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ABSTR,ACT

The first part of this thesis explores solutions to the Schrödinger equation for sys-

tems subject to ciassical Yang-Mills fields. Under a weak set of assumptions on the

potentials, v/e prove the existence of a family of operators, called the Schrõdinger

eaolution, which map vectors in Hilbert space to solutions of the Schrödingerequa-

tion. By strengthening our assumptions it is possible to show that these evolution

operators are integral operators. The collection of their kernels is commonly called

the propøgator in the physics literature. Through a constructive technique, an ex-

plicit formula for the propagator is found.

The second part of this dissertation derives a class of sum rules, commonly

known as Levinson's theorem, for a single particle system. These rules relate the

number of bound states to the energy integral of the the trace of the time delay

operator. In particular we will incorporate into these rules detaiied information

about the spin structure of the system.
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CHAPTER 1

Introduction

In this treatise we address two problems arising in the theory of quantum mechanics

for systems subject to non-Abelian potentials and external fields. The first is con-

cerned with the study of a quantum system composed of I/ particles interacting with

external vector and scalar Yang-Mills fields. A special case of these fields occurs

in the description of an .lù-particle atomic (or subatomic) spin system interacting

with an external electromagnetic field. This latter problem manifests only a limited

form of non-Abelian behaviour because the description of the electromagnetic field

via the potentials ,i ur,.d @ is free of spin labels. All the spin interaction here is

confrned to the coupling of the spin magnetic moments among themselves or to the

external magnetic field. For the more general Yang-Mills fields, I and / become

hermitian-matrix valued fields which gives use the most general non-Abelian struc-

ture possible. The second topic we wish to discuss is a class of sum rules that relate

the number of bound states for a single particle system (without electromagnetic

fields) to the energy integral of the trace of the time delay operator.

In as much as these two problems can be treated separately (although they

are not wholly unrelated) we shall divide this dissertation into two parts.



-2-
1.1 Part I-: The Non-Abelian Tirne Dependent Schrödinger Equation

We wish to study a nonrelativistic .r{-body system subject to (externai) classical

Yang-Mills fieids [Mor 83]. These fields have built into them a matrix structure

which is used to describe internal degrees of freedom. For convenience we shall use

"spin" as the generic name to label the matrix structure although in actuality its

interpretation may be something completely different (eg. isospin) depending upon

the physics being described in a given situation.

The dynamical evolution of a quantum mechanical system is determined by

Schrödinger's time dependent equation of motion

._4,,
th 

*tÞ(æ,t) 
: H(r,t')tþ(æ,t). (1.1)

Here z denotes a generic point in md that specifies the positions of all the pariticles

in the system. If the Bth particJ,e has spin s6, then $(æ,f) is a column vector of

dimension
7L

":f{z"p+1),
0=7

and it is the pointwise representation of the state vector ,þ(t) € L'(wd;C"). The time

parameter l, Iies in the compact set [0, ?] and the Hamiltonian has the differential

structure

H (æ,t)
2

* a(æ,t). (1.2)

Here 1 is the unit s x s matrix and V is the d-dimensional gradient. The potential

?, maps md x [0, ?] - Csxs. For a physical situation we have the necessary pointwise

condition on tr that for a.a. (*,t), a(æ,,t) is a hermitian matrix. The hermiticity is

also useful for demonstrating the existence of solutions to (1.1) for a broad class of

potentiaJs. We will eventually make much stronger assumptions on ¿r that will allow

us to relax the hermiticity requirement. Non-hermitian potentials create a source or

- 1 lLor-o(*.ùf
2rn li, ' "l



sink for probability and are known in

IMS 70]. The vector potential ø is a

s x s hermitian matrices.

þ:7
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the physics iiterature as the optical potential

d-dimensional vector whose components are

lJ: !

We remark that such a Ilamiltonian is sufficient to describe the /[-body prob-

lem in atomic physics. For such systems, suppose the external electromagnetic fields

É urLd, È ur" generated by the vector potential ,Ã u,nd the scalar potential /. Then

the vector potential appearing in (1.2) is related to ,4'by the formula

a(ært)

where ÇB is the charge of the Bth particle and øp is its position. The perturbing

potential may be written in the form

¡/N
a(n,t) : - Ð qBFp. È@B,r) + Ð øBó@B,I)I + õ(æ,t).

The vector ^fU denotes the spin operator for the Bth particle. For the example of a

spin half particie, SUi" n¡Z times the vector formed from the three Pauli matrices.

Substituting these expressions into (I.2), the Hamiltonian has the form

: (ør.í@r.,t),. . ., qw Ã@ w,Ð) I,

1\u,,-qpÃ@p,,)f å 
qBsB Êçau,t¡

.lv
Hft.m\: i- \-' 2rn ¿-¿

P-!

N

+ t eBó@B,t)I +u(æ,t).
Ê=l

(1.3 )

V[e furthermore note that with a change of scale in the position variable and an

adjustment of the coupling constants, r¡/e can switch from the case of all the particles

having a common mass rr¿, to one where the mass of the Bth paúic\e is rn,. With

these changes made, the Hamiltonian is precisely in the form ascribed by Landau

and Lifshitz ([LL 58], chapter XX).
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Hamiltonians in the form (1.2) are sufficiently generai to describe quantum

particles in a classical Yang-Mills field lMor 83] [\Mo 70]. An example of their use

is the study a system of quarks in an external giuon field lAr 82].

We approach the problem of solving the Schrödinger equation from two dif-

ferent points of view. We first examine the solutions by solving the equation

ih*'ú(t): H(t)1þ(t) (1.4)

in the tr'(m';C") topology. Let CI(md;C") denote the space of infiniiely differen-

tiable functions of compact support. We shall place sufficient conditions on ¿ and

o to ensure the minimal operator Il(.,ú) defined on Cf;(Rd;c") has a unique closed

extension H(t), with a domain ,(r!l) - Do that is time independent. Let Tt
be the closed triangular region

TA : {(t.,t) € [0,7] x [0,?] : 0 ( úo < ú < 7].

For each to 17,, we will seek a solution of (1.a) that satisfres the Cauchy data

problem

,þ(to,,t,) :1þo, 1Þo e Do. (1.5)

We shall see that under a set of weak assumptions on ¿ and tr, a unique solu-

tion exists and defines a family of bounded linear operators via the mappings

,þo Ð ,þ('t,t.). For each (to,t) we denote this mapping by tl(t,t,) and we call

the coliection of these mappings, {U(t,to)}þ,,Ðero, the Schrõdinger euolution. We

shall study equations similar to (1.a) and (1.5) and show that they also generate

unique families of bounded linear operators, which we shall call an euoluti,on. Prop-

erties of an evolution will be outiined in chapter 2. Here it suffices to say tl(t,,t.)
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has the domain stability property U(t,t.): Do --+ Do;U(to,to):.I; and u(t,to) is

strongly continuousiy differentiable and satisfies the equation

tnf;Uçt,to)rþ : H(t)U(t,t")Iþ, ,þ € Do.

If H(t) is time independent, then the Schrödinger evolution has the well known

form

U(t,t") - e-i(t-to)Hlh (1.6)

With weak restrictions placed on ¿ and u u¡e can show the existence and

uniqueness of the Schrödinger evolution. These operator solutions provide us with

a rigorous abstract framework in which to discuss evolutions. Under somewhat

stronger assumptions on, ¿ and o and for times I - fo sufficiently small, it is possible

to show that U(t,fo) is an integral operator. Its integral kernel is a matrix valued

function, which we denote by K(ært;y,,to;rn). Another characterization of K (the

propagator), common through physics, is-found in the Dirac bra ket statement

K (æ,t; U,toi m) : (ælU (t,t")ly).

One should recall that the Dirac notation above assumes that every bounded op-

erator on Hilbert space has a kernei. This is often false. Atty satisfactory study

of evolution must establish the existence of an integral kernel K. Aithough (with

a static I{amiltonian fl) a great deal is known about kerne}s associated with the

analytic semigroup 
"-'H , 

Re ú ) 0, very little is rigorously known about the ker-

nel of the evolution e-itH, ¿ € R. As Simon observes in his review of Schrödinger

semigroups [Si 82], it is an open question whether or not for tr/-body Schrödinger

operators, including the atomic Hamiltoni urrs, e-itH is a weak integral operator with

a jointly continuous integral kernel. We will use a constructive technique to obtain

an explicit formula for the evolution's kernel and this is the principle achievement
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of the first part of this thesis. These kernels represent the starting point in all

approximate descriptions of evolutions, such as are found in the \ /KB, the large

mass, and the small time displacement asymptotic studies in K.

Let (., .) denote the inner product in 7l : tr'(m'; C') with the convention that

it is linear in the right argument. We have the foliowing definition by Simon [Si 82]:

Definition 1.1: A two parameter family (in 76, t + t.) of functions

K(.,t;.,to), Rd x Rd --+ Csx'q

that are measureable and locally integrable on Rd x Rd, is called the propagøtor for

the Schrödinger evolution if for all bounded measurable functions ú,g of compact

support,

(1.7)

0

Kernels of the type defined by equation (1.7) are called weakin Simon's ter-

minology [Si 82].

The Hamiltonian H (t) rnay be written as a perturbation of the free Laplacian

operator Ho: -*O,
H(t): H. +v(t)'

If {U"(t,to)}G,,ùero represents the evolution associated with the free Hamiltonian

fJo, then the Schrödinger evolution satisfies the (strong) integral equation

r
(rþ,U (t,t,)p) : l rþ@). K (æ,t; a,t,; m)p(E) d,y dæ.

I

u (t, t') : (J o(t, t ò + h I' " 
o, u 

"(t, 
r)v (r)u (r, t.). (1.8)
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We will obtain an explicit representation of K by investigating the individual terms

that arise from the iteration of (1.8). By iterating (1.8) an infinite number of times,

the resulting series is knownin the literature as the Dyson series [Dy 49,1]lDy a9,21.

To gain better control of the individual terms of the Dyson series, it wilt

be necessary to embed our evolution problem into a larger problem in which the

mass parameter rn shall be treated as complex. Let C¡ denote the upper half

complex piane and let C> denote its closure with respect to C. We shail study the

evolution problem with r¿ € C¡ and treat the Schrödinger equation and its solution

as Im m --+ 0* boundary value problem of this larger class of evolutions. We shall

see that both the complex mass evolution and the complex mass propagator are

continuous functions of rn and their extensions coincide on C¡.

The convergence behaviour of the Dyson series is dictated by our assumptions

on the potentials ¿ and o. Each will be assumed to be the Fourier transform of a

complex matrix valued measure of compact support. For exampte if {z(f)}¿elo,"l

denotes such a family of measures over the Borel subsets of Rd, then

u(æ,t)

IIere, a.æ denotes the dot product

"i"'' drTt¡. (1.e)

d.æ:a1æ1 *...*ad.æd.

Similarly if {7(t)}r.[0,"] is a family of d-tuples whose components are complex matrix

valued measures of compact support, then

a(æ',t) "i"'' d7çt7. (1.10)

Sufficient f differentiability properties are imposed on the measures u(t) and 7(t) to

ensure that u(æ,f ) and a(æ,t) are continuously differentiable in f . For each fixed f,

t- ,/uo

t- Joo
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the potentials will also be holomorphic functions of æ because of the boundedness

of the support of their respective measures.

This class of potentials is very similar to that used by Ito [It 61] [It 67] and

Albeverio and Høegh-Krohn IAH 76] in their studies of the Feynman path integral.

In these studies, the potential has the same form as in (1.10), but z(f) no longer

need have compact support. Osborn et. al. IOF 83] IOCF 85] have studied the

propagator using this same class of potentiais. However in each of these references

cited, ø, : 0. It is the appearance of a term like ¿.V in the Hamiltonian wherein

lies the difficuity. Such a term leads to polynomial structures in the Fourier space

for each of the terms in the Dyson series. For the nth terrn, these polynomials

can be up to order n and it is the compact support of the measures that provides

the mechanism for controlling the polynomial growth at infinity. In another paper,

Osborn et. ai. IOPC 87] have addressed the same problem we are considering,

but within the frame work of a spinless (s : 1) system. The techniques used in

that paper are adaptable to spins s ) 1 and it forms the basis for the arguments

presented in part 1 of this dissertation.

In chapter 2 we discuss the properties of the Schrödinger evolution and what

are sufficient conditions required of I/(f ) in order to ensure its existence. Our as-

sumptions on ¿ and z' shall be weak in order to verify the existence of the Schrödinger

evolution for a broad class of Hamiltonians. Included in this class of potentials are

the physically important Coulomb and Yukawa potentials. It will be necessary to

allow the mass parameter to take values in [0, oo) when we consider this broad ciass

of potentials because with a rea"l mass we can exploit properties of a self-adjoint

operator which we wouid not be able to utilize with a complex mass. For the last

part of chapter 2 we will strengthen our assumptions on ø and ¿' so that we may

Iet ¡n be complex and IMe can drop the hermiticity requirements on u. Under this

setting, we investigate the rn e C> continuity of the evolution {U(trto)}þ",Ðero.
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In chapter 3, we make precise our working assumptions on the potentials to

be used for the remainder of part 1. We also demonstrate that these assumptions

are sufficient to verify lhat a and o will satisfy the criteria required of them in

chapter 2.

Chapter 4 is concerned with the individual terms of the Dyson series and

demonstrates that for sufficiently small times t - to, the series is summable and it

strongly converges to a solution of the Schrödinger equation (1.4).

In chapter 5 we show that the z¿à term in the Dyson series defines an inte-

gral operator with a continuous kernel dn(*rt;g,to;rn). Moreover, for suficiently

small times, these kernels are pointwise summable and their sum is the complex

mass propagator K(ært;Artoim). The complex mass propagator is shown to be

continuous in the limit Im y¡¿ --- 0*. Using the strong continuity of the evolution

{U(t,to)}ft.,t)ero with respect to the mass parameter, we show the Schrödinger

evolution (ie. Imnz : 0) is an integral operator whose kernel is the propagator.

It is helpful to recall in what ways the results given here for the time evolution

of quantum systems in external non-Abelian fields extend those found elsewhere in

the literature. The specific construction of a convergent Dyson series (in severai

different topologies) is the core result. These convergent results (as stated in lemma

5.5 and theorem 5.1) are neu' and have importance in establishing the mathematical

nature of the quantum propagator and in characterizing the analytic structure of

the propagator in the physical constants It,, rn, and q (the charge coupling constant).

The simpler non-Abelian external field problem is already published in [OPC 87]

and the revised analysis found in sections 1-5 successfully extend the idea of using

the complex mass continuation technique to the non-Abeljan case.
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1.2 Part 2: Levinson's Theorem for Spin Systems

In the second part of this treatise rve study Levinson's theorem for two particle

scattering. Formally one may remove the center of mass motion from the problem

and consider the equivalent one particle system in an external potential zr. Again

we are interested in a system possessing spin degrees of freedom. As in part 1, the

term spin is a generic term and its precise interpretation depends upon the physics

being described. The ¡elevant Hilbert space for this problem will be ?l : tr2(m3; a").

The scattering system is completely specified by the Hamiltonian pair (I1, f/"). The

free Hamiltonian is the self-adjoint extension of the minimal operator defined by

the negative Laplacian on Cf;(R3;c"). The interaction Hamiltonian is given as a

perturbation of Ilo;

H: H"*V.

The operator V is defined by multiplication with the matrix valued function

o : R3 --+ C"x". For a.a. æ, u(n) will be hermitian, which is a necessary condition

on ø if fl is to be self-adjoint. For many of our arguments it is sufficient that

u e Lt n.D2(m3;c"*t). However there is one proof where we needed to strengthen

this assumption on o to u € Lt n-F*(m3;c""'). The potential class.F* describes

those hermitian matrix valued functions that are the Fourier transform of a complex

matrix valued measure, similar to (1.9). This assumption was needed to provide

sufficient control over the large (complex) energy behaviour of the Born series

R(") - R,(r): Ð(-r)" R"(z)lV R"(")). (1.11)

Herc R(z) = (H - ")-' is the resolvent of fl and Arþ) is the resolvent of l/,. We

shall keep these integrability assumptions on ¿' local

event of improvements on controlling the large energy

to each claim so that in the

behaviour of the Born series,
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ü¡e need only modify those results directly affected, ¡ather than having to rederive

all the results.

Levinson's theorem is just one of a class of energy moment sum rules [Bo 86].

Suppose the Hamiltonian has 1ú6 bound states with eigenvalues \¡ (j : 1 - l/¿).

Then for t' in a certain class, the sum rules are (cf. [Bo 86], equation (3.2a) )

lo* ^*{2r," 
rrla(À) -

N+1
\-L
n=7

E,(À)l : "-#,0^ I d.æ sp P*(,,*)\

Nö

:znfÀ"{
J

Here sp corresponds to the trace in C"x" and the series

^# | a* 
"oPn(æ,æ)

tr{ : 0, 7,2. .. . (1.12)

is the leading order asymptotic expansion of the function 2Im Tr[,R(z) - R"(z)]

(cf. [OCF 85], theorem 3). Levinson's theorem corresponds to the /ü :0 version of

(1.i2).

One can develop this rule further by considering time delay theory. Let E

be a Lebesgue measurable subset of R3 of finite measure. The time delay through

the region X is the difference in times spent by a free particle in X and a particle

under the influence of z;. If we consider taking the limit Ð -- R3, the corresponding

limit of the time delay also exists and we call this lhe global time d.elay. The global

time deiay may be connected to the resolvent difference and the exploitation of this

connection leads to another form of Levinson's theorem. \Me shall call this the qlobal

Leuinson's theorem.

\Me are interested in what we shall call the local Leainson's theorem. It îs a

similar theorem to the global sum rule, but it uses the time delay associated with

a finite region Ð. \Me further broaden our considerations by studying time delay
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through the region Ð while the particle has spinor components in some fixed but

otherwise arbitrary subspace I C c'. The local theory is of interest on several

accounts. For the global time delay theory, there exist relationships between the

time delay function, the density of states and Krein's spectral shift function [Bu 67]

USM 72]. Initial examinations of the arguments of MacMillan and Osborn [MO 80],

and Bollé et. al. |BDO 86] indicate the local time delay is related to a local

representation of the density of states and what appears to be a local version of

Kreints spectral shift function. The complete exploration of these aspects of the

locai theory \rye shall ieave for future studies. Another use of the local theory is to

study the X -- R3 timit. There appears in the global sum rule a term that never

appears in the local version of the same rule. The origin of this term is due to the

possible occurrence of a zero energy resonarÌce lN 77] UK 79]. Thus this limit is

quite delicate and nontrivial to perform. Recent result for the local local Levinson's

theorem in two dimensions have been presented by Osborn et. al. IOSBD 85].

In the above, $/e are only using the spatial aspect of the probiem with the

region E. lVe can also exploit the spinor structure in our problem. By using the

arbitrariness of f, one may take combinations of these sum rules so that specific

matrix components of r.r and the time delay operator are singled out. This is a new

contribution to the theory, allowing a detailed study of the off diagonal spin terms.

Prior to this, due to a trace being performed, only information concerning the sum

of the diagonal spin variables was available.

In chapter 6 we first establish the properties of the scattering system deter-

mined by the Hamiltonian pair (H, Hr). A discussion of the connections between the

resolvent difference and the time delay for the spatial region X and spinor subspace

I follows. We end chapter 6 with a brief study of the Born series.

We end our study with chapler 7, which deals with the specific details of the

proof of our local Levinson's theorem.
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CHAPTER 2

Evolution Operators and the Hamiltonian

2.L Evolutions in Banach Space

Before we discuss the Hamiltonian in detail we examine the properties suffi-

cient for an operator to generate an evolution. With these properties in mind we

will place restrictions on the Hamiltonian to guarantee that the Schrödinger evolu-

tion exists. A theory concerning evolutions has been worked out by Krein [Kr 71]

in the more general setting of Banach spaces and we shall apply this theory to the

specialised case of a Hilbert space.

The evolution problem of interest is the following: In a Banach space E we

consider a first order differential eouation

A(t)rþ, 0<t<7,drþ :
dt

where ,þ , l0,Tl - E and L(f) is a family of possibly

E. Each ,a(t) is assumed to be closed and they all

n(açt¡\ : D(A) c E rorall t € [0,"].\ r ',/ \ /

(2.1)

unbounded operators on

share a common domain

Definition 2.Lz A solution of (2.1) on the segment lt",Tl for a fixed t. € l0rT)
is a function tþ(t,t,) taking values in D(A) and having a strong derivative }tþ(t,t")
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which satisfies (2.1) on the intervallt",T). The problem of finding a solution ,þ(t,t.)

of (2.1), for each fixed fo € [0,7], and which satisfies the initial data condition

,þ(t.,t") :1þo e D(A) (2.2)

we shail call the Cauchy problem on the triangle TA: {(t,t"):0 1to < t < T}.

o

Definition 2.22 The Cauchy problem is said to be uniforrnlg correct if the

following statements hold:

(1) For each fo € [0,f] and any tþ, e D(A) there exists a unique solution

,þ(t,.t.) of (2.1) on the segment lt",Tl satisfying the initial data condition (2.2).

(2) The function ,þ(t,t") and its I derivative }¿zþ(t,,fo) are continuous in the

triangle 7a.

(3) The solution depends continuously on the initial data in the sense that if

1þo,n e. D(A) converges to zero as ?z -) oo then the corresponding solutions ,þ*(trtr¡

converge to zero uniformly relative to (f , to) € Tt. O

When the Cauchy problem is uniformly correct we can define a linear rnap on

D(A) for each (t,to) € ?a by the relatioî 1þo -+ ,þ(t,t.). \Me denote this operator

by U(t,fo) and we have

,þ(t,t.) : U(t jt")tþ". (2.3)

From properties (1) and (3) it follows that U(t,f,) is bounded and since D(A) is

dense ïr¡e can extend U(t,tr) to all of E. We denote the extension again byU(t,t.)

and we call the associated family of operators an evolution. The uniformly correct

Cauchy problems leads to certain properties for the evolution {U(t,to)}þ,,t)erd,
summarized in the following proposition.

Proposition 2.1: Suppose the Cauchy problem in the túangle ?4 is uni-

formJy correct. Then the evolution {U(trto)}þ.,t)er¿, satisfr.es the following:
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(7) U(t,t") : D(A) -- D(A), (t,,t,) € Ta.

(2) The operator U(t,t") is uniformly bounded in ?6.

(3) Tåe operatorU(t,tr) is strcngly continuous in ?16.

@) The following operator identities hold in T6:

(5) Tåe restriction of the operatorU(-t,t.) to the domain D(A) is strongly

differentiable in t e lto,T). Furthermore the operator ô¿U(t,to), defrned on D(A), is

jointLy strongly continuous in (ú, t,) e Ta and obeys the relation

u(t,,t,):u(t,r)u(r,to), o lto 1r 1t 17,

U(t",to): I, ú, e [0,?].

ô¡U(t,t")lþ -- A(t)U(t,t,)1þ, ,Þ e nç4.

(r 4\

(2.5)

(2.6)

Proof: See Krein [Kr 71] (pp. 193-195).

The significance of proposition 2.1 is that we need only verify that the Cauchy

problem (2.1) and (2.2)is uniformly correct in order to know the associated evolu-

lion {U(t,to)}þ,,ùero exists. The next theorem states easiiy verified conditions on

A(t) thaf will be suffi.cient to guarantee the Cauchy problem is uniformly correct.

Theorem 2.L: Supposethe operators A(t) (t € [0,?]) are

(1) denseþ defr.ned and closed, with a t-invaúant domain D(A);

(2) strongly continuously differentiable on domain D(A); and

(3) obey the resolvent estimate

lln(r; A(t))ll <å, À>0.

Then

(2.7)
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(a) tåe Cauchy problem in T6 ís uniformly correct;

(b) tåe rcstriction of the operator U(trt,) to the doma,tn D(A) is strcngly

continuously differentiable with respect to to € [0,7] and satisfres úåe equation

ô¿"U(t,t")rþ -- -U(t,t,)A(t.)7þ,, (t,t.) € Ta,, ,lt e n14; (2.8)

and

(c) tåe operatorU(t,,t") saúisfies the uniform bound

llu(t,t")ll s r. (2.e)

Proof: We refer the reader to Krein [Kr 71], chapter 2, section 3.1 and specif-

ically theorem 3.11. O

We next wish to apply this theory to the Schrödinger evolution problem. Let

.E be the Hilbert space

7t: Lz(RdiC').

The Schrödinger equation with its associated Cauchy problem is

.* d'rþohã : H (t)',þ,
(2.10)

,þ(to,t") : 1þo, 4;" e D(H).

Here .Fl(f ) is a famiiy of self-adjoint operators on 7l with the common domain D(H).
'We have the following result.

Theorem 2.22 Let

A(t) : h,, Ul - cr , (2.11)
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where c is an appropriately chosen real constant such that A(t) satisfres the hy-

potheses of theorcm 2.1 and let {U(t,to))þ,,Ðero be its associated evolution. Then

the Schtödtnger equation (2.10) generates an evolution, {U(t,to)}þ",ùero, which

saúis¡îes the pointwise operator identity

U(t,t.) - ec(t-to)¿l(t,to), (t,t.) e T¿,. (2.12)

The Schrödinger evolution has the analogous properties;

Q) U(t,t,) : D(H) -- D(H), (t,to) e Tu
(2) U (t,to) has the operator norm bound

llu (t,¿")ll < 
"c(t-to)'

(3) U(ú,fo) is strongly continuous in 76;

(4) U(t,to) satisfres the operator identities

(2.13)

U (t,t.) : U (t, r)U (r,to),

U(to,to¡ : 7t

0(fo( r 1t 1T,
(2.14)

(5) tåe restñction of U(t,to) to

with respect to both t and to with the

0¿U (t,to) :

ô¿"U(t,to):

Proof: From the definition

properties (1) - (4) are trivialiy

is strongly differentiable

(2.15)

the domain D(H)

strong derivatives

lnçr¡uçr,r,¡,

-hrþ,t")H(t,).

(2.72), theorem 2.1 and proposition 2.1 we'see that

satisfied. We show (2.15). If ,þ. e D(H) : D(A),
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then

Ô¿U (t, t o)rþ o : Ôt("'('-t")U (t, t 
")rþ ")

: c[J(t,t,)rþ. ¡ 
""p-to) 

A(t)u(t,t.)rþo

: c[J(t,t,),þ" + (!-nO) - "/) u(t,to)ú,

: luqt¡u(t,t.)rþ..

The second equation in (2.15) follows similarly.

2.2 T}¡e f{amiltonran

We are now ready to discuss what sort of assumptions are necessary to make

on Il(f ) in order that á(t) defined by (2.11) have the properties (1)- (3) in theorem

2.1, needed to generate an evolution. Obviously properties (1) and (2) are satisfied

if and oniy if the corresponding properties exist for H(t).

In our studies of the Hamiltonian properties we shall discuss two different

approaches in the treatment of the mass variable m. The first is to treat nt, as

a positive parameter. The advantage of this is it allows us to demonstrate the

flexibility of Krein's evolution theory by using a broad class of potentials. The

second treatment of the mass parameter allows rn to take up values in the upper

half complex plane. The ciass of allowable potentials will be narrower than in the

first treatment, but it is this class that we shall ultimately use to develop a pointwise

representation of the propagator. The complex nature of rr¿ is crucial in estabiishing

the relation between the abstract evolution operator and the propagator.

We first make some preliminary definitions to make statements about our

potentials concise and then we shall describe assumptions on the potentials sufi.cient

to allow A(t) fo have the desired properties listed in theorem 2.1.

We introduce the Hilbert space 71, defi.ned by

'ì1, = L'(wo;(c')').
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Here (c")d denotes the space of d-tuples whose components are s - dimensional

vectors over the compiex field c. We denote the norm on Tlu bV ll . ll". \Me will define

mappings '11 ---+ ?1, componentwise. For example we can define the momentum

operator P :7{ -- ?1r, by specifying the effect of each of its components

(P¡rþ)"(") : ha¡tþ(a), i : 7,...,d.

Here ^ denotes the Fourier transform mapping 'll -- 'll and a : (ar , . . . , d¿). Clearly

P¡ has the interpretation of the generalised derivative -ihô10æ¡. The domain of

the operator P is

D(P) : {rþ e 7l : atþ €'tí"} : {rþ e Tl : laltþ € 1i}.

Assumption 1: The operator a(f) :'J1-71o is a d-dimensional tuple whose

components, [a(f )], are operators mappirrg TI ---+ '11. Each component, [a(t)]r,

is deflned by multiplication by the matrix valued function l"(.,t)lr. pd -, çsxs

0":7 - d). For a.a. æ j fa(æ,t)]r is hermitian * and hence each [a(ú)], is a symmetric

operator. If ø(',ú) denotes the d-tuple formed from the [ø(.,f)]r's, then we assume

ø satisfies the following properties:

(1) ø e Ct(m'x [0,?],(c'"')d), where (csxs¡a is the space of d-tuples whose

components are s x s matrices;

+ In the language of gauge theory, each component [a(.,1)], can be written pointwise as

fa(æ,t))* =laf;,r,t)Fn.
È

The coefficients ã.f;(æ,t) are scalar and contain all the space-time information. The matrices
F¡ are the generators of the internal symmetry group on C' and satisfy the usual commutation
relations

[F¿, F¡) = ic;irF¡,

where the structure constants c¿¡¡ depend upon the particular group the ,t.¡'s generate. For
further details, cf. reference [Mor 83].
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(2) ø and its derivatives are uniformly bounded in æ and ú;

llårq, t + 6t) - o(.,¿)l - ¿(.

ll¿(',¿) - ¿'(.,

I,ql:7,

--+0 asá1 r0,

--+0 asz-+f.

lø(æ,t)l

\A!a)(æ,t)l

l(ð¿a)þ,t)l

1 Mt,

1 Mz,

S Mt.

Here 4is the multi-index(r1r,...,4d.), withlength hl : Tr*...*q¿.We utilize the

notation

aI:(*^)a,... t*1,,.

(3) ø is continuously differentiable with respect to f in the L*(dæ;(C""")r)

norm. That is, there exists a measurable (with respect to d,æ) function å, whose

components are also hermitian s x s matrices, such that

,,)11""

")11."

(4) V.ø is continuousiy differentiable with respect to I in the L*(dæ;C"")

norm with derivative V .¿:

llåff". o)(., t + 6t)- (v . oX.,¿)l - (v. oX.,¿)11"" - o

ll(V.¿X.,¿) - (V.¿X.,2)11"" -+ 0

as

AS

ót --+ g;

r ---+ t. 0

The boundedness and smoothness properties of ¿ will not be a severe restric-

tion for physical problems such as those occuring in atomic and molecular physics.

For such probiems, ¿ is a muitiple of the unit matrix and it is ciosely related to the

electromagnetic vector potential 1. Because the spatial and temporal derivatives

of 1u.r" related to the physical (external) fields .d and È, Ã can be assumed. to be

nicely behaved and hence ø wili also be weil behaved. It is reasonable to extend
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these assumptions to the case where the components of a are hermitian matrix

valued functions.

Let H"(rn) be the minimal operator with domain Cfl(Rd;C") associated with

the Laplacian in Rd;

Here I is the s x s unit matrix. Forx rn > 0 it is weil known lhat H.(rn) acting in

the space tr'(m';C') is essentially self-adjoint with a self-adjoint closure we denote

by H"(m,) (see reference [Ka 84], chapter V). Furthermore the spectrum of H"(*),

"(n"ç*¡), is the interval [0,*). For complexrn)by writing n"þn): rn-tiI.(t)

we see that iI,(rn) is closable with closure H,(*): *-tïo(7). The domain of

H"(*) for all m € C.¡ is given by

n(n"çr.¡) = o, : {rþ e'11 , oz$(a) € ¿z(Rd;a")}.

Next we consider the minimal Hamiitonian operator on Ci(md;C') associated

with the partial differential operator

n.þn): -*ot.

ir,(t,*): *(i", - "(.,t)) .

Expanding out the square in (2.17) we can write Êt(t,nz) as

(2.16)

(2.17)

(2.18)Ht(t,*) : H "(*) * W (t,m).

The perturbing operator, Wltr*¡, is given by

(2.1e)

* The ordering relations ( and > have no meaning on complex numbers. Hence to say rn ) 0

implicitly implies that m is real valued.

w¡t,*¡:o*o(.,¿) .v + fitv.oX., t) + fia(.,t)z,
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with domain Ci(Rd;A'). If we let rn ) 0 and we use the hermiticity of the compo-

nents of a(æ,f ), coupied with an integration by parts, we obtain

(rþ,W(t,*)p) : (W(t,rn)rþ,ç)., ,þ,ç e Ci

Thus W(t,rn) is symmetric and hence it is closable. We denote the closure of

W(t,7)by W(t,1). Since Wçt,r"¡: rr-tVT(/,1), we see that Wçt,*¡ is closable

for all m € C.¡ with the closure W(t,,rn) : rn-tW(t,7).

Lemma 2.L: Let a(t) satisfy assumption 7. Then for aJl (t,*) € [0,7] x aa

the operator È{t,rn) has cJosure H{t,m) satisfying
/\

(1) D(ä'(r, *)) : D";

(2) Ht(t,*)rþ : H"(m)rþ +W(t,rn)tþ for all tþ e D.;

(3) If m, ) 0 then H1(t,rn) is self-adjoint and bounded from below by zero.

Proof: \Me show thar Tñ/(t,m) is il.ç*7-A"unded with it.(rn)-bound zero.

Assumption 1 shows that both (V.ø)(æ, ú) and a(æ,t)2 give rise to bounded operators

that are uniformly bounded in f . Thus we need only prove our assertion for a(ært).Y.

Let tþ € Cf and consider the following.

ll"(.,¿) .v',þll' : | Þ@,¿) . (v,i xæ )r' d*

*f I (vtþ)(æ)12 dæ

*? I ,2þi,@)1, do.

Let 6 ) 0 and define the set Ed = {o €

the integral above into one over E5 and its

wd : ll$@)l > áo'lø(')l). Breaking

complimentary set md\g¿ our estimate
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becomes

ll"(.,¿) .v,þllz < M?

<Ml

sM?

Taking the square roots of the left and right hand sides we see that Wlt,rn¡ is

n"1*¡-Aounded. Furthermor. Tñr7t,,rn) has U"ç*¡-U"und zero because ó can be

made arbitrarily small. \Me also note that the estimate is time independent.

Lel rn ) 0 for the moment. Then Wltrr"¡ is symmetric and an appiication

of Kato's theorem V.4.4 [Ka 8a] shows n.@) + W(t,rn) is essentiaJly self-adjoint

and its closure is given by H{t,*) : H"(*) + W(t,m). Ht(t,nz) is self-adjoint

and it has the domain Do. To extend the domain and closure properties to rr¿ € C+

we simply note that ilt(t,rn): rn-ti[{t,l). Of course H{t,rn) wilt no longer be

seif-adjoint for a complex mass parameter.

FinaJly we show (3). Let rn ) 0. To show that fl1(t,rn) ) 0 we must show

(rþ,Ht(t,m)tþ) > 0 rþ € Do.

However because of the closedness of. H1(t,*) we need only prove this on a core

(cf. reference lKa 84], p. 166) of H{t,m) and then extend this to all of Do. One

such core is Cf;,, where the operatot H1(t,*): iIr(t,rn). Using the defrnition of

É{t,m),,the hermiticity of the components of o(.,f) and integrating by parts we

get

(rþ, Hr(t,rn¡{¡ : >0.

{# L,l',î,(,)¡z 
d.a + 6' 

Iuoxuol,,rnl'i'@)l'r'}

{ å,'r t' + t' lTS É.@),þt'\

{},,øl 
+r|fflna"w),in}

*ll+"' - o(,',] tll'

From the above proof we have also shown the following resuit.
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bounded with Ho(m)-bound zero.

than zero such that
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hypotheses of lemma 2.7, W(t,rn) is Ho(rn)-

That is there exist constants a, and ß1 greater

llw(t,r"),þll f "rllúll + þtllH"(*),þ11,, ,þ e Do (2.20)

The constant B, can

compact set and rn e

of t and rn.

be

rc,

made arbituarily smaJl. Furthermore, if K C C+ is any

then the constants a, and 01 can be chosen independent

o

For the interaction potential v(f) we will consider two possible classes. The

first class will allow for potentials that are reiatively bounded with respect to the

Laplacian. These potentials will be defined by matrix valued functions that are

hermitian. For this class, we shall only consider a real mass parameter because

these potentials can be unbounded and a complex nz leads to many difficulties in

verifying the hypotheses of theorem 2.2. We wish to study these potentials because

they include several important physical interactions such as the many body Coulomb

and Yukawa interactions. It also demonstrates the flexibiiity of Krein's evolution

theory. The second class of potentials we will study consists of bounded potentials

defined by multiplication with complex matrix valued functions. We remove the

restriction of hermiticity as the general formalism in later sections does not require

this condition. It is the second class that is ultimately used in the study of the

Dyson series expansion of the evolution operator.

For the second class we shall include the possibility of mass dependence and

shall exhibit this dependence explicitly. This will play a role when considering the

limit Im rn -t 0. For potentials in the first class we do not have to worry about

mass continuity properties and hence the mass parameter will be considered as

fixed. However for notational convenience it is simpler to write potentials in the

first class in a notation matching that used for potentiais in the second class.
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Assumption 2: We define the operator v(ú, rn) by multiplication with the

matrix valued function a(.,t;m), t € [0, 7]. The operator v(t,rrt) will belong to one

of two possible classes.

Class /.: For potentials in class A, we restrict m to the real positive axis.

Potentials in this class satisfy:

(1) For a.a. (æ,t) e md X C"*', u(æ,t;rn) is hermitian so that the corresponding

operator v(trrn) is symmetric;

(2) v(t,rn) has H"(rn)-bound less than one. That is for all ¿ € [0,?] the

domain of v(ú, rn) satisfies Do C D(v(t,,rn )) and there exist finite positive constants

0" < 7 and ao such that

llv(t,rn)tþll < o,ll'áll + þ,llí"(r"),þll, ,þ € Do. (2.21)

ao and Bo are otFurthermorc,, if Ko C (0, oo) is any compact set, we assume that

can be chosen to be independent of (ú, rr,) e l0,T) x Ko;

(3) The restriction of v(f, m) to Do is strongly continuously differentiable.

That is there exists a linear operator v(t,rn) with domain Do that is strongly

continuous and satisfies

as óf -r 0, ¿ € [0,?], ,þ e D,.

Class B; Functions z.r(., t;rn) defrning the potentials v(t,rn) in this ciass admit

the foilowing properties:

(1) Let K denote a compact subset of Ca. Then the functiona(æ,t;*), map-

ping Rd x [0,?] x lC ++ C"*", is uniformly bounded in (æ, t,rn);i.e.

ll"(., ¿; -)ll- < * for all (t,r") e [0,7] x K; (2.22)
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(2) o is continuously differentiable with respect to I in the L*(d,n;C"*') noïm.

That is there exists a matrix valued function i'(-,t;rn) € L*(d.æ;C"*') such that for

all f e [0,?]

rr l
ll" tr( ,t + 6t;m) - a(.,t;r")) - i,(.,t;-)11""

lló(., ¿; rn) - ú(.,ri-)11""

sup ll"(.,,t;m.) - u(.,t;-')11." --- 0
te [0,?]

--+ 0 as 6t

-+0 asr

as rn' --è rrL €. rc.

'Y¡r1;¡ e R, a¡ta¿¡ ) 0

0<á<312

-0;
-+ t;

(3) the function o(.rt;rn) is continuous with respect to the mass parameterin

the L*(dæ;C""') topology, uniformly with respect to l. That is

o

Examples: The position vector æ is often a d. : 3N-tupie describing the

position of particles in space. We could write , : (iy...,ã¡¿), with æ-¿ denoting

the (3 dimensional) postion vector of the z¿à particle. With this notation in mind

the generalized many body Yukawa and Coulomb potentials are respectively;

u(æ):f,r,: ,1t','!t ,+ t ,,,+""tu'-i¡t -

i:t ,dl6 
I * 

à^t'¡ li¿ - ilt I'

and
d

u(æ):ÐJi, + L,!rr,
i-t t*t t i<i '-' -J I

1¡,7¿¡ €R, 0 < ó <312.

By setting 6 : L, we have the conventional Coulomb and Yukawa potentials. Kato

has shown [Ka 5i] that these symmetric operators have Ho(m)-bound zero. As these

potentials are independent of f and rn, they clearly satisfy the other requirements

necessary to be a member of class A,
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For examples of class B potentiaJs there are many possibilities. For instance,

almost any bounded periodic potential iies in this class (provided its time depen-

dence etc. is sufficiently smooth). Examples of non-diagonal interactions include

the spin-spininteractions of the type So.É¡,where ^í¿ 
ir th" spin operatorx associated

with the i¿¿ particle.

Define the family (in t,rn) of operators

H (t,m) - Ht(t,*) + v(t,m). (2.23)

Since D(vþ,-)) , n(nt(¿,-)) : Do,the operators H(t,rn) have the common

/\
domains DIH('t,*)) : n".

Lemma 2.2: Let a(t) andv(trm) satisfy ú-he assumptions i and 2. If v(t,rn)

is in c/ass B, then for each(t,*) € [0,7] x c1 tåe operator H(t,rn) is closed. If
v(t,rru) is in class A (and hence rn e (0,æ)), then H(t,rn) is selî-adjoint and there

exists a frnite positive constant bo such that H(t,nr) > -b".

Proof: We first show that v(t,rn) has an H{t,rn)-bound less than 1. If v(t, rn)

is in class B this assertionis trivial. Let v(f,rz) be in class A. From corollary 2.7i|

follows that W(t,nz) has a (t,rn) € [0,"] x Ko uniform, -Il1(t,rz)-bound zero;

llw (t., r")rþ ll < o tllrþ ll + Ê tlllH "(*) + W (t, rn) - W (t, rn)þþ ll

< 
"tll,þll + ßtllHt(t,r")rþll + þtllw(t,*)'þll;

+ llw(t,,,),þll t .1tollúll + J+wr(t,rn)7þll, ,þ e D".
L-P7 L-lr7

We note that a, and B1 are uniformly bounded in (t,r") e [0, ?] x Ko. As B, can

be made arbitrarily small this proves our assertion. Next we use this bound for

* RecallforthespinhalfcasethespinoperatorisS-= *(or,or,ø3) wheretheø¿'sarethePauli
matices. Similar representations exist for the higher äimensional spins.
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Ht(trzrz)-bound of v(t, rn). If. v is in class A, bound (2.21)W(t,rn) to get for the

is valid and thus

llv(t,,rn)rþll < o,ll,.¿ll

< 
""llr/ll

= ("*

+ P "lllH ,(*) + W (t ,, m) - W (t , m.)þþ

+ þ.ll H t(t, *)'þ ll + p,llw (t, r").þ ll

f+) rtútl + (u'*#h) tr//r(¿,,,),þ1, ,lt e D".

Defi,ning the constants a : o¿o* ffi ""a B: 14L, we have that v(ú,rn) satisfies

the bound

llv(t,rn)tþll S oll,i ll + þllil{t,n ),þll. (2.24)

As Él can be arbitrarily small and Bo < 1 by assumption, we can pick þt "o 
small

lhat B will also be less than 1. The constants a and, B are uniformly bounded in

(t,m) e [0,?] x Ko because a¡ and Pj (j :1,2) have this property.

It now follows from Kato's theorem IV.1.1 [Ka 84] that H(t,rn) is closed and
/\

has domain D(H(t,*)) : Do.\/
Let rn € (0, oo) and v(f , m)be in class A. Then v(trrn) is a symmetric operator

and from lemma 2.1(3), H{t,rn) is self-adjoint. An application of Kato's theorem

V.4.4 [Ka 84] shows that the Hamiltonian is self-adjoint.

Finaily to show that H(t,rn) is bounded from below when m. € (0,oo) and the

potential is in class A, we utilize another theorem of Kato, theorem IV.3.17 lKa 8a].

This states that { is in the resolvent set of H(t,rn)if t e p("r(r,"n)) u.rrd satisfies

the estimate

ollÂ(€, Ht(t,*))ll + þllH{t,^)R(€,Hút,,-))ll < 1. (2.25)
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Here a and B are the constants appearing in (2.2!. Because H{t,m) > 0 we know

the spectrum of Hít,rn) satisfies o (H1(t,r")) c [0, oo). This leads to the estimates

ll.,?(€,H{t,-))ll : sup J-= sup -l-'À€ø(.ä1) l^ - çl Àe[o,oo) l^ - <l

llrr(t,*)R((, Ht(t,-))ll : 
^åTå,1 

Þ ì =

If { € (--,0) then these estimates become

where P.P:)ì*-,
4J_J

by the equation

1H.(*): ^ P'P
.¿Tn

Define the family of operators

À

,åräår D - (l

llÃ(€, H{t,-))ll < å;t5 |

llH r(t, r:n) R(€, Ht(t,-)) ll < 1.

Thus we have that (2.25) is satisfied if Ë + P < 1 or equivalently (

Setting b": fO the spectrumof H(t,m) satisfies "(U1t,-)) a [-ó,,-)
this it follows H(t,m) ) -bo.

and from

o

The next property we wish to verify is the differentiability of the Hamiltonian.

It is convenient to utilize the momentum operator P :'ll -- T{o previously defined.

In terms of the momentum operator the free Hamiltonian can be written

Pj, nçt,*¡ with domair Do

np,,n¡:-*u|l.P+ *F .¿,)(.,Ð + 
].,,açL) 

.a(t) +
'l

zrr"(t) 
. å(¿) + i(t,rn).

(2.26)
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By our assumptions (1) and (2) it is easy to see that H(t,rn) is well defined on Do

because Do is in the intersection of all the domains of the operators in the right

hand side of (2.26). \Me claim that H(t,rn) is the strongly continuous ú-derivative

of H (t,rn).

Lemrna 2.3: Let a(t) and v(t,rn) satisfy the assumptions 1 and 2. Then

H(t,,m) is strongly continuously differentiable on Do. Moreover its derivative ís

given by the formula

H(t+6't,m)-H(t,nt)
6t

,þ - H(t,*)rþll

(2.27)

Proof: Let 6t + 0, rþ € Do and consider the following in the limit that 6t ---+ 0.

il[

- ¿(.,¿)ll llPl.þll,|æ

ntl+ _tl' 2lrnlll

' 1 ll"('- 4r"lll-
ll l.r(¿ + 6t,rn) - v(t,rn)

-ll L ó,

(V . 
")(., 

t + 6t) - (V . 
")(.,t)

6t

,,t+6t)2 -o(.,t)z

- (v."x.,¿)ll."ttøil

. o(.,t) - o(.,'t) . ¿r(.,r) ll*tløll

úll

t)

,l
)l- i(t,,rn

6t - ir(',

\Me notice that if v(t,rn) is in class B then it is also strongly continuously differ-

entiable like the potentials in class A. Thus we have from our assumptions 1 and

2 thal the right hand side has a limit of zero as 6t --+ 0. This verifies (2.27). The

strong continuity of. ft(t,rn) on Do follows from the assumptions 1 and 2 with a

similar argument to the one given above. O
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The final step of our analysis is to show that the resolverrt of. A(t,nz) defined

by equation (2.11) for a suitably chosen constant c, satisfies the bound (2.7).There

is a simple relationship between the resolvents of H(t,,rn) and A(t,rn).

R(^, A(t, *)) = fA(t,rn) - )l -t

I r l-1
l=H(t,,rn)-c-)ll,zh )

: ih[H(t,m) - zñ.(c + À)]-1

iItR(ih(c + À), H(t,m)).

We first estimate the resolvent R (i,a,H('trm,)).

(2.28)

Lemma 2.42 Let a(ú) and v(t,m) satisfy ú,he assumptions i and2. If u , fø
then we have the estimate

llil(i.u,H('t,m))ll < 1

u-a (2.2e)

Here the constant a is the sar.r,e as that appearing in (2.2a) if v(t,rn) is in class A,

or (2.22) if the potential is in class B.

Proof: If v(t,rn) is in class A then H(trm) is self-adjoint and hence the

spectrum is contained on the real line axis. If d(2,"(H)) is the distance between

the complex number z and the spectrum of H(t,,rn), then

llR(iu,, H(t,m))ll :
d,(iu,, o(H))

I

u-a
1

u

Now we suppose the potential is in class B. Because r¿ is allowed to be com-

plex, it is convenient to write it in its polar representation; m, : lmleiö, S e l0,rl.
The Hamiltonian and resolvent can now be rewritten

H(t,,rn) : 
"-àÓ1Ûr(t,l*l) + eiÖv(t,*)j = .-iö È(t,*)
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and

R(iu, H (t, rn)) : siÓ 2ç.iö U, n þ, m)).

Recall that H1(t,l*l) is self-adjoint and that its spectrum lies in the semi-infinite

interval[0,-).Because eiÓiulies onthehalf circle {z:lzl:c¿,,arg "eli,+]}.
the resoivenf R(e¿öiu,Ht(t,lrnl)) satisfies the estimate

llil(eiÓ i,'.t, H {t,t-l )) Il < å,

If ø ) a, then

ll eiÓ v (t, m) R(eiÓ iu, H t(t, I - | ) ) | | < 
| I " 

(¿, rn )ll ll R(eìö iu, H1 (¿, 
I - I ) ) I I

o¿<-<1.

Thus the operator 1+ "iöv(t,rn)Rþiöiu,Ht(t,lrnl)) has a bounded inverse (vis-a-

vis the Neumann series) and eióiu € p(H). It is clear iø is in the resolvent set of

H(t,m). Furthermore, from the identity

R(eiÓiu,n1t,*¡¡ : R(eiÓ'iu,Ht(t,t-t))11 ¡ eiÓv(t,,m)R(e¿Óiu,Ht(t,l-l))] 
t,

we get the estimate

llh(iu, H(t,rn))ll : ll&(eiÓi,a, nçt,*¡¡¡

í1 
1

= ;1- q
(')

VlÐ-ot
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Utilizing lemma 2.4 and equation (2.28) \¡/e can now easily estimate the resol-

vent of A(t,m);

ll,?(À, A(t,m))ll : hllfl(ffi(c * À), H(t,rn))ll
+n

h(c+ À) - o
I
I

c+)-fr'

We make the choice for the constant c;

(2.30)

With this choice of c it follows that ø : h(c* )) satisfies the estimate ø ) a for

ali À > 0, so that the hypotheses of lemma 2.4 arc verified. Moreover substituting

this value of c into the above shows the resolvent of A(t,nt) satisfies the estimate

(2.7).We have thus shown the hypotheses of theorern2.2 are satisfied with c given

by (2.30) and hence we have the exisience of the Schrödinger evoiution for the

potentials satisfying assumptions 1 and 2.

2.3 The Mass Continuity of the Evolution

One final topic we wish to look at in this chapter is the continuity in the mass

parameter of the complex mass Schrödinger evolution. For this topic, only poten-

tiais in ciass B shall be considered. This is because we need this property for our

discussions about the propagator and it is only potentials in class B that we shall

be considering there.

Proposition 2.22 Let assumption 7 be valid and assume v(ú, m) belongs t,o

class B. Let U(t',toim) be the conesponding Schrödinger evolution operator. For

each frxed (trt") e Ta, U(t,,t',;m) is strongly continuous with respect to nt € ca.

d.c:f+;.
n
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Proof: As we have the relation

U (t,to; m) : 
"c(t-to)Y 

(¡,t oi m)

where the constant c is given by (2.30) and is independent of m €K, we see that

U (t,to; rn ) is strongly continuous in rn if and only if U(trtüm) is strongly continuous

in rn.

Let tþ € Do andrrl,n1,'€ K with m I m', and fix (t,t") €Tt. Let ¡ Çlt.,tl

and consider the following in the limit that 6r ---+ 0.

+ ll(t,rtrn'\lu(r * 6r't';rn) - ?/(r't';m)l
'1" 6r -)q'

* l?/(t,r 
+ 6r;r4) - tt(t,r;m')l ,?,t"im)ú.L òr I ''

It follows from proposition 2.1 and theorem 2.1 that the second and third terms

of the right hand side have the strong limits U(t,r;mt)A(r,rn)U(r,to;mþþ and

-U(t,r;rn')A(r,ntt)U(r,t,;*)tþ respectively. For the first term, we claim it goes

strongly to zero. We can see this from the following;

f iterm : ll/(t,r + 6r;n') -l,l(t,,r;m')lA(r,rn)tl(r,t,;*)rþ

+ lU(t',r | 6r;*') - t[(t,r;m¡)l

,. lU(" i 6r,toim) -U(r,toin) A | \a,/ , Ix |: - A(r,rn)U(r,t,;rn)l4:.
l' 6' -\ 7 '.t--\'7-v1". 

I

Since U(t,,r;ræt) is strongly continuous in r the first line of the righi hand side goes

lo zero as 6r --+ 0. We also know lhat U(t1,tzìm') is bounded by 1 for all tt, tz,
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and m'. Thus the second line has the norm estimate

U(r + 6r,to1m.) -U(r,to;m)
ú ll,

which goes to zero as 6r '-+ 0 by proposition 2.1. Hence we have shown the identity

*r (r, r ; rn' )Ll (r, t 
"; 

m)rþ : ?l (t,, r ; rn' )lA(r, rn) - A(r, mt )]?/ (r, t o; rn)',þ . ( 2.3 1 )iJr

Next we show that the right hand side of (2.31) is strongly continuous in z. For

the fi.rst termthis is trivial because U(t,r;rn') is strongly continuous and uniformly

bounded by 1 and A(r,rn)U(r,to;rn)tþ : ô,U(r,t";m)1þ is strongiy continuous. The

second te¡m on the right hand side of (2.31) requires a littie more work.

We know that U(trr;m')A(r,rn') is strongly continuous on the domain Do

and that U(r,to;*)rþ e Do is also strongly continuous with respect to r € lto,tl.
Consider

llll(t,r;m,')A(r,rn')l'l(r,t.;m)Iþ - t/(t,r';rn')A(r' ,,rn')U(r' ,t.;*)rþll

< ll[U (t, r ; rn' ) A(r, *' ) - l,l (t, r' ; rn' ) A(r', m' )]t t (r, t 
" 

; *)rþ ll

+ llu (t, r' ; rn' ) A(r',, rn' )l?,1 (r, t o i m) - U (r', t 
"; 

r"))rþ ll.

Clearly the first term on the right hand side tends to zero as r' -- r. It is again

the second term that we must work on. \Me note the operator A(trrr)-l exists for

all I because À : 0 e p(otr,r"l). Insert the identity operator A(r,m)-t A(r,*)
between U(t,r';mt)A(r',nz') and lU(r,to;rn) -U(r',t";*)lrþ. Now the operator

A(r,mt)A(rr*)-t is closed and defined everywhere. It follows from the closed

graph theorem ([RSz 78], p. 306) that it is bounded. In particular picking z:0

,lll
6r

A(r,m)U(r,to;m)l
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shows the operator ,4(0, rnt)A(0,rn)-t is bounded. We thus have the norm estimate

lll,l (t, r¡ ; m' ) A(r', m' ) A(r, r")-t ll ll A("', rn' ) A(r,-) - t 
| |

ll A("', m' ) A(0, rn' )- 
1 

| | I 1,4( 0, rn' ) A(0,"') - 1 
| |

x ll,4(0, m)A(r,-)-t ll.

By lemma 1.5 of Krein ([Kr 71], chapter II.$1) A(t' ,m)A(t" ,rn)-7 is continuous with

respect to (tt , út') in the operator norm topology. As (f', ú" ) belong to the compacr ser

[0, T] x [0,7], we must have that these operators are uniformly bounded with respect

to (f',f"). Thus \rye see thatU(t,rt;rn')A(rt,rnt)A(r,rn)-1 is uniformly bounded for

all z and r'. Finallv we deal with

A(r, rn)fU (r, t o; m,) - U (r', t,; r.r,)lrþ

: A(r, m')U (r, tü m)?þ - A(r', rn)?,l (r', t"; *)rþ

+ [/ - A(r,, rn)A(r',rn)-l]A(rt, m)?,l(r',to; *)rþ.

The fi.rst line on the right hand side here goes to zero as r' -. r because of the

strong continuity of. A(r,m)U(r,t,im)7þ. The second line on the right hand side

tends to zero because of the aforementioned continuity of A(r,m)A(r' ,*)-1 in the

operator topology and the faú llA(rt,rn)U(r',t";*)rþll is uniformly bounded in rt.

Because the right hand side of (2.31) is strongly continuous \¡/e may take the

strong Riemann integral ([La 69], chapter X) of (2.31) over r from úo to ú. The

fundamental theorem of calcuius is valid for the strong Riemann integral ([La 69],

theorem 10.8). Using the properties of the evoiution operators we obtain the relation

IU (t,, t,; *' ) - ll (t, t o; *)]rþ ?t (t, r ; mt )lA(r,, m) - A(r, rnt )llt (r, t o ; m)g dr.: 
l:.

(2.32)
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With (2.32) we obtain the norm estimate

ll[u(t,toim') -l/(t,t";*)]rþll S [' ll[O(r,m) - A(r,rn')]t/(r,to;nt)tþlld.r. (2.83)
Jto

From the definition of á, equation (2.11), it easily follows that

A(r,rn) - A(r,*'): (t - #) A(r,rn)* (t - #) ",
, 1, / \ / ,\r /- r¿\ 7 ,t ][v(r,m.) - v(r,rn')] - (t - ;) i'?,,.).

(2.34)

Substituting (23Ð into (2.33) we get the estimate

lllU (t, t o; m) - ?l (t, t 
" 

; *' )lrþ ll

= lt - #l{l:"lA(,,m)Lt(r,t.;*),þltd, + (?h+ ") {t - ¿,lllúll}

, t-to rl+ o sup llu(.,ri*) - u(.,";-')11"" llúll.n r€[0,?]

The right hand side goes to zero as rn' ---+ rn.

Thus we have shown that U(t,toim) restricted to the domain Do is strongiy

continuous with respect to the mass parameter rn 1n any compact set K c c.,..

Because U(trt";rn) is uniformly bounded by 1 and the domain Do is dense, it is

trivial to extend this continuity property to all of 'll. O
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CHA.PTER 3

Measures and the Potentials

In this chapter we give precise definitions to the class of potentials that we

will be using for the remainder of part I of the thesis. The potentials under study

are the Fourier images of complex matrix valued measures. We begin by discussing

the relevent measure spaces.

Let the tuple (Rd, B) specify the measureable space consisting of the set Rd

and the smallest a-algebra B of Borel subsets of md. \Me let r : d, or 1 and we

denote by (c""")', the space of complex s x s matrices grouped together as a d-

tuple if r : d or an s x s matrix if r : 1. A (C""")'-valued measure 7 on (md,B)

is a countably additive set function mapping B --+ (C"x')'. The associated total

variation measure l7l is a measure on (Rd, B) mapping B - [0, -) and defined by

hl(") : ,ïp lltþn)l ei e B. (3.1)

On the right hand side of (3.1), l.li. the Euclidean normfor the space (C"*")';

ltGù12

I

\-
¿-¿

d,þ:7

I

:\-¿-/
o-1

tt2
l[2"ø(";)1, I

and the supremum is taken over all countable partitions r of. e aliowed by B. The

measure 7 is defined to be of bounded variation if l7l(md) ( oo.
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To the set of measures of finite total variation we adjoin, in the standard way,

the operations of addition and muitiplication by complex scalars. The resulting

vector space we denote by ,Â'{(Rd,(4""")'). \Me can make M(wo,(C""')') into a

normed linear space by defi.ning the norm

With this norm attached it can be shown (IDS 76], pp. 160-162) that M(wo,(C"*")")

is a Banach space.

It is possibie and extremely useful to use a representation of 7 in terms of its

total variation measure lZl. We call this representation the polar decomposition of

7 and we claim there exists a Borel measureable function 4 : Rd --+ (C"xt)' such

that l4(a)l : l for all a and

llrll : l'vl(md), 7 e M(Rd, (c',"")').

e€8.

(3.2)

(3.3)

(3.4)

l.or: l"n@) 
dltl,

To see the existance of such an q we note that 7 is absolutely continuous with

respect t" hl. To say a measure ¡.r, is absolutely continuous with respect to another

measure À means that whenever we have a measurable set e such that ,\(e) : g,

then ¡z(e) : 0 and we write ¡-t < ),. As 7 ( hl, we may apply the Radon-Nikodym

theorem [Ru 7a] which asserts the existence of the function 4. The proof that 4 is

a function of modulus one is based on a simple modification of theorems 1.40 and

6.72 of Rudin [Ru 7a].

To each measure 7 € .rV{(Rd, (C""")') we can define a function ¿ : Rd -- (C"*")'

via the Fourier transform of the measure,

a(æ) : | "0"'' 
or.
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The function ¿ is well defined for each ¿ € Rd because 

"ia'r 
i" Borel measurable and

trt(Ro, d7). It follows from the dominated convergence theorem that ais continuous.

Moreover ¿ admits the uniform bound

l"(r)l <llzll, æ€Rd. (3.5)

We denote the Fourier image of M(md, (C""")') by .F . The Fourier transforn rrap-

ping (3.a) establishes a one-to-one correspondence between F' and, .rl"{(m', (C"")')

in that "(.) 
: 0 if and only if .y :0 [Ru 61]. By assigning the norm ll"ll : llrll t"

F',, F' will also be a Banach space.

Prevalent in the analysis of the Dyson series analysis of the next chapter will

be the use of product measures. Consider the case of two s x s-matrix valued

measures p1 and þz over (Rd,Bt) and (mo,Br) respectivety. The product measure

p1 x pz is defi.ned on the smallest ø-algebra B1 x 82 by requiring that for every

rrieasureable rectangle el x e2 of B1 x Bz,

(¡rt * pz)(e1 x ez): Æ(e1)pz("2).

The product on the right hand side of the above equation is the usual matrix

product, so that \¡¡e see that p1 x ¡t2is an s x s-matrix valued set function as well.

\Me can make a Banach space y''{(m'x Rd,C""t) as before with the norm

llpt x Fzll: ln , pzl(md x md). (3.6)

It is easily shown that the norm on .rl"{(md X Rd, Csxs) satisfies the bound

llp' * t,zll < llp' ll llpz ll. ( 3.7)

The vector potential of the previous section had components whose pointwise

values were required to be hermitian matrices. If ø defines an r-tuple (r : L,d) of
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hermitian matrices and it is the Fourier image of the measure 7, then 7 will satify

the reflection property

t¡G) : t¡(-e)*, ee B, i:1,,...)r.

Here the set -e is defined by -" : {a € Rd : -a € e} and the symbol * denotes

the complex conjugate transpose. We denote the set of all 1€ M(Rd,(c"*")') that

satisfy the reflection property by M*(R',(c"x"¡') and its corresponding Fourier

image by F'*. .F* is a subspace of F.

We must also discuss the convolution of two measures in order to understand

terms like ø(æ, t) . a(æ,ú) that appeared in the Hamiltonian. Let ¿ and ø' be asso-

ciated with the pair of measures 7 and 7' € ¡l"{(Rd,(c""')'). The convolution of

the two measures is a map .llrl(m', (4"*')') x M(md, (a'"')") --t .Ârl(Rd, c"*") defined

(constructively) by

7 * 1'(e) : | *.{" + a')rt@) .rt'(o ') dltl x h'1. (3.8)

The functions 4 anð. q' are the functions associated with the polar representations

of 7 and 7t repectively. The function X" is the characteristic function for the set

e € B. The dot product between the 4's is defined as the sum over the matrix

products of the components of 4 ar'd r¡t1

q(a) . n' (c,') : ['?(o)]r lq'("')1, + . . . + [z(*)], lrl (o')),.

Consequently the function 1 x j' takes vaJ.ues in c"x". It is easily shown that
.l *l' e M(mdrcsxs) and satisfies the norm estimate

llt * t' ll < llzllllz'll. (3.e)
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The dot product in T is related to the convolution in ,,!4(Rd, (c"*,)') by the identity

"(*).a'(æ7: (3.10)

In order to be able to control the behaviour of the Dyson series we will consider

a subclass of measures consisting of those measures in ,År{(md, (c"*")') with compact

support. Let ,5¡ C md be the closed balt of radius k > 0 and centred on the origin.

We denote the subset of measures in ¡V{(Rd, (c'"")') whose support lies in ,Sr by

M(S¡,(C'"")'). It is easy to show +,hat M(S¡,(C""")') is also a Banach space.

Similarly we define M*(5n,,(4""')') to be the set of measures in y'.zl(,S¡, (C"t")')

that satisfy the reflection property and it too is a Banach space with respect to the

norm (3.2).

We next wish to discuss the idea of measures that depend upon the time

and mass parameters. Let K C C* be any compact set and consider the Banach

space-valued map

7(.,.) : [0, ?] x K --+ M(wd,(c""')').

We say that 7 is jointly continuous in (t, m.) e l0,Tl x K if

lllþ',rn')-lU,m)ll *0 as (f', *') - (t,r") (3.i1)

for all (t,*) € [0, ?] x K. The measure 7 is continuously differentiable with respect

to ú € [0,7] if there exist a family of measures 7(t, rr,) € M(wc,(c""')') such that

for eachfixed rr¿ e Kr1(rrn) is continuous in f € [0,?] and

l(t',rn) - l(t,rn)
tt -t - i\,-)ll * 0 as t' --+ t (3.12)

The (ú,rn)-continuity of measures p(t,rn) e /nl(md,Csxs) implies the joint

continuity of the product measures pt(tt,mt) x pz(t2,rnz) x ... x pn(tn,,mn). We

| "0"'' 
d^,t * -y'
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iook at the case of the product of two measures.The n-fold product will follow from

an induction argument.

llurlt!,*|) x pz(t'r,,*'z) - Ft(t'1,mt) x pz(tz,*z)ll

! llp(tt, -i )ll lfurçt'r,,*'z) - Fz(tz,rn2)ll

* ll pz(t z, *z)llll p{t\, *') - ø (t 1, *r)ll ( 3. 1 3 )

Since the joint continuity of p"¡(t¡,mj), (j:1,2) implies the uniform boundedness of

their norms, we immediately have the joint (f 1 ¡nltttz¡rn2)-continuity of the product

measure Ft(tr,mt) x pz(tz,m2).

\Me are now in a position to state the hypotheses on the class of potentials

under study for the remainder of part I of this thesis.

Assumption 3: The vector potential ¿ : Rd x [0, ?] -- (c"*")d is said to be

in class Vr(k) if ¿ is the Fourier image of a time dependent family of measures 7(f )

satisfying

(t) z(¿) eM.(sk/2,(c""")d) ) t€[0,?], k<oo.

(Z) lþ) is continuously differentiable on [0, 
"].

Assumption 4: The potential u : Rd x [0, ?] x K - C,"" is said to be in ciass

y(k) if o is the Fourier image of a time and mass dependent family of measures

u(t,rn) satisfying

(7) u(t,m) e M(SÈ,c"*"), (t,r") € [0,?] x K, k < oo.

(2) u(t,nz) is jointly continuous in (ú, rra) e [0, ?] x I and for fixed rn e K it

is continuously differentiabie with respect to f on [0,7].

Because 7(ú) and u(t,m) are continuous, their norms will also be continuous.

Since the sets [0,7] and [0,?] x K are compact, the functions ll7(t)ll and llv(t,rn)ll
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will attain their maximums and we have that these norms are uniformlv bounded.

llz(¿)ll ( sup llz(¿)ll = z,

llu(t,m)ll S '"p llu(t,m)ll: u,
(3.14)

(3.16)

Here the first supremumis ove¡ ¿ € [0,?] and the second is over (t,r") e [0,?] x K.

Next we show as a consequence of a e V"(k) and o €V(k), ø and t' will satisfy

assumptions 1 and 2(B).

Proposition 3.1: Let a € V"(k) and r.' € y(e). Then ¿ and o satisfy the

properties described in assumptions 1 and 2(B).

Proof: We show the proof for r,l, with the proof for ¿ following similarly. Many

of the arguments given below are due to the continuity of the measures, and the

compactness of their support.

From the suppoú of u(t,,rn) and an application of the dominated convergence

theorem it follows thai a(ært;rn) is a C* function of æ with derivatives given by

(3.15)

where p is the multi-inde* (pt,,...,pd.). Further from (3.14) and the support of

u(t,rn) it follows these derivatives have the (æ,ú,rn)-uniform bounds

l(1fu)(æ, t; *)l < lctPtu,

f
(}lu)(æ,t; rn) : 

J';lol 
ao ei"'' du(t,,m),

It follows from the joint continuity of u(t,rn) that t is jointly continuous with

respect to (f,rn) € [0,?] x K using the norm ll .ll-;

llo(.,t';rn') - o(.,t;-)ll- < llr(t' ,or') - u(t,m)ll -- O as (f', *') - (t,rr).
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The time derivative of the potential also has a simple

given by

(ô¿u)(æ,t;m)

To see this let ù(æ,t;rn)

the identity

u(æ,tt;m) - u(æ,t;m)
t, _t

denote the integral on the right hand side of (3.17). From

form. We claim it is

(3.17)

- ù(*,t;rn) :

: I "0"', 
d,ù(t,rn).

TN

t
,(t' ,

I"*"ol
we get the ar-uniform estimate

u(.,tt;m) - u(.,,t;rn)
tt -t -,(., t;,")lL" 

= ll

,
- u(trrn)

u(tt,rn) - u(t,m,)
t, _t - ù(t,.,)ll.

-t - ù(t,.ùl

The right hand side goes to zero as tt --+ t and our claim is proved. The ú-continuity

of r.'(., t;rn) in lhe L*(dæ;C'"") topology follows from the continuity of ù(t,rn).

Because M(SnrCsxs) is a Banach space and ù(t,rn) is the timit of measures in

M(S¡,C"*"), ù(t,m) will also have support in 5¡. This means that the f-derivative

of o is also a Cæ function of æ, with derivatives given by a formula like (3.15), but

with u replaced by û. Moreover it is simple to show that the spatial derivatives of u

are differentiabie in ú with the convergence for the f-derivative in the L*(d,æ;Csxs)

norm.

Example: As an example of our potential class, consider the case of a con-

stant electric field d' D.fitr. the d-dimensional vector E : (qtÈor gzÈor . . . , g¡,¿ Ëo)

(d: 3¡tI) and define our d-dimensional vector fieid ø(æ,¿) by

f
a(æ,,t): I e'o''EtI dT(a)

J

: EtI.
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Here 1is the unit s x s matrix and T is a Dirac measure whose support is on the

origin i.e.

f,
J v@) dr(a) : p(o).

Recalling the discussion leading upto the Hamiltonian in (1.3), u/e see that the

3-dimensional vector potential must be

Ãçl,t¡: Èot-

From classical electromagnetism, the electric field is given by

Eçt,t1 : -y tó(ã,t¡ - {rÃça,,t¡.

Choosing our guage such that d : constant and 1- is given by the above, our

potential class describes a constant electric field. Furthermore we note that the more

common choice of guage of setting ó(i,t) - Éo. æ and ð¡Ã@,f ) : 0 is technically

more difficult to handle because Èo . æ is not flo-bounded and consequently this

choice of guage is not even a member of the class A potentials used in chapter 2.

As a final topic for this section we introduce some convenient notations for

various linear combinations of measures. We first define the measure

(3.18)

We note that if 7(f ) has support in M(S¡¡2, (c"*')d) then its convolution with itseif

will have support in ,9¡. A,s u(t,rz) also has support in ,5¡ we see that the measure

p(t,r") is a member of M(SÀ, C""). Similar to (3.1a) it is useful to define the norm

bound lor p,(t,m) of

llt'þ, *)ll = *L,r] * ur = ttr. (3.ie)



This measure is a useful notation because it represents the sum of potentiais

(3.20)

Often we will be using measures that involve the dot product between

and vectors in Rd. Let B be a fixed vector in Rd and define a measure pr(tr|)
M*(Sn/r,Csxs) by the formula

*oþ,t) 
. a(æ,,t) + u(æ,t;m) : 

| "0"'' 
d,¡r(t,rn).

r
p,,(t,,þ)þ¡ : I þ.q(t,a)dl7l(r), e € B.

Je

/', t-7 \

[å"*Ð", ).ntt,a)dl7l(t) e € B
\r:r/

I

€

(3.21)

l"r(t,p) is Csxs-valued because of the dot product between B and 4 and the fact

that the components of 4 are s x s matrices. We note that p,o(trB) is a continuous

measured valued function of t and B.

Two more measures of similar functional form to ¡rr(t) bui whose B is more

complicated can be defined as follows. Let tùn : (*r,...rdn) be an n-tuple of

vectors in ^9¡. For each positive index I 1n we defi.ne the measures

þT(t,, dtr. . -, dr_t)(") :
I"

and

tt\þ,, dt+t,. . ., an)(e) :

Fi alad Ui arc continuous M*(S¡¡2, C'x')-valued functions of t, (ayr.. . , a,_r) and

(o¿+l ,... ,a,.). Il I :1 then the sum is absent in the expression lor p,i and if I : n

l"(ï".
t\

Ð ', | 
.r(r,a) d,l1lþ) e € B.

j:I+t /
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there is no sum in the expression for þi. Without these sums present it is easily

seen that these measures satisfv the relations

pTþ): pl(t): î'i(t): Êl(¿). (r.22)

Next we take linear combinations with F,, þo¡ p,i and þi. For I : 7,, . . . ),rL we

can form the following measures in M(Sn,o""')'

Ài(t) : p(t,rn) -

"f þ): p(t,rn) -

\T(t): p.(t,r.n) -

llr"lr,ao) * FTþ,at,. .. , o¿-r)l;

|uTQ, et,'" , a¿-r )i

!lr"{r, o) - t"T(t,a¿+l,''', o,)1.

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

The measure ciþ) depends on the parameters o1: . . . , a¿-r , h and rn. The measure

Ài(ú) also depends on these parameters, as well as it has arr e.o dependence. Finally

we note the measur" Â¡1t¡ has a dependance upon the parameters c, a¿+r, . . . ¡ dn¡

ñ. and z¡¿. Each of these measures are continuous with respect to these parameters

in the M(Sn,Csxs) topology.

It is notationally advantageous to incorporate the variable of integration into

the measure symbols. For example with the measure Ài(t) the integration variable

is most often a,. If ä is any integrable function on Rd we now write

I naxiç¡

| | 
Àr (f ) | | < I I 

p(¿) 
I | * 

w,Ll(l 
o, | + ze ) | | 7(r ) | l,

ll"TU)ll< ll¡,(¿)ll + 
ft,u¡1çt¡¡1,

as I nr",, d,Ài(t;a¡).

The family of measures )i(f) ana Âi(t) have simple norm bounds. Since it is

assumed that a¡ € Sn, j:1N rL)we arrive at
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and

llÂ;'(r)ll < llp(¿)ll + 3(|al + zk)ll-l, (¿)ll. (a.28)
lrnl

Obviously these bounds are uniform with respect to the parameters a,, and the

index l.
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CHAPTER 4

The Dyson Series

In this chapter we examine the convergence properties of the Dyson series

using a certain class of initial data functions and establish that the series con-

structs a solution to the Schrödinger equation. \Me assume a eV"(k) and z € y(È)

throughout this chapter.

\Me first define a few of the notational conventions to be used throughout.

The Schwa,rtz space of. C*, s-dimensional functions of rapid decrease we denote by

S: S(Rd;a'). The Fourier transform convention we shall utilize is

For each integer n) I let t," : (fr,,...,tn) and for each (f,t.) e 7a define

the set Ln(t,to) : {tn : to < ir I ... 3 tn < ú}. Similarly, it is also convenient to

define the set L^(T): {(¿,to,tn):01to ( ú1 ( ...<t<f}. We denote the nth

order iterated time integral by

^1fh(a): 
Aætr J"-'"''O(æ)dæ, 

he .S,

["' or- dtn_t...1'., orr.: 
I:"or^ I:."

If p is any multi-index, (pr,,. . . , pd.),, we defrne the operator Qp by

Q'rþ)(*) - *l'*l' ...ælorþ@).
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Let P¡ be the partial differential operator QLli)A,j, j : !-d, then similarly, the

partial differential operator Pp is defined by Pr"..'Ppd. The domains or qo ur'¿

Pp are maximally defined and both include the Schwartz space as a subset.

4.1 The Dyson Series

Before we actualiy begin the rigorous study of the Dyson series we first examine

how the Dyson series arises. The purpose of this discussion is to provide moti-

vation for studying the individual terms that appear in the series, and not to be

completely rigorous in our arguments. We know that the Schrödinger evolution

operator U(trto;rn) operating on an initial data functiontþo € Do gives a solution

to the Schrödinger equation (2.10). We wish to know what sort of integral equation

U(trt";*)rþ' satisfies. For the moment assume the mass parameter rn is positive.

Let U.(t - tolm) denote the free Schrödinger evolution operator associated with

H'(*).Because H"(*) is independent of the time, (Jo only depends upon the time

displacement f - úo and U,(t - tojm) is given by the exponentiation of H.(*),

U"(t - to)m): exp{-i(t - t")H.(*)lfr}.

That aside, if we integrate the equation

ih}\ lU o(t o - fi ; rn)U (t t, t o i r")rþ,) : (J o(t o - fi ; rn)Y ('t4,,,rn)U (h, t oi m)7þ o

over f 1, where

V(f r, m) : H(tr,m) - H"(*),

we get

U (t, t.; *)rþ. : U o(t - toj m)tþo d,fi U o(t - t 1; m)Y (h, rn)U (h, t oj m)7þ o..#,["
(4.1)
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Iterate (a.1) and in the nth term make the change of variables ú, --+ tnit-j for each

j : Lr...)rL to obtain the so called Dyson series

U (t, to; *)rþ. : U o(t - toi rn)zþ o

In (a.2) each free evolution operator will have a non-negative time difference. Con-

sequently these operators remain bounded when the mass parameter has a positive

imaginary part.

4.2 Dyson lterates

In order to be able to discuss the individual terms of the Dyson series we must first

understand the range stability and continuity properties of the operators V(21, rn)

and Uo(r2;rn). We will only need the continuity properties using the tr2(md;c')

topology, but in fact we can and will show these ott trq(Rd;4") (2 < q 1oo) without

too much more effort.

Lemma 4.L: The operator Y (r, m) : H (r, m) - H o(m) saúisfies the following:

(1) V(r, m) : S -' 5;

(2) If 7þ e. S and $ its Fouúer transform, thenY(r,mþþ is given pointwise by

the formula

oo t ¡t).\-Ll* 
Lþhy Jr" 

dt* U.(t - tn;rn)Y(t",rn)Uo(tn - tn-t;rn) x ...

x V(f 1 ,m)Uo(fi - to;rn)tbo. (4.2)

[v(",,*),þ)(*) -- dw I 0," I o^în, ,"r) $(a")ei(aora,)'æ (4.3)

Ilere Àf (z) is given by the formula (3.23);

(3) Qr[\/(r,rn)rþ)^is continuous with respect to r in the Lp(Rd;C.s) topology,

for all T < p < oo, and PpY(T,rra)Iþ is continuous with respect, to r in ¿¡. ¿ø(md;4")

topology, for all 2 < q ( oo.
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Proof: The restriction of Y(r,rn) to .S is a partial differential operator whose

coefficients are bounded C- functions. This implies V(r, m) : S -- .S and (1) is

proven.

To calculate [V(r, ,n)rþ)(*), we shall consider each term of

lv(", ,*),þl(*) : *o@,") 
.(v,ri 

X A + fitv .o)(*,,),þ(*)

1
+ fi"(*, ")2 

rþ@) r a(æ, r ; rn)$ (æ)

separately.

From the inverse Fourier transform and the integral representation of ø, the

first term has the representation

;r,r1hf^
=rr"(*,r) .(V'lX*): - e;W;"(*,r). J oo"aotþ(o-o)e'oo'*

Iffh: - e;* J 
oo, 

J 
olrf"ll lao .r(at,r)$(a)ei(,s!a,)'æ.

An application of Fubini's theorem has been used to interchange the order of the

d,ao and the dl7(z)l integrals.

The second term can be calculated similarly if we also use the æ-derivative

(3.15), but with o and z in (3.15) replaced with ø and 7. We get

ih r_ \/ \ // , 1 f f ' h , \

;,"(v 'o)(*,"),þ(*) : -dfp J 
oo, J ol',?)l*o'.,t(ot,r)

x $(a'¡ei(ae!a')'c.

The last two terms of [V(2, r")rþ)(r) can be combined together using the

Fourier measure in (3.20). The result is

,1 t t) , 1 f - f _\fi"(*,r)2 + u(æ,r;r")lrþ(*) : dfU J 
0", 

J 
or?,rni o¿t),,î(o,ò"¿("ot"t)'æ .
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Combining these three equations together yields (4.3).

To show (3) make the change of variables ao ---+ o¿ : ao * o¿t in (a.A). \Mith

this change of variables the function Qp(Y(r,*)rþ)^ has the pointwise value

lQo{u{,,,ù,þYl(o) = ", I a1!(";o,) ,l@ - ,"r). (4-4)

Take the difference between the left hand side of (a.4) for two different r's. By

writing out the explicit representations of the measures involved, it is easily shown

this difference has the estimate

I fo'{.r{'',*),Ð^f(o) - 18,{.r{", -),i)"] (")l
-f

J

+ [d111r';or' ' ''h ' '' ^ ( 
+1].r )-t?;"t)lþ,,llo-lt'tl,þ(o-otìl{1"1, 2J.

The right hand side is a member or Ll o -[-(Rd;c') becaus. rit e .S and any poly-

nomial times a Schwartz space function is both uniformly bounded and absolutely

integrable. Thus there exists a constant C, depending on ry', such that

llSo(v("',,"),Ð^-Qp(v(", *)'þ)" 
ll, < 

"{llp("',*)-p(,,-)ll+llt?',,*)-tQ,-)ll}

for p - 1 or oo. From the continuity of the measures, the right hand side tends to

zero as r' --+ T.

The r-continuity with respect to the norm ll 
.ll, for all 1 < p ( oo now follows

from the inequality

ll å.llo < llhll!-t tn ¡npt tn (4.5)

The r-continuity of PqY(r,rn)tþ wiih respect to the norm ll .lln tott"ws from

the Lp-continuity of QplY(r,*)rþl^ and the Hausdorff-Young theorem of Fourier
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transforms (IRS 75], theorem IX.8). This theorem states that if p and g are conju-

gate indices (i.e. p-t + Q-7 :1) and if 1 < p 12, then the Fourier transform is a

bounded map of LP into Ls. 0

Let tþ € .S and define the functions tþn(t,,toitn) for n : 0rlr2,... recursively

by the relation

,lr,(t,t"¡ : U o(t - t.; rn)lt

,lt 
"(t, t o;t,, ) : U 

"(t - t 
^; 

rn)Y (t 
", 

m)1þ n- t (t n,, t o;t,"- r ).

(4.6)

(For the case r¿: 1 we define ,þoltr,túto): |:,(h,t.).¡ If we were to explicitly

expand these recursive formulae out, it is easy to see that the nth function cor-

responds exactly to the integrand of the nth terrn in the Dyson series (4.2). A

sufficient condition to ensure that that the Riemann integrals in the Dyson series

exist is that the integrand be a strongly continuous function ([La 69], chapter X).

The next lemma describes the continuity properties of the tþn's.

Lemma 4.22 Let m e C¡, rþ e S and let $ b.;tt Fouúer transform. Defrne

the functions tþn(t,toitn) by ft.6). Then

(1) ,þ"(t,toitn) € S for rz : 0,7,2.. .

(2) The tþn's have pointwise values given by the following formulae*:

(4.7)

+ Due to the noncommutivity of the matrix structure in the measures 
^7(t¡) 

we must write
the multipleintegralin (a.8) with the measures in the order shown. However each Ài(l¡)has
a parametric dependence on the variables on [i -- , - (¡ - 1)]. The interpretation of this
multiple integral is the following. Explicitly expand out the product of the sums occuring in
the product measure d'\i$-ion).'.d'\iþ1;at). Then use the polarization property of the
measutes to facto¡ out the matrix structure and incorporate it into the integrand. The result
is a sum over sca"lar measures, which are various linear combinations of the product measures
of lpl, lt""l anð, lpil, and an integrand that incorporates all the parametric dependence of the
variables a¿, as well as the matrix structure. Employing this latter notation this would be
awkward and not particularly enlightening. Consequently we default to the notation used in
(4.8).

,1,'þ,t.¡ç4 : 
ãFn I o*.$ço"¡"-'*(t-to)a!¡iao'æ '
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,lr.þ,t.;t.)çæ¡

1 f f f t(oo+...+c.n).î: 
e*yp J 

0"" 
J 

dÀi1";on)"'J d^Tþ1;a1)tþ(a')e'

x 
"- 

*l(, - tn) (o n +... + o o)2 + (tn - tn -r ) ( c, - r *'.. + a o ) 
2 +... + ( ¿r - t 

") 
o,f,l

ß) ]r'{tþ,tütn) is jointly continuous in (t,to,tn) with respect to the norrr-

ll 'llo f". I < p ( æ and for all multi-indices p. Consequently Pptþ.(trto;tn) is

jointly continuous in (ú, to,,tn) in the ¿s(md; C.') topology for all 2 S q ( oo. In

particular, H"(r")rþ(t,to;tn) is jointly continuous in (t,to,ln) with respect to the

norm ll . lln.

Proof: We recall the Fourier transform maps .S into 5 and the free evolution

operatorisunitarilyequivalenttomultiplicationbythefunction exp{-(ihl2rn)rr:2}.

These together imply that tlo(r;rn) : S -- 5. From Lemma 4.\ Y(rr,rn) maps .S

into.S, so the compositionUo(rr;rn)Y(r2,rrz) also has this property. The first as-

sertion results from induction.

Equation (4.7) follows from the aforementioned property of U"(r;rn)

l(1,(, ; r")çl^ (o) : e- *'o',þ (").

n) 7. (4.8)

(4.e)

Equation (a.8) is the result of an inductive process on (4.7). Lei 9 € .S. Using &.7)

and ( .a) we get the representation

[u,(,t;m)Y (r2,ùp1@) : 
ãfU I o"[v("2,*)p]" (o)e- *',o' +i.'''

1fr: 
Afu J 

o" 
J 

a\!6r;o"),þ(o- a"7e-*r,a2+i.*x

: 
ãW I o"' I o^l(rr;o") ç(o')"- jftrr(a'+a")2+i(o'+o"¡'a. (4.10)
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We can now show that the n : 7 term in (4.8) is valid. In (4.10) set o' : oto¡

Q." : Qt, T2: tt, Tt - t - f1 and p : tþn(tt,fo). By definition the left hand side of

(4.10) will equal ,l,t(t,t.;t1) and the right hand side of (4.10) yields the right hand

side of (4.8) for n : L. \Me invoke the inductive hypothesis and assume the result

is true for n - 1. In (4.8) (with n - ! in place of z) make the change of variables

Qo + Q.: Qo + "'+ o'n-t. Then

(4.11)

In (4.10) set at : a) att : en¡ Tt : t - tn, Tz : fn and g : 1þn-t(tnrto;t,r-l).

Then by definition, the left hand side of (4.10) is tþ^(t,toitn) and (4.10) becomes

the eoualitv

,Þn-t(tnrúr; t"-1)(a)
r^ - r: I a\i_l(¿"-, ian-t)... I as7-11tr;ar)$(a - a,

JJ
- iLlþn-tn_r )o2+...+(¿r -Ío)(a_ar _... _dn_L)21

Xe Zmtt-'o -11-Lt" ¡ r\-r

.,Þ^çt,,t,;t*)(æ) : 
ãr, I ^ I dÀ!(t,; an),i,-t(tn,to;t,-r )(o)

x e- * þ- tn) (a + an)z + i(a j an)' r (4.12)

We next make the substitution of (a.11) into (4.12) and then do the change of

variables a --+ do : a - at - - dn-t It is straightforward, though tedious,

to keep track of the parameters in the measures and show, after all the variable

changes given above are made, that the product measure written in (a.8) is the

result. This compietes the proof for (2).

Finally we prove the statements in (3). The second statement about the

continuity of Pptþn(t,toit") will follow from the first statement and an application

of the Hausdorff-Young theorem for Fourier transforms (IRS 75], theorem IX.8). The

proof of the first statement is inductive. We must first demonstrate fhat Qp$r(trt")

is jointly continuous in (f,fo) in the.tp-topology for 1 ( p 1 æ. Because of
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inequality (4.5) we need only prove the continuity for p:7 and p: oo. Qrrþ,(t,t,)

has the pointwise representation

(eo rÞ,{r,r,)) (') - op 
"- 

*1t-t")"2 $(a).

To estimate the difference of this function for different times (t,t") and (f'.f!), we

shall need the bound

l.-" - "-"'l3l, - ,' I R. z,Re zt ) 0.

It is then easy to see the pointwise estimate

l(a,.,i,,tt ,¿f ))t'l - (a,,[.t,,,))(o) l t #,lallnl+z l+@)l(tr' - tl + lt'"- ,,1).

Because,,it e S,thefunctionlollol+21¡(o)l e ¿tn¿*(R¿¡. thirimpliestheexistence

of a finite constant C such that

llQorÎ"(t',,t',) - gorî'.þ,t.¡ì1o < c|t' - ¿l + lt'o - t"l), p : !,æ,

which in turn implies that Qc$"(t,to) is jointly continuous in its time arguments in

the trp(Rd;C") norm (r S p < oo) (cf. equation (4.5)).

We induct this result to the (n - 1)'h term and then use this to show the n¿ä

term is continuous. The r¿tä term's Fourier transform has the pointwise value

/ ^ \ ;Ê,. , ?

I Q 
o rþ 

"(t, 
t oi t ") ) ( o ) : sP ¿- i; \t-'^ ) o- 

lY (t n, m)tþ 
"- {t n, t oi tn-t)] ^ ( 

" ).\/

Take the difference between this function at two different time arguments (t,rto,tn)

and (f', t'o,t'n). This difference can be estimated by adding and subtracting an
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intermediary term with the result

l[Qo",i,*{r' ,tt"it'n)]@) - 180,p.(t z,; r,)l(a)l

I lallcl ltv(t;, m)ú,-t(t'n,t'ojtl,_r)1"(r) - [V(ú,,, m).þn_t(tn,to;t,_r)]^(*)l

+ I 
a 

I 
lel 

I [v(¿,, m)ú ^-t(tn, t o;r,- r )] 
^ (o ) | l"- 

*a' -tL)"' - "- *t -t")"' I

: ür(o) * Vz(a).

To control ü2 we again use the bound l"-'' - "-"1 
1 lr' - "1. 

The second term

has estimate

iúz(*) 
= #'lallnl+z I l.t(t', m)1þ.-t(tn,to;t'-,)]"r"ll (1,' - rl + lt', - ül).

Because [V(ú", m)7þ.-t(tn,tojt,-l)]"€ .S, any polynomial in a times it will yield a

function in Lt ft -[-(md;4"). It is then easliy verified that llüzll, * 0 in the limit

(t',,t'ort'n) - (trtort,r) for all 1 ( p 1 æ.

For the first term Ü1 'tre again add and subtract an intermediary term;

vr(o) I lallal 
I 
t (v1r;, rn) - y (tn,*))rþ*-r(tn,to;t,-, )l^(o) 

|

+ | 
a 

¡ 
lal 

I 
tv{t;, *) (.,þ *-r(t'n, t'oj t'n- t) - rl, n-{tn, toi t n- tl) f 

" 
f " I I

: üa(o) + iúa(a).

For all 7 < p ( -, llü¡llo -+ 0 as (t,,tto,tn) - (t,to,t,,) because iemma 4.1

showed the function Qc[Y(t"rr")ç]" is continuous in tn with respect to these norms

for all I € S.
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Finally we consider the last term üa.

representation for üa;

Equation (4.4) provides an explicit

ü¿(") : lallnl ')[rtr^-r(t'n,t'o;ti-rXo - o') - ûn-r(t^,toitn-tXo - ,')]i .

I

(4.13)

Integrating V4 over a and making the change of variables a -- do: e. - a,, we get

the Ll(md) estimate of \Ía of

.,1 ¡ ll !.il \/- r ^ .lx 
ltÞ"-t(t'n,t'òtl,_, Xo,) - 1þn-t(tn,to;t"-, )(o,) | 

.

The second inequality follows from equation (3.26). Because ll¡r(¿i)ll and lh(¿L)ll

are uniformly bounded in time and by assumption, Qptþn_t(tn,,to)t,,_t) is jointly

continuous in the norm ll 
. ll,, th" above estimate shows that llValll -- O in the limit

of (t' ,t'o,,1',.) - (t, to,ln). Similarly, starting from (4.18) it easily shown that llü¿ll_
also tends to zero as the time arguments approach each other. This completes the

proof to the lemma.

The continuity properties of the functions

of the time ordered Riemann integrals in the

([La 69], chapter X). These integrals allow us to

to the nth terlrr- in the Dyson series (4.2).

Definition 4.L: Define lhe nth Dyson iterate operator,

2<q<oo,

ll ^,u,,, 
"

llv¿ll, 
= Io*,llrl(¿L)llIo,l+,b)lel l,û^-r(t'n,t'o;t'*-t)(oo)-1þn-t(¿-,to;t"-,Xo")l

= | 0,, {llp(t,)ff + frf lo"l + k)llt(t.)llXlo,l + r¡rot

o

,lt.çt, t oi t n) guarantee the existence

spaces Zs(md;Cs) for 2 1 q 1 æ

define a mapping that corresponds

Dn(t,toim): 5 --+ ¿ø1md;a')
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by the equations

( ,lt,þ,t,¡, if n : 0;
Dn(t,t.;rn)tþ : I

l dtt ¡|j aurÞnlt,toitn), n n ) 7.
',þeS (4.14)

Here the ,ltn(t,to;t,,) are defined in (a.6) and the integral is

for continuous functions in the trq(Rd;C,) topology.

the Riemann integral

It is important to be able to relate the pointwise value of Dr(t,t"imYþ

time ordered integral of the pointwise value or tþn(t,toitn). The following

establishes this relation.

Lernrna 4.3 Let ç : A,n(trto) - .5(m';C") be a continuous mapping in the

¿s(Rd; C}) topology for 2 < q ( oo. Defrne the vector

o

to the

lemma

(4.15)

(4.16)

Then

¡t>ø: I dt^?$)e trq(md;c').
Jlo

¡t>
Õ(æ) : I ¿¡"ç(t")(*), z€Rd.

Jto

. Proof: The tr*(Rd;c') continuity of 9$) with respect to t,, implies the

pointwise t,,-continuity of e$.)(*) for each æ € Rd. Thus the ordinary (c'-valued)

Riemann integral of g$")(æ) over t,, exists. An application of the dominated con-

vergence theorem shows that the integral ¡ij at" ç(t")(") is a continuous function

of æ.

Recall what (4.i5) means ([La 69], chapter X). Let {", - {Â:,r¡}} U" u

sequenceof partitionsof Â,o(ú,fo) suchthat lz-¿l -0asl---+oo. Herejisamember
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of an appropiate index set T¡;.4.¡ € A,(f,úo) is a set of the form

Âj : (Àrr,Àjr+r] x ... x (qj-,rtj*+tl,

where {À¡}, . . . ,{qk} each form a partition of. lto,'t); r¡ € À¡ and we set p("¡) : O

if r¡ / L"(t,¿,); lA:l is the volume of Ä¡ and lr¿l : max l,{¡1. The integral in (4.15)

means that
lls

IILPGì|^:I- *llo * o' as / -+ cP,
jert

provided the limit is independent of whatever the sequence of partions {z-¿} is taken.

Because this sum converges in norm to iÞ, it must converge in measure to iÞ (cf.

[Roy 68], $4.5). Hence we can apply Royden's proposition 4.17 [Roy 68] which shows

for almost all z, that there exists a subsequence of partitions, {nhl¡,, such that

But the left hand side is a Riemann sum that has the limiting value JÞ
Thus (4.16) is established for almost all æ. As the right hand side is

æ, it is used as a definition of the left hand side of (4.16) for all of u.

| 
Ð o,",,(')l^:l - Õ(')l -, o, as /¡ ---+ 6,s.

[p 
p D n(t, t.; rn){](e : # I)"' 

or, lp o,þ,(t, t,; t,)l(æ),,

dt" e$")(æ).

continuous in

o

In the next lemma we establish some pointwise representations of the nth

Dyson iterate, continuity properties and its range.

Lemma 4.42 Let (t,,t.) e Tt, rn € C¡ and let p be any multi-index.

(I) D"(t,toim): 5 ---+ .S.

Q) If rþ e S and n ) I, then PpDn(trtotm)1þ has the pointwise values

(4.17)
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and similaily, its Fourier transform satisfres

(4.18)

(3) QolD"(t,toi*)rþ1" is continuous in (t,t.) € T6 with respect to the noÍm

ll'llo f"t 7 < p ( æ. Consequently it also follou,s that PpDn(t,to;m)tþ is continuous

in (t,,to) e Tt with respect to the norm ll . lln fot all2 < g ( oo.

Proof: To demonstrate (1), we have to show that for each pair of multi-indices,

p and p', there exists a constant Cort suchthat for all z € Rd,

llQ 
/ r' n 

^(t, 
to; r"),þl(*)l 

= 
t,r . (4.1e)

First we note that from lemma 4.3, setting g : 4:n(t,to.,tn), we immediately

have the pointwise representation

lD,(t,t"; m)gl(Q : j- ['' or, rl,n(t,toit*)(*).
lzn)'' Jt"

\Me know from lemma a.2$) that [P?t¡n(t,to;t")](r) is continuous in (t,to,tn),

uniformly with respect to æ,. It therefore possible to interchange the derivatives Pp

with the integral ¡|l at" ("f. reference [Ru 76], theorem g.42). This establishes

equation (4.17). The quantity of interest has the pointwise representation

lQo Po D"(t, t"; m)tþl(æ) : & ["' ot- *o' ¡po 4tn(t,t"; t 
^))(æ).

To show the estimate (4.19), it is enough to prove lhat æp'[Prrþ*(t,f,;t,)](æ) is

uniformly bounded in z and t,r. To show this, it is sufficient to show the Fourier

transform of the integrand has an .tl-bound independent of tr,. The value of the

[p 
p D 

^(t, 
t,i m)g)^ (e : YY [" or.,l.1t, t o,t, ) (o ).

\Ln )'' J t"
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Fourier transform can be picked out of equation (4.8) (also see equation (a.11)).

The result is

IQ 
P P o rþ 

"(t, 
t 
"; 

t.)]^ (a)

: Trlol1_ùo'

where ao is ao : a - dl - ... - e.n.

An appiication of the dominated convergence theorem shows that the deriva-

tive with respect to the a¡'s can be brought inside the integral, with due respect

being paid to the parametric dependence of the di's on a. The di's contain a

polynomial structure in a (4") and those derivatives that strike the exponential

will bring down further polynomials in the a's and the f 's. Those derivatives strik-

ing f (a,) will still yield a Schwartz space function. The compact support of the

measures will control the polynomial growth in the ar''s; the compactness of the

set ?4 will control the polynomial growth in the f¡'s; the exponential is uniformly

bounded by 1; the norm of the measures are continuous and bounded functions of

the ú¡'s; and $ and its derivatives will control the poiynomial grow of c (a,) in the

da integral. All of these facts show that the Fourier transform of Qo'por¡tn(t,to;tn\

is an .tl function whose norm is uniformly bounded in t,,. This completes the proof

for part (1).

We have already indicated how (4.17) comes about. Identity (4.18) is a con-

sequence of using Fubini's theorem to interchange the time ordered integral with

the integral appearing in the definition of the Fourier transform.

As before, the second assertion in (3) follows from the first and hence we shall

only provide the proof for the first one. Let (tt ,t') Ç T6 differ from (ú, t") e Tt.

/ã\P ¡ ^ f ^

(ã/ o¿e 
J 

d^i(tni an) "' J ^TUt; 
a),þ(o.)

x 
"- 

*l(t-tn)a2 +(tn-tn-t)(o-an)2 *...*(¿r -t,)a!l ,
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The continuity of QolD"(t,t,;nt)tþl^ can be shown with the addition and subtraction

of an intermediary term which gives the estimate

llQ 
o 

lD "(t', 
t'.; rn)rþ)^ -

The second term tends to zero in the limit (tf , t'") - (t,,t,) by lemma 4.2(3). For the

first term the integrand is uniformly bounded in tr,. Thus the first term is bounded

by a constant times lt' - tl^ + ltto - tol".

4.3 A Solution of the Schrödinger Equation

We are now ready to consider the summability of the Dyson series and show that it

sums to a solution of the Schrödinger-Cauchy problem (2.10). \Me note an immediate

consequence of Lemma 4.4is that the n¿à Dyson iterate, Dn(trtoim)ú, is a member

of the sei Do. Thus H"(m)D"(t,t";m)tþ makes sense, as does the full Hamiltonian

acting on Dn(t,,t"; *)rþ.

We begin by examining the sum of the vectors PpDn(t,t"im)1þ, but with a

slightly more restricted class of test vectors /. In particular the values of lpl : 3,1

and 2 will be of importance for establishing the Dyson series is summable and that

it generates a solution to the Schrödinger equation.

Lemma 4.62 Assume 1þ € Cf (Rd, C") and let the support of $ lie in a baJl

B6¡, which is centered on the origin and has radius blc. Here, k is the radius of the

ball which contains the support o[ the measures 1þ) and u(t,rn) and 0 < ó < oo is

a scaling constant. Let p be any multi-index, m € C.¡ and (t,t") € Tt. Then therc

QolD"(t,t";*)rþ)^llp

s #llU;'' dtn- l).' or^\a,.{,-rr,¿1,,r,)ll"

* # I),' ot.llart,i,-U ,t'";t.) - ,î,^(t,,,,*,)lllo
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exists a constant C, depending only on p, tþ and the index q of the Banach space

Lq(wd;c") (2 ( q ( æ), such that

llro 
n.U,t.;*),þll, t t *(?)" þ * n)totlp, * #lo 

-r n)k yl,. e.zl)

Furthermore if

lrnlt-to<f, (e:2.718...) (4.21)eklr

then the sequence Ðlu:o PpDn(t,,t"im)?þ converges with rcspect to the norm ll . ll",

for alL2 < q < oo, as -tr/ -- oo.

Proof: In the following, Iet g and p, 1 1 p 1 2, be conjugate indices for the

Banach spaces Lq(wd;C') and Lp(md;C") (i.e. p-l + g-t :1). For r¿:0, there is

no integral involved with the definition of. Do(t,tojm) and hence it must be treated

separately. An application of the Hausdorff-lbung theorem (IRS 75], theorem IX.8)

for Fourier transforms vields

llr n 
" 
{t, t 

" 
i m) úl l, s t z' l' 

(i - Ð nt ptll"- * v -' "rr, n' "ûll,

3 (zr1d(i - | 7t ot 
16P:,t 

ct 
| | ø I 1,.

For n I 1 we will again apply the Hausdorff-Young theorem.

lle 
o n.çt, t 

"t 
m)úll, t u- " l)"' o, - ll, 

o r,þ,t, ; t, ) 
| | n

S etr¡aG-!)¡tot-* I)"' 
or-llT,.,i,^V,r". ròllo G.zz)
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The integrand in the second inequality has the explicit formula (cf. equation (a.11))

where once again do : a-a.-...-an. In the outer most integral, make the change

of variables a --) ao. Working these variabie changes into the parametric dependence

of the measures we find that ii(ti¡ -- )i(ri). Next we bring the absolute value

through the integrals to majorize the da's integrand. The compactness of the

supports of the )'s is used to bound the polynomial growth of the a¿'s in the

resulting integral. Finally we use the norm estimates (3.26), (3.14) and (3.19), plus

the compactness of the support of $ to get the bound

lo"

llo''i,.rr,üitn)ll, = rr¿ noþþ + n)ltot{p, * #lo + n)trt,}*.

Substituting this estimate into (4.22) leads to (4.20), with C given by

ç : (zr)d{i - | 6¡r¡t a 
ll",i, llo.

f^
J as21t"; o,) . . . a\7çtr; ar) aP$(a.)

x 
"- 

*t(t -tn)az ¡...¡ (t, - t"¡*'.11,

I

llo'',i'"tt,u;ròll: :

can be

<c (t

= Bn.

Equation (4.20)

il|

llPeD"U,t";r")rl'lln

rewritten for n ) 1 as follows,

6 ¡lnl ,"z+lel | (t - ,to),ktrl" +, * t, l*l , 1 ,",*;) t L- vnt r '+hk;P'l;j"
(4.23)

Consider the series Ðf=, Bn. .Ln application of the ratio test shows

Bn+7 lt , ,ekIr
B" -- (¿ - t') l,-,,i

as ?2 -+ oo, (e :2.718.. .).
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Consequently the series converges if t - ú, satisfies inequality

the series Ðfl:, PpDn(t,tüm)1þ converges in the (complete)

enough to show it is a Cauchy sequence;

llî, "' o -(t, t o ;,,),þll,
.lfr

Nt

-rlS ) . llro n,¡t,t,; rùrþll
-ll 

llolttv7

N,

< I Bn--+ o
N1

(4.21). To show that

space Lq(Rd;C'3), it is

as ly'1 ,1/2 - s,o. o

This establishes the convergence of the term-by-term (spatial) differentiation

of the Dyson series. \Me will see shortly that the order of the partial differential

operator and the summation may be interchanged. This will be necessary in showing

that the Dyson series gives a solution to the Schrödinger equation. The other

aspect of the Schrödinger equation is the time derivative, and we next establish the

differentiabilty of the nth Dyson iterate with respect to f and the summability of

that series.

Henceforth we shall only work in the -t2 topology as opposed to the more

general -ts Banach spaces for 2 ( g ( oo. To work in trq(Rd;c") would require

knowledge of the closure properties of H"(m) and V(f, m) in Lø. We have only

described these operators fully in L'(mo c'). From a physical standpoint,, Lz will
suffi.ce because it is the onry Le space that is also a Hilbert space.

Lernma 4.6: Let rþ C S and rn € C+.

(1) 
"åe 

mapping rltn(.,to;tn) : lto,Tl - 5 is súrongly continuously differen-

tiable and satisfres the fotmula

mlrrÞ,{t,toitn) : H"(*)rþn(t,to;tn¡ n : 0,!,2,. . . (4.24)

Moteover, t'he limiting ptocess in taking the derivative is uniform with respect to t,

to and tn.
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Q) The rth Dyson iterate D,(',t.;rn)$ :

ously differentiable. Its derivative we denote by

recurrence relation

It",T) -- .9, is strcngly continu-

b^U,toim)ú, and it satisfres the

ihD *(t, t.ì mhþ : H,(rn) D n(t,, t o; *)rþ + Y (t, m) D 
"- t (t,, t o; rn)rþ, (4.25)

where Dr-t: 0 if n: 0. Here aJso, the limiting p.rocess in taking the derivative is

uniform with respect to (t,to) e Tt.

Proof: We note that if tn : t, the derivative appearing in (4.24) is the right

sidedderivative.Ir.h:t,Iet6)0,otherwisepickásuchthat0<|ó|<

Again we treat the n : 0 case separately from the n ( 1 case.

Recall that tþ.(t,fo) is defined in (a.6). Let {p,(á)} be a family of vectors in

L'(md;C') defined by

I

p 
"$ ) 

: i,h; lrþ,(t + 6, t o) - rþ.(t,, t.)) - H 
"(*)',þ o(t, t o7ò-

.n I ¡-, t ,: ih;Luo(t + [ - túrn) - U.(t - t";*)]rþ - Ho(rn)U,(t - t";rn)rþ.
Ò-

To prove our claim, it is enough to prove that rpr(á) tends to zero uniformly with

respect to (ú, to,tn). From the Plancherel theorem for Fourier transforms (lRu 73],

$7.9) we have the equality

llç'(6)ll : llP'(á)ll.

Thus it is enough to prove ll,þ"(6)ll - 0 as á - 0. Pointwise, rp"(á) is given by the

formula

-*('-'ù"\
{,^in

Q,Q)@): -ft&+a-t")o' - "-*(t-t,)a21- *rr" Ip\a ).
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To estimate this pointwise formula we need the following bound. Let Re z, Re zt ) 0.

Then

e-'' - e-' -l 3" . " re-zl <:lz'-zl.
zt-z l-2' '

I

(4.26)

Setting z: (ihl\*)(t-to)az and zt : (ihlzrn)(t +6- to)o, leads us to the

inequality

te,(áxo)t 
= ; #,^' lør*ll rrt

Consequently we see that

3ä3 l
na.(6)il s ;lltaf,{,lltat -. 0 as á-- 0

where lQln = (r1:, A?\'. Since the right hand side of this last inequality is
\zJ:r 'J /

independent of t and to, this shows the convergence is uniform in ú and fo.

For the case ?z ) 1, define the family of vectors {p,(á)} bV

p ^$) 
: ooTþþ *(t + 6, t o; t n) - rÞ *çt, t "; t,)) - H.(*)rþ n(t,, t o; t n¡.

As before, it is enough to prove that llrp"(á)ll - 0 as ó --+ 0, uniformly in (2, to,tn).

From (a.6) and (4.9), the pointwise representation of rp"(á) is

e.G)@) : {*V-fr{t+t-t,¡.' - "-*þ-u)a21- *rr"-fiF-t^)*'?\
x [V(f,, *)rþ"-t(tn,, to;t"-i )]^(o).

Exactly as before we use bound (4.26) to obtain the desired estimate. If we also

note that

Y {t n, rn)tþ 
"- {t ", t oi tn- t) : rlt n(t n, t oj t n),
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this estimate can be written as

3h3
lle'(ó)ll s ffilltaf ,t'."u", t,; t'¡ 

ll 
¡o¡.

Now lela : (ÐÍ:, A:) ,so by temma 4.2 wesee that lll}f.i,.t .,toito)ll i.:oirtrr
continuous in (f,r, to,tn) on the compact set A"(7), and hence it will attain its

maximum. Thus there exists a constant C, independent of (trto;tn), such that

lle"(a)ll < Clól -- 0 as á---+ 0.

This finishes the proof of (f )

In order to ensure that all the vectors in the following exist, it i's necessary to

consider the left and right ú-derivatives of D,"(l,toim)1þ separately. As both proofs

are somewhat similar, only the right derivative proof shall be shown.

Let 6 ) 0 and define the familv of vectors

Õ(á) :

Next we add and subtract a cross term into the defi.nition of O(á). It is at this

point that the left and right derivative arguments differ. The right derivative must

use the following cross term, whereas the left must utilize the other possible cross

term. The use of this particular cross term ensures that the time arguments lie in

a range upon which the vectors with those time labels have meaning. (The same

can be said for the cross term used in the left sided derivative.)

t 
fo"A t 6,to;rn)rþ - Dn(t,t,;*)lrþ

GúiU:"." dt,1þ.(t i 6,,to;r,) - I),' or^,r,n(t,,",.,)) .
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1 I | ¡t+t> ¡t> I

0(6) : Wi Ur. 
or" - Jr" 

dt" 
)7þ"(t 

+ 6',to;tn)

11ft>+ 
- = I dt"?þ"(t*6,to;t")-rlt"(t,t"it"¡1' (ih)" 6 J'"

: Õr(á) + o2(á). (4.27)

We first consider Ol(ó). Due to the nature of the iterated integrals, it is necessary

to distinguish between the n :7 and n ) 2 cases.

[ +ri ¡:.t dh,þt(t + 6,to;tt), n: r;
Õr(6) : 

t a*" I I:*u ü- I:' dtn-t''þ-(t + 6,to;tn), n ) 2.

We wish to add and subtract a term to Õl(á), but it is necessary to modify the

notation lor tþn a little. \Me expand the argument t,n to tnrtn-t because we will

wish to replace tn by f and have this explicitly exhibited. For rz : 1 the train of

argument is 
or(ó) : Õr(á) - fi.*"þ,t,;t) * h+r(t,,to;t),

: Õs(á) * h+r(t,to;t),

: Õ¡(6) + !vçt,rn)tþ.(t,t"),
1: Õs(á) -l *Y(t,m)Do(t,t.;m)1þ.
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Forn>2itproceedsas

Õr(ó) : Õr(á) - i- [" or,-r,l,n(t,to,t,tn-t)
\zn)'' Jt"

l ft)
+ .** I dt.-rrlt.7t,to;t,tn-1),

\zh)'" Jù

: ae(á) + j; [" or^-rrÞn(t,to;t,tn-t),
1zn )," J t"

1F>
O¡(á) * 

^.*,- I 
dt"-tY(t,rn)tþ"-t(t,to;tn-t),

¡zn)," Jt"

: Õ¡(á) + !vçt,ù# I)"' 
o*,-r,¡n-t(t,tottn-t),

1

o¡(á) * aY (t, m)Dn-t(t,t"; rn)tþ.

In these equaiities we have used that if .4 is a closed operator and both I gQ) d,r

and / Aç(")dr exist as strong Riemann integrals, then ([Hi 72], theorem 10.2.3)

,t I v?) o, : I Aeþ) d,r. (4.28)

If we can show that llOr(A)ll --+ 0 as , -- 0, uniformly in (t,fo), then we can

concludethat llÕ1(ó)-hI/(t,,*)Dn-t(t,to;r")rþll --+ 0 as, --+ 0, uniformlyin (t,t,).

The vector Õ3(á) is given by the formula

I I ¡t*6
Õs(á) : *i J, dh[rþt(t + 6,t";tt) - ,þt(t,t,;t)], n : ti

1 1 rt+¿ lrt">
Õe(ó) : 

rouy; 1, o'" 
Ur" 

dtn-t'þ"(t + 6''roltn't'-r )

¡t> I
- Jr" 

dtn-trltn(t,to;t,t,,-r)l ,n) 2.
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Again, because of differences in the iterated integrals, we shall have to handle the

rt : 7, n : 2,and n ) 3 cases separately.

For n : 1 it is a simple matter to estimate the ,[2(md;C")-norm of Õ3(ó);

1 ¡ti-6

llo¡(a)ll S * J, dhll,þt(t + 6,to;tù -,hU,¿,;¿)ll.

The integrand on the right hand side is uniformly continuous and hence given e ) 0,

there exists óo, independent of (t,'to,,f 1) such that llr/1(ú + á, t";tt) - ltt(t,t";t)ll < e

forall 0<á(áo. Thusforall 616o,

ilo,(6)ll s ;.

This shows the uniform continuity of Õs(6) for n:1.

For n :2¡we split apart the inner integral into one over lo to f and the other

over f to t2;

-l 1 ft+6 (rtt.Þ,l,il- - - I ¿t, 1l dh7þ2(t*6,to;t2)-u\-./ (ih)2 6 J, --" U, --r,

ftì
+ | dh[1þz(t r 6,to;tz,tt) - ,þz(t,,ú";r, t1)] f .

Jto )

To estimate the L2-norm of iÞ3, we bring ll .ll through the integrals. Given e ) 0,

thereexistsóosuchthatforall 0<616o, llrþz(t*6,to;tz,tt)-rÞz(t,t6;t,t1)ll S..
Furthermore, since llrþr(t l6,toit2)ll is jointly continuous in its arguments on a

compact set, it will attain its maximum. Hence there exists a constant C such that

llrþz(t* 6,,toitz)ll I C for all (t,to,,lz,ó). If 616o, then it is easily shown that

ilor(á) |<fit*#,,

and consequently llÕa(6)ll * 0 as á --+ 0, uniformlyin (t,t,).
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as shown below;
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up the inner integrals in the definition of Õ3(á)

dtn-zrþ.(t + 6,to;tr)

(t + 6,toitn,t"-r ) - rþz(t,,to;t,,tn_1))

I j ¡t*6Õs(á):r;-; I dtn
\xn)'' 0 Jt

1 1 ft+6* 
øo¡"¡ 1,

l,'" 
o'^-' I:."-"

o'- I:,' dtn-tl,þn

Following a similar argument to the n : 7 and 2 cases \¡/e again arrive at the desired

continuity property.

\Me consider Õ2(á) next. To the definition of Õ2(ó) we add and subtract a

term;

Õz(6) : Þz(á) - hu.rrr)D.(t,,t"im)1þ

: Õ+(6) + ln.6)D*(t,t";n )rþ.

+ !n"çrr)D^(t,t";*)rþ

We shall show that Õ2(á) converges to ftH,(m)D,(t,t.;*)rþ as á --+ 0, uniformly

with respect to (ú,ú"). This is equivalent to showing O¿(á) converges to zero uni-

formly. Writing out the integral representation of Dn(t,,tr;*)rþ and using the result

leading to (a.28) to interchange the operator H,(*) with the strong Riemanninte-

gr"t Íj d.t,-, óa(6) can be written

Õ+(á) : & I)"' 
o*, 

{!urr-u 
* 6,,to;r,) - ,Þn(t,to;r,)l - Ir.?,)',þn(t,to;r,)}

Take the norm of Õa(á) and estimate it by bringing the norm through the integral in

the last equation above. From part (1) of this lemma, given e ) 0 there exists a óo,

independent of (ú, tojtn), such that for all 6 < 6o,, the norm of the above integrand
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is bounded by e. Consequently we obtain the bound

llo¿(á) lls{

This implies the desired result for Õa(6).

Combining all these results for the iÞ¡(á)'s, we have proven the existence of

the strong right derivative of D"(t,to;m)1þ and that it is given by

ho*rr,t,;*)rþ 
: h".t r)D,(t,t,;*)rþ + lv çt,m)Dn-t(t,t,;rnþþ. (4.2s)

We have also shown the limiting process of taking the right derivative is uniform

with respect to (ú,fo). Because the right hand side of (4.29) is strongly continuous,

it follows thaí Dn(t,t.imhþ is strongly continuously right differentiable.

For the left sided derivative, a similar argument applies except we add and

subtract the cross term

dt,"..þ"(t,toiln), ó ( 0,

as we have previously indicated. \Me wiil end up with an equation corresponding

to (4.29), but with the left handed derivative instead of the right. These two

equations together imply the existence of the derivative and the equation (4.25).

The continuity of the left and right derivatives, and the uniform convergence of the

limiting process of taking either of those two derivatives implies the like properties

in the total derivative.

With the differentiabiity properties of each term in the Dyson series estab-

lished, we next examine the possibiity of exchanging the the infinite sum forming

the Dyson series with these differential operators. Recall in lemma 4.5 we saw

that iî $ € Cf (Rd, C") and t - to satisfied estimate (4.21), then the sequence

1 1 ft+6>__ t
(i,h)" 6 Jü
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Ðf:o Dn(t,t.;*)rþ is Cauchy with respect to ll .ll. Ilence as lú --+ oo this sum

converges to a unique element of L2(RdrCt), which we denote by

N

4:(t,t"rm): s- lim\)n,þ,t,;m)rþ. (4.30)
N-æ 

-^

Proposition 4.1: Assume that tþ € cf(Rd,c") and that the support of $ is

a subsef of the closed ball 86¡ for some 0 < ó ( oo. Let m € C+, (t,to) €T6 andlet

t - to satisfy (4.21). Then ,þ(t,to;rra) € Do and ,þ(t,t.;m) is strongly continuously

differentiable with respect to t. Moreover rþ(trt";rn) is a solution of the Cauchy-

Schrödinger problem:

ã
ifl 

Atuþ(t,toim) 
: H(t,rn)rþ(t,toim) 

(4.g1)
Iþ(to,toi*) : ,þ.

Proof: Because H"(*) : (2m)-1ÐT:, Piz,if folows from lemma 4.5 that the

H "(*)L o.þ, tü m)ú : t H 
"þn)D *(t,to; rn)g

n:O n:0

is strongly convergent as tr[ -- oo. Now H"(n) is a closed operator and both the

serles

sequences Ðlu:o Dn(t,t";m)rþ and, Ho(m,)Ð#:o Dn(t,t";m)rþ converge. This leads

us to conclude that ,þ(t,t";rn) e Do and
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The initial condition aspect of (a.31) is easily verified. We make use of equa-

tion (a.20) to show

ll,þ(t,t";m) -,i ll S llD.(t,t.;*),þ -,þll +i Ilr,1r, t";*),þll
n:!

S lllu,(t - toim) - Il',þll

oo 1 /¿ + \2 f,
+ )] c+ ( 

=) 
(a+ n)totlp, + *þ +n)tci')./-r 7¿! \ h / 

1 L'! 
l*l' 

/
n:1

In the second inequality, the first term goes to zero as ú ---+ fo because Ur(t - tolm)

is strongly continuous and U"(0;*):.I. The second term goes to zero in the limit

t -'+ to because it is of the form (t-t")h(t-to), where å.(r) is defined by a convergent

Taylor series.

It remains to verify the differential equation in (4.31). The key to showing

this resuit is the recurrence relation (4.25). \Me can easily differentiate any finite

partial sum in the Dyson series with the result

^Nih* r, D n(t, t"; n)ú : H o(m) D o(t, t"; rn)$
dt ¿-¿

n:0

¡r
+ t {A.ç*¡ n n(t, t o; m)rþ + Y (t, rn) D *t (t, t o i.ùrþ}

n:7

¡¡-1
: H(t,r.) Ð Dn(t,t";m)rþ -t H"(rn)Dw(t,,to;*)rþ. (4.g2)

n=O

We note that the r"- !fl;l H(t,,m)Dn(t,t";m)$ will converge because V(t, m) is

H"(m)-bounded and
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M'

ll 5- ør¿. m\D.ft.t^:*\rbll
ll 4 / tÚ\'vt /tll
N:M

M,

< t llv (t,m)D.(t,,t,; *)rþll

";
M'

s Ð llfl,(rn)D,(t,to; *),þll+ I llv(r, m)D*(t,t"; *)rþll
M n:M

M, M'
< (1 +B) Ð llr,(rn)D.(t,t";rn){ll +o Ð lln"(t,tojm)ú,,

n=M n:M
---+ 0 as MrMt -- æ, (4.g8)

which shows it is strongly Cauchy.

Because the sums H(t,m)Ðfl:o Dn(t,t";*)rþ and ff;:o H(t,rn)Dn(t,t";m)$

are both strongly convergent and because H(t,,nt) is a closed operator, we have that

,þ(t,t";rn) is in the domain of. H(t,,rn) and that

N
s - lim H(t,,rn)Ð n^(r,to;m)ú : H(t,rr)rþ(t,toim).
N*oo

7L=U

Furthermore, as Df:o H"(m)D*(t,to;mþþ is strongly convergent we necessarily

have that

s- lim-Élo(rn)D¡¡(t,,to;m)tþ : g.
JV+æ

These results can be combined, yielding

^¡fs- Iimiñ.fr Ð n,(r,túm)ú : H(t,rn)rþ(t,toim).
trÍ*oo Ot 

-7L:U
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It remains to be shown that

" r::: ou*äo,r, t.; ¡n)'þ -- m 
ft,t' tt, 

t oi m)'

The standard theorems of analysis concerning the differentiation of uniformly con-

vergent sequences of functions remain valid on the -t2(md;C") topology (cf. references

[Kr 71], p. 4 and [La 83], theorem 5.9.1).

Let 0 < á < lml(ek7r)-l and to 1t l tol á (and therefore t-to satisfies

(4.21)). Defrne p*þ): Ðf;:o Dn(t,,t,;*)rþ. Then each rp"(f) is difierentiable on

[to,tot á] and llelu(¿) -rþ(t,toim)ll - 0 as 1ü---+ oo. If 'we can show that ô¿pr(ú)

converges strongly and uniformly with respect to ú on ltorto * á], then

m{rrt' tt, toi m) : .r*ty mftv * G),

and our proof is complete. For details to.this claim, we refer to reference lRu 76],

theorem 7.L7. In the notation using p*þ), we rewrite (4.32) as

mftv*U):
¡¡

Ð U þ,, rn) D,(t, t 
" 

; *)rþ * H 
"(rn) D u (t, t o; rn)rþ .

n:0

It is enough to prove that each of the two terms on the right hand side are sepa-

rately uniformly Cauchy. Because Y(t,m) is H"(m,)-bounded, it is enough to prove

that !f;: oll["(rn)Dn(t,,toi*)rþll and ff;:o llD*(t,t";*)',þll are uniformly Cauchy

(cf. (a.33)). More generaliy still, it is enough to prove that ffl:o llPpD*(t,t";*)rþll
is uniformly Cauchy for all multi-indices p. By using inequality (4.20) these par-

tiai sums can be magorized termwise and the magorizing sequence will converge

uniformly with respect to ú € lto,to + ó] and Ío e [0,"]. Hence the sequence

Ð#:o llPpD*(t,t,;rn)rþll is uniformly Cauchy. Equation (4.20) a.lso shows that

Hr(rn)D¡¡(t,,tr;mþþ converges to zero uniformly in ú and fo as -ly' --) oo.
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Thus we have verified the Dyson series satisfies the Schrödinger equation in

the strong sense for t in the interval lto,to* ffi) and úo in the interval [0,?). The

arguments for the special case f, : t : T are somewhat simpler, and will not be

presented here.
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CHAPTER 5

Dyson Kernels and the Propagator

Proposition 4.1 showed for a certain class of initial test functions and a time

interval t - to sufficiently small, the Dyson series converged to a solution of the

Schrödinger equation. Fo¡ r¿ € C-¡ we shall demonstrate that each of the Dyson op-

erators, Dn(trtoim), is an integral operator. Furthermore their iniegral kernels are

summable and the resulting function we show to be the propagator for the complex

mass problem. Again, throughout chapter 5 we have the universal assumption that

aeV"(lc)andu€Y(k).

5.1 Product Measures and Their Combinatorics

To begin, we first develop some convenient notations for product measures

that appear in the ensuing discussions. Let n be the order of the Dyson iterate

under consideration, and let r be an integrai index between 0 and n. If r > 0,

define an r-tuple with non-negative integer arguments by j, : (jt,..., jr), and if

r :0,let jo simply be a label whose meaning will be made clear below. Define the

ordered index set Jrr,, by

if r:0;

,7<jt<jz<---<j, 1nI, if 1<r1n.

For r ) 0, Jn¡ can be thought of as the set of ali ways of picking r distinct numbers

out of 1, . . . ,n. If. r : 0, then Jn,, is the empty set and jo is a label that reflects the

,r,r : 
{ T,
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choice of picking no numbers out of n. There are (i) etemenlsir_ Jn,r. To each j,

we associate an rz-fold product measure Ârr(jr,t,"), defined by

Ä,,(j,,t,,) : l"iþ")l x'.. x ltþ¡,)l " 
.. . x ltþ¡,)l * .. . x lai(t1)|. (5.1)

Here we recall the definition of oiþt) given in equation $.2\ and write it in its

polar decomposition form

d"af (t¿) : çf (o, tr) dlcf Ur)1.

The right hand side of (5.1) is to be understood in the following sense. If. r : 0, the

measure only involves ihe product of the l"i\t)l's. \Mhen r ) 0, replace the measure

loi,Ui) | in the measure Â,,60,t,'), by the measurclTþ¡,)1, for it: it,...,i,. For

example iÎ j, : n - 7, then l7(f"-r)l replaces lai-t$,^-r)1. From equations (3.13)

and (3.27) it is evident that Â,"(j,,t,,) has the uniform bound

llÂ,'6,,t,)ll < (r, * 7;, i, e Jn,r., tn € A.n(t,to). (5.2)

To establish the existence of the Dyson kernels, we shali work in the Fourier

transform space first and pull back these results to the co-ordinate space represen-

tation. To be able to pull back these results, we first need a couple of results to

provide the necessary mathematical tools. The proofs of these elementary results

are straightforward and shail only be sketched.

Lemma 5.L: Let In:z ) 0 (" # 0), þ,{ e md. Assume that tþ e S and íts

Fourier transform is given by'û Then

h,'r")"-'

: eiòdlz | ø "Tu' 
+ta'{€-'P)rþ@);I o"e-*@+€-"Ð'gç.,) (5.3)
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and

Proof: Introduce into the integrand of the left hand side of (5.3) the charac-

teristic function xr@) for the hypercube loi I < Ã, (1 S j < d). One can show with

an application of the dominated convergence theorem that the resulting integral

converges to the left hand side of (5.3) as -R --- oo. On the other hand, writing

out the explicit representation of the Fourier transform of t/ and applying Fubini's

theorem, we get

- ,fr(a+€- zÞ)'-io.y

The ,R -+ oo limit for this integral is considered. If Irn z ) 0 it easily shown that the

inner da integal above is uniformly bounded in g and R. Irkn z : 0 (" * 0), we have

to be more careful with the estimate, as the exponential is then pure oscillatory with

no decay. An application of the lemma below shows this Fresnel type integral can

also be uniformly bounded in g and .R. In either case we can apply the dominated

convergence theorem to bring the .R ---+ oo limit through the dg integral, with the

result

d.o ¡ e- t;'? - ¿l! (€¡ - " 
a ì -ru ì" ¡

The inner integral can be split up into ones over the intervals (-*,0] and [0, *).
If Im z ) 0 then these integrals have a standard result and we refer to reference

IGR 80], 3.322.2. For Im z : 0 with z f 0, the inner intergral is a Fresnel type

integral which can be evaluated by contour integration techniques. Both cases for

z Iead to the right hand side of (5.3). The branch of the square root being taken is

argz € (-nrn) (i.e. the cut is along the negative real *ir).

(-r¡lnt I o"ga)oe-í;(,+€-"Ð',i,(a): (-;;Y,, I ¿arþfu)Af"Tu'+;u.{Ê-,þ),þ@).

(5.4)

| ø',þ@ I d,av,(a)e

fd

I o, rrrrl{ "-#(6i 
-'u,r I:

J-t
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The second equation (5.a) is shown by starting with the right hand side,

integrating by parts untii all the derivatives strikeT/ and then use (5.3), but with r/

replaced bv Af ,þ(a). Using the identity @e1þ)^(ù : ilelo¿pû(a), we see that equation

(5.4) results.

Lemma 5.22 For aJI a,b € R\iOÌ we have the a-uni{orm estimate

where

c0ål) : + | max{l, lól-1}.

Proof: Since the integrand is an even function of f , without loss of generality

1,ve may assume that ¿ > 0. If ô < 0 then by taking the complex conjugate of the

above integral we could estimate the equivalent function

ll," 
,o,v' arl.

Thus without loss of generality, r¡/e may take ó > 0. The proof is now identical

Truman's lemma 1 [Tru 77].

For the next lemma we introduce the following notation. If r is an integer

between 0 and n, then the symbol lrl2l means the greatest integer less than or

equal to r f 2. Let / be an integer between 0 and [r lz). The summation sign !f,¿ wili

denote the sum over the division of r objects into certain sets. Label these objects

bytheindices i:7 -r. Foragivenr and/,pick r-21of theseobjects. Of the

remaining 2/ objects, we pick / pairs. The result is to partition these objects like

lo" "-or,'rrl = 
c|bl)

t ',7/2

(rra)

to

o
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{iy,...,i,-zti(i,-rr*r)ir-zr+z)¡. ..,(i,-t,ir)}. The sum is taken over all distinct

choices of this type. The number of terms in this sum is

^ 
.-tLi",l 

- 2t(, - zr)!r!'
(5.5)

Lemrna 5.3: Let {ni}i:t be a set of r constant d-dimensional vectors. Let

Y, denote the d-dimensional gradient with respect to the variable y € Rd. Then

the fol]owing formula is vaJid;

?¡ .Y n) . - . þ1, .Y n)e"!z

l'lzl
: (2a)" "trt" f ' (Tor' ù "' (no,-r,' u)(n;,-r,*t' Tir-z¿+2) "' ?t¿,-r' 4¿,),,

I:o \'- ) r,l

ø € c. (5.6)

Proof: The result is triviaJly seen for the case r : 7. The general case will

follow from a tedious but straight forward induction argument. The one dimensional

case (d : 1) of formula (5.6) can be found in reference IGR B0],0.492.2 . O

5.2 Dyson Kernels

With these tools in hand \ry'e are ready to show that the n¿à Dyson iterate is an

integral operator.

Lemma 5.42 Let rn e C¡, (t,t.) € T6 and ,þ e S.

(1) For cl.a.æ € Rd, each operator Dn(t,toim) (n 2 0) has a Fouñer integral

representation

Ir!

lD*(t,t"; nt)gl(æ) : I Oo" dn(*,\ ao,tol*)"{,(o,).
J

(o., /



n ) I, (5.9)

whereiV i: max(f, i) and I in d. is the s x s unif matúx.

(2) The nth Dyson operator .is an integral operator with kernel d,n(æ , t; g , t o; rn) .

That is, Dn(t,to;m) saúisfies
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The functiont å,n(*,t1ao,t'rn) arc defrned by

i)o(ært;eorto;t' t -¿n¡-) : 
dyre- 

ffiQ-t"¡o] +iao'x 7'

åo(*rt; aorto;rn)

11ft>1r: 
eùr7ù Jr. ot" 

J 
d\i(t";on)"' 

J 
d^?(tlia1)¿i''(o"-'"'o')

.- f-_- I
, .- * L 

Ð i, =. t t - t r. v ¡ ) a i.' a ¡ * 2 li = r{t - 
t u¡ 

" 
;' a 

" 
+ (t - t') af; 

)

lD*(t,t";m)gl@): I d.sd,n(æ,t;s,to;rn).,þ(s),, a.a.æ. (5.9)
I

The functions d,n(æ,t;yrto;nt) are defrned by the fotmulae

d,o(æ,t;a,toìm\-f - 1o''"^ftnþ-ù'r:') : 
Lz"ih(t - t"l e'tL\L-Lo)' -' t )

d,(*,t;y,to;rn): f= .rT , ,lo'' := [t' Or*' l2rrih(t - t.) I (ih)" J r"

f r- ^ ih
" J la":ttni an) - 

'ffn@.,t*) 
.Y E dltl1*;o,)] *

fr. ^ ih .lx J p"?(tt;.,t) - ;n@r,tt).Yu dlTl(t1;a1)J

, 
"ix,' 

(a t * "' + e -) + ffi a¡ @ - x.)' - * Ði,, =r(r-, ¡ u t) a i. d t 
t

n 2 7. (5.10)
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Here, X* e Cd is given by the formula

( r, íf n:0;
t

Xn: \
l. - *Ði:rþ -t¡)o¡,, if n) L.

The branch o{ the square root is -r 1 arg z 1 r. The g deñvatives Y n will only

act on the exponential in the formula for dn, and not on the test function $ in
equation (5.9).

Proof: For the n : 0 case, we have that Do(t,t";m)rþ : uo(t-to;rr,)1þ,, whence

equations (5.7) and (5.8) follow immediately (cf. equation (4.9)).

For n ) 1, equations (4.17) (with lpl : 0) and (a.8) and an application of Fu-

bini's theorem imply (5.7) and (5.9) up to an apparent difference in the exponential.

The identity

(t-t,)(a.+...+ on)z +...*(¿r -t,)o] : 
.Ð(, -t¿y¡)a¡. a¡, (b.12)
L,J:U

shows that the argument to both exponentials are indeed the same (once one ex-

pands out the i : 0 and j :0 parts of the right hand side of (5.12)). This identity

is trivial to show for n: 0 and the general case can be proven by an inductive

argument. We note that identity (5.12) shows that

\Ð.rr/

(5.13)
\- z, . \

Llt - t¿vi)a¿ 'ai ) 0.
i,i:0

For rz : 0, part (1) impiies the mixed integral representation

lD "(t, 
t.; m)tþ)(e : åf, I o, 

" "- 
*{t-t") (" "- #Tõ')' +; l¡fr¡;",î (o,)
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But this is in the form of the integrai in lemma 5.1(1), with z : rn[h(t - fo)]-I,

{ : 0 and B: æ. Applying lemma 5.1 leads us immediately to (5.9) and (5.10).

To show part (2) for n ) 1, start by using the results in part (1). In (b.8),

explicitly separate out the parametric dependence on ao in the measures )i(ú¿),

writing them as

d,\i(t¿;a¿) : 
la,yçt,;a¿) - !(rø,,¿,) 

.o,) dl.7l(tt;,,r)f .

Next we expand out the product of these sums as the sum of the products. Taking

care to preserve the order of the matrix products, the resulting measure is

lao;çt*; 
an) - |(r@.,,t*) 

. o,) dltl(t*;o,,)] *

* 
laoT ltr; 

a, ) - *(rør, ¿, ) . o,) dl7l(t1 ; a1)]

: 
Ë Ð (-*)' onn(i,,t*)ç1,(on,t-) "' (n@i,,ti,) 'o,) * '''
r:0 Jn.t

, (n@i,,ti,) ' 
") 

' ' 'ef (41, t1).

Substituting this into (5.7) and (5.8), and then using Fubini's theorem to inter-

change the dao integral with the time ordered and complex measure integrals, we

obtain for an expression of the n¿ä Dyson iterate;

ID"(t,t,;m)tþ](r)

: 
Ë Ð (- *| #ãw Ii.' o'^ | aMç¡"'^¡
r-_O Jn,r

* .- * Di,¡ =r('-'uv ¡)a'i' a ¡ +ix'(o r +"'+o' )

f
" J 

a"'çl(o,,,t*) "'(n@i,,ti,)'o,) * "'

' (n@ir,tir) ' *,) '''ci(or ,t)$(a")e-ft1t-t')a3+ixn'oo - (5.14)
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Let

çl(an,t,)..-(n@i,,tj,) '',) .. .(n@i,,tj,).",) .. .çl(on,,t..) = L Cro:,
lpl:r

where p is the multi-inde* (Æ,...rpd) and the matrices Cohave a dependence on

the a¿'s and f¿'s not expJicitly displayed. Then the d"ao integral can be written

f
J 

0""çl(on,t*) "' (n@i,,,ti,)''.) ..-(n@i,,tj,) . o,) * ...

x cf(or, t)$ (a")e- fr1t-t'¡"] +ixn'ao

: Ð c p e#,"i"f I oo" ogrî,@") 
"- 

*{t-t')(""-43¡;*-)'
lpl:,

: t cee,rË,õ*r I or..ol$(a,)e-f;{t-t") ("*Ð;=, '*",-ffi;')
lPl:r

(5.15)

In the second equality we have mereiy expanded out the definition of X.. We can

now appiy lemma 5.1 if we make the associations z : illTÃ, € : Ðt, fto¡ ur.a

þ : *. Then the right hand side of (5.15) becomes

im ^.2

\- c" 
eÑjax; ¡ irn \dlz i- 

¡u'+iu'(f;=, '4"t-rriø.)
tf-.-o (-z¡tet l-#ã) Iont'@)af"ffi

( rn \d/z f - r-.r^r-: l*A-d J 
oo 

,Ð,otot"rþ(v)Ôf 
e#¡a@-xn)z

-( 
rn \o/'f-- \thG=T; ) J 

on çl(o''t*) "' (n@i"ti') 'iv', ) x '''

* (n@i,,ti,) '¿vr,) "'cl(or, tr¡ "^Êatil ',þ@).
tUt=!-Xn

(5.16)



-91 -
After substituting the expressions (5.16) and (5.15) into (5.14), our equation for

D"(t,tr;m)rþ becomes

tD*(t,t";rn)gt(Q : Ë Ð ( *)' &ãw l)"' 
or.

* 
| 

a Ut:,, t n) "- 
* Ði,¡ ='('-'nv ¡).'¿' a ¡ *it{a r +"'+o' )

/ rrL \d/z f - . / \
" \ñ:T; ) J 

on'i@','tn)"' (z(oi" ti')'iY',) x "'
/ \ - --i--r,21x (Z(ai, ,tir) '¿Vr, )'''cí(ol, tt) eznu-to)sr | ,þ(y).

tUL:!-Xn

(5.17)

Notice that the combinatorics that resulted in the sums fi:o and ÐJ_,, in (5.1a)

are exactly the same in (5.17), but with ao replaced by iVr. The result we are after

now follows, provided we can justify the interchange of the integrals j]> dt, and

j dlt"(i,,t,") with ! dg arrd then show the derivatives V, can be brought outside of

the time and complex measure integrals.

Grouping together the exponentials in (5.17), their combined argument is

- (æ - ù i'å",) . *#T;@ - y),

-*å f,' -t¡vù-(t-:ùrTt¡1,, ',

third term in this expression. If t¡" 1l and tjo+1 : ... - tn: ú, then

Jo
\--'\aj'al: ) ,

i,l=1

¿l,.To,
L¿-/Jj:7

Consider the

[{, - 
,r",)

n

\-./,
i,I=r i{, - 

,i,,) - (t-tj)(t-¿¿)l
t-t" )

(t-ti)ft-¿¿)l
taj-aI.t_to I



-92-
\Mithout loss of generality v/e assume lhat tn < ú (and hence all f,

because t¡ < t^). It is a simpie algebraic exercise to show that

i fr, _ r;,,i) _þ - t¡)(t - tùl 
o, . o¿t. :i f_:_ _ 1 l

îrrL' 
rY'/ t-to ) ' 7-lr-r¡ t-t¡-t)

's are less than f

(¡t'-',
t-;

n)1.

\z
)or) ,

(5.18)

Because of the ordering relation ú¡ )
of (5.18) is non-negative. This allows

m€C+:

t¡-r,it is easy to see that the right hand side

us to bound the exponentials in (5.17) for all

| "o 
f ' l;=, *¡ - (" -s)' Ð î =,'*u)+ ff¡;(, - ù' - *Ði,=, lt,-,, ", 

l- !:?p 
]',.',

3 "-#3¿@-u)2. (b.1e)

Next we use lemma 5.3 to explicitiy expand out the effect of the derivatives

rl.Vu acting on the exponential. The result is another useful expression for the n¿À

Dyson iterate. Its kernel will be given by

dn(*,t;Erto;rrt)

:åÐrl)(#6)'-'(-*)'#(--,,)'''
r:0 Jn., l:0 r,I

" [' 
ot- | d;*(i,,tn)çi(on,tn)... (n@n,,tn) . @- x,)) x ...

* 
{n@nn,¿n,)}, 

"'(n@n,,tn,)'(a - x)) {n@n,tù}r x "'

" {n@*,tn,)\,' " {n@n.,tn)},.'' si (at,t)

* 
"0 

1,.Ð; = t 
o ¡ - (, - ù.Ðî -'* ",f + ffi ¡; (, - ù, - * Ði,, =,lt - r,, * 9:4!3-],, .,, 

.

(5.20)
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A brief explanation of this sum is in order. We would like to group the 4's together

as in lemma 5.3, but their matrix structure, and that of the ç's add an additional

complication not present in the Abelian case. \Me must preserve the order of their

multiplication, while at the same time we must take dot products between 4's that

may be separated by sts or other 4ts. We use the curly parenthesis with a subscript

to indicate between which pairs of 4's dot products are being taken. There are r

r7's appearing in the summand and each 4 appears in a dot product with g - Xn or

another 4. The labels q¿ reflect the possible ways of making these pairings, as per

the summation convention in lemma 5.3. Our expression for the n¿ä Dyson iterate

at this point is similar to (5.20), but with I dg as the inner most integral and the

factor ,þ(g) 
"pp"aring 

after çf (ai,fr). With the derivatives explicitly evaluated,

'we can now proceed to estimate the integrand in our expression for Dn(trtdmbþ.

From equation (5.19), the exponential function is uniformly bounded by 1. The

compactness of the support of Ârrfi,,t,") controls the polynomial growth of the

ar''s, and the fact ,þ e S is used in controlling the p_olynomial growth in g. We

recall lrt@¡,t¡)l : 1 for all a¡ € Rd and ú¡ € lto,f] and we also recall the norm

estimate (5.2). These combined with the fact that all the sums appearing in (5.20)

are of finite order, show that the integral is absolutely integrable and hence we can

apply Fubini's theorem. Simiiarly, it is easily shown, via the dominated convergence

theorem, that the derivatives V, can be interchanged with the various integrals

involved, to arrive at (5.9) and (5.10).

With the existence of the Dyson kernels established, the next step is to study

their properties. But first we make note of the bound

la-x-l s l' - ul+T4U-ü): z
lrnl 

\ v/ (5.21)
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valid for all a¡ € ,9¿ and all æ,g € Rd. As a majorizing function to the n¿h Dyso¡

kernel we introduce the function

g(æ;t,to,m)

where the constants c¿ are

Irnrn

/ lr"l:t-
\22'rr.(ú - "#,?..ltl' 

+c1 | c | +c2l . (5.22)t,)
" d/2

)

co: .. - l*l"'- k(t-to) (5.23)

Dyson kernels,

t-to

To properly describe the convergence properties of the sum over the

we r¡¡ill use the parameters

).elaq0:-#(t-t");
vnl

^ 2eln^ .e_:#þ_t").
Tn_

(5.24)

Here r¿- represents the smailest value lrnl will attain on a compact set of C-¡.

Lemma 6-]oz Let do(*,,t;a,to)rn) be defrned as in lemma 5.4 and let g and 0

be defrned as above. Then

(1) For all æ,g €Rd, dn(æ,,t;A,tolrn) satisfres the poinúwjse estimate

ldn(*,t;a,,to;*)l< "1l20ng(*-Uit,to,m) n ) 0 (b.2b)

(2) For aJI (æ,U,m) €. Ê, where t is a compact subseú of Rd x Rd x Ca, ú,he

Dyson kernels d"(.rt;.,toì.) are jointly continuous.

(3) If m e C2, then d,n(.,t;g,to;m) and dn(*,t;.,to;rn) arc both memberc of

¿1n¿*(Rd, c'""). Furthermore their Lp notms are uniformly bounded with respect

l*l , l*lp,__: ' ' -L-
Zkz(t _.t,) ' Ir1,



-95-
to æ and g and satisfy the estimates

lld"(*,t;.,toj*)llp

lld"(.,ttu,to;*)llp

(4) If 0 < 0 1 !, then for each rn

of the Dyson kernels dn(r,tiA,to;rn) is

of this series is defrned to be

llK(*,,t;.,to;*)llp

ll¡f (., t;s,toi*)llp

,7 I 2 gn 
ll g (. ; t, t o, *)ll p

"7 
I 2 gn 

ll g (. ; t, t o, m),, p

€ Ca and ærU € Rd úåe sum

absolutely convergent. The

(5.26)

ovetn:0 - oo

pointwise value

K (n,t ; a,toj m): Ë dn(*,t; g,,toi rn).
¿:0

and the function K(æ,t;Artoim) has the pointwise estimate

lK(*,t;s,to;*)l < su'z rt s@ - s;t,to,m).

(5.27)

(5.28)

(5.2e)

(5) If (r,y,*) € Ê, m- is the srnaJlest value of lml in L and 0_, defrned in

(5.24), is Jess than 7, then K(.,t;.,to1.) is jointly contínuous on L.

(6) If m € C¡ úåen for each¿ € Rd the series overrL of dn(æ,t;.,to;rn) converges

in the Lp(Wd;C'*") topology to K(æ,t;.,to;m) for I < p ( oo. The corresponding

statement holdsfor eachU €Rd, dn(.,t;A,to;m) and K(.,tly,tojrn). The Lp norms

of these functions satisfv

; t z 

rl1ll g (' ; t, t o, *)ll p

,t l' *l g (. ; t,, t., *)ll p

Proof: For n : 0 the first result is trivial. It is only for the n : 0 case

that the s7l2 factor appears and this is due to the unit matrix in the equation for

d,o(æ,t;u,to;m). As s1/2 ) 1, there is no harm done in adjoining this factor to all of
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the estimates. However, we note that if we estimate d,n(rrt;Arto;rn) acting on any

spinor (a C"-valued vector), then this factor can be made to disappear because the

unit matrix structure in the 0¿à order term disappears into the spinor structure.

For z ) 1, we utilize the representation (5.20) for the kernel dn(*rt;y,to;rrl).

To estimate the summand in (5.20), we recall equations (5.2), (5.19) and (5.21).

From these it is easilv shown that

td^(*,t; y,toi*)t < ",, (^#\)''' (+)" *"-æ^t'-st'

"å (i)';u.+ffii,n\*,
t-l I

l'lzl

" :ij ñ%úsr-216:¡=(å)' 1u'o¡

To arrive at (5.30), we have used fy,," : (i) and ff,¿ : l6:fútn.
We examine the r"* t[1j] on the right hand side of (5.30);

l'lz) '] / ,. \'-' ¡ o, _ )' .'# .,,rlnr _., ( J"_\'-' (_J_\'\- t' l.
a? -21)!I!\t-t") \z1m1z.) - ailþ- ¿)! \f -t,) \zlrnlz")

. i î\ ( '" \'-'f 'u \'-k\¿/\¿-rl \rñ )
lZ" nh l": 
lt - t. - 4r"lz")
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Using this to further our estimate in (5.30) we get

td^(,,t; a,to;,n)t <,, þ (^#T;)''' (+)" *"- æ^ø -ut2

. å (î) tr, + ffit,"'-' lÆ . ml
1 s, t 2 (;#-- a, _ r¡)''' (+)" * "- æ^, - E t2

"{r,*ffir,*.Æ* Pt}"
ssltz ("#\),,, #(*(, _:q,,)"

* {r + l#t. - at + #l:}" "-h'"t'-ut"
< 

"1120"g(æ - y;t,to,,m).

In the last inequaJity we have used that

This establishes (5.25).

rln
-

( e and (1 + f)" < e€ fo. atl f > 0.

The joint continuity of the Dyson kernels with respect to (æ,A,m) e É follows

easily from the formula (5.20). If we explicitly expand out the measures to their

lowest possible representation in terms of 7(r) and u(r,m), we readily fi.nd that the

resulting integrand is a jointly continuous function of (r, g,m). (Recall the measure

u(r,rn) is continuous in r¿ in the norm defined on M(S¡,,c""")). Furthermore the

integrand is a uniformly bounded function of ail its arguments. This will suffice to

allow us to apply the dominated convergence theorem to conclude the kernels are

jointly continuous.

ILlrnrn ) 0, the function g(;t,to,m) e Lr n¿*(Rd). ,¡. trn(dæ; Rd; c"x") and

Lo(dA;Rd;C"*') norms of the kernels follows immediately from this and equation

(5.26).
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To demonstrate the pointwise convergence of the sum of the Dyson kernels, we

again employ equation (5.26). It is enough to show that the series forms a Cauchy

sequence in the space Csxs'

l¡a I rø,

lÐ o"@,t;u,to;*)l s \, la,ç*,t;v,t.;rn)l
lt:¡¡t I n:N1

N2

< t'/2 g(* - ajt,to,n) D t"
n:NL

---+ 0 as l{1,i{z - oo.

This line of argument also shows the estimak of K(æ,t;A,to;rn) to be

Next we prove the joint continuity of. K(æ,t;U,to;rn) on t. Because each

dn(*rt;A,to;m) isjointly continuous on É, from a standard theorem in analysis (cf.

[Ru 76], theorem 7.12), it is enough to show the partial sums of. d,n(æ,t;y,to;rn)

converge uniformly to K(ært;urto;m). Let rn¡ and rn- denote the upper and lower

bounds of lnl and let l** - 9a I denote the upper bound of lz - gl,for (æ,g,rn) e Ê.

Then

lK(*,t;s,to;rl,)l < ,'12 s(* - Uit,to,m) f ," : l\n@ - ait,to,m).'- r-0"

-> 0 as y'f --+ oo.

Here, the constants ct, are the same as in (5.23), but with rn replaced by rn1.

Notice also that the sum converges because it is assumed 0- < 1. The right hand
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side converges to zero independently of (crUrm) and hence the partial sums of

dn(*,,t;g,to;rn) converge K(æ,t;A,to;rn) uniformly with respect to (æ,grm,) e Ê.

Finaily, iÎ rn Ç. C;,, then by the triangie inequality,

llTr(., t;u,to;*)llp S f lla"{., tta,to;*)llp
n:0

1 sr I 2 
llg (. ; t, t o., m)ll, i r"

n:0

"7 
l2: i-rllt (' ; t, t o, *)ll p -

The corresponding argument holds for ll.K(æ, tl.,to;*)llp.

5.3 The Propagator

If.Ilnm ) 0, the function K(æ,t;U,toim) can be used as a kernel to define a bounded

integral operator acting on 7í. We can.also use the kernel dn(*rt;Arto;rn) io extend

the domain of the z¿ä Dyson operator from .S to all o1'll.

Definition õ.1: Let, rn € C> and 0 < 0 < 7. For each ,þ e H, define

(pointwise) the functions

lD"(t,t";rnþþl(æ) (5.31)

and

(5.32)

o
The integrals in (5.31) and (5.32) are well defined for each æ because both

dn(r,t; .,to;rn) and K (æ,t; . ,toi m) are -t2 (md; Cs x 3 
) functions, so that the integrands

will be trt(md;Cs) functions. The next lemma shows that these functions define

: I o^@,t;a,to;*).þ(y) da

lK (t,t"; *)rþ)(*) : I * r*,t; E,to; *)rþ@) du.
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bounded operators which we denote by D^(t,tüm) and K(t,toim) respectively.

We shall also prove some of their important properties.

Lemma 6.62 Let rn €. C> and 0 < 0 < 1.

(t) D"(t,toim) and K(t,to;m), as defrned by defrnition 5.7, are bounded.linear

mappings of 1l into 7{. They satisfy the operator norrr- estirnates

and

ll D 
"(t, 

t 
"; 

*)ll < 0" llg (. ; t, t.; rn)ll,

llK(t,toim)ll s $ w(.;t,t,;*)llt.

(5.33)

(5.34)

Q) The partial sums Ðf:o D*(t,toim).converge in the operator norm topol-

ogy to K(t,to;m).

(3) If {U(t,to;rn)}p",t)e?o is the complex mass Schrödinger evolution, then

for alL (to.,t) e T6

K(t,to;m) : U(t,t.;m). (5.35)

Proof: As we have previously commented on, any unit matrices appearing in

dn(r.,t;y,to;rn) and K(æ,t;U,toim) will be absorbed into the spinor structure of ,ry',

so that the factor s1l2 will not be present.

From lemma 5.5 we obviouslv have the convolution bound

ll1^(t,t.;rnþþl(æ)l s g 
I tø - ait,t,,m)þþ(y)l d,y

= 0"lg(.;t,to,m,) * lúll(r).
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Applying the Hausdorff-Young estimate for convolutions (IIIS 78], theorem 12.2)

we have immediatelv.

llD^(t,t";*),þll S e"llg(.;¿, t",r.r-)ll, 
lltøtllr,,_ o,:0nllg(.;t,t,,rn)ll,llúll.

This demonstrates (1) for Dn(t,tüm). Similar arguments wilt apply for K(t,toim).

From (5.33), it is obvious that the partial sum Ðlo:o D^(t,toim) forms a

Cauchy sequence in B and hence it converges to some bounded operator. Consider

the difference between this sum and K(trt";rn) acting on the function ry';

N
ll /n -

ll(L Dn(t,toim) -
n:0

This implies

¡r

llt ¡"(r, totm) - K(t,t,;*)ll S
tt- tln:o

rl r æ l'
J lJ ,à, dn(*'t;v'toiù''Þ@dul d'æ

( Ë e")' lls(';t,to,m)* l,.il ll2
¿:.ff +1

¡ gN+t12
(i- j llg('; t',¿", *)lllll'þll2'

K(t,toiù),þll' :

AN+7", 
_ ,lls(;t,,to,m)ll1 -- o as 1{ -r oo.

To show K(trto;rn) is the complex mass Schrödinger evolution, we first con-

sider a smaller class of test functions than all of .t2(md; a'). Assume .i: e Cf (wd, C").

From (4.30) and proposition 4.1, the strong limit ?É(¿, tolm): Ðr_ao Dn(t,t";m)1þ

is a solution of the complex mass valued Schrödinger equation. Note too that
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D^(t,toim) is the extension of Dn(t,toim).The abstract evolution theory of chap-

ter 2 showed the solution to this equation to be unique and hence

u (t,, t o; *)rþ : Ð, ^þ, 
to; m)ú : t D n(t, t 

"ì 
m)ú : K (t,, t..; *)rþ .

n:0 ¿:0

This demonstrates the two bounded operators U(t,to;rn) and K(t,'l,o;rn) coincide

on the dense set Cf;(Rd, C'g). This is possible only if the two operators are equal.

I

It remains

Iimit Im m ---+ 0.

functions.

Theorem

aJI æ e Rd,

to be shown that lemma 5.6 remains valid in some sense in the

Let Ll(Wd,C") denote the space of compactly supported ¿e(Rd, Cr)

5.lz Let0 <01t,rn€C¡ andú e L|,Fd,C'). Tåenfor aJmost

(5.36)

where {U(t,to;m)}(t,tù e?¿ 
js the Schñdinger evolution and K(æ,t;A,tojm) js as jn

lemma 5.5.

Proof: As r/ e f,Z$d,C"), it is also in,[](md,c"). Fix æ € Rd and let the

mass rn' be in a closed neighbourhood of r¿ whose diameter is less than e. Then

(tru,*') will be in a compact subset of Rd x Rd x c1 and for e sufficiently small,

0t : 2lrn'l-1ek1r(t - t,)

(*rgr-').and consequently vr'e can consider the m' -- rn (e ---+ 0) limit of

l(J (t, t.; rr),,þl(*) : I * r*, t; a, t o; *)rþ @) da,

IU(t,t";*')rþl@) : IK(t,t,;m'þþ](æ) : ,l K(æ,t;s,to;rn')tþ(y) da.

A,s K(ært;A,to|m) is jointiy continuous on a compact set, its modulo will attain

its maximum and hence there exists a constant C, depending on trto andtþrbut
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independent of. mt such that

I 
K (*, t; a, t o ; r"' )rþ (s)l < C lrþ (y)l e f,l (md, as1.

This shows we can apply the dominated convergence theorem to conclude

lim [I/(ú, t,;m')zþl@) : [ *@,t;a,to;*)rþ@) da.
nlt+rrl J

On the other hand, we know from proposition 2.2 that U(t,to;rn') is strongly con-

tinuous inrn'on C-¡. Set r¿t : rn*in-I. Then there exists a subsequence (reference

IHS 78], lemma 3.9) {n¡}, such that for almost all z,

;
lim--[U(ú, toim * -)rt'l@) 

: lU(t,t";rn)g](æ).rj *oo ni'

These two limits combined together yield proof of identity (5.36).

There are two comments that come to mind immediately on examination of

theorem 5.1. The first is that the class of functions used in (5.36) can be extended

to all of ,02(md;C"). For an Lz(wd;C") function, the integral representation becomes

Iu(t,t';r.)rþl(*) : {.:i.m,. [ *þ,t;y,to;*)rþ(s) da.
J

The second observation is that the theory leading up to theorem 5.1 appears to be

Iimited to small times only, in that the parameter 0 < 7 (recall 0 is proportional to

t-t'). In the case of a complex mass parameter (Irnrn > 0), it is possible to define

an extended kernel, also denoted K(ært;Arto;rn), such that our theory remains valid

for times allowed in the operator valued evolution problem, i.e. all (trrt) € 
"a.

Corollary 5.1: Assume n'L e C2 and that (t,to) e Tt.
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(1) Tåe complex mass evolution operator II(t,to;m) is

with a jointly continuous kerne/ K(.,t;.,tolm). For a frxed æ

and K(æ,t;.,to;m) are both in ¿1 n ¿""(Rd;C'*").

Q) The kernel K is Gaussian bounded. That is there

constants Co and C1, depending on m, t, and to such that

lK (*,t; A, to; r")l < C oe*ct@-u)2

an integral operator

or g, K(-,,t;yrto;m,)

extst frnite positive

(3) K (æ,t; a,toi m) obeys

K(æ,t;a,toim) : I Xç*,t;*'

(5.37)

the composition rule

,r;rn)K(æ' .,7',Urto;rn) dæt, 0 1 to 1 r 1 t < T.

(5.38)

Proof: \Me show these results by induction. First we demonstrate the corollary

for 0 < 2. Supposethat ú-z and T -to are suchthat their corresponding d's are

less than 1. Then the representation (5.36) is valid and similar equations exist for

U(t,,r;rz) and U(r,to;rn). Now U(t,to;n): U(t,r;rn)U(r,tojm) (cf. (2.1a)) and

from this 'we see

[(t (t, t o ; r*)rþ](*) : I X 6, t; æ', r 1 rn)lt] (r, t 
"; 

rn)tþlþ' ) d,æl
J

f (f ì: I K(*,tiæt ,r1*) 4 | K(*' ,rtU,toirr,|).þ@) ds I dæ' .J \J )

Equation (5.28) serves to show that the integrand is absolutely integrable over

d,g dæ' . Applying the Fubini theorem ailows the interchange of the integrals and

this shows U(t,to;m) ís an integral operator for times t - to such that 0 < 2. We

also see the kernel satisfies the relation (5.38). Moreover this integrai relation is

easily shown to be independent of the choice of z.
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For d < 1 and K defined in lemma 5.5, we can further estimate K(æ,t;Urtoim)

in inequality (5.28). It is easy to show there exist constants C' ar'd C't such that

lK(*,t;u,to;r")l < gr"-c"(x'-u)z, 0 < 7.

Using this and the free heat kernel compostition identity

1 - ,!'=-n)=' ,

6@T,ñtre 
a(þt+þz) -

lØ"þ)@rrB))a/z

¡ _("-a')2 _ (r'-s)

J ,- e--ÃF, dæ',

(5.37) is easily shown for 0 < 2.

The continuity of the function K is easily seen because of the joint continuity of

the kernels appearing in the integrand in (5.38) and an application of the dominated

convergence theorem.

Finally the trp(Rd;Csxs) nature of the kernel is easily seen for the Guassian

bound (5.37). This completes the proof of our statements for times t-to such that

0 <2.

As the extended kernel K has the same properties as the kernel defined in

lemma 5.5, we see this argument may be repeated as often as we desire and so we

can extend our results to the full time domain of [0,7]. 0

For future studies, we note it is possible to factor out the free evolution kernel

out of each of the Dyson kernels. The free evolution kernel is defined by

Ko(,,t;a,,to;m) : l" ø=øfo'' "6^@-Y)2 I. (5.3e)

By examining

such that

equation (5.20), we see there exists a function, ãn(*,tiA,to;*-r),

dn(*,t;A,to;m):Ko(r,t;g,to;rn)ã,n(æ,t;g,to;*-'). (5.40)
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Moreover these functions are absolutely summable, and we denote that sum by

F(æ,t;U,toim-t). It is easily seen that K(x.,t;A,tolm) admits the factorization

K (æ, t; U, t oi m) : K o(æ, t; A, t o; m) F (æ, tj g, t o; rn- 1 
). (5.41)

These identities are important because they allow a study of the analytic structure

of the propagator in the mass variable. On inspection of (5.39), lrye see there is an

essential singularity in r¿ as rn ---+ 0. By making the the factorizations (5.40) and

(5.41), it should be possible to show that the functions dn and f' are smooth in

the mass variable. A recent study of this problem for the Abelian case has been

done by Papiez et. al. IPOM t.a.]. They have found that the function -t' admits an

asymptotic expansion in r¿-1 fo the form

F(æ,t;u,,toim-7¡-¿#J@,t;E,t"){!+rn-tT,.(*,t;y,to)+m,-zTr(*,t;g,¿r) +...}
(5.42)

The exponentiated factor J(æ,t;g,,to) carries all the gauge dependerice for the prob-

lem and the coefficients ?r'(æ,t;Arto) are explicitly gauge invariant. For the case of

atomic physics, (ie. both the vector potential ø and the scalar potential S are scalar

functions times the unit s x s matrix) we should expect an expansion similar to

(5.42) because of the Abelian nature of the fields a and $. There still would be

differences between .I and the coefficients Q we would obtain and those found by

Papiez et. al. IPOM t.a.] because of the non-Abeiian nature of r.r. However, we

would expect that our J should carry all the gauge dependence and the Q's would

be manifestly gauge invariant.

There is yet another closely related set of results available. If one considers the

Bloch equation (also called the heat equation) instead of the Schrödinger equation

a similar series expansion of the corresponding heat propagator exists. The Bloch



equation is

and the solution satisfies an appropiate Cauchy data problem;

,þ(0) : ,þ,, 4:. e D(H).

The connection between the Schrödinger and Bloch equations is the following: \Me

first analytically extend the Bloch equation onto the right half complex B plane

(R.,6 > 0). Then using the continuity properties of this equation and its solution

with respect to the complex B parameter, we extend it to the imaginary axis bound-

ary, whereby it becomes the Schrödinger equation. Provided the potentials are now

expiicitly time independent, this connection is made clear from the variable change

+-+ B.

The connections between these two equations for the Abelian case having only scalar

interactions has been studied in detail by Osborn and Fujiwara [OF 83]. For the

special case of the Bloch equation subject to external electromagnetic fields, the

heat propagator has been studied under the context of the \ryKB approximation

and the Wigner-Kirkwood expansion ITLR 83] IBR s4] IBR 85] [BR 86] [Z 86]. The

work of Zt* lZ 86] is of particular interest to us because he examines a system

subject to non-Abelian potentials in the context of a \Migner-Kirkwood expansion.

The WKB approximation is an expansion of the heat propagator in the limit

h --+ 0 of the form

K (*, g) : K o(æ,, y)es("'u)

oo

\-
,¿-¿

tz:-7
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ã
-"^rþ(P):Hrþ(P), P>o

olJ

i
;trn

where

s(æ,g): h" S"(æ,g).
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This may be rearranged IBR 84] to yield

K (*,ù : Ko(*,g)eàs -t@,v)+5"(c's)1 I + h.S1(æ,y) + O(h\). (5.43)

The Wigner-Kirkwood expansion is a large mass expansion of the heat propagator,

similar to the expansion given by (5.a1) and (5.a2). The connections between these

two expansions have been explored by Osborn and Molzahn [OM 86]. We further

note that both of these expansions are non-perturbati in the sense that one

always keeps some terms involving all powers of the potential zr.
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CHAPTER 6

Tþansit Time Operators in Spinor Space

This chapter deals with the problems of describing the transit times (and

their associated operators) of a scattering state $ e -t2(m3;c") through a ûnite

region Ð C m3. The difference between these times for the free system and the

system subject to an interaction is the time delay for that region.

\Me shall also study the Born series expansion of the resolvent difference.

Specif.cally v¡e are interested in the anaiytic structure of the trace of the resolvent

difference.

6.I- The Hamiltonian

Our ambient space and Hamiltonians have changed somewhat from part one.

We shall reduce the dimensionality of the underlying coordinate space from Rd to R3,

so that the working Hilbert space is now 7l : L2(w3;C"). We shall also extensively

use the Hilbert space of Schmidt class operators, Bz('1í), and the Banach space of

trace class operatorc, B{7{).

The Hamiitonian pair, (Il, Ho), we will study is of the form

H:Ho*V

where the free Hamiltonian is the extension of the negative Laplacian;

Ho - -LI.
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\Me have set h : 2m: 1r as they are not of interest here. The quantity ,I above

denotes the unit s x s matrix.

The potentialV is defined by multiplication with the hermitian valued matrix

,(.). Our assumptions on o for many of the proofs can be quite weak. Ilowever

there are a few proofs in which much stronger restrictions on ?,l were imposed to

verify the validity of the statements made in the lemma, proposition or theorem.

It is in our best interest to keep the assumptions made on the potential in any

given claim local to that claim. The two main classes under consideration wili be

.[1ntrz(m3;c"*") and .t1fr.F*(R3;c"*"). Recall z e .F*(m3;c"*') means that ø is the

Fourier transform of a complex matrix valued measure and that o(æ) is a hermitian

matrixfor a.a. z. Also note that ¿I n.F*(Rt;c"*'¡ c trl ntr'(mt;c"*").

An important difference between the Hamiitonians in part 1 and the Hamilto-

nians here is the absence of an explicit time dependence. This results in a markedly

simpler representation of the evolution family;

U(t,t.) - e-¿þ-to)H. U,(t,t") - e-i(t-to)Ho

If fI and flo were bounded, then the exponential operators could be interpreted

as their appropiate Taylor series expansion, which would converge in the operator

norm topology. However, fI and Ho are not bounded. One can make sense of the

exponential operator e-itH as the strong limit

/
e-itH:s-lim(I+

f¿+oo \
'*u)-"

and a similar statement holds ¡o, 
"-itHo. 

For a complete dicussion of the evoiution

operator defined in this manner, we refer to Kato [Ka 8a], chapter IX. Since ]/ and

Ho ate also self-adjoint, one can also make sense of these exponential operators by

using the spectral theorem. For a general discussion of the spectral representation
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of self-adjoint operators, we refer to Riesz and Sz.Nagy [RSz 78], chapters IX and

X. \Mithout loss of generality we may set to : 0 because the total and free evolution

operators depend upon the single parameter t - to.

We shall also make the small shifts in notation by denoting the total and free

evolution families by Ut and Uf and the total and free resolvents by A(z) and R.(").

The following factorization scheme will be used extensiveiy. For each æ € R3,

r.'(æ) is a hermitian matrix. The absolute vaiue of.u(æ), denoted [r(r)], is a positive

matrix that is the square root of the matrix u(n).u(æ). There exists a unitary

matrix, denoted W(*), such that

u(n) : w(*)1"(*)) : w(*)* [r(')-]
(6.1)

["(')] : W(æ)"a(æ).

Defining the two matrix valued functions

u(æ) : la(r\1tlz
(6.2)

u(æ) : W(æ)u(æ),

zr(z) has the representation a(æ) : u(æ)u(æ). With | . I denoting the Euciidean

norm, we note that these functions satisfy the estimates

l"(r)l < lu(Q1ttz; l-(*)l < ¡"1*¡1'r'.

Let II denote the cut plane a\10, oo). If u e Lt n .ú2(m3;C"*"), 1ve can define

an important integral operator A(z) (z e tI) via its kernel

A(*,A; z) : u(æ)Ro(*,g; r)-fu). (6.3)
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Here .Ro(z ,A; z) is the kernel of the free resolvent and has the well known formula

;, /;t- -",1
Ro(*,A;z): #1,

+1tlæ - El

where 1 is the unit s x s matrix. The branch of the souare root taken satisfies

0 < arg z 12tr.

Control over the integrability properties of A(*,A;z) is given by a class of

inequalties known as Sobolev inequalities (cf. reference [Si 71], p. 9). In brief they

are the following: consider a function I € Le(Rn) and a function h e L'(W") and

suppose ), < n is such that

-,

Then there exists a constant C, depending on prr, \, and n such that

11)
--r--T-prn

(6.4)I ryW d'n æ d,n v < c t,lttptth.lt,.

The Sobolev inequality (with n:3) wili suffice to show that A(æ,giz) is an

L2(dædA;C"*') kernei for all pertinent values of z. These include the boundaries

z : ), + i0, À ) 0. Moreover, becarse eiJZlæ-el is a continuous function of z and it

is uniformly bounded by 1, we have that A(.,.;z) is continuous in z with respect to

lhe Lz(dæ dAiC'*' ) norm, for all z € II U [0, oo). From the equality

llt(")llø, lll(', '; 
")ll ¡1a,du;c,*,)

ïve see A(z) îs a Schmidt class operator for aIl z Q n:- p(H,) and it has a continuous

extention onto the boundary of [I with respect to the 82 topology. There will be

two extensions of A(z) onto the positive real axis; one from below the axis and one

from above. Let fI. denote the closure of II that maintains the distinction between

these extensions of Aþ).
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Proposition 6.1: Let u € Ll aZ'(mu;C""') be hermitian. Then the operator

A(z) is 82 holomorphic in II and has a Bz continuous exúens ion in I7". If z -- ) t i0,

then this extension is uniformin ),, for ). in a compact subseú of R\{0}. Furthermore,

lll(")ll, llA(")'|, 6, und llA(z). A(z)llu, ult tend to zero as lzl -, oo.

Proof: Theorem I.22in reference [Si 7i] shows A(z) is 82 hoiomorphic on II.

The uniformity of the continuity with respect to À on a compact set K follows easily

from the joint (À,4) continuity of ,4.(À * i4) on the compact set K x [0,1].

Finally we prove the last statement. lVe first note the inequality

llA(")lln < llA(z)- A(")llru,.

Thus we need only concern ourselves with A(")2 and A(z). A(r). The proofs for

these two operators are virtually identical, so 'we only demonstrate it for A(z)2. If
sp denotes the trace in c"x" (i.e. the sum over the diagonal elements), then

.z .o,, t 
= [d,æd,udæ,du, 

spza(a).a(æ')la(x)]u(y')u(y)l4z)-llø,: ,n*¡." ¡=^f J -'ù --- -¿ l* - *'llt' - allg - u'lla' - ,l
, "-h 

J2{þ-æ'l+lr'-El+lE-E'l+lg'-øl}+¿n"JV{la-E,l+lE,-cl-lx,-n,l-lr,-3,1}

It is easily shown by using the Sobolev inequality (6.4) that

sp tll (E)* o( æt )fa (æ)la (y' )- @) e Ll(dædy dæt dy').
l, - *'ll*' - alla - y'lla' - *l

We also note the exponential in the above is uniformly bounded by 1. Thus we can

apply the dominated convergence theorem if Irnl/V -) oo or the Riemann-Lebesgue

lemma ([Ru 73], theorem 7.5)if R.Ji -+ oo to conciudellA(z)2llø" 0 as lzl -+ oo.

o

The implication of llA(z)ll - 0 as lel --+ oo is that lt + A(z))-I will exist

via the Neumann series for all z sufficiently large. This will be important in our
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study of the Born series. It also has consequences in terms of what can be said

about the singular spectrum of H. \Me summarize the important properties of the

Ilamiltonians in the followine.

Theorem 6.L: Let u e Lr n ,[2(m3;C'"") be hermitian and defrne the set

t : {0} U {) € R\{0} : 1 *,4(À + i0) or1 +,4() -i0) is not injective}.

Then

(1) Tåe Hamiltonian is self-adjoint with domain D(H) : D(H").

(2) For every z e p(H.) a p(H), [t + ,A(z)]-t e B and one has the resolvent

equation

R(r) - R.(r) : -Ro(z)wl| + A(z)l-1uB.(z). (6.5)

Furthermore the mapping z ,- lI + A(z))-t ís B holomorphic in II.

(3) t is a closed and bounded set oî Lebesgue rr-r,easure zero.

(a) The Møller wave operators

f)t: t-lyu-ruf
Õ+E-' ¡ : s - Iirn[Jo r[IrE*1¡"ß\¿ _ 

f_Tæ

exist. The scattering system defrned by the Hamiltonian pair (H,, H.) is asyrnptot-

ically complete in the sense that

Range f)r : Range O- - 71""(H) : Ew\eTt

17"(H) c E¿'lí.

Prcof: The self-adjointness of fy' and its domain equality are a consequence

of the Rellich-Kato theorem (cf. propositions 8.5 and 8.7 of reference IAJS 77]).
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Equation (6.5) is shownin reference [Si 71], theorem II.34. The first part of

statement (2) is a consequence of the Fredholm alternative: Suppose g is a vector

in 7ú such that A(z)g - -p. We show A(r)ç and hence rp is in the domain of tu.

Pointwise uA(z)ç is given by

I a.l[7t)A(z)e]@)lz

lta A(z)el@) : I d,s u)(æ)u(ùm-@)ç(a).

It is enough to prove this function is square integrable in c. We have

: I o*ll . -@),@)#Fä-rov@)l

1 r lr, r../^,\r tls# Ja.1.ç.¡ L(/ 
d,#yh)'

1 , ,,, f - orl"(*)ll"(y)l: 
(4nYllvll'1aæ - þ-al'

( oo.

U *'þ(a')'') 
tl

Thus p e D(zu) and we may define ,þ : -p. Left multiplying A(")p - -p by R(z)u

we obtain R(z)V R.(r)rþ : -R(")zþ. The left hand side here can be rewritten using

the second resolvent equation R(") - R,("): -R(z)VR,(r). As a result, we see

R'(z)tþ : g. This in turn implies p - -uR.(z)tþ : 0 and thus by the Fredholm

alternative, [1 + A("))-' exists and is bounded. The B holomorphy of [1 + A(z))-l

follows from the Bz holomorphy of A(").

Statement (3) follows with observation that ll/,(À +i0)ll --+ 0 as lÀl * oo and

an application of the Fredholm alternative.

Statement ( ) is the result of an application of the Kato-Levine tneory

IAJS 77], proposition 9.16)

(.f'

0
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6.2 The Trace Theorem and Time Delay

\Me shall employ the spectral representation of '17 relatiue to flo extensively. For a

discussion of spectral representations we refer the reader to [AJS 77], chapter 5.7.

Let ,5(2) denote the unit sphere in R3 and \et,'Jlo = L26Q)). Define the Hilbert space
^/

Ç : L2([0,o"),fl,) and again denote the Fourier transform of { by $. Consider\./
writing $ u ufunction using spherical co-ordinates and use À to denote the modulo

square of the wave vector. \Me can define a unitary transformation U rnapping 7t

onto Ç by

(6.6)

It is trivial to verify that Il, is unitarily equivalent to multiplication by À under

this mapping. The operator Z,/ defines the spectral representation of 7ú relative to

flr. lMith it, we can associate to each vector tþ in'll afamily of vectors {r/)}, where

for a.a. \,tþ>,e LZ(SQ)). The isometric nature o'f.ll can be seen bythe equation

(rþ,p) (6.7)

where Â, : [0, oo) is the spectrum of flo.

The next theorem, developed by Jauch et. al. USM 72], allows one to find a

representation for any trace class operator in the spectral representation of 7l with

respect Lo Ho.

Theorem 6.2: Let Uf be a unitary group with an absolutely continuous

self-adjoint generator Ho, whose spectrum is Ä: [0,*). LetDo denote the dense

set {tþ € Vl : ess sup llr¿) ll, ( *}, where úåe ess sup is taken over l\. Then:

(1) For each T e ßt the sesquilinear form

\ 1/4
(U,þ) 

^(r) =,1' 
^@) 

: ïø.i,(^t/z u), ø e,9(2).

: 
Inr ^,,p ^) 

o d,À

Br(rþ,ù: I: þþ,Uf-TUf e) dt (6.8 )
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is frnite for aJl rþ,p € Do. Furthermore there exist a family of trace class operat,ors

{¿(f)i such that

where {þ¡} and {þ¡} are sets of eigenvectorc of T*T and TT* respectively 
^nd 

af;,

@l > o?,+, 2 0), is the common eigenvalue of þ¡ and ón. If ón @ù is unitarily

equivalent to {óx,s} ({ó¡,.1}), úåen f(À) is defrned by

Br(rþ,ç) : I Ur,,t(À)ç, ), dÀ.
JA

,Suppose T has the canonical representation

\i- tt r7t: )-rak\Qkt'lQk
È

¿(À) : 2"Ð at,(ót,x,.),õ0,^.
L

Q) The following rclations are valid:

* I^ur 
r(À) d'\ : rtrl

(6.e)

(6.10)

(6.11)

(6.12)

1f

^ J^llú(À)llÉ, 
dÀ < ll?ll,1' (6.13)

whereTr and tr a¡e the trace in71 andTlo respectively and ll'116. ;" the appropúate

trace norm.

(3) Iet D6 be a dense set in'll defrned by

D@ : 
{ø 

. ?l , 
"TJ,lo o(À)llúÀ Il, . -} , (6.14)

wherc O is a non-negative function on Â. Suppose B(rþrç) is a sesguilinear form

that is frnite for aJ] tþ, ç € Ds and has a diagonal represent ation, {b(\)}, of operators
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acting on 7lo which are bounded a.e. and satisfy

B(rþ,p) (6.15)

Then if {ó(À)'} is a second diagonal representation of B , we havefor a.a. ) € supp O,

ô(À) : ó(À)'.

Proof: The proofs of parts (1) and (2) are simple extensions of those ideas

presented by Jauch et. al. IJSM 72]. The proof of part (3) is given by MacMillan

and Osborn [MO 80], although there is one subtle point they don't address but

which warrants a discussion. Their argument proceeds as follows.

If B is represented by both ó(À) and ó(À)', then for ull .,þ,p e Do we must

have

Let B(À) be the phase argument "f (rþt, [ó(À) - b(À)']p¡),. If r/ is in 2e, then so is

ú = {¿;Ê(t)rþ^}. Repeating the above reasoning with r/ replaced by ,rf leads to the

equation

Thus it is clear that

(,riÀ, [b()) - ó(À)']pr)o : 0 a.a. ). (6.16)

MacMilian and Osborn [MO 80] argue that the functions {rþ 
^ 

, ,þ e Do} is a dense

set in 'llo and hence because the bounded operators ô(À) and å(,\)t coincide on a

dense set, they must be equal a.e.

Herein iies the subtlety of the proof. Let A denote the set of measure zero

for which (6.16) does not remain valid. In general, A will depend upon the choice

of.tþ and g. If we were to allow these Hilbert space vectors to vary freely, then it

: 
Iorr^,å(À)pr ).d^'

l^*r^, [ô(À) - å())']pr)o dÀ : o.

l^l,r^, [ó(À) - å(À)']pr), I a,l : s.
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is possible that the operators å(À) and å(À)' could be nonequal on a set of measure

strictly greater than zero. We can circumvent this difi.culty. Let {er} be a total

orthonormal set in'l1o and let z(l) be a nonzero, positive, measurable function of

À such that u e Lz(L;dÀ) and esssupO())z(À) ( oo. Define ên,À: u(À)e*. Then

for each fixed n, {"r",¡} is isomorphic to a vector in 77, which we denote by 
"n.

Moreover en € D6. Thus by (6.16) we have

(e,,,À, tó(À) - ô(À)'le-,¡)o : 0

ar'dul0implies

(e,", [å()) - b())')e,")o : 0. (6.17)

Let L,n,rn denote the set of measure zeto where (6.17) is not valid. Take the union

over these sets, LJn?,,¿ Ln,*,, and denote this set by A. We note A will stitt depend

upon the choice of the basis {e"r}. As A is the countable union of sets of measure

zero, it too is a set of measure zero. Now (6.17) holds for all 
^ 

ø L, independent

of rn and n. Using this, the boundedness of the ó's, and the totality of {er,} we can

now conclude that for all À d A.

ó()) : ô(À)'.

Corollary 6.1: If A is any positive trace class operator on'lí and {ø(À)} is

its induced representation on 77o, then for a.a. \, o(À) is a positive operator.

Proof: The proof is identical to that presented in IMO 80].

In the next lemma we introduce an explicit manifestation of the spin structure.

The chief difference between the ideas presented here and those in [MO 80] is in

the treatment of the projection operator used. Let Ð be any measurable subset

of m3 with finite Lebesgue measure and let f denote any subspace of C". We will
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use the projection operator P(t, f ) : P(t)P(f ) : P(f )P(Ð). P(t) is defined

by multiplication with the characteristic function yr(æ)I (here 1 is the unit matrix

on Csx"), whiie P(f) is the projection operator into the space of spinors that lie

in f. In [MO 80], they only have the projection operator P(E) because they are

considering the spinless (s : 1) case.

Lemma 6.Lz Let a e Lt n.[2(m3;c'*") be hermitian and ]et the projection

operator P(t, f ) be defrned as above. Then the operators Ro(z)* P(t, f ),R" (z) and

Ro(r)*Q+*P(X,l)Cl+,R,(e) are trace class for all z € p(H") ¡ p(H).

Proof: The proof is almost identical to the corresponding lemma 1 presented

in reference [MO 80]. By writing P(Ð, f ) : P(|)P(X) we have exactly as in [MO 80]

that P(X)R'(") and P(X)fttR.(r) are Schmidt class operators. Since the product

of a Schmidt class operator with a bounded operator is again Schmidt class we see

both P(Ð,l)R.(z) and P(X, f )f}+,R,(z) must be Schmidt class. Next we recall the

adjoint of a Schmidt class operator is Schmidt class and the product of two Schmidt

class operators is trace class. This suffices to complete our proof. O

We need another lemma along similar lines to the one just given. If {Eí}
denotes the spectral family Ho, we replace the resolvent in lemma 6.1 by the spectral

projector -Ef .

Lemrna 6.22 Take (H,,H") and P(Ð,f) as in lemma 6.7. Then for frnite ),,

the operators P(X, f )Eí and P(Ð,f )f¿+Eí arc Schmidt class.

Proof: The proof is almost identical to the one givenin lemma 2 of [I\tIO S0].

The obvious modifications are made for using P(t,l) instead of P(Ð) as was done

in the proof of the previous lemma.

\Me are now in a position to discuss the theory of the time delay for the region

Ð. For an arbitrary state ó e'lí, the associated free and interaction evolution states



?lre (Pt: tliÓ and ?ri

other for large time;

-rzt-
: UtQ-Ó. These vectors

,þf -p, asú-+

are asymptotically related to each

+oo.

The transit time of pt and $f through the spatial region Ð while having spin

components in the spinor subspace l, will be given respectively by

llP(Ð, \erllz dt and llP(r, \gf ll'z dt. (6.18)

We defi.ne sesquilinear forms Qo and 8* ott 71, wîth diagonal elements Q" (ó, ó)

(a : 0, *) given by (6.18). Clearly we see that Q"(9,ó) > 0. From the polariza-

tion identity for inner products and the intertwining relation UrQ* : dlrUf , the off

diagonal values of Qo and Qi are

Q'þþ,,ç)

Q-þþ, ç)

ll*,r,uí. P(Ð,r)uf fl d't;

ll*rr,ui.e+. P(t, r)0+r4o ç) dt.

(6.ie)

(6.21)

The time delay for a particle moving through the spatial region Ð while having

spinor components iying in I is defined by the integral

e+þþ,.,þ) : /- {ll"(" ,r)uñ+úll' - Ilp(x ,r)ui,þll,} ¿t. (6.20)
J-æ

The sesquilinear form Q+ will have the non-diagonal componenrs

Q-(rþ, p) : Q- þþ, p) - Q" þþ, ç)
f*t: 

J _*(,Þ,ut" lo*-r1r, r)o+ - P(x,r)] u;e) at.
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There exists an important distinction between the use of the spinor subspace I

and the spin channel formalism in scattering theoryx. In the spin channel formalism,

we would set f : C" (i.e. P(f) : /) and consider scattering from spin channel a

to spin channel B. Associated with these channels are the channel indexed Møller

operators

CIT : Q-P''

where P,, projects onto the spin state 7 (^l : orB). Then the time delay associated

with the scattering process a --+ P through the spatial region Ð is defined by the

sesquilinear form

Q"B?þ,ç) :

(6.22)

Comparing (6.22) with (6.21), we see that P(l) appears between the Møller op-

erators, whereas the projection operators Po and. P6 are exterior to the Møller

operators.

In the following proposition we show that the sesquilinear forms Ço generate

a family of operators, ?o(À; X, f ), similar to those found in theorem 6.2. We also

estabiish certain properties these ?ots satisfy and develop a formulafor their trace.

Proposition 6.2: Let a € ¿1 n Z'(mt;C'""). Then the sesquilinear forms

defr.ned by (6.19) induce in'ìlo a family of positive trace class operators {"'(À; t, f )}
which satisfy

Q"þþ,ç): (6.23)

* The spin channel formalism is structurally the same as the channel formalism of multiparticle
systems. For a description of the multichannel formalism in regards to time delay, we refer
to Bollé and Osborn IBO 76]. In particular cf. equations (4.8) - (4.12\ for comparisons.

ll-þ,n¡. Ini.r(Ð)oä - p,ppp(Ð)ui e)

ll-þ, ui" lr,n+.p(Ð)n+pp - p,pp p (Ð)u i ?)

I^rr^, 
?o(À;x, f )p¡ )" d,^.
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TheoperatorsT"(),;X,l) åave traces(in71") givenfor a.a.Àbythefollowinglimits;

,LT* 
r'P(x' l)Im 4".(À * i'p')P(Ð,t) :

Iim. Tr P(X, l)Im B"() + i¡r)P(X, f ) :ø+0*

It,rn1.l;r,r¡

| *, r'1.r, r, r¡

a.a. À;

(6.24)

a.a. À.

(6.25)

-Éfere Im R""(À + i.p) = *1R".(^ + ip) - R",() + ip).1 and Ro,,(À + ip) is the the

absolutely continuous paú of the rcsolvent of H. A similar defrnition applies to

Im.R,() + ip).

Proof: \Me would like to be able to apply theorem 6.2 to Qo, but we cannot

because P(t, f ) and f)i*P(t,l)frt are not trace class operators. \Me can circum-

vent this by considering closely related forms. For each z e p(H")l p(H), consider

the operators

T'(r) : Ro(z)* P(x, f )A'(z)

and

t*(r) : Ro(z)* dt**P(t, f )O+,R,(z).

By lemma 6.1, T"(z) is trace class and by theorem 6.2 the sesquilinear forms Qt-(")
generate families of trace class operators acting in'llo;

Q^r,(") - o5?'(À;Ð, r, z).

The factor l\- r1-z is always finite for finite z and.\, so we were free to introduce

it into the family of trace class operators as indicated and adjust the definition of

7o accordingiy.

We claim the operator family ?'(À; Ð,T , z) is independent of z. Of. course the

consequence of this is all of the z dependence for the operator family generated by

Qr"þ) is contained in the lÀ. rl-2 factor. Let tþ,g €Do, where we set, for some
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fixed z e p(H.) I' p(H), o(À) : lÀ - "l' . It is easily verified that Ds is dense in'li.
We note fhat tþ e Do implies ll,i)ll, < Cl) - "l-z and consequently Do C Do. The

relationship between Q" and 8a.1,¡ is

Q*(rþ,p): [* þl',Ui.(H. - z)*To(Ho - z)Uf e dt
J-æ

roo: I KH" - ,)rþ,Ul*ToUi@" - z)9) dt
J-æ

: et,þ)(@. - ")rþ,(H" - òo).

This identity and the representation of. Q¡^¡"¡ given by theorem 6.2, lead to

Q" þþ,ù : 
In((À - z)rþ t, o! ur"(À; 

x, r, z)(À - z)e 
^). 

d.À

f: 
J nþþ ^,7" 

(\;Ð,1, z)9 
^). 

d^.

But the ieft hand side is independent of z, hence we also have

f
8" þþ, ?) : l . (Þ ¡',7' (À;Ð,1, zo)9 

^) 
" 

dÀ,
JA

for some frxed zo e p(H) ) p(H,).

To apply theorem 6.2(3) v¡e are required to show that 7'(ÀiÐ,l,z) is bounded

almost everywhere. This follows easily from theorem 6.2(2);

1f'r

^ J^F-;gll"'(À;Ð',r',2)llu,at 
< llT'(")llu, ' -

+ ll"'(À; E,,1,, z)llu, < * a.a. À.
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We are now free to apply the uniqueness property of theorem 6.2(3) to obtain the

equality

7"(); Ð,1, z) : 7o(À; Ð,1, zo)

: 7o();X,l), a.a. À.

This demonstrates equation (6.23).

Because 1"(r) is positive, corollary 6.1 shows T"(À; Ð,l) is positive for a.a. )
as well. Consequently theorem 6.2(2) implies

1 / ll""(À;x, r)llu,: 
zn ln lx - + - ¿¡' (6'26)

Moreover (6.26) impiies that ll7"();Ð,1)llu, € Ll""(L,d^). This is easy to see

because l\- "l'is locally bounded and lÀ - "l-211"'(À;l,l)llr, is integrabie on Â.

_ Next we demonstrate the almost .,r""y*h..e equality

tr 7+(À; Ð, f ) : tr 7-(); Ð, f ).

Let A be an arbitrary measurable subset of .A and consider the trace class operators

TÅ(") : T'(z)EL.

Since E'6is unitarily equivalent to {Xo(À)1}, it is easy to verify that Tf,(z) induces

the family of operators

llT"(")llr, : TrT'(z) : * I^
Fu)
þ

t(ÀTa

L\

tr f)
d^

1

TÄ(") - 1¡ _ ,12x" 
(À)?"(À; t, f ).
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Recall that 0*fli* is the projection operator onto the absolutely continuous

part of 77. To say Ro"(z) is the absolutely continuous part of Rþ) means

R""(r): R(z)Qrf)i* - R(z)86¿.

The operator Ro"(z) will satisfy the Ililbert identity

2irrn R'"(z' 

:i:3,]:lii .(")*
We also bring our attention to the formula below, which results from an application

of the intertwining relation;

er R.(z)Ro(r)*o+* : R(")e+CI+*,R(z¡* : R""(z)Ro"(z)* .

Let z: À + ip' and let {E¡} be the family of spectrai projections associated

with f/. Then using the cyclic properties of the trace, the intertwining relation and

the above identities. we have

Tr P(X, f )EaIm -R""(À + ip)p(X, f )

- pTr P(Ð,l)Ea R".(À * i.p.)R""() + i¡z)-P(X, f )

- p,Tr p(x, t)Eaoi.R,(À + ip,)R.(À + ip,)*e+*,P(Ð, t)

- pTr P(Ð,l)f¿*R,(À + ip.)E"6Ð,e + i¡.t)*e+*]2(t, f )

- p,Tr,R,(À + ip.)*er* p(t, f )o*.R,(À + i,p)EL

: p,Tr Tt(f + ip)

7- [ ,= .l= =tr?+(À';x,r)dÀ,. (6.27):2nJ"Q-^')'+t"'
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The left hand side of (6.27) is independent of the * sign. This implies

fI ----J-[tr ?+(),; t, f ) - tr ?-(À,; t,f )] dÀ, : 0.
Ja (À _ 

^,), 
i t"", \

As A is an arbitrary set, this is only possible if the integrand is zero for a.a. À'.

Since 6_ft+F f 0, this means

tr 7+(À'; t,l) : tr ?-(À';X, f ) a.a. À'.

Suppose now -84 -- I. A repetition of the argument leading to (6.27) yieids

the expression

rrp(Ð, r)Im.R""(À | i,p,)p(Ð,Ð : ** I^ø _#*tr?*(),; r,f) dÀ, (6.28)

and similarily,

rrp(Ð, r)rm,R,(À + ip")p(Ð.,\ : * I^r=#ntr ?o(À'; Ð, r)d),. (6.2e)

Theorem 13 of $1.16 of Titchmarsh [Ti 48] provides the necessary result to evaluate

the limit þ ---+ 0 taken in equations (6.28) and (6.29). Taking this limit, we get

(6.24). o

Define the function

q(À;x,l) : tt?-();t,l) - trTo(À;t,l). (6.30)

It can be interpreted as the average time deiay through the region X for particles

having spin lying in I and energy equal to ). From the equation
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and the fact that tr?"(À;Ð,f) is positive for a.a. À, we

/- l4^'t' r)l
lo -lll- dÀ ( oo'

Combining formulae (6.12) and (6.25) yields the result

: /- qÍÀ; r, f ) d) : Tr R,(")*lo+.p(Ð, r)r¡+ -2rJo l\-rr

while (6.28) and (6.29) lead to

lfool
z" J, q(À;Ð, f )Im 

^ 
- , 

d) : Tr P(Ð, f )Im [R(z)n",

see that

(6.31)

P(Ð,r))R"(z), (6.32)

- R"(z)lP(t, r). (6.33)

We shall also require certain properties of q with respect to the sets f and X.

Suppose that ft and l, are two orthogonal subspaces of C". Then the projection

operator onto l, U f, is

P(fI ufz):P(fr)+P(f2) (6.34)

and g satisfies the formula

q(À; X,f1 U lz) : q(À; X,fr) + q(À; X, fz).

The proof of this is easily shown by using definition (6.30) and the formulae in

(6.24). The cyclic property of the trace is utilized to combine the two projection

operators in (6.2a) into one projection. This resulting formula for q(À;Ð,fl U f2)

can be split into the sum of two terms by using (6.34) and the iinearity of the trace.

The sum of these two formulae gives exactly q(À;Ð, fr) + q(À; Ð,lr).
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Similarly, if Xt and Ð, are two disjoint measurable sets of finite Lebesgue

measure, then P(Ð, U Xr) : P(Ðr) + flfr¡ and the time delay function satisfies

the formula q(À; tr U t2,f) : q(À; Xr,f) + q(À; Ð2,f).

Consider the spin channel scattering formaJism once again. There exists a

natural connection between the .9-matrix and the global time delay operator. For

scattering from spin a to spin B, tlne scattering operator is ,9po : f¿,.f¿j. The

scattering operator .SBo commutes with the free Hamiltonian and consequently it
admits a spectral decomposition with respect to Ho. \Me denote this decomposition

by sB"(À), and it is commonly called the ^9-matrix. If we take the limit X --- R3,

then the d --+ P globai time delay function, daB: satisifies the formula (cf. [BO 76],

equationx (4.12))
s

- .\---- 'l
ãoþ : -i' >,tr sro())* 

¿f "rp(À)..t:7

Whether or not our time deiay function has an analogous relation with the

S-matrix we leave as an open question for future studies.

6.3 The Born Series

The Born series is a high energy expansion of the resolvent that is obtained by

iterating the second resolvent equation

R(z) : R"(") - R'(z)v R(z).

In our particular problem, we will have the Born series pre- and post- multiplied by

the operator P(X,l) and hence rve shall include this feature in our study here. The

advantage of this is it will allow us to verify convergence properties of the series

* Bollé and Osborn use the operator analog to this equation.
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under the 81 topology for all z € fIc. We first identify a region where the series

converges. For each d e (0,1) let ÂB be the infinum of the set

{Á. e m+ : llA(z)ll S B 17,V2 € II" with l"l > 
^}.

The Born dominant region of II. will contain the set {z € II" : lrl > lye} as a subset

for each 0 < d < 1. Obviously in this region, [7 + A(z))-, e B; it is given by the

Neumann series

[r +.4(z)]-1 : 1. Ë ?oø)"n:7

with the sum converging in the B norm; and it has the z uniform norm estimate

ll[1 +.4(z)]-'ll < *

Notice that for each 0 <0 <7,€,is containedin the closed interval [-AB,Âe]. Our

next lemma concerns itself with the convergence properties of the Born series.

Lernrna 6.3: Let u € Lt n,[2(m3;C"*') be hermitian and fx 0 < 0 < 1. Then

for aJl l"l > lye the Born series expansion

æ

]"(Ð, f )iR(") - R"(z)jp(Ð, r) : Ð(-r)"p(x, f )A,(z)lv R.(z))p(r, f ) (6.35)
=l

converges in the 81 norm. Moreover the convergence is uniform in z.

Proof: We first show that the resolvent difference is trace class for all z €n".

Recall the resolvent equation (6.5). Then

P(t, f )[Ã(r) - R"(z))P(Ð, r) : -P(t,l)R,(z)tul7 + A(z))-tuR"(z)P(Ð, r).
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Since [1+ A(z)]-t e B for all l"l > Ìte,, it is enough to prove that P(X, T)R.(z)u and

uR"(z)P(Ð,f) are Schmidt class. Suppose the orthonormal vectors {(r.}j:, rn""
the spinor subspace f. Then the projection operator P(l) is unitarily equivalent

to multiplication with the matrix M¡;

S9

P(f) - Ð((r,.)e,:
S9

\-¡ ^r*-Lç¡ eY ti
o- l

M¡. (6.36)

Here the symbol (.,.) ir the inner product on cs and (¡ s Ç is the tensor product

between the column vector (¡ and the row vector q. With this notation set, then

the Bz norm of uRo(z)P(t, f) has the estirnate

" 
| / \r 

1

llul"(z)p(Ð, f)llå, : I o* ¿o l"@)Mtx,fu)"iJ;t"-ut l"J "l  trlæ-sl 
I

r t^'t r)lx" (s)Sh I a*aEJ tæ-ar

where the constant C¡ is independent of z. The right hand side is finite via the

Sobolev inequality (6.4) and it is independent of z € II". We note that it is the

projection operators on each side of the resolvent difference that permits us to

consider all of II". For the operator P(Ð,|)R,(z)u we have a similar estimate that

is also independent of z € II". This establishes our claim.

Next we study the convergence properties of the Born series in the 81 topology.

Recail A("): u&o(z)w. Then we can use the identity

t:+ A(z))-1 : 1l- Ë (oø)"
n:7

+ [1 + A(")]-' (-r(,))'*'

to write
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P(t, f )l,R(,) - A,(z)lP(x, r)

: -P(Ð,l)R,(z)wuR,(e)P(I, f )

¡f
+ Ð ,e(t, f X- r)+1Ro(z)uA(z)uw,(z)p(x, f )

a-1

+ ( - t ¡N+' P (Ð,T) R"(z)ufr + A(z)l-1 A|"¡w +t u R.(z) p (Ð,t). (6.32)

Consider the 81 norm of the third term in (6.37).

I I 
P ( t, T) R"( z)u [1 + A(z)]-1 A1")w +t u R"(z) P (E,,f ) | I r,

< ||[1 + A(z))-tllllt(,)l|^t*t ||p(r ,r)R"(z)wll6,11"R.(')p(x, f )||6,

< cro: I a* ao x'(*)|"(Y)l-1-0J " lr-ylz
--+ 0 as I{ -+ oo.

Moreover, we note the convergence is uniform with respect to z. To show the second

term in right hand side of (6.37) converges in the trace norm, it is enough.to prove

it forms a Cauchy sequence, because Bl is a Banach space. We will prove even more

in that we claim the sequence is uniformly Cauchy with respect to z, and hence the

series will converge uniformly with respect to z. As with the third term, we have

the z-uniform majorant

-ly',
ll .-:.

ll )- t-tl" P(E,r)R.(z)w A(z) u&o(z)P(t' r)II
n=N, 

'116l

s cr I a*anx,@)1"(Y)l f ,".J læ - al" n7_¡¡,

Notice the right hand side converges to zeto as NtrNz -¿ oor uniformly with respect

to z.
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Thus we have shown that P(x, f XE(z) - R,(z))P(t, f ) has a series represen-

tation that converges in the trace norrn, uniformly with respect to z € II". To relate

this series to the Born series, we note the termwise identitv

R.(z)uA(z)uR"(z) : R,(")lV Ro(")l*'. (6.38)

o

As an immediate consequence of this theorem we have

Tr p( x, f ) [A(z) - R.(z))p(r, f ) : Ë r -, I' Tr p(Ð, r) R.(z)lv R,(z))* p (Ð,r)
n:7

(6.3e)

and that this series converges uniformly with respect lo z.

We would like to be able to perform various operations, such as integration,

termwise to the series (6.39). The a-uniform convergence of this series does much

to prove the analyticity, continuity and integrability of the series, provided each of

the individual terms have these properties.

Lemrna 6.4: Let u e Lt ¡ tr'(mt;Csxs) be hermitian. Then for each n ) l,
thefunction TrP(Ð,1)R.(z)lVR"(z)l"P(Ð,f) is holomorphicinTl and continuous

in II".

Proof: Utilizing identity (6.38), and the useful relation

Tr ^9? : (S* ,T) ø, S,T € 82,

we have

rr P ( Ð' r ) R 
" 

( 4 tu-i 

óffi] )).r, A( z)n u R 
" 

( z) p (Ð,. ) ) u 
"
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It is enough to prove that each argument of the inner product is separat ely Bz

holomorphic in II and 82 continuous in II.. As A(z) has these properties and it is
uniformly bounded in z, it is enough to prove these statements for P(Ð,l)R"(z)w

and uHo(z)P(t,f). We consider ufuo(z)P(t,l) and note that similar arguments

can be applied to the other operator.

The operalor uho(z)P(Ð, f ) is an integral operator with the matrix valued

kernel

"i^/Zlr-ul
"(*) +*l* _ alxr(v)Mr.

Now læ -Al-tXr(y)u(æ)My e L2(dæ dA;C'*' ) via the Sobolev inequality (6.4). Since

the exponential is a continuous function of z € 1., and it is uniformly bounded by

1, an application of the dominated convergence theorem shows that the kernel of

uR,(z)P(Ð,f) is continuous in the L2(d,ædAiC"") normfor all z e II". We also

have x" (g)u(r)M¡ e Lz(dæ du;c"*" ), which allows us to define a Schmidt ciass

oÞerator whose kernel is

;"i&lr-slt*l; 
"'(s)u(æ)M¡ 

' (6.40)

It is easily shown that the kernel of ufu"(z)P(t, f ) is differentiable with respect to

z € fI in the L2(dæ dA;C"*") topology via an application of the dominated conver-

gence theorem and that its derivative yields the L2(dædg;C"*") function defined

in (6.40). Because of the isometry between Lz(d,ædgic"*') and 82, we see that

uil"(z)P(Ð,f) is 82 differentiable with respect z €II. 0

Corollary 6.22 Assume the hypothesis of lemmas 6.3 and 6.4. Then the

function TrP(Ð,f)|fi(z) - R.(z)lP(t,l) is holomorphic in II and continuous in

II,. If C is any curve that líes in a compact subset of II" I {z : l"l > Ìye}, then we

may integrate the se¡ies (6.39) termwise over the contour C. O
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As a final topic to discuss about the Born series, we write an explicit rep-

resentation for each of the terms TrP(x,l)R,(z)lv R,(z))"P(Ð,1). In the next

lemma the potential will be in the class ¿I n .F*(R';c""") and so it is the Fourier

transform of a bounded complex matrix measure. For o € .F*(m3;C"*t), we have

the representation

u(æ): Iarço¡"0"',
J

f: 
J 

oful@) q(o)"'"''

Since u is a"lso in,[1(m3iC"*'), its ciassical Fourier transform exists and we note the

relation

dP(o) - --l-¿ @) d,a.
\zT )"t'

Before proceeding with the next lemma, we first define some notation. We

express the following two multiple integrals with the shorthands

11) ¡7 rã r€n-t
| ¿"t: I dh I d€r... 1 dtn
Jo Jo Jo Jo

and

Lemma 6.6: Let u e Ll ft.F*(m3;C"""). Then îor all z € II,

TrP(Ð, T)R"(z)lV R.(z)l P(Ð,1)

__r(, - l) [t' f +* (ot + ... -¡ o,") 
^-- --zttr- lo d"( 

J 
o"trlffispM¡rl(o,n)"'rt@ùMr

(6.41)

l o"r : I orr..,) l au6,-r).. . l au*.,)

: I o"¡"lrt@.)... q(or).
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where the function an is

and

where

F(*,a;Ð:ÐB^@,a;þ)
n:0

an: Ð r({,,€,)a¡.a*}0 (6.42)
lrrn=7

o(ü,€^): min{€¿(1 - t*),€-(1 - €¿)}. (6.43)

Proof: The idea of the proof is to exploit the relationship between the resolvent

kernel and the kernel of the semigroup 
"-þH 

(R",6 > 0) to obtain a formula for

the kernel of P(Ð,T)R.(z)lVR,(z))"P(Ð,f). For potentials in .F*(mt;C'xs), the

semigroup kernel has the known representation IOCF 85]

K(*,y; þ) : K"(*,,y; þ)F(æ,s; p). (6.44)

Herc Ko(æ,g;P) is the free semigroup kernel and it is given by the formuia

._r#
Ko(*,a; þ) : ;-, t" I .

\+7tp )"t'

The matrix valued function F(*,A;B) is the series

Bo(*,ai þ) : I

Bn(*,a; þ) : (-p) [" o*€ [ o" r"-\an+ibn .

Jo J

(6.45)
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Here the function ø,, is given by (6.42) and the function ó,, is defined by the formula

ó" : t[(t - tù* +- ttù . at
l:I

(6.46).

'We note we have obtained a similar expansion for the propagator in chapter 5.

Specificaily we refer to equation (5.a1). We should expect this because the propa-

gator represents the Re þ - 0limit of the semigroup problem.

Introduce into the potential the coupling constant 7 so that u --+ 7zr and

tL -+ ''ltL. Then our expansion for the semigroup kernel remains valid provided we

rewrite Bn(*,A;p) as

Bn(æ,Ei þ,1) -þan+ibn

For the moment, iet z satisfy Re z ( -lf llhrll and lzl ) Ä8. Then the resolvent

kernei is given as the Laplace transform of the semigroup kernel;

dB eÊ'K@,a; p).

For proof of this result we refer to reference [OCF 85], proposition 4. We note

that in proposition 4, the integral is along a contour .tf . The integrai along this

contour was used to consider values of z in a much larger domain than is being

considered here. For Re z 1 -ll¡rll the integral along [0, *) is equivalent to the

integral along -Df . Indeed, in the proof of proposition 4, Osborn et. ai. used the

integral v/e are considering here; showed it was equivalent to the one along trf ; and

then analytically extended the domain of allowed va"lues of z.

\Me claim $¡e can interchange the ÐLo appearing in the definition of F and

the d,B integral. Because the partial series Ko(*,A;ÐÐI:oBn(*,y;p) adrnits the

:Gtþ)* 
Io" 

0", I o"r"

R(*,a;ò: 
Io
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1[ independent estim ¿tr¿ ¿ltlÊllull and

/e oo

I ¿8"{R..-lrllÞll)É.*,
JO

rve can apply the dominated convergence theorem to interchange the sum and inte-

gral. Thus we have

R(r,s; z,i) : Ro(*,y; z) t-Ët-rl" 
Io* 

oU 
"þ" 

0n

fl> fx | ¿"t | ¿" p Ko(*,y; B)e-Þ"-+iu-. rc.47)Jo J

To get (6.47) we have used lemma 3 of reference [OCF 85] which states

Ro(*,s;z): [* oBeß=Ko(æ,y;B) Rez ( o.
JO

Thus the operator P(X, T)lR(2,,1) - R.(")]P(t, f ) has the kernel

, ,ë, ,^ f* -- a--- fl> fx,þ)L,?t)" | ¿8"Þ"þn | ¿"t l¿"lpltwrq(a")"'q(oùMr
ñ_1 J0 Jo J

x Ko(æ,at þ)e-þ"'*ou^xr(g). (6.48)

Because z is in the region of Born dominance and we can consider the Born

series

p(r, r)[R (",t) - R"(z)]p(x, f ) : Ër-rl np(Ð,r)R.(z)lv R"(z)l^ p(x, f ).
n:7

In'lemma 6.3 we established this series converges in the 81 topology. Hence it also

converges in the 82 topology which in turn implies the sum of the kernels of these

operators converge in the L2(dæ dg;C""') topology. Consequentiy this kernel sum
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converges in measure (cf. [Roy 68], chapter  $5) and hence there is a convergent

subsequence such that

'ðy';

I(-u )" l"(t, r)R.(z)lv R,(z)lP(Ð,r)] @,a)
n:1

-- it -r)" frqr, \ R.(z)lv R,(z))* p (r, r)] @, a) (6.4e)
n:1

for a.a. (*,,E). On comparing the terms of equal order in 7 between (6.48) and

(6.49) we obtain

(-1)" [r(", r)R,(z)lv R.(z)] p(",.)] (*,a) : dB eP' K o(æ,, 8 ; 0) 8 "(r, Ai p).

(6.50)

Next we take the trace of P(t,f)-R,(z)lvR,(z)]"P(t,f). Let ?: Â,9 be a

trace class operator, given by the product of the two Schmidt class operators .R and

^9. Suppose that .R and ,S have kernels K¡ and Ks and ? has kernel K7. Then

I,*

f
Tr ? : (R*' s) n" ::' 

ro r* -:":::' 

Y) K s (a'' *)

= J O* sp K7(æ,æ).

Tr P( Ð, r) R,(z)lV r?,( z)l "P( X, l)

: I o* 
Io* 

ou 
lo" 

o"€ I d,û"l"p M,t@ò...,t@ùMr ffi
x 0"-3 

"ÞG-an) "it'(ctr+"'+o').

(6.51)

For proof of this result we refer to [Sch 70], theorern2.4. Applying this to equation

(6.50) we have

The integrand is absolutely integrable and hence \ ¡e may interchange the orders of

integration via Fubini's theorem. We note the B integral is in the form of a gamma
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function and the æ integral is a Fourier integral. After explicitly evaluating the B

and æ integrals, the resulting formula is equation (6.41), but with the restriction

Rez ( -llpll (z : 1) and lzl ) Â8.

Now lemma 6.4 showed that Tr P(X,l)R"(z)lv R"(z))" P(Ð, f ) is holomorphic

in the region fI. Furthermore the right hand side of (6.41) is easily shown to

be holomorphic in II as well. As these two holomorphic functions coincide on

Rez ( -llpll, they must coincide everywhere on II. O
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CHAPTER 7

Sum Rules for Spin Systems

For this chapter, 'we assume the same working hypotheses as stated in chapter

6. Again we shall keep our assumptions on the integrabiiity of tr specific to each of

our claims. We flrst state the main result of this chapter, with the detailed proof

following in the ensuing lemmas and propositions.

7.1 The Sum Rule

Let I be an arbitrary, but fixed subspace of C" and suppose the set of or-

thonormal spinors {i.¡}}\ span f . \Me will extensively use a partial trace (in C")

of u(æ) on the subspace f . Denote this trace by

3s

,.(') : f {ei ,,"(*)(¡). (2.1)
j:7

Theorern 7.Lz Let u e Lt I .F*(m3;C"""). Let Ð be a Lebesgue measurable

set of frnite measure and let I be a subseú of C". ffq(À; Ð, f ) denotes the time delay

lor the regionÐ, the spinor subspacel and the energy À, then

,H { I,u 
o^q(À; Ð, r¡ + }Jt lro*or(*) + M(b;r, ,,}

: -2rç Tr p(X, l)E,p(Ð, l). (7.2)
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where E, is the projection operator associated with the síngular spectrum of H and

' Io'¡a- î'?1xl("Pr(") r^(?4+t:1,\' -:n [-a,,,(*).M(b;Ð,,f) :BrrJ--v- 4t-lal \2\/b_l.,l/ 4tr JÐ

(7.3)

Proof: Let 0 € (0,1) be fixed and consider the contour integral of the function

TrP(1, r)[R(z) - R"(") -t R"(z)Ir R,(z)]P(Ð, r)

about the contour C shown below.

Here the

Tr P(E, f )[A(z)

interval

_ R,(r)

C:CttCz*h+C(b,6)

Figure 7.1

(o,b) f [-AB,Âe]. From lemma 6.4

* R"(z)V R,(z)lP(D, f) is holomorphic

and corollary 6.2

inside and on C.

c (b,6)

Cz
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Thus by Cauchy's theorem,

TrP(Ð,r)[B(z) - R"(")

Formula (7.2) is the resuit of calculating

C(b,6) in the lirnit å --+ oo and á ---+ 0.

following sections.

* R"(z)V R"(z)lP(Ð,r) : 0

the contributions of C¡ (j : 7,2,3)

\Me shall calculate these limits in

t'a,

and

the

0

A couple of remarks are in order here. The first comment concerns the term

M(b,Ð,f) given in (7.3). The second term on the right hand side of this equation

is expected to cancel out the leading order large å behaviour of the first term of the

right hand side. To get a feeling for the large ó behaviour of M(b;X,f) suppose

ô has compact support. For ó sufficiently large, a ball centered on the origin and

of radius I' will contain the support of ó. Then for all a € suppû, the ln function

appearing in the definition of M(b; X, f ) has the asymptotic expansion

,^ (zJ!+ t"t\' _ z4 +o lþf \ .--- 
\z/t -l'l) - Jb' - \uzrz I'

Using this expansion, M(ö; X,l) behaves as

M(b;Ð,|) : dæar(æ) : O(b-tlz)

in the limit ó ---+ oo. For the more general ø, the ordering behaviour of M(b;X,f) is

much more difficult to determine. However, it is implicit that if the integral over the

contour C(b,6) tends to zero in the limits ó --+ 0 and ó ---¡ oor then for any singular

structure in ó occuring in M(b;Ðrf), there must be a corresponding structure in

the energy integral of q(À;X,l) that exactly cancels with it.

{* l"d'æa,(') 
+ op-rrzr\ * I"
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Next we have a remark concerning the spin subspace l. By restricting the

dimension of I to 1, but otherwise leaving it free, r¡r'e can obtain via the polarization

identity* on C", a sum rule which picks out the ijth cornponent of r.'. If {(¡}î:r i.
an orthonormal basis of C", define

a¡{æ): )ç¿ l((i,"1'

i{r* + Ct,o(,)[(¡ + {rJ) - (e, - (t,o(*)l(¡ - Õf )

-'i(ei i i(t,"þ)l(¡*,e,1) + t (Ci - i(t,o(*)K¡

This is the matrix representation of o(z) with respect to the basis {(¡}j:1. Let l,
be the subspace spanned by (¡ * (¿; fz be the subspace spanned by (¡ - (¿; f3 be

the subspace spanned by (r * i(¡; and In be the subspace spanned bV Ç - z(¿. Then

for each f¿¡ vre have a sum rule corresponding to (7.2).We may take appropriate

linear combinations of these four sum rules which would allow us to invoke the

polarization identity to recover the components o¡{*) and óji(o). We combine the

linear combinations of the four time delay functions into a single function;

q¡¿(.);Ð)

Clearly ïve may form a matrix from the qr¿(À;X)'s. In fact we claim this matrix

will be hermitian. To see this, interchange the indices j and / above. The vectors

h + C¡ and (¿ - Ci : -K¡ - (¡) will stiil span l, and f, respectively. However, the

* The polarization identity we refe¡ to applies to any sesquilinear functional on a Hilbert space.
If (., .) denotes the inner product of a Hilbert space ?1, then

1

(l,As) =;{(/+s,A(f +s)) - $-s,t(f -s))a

- ¿(Í + is, A(Í + is)) + i(f - is, t(f - ¿sD\.

where,4 is an operato¡ on'Jl with domain D(,4) and f ,g e D(A).

_ cör))

= ;{q(À;x,fr)- q();x,rz)- iq(À;Ð,rr) + iq(À;Ð,rr)}.
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vector h+i(¡:¿((¡ -i,Ct) spans f, and the vector û-iC¡: -¿(e¡+i.içt) spans fr.
Then ery(À;X) will be given by

ei¡();Ð) - q(À;x,lz) - iq(\;X, f¿)

As the q(À;Ð,f¿)'s are real valued (i:7 * 4), rve see that g¿¡();Ð)* : qr¿();t).

This establishes our claim. \Me caution again, that the function q¡t(À;X) is not

necessarily the same as the time delay function one obtains from the j and I spin

channels in the channel formalism of scattering theory discussed briefly in chapter 6.

In the context presented here, g¡¿(À;Ð) is a useful construct for obtaining sum rules

that explicitly invoive off diagonal components of u(ø). Following the procedure

outiined. we have constructed the sum rule

dæa¡{æ)

- Tr P(X, f 2)E"P(t, f 2)

- i,Tr P(Ð, f3),8"P(X, fr) +

+ M¡t(b;", r,)H{ Iou 

o^q¡t(\;rt * *J¡ I,

: -"{ rr P(Ð, fl )-E,P(t, rr )

+ iq(À; t, f, )).: Iint^'x,f,)

i Tr P(Ð, l4)E,P(Ð, ,nr) ,

-**1,

(7.4)

where

M¡{b;Ð,1) : # I o"lr-î)xi )û¡úo) ,, (zJL+ l"l\'---þl- "'\2G -''.l)
dæu¡{æ).

(7.5)



-746-
7.2 T}re Ct, Cz, and C3 Contributions

The C¡ contribution is easily found. Without loss of generality we may pick ø

so large that [i + A(z)]-1 exists via its Neumann series representation. Let 0 < d < 1

be a fixed parameter and let Äp be the set in II. as described at the start of section

6.3. Then for all z € Le,

I TrP(x, r)[a(z) - R"(r) + R,(z)V R,(z)]P(x, r)l

= lTrP(t, f )Ã, (z)wA(z)11 -r A(z)l-tuÃ,(z)P(X,l)l

.",J ^ [a*aoÞ&&$)L .-'I-0J " l*-Ul,

where c" is a constant independent of. z. Thus there exists a constant c such that

to 
I

I I d"z Trp(t, f )[-R(") - R.(") * R"(z)v R.(z))p(Ð,,r¡l 5 co
lJct 'l -

and the right hand side tends to zero in the iimit á -+ 0.

The Cr * Cz contribution requires more work. We note that if / is a holo-

morphic function satisfying f Q.) : f þ)*, then

ffb
l dz f (z) : I dÀ l/() + ir) - /(À - ió)l

J CtlCz J a

: zi I dÀ rm /(À + ió).
Ja

In particular, Tr P(t, f )[AQ) - R"(r) * R.(z)V R"(z)]P(Ð,|) is such a function.

Proposition 7.1: ,suppose u e Ll O-t2(m3;C"t') íshermitian. Foreachfr,xed

d e (0, 7) and every frnite interval (o,b) > [-Àe, Àe],
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dÀ Tr P(Ð, r)Im [A(À + i6) - Ã,(À + iá)]P(t, r),Wl.",

(7.6)

fo
1""(6) : I dÀ Tr P(x, f )Im [n(À + i6)Eo" - R.(^ + iá)].P(r, r)

Ja

fb
/"(á) : I d^ TrP(Ð,r)ImÃ(À + i6)E,p(Ð,t)

Ja

1fo: ; I d) q(À; Ð, f ) + z-Tr P(Ð,l)E,P(t, l).
¿Jo

Here E, is the spectral projector associated with singular spectrum of H.

Proof: Let 6 ) 0 and consider the two functions

l.r.r/

A-s Eo, -l- E" :1, we clearly have that 1""(6) + /r(ó) is the teft hand side of (7.6)

before the ó --- 0+ limit is taken. Before proceeding further, we first verify that the

traces of the above operators exist. As the imaginary part of the resolvent can be

expressed as the difference of the resolvent at two difierent points, we can use the

Hilbert indentity R(") - R("'): (z - zt)R(z)R(z') to get

P(Ð, f)Ima() + i6)P(Ð,f) : áP(x,f).R(À + zá).R(.\ - zó)p(r, r).

we claim R(z)P(Ð,f) e Bz. Using the second resolvent equation we have

R(z)P(Ð,,r) : Ro(r)P(E, r) - R(z)V,R,(z)P(x, f )

: R"(r)P(Ð, f ) - [p(t,l)R"(2.)V R("*)). .

Now in the proof of lemma 6.1 we showed that Ro(z)P(Ð,1) and P(Ð,f).R"(2.)

are both Schmidt class operators. Furthermore, V is H-bounded and consequently

VR(z-) is a bounded operator. Thus P(t,f)4"(2.)VR(z*) and its adjoint are
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also Schmidt class. This proves that P(Ð,|)ImR(À + ¿6)P(Ð,f) e 81. Similarty

P(X,l)Im n(À + i6)8""P(Ð,l) is trace class and from the identity

P(Ð, f)Im n(À + ió)E"P(Ð, f )

: P(Ð,|)ImÃ() + i6)P(Ð,f) - p(t,f)Ima(À + i6)8""p(Ð,t),

we must have P(Ð,f)Imn() + i6)E,P(E,f) e 81.

Consider the á -- 0* Iimit of 1".(ó) first. From equation (6.39) we get the

representation

1""(6) : * I,' as 
lo* 

au t- -=q(p;x,r).\lt"-^)-+o"
(7.8 )

Note that

is a continuous function of À e [ø, å] via an application of the dominated convergence

theorem, so that 1""(6) exists for each á > 0. Next we wish to interchange integral

orders. To apply Fubini's theorem, it is enough to prove that the the integrand in

(7.8) is absolutely integrable;

lo* 
or6+Tpq(p;Ð,r)

l"u 
o^ 

Io* 
o, fo -- r* G + p2)6: I d^l dpJo Jo ltt-À)za5z---+=lq(p;t,r)l\p-^)-+o.

< 
"d(b - o) [* arlq1";Ð''l)l

Jo 7+p2

( oo.

Hence 'we are justified in interchanging orders of integration. The dÀ integral is

elementary, and after evaluating it we have

(7.e )

7+p2

1,"(6) : * I,* orq¡t;Ð,r) 
i.r.tuo +* arctan Tl
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Next we wish to bring the limii á -- 0* through the dp, integral, via an ap-

plication of the dominated convergence theorem. Consider splitting the dp" integral

into a part where p. > 2b and a part where Ir, < 2b. Let us exarnine the p ) 2b

integral first. Recall the arctan identity (cf. IAS 72), 4.4.34)

arctan z1 * arctaî22 - arctan :1 r z2

I + zjzz

and the simple estimate larctan(l < l€l (€ e m¡. Then for all 0 < á < 1,

l.r.trr,+*arctan Tlt 6(b - a)

0'- ")0" - b) + 0z

(b-")
0r-")0r-b)

corb

t-lþ"

Thus for the p > 2b integral, the integrand is majorized by the á independent

Lt(dp) function co,b(I * ¡Ì¡-t lq(p;Ð, f )1.

For the p < 2b integral, we note that

lq}';Ð,f)l _ ,r,
ffie Lt(dp.)+q1r;x,r) e Ll""@t")

and the arctan's are uniformly bounded by zi. Thus the integrand is bounded by

an Lt(dp,; [0,2å]) function that is independent of á.

The above shows we may apply the dominated convergence theorem to bring

the á --- 0f limit through the dp integral. Evaluating this limit on the arctan's is

a simple exercise, with the result

ólgn+ 
/""(6) dpq(p; t, f ).

This gives us the first term on the right hand side of (7.6).
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The evaluation of /"(á) should yield us the second term in (7.6). \Me quote

the following useful result.

Suppose we have a sequence of bounded operators, {5,,}pr, that converge

strongly to 5 and suppose that R and 7 are Schmidt class operators. Then

Iim Tr RS*T: Tr.R^9?.

This is a result of lemma 8.23 of reference IAJS 77].

The operator P(Ð,l).Ð" e 82 because

(7.10)

P(t,f)8": P(Ð,y)R(z)(H - ")8,,

(H - z)E' € B, and we have shown P(t, f )A(z) to be Schmidt class. This of course

implies that P(X,f)-ø"P(t,f) e Br.

Consider the maps

À -, Im n(À + zá)

À r--+ Tr P(t, l)E"Im.R() + i6)E,P(t, f ).

(7.11)

(7.12)

The mapping (7.11) is À continuous in the B norm for each á ) 0, and therefore

Imß(À +i6) has a strong Riemann integral over À. Using the result (7.10), the

mapping (7.12) is continuous and hence its Riemann integral over À exists. Using

the identity R(z)E' : E,R(z)E"; the definition of the two integrals

1o

I d^ Tr P(X, f ).E"Im À(À + i6)E"P(Ð,1)
Ja

l"u 
o^Im.R(À +i6);

and
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the linearity of the trace; and (7.10), we have

lrb I
1"(á) : rr p(x, r)E, l I o^rm Ã() + iá) l -E"p(r, r). (2.18)

Lr" I

Now neither ø nor ó are singular points of H. Thus v¡e can use the standard

result (cf. [AJS 77] p. 360)

fb

'.- lip I d^ImÃ() + i6) : rÛ¡a,b).
¿+u* J a

This in conjunction with (7.10) applied to (7.13) yields

óliqr 
/"(á) : zr TrP(Ð,l)-E" E¡"¡18,P(Ð,1)

: n Tr P(t, f ),Ð"P(t, f )

which is the second term in the right hand side of (7.6).

Next we discuss the contribution of rr P(x, f )Im R,(^+i6)v R.(^+i6)P(8, l).
We first derive a representation of this function in the timit á --+ 0*.

Lemma 7.Lz Leta e Lt n.t2(m3;c'*") behermitian. Thenfor all À ) 0,

Tr p(x, f )rm [A"() + i})v R"(À + iO)].P(r, f )

r r ,^xii")tr(o) ,_., l?4* l"l), u.r4): 
r6n J 

o"Ë1" 
\tî- ki/

where Jr: 'JT +ñ.

Proof: Let á ) 0. From lemma 6.4, the function

/(À,6) : Trp(X, f )rm [8"(À + i6)v R"(À + ió)]p(r, r) (7.15)
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is continuous in ó. Moreove¡ if À ( 0, then

/(À, o) = "rÀ 
: 0.

Expanding out Im [4"() + i6)v R"ø + ió)] expiicitly, our expression for ,I¡ is

1r
Js : 

2iTr{p(Ð, r)Ã"(À + i})v[R.(À + i0) - A,(À _ ¿O)]p(r, f )

+ P(Ð, f )[Ã,(À + i0) - Ã,(À - i})]v R"(^ - i0)lp(r, r)].

Recalling the relationship between the trace of an operator and its associated kernel

(cf. equation (6.50)), the expression for ../¡ can be written as

a. - 2J-Àñ.

'We note that læ - yl-lxr(ù"r(r) e Ll(dædg), which follows from an application

of the Sobolev inequality (6.4). Then it is possible to interchange integral orders

via the Fubini theorem and our expression for J¡ becomes

,^ : Æ [ a* a, lez¿Jlt*-Et 
- e-z¿Jit'-st'l x"(v)or(')

(-'., u L ziJilæ-sl I l*-al

:_J, f . ( f1 d,(sziJ^1,_vte]x"(g)or(')(4"Y J o* oo \J-, - ) l* - sl

: * & | a. on I ¿s 
"z;'Ãa'{'-,,"",@.)!î\,.) .

Here, á, is a unit vector in a Cartesian coordinate system whose third axis coincides

with the line æ - g and the integral over dfl is the integral over the unit sphere of

this coordinate system. Define the vector
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,^ : ? # | on I a- d,y ¿ioo'(' -',*",Y\-î\.)

= l+]^i-,^ [ aa [ ¿*r "iao'x'lkrx rro.X''). (2.16)8 (zr¡tlz J -"- I l',1*^

In the second equality of (7.16), we have made a change of variables Ø --) ¡t - ^ - o,

and we are using the definition of the convolution

1f
(,þ * ç)(*) : Ø)w J 

oyþþ - a)ç(a).

We are aiso using the parity mapping

(uúXr) :,þ(-*).

Lete>0anddefine

ü= la"l 7 f ,- f e-eltl
= î f*l* J 

on 
J 

o* 
14 Q" x rlz', )(æ)¿"o"'' '

As lzl-t(x" x IIorXr) e Lr@Adæ) and the exponentials are uniformly bounded by

1, the dominated convergence theorem shows

lia Jj - Js.
€+u+

Define

^ e-€lxll,@): -læl

0: X, x lkrr.
(7.17)



-r54-
It is easily verified that i, € ¿1 n lr(mt). We also have g e Ll a lr(mt) via the

Hausdorff-Young inequality;

ll,þ * pllo I "llúll, llello (7.18)

Then

ÍF lo"l f -^r-, r .'l4:? ldnLF-'(Í,s)l@").

Here the symbol f'-l denotes the inverse Fourier transform.

Recall if ,r/ and ? ale both .ti functions, then

(7.1e)

(rþ * P)^: 1þ,þ

(.f. [Ru 73], theorem 7.2). We would like to be abie to use this result for our

problem, but it will turn out /. and g are not so nicely behaved as to apply this

result directly. Nevertheless, as we shall prove in the lemma to follou,,

F-'(i,il:le*e.

Let us calculate f, and g:

The inverse Fourier transform of /. is elementary to do and it is given by

r,@):å)*-+þ- {7-20)

For the inverse Fourier transform of f , we can use the result just quoted above to

get

g(a): lF-'(X, * Ilrrr)J(a)

: xr(.c,)(Ilor)"(_a)

: fi(a)ôr(o). (T.zt)
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Notice that as î¡ and ûa are both in ¿2 n¿""(Rt), *. haveg e. Lt )¿."(R3).

Thus our expression (7.19) for Jj becomes

'u- lo,ol f 1 f 
'^ 

2 7r; : I J on 
e"W J o' 

eñÞãTT"-æîi(o)ú¡(")'

As the integrand is absolutely integrable, we may intechange integral orders by

using the Fubini theorem. The d0 integral may then be explicitly performed with

the result

ö : # I o"+fir'" l#11#tl#l
We are interested in the e -+ 0-F limit of this function and we would like to be able

to bring this limit through the integral. The integrand converges pointwise to the

function

ti(î):.(") ," l]',1 * l'!)'.lal \la"l - lall
(7.22)

Furthermore we notice that

0 ( ln [': * !1",1* l"lJ:l .,,, ll",!* l"l)'.
lr' + (lo,l - I"l)21 l",l - l"l)

Thus to appiy the dominated convergence theorem, we need only study the absolute

integrability of the function in (7.22). It suffices to study its integrability at oo; in

a neighbourhood of ao; and in a neighbourhood of the origin.

If ao:0, the function is identically zero which is obviously Ll(da). Let

lo.l > 0. For lol * oo we have

'"(lil+Ël)':,(H) ,

lol-t < 1 and îi(")0r(*) e Ll(dc,). Thus (7.22) is absolutely integrable at oo.
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We are free to choose a neighbourhood oI ao f 0, so as to exclude the origin.

Then l*l-tîl(o)tr(a) is bounded on this neighbourhood and it is easily verified

that ln (]:4:]*l) is an Ll(ila) function in this neishbourhood of ao. Thus (7.22) is\ ldol-lall

absolutely integrable about ao.

Finally if ao 10, there is a neighbourhood of the origin such that for all a in

this neighbourhood,

, (lo' ' rr 2

'"(iii:ìä) <1

Since xi(a)ú.(o) e L*(da) and lal-1 is integrable at the origin, we see rhat (7.22)

is absolutely integrable at the origin.

Thus we may take the e -- 0* Iimit through the da integral. RecaJling

4-..I¡ and lool:2J),,we arrive at (7.77) ô

Lemma 7.2: Let a € Lt n .ú2(m3;C"*") be hermitian and let e ) 0. Then

F-'[i,(x"x IIor)] : /. * (i;ór)

where i, i" d.frned in (7.17).

Proof: It is enough to prove that

(Í, * g)^: f,0

where f is defined in (7.i7). From the formula (7.20) rue see f, e Lï+ n ¿*(R3),

and we have previously argued that g e Ll n ¿*(Rt). Thus it follows from the

Hausdorff-Young inequality (cf. (7.18)) that

Í,*9€L++n¿-(R3).
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In particular it is in Z2(m3), so that its Fourier transform exists in the L.i.m. sense.

That is, if ¡, denotes the cha¡acteristic function for a ball of radius R, centered on

the origin, then

U, * g)^: ';lJ''lx,(f, * s)1". (7.2J)

By using Fubini's theorem and making a change of integration variables we can get

for the pointwise representation of [X"(1, * g)]^,

lx*U,* g)l^(') : # I o" "-ia'' r*(o)ôr @)(f,r-,x")^(').

Here zo denotes the translation operator

(r"rþ)(a'):rþ(o'-a).

Then

ll¿, - tx..U,. s)t^ll'

7 f lr: 
(zn)3 I *ll o",--no''xi(,,¡or(a) lî,"øl - (l'r-oX")^(')] 

l'

= H I a. d', 1rt,@)t' l*{') - (Í'r-ox")^(')l'

: þr.ll-' ?

(2n)t J 
o" lx"(o)l'?ll/. - 1¡,"-,x)^ll2

: ll:dL' r

(zn){ J 
o' lx"(")l'll/' - ¡"-oxrllz

: ll:.lf r

(2n)t J o"d'o'lx'(*,)l'V'@')l' lr - x'(o'a o)l''

The integrand tends to zero as R --+ oo and it is bounded by alx"@)l2lf,.(o,¡12,

which is integrable. Thus v¡e can apply the dominated convergence theorem to
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conclude the right hand side tends to zeto as .R -+ oo. This yields the result

'"ji*["r(/. - g)]^ : iu(x, * IIo¡ ).

On comparing this with (7.23) we are finished.

Next we explore the integrabilty of J(À,6) and /(À,0) : J^.

Lemma 7.32 Let a e Lt n.ú2(m3;C"*'). Then J(),,6), as defrned by equation

(7.15), js Riemann integrable on frnite intervafs and

rb ¡b

.ri+ I ¿xl(À,6) : I axt¡.
o+u+ J a. JO

lTrp(x, r)R.(z)v R.(z)p(Ð,f )l < ,+ [ a* aox"(')l"f 
(sI

-l4tr1z, " læ-Al,

for all z € fI". This implies that J(), ó) is uniformly bounded in ) and á, which will

enable us to apply the dominated convergence theorem to arrive at our conclusion.

Proposition 7.22 Let u € ,1 n tr'(mu;Csx8) be hermitian. Then

fb
-lim I d^ TrP(!,l)Im [n,(À + i6)V R"(À + iá)]P(t, r)
6+O! J o

0

Proof: From lemma 6.4, the function TrP(Ð,|)R"(z)VR"(z)P(Ð,f) is con-

tinuous with respect to z € II". Thus J(^,6), which is comprised of linear com-

binations of these functions, is jointly continuous in ) and á. Hence its Riemann

integral with respect to ) over any fi.nite interval exists. Furthermore, recall that

/(À,0) = J¡:0 for all ) < 0. Finally wenote that
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where M(b;E,f) is defned in (7.3).

Proof: From lemma 7.1, equation (7.15) and lemma 7 .3, the left hand side of

(7.2! is

T*ru,x, f ),

# l,' o I,, liff@'" (t4jg)'

: * Iro't''(') * (7.24)

(7.25)

\Me wish to interchange integral orders to perform the dÀ integral. It is enough to

prove the the integrand is absolutely integrable and then apply Fubini's theorem.

Take the absolute value of the integrand and integrate this over d) and da. We

are free to interchange the order of integration here because the absolute value of

the integrand is positive. Furthermore we note that the ln function is positive, and

hence equal to its own absolute value. Define

h.(b, la, : 
Iour^ 

r (#:l:+)'

This integrable is exact and consists of linear combinations of one dimensional

integrals of the type ({2 : ))

rn(c1{ * cz) * #, -i,¿.

Using this identity and after some elementary algebra we get

h(b,lal) :zJblfll* 
[u 

-

I orrLn(c1{ +cz):; 
l*,- (i)']

*1^=l
(7.26)
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Notice that lz(b,lrl) I 0, because the integrand was positive. In particular,

for lal >-zJb this implies

(7.27)

Then

Iouo^lo*r&q#=I ^(m)'
: /r* lÎ"(')ll¿r(')l hft.t.,t\J lal

-f: 2t/b J orlf,(o)llor(")l

* [ ooli"(a)llór(a)l lu _ t]," /2.4 + l"l\' 
.J lol L 4J \2.'/a_l"l)

In the second equality on the right hand side, the first term is finite because X¡ and

?rf are both Z2(m3) functions. For the second term, split the da integral into a part

where lcrl<zJb and a part wher" lol > 2Jb. Fo, the lal <zJb integral, lal-i is

in Llo.(da), whiie the rest of the integrand is bounded. Hence this integral is finite.

For the integral outside the ball of radius 2t/b,, we use estimate (7.27) to estimate

this integral by

Hence we have shown we can interchange integral orders in (7.25). But we

have already evaluated the dÀ integral with the result (7.26). Substituting this

formula into (7.25) and using the Plancherel theorem to write

z,rttalrlo-,] 
'" (ffi)'

'n |r,rrJudolf"(o)llot(a)l 
< oo'

I o"îi(o)ór(o) : I a. y,@)ur(æ)



-161*
we get (7.24).

This concludes our study of the contributions over Ct, Cz and Cs. On ex-

amining these terms \rye see they comprise our sum rule, provided the contribution

lrom C(b,,á) tends to zero in the limit á --) 0+ and ó --+ oo. This is the topic of our

next section.

7.3 The C(b,6) Contribution

We now wish to studv the limit

r. rr f
.lim .lim, I d, Tr P(X, f )[R(z) - R"(") + R,(z)V R,(z)]P(X, f ).o+oo o+ut J c(b,6\

Because the integrand is continuous and uniformly bounded with respect to z € fI",

it is trivial to take the á --- 0* limit. From corollary 6.2 we have the result

f
I dr I.P(Ð, r)[Â(z) - R.(r) i R.(z)V R,(z)]P(x, r)

J cþ,0)

oon
T: > , I d" Tr P(Ð,l)R"(z)lv R"(z)l P(Ð, f ).

/-r J c1u,o¡

Thus we are motivated to study the individual terms of this series first.

Lemma 7,42 Let u e Lt n .F*(m3;C"""). Then for all n ) 2,

]* I"r,o,o" 
,rP(t, r)^R, (z)lv R.(z)l"P(Ð, r) : o.

Proof: Let 1) 0 be fixed but otherwise arbitrary. We shall make our choice

for 7 more definite in the proposition to follow. Consider breaking the curve C(b,O)
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into two pieces. The first piece is

Cr(b,ù : {z € C(b,,O): 0 ( arg z 1 0., or 2r - 0., S argz 1 2rr}

where sin 9,, : l lb. The second piece is

Cz(b, ù : C (b,o)\Cr (ö, z).

We examine contribution along Õr(b,7) first. This curve has an arc length of

t (c¡r,t)) : zbr..t : 2b arcsin!.

Now for 0 < € < J312, arcsin t < 2t. If 7 is flxed, then for å sufficiently large,

jlb < ú12 and the arc length of the curve satisfies the esimate

p(n " '\z\u1(ó,t))S+1.

Next we estimate TrP(Ð,1)n"Q)lVR"(z)l"P(t,f). Let 0 < 0 < 1 be fixed but

otherwise arbitrary. Then for all b ) lte and all z such that lzl : ö, we know that

llt(,)ll <d(1and

lTrP(X,l)R"(z)[V R,(z)] P(Ð,1)l 1 "rïn-l

wnere

^ _ lMrl2 [ ¿* ¿, x"@)1"(ù 
.cr:(qnyJ - l*-al,

With these inequalities, the contribution over Ct(b,7) has the estimate

lr I

I l^ ,, ,dz Trp(t, f )R, (z)[v R.(z)]",e(t, f )l S 4cr70n-t , n ] z. (T.zB)
lJ C1(b,1) 

|
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Next we consider the contribution ftom Õ2(b.,1). Utilizing expression (6.41)

in iemma 6.5, we have

f
I _ dz TrP(x, f ),R, (z)lv R"(z)l"P(x, r)

J c21u,1¡

f("-*) f 11> r,n,,fl(or*...*a.,"): -_-v:____¿! I d, I d"€ | d*lpl -_. ,_ 12t/z Jcrp,^,¡ Jo "J "' (on-z)n-,
x sp Myr¡(an).. .n@t)Mr

where we recall

(trn: i ,r*,,,€^)o1.a,n) o

I,rn=l

and

o(ü,t,"): min{€¿(1 - t""),,{-(1 - €¿)}.

Now for z e Õ2(b,7) we have the estimate

1 . I ,l-., if llm zl> t;

-\f

lo, - "l - [ ó]-", if llm zl < t.

With this, it is easily shown that the integrand is an -t1(dz d'(d^lpl) function and

consequently we may interchange the order of integrals. The dz integral may nortr

be evaluated explicitly, with the result

t ¿=---]-.:'.[ t t -1.Jc,1un¡ ço* - ,¡.-t, - n - lz\@;-f - ryf3, - ø=b-+ ,f- I
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Substituting in this result, the contribution overHere the

crlt,¡ i

I
J c21uj

:

constant ó:

S

d,z Tr P(X, f )4,(z)lV R"(z)l'P(Ð, f )

f(', - *) /tt ,- f .-

@W J, o"t I d"lplxi(*t + "'* o.'")sp Mvr¡(a") "'

"{t - b - 4)"-B (on-t+4)"-*

q(c,t)Mr

This integral has the estimate

llu,r,rrd' 
TrP(x' r)Ã' (z)lv R"(z)l'P(x' r)l

- lMrl2rn(Ð)l(n - rt rr) rsffiJ, d"tJ¿"lPl
ll t \t , lla-g
L\ø,, - 0)- +.,1")2 4

(7.2e)

Here, *(Ð) is the Lebesgue measure of Ð. For all n ) 2 the integrand on the right

hand side of (7.29) tends to zero as ó - oo and it is uniformly bounded by

.,/t-" e ttça"¿ d"lpl).

Therefore we can apply the dominated convergence theorem to conclude

(7.30)¡* | /- d,z rr."(Ð, r),R, (z)lv R"(z)l'p(x, r)l : 0 @ > 2).
o+æ 

lJ C2(b,1) 
|

For purposes in the next proposition, we further esimate the right hand side of

(7.29) to obtain ihe å independent bound

I f d,z rrp(r, f ),R, (z)lv R,(z)l'p(Ð, rll s 'ttzltf 
lzry|')r(n - T) f ikll) " .

lJCrpn¡ 
\ '-"--u\'-'ll'--u\-'lr-\- (n_L)ntZtlz \l /

(7.31)
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Statement (7.30) means given e ) 0, there exists ó, such that for a]'l b > bo

In the estimate (7.28)r 'we are free to pick d as small as we piease. In particular,

\¡/e may pick it such that 4cr'y0"-1 < e 12. Implicit in (7.28) is that there exists ö1

such that (7.28) is valid for all b > h.
Thus we have shown given e ) 0 and for each n ) 2, there exist å' such that

forallb>bl

| [^ ,, .d,z Tr.o(x,f),R, (z)rvR"(z)]'p(r,rll s i
luvz\o,'lt | '

t¡ 
|

| | d,z Trp(r, r),R, (z)[v R,(z)]"p(Ð, r)l
lJ c(b,o) 

|

lr I

< l L dz Tr p(Ð, r)R,(z)lv R"(z)l p(r, r)l
lJ c1(b,,r) 

|

.l t d,z Tr,o(r, r)R, (z)fv R.(z)l,p(r, r)l
ll c2(b1) 

I

e€.. i+ t: r. O

Proposition 7.3: Let u e Lt ¡F*(mt;C"*"). Then

fim .lim, t d,z Trp(x, r)[A (") - R.(") -t R,(z)V R"(z)]p(Ð,f ) : o.
b+oo ó+0* J C1U,t7

Proof: We have already discussed the ó --+ 0* iimit and we know
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Dividing the curve C(ó,0) up as in the proof of lemma 7.4, I(b) can be estimated

by

ålr I

I 
/(å) | < 

!*lJ r,*,.,rdz 
Tt P( x' f )'R" (z)lv R"(z)l " P( Ð' r) 

I

.ålr I

+ >,1 l_ d.z Tr P(t,r),R,(z)lVR"(z)l"P(Ð,r)l
--r lJ c2lun) 

I

= /i(ó) + Iz(b).

From inequality (7.28) we have

oo

I-,(b\ < 4-yc- \- ln-t : 4r", u*¡\-/ - 't-l .L ,"r I _ 0'

The right hand side can be made as small as desired, with the corresponding .tLp's

increasing in size. This demonstrates that

Iim 11(ó) :0.
b*oo

We need to be more careful with /2(b). In the proof of lemma 7.4we demon-

strated that each term in the series for I2(b) tended to zero as ó --+ oo. From

inequality (7.31), the series for I2(b) is majorized by the å independent series

.f l(";.åì l[Ét)" . {r"Ë-+_ /l]4ll\"
,._'r("- å)"t \ z ) i v ¿¡" 

-?--(" - 7)" \ r /

Here we have grouped all the constants on the right hand side of (7.31) into c. The

series on the right hand side above converges it ll¡rll ( 7. Since 7 \¡¡as an arbitrary

parameter, we are free to pick it equal t" llpll. Thus the series for 12(å) converges

uniformly with respect to b and consequently

/11 /'{a¡ : ¡' 0
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In conclusion, we have shown the existence of a new class of sum rules given

by formulas (7.2) and (7.a). The first term on the ieft hand side of (7.2) (before

the ô ---+ oo limit is taken) is the integral over energy of the time delay function

q(À;X,l). This integral does not converge as the upper energy limit tends to oo.

From equations (6.24) and (6.30), we see the relationship between q(À; X, f ) and

the resolvent difference P(X,f)[A(z) - R.(z))P(X,f) is

q(À; Ð, r) : z 
,\T-, {Tr P(x, r)Im ,R'"(À + ip)P(Ð, r)

- Tr P(X, t)Im R,(À + ip)p(Ð, f )) .

By using the Born series expansion of the resolvent difference, it is possible to cancel

exactly the large energy divergence of the integral of q(À;t,l). The first term of

the Born series suffi.ces to control this singularity and this is the origin of the second

and third terms on the left hand side of (7.2). The right hand side of (7.2) is related

to the number of bound states that have support in the spatial region Ð and spinor

subspace f . Its originates from the pole contributions of the exact resolvent to the

contour integral performed in chapter 7.

The sum rules given in (7.2) and (7.4) are structurally different from those

rules obtained via the spin channel formalism. The difference in structure occurs

between the placement of the spin projection operators relative to the Mgller op-

erators (cf. equations (6.21) and (6.22)). The spin channel formalism places these

projection operators to the exterior of the product of the two Møller operators. This

has the advantage of allowing one to decompose the ,S-matrix into a matrix over

the spin channels and the global time delay may be related directly to the .9-matrix

("f. reference [BO 76], equation (4.12)). Our formalism places the projection op-

erator betwien the Møller operators. White we have a particularly simple physical

interpretation of the time delay we have studied, its connection to the ^9-matrix

is more opaque than the spin channel case and we leave this as a problem to be
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addressed to in future studies. We note that our class of rules can also incorporate

a spin channel formalism. This is because we have not yet exploited any degree of

freedom in the choice of the asymptotic in and out states. By picking particular

poiarizations of these states, we obtain the spin channel formalism.

Finally some remarks about the restriction of t' to Lt nî* (R3; C" *'). A possible

method for showing the contribution along C(b,6) tends to 0 is given by Buslaev

[Bu 67]. In his technique, he uses an elliptical co-ordinate system to ¡emove the

l* -Al singularity in the kernel ol R"(z). By making smoothness assumptions on the

potential he was able to integrate by parts one of the integrals that appear in the

trace (cf. equation (6.50)). Each integration by parts would pull down a factor of

Ø;)-'from the exponential appearing in the free resolvent kernel Ro(*,g; z). Ãlter

a sufficient number of integrations by parts, there exist enough decay in z that the

contribution around the contour C(bró) will tend to zero as ó -> oo. This technique

has the advarrtage of using only smoothness properties of the potential so that the

assumption o € Ll a L2(m3;C'*") should only require minimal strengthening.

On the other hand, if one is interested in higher moment sum rules iike those

in equation (1.12), then one must use a large energy (z) asymptotic expansion of

TrP(X,f)[A(z) - R,(z)]P(X,l). A closely related expansion has been worked out

by Osborn et. al. ([OCF 85], theorem 3). \Me remark that this asymptotic series is

in the variable z, whereas the Born series is a series in the coupling constant that

can be associated with o. It is because these two series coincide to lowest order

that we were able to utilize the Born series in our analysis. For the higher moment

sum rules we must subtract away the leading order terms of the large z asymptotic

expansion of TrP(Ð, f )[,Qz) - R'(z)]P(t, f ) in order to cancel the energy growth

at oo. The higher the por¡¡er in the moment, the more terms in the asymptotic

expansion that must be used. To be able to utilize this expansion, we must subsume

the hypotheses of Osborn et. al. IOCF 85] that t' e .F*(m3;C""'). In theorem 3 of

reference IOCF 85], a further smoothness in the potential was assumed so that the
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asymptotic expansion of the difference between the total and free resolvent kernels

could be carried out to higher orders. \Me would also stili require zr e -ú1(m3;C'x") in

order to gain control over the contribution of that part of C(b,6) near the positive

real axis. This should enable us to utilize arguments similar to those presented in

section 7.3. In light of these details, the class of potentials studied for our sum rule

would be consistent with the class used to study the higher moment sum rules.
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