THE UNIVERSITY OF MANITOBA.

THE QUANTUM KINETIC ENERGY OPERATOR FOR ARBITRARY
MOTION OF A GROUP OF PARTICLES IN TERMS OF
GENERALIZED JACOBI VECTORS
AND GENERAL NONINERTIAL FRAME.

by

Jean—Pierre Leroy

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILMENT OF THE REQUIREMENTS
FOR THE DEGREE
OF
DOCTOR OF PHILOSOPHY
IN CHEMISTRY

Winnipeg, Manitoba
January 1988

Page i1



THE QUANTUM KINETIC ENERGY OPERATOR FOR ARBITRARY
MOTION OF A GROUP OF PARTICLES IN TERMS OF GENERALIZED

JACOBI VECTORS AND GENERAL NONINERTIAL FRAME
BY

JEAN-PIERRE LEROY

A thesis submitted to the Faculty of Graduate Studies of

the University of Manitoba in partial fulfillment of the requirements

of the degree of

DOCTOR OF PHILOSOPHY
© 1988

Permission has been granted to the LIBRARY OF THE UNIVER-
SITY OF MANITOBA to lend or sell copies of this thesis. to

the NATIONAL LIBRARY OF CANADA to microfilm this
thesis and to lend or sell copies of the film, and UNIVERSITY
MICROFILMS to publish an abstract of this thesis.

The author reserves other publication rights, and neither the
thesis nor extensive extracts from it may be printed or other-

wise reproduced without the author’s written permission.



"Qu'on ne dise pas que je n'ai rien dit de nouveau: la disposition
des matieres est nouvelle; quand on joue a la paume, c'est une meme balle
dont jouent I'un et l'autre, mais 1'un la place mieux."

Pascal
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Abstract

A form is derived for the quantum kinetic energy operator for the
relative motion of a many-body system in a context of large amplitude
vibrations with applications to rotational-vibrational spectroscopy in
mind. The theory is valid for any noninertial frame. No constraints
involving approximations are used. The rotational coordinates are
integrated out leaving an expression in terms of the basic rotational
invariant (BRI) coordinates of a set of generalized Jacobi vectors (GJV)
as precursors of any internal curvilinear coordinates and rotational

quantum numbers.
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1.Purpose and Organization of the Thesis.

Purpose.

The purpose of this dissertation is to present a new approach to the
derivation of a quantum mechanical operator for the vibration—rotation
hamiltonian for a many-body system in a context of large amplitude
vibration with applications to rotational-vibrational spectroscopy in mind.

The method yields an exact separation of the c.m., rotational, and
vibrational motions by proposing a generalization of the concepts of

1) Jacobi vectors (describing the relative motion)
2) noninertial frame (describing the rotational motion of the
system).

The point of view adopted here is more formal than physical in the
sense that no specific problem is discussed or used in the derivation of the
results. It is our view that, in a subject of such importance, a general
model has to be set up once and for all in such a way that any
application can be easily treated as a particular case of the general result.

The derivation of the kinetic energy operator involves

(1) the specification of a set of "generalized" Jacobi vectors

describing the relative motion in such a way that the symmetry of

the system can be recovered

(2) the construction of a molecular frame that can be defined in

various ways from some or all of the Jacobi vectors according to the

behaviour of the molecule under rotational motion.

(3) the parameterization of the internal configuration in coordinates
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leading to an acceptable separability of the potential and the

internal interactions.

The great advantage of the method, besides conceptual simplicity, is
that no constraints involving approximations are used. Given a potential
function, the zero—order eigenproblem can be solved by accurate numerical
methods. The results involve no approximations whatsoever and are valid

for any noninertial frames and any curvilinear internal coordinates.

Organisation

In the present part, the problem is defined and cast in the current
scope of molecular spectroscopy, the scheme of the derivation of the
hamiltonian is sketched out and the principal results are presented. Part
II is concerned with the derivation of the Jacobi vectors by
orthonormalization (in label space) of the bond vectors. Part III is
concerned with the noninertial frames and the derivation of the kinetic
energy operator itself.

The main body of these two chapters are constituted from recent
papers (either already published or submitted). Following the presentation
of the papers, notes and comments complete the discussion in the form of
appendices by elaborating upon some specific points. The theory of
angular momentum, the concept of metric tensor and the theory of vector
invariant under symmetry groups play a key role all along this work. For
this reason, the main results of these theories are presented. In a general
conclusion, some immediate applications are presented and further

directions of research are suggested.
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2. Review.

An attempt to sketch the backgroﬁnd of the problem would
comprise & short survey of the quantum theory itself and a list of the
contributors to the theory would be a Who's=Who in molecular physics.
for the period beginning in 1925.

The expression for the vibration—rotation hamiltonian for a
polyatomic molecule evolved in form from the earliest days of quantum
mechanics. The model of a molecule as consisting of nuclei that could
execute small vibrations about equilibrium positions (localized potential
minima) created by the much faster motions of the electrons had been
clearly recognized (Born and Oppenheimer!). The wuse of normal
coordinates (Brester? and Wigner3) for the description of these motions
was investigated thoroughly by Wilson®. It was, however, only in 1934
and 1935 that Eckart>® considered methods for obtaining a general
hamiltonian that would yield an approximate separation of the over—all
rotational motion of a molecule (thought of as a rigid body) and the small
"internal" displacements of the nuclei away from their equilibrium
positions. Actually, the possibility of such a separation had been suggested
earlier by Casimir”8.

The difficulty in describing the motions of the nuclei in the intuitive
model sketched above was one of defining a moving reference frame such
that the hamiltonian, when referred to the moving frame, would fulfill
Casimir's conditions (small interaction between rotational and internal

motions). In his first paper, Eckart’ developed the expression for the
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kinetic energy (classical) relative to a frame defined by “the principal
moments of inertia at each instant of time (principal axes frame). The -
pure rotational energy term in this expression was not, however, of the
classical form that was to be expected if it were dominant. This same
anomalous rotational energy term appears also in the Schroedinger
equation for an N-particle system using cartesian coordinates measured
relative to the principal axes frame (Hirschfelder and Wigner®). In his
second paper, Eckart rejects the principal axes frame as being
incompatible with the normal coordinate description of small internal
motions although Van Vleck!® had shown how to correct the anomalous
principal axes rotational energy. The evolution of what is now called the
Eckart molecular frame ended in 1940 when its modern form was given by
Darling and Dennison'!. A further simplification was proposed later by
Watson!? whereas Louck and Galbraith!®!* have recently reinterpreted the
model.

The principal axes frame and the Eckart molecular frame are equally
fundamental; each is an example of a more general kinematic concept: the
body— fized frames'® that is, "global" frames whose instantaneous position
and orientation depend only on the instantaneous translationally invariant

positions of the particles rotating as a whole.

These methods of treating the vibration—rotation of polyatomic
molecules are always formulated in terms of an equilibrium configuration
of the nuclei to define the rotating coordinate system. As a result, this
formulation is restricted to the description of infinitesimal internal motion

(the moments of inertia are expanded in a Taylor series about the
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equilibrium configuration and for large amplitude vibration, the series is
not necessarily convergent).

In order to treat the problem for molecules undergoing large
amplitude vibrations, it is necessary to examine methods which are not
tied to any particular equilibrium configuration. This was initiated for the
principal axes frame by Van Vleck!®'® who transformed the hamiltonian
to the coordinate system rotating with the instantaneous moments of
inertia of the molecule. This technique was successfully applied to
triatomic molecules by Freed and Lombardil!” (using valence coordinates)
and by Smith and co—workers'®?? (using hyperspherical coordinates).
Lately, Johnson??° reviewed the results for three-body systems and
Ohrn?628  used hyperspherical coordinates for the description of
four—bodies. Buck and co—workers?® have recently proposed an elegant
generalization of the hyperspherical formalism using the principal axes
frame as describing the "collective” rotational motion of the system. Their
main result furnishes the key to understanding the "moment of inertia
problem" posed by non-rigid structures by introducing a vortez3® operator
commuting with the total angular momentum.

In situations Where some fragment of the system has to be
distinguished (from the point of view of its rotational motion), such global
frames do not constitute an appropriate description. Part of the system
may rotate with a semi-rigid structure whereas the contribution to the
rotational motion of the remaining fragment may not be easily
recognizable. This inspired Curtiss et al 3! to introduce distinguished
| particle frames in a context of scattering problems. In this model, a bond

is singled out and the remaining part serves to define completely the
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rotating frame (actually, a single bond in the remaining fragment is really
needed) of the system rotates "internally" about the direction of the-
distinguished bond. A frame of this type has been adapted recently with
success by Wallace®® to bound state problems incorporating the
(orthogonal) Jacobi vectors description ("mobiles"33-3%) of the relative
motion into the formalism developed by Curtiss. Although simplifying
greatly the couplings between the rotational and the internal motions,
these frames are constructed in an unsymmetrical fashion (Gram-Schmidt
orthogonalization). As well, the mobiles used by Wallace do not reflect

any symmetry inherent in the system.
3.Statement of the Problem.

The motivation for the present work comes from molecular
spectroscopy and dynamics with applications primarly oriented towards a
better understanding of the potential energy surface describing either the
movement of atoms within a molecule or atoms in collision with one
another. As it turns out, the results presented below can be successfully
applied to the interpretation of the vibrational-rotational spectra of
polyatomic molecules and in particular, the effects of the rotations on

intramolecular energy transfer processes.

Any attempt to improve the knowledge of the potential surface
involves the solution of the Schroedinger equation which has to be
tractable in a way that the inaccuracies in the calculated spectrum be

mainly attribuable to the source potential function itself. Assume that a
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potential (source potential) can be set up from spectroscopic data*™*6 for
a particular region of the surface, solve the Schroedinger equation for this .
potential to obtain a spectrum (calculated spectrum), compare with the
observed spectrum and make the adjustments to the source potential.
Iterate the procedure until the differences between the calculated and the
observed spectra are minimized.

The general procedure is illustrated in the following scheme:

Assume | Source Potential |

| New Potential |

Solve
Htot¢ - Etot¢ Adjust

Compare [ Calculated Spectrum | «— [ Observed Spectrum |

Figure 1

In order to render efficient techniques of perturbation theory, this
amounts to minimizing the inevitable couplings between internal motions
for arbitrary configurations of nuclei that is, to choosing a set of internal
coordinates (internal parameters) which are optimally orthogonal in
configuration space (the notion of orthogonal coordinates and the
implications relative to the corresponding couplings will be made clear
below). As well, the internal coordinates should reflect in some way the

symmetry inherent in the system. For instance, if the molecule contains
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two or more  identical atoms, its potential must be invariant under
permutations of identical atoms.

A total decoupling of the internal and external motions being
unfeasible, a complete theory would encompass the treatment of couplings
between rotational and internal motion. In any event, the derivation of
the hamiltonian involves the explicit construction of a rotating frame
located at the c.m. This is translated into a choice of three external
parameters (for example, three Euler angles) describing the rotational
motion of the system with respect to a fixed reference frame. In a context
of large amplitude, the choice of a noninertial frame (i.e., the choice of
the external parameters) has to be such that the rovibrational interaction
in the kinetic energy for arbitrary configurations of the nuclei be minimal.
Besides the minimization of the rovibrational couplings, the frame should
reflect in some way the symmetry of the system in the sense that the
frame be invariant under permutations of identical atoms. It is also
important to mention that the choice of the noninertial frame may affect
the internal couplings themselves. These considerations motivate the
development of a general formalism of construction of noninertial frames.

Otherwise stated, the problem can be formulated in the following
way. Given a set of bond vectors {?i} and an inertial frame centered at
the c.m., what is the most appropriate curvilinear transformation of the
3N-3 components r' such that the above requirements are met. This
implies that the notion of external/internal coordinates be clarified.
Moreover, it is necessary to be precise in what is meant by orthogonality
of coordinates and how this notion is related to the couplings between the

linear momenta conjugate to the coordinates. These concepts are largely
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used throughout the dissertation, the main results being presented in
Appendix I

In most of the previous approaches, the relative configuration is
formulated in terms of a variety of internal coordinates and rotating axis
systems reflecting the physical problem under consideration. For instance,
the choice of normal coordinates corresponds to restricting the vibrational
motion to small amplitudes near the equilibrium configuration, the choice
of local modes corresponds to neglecting the angular motion, ... In most of
these cases, the configuration is specifically parameterized at the beginning
of the derivation of the kinetic energy operator. As a consequence,
adapting such a model hamiltonian to slightly different problems becomes
an increasingly complicated task. Although some efforts3®39 have been
made in the direction of some "universal" form in the last few years, a
systematic discussion 1is still lacking. This has been the principal
motivation for this dissertation: the basic result is an expression for the
quantum kinetic energy operator presented in a form valid for any frame
and expressed in terms of the basic rotational invariants*® (lengths Qiand
. between the Jacobi vectors encoded in the Gram matrix G) of

i
an appropriate set of Jacobi vectors representing the system. All that is

angles 4.
1

required is the specification of an orthonormalizing matrix O of the bond
vectors in label space defining the Jacobi vectors and the specification of a
matrix B defining the frame and being related to the tensor of inertia of
the Jacobi vectors. The basic rotational invariant (BRI) coordinates
constitute an acceptable precursor to other curvilinear internal
coordinates.

The radial coordinates Q. are orthogonal to each other and
1
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orthogonal to the internal angular coordinates which in turn are not
orthogonal to each other. A technique of orthogonalization of curvilinear -
coordinates has to be developed. Actually, this technique is the
"infinitesimal" counterpart of the orthonormalization in a euclidean space
in the sense that it amounts to orthogonalizing the local basis in the
tangent euclidean space at each point of the configuration space

(Riemannian space).

i
independent and a 'reduction" technique has to be considered in order to

It is worth mentioning that for N>5, the angles #_ are not all
1

recover the 3N—6 internal coordinates.



PART II

GENERALIZED JACOBI VECTORS DESCRIPTION

OF A N-BODY SYSTEM



Procedures Leading to a Variety of Orthonormal Jacobi-Type
Coordinates of Relevance to Large-Amplitude Vibration

and Scattering Problems.

Algorithms are developed to produce transformation matrices to
convert from scalar bond distance-angle coordinates to scalar coordinates
corresponding to a variety of Jacobi~type orthonormal coordinates defined
by the usual Gram-Schmidt process, or by alternates taking into account
symmetries inherent in the molecular hamiltonian. The transformations

have been developed with computer implementation in mind.
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1. Introduction.

In the theory of large-amplitude vibration of polyatomic molecules
(31‘ in molecular scattering problems, considerable current interest aims at
obtaining, for any specific molecule, some optimal set of the 3N-3
translationally invariant coordinates. Ideally, such an optimal set would
satisfy the following criteria:

(a) Some particular body—fixed frame should be chosen to minimize
rovibrational interaction in the kinetic energy operator for arbitrary
configurations of the nuclei.

(b) The coordinates should be optimally orthogonal in configuration
space since that requirement reduces non—zero cross terms in the internal
kinetic energy operator to a minimum.

(¢) The coordinates should reflect, in some simple way, any
symmetry inherent in the hamiltonian.

(d) The coordinates should be such that the potential energy is
approximatively separable when expressed in these coordinates for as large
a hypervolume of configuration space as possible.

The first of these requirements has been discussed at great length in
the litera,ture1 and will not be considered here in any detail since our
primary concern is with the selection of coordinates which are precursors
to the scalar curvilinear coordinates which descibe both rotation of the
frame and internal "vibrational" motion.

The second requirement is not met by any kind of bond coordinates

2-5

but is met by generalized Jacobi coordinates or, in the case of the
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three-body system, by hypers_pherica,l polar coordinates6"7. This
requirement is important since it is one logical step in the process of
diagonalizing the form of the hamiltonian.

The third criterion is not ordinarly met by generalized Jacobi
coordinates but these may be symmetrized as originally suggested by
Hirschfelder5’8 and as developed in the systematic treatment described
below. Symmetrization can be carried out in several ways and it must not
be thought that the irreducible representation is necessarily optimal.

While it would be nice to claim that some particular sort of
coordinates would be appropriate to molecular problems, the contrary
appears to be the case, even for the simplest case of triatomic molecules.
For the water molecule the most appropriate are the equivalent symmetric
coordinates described below, for the HCN-HNC surface a single Jacobi
mobile appears best, whereas for ozone the optimal current choice is
hyperspherical polar. |

The above criteria and the difficulty in fulfilling them suggest the
need for some systematic method by which a potential, which is usually
expressed in terms of some source coordinates (such as those of Carter et
al.g) can be studied in a variety of coordinate systems. Just such an
approach has been developed in the past few years by one of the present
aui;hors2—4 and this work represents a systematization of an important
part of the process not just for three— and four—body problems but for

N-body systems.
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2. Scalar Coordinates, Configuration Space and Label Space Descriptions.

The source coordinates in which molecular potentials are commonly
expressed usually involve bond distances or a mixture of bond distances
and anglesg. While there may be variations, all of these 3N—6 scalar
internal coordinates may be viewed as being derived from a set of N-1
interparticle (bond) vectors. Anticipating developments below for a
moment, let Xy denote such a bond vector in the lab parallel center—of
mass frame, and let x = (xl, Xoywery X n) be a column vector constructed
from the set of n = N-1 bond vectors. The bilinear form defined by the

(symmetric) Gram matrix,

G = xxt
X{ Xy X{.Xg ... XX
Xq-Xq Xy ... -X,
= (2.1)
k X -Xy X Xg ... XX

is describable in terms of N(N-1)/2 scalars which are the lengths (bond
lengths) of the vectors Xy, and their intervector angles (bond angles) eij =
arcos(xi.xj/ |xi| lle). For three— and four-body systems there are exactly
as many such rotationally invariant scalars as linearly independent
internal coordinates. For systems comprised of five or more bodies, the
number of these invariants is greater than the 3N-6 permissible internal
coordinates because not all the angles are linearly independent The

following is worthy of note, however. Irrespective of how one defines the
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3N-6 scalar coordinates, these are derivable from the_invariants' which in
turn are derived from the bond vectors. One seeks to replace the
non-orthogonal 3N-6 scalar invariants above by a system of mutually
orthogonal scalar coordinates in the (3N—6)-dimensional subspace. A
natural step in this procedure involves the transformation of the
non-orthogonal bond vectors X into their orthogonal Jacobi counterparts
denoted by the symbol Q, i.e. one seeks the transformation matrix O such
that
Q = Ox (2.2)

for variously defined orthonormal systems. Because of the several choices
of interparticle vectors and their explicit relationship to the
center-of-mass vector, it will be best to begin with the configuration
space description of the N-body system.

Let i, j,... denote particle identification labels, and «, f, 7 denote
cartesian components. An arbitrary configuration in the 3N-dimensional
configuration space, Q3N’ can be denoted by a vector

X :.Z xwlei
i,

. (2.3)

1

where the x = represent field components and the €, a system of

orthogonal, but not normal, base vectors. The corresponding covariant

metric tensor has block—diagonal form

g(Q) = |o Dy ol (2.4)

where
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Dy = diag(ml,mQ,...,mn) - (2.5)
The trace of DN is the total mass M. The configuration space can

be regarded as a direct product of a '"label space", AN, and a "physical

space" E3:
Q3N = AN ® E3 (2.6)
Likewise the base vectors of the configuration space can be expressed
e, =¢®d, (2.7)

where e are the label space base vectors and d o Are the "physical"
three—dimensional-space base vectors.

Separation of the center—of-mass, description of the system topology,
and the derivation of Jacobi coordiantes satisfying various criteria all
involve linear transformations in the subspace AN and its dual space. For
the purpose of describing such transformations, consider a vector X
represented in terms of two (covariant) base vector systems e and e’. Let

| e’ = Ae, e= Ater (2.8)
where e, e’ denote column vectors, and A is a matrix describing a linear
transformation of basis. The corresponding field quantities x are also
denoted by a column vector. Then

X = xe = x'te’ = xtAe (2.9)
Hence
x = (A% (2.10)
These relationships also determine the transformation law for the

metric tensor,

g =e e = AeelAb = AgA® ©(2.11)
The center—of-mass coordinate in AN is conventionally defined as

follows:
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N = M Emd T (212)

Interparticle bond vectors likewise have the usual form
). QU S
(i#j k=1.2,..,N-1) (2.13)
where in both equations (2.12) and (2.13) reference is made to the field

components. In terms of equation (2.10) the matrix (A_l)t has the form

(1) (3)
(k) 0 ... = 1 ... 0 (2.14)
(N) \ m /Mo /ML mj/M ceeomo /M |

The first N-1 rows of this matrix determine the N—1 interparticle vectors
in a unique fashion. The last row describes the center—-of-mass coordiante.
The matrix A" may be inverted analytically to generate the matrix A

describing the transformation of base vectors:

ﬂl_l Hq Hyq
D e D)
A = K937l Mgzl iy93-1 el (2.15)
1 1 1

where 1 = m,/M and pg =ty + o+t

From equation(2.14) one easily demonstrates that
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gy =0 (all k # N) ~ (2.16)
This shows that the (N-1)-dimensional subspace spanned by the ef
is orthogonal to the one—dimensional subspace spanned by ey Thus the
one—dimensional label space is a direct sum,
AN =4 ®Ag
(2.17)
One may also verify that the various base vectors e{. are not in
general orthogonal among themselves, i.e.
g =€ #0 (#K) (218)
One seeks those linear transformations, O, in the space A rel which
will diagonalize g. All such transformations define orthogonal coordiantes

in Ar ol
3. Orthonormalization procedures in Ar ol

Orthonormalization in the (n = N-1)—dimensional space A, can be
carried out such as to satisfy several different criteria. An arbitrary basis
transformation,

E = Oe (3.1)
is specified by the n’ parameters constituting O. If E- is to represent an
orthonormal set,

EEt =1 (3.2)
this specifies (n+1)n/2 conditions on the n? parameters and leaves
n{n-1)/2 conditions which can be determined by choice. Several such
choices will be implemented below.

The traditional method of achieving orthonormalization is that of
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Gram~Schmidt. This produces the conventional N-body "mobiles" usually
associated with Jacobi coordinates5. The procedure suffers from the
disadvantage that it does not treat all of the bond vectors on an equal
footing and, as a result, does not produce coordinates which reflect any
symmetry inherent in the hamiltonian of a molecule which possesses sets
of identical nuclei, such as H2O, SO3, etc. That deficiency can be rectified
by a second choice which we shall call equivalent symmetric (ES) or by a
transformation of these coordinates which produce coordinates

transforming as the irreducible representations of the molecular PI group.
3.1. Gram—Schmidt.

Two separate aspects of the GS procedure are worthy of description,
these being that we seek a matrix representation of the procedure and the
second being that in order to obtain the field components in the

orthonormal space in the desired form,

Q! = o,

2 1 2
Q% = Bx” + w5, (3.3)
etc,

the GS procedure must be carried out on the base vectors of the dual
space in inverse order.

Matrix representation of the Gram-Schmidt procedure has already
been approached in the literature. Letting TR be linearly independent
but not orthogonal base vectors, then a set El""’E n of orthonormal base

vectors may be derived from these as follows:
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1

E; =NjTe,
-1

E2 = N2 [62 - (El.eQ)El]
k—1

E, = N_le, ~ ) (B.¢)E] (3.4)

k k vk Tk’ :
r=1
where Nk is the norm of the vector e, minus its projection on the span of

El"“’Ek—l' This system of equations can be cast in the following form12

+ o —1/2

L, =D e /
. _1/9
E, = A, (D,D,)

e1.61 61.82 /
- —1/9
D.D
e, e | (D) (3.5)
B ~1/2
B = Ay (0 _4Dy) /
e -e e;-€ €q-e
—1/2
(Dy_1Dy) /
e1C%1 %1 - Cp1-®%4
€ €9 €k

where Dk denotes the Gram determinant formed from €] 5es€ - Expanding

the various determinants Ak in terms of the co—factors of the last row,

k
Ay = z C1i& (3.6)
i
where ¢, . = (—1)k+1|Mki| , it can be shown that
k
-1/2
B, = (0D ? Y o (3.7)
i=1

which gives explicit form to the required matrix transformation OGS’
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E = Onqe "~ (3.8)
By construction, it is evident that OGS is a lower triangular matrix.
Our second requirement of Gram—Schmidt can be achieved by direct
application of tensor algebra. If € T ©:Cp€) is defined as the
covariant basis in standard order, and €p = €588 = Peo is the basis
which results from an inversion of this order, and if eP is the
corresponding contravariant basis, then the transformation of the field
components under the GS matrix which orthonormalizes the contravariant
basis is given by
Q = (0°)x = P(0,)'Px (3.9)
where 00 is the GS matrix which orthonormalizes the standard covariant
basis €y Since OO is a lower triangular matrix, its transpose is an upper
triangular matrix. Pre— and post—multiplication by P recover the form of
a lower triangular matrix, hence the field components have the desired
form (3.3). It can be seen that the various bond coordinate vectors are
not treated in an evenhanded fashion in the definition of the set of Jacobi

coordiantes.
3.2. Equivalent symmetric (ES) coordinates.

In the transformation E- = Oe in which E‘ represents an
orthonormal set, let us require that
Ee' = eE* (3.10)
It follows tt;z;,t
| Og = g0* = g0’ = (0p)" (3.11)

Le. Og is a symmetric matrix (g itself is by definition symmetric). Hence
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g =1= OgOt = 02g

(3.12)
and
0=gt/2 (3.13)
The properties of g determine O uniquely. Since g is positive
definite, so also is g-1 and there exists a unique positive square root given

ble

O,= 1lim O (3.14)

n
N—ow
where OO = 0 and

Opy1 =0y + (g_l B 0121)/2
(3.15)

Since OS is a polynomial in g"l, which is symmetric, all O , ate
symmetric and OS is a symmetric matrix.

In any molecule possessing a set of identical nuclei, if one chooses as
bond vectors equivalent bonds (as for the three N-H bonds of NHS), then
the resultant set of ES Jacobi coordinates Ql’ Q2 and Q3 are merely
interchanged by the operations of the molecular permutation—inversion
group. In other words, these coordinates can be regarded as orthonormal
(in the configuration space) analogues of the non—orthogonal bond vectors.

In the specific case of molecules of the form AXn the various
coordiantes of the ES representation are closely related to Radau
coordinates’ . The matrix O defining Radau coordiantes is inverse to that
defining ES coordiantes, the difference deriving from orthogonalization in
the configuration space and dual space respectively. Quite apart from this

technical difference it should be noted, as described in section 3.4 below,

that ES coordinates can be defined for systems such as AX Y (e,



CHyX,, and CHQO) for which Radau coordinates have not been defined.

3.8 Irreducible symmetric (IS) coordinates.

With regard to the above example of NHS, one may regard the set
Ql’ Q2, Q3 as equivalent group generators of the PI group. In the
conventional manner one can derive coordiriates, Rn’ which transform as

the various irreducible representations of the group

R, =) x¥(P) PQ, (3.15)
P

where the y®*P) are the characters for the various operators P for

irreducible representation o
3.4. Intermediate coordinates.

From the ES coordinates of section 3.2 above one can generate a
variety of "intermediate" orthonormal coordinate systems. Consider each
of the N-1 vectors Qk as the position vector of a fictitious unit mass
particle. Apply the same procedure as in equations (2.12) and (2.13) to
separate the center—of-mass. The last row of the matrix corresponding to
equation (2.14) has matrix elements given by 1/(N-1) while the upper
rows are characterized by the same kind of choice before. This procedure
defines a vector which is the "polysector" of the Q-vectors and an
(N-2)—dimensional subspace which is orthogonal to the polysector but
whose base vectors are not orthogonal to each other. It may be
orthonormalized by any one of the above procedures to produce yet

another orthonormal set of coordiantes. If one chooses ES coordinates for
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the (N-2)-dimensional subspace and continues the procedure from the
beginning of this section until the (N—2)-dimensional subspace is reduced
to one dimension, the resulting coordinates coincide with the irreducible

coordinates described in section 3.3.
4. Implementation.

Specification of particle masses and identification of a particular set
of bond vectors are the only imput required to implement any of the
orthonormalization schemes of the previous section. The resulting set of
3N-3 coordiantes Qi are field components defined with respect to a
(3N-3)—dimensional cartesian basis (gij = §ij’ i,j = 1,2,...,3N). This is
exactly the required form from which to define 3N-3 curvilinear scalar
coordinates which somehow identify the molecular frame (three
coordinates) and 3N—6 rotationally invariant coordinates usually associated
with "vibration". The work reported in this paper has been preparative to
the choice of curvilinear coordinates. We have shown how to generate a
variety of orthonormal precursors of scalar curvilinear coordiantes. The
actual choice of a specific molecular frame (Hirschfelder, Eckart, et:c)1 is a
quite separate issue, as is the definition of internal coordinates. While it is
not our wish to address these topics here, it is perhaps appropriate to
indicate how the above theory is to be employed. If we adopt the
molecular frame described by Hirschfelder, for example, and choose as
scalar internal coordinates the lengths of the vectors Q in physical space,
together ~with the corresponding intervector angles, then the

transformation between the sets
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Xl, XZ’ i NN-1)/2 Ql7 QZ, o QN(N—l)}/z
(where the x and Q refer to the scalars) is accomplished by means of the
transformation

G(Q) = 0G(x)0°"

(4.1)
where G(x) is defined in equation (2.1). For any number of particles the
N-1 length coordiantes are orthogonal in the configuration space2’3. In
systems having fewer than five nuclei, the angles either are orthogonal or
may readily be orthogonalized, thereby leading to a relatively simple
kinetic energy operator. The transformation (4.1) permits multidimensional
plot324 of the potential to be constructed with a view to choosing that
set of coordinates (both by choice of scalars and by choice of section 3)

which is optimal.
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The determination of Generalized Jacobi Vectors (GJV)

for common types of small molecules.

Methods previously described [1] to define generalized Jacobi vectors
for N-body systems are elaborated for common types of small molecules

to define a variety of orthonormal coordinates describing relative motion.
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1.Introduction.
Configuration Space description of the N-body system.

The work presented in this paper is a direct elaboration of general
methods previously described [1](and references therein) to define and
derive (in algorithmic form) generalized Jacobi vectors (GJV) for N-body
systems. Here the methods will be explicitly applied to generate
orthonormal coordinates satisfying a variety of chosen symmetry
constraints for typical small molecules ABn, ABQCQ, ABC3. The resultant
coordinates, as n—dimensional cartesian coordinates, are not immediately
applicable to the analysis of molecular dynamics (except in the "trivial"
case of infinitesimal amplitude motion) but are necessary intermediates in
the construction of any kind of curvilinear relative coordinates. The most
evident curvilinear coordinates would be basic rotational invariant

coordinates (lengths of GJV and angles between them) which would be

defined in exactly the same way for any choice of GJV. Definition of the .

GJV for any system therefore appears as a distinct problem in its own
right and for that reason is all that is considered here.

Let 1,j,... denote particle identification labels, and . a,03,7 denote
physical space cartesian components. An arbitrary configuration in the
3N—dimensional configuration space, QBN’ can be described by a vector

% = 5x%, (1.1)

where the x'¢

represent field components and the €, & system of
orthogonal, but not normal, base vectors. The corresponding covariant

metric tensor has block—diagonal form
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g®) =10 Dy 0 (1.2)
0 0 Dy
where
D(N) = diag(ml,mg,....mN). (1.3)

The trace of D(N) is the total mass M. The configuration space can be
regarded as a direct product of a "label" space, AN’ and a "physical
space", E3:

Q ® E.,.

3N = Ay © By

(1.4)
Likewise the base vectors of the configuration space can be expressed

€, = ¢ ®ds, (1.5)
where e are the label space base vectors and d3 are the "“physical
space" base vectors.

The set of cartesian coordinates, {Xi_a} does not provide a
particularly useful description of the system and it is conventional to
perform an initial transformation from these coordinates to centre of
mass — relative coordinates which lead to a more separable Hamiltonian.
Such a coordinate transformation is accompanied by a transformation of
base vectors, it being easily demonstrated (as in the examples below)
that the base vectors of the relative subspace are not orthogonal. Since
we must carry out transformations with respect to nonorthogonal bases,
1t is advantageous to make use of co— and contravariant bases, denoted
(as column vectors) by e and e respectively. If g cienotes the metric
tensor for the covariant basis (square symmetric matrix), then the

contravariant basis and contravariant metric tensor are expressed by the
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matrix equations

- -1
e=ge g=g8 - (1.6)

The value of the contravariant basis derives from a well known theorem

which is simple to prove.

Linear transformations

Let e be a column vector denoting some covariant basis, e a
column vector denoting the corresponding contravariant basis.

Let x be a column vector denoting the contravariant field
components, >~c a column vector denoting the corresponding covariant
field components.

Consider an arbitrary linear transformation of the covariant basis

e =Ae X = (A”l)tx (1.7)
The corresponding transformations of contravariant basis and
covariant field components are as follows. Since e = g e
e’ :g’é’erzAgé
Thus e = (g’)“lA g e=Ae
where .;x denotes the appropriate transformation of the contravariant
basis. Noting that g = A g A
er = (A hbe
whence A = (ATht | (1.8)
Thus

A linear transformation of the field components in the covariant
basis is equivalent to the same transformation performed on the
contravariant basis itself.

While transformations of field components appear as algebraic

manipulations alone, transformations of bases are subject to a geometric
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as well as an algebraic interpretation. It is this geometric interpretation
which- lends itself to the conception of alternate orthonormalization -
strategies.

As an:‘example, consider the transformation to centre of mass and
relative coordinates where, for simplicity, we restrict attention to the label

space. Definition of the centre of mass coordinate

N = Z)imixi ' (1.9)
and of (N-1) independent relative coordinates ...
x K =+ - (1.10)

correspond to a transformation of the field quantities (in the notation of
the theorem above)

x = (A Dk (1.11)
to which there is a corresponding transformation of the contravariant base

vectors e

e’ =Ae. (At = A (1.12)
It is readily verified from the metric tensor é that el is orthogonal to
all of the relative base vectors e-X but that the latter are not orthogonal
to each other. The implication is that the field component of the centre of
mass x’N will be separable in the Laplacian (KE operator). On the other
hand, since the relative base vectors e are not orthogonal, the
corresponding covariant field components of the Laplacian will be coupled.
Any stratagem to decouple such field components is none other than a
way of generating an orthonormal contravariant basis. Reciprocally, any
technique which orthogonalizes the contravariant basis will lead to a
separable Laplacian.

If O denotes an orthonormalizing transformation of the
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contravariant basis, then

E=0 e (1.13)
Since the base vectors E are orthonormal |
EE'=1=0g 0Of ~ (1.14)
whence
oo™ = ¢ (1.15)

This equation can be interpreted as a condition to be satisfied by any
orthonormalizing transformation.

While general computational procedures were previously described 1]
to generate orthonormal GJV satisfying a variety of criteria, the
procedures suitable to specific types of molecule and the interpretation
and value of the resulting GJV were not discussed. A great many
molecules of interest possess certain symmetry with respect to exchange
within subsets of identical particles and it is important to generate GJV
reflecting this symmetry. Such GJV cannot be generated by Gram
Schmidt (GS) orthonormalization, but require for their definition some
combination of at least two other orthonormalization procedures. The first
is by generating equivalent symmetric (ES) GJV which are the orthogonal
analogue of equivalent interparticle vectors (equivalent bonds). These are
defined by the requirement (~)t = 6, ie. (3 is a symmetric matrix. In that
case

07?2 =g 0 =g 12 (1.16)
Irreducibié symmetric (IS) coordinates are defined as the eigenvectors of
g’ (or é’, these being identical).

g T=TA T lg T = A (1.17)
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where A is the diagonal matrix of eigenvalues of g. If the transformation
to diagonal form is considered as resulting from a transformation M of °
basis, then
Mg M' = A  whence Mt = m! T (118)
le. M is an orthogonal matrix. The transformation M produces an
orthogonal but not orthonormal basis. A second transformation by A_l/ 2
leads to orthonormality. Since the eigenvalues A, are usually
nondegenerate, the eigenvectors T are usually unique. If certain A, are
degenerate, the nonuniqueness of the eigenvectors T may be removed by
requiring that the T be simultaneous eigenvectors of g’ and the matrix
representatives of those symmetry operators which commute with g’. The
eigenvectors T belong to one or other of the various irreducible
representations of the group.
Irreducible symmetric coordinates possess a unique property. If X =
Eixie§ is the relative configuration vector, then |
o XX = Ei,jxlxj(ei'ej) = Ei,leJgij
where GY = x'x) is the Gram matrix. Because gij is symmetric

XX = Ei(EjGijgji) =% Gg'="Tr (Gg)

(1.19)

Since the trace is invariant to a similarity transformation T
Tr (G g7) = TH(I7'G TY(T gD = Tr (G g)
If T corresponds to the eigenvectors of g then
Tr (G g’) = Tr (G" A) (1.20)
which is a function of the diagonal elements G".; alone. The importance
of this result is that any quadratic function
V = ks (1.21)

1
can be reduced to diagonal form in irreducible symmetric coordinates.
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Because the kinetic energy operator is invariant to any fixed displacement
of coordinate origin, it follows that, if the origin is shifted to the -
equilibrium configuration (in configuration space) and if the X are
displacements therefrom, the irreducible symmetric coordinates above,
with a potential of the form (1.21) become the conventional "normal
coordinates" of the system. Conversely, the "normal coordinates" are seen
to be a particular realization of one of many orthonormal coordinate sets
describing the system.

Molecules often possess different types of identical particles as for
example in molecules of the type ABnC m In  such cases
orthonormalization may first be performed on each identifiable subgroup -
of equivalent interparticle vectors, the resultant GJV being orthogonalized
with respect to each other at the end. The procedure applied in the

examples is explained schematically below.
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Covariant Contravariant

basis basis
1) x| e g e é
(A_l)t l —— CM/rel coords —— K |
2) x’ e’ gl ;3/ é—/
ES/IS orthonormalization within subgroup B
3) é” éll
IS/ES/GS orthonormalization of subgroups Z
4) B g=1
5) q=0x=0 b — «  F-(Be=0e

2. Orthonormalization procedures for ABn molecules.
In the case of the ABn systems let particle 1 have mass m, the remaining
particles being given mass m’(m +nm’ = M).

g; = (1/mm)!/ %, (2.1)

Corresponding to the choice of field components x12, x13, ...xln, the

matrix A = (A_l)tis given by
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.........................

The new metric tensor is g = A g AY where

(p 1/m 1/m 1/m ...... 0)
I/m p 1/m 1/m ...... 0
é’ = I/m 1/m  p 1/m ...... 0 (2.3)
0 0 0 0..... 1/M

with g = (m+m’)/mm’. Setting cos¢ = 1/mp’ = m’/(m+m’) and

restricting consideration to the relative subspace

1 cos¢ cosg cosg ....... ]
cosg 1 COS¢§ COS¢ .......
é' = p’ |cosp cosg 1 cosg ....... (2.4)

..............................
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If we introduce an orthonormal basis

E=0c¢e (2.

B
Ut
S—

then, as before é = 6)“1((3_1)t. If, in addition, ot s symmetric

. . : - 2
corresponding to the choice of ES coordinates, then g = O~ or

0= g’_l/ 2. From a practical standpoint, the matrix O is in this case

more easily computed from 02= é’_l = g where g = A g A" The

matrix A can be analytically obtained by inversion of Al

[ 1-p —p ~]

e —H
A= (2.6)

1 1 1 1

where ¢ = m/M. Thus
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p(l=p) 4" ~p "0
" p(lp) -~ 0
g =Ml 0 (2.7)
w w0
0 0 0 0 1

Restricting attention once more to the relative subspace and setting

2
o = Mu/(1-u)]"?  cosg = /(1) (2.8)
it follows that
1 cos¢ cos¢ cos¢
cos¢ 1 cos¢ cos¢
, 2
S (2.9)
[cOS¢ cos¢g  cosd 1

8¢ 18 a positive mattix since (1—cos¢), 1 + (n~1)cosé > 0. Since Brel 18

a circulant matrix then O = 34 ell/ 2 can also be shown (appendix 1) to

be a circulant

=%
o
» o
o
o

(2.10)

...............
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It follows that

a = (a/n){{[1 + (n—1)cos¢] + (n-1){(1-cos¢p)}

b = (a/n){{[1 + (n-1)cos¢g] — {(1-cosg)} (2.11)
Noting that a—b= o(l-—cosg) = f
then a=b+p (2.12)
Without further elaboration, the ES coordinates are seen to be of the form

a = 0+A)x? + bx!3 4 bt 4 bl

q2 = bx'2 + (b+ﬁ)x13 + bt 4+ L bx®

etc. (2.13)
It is easy to see that these are converted into each other under the
operations of the molecular group. In this sense the qi are equivalent
symmetric coordinates. The various coordinates Qi, which result by using
the projection relation for the group of equivalent bonds with one of the
above as a group generator, transform as the wvarious irreducible

representations of the group.

3. Generalized Jacobi Vectors for AB2C2 systems.
Let my = m, Mg = m’, my = m" and the total mass be M.
Assign to A the label (1), to particles B the labels (2) and (3) and to

particles C the labels (4) and (5). The contravariant metric tensor is:
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- .
Lo 0o 0o o
o L o o ¢
_ m
g = o 0 I 0o o0 (3.1)
0O 0 0 %.' 0
1
o0 0 o L

Once more the coordinate choice from which to generate

orthonormal coordinates is x12,x13 x14,x15.

The matrix A representing the transformation into the CM/relative

contravariant basis is:

-1 1 0 0 0
—1 0 1 0 0
A== 0o o 1 o0 (3.2)
~1 0 0 0 1
il m- m om" m"
N ¥ ¥ N N
The new metric tensor is é = 1& é At :
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where p° =

[, 1 1 1
J o o a 0
1 , 1 1
n A omoow
- 1 1 1
g = o o " o 0 (3.3)
1 1 1 n
m om om & 0
1
\ 0 0 0 0 e
m’+m _ m"4+m
mm - and 4t = m'm
The contravariant basis {el,ez,...e4} is not orthonormal:
11 2 2 1/2
(eheh) = (%) = wl/
’ "
08093 = Trpmr = 00567 €045 = e = cosg”
m’'m" 1/2 .
C03Pgy = [(m-i—m' ) (m—;—m”)] /2 = cos¢ (3.4)
[ p’ cosg’ (u’u")”zcos{ (n’u”)i/zcosc‘
[s7 COS$” 74 (u'u")mcos{ (u’u“)1/2COSC
(u/#ll)1/2cosc (‘u,‘uﬂ)l/zcosc ,U," M“COS¢”
[(u)eos¢ (uum)Peos¢ pcost p
(3.5)
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Orthonormalization Procedures.
Three distinct orthonormalization procedures will be considered as
examples, the resultant coordinates being, respectively, orthonormal
"""" arbitrary amplitude analogues of local mode, mixed mode, and normal
mode coordinates. In each of these the AB, and A02 fragments will first
be orthonormalized either by ES or IS orthonormalization. In all of the
following attention will be focussed on the structure of the various
matrices, the actual values of the matrix components being suppressed to
give emphasis to this structure. The values themselves follow
automatically from the various operations.

a) ES orthonormalization of AB, and AC, fragments.

Following from appendices 2 and 3, a matrix of the form

Az A7 0 0
p- A AL O 0
i 1]
0 0 Al AT
f1 11
0 0 A% Al )

(3.6)

will, under the transformation B g'Bt, transform g’ to the form

O e o
- O

O‘Q._%

1]
o O
- = O
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which is seen to separately orthonormalize the AB2 and A02 subspaces.

|—1/2

The matrix g (Appendix 4) will, by the ES procedure,

orthonormalize these subspaces with respect to each other, thus the

complete orthonormalization matrix 6 = g” -1/2 ¢ B is of the form
o’ ﬂ/ " 7"
~ _ ﬂ/ a,/ ,),H ,),H
€S ¥y " B (3-8)
7/ 7/ ﬂ" a“
whence q1 = ax? ¢ B %13 4 1'% 4, 7'x 15
&= 2y 7X13 + oot g s
= 2 4 ogxdd oy g dd L s (3.9)
These represent four orthonormal internal coordinates such that
1 2 2 1 3 3 4 4
(23)a" =q” (W)"=q ()" =q¢° ()" =¢q

(45)q" = ¢ ()’ = )P =q" wt=¢ @)

b) Mixed mode orthonormalization.
In a molecule such as CH2012 it may be desirable to treat the CH2
fragment in "local mode" fashion and the (3012 fragment in ‘normal

mode" fashion. The matrix

A=A 0 O

~ |-A_ A0 O

B = 0 0 € € (3.11)
0 0 7 -7
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transforms g’ to the form

1 0 ¢ o0

" 10 1 ¢ o

8 =1¢ ¢ 1 0 (3.12)
0 0 0 1

As Dbefore the AB2 and A02 subspaces are separately orthonormal but in
this case the antisymmetric A02 vector is orthogonal to all others. To
maintain the integrity of the AB2 fragment coordinates a Gram-Schmidt
orthogonalization is called for. If the base vectors underlying é” are
denoted el,...e4 and the corresponding orthonormal vectors are e E4

then define

Bl [1 0 o o e
2 2 -~
] E'f_ 10 1 0 0 e - (e (3.13)
£ ¢ a« B 0] |6
ou 0 0 o0 1|]eé
Thus the complete orthonormalizing transformation is 6m = ~C B where
O1 1y Das the form
A, —A_ 0 0
. —A A 0 0

mx a(A+—X_) a(A+—Z fe fe (3.14)

0 0 7 —Y

J
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As in the previous procedure q = O___ x and

1 2 1 4 4
@) = @) =q¢ @)= (@)=

11 2 9 3 3 4 4
(45)" = ¢~ (45)q" = ¢ (45)q° =q¢° (45)q = «q

c) Irreducible orthonormalization of both fragments.

The matrix

e ¢ 0 0
g=1¢ -6 0 0
10 0 € €
0 0 é6 -6
transforms é to the form
1 0 A O
w_10 1 0 0
8714 0 1 0
0 0 0 1

(3.16)

(3.17)

By inspection it can be seen solution of the eigenproblem for é" yields

two degenerate eigenvalues (base vectors e, and e, being already

orthonormal) Solution of the eigenproblem for the pair e, e permits us

to define new orthonormal base vectors by multiplying those underlying é"

by the matrix

/ 1 0 1 0
= /210 1 0 1
¢=2 1 0 -1 0

0 -1 0 1
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Thus OIS = ~§ é is of the form

A A A A
6 | B -B B’ -B
IST|C ¢ —C -
D -D -D- D-
(3.19)
and from q = 6IS x, we derive
1 2 4 4
@)d' = ¢! @2)® = @3¢ = ¢ (@3)¢* =

)" = ¢¢ (45)a® =< @) =@ Ww)t=-a¢ (32

4. Generalized Jacobi vectors for AB3C systems.

Let my = m, mg = m’, me = m" and the total mass be M.
Assign to A the label (1), to particles B the labels (2), (3) and (4) and to
particle C the label (5). The metric tensor for the contravariant basis

{e1 ,ez,eg,e4,e5} is:

(4.1)

o8
1
’ oo o o B+
o o © Bl O
© o B~ o o
O Bl O © ©
g © © o o
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The source coordinates as before are chosen to be x12,x13,x14,x15.

The matrix A representing the transformation into the CM/relative

contravariant basis is:

-1 1 0 0 0
-1 0 1 0 0
k=11 0o o 1 o (4.2)
-1 0 0 0
m m° m m n"
I K I N %
The new metric tensor is é = A é Al
[ 1 1 1 ]
owoomoom 0
1 , 1 1
T T
o 1 1 , 1
g = m m I o 0 (4.3)
1 1 1 "
moomom A0
o 0o o o 1}
V4 li—
where p’ = g:;m and p" = —g—n%n—

In the relative label subspace, the contravariant Dbasis

s

{efl,e,z,e’3,e } is not orthonormal:
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~/ __~/ .._.~/ —_ /1/2
811 =899 =833 = H

&0y = 2
COS@oq = COSPoy = COSPg, = -Hf*_l—m— = cos¢
C0SPys = COSPgy = COSGy. = [(m+mrf1;?r:1+m“)}l/2 — cos(

(4.4)

(1 [/ COS ¢ [ COS ¢ 7

p’ cosé T 1’ cosé 0

é’ = |p’cosg  p’cosd T 7

n i ] u"
(4.5)

where 7 = (u’u")l/gcosg.

Orthonormalization procedures.
In order to conserve the symmetry of AB3, we may orthonormalize

the sub—basis {e'l,e’Q,e’?’} by either ES or IS procedure:

In either case the extension in relative label space is:

r 0 (4.6)

It
I
from——

where B” is the 3x3 matrix:
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ES IS

a b b ¢ o o«
B. = |b a b or B -8 0| (4.7)
b b a - =y 27

with:

L = M+ Jm){m’
SIM

b~ (m = [M)jm-
STM

Under this transformation the new metric tensor is g" = B g'Bt:

ES IS
1 0 0 A7 1 0 0 ¢
é,, _ 0 1 0 A or 0 1 0 o (4.8)
0 0 1 A 0 0 1 o
A A A p" ¢ 0 0 p"
where:
31/2
A= 2V

Either of the new bases could be orthonormalized by GS, ES, or IS
procedures yielding a total of six distinct orthonormal coordinate systems,
all of which should now be derivable by the reader. A priori, one cannot
say which of these would be best suited to a particular molecule or
application. Nevertheless, if , as in the previous example, one wishes to

maintain an orthonormal "local mode" description of the CH3 fragment,
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and if one is interested primarily in observables related to the CH3
fragment, then GS orthonormalization of the first of the above bases will |
be the favoured choice, the above basis being orthonormalized in the order
(1,2,3,4). Since the three first vectors are already orthonormalized, the GS

procedure does not affect them (integrity of fragment coordinates

maintained). We find:

(1 0 0 o0
0 1 0 0
Cos = 0 0 1 0 (4.9)
c ¢ ¢ d
where:
c:-[ mm" ]1/2 d:[ Mmm ]1/2
(m+m") 2 ¢ 3mm" (m+m" ) 2-}—?,mrn”
The overall transformation is the matrix 6 = &GSE:
a b b 0
- b a b 0
c(a+2b)  c(a+2b)  c(a+2b) d
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Appendix 1.

Positive square root of a circulant.

Let A be a matrix

a b b b
A = b a b b
b b a b

Then
1) A is positive iff a-b, a+(n-1)b > 0.
Suppose A is positive, then

2) The positive square root of A has the form

......................
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where

2 = 5lla+@-1)0] + (n-1)} (a-b)}
b* = H{{[a+(n-1)b] — {(a-b))

Fact 1: A € L([Rn,an), A is positive, then A has a unique positive square

root [2].

Definition: A circulant is defined as a matrix

..........................

Fact 21 A eM_(0)

1) A is a circulant iff A commutes with =

where
T = circ (0,1,0,0,0,0,0...)
2) If A is a circulant it can be diagonalized. All circulants are

diagonalized by a matrix X
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1w w2 S n—1
X=1|1 o w2)2 ............ ( 11—1)2
1

where w = ‘exp(2m/n).

3) A is a circulant

n n—l . k
det A =j£1[al +k£1(w]) 8y 1]
In our case
det A = (a—b)" . [a++(n-1)b]
1) The eigenvalues of A are (a~b), [a+(n—1)b] > 0.
ii) A = B2 [1,A] = 0. Thus
AT = A = (7r_1B7r)2 = B’
and  ©Br=B o [B] =
‘whence B is a circulant.
Then = X 'AX = (X 1BX)2
in which case B has the eigenvalues {(a-b), J(a+(n-1)b).
Denoting the eigenvalues of B by a column vector A = (,\1,....,\11),
we can write, since B is a circulant defined by n quantities a =

(a1,89...a)

A=Xa a:X_lA

where
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1 1 1 1
1M w
X1 Wh2 o
1 (wn—l)n—l wn—l
whence in our case where a = (a’,b’,b"......)
1
a2’ = p{{[a+(a-1)b] + (n-1){(a-b)}

b’ = £{{[a+(n-1)b] - {(a-b)}

Appendix 2.
/2 and /2

Let

o o
| SN—

Then from Appendix 1

& (3 3]

where
Ay =5l (a+b) + {(a-b)]
A_ = gl{(a+b) — | (a-b)]

With A=222_)2

DA AL =) /A, and

for the 2 x 2 case.

A= /A
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n_ —1/2 AL —A
0=g / :{_A+ A—]

where O is an orthonormalizing matrix, i.e. O g ot =1

Appendix 3:

Irreducible orthonormalization of a 2 x 2 matrix.

The eigenvalues of the matrix g are v = a = b. If we express the

eigenvalues as a matrix

r= [ %)

the corresponding eigenvectors are

r-gi2 [ 1]

and T = (¢ é ¢*. Orthonormalization of é is therefore achieved by a

matrix

(a+b)_1/2 (3J+b)_1/2

0=r"12¢-971/2 [(a_b)-uz a1/

which is of the form
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with

e=pEm 2 7= o)/

Appendix 4.

AB oCq model: positive square root of g" -1/ 2

Let A (é“) be of the form:

1 0 a a
0 1 a a
A = a a 1 0
a a 0 1

To evaluate the positive square root A_l/ 2, let us consider (in the

fashion of Appendix 1) :

AL/2 _ ptA—l/2p (A4.1)
where p diagonalizes the symmetric, positive definite matrix A:
pApt=A= diag(A ;A9 Ag,A )- (A4.2)
The determinant of A is factorized in the following way
|A] = (A-1)%(A-1-22)(\-1+2a) (A4.3)
The eigenvalues of A are
Ay = 1+2a Ay = 1-2a Ag=A, =1 (A4.4)
Thus
A2 = diag((r2a] Y2 [1oaa] H21,1) : (A4.5)

p is defined up to a 2—d. rotation of the subspace spanned by the

vectors corresponding to /\3 and A 4
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}3’1 is the eigenvector corresponding to )\1:
(p11>p12ap137p14)A = (1+2a)(p11,p12,p13,p14)
Therefore
Py = 5(LLL1)
Similarly,
22 = %(1,1)'—1)_—1)
Substitute in (A4.1) and use the orthogonality relations:
. . 2 2 -
for k=1,2,3,4: Py + Py = 1/2
for k#k-=1,2,3,4 PiP3ks + Pylay. = —1/2
Finally, the positive solution of A"l/ 2 s given by:

e« f v 7
foa 7 7
e % T 1 e f
T o1 B e |
where:
a= (1+2a)_1/2 + (1—23\,)_1/2 +2

B = (1+2a) /2 4 (1-2a)71/2 _ o
7= (1+22) /2 _ (120a)1/2 _ o

Acknowledgement:
Thanks is due to George Adel Aziz for the proof of Appendix 1.

Page 31

(A4.6)

(44.8)



References.

1. J.P.Leroy, R.Wallace, Chemical Physics, 111 (1987) 11-16.

2. "Functional Analysis", G.Bachman, L.Narici, Academic Press (1966).

Page 32



PART III

QUANTUM KINETIC ENERGY OPERATOR IN A

GENERAL NONINERTIAL REFERENCE FRAME



Form of the quantum kinetic energy operator for relative motion of a

group of particles in a general noninertial reference frame.

Abstract: A form is derived for the quantum kinetic energy operator for
relative_ motion of a group of particles in a general noninertial reference
frame. Rotational coordinates are integrated out leaving an expression in
terms of internal cartesian coordinates and rotational quantum numbers.
The operator reduces to standard forms for conventional choices of
reference frames (such as instantaneous principal axes of inertia) and
serves as a general starting point for internal curvilinear coordinates
describing large amplitude internal motion. ‘
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1. Introduction.

The reduction of the description of the motion of a quantum
N-body system in which large amplitude relative motion may occur
follows a fairly well defined pathway. The first step involves the
separation of the motion of the centre of mass, this leaving the relative
motion described by n = N-1 Jacobi vectors. Shortcomings in the original
definition of the Jacobi vectors (notably their lack of symmetry upon
exchange of identical particles) have recently been overcome !

One proceeds to describe the relative motion with some optimal set
of n generalized Jacobi vectors (GJV). At this point it is usual (at least
for small amplitude motion) to define a noninertial (body fixed) frame
which is in some way tied to the configuration of the Jacobi vectors. For
infinitesimal amplitudes of motion the Eckart frame is the conventional
choice. For large amplitude motion, on the other hand, the frames
employed appear to be those of Hirschfelder and WignerQ, and Curtiss,
Hirschfelder and Adler® (CHA). One of these is the instantaneous
principal axes of inertia frame which underlies tecent work on
hyperspherical polar coordinates® while the other (CHA frame) might be
referred to as a '"distinguished particle" frame in the sense that it is
directly tied to the configuration of a subset of two Jacobi vectors. Again,
as with the choice of the Jacobi vectors themselves, distinguished particle
frames may be such Phat Hamiltonian symmetry is not maximal, the
reason being that the frame is derived from. the Jacobi vectors by a
Gram—Schmidt orthogonalization process as opposed to a Symmetric

orthogonalization processl. The choice of CHA frame underlies recent
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work by one of the present authors® in which a Hamiltonian was derived
for arbitrary amplitude motion in a molecular context.

In situations with one or more large amplitude degrees of freedom
the term "body fixed frame" is something of a misnomer since the nuclear
configuration may bear no simple or obvious relationship to the
noninertial frame. Depending upon the system under study one might wish
to identify frames satisfying a variety of conditions. It is therefore of
considerable interest to derive the form of the Hamiltonian (really the KE
operator) in the general frame, that in specific frames being derivable
therefrom.

Any choice of noninertial frame defines three angular coordinates
(the three Euler angles), leaving a maximum of 3n-3 rotationally
invariant independent internal coordinates. Here we shall be content with
the transformation of the cartesian coordinates, momenta, and kinetic
energy operator from the inertial frame to the noninertial reference frame.
The resultant set of cartesian internal coordinates, momenta, etc., are
invariant to rotations of the frame and are valuable precursors to any
choice of curvilinear internal coordinates. _

Section 2 of the paper is devoted to a general definition of
noninertial reference frames. In Section 3 the transformation law for
angular and linear momentum operators is derived, this leading to a set of
matrices I(i) characterizing the frame. -The resultant KE operator is
obtained in Section 4 and, in the manner of CHA, is integrated over

rotational coordinates to a form dependent only upon internal coordinates

and rotational quantum numbers. Specific realizations and comparison to

standard frames is the subject of Section 5.
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The paper develops in parallel with the treatment by Curtiss,
Hirschfelder and Adler® but with the more general terminology of -

Biedenharn and Louckﬁ.

2.Reference IFrames

a). Rotation Matrices.

With respect to the inertial frame {?a} (lab.parallel frame (LPF)),
the cartesian coordinates of the generalized Jacobi vectors q(i) are given
by:

% = (d0).2,) (2.1)

Under a rotation &, the vector q(i) transforms into Fq(i). & is
represented in the basis {2 o) Dy the orthogonal matrix R such that the
most general orthogonal transformation in the physical space on the
3(N-1) cartesian coordinates qia is given by: |

=2 R, VY (e =123) (2.2)

The action of the matrix R may equally be viewed as an orthogonal

transformation of the LPF into a new frame (T o @=1,2,3) such that:
I,==3 RPN (2.3)
where R/\a _ (2 /\’?a) is the direction cosine of ?a with respect to 7 )\

The matrices R are conventionally parameterized by a set of Euler
angles 4 (s=1,2,3).

The new cartesian coordinates are obtained by inverting (2.2) taking
into account the orthogonality properties of R:

. _ \
y'%=(d@0),1) = 3R, q

(2.4)
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b) Noninertial frames: definition.

The new frame is in some way "attached" to the molecular
configuration if the ?a de:j)end upon some or all of the GJV q(i), the
precise form of attachment being determined by the specific linear
combination of the GJV involved in the frame construction :

T,= 2B i ak) (2.5)

Let {Zio(i)} be the set of the GJV used in the construction of the
"attached" frame and {q’(i)} be the set of the remaining vectors. The
frame is considered "global" if all the vectors q(i) define the frame, or
"local" if some subset define it.

The distinction between 'global" and '"local" frames can be
expressed mathematically in the following manner. Non-inertial frames
satisfy the relationship:

[ Mo Mo ﬁa] #(000) - (2.6)
aqll 8q12 8q13

for at least one « and all i=1,...,n in the case of a global frame or

for at least one & and a subset {ao(i)} of the i=1,...n in the case of a
locally defined frame. Condition (2.6) assures that the orientation of a
"global" frame depends on the instantaneous position of each particle in
the molecule.

To proceed with the construction of non-inertial frames, define the
Gram matrices of the sets of vectors {q(i)}, {ao(i)} and {q’(i)}

.respectively by G, G, and G” such that

Gy = (dD:d0) = 49" % 2.7)
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In terms of its components G is partitioned as follows: -

where C is a rectangular matrix linking the sets {ao) and (q°); its
dimension is n, x 7, where n_ is the number of GJV of the set {Eio) and
n is the number of GJV {q’(i)} not involved in the definition of the
non-inertial frame.

Since the new frame is orthonormal, B is a (3xno) dimensional
matrix. satisfying :

(?a,Yﬂ) = 50[,6’ (2.8)

Substitution of (2.5) into (2.8) leads to the fundamental relation
linking the matrix B to the matrix G,:
BG_B' = . (2.9)

This corresponds to a customary orthonormalization of 2 or 3 GJV
(i.e. for 3 or 4-body systems), since B is a square matrix (respectively 2x2
and 3x3). In the general case, the corresponding orthonormalization is best
approached by a two step process involving:

(1) a reduction A of the n, GJV into a preliminary set of 3

(nonorthogonal) vectors F,), (7=1,2,3):

F'r = EkAyka’o(k) (2.10)
followed by (2) an orthonormalization O:
T, = .53700[775*7 (2.11)
hence
Bk = 5,048 (2.12)
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The reduction A is represented by some prescribed (3xn o) matrix
whose elements Avk are invariant under any rotation of the frame. -
Actually, if &% is a collective rotation of the set {Eio}, by definition, the
set {ny} (actually a non-orthonormal attached frame) is invariant and:

—3 ) -
Aﬁyk[%o(l)"""%qo(n)] = Arﬂ{ﬁo(l))""qo(n)] (2'13)
According to the Weyl theorem7, every rotational invariant
depending on n_ vectors {ao(i)} is expressible in terms of the ng scalar
— oy . .
products (q,(1),a,(j)) = (Go)ij' The coefficients Afyk are therefore
functions of the n o(n o~1)/2 distinct elements of G,
A'yk = Ayk[(Go)ij] (2.14)
Since G is rotationally invariant, (G o)ij may be expresssed as well by
io_ja _ i
Znyo Yo~ so that Avk = A,yk(yo ).

Construction of the noninertial frame is reduced to an
orthonormalization O of the three 3—d vectors Fa which can be carried
out by any standard methodl. If GF denotes the Gram matrix of the
ve.actors F o 1€ (GF)aﬁ = (Fa,F ﬂ) which is a function of the components
yfﬂ,then, since O is such that OGFOt = I3, the choice of a particular
frame imposes three conditions on the components yéa. Conversely,
imposing three constraints on the cartesian components of n, GJV and
satisfying the above requirement defines uniquely a non—inertial frame
attached to the n  vectors ao(i).

The 3n o Totationally invariant coordinates yéa together with the
three constraints may be parameterized by 3n -3 internal coordinates gc”)
(z/:l,...,3no—3). The cartesian components of the remaining vectors with

respect to the frame {f a} are obtained by forming the scalar products:

y K= (@ W1, = BB LA 0.4,0)) = 5BCy,  (215)
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The set of 37 coordinates {y’ka) constitute a set of independent
internal coordinates (i.e., invariant under a rotation of the non—inertial °
frame (Appendix 2)) which, taken together with the set {g‘g), recover the
(3n-3) independent internal coordinates.

The separation of the rotational and internal degrees of freedom is
formally expressed by the relationship:

0 = 2Ry (0054 (2.16)

where R is now the rotation matrix describing the relative motion of the
non-inertial frame {f o) With respect to the LPF. The three parameters A

(external coordinates) are functions of the qé’\

involved in the definition
of the frame. The 3n cartesian coordinates are rotationally invariant and
their motion in configuration space is restricted by the imposition of three
constraints defining the new frame.

There exist of course many ways to define such non—inertial frames
depending upon the physical problem one has in mind. In any case, one
should expect the frame to reflect in some way the symmetry of the

system (for instance, invariance under permutation of identical

constituants).

3. Momentum Operators.

a) Angular momentum.

Let L be the total orbital angular momentum of the system; the

components L = (ﬁ,?a) are defined by:

o= [ o ) 11

where k=1,..,n and a,f,7 are cyclic permutations of 1,2,3.(c.p.)
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Define also component angular momenta, LZ and L ;, relative to the
sets {ao(i)} and {q’(i)}. Of course,
0 7z
L,= L, L, (2.18)
L° is the generator of the rotations of the vectors {Eio(i)} and thus
each ao(i) as well as each TQ are vector operators with respect to L°. It
follows (Appendix 1, A1.9) that:
o .
[La,?ﬁ] = 4(?ﬁx2a) (2.19)
e} . $
where R is parameterized by the angles 08 (functions of q;a
(Eio(i),?a)). Furthermore, each yéa is an invariant with respect to the
rotation described by R, hence:
o i
[La,yoﬁ] =0 (2.21)
Let us evaluate the derivatives appearing in the definition of LZ in
terms of the derivatives with repect to R A and yl(f’\ using the
transformation:
ia ig
q, = EﬂRaﬂyo (2.22)

The chain rule yields :

0 _y [BR,\;L} 3§Au + 1},\ [QXEA} a_jm (2.23)

io la la
aqo ALl aqo aqo )
Substitute (2.23) into (2.17) and use the derivation property for any
function F:
e R R R )
4, 8qi7 [qo 3qcl>7 1] ¥ (2.24)
therefore, -
o _ . o J ro kA 0 -
L° = —z{ Y LoR, ) el Y Lo 5K ]gk‘x} (2.25)
A, b DY o

Use the commutation relations (2.20) and (2.21) to get the
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. (¢]
expression for the component angular momentum L.

(@)

. . a ) . 9 96
LO[ = —< E)\[ Rﬂ/\ EF:),; R'Y/\ HRE :', a’,ﬂ,’)’ are c.p (‘.,.._,6)
This justifies the statement that the component angulir momentum
L is the generator of the rotations of the noninertial frame.

L& is evaluated by noting that the R/\# do not depend upon the

q’ ! a, therefore,

. k'g 0 k'y 0
L = —¢ [q Pl Ul ]
“ 12{:! dq 7 dq
=Y { — .
/\P/\(R,BpR'yz/ Rﬁwa] (A,1s,v are c.p)
where:
. k'g 0 k7 y
P = —< ':q & q
o= Al
Employing the properties of the orthogonal matrices, we finally

9 2.2
27 ] (227)

obtain:
L, = E R PS (2.28)
The LZ are the differential operators A, defined in Appendix 1 (Eq
Al.4). The set of operators {LZ} are the generators of the rotations of the
frame {f o> Wwhile the set {L&} generates the rotations of the

"complement" with respect to the inertial frame. One can evaluate the

components of the operators L° and T- with respect to the noninertial

frame:
O Ve — o r'd .
Ka = E)\R/\a([./\ + L/\) = Ka + Pa (2.29)
O 3 -
where Ka is:
w2 0 0
[¢] . .
=1 H

where ,0,7 are c.p. This expresses that the ath component of the total

angular momentum with respect to the noninertial frame is the sum of
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the ath component of the partial angular momentum KZ and the operator
P/, component along the noninertial frame of the generator of the -
rotations of the set {q’(i)} with respect to the inertial frame. Therefore,
P’ is to be identified as an internal angular momentum generating the

rotations of the set {qQ'(i)} with respect to the noninertial frame {?a}.

b) Linear momentum operators.

To obtain the hamiltonian for relative motion of a molecule whose
configuration is represented by the N—1 generalized Jacobi vectors q(i) and
in which the motions are referred to a noninertial frame, we seek to

transform the kinetic energy operator from inertial to noninertial frame:

T=-3) %) (31)

115
i, o aq

To achieve this transformation, the linear momentum operators Pi o

= —¢ ‘Qra are first transformed to the coordinates {R/\M(ﬁs)} and yi7.

dq
Let us rewrite Eq.(2.23) in the form:
L= YW + Y2 (3.2
ia — OR 57 2)
where:
R j
m=—fr ;=2 (5:3)
g ® 8q' %

Evaluation of the derivative [I].

J
[I] = (9_(1{& (?a,a 7) = (?avaqla,)
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One needs the derivative of the vector ?7 with respect to qm‘. From the

orthonormality relation (?a,fb) =6 op Ve deduce:

Therefore,

ot
By _
(?a’aqia) - (aqia?_fﬁ)
Taking @ = £ we conclude that the derivative of the base vector ?a’ with

respect to the ¢'7 is orthogonal to Ta:

7}
T —%)=0 (3.4)
dq

ot

Accordinglyﬁ, the vector v

may be expressed as the vector

product of T o with some vector Q; which depends upon the functional

form of ?a with respect to the qla:'

ot :
_Laqw =1 .0 (3.5)
Using this result, [I] becomes, after replacing 2 8 by ,\Rﬂ,\? It
iy _ (gi i
0 = (gt x 8 = @l T )= SRy @ 1)
_ iz ol
= A?YRM(QO[}U) = /\§7Rﬁ/\ﬂa0 (3.6)
where A,7,0 are c.p. of 1,2.3.

The 3x3 quantities iy 0, (i fixed) can be considered as elements of a
3x3 matrix L They are easily determined from eq.(3.5) and the property

of the triple product:

. 0
i _ g
0017 = ( W )¥§) (3.7)
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where 7,6,0 are c.p. of 1,2,3. In practical calculations, we will need the
obvious result:

P 5 )

Roy =~ ( g1 @ ’?o) (3.8)
With the definition of the frame given by eq.(2.41), we obtain the explicit
expression for the matrix elements Ql

=%

ok = dq
Qa'y k(

k
aqla q(k) + ak 3q1a/ ’?6)

TR A ity _ krp
Substituting q(k) = ¥q ?7_ =3y T

- aBak k5

ka oY +Bori Ra(S

(3.9)
Of course, if q(i) is not involved in the construction of the frame. the
matrix Q' is the null matrix.

Evaluation of the derivative [II].

- o
(] = %ﬁ% - ZE @01 = %}} 1)+ @0, L)

= R + (ﬁa,ﬁ’(l)x?,y)

(3.10)

This result can be expressed in terms of the matrix elements Qéw (using
d(k) expanded in the moving frame):

_ jAql _
(11} = 51JRa +/\§7y 2 0o (3.11)

where A,7,0 are c.p. Substitute [I] and [II} into (3.2) and evaluate the
summations.

oR .
S0= Y820 _ ¥ @iy.7).9 (3.12)
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With (3.6):

S.1 =
5] ﬁzv{m "

Q 8

By

aa] sr— (A0 are c.p.)

Introducing the vector K° defined in (2.30), it follows that

5,0 = <@} R

57 37

_ j75 _ 0 i
5= ) o= 1 [ oLz + ()T

357)

The summation over j kills all j#i in the first term, so that:

59 = 2,0, 25 + ] (80 1, YL

37
Defining the vector operator 7ri:
)
.= —¢% 1 -
| i oo 5 ia
we obtain:
S0 = {2y + Z@LA0x )]
= &) + @Lsdn- #)
_ i
= o{@2,) + @Lp)
where

Expanding P along {T o) gives:

S 0 A |
Pa= —ex{ v pniibide )
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where «,f,7 are c.p. The Pa are intrinsic operators (see_ appendix 2). Pa,
is the sum of two terms Pz and P& respectively the vortex? angular -
momentum (with respect to the frame) and the internal angular
momentum, generators of the rotations of the set {q/(i)} in the
non—inertial frame.

Combining [Sl] and [So] gives the expression for the linear

momentum Pi

Pig = ¢ (?cafa = (#,2,) + (@, R°+ P) (3.19)

or, in component form:
i o :
Pioy = EA{RW@A + &y + P,\)} (3.20)
where T, 16 the linear momentum conjugate to ihe internal cartesian

coordinate yl @.

_ .0

10

We now employ the Cartan decomposition™" of the matrices Q'

ol — 01 o}"i'
where 0i is orthogonal and d’i is a positive semi—definite symmetric
matrix. From the group properties of orthogonal matrices, the equation ¢
=R& 1 is solvable, hence there exists a unique matrix Ii such that:

ol = r (3.22)
with Ii = X iof i. It follows that we can express the elements Qciy,\ in the
form:

ol = EﬁRaﬁIiﬁ/\ (3.23)
where the matrices Ii are invariant under rotations of the frame, i.e. the
I[i} ) are functions of the internal coordinates only.

Substituting (3.23) into the linear momentum relation:
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Pig = SaRoglmg + E'rI}fvP'r] + DR 5 I KO (3.24)

:EﬁRaﬁ "?ﬁ+ EﬂRaﬂ 6’”: ZﬂRa’ﬂalﬂ (3.25)
In"the first term, the operator ‘;17 o acts only on internal coordinates (since
., and P o e intrinsic) while in the second term &, acts only on the
external coordinates. The operators K?y are identified with the operators
—5’7 defined in Appendix 1, (A1.6): Kf; = —5’7 . The action of K?y on the

rotation matrices give (A1.12):

op(Jd)* _ _1 (J) (J)*
KlDl\(/[K)* =-1h +(J,K)D1\(/LI)< T+l (J,K)D?/[,)K_l
on (J)* ¢ j R
KZDI\(,[K)* --£h EF(J),K)DM,K Tl (J,K)DM,K_I} (3.26)
o Iy J
KgDyx” = - KDy ¢
where
LK) = [(J = K)(J + K +1)]1/2 (3.27)
£\ ¥ :

4: The Kinetic Energy Operator.

To evaluate the kinetic operator given in eq.(2.1), we proceed
directly by squaring the P, and adding over i and « .
Squaring eq.(3.25):
2 2
(pia) = (ZﬁRaﬂdlﬁ) (4.1)
where
=1,+ =1L (K° + P (4.2
9= Tig T Eolpy Ky + P (4.2)
The operator 6{ ; possesses the property of a derivative since it is a

linear expression in linear and angular momenta:
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G(FQ) = (44F)G + F(446) BCE)
Eq.(4.1) becomes after summing over « and using the orthogonality -

of the elements R ﬂ

Sapig) = 5087 + R ol Glan) T Rl R, (44)
a, A
= () + (1)

Evaluation of expression (I).

The operators Tig and P p s well as the coefficients I(“yﬁ are all

invariant under rotations of the frame (see Appendix 2) :

Using these results, it is stralghtforward to calculate (I). The result is as

follows:
M=) 2
iA
i\

\ 0,2 0 -0
+) A (KD + ) B {Kg,K3}
v v
A o]
+ (C, + 9K
7 .
2
+ 3 AP+ ) B {P Py
v T
+ ) C.P.
T
1 g
+3 ST (4.6)
1,07

where {A,B} stands for AB + BA and
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2
A= E(W
i
E I'ra 0
Cv__z [mix /\7+ I/\'7 'M I+ Iaﬂ I a’r+ Iﬂapaﬂv

—2 MM+21MP +1/\7M(P + Pl (47)

Evaluation of the expression (II)

The Raﬁ all commute with P 'y and 7, (see Appendix 2):

[Wi)\’ROz | = [P'yRa"/] o

and the action of the angular momenta K‘; on the matrix elements R

(4.8)

afs
can be deduced from relations (3.26) by taking j=1. From the
orthogonality of the elements Raﬁ’ the following expression for (II) is

obtained:

. i o
(In) = ‘i?ﬁ{AiﬁWi g+ TA AL (K PV)} (4.9)
where:

A B= (1;5 - 1357) (B,7,6 are c.p) (4.10)

Combine now (I) and (II) and regroup the terms as follows:

1. Internal operators.

KE(int) =

Z [7ri/2\ + (94, ™, (linear momenta)
i,A
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+ Z A7(P7)2 + z B'y{Pa’Pﬁ} + E (07 + é-zi’BAwaﬂ/)P
v Y 0%
(vortex momenta)
+E I,i\f),{?ri ,\’P7} (coupling linear/vortex momenta)
1,7
(4.11)

2. Ixternal operators.

KE(ext) =

02 0 ,,0 . i ;-0 .
) A (K" + ) B {KoKp} + ) (C,, + cEi,BAiﬁIb7)K7 (4.12)
0 ¥ v

3. Coupling operators.

KE(coup) = ) .@71{‘; (4.13)

To obtain an internal kinetic energy operator, we apply the operator
KE to the components (wave functions) of the state vectors of “sharp"

angular momentum |(n)JM> in the representation |y1_a; 0> :

3
<y %0, (IM> = £, DI (95 ’I)<(yla) (4.14)
%k
The elements of the rotation matrices DI\(/IIi) are functions of the
external variables (()S) alone while the functions X1(1J) have internal

K
arguments y & only. Accordingly,

KE(ZyD I\(HJ{) X(J})() = EKDI\(/IK) KE(illt)Xr(lfl){

Sx [{I{E(ext) + KE(coup)}Dl\(ﬂ{)*} Xl(lf% (4.15)
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The action of the operators Kf’y is given by (3.26). Introduce the

operators 1‘& defined by:
1
Ty =30, (K)o, +1.(J,K)o]
Ty =351 LK)y —1 (J,K)o ] (4.16)
I‘3 =K

“where the operators o .. are defined by:

J J
ox{" = M (4.17)

Substituting into eq.(4.15), we obtain the following expression for the

kinetic energy acting on the wave function:
* (I IV ey J '
KE(S D) x| ,1)<) = £ D\ ) {KE(int) + KE'}XI(%I)( (4.18)

where now KE- is given by (using the commutativity of the operators

I‘a):

KE” =) {A'r(r'r)z T 2B L (Cy "Ei,ﬁAiﬁIiﬂV)F"r} (4.19)
7
o, (4.20)
7

After integration over all the rotational coordinates following the
procedure used by CHAB, the internal kinetic energy operator can be
partitioned in the following Way5:

KE = Tg+T; + T, (4.21)
where TO (given by eq.4.11) represents the s—state of the system, T,
(given by eq.4.19) mixing of rotational states alone and T, (given by

€q.4.20) represents coupling of internal motions with rotations.
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The removal of the rotational coordinates (being replaced by
rotational quantum numbers) from the rovib kinetic energy operator
given by eqgs.(4.11), (4.12) and (4.13) (that is the derivation of a kinetic
energy operator involving internal coordinates ah;ne) is obtained simply by

replacing the external operators KZ by the quantities I‘a.
5.Examples.
a) The Instantaneous Principal Axes of Inertia (PAI) Frame

This is a typical "global" noninertial frame in the sense that its
definition involves all GJV. The PAI frame is particularly suited to
systems described by a set of equivalent symmetric Jacobi vectorsl, since
it is invariant under permutation of identical particles.

The most natural way to define the PAI frame is as follows.
Consider the mass quadrupole M in the inertial frame:

M5 = B.q %P (5.1)
M is a real, positive definite, symmetric matrix hence can be diagonalized
by a real proper orthogonal matrix R:

R'MR = A = diag(A},Ag,As) (5.2)
where the /\7 denote the three eigenvalues (real, positive) of M.

The three eigenvectors 77 corresponding to each of the /\7 constitute
a set of orthonp_rmal vectors:

M3 ,=A 77 y ‘ (5.3)

In this new frame, the components of the q(i) are:

Y= @07, (5.4)
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and they satisfy:
Eiyiayi'/j = M(g%) =App= )‘aéaﬂ‘ (5.5)

The mafrix R in (5.2) is identified with the matrix R of eqn. (2.16)
defining the orientation of the noninertial frame with rsepect to tllétvLPF.

To complete the construction in terms of the reduction A and the
orthonormalization O of Section 2, express the mass quadrupole M as the
matrix product M = QtQ where Q is the n x 3 matrix of the components
qi @ Under a rotation, M transforms as follows

M- = R'MR.

It follows that M+ = BG2BY. The diagonalization of M is achieved by
taking B = A71Q" = OA. Therefore,

_ kv _ ka
A = R4 =y (5.6)
and, by ES orthonormalization
-1/2 -1
= = )\ 7
O = (Cp )’ﬂ/ 7 O (5.7)
so that the orthonorrr_lal vectors of the frame are:
-1 k
To= 2y By 2 dK) (5.8)

Each vector j,a is expressible as a linear combination of all the GJV
with rotation invariant coefficients so that the frame G a) constitutes a
noninertial frame rotating with the particles under a simultaneous rotation
of all particles. This justifies the denomination of "globai" frame.

The 3n rotationally invariant coordinates yia together with the
conditions (5.5) imposed by the definition of the frame may be
parameterized by some set of 3n—3 independent internal coordinates. The
most familiar way to do this consists of taking the three eigenvalues /\a'
as three of the internal coordinates.

Define now in the customary manner®:
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A0 /\—-1/2 S

- (5.9)

The three n—dimensional label space1 vectors z'% whose components
are 2% wrt the orthonormal label space basis {Bi} are orthonormal, that
is:

..
(z%,277) = 5aﬂ (5.10)
This imposes six conditions on the z1 which may be parameteuzed by

3n-6 angles ¢ X

lar ia
2% = 24,083, ) (5.11)
By setting Ly, = /\1 /2 , one obtains the transformation:
1o i
€% = 2R, (024 (5.12)

The inversion of (5.12) is given by:

— t — i
ja E’YR’YOIZ"‘Y i R'QR = dla,g(/\a)
By = {Zi(yla) } /
1a = i, —1 yla (5.13)
The axes _fa are finally expressed by:
-1« k
T = By Bz A)d(K) (5.14)

To ‘define a set of internal coordinates derived from the basic
rotational invariants (Gram matrix elements G, ), we need to -express
{u } and {zla} in terms of the G as well as the inverse transformation.
This transformation is far from bemg trivial and will be treated elsewhere.

The matrices I' can be obtained from the defining equations (3.7)

and (3.23) by using the principal axes unit vectors J o, given by (5.8) or
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(5.14). The result (in cartesian coordinates) is as follows:

( i3 i2 )
’ Ag=Aq A9
. i3 i1
- XLTQ_ - 0 T (5.15)
) i1 . )
A3 AgA

Substitute now the Iiyﬂ into eqs.(4.6) and (4.10) to obtain the coefficients
for the KE operator.
Observe that:
I Il ia if
iz Dalag = (0,Dp >13 vy
where Da = A B~ )\7. Set also S o= A 3 + /\7. Therefore the coefficients

for the KE operator are:

Aia =7 ia(_ng;__]lL)
B~
Aa = Sa/Da
Ba = Ca =0
Actually, the final result in cartesian coordinates is quite
cumbersome and, as such, not very useful. It is more convenient at this
point to express the various terms in more appropriate curvilinear internal
coordinates.
By using the internal coordinates given in eqs.(5.13), we recover the
usual rovib kinetic energy operattor8 or its vibrational counterpart

following the prescription discussed at the end of the section 4.
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b) Locally defined frames

As a second example, consider the case of two “distinguished"
vectors Q(i) which are linearly independent combinations from within a

subset of GJV:

40 = = Ay809 (i=1,2) (5.16)

The two wvectors Qi) can be transformed by some
orthonormalization procedure1 O into two unit orthogonal vectors 81 and
32. The vector product alxaz = 33 is uniquely defined and the set {d 04}
forms a non-inertial frame. The particular non—inertial frame one has in
mind translates into a particular choice of the reduction matrix A
together with a particular orthonormalization procedure.

For the seek of simplicity, we proceed with two GJV q(1) and g(2);
the generalization to linear combinations (5.16) can be deduced trivially
by extension.

Following the usual conventions of the theory of angular momentum,
we identify:

31403& 324033 83—>O§)

The frame {d o) 18 defined by:

dg = 04,d(1) + 0454(2)

d; = 0,44(1) + 0,54(2) (5.17)

dy = dgxd,
where the 2x2 matrix O = (Oai)dobeys the fundamental relation (2.9):
0GO" = 1,,
The matrices I' are obtained by employing eq.(3.9).

For i>2, all the I' are zero since:
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For i = 1, 2, we obtain the result:

i ad,

Qg = (az’““aqia ) = OgiR 9

ol - _d 68_3_)—(8 —L )=-0,R_, +0.R
o2 l’aqia - B’aqla - » 3ial 117a3
i ad,

Qa?) = _(82’6(1101 ) = —OliRa2

With (3.23), the matrices I' (i=1,2) become:

| 0 0y, 0
1 _
o= o, 0 -0 (5.18)
0 0, 0

From eq.(2.9), one can deduce that the matrix O is the inverse of

the matrix Y = (yla) of the cartesian components:

Page 26



13_21 11_23
y

Therefore, by setting § = y -y y™, (5.18) becomes

TS
oLl
0o 2 o
~ ‘ (5.19)
(0 1 o]
LR L
o yB 9

The coefficients A o Ba, Ca’ Ai o an(‘i the operator .@a can be evaluated
in terms of the cartesian coordinates yla.

The KE operator follows immediately from the transformation law into
internal coordinates ((V; v=1,2,3).

Consider the three following particular cases.

a) CHA Frame.

This corresponds to the frame obtained by a Gram-Schmidt
orthonormalization® of the two vectors d(1) and q(2). Here
0y, = Q7' Og9 =10
O = —cot&QIl 09 = sin 14 Q;l (5.20)
where Q, = ]8(1)!2 and cosf = (&(1),6(2))/Q1Q2. By substitution of
these expressions into the KE operator of the previous section, the

hamiltonian of reference (5) is recovered.
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b) Equivalent Symmetric (ES) Frames (planar case).

11

Impose the condition that y = = y23 (that is, O = 039)

11 2
1

corresponding to an ES orthonormalization™ in the plane of the vectors
d(i). The matrix O is symmetric and according to the fundamental
relation (2.9), O = G—l/ 2, where G is the Gram matrix of the vectors

q(i). The analytic expression of G"l/ 2 is:

0 = N T2 3 (5.21)
13 7

where:

= QI(QI + QQSiHO)

Ty = Qo(Qq + Qsind) (5.22)
T3 = Q1Q2C089_
N = [Qf + Q) + 2Q,Queind 2[Q,Qusing T (5.23)

It is interesting to notice that any frame can be generated from the
ES frame (or the CHA-frame) by an in-plane rotation R’. The matrix O
transforms into O-1:
RO =0 (5.24)
For instance, we can consider a frame such that 33 be along the
bisector of the vectors q(1) and q(2). This corresponds to a 7/4 in—plane

rotation R’ of the ES frame.
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¢) Equivalent Symmetric Frames (3 vectors) -

In this third example the ES orthonormalization of three vectors d()
is considered. The matrices I' are obtained in a way similar to that in the
previous section. The equivalent of eq.(5.18) for an arbitrary

orthonormalization O involving three vectors is:

_ 0 U35 Oy
1 —
o= oy, 0 0. (5.25)
“0o; 0y 0

Once expressed in catesian coordinates, one has:

r 129 21 32 23 31 21 )
0 y3 vy -y y3 y 3y3 - y33y
1 112132 3199 33.22 23 32
=g vy =y 0 y YT =Ty
21 3 23 31 2 23 33.22
Yy 3 _ y 3y y3 yoo—yTy 0
31 12 11 32 11 1 )
[ 0 y Uy T -y ﬁ y%y —y%m
2 111132 3112 33 12 13 32
" =5 vy =y 0 yooyte — 13y (5.26)
13 31 11 1332 3312
y 3y3 -y y33 y 3y -yy 0
[ 1221 11 .22 13 21 23 11 )
0 y oy -yt gy -y
3 1] 11922 21 12 13 292 23 12
=gy vy =y7y 0 vyt -y By
23 11 13 21 23 12 13 22
y% —y3y Yoy T -y y 0
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where ¢ is the determinant of the matrix Y:

13 11 12
y© oy oy
23 21 22
vo= | y® 2y (5.27)
33 31 32
VAR S

The ES frame is obtained by prescribing the following three conditions on

the cartesian coordinates:

11 .23 12 33 922 31 .
=y y o=y y=y (5.28)

y
As in the in—plane ES frame, "derived" frames may be of greater interest.
For instance, consider the normalized "polysector" of a(1), q(2) and a(3)
as one axis together with two linearly independent combinations of the
axes orthogonalized in some way with respect to the polysector. This
corresponds to a 3—d rotation of the ES bframe. Using eq.(5.24), one

deduces the new orthonormalization matrix O~, hence a new set of

matrices Ii and finally the KE operator in the new frame.
6. SUMMARY AND CONCLUSIONS

We have derived in this work a decomposition of the relative kinetic
energy operator for N particles described by N-1 generalized Jacobi
vectors into rotational (eq.4.12) and intrinsic (eq4.11) components . The
coupling between the two is expressed by eq.(4.13) or (4.20). The result is

expressed in cartesian coordinates with respect to an abritrary noninertial
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frame characterized by a set of 3x3 intrinsic matrices . The great
advantage of this method, besides simplicity, is that no approximations -
and no constraints are assumed. The KE operator can be employed in any
physical problem provided suitable choices have been made for the GJV ,

the noninertial frame and the set of curvilinear coordinates.
APPENDIX 1
ROTATION MATRICES, ANGULAR MOMENTUM OPERATORS

We review in this appendix some standard results of the theory of
angular momentum.6

Under a physical rotation £, the state | > transforms into a new
state |¢7> = &[|¢>] = %|¢¥> while conserving the physical properties of
_the system: % is called the rotation operator. The usual representations of
the rotation operator are obtained by choosing the standard bases | kIM>
(common eigenkets of the hamiltonian operator %, J2 and J3). With
respect to these bases, the components J o of the total angular momentum
operator are represented by the (2J+1)x(2J+1) matrices Jé‘]) acting in
the invariant subspaces & 3 (irreducible with respect to the rotation
operator).

The rotation operator (parameterized by the Euler angles 08) is

represented in the same irreducible (2J+1) dimensional spaces &y by the

rotation matrices D% ( 0,):

pUg) = exp(—&ﬂngJ))exp(—-c‘H2J§J))exp(—4'93J§J)) (AL1)
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with matrix elements:
DTy = <M |6 | 3M> (A1.2)
It is the matrix elements DI\(/IM) , as opposed to DI\SH\LI[) , that
transform properly as state wectors carrying angular momentum labels
(J,M), this result being true for each M’=J,... —J.
Differentiation of D(J)(ﬁs) (given in equation Al.1) with respect to

08 yields the following results:

3% p(g) = —3{p(g)
3% D(J)(()S) = —c’(—JgJ)sinﬂl + JéJ)cosﬂl)D(J)(HS) (A1.3)
3% pUg) = -2 eost;sind, + 3{sing sing,

+ 3{0eos8,)p0)(g)

One can invert these results to obtain the action (realization) of the

matrix operators J &J) on the matrices D(J) as differential operators )é :

pBigy = = ¢p@)
Ja D (HS) = /aD (08) (Al.4)
The differential operators fa are:
. 5 . _ 9 00301 9
T a a Sin&l a
A=< [31n01c0t92 —(%,I - cos:91 A - s, 603 ] (A1.5)
_ .0
%A =<7,

The standard action of the differential operators fo is given by:

Dl\(/I 1\)/[?‘9) [(J—M')(JiM'H)]l/?

S il M(a)
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7)% J)% |
ADid(8) = M () To) (AL.62)
}is the physical total angular momentum operator of the system -
differential operator acting in the space of the angular momentum wave
g g

*
functions DI\(/I('] ) ).

M
Let us introduce the operators ‘Qﬁ:
5% = EaRaﬁ(()s)ja (A1.6b)
The following commutation relations are easily obtained:
"[‘Ez’a’,?ﬁ] = —&‘5’7 (8,7 are cyclic) (A1.7)
(ol =0 (ap=123) (ALS)

With respect to an inertial frame {?a}, the total angular momentum _#is
expressed by J¢= 71,,% + 2’2 &+ 23 A- It is therefore correct that Pis
defined by & = ?1‘21 + ?2% + Tg% where {Ta} is a new frame
(non-inertial) obtained from {?a} by the rotation R(0). £, is the

o
component of the total angular momentum referred to the moving frame

{4}

The commutation relations of the ,%y with the Raﬂ(gs) are eagsily
found:

[£Rgl = epp.Ron (AL.9)
where {,6,7} are cyclic and A\=1,2,3.

The total angular momentum operator }( ts the generator of the
rotalions of the moving frame (_}’a) and may be identified with the total
angular momentum of a rigid body whose instantaneous orientation is

specified by the frame (?a) which is itself fized (no relative motion) in the
system defining the frame.
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In eq.(A1.7), that is the set of operators —7,, that satisfy the usual
commutation relations of angular momentum. This is a direct consequence
of the fact that the /4, do not commute with the rotated axes Yﬁ‘
Observe also that the ﬂ’a are invariants with repect to the rotations
generated by _Z a result that follows geometrically from the fact that the
rotations generated by }rotate both }and T o simultaneously, thereby
leaving their scalar product invariant.

In order to obtain the action of the ‘?a on the rotation matrices,

transpose eq.(Al.4) using the symmetric and antisymmetric properties of

(J).
Ja :
HONFO R OIEI0
t(J) = _;(J)
Jor/ = —J5
and
t(J J
pg-0,,0) = DI(0,,0,,8,)
Therefore,
pW(g)s(h = -2 W) (AL.10)
The operators ﬁa take now the explicit form:
— _ . . lij 0 < 0
9__ = % + &?2 = eXp(“‘é 03) [—1C0t92 693 -+ 602 -+ Sina; 801 jI
- _ . . i} 0 £ 0
= A B = exP(“%)[“lCOt“’z 50, ~ 90, * sind, 90 ]
. 0
Py = —¢ (A1.11)
3 39'?:

The action of the'-body—referred angular . momentum operators ‘?)a
are obtained in conplex conjugating (A1.10) and in taking the matrix

elements:
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2D 8) = (0 DY o)
2 D0 = (ERYERNE DN EINRTE (A1.12)
‘%DI\(/[“II\)/I(HS) = MDM?M(Q)

It is important to notice that it is P and P ', that_act as step—up

and step—down operators respectively.

- *
Physically, the wave functions DI\(/IJI\)/[ are the wave functions of a
solid body with center of mass fixed in space; ;é is the z—component of
the angular momentum referred to spacefixed axes, while 3 is the

component of the angular momentum referred to the noninertial z—axis.
APPENDIX 2.

This is an attempt to prove that all the linear momentum operator

components w = —¢ —aiE (in a non-inertial frame attached to the
dy

e . . JY* .

system) are intrinsic operators, i.e., that WiaDl\(/[K) (HS) = 0. (for any i)

where the set of Euler angles {()S} parameterize the rotation transforming
the inertial frame into the noninertial frame.
Let k_ label the particles entering into the definition of the frame

and k- be the remaining particles. Therefore, T o &€ intrinsic operators
e}

*
and 71'ko aDI\SII{Z) = 0. We want to prove that this is true for Mer g S

well.
We first show that, for any k-, M- o COmmutes with a particular

L?\, i.e.,that T is invariant under any rotation along the axis of
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ko

quantization T o An analogous proof follows for y and consequently for

the Pé{-

Since P- o is invariant under any rotation of the frame, we have:

e}
[LooPy gl =0 (A2.1)
P g is given by (see footnote): -

Using the property of commutators:
[A,BC] = [A,B]C + B[A,C] (A2.3)
and the fact that the Ra,b’ are vector operators with respect to L°:
[LaRgl =GRy (@87 are cp)) (A2.4)
we deduce that:
.k’
Similarly, we have:
k-
SR Lol = 0P =0 (A2.6)
and
@]

Solving the system of three equations (5,6,7) in the three unknowns
[La,wk 4] gives the solution:

[Lq @k Al = ‘-{R/\uﬁk’zx— Ry b (A2.8)
where A,p,v are c.p.

This means that Moy are not invariant under an arbitrary rotation
of the non-inertial frame. Consider now the rotations ;lzout ?af’ axis of
quantization, i.e., rotations of the plane {Yﬂ,f,r}. The rotation matrix
elements appearing in (8) are zero and [Lz,wk, A=0

Consider now the action of the commutator [LZ,?Tk, \] on the
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(J)*.
Dk’

o (J)* _ on (J)*
LomeaPyk” = Mol Pk

?

In particular for L

0 (J)* _ (J)*
Lyme Puk” = Mme \ Dy
*
Therefore, DI\(/Hi) are eigenfunctions of Ter

() _ yp(I)F
M APMKT = 2Dyk
This is true for any i, in particular for i = k_, we have:
X

(JI)* _
T APMi” =0
Since [Wko)\’ﬁk’/\] = 0, we have:

(J)* _ (J)* _
T A aPMK” = AT APk = 0

(JI)* _
~and Wk’ADMK = 0.

In particular, for J=1, one deduces that:

Mealag = 0
The same argument can be used for the operators P&

NOTE:
9 = .5 &;; 9 (summation over all j)
3qK'a’ J"\Bq Y 5yJX
But
yj/\ =S R qu
ppA
so that:

iA 5 .
oyt _ in
PR3 aqE'v{szpf\q }

B b ip
- ZpRpA (fiﬁ_"r

. . k-
since the Rp ) are independent of the q 7 (Rp y=2

(A2.13)

(A2.14)

(N.1)

ko
B q o
k Bk a7
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=> - R _\6.,,
a% v YA ik ,
=> — = . R -
8q Y AT B R
:>‘pk”)’ = E/\R”)’/\Wk’/\ (NQ)

Compare the inverse transformation of (N.1) with (N.2) => the
cartesian components transform in the same way as the linear momenta

for the q(k’). This is true also for the internal angular momenta:

L, = ZyRoaP5 (N.3)
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The quantum kinetic energy operator for a group of particles
in terms of scalar basic rotational invariant coordinates
derived from a generalized Jacobi vectors (GJV) description.

L. Frames derived from two GJV.

Abstract: Previous work? defining the quantum kinetic energy operator for
relative motion of a group of particles in terms of cartesian components of
generalized Jacobi vectors (GJV) is logically extended. The first such
cxiension examines alternate definitions of the noninertial reference frame
which follow from the minimum specification by two GJV, the second
invokes the simplest scalar internal coordinates which are the basic
rotational invariants of the GJV. KE operators are explicitly evaluated
and compared to assess the relative value (in terms of separability) of

alternate approaches.
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1.Introduction.

In a previous paperl, the quantum kinetic energy operator for
relative motion of a system of N particles described by N-1 "generalized
Jacobi vectors"3 (GJV) was decomposed into rotational and intrinsic
components. The resulting KE operator was expressed in terms of
cartesian components with respect to a noninertial frame cha,racterized by
a set of n intrinsic (3x3) matrices Ii, 7 being the number of Jacobi vectors
involved in the construction of the noninertial frame.

The present study applies the foregoing general theory to systems of
N particles described by local noninertial frames tied to the mstantaneous
configuration of two GJVs. The kinetic energy operator is re—expressed in
terms of the "basic rotational invariant" coordinates (BRI) of the N-1
Jacobi vectors (lengths of GJV and angles between them). These
coordinates constitute precursors for any set of independent coordinates
since any internal coordinate is expressible as a polynomial of the BRI%.
Unfortunately, for N > 4, they are not independent and a further step
must be taken to obtain an appropriate parameterization.

Section 2 reviews the concept of noninertial frames and presénts
examples for typical 2GJV frames. The matrices Ii are. evaluated in
section 3. In section 4, the kinetic energy operator derived in ref.(1) is
re—expressed in simplified form. In local two and three GJV frames the
three components P?y of the vortex angular momentum cancel. This is
expected since PO is an angular momentum acting in label space and we
are currently considering a fixed Jacobi vectors description. Section 5 is

devoted to the expression of the KE operator in terms of the BRI
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coordinates and their conjugate momenta for typical frames constructed
independently of the lengths of the Jacobi vectors (norm independent -
frames). In section 6, the KE operator is derived for the norm dependent
equivalent symmetric frame and for the principal axes of inertia frame.
One result is to demonstrate the invariance of the intrinsic part of the 3
body hamiltonian to alternate choices of noninertial frame ie., the
projection of the hamiltonian on the sub—manifold (S=0;L=0) is
independent of the way the frame is defined. The hamiltonian for the
general N-body system behaves differently: whereas the intrinsic
hamiltonian is invariant to the choice of alternate global frames as
demonstrated by H.M. Picketts, it does differ from that for locally defined
frames (which in turn differ from one another). Finally, in section 7,
detailed application to 3-body AB2 and 4-body (ABQ)X systems is carried
out for different internal curvilinear coordinates. In particular the coupling
terms betweén the internal coordinates are discussed in regard to the

choice of the rotating frame used in the description.
2. Non-inertial frames.

Generalized Jacobi Vectors (GJV) were recently described? by the
present authors. They constitute an important intermediate step in the
derivation of a hamiltonian for intrinsic (vibrational) motion since the
relative kinetic energy operator is diagonal when expressed in cartesian
components of the GJV. The tra,nsform;z\,tion of (non-orthogonal)
interparticle vectors into (orthonormal) GJV is actually generated by an

orthonormalization O in label spacez. As a result, the Gram matrix G(r)
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of the intérpa,rticle vectors transforms into the Gram matrix G(q) of_the
GJV according to:

G(q) = O G(r) O (2.1)
where the matrix elements are given by:

Gla); = (a },q) Q;Q;cos8;. (2.2)
Q; is the length of the vector qi and 0ij is the angle between vectors Eii
and Zij with the convention that # is measured positive on going from Zii
to aj' The n = N-1 quantities Q; together with the I—l%l_—ll different
quantities Qincosﬁij are referred to as the Basic Rotational Invariants
(BRI). For n > 3, they are not independent since the rank of the
determinant of G is 3.

Once the configuration has been expressed in terms of n GJV, the

relative kinetic energy operator is "diagonal":

1 2
T ;=5 X p (2.3)
rel — 2 k. a ka
where Py = —4‘531{—0—[ is the linear momentum operator conjugate to the

ko

cartesian component q — of the GJV ak with respect to the lab. parallel

base vector 7 o e
= @,2,) (2.4)

The inertial LPF (lab. parallel frame) {7 } is obtained from the LFF
(lab. fixed frame) by translatlon of the latter accompanying restriction of
the label space to the relative label space.

Under a rotation (represented by the matrix R), the LPF transforms
into a new frame (?a) such that:

1,==3 \Byoly (2.5)

where R)\ o is the direction cosine of ?a with respect to ?a‘ The new

. -3 .
components of the Jacobi vector q; are given by:
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@1, = ¥'* = o)R, .o 26)

The new frame is in some way "attached" to the molecular -
configuration if the ?a depend upon some or all of the GJV, the precise
form of attachment being determined by the specific linear combination of
the GJV involved in the frame construction.

Formally, the construction is achieved in two steps. Let {Eiﬁ } be the
set of n  Jacobi vectors involved in the definition of the frame. For
n_ = n, the frame is global, otherwise, it is local.

1. Define three independent linear combinations F A\ of the vectors
ap:

F y = DA /\ka’ﬁ (2.7)
where A is a 3xn_ matrix whose elements are some prescribed (rotational
invariant) functions of the qia. The Gram matrix G(F) is given by:

G(F) = A G(¢®) A" (2.8)

2. Orthonormalize the vectors F ) In one of the standard Ways2 (a

review of these is contained in appendix I):

Tﬂ =5 /\Ou/\f«*/\ (2.9)
The overall transformation is represented by the 3xn_ matrix B = OA
whose rotationally invariant elements B uk are functions of the cartesian
coordinates qia. Equation (2.9) becomes:

?ﬂ = szﬂkziﬁ (2.10)
On account of orthonormality of the frame, matrix B obeys the
fundamental relation:

B G(q°) B' = I, (2.11)
The equations defined by (2.11) are not independent; there exist three

arbitrary relations among the elements Bﬂk which uniquely define the
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frame.

. — . . . .
The Jacobi vectors qﬁ are expressible in a unique way in terms of -

the base vectors ?u:

-5 ky
U=, 1,
Forming the scalar product of equation (2.10) with ?M (and employing

(2.12)

(2.12)) the following matrix equation is obtained:

BY =13 (2.13)
where Y, is the n_x3 matrix of the components ylo('” . From the uniqueness
of the expansion (2.12), it follows that Y is the unique pseudo-inverse of
the matrix B:

Y = B (2.14)

The three relations among the elements of B become three
conditions on the cartesian components yl(fﬂ; that is the set of 3n
dependent variables can be parameterized by 3n o3 Independent internal
parameters (curvilinear cobrdinates) CU.

Alternatively, form the scalar product of equation (2.10) with 2a to
obtain the matrix equation:

R =B Q (2.15)
where R is the orthogohal maftrix whose elements are the direction cosines
of the fp, with respect to the 2& hence the matrix representing the
rotation transforming the inertial frame into the noninertial frame defined
uniquely by B. Q, is the n _x3 matrix of the components of the Eik in the
inertial frame. It follows (dot equation 2.12 with 2 a) that the separation

of the variables is formally expressed by:

Q, = Y, (¢"RY(4,) (2.16)
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where ¢S are the three Euler angles parameterizing the orthogonal matrix
R.

It is worthwhile mentioning that the same frame can be generated
by different procedures: the matrix B can be expressed as different
products OA. Let A and A’ be two independent linear combinations.
There exists a (3x3) non singular matrix T such that A’ = T A. It
follows that B can be expressed as O‘A’ where O = T—l. In particular,
provided an appropriate choice for A is made, any frame can be
constructed using two  vectors F)\ and a two dimensional
orthonormalization, the third vector being uniquely defined by their vector
product.

Corresponding to the above, the same frame can be interpreted
either as:

(1) derived from a fixed set of Jacobi vectors (the matrix A in equation.
(2.7) is constant)

(2) derived from varying Jacobi vectors (the matrix A has elements which
are functions of yia).

In the former case, the BRI coordinates are the natural choice for
the internal coordinates. In the latter case, it is usﬁa,l to take as internal
coordinates the principal moments of inertia together with the parameters
of the label rotation matrix. The angular hyperspherical coordinates6 are
typical examples of label internal coordinates. Formally, the matrix B of
equation (2.10) defines in label space a set of three linearly independent

vectors z -
o

—
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The Gram matrix (3x3) of the label vectors 2 o 18
G(z) = BB! = 41 (2.18)
that is the inverse of the mass quadrupole of the Jacobi vectors defining
the frame. The six independent parameters of G(z) are the inverses of the
elements of the inertia tensor and they may be taken as internal
coordinates together with some angles defining the orientation of {Za}

with respect to the basis {Ek}‘

3. Description of N body systems with non inertial frames defined

by a triatomic fragment.

In accordance with standard convention, the axis of quantization is
identified with ?3 (z—axis) in the plane of the triatomic fragment. Axis ?1
(x—axis) is defined to lie in the sarﬁe plane, therefore ?2 is uniquely
defined by the vector product ?3 x ?1 and is perpendicular to the plane of

the fragment.
BRI Coordinates.
In any (2GJV) noninertial frame (with the above conventions), the
BRI coordinates of the Jacobi vectors ?1'1 and 21’2 are expressed in terms of

their cartesian components (yla) by the relations:

Q; = {'1? + (1312
Qy = {(¥*H? + (2212 (3.1)
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11.21 13.23
'0=cos_1{Ly tyy }
1@

where ¢ is taken positive on going from d(1) to q(2).

The BRI coordinates of the remaining Jacobi vectors Eik are:

Qf = (2,5 9B/
y ooy ka (3.2)

Q70; |

Let Y be the (2x2) matrix of the cartesian components (v'4:

-1 Ea/
f)jk = C0S {

13 11
y y
Y - (3.3)
2 2
y 3 y 1

Let 6 be the determinant of Y:

1 .
§ = yloy?l _ 1128 _ Q;Qysind (3.4)

The noninertial frame is defined by:
Iy = Bgd(1) + B4,4(2)
. —f B =3 ~
1= 11Q(1) + BIQQ(Z) (3.5)
fy = Iy
Since B = Y—l, we obtain

Ty = 3 v - y'5(2)

1) = 5740 + y'%)

The cartesian components can be expressed as:
i =, _
y© = (@@, = Qosr, (3.7)

where cos/\_i o 18 the direction cosine of q(i) with respect to T o Let A

(3.6)

13 ~
¢ and /\23 = (’. The cartesian components in terms of the BRI

coordinates and the independent parameter ¢ (or ¢’) are:
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y13 = Qqcos( y23 = Qqc0s(”

y' = -Qsing y* = ~Qusing’ &
where

¢ =¢—0 ¢ = ¢QQp0) (3.9)
The three relations among the cartesian coordinates yia become

yP=0 5 =0 ; 10 =0 (3.10)

Frames for which ¢ = ((6) will be referred to as "Norm independent

frames" . For example, ( = 0 is the CHA frame, ¢ = /2 is the bisector

frame, ¢ = ’26" - fzr is the norm independent E.S. frame. In the general case

the parameter { depends upon the three BRI coordinates. For instance,

the E.S. frame is defined by imposing the condition y23 = y11 on the

cartesian coordinates
Q1 -+ Q2sin9 9 9 .
cos( = 5172 (D—I— = Ql + Q2 + 2Q1Q231n6) (3.11)
¥ ,

Remark:

One can define the parametric family of frames by setting ¢ = k# in
order to construct the axis of quantization "somewhere" between q(1) and
d(2). This procedure can be useful for systems where the two GJV do not
represent equivalent fictitious particles; varying k from —1 to 1, all the

norm independent frames are generated.

Linear Momenta and Vortex Momentum.

The linear momenta T, 2T€ given by:
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% 9 90 o
g = dl ayia oQ 6yla a0 } (3.12)
_ te 4 1 v %os0 yi%, 5
*'Z{y‘anﬁQisme[ op o l-m)
J cos( 0
Ty = z{ smCEQI-{- ! W}

cos(’ 8} (3.13)
30 4

The Vortex angular momentum P; is zero: this can be seen by
substituting (3.8) and (3.13) into P = Bi(y"r, - yilmy) with =1,
This is not surprizing since P; is a label space angular momentum, hence
generator of label rotations keeping invariant the mass quadrupole. Since
the set of GJV is fixed in label space, Pg has to be zero.

The transformation of the linear momenta from the inertial (pia') to
the noninertial frame ( '/Tia) was evaluated in reference 1

Pig = SR 545 (3.14)

where 6{ 8 is the operator:

with the notation of reference 1 and by taking advantage of P?y = 0 for

r=1,2,3.
Matrices Ii.

The matrix elements of Q! are given (ref.1, eqn.3.9) by:
i i
Qa)\ = 2. p pw[ByJ + RauBm (3.16)
When acting on an intrinsic function f, K7 f = 0. If f depends only upon
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the Jacobi vectors defining the frame, P;y f = 0. Therefore, the result of
the action of the linear momenta, D;, On an intrinsic function reduces to:

In particular, the coefficients BLj appearing in equation (3.15) are
intrinsic functions (since functions of the BRI of the frame). By
substituting this result in (3.15) and by identifying with equation (3.23) of
reference 1, an explicit expression for the matrix elements I 25'\ is obtained:

S _
I,B,\ = z[Ejy ﬁiﬁByj zBl/i&ﬂﬁ} (3.18)

For a (2GJV) frame defined by the parameter ((Ql,Qz,ﬂ), the
matrices I' are obtained by substitution of (3.8) and (3.13) into (3.18).
The results are:

I1 _ __sin(” . I2 _ sin

21 — 1sin 21 QQSinP

I1 _ cos(” . I2 _ __Cos
23 15in 23 T QQSinZ?

1 . lij COS 0

I}, = sin¢ EQf + QTQ (% -1) (3.19)
- 1 0 sin J

I3 = —cos¢ ZKJ% +——CS;§ (-5% - 1)

2 . 0 cos¢’ d

112 = sin(’ mﬁ - 6%

2 2
2 _ , 0 cos¢’ 0
%2-—am§ 3@5— - 5%
2 1

or in more concise form:
1

g = m¢ s Ig = =1y (3.20)
1 _ , . 12
g ==m3¢" 5 I3p = mys(
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4. Kinetic Energy Operator.

The rovib hamiltonian of an N-body system in cartesian coordinates
for an arbitrary non-inertial frame has been partitioned1 as follows:

B ovib = T nt T Tipg + T ng TV T + Tcoup (4.1)

where

M T(i)nt are the internal operators related to Jacobi vectors defining the

frame:

Linear momenta. Vortexr angular momenta.

| y [”ioi Hidy gm ) y [MW(P?/)Q + M, g(Po,PG} + C_PY)
i, 04
Coupling terms between internal operators.
) 1 {7r1 AP °}
1s 1A
(I1) T nt are the internal operators related to the remaining Jacobi

vectors ql'{ :

Linear momenta. Internal angular momenta.

2 7 2 ’ 7 sz
| ) . + y M, (P2 + M o(PL PG} + C_P]
1, a ' v

(1) T.C ¢ are the coupling terms between the internal operators

2% M P 22M P°pP P 2% d P-
y 77P77+ ﬂ( B (5‘Pa+7d77

(IV) V is the potential energy operator:

V(y'% i=1,2,.,N-Lo=1,23;F, (¥'%) = 0;3=1,2,3)
(V) T, are the external operators (angular momenta):

(o)
K° K

Z[M77(1<7) + MK Kt + C K]

7
(viy T coup 3r€ the coupling terms between internal and external
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operators:
I K°
T
y

The various operators appearing in these expressions are defined as

follows:

T, 18 the linear momentum conjugate to the cartesian component
% of the Jacobi vectors with respect to the noninertial frame.
The angular momentum components P7 are partitioned in the

following manner:

Pa = z (ylo'Bﬁio - y o7 ) + E (yl ﬁﬂl"}’ ~ yl 7”1’,6) (4.2)
Yo
o 4
- P° + P (4.3)

where the PZ are the vortex angular momentum components (generators
of label space rotations leaving the mass quadrupole invariant) and Pé’ are
the components of the internal angular momentum describing the internal
rotations of the remaining_ Jacobi vectors with respect to the noninertial

frame.

° (Eo,?a) are the components along Ta of the angular

momentum of the Jacobi vectors defining the frame; they are the
generators of the rotations of the noninertial frame with respect to the

LPF.

7, = MWP7 + M ﬁ(P + Py +d, (4.4)
1
d, 2 (Ipom i ot Iﬂvﬂio 9 (4.5)
1

The coefficients Maﬁ and C7 are defined as:
M = 2(m)Yr) . (i=1,2) (4.6)
It can be shown (using equations (2.10) and (2.18)) that M is
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actually the inverse of the tenmsor of inertia 7 of the Jacobi vectors E;’E
with respect to the noninertial frame. The mass quadrupole 4 and Jare -
related by the relation :

J= TrMls— M (4.7)

The coefficients C are given by:

't
v 2 {1/\I/\7+ I/\'y 7)\7+ ZA1/\1/\ * Iaﬂpﬁ a/'y+ Iﬁa a,B7

i\

C

(4.8)

For a frame defined by two GJV, this general expression simplifies
since:
(a) PZ = 0 for any 0=1,2,3 (since the frame is constructed with a fixed
set of Jacobi vectors)
(b) The matrix elements My = M,, and My = My, are zero.
(c) C, = Cy=0

=
_ i . i
Co = ZalmyIig + 85,1, (4.9)
(@ 4 = d5 = 0
_ i
dy = %) Lom) (4.10)

After integrating over all the rotations, the KE operator is expressed

in terms of the cartesian coordinates and the rotational quantum numbers:

O 7 e o Y

KE—T t+V +T1nt+T1r+T1c+Trot+Tc+Tc
(4.11)

where

2 9 9 9
(a) my + Mg+ Moy + my3
(0) qA 1y + Apgmyg + Ay Ty + Agaro.]

are the terms related to the linear momenta of the Jacobi vectors defining
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the frame.

By employing (3.8) and (3.13):

2
A 9
)
— ~___8“ — 1 - B g
6Q22 TTQ . 49] BQE
1 1, & 1 1 0
) [Q12 i QQQ} Pra R R
where ( §= [g%], and G = [6(3_?]
1 o 1 g 2 9§ 1 9
(b) = qQ Cp ;T Q $g Qe Q& Q, 3,
1 L 90 (1 L 9
+ ¢ - $1] 57— =5 + —5]cot
R A A e
Finally
o _ 3 2 4
int — 3Q12 Ql dQl
_ 2 9
3Q22 Qy Qg
& 9
—_[ 1 + 1 1 [ + cot (4:12)

hence, T?nt is independent of the choice of the frame.

V. is the Centrifugal potential term obtained from T, ot after
integration over the rotations:
Vg = 5(M;; + My)[L{L+1) - 87 + M, 52 (4.13)
Of course V ¢ 18 zero for the rotational ground state (S=0;L=0)
T, nt are the terms related to the linear momenta of the remaining
Jacobi vectors:
)2

Tine = "Z,)a(wi’a

int i (4.14)

where the summation is over i’ = 3,.,nand ¢ =1,23.
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Internal rotation terms:

— / 2 s 7z ’ / s
Tir = E7M77(P7) + M13{P1,P 3} + CQP2 + 28(M33P3+M13P1)
(4.15)
Internal couplings:
e = 2d5P2 (4.16)
The pure rotation terms T are expressed in terms of

rot
step—up/step—down operators o . and the rotational quantum numbers:

2
14
_ 2= 2
Trop = My~ Myglo o My — Myl
7 i
+ £ [SMs + 5 Colo, + £[SM53 — 5 Colo_ (4.17)

The internal-external coupling terms TC oup are:
T, = ot oo, =<l dyo_ (4.18)

that is the coupling terms between the operators o, and the operators
associated with the internal coordinates relative to the Jacobi vectors
defining the frame.

T, = £+[M11Pi+M13P§+ <M, é]a+ + Z_[M11P1+M13Pé— ‘M
(4.19)

99P5lo_

represents the coupling terms between the o, and the internal angular

momenta P&.

The coefficients Maﬂ and C2 are easily calculated in terms of the

parameter ¢ and the BRI coordinates:

M, = 51y, + (1) (4.20)
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that is

_ 1 [sin®C’ | sin%¢
My = 7t =g
sin“ @ Ql Q2
2 2 1 1,,2 1
Mog =7+ G + 5‘2‘ + 5“’2‘“9 o2 (L ~2¢,
1 2 1
_ 1 co szg’ co SZC
Mgg = — 7t g
sin“§ Ql“ Q2
The coefficient, M13 is given by:
_ i .
Myg = Zil5;log (4.21)
_ 1 sin ¢ “cos¢’ |, sin(cos(
) g T D)
sin“4 Ql Q2
Since P; = 0, the coefficient 02 is evaluated by using (3.20):
_ 1 1 2 2
Co = mylig + myglgy + Ty lYy + my3lsy
el 1 1.1 2 2 2 2
+ gl = Toylge + Loaliy — I 5]
that is
_ Ao cotéd

The operator d, is given by:

1 1 9 9
do = Ijomyy + I3omg + I)ymy; + I35myg
that is
3 9 1 1 ] 1 8
d, = z{(, F oo + g+ ol - L } (4.23)
9 19q; " e, le Q7 050 Q, 0

The state (S=0;L=0) corresponds to the terms T(i)nt + T + Ty
+ T, o Where T(i) nt is invariant under change of the noninertial frame (ie.,
rotations (parameterized) by the angle w(Q;,Q,,06) about T,). The
behaviour of the remaining terms under a change of frame will be carried
out in the next sections by means of examples.

All that is needed in order to obtain an explicit expression for the
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KE operator in any 2GJV frame are the coefficients M of and 02 and

the operator d2.
3—Body Fragment Hamiltonian.

For 3-body systems, the KE operator reduces to the sum:

(KE)g = T, + V. + Trot + To (4.24)

3 int

where T(i)nt is the KE operator for the state (S=0;L=0). V. will not in
general be separable into terms depending upon the BRI coordinates as is
the case for the CHA frameg. Actually, the separability depends upon the
choice of the non-inertial frame as well as the choice of curvilinear
coordinates derived from the BRI (see examples below). In any case, VC

can be added to the source potential V and the separability of the

effective potential Ve =V +V o can be treated "globally":

Vi = V; + V5 + Vg + Vg (4.25)
The 3-body hamiltonian becomes:
2
0 2 0
- - +V
0t Gy "I
2
0 2 0
- - +V
3Q22 Q, 6Q2 2
1 1, & i )
— =5+ 5l =5 + cotb—g + Vil (4.26)
Ql Q2 a6
where
, 1 141
V0 = [———2 + —] Vy .. (4.27)
Q Q
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N—Body systems described by a (2GJV) frame.-

To apply a (2GJV) frame to N-body systems, terms T,int’ T,
Ti o and Té “are evaluated by employing the transformation of cartesian
components into BRI of the remaining Jacobi vectors:
= Qk,cosg‘k,a (k- = 3,...,n) (4.28)

where Ck’a 1s the angle between Tq’k, and ?a. The angles Ck’af are not

k/
y 184

independent since they obey the usual direction cosines relations:
% cos¢y, cos., = cos ,., (k’)i = 3,...,n)

a ke ki (4.29)
Eacosgk,acos(ia = cos(;’k,i (k= 3,..n; 1 = 1,2)

7

The linear momenta Mer o conjugate to yk @ are given by:

. d 1 a )
Tk,a—-—Z{COSCk,aavk-:'l‘qk—,[Egrk,ng—,{] } (430)
where the summation is over all the indices ¢ # k’ and

re COS&k’ZCOSCk'a - cosg‘m
k{— sin&k,g

(4.31)

The internal angular momentum components P ;, are obtained by
substitution of (4.28) and (4.30) into (4.3).

The problem reduces to that of finding an appropriate set of
independent angles which are functions of the 0k, ¢ and adapted to the
specific problem in hand. For example, a 4-body molecule can be
described by choosing the azimuthal and polar angles of the vector 61’3
with respect to the noninertial frame together with Qg (see Figure I). The
cartesian components are expressed in terms of these coordinates by:

y31 = Q3sin¢ cosf”
y>3 = Qgsing sing” (4.32)
y°2 = Qgeosg
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The linear momenta are:

. , 0 sind- 0 cospcosb” g
g, = ~i[singcosd 5Q; " Ugsing 30 + Q, %]

o e g D cosfs 9 cos ¢sind” 9

!l33 = —Z[SansSlne 6Q3 -+ Q3Sin¢;W’ -+ TE; %] (433)
. 0 sing 9

oo = TU0SP 50~ g, 9 )

The angular momenta P ., @re given by the usual expressions:

P71 = i[cosf cotg —ag— + sing” %Pr]
P4 = isind cot¢ a(g— — cosf” %—Dr ] (4.34)

Py = ~i 50
The angle ¢ is identified in this case with the angle (39 and is
independent of the choice of the frame. 6’ is the angle between the axis
?3 and the projection of the Jacobi vector '(13 on the plane of the
fragment; §- obviously depends upon the choice of the noninertial frame.
To avoid this, it is preferable to choose { = §° — ¢ where ¢ = §13 has
been defined in section 3.
With this para,meteriza,tion,' the part of the KE operator that has to
be added to (KE)3 is:
| (KE)r =T¢  + T, + T | (4.35)
This expression is evaluated by substitution of (4.34) and (4.35) into
(4.14-16) and by using the coefficients (4.21-23) characteristic of the
frame. The equations are derived for several frames and different

parameterizations in section 7 for a molecule of the type (ABZ)X.
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5. Examples of Norm Independent Frames.

As first examples, we consider in this section frames constructed
independently of the lengths Qi of the two Jacobi v'éctors,
norm-independent frames. This requires restriction of the dependence of
the parameter ( to the angle # between the vectors. The simplest
norm-independent frame, hereafter denoted by’ CHAS, is obtained by a
Gram—Schmidt orthonormalization of the vectors Eii. Two possible frames

result, depending upon which vector is taken first.

1.Bisector Frame.

The bisector of the two Jacobi vectors is the axis of quantization ?3.
The frame adjusts to the instantaneous configuration of the two Jacobi
vectors in a fashion independent of their lengths. In a sense, this frame
can be viewed as a principal axes frame of two unit vectors. By applying
the results of appendix I, the cartesian coordinates of the Jacobi vectors

with respect to this frame obey the following relationship:

13 .21 , 23 11
Yy o 4+yty =0 (5.1)

and the parameter ( = /2.

In terms of the BRI the yia are expressed by:

13 0 11 . 0
y = Qcos5 y o = —Qsing

9 9 _ (5.2)
y 3 _ Q2cosg y 1_ QQSlng

The part of the internal KE operator related to the 3-body fragment

becomes:
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T(i)nt + Vc - -
2
___6_2__2__3_+ _1_7 [L(L+1) - §7
Q" QpIQ;  8Q
2
- ___.5_§ _2 9 _17 [L(L+1) - S (5.3)
Q" Qq Qg 8Q,

__CZC20 sin?(0/2)[L(L+1) ~ 332]}

In this case, the centrifugal potential \/C is completely separable as

in the CHA frame but here Vc is distributed in a symmetric fashion
between the two radial oscillators Ql and QQ. The system of three
differential equations can be solved numerically for a given source
potential V by the usual methodsg.

By defining:

A -2 — -2 -2
Q=0Q°+Q; and G = Q- q ~ (5.4)
the rotational KE operator Tr ot reads as:
2 2
/\+ ~ 2 2 AZ - 2 2
TIOt = —8-— Q tan (0/2) O'+ + ? Q tan (0/2) g_ (55)

A ~ A ”
+ Q , cosd — Q cosd
+231nPQ{Sa+ 2 }0++ZSinPQ{Sa—_ 2 }0—
The internal-external coupling terms are:

A
o_ 4 <0 -~ 0
Te=9Qmpo -5 Qg0
(5.6)

As an illustration, consider the transformation into polar

coordinates, with Ql = pcosa and Q2 = psina, T(i)nt + VC becomes:
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C
_ & 5.0
6p2 p Op
2 2
L 1) 2
-;%- [ ia—z - doot(20) -0 + BLELS" (o204,
2
[4030 (2a) H 624_ cowQ——SZ csg 4
a6 a0
- g . sin?(6/2)[L(L+1) - 332]} (5.7)

Description of a N-body system (N>3) with the bisector frame.

The part of the KE operator corresponding to the remaining Jacobi
vectors ak (k=3,...,n) is partitioned in the following way.

The coefficients appearing in equation (4.21-23) are given by:

__Q . _Q . _Q
Mpp=—5 3 My =3 5 Mgg=—3
dcos”(6/2) 4sin“ (6/2)
P __Q ) _
Mpg =05 Mg =557 5 Myg =0

_ . _ cotd .
Cl-—O 5 Cz—~ZQT ; 03—0

=0 : d.=-Q0 4 _
=03 dy=-igyy ; dy= (5.8)
After substitution in the general expression (4.15), we obtain:

ir
) (P4)? PPy
1 2 3 . Cits
4 Q{ cos2(t9/2) P sinz(%ﬂ) i sxPnB}
3 i
~ g {Qcosa Q}P + SQ{ oz siny} (5.9)

where the P& are the cartesian components of angular momentum of the

remaining Jacobi vectors with respect to the noninertial bisector frame.
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The expression of the P o in appropriate internal coordinates (lengths Qk
and a set of independent angles) of the vectors ak is carried out in section -
7 together with the evaluation of T fat-
As expected from the definition of norm independent frames, the
coupling term between the internal operators of the fragment and the
. . —3
remaining vectors gy reduces to:
— ) a ’
that is to couplings between the angular coordinate ¢ and the components
of the internal angular momentum.
Finally, the couplings between external rotations and the internal

angular momentum are given by:

Tie =

A, - P:
-k 1 2 b, .
T Q{ 2 o T amg U3+ P }"+

- 1 2
+ o= Q{ + 2 Ps - ips }a_ (5.11)
i 4 COS2(0/2) sinf ~ 3 2

Once again, in order to obtain some physical meaning, the operators

P o have to be expressed in an appropriate set of internal coordinates.
2. Norm Independent E.S. Frame.

This frame is obtained by rotating the bisector frame about ?9 by

n/4. This corresponds (see appendix I) to the E.S. norm independent

frame.
Let 31 and 6'2 be the two normalized Jacobi vectors:

e
Ci = Qi qi (5-12)
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The Gram matrix of the unit vectors _c’i is:
- =
Gij = (Ci’cj) = (:030ij (5.13)
The E.S. frame {?331} of the two vectors 3. is given (see appendix 1) by:
S -1 =
= UG048 + WG~ ]12 2 (5.14)
-1
“f1 =[G ]120 MG ]22 9
where JG*I 1s the unique positive square root of G -1 In terms of the
Jacobi vectors,
= -
I3 = Byyd; + Byyd, (5.15)
- -
i = Bigdy + Bogdy
The cartesian coordinates yla with respect to this frame obey:

11.21 13 23
yy o -y'y =0 (5.16)

and the parameter { = §/2 — x/4

In terms of the BRI, the cartesian components are expressed by:

13 _ .ol
= Qa5 ¥y =Qpa (5.17)
3 _ . 21
- QQa'__ 3 y - Q2a’+
where
2, = 12 | (15sin0) (5.18)
The part of internal KE operator related to the three body fragment
becomes:
o]
Ting Ve =

2
02 0 ) - $Y

5Q12 Q 0Q; 8Q

2
~L2—-2~—-‘9—+ L L) - 8
& 9 29
~Q { s+ oot = Gl + 5 ]}
e [L(L+1) — 357 (5.19)
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11 _ 23 |
vy =y (6.1)

With this condition, the matrix B and its inverse Y are both
symmetric hence Y is the positive square root of the Gram matrix G. The

analytic evaluation of Gl/ 2T“is carried out in appendix I; the result is:

13 Ql(Q1+Q2sinﬂ) 11 QQ,cosd
o T,
91 Q2(Q2+leiné‘) 23 Q1Q2 cosd
T Ay
where A, = Q7 + Q2 + 2Q,Q,sind. The angle ¢ is given by:
(Q+Qysind) Qg cosd
8¢ = in¢ = — 6.3
cos¢ Ai/ 5 sin¢ ?_}_2— (6.3)
¢ ch osf e Qlc osﬂ. % B Q2(Q2+lein0) 64)
Ry A B(32 Ay By '
The coefficients M ap (32 and the operator d2 are:
M,, = L M., = 2Qy Maq = — bt
11 Q%sinzﬁ 22 Q%A_!_ 33 Qgsin20
cosfA
M.. — +

13 Q,Qys i n0

' Q, Q
dy =i A—i— {coso(Qﬁg—l - Qﬁ%z-) + sinﬂ(Q—; - Q—i)‘g-g}

. 2 2
___4-0030[Q1 B QZ

C i ] (6.5)
2 B Ry
The centrifugal potential V c is nonseparable:
2
2 2 Q
1 L(L+1)-S S 2 2
V(Q:Qo0)= ——— ( 2) ] + - + [L(L+1)-57]

QZsin’g Q2sin®f Q7A, (6.6)

It is interesting to compare with the centrifugal potential for the
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norm—independent E.S.frame:

Ve(Q:Qgut) =V (Q)) + V(Qg) + V,(6) + VI3 (6.7)
where:
v (Q) = é—fg[um)—sz]
1
2

V() = Q S [L(r41)+67)

VB = O [L(L+1)-387) ‘ (6.8)
Partial separability is possible in this case because the frame is
constructed independently of the lengths of the Qi'
To the limited extent that we are concerned with separability of Vc’ BRI
coordinates are not ideal. Polar coordinates p and o defined by Ql =
pCosay Q2 = psine fail to achieve complete separability but do permit the

hyperadius to be factorized:

2.2 2
V. (p,0,6) = % {4 [L(L +1)-257sin“a+S°

cotza[L(L+1)~82]}
p sin22asin0

1+sin2as i1 nf
(6.9)

To achieve greater separability, new coordinates obtained by

"mixing" the three BRI coordinates would have to be constructed.

2.LP.A.I Frame.
The condition imposed on the cartesian components is:
sy = 1311 2821 g (6.10)
that is, the mass quadrupole is diagonal.
The traditional parameterization6 of the internal coordinates yia

(together with the constraint (6.10)) is Alr Ag, ¢ where A o re the two

common eigenvalues of & and G (see appendix II) whereas ¢ is the
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parameter of the (label) orthogonal transformation & diagonalizing G (the
Gram matrix represents an operator acting in label space). Otherwise -
stated, & rotates the label basis representing the Jacobi vectors into a
new basis representing a new set of Jacobi vectors and we are no longer
dealing with a fixed representation of the system. Of course, the vortex
momentum P; Is not zero in this case. Alternatively, the choice of the
BRI coordinates of a fixed set of Jacobi vectors leads to a zero vortex
momentum. In order to obtain an expression for the KE operator in terms
of the BRI, the KE operator may be first expressed in terms of the "label
internal coordinates" /\a and ¢ and subsequently re—expressed in terms of
the BRI. This procedure is cumbersome and does not take advantage of
the invariance of Tc;nt with respect to a change of frame. All that is
needed to do so is to evaluate the coefficients Maﬂ’ 02 and d2 in BRI

coordinates.

. : i . .
The cartesian coordinates y'® are given in terms of the "label

internal coordinates" by:

13 11 :
YU = pgC0s¢ 5y = —pusing (6.11)

23 . 21
Y = ugsing ; yT = pcosd
where Lo = AA o

In this frame, the vortex momentum operators are given by:

24 2
po — 'PO:=2'1 3 8 . po _ 19
and the coefficients are:
A+ A
_ 1 _ 71 3 1
Mpp=xp 0 Myg=———%5 5 Mgg=—
3 (/\3—/\1) 1
Mg = Mg = Myg =0
CI=CQ=C3:O
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.1 9 :
— . =9 cd, =0 6.13
The transformation of the label internal coordinates into BRI is .

carried out in appendix II. The results are as follows:

1 2 4 2,1/2 1 2 4 201/2
Ag =gl + (6F =AY A = 1P - (ot - A
372 1 2
2 2
036 [ Q1 — A5 ]1/2 . sing = { Q) — g }1/2 (6.14)
A Ay ’ A A
where p2 = Q% + Qg and o = .‘ZQlesin&. The inverse transformation is:

.2 .2
Q = (/\1 — Ag)sin“g + A3 3Qq = ()\3 — Ap)sin®¢ + A
; /\3 - /\1 (6.15)
= in(2
COSs W Sln( ¢)
The coefficients become:
2 p 2
M P U — M == * M = ee—————
1 2 2\? ’
1= A 227 4 27 Y33 Pl (g
Mg = Mg = Mgy =0
C1 = C2 = C3 =0
dl = d3 =0
4 4
. 9 9 4(Q1+Q2) P,

Expression of the KE operator in label internal coordinates.

© - _ & 1 [3’\1“ ’\3]‘8

int 5ﬂ12 1y )\1 - /\3 d,ul
&1 [3’\3‘ ’\1] K
oug® Pz L A3 = A 1 Ty

(A + ,\3)3 52
2 52
AAg(A;=A5)° 09

(6.17)
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A A
_1[ 1 1713 ) 1 &2
Vc“?[ ,\3*”(A - )2}[L(L+1) SHT{S (6.18)
31
2
. [1 A A ]02+z§_[1_A1+A3 )
rot = 4 | X 2] % T | X i
3 (Ag—A) 3 (Ag—A)) (6.19)
R A A
TS = - 4¢ 1 3 9 o, +4¢ L3 0 o (6.20)
2 J — ) _
¢ T gt (Ag—A))? 99
, _ 2 A2, 255,
2 2
D
8¢ 1 3 0
Tie = Ps (6.22)
ic ™ lia (y 2 042
143 (A1=A3)
Te =€ (M P{ + MyoPs)o, + £ (M, P{ — MyyPS)o_ (6.23)

KE operator in standard hyperspherical coordinates

The coordinate transformation into standard hyperspherical

coordinates is achieved by setting:

[y = peosg; pa = psing (6.24)
T
int

_0 59

3p2 p 9

2

1 [ i, G,
~ 1 2y deot(dg) ]

p2 (?(,02 Oy
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2 ,
-8 cor?(ag) 2 (6.25)
o 0¢°
v, =1 [ MLAD oL () - s - 48200’5(2@)} (6.26)
2p7 L sin®p  cos?(2¢)
2 2
T = (']+ [cos2(2<p) — sin2<p] o2 i ¢ [cosz(Zgo) — sinch} 52
rot 4p sin2go c032(2ga) + 4p2 sin2g0 0032(2go) B
(6.27)
4¢ 4
A S A v (6.28)
T Pes?2g) B Rea(ag) L
T;nt + Tir -

2 ,
5 (m, )+ 4 [(Pl) + (P2) +(P3) 2P }

i, a p sin2ga cos (2ga) cosQw cos2<p
(6.29)
_ 32<scsc(dp) 0 o,
T, = 5 56 P4 (6.30)
0
T/ =
€+ P; 124 l PJ . P
v e (RN B S o_
p sin“yp cos “(2¢) p- Lsin®p  cos(2¢p)
(6.31)

KE operator in BRI.
The KE operator in BRI coordinates is obtained once more from
equations (4.12-19) by substituting the expressions for the coefficients

M o C, and d, given by (6.16), the momenta P/ being treated as

above.
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Up to this point, there is no significant advantage (apart from the
symmetry in the coupling terms) in choosing one or another frame on a
simple mathematical basis. The rotational ground state (S=0;L=0) of
three bodies is described by the same KE operator irrespective of the
choice of the noninertial 2GJV frame. This is not the case for N-body
systems as illustrated in the next section. Selection of one or another

frame appears to require additional physical input.
7. Application to Molecules of the Type (AB2)X.

The purpose of this section is to illustrate the previous theory by
means of the example of molecules of the type (AB2)X. The contribution
of the "additional" vector ?1’3 to the total KE operator (S=0,L=0) is
represented by the terms Tf nt’ Tir and Ti o Some explicit realizations by
means of curvilinear internal coordinates are presented below. Two kinds
of frames are considered reflecting the nature of the constituent particles.

For My < mAB2 (NO2CI), it is appropriate to choose the axis of

quantization (Y3) in the plane AB2: the non—inertial frame is of the type
(2GJV) and the Jacobi vector associated with the bond AX rotates
internally about the axis bf quantization. For molecules where

my > m (H,C=0), the situation is better represented by an axis of
X AB, *72

quantization along the Jacobi vector describing the bond AX; the axis Tl
can be constructed for example by Gram-Schmidt with F = aal + ﬁa2
(o and B # 0, the frame is global, otherwise, the frame is local). The final
expression is more or less complicated depending on the choice of the

frame and the curvilinear internal coordinates describing (_1'3. Whereas
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Ti nt is independent of the choice of the frame, Ti r depends on the choice
of the frame since, in the expressions of the components of the internal -
angular momentum, the parameter ¢ defining the frame appears explicitly.
This result has been demonstrated rigorously in reference 1, appendix II:
whereas the Péy are invariant under a rotation about the axis of
quantization, this invariance is not maintained for a general rotation and
in particular for a rotation in the plane of the Jacobi vectors constituting

the frame (change of frame). As a result, the overall (S=0,L=0) KE

operator depends on the choice of the non—inertial frame.
BRI Coordinates for 21’3.

Let the system be described as in Figure I 013 and 023 are the
angles between 21’3 and 21'1, ?1’2 respectively. ( o ore the angles between ?13
and the axes of the frame {? &}; they obey the direction cosine
relationships:

Eacos2§a =1 (7.)
2 cosC cos(; = costly  (i=1,2)
With the conventions of equation (3.8), the last relations become:
cos(lsing + cos§3cosC = cosﬂ13 (7.2) |
cos(lsing' + cos§3cos§' = cosH23
This system is easily solved and the parameters Ca are expressed in

terms of 913 and &
cosﬁmcosq ‘- cosﬁz'gcosg’

sind
€080,,8in — co0sf, ,sin(”
_ 23 13
Cos(g = Y (7.3)

cos(1 =
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\Y

cosC2 == sin

where V is the volume of the paralelipiped constructed with the three unit -
vectors along the three Jacobi vectors:
V=]1- c0s20 — cos20, , — cos>4 + 2cosfcosd. ,cosb, ]1/2 (7.4)
- 13 23 13¥7°723 )
The cartesian components are:
3
vy = Q3cos§a (7.5)

From (4.29), the linear momenta are:

o Tis 5 T3
. 13 23
T :~z[cosg e — , - ; } (7.6)
3 @ Qg Q3003 Qg 0
where
cos¢. - cos( _cosd.
= (=12) (1.7
1

By squaring (6.5), adding over @ and making use of the relations
(6.1), the expression for T £t reads as:

Tint -

1, & 9 0
T =+ cotl; 3 mp— + g + Cotlya mr— |
Q3 0013 13 8023 23

2
+ —27 cosA3 9 }

00, .90,

7.8
Q3 137723 (78)

where A3 is the spherical angle corresponding to 3310:

cosf — cosb, ,cosb.
13 23
cosA, = . . (7.9)
3 sm01331n023

The internal angular momentum components P& are evaluated from

the expression (4.2):

Ps =4 y3'87r37 - y377r3ﬁ ] (7.10)
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where @,f,7 are cyclic permutations of 1,2,3 as usual. By substitution of
(6.5) and (6.6) into (7.10), we obtain the cartesian components of the -
internal angular momentum expressed in terms of the momenta conjugate
to the coordinates 913 and ()23 (they obviously are independent of the
radial linear momentum ?fc%)' The result is given in a general form by:

X X
Po =t [ sing c’?{)a + sing 6(}8 ]
13 13 23 7723

(7.11)

where the coefficients X o 2nd Xc,y (dependent on the choice of the non
inertial frame) are given by:
X, = (cosg’,ycosgw - cosCﬁcosg‘M) (7.12)
X, = (cosg‘,ycosg’w - cos(ﬂcos§27)

With the conventions of equations (3.8), these coefficients are
expressed explicitly in terms of the parameter ¢ defining the frame:

X1 = —cosg‘gzcosg ; Xi = —cos§32cosC’

X3 = —cos§32sin§ ; X:;) = —cos§3zsing’ (7.13)
X2 = cos§33sing + cosgglcosg
Xé = cos§33sin§’ + cosgglcosg'

The components of the internal angular momentum can now be
introduced into equations (4.14,15) to provide an explicit expression of Tir
(S=0) and T,

The general expression for T, is

To— Ay, A B, & + By 50— + B, o0 ]
ir 11 5,42 22 12 9¢.,08 190 2 00
5013 0023 137723 13 23
- (7.14)
where the coefficients (Appendix III) are functions of 013, 023 and ¢ hence

implicitly functions of Ql’ Q2 and @ through (.
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Ti c is obtained in a similar manner: ]
Tic = 2d2Pé (7.15)
where P/ is given by (7.11) with & = 2 and d, has been defined in
~ equation (4.22).
For most of the frames of interest, the coordinates 013 and 0 are
coupled (AlQ#O in 7.14) whereas there are no coupling terms between the
radial coordinates Qi' The configuration metric tensor is partitioned into

two diagonal blocks: Gr and G o Tepresenting respectively the radial and

the angular subtensors.

G = Gr 0
0 (7.16)
G, has the forn':
rge €1 C
G, = C; 843 0 ) (7.17)
Cg 0 893

This expresses the orthogonality of the coordinates 013 and 6’23 and
the non orthogonality of 4 with 0i3‘ In the dual space (i.e., appropriate to
the momenta), the metric tensor is G;l in which the orthogonality is
broken. One can show7 that, in keeping # as an internal coordinate,
whatever the orthogonal curvilinear transformation of the angles 0i3 is,
there are no zero terms in G;l. In other words, any set of angular
coordinates for 21’3 leads to couplings between them and couplings with the
coordinate # in the KE operator.

This is illustrated below with the spherical coordinates of 63: the
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azimuthal and polar angles, as pointed out in section 4, are orthogonal
but ¢ and ¢ are not orthogonal to the angle ¢ between the vectors -

constituting the frame.
Spherical Coordinates for '&3.

The azimuthal and polar angles ¢ and ¢~ represent another
parameterization of the angles ¢ o If the internal rotation is about ?2, the
angle ¢ is independent of the choice of the frame. If the internal rotation
is about the axis of quantization, ¢ does depend on the frame. In either
case, 0 is frame dependent.

Consider 51’3 rotating about ?2 and 6 the polar angle in the plane of
the frame. By squaring the linear momenta given in equation (4.32) and

adding over «, the operator Ti,nt becomes:

i/nt:
_ 9% 2 0
0Q2 Q39
5
1. 9 5
- — [ —5 + cotd 57 ]
Ry %

_ (7.18)
Qzsin’g 09+

Similarly, the expression for T;, (S=0) is obtained from the angular
momenta given in equation (4.33). The result is:

& 9 ik 9. i
Ty =-14y _30,2+A225¢:§+A12W+B1 a7 + By 53 |
(7.19)

where
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2 2 -2, s o,
A= Mgqy + cot™4 [ M, cos0” + Mgqsin™6” + 2M,; 58in267]
Agy = My sin®0 + Mygcos™" - 2M gsin26-

Ajg = 2cot¢[sin26'(M11 - Maq) - 2M; 5c0820"] (7.20)
cos® p+1 . : -
B, = - [4M c0s26" — sin26" (M, - Mgl)] - iC,
sin” ¢
B, = cot¢[Mllcos20’ + M33sin26” + 2M, 55in20]

The coupling terms between the internal coordinates {QI,Q2,9} and
the internal coordinates for ?1'3 are given by Ti c = ~2d2Pé. For norm
independent frames, there is a single coupling (6-6") whereas - is
coupled to Ql’ Q2 and 6 for norm dependent frames. The existence of the
extra terms in (Ql,Q2~0’) can be understood by considering the total

configuration metric tensor:

G, 0 X

¢ = 0 6 Y (7.21)
t ot ]
S S

where G o is the metric for the external rotations. For norm independent

frames, X = 0 but there exist non zero terms for norm dependent frames.
8. Summary and Conclusion.
A kinetic energy operator for N-body systems has been derived
using a rotating frame (non-inertial frame) tied to the configuration of

three non—collinear particles represented by two Jacobi vectors ?1’1 and 32.

This model is particularly suited for the discussion of three body and
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(ABQ)X systems where X may represent a single particle or a group of
particles treated as a whole. In such a situation, the system is partitioned
into two fragments:

(1) the defining fragment (D~fragment) comprised of the Jacobi
vectors Eil and 32 and whose rotations with respect to the inertial frame
are  generated by  the  ‘"external angular  momentum" T,

(2) the internal fragment (I-fragment) comprised of the remaining
vectors ak (k=3,...,N-1) and whose rotations with respect to the
non-inertial frame are generated by the “internal angular momentum" P-.

The internal coordinates are the Basic Rotational Invariant
coordinates of the Jacobi vectors that is:

(1) the three curvilinear coordinates Qq; Qo and § parameterizing
the cartesian coordinates of the D-fragment with respect to the rotating
frame and accounting for the three relationships defining the frame

(2) the N-3 lengths of the Jacobi vectors of the I-fragment and
2N-6 independent angles parameterizing the angles 0ij other than 4.

The rotational motion is integrated out leading to an operator Tr ot
(equation 4.17) expressed in terms of the rotational quantum numbers, the
step—up/down operators o, mixing the vibrational states of the
D-fragment alone and rotational invariant coefficients specifying the
frame. As well, the coupling terms Tz and T; between the (integrated)
external and the vibrational motions are expressed in terms of the
operators o, and the linear momenta related to the two fragments
(equations 4.18 and 4.19 respectively). In the former case, the internal
operator  d, (equation 4.23) is coupled with o,. For frames defined

+
independently of the lengths Q; and Qo, the term d, reduces to a single
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term in the angular coordinate §. In the general case, couplings occur
between the external rotations and the radial parts as well. The same -
operator d2 is coupled with the internal angular momentum Pé (equation
4.16) describing the fashion in which the motion of the two fragments is
determined by definition of the frame. The pure internal energy
corresponding to the I-fragment is expressed by relations (4.14-15). These
terms are explicitly expressed once a proper parameterization of the angles
has been defined. In no case is there coupling between angﬁlar and the
radial parts of the I-fragment. Nevertheless one should notice that for
norm dependent frames, the angular motion of the I-fragment is coupled
with the radial part of the D—fragment. The pure internal operator T(i)nt
of the D—fragment is independent of the choice of frame (equation 4.12).
Finally, the redistribution of the rotational energy (centrifugal potential
Vc) among the internal oscillators related to Qq, Qy and @ (given by
equation 4.13) is not separable in general (except for the _bisector frame)
and must be appended to the non-separable part of the source potential.
It is not the purpose of this work to discuss the respective merits of
one frame with respect to another for a given problem. Such a discussion
requires more physical input. It is nevertheless worth mentioning the
recovery of symmetry by using the frames descibed above comparatively
to the CHA frame although introducing extra coupling terms. In
particular, the use of norm dependent 2GJV frames (for example I.P.A.I)
for the description of N-body systems generates couplings between the
angular variables of the I-fragment and the radial variables of the
D-fragment. The bisector frame appears as a valuable alternative to the

LP.A.IL (as such couplings do not exist) and to the CHA frame (as the
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symmetry is recovered).

APPENDIX L
ORTHONORMALIZATIONS IN Eg

Let (FI,F2,F‘3) be a set of three vectors in E3. With respect to an
orthonormal frame {?a}, their components are Pl (Fi,?a). The Gram
matrix elements G(F)ij are given by:

G(F);; = (Fij) =5 PP = FiFjcosl;;  (AL1)

We seek linear transformations O in Es such that:

OG(F)0' = I (AL2)
(1) Eigenvectors of G(F)
Since G(F) is a real, symmetric, positive definite matrix, it can be
diagonalized by a real, proper, orthogonal matrix R:
R G(F)R! = A = diag(A;,Ap)s) (AL3)
One orthonormalizing procedure is obtained by pre— and postmultiplying
(AL3) by A7L/2,
0, = AR (AL4)
The set of three vectors:

8y = 3,104 F) = M8 (r)

oo o

aot o i (@=1,23)  (ALS5)
is orthonormal and is referred as the "G(F)—eigenvectors frame".

R, is the orthogonal matrix transforming the inertial frame {70} into the
new frame {é’a}: (Re)aﬁ = (?a’aﬁ)'

The components Yga of F‘U with respect to the frame {¢ o) are (dot
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Fo with é’a);

oo _ ,1/2
Yo =4, (Re)aa (ALS6)
In matrix notation (invert equation 5):
S ol ptal/2
Y, =0, =RA (ALT)

(2) Equivalent Symmetric Orthonormalization.
The E.S. orthonormalization O, (OS = Og) is the positive square

root of G(F)_1 :

_ 1 _ pta=1/2n ot
O, = {G(F) = RAA™/’R_= RO, (ALS)
This defines an orthonormal frame {3 o
_)
8, = za(os)wﬁa (AL9)

The components of Fa with respect to this frame are given by:

oo _ FR 1/2
Y¥ = (F 3) = [G(F) Lo (AL10)
or in matrix notation: _
_ 1/2 _ ptal1/2, :
YS = G(F) = ReA Re = YeRe (AL11)

It is interesting to note that the same frame can be obtained by
different procedures:
let A and A’ be two different linear combination matrices; there
exists a transformation £ such that :
A = A
The corresponding Gram matrices are
G(F) = AG(q)A®
G(F’) = A’ G(q)A-"
—  G(F) = £ A G@A YT = e lgE ) (el

Let O and O’ be the orthonormalization matrices generating the
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same frame {f} from the different sets {F} and {F-}:

—  O0G(F)0' = 0-G(F)0'" = 0. TaE) (e Lot = I

— 0’ =01 (a)
Note: two orthonormalization matrices O and O’ of the same set of
vectors {F} are related by O = %0 where & is orthogonal since
0'G(F)0"" = 2OG(F)O'%" = A&’ = I, O and O in equation (a)
do not obey this rule since they are not orthonormalizations of the same
set of vectors.

APPENDIX I
Gram Matrix and Mass Quadrupole.

With the notation of section 2, let G = QQ' and 4 = Q'Q be
respectively the Gram matrix and the mass quadrupole of a system of_n
linearly independent vectors ai of the physical space. G is an nxn matrix
representing an -operator acting in label space and 4 acts in physical
space. Both matrices are real, symmetric and positive-definite. They both
are diagonalizable by real, proper orthogonal matrices respectively in label
(p) and physical (R) spaces:

pGpt =T "RARY = A (AIL1)
where T' = diag(71,...,7n) and A = dia,g(/\l,/\Q,,\?)). All 7 and A are
non—negative by the properties of the matrices G and 4
The two matrices G and 4 have same trace:
Tr(G) = Tr(QQ") = Tr(Q'Q) = Tr(.4)
(AIL2)
Incidently, one has also Tr(Gk) = Tr( th) for k integer:
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Tr(GY) = TH(QQ'QQ".-.QQY) = Tr(QATLQY = Tr( AN

(AIL3)
Theorem:
The eigenvalues 7, of G are as follows:
To = ’\a for a=1,2,3 (AIL4)
Vo = 0 for o>3

L The eigenvalue equation for /4 is:
Jq_;a: ’\aB o
where p o 15 the (physical) eigenvector corresponding to
)‘a‘ By premultiplying this relation by Q, we conclude
that A o is also eigenvalue of G with corresponding
eigenvector Qf)'a:
QS = 2,8, = (QQYAB, = 2,(QB,) = G(QB,)
By using the trace identity (A.2) and the non-negative
property of the eigenvalues 7, and A, the theorem is
proved. n

With respect to the LPF, p o has components (Rla’R R3a)' The

202
components of Qﬁa are then the cartesian components of the vectors Zii
with respect to the axis T o Of the non-inertial frame (Principal axes
frame):
= la no
Qp, = col(y; ¥y ) (AIL5)
where the subscript i refers to the PAI frame. After normalization and

recalling the definition of the eigenvalues A o

koy2
Ay, = ZJk(yi ) (AILS6)
the eigenvalue equation for G is:
Ge, = A2, (AILT)
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where the eigenvectors § o aTe given by:

g, =X °5, y<e, (AILS)
with Ek being the unit basis vector in label space corresponding to the
physical vector Eik.

Of course the eigenvectors §/§ (k>3) corresponding to the zero
eigenvalues of G are degenerate and they span an (n—3) dimensional
subspace of the label space orthogonal to the 3 dimensional subspace
spanned by the E o The eigenvectors EH can be chosen in many different
ways to be orthogonal among themselves.

For n =2 or 3, the problem is particularly simple since there are as
many E o 3 E’i so that the components of g o with respect to E’i are the
elements of the rotation matrix p:

bio = 8% = B8 (AIL9)
and p can be parameterized by one or three Euler angles <I>i.

The expression for the principal axes of inertia Ba in function of the
vectors Tik is finally given by:

D, = ,\;1/ 22kgk“(<1>i)a’k (ATL.10)
or in matrix notation:

p = A—1/2.p.q (AIL.11)
where p and q are column matrices of the vectors Ba and ak'

For n = 2, the eigenvalues ) o Can be written down analytically by
solving the secular determinant |G —~ A| = 0. With the usual conventions

of labeling the moments of inertia, the result is:

Ay = l-[r2 + (r4—02)1/ 2]

3572 (AIL12)
A\ = %[rz _ A/

where r2': Q% + Qg is the hyperadius and ¢ = 2Q1Q281n¢9 is the surface
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of the triangle defined by the vectors ?il and 21’2. Observe that:
A+ A =12 and A, - A = (fio?)}/2 (AIL13)

1 3 3 1

Let p be parameterized by the label angle ®. From (AIL1), we have:

2
QL ~ 3170 Qo = 3172
sin® = [ y=——"] cosd = [X__X~ ] (AIL.14)

[ 173 1 3

The inversion of (A.13,14) gives expressions of the BRI coordinates

Ql’ Q2 and § in terms of the "label coordinates" )‘1’ /\3 and ®:

Q) = ( 3)8111 @+ A5
Q, = (/\ - /\l)sm ®+ A (AIL15)
-
cosf = _Q—Q_ Sln(2®)
1
APPENDIX III

EVALUATION OF TIR FOR A (2GJV) FRAME.

Let
. i} lij
Pr=—i[a + b ]
a o 3913 a W§3
Xq X4
where a, = Tl 3 and ba = s -
By squaring and adding over «, one obtains the expression:
2
_ & & P
Ti= A

P )
O tAL. T A +B +B
11 60% 22 8933 12 00130053 * 1 905 T "2 a0, }

Page 48



11—

L

oo R S .

=S M a4

@ oo«

o oo o

2M13a1 aq )

_ 2
99 = X M_ b’ + 2M..b.b

137173

ab + M

T B 7 s s 13(a1b3 + a3b1)]

1= 17133 F DyTogd) + 8gTygay + byTogay + ag7 gag +baTogan +

217 33 + agT; 38 + b17-23a3 + b3723a1 + i02a2

By = ay7y3by + by7ogby + ag7igby + Dyrpaby + ag7gbg +baryaby +

372371

alTlgb3 + a3713b1 + b1723b3 4+ boTaob, + i02b2

where 7.

d

i3 & 98,

i3

M o and C, are given by equations (4.20,21) as

functions of the parameter ¢ defining the non-inertial (2GJV) frame.
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Figure I : Angular variables for branched four-body systems.

The Jacobi vectors ?:1’1 and 62 (D—fragment) are in the plane defined
by ?3 and ?1. (a are the angles between ?13 and the axes T o g is the
angle between the axis of quantization Y3 and the projection of 51’3 on the
plane of the D—fragment (depends on the frame). 0 is the angle between
the projection of 21'3 on the plane of the D—fragment and the vector Eil

(independent of the definition of the frame).
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The quantum kinetic energy operator for a group of particles
in terms of scalar basic rotational invariant coordinates
derived from a generalized Jacobi vectors (GJV) description.

II. Frames derived from three GJV.

Abstract: Previous workl defining the quantum kinetic energy operator for relative motion
of a group of particles in terms of cartesian components of generalized Jacobi vectors (GJV )
is logically extended. The first such extension examines definitions of the noninertial
reference frame which follow from its definition by three GJV, the second invokes the
simplest scalar internal coordinates which are the basic rotational invariants of the GJV.

KE operators are explicitly evaluated and assessed in terms of separability.
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1. Introduction.

The present authors have recently1 derived an expression for the kinetic
energy operator of an N-body system which is valid for a general non—inertial
reference frame provided that some prescription of the manner in which the
moving frame is "attached" to the instantaneous internal configuration is given.
The resulting kinetic energy operator was expressed in terms of the 3N-3
cartesian coordinates of a set of N-1 generalized Jacobi vectors? (GJV) which
are orthogonal counterparts to the traditional (non—orthogonal) interparticle
vectors. Lack of a systematic discussion of non—inertial frames provided some of
the impetus for our previous work (hereinafter I) although this topic has in the
past been3 and continues to be of substantial interest4’5.

The non-inertial frames commonly employed in molecular dynamics fall
into two categories: |

(1) global frames expressing some property of the entire system (for

example, the instantaneous axes of inertia frame, Eckart molecular

frame,...)

(2) local frames for which the rotational motion is tied to the

instantaneous configuration of some fragment of the system.

The former are well suited to the description of systems possessing a
semi-rigid structure which can rotate as a whole.

The latter are more convenient for molecules containing a semi-rigid
fragment defined by a set of Jacobi vectors aﬁ These vectors define a
non—inertial frame {Ya(aﬁ); a=1,2,3} whose rotation with respect to the

inertial frame is generated by the component angular momenta of the vectors
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.

Frames identified by a three body fragment (two GJV) have already been
investigated in a recent pa,per6 (hereinafter II). The kinetic energy operators in
basic rotational invar{ént (BRI) coordinates were derived for a variety of
frames defined by 2GJV. That model applies to three-body systems in any kind
of non—inertial frame in a particularly simple manner. In addition, it is
apblicable to N—body systems in which a three body fragment serves as a useful
identifier. In that context, the KE operator for an (AB9)X (mX < m,, )
molecule (such as formaldehyde) was derived.

The present paper is concerned with the hamiltonian for N-body systems
described by BRI coordinates resulting from rotating frames characterized by
three GJV. The model is particularly well suited to branched four-body
systems (for example, of the type ABg as well as (AB,)X whose rotating frame
is considered global). As in II, the model can be used for N-body systems
(AB3)X, especially where My < M(AB3).

In Section 2, the general kinetic energy operator (formulated in I) in
cartesian coordinates is simplified for three GJV frames. The transformation
into BRI coordinates is achieved in Section 3. As a result, the invariance under
a change of frame of the operator T(i’ nt (S=0;L=0 state of the frame—defining
fragment) is demonstrated. This result is a generalization of the invariance of
the internal hamiltonian described by global frames . In Section 4, the
instantaneous principal axes of inertia (IPAI) frame serves as an example.
Finally, in Section 5, the complete hamiltonian for a four~body symmetric top
is symmetrically separated into six one—dimensional eigenvalue equations and

the angular internal coupling terms are evaluated by perturbation techniques.
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2.Kinetic Energy Operator in Cartesian Coordinates.

Let an N-body system be described by a set of n=N—1 Jacobi vectors2
and let its rotational motion with repect to a center—of—mass :inertial frame be
described by a non—inertial frame {f @ = 12,3} tied to the configuration of
the three Jacobi vectors 31’ 32 and 51’3. With the usual conventions, ?3 is taken

as the axis of quantization. This frame is éntirely characterized by a set of three

1,6

matrices ' whose elements are rotational invariant functions of the cartesian

components of the three Jacobi vectors Eii. It is shown in reference 6 that the
reciprocal tensor of inertia Jof the set {Eii; i=1,2,3} is given by:
=3
M=o = Y ()l (2.1)
i=3
With respect to this frame, the remaining Jacobi vectors Eik (k=4,....n)

have components yka whose conjugate linear momenta are Meor Similarly, the

angular momentum components of the i’k in the rotating frame are:
k=n

, k k
o= ) 6¥m, -7 Tnp (22)
k=4 ‘ . :
Once expressed in the cartesian coordinates yla and their conjugate
momenta, T o the rovib kinetic energy operator has the form1 :

_ m9 , c
Trovib - Tint + Trot + T + Tint +T

{nt (2.3)

coup

The different parts have the following meaning.
T(i) nt contains all the linear momentum terms ™, o, telated to ai (i=1,2,3)
and describes the pure vibrational motion of the Jacobi vectors constituting the

frame in the rotational ground state:
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1=3 =3

1nt Z Z o T8 m o (24)
=1 o=1
where
S S | 5 =
Bia = Igy~Tg (2.5)
The pure rotational part is given by
=3
2
= I 2.
T ot 21 M, K+ My (K Kb+ C.K ] (2.6)
=

(a,B,7v are C.P. of 1,2,3)
where Ka 1s the projection of the angular momentum T, of the three vectors ai
on the non-inertial frame and {.} stands for the anticommutator. After
integrating over all the external rotationss, T, ot 18 re—expressed in terms of the
rotational quantum numbers S and L and the step—up/step—down operators ¢ T
As a result, T rot decomposes into a term Tr expressing the mixing of the
rotational states and a centrifugal potential Vc describing the contribution of

the rotational motion to the internal oscillators:

02 ‘ é

+ 2 . 2
T, = M, ,-M 99t 2M12]0 + [MH—M22— i Myolo”
—2-€+[SM13+01 + (SM23+C2)]U+ |
1 .
+§13_[SM13+C1 — 1 (SM23+02)]0* (2.7
V, = oM+ Mo )[L(L+1) — S| + M,.52 + C. (2.8)
¢ 2V7117722 33 3 -

The coefficients C_ are characteristic of the frame and are given by:

=3 A=3 . _
_ i . i
Cy=) ) lmyIy,+ PRI (2.9)
i=1 A=1
T; nt contains all the intrinsic operators related to the vectors ak which

are not entering into the construction of the frame:

Page 5



k=n @=3

Tiat= 0 ) Mg Z 1\4771)7 M, (PPt + C Pr] (2.10)
k=4 o=1

Tg nt are the internal couplings between the two fragments of the system:
=3
c  _ p
Tint =2 d P (2.11)
=1
(@B, are cyclic permutations of 1,2,3)

where the operators d 5 are given by
i=3

d'r:_zl[a'rﬁlaﬂﬁv ™4 (2.12)
1=

Finally the coupling terms between internal motion and the external

rotational motion are given by:

v=3
Teoup = ) ar, (2.13)
=1 -
The operators .@7 are
g, =2 2,
'y .@7 + d7 (2.14)
where
—_— d s ‘)
’y M’Y’YP’)’ + Maﬁ{Paf’Pﬂ} (08,7 are C.P.) (2.15)

and the operators I’ o 2re
1
Py =3l (LS)o, + L (LS)o]
Ty=35¢ L(LS)o, — £ (L.S,)0 ] (2.16)
I‘3 =S

3. Transformation into BRI Coordinates.
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The definition of the non—inertial frame leads to a set of three constraints
on the cartesian coordinates yia (i=1,2,3) hence to a,»pa,rameteriza,tion of the
nine non—independent coordinates yi @

In the present context, the six independent basic rotational invariant
(BRI) coordinates constitute an appropriate preliminary choice for such a
parameterization since any internal coordinates are expressible as polynomials
9

of the BRI coordinates”.

Let Q, be the lengths of the Jacobi vectors ?ii and ()ij be the angles

between them:
1/2

Q= 2,67 ] (3.1)
5 e _ja |
cost,, = —@_ 7 (3.2)

where &ij is taken positive in going from Zii to aj'

This corresponds to a curvilinear transformation in configuration space of
the nine cartesian coordinates yia into three radial internal curvilinear
coordinates Qi’ three angular internal coordinates 0ij and the three Euler
(external) angles gbs, which are functions of the internal coordinates. The angles
ngS are parameterizing the rotation transforming the inertial frame into the
non—inertial frame. By inspectionlo, the metric tensor (contravariant) has the

following form:

T] o 0
‘ 6=|0 [0 " (3.3)
t
o |6l 6, |

-1
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where the radial sub—tensor G, is diagonal, that is the radial coordinates Q, are
orthogonal to each other. The angular sub—tensor Ga has no zero terms; this
expresses the non-orthogonality of the angular coordinates 0ij' The radial
coordinates are orthogonal to all angular coordinates and the internal angles gij
are not orthogonal to the Euler angles (Gae # 0). The inverse tensor Gt
(covariant) describes the orthogonality properties in the space of the momenta;
that is, a non zero off-diagonal element in G means there is a coupling term
between the corresponding coordinates. It is not the purpose of the present
work to discuss in detail the curvilinear transformations of the BRI coordinates
leading to the partial or total elimination of the coupling terms. Nevertheless, it
is worth describing briefly the general procedure.

Any curvilinear transformation of the aﬁgular internal sub-space will
leave unaffected the overall form of the tensors G and G only G a and G ae
will transform. One seeks “curvilinear orthogonalization procedures” of the
Yectors of the locally defined basis corresponding to the variables 0ij' Such
"infinitesimal" orthogonalizations (infinitesimal equivalents of the usual
orthogonalizations) can be carried out in principle but lead to complicated
systems of second order differential equations in the general case, especially if
the symmetry of the angular coordinates has to be maintained (infinitesimal
E.S. orthogonalization). Alternatively, mixing of the radial and internal angular
coordinates can be considered. The effect is to modify completely the structure

of the metric tensors. This is the case for the example of the generalized
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hyperspherical .coordinates‘r): the hyperadius is orthogonal to all the angles; the
internal hyperspherical angles -goi are not orthogonal td the label hyperspherical
angles qﬁi.
The cartesian components yia can advantageouély be expressed as:
yia = Qcos¢, , (3.3)
where Cia is the angle between the axis T o of the non—inertial frame and the
vector ai' The nine angles Cia are functions of the BRI coordinates Qi and 0ij'

They obey the usual direction cosines relations:
=3
Z cosQQia =1 (i=1,2,3) (3.4)

a=1
=3

z cos(iacosgja'z cos0ij (i<j) (3.5)
a=1

Furthermore the three relationships among the cartesian coordinates are
translated into three relations among the Cm. For example, the instantaneous
principal axes frame is characterized by zero off-diagonal elements of the tensor

of inertia (really the mass quadrupole .4):

i=3
Yy =0 (atp) (3.6)
i=1
In terms of the angles Ci o Phis reads as
i=3
2 -
z Qicosgiacosg‘iﬁ =0 (3.7)
i=1

The parameters (. ~appear here as useful intermediates in the
ia

calculcations.

With this notation, the linear momenta are expressed as
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o . Tii o Tix o | |
— —i{ cosc. i ik 9 1 . |
Mo z{COSCla_(?Q;+ Q, d&ij + Q; dé’ik} (3.8)

(i#j#k and jk>i)

where the terms F?‘j are defined by
o« _ cos&ijcos G cosgja 3.9
ij sin&ij ’ ‘

By introducing the spherical angle Sja (see figure I) relative to the vector Zij,

F(i]j is expressable as

rio‘j = —00s3; sing; . (3.10)

Expressions analogous to (3.3) and (3.8) are now sought for the cartesian

components of the remaining vectors ak (k=4,...,n) in terms of the BRI

coordinates and the angles (g 20d Sk o
The expression of the kinetic operator in BRI requires the evaluation of
the matrix elements I(llﬁ as functions of the parameters (;, defining the frame
and the BRI. The calculations are carried out in appendix I; the results are:
i
The coefficients A, , (equation 2.5) read as:

Bia = Mgl ™ Tintpy (312)

This permits the evaluation of the term T(i)nt given by (2.4):
o}

Tint =

"22 > o0 o  (i#i#k) (3.13)

As for 2GJV frames, this part of the KE operator is independent of the
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choice of the frame. As pointed out above, there are no coupling terms between
the radial and angular parts whereas the angles gij afe all coupled with each
other.

Actually, the coupling coefficients are quite small (cosine divided by the
square of the length of the Jacobi vector). This is especially true near the
equilibrium configuration and the hamiltonian derived from (3.13) can be used

for AB3 systems in the rotational ground state with a perturbation treatment of

the couplings.

In a description of this system with a 2GJV frame contructed from the

vectors fil and 51’2 (angle 6), the term T(i)'nt has the form®:
(o]
Tint =
1=
B z { 9% L2 0 }
i=1 6Qi2 Ql in
[ ] [+ cont )]
Ql Q2 a9
1 [ & i i }
- — | —= =+ cotd + ——5 + cotd,
Q,” 26,2 13 97,4 00,2 23 90y
& 9 & 9
[All 7 T Brag st Ao +B237}“}
8913 13 86’23 23
2cosS 2
12 0
- ——=+A J (3.14)
[ Q3” 12 ] 905004

where the coefficients Aij and Bi are functions of Ql’ Q2 and # whose form
depends upon the 2GJV frame via the parameter (- There is a single angular
coupling but the forﬁ; of the angular differential equations is quite complicated.
To the extent that we might be concerned with the radial part only, both

descriptions are identical.
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The other terms of the kinetic energy operator are evaluated in a similar
way after expressing the coefficients M af and C o and the operators da in BRI
coordinates. The procedure was described in detail in reference 4 for 2QJV

frames and there seems no reason to repeat it here.
4. Example: Instantaneous Principal Axes of Inertia.

The diagonalization of the mass quadrupole of the three vectors
constituting the fragment AB3 of an N~body system leads to the definition of
the IPATI frame. As far as the four-body fragment is concerned, this frame is
typically global hence T‘; nt is given by equation (3.13). All that is needed is the
evaluation of the matrix elements I;ﬁ to derive the coefficients Maﬂ and Ca
and the operators da'

The matrices I' have been evaluated in reference 1 for this frame:

cos§i3 cos(i2 1
0
A3 )
. cos§i3 . cosgil
1 —
D=y | A%y A=A (4.1)
cosg‘i2 cos(il
X2—X3 33—X1 °

where A 5 are the eigenvalues of the Gram matrix G of the three Jacobi vectors
(actually, the common eigenvalues of G and the mass quadrupole6 ).
For this frame, the off-diagonal elements of the matrix M are zero

whereas the elements Ma o 3T€ given byl:
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)\ﬁ+/\

- M= }—_Xj (a,B,varecp) | (4.2) |

5 Y

The eigenvalues of this 3x3 symmetric matrix can be obtained
analytically by using the Cardan's formulas (see appendix II). The result is
quite messy and is given here for information.

The secular equation for G reads as:

NBop22 g2 v2 oy (4.3)
where p is the hyperadius: ,
2 2 '
po = EiQi (4.4)
s?= 55t =3 QQ%sin%0, (4.5)
| i<i Ny P
where Sij is twice the surface of the triangle defined by the vectors Eii and Eij
and V is the volume of the paralelipiped formed from the three vectors:
2 2n2A~2 2 2 2
Ve = Q1Q5Q3(1—cos 8, 9—c0s™0, 5—cos 023+2c03012c08013cos(}23) (4.6)
With the usual convention of labeling the eigenvalues we have
2
=4 0
Ag=+5+P+Q
2 2
/\1=+§L+wP+wQ (4.7)
2

where P, Q and w are as in appendix IL.

By employing equations (2.7), (3.11) and (3.12), one deduces that all the

coefficients Ca are zero. The operators da are obtained similarly.

Four—body systems.

The rovib hamiltonian for a four body system described in a non—inertial
frame coinciding with the instantaneous principal axes and in terms of BRI

coordinates has the following form:
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H="T] . +V+V +T, ) (4.8)
where T(i)nt is given by equation (3.13), that is T(i)nt + V describes the
rotational ground state and V is the potential expressed as a function of the six
BRI coordinates. '

For S#0, the rotational energy is distributed among the six vibrational
oscillators. The centrifugal potential V o takes the form
Vo= = 5(M, +M,0)[L(L+1) - 7 + Mg,S* (4.9)
There is no explicit separation of the contributions of V ¢ to each of the
individual oscillators. Nevertheless, the decomposition of the effective potential
Veff =V+V ¢ 1nto a summation of separable parts EUVU can be investigated

as usualll.

Finally, the mixing of the rotational states is described here by the terms

T
r
£ 2, & )
Tp = My -Mpglory + = My -Mp Jo” (4.10)
The coefficients M oo 2F€ given by equation (4.2) and are easily evaluated
numer‘ically.

N-Body—Systems.
The same procedure followed in II can be carried out for N-body systems

composed of a four-body (frame—defining) fragment and an internal fragment

X. The internal angular momenta P o 2re re—expressed in terms of the linear
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momenta conjugate to the BRI coordinates Qk and ﬂik (i=1,2,3; k=4,...,N-1)
and substituted into the operators Tf ot Tgnt and ,@& given by equations (2.10,
2.11 and 2.15). Even in the simplest case (X is a single particle), the
calculations are quite lengthy in the general case. Ngvertheless some general

conclusions can be drawn concerning the pure internal hamiltonian. Irrespective

of the choice of the frame, the radial part is given by:
S g s
__iz {5—Q—12.+Q—13Q-1} (4.11)
The angular equations do depend upon the choice of the frame whatever
the choice of parameterization of the basic rotational invariant angles might be.
As well there are coupling terms between the angular variables which depend
on the choice of the frame and the way the angles eik have been parameterized.
Finally, norm dependent frames introduce extra coupling terms between the

radial part of the three-body fragment and the angles Hik as pointed out in II

for 2GJV frames.

5. Hamiltonian for the rotational ground state (5=0;L=0)

of a four body symmetric top system.

In this section the case of symmetric top four body systems AB3 is
considered. The bond vectors AB are transformed into equivalent symmetric
'-Ja,cobi vectors Zii (i=1,2,3). If O es denotes the ES label orthonormalization, the

Gram matrix G(q) of the Jacobi vectors is obtained from the Gram matrix G(r)

of the bond vectors by
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0_.G(r)0,. = G(q) | ' (5.1)

; es es
where O__ is given on12
es
a fp
Ues = [ a ¢ (5.2)
b b oe

with a = Mﬁé—? and g = M%’ M and m being the masses of the top atom A

and the equivalent atoms B respectively.

Equations (5.1) and (5.2) provide the relations transforming the BRI of
the bond vectors (bond distances, bond angles) into their ES counterparts.
Under exchange of the identical particles B, the Gram matrix G(q) remains
invariant.

This section is mainly oriented towards the rotational ground state
hamiltonian, consideration of the S#0 states being easily obtained by extension.

A completely separable kinetic energy operator can be obtained in
principle by some appropriate curvilinear transformation of the angular BRI
variables whilw retaining the symmetry properties characterizing the three
angles 0ij‘ At present, such a hamiltonian is not available. Nevertheless, the
coupled form discussed in the previous section presents some interest on its own
for symmetric top systems since the couplings are easily evaluated by standard
perturbation techniques. Moreover, the coupling coefficients become very small
for some regions of configuration space (large radial amplitude and near /2
angular configuration). This suggests that a fairly good approximation for those

regions can be made by neglecting the angular couplings.

Page 16



O
int
independent of the choice of the rotating frame. Let V be some appropriate

For 5=0 and L=0, the kinetic energy operator reduces to T ., and is

source potential re—expressed in BRI coordinates. Following the usual

11

procedure™", V is expressed as a sum of separable parts VU in each of the

internal coordinates and a non—separable part V ns’

(5.3)

V:VSGP+VHS=ZVi+ ZVi-+VnS

i i<j
where Vi and Vij are functions respectively of Qi and oij only. For the purpose

of this illustration, it is assumed that Vn g << VS ep’

The S+#0 states are treated in a similar fashion:

Ve= (Vc)sep + (Vc)ns

=X(V.). + 2 (V). + (V) (5.4)
[l i<y 1] ¢/ns
and the effective potential V off is expressed in the form
- iE(Veff)i + iEJ.(Veff)ij + (Veihng (5.5)

For non-inertial frames invariant under exchange of identical particles, it

Is again reasonable to assume that (V C)nS<<(V C) sep’

With this notation, the zero—order hamiltonian HO
H,=SH+ % H. (5.6)
i i<j
1s the sum of three equivalent radial one—dimensional terms

2 2
i} { 0 2 0 }
H =-5 + - V. (5.7
i=739 BQiQ Q 3, Vi )
and three equivalent one—dimensional angular terms
2 2 -
—_R a 9 1
Hyj=-5- Qoo+ COtgijap;}_Qlj Vij ] (5-8)
1]

~ -2 -2
where Qij =Q" + Qj

The angular equations
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1]
can be solved numerically by the renormalized Numerov method s (RNM)
yielding the eigenvalues —AI(lij) and the corresponding eigenfunctions Al(lij).
After substitution into (5.4), the radial zero— order hamiltonian becomes:

H,(Q) =3 1((q,) (5.10)

where

D) =
1{d(q,) =
SR el e
2 5Q,; 2 —Q_BQ_ '

which leads to three separate one—dimensional eigenvalue equations
(1) (ijk) _ (ijk)g (ijk) |
Hy (Qi)Ra =€, Ra (5.12)
These equations may be solved numerically by RNM establishing a

zero—order basis

X = R(QI)R(QQ)R(Q3)A(912)A(¢913)A(023) (5.13)
where the various labels have been omitted for simplicity.
The non-separable hamiltonian is comprised of Vns and the coupling

terms between the angular BRI momenta,

cosS 62
ij
Viet2) oF 00,0, (5.14)
i<j <k J

The matrix elements of the coupling potential are evaluated numerically
employing the zero—order basis (5.13). The coupling operator treatment
necessitates the evaluation of matrix elements of the form (using short-hand

notation)

xSV 1501149 (5.15)
J
that is, after taking advantage of the orthogonality of the radial eigenfunctions,
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<Agij)|3§i}|A i), | | (5.16)
The evaluation of (5.15) does not represent extra work since the anguldr
eigenfunctions A(ij) as well as their derivatives are stored in numeric form in
themRNM and all that is needed is a numerical integration at each step.

The entire problem is therefore soluble in a symmetric fashion by known

numeric techniques.
6. Summary and conclusions.

The main purpose of this stﬁdy has been to derive a kinetic energy
operator tailored to N—-body systems whose rotational motion may be described
by a fragment constituted from four non—coplanar particles possessing a
semi-rigid stucture. Four-body systems characterized by such a behaviour are
the simplest cases for which the present model applies. The frame independence
of the pure internal kinetic energy operator has been demonstrated. This
property does not hold for 2GJV frames as pointed out in IL. A completely
symmetric hamiltonian for four body symmetric-tops represented by orthogonal
symmetric Jacobi vectors has been derived. As a result, the hamiltonian has
been separated into six one-dimensional eigenvalue equations which one may
proceed to solve numerically. The perturbation treatment which approximates
the coupling terms between the angular variables involves no extra step since
the matrix elements of the perturbing operators are readily obtained.

In addition to symmetric tops,the model applies to four body molecules of
type (AB,)X where the axis of quantization is along the bond AX (i.e., for m

X
>>myp ) and where the two Jacobi vectors associated with both bonds AB
2
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are involved in the construction of the axes ?1 and ?2. In this case, the rotating

frame is global and the pure internal kinetic energy operator is still given by

equation (3.13).
APPENDIX 1

Evaluation of the matrices I for a (3GJV)-N.LF.

" The matrices £} are deﬁned3 by:

: ot
Q;/\ = (?u’ ig)
dq
where the frame vectors "fy are defined by:

f,=3%B,40)

and A,u,v are cyclic permutations of 1,2,3 as usual.

Expressed in terms of the linear momentum operators P,

(A.1) becomes:
o
Qaz\ = i( ’pla?z/)
Substitution of (A.2) into (A.3) gives:

I
Q /\—zEy plaBVJ+R B

where

(f,,40) = y#

and

i (2 pd0) = (,2) =R,

Recall the transformation of the linear momenta from the inertial to the

non inertial framelz

. i o) , o
Dig = ERogdmg+ Z15, (PO + P 4+ K)]

If acting on an intrinsic function f, K;(f) = 0. If { depends only upon the

GJV defining the frame, P;y(f) = 0. Furthermore, P; = 0 since the set of three
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GJV is fixed in label space, hence:
In particular, the coefficients Bz/j are intrinsic functions expressible in terms of
the elements Gij of the Gram matrix of the GJV defining the frame and satisfy

the above criteria:

Substitute this result into (A.4) to obtain:
~zEﬁR ﬂEy TgBy; ~ i Byl ' (A7)
The matrices I' are given by:
i _ i
Qoz/\ - EﬁRaﬁIﬁ/\ (A.8)

By comparing the two last equations, we obtain the explicit expression for the
matrix elements Ib /\-

1 _
UsingB=Y -1 where Y is the matrix of elements y , we can replace B . Vi by

cJ /c where cJ and c are respectively the cofactor of y Y and the determinant of

Y

i = ()T i) (A10)
where i,j,k and 0,7 are cyclic permutations of 1,2,3
c= Eaciayia (A.11)

By using the properties of the cofactors, we obtain:
i jv_ i, . iv
= -3 [X. . 12
Iﬂ,\ i JcJ Wlﬁy. +ic 6,uﬁ] | (A.12)
The matrix elements of I' are obtained by substituting % and the linear

momenta =  respectively by (3.3) and (3.8). The result takes on the simple

form:

Iiﬁ/\ =—imgl s (A.13)

that is the matrix elements of I' are the result of the action of the linear
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momenta in the non—inertial frame on the angles ¢ 3 It is easily seen that the

diagonal elements of the r are zero.

APPENDIX 2

Eigenvalues of the 3x3 Gram Matrix : Cardan's Formulas.

Let G be the Gram matrix of the three Jacobi vectors ai; its elements are:

Gij = Qincos{)ij (A.IL1)
The secular determinant is given by equation (3.16):
Bop? st oviag (AIL2)
The analytic solutions for the roots of this cubic equation are given by the
Cardan's formulas':
let
4
2
p=S"-£&
6 2 2
2 -
and
3 2 1/3
P—|-g+ 57+ 11/
/ (A.I1.3)
3 2 1/3
=|-9_ q°41/2
Q= [ 3~ [hr+ 4]
The roots are
o
2040
Ag = wP + w'Q + 3 (A.IL4)
2
A= P + wQ + :;L
where w is a cube root of 1 (w#1) that is
w= —1**24.& (A.IL5)



The positiveness of the three eigenvalues ’\a permits to decide between the sign

+ for w.
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Figure 1. '
Spherical angles Sij for a four—body. gi are the unit vectors along the Jacobi .

vectors Eii. The spherical angles Sij are the angles between the tangents on the

unit sphere to the arcs of great circles.
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APPENDIX 1
1. EUCLIDEAN SPACES
1.Definitions
An n—dimensional vector space En is a euclidean space once a
symmetric bilinear non—degenerate form has been defined. This means

that, given the vectors X, y and z of E and o (a scalar of the field F on
n

which the vector space is defined), one has

(%y) = (FX) (1)

(aXy) = (X,0) = a(Xy) (2)
(xy+2) = (%3) + (X.2) (3)

for any X, if (X,y) = 0 then y = 0 (4)

Once a basis (€) has been defined for E , any vector X and y is
1 143

expressed as

Xx=x% ;y=y (5)
where the Einstein convention on the summation over repeated indices has
been adopted (in any formula where the same index appears two times,
once as superscript and once as subscript, the summation is implicitly
assumed). |

The bilinear form (scalar product) takes the form

(%y) = xyi(€ € ) = xlylg_ (6)
i ij
where the scalar product of the base vectors has been represented by g
ij
g = (€,8) (7)
ij it

From axiom (1)
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j
The non—degeneracy of the form means that the determinant |g| of -

8. =8 (8)
ji

the (gij) is non zero. g is a second order tensor called the metric tensor

Two vectors X and § are orthogonal if

(%y) = 0 (9)
The norm NX of the vector X is given by
NX = (X,X) = gijxixj (10)

A normalized vector is a vector whose norm is 1.
An euclidean space is properly euclidean if the norm is strictly positive for
any vector X

The angle ¢ between the two vectors X and y is defined by

= =
cos¢ = _ﬁ_f_’&_l)
Nx.Ny
g x'yl
= p— A 1/2 (11)
(8. x'x%)(g_y'y’)]
ij 1)
An orthonormal basis is a set of n vectors satisfying
(8)=26_ (12)
i ij
that is the metric tensor is the n dimensional unit tensor.
In such a basis, the components of the vector X are
x = (%,6) (13)
1
and the scalar product of the vectors X and ¥ is simply
(%y) = xly! (14)
In particular, the norm of X is
NX = ¥ (xi)2 (15)
1

Consequently it is always possible to transform (diagonalize) a given
quadratic form g_x'y! into the form (x')? by a suitable change of basis
ij

'é’Jf = A;é’i (16)
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or in terms of the components

Note:

The quantities A and B are not tensors. Although a tensor is related
to a specific basis, these quantities are actually defined with respect to
both bases. A and B are matrices representing a transformation of the

system of axes.
2. Covariant and contravariant components

In an orthonormal basis the components of a vector are simply the
scalar products of the vector with the base vectors. In a non-—orthonormal
basis (é’i) this does not hold anymore. In such a basis, the contravariant
components of the vector X are the numbers x! such that

X = xié. (18)

1

The covariant components of X are the numbers x, defined by
1

x = (?c,é’i) (19)

In what follows, the covariance is expressed by subscripts and
contravariance by superscripts.

It is easy to show that

X = gijxJ (20)

This system of equations is a Cramer system. Let |g| be the
determinant of the tensor (gij) and ol be the coefficient of the
development of the element gij in g. Then

x = gladlx (21)
1
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d = glix (22)

1

where
gl = gl = glgit = g4l (23)
from what one deduces
det(gh) = |g|™ (24)
The expression for the scalar product becomes
(63) = g xly) = Xiyj = xy! (25)
= glxy. (26)
i

while the norm is expressed by
NX = xix = glix x. (27)
i 1]
For a transformation of basis defined by
e =BlE ; & =AR (28)
1 1] ) J 1
the contravariant components transform according to the scheme
xI= Akl ; x = Bix (29)
j 1
while the covariant components transform according to the opposite
scheme
x, = Blx' ; x'= Al (30)
1 1] ] } 1

3. Dual Space and dual basis.

Let X be an arbitrary vector of En and f(X) be a linear functional
(i.e., a linear transformation of En into the reals R such that, to X, there
corresponds through f a real number):
f(X+y) = f(®) + 1(y) (31)
f(ax) = af(x) (32)

In the basis (—é,), let x! be the contravariant components of X:
1
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f(X) becomes
f(xX) = xif(gi) = xla (34)
where
a, = f(é) (35)
Let us call E: the set of all the linear functionals f and let us write

them as x*, y*,... Therefore

() =y (36)

Define the composition
(v + 2)() = y'@) + 22®) = (75 + 20 (37)
(ay)(%) = ay*(%) = ay*’ (38)

The set E’; with this operation constitutes a vector space called the
dual space of En.

From equation (36), any linear functional can be expressed in a
unique way as a linear combination of the n quantities x'. The latter
constitute a basis for Ez and is called the dual basis of (é’i). In the dual
space, a linear functional y* is expressible in a unique way as a linear
combination of the dual base vectors x' as expressed in (36). The
quantities y*i‘ are the covariant components of y* in the basis (x!).

Let En' be euclidean. To any vector § of En, there corresponds a
linear functional defined by the scalar product (X,y) (actually this is a
particular case of the Riesz theorem). Conversely, to any linear functional
y*, there corresponds a unique vector y such that y*(X) = (X,5). One may
then identify the vector X of En with contravariant components x! with

respect to the basis (é’,) to the element of E* of components x in the
1 n 1

dual basis when those components are related by:
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x =g x5 x=glx (39)
i ij i
There exists therefore in euclidean spaces an isomorphism between -
the spaces E  and E*.
n n
Let us define another dual basis (e*!) such that
etl(e) = (€.6) =g (40)
i i ij
We have successively

ex(X) exi(x¥8 ) =(8 %) =g = x_ (41)
J 1
2. AFFINE SPACES
1. Definition.

Let ¢ be a set of points (A,B,...,) such that to any couple (A,B)
one can associate in a 1:1 manner a vector a of a n—dimensional vector
space En and such that

(A,B) = ~(B,A) (1)
(A,C) = (A,B) + (B,C) (2)

Moreover if, given a point O of o, to each vector a of En there

corresponds one and only one point A such that
(0,4) = 3 3)

then the set #is a (point) affine space o/, of dimension n.
2. Coordinate System.

One defines a repere for o in giving a point O and a basis (8) in
1

E . If Ais a point of ¢4 , the coordinates of A with respect to the repere
n
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(O,é’i) are the components x' of the vector a with respect to the basis
(Ei). There is a 1:1 mapping between the sets of n reals (x!,...,x") and the -
points A of o}”n (see condition 3).

Two points A and B of the affine space are defined by their
components (x!) and (y!) with respect to the repere (O,gi). The
components of the vector (A,B) = (A,0) + (O,B) = (0,B) —~ (0,A) are

the n quantities (y' — x%)
2. Change of repere.

Let (0,8) and (0',8") be two reperes for o . One has
1 n

1
(0,0 =2 ;5 (010) = b (4)

respectively the vectors (0,0') and (0',0) in the two bases (€ ) and (&')
1

1

e =A% ; ¢ =B (5)
j ji i i]
Let M be a point of ¢ with coordinates x! with respect to () and
n 1
x'J with respect to (é'). Therefore
]
(O,M) = xié (6)
1
and
(O’M) - (0,0') + (O'aM)
= ale + x@
i i
= (a' + Alx')E! (7)
1 1
By identification, one obtains
x! = al 4 Alx" (8)
1
The inverse transformation gives the components x' in terms of the
components x!

x = bl + Bix (9)
1
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In short hand notation, the vector X = (0,X) transforms into a new
vector in the same basis according to
X'=13a+ BX (10)
where B is a nonsingular nxn matrix and 3 is a vector of En. Such a

transformation is an affine transformation. The set of all affine

transformations constitute the affine group (n?+n parameters).
3. Affine subspaces.

Any subset 7 of an affine space of’n such that, for any point O of 7,
the vectors (O,M) which are associated with the points M of ¥ constitute
a vector subspace of En. In other words, the set of all vectors m = (O,M)
constitute a vector space Er, subspace of En and the dimension of ¥ is r.
For example, in the affine space of usual geometry, the planes are affine

subspaces of @Y;) .
4. Euclidean point space.

An euclidean point space is an affine space such that the associated
vector space is euclidean. If En is properly euclidean, the affine space is
also properly euclidean.

Let (O,_e’i) be a repere for an euclidean point space o}‘; . The distance
between two points A and B can be defined: the square of the distance of
the two points is the norm of the associated vector (A,B)=X. Analytically,
if (x') and (y%) are the coordinates of A and B then the components of 3

are the n numbers (y'-x!) and the square of the distance
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is given by
X2 = g, (v () (11)
Consider now the infinitesimal distance between the points X and
X+6X. With respect “to the repere (O,é’i), their coordinates are
respectivelly x' and xi+dx!. The square of the infinitesimal distance
between X and X+6X is
ds? = gijdxidyj (12)
Obviously if the space is properly euclidean and the repere
orthonormal, one has

ds? = (dx)(dx)) = Ei(dxi)2 (13)
Note:

Let a be a "covariant" vector that is, a vector having covariant
components a, and X be a contravariant vector of components x1.
Construct the linear form

LX) = ax! : (14)

It is easy to demonstrate that the form L(X) is invariant under any
change of basis:

LX) = K (15)
Equation (14) defines a hyperplane in the reduced space of dimension
n-1. The concept of covariant vector is therefore related to a system of
parallel planes orthogonal to the covariant vector a, the position of a
particular plane is defined by specifying the value of the constant XK. For
example in a two dimensional space, the relation (14) defines a line. For

a and a given, the slope of the line is determined and by specifying the
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value of the constant K, the position of the line is uniquely determined:
ax! +ax?=K
1 2

The line intersects the axis x! in K/a1 and the axis x? in K/a2.
3. TENSOR PRODUCT OF EUCLIDEAN SPACES

Let En and Fp be two euclidean vector spaces over the same field
and consider the bases (é’i) and (Tj). Suppose we are given a mapping f
which assigns to every pair of vectors (V,w), ?/’EEn and ?ver, a vector
denoted by vew which belongs to a third vector space L:

£:(V,w) - veweL (1)

We suppose further that the mapping f is linear in v and w

separately
(Vv + V8w = vow + v'ew (2)
ve(w +w') = vew + vew' (3)
(av)ew = ve(aw) = a(vew) (4)

where a is a scalar of the field.

_=e.8T of
il

linearly independent vectors of L. The vector space spanned by the

and that the set of np pairs (é 8% ) are mapped into the set 7
i i

vectors ?r’“ is denoted by E ®F and is called the tensor product space of
1) n P

E and F .
n P
In the basis (o), a tensor product vector is expressed analytically
ij
by
vew = viwlg_ (5)
ij
On the other hand a vector ¥ of L is expressible in one and only
one way by
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X = x5 | (6)
ij
The vector space En®FP contains vectors that are not of the form Vew
that is vectors that are not mappings (by f) of any pair (¥,w) (xU can be
expressed in many ways as a product of scalars v and wi).
The euclidean metric in En and FP defines an euclidean metric in L:
let ¥ and ¢ be two vectors of L, then

by — ljeklge of L ijekl
(08) = xefgsel = yiedly (7)

4. CURVILINEAR COORDINATES IN EUCLIDEAN SPACES
1.Definition.

Let a coordinate system (CS) be arbitrarily defined for the affine
vector space ‘é’n and (x') be the set of coordinates of a point M. These
coordinates are referred to as the rectilinear coordinates.

Let n continuously differentiable functions fi(y',...y") of the n

variables y' be such that

X = fi(y!,..y") (1)
Suppose the system (1) soluble, then
y' = hi(xl,... x") (2)
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The functional determinants

dfL 92 ... gfn
1 1 1
9L ... gfn
2 2 2 |

oti/dy} = § (3)
R R R

and

dnl 92 ... ann
1 1 1 A
hl 9h2 ... gnn
2 2 2

Ohi/oxi = (4)
Jhl Gn? ... g hn

are non zero.

If the functions f! are not linear, the set (y}) is no longer a system
of rectilinear coordinates but a curvilinear coordinate system. Any point
M is situated at the intersection of n curves which become straight lines
for rectilinear coordinates.

At the point M the partial derivatives of a vector ¥ = OM may be
defined relative to the n variables y?

‘é’i = M/dy'  (i=1,...n) (5)

The system of n vectors 3i is linearly independent since the
functional determinant is not zero. Geometrically, the n vectors é’i are
collinear to the tangents in M.

The differential of M is expressed by

dM = Eidyié’i = dyiai (6)

where the summation over repeated indices has been adopted.
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The n quantities dy! are the n contravariant components of the
vector dM in the local coordinate system defined at M and having the set

(.) as basis.
1
Note:

In linear transformations of coordinates, the coefficients Aji are
constants (transformation of a rectilinear system of coordinates into
another rectlinear system). The formulas (28-30) of section 1 are valid
uniformly in the whole space and the quantities A and B have a matricial
character. In curvilinear transformations the transformations are no longer
valid in whole space but rather are taking different values at different

points of the space although one should recover the linearity with

infinitesimal displacements. This is discussed in the next section.
2.Change of Curvilinear Coordinates.

A change of curvilinear coordinates is performed when the
coordinates (y') are substituted by a new set (z') related to (y!) by
2 = al(yl,,.y") ; ¥ = Bi(,... 2% (7)
where the functions of and A are several times continuously differentiable.
In doing so a new basis (8;) is locally defined at the point M so that
8 = a8/ odl = 5 (a%/0y") 3y 0s) ®

the formulas permitting the transformation are

€ = 3 (/o) = % AT (9)
J 1 1 1 )1

€ = %.(0/3y")8! = % B! (10)
i ] ] 113
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where

Al = yi/od); B = ooy’ (11)

To any change of curvilinear coordinates there corresponds a change
of the local basis at the point M given by the relations (9—10).

Let X be a vector whose contravariant components with respect to
the CS (M,ai) are the set (x!). Under the change of CS (M,éi) - (M,é’;)

defined by the relations (9-10 the components transform according to

xk=3% Ake'm  xm = 3 Byk (12)
m m k k
The matrix elements AX and B™ are related by the relation

n i
Bi = (minor of AX)/(determinant of A) (13)

m

so that
¥ AkBM = gk (14)
k m j i

Since the contravariant components of the infinitesimal vector dM
are dy! with respect to the local basis defined at M, the square of dM is
given by

|dM |2 = (dM,dM) = ds? = gijdyidyj (15)
where

8, = (€,¢) (16)
are the elements of the metric tensor of the CS (M,é’i).

When M varies the functions gij vary as some function of the
coordinates y'. ds? is the metric of the space. The length of an arc in ‘@"n
can be evaluated: let the curves defined by the coordinates y! depends
upon the parameter t and vary in the interval [A,B]. The length of the

curve between the two space points A and B is given by

arc(AB) = Jlbgij(dyi/dt)(dyj [dt)dt (17)
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Similarly the volume element is given by

1
dv = |g|* dy'dy®...dy" (18)

where |g| is the determinant of the (g ).
i
Note 1: Geometric interpretation of the coefficients g
ij

Along the axis i (vector ), to a displacement dyl, there
1

corresponds a real length

dif = lé’ildyi (N1.1)
From (15), if all the other components are zero, the square of the length
is given by |
ds? = gii(dyi)2 (N1.2)
That is
g, = eI (N1.3)
Similarly, one obtains the value of g
1/2lj
8 = (giigjj) cosﬂij (N1.4)

This interpretation clarifies the concept of orthogonal curvilinear
coordinates. To a diagonal tensor g, there corresponds a set of orthogonal
curvilinear coordinates. Of course the concept of orthonormal curvilinear

coordinates does not make any sense.
Note 2: Diagonalization of the tensor g

A space is euclidean when the coefficients g are constant. In
ij

general (Riemann spaces), the coefficients are function of the coordinates.
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In taking their value at a particular point, one can define an euclidean
space (gij are constants): this space is called the tangent euclidean space
to the Riemann space at this point. The reduction of the tensor g to a
diagonal form can be carried out in a similar :s}vay as for the euclidean
spaces by using infinitesimals. The same procedures are used. The example
of the "infinitesimal Gram—Schmidt" orthonormalization is carried out
hereafter.
—

Let us choose a new axis x!, to an infinitesimal displacement dx?,

there corresponds ds%

e = A‘l‘ek ; dxl = Aid?é (N2.1)
ds? = g,kA;All‘(dx—l)2 = (dxt)? (N2.2)
1
that is
5 = iAk
g, = gikAlA1 =1 (N2.3)

This particular direction being chosen, one proceeds to reduce the
dimension of the space by one unit. A vector &% is decomposed into a.
component ¢x! in the direction El and a component &x* in a n-l
dimensional space but orthogonal to the new axis X!

B = 6xl + Tx* (N2.4)
with
(?9?(,62 = gikﬁx*lAll‘ =0 (N2.5)

This condition expresses the orthogonality of the vector x* of
components &x*' with the vector 61 of components All‘. The length of the
vector ¥x is given by

5% = gik[A;&l + (?x*i][All‘&)? + x*Y] (N2.6)
since every component &x! is the sum of &' referred to the direction A;

and of the remaining &*', orthogonal to é&x'. The development of (N2.6)
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gives
& =g (&N + g AlGloxrk + g ARGRISxH 4 g ferigerk
11 ik 1 ik 1 ik
The two first sums are zero (according to N2.5) so that
&% = gﬂ(&?)? + fs*? (N2.7)
5s*2 = g,kc?x*iéx*k (N2.8)
1

The term &*2 corresponds to the n—1 dimensional space. In

n
, X

continuing the procedure, one finally obtains the new axes x!, X2

which decompose the ds? into a sum of squares
ds? = gkk(dzk)2 = (dx¥)? (N2.9)
3. Tensor fields.

With any point of ‘@"n we may associate some euclidean tensor
defined with respect to the local basis (81) defined at M. The CS
(M,é’i).deﬁnes bases in the euclidean space En for the tensor products of
E . In doing so, one defines a tensor field in the CS (y!). To any change
of coordinates (y') - (zJ), there corresponds a change of the local basis
(_éi) - (_e’J[) and any tensor t will transform according to the formula

tli(j = B;B;Ait'rllm (19)
where the summation convention is used. The A and B are .defined by the

relations (11). In the present context, the covariant metric tensor g
ij

transforms according to the formula

g . = Akplg! (20)

In order to compare the metric tensor at two different points M and

M', one must know how the local bases at points M and M' are related to
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each other since the tensors are defined in terms of the two bases. In
other words, the problem can be set up as follows:

The euclidean space En being defined in terms of curvilinear
coordinates (y') for which the metric is given by ds?® = gijdyidyj, to
determine the basis (M+dM, é’i+a'§i) relative to the basis (M,?}i).

The local basis in M+dM will be determined once the contravariant
components of the vectors dM and Hé’i will be expressed in terms of the
CS (M,é’i).

The contravariant components of dM are given by

aM = dyiéi (21)

The vector H@i is expressed in terms of the base vectors é’i by

dé. = i (22)
i 1]
The components QJI are expressible in terms of the differentials dyk

since
aai = aké’j (akai = 88i/5yk) (23)

and the vectors Bké)_ are vectors of & hence expressible in terms of the
1 n

base vectors e by
1

-

g8 =Tig (24)
ki K11
so that equation (23) becomes
- 1 gk
aé’i =3 Il dy*e (25)
Finally
I = I gvk
Qi Fkidy (26)

where the I‘lj{ _are n® functions of the variables (v*). and equation (22)
1
becomes
= Il dyké
a@i I3 dy e (27)

and the problem reduces to determine the n3 functions Flj\ . from the
<1
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n(n+1)/2 functions g_ .
ij

4.Determination of the coefficients I'J .

ki
At a point M of & , the euclidean metric g__ is defined by
n ij
g. = (¢,2) (28)
j i
By differentiation we obtain
dg. . = (€,d8) + (€,dé) (30)
ij 1) ] 1

hence, by (22)
— 0h h
dgij = ngih + Qigjh (31)
Recall that the covariant components of a vector X are defined by
x = (x,8) = (xJe ) = xigll (32)
i 1 j 1

The covariant components of dé are then given by
1

_ - = _ k3 2 - k

Qij = (dei,ej) = (Qiek,ej) = Qigjk (33)

This result can be expressed as well in the form

— (Th agkgd 2\ — 1h k
Qij = (I‘kidy eh,ej) = I‘kigjhdy (34)

- k
= I‘kjidy (35)
where
— 1h

iji N Pkigjh ‘ (36)

The transformations are summarized in the following table

Q=g 0k
ij giji
_ h
iji - gjhrki
I = gih
Pki & Fkhi

We can then write dg__ in the form
ij

1

— k
=@+ T Ly (37)

dg. =Q _ +Q
ij ji
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Recalling that

dg.. = 0 g_dy" (38)
ij k™ij

and identifying the coefficients of dy* in (37) and (38), we obtain
_ _ 1h h
akgij B iji + Fkij B Fki &in + ijgih (39)
The system (39) is composed of n?(n+1)/2 equations since there
exist n(n+1)/2 distinct g and the index k runs from 1 to n.
ij

The equations (21) and (22) must be integrable, that is

PM=FM (40)
kj jk
and
e = P¢ (41)
ki i jk i

From equation (5), the integrability condition (40) becomes

—_— —_
PM=209(0M)=0d¢ (42)
kj k] k j
but from (22)
2 — (42 \Vdvk — P12 4ok
dej = (6kej)dy = ijeldy (43)
so that
—_—
0e =Tld =8 M (44)
k j kj 1 kj
In a similar fashion, we obtain
_— 5
FM=Tl¢g (45)
jk jk 1

By using the integrability condition, we obtain finally

1 _ ql
ij = ij (46)
Ky lek (47)

These two systems furnish n(n-1)/2 equations for each value of 1
and since 1 runs from 1 to n, the sets (46) or (47) furnishes n%(n-1)/2

equations. The systems (39) and (46) provide then n® equations for the n3
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unknowns I‘k“. All we have to do is to expressthese equations in terms of
J1

the g and their derivatives.
ij

5. Determination of the coefficients I‘kl_
j

By cyclic permutation of the indices in equation (39) and taking

into account (47), we obtain

Fjik + iji - 6kgij (48)
iji + Fikj - aigjk (49)
Fikj + Fjik - ajgki (50)
(48) + (49) — (50) gives
2iji - akgij + aigjk B ajgki (51)
Let us define the algorithm [ki,j] such as
] =T, = (98, + 0g, — 08 )/2 (52)
The values of I‘i_ are determined by
j
i _ 4ib _ i1
Ly = 8T, =& kb (53)

Let us define a second algorithm
1Yy =11 = gihfki
(1) =T = ghfkih] (54)
The two symbols (Christoffel symbols of first and second kind,
respectively) provide the way to evaluate the values of Fk,_ and Pii _from
ji i
the metric tensor g and their derivatives. The problem formulated by
ij
equation (27) is then solved either by
2 (] k=
dei (k i)dy ej (55)
or by
dé, = gih[ki,h]dyke. (56)
i i
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6.Example: spherical coordinates.

Let
X = rcosfcoseo
y = rcosésing
z = rsinf

The inverse transformations are

1
r=[x2+ y? + 2%

¢ = atn(y/x)
!
f = atn[z/(x*+y?)]?
The rectangular coordinates (cartesian) are
d=xx2=y;x3=12

while the curvilinear coordinates are

V=59 =¢y =0
—

The curves crossing at M are the radius OM, the parallel of axis z

passing by M and the meridian of center O passing by M. The base

—_ :
vectors are the unit vector along OM, the tangent vector to the parallel

(length = rcosf) and the tangent vector to the meridian (length = 1).
Notice that the three vectors are always orthogonal whatever the point M.
Such curvilinear coordinates are orthogonal curvilinear coordinates.
The metric is
ds? = dr? + r%cos?0d¢® + r2de?
The components of the metric tensor are then

g11:1

22
= rcos“f
g22
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2
g =7
©33

g.. =0 (i#)
ij
Since the metric tensor is diagonal, gl = 0 for i#j and
[kij) = () = 0 for i#j#k
<1

kil = L 1y = L -k
[kkjl == 0g 5 (7)) ngjc?jgkk for j#l

j kkl k k
(ki,k] = [ik,k] :l—iaigkk
iy _ (ky_ 1
(k k) B (i k) - ngkaigkk

7.Change of Coordinates for the coefficients I'

The coefficients Q3 and I‘i_ are not the components of tensor
1 <)
quantities. Let the change of basis be defined by the following usual

formulas
e = Bl ;¢ = AR (57)
} i il j jk
where A and B are defined by equation (11). By differentiating (57), we

obtain
dé = B!dé' + dBE o (58)
i i 1 il
Since
de. = Qié and dé' = Q'"g (59)
1 1] 1 I m
we have successively
0i¢ = Bl 4+ ¢BlOIE! (60)
1] i Im i i1
= BIQ'mAIZ 4 dB!AIG (61)
i 1 mj i 1]
Therefore
Ql = BlQmAT + dBlAJ (62)
i i 1 m il

In terms of the partial differentials, we have

O =Tidyx ; Qi =ridyk (63)
b ki i ki
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The components dy'¥ transform as
dylk — Bkdym
m
and since
dB! = 9 Bldy*
1 k i1
relation (62) becomes
I dyk = B'AIT™ dy'™ + Alg Bldyk
ki i m nl 1 k i
= BIBRAIT'™ dyk + Aldykg B!
1 k m nl 1 ki
hence,
I'N = BlAIBrm 4 Alp B!
J m k nl 1 k i

1

8.Absolute differential of a vector

a. Contravariant components

(66)

Let v be a vector in the space & . We want to determine an
n .

expression for dv corresponding to a change M » M + dM. We know that

the components v of vV change during the transformation M - M + dM,

but we must also take into account the change of the local basis

(M,8) ~ (M+dM,8 +d& )
1 1 1

At the point M, we have the expression for v in terms of its

contravariant components

=

1

e-
1

—-)
vV=yv
By differentiating, we obtain

- = i 12
dv = dv'e + vide
1 1

(67)

(68)



By using the definition of d@i given by (22), equation (68) becomes
dv = dvié + vhQig
i hi
= (dvi + thlil)é)i
= vvié’i (69)
The components of the vector dv are expressed by
Wi = dv! + v“Qli‘ (70)
The quantities Vv! transform as contravariant components of a
vector whereas dv' does not. They are called absolute differentials of v'.
Using equation (24), we obtain an alternate definition employing the
partial derivatives
dv = dvie + vhri dy¥e.
i kh i

= 9 vidykVe + vhIi gyké
k i kh i

= leviadyk (71)
X 1
where we have introduced
Vvl=9vi4 yiri (72)
k k kh
We have therefore
Vvl = Vkvidyk (73)

The components (72) are the components of a tensor, covariant in
the derivation index. this tensor is called the covariant derivative of the

vector v. the quantities 6kvi are not tensorial quantities.

b.Covariant components.

Let v be given by its covariant components v. We want to evaluate
g 1
dv by its covariant components Vv. Let w be a uniform vector field
1

defined in & hence dw = 0. The scalar product is
n
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(W,v) = wiv. (74)

- 1
By differentiating we obtain (since dw=0)
(W,dv) = widv_ + dwlv, (75)
1

1

By using (73) and dw=0 (hence, Vwi=0), it follows

Vwi = dw! + Qlilwh =0 (76)
that is

dw! = —Q;wh (77)

therefore
(w,dw) = WidVi - Q;viwh (78)

By using (70) and (74)

(w,dw) = invi = widvi — viinh (79)
= wi(dvi - th?) (80)

We obtain finally the expression of the absolute differential of v
. 1
Vv. =dv. - v Qb (81)
1 i h i
By using the same procedure as in the previous section, we get also
= - 2
VI\V %) Y I‘k1 . (82)
giving the covariant components of the covariant derivative tensor of the

vector Vv so that

Vv, = V vdyk (83)
i k 1
Summary.
Absolute differential Covariant derivative
Vvl = dvi + Qivh Vkvi =g vi4 Il yh
h k kh
(84)
Vv, = dv - Qby V}\v = 8 A Ity
i i ih i ki h
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These results can be generalized to the concept of absolute
differential and covariant derivative of a tensor. For example, let us
consider the mixed tensor t}

1

Vil = dti — hih (85)
1 1

11

The quantities Vt) are again linear differential forms of the dyX
1
Ut = V tidyk (86)
i ki
where

thi = 9 t) —Thti 4 pigh
i ki ki h kh 1
which are the components of the covariant derivative tensor of the tensor

T.

(87)

j
The absolute differential of g is
ij

Application to the metric tensor g
1

Vg =dg_ —Qbg - abhg (88)
1j ij i~hj j"ih
=0  (by using equation 26)
This result is known as the Ricci theorem:

The absolute differential of the metric (fundamental) tensor g s
ij

ZEero.
(

9. Differential Operators in Curvilinear Coordinates.

a) Gradient of a scalar field.

Let a field of scalars defined by means of a function ¢ of the
curvilinear coordinates y'. Since ¢ is independent of the basis, the
absolute differential V¢ reduceé‘to the ordinary differential d¢ which is
itself a scalar. Similarly, the covariant-derivative tensor reduces to the

vector of components qus == (’)kgb. By changing the basis, the components
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of this vector transform in a covariant way. This vector is the gradient of

the scalar ¢

U= gradg = 8 48 (89)
11 .
The components are usually written as follows |
._)
u = g1a'dkugz5 = Vk¢> = 5k¢ (90)
We may define the contravariant components u*
grad“g = g0 ¢ (91)

The norm of the gradient (Beltrami differential parameter of first

order) is given by

A6 =g0.90 ¢ (92)
i
b) Curl of a vector field.

Let v be a vector of a vector field defined in & by the covariant
. n
components v . Recall the covariant derivative given in terms of the
1

covariant components:

Vv =0v —-Tky (93)
il D! ji k

By permuting the indices i and j in (93) and using the symmetry of

I’ in their lower indices

rk =rk ' (94)
i ij
we get
Vv = 0dv -Tky (95)
ij ij Jji k
(93)—(95) gives
Vv - Vv =0v -0v =r1_ (96)
R 1] ] 1 1) 1)

which are the covariant components of a twice covariant tensor R. It is

obvious that R is an anti— symmetric tensor. This tensor is called the curl
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tensor of the vector v
curl v=0v —dv (97)
lj J 1 i J
If the vector v is itself a gradient of some scalar ¢, then the curl of

the gradient of ¢ is zero since (9“ 9= 8‘ qb

curl Uraa_é (98)
¢) Divergence of a vector field.

Let v be a vector of a vector field defined in & by the
n

. M . = .
contravariant components v'. The divergence of v is the scalar defined by

div v = Vv (99)
1
From the expression of the covariant derivative given by (72), we
deduce
divv=0avi + I‘fl vh (100)
1 mn
By using Ricci theorem, the quantities I‘:‘l are given by
1h -
It _g”c? g (101)
ih h™1ij 5
1
o lgl"/

-1
=g5g—ﬁ~12 (102)
gl
and the divergence can be written

@ ¥ = gl %0 (g2 (103)
i .
d) Laplacian of a scalar function ¢
In &, the laplacian (Beltrami differential parameter of second order)
n

of a function ¢ is the operator

A ¢ = div grad ¢ (104)
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By substituting the expressions of the gradient and the divergence

one obtains

Ao =gl -Ta]¢ (105)
2 ij ij k

where d_ stands for the second derivative with respect to yiand yi.
ij

Page 30



APPENDIX 2

ROTATIONS IN 3-D SPACE

1.—Definition

Recall that a rotation in 3d-euclidean space is a linear
transformation leaving one point fixed (origin of the reference frame) such
that all distances and angles are conserved as well as the handeduesé of
the frame. This can be expressed by:

R:q-T = Rg (q is transformed into T under R)
R: (q,r) » (R4,RT) = (4,r) (scalar product conserved)
R: gxs -+ RqxRS = Rgxs (vector product rotated)

It is well known that a rotation leaves all points fixed along some
line through the fixed poini;: the axis of rotation U is a unit vector along
this fixed line. A rotation is then characterized by an axis and an angle ¢
of rotation (0<¢<2r) and is denoted by R(¢,u). The rotated vector Rq can

be expressed as the linear combination:

R(¢,1): 4 - RQ = cosg.d + (1—osg)(d,d)d + sing(ixq)

2.—The set of all rotations forms a group.

The product of two rotations, -denoted by R1R2 is obtained
rotating the system by R2 followed by the rotation Rl’ Clearly, the

product is associative: (RIRQ)R3 = RI(R2R3) = R1R2R3. The inverse of
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the rotation R{¢,u) is R(~¢,u) and is denoted by R_l(gb,ﬁ). ‘The identity
is R(0,1), U being arbitrary (i.e., no rotation).

In general, rotations do not commute: RlRZ # RgRl. However,
rotations havingla common axis U commute and form then an abelian
subgroup:

R($,U)R(¢',0) = R(¢' D)R(4,4) = R(¢+¢',1)

Finally, rotations having same angle ¢ form a normal subgroup and
define an equi&alence class C & for an arbit;ary rotation S, one has:

SR(4,0)S" = R(4,51)
3.~The group of rotatior can be represented by SO(3)

In order to obtain a matrix representation of the group of rotations,
let us choose some fixed orthonormal basis {e a} having origin at the fixed
point O. Any vector q of the physical space is represented by the column
matrix q = (ql,qZ,qB)t with q% = (a,aa). Therefore, a rotation R has a
well defined action on the base vectors (passive meaning: the frame is
rotated whereas the vectors are unchanged but received new labels {q'Y;
active meaning: each vector is transformed and the frame is invariant).

‘Consider the 3x3 matrix [R] whose elements are:

(R] of = (é’a,Ré’ﬂ)

To each rotation R there corresponds one matrix [R] and the action
of a rotation R on an arbitrary vector q is well defined:

Ri = ], (S40R] 008,

Writing the vectors q and Rq = q' as column matrices q and q',

one obtains the matrix equation q' = [R]q.
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One can now show that the matrices [R] form the group of real,
proper orthogonal 3x3 matrices SO(3), i.e., real coefficients, detR = +1
and R® = R That [R] belongs to SO(3) is shown in note (1) below.
The homomorphism R - [R] = SO(3) is a represe;tation of the group of
rotations defined relative to the fixed reference frame {é’a}. It can also be

shown that a matrix [R]eSO(3) does not necessarily determine a unique

rotation.
4.—-Parameterizations of the Group of Rotations.

The representation of rotations by SO(3) can be implemented by
various parameterizations. we shall concern ourselves with the two most
common: (a) the (¢,u) and (b) the Euler angles (0‘1’0{2’0‘3)'

Any matrix of SO(3) has 3x3=9 entries; from the orthogonality
relation RR! = 13, there exists therefore 6 relationships between those 9
entries leaving three independent parameters which can be taken

arbitrarily provided the orthogonality is respected.

The (¢,u) parameters.

Wrt the inertial frame {?a}, let u® be the component of the unit
vector u: u® (u? ) Construct the skew—symmetric matrix N such that:
N o = — (a,B,7 are cyclic permutations)
The rotation matrix [R{¢,u)] takes the form:
[R(4,0)] = Is + singN + (l—coqu)

Noting that N3 = —N, one can use also the exponential form:
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[R($,0)] = e

using the well known exponential function of matrices:

A v AP
€ :E D!
p=0 =~

The domain of definition of the parameters, 0<g<m, (ﬁ,[’i) = 1,

covers exactly once the elements of the-group SO(3), except that, for
¢=n, U and —u determine the same rotation.

The inverse relationship, expressing ¢ and U in terms of [R] is:

cos¢ = (tr(R) -1)/2
u%ing = —([R]/h'— R] 75) (a,B,7 are cyclic perm.)

The angle ¢ and the polar angles (0,¢) of the unit vector U wrt the
inertial frame {?a} constitutes another appropriate set of parameters for
the rotation matrix [R]

One shows easily that:

. uS = cosd

ut = sinflcosp u‘2 = sinfsing
The Euler Angles.

If we consider the active transformation, then R(%) maps an
arbitrary vector q to the new vector g = R(—a’)a. The components of g'
are related to those of q (in the inertial frame) by:

' = [R(&)]q
where, (R, being a 4rotation of ay about 2’/\)

[R] = RyR,R,
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-

cosa1 —sina, 0 oSt 0 sine, Cosag —81n03 0
= sinay cosay 0 0 i 0 81na3 cosag 0

0 0 1 —sinaz 0 oSty 0 0 1

€1€9C3 = 8183  ~CyCyS3 — 84C3  Cy8y

The domain of definition is:
05a1<27r ; Ogazgﬂ ; o§a3<‘27r

Distinct sets of numbers {a} lying in these intervals correspond to
different rotations except for @ = 0 or @y = . In the first case, the
rotation is through an angle @ + ag about ?3; in the second case, the
rotation is thrdugh =g about 7,’3. In these cases, distinct values of
&y and O3 may determine the same rotation.

The inverse of R(@) is R"l(a) = R(2r« =09, 2T~ )

The frame new {f/\} is obtained from {?/\} by application of the

rotation R = R1R2R3 in the passive interpretation; the matrix elements

appear as the direction cosines between axes: R /\ﬂ('&) = (2 /\,TQL

9.—Infinitesimal Generators of SO(3)

We assign the null parameters to the identity element R(0) Let us

now investigate the properties of the group elements in the neighborhood

of the identity element. For sufficiently small values of the parameters we
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may represent an element R(b’z) lying close to the identity by a Taylor

expansion:
A=3
= JR
R(d) = RO) + ) o [WJ +
A, u=3
OR } 3
~Ja + O(a”)
2,\2;1 1 [ /\]af/\:o[ au o =
1
A=3 /\ ;4—3
R(3) = R(D z Xy g z XX, + 0(ad)
where:

X, = {T—QR ]
A *y a'/\=0

The X ) are referred to as the infinitesimal group generators of

SO(3). If the inverse element R(Zy’)—l is also in the neighborhood of the

identity, then writing:
A=3 A, u=3
- 1 3
R(a) = R(0) - ) X, + = aya, X\ X+ 0(a”)
./\;1/\)\ 2/\2:/1:1’\”/\”
we have:

R(3) R(3) = R(@) + 0(a?)

Let us define the commutator of two group elements R(a) and R(a)

lying near the identity as
R(&)R(E) TR(@R(D)

The commutator must itself define a group element R(a") lying
close to the identity. Therefore, for sufficiently small values of the
parameters, we find, to second order in « and ¢o':

R(a") = R(0) + Dy [X) X ]

where [X )\’X/J] =X /\Xﬂ - X/JX I\
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1s the commutator of the group generators.

With the above parameterization in terms of Euler angles, we -

obtain:

0 -1
X1 =11
0 0
0 0 1
X2 =10 1 0
-1 0 0
0 -1 0
X3 =11 0 0
0 0 1
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APPENDIX 3
ROTATION MATRICES AND ANGULAR MOMENTUM
1. Definitions

Let |¥> be the state of the system, i.e., a vector of the state space
(separable infinite Hilbert space) and let {|q(i)>} be the usual
orthonormal basis; |q(i)> is the shorthand notation for the tensor product

|d()> = |q!'>e|¢2>8|q3>e... 8] g 13> (1)
|q(1)> represents a state in which particle (i) is perfectly localized
at the point q(i). The corresponding wave function is
<{@()}T> = %(q'p) (2)
that is a function of the 3N-3 coordinates q'B.

Under a rotation %, the state |¥> transforms into a new state —

[T >

> = R[|T>] = %] T> (3)

while conserving the physical properties of the system. It is easy to show
that % is a unitary operator acting in the state space.. This sets up a 1:1
correspondence between the rotations & of the 3-d euclidean space and
the unitary operators of the state space. Actually, this is true for any
transformation & of the configuration space). % is called the rotation
operator (this is true only for infinitesimal rotations, for finite rotations,
there correspond two rotation operators % and %" related by

%' = Dy (4)
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where D=1 for J integral and —1 for J half integral) )

With respect to the wave functions, the value of the components of -
|@-> at a given point d(i) of the configuration space is equal to the
value of the |¥> at the point ao(i) which transforms into q(i) iﬁy the ~

rotation &

¥ (@) = $(214() ) (5)
therefore
<q(@)|%[¥> = <211 v> = <q'(i)|v> (6)
or
<yB|T> = <qif| #%| > (7)

Under the rotation 2, the observables of the system undergo the
same unitary transformation as the state vectors: if 2 is an observable,
X9 = 2 with 2 = %.Z%Jr. In particular, any scalar observable o (i.e.,
invariant under the rotations) commutes with %:

S = UAU = F = (%, = 0 8)
If = (éz?l ,32 ,33) is a vector operator (see footnote) attached to

the system where g = (3;?18), then

UBU' =% R P ' (9)
Y BT B

The fundamental commutation relation characterizing the total
angular moméntum J is
[(3,u),(F&)] = i(ixd, ) (10)
where Jis any vector operator. V
Corresponding to a rotation along an axis U through an infinitesimal
angle ¢, the infinitesimal operator in state space is expressed in terms of
the total angular momentum J

Rleld) = J- ie(J,u) (11)
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where Jis the identity operator in state space and (j,ﬁ) is the component
of J along U. For a finite rotation R(0) parameterized by the Euler -
S
angeles 8, the corresponding rotation operator (parameterized by the
S

angles '95 as well) is given by the relation
%(6’8) = exp(—zr?le)exp(—wQJz) exp(—z&3J3) (12)

The usual representations of the rotation operator are obtained
choosing the standard bases |kJM>, common eigenkets of the hamiltonian
operator 4% J? and J3. The 2J+1 vectors |kJM> with k and J fixed, M

variable, have same energy.

With respect to these bases, the components J ; of the total angular
momentum operator are represented by the (2J+1)x(2J+1) matrices J ()
B

acting in the invariant subspaces é?‘J (irreducible with respect to the

rotation operator). The angular momentum matrices J (7) are obtained

from the characteristic equation

hﬁ] (Jé‘]) @y <o (13)
M=

where I(J) is the unit matrix of dimension (2J+1).

The general matrix element of the angular momentum operator J is

given by
<kJ'M/|JT, [KIM> = [(IoM)(JeM+1)] 26, 5, 14
. T 77 OM Ma1
<J'M- J3|JM> = M‘SJJ'§MM' (15)

where J , are the usual non-hermitian operators
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J. = J1 + z‘J2 ) (16)

The (abstract, hermitian) total angular momentum operator J is -

represented by its action on the eigenkets of any physical system in block

form. In general, the block matrix j(J) will occur with repetition LPSERE
different for each angular momentum J.

The rotation operator %(6) is represented in the same irreducible
S

(2J+1) dimensional spaces &y by the rotation matrices D(J)(O)

Dg) = exn=i0 7Y exn(ig 1) _ip 30
D (6’5) = exp( 201J3 ) exp( 202J2 ) exp( 203J3 ) (17)
with matrix elements
Dty = <IM'| 2(0)] IM> (18)
From the group properties of the rotations &, one deduces
52(08)33(08) = 59,(08) => %(08)‘2((03) = 2((68) (19)
=>
pg)p0(gy) = pOgry (20)

The general properties of the rotation matrices can be found in
reference . Equation (17) gives the complete expression for the elements
of the rotation matrices. Using the fact that Jgj) is diagonal, we find

DI\(/I‘.II\),[(HS) - exp(—zM'01)d1\(/[‘.11\)/[(02)exp(—zM03) (21)
where dl\(dgl\)/[(ﬂz) is defined by '
dl\(/I“II\)/[(Hz) = <IM|exp(-if ] )| IM> (22)
that is

a9y = exp(=ig 30 | (23)
2 22
2. Wave Functions for Angular Momentum Systems

It is customary to use the viewpoint of wave functions instead of
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that of eigenkets |kJM>. This shift of point of view is not trivial and
will be discussed in detail here.

The wave functions for angular momentum systems is understood by
considering the product law for rotation matrices

D) @ =¥ b Dhs[ﬂl\)/p(ﬂ') (24)
]\/Ill

We seek to interpret this result as a transformation induced by the
rotation % acting on the system described by the wave function
DI\(A*II\)&.( 0'). Consider this same action of % on the ket |kJM>

% [KIM> — [KIM>' = #|kIM> = ) D.{ M(&)]kJM' (25)
M
since % transforms |kJM> into |[kJM>' belonging to the invariant
subspace gJ
Let us regard the function D( )(0") in equation (24) as the

transformed system

D01 = DI (26)
The product law implies that
% D\ (8) — D = § plJdeo Dy () (27)
MH

The indices in this equation do not accord with the standard form
(25). To remedy this defect, we use the fact that D(J) are unitary:

replace % by %' and take the complex conjugate of the equation. We

obtain
J
% DI\(/IM?*(H;) — D *(9' =) DM,.M(a D 1\)4( 0)  (28)
Mll
This equa,tlon shows that it is the function DI\SHg/[‘) (6 ) — as opposed

to D,{ J)(0) — that transforms properly as state vectors carrying angular

momentum labels (J,M). This result is true for each M' = J yeees—d.
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Alternate proof

Let us  write equation (7) in  the standard  Dbasis
<yB|kIM> = <q'B|%|kIM> (29)
Using the transformation (25) for the kets under the rotation

operator, we obtain

<yBKIM> = <qu|EM,D1\SI‘.II\)4(03)|kJM'>

= 2D\ <P M (30)
By taking the complex conjugate, transposing and using %1 = ?JT,
one obtains
<g8|kiM'> = 5,0 (1) Jr(0)<y'8] | KIM> (31)
By changing M' into M and M into K, one gets
<g[lIM> = % <D1\(4K)*(0 )<yiB| [ KIK> (32)
which expresses the relationships between the state vector in the |[qif>
representation and in the rotated representation |y8>. This expresses
formally the separation of variables: the wave function <q'8|kIM>
depends on the (q'8). while the wave function <yi8|kJM> depends upon

the rotational invariant (y'8).
3. Realization with Differential Operators

By differentiating D(J)( ) (given by equatlon 17) with respect to 0,

the following results are obtained

9 (0 ()0
22 o) = Sl J0)

s
1
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plJ 3(0) i(—JEJ)Sinﬁl + JEJ)COSO)D(J)(O) O (33)

1 s
2
D( )(0) = -i(—JEJ)cosﬂlsinHO + Jgj)sinﬁlsinﬁq +

%‘Q} %1%

3
JgJ)COSHZ)D(J)(ﬁ )

S
One can invert those results to obtain the action (realization) of the

matrix operators J (J) on the matrices D(J) as differential operators ¢
5

JéJ)D(J)(f/’S) - ~%D(J)(os) (34)

The differential operators are

iy 5 ) §  cos 01 P
S = tlcosf cotd, o8+ 599 = 57ag o7
. 9 Smﬁ 0
4= Z[8111491C0w2 321 ~ cosf 879 1n9 (’)P] (35)
_ . 0
A= a0

The minus sign in equation (34) has been introduced in order to
preserve the commutation relation j;’lx}f: z}l (actually the sign has its
origin in the use of Dl\(/IM‘) as wave function). Expressed in terms of the
complex extension /i, the relations (35) become

) i 0 ]

;qdl: = —}f + z;g = exp(:i:z'ﬁl)[icotg2 3%1 + 3—02 - 5@; Wg (36)

We obtain therfore the standard action of the differential operators

%
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A Do) = (s () Ji () (37)
£ i) = gy E

}lis the physical total angular momentum operator of the system
(differential operator acting in the space of the angular momentum wave
functions DI\(/IJI\)/[*MS)' Indeed, take M = 0 in equation (21): this removes
the angle 93 in the rotation matrices and equation (35) just become the
expressions for the components of the angular momentum of a single
particle where 01 and 02 are identified respectively to the azimuthal and
polar angles of the position vector of the particle. Moreover, since it is

consistent to delete —52 in equation (38), this implies that B_g must
3 3

commute with the ;’4 It follows that the hermitian operator 5% = — Bg
3

completes the set of operators defining the rotation wave functions. To

the equation (38) we add

J J
2 D) = MDI\(,[.I\)/I*MS) (39)

One can now solve equations (35) for 5;
P =X R (0)f (40)

3 B B3 s B
The commutation relations are easily derived

[5;,3;] = -2 (f,7,0 are cyclic) (41)
(e}

[%,fr] =0 (f7=123) (42)

4. Physical interpretation of the Angular Momentum Operators
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With respect to an inertial frame {z‘a}, the total angular momentum
“#is expressed by
- ) ;
= ?1;;+?2%+?3% (43)
It is therefore correct that 2is defined by ~
?2=1T2+192+1 9 (44)
171 272 33
where {'fa} is a new frame (noninertial) obtained from {?a} by the
rotation R(6). &, 18 the component of the total angular momentum
S
referred to the moving frame {—fa}.
The commutation relations of the ;{Y with the R aﬂ(ﬁ) are easily
S
found
where {@,0,7} are cyclic and A=1,2,3.
Let %(wn) be a rotation of the frame {?a}along the axis n and
about the angle w. & transforms ?a into T& hence, %(w,—)T o= ?&. The
- I P
component of _falong n is (_#n) = PSRN W

By using equation (45), one finds the commutator

=
[0 ) = i@ ) (46)
Under the rotation #(w,n), /af ; transforms into
(A1) = A(wh) £,H(w-)T) (47)
therefore, #, transforms- into
k=00
- —1, = . -
Hwd) £, (wi) = ) i Fiw g, Ho (48)
k=o
By using the commutation relation (46), we obtain
T g= exp(—iw £ )T fxp(iw%) (49)

which expresses the fundamental result:
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The total angular momentum operator } is the generator of the -
rotations of the moving frame {?a} and is to be identified- as the tolal
angular momentum of a rigid body whose instantancous orientation is
specified by the frame {Ta} which is itself fired (no relative motion) in the

system.
Remarks

In equation (41), that is the set of operators —-50a that satisfy the
usual commutation relations of angular momentum. This is a direct
consequence of the fact that the ,% do not commute with the rotated axes
—fﬁ Observe also that the 9a are invariant with respect to the rotations
generated by "}l and ?a simultaneously, thereby leaving their scalar
product invariant.

Notice also that ,2 = 502 that is

Ao Tr0) = 3@+ {6 (50)

In order to obtain the action of the 5’& on the rotation matrices,

transpose equation (34) and use the symmetric and antisymmetric

properties of the J ((IJ)

73 _ )
9 - 50 1)

13 _ ()
3 3

and

Dt(J)(03,~92,91) - D(J)(01,02,93) (52)
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The operators ‘9001 take now the explicit form

. ) . d 0 , d -
P = 5; + 25’2 = exp(—z03)[—zcot02 éwg + 8?2 + ﬁi@ a—&l} (53)

. ' . . J d ) %, -
2 = 3; -2 = exp(zt?s)[—zcotﬂg 87773 - (%;2 + s_mZTZ 0—01] (54)
P = i (;,33 (55)

The action of the body-referred angular momentum operators I are
now obtained by complex conjugating equation (52) and by taking the

matrix elements

2Dy = (Bl 0y (s
M(0) = (@M (T 0) (57
2D = MDY T (0) (58)

It is important to notice that is now # and P . that are acting as
step—up and step—down operators respectively

Physically, the wave functions DI\(/["TI\)/[*(HS) are the wave functions of

a solid body with center of mass fixed in space: % is the z—component of

the angular momentum referred to space—fixed axes while 5; is the

component of the angular momentum referred to the body—fixed z—axis.
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APPENDIX 4
DYADICS

The notation of dyadics constitutes an alternate way to describe
systems of n particles.
A dyad is a pair of vectors written in a definite order ab; a is the
antecedent, B, the consequent.
We define the scalar products:
(ab,¢) = 3a(B,c)
(¢,3B) = B(a,c)
(ab;cd) = (3,0)(B,d) = (¢,ab,d)

A dyadic is a linear polynomial of dyads:

-
- o . - -
Let &, and b; be expressed in terms of the bases {c_} and {eﬂ}
respectively:
3 = al% B. = » 0%
i o o i g =B

and therefore:
T o9 = . _ i if
d = Ea,ﬁAaﬁcaeﬂ with Aaﬁ = ¥.a b
Take now the scalar products with some vector v
(?7d) = (;}’Eiaigi) = Ei(;},'&i i)v: EiBi(g‘i”s)
- = = e
(d,v) =~(Eiaibi,v) = .a,(b;,v)
The dyadic d may be regarded as an operator acting through the
scalar products on a vector v from the right or the left to yield a

superposition of vectors in a possibly different space
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Assume that the bases {Ba} and {¢ ﬂ} are orthonormal: -
CyCa) = 8,0 (Cgep) = 6pp
we obtain a representation of the dyadic d by the mxn matrix by taking
the scalar product with the the base vectors:
dop = CREPESACHENCERE £.al %17
With this notation we can encode all the internal position variables
of the n—particle system into a single dyadic, denoted by:
D =534 (i=l,...n)
where the prefactors {gn} formi the orthonormal basis of the relative label
space corresponding to the GJV q(i).
The transposed dyadic DY is defined by:
D' = Sq(1)3,
The individual particle positions are easily recovered by the
operations:
(8,D) = (D'3) = (1)
in using the orthonormality of the basis {31}.
Consider now the two "square" dyadics defined in terms of the nx3

dyadic D:

(a) the 3x3 quadrupole dyadic:
v “t . . N
M = (D%D) = = D)) = SO0
M is an operator acting in the 3—d physical space. Resolved along
three orthonormal axes {Ta}, M is represented by the 3x3 matrix:
- (o
"(?Q’M;fﬂ} = (M)Qﬁ = Zlql qlﬂ

which is the mass quadrupole matrix.
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(b) The nxn label dyadic:

G = (D,0Y) = %; &0

é is an operator acting in the n—d label space. Resolved along the
81 vectors, é is represented by the nxn matrix:

(:G.3) = (@) = @A) = 40" %
which is the Gram matrix of the vectors {q(i)}

The two matrices G and M have several properties in common: they
are both real and symmetric and their elements ére formed out of
products of components of n three-dimensional GJV. Both matrices are
positive semi—definite. It follows that they can be brought to diagonal
form, with non-negative eigenvalues, by orthogonal transformations.
Finally, both matrices have same trace:

TiM= B,(5(d') = 5 (@Y’

TiG = Zi{Ea(qia)z} = TtM
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APPENDIX 5
TENSOR, PRODUCT OF STATE SPACES.

Let V and W be two vector spaces over the same field (real or

complex) and consider the discrete bases {é’i;izl,...,n} and {?k;kzl,...,m}

(generalization to continuous bases will be done below). Suppose we arc

- . . . . -3 = —
given a mapping f which assigns to every pair of vectors (v,w), VeV,

weW, a vector, denoted by v®w which belongs to a third vector space L:

and

f:(v,w) » veweL
We suppose further that
(a) the mapping f is linear in v and w separately:
308w = Tou + View
Ve(@4) = Vew + vew

(aV)®w = ve(aw) = afvew)

(b) that it maps the set of nm pairs (3131{) into a set B’ik = é’@?k

of linearly independent vectors of L.

The vector space spanned by the set of vectors ?}ik (subspace of L,

which may be L itself) is denoted by V®W and is called the tensor

p;oduct space of V and W.

Let v = Eivlé)i and w = Ekwkfk. The generic tensor product vector

vew is expressed in the basis {,.} by:

oW = . ,Vlwk?}. i
ik ik
A generic vector Y of the tensor product space is expressed as:

- /ik—a
X = Zpx oy
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therefore, the vector space VOW contains vectors that are not of the form

v®w, that is vectors that are not mappings (by f) of any pair (v,w) (this -

is an important result for the interpretation of pure and mixed states).
Let us note that if V and W are equipped with scalar products (,)v

in

and (,)W, respectively, then one can also define a scalar product G

Vow
For each pair (¥,{) of VOW:

(W0 = Eﬁ,kk,u‘k) ()@ B Ay

Let. Ov and OW be linear operators acting in V and W
respectively. Their tensor product is the linear operator acting in VeW
defined by the following relation:

[0/80y](vew) = [0, V][0, W]

As a particular case, one consider the extension 6Vt0 VoW of an
operator ()v acting in V as OV®IW, where IW 18 the identity operator in
W and therefore the tensor product OV®OW coincides with the usual
product of the extensions (3\, and (~)W:

080y = (~)VC~)W

It is important to notice that the operators é\/ and (~)W always
commute in VOW.

It is customary to simplify the notation in omitting the symbol ®:

vw means VoW

OOy means  Oy®0yy

OV means OV®IW = (3\, .
In the first case, no confusion is possible, since vw has never been defined.
The two other cases are somewhat ambiguous; when the context is clea.r;

we shall adopt the simplified version.
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Consider now the eigenvalue equations of OV (discrete spectrum

I/n}):
=1 =1 . -
O\/an = va, (i=1,...,g(n))
where g(n) is the degeneracy of V-
We want to solve the eigenvalue equation of the extension Ov in

VeWw:

o=

on = /\X’
Every vector of the form E{Ill®\7/ (with w arbitrary of W) is an eigenvector
of OV with eigenvalue vy

O P} = -—)i—;/

O\/anx - (OVa’n))L = pdpX

If OV is an observable in V, the set {5111} is a basis for V hence, the

=1 _ ¢plky . . .
set {anYk} = {t "} is a basis for V&W as well and we therefo1e~have an
orthonormal basis for V®W constituted of the eigenvectors of Ov; this
solves the equation OV'_\)/ = /\Szf.

Therefore, if Ov i1s an observable in V, it is also an observable in
VeW and the spectrum of OV and OV are the same. However, an
eigenvalue v, which is g(n)-fold degenerate in V, has a degree of
degeneracy mxg(n) in VOW.

The results obtained above are now generalized to n infinite vector
spaces

Finally, let us solve the eigenvalue equation of CV®W = OV + OW
when the eigenvalues and eigenvectors of Oy and Oy, are known in V
and W respectively (to simplify, assume that both spectra are discrete and
non—degenerate in V and W):

= -3 T o

OVan = Yn%n ’ ‘ OWbm - Cmbm

-3 ‘ . - . 7 X7
OV and OW commute and the anbm which form a basis in VoW,
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are eigenvectors common to Oy, and Oy,

Oy 5“)an a yngngm (jWgn—Bm - Cmgan
They are also eigenvectors of C:
= = —) 3
Cznbm = (v, + gm)an m fnm nPm

Therefore, the eigenvalues of C are the sums of an eigenvalue of Oy and
an eigenvalue of Oy one can find a basis of eigenvectors of C which are
tensor products of an eigenvector of Oy, and an eigenvector of Oy

It is important to notice here that if two different pairs of values of
n and m which give the same value foe f do not exist, then $om
not degenerate (assuming that v, and ¢ = are not degenerate). The
corresponding eigenvector of C is necessarily the tensor product a‘nbm If,

on the other hand, is for example 2—fold degenerate (there exists n' and

m' such that ¢, , = ¢

n'm o) &l that can be asserted is that every

eigenvector of C corresponding to this eigenvalue is written:

where A and p are arbitrary complex numbers. In this case, there exist
eigenvectors of C that are not tensor products.

The above results can now be extended to any number of vector
spaces with infinite dimension.

Let E be the state space (i.e., an infinite separable Hilbert space) of
a system constituted of N particles. With respect to a fixed origin O, let
X(i) be the position vectors in the physical space E(3) and {7 } be a
fixed orthonormal frame. Let E . be the state space associated wwh )f .
To x jo , there corresponds the obselvable X. () in Ei o let Ix "> be the
infinite dimensional orthonormal basis and the eigenvector equation is:

X alxla’> — xla’lxla’>



In this representation, a vector |¢> of Eia has components given by
the scalar product <x'%|¢> = ¢(x'%).
The entire state space of the system is the tensor product of the 3N
state spaces Eia:
b= 85

®...QF = . K.

2 N3 101

We obtain a basis in E from the tensor product of the 3N bases
{|xia>}; we shall denote it by {lxll,...,xN3>} = {|X(1),..x(N)>} =
{IX(1),i=1,...N>} with:

]xll N3

X > = |x11>®|x12>®...®]xN3>

Let now |[U> be a vector of the state space E. In the basis |X(i)>,
the wave function (component of |¥>) is:
U(x(1) = <x(i)|T>
The x'% individual dependences cannot, in general, be factorized and
each of the wave functions associated with the vectors |¥> of E is a
wave function of all or some of the 3N variables.
The most general state |¥> is then:
o> = j@(?{(i))lxia>dxll...de3
Therefore, an arbitrary vector of E can always be decomposed into
an "infinite" (since the bases {[xia>} are continuous) linear combination

of tensor product vectors.
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APPENDIX 6
GJV DESCRIPTION OF ABn MODELS
1. General Considerations

The object of this appendix is to give an alternate point of view in
the matter of the construction of Jacobi vectors reflecting in "some way"
the symmetry of the system.

Ultimately, we are seeking a set of (3N-3) generalized
coordinates derived from Jacobi vectors and leaving the relative
hamiltonian invariant under exchange of identical particles.

If H is the relative hamiltonian expressed in terms of 3n—3 internal
coordinates Qo and three "external" coordinates (Euler angles) 0S derived
from a set of n Jacobi vectors q(i) and if P(q) is the permutation
operator (in state space) corresponding to the element 7 of the symmetric
group o}"n (in label space) then

[H,P(7)] = 0 for any 'yeofn (1)

A first step in this direction is to construct a set of Jacobi vectors
reflecting themselves the symmetry of the system that is, equivalent
symmetric Jacobi vectors which are the orthogonal analogues of the
equivalent interparticle vectors (the static model has same symmetry once
expressed in ES Jacobi vectors). This descriptioﬁﬁcan then be used to.
generate "derived" descriptions by some suitable label orthogonal

transformation p and reflecting some other aspects of the symmetry of the
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system.

The symmetry properties we are concerned with are then related to
the n vectorial quantities defined by a contravariant basis in the relative
label space as opposed to the scalar coordinates defining a basis in Telative
configuration space. Permutationsof identical particles ace represented by
permutation matrices acting in the label space (actually, a subgroup of

the orthogonal group O,

We consider systems comprised of a particle A of mass m and n
identical particles B of mass m~: the total mass is M = m + nm-’.
The contravariant label basis is
B = {xOx,... x%} (2)
where 0 labels particle A and i=1,...,n are labels for the identical particles

B.

The contravariant metric tensor is then

g(x) = diag(m™,m',...,m') 3)
The interparticle label base vectors are defined as
k= xk —x0 (4)

The transformation into CM/relative description is achieved by the

matrix Z such that

] = 2] ()

where the matrix Z is given by
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-1 0 0...1 (6)

m om' m' m'

LD S SRR

The corresponding metric tensor is given by

g(CM,1r) = Zg(x)Z* (7)
g(x) 0

g(CM,r) = (8)
0

g(r) is the relative metric tensor and is given by

[ 11 1]
t m m i
1 1 1
m Koo o m
g(r) = 9)
111 1
m m n m j
where £ is the reduced mass
_ m+m’
K= am~ (10)

As expected the relative label subspace is orthiogonal to the

I-dimensional subspace spanned by the CM base vector.
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Let us introduce the length o of r!

o=l (11)
and the angle ¢ between any couple of vectors ri and 1
, m -’
= = 9
4= C0S¢ = \my (12)

With these conventions, the metric tensor g(r) becomes

1 a a a
a 1 a a

g(r) = [r][x]* = (13)
a a a 1

where [r] denotes the column of the vectors ri.
The relative basis B L= {rl,rQ,...,r“} 1s not orthonormal and we are
re

seeking orthonormalization matrices O such that

Ofr} = [q] (14)
2. Equivalent Symmetric Descriptions (ES 4 and ES )

Let v be a pe.rmutation of the identical particles B. 7 is represented
in label space (can?er space) by an nxn permutation matrix p(7) of the
base vectors such that

(™) =L p()(r®) = (¢oq") (15)

The group of matrices p(7) is a representation of the symmetric
group eﬁ"n. The matrices p(7y) are orthogonal. Details concerning the
symmetric group can be found in appendix . g(r) is obviously invariant

under the symmetric group that is, for any +
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[g(r).p(7)] = 0 - (16)
Observe also that g(r)™® commutes with any p(+) since a polynomial
in g(r) and any polynomial in g(r)™? will commute with all the p(7) as
well.
We are seeking the orthonormalizing matrices O that commute

with all the p(9)

[0,p(7)] = 0 (17)
By using the definition of the orthonormalizing matrices
Og(r)0t =1 (18)
n

it follows (see publication I) that O = O and g(r) = 02 or
0 = gr)/? (19)
The positive solution O i of g(r)‘l/ 2 = X is unique (see appendix )

and is given in algorithmic way by

O,=1imO (20)
Vo v
where
: 1 _
<%A=ov+§@m1—03 (21)

On the other hand, since g(r) is symmetric and positive definite, it

is diagonalizable by a proper orthogonal matrix p

pg(r)pt = A = diag(/\l,...,/\n) (22)
If X is to be the positive solution of the equation
X = glr)1/? (23)
then
0, =)t/ = pta/2 - (24)

Apart from being a symmetric orthonormalization of the basis
{r1,...,r"}, O 4 commutes with any permutation matrix p(y) representing

exchange of identical particles. Yhis property is a direct consequence of
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the polynomial form of O L given by equation (21). Actually there exists

another solution for X commuting with p(7) (see below).

3. Analyﬁ’c Iixpression of the Positive Solution

The eigenvalues of g(r) are easily determined by solving the secular
equation. The results are

/\1 = o*(1-a) (25)
/\2 o?[1-a(1-n)] (26)
where /\1 is (n—1)—fold degenerate and /\2 is not degenerate.

It is easily shown that the eigenvector corresponding to ,\q is

pl = n‘l/z(l,l,...,l)

(27)
since
— n2[1—qf1—
(o -0 Jg(r) = o1 a(Al wio, 2, )
> Xp. —np =0 for any j
111 1}

> = for any couple (j.k)

1j 1k
3 = nt/2

1j

for any j = 1,...n

The eigenvectors corresponding to the degenerate eigenvalue ,\1 are

defined up to an (n-1) dimensional proper orthogonal matrix of the
~ degenerate eigenspace.

By using the E(S—Hl orthogonality relations

by = 9
il kj 6ij (28)
one obtains the (n—1) independent relations characterizing any matrix p
diagonalizing g(r)

Lp =0 . fori=2..n
k' ik

(29)
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n—1)(n-2)
()

L

Taken with the orthogonality relations, this leaves (
arbitrary relations among the P

On the other hand, the set of matrices of the type g(r) forms an
abelian group for both multiplication and addition hence, any polynomial
in g(r) belongs to the group; in particular g(r)'l/g. By using these
properties it is easy to evaluate the matrix elements of the positive
solution O_ . The results are

0,1, = 212 wta/2 -yl (30)

+]ii

[O = 11'1(/\;/2 - /\;1/2) (31)

+]ij

4. Other Solutions

We demonstrate hereafter that there exists an other solution for X
having the property (17).

Let {Cn(a,:b)} be the set of nxn mafrices having a on the diagonal
and b elsewhere: g(r) belongs to this set. {Cn(azb)} forms an abelian
group Fn,. for matrix multiplication, the identity is Cn(lzo) = In.

Let O be an orthonormalization for g(r) = C(a:b) satisfying

Ot=0 (32)
3 Og(r)0 = In (33)
OeI‘n since 02 = g(r)d‘n therefore
[0.g(r)] =0 (34)
Since O is an orthonormalization, it satisfies
0 = UO+ (35)

where U is an n—dimensional orthogonal matrix

Ut =yt (36)
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Since O and O n belong to I' , U belongs to the group. Moreover, U
- n
is symmetric since OU' = UO = O+U)
Ut =0 (37)

It follows that U is a square root of the unit n—dimensional matrix

U =1 (38)

n

Apart from the trivial solutions

U=1 and U=-I (39)
n n
%
the equation (38) has the solutions
’ B 2-n 2
U= icn(—'n_’ﬁ) (40)

Let us denote by O, the solution

0, = +cn(%,%)o N (41)
and let Os = Cn(a;ﬂ) then O, is given by
0, = C (a3 (42)
where
o' = n'(2n)a + 2(n-1)4| (43)
B =n2a + (n-2)4] (44)
In particular, for g(r) = Cn(2;1) then
Oy =C (nt+Ln) (45)
O = C (n-Lm) | (46)
where
7= Hmin)t/2 - (47)
7 = H@r)/2 4 (48)
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Remark

O, and O, both commute with all the p(7):

[P(7),0.] = [p(7),U0.] = [p(7),U]O, + Ulp(7),0,]
=0

Recall that any permutation is expressible as the composition of a

transposition P and the the cycle P /:

_ 1 2 i ] n
PX - ( 1 2 .- j fee i e n )
.12 n
P/ =y 1 - 1)

P commutes with'U and P / belongs to I' hence commutes with U.
n

It follows that [p(7),U] = 0 for any 1.

5. Derived Descriptions

From the degeneracy of the eigenvalue /\-1, there exists an infinity of
ways to diagonalize g(r). Following the discussion of section 3, let P be a
particular choice. By pre- and post—multiplyinf equation (22) by A“I/ 2, we
obtain

At/ 2 =0 (49)
P P

where O is the orthonormalization matrix corresponding to the choice p
P P

n-1)(n—-2
For example, one can take % elements P equal to zero.
ik

This defines uniquely an orthonormalization matrix for g(r). Of course this

choice does not lead to a symmetric orthogonal basis.

— -9
observe that the number 1 1% n—s

As another example,
relations is precisely the number of relations characterizing a symmetric

matrix of dimension (n—1)x(n-1) that is Py =P foriand k = 2,...n.
1K {1

By imposing these constraints, the matrix p is itself symmetric
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which implies that

P, = nt/?2 (50)
1
Moreover the diagonal elements p. (i # 1) are all equal. Let us call
11
these solutions p. They are orthogonal and symmetric matrices hence
¢t

square roots of the unit matrix.
6. Construction of "Irreducible Symmetric"* Descriptions

The n—dimensional rotation matrix P, transforming O, into a

particular orthonormalization Ot is such that
ptO+ = Ot (52)

A particular frame defined by the orthonormalization matrix Ot is
obtained from the ES frame by a rotation P, uniquely defined by the
prescription of (n_—l)%n_—@ relations among the elements P In particular
if P, 18 symmetric |

p, O = Al (53)

t

Every vector orthogonal to p' (defined in equation 27) is an actual
eigenvector of the degenerate eigenvalue and every linear combination of
such vectors are still eigenvectors. In particular, every vector of the form

(1,-..,-1,...) is orthogonal to p! but are not orthogonal among them. The

(n~1)x(n-1) metric tensor has the form

g =C (1) (54)
- By following the same procedure as above, g' is diagonalized by an
(n-1)(n-1) real, proper orthogonal matrix p' whose eigenvalues are

/\; = 1 /\; =1 (55)

where ,\; is (n—2)-fold degenerate while Al s not degenerate. The
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eigenvectors co_rresponding to /\; is
pl' = (11—1)'1/2(1,...,1) (56)

The procedure can be carried out by successively dimin ishing the
dimension of the eigenspace by one unit. The construction is as follows.

From the ES, orthonormal basis {sl"}, one can construct the "totally
irreducible basis" as follows.

Observe that the vector n-t/ 2Eisi is precisely the vector p! of the
previous section. In the degenerate eigensubspace orthogonal to p! one can
choose the basis formed by the (n—1) vectors tX = s'-s* (k=2,...n). This

transformation is achieved by the matrix Zc:

w2 ai/2 (57)
;- |1 a4 0 ... 0
t 1 0 -1 ... 0

The basis {t?...,t"} is not orthogonal, the associated (n-1)x(n-1)

metric tensor g (t) is not diagonal:
r

g(t)=C (@) (55)

and the new metric tensor is now

(59)

where O is the (n-1) column of zeroes. The basis {t2,...,t"} may now be
orthonormalized by either the ES, or the ES, matrices for the (n-1)

dimensional space.
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For example, one can use the (n-1)x(n-1) matrix O, given

analytically by equations (30-31):

1+ /I n
U+ - 1 1+7] PR 17 (n_1> (60)
7 7 ... l+79
(n—1)
where
_ 111/2 -1
= n(n-1) (61)

The transformation of the orthonormal basis {s} into the

orthonormal basis {p} is achieved by O,LZt where O, is the nxn matrix
0, = (62)

Py = OJ,Zt is orthogonal (hence O+ZtO+ is an orthonormalization of
{r}) and is symmetric hence is a square root of I .
n

The same procedure can be carried out with O, instead of O,

leading to p,. The results are as follows n-t/2

nt/2 gtfe gl cife
/2 4 _ _

. = n 1-n ... l (63)
pi/2 -n -n ... =1-9
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[ NEVE ISP
_ 11“1/2 1
Psx =
11"1/2 -

.

where 7 and 7' are given by (47-48).

IExample: n=4

1l
oy

P+

A
W W W w

D

Py =

I
L el

w
J

[ S
.

and p, corresponds to the "totally irreducible representation".
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' APPENDIX 7

POLAR DECOMPOSITION OFF AN OPERATOR IN
EUCLIDEAN SPACE

Theorem

Every linear operator A acting in a euclidean space is representable
in the form of a product

A = 5Q (1)

A = Q'S (2)
where S, S' are positive-semidefinite symmetric and Q, Q' are orthogonal
operators; here S = J(AAY) = g(AA"), S' = {(A*A) = h(A®A), where g()\)
and h(\) are real polynomials.

A is a normal operator if and only if S and Q (S andQ‘) are
p—ermutable.

Similar statements hold for matrices.

Let us point out the geometrical content of these formulas. We let
the vectors of an n—dimensional euclidean space issue from the origin of
the coordinate system. Then every vector is the radius vector of some
point of the space. The orthogonal transformation realized by the operator
Q (or Q') is a "rotation" in this space, because it preserves the euclidean
metric and leaves the origin of the coordinate system fixed. For {Q| = 1
this is a proper rotation; but for [Q| = -1 it is a combination of a
rotation and a reflection in a coordinate plane. The symmetric operator S

(or S') represents a 'dilatation" of the n-dimensional space (i.e., a
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“stretching" along n mutually perpendicular directions with "stretching
factors" Po Py - P that are in general distinct (/Jl, Py s P ATC
arbitrary non-negative numbers). According to formula (1) and (2), every
linear homogeneous transformation of an n—dimensional euclidean space

can be obtained by carrying out in succession some rotation and some

dilatation (in any order).
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-APPENDIX 8

PSEUDOINVERSE OF A MATRIX

For an arbitrary mxn matrix A there exists an nxm matrix A*, the
so—called pseudoinverse (or Moore-penrose inverse). It is associated with
A in a natural fashion and agrees with the inverse A™ of A in case m =
n and A is nonsingular.

Consider the range space R(A) and the null space N(A) of A,

R(A) = {Ax eRp | x ¢ Ry } (1)
CA) ={xeRy | Ax=0} (2)
together with their orthogonal complement spaces R(A)L C Ry and N(A)L
C Ry }. Further, let P be the nxn matrix which projects R, onto N(A)l
and let P be the mxn matrix which projects Ry onto R(A):
P =Pl =P2 Px =0 & x e N(A) (3)
152151‘=152,15y:y<:>y6R(A) (4)

For each y ¢ R(A) there is a uniquely determined X € N(A)L

satisfying Ax1 =y lLe., there is a well-defined mapping f: R(A) - IR[1 with
Af(y) =y, f(y) € N(A)" for all y . R(A) (5)

For, given y ¢ R(A), there is an x which satisfies y = Ax; hence y
= AlPx + (I - P)x] = APx = AX1’ where X = Px ¢ N(A)‘L, since (I-P)x
¢ N(A). Further, if X, X, ¢ N(A)L, Ax1 = Ax2, it follows that

x = x_ ¢ N(A) n N(&) = {0) (6)
which implies that X =X, f is obviously linear.

The composite mapping f: P: y € {Rm - f(Py) € an is well—defined and

linear, since Py ¢ R(A); hence it is represented by an nxm matrix, which

—~1
[SV]
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is precisely A*, the pseudeoinverse of A; Aty = f(P(y)) for all y e [Rm. '
A* has the following properties:
(1) A*A = P is the orthogonal projector P: {Rm — N(A)L and AA* =
P is the orthogonal projector P: [Rm - R(A)

(2) The following formula hold

a) A*A = (A*A) (7)
b) AA* = (AA%) (3)
) AA*A = A (9)
d) A*AA* = A+ (10)

(3) If Z is a matrix satisfying

a) ZA = (ZA)" (11)

b) AZ = (AZ)h (12)

c) AZA = A (13)

d) ZAZ = A~ (14)
then Z = A+ (15)
(4) For all matrices A

Av = A, (AP = (Ab) (16)
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APPENDIX 9
PERMUTATIONS OF IDENTICAL PARTICLES.

Let v be a permutation of the identical particles B. 7 is represented

schematically by:
(1)

We recall hereafter some definitions and properties of the group of
permutations of n elements: the symmetric group e}‘;l.
A transposition is a permutation leaving all but two elements

unchanged:

1 2 ..j..k..n
T = (7 % . - )
jk i) ig k... j i,

-1 2 . .
Of course, Tjk = Tkj hence Tjk = 'I, the identity.

A cycle (ijk...) is the permutation of m<n elements:

( @ % %1 %m % o %
012 (47 .o al am+1 Clnv

m

m is the length of the cycle => a transposition is a cycle of length
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The "general shift" is the cycle of length n:

.1 2 . n
= n 1 n—l)
Any permutation can be expressed as:

(1) a product of commuting cycles (no elements in common), this
decomposition is unique.

(2) a product of transpositions (with common elements), this
decomposition is not unique.

(3) some combinations of the only two permutations Ti9 and 7
Representations.

The (relative) label space plays the role of carrier space for a
representation of o}"nz to an element v of th there corresponds an (nxn)
permutation matrix p(y) acting in label space such that p(7)p(y7) =

p(yy”). Let {rl,...,rn} be the contravariant basis :

.
(ot s p( (™ = (e

In matrix notation,
p(nr =1~ (4)

The group 7 of matrices {p(7)} is a representation in label space

of the symmetric group &, and the matrices p(y) are orthogonal since
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p(fy)_1 = p(fy)t. Unless n=1 or 2, these groups are not abelian. . is a
subgroup of the orthogonal group ag.

A matrix A acting in label space is invariant under the group 2 if
[A,p(7)] = 0 for all 7.

If A commutes with all p(v), any polynomial in A is invariant under
2, in particular Al

A subspace S of the label space is invariant under 5-;1 if for ény ¥
and any vector x of S, YXe€S.

The action of p(vy) in physical space is then to transform the set {q}
into a new set {q’}. Actually, there exists another representation of o, of
interest: let {ae} be the set of Jacobi vectors at equilibrium; {Eie} is
obtained by the orthogonal transformation R(7) (in physical space) such
that R a'ﬂ(7) = (?&,7?‘3). The inversion ¢ of the physical space is defined
by if =—T and is represented by —I3. Thus the two correspondences:

7 —> p(7) and v —> R(7)  any 7ed) (5)

are representations of the symmetric group 05/;1.

The two representations are intertwined by the (3xn) matrix Ay

11 1.
e qg
N 12 n2 .
R KT (6)
13
@
that is:
R(7)A, = Ap(g) (7)

Obviously, the cartesian components with respect to the inertial

frame will follow the same invariance pattern whereas the invariance of
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the cartesian components in an noninertial fgrame will depend upon the
invariance of the frame itself. This will be treated rigorously in the next
chapter. Actually, a frame defined from all the GJV's is invariant under
any permutation 7y whereas "locally" defined frames are not.

In this chapter, we show that the sets of GJV's invariant under o
are the E.S. Jacobi vectors {as(i)} and {as,(i)} obtained by the positive
square root and a particular negative square root of g(r)"1 respectively.
Nevertheless, accounting to the above discussion, we shall consider derived
systems obtained from the E.S. by label rotations and reflecting some
other symmetries of interest in the relative configuration space.

Actually, since all p(7) are orthogonal matrices (p(y)~1 = p(fy)t),
their action in label space is a change of basis.the group of permutation
matrices p(7y) is a representation of the symmetric group S(n) (n!
elements) and is obviously not a faithful representation of G. For
example, the point group of SF6 contains 48 elements whereas S(6)

contains 720 elements.

-~
-1
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APPENDIX 10
REVIEW
l;Pa‘rameterization of the Relative Configuration.
a) General procedure

To an instantaneous configuration of the system, one associates a
point M of a point affine 3N-dimensional vector space. The metric
(euclidean) is diagonal and has the form:

g = diag(D ,D.,D )

n n n

where

D = diag(m,...,m )

n 1 n
m_is the mass of particle (i).
1
The covariant metric tensor is simply
g = diag(D-,D:L,DY)
n n n

so that the quantum kinetic energy operator has the usual form

2T = —-12 L m"y?
am n n n
where V? is the laplacian in cartesian coordinates
¢4
2
-y &
n T 5(XHB)2

By introducing generalized coordinates (P = (P (xY), the kinetic

energy becomes (appendix I)

27 = — h2 gpq _])_.2.__
ae D¢?DE
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where gP9 are the contravariant metric tensor elements and D/D(P are the
covariant derivatives. The diagonalization of Tqm amounts then to
diagonalizing the covariant metric tensor together with "assigning" three
coordinates to the franslational motion, three coordinates to the rotational
motion and the remaining 3N-6 coordinates to translation/rotation
invariant motion. This method is actually untracktable for systems
‘constituted of more than two bodies and alternate techniques have to be
cosidered.

In the present approach, the configuration space is interpreted as a
tensor product of a "label' N dimensional space with a 3-dimensional
"physical' space (this is justified by the block—diagonal form of the metric
tensor). The (dual, contravariant) label basis is orthogonal though not
normed while the "physical" basis is orthonormal. The separation of the
CM motion is achieved by introducing the CM vector as base vector. The
N-1 dimensional space orthogonal to x°™ is the relative label space and it

can be spanned by many bases.

b) Separation of the translational motion: Jacobi Vectors.

The viewpoint and the procedures of the derivation come within the
scope of the previous works of Wallace?” where the formalism developed
by Biedenharn?® has been adapted. Once the motion of the c.m. has been
removed, the relative configuration of the system is described by a set of
bond distance vectors {r} invariant under permutation of identical
particles. The corresponding cartesian coordinates with respect to an

inertial frame centered at the c.m. of the molecule do not lead to a
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diagonal kinetic energy operator. In order to recover the orthogonality, the
bond vectors are transformed into Jacobi vectors {q} by means of a label
orthonormalizing transformation O. The transformation O may be chosen
in order to reflect the symmetry and the "topology" of the system. This
was not the case for the previous version of Jacobi vectors which were
obtained from a Gram-Schmidt orthonormalization of the bond vectors.

The procedure is presented schematicaly in the following diagram

| Position Vectors |

3

r | Bond Vectors | ® [ C.M. Vector |

" "

— | Jacobi Vectors | ® [ Normalized C.M. Vector |

Figure 2.

The resulting kinetic energy operator is diagonal in the same fashion

than once expressed in the cartesian coordinates x8 of the position vectors

(%)

1 Eljiﬁf. _r 1 T (p )+ T

2 1»8 mi 2 kaB pkB Cm
T LI, T + T,
tot rel

where P'B and pkB are the linear momenta conjugate to the cartesian
1

coordinates of the position vectors {X} and {q} respectively.

If the potential is translationally invariant (as it is the case in this
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context), the wave function ¥(x) of the total configuration is expressible
as the product
U(x) = f(q_)w(q*)

of a function f of the coordinates of the c.m. and a function % of the set
of 3N-3 coordinates q*8 specifying the configuration relative to the c.m.

The total hamiltonian is separable into a translational and a
rovibrational part

H =H +H

tot tr rovib
that is

Htff(qcm) - Etrf(qcm)
Hrovibw(qks) - (Etot_Etr)w(qu)

where Et . and Et are respectively the total and the translational
0 r

energies.
c. Separation of the rotational motion: Noninertial Frames.

At this point the system can be considered as equivalently
represented by a set of (unit mass) fictitious particles (1 for the c.m. and
N-1 for ‘the relative motion) and the procedure of constructing a rotating
frame can be carried out using an orthonormalization procedure of a set of
three vectors F\a (so—called Eckart vectors) obtained from independent
linear combinations of the Jacobi vectors:

Fg = i} AkB a’k
If all the Jacobi vectors are involved, the frame is referred as

"global", otherwise, the frame is "local" (i.e., tied to the configuration of

a fragment of the molecule). The subset of Jacobi vectors serving to
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define the frame is refered to as the D—fragment (D for defining) whereas
the remaining vectors constitute the I-fragment (I for internal).

The frame {FB} is then orthonormalized (in 3-d. space) by a
transformation O so that the overall 3x(N-1) matrix B=0OA defines
uniquely an orthonormal frame {?B}

The particular choice of the Jacobi vectors ak as well as the choice
of the orthonormalization O permit to adapt the frame to a specific
physical problem.

The matrix B serves to define in an elegant way the two tensors G
and Jplaying a key role in the derivation of the kinetic energy operator

G' = B'B

J1 = BB
respectively the reciprocal Gram matrix of the Jacobi vectors and their
tensor of inertia with respect to the inertial frame. The rotational
invariance of G (under R, B transforms into RB) is expressed by imposing
three liaisons among the cartesian coordinates of the Jacobi vectors of the
D-fragment with respect to the noninertial frame defined by B. The
separation of the variables is explicitly achieved in

=R (0)yT()

where R is the orthogonal matrix representing the rotation carrying the

inertial frame centered at the c.m. to the noninertial frame and p are

some set of (3N—6) internal coordinates parameterizing the cartesian
coordinates y'T accounting to the three liaisons defining the frame.
The relative wave function is factorized in the standard way26 into a

sum of products of functions of the rotational coordinates # and the
S
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internal coordinates p
¢

i) = 2 DMK 1K(P)

This method enhances the distinct character of the internal and
external parameters (traditionally, internal coordinates and rotating frames
are intimately related: normal coordinates/Eckart molecular frame,
hyperspherical coordinates/Principal axes frame,...) and the two issues

have to be treated separately.
d. Ezpression of the linear and angular momenta in Cartesian Coordinates.

The total angular momentum L has components L° and L,
respectively for the D and the I-fragments. Their components with respect
to the inertial frame are the generators of the rotations of the whole
molecule, the D—fragment and the I-fragment respectively. With respect
to the noninertial frame, the components of the total angular momentum
are

(L,F)=K° + p-
B BB

where Pé are the generators of the rotations of the I-fragment with

respect to the noninertial frame.

The transformation of the linear momenta p is achieved in
18

p. =X R (0)o
ig T Y § ir

where ¢ is defined by
iy

0 =m_ 4+ T1! (K°+ P°4 P')
ir iy CYC ¢ ¢ ¢
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respect to the noninertial frame.

The transformation of the linear momenta p_ is achieved in
B

p. =X R (0)0
ig Y BY § iy

where ¢ is defined by
iy

0 =7+ 81! (K°+ P°+ P
DU ¢TI ¢ ¢ g

where

7. is the linear momentum component in the noninertial frame
iy

P° is the worter angular momentum (generators of the rotations in
¢

label space)
I is a matrix defined by the specification of the frame.

2.The Kinetic Energy Operator In BRI Coordinates.
a. Rovibrational kinetic energy operator.

In a preliminary version, thé kinetic energy operator is expressed in
terms of the (3N-3) rotational invariant cartesian coordinates y8 of the
Jacobi vecﬁors with resf)ect to the noninertial frame. These coordinates are
not independent: there exist three liaisons (constraints) among them that
can be used to ‘ describe the noninertial frame. For example, the
specification of a diagonal tensor of inertia leads to the three liaisons

> ylBylY = §
i BY

The cartesian coordinates together with the three constraints can be
parameterized in many ways in agreement with the definition of the

frame. According to a well-known result of the vector invariant theory,



any internal coordinate . (rotation invariants) may be expressed as
polynomials in the scalar products of the Jacobi vectors (Basic Rotational
Invariant). These can be used as a basic parameterization of the cartesian
coordinates and are, from their definition, precursors for any other set of
internal coordinates. The final version of the kinetic energy operator is
expressed in terms of the BRI coordinates and the coefficients of the
various operators are expressed in terms of some simple functions of the
reciprocal tensor of inertia associated with the rotating frame.

The derivation of the kinetic energy operator is achieved in adding

the squares of the linear momenta conjugate to the coordinates q'f.
b. "Internal' kinetic energy operator.

After having integrated over the rotations in the manner of Curtiss
el al, the kinetic energy operator is obtained in a form dependent only
upon the "internal" coordinates, the rotational quantum numbers and the
step—up/step—down operators o, mixing the internal states of different
rotational quantum numbers. The resulting expression is partitioned into
pure internal terms T , a centrifugal potential terms Vc, pure rotational

nt

terms Trot and terms representing the rovibrational couplings TCOUP. The
part (T?nt) of Tint corresponding to the BRI coordinates associated with
the Jacobi vectors entering in the construction of the frame is invariant
under a change of frame involving the same Jacobi vectors. It contains a
diagonal radial part, a diagonal angular part and coupling terms between

the angular variables only. The internal part (T 1;) corresponding to the
imn

BRI coordinates of the remaining Jacobi vectors is expressed (through the
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elements of the reciprocal tensor of inertia J _1) in a more or less
complicated way depending of the choice of the frame. The coupling terms
(Tic) between the two fragments are equally dependent upon the choice of
the frame. For frames defined irrespective to the lengths of the Jacobi
vectors (for example, an axis of quantization along the bisector of two
Jacobi vectors), this term reduces to coupling terms between angular
variables. The centrifugal potential VC is a function of the rotational
quantum numbers (as parameters) and the diagonal elements of J <o
represents the rotational contribution to the oscillators associated with the
Jacobi vectors defining the frame. The "pure rotational" term Tmt is
expressed as a function of the step—up/step—down operators, the rotational

quantum numbers and the elements of the J _1. Finally, the rovibrational

interaction is expressed by expressions coupling the operators o, with the

+
linear momenta conjugate to the BRI coordinates of the Jacobi vectors
defining the frame (T°) and the components P, of the (internal) angular
c !
momentum of the remaining Jacobi vectors (T'). Of course, for a global
[

frame (i.e., involving the totality of the Jacobi vectors), the terms T

- b
int

T. and T' are zero.
iCc C

3.The Schroedinger Equation in BRI coordinates.

a. Potential energy.

In order to obtain an expression for the hamiltonian, the source
potential function V is firstly re—expressed in terms of the BRI

coordinates of the Jacobi vectors defining the frame and an appropriate
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parameterization for the internal coordinates describing the remaining
Jacobi vectors. Actually, the potentials available in the literature (see for
example Carter et al %) from spectroscopic data (and ab initio
calculations) are expressed in valence coordinates (mixture of bond lengths
and bond angles) which are not in general orthogonal (leading to cross
terms in the kinetic energy). The effective potential Veff is obtained by
adding the centrifugal potential VC to the source potential V. In general,
the effective potential is expressible (numerically) as a sum of a separable
part V;i’f and a non-separable part V;‘f‘?’, the former being the
summation EjV(ﬁj) over all the internal coordinates §J_ of the parts of the
effective potential function of a single internal coordinate, the remaining
being hold at equilibrium. Formally,
Ve = BVQ) B V(0 + Vi

)
eff f eff

b. Zero—order hamiltonian.

A zero-order hamiltonian H° is obtained from the diagonal elements
of the kinetic energy together with the separable parts of the effective
potential.

This leads to a set of N-1 radial and 2N-5 angular operators having
respectively the form:

Radial equations:

9, 2 9

R’(Ql) = - 9 [ %% + ; —a_é-] + veff(Qi) (1:177N_1)

i
Angular equations:

08.. {ij Veff 0ij
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where i and j are labeling the Jacobi vectors defining the frame and Fij is
some function of the radial coordinates.

The angular equations corresponding to the remaining Jacobi vectors
have a form depending upon the choice of the frame and the
parameterization itself.

The corresponding angular eigenvalue equations are solved
numerically by the renormalized Numerov method3®3* (RNM) leading to
eigenvalues once multiplied by the radial factor Fij are re—introduced into
the radial equations which can be solved numerically by the RNM. This is

actually a generalization of the well-known procedure used in the solution

of the hydrogen atom.
c. Coupling terms.

The zero—order basis can finally be usec_l for the evaluation of the
coupling terms by a standard perturbation theory. It is worth mentioning
that in the RNM, the values of the eigenfunctions and their derivatives
are stored for each grid-point of the integration. This particular feature of
the method makes easier (and faster) the evaluation of the coupling

matrix elements.
d. Alternate choices for the internal coordinates.
The choice of an appropriate parameterization (internal coordinates

and noninertial frame) appears clearly as essential in the treatment of the

coupling terms (these have of course to be small) as well as in the



separability of the potential. Although the radial BRI coordinates are
orthogonal irrespective to the choice of the frame, the angular BRI
parameterization leads to angular-angular and (for certain frames)
radial-angular couplings.

The metric tensor has the form

g 0 C
r
g = 0 g B
t t
C E geJ

where 8, 8 and g, are respectively the metric subtensors of the radial,
internal angular and external angular coordinates. C and E represent
respectively the radial-external angular and internal—external angular
couplings. A proper (infinitesimal) orthonormalization of the BRI angles is
a necessary subject to be investigated in order _to reduce the

angular-angular interactions.

-
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APPENDIX 11
GRAM MATRIX AND MASS QUADRUPOLE

In the derivation of generalized Jacobi vectors, the concept of label
space plays a major role: the transformation of position vectors into GJV
is actually generated by a change of basis in label space.

The instantaneous configuration of a set of N particles is formulated
by a set {x} of N position vectors 531 with repect to a fixed origin O.
These N vectors are linearly independent, they span therefore a N
dimensional vector space: the label space AN'

Once an orthonormal, fixed basis {?a;a:1,2,3} with common origin
at O is defined in the usual physical space (3 dimensional euclidean space
E3), the position vector ?ci is expressed as:

X =5 X% (1)
where xia is the usual component of ?{i with respect to ?a'

To the position vector description of the configuration, there
corresponds in label space a unique covariant basis whose metric tensor is
diag(ml,...,mN), m. being the mass of particle described by position
vector x(i). To a GJV description of the relative configuration, there
corresponds in relative label space an orthonormal basis (covariant metric
tensor is In; where n=N-1). Any orthogonal transformation in label space
generates an other GJV description, the metric tensor being unaltered.

As well, the proper way to introduce noninertial frames in physical

space is to define in label space a set of three independent linear
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combinations of the label base vectors. There corresponds in the physical
space a set of three vectors I A which can be orthonormalized (in physical -
space) to provide an orthomormal noninertial frame tied to the
configuration of the GJV involved in the linear combinations.

Let {Ei} be the label basis corresponding to a particular

representation in terms of GJV. Define the label vectors:

0= DANG (A=123) (2)
The corresponding (3x3) Gram matrix is: |
G(¢) = AA’ (3)

To the three vectors Z'/\, there corresponds in physical space three

_’
vectors ¢ A\

- -

o) = ZA (4)
whose Gram matrix is:

G(y) = AG(q)A" (5)

Orthonormalizing the set {_(,5/\} by a standard procedure O yields the

desired noninertial frame {TM}:

?u = % AOMP‘ \ (6)
where:
0G(p)0t = I (7)
= 0AG(q)A*0® = BG(q)B" (8)
with B = OA.

Let go/\” be the component of {5/\ with respect to Tﬂ and F be the
(3x3) matrix of the components go’\“: 0 =F7 and (7) can be written as
well as:

~1nt
FG(q) F' =13 (9)

For a given A, this system is not independent and there exists 3
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liaisons among the go/\“ and consequently, by using (4), among the
components of the GJV's yku = (ak’?u)‘

Corresponding to the matrix B, equations (1-4) become:

-

B
) = 2Bk (10)
G(z) = BB' = oaato (11)
1= 3,8 (12)
G(f) = BG(q)B' = I3 (13)

In short, to any set of three independent linear combinations of the
base vectors of label space, there corresponds in physical space a unique
noninertial frame. The frame is orthonormal if the (3xn) matrix B
representing the set satisfies (6). This condition imposes 3 constraints on
the elements of the matrix B and consequently on the 3n components
yk’\. The way the frame is tied to the configuration of the GJV is
entirely defined by the matrix B.

It is interesting to observe that the same frame can be obtained
from an infinity of procedures:

let A and A’ be two different linear combination matrices; there
exists a transformation . such that :

A= A

The corresponding Gram matrices are
G(p) = AG(q)A"
G(}) = A“G(q)A"*

= Glp) = A AGQA (LN = Lela(p) (T

Let O and O’ be the orthonormalization matrices providing the
same frame {f} from the different sets {¢} and {p’}:

—  0G(9)0" = 0°G(p)0 " = 0.4 G(p) (L0 = 1y
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. 0" =047 | (14)
Note: two orthonormalization matrices O and O’ of the same set of -
vectors {p} are related by O = RO where % is orthogonal since
O’G:(go)O’t = %OG(go)Ot%t = A2 = I 0 and O’ in equation
(2.5"") do not obey this rule since they are not orthonormalizations of the
same set of vectors

This result is quite interesting since it permits to simplify the
construction of a frame using an easier orthonormalization procedure. For
instance, analytically, the E.S. procedure of three vectors is quite
cumbersome and it is easier to construct the desired frame in using a
Gram—Schmidt procedure for two vectors obtained by the appropriate:
transformation 4 Actually, any frame can be constructed in using two
vectors and a planar orthonormalization; the third vector is automatically
defined by their vector product.

On the other hand, the vectors ai are expressible in a unique way in )
terms of the base vectors T z\

?ik = Z/\yk/\?)\ (15)

where yk’\ are the components of ak with respect to the frame {T}.
Dot (2.37) with ?a to obtain the matrix equation:

BY = 13 . (16)
where Y is the nx3 matrix whose elements are the components yk’\. The
uniqueness of the expansion (8) allows us to define Y as the unique
pseudo—inverse of B (Penrose-Moore inverse): Y = BT,

Dot (5) with ? o, b0 obtain the matrix equation:
R = BQ (17)

where R is the orthogonal matrix whose elements are the direction cosines
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of T A with respect to 7(1 hence the matrix representing the rotation
transforming the inertial frame into the noninertial frame defined by B; Q -
is the nx3 matrix whose elements are qk’\, components of ak along the
inertial frame vectors 7 - Under the rotation R, Q transforms into Y (dot
equation 2.6 with 2’a):
Y = QR (18)
The invariance of the Gram matrix G(q) under R is easily shown:
G’(q) = YY" = Qrr'Q" = Q@' = G(q).
With the same notation, we define the (3x3) mass quadrupole tensor
in the inertial frame:
4= Q'Q | (19)
Actually, the mass quadrupole is related to the more conventional
tensor of inertia J= Trl3 — 4 whose elements are the usual moments
of inertia A 5
Under the rotation R, . transforms into
H =YY = RV AR (20)
and is of course not invariant under physical orthogonal transformations.
It is now easy to show that the Gram matrix of the label vectors z A is
actually the inverse of the mass quadrupole:
G(z) = BB' = 4 (1)
Otherwise stated, (z /\,—z’#) = (J/(_l) A
We can consider in a similar way label orthogonal transformations p.
This corresponds to a change of representation of the same configuration:

a set of GJV's {q} is transformed into a new set of GJV's {q“}. Under p,
G(q) transforms into G(q"):

G(a’) = pG(a)p (22)
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whereas. the mass quadrupole remains invariant:
# = Q4'%Q = Q'Q = (23)
Let Q(r) be the 3xn matrix of the components of a set of
interparticle vectors with respect. to the inertial frame.
Under an arbitrary label transformation 7, Q(r) transforms into
Q(r") according to:

Q(x7) = Q(r) (24)
where Q(r) is the matrix of the components of a set {r’} of linearly
independent physical vectors representing the same configuration with
repect to the inertial frame.

Under a physical orthogonal transformation R, Q(r) transforms into
Q’(r) according to:

Q’(r) = Q(r)R (25)
where Q-(r) is the matrix of the components of the interparticle vectors
with respect to a new frame obtained from the inertial frame.

Combining the two procedures gives the matrix Q-(r) of the

components of the new representation in a new frame:

Q(r’) = MQ()R (26)
The Gram matrix for the new representation is:
G’ (r7) = rQ(r)r" = G(r") (27)-

The mass quadrupole for the representation {r‘} in the new frame is

#(x7) = R'QY(r)r QR (25)
If 7 is orthogonal, i.e., change of a set of interparticle vectors into
another set of-linearly independent interparticle vectors, the mass

quadrupole remains the same. Of particular interest are the
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orthonormalizing transformations O: in such cases, 7'r = g(r), the metric

tensor of the label basis associated with the representation {r}.

Consider the orthogonal transformation diagonalizing
RAR' = A (29)
The resulting frame is constituted by the principal axes of inertia of
the GJV's. This frame does not correspond to the principal axes of inertia
of the interparticle vectors, the latter being not obtained from a GJV
description by an orthogonal transformation but rather by an
orthonormalization procedure O transforming the non orthonormal

representation {r} into {q}.
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