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Abstract

Breast cancer is the most common cancer diagnosed among Canadian women. Even
though cancer care services have been improving, people still continue complaining
about waiting times to access surgery. People are always curious about how long they
can survive after diagnosed with breast cancer.

In this practicum, we use non-parametric (the Kaplan-Meier) method and
semi-parametric (Cox regression model) method to do waiting time (e.g., from
diagnosis to first surgery) and survival time (e.g., from diagnosis to death or
emigration) analysis respectively. The data are from Cancer Registry at CancerCare
Manitoba and the Manitoba Health’s Population Registration File at Manitoba Health.

For the waiting time analysis, we investigate the waiting time curve and test
the difference on waiting times by diagnosis age group, cancer stage, region, and
between urban and rural. For the survival time analysis, we test the difference on
survival by cancer stage, region, and between urban and rural, income within urban
and within rural. We then identify significant covariates (e.g., waiting times, diagnosis
age and cancer stage) that affect survival times. Finally, we select the best statistical
model by incorporating significant covariates into the model. Results from this
practicum indicate that waiting times are significant different by cancer stage and
region. The survival times are significant different by diagnosis age, cancer stage and

income within urban.
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Chapter 1

Introduction

1.1 Medical Background

In Canada, the most frequently diagnosed cancer among Canadian women is
breast cancer, which is the second leading cause of cancer death behind lung cancer.
There is an upward trend for incidence rates among women of age over 50, while (in

the past decade) mortality rates are starting to decline.

In Manitoba, about 800 women are newly diagnosed with breast cancer and
about 200 patients among newly and previously diagnosed with breast cancer die each
year. Even though the incidence rate is really high compared with the other provinces,
the mortality rate has been stabilized due to better screening programs and improved

treatments.

In 1996, the province established a screening program called Screening
Mammography. It is a most effective way to detect breast cancer at its early stage. A
woman without symptoms of breast cancer between the age of 50 and 69 should have
a screening mammography once every two years. In Manitoba, the screening program
is called Manitoba Breast Screening Program (MBSP) that includes two procedures: a
breast X-ray (mammogram) and information session on breast health. The earlier a

cancer is detected, the more likely treatments are successful, and a higher chance for



the breast cancer patients to survive.

The treatment options for breast cancer patients include surgery, radiation

therapy, chemotherapy and hormonal therapy. Among these treatment options, surgery

is the most common procedure and can be carried out easily in local hospitals. The

types of surgical procedures for breast cancer include breast-conserving surgery

(BCS), mastectomy, axillary lymph node dissection (ALND), sentinel lymph node

biopsy (SLNB), and breast reconstruction. Details for each procedure are as follows:

1.

[9%]

Segmental (lumpectomy) mastectomy, which is usually followed by
radiation therapy, is a breast-conserving surgery and removes the lump
and up-to one-quarter of the breast tissue.

Mastectomy includes simple, modified radical and radical mastectomy.
Simple mastectomy removes the entire breast tissue excluding lymph
nodes under the arm and muscles under the breast; modified radical
mastectomy removes the entire breast tissue including some Iymph nodes
and small muscles; and radical mastectomy removes the entire breast
tissue, lymph nodes and all muscles.

Axillary lymph node dissection removes all axillary lymph nodes.
Sentinel lymph node biopsy removes one to three sentinel nodes to test
for cancer. If the nodes contain cancer, then all axillary nodes are

removed by the axillary lymph node dissection procedure.



5. Breast reconstruction reconstructs a breast that has been removed by
mastectomy procedure. The procedure is done at the time of mastectomy

or after.

Which surgical procedure should be taken is determined by the stage of

tumour and the patient’s preference.

1.2 Objectives

The most intensive procedure of breast cancer is surgery. Even though treatments
have been improved and the screening program has been established, people still
complained about the waiting time to access surgery and wondered whether their
survival times are affected by some factors (e.g., diagnosis age, cancer stage). The

following lists the detail of our objectives.

1. What is the overall pattern of waiting time from diagnosis to first surgery and
whether waiting times are different among cancer stage, diagnosis age group,
region, and between urban and rural?

2. What is the overall survival curve and whether the survival times are affected
by waiting times, cancer stage, diagnosis age, region, between urban and rural,
and income within urban and within rural?

3. Select the optimal statistical model that best describes the survival times with

significant covariates incorporated into the model.



Hopefully, our study will provide some helpful information to improve the

healthcare system.

1.3 Available Datasets

In this study, there are two datasets available. They are the Manitoba Cancer Registry
database housed at CancerCare Manitoba (CCMB), and the Manitoba Health’s
Population Registration File (MHPR) from Manitoba Health.

The Manitoba Cancer Registry is a population-based cancer registry that
contains all cancer cases in Manitoba. It collects patient demographics (i.e., patients’
name, sex, birth date and region of residence at diagnosis), tumour characteristics (i.e.,
tumour type and cancer stage at diagnosis), vital status (alive or deceased) and some
treatment information. The cohort is all Manitoba women diagnosed with invasive
(ICD-9 174 and ICD-10 C50) or in situ (ICD-9 233.0 and ICD-10 D05) breast cancer
from 1995 to 2003 (approximately 7000 women). ICD-9 and ICD-10 are the 9th and
10th version of International Classification of Diseases (ICD) coding system
developed by the World Health Organization (WHO). ICD-9 had been used to classify
diseases, health conditions and procedures up to December 31, 1999, and was
replaced by ICD-10 on January 1, 2000. Appendices A.2 lists ICD9 and ICD10
diagnosis codes for female breast cancer. Some women do not have any treatment
information and we also cannot tell whether they are still waiting for treatments or
they are not qualified for surgeries because of their health conditions. Therefore, we

only select women who (about 6000) have a surgery (or surgeries). In most cases,



women have more than one tumour. In order to simplify the analysis, the algorithm is
used to select one tumour per woman. See section 4.1 for details.

The MHPR provides patient’s last cancellation date and reasons (death or
emigration from the province) of terminating coverage.

Finally, the Manitoba Health data is linked to the Cancer Registry data by

scrambled unique personal identifiers.

1.4 Confidentiality

As an employee of CCMB, I have signed Personal Health Information Act (PHIA)
compliance certificates in order to keep all health data confidential. This study has
been approved by Research Resource Impact Committee (RRIC) at CCMB, Health
Research Ethics Board (HREB) of the Faculty of Medicine at the University of
Manitoba and Health Information Privacy Committee (HIPC) at Manitoba Health.
Therefore, all data related to this study are kept confidentially.

The cohort is extracted from Cancer Registry data at CCMB, and scrambled
unique personal identifiers are created before sending a request to Manitoba Health to
get patients’ information on termination of coverage. The Manitoba Health data is
extracted at Manitoba Health according to the cohort extracted from the Manitoba
Cancer Registry data, and then sent back to the Department of Epidemiology and
Cancer Registry at CCMB with scrambled personal identifiers on a password

protected disc. The analysis is then performed at the Department of Epidemiology and

wn



Cancer Registry at CCMB. During the analysis, scrambled personal identifiers are
used to track the patients. All the other personal identifiers, such as patients’ name,
address and personal health identification number (PHIN), are removed from the final
database used for the analyses. The results summarized in this practicum are only

based on groups of patients in this cohort.

1.5 Statistical Methods and Analysis

This is a retrospective study. The cohort consists of Manitoba women who
were diagnosed with breast cancer from 1995 to 2003 and had a surgery (or surgeries).
There are two parts of analysis - the waiting time analysis (from diagnosis to first
surgery) and the survival time analysis (from diagnosis to death or emigration).

1. For the waiting time analysis, the Kaplan-Meier method is used to
understand the overall pattern for waiting times to first surgery. The
log-rank test (also known as the Mantel-Haenszel test) is used to
determine whether waiting times are the same by cancer stage, diagnosis
age group, region, and between urban and rural, at the 5% significant
level (&) . If the P—value is less than 5% for any covariates, we
conclude that waiting times are different by hat covariate; otherwise,
there are no difference on waiting times.

2. For the survival time analysis, the Kaplan-Meier method is used to

understand the overall survival curve and also the survival curves by



cancer stage, region, and between urban and rural, income within urban
and within rural. The differences of these covariates on survival are
tested by the log-rank test at the5% significant level(a). Finally, the
Cox regression model is used to find out how continuous variables (i.e.,
waiting times to first surgery, diagnosis age and cancer stage) affect
survival times.
The analyses are performed with SAS 9.1. The Kaplan-Meier method can be
invoked by specifying METHOD=KM in PROC LIFETEST statement and Cox

regression model can be produced by PROC PHREG procedure.

1.6 Structure of the Practicum

In chapter 2, we briefly review the theoretical background regarding the
Kaplan-Meier method. In chapter 3, we review the Cox regression model, and show
how the numerical computation can be implemented in the statistical SAS software.
In chapter 4, we introduce how the data are cleaned and variables are defined. In
chapter 5, we interpret the results for the waiting time analysis. In chapter 6, we
interpret the results for the survival time analysis. In chapter 7, we summarize our
studies and discuss future studies for Breast Cancer. In Appendices, SAS codes are

listed.



Chapter 2

Basics of Survival Analysis

2.1 Basic Concepts and Functions in Survival Analysis

In clinical studies, survival time can be defined as the time from diagnosis to
an event, such as a surgery or death.

Let T denote the survival time that is any non-negative random variable.
The survivor function S(r) is the probability of an individual surviving longer than
£ > 0and is given by

S@)=PT >1) 2.1.1)

=1-F().

Moreover, S(0)=1and S(«0)=0. The value of S(r) decreases with increasing
survival time. F(¢) is the cumulative distribution function and is the probability of
an individual surviving less than or equal to r.

The hazard function /%, (r) is used to express the risk of death at time 7 and is
the probability of an individual experiencing an event in a small interval, (¢,  + Ar),

conditional on having survived to time #:

P(st<z+At|Tzz)} (2.1.2)

- P71

We can rewrite the numerator of 2.1.2 as



Pt <T <t+At)
P(T 1)

_F+An-FQ@)
- S(@) '

Plugging back to 2.1.2, we have

HO) = lim F+AD)-F@)) 1
AI0 Al S@)
_J®
S

d
=——1n(S();.
—AinGs}
Then taking integral for both sides, we have
S(t) = exp{~ H(®)}. (2.1.3)
Equation (2.1.3) indicates that the survivor function is equal to the exponential of the

negative of the cumulative hazards function.

2.2 Estimation of the Survivor Function

In clinical and epidemiological studies, the Kaplan-Meier method (also known as the
product-limit (PL) estimator) is the most popular method for the preliminary survival
analysis of data. This method can produce the overall estimated survivor function, the
estimated survivor functions by different groups (e.g., age), and the median (or
percentile) survival time estimator(s). It can also test the fit of some parametric
regression models (e.g., exponential).

Suppose that there are » individuals with % distinct observed survival



times in the study. At each observed survival time, there is at least one event occurred
and the events occur independently. The observed distinct survival times are ordered
as ) <ly..<l, , where k<n. Let n,, j=12,...k , be the number of
individuals who have not experienced the events right before ¢, and individuals
who are censored at ¢, are included. Let d; be the number of individuals who

have experienced an event at 7. Then, the Kaplan-Meier estimate of the survivor

function is

A n.—d.
SO =[] (——D.j=12. ke (s 2 pany)- (2.2.1)

. n.
j.[(./-)_<.f j

<<t

ForO0<s<y,, S(t)=1 since L, 1s the first observed survival time; fore,, <

(>
the estimate of the survivor function is expressed as equation (2.1.1); fort 21, , if the
survival time is censored, then S‘(Z) is undefined. Otherwise 3’(1) =0.

S“(z) does not change between the consecutive observed survival times and
it decreases with the observed survival times increasing, therefore, the plot of §(t) is

a step function and is plotted using PLOTS=(S) in SAS.

2.3 Estimation of the Median Survival Time

After the survivor function has been estimated, it is easy to estimate the median
survival time.
In clinical and epidemiological studies, the median is used to summarize the

data. The median survival time #(50) is defined as the time at which 50% of

individuals have not experienced an event. The formula is given as



S{t(50)}=0.5. 2.3.1)
Because the estimate of the survivor function is a step function, the estimate of the
median event time 7(50) is defined to be the smallest observed survival time such
that its corresponding estimated survivor function is less than 0.5. It is equivalent to
the following equation

£(50) =min{t,,, | $(¢,,,) < 0.5}, j =1.2,....k. (23.2)
if .Sﬂ‘(t(‘/)) =0.5 does not exist, or is equal to

(t) + 1)

£(50) = 5

(2.3.3)

it S(t,,,) = 0.5exists.

2.4 Detection of the Difference on Survival Curves

The question “whether the survivor functions are the same by different groups {e.g.,
age)” can be answered by the following hypothesis test procedure.

First of all, let’s test whether the survivor functions are the same in 2 groups.
The hypotheses are:

Hy:S,(1)=S5,(@)

H,:8,@)=S,0)
The statistic is the log-rank test (also known as the Mantel-Haenszel test) and can be
obtained using a STRATA statement in PROC LIFETEST procedure. Before
introducing the log-rank test formula, we assume that there are k independent and

distinct observed survival times in the combined group, which are ordered as



gy <ligy.<Iy,. Let d,, and d,,, j=1,2,..,k, be the number of individuals
having experienced an event from group 1 and 2 at 1., respectively. Let n,, and
n,, be the number of individuals at risk at t,,, from group I and 2 respectively. The
total number of events occurring at ¢, is d, =d,, +d,, and the total number of
individuals at risk at ¢, is n, =n, +n,,.

The log-rank statistic for each group is the sum of the difference between the
observed number of events and the corresponding expected number of events at all

observed survival times, and is expressed as

k

U,=>.d,-e,), (2.4.1)

J=1

n,d,

AR/

I’Zj

where /=12 and ¢, =

The log-rank test statistic (Mantel and Haenszel (1959)) is

U,
v,

~ 1 (2.4.2)

konon,d (n —d))
where ¥, =% — né/ (l} il =
J=l J 7_,‘ )

The log-rank statistic follows a chi-square distribution with one degree of freedom
when H, is true.

We can extend the log-rank test statistic to test the difference on survival in
g groups. Then the test statistic would follow a chi-square distribution with g-1
degrees of freedom when A, is true. The test statistic is

u,v,"u,, (2.4.3)

where U, is a vector with g elements and U, is its transpose. Each element of



U, can be expressed as
k
D.(dy—e,); (2.4.4)
=l

Let V, bea g by g variance-covariance matrix, with element

Eon,,d (n,—d)) n,
P S, ——=), 2.4.5
lml Z }7 (I’I _1) ( nm n ) ( )

J=l J

wherem,r =1,2,...,g. Whenm=r, we have §_ =1 and V, .. is the variance and

mr
the values are along the diagonal in the variance-covariance matrix. Whenm # r , we

have &, =0and V,,, isthe covariance and the values are off the diagonal.

mr Lmr
We draw our conclusion based on the P-—value in SAS output. If
the P —value < 5%, there is strong evidence to reject the null hypothesis and conclude
that different groups have different survivor times. Otherwise, there is not enough

evidence to reject the null hypothesis and the conclusion is that there seems to have

no difference on survival times by groups.



Chapter 3

The Cox Regression Model

In medical and epidemiological studies, the form of the distribution of the survival
time usually is unknown. Therefore, parametric methods have to be replaced in order
to identify significant prognostic factors. In this chapter, we review the Cox
regression model and its related statistical inference.

Cox first proposed the Cox regression model, also known as the proportional
hazards model in 1972. Since then, it has become the widely used model for model
fitting and for identifying significant prognostic factors in medical and
epidemiological studies. Since the model does not require any specific form of the

survival time distribution, it is also known as the semi-parametric regression model.

3. 1 Proportional Hazards Model

The general form of the proportional hazards model introduced by Cox (1972) can be
written as

h(t] X) = hy()exp(B' X), (B3.1.1)
where ¢ is the event time, X = (xl,xz,...,xp)' is a pxlcolumn vector of covariates
whose values are recorded at the time of origin, £ = (5 ,ﬁz,...,ﬁp)' isa pxl1column

vector of regression coefficients, /() is called the baseline hazard function when all

14



covariates of the hazard function have values of zero.
From (3.1.1), the hazard function for the /" individual can be expressed as
hi(t) = hy()exp(Bx,, + Boxy +o+ B,x,) . (3.1.2)
This model is named as a proportional hazards model because the ratio of the
hazard function (or the hazard ratio) for any two individuals does not change with
survival time z. In order to understand why the Cox regression model is also named
as the proportional hazards model, suppose there are two individuals / and j, and

their hazard functions are expressed as (3.1.2). Then the hazard ratio becomes

]hi% - eXp{IB] (xn _xl/) +182(x2i -xzx')+"'+13ﬂ(x/" _xl’/)} ) (.1.3)
1, ' ' .

It is obvious that (3.1.3) is independent of time, which means any two hazard
functions graphed in the same plot should be parallel to each other throughout the
study time.

Subsequently, from (3.1.2)

h (D)
— =eX ¢+ X, o+ B ox ). 3.1.4
ho(f) p(IB]A]l ﬁ__x_l :Bp\/)/) ( )
and
h.(t £
In /77’ (([)) =Bix, + Soxy +ot Bx, = Z/J’kxk, . (3.1.5)
0 k=1

Equation (3.1.5) is a linear function of the products of covariates and their
corresponding coefficients.

Among many available statistical programs, PROC PHREG in SAS is the
most powerful one for handling ties in observed data, and tied data are often observed

in medical studies.



3. 2 Partial Likelihood Estimations

The maximum partial likelihood method proposed by Cox (1972) can be used to
estimate the coefficients f,, 5,.,..., B,.

The likelihood function for the proportional hazards model of (3.1.2) can be
defined as two terms:

The first term includes both /%y (1), the baseline hazard function, and 5, the
vector of coefficients.

The second term only includes §.

Only the first term is considered as the ordinary likelihood function, while the second
term is ignored. Even though there is a missing term in the partial likelihood function,
the estimates obtained by the partial likelihood still have the two important properties
as the usual maximum likelihood estimates. The sampling distribution of the
parameter estimator is approximately normal and the estimators are unbiased. This is
the first property. The other one is that it considers the ranks of the survival times
instead of the numerical values during the estimation procedure.

Cox (1972) proposed two different partial likelihood functions. The first one
is based on the survival times observed in a continuous scale without ties and the
second one is in a situation where the survival times are observed at discrete times
with ties. Later, Breslow (1974) and Efron (1977) modified Cox’s partial likelihood
function when the observed survival times are observed continuously with ties. So far,

the above estimation methods can be applied when the survival times are measured on



either a continuous scale or a discrete scale. Different estimation procedures of

survival times with or without ties are reviewed in the following two sections,

respectively.

3. 2. 1 Estimation Procedures without Ties

Suppose that there are & distinct observed survival times that are recorded from »
observed individuals, and there are n-k right-censored observations. At each observed

survival time, there is only one event occurred. Therefore, the & distinct observed

survival times can be ordered as ¢, <1, <..<f, and their corresponding
covariates at time lijy AT€ Xy, X550 Xy LetR( ), j=12,....k, be the set of
individuals who are at risk at timet(_/), which means that these individuals have not
experienced an event at time¢,

Cox (1972) defined the partial likelihood function based on (3.1.2) in the

following form

o exp(By,)

L(p) = —,j=12,..,k, (3.2.1)
EZ/ER(IU))CXP('B x/)
or equivalently
()“I.
Lp)=] ]| <28 | 1o, (622)

i=] Zlelg(,,)exp(ﬂ'xl)

where J; is an event indicator whose values is equal to zero if 4 is right-censored and

one if ;is uncensored. Then the corresponding log-partial likelihood function is

17



lnL(ﬂ):i@{ﬂ'x,—ln > exp(B'x)}, (3.2.3)

IERY,)
The maximum partial likelihood estimators,/}, in the proportional hazards model is a
solution to the following simultaneous equations by applying the Newton-Raphson

iterative procedure (Collett (1994)):

LB _ (3.2.4)
op

3. 2. 2 Estimation Procedures with Ties

Suppose that there are & distinct observed survival times from 7 observed individuals
in the study. Let R(z;), j=1,2,..., k, be the risk set at ty and mg; be the number of
events occurring at time #g. Then there are m)! possible ways to order their survival
times when the observed survival times are at a discrete scale. The partial likelihood
of each possibility can be written as (3.2.1), hence, the sum, Z;, is the union of the
partial likelihood of all possibilities with p covariates at time t5. Finally, the partial
likelihood with ties is the product of each Z,.

Cox (1972) proposed the partial likelihood function with ties, when the

observed event times are at a discrete scale, as the following formula

; exp(B'z))
L = . .
d(ﬁ) 1/:‘[ ZIGR(I(_,):mU))exp(ﬂ'zl)

(3.2.5)

The partial likelihood function with ties when the observed event times are at

a continuous scale, defined by Breslow (1974), is



T

Tt (3.2.6)
- . 7
=l [Z /eR(t(,-))eXp(’B x,)}

where Z;is a px1vector and each element is expressed as the sum of 1" h=1,2, D
covariates for all individuals who experienced an event at time 7.
Another approximate partial likelihood function with ties when the observed

survival times at a continuous scale is given by Efron (1977)

1B-1] R
o H:/Z(i/)[Z/ek(l(,/ﬂeXp(’B'x’)—(d_])’71""_12161""«/> exp(/)"x,)]

(3.2.7)

where d =1, 2, ..., m,, and M(_/)* is the set of all individuals who experienced the
event at time /.

The computations are difficult by hand. The approximation is accomplished
by specifying TIESSBRESLOW or EFRON or EXACT after MODEL step in the
PROC PHREG procedure in SAS. In this study, we choose TIES=BRESLOW to

handle ties.

3. 3 Interpretation of SAS Outputs

Once the observed data are fitted into the proportional hazards model by SAS, the
SAS output provides the parameter estimates with the following additional useful
information: the standard error, Wald chi-square test, the P —value, and hazard ratio
and its confidence interval for any parameter, B, where j=1,2,.., p.

The standard error is used to obtain the 100(1—a)% confidence interval for



any parameter, /3,

(B, = 2u125¢(B,). B, + 2,0 25¢(B))) (33.1)
where Z,; is the 100(1 — &/ 2)% percentile of the standard normal distribution. If zero
falls within the confidence interval, then B, should not be included in the model;

otherwise, /4, should be included in the model. In order to get the confidence

interval for parameters in the SAS output, RISKLIMITS option must be specified

under the MODEL step.

The Wald chi-square test is to test the hull hypothesis that 8, =0, that is,

whether the corresponding covariate, x,, has an effect on the hazard or not. The Wald

statistic follows a Chi-square distribution with one degree of freedom and its value

can be obtained by the equation

2

~

B,

se(f;)

The P—value is interpreted for testing B, =0 that is whether a covariate

(3.3.2)

has an effect on the PH model when all other covariatesx,, x,,...,x _, x

s lo Ny ne

»X,, With
their corresponding coefﬁcients,ﬂl,ﬂz,...,ﬂ/_l,,8/“,...,--,8,, are already in the model.

The null hypothesis will not be rejected if the P —value is greater thana = 5%, so

that covariate x, should not be kept in the model in the presence of other

covariates x,, X,..., X, X

JRETE:

P
Consequently, the hazard ratio can be obtained by plugging the parameter
estimators back into (3.1.4). Furthermore, if we take the exponential of the lower

boundary, £, , and of the upper boundary, ,é_,.u, of ,5’_, obtained in (3.3.1), a

100(1- )% confidence interval for the hazard ratio is obtained,
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(exp(B,,)vexp(B,,)) - (3.3.3)
We get the confidence interval for hazard ratio in the SAS output by specifying the

RISKLIMITS option under the MODEL step.

3. 4 Model Selection

In this section, we briefly review how to choose the most appropriate model by the
likelihood-ratio method for nested models. If the first model contains a subset
covariates of the second model, it is said to be a nested model. For example, there are
p covariates fitted in Model (1) and there are p + g covariates (including these
p covariates in Model (1)) fitted in Model (2), then Model (1) is called a nested
model within Model (2). We can evaluate the fit of Model (1) by the likelihood-ratio
approach

~2InL ==2InL(1)-(-2InL(2)) = -2 111{]?((;)))} : (3.4.1)

where i(l) and ﬁ(2) are the maximized partial likelihood function of Model e}

and Model (2) respectively. This is a log-partial likelihood statistic for testing the null

hypothesis that Bpiys Bpazss B, are all zero. If the statistic is large enough, we
would reject the null hypothesis and conclude that the extra g covariates are

significant in the model and Model (2) is preferred. Otherwise, Model (1) is preferred.
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3.5 Estimation of the Survivor Function

Once the most appropriate model is identified and parameters are estimated, the
survivor function could be estimated. The survivor function at time : with

p covariates in the proportional hazards model is

»
cxp(Zﬂ/.\'l )

s()=[s,()] (3.5.1)
where s(¢) is the probability of an individual whose survival time is longer than ¢
and s,(¢) is the baseline survivor function at time 7 with all covariates equal to zero.
In order to estimate the survivor function, we have to estimate the baseline survivor
function first. Breslow (1974) and Kalbfleisch and Prentice (1980) proposed two
different approaches.

Suppose that there are k distinct observed survival times from # observed
individuals and they can be ordered aslyy <lo <---<fy. Let R(,)),/=12,..k,
denote the risk set and m,, the number of uncensored observations at time f,,.By
assuming that the baseline hazard function is constant between the consecutive failure

times, Breslow (1974) proposed the estimated cumulative baseline hazard function as

A~ m, .
H, (1) = T (3.5.2)
’ ’;’Z/ek(lm)exp('g X;)

Consequently, the baseline survivor function is estimated as

m

§o(t) = exp[-H, ()] = H{exp[Z ;,Qp( L (3.5.3)
fop=t leR(1, ;) {

o=

By substituting (3.5.3) and the estimators of # parameters back into (3.5.1), the

survivor function is estimated.
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The other estimated baseline survivor function proposed by Kalbfleisch and

Prentice (1980) is

k ~
SO =T1¢ 1, <t<tiuys J=120k, (3.5.4)

J=0
where f, can be obtained by the following equation when no tied data are observed:

: exp(f'x, ;) exp(- B )

£ =[1- - (3.5.5)
V Z/ek(/m)exp(ﬂ'x’)

When tied data are observed, the estimated baseline survivor function (3.5.4) is
considered as a step function, and f, is the estimated survival probability for an

individual from time ¢, to ¢, that can be obtained by solving the following &

equations simultaneously,

S BN S By =12k, (3.5.6)

leM l—éf_,.cxp(/”"\") - 1€/ 1))
where M(_/.)* is the set of individuals who fail at times .

The above numerical calculation is very complicated, but can be
accomplished by the BASELINE statement in PROC PHREG. SAS takes the
observed average of every covariate,fl,fz,...,fp, to interpret the estimated survivor
function. Therefore, the estimated survivor function for the i individual now

becomes

5,(1,%) =[5, (6, )" (3.5.7)



3.6 Goodness of Fit Assessment of the PH Assumption

After fitting the proportional hazards (PH) model to the observed data, the adequacy
of the model needs to be validated. In this section, we review several methods for
checking the adequacy of the PH assumption.

At the beginning of this section, we explained that the reason that the Cox
regression model is also known as proportional hazards model is that the covariates
are independent of time. The first method is to check the proportional hazards
assumption by introducing time-dependent covariates in the model. Therefore, we can
incorporate the interaction between covariates and time into the model and the
interaction terms are the product of the i covariate, x,, and time 7. Next, we can test
the significance of the coefficients for the interaction terms by the Wald test
introduced in Section 3.3. The proportional hazards assumption is violated if the
coefficients of the interaction terms are significant.

The second method is to stratify the survival data according to a covariate
with m levels, and then apply (3.5.8) to estimate the survivor functions under each
stratum. Finally, plot log(—log(s,(t:%,))), j =1,2,...,m, versust. If the assumption is
adequate, the m curves should be parallel. Otherwise, the assumption is violated.

The third method is based on the residuals. There are three types of residuals:
modified Cox-Snell residuals, Schoenfeld residuals and deviance residuals. Now,
suppose there are » individuals in the study, then the residuals formula at time t,

for the " individual and covariate x, ; = 1,2,...,n, can be expressed as follows.
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1. The Modified Cox-Snell residuals is given by
o= H, (%) =—Ind(,;x,), (3.6.1)
where }A],.(t,) and 5,(z,) are the estimated cumulative hazard and survivor
functions at the uncensored time ¢, .

2. The Schoenfeld residuals (Schornfeld, 1982) is given by

Z/ele([(’))xﬂ exp(Bx,)
r.o=0x.,—

= 3.6.2)
Ji i Ji .
ZzeR(r(,))eXp(ﬁk’)

where j=12,..p, x, is the value of the Jj™ covariate for the i" individual,
R(t,)) is the group of individuals at risk and &, takes the value of zero if Ly 18
right-censored and one if 7, is uncensored. There is a more effective method based
on the weighted Schoenfeld residuals, which was proposed by Grambsch and
Therneau (1994) as

r, =rva(f)r, (3.6.3)
where r is the number of events, 7y =157 057,) IS the vector of Schoenfeld
residuals for the i” individual and var(ﬁ) is the estimated covariance matrix ofﬁ.

3. The deviance residuals proposed by Therneau ez al. (1990) is given by

Fy = 8ign(ry, = 20ry, + 8, In(8, —r,,)] (3.6.4)
where 1y, =&, —r, is the martingale residual proposed by Fleming and Harrington
(1991) for the i” individual and 8, is equal to 1 if 7, is uncensored and 0
otherwise. Sing() is set to +1 if its argument is positive, 0 if it is zero and —1

if it is negative.

If the proportional hazards assumption is adequate, the plot of Cox-Snell
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residuals versus its Kaplan-Meier estimated survivor function (§(z)) should be on a

45°straight line, the plot of the weighted Schoenfeld residuals versus a covariate and
the plot of deviance residuals versus the survivor time should be symmetrically

distributed about zero and should not show any particular pattern.
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Chapter 4
Data Preparation

4.1 Data Cleaning

The Manitoba Cancer Registry dataset is updated monthly. Variables ICD9 and ICD10
diagnosis codes (See Appendices A.2), sex, diagnosis year and postal code at
diagnosis from the December 2006 dataset are used to define the cohort (7321
women), and then to update death date by linking with the August 2007 dataset. 145
women who have the same death date as the diagnosis date are deleted from the
dataset. The reason is that it is reasonable to infer that these women did not receive
any treatment since they were diagnosed with breast cancer upon death.

In the dataset, most of the women have multiple tumours. In order to simplify
our analyses, we use the same algorithm defined by the Epidemiology and Cancer
Registry department at CCMB to select one tumour per woman. Details of the
algorithm are listed as follows:

Step 1. If the diagnosis dates of tumours are more than six months after the

first diagnosis date, then the later tumours are deleted from the data.

Step 2. Check the data with the pathological summary stage. If both

pathological summary stages are known and different, then tumours

with the lower stage are deleted from the data.
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Step 3. Check the data with the pathological nodal status. If both pathological
nodal statuses are known and different, then tumours with lower
pathological nodal status are deleted from the data.

Step 4. Check the data with the number of positive nodes. Tumours with
lower or missing number of positive nodes are deleted from the data.

Step 5. Check the data with the pathological tumour stage. If the pathological
tumour stages are known and different, tumours with the lower
pathological tumour stage are deleted from the data.

Step 6. Check the data with the size of tumour. Tumours with smaller size are
deleted from the data.

Step 7. Randomly select one tumour left from the above steps.

In order to keep patients’ information confidential, the scrambled unique

personal identifier is created for each patient before sending a request to Manitoba

Health. We also delete women who do not have a Manitoba Health Personal

Identification Number (MHPIN) because Manitoba Health can not have information

for these women if they do not have a MHPIN. After the dataset that contains patients’

cancellation dates and reasons of termination of coverage were sent back to

Epidemiology and Cancer Registry department at CCMB from Manitoba Health, we

merge the cohort data from Manitoba Cancer Registry with the Manitoba Health data

by scrambled unique personal identifier.

Next, we merge the treatment file with the data created from the previous

step and attach the treatment procedure codes and dates. It is common that women
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have more than one treatment procedures throughout the study period (1995-2003).
Based on our objectives, we first select all procedures related to surgeries (See
Appendices A.3), and then select the first surgery in order to calculate the waiting
times from diagnosis to the first surgery. Finally, there are 6820 women in the dataset.

(See Appendices A.4 for SAS codes.)

4.2 Definition of Variables

Diagnosis age, postal code at diagnosis and cancer stage are the variables from
Manitoba Cancer Registry dataset and are used in both the waiting time and survival
time analyses. (See Appendices 8.5 for SAS codes.) The following gives details about
how we define variables:

1. Diagnosis age is a categorical variable with three groups: “0-497,
“50-69” and “70+” for the waiting time analysis, and is a continuous
variable for the survival time analysis.

2. Postal code at diagnosis is used to assign a Regional Health Authority
(RHA) to each patient. The RHAs are specified names of geographic
areas set up by the province. The responsibilities of RHAs are providing
delivery and administration of health services. The Manitoba RHAs
include: Winnipeg, Brandon, South Eastman, Assiniboine, Central,
Parkland, North Eastman, Interlake, Burntwood, Norman and Churchill.

It is a category variable for both analyses. Figure 4.1 is a map of RHAs



in Manitoba. We define a new categorical variable called ‘region” with
four groups according to the location of RHAs. They are East (Central,
Interlake, North Eastman and South Eastman), North (Burntwood,
Churchill, and Norman), West (Assiniboine, Brandon, Parkland) and

Winnipeg.

‘Norma nj

Burntwood|

 North Eastman |

interlake

—

Brandon]

Assiniboine .
BN SIS RS R

) ébdth ' Easinﬁaﬁ i

Figure 4.1: Map of RHAs in Manitoba

(Source: http://www.umanitoba.ca/centres/mchp/concept/concept.frame.shtml)
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Postal code at diagnosis is also used to assign income level called
Income Quintile to each patient. Income Quintile ranks the income from
the poorest to the wealthiest based on average household income of
residents by Statistics Canada Census data. It is ordered
astu,,uy,uy,u,,u; for urban populations and r,r,,r,r,,r for rural
populations, where subscript number 7 represents the poorest and 5 the
wealthiest. For details, please read the Income Quintile available at
Manitoba Centre for Health Policy (MCHP) website. A variable ‘urban’
taking a value of one for women with urban income quintile and a value
of zero for women with rural income quintile is defined. We use ‘urban’
as a categorical variable for both analyses.

Cancer stage is manually determined by a certified tumour registrar
according to pathology reports and patients’ charts. Identifying the stage
helps physicians to make decision about which treatment to take for
breast cancer patients. The process of determining stage is called staging
and staging describes the extent of a cancer at diagnosis according to the
TNM classification system, where T stands for tumour, N for node and
M for metastasis. The tumour size and whether the cancer has spread to
lymph nodes and other parts of the body determine the stage of the
cancer. Therefore, each patient is assigned with one of the following T, N

and M categories before determining the stage:
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b)

Tumour (T):

e TX: Tumour cannot be assessed.

e TO0: No evidence of tumour.

e Tis: Carcinoma in situ or lobular carcinoma in situ or Paget disease

e TI: Tumour is 2 cm or less.

e T2: Tumour is from 2 cm to 5 cm.

e T3: Tumour is greater than 5 cm.

e T4: Any size tumour spread to the chest wall or skin.

Node (N):

e NX: Nodes cannot be assessed.

e NO: Lymph nodes are cancer-free.

e NI: Cancer has spread to axillary lymph nodes on the same side
with breast cancer.

e N2: Cancer has spread to ipsilateral (same side of body as breast
cancer) lymph nodes fixed to one another or to other structures under
the arm.

e N3: Cancer has spread to the ipsilateral mammary lymph nodes

or the ipsilateral (same side of body as breast cancer)
supraclavicular lymph nodes

Metastasis (M):

o MX: Metastasis cannot be assessed.

e MO: Cancer is not found in other parts of the body.



e MI: Cancer is found in other parts of the body.

Staging is the combination of each of T, N and M categories, which
identifies the size and location of the cancer in a patient’s body. Table 4.1
lists the TNM classifications within each stage of breast cancer. Stage is
a categorical variable with values: stage 0, stage 1, stage 2, stage 3, and
stage 4 for the waiting time analysis. For the survival time analysis, four
dummy variables stagel, stage2, stage3 and stage4 are defined and each

one has a value of one if it is in that stage; otherwise it is set to zero.
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5.

Stage T Value N Value M Value
Stage 0 Tis NO MO
Stage 1 T1 NO MO
Stage 1A TO NI MO
TI NI MO
T2 NO MO
Stage 11B T2 NI MO
T3 NO MO
Stage 111A TO N2 MO
T1 N2 MO
T2 N2 MO
T3 N1 MO
T3 N2 MO
Stage 11I1B T4 NO MO
T4 NI MO
T4 N2 MO
Stage I1IC Any T N3 MO
Stage IV Any T Any N MI

Table 4.1: Stage and Corresponding TNM Summary Table

For the waiting time analysis, waiting times to the first surgery is a
continuous variable measured in weeks. December 31, 2003 is chosen as

the censoring date because of the rules for selecting the cohort. If the
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surgery date exists and is before the censoring date, the waiting time is
calculated as the difference of the first surgery date and diagnosis date,
and the variable ‘censor’ is set to one. Otherwise, the waiting times equal
to the difference of the censor date and diagnosis date, and ‘censor’ is set
to zero. There are 4719 women with the waiting time equal to zero
because these women had a biopsy removing all the lumps, and then the
pathologist decides whether the tumour is positive or negative. If the
tumour is positive, a surgery will be performed on the same date. In
order to analyze the overall waiting time pattern, we delete these women
from the data for the waiting time analyses, which left us with 2101
women.

For the survival time analysis, the waiting time is a continuous variable
measured in weeks and is the difference between the first surgery date
and the diagnosis date. The survival time is a continuous variable in
years. June 30, 2007 is chosen as the censoring date because it is the
latest surgery date for the cohort selected. If the death date is before the
censoring date, the survival time is calculated as the difference of the
death date and the diagnosis date, and the variable ‘censor’ is set to one.
If the death date is after the censoring date, the survival time is
calculated as the difference of the censoring date and the diagnosis date,
and the variable ‘censor’ is set to zero. If there is no death date but the

date of termination of coverage is found, and the reason of termination is



equal to ‘death’ and its date is before the censoring date, the survival
time is expressed as the difference of the cancellation date and the
diagnosis date, and ‘censor’ takes a value of one. If there is no death date,
and the reason of termination is not equal to ‘death’ and its date is before
the censoring date, the survival time is expressed as the difference of the
cancellation date and the diagnosis date, and ‘censor’ takes a value of
zero. Otherwise, the survival time is equal to the difference between the

censoring date and the diagnosis date, and ‘censor’ takes a value of zero.
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Chapter 5

Results of the Waiting Time Analysis

The results of the waiting time analysis are presented in this chapter. All analyses are

performed with SAS 9.1. (See Appendices A.6 for SAS codes.)

5.1 Frequency Tables for Variables

In this section, we list frequency tables for all variables needed for the waiting time
analysis. The purpose is to show how the data are distributed in each categorical
variable defined in section 4.2.

Table 5.1 shows the distribution of surgery options experienced by breast
cancer women in the study. It shows that axillary node dissection, segmental
mastectomy and mastectomy are the most common surgical procedures being

involved, and reconstruction is rarely being performed.
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Axillary Frequency || Percent | Cumulative Cumulative
node Frequency Percent
dissection
0 500 23.80 500 23.80
] 1601 76.20 2101 100.00
Mastectomy Frequency || Percent | Cumulative | Cumulative
Frequency Percent
0 934 44.46 934 44.46
1 1167 55.54 2101 100.00
Segmental Frequency || Percent | Cumulative Cumulative
mastectomy Frequency Percent
0 1004 47.79 1004 47.79
1 1097 52.21 2101 100.00
Sentinel Frequency | Percent || Cumulative Cumulative
lymph Frequency Percent
node
biopsy
0 1965 93.53 1965 93.53
1 136 6.47 2101 100.00
Reconstruction || Frequency || Percent || Cumulative | Cumulative
Frequency Percent
0 2099 99.90 2099 99.90
1 2 0.10 2101 100.00

Table 5.1: Frequency Table for Surgery Type
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Table 5.2 shows censoring information. There are 2040 women having a
surgery by the censor date (December 31, 2003) and 61 women are still waiting for a

surgery.

Censor Frequency | Percent | Cumulative | Cumulative
Frequency Percent

0(No) 61 2.90 61 2.90

1 (Yes) 2040 97.10 2101 100.00

Table 5.2: Frequency Table for Censor

Table 5.3 shows how waiting times to the first surgery are distributed in five
categories. 99.52% of women waited no longer than four weeks to receive their first

surgery, which implies that the cancer services are really good in Manitoba.

Waiting Time || Frequency || Percent | Cumulative | Cumulative
Frequency Percent
<2 weeks 1936 92.15 1936 92.15
2 - 4 weeks 112 5.33 2048 97.48
4 - 8 weeks 39 1.86 2087 99.33 ]
8 -12 weeks 4 0.19 2091 99.52
>12 weeks 10 0.48 2101 100.00

Table 5.3: Frequency Table for Waiting Times in Weeks
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Table 5.4 shows the distribution of women among age group. 50% of women
were between 50 and 69 years old when they were diagnosed with breast cancer. This
provides evidence to support that the Screening Mammography mentioned in section

1.1 is a good program to detect breast cancer.

Age Group | Frequency || Percent | Cumulative Cumulative
Frequency Percent
0-49 491 23.37 491] 23.37
50-69 1059 50.41 1550 73.77
70+ 551 26.23 2101 100.00

Table 5.4: Frequency Table for Age Group
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Table 5.5 shows the distribution of women by cancer stage. 71% of women
were diagnosed in early stage of breast cancer, including stage 0, stage 1 and stage 2
because of the screening program; 7% of women were diagnosed in later stage 3; only

2% of women were diagnosed in the advanced stage 4.

Frequency | Percent | Cumulative Cumulative

Stage Frequency Percent
426 20.28 426 20.28

Stage 0 203 9.66 629 29.94
Stage 1 588 27.99 1217 57.92
Stage 2 693 32.98 1910 90.91
Stage 3 143 6.81 2053 97.72
Stage 4 48 2.28 2101 100.00

Table 5.5: Frequency Table for Cancer Stage
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Table 5.6 shows the distribution of women by income. There were 60%

women from urban, which is the sum of U, to U;.

Income Frequency (| Percent | Cumulative | Cumulative
Frequency Percent
15 0.71 15 0.71
R1 153 7.28 168 8.00
R2 165 7.85 333 15.85
R3 203 9.66 536 25.51
R4 158 7.52 694 33.03
R5 152 7.23 846 40.27
Ul 234 11.14 1080 51.40
u2 229 10.90 1309 62.30
U3 279 13.28 1588 75.58
U4 218 10.38 1806 85.96
us 295 14.04 2101 100.00

Table 5.6: Frequency Table for Income
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Table 5.7 shows the distribution of women by region. There were 54% of

women diagnosed in Winnipeg and only 3% women diagnosed in the North.

Region Frequency || Percent | Cumulative Cumulative
Frequency Percent
1 0.05 1 0.05
East 485 23.08 486 23.13
North 64 3.05 550 26.18
West 408 19.42 958 45.60
Winnipeg 1143 54.40 2101 100.00

Table 5.7: Frequency Table for Region

5.2 The Overall Pattern

There were 199 distinct observed waiting times in the dataset. They were ordered
asl ) <lyy <l) <. <lyq - Table 5.8 lists the first 36 out of 2101 data. Output 5.1
from the MTHOD=KM in PROC LIFETEST statement is the partial SAS output that
displays the estimate of the Kaplan-Meier survivor function at each observed survival
time. Figure 5.1 from the PLOT=(S) in PROC LIFETEST statement is the plot of KM
Waiting Time function.

The following example gives details about how to obtain the same result with
Output 5.1 for the estimate of survivor function at the observed survival

times = 0.429. The steps are to apply equation 2.1.1 and the data in Table 5.8. Since



t=0.429 is the third observed survival time, 7, =0.429. From Table 5.8, we can
get all values for &, and n,. d,=20, d,=4and d, =8 are the number of
women having a surgery at ¢, with censor=1. n, =2101, n, =2081 and
n; =2065 are the number of women who have not received a surgery before L

and n, includes women having a surgery at t.;, - The calculation is given by

§(0.429) = H(ﬂi—i)

J

n
(I
n

d, . n,—d, n,—d
D(E—)(=
", H,

1 2 3

2101-20, 2081—-4 2077 -8

= 2 Tooer T

*)

=0.9848
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Obs || Waiting Time | Censor | Age Group | Stage | Income | Region
1 0.143 1 70+ Stage 0 Ul Winnipeg
2 0.143 1 70+ Stage 0 R1 West
3 0.143 I 50-69 Stage 2 U4 Winnipeg
4 0.143 I 70+ Stage 2 R4 East
5 0.143 1 70+ Stage 2 R2 East
6 0.143 0 50-69 Stage 3 R3 West
7 0.143 0 70+ Stage 0 R2 East
8 0.143 1 50-69 Stage 1 R2 East
9 0.143 1 00-49 Stage | R1 West
10 0.143 1 50-69 Stage 1 R2 East
11 0.143 1 50-69 Stage 0 us Winnipeg
12 0.143 1 50-69 Stage 1 R1 West
13 0.143 1 70+ Stage 1 R4 East
14 0.143 1 00-49 Stage 1 U3 Winnipeg
15 0.143 I 00-49 Stage 1 R1 West
16 0.143 1 50-69 Stage 2 R2 West
17 0.143 I 50-69 Stage 2 Ul Winnipeg
18 0.143 1 70+ Stage 1 U2 Winnipeg
19 0.143 I 50-69 Stage 2 Ul Winnipeg
20 0.143 1 70+ Stage 1 RS East
21 0.143 1 70+ Stage 2 R1 West
22 0.143 1 00-49 Stage 2 Ul Winnipeg
23 0.286 1 50-69 Stage 0 Us Winnipeg




Obs || Waiting Time | Censor | Age Group | Stage || Income || Region
24 0.286 0 50-69 Stage 3 u2 Winnipeg
25 0.286 0 50-69 Stage 2 uUs Winnipeg
26 0.286 1 00-49 Stage 1 U3 West
27 0.286 1 50-69 Stage 2 U4 Winnipeg
28 0.286 1 00-49 Stage 2 RS East
29 0.429 1 70+ Stage 1 R4 East
30 0.429 1 00-49 Stage 1 U3 Winnipeg
31 0.429 1 50-69 Stage 2 Ul Winnipeg
32 0.429 1 70+ Stage 2 Ul West
33 0.429 | 70+ R1 East
34 0.429 1 50-69 Stage 2 U3 Winnipeg
35 0.429 1 00-49 Stage 1 Ul Winnipeg
36 0.429 1 50-69 Stage 2 R2 West

Table 5.8: Waiting Time Data (36 out of 2101)

From Output 5.1, 5’(4.429) =0.4967 is the first survivor function less than

0.5. Therefore, according to equation 2.2.2, the estimate of the median survival time is

i =4.429, which is the same as the estimate of the 50 percentile shown in Quintile

Estimates table. In another word, 50% of women wait no longer than 4.429 weeks to

receive their first surgery.
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Product-Limit Survival Estimates

Waiting Survival | Failure Survival Number | Number
Time Standard Failed Left
Error
0.000 1.0000 0 0 0 2101
0.143 1 2100
0.143 2 2099
0.143 3 2098
0.143 4 2097
0.143 S 2096
0.143 6 2095
0.143 7 2094
0.143 8 2093
0.143 9 2092
0.143 10 2091
0.143 11 2090
0.143 12 2089
0.143 13 2088
0.143 14 2087
0.143 15 2086
0.143 16 2085
0.143 17 2084
0.143 18 2083
0.143 19 2082
0.143 0.9905 || 0.00952 0.00212 20 2081
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Product-Limit Survival Estimates

Waiting Survival | Failure Survival Number || Number
Time Standard Failed Left
Error
0.143 20 2080
0.143 20 2079
0.286 21 2078
0.286 22 2077
0.286 23 2076
0.286 0.9886 0.0114 0.00232 24 2075
0.286 24 2074
0.286 24 2073
0.429 25 2072
0.429 26 2071
0.429 27 2070
0.429 28 2069
0.429 29 2068
0.429 30 2067
0.429 31 2066
0.429 0.9848 0.0152 0.00267 32 2065
4.429 0.4967 0.5033 0.0110 1044 1019
184.429 0 1.0000 0 2040 0

Note: The marked survival times are censored observations.
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Survivol Bistribution Functicn

Quartile Estimates
Percent Point 95% Confidence Interval
Estimate
Lower Upper
75 6.857 6.571 7.143
50 4.429 4.286 4.571
25 3.000 2.857 3.000

Mean | Standard Error

6.958 0.250

Output 5.1: Kaplan-Meier Estimates of Waiting Times

Kaplan—Meier Edtimates of Waiting Time Function

1.007 %
0.75 g
0.501
(.35
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Legend: = Produst-Linit Estimale Curye © OO Censored Observotions

Figure 5.1: Kaplan-Meier Estimates of the Waiting Time Functions
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5.3 Detection of the Difference on Waiting Times

In this section, we discuss the results of detecting the difference on survival curves by
age group, cancer stage, region, and between urban and rural defined in section 4.2. In
section 4.3, we discussed that we could make our conclusion based on the P —value of
the log-rank chi-square test from SAS output. The first part of this section shows how to
input numerical values into equation 2.3.3 to calculate the log-rank test statistic by
using SAS Output 5.2 for age group. In the rest of this section, the conclusions are
determined by the P~value from SAS output.

There are three categories for age group. Therefore, the log-rank test statistic
follows a chi-square distribution with 2 degree of freedom.

The hypotheses are:

Hy:S,(t)=8,()=5,0)

H, At least one of them is not equal.
The test statistic is > =U, V,”'U, , where U, isa 3x1 column vector and V, isa
3x3 variance-covariance matrix. The values of each element of U, and V, , are
shown in the Rank Statistics table and in the Covariance Matrix for the Log-Rank
Statistics table in Output 5.2. Finally, we input all values into equation 2.3.3 and

calculated the log-rank statistic

i

3.912 (349177 236729 —112.448)"(3.912
UV, U, =| -29.563 | | -236.729  491.592 -254.864 | | —29.563
25.651 J\~112.448 -254.864 367.312 | |25.651

=2.2311
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The P —value =0.3277 (y° =2.2311,d.f.=2), which is relatively large. Therefore,
the log-rank test did not provide sufficient evidence of suggesting a difference among
three age groups.

The last table of Output 5.2 gives the estimates of the median waiting times
and mean for each age group respectively. The medians of each age group do not vary
significantly. Figure 5.2 does not show waiting time curves differ from each other

significantly.



Rank Statistics

Age Log-Rank Wilcoxon
Group
00-49 3912 56258
50-69 -29.563 -97352
70+ 25.651 41094
Covariance Matrix for the Log-Rank
Statistics
Age Group 00-49 50-69 70+
00-49 349.177 -236.729 -112.448
50-69 -236.729 491.592 -254.864
70+ -112.448 -254.864 367.312

Test of Equality over Strata

Test Chi-Square || DF Pr>
Chi-Square

Log-Rank 2.2311 2 0.3277

Wilcoxon 13.1220 2 0.0014
-2Log(LR) 0.0385 2 0.9809
00-49 50-69 70+
50 Percentile 4.413 4714 4.286
Mean 6.936 6.886 7.167

Output 5.2: Test of Difference in Waiting Time for Age group



Waiting Time Curves for Age Group
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Figure 5.2: Waiting Time Curves for Age Group

Output 5.3 is the SAS output of testing a difference on the waiting times by
different cancer stages. The P—value<0.0001 (y* =73.7135, df.=4) is very
small. Hence, the waiting times are significantly different among the cancer stages.
Figure 5.3 shows women in stage 4 followed by stage 0 waited longer than women in
other stages. We can get the same results by comparing the estimates of the median
waiting times in Output 5.3. Since stage 0 is an early stage, a surgery is not really
needed. The reasons for women in stage 4 waited longer are as follows:

1) Women in stage 4 usually have larger tumours detected. Therefore,

tumours are needed to be shrunk by chemotherapy before having a

surgery.
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Survival Distribution Function

1.807

=
~
on

0.204

2) Women detected with stage 4 may have other comorbidities disease, such

as heart attack. The health condition of these women prevents a surgery in

a short time.
Test of Equality over Strata
| Test Chi-Square | DF- Pr>
‘ i Chi-Square
LogRank | 737135 | 4 | <0001
Wilcoxon 453111 | 4 | <0001
| 2Log(LR) ]]3.2843 4| <0001

|l Stage 0 || Stage 1 Stage 2 || Stage 3 [ Stage 4

50 Percentile | 5.000 | 4.286 | 3.857 | 3.857 | 5071

Mean : 5.696 4.769 4.43 7.257 | '15.742

Output 5.3: Test of Difference in Waiting Time for Cancer Stage
Waiting Time Curves for Cancer Stage

20 40 60 80 1D
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Figure 5.3: Waiting Time Curves for Cancer Stage
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Output 5.4 is the results of testing the difference of waiting times in different
regions. The P —value=0.0005 (y°> =17.9116,d.f.=3)is very small. Therefore,
there was strong evidence to conclude that waiting times were different in the four
regions. The estimates of the median waiting times and Figure 5.4 show that women
waited longer in the North. The reason is that it lacks of hospitals and surgery can not be
operated in the North. In order to have surgery, women have to travel down to
Winnipeg or Brandon, while there is no flight or train transportation every day.
Therefore women in the North waited longer. Even though we have more surgeons in

Winnipeg, it is still short of surgeons comparing with the number of breast cancer

woman waiting for surgery. Figure 5.4 shows the same results.

Test of Equality over Strata
Test Chi-Square || DF Pr >

Chi-Square

Log-Rank 17.9116 3 0.0005

Wilcoxon 25.5350 3 <.0001

-2Log(LR) 4.2478 3 0.2359

East || North | West || Winnipeg

50 Percentile || 4.429 || 5.786 || 4.143 4.571
Mean 7.065 || 8311 | 6.556 6.952

Output 5.4: Test of Difference in Waiting Time for Region

w
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Waiting Time Curves for Region
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Figure 5.4: Waiting Time Curves for Region

From Output 5.5, we conclude that there is no difference on waiting times
between two Urban and Rural since the P —value =0.4018 (y* =0.7030,d.f.=1) is
very large. The estimates of the median waiting times for urban and rural are close to
each other. The waiting time curves are almost identical to each other throughout the

study period as shown in Figure 5.5.
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Survivel Distridution Function
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Test of Equality over Strata

Test Chi-Square {| DF Pr>
Chi-Square
Log-Rank 0.7030 0.4018
Wilcoxon 4.0830 1 0.0433
-2Log(LR) | 0.4914 0.4833
Urbanz Rural
50 Percentile | 4.571 | 4.286
Mean | 6.815 | 7.031

Output 5.5: Test of Difference in Waiting Time for Urban and Rural

Waiting Time Curves for Urban and Rural
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Figure 5.5: Waiting Time Curves for Urban and Rural
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According to our analyses, we make the following conclusions about the
waiting times to the first surgery for women whose waiting times are not equal to
Zero:

a) The estimates of the median and mean waiting times to the first surgery

are 4.429 weeks and 6.958 weeks respectively.

b) There is no difference on waiting times to access surgery for different

age groups, and Urban and Rural.

¢) The wait times are significantly different by cancer stage and region.

Women in stage 4 waited longer than women in other cancer stages.
Women in the North waited for the longest time followed by women in

Winnipeg.



Chapter 6

Results of the Survival Time Analysis

In this chapter, we discuss the results of the survival time analysis. All analyses are

performed with SAS 9.1. (See Appendices A.7 for SAS codes.)

6.1 The Survival Curve

We divide women into two groups based on their waiting times. One group consists of
women whose waiting times are equal to zero. The other group consists of non-zero
waiting times. Since there were more than one third of women who had waiting times
of zero in the frequency Table 6.1, we want to do a preliminary test by looking at
whether the survival curves are different by the variable wait_zero which is set to one
if waiting times are zero and zero otherwise. If the survival curves were different, we
will analyze the data by comparing the two groups of women. Otherwise we will do
the overall analysis for the survival times. The log-rank chi-square test in Output 6.1
did not provide sufficient evidence to detect a difference on survival between the two
groups because the P-value=0.7431 (3 =0.1074,d./.=1)is very large. Hence,

we will analyze the overall survival curve without dividing women into two groups.



wait_zero | Frequency | Percent | Cumulative | Cumulative
Frequency Percent
0 (NO) 2101 30.81 2101 30.81
1(Yes) 4719 69.19 6820 100.00
Table 6.1: Frequency Table for Wait_zero
Test of Equality over Strata
Test Chi-Square || DF Pr>
Chi-Square
Log-Rank 0.1074 1 0.7431
Wilcoxon 1.0083 I 0.3153
-2Log(LR) 0.0104 ] 0.918

Output 6.1: Test of Difference in Survival Time for Wait_zero

Output 6.2 is the summary of quartile estimates. But it does not give the
estimate of the median survival time because the data are extremely skewed to the
right. The mean survival time is 9.52 years for all women. Figure 6.1 shows that the
survival probabilities are decreasing linearly. Before fitting the Cox regression model
into the data, we should test whether there is violation against the PH assumption by
plotting the negative of the log-survivor functions against observed survival times.
Figure 6.2 shows a straight line starting at 0, which indicates that exponential
distribution might be an appropriate model to describe the data. Because exponential
distribution is 2 PH model, hence we conclude there is no evidence against the PH

assumption.
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Survival Distribution Function
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Quartile Estimates
Percent Point 95% Confidence Interval
Estimate
Lower Upper
75
50
25 6.9843 6.5927 7.4196

Mean | Standard Error

9.5163 0.0501

Output 6.2: Summary Statistics for Survival Times
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Figure 6.1: Kaplan-Meier Estimates of the Survivor Function
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Plot of Log—Survivor
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Figure 6.2: Plot of Log-Survivor Versus Survival Times

6.2 Detection of the Difference on Survival Curves

In this section, we discuss the results of testing the survival curves by categorical
covariates such as cancer stage, region, urban, rural and income within urban and
income within rural respectively.

The P —value < 0.0001(y* =1580.9577,d.f.=4) of the log-rank test from
Output 6.3 is very small, which indicates a difference on survival by cancer stage.
Figure 6.3 clearly shows that the survival probabilities decrease with increasing

cancer stage. Therefore, we will keep cancer stage in the Cox regression model,
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Test of Equality over Strata
Test Chi-Square DF Pr>
‘ Chi-Square
Log-Rank | 15809577 | 4 | <0001
Wilcoxon | 16554630 | 4 | <0001
-2Log(LR) | 7565250 | 4 | <0001

Outout 6.3: Test of Difference in Survival Time for Cancer Stage
Curves for Cancer Stage
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Figure 6.3: Survival Curves for Cancer Stage

Output 6.4 shows that there is some evidence of detecting the difference on

survival for region since the P—

value = 6.07% is close to the significant level of

5%. Figure 6.4 shows that women from the North lived shorter compared to those

from other regions. In the North, there are not enough health care facilities and there

is no daily transportation. Therefore women cannot receive daily and good health care

services like those from other regions.
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Test of Equality over Stréta
- Test Chi-Square || DF ; | Pr>
Chi-Square
Log-Rank 7.3812 3 0.0607
Wilcoxon 7.3192 3 0.0624
2logR) | 71242 | 3| 00680

Output 6.4: Test of Difference in Survival Time for Region

Sunvival Curves for Region
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Figure 6.4: Survival Curves for Region
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Output 6.5 shows that there is no evidence to conclude that the survival times

are different for urban and rural since the P —value is relatively large. The survival

curves are not apart to each other in Figure 6.5.

Survival Distribution Function

Test of Equality over Strata
Test Chi—Squafe DF Pr>
‘ ~ Chi-Square
Log-Rank 2.6632: | .1 0.1027
Wilcoxon 2.0966 : 1 0.1476
2LogLR) | 27269 | 1 | 0.0087

Output 6.5: Test of Difference in Survival Time for Urban and Rural

Sunvival Curves for Urban and Rural
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Figure 6.5: Survival Curves for Urban and Rural
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Output 6.6 shows that the P—valueis significant. We conclude that the
survival times are different by income within Urban. Figure 6.6 shows that the
survival probabilities are increasing with income increasing. From MCHP website,
the average household income of Uy is almost triple of U, . Therefore, women with
higher income can afford a higher living standard, which means eating better food,

accessing to different activities and receiving private health care services.

Test of Equality over Strata

Test Chi-Square | DF Pr>
Chi-Square

Log-Rank | 65.1607 || 4 | <.0001

Wilcoxon 64.8696 4 <.0001

2Log(LR) | 642247 | 4 | <0001

Output 6.6: Test of Difference in Survival Time for Income within Urban

Sunival Curves for Income within Urban
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Figure 6.6: Survival Curves for Income within Urban
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Output 6.7 shows that the P —value is very large. Therefore, we conclude that

the survival times are not different by income within Rural. Figure 6.7 does not show

any departure betweens survival curves. The MCHP website does not show significant

difference on income from R, to R;. Even though women have different income

within rural, they may have similar living standard.

Test of Equality over Strata

Test Chi-Square | DF ‘Pr>

‘ Chi-Square
Log-Rank | 45798 | 4 | 03332
Wilcoxon | 56560 | 4 | 02264
2LogR) | 45631 | 4 | 03351

Output 6.7: Test of Difference in Survival Time for Income within Rural

Survival Bigtribution Function

Survival Curves for Income within Rural
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Figure 6.7: Survival Curves for Income within Rural
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In summary, we conclude that the survival times are not different by Urban
and Rural, and income within rural. The survival times are significantly different by
cancer stage and income within urban. Women in higher cancer stage have lower
survival probabilities and women with higher income within urban have higher
survival probabilities. There is some evidence to conclude that the survival times are

different by region.

6.3 Identification of Significant Covariates

In this section, we discuss the results of determining whether numerical covariates of
waiting time and diagnosis age have significant effect on the hazard or not by the
Wald statistic and Breslow approximation for handling tied data discussed in section
3.3.

Output 6.8 shows the results for testing the null hypothesis B, =0 for the
covariate of waiting time. The 95% confidence interval for the hazard ratio is obtained
by specifying RISKLIMITS option under MODEL step. The Wald statistic is

calculated from equation 3.3.2
[ ﬁl }y
se(f,)

_[ 0.00159 7°
0.0003134

=25.83
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The 95% confidence interval for B, by equation 3.3.1 is

(B =2,25¢(B)s B+ 2,08¢(5)

=(0.00159-1.96x0.0003134, 0.00159+1.96x0.0003134)

=(0.00098, 0.00220)
From equation 3.1.3, the hazard ratio (HR) of increasing the waiting time by one day
is

HR

=exp( /3’1 x(wait _surg,, —wait _surg,,))

=exp(0.00159x1)

=1.002

The 95% confidence interval for the hazard ratio by equation 3.3.3 is

(exp(B,), exp(By,))

= (exp(0.00098), exp(0.00220))

=(1.001, 1.002)
Because the P —value <0.0001 is significant and zero does not fall within the 95%
confidence interval of £, , we conclude that the waiting times have significant effect
on the hazard and should be included in the Cox regression model. Since the
parameter estimate is really small and close to zero, we then exclude the waiting time
from the Cox regression model. The interpretation of hazard ratio (HR=1.002) is
that for each one-day increase in the waiting time, the risk of death increases by 0.2

percent.
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Testing Global Null Hypothesis: BETA=0
Test Chi-Square | DF | Pr> ChiSq
Likelihood Ratio 17.7234 <.0001
Score 26.6152 <.0001
Wald 25.8281 <.0001

Analysis of Maximum Likelihood Estimates

Variable Dy Parameter Standard Chi- Pr> HR 95% HR CI
Fl| Estimate Square ChiSq
wait_surg 1 0.00159 0.0003134 25.8281 <.0001 1.002 1.001 1.002

Output 6.8: Test of the Null Hypothesis: ;=0 for Waiting Times

Output 6.9 is the results of testing whether diagnosis age has an effect on the

hazard. The P —value<0.0001

is very small, therefore diagnosis age has a

significant effect on the hazard and should not be excluded from the model. Even

though the parameter estimate is small, we apply the diagnosis age in the Cox

regression model. The hazard ratio of 1.045 indicates that the risk of death increases

by 4.5 percent for each one-year increase in diagnosis age. In another word, older

women have higher risk of death compared to younger women.
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Testing Global Null Hypothesis: BETA=0
Chi-Square Pr> ChiSq
Likelihood Ratio | 593.6650 <.0001
Score 582.5610 <.0001
Wald 558.2648 <.0001

Analysis of Maximum Likelihood Estimates

Variable Parameter Standard Chi- Pr> HR 95% HR CI
Estimate Error Square ChiSq
dage 1 0.04425 0.00187 558.2648 <.0001 1.045 1.041 1.049

Output 6.9: Test of the Null Hypothesis: §,=,=p; for Diagnosis Age

In summary, we keep numerical diagnosis age in the Cox regression model
since it has a significant effect on the hazard, and exclude the waiting time from the

model.

6.4 Model Selection

From sections 6.2 and 6.3, we have concluded that diagnosis age and cancer stage are
the significant covariates for Cox regression. After incorporating both covariates into
the model, there are 5524 out of 6280 women left because 1296 women with missing
values of cancer stage are deleted by SAS automatically.

In section 3.4, we discussed how to select the most appropriate model by the

likelihood-ratio for nested models. Output 6.10 is the summary of values of
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—2Log(i) for different models fitted into the data. First, we incorporate the
covariates of diagnosis age and cancer stage into the model and consider it as Model
(2) discussed in section 3.4. The value of —2L0g(i) for Model (2) is 19867.905.
Then we delete diagnosis age from the model (2) and have model (1) with cancer
stage. Model (1) is nested within Model (2). The value of —2L0g(i) for Model (1)
is 20156.917. The difference of —2Log(ﬁ) between Model (1) and Model (2) is
289.012, which has a chi-square distribution with one degree of freedom. The
corresponding P —valueis less than 0.0001, which is significant. We therefore
conclude that Model (2) is superior to Model (1). We use the same procedures to
compare the model with diagnosis age and cancer stage and the model without cancer
stage. It leads to an increase of 799.363 for—ZLog(i) and the corresponding
P—value is very small. Hence the model with both the diagnosis age and cancer

stage is the most appropriate model.

Model Fit Statistics

Variables in the -2LOG L Difference | DF | Difference Pr>ChiSq
model Of of
-2LOG L DF
dage, stagel, 19867.905 5 <.0001
stage2, stage3,
stage4
stagel, 20156.917 289.012 4 1 <.0001
stage2, stage3,
staged
dage 20667.268 799.363 I 4 <.0001

Output 6.10: Values of —2LogL for Different Models Fitted into the Data
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6.5 Interpretation of the Cox Regression Analysis

After selecting the most appropriate model, we derive the parameter estimates for the
Cox regression model. Output 6.11 contains the results of the Cox regression analysis
by using Breslow approximation to handle tied data. The Cox regression model can be
written as

h(r] X)

= hy(t)exp(B,x,, + BrX,;, + ...+ fsx,,

= 1, (1) exp(0.03689 x dage + 0.28091 x stagel +1.23709 x stage?

+2.08924 x stage3 +3.41748 x staged)

The positive signs of the parameter estimates indicate that older women diagnosed
with higher cancer stage comparing to stage 0 have higher risk of death. The
P—value is very small for testing the null hypothesis of the coefficient of diagnosis
age equal to zero, which indicates that diagnosis age has significant effect on the
hazard when covariates stage 1 to stage 4 are fixed in the model. The hazard ratio of
1.038 for diagnosis age indicates that a woman has 3.8 percent higher risk of death
compared to a one-year younger woman diagnosed with the same cancer stage. The
P —values of covariates stage 1 to stage 4 are all significant at 5%. The hazard ratio
of stage 1 to stage 4 can not provide the exact comparison of the risk of death between
two cancer stages. In order to explain clearly, let’s have a look at the hazard ratio of
stage 1. What the hazard ratio does here is comparing the risk of death between two

groups of women: one group consists of women in stage 1 and the other group
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consists of women in all other stages.

Analysis of Maximum Likelihood Estimates
Variable Diagnosis Stage 1 Stage 2 Stage 3 Stage 4
Age
DF I 1 1 1 1
Parameter 0.03689 0.28091 1.23709 2.08924 341748
Estimate
Standard 0.00221 0.12804 0.11998 0.13859 0.14779
Error
Wald 279.0492 4.8132 106.3086 227.2605 534.7456
Chi-Square
Pr> <0.0001 0.0282 <0.0001 <0.0001 <0.0001
ChiSq
HR 1.038 1.324 3.446 8.079 30.492
95% HR 1.033 1.030 2.724 6.157 22.824
Confidence
Limits
1.042 1.702 4.359 10.600 40.737
Variable Diagnosis 1if 1if 1if Lif
Label Age stage 1; stage 2; stage 3; Stage 4;
otherwise otherwise otherwise otherwise
0 0 0 0

Output 6.11: Results of the Cox Regression Analysis

In section 6.1, we conclude that women in a higher cancer stage have lower
survival probability by the non-parametric method. Output 6.12 shows the results of
comparing the hazard ratio between cancer stages by semi-parametric method

respectively. The positive sign of the parameter estimate indicates that the risk of
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death increase with increasing cancer stage. The hazard ratio of stage0 1 is 1.314,
which indicates that the risk of death for women in stage 1 is 1.314 times of women in
stage 0 when diagnosis age is constant. The same explanation applies to the hazard
ratio of stagel_2, stage2_3 and sage3_4. Finally, we can use the following equation to
express the relationship of the risk of death for women with the same diagnosis age,
but different cancer stages

HR,

=3.391x (HR,)

Il

3.391% 2.330 x (HR,)

3.391x2.330x2.624 x (HR.)

Il

3.391x2.330%2.624 x1.314 x (HR,)

From the equation above, we can see that the risk of death for women in stage 4 is the
highest and decreases linearly up to stage 0. Once again, we conclude that women in
different cancer stages have different survival times and the risk of death increases

with increasing cancer stage when diagnosis age is kept constant.
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Analysis of Maximum Likelihood Estimates

Variable Parameter Standard | Chi-Squar Pr> HR Variable
Estimate Error e ChiSq Label
Stage 0 dage 0.07103 0.00506 197.2790 i <.0001 1.074
&
Stage 1 | stage0_l 0.27281 0.12808 4.5370 0.0332 1.314 || 1if stage 1
0 if stage 0
Stage 1 dage 0.04223 0.00265 254.5918 | <.0001 1.043
&
Stage2 | stagel 2 0.96466 0.07182 180.4320 || <.0001 || 2.624 || 1 if stage 2
0 if stage 1
Stage 2 dage 0.03151 0.00263 143.7382 | <.0001 1.032
&
Stage 3 | Stage2 3 0.84582 0.08913 90.0529 <.0001 || 2.330 || 1 ifstage3
0 if stage 2
Stage 3 dage 0.01160 0.00438 7.0171 0.0081 1.012
&
Stage 4 || stage3 4 1.22117 0.12485 95.6652 <.0001 I 3.391 | 1ifstage 4
0 if stage 3

Output 6.12: Comparison of the HR between Cancer Stages
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6.6 Estimation of the Survivor Function

After choosing the most appropriative model, we also estimate the survivor function
that is discussed in section 3.5. This can be done easily in SAS by specifying
BASELINE in PROC PHREG. Recall that SAS uses the sample means as shown in
equation 3.5.8. Output 6.13 shows the portion of the estimation of survivor functions.
The sample means for the covariates of diagnosis age, stage 1, stage 2, stage 3 and
stage 4 are listed from column 2 to column 6. The observed survival times, the
estimated survival probabilities, the logarithm of the survival probabilities (also
known as the cumulative hazard function) and the logarithm of the cumulative hazard
function are listed from column 7 to column 10 respectively. The estimates survival

probabilities decrease. See section 3.5 for details about the calculations.
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Obs | Diagnosis Stage 1 Stage 2 Stage 3 Stage 4
age
] 60.4808 0.37744 | 0.39464 | 0.060282 0.024258
2 60.4808 0.37744 | 0.39464 || 0.060282 0.024258
3 60.4808 0.37744 | 0.39464 | 0.060282 0.024258
4 60.4808 0.37744 | 0.39464 | 0.060282 0.024258
5 60.4808 0.37744 || 0.39464 | 0.060282 0.024258
6 60.4808 0.37744 |1 0.39464 | 0.060282 0.024258
7 60.4808 0.37744 || 0.39464 | 0.060282 0.024258
8 60.4808 0.37744 | 0.39464 | 0.060282 0.024258
9 60.4808 0.37744 |1 0.39464 | 0.060282 0.024258
Obs surv Is lls
1 0.0000 1.00000 0.00000

2 0.0055 0.99989 -0.00011 -9.11303

3 0.0082 0.99978 -0.00022 -8.41916

4 0.0465 0.99967 -0.00033 -8.01339

S 0.0657 0.99956 -0.00044 -7.72551

6 0.0712 0.99945 -0.00055 -7.50219

7 0.0739 0.99923 -0.00077 -7.16480

8 0.0794 0.99912 -0.00088 -7.03056

9 0.0986 0.99900 -0.00100 -6.91201

Output 6.13: Portion of Estimation of Survivor Functions at Sample Means
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6.7 Goodness of Fit Assessment of the PH Assumption

In this section, we apply two different methods to check the goodness-of-fit for the
PH model.

The first method is plotting the logarithm of the cumulative hazard functions
against the logarithm of observed survival times for the categorical variable of cancer
stage. If the PH assumption were true, the plot should yield parallel curves as
discussed in section 3.6. Figure 6.8 shows roughly parallel curves except for stage 0
and stage 1. Output 6.12 gives us the hazard ratio of stage0 1 as 1.314. Comparing it
to the hazard ratios between other cancer stages, it does not indicate significant
difference on survival between stage 0 and stage 1. Hence, there is no strong violation

to the PH assumption.

Plot of Log—cumulative Hazard Versus Log—surv for Stage
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Figure 6.8: Plot of Log-cumulative Hazard Versus Log-surv for Cancer Stage
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The second method is using the weighted Schoenfeld residuals discussed in
section 3.6. Figure 6.9 shows the plots of the weighted Schoenfeld Resduals versus
observed survival times for the diagnosis age, stage 1, stage 2, stage 3 and stage 4
respectively. The plots are roughly symmetrically distributed about zero. Therefore,

there is no strong violation against the PH model.

Plots of Weighted Schoenfeld Residuals Versus Survival Times
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Plots of Weighted Schoenfeld Residuals Versus Survival Times
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Figure 6.9: Plot of Weighted Schoenfeld Residuals Versus Survival Times
In conclusion, the goodness-of-fit of PH assumption is not violated and the

Cox regression model with the covariates of diagnosis age and cancer stage (including

stagel to stage 4) is a good model to describe the survival times.
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Chapter 7

Summary and Future Studies

Our objectives for the waiting time analysis are to test whether the waiting times are
different by diagnosis age group, cancer stage, region, and between urban and rural.
There were 2101 out of 6280 women in the waiting time analysis because 4719
women had surgery on the same date of diagnosis. If we kept waiting times of zero in
our analysis, we could not get the estimate of the median waiting times because of
extremely right skewness. Therefore, we deleted these data for the waiting time
analysis. The estimate of the median waiting times for women with non-zero waiting
times was 4.429 weeks. There were no significant differences on waiting times by
diagnosis age group, and between urban and rural. We noted that waiting times are
significant different by cancer stages. Women with higher cancer stage had longer
waiting times because these women needed chemotherapy to shrink tumours. Women
from North Manitoba waited longer for their first surgery because the North is a
remote living area.

For the survival time analysis, our objectives are to identify significant
covariates and select the most appropriate model to describe the survival times. Since
there are 4719 out of 6280 women had zero waiting times, we first compared the
survival times for two groups of women. Group one are women with zero waiting

times and group two are women with non-zero waiting times. We found that the
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survival times are not different for these two groups. Hence, we did analysis for all
women together. We found that there are no significant difference on survival for
waiting times, region, between urban and rural, and income within rural, but the
survival times are different by income within urban. The covariates of diagnosis age
and cancer stage have significant effects on the hazard and were incorporated into the
Cox regression model. With the diagnosis age and cancer stage increasing, the risk of
death also increases.

In this study, we also found that the survival times might follow an
exponential distribution. My future studies will be using the parametric method to
analyze the survival times. Also I will consider whether comorbidities have effects on

survival or not.
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Appendices

A.1 Variables List

ANDXL, axillary node dissection (1 if AND; 0 otherwise)
CENSOR, indicator (1 if censored data; 0 otherwise)
DAGE, diagnosis age of patient

DDT, diagnosis date

DOC, date of cancellation

DTHDT, death date

ICD9, ICDY diagnosis code

ICD10, ICD10 diagnosis code

NOPN, number of positive nodes

MASTXL: mastectomy (1 if mastectomy; otherwise)
MPHIN, Manitoba Personal Health Identification Number
PCAD, postal code at diagnosis

PNS, pathology nodal status

PSS, pathology summary stage

PTS, pathology tumour stage

RECONXL: reconstruction (1 if reconstruction; 0 otherwise)
REGION, including North, West, East and Winnipeg

RHA, region of residence (derived from PCAD)

ROC, reason of cancellation

SEGXL, segmental mastectomy (1 if segmental mastectomy; 0 otherwise)
~ SLNBXL, sentinel lymph node biopsy (1 if SLNB; 0 otherwise)
SEX, sex of patient (Female, Male)

SOT, size of tumour

STAGE, cancer stage
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STAGEIL, I if stage 1; 0 otherwise

STAGEZ2, 1 if stage 2; 0 otherwise

STAGE3, 1 if stage 3; 0 otherwise

STAGEA4, 1 if stage 4; 0 otherwise

STAGEO 1, 1 if stagel; 0 if stage 0

STAGE! 2, | if stage2; 0 if stage 1

STAGE2 3, | if stage3; O if stage 2

STAGE3_4, | if staged; 0 if stage 3

STATUS, alive or dead

SUPI, scrambled unique personal identifier

SURY, survival times in year

TCD9, ICD?9 treatment procedure codes

TCD10, ICD10 treatment procedure codes

TDATE, treatment date

UPI, unique personal identifier

URBAN, 1 if women from urban; 0 if women from rural
UTI, unique tumour identifier

WAIT_SURGT, wait times to the first surgery in week
WAIT_SURG, wait times to the first surgery in week

WAIT_ZERO, 1 if wait times is equal to zero; 0 otherwise.



A.2 ICD9 (ICD10) Diagnosis Codes for Breast Cancer

Diagnosis codes: ICD9 (ICD10)

Description

174(C50) Malignant neoplasm of female
breast
174.0(C50.0) Nipple and areola

174.1(C50.1)

Central portion

174.2(C50.2)

Upper-inner quadrant

174.3(C50.3)

Lower-inner quadrant

174.4(C50.4)

Upper-outer quadrant

174.5(C50.5)

Lower-outer quadrant

174.6(C50.6)

Axillary tail breast

174.8(C50.8)

Other specified site of female
breast -Ectopic sites, Midline of
breast, Inner breast, Outer breast,
Lower breast, Upper breast,
Malignant neoplasm of
contiguous or overlapping sites
of breast whose point of origin
cannot be determined

174.9(C50.9)

Breast(female), unspecified

233(D05)

Carcinoma in situ of breast and
genitourinary system

233.0(D05.0,D05.1,D05.7,D05.9)

Breast
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A3 ICD9 (ICD10) Surgery Treatment Procedure Codes

Procedure name

ICD9 codes

ICDI10 codes

Sentinel Lymph
Node
Biopsy

40.29

2MD71LA

Segmental
Mastectomy

85.20-85.23,
85.25

1YMB7DA,1YM87GB,' 1 YMS87LA,
1YM87LAXXA, 1YM87UT,
1YK87LA,I YK87LAXXA,
1YK87LAXXB, IYK87LAXXE

Axillary
Node Dissection

40.3, 40.51

IMD87LA,IMD89LA,
IMD8ILAXXA,IMD8ILAXXE,
IMD8ILAXXF,IMD8ILAXXG,
IMDSSLAXXN

Simple Mastectomy

85.41, 85.42

TYMBIOLA, I[YM8ILAXXA

Radical
Mastectomy

85.45-85.48

TYMIOITR,1YM9ITRXXA,
IYMIOITRXXE, 1YM91 WP,
IYM91TWPXXA,IYM91IWPXXE,
IYM92LAXXG1YM92LAXXEF,
IYM92LAXXE,1YM92LAPME,
1'YM92LAPMEF,1 YM92LAPMG,
1'YMO92LATPG,1YM92LATPE,
1'YMO2LATPF,1 YM92LAQFE,
I'YM92LAQFF,1YM92LAQFG,
I'YM92TRXXE, 1YM92TRXXF,
IYM92TRXXG,1YM92TRPME,
1YM92TRPMF,1YM92TRPMG,
1'YM92TRTPE,1 YM92TRTPF,
1YM92TRTPG,1 YM92TRQFE,
1YMO92TRQFF,1YM92TRQFG,
1YM92WPXXE,IYM92WPXXF,
IYM92WPXXG,1YM92WPPME,
1'YM92WPPME1YM92WPPMG,
1YM92WPTPE, 1 YM92WPTPF,
1YM92WPTPG, 1YM92WPQFE,
1YM92WPQFF, IYM92WPQFG

Modified
Mastectomy

Radical

85.43, 85.44

IYMIOILA,IYM91LAXXA,
1YMIOILAXXE

Reconstruction

85.7, 85.70-85.79,
85.8, 85.80-85.89,
85.33-85.36

1'YMSOLAPM,1YMSOLAPMA,
1'YMSOLAPME,1 YMS8OLAPMEF,
1'YMSOLAPMG,1YMS0OLAQEF,
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1'YM8OLAQFG,1 YMSOLAQFF,
1YMSOLAQFA,

1'YMSOLAQFE,1 YMSOLATP,
1YMSOLATPG,1YMSOLATPF,
1'YMSOLATPA,

1'YMSOLATPE,1 YMSOLA,
1'YM8OLAXXG,] YMSOLAXXF,
1'YMSOLAXXA, 1 YM8OLAXXE,
1'YM8SLAPM,1 YMSSLAPMG,
1'YMSSLAPMF,1 YMSSLAPME,
1'YM8SLAQF,1 YMSSLAQFF,
1'YMSSLAQFG,1YMSSLAQFGE,
1YM8SLATP,1 YMSSLATPG,
1'YMSSLATPF,1 YMSSLATPFE,
1'YM8SLAXXF,] YMS8SLAXXG,
1'YM8SLAXXE, YMOOLAXXG,
1'YM9OLAXXF,] YMOOLAXXE,
1YM9OLAPM, 1YM9OLAPMG,
1YM90LAPMF,1 YM90LAPME,
1'YM9OLATP,1 YM9YOLATPG,
1'YM9OLATPF,1 YM90LAQF,
1'YM9OLAQFG,1YM90LAQFF,
1YM9OLAQFE
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A.4 SAS Codes of Data Cleaning

proc format;

/>‘r=

agegrpff, classify numerical values of diagnosis age into 3 categories

$inc96-$inc03, assign income quintile according to post code at diagnosis

mothdiff, classify the numerical values of the difference between the first
diagnosis date and other diagnosis dates into 4 categories

$mothdiffl, descript full name of ‘mothdiff’

$nodord, rank the nodal stages, no grouping

$proccci, classify ICD10 procedure codes to each surgery group

$procd, classify ICD9 procedure codes to each surgery group

$procgp, descript full name of surgery procedures

$regff, classify RHAs into four regions

$rhaf, assign RHA codes Income codes according to post code at diagnosis

$stage, classify pathology summary stage

$staord, rank the summary stage, no grouping

$tuord, rank the tumour stages

wk, classify numerical values of wait times into 5 categories

yr, classify numerical values of survival times into 3 categories

*/

value agegrpff
0-<49 ='00'
50-<69 ='50'

70-high  ='70+;

value mothdiff

O — |0|
1-89 =3
90-<180 ='¢'

180-high ='0';

value $mothdiff]
'0' ='Same Date'

3" ="'<3 Mths'

'6"' = '3-<6 Mths'

'9' =">6 Mths";
value $nodord

n0' =1

ml' =2

nla" =3

nlb' =4

n2' =35

Other =0;
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value $proccci
2MD71LA’ =1
TYMB7DA''1YMS7GB', "1 YM87LATYMB7TLAXXA','1YMS87UT
"TYKS87LA','TYK87LAXXA"'TYK87LAXXB"'1YK87LAXXE' =2
‘IMDS87LA"'IMDSILA'"IMD8ILAXXA''IMDSILAXXE',
"TMDSOLAXXF', IMD8ILAXXG'",'TMDSILAXXN' =3
"TYMSIOLA"' IYMSILAXXA' =4
TYMOILAVIYMOILAXXA' ' TYMO1LAXXE' =5
TYMOITR, TYMOITRXXA 1YM91 TRXXE',
"TYMOIWPLTYMITWPXXA"'TYM91I WPXXE',
TYMI2LAXXG', 'IYM92LAXXF',"TYM92LAXXE',
"TYMI92LAPME'"1YM92LAPMF','I YM92LAPMG',
"TYMO2LATPG','1YM92LATPE',' 1 YM92LATPF',
"TYMI2LAQFE"'TYM92LAQFF','1YM92LAQFG',
TYMO2TRXXE"'1YM92TRXXF',"1YM92TRXXG",
TYM92TRPME','TYM92TRPMF','l YM92TRPMG',
"TYMO92TRTPE','I'YM92TRTPF','1 YM92TRTPG',
TYMO92TRQFE', TYM92TRQFF',' YM92TRQFG/,
TYM92WPXXE"'TYM92WPXXF',' 1TYM92WPXXG',
TYM92WPPME','1 YM92WPPMF','1 YM92WPPMG',
TYM92WPTPE',' IYM92WPTPF',' 1YM92WPTPG',
TYM92WPQFE','TYM92WPQFF",' YM92WPQFG' =6
'ISZ8TLA''1SZ8TLAXXA''1SZ8TLAXXE,'1SZ87LAXXF',
'"TYMSOLAPM','TYM8OLAPMA",'IYM8OLAPME','1YM80LAPMF',
'TYMBOLAPMG', 'TYMSOLAQF', '1TYM80LAQFG','l YMSOLAQFF',
‘TYMB8OLAQFA', 'TYMS8OLAQF','1YM80LAQFG','1YMS80LAQFF',
'TYMBOLAQFA','TYM80OLAQFE', '1YM8OLATP', I YMS8OLATPG',
'TYMSOLATPF','TYM8OLATPA",' TYMSOLATPE',' 1 YMS0LA',
TYMBOLAXXG','TYMSOLAXXF','TYM8OLAXXA'",'TYMSOLAXXE,
'TYMSSLAPM','TYM8SLAPMG",'l YM8SLAPMF','I YM8SLAPME/,
TYMB8BLAQF','TYMS8SLAQFF','1YM8S8LAQFG', 1YM8SLAQFGE/,
'TYMB8BLATP', '1YM8SLATPG',' YM8SLATPF','1 YMSSLATPFE,,
TYMBBLAXXF,'1YM8SLAXXG',' TYM8SLAXXE''1TYMI0LAXXG!,
TYM9OLAXXF','TYMOOLAXXE'",' TYM90LAPM','1TYM90LAPMG',
TYM90OLAPMF','TYM90LAPME','I YM90LATP''1YM90LATPG',
'TYM9OLATPF','TYMO0OLAQF','1YM90LAQFG', 'l YMOOLAQFF',
"TYMOY0OLAQFE' =7
other ='00";

value $procd

'4029' o
'8520','8521','8522','8523', '8525' _p
403, 405" _ig

'8541','8542 =14
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'8543','8544'

'8545'8546','8547",'8548'
‘857", '8570'-'8579','858','8580'-'8589",'8533'-'8536'

other

value $procgp

"1'" = 'Sentinel Lymph Node Biopsy"'
'2" = 'Segmental mastectomy'

"3' = ‘'Axillary node dissection’

‘4" = 'Simple mastectomy'

'5' = 'Modified radical mastecotmy'
'6" = 'Radical mastectomy'

"7 = 'Reconstruction’

'00" = 'Other';

value $regff
"o
'90', <80°,'70"
'60','45",'30"

= '"Winnipeg'
='North'
="West'

'40','30',"25","20'="East’

Other

value $staord

0 =1
ito=2
iia' =3
'iib' =4
'iiia' =5
'iiib' =6
v =7
other = 0;

value $stage
lOl

i
iia','iib’

‘iiia’, 'iiib", 'iiic'

'iV','yiV'
other

value $tuord
W' =1
'tis' =2
't1', 'tImic' =3

—_ te,
>

= 'Stage ('
= 'Stage I'
= 'Stage 2!

= 'Stage 3'

= 'Stage 4'

—t 1,
s

=1 5'
=1 6!
= ! 7!

VOO';
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'tla'=4
't1b'=5
'tle'=6
02'=7
t3'=8
't4'=9
't4a' =10
't4b' =11
'tdc' =12
't4d'=13
other = 0;

value wk
0 <14=" <2 weeks
14-<28 ="2 - 4 weeks'
28-<56 ='4 - 8 weeks'
56-< 84 ="'8 -12 weeks'
84-high=">12 weeks";

value yr
0-<5 ='<S5years
5-<10="5-10 years'
10-high ="'>10 years';

>kSelect the Cohort from December 2006 Dataset

data cohort_list;
set data_06(keep=upi uti icd9 icd10 ddt sex pcad status nopn pts pns pss sot
dthdt dage mphin
where=((( substr(icd9,1,3)="174" or icd9 = '2330") OR
(substr(icd10,1,3) ='C50' OR substr(icd10,1,3) = 'D05"))
AND (1995<=year(ddt)<=2003) and (sex="F")
AND (substr(pcad,1,1)='R")));
dy=year(ddt)
run;

>kUpdate Death Date

data data_07;
set data_07;
status1=status;
dthdt1=dthdt;

keep upi uti dthdt] statusi;

run;
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proc sort data=data_07;
by upi uti ;
run;

proc sort data= cohort_list;
by upi uti;
run;

data upcohort;
merge cohort_list (in=m1) data 07 (in=m?2);
by upi uti;
ifml ;

run;

data upcohortl;
set upcohort;
if status1”=""then status2=status];
else status2=statust;
if dthdt1”~=. then dthdt2=dthdtl;
else dthdt2=dthdt;
if dthdt*=ddt;
drop dthdt status dthdtl status] ;
run;

data upcohort2;
set upcohortl;
dthdt=dthdt2;
status=status2;
drop dthdt2 status2;
run;

als
*Select One Tumour Per Woman

data tum;

set upcohort2;

dropflag=0;

label dropflag="Reason for dropping tumour';
run;

proc sort data= tum;
by upi ddt;
run;
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data dxdf;
set tum;
by upi ddt;
retain firstddt O;
format firstddt yymmdd10.;
firster=first.upi;
laster=last.upi;
firstdx=first.ddt;
lastdx=last.ddt;
if (first.upi) or (ddt=firstddt) then diff=put(0,mdiff.);
else diff=put(ddt-firstddt,mothdiff.);
if first.upi then firstddt=ddt;
format diff $mothdiffl.;
staord = put(pss,staord.);
norod = put(pns,nodord.);
tuord = put(pts,tuord.);
format firstddt yymmdd10.;
run;

proc sort data=dxdf;

by upi;
run;

* If the diagnosis date (ddt) is greater than 6 months after the first ddt
-> remove the later tumours.(dropflag=1;
data removel dropl;

set dxdf;
if diff*='9" then output removel;
else do;
dropflag=1;
output drop];
end;
run;

data mult];

set removel ;

by upi;

if (Mirst.upi or Mast.upi);
run;

proc sort data=multl;
by upi ddt;
run;



proc sort data=multl;
by upi descending staord;
run;

*Check the pathological summary stages (pss), if both pss are known and
different->remove the tumours with the lower stage.(dropflag=2);
data drop2;
set multl;
by upi;
retain prestaord;
if first.upi then prestaord=staord;
else if prestaord”="0" & staord"='0' then if prestaord”~=staord then do;
dropflag=2;
output drop2;
end;
run;

proc sort data=removel;
by upi uti;
run;

data remove2;
merge removel (in=m1) drop2 (in=m2);
by upi uti;
if ("m2);

run;

proc sort data=remove2;
by upi uti;
run;

data mult2;

set remove2;

by upi;

if (Mirst.upi or “Mast.upi);
run;

proc sort data=mult2;
by upi ddt;
run;

proc sort data=mult2;

by upi descending nodord;
run;
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*Check the pathological nodal status (pns), if both pns are known and different
—~remove the tumours with lower pns.(dropflag=3)*/

data drop3;
set mult2;
by upi;
retain prenodord;
if first.upi then prenodord=nodord;

else if prenodord ~='0" & nodord "='0" then if prenodord “=nodord then do

dropflag=3;
output drop3;
end;

run;

data remove3;
merge remove2 (in=m1) drop3 (in=m2);
by upi uti;
if ("m2);

run;

proc sort data=remove3;
by upi uti;
run;

data mult3;
set remove3;
by upi;
if nopn=""then nopn ='0";
if (Mirst.upi or MMast.upi);
run;

proc sort data=mult3;
by upi ddt;
run;

proc sort data=mult3;
by upi descending nopn;
run;

*Check the number of positive nodes (nopn), if one has higher positive nodes and
others have lower or blank->remove tumours with lower/blank nopn.(dropflag=4);

data drop4;
set mult3;
by upi;
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retain prevnpos;
if first.upi then prevnpos=nopn;
else if prevnpos”=nopn then do;
dropflag=4;
output drop4;
end;

run;

data remove4;
merge remove3 (in=m1l) drop4 (in=m?2);
by upi uti;
if (*m2);

run;

proc sort data=remove4;
by upi uti;
run;

data mult4;

set remove4;

by upi;

if (*Mirst.upi or Mast.upi);
run;

proc sort data=mult4;
by upi ddt;
run;

proc sort data=mult4;
by upi descending tuord;
run;

*Check the pathological tumour stage (pts), if pts are known and different=>
remove tumours with the lower pts.(dropflag=5);
data drop5;
set mult4;
by upi;
retain pretuord;
if first.upi then pretuord=tuord;
else if (pretuord”=tuord)&( tuord*='0") then do;
dropflag=5;
output drop5;
end;
run;
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data remove5;
merge remove4 (in=m1) drop5 (in=m2);
by upi uti;
if ("m2);

run;

proc sort data=remove5;
by upi uti;
run;

data mult5;

set remove5;

by upi;

if (Mirst.upi or Mast.upi);
run;

proc sort data=mult5;
by upi ddt;
run;

*Check size of tumour size(sot), if one tumour has a smaller size>remove
tumours with smaller size.(dropflag=6);
data mult5;
set mult5;
length nsize stsize endsize 4.;
if substr(sot,1,1)="¢' then do;
stsize=indexc(sot,'0123456789.";
endsize =indexc(sot,'m')-2;
nsize=put(substr(sot,stsize,endsize-stsize+1),4.);
end;
else do;
stsize=indexc(sot,'0123456789.");
endsize =indexc(sot,'c")-1;
if stsize=0 then nsize=0;
else do;
if endsize=-1 then endsize =length(sot);
nsize=put(substr(sot,stsize,endsize-stsize+1),4.);
end;
end;
format nsize 4.2;
run;

proc sort data=mult5;
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by upi descending tuord descending nsize;
run;

data drop6;
set mult5;
by upi;
retain pretuord prevnsiz ;
if first.upi then do;
prevnsiz=nsize;
pretuord=tuord;
end;
else if (pretuord ~="2' & tuord”="2") then if (prevnsiz*=nsize) then do
dropflag=6;
output drop6;
end;

run;

data remove6;
merge removeS (in=m1) drop6 (in=m2);
by upi uti;
if ("m2);

run;

proc sort data=remove6;
by upi ddt;
run;

data mult6;

set remove6;

by upi;

if (Mirst.upi or “ast.upi);
run;

proc sort data=mult6;
by upi ddt;
run;

* Randomly select one tumour left from the above steps.(dropflag=7);
data drop7,

set mult6;

by upi;

length numb prevnumb 4.;

retain prevnumb;

if first.upi then do;
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numb=put(10*ranuni(10),3.0);
prevnumb=numb;
end;
else numb=prevnumb+1;
run;

data drop7,
set drop7(where=(mod(numb,2)=0));
dropflag=7,;

run;

data alldrop;
set dropl drop2 drop3 drop4 drop5 drop6 drop7;
run;

data merdrop;
set alldrop (keep=upi ddt uti dropflag);
run;

proc sort data= tum;
by upi ddt uti;
run;

proc sort data=merdrop;
by upi ddt uti;
run;

data brcamult error;
merge tum (in=m1) merdrop (in=m2);
by upi ddt uti;
if m1 then output brecamult;
else output error;
run;

*Create Scrambled Unique Personal Identifier

data getphin;
set brcamult;
where dropflag = 0;
keep upi uti mphin ddt ;
run;

data nophin fndphin;
set getphin;
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if mphin ="' then output nophin;
if mphin ~=""then output fndphin;
run;

data studynum;
set fndphin;
supi= _n_;
run;

* Attach Information on Termination of Coverage

proc sort data= studynum;
by supi;
run;

proc sort data= cov_mh;
by supi;
run;

data cohort2;
merge studynum (in=m1) cov_mbh (in=m?2);
by supi;
ifml;

run;

% .
" Attach Treatment Information

data txmt;
set txmt (keep=upi uti ticd9 ticd10 tdate);
tdt=input(tdate,date9.);
txyr=year(tdt);
format tdt yymmdd10.;
drop tdate;
txproc = put(ticd9,$procd.);
txprocei=put(ticd10,$proceci.);
if txproc” ='00" then txpc=txproc;else txpc=txprocci;
keep upi uti txpc tdt;

run;

proc sort data=txmt;
by upi uti;

run;

proc sort data= cohort2;
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by upi uti;
run;

data cr_txmt;
merge cohort2(in=m1) txmt (in=m2);
by upi uti;
ifml ;

run;

*Select the First Surgery for Each Woman

data surg;

set cr_txmt;

iftxpcin (1,234,567
run;

data crflags;
set surg;
if txpe in ("4')' 5')' 6") then mastx = [; else mastx = 0;
if txpc =' 1" then slnbx = 1; else slnbx = 0;
if txpc in (' 3)then andx = 1; else andx = 0;
if txpc =" 2" then segx = 1; else segx = 0;
if txpc ="7" then reconx = 1; else reconx = 0;
wait_surg 1= abs(tdt-ddt)/7;
run;

proc sort data=crflags out=use;
by upi wait_surgl;
run;

data ana_cohort;
set use;
by upi wait_surgl;
if first.upi ;

run;

data onerec;
set use;
by upi;
retain andxl mastx! segxl sinbxl reconxl;
if first.upi then do

andx] = 0;
mastx] = 0;
segx|=0;
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slnbxl = 0;

reconx] = 0;

end;

ifandx =1 then andxl = 1;

if sinbx =1 then slnbxl = 1;

if mastx = 1 then mastx] = 1;

if segx = 1 then segxl = 1;

if reconx = 1 then reconxl = 1;

if last.upi;

keep upi andx| mastx! segx! slnbxl reconxl;
run;

proc sort data=onerec;

by upi;
run;

proc sort data=ana_cohort;

by upi;
run;

data ana_cohortl;
merge onerec(in=ml) ana_cohort(in=m2);
by upi;
ifml;

run;

A.5 SAS Codes of Defining Variables

>kDeﬁne Variables

data inc;
set ana_cohortl;
rha=put(pcad, $rha04f.);
region=put(rha, $regff.);
urbrha=0;
if rha in ("10','15") then urbrha=1;
label urbrha='"1=WPG/BRAN';

if year(ddt) in (1995, 1996) then income=put((put(urbrha,1 llpcad),$inc96.);
if year(ddt)=1997 then income=put((put(urbrha,1.)||pcad),$inc97.);
if year(ddt)=1998 then income=put((put(urbrha,1.)||pcad),$inc98.);
if year(ddt)=1999 then income=put((put(urbrha,1.)||pcad),$inc99.);
if year(ddt)=2000 then income=put((put(urbrha,1.)||pcad),$inc00.);
if year(ddt)=2001 then income=put((put(urbrha,1.)[|pcad),$inc01.);
if year(ddt)=2002 then income=put((put(urbrha, 1.)||pcad),$inc02.);
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if year(ddt)=2003 then income=put((put(urbrha,1.)||pcad),$inc03.);
stage=put(pss, $stage.);
if income in (‘'R1'/R2','R3",'R4','R5") then urban=0;
else if income in ('U1','U2','U3",'U4','U5") then urban=1;
else urban="";
keep upi stage income region dage doc roc dthdt status wait surgl urban;

run;

A.6 SAS Codes of the Waiting Time Analysis

* Program of Wait Time Analysis

data wait_times;
set inc;
agegrp=put(dage, agegrpff.);
if tdt>'31dec03'd then do;
censor=0;
wait_surg=abs('31dec03'd-ddt)/7;
end;
if tdt<="31dec03'd then do;
censor=1;
wait_surg=abs(tdt-ddt)/7;
end;
if wait_surg=0 then wait_zero=1;
else wait_zero=0;
keep stage income region agegrp censor wait_surg urban;
run;

proc freq;
tables wait_zero;
run;

data wait_times;
set wait_times;
if wait_zero=0;
run;

proc freq;
tables andxl mastx| segxl sInbx! reconxl censor wait_surg agegrp stage income
region /list missing;
format wait_surg wk.;
run;

proc lifetest data= wait_times outsurv=a method=km plots=(s) ;



time wait_surg*censor(0);

title] 'Kaplan-Meier Estimates of the Survivor Function';
run;
proc print data=a;
run;

proc lifetest data= wait_times method=km plots=(s) ;
strata agegrp;
time wait_surg* censor(0);
titlel "Waiting Time Curves for Age Group';

run;

proc lifetest data= wait_times method=km plots=(s) ;
where stage”=",
strata stage;
time wait_surg* censor(0);
title] "Waiting Time Curves for Stage';
symboll v=none color=blue line=1;
symbol2 v=none color=red line=2;
symbol3 v=none color=green line=10;
symbol4 v=none color=purple line=10;
symbol5 v=none color=yellow line=10;
run;

proc lifetest data= wait_times method=km plots=(s) ;
where region”="";
strata region;
time wait_surg* censor(0);
titlel "Waiting Time Curves for Region';
run;

proc lifetest data=wait_times method=km plots=(s);
where urban="";
strata urban;
time wait_surg*censor(0);
title] '"Waiting Time Curves for Urban and Rural’;
run;

A.7 SAS Codes of the Survival Time Analysis

>kProgram of the Survival Analysis

data incl;
set inc;
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if stage = 'Stage 1' then stagel = 1;else stage]1=0;

if stage = 'Stage 2' then stage2 = 1;else stage2=0;

if stage = 'Stage 3' then stage3 = 1;else stage3=0;

if stage = 'Stage 4' then stage4 = 1;else stage4=0;
run;

data surv_ana;

set incl;

if (status="d" and dthdt"=.) then do ;

surv=(dthdt-ddt)/365.25;

censor=1;

end;

if (status="a' and doc”=. ) then do ;
if roc ='2' then do;
surv=(doc-ddt)/365.25;
censor=1;

end;
else do;
surv=(doc-ddt)/365.25;
censor=0;
end;

end;

if (status="a' and doc =.) then do ;

surv=("30JUNO07'D-ddt)/365.25;

censor=0;

end;

surv=abs(surv);

wait_surg=wait_surgl;

keep stage region surv censor wait_surg dage stagel-stage4 urban;

run;

proc lifetest data=surv_ana method=km;
strata wait_zero;
time surv¥*censor(0);
titlel 'Survivor Curves for Wait_zero';
run;

proc lifetest data=surv_ana method=km plots=(s,s);
time surv¥*censor(0);

titlel 'Kaplan-Meier Estimates of the Survivor Function';
run;

proc lifetest data= surv_ana method=km plots=(s,s) ;
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where stage”=";

strata stage;

time surv* censor(0);

titlel 'Survival Curves for Cancer Stage';
run;

proc lifetest data= surv_ana method=km plots=(s) ;
where region=";
strata region;
time surv* censor(0);
titlel 'Survival Curves for Region';
run;

proc lifetest data= surv_ana method=km plots=(s) ;
where r_u"=";
strata r_u;
time surv* censor(0);
title1 'Survival Curves for Urban and Rural’;
run;

proc lifetest data= surv_ana method=km plots=(s) ;
where income in ('U1','U2",'U3",'U4','U5");
strata urban;
time surv* censor(0);
titlel 'Survival Curves for Income within Urban';
run;

proc lifetest data= surv_ana method=km plots=(s) ;
where income in ('R1','R2",'R3",'R4",'R5");
strata urban;
time surv* censor(0);
title1 'Survival Curves for Income within Rural';
run;

proc phreg data= surv_ana;

model surv¥censor(0)= wait_surg /ties=breslow risklimits;

title '‘Cox Regression Model with Wait_surg;
run;

proc phreg data= surv_ana;

model surv*censor(0)= dage /ties=breslow risklimits;
title 'Cox Regression Model with Diagnosis Age';

run;
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proc phreg data= surv_ana;
model surv*censor(0)=dage stagel-stage4 /ties=breslow risklimits ;
title 'Cox Regression Model with Diagnosis Age and Stage';

run;

proc phreg data= surv_ana;
model surv*censor(0)= stage1-stage4 /ties=breslow risklimits ;
title 'Delete Diagnosis Age from Cox Regression Model;

run;

proc phreg data= surv_ana;
model surv*censor(0)= dage /ties=breslow risklimits ;
title 'Delete Cancer Stage from Cox Regression Model';
run;

data stage 01 stage 12 stage 23 stage 34;
set surv_ana;
if stage in ('Stage 0','Stage 1') then output stage_01;
if stage in ('Stage 1','Stage 2') then output stage 12;
if stage in ('Stage 2','Stage 3') then output stage 23;
if stage in ('Stage 3','Stage 4') then output stage 34;
run;

*Compare stage0 and stagel;
data stage 011;

set stage 01;

if stage ='Stage 1' then stage0_1=1;else stage0 1=0;
run;

proc phreg data=stage 011;
model surv*censor(0)= dage stage0 1 ;
title '‘Comparison of Stage0 and Stagel";
label stage0 1 ='I if stagel’;

run;

*Cmpare stagel and stage2;
data stage 121;

set stage 12;

if stage ='Stage 2' then stagel_2=1;else stagel 2=0;
run;

proc phreg data=stage 121;

model surv*censor(0)= dage stagel 2 ;
title 'Comparision of Stagel and Stage2";
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label stagel 2='1 if stage2",;
run;

*Compare stage2 and stage3;
data stage 231;

set stage 23;

if stage ='Stage 3' then stage2 3=1;else stage2 3=0;
rumn;

proc phreg data=stage 231;
model surv*censor(0)= dage stage2 3 ;
title '"Comparision of Stage2 and Stage3";
label stage2 3='1 if stage3";

run;

*Compare stage3 and stage4;
data stage 341;

set stage 34;

if stage ='Stage 4' then stage3_4=1;else stage3 4=0;
run;

proc phreg data=stage 341;
model surv*censor(0)= dage stage3 4 ;
title 'Comparision of Stage3 and Stage4";
label stage3 4='1 if stage4';

run;

*Estimation of survivor function;

proc phreg data=surv_ana;
model surv*censor(0)= dage stagel-stage4 /ties=breslow risklimits;
baseline out=a survival=s logsurv=Is loglogs=lls ;
title ‘Estimation of the Survivor Functions';

run;

proc print data=a;
run;

*Check goodness-of-fit for the PH assumption by weighted Schoenfeld residuals;
proc phreg data= surv_ana;
model surv*censor(0)=dage stage1-stage4 /ties=breslow risklimits;
output out=c WTRESSCH=schdxage schstagel schstage2 schstage3 schstage4;
title "Weighted Schoenfeld Residuals";
run;
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proc gplot data=c;
symbol value=dot interpol=none color=blue;
plot schdxage*surv schstagel*surv schstage2*surv schstage3*surv schstage4*surv
/vref=0 ;
title 'Plots of Weighted Schoenfeld Residuals Versus Survival Times';
run;
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