixels.

Table 10: Scale factor estimation for square gradient.
scale est. scale scale error scale found pairs detected % found

1 1.0093 0.9% 1129 1783 63.3%
1.1335 1.1592 2.3% 994 1730 57.5%
1.295 1.3119 1.3% 733 1373 53.4%
1.4892 1.4724 -1.1% 453 821 55.2%
1.6904 1.5800 -6.5% 366 767 47.7%
1.9098 1.8253 -4.4% 218 433 50.3%
2.17 2.0563 -5.2% 126 274 46.0%

2.4897 2.2916 -8.0% 38 84 45.2%
2.8804 2.3398 -18.8% 35 90 38.9%

102

The results in Table 10 confirm good results for small scale change obtained by

Mikolajczyk et al. [107]. For scale changes up to 1.5, the scale estimation error is

no greater than 2.3% and over 50 percent of the pairs used for calculations yielded

the characteristic scale. But the key assumption for successful scale space filtering

is that pairs of images differ only in scale. For the experiments summarized in table

10, images taken from one viewpoint were considered. For the problem of 2D to

3D conversion, images are taken from different locations. Hence, information in the

images is changed. This imposes two additional problems not usually considered by

researchers using the scale space approach. First, to find a scale factor between the

two images, pairs of points from both images must be known. For this research, the

objective of 2D processing is to find point matches. Thus the scale space approach

uses information that is being sought. Second, in the case of a projective transforma-

tion, information contained in images is different. This influences the characteristic

scale and the scale factor between the images. As a result, the accuracy of a calcu-

lated scale factor decreases even further. Even though the scale-space approach has

been incorporated in several interest point detectors [28, 107, 108, 193], due to the

reasons described above it is not used in this research.

Difference of Gaussian (DoG)

The idea behind the ”difference of Gaussian” (DoG) [95, 96] detector is similar to

that of Harris-Laplacian. For the DoG detector, an image is smoothed using a

Gaussian filter (see (16)). Both the spatial and scale-space extrema are found di-

rectly from smoothed images. To find a scale-space extremum, more than one image

103

is necessary. A collection of images is created, where images from this collection are

parametrized by a scale factor. All adjacent images are subtracted. They form

difference of Gaussian images. The formula for a DoG image is:

DoG(x, y, σ) = (G(x, y, kσ) −G(x, y, σ)) ∗ I(x, y) = L(x, y, kσ) − L(x, y, σ).

A collection of DoG images is used to find the extrema for scale and space. A

search for scale-space extrema is performed in 3D space (two spatial coordinates and

a scale). A point is assumed to be extremal if it has a extremum value in its 26-th

neighbourhood. A 26-th neighbourhood consists of 9 points from a lower scale, 9

points from a higher scale and the eight-neighbourhood from the current scale.

3.2.3 Rotation invariant interest point detectors

This section contains a description of interest point detectors that are invariant

relative to image rotation. The only commonly used point detector that is rota-

tion invariant is the Harris corner detector. For more information about obtaining

rotational invariance, see Section 3.2.5.

Harris corner detector

The Harris corner detector [58] is a measure for identifying points in an image for

which colour information varies in all directions. By contrast, edges are areas for

which pixel colours vary only when crossing an edge as opposed to moving along

an edge. The Harris corner detector is a very important tool for image registration,

since it makes it possible to identify points that are distinct from the background.

104

These corners are also rotation invariant. Therefore, they are often used as interest

point detectors in image registration. In fact, the Harris corner detector is the most

commonly used detector in image processing, for example see [74, 113, 175, 177].

Let L(x, y, σ) denote the Gaussian filter as defined in (17). Moreover, let µ be

the second moment matrix

µ(x, y, σ) =

⎡
⎢⎣ L2

x(x, y, σ) Lxy(x, y, σ)

Lxy(x, y, σ) L2
y(x, y, σ)

⎤
⎥⎦ ,

det(µ) denote a determinant of a matrix µ and Tr(µ) denote the trace of a matrix

µ. The parameter k is usually set to 0.04. The cornerness [58, 108] of an image at

a given location (x, y) is measured using

H = det(µ(x, y, σ)) − k · Tr(µ(x, y, σ)). (18)

The process of finding the corners in an image consists of two main steps. First,

the cornerness of each point in the image is found. Second, the points with maximum

cornerness in some neighbourhood are selected. These points are assumed to be the

corners in the image. The algorithm for finding the Harris corners [58] is shown in

Algorithm 11. Figure 33 shows the Harris corners detected for the image of a power

tower structure.

105

Algorithm 11: Harris corner detector

Calculate the first derivatives in horizontal ∂I/∂x and vertical ∂I/∂y1

directions
Square derivatives and smooth them using Gaussian filter G2

A = (∂I/∂x)2 ∗G,
B = (∂I/∂y)2 ∗G,
C = ((∂I/∂x)(∂I/∂y)) ∗G.

Create 2x2 matrix3

M =

[
A C
C B

]
.

Calculate the corner measure R for k = 0.044

H = det(M) − kTr(M) = AB − C2 − k(A+B).
Select given point as a corner if H is maximum in 3 × 3 neighbourhood5

Scale-space adapted Harris corner detector

A scale-invariant Harris corner detector is an adaptation of the classical Harris

corner detector to the scale-space [28, 108]. In addition to smoothing an image

before calculating the second order matrix, the result is also averaged using another

Gaussian kernel σI (integration scale). The image smoothing kernel σD is called the

derivation scale. The scale-adapted second moment matrix is given by

µ(x, y, σI , σD) = σ2
DG(σI) ∗

⎡
⎢⎣ L2

x(x, y, σD) Lxy(x, y, σD)

Lxy(x, y, σD) L2
y(x, y, σD)

⎤
⎥⎦ . (19)

Cornerness is calculated like in the classical Harris corner detector, see 18, but the

scale-space adapted second moment matrix is used.

106

Figure 33: Harris corners

Comparison of interest point detectors

Because of the usefulness of interest point detectors, the literature is rich in com-

parisons between them. C. Schmid et al. [153, 154] tested different interest point

detectors. They divided them into three categories: contour based, intensity based

and parametric model based methods. In their work, they compare five detectors:

Harris [58], Cottier [23] as cited by [154], Horaud [67] as cited by [154], Heitger [64]

as cited by [154] and Förstner [39] as cited by [154]. For the comparison, they use

the repeatability rate that is defined as a ratio of a number of repeatedly detected

points in the original and transformed image to the total number of detected points.

For rotation invariance, the best result is obtained by the improved Harris detec-

tor. But the result strongly depends on localization error. For a sub-pixel resolution,

the repeatability oscillates around 0.4 and for an error equal to 1.5 pixels, the re-

peatability is close to 1. All of these results are independent of the rotation angle

with the maximum rotation angle equal to 180 degrees.

107

For scale change, the best detectors are again the Harris and Cottier detectors.

In this case, the results are much worse compared to rotation. For scale factor

greater than 2.0 and sub-pixel resolution, the repeatability is smaller than 0.1. For

an error of 1.5 pixels, the repeatability drops from around 0.9 (scale ≈ 1.1) to 0.4

(scale ≈ 2) and then it drops below 0.2 for bigger scale factors.

In this research, the scale factor should rarely exceed 2. Nevertheless, the results

obtained by C. Schmid et al. are not promising for this research. The rotation and

scale changes are not the only transformations present for the images taken from

different viewpoints. Extra differences are added by different lighting conditions,

perspective transformations and occlusions. C. Schmid et al. performed more tests,

e.g., with respect to illumination and affine transformations. The results are very

similar to those with a scale change and a rotation (repeatability from 0.5 to 0.9 for

illumination change and from 0.3 to 0.9 for affine transformation and with an error

of 1 pixel). This means that if all of these factors are present, namely rotation, scale

change, illumination and affine transformation, repeatability is certain to be low

enough to make even the best interest point detector useless as the only means of

registration. Nonetheless, interest point detectors are still very useful as additional

tools for image registration, especially in cases where due to some extra information

the ambiguity in registering points can be decreased.

3.2.4 Affine invariant interest point detectors

An affine invariant interest point (AIIP) detector’s goal is to select points in im-

ages regardless of the affine transformation between the images. Usually, due to the

108

specific nature of the transformations between two images taken from different po-

sitions by a digital camera, the set of all possible affine transformations is narrowed

to translation, rotation and independent scaling in the horizontal and vertical direc-

tions. Affine invariant interest point detectors are very important in image matching

for 2D to 3D conversion, since the projective transformation for the planar surfaces

can be approximated19 by an affine transformation [37, 105, 109].

The AIIP detector implemented as part of the research reported in this disser-

tation is based on the article by Mikolajczyk and Schmid [105, 108]. This detector

uses the multi-scale Harris detector (as described in the previous section). The AIIP

algorithm consists of four main steps.

1. The spatial localization of a point is determined by multi-scale Harris detector.

2. The characteristic scale is found. This scale is constructed using a spa-

tial derivative function that is an application of the normalized Laplacian

|σ2(Lxx(x, y, σ) + Lyy(x, y, σ))|.

3. A derivation scale is found (see, e.g., 19). This scale is set to the value that

maximizes the ratio of the smallest and greatest eigenvalues of the second

moment matrix

σD = sσI such that s = argmax
s∈[0.5,0.75]

λmin(µ)

λmax(µ)
.

4. Finally, the neighbourhood of a detected point is normalized using the second

moment matrix. This normalization is performed by warping the image [61].

19The approximation is performed locally around pixels and it helps in pixel matching.

109

⎡
⎢⎣ x′

y′

⎤
⎥⎦ =

⎡
⎢⎣ xo

yo

⎤
⎥⎦ +

⎡
⎢⎣ a11 a12

a21 a22

⎤
⎥⎦

⎡
⎢⎣ x− xo

y − yo

⎤
⎥⎦ ,

where [xo yo]
T is the transformation centre and the matrix A is calculated from

the second moment matrix as:

A = µ− 1
2 (x, y, σI , σD).

Figure 34 illustrates affine invariant points detected by the above method. Each

ellipse denotes an enclosed area after normalization. The size of the ellipse corre-

sponds to the characteristic scale detected for a given point. The size and position

of these ellipses are very important for matching points. After normalization, neigh-

bourhoods of the selected points are similar in both images. The only difference

between them is the rotation. To match corresponding points, it is necessary to

extract rotation invariant descriptors and match them.

Figure 34: Affine invariant interest points

110

3.2.5 Interest Point Descriptors

Detecting interest points in an image is the first step in solving the image matching

problem. To be useful, an interest point detector must detect the same points in a

pair of images. The problem of pairing corresponding interest points is still an open

problem.

Due to viewpoint change, the information in the neighbourhoods of correspond-

ing pixels is different in both images. Therefore, attempts to match points using the

information directly contained in the images may not give satisfactory results. To

facilitate matching, an approach widely used in pattern classification20 is applied.

Using the SVM approach, an image space is transformed into a feature space. The

features in the new feature space are invariant with respect to the transformations.

Matching of extracted features is more robust than using information directly con-

tained in an image. In addition, the dimensionality of the new feature space can be

significantly reduced (although search space reduction is not the main goal).

The set of features extracted from an image for a given point is called a descriptor.

A comparison of descriptors is usually performed by calculating the Mahalanobis

distance between them [106, 155], see Section 3.2.6. Mikolajczyk et al. in [106]

compare five different interest point descriptors: SIFT, steerable filters, differential

invariants, complex filters and moment invariants. The following subsections contain

descriptions of all of these descriptors.

20Support Vector Machines (SVM) [151]

111

Scale Invariant Feature Transform (SIFT)

The first descriptor is a called a SIFT descriptor (Scale Invariant Feature Transform)

that was proposed by Lowe [95, 96]. The interest point detector used by Lowe is

the difference of Gaussian. To ensure rotation invariance, gradient orientations are

used. For each detected point, gradient orientation and magnitude are calculated.

Gradients for points around a given interest point form a histogram. A peak in this

histogram denotes the orientation of a given interest point. Further calculations of

the SIFT descriptor are performed relative to this orientation.

The SIFT descriptor is calculated in the following manner.

1. The gradient orientations and magnitudes for points in the neighbourhood of

a given point are used. Assume that the neighbourhood was chosen to be an

8 × 8 pixel wide window around a given interest point. This means that 64

gradient orientations and magnitudes are found.

2. Gradient magnitudes are accumulated over their neighbourhoods. Instead of

an 8× 8 pixel window, a smaller window such as a 2× 2 pixel window is used.

Each entry in the new 2×2 window consists of r vectors. Each vector represents

one direction. The length of a vector is a sum of all of the magnitudes of the

gradients that are closest to a particular direction21.

3. To improve descriptor stability, gradient magnitudes are weighted by their

distance to the interest point.

21If the smaller window size is n×n for n ≤ 8, then the descriptor dimension is n×n× r. Lowe
et al. determined that the best stability and discrimination was obtained for n = 4 and r = 8.
This produces a descriptor with length 128.

112

Steerable Filters

Steerable filters were introduced by Freeman and Adelson in [38]. The main advan-

tage in using steerable filters is a reduction in computational complexity in calcu-

lating image gradients.

Image gradients are commonly used to define the orientation of an image relative

to a given point. Before two image points can be matched, they need to be aligned

(rotated) with respect to their orientation angle. Therefore, finding the gradient for

a given point is crucial for further matching.

To find a gradient in a given direction, it is necessary to calculate the first

derivatives of an image in a given direction. Usually, to find a gradient’s orientation,

one must find derivatives in several directions. Freeman and Adelson showed that

instead of calculating several derivatives, it is possible to calculate only a few base

derivatives and interpolate the remaining angles relative to these base derivatives.

Usually, basis filters are chosen to be aligned along horizontal and vertical axes. This

result is very appealing in the field of digital image processing, since the calculation

of derivatives in the horizontal and vertical directions is very fast.

To see how this is accomplished, consider the Gaussian kernel

G(x, y, σ) =
1

2πσ2
e

−(x2+y2)

2σ2 .

The derivative of G in direction θ can be calculated interpolating the derivatives of

G in the horizontal and vertical directions as:

113

Gθ(x, y, σ) = cos(θ) G0◦(x, y, σ) + sin(θ) G90◦(x, y, σ),

where G0◦(x, y, σ) = ∂
∂x
G(x, y, σ) and G90◦(x, y, σ) = ∂

∂y
G(x, y, σ).

In addition, since convolution is a linear operation, the result of convolving an

image with a kernel Gθ is identical to the linear combination of two images convolved

with kernels G0◦ and G90◦ . That is, if L(σ) = G(σ) ∗ I and Lθ(σ) denotes the

derivative of L(σ) in a direction θ, then

Lθ(σ) = cos(θ) L0◦(σ) + sin(θ) L90◦(σ).

The above equation makes it possible to calculate the image derivatives only once

and then use them to interpolate the derivatives in any orientation θ.

Differential Invariants

The term differential invariants covers a wide range of invariants based on image

derivatives. The foundations of this approach were presented by Koenderink et al.

in [78] and used by many other researchers [155, 156, 176].

Calculations of differential invariants can be divided into two steps.

1. A so called local jet is found. A local jet is a set of derivatives relative to a

given point. Before the derivatives are calculated, an image is smoothed using

the Gaussian kernel. As a result, this process takes into account the derivation

114

scale:

JN (I)(x, y, σD) = {Li1,...,in(x, y, σD) | (x, y, σD) ∈ I × R+; n = 0 . . .N}.

For example, Lii denotes the Laplacian Lii =
∑

i=x,y Lii = Lxx + Lyy and

L(x, y, σ) is given in (17).

2. In the second step, a set of differential invariants is created from the members

of a local jet.

A set of differential invariants is not unique and depends on a researcher’s prefer-

ences. Due to the result obtained by Hilbert in 1890 (as cited by [58, 51, 50, 52, 156]),

the problem of finding invariants was reduced to a small set of irreducible invariants.

Hilbert showed that any invariant of finite order can be expressed as a polynomial in

a base of irreducible invariants. As a consequence, most interest is directed toward

finding sets of irreducible invariants. For example, for two dimensions, the set of

irreducible invariants up to the order two is equal to:

L, LiLi, Lii, LiLijLj, LijLji.

As proposed by Schmid and Mohr [155, 156, 157] the differential invariant de-

scriptor consists of all irreducible invariants up to the order of three. It is assumed

that the source image is a grey-scale image.

115

Denote by εij the 2D antisymmetric Epsilon tensor:

ε =

⎡
⎢⎣ 0 1

−1 0

⎤
⎥⎦ .

A vector containing all irreducible invariants up to the order of three is equal to:

ν =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L

LiLi

Lii

LiLijLj

LijLji

εij(LjklLiLkLl − LjkkLiLlLl)

LiijLjLkLk − LijkLiLjLk

−εijLjklLiLkLl

LijkLiLjLk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This set of descriptors is invariant with respect to image rotation, scale change and

small viewpoint variations.

Another approach proposed by Montesinos et al. [50, 51, 52] takes into account

colour information contained in an image. Instead of using an image coordinate

system (x, y), they calculate invariants in the Gauge coordinate (η, ξ). The term

’gauge condition’ comes from physics and denotes a situation where a coordinate

frame is oriented in such a way that one or more of the partial derivatives is zero

[91, 176]. In digital image processing, one of the directions in a gauge coordinate

116

system is parallel to the gradient direction η = ∇I
|∇I| and the second direction is

perpendicular to the first one ξ⊥η. Montesinos et al. proposed five invariants that

are suitable for greyscale images [50, 51, 52].

I, Iηη + Iξξ, Iη,
Iξξ

Iη
,
Iξη

Iη
.

For colour images, Montesinos et al. proposed a descriptor consisting of eight ele-

ments constructed from gradients of red, green and blue channels.

Invariant Moments

Invariant moments were popularized in the pattern recognition community by the

work of Hu in 1962 [70]. Hu proposed seven invariants with respect to rotation.

These invariants are based on central moments that are defined in this section (all

equations in this section are taken from [48] and [70], if not stated otherwise).

The geometric moment for a given point (x, y) is equal to:

mp,q =

∫ ∞

−∞

∫ ∞

−∞
xpyqI(x, y) dxdy. (20)

The central moment is equal to:

µp,q =

∞∫
−∞

∞∫
−∞

(x− x̄)p(y − ȳ)qI(x, y) dxdy, (21)

where

x̄ =
m10

m00

, ȳ =
m01

m00

.

117

By normalizing the central moments, these moments become invariant relative

to scale change [98]:

ηpq =
µpq

µγ
00

, γ =
p+ q

2
+ 1.

The formulae for seven invariants introduced by Hu are:

Φ1 = η20 + η02,

Φ2 = (η20 − η02)2 + 4η2
11,

Φ3 = (η30 − 3η12)2 + (3η21 − η03)2,

Φ4 = (η30 + η12)2 + (η21 + η03)2,

Φ5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)2 − 3(η21 + η03)2]+

(3η21 − η03)(η21 + η03)[3(η30 + η12)2 − (η21 + η03)
2],

Φ6 = (η20 − η02)[(η30 + η12)2 − (η21 + η03)2] + 4η11(η30 + η12)(η21 + η03),

Φ7 = (3η21 − η03)(η30 + η12)[(η30 + η12)2 − 3(η21 + η03)2]+

(3η12 − η30)(η21 + η03)[3(η30 + η12)2 − (η21 + η03)
2].

In theory, it is possible to match two points in an original and transformed image

using these invariants. But in practise, there are two problems. First, instead of

118

(21) for calculating central moments, the formula22

µp,q =
∑

x

∑
y

(x− x̄)p(y − ȳ)qI(x, y).

is used. It is necessary because the function I for digital images is discrete. In

changing the domain from continuous to discrete, the invariant moments partially

lose their properties. For example, rotation of an image has the biggest influence on

invariant moments due to the finite number of sample points. The second problem

is the nature of a projective transformation. As mentioned before, the seven mo-

ments are invariant with respect to translation, rotation and scale change, but not

projective transformation.

Flusser et al. [36] have used moment invariants to match regions detected in two

satellite images. The moments they used in the proposed method are invariant to

affine changes.

Φ1 =
1

µ4
00

(µ20µ02 − µ2
11),

Φ2 =
1

µ10
00

(µ2
30µ

2
03 − 6µ30µ21µ12µ03 + 4µ30µ

3
12 + 4µ03µ

3
21 − 3µ2

21µ
2
12),

Φ3 =
1

µ7
00

(µ20(µ21µ03 − µ2
12) − µ11(µ30µ03 − µ21µ12) + µ02(µ30µ12 − µ2

21)),

Φ4 =
1

µ11
00

(µ3
20µ

2
03 − 6µ2

20µ11µ12µ03 − 6µ2
20µ02µ21µ03 + 9µ2

20µ02µ
2
12

+12µ20µ
2
11µ21µ03 + 6µ20µ11µ02µ30µ03 − 18µ20µ11µ02µ21µ12 − 8µ3

11µ30µ03

−6µ20µ
2
02µ30µ12 + 9µ20µ

2
02µ

2
21 + 12µ2

11µ02µ30µ12 − 6µ11µ
2
02µ30µ21 + µ3

02µ
2
30).

22For better approximations of true moments see [89].

119

Nevertheless, the differences between images from satellites are small compared to

the differences taken by a hand-held camera and the authors pointed out several

shortcomings of this method.

Similarly to differential invariants, moment invariants have been designed for

grey-valued images. Mindru et al. in [110] extended this idea to colour images.

Recognition rates for a data base with 200 samples varied from 64% to 96%.

The moment invariants presented in this section are invariant with respect to

translation, scale change, rotation and affine changes. Suk et al. [170] showed,

contrary to common belief, that moment invariants that are invariant to projective

transformation exist. Unfortunately, such moment invariants can be expressed only

in a form of infinite series. Due to their infinite nature and errors caused by approx-

imation using a finite sum, this result has theoretical but not practical importance

in image processing.

Complex Filters

Complex filters ([37]) are very similar to moment invariants. Instead of using 20, a

formula with complex numbers is used, namely

cp,q =

∫ ∞

−∞

∫ ∞

−∞
(x+ iy)p(x− iy)qI(x, y) dxdy.

An example of an application of complex filters to point matching is shown in [152].

120

Comparison of Interest Point Descriptors

Mikolajczyk and Schmid compared several mentioned earlier descriptors [106]. In ad-

dition to descriptors, they also studied cross-correlation for detected interest points.

Table 11 shows approximated results (read from graphs from [106]) of the detection

rates for different descriptors. A detection rate is the number of correctly matched

points relative to the number of possible matches. The results in Table 11 corre-

spond to a false positive rate of 0.006. The false positive rate is the total number

of false matches divided by the product of the number of database points and the

number of image points. Values below 0.012 allow for reliable scene recognition

[106].

Table 11: Interest point detector point match detection rates.
descriptor rotation scale & rotation affine illumination

SIFT 98.8 99.7 83.6 96.9
steerable filters 95.2 96.6 79.7 99.4

moments 91.9 89.5 71.6 94.4
complex filt. 86.2 71.4 52 94.8

diff. inv. 75.4 57.9 44 87.6
cross-correl. 97.1 68.2 40 97.4

The best results are obtained by the SIFT descriptor. For this research, the

transformation that is most important as well as the most difficult to deal with is

the affine transformation. As can be seen from Table 11, three descriptors, namely

SIFT, steerable filters and moments, are superior compared to the other descriptors.

Due to its high performance, the SIFT descriptor is considered next.

121

3.2.6 Matching

An algorithm used for matching points depends on the information that is available

for matching point pairs. When interest point descriptors are considered, matching

is performed by minimizing the distance between the descriptors. The matching

problem can be formulated as a problem of finding the closest vectors in a descriptor’s

space. The most common approach is to use the Mahalanobis distance [106] (see

Definition 3) or Euclidean distance. If pixel values are used instead of descriptors,

the most common measure is the sum of squared distances (see (22)) or correlation

(see Section 2.18).

Figure 35: Results of SIFT detector matching.

In what follows, the SIFT descriptor is used to detect and match points in two

images23 of power towers (see Figure 35). In the experiments, the implementation

by [183] is used (see also [95, 96, 97]). The matching of descriptors is performed

using the Euclidean distance (as suggested by [95] and cited by [106]).

23The resolution of each image is 2048 by 1536 pixels

122

The results of experiments indicate that the SIFT descriptor does not have

enough discriminative power to be used as a point detector for power tower images.

For the images in Figure 35, the SIFT descriptor is not able to find one accurate

match (blue lines join matched points). This means that the point matching step

would not benefit from using this descriptor. As indicated by Table 11, the SIFT

descriptor is the best one from considered six interest point descriptors. Based on

the fact that the SIFT descriptor is not able to match points of power tower images

and is the best of tested descriptors, it is concluded that the use of other descriptors

would not be beneficial for the process of point matching.

As shown in the previous paragraphs, interest point descriptors do not have

enough discriminative power to be used for point matching for power tower images.

The reason for this stems from the fact that power tower images do not contain

many details. Most areas such as sky or steel are plain (fairly featureless). On the

other hand, the areas with high variability such grass and trees can change between

images due to wind conditions.

Next, consider the close up of two insulators given in Figure 36.

(a) Insulator #1 (b) Insulator #2 (c) Window size: 16, 32, 48

Figure 36: Close-up of two insulators from Figure 35

123

Matching part of the insulator is very difficult, since an insulator consists of sev-

eral circular plates that are identical. Consider, for example, the close-ups shown

in Figure 36(c). When using a 16 × 16 pixel window (the first one from the left

in Figure 36(c)), it is impossible to tell which part of the insulator it shows. After

doubling the window size to 32 × 32 (this is the middle image in Figure 36(c)), it

is possible to determine if the window is centred on the first or last plate, but it is

still impossible to determine which insulator is shown in the window. Even after

increasing the window size by another 16 pixels in each direction, the situation is

hardly improved. The process of increasing the window size increases the informa-

tion that is used from the image. In effect, the matching is less precise, because

the differences between both images start to be influential. At the same time the

matching is more robust to the changes in viewpoint because it is harder to mis-

match a big portion of an image. As a general rule, the bigger the windows used for

matching, the more robust to the change of the viewpoint is the matching process.

The smaller the windows, the more precise the point matching, but at the same

time the number of false matches increases. In addition, the bigger the window, the

bigger the computational cost.

As suggested by [166], the SSD metric is one of the most discriminative among

several metrics tested by the author, namely, cross-correlation, zero mean cross-

correlation, χ2 test, Kolmogorov-Smirnov distance, Jeffrey divergence and Earth

Mover distance. Due to its simplicity in implementation, many researchers choose

the SSD metric for point matching [35, 83, 102, 103, 112, 129, 166, 174]. Other

authors prefer the Zero-Mean Normalized Cross Correlation (ZNCC) measure due

124

to its robustness relative to illumination changes [14, 83, 85, 85, 87, 88, 171, 172].

In this project, the point matching step uses ZNCC (see Section 2.18).

As a point detector, the Harris corner detector is used. First, all Harris corners in

both images are found. Then, to speed up the calculations, matching is performed

using several different-sized windows. Matching starts with a small 5 × 5 pixel

window. All pairs of points for which the ZNCC is smaller than some threshold are

deemed putative matches and are kept for subsequent iterations. In what follows,

the window size is increased by 5 pixels in each iteration and all pairs from the

current iteration are checked again. All pairs for which the ZNCC is bigger than

some threshold are removed from the set of putative matches. The iteration stops

when the window size is bigger than 40 pixels. At the end of the matching process,

all pairs of points are checked against the triangle property (see Section 3.1.5) and

those pairs not satisfying this condition are removed.

Figure 37: Results of ZNCC matching.

Sample results of the proposed point matching procedure are shown in Figure 37.

It can be observed that the proposed point matching method is very robust because

125

the information about scale change and rotation between the two images is known

from the previous step, namely, coarse matching. This means that two images can

be rotated and rescaled before ZNCC matching is attempted. As a result, matched

areas are very similar and the matching is very robust. For a maximal window size

of 20 pixels, the percentage of false matches is below 10% and for a maximal window

size of 40 there are no false matches (but the number of matched points is much

smaller). In the former case, 70 point matches were found and in the latter only 13.

126

3.3 Dense Matching

The dense matching problem has received a great deal of attention by the Computer

Vision Society, since it is a crucial step in 3D reconstruction from digital images.

Various researchers have studied different approaches such as dynamic programming

[6, 77, 177] or Voronoi diagrams [174]. A common dense matching technique is

based on a region growing procedure [85, 86, 102, 174]. First, using some additional

constraints, only a small number of matches are determined with higher accuracy.

Then the matched areas are expanded preserving the original matching continuity.

The last step in the proposed dense matching algorithm is based on this scheme.

The framework presented in this section is similar to the one proposed by Bufama

et al. in [13] in the sense that the calculations are performed separately for edge

pixels and non-edge regions. It is easier to impose constraints on edge pixels, making

them more robust to mismatches. The process of constraining the search on some

group of pixels is the most widely used technique to increase the accuracy of matches.

The proposed algorithm limits the search of pixels to be matched to those located

on a line in 3D space.

The problem of detecting lines in 3D space is a classical problem in the pattern

recognition area. The standard method for detecting lines in the 2D space is a

Hough transform (see Section 2.7). In 3D space, the Hough transform is used to

detect planes, see for example [184]. Lines in 3D space can be detected using the

Hough transform twice. This approach was described before by D. Katsoulas in his

Ph.D. dissertation [75] and also in [4, 76]. These authors work with range data, i.e.,

points in 3D space for which all three coordinates are already known. The proposed

127

dense matching approach differs from the earlier approach due to the fact that the

points considered are not converted to 3D space.

An approach to a solution to the problem of noiseless reconstruction of 3D objects

dominated by sets of line segments is obtained in two stages. In the first stage, points

on lines in 3D space are found and matches corresponding to these points on lines are

identified. In the second stage, identified matches are used as a seed points in dense

matching of two views. Additional constraints control the process of dense matching

in such a way that the original information from lines is propagated through the

entire image without the “noise” (e.g., blurring or extraneous parts of the original

image). The end result is a noiseless 3D image. The problem of reducing the noise

of range data representing the power structures is crucial for the process recovering

an accurate model of power system structures to facilitate detection of deformities

(e.g., tilting due to winter ground frost heaving and twisting of tower structures due

to wind action). Melzer et al. in [104] study the problem of fitting range points

belonging to the power line to a Mecenary curve. This problem is similar to the

problem considered in this section, but again here, the range data are not available

and a disparity maps are used instead.

This dissertation proposes a new dense matching method that utilizes the pres-

ence of straight lines in the images. The goal is to robustly extract the structure

shown in the image rather than to recover locations of all the pixels in the image.

The main application for this algorithm is the extraction of 3D data from the images

of electric power transmission towers. In most cases, such images are taken from the

ground and do not contain any textures. And the textures contain most information

128

needed for the dense matching process. In addition, the background is usually much

brighter than the tower, making the use of colour information very difficult. Using

the algorithm proposed here it is possible to successfully extract the structure of a

tower despite of the mentioned problems.

The dense matching is performed after the point matching, 2D to 3D conversion

and rectification of both images have been completed in a 2D to 3D conversion

system.

3. Dense
Matching

Calibration Rectification

2D Image

2D Image

1. Point
Matching

2. 2D to 3D
Conversion

Figure 38: Overview of the 2D to 3D conversion system.

In the point matching step in Figure 38 (see also Section 3.2), several points are

matched from two given images. These matches are used in 2D to 3D conversion to

recover extrinsic camera parameters, i.e., location and orientation of the cameras.

Once the extrinsic camera parameters are known, one can use epipolar geometry

to reduce the dimensionality of the dense matching problem [41]. In this step, a

substantially larger number of pixels (compared with point matching) is matched.

The dense matching approach introduced in this dissertation consists of the

following three main steps.

1. Edge detection;

2. Matching using lines in 3D;

129

3. Dense matching using seeds from the step 2.

Starting with edge detection, points of interest are selected from both images.

Note that, information about a structure is usually contained in the edges of a

structure. In a 2D image, 3D edges are usually projected onto curves with areas

of different colours on both sides. The best way to detect these edges is to find

all edges in the images. In the first step in dense matching, only edge points are

processed.

In the second step (matching lines in 3D), a disparity map is constructed and

depth information is used to filter out points that were mismatched (see Section 3.3.1

for a formal definition). Without any post-processing, the disparity map is very

noisy, i.e., many points are mismatched resulting in the wrong location in the 3D

space. The proposed algorithm aims at extracting the 3D information from the

images, assuming that there are a lot of straight lines in the images. The algorithm

extracts straight lines in the 3D space, which makes it possible to determine the

3D structure of an object. Generally, it is difficult to extract lines in 3D space.

Therefore, the extraction of lines is performed in two stages. First, lines are extracted

in the image space, i.e., in the 2D image plane. Then, for the points that have been

extracted, lines are extracted using depth information.

In the third step in dense matching, information about correct matches for

straight lines is propagated further from the edges. Correctly matched edges are

used as a seed points in the process of dense matching.

130

Disparity
Map

Extract 2D
lines (Hough)

For the
strongest line

Extract disp.
inf. for this line

Extract lines
(disp. space)

Extract
strongest line

Add this line to
disp. map

Remove this line
from 2D lines

Figure 39: Overview of the algorithm extracting 3D straight lines.

3.3.1 3D Line Extraction

The input for this stage of the dense matching algorithm are points selected in

the previous step, i.e., edge points in both images. In this step, these points are

matched using both, the information contained directly in the image and the depth

information.

First, the tentative matches between the two images are found. The matching

algorithm was chosen to be a form of template matching. The simplest (regarding

the computational power) and the most discriminative [166] measure is the sum of

squared differences. The formula for calculating the SSD is:

SSD =
∑

(iimage − jtarget)
2, (22)

where i and j denote the source image and target intensities, respectively. The

rotation of the image has a huge impact on the performance of the SSD measure,

but since there is no rotation present (due to the image rectification), the SSD

measure is well suited for the pixel matching. A pair of matched points, where for

131

the point in the left image its counterpart in the right image is found, is called a

“left to right” match or LR match. The match in reverse direction is called “right to

left” match or RL match. Finding a match for each pixel is equivalent to finding a

disparity map. A disparity is a difference of matching pixel’s horizontal coordinates

[71]. A disparity map is an image, in which each pixel’s value is a disparity of a

corresponding pixel from the second image. A sample disparity map for a jet plane

scene is shown in Figure 43. Notice, the further the points from the camera the

smaller the disparity.

After calculating the disparity, the main loop of the algorithm begins (see Fig-

ure 39 for the overview of presented algorithm). First, a Hough transform for the

entire image is calculated. This allows to detect the lines that appear to be straight

lines in the 2D original image (see Figure 41(a) for a sample line). It does not mean

that these are straight lines in the 3D space yet. The process of selecting 3D straight

lines is two fold. First, the lines in the image plane are selected. These lines form

a pool OL of 2D lines in the original image. During extraction of a line from the

original image only one coordinate of a pixel’s location is saved. In other words,

all pixels belonging to a line are projected onto one dimensional space aligned with

the original line. As a result, one dimension is dropped and the points belonging

originally to a line are considered as a one dimensional set of points.

Next, for the strongest line L in the pool the following steps are performed.

First, the disparity information about all the points belonging to L is extracted. The

disparity introduces one extra number for each point, which raises the dimensionality

of the set L by one. The resulting set is again two dimensional, and it contains also

132

(a) Image of an electric power tower (b) Detected edges

Figure 40: Image of an electric power tower and detected edges

depth information. Since one dimension denotes the position on the line and the

second dimension denotes the disparity, this new two dimensional space is called

a LD space (Line-Disparity space). Figure 41(b) shows an example of a line from

Figure 41(a) converted to the LD space. Since all the points from L were extracted

along a line, some of them correspond to a real line in the 3D space. Therefore,

the disparities of these points should form a line in this new two dimensional space.

In the next step, the Hough transformation is applied to this set. The strongest

line L′ is extracted (see Figure 42(a)) and all the pixels belonging to this line are

considered to be correct matches. Only points belonging to this line are added to

the final disparity map. All points considered to be correct matches are shown in

Figure 42(b). Finally, all the points from L that gave rise to the points in L′ are

removed from OL. This process is repeated until the set OL is empty.

133

(a) Sample lines (b) Points from Line

Figure 41: Sample lines and points from line in LD space

3.3.2 Dense Matching

The previous step removed all the points from disparity map that did not belong

to some line in the 3D space. It is assumed that the remaining points are correctly

matched points and belong to the structure of the object being recovered. Next, the

dense matching is performed. The points from the previous step are used as a seeds

for the dense matching algorithm. In each iteration, new points that satisfy certain

condition are assumed to be good matches and are added to the final disparity map.

The matching is performed with the continuity constraint, namely, the disparity of

a new matched point cannot differ from the disparity of neighbouring points by a

given threshold. The overview of this process is shown in Algorithm 12.

3.3.3 Inside Point Detection

The proposed dense matching method uses two constraints: (1) the edge points were

matched correctly, (2) the disparity changes continuously for non-edge points. Since

134

(a) Detected Line (LD space) (b) Points in original image

Figure 42: Detected line in LD space and points from original image

the edges usually surround plain areas, non-edge points are called the inside points.

In this step, the inside points that are going to be added to the output disparity map

are selected. In order to satisfy the second constraint, the disparities for new inside

points cannot differ significantly from the disparities of already existing points. A

set of new prospective inside matches is created. This set consists of only points

that have at least one point in their 8-neighbourhood (see Definition 8) for which a

disparity is known. An 8-neighbourhood of each new prospective match determines

the boundaries of a new disparity, i.e., if we denote by N8(x) the 8-neighbourhood

for point x, then the new disparity D(x) satisfies the inequality:

min(N8(x)) − th ≤ D(x) ≤ max(N8(x)) + th,

where th denotes the maximum difference threshold (for the experiments for this

project th was set to 4). In other words, the new disparity cannot differ from the

maximum/minimum disparity from the 8-neighbourhood by more than th.

135

Algorithm 12: Dense Matching

Input : edge point disparity map, pair of 2D images
Output: dense disparity map

while Not all points matched do1

Find new inside points with known neighbourhoods for LR and RL;2

/* in parallel */3

begin4

Match new inside points in LR;5

Match new inside points in RL;6

end7

Merge LR and RL matches;8

Remove outliers for LR and RL;9

end10

3.3.4 Matching

Once the set of new perspective matches with the boundaries of the disparities is

selected, the actual matching begins. The matching is performed using the sum of

squared differences, see (22). In order to achieve good accuracy the matching is

performed with sub-pixel resolution. Before each SSD comparison the images are

supersampled using the bicubic interpolation procedure. In order to speed up the

processing, this step is performed in parallel on several machines. More precisely,

the workload of all points to be matched (both “left to right” and “right to left”

matches) is divided into available computers.

3.3.5 Merging Matches

Up to this point, all calculations were performed separately for “left to right” and

“right to left” images. In this step, these matches are merged together. For two

136

Figure 43: Sample disparity map for the ”jet plane” scene.

corresponding points from two given images, matching a point from the left image

with a point from the right image should result in the same disparity as when

matching a point from the right image with a point from the left image. Denote

by MLR(xL) a match of a point xL from the left image and MRL(xR) a match of a

point xR from the right image, then for the correctly matched point x′L the following

equation holds:

MRL(MLR(x′L)) = x′L,

or equivalently if DLR(xL) denotes the disparity of xL and DRL(xR) denotes the

disparity of xR then for the correctly matched point x′L the following equation holds:

DLR(x′L) = −DRL(MLR(x′L)).

137

Due to the fact that the observed scene is slightly different in both images the above

equation may never be satisfied. Thus, a point x′L is considered to be a correct

match if it satisfies:

|DLR(x′L) +DRL(MLR(x′L))| < 2.

The constraint from the above inequality is applied to validate the “left to right”

and “right to left” matches.

3.3.6 Removing Outliers

In the last step of dense matching, the outliers are removed. Outliers are defined

to be a points for which the disparity differs from the disparity of its neighbouring

points by more than a threshold Dth. The neighbourhood was chosen to be a circle

of a radius with 4 pixels. The threshold changes for the three iterations of this step.

The values of Dth are 8, 1 and 0.1. All points classified as outliers are removed from

the final disparity map.

An iterative process of the preceding four steps is repeated until no more points

can be added to the final disparity map.

3.3.7 Results

The 3D line extraction algorithm was applied to the ’tower’ scene shown in Fig-

ure 40(a). The results of the matching without the 3D line extraction are shown

in Figure 44(a). There is a lot of noise present in the extracted data. Noise means

that the position of the extracted point does not correspond to the actual location

of this point in the 3D space. The image in Figure 44(a) shows the tower from

138

(a) Without post-processing (b) After 3D extraction

(c) After dense matching

Figure 44: 3D model of electric power tower

139

the direction approximately perpendicular to the principal ray of the first camera.

Mismatch during the matching phase results in incorrect disparity. The disparity

corresponds to the depth of the points. Therefore, error is the most influential in the

direction parallel to the principal ray. As can be seen in Figure 44(a), the structure

of the tower is spread along the direction parallel to the principal ray. There is quite

a large number of points that, even though they belong to the tower, are located in

the space outside the tower’s structure.

The image in Figure 44(b) shows a 3D model of a tower that was reconstructed

using 3D line extraction. The point of view was selected approximately perpendic-

ular to the principal ray of the first view. In this case, there is no noticeable noise

present in the data. The number of reconstructed points is much lower, but all of

the reconstructed points are placed in the right position in 3D space.

Finally, the image in Figure 44(c) shows the same model as in the two previous

cases, but after dense matching. There are many more points reconstructed from

the tower structure compared to the previous step. In the dense matching step, the

constraint about being part of a line in 3D space does not hold any more. As a

result some points are slightly shifted away from the tower. Therefore, the dense

matching step should be iterated only long enough to reconstruct as many points

as are needed to recover the entire structure of a tower.

140

4 2D to 3D Conversion

This dissertation considers an approach to solving the problem of extracting 3D

objects from 2D images, which is part of a growing literature on 2D to 3D conversion

(see, e.g., [4, 11, 13, 22, 44, 75, 141, 160, 184, 200]). The proposed solution to this

problem uses 3D geometry rather the fundamental matrix widely used in 2D to 3D

conversion (see, e.g., [33, 199]). The proposed approach to 2D to 3D conversion uses

what is known as direct geometrical search (DirectGS), where distances between

the reprojected rays for all image points are minimised. DirectGS focuses on the

extraction of 3D information (depth information) from a two dimensional images.

Figure 45 gives an overview of the steps leading to a 2D to 3D transformation. The

approach to 2D to 3D conversion presented in this dissertation is an extension of

the author’s earlier work on segment matching [10] and dense matching [11].

3. Dense
Matching

Calibration Rectification

2D Image

2D Image

1. Point
Matching

2. 2D to 3D
Conversion

Figure 45: Overview of the 2D to 3D conversion system.

Briefly, the input information for step 2 in Figure 45 consists of pixel matches

from a pair of sample images. The output from step 2 contains information about

the external camera parameters, i.e., the relative location and orientation of the two

cameras in 3D space. This approach utilizes the pinhole model for a camera (see

Section 2.3).

141

It is assumed that the cameras used to obtain 2D images have been calibrated, i.e.

the internal camera parameters are known. The information used in this algorithm

is the focal length of a camera. In other words, it is assumed that the focal length is

known. It is worth mentioning that the assumption about knowing the focal length

of the camera is not a limiting condition. Digital images taken with off-the- shelf

cameras are too distorted to be used in 2D to 3D conversions without modifications.

Therefore, the camera calibration process (see Section 2.5) must be performed and

one of the by-products of the calibration process is the estimation of the focal length.

The goal of the proposed approach is to find the relative position of two cameras

in a 3D world. This means that six parameters must be found, namely, three values

for the translation along X, Y, Z coordinates, two for the relative difference of pan

and tilt, and one for the rotation around the principal axis (formal definitions are

given in Section 2.3). In fact, the recovery of the relative location of the cameras

can be determined only up to a scale factor (see Condition 2). Instead of three

parameters for the location, only two are used. The three coordinates X, Y and Z

can be expressed using two parameters azimuth and altitude. Thus, the search is

performed in a five dimensional space. By use of some specific properties of the

problem formulation, this dissertation proposes even further reduction of the search

space to four dimensions.

Notice that it is not important whether the images are taken by one camera

that changes its position or by two cameras located in different positions. The only

constraint is that the scene is unchanged between the two shots and that the two

images are taken with the cameras having the same internal parameters (or both

142

cameras’ internal parameters must be known). Keeping this in mind, the terms

one camera at different positions and two cameras at different positions are used

interchangeably. Following the commonly used practise in computer vision literature

[61], the position and orientation of a camera is termed the camera pose.

DirectGS is based on the minimisation of the reprojection errors. Once all the

parameters for both cameras are fixed, one is able to reproject the rays connecting

the principal point and each pixel into 3D space. If the cameras were placed at

the positions from where the images were originally taken, each pair of rays would

cross in one point that is the actual point in the 3D space represented in both

images by a given pixels. If on the other hand, the cameras are placed at some

other locations, these rays do not cross. In such a case, it is possible to find the

smallest distance between these rays. The sum of squared distances for each known

pair of points provides the basis for a cost function. The main contribution of this

section is twofold. First, a definition of an optimal search space for solving the 2D

to 3D conversion problem is given. Second, an efficient algorithm that minimises

the reprojection error is proposed.

4.1 Cost Function

This section contains the derivation of the cost function for estimation of positions

of the camera views and the locations of points belonging to an object being recon-

structed in 3D space without use of the fundamental matrix. The correct relative

cameras’ positions are found by minimising the cost function over the search space

defined in this section. The cost function is the sum of squared shortest distances

143

between two rays reprojected for corresponding pixels into 3D space. In Section 4.2,

an optimal algorithm for searching for this minimum is presented.

4.1.1 Basic Definitions

Notation

• The notation
−→
AB, where A and B are points in the Rn space, denotes a directed

vector in Rn space (n = 2 or n = 3). The beginning of the vector is at the

point A and the end at the point B.

• The double indexing in the subscripts denotes the camera number k (where

k = 1 or k = 2) and the point match pair i, where 0 < i < N . For example, the

point pki denotes the i-th point from the k-th camera. When there is no need

to distinguish between cameras, the first index is omitted and the remaining

index denotes a point match pair.

Customized Pinhole Camera Model

In this dissertation, a slightly different version of the pinhole camera model is used

(e.g., see Section 2.3). Instead of placing the image plane on the other side of the

perspective centre, it is placed on the same side as the imaging object, as shown

in Figure 46. Moving the image plane between the object and the perspective

centre facilitates drawing rays starting at the perspective centre and passing through

the image points. In addition, the proposed camera setup includes the following

structure.

144

Table 12: Symbols used in 2D to 3D conversion algorithm.
Symbol Description
Pi i-th point in the 3D space
pi i-th point in the 2D image plane
p′i rotated point pi

•ki k = 1, 2; i = 1, .., n; i-th point from k-th image
N number of point matches
f focal length of both cameras

[vx vy vz]
T point or vector in the 3D space

Lk lens centre of the k-th camera
P principal point
θ azimuth
φ altitude
γ rotation around the principal ray
R distance from the origin to given point
ϑ pan
ϕ tilt
Ski parametrization of the i-th ray from the k-th view
τki parametrization variable for line Ski

τ̂ki parametrization for the closest approach point Aki

Di cost function for the i-th rays
Rα, Rβ, Rγ rotation matrices

Tki Tki = p′ki − L′
k directional vector for projecting ray Ski

V1 × V2 cross product between vectors V1 and V2

Ui Ui = T1i × T2i common perpendicular vector to projecting
rays S1i and S2i

Wi Wi = S1i(t1i) − S2i(t2i) vector from point on line S2i

to point on line S1i

Aki closest approach point for Ski,
A1k is the closest point from S1i to the line S2i

S search space for the DirectGS algorithm
M set of points from one image

145

• Image plane is perpendicular to the principal ray,

• origin of the image plane coordinates is set at the principal point,

• origin of the world coordinate system is set at the lens centre,

• world Z axis is parallel to the principal ray, and

• world X and Y axes are parallel to the x and y image plane coordinates.

Figure 46: Pinhole Camera Model

Determining image coordinates from 3D coordinates is accomplished using:

xi =
fXi

f + Zi

, yi =
fYi

f + Zi

.

The above formula do not take into account translations of the lens centre and

rotations of the vector
→
f that is the vector from the lens centre to the principal

point. Translations and rotations are explained in Section 4.1.1.

146

Reprojecting Rays Into 3D Space

Having defined the camera model, the next step is to reproject rays back into 3D

space. For each given point match, two rays are reprojected. One ray is reprojected

for each camera.

Let N denote the number of point matches. The image coordinates of the i-th

matched point are given by (xi, yi). The image plane is placed at Z = −f , where f

is the focal length of the camera. The location of the lens centre is [0 0 0]T and the

location of the i-th point24 in the 3D space is [xi yi − f]T .

L = [0 0 0]T , pi = [xi yi − f]T .

The i-th ray is parameterized by the function:

Rayi(ν) = [0 0 0]T + ν
−→
Lpi = [νxi νyi − νf]T ,

where the ν parameter is a positive real number. In general, each ray can be para-

meterized as the i-th ray directional vector
−−→
RDi multiplied by the parametrization

coefficient ν:

Rayi(ν) = ν
−−→
RDi = [νrdx νrdy νrdz]T .

In this case, rdx = xi, rdy = yi and rdz = −f .

The set of N rays for each camera is called a pencil of rays. Definition 18

introduces a very useful notion of a spread of points.

24The location of the i-th point in the image plane

147

Definition 18. The diameter of a pencil of rays at the distance L is the diameter

of the smallest sphere in which all points belonging to each ray at the distance L

from the lens centre can be enclosed.

Translation and rotation of the cameras

Up to now, the lens centre was located at the origin of the coordinate system and

the principal ray was parallel to the Z axis. In order to find the relative locations

and orientations of cameras, it is necessary to translate the cameras and change

the cameras’ directions. Notice that a camera’s position is determined by its lens

centre. On the other hand, the camera’s orientation is determined by the vector

−→
LP , where L is the lens centre and P is the principal point. These two parameters,

i.e., the camera’s location and orientation, are independent and can be modified

independently.

First, consider the location of the camera. In order to facilitate the calculations

(see the Condition 2), the position of the camera is not given in Cartesian coordi-

nates, but in spherical coordinates [180, 188]. In order to cover the entire R3 space,

three parameters are needed to uniquely describe the position of a point. These

parameters are the azimuth θ, the altitude φ and the distance R from the point to

the origin. The azimuth is an angle between a projection on the XZ plane of a line

connecting given point and the origin of the coordinate system and the Z axis mea-

sured in such a way that a point on the positive Z axis has the azimuth θ = 0 and

a point on the positive X axis has the azimuth θ = π
2
. In other words, the azimuth

increases when rotating counter-clockwise around the Z axis (this is also called the

148

right-handed coordinate system [82, 180]). The range of values for the azimuth is

therefore [−π, π) (closing the left side of the range interval was chosen arbitrary).

The altitude is an angle between a line connecting given point and the origin of the

coordinate system and the projection of this line on the XZ plane measured such

that for positive Y values the altitude is negative, for negative Y values the altitude

is positive and for Y = 0 the altitude is zero (see Figure 47). The range for the

altitude parameter is (−π
2
, π

2
).

Figure 47: Point p = (x, y, z) represented in spherical coordinate system (θ, φ, R).

The conversion from Cartesian to spherical coordinates and vice versa is carried

out using:

θ = arctan
(x
z

)
φ = arctan

(−y√
x2 + z2

)
R =

√
x2 + y2 + z2,

149

and

x = R sin θ cosφ y = −R sinφ z = R cos θ cosφ.

In this dissertation, the terms azimuth and altitude are used to describe the loca-

tion of a camera in 3D space (together with the distance R shown in Figure 47).

Specification of the orientation of a camera can be accomplished using only two pa-

rameters, pan and tilt. More precisely, pan ϑ is the rotation of the camera around

the Z axis. A positive pan turns in a counter-clockwise direction. Tilt ϕ denotes the

rotation around a new X axis (after rotation around Z axis). Again, a positive tilt

corresponds to a counter-clockwise direction. One last parameter (rotation around

the principal ray denoted by γ) is needed to uniquely describe the orientation of a

camera.

Rotations In 3D Space

All rotations shown in this dissertation are performed using Euler Angles [82]. An

Euler Angle results from the rotation performed around one of the coordinate axes.

The theorem [82] by Leonard Euler (1707-1783) states that any orthonormal coor-

dinate frame can be related to any other orthonormal coordinate frame by at most

of three rotations. This means that any rotation in 3D space can be performed by

at most three rotations using Euler Angles. This sequence of rotations is called the

Euler Angle Sequence. An alternative method of performing rotations in 3D space

can be carried out using quaternions [82]. A unit quaternion is the preferred method

of rotation by many researchers [68]. Since calculations for this dissertation did not

suffer from limitations resulting from Euler Angles, all rotations were performed

150

using Euler Angles.

The rotation around a selected axis in the 3D space is performed using rotation

matrices:

Rβ =

⎡
⎢⎢⎢⎢⎣

cosβ 0 sin β

0 1 0

− sin β 0 cosβ

⎤
⎥⎥⎥⎥⎦ Rα =

⎡
⎢⎢⎢⎢⎣

1 0 0

0 cosα sinα

0 − sinα cosα

⎤
⎥⎥⎥⎥⎦ . (23)

Matrix Rβ is used to rotate around the Y axis by an angle β and matrix Rα is used

to rotate around the X axis by an angle α.

The composition of two rotations results in one matrix

Rβα = RβRα =

⎡
⎢⎢⎢⎢⎣

cos β − sinα sin β cosα sin β

0 cosα sinα

− sin β − sinα cosβ cosα cosβ

⎤
⎥⎥⎥⎥⎦ , (24)

that yields a rotation around two specified axes. Notice that matrix multiplication is

not commutative. The rotation is performed first around X axis (by α) and second

around new Y axis (by β).

In order to rotate a point v = [vx vy vz]
T , this point must be multiplied on its

left-hand side by the rotation matrix.

v′ = Rβαv =

⎡
⎢⎢⎢⎢⎣

cosβ − sinα sin β cosα sin β

0 cosα sinα

− sin β − sinα cosβ cosα cosβ

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
vx

vy

vz

⎤
⎥⎥⎥⎥⎦ =

151

⎡
⎢⎢⎢⎢⎣

cosβvx − sinα sin βvy + cosα sin βvz

cosαvy + sinαvz

− sin βvx − sinα cosβvy + cosα cosβvz

⎤
⎥⎥⎥⎥⎦ .

The rotation matrix from (24) is used to change the location and orientation of the

camera. In the former case, the pair of parameters (β, α) is replaced by the pair

(θ, φ) and in the latter case by (ϑ, ϕ). The last operation to consider is rotation

around the principal ray. This rotation around the Z axis is given by:

Rγ =

⎡
⎢⎢⎢⎢⎣

cos γ sin γ 0

− sin γ cos γ 0

0 0 1

⎤
⎥⎥⎥⎥⎦ .

To model rotation of a camera around all 3 axes, the pan and tilt matrix Rϑϕ is

multiplied by the matrix Rγ to obtain a matrix Rϑϕγ :

Rϑϕγ = RϑϕRγ . (25)

4.1.2 Cost Function Derivation

The input for a cost function is the full information about the positions of a pair

of cameras. This information is used to reconstruct the projecting rays for all pairs

of points from a pair of camera views. Then, the squared distances between corre-

sponding projecting rays are found and summed. The procedure for rotating points,

determining the projecting rays and finding the distances between them is discussed

next. The list of all symbols used in the derivation of the proposed cost function is

152

shown in Table 12.

Denote by pki the i-th point from the k-th camera. Since the location and the

orientation of the first camera is fixed, the 3D coordinates of the i-th point for the

first camera are:

p′1i = [x′1i y′1i z′1i]
T = [x1i y1i − f]T . (26)

The lens centre for the first camera has the coordinates [0 0 0]T . For the second

camera, the point coordinates have to be rotated and translated to match the re-

quired camera location and orientation25. First, the point coordinates are rotated

to reflect the camera’s pan and tilt.

p′2i = [x′2i y′2i z′2i]
T = Rθφ(Rϑϕγ [x2i y2i − f]T + [0 0 R]T). (27)

Then, the camera is translated to the surface of the sphere of radius R and rotated

to its final destination. The lens centre for the second camera is determined by

rotating the point [0 0 R]T by azimuth and altitude angles.

L′
2 = Rθφ[0 0 R]T . (28)

Next, the projecting rays are determined. Since the i-th projecting ray for the k-th

image must go through the k-th lens centre and the point p′ki, the direction of the

ray is equal to the difference of the points through which it has to pass.

Tki = [tx,ki ty,ki tz,ki]
T =

−−−→
p′kiL

′
k = p′ki − L′

k. (29)

25For justification of this approach see Conditions 1 and 2.

153

The line can be parametrized as:

Ski(τki) = p′ki + τkiTki = [x′ki y
′
ki z

′
ki]T + τki

⎡
⎢⎢⎢⎢⎣
tx,ki

ty,ki

tz,ki

⎤
⎥⎥⎥⎥⎦ , (30)

where τki > 0 is the parametrization variable.

Next, we need to find the distance between the two projecting rays S1i and S2i

[208]. First, the vector perpendicular to both lines is found. It is the result of the

cross product between the vectors T1i and T2i [180]. The formula for calculating the

common perpendicular vector Ui is:

Ui =

⎡
⎢⎢⎢⎢⎣
ux,i

uy,i

uz,i

⎤
⎥⎥⎥⎥⎦ = T1i × T2i =

⎡
⎢⎢⎢⎢⎣
ty,1itz,2i − tz,1ity,2i

tz,1itx,2i − tx,1itz,2i

tx,1ity,2i − ty,1itx,2i

⎤
⎥⎥⎥⎥⎦ .

The shortest line joining the two projecting rays is parallel26 to Ui. To find the

shortest distance, a vector Wi is used to join a point corresponding to τ1i from S1i

to a point corresponding to τ2i from S2i.

Wi =

⎡
⎢⎢⎢⎢⎣
wx,i

wy,i

wz,i

⎤
⎥⎥⎥⎥⎦ = S1i(τ1i) − S2i(τ2i) =

⎡
⎢⎢⎢⎢⎣
x′1i + τ1itx,1i − (x′2i + τ2itx,2i)

y′1i + τ1ity,1i − (y′2i + τ2ity,2i)

z′1i + τ1itz,1i − (z′2i + τ2itz,2i)

⎤
⎥⎥⎥⎥⎦ . (31)

26Ui is just a vector defining a direction of the shortest line between the two projecting rays and
may have different length than the distance between these lines.

154

In effect, the shortest vector Wi must be parallel to Ui, i.e.,

wx,i

ux,i
=
wy,i

uy,i
=
wz,i

uz,i
. (32)

The above equation can be decoupled into two separate equations:

wx,i · uy,i = wy,i · ux,i, wy,i · uz,i = wz,i · uy,i.

After substituting values of components of Wi from (31) and solving for τ1i and τ2i,

one gets the closest approach points (parametrized by τ̂1i and τ̂2i).

τ̂1i = [(uy,itz,2i − uz,ity,2i)(x
′
1i − x′2i) + (uz,itx,2i − ux,itz,2i)(y

′
1i − y′2i)+

(ux,ity,2i − uy,itx,2i)(z
′
1i − z′2i)]/[tx,1i(uz,ity,2i − tz,2iuy,i)−

ty,1i(uz,itx,2i − tz,2iux,i) + tz,1i(uy,itx,2i − ty,2iux,i)] (33)

τ̂2i = [(y′2i − y′1i)ux,i − (x′2i − x′1i)uy,i−

τ̂1i(ty,1iux,i − tx,1iuy,i)]/(tx,2iuy,i − ty,2iux,i).

The closest approach points Aki = Ski(τ̂ki) give the positions on both lines that

are the closest points with respect to the other line [26]. Finally, the distance Di

between two projecting rays is the distance between points Aki.

Di = ‖A1i −A2i‖ . (34)

155

where ‖•‖ denotes the norm operator, namely ‖[vx vy vz]‖ =
√

(v2
x + v2

y + v2
z). The

cost function is a sum of squared distances for each point match.

4.1.3 Search Space

As mentioned before, the main idea in the proposed approach to 2D to 3D conver-

sion is to find the relative location of both cameras such that the squared distances

between corresponding reprojected rays are minimal. The fact that the locations

of the cameras can be determined up to translation and a scale factor introduces

redundancy in the solution space. More precisely, the six dimensional search space

(namely, three spatial coordinates, and three rotations) contains an infinite num-

ber of points yielding the same solution. To construct an algorithm that searches

through distinct solutions only, two conditions are introduced. First, the assertion

that a solution can be found up to translation and a scale factor, a formal definition

of equivalent solutions is given.

Definition 19. Two solutions to the reprojecting rays minimal distance problem

are equivalent, if the only difference between them is described by one or more of

the following statements.

1. two solutions differ by a scale factor,

2. one solution is a translated version of the second solution,

3. one solution is a rotated version of the second solution.

Next, the condition that removes the redundancy 2 and 3 from Definition 19 is given.

156

Condition 1. The location and orientation of the first camera is fixed.

The location and orientation chosen for the first camera can be set arbitrarily.

For the sake of simplicity, the lens centre of the first camera is set at the origin

of the coordinate system, i.e., at point [0 0 0]T . The orientation of reprojected

rays is chosen such that the principal ray is parallel to the Z axis pointing into

the negative values of Z axis. Theorem 3, as well as its proof provide a basis for

validating Condition 1.

Theorem 3. The choice of external parameters for the first camera does not limit

the search space.

Proof. It will be shown that any camera location [Xl Yl Zl]
T and orientation [ϑ ϕ γ]T

(ϑ, ϕ and γ denote pan, tilt and rotation around the principal ray, respectively) can

be converted to a special camera location [0 0 0]T and orientation [0 0 0]T by a

function H :

R3 × R3 H−→ R3 × R3 such that H(Xl, Yl, Zl, ϑ, ϕ, γ) = (0, 0, 0, 0, 0, 0).

The function H can be constructed as the superposition of rotation by angles [−ϑ −
ϕ −γ]T around the point [Xl Yl Zl]

T and translation by the vector [−Xl −Yl −Zl]
T .

H(Xl, Yl, Zl, ϑ, ϕ, γ) =

⎡
⎢⎢⎢⎢⎣ Rϑ,ϕ,γ

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
Xl

Yl

Zl

⎤
⎥⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎢⎣
Xl

Yl

Zl

⎤
⎥⎥⎥⎥⎦ ,

and the matrix Rϑ,ϕ,γ is constructed using steps shown in (23) and (24). The Euler’s

157

theorem guarantees that such a matrix exists.

In addition, when applied to both cameras, the transformationH does not change

the relative translation and orientation between cameras (since translations and

rotations do not change the size and shape of transformed figures). This proves

that all solutions that differ by a translation and rotation of both cameras are

equivalent.

Theorem 3 and the above proof show that Condition 1 does not limit the search

space, since any point in the R3 ×R3 space could be selected. Fixing the position of

the first camera allows for reducing the number of possible cameras’ configurations,

by omitting all the similar cases that are different only by a translation and rotation

of both cameras.

The second condition removes redundancy 1 from Definition 19.

Condition 2. The distance between the first and the second camera is fixed.

Since it is assumed that Condition 1 holds, the distance between cameras is equal

to the distance between the second camera and the origin of the 3D space. For the

experiments, the distance of the second camera to the origin was arbitrarily set to

three times the focal length of the first camera. The set up of both cameras is shown

in Figure 48. Theorem 4 below as well as its proof provide a basis for validating

Condition 2.

Theorem 4. The choice of any particular distance between the first and second

camera does not limit the search space.

158

Figure 48: First camera view (at the origin of the coordinate system) and the second
camera view on the sphere of radius R

Proof. To prove Theorem 4, it has to be shown that all the solutions that differ

only by a distance between the two cameras are equivalent. To prove that, it is

enough to show that the distance between each reconstructed point and the origin

is proportional to the distance between the second camera and the origin of the

coordinate system |L′
2| (it is assumed that Condition 1 holds).

The proof is based on the derivation of the cost function presented in Section 4.1.2

and on the fact that the superposition of two linear functions is a linear function.

It will be shown that the solution for the i-th pair of points is given in the form:

Soli = (A1i + A2i)/2 = αR, (35)

159

where Aki is the closest approach point for the k-th view and i-th pair of points (see

Section 4.1.2 for more details), and α ∈ R3 is a constant, in a sense that is does not

depend on R.

From (27), the location of the i-th point from the second view is equal to:

p′2i = Rθφ(Rϑϕγ [x2i y2i −f]T +[0 0 R]T) = RθφRϑϕγ[x2i y2i −f]T +Rθφ[0 0 R]T . (36)

In order to simplify the calculations, the matrix product RθφRϑϕγ is dfined by

nine parameters rmn, where m,n ∈ {1, 2, 3}. Thus,

p′2i =

⎡
⎢⎢⎢⎢⎣
x′2i

y′2i

z′2i

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
r11x2i + r12y2i − r13f +R13,θφR

r21x2i + r22y2i − r23f +R23,θφR

r31x2i + r32y2i − r33f +R13,θφR

⎤
⎥⎥⎥⎥⎦ , (37)

and the p′1i is given in (26).

The direction of the k-th ray is given by (29). Since there is no translation nor

rotation for the first camera, the direction of the first ray is equal to

T1i = [tx,1i ty,1i tz,1i]
T = [x1i y1i − f]T , (38)

and, after substituting (36) in (29), the direction of the second ray is given by:

T2i =

⎡
⎢⎢⎢⎢⎣
tx,2i

ty,2i

tz,2i

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
r11x2i + r12y2i − r13f

r21x2i + r22y2i − r23f

r31x2i + r32y2i − r33f

⎤
⎥⎥⎥⎥⎦ . (39)

160

After substituting (26), (37), (38) and (39) in (33), the equation (33) becomes

τ̂1i = [(uy,i(r31x2i + r32y2i − r33f) − uz,i(r21x2i + r22y2i − r23f))

(x′1i − (r11x2i + r12y2i − r13f +R13,θφR)) + (uz,i(r11x2i + r12y2i − r13f)−

ux,i(r31x2i + r32y2i − r33f))(y′1i − (r21x2i + r22y2i − r23f +R23,θφR))+

(ux,i(r21x2i + r22y2i − r23f) − uy,i(r11x2i + r12y2i − r13f))

(z′1i − (r31x2i + r32y2i − r33f +R13,θφR))]/[x1i(uz,i(r21x2i + r22y2i − r23f)−

(r31x2i + r32y2i − r33f)uy,i) − y1i(uz,i(r11x2i + r12y2i − r13f)−

(r31x2i + r32y2i − r33f)ux,i) − f(uy,i(r11x2i + r12y2i − r13f)−

(r21x2i + r22y2i − r23f)ux,i)]. (40)

Denote by N(τ̂1i) the numerator of τ̂1i. Then, (41) shows the numerator of τ̂1i

after all terms containing R were grouped together.

N(τ̂1i) = [−(ux,i(r21x2i + r22y2i − r23f) − uy,i(r11x2i + r12y2i − r13f))R13,θφ−

(uz,i(r11x2i + r12y2i − r13f) − ux,i(r31x2i + r32y2i − r33f))R23,θφ−

(uy,i(r31x2i + r32y2i − r33f) − uz,i(r21x2i + r22y2i − r23f))R33,θφ]R+

(ux,i(r21x2i + r22y2i − r23f) − uy,i(r11x2i + r12y2i − r13f))

161

(−f − r31x2i − r32y2i + r33f) + (uz,i(r11x2i + r12y2i − r13f)−

ux,i(r31x2i + r32y2i − r33f))(y1i − r21x2i − r22y2i + r23f)+

(uy,i(r31x2i + r32y2i − r33f) − uz,i(r21x2i + r22y2i − r23f))

(x1i − r11x2i − r12y2i + r13f). (41)

The above equation can be rewritten in the form:

N(τ̂1i) = C1R + C2,

where C1 and C2 are constants (in a sense that they do not depend on R). Similarly,

(40) can be rewritten in the form:

τ̂1i =
C1R + C2

C3

,

where C3 is another constant and denotes the denominator of τ̂1i in 40. After

rearranging all the terms in C2 and C3, one can observe that C2 = −C3 and after

substituting by C1

C3
a new constant C4, the above equation has the form:

τ̂1i = C4R− 1. (42)

Moreover, one can observe that the formula for the τ̂2i resembles the above equation:

τ̂2i = C5R− 1.

162

From (38) and (26), it is apparent that

p′1i = T1i. (43)

Let C6 ∈ R3 be a 3D vector that does not depend on R. From (37) and (39), we

obtain

p′2i = T2i +

⎡
⎢⎢⎢⎢⎣
R13,θφR

R23,θφR

R13,θφR

⎤
⎥⎥⎥⎥⎦ = T2i + C6R,

Thus, after substituting (42) and (43) in (30) and setting C7 to be a 3D vector

resulting from multiplying vector p′1i by constant C4, one gets the formula for the

location of the closest approach point for the first ray, namely

S1i(τ̂1i) = p′1i + τ̂1iT1i = p′1i + (C4R − 1)p′1i =

p′1i + C4Rp
′
1i − p′1i = C4p

′
1iR = C7R. (44)

Corresponding calculations for the second ray are given in:

S2i(τ̂2i) = p′2i + τ̂2iT2i = T ′
2i + C6R + (C5R− 1)T ′

2i =

T ′
2i + C6R + C5RT

′
2i − 1T ′

2i = (C6 + C5T
′
2i)R = C8R, (45)

where C8 is a 3D vector that does not depend on R.

Finally, after substituting (44) and (45) in (35), one gets the formula for the

163

location of the i-th point in the 3D space,

Soli = (C7R + C8R)/2 =
C7 + C8

2
R.

This proves that α = C7+C8

2
(in (35)) is independent of R and the solution is pro-

portional to the distance R between the cameras. Moreover, since C7 and C8 are 3D

vectors, it has been shown that each coordinate of the i-th solution point depends

on R.

A significant result of applying Condition 2 and Condition 1 is the reduction of

the search space. The first condition fixes the location and the orientation of the

first camera. This leaves six more parameters that need to be used to describe the

location and orientation of the second camera. The second condition decreases the

search space from six parameters to five. Next, the formal definition of the search

space is given.

Definition 20. A search space S is a set of all relative locations and orientations of

two cameras. The lens centre of the first camera is set at the origin of the coordinate

system, i.e., at point [0 0 0]T . The orientation is also fixed and it is chosen such

that the principal ray is parallel to the Z axis pointing into the negative values of

the Z axis. The location of the second camera is fixed on the sphere of a radius R,

centred at the origin of the coordinate system. The pan, tilt and rotation around

the principal ray are unconstrained.

164

Table 13: List of all symbols used in the error minimisation algorithm
Symbol Description

M set of point matches
I initial guess of the azimuth and altitude
θ azimuth
φ altitude
γ rotation around the principal ray
R the radius of the sphere
f the focal length of both cameras
ϑ pan
ϕ tilt

4.2 Error minimisation

This section contains the description of a very efficient algorithm for finding the

minimum of the cost function derived in Section 4.1 (see Algorithm 15). Table 13

contains all the symbols used in this section (in addition to symbols given in Table

12).

The input to Algorithm 15 is the set of point matches M between two images,

focal length f of both cameras, radius R of the sphere on which the second camera is

located and an initial guess I of the azimuth and altitude of the second camera. The

initial guess does not have to be very close to the global minimum for the algorithm

to converge. Figure 49 shows how the cost function depends on the azimuth and

altitude of the second camera27. Basically, choosing any initial point in the front

hemisphere results in the proper convergence of the algorithm. Since the location of

the blue path shown in Figure 49 depends on the locations of the cameras when the

images were taken, the safest initial guess is close to the area where the rays from the

27The cost function shown in Figure 49 was calculated for the ’tower’ scene.

165

Figure 49: Cost function for azimuth and altitude.

first camera cross with the sphere on which the second camera is located. Since the

first camera does not move, a good initial guess is at locations [0 0R]T and [0 0 −R]T .

Intuitively, the choice for the location of the second camera depends on whether the

second camera is closer or further away from the object being reconstructed. This

information can be easily extracted from the images. If not, the algorithm must be

run twice with both values and the solution with lower cost function is selected.

The output from Algorithm 15 is the location and orientation of the second

camera such that the cost function for this configuration is minimal. Denote by

C2 the location and orientation of the second camera. C2 is a five dimensional

vector C2 = [θ φ γ ϑ ϕ]T , where θ and φ denote the azimuth and altitude of the

second camera, γ its rotation around the principal ray and ϑ and ϕ its pan and tilt,

166

respectively. The second camera parameters Ĉ2 corresponding to the minimum of

the cost function constitute the output of the error minimisation algorithm:

Ĉ2 = argmin
C2∈S

D(C2),

where Ĉ2 denotes the camera’s parameters returned by the algorithm and D(C2) is

the cost function defined in by

D(C2) =
∑

i

D2
i , (46)

where i iterates through all image pairs from the set M and Di is the cost function

for the i-th point match (see (34)).

The setup for Algorithm 15 starts with defining domains for each parameter.

Pairs of attributes (θ, φ) and (ϑ, ϕ) denote the spherical coordinates of a point in

3D space. For the first pair, the sphere radius is equal to R, whereas for the second

pair, the sphere radius is not defined, since the angles denote the pan and tilt of

the camera. Based on the assumptions from Section 4.1.1, the ranges for these four

parameters are given in Table 14. The rotation around the principal ray covers the

entire range of 360 degrees and is directed in the clockwise direction.

Table 14: Domains of five parameters for location C2 for camera 2.
Parameter Range of values

θ [−π, π)
φ (−π

2
, π

2
)

γ [−π, π)
ϑ [−π, π)
ϕ (−π

2
, π

2
)

167

From Table 14, one can easily formulate an exhaustive algorithm for searching

for the minimum value of the cost function over the space S. As an aid to under-

standing the idea behind Algorithm 15, first consider an exhaustive search provided

by Algorithm 13.

Algorithm 13: Exhaustive Algorithm for Cost Function minimisation

Input : M set of point matches
f focal length of both cameras
R radius of the sphere on which the second camera is located

Output: Second camera parameters Ĉ2

Set Dmin = ∞1

forall (θ̃, φ̃) ∈ [−π, π) × (−π
2
, π

2
) do2

forall γ̃ ∈ [−π, π) do3

forall (ϑ̃, ϕ̃) ∈ [−π, π) × (−π
2
, π

2
) do4

Set C̃2 = [θ̃ φ̃ γ̃ ϑ̃ ϕ̃]T5

if D(C̃2) < Dmin then6

Dmin = D(C̃2)7

Ĉ2 = C̃28

end9

end10

end11

end12

The exhaustive Algorithm 13 consists of three nested loops. First, the altitude

and azimuth of the second camera are fixed. Then the pan and tilt are set and finally

the rotation γ. If in each iteration the cost function of the current configuration is

minimal, it is saved as the prospective solution. This process is repeated until all

combinations of these five parameters are searched. Notice that the order of the

three loops is not important and has no influence on the performance and outcome

of the algorithm.

168

The optimization of the exhaustive Algorithm 13 is based on two statements.

Statement 1. The cost function D(C2) (as defined in (46)) is a continuous function

of C2 on S.

The proof of Statement 1 contains very laborious calculations. Therefore, only

an outline of this proof is presented next.

A sum of finitely many continuous functions is a continuous function. Therefore,

it is sufficient to show that each Di is a continuous function on S. Notice, Di is a

distance between two lines in 3D space. Since one of the lines (S1i - the projecting

ray from the first camera) does not change, the change of the distance Di depends

solely on the change of the location and orientation of the second projecting ray

S2i in 3D space. The continuity of Di can be proved using the Cauchy continuity

definition. In what follows, for any C̃2 from the search space one has to show that

for any ε > 0 a δ > 0 exists such that for each C2 ∈ S where |C2 − C̃2| < δ,

the inequality |D(C2)−D(C̃2)| < ε holds. To control the ’epsilon’ inequality28, it is

necessary to control very precisely the location and orientation of the ray reprojected

from the second camera. Since the ray reprojected from the first camera is fixed

at one position the change of distance between the two rays depends on a change

of location of the second ray. Precise control of the location of the second ray is

possible if we notice that the second ray is a line defined by two points p′2i and

L′
2, where p′2i is the i-th image point in 3D space and L′

2 is the lens centre of the

second camera. From (27) and (28), we see that the location of points p′2i and L′
2 is

controlled by two rotation matrices Rθφ and Rϑϕγ. Since sine and cosine functions

28Controlling means setting the left side of the inequality as small as required.

169

are continuous, we can always find a δ such that θ < δ, φ < δ, ϑ < δ, ϕ < δ and

γ < δ, and all of these parameters yield such a small change in the location of points

p′2i and L′
2 that the ’epsilon’ inequality holds true. This concludes the proof outline.

Before the second statement can be presented, a definition of a mean ray must

be given.

Definition 21. A mean ray is a ray reprojected into 3D space from the point that

is the centre of mass for all points M in a given image. More precisely, a mean ray

for the k-th camera is a line passing through the camera’s lens centre L′
k and a point

p′mean, where

p′mean = Rk,θφRk,ϑϕγ[xk yk − f]T + L′
k,

and

xk = mean
i

(xk,i) and yk = mean
i

(yk,i).

The second statement allows one to relate the pan and tilt of the second camera

to its azimuth and altitude.

Statement 2. If the cost function D(C2) defined in (46) reaches its global minimum,

then the mean rays for both cameras cross in one point.

Since the formal calculations for proving Statement 2 contain complex calcula-

tions, it is hard to see the essence of the proof. Hence, only the outline of the proof

of Statement 2 is given here. To present the idea behind this proof, a non-limiting

simplification is introduced. For very small changes of the attributes from the vec-

tor C2, the change of the location of the closest approach points Aki is also very

small. Therefore, the location of the closest approach points for each camera can be

170

considered as a rigid cloud of points. Consider a case of two clouds of points in 3D

space, where each point has assigned a matched point from the other cloud. The

task is to translate and rotate one of the clouds such that the sum of the squared

distances between corresponding points is minimal. It is not hard to show that the

minimum of the sum of squared distances between corresponding points is reached

when the two centres of mass of these clouds overlap. If they do not overlap, moving

one cloud in the direction of the difference between the centres of mass decreases the

SSD between the corresponding points. When considering very small differences, the

situation with the cost function D(C2) is analogous. This means that the centres

of mass of both clouds of closest approach points overlap, and as a result two mean

rays cross in one point. This concludes the proof outline for Statement 2.

Based on Statement 2, one can decrease the search space by making sure that

the two mean rays always cross. Instead of using the pan and tilt parameters, one

parameter can be used. This parameter is a distance from the point where the two

mean rays cross to the lens centre of one of the cameras. Since the first camera does

not change its location and orientation, it is natural to choose this parameter to be

the distance between the point where the two mean rays cross and the lens centre

of the first camera. This new parameter is called ψ. The function Ψ that calculates

the values of pan and tilt for a given azimuth, altitude and distance ψ has the form

[θ φ γ ϑ ϕ]T → [θ φ γ Ψϑ(θ, φ, ψ) Ψϕ(θ, φ, ψ)]T .

Because of Ψ the location and position of the second camera can be determined

using only four parameters [θ φ γ ψ]T . The formula for Ψ is not presented, instead

171

all the steps needed to determine pan and tilt from three given parameters are given

next. It is assumed, that the two mean rays intersect in one point.

First, consider the point where the two mean rays cross. This point is denoted as

J when considering the mean ray from the first camera and by Q when considering

the mean ray from the second camera. The procedure described below starts from

setting the location of the second camera to (θ, φ, γ), and setting pan and tilt to

zero. Then the location and orientation of the second camera is modified such that

the points J and Q overlap.

i) Find the centres of mass for points in both images:

Mkx =

∑N
i=0 xki

N
, Mky =

∑N
i=0 yki

N
,

where k ∈ {1, 2} denotes the camera number, i denotes the point number and

N denotes the total number of matched points.

ii) Determine the location of the point J1 in 3D space.

J1 = [M 1x M 1y − f], J2 = ψ
J1

||J1|| ,

where || • || denotes the length of a vector.

iii) Determine the coordinates of the point J in the second camera coordinate sys-

tem.

• Rotate the point J2 by the second camera rotation matrix.

J3 = RθφJ2.

172

• Translate the point J3 by a vector [0 0 R]T (move the second camera such

that the lens centre is not on the sphere of a radius R, but at the origin

of the coordinate system).

J = J3 − [0 0 R]T .

iv) Determine the location of a point Q on the mean ray of the second camera.

Q1 = [M 2x M 2y − f], Q = ||J || Q1

||Q1|| .

v) Determine the tilt angle needed to rotate point Q to have the same Y coordinate

as the point J , see Figure 50. The subscript YZ and XZ denote the projection

of given point into YZ and XZ plane, respectively. Notice, it is not enough to

use the tilt angle ∠JYZOQYZ .

• Determine the angle α by which a point J has to be rotated around the

axis Y to have a zero X coordinate.

α = ∠JXZOT.

• Rotate points J and Q by an angle −α around the Y axis.

J ′ = R−αJ, Q′ = R−αQ.

Notice that point J ′ lies on the XZ plane. Hence, J ′ = J ′
XY .

173

• Set the tilt angle ϕ = ∠Q′
YZOJ

′
YZ .

vi) Rotate point Q so that it has the same Y coordinate as point J .

Q2 = RϕQ.

vii) Determine the pan angle θ to be the angle between the projections of points J

and Q2 into the XZ plane:

ϑ = ∠Q2,XZOJXZ .

viii) Set Ψϑ(θ, φ, ψ) to return ϑ and Ψϕ(θ, φ, ψ) to return ϕ.

Figure 50: Illustration for the algorithm that determines the Ψ function.

The introduction of the function Ψ permits the reformulation of Algorithm 13

174

to obtain an exhaustive version with only four parameters (see Algorithm 14).

Algorithm 14: Exhaustive Cost Function minimisation with only 4 parame-
ters
Input : M set of point matches

f focal length of both cameras
R radius of the sphere on which the second camera is located

Output: Second camera parameters Ĉ2

Set Dmin = ∞1

forall (θ̃, φ̃) ∈ [−π, π) × (−π
2
, π

2
) do2

forall γ̃ ∈ [−π, π) do3

forall ψ̃ ∈ (0,∞) do4

Set C̃2 = [θ̃ φ̃ γ̃ Ψϑ(θ̃, φ̃, ψ̃) Ψϕ(θ̃, φ̃, ψ̃)]T5

if D(C̃2) < Dmin then6

Dmin = D(C̃2)7

Ĉ2 = C̃28

end9

end10

end11

end12

Algorithm 14 is much more efficient than Algorithm 13, since it uses only four

parameters to optimize the cost function. By introducing a necessity for an initial

guess for the azimuth and altitude and by taking advantage of the property of the

cost function given in (1), it is possible to convert Algorithm 14 into a non-exhaustive

one. The optimization is performed separately for each of the ’for’ loops shown in

Algorithm 14.

To simplify the description of Algorithm 14, the explanation of several small

subroutines is not given until the end of the algorithm.

First, consider the θ̃, φ̃ loop (see Algorithm 13). Using the fact that the cost

175

function is continuous, one can use a gradient-descent algorithm to search for the

minimum. Having the initial guess I of the azimuth and altitude, a gradient-descent

search is guaranteed to find the local minimum around a given initial guess I. As

shown at the beginning of this section, if the initial guess is chosen properly, this

minimum is also the global minimum.

A summary of the methods underlying Algorithm 14 is given next.

(DA) Dense Algorithm. In this algorithm, the domain for the given parameter

is sampled into O equally spaced points. The point that yields the minimum

value is returned.

(PFA) Parabola Fitting Algorithm. This algorithm uses three points with its

corresponding cost function. The points have to be chosen such that the cost

function is minimal for the middle point. The parabola is fit into those points

and the coordinates for the point yielding the minimum is returned.

(LAA) Local Adjustment Algorithm. This is a 1-dimensional version of the

gradient descent algorithm. That is, the cost function is calculated at a given

point and both neighbours. If the cost function is minimal for one of the

neighbours, this neighbour becomes the current point and the algorithm starts

over. If not, the current point is returned. Usually, due to small changes in

parameters’ values, this algorithm exits after one iteration.

Having set the azimuth and altitude, there are only two parameters left to ex-

plain, namely, distance ψ and rotation around the principal ray γ. To solve for these

parameters, the following heuristic is used. First, the parameter ψ is set to a big

176

value. The term big means that distance ψ is much greater than radius R (for eaxm-

ple 50 times). This results in directions of the two mean rays being approximately

the same, i.e., parallel. In what follows, the closest approach points are quite far

from the lens centres of the both cameras, which artificially increases the cost func-

tion. For such a value of ψ, an optimal rotation is found by a dense algorithm(DA)

followed by a parabola fitting(PFA). Next, the ψ parameter is decreased and the

rotation angle is adjusted based on the last optimal value(LAA) followed by parabola

fitting(PFA). This procedure is continued until the cost function increases above

some threshold over the minimum value. Notice that the cost function for the val-

ues of ψ approximately equal to the focal length of the first camera is artificially

high again. In the case when ψ ≈ f , the pencil of rays for the first camera has a

small diameter and for the second camera has a big diameter (since the distance

between the cameras R is much greater than the focal length). This results in a

high cost function value and is not correlated with the configuration of points in

both images. Since the cost function takes on high values for the extreme ends of

the ψ parameter, the search is terminated after the cost function increases above

some threshold above the minimum.

Cost function minimisation is given in Algorithm 15. A graphical representation

of the proposed algorithm is given in Figure 51. The parameter K denotes the

number of samples for the ψ parameter and the parameter th denotes the threshold

above which the search for the ψ parameter is terminated. In each call of the

CostFn subroutine, the function Ψ is evaluated. As a result the proposed algorithm

decouples the search from the three loops given in Algorithm 14.

177

Algorithm 15: Cost Function Minimization

Input : M the set of point matches
f the focal length of both cameras
R the radius of the second camera sphere
I initial values of azimuth θ and altitude φ

Output: Second camera parameters Ĉ2

Set the (θ̃, φ̃) parameters to those from I, GlobalMinCF=∞1

Using gradient descent method minimize the cost function for (θ̃, φ̃)2

begin3

Set ψ̃=Kf, LocalMinCF=∞4

for γ́ = −π; step 2π
O

; to π do5

if CostFn(γ́) < LocalMinCF then6

LocalMinCF = CostFn(γ́); γ̃ = γ́7

end8

end9

γ̃ =FitParabola(γ̃)10

for ψ̃=(K-1)f to ψ̃ = f do11

γ̃=LocallyAdjust(γ̃)12

while CostFn(γ̃ − ∆γ̃)≥CostFn(γ̃)≤CostFn(γ̃ + ∆γ̃) do13

if CostFn(γ̃ − ∆γ̃)<CostFn(γ̃ + ∆γ̃) then14

γ̃ = γ̃ − ∆γ̃15

end16

else17

γ̃ = γ̃ + ∆γ̃18

end19

end20

γ̃ =FitParabola(γ̃)21

if CostFn(γ̃) < GlobalMinCF then22

GlobalMinCF = CostFn(γ̃); Ĉ2 = C̃223

end24

else25

if CostFn(γ̃) > th·GlobalMinCF then break26

end27

end28

end29

178

Gradient-descent search for
θ, φ

Search for γ, ϑ, ϕ
Search for γ, ϑ, ϕ

incrementally

Search for γ

Calculate ΨCalculate Cost
Function

Search for γ
incrementally

Fit Parabola

1
2

1 2

3

1 2
1

2

2

1

1

Figure 51: Cost function minimisation algorithm overview.

The proposed optimizations result in very high reduction of the number of

checked solutions. In the experiments performed for this project, the time needed

to find the minimum cost function did not exceed 1.5 seconds on a Pentium 4, 2.8

GHz processor. With the speed of checking 380,000 points per second, it means

that less than 600,000 points were visited. Since the goal is to estimate the values

of five parameters, it gives a rough average of only 14 samples per domain for each

parameter. This is a very good result considering that the precision used in the

algorithm is better than 1e-7.

4.3 Comparison with known methods

This section contains a comparison of the proposed method of estimating the ex-

ternal camera parameters with the classical 8-point algorithm given by [61] and

implemented by [81]. The original algorithm is due to Longuet-Higgins (see [93] as

cited by [61]). The 8-point algorithm uses the least-squares method to estimate the

179

fundamental matrix from (3) using eight or more point matches. The minimisation

is performed on the distances between points and their corresponding epipolar lines.

The proposed method (DirectGS) does not explicitly estimate the fundamental ma-

trix, but it is possible to calculate it from the two camera matrices.

The criterion used for comparing the two algorithms is an average distance from

each point to its corresponding epipolar line (see Section 2.12). For experiments, a

pair of images with 13 point matches was used (see Figure 35). In order to determine

the precision of each algorithm on different sets of matches, several subsets of point

matches were generated from this set of 13 points. Table 15 shows results of the

experiments. The first column contains the number of point matches. The second

column denotes how many runs were performed for a given number of point matches.

The third column, shows the percentage of runs, for which the DirectGS method

gave smaller error and the fourth column shows the percentage of runs for which the

8-point algorithm gave smaller error. Finally, the last column shows the percentage

of runs for which the DirectGS algorithm did not find the global minimum. Figure 52

shows a sample run of both algorithms for 11 point matches. The three peaks for

the DirectGS algorithm denote the cases when the the local minimum instead of

global was found. For most of the trials, the DirectGS error is much smaller than

the 8-point algorithm.

The results from Table 15 show that in majority of cases the DirectGS performs

better than 8-point algorithm. It must be noted that for cases when the DirectGS

performs better than 8-point algorithm, the error being minimized is twice smaller

for DirectGS algorithm. The cases when the DirectGS cannot find the global solution

180

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

7

8

9

10

Run number

A
ve

ra
ge

 d
is

ta
nc

e
fr

om
 p

oi
nt

 to
ep

ip
ol

ar
 li

ne

DirectGS
8−point alg.

Figure 52: Sample run for 11 point matches of DirectGS and 8-point algorithm.

are caused by an initial guess of azimuth and altitude that is too far from the global

minimum. This problem can be solved by choosing the initial guess to be located on

the other side of the sphere or by increasing the number of points used in calculations.

The runtimes for both algorithms cannot be precisely compared since the 8-point

algorithm was implemented in Matlab and DirectGS in C++. A rough estimate sug-

gests that the 8-point algorithm is several times faster than the DirectGS algorithm,

even though the total calculations for the DirectGS algorithm are below 1.5 second

(on Pentium 4, 2.8 GHz processor).

The obtained results confirm that the main goal for this project was achieved.

Namely, the precision of the proposed algorithm is better than the 8-point algorithm.

The reason is that the DirectGS minimises the function that is the physical quantity,

i.e., the distance between the reprojected rays. Most known algorithms, like the 8-

point algorithm, minimise the error of the reprojection, but in the image plane. This

181

means that the cost function is the two dimensional projection of the 3D function.

The dimensionality reduction results in a less precise estimation of the true locations

of the cameras. On the other hand, the proposed algorithm minimises the actual

difference between the two corresponding projection rays in the 3D space. As a

result, obtained reconstruction of 3D scene is very precise.

Table 15: Comparison of 8-point algorithm and DirectGS.
of points # runs % of DirectGS % of 8-point % of local min.

13 1 100 0 0
12 13 92.3 7.7 0
11 78 82.1 17.9 3.8
10 286 70.6 29.4 14
9 715 58.3 41.7 31

182

5 Conclusions and Future Work

The work presented in this dissertation generated improvements in several areas of

2D to 3D conversion field. The following subsections summarize the results of this

research and point towards areas of improvement.

Segment Matching

This dissertation introduces an approach to using a combination of genetic algo-

rithms and approximation spaces in solving the image segment matching problem.

Approximation spaces are used as a form of visual perception of pairs of images,

which is a step toward 2D image classification in the case where one of the paired

images plays the role of a reference image for matching purposes. Future work in-

cludes the extension of the proposed method to various shapes. It should be observed

that the Hough transform can be applied to detect shapes like circles or ellipses. The

next step is to define a class of shapes, which can be detected in a 2D image so that

a 3D shape can be uniquely determined from a disparity map.

Dense Matching

This research introduces an approach to dense matching of 3D object structures

that utilises the presence of points on lines in 3D space. A dense matching method

that utilizes the presence of straight lines in a reconstructed model is presented.

Matching is guided by points belonging to straight lines. In the first stage, lines in

3D space are found and matches corresponding to these lines are identified. In the

second stage, identified matches are used as seed points in dense matching of two

183

views. As a result of the carried out approach to dense matching, a constructed 3D

model is almost free from any noise, i.e., only points belonging to a 3D structure

with lines are extracted.

2D to 3D Conversion

A solution to the problem of estimating the external camera parameters using 3D

geometry, rather the fundamental matrix widely used in 2D to 3D conversion, is

another outcome of this research. The carried out geometric method estimates a

camera’s external parameters based on pairs of images. This method minimises the

distance between two reprojected rays for two given point matches. This approach

results in an optimal search space that reduces the computational burden required

to find the minimum of a cost function. Experiments that have been performed show

quite high dependency between the azimuth and altitude in the proposed camera

setup. Future work beyond what has been presented includes work on reducing the

search space by relating the altitude and azimuth of a second camera.

184

A Developed Applications

This appendix contains short descriptions of main applications developed29 by the

author for this dissertation. The McCabe complexity was calculated using [207].

The McCabe complexity informs about the complexity of a code by calculating

branches in the code. Therefore, the more branching (if statements) the higher

McCabe complexity. Programs with McCabe complexity above 50 are considered

to be very complex programs [20].

In addition, to the applications presented in this appendix, 393 Matlab script-

s/programs were developed consisting of the total of 14019 lines of code (plus 4447

comment lines). The statistics for Matlab code were calculated using [206].

29Using C or C++ language

185

A.1 PointMatch

Program Name PointMatch, ver. 1.1

Platform Windows

User Interface GUI

Programing Language C++, OpenGL, Matlab

Size, McCabe Complx. 6 classes, 1979 lines of code, 171

Overview

The PointMatch application’s main goal is to provide a Graphical User Interface

for warping images, see Section 2.8. The user can open two images in two separate

windows and create several tiepoints in both images. Then, using the mouse, all

tiepoints’ locations can be adjusted to match corresponding pixels from the second

image. Finally, the image is triangulised by Delaunay triangulation and displayed

(see Figure 53 for example).

Features

• Delaunay triangulation (assembly optimised)

• OpenGL texture rendering

Screenshots

186

(a) Original left image (b) Original right image

(c) Warped left image (d) Right image with tiepoints

Figure 53: PointMatch application screenshots

187

A.2 SPoints

Program Name SPoints, ver. 1.16

Platform Windows

User Interface GUI

Programing Language C++, OpenGL

Size, McCabe Complx. 7 classes, 1267 lines of code, 86

Overview

This application positions points on the sphere, such that the distance between the

closest two points is maximised. The user can define the number of points and

the program, in the iterative manner, maximises the distances between the points.

The maximisation is performed based on the distance of each point from its closest

neighbourhoods. The number of points from the neighbourhood can be changed

dynamically. In each iteration, each point is moved into the opposite direction than

the sum of all vectors from a given point to all its neighbourhoods. Point’s coordi-

nates can be saved to an external file.

Features

• No limitation for the number of points

• OpenGL rendering

• Saving/loading points to/from a file

• Variable number of neighbours used for calculations

• Assembly optimised

Screenshots

188

Figure 54: SPoints application screenshot

189

A.3 VisualBatch

Program Name VisualBatch, ver. 1.37

Platform Windows

User Interface GUI

Programing Language C++

Size, McCabe Complx. 14 classes, 4320 lines of code, 403

Overview

The VisualBatch application is the environment for building complex systems from

small programs. There are several types of applications recognized by VisualBatch.

The program can be any executable (exe) file, Matlab script, Java program or MS-

DOS batch file. The user can define a sequence in which given programs are to

be executed, including branching and conditional branching. Branching allows for

parallel processing on multiprocessor machines and conditional branching allows to

set up loops, such that certain calculations are performed only after required re-

sults are generated. In addition, the VisualBatch application can be run in batch

mode (using command line arguments), which allows for forming even more complex

systems. Figure 55 shows an example of program prepared for batch processing. Fig-

ures 56, 57 and 58 contain three selected steps from the 2D to 3D conversion process.

Features

• Support for exe files, Matlab scripts, batch files, Java files

• Saving/Loading project files

• Command line parameters (for batch processing)

• Saving output in a log with Matlab errors highlighting

• Branching and conditional branching

Screenshots

190

Figure 55: Sample script created in VisualBatch

Figure 56: Image quantization described in Section 3.1.1

191

Figure 57: Script for point matching described in Section 3.2.6

Figure 58: Script for segment matching described in Section 3

192

A.4 HypoDissertation

Program Name HypoDissertation, ver. 1.3

Platform Windows

User Interface GUI

Programing Language C++

Size, McCabe Complx. 16 classes, 4072 lines of code, 522

Overview

The HypoDissertation application implements the genetic algorithm approach for

segment matching described in Section 3.1.8. The input consists of six files con-

taining centroids of segments, colour table, overlap table, relative count table and

angle table. Then, the genes are created and the population is build in an iterative

manner. The user has a full control over the cost function that controls the popula-

tion size. The algorithm that selects the solution contains several options including

rough coverage method (see Section 3.1.9). In addition, the relation created by the

genetic algorithm can be transformed to an equivalence relation, as described in

Section 3.1.10.

Features

• Saving/Loading project files

• Saving/Loading settings to/from .ini file

Screenshots

193

Figure 59: HypoDissertation application screenshots

194

A.5 Parallel Computations - The Server

Program Name Overlap, ver. 1.08, RServer, ver. 2.18,

DMServer, ver. 1.14a

Platform Windows

User Interface GUI

Programing Language C++

Size, McCabe Complx. Overlap: 13 classes, 2692 lines of code, 234

RServer: 15 classes, 3053 lines of code, 275

DMServer: 16 classes, 3227 lines of code, 398

Overview

The project called Parallel Computations is a set of classes that can be used for

implementing parallel calculations. The server side is responsible for loading the

(possible large) set of points for which some cost function is to be evaluated. Then

these points are randomised and divided into blocks. After a clients connect to the

server, blocks are sent out to the clients. The server keeps track of which blocks have

been processed and which have not. In order to avoid delays in a case when some

machines become overloaded, the same block can be sent to several machines and

is marked as processed after the quickest machine returns the results. The server

assures that the workload is optimally distributed and that all results match the

points for which they were calculated (in case of broken connections).

For this dissertation, the Parallel Computations classes were used for three

projects: Overlap for the calculation of the best overlap (as described in Sec-

tion 3.1.4), the RServer for calculations of a cost function described in Algorithm 13

and the DMServer for dense matching (see Section 3.3).

Features

• Randomisation of points for each block - better load balancing

• Sending/receiving blocks implemented as a transaction (like in databases) -

results in data consistency even in case of broken connections

• Estimates total elapsed time

195

• Build in ping command to test the connection speed

• Customisable block size

• Accepts up to 1024 clients

Screenshots

Figure 60: RServer application screenshot

196

A.6 Parallel Computations - The Client

Program Name OverlapClient, ver. 1.15, RClient, ver. 2.0

DMClient, ver. 1.18

Platform Windows, Linux (Intel and Solaris), PocketPC

User Interface Command line

Programing Language C

Size, McCabe Complx. OverlapClient: 1000 lines of code, 158

RClient: 1287 lines of code, 158

DMClient: 1213 lines of code, 148

Overview

The project called Parallel Computations is a set of classes that can be used for

implementing parallel calculations. The client side receives the data, performs nec-

essary calculations and send the results back to the server.

For this dissertation, the Parallel Computations classes were used for three

projects: Overlap for the calculation of the best overlap (as described in Sec-

tion 3.1.4), the RServer for calculations of a cost function described in Algorithm 13

and the DMServer for dense matching (see Section 3.3).

Features

• Multi-platform support

• Implements communication protocol to exchange data with PC Server in a

safe manner

197

A.7 TwoViews

Program Name TwoViews, ver. 1.19

Platform Windows

User Interface GUI

Programing Language C++

Size, McCabe Complx. 11 classes, 3381 lines of code, 269

Overview

The TwoViews application allows for visualization of the geometry of two cameras

in 3D space. The program shows two cameras in 3D space with all projecting rays

corresponding to two sets of points from both cameras. In addition, the smallest ap-

proach between two corresponding rays is drawn. The user can modify all cameras’

parameters. The cost function is visualized on the sphere, where the azimuth and

altitude of each point correspond to the azimuth and altitude of the second camera.

Features

• Fast OpenGL rendering

• Import of camera parameters from an external file

• Cost function visualization for variable azimuth/altitude or pan/tilt

• Visualization of the epipolar plane

Screenshots

Figure 61: TwoViews application (control pane)

198

Figure 62: TwoViews application (main pane)

Figure 63: Closeup for several rays and their closest approach lines

199

A.8 2DSearch

Program Name 2DSearch, ver. 2.07

Platform Windows

User Interface Command line

Programing Language C

Size, McCabe Complx. 900 lines of code, 116

Overview

The 2DSearch program implements the calculations of the cost function described

in Section 4.2. This program is based on the RClient application described in A.6

(but no TCP/IP functionality was implemented).

Screenshots

Figure 64: 2DSearch application screenshot

200

A.9 BiCuGPU

Program Name BiCuGPU, ver. 1.2

Platform Windows

User Interface Command line

Programing Language C, OpenGL, GLSL

Size, McCabe Complx. 1564 lines of code, 96

GLSL code: 527 lines of code, 0

Overview

The BiCuGPU application is an implementation of the bicubic interpolation on

Graphical Processing Unit (graphic card). The goal is to speed up the calculations

and perform the interpolation on the processor belonging to the graphic card, not

the Central Processing Unit. The programming language used for programming the

GPU is the OpenGL Shading Language (GLSL). One of the limitations of the GLSL

is the absence of any loop statements. Therefore, on the GPU the bicubic inter-

polation has to be implemented without any loops. The hardware limitation is a

very small total length of the executable code that can be uploaded into the graphic

card. Therefore, the bicubic interpolation, had to be split into nine subprograms

that were run separately for each colour channel. Despite the fact that the number

of arithmetic operations was ten times greater that in CPU implementation, the

GPU implementation was faster. This means that the GPU code is over ten times

faster than the CPU implementation.

Features

• Use of the OpenGL interface to access hardware acceleration

• Over ten times more processing power than CPU

• Access to massive parallel processing units (4 processors)

Screenshots

201

Figure 65: BiCuGPU application screenshot

(a) Resized image (b) Bicubic interpolation

Figure 66: BiCuGPU application screenshots of 8x magnification

202

Sample code
The following is the GLSL code for the ninth pass of bicubic interpolation.

uniform sampler2DRect Texture0 , Texture1 , Texture2 ;
uniform sampler2DRect TextureOut ;
uniform float scale , offx , offy ;

void main (void)
{
float y0 , y1 , y2 , y3 , y10 , y11 , y12 , y13 , y20 ,
float y21 , y22 , y23 , y120 , y121 , y122 , y123 ;
float c6 , c7 , c8 , c9 , c14 , c15 ;
vec2 texCoord=gl_TexCoord [0] . st ;
vec2 tCoord=(texCoord+vec2 (offx , offy)) / scale ;

float t=texture2DRect (Texture2 , gl_TexCoord [0] . st) . y ;
float u=texture2DRect (Texture2 , gl_TexCoord [0] . st) . z ;

y0 = texture2DRect (Texture0 , tCoord) . z ;
y10 = texture2DRect (Texture1 , texCoord) . y ;
y20 = texture2DRect (Texture1 , texCoord) . z ;
y120= texture2DRect (Texture1 , texCoord) . w ;

texCoord . x+=scale ; tCoord . x+=1.0;
y1 = texture2DRect (Texture0 , tCoord) . z ;
y11 = texture2DRect (Texture1 , texCoord) . y ;
y21 = texture2DRect (Texture1 , texCoord) . z ;
y121= texture2DRect (Texture1 , texCoord) . w ;

texCoord . y−=scale ; tCoord . y−=1.0;
y2 = texture2DRect (Texture0 , tCoord) . z ;
y12 = texture2DRect (Texture1 , texCoord) . y ;
y22 = texture2DRect (Texture1 , texCoord) . z ;
y122= texture2DRect (Texture1 , texCoord) . w ;

texCoord . x−=scale ; tCoord . x−=1.0;
y3 = texture2DRect (Texture0 , tCoord) . z ;
y13 = texture2DRect (Texture1 , texCoord) . y ;

203

y23 = texture2DRect (Texture1 , texCoord) . z ;
y123= texture2DRect (Texture1 , texCoord) . w ;

c6=3.0∗(y13−y10)−2.0∗y120−y123 ;
c7=2.0∗(y10−y13)+y120+y123 ;
c8=3.0∗(y1−y0)−2.0∗y10−y11 ;
c9=3.0∗(y21−y20)−2.0∗y120−y121 ;

float y0123=y0−y1+y2−y3 , y1213=y12−y10−y11+y13 ;
float y2223=y22−y23 , y2120=y21−y20 ;
c14=−6.0∗y0123+4.0∗y2120+3.0∗y1213+2.0∗(y2223−y120−y121)

−y122−y123 ;
c15=4.0∗y0123−2.0∗(y1213+y2120+y2223)+y120+y121+y122+y123 ;

float p=texture2DRect (Texture2 , gl_TexCoord [0] . st) . x+
t∗t∗t∗(c15∗u+c14)∗u∗u+t ∗ (((c7∗u+c6)∗u+y120)∗u+y10)+
t∗t∗(u∗c9+c8) ;

p=clamp (p , 0 . 0 , 2 5 5 . 0) ;

vec4 m=texture2DRect (TextureOut , gl_TexCoord [0] . st) ;
gl_FragColor = vec4 (p , m . y , m . z , 0 . 0) ;

}

204

A.10 MeshReduction

Program Name MeshReduction, ver. 1.24

Platform Windows

User Interface GUI

Programing Language C++, OpenGL

Size, McCabe Complx. 5 classes, 1274 lines of code, 177

Overview

The goal of the MeshReduction application is to decrease the number of triangles

forming an object. After dense matching (see Section 3.3), the reconstructed model

consists of several hundreds of thousands of triangles. This application uses the fact

that for flat surfaces the number of triangles forming the surface can be reduced

without any visual degeneration of the shape. The process of removing triangles

that do not introduce any valuable information to the shape consists of the following

steps.

1. Detect inside/boundary points.

2. Detect all edges that can be removed.

3. Find edges, for which adjacent triangles are almost parallel (lies on the same

plane).

4. Remove selected edges.

5. Recreate triangles.

6. Remove unused points.

7. Update texture information.

Features

• Removes triangles from the model and updates texture mapping

Screenshots

205

(a) Original dense model

(b) Model from 67(a) with reduced number of triangles

Figure 67: Fragment of a 3D model of a power tower.

206

A.11 TexturedView

Program Name TexturedView, ver. 1.12

Platform Windows

User Interface GUI

Programing Language C++, OpenGL

Size, McCabe Complx. 7 classes, 1326 lines of code, 101

Overview

The TexturedView application renders a 3D model with a texture overlapped on it.

Features

• OpenGL fast rendering

• Optimised for object consisting of hundreds of thousands of triangles

Screenshots

See screenshots for the MeshReduction application in A.10.

207

A.12 UnrollLoops

Program Name UnrollLoops, ver. 1.0

Platform Windows

User Interface GUI

Programing Language C++

Size, McCabe Complx. 3 classes, 347 lines of code, 10

Overview

The UnrollLoops application unrolls the “for” loops for C/C++ code. This program

was used as a help tool in creation of GLSL code for the bicubic interpolation (see

A.9). No nesting loops is allowed, therefore, nested loops have to be unrolled in two

stages (see screenshots section below).

Screenshots

The screenshot in Figure 68 shows the second step of unrolling two nested for

loops from Tab. 16.

for (int j=0; j<4; j++)
for (int k=0; k<4; k++)
{ val1 . Format ("cell[%i][%i]" ,j , k) ;

val2 . Format ("%i" , cell [j] [k] ;
ReplaceString(&str , val1 , val2) ;}

Table 16: Two sample nested “for” loops.

208

Figure 68: UnrollLoop application screenshot

209

References

[1] Atkinson, K.B.: Developments In Close Range Photogrammetry - 1, Applied

Science Publishers Ltd, London, 1980.

[2] Barnard, S.T., Fischler, M.A.: Computational Stereo, Computing Surveys

14(4), 1982, 553–554.

[3] Basu, M.: Gaussian-Based Edge-Detection Methods - A Survey, IEE Transac-

tions on Systems, Man, and Cybernetics - Part C: Applications and Reviews

32(3), 2002, 253.

[4] Bhattacharya, P., Liu, H., Rosenfeld, A., Thompson, S.: Hugh-transform De-

tection of Lines in 3-D Space, Pattern Recognition Letters 21(9), 2000, 843–849.

[5] Bishop, C.M.: Neural Networks For Pattern Recognition, Oxford Univ. Press,

1995, 354.

[6] Bobick, A.F., Intille, S.S.: Large Occlusion Stereo, Kluwer Academic Publishers

33(3), Hingham, USA, 1999, 181–200.

[7] Borkowski, M.: Digital Image Processing in Measurement of Ice Thickness on

Power Transmission Lines: A Rough Set Approach, M.Sc. Dissertation, su-

pervisor: J.F. Peters, Department of Electrical and Computer Engineering,

University of Manitoba, 2002

[8] Borkowski, M.: Signal Analysis Using Rough Integrals, Rough Sets and Current

Trends in Computing LNAI 2475, Springer-Verlag, Berlin, 2002, 218–225.

[9] Borkowski, M., Peters, J.F.: Direct Geometrical Search, 2D to 3D conversion,

International Journal of Computer Vision, 2007, submitted.

[10] Borkowski, M., Peters, J.F.: Matching 2D image segments with genetic algo-

rithms and approximation spaces, Transactions on Rough Sets V, LNCS 4100,

2006, 63–101.

210

[11] Borkowski, M., Peters, J.F.: Dense Matching of Two Views: Establishing

Correspondences Between Points in 3D Lines, IEEE Transactions on Image

Processing, 2007, submitted.

[12] Borkowski, M., Peters, J.F.: Approximating Sensor Signals: A Rough Set Ap-

proach, Proceedings of Canadian Conference on Electrical and Computer Engi-

neering (CCECE’02) 2, 2002, 980–985.

[13] Boufama, B., Ghanem, K.: Achieving efficient dense matching for uncalibrated

images, Proceedings of the IEEE International Conference on Image Processing,

Italy, 2005, 1069–1072.

[14] Boufama, B., Jin, K.: Towards a fast and reliable dense matching algorithm,

The 15th International Conference on Vision Interface, Calgary, Canada, 2002.

[15] Brewster, D. Sir : The Stereoscope, Its History, Theory, And Construction With

Its Application To The Fine And Useful Arts And To Education, London: John

Murray, Albemarle Street, 1856, reprinted by Rudolf Kingslake, The Fountain

Press, London, 1971.

[16] Bronshtein, I.N., Semendyayev, K.A., Musiol, G., Muehlig, H.:Hanbook of

Mathematics, 4th Ed., Springer, Berlin, 2004, 292.

[17] Caelli,T., Reye,D.: On the classification of image regions by colour, texture and

shape, Pattern Recognition 26, 1993, 461–470.

[18] Cantzler, H.: Improving Architectural 3D Reconstruction By Constrained Mod-

elling, Doctoral Dissertation, Institute of Perception, Action and Behaviour

School of Informatics University of Edinburgh, 2003, 117–120.

[19] Chang, M.M.Y., Wong,K.H.: 3D Model Reconstruction by Constrained Bun-

dle Adjustment, Proceedings of the 17th International Conference on Pattern

Recognition (ICPR04), 2004, 1.

[20] Charney, R.: Programming Tools: Code Complexity Metrics,

http://www.linuxjournal.com/article/8035

211

http://www.linuxjournal.com/article/8035

[21] Cheffins, O.W, Chisholm, N.W.T.: Engineering And Industrial Photogramme-

try, In [1], 149–180.

[22] Chen, Q., Medioni, G.: Efficient Iterative Solution to M-View Projective Re-

construction Problem, IEEE Computer Society Conference on Computer Vision

and Pattern Recognition (CVPR’99) 2, 1999, 2056.

[23] Cottier, J.C.: Extraction et appariements robustes des points d’interet de deux

images non etalonnees, Internal Report, INRIA, Rhone-Alpes, 1994.

[24] Darwin, C.: On the Origin of the Species by Means of Natural Selection or the

Preservation of Favoured Races in the Struggle for Life, Murray, London, 1859.

[25] Dowman, I.J., Scott, P.J.: Photogrammetric Theory, Techniques And Prob-

lems, In [1], 15–37.

[26] Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis, John Wiley

& Sons, USA, 1973, 379–404.

[27] Duda, R.O., Hart, P.E., Stork, D.G: Pattern Classification, Second Edition,

John Wiley & Sons, USA, 2001, 259, 262, 373–377, 621, 625.

[28] Dufournaud, Y., Schmid, C., Horaud, R.: Matching Images with Different Res-

olutions, Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, Hilton Head Island, South Carolina, USA, 2000, 612–618.

[29] Eshelman, L.J.: Genetic algorithms, T. Back, D.B. Fogel, Z. Michalewicz

(Eds.), Handbook of Evolutionary Computation, Oxford University Press, Ox-

ford, UK, 1997.

[30] Esteban, C.H., Schmitt, F.: Multi-Stereo 3D Object Reconstruction, Proceed-

ings of the First International Symposium on 3D Data Processing Visualization

and Transmission, Paris, France, 2002.

212

[31] Faugeras, O., Luong, Q.T.: The Geometry of Multiple Images, The Laws That

Govern The Formation Of Multiple Images Of A Scene And Some Of Their

Applications, The MIT Press, 2001, 3, 7–9, 582–584.

[32] Faugeras, O.: From Geometry To Variational Calculus: Theory And Applica-

tions Of Three-Dimensional Vision, Computer Vision for Virtual Reality Based

Human Communications, 1998, Bombay, India, pp. 60–61.

[33] Feng, C.L., Hung, Y.S.: A Robust Method for Estimating the Fundamental

Matrix, Proceedings of the VII-th Digital Image Computing: Techniques and

Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 2003,

Sydney, 633–642.

[34] Fischler, M.A., Bolles, R.C.: Random Sample Consensus: A Paradigm For

Model Fitting With Application To Image Analysis And Automated Cartogra-

phy, Communications of the ACM 24(6), 1981, 381-385.

[35] Fitzpatrick, J.M, Hill, D.L.G., Calvin, R.M. Jr.: Chapter 8: Image Regis-

tration, Handbook of Medical Imaging, Vol. 2: Medical Image Processing and

Analysis, Editors: Milan Sonka and J. Michael Fitzpatrick, SPIE PRESS Vol.

PM80, 2000, Bellingham, USA, 449, 488–489, 499.

[36] Flusser, J., Suk, T.: A Moment-Based Approach to Registration of Images with

Affine Geometric Distortion, IEEE Transactions On Geoscience And Remote

Sensing 32(2), 1994, 383, 384.

[37] Flusser, J.: Moment Invariants in Image Analysis, Proceedings of the Interna-

tional Conference on Computer Science ICCS’06 11, Prague, 2006, 196–199.

[38] Freeman, W.T., Adelson, E.H.: The Design And Use of Steerable Filters, IEEE

Transactions On Pattern Analysis And Machine Intelligence 13(9), 1991, 891.

[39] Förstner, W.: A framework for low level feature extraction, ECCV, 1994, 383–

394.

213

[40] Fu, K.S., Mui, J.K.: A survey of image segmentation, Pattern Recognition 13,

1981, 3–16.

[41] Fusiello, A., Trucco, E., Verri, A.: A compact algorithm for rectification of

stereo pairs, Machine Vision Applications 12(1), 2000, 16.

[42] Galpin,F., Morin,L.: Video Coding Using Streamed 3D Representation, Inter-

national Conference on Image Processing 3, 2000, 636–639.

[43] Galpin, F., Balter, R., Morin, L., Deguchi, K.: 3D Models Coding and Morph-

ing for Efficient Video Compression, Proceedings of the 2004 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition (CVPR04) 1,

2004, 334–341.

[44] Garstenauer, H.: A unified framework for rigid body dynamics, M.Sc. Thesis,

supervisor: Jens Volkert, Johannes Kepler Universität Linz, 2006.

[45] Gaskett, C.: Q-Learning for Robot Control, Doctoral Dissertation, Research

School of Information Sciences and Engineering at the Australian National

University, 2002.

[46] Gersho, A., Gray, R.M.: Vector Quantization And Signal Compression, Kluwer

Academic Publishers, Dordrecht, The Netherlands, 1992, 133–134, 188–190.

[47] Gomolinska, A.: Rough validity, confidence, and coverage of rules in approxi-

mation spaces, Transactions on Rough Sets III, 2005, 57–81.

[48] Gonzalez, R.C., Woods, R.E.: Digital Image Processing, Second Edition, Pren-

tice Hall, USA, 2002, 49–50, 52–54, 66, 116–118, 271–276, 289–302, 519, 539,

577–579, 587–591, 672–675.

[49] Gottesfeld Brown, L.: A Survey Of Image Registration Techniques, ACM Com-

puting Surveys 24(4), 1992, 333.

214

[50] Gouet, V., Montesinos, P., Pele, D.: Stereo Matching Of Color Images Using

Differential Invariants, Proceedings of the International Conference on Image

Processing, Chicago, USA, 1998, 152–153.

[51] Gouet, V., Montesinos, P., Pele, D.: A Fast Matching Method For Color Uncal-

ibrated Images Using Differential Invariants, Proceedings of the British Machine

Vision Conference, Southampton, 1998, 369.

[52] Gouet, V., Montesinos, R., Deriche, D.: Differential Invariants for Color Images,

Proceedings of 14 th International Conference on Pattern Recognition, Brisbane,

Austria, 1998, 838–839.

[53] Grafe, M., Wortman, R., Westphal, H.: AR-Based Interactive Exploration Of

A Museum Exhibit Augmented Reality Toolkit, The First IEEE International

Workshop, Darmstadt, Germany, 2002.

[54] Grey, R.M., Neuhoff, D.L.: Quantization, IEEE Transactions on Information

Theory 44, 1998, 1–63.

[55] Gremban, K.D., Ikeuchi, K.: Appearance-Based Vision and the Automatic

Generation of Object Recognition Programs, In [72], 235–239.

[56] Hansen, B., Morse, B.: Multiscale Registration Using Scale Trace Correlation,

Computer Vision and Pattern Recognition (CVPR’99), 1999, 202.

[57] Haralick, R.M., Shapiro, L.G.: Image segmentation techniques, Computer Vi-

sion, Graphics, and Image Processing 29, 1985, 100–132.

[58] Harris, C., Stephens, M.: A Combined Corner And Edge Detector, Proceedings

of the 4th Alvey Vision Conference, Manchester, 1988, 189-192.

[59] Hartigan, J.A., Wong, M.A.: A K-means clustering algorithm, Applied Statis-

tics 28, 1979, 100–108.

215

[60] Hartley, R.: Projective Reconstruction and Invariants from Multiple Images,

IEEE Transactions On Pattern Analysis and Machine Intelligence 16(10), 1994,

1037.

[61] Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, Sec-

ond Edition, Cambridge University Press, 2004, 33, 39, 65, 154–157, 239–246,

260, 281–282.

[62] Heaton, K.G.: Physical Pixels, M.Sc. Thesis, MIT, 1994.

[63] Heikkila, J., Silven, O.: A Four-step Camera Calibration Procedure with Im-

plicit Image Correction, IEEE Computer Society Conference on Computer Vi-

sion and Pattern Recognition (CVPR’97), 1997, 1106–1112.

[64] Heitger, F., Rosenthaler, L., von der Heydt, R., Peterhans, E., Kuebler, O.:

Simulation of neutral contour mechanism: from simple to end-stopped cells,

Vision Research, 32(5), 1992, 963–981.

[65] Hirano, H., Tsumoto, S.: Segmentation of medical images based on approxi-

mation in rough set theory, J.J. Alpigini, J.F. Peters, A. Skowron, N. Zhong

(Eds.) LNAI 2475, Springer-Verlag, Berlin, 2002, 554–563.

[66] Holland, J.H.: Adaptation in Natural and Artificial Systems, University of

Michigan Press, Ann Arbor, MI, 1975.

[67] Horaud, R., Skordas, T., Veillon, F.: Finding geometric and relational struc-

tures in an image, ECCV, 1990, 374–384.

[68] Horn, B.K.P.: Robot Vision, The MIT Press, USA, 1987, 202–232, 278–283,

299–323, 435–438, 449.

[69] Hough, P.V.C.: Methods And Means For Recognizing Complex patterns, U.S.

Patent 3,069,654, 1962.

[70] Hu, M.K.: Visual Pattern Recognition By Moment Invariants, IRE Trans.

Inform. Theory 8, 1962, 179, 185.

216

[71] Jähne, B.: Digital Image Processing, 6-th revised and extended edition,

Springer-Verlag, Berlin, 2005, 221.

[72] Jain, A.K., Flynn, P.J.: Three-Dimensional Object Recognition Systems, Else-

vier Science Publishers B.V. 1, 1993.

[73] Jarvis, R.: Range Sensing for Computer Vision, In [72], 17–56.

[74] Jung, I.K., Lacroix, S.: A Robust Interest Points Matching Algorithm, Proceed-

ings of Eighth IEEE International Conference on Computer Vision 2, 2001, 538

[75] Katsoulas, D.: Robust Recovery of Piled Box-Like Objects in Range Images,

Ph.D. Dissertation, Albert-Ludwigs-Universitaet, Freiburg/Breisgau, 2004,

156–158.

[76] Katsoulas, D.: Robust Extraction of Vertices in Range Images by Constraining

the Hough Transform, F.J. Perales et al. (Eds.) IbPRIA 2003 LNCS 2652,

Springer-Verlag, Berlin, 2003, 363-364.

[77] Kim, C., Lee, K.M., Choi, B.T., Lee, S.U.: A Dense Stereo Matching Using

Two-Pass Dynamic Programming with Generalized Ground Control Points,

Proceedings of the 2005 IEEE Computer Society Conference on Computer Vi-

sion and Pattern Recognition (CVPR05), 2005, 1075–1082.

[78] Koenderink, J.J., van Doorn, A.J.: Representation of local geometry in the

visual system, Biological Cybernetics 55, 1987, 369–370.

[79] Komorowski, J., Pawlak, Z., Polkowski, L., Skowron, A.: Rough Sets: A Tu-

torial, S.K. Pal, A. Skowron (Eds.), Rough Fuzzy Hybridization: A New Trend

in Decision-Making, Springer-Verlag, Singapore, 1999, 1–14.

[80] Konrad, E., Orlowska, E., Pawlak, Z.: Knowledge Representation Systems,

Polish Academy of Sciences Report 433, Institute for Computer Science, 1981.

217

[81] Kovesi, P. D.: MATLAB and Octave Functions for Computer Vi-

sion and Image Processing, School of Computer Science & Soft-

ware Engineering, The University of Western Australia, Available from:

http://www.csse.uwa.edu.au/∼pk/research/matlabfns/

[82] Kuipers, J.B.: Quaternions And Rotation Sequences: A Primer With Applica-

tions To Orbits, Aerospaces, And Virtual Reality, Princeton University Press,

USA, 1999, 1–86, 103–128, 357.

[83] Lan, Z.D., Mohr, R.: Robust Location based Partial Correlation, INRIA Report

No. 3186, 1997.

[84] Lee, S.Uk, Chung, S.Y., Park, R.H.: A comparative performance study of

several global thresholding techniques for segmentation, Computer Graphics

and Image Processing 52, 1990, 171–190.

[85] Lhuillier, M., Quan, L.: Robust Dense Matching Using Local And Global Geo-

metric Constraints, Proceedings of the 15th International Conference on Pattern

Recognition 1, Barcelona, Spain, 2000, 968–972.

[86] Lhuillier, M.: Efficient Dense Matching for Textured Scenes Using Region

Growing, INRIA Research Report 03382, 1998, 700–709.

[87] Lhuillier, M., Quan, L.: Edge-Constrained Joint View Triangulation for Im-

age Interpolation, Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition 2, 2000, 218–224.

[88] Lhuillier, M., Quan, L.: Image Interpolation by Joint View Triangulation, Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition

2, Fort Collins, Colorado, USA, 1999, 139–145.

[89] Liao, S.X., Pawlak, M.: On image analysis by moments, IEEE Transactions on

Pattern Analysis and Machine Intelligence, 1996, 254–266

218

http://www.csse.uwa.edu.au/~pk/research/matlabfns/

[90] Lindeberg, T.: Feature Detection with Automatic Scale Selection, Technical

report ISRN KTH/NA/P-96/18-SE, May 1996, Revised August 1998, Int. J.

of Computer Vision 30(2), 1998, i, 3–6.

[91] Lindeberg, T.: Scale-Space: A Framework For Handling Image Structures At

Multiple Scales, Proc. CERN School of Computing, The Netherlands, 1996, 7.

[92] Liu, Y., Zhang, X., Huang, T.S.: Estimation Of 3D Structure And Motion From

Image Corners, The Journal Of Pattern Recognition Society, Elsevier Science

Ltd., 2003, 1269, 1275.

[93] Longuet-Higgins, H.C.: A computer algorithm for reconstructing a scene from

two projections, Nature 293, 1981, 133–135.

[94] Loog, M., Ginneken, B.v., Duin, R.P.W.: Dimensionality reduction by canon-

ical contextual correlation projections, T.Pajdla, J. Matas (Eds.) LNCS 3021,

Springer, Berlin, 2004, 562–573.

[95] Lowe, D.G.: Object Recognition from Local Scale-Invariant Features, Proceed-

ings of the International Conference on Computer Vision ICCV, Corfu, 1999,

1150–1152.

[96] Lowe, D.G.: Distinctive image features from scale-invariant keypoints, Inter-

national Journal of Computer Vision 60(2), 2004, 95–97.

[97] Lowe, D.G.: Method and apparatus for identifying scale invariant features in an

image and use of same for locating an object in an image, US Patent 6,711,293

(March 23, 2004). Provisional application filed March 8, 1999. Asignee: The

University of British Columbia.

[98] Maitra, S.: Moment invariants, Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, IEEE Press, 1979, 697.

[99] Matthies, L., Szeliski, R., Kanade, T.: Incremental Estimation Of Dense Depth

Maps From Image Sequences, Proceedings of Computer Vision and Pattern

Recognition, 1988, 366–368.

219

[100] Mayr, E.: Toward a New Philosophy of Biology: Observations of an Evolu-

tionist, Belknap, Cambridge, MA, 1988.

[101] Mees, C.E.K., James, T.H.: The Theory of the Photograpahics Process,

Macmillan, UK, 1966.

[102] Megyesi, Z., Chetverikov, D.: Affine Propagation for Surface Reconstruction

in Wide Baseline Stereo, Proceedings of ICPR 2004, Cambridge, UK, 2004, 1–4.

[103] Megyesi, Z., Chetverikov, D.: Affine dense matching for wide baseline stereo,

Proceedings of Grafika 2003, Budapest, 2003, 109–114.

[104] Melzer, T., Briese, Ch.: Extraction and Modeling of Power Lines from ALS

Point Clouds, Proceedings of 28th Workshop Austrian Association for Pattern

Recognition, Hagenberg, 2004, 47–54.

[105] Mikolajczyk, K., Schmid, C.: An affine invariant interest point detector, Pro-

ceedings of the 7th European Conference on Computer Vision, Copenhagen,

Denmark, 2002, 128–142.

[106] Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors,

Proceedings of the 2003 IEEE Computer Society Conference on Computer Vi-

sion and Pattern Recognition (CVPR03), 2003, 258–259.

[107] Mikolajczyk, K., Schmid, C.: Indexing based on scale invariant interest points,

International Conference on Computer Vision, Vancouver, Canada, 2001, 525–

531.

[108] Mikolajczyk, K., Schmid, C.: Scale and Affine Invariant Interest Point De-

tectors, International Journal of Computer Vision 60(1), Kluwer Academic

Publishers, 2004, 63-68.

[109] Mikolajczyk, K., Tuytelaars, T., Schimd, C., Zisserman, A., Matas, J., Schaf-

falitzky, F., Kadir, T., Van Gool, L.: A Comparison of Affine Region Detectors,

International Journal of Computer Vision 65(1/2), 2005, 44, 46.

220

[110] Mindru, F., Moons, T., Van Gool, L.: Recognizing Color Patterns Irrespective

of Viewpoint and Illumination, Proceedings of IEEE Conference on Computer

Vision and Pattern Recognition 1, Fort Collins, Colorado, 1999, 368–373.

[111] Model of stereoscope invented in 1839 by Sir Charles Wheatstone:

http://www.geocities.com/CapeCanaveral/8341/stereogr.htm, See, also,

http://www.kcl.ac.uk/depsta/iss/archives/collect/1wh20-0.html

[112] Modersitzki, J., Haber, E.: Cofir: Coarse and Fine Image Registration, L.T.

Biegler, O. Ghattas, M. Heinkenschloss, D. Keyes, and B. van Bloemen Waan-

ders, editors, Real-Time PDE-Constrained Optimization, 2004, 4, 5, 14.

[113] Montesinos,P., Gouet,V., Deriche,R.: Differential Invariants For Color Im-

ages, Fourteenth International Conference on Pattern Recognition 1, Brisbane,

Australia, 1998, 16–20.

[114] Moody, J., Darken, C.J.: Fast learning in networks of locally-tuned processing

units, Neural Computation 1(2), 1989, 281–294.

[115] Or�lowska, E.: Semantics of Vague Concepts, Applications of Rough Sets. In-

stitute for Computer Science, Polish Academy of Sciences Report 469, 1982.

[116] Pal, N.R., Pal, S.K.: A review of image segmentation techniques, Pattern

Recognition 26(9), 1993, 1277–1294.

[117] Paton, R.C.: Principles of genetics, T. Back, D.B. Fogel, Z. Michalewicz

(Eds.), Handbook of Evolutionary Computation, Oxford University Press, Ox-

ford, UK, 1997.

[118] Pavel, M.: Fundamentals of Pattern Recognition, 2nd Edition, Marcel Dekker,

Inc., NY, 1993.

[119] Pawlak, Z., Peters, J.F., Skowron, A., Suraj, Z., Ramanna, S., Borkowski, M.:

Rough Measures, Rough Integrals, And Sensor Fusion, M. Inuiguchi, S. Hi-

rano,S. Tsumoto (Eds.), Rough Set Theory and Granular Computing, Studies

in Fuzziness and Soft Computing, 125, Physica Verlag, Berlin, 2003, 263–272.

221

http://www.geocities.com/CapeCanaveral/8341/stereogr.htm
http://www.kcl.ac.uk/depsta/iss/archives/collect/1wh20-0.html

[120] Pawlak, Z., Peters, J.F., Skowron, A., Suraj, Z., Ramanna, S., Borkowski, M.:

Rough Measures And Rough Integrals, S. Hirano, M. Inuiguchi, S. Tsumoto

(Eds.), Lecture Notes in AI, 2002.

[121] Pawlak, Z., Peters, J.F., Skowron, A., Suraj, Z., Ramanna, S., Borkowski,

M.: Rough Measures: Theory And Applications, S. Hirano, M. Inuiguchi, S.

Tsumoto (Eds.), Proc. of Int. Workshop on Rough Set Theory and Granular

Computing (RSTGC’01), Matsue, Shimane, Japan, 2001, 177–184.

[122] Pawlak, Z.: Rough sets, International J. Comp. Inform. Science, 1982, 341–

356.

[123] Pawlak, Z.: Rough sets and data analysis, Fuzzy Systems Symposium, Soft

Computing in Intelligent Systems and Information Processing, Kenting Taiwan,

1996, 1–6.

[124] Pawlak, Z.: Why rough sets?, Proceedings of the Fifth IEEE International

Conference on Fuzzy Systems 2, New Orleans, LA, USA, 1996, 738–743.

[125] Pawlak, Z.: Classification of Objects by Means of Attributes, Institute for

Computer Science, Polish Academy of Sciences Report 429, 1981.

[126] Pawlak, Z.: Rough Sets, Institute for Computer Science, Polish Academy of

Sciences Report 431, 1981.

[127] Pawlak, Z.: Rough Sets. Theoretical Reasoning about Data, Theory and De-

cision Library, Series D: System Theory, Knowledge Engineering and Problem

Solving 9, Kluwer Academic Pub., Dordrecht, 1991.

[128] Perona, P., Malik, J.: Scale-Space and Edge Detection Using Anisotropic

Diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence

12(7), 1990, 631.

[129] Personnaz, M., Sturm, P., Devernay, F.: Design of a Library for Dense Match-

ing, INRIA Report No. 0278, 2003, 7, 23.

222

[130] Peters, J.F., Gunderson, D., Henry, C.: Approximation spaces in actor-critic

learning with stopping time, International Journal of Hybrid Intelligent Sys-

tems, 2007, to appear.

[131] Peters, J.F., Skowron, A., Suraj, Z., Rzasa, W., Borkowski, M.: Clustering:

A Rough Set Approach To Constructing Information Granules, Z. Suraj (Ed.),

Soft Computing and Distributed Processing, Rzeszów, Poland, 2002, 57–61.

[132] Peters, J.F., Skowron, A., Synak, P., Ramanna, S.: Rough sets and informa-

tion granulation, Bilgic, T., Baets, D., Kaynak, O. (Eds.), Tenth Int. Fuzzy

Systems Assoc. World Congress IFSA, LNAI 2715, Instanbul, Turkey, Heidel-

berg: Springer-Verlag, 2003, 370–377.

[133] Peters, J.F.: Approximation spaces for hierarchical intelligent behavioral sys-

tem models, B.D.-Keplicz, A. Jankowski, A. Skowron, M. Szczuka (Eds.), Mon-

itoring, Security and Rescue Techniques in Multiagent Systems, Advances in

Soft Computing, Heidelberg: Physica-Verlag, 2004, 13–30.

[134] Peters, J.F.: Approximation space for intelligent system design patterns, En-

gineering Applications of Artificial Intelligence, 17(4), 2004, 1–8.

[135] Peters, J.F., Ahn, T.C., Borkowski, M.: Obstacle Classification by a Line-

Crawling Robot: A Rough Neurocomputing Approach, Rough Sets and Current

Trends in Computing, LNAI 2475, Springer-Verlag, Berlin, 2002, 594–601.

[136] Peters, J.F., Ahn, T.C., Borkowski, M., Degtyaryov, V., Ramanna, S., Line-

Crawling Robot Navigation: A Rough Neurocomputing Approach, D. Maravall,

D. Zhou (Eds.), Fusion of Soft Computing and Hard Computing Techniques for

Autonomous Robotic Systems, Studies in Fuzziness and Soft Computing, J.

Kacprzyk (Ed.), Berlin: Physica-Verlag, 2002.

[137] Peters, J.F., Skowron, A., Suraj, Z., Borkowski, M., Rzasa, W.: Measures

Of Inclusion And Closeness Of Information Granules, Rough Sets and Current

Trends in Computing, LNAI 2475, Springer-Verlag, Berlin, 2002, 300–307.

223

[138] Peters, J.F., Borkowski, M.: K-means indiscernibility relation over pixels, S.

Tsumoto, R. Slowinski, J. Komorowski, J.W. Grzymala-Busse, LNAI 3066,

Berlin, Springer-Verlag, 2004, 580–535.

[139] Peters, J.F.: Rough ethology, Transactions on Rough Sets III, 2005, 153–174.

[140] Peters, J.F., Henry, C.: Reinforcement learning with approximation spaces,

Fundamenta Informaticae 69 submitted.

[141] Peters, J.F., Borkowski, M., Henry, C., Lockery, D.: Monocular vision system

that learns with approximation spaces, Ella, A., Lingras, P., Slezak, D., Suraj,

Z.: Rough Set Computing: Toward Perception Based Computing, Idea Group

Publishing, Hershey, PA, 2006, 1–22.

[142] Peters, J.F., Henry, C., Lockery, D., Borkowski, M., Gunderson, D., Ramanna,

S.: Line-Crawling Bots That Inspect Electric Power Transmission Line Equip-

ment, Autonomous Robots and Agents (ICARA06), 2006.

[143] Petrou, M., Bosdogianni, P.: Image Processing The Fundamentals, John Wiley

& Sons, Ltd., 2000, 310.

[144] Polkowski, L.: Rough Sets. Mathematical Foundations, Heidelberg: Springer-

Verlag, 2002.

[145] Polkowski L., Skowron, A.: Rough Sets in Knowledge Discovery 2, Studies in

Fuzziness and Soft Computing 19, Heidelberg: Springer-Verlag, 1998.

[146] Pratt,W.K.: Digital Image Processing, Third Edition, John Wiley & Sons,

Inc., 2001, 615, 625–527.

[147] Reyes-Lozano, L., Bayro-Corrochano, E.: Simultaneous Uncalibrated Multiple

View Reconstruction of Points, Lines, Quadrics and Cameras, Proceedings of

the 3rd International Conference on Computer Vision, Pattern Recognition &

Image Processing, Cary, North Carolina, USA, 2003.

224

[148] Rosenfeld, A.: Image pattern recognition, Proceedings of the IEEE 69(5),

1981, 596–605.

[149] Roth, G., Whitehead, A.: Using Projective Vision To Automate The Regis-

tration Step In Model Building, Proceedings of Vision Interface, 2000, 225–232.

[150] Sahoo, P.K., Soltani, S., Wong, A.K.C.: A survey of thresholding techniques,

Computer Vision, Graphics and Image Processing 41, 1988, 233–260.

[151] Schölkopf, B., Smola, A.J.: Learning with Kernels, Support Vector Machines,

Regularization, Optimization, and Beyond, The MIT Press, Cambridge, MA

2002.

[152] Schaffalitzky, F., Zisserman, A.: Multi-view Matching for Unordered Image

Sets, or How Do I Organize My Holiday Snaps?, ECCV, 2002, 414–420.

[153] Schmid, C., Mohr, R., Bauckhage, Ch.: Evaluation of Interest Point Detectors,

International Journal of Computer Vision 2(37), 2000, 159, 160, 164, 166, 172–

199

[154] Schmid, C., Mohr, R., Bauckhage, Ch.: Comparing and Evaluating Interest

Points, Proceedings of the Sixth International Conference on Computer Vision,

Bombay, 1998, 230–235.

[155] Schmid, C., Mohr, R.: Local greyvalue Invariants for Image Retrieval, IEEE

Transactions on Pattern Analysis and Machine Intelligence 5(19), 1997, 530.

[156] Schmid, C., Mohr, R.: Matching By Local Invariants, Technical Report, IN-

RIA, August 1995, 8–11.

[157] Schmid, C., Mohr, R.: Combining Greyvalue Invariants With Local Con-

straints For Object Recognition, Proceedings of IEEE Conference on Computer

Vision and Pattern Recognition, San Francisco, CA, 1996, 872–874.

225

[158] Seemann, T.: Digital Image Processing Using Local Segmentation, Ph.D.

Dissertation, supervisor: Peter Tischer, Faculty of Information Technology,

Monash University, Australia, April 2002.

[159] Shelton, B.E, Hedley, N.R.: Using Augmented Reality For Teaching Earth-

Sun Relationships To Undergraduate Geography Students, Augmented Reality

Toolkit, The First IEEE International Workshop, Darmstadt, Germany, 2002,

1–3.

[160] Silva, C.A. dos S.: 3D Motion and Dense Structure Estimation: Represen-

tations for Visual Perception and the Interpretation of Occlusions, Ph.D. Dis-

sertation, Instituto Superior Técnico, Universidate Téchnica de Lisboa, Spain,

2001.

[161] Skowron, A.: Rough sets and vague concepts, Fundamenta Informaticae XX,

2004, 1–15.

[162] Skowron, A., Stepaniuk, J.: Modelling complex patterns by information sys-

tems, Fundamenta Informaticae XXI, 2005, 1001–1013.

[163] Skowron, A., Stepaniuk, J.: Information granules and approximation spaces,

Proceedings of the 7th International Conference on Information Processing and

Management of Uncertainty in Knowledge-based Systems (IPMU98), Paris,

1998, 1354–1361.

[164] Skowron, A., Stepaniuk, J.: Generalized approximation spaces, Lin,

T.Y.,Wildberger, A.M. (Eds.), Soft Computing, Simulation Councils, San

Diego, 1995, 18–21.

[165] Skowron, A., Swiniarski, R., Synak, P.: Approximation spaces and information

granulation, Transactions on Rough Sets III, 2005, 175–189.

[166] Smith, P., Sinclair, D., Cipolla, R., Woody, K.: Effective Corner Matching,

Proceedings of BMVC’98 2, Southampton, UK, 1998, 545–556.

226

[167] Sobel, I.E.: Camera Models And Machine Perception, Ph.D. Dissertation,

Stanford University, Oalo Alto, California, 1970.

[168] Stepaniuk, J.: Approximation spaces, reducts and representatives, In [145],

109–126.

[169] Strobl, K., Sepp, W., Fuchs, S., Paredes, C.,

Arbter, K.: Camera Calibration Toolbox for Matlab,

http://www.vision.caltech.edu/bouguetj/calib doc/index.html

[170] Suk, T., Flusser, J.: Projective Moment Invariants, IEEE Transactions on

Pattern Analysis and Machine Intelligence 26, 2004, 1364.

[171] Sun, C.: Multi-Resolution Rectangular Subregioning Stereo Matching Using

Fast Correlation and Dynamic Programming Techniques, CMIS Report No.

98/246, Macquarie University, 1998, 3.

[172] Sun, C.: Multi-Resolution Stereo Matching Using Maximum-Surface Tech-

niques, Digital Image Computing: Techniques and Applications, Perth, Aus-

tralia, 1999, 196.

[173] Szczuka, M.S., Son, N.H.: Analysis of image sequences for unmanned aerial

vehicles, M. Inuiguchi, S. Hirano, S. Tsumoto (Eds.), Rough Set Theory and

Granular Computing, Springer-Verlag, Berlin, 2003, 291–300.

[174] Tang, L., Tsui, H.T., Wu, C.K.: Dense Stereo Matching Based on Propagation

with a Voronoi Diagram, Indian Conference on Computer Vision, 2002.

[175] Telle, B., Aldon, M.-J.: Interest Points Detection In Color Images, IARP

Workshop on Machine Vision Applications, Nara, Japan, 2002, 550.

[176] Ter Haar Romeny, B.M.: Introduction To Scale-space Theory: Multiscale

Geometric Image Analysis, Technical Report ICU-96-21, Utrecht University,

1996, 9–10, 15.

227

http://www.vision.caltech.edu/bouguetj/calib_doc/index.html

[177] Torr, P.H.S., Criminisi, A.: Dense Stereo Using Pivoted Dynamic Program-

ming, Cardiff Proceedings of British Machine Vision Conference (BMVC), 2002,

1–3, 798.

[178] Torr, P.H.S., Motion Segmentation And Outlier Detection,, Ph.D. Disserta-

tion, University of Oxford, Engineering Dept., 1995, 1–7, 32–34, 242–243.

[179] Triggs, B., McLauchlan, P., Hartley, R., Fitzgibbon, A.: Bundle Adjustment

A Modern Synthesis, Vision Algorithms: Theory & Practice, B. Triggs, A.

Zisserman & R. Szeliski (Eds.) LNCS 1883, Springer-Verlag, 2000, 1–5.

[180] Trim, D.W.: Calculus And Analytic Geometry, Addison-Wesley Publishing

Company, Inc., 1983, 500–501, 514–520, 526–528, 535–537, 539–540.

[181] Tuytelaars, T., Van Gool, L.: Matching Widely Separated Views Based on

Affine Invariant Regions, Kluwer Academic Publishers 59(1), Hingham, MA,

USA, 2004, 61.

[182] Urbanek, M., Horaud, R., Sturm, P.: Calibration of Digital Amateur Cameras,

INRIA Report No. 4214, 2001, 24.

[183] Vedaldi, A.: A Lightweight C++ Implementation Of David Lowe’s Scale In-

variant Feature Transforms, http://www.cs.ucla.edu/∼vedaldi

[184] Vosselman, G., Dijkman, S.: 3D Building Model Reconstruction From Point

Clouds And Ground Plans, International Archives of Photogrammetry and Re-

mote Sensing XXXIV-3/W4, Annapolis, MD, 2001, 22–24.

[185] Weickert, J.: Anisotropic Diffusion in Image Processing, Ph.D. Dissertation,

Universität Kaiserslautern, 1997, 12–13, 20–21.

[186] Weickert, J., Haar, B.M., Viergever, M.A.: Efficient and Reliable Schemes for

Nonlinear Diffusion Filtering, IEEE Transactions on Image Processing, 1998,

399.

228

http://www.cs.ucla.edu/~vedaldi

[187] Weickert, J., Ishikawa, S., Imiya, A.: Scale-space has been Discovered in

Japan, Technical Report 18, Department of Computer Science, University of

Copenhagen, 1997, 162.

[188] Weisstein, E.W.: Spherical Coordinates, from MathWorld – A Wolfram Web

Resource. http://mathworld.wolfram.com/SphericalCoordinates.html

[189] Wheatstone, C.: Contributions to the physiology of vision–part the first. On

some remarkable, and hitherto unobserved, phenomena of binocular vision.

Philosophical Transactions of the Royal Society of London 128, 1838, 371–394.

[190] Wheatstone, C.: Contributions to the physiology of vision–part the second.

On some remarkable, and hitherto unobserved, phenomena of binocular vision.

Philosophical Transactions of the Royal Society of London 142, 1852, 1–17.

[191] Witkin, A.P.: Scale-Space Filtering: A New Approach To Multi-Scale De-

scription, Proceedings of ICASSP, San Diego, CA, 1984, 39, A.1.2.

[192] Wolf,P.R.: Elements of Photogrammetry (With Air Photo Interpretation and

Remote Sensing), McGraw-Hill, 1974, 27–31, 41–46.

[193] Xin, K., Lim, K.B., Hong G.S.: A Scale-Space Filtering Approach For Visual

Feature Extraction, Pergamon Pattern Recognition 28(2), Elsevier Science Ltd,

1995, 1145–1146.

[194] Yang, G.Z., Gillies, D.F.: Computer Vision Lecture Notes, Department of

Computing, Imperial College, UK, 2001, http://www.doc.ic.ac.uk/∼gzy

[195] Zhang,Z.: Determining the Epipolar Geometry and Its Uncertainty: A review,

International Journal of Computer Vision 27(2), 1998, 161, 164, 166–168, 171–

172, 191.

[196] Zhang, Y.J.: Evaluation and comparison of different segmentation algorithms,

Pattern Recognition Letters 18, 1997, 963–974.

229

http://mathworld.wolfram.com/SphericalCoordinates.html
http://www.doc.ic.ac.uk/~gzy

[197] Zhang, C., Fraser, C.S.: Automated registration of high resolution satellite

imagery for change detection, Research Report, Department of Geomatics, Uni-

versity of Melbourne, 2003

[198] Zhang, Y.J., Gerbrands, J.J.: Objective and quantitative segmentation eval-

uation and comparison, Signal Processing 39, 1994, 43–54.

[199] Zhang, Z., Loop, Ch.: Estimating the Fundamental Matrix by Transforming

Image Points in Projective Space, Computer Vision and Image Understanding

82(2), 2001, 174-180.

[200] Zhang, Z., Deriche, R., Faugeras, O., Luong, Q.: A Robust Technique for

Matching Two Uncalibrated Images Through the Recovery of the Unknown

Epipolar Geometry, INRIA Report 2273, 1994.

[201] Zitová, B., Flusser, J.: Image Registration Methods: A Survey, Image and

Vision Computing 21, 2003, 982.

[202] Zucchelli, M.: Optical Flow Based Structure From Motion, Ph.D. Disserta-

tion, Royal Institute of Technology, Numerical Analysis and Computer Science,

Comp. Vision and Active Perception Laboratory, Stockholm, 2002, 4.

[203] CCIR Rec. 601-2 Encoding Parameters Of Digital Television For Studios

(1990), Recommendations of the CCIR, Volume XI - Part 1 Broadcasting Ser-

vice (Television), 1990, 99.

[204] http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?

objectId=3710&objectType=FILE

[205] Concise Oxford Dictionary (COD10) on CD-ROM, Tenth Edition

[206] JSankey Windows Software,

http://www.jsankey.com/software/csl/csl.htm

[207] LocMetrics - C#, C++, Java, and SQL,

http://www.locmetrics.com/index.html

230

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?
http://www.jsankey.com/software/csl/csl.htm
http://www.locmetrics.com/index.html

[208] Math Forum at Drexel Univeristy,

http://mathforum.org/library/drmath/view/51755.html

[209] Matlab, http://www.mathworks.com

[210] Mesh Factory, http://www.meshfactory.com

[211] Overview of the MPEG-4 Standard,

http://www.chiariglione.org/mpeg/standards/mpeg-4/mpeg-4.htm

[212] Royal Ontario Museum,

http://www.rom.on.ca/exhibits/egypt/digitalgallery.php

[213] WITAS project homepage: http://www.ida.liu.se/ext/witas/

231

http://mathforum.org/library/drmath/view/51755.html
http://www.mathworks.com
http://www.meshfactory.com
http://www.chiariglione.org/mpeg/standards/mpeg-4/mpeg-4.htm
http://www.rom.on.ca/exhibits/egypt/digitalgallery.php
http://www.ida.liu.se/ext/witas/

Notation

Pi i-th point in the 3D space

pi i-th point in the 2D image plane

p′i rotated point pi

•ki k = 1, 2; i = 1, .., n; i-th point from k-th image

N number of point matches

f focal length of both cameras, see 14

[vx vy vz]T point or vector in the 3D space

Lk lens centre of the k-th camera, see 14

P principal point, see 14

θ azimuth

φ altitude

γ rotation around the principal ray

R distance from the origin to given point

ϑ pan

ϕ tilt

Ski parametrization of the i-th ray from the k-th view, see 154

τki parametrization variable for line Ski, see 154

τ̂ki parametrization for the closest approach point Aki, see 155

Di cost function for the i-th rays, see 155

Rα, Rβ, Rγ rotation matrices

Tki Tki = p′ki − L′
k directional vector for projecting ray Ski, see 153

232

V1 × V2 cross product between vectors V1 and V2

Ui Ui = T1i × T2i common perpendicular vector to projecting

rays S1i and S2i, see 154

Wi Wi = S1i(t1i) − S2i(t2i) vector from point on line S2i

to point on line S1i, see 154

Aki closest approach point for Ski,

A1k is the closest point from S1i to the line S2i, see 155

S search space for the DirectGS algorithm, see 164

M set of points from one image

M set of point matches

I initial guess of the azimuth and altitude

C colour difference, see 63

O overlap, see 59

A angle of rotation, see 63

Rc ratio of cardinalities, see 64

C domain of the colour differences, see 63

O domain of the overlap, see 59

A domain of the angle of rotation, see 63

RC domain of the ratio of cardinalities, see 64

Ω subspace of R4, Ω = C × O × A × RC, see 44

ξ ideal solution for segment matching problem, see 45

Qni
quantization algorithm, given in Algorithm 2

ni - requested number of colours after quantization

233

AvI spatial colour averaging algorithm, given in Algorithm 3

M3x3 3 by 3 median filter

Cf convexity factor, see 58

X mean value of expression X

Z ideal solution in segment matching in rough set approach, see 71

Ch a chromosome (in Genetic Algorithm)

G a set of genes

Cm a codebook (in Lloyd quantization)

Ci, Cj i-th or j-th segment colour

Si, Sj i-th or j-th segment

γ partitioning of segment pairs resulting from GA

G(σ) Gaussian kernel, see 99

L(σ) an image convolved with a Gaussian kernel, see 99

Li first derivative of an image L, i ∈ {x, y}
Lii second derivative of an image L, i ∈ {x, y}
DoG(σ) difference of Gaussian filter, see 103

H the Harris corner detector, see 98

(η, ξ) Gauge coordinates, see 116

∇ gradient operator

� divergence operator

234

Glossary

altitude

An angle between a line connecting given point and the origin of the coordinate

system and the projection of this line on the XZ plane measured in such a

way that for positive Y values the angle is negative and for negative Y values

the angle is positive. 148

approximation space

A system (U,N, ν), where U is a universe of objects, N is a neighbourhood

function and ν is an overlap function. 34

azimuth

An angle between a projection on the XZ plane of a line connecting given

point and the origin of the coordinate system and the Z axis measured in such

a way that for positive X values the angle is positive and negative X values

the angle is negative. 148

baseline

Line connecting lens centres of two cameras. 27

camera calibration

A process of finding internal camera parameters and removing distortions from

an image, caused by the fact that digital cameras do not conform to the pinhole

camera model. 16

235

colour channel

A colour channel is one component from the set of given features in a particular

colour model space. For example, in RGB Colour Model, there are three

channels: Red, Green and Blue. 117

dense matching

Process of matching points from two images that makes it possible to find

matches for all points in both images. 127

direct geometrical search (DirectGS)

Algorithm for determining the relative camera locations and orientations,

which minimises the reprojection error in 3D space. 141

disparity

A difference of horizontal coordinates for a pair of matching pixels. 131

disparity map

A disparity map is an image in which each pixel value is a disparity of a

corresponding pixel from the second image. 131

epipolar geometry

Epipolar geometry is an intrinsic projective geometry between two views (in

this work, the focus is on 2D views of a 3D scene). 27

236

epipolar line

A projection of the epipolar plane onto camera’s image plane. It is a line

passing through two corresponding points from two given images. 27

epipolar plane

A plane containing the baseline and a point in 3D space. 27

epipole

A projection of one camera’s lens centre on the other camera’s image plane.

It is a point where all epipolar lines for a given image cross. 27

external (extrinsic) camera parameters

Camera properties that depend on camera location and orientation in 3D

space, i.e., camera rotation and translation. 15

focal length

A distance between the image plane and the lens centre. 13

fundamental matrix

Relates image coordinates of corresponding points from two given images. 25

Hough transform

A technique for detecting lines in digital images. 19

image plane

Plane containing the information (image) recorded by the camera. 13

237

image registration

Process of finding correspondences between two images of the same scene taken

at different angles (or times). 40

interest point detector

An algorithm extracting interest points from given image. These points have

to be easy discernible from the background, have diverse surroundings and

should be easily detectable in an image that undergoes some transformation.

97

internal (intrinsic) camera parameters

Camera properties that do not depend on camera location and orientation,

i.e., aspect ratio, magnification, coordinates of the principal point and skew.

15

lens centre

In the pinhole camera model, a point through which all projecting rays forming

an image must pass. 147

lower approximation

A collection of blocks of sample elements that can be classified with full cer-

tainty as members of given set using the knowledge represented by given subset

of probe functions. 33

238

pan

A rotation of the camera around the Z axis. A positive pan turns in the

counter-clockwise direction. 150

pinhole camera model

A mathematical model describing the process of creating images using an ideal

camera with zero aperture. 13

principal point

A point where the principal ray crosses with the image plane. 13

principal ray

A ray that is perpendicular to the image plane. 13

projecting ray

A straight line connecting a point in 3D space with its projection in an image

plane. Each projecting ray passes through the lens centre. 13

projection matrix

Matrix used to convert 3D coordinates of a given point in 3D space to 2D

coordinates of its corresponding point in the image plane. 15

quantization

In image processing, quantization is a method for converting an analog signal

to a digital signal [46]. In this dissertation, the term quantization is used as

239

a mapping from a finite set of numbers (derived from an analog spectrum) to

another finite set of numbers, where the cardinality of the destination set is

smaller than the source set. 46

Random Sample Consensus (RANSAC)

Algorithm used for estimation of parameters of any system in presence of

outliers. 5

rectification

Image rectification (epipolar rectification) is the process of determining a

mapping for two given images such that corresponding epipolar lines become

collinear and parallel to the horizontal image axes. 30

rough coverage

A measure of how well one set covers (intersects with) another set. 36

rough inclusion

A measure of the degree with which one set is included in another set. 36

rough set

A set X is considered rough if, and only if, B∗X\B∗X �= ∅, where B∗X,B∗X

denote the upper and lower approximation of X, respectively. 31

scale space

A scale space is a sequence of images parametrized by a scale. 98

240

standard set

A set containing elements that represent a norm or standard used to evaluate

sample sets of elements. 70

tilt

A rotation around a new X axis (after rotation around the Z axis). A positive

tilt corresponds to the counter-clockwise direction. 150

uncertainty function

Defines a neighbourhood for each point from the universe U . 35

upper approximation

A collection of blocks of sample elements representing both certain and possi-

bly uncertain knowledge about given set using the knowledge represented by

given subset of probe functions. 33

241

Index

algorithm

DirectGS, 141, 180, 181

exhaustive, 168, 169

gradient descent, 176

Lloyd, 48

matching, 40, 46, 56, 65, 68, 76, 131

minimisation, 167

altitude, 142, 148–150, 153, 165, 166, 168,

170, 171, 175, 176, 181, 184

aperture, 11

approximation

lower, 33, 34, 74, 87

upper, 33, 34, 71–73, 79

attribute, 167, 170

average, 39, 51, 54, 66, 67, 82, 84, 106,

179, 180

azimuth, 142, 148–150, 153, 165, 166, 168,

170, 171, 175, 176, 181, 184

baseline, 27, 28

bicubic interpolation, 136

calibration, see camera - calibration

camera

calibration, 7, 12, 13, 16, 142

external parameters, 15, 16, 26, 129,

141, 179, 184

extrinsic parameters, 15

first, 27, 140, 153, 157, 158, 160, 164,

166, 169, 171, 172, 177

internal parameters, 15–17, 142

pinhole model, 10, 11, 13, 16, 17, 144

second, 6, 153, 158, 159, 164–173,

177, 184

CCD, 13

centroid, 48, 67, 68

chromosome, 37, 79, 81–86, 88–94

codebook, 47, 48, 54

constraint

continuity, 134

epipolar, see epipolar - constraint

rank-2, 26

continuous, 119, 169, 170, 176

convexity, 56–58

242

convolution, 19, 99, 114

coordinate system

Cartesian, 10, 19, 148

gauge, 116

right-handed, 149

spherical, 148, 149, 167

cornerness, 105

derivatives, 99–101, 109, 113, 114, 116

detector

DOG, 103

edge, 22, 23, 129, 130

Harris corner, 4, 5, 98, 101, 104–106,

125

Harris-Laplacian, 101

improved Harris, 107

interest point, 4, 98, 101, 104, 105,

107–109, 111, 112

multi-scale Harris, 109

diffusion, 24, 25

disparity, 132–135, 137, 138, 140

disparity map, 128, 130, 132–135, 138,

183

distance

Earth Mover, 124

Euclidean, 9, 122

Kolmogorov-Smirnov, 124

Mahalanobis, 8, 9, 111, 122

eigenvalue, 109

eight-neighbourhood, 104

epipolar

constraint, 29

geometry, 1, 5, 10, 27, 29, 40, 129

line, 7, 26, 28–30, 180

plane, 27, 28

rectification, 30

epipole, 28

Epsilon tensor, 116

error

estimation, 103

localization, 107

reprojection, 143

Euler angle, 150, 151

extrinsic camera parameters, see camera

- external parameters

feature extraction, 81

filter

243

complex, 111, 120

Gaussian, 99, 100, 103, 105

Kalman, 6

median, 53, 54

Sobel, 22, 23

steerable, 111, 113, 121

first order warp, 21

focal length, 11, 14, 16, 17, 142, 147, 158,

165, 177

function

cost, 7, 143, 152, 156, 159, 165–171,

175–177, 179, 182, 184

exponential, 60

fitness, 85

Laplacian, 101

overlap, 35, 36, 60, 62, 63

gene, 37, 79, 81–83, 85, 91, 93

genetic

algorithm, 36, 37, 42, 44, 46, 79, 81–

85, 87, 183

operator, 85

homogeneous coordinates, 9, 10

Hough transform, 19, 127, 132, 183

hypothesis, 65–69, 81, 88

image

derivatives, 114

gradients, 113

plane, 11, 13, 14, 16, 17, 28, 130, 132,

144, 146, 147, 181

quantization, 48, 54

rectification, 30, 131

registration, 4–6, 40, 98, 104, 105,

108

segmentation, 19, 42, 49, 51

segments, 31, 32, 36, 42–44, 46, 51,

57, 59, 64, 65, 70–72, 74, 82–85,

88, 93, 94, 183

undistorted, 17

implemented, 46, 83, 85, 101, 109, 179,

181

indiscernible, 32–34, 72, 86, 97

indistinguishable, 91

insulator, 3, 123, 124

interpolate, 113, 114

intrinsic camera parameters, see camera

- internal parameters

244

invariants

differential, 5, 111, 114, 115, 120

projective, 98

K-means clustering, see algorithm - clus-

tering

kernel, 98–100, 106, 113, 114

laterally, 1, 6, 30

least-sqares method, 1

lens centre, 14, 15, 28, 146–148, 153, 157,

164, 169–171, 173

local jet, 114, 115, 132

mapping, 15, 21, 28, 30, 47, 49

inverse, 17

matching

coarse, 7, 29, 40, 46, 126

dense, 7, 27, 29, 30, 40, 41, 127–131,

134, 138, 140, 141, 183, 184

pixel, 4, 40, 46, 94, 131

point, 7, 28, 40, 96, 97, 120, 123–125,

129

rough, 71

segment, 61, 79, 93, 94, 141, 183

template, 131

matrix

calibration , 15

fundamental, 5, 6, 25–27, 29, 141,

143, 180, 184

identity, 9

non-singular, 8, 9

projection, 16

rotation, 15, 151, 152, 172

second moment, 105, 106, 109, 110

singular, 8, 26

transformation, 21

mean ray, 170–173, 177

Mecenary curve, 128

minimum

global, 165, 170, 176, 180, 181

local, 176, 180

moment

central, 117–119

geometric, 117

invariant, 117, 119

invariants, 111, 119, 120

monocular, 2, 3

245

noise, 49, 128, 138, 140, 184

noiseless, 128

nonlinear diffusion, see diffusion

norm operator, 156

normal distribution, 9

operator

crossover, 37, 85, 88, 90, 91

genetic, see genetic - operator

pan, 142, 150, 152, 153, 157, 164, 166–

168, 170–172, 174

perspective

transformation, see transformation -

perspective

photogrammetry, 10, 12

point matches, 26, 147, 165, 180, 184

polynomial, 115

powerset, 35

principal

point, 11, 14–16, 143, 146, 148

ray, 11, 14, 30, 140, 146, 148, 150,

152, 157, 164, 166, 167, 176

processor, 179, 181

projecting ray, 13, 14, 153, 169

projective invariants, see invariants - pro-

jective

quantization, 42, 47–52, 54

quaternions, 150

random, 66

range-from-focus, 3

RANSAC, 5

rectification, see epipolar - rectification,

see epipolar - rectification, see epipo-

lar - rectification

relation

binary, 31, 32

equivalence, 31, 32, 71, 88–90, 92

indiscernibility, 35

tolerance, 31, 86, 88, 89, 91, 92

RGB, 18, 22, 40, 63

robust, 53, 111, 124–127

rough

coverage, 36, 87, 88, 93–95

inclusion, 36

sets, 2, 4, 31, 33, 35, 41, 44, 79, 90

Segment, 19

246

SIFT descriptor, 112, 121–123

skew, 15, 16

Sobel filter, see filter - Sobel

solution

global, 180

ideal, 45

space

approximation, 4, 31, 35, 36, 42, 43,

79, 87, 183

line-disparity, 133

scale, 98, 100, 101, 103, 104, 106

solution, 156

SSD, 124, 131, 136, 171

standard set, 31, 71

stereoscope, 1

stereovision, 1, 6

sub-pixel, 29, 107, 108, 136

tiepoints, 21

tilt, 142, 150, 152, 153, 157, 164, 166–

168, 170–174

transformation

affine, 9, 108, 109, 121

geometrical, 20, 77

image, 96

linear, 9

perspective, 14, 57

projective, 98, 109, 119, 120

triangle property, 67, 125

Voronoi diagram, 127

warping, see first order warp

Zero-Mean Normalized Cross Correlation,

39, 101, 124

ZNCC, see Zero-Mean Normalized Cross

Correlation

247

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Motivation
	Known Solutions
	Organization of the Dissertation

	Background Theory
	Basic Definitions
	Photogrammetry
	Pinhole Camera Model
	Camera Matrices
	Camera Calibration
	Image Processing Terminology
	Hough Transform
	Image Warping
	Edge Detection
	Nonlinear Diffusion
	Fundamental Matrix
	The Epipolar Geometry
	Image Rectification
	Rough Sets: Basic Concepts
	Rough Set Theory
	Approximation Spaces
	Genetic Algorithms
	Correlation

	2D Image Processing
	Coarse Matching
	Image Quantization
	Image Segmentation
	Segment Selection
	Feature Generation
	Exhaustive Feature Matching
	Single Point Standard (Upper Approximation)
	Interval Standard (Lower Approximation)
	Genetic Approach for Matching
	2D Matching with Approximation Spaces
	Tolerance Relation vs. Equivalence Relation
	Classical vs. Rough Matching Methods

	Point Matching
	Interest Point Detection
	Scale invariant interest point detectors
	Rotation invariant interest point detectors
	Affine invariant interest point detectors
	Interest Point Descriptors
	Matching

	Dense Matching
	3D Line Extraction
	Dense Matching
	Inside Point Detection
	Matching
	Merging Matches
	Removing Outliers
	Results

	2D to 3D Conversion
	Cost Function
	Basic Definitions
	Cost Function Derivation
	Search Space

	Error minimisation
	Comparison with known methods

	Conclusions and Future Work
	Developed Applications
	PointMatch
	SPoints
	VisualBatch
	HypoDissertation
	Parallel Computations - The Server
	Parallel Computations - The Client
	TwoViews
	2DSearch
	BiCuGPU
	MeshReduction
	TexturedView
	UnrollLoops

	References
	Notation
	Glossary
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

