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Abstract

A form is derived for the quantum kinetic energy operator t'ol the

relative motion of a many-body system in a context of large amplitude

vibrations with applications to rotational-vibrational spectroscopy in

mind. The theory is valid for any noninertial frame. No constlaints

involving approximations are used. The rotational coordinates are

integrated out leaving an expression in terms of the basic rotational

invariant (BRI) coordinates of a set of generalized Jacobi vectors (G"lfr¡

âs precursors of any internal curvilinear coordinates and rotational

quantum numbers.
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l.Purpose and Organization of the Thesis.

Purpose.

The purpose of this dissertation is to present a new approach to the

derivation of a quantum mechanical operator for the vibration-r'otation

hamiltonian for a many-body system in a context of large arnplitude

vibration with applications to rotational-vibrational spectroscopy in mind.

The method yields an exact separation of the c.m., rotational, ancl

vibrational motions by proposing a generalization of the concepts of

1) Jacobi vectors (describing the relative motion)

2) noninertial frame (describing the rotational motion of the

system).

The point of view adopted here is more formal than physical in the

sense that no specific problem is discussed or used in the derivation of the

resuits. It is our view that, in a subject of such importance, a genelal

model has to be set up once and for all in such a way that àny

application can be easily treated as a particular case of the general result.

The derivation of the kinetic energy operator involves

(1) the specification of a set of "generalized" Jacobi r¡ector-s

describing the relative motion in such a way that the symmetry of

the system can be recovered

(2) the construction of a molecular frame that can be definecl in

various ways from some or all of the Jacobi vectors according to the

behaviour of the molecule under rotationai motion.

(3) the parameterization of the internal configuration in coorclinates
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leading to an acceptable separability of the potential and the

internal interactions.

The great advantage of the method, besides conceptual simplicity, is

that no'' constraints involving approximations are used. Given a potential

function, the zero-order eigenproblem can be solved by accurate numerical

methods. The results involve no approximations whatsoever and are valicl

for any noninertial frames and any curvilinear internal coordinates.

Organi,sation

In the present part, the problem is defined and cast in the cur-rent

scope of molecular spectroscopy, the scheme of the derivation of the

hamiltonian is sketched out and the principal results are presented. Palt

II is concerned with the derivation of the Jacobi vectors by

orthonormalization (io label space) of the bond vectors. Part III is

concerned with the noninertial frames and the derivation of the kinetic

eneÌgy operator itself.

The main body of these two chapters are constituted from recent

papers (either already published or submitted). Following the presentation

of the papers, notes and comments complete the discussion in the form of

appendices by elaborating upon some specific points. The theoly of

angular momentum, the concept of metric tensor and the theory of vector'

invariant under symmetry groups play a key role all along this wolk. Fol

this reason, the main results of these theories are presented. In a generai

conciusion, some immediate applications are presented and futthel

directions of research are suggested.

Page 2



2- Review.

An attempt to sketch the backgrciund of the problem would

comprise a short survey of the quantum theory itself and a list of the

contributors to the theory would be a Who's-Who in molecular physics

for the period beginning in i925.

The expression for the vibration-rotation hamiltonian for. a,

polyatomic molecule evolved in form from the earliest days of quantum

mechanics. The model of a molecule as consisting of nuclei that coulcl

execute small vibrations about equilibrium positions (localized potential

minima) created by the much faster motions of the electrons had been

clearly recognized (Born and oppenheimerl). The use of nor-mal

coordinates (Brester2 and Wigners) for the description of these motions

was investigated thoroughly by Wilsona. It was, however, only in 1934

and 1935 that Eckarts'6 considered methods for obtaining a genelar

hamiltonian that would yield an approximate separation of the over-all

rotational motion of a molecule (thought of as a rigid body) and the small

'rinternalrr displacements of the nuclei âway from their equilibriurn

positions. Actually, the possibility of such a separation had been suggestecl

earliel by CasimirT'8.

The difficulty in describing the motions of the nuclei in the intuitive

model sketched above wâs one of defining a moaing reference lrame srch

that the hamiltonian, when referred to the moving frame, would fulfill

Casimirrs conditions (small interaction between rotational and internal

motions). In his first pa,per, Eckarts developed the expression for the
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kinetic energy (classical) relative to a, frame defined by the pri,nci,pal

mornents of i,nerti,a at each i,nstant of ti,me (principal axes frame). The

pure rotationai energy term in this expression was not, however, of the

classical form that was to be expected if it were d.ominant. This same

anomalous rotational energy term appea,rs also in the Schroedinger-

equation for an N-particie system using cartesian coordinates measured

reiative to the principal axes frame (Hirschfelder and Wigners). In his

second paper, Eckart rejects the principal âxes frame as being

incompatible with the normal coordinate description of small internal

motions although Van Vleckto had shown how to correct the anomalous

principal axes rotational energy. The evolution of what is now called the

Eckart molecular frame ended in 1940 when its modern form was given by

Darling and Dennisonll. A further simplification was proposed later by

Watsonl2 whereas Louck and Galbrui¡¡tl3rla have recently reinterpreted the

model.

The principal axes frame and the Eckart molecu-lar frame are equally

fundamental; each is an example of â more general kinematic concept: the

body-f,red frameis that is, "global" frames whose instantaneous position

and orientation depend only on the instantaneous translationally invariant

positions of the particles rotating as a whole

These methods of treating the vibration-rotation of polyatomic

molecules are always formulated in terms of an equilibrium configuration

of the nuclei to define the rotating coordinate system. As a result, this

formulation is restricted to the description of infinitesimal internal motion

(the moments of inertia are expanded in a" Taylor series about the
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equilibrium configuration and for large amplitude vibration, the series is

not necessarily convergent).

In order to treat the problem for molecules undergoing large

amplitude vibrations, it is necessary to examine methods which are not

tied to any particular equilibrium configuration. This was initiated for ihe

principal axes frame by Van y1..¡10:16 who transformed the hamiltonian

to the coordinate system rotating with the i,nstantaneous moments of

inertia of the molecule. This technique was successfully applied to

triatomic molecules by Freed and Lombardil7 (using valence coordinates)

and by Smith and co-workersl8-22 (using hyperspherical coordinates).

Lately, ¡o6trrotr23-25 reviewed the results for three-body systems ancl

g6ttt26-28 used hyperspherical coordinates for the description of

four-bodies. Buck and co-workers2e have recently proposed ân elegant

generalization of the hyperspherical formalism using the principal åxes

frame as describing the rrcollective" rotational motion of the system. Theil

main result furnishes the key to understanding the rrmoment of ineltia

problem'r posed by non-rigid structures by introducing a uor-teðo operator

commuting with the total anguiar momentum.

In situations where some fragment of the system has to be

distinguished (from the point of view of its rotational motion), such global

frames do not constitute an appropriate description. Part of the system

may rotate with a semi-rigid structure whereas the contribution to the

rotational motion of the remaining fragment may not be easily

recognizable. This inspired Curtiss et al 31 to introduce distinguished

particle frames in a context of scattering problems. In this model, a bond

is singled out and the remaining part serves to define completely the
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rotating frame (actually, a single bond in the remaining fragment is really

needed) of the system rotates rrinternallyrr about the direction of the

distinguished bond. A frame of this type has been adapted recently with

success by Wallaces2 to bound state problems incorporating the

(orthogonal) Jacobi vectors description (r'mobiles"33-35) of the relative

motion into the formalism developed by Curtiss. Although simplifying

greatly the couplings between the rotational and the internal motions,

these frames are constructed in an unsymmetrical fashion (Gram-Schmidt

orthogonalization). As well, the mobiles used by Wallace do not reflect

any symmetry inherent in the system.

S.Statement of the Problem.

The motivation for the present work comes from molecular-

spectroscopy and dynamics with applications primarly oriented towards a

better understanding of the potential energy surface describing either tlte

movement of atoms within a molecule or atoms in collision with one

another. As it turns out, the results presented below can be successfully

applied to the interpretation of the vibrational-rotational spectra of

polyatomic molecules and in particular, the effects of the rotations on

intlamolecular energy transfer processes.

Any attempt to improve the knowledge of the potential surface

involves the solution of the Schroedinger equation which has to be

t¡actable in a way that the inaccuracies in the calculated spectrum be

mainly attribuable to the source potential function itself. Assume thai a
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potential (source potential) can be set up from spectroscopic ¿"1"41-46 ¡ot

a paÍticular region of the surfâce, solve the Schroedinger equation for this

potential to obtain a spectrum (calculated spectrum), compare with the

observed spectrum and make the adjustments to the source potential.

Iterate the procedure until the differences between the calcuiated and the

observed spectra are minimized.

The general procedure is illustrated in the following scheme:

.Àssume urce Potentia

Solve

Compare culated Spectrum *---fq serve ctrum

Figure I

In order to render efficient techniques of perturbation theory, this

amounts to minimizing the inevitable couplings between internal motions

for arbitrary configurations of nuclei that is, to choosing a set of internal

coordinates (internal parameters) which are optimally orthogonal in

configuration space (the notion of orthogonal coordinates and the

implications relative to the corresponding couplings will be made cleal

below). As well, the internal coordinates should reflect in some way the

symmetry inherent in the system. For instance, if the molecuie contains

,{djust
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two or more identical atoms, its potential must be invariant under

permutations of identical atoms.

A total decoupling of the internal and external motions being

unfeasible, a complete theory wouid encompass the treatment of couplings

between rotational and internal motion. In any event, the derivation of

the hamiltonian involves the explicit construction of a rotating frame

located at the c.m. This is translated into a choice of three external

parameters (for example, thee Euler angles) describing the rotational

motion of the system with respect to a fixed reference frame. In a context

of large amplitude, the choice of a noninertial frame (i.e., the choice of

the external parameters) has to be such that the rovibrational interaction

in the kinetic energy for arbitrary configurations of the nuclei be minimal.

Besides the minimization of the rovibrational couplings, the frame shoutd

reflect in some way the symmetry of the system in the sense that the

frame be invariant under permutations of identical atoms. It is also

important to mention that the choice of the noninertial frame may affect

the internal couplings themselves. These considerations motivate the

development of a general formalism of construction of noninertial frames.

Otherwise stated, the problem can be formulated in the following

way. Given a set of bond vectors {?.} and an inertial frame centered at

the c.m., what is the most appropriate curvilinear transformation of the

3N-3 components rig such that the above requirements are met. This

implies that the notion of external/internal coordinates be clarified.

Moreover, it is necessary to be precise in what is meant by orthogonality

of coordinates and how this notion is related to the couplings between the

linear momenta conjugate to the coordinates. These concepts are largel,v
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used throughout the dissertation, the main results being presented in

Appendix I.

In most of the previous approaches, the relative configuration is

formulated in terms oi a variety of internal coordinates and rotating axis

systems reflecting the physical problem under consideration. For instance,

the choice of normal coordinates corresponds to restricting the viblational

motion to small amplitudes near the equilibrium configuration, the choice

of local modes corresponds to neglecting the angular motion, ... In most of

these cases, the configuration is specifically parameterized at the beginning

of the derivation of the kinetic energy operator. As a consequence,

adapting such a model ha¡niltonian to slightly different problems becomes

an increasingly complicated task. Although some effot¿s38-3e have been

made in the direction of some rruniversalil form in the last few years, a

systematic discussion is still lacking. This has been the principal

motivation for this dissertation: the basic result is an expression for the

quantum kinetic energy operator presented in a form valid for any frame

and expressed in terms of the basic rotational invariantsao (tengths Q.ancl

angles á.. between the Jacobi vectors encoded in the Gram matrix G) of
U

an appropriate set of Jacobi vectors repræenting the system. All that is

required is the specification of an orthonormalizing matrix O of the bond

vectors in iabel space defining the Jacobi vectors and the specification of a

matrix B defining the frame and being related to the tensor of inertia of

the Jacobi vectors. The basic rotational invariant (BRI) coordinates

constitute ân acceptable preürrsor to other curvilinear internal

coordinates.

The radial coordinates are orthogonal to each other anda
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orthogonal to the internal angular coordinates which in turn âre not

ortliogonal to each other. A technique of orthogonalization of curvilinear

coordinates has to be developed. Actually, this technique is the

rrinfinitesimaltr counterpart of the orthonormalization in a euclidean space

in the sense tÌrat it amounts to orthogonalizing the iocal basis in the

tangent euclidean space at each point of the configuration space

(Riemannian space).

It is worth mentioning that for N>5, the angles ,r, are not all

independent and a rrreduction'r technique has to be considered in order to

recover the 3N-{ internal coordinates.
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PART II

GENBRALIZED JACOBI VECTORS DESCRIPTION

OF A N_BODY SYSTEM



Procedures Leading to a Variety of Orthonormal Jacobi-Type

Coordinates of Relevance to Large-Amplitude Vibration

and Scattering Problerns.

Algorithms are developed to produce transformation matrices to

convert from scalar bond distance-angle coordinates to scalar coordinates

corresponding to a variety of Jacobi-type orthonormal coordinates defined

by the usual Gram-Schmidt process, or by alternates taking into account

symmetries inherent in the molecular hamiltonian. The transformations

have been devetoped with computer- irnplementation in mind.
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1- Introduction.

the theory of large-amplitude vibration of polyatomic molecules

or in molecular scattering problems, considerable current interest aims at

obtaining, for âny specific molecule, some optirnal set of the 3N-3

translationally invariant coordinates. Ideally, such an optimal set would

satisfy tlie following criteria:

(a) Some particular body-fixed frame should be chosen to minimize

rovibrational interaction in the kinetic energy operator for arbitrary

configurations of the nuclei.

(b) The coordinates should be optimally orthogonal in configuration

space since ihat requirement reduces non--zero cross terms in the intelnal

kinetic energy operator to a minimum.

(.) The coordinates should reflect, in some simple wây, alìy

symmetry inherent in the hamiitonian.

(d) The coordinates should be such that the potential energy is

approximatively separable when expressed in these coordinates for as large

a hypervolume of configuration space as possible.

The first of these requirements has been discussed at great length in

the literaturel and will not be considered here in any detail since our

primary concern is with the selection of coordinates which are precursot's

to the- scalar curvilinear coordinates which descibe both rotation of the

frame and internal 'rvibrational" motion.

The second requirement is not met by any kind of bond coordinates

but is met by generalized Jacobi coordinater2-5 or, in the case of the
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three-body system, by hyperspherical

requilement is important since it is one

diagonalizing the form of the hamiltonian.

polar coordinates6'7. This

logical step in the process of

The third critèrion is not ordinarly met by generalized Jacobi

cooldinates but these m¿y be symmetrized as originally suggested by

HirschfelderS'S and as developed in the systematic treatrnent descr-ibed

below. Symmetrization can be carried out in several ways and it must not

be tliought that the irreducible representation is necessarily optimal.

Whiie it would be nice to claim that some particular sort of

coordinates would be appropriate to molecular problems, tire contrary

âppears to be the case, even for the simplest case of triatomic molecules.

For the water molecule the most appropriate are the equivalent syrnmetric

coordinates described below, for the HCN-HNC surface a single Jacobi

mobile appears best, whereas for ozone the optimal current choice is

hyperspherical polar.

The above criteria and the difficulty in fulfilling thern suggest the

need for some systematic method by which a potential, which is usually

expressed in terms of some source coordinates (such as those of Caltel et
o.al.') can be studied in a variety of coordinate systems. Just such an

approach has been developed in the past few yeârs by one of the present

authors24 and this work represents a systematization of an important

part of the process not just for three- and four-body problems but for

N-body systems.
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2. Sc¿lar Coordinates, Configuration Space and Label Space Descriptions-

The source coordinates in which molecular potentials are commonly

expressed usually involve bond distances or a mixture of bond distances
o

and angles". While th.ere may be variations, all of these 3N-6 scalar'

iuternal coordinates may be viewed as being derived from a set of N-1

interparticle (bond) vectors. Anticipating developments below for a

rnornent, Iet xU denote such a bond vector in the lab parallel center-of

mass frame, and iet x : (*1, \t...t xn) be a column vector constructed

from the set of n : N-l bond vectors. The bilinear form defined by the

(symmetric) Gram matrix,

G:ot

*1'*o

Þ'*o
(2.r)

X .X,n1 *n'þ x-xnn

is describable in terms of N(N-i)/2 scalars which are the lengths (bond

lengtlis) of the vectors x¡, and their intervector angles (bond angles) |ij :
arcos(x,.xr¡¡"¡l lx¡l). For three- and four-body systems there are exactly

as many such rotationally invariant scalars as linearly independent

internal coordinates. For-systems comprised of five or more bodies, the

number of these invariants is greater than the 3N-6 permissible internal

coordinates because not all the angles Ðe linearly independent The

following is worthy of note, however. Irrespective of how one defines the

*1-*1 *t-\
*2.*1 *Z-*Z
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3N-{ scalar coordinates, these are derivable from the_invariants rvhich in

turn a-i-e derived from the bond vectors. one seeks to replace the

non-orthogonal 3N-s scalar invariants above by a system of muiually

orthogonal scalar coordinates in the (3N-{)-dimensional subspace. A

natural step in tliis procedure involves the transformation of the

non-orthogouai bond vectors xk into their orthogonal Jacobi counterparts

denoted by the symbol Q, i.e. one seeks the transformation matrix O sucli

that

Q:Ox (2.2)

fot' variously defined orthonormal systems. Because of the several choices

of interparticle vectors and their explicit relationship to the

center-of-mass vector, it wilt be best to begin with the configuration

space description of the N-body system.

Let i, i,... denote particle identification labels, and d, þ,, 7 clenote

cartesian components. An arbitrary configuration in the 3N-dimensional

rvhere the *io

orthogonal, but

metric tensor has

configuration space, f,)r*, can be denoted by a vector

x : I *iouio
irt

represent field components and

not normâ,l, base vectors. The

block-diagonal form

s(CI) =

(2.3)

the eia a system of

corresponding covaliant

DN o ol
o D¡r ol
o o o*J

(2.4)

where
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DN : diag(mr,m2,...,mrr)

The trace of D* is the total mass M. The configuration

be regarded as a direct produci of a "label space",ÄN,ancl a

spacerr Er:

03N:AN*Ee
Likewise the base vectors of the configuration

Qia,: ui * do

whele q å.re the label space base vectors andI

tlueedimensional-+pace base vectors.

separation of the center-of-mass, description of the system toporogy,

aud the derivation of Jacobi coordiantes satisfying various critelia all

involve linear transformations in the subspace zL* and its dual space. For

the pulpose of describing sucir transformations, consider a vector x
represented in terms of two (covariant) base vector systems e and e,. Let

e':Ae, e-A-le' (2.8)

where e, e' denote column vectors, and A is a matrix describing a linear

transformation of basis. The corresponding field quantities x are also

denoted by a column vector. Then

X : xte - x'te'- *'t4."

(2.5)

space can

"physical

(2.6)

space can be expressed

(2.7)

do are the "physical"

(2.e)

Hence

¡/ : (n-l)t* (2.10)

These relationships also determine the transform¿tion law for the

metric tensor,

g': e'.et : A"."[at : AgAt (2.11)

The center-of-mass coordinate in Â* is conventionally defined as

follows:
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x'N - M-lÐr-,*i (2.r2)

Interparticle bond vectors likewise have the usual form

.kiX' :_X +*J

(i + j, k:1,2,...,N-1) (2.13)

where in botli equations (2.I2) and (2.13) reference is made to the field

components. In terms of equation (2.10) the matrix (A-trt has the form

(i) (j)

(k)

(N)

0 -1 L ... 0

mt/M ... mi/M m¡/[f ... mn/lrl

(2.14)

Tire fìrst N-l rows of ihis matrix determine the N-1 interparticle vectors

in a unique fashion. The last row describes the center-of-mass coordiante.

The matrix A-1 may be inverted analytically to generate the matrix A

describing the transformation of base vectors:

.À=

p[L t\ t\
Itn-t ttn-t þtZ

t 7 1 ...

(2. 15)

where /li : mi/M *d /.lijt ... 
: Iti * uj + pk + ...

From equation(2.14) one easily demonstrates that
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8ún:o (allk+N) (2-16)

This shows that the (N-1)-dimensional subspace spanned by the ei

is orthogonal to the one-dimensional subspace spanned by eñ. Thus the

--'..oäedimensional label space is a direct sum,

ÂN:AruloÂG
(2.r7)

One may also verify that the various base vectors eÉ are not in

general orthogonal among themselves, i.e.

gjr:ej.et+o (j+t¡ (2.1s)

One seeks those linear transformations, O, in the space Á..ut which

will diagonalize g'. All such transformations define orthogonal coordiantes

in .4, rel

3. Orthonormalization procedures in Á.rur.

Orthonormalization in the (n : N-1)-dimensional space Ä.., can be

carried out such as to satisfy several different criteria. An arbitrary basis

transformation,

E':Oe
is specified by the o2 prr"-.ters constituting

orthonormal set,

E'E't : 1

this specifies (n+1)n/Z conditions

n(n-I)12 conditions which can be

choices will be implemented below.

(3. 1)

O. If E' is to represent an

parameters and 

t:'"f.,

by choice. Several such

o
Lon tne n

¿ete.*ine¿

The traditional method of achieving orthonormalization is that of
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Gram-Schmidt. This produces the conventional N-body rrmobiles" usually

associated with Jacobi coordinatesS. The plocedure suffers from the

disadvantage that it does not treat all of the bond vectors on â,n equal

footing and, as a result, does not produce coord,inates which reflect any

symrnetry inherent in the hamiltonian of a molecule rvhich possesses sets

of identical nuclei, such as H2o, Sor, etc. That deficiency can be rectified

by a second choice which we shall call equivalent symmetric (ES) or by a

transformation of tliese coordinates which produce coordinates

transforming âs the irreducible representations of the molecuiar PI group.

3.1. Gram-Schmidt.

Two separate aspects of the GS procedure are worthy of description,

these being that we seek a matrix representation of the procedure and the

second being that in order to obtain the fìeld components in the

orthonormal space in the desired form,

Ql : *1,

e2: þ*l + Ê,
etc,

the GS procedure must be carried out on the base vectors of the dual

space in inverse order.

Matrix representation of the Gram-Schmidt procedure has already

been approached in the literature. Letting el,...,en be linearly independent

but not orthogonal base vectors, then a set 81,...,8n of orthonormal base

vectors may be derived from these as follows:

(3.3)
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_1El : Nr'e1,

Ez: Nrl[e, - (Er.er)E1l

k-i
Ek : Nflleu - ) {nr."r.)EJ (3 4)

f:1
where Nt is the norm of the vector eU minus its projection on the span of

81,...,\_r. This system of equations can be ca.st in the follorving for-12
-l lrlEl : D1 '' ""1

Dz: 
^2 

(D1D2)-rlz

(3.5)

I "r.", e..ez 
I

= 
I ", ez I rntnr¡-tlz

Ek = ak {nu-rou¡-1/2

e1-.e1 u1."2 e1.ek

e1'ek-1 e2'ek-1 ek-i.'ek-l

e1 uz

where Du denotes the Gram determinant formed from e1,...,eu. Expanding

the various determinants Au in terms of the co-factors of the last row,

k

Ak:l.r.iE (3.6)

,,t
whele cki : (-1)k+ilMr.il, it can be shown that

k

\ : (Dk-rDk)-tl'I .u,", (3.2)

i:1
which gives explicit form to the required matrix transformation o69,

{n,,_rnu¡-1/2

ek
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E : oote (3.8)

By construction, it is evident that O", is a lower triangulai- matrix.

Our second requirement of Gram-Schmidt can be achieved by direct

application of tensor algebra. If "0 
: €1:e2,...rêr, is defìned as the

covariant basis in standard order, and e, : en:...,€2,"1 : pe' is the basis

which results from ân inversion of this order, and if "P is the

corresponding contravariant basis, then the transformation of the fietd

colnponents under the GS matrix which orthonormalizes the contravariant

basis is given by

e:(oP)-l*:r(oo)tpx (3.e)

where OO is the GS matrix which orthonormalizes the standard covariant

basis eo. Since oo is a lower triangular matrix, its transpose is an upper

triangular matrix. Pre- and post-multiplication by P recover the form of

a lower triangular matrix, hence the field components have the desired

form (3.3). It can be seen that the various bond coordinate vectors are

not treated in an evenhanded fashion in the defìnition of the set of Jacobi

coordiantes.

3.2. Equi,aalent syrnrnetri,c (ES) coordi,nates.

In the transformation

orthonormal set, Iet us require

_ E'et :
It follows that

: Oe in which E' represents an

(3.10)

og : got : gtot : (oe)t (3.11)

i.e. og is a symmetric matrix (g iiself is by defïnition symmetric). Hence

E/

that

eE't
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B':1:ogot:o2g
(3.12)

and

o : eLl, qr.r:¡

The properties of g determine o uniquely. since g is positive

definite, so also ir g i and there exists a unique positive squale root given
,10
Dy

O, : lim Ort
n+æ

on+l :oo+(sl -o2^ltz
(3.15)

since o, is a polynomial in g 1, which is symmet'ic, ail on ar.e

symmetric and O, is a symmetric matrix.

In any molecule possessing a set of identical nuclei, if one chooses as

bond vectors equivalent bonds (as for the three N-H bonds of NH3), then

the resultant set of ES Jacobi coordinates Ql, Q2 and e3 are merely

interchanged by the operations of the molecular permutation-inversion

group. In other words, these coordinates can be regarded as orthonormal

(in the configuration space) analogues of the non-orthogonal bond vectors.

In the specific case of molecules of the form AX' the various

coordiantes of the BS representation are closely related to Radau

coordinatesll. Th. matrix O defining Radau coordiantes is inverse to that

defining ES coordiântes, the difference deriving from orthogonalization in

tlie configuration space and dual space respectively. euite apart from this

technical difference it should be noted, as described in section 3.4 below,

that ES coordinates can be defined for systems such as AXny,o (..g.,

(3.14)

wheleO0:0and
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CHzx2 and CH2o) for which R¿dau coordinates have not been'defined.

3.3 Irred,uci,ble syrnrnetric (IS) coordi,nates.

with regard to the above example of NHr, one may regard the set

Ql, Q2, Q3 as equivalent group generators of the PI group. In the

conventional mamer one can derive coordinates, Rn, which transform as

tire various irreducible representations

Ro : ) x"{n)
P

where the xae) are the cha¡acters for the various operators p for

irreducible representation a.

3.1. Intermediate coordi,nates.

From the ES coordinates of section 3.2 above one

variety of rrintermediate" orthono¡mal coordinate systems.

of the N-l vectors Qt * the position vector of a fictitious unit mass

particle. Apply the same procedure as in equations (2.L2) and (2.i3) to

separate the center-of-mass. The last row of the matrix corresponding to

equation (2.r+) has matrix elements given by i/(N-l) while the upper

rows are characterized by the same kind of choice before. This procedure

defines a vector which is the 'rpolysector' of the e-vectors and an

(N-2)-dimensional subspace which is orthogonal to the polysector but

whose base vectors are not orthogonal to each other. It may be

orthonormalized by any one of the above procedures to produce yet

another orthonormal set of coordiantes. If one chooses ES coordinates for

of the group

pei (3.15)

can generate a

Consider each
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the (N-2)-dimensional subspace and continues the procedure from the

beginning of this section until the (N-2)-dimensional subspace is leduced

to one dimension, the resulting coordinates coincide with the irreducible

coordinates described in section 3.3.

4- Tmplementation.

Specification of particle masses and identification of a particular set

of bond vectors are the only imput required to implement any of the

orthonormalization schemes of the previous section. The resulting set of

3N-3 coordiantes Qi are fietd components d,efined with respect to a

(3N-3)-dimensional cartesian basis (gij : árj, i,j : 1,2,...,3N). This is

exactly the required form from which to define 3N-3 curvilinear scalar

coordinates which somehow identify the molecular frame (three

coordinates) and 3N--6 rotationally invariant coordinates usually associated

with rrvibration". The work reported in this paper has been preparative to

the choice of curvilinear coordinates. we have shown how to generate a

variety of orihonormal precursors of scalar curvilinear coordiantes. The

actual choice of a specifìc molecular frame (Hirschfetder, Eckart, etc)l is a

quite separate issue, as is the definition of internal coordinates. While it is

not our wish to address these topics here, it is perhaps appropriate to

indicate how the above theory is to be employed. If we adopt tlie

molecular frame described by Hirschfelder, for example, and choose as

scalar internal coordinates the lengths of the vectors e in pliysical space,

together with the corresponding intervector angles, then the

transformation between the sets
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*1, *2, ..., *N(N-L)12 *, el, e2, ..., eN(N-1)/2
(ivirere the x and Q refer to the scalars) is accomplished by means of the

transforrnation

G(a) : oG(x)ot '

(4.1)

where G(x) is defined in equation (2.1). For any number of particles the

N-1 length coordiantes are orthogonal in the configuration spu..2,3. In

systems having fewer than five nuclei, the angles either are orthogonal or

may leadily be orthogonalized, thereby leading to a relatively simple

kinetic energy operator. The tr¿nsformation (4.1) permits multidimensional

plots24 of the potential to be constructed with a view to choosing that

set of coordinates (both by choice of scarars and by choice of section 3)

which is optimal.
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The determination of Generalized Jacobi vectors (GJV)

for common types of small molecules.

Methods previously described [1] to define generalized Jacobi vector.s

for N-body systems are eraboraied for common types of sma[ morecures

to define a variety of orthonormal coordinates describing relative motion.
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1-Introduction.

Configuration Space description of the f,I-¡o¿V system.

The wor-k presented in this paper is a direct elaboration of gener-al

methods previously described It](and references therein) to define a,¡cl

delive (in algor-ithmic form) generalized Jacobi vectors (GJV) fol N-bocÌy

systerns. Ilele the methods wiit be explicitly applied to gener.ate

orthonorrnal coordinates satisfying a var.iety of chosen s¡,mureh-y

constraints fol typical small'molecules ABn, ABzCz, ABC3. The resultant

coordinates, as n-dimensional cartesian coordinates, are not irnrnecliately

applicable to the analysis of molecular dynamics (except in the "tLiyial',

case of infinitesimal amplitude motion) but âre necessary intelmecliates i¡
tlie construction of any kind of curvilinear rel¿tive coordinates. The rnost

evident culvilinear coordinates would be basic rotational invar.iå.nt

coordinates (lengths of GJV and angles between them) which would be

defined in exactly the sa_me way for any choice of GJV. Definition of the

GJV for any system therefore appears as a distinct problem in its orvn

right and for that reason is all that is considered here.

Let i,i,... denote particle identification labels, and. a,þ,7 denote

physical space cartesian components. An arbitrary configulation in the

3N-dimensional configuration space, o3N, can be described by a vector

* : Ð.*iae.llû ( 1.1)

rvhele the *i* represent field components and the ei" a system of

olthogonal, but not normal, base vecto-r-s. The corresponcling covalia¡t

rnetlic tensor has block-diagonal form
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(1.2)

where

D(N) : diag(rn'mr,....m¡). (1 3)

The trace of D(N) is the total mass M. The confìguration space can be

legarded as a direct product of a "label" space, ÂN, and a ',physical

space", Er:

03N:^NeB3.
(1.4)

Likewise the base vectors of the configuration

\a:9 * d3'

where ei are the label space base vectors and

space" base vectors.

The set of cartesian coordinates, {*i*} does not provicle â.

particularly useful description of the system and it is conventional to

perform ân initial transformation from these coordinates to centr.e of

mass - relative coordinates which lead to a more separable Hamiltonian.

Such a coordinate transformation is accompanied by a transformation of

base vectors, it being easily demonstrated (u, in the examples below)

tliat the base vectors of the relative subspace å,re not ortliogonal. Since

rve must carry out transformations with respect to nonorthogonal bases,

it is advantageous to make use of co- and contravariant bases, denoted

(ur column vectors) by e and ã respectively. If g denotes the metr-ic

tensor for tlie covariant basis (square symmetric rnatrix), then the

contravariant basis and contravariant metric tensor âre expressed by the

s(a) =

DN0 o

o Dt{o

00DN

space can be expressed

( 1.5)

dS are the "physical
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matrix equations

e:gê
The v¿lue of the contravariant

rvhich is simple to prove.

Á : s-t. (1 6)

basis derives from a well knoln theorern

Line¿r transformations

Let e be a column vector denoting some covariant basis, ; a

column vector denoting the corresponding contravar-iant basis.

Let x be a column vector denoting the contr¿variant fielcl

components, x a column vector denoting the corresponding cov¿ria¡t

field components.

Consider an arbitrary linear transformation of the covariant basis

e,:Ae x,:1A-l¡tx (l.Z)

The corresponding transformations of contr-avariant basis alcl

covariant field components are âs follows. Since " 
: g ã

e'=E'e':Ae:ASã
Thus ;,-(s,)-hgã:Ãã
where Ã denotes the appropriate transformation of the cont¡aya¡ia¡t

basis. Noting that g' : A g At

;, : (n_t¡t;

wtrence Ã : qa-l¡t (r s)

Thus

A linear transformation of the field components in the covar.ia¡t
basis is eqqivalent to the same transformation performed on tlle
contravariant basis itself.

while transformations of field components appear as algebr.aic

manipulations alone, transformations of bases are subject to a geornetr-ic
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as well âs an algebraic interpretation. It is this geometric intelpretatìon

which lends itself to the conception of alternate olthonormalizatioli

stlategies.

As ¿u'-example, consider the transformation to centre of rnass ancl

relative coordinates whele, for simplicity, rve lestrict attention to the label

spâce. Definition of the centre of rnass coordinate

x'N - E.rn.*ill

and of (N-1) independent relative coordinates

x'k :-xl+ xJ

correspond to a transformation of the field quantities (in

the theorem above)

y' : (A-l)t* (i.11)

to which there is a corresponding transformation of the contlavariant base

vectors ã

e':Ae. (a-l)t : Ã (1.12)

It is readily verified from the metric tensor g, that ã,N i, orthogonal to

all of the relative base vectors ã'k but that the latter are not or.thogona.l

to each other. The implication is that the field component of the centre of

mass x'N wilt be separable in the Laplacian (KE opera¡6¡). on the other

lrand, since the relative base vectors e'i are not orthogonal, the

corresponding covariant field components of the Laplacian will be couplecl.

Any stratagem to decouple such field components is none other tha¡ a

rvay of generating an orthonormal contravariant basis. Reciplocally, a¡y

technique which orthogonalizes the contravariant basis will lead to a

separable Laplacian.

If o d,enotes an orthonormalizing transformation of tlie

(1.e)

(1.10)

the notation of
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contrâvå.riant basis, then

E:ó;'
Since the base vectors E ur. orthonormal

E,trt:f:ós'ó'
rvhence

(1. r3)

ó-1(ó-1)t - s. (1.r5)

This equation can be interpreted as a condition to be satisfiecl by any

olthonormalizing transformation.

While general computationai procedures were previously descr:ibecl [1]

to generate ortironormal GJV satisfying a valiety of criteria, the

procedures suitable to specific types of molecule and the interpretation

and value of the resulting GJV were not discussed. A great many

molecules of interest possess certain symmetry with respect to exchange

within subsets of identical particles and it is important to generate GJ\¡

reflecting this symmetry. Such GJV cannot be generated by Gr.am

Schmidt (GS) orthonormalization, but require for their definition some

combination of at least two other orthonormalization procedures. The first

is by generating equivalent symmetric (ES) GJV which are the orthogonal

analogue of equivalent interpariicle vectors (equivalent bonds). Tþese are

defined by the requirement õt : ó, i.u. o i, 
" symmetric matrix. In tliat

câse

(1.14)

--,O":E'

Irreducible symmetric

g' (or g', these being

g,T:T1L

o : ¿'-t¡z

(IS) coordinates are defined

identical).
_1T'g'T:Â

(1 t6)

as the eigenvectols of
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where zL is the diagonal matrix of eig_envalues of g'. If the transformation

to diagonal form is considered as resulting from a transfolmation M of

basis, then

M g' Mt : Â whence Mt : M-1 ( 1.18)

i.e. M is ân orthogonal matrix. The transformation M ploduces an

oltlrogonal but not orthonormal basis. A second, transfolmation by L-rlz
leads to orthonormality. Since the eigenvaluer Âi aÌe usually

nondegeneratê, the eigenvectors T are usually unique. If cer.tain 
^i 

ar.e

degenerate, the nonuniqueness of the eigenvectors T may be removed by

requiring that the T be simultaneous eigenvectors of g, and the rnat¡ix

representatives of those symmetry operators which commute with g,. The

eigenvectors T belong to one or other of the various irreduciltle

r-epresentations of the group.

Irreducible symmetric coordinates possess a unique property. If * :
iÐ,x'e, is_ the relative configuration vector, then

*.* : l,,rxtxi(e,.ej) : t,,j"tjríj (1.19)

rvhere Gij : *i*j i, the Gram matrix. Because gij i symmetric

*.*: Ð,(E,ciis,i) : Ði G g': Tr (G g')

Since the trace is invariant to a similarity transformation T

Tr (G g') : rr[(r-lG T)(T-1g,T)] : Tr (G', s,,)

If T corresponds to the eigenvectors of g, then

Tr (G g') : Tr (G" z\)

rvhiclt is a function of the diagonal elementr G,,ii

of this result is that any quadr-atic function

V : Ð..k..xlxJriu (1.21)

coordiuates.cân be reduced to diagonal form in irreducible symmetr.ic

(1.20)

alone. The irnportance
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Because the kinetic energy operator is invariant to any fixed displacemelt

of coordinate origin, it follows that, if the origin is shifted to the

equilibrium configuration (in configuration space) and if the *i a,r.e

displacements therefrom, the irreducible symmetric coordinates above,

with a potential of the form (1.21) become the conventional ,'noLmal

coordinates" of the systern. Conversely, the ,tnormâl coordinates,' å.re seen

to be a particular realization of one of må.ny olthonormal coordinate sets

desclibing the system.

Molecules often possess different types of identical particles as for

exarrple in molecules of the type ABncm. In sucli cases

olthonormalization may first be performed on each identifiable subgroup

of equivalent interparticle vectors, the resultant GJV being orthogonalizecl

with respect to each other at the end. The procedure applied in the

exampies is explained schematically below.
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1)

2l

3)

4)

5)

Covariant

basis

eg
1,,-1rt I I

l(,,t ') " I | -{- CÀf/rel coords

I i.l e, E.

Cont_

----+- Ä

ariant

is

ø
Ò

;,Ò

ñ

-llb

c

8=r

rav

bas

;

I
I
;,
I

T

ã"

I
E,

ES/IS orthonormalization witliin subgroup

iS/BS/GS orthonormalizátion of subgroups

q=õ¡,=10-1)tx, g'=(( B)e

2- Orthonorm¿lization procedures for ABo molecules_

In the case of the AB' systems let particle t have mass m, the remaining

particles being given mass m,(m *nm, - M).

=0e

: (r f mm')'12 6ij

Corlesponding to the choice of fìeld component, *12, *13,

mat¡ix Ã : 14-t)tis given by

ø--ou (2.1)

...*1tt, trre
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Tlie new metric tensor is g' : n g Ãt where

-1 10000

-1 01000

-1 00100

m'nìmntmm
illifililfifi

tf,' tl^ tln 1-f m ......0
7l^ p' If nt Ll^ ......0
Il^ 7f n p' 7l* ......0

1 cosl cosl cos/

cos/ 1 cos/ .o:4

cos/ cos/ L cos/

cosd cosd ........1

Á= (2.2)

ç'=
t-) (2.3)

(2.4)

000011l.l

with ,' : (m*m')/mm'. Setting cos@ : Il^lt' : m,/(m+m,) a¡d

restricting consideration to the relative subspace

8'= þ'
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If we introduce an orthonormal basis

tr:ó;' (2.5)

then, as before t' : O-11ó-tr'. tt, in addition, õ-1 is syrn¡rerr.ic

collesponding to tlie clioice of trS coordiuates, then ;' : O-2 or
- - 

-1 l,O : g' '/ ". From a practical standpoint, the matrix O is in this case

more easily computed fro* O 2 : E-I - g, rvhere g, : A g At. The

matrix A can be analytically obtained by inversion of A-1

-p t-¡t -p -p

-t; -p L-¡,t -p
¡.-

(2.6)

l1L1

where þ: ml¡4. Thus
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p(.-tù -r'
-r' tr '-t)

2
-p

2
-p

2
-l.L

2
-p

0

0

0

0

1

g' = lrf (2.7)
2

0

-p -p

00
pT-tùz'

0

Restlicting atteution once more to the lelative subspace and setting

a: [Mpl(I-t: |lz cosø : -pl\-t)
it follows that

(2.s)

1 cos/

cosl 7

cosl

cosl

cos/

cos/
.2Siel = 0 (2.e)

(2.10)

cos/ cosl cos/

Bíet is a positive matrix since (t--cos/), 1 + (n-l)cosd > 0. Since gíel is

a circulant matrix then o : gí"ll'can also be shown (appendix 1) to

be a circulant

b

â

b...
b ..[=

ì)

b

a

b
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It follows that

¿ : (aln){,{[t + (n-l)cos/] + (n-r){ (r--cos/)}

6 : (c/n){llt + (n-l)cos/l - {(l-cos@)} (2.11)

Noting that a - b : o{(1-cosó) : þ

tlren a:b*þ (2.12)

Witliout fulther elaboration, the ES coordinates âre seen to be of tlie forrn

o1 : 1u+É)*12 * b*13 + b*14 +.....b*ln

q2 : b*12 + (b+p)x13 * b*14 + ....biin

etc. (2.13)

It is easy to see that these are converted into each other under the

operations of the molecular group. In this sense the qi are equivalent

syrnmetric coordinates. The various cooldinates Qi, which result by using

the projection relation for the group of equivalent bonds with one of the

above as a group generator, tr-ansform as the various irreducible

representations of the group.

3- Generalized Jacobi Vectors for AB.C, systerns-

Let mO: rfl, DB: m', mC: mrrand the tOtal maSS be N4.

Assign to A the label (t), to parricles B rhe labers (2) and (3) and ro

particles C the labels (a) and (b). The contravariant metric tensor is:
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(3.1)

Once m.ore the coordinate ciroice fi'orn which to gener-ate

olthonolmal coordinates is *12,*13,*14,*t5.

The tnatrix Ã representing the transformation into the CM/relative

contlavariant basis is:

1

ñ0000
10ñ,000

10oñ.00
ooo1,, o

m

00001
nì 

t'

Cb

A=

The new metric tensor

-1

-1

-1

-1
n
M

T

0

0

0

m'
M

0

1

0

0

nl'
M

00
00
10
01
mll mttM[t

(3.2)

- - - -+isg':AgAu:
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where lr' : #+* and, ¡r" : ##
The contravariant basis {el,e',..."n} is not orthonormal:

("1,"1) : ç"2,"2) -- t,Llz
(u3,"3) : 1u4,"4) : rurf2

cosörr: -k - cos/,; cosþnr: *fþ : cosd,,

LL.tL!-o,,nrmn
717
-u"=m'mm
I1,,,1: : !tr,,mn'm
1. I7:t u," 0mmm
00001

M

(3.3)

t/ _
b

cosþrn: tffirf? : cosÇ (3 4)

p' p'cosþ' (þ'pt')Ll?cos( (lr'lr") 1/2.0.(

¡t'cosþ' p' (lt'p")Il?co"( (l-r,lr',)Llzro"(

0r'lr")rl2cos( (tr't")rl?cos( rt" ¡t"cosþ"

Qr' t ")r12cos( (tr' rr")r12cosÇ p"cosþt' lr,"

(3.5)
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O rthonormal i zation Procedures

Three distinct orthonormalization procedures ',vill be consideled as

exatnples, the resultant coordinates being, r'espectively, or-tironormal

arbitrary amplitude analogues of local rnode, mixed rnode, and nolmal

tnode coordinates. In each of these the AB, and AC, fi-agrnents rvill first

be olthonormalized either by ES or IS orthonolrnaiization. In all of the

follorving attention will be focussed on the structure of the valious

matrices, the actual values of the matrix components being suppressecl to

give emphasis to this structure. The values themselves follow

automatically from the various operations.

a) ES orthonormalization of AB, and AC, fragments.

Foliowing from appendices 2 and 3, a matrix of the form

ol
ol

-^" I

^iJ

lL,
ñ= l*l

L:

-l\' 0

L,0
+

0 
^rl

+
0 -^"

(3.6)

will, under the transformation ;'"', transform ã' ,o the form

ctll =ò

1

0

A

A

0

1

A

A

Ä

A,

1

0

A

Ä

0

1

B

(3.7)
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rvhich is seen to separately orthonormalize the AB, and AC, subspaces.

The matrix Eu-r12 (Appendix 4) will, by the BS proceclure,

orthonormalize these subspaces with respect to each other, thus tlte
cornplete orthonolmalization matrix õ., : ,,,-tl'g is of the form

0-
es

a' þ' '1" 7"'l

P' a' 1" 7t'I

î' T' A" þ' l
'l' 'l' þu ott.,

(3 .8)

wlrence qI : o,*12 + p,*13 f 7rr*14 * 7rr*15

q2: þ'*r2 + o'*13 * 7rçr4 * 7rr*15

q3 : 7'*r2 + r'*L3 + a',x14 r þu*r5

q4 : 7'*l' * 'r'*tt * Ptt*L4 + 4"x15 (3.g)

These represent four orthonormal internal coordinates such that

(23)ql : q2 (23)q2 : ql (æ)q3 : q3 (23)qa : q4

(45)ql : ql ØÐq,2 : q2 (a5)q3 : q4 (ab)qa : q3 (3.10)

b) Mixed mode orthonormalization-

0

0

e

_T

l'^ -^t+- l-,r 
^B= | o o*

[o o

(3. 11)

In a molecule such as cHrcl, it may be desirabre to treat the cH,
fragment in "iocal mode" fashion and the CCrz fragment in ,'normal

tnode" fashion. The rnatrix

0

0

€.

7
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transforms g' to the form

(3.12)

As before the AB, and AC, subspaces are separâtely or.thonor.mal but in

this case the antisymmetric AC, vector is orthogonal to all othels. To

maintain the infegrity of the AB, fragment coordinates a Gram-Schmidt

orthogonalization is calied for. If the base vectors under.lying g', å,r.e

denoted .1,..."4 and the correspondi'g orthonormar vector.s are 81.....tr4

tlien define

11. o c o
lu l0 1 c 0ts =lc c 1 0

L0 0 0 1

E1
c')

E"

E3

E4

1
e

2
e

t
e'
4

e

1000
0100
uap0
0001

= (; (3'13)

Thus the complete orthonormalizing transformation is oro, : ( B where

O'o* has the form

0=
flìx

/i, -^ 0 0

it_Å*00
a(Á,-Â ) a(lt,-/i ) þe þe_/\+

ooT-'l
(3. 14)

Page 18



As in the plevious procedule q : ó-* x and

(23)q1 : q2 (zs)q2 : ql (23)q3 : q3 (23)qa

(45)ql : ql GÐq2 : q2 (4b)q3 : q3 (ab)qa

c) Irreducible orthonormalization of both fragments-

The rnatlix

transforms g' to the form

4q

4-q

B_

(3.15)

(3. 16)

l"=
¿t

€ €. 0 0ló-ó o ol
0 0 e' e'l
0 0 6' -6,)

1040
0100
4010
0001

By inspection it can be seen solution of the eigenproblem for g" yields

two degenerate eigenvalues (base vectors e2 and e4 being alreacly

orthonormal) Solution of the eigenproblem for the pair el, % permits us

to clefine new orthonormal base vectors by multiplying those underlying g',

by the matrix

(3.17)

(3. 1B)

It 0 1 0lo 1 o LIr o -1 o

Lo -t o 1

( = 2-tlz
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Thus Or, : C B is of the form

In Ä A., Ä,.]

õ,,=1 3 -å 
Å'.-Å',1

ll -D -D/ D,J

(3. 1e)

ancl fi'om q : óIS x, we derive

(23)q1 : ql (23)q2 - n, (2J)q3 : q3 er)qa: -q4

(45)q1 : q1 (ab)q2 : n, (a5)q3 : q3 (ab)qa : -q4 (3.20)

4. Generalized Jacobi vectors for AB'C systems-

Let mO : m, ffiB : m', mC : mtr and the total mass be \4.

Assign to A rhe tabei (1), to partictes B the labets (2), (3) and (a) ancÌ ro

particle C the label (5). The metric tensor for the contr¿variant basis

1"1,"2,u3,"4,"5y ir,

lt=ö

*oooo
o#.ooo
oo*.oo
ooo*.0
oooo#,,

(4.1)
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The source coordinates as before are chosen to be *12,*13,*ln,*t5.

The matri* Ã ,.prusenting the transforrnation into the CM/r'elative

contravariant basis is:

Ä=

-1

-1

-1

-1
m

[t

1

0

0

0

m'
I

0

1

0

0

m'
[l

0

0

t

0

m'
M

0

0

0

1

mtt

il

(4.2)

The new metric tensor irã':Ã; Ãt,

Í' =ò)

tt'lI10'mmm
111
=u'::0m'mm
77 1.ttt:0mmt"m
tL1ñ ñ ñ p" o

00001
M

where pr' : !l=t4 and, ¡t,, : #H*
In the relative label subspace,

{"' 
1,"'2,"' 3,"' 4¡ is not orthonormal:

(4.3)

the contravariant
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Y' ,, 
: ¿' z? 

: ã'33 : t''t lz

8'44: ,"rf 2

cosÓrr: cosþrn: cosdrn : #; : cosd

cosþrr: cosdr, : cosónr: IffiLf2 : cose

(4-4)

IÌN

T

ry

q

lt"

(4. 5)

rvhere q : (lt'1.r")Il2rorç.

Orthonormalization procedures-

In order to conserve the symmetry of AB3, we may orthonor.rnalize

tlre sub-basis {e'I ,"'2,",3} by either ES or IS procedure:

In either case the extension in relative label space is:

8'=

Lt,' ¡t'cosþ p,, cosþ

¡t'cosþ p' ¡t' cosþ

¡.t'cosþ ¡,t,'cosþ ¡.tr'

ñ= [3' î] (4 6)

where B' i, the 3x3 matrix:
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a

0

27

or

BS

b

â

b

b

b

a

IS
...

l" t
lB -þ

L-, -7
(4.7)

rvith:

i,=

(a-

b-
Under this transformation the new metric tensor is ã'"*,B":B

ISBS

oll -b

1

0

0

A

0

t

0

Ä

1

0

0

C

0

L

0

0

c

0

0

11,"

0Ä
OA
1A
Ap"

0

0

1

0

or (4.8)

where:

o : [Hú]t/'
Bither of the new bases could be orthonormalized by GS, ES, or IS

procedures yielding a total of six distinct olthonormal coordinate systems,

all of which should now be derivable by the reader. A priori, one can¡ot

say wliich of these would be best suited to a" particular molecule or.

application. Nevertheless, if , as in the previous example, one wishes to

maintain an orthonormal "local ûrode" descliption of the CH, flagnleut,
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and if one is interested primarily in observables related to the CH¡

fi'agment, then GS orthonormalization of the first of the above bases rvill

be the favoured choice, the above basis being or:thonormalized in the or-cler.

(1,2,3,4). Since the tiiree first vectors are already orthonormalized, the GS

pr^ocedule does not affect them (integrity of fragment coordinates

maintained). We find:

1000
0100
0010
cccd

sGS _

whele:

c--l$t/z¿:f4i/2L(rn*m")'*3mm"l Lqrn+-" )2+J**''1

oGS =

The overall transformation is the matrix O : (çrB:

abb0
bab0
bba0

c(a+2b) c(a+2b) c(a+2b) d

(4.e)

(4.10)
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Appendix 1.

Positive square root of a circulant.

LetAbearnatrix

Â-

abbb.
babb
bbab.

a' b' b' b'

b' a' b' b'

b' b' a' b'

Then

1) A is positive iff a-b, a*(n-i)b > 0.

Suppose A is positive, then

2) The positive square root of A has the form

B_
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where

*{{ tu+("-1)bl + (n-r)l (a-b)}

*{,{ tr+("-1)bl -,1 (a-u)}

Proof:

Fact 1: A e L(Rn,Rtt), A is positive, then A has a

Loot [2].

a

b,:

unique positive square

Defìnition: A circulant is defined as a matrix

u1 az u3

ân aL az

a
n

an-1circ (a, ..an) =

Fact2: AeM
1) Ais

where

n : circ (0,1,0,0,0,0,0...)

2) If A is a circulant it

diagonalized by a matrix X

commutes with zr

can be diagonalized. All circulants ale

nn(c)

a circulant iff A
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1711 1

o97 a ,' ,ó ,u-L
n ..2 , 2',2 , D-1'2r a v) ..1u"-)-
1

wlrere ø :'exp(2r/rr).

3) Aisacirculant

der A :,ft" [", *nil1r,r¡i."t +r]j:l ' k:l
In our case

der A : (a-b)n-l . [a+(n-r)U]

i) The eigenvalues of A are (a-b), [a+(n-r)b] > 0.

ii) A : -n2. ¡o,n1: o. Thus

o r1o: A : ço 
rF,n¡z : B2

and r- lBzr : B or [o,B] : o

whenceBisacirculant.

Then x-lAx : (x-lBX)2

in rvhich case B has the eigenvalues { (a-b), { (a+(n-f )b).

Denoting the eigenvalues of B by a column vector Å : (,\1,....,\,r),

we can write, since B is a circulant defined by n quantities a :
(ar,ar....ao)

X_
-l

where

Å:Xa _1a:X'Â

Page 27



111 1

, n-1r a .....-a
_1X'= L @rr-L)z

2Ll

1 1øn-l¡n-t an-I

rvlrence in our case where a : (à,,b,,b,......)

,. : f,{{ [a+(n-r)b] + (n-r),{(a-¡)}

b' : *{l[a+(n-t)b] -{(a-u)}

Appendix 2.

suz 
^o¿ "'/'for 

the 2 x 2 case.

Then from Appendix 1

where

l* 
=-|ii 

(a+b) + ,{(a-u)l

^- 
: 

åtl (a+b) - ,l(a-u)l

wirlr o : ÀT - ^?, 
A+ : 

^+lL, 
and Â_: ÀJA
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o=;-t¡z=[**-¡'l- L-,r_ ,\;J

rvhere ó i, un orthonormalizing matrix, i.e. O ã O' : t

Appendix 3:

Irreducible orthonormalization of a2 x 2 matrix-

The eigenvalues of the matrix g "r. I 
: a" * b. If we expr.ess the

eigenvalues as a matrix

the corresponding eigenvectors are

-+
and I : C g d orthonormalization of g is therefore achieved by a

matrix

which is of the form

r= [(uöo)rå,]

, = ,-tl' lI _i j

s = r_rtzÇ = 2_rt2 [(".']_i,i [;::ì_i,,:r)

o:It t'l
LT_T )
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with

€ : l2(ã+b);tlz ¡ : [2(a-b)]-rlz

Appendix 4-

^F.ZCZmodel: 
positive square root of ,,-tl'-

Let A (ã") ¡. of the form:

A=

To evaluate the positive square root A-i/2, l.t us consider (in the

fashion of Appendix 1) :

¡;Llz : pttr-rl2o

where p diagonalizes the symmetric, positive definite matrix A:

p A pt : Á. : diag(Àr,Àr,À3,À4). (A4.2)

The determinant of A is factorized in the following way

I Al : (À-i)2(À-1-2a)(À-1+2a)

The eigenvalues of A are

À1 : 1*2a À2: 7-2a À3 : À4 : 1

Tlius

L-r I 2 : diag([r+ za¡r I 2,¡t-zu]-r I 2,t,t)

p is defined up to a 2-d. rotation of the subspace spanned by tlie
r¡ectors corresponding to À, and Àn.

10aa
0Laa
aa10
aa01

(A4.1)

(A4.3)

(44.4)

(A4.5)
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l, is ttre eigenvector corresponding to Àr:

(P g,P 12,p 1l,p u) A : (t +2a) ( p 
11,p 12,p 1z,p v)

Therefole

fu, - |(t,t,t,t) (A4.6)

Sirnilarly,

Iv2 - |G,,t,-1,-1)
substitute in (44.1) and use the oi-thogonality relations:

fol k:1,2,3,4: pS|- * Oaf;: t¡Z
fol kfk':I,2,3,4 p'kr'k. I p4kp4k, : -LlZ

Finally, the positive solution of 1iI12 is given by:

lr-rl2 = ï

0þ7'l

P0rT
7'raþ
't7pa

(A4.8)

where:

a: (r+za¡-rlz + (1-2a)-rl2 + z

þ: (L+za)-rlz + (1-2a)-rl2 -z
7 : (r+2a)-|lz - 1t-za¡-l 12 - z

Acknowledgement:

Thanks is due to George Ader Aziz for the proof of Appendix t.
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PART III

QUANTUM KINETIC ENERGY OPERATOR IN A

GENERAL NONINERTIAL REFERENCE FRAME



Foltn of the quautum kinetic energy operator for relative rnotion of a.

gtoup of pariicles in a general nonineltial reference frame.

Abstract: A folrn is derived for the-quantum kinetic energy operator for-relative motion of a group of particlei in a geneial noniñïtiai ieiõien."
frame. Rotational cooidinâtes are integrated oît-teaving rì-r*proiüi interms of internal cartesian coordinatei and rotational fiuantunï-nut"U.tr.Tl. operator reduces to standard forms for conventional choiCes ot
reference frames (such as instantaneous principal axes of inãitii) anci
s€rves _as -a general starting point for internál curvilinear coordinates
describing large amplitude internal motion.
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1. Introduction.

The reduction of the description of the motion of a quârturn

N-body system in which large amplitude relative motio¡ may occnr.

follows a fairly well defined pathway. Tlie first step invol'es the

separation of the motion of the centre of mass, this leaving ttre relative

motion described by n - N-i Jacobi vectors. Shortcomings in the or.iginal

definition of the Jacobi vectors (notably tlieir lack of symmetr.y upon

exchange of identical particles) have recentry been overco*, 1.

One proceeds to describe the relative motion with some opti¡ral set

of n generalized Jacobi vectors (GJV). At this point it is usual (at least

for small amplitude motion) to define a noninertial (body fixed) fra¡re

which is in some way tied to the configuration of the Jacobi vector.s. For.

infìnitesimal amplitudes of motion the Bckart frame is the conventionaì

choice. Fol large amplitude motion, on the other hand, the fra¡res

employed appear to be those of Hirschfelder and wigner2, and curtiss,

Hirschfelder and Adler3 (cHA). one of these is the instantaneous

principal axes of inertia frame which underlies recent wor-k on

hyperspherical polar coordinates4 while the other (cHA frame) might be

referred to âs â I'distinguished particle" frame in the sense that it is

dilectly tied to the configuration of a subset of two Jacobi vectors. Again,

as with the choice of the Jacobi vectors themselves, distinguished particle

frames may be such 
. _that Hamiltonian symmetry is not maximal, tlie

reason being that the frame is derived from the Jacobi vectors by a

Grarn-Schmidt orthogonalization process as opposed to a symmetr.ic

ortliogonalization pro..rrl. The choice of cHA frame underlies recent
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work by one of the present authorsS in which a Hamiltonian wâs derivecl

for arbitrary amplitude motion in a molecular context.

In situations with one or more large amplitude degrees of fi-eedom

the terrn "body fixed framet' is something of a núsnonrer- since the nuclear-

configuration may bear rìo simple or obvious relationship to the

noninertial frarne. Depending upon the system under study one migirt u,ish

to identify frames satisfying a variety of conditions. It is therefore of

considerable interest to derive the form of the Hamiltonian (really the IiE
operator) in the general frame, that in specific frames being deriyaltle

thelefrom.

Any choice of nonirtortiai frame defines three angular coorclina,tes

(the three Euler angles), leaving a maxirnum of 3n-3 r.otationally

invariant independent internal coordinates. Here we shall be content rvith

the transformation of the cartesian coordinates, momenta, ancl ki¡etic

energy operator from the inertial frame to the noninertial reference fi.a4re.

The resultant sei of cartesian internal coordinates, momerìtâ,, etc., ale

invariant to rotations of the frame and are valuable pÌecursors to any

choice of curvilinear internal coordinates.

section 2 of the paper is devoted to a gener.al definition of

uoninertial reference frames. In Section 3 the transformation larv for

angular and linear momentum operators is derived, this leading to a set of

matrices I(i) characterizing the frame. The resultant I{E operator is

obtained in Section 4 and, in the manner of CHA, is integratecl over.

rotational cooidinates to a form dependent only gpon internal coordina.tes

and rot¿tional quantum numbers. Specific realizations and compar.iso¡ to

standard frames is the subject of Section 5.
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The paper develops in parallel rvith the

Hirschfeld,er and Adler3 but with the more

Biedenharn and Louck6.

qio : 1{1i¡,?*)

treatment by Cultiss,

general tei-rninology of

a).

the

by,

2-Reference Fr¡.mes

Rotation Matrices.

with respect to the inerrial frame {?o} ltuu.parallel fi.amc (LpF)),

cartesian coordinates of the genelalized Jacobi vector.s {1i) a.re given

(2.1)

Under a rotation 9,, the vector {(i) transforms into AÅtil. fr, is

represented in the basis {?*} by the ort}rogonal matrix R such that the

most general orthogonal transformation in the physical space on the

3(N-1) cartesian coordinate, qio is given by:

qiÀ : ÐaRÀa yia (a,À : 1,2,3) (2.2)

The action of the matrix R may equally be viewed as an orthogonal

transformation of the LPF into a new frame (Ì o;u:r,2,3) such that:

?o : Ð.lR,lo?,1 (2.3)

where RÀo : (7À,?a) is the direction cosine of ?o with respect to ?^.

The matrices R are conventionally parameterized by a set of Euler

angles á, (s:1,2,3).

The new cartesian coordinates ale obtained by inverting (2.2) taking

into account the orthogonality properties of R:

yio :1{qi¡,?/ : ÐÀRÀ*qiÀ e.4)
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b) Noninertial frames: definition.

The nelv frame is in some way "attachedrt to the molecul¿r.

configuration i f the l* depend upon some or all of the c"lv {(i), ttre

precise form of attachment being determined by the specific iinear.

cornbination of tlie GJV involved in the frame construction :

î o: rkBtkd(k) (2.5)

Let {d"(i)} be the set of the GJV used in the consiruction of the

'rattached'r frame ana {{'(i)} be the set of the remaining vectors. The

frame is considered "global" if all the vectors d(i) define the frame, or.

"local" if some subset define it.

The distinction between "globar" and "local" frames can be

expressed mathernatically in the following manner. Non-inertial frames

satisfy the relationship:

(2.6)

for at least one a and all i:l,...,n in the case of a global frame or.

for at least one a and a subset {do{i)} of the i:l,...,n in the case of a

locally defined frame. Condition (2.6) assures that the orientation of a

"global" frame depends on the instantaneous position of each particle i¡
the molecule.

To proceed with the construction of non-inertial frames, defile the

Gram marrices of rtre sers of vecrors {d(i)}, {d"(i)} and {d,(i)}
- respectively by G, Go and G, such that

Gij : G(i),d(j)) : loqioqJo (2.7)

t#,#,#l +{d,d,d)
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In terms of its components G is partitioned as follorvs:

wirere c is a rectangular matrix tinking trre sets {d") ancl (d,); its
dirnension is no * 4, where no is the number of GJV of the set {{o) a,ncl

? is tliè number of GJV {d'(i)} not involved in ttre definition of the

non-inertial frame.

since the new frame is orthonormal, B is a, (3"no) dimensional

matrix satisfying :

G a,1 p) : 6 *p (2.8)

Substitution of (2.5) into (2.8) leads to the fundamental lelatio¡

linking the matrix B to the matrix Go:

G-[:"::]

BG Bt: Iotì
o

This corresponds to a customâ,ry orthonormalization of 2 or 3 GJV

(i.e. for 3 or 4-body systems), since B is a square matrix (respectivery 2*2

and 3*3). In the general case, the corresponding orthonormalization is best

approached by a two step process involving:

(1) â, reduction A of the no GJV into â, preliminary set of 3

(nonorthogonal) vectors Ë, ?y:L,2,J):

(2.e)

(2.10)

(2.1 1)

F.¡ : Ð¡Ar¡do(k)

foliowed bV (Z) an orthonormalization O:

?:ÐO Ë'u 741 'l
hence

Bak : Ðlo*l{lk

Page 6
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The reduction A is represented by some prescribed (3"no) matrix

whose elements Azt are invariant under any rotation of the frame.

Actually, ff fr, is a collective rotation of the set {{o}, by definition, tlie

set {Êr} (actually a non--orthonormal attached frame) is invariant ancl:

A 
rulño{t),..., .ødo{n)l : A 

rr.Ëo 
( r ),...,do (t')l (2.13)

According to the weyl theoremT, every rotational invar.iant

clepending on no vectors {d"(i)i is expressible in terms of the nl scalar

products (d"(i),d"(i)) : (Go)ij. The coefficienrr Azk âre rtrerefore

functions of the no(no-l)/2 distinct elements of Go:

A?k : A7r*[(G")i.¡ì (2'r4)

Since Go is rotationally invariant, (Go)ij may be expresssed as well by

Ð *rL"t!" so rhar A7k : A7k(yå").

construction of the noninertial frame is reduced to ålì

orthonormalization O of the three 3-d vectors Ëo which can be carriecl

out by any standard rnethodl. If GF denotes the Gram matrix of tlie
vectors Ëo, i.e-, (Gr,)oÉ : (Ëo,ËB) wtrich is a function of the components

vl?,then, since o is such that oGrot : Ir, the choice of a particular

fi'ame imposes three conditions on the components y:". Convelsely,

imposing three constraints on the cartesian components of no GJV ancl

satisfying the above requirement defines uniquely a non-inertial frame

attached to the no vectors d"(i).

The 3no rotationally invariant coordinates vla together with tlie

three constraints may be parameterized by 3no-3 internai coordinates (f,

(z:1,...,3no-3). The cartesian components of the remaining vectors with

tespect to the fi'ame {lo} are obtained by forming the scalar products:

.kay,''* : (d'(k),lo) : tiBCIifi,(k),do(i)) : ÐiB"icik (2.rb)
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The set of 34 coordinates {y'ko) constitute a set of inclepenclent

internal coordiuates (i.e., invariant under a rotation of the non-iner-tial

fi'ame (Appendix 2)) which, taken togethel rvith ihe set {(l), recover.the

(3n-3) independent internal coordinates.

The separation of the rotational and internal deglees of fi-eeclom is

formally expressed by the relationship:

qiÀ : xoRÀ*( or)vio{Ç') (2 16)

where R is now the rotation matrix describing the relative motion of the

non-inertial frarne {loi *ittr respect to the LPF. The thlee pararneters d,

(external coordinates) are functions of the AjÀ inuotrred in the definition

of the frame. The 3n cartesian coordinates are rotationally invaliant ancì

their motion in configuration space is restricted by tlie imposition of three

constraints defining the new frame.

There exist of course many ways to define such non-ineltial fi'a¡res

depending upon the physical probìem one has in mind. In any case, one

should expect the frame to reflect in some way the symrnetr.y of tlie
system (for instance, invariance under permutation of ideptical

constituants).

3- Momentum Operators-

a) Angular momentum.

Let f, ¡e the total orbital angular momentum of the systern; the

components Lo : (1,,-¿ a) are defined by:

Lo:-? ['-, fu-qk7;fr] rr,,r

where k:1,..,n and a,þ,7 are cyclic permutations of 1,2,3.(c.p.)
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Define also component angular momenta L] and L; relative to the

sets {{o(i)} anct {d,(i)}. Of course,

Lo: ti + r;
to is the generator of the rotations of the vectors

eactr {o(i) as rvell as each lo are vector operators with

follows (Appendix 1, 41.9) thât:

lLiJ d : "'(1 f7 o)

[l[,nB¡J : ¿'op7È7^

where R is parameterized by the angles d, (functions of

G.(i),1o)). Furthermore, each vj" is an invariant with respect

lotation described by R, hence:

lr,l,vj4 : o e.2r)
Let us evaluate the derivatives appearing in the clefinition of Ll in

telnu of the derivatives with repect to o^, and ,5À using the

transformation:

The chain

Substiiute

function F:

therefore,

rule yields :

A _[
aJa-.LÀ,ll
(2.23) into

(2.1e)

(2.20)

iao:

to the

(2.22)

(2.23)

for any

oåB;ä, trË ] : 
'nå'ú, 

,rr ãË

Li: -o{,) trl,n^rl f"_
À,p

(2.24)

+)
k,À

(2.20)

qåo : E 
þkopylo

f âRt,i 
ô

LfuFJðÐ
(2.I7) and use

.J^t#*r#
the derivation property

¡r.l,vfÀt +, ) rr xl
ovt

and (2.21) to get the

(2.1s)

{d"(i)} a'd thus

respect to f,o. It

Use the commutation relations
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expression for the component angular momentum Ll:
Lo: -¿'x.Io^. ^9 ô I-a '"'Ð^L *Br ,q; - RzÀ ,-" ); u'7't å're c'p (2'26)

This justifies the statement that the component angrrl;il rnomentum

to is the generator of the rotations of the noniner-tial frame.

L; is evaluated by noting that the RÀ, do not depend upon the
.iaq' ., tnerelore,

Lo: -/),[qk'Pffi-qk'rffi]
: Ð,lPi[RBlrRr, - RPrÈrì (À'þ'u are c'P)

where:

p o: _rl, 
[ou', fi,r_ 

qk. , #,uf e.r.,l

Employing the properties of the orthogonal matrices, we finally

obtain:

L o: Ð,lRo,lPÁ (2.2s)

The L] are the differential operators ;/*defined in Appenctix 1 (Bq

A1-4). The set of operatots {l}} are the generators of the rotations of the

frame {lo}, while the set {Lâ} generates the rotations of the

"complement" with resoect to the inertial frame. one can evaluatc the

components of the operators f,o and f,' with respect to the noni¡ertial

frame:

, --ownere Ilû ls:

Ko: EÀRÀ'(L! + ti) : I{; + p,o

þ:3K;: , I, i*rofi-*rrf".]
þ:L

(2 2e)

(2.30)

where a,þ,'y are c.p. This expresses that the ath component of the total

angular momentum with respect to the noninertial frame is the sum of
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,1 ththe tu" component of the partial angular momentum I{l and the opelator.

P;, component along the noninertial frame of the genelatol of the

lotations of the set {{'(i)} with respect to the inertial frarne. Therefo¡e,

P' is to be identifìed as an internal angular momentum gener-ating tite

rotations of the set {d'(i)} with respect to the noninertial fi.ame {1 }.' (r)

b) Linear momentum operators.

To obtain the hamiltonian for relative motion of a molecule rvhose

confìguration is represented by the N-1 generalized Jacobi vectols {(i) ana

in rvhich the motions are referred to a noninertial frame, we seek to

transform the kinetic energy operator from inertial to noninertial frarne:

r __i];fur

To achieve this transformation, the
.a: -¿ --v- are first transformed to the

oq

Let us rewrite Eq_(2.23) in the form:

ô - Ìrrr a
;ia : ¿ trl ãF- +
dq'* Ë,, ""þ7

linear momentum oper.ators pro

coordinater {R,l¡r(ár)} ana vi?.

I rrll å (32)

i,r oY"'

(3.1)

(3.3)

whele:

ôP"^
lrl : --44L r 

ôq'*
: tIIl : WlT'\'ur'o

Evaluation of the derivative [I].

(Ì. a,î 7) 
: (1*,k *)lrl : -¿-rr nl(I

oq
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one needs the derivative of the vector î., with respect to qia. From the

olthonormality relation (?o,TO) : 6 aþ,we deduce:

ô ,t ?r ô1o ô1^

fu{t*,td: Go,#) * (ro#,îp) : o

Tirerefore,

aî. ^ al
G.--4-ì: t d ?rv a,,{õ) - - rffi,L p)

Taking a : þ rve conclude that the derivative of the base vector ?o rvltli

lespect to the qio i, orthogonai to ?d:

g^,!!r¡ : o (3.4), Q'6rto/

Accordingly6, the vector *, may be expressed as the vector.
ôq.

product of îo with some vector d) which depends upon the functional

fonn of l* with respect to the qia:

!+: Ì^,^ dl (3 5)
ôqt o ''l o

Using this result, [I] becomes, after replacing 7 p r, X¡Rp¡?¡:

u) : (7p,17. 11å) : $1L,7p* lr).: xÀRpÀ(rlå'?^* ?r)

: 
^ìroþÀ(då,?o) 

: 
^r+foÀQåo 

(3.6)

where À,j,o are c.p. of 1,2.3.

The 3*3 quantities nrao G fixed) can be considered as elements of a

3*3 matri* Qi. They are-easily determined from eq.(3.b) and the propelty

of the triple product:

,Lt: t ft,tur (3 2)
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where 7,6,o are c.p. of r,2,3. In practical calculations, we will need the

obvious result:

f¿:^,: -t**î^l (3s)a'y ' aqr Q ,- o/

with the definition of the frame given by eq.(2.a1), we obtain the explicìt

explession fol the matrix elernents 01 :e7

alt: ru( 
ä# d(r-) + u* #

Substiruting d(r.) : Ðrqirlr: E"yktlr,

,?¿)

fìi - Ð, 
ôBgk 

.,rk6
a'Y R ôqta"

Of course, if d(i) is not involved in the

rnatrix 0i is the null matrix.

III] : ry]7
L I nld.

oq

:

Evaluation of the derivative [II].

: 
#G(i),lz) 

: (p,1r) + G(i),

4joo, + 1r1|,d(j)"?r)

This result can be expressed in terms of the matrix elements

{1t ¡ expanded in the moving frame):

[II] :á.,R + tujÀniu a'Y 
^+i 

--ao

+B.Rôor a0

construction

(3.e)

of the frame, the

al7l
ôqt *'

0iao

(3.10)

(using

(3.11)

where À,'y,o are c.p. substitute [I] and [II] into (3.2) and evaluate the

summations.

rs,r = ìÑf..: ì,r,nr,?o*îr) 
f""
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wirh (3.6):

lsrl : 
,frt^?ro 

u^nL,l ü, (À,r,o are c-p )

Int'oducing ttre vector Ro defined, in (2.30), it follows ihat

lsrl : ;1df ,R'¡ (3.i3)

rsrl = ,lr##:-1, [4irz.,tffii+ 1d],d(j)"lr#)]

The summation over j kills atl jfi in the first term, so that:

lszl : ,r(7o,lrffil *,|r,*å,U(j). lz #l
Defining the vector operator. 7r:

ìi : -"'Ð ol o ;Ôi* (3.1b)
oy

we obtain:

[sz] : i{Gr,lo) + r.,(df,dt.¡1" ?.¡)}

: i{{ìr,,l o) + {d},r,df:1. ?.¡)}

: i{Gr,t o) + td},P¡}

Þ : xopo?e : rjd(j)" 7j

Bxpanding P atong {?o} giu.r'

(3.14)

where

(3.16)

(3.17)

po: -"r:{rto ffi-ri, fu} (3 18)
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where 40,i å,re c.p. The Po are intrinsic operators (see- appendix z). p 
u

is the sum of two terms P] and P; respectively the voltexg a,igula.

mornentum (with lespect to the frame) and the internai angular.

momentum, generators of the rotations of the set {d, (i)} in the

non-inertial frame.

cornbining [si] and [sz] gives the expression for the Iiuear.

momentum pr*:

Pic = -t #: (ìi,7 a) + ldf,il'+ Ë¡

or, in component form:
t

Pio: Ð.1{R*,loi.l

where r'ro is the linear

coordinate yi0:

(3.21)

matrices fli:

+ f¿;À(KÏ + e¡))

momentum conjugate to

.ô
tt- -L 

-

lQ oltoy

We now employ the Cartan decompositionlO of the

ei : 6i *i-
wirere 0 i is orthogonal and o¿ 

i is a positive semi-definite symmet¡ic

matrix. From the group properties of orthogonal matrices, the equatio¡ /
: R& i is solvable, hence there exists a unique matrix Ii such that:

(3 1e)

(3 20)

t lrr) internal caltesia,n

(3.22)

flor in the

(3.23 )

frame, i.e. the

f)r : RIr

with Ii : g,inyi. h follows that we can express the elements

folrn:

0å,1 : 
'poop'b^

whele the matlices Il are invariant under rotations of the
t

Iþ¡ are functions of the internal coordinates only.

Substituting (3.23) into the linear momentum relation:
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Pia : Efloploiþ * ,rttþrrrJ + rrn odrrrb.rt'rt (3.24)

: E Ñ*P 4B * Ð pRop trr: Ð Ñ"848 (3.25)

In-tlre first term, the operator ,foacts only on internal coordinates (since

zto and P* are intrinsic) while in the second term 6r* acts only on the

external coordinates. The operators I{l are identified with the opelatols

-9^, defined in Appendix 1, (4r.6): I{:, : -9^, . The action of I{1. on the'Y ',\ -/ 'Y -7' ^""'7""'
rotation matrices give (41.12):

r<in$,{)-

i<io$f )-

r<!n${)-

r_(J,r()Dú11:,1

_(i,r()Dú1L:,¡

å {'*{t,t )ouÍt]¿ï,

í {r*{r,x)o'[]¿i'
nooÍnlì.-

+

-t (3.26)

rvhere

I+(J,I{) : [(J T Ii)(J * x +1)]1/2 (3.27)

4: The Kinetic Enerry Operator.

To evaluate the kinetic operator given in eq.(2.t), we proceed

directly by squaring the pio and adding over i and a .

Squaring eq.(3.25):

(n¡o)2 : @rt*B4B)2 (4.1)

rvhei'e

4þ: oip * Ðirþ|Ki + Pr) (4.2)

since it is aThe operator Qp possesses the property of a derivative

Iineal expression in linear and angular momenta:
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4BFc) : (?rþF)G + F( arþG) (4.3)

Eq.(a.t) becornes ¿fter summing over a and using the orthogonality

of the elements Rut
Ðobio)z: ÐÀ( 4¡)' * I toor( 4¡rT*t) + F-or(4rko¡)\4¡ Ø.4)

erÀ
: (r) + (r)

Evaluation of expregsion (I).

The operators rrp and P, as well as the coefficients If, aLe a[
invariant under rotations of the frame (see Appendix 2) :

[r{!,zr1pl : [Ki,pÉ] : ¡r<!,r]¡:o (4.5)

Using these results, it is straightforward to calculate (I). The result is as

follows:

(r) : I ",7
i,À

+ ) n,,{r<T' * ) nr{Nl,r<}}
77

+l(.r+s.,t)r<i
'v

+ ) ar{e ,)' * ) "r{ro,rr}77
+lc pb'Y7

7
+ ) r.1,,{ni¡,er}

i, À,7

where {A,B} stands for AB + BA and

(4 6)
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At:) trjrl2
i,À

B :T Ii Ii^7 L 7a7p
i

t,, :.1 [o,.lti, + r]rertirl * t'*oe ,.ti *, + tþ*v'*rþ,
i,À

" ,:l ¡zilr",^ + zrire, + iirrl o(P o+ ep)ì (4.7)

i,À

Evaluation of the expression (II)

The Ro, all commute with p, and z-r¡ (see Appendix 2):

[niÀ,Ror] : [Pr,R"r] :o (4.s)

and the action of the angular momenta I{l on the matrix elementr R*p

can be deduced from relations (3.26) by taking j:l. From the

orthogonality of the elements kop, the following expression for (II) is

obtained:

(II) :

where:

Liþ: (Iió - Ib7) (0t6 are c.p)

Combine norv (I) and (II) and regroup the terms as follows:

1- Internal operators-

KE(int) :

I 1",1 + ()4,¡r¡¡l
i,À

(linear momenta)

" ,l o{or{io 
+ DtLrdbr$î+ nf 

}
(4.e)

(4.10)
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+ I A'(P 
,)2 *

arl

B?{P *'' p} +){cr+
7

(coupling

tÐi,Êiprbr)' ,
(r'ortex rnomenta)

iinear/vortex mornenta)+ ) ri,r{o1¡,er}
i, À,7

2. External operators.

IiE(ext) :

)e¡xf'*lB.,{Kî,K'.}
77

3- Couoling operators-

I

+) (cr + tÐr,Êrdbr)ki (4.r2)

(4.11)

(4.14)

(4.i3)

operator'

" sharp"

I{E(coup) : l, "rn".,
'v

To obtain an internal kinetic energy operator, we apply the

I{E to the components (wave functions) of the state vectors of

angular momentum l(n)JM> in the representation lV1*;ár> ,

.y'o,lrl (n) JM> : ÐrDr,Írr{)-t arlxflJ.rrt "l

The elements of the rotation matric* O$f)- are functions of the

external variables (dr) alone while the functions tfl¿ have inte.'al
arguments yia ooly. Accordingly,

xe{rno${)- r,,n$f )-
'Íllr 

: xelint¡¡{Ji,

+ Ðxi{xnte*t) + r{B(couolio,[i).]rfl¿ (4.r5)
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The action of the operators x| is given by (3.26). Introduce the

operators l* defined by:

fl : |[t*{r,n¡"+ + t_(J,r{)ol

f2 : f [r*{.1,x¡ o+ - r_(J,r{)ø_] (4.16)

fo:I(
J

where the operators d* are defined by:

o uQI: ','(J)- -*xì,í<: xì,í<*r Ø.r7)
Substituting into eq.(4.1b), we obtain the following expression for the

kinetic energy acting on the wave function:

i<n(rnr$f)- EKDúrl)-{r{E(int) + KE.}rÍ]¿ (4.rs)

where now KE' is given by (using the commutativity of the operator.s

f):
Ù,

I(E': I forft;z +zv.,torp+ (cr* ,E¡,Êr',rblrÀ (4.1e)

7

+l ørtJ j j Ø.20)
7

After integration over all the rotational coordinates follorving the

procedure used by CHA3, the internal kinetic energy oper.ator can be

partitioned in the following *"y5,

KB : TO + T1 + T2 Ø.Zr)
rvhele To (given by eq.4.11) represents the s-state of the system, T1

(given by eq.4.1g) mixing of rotational states alone and T2 (given by

eq-4-20) represents coupling of internal motions with rotations.

'Ílìr 
:
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The removal of the ¡otationar coordinates (being replaced by

rotational quantum numbers) from the rovib kinetic energy operator.

given by eqs.(4.1i), (4.12) and (4.13) (that is the derivation of a kineric

energy operator involving internal coordinates alóne) is obtained simply by

leplacing tire external operators Kl by the quantities f *.

5-Examples-

a) The Instantaneous Frincipal Axes of Inertia (pAI) Fra.ure

Tlús is a typical "global" noninertial frame in the sense that its
definition involves alt GJV. The pAI frame is particularly suitecl to

systems described by a set of equivalent symmetric Jacobi vecto¡sl, si¡ce

it is invariant under permutation of identical particles.

The most natural way to define the pAI frame is âs follorvs.

Consider the mass quadrupole M in the inertial frame:

M oþ 
: r'oi"qtÉ

M is a reai, positive definite, symmetric matrix hence can be diagonalizecì

by a real proper orthogonal matrix R:

Rtl¡R : Â : diag(Àr,Àr,À3) (5.2)

where the À, denote the three eigenvalues (real, positive) of M.

The three eigenvectott ÏZ corresponding to each of the À7 constitute

a set of olthonormal vectors:

Mî:Àì"'Y 7".'l
In tlús new frame, the components of the {qi¡ are,

ia t1 t.¡ -y'* : (d(i),io)

(5.1)

(5.3)

(5.4)
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and they satisfy:

zrviorio - *(o-ä) : Lop: Ào6*p (b.b )

The rnatrix R iu (5.2) is identifìecl rvith the matrix R of eqn- (2.16)

defiuing the orientation of the noninertial frame rvith r.sepect to the LpF.

To cornplete tlle construction in terms of the reduction A aucl the

orthonormalization o of secti on 2, express the mass quadrupole M as the

lnatrix product vt : QtQ where e is the n x 3 matrix of the cornponerts

qi". Urld.r a rotation, M transforms as follows

M' : RtMR.

It follows that M' : BG2Bt. The diagonalization of I\4 is achievecl by

taking B : Â-IQt : OA. Therefore

Aak : Ðrï_roekr: yko (5.6)

and, by ES orthonormalization

o ^y, 
: (cr,-t/') 

7, 
: 

^;r 
6 
7u

so that the orthonormal vectors of the frame are:

jo : À;lÐkvka d(k)

(5.7)

(5.s)

Each vectot Ïo is expressible as a linear combination of ¿ll the GJ\¡

rvith rotation invariant coefficients so that the frame (jo) constitutes a

noninertial frame rotating with the particles under a simultaneous rotatio¡

of all particles. Tliis justifies the rdenomination of "global" frame.

The 3n rotationally invariant coordinate, yio together with the

conditions (5.5) imposed by the definition of the frame mây be

parameterized by some set of 3n-3 independent intemal coor-d,inates. The

rnost familiar way to do this consists of taking the three eigenvalues Ào

as three of the internal coordinates.

Define now in the customury *rnnur6,
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The three

ur" "io wrt tire

is:

(à'a,à'0¡ : 6op (5.10)

Tliis irnposes six conditions on trre "i* *hi.h may be parameter.izecl by

3n--6 angles /r:

,io : 
^-rlz 

,ia (5.9)

n-dimensional label ,pu..l vectors 7'û whose cornponents

orthonormal label space uasis {ëi} are orthonolmar, trrat

"i 
* : ri o (óL,....,ö¡n_6)

By setting l,o 
^y', 

one obtains the transformation:

^ia _q : Ð.rR 
o.,,{er) u ¡'1 (ór)

The inversion of (b.12) is given by:

i o: , rTroti RIQR : diag(Ào)

þd: {",{rt")r1tl,
"io 

: ,ro, ,ro
The axes j ^ are finally expressed by:

io: ,ro'ruruo(ds)d(k)

(5.11)

(5.12)

(5.13)

(5.14)

To define a set of internal coordinates derived from the basic

rotational invariants (Gram matrix elements 
"rj), 

we need to expless

{ø*i ana {riol in terms of the G' as weli as the inverse transformation.

This transformation is far from being trivial and will be treated elsewhere.

The matrices Ii can be obtained from the defining equations (3.2)

and (3-23) by using the principal axes unit vectorr lo given by (5.g) or
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(5.14). The result (in cartesian coordinates) is as follows:

i3
tä.r

0

i1
v

Ë;q

i2
v

Àt-Àz
i1

-Y-t\1-'\2

0

(5.15)11 =

Substitute now the tfO into eqs.(a.6) and (a.10) to obtain the coefficients

fol the KE operator-

Obselve that:

I ri;ip : (DoDp)-tr, ,rorro

where Do: Àp - Àr.Set also So : 
^0 

n Àr. Therefor.e the coefficie¡ts

fol the I{E operator are:

Li* - vi*(D ßi;:1 )

Ao : S*lDo

B :co:o
d

Actually, the final result in cartesian coordinates is quite

cumbersome and, as such, not very useful. It is more convenient at this

point to express the various terms in more appropriate curvilinear i¡ternal

coordinates.

By using the internal coordinates given in eqs.(5.13), we recoyer the

usual lovib kinetic energy operator'S or its vibrational couuter.part

following the prescription discussed at the end of the section 4.
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the

by

b) tocatly defined fra.mes

As a second exatnple, consider the case of two rtdistinguishecl,'

vectors Q(i) rvhich are linearly independent combinations from rvithin a

subset of GJV:

8(i) : t A,r.d(k)
r lÃ
K

(i:1,2) (5.16)

The trvo vectors Qtil can be transfo¡med by sorne

orthonormalization procedurel o into two unit orthogonal vectors d, ancl

dr. ttre vector product df'dZ : d3 is uniquely defined and the set {d*}
forms a non-inertial frame. The particular non-inertial frame one has in

mind translates into a particular choice of the reduction matr-ix A

together with a particular orthonormalization procedure.

For the seek of simplicity, we proceed with two GJV {(r) ana {12);

generalization to linear combinations (5.16) can be deduced, trivially

extension.

Following the usual conventions of the theory of anguiar momentum,

we identify:

dr'oi d, ' o$ d¡'oz
The frame {do} is defined by:

d3:o'ld(l) +o32d(2)

dl : olrd(l) + o12d(2) 1s.rz¡

d;: d¡*dr

rvlrer-e the 2*2 matrix o : (ooi) -obeys the fundamental relation (2.g):

OGOt : 12.

The rnatrices Ii are obtained by employing eq.(3.g).

For i>2, all the Ii a.e zero since:
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; ôd"
0å,r : Gr'ffi): ad.

-(dr';fo )
oq

ad._.rÅ- I \-.'t"2';to ) - v: 0. fli^ :,ÙJ0, {l,r ,:

Fol i : I, 2, we obtain the result:
J. 0d^0år: Gr'^fu): osiRoz

: aa. ad,aàz: -Gt'aofo ) : (d¡,roia ): {¡iRat * oriR

. ad_
0å¡ : -(dr,uoiz ) : -oriRoz

With (3.23), rhe matrices Ii 1i:1,2) become:

[o {si ol
Ii=lo" o '"1t^tLo ori oJ

From eq.(2.9), one can deduce that the matrix

the matrix v : (yio) of the cartesian components:

(5.18)

O is the invelse of

l,:,::ll;;:;;,]'
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Therefore, by setting 6 -- yr3y2L - yLry2t, (t.18) becomes

11 =

,I"= 1

6

0

13
-v

0

t

ål'
0

21.

0

0

11
-v

0

21
-v

0

23
-v

11
v

0

13
v

0

¿.J
v

0

Tlre coefficients Aa, Ba, co, Lio and the operator .Ø* can be evaluatecl

in terms of the cartesian coordinate, yio.

The I{E operator follows immediately from the transformation law into

internal coordinate s (e' ; u:I,2,J).

Consider the three following particular cases.

a) CHA Frame.

This corresponds to the frame obtained by a Gram-schmidt

orthonormalizationl of the two vectors d(i) ana {(Z). Here

(5.1e)

(5.20)

o¡r : Qil
__1
011 : -*otdQr'

o32:o
o12 : sitt-ld q;l

where Qi : ld(i)12 and cosd : (d(r),d(z)) leßz.By subsrirurion of

these expressions into the I{E operator of the previous section, the

hamiltonian of reference (5) is recovered.
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Impose the

corresponding to

d(il. The marrix

relation (2.9), O

{1i¡. rne analyric

b) Equivalent Symmetric (ES) Fr¡mss (planar .r.r.).

condition that y11 : y23 (that is, ott : O¡z)

an BS orthonormalizationl in the plane of the vector.s

O is symmetric and accorcling to the fundamental

: ç-rf2, where G is the Gram matr.ix of the vectols

expression of G-1/2 irt

0- -t3l

,r)
rul zz

L-n

(5.21)

(5.22)

(5.23)

from the

rnatrix O

rvhere:

z1 :Q1(Q,+Qrsind)

t2: Q2(Qr + Qrsind)

73: QlQrcosî-

N : ta? * a?2+ 2erersinll-rl2¡qle2sindl-1

It is interesting to notice that any frame can be generated

BS frame (or the cHA-frame) by an in-plane rotation R,. The

transforms into O'1:

R'O : O' 6.24)
For instance, we can consider a frame such that d, be along tlie

bisector of the vectors {(r) ana {12¡. rnis corresponds to a z./4 in-plane

rotation R' of the BS frame.
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c) EquivaJent Symmetric Frames (3 vectors)

In this tlúr'd exarnple ihe BS orthonolrnalization of three vector.s d(i)
is conside¡ed. The matrices Ii are obtained in a rvay sirnilar- to tllat in tire
previous section. The equivalent of eq.(5.1g) for an ar-bitrary

orthonormalization O involving three vectors is:

11 =

37 22vy

32 23vy

3I T2vy

73 32vy

L2 27yv

23 t2vy

33 2tyy
23 32yv

13 31yv
13 32vy

(5.25)

(5.26)

or rl
,rrl

,J
Ii =

0

osi

-ozi

-os i
0

ori

Once expressed in catesian coordinates, one has:

Io
I

i lt"tt' - v37v22

frttrtt - y23y31'

Io
I

I lrttrt' - v31v72

lrttrtt - yl1y33

Io
I

I ltttt" - vzLvl'z

lr"rtt - v73v2'

-v
0

-v

0

0

yL3y27 - y23y

v13y22 - ,'3,
0

y21y32 y23y31

33 22yy
33 22yv

71y32 y33y11

33 72yy
33 1,2

v 0

,
Io=

13=

r1 22-y v

0

t3 22-y y

11

t2
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where á is the determinant of the matrix y:

Y=

L7
v

21
v

31
v

12
v

22v

32
v

13
v

23
)'

t1.-)
v

(5.27)

Tlte ES frame is obtained by prescribing the following three conditions o¡

the cartesian coordinates:

yLL : y23; y12 : y33; y22 : r3L (5.2s)

As in the in-plane ES frame, "derived" frames may be of greater interesl.

For instance, consider the normalized ',polysector" of d(r), d(z) ana {(s)
as one axis together with two linearly independent combinations of the

ar(es orthogonalized in some way with respect to the polysector. This

corresponds to a 3-d rotation of the ES frame. using eq.(s.z+), one

deduces the new orthonormalization matrix o,, hence â new set of

matrices Ii and finatly the KE operator in the new frame.

6. SI'MMARY AND CONCLUSIONS

We have derived in this work a decomposition of the relative ki¡etic

energy operator for N particles described by N-1 generalized Jacobi

vectors into rotational (eq.4.12) and intrinsic (eq.a.11) components The

coupling between the two is expressed by eq.(a.13) or (4.20). The resuli is

expressed in cartesian coordinates with respect to an abritrary nonine¡tial
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frame characterized by a_ set of 3"3 intrinsic matrices The great

advantage of this method, besides simpiicity, is that no approxim¿tions

and no constraints are assumed. The I(E operator can be employed in a,ny

physical problem provided suitable ciioices have been made for the GJV,

the noninertial frame and the set of curvilinear coor-dinates.

APPENDIX 1

ROTATION MATRJCES, ANGULAR MOMENTUM OPERATORS

We review in this appendix some standard results of the theory of

angular momentum.6

under a physical rotation .Ø, the state lrl> transforms into ¿ new

state lrþ'> = glllþ>l 
= %lrþ> while conserving the physical properties of

_ 
tlie system: ?/ is called the rotation operator. The usual lepresentatio¡s of

the rotation operator are obtained by choosing the standard bases l kJ\,{>

(common eigenkets of the hamiltonian operator fr, J2 and Jg). with
respect to these bases, the components Jo of tlie total angular mornentunr

operator are represented by the (2J+1),.(2J+i) *atrices J(J) acting in

the invariant subspaces 6J (irrerlrrcible with respect to the rotation

operator).

The rotation operator (parameterized by the Euler angles dr) is

represented in the same irreducible (2J+1) dimensional spaces ã, by the

rotati,on rnatrices D(J)1 ar),

o(J)1ar) : exp(-r ar.l{J)).*n ?i o¡$J))exp(-aárrÁ,))
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with matrix elements:

o,[{ù
It is the matrix

transform properly as

(J,M), this result being

Differentiation of

yields the following

4n(r)Co,l

6oQ)te,l

{o(r)to,l

-,t$r)n(J)qar¡

-e1-t[J)rind, * ;{J)corár)o(l)1 ar)

-,1Jf 
J).osdrsind, + JtJ)siná ,sino,

+ r[J)cosar)o(J){ar)

: (JM'l%(?r) IJM> (A1.2)

elements D,[,})-, as opposed ro 
"rt,ü) 

, ttrar

state uectors carrying angular momentum labels

true for each M,:J,...,-J.

o(J)1Ar) (given in equarion A'1.1) rvith respecr ro

0
S

results:

One can invert these results to obtain the action (realization) of the

matrix operators t!') "l the matrices D(J) as d,i,fferenti,al operators ;lo:

rtJ)D(J)( gr) : - ¿ oQ) çar) (A1.4)

The differential operators /o are,

(A1 3)

(41.5)

lL: ifcosdrcotd, f"r. siner¿fi #; f%)

a 
fsindrcot 

t, &- cosd,

.ô-"ð5.

The standard action of the

/2:

4:
ô

ðq
sind, A I-'ilñ6 õr; l

y.o$lfia,t

differential operators ;Fois given by:

: [(J+M' ) (J*M'+ r )] 
t¡ror[{]i,ivr 

( dr)
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4Dúiti á,) : r'n'o,[{,}ia,l (41.6a)

/is tlte physical total angular rnomentum operator of the system

(differentiai operator acting in the space of the angular rromenturn ivaye

funcrions n¡f{r}-l
Let us introduce the operat ors gO:

eþ : Ð"R*d or) lo (A1.6b)

The following commutation relations are easily obtained:

[9o,9d - -t g, (o,þ,,.y are cyclic)

[?o,"øj: o (a,P:L.,2.,J)

with respect to an inertiai frame {7o}, the total angular momenturn }is
expressed by3:7t"rr+724+7s4. It is therefore correct that ?is
defined by þ : 1rg, + lrgz + |sg, where {Ìo} is â new frame

(non-inertial) obtained from {7oI by the rotation R(ás). g* is the

cornponent of the total angular momentum referred to the moving frame

{1}

(41.7)

(A1.8)

Tlre commutation relations of the /., w\th the Rap(ás) are easily

found:

[/o,RB¡) : tro0.rB7À

rvlrere {o,0,1} are cyclic and À:1,2,3.

The total angular momenturn operotor þ is the generator of the

rotati,ons of the rnoai,ng frame (j) and, may be id,entified wi,th tl¿e total

angular tnomenturn of o rigid body whose i,nstantaneous orientati,on is

spcciJíed by the frarne (1o) ,nltn i.s i,tself fi,red, (no relatiue rnotion) in tl¿c

system def,ning the frarne-

(A1.e)
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In eq.(41.2), that is the set of operators -gothat, satisfy the usual

cotnmutation relations of angulal momentum. This is a direct consequence

of the fact that the /d do not commute with the rotatecl axes f 
þ.

Observe also that the ,9o arc invariants with repect to the r.otatio¡s

generated bv 2 a result that follows geometrically from the fact that the

rotations generated bv þ rotate both þ and ?o simulta'eously, ther.eby

Ieaving their scalar product invariant.

In order to obtain the action of the ,9o on the rotation matr.ices,

transpose eq.(41.a) using the symmetric and antisymmetric properties of

' 
(r).
û

rr(J) _ ï(J)"1 - d1

't(J) -"2

rå(J)

-rÍrr

: rát)

and

Therefore,

ot(J)1ar,- r,2,or): o(J)1a, ,02,%)

r(r)( ar)"r[r) : -sooQ) çor¡

The operators go take now the explicit form:

,e-: et * 8z : exp(-z'ar)þcot ,, & - fq. #qfq
e+: et- 8z: exp(,ar)[-icot tr& ,g;+ s#qfq)
ø ;ô
"3 - -"'lri

(41.10)

l

(A1.11)

The action of the body-referred angular momentum operators g,
are obtained in conplex conjugating (A1.i0) and in taking the matrix
elements:

Page 34



ao${,}ia,l
r*n$inlia,l

"'ro$i,)ïa,r

: [(J-M) (.r+na+ r )] 
t ¡rooÍ,i 

J,ä* r 
( d,)

: [(r+MXr-M+r¡11/2¡ ( {),}_rtarl
: rtnr${o}ta,l

(41.12)

It is important to that it is I aL d__8 - tl L aÍ_p ct_pê_QtrÊp_ up.-t'

Physically, the wave functions or[{¿- a'e trre wave fu*crions of a

solid body with center of mass fixed in space; fi is the z{omponent of

the angular momentum referred to space-fixed a-\es, while gJ is the

colllponent of the angular momentum referred to the noninertial z-a-xis.

APPENDIX 2.

This is an at_tempt to prove that all the linear momentum oper.ator.

components oia : -¿ 4 (t" a non-inertiar frame attacrrecr to trreôytu '
system) are intrinsic operators, i.e., that zr,oDrfr{)-rarl : 0. (for a'y i)
whet'e the set of Euler angles {dr} narameterize the rotation transfo¡¡i.g
the inertial frame into the noninertial frame.

Let ko label the particles entering into the definition of the fi-a're

and k' be the remaining particles. Ther-efore, oko* 
"r. intrinsic opelator.s

and t*"oor,[*)*:0. we want to prove that this is tr.ue for.r*,a âs

well.

we fìrst show that, for any k', ?r-k,r commutes with a particular
-o
"À' 

t.e.,tlrat Tk, d is invariant under any rotation along the a-xis of

notice
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quantization lû. An analogous proof follows fo, yk'o and consequently for

the P'.a
since pk,a is invariant under any rotation of the fi.ame, rve have:

[L[,n¡.p] : o (A2.1)

pk,p ir given by (see footnote):

Pk, 0: ÐÀRpÀtk,À (A2.2)

Using the propelty of commutators:

[A,BC] : [A,B]C + B[A,C] (A2.3)

and the fact that the Rop are vector operators with respect to f,o:

[l],np¡l : (ìRzÀ (o,0,1are c.p.) (A2.4)

we deduce that:

ÐÀRpÀ[L;,r'¡,¡ì * ¿pk'I:o (A2.5)

Similarly, rve have:

ÐÀR'À[L;,ok,À] - ipk'7:o (42.6)

and

ÐÀRaÀ[L;,r¡,¡] : 0 (42.7)

Solving the system of three equations (5,6,2) in the three unk¡owns

[L"*,,oU,¡l Bilres the solution:

¡t,],n.¡,¡l : t{Rstou,, - R^rok,rI (42.S)

where À,þ,u are c.p.

This mearts that rk'À are not invariant under an arbitrar-y rotation

of the non-iner-tial frame. consider now the rotations about ?*, axis of

quantization, i.e., rotations of the plane {1 þ,1"r} The rotation matrix

elements appearing in (S) are zero and [L],zrU,À] : 0.

comider now the action of the commut¿to¡ [L],o¡,¡J on the
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o'Í,,{)-'

Lîou,^o,ÍrL)- : ok.^lln$r{)-
In particular for L!,

rirererore, o,[ * 
) 
- 
",1ï;;i*;", ;,T-ï ;] 

"'t'l'.

ou,,lo,$*¡* : 
"o,[r{)-

This is true for any i, in particular for i : ko, we have:

"L",lon!,t{)* 
: o

Since [oUo^,oU,¡l : 0, we have:

rko),ok'^ou5rr{)- : ok',lot".lDlÍ*)* : o

and zu.ro'[ri)- : o.

In particular, for J:1, one deduces that:

rkÀRap : o

The same argument can be used, for the operators

NOTE:

(42.10)

(42.11)

(42.12)

(A2.13)

(A2.14)

(A2.e)

(N 1)
iÀv": t' 

onr,Ji2

P,a

(summation over all j)

a
l-ïr"roqt

:ÐR.pp^
Ro¡ are independeni of the qk'7 (Rp^: xkoBÀkogkoT)

ôuj À

irx.t irrn ¡tJP)

w
n k"yoqt

But:

so that:

since the
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-\ AujÀ c

_\aa-2 ,{a: 'À*?À ,f"
-> p¡,7 : ÐÀR 

'Àrk, 
À .:

Compale the inverse transformation of

caltesian cornponents tr.ansform in the same

fol the d(t,).This is true also for the internal

(N.2)

momenta

(N.3)Lã: Ð,lRo,lPÁ

(N.1) with (N.2)

way as the linear

angular mornenta:
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The quantum kinelic eneïgy operator for a group of particles

in terms of scalar basic rotational i'variant coordinates

derived from a generalized Jacobi vectols (G;rr¡ clescr:iption.

[. Frames derived fi-om trvo GJV.

Abstract: Previous *ork1 defining the quanturn kinetic energy operator for.

|elative rnotion of a group of particles in terms of cartesian compo¡.e1ts of

generalized Jacobi vectors (GJV) is logicatty extended. The first such

e\.tension examines alternate definitions of the noninertiai reference frame

$'hich follow from the minimum specification by two GJV, the second

itn'okes the simplest scalar internal coordinates which are the basic

rot¿tional irtvariants of the GJV. I(B operators are explicitly evaluatecl

a.ncl compared to assess the relativé vatue (in terms of separaìlility) of

alternate approacltes.
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l.Introduction.

In a previous p"p.r1, the quantum kinetic ener.gy oper.ator for.

lelative motion of a system of N particles described by N-1 "generalizecl

Jacobi vectots"2'3 1C.rv¡ rvas decomposed into rotational and i¡t¡i¡sic
components. The resuiting I{B operator was expressed in telns of

car'lesian colnpollents with respect to a noninertial franre characterizecì by

a set of 4 intr^insic (3*¡) .rratliôes Ii, 4 being the numbel of Jacoiri yectors

involved in the construction of the noninertial frame.

The present study applies the foregoing general theory to systenrs of

N particles described by local noninertial frames tied to the instantaneous

configuration of two GJVs. The kinetic energy operator is re-expressed i¡
telms of the 'lbasic rotational invariant, coordinates (BRi) of the N-l
Jacobi vectors (lengths of GJV and angles between them). These

cooldinates constitute precursors for any set of independent coorcii¡ates

si.ce a'y inter-nal coordinate is expressible as a polynomial of the BRI4.

Unfoltunately, for N ) 4, they are not independent and a fur:ther step

must be taken to obtain an appropriate parameterization.

Section 2 reviews the concept of noninertial frames and prese¡ts

examples for typical 2GJV frames. The matrices Ii are evaluated in

section 3. In section 4, the kinetic energy operator derived in ref.(1) is

r'æxpressed in simplified form. In local two and three GJV fi.a,rnes the

tht'ee componellts På of the vortex angular momentum cancei. This is

expectecl since P0 is an angular momentum acting in label space ancl rve

are currently considering a fixed J¿cobi vectors description. Section 5 is

devoted to the expression of the KB operator in terms of the BRI

Page 2



coordinâ.tes and their conjugate momenta for typical frames constructed

independently of the lengths of the Jacobi vector-s (norm independe¡t

fi'arnes). In section 6, the I{E operator is derivecl fol the norrï clepencle¡t

equivalent symmetric frame and for the principal a-res of inertia frame.

One lesult is to demonstr-ate the invariance of the intr-insic part of the 3

body hamiltonian to a,lternate choices of noninertial frame i.e., the

pr*ojection of the harniltonian on the sub-manifold (s:0;L:0) is

independent of the rvay the fi'ame is defined. The hamiltonian for. the

general N-body system behaves clifferently: whereas the intrinsic

harniltonian is invariant to the choice of alternate global frames âs

cletnonstrated by H.M. Pickett5, it does differ from that for locally defined

frarnes (which in tu'r differ from one another). Fi'aily, in section T,

detailed application to 3-body AB, a'd 4-body (AB2)x systems is carr-ied

out for different internal curvilinear coordinates. In particular the coupli¡g

terrns between the internal coordinates âre discussed in regard to the

choice of the rotating frame used in the description.

2. Noninertial fra.mes-

Generalized Jacobi vectors (GJV) were recently described2 by the

pt'esent authors. They constitute an inrportant intermediate step i¡ the

derivation of a hamiltonian for intrinsic (vibrational) motion since the

lelative kiuetic energy operator is diagonal w-hen expressed in cartesian

components of the GJV. The transfo¡mation of (non_orihogonal)

inter-particle vectors into (orthonormar) GJV is actually generated by an

orthonormalization o in label ,p*..2. As a result, the Gram matrix G(r)
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of the interparticle vectors transforms into the

GJV according to:

G(q) :oG(r) ot

where tlie matrix elements are given by:

Gram matrix G(q) of the

(2 1)

c(q)ij : Gi,dj) : Q¡Q¡cosd,.. (2.2)

Q, is the. length of the vector d1 ana

anci d., with the convention that d is

to d,. The n = N-l quantities a.'J a--'------- *l

quaniities Q,Q,cosd,, are referred torJIJ
(BRI). Fol n

determinant of G is 3.

once the configuration has been expressed, in terms of n GJV, the

relative kinetic energy operator is ,'diagonal,':

Trer : I ,' ,uZ (2.3)

where pka : -t\is the linear ,å'år"* operator conjugare to trre
ôqnu

cartesian component qko of ttre GJV dk with respect to the lab. parallel

base vector 7 oi.e.,

qto : {du,lo) (2.4)

TIre inertial LPF (lab. parallei frame) {1ol is obtained from the LFF

(lab. fixed frame) by translation of the latter accompanying restrictio¡ of

the labei spa,ce to the relative label space.

Undel a rotation (represented by the matrix R), the LPF tlansfor.¡rs

into a new frame (?o) suctr that:

1o : Ð,lR,l*7,1 (2.5)

where R^o is the direction cosine of lo with respect to -1.o. The new

components of tlie Jacobi vector di ur. given b.i.:

d' is the angle betrveen vector.s {,
measur-ed positive on going fi-oni {,
together witli the {iÐ differ.enr

as the Basic Rotational Invariants

independent since the rank of the
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dL'

{d,,?o) : rto: 
"^o^ont^

(2.6)

The rew frame is in some way ,'attached" to the moleculai-

configuration if the ?* depeud upon sorne or all of the GJ\/, the precise

forrn of attachment being determined by the specific linear combination of

the GJV involved in the frame construction.

Fonlally, the construction is achieved in two steps. ret {{f.} be tlie

set of no Jacobi vectors involved in the definition of the frame. For

no : n, the fi'ame is global, other.wise, it is local.

1. Define three independent linear combinations Ë^ of the vector.s

ÊÀ : xtA,lr.dfl (2.7)

where A is a 3*no matrix whose elements are some prescribed (roiational

invariant) functions of the qi*. Trr. Gram matrix G(F) is given by:

G(F) :AG(qo) At (2.8)

2. orthonormalize the vectors Ë^ in one of the standa.d *ays2 (a

review of these is contained in appendix I):

1r: t,lo¡r,iÉ.1 (2.9)

The overall transformation is represented by the Jxno matrix B : oA
whose rotationally invariant elementr Bpk are functions of the cartesian

coordinate, qio. Equation (2.9) becomes:

î r: Ðr.B¡rr.dfl

On account of orthonormality

fundamental relation:

B G(qo) Bt : rno

The equations defined by (2.11) are not independent; ihere exist three

arbitrary relations among the elemeuts BtU which uniquely define the

(2.10)

of the frame, matrix B obeys the

(2.i1)

Page 5



frame.

Tire Jacobi vectors df ut. expressible in a unique way in tenns of

the base vectols lr:
r ku¡Qk: rlryi- ït, (2.12)

Forming the scalar product of equation (2.10) with ?, (and employing

(2.I2)) the foliowing matrix equation is obtained:

B Yo : I, (2.18)

rvhere Yo is the no'3 matrix of tire componen,r ylp. From the uniqueness

of tlre expansion (2-r2), it follows that yo is the unique pseudo-inver.se of

the matrix B:

Y:Bt
o

The three relations among the

conditions on the cartesian components

dependent variables can be parameterized

parameters (curvilinear coordinates) (/.

Alternatively, form the scarar product of equation (2.r0) with ?u to
obtain the matrix equation:

o_neo (2.15)

where R is the orthogonal matrix whose elements are the direction cosines

of the 1 , with respect to the 7 a hence the matrix representing the

rotation transforming the inertial frame into the noninertial frame defined

uniquely by B. Qo is the no"3 matrix of the components of trre d¡ in tne

inertial frame. It follows (dot equation 2.r2 with ?J that the separ.ation

of the variables is forrnally expressed by:

eo : Y"((")Rt(ds) (2.16)

(2.14)

elements of B become three

t5/', that is rhe ser of 3no

by 3no-3 independent inter.nal
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where d, are the three Euler angles parameterizing the orthogonal matr-ix

R

It is worthwliile mentioning that the same frame cân be gener.atecl

by different procedures: the matrix B can be expressed as different

products OA. Let A and L' be ttvo independent linear cornbinatious.

There exists a (J*3) non singurar rnatrix T such that A., : T A. It
follows that B can be expressed as o,A, rvhere o, : T-1. In particular.,

provided an appropriate choice for A is rnade, any frame càn ìre

constructed using two vectors ËÀ and a two dimensional

orthonormalization, the third vector being uniquely defined by their r¡ector

product.

corresponding to the above, trre sâme frame can be inter.pretecl

either as:

(1) derived from a fixed set of Jacobi vectors (the matrix A in equatio'

(2.7) is constanr)

(2) derived from varying Jacobi vectors (the matrix A has elements which

are functions of yia¡.

In the former case, the BRI coordinates are the natur-al clioice for.

the internal coordinates. In the latter case, it is usual to take as inter.¡al

coordinates the principal moments of inertia together with the parameters

of the label rotation matrix. The angular hyperspherical coordinates6 a.e

typical examples of label internal coordinates. Formally, the matr.ix B of

equation (2.10) defines in label space a, set of three linearly inclepe¡clent

vectors 7 :
d

io: xt Bot ðt
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_ The Gram matrix (3.3) of the label vectors à*is,
G(z) :BBt:.1t-I

tliat is the inverse of tire mass quadrupole of the Jacobi vectors defiri'g
the frame. The six independent parameters of G(z) are the inver-ses of the

elements of the inertia tensor and they may be taken âs inter.nar

coordinates together rvith sorne angles defining the orientation of {à *}
rvith respect to the Uasis {Ë¡}.

3- Description of N body systems with non inertial fremss defined

by a triatomic fragment-

In accordance with standard convention, the a-xis of quantization is

identified with ?, (z-axis) in the plane of the triatomic fragment. Axis I,
(x-axis) is defined to rie in the same prane, trrerefore î2 is uniquery

defined by the vector product lg . ?t and is perpendicular to the pla¿e of
the fragment-

BRI Coordinates.

In any (2GJV) noninertial frame (with the above conventions), tlie
BRI coordinates of the Jacobi vectors d1 ana d2 u." expressed in terms of
their cartesian cornponents (yio) Uv the relations:

Q1 : {(v11)2 + çy13¡2¡rlz

(3.1)

(2.1s)

Qz: {(v2r)2 + çy23¡2¡rlz
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o-cos-l{ W}
rvhere d is raken positive on going frorn {(t) to {¡Z¡.

The BRI coordinates of the remaining Jacobi vecto.s d; u..,

eú : {Ð e$.k|r}t|.,
- , '. ,,'i u 'krv (3 2)

oiu:'o'-l{ :%F=}
Let Y be the (2*Z) matrix of the cartesian componerrts lyio;,

Let ó be ihe determinant of y:

6:yL7y2l-y11y23
The noninertial frame is defined by:

Y-l;;:;;,] (3.3)

1r:B31d(1) +nrrd{z)

Ir:nrrd{r) +812d(2)

îz: ?¡ " îi
Since B : Y-1, we obtain

?, : åt,rtd(r) _ rttd(r)l

lr:|t-"dttl *rttd(r)l
(3.6)

Tlie cartesian components can be expressed as:

iay'* : 1{qi¡,1) : e¡cosÀ.o (3.2)

where cosÀro is the direction cosine of {qi) with respect to ?*. Let Àr, :
( and Àzs : c'. The cartesian components in terms of the BRI
coordinates and the independent parameter ( (o, (,) are:

: QlQrsiná (3.4)

(3.5)
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where

cârtesian coordinates

Q, + Q.rsindcos(: + (D+:q?*
Di

-T-

y23 : e2cosç,

2r (3.s)
Y : -Q2stnç'

(: ((Q1 
'Qz,o)

(3.e )

q3 * 2erersiná)

t1t : Qlcosç

y11 : -e1sinç

Ç' : C- o

The three relations â,mong the cartesian coordinates ylo become
12^22yt-:o ; y"":o ; f(():o (8.10)

Frames for rvhich ( : ((d) wilr be referred to â,s ,,Norm i'depe'dert
frâmes" For example, ( : 0 is the CHA framê, ( : 012 is the bisecto¡

frame, e : 8- lrt the norm independent E.s. frame. In the generar case

the parameter ( depends upon the three BRI coordinates. For instance,

tlre B.s. frame is defined by imposing the condition y23 : yl1 on tlre

(3.1i )

Remark:

one can define the parametric family of frames by setting ( : kd in
order to construct the axis of quantization ,rsomewhere', between {(r) ana

{12¡- fnis procedure can be useful for systems where tlie two GJV do not

represent equivalent fictitious particles; varying k f¡om _l to l, all the

norm independent frames are generated.

Line¿r Momenta and Vortex Moment,m-

The linear moment¿ iria fie given by:
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1t.
1&

o1r :

lllq 
-l-ù

äo. ^:t'lO- -¿l ârl" äq
!lA ^VOqðq

âsrn( æî

. ô0 ô,+__!' ^ ia ô0 t
oy

, 1 r yiÛcos,
- Q-ir-înd t 

*-Qi

, cos( Aì--qrwJ

(3.12)

;f-¿l

,{

-'{

ujo, ô ì_q )_¡mt

cose fr-äi#i
o2r: -z{-sin(. ,U. W ,8\
o2r: -z{ cos(' &. tf # }

The vortex angular momentum p; is zeto: this can be seen by

substituting (3.8) and (3.13) inro p! : X¡(Vi3o,, - yi1n13) wirli i:1,2.

This is not surprizing since ei is a label space angular momentum, hence

generator of label rotations keeping invariant the mass quadrupole. Si¡ce

the set of GJV is fixed in label space, ei has to be zero.

The transformation of the linear momenta from the inertial (ni*) to

the noninertial frame (z-io) was evaluated in reference 1

Pio : EF"p4B (3.14)

where 49 is the operator:

49 : ni1 + 
'r'brP ,

with the notation of reference 1 and

1:1,2,3-

(3.13)

+ t<i) (3.1b)

by taking advantage of fl : 0 for

Matrices Ii.

The matrix elements of f¿i are given (ref.l,

0å.1 : z).¡vJPn,oB ,i + ko¡rv^
When acting on an intrinsic function f, Ko f -

eqn.3.9) by:

(3.16)

0. If f depends only upon
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the

the

Jacobi vectors defining the frame,

action of the linear momenta pi" on

Pia f : ÐÈopoipr

P i f : 0. Therefore, the r.esult of

an intrinsic function reduces to:

(3.1i)

In particular, the coefficientr Buj appearing in equation (3.15) ar.e

intrinsic functions (since functions of the BRi of the frame). By

substituting this result in (3.t5) and by identifying rvith equation (S.23) of

leference 1, an explicit expression for the rnatlix elements f|^ ir ob[ainecl:

Ib^: -t[rrvi4rr¡øri - ß^6¡,BJ (3.1s)

For a

matrices I'

The results

or ln more

sinC': - Ql'îñT
cos(': 

a-lsîñ?

: sin( #.

al
-1,.l, '21 -

sin(
qFTT

cos (
A-fin7

- 1)

(2GJV) frame defined by the parameter ((e'er,ú¡, rhe

are obtained by subsrirurion of (3.s) and (8.13) into (3.18).

are:

,L,

'1,
,Ï, (3.1e)

t r\s

cos( ¡Ql \
ac
ãt

(,
rLr12 : sln('

.2r32: {os(,

concise form:

.1rLz: orrÇ'

.1LJz: - orjÇ'

,
fLLLz: - oztÇ

,r}z: nzT(

,!rr:{os(4.ii r*5-tt
AC cos('0C

w--q;ðú
ô( cos('ô(

w--q.æ

(3.20)
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4- Kinetic Energy O¡rcrator-

The rovib hamiltonian of an N-body systern in cartesian coor.clinates

fo' an arbitrary non-inertial frame has been partitionedl as follorvs:

I{rouib:T?nt +Tínt + TTrrt + v+T.ot * T.oup (4 1)

rvher-e

(t) Tirrt are the internal operators related to Jacobi vectors defining t¡e
frame:

Linear mornenta. Voúer angular momenta.

.l Vr.'*+ iaioooioJ + ) trurrrfe;)z + Mop{p;,p;} + cTpT
lo'& 7

Coupling terrns between intemal operators.

I 
. 
tiit"'"^'tîÌ

lot7rÀ

(II) Tírrt âre the internal operators rerated to the remaining JacoSi

vectors {¡.:

Linear mornenta. Intemal angular momenta.

) oi,zo + Itrt
i'ra 7

(III) Tfnt are the coupling terms between the internal operators

,r{v7)2 + Mop{Pä,P.pI + c?Pt

'tr*',r'i'i * "r rvror(ele 
B 

* P"È a) * ", drP ,
(ry) V is the potential energy operator:

V(yio; i:1,2,...,N -I,a:I,Z,J;f^{vio) : 0;À:1,2,3)

(V) Trot are the external operators (angular momenta):

I trurrr{ril'*Map{Kod,r<þ) + c w.l

(vI) T.oup are the coupling terms between internal and exter.nal
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operators:

\ øxoIr77
7

The various operators appearing in these expressions are defined as

follows:

zto is the line¿r momentum conjugate to the cartesian cornpo¡e¡t

yiCI of the Jacobi vectors with respect to the noninertial fi.ame.

The angular momentum componentr p, å,re partitio'ed i' the

following manner:

to: I (rioþoror-yioloioþ) * I (yi'|oi,^/-yi'ror,p) (4.2)
i^ v u 

r'o

Do -r,e + V; (4.3)

rvhere the Pl are the vortex angular momentum components (generators

of label space rotations leaving the mass quadrupole invariant) and p; aLe

the components of the internal angular momentum describing the internal

rotations of the remaining- Jacobi vectors with respect to the no¡iner.tial

fi'ame.

K; : (f,,o,?a) are the components along î d of the angular

momentum of the Jacobi vectors defining the frame; they are the

generators of the rotations of the noninertial frame with respect to the

LPF.

(4.4)

(4.5)

o

The coefficients MoO and C., are defined as:

rr¿ : xi(ri)t(ri) . (i:1,2) (4.6)

It can be shown (using equations (2.10) and (2.i8)) thar I\4 is
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actually the inverse of the tensor of inertia ,z of the Jacobi vectors {fl
witlr respect to the noninertial frame. The mass quad,rupol e -l( and J arc

lelated by the reiation :

J: Tr,,lilr'-- ,rí (4.7)

The coefficients C., are given by:

c7:.1, [o,^ti,, + Ilrerr]7 + iaiÀIir,l * tLÈ prL, * ,b*n orb,i,À

(4.8)

For a fi'ame defined by two GJV, this general expression simplifies

since:

(r) På : 0 for any u:7,\8 (since the frame is constructed with a fixed

set of Jacobi vectors)

(b) The matrix elements M12 : M, and M23 : M' are zero.

(.) Cr:Cr:o
c2 : if,ltoi,lliz + t^iÀIi2l 

1+.s¡

(d) dr:d3:0
dz : if,l lizoi,l (4.i0)

After integrating over all the rotations, the I(E operator is expressecl

in terms of the cartesian coordinates and the rotational quantum numbers:

I{E : Tint + V. + Tínt + Tí. + Tí. + Tror + T: + Tó

(4.11)

where

TT't:(a)+(b):

@) "r? + ot| + oz? + oz3

(b) i[Attnl * argo13 * Lztozt + Lzsozs]

ale the terms related to the linear momenta of the Jacobi vectors defining
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the frame.

By empioying (3.8) and (3.13):

(a): - u'o--' ' ô\*/- 
,3a-2 qsaaq

# üJ-ed&
-tç *i,d #.{rqc,-ë cù4ø

wlrere e g: [ffi], and (, : t#J
(b) :ä,,"ei Ì-,r,fq +i4 +e;

* tt (, -q erlSa- * + LÀ*te*u

Finally

rnoô22ô'int--ñ-q@'
a2zô-ñ-Æry

-l++-ll t4*"o,
Ql" Qr'- 

-ô0" úrd (4.12)

hence, ffn, is independent of the choice of the frame.

v. is the centri,fugal potential term obtained from Tro, after

integration over the rotations..

v. : å(*r, + Mrr)[L(L+r) - s2] + Mrrs2 (4.13)

of course V. is zero for the rotational ground state (s:0;L:0)
T'int are the terms related to the linear momenta of the remai¡ing

Jacobi vectors:

Tínt : i,l oîi, o)2
wlrere the summation is over i, : 3,...,n and e: !,2,J.

(4.14)
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Intemal rotati,on terms:

Tir: ,r*r.,Q7)2+ lvlrr{Pí,P'3} + crná + 2s(Mrre5+Mrrpi)

(4.15)

[ntental coupli,ngs:

Ti. : zdZP i

The pure rotation terrns Trot are expressed in terms of

step-up/steplown operators o* and the rotational quantum numbers:

T ,Prlor: +tMr, -Mzz]rl* z-lMrr -M22]P_

+ /*[sMr J + +cr)o*+ /_[sur, - $cr]o_ (4.17)

The internal-external coupling ter-ms T.oup ,r.,
mo .n'1'ã : z'{*dro* - i(,_dro_ (4.18)

that is the coupling terms between the operators ø* and the operators

associated with the internal coordinates relative to the Jacobi vectors

defining the frame.

Tó : /*[Mrrni+M13Pá+ /M22pi]o+ * /_[Mrrpi+Mrspá_ iwrrpi)o_
(4.1e)

represents the coupling terms between the o* and the internal angular

momenta P,.a

The coefficients Mo, and c, are easily calculated in terms of the

parameter ( and the BRI coordinates:

(4.20)

(4.16)

M j., : xit(r;7)2 + Gþr)21
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that is

M1l :#
Mzz : Çr' *

M..
ðJ

The

¡sinl('* sin?(l
Lerz ' er'I
er' * tJ n jte ,'' Qr" qz

- .o12( 1'Qr' I

given by:

--! rt
Q,"

- z(01

coefficient M* is

Since 0, the coefficient C,

M13 : r,tlrIl,:-#[Ïj*.
1

(4.21)
sin (cosfl

Qr' I

is evaluated by using (3.20):Pi:

that

c2

The

is

: - ¿{r?
Iln

operator d,

(4.22)

d2: IIz"n + Itrzon + I?r¡rr, + I?r¡r*

,{,,u8i c,&+ r* . fjç o-Å - * ril

Cz: onrlz* orsrtrz+ nrrrlr* ozsrSz

+ i¡l¡1, - 4rú, + firrtl' - rl¡lrl

. - cotdl
t5 ' 

er'J
is given by:

that is

d2: (4.23)

The state (S:0;L:0) corresponds to the terms T?n, * Tí,rt * Ti.'

* Ti. where rfrr* is invariant under change of the noninertial frame (i.e.,

rotations (parameterized) by the angre a(qyq2,0) about lr). Trre

behaviour of the remaining terms under a change of frame will be carriecl

out in the next sections by means of examples.

All that is needed in order to obtain an explicit expression fo¡ the
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I(B operator in any 2GJV frame are the coefficient t M *p and c, and

the opelator dr.

3-Body Fragment l{¡mi[16ai¿a.

For 3-body systems, the I{B operator reduces to trre sum:

(i(B)3 : TTnt * v. * Tror * T: Ø.24)
where rfrr, is the I{E operatol for the state (s:0;L:0). v. will not in
genelal be separable into terms depending upon the BRI coordinates as is

the case for the cHA fram.8. A.turlly, the separability depends upo¡ tlie
choice of the non-inertial frame as well as the choice of curvilinear

coordinates derived from the BRI (see examples below). In any case, v.
can be added to the source potential v and the separability of the

effective potential Veff : V + V. can be treated. ',globally":

Veff : Vr + Vz * V, * Vrr, (4.25)

The 3-body hamiltonian becomes:

,_ ô2 2 o , r,-,ar-qq+ vr

where

a22a-W-Æ$+v'
-ttr . *tr#. coffi-fu+vþl (426)

v,o: r#+ fj-'uu . - (4.27)
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N-Body systems described by a (2GJV) frame.

To apply a (2GJV) frame to N-body systems, terms T,int, Tir,

Tt. and T¿ are evaluated by employing the transformation of car.tesia¡

components into BRI of the remaining Jacobi vectors:

yk'o: Q¡,cos(u,o (k' : 3,...,n) (4.2g)

where (¡,o is the angle between {*, and ?". The angle, (k,* a.e not

independent since they obey the usual direction cosines relations:

Ð"cosCU, 
ocos(, , o: cosîp,i, (k,,i, : 3,...,n)

Xocos(O,o.or(io: cosdU,, (k, : 3,...,tri i : L,2)

The linear momenta z-U,o conjugate to yk'o are given by:

(4.2e)

where the summation is over all the indices (. f k, and

l?' : cosok' f?sek' * - cosenok'(.:ffi (4.31)

The internal angular momentum components p; are obtained by

substitution of (a.28) and (a.80) into (4.3).

The problem reduces to tirat of finding an appropriate set of

independent angles which are functions of the 0u, ¿ and, adapted to the

specific problem in hand. For example, a 4-body molecule can be

described by choosing the azimuthal and polar angies of the vector. {,
with respect to the noninertiar frame together with e, (see Figure I). The

cartesian components are expressed in terms of these coordinates by:

y31 : ersin/ cosd,

y33 : ersin/ sind,

y32 : e3cosp

ok,e: -; { cos(u ,*u#. # lÐtrL,t-+l } tn tol

(4.32)
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The li,near momenta are:

n31 :-ifsinþcos¡, ô sind'A ,cosþcosl'ð ìäQ - qs'--nd tT -r --43 ãø J

o33 : -ifsin/sind, u&. a;S# ¿þ * _&q ä I

or2: -z[cos@ 4 "# 
3, ,

The angulâr momenla p; are given

pí = ifcosl,cot| -fg, * ,tnO,

pá : ifsinl,cotþ ri - cosl'

Pi:<fi
The angle / is identified in this case with the angle (32 and is

independent of the choice of the frame. d, is the angle between the axis

î3 and the projection of the Jacobi vector d3 on the plane of the

fi'agment; á' obviously depends upon the choice of the noninertial fi-ame.

To avoid tliis, it is preferable to choose { : 0' - ç where ( : (13 has

been defined in section 3.

with this parameterization,. the part of the KE operato¡ that has to

be added to (I{E), is:

(I{E)r:Tínt*Tir*Ti,

(4.33)

by the usual expressions:

a,
¿6)a,
ðö I (4.34)

(4.35)

This expression is evaluated by substitution of (a.3a) and (4.35) into

(4.14-16) and by using the coefficients (4.2r-2J) characteristic of the

fi-ame. The equations are der-ived for several frames and different

parameterizations in section z for a molecule of the type (AB2)X.
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5. Examples of Norm Independent Frames.

As first examples, we consider in this section frames constr-uctecl

independently of tlie lengths ei of the trvo Jacobi vèctors,

norm-independent fratnes. This requires restliction of the depend,ence of

the parameter ( to the angle d between the vectors. The sirnplest

norm-independent frame, hereafter denoted by' cHA8, is obtained by a

Gram-Schmidt orthonormalization of the vectors {r. Two pôssible fi-ames

result, depending upon which vector is taken first.

l.Bisector Frame.

The bisector of the two Jacobi vectors is the axis of quantization Ìr.
The frame adjusts to the instantaneous confìguration of the two Jacobi

vectors in a fashion independent of their lengths. In a sense, this frarne

can be viewed as a principal axes frame of two unit vectors. By applying

the results of appendix I, the cartesian coordinates of the Jacobi vectors

with respect to this frame obey the following relationship:

Yr}Yzl+Y23Yi1:o
and the parameter C : 012.

In terms of the BRI the yio ur" expressed by:

y13 : e1.osf yll : -e1sin$

(5.1)

(5.2)

fragment

23
v : e2cos$ y21

of the internal KE operator

: Q2sin$

related to the 3-bodyThe part

becomes:
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t9,+v:rnt 'c 
^2

- +" - + { + l-, [L(L+i) - s2]aQf Qr dQr sQr' '

-4-?!*![L(L+r) -s2] (53)ôq2' Qz Nz sQz' / r

t*.n;l {#*co'Loh-"+
o
1,

-Y s,n21o¡27¡r(L+r) - 3s2lÌ')
In this case, the centrifugal potential v. is completely separable as

in the CHA frame but here V. is distributed in a symrnetric fashion

between the two radial osciilators e1 and q2. The systern of thr.ee

differential equations can be solved numerically for a given sour.ce

potential V by the usual methods9.

By defìning:

q:qi'*q;' andQ:Qit -A: (5.4)

the rotational I{E operator Tro, reads as:

,r ^i n tanzçe¡z¡ "1 *j O tan2qe¡z¡ P (5.5)'rot - g " 
LaIr \u/z) o+ 

g

. #i-,q{ '8. i{ } "* * #q{ , g-iú } "(Q-¿)
The internal-external coupling terms are:

rl: þn 8r,*-|n gn,_
(5.6)

As an illustration, consider the transformation into polar.

coordinates, with Q1 : pcosa and e, : psina, TT.rt + V. becomes:
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Tint + v. :
& sa- 
'7 

- P-TP

- i t + - 4cot(2a) 4¿- *t'(l'+11-s2 rrr2çzo¡1

l*H#1-cotoh-,'qt
- * sinz ço ¡z¡¡r(L+r) - rs'l 

Ì (5.i )

Description of a N-body system (N>B) with the bisector frame.

The part of the I(E operator corresponding to the remaini¡g Jacolti

vectors di {t :f,...,n) is partitioned in ihe following way.

The coefficients appearing in equation (4.2r-z}) are given by:

Mll : #*^ t Mzz:*; Ms¡ :#O,
M12:o ; Mrs:"$¡r; M23:o
Cl:0; Cz:-e-P#, C3:0

d1 :0 ; d2:-89* ;d3:0 (5.8)

After substitution in the general expression (4.15), we obtain:

T.:lr

ån{ H^+@)2.H^.
-*à{*osd-õ}';+sa{ ,å^

where the P; are the cartesian components of

remaining Jacobi vectors with respect to the

PíPí .'

4 ,i"i l
, Píì
+ rú? I (5.e)

angular momentum of the

noninertial bisector. fi.a,rue.
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The expression of the P; in appropriate internal coordinates (lengths er.
and a set of independent angles) of the vectors di is carried out in sectiou

7 together with the evaluation of T,nr.

As expected from the definition of norm independent fi-arnes,

coupling term between the internal operators of the fragment ancl

remaining vectors di reduces to,

Ti., : - oq gúr; (b.ro)

that is to- couplings between the angular coordinate d and the compo¡e¡ts

of the internal angular momentum.

Finally, the couplings between external rotations and the inteural

angular momentum are given by:
rn
I.

te
À- - r Píf a{#p/Ð+#Pá+ *i}'*

À-:r Pí , ì+ 4- aJ- ;; + sifo 
p4 - ip6 lo (5.r1),ro. -¡,,lÐ + 

'fo 
Pá "'2 J--

once again, in order to obtain some physical meaning, the oper.ator.s

P; have to be expressed in an appropriate set of internal coordinates.

2. Norm Independent E.S. Frams-

This frame is obtained by rotating the bisector frame about ?, t;y
7114. This corresponds (see appendix I) to the E.s. norm indepenclent

frame.

Let ð, and C, be the two normalized Jacobi vectors:

¿i : aildi

tire

Ihe
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The Gram matrix of the u¡rit vectors õ, is:

Gij:(¿i,¿j) :cosd,,

The E's- frame {î3,11} of the two vectors C, is given (see appencrix

(5.13)

1) b"v:

(5. i4)
?s,: ¡c-llrrðr + [,{c-1]12¿2

?, : [,'l c-l]rzðr + [¡ c-11rrð,

rvhere { G-l is the unique positive squâ,re root of G-1

Jacobi vectors,

l, : B11dr + Brzd2 
(5.15)

îr:Br2dr*Bzzdz
The cartesian coordinates yiû with respect to this frame obey:

yrry2L-y13y23:o (5.i6)

and the parameter C : 0lZ - rl4

In terms of the BRI, the cartesian components are expressed by:

tl: : Qr"+ , ,tt : elu- (5 17)
y23:Qzr_; yzL:e2a+

where

^* 
: 4,¡(t*sinB)

The part of internal KE operator rerated to the three

becomes:

t? +v:lnt -c

4-?$* +=[r,(r,+r) -s2]ôqí Qr âQr 8Qr"

_ "+ _ z_ _g_ + J_[L(L+I) _ s2]aQz" ez Nz sez

- a { #. coffi 9- -*[L(L+l) * sr]]

* aS [r.(L+r) - 3s2]

In terms of the

(5.18)

body fragrnent

Page 26

(5.1e)



yL7 : y23 (6.1)

with this condition, the matrix B and its inverse ]l âre both

symmetric hence Y is the positive square root of the Gram matrix G. The

a'alytic evaluation of Gl/2'is carried out in appendix I; the result is:

wlrere a+ : q? * q3 * 2QrQrsind. The angle ( is given by:

--13 Q1(Q t +Qrsind)
i - ---^T12-

-+
.-zr Q2(Q, +Qrsiná)r - --;t1z-

-+

M11 : qj*

- 11 Q1Q2 cosd
r nrl2-+
-2J Q1Q2 cosd
i : ---;T]r

al
-1-

(6.2)

(6.3)

(6.4)
ac
ãq

, (a,*Qrsind) 4..' cosácos(-ffi sin(:
^+ ^+'

_ Qz, ot? 
. Q ç Q1 c o s0. AC e2(er+ersind): -T;- ; ãr.,: - -- ;-; fr: ---Z;:-

The coefficients M oþ, C, and the operator d, are:

2q.2
M2r: -:T- M33 :LL 

QíAr*
co sdA .

M--. - +
- -rJ 

QlQrs i nz o

d2: t+ {*'aqrfi-a,uü) + sind(&-&,grt

c2:nufl' %#l (o¡)

The centrifugal potential V. is nonseparable:

v.(e1,e2,o):apþ;,t t+xl . d** Ura[L(L+r)-sr,,u u,

It is interesting to compare with the centrifugal potential for tlie

1
-õ----õ-
Qisin'0
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norm-independent E. S.frame:

vc(Qi,Q2,o): vc(Q1) + v.(Q2) + vc(d)

where:

v.(Qi) : ;!ltlr+1)-s2l
L,l.

* Vå, (6 7)

(6.10)

v.(d) : * ¡r,(r.+r)+s2l

vlt : -% [L(L+1)-3s2]c 4s I nd [L(Ll-1J-Js-] (6.S)

Partial separability is possible in this câse because the fi.ame is

constructed independently of the lengths of the e,.

To the limited extent that we âre concerned with separability of V., BRI

coordinates are not ideal. Polar coordinates p and a defined by el :
pcosa; Q2 : psina fail to achieve complete separability but do permit tlie

hyperadius to be factorized:

Yr(p,u,o):iln#+#)
' (6.9)

To achieve greater separability, new coordinates obtained by

'rmixingrr the three BRI coordinates would have to be constructed.

a

2.I.P.A.I Fra^me.

The condition imposed on the cartesian components is:

ilLJ: y13y1' * ,"r'1 : o

that is, the rnass quadr-upole is diagonal.

The traditional parameterization6 of the internal coordinates

(together with the constraint (6.10)) is À1, ÀJ, ó where Ào are the

common eigenvalues of -l{ and G (see appendix II) whereas d is

ia
v

f u'o

the
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parameter of the (label) orthogonal transformation &, diagonalizing G (the

Gram matr-ix represents ån operator acting in label space). Other.rvise

stated, ,Ø roiates the label basis replesenting the Jacobi vectors ilto a

new basis representing a new set of Jacobi vectors and we ar.e no lo¡ger

dealing with a fixed representation of the system. of course, the yor.tex

momentum ei is not zero in this case. Alternatively, the choice of the

BRI coordinates of a fixed set of Jacobi vectors leads to a zeto vortex

motnentum. In order to obtain an expression for the I(E operator i¡ terl¡s

of the BRI, the KÐ operator may be first expressed in terms of the ,'label

internal coo¡dinater" Ào and $ and subsequently re=-expressed in terms of

tlie BRI- Tliis procedure is cumbersome and does not take advantage of

the invariance of Tfrr, with respect to a change of frame. All that is

needed to do so is to evaluate the coefficients Mor, c, and d, in BRI

coordinates.

The ca'tesian coordinate, yi" are given in terms of the,,label
internal coordinates', by:

y13 : r.\cosþ ; yl1 : -/zrsin¿
,,23 - )1r - l\srnç ; Y'- : !.trcosp

where lto: trÀo.

In this frame, the vortex momentum operators are given by:

po-o iP3: zt¡p?+p3, a--: P' .'t:t - "rurlW 
i Pã:o

and the coeffìcients are:

M,, : J- ; Mzz: 11 
*,^î, 

; M¡s : +11 
^g 

, -'-zz 
(Àg_Àl t I

Mrz: M13 : M2B : o

(6.1 1)

(6.12)

C1:CZ:CJ:0
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dr:o ; d2:rrù4ö ;dB:o (6.13)

The transformation of the label inteÌnal coordinates into BRI is

carried out in appendix II. The results are as follows:

À3 : *lo, * (pa - o2¡rlzt; Àr : Tv, _ þa _ or)rlrl

cos/: tli 
-t1',' ; sin/: ¡$*1,r, (6 14)

wlrere o' : q? | ú*o " 
: 2etezsiná. The inverse rransformario' is:

Ql : (Àr - .lr)sinzd + )t ie2 : (Àg - ,lr)sin2d + Àr
À, À,

cosd: 1fodl sin(2@) (6'15)

Tlie coefficients become:

Mll : f;Aa; Mzz:#; Ms¡ :ñF5,
M12:M13:M23:o
Cl:CZ:Cg:O
d1:dr:o

dz:-2ilc*o(&-f-l $#A (6.16)

Expression of the KE operator in label internal coo¡dinates-

.no & I ¡3Àt- À¡l a'int- -æ- trLf,i_Flðr,

, (Àr + r3)3 
az- Àr\l\-ÀF ,æ
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v.:å[-t-'

a
-öötUtz

À., +Ào .l

rj--r.o l[l(i,+r)
lÀ^-ì- 1" j\ I l/

-s2l *tr'

,e I r Àr+À, tz- -r- tT- t,,-\Pl"-
Àr+À, 

ô

Brtf -ðÔ o-

(6.1s)

,
t1

rnt*rot 
4

Tl: -4¿,\- -'l-

i r Àr+À,

LrU-(rr-^7
À1+À3 

ô-7ö o+

l2
)o+

+ 4(,_

(6.1s)

(6.20)

8¿ ^?- ^3(^.^¡T

(6.21)

(6.22)Y,

Tó : /*(Mrrei + NrrrpS)o+ + /_(MrrPi - ilvI2zpi)o_ (6.23)

KE operator in standard hyperspherical coordinates

The coordinate transfo¡mation into standard hyperspherical

coordinates is achieved by setting:

lr1 : PCosgi l\ : psln(p (6.24)

al
-t
öpl

-olnt
& 5ô- 

'7- 
P-ðP

o

-+ l3i*
,' L aç2

Tíot + Ti. : 
i,: ofti, o)' * trtrr(t +)' * I tU

T.:rc

aco{ap)
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-$cotzq+ò 4,p' aó"

\'.: #l*4' . drr) [L(L+r) - s2] -+s2cotlz,p¡]

Trot

Tínt + Ti, :

,'l o6'' o)'

.ì- 32¿ csc( rp) A*ic - ---T-W
p

(6.31)

in BRI coordinates is obtained once more froln

substituting the expressions for the coefficients

by (6.16), the momenta p; being treated as

onLt+[:47L
,

'L'lcL-

)'i * 
nF

(6.25)

(6.26)

2o_

(6 27)

(6.2s)

,1-r -z-
p tg-'

v5

eÐ2;M
(Pá)' 2sP5

;r-fi l
(6.2e)

(6.30)

T,
c

KE operator in BRI.

The KE operator

equations (4.12-19) by

Mot C2 and dZ given

above.

T)t

| '1 ,l2''sln (p

Dt. '2 I1;Jee) 
lo+

Pi P6
_---5-_ a---õ-_
sin"tp cos'(2g) ]"-

[_r+=l
PL

{,
-1-

2
p

,.
_(
in

2
2

.)

- sln
g cos'(zç)
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up to this point, there is no significant advantage (apart frorn the

symmetry in the coupiing terms) in choosing one or another frame on a

simple mathematical basis. The rotational ground, state (s:0;L:0) of

three bodies is described by the same I(E operator irrespective of the

choice of the noninertial 2GJV frame. This is not the case for N-body

systems as illustrated in the next section. Selection of one or another.

fi-ame appears to require additional physical input.

7. Application to Molecules of the Type (AB2)X.

The purpose of this section is to ilustrate the previous theory by

meàns of the example of molecules of the type (AB2)x. The contribution

of the "additional" vector {, to the total I{E operator (s:0,L:0) is

represented by the terms Tírrt, Tr. and rr.. some expricit realizations ìry

means of curvilinear internal coordinates are presented belorv. Two liincls

of fr"ames are conside¡ed reflecting the nature of the constituent particles.

For *X S -OU, (NO2CI), it is appropriate to choose tlie axis of

quantization f3) in the plane ABr: the non-inertial frame is of the type

(2GJV) and the Jacobi vector associated with the bond Ax rotates

internally about the axis of quantization. For molecules whe'e

-X ) *Ot, (HrC:O), the situation is better represented by an axis of

quantization along the Jacobi vector describing the bond AX; the a_xis ?,

can be constructed for example by Gram-schmidt with Ë : odt ¡ ldz
(a and þ + 0, the frame is global, otherwise, the frame is iocai). The final

expression is more or less complicated depending on the choice of the

frame and the curvilinear internal coordinates describing d3. whei.eas
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Tíot ir independent of the choice of the frame, Tr, depends on the choice

of the frame since, in ttre expressions of the components of the interna.l

angular momentum, tlie parameter ( defining the frame å,ppears explicitly.

This result has been demonstrated rigorously in reference 1, appendix II:

whereas the P'^ are invariant under a rotation about the axis ofa
quantization, this invariance is not maintained for a general rotation and

in particular for a rotation in the plane of the Jacobi vectois consti¡uti¡g

the frame (change of frame). As a result, the overa[ (s:0,L:0) I(tr
operator depends on the choice of the non-inertial frame.

BRI Coordin¿tes for {r.

angles between

and the axes

lelationships:

Ðocoszço: r
(7.1)

Ðocos(ocor(io : cosd,, (i:1,2)

with the conventions of equation (3.g), the last relations become:

cos(rsin( * cos(rcos( : cosár, 
F.Z)

cos(rsin(' * cos(rcos(' : cosÎr,

This system is easily solved and the parameters (o are expressecl in

terms of d* an-d- d:

cosdrrcos(' - cosd¡rcos(

Let the system be described as in Figure I. ár, and ár, are the

and {r, d2 r.rp..tively. (" are the angles betrveen {,
the frame 1?oi; they obey the direction cosine

d3

of

cos (,

cos(,

siná
cosdrrsin( - cosdrrsin(,

(7.3)sind
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cos(2 : * #r-a
rvher-e V is the volume of the paralelipiped constructed witþ the tìrr.ee ¡¡it
vectors along tb.e three Jacobi vectors:

The cartesian components are:

yJo : e3cosço

From (4.29), the linear momenta are:

- :t , ð ri¡ a rh a rord: -? 
L 

cos(c 

"Ð 
- -q *ã - -q ,q ) (7.6)

¡.& _ cos(io- cos(ocosd',
li3:Ë (i:1,2) (T.T)

By squaring (6.5), adding over a and making use of the r.elations

(6.1), the expression for TJn, reads as:

rTa tI. tnt

taz 2 ô-lta3-qq
. 

nþ ' 
^+r* 

cotd" fo*. #r. coto"fu;l

+ ?-cosAo a2 ì' er, 
vvo¿r3 r@q i (i'8)

where A, is the spherical angle corresponding to drt0,

cosAr:ffi (z-e)

The internal angular momentum components P; are evaluated fi.o¡r

the expression (4.2):

p*: - ¡ly37osr- vsTorpl (2.10)

v : [1 - "or20 -.or2dr, - ror20rr* 2cosdcorlrrrorl2g)Ll2 (7.4)

(7.5)

where

Page 36



where a,,0,i are cyclic permutations of 1,2,3 as usual. By substitution of

(6.5) and (6.6) into (2.i0), we obtain the cartesian components of the

inteÌnal angular momentum expressed in terms of the momentâ coljugate

to the coordinatet dt3 and 0zz (they obviously are independent of the

radial linear momentum ,fu The resuit is given in a general form by:

P':-;,LXq -.Ô * 
Xä 

- a r- & -, Lm4ã ðTi+ -"%t 
-dWJ (2.11)

rvhere the coefficients X* and X; (dependent on the choice of the non

inertial frame) are given by:

Xo : (cos(rcos(rp- cose fotcir) (7.r2)
X!: (cos(rcos(, O- cos(6os(Zf)

with the conventions of equations (3.g), these coefficients âr.e

expressed expiicitly in terms of the parameter ( defining the frame:

Xl : --cos(rrcos( ; Xí : -cos(rrcos(,

X3 : -cos(rrsin( ; Xá : --cos(rrsin(, 
(2.13)

X2 : cos(rrsin( + cos(rrcos(

Xi: cos(rrsin(, * cos(rrcos(,

The components of the internar angular momentum can now be

introduced into equations (4.14,15) to provide an explicit expræsion of T,.
(S:0) and T,..

The general expression for T., is

T.:-rA t *o & -, o2,r , ' 11 url;* orr 
ôr+ 

Atz *r#W+ Br fn*. "r ül
(7.r4)

where the coefficients (Appendix III) are functions of. 01g, 0r, and. ( hence

implicitly functions o¡ Ql, e2 and d through (.
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: 2dZP 
á (7.15)

been defìned inwlrere P, is given by (i.11) rvith a - 2 and d, has

equation (4.22).

For most of the frames of interest, the coordinates d6 and 0 arc
coupled (412t0 in 7.14) whereas there are no coupling terms betwee¡ t¡e
radial coordinatet Qi. The configuration metric tensor is partitioned i¡to
two diagonal blocks: G. and G" representing respectively the ¡adial ancl

the angular subtensors-

Tr. is obtained

T.
1C

G-

G, has the formT:

in a similar manner:

G. 0j
o c"J

89 c1 t, 
Icr grs ol

"2 o sz¡l

a

(7.16)

(7 .17)

This expresses the orthogonality of the coordinates d6 and 0r, and.

the non orthogonality of á with árr. In the dual space (i.e., appropr.iate to

the momenta), the metric tensor is G;t in which the orthogonality is
broken. one can showT that, in keeping d as an internal coordinate,

whatever the orthogonal curvilinear transformation of the angles d,, is,

there are no zero terms in G;t. In other words, any set of a'gula'
coordinates for {, leads to couplings between them and couplings with trre
coordinate á in the KE operator.

This is illustrated below with the spherical coordinates
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azimuthal and polar angles, as pointed out in section 4, are orthogonal

but 0' and / are not orthogonal io the angle á between the vector.s

constituting the frame.

Spherical Coordinates for {r.

The azimuthal and polar angles ó and 0, represent another.

parameterization of the angles e o. u the internal rotation is about ?r, the

angle / is independent of the choice of the frame. If the internal rotation

is about the axis of quantization, @ does depend on the frame. In either

case, á' is frame dependent-

consider d3 rotating about l, and 0, the polar angie in the plane of

the frame. By squaring the linear momenta given in equation (4.32) and

adding over a, the operator Tír,t becomes:

T::-lnt
ô22a- tt3 - rÐ*'

_1,i
rf t aæ+cowful

T&-6ffiôF
Similarly, the expression for

rnomenta given in equation (a.3J).

ri.: - [Arr #.
where

(7.18)

n2
Ar, !-o +

LQ 
^tLoQ

T,, (S:0) is obtained from the angular

The result is:

n2
An aïis, * Bi -f¡ * ,, 8ø 1

(7.1e)
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All : Mzz + cot26 [ Mrrcos2á, + Mrrsin?0, * 2Mrrsin2d,]

A22: Mrrsin2d, + Mrrcos?i,, - 2lvrrrsin2o,

412 : Zcotþfsin2?,(Mn -
B1 : 

M [4Mrrcos2o'

Mg¡) - 2Mrrcos2d']

- sin20' (Mrr - Mg¡)l - iCz

(7.20)

The coupling terms between trre inte'rar coordinates {er,e ,,0} and

the internal coordinates for {, are given by Ti. : _2d,rp5. For. norm

independent frâmes, there is a single coupling (0-0,) whereas 0, is

coupled ,o Ql, Q2 and d for norm dependent frames. The existence of the

extra terms in (Q1,Q2-d') can be understood by considering the totar

confìguration metric tensor:

B2 : cot/[Mrrcor20, + Mrrsin2 0, + 2wrrsin2d,]

G- (7.21)

where G. is the metric for the external rotations. For norm indepenclent

frames, x = 0 but there exist non zero terms for norm dependent frames.

g. gumm¿ry and Conclusion-

A kinetic energy operator for N-body systems has been derived

using a rotating frame (non-inertial frame) tied to the configuratio' of
three non--collinear particles represented by two Jacobi vectors d1 ana {r.
This model is particularly suited for the discussion of three bocly a'ci

G.ox
0GrY
xtytG
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(AB2)x systems where x may represent a single particle or a group of

particles treated as a whole. In such a situation, the system is par-titioned

into two fragments:

(1) the defining fragment (D-fragmeni) cornprised of the Jacobi

vectors d1 ana d2 ana whose rotations witii respect to the inertial frarne

âI'e generated by the trexternal angular momentum" ¿

(2) the internal fragment (i-fi-agment) comprised of the remaining

vectors dk (k:3,...,N-1) and rvhose rotations with respect to the

non-inertial frame are generated by the 'internal angular momentum', È,.
The internal coordinates are the Basic Rotational Invariant

cooldinates of the Jacobi vectors that is:

(t) the three curvilinear coordinates e1, e2 and d parameterizing

the cartesian coordinates of the D-fragment witir respect to the rotating

frame and accounting for the three relationships defining the frame

(2) the N-3 lengths of the Jacobi vectors of the I-fragment and

2N-6 independent angles parameterizing the angles d,, other than d.

The rotational motion is integrated out leadinl *o ,n operator Tro,
(equation 4.17) expressed in terms of the rotational quantum numbers, the

step-up/down operators o+ mixing the vibrational states of the

D-fragment alone and rotational invariant coefficients specifying the

fi-ame. As well, the coupling terms T! and rá between the (integrated)

external and the vibrational motions are expressed in terms of the

operators o+ and the linear momenta related to tlie two fragments

(equations 4.18 and 4.1g respectivery). In the former case, the inter¡ar

operator dz (equation 4.2J) is coupred with o+. For frames defined

independently of the iengths Q, and e2, the term d, reduces to a single
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term in the angular coordinate 0. In the general case, couplings occur.

between the external rotations and the radiai parts as rvell. The sarne

operator d, is coupled with the internal angular momentum pi (eouation

4.16) describing the fashion in which the motion of the two fragme¡ts is

determined by definition of the frame. The pure internal eneÌgy

corresponding to the I-fragment is expressed by relations (4.14-15). These

terms are explicitly expressed once a proper parameterization of the angles

has been defined. In no case is there coupling between angular and tìre
radial parts of the l-fragment. Nevertheless one should notice that for

norm dependent frames, the angulâ"r motion of the l-fragment is coupled

with the radial part of the D-fragment. The pure internal operator Tfn,
of the D-fragment is independent of the choice of frame (equation 4.rz).

Finally, the redistribution of the rotational energy (centrifugal potential

v.) arnong the internal oscillators rerated to e1, e2 and á (given by

equation 4-13) is not separable in general (except for the _bisecto¡ frame)

and must be appended to the non--separable part of the source potential.

It is not the purpose of this work to discuss the respective merits of

one frame with respect to another for a given problem. Such a discussion

requires more physical input. It is nevertheless worth mentioning the

recovery of symmetry by using the frames descibed above comparatively

to the cHA frame although introducing extra coupling terms. In
particular, the use of norm dependent 2GJV frames (for example I.p.A.I)
for the description of N-body systems generates couplings betrveen the

angular variables of the l-fragment and the radial v¿riables of the

D-fragmeni. The bisector frame appears as a valuable alternative to the

I.P.A.I. (as such couplings do not exist) and to the cHA frame (as the
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symmetry is recovered).

APPBNDIX I.

ORTHONORMALTZATIONS IN tr3

- 
Let (Ë1,Ê2,É3) be a set of three vectors in E3. with respect to an

orthonormal frame {7ì, their components are Fiû : (Ëi,?a). The Glam

matrix elements C(p)ij are given by:

c(p)ij : (Ë'i,Ëj) : ÐrFiaFro: F¡F¡cosü,., (AI.1)

We seek linear transformations O in E3 such that:

OG(F)Ot : 13 (AI.2)

(1) Eigenvectors of G(F)

_ since G(F) is a real, symmetric, positive definite matrix, it can be

diagonalized by a real, proper, orthogonal matrix R:

Rec(F)R: : Ä: diag(Àr,À2,À3) (AI.3)

one orthonormalizing procedure is obtained by pre- and postrnultiplying

(4I.3) ay /Lllz.

o" : frlznu (AL4)

The set of three vectors:

ëo: Ðo[o.]ooÉ o: ÀãLlz[Eo(Re)ooËo] ; {o:1,2,3) (AI.5)

is orthonormal and is referred as the "G(F)-eigenvectors frå.me,'.

R" is the orthogonal matrix transforming the inertiai frame {?o} into ttre
new frame {ê"}' (R.)oÉ : Q.u,èp).

The components yo"a of Ëo with respect to the frame {do} ar.e (clot
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Ë with d ):o&/

"lo 
: x!z{n") *o (Ar.6)

In matrix notation (invert equation 5):

% : oãt : nlnllz (Ar.z)

(2) trquivalent Symmetric O¡thonorm¿Iization.

The B.S. orthonormalization O, (O, : O:) is tlie positive squâ.re

loot of G(F)-l :

o, : ,{c(F)-l : nfn-t/'ou : oå". (Ar.8)

This defines an o¡thonormal frame {do},

3o : Ðo(or)ooÈo (AI.9)

The components of Ëo with respect to this frame are given by:

"lo 
: (Ëø,dr) : [G(F)Llz]od (Ar.ro)

or in matrix notation:

Y, : qn¡l/z : ¡¿t¡1/2R. : yuRu (AI.lt)

It is interesting to note that the same frame can be obtained bv

different procedures:

iet A and A' be two different linear combination matrices; there

exists a transformation ¿6 stch that :

A' : .Áh

The corresponding Gram matrices are

c(F) : AG(q)At

G(F') : A'G(q)A't

-' c(F) : ud-r/'c(q)A,t( Á-\t : '6-Lc(F,)( -ø-r)t
Let o and o' be the orthonormalization matrices generating the
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same frame {f} from the different sets {F} and {F,},

: 
oc(F)ot :r,o:*:::,.t : a-ø-Leçr,)Q{-1¡tot : r,

(r)

Note: two orthonormalization matrices o and o, of the saûìe set of

vectors {F} are related by o' : go where fr, is orthogonal since

O'G(F)O,t : øOG(F)Ot&t : &Isfr! - Ir. O and O, in equation (a)

do not obey this rule sirice they are iiot orthonormalizations of the same

set of vect-ors.

APPENDIX II

Gram M¿trix and Mass euadrupote-

With the notation of section 2, let G - eet and ,{ - ete tr.

respectively the Gram matrix and the mass quadrupole of a system of 
. 
n

linearly- independent vectors d¡ of the physical space. G is an n*n matrix

representing an operator acting in label space and ,{ acts in physical

space. Both matrices are real, symmetric and positivedefinite. They both

are diagonaiizable by real, proper orthogonal matrices respectively in label

(p) a"d physical (R) spaces:

pGpt : f R.,{Rt : Á,

where f : diag(7r,...,7o) and Á. : diag(Àr,À2,À3).

non-negative by the properties of the matrices G and

The two matrices G and ,,{ have same trace:

Tr(G) : tt(QQt) : Tr(QtQ) : Tr(.*)

(Arr.2)

(Arr.1)

All 7i and Ào are

-,#.

Incidently, one has also Tr(GU) : tr( -#¡ n, k integer:
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rr(ck) : rr(eeteqt...qqr) : rr(e #-Lq\ : .rr(.,#)

(Arr.3)

Theorem:

The eigenvalues 7, of G are as follows:

jo:Ào f6¡c,_1,1,, 
(AII.4)

Ta: 0 for a>3

r- The eigenvalue equation for -Ø is:

Æ o: ÀJo
where Ëo ir the (physicar) eigenvector corresponding to

Ào. By premultiplying this relation by e, we conclude

that )o is also eigenvalue of G with corresponding

eigenvector QËot

e& o: Àreda : (eet)eËo : ÀJeËd) : c(eËo)
By using the trace identity (A.2) and the non-negative

property of the eigenvalues 7, and Ào, the theorem is

proved. 1

With respect to the LpF, dû has components (R1o,R2o,R3o). The

components of Qflo are then the cartesian components of the vectors {,
with respect to the axis lo of the non-inertial frame (principal axes

frame):

Qdo : cotlvf ø,...,yld¡ 
(Arr.b)

where the subscript i refers to the PAI frame. After normalization and

recalling the definition of the eigenvalues À ^:
r s ,kar| 

- a
ne: ,k(Yi ) (AII.6)

the eigenvalue equation for G is:

cdo : 
^Ão (Ari.z)
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where the eigenvectors do *. given by:

do : ^;t/"ur|o?u (Arr s)

with d¡ being the unit basis vector in label space corresponding to the

physical vector {U.

of course the eigenvectors do (o>3) corresponding to the zeto

eigenvalues of G are degenerate and they span an ("-3) dirnensional

subspace of the label space orthogonal to the 3 dimensional subspace

spanned by the Eo. tn. eigenvecto.t do can be chosen in rnany differ.e¡t

ways to be orthogonal among themselves.

For n :2 or 3, the problem is particularly simple since there are as

many do * Ct so that the components of [o with respect to C, are the

elements of the rotation matrix p:

Pia: gto : {do,ðr) (Arr.e)

and p can be parameterized by one or three Euler angles Õr.

The expression for the principal axes of inertia Ë" in function of the

vectors e¡ is finally given by:

Ëo : 
^ã'l"u'k"1o,)d¡

or in matrix notation:

(Arr.10)

p : h-r12.p.q

where p and q are column matrices of the vectors Ë* ana {U.

For n : 2, the eigenvalues À* can be written down analytically ìry

solving the secular determinant lG - Ä I : 0. With the usual conventions

of labeling the moments of inertia, the result is:

À3:!t,*(ra-o2¡1121

À1 : llr'-(ra-o2¡1121

(Arr.11)

(Arr.12)

wlrere t2': Q? * qïis the hyperadius and o : 2eiezsiná is the su'face
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of the triangle defined by the vectors d1 ana d2. obr.rrre that:

À, + À, : .2 a,rd À¡ - Àt : çr4-o2¡rl2 (AIi.lg)

Let p be parameterized by the Iabel angle Õ. From (AII.1), we have:

Q?-r"
sinÕ : I lfr3t1/2 cosÕ : , 

q3 - ÀB,L 
12[;it"i't" (AII.14)

The inversion of (4.13,14) gives expressions of the BRI coordinates

Qf , QZ and d in terms of the ,'label coordinates', À1, À, and Õ:

Ql :(Ài-Àr)sin2o+Àg

Q2: (À¡ - Àr)sin2o + Àr

Ào À'
cosá: tr sin(2Õ)

Let

P' : -r [ ¡ A
a - -t ¡ osfi* bo fqrl

X^ X,wherea^-=j- andb :,--qa stnfl13 *"" -a sind*
By squaring and adding over a, one obtains the expression:

r,,:-[41 ,&+ Azz#r. orrffi* Br -r*"

where

APPtrNDD( III

EVALUATTON OF TrR FOR A (2cJV) FRAME.

(Arr.15)

* Bz 4qrl
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All : ÐoMoou?o* 2Mr'ara,

A2z : xoM o*b'o+ 2M13b1b3

Ar2:21ÐNoouobo* Mtg("tbg + arbl)J

81 : 41113â1 * b1r23u1 * ^ZIIJ^,* bZrzJuZ* ,3r13r3 +brrrra, +
a1t13â3 * 

"3r13u1 
* btr23r3 * b3"Z3ut * i,Cra,

B2: u1r13b1 * bt"Z3bt * 
^zr',Jb2 

* bZrZJbZ * u3rt3b3 +brrrrb, +
u1r1'b3 * u'rt3bt + btrZ3b¡ * b3rZ3bt + ic.bz

where ti3 : #r_rr, Mo, and Cz are given by equations (4.20,2t) as

functions of the parameter ( defining the non-inertiai (2GJV) frame.
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trigure I : Angular variables for branched four-öody systems-

The Jacobi vectors d1 and d, {n-tt"gment) are in the plane defined

t y îs and lr. (o are the angles betrveen d3 ana the a-xes lo. d, is the

angle betrveen the axis of quantization l, and the projection o¡ ds on the
plane of the D-fragment (depends on the frame). , i, tnu angie between

the projection of d3 on the prane of the D-fragment and the vector {,
(independent of the definition of the frame)
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The quanturn kinetic energy opelator for a group of particles

in te'ns of scalar basic rotational invariant coordinates

derived from a generalized Jacobi vectors (GJV) description.

Ii. Frames derived from three GJV.

Äbstract: Previous *o.k1 defining the quantum kinetic energy operator for relative motion

of a group of particles in terms of cartesian components of generalized Jacobi vectors (Glfr¡

is logically extended- The first such extension exanrines definitions of the noninertial

reference frame which follorv from its definition by three GJV, the second i¡vokes the

simplest scalar internal coordinates rvhich are the basic rotational invariants of the GJV_

I(E operators are explicitly evaluated and assessed in terms of separability.
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1- Introduction-

The present authols have recentlyl derived an expression for the ki¡etic
eneÌgy operator of an N-body system which is valid for a general non-i¡ertial
reference f¡ame provid,ed that some prescription of the m.anner in rvhich the

rnoving frame is rrattached" to the instantaneous intelnal configuration is given.

The resulting kinetic energy operator was expressed in terms of the 3N-3

cartesian coordin¿tes of a set of N-l generalized Jacobi vectors2 (GJV) rvhicli

ate orthogonal counterparts to the tr¿ditional (non-or-thogonal) inter.par.ticle

vectors. Lack of a systematic discussion of non-inertial frames provided some of

the impetus for our previous work (liereinafter I) although this topic has in the

past been3 a'd continues to be of substantial interest4,5.

The non-inertial frames comrnonly employed in molecular dynamics fa,ll

into two categories:

(1) global frames expressing some property of the entire systern (for.

example, the instantaneous axes of inertia frame, Eckart molecular

frame,...)

(2) local frames for which the rotational motion is tied to tlie

instantaneous configuration of some fragment of the system.

The fo¡mer are well suited to the description of systems possessi¡g a

semi-r'igid structure which can rotate as a whole.

The latter are more convenient for rnolecules containing a semi-r-igicl

fragment defined by a set of Jacobi vectors dfl These vector.s clefi¡e à

non-inertial frame {?oGf); a:r,2,J) whose r-otation rvith respect to the

ineltial frame is generated by the conponent angular momenta of the vectoLs
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dfl

Frames identified by a three bod,y fragment (two GJV) have already bee¡

investigated in a recent pup.r6 (hereinafter II). The kinetic enei.gy operato¡s i¡
basic rotational invariant (BRI) coordinates were derived for. a var.iety of
frames defined by 2GJV. That model applies to th¡ee-body systerns i¡ a¡y ki¡cì

of non-inertial frame in a pariicularly simple manner. In additio¡, it is

applicable to N-body systems in which a three body fragment serves as a useful

identifier. In that context, the I(E operator for an (ABr)x (,nx < ,r.r¡o)

molecule (such as formaldehyde) was derived.

The present paper is concerned with the hamiltonian for N-bocly systens

described by BRI coordinates resulting from rotating frames character.izecl by

three GJV- The model is particularly well suited to branched four-bocly

systems (for example, of the type AB, as well as (AB2)x whose r.otating frame

is co'sidered global). As in II, the model can be used for N-body systerns

(ABg)X, especially where mX < M(AB3).

In Section 2, the general kinetic energy operator (forrnuiatecl in I) i'
cartesian coordinates is simplified for three GJV frames. The transformation

into BRI coordinates is achieved in Section 3. As a result, the invar.iance u¡de¡
a change of frame of the operator rfn, (S:o;L:O state of the framedefini'g
fragment) is demonstrated. This result is a generalization of the invariance of
the internal hamiltonian described by global f.a-es7. In sectiol 4, trre

instantaneous principal axes of inertia (IPAI) frame serves as an example.

Finally, in Section 5, the complete hamiltonian for a four-bocly symrnetr.ic top

is syrnmetrically separated into six onelimensional eigenvalue equatio¡s a¡d
the angular internal coupling terms are evaluated by perturbatio¡ techniques.
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2-Kinetic Enerry operator in ca¡tesian coordinates.

Let an N-body system be described by a set of n:N-1 Jacobi uectors2

and let its rotational motion with repect to a center'--of-mass inertial frame be

described by a non-inertial frame {î o;a: 1,2,3} tied to the configur.ation of
the three Jacobi vectors d¡ d, and {r. with the usual conventions, ?, is tahen

as the axis of quantization. This frame is entirely characterized by a set of thr.ee

tnatricesl'6 ii *hose elements are rotational invariant functions of the cartesian

compouents of the three Jacobi vectors di. lt is shown in reference 6 that the

reciprocal tensor of inertia Jof. the set {{,; i:1,2,3} is given by:
:_9
l_d

M=./-1 : ) {ri)t{ri)
:_ol-J

with respect to this frame, the remaining Jacobi vectors d¡ (k:4,...,')
have components yko *hor. conjugate linear momenta are ?r.kr. similarly, the

angular momentum components of the d¡ io the rotating frame are:

(rkþour- ykToup) (2.2)

once expressed in the cartesian coordinates yla and their conjugate

momenta 1o, the rovib kinetic energy operator has the for-l ,

Trovib : TTnt * Tror + Tínt + Tlr,t + T.oup (2.3)

The different parts have the following meaning.

-o'r';n, contains all the iinear momentum terms n, related to {, (i:t,2,3)
and describes the pure vibratioour motion of the .1".o¡ti'vectors constituting the

frame in the rotational ground state:

(2.i )

k:n
P,: IAL

k:4
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i:J a-J
r?ot:l ) l.?**ilioniã e.4)

i-1 a:1
rvhere

Aio: ,br-r'rp (2 5)

The pure rotational part is given by
^.-9l- <)

Tror : I l*rrn'.r* *or{tt *,I{É} + crnrJ (2.6)

1-1
(a,p,I are C.p. of 1,2,3)

whele I(o is the projection of the angular momentum f, of the three vector.s {.
on the non-inertial frame and {.} stands for the anticommutator. After
integrating over all the external rotations8, Trot is re-expressed in terms of tlie
rotational quantum numbers s and L and the step-up/step-down operatoÌs ø*.
As a result, Trot decomposes into a term T. expressing tlie mixing of the

rotational states and a centrifugal potential V. describing the contributio' of
the rotational motion to the internal oscillators:

ûet, : ? [Mrr-Mzz+ i Mr2J ,1*?r*n-Mzz- iMLd¿_
-rt f(+2r*tSMrg+Ci + , (SMæ+C2)ìø*

+|r_¡snrrr+cr -; (sMrr+c 
z)1,_ (2.7)

v. : åf*rr+Mrr)[L(L+r) - s2] + Mrrs, + c3s (2 s)

The coefficients c,, are characteristic of the frame and are give' b;,.:
i:3 À:3

c,, :.1- I t",^ri 7+ iAi.llirl (2.e)
i:1 À:l

Ttrr* contains all the intrinsic operators related to the vectors d1- *,¡iclr
are not enteling into the const¡uction of ihe frame:
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þ:¡1 a-J 7:Jrínt: I I *?-** i lxtr.,vf +ttt
þ:{ s:l I:I

oi{P o,P þ} + cre; (2.10)

Tfn, are the internal couplings between the two fragments of the systern:

r-3
T9 , :2 I d P'^lnt "L"ll

7:I
(o,0,j are cyclic permutations of 1,2,J)

rvhere the operators d, are given by
:_ol-J

d7: I [rLrnio* rhrord

(2.13)

(2.11)

(2.r2)
i:1

Finally the coupling terms between internal motion and the exter.nal

rotational motion are given by:

^-al-1)

T.oup : I ".,',a,_1/-r
The operators Ø are-7

Ø7: Ør* d,
where

(2.14)

Ø7: Mrrr r+ Ma1{P'a,Pþ) (o,þ,1are C.p.) (2.15)

and the operators fo are

r, : !lt*(L,s) o* + /_(L,S,) øl
rz: l[/*(L,s)ø* - /_(L,s,)ol (2.i6)

lg:s
3. T¡ensformation into BRI Coordinates.
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The definition of the non-inertial frame leads to a set of three constraints

on the cartesian coordinate, yio (i:1,2,3) hence to a parameterizatio¡ of tlie
nine non-independent coordinates yia.

In the present context, the six independent basic rotational invariant

(BRI) coordinates constitute an appropriate preliminar-y choice for such a

parameterization since any intern¿i coordinates are expressible as poly¡o¡riaìs

of the BRI coordinates9.

Let Qt be the lengths of the Jacobi vectors di ana d,, be the angles

between them:

a, : [ Ðo$i"¡z1tlz

t vravJ&cosd,r:ff
where d' is taken positive in going from {, to dj.

This corresponds to a curvilinear transformation in configuration space of

the nine cartesian coordinate, yio into three radial internal cur.r,ilinear

coordinates Q¡, three angular internal coordinates dr., and the three Euler.

(external) angles dr, which are functions of the internal coordinates. The angles

d, are parameterizing the rotation transforming the inertial frame i¡to the

non-inertiai frame. By inspectiool0, the metric tensor (contravariant) has ihe

following form:

E
0

0

(3.1)

(3.2)

G- (3.3 )
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wilere the radi¿l sub-tensor G, is diagonal, that is the raclial coor.dinates e, are

olthogonal io each other. The angular sub-tensor G* has no zelo ter.ms; this

expresses the non--orthogonality of the angular coordinates ïri The radial

coordinates are orthogonal to all angular coordinates ancl the internal angles d,,

are not orthogonal to the Euler angles (Gu. # 0). The inverse tensor G-1

(covariant) describes the orthogonality properties in the spa,ce of the momenta;

that is, a non zero off-diagonal element in G-1 means there is a coupling term

between the corresponding coordinates. It is not the purpose of the present

work to discuss in deiail the curvilinear transformations of the BRI coordinates

ieading to the partial or total elimination of the coupling terms. Nevertheless, it
is rvorth describing briefly the general procedure.

Any curvilinear transformation of the angular internal sub-+pace will

leave unaffected the overall form of the tensors G and G-1: only Gu and G".
ivill transform. One seeks rrcurvilinear orthogonalization procedures', of the

vectors of the locally defined basis corresponding to the variables 4,. Such
Urrinfinitesimal" orthogonalizations (infinitesimal equivalents of the usual

orthogonalizations) can be carried out in principie but lead to cornplicated

systems of second order differential equations in the general case, especially if
tlie symmetry of the angular coor-dinates has to be maintained (infinitesimal

B.S- olthogonalization). Aiternatively, mixing of the radial and internal angular:

coordinates can be considered. The effect is to modify completely the structure

of the metric tensors. This is the case for the example of the generalizecl
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hyperspherical coordinatesS: the hyperadius is orthogonal to all the angles; tlie

internal hyperspherical angles (pi are not orthogonal to the label hypersphe¡ical

angles @,.

The cartesian components yiû cán advantageousiy be expr.essed as:

vio: Qlcosç-* (3 3)

wirere (io it the angle between the axis îo of the non-inertial frame ancl the

vector d1. rn* nine angles (,o are functions of the BRI coordinates e1 ancl d...

They obey the usual direction cosines relations:

A:3

) .or2ç.o:1 (i:1,2,3)
g:l
a:3

I cos(,ocos(ro: cosd,, (i<j)
g:l

(3.6)

(3 4)

(3.5)

Furthermore the three relationships among the cartesian coorcli¡ates a.re

translated into three relations among the (r". For example, the instantaneous

principal axes frame is characterized by zero off-diagonal elements of tlie tensor.

of inertia (reatly the mass quadrupole .,./):
:_eI-J

) yioyiþ:o @+þ)
:_1l-.t-

In terms of the angles (i 
o, this reads as

:_tl--d
rr,

L Qicos(.ocos(,r: 0 (3 i)
i:1

The parametert (i* appear here âs useful intermediates i¡ tlle

calculcations.

With this notation, the linear momenta a,re expressed as
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oio:-;{cos(, -ð{.'*
nû nQ

'ii ô tik a Iqäqï-qã["l (3.8)

(ifjt'k and j,k>i)

rvhele the terms 11, a.e defined bvlJ -- -r

rg. : cosdijcos 
lia - cos(i"

rJ srndij

By introducing the spherical angle tjo (r.. figure I) relative to

f fl, is expressable as

-û:r'Tj : __cosS;osin(ia.

(3 e)

the vectol dr,

(3.10)

(3.11)

(3.12)

Expressions analogous to (3.3) and (3.8) â,re now sought for the cartesia¡

components of the remaining vectors {u (k:4,...,n) in terms of the BRI

coordinates and the angles (¡o and SUo.

The expression of the kinetic operator in BRI requires the evaluation of

tlre matrix elements tLB * functions of the parameter, (io defining the fi-ame

and the BRI. The calculations are carried, out in appendix I; the results are:
.l
'oþ: - t rioÇBa

The coefficients A,." (equation 2.b) read as:

aio: 
"iþe tþ- oite pt

Tlris permits the evaluation of the term Tfo, gìven by (2.4):
mo
l. tnt

: _.)l-J o_\ I a" ,2 A1

l:tLÑ*qðgl
- \ i 1 , 1 lt- û , LA a I-,ì, Lq;' .+ nft+cotu,t&)

cosS.. ^2-2 | ;# rf'w; (i+i+k) (3.13)
i<i A¡ - rl(- -Jk

As for 2GJV frames, this part of the KE operator is independelt of the
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choice of the frame. As pointed out above, there are no coupling terms between

the radial and angular parts whereas the angles (, are all coupled rvith eachrJ

other.

Actually, the coupling coefficients are quite small (cosine ctivided by the

square of the leugth of the Jacobi vector). This is especiaily tr.ue ¡ear* the

equilibrium configuration and the hamiltonian derived from (3.13) can be used

fol ABt systems in the rotational ground state with a perturbation tr-eatme¡t of

the couplings.

In a description of this system with a 2GJV frame contructed from the

vectors d1 
"oa d2 (aogle d), the term Tfo, has the form4,

^oI. rnt
:_.)r-J _ .,r I ö" 2 ô1
¡L:tLäa;z*qqj

l*.*ll#+coffi-Åf

(3.14)

where the coefficients 4,, and B, are functions of e¡ ez and á whose for.'r

depends upon tlle 2GJV frame via the parameter (. There is a single a¡gular

coupling but the form of the angular differential equations is quite complicatecl.

To the extent that we miglit be concerned with the radial part o¡ly, both

descriptions are identical.

f nff *Arzlrr#w

1rÊ-af 
L ô%nJ

,2
-1o"fu

* cotdn fn*. *+r. 
cotorrfr"l

* "rf7* orr$3 * urfr*l
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The other terms of the kinetic energy operator- are evaluated in a similar.

rvay after expressing the coefficients M", and co and the operators d* in BRI

coordinates. The procedure was described in detail in reference 4 for' 2GJ\/

frames and there seems no reåson to repeat it here.

4. trxample: Instantaneous principal Axes of Inertia_

The diagonalization of the mass quadrupole of the three vector.s

constituting the fragment AB, of an N-body system leads to the defi¡itio¡ of

the IPAI frame. As far as the four-body fragment is concerned, this frame is

typically global hence rfo, is given by equation (3.i3). AII rhat is needed is the

evaluation of the matrix elements tro¡ to derive the coeffìcients M*p and c"
and the operators do-.

Tlie matrices Il have been evaluated in reference 1 for this frame:

It = 0.
"1

cos (r,
\=r1

0

cos (r,
{qr

cos (r,
I1_I'
cos (r,
\Tr-

0

(4. 1)

0

cos (r,
Ð-rt
cos C'
Ef,'

where À" are the eigenvalues of the Gram matrix G of the three Jacobi vectoÌs

(actually, the common eigenvalues of G and the mass quadrupol"6 .rrq.

For this frame, the off-diagonal elements of the matrix M ale zero

whereas the elements Mo* are given byl:
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(4.2)

Tire eigenvalues of this 3"3 syrnmetlic matrix can be obt¿inecl

analytically by using the Cardan's formulas (see appendix II). The result is

quite messy and is given here for- info¡mation.

The secular equation for G reads as:

x3 - p2s2 - s2.l - v2 : o

where p is the hyperadius:

,, : Ð,Q?

s2 : Ð s?. : r q?qlri"2Bi.¡
i<j IJ i<j

where St, is twice the surface of the triangle defined by the vector.s di ana {.
and v is the volume of the paralelipiped formed from the three vectors:

v2:ø2rAløzrtt-orzLrr*or2drr-orz0rr+2"or0rrcos0rrcosá23) (4.6)

with the usual convention of labeling the eigenvalues we have

\-''^3--fr+e+O
\-
^1 - - {+ rv + r¿q

\-,'nz_ -{+itv+¿,re
wlrere P, Q and a ate as in appendix II.

By employing equations (z.z), (3.11) and (3.12), one deduces thar ail the

coefficients co are zero. The operators do are obtained similarly.

Four-body systems-

The rovib hamiltonian for a four body system described in a non-i¡ertial

frame coinciding with the instantaneous principal a-xes and in terrns of BRI

coordinates iras the following form:

À, + À
- M^^:,P ,7 (o,þ,.,/arec.p)ad 

^p- ^l

(4.3)

(4.4)

(4.5)

(4.7)
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H:T|rrt+V+Vc+Tr (4 s)

rvhere Tfrrt is given by equation (3.13), that is Tf,r, * v describes trre

roiational ground state and V is the potential expressed as a function of the six

BRI coordinates.

For Sl0, the rotational energy is distributed among tire six vibratio¡al

oscillators. The centrifugal potential v. takes the form

v. : : lMrr+Mrr)[L(L+t) - s2] + M33s2 (4.e)

There is no explicit seþaration of the contributions of V. to eacir of the

individual oscillators. Nevertheless, the decomposition of the effective pote¡tial

Veff : v + vc into a summation of separable parts E oy ocan be investigated

¿s usual11.

Finally, the mixing of the rotational states is described here by the terms

Tf

,,:+[M'-Mzz ],r* *f ,rr,-* z2l,? (4 10)

The coefficients Moo are given by equation @.2) and are easily evaluatecl

numerìcally.

N-Body-Systems.

The same procedure followed in II can be carried out for N-bocly systeurs

cornposed of a four-body (frame-defining) fragment and an inter-nal fi'agure¡t

X' Tlre internal angular momenta P; are ræxpressed in terms of tlie liuear.
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momenta, coniugate to the BRI coordinates e¡ and 01¡ (i:r,2,3; k:4,...,N-l)
and substituied into the operators Tínt, Tfrr, and Ø;given by equations (2.10,

2-7r and 2.L5). Even in the simplest câse (x is a single particle), the

calculations are quite lengthy in the genelal case. Nevertheless some geler.al

conclusions ca¡r be drawn concerning the pure internal irarniltonian. Irrespectiye

of the choice of the frame, the radial part is given by:

(4.1r)

The angular equations do depend upon the choice of the frame whatever

the choice of parameterization of the basic rotational invariant angles might 5e.

As well there are coupling terms between the angular variables which depe¡cl

on the choice of the frame and the way the angles drU have been parametelizecl.

Finaliy, norm dependent frames introduce extra coupling terms between the

radial part of the three-body fragment and the angles áik * pointed out in II
for'2GJV frames.

5. Hamiltonian for the rotational gro'nd. state (S:0;L:0)

of a fou¡ body symmetric top system.

In this section the case of symmetric top four body systems AB, is

considered. The bond vectors AB are transformed into equivalent symrnetric

Jacobi vectors di (i:t,2,3). If Oes denotes the ES label orthonormalization, the

Gram matrix G(q) of the Jacobi vectors is obtained from the Gram mat¡ix G(r.)

of the bond vectors by

i:N-1 .,

-,ì, {#.ä"6i}
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OurG(r)Oo : C(q) (5.1)

where O., is giueo by12

(5.2)

": H and p: Ml-, M and m being the masses of tlie top atorn A

the equivalent atoms B respectively.

Bquations (5.I) and (5.2) provide the relations transforming tlie BRI of

the bond vecto¡s (bond distances, bond angles) inio their ES counterparts.

Under exchange of the identical particles B, the Gram matrix G(q) remains

invariant.

This section is mainly oriented towards the rotational ground state

hamiltonian, cousideration of the SfO states being easily obtained by extension.

A completely separable kinetic energy operator can be obtained in
principle by some appropriate curvilinear transformation of the angular BRi
variables rvhilw retaining the symrnetry properties characterizing the thr.ee

angles dij. At present, such a hamiltonian is not available. Nevertheless, the

coupled form discussed in the previous section presents some interest on its orvn

for symmetric top systems since the couplings are easily evaluated by standarcl

perturbation techniques. Moreover, the coupling coefficients become very small

fol some regions of configuration space (large radial amplitude and ¡ear. z./2

angular confìguration). This suggests that a fairly good approximatio¡ for those

regions can be made by neglecting the angular couplings.

l. P P
I

0.. = l0 t u

l00o

with

and
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For s:0 and L:0, the kinetic energy operator reduces to Tîrrt and is

independent of the choice of the rotating frame. Let V be sorne applopr.iate

source potential re-expressed in BRI coordinates. Follorving t¡e usuai

plocedurell, v i, expressed âs a sum of separable parts vo in each of tlie
internal coordinates and a non--separable part Vrrr:

u : ur.o * vn, : 
? 

ut *,?.¡ut.¡ r vn, (5.3 )

where v- and v,., are functions respectively of ei and d¡ only. For the Pulpose

of this illustration, it is assumed that Vrr, aa Vr.p.

The SfO states are treated in a similar fashion:

V.: (V.)r.p + (V.)n,

: 
?(u.), 

* 
,?,(u.)i.¡ 

+ (v.),,,

and the effective potential Veff is expressed in the form

Veff:V+V.
: 

?(u.n)t 
* 

,?,,u.n)ij 
* (v.n)n,

For non-inertial frames invariant under exchange of identical par.ticles, it
is again reasonable to assume that (V.)rrr..(V.)r.p.

With this notation, the zero-order hamiltonian H

Ho:?"t*i?¡Hi;

is the sum of three equivalent radial onedimensional terms

Tr _ n2 I_!2 _L 2 ô _.,L-i:-z-\Ñ*_Q;ðQ;-uti

and three equivalent onedimensional angular terms

H.. - -*- O.. t-ll--IJ Z -tJ 'ô0'4.
lJ

Yq,,l#?n,t#+ cotd,, &-a¡j (5 s)

(5.4)

where Qij : Qi
2+q-3

il ou.." l.l
utjl

(b.b,)

(5.6)

(5.7)

The angular equations
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can be solved numerically by the renolmalized Numerov rnethodl3 (RNl\,1)

yielding the eigenv¿1¡ss -¡(ij) and the corresponding eigenfunctio¡s A(ij)
After substitution into (5-4), the i'adial zero-order hamiltonian becomes:

H"(ei) : r nji){0,)

where

Hji){0,) :

-n'f a2 , 2 ô- t Iq. Éó-*,nÍ") * n ( it'))) * v,

which leads to three separate one-dimensional eigenvalue equations

nji){0,)nfiu) : e 
(rik)R(iik)

vij lA(ij) : - 
^(ii)A(ij)

(5 e)

(5.10)

(5.11)

(5.12)

t#.cotd,, 4-Oi

These equations may be solved, numerically by RNM establishi¡g a
zero--order basis

x : R(Qr)R(Qz)R(Q3)A( pr2)A (0 ß) A(ln) (5 13)

where the various labels have been omitted for simplicity.

The non-separable hamiltonian is comprised of vr* urd the coupling

terms between the angular BRI momenta

Vn'*',1,îP 
"'$w

<xGj) ,&,,rtil,

(5 14)

The matrix elements of the coupling potential are evaluatecl numerically

empioying the zero-order basis (5.13). The coupling operator treat¡rent

necessitates the evalu¿tion of matrix elements of the form (using sirort-haucl

notation)

(5.15)

that is, after taking advantage of the orthogonality of the radial eige¡functious,
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<A(,i) ,&,Ar,j)> (5.16)

The evaluation of (5.15) does not represent extra work since the angular-
/::\

eigenfunctiont 6(U/ as weli as their derivatives are stored in numeric form in.:,

the RNM and all that is needed is a numerical integration at each step.

The entire problem is therefore soluble in a symmetric fashiol by knorvn

numeric techniques.

6- Srrmm¿ry and conclusions-

The main pwpose of this study has been to derive a kinetic energy

operator tailored to N-body systems whose rotational motion may be describecl

by a fragment constituted from four non--coplanar particles possessing a

semi-rigid stucture. Four-body systems characterized by such a behaviour are

the simplest cases for which the present model applies. The frame independence

of the pure internal kinetic energy operator has been demonstrated. Ttris

property does not hold for 2GJV frames as pointed out in II. A completely

symmetric hamiltonian for four body symmetric-tops represented by orthogonal

symmetric Jacobi vectors has been derived. As a result, the hamiltonian has

been separated into six one{imensional eigenvalue equations which one rnay

proceed to solve numerically. The perturbation treatment which approximatæ

the coupling terms between the angular variables involves no extra step since

the matrix elements of the perturbing operators are readily obtained.

In addition to symmetric tops,the model applies to four body molecules of

type (ABr)x where the axis of quantization is along the bond AX (i.e., for m*
tt *O"r) and where the two Jacobi vectors associated rvith both bonds AB
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are involved in the construction of the a*es ?, and 1r. In this case, the rotating

frame is global and the pure internal kinetic energy operator is still gii,e¡ by

equation (3.13).
.- 

APPENDIX 1

Evaluation of the matrices Ii fo, a (3GJV)-N.I.F.

The matrices f,¿i are defined3 by:

0år: or#) (A 1)

wlrere the frame vectors 1, arc defined by:

Ìr: r.,nrrd(j) (A 2)

and À.,¡1,,u are cyclic permutations of 1,2,3 as usual.

Expressed in terms of the linear momentum operators pia : - L a

oqi 
a'

(A.i) becomes:

0ål : i (Ì 
r,vr*l r) (A 3)

Substitution of (4.2) inro (4.3) gives:

0å.1 : t>rvi\vronri+ Èo¡rB^ (A.4)

where

Gp,d(i)) : ritt
and

t Gp,piûd(i)) : (1p,7 o) 
: Èot,

Recall the transformation of the linear momenta frorn the iner.tial to the

non inertial framei:

Pia: Ðñoplor.+ Ð.¡lpre'r*r++ r<)l

If acting on an intrinsic function f, I{;(Ð : 0. If f depends only upon the

GJV defining the frame, ei(t) : 0. Furthermore, e| = o since the set of thr.ee
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GJV is fixed in label space, hence:

Pia(f) : Ð 
fispoi1(f)

In particular, the coefficients B r, are intlinsic functions expr.essible in terrns of

the elements Gt.t of the Gram matrix of the GJV defìning the frame and satisfy

the above criteria:

P¡o(84) : E pBopoip@rj) (A.6)

Substitute this result into (A.a) to obtain:

0å.1 : urÈo1[rjy]PoipBrj- iBur6p

The matrices Ii a.e given by:

0å.1 : 
'ñ*dbx

By comparing the two iast equations, we obtain

matrix elements Ii.-^*'^"""" ^/JÀ'

,'p^ : ¡ IE iyiP 
oiþB ui- i B ¡6 t þl

d

(A.5)

(A.7)

(A.8)

the explicit expression for the

(A.e)

(A.io)

(4.11)

using B : Y-I where Y is the matrix of element, vio, we can replace Brj by

d' lrwhere cj' and c are respectively the cofacto r of riu and the determinant of

Y

.i* : 1-r¡(i+a), vi(vkl - ritrk7¡
where i,j,k and a,p,.y are cyclic permutations of 1,2,3

c: Ð 
"iauiaa

By using the properiies of the cofactors, we obtain:

tå^ : - i lE rdu 
rr4ir * t ci'o r¡ (A.12)

The matrix elements of Ii are obtained by substituting yio and the li¡ear

momenta 7riû respectively by (3.3) and (3.8). The result takes on the sirnple

form:

.itþ¡:-i"¡p(¡p (4.13)

tliat is the matrix elements of Il are the result of the action of the linear.
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ffi,"'"i:i::lï;îi'i:::: 
on the âns'Ies ( ¡p tt is easi'1v seen rha*re

APPtrNDIX 2

Eigenvalues of the 3x3 Grem Matrix : cardan's Form'l¿s.

Let G be the Gram matrix of the three Jacobi

Gij: Q¡Q.¡cosd'-

The secular determinant is given by equation (S.iO):

¡3 - p2^2 + s2À -v2: o

The analytic solutions for the roots of this cubic

Cardan's fo.mulasl4t

let

,:S'-*
n:-'¿-p2s2-r,2Y.)'7rÐY

L I r)

vectors d¡; its elements are:

(A.ri.1)

(A.rr.2)

equation are given by the

(A.rr.3)

(A.rr.4)

and

D-
l-

Q:

[-å. t***fny¡z

t-*-r#* *ft'1'¡'
The roots are

2Àr:t+a+fr
,

\z:'P*"'q*{
' À1:'2P*"n*{

where ø is a cube root of I (orll) that is

(A.rr.5)
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The posiiiveness of the three eigenvalues Ào permits to decide between the sign

+ for ø.
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Figure I.

spherical angles st, for a four-body. d, are the unit vectors along the Jacobi

vectors d1. fn. spherical angles S¡ are the angles between the tangents on the

unit sphere to the arcs of great circles.
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APPENDIX 1

1. EUCLIDEAN SPACES

l.Definitions

An n-dimensional vector space En is a eucli,dean spa'ce once â

symmetric bilinear non-degenerate form has been defined. This means

that, given the vectors i, j and 7 of En and a (a scalar of the field F on

which the vector space is defined), one has

(i,Í) : (i,i) (1)

(d,i) : (i,"d) : o(i,i) (z)

1i,j+7¡ : (i,Í) + G,;) (3)

for any i, it 1i,j¡ : o then Í : o (4)

Once a basis (Ë.) has been defined, for E , âny vector ì anA j is

expressed as

assumed).

The bilinear form (scalar product) takes tlie form

(i,i) : xiyj@.,d.) : xiyi*..
rJTJ

where the scalar product of the base vectors has been represented

i:*ië. ;i:yië.
wirere the Einstein convention on in. ,u--atioi
been adopted (in any formula where the same

once as superscript and once as subscript, the

g.. : (ë.,ê.)
IJlJ

(5)

over repeated indices has

index appears two times,

srrrnmation is implicitiy

(6)

by g..
rJ

(7)

Frorn axiom (1)
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gij : g¡¡ (8)

The non-degenetå,cy of the form means that the determinant lg I of

the (g..) is non zero. g is a second order tensor called |he metric ter¿sor.
rJ

Two vectors Ï and j are orthogonal if.

(i,i) : o (e)

Tbe nortn Ni of the vector Ì is given by

Ni : 1i,i¡ : g..*i*j (10)
rJ

A normalized vector is a vector whose norm is 1.

An euclidean spâce is properly euclidean if the norm is stlictly positive fol

any vector i
The angle / between the two vectors i and / is defined by

cos/ : q"4
Ni.Ni

o -i.rib.." J=ffi (11)

An orthonormal basis is a set of n vectors satisfying

(ê.,d.) : ô,, (12)

that is the metric tensor is the n dimensional unit tensor.

In such a basis, the components of the vector i a.e

xi : (i,Ë.) (1s)

and the scalar product of the vectors Ì and $ is simpty

(i,i) : *tyt (14)

In particular, the norm of i is

Ni : Ð.(*t)' (15)

Consequently it is always possible to transform (diagonalize) a given

quadraiic form g..xiyj into the form (*t)t by a suitable change of basisrr 
Ë, : Aid. (16)

J JI
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or in terms of the components

xrm - Bmxk
k

Note:

The quantities A and B ¿re not tensors. Although a tensor is lelatecl

to a specific basis, these quantities are actually defined with lespect to

both bases. A and B are matrices representing a transformation of the

system of axes.

2. Cova¡iant and contrava¡iant components

In an orthonormal basis the components of a vector are simply the

scalar products of the vector with the base vectors. In a non-orthonor-mal

basis (ë.) this does not hold anymore. In such a basis, the contrauariant

components of the vector Ì are the numbers xi such that

i : xid, (1g)

The couariant components of i are in. ,ru*¡.rs x. defined by

x. : (i,Ë.) 1rs¡

In what follows, the covariance is expressed by subscripts ¿nd

contravariance by superscri,pts.

It is easy to show that

( 17)

*t : 8rj*'

This system of equations is a Cramer system. Let lg I

determinant of the tensor (s..) and o.'i be the coefficient
IJ

development of the element g.. in g. Then
rJ

¡j _ g{orix.

(20)

be the

of the
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ivhere

¡¡J - oJ lwÒ".I

gii : gii : g-10Ji - g-laij

from what one deduces

det(gii¡ : lgl-1

The expression for the scalar product becomes

(i,Í) : g..xiyj - *iy. - x.yj

- o'j*-, 
t' J I

o _.irj

wlúle the norm is expressed by

Ni:xix.:gij*.*.
r rJ

For a transformation of basis defined by

d.:BjË' ; ê: :Ald.
i i j j j i

the contravariant components transform according to the

xi:Aixrj ; x'j:Bjxijr
while the covariant components transform accor-ding to the

scheme

(22)

(23)

(24)

(25)

(26)

scheme

(27)

(28)

(2e)

opposite

(30)x : Bjx'i ij

dual basis.

; x: : A]x.
J lt

3. DuaI Space and

Let * be an arbitrary vector of En and f(*) be a linear functional

(i.e., a linear transformation of En into the leals R such that, to i, ther.e

corresponds through f a real number):

(Ì+Íl :r(i) +(i)
tlai¡ : atli¡

In the basis @.), let xi be the contravariant components of ì:

(31)

(32)
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f(i) becomes

+ :-J
X:X,E

i

t(i¡ :"it1d.¡ :xia.
I

where

,,

Let us call E* the set of all

them as x*, yn,... iherefore

y*(Ì) : y*xi

Define the composition

(y* + ,-)(i) : yn(?) + z.(i) : (yî + ,*)*i (32)

(uy.)(i) : ayo(i) : ay*xi (38)
I

The set E* with this operation constitutes a vector space called the

dual space of En.

From equation (36), any linear functional can be expressed in a,

unique way as a linear combination of the n quantities xi. The lattei-

constitute a basis for E* and is called the dual basis of (ê.). tn the clual

space, a linear functional y* is expressible in a unique wå,y ¿s a lineal

combination of the dual base vectors xi âs expressed in (36) The

quantities yf are the covariant components of y* in the basis (xi).

Let En' be euclidean. To any vector f of E-, there corresponcls a

linear functional defined by the scalar product t#l (actually this is a,

particular case of the Riesz theorem). Conversely, to any linear functio¡al

y*, there corresponcls a unique vector $ such that yx(i) : (ì,i). one may

then identify the vector i of E with contravariant componenis xi rvith

respect to the basis @.) to the element of E* of components x. in the

dual basis when those components are related by:

(33 )

(34 )

: fG.)

the iinear functionals f and

(35)

let us q'r'ite

(36)
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x. : g..xJ ; xJ : grJx. (39)rrJr
There exists therefore in euclideân spâ,ces an isomorphism between

ihe spaces Bn and E*.

Let us define another d,ual basis (eoi) such that

e*i(d,) : (ê.,ë.) : g,, (40)
J IJ TJ

We have successively

e*i(i) e*i(xiê.) :(ê.,i) :xig.. : x. (41)
JrrJl

2. AFFINB SPACES

l. Definition.

Let ef be a set of points (4,8,...,) such that to any couple (A,B)

one can associate in a 1:1 manner a vector d of a n-dimensional vector.

space E and such that
n

(A,B) : -(B,A) (1)

(A,C) : (A,B) + (B,C) (2)

Moreover if, given a point O of ng., to each vector d of E there

corresponds one and only one point A such that

(o,A) : d (3)

tlren tlre set ef \s a (point) affi,ne space ú" of dimension n.

2. Coordinate System.

one defines a repe'e for ofn in giving a point o and a basis (ê.) in
I

8,.. If A is a point of ay" , the coordinates of A with respect to the repere
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(o,Ë.) a,re the components xi of the vector d with respect to the ìrasis

@.¡. rirere is a 1:1 mapping between the sets of n reals (*t,...,*') and the

points A of a/ (see condition 3).

Two points A and B of the affìne space are defined by theil

components ("t) and (vt) with respect to the repere (o,ê.). The

components of the vector (A,B) : (A,O) + (O,B) : (O,B) - (O,A) ale

tlie n quantities (yt - *t)

2. Change of repere.

t,et (O,d.) and (O',d') be two reperes for ofn One has

(O,O') - utê, ; (O',O) : O,dj (4)

respectively the vectors (o,o') and (o',o) in the two bases (d.) ana (ë')
tt

ê' : Aiê. ; d. : Bld: (b)j j i i i j
Let M be a point or efn with coordinates xi with respect to (ê.) ancl

x'i with respect to (Ë:). Therefore
J

(o,M) - *ië. (6)

and

(O,M) :(O,O') +(O',M)
: aiê. + *'jêlij
: (ai + Aix'i)Ë' (z)tt

By identification, one obtains

xi : ai * Ajx'j (g)

The inverse transformation gives the components x,j in terms of the

components xi

x'i : bi + Bjxi (g)
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In short hand notation, the vector i : (o,x) transforms into a new

vector in the same basis according to

ï':d+Bi
where B is a nonsingular nxn matrix and d is a vector of

transformation is an aff,ne transformation. The set of

transformations constitute the affine group (n2+n parameters).

3- Affine subspaces.

(10 )

En. Such a

all affine

Any subset Y of. an affine space e/ such that, for any point o of v\

the vectors (O,M) which are associated with the points M of Zconstitute

a vector subspace of En. In other words, the set of ail vectors ñ : (o,M)

constitute a vector space 8., subspace of En and the dimension of Tis r.

For example, in the affine space of usual geometry, the planes are affine

subspaces of ef .
ò

4. Euclidean point space.

An euclidean point space is an affine spâce such that the associated

vector space is euciidean. If E,, is properly euclidean, the affìne space is

also properly euclidean.

Let (o,ê.) be a repere for an euclidean point space o¿. The distance

between two points A and B can be defined: the square of the distance of

the two points is the norm of the associated vector (A,n¡:{. Analytically,

if (xi) and (yj¡ are the coordinates of A and B then the components of ì
are the n numbers (yi-*t) and the square of the distance
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is given by

lil': s..(y\i)(yi-*j)
rJ

(11)

Consider now the infinitesimal distance between the points X ancl

x+D(. with respect to the repere (o,ë.), their coordinates are

respectivelly xi and xi+dxi. The square of the infinitesimal distance

between X and X+Ð( is

ds2 : g..dxidyj
rJ

tire space is properly euclidean

ds2 : (dxi)(dxi) : E.(dxi)2

(14)

under- any

( 12)

and the repeleObviously if

orthonormal, one has

(13 )

Note:

Let d be a rrcovariant'r vector that is, a vector having covariant

components r, and i be â contravariant vector of components xi.

Construct the linear form

L(i) : a.xi

It is easy to demonstrate that the form t (i) is invariant

change of basis:

L(i) : 11 ( 15)

Bquation (14) defines a hyperplane in the reduced space of dimension

n-1. The concept of covariant vector is therefore related to a system of

parallel planes orthogonat to the covariant vector d, the position of a

particular plane is defined by specifying the varue of the constant I{. For

example in a two dimensional space, the relation (1a) defines a line. Fol

a, and a, given, the slope of the line is determined and by specifying the
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vå,lue of the constànt K, the position of the line is uniqueiy determined:

arxl+ àrx2:K
The line intersects the axis xl in K/a, and the axis x2 in I{lar.

3. TtrNSOR PRODUCT OF EUCLIDEAN SPACtrS

Let En and Fo be two euclidean vector spå,ces over the same field

and consider the bases (d.) and (1.). suppose we are given a mapping f
which assigns to every pair of vectors (i,*), TeEn and *eFo, a vector

d,enoted by iøñ which belongs to a third vector space L:

t:(i,*) , ?øñeL (t)

we suppose further that the mapping f is linear in i and #

separately

1i + ?'¡ø* : iøñ + i's# e)
iel# +ü') : io* + is#' (3)

1a?)ed : iø(a*) : a(iød) (4)

where a is a scalar of the field.

and that the set of np pairs (ë.øî.) are mapped into the set ã =ê,ø? of. r J' ij I j
Iinearly independent vectors of L. Tlie vector space spanned by the

vectors 7.. is denoted by E-eF^ and is called the tensor product space ofunP
E andF.

nP
In the basis (7..), a tensor product vector is expressed analytically

rJ

by

iød : ,riwjË.. (5)
IJ

on the other hand a vector ! of L is expressible in one and only

one way by
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J

X : x'Jo--
rJ

The vector spâ,ce Bn*Fo contains vectors that are not of the form Tørì

that is vectors that are not mappings (by f) of any palr (i,#) (Xij can be

expressed in many ways as a product of scalars vi and wj).

The euclidean metric in E and F defines an euclidean metric in L:

tet ! and { be two vectors or l,'th.r,

(i,t) : xii(ktsi,s| : xii€ktr,.,,u, (T)

4. CURVILINEAR COORDINATES IN EUCLIDEAN SPACES

l.Definition-

Let a coordinate system (CS) be arbitrarily defined for the affine

vector space 6 n and (xi) ue the set of coordinates of a point M. These

coordinates are referred to as the rectilinear coordinates.

Let n continuously differentiable functions fi(yl,...,yn) of the n

variables yi be such that

*i : fi(y1,...,yo) (i)
Suppose the system (1) sotubte, then

yi : hi(x1,...,xn) e)

(6)
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The functional determinants

Îfil ôyl =

ôhifÎxi =

afr ôt2
11
?rL 0r222

ôft ôf2

ô1"
I

ôf"
2

(3)

and

ôhL 0 h2t1
îhL ah222

ôhr 0h2

dhn
1

ôhn
2

,hn
n

(4)

are non zero.

If the functions fi are not linear, the set (yt) ir no longer a system

of rectilinear coordinates but a curvilinear coordinate system. Any point

M is situated at the intersection of n curves which become straight lines

for rectilinear coordinates.

At the point M the partial derivatives of a vector i : otü may be

defined relative to the n variables yi

ë, : aM/4" (i:l,"',n) (5)

The system of n vectors Ë, is linearry independent since the

functional determinant is not zero. Geometrically, the n vectors ê. âre

collinear to the tangents in M.

The differential of M is expressed by

dM : x.dyid. :
where the summation over repeated indices

dyidi (6)

has been adopted.
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The n quantities dyt are the n contravariant components

vector dtù in the local coordinate system defined at M and having

(d.) as basis.

Note:

In linear transformations of coordinates, the coefficientr o; are

constants (transformation of a, rectilinear system of coordinates into

another rectlinear system). The formulas (28-30) of section 1 ale valicl

uniformly in the whole space and the quantities A and B have a matricial

character. In curvilinear transformations the transformations are no longel

vaiid in whole space but rather are taking different values at differeni

points of the spâce although one should recover the linearity with

infinitesimal displacements. This is discussed in the next section.

2.Change of Cu¡vilinear Coordinates.

A change of curvilinear coordinates is performed when the

coordinates (yi) are substituted by â, new set (zi) related to (yi) uy

,j : d(yr,,,.,yo) ; yi : þi(21,...,2n) (z)

where the functions aJ and þi are severâl times continuously differentiable.

In doing so a new uasis @') is localry defined at the point M so that

of the

the set

d¡ : arü7 tzi : Ð.(ôrü/ây \@vr l u:)j i'
the formulas permitting the transformation are

Ë' : E.(fuilAz:)ê.: 
",A,td,-+

ê. : Ð .(tz: I W\ê,:: x.B jê,

(8)

(e)

(10)
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where

WrlAi; r,i. : ¿i ¡6rtAr:j ( 11)

To any change of curui,li,near coordi,nates there correspond,s a change

of the local basis at the poi,nt M gi,aen by the relations (g-I0).

Let ? be a vector whose contravariant components with respect to

the CS (M,ê.) are the set (xi). Under the change of CS (M,Ë.) , (M,ë:)

defined by the relations (9-10 the cornponents transform accorrding to

*k : ÐrAT*'t ; x't : xuB*xk (r2)

The matrix elements Ak and B' are related by the relation

Bi : (minor of Ak)/(aeterminant of A) ( 13)

so that

¡ 4kgm - 6kkm j j
Since the contravariant components of the infinitesimal vector di\t

are dyi with respect to the local basis defined at M, the square of dlü is

given by

ldtü|, : (dtü,dtü) : cls2 : g..dyidyj (15 )

where

g.. : (d.,Ë.)
UIJ'

( 16)

are the elements of the metric tensor of the CS (M,d.).

when M varies the functions g,j vary as some function of the

coordinates yi. ds2 is the metric of the space. The length of an arc in än

can be evaluated: let the curves defined by the coordinates yi depends

upon the parameter t and vary in the intervat [A,B]. The length of the

curve between the two space points A and B is given by

(14)

b
arc(AB) : Í B,.i(dyi/dr)(dyi/dr)dt

Page 14

(17)



Similarly the volume element is given by

L

dv : lslã ¿vt¿yr...dyn

where lgl is th_e determinant of the (g..).
rJ

Note 1: Geometric interpretation of the coefñcients g_-
rJ

Atong the axis i (vector d.¡, to a displacement

corresponds a real length

dti : ld.l¿vtI

other components are zero, the square of

ds2 : g..(dyi)2
tt

e.. : ld.l'It I

Similarly, one obtains the valu. of gij

rlz
I,j (s,,s,,) ' cosd.. (N1.4)

This interpretation clarifies the concept of ortliogonal curvilinea¡

coordinates. To a diagonal tensor g, there corresponds a set of orthogonal

curvilinear coordinates. Of course the concept of orthonormal curvilinear-

coordinates does not make âny sense.

Note 2: Diagonalization of the tensor g

A space is euclidean when the coefficients gij are constant. In

general (Riemann spaces), the coefficients are function of tire coordinates.

( 18)

From (15), if all the

is given by

That is

dyi, there

(N1.1)

the length

(Nl.2)

(N1 3)
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that is

In taking their value at a particular point, one can define an euclidean

space (g,. u.u constants): this space is called the tangent euclid,ean sp¡,cerJ

to the Riemann space at this point. The reduction of the tensor g to a

diagonal form can be carried out in a similar way as for the euclidean

spâces by using infinitesimals. The same procedures are used. The exarnple

of the 't infi,ni,tesi,mal Gram-schmid,t' orthonormalization is carried out

hereafter.

Let us choose a new axis F, to an infinitesimal displacement dx-l,

there corresponds ds2:

e:Ake : dxi:AidFL LK 1

ds2 : g..Ai,tk(AF), : (dF),1 "ik 1 1'

å,:s'uAiAk:1
This particular direction being chosen, one proceeds to reduce the

di*rension of the space by one unit. A vector & is decomposed into a

component dl in the direction ê, and a component do in a n-1

dimensional space but orthogonal to the new axis F
&:áF+d*

with

(d,.1 :g.uáx*lAk:o

This condition expresses the orthogonarity of the vector

components ôx*1 with the vector e of components Ak. The length

vector d is given by

ás2 : giklAìñ + 6xoi]tA|e- + ôx*kl

(N2.1)

(N2.2)

(N2.3)

(N2.4)

(N2.5)

óx* of

of the

(N2.6)

since every component áxi is the sum of óF referred to the direction At
1

and of the remaining áx*1, orthogonal to óF. The development of (N2.6)
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glves

h2: q,(f#)'z + g.uAi#áxok + g,uATFôx*i + g.uáxoiáx*k

The two first sums are zero (according to N2.b) so that

&2 : ql(óF)'z + ós*2 (N2.2)

ós*2 - g.uáxoiáxnu (N2.g)

The term ós*2 corresponds to the n-l dimensional space. In

continuing the procedure, one finally obtains the new axes F, P, xn

which decompose the ds2 into a sum of squâres

ds2 : gkk(d*-k), : (d->ck), (N2.e)

3. Tensor fields-

with âny point of 6 n \rye mây associate some euclidean tensor

defined with respect to the locar basis (êr) defined at M. The cs

(u,Ë.).aennes bases in the euclidean space E,. for the tensor products of

E,r. In doing so, one defines a tensor fi,eld, in the cs (yi). ro any change

of coordinates (yi) . (ri), there corresponds a change of the local basis

(d,) , (Ël) anA any tensor t witt transform according to the formulal j'

tij: gigj4n¡rlm
k jmkn (1e)

where the summation convention is used. The A and B are defined by the

relations (11). In the present context, the covariant metric tensor g,j

transforms according to the formula

(t
b..rJ

= ¡k¡Iuti j"kl (20)

In order to compare the metric tensor at two different points M ancl

M', one must know how the local bases at points M and M' are related to
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eâ.ch other since the tensors are defined in terms of the two bases. In

other words, the problem can be set up as follows:

The euclidean space En being defined in terms of curvilinear.

coordinates (yi) for which the metric is given by ds2 : g..dyidyi, to
rJ

determine the basis (M+dú, d.+aê.¡ relative to the basis (l\,f,ê.).

The local basis in M+dtü will be determined once the contravariant

components of the vectors dM and dë. will be expressed in terms of the

cs (M,ë.).

The contravariant components of dM are given by

slnce

dê :0ë
i kj

and the vectors ô ë are vectorski
base vectors d. by

I

dlù : dyiË

The vector dê. is expressed in terms
I

dê. : Ajd.r rJ
The components fli are expressible in

I

(22)

terms of the differentials dvk

(ô.ê. = aè.lay\ (23)'ki i'u /

of 6 hence expressible in terms of the
n

(25)

. (21)

of the base vectors d. by
I

(26)

variabtes (yk). and equation (22)

Aê : lidki ktl
so that equation (23) becomes

dê -Ð frdvk¿i tkki" I

(24)

Finally

where the fj
ki

becomes

oj-
i

are n3 functions of

fr
ki

the

dyk

fr, : lj 'dykd'

to determine the

(27)

n3 functions ¡j frorn the
ki

and the problem reduces
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n(n+l)/2 functions g...

4.Determination of the coefficientr filr.

At a point M of" 6^, the euclidean metric g.. is defined byn 
,,. : (d,,ë,) 

-rJ 
(2g)rJrJ

By differentiation we obtain

dgij 1Ë.,ad.¡ + (ê.,ad.¡ (30)

hence, by (22)

dsij nl*,n + O'is¡n (31)

Recall that the covariant components of a vector i are defined by

x. : (i,ê.¡ : (xjê.,Ë.) : xjgii (g2)

The covariant components of dd. are then given by

0,j : (dË.,d.) : (f¿kdk,d.) : fifs,u (33)

This result can be expressed as well in the form

0,, : (fh.dvkdh,Ë,) : ff,s.,ndvu (34)

: tu,,otu (35)

where

rujt : rÏ,8.in (36)

The transformations are summarized in the following table

We can then write dg,.i i the form

dg..:f¿..+ç¿..
rJJIU

: (f... + f ,.)dyk (32)' kji kij'

=q çk
Jl( I

=s ¡h
"jh ki

= sjhfek

f, ij
T

kji
¡j
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Recalling that

dg.. : ô.g..dyk
IJ KIJ

kj jk
and

ô2è : &è,kj i jk i
From equation (S), the integrability condition (a0) becomes

Aü: a,(tü) : ôËkj k' j kj
but from (22)

oê, : (âkË.)dyk : fl.Ë,dyk (43)

so that

(38)

and identifying ttre coefficients of dyk in (32) and (3g), we obtain

ðug,j : tu,r * lu,, : fl, f.in * tl,t,n (39)

The system (39) is composed of n2(n+i)/2 equations since there

exist n(n*1)/2 distinct gij and the index k runs from 1 to n.

The equations (21) and (22) must be integrable, that is

ô2M:8w (40)

(41)

(42)

ôê : ft dkj kjt
In a similar fashion, we obtain

æío:jk

-J: ô2M
kj

(44)

ftËjk I
(45)

By using the integrability condition, we obtain finally

¡l:fIkj jk
fur¡ : f¡ru

These two systems furnish n(n-I)12 equations for each

and since I runs from 1 to n, the sets (a6) or (47) furnishes

equations. The systems (39) and (a6) provide then n3 equations

(46)

(47)

value of I

n2(n-t) l2

for the n3
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unknowns l. . All we have to do is to expressthese equations in terms ofkji
the g.. and their der'ìvatives.

1J

5. Determination of the coefficients f
ktj

By cyclic permutation of the indices in equation (39) and taking

intô account (47), we obtain

f +f :ôs
j ik kj i k"ij

| +f :âs
kji ikj i"jk

t,ur*lj,u:âr8u'
(48) + (4e) - (50) gives

"ur, 
: âugri f âr8io - ô,8u,

Let us define the algorithm [ki,j] such as

[ki,j] : fuj, : (âuB,: * ô,Bju - orsur)lz (52)

The values of fi are determined by
kj

ti, : gihfLr,i : gihlki,h]

Let us define a second algorithm

(o',):li,:t.it'¡m,hl (54)

The two symbols (christoffel symbols of fi,rst and, seconrl ki,nrl,

respectively) provide the way to evaluate the values of tu' and f i. fi.om

the metric tensor g.. and their derivatives. The problem formulatecl by

equation (27) is then solved either by

dd:( j)dvkê
l t{r _l

(55)

or by

dê, : gjt ¡m,n]dykd.

(48)

(4e)

(50)

(51)

(53)
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6.Ex¡mple: spherical coordinates.

Let

x : rcosdcosd

Y : rcosßind

z : rcinî

The inverse transformations are

--r--2 1

r-[i( +y2+z.2]2

ó : atn(ylx)

1

0 : atnlzl$r+yr)15

The rectangular coordinates (cartesian) are

xl:Xix2:yiX3:z

while the curvilinear coordinates are

y1:r;y2:ó;y3:0

The curves crossing at M are the radius õü, ,n. parallel of axis z

passing by M and the meridian of center o passing by M. The base

vectors are the unit vector along Oü, ,h. tangent vector to the parallel

(length : rcosd) and the tangent vector to the meridian (length - r).

Notice that the three vectors are always orthogonal whatever the point M.

Such curvilinear coordinates are orthogonal curvilinear coordinates.

The metric is

ds2 : drz + rzcosz 0d.62 + r2d9

The components of the metric tensor are then

s -i-11

8r, : t2cosz 0
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o :12
h

.1J

8,j 0 (ilj)

Since the rnetr-ic tensol is diagonal, gij : 0 for ilj ancl

[ki,j] : (u,,) : 0 foL iljlk
[kk,j] : j ,.,*uu ; (kik) : irs.,ô,Buu fo' jttr

[lii,k] : [ik,k] : år,ruu
rir-¡kr 1- i-\*'*/ : (,"*J : zgktdigH.

7-Change of Coordinates for the coefficients I

The coefficientr ol and f i¡ are not the components of tensor.

quantities. Let the change of basis be defined by the follorving usual

folmulas

ê. : BIë' ; ë' : AkË, (52)i il j j k

rvirere A and B are defined by equation (11). By differentiating (52), rve

obtain

dê. : Bldê: + dBrê' (b8)i i r it
Since

dd. : fljë. and dë' : g''¿ (59)I i j I Im
rve have successively

0iê, : glgrmlr -¡ ¿glgjlr (60)t':r',;'eTu, 
+ dBhìê, (61)i t m j i I j

Therefore

0j : srg'iA* * dBrAi (62)

In terrns of the partial differentials, we have

fij:tl,dr* ; f-¿'i :fiidy'k (63)
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The cornponents dy'k transform as

dy'k : BI¿y* (64)

¿rnd since

d"l : AkBrdYk (65)

relation (62) becornes

fi,dtu : 314j¡rm,dy'n * AjôrBtdyk

: ¡lgn4jt'T,otu + AjdykôrBl

hence,

fj. : nl4jgn¡rm. + Ajô Bì (66)kijmknllki

8-Absolute differential of a vector

a- Contravariant components

Let ? be a vector in the space 6 n we -want to deterrnine an

expression for di corresponding to a change M ., M + dlü. We knorv that

tire components vi of i change duling the transformation M + N{ + dN'4,

but we must also take into account the change of the local basis

(M,Ë.), (n4+dlü,ê.+aê.¡

At the point M, we have the expression for i in terms of its
contravariant components

T : vid, (6i)

By differentiating, we obtain

dl : dviê. + ,ridd. (6s)
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By using the definition of dë. given by (zz), equation (6g) becornes
ldÇ:dvië +vhf)iëi hi

: (clvi * ulrgi¡!.' lì' I

- Vvid,

The components of the vector cli are expr.essed by

Vyi:dvi+r,hf)i
lì

(70 )

The quantities Vvt transform as contravariaut cornpolepts of a.

vectol whereas dvi does not. They ¿re called ubsolute d,iffu'ctr,ti,a/s o[ r,i.

Using equation (24), we obtain an alternate definition ernploying t¡e
partial derivatives

di : dviË. + vhf i,,dYkd.

: ôurridykvê. + vhf i,rdykê.

: v*uiê.dyk

where we have introduced

Vvi:ôvi+vhlik k ktr

We have therefore

vvi : vuvidyk (23)

The components (72) are the components of a tensor, covar.ia¡t i¡
the derivation index. tliis tensor is called tbe couariant d,eri,uatiue of the

vector ?. trre quantities âuvi are not tensorial quantities.

b-Covariant components.

(6e)

(71 )

(72)

We lv¿nt to evaluate

unifolm vectol fielcl

Let ? be given by its covariant components v

di by its covariant components Vv.. Let ü be

defined in Enhence dr? : 0. The scalar procluct is

i

a
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- (t?,i) : ,uiu. (74)

By differentiating \\'e obtain (silce dü:0)

1ü,ai¡ - u,idr,. * chl,ir,. (ib)

By using (73) ancl d*:0 (hence, Vivi:O), it foiiorvs

Vrvi: drvi + f¿jivl,:0 (i6)

that is

dwi : -gìtrtr eT)
therefore

1r?,arì¡ : rviclv. - f)iv.rvl' (78)

By using (70) and (za)

1#,4ü¡ : wivv. - widv_ - v.f)irvl' (zg)

- wi(dv. - u,,el) (80)

We obtain finally the expression of the absolute clifferential of v.

Vu, : Or, _ u'nT (gt)

By using the same procedure as in tlie plevious section, rve get also

vku, : ôuu, - fll,un (82)

giving the couariatt't components of the couariant rleriuatiue tensor of the

uector T so that

Vr, : Vuv.dyk (S3)

Surnmary.

Absolute differential

Vvi : dvi + f) ivh
h

Vv:d\'-f,)ltvi i ih

Covaliant delivative

V,_vi:âvi+livhl\ k kh
(s4)

V,-t, : ô\r -lltt,r\i ki kih

Page 26



These results can

diffelential and covariant

considel the rnixed tensol

u'hele

V,.tj :
Ãt

rvhich are the cornponents of

T.

Vtj:fl¡i-gn¡rr
i i ii

The quantities Vti are again linear differential forms of' 
o'i : v' t]d'k

i ki

be generaiized to the concept of absolute

delivative of a tensor. Fol example, Iet us

(85 )

the dyk

(s6)

ô ti - fh tj + lj thki kih khi
the covariant derivative tensor

(s7)

of tlie tensor'

tensor g.. i,s
rJ

¡j
t

Appl-ication to the metric tensor g.-

The absolute differential of g.. is
rJ

veij dsii nTsn, - nlr,o

- 0 (by using equation 26)

This result is knorvn as the Ricci theorem:

The absolute differential of the metric (fundamentat)

ze?'o-

9- Dif{erential Operators in Curvilinea¡ Coordinates.

(8s)

a) Gradient of a scalar field.

Let a field of scalars defined by means of a function ó of the

curvilinear coordinates yi. Since ó is inclependent of the basis, the

absolute differential V/ reduces to the ordinary differentiâl dd which is

itself a scalar. Similarly, the covariant.derivative tensor reduces to the

vector of components v*d : 0uó. By changing the basis, the components

Page 27



of this r¡ector tlansform in

the scalar /

a covar-iant way. This I'ector is tlte gradient of

The cornponents are usually written as follorvs

uu : Brâduüd : V kó -- ôkó

We may define the contravariant components uk

gradk/ : gikôuó

The n"orn of the gr:adient (Beltrami differential

order) is given by

(e0)

--j -------i ^ ,lu:gl'å.Op:().Qe.
lt

parameter'

(8e )

(e1)

of filst

A_@ :g't A.óA.ó
ltJ (e2)

b) Curl of a vector field.

Let ? be a vector of

components u,. Recall the

covaliant components:

By perrnuting the

I in their lower indices

we get

(e3)-(ei) gives

rvhich ale the

obvious that R

a vector field defined

covar-iant derivative

in6by
n

given in

the covariant

terms of the

V.v. : ô.v. -JI JI
indicesiandjin

lkvji k

(93) and using

(e3)

the symrnetry of

¡k:lk
j i ij

Vv :0v -fkvij ij jik

(e4)

V.v.-V.v.: ð.v.-ôv:r
J ¡ i j j i i j ij

covaliant components of a twice covariant tensor

is an anti- symrnetric tensor. This tensor is callecl

(e5)

(e6)

R. Ir is

the anl
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tensor of the vector v

curl..i:0.v.-0v (gZ)ij j i i j

If the vector i is ltself a glaclient of some scalar' /, then the cur-l of

tire gladient of þ is zero since â2. ó : 02..ó
IJ J I

cuLtgrãd-/ -o (9s)

c) Divergence of a vector field.

Let i be a vector of å vector fìeld defined i' 6 n by the

contravariant components vi. The divergence of i is the scalar defined 5y
Jfdiúv:Vvr

i
(ee)

From the expression of the covariant derivative given by (22), we

deduce

dîi+:ô,ut+li,,vr'
By using Ricci theorem, the quantities li. are given by

ih

li. : t=gijô. g..
ih 2" lì"ij

o lnlLlz
-ro-1âo--ÀÏl- ,b "hõ - tlr

(1oo)

(101 )

(102)

and the divergence can be rvritten

dii i : ls I 
-rl2 aJ ls I '/',,'l

d) Laplacian of a scalar function /

(103)

In 6n, the laplaciøz (Beltrami differential parameter of second or-der.)

of a function þ is the operator

Lró: div ffi @ (io4)
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By substituting tlie expressions of the gladient ancl tlte clivelgence

one obtains

Lró : gtj[ð,.i - ri ak]d (ro5)

rvltele â.. stands for the second delivative rvith lespect to yi and vj.
rJ
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APPtrNDIX 2

ROTATIONS IN 3_D SPACtr

l.-Dcfinition

Recall tirat a rotation in 3d-uclidean space is a lineal

trattsformation leaving one point fixed (origin of the reference fi'ame) such

that all distances and angles are conserved as rvell as the hancledness of

the frame. This can be expressed by:

R: { -' ï : Rd ({ is transformed into ï under R)

n: ({,ï) -' (Rd,R?) = G,ï) (scatar producr conser\¡ect)

R: {*! . Rd*Rd = R{"j (vector product rotated)

It is well known that a rotation leaves all points fixed along sorne

line through the fìxed poini' the axis of rotation ü is a unit vector along

this fixed line. A rotation is then characterized by an axis and an angle /
of rotation (05þ!2r) and is denoted by R(@,ü). The rotared vecror R( can

be expressed as the iinear combination:

R.(d,d)' d . Rd : cosd.d + (l--cos/Xü,Ðd + sindG-d)

2--The set of all rotations forms a group-

The product of tivo rotations, denoted

rotating the system by R, followed by the

by R'RZ is obtained

rotation Rt. Clearly, the

product is associative: (RrR2)Rj : Rt(R2%) : RrR Rr. TIie inverse of
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the rotation R(¿,ü) is n(-/,ü) and is -denored by R-l(d,il¡. rrre iclenriry

is R(O,d), d being arbitrary (i.e., no rotation).

hr general, rotations do nol cornmute: RtRz + R2IìI. I{orvever,

rotations ltaving a colnmon a-xis ü commute and for-m then an alreliap

subgroup:

R(d,ü)R(d',ü) : R(d,,d)R(d,ü) : R(d+d',ü)

Finally, rotations having same angle / fonr-r a normal subgroup ancl

define an equivalence class Cr: for an ar-bitrary rotation S, one has:

SR(d,ü)S-1 : R(d,Sü)

3.-The group of rotatior can be represented by SO(3)

In order to obtain a matrix representation of the gloup of r.otatio¡s,

let us choose some fixed orthonormal basis {ê*} having origin at the lixecl

point O.AnV vector { of the physical space is representecl by the col¡urrr

rnatrix q = (q1,q',0')' with qû : (d,ë"). Therefore, a 
'otation 

R has a

well defined action on the base vectors (passive meaning: the frame is

lotated whereas the vectors are unchanged but received nerv labels {q'o};
active meaning: each vector is transformed and the frame is invariant).

Consider the 3*3 matrix [R] whose elements are:

[R]a,B : Ge,Rdp)

To each rotation R there corresponds one rlatrix [R] and the a.ctio¡

of a lotation R on an arbitrary vector { is well defined:

Rd : lo{z/?lFi,*64êo
writing the vectors { and Rd : d' ur column matrices q a.ncl q',
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one can norv show tliat the matrices [R] form the gloup of r-eal,

proper orthogonal 3*3 rnatrices so(3), i.e., real coefficients, detR: *l
ancì Rt : R-1. That [R] belongs to so(3) is shorvn in note (1) beloiv.

The homomolphisrn R ' [R] = SO(B) is a r-epreseirtation of the group of

rotations defined relative to the fixed leference frame {ë*}. It can ¿lso be

shorvtl tirat a matt'ix [R]eSO(l) does not necessarily deterrniue a uniclue

rotation.

4.-Parameterizations of the Group of Rotations-

The lepresentation of rotations by SO(3) can be irnplernentecl lt.u

various parameterizations. we shall concern ourselves with the tvr,o rnost

common: (a) the (/,ü) and (b) the Buler angles (ur,a2,ag).

Any matrix of SO(3) has 3*3:9 entries; from the orthogona.lity

lelation RRt : Ir, there exists- therefore 6 r'elationships betrveen those 9

entries leaving three independent parameters whicli can be talien

arbitrarily provided the orthogonality is respected.

The (4,d) palarreters-

wrt the inertial fr¿me {7o\,let ue be the component of the unit

vector ür ua : (d,la). construct the skew-symmetric matrix N such that:

NoÉ : -n7 (a,p,.r are cyclic pelmutations)

The lotation matrix [R(d,d)] takes the form:

[R(d,d)] = I, * sin/N + (i-cos/)N2

Noting that N3 - -N, one can use also the exponential form:
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[R(d,d)] : edN

using the rvell known exponenlial fuirction o[ matr-ices:

co

A rAPe-)-
Plo PI

The domain of definition of the pararneters, 0Só!¡r, (ü,ü) : 1,

covers exactly once llle elernen[s of the group SO(3), except that, foi.

ó:o, i and -ü d,etermine the same rotation.

The invelse relationship, expr-essing / and ü in berrns of [R] is:

cos/ : (rr(R) -r)lz
uesin@ : -([R]pZ - [n]rB) (*,0,.y are cyclic per-m.)

The angle / and tlie polar angles (0,g) of the unit vector il rvr.t the

inertial frame {7o} constitutes another appropriate set of parameter-s for

the rotation rnatrix [R]

One shows easily tirat:

ul:sindcosrp ; u2:sinßinrp ; u3:cosú

The truler A-ugles.

If we consider the active transformation, then R(¿) maps ån

arbitrary vector { to ttre new vector d' : R(¿)d. The compo¡ents of (,

are related to those of { (in the inertial frame) by:

d' : tR(a)ld

where, (R^ being a rotation of c^ aUout 7¡)

[R] : RrRzR:
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cosû1

s ina,

0

['r'r', -
= 

| 
slc2ca +

L -,,.,

-s ina,

cosû1

0

tl 
[.o,o, 

o st.*r] 
[.o.o,0ll 0 i 0 llsino"

tJ [-rtno, o ..."rj I o

-sina, 0

cosû3 0

01

s1 s3

clsB

{1c2s3 - slca c1,.2

-s1c2s3 * clca sLs2

s2s3 cz

The dornain of definition is:

lSar<2r;}Sarír;oSor<2r
Distinct sets of numbers {ä} tying in these intelvals correspo¡d to

different rotations except lor u, : 0 or dZ : ¡t. In the first case, the

rotation is through an angle o1 * a, about ?r; in the second case, the

lotation is through a, - a, about ?r. In these cases, distinct values of

a, and û3 may determine the same ro[ation.

The inverse of R(d) is n-l1d¡ : R(2n-o3 ,r-ar,2r-a1)
The frame ne* {1¡} is obtainea tom {7¡} by applicarion of the

rotation R : RlRrR, in the passive interpretation; the matrix elements

appeå,r as the direction cosines between oss: RÀ/¿(¿) : Q ¡,1),

5.-Infinitesimal Generators of SO(3)

We assign the null parameters to the identity elernent R(d) fet irs

now investigate the properties of the gtoup elements in the neighborhoocl

of the identity element. For sufficiently small values of the parameters we
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may represent an element R(ã) lying close to the identity by a Ta.vlor

expansion:

À:3
R(¿) : ryd) + )."^ljþl +

À=1 "l- vu)JoÀ:0

\ ,._eAtp-¿
I r 

" [_qR_] [_ôR I ^, :2,L . oÀ-Àl[r:1 '.*tr1 cra¡JoÀ:0, #)ot,:,+ o(a¡)

À:3 À , ¡z:J
R(¿) : qd) +^lr*ÀxÀ * å^lr:ra^arx^x, + o(a3)

rvhere:

x IaRl
À - LleÀJ oÀ:o

The xÀ are referred to âs the infinitesimal group generators of

SO(3)- If the inverse element nG)-1 is also in the neighborhood of the

identity, then writing:

À:3 À , ¡;:3
R(¿) : o(d) -^lroÀxÀ * å^L:ra^arx^x, + o1a3¡

we have:

qä¡-lryä) :R1d) +o(a2)
Let us define the commutator of trvo group elements R(ä) and R(¿')

lying near the identity as

nqd¡-l n¡ä' ¡-1 n1ä¡ ry ä' ¡

The commutator must itself define a group elernent R(¿',) lying

close to tlle identity. Therefore, for sufficiently 
-sm¿ll 

values of the

parameters, we find, to second order in a and a':

R(¿") : R(d) + Ða^ur[*À,"r]

where [XÀ,Xp] : XÀX/, - 
"r*,1
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is the commutator of the group genelators.

\\¡iih the above parameterization in

obtain:

ierms of Eulel a.ngles, \\re

xl =

0-1
10
00

0

0

-1

0

L

0

0

0

L

1

0

0

x2

xB=
0

7

0

0

0

1

_L

0

0

Page 37



APPtrNDIX 3

ROTATION MATRICtrS AND ANGULAR MOMENTUM

1- Definitions

Let lü> be the state of the system, i.€., a vector. of

(sepalable infinire Hitberr space) and ter { ld(i)>}
olthonormal basis; ld(i)> is the shorthand notation for the

ld(i)> : I qll>elqtr>el qls>ø....e1 on-r;3¡ (1)

localizedld(i)> represents a state in which particle (i) is perfectly

at tlre point {1i¡. fne corresponding waae function is

<{d(i)} lü> : '/(qio)
(2)

that is a function of the 3N-B coor-dinates qig.

under a rotation &, the state lü> transforms into a new state

lü,>

l\tr',>-Allü>l :%lV> (3)

while conserving the physical properties of the system. It is easy to show

that % is a unitary operator acting in the state space.-This sets up a 1:1

correspondence between the rotations &, of the 3-d euclidean space and

the unitary operators of the state space. Actually, this is true for any

transformation ,7 of the configuration space). % is called the rotati,ot¿

operator (this is true only for infìnitesimal rotations, for finite rotations,

the¡e correspon$ two rotation operators ?/' and ?/'related by

the state space

be the usual

tensol ploduct

(4)?/' : D2/'
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where D:l for J integrai and -l
With respect to the wave

lU/'> at a given point {(i) of

value of the lü> at the point

rotation ,Ø

for J haif integral)

functions, the value of the components of

the configulation space is equal to lhe

d"(i) rvhich transforrns inro d(i) iy rtre

'i.(d(i)) 
: ,þ(e'dç) )

thelefole

.d(i) l%lv> : <s-Ld(i) I ü> : <{'qi¡ ¡ v> (6)

<yi0l \trr> - <qi0l %lV> (7)

under the rotation 9,, rhe observables of the system undergo the

satne unitary transformation as the state vectors: if g is an observable,

gl4 : 9 with I : %2%t. In particular, any scalar obse'vable E (i.e.,

invaliant under the rotations) commutes with Z:

ef : %eÍ4/Ï : ef < lZr,4:0
If þ : (8r,3r,8r) is a vector operator (see footnote) attachecl to

Lhe system where 39: (3,üu), theo

%.fl,?/-r:E flt .g. TPTO (e)

The fundamental commutation relation characterizing tlie total

angular rnornenturn J is

(5)

OI

ld,d),( hà)l : i1ì"ã",fu1

rvlrere fuis any vector operator.

Corr-esponding to a rotation

angle e, the infinitesimal operator

the total angular momentum J

along an axis ü thr-ougli an

in state space is expressed

(8)

(10)

infinitesimal

in telrns of

aft,i) - J- ze(J,ü)
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where ..Zis the identity operator in state spâce anA (j,ü) is the compone¡t

of J atong d. For a finite rotation n(0 
") 

parameterized by the Euler

angeles 0 ^, the corlesponding lotation operatoi- (palarnetelizecl by the
S

angles d. as well) is given by the r-elation

%(0 
s) 

: exp(-idrJr)ext(-idrJr) exl(-oï 
rJ r)

(r2)

(13)

The usual representations of the lotation opelator are obtainecl

choosing the standard bases lkJM>, common eigenliets of the hamilto¡ia¡

operator & J2 and Jr. The 2J*1 vectors lkJr{> with k and J fixecl, [4

variable, have same energy.

With r€spect to these bases, the cornponents JU of the total angular

momentum operator are represented by the (2J+1).(2J+1) matrice, .l(J)
ß

acting in the invariant subspaces 6 J (irreducible with respect to the

rotation operator). The angular momentum matr-ices .l(J) ,r. obtainecl
Ê

frorn the characteristic equation

ill=J

.'t=1,

(rÍ') - rfr(r)) = o

where t(J) i, thu

The general

given by

unit matrix of dimension (2J+1).

matrix element of tlte angular- rnomentum opelatot J is

<kJ'M' l Jn lkJM> : [(J-+M)(J*Na+t)]1 l' Urr, 6M,M*,

<J'M' IJBIJM> : MóJJ,6MM,

(14)

( 15)

where J* are the usual non-herrnitian operators
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J, : J *. iJfl2 (16)

The (abstract, hermitian) totar angular momentum operator j is

t'eplesented by its action on ihe eigenkefs of any physical systern in þloclr

foi'rn. I'ge'er-al, tire block matrix J(J) *itt occ,r rvith repetitio'.rr*r.
diffelelt for each angular momentum J.

The rotation operator %(0s) is represented in the same ir.r-eclucible

(2J+1) dimensional spaces 6l by the rotation matrices o(l)10^)

D(J)(d,) : exp(-id,J(l)¡ 
"*p1-;lrJtJ\ e*nq-,art(J)¡ ' (rr)

rvith matrix elements

"rÍ,{J, 
: (JM, l%(os)lrM> (1s)

F'om the group properties of the rotations &, one deduces

fl'(?s)e?:) : eQ';) :> %(0s)%(0',) : %(0';) (1e)

-\
o(J)qa,)D(l)1a;) - o(J)1 a,)

The ge'eral properties of the rotation matrices can

leference . Bquation (12) gives the complete expression for

of the rotation matrices. using the fact ttrat "l(J) is diagonal,

o,[{,}f a.l : exp (-¿}r' d,) dú{t ¿dr) exn (-zr\{ d, )

rvtre'e anÇ{r}tarl is defined by

a${,}f arl : (rM' lexp(-io rl,) I .lH,r¡

that is

o(J)1ar) : s*pç-¡6r¡Q)¡

2- Wave l¡unctions for Algular Momentum Systems

It is customary to use the viewpoint of wave functions instea.cl of

(20 )

be found in

the elernents

we find

(21)

(22)

(23)
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tirat of eigenkets lkJM>. This shift of point of view is not tr-iyial a¡cl

rvill be discussed in detail here.

The wave functions for angulal momentum systems is uncler.stoocl by

considering the product law for rotation matrices

no[$kd:) : ) ".$,,ü)(d.)Dúilù 
(d:) (24)

l\4,,

We seek to interpret this result as a transformation induced by t¡e
lotation % acting on the system described by the wave fturction

O$ilr),f dl). Consider rhis same acrion oï % onrhe ker lkJM>
?/: lkJNd> -+ lkJM>, - %lkJM> : ¡ t[{,}f d,)lr<tH,i,> (25)

Mr
since % transforms lkJM> into lkJM>' belonging to the invariant

subspace ár.

Let us regard rhe funcrion o$$)fA;l in equation

transformed system

¡o$$lrd:)l' : n$$ka;l

(2+) as the

(26)

.( d:) (2E)

The product law implies that

% Dú*)(d:) -- ¡ou[$)ra;)l' : I
Mil

The indices in this equation do not accord with the standarcl for-m

(25). To remedy this defect, we use the fact that D(J) are unitary:

replace % by ?îL and take the complex conjugate of the equation. we
obtain

%' D#il}.(dl) ..- ¡n$,[l.ra;)l' : I n,[i,)ra,lo,[lio,
M"

This equation shows rhat it is rhe function o$i{Jl.f ar) - as opposecl

to Dúúì(d.) - that transforms properly as state aectors carrying a'gula'
momentum labels (J,M). This result is true for each M' : J,...,_J.

o$$lrd,)Dúilt,(d:) (27)
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Alternate proof

Let us rvrite equation (T) in trre stancl¿r-d basis

<yio I kJM> : <qio | %lkJM> (29)

Using the transfolmation (25) for the kets under the r.otatio¡

opelator, rve obtain

<yip lkJM> : <qiß | ,M,Dú{Juto,l lkJM,>
: ÐH,r,Dú{¡}<otolkJM'> (30)

By taki'g the complex conjugate, transposing and using 2¡ t - %Ï ,

one obtains

<qiol kJM'> : xuDrÍrir).{a,)<yiel 
I kJM>

By changing M' into M and M into I(, one gets

<qißl kJM> : 
"ro,Íf)-{0,).riel lkJr{>

rvhich expresses the relationships between the state vector in the lqtp>
replesentation and in the rotated representation lytp>. This expresses

formally the separation of variables: the wave function <qig lkJM>
depends on the 1qi0) wtrile the rvave function <yiglkJM> depends uporì

the rotational invariant (yig).

3- Realization with Differential Operators

By differentiaring o(J)1ar) (given by equarion 1z) wirh respect ro á.,

tlie following results are obtained

r(J)( o") : -¿(J)¡(r)ia.

(31 )

(32)

o
ðu

1
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a
ðu

2

o
ðu

t

o(J)qa,)

o(J)1a,)

-4-t(J)si,r o, + íJ)rora,)n(J){a,) (33)

-4-l(J).osd,sind, + .l(J)rinB,sind" +

"l(J).ordr)D(J)1a,)

One can invert

rnatr-ix operators J(J)
I

The differential

4

/2

¿.)

those results to obtain the action (realization) of the

on the matrices n(J) 
", differential opelatols ,ØU

¡(r)¡(r)16 ¡:-¡o(r)(r) (34)
o 's' og t-s'

operators are

: z'[cosd,c*r, u# + sinolÅ
t2

: i[sind,co tn, Afl - corer4$
t2.ô:-rãH

1

cosd ^1 o't
ITIT ôê J

23sind ^t o-t
l=nT AT J

zt
(35 )

The minus sign in equation (3a) has been introduced in or.cler. to

pleserve the commutation relation V"?- iV (actually the sign has its

origin in the use of or[rJr)- â.s wave function). Expressed in ter.ms of the

cornplex extension þ*,, tne relations (35) become

exv(+i?r)ficot0, i a,__ I

sirrúl ¿)0 t
,a

(36 )
ôa

ãu 'ðt
12

Y*:þr*'þr:

/
0

We obtain therfore the standard action of the differential oper.ator.s
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dd4

¿

n${}.ta.l
nnt{}.ta.l

[(J-+ N,r' ) ( J*lø' + I ) ] 
l/rn 

oÇ{l i, nn { 
a,)

vln${}.{a,)
(3 7)

(38)

þ is tbe physical total angular momentum operatol of the system

(differential operator acting in the space of the angular momentum n,ave

functions l${r}.for). Indeed, take M : 0 in equarion (21): rhis lemo\res

the angle d in the rotation matrices and equation (35) just become the-3
expressions for the components of the angular momentum of ¿ single

palticle where d. and 0_ are identified respectively to the azimuthal a¡clL2
polai-angles of the position vector of the particle. Moreover, since it ôs

consistent to delete ¿$ in equation (BB), this implies thar =Å musr
33

commute with the ) It follows that the hermitian operator ,r: -U Afl
J

completes the set of operators defining the rotation rvave

the equation (38) we add

e, Dú{ùo(d,) : vro,[{}.to.l
One can now solve equations (3b) for g,

t, : tuo 
ur?r) 

lu

The commutation relations a,re easily derived

l9g,gr] : -uro (þ,1,o are cyclic)

[9r,/r1 :o (þ,t:1,2,3)

4- Physical interpretation of the A-ngular Momentum operators

functions. To

(3e)

(40)

(41)

(42)
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\\¡ith respect to an inertiai fi-ame {V *}, the total angulal rnomentum

jis e*ptessed by

7: 7,,/, * 7r/, * 7r/, (43)

Ii is thelefole corlect thai þis defìned by

þ:îrrr*îrpr*îug, (44)

rvirele {1o} is a new frarne (nonineltial) obtained fi'orn {7 *} by rhe

rotation R(Ps). 9o is the component of the total angulal momentum

referled to the moving frame {1*}.
Tlre commutation relations of the /, with the Rdp(ds) are easily

found

[/o,RB¡| : iro07ï.y^ (45)

wlrere {a,þ,1\ are cyclic and À:1,2,3.

Let a@,i) be a rotation of the fr-ame {?"}atons the axis il ancl

about the angle a. fr transforms lo into ?; hence, A(a,-Å)ïo:1å. fne

component of þaIo.rg t is (?Ð : /n: E ano/o-
By using equation (45), one finds the commutator

l/o,Ì ,'l: -(t"lr)
Under the rotation A,(u,i), /*1p transforms into

( /a1 0)' 
: s(a,i) .fua(u,-i¡1 ¡

therefore, Ío transforms- into

(47)

k:æ
a(u,í) / *{r çr,d) : I },. ?t".rn*(u) (48)

k:o
By using the commutation relation (46), rve obtain

(46)

(4e)1 
þ 

: exp(-ia /n)1 
Bexp(ia /n)

rvhich expresses the fundamental result:
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The total angular rnornentu¡n opcrator þ i,s the generator of tlrc
rotati,ons of the rnouing ¡arne {î o} and. is Lo l¡e id,enti,ficd as tl¿c total

angular momcntum of a rigid body whosc ir¿stantancous orientation is

specifieil by thc frame {i o} ,nirh is ißelf Jired, (no relatiae rnotion) in tl¿c

system-

Remarks

In equation (41), that is the set of operators -go that satisfy the

usual commutation relations of angular rnomentum. This is a dir-ect

consequence of the fact that the /a do not commute rvith the rotated axes

?o Obsetve also that the 9^ arc invaliant with respect to tlte lotationspa
generated by þ and î a simultaneously, thereby leaving their. scalar

product invariant.

Notice also that j : e2 th"t i,

ln${,}.( d,) : .r(r+r )n,[{n}.{ a,)

In order to obtain the action of the .9o on the rotation matr.ices,

transpose equation (34) and use tlie symmetric and antisymrnetric

properties or tne .l (J)
a

¡t(J) : ¡(J)
11

¡t(J) : -J(J)2L
¡t(J) : ,(.1)

oó

(50 )

(51)

and

¡t(J)1 o3,-oz,ot): r(J)( or,o2,0 j) (52)
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Tire operators ,?* take norv the explicit form

9:9+i,9t2
9,:9-i9+12

q)- r ô
"t - -o ôv

J

exp(-idr)l- icot 0,

exR(idr)[-icot d,

* #r afl)2t

t* Ål2T

an
a-o + aø

côo¿ôa
aT-a-a+32

(ðr j

(54 )

tbb)

(56 )

(57)

(5s)

The action of the body-referred angular mornentum operator-s -zp

now obtained by complex conjugating equation (52) ancl by taking

rlatrix elements

â,fe

the

e-D #{ù. ( d. ) : [ ( J-rvr ) ( J + M + r ¡ I 
r /z¡ I[i,[ ;, f a" I

e+Dú{¿*( d,) : [(J+M)(J-M+1)]1/,r$lJn:,ra.l

e,Dú{t.( á,) : iino.[{,}.t a,l

It is important to notice that is now .?_ and g- th,at are acLhtq as

step -u1t and step- doun operz,tors respectiuely

Physicatly, the wave functions / T \1l\Ì;í{.(ár) are the wave functions of

a solid body with center of mass fixed .in space: /, is the z{omponent of

the angular momentum referred to space-fìxed axes while t, is the

component of the angular mornentum referred. to the body-fixed z-a_xis.

Page 48



APPENDIX 4

DYADICS

The notation of dyadics constitutes ân alternate way to describe

systems of n particles.

A dyad is a pair of vectors written in a definite older d8; â is the

antecedent, Ë, the consequent.

We define the scalar products:

GË,ö : d(8,ë)

ið,dB¡ : Ë1d,ê¡

GË;ðd) : (d,¿XË,d¡ : 1ð,dË,d¡

A dyadic is a linear polynomial of dyads:

I -+¡d : E,a,b,

Let d, and B, be expræsed in terms of the bases {ð*} ancl {ê p\

respectively:

Ã'. : Ð ai% B. : Ð ^bi7è^-i-ud" "u "i "þ" "lJ

¿nd therefore:

d:E ^A ^cé^a,p apap with A ^: Ð-aiabiþapt
Take now the scalar products with some vector l:

(i,ã) : 1î,r,d,t,) : xi(î,d,Ëi) : E,B,(ã,,î¡

lr1.ú) : lt.á.b..ú) : Ð.a.lb..v)\ t t \ I I l, , I I. l, ,

The dyadió- ã may be regarded as an operator acting through the

scalar products on a vector i from the right or the teft to yielcl a

superposition of vectors in a possibly different space
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Assume that tlie bases {ðo} ana {ëBi a.e orthonormal:

(¿a,¿G,) : 6*o, Gþ,ëlt_) : 6{Jp,

rve obtain a leptesentation of the dyadìc d by the rn*n ntatLix by taking

the scalar pr-oduct rvith the the base vectors:

doþ: (¿e,ã,Ëp) : Ð1(ê*,di)(di,Ëp) : Ðiaiobip

With this notation we can encode ail the intelnal position valialtles

of the n-particle system into a single dyadic, denoted by:

õ : r,ë,d{i) (i:1,.-.,n)

where the prefactors {ëoi formi the olthonormal basis of the lelative label

space corresponding to the GJV d(i).

The transposed dyadic ót it defined by:

ót : rid(i)ëi

The individual particle positions are easily recovered by tlte

operations:
- -+,

(.i,D):(D",éi) :ci(i)

in using the orthonormality of the Uasis {ë1}.

Consider now the two "square" dyadics defined in terms of the n"3

dyaclic D:

(a) the 3*3 quad¡upole dyadic:

M : (Dt,D) : ri,jd(i)(ëi,ëj)d(i) : Ðid(i)d(i)

M i, ur, operator acting in the 3-d physical space. Resoh,ecl along

three orthonormal axes {Ìo}, M i, ,.proented by tlie 3*3 rnatrix:

-11*,w,1 
Oi 

: (M) dþ 
: l,uiooiÉ

which is the ma.ss quadrupole matrix.
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(b) The n*n label dyadic:

c : (ó,nt) : Ð, ,ë,d,(d(i),d(.i))' I,JIJ"
G is an operâtor acting in the n-d label space. Resolved along the

e, vectols, G is represented by the n"n matlix:

(ëi,c,Ëj) : (G)ij : (d(i),d(i)) : ÐoQi*Qj*

\\'hich is the Gtam matrix of the vectols {d(i)}

The two rnatrices G and M have several plopelties in comrnon: tltey

aÌe both real and symmetric and their elernents are folrned out of

ploducts of components of n threedimensional GJV. Both rnatr-ices are

positive semilefinite. It follows that they can be brought to diagonal

folm, with non-negative eigenvalues, by orthogonal tr-ansfonnations.

Finally, both matrices have same trace:

TrM: Ðr(Ði(qit)\ : Ði,*(qi*)2

TrG:ti{Eû(qiû)r}:trt
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APPBNDIX 5

TtrNSOR PRODUCT OIì ST,,\.Ttr SPACtrS.

Let V altd \\¡ be tu'o vector spaces over the same field (r'eal or

complex) ancl considel the discrete bases {êi;i:t,...,n} and {lr.;k:1,...,ur}
(genelalization to continuous bases rvill be clone below). Suppose we arc

given a rnapping f u'hich assigns to evely pail of vector.s (i,t), ieV,

ñe\\¡, â. vector, denoted by ?er? which belongs to a triird vector space L:

f:(?,*) . Tø*eL

\,Ve suppose further that

(a) tlie rnapping f is linear in i and fi separately:

1i+i';ø*:lø*+i'@ü
?e1#+*'; :iøil'+ie*'
1ai¡eil' : iø(arÌ) : a(ie*)

and

(b) that it maps tire set of nm pairs (ê,,1¡) i'to a set ãrU = Ë,ø1,-

of linearly independent vectors of L.

The vector space spanned by the set of vectors 7ru (subsnace of L,

rvliich may be L itself) is denoted by Vsw and is called tlie t;ensor

product space of V and W-

Let î : l,uiË, and * : Ðk,rklr.. .Ihe generic tensor product r¡ector

iøi' is expressecl in the Uasis {d,U} bv:

r^r i k-+vlðw: riku* oik

A generic vector I of ttre tensor product spâce is expr-essecl as:

;', - ç' ..ik:X : ulkX oik
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thelefore, tlie vector space V@\^i contains vectors ihat ar-e not of the form

ffi, thal is vectols that a,re not mapirings (by f) of any pair (î,ü) (ttris

is an impoltaut lesult fol the interiiletation of pule and llixed states).

Let us noLe that if V and \\/ ale equipped rvith scalar plociucts (,)a,

and (,)\,\¡,respeciively, then orìe can also deline a scalar pr-ocluc[ (,)* iu
v8\\i

For each pair (i,() of \iØ\\/:

(i,t)* : I..,,,,(xik)*((i'k')(Ëi,Ëi,)rr(lr,lr,)*,"ii'kk'
Let O' and OW be linear operators acting in V ancl \4/

lespectively. Their teusol product is the line¿r- operator acting in V@\\/

defined by the follorving relation:

lovØowl(iø*¡ : [ovi]@[o\\/\ì]

As

operatol

\\/ and

ploduct

It

a palticulå.r case, one consider the extension OUto V@W of an

Oa, acting in V as OVtIUr, where I* is the identity oper.atol in

therefore tlie tensor ploduct o\r*ow coincides with the usual

of the extensions Or, 
"nd 

O1^r'

OV*OW : óVó\\,

is important to notice that the operators óu ana õn, al',uays

cornmute in VøW.

It is customary to simplify the notation in ornitting the symltol ø:

-j-J -.ì +v\\r means v8tv

OVOw nìearìs Oy@O11,

O' means O\,*I\V : Oy

In the first case, no confusion is possible, since

Tlie two other cases are somervhat ambiguous;

u'e shall adopt the simplified velsion.

vrv has never been defilled.

when the context is clear.
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Consider now the eigenvalue equations of O\, (cliscrete spectmm

{z,r})'

ovãi, : ,,rd,\ (i:1,. .,s(r))

rvhele g(n) is the degeneracy of z,r.

\\/e rvaut to solve the eigenvalue equaLion of the extension O' in

\ia\\/:

O,,r, \ r)"v/t - /\^

Er,€r'y vector of the foLm d,leil

of O,, rvith eieelivalue ¡/ :
n

o\,ãii : (ovd,l)1 :,,,d,',i
If ov is an observable in \/, the seb {ãi} is a basis for- v hence, the

set {dl?¡} = {1å'k} is a basis for VøW as rvell and rve therefor-e have an

ot'thotlor-tnal basis for Vø\4¡ constituted of the eigenvectols of O1r; this

solves tlie equation õui : Ài.

Therefore, if Oy is an observable in V, it is also an observaitle i¡
v@w and the spectrum of oy and õr, are the sâ.me. However, â,rì

eigenvalue ,n which is g(n)-fold degenelate in v, has a degr.ee of

degeneracy m"g(n) in Vø\,V.

The results obtained above are now generalized to n infinite vector.

spa.ces

Finally, Iet us soh,e the eige'r,alue equatio. of C\r*U, - óa, + ó11r

u'heu the eigenvalues and eigenvectols of O1r and OnU are knorvu in \i
and \4/ respectively (to simplify, â.ssume that both spectra are cliscrete ancl

nonlegenelate in V and !\/):

ovdn:'nàn ; owd,n:(,rrË*
01¡ and o* commute ancl ,h. ãrrd,.,., rvhich forur a basis in \is\Ã¡.

(u'ith ü a.rbitr:ary of W) is an eigenvector.
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are eigen\¡ectoÌs comlnon to O1l and O14r:

ðtrdnd,', : 'ud,rÛ,',", Õ,0,d,,6u', : (,r-,ãnË,.rt

Tlte;' are also eigenvectors of C:

Cáb :(u +i lalj -Ë ab1Ì nì ' n 'ùl' tì tìì 'tìÙt tì nt

Therefole, the eigenvalues of C ale tlie surls of an eigenvalue of O,, ancl

an eigenvalue of Otr1r. one can find a basis of eigenvectols of C rvhich ar-e

tensol ploducts of au eigenvector of o1i and an eigenveclor of o1ir.

It is irnportant to notice liele that if two diffelent pails of values of

n and m rvhich give the same value foe {nr' do not exist, then {,.,,r, is

not degeuerate (assurning that ,r, and (ro are not degeuerate). The

corresponding eigenvector of C is necessalily the tensor producl ãrrBrrr. If,

on the other irand, is for example 2-fold degenerate (there exists n' and

m.' such that {n,m,

eigenvectol of C corresponding to this eigenvalue is written:

Àa,b *tn,htìm 'nnì
rvlrere À and þ arc ar-bitrary cornplex numbers. In this case, there exist

eigenvectors of C that ale not tensor products.

The above results can now be extended to any numlrel of vector'

späces with infinite dirnension.

Let E be tire state space (i.e., an infìnite separable Hilbert space) of

a system constituted of N particles. \\¡ith respect to a fixed oligin O, let

Ì(i) be the position vectors in the pliysical space B(3) and {7 o} t;e a

fixed oltironormal fratne. Let E,o be the state space associatecl $,ith xiû.

To *ia, there cor-responds the obser-r,able X1*; in B,*, Iet l*iot be the

infinite dimensional or-thonormal basis and the eigenvector equation is:

x,"lxi0> : *iol*iot
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In this representation, a vectol ld> of E.* has comporìerìts given by

tlre scalal ploduct .*i*l ó> : d(*io).

The entile state space of the system is ihe tensol ploduct of the 3N

state spaces Ero:

tr : ErreEt2*...*EN3 : @ioEio

We obiain a basis in Ð from the tensor product of the 3N bases

{lxiû>}; we shatl denote ii by {l*11,...,*N3t} - 1¡i1r¡,...ï(N)>} :

{ ¡Ì1i¡,i:r,...N) } wirh:

| *11,...,*N3t = | *l1t*l *12t*...*l*N3t

Let norv lú> be a vector of the state space B. In the basis li(i)>,
the rvave function (component of lù>) is:

ü(i(Ð) : <i(i) lv>
The xia individual dependences cannot, in general, be factolized and

each of the wave functions associated with the vectors lü> of tr is a

\va\¡e function of all or some of the 3N variables.

The rnost genelal state lü> is then:

I ü> : 
Jv1Ì1i¡¡ ¡*io>d*11...d*N3

Therefore, an arbitrary vector of E can always be decomposed into

an "infinite" (since the bases {l*i*t} are continuous) Iinear combination

of tensor product vectors.
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APPENDIX 6

GJV DESCRIPTION OF ABN MODELS

1. General Considerations

The object of tliis appendix is to give an alternate point of vierv in

the natter of the construction of Jacobi vectols reflecting in "some wây"

the symrnetry of the systern.

ultimately, w€ âre seeking a set of (3N-3) gener-alizecl

coordinates derived from Jacobi vectors and leaving tlie relative

harniltonian invariant under exchange of identical particles.

If H is tlie relative harniltonian expressed in terms of 3n-3 internal

coor-dinates Q" and thlee 'rexteLnal" coordinates (Eulel angles) d, cler.ivecl

fi'orn a set of n Jacobi vectors dtil and if p(z) is the per.mutation

oPerator' (in state space) corresponding to the elernent 7 of the symmetr.ic

group ofn 0r label space) then

[H,r(7¡1 : g for any yef (1)

A filst step in this direction is to construct a set of Jacobi vectors

reflecting themselves the symmetry of the system tliat is, equivalent

syrnrnett'ic Jacobi vectols which are the orthogonal analogues of the

equivalent inter:palticle vectors (the static model has same symmetly once

expressed in BS Jacobi vectors). This description can then be used to

genelate "derived" descriptions by some suitable label or-thogonal

ttausformation p and reflecting some other aspects of the symmetly of the
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systetÌì.

The syurt.uetry ytlopelties rve a,r'e concei-ned ivith ar*e their lelatecl to

the n vectolial quantities defined by a contrar¡ar-iant basis in the lelative

label space as opposed to the scalal cooldinates defining a basis in i'elative

configulation space. Permutalions of identical palticles å,r'e repl-esentecl by

ltelmutation ruatlices acting in the label space (actually, a subgr.oup of

the orthogonal gloup O,r).

\\¡e consider systems comprised of a porticle A of mass m and n

iclentical palticles B of rnass rn,: the total rnass is M : m * nm,.

The contlavar-iant label basis is

B = {x0,x1,...,xt} (2)

tvltet'e 0labels particle A and i:l,...,n ale labels fol the identical par-ticles

B.

The contr^avaliant metric tensor is then

g(x) : diag(m-1,m'-1,...,m'-1) (3)

Tire interparticle label base vectors ale defined as

Lk:xk-xo (4)

The transformation into CM/relative description is achieved by the

matrix Z such that

lrl : z[*] (5)

u'here the rnatlix Z is given by
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rt

-1

-1

-1
IìI

il

(6)

0

0

1

:

0

lnI
il

0 ...

1 ...

0 ... 1.

ml Inl
lil "' ìrl

The colresponding ureflic [ensor is given by

g(Clt4,r) : ZE(x)Zt (7)

s(r)
g(CtrI, r) = (8)

1

M

g(r') is the lelative metric tensor and is given by

1

nt

1

m

e(r) =

1.L
u'ntnr
11
nl nì

111nìmnì

(e)

u'hele ¡,1 is the reduced llass

¡r - 
Ill*ttl'
rnnì' (10)

As expected the relative label subspace is oltlrogonal to the

l-dimensional subspace spanned by the CM base vector..

I
nt

Page 59



Let us intloduce the length a of ri
/

g : ¡¿112

and tile angle / betrveen any

\\/ith tirese conventions,

g(r-) =

couple of vectors ri ancl lj
: coSó : --!lì'-' ltl+ t-tì'

the metric tensor g(r) becon-res

[r] [r] t =

1aa
aLa

âaa

ul

"l
:

I

l

1J

(1i )

(12)

and we ale

(13)

rvhele [r'] denotes the coiumn of the vector-s ri.

The lelative basis B."t : {r1,r2,...,tn} is not orthonormal

seelting orthonormalization matrices O such that

o['] : lql ( 14)

2- trquivalent Syrrmetric Descriptions (BS+ and trSJ

LetTbeapermutation

in iabei space (ca.ie, space)

base vectors such that

(11,...,r") J p,j')(r'1,...,r'n) : (q1,...,qn) (15)

The group of rnatrices p(z) is à represen[ation of the symmetric

group 8n The matlices p(f) are orthogonal. Details concelning the

synlletric group can be found in appenclix . S(r) is obviously invar.iant

undel ihe symmetric group that is, for any 7

of

by

the identical particles B. 7 is r-epr^esenteci

an rìxrì permutation matlix p(7) of the
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le('),p(z)l : 0 (16)

Observe also that S(.)-1 comrnutes rvith any p(7) since a polynomial

in g(L) and any polynomial in g(L)-l rvill commute rvith all the p(7) as

rveil.

\\/e ale seeliing the olthonorrnalizing rnatlices O that corunute

u'ith all the p(7)

[O,p(z)] : o (17)

By using the definition of the orthonolmalizing rnatr^ices

Og(r)Ot : In (1S)

it follorvs (see publication I) that O : Ot arid g(r) : O-2 ol

o : g1r.¡-rlz (19)

Tlie positive solution O* of g(.)-tl2 : X is u¡ique (see appenclix )

and is given in algorithmic way by

o* : 
_l.i.to 

o,, (20)

u'hele

o.,*,: ou * åt*(t)-t-oI (21)

on the other hand, since g(r-) is symmetric and positive definite, it

is diagonaiizable by a ploper olthogonal matrix p

ps,r)pt:Â:diag(Àr,...,Àn) Qz)

If X is to be the positive solution of the equation

x : g(r¡-r/z (æ)

then
II

O+ : g(.)-tl2 : Pty-rlzp -Q4)

Apart from being a symmetric olthonolmalization of the basis

{r1,.-.,rn}, o* cornmutes with any pernìutation matlix p(7) repLesentiug

exchange of identical ¡larticles. Yhis ploperty is a direct consecluence of
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the polynomial folrn of O* given by equation (2t). Actually thele exists

anothel solution for X comrnuting with p(7) (see belou').

3- Analytic Expression of the Positive Solution

The eigenvalues of g(L) are easily deterurined by solving the secular'

equâ,tion. The results are

À, : d(i-o) (25)

,: últ-a(t-n)l (26)

rvhele ,\, is (n-l)-fold degenerate and À, is not degener.ate.

It is easily shown tliat tlie eigenvector con'esponding to ,\o is

or - n-r/z(1,1,...,1) (zT)

since

kr, ...r,.)s(r) : d[1-a(1-n)l(P,, ... pr,,)

+ ÐrPr, - nPrj 0 for any j

+ Pr¡: Pru for anY couPle (j.k)

+ Pt. : ntlz for any j : l,---,tt

The eigenvectors corresponding to the degenerate eigenvalue ,\, are

defined up to an (n-1) dimensional proper oltirogonal matlix of tlie
degenerate eigenspace.

By using tle {f,Ð orthogonality relarions

E*P,*P*¡ : ô,, (2s)

one obtains the (n-1) independent relations ciralacterizing any rnatrix p

diagonalizing g(r)

Ðupru:0 fori:2,...,r (29)
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Taken with the orthogonality r-eiations, this leaves

albitraly relations among the p.u.

On the othel iratrd, the set of inatiices of the type g(r) folms an

abeÌian gt'oup for both rnultiplication ancl acldition hence, any polynornial

iu S(r) belolgs to the group; in palticular- g(L)-r/:. By using tirese

pÌopelties it is easy to evaluate the matlix elernents of tlle positir;e

solution O*. The results are

[o*],, - ^ll 
a n-r1¡-r/2 - \-rl2)

[o+],¡ : n-t(Àrt/2 - 
^412)

(30)

(31)

4- Other Solutions

We demonstrate hereaftel tliat thele exists an other solution for X

having the proper-ty (17).

Let {C.'(a:b)} be the set of nxn matrices

and b elsewhere: S(r) belongs to this set. {C
gloup ln,. for matrix rnultiplication, the identity

Lei O be an ortironolmalization for g(r) :

Ot:O
+ Og(r)O : t

Oefn since O-2 : g(r)rln ttre.etori

[o,g(L)] : o

Since O is an orthonorrnalization, it satisfies

O:UO*
rvhele U is an n-dimensional ortliogonai rnatrix

U-l : Ut

having a on the diagonal

"(a'b)Ì 
forms a,n abelian

isC(1:0) -I.nn
C(a:b) satisfying

(32)

(33 )

(34)

(35)

Page 63

(36)



Since O and

symmetlic since

O* llelong to

OUt:UO:
fn' U

o.u)+/
IJT :

belongs to the glonp. N4oleover', U

rc

It follorvs that U is a squale root

U

of the uuit

(3i)

n-<li mensionaI nl¿tli-x

tì

U2:I
n

Apa.rl frorn tlie trivial solutions

U:I and U:-I
ntì *

the equation (3S) has the solutions
9_- O

U : +C (o "-o\
n'll'll./

Let us denote by O* the solution

o* : +c"1f,fl¡o*
then O* is given by

O* : Cn(a';0,)

a' : n-1[(2-n)a * z(n-t) B]

þ: n-Ll2a + (n-z)pl

g(L) : Cn(2;1) then

O,:C(n+11ù+n"
O* : Cn(n'-I;n')

rvhele

ft{"*r¡-'/2 - \
|l{n*r¡-'/' + tl

(3s)

(3e )

(40)

and let O, : C 

^(a;0)

rvirere

In particular, for

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

Tl:

T'l' :
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Remark

O* and O* both commute n'ith all the p(7):

[p(z),O.] : [p(z),UO*] : [p(r),U]O. + U[p(

Recall that any pennutation is explessible

üransposition P* and the the cycle P

Þ -(r 2 I i j
'* - \ I ,, j i

P,:(I 2 n
^ I \ n 1 "' rl-1

P* comlutes rvibh U and P 7 belongs to f
ltl

It follorvs that [p(Z),U] : 0 for a¡y 7.

7),o.]
-t I

as the composition of

tr)
tì,

)

hence comrnutes rvith U.

5- Derived Descriptions

F r^otn the degeneracy of the eigenvalue À , thele exists an infiltity of

rvays to diagonalize S(r). Follorving the cliscussion of section 3, let po lte a
Ipalticular choice. By ple- and post-multiplyinf equatiou (zz) by ¡-1/ 2, u,€

obtain

¡tlzo _ O
PP

where O is tlle ot'thonortnalization rnatrix corlesponcling to the choice pp

For example, one can take 0aA#tå ele.re.ts /.u

This defines uniquely an olthonormalization matlix for g(L).

choice does not lead to a symmetric olthogonal basis.

As another exarnple, obselve thal the nurnber. of

lelations is precisely the number of relations charactelizing a symrnetlic

tnatlix of dilnension (n-I)x(n-t) that is pru: /u, for i and k : 2,...,n.

By irnposing tirese constlaints, the matlix p ís itself symmetr.ic

(4e)

equal to zelo.

Of coulse this

Pa-qe 65



rvhicir irnplies that

P it 
: t''-tl 2

N,loleover the diagonal elements p.. (i +

these solutions p . They ale orthogonal aud
t

square loots of the unit matlix.

(50)

I) ale all equal. Let us call

symmeLric matrices hence

(55)

not degenelate. The

6. Construction of "Irreducible Syrrunetric't Dcscriptions

The n-<limensional r-otation matrix p, transfolming o* into â

palticulal orthonormalization O is such that
f

rlrO* : O, (52)

A particular frame defined by the orthonolmalization rnatlix O, is

obtained frorn the ES frame by a rotation p, uniquely defined by the

plescliPtio" or hJ{12) relations among the eremenr, /,u. in par-ticular

iÎ p is syrnrnetric
t

PrO*: L4l2Pt (53)

Every vector orthogonal to pl (defined in equation 27) is an actual

eigenvector of the degenerate eigenvalue and every linear combination of

such vectors are still eigenvectors. In particular, every vector of the for-rn

(1,..-,-1,...) is orthogonal to pl but are not orthogonar ¿,rnong thern. The

(n-i)x(n-l) metric tensor has the form

g' : C,.,_r(2;l) (54)

. B"v follorving the sarne procedure as above, g' is cliagonalizecl by a,n

(n-1)(n-i) real, proper orthogonal matrix p' rvhose eigenvalues ar.e

À':1 À':nt2
rvhele r I is (n-2)-fold degenerate rvhile I, is

1r/----o'^---*-)
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eigenvectot's co-L-r'esponding to À' is

pl, : (n-r)-r/211,...,1) (56)

The plocedule can be callied out by successivel;' dirnin Lsliing tlte

clirnension of the eigenspace by one unit. The constluction is as follorvs.

From the BS* oltilonormai basis {sk}, one can constluct tlie "totall5,

illeducible basis" as follorvs.

Observe that tlie vector,r-r/:¡-ri is plecisel¡,tlie'ectolpl of the

previous section. In the degenelate eigensubspace olthogonal to pl one can

choose the basis formed by the (n-t) r,ector-s tk: sl-sk (li:2,...,n). This

transformation is achieved by the matr-ix Zr:

nllz ttlz (57)

1 -1 0 ... 0

10-1 0

The basis {t2,...,tn} is not orthogonal, the associatecl (n-1)x(n-l)

metric tensor S.(t) is'not diagonal:

B.(t) : Cn_,(2;1) (bs)

and the new metric tensor is now

(5e)

whele O is tÌre ("-1) column of zeroes. The basis {t2,...,t"} may norv be

or-thonormalized by either the ES* or ihe trS* matrices for. the (n-r)

dimensional space.

q_
TJ_

t

11 0 l
s'(t) : 

I o' s,(r) 
J
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For example, 
- ou.e

analytically by equations

lhe (n-1)x(n-i) rnatlix O* givencân use

(30-31):

p* : O*2. is orthogonal (henc. ó.ZrO* i,

{r}) and is symmetric hence is a square root of I

The sanre procedule call be carried out

leading to p*.The results âre âs follows n-l/z

(n-r) (60)

ral basis {r}

(61 )

into the

matlix..u ó* is the nx.

(62)

an olthonolmalization of

n

lvith O* insteacl of O*

u
u

I*¡t

r*q
n

n

rìofn

whel

Tl:

transformation of tl

basis {p} is achieved

[;

1I* =

't '' '
1+tl

n

(n-1)

rvhele

The

orthonormal

õ*=

P*=

ntl z n-t lz

¡ytlz 4-rt

ttnlz' -T

ntlz

-q

-ry

n-r/z

-L-r7

(63 )

Pa-qe 6E



P* =

t'l.lz n-tlz tt-tlz n-tlz

¡4lz Fryt -,1, -T,

ttalz' -T, -,1 I--T,

(64)

rvhere 17 and 4' are given by (a7-a8).

Exarnple: n:4

?9ttùùùJ

3-5 11
31-5i
311-5

111i
11,-1 -1
1-11-1
L-t-1L

and p* corresponds to the "totally irreducible I'epresentâtionr'.

1P*=6

1P*=z
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APPBNDTX 7

POLAR DBCOMPOSITION OIì AN OPDRA.TOR IN

trUCLIDtrAN SPACtr

Tl¿corem

Bvery linear operator A acting in a euclidea.n space is lepreseutaltle

in the form of a ploduct

A:SQ (1)

A : Q'S' (2)

rvhere S, S' are positive-semidefinite symmetric and Q, Q' ale or:thogonal

operators; here S : l(AA') : g(AAt), S' : l(r\tA) : h(AtA), rvher.e g(,\)

and h(À) are real polynomials.

A is a nor^mal opelatol if and only if S ancl a (S'and e,) ar.e

pennutable.

Similar statements hold for matlices.

Let us point out the geometlical content of these formulas. \\¡e let

the vectors of an n-dimensional euclideaìl space issue fi'om the origin of

the coordinate system. Then every vector is the radius vector of so¡re

point of the space. The ortirogonal tlansformation r-ealized by the oper.ator

Q (oL Q') is a "rotation'in this space, because it preserves the eucliclean

rnetric and leaves the or-.igin of the coordinate system fixed. For le | - I

this is a proper r-otation; but for la I - -1 it is a combination of a

t'otation and a reflection in a coordinate plane. The symmetric opelalol S

(ot s') represents a "dilatation" of the n-<limensional space (i.e., a.
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"stretching" along z mutuaily pelpendiculal dilections rvith 'rstrelchiug

factols" p r, p z, ...) p n th¿t are in genelal distinct (Q r, p 2, ...) 0 ,, are

albitlary non-negative numbels). Accolcling to for-rnula (t) and (2), ei'er.r'

lineal homogeneous transfoltnation of an r¿-<limensional eucliclean sp¿ìce

cau be obtained by calrying out in succession some lotation ancl sonle

dilatation (in any order).
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APPtrNDIX 8

PStrUDOINVERStr Otr A MATIUX

For an arbitlary m.xn matr-ix A there exists an rìxm rnatlix r\', the

so-called psertdoinuerre (ol X[oore-penrose inuerse). It is associated u'ith

.\ in a natulal fashion and agrees with the invelse A-l of A in case ?r¿ :
r¿ âncl A is nonsingular'.

Consider the range space R(A) and the null space

R(A) : {Ax e R* I x eRn }

C(A) :{xeRnlAx:0}

N(A) of A,

together with their orthogonal complement spaces n(A)r c

c tRn ). Irurther', let P be the nxn matrix which plojects

aud let P be the mxn mâtrix wliich projects R, onto R(A):

P : Ph - P', Px: 0 ç+ x e N(A) (3)

Þ : pt' : Þ2, Þy : y (+ y e R(A) (4)

Fol each y e R(A) there is a uuiquely deter.minecl *, e N(A)r

sa.tisfying 4", : y i.€., there is a well-definecl rnapping f: R(A) ; [R- rn,ith

Af(v) : y, f(y) e N(A)r for att y e R(A) irl
For', given y e R(A), there is an x which satisfies y : Ax; helce y

: A[Px + (I - P)x] : APx : Axr, wher. *, : Px e N(A)r, si¡ce (I-p)x

e N(A). Irurther, if *r, *, e N(A)r, A*, : Axr, it follorvs that

*, - *, e N(A) n N(A)r : {0} (6)

u'ltich irnplies that x, : *2, f is obviously linear.

The composite rnapping f: Þ, y , n, , (Pv) e Rn is s,elllefinecl ancl

linear'. since Þy e R(A); hence it is represented b;, au r¿*rn rnatlix, rvhich

(1)

(2)

-L

R,n and N(A)

R,, onto N(A)t
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is

P

plecisely A*, the pseudeoinverse of

A* has the follorving pr-operties:

(t) A.r\ : P is the or-thogonal

is the orthogoual plojector' Þ' R, .
(2) Tire follorving forrnula hold

a) A.A : (A.A)l'

b) AA. : (AA.)h

c) AA.A : A

d) A.AA. : A*

(3) If Z is a matlix satisfying

a) ZA,: (ZA)r'

b) AZ : (AZ)h

c) AZA:A
d) ZAZ: A*

then Z: A*

(a) For all matrices A

A+*:A, (A.)n:(Ah)-

A; A-y - t(P(v)) for all y € [ì

pr*ojector

R(A)

m

and A¡\*P: [ì,n - N(A)

(7)

(s)

(e)

( 10)

(11)

( 12)

(13)

(14)

( 15)

(16)
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APPtrNDIX 9

PtrRMUTATIONS Otr IDtrNTiCAL P,A.RTICLtrS.

Let 7 be a perrnutation of the identical particles B. 7 is leplescu[ecl

schematicaliy by:

,I2...11,
^Y: l- - - |' \'r'2"'trr' (1)

We recall hereafter sorne definitions and plopelties of the gloult o{

pelnrutations of n elements: the symmetric group 8rr.

A transposition is â permutation leaving all but trvo elemenbs

unchanged:

_ tI 2...j...k...n.'T.r:{'jk - ,it i2 ... k ... j i,r,

Of course. ,.,-r = t. JK = rU, heuce r.¡k- : I, the identity.

A cycle (ijk. ) is the perrnutation of mln elements:

, or *2 "' am-1 am am+1 "' ou 
,

' oz oB.. ûm oI am+l ..- on)

m is the length of the cycle :¡ a tlansposition is a cycle of length

(2)

2.
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The "genelal shiftil is the cycle of leugth n:

_ _tL 2 nlrt : \ n 1 n-l)

Any pelmutation can be explessed as:

(1) a product of commuting cycles (no elements in comnron), this

clecomposition is unique.

(2) a product of tlanspositions (rvith conrrnoll elernents), this

decomposition is not unique

(3) some combinations of the only trvo pennutations r' ancì r*

Representations-

The (r'elative) Iabel space plays the lole of ca,r.'r'ier- spâce fol a

replesentation of ofr: to an element 7 of c/r, there corresponds au (n"n)

permutation rnatrix p(Z) acting in label space such that p(Z)p(2,) :
p?y't,'). Let {rl,...,rt} be tlie contravariant basis :

(r1,...,rn)t''l >p(t)(r1,...,rt)t : {rtt,...,rt"¡'
: (r ' 1, .'',' ' 

tt)t

In matrix notation,

p(z)I : i' (4)

The gloup 9n of matrices {p(Z)} is a replesentation in lallel spâ.ce

of the symrnetric group ø/r, and the rnatlices p(7) ale olthogon¿l siuce

(3)
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p(Z)-l : p(Z)i. Uniess n:l or 2, these_ groups ar-e not

subgroup of the orthogonal

A rnatr-ix A acting in label space is iuvaliant under'

abeiian. I is a
II

srouD t .
n

the s-r'ouu I if' ti

(6)

[A,P(r)] : o for all 7.

If A commutes with ali p(7), any polynomial in A is invaliant ulicler'

,\r, in particular A-1.

A subspace S of the label spâce is invariant uncler 4r, if fol an¡, 1,

and any r¡ector- x of S, TX€S.

The action of p(Z) in physical space is then to transform the set {d}

into a new set {{'}. A.ctually, there exists another representation of 4rof
interest: let {d.} be the set of Jacobi vectors at equilibrium; {d.} is

obtained by th.e olthogonal transfolrnation R(7) (in physical space) such

tlrat RoB(ù : (7'å,.y7'þ). The invelsion ¿ of the physical space is clefinecl

lry ,i : - ï and is represented by -I3. Thtis the two correspondences:

z -> p(z) and 7 -> R(Z) any TeEn (5)

ale representations of the symmetric group o/rr.

The two representations are intertrvined by the (3"n) matrix A.:

À
e

11qe

1.2qe

13qe

n1.qe

tt?qe

n3qe

that is:

R(z)Ae : R.n(s) (z)

Obviously, the cartesian cornponents rvith lespect to the ineltial

fi'atne rvili follorv the s¿me invaliance patieln rvhereas the invaliauce of
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the cartesiau components in an noninertial fi'ame rvill depend Lrpon the

iuvat'iance of the frarne itself. This rvill be tleated ligolously in the next

cliapter'. Actually, a fi-ame defined from all the GJ\i 's is inr,¿'rliant uncler

àrìy pemrutation 7 rvhereas "locally" defined flames ale not.

Li this chapter, rve sitow tltat the sets of GJV's invariant under o{,

are the E.s. Jacobi vectors {dr{i)} and {{r,(i)} otrtainect by rtre posirive

squale r-oot ancl a particular negative square loot of s(.)-l lespectivel;r.

Nevertheless, accounting to the above discussion, rve shali consiclel clerivecl

systerns obtained from the B.S. by label rotations and reflec[iug soure

othel symmetries of interest in the relative configuration space.

Actually, since all p(7) are orthogonal matrices (p(Z)-1 : p(f)t),

their action in label space is a change of basis.the grou¡t of perrnutation

rnatrices p(z) is a representation of the symmetric gronp S(n) (n!

elernents) and is obviously not a faittrful representation of G. Iìor.

exatrlple, the point group of SFO contains 48 elements rvheleas S(6)

contains 720 elements.
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APPtrNDD( 10

RBVItrW

l-Pa¡ameterization of the Relative Configuration-

a) General procedure

To an instantaneous confîguration of the system, one associates a

point M of a point affine 3N-dimensional vector space. The metric

(euclidean) is diagonal and has the form:

g : diag(D ,D.,D )

where

Dn : diag(mr,...,mn)

rn. is the mass of particle (i).

The covariant metlic tensor is simply

g-1 : diag(D-1,D;t,D;t)

so that the quantum kinetic energy operator has the usual form

,To*:-h2Ð-;tvl
where V2 is the laplacian in cartesian coordinates

n

V2:Ð Az

n r ô(xn0)2

By introducing generalized coordinates (P : (P (*tt), trre kinetic

erlergy becomes (appendix I)

2T :-l\2gnc D2
qm - D(oDf
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where BPa are the contraVariant metric tensor elements and D/D(P are the

covariant derivatives. The diagonalization of to, amounts then to

diagonalizing the covariant metric tensor together with "assigning" three

coordinates to the translational motion, three coordinates to the rotational

motion and the remaining 3N--6 coordinates to translation/rotation

invariant motion. This method is actually untracktable for systems

constituted of more than two bodies and alternate techniques have to be

cosidered.

In the present approach, the configuration space is inter-preted as a

tensor product of attlabelt N dimensional space with a 3-dirnensional

" ph,ysi,ca|' spâce (this is justified by the block-diagonai form of the metric

tensor). The (dual, contravariant) tabet basis is orthogonal though not

normed while the rrphysicalrr basis is orthonormal. The separation of the

CNI motion is achieved by introducing the CM vector as base vector'. The

N-l dirnensional space orthogonal to xcm is the relative label space and it

can be spanned by many bases.

b) Separation of the translati,onal motion: Jacobi Vectors.

The viewpoint and the procedures of the derivation come within the

scope of the previous works of Wallace2T where the formalisrn developed

by Biedenharn2s has been adapted. once the motion of the c.m. has been

r-emoved, the relative confìguration of the system is described by a set of

bond distance vectors {?i invariant unde¡ permutation of identical

particles. The corresponding cartesian coordinates with respect to an

inertial frame centered at the c.m. of the molecule do not lead to a
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diagonal kinetic energy operator. In order to recover the orthogonality, the

borrd vectors are transformed into Jacobi vectors {d} ¡V means of a label

orthonormalizing transformation O. The transformation O may be chosen

in order to reflect the symmetry ancl the 'rtopology" of the system. This

was not the case for the previous version of Jacobi vectors which rvere

obtained from a Gram-Schmidt orthonormalization of the bond vector-s.

The procedure is presented schematicaly in the following diagram

osrtron Vectors

ZI
ond Vectors ector

Nl
acobl Vectors o

Figure 2.

rmal 1 . Vector

The resulting kinetic energy operator is diagonal in the same fashion

than once expressed in tlie cartesian coordinates xi9 s¡ the position vectors
,+\
txl

1 t lltul r
z i,s -, ' i ulu 

(nuu)' + T"'

Tl,T+T"*tot rel

where P,^ and p. are the linear momenta conjugate to the cartesiani0 -kg

coordinates of the position vectors {i} and {{} respectiveiy.

If the potential is translationally invariant (as it is the case in this
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context), the wave function V(x) of the total configuration is expressible

as the product

ú(x) : f(q",)ú(quB)

of a function f of the coordinates of the c.m. and a function / of the set

of 3N-3 coordinates qkg specifying the configuration relative to the c.m.

The total hamiltonian is separable into a translational and a

lovibrational part

-H +Htot tr rovib
that is

Hf(q ):Ef(q )[r cm [r cm

H ., ú(qke) : (E -E )ri(qkp)ro\rrD tot tr
rvhere B and E are respectively the total and the translationaltot tr
energies.

c. Separation of the rotati,onal motion: Noni,ner-tial Frames.

At this point the system can be considered as equivarentry

represented by a set of (unit mass) fictitious particles (1 for the c.m. and

N-l for the relative motion) and the procedure of constructing a rotating

frame can be carried out using an orthonormalization procedure of a set of

three vectors Ë^ (so--called Eckart vectors) obtained from independenta
linear combinations of the Jacobi vectors:

Fo:EA ci

u kg'k

If all the Jacobi vectors are involved, the frame is referr-ed âs

"global", otherwise, the frame is "local'r (i.e., tied to the configuration of

a fragment of the molecule). The subset of Jacobi vectors serving to
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define the frame is refered to as the D-fragment (D for defining) whereas

the remaining vectors consiitute the l-fragment (I for iniernal).

The frame {ËO} is then orthonormalized. (in 3-d. space) by a

tlansformation O so that the overall 3"(N-1) matrix B:OA defines

uniquely an orthonormal frame {?9}

The particular choice of the Jacobi vectors

of the orthonormalization O permit to adapt

du ut well as the choice

the frame to â specific

physical problem.

The matrix B serves to define in an elegant way the two tensors G

and .Tplaying a key role in the derivation of the kinetic energy operator

G-l : BtB

,7-1 : BBt

respectively the reciprocal Gram matrix of the Jacobi vectors and their

tensor of inertia with respect to the inertial frame. The rotational

invariance of G (under R, B transforms into RB) is expressed by imposing

three liaisons among the cartesian coordinates of the Jacobi vectors of the

D-fragment with respect to the noninertial frame defined by B. The

separation of the variables is explicitly achieved in

qig: E R (P)Vir(p )TpT s q

where R is the orthogonal matrix representing the rotation carrying the

inertial frame centered at the c.m. to the noninertial frame and p are
q

some set of (3N-{) internal coordinates parameterizing the cartesian

coordinates yiT accounting to the three liaisons defining the fi'ame.

The relative wave function is factorized in the standard way26 into a

sum of products of functions of the rotational coordinates d. and the
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internal coordinates p
q

ø${a'o) : ) n 
o,flnitá.)x{6(r,)

This method enhances the distinct character of the internal and

extelnal parameters (traditionally, internal coordinates and rotating fi'ames

ale intimately r-elated: normal coordinates/trckart moleculal fi'ame,

hyperspherical coordinates/Principal axes frame,...) and the two issues

have to be treated separately.

d. Erpressi,on of the linear and angular rnomenta in Cartesi,an Coordinates.

The total angular momentum f, has components ¡lo and 1,,

lespectively for the D and the I-fragments. Their components witir respect

to the inertial frame are the generators of the rotations of the whole

molecule, the D-fragment and the l-fragment respectively. with respect

to the noninertial frame, the components of the total angular momentum

aIe

(f,,î):Ko+P'
009

where P' are the generators of the rotations of the l-fragrnent with
0

r:espect to the noninertial frame.

The transformation of the linear momenta prp i achieved in

oru : trRBr(d.)4,

where / is defined by
IT

0. : 7f. + t It (tao + Po+ P')rT rT qTq q q q',
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respect to the noninertial fi-ame.

The tlansfolmation of tire lineal momenta p. is achieved
Iß

r).:ÐR (0)0
rpTgTSrT

u'hele is defined by

where

0 :iT. +Ðl'(lro+Po+P')i1 i1 qrq'q q ç'

7t. is the lineal rnomentum component in tlle noninertial frame
rT

Po is the uorter angulai- mornentum (generators of the rotatious
q

label space)

Ii is a matr-ix defined by the specification of the frame.

2-The Kinetic Energy Operator In BRI Coordinates-

a. Rouibrati,onal kinetic energy operator.

In a preliminary version, the kinetic energy operator is explessecl in

terms of the (3N-3) rotational invariant cartesian coordinates yiÊ of the

Jacobi vectors with respect to the nonineltial frame. These cooldinates ar.e

not independent: there exist three liaisons (constraints) among them that

can be used to desclibe the noninerLial frame. For example, tire

specification of a diagonal tensor of ineltia leads to the three liaisons

x-yigyir : ,u,

The cartesian coordinates together with the three constlaints can be

parameterized in many ways in agleernent witli the definition of the

fi'arne. According to a rvell-knolvn result of the vectol invariant theor.y,

ut

0
i1

in
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any intelnal coordinate (rotation invariants) may be expi-essecl a,s

pol¡'nomials in the scalar- products of tire Jacobi vectors (Basic Rotationai

Invariant). These can be used as a basic par-ametelization of the caltesi¿n

coordinates ancl aLe, frorn fheir- definition, pt'ecursors for any othel set of

intelnal coordinates. The final version of the kinetic energy opelatol is

explessed in terms of the BRI cooldiuates and the coefficients of lhe

valious operators ar-e expressed in terms of some sirnple functions of tire

leciplocal tensor of ineltia associated with the lotating frame.

Tlie derivation of the kinetic energy operator is achieved in adcling

the squares of the linear momenta conjugate to the coordinates qi0.

l¡. " Intet'naltt kinetic energA operator-

Aftel having integlated over the rotations in the manner of Curliss

et al, the kinetic energy operator is obtained in a form depenclent oulv

upon the 'rinternal" coordinates, the rotational quantum numbels ancl the

step-up/step-down operators o* mixing the internal states of diffelent

lotational quantum numbers. The resulting expression is partitioned into

pure internal terms Ti,rr, â centrifugal potential terms V", pure rotationâl

terrns T and ter-ms representing the rovibrational couplings T Therot coup

part (To ) of T corlespondinq to the BRI coordinates associatecl rvithr \ int, int --f - - a'

the Jacobi vectors entering in the construction of the frame is invalia,nt

uudel a change of frame involving the same Jacobi vectors. It contaius a

diagonal radial part, a diagonal angular part and coupling ter-rns betu'een

tlr.e angular variables only. The internal part (Tl"r) corresponding to the

BRI coordinates of tlie remaining Jacobi vectors is expressed (thlough tìre
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elenrents of the reciplocal tensol of inertia J -r) in a rnole or' less

complicated u'ay depending of the choice of the frame. The coupling telrns

(T. ) betu'een the trvo fi'agments are equally dependent upon the choice of
tc

the {ratle. For frarnes defined irrespective to the iengths of the Jacobi

vectols (fol exarnple, an a-xis of quantization along the ìtiseclor of trvo

Jacobi vectols), this term leduces to coupling terrns betrveen angulal

variables. The centrifugal potential V. is a function of ttle rotational

cluantum nurnber-s (as parameters) ancl the diagonal elements of -z-1. It

lepleseuts tlie rotational contribution to the oscillators associated with the

Jacobi vectors defining the frame. The 'rpure rotationalr, terrn Tro, it

explessed as a function of the step-up/step-down operators, the rotational

quantum numbers and the elements of the -z-1. Finally, tlie rovibrationa.l

intelaction is expressed by expressions coupling the operatol's o+ with the

linear momenta conjugate to the BRI coordinates of the Jacobi vec[ors

clefining the fi'ame (to) and the components Pi of the (internal) angular.

rnornenturn of the remaining Jacobi vectors (T'). Of course, for a global

frarne (i.e., involving the totality of the Jacobi vectors), the terms Tr ,
lr-rt

T. and T' are zero.rcc

3.The Schroedinger Equation in BRI coordinates.

a. Potential energy.

In order to obtain

potential function V is

coordinates of the Jacobi

a,rì expression fol the harniltonian, the soLlrce

fìrstly re-expressed in terms of the BRI

vectols defining the frame and an appr.opriate
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pat'ameterization for the internal coordinates describing the remaining

Jacobi vectot's. Actually, tire potentials ai'ailable in the litelatule (see for:

exarnple C¿r'tel et al ") fi'orn spectloscopic data (and al¡ initio

calculations) are expressed in valence coordinates (mixture of boncl lengths

and bond angles) rvhich are not in general olth.ogonal (leading to closs

telms in the kinetic energy). The effective potenti"l v"r, is obtained by

adding the centlifugal potential V. to tìre source potential V. In genelal,

the effective potential is expressible (numerically)'as a sum of a sepalable

palt V(:l and â non-sepalable part V( 1:) , the former being the, eff . r----- eff'
summation D.V((.) over all the internal cooldinates (. of the parts of the

J J -j

effective potential function of a single internal coordinate, the lemaining

being hold at equilibrium. Formally,

V : ÐV(.)(Q ) + I V(s)(d ) + V(ns)eff i eff' -i' i,j eff ij' eff

l¡. Z ero-order hami,ltonian.

A zero-order hamiltonian Ho is obtained from the diagonal elements

of tlle kinetic energy together with the separable palts of the effective

potential.

This leads to a set of N-1 radial and 2N-5 angular operators li¿r,ing

respectively the form:

R¿dial equations:

n(Qi) --ñ'2' ô2 2 ¿y, 
,r?. t *rJ 

+ v",,(Qi) (i:1, ,N-1)

Angular equations:

A(dij) : -*r,l#. +,oto¡:# - uil v",,(ri¡)l
UIJ
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wlìere i and j are labeling the Jacobi vectors defining the fi'ame and F,, is 
_

sonle function of tlie radial coordinates.

The angulal equations colresponding to the rernaining Jacobi r;ectols

have a fortn depending uporl the choice of the fralne ancl the

palametelization itself.

The correspondiug angulal eigenvalue equations âre solvecl

nulnelicaliy by tlie renormalized Numerov rnethodss,s+ (RNN,I) leading to

eigenvalues once multiplied by the radial factor F,, are re-introducecl into

the radial equations which can be solved numerically by the RNivI. This is

actually a generalization of the rveil-krìown procedure used iu the solution

of the hydrogen atom.

c. Coupli,ng terms.

The zelo-order basis can finally be used for the evaluation of the

coupling terrns by a standard perturbation theory. It is worth rne¡tioni¡g

that in the RNM, the values of the eigenfunctions and their clerivatives

are stored for each grid-point of the integration. This particular featule of

the method makes easier (and faster) tire evaluation of the coupling

rnatrix elements.

d. Altemate choices for the internal coordinates.

The choice of an

and noninertial frame)

coupling terms (these

appropriate pararneterization (inter-nal coordinates

âppears clearly as essential in the treatment of tlle

have of coulse to be small) å,s ivell ås in tire
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separability of the potentiai. Aitliough the raclial BRI coordinates a,re

or:thogonal irrespective to the choice of the flame, ihe anguìar^ BRI

pa|ametelization leads to angulal*angulal aucl (fol celt¿in fi.a¡res)

ladial-angulal couplings.

The metlic tensor has the fornr

(1 =ö

rvhere 8., 8i and g" are respectively the rnetric subtensors of the r.aclial,

internal angular and exter'al angula' coordinates. c and E represe't

respectively the radial--external angular and internal-external angular

couplings. A proper (infinitesimal) orthonormalization of the BRI angles is

a necessary subject to be investigated in order to reduce ilre

angular-angular interactions.

g.oc
o 8,8
crBtg
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APPtrNDIX T1

GRAM MATRIX AND MA.SS QUADRUPOLtr

Irr the derivation of generalized Jacobi vectols, the concept of luttcl

spI,ce plays a major role: the tlansfolmation of position vectols into GJ\¡

is actually generated by a change of basis in label space.

The instautaneous configuration of a set of N palticles is for.rnulatecl

by a set {x} of N position vectors i, rvith Ìepect to a fixed origin o.

These N vectors are linearly independent, they span ther.efor.e a N

dimensional vector space: the label space Â*.

Once an orthonormal, fixed basis {?*;u:1,2,3) with common or^igin

at O is defined in the usual physical space (3 dimensional eucliclean space

B3), the position vectol i, is e*p.essed as:

ii: Ðd*i*?* (1)

wlrere *io i, the usual component of ï, wit,h r-espect to-Ì.o.

To the position vector description of the configuration, ther.e

cor^r'esponds in label space a unique covariant basis whose metlic tensor- is

diag(mr,...;m¡), -i being the ma,ss. of particle described by position

vector i(i). To a GJV description of the relative configuration, tlier.e

corresponds in relative label space an orthonormal basis (covariant ¡retr.ic

tensol is lrr; where n:N-l).Any orthogonal transfor-mation in label space

genet'ates an other GJV description, the metric tensor being unalter.ecl.

As well, the proper way to introduce noninertial frarnes in physica,l

space is to define in label space a set of tliree independent liuea.r'
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combinations of the label base vectors. Tiiele collesponds in the physical

spece a set of three vecto.s Ë^ which ca,n be or-thonorm alized. (in physical

space) to Provide å.n orthonor-ln¿i nonilteltial frame tied to tlie

configuration of tlie GJV involvecl in the linear cornbiriations.

Let {di } be the label basis co'r'esponcri'g to å particular.

leplesentation in tenns of GJ\¡. Define the label vector.s:

(.1 : ElrA,ltËL (À:1,2,3) (2)

The corresponding (3*3) Grarn matrix is:

G(() : Ant (3)

To the three vectors ?¡, there corresponds in physical space thr.ee

vectors p^:

ù¡: ÐnA,lrdr (4)

whose Gram matrix is:

G(p) : Ac(q)At (5)

orthonormalizing the set {ü¡} t v a standar.d procedure o yields the

desired noninertial frame {î }:'p'
1 ,: Ð,lo¡r,lË,1 (6)

where:

OG(tp)Ot : l, (z)

: oAG(q)etot : BG(q)B, (s)

with B = OA.

Let ,pÀu be the component o¡ Ë,1 with respect to l, and F be tlie
(3"3) rnatrix of the components ,pÀtt, o :F-1 ancl (z) can be wr.itte' as

well as:

nc(fl-lnt - r, (e)

For a given A, this system is not independent and there exists 3
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liaisons amorlg the ,p^P and consequently, by using (4), âr'nolrg the

conponents of tire GJV's yklt : {d,.,?r).

Cor-r'esponding to the rlatlix B, equa,tions (t-+) become:

d^:XkBÀtiL

G(z) :BBt:ORAtOt

1^: D¡B¡1.d¡

c(f) :BG(q)Bt:13

(10)

(11)

( 12)

(13)

In sholt, to any set of three independent line¿r cornbinations of the

base vectors of label space, there corlesponds in physical space a unique

noninertial frame. The frame is or-thonolmal if the (3"n) matrix B

representing the set satisfies (6). This condition imposes 3 constlaints on

the elements of the matrix B and consequently on the 3n components
't. \y^". The way ihe frame is tied to the configuration of the GJV is

entirely defined by the matrix B.

It is intelesting to observe that tire sarne fi'ame can be obtaiuecl

from an infinity of procedures:

Iet A and A'be two different linear combination matrices; there

exists a transformation ,Á such that :

A' : 'l{
The corresponding Gram matrices are

G(p) : AG(q)At

c()') - A'c(q)A't
---å G(p) : ut-LA.'Gçq)r't(,;L)t : udrc(p,)(u6-\t

Iæt o and o' be the orthonormalization matrices providing the

same frame {f} from the different sets {p} aod {ç'},
---+ OG(rp)Ot : O'G(v')O,t : Or6-rG(ç,)('ll¡t}r : I,
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1O' : OÁ' (14)

Note: two olthonormalization matrices O and o, of the same set of

vectols {ç} are r-elated by o' : flo rvliere g is olthogonal since

O'G(rp)O't : AOG(p)OïAL : &IsflL : I¡. O a'cl O, i' ecluatiou

(2-5"") do not obey this rule since they are not olthonolm¿lizations of the

sarne set of vectors

Tliis result is quite interesting since it pelrnits to simplify Iire

constluction of a frame using an easier orthononnalization ploceclule. For

instance, analytically, the E.S. procedure of three vectols is quite

cutlbersome and it is easier to constluct the desiled fi'arne in using a

Gram-Schmidt procedure for two vectors obtained by the appr-opriate,

transformation -,6. Actually, any frame can be constructed rn using trvo

vectors and a planar orthonormalization; the thild vector is ¿utomatically

defined by their vector product.

On the other hand, the vectols {, a.e expressible in a unique rvay i¡
terms of the base vectors l^,

dr: r^vkÀ?^ (15)

rvhere ykÀ u.. the components o¡ dt with respect to trre frarne {?}.
Dot (2.3') with ?o to obtain the matrix equation:

BY : 13 (16)

i.vhele Y is the nx3 matrix whose elements are the component, yL,\. Tlru

uniqueness of the expansion (8) allows us to define y as the unique

pseudo-inverse of B (Penrose-Moore inverse): y : Bt.

Dot (5) with 7 o to obtain the matrix equation:

R : BQ (i7)

where R is the orthogonal matrix wirose elements are the direction cosines
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of 1À with respect to ?o hence the matrix lepresenting tlte rotation

tlansfolrning the inertiai frame into the noninertial fi-ame defined by B; Q

is the n*3 rnatrix whose elements u.. qkÀ, components of {r- along lire

ineltial frarne vectors ?^. Under the rotation R, Q tlansforlns into Y (clot

equation 2.6 rvith 7*):

Y:QR
The invariance of the Gram matr.ix G(q) under.

G'(q) : yyt : eRRtet : eet : c(q).

Witlì the same notation, we define the (3*3) mass

in the inertial frame:

of inertia J*p.

Undel the rotation R, "l( transforms into

.tt' - Yty : nt ¡tn

(1s)

R is ea.sily shou'rì:

quadrupole teusor'

tr: QtQ (1e)

Actually, the mass quadrupole is related to the more colt\¡entional

tensor of inertia J: Tr¿ldrs - ¿l( whose elements are the usual moments

(20)

and is of course not invariant under physical orthogonal transformations.

It is nolv easy to show that the Gram matrix of the label vector.s 7,, is

actually the inverse of the mass quadrupole:

G(z) : BBt : uí-7 (21)

orherwise stared, (¿^,¿u) : ([r)¡t.
We can consider in a similar wa,y label orthogonal transformations p.

This corresponds to a change of representation of the same configur.atio¡:

a set of GJV's {q} is transformed into a new set of GJV's {q,}. under.p,

G(q) transforms into G(q,):

G(q') : pG(q)p (22)
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whereas the mass quadrupole rernains invariant:

,,1d, : etptpe : ete :
Let Q(.) be the 3*n rnatlix of the

interparti"òle vectors rvith respect to the iner.tial

Undel an arbitrary Iabel transformation

Q(.') according to:

Q(.') : rQ(r)

.t{ (23)

components of a set of

frarne.

r) Q(r) tla,nsfolms into

(24)

rvhere Q(r') is the matrix of the componerìts of a set {.,} of linearly

independent physical vectors representing the same configulation rvitlt

lepect to the inertial frame.

Under a physical orthogonal transformation R, Q(r) transfolms int,o

Q'(r) according to:

Q'(r) : Q(r)R (25)

rvhere Q'(t) is the matrix of the components of the intelpar-ticle vector.s

rvith respect to a new frame obtained from the inertial frame.

combining the two procedures gives the matrix e, (r, ) of the

colnponents of the new representation in a new frarne:

Q'(t') : rQ(r)R

The G¡am matrix for the new representation is:

(26 )

G'(.') : rQ(r)r' : G(r') (27)'

The mass quadrupoie for the representation {r, } in the nerv frame is

:

Ifris
another set

quadlupole

tr(r') : Rtet(r)rtre(r)R (2s)

orthogonal, i.€., change of a set of interparticle vectors into

of linearly independent interparticle vectors, the nla,ss

remains the sâme. Of particular inter.est a,t.e the
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orthonormalizing transformations O: in such cases, ,t, : g(r"), the metric

tensol of the label basis associated rvith the lepresentation {r'}.

Considel the olthogonal tlansfolrnatioir diagonalizittg .ll:

R,l[Rt : lv (2s)

The resulting frame is constituted by the principal axes of iner-t,ia of

the GJVrs. This frame'does not correspond to the principal axes of iner.tia

of the interparticle vector-s, the latter being not obtained fi-om a GJV

descliption by an orthogonal transformation but r-ather.. by â,n

olthonormalization procedure O transfor-rning the non orthonor.r¡a.l

representation {r} into {q}.
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