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ABSTRACT

The first part of this thesis explores solutions to the Schrodinger equation for sys-
tems subject to classical Yang-Mills fields. Under a weak set of assumptions on the
potentials, we prove the existence of a family of operators, called the Schrédinger
evolution, which map vectors in Hilbert space to solutions of the Schrédinger equa-
tion. By strengthening our assumptions it is possible to show that these evolution
operators are integral operators. The collection of their kernels is commonly called
the propagator in the physics literature. Through a constructive technique, an ex-
plicit formula for the propagator is found.

The second part of this dissertation derives a class of sum rules, commonly
known as Levinson’s theorem, for a single particle system. These rules relate the
number of bound states to the energy integral of the the trace of the time delay
operator. In particular we will incorporate into these rules detailed information

about the spin structure of the system.
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CHAPTER 1

Introduction

In this treatise we address two problems arising in the theory of quantum mechanics
for systems subject to non-Abelian potentials and external fields. The first is con-
cerned with the study of a quantum system composed of N particles interacting with
external vector and scalar Yang-Mills fields. A special case of these fields occurs
in the description of an N-particle atomic (or subatomic) spin system interacting
with an external electromagnetic field. This latter problem manifests only a limited
form of non-Abelian behaviour because the description of the electromagnetic field
via the potentials A and ¢ is free of spin labels. All the spin interaction here is
confined to the coupling of the spin magnetic moments among themselves or to the
external magnetic field. For the more general Yang-Mills fields, 4 and ¢ become
hermitian-matrix valued fields which gives use the most general non-Abelian struc-
ture possible. The second topic we wish to discuss is a class of sum rules that relate
the number of bound states for a single particle system (without electromagnetic
fields) to the energy integral of the trace of the time delay operator.

In as much as these two problems can be treated separately (although they

are not wholly unrelated) we shall divide this dissertation into two parts.
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1.1 Part 1: The Non-Abelian Time Dependent Schrodinger Equation

We wish to study a nonrelativistic N-body system subject to (external) classical
Yang-Mills fields [Mor 83]. These fields have built into them a matrix structure
which is used to describe internal degrees of freedom. For convenience we shall use
“spin” as the generic name to label the matrix structure although in actuality its
interpretation may be something completely different (eg. isospin) depending upon
the physics being described in a given situation.

The dynamical evolution of a quantum mechanical system is determined by

Schrédinger’s time dependent equation of motion

.8
iftb(e,t) = H(z, )(z,1). (1.1)

Here z denotes a generic point in R? that specifies the positions of all the pariticles
in the system. If the 8" particle has spin 55, then (z,t) is a column vector of

dimension

s= (255 +1),
B=1

and it is the pointwise representation of the state vector ¥(t) € L?(R%;C*). The time
parameter ¢, lies in the compact set [0,7"] and the Hamiltonian has the differential

structure

H(z,4) = — [—T_”w - a(m,t)} 4 o(a, 1), (1.2)

2m | 1

Here I is the unit s x s matrix and V is the d-dimensional gradient. The potential
v maps R? x [0, T] — €°*°. For a physical situation we have the necessary pointwise
condition on v that for a.a. (z,t), v(z,t) is a hermitian matrix. The hermiticity is
also useful for demonstrating the existence of solutions to (1.1) for a broad class of
potentials. We will eventually make much stronger assumptions on v that will allow

us to relax the hermiticity requirement. Non-hermitian potentials create a source or
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sink for probability and are known in the physics literature as the optical potential
[MS 70]. The vector potential a is a d-dimensional vector whose components are
s X s hermitian matrices.

We remark that such a Hamiltonian is sufficient to describe the N-body prob-
lem in atomic physics. For such systems, suppose the external electromagnetic fields
E and B are generated by the vector potential A and the scalar potential ¢. Then

the vector potential appearing in (1.2) is related to A by the formula
a(z,t) = (QIA(£1>t)v Tt QNA‘(:ENat))Ia

where g, is the charge of the % particle and &, is its position. The perturbin
9 g p B g

potential may be written in the form

N N
v(z,t) = — Znﬁgﬂ B(zg,t) + Z 959(Z5,t)] + v(, 1)
B=1 p£=1

The vector S, denotes the spin operator for the §** particle. For the example of a
B P Y
spin half particle, S 5 is h/2 times the vector formed from the three Pauli matrices.

Substituting these expressions into (1.2), the Hamiltonian has the form

1 Nyl B 2 N
H(tom) = =5 |55, - g0 d(@5,0)| 1= msS5 - Blest)
B=1 B=1
N
+ ) g50(25, 1) + i(z,1). (1.3)

We furthermore note that with a change of scale in the position variable and an
adjustment of the coupling constants, we can switch from the case of all the particles
having a common mass m, to one where the mass of the 8" particle is mg. With

these changes made, the Hamiltonian is precisely in the form ascribed by Landau

and Lifshitz ([LL 58], chapter XX).
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Hamiltonians in the form (1.2) are sufficiently general to describe quantum

particles in a classical Yang-Mills field [Mor 83] [Wo 70]. An example of their use
is the study a system of quarks in an external gluon field [Ar 82].

We approach the problem of solving the Schrédinger equation from two dif-

ferent points of view. We first examine the solutions by solving the equation

L0
ihe(t) = H(ty(2) (1.4)

in the L?(R% C*) topology. Let C®(R%;C*) denote the space of infinitely differen-
tiable functions of compact support. We shall place sufficient conditions on a and
v to ensure the minimal operator H(-,t) defined on C2°(R%;C®) has a unique closed
extension H(t), with a domain D(H(t)> = D, that is time independent. Let Th

be the closed triangular region
Ta ={(to,t) € [0,T] x [0,T): 0< ¢, <t < T}.

For each t, < T, we will seek a solution of (1.4) that satisfies the Cauchy data

problem

’d)(tO’tO) - "/)oa ")[)o E Do- (15)

We shall see that under a set of weak assumptions on a and v, a unique solu-
tion exists and defines a family of bounded linear operators via the mappings
Yo +— ¥(t,1,). For each (t¢,,t) we denote this mapping by U(t,%,) and we call
the collection of these mappings, {U(%,10)}(1, 1), » the Schrédinger evolution. We
shall study equations similar to (1.4) and (1.5) and show that they also generate
unique families of bounded linear operators, which we shall call an evolution. Prop-

erties of an evolution will be outlined in chapter 2. Here it suffices to say U(%,1,)
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has the domain stability property U(t,%,) : Do — Do; U(to,t,) = I; and U(t,1,) is

strongly continuously differentiable and satisfies the equation

ih—g—tU(t,to)z/) = H()U(t,1,)¢, P € D,.

If H(t) is time independent, then the Schrédinger evolution has the well known
form

U(t,t,) = e~ Ht=t)H/ (1.6)

With weak restrictions placed on a and v we can show the existence and
uniqueness of the Schrédinger evolution. These operator solutions provide us with
a rigorous abstract framework in which to discuss evolutions. Under somewhat
stronger assumptions on a and v and for times ¢t — ¢, sufficiently small, it is possible
to show that U(t,%,) is an integral operator. Its integral kernel is a matrix valued
function, which we denote by K(z,t;y,t,;m). Another characterization of K (the

propagator), common through physics, is found in the Dirac bra ket statement
K(z,t;9,t0;m) = (2|U(t,1,)]y).

One should recall that the Dirac notation above assumes that every bounded op-
erator on Hilbert space has a kernel. This is often false. Any satisfactory study
of evolution must establish the existence of an integral kernel K. Although (with
a static Hamiltonian H) a great deal is known about kernels associated with the
analytic semigroup e *#, Ret > 0, very little is rigorously known about the ker-
nel of the evolution e™*# ¢t € R. As Simon observes in his review of Schrédinger
semigroups [Si 82], it is an open question whether or not for N-body Schrédinger
operators, including the atomic Hamiltonians, e~*¥ is a weak integral operator with
a jointly continuous integral kernel. We will use a constructive technique to obtain

an explicit formula for the evolution’s kernel and this is the principle achievement
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of the first part of this thesis. These kernels represent the starting point in all
approximate descriptions of evolutions, such as are found in the WKB, the large
mass, and the small time displaéement asymptbtic studies in K.

Let (-,-) denote the inner product in H = L?*(R%; C*%) with the convention that

it is linear in the right argument. We have the following definition by Simon [Si 82]:

Definition 1.1: A two parameter family (in Ta, t # t,) of functions
K(-,t;-,1,) : R x R — ¢**¢

that are measureable and locally integrable on R? x R?, is called the propagator for
the Schrédinger evolution if for all bounded measurable functions v,¢ of compact

support,

(0, U(t,to)p) = f¢(w)*K(w>t§y7to§m)So(y) dy dz. (1.7)

¢
Kernels of the type defined by equation (1.7) are called weak in Simon’s ter-
minology [Si 82].
The Hamiltonian H(t) may be written as a perturbation of the free Laplacian
52

operator H, = —5—A;

H(t) = H, + V().

If {Us(t,10)}(to,t)eT, Tepresents the evolution associated with the free Hamiltonian

H,, then the Schrodinger evolution satisfies the (strong) integral equation

U(tt0) = Us(t, o) + % / U, 1)V (1) T (7 1), (1.8)

to
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We will obtain an explicit representation of K by investigating the individual terms
that arise from the iteration of (1.8). By iterating (1.8) an infinite number of times,
the resulting series is known in the literature as the Dyson series [Dy 49,1][Dy 49,2].

To gain better control of the individual terms of the Dyson series, it will
be necessary to embed our evolution problem into a larger problem in which the
mass parameter m shall be treated as complex. Let Cs denote the upper half
complex plane and let C> denote its closure with respect to C. We shall study the
evolution problem with m € C5 and treat the Schrédinger equation and its solution
as Imm — 0+ boundary value problem of this larger class of evolutions. We shall
see that both the complex mass evolution and the complex mass propagator are
continuous functions of m and their extensions coincide on C>.

The convergence behaviour of the Dyson series is dictated by our assumptions
on the potentials @ and v. Each will be assumed to be the Fourier transform of a
complex matrix valued measure of compact support. For example if {V(t)}te[o,T]

denotes such a family of measures over the Borel subsets of R¢, then
v(z,t) = /ﬂ;d €% du(t). (1.9)
Here, o - ¢ denotes the dot product
QT =T+ 0+ agzy.

Similarly if {7(?)}sc[o,1) is  family of d-tuples whose components are complex matrix

valued measures of compact support, then

a(z,t) = /';d €' dy(t). (1.10)

Sufficient ¢ differentiability properties are imposed on the measures () and v(¢) to

ensure that v(z,t) and a(z,t) are continuously differentiable in ¢. For each fixed ¢,
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the potentials will also be holomorphic functions of z because of the boundedness
of the support of their respective measures.

This class of potentials is very similar to that used by Ito [It 61] [It 67] and
Albeverio and Hgegh-Krohn [AH 76] in their studies of the Feynman path integral.
In these studies, the potential has the same form as in (1.10), but v(¢) no longer
need have compact support. Osborn et. al. [OF 83] [OCF 85] have studied the
propagator using this same class of potentials. However in each of these references
cited, a = 0. It is the appearance of a term like a - V in the Hamiltonian wherein
lies the difficulty. Such a term leads to polynomial structures in the Fourier space
for each of the terms in the Dyson series. For the n** term, these polynomials
can be up to order » and it is the compact support of the measures that provides
the mechanism for controlling the polynomial growth at infinity. In another paper,
Osborn et. al. [OPC 87] have addressed the same problem we are considering,
but within the frame work of a spinless (s = 1) system. The techniques used in
that paper are adaptable to spins s > 1 and it forms the basis for the arguments
presented in part 1 of this dissertation.

In chapter 2 we discuss the properties of the Schrédinger evolution and what
are sufficient conditions required of H(t) in order to ensure its existence. Our as-
sumptions on a and v shall be weak in order to verify the existence of the Schrodinger
evolution for a broad class of Hamiltonians. Included in this class of potentials are
the physically important Coulomb and Yukawa potentials. It will be necessary to
allow the mass parameter to take values in [0, o) when we consider this broad class
of potentials because with a real mass we can exploit properties of a self-adjoint
operator which we would not be able to utilize with a complex mass. For the last
part of chapter 2 we will strengthen our assumptions on a and v so that we may
let m be complex and we can drop the hermiticity requirements on v. Under this

setting, we investigate the m € C> continuity of the evolution {U(%,2,)}(1,,t)eT, -
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In chapter 3, we make precise our working assumptions on the potentials to
be used for the remainder of part 1. We also demonstrate that these assumptions
are sufficient to verify that a« and v will satisfy the criteria required of them in
chapter 2.

Chapter 4 is concerned with the individual terms of the Dyson series and
demonstrates that for sufficiently small times ¢ — 1, the series is summable and it
strongly converges to a solution of the Schrodinger equation (1.4).

In chapter 5 we show that the nt* term in the Dyson series defines an inte-
gral operator with a continuous kernel d,(z,t;y,%,;m). Moreover, for sufficiently
small times, these kernels are pointwise summable and their sum is the complex
mass propagator K(z,t;y,t,;m). The complex mass propagator is shown to be
continuous in the limit Imm — 0+. Using the strong continuity of the evolution
{U(t,%0)}(to,)eT, With respect to the mass parameter, we show the Schrédinger
evolution (ie. Imm = 0) is an integral operator whose kernel is the propagator.

It is helpful to recall in what ways the results given here for the time evolution
of quantum systems in external non-Abelian fields extend those found elsewhere in
the literature. The specific construction of a convergent Dyson series (in several
different topologies) is the core result. These convergent results (as stated in lemma
5.5 and theorem 5.1) are new and have importance in establishing the mathematical
nature of the quantum propagator and in characterizing the analytic structure of
the propagator in the physical constants %, m, and g (the charge coupling constant).
The simpler non-Abelian external field problem is already published in [OPC 87]
and the revised analysis found in sections 1-5 successfully extend the idea of using

the complex mass continuation technique to the non-Abelian case.
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1.2 Part 2: Levinson’s Theorem for Spin Systems

In the second part of this treatise we study Levinson’s theorem for two particle
scattering. Formally one may remove the center of mass rﬁotion from the problem
and consider the equivalent one particle system in an external potential v. Again
we are interested in a system possessing spin degrees of freedom. As in part 1, the
term spin is a generic term and its precise interpretation depends upon the physics
being described. The relevant Hilbert space for this problem will be H = L?(R®; C®).
The scattering system is completely specified by the Hamiltonian pair (H, H,). The
free Hamiltonian is the self-adjoint extension of the minimal operator defined by
the negative Laplacian on C®(R%;C®). The interaction Hamiltonian is given as a
perturbation of H,;
H=H,+V.

The operator V is defined by multiplication with the matrix valued function
v : RS — C**%. For a.a. z, v(z) will be hermitian, which is a necessary condition
on v if H is to be self-adjoint. For many of our arguments it is sufficient that
v € L' N L%(R% C***). However there is one proof where we needed to strengthen
this assumption on v to v € L! N F*(R%;C***). The potential class F* describes
those hermitian matrix valued functions that are the Fourier transform of a complex
matrix valued measure, similar to (1.9). This assumption was needed to provide

sufficient control over the large (complex) energy behaviour of the Born series
R(z) = Ro(2) = ¥ _(—1)"Ro(2)[V Ro(2)]". (1.11)
Here R(z) = (H — z)7! is the resolvent of H and R,(z) is the resolvent of H,. We

shall keep these integrability assumptions on v local to each claim so that in the

event of improvements on controlling the large energy behaviour of the Born series,
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we need only modify those results directly affected, rather than having to rederive
all the results.

Levinson’s theorem is just one of a class of energy moment sum rules [Bo 86].
Suppose the Hamiltonian has N bound states with eigenvalues A; (7 = 1 ~ Ny).

Then for v in a certain class, the sum rules are (cf. [Bo 86], equation (3.24) )

oo N+1
/ M {20m THR() - Ro(W)] - Y ey d/\/dm s Pa(e,2)
0 n=1 AT
Ny
=2r ) AN N =0,1,2---. (1.12)
n=1

Here sp corresponds to the trace in C*** and the series

N+1

Z cn% /da: sp Pr(z,z)

oy A2

is the leading order asymptotic expansion of the function 2Im Tr[R(z) — R,(z)]
(cf. [OCF 85], theorem 3). Levinson’s theorem corresponds to the N = 0 version of
(1.12).

One can develop this rule further by considering time delay theory. Let %
be a Lebesgue measurable subset of R? of finite measure. The time delay through
the region X is the difference in times spent by a free particle in ¥ and a particle
under the influence of v. If we consider taking the limit ¥ — R3, the corresponding
limit of the time delay also exists and we call this the global time delay. The global
time delay may be connected to the resolvent difference and the exploitation of this
connection leads to another form of Levinson’s theorem. We shall call this the global
Levinson’s theorem.

We are interested in what we shall call the local Levinson’s theorem. It is a
similar theorem to the global sum rule, but it uses the time delay associated with

a finite region ¥. We further broaden our considerations by studying time delay
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through the region ¥ while the particle has spinor components in some fixed but
otherwise arbitrary subspace I' C C®. The local theory is of interest on several
accounts. For the global time delay theory, there exist relationships between the
time delay function, the density of states and Krein’s spectral shift function [Bu 67]
[JSM 72]. Initial examinations of the arguments of MacMillan and Osborn [MO 80],
and Bollé et. al. [BDO 86] indicate the local time delay is related to a local
representation of the density of states and what appears to be a local version of
Krein’s spectral shift function. The complete exploration of these aspects of the
local theory we shall leave for future studies. Another use of the local theory is to
study the ¥ — R® limit. There appears in the global sum rule a term that never
appears in the local version of the same rule. The origin of this term is due to the
possible occurrence of a zero eI;ergy resonance [N 77] [JK 79]. Thus this limit is
quite delicate and nontrivial to perform. Recent result for the local local Levinson’s
theorem in two dimensions have been presented by Osborn et. al. [OSBD 85}.

In the above, we are only using the spatial aspect of the problem with the
region X. We can also exploit the spinor structure in our problem. By using the
arbitrariness of I', one may take combinations of these sum rules so that specific
matrix components of v and the time delay operator are singled out. This is a new
contribution to the theory, allowing a detailed study of the off diagonal spin terms.
Prior to this, due to a trace being performed, only information concerning the sum
of the diagonal spin variables was available.

In chapter 6 we first establish the properties of the scattering system deter-
mined by the Hamiltonian pair (H, H,). A discussion of the connections between the
resolvent difference and the time delay for the spatial region ¥ and spinor subspace
I’ follows. We end chapter 6 with a brief study of the Born series.

We end our study with chapter 7, which deals with the specific details of the

proof of our local Levinson’s theorem.



- 13 -

CHAPTER 2

Evolution Operators and the Hamiltonian

2.1 Evolutions in Banach Space

Before we discuss the Hamiltonian in detail we examine the properties suffi-
cient for an operator to generate an evolution. With these properties in mind we
will place restrictions on the Hamiltonian to guarantee that the Schrodinger evolu-
tion exists. A theory concerning evolutions has been worked out by Krein [Kr 71]
in the more general setting of Banach spaces and we shall apply this theory to the
specialised case of a Hilbert space.

The evolution problem of interest is the following: In a Banach space E we

consider a first order differential equation

d
d_lf = A(t)y, 0<t<T, (2.1)
where 7 : [0,T] — E and A(t) is a family of possibly unbounded operators on

E. Each A(t) is assumed to be closed and they all share a common domain

D(4(t)) = D(4) C Eforall e [0,T].

Definition 2.1: A solution of (2.1) on the segment [t,, T'] for a fixed ¢, € [0, T

is a function ¥(t,1,) taking values in D(A) and having a strong derivative 8;1(%, 1)
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which satisfies (2.1) on the interval [t,,T]. The problem of finding a solution ¥%(t,1,)

of (2.1), for each fixed t, € [0,T], and which satisfies the initial data condition

¢(to’t0) = o € D(A) (2'2)

we shall call the Cauchy problem on the triangle Tp = {(t,t,): 0 <1, <t < T}.
¢

Definition 2.2: The Cauchy problem is said to be uniformly correct if the
following statements hold:

(1) For each ¢, € [0,T] and any %, € D(A) there exists a unique solution
(t,to) of (2.1) on the segment [t,, 7] satisfying the initial data condition (2.2).

(2) The function ¥(t,t,) and its ¢ derivative d;3(t,1,) are continuous in the
triangle Th.

(3) The solution depends continuously on the initial data in the sense that if
%om € D(A) converges to zero as n — oo then the corresponding solutions ¥y, (%, 1,)
converge to zero uniformly relative to (¢,1,) € Th. O

When the Cauchy problem is uniformly correct we can define a linear map on
D(A) for each (¢,1,) € Ta by the relation v, — ¥(t,%,). We denote this operator
by U(t,t,) and we have

P(t,t0) = UL, t0)o. (2.3)

From properties (1) and (3) it follows that U(¢,%,) is bounded and since D(A4) is
dense we can extend U(t,1,) to all of E. We denote the extension again by U(¢,1,)
and we call the associated family of operators an evolution. The uniformly correct
Cauchy problems leads to certain properties for the evolution {U (£, t0) Hto,t)eTa »

summarized in the following proposition.

Proposition 2.1: Suppose the Cauchy problem in the triangle Ta is uni-

formly correct. Then the evolution {U(t,t0)} (1, )er, Satisfies the following:
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(1) U(t,t0) : D(A) — D(4), (t,1) € Ta.
(2) The operator U(t,t,) is uniformly bounded in Th.
(3) The operator U(t,1,) is strongly continuous in Th.
(4) The following operator identities hold in Ta:
U(t,to) =U(L, T)U(T, L), 0<t, <7<t T, (2.4)

Ulto,to) = I, 1, €[0,T). (2.5)

(5) The restriction of the operator U(t,t,) to the domain D(A) is strongly
differentiable in t € [t,,T)]. Furthermore the operator 0;U(t,t,), defined on D(4), is

jointly strongly continuous in (t,t,) € Ta and obeys the relation

Ut to)h = AUL LY, % € D(A). (2.6)

Proof: See Krein [Kr 71] (pp. 193-195). ¢

The significance of proposition 2.1 is that we need only verify that the Cauchy
problem (2.1) and (2.2) is uniformly correct in order to know the associated evolu-
tion {U(t,%0)}(1o,t)eT, €xists. The next theorem states easily verified conditions on

A(t) that will be sufficient to guarantee the Cauchy problem is uniformly correct.

Theorem 2.1: Suppose the operators A(t) (¢ € [0,T]) are
(1) densely defined and closed, with a t-invariant domain D(A);
(2) strongly continuously differentiable on domain D(A); and

(3) obey the resolvent estimate

IR AD)] < 750 A20. (2.7)

Then



~16 -
(a) the Cauchy problem in T is uniformly correct;
(b) the restriction of the operator U(t,1,) to the domain D(A) is strongly

continuously differentiable with respect to t, € |0,T] and satisfies the equation

O U(t,t0)Y = —U(t,1,)A(t0)D, (t,25) € Ta, 1 € D(4); (2.8)
and
(c) the operator U(t,t,) satisfies the uniform bound
WUt i)l < 1. (2.9)
Proof: We refer the reader to Krein [Kr 71|, chapter 2, section 3.1 and specif-
ically theorem 3.11. O

We next wish to apply this theory to the Schrédinger evolution problem. Let
E be the Hilbert space
H= Lz(Rd;Cs).

The Schrodinger equation with its associated Cauchy problem is

w2 = H(1)y,

dt (2.10)
"b(to,to) = ’Qbo, ’(,bo c D(H)

Here H (1) is a family of self-adjoint operators on H with the common domain D(H).

We have the following result.

Theorem 2.2: Let
At) = z,th(t) _ e, (2.11)
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where ¢ is an appropriately chosen real constant such that A(t) satisfies the hy-
potheses of theorem 2.1 and let {U(t,10)} (1, 1)eT, De its associated evolution. Then
the Schrédinger equation (2.10) generates an evolution, {U(t,10)}(, 1)eT,, Which

satisfies the pointwise operator identity
Ult,to) = 00U, 1,),  (tt0) € Ta. (2.12)

The Schrédinger evolution has the analogous properties;
(1) U(tsto) : D(H) — D(H), (t,t0) € Ta;
(2) U(t,t,) has the operator norm bound

10 o) < ett=t); (2.13)

(3) U(t,1,) is strongly continuous in Th;

(4) U(t,1,) satisfies the operator identities

Ut,to) = U, 7)U(1,10), - 0<t, <7<t<T,
(2.14)
U(to,to) = I;

(5) the restriction of U(t,t,) to the domain D(H) is strongly differentiable

with respect to both t and t, with the strong derivatives

O (t,0) = = HOU (1),
z (2.15)

B, U (t,1) = —%U(t,to)ﬂ(to).

Proof: From the definition (2.12), theorem 2.1 and proposition 2.1 we see that
properties (1) ~ (4) are trivially satisfied. We show (2.15). If 4, € D(H) = D(A4),
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then
O:U (1,10 )1bo = B(e*=20U(2, 1, )b,

= CU(ta to)¢o + ec(t_to)A(t)u(t’ to)"vbo
= cU(t7to)"/)o + <%H(t) - CI> U(t’to)¢o

1
= = H()U (410 Jtbo-

The second equation in (2.15) follows similarly. &

2.2 The Hamiltonian

We are now ready to discuss what sort of assumptions are necessary to make
on H(t) in order that A(t) defined by (2.11) have the properties (1) ~(3) in theorem
2.1, needed to generate an evolution. Obviously properties (1) and (2) are satisfied
if and only if the corresponding properties exist for H(%).

In our studies of the Hamiltonian properties we shall discuss two different
approaches in the treatment of the mass variable m. The first is to treat m as
a positive parameter. The advantage of this is it allows us to demonstrate the
flexibility of Krein’s evolution theory by using a broad class of potentials. The
second treatment of the mass parameter allows m to take up values in the upper
half complex plane. The class of allowable potentials will be narrower than in the
first treatment, but it is this class that we shall ultimately use to develop a pointwise
representation of the propagator. The complex nature of m is crucial in establishing
the relation between the abstract evolution operator and the propagator.

We first make some preliminary definitions to make statements about our
potentials concise and then we shall describe assumptions on the potentials sufficient
to allow A(%) to have the desired properties listed in theorem 2.1.

We introduce the Hilbert space H, defined by

H, = L}(R%; (C*)?).
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Here (C*)? denotes the space of d-tuples whose components are s - dimensional
vectors over the complex field C. We denote the norm on H, by ||||,. We will define
mappings H — H, componentwise. For example we can define the momentum

operator P : H — H, by specifying the effect of each of its components

~

(Piy) (@) = hajid(a),  j=1,...,d.

Here" denotes the Fourier transform mapping H — H and o = (a,..., 0y ). Clearly
P; has the interpretation of the generalised derivative —i%8/8z;. The domain of

the operator P is

DP)={peH:ap € Hy} ={p e H:|ajp € H}.

Assumption 1: The operator a(t):H — H, is a d-dimensional tuple whose
components, [a(t)], are operators mapping H — H. Each component, [a(?)],,
is defined by multiplication by the matrix valued function [a(:,%)], : R? — C**¢
(p=1~d). For a.a. z, [a(z,t)], is hermitian * and hence each [a(t)], is a symmetric
operator. If a(-,t) denotes the d-tuple formed from the [a(-,%)],’s, then we assume
a satisfies the following properties:

(1) a € CY(R? x [0,T),(C***)?), where (C***)? is the space of d-tuples whose

components are s X s matrices;

* In the language of gauge theory, each component [a(-,)], can be written pointwise as
la(z, )], = >k (x, 1) F.
k

The coefficients @ (z,) are scalar and contain all the space-time information. The matrices
Fy, are the generators of the internal symmetry group on C* and satisfy the usual commutation
relations

(F;, F}] = dcije Fr,

where the structure constants c;;z depend upon the particular group the Fy’s generate. For
further details, cf. reference [Mor 83].
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(2) @ and its derivatives are uniformly bounded in z and t;

|a(m7t)l S Ml,
'(a;:]a’)(m?t)l < MZ, !77| = 1’
|(Bsa)(z, )| < M.

Here 7 is the multi-index (7, ,...,74), with length || =n, +--- +74. We utilize the

notation

0 0

ag:(a_ml)m... B

)e.,

(3) a is continuously differentiable with respect to ¢ in the L°°(dz;(C***)?)
norm. That is, there exists a measurable (with respect to dz) function a, whose

components are also hermitian s X s matrices, such that

| = ot + 66— a0 —a(,0)|_ =0 s,

lla(-,t) —a(, 7)o — O as 7 — t.

(4) V - a is continuously differentiable with respect to ¢ in the L°(dz;C®*?)

norm with derivative V - a;

|17 )t + 8~ (V@)1 = (V- a)(0)]|_ 0 aset o

I(V-a)(8) = (V-a)(,7)le =0 asT—t. ¢

The boundedness and smoothness properties of a will not be a severe restric-
tion for physical problems such as those occuring in atomic and molecular physics.
For such problems, a is a multiple of the unit matrix and it is closely related to the
electromagnetic vector potential A. Because the spatial and temporal derivatives
of A are related to the physical (external) fields B and E, A can be assumed to be

nicely behaved and hence a will also be well behaved. It is reasonable to extend
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these assumptions to the case where the components of ¢ are hermitian matrix
valued functions.
Let H,(m) be the minimal operator with domain C®°(R%; C*) associated with
the Laplacian in RY;
. K2
H,(m)=——AL (2.16)

2m

Here I is the s X s unit matrix. For* m > 0 it is well known that H,(m) acting in
the space L2(R?;C*) is essentially self-adjoint with a self-adjoint closure we denote
by Ho(m) (see reference [Ka 84|, chapter V). Furthermore the spectrum of H,(m),
o’(Ho(m)), is the interval [0, 00). For complex m, by writing H,(m) = m~1H,(1)
we see that H,(m) is closable with closure H,(m) = m™1H,(1). The domain of

Ho(m) for all m € C4 is given by
D(Ho(m)> =D, = {$ € H: a®(a) € L(R% C)}.

Next we consider the minimal Hamiltonian operator on C°(R%; C*) associated

with the partial differential operator

(tm) = o (21— a(,1)". (2.17)

2m \1

Expanding out the square in (2.17) we can write H;(t,m) as

Hi(t,m) = H,(m) + W(t,m). (2.18)

The perturbing operator, W(t,m), is given by

W(t,m) = -Z:Ea(-,t) -V + -Z-P—(V -a)(-,t) + La,(-,t)z, (2.19)

m 2m 2m

* The ordering relations < and > have no meaning on complex numbers. Hence to say m > 0
implicitly implies that m is real valued.
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with domain C°(R%;C*). If we let m > 0 and we use the hermiticity of the compo-

nents of a(z,t), coupled with an integration by parts, we obtain

<¢7W(t)m)ﬁo) = <W(t7m)¢7¢>v 1/)7(10 € C:o

Thus W(t,m) is symmetric and hence it is closable. We denote the closure of
W(t,l) by W(t,1). Since W(t,m) = m_1W(t,1), we see that W(t,m) is closable
for all m € C with the closure W(t,m) = m™1W(¢,1).

Lemma 2.1: Let a(t) satisfy assumption 1. Then for all (t,m) € [0,T] x C
the operator Hy(t,m) has closure Hy(t,m) satisfying

(1) D(Hl(t,m)> = D,;

(2) Ha(t,m)p = Ho(m)h + W(t,m) for all 4 € Do;

(3) If m > 0 then H;(t,m) is self-adjoint and bounded from below by zero.

Proof: We show that W(t,m) is H,(m)-bounded with H,(m)-bound zero.
Assumption 1 shows that both (V-a)(z,t) and a(z,t)? give rise to bounded operators
that are uniformly bounded in ¢. Thus we need only prove our assertion for a(z,1)-V.

Let 4 € C2° and consider the following.
(1) VoI = [ lafa,t) - (Vo) de
<uf [ (V) de

=1} [ @)l da.

Let § > 0 and define the set Es = {a € R? : %]zﬁ(a)| > 6a?|ih(a)|}. Breaking

the integral above into one over Es and its complimentary set R?\ Es our estimate
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becomes

gy 2 2 ) 1 Mol da + 82 a4 (a)? do
la(-+1) - V| SMl{ngéw e+t [ feltij(e)?d }

7,(m wn?}
2
7,(m >¢H} -

Taking the square roots of the left and right hand sides we see that W(t,m) is

1
< M} {6_”¢”2+52

SMf{—ll¢ll+5l

H,(m)-bounded. Furthermore W (t,m) has H,(m)-bound zero because § can be
made arbitrarily small. We also note that the estimate is time independent.

Let m > 0 for the moment. Then W(t,m) is symmetric and an application
of Kato’s theorem V.4.4 [Ka 84] shows H,(m) + W(t,m) is essentially self-adjoint
and its closure is given by Hi(t,m) = H,(m) + W(t,m). Hi(t,m) is self-adjoint
and it has the domain D,. To extend the domain and closure properties to m € C
we simply note that H;(t,m) = m~1H;(t,1). Of course Hy(¢,m) will no longer be
self-adjoint for a complex mass parameter.

Finally we show (3). Let m > 0. To show that H;(t,m) > 0 we must show

(¢7H1(t7m)¢> Z 0 'lﬁ € Do.

However because of the closedness of Hi(t,m) we need only prove this on a core
(cf. reference [Ka 84|, p. 166) of Hy(t,m) and then extend this to all of D,. One
such core is C°, where the operator Hi(t,m) = H;(t,m). Using the definition of
H; (t,m), the hermiticity of the components of a(-,t) and integrating by parts we
get

<¢a ﬁl(t7m)¢ =

[ VI - af- MH > 0. &

From the above proof we have also shown the following result.
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Corollary 2.1: Under the hypotheses of lemma 2.1, W(t,m) is H,(m)-
bounded with Ho(m)-bound zero. That is there exist constants o, and B, greater

than zero such that

Wt m)g|l < erll$ll + Bl Ho(m)pll, 4 € D, (2.20)

The constant B, can be made arbitrarily small. Furthermore, if K C C4 is any
compact set and m € K, then the constants o, and B, can be chosen independent

of t and m. O

For the interaction potential v(¢) we will consider two possible classes. The
first class will allow for potentials that are relatively bounded with respect to the
Laplacian. These potentials will be defined by matrix valued functions that are
hermitian. For this class, we shall only consider a real mass parameter because
these potentials can be unbounded and a complex m leads to many difficulties in
verifying the hypotheses of theorem 2.2. We wish to study these potentials because
they include several important physical interactions such as the many body Coulomb
and Yukawa interactions. It also demonstrates the flexibility of Krein’s evolution
theory. The second class of potentials we will study consists of bounded potentials
defined by multiplication with complex matrix valued functions. We remove the
restriction of hermiticity as the general formalism in later sections does not require
this condition. It is the second class that is ultimately used in the study of the
Dyson series expansion of the evolution operator.

For the second class we shall include the possibility of mass dependence and
shall exhibit this dependence explicitly. This will play a role when considering the
limit Imm — 0. For potentials in the first class we do not have to worry about
mass continuity properties and hence the mass parameter will be considered as
fixed. However for notational convenience it is simpler to write potentials in the

first class in a notation matching that used for potentials in the second class.
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Assumption 2: We define the operator v(¢,m) by multiplication with the
matrix valued function v(-,t;m), t € [0,T]. The operator v(¢,m) will belong to one
of two possible classes.
Class A: For potentials in class A, we restrict m to the real positive axis.
Potentials in this class satisfy:
(1) Fora.a. (z,t) € R xC**%, v(z,t;m) is hermitian so that the corresponding
operator v(¢,m) is symmetric;
(2) v(t,m) has Hy(m)-bound less than one. That is for all ¢t € [0,T] the
domain of v(t,m) satisfies D, C D(v(¢,m)) and there exist finite positive constants

B, <1 and a, such that

[v(t,m)b| < aolld| + Bol|Ho(m)b|,  # € Do. (2.21)

Furthermore, if K, C (0,00) is any compact set, we assume that «, and f, are or
can be chosen to be independent of (¢,m) € [0,7] x K,;

(3) The restriction of v(¢,m) to D, is strongly continuously differentiable.
That is there exists a linear operator v(¢,m) with domain D, that is strongly

continuous and satisfies
H%[v(t + 8t,m) — v(t,m)] — \'r(t,m)sz 0 asét—0, tc[0,T], %€ D,

Class B: Functions v(-,;m) defining the potentials v(¢,7m) in this class admit
the following properties:
(1) Let K denote a compact subset of C.. Then the function v(z,t;m), map-

ping R? x [0, T] x K — C€*%*, is uniformly bounded in (z,t,m); i.e.

lv(-,t;m)|le < @ for all (t,m) € [0,T] x K; (2.22)
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(2) v is continuously differentiable with respect to ¢ in the L%°(dz; C***) norm.
That is there exists a matrix valued function 4(-,t;m) € L*®(dz;C**¢) such that for

allt € [0,T]

b+ 6t;m) — (-, t;m)] — (-,t;m)“ -0 as 6t — 0;

o0

[t

— 0 as T —

18> tim) —o(-sm5m)|o

(3) the function v(-,t;m) is continuous with respect to the mass parameter in

the L*(dz; C***) topology, uniformly with respect to t. That is

sup [[o(-,;m) — o(,t;m)|oo = 0 asm' —m e K. ¢
1€[0,T)

Examples: The position vector z is often a d = 3N-tuple describing the
position of particles in space. We could write z = (7,...,&y), with &; denoting
the (3 dimensional) postion vector of the i** particle. With this notation in mind

the generalized many body Yukawa and Coulomb potentials are respectively;

e 1%5] o | & — 5] Y% €R, o ;5 >0

,7’
Z'V =AY I"’Z'Vz 1
|| V3 - & 0<6<3/2

and

d
Z I+lez——m|5 'Yja'YijERa 0<5<3/2.
.7=1

By setting 6 = 1, we have the conventional Coulomb and Yukawa potentials. Kato
has shown [Ka 51] that these symmetric operators have H,(m)-bound zero. As these
potentials are independent of ¢ and m, they clearly satisfy the other requirements

necessary to be a member of class A.
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For examples of class B potentials there are many possibilities. For instance,
almost any bounded periodic potential lies in this class (provided its time depen-
dence etc. is sufficiently smooth). Examples of non-diagonal interactions include
the spin-spin interactions of the type S-S 5, where S; is the spin operator* associated
with the i** particle. &

Define the family (in ¢,m) of operators
H(t,m) = Hy(t,m) + v(t,m). (2.23)

Since D(v(t,m)) > D(H;(t,m)) = D,, the operators H(t,m) have the common

domains D(H(t,m)) = D,.

Lemma 2.2: Let a(t) and v(t,m) satisfy the assumptions 1 and 2. If v(t,m)
is in class B, then for each (t,m) € [0,T] x C the operator H(t,m) is closed. If
v(t,m) is in class A (and hence m € (0,00)), then H(t,m) is self-adjoint and there

exists a finite positive constant b, such that H(t,m) > —b,.

Proof: We first show that v(t,m) has an Hi(t,m)-bound less than 1. If v(¢,m)
is in class B this assertion is trivial. Let v(¢,m) be in class A. From corollary 2.1 it

follows that W(t,m) has a (¢t,m) € [0,T] x K, uniform, H;(¢,m)-bound zero;
W (t,m)d|| < ay|[dll + BulllHo(m) + W(t,m) — W(t,m)]p||

< a9l + Bl Ha (8, m)[| + B[ W (E, m ) |l;

by
1-5,

= IW(tmpsl < 7=l + T2 | B mysl, 4 € Do
1

We note that a; and j3; are uniformly bounded in (¢,m) € [0,T] x K,. As 3; can

be made arbitrarily small this proves our assertion. Next we use this bound for

* Recall for the spin half case the spin operator is § = —g(al, 03, 03) where the o;’s are the Pauli
matices. Similar representations exist for the higher dimensional spins.
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W(t,m) to get for the Hy(t,m)-bound of v(¢,m). If v is in class A, bound (2.21)

1s valid and thus

[v(t,m)$ll < @olldll + Boll[Ho(m) + W(E,m) — W(t,m)¥||

< oYl + Bol Hi(t, m)d || + Bo||W(E, m )b ||

a8, Boﬁ1
< | ao+ 1—> ¢ + (ﬂo + > H t,m ) € D,.
< - [14]] -4, [ H1(t,m)|| ¥
i — @1B0 — Bo_ .
Defining the constants @ = a, + 125, and 8 = Top s We have that v(¢,m) satisfies

the bound
[v(t,m)¢[l < el¢l + Bl Hi(t, m)p]|. (2.24)

As (3 can be arbitrarily small and 8, < 1 by assumption, we can pick f; so small
that § will also be less than 1. The constants @ and 8 are uniformly bounded in
(t,m) € [0,T] x K, because o and ,Bj (7. = 1,2) have this property.

It now follows from Kato’s theorem IV.1.1 [Ka 84] that H(¢,m) is closed and
has domain D(H(t,m)) = D,.

Let m € (0,00) and v(t,m) be in class A. Then v(¢,m) is a symmetric operator
and from lemma 2.1(3), Hi(t,m) is self-adjoint. An application of Kato’s theorem
V.4.4 [Ka 84] shows that the Hamiltonian is self-adjoint.

Finally to show that H(¢,m) is bounded from below when m € (0,00) and the
potential is in class A, we utilize another theorem of Kato, theorem IV.3.17 [Ka 84].
This states that £ is in the resolvent set of H(t,m) if £ € p(Hl(t,m)> and satisfies

the estimate

ol R(E, H(t,m))|| + B[ Hi(t, m)R(¢, Hi(t,m))|| < 1. (2.25)
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Here o and 3 are the constants appearing in (2.24). Because H;(t,m) > 0 we know

the spectrum of H;(t,m) satisfies o (H1(¢,m)) C [0,00). This leads to the estimates
1 1

R(E,Hi(t,m))|| = sup su
IR(E, Hr(tm))] Aeo(Hy) 1A =&l T /\Gopoo)l)\ £’

b\ A
H t,mR ,H t,m = su sup
M m)R(E MLm= e 5 S 2 B

If £ € (—o0,0) then these estimates become

|R(€, Hy(t,m))] < é‘ﬁ

[ H1(t,m)R(&, H(t,m))|| < 1.

o

Thus we have that (2.25) is satisfied if ;% + 8 < 1 or equivalently ¢ < —125-

el
Setting b, = 725 the spectrum of H (¢, m) satisfies O'(H(t, m)) C [—bo,0) and from
this it follows H(t,m) > —b,. o

The next property we wish to verify is the differentiability of the Hamiltonian.
It is convenient to utilize the momentum operator P : H — H, previously defined.
In terms of the momentum operator the free Hamiltonian can be written
Hy,(m)=—P-P
o(m) 2m
where P - P = Z;-l=1 sz. Define the family of operators H (t,m) with domain D,

by the equation

H(t,m) = ——%a( )- P+ —;%(V a)(-,t) + ﬁé(t) -a(t) + élr;z—a(t) -a(t) + v(t,m).

(2.26)
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By our assumptions (1) and (2) it is easy to see that H(t,m) is well defined on D,
because D, is in the intersection of all the domains of the operators in the right

hand side of (2.26). We claim that H(t,m) is the strongly continuous ¢-derivative
of H(t,m).

Lemma 2.3: Let a(t) and v(t,m) satisfy the assumptions 1 and 2. Then
H(t,m) is strongly continuously differentiable on D,. Moreover its derivative is

given by the formula

%H(t,m);b = H(t,m)$, ¢ € D,. (2.27)

Proof: Let 6t # 0, ¢ € D, and consider the following in the limit that 6t — 0.

|[Fl ) = B g

< | =t )| ipa,
# g |t =00 90w
+ 2|in| “ a-,t + 6?; — a(-,1)? —a(-,t) - a(-,t) — a(-,1) - d(.,t)”mw,“

—v(i
N H [v(t + 8t,m) — v(t,m) _‘_’(t,m)} ¢H
&t
We notice that if v(¢,m) is in class B then it is also strongly continuously differ-
entiable like the potentials in class A. Thus we have from our assumptions 1 and
2 that the right hand side has a limit of zero as 6t — 0. This verifies (2.27). The

strong continuity of H (t,m) on D, follows from the assumptions 1 and 2 with a

similar argument to the one given above. &



-31 -
The final step of our analysis is to show that the resolvent of A(t,m) defined
by equation (2.11) for a suitably chosen constant c, satisfies the bound (2.7). There

is a simple relationship between the resolvents of H(¢,m) and A(t,m).

R(X, A(t,m)) = [A(t,m) — \]7?

1 -1
- —c—2A
z'hH(t’m) c

= B[H(t,m) — ih(c + A)]~

= thR(ih(c + A), H(t,m)). (2.28)
We first estimate the resolvent R (iw, H(t,m)).

Lemma 2.4: Let a(t) and v(t,m) satisfy the assumptions I and 2. Ifw > ﬁ

then we have the estimate

1

w—

| B(iw, H(t,m))]|| < (2.29)

Here the constant o is the same as that appearing in (2.24) if v(t,m) is in class A,

or (2.22) if the potential is in class B.

Proof: If v(t,m) is in class A then H(f,m) is self-adjoint and hence the
spectrum is contained on the real line axis. If d(z,0(H)) is the distance between

the complex number z and the spectrum of H(¢,m), then

__ 1
d(iw, o(H))

1

w—

| Riw, H(t,m))|| = <lc
w

Now we suppose the potential is in class B. Because m is allowed to be com-
plex, it is convenient to write it in its polar representation; m = |m|e*?, ¢ € [0, 7].

The Hamiltonian and resolvent can now be rewritten

H(t,m) = e *{Hi(t,|m|) + e¥v(t,m)} = e ¥ H(t,m)



-39 -
and

R(iw, H(t,m)) = e R(e%iw, H(t,m)).

Recall that Hi(t,|m|) is self-adjoint and that its spectrum lies in the semi-infinite
interval [0, 00). Because e'%iw lies on the half circle {z : |2| = w,arg z € [T, 3]}
the resolvent R(e*%iw, Hi(t,|m|)) satisfies the estimate

| R(e*iw, Ha(t, Im]))]| <

b

€ | =

Ifw> a, then

e v(t,m)R(e o, Ha(t, Im))| < [[v(t, m)l| | B(eico, H(, lm]))]

o
<-—<1
w

Thus the operator I + e**v(t,m)R(e*iw, H1(t,|m|)) has a bounded inverse (vis-a-
vis the Neumann series) and e*%iw € p(H). It is clear 1w is in the resolvent set of

H(t,m). Furthermore, from the identity

1Y

R(e¥iw, B (t,m)) = R(e®iw, H(t,|m|)) |1 + e*v{t, m)R(e¥iw, Hr(t,Im]))]

we get the estimate

|R(iw, H(t,m))|| = | R(e*iw, H(t,m))|
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Utilizing lemma 2.4 and equation (2.28) we can now easily estimate the resol-

vent of A(t,m);

IR(A, A2, m))|| = R R(ih(c + ), H(t,m))]
h
Mc+ ) —a
1

<

We make the choice for the constant c;
c=1+4 —. (2.30)

With this choice of ¢ it follows that w = k(c + )) satisfies the estimate w > a for
all A > 0, so that the hypotheses of lemma 2.4 are verified. Moreover substituting
this value of ¢ into the above shows the resolvent of A(t,m) satisfies the estimate
(2.7). We have thus shown the hypotheses of theorem 2.2 are sa;tisﬁed with ¢ given
by (2.30) and hence we have the existence of the Schrodinger evolution for the

potentials satisfying assumptions 1 and 2.

2.3 The Mass Continuity of the Evolution

One final topic we wish to look at in this chapter is the continuity in the mass
parameter of the complex mass Schrédinger evolution. For this topic, only poten-
tials in class B shall be considered. This is because we need this property for our
discussions about the propagator and it is only potentials in class B that we shall

be considering there.

Proposition 2.2: Let assumption 1 be valid and assume v(t,m) belongs to
class B. Let U(t,t,;m) be the corresponding Schrédinger evolution operator. For

each fixed (t,t,) € Ta, U(t,t0;m) is strongly continuous with respect to m € C..
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Proof: As we have the relation
U(t,to;m) = e tY(t,1,;m)

where the constant ¢ is given by (2.30) and is independent of m € K, we see that
U(t,t,; m) is strongly continuousin m if and only if U(¢,%,;m) is strongly continuous
in m.

Let ¢ € D, and m,m' € K with m # m/, and fix (¢,%,) € Ta. Let T € [t,,1]

and consider the following in the limit that é7 — 0.

[U(t,'r + 6y mU(T + 67,t0;m) — UL, 73 m" U(T, to;m)] ”
ot

= U, T+ 6r;m) —U(t, T;m')) [U(T + b7, to;’rgz —U(T,to;m) "

6t

I Sl
" [U(t,7+57,rr;7)- U(t,T,m)] U(r, o m).

+U(t,mym) [u(T + 87, tosm) — U, to;m)] ¥

It follows from proposition 2.1 and theorem 2.1 that the second and third terms
of the right hand side have the strong limits U(t,7;m')A(7,m)U(T,1,;m)¢ and
—U(t,;m")A(r,m")U(T,1;m)p respectively. For the first term, we claim it goes

strongly to zero. We can see this from the following;

1%term = U, 7+ ém;m') —U(t, m3m )| A(T, m)U(T, t,; m)
+ U, T+ bTym) = Ut Tym')]

U(T + b1,t0;m) —U(T,10;m)
ot

— A(T,m)U(7,to;m)| 2.

Since U(t,7;m') is strongly continuous in 7 the first line of the right hand side goes

to zero as 67 — 0. We also know that U(t1,12;m') is bounded by 1 for all 11, s,
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and m'. Thus the second line has the norm estimate

9

2” [U(T + 67, to;m) — U(T,t0;m)

o — A(rmU(r, o)

which goes to zero as §7 — 0 by proposition 2.1. Hence we have shown the identity

%H(t,T;m')U(T, toym)h = UL, T;m")[A(T,m) — A(T,m"U(T,to;m)b. (2.31)

Next we show that the right hand side of (2.31) is strongly continuousin 7. For
the first term this is trivial because U(¢,7;m') is strongly continuous and uniformly
bounded by 1 and A(7,m)U(T,1o;m)p = 8:U(T,1,;m)9 is strongly continuous. The
second term on the right hand side of (2.31) requires a little more work.

We know that U(¢,7;m')A(r,m') is strongly continuous on the domain D,
and that U(7,1,;m) € D, is also strongly continuous with respect to 7 € [t,, ].

Consider

U, r; m’)A(T, m')U(T, to;m)p — U(t,T'; m')A(Tla m')u(T,’ to;m)ib||
< |Ut, mym) AT, m') —U(t, ' m ) A(T , m" U (7, to; m)||
+ U@, s m YA, m U (T, to;m) — U(T 103 m)]eb]|

Clearly the first term on the right hand side tends to zero as 7' — 7. It is again
the second term that we must work on. We note the operator A(t,m)~! exists for
all ¢ because A = 0 ¢ p(A(t,m)). Insert the identity operator A(r,m) 1A(r,m)
between U(t,7';m')A(r',m') and [U(7,t5;m) — U(T',t,;m)]ib. Now the operator
A(r,m')A(r,m)™! is closed and defined everywhere. It follows from the closed

graph theorem ([RSz 78], p. 306) that it is bounded. In particular picking 7 = 0
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shows the operator A(0,m')A4(0,m)~?! is bounded. We thus have the norm estimate

U, 7' m)A(r ,m") A(r,m) 7| < | A(, ) A(r,m) 7|
< ||A(T','m')A(0,m’)_1HHA(O,m')A(O,m)_IH

x || A(0,m)A(r,m)~"]].

By lemma 1.5 of Krein ([Kr 71], chapter I1.§1) A(¢',m)A(t",m)~! is continuous with
respect to (¢',¢") in the operator norm topology. As (#',t") belong to the compact set
[0,T] x[0,T], we must have that these operators are uniformly bounded with respect
to (t',t"). Thus we see that U(¢,7";m')A(7',m')A(,m)! is uniformly bounded for

all 7 and 7'. Finally we deal with

A(r,m)[U(T,to;m) —U(T  to;m)|
= A(Tam)u(Ta to;m)¢ - A(Tlam)u(T,atdm)'l/’ ‘
+[I- A(T,m)A(T',m)”l]A('r',m)u(T',to;m)'tb.

The first line on the right hand side here goes to zero as 7' — 7 because of the
strong continuity of A(7,m)U(T,t,;m). The second line on the right hand side
tends to zero because of the aforementioned continuity of A(7,m)A(7',m)™! in the
operator topology and the fact | A(7', m)U(7',1,;m )] is uniformly bounded in 7'.

Because the right hand side of (2.31) is strongly continuous we may take the
strong Riemann integral ([La 69], chapter X) of (2.31) over 7 from ¢, to t. The
fundamental theorem of calculus is valid for the strong Riemann integral ([La 69],

theorem 10.8). Using the properties of the evolution operators we obtain the relation

(U2, tosm) — U(t, tosm)p = t U(t, msm ) A(r,m) — A(r, m U(7,to;m)p dr.

(2.32)
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With (2.32) we obtain the norm estimate
¢
14t to; m') = U(t,tosm) Il < [ [[[A(T,m) — A(r,m')U(7, to;m )¢ dr. (2.33)
to

From the definition of A, equation (2.11), it easily follows that

A(r,m) — A(T,m') = (1 - %) A(r,m) + (1 - %) cl
+ Z.%[v(f,m) —v(rm) - (1- ) %V(T,m).

(2.34)

Substituting (2.34) into (2.33) we get the estimate
[[U(t, 205 m) — U2, to;m) ]|
m ¢ o
<h- : b —
= '1 m'l {\/t; “A(Tvm)u(Tvt07m)¢“ dr + (h + C) (t tO)H":bH}

— 1,
7 sup llv('vT;m)_v('aT§mI)Hoo”¢”'
T€[0,T]

The right hand side goes to zero as m' — m.

Thus we have shown that U(t,t,;m) restricted to the domain D, is strongly
continuous with respect to the mass parameter m in any compact set K C C,.
Because U(t,t,;m) is uniformly bounded by 1 and the domain D, is dense, it is
trivial to extend this continuity property to all of H. &



- 38 —

CHAPTER 3

Measures and the Potentials

In this chapter we give precise definitions to the class of potentials that we
will be using for the remainder of part I of the thesis. The potentials under study
are the Fourier images of complex matrix valued measures. We begin by discussing
the relevent measure spaces.

Let the tuple (R?, B) specify the measureable space consisting of the set R?
and the smallest o-algebra B of Borel subsets of R%. We let » = d or 1 and we
denote by (C**°)", the space of complex s x s matrices grouped together as a d-
tuple if 7 = d or an s x s matrix if » = 1. A (C***)"-valued measure vy on (R¢, B)
is a countably additive set function mapping B — (C**¢)". The associated total

variation measure |y| is a measure on (R%, B) mapping B — [0,00) and defined by

(&) =sup Y el e cB. (3.1)

e; e
On the right hand side of (3.1), | - | is the Euclidean norm for the space (C***)";
T 3 2
e = 3 |Fas(en]

=1 a,8=1

and the supremum is taken over all countable partitions 7 of e allowed by B. The

measure <y is defined to be of bounded variation if |y|(R?) < oo.
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To the set of measures of finite total variation we adjoin, in the standard way,
the operations of addition and multiplication by complex scalars. The resulting
vector space we denote by M(R?,(C***)"). We can make M(R?,(C***)") into a

normed linear space by defining the norm
vl = [7I(RY), v € M(?, (c)). (3:2)

With this norm attached it can be shown ([DS 76}, pp. 160-162) that M(R?, (C***)")
is a Banach space.

It is possible and extremely useful to use a representation of 4 in terms of its
total variation measure |y|. We call this representation the polar decomposition of
v and we claim there exists a Borel measureable function 5 : R? — (€***)" such

that |n(e)] = 1 for all @ and

/e dy = f n(e)dlyl, ecB. (3.3)

To see the existance of such an 7 we note that v is absolutely continuous with
respect to |y|. To say a measure u is absolutely continuous with respect to another
measure A means that whenever we have a measurable set e such that A(e) = 0,
then p(e) = 0 and we write p < A. As v < |v|, we may apply the Radon-Nikodym
theorem [Ru 74] which asserts the existence of the function 7. The proof that 7 is
a function of modulus one is based on a simple modification of theorems 1.40 and
6.12 of Rudin [Ru 74].

To each measure v € M(R?,(C***)") we can define a function a : R — (C5%¢)

via the Fourier transform of the measure,

a(z) = / T dry. (3.4)



— 40 -
The function a is well defined for each z € RY because *? is Borel measurable and
LY(R?, d). It follows from the dominated convergence theorem that a is continuous.

Moreover a admits the uniform bound
la(z)| < |lvll, = €R% (3.5)

We denote the Fourier image of M(R?, (C***)") by F”. The Fourier transform map-
ping (3.4) establishes a one-to-one correspondence between F™ and M(R?, (C***)")
in that a(-) = 0 if and only if ¥ = 0 [Ru 61]. By assigning the norm ||a|| = ||¥]| to
F7, F7 will also be a Banach space.

Prevalent in the analysis of the Dyson series analysis of the next chapter will
be the use of product measures. Consider the case of two s X s-matrix valued
measures p; and pg over (R%, By) and (R¢, By) respectively. The product measure
p1 X po is defined on the smallest o-algebra B; x Bs by requiring that for every

measureable rectangle e; x e; of By x Bs,

(H1 x p2)(er x e2) = pa(e1)pa(ez).

The product on the right hand side of the above equation is the usual matrix
product, so that we see that p1 X ug is an s X s-matrix valued set function as well.

We can make a Banach space M(R? x R?,C***) as before with the norm
1 % pafl = lp1 x pa| (R x RY). (3.6)
It is easily shown that the norm on M(R? x R?,C**®) satisfies the bound

llpr x g2l < llpallllpez |- (3.7)

The vector potential of the previous section had components whose pointwise

values were required to be hermitian matrices. If a defines an r-tuple (r = 1,d) of
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hermitian matrices and it is the Fourier image of the measure v, then v will satify

the reflection property

vi(e) =vj(—e)*, e€B, j=1,...,n

Here the set —e is defined by —e = {@ € R? : —a € e} and the symbol * denotes
the complex conjugate transpose. We denote the set of all v € M(R?,(C***)") that
satisfy the reflection property by M*(R%,(C***)") and its corresponding Fourier
image by F™*. F™ is a subspace of F".

We must also discuss the convolution of two measures in order to understand
terms like a(z,1) - a(z,t) that appeared in the Hamiltonian. Let ¢ and a' be asso-
ciated with the pair of measures v and 7' € M(R%,(C***)"). The convolution of
the two measures is a map M(R?, (C***)") x M(R%, (C***)") — M(R?, C*%) defined

(constructively) by

e / xele + a'y(e) - 7'(’) diy] x . (3.8)

The functions 7 and ' are the functions associated with the polar representations
of ¥ and 4' repectively. The function x. is the characteristic function for the set
e € B. The dot product between the 7n’s is defined as the sum over the matrix

products of the components of 7 and 7';

7(a) -7'(e') = [n(a)]; [7'()]; + -+ + [n(a)),[7' ("),

Consequently the function v * 4' takes values in C**°. It is easily shown that
q T*Y

v xv' € M(R?,C**%) and satisfies the norm estimate

by I < I (3.9)
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The dot product in F7 is related to the convolution in M(R?, (C***)") by the identity

a(z) - d(z) = /em'm dy*~'. (3.10)

In order to be able to control the behaviour of the Dyson series we will consider
a subclass of measures consisting of those measures in M(R?, (C***)") with compact
support. Let S, C R? be the closed ball of radius £ > 0 and centred on the origin.
We denote the subset of measures in M(R?,(C***)") whose support lies in S}, by
M(S5;,(C**°)"). It is easy to show that M(S,(C***)") is also a Banach space.
Similarly we define M*(S},(C***)") to be the set of measures in M(Sy, (C5%*)")
that satisfy the reflection property and it too is a Banach space with respect to the
norm (3.2).

We next wish to discuss the idea of measures that depend upon the time
and mass parameters. Let KX C C, be any compact set and consider the Banach

space-valued map

v(+,+) : [0, T] x K — M(R?, (C***)").
We say that « is jointly continuous in (¢,m) € [0,7T] x K if
v, m') — y(t,m)|| — 0 as (t',m') — (t,m) (3.11)

for all (¢,m) € [0,T] x K. The measure v is continuously differentiable with respect
to t € [0,T] if there exist a family of measures ¥(t,m) € M(R?,(C***)") such that

for each fixed m € K, 4(-,m) is continuous in ¢ € [0,7] and

H'r(t’,m) — 7(t,m)

T - "y(t,m)H — 0 ast' — t (3.12)

The (t,m)-continuity of measures u(t,m) € M(R?,C***) implies the joint

continuity of the product measures p;(t1,m1) X pa(tz,m2) X -+ X pg(tn, m,). We
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look at the case of the product of two measures.The n-fold product will follow from

an induction argument.

la(t1,mA) X pa(ty, my) — pa(tr,ma) x pa(te, me)|
< ety m)l|llp2(ty, my) — pa(ta, ma)|

+ [lpa(t2, m2)llllpa(th,my) — pa(ta, ma)l|  (3.13)

Since the joint continuity of p;(t;,m;), (7=1,2) implies the uniform boundedness of
their norms, we immediately have the joint (¢1,m1,12, m2)-continuity of the product
measure p1(t1,m1) X pa(tz, ms).

We are now in a position to state the hypotheses on the class of potentials

under study for the remainder of part I of this thesis.

Assumption 3: The vector potential a : R? x [0,T] — (C***)¢ is said to be
in class Vy(k) if a is the Fourier image of a time dependent family of measures (1)
satisfying

(1) 7(t) € M*(Spa, (C2%)4), te0,T], k< oo.

(2) 7(t) is continuously differentiable on [0, T].

Assumption 4: The potential v : R? x [0, T] x K — C*** is said to be in class
V(k) if v is the Fourier image of a time and mass dependent family of measures
v(t,m) satisfying

(1) v(t,m) € M(Sk,C5*), (t,m)€ [0, T]xK, k< oco.

(2) v(t,m) is jointly continuous in (¢,m) € [0,T] x K and for fixed m € K it
is continuously differentiable with respect to ¢ on [0, 7.

Because «(t) and v(t,m) are continuous, their norms will also be continuous.

Since the sets [0,7] and [0,T] x K are compact, the functions ||y(¢)|| and ||v(t,m)||
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will attain their maximums and we have that these norms are uniformly bounded.

y(@) < sup [ly(t)ll = 7,
(3.14)
lv(t, m)|| < sup ||v(t,m)]| = vy

Here the first supremum is over ¢ € [0, T and the second is over (¢,m) € [0,T] x K.
Next we show as a consequence of a € V,(k) and v € V(k), a and v will satisfy

assumptions 1 and 2(B).

Proposition 3.1: Let a € V,(k) and v € V(k). Then a and v satisfy the
properties described in assumptions 1 and 2(B).

Proof: We show the proof for v, with the proof for a following similarly. Many
of the arguments given below are due to the continuity of the measures, and the
compactness of their support.

From the support of v(¢,m) and an application of the dominated convergence

theorem it follows that v(z,t;m) is a C*® function of z with derivatives given by
(Ofv)(z,t;m) = /i’pla"eia'z dv(t,m), (3.15)

where p is the multi-index (p1,...,pq). Further from (3.14) and the support of

v(t,m) it follows these derivatives have the (z,t,m)-uniform bounds
|(88v) (=, t;m)| < ElPly,. (3.16)

It follows from the joint continuity of v(¢,m) that v is jointly continuous with

respect to (t,m) € [0,T] x K using the norm ||

' “oo;

lo(,#5m’) —v(,tim)llee < |lp(t,m) —v(t,m)| =0 as (¢',m') - (t,m).
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The time derivative of the potential also has a simple form. We claim it is
given by

(80 (z, :m) = / €T it m). (3.17)

To see this let 9(z,?;m) denote the integral on the right hand side of (3.17). From
the identity

v(z,t';m) — v(z,t;m) v(t',m) — v(t,m)

" —o(z,t;m) = /eza'md [ T - z}(t,m)] ,

we get the z-uniform estimate

m) — v(t,m)
t—1

Hv(-,t';m) —v(-, t;m)
2

t,
; —@(-,t;m)H < HV( :
—1 oo

—U(t,m) ” .
The right hand side goes to zero as t' — ¢ and our claim is proved. The #-continuity
of ¥(-,t;m) in the L*®(dz;C***) topology follows from the continuity of (t,m).
Because M(S},C**?) is a Banach space and ©(¢,m) is the limit of measures in
M(S,C***), o(t,m) will also have support in S;. This means that the ¢t-derivative
of v is also a C'*° function of z, with derivatives given by a formula like (3.15), but
with v replaced by ©. Moreover it is simple to show that the spatial derivatives of v
are differentiable in ¢ with the convergence for the t-derivative in the L®(dz;C***)

norm. O

Example: As an example of our potential class, consider the case of a con-
stant electric field E,. Define the d-dimensional vector E = (qlﬁo,qgﬁo, e ,qNEO)
(d = 3N) and define our d-dimensional vector field a(z,t) by

a(z,t) = /eia'zEtIdT(a)

= Fil.
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Here I is the unit s X s matrix and T is a Dirac measure whose support is on the
origin 1.e.

[ #te) (@) = (o)

Recalling the discussion leading upto the Hamiltonian in (1.3), we see that the

3-dimensional vector potential must be

= — a T~
E(&,t) = —Vzd(Z,t) — EA(a:,t).
Choosing our guage such that ¢ = constant and A4 is given by the above, our

potential class describes a constant electric field. Furthermore we note that the more
common choice of guage of setting ¢(z,t) = E, - = and 8. A(z,t) = 0 is technically
more difficult to handle because E, - z is not H,-bounded and consequently this

choice of guage is not even a member of the class A potentials used in chapter 2.

As a final topic for this section we introduce some convenient notations for

various linear combinations of measures. We first define the measure

pltm) = 5=9(8) # (t) + w(tym). (3.18)

We note that if 7(?) has support in M(S},s, (C**#)9) then its convolution with itself

will have support in S;. As v(f,m) also has support in S}, we see that the measure
p(t,m) is a member of M(S),C**¢). Similar to (3.14) it is useful to define the norm

bound for u(t,m) of

1
p(t,m)|| < mvﬁ +vp = py. (3.19)
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This measure is a useful notation because it represents the sum of potentials

ia(w,t) -a(z,t) +v(z,t;m) = ‘/‘ei""m du(t,m). (3.20)

2m

Often we will be using measures that involve the dot product between v
and vectors in R%. Let B be a fixed vector in R? and define a measure Ko(t,B) €

M*(Sk/2,C**%) by the formula

wo(t,8)() = [B-nta)dhle), e B (3.21)

to(t,B) is C**°-valued because of the dot product between 8 and 5 and the fact
that the components of 7 are s x s matrices. We note that p,(¢,3) is a continuous’
measured valued function of ¢ and S.

Two more measures of similar functional form to p(¢) but whose 8 is more
complicated can be defined as follows. Let @, = (a;,---,a,) be an n-tuple of

vectors in Sj. For each positive index | < n we define the measures

WMt ap)(e) = / e+ S e, | nt,a)dnl(t) ccB

and
1 n
i, e)e) = [ | 3o+ 3 ;) aha)dnl) e B
€ j=l+1
pf and 4} are continuous M*(Sy/;,C**°)-valued functions of ¢, (y,...,0;_;) and

(ay415+++»@,). If 1 =1 then the sum is absent in the expression for uf and if I = n
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there is no sum in the expression for 4'. Without these sums present it is easily

seen that these measures satisfy the relations

W3 () = pd(t) = A2(e) = ). (3.22)

Next we take linear combinations with u, po, uf and 4. Forl=1,...,n we

can form the following measures in M(Sy, C*>*%);

A?(t) = ”’(t’m) - %[#O(ta ao) + /I‘?(tﬂxla e aal—l)]; (323)
o (1) = pltym) — S pp(ta, o) (3.24)
S2(0) = pltym) — 2 psolt, @) = i (s, 00)) (3.25)

The measure 07'(t) depends on the parameters ay,...,e;_;, h and m. The measure
A7(t) also depends on these parameters, as well as it has an a, dependence. Finally
we note the measure i?(t) has a dependance upon the parameters @, a; ;. .., a,,
h and m. Each of these measures are continuous with respect to these parameters
in the M(Sy,C***) topology.

It is notationally advantageous to incorporate the variable of integration into
the measure symbols. For example with the measure A}(t) the integration variable

is most often ;. If h is any integrable function on R? we now write

/hdA?(t) as /h(al)d)\?(t;al).

The family of measures A?(¢) and A}(t) have simple norm bounds. Since it is

assumed that a; € Sg, j =1~ n, we arrive at

IO < W] + (ool + b (o), (3.26)
loP ()] < )] + —=aklly (@] (3.27)

m|
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and

IO < Nl + %(lal +nk)|y(®)]- (3.28)

Obviously these bounds are uniform with respect to the parameters e, and the

index [.
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CHAPTER 4

The Dyson Series

In this chapter we examine the convergence properties of the Dyson series
using a certain class of initial data functions and establish that the series con-
structs a solution to the Schrodinger equation. We assume a € V, (k) and v € V(k)
throughout this chapter.

We first define a few of the notational conventions to be used throughout.
The Schwartz space of C*®, s-dimensional functions of rapid decrease we denote by

S = S(R%; C*). The Fourier transform convention we shall utilize is

. 1

h(a) == W / e_i“'mh(:v)dw, h € S,

For each integer n > 1 let t, = (¢1,...,t,) and for each (¢,%,) € Ta define
the set Ap(t,to) = {tn : to < t1 < --- < ¢, < t}. Similarly, it is also convenient to
define the set A(T) = {(t,%5,tn): 0 <1, < t; < --- <t < T}. We denote the nth

order iterated time integral by

t> t tn tz
to to tO to

If p is any multi-index, (p1,...,p4), we define the operator Q” by

(Q%Y)(2) = z{*25? - -2 )%%(2).
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Let P; be the partial differential operator (R/i)0z;, j = 1~d, then similarly, the
partial differential operator P” is defined by P*--. P /4. The domains of @” and

P? are maximally defined and both include the Schwartz space as a subset.

4.1 The Dyson Series

Before we actually begin the rigorous study of the Dyson series we first examine
how the Dyson series arises. The purpose of this discussion is to provide moti-
vation for studying the individual terms that appear in the series, and not to be
completely rigorous in our arguments. We know that the Schrédinger evolution
operator U(t,1,;m) operating on an initial data function %, € D, gives a solution
to the Schrodinger equation (2.10). We wish to know what sort of integral equation
U(t,to;m)b, satisfies. For the moment assume the mass parameter m is positive.
Let U,(t — t,;m) denote the free Schrodinger evolution operator associated with
H,(m). Because H,(m) is independent of the time, U, only depends upon the time

displacement ¢ — ¢, and Up(t — t,;m) is given by the exponentiation of H,(m),
Uo(t — to;m) = exp{—i(t — t,)H,(m)/h}.
That aside, if we integrate the equation
ih8y [Uo(to — t1;m)U (t1,t0;m)tbo) = Uo(to — t1;m)V (81, m)U (41, 10; m)tbs

over tj, where

V(t1,m) = H(t1,m) — Ho(m),
we get

¢
U(t,to;mhbo = Up(t — to;m)th, + ;]-ﬁ / dt; Uo(t — t1;m)V(t1,m)U(t1,20;m )1,
to

(4.1)
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Iterate (4.1) and in the nt* term make the change of variables t; — tpy1—; for each

j=1,---,n to obtain the so called Dyson series

U(t, to;m)ho = Uo(t — to;m)th,

o0 1 t>
+ Z Ry /;o dty, Uo(t — tn;m)V(tn,m)Us(tn — tn_1;m) x

n=1

X V(t1,m)Us(t1 — to;m)ib,. (4.2)

In (4.2) each free evolution operator will have a non-negative time difference. Con-
sequently these operators remain bounded when the mass parameter has a positive

imaginary part.

4.2 Dyson Iterates

In order to be able to discuss the individual terms of the Dyson series we must first
understand the range stability and continuity properties of the operators V(71,m)
and U,(m3;m). We will only need the continuity properties using the L%(R%;C*)
topology, but in fact we can and will show these on L(R%;C*) (2 < ¢ < o0) without

too much more effort.

Lemma 4.1: The operator V(7,m) = H(7,m)— H,(m) satisfies the following:

(1) V(r,m): 8 — S;

(2) If4 € S and ¥ its Fourier transform, then V(7,m)y is given pointwise by
the formula

[V(r,m)¢$)(z) = (Erl)m / da, / (75 01) Blag)eletere (4.3)

Here M\(7) is given by the formula (3.23);
(3) @°[V(r,m)]" is continuous with respect to T in the LP(R%;C*) topology,
for all1 < p < oo, and PPV (7, m)v is continuous with respect to T in the LI(R%; C%)

topology, for all 2 < ¢ < oo.
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Proof: The restriction of V(7,m) to § is a partial differential operator whose
coefficients are bounded C* functions. This implies V(r,m) : § — § and (1) is
proven.

To calculate [V (7,m)i](z), we shall consider each term of

[V mple) = Sa(z,7) - (VH)(&) + oe(V - a)(a, 7)()
+ 5 (a7 (@) + vz, Tim(e)

separately.
From the inverse Fourier transform and the integral representation of a, the

first term has the representation

ih 1 Qo
el 7) (Vo) = — 5 ale, ) [ doscob(eo)e
1

- 2w)d/z/da°fd|7 I—ao n(ay, 7)(a,)elleoten) e,

An application of Fubini’s theorem has been used to interchange the order of the
do, and the d|y(7)| integrals.
The second term can be calculated similarly if we also use the z-derivative

(3.15), but with v and v in (3.15) replaced with a and v. We get

(Vo T0(e) =~ [da [ dy(o)] 5o afen,m)

2m

> ,J,(ao)ei(ao—i-al).m_

The last two terms of [V(r,m)v¥](z) can be combined together using the

Fourier measure in (3.20). The result is

el + ol mp(e) = g [ doo [ durms o) d(ag)etesrm=
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Combining these three equations together yields (4.3).
To show (3) make the change of variables oy, — a = a, + o, in (4.3). With

this change of variables the function Q°(V(7,m)®) has the pointwise value

@V mpy](@) = o [dilmia)da-a). (1.4)

Take the difference between the left hand side of (4.4) for two different 7’s. By
writing out the explicit representations of the measures involved, it is easily shown

this difference has the estimate

Qv m)p) | (e) - [Q(V(r.m)p)](@)
< [ (e’ ms ) = e, m ) ol P — o)

+ [ dintet ) = trsnlal e - o) { ol + £

The right hand side is a member of L' N L%(R%; C*) because ¥ € S and any poly-
nomial times a Schwartz space function is both uniformly bounded and absolutely

integrable. Thus there exists a constant C, depending on %, such that
|V mpy =@V muy || < CLlntr,m)=nlr,m) |+ n(r m) (7, m) )

for p =1 or co. From the continuity of the measures, the right hand side tends to
zero as 7 — T.

The 7-continuity with respect to the norm ||-||,, for all 1 < p < 0o now follows
from the inequality

IRll, < 1Rl o211 77. (4.5)

The 7-continuity of PPV(7,m)¢ with respect to the norm || - ||, follows from

the LP-continuity of Q°[V(r,m)]" and the Hausdorff-Young theorem of Fourier
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transforms ([RS 75], theorem IX.8). This theorem states that if p and ¢ are conju-

gate indices (i.e. p7! 4+ ¢! = 1) and if 1 < p < 2, then the Fourier transform is a
bounded map of L? into L9. &

Let ¢ € § and define the functions 9,(t,%0;t,) for n = 0,1,2,... recursively

by the relation

Po(t,to) = Uos(t — to;m)t

Pty to;tn) = Uo(t — tn;m)V(tn, m)¢n—1(tn,to; tn—1)-

(4.6)

(For the case n = 1 we define ¥,(t1,%0;ts) = Yo(t1,%0).) If we were to explicitly
expand these recursive formulae out, it is easy to see that the nt® function cor-
responds exactly to the integrand of the nt* term in the Dyson series (4.2). A
sufficient condition to ensure that that the Riemann integrals in the Dyson series
exist is that the integrand be a strongly continuous function ([La 69], chapter X).

The next lemma describes the continuity properties of the v,’s.

Lemma 4.2: Let m € Cy, ¥ € S and let ¢ be its Fourier transform. Define
the functions ¥n(t,t0;ts) by (4.6). Then

(1) ¥n(t,to;tn) € S forn =10,1,2...

(2) The v, ’s have pointwise values given by the following formulae*:

Po(t,10)(z) = _1—472‘ / oy (o e~ 3m (tto)asFiaoa . (4.7)

(27)

* Due to the noncommutivity of the matrix structure in the measures A?(¢;) we must write
the multiple integral in (4.8) with the measures in the order shown. However each A7(#;) has
a parametric dependence on the variables a; [¢ = 1~ (j — 1)]. The interpretation of this
multiple integral is the following. Explicitly expand out the product of the sums occuring in
the product measure dAZ(t,; 0tn) -+ - dAT (415 ;). Then use the polarization property of the
measures to factor out the matrix structure and incorporate it into the integrand. The result
is a sum over scalar measures, which are various linear combinations of the product measures
of |u|, |uo| and |u?|, and an integrand that incorporates all the parametric dependence of the
variables a;, as well as the matrix structure. Employing this latter notation this would be
awkward and not particularly enlightening. Consequently we default to the notation used in
(4.8).
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Pn(t toitn)()
= Z‘é;’r})“ﬂg/d%/d)‘ﬁ(tn;an)"'/d/\"f(h;al);ﬁ(ao)ei(a°+"'+an)~w
x e~ mellt=tn)(@ntrtoo)’ +(tn—tn_1)(@n-1++eo) +ert(t1—~to)a3]

n > 1. (4.8)

(3) QP4(t,t0;ts) is jointly continuous in (t,t,,t,) with respect to the norm
| - |l, for 1 < p < oo and for all multi-indices p. Consequently PPi,(t,t05ty) is
jointly continuous in (t,t,,t,) in the LI(R%; C*) topology for all 2 < ¢ < co. In
particular, Ho(m)(t,10;t,) is jointly continuous in (t,1,,t,) with respect to the

norm || - ||,-

Proof: We recall the Fourier transform maps S into S and the free evolution
operator is unitarily equivalent to multiplication by the function exp{—(:%/2m)ra?}.
These together imply fhat Uo(t;m): S — §. From Lemma 4.1 V(7,,m) maps S
into S, so the composition Uy(7y;m)V(7,,m) also has this property. The first as-
sertion results from induction.

Equation (4.7) follows from the aforementioned property of U,(7;m)
[Uo(r3m)p] () = e72m™ (). (4.9)

Equation (4.8) is the result of an inductive process on (4.7). Let ¢ € S. Using (4.7)
and (4.4) we get the representation

[Uo(71;m)V (13, m)e](z) = Z‘é‘ﬁﬁﬁ‘/da [V(72, m)go]“(a)e—%¢1a2+ia.m

ih

1 ) 5, — 5T az ia.z
= W/da /dAi(TZ;a")gp(a_all)e ihr oty

1 R —i'r o a":"ia’ o'z
:W/da'/dki(Tz;a")go(a')e zmi(e'+a’ ) +i(a' +a" )z (4.10)
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We can now show that the n = 1 term in (4.8) is valid. In (4.10) set &' = a,,
a" =ay, 7y =t1, 7y =t —1t1 and ¢ = P,(t1,1,). By definition the left hand side of
(4.10) will equal 41(t,%0;t1) and the right hand side of (4.10) yields the right hand
side of (4.8) for n = 1. We invoke the inductive hypothesis and assume the result
is true for n — 1. In (4.8) (with n — 1 in place of n) make the change of variables

Qo > 0@ =0Qy+ -+ ayp_1. Then

'@;n—l(tn’to;tn—l)(a)
— [ tnsiancs) - [ o) b —ar =~ anoy)

% = i [(tn—ta—1)o -+t —to)(@—ay——an_1)?] (4.11)

In (410) set @' = o, @" = ap, 7y =t —ln, 7 = 1, and @ = Yp_1(tn,to;tn-1)-
Then by definition, the left hand side of (4.10) is ¥n(t,20;t,) and (4.10) becomes

the equality

¢n(t7t03tn)(m) = W/da/dAi(tnEan)ﬁzn—l(tnatﬁtn—l)(a)

% e~ (t—tn)(atan) +ilatan) s (4.12)

We next make the substitution of (4.11) into (4.12) and then do the change of
variables « — oo = a—a; — -+ — an_1. It is straightforward, though tedious,
to keep track of the parameters in the measures and show, after all the variable
changes given above are made, that the product measure written in (4.8) is the
result. This completes the proof for (2).

Finally we prove the statements in (3). The second statement about the
continuity of PPy, (2,1,;t,) will follow from the first statement and an application
of the Hausdorff-Young theorem for Fourier transforms ([RS 75|, theorem IX.8). The
proof of the first statement is inductive. We must first demonstrate that Qt,(t,1,)

is jointly continuous in (Z,%,) in the LP-topology for 1 < p < oco. Because of
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inequality (4.5) we need only prove the continuity for p = 1 and p = co. QP¥,(1,1,)

has the pointwise representation

(Qpiﬁo(t,to»(a) _ ape_%(t_tO)azz/;(a).

To estimate the difference of this function for different times (¢,%,) and (¢',t)), we

shall need the bound
le_z—e“z'| <|z—2 Re z,Re 2’ > 0.

It is then easy to see the pointwise estimate
- A h -
|(Q”¢o(t',t2))(a) - (Q”zbo(i,to))(a)’ < Mlal]szlzb(a)[(ltl —t]+ |t — tol)-

Because ¢ € S, the function |a|l?+2|h(a)| € L1NL*®(R?). This implies the existence

of a finite constant C such that
1Q°%o(t',1,) — Q@%o(t,to)ll, < C(It' —t| + [t, — 1)),  p=1,00,

which in turn implies that ngzvo(t, to) is jointly continuous in its time arguments in
the LP(R%; C*) norm (1 < p < o) (cf. equation (4.5)).
We induct this result to the (n — 1)** term and then use this to show the n?*

term is continuous. The nt* term’s Fourier transform has the pointwise value

i

(QPTLn(t7 to; tn)) (a) = afe” i (1= in)o’ [V(tn, m)¢n—1(tna to; tn—l)]A(a)'

Take the difference between this function at two different time arguments (¢,%,,t5)

and (¢',t,,t,). This difference can be estimated by adding and subtracting an
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intermediary term with the result

(@7t 15 4,)](@) = [Qhut tos o))
< [l P [Vt )bt 1 )] (2) = [V(tny m)m (fas o bam1)) ()

o (¢~ )a?

+ e P [V (2, m)tpn—1(tn, to; tn1)] ()]

= Ty(a) + Uy(a).

— e ix(i—tn)a?

To control ¥3 we again use the bound e —e~%| < |z' — z|. The second term

has estimate

Ty(a) < —|of o142 j [V(tn,m)zpn_l(tn,to;tn_l)}"(a)‘ <|t’ |t — tn[).

” 2|m|

Because [V(tn, m)¥n_1(tn,to; tn1)]"€ S, any polynomial in o times it will yield a
function in L! N L®(R?%; C*). Tt is then easliy verified that |¥2]|, — 0 in the limit
(t',20,tL) = (tyto,tn) for all 1 < p < 0.

For the first term ¥; we again add and subtract an intermediary term;

¥i(a) < |af

[(V(thsm) = V{2, m) )i (b o tama)] ()]

+ 1o IV (thm) ($m2 (s i th 1) = ¥t (b o bn1) ) ()]

= \113(05) -+ \114((1).
Forall 1 < p < oo, ||¥s], — 0 as (¢,1,,t],) — (¢,t5,t,) because lemma 4.1
showed the function Q#[V(t,,m)yp]" is continuous in ¢, with respect to these norms

for all p € S.
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Finally we consider the last term ¥,. Equation (4.4) provides an explicit

representation for Uy;

[ 3 (t50) ot ity 1) — @)~ sl tas)(e— o))
(4.13)

Uy(a) = |af

Integrating ¥4 over o and making the change of variables @ — a, = a — o, we get

the L(R?) estimate of ¥4 of

1»£n~l(t;za ti;; tin—l)(ao) - 'ﬁzn—l(tm to; tn—l)(ao)

[Pal; < /dao 1A G (oo | + &)1

< [ oot + ,%w + B H (o] + &)1

X Tﬁn—l(t;at;5t;z—1)(a0) - 'an—l(tnatdtn—l)(aO) .

The second inequality follows from equation (3.26). Because ||u(t])| and ||y(¢))]|
are uniformly bounded in time and by assumption, Q°%n—1(tn,%0;tn—1) is jointly
continuous in the norm || - ||;, the above estimate shows that ||®4]|, — 0 in the limit
of (¢,1,,t,) — (,t0,ts). Similarly, starting from (4.13) it easily shown that || @]/,
also tends to zero as the time arguments approach each other. This completes the

proof to the lemma. &

The continuity properties of the functions 1, (%,%,; t») guarantee the existence
of the time ordered Riemann integrals in the spaces LI(R%C?) for 2 < ¢ < oo
([La 69], chapter X). These integrals allow us to define a mapping that corresponds

to the n'* term in the Dyson series (4.2).

Definition 4.1: Define the n'* Dyson iterate operator,

Dn(t,te;m) : S — LI(R% C*) 2<g< o0,
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by the equations

Yo(t,10), if n = 0;

Dultstosm) = i vesS (4.14)
G i dtn Yaltytosts), ifn>1.

Here the 9n(t,10;t,) are defined in (4.6) and the integral is the Riemann integral
for continuous functions in the LI(R%;C*) topology. &

It is important to be able to relate the pointwise value of Dy (t,%,;m)® to the
time ordered integral of the pointwise value of ¥,(t,t0;t,). The following lemma

establishes this relation.

Lemma 4.3 Let ¢ : An(t,1,) — S(R%C®) be a continuous mapping in the

L4(R%; C*) topology for 2 < ¢ < co. Define the vector
E.

>
& — / dt,, o(tn) € LI(R%; ). (4.15)
o
Then /
>
®(z) = / dt, o(tn)(z), z € R%. (4.16)
to

. Proof: The L*®(R?% C*®) continuity of ¢(t,) with respect to t, implies the
pointwise t,-continuity of ¢(t,)(z) for each z € R?. Thus the ordinary (C*-valued)
Riemann integral of ¢(t,)(z) over t,, exists. An application of the dominated con-
vergence theorem shows that the integral ft? dt, ¢(t,)(z) is a continuous function
of z.

Recall what (4.15) means ([La 69], chapter X). Let {7rl = {Aj,rj}} be a

sequence of partitions of A,(t,1,) such that || — 0 as [ — co. Here j is a member
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of an appropiate index set I;; Aj € Ap(2,1,) is a set of the form

Ay = (Njp A1) X -0 X (Mg Mgnt1)s

where {Az},...,{m} each form a partition of [t,,1]; T; € A;j and we set o(7j) = 0

if T3 & An(t,1,); |Aj| is the volume of Aj and |m;| = max |A;]. The integral in (4.15)
means that

“Zcp('rj)[Aj[—@H — 0, as | — oo,

€T, !
provided the limit is independent of whatever the sequence of partions {m;} is taken.
Because this sum converges in norm to @, it must converge in measure to ® (cf.
[Roy 68], §4.5). Hence we can apply Royden’s proposition 4.17 [Roy 68] which shows

for almost all z, that there exists a subsequence of partitions, {m;, }, such that

Y e(rs)(e)|Aj] — @(z)| =0,  asl — oo
JeT,

But the left hand side is a Riemann sum that has the limiting value ftto> dtn, o(t,)(z).
Thus (4.16) is established for almost all z. As the right hand side is continuous in
z, it is used as a definition of t_he left hand side of (4.16) for all of z. &

In the next lemma we establish some pointwise representations of the ntt
Dyson iterate, continuity properties and its range.

Lemma 4.4: Let (¢,t,) € Ta, m € C4 and let p be any multi-index.

(1) Dp(t,to;m):S — S.

(2) If4 € S and n > 1, then PPD,(t,t,;m)i has the pointwise values

[PPDn(t, to;m)p)(z) =

/ 7t [Pt 1o b0))(2), (4.17)

(R Ji,
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and similarly, its Fourier transform satisfies

lolgp > .
(P2 Dt 13 m) " (o) = % /; dtr Bt 203 ) (). (4.18)

(3) Q?[Dr(t,to;m)p]" is continuous in (t,t,) € Ta with respect to the norm
‘|l for 1 < p < oo. Consequently it also follows that PP D, (t,t,;m) is continuous
P p

in (t,t,) € Ta with respect to the norm || - ||, for all 2 < g < .

Proof: To demonstrate (1), we have to show that for each pair of multi-indices,

p and p', there exists a constant C,, such that for all z € R?,
[Q” PP Dy (t, to;m)e)(2)| < C,p. (4.19)

First we note that from lemma 4.3, setting ¢ = ¥, (t,%5;tn), we immediately

have the pointwise representation

1 t>
(sh)"

[Da(t, to; m)](2) = Bt (L, toj ) (2).

We know from lemma 4.2(3) that [PP4,(t,10;t,)](z) is continuous in (%,%,,tx),
uniformly with respect to z. It therefore possible to interchange the derivatives P?
with the integral ftt: dt, (cf. reference [Ru 76)], theorem 9.42). This establishes

equation (4.17). The quantity of interest has the pointwise representation

: 1 [ ’

Q7 PP Dt tosm)e) = iz [ dtn o PPttt ().
to

To show the estimate (4.19), it is enough to prove that mpl[P"¢n(t,to;tn)](:1:) is

uniformly bounded in # and t,. To show this, it is sufficient to show the Fourier

transform of the integrand has an L!-bound independent of t,. The value of the
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Fourier transform can be picked out of equation (4.8) (also see equation (4.11)).

The result is

[QF PPopu(t, 13 t4)] ()

(23

LG (g)p/ a"/d;\ﬁ(tn;an)“-/M‘(tl;al)zb(ao)

x e~ il(t=tn)a+(tn—tn_1)(@=an)*++(t1—to)ad]
?

where o, is @y = o — oy — - — aqp.

An application of the dominated convergence theorem shows that the deriva-
tive with respect to the a;’s can be brought inside the integral, with due respect
being paid to the parametric dependence of the d)’s on . The d)\’s contain a
polynomial structure in o (a,) and those derivatives that strike the exponential
will bring down further polynomials in the a’s and the t’s. Those derivatives strik-
ing '45(040) will still yield a Schwartz space function. The compact support of the
measures will control the polynomial growth in the «;’s; the compactness of the
set T will control the polynomial growth in the ¢;’s; the exponential is uniformly
bounded by 1; the norm of the measures are continuous and bounded functions of
the t;’s; and <) and its derivatives will control the polynomial grow of o (ao) in the
do integral. All of these facts show that the Fourier transform of Qp,szbn(t, to;tn)
is an L1 function whose norm is uniformly bounded in t,. This completes the proof
for part (1).

We have already indicated how (4.17) comes about. Identity (4.18) is a con-
sequence of using Fubini’s theorem to interchange the time ordered integral with
the integral appearing in the definition of the Fourier transform.

As before, the second assertion in (3) follows from the first and hence we shall

only provide the proof for the first one. Let (¢',t)) € Ta differ from (¢,%,) € Ta.
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The continuity of @?[Dy(,1,;m)1¥] can be shown with the addition and subtraction

of an intermediary term which gives the estimate

1Q7[Dn(t', o5 m)Y] — Q°[Dn(t, tos m)d] ||,

1 t'> > )
S F 1 f dtn - / dtn Qp'ﬁb'n(tl?tg;tn)
k th to p
1 t> . )
tam | ]| QY thstn) — halttor )]
to

The second term tends to zero in the limit (¢',1) — (¢,%,) by lemma 4.2(3). For the
first term the integrand is uniformly bounded in t,,. Thus the first term is bounded

by a constant times [¢t' — ¢|™ + |t] — ¢,|™. %

4.3 A Solution of the Schrodinger Equation

We are now ready to consider the summability of the Dyson series and show that it
sums to a solution of the Schrodinger-Cauchy problem (2.10). We note an immediate
consequence of Lemma 4.4 is that the n* Dyson iterate, Dy (t,to;m)9, is a member
of the set D,. Thus Hy(m)Dy(t,t,;m)1 makes sense, as does the full Hamiltonian
acting on Dy(t,t0;m ).

We begin by examining the sum of the vectors P?D,(t,t,;m)¥, but with a
slightly more restricted class of test vectors 9. In particular the values of |p| = 0,1
and 2 will be of importance for establishing the Dyson series is summable and that

it generates a solution to the Schrédinger equation.

Lemma 4.5: Assume ¢ € C®(R%,C*) and let the support of 4 lie in a ball
By, which is centered on the origin and has radius bk. Here, k is the radius of the
ball which contains the support of the measures v(t) and v(t,m) and 0 < b < 00 is

a scaling constant. Let p be any multi-index, m € C4 and (t,t,) € Ta. Then there
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exists a constant C, depending only on p, 1 and the index q of the Banach space

LI(R% %) (2 < ¢ < ), such that

1 (t—1,\" h n
HP"Dn(t,to;m)szng;—!< - > (b—i—n)l”l[pT—!—l—T-r:l(b—}—n)k'yT]. (4.20)
Furthermore if
Im|
t—t, , =2.718- .- .
< b (e =2.718- ") (4.21)

then the sequence ny___o P?Dy(t,t,;m)p converges with respect to the norm || - g5

for all2 < ¢ < o0, as N — oo.

Proof: In the foliowing, let ¢ and p, 1 < p < 2, be conjugate indices for the
Banach spaces LI(R?%;C®) and LP(R%;C%) (ie. p~1 4 ¢! = 1). For n = 0, there is
no integral involved with the definition of Dy(t,,;m) and hence it must be treated
separately. An application of the Hausdorff-Young theorem ([RS 75], theorem IX.8)

for Fourier transforms yields

"PPDo(t,to;m)¢l‘q < (27r)d %_%)h]p]

]e—%(i—to)lleQp¢

P

< (2m) G DRl (br) el 5 .

For n > 1 we will again apply the Hausdorff-Young theorem.

PPapn(t,t05ts,)

>
HP”Dn(t,to;m)z/:H Sh‘“/ dtn
9 to q

t>
< (2W)d(%"%)hlpl—n/ dtn ”QP,&n(t’to;tn)
to P

(4.22)
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The integrand in the second inequality has the explicit formula (cf. equation (4.11))

P
=/da
P

”Qp'ﬁi’n(tato; tn)

/ d37 (L o) - - AN (115 011) 0P (o)

r
« = i l(t=tn)o -t (i —to)al]

where once again o, = ¢ —a; — - —ay. In the outer most integral, make the change
of variables @ — «,. Working these variable changes into the parametric dependence
of the measures we find that X?(t]) — AMt;j). Next we bring the absolute value
through the integrals to majorize the da’s integrand. The compactness of the
supports of the A’s is used to bound the polynomial growth of the a;’s in the
resulting integral. Finally we use the norm estimates (3.26), (3.14) and (3.19), plus

the compactness of the support of 3 to get the bound

Qb tos )

R h n
< B+ )ity + T+ g
Substituting this estimate into (4.22) leads to (4.20), with C given by

C = (2m)2 G (hk) |5,

Equation (4.20) can be rewritten for n > 1 as follows,

b \IPl prtiel (t —to)ky, |" || 1
P . < . o T ~an
Hp Dn(t,to,m)szq <C <1 + n> — [ y } {1+p+ ——hk'yT'uT]n}
= B,. (4.23)

Consider the series ZquV:l B,. An application of the ratio test shows

S (11,20

as n — 0o, (e =2.718---).
m]
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Consequently the series converges if ¢ — ¢, satisfies inequality (4.21). To show that
the series 27]:]___0 P?Dy(t,to;m)p converges in the (complete) space LI(R%;C?), it is

enough to show it is a Cauchy sequence;
N, N,
|2 Proutteimy]| < 3 ||PPDalt i m)a
Ny e N,y ¢

Ny
SZBn%O as N1, N2 — oo. &
Ny

This establishes the convergence of the term-by-term (spatial) differentiation
of the Dyson series. We will see shortly that the order of the partial differential
operator and the summation may be interchanged. This will be necessary in showing
that the Dyson series gives a solution to the Schrddinger equation. The other
aspect of the Schrédinger equation is the time derivative, and we next establish the
differentiabilty of the n** Dyson iterate with respect to ¢ and the summability of
that series.

Henceforth we shall only work in the L? topology as opposed to the more
general L¢ Banach spaces for 2 < ¢ < 0. To work in Li(R%; C*) would require
knowledge of the closure properties of Ho(m) and V(¢,m) in LY. We have only
described these operators fully in L%*(R%;C*). From a physical standpoint, L? will

suffice because it is the only L? space that is also a Hilbert space.

Lemma 4.6: Let ¢ € S and m € C..
(1) The mapping ¥n(-,to;tn) ¢ [to,T] — S is strongly continuously differen-

tiable and satisfies the formula
)
zha'gbn(t,to;tn) = Ho(m)n(t,to;ts) n=20,1,2,... . (4.24)

Moreover, the limiting process in taking the derivative is uniform with respect to t,

t, and t,,.




- 69 -
(2) The n** Dyson iterate Dy(-,to;m)e : [t,,T] — S, is strongly continu-

ously differentiable. Its derivative we denote by D,(t,t,;m)¥, and it satisfies the

recurrence re]ation
ihDn(t,to;m) = Ho(m)Da(t,to;mp + V(t,m)Dn_1(t,10; m)eb, (4.25)

where Dy,_; = 0 if n = 0. Here also, the limiting process in taking the derivative is

uniform with respect to (t,t,) € Ta.

Proof: We note that if ¢, = ¢, the derivative appearing in (4.24) is the right
sided derivative. If ¢, = ¢, let § > 0, otherwise pick § such that 0 < |§] < ¢ —t,.
Again we treat the n = 0 case separately from the n <1 case.

Recall that 1,(t,1,) is defined in (4.6). Let {¢,(6)} be a family of vectors in
L%(R4; C*) defined by

Pol8) = ih [Wholt + 8, t0) — ol 10)] — Holmolt, o)

- ih%[UO(t + 6 tosm) — Us(t — to;m)]tp — Ho(m)Uo(t — to;m)ep.

To prove our claim, it is enough to prove that ¢,(6) tends to zero uniformly with
respect to (¢,,,t,). From the Plancherel theorem for Fourier transforms ([Ru 73],

§7.9) we have the equality

leo(8)]l = ligo(8)Il-

Thus it is enough to prove ||¢,(6)|| — 0 as § — 0. Pointwise, ¢,(8) is given by the

formula

o5)(e) = {ihzls‘[e’%“‘”‘“’“z ettt Eaze‘%“'“”“z} (o).

2m
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To estimate this pointwise formula we need the following bound. Let Re z, Re z' > 0.

Then

|2’ — z|. (4.26)

l\DIC«O

Setting z = (th/2m)(t — t,)a? and 2’ = (ih/2m)(t + § — t,)a? leads us to the

inequality

 slal* (el

. 3
P8 < 57

Consequently we see that
. 3n®
[2o(8)] < g 1@ 181~ 0 ass—0

2
where |Q]* = (Z;l:l Qf) . Since the right hand side of this last inequality is
independent of ¢ and ¢,, this shows the convergence is uniform in ¢ and %,

For the case n > 1, define the family of vectors {¢,(6)} by

on(6) = ih%[z/)n(t 6,103 b)) — Balt, tos b)) — Ho(m)tba(t,tos tn).

As before, it is enough to prove that ||¢,(6)|| — 0 as § — 0, uniformly in (¢,%,,ts).
From (4.6) and (4.9), the pointwise representation of $,(6) is
2
h” o

Sén(&)(a) = {Z?[e Zm(t+6 tn)Ol — e 2m(t t'n) ]_ %a eﬁi%(t_tn)az}

X [V(tn, m)tbn_1(tn, to; tn-1)]"(a).

Exactly as before we use bound (4.26) to obtain the desired estimate. If we also

note that

V(tna m)¢n—1(tna to; tn—l) - ";bn(tn, to; tn),
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this estimate can be written as

343
8|m/|?2

lea(®ll < g 1@ bn(tn, toi ta)

16].

2 N
Now |Q|* = <Z?=1 QJZ) , 50 by lemma 4.2 we see that H Q% (tn, to; tn ) || is jointly

continuous in (tn,%,,tn) on the compact set A,(T"), and hence it will attain its

maximum. Thus there exists a constant C, independent of (Z,%,;t,), such that
lea(6)] < Cl6| >0  as §— 0.

This finishes the proof of (1)

In order to ensure that all the vectors in the following exist, it is necessary to
consider the left and right ¢-derivatives of D,(t,1,;m)1 separately. As both proofs
are somewhat similar, only the right derivative proof shall be shown.

Let 6 > 0 and define the family of vectors

@(5) = [Dn(t + 63 to;m)'l/’ - Dn(tato;m)]'Qb

1 1 t4+6> t> :
= r dty Pn stostn) — n j :
ooy /; b Bt + 6,03 £n) [ At (L, 10; )

Next we add and subtract a cross term into the definition of ®(§). It is at this

[SOR

point that the left and right derivative arguments differ. The right derivative must
use the following cross term, whereas the left must utilize the other possible cross
term. The use of this particular cross term ensures that the time arguments lie in
a range upon which the vectors with those time labels have meaning. (The same

can be said for the cross term used in the left sided derivative.)
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1 1 t+6> >
‘13’(5) = (Zh)n 'g li\/t; dt, — /f; dtn} "»bn(t + 9, to;tn)
>
+ (i;)n : /; Bt [n(t + 6,103 bn) — Pty Lo )]

We first consider ®1(6). Due to the nature of the iterated integrals, it is necessary

to distinguish between the n = 1 and n > 2 cases.

LI dta(t + 8, toita), n=1;
®1(6) =

5 .
Gyl S dtn [ dbno1 Ya(t + 8,103 tn), n > 2.

We wish to add and subtract a term to ®;(6), but it is necessary to modify the
notation for 1, a little. We expand the argument t, to t,,t,_1 because we will
wish to replace t, by ¢ and have this explicitly exhibited. For n = 1 the train of

argument is
1 1
81(8) = 81(8) — Z¥1(t, 103 t) + = a2, los 1),
1
= 81(6) + ¥t tost)
1
= ®3(6) + EV(t,m)zbo(t,to),

— B4(6) + ;%V(t,m)Do(t,to;m)z,b.
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For n > 2 it proceeds as

1 >
£1(6) = () - / Br1 Baltstorts ta1)
to
t>
+ (Zh)n[ dt,_1 ")bn(tyto;tat'n—l),
1 t>
= @3(5) -+ (Zh)n/ dt, 1 ’l/)n(t,to;t,tn_l),
to
1 > .
= ®3(68) + W/ dtn_1 V(t,m)pn_1(t,to;tn-1),
to

1 1 >
= @3(5) + Ev(tm)W—]—‘/; dtn_l 2/)n_1(t,to;tn_1),

— B4(6) + %V(t,m)Dn_l(t,to;m)w

In these equalities we have used that if A is a closed operator and both [ ¢(7)dr

and [ Ap(7)dr exist as strong Riemann integrals, then ([Hi 72], theorem 10.2.3)

A/go(T) dr = /Acp('r) dr. (4.28)

If we can show that ||®3(6)|| — 0 as § — 0, uniformly in (¢,%,), then we can
conclude that ||®1(8)— £V (t,m)Dyp_1(¢,t0;m)%|| — 0as § — 0, uniformly in (¢,1,).

The vector ®3(6) is given by the formula

11 [t
$3(6) = ﬁ;g/; diy [$1(t + 6,105 t1) — ¥1(t,t03 1)), n=1;
1 1 t+6 tn>
= = n tn— n ) o;tn, n—
®5(0)= Gy | ¥ /t Qb1 Ga(t + 6,103 tns bn_t)

t>
— / dtn_19Pn(t,to;t,tno1)|, n > 2.
to
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Again, because of differences in the iterated integrals, we shall have to handle the
n=1,n =2, and n > 3 cases separately.

For n = 1 it is a simple matter to estimate the L?(R?;C*)-norm of ®3(6);

28] < g [ dta e+, 1) (st
4

The integrand on the right hand side is uniformly continuous and hence given € > 0,
there exists 6,, independent of (¢,1,,%1) such that ||¥1(t + 8,10;t1) — ¥1(2,20;t)|| < €
for all 0 < 6 < 6,. Thus for all § < é,,

123(8)]| <

St o

This shows the uniform continuity of ®3(6) for n = 1.
For n = 2, we split apart the inner integral into one over {, to ¢ and the other

over t to #g;

1 1 t+6 12
®3(6) = = di dt t+ 6,103t
3( ) (ZTL)Z s «/t' 2 [ 1’¢’2( + 0,155 2)
t
+ / dtl {Q/JZ(t + 57t0;t27t1) - '()bZ(t,to;tatl)]}-
to
To estimate the L?-norm of @3, we bring || - || through the integrals. Given ¢ > 0,

there exists é, such that for all 0 < § < &,, ||92(t + 6,t05t2,11) — P2(t, 1052, t1)|| < e
Furthermore, since ||¥2(t + 6,%0;t2)|| is jointly continuous in its arguments on a
compact set, it will attain its maximum. Hence there exists a constant C' such that

lba(t + 6,t05t2)|| < C for all (2,%,,t2,6). If § < &,, then it is easily shown that

C T
[@3(8)]] < ﬁ‘S + ol

and consequently ||®3(6)|| — 0 as 6 — 0, uniformly in (t,1,).
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For the case n > 3, we split up the inner integrals in the definition of ®3(6)

as shown below;

1 t+6 in tp—-1>
(Zh)n 3 / dtn / dtn_l / dtn._z I,bn(t + 5, to; tn)
t t to

1 1 t+6 >
+ .—;‘/ din / dbn1[thn(t + 8,05 tn, tn1) — Y2(t, b0t tn1)]
(th)™ 6 J, t

Following a similar argument to the n = 1 and 2 cases we again arrive at the desired
continuity property.
We consider ®2(6) next. To the definition of ®3(6) we add and subtract a

term;

- %L—Ho(m)Dn(t,to;mw + %Ho(m)Dn(t,to;m)d)
= B4(6) + %Ho(m)Dn(t,to;m)'gb.

®2(6) = 2(8)

We shall show that ®2(6) converges to ;%Ho(m)Dn(t,to;m)'gb as 6 — 0, uniformly
with respect to (t,%,). This is equivalent to showing ®4(§) converges to zero uni-
formly. Writing out the integral representation of D,(,%,;m )% and using the result
leading to (4.28) to interchange the operator H,(m) with the strong Riemann inte-
gral ftt: dt, , ®4(6) can be written

1
(ih)"

t> 1 1
/ dt, {g['ﬁbn(t + 6,t0;tn) — PYn(t,to;tn)] — —Ho(m)z/)n(t,to;tn)} .
to

B4(6) =
Take the norm of ®4(6) and estimate it by bringing the norm through the integral in
the last equation above. From part (1) of this lemma, given € > 0 there exists a &,,

independent of (2,%,;t5), such that for all § < §,, the norm of the above integrand
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is bounded by e. Consequently we obtain the bound

eT™
nlh™’

[@4(8)]| <

This implies the desired result for ®4(6).
Combining all these results for the ®;(6)’s, we have proven the existence of

the strong right derivative of D,(t,1,;m)y and that it is given by

0 1 1
0Dty oyl = = Ho(m)Da(ts toym) + =V (tm) Do s (6 Los . (4:29)
t.y 1h th
We have also shown the limiting process of taking the right derivative is uniform
with respect to (%,1,). Because the right hand side of (4.29) is strongly continuous,
it follows that Dy (¢,t,;m)v is strongly continuously right differentiable.
For the left sided derivative, a similar argument applies except we add and
subtract the cross term
11
(sh)n 6

t+6>
/ dtn, ¥n(t, to;tn), 6 <0,
to

as we have previously indicated. We will end up with an equation corresponding
to (4.29), but with the left handed derivative instead of the right. These two
equations together imply the existence of the derivative and the equation (4.25).
The continuity of the left and right derivatives, and the uniform convergence of the
limiting process of taking either of those two derivatives implies the like properties

in the total derivative. &

With the differentiabilty properties of each term in the Dyson series estab-
lished, we next examine the possibilty of exchanging the the infinite sum forming
the Dyson series with these differential operators. Recall in lemma 4.5 we saw

that if ¥ € C®(R?,C°) and t — t, satisfied estimate (4.21), then the sequence

-
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27]:]:0 Dy(t,t,;m)y is Cauchy with respect to || - ||. Hence as N — oo this sum

converges to a unique element of L2(R¢, C*), which we denote by

N
Y(t,to;m) =s—Um Y Dy,(t,to;m). (4.30)

N—ooo 0

Proposition 4.1: Assume that ¢ € C3°(R%,C*) and that the support of 3 is
a subset of the closed ball By, for some 0 < b < co. Let m € C4, (t,t,) € T and let
t — 1, satisfy (4.21). Then 9(t,t,;m) € D, and ¥(t,t,;m) is strongly continuously
differentiable with respect to t. Moreover v¥(t,1,;m) is a solution of the Cauchy-

Schrédinger problem:

ih(—%z/;(t, to;m) = H(t,m)y(t,1,;m)

P(to,to;m) = .

(4.31)

Proof: Because Ho(m) = (2m)~! ?:1 sz, it follows from lemma 4.5 that the

series
N N
Ho(m) Y Da(t,to;m)p = Ho(m)Dn(t, to;m)
n=0 n=0

is strongly convergent as N — oco. Now H,(m) is a closed operator and both the
sequences 27]:;0 Dy (t,t0;m)yp and Ho(m) ZTJLV:O Dy(t,to;m)y converge. This leads
us to conclude that ¥(t,%,;m) € D, and

N
Ho(m)p(t,to;m) = s gnz Ho(m)Dy(t,t0;m)b.

n=0
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The initial condition aspect of (4.31) is easily verified. We make use of equa-

tion (4.20) to show

[(tst0im) — || < Dot tosm)tp — %] + > | Dult, to;m)]|

n=1

< N[Uo(t = toym) — INb||

+ ; 0% (t —ht> (b+n)Pl[u, + ITZ,—](b + )],

In the second inequality, the first term goes to zero as t — ¢, because Uy(t — t,;m)
is strongly continuous and U,(0;m) = I. The second term goes to zero in the limit
t — t, because it is of the form (¢t —1t,)h(t —1,), where h(7) is defined by a convergent
Taylor series.

It remains to verify the differential equation in (4.31). The key to showing
this result is the recurrence relation (4.25). We can easily differentiate any finite

partial sum in the Dyson series with the result

zh——ZD (t,t0;m)b = Ho(m)Dol(t,to; m)eh

n=0

N
+2.H
n=1

o(m) Da(t, to; )1/)+V(t,m)Dn_1(t,to;m)¢}

= H(t,m n(tto;m) + Ho(m)Dpy(t,t0;m)e. (4.32)

”M2 r—’\—-s

We note that the sum Zf_ol H(t,m)Dy(t,t,;m)y will converge because V(¢,m) is
H,(m)-bounded and
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M’ M!
< Y 1 Ho(m)Daltstosm)pll + Y IV (t,m)Dalt, to;m)s|
n=M n=M

MI
<(1+8) Y [[Ho(m)Da(t,to;m) ¢II+aZHD (t,to; m)b||

n=M n=M
—0 as M,M' — oo, (4.33)

which shows it is strongly Cauchy.
Because the sums H(t,m) ZQT:O Dy (t,t0;m)e and 2711\]:0 H(t,m)Dy(t,t0;m)
are both strongly convergent and because H(¢,m) is a closed operator, we have that

Y(t,t0;mm) is in the domain of H(¢,m) and that

s —lim H(t,m ZD tytosm)Y = H(t,m)y(t,t0;m).

N-ooo 0
Furthermore, as ZnN=0 Hy(m)Dy(t,to;m)9 is strongly convergent we necessarily
have that
s —lim Ho(m)Dy(t,t0;m) = 0.

N—-oo

These results can be combined, yielding

N

s hmzha6 Dn(t,to;m)p = H(t,m)p(t,t;m).
00 n=0
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It remains to be shown that

N

0 ., 0
s&—‘}gnzha n—OD (t,to',m)zb = zhé—i'gb(t,to,m).

The standard theorems of analysis concerning the differentiation of uniformly con-
vergent sequences of functions remain valid on the L?(R%; C*) topology (cf. references
[Kr 71], p. 4 and [La 83], theorem 5.9.1).

Let 0 < § < |m|(ekvy, )™ and t, < t < t, + & (and therefore t — ¢, satisfies
(4.21)). Define ¢ (t) = Zﬁ[:o Dy (t,to;m)y. Then each ¢, (¢) is differentiable on
[torto + 6] and |l () — ¥(t,t0;m)|| = 0 as N — oo. If we can show that o, (1)

converges strongly and uniformly with respect to ¢t on [t,,%, + 6], then

5 0 0
zha'gb(t,to, m) = s—l1mz7i(9 vy (t),

N—-oo

and our proof is complete. For details to this claim, we refer to reference [Ru 76],

theorem 7.17. In the notation using ¢, (t), we rewrite (4.32) as

at” ;Oﬂ(z m) Dt to;m ) + Ho(m) Dy (t,to; m)e.
It is enough to prove that each of the two terms on the right hand side are sepa-
rately uniformly Cauchy. Because V(¢,m) is Hy(m)-bounded, it is enough to prove
that Ziv:o | Ho(m)Dy(t,t0;m)e| and Z —o |Dn(t,t0; m)1|| are uniformly Cauchy
(cf. (4.33)). More generally still, it is enough to prove that Zf:o |PPDy(t,to;m)d|]
is uniformly Cauchy for all multi-indices p. By using inequality (4.20) these par-
tial sums can be magorized termwise and the magorizing sequence will converge
uniformly with respect to ¢t € [t,,t, + 6] and , € [0,T]. Hence the sequence
27‘7:7:0 |P?Dy(t,t5;m)ep|| is uniformly Cauchy. Equation (4.20) also shows that

Ho(m)Dp(t,t0;m)¢ converges to zero uniformly in ¢ and , as N — oo.
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Thus we have verified the Dyson series satisfies the Schrodinger equation in
the strong sense for ¢ in the interval [t,,, + EJ];"%—) and t, in the interval [0,T"). The
arguments for the special case ¢, = ¢t = T are somewhat simpler, and will not be

presented here. &
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CHAPTER 5

Dyson Kernels and the Propagator

Proposition 4.1 showed for a certain class of initial test functions and a time
interval ¢ — 1, sufficiently small, the Dyson series converged to a solution of the
Schrédinger equation. For m € €4 we shall demonstrate that each of the Dyson op-
erators, Dy(t,t,;m), is an integral operator. Furthermore their integral kernels are
summable and the resulting function we show to be the propagator for the complex

mass problem. Again, throughout chapter 5 we have the universal assumption that

a € Vy(k) and v € V(k).

5.1 Product Measures and Their Combinatorics

To begin, we first develop some convenient notations for product measures
that appear in the ensuing discussions. Let n be the order of the Dyson iterate
under consideration, and let » be an integral index between 0 and n. If » > 0,
define an r-tuple with non-negative integer arguments by j, = (j;,...,4,), and if
r =0, let j, simply be a label whose meaning will be made clear below. Define the

ordered index set J, . by

0, if r =05
Jn'r:

1

{,:1<4;<jp <+ <j, <n}, if1<r<n.

For 7 > 0, Jn, can be thought of as the set of all ways of picking r distinct numbers

out of 1,...,n. If » = 0, then J,, is the empty set and j, is a label that reflects the
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choice of picking no numbers out of n. There are (:‘) elements in J, .. To each j.

we associate an n-fold product measure A,(j-,t,), defined by
An(Grotn) = o (ta)l X - > fy(E5, )] X - X Py(25, )] X -+ x |oT (). (5.1)

Here we recall the definition of o]*(¢;) given in equation (3.24) and write it in its

polar decomposition form
doi'(t1) = <f* (e, tr) dlo] ()]

The right hand side of (5.1) is to be understood in the following sense. If 7 = 0, the
measure only involves the product of the |6}(¢;)|’s. When » > 0, replace the measure
|d;‘l(tjl)] in the measure An(j,,ts), by the measure |v(;)|, for j, = j;,...,7,. For
example if j. = n — 1, then |y(t,-1)| replaces |o7_;(¢tn—1)|. From equations (3.13)
and (3.27) it is evident that A,(j-,tn) has the uniform bound

. ‘ h . .
|An(r, tr)]] < (#T + Mnk%> g Jr € Jngrs  th € Ap(t,to). (5.2)

To establish the existence of the Dyson kernels, we shall work in the Fourier
transform space first and pull back these results to the co-ordinate space represen-
tation. To be able to pull back these results, we first need a couple of results to
provide the necessary mathematical tools. The proofs of these elementary results

are straightforward and shall only be sketched.

Lemma 5.1: Let Imz > 0 (z # 0), 8,¢ € R%. Assume that ¥ € S and its

Fourier transform is given by 1. Then

[ e e = (it [ay By (53)
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and

(1)1 [ daGagpem st o) = (=2 [ aypla)agets =iy,
(5.4)

Proof: Introduce into the integrand of the left hand side of (5.3) the charac-
teristic function x () for the hypercube |a;| < R, (1 < j < d). One can show with
an application of the dominated convergence theorem that the resulting integral
converges to the left hand side of (5.3) as R — co. On the other hand, writing
out the explicit representation of the Fourier transform of 4 and applying Fubini’s

theorem, we get

/ dy (y) / dox p(a)e 5 (@+E—aB) —iccy,

The R — oo limit for this integral is considered. If Im z > 0 it easily shown that the
inner de integal above is uniformly bounded in y and R. If Imz = 0 (z # 0), we have
to be more careful with the estimate, as the exponential is then pure oscillatory with
no decay. An application of the lemma below shows this Fresnel type integral can
also be uniformly bounded in y and R. In either case we can apply the dominated
convergence theorem to bring the R — oo limit through the dy integral, with the

result
d

. oo .
/dy v [] eﬁﬁ(ﬁj_zﬁj)zf doj e~ 295~ i3 (& —=B)+vjle
=1 —o0

The inner integral can be split up into ones over the intervals (—oo,0] and [0, co).
If Imz > 0 then these integrals have a standard result and we refer to reference
[GR 80], 3.322.2. For Imz = 0 with z # 0, the inner intergral is a Fresnel type
integral which can be evaluated by contour integration techniques. Both cases for
z lead to the right hand side of (5.3). The branch of the square root being taken is

argz € (—m,m) (i.e. the cut is along the negative real axis).
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The second equation (5.4) is shown by starting with the right hand side,
integrating by parts until all the derivatives strike 1) and then use (5.3), but with %
replaced by 8,1(y). Using the identity (87¢) () = il/lafi(a), we see that equation
(5.4) results. &

Lemma 5.2: For all a,b € R\{0} we have the a-uniform estimate

/ e~ bt dtl o)
0

where

™

V2
o) = (g5) -+ FmastL, bl

Proof: Since the integrand is an even function of ¢, without loss of generality
we may assume that @ > 0. If b < 0 then by taking the complex conjugate of the

above integral we could estimate the equivalent function

/a e_i“’“’2 dtl .
0

Thus without loss of generality, we may take b > 0. The proof is now identical to

Truman’s lemma 1 [Tru 77). &

For the next lemma we introduce the following notation. If r is an integer
between 0 and n, then the symbol [r/2] means the greatest integer less than or
equal to 7/2. Let [ be an integer between 0 and [r/2]. The summation sign Z'T,l will
denote the sum over the division of 7 objects into certain sets. Label these objects
by the indices j = 1 ~ r. For a given 7 and [, pick » — 2l of these objects. Of the

remaining 2! objects, we pick [ pairs. The result is to partition these objects like
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{15+ s dr_at (Fpaigy19Jr—a1s2)s - - -+ (Jr153-)}- The sum is taken over all distinct

choices of this type. The number of terms in this sum is

(5.5)

Lemma 5.3: Let {n;};_; be a set of r constant d-dimensional vectors. Let
Vy denote the d-dimensional gradient with respect to the variable y € R%. Then

the following formula is valid;

r an? 1
= (2&) e Z (2a)l Z ,(771'1 ' y) T (nir-zz : y)(nir—21+1 : nir~2l+2) T (777:1'~1 : "7ir)7

a€C. (5.6)

Proof: The result is trivially seen for the case » = 1. The general case will
follow from a tedious but straight forward induction argument. The one dimensional

case (d = 1) of formula (5.6) can be found in reference [GR 80], 0.432.2 . &

5.2 Dyson Kernels

With these tools in hand we are ready to show that the n'* Dyson iterate is an

integral operator.

Lemma 5.4: Let m € C, (¢,%,) € Ta and ¥ € S.

(1) For a.a.z € R?, each operator Dy(t,t,;m) (n > 0) has a Fourier integral

representation

[Dy(t, to;m)y](z) = /dao dn(@, 15 00y to; m )t (o). (5.7)
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The functions cfn(:c,t; 0,,t0;m) are defined by

- 1
do(mat;aoato;m) = ——55¢€ 2m(t to)ag+ico: zI

(2m)d/2

~

dn(z,t; 00,103 m)

1 1 > . ( 4 )
= le dt, /d/\n(tn;an)---/d)\l(tl;al)e o e

n n
e 2’21 {Zi’jzl(t—tivj)a.paj-i—Z Zi=1(t—ti)ai~ao+(t—t0)a3]

n>1, (5.8)

where i V j = max(i,7) and I in d, is the s X s unit matrix.
(2) The nt* Dyson operator is an integral operator with kernel dn(z,t;y,t0;m).
That is, Dy(t,10;m) satisfies

[Dr(,t0;m)Y](z) = /dydn(.’n,t;y,to;m)zp(y), a.a.z. (5.9)
The functions d,(z,t;y,t,;m) are defined by the formulae

d/2
do(;c,t;y,to;m) = l:-zThZ:—:.t_)} i ezh(t to) (z— Z/) I

d/2 t>
m 1
dn(2,t;9,t0;m) = [zﬂ.m(t - to)} (2h)" ./t:, o

x [ [d02tnsn) = nan, 1) - Wy s )] x -

X /[da}‘(tuaﬂ — gn(al,tl) - Vy d]')’l(tl;al)]

% e iz-(og+-- +°“”)+2ht to)(y Xn)2 1ﬁ ;1 1(t—th1)aj'al
?

(5.10)
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Here, x, € C% is given by the formula

Xn = (5.11)
z — % E;-Lzl(t —t;)a;, ifn>1.

The branch of the square root is —m < arg z < w. The y derivatives V, will only
act on the exponential in the formula for d,, and not on the test function v in

equation (5.9).

Proof: For the n = 0 case, we have that D,(t,%,;m)y = U,(t—1t,;m)®, whence
equations (5.7) and (5.8) follow immediately (cf. equation (4.9)).

For n > 1, equations (4.17) (with |p| = 0) and (4.8) and an application of Fu-
bini’s theorem imply (5.7) and (5.9) up to an apparent difference in the exponential.
The identity

n

(t—ta)(@o+ - +oan) + -+ (fr —to)al = Y (t— tivj)ai - oy, (5.12)

1,7=0
shows that the argument to both exponentials are indeed the same (once one ex-
pands out the 1 = 0 and j = 0 parts of the right hand side of (5.12)). This identity

is trivial to show for » = 0 and the general case can be proven by an inductive

argument. We note that identity (5.12) shows that

n

3t~ tivi)ei - @ > 0. (5.13)

1,5=0
For n = 0, part (1) implies the mixed integral representation

_1
(2m)d/2

L 2 . m N
[Do(t,to;m))(z) = /ddo e_%(t—t")(a"*h(t—to)z) +22ﬁ(t—to)m2¢(ao)
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But this is in the form of the integral in lemma 5.1(1), with z = m[&(t — ¢,)] 7%,
¢ =0 and § = z. Applying lemma 5.1 leads us immediately to (5.9) and (5.10).

To show part (2) for n > 1, start by using the results in part (1). In (5.8),

explicitly separate out the parametric dependence on a, in the measures A?(#;),

writing them as

dA(t; eu) = [dffzn(tz;az) - %(n(az,tz) ' ao> dl’YI(tz;az)}-

Next we expand out the product of these sums as the sum of the products. Taking

care to preserve the order of the matrix products, the resulting measure is

[dcr;f(tn;an) - %(U(an,tn) . ao> d|'y|(tn;an)] X o

x [dof(tricn) = - (n(en,tr) - ao) dirl(tz; )]

n

= Z(““) dAn (e ta)si(@nstn) -+ (1(es, t5,) - o) X -

=0 Jn,»

X (n(ajl’tjl) ' ao) s, tr).

Substituting this into (5.7) and (5.8), and then using Fubini’s theorem to inter-
change the da, integral with the time ordered and complex measure integrals, we

obtain for an expression of the nt* Dyson iterate;

[Dn(t,to;m)zb](w)

) JZ:( > W‘/;odt/dj\.]ra

X e_% Zj:l(t”tivi)O‘i'aj+iz'(a1+'--+an)

X fdaocg(an,tn)--. (U(ajratjf)-ao> X en

x (nasyst5,) - @) -+ P, t)h(g)e™ Emmioladixaree - (514)
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Let

SplQn,tn) - (n(ajr’tjr) ' ao) T (n(ajlatjl) : O‘O) 51 (an,tn) = Z Coarf,

lol=r

where p is the multi-index (p1,...,p4) and the matrices C, have a dependence on

the o;’s and #)’s not explicitly displayed. Then the da, integral can be written

/d% Sn(an,tn): - (n(aj,,tj,) : ao) (n(aj17tj1) : ao> X -
X 6T (a1, 11 )9 (ap e Fm (t=to)ard +ixn a0

i i 2
=2 C TR / day alih(crp) e (o) (2o~ w2ay%n)

lpl=r

2
im R —_——m
= z Cpe?h(t—to)x‘rf/dao ag ¢(ao)e t to)(ao"l’ZJ =1 t to *j ﬁ(t—to)m> R

lol=r

(5.15)

In the second equality we have merely expanded out the definition of x,. We can
now apply lemma 5.1 if we make the associations z = h(tmto)’ ¢ = Z] =1 i—:t’-aj and

B = z. Then the right hand side of (5.15) becomes

e#‘tm—to—)x’3 m @/2 e y2+iy~<zf-z: %aj———’f a:)
2 05 <*h( )> /dyz/)(y)aypem(t ! e )

lp|=r (—2)le t—1

a/2 .
= (" 1ol P TH(mtgy (¥ xn)?
<z’h(t—to)> /dy > iM1Cp(y) 8 e

lpl=r
m /2
N ("ﬁ(iT)) [ dvsitansta) - (n(essts)-5%s,)
% (ﬂ(aa’utjl) zV:u1> Plon ty) Y P(y)- (5.16)
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After substituting the expressions (5.16) and (5.15) into (5.14), our equation for
D,(t,t,;m)y becomes

[Dn(t,to;m)«m(m)zzz( B e @

[0ttt Tt it
n 'I‘) §
X (

d/2
R — 1) ) j[dycﬁ(an,hﬁ---(n(ap,tx)'thl) X e

Ty
X (77 ah’ 31 zvy1> ¢t (a1,11) e2h(t-to) "1

¥(y)-

Y1=YXn

(5.17)

Notice that the combinatorics that resulted in the sums > ", and 2 7., in (5.14)
are exactly the same in (5.17), but with a, replaced by ¢V,. The result we are after
now follows, provided we can justify the interchange of the integrals _]:? dt, and
f dAn(jr,tn) with f dy and then show the derivatives V, can be brought outside of
the time and complex measure integrals.

Grouping together the exponentials in (5.17), their combined argument is

. = t—1t; m
Z[$'j§=:1aj—(m—y)-2:1t_toaj] +m(m—y)2

S Y (T B

t—1,

Consider the third term in this expression. If ¢;, < ¢ and ;.41 = -+- = #,, = ¢, then

Xn: [(t —tjvi) = ¢ —:j_)(zo— tl)] aj oy = i [(t —tjvi) — (=)t~ tl)} @ - ay.

5l=1
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Without loss of generality we assume that ¢, < ¢t (and hence all ¢;’s are less than ¢

because t; < t,,). It is a simple algebraic exercise to show that

™

[(t —tjvi) — (t _:jz(:; tl)} oj oy = i lt _1% P —1tj—1] (i(t - tz)az)z,

Jil=1 =1

n > 1. (5.18)

Because of the ordering relation t; > ;_1, it is easy to see that the right hand side
of (5.18) is non-negative. This allows us to bound the exponentials in (5.17) for all

mEC+;

. n P n tz)(t ty)
e"[m'z m y) Z] 1t o0& 2h(t to)(m y)2 h jl=1 (t tJVl) t—to Z] j O]

2

- (5.19)

Imm (

< e Zﬁ(t f.o)

Next we use lemma 5.3 to explicitly expand out the effect of the derivatives
7-Vy acting on the exponential. The result is another useful expression for the nt”

Dyson iterate. Its kernel will be given by

drn(z,t;y,t0;m)

-3 2 [Tjﬂf/:' <ﬁ)z (=) @ (it to)>d/2

X {n(aqiﬁqi)}l-- (n(aqw tg;) - (y — xn)> {n(aqk,tqk)}1 X e
x{n(agty)} -+ {M(qustan) } -+ si(aa,12)

i:l:-zn aj—(z— ).2” | (o—g)*— 42 T (t=tju1)— t-t)e-n) ]
X e j=1"7 ¥ j=1t—toJ 2h(t to) y jl=1 iVl t—to 1.

(5.20)
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A brief explanation of this sum is in order. We would like to group the 7’s together
as in lemma 5.3, but their matrix structure, and that of the ¢’s add an additional
complication not present in the Abelian case. We must preserve the order of their
multiplication, while at the same time we must take dot products between 7’s that
may be separated by ¢’s or other n’s. We use the curly parenthesis with a subscript
to indicate between which pairs of 1’s dot products are being taken. There are r
7n’s appearing in the summand and each 5 appears in a dot product with y — x,, or
another 7. The labels ¢; reflect the possible ways of making these pairings, as per
the summation convention in lemma 5.3. Our expression for the nt* Dyson iterate
at this point is similar to (5.20), but with [ dy as the inner most integral and the
factor 9(y) appearing after ¢J'(a1,?1). With the derivatives explicitly evaluated,
we can now proceed to estimate the integrand in our expression for D, (t,t,;m).
From equation (5.19), the exponential function is uniformly bounded by 1. The
compactness of the support of Ay(j,,tn) controls the polynomial growth of the
o;’s, and the fact 9 € S is used in controlling thé polynomial growth in y. We
recall |n(a;j,t;)] = 1 for all @ € R? and t; € [t,,?] and we also recall the norm
estimate (5.2). These combined with the fact that all the sums appearing in (5.20)
are of finite order, show that the integral is absolutely integrable and hence we can
apply Fubini’s theorem. Similarly, it is easily shown, via the dominated convergence

theorem, that the derivatives V, can be interchanged with the various integrals

involved, to arrive at (5.9) and (5.10). &

With the existence of the Dyson kernels established, the next step is to study

their properties. But first we make note of the bound

nhk
ly = xal < lw—yl+m(t—to)EZn, (5.21)
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valid for all a; € Sy and all z,y € R%. As a majorizing function to the n** Dyson

kernel we introduce the function

|| 42 2
g(w;t,to,m) = <———___)> ez—g[~co|m| +e1|z]+ca)

.22
27h(t — t, ’ (5.22)
where the constants ¢; are
Imm Im| [m| [m gy
= =1 = . 5.2
“Tith TTEE-t) T W—w) kv, (5:23)

To properly describe the convergence properties of the sum over the Dyson kernels,

we will use the parameters

0= 26]6")’1. (t - to);

m|

5.24
_ 2eky, ( )

Here m_ represents the smallest value |m| will attain on a compact set of C..
Lemma 5.5: Let dn(z,t;y,t,;m) be defined as in lemma 5.4 and let g and 6
be defined as above. Then

(1) For all z,y € R?, d,(z,t;y,t,;m) satisfies the pointwise estimate

|dn(z, 85y, t0;m)| < sl/zﬂng(m —y;t,t0,m) n>0 (5.25)

(2) For all (z,y,m) € L, where L is a compact subset of R x R¢ x C., the
Dyson kernels dy(-,1;-,1,; ) are jointly continuous.
(3) If m € C5, then dy(-,t;y,10;m) and dy(z,t;-,1,;m) are both members of

LN L*®(R4,c**¢). Furthermore their L? norms are uniformly bounded with respect
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to ¢ and y and satisfy the estimates

ldn(2, 85+, to;m)ll, < sM267|lg(5¢, 0, m)l,

(5.26)

1dn(-s 89, tosm)ll,, < 87267 (51,20, m)],

(4) If0 < 8 < 1, then for each m € C4 and z,y € R? the sum overn = 0 ~ oo
of the Dyson kernels d,(z,t;y,t,;m) is absolutely convergent. The pointwise value

of this series is defined to be

oo

K(z,t;y,t0;m) = Zdn(m,t;y,to;m). (5.27)

n=0

- and the function K(z,t;y,t,;m) has the pointwise estimate

1
|K(z,t;y,t0;m)| < 51/21—_——5 g9(z — y;t,t0,m). (5.28)

(5) If (z,y,m) € L, m_ is the smallest value of |m| in L and 6_, defined in
(5.24), is less than 1, then K(-,t;-,1,;) is jointly continuous on L.

(6) Ifm € C then for each z € R? the series overn of dy(,1; -, 1,;m) converges
in the LP(R%;C**®) topology to K(z,t; yto;m) for 1 < p < oco. The corresponding
statement holds for each y € R%, dy(-,t;y,1,;m) and K(-,t;y,%0;m). The L? norms

of these functions satisfy

1
1K@t toim)ll, < 57— lg(5t, 1o, )]
(5.29)

1
1Kty toim)lly < 12 —glloCstote, m)l

Proof: For n = 0 the first result is trivial. It is only for the n = 0 case
that the s!/2 factor appears and this is due to the unit matrix in the equation for

do(z,t;9,t0;m). As s1/2 > 1, there is no harm done in adjoining this factor to all of
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the estimates. However, we note that if we estimate d,(z,t;y,1,;m) acting on any
spinor (a C*-valued vector), then this factor can be made to disappear because the
unit matrix structure in the 0** order term disappears into the spinor structure.
For n > 1, we utilize the representation (5.20) for the kernel d,(z,1;y,1,;m).
To estimate the summand in (5.20), we recall equations (5.2), (5.19) and (5.21).

From these it is easily shown that

d/2 n
t—1 1 __Imm a2
ldn(z,t;y,t0;m)| < s1/2 (&)) <_°> —e 15y 1o~

2rh(t — 1, h n!
& n r hk n—r
<3 (st g
[/2] ' !
. r—21 1 i
L e gy () G0

To arrive at (5.30), we have used > ; = (*) and Zrl ,,,(T zl)'l'

We examine the sum ZE;/(?] on the right hand side of (5.30);

[r/2]

ol Z, r—1 5 l (r/2] Z. r—1 A l
Z =20\t —t, 2\m|Z, r—l t— 1, 2lm|Z,
=0

li () () (i)

| Zn N nh "
o lt—t,  2iml|Z,
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Using this to further our estimate in (5.30) we get

/2

t—t 1 Imm z— 2

nlatiy, oy )] < a1 <$‘r5> <T> e Pt
m " bo .

hk n—r | Ln Yy nhy, |

a/2
g (Iml N1\ 1 _me
- 2nh(t —t,) R n!

hk ZnYrp Y
X {”T + |m|"’T”Jr i—t, " 2jm|Z,

< /2 |m| W2 2k(t —to)y, \"
- 2mh(t — 1,) n! ||

1y 2
X {1 + [C—lizc —y|+ ;—%} ;L—} e~ arcelz—yl

< s120%g(z — y;t,10,m).

In the last inequality we have used that ﬁ,— <eand (1+ %)“ < ef for all £ > 0.
This establishes (5.25).

The joint continuity of the Dyson kernels with respect to (z,y,m) € L follows
easily from the formula (5.20). If we explicitly expand out the measures to their
lowest possible representation in terms of v(7) and »(7,m), we readily find that the
resulting integrand is a jointly continuous function of (z,y,m). (Recall the measure
v(7,m) is continuous in m in the norm defined on M(Sy,C***)). Furthermore the
integrand is a uniformly bounded function of all its arguments. This will suffice to
allow us to apply the dominated convergence theorem to conclude the kernels are
jointly continuous.

If Imm > 0, the function g(-;¢,%,,m) € L'NL®(R?). The L?(dz;R?;C5*¢) and
LP(dy; Rd;C"xs) norms of the kernels follows immediately from this and equation

(5.26).
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To demonstrate the pointwise convergence of the sum of the Dyson kernels, we

again employ equation (5.26). It is enough to show that the series forms a Cauchy

sequence in the space C**:

N2 N2
Z dn(m,t;y,to;m) < Z |dn($7t;y7t0;m)|

n=N; n=N
N,
< s?g(z - Yit,to,m) Z "
n=Nq
—0 as N1, Ny — oo.

This line of argument also shows the estimate of K(z,%;y,t,;m) to be

oo 1/2
8
K (2,89, t0;m)| < s'7g(z — yit,t0,m) > 0" = 49 — yit,to,m).
n=0

Next we prove the joint continuity of K(z,t;y,1,;m) on L. Because each
dn(z,t;y,to;m) is jointly continuous on L, from a standard theorem in analysis (cf.
[Ru 76], theorem 7.12), it is enough to show the partial sums of dn(z,t;y,t0;m)
converge uniformly to K(z,t;y,%,;m). Let m4 and m_ denote the upper and lower

bounds of |m| and let |z, —y, | denote the upper bound of |z — y|, for (z,y,m) € L.

Then
N
K(z,t;y,t0;m) — Z dn(z,t;y,10;m)
n=0
m d/2 | oo
< 51/2 (_~_+—_) ecg. :l:+—-y+|+cg Z 071
2nh(t —t,) ey
— 0 as N — oo.

Here, the constants c']- are the same as in (5.23), but with m replaced by m_.

Notice also that the sum converges because it is assumed §_ < 1. The right hand
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side converges to zero independently of (z,y,m) and hence the partial sums of

dn(z,t;9,10;m) converge K(z,t;y,t,; m) uniformly with respect to (z,y,m) € L.
Finally, if m € Cs, then by the triangle inequality,

1K (59, t03m)]l, < Y lldal-ts 95 tosm),

n=0
< s¥%||g (31, to,m)|, Zen
n=0
s1/2
= 7 gll9(st,t0,m)|l,.

The corresponding argument holds for || K(z,1;-,t0;m)||,. &

5.3 The Propagator

If Imm > 0, the function K(z,%;y,%,;m) can be used as a kernel to define a bounded
integral operator acting on H. We can.also use the kernel d,(z,%;y,1,;m) to extend

the domain of the nt* Dyson operator from S to all of H.

Definition 5.1: Let m € C> and 0 < § < 1. For each ¥ € H, define

(pointwise) the functions

[Da(t,to;m)d)(z) = fdn(m,t;y,to;m)¢(y) dy (5.31)

and
Kt toimbl(e) = [ K(etiv,toim)b(y) do. (5.32)
&

The integrals in (5.31) and (5.32) are well defined for each z because both
dn(z,t;-,t0;m) and K(z,1;-,10;m) are L2(R%; C***) functions, so that the integrands

will be L!(R?;C®) functions. The next lemma shows that these functions define
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bounded operators which we denote by D,(t,t,;m) and K(t,t,;m) respectively.

We shall also prove some of their important properties.

Lemma 5.6: Let m € C5 and 0 < 6 < 1.
(1) Da(t,t0;m) and K(t,1,;m), as defined by definition 5.1, are bounded linear

mappings of H into H. They satisfy the operator norm estimates

| Dt to;m)]| < 6%[|g(+5t, s m)|, (5.33)
and

1
1K (8 tosm)l| < T—llaCi tatosm)ll;- (5.34)

(2) The partial sums Zi\f:o D, (t,t0;m). converge in the operator norm topol-

ogy to K(t,to;m).
(8) If {U(t,t0;m)} 1, )T, is the complex mass Schrdinger evolution, then

for all (t,,t) € Ta
K(t,to;m) = U(t,t;m). (5.35)

Proof: As we have previously commented on, any unit matrices appearing in
dn(z,1;y,10;m) and K(z,t;y,1,;m) will be absorbed into the spinor structure of 1,
so that the factor s1/2 will not be present.

From lemma 5.5 we obviously have the convolution bound

[Da(t, to; m)p)(2)| < 67 / 9( — ¥5 s Lo, m) ()| dy

= 0"[g(-;t,t0,m) * |9])(2).
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Applying the Hausdorff-Young estimate for convolutions ([HS 78], theorem 12.2)

we have immediately,

1Da(t tosm)pll < 6 llg(st oy m)ly [ 101]| . = 6 ll9Cstt0sm)] 1)

L2(rd)

This demonstrates (1) for D, (¢,t,;m). Similar arguments will apply for K (t,1,;m).
From (5.33), it is obvious that the partial sum Zf:;o Dy (t,t5;m) forms a
Cauchy sequence in B and hence it converges to some bounded operator. Consider

the difference between this sum and K(¢,t,;m) acting on the function ;

2
H(i olttoim) = Kty toim) )9 = l/ (@159 toim)(y) dy| da
n=0 nN+1 .
< ( S 6 ™) g5t tom) = ]I
n=N+1

eN+1 , 5
< (220 totest tom 261

This implies

N gN+1
HZ D,(t,to;m) — K(t,to;m)” < T8

n=0

Hg(';t7t01m)l|1 — 0 as N — oo.

To show K(t,t,;m) is the complex mass Schrodinger evolution, we first con-
sider a smaller class of test functions than all of L*(R?%; C®). Assume ¢ € C®(R?,C*).
From (4.30) and proposition 4.1, the strong limit ¥(t,t0;m) = Y.°° o Dy(t, t0;m )t

is a solution of the complex mass valued Schréodinger equation. Note too that
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Dn(t, to;m) is the extension of Dy (t,t0;m). The abstract evolution theory of chap-

ter 2 showed the solution to this equation to be unique and hence

(¢ o] oo

Ut,tosm)p = > Dn(t,to;m)p = Z (tyto;m)d = K(t,t0;m)b.
n=0 n=0

This demonstrates the two bounded operators U(t,1,;m) and K(t,t,;m) coincide

on the dense set C°(R¢,C®). This is possible only if the two operators are equal.
¢

It remains to be shown that lemma 5.6 remains valid in some sense in the
limit Imm — 0. Let L5(R?,C*) denote the space of compactly supported LP(R%, C?)

functions.

Theorem 5.1: Let 0 < 6 <1, m € C4 and ¢ € L%(R?%,C*). Then for almost
all z € R?,

U (1, 1oy mp) () = f K (2, 4y, to; m)w(y) dy, (5.36)

where {U(2,t0;m)}(1,1,)eT, is the Schrédinger evolution and K (z,t;y,t,;m) is as in

lemma 5.5.

Proof: As 1t € L2(R¢,C®), it is also in LI(R?,C*). Fix z € R? and let the
mass m' be in a closed neighbourhood of m whose diameter is less than e. Then
(z,y,m') will be in a compact subset of R? x R x C, and for ¢ sufficiently small,

= 2|m/|"leky,(t — t,) < 1. Hence K(-,t;-,t0;-) is a continuous function of

(z,y,m'). and consequently we can consider the m' — m (¢ — 0) limit of

[U(tstosm )Pl(z) = [K(t,t0;m'}p)(2) = fK(w,t;y,to;m')¢(y) dy.

As K(z,t;y,t,;m) is jointly continuous on a compact set, its modulo will attain

its maximum and hence there exists a constant C, depending on t,%, and ¥, but
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independent of m' such that

K (2,t;y,t0;m' Y(y)| < Clb(y)| € LY(RY, dy).

This shows we can apply the dominated convergence theorem to conclude

im (Ut to;m!))(z) = f K (2,1, to; m)b(y) dy.

m!—m

On the other hand, we know from proposition 2.2 that U(¢,1,;m') is strongly con-
tinuous in m' on C4. Set m' = m+in~1. Then there exists a subsequence (reference

[HS 78], lemma 3.9) {n;}, such that for almost all z,

lim [U(t,t0;m + i);b](m) = [U(t,to; m)¥](z).

These two limits combined together yield proof of identity (5.36). &

There are two comments that come to mind immediately on examination of
theorem 5.1. The first is that the class of functions used in (5.36) can be extended

to all of L?(R%;€®). For an L*(R%; C*) function, the integral representation becomes

Ut to; m))(z) = Lim. / K(z, t;, to; m)o(y) dy.

The second observation is that the theory leading up to theorem 5.1 appears to be
limited to small times only, in that the parameter § < 1 (recall  is proportional to
t—1,). In the case of a complex mass parameter (Imm > 0), it is possible to define
an extended kernel, also denoted K (z,t;y,1,;m), such that our theory remains valid

for times allowed in the operator valued evolution problem, i.e. all (,,t) € Ta.

Corollary 5.1: Assumem € Cs and that (t,1,) € Th.
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(1) The complex mass evolution operator U(t,t,;m) is an integral operator
with a jointly continuous kernel K(:,t;-,to;m). For a fixed z or y, K(-,t;y,1,;m)
and K(z,t;-,1,;m) are both in L' N L®(R%; C**9).

(2) The kernel K is Gaussian bounded. That is there exist finite positive

constants C, and C,, depending on m, t, and t, such that

IK((E,t;y, to§m)| < Coe——Cl(z—y)2 . (537)
(3) K(z,t;y,t0;m) obeys the composition rule
K(z,t;y,t;m) = /K(m,t;m',T;m)K(m',T;y,to;m)dm', 0<t, <7 <t<T.
(5.38)

Proof: We show these results by induction. First we demonstrate the corollary
for § < 2. Suppose that ¢ — 7 and 7 — ¢, are such that their corresponding #’s are
less than 1. Then the representation (5.36) is valid and similar equations exist for
U(t,73m) and U(7,t,3m). Now U(t,to;m) = U(t,7;m)U(7,10;m) (cf. (2.14)) and

from this we see

(Ut tos myd](z) = / K(z,t;2,m;m)[U(r, toym)p](c') de’

:/K(m,t;:c',’l‘;m){/K(m',v‘;y,%;m)dy(y)dy} de'.

Equation (5.28) serves to show that the integrand is absolutely integrable over
dydz'. Applying the Fubini theorem allows the interchange of the integrals and
this shows U(t,%,;m) is an integral operator for times t — ¢, such that 8 < 2. We
also see the kernel satisfies the relation (5.38). Moreover this integral relation is

easily shown to be independent of the choice of 7.
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For§ < 1and K defined in lemma 5.5, we can further estimate K (z,t;y,t,;m)

in inequality (5.28). It is easy to show there exist constants C' and C" such that
K (2,859, tosm)| < C'e™C"E=9" | g1,

Using this and the free heat kernel compostition identity

1 N CE) 1 _@=2h)?  (@'—y)?
(B +8y) — /e 1 e Wy (g,

[4m (B, + B2 (4B, ) (4nB, )|

(5.37) is easily shown for 6 < 2.

The continuity of the function K is easily seen because of the joint continuity of
the kernels appearing in the integrand in (5.38) and an application of the dominated
convergence theorem.

Finally the LP(R%;C***) nature of the kernel is easily seen for the Guassian
bound (5.37). This completes the proof of our statements for times ¢ — ¢, such that
6 <2. '

As the extended kernel K has the same properties as the kernel defined in
lemma 5.5, we see this argument may be repeated as often as we desire and so we

can extend our results to the full time domain of [0, 7). &

For future studies, we note it is possible to factor out the free evolution kernel

out of each of the Dyson kernels. The free evolution kernel is defined by

iz .
m ey LT (:lc-—y)2
K Y, to; = | ——— 2h(t—to) I. 5.39
O(m7 y7 O’m) [ZWZh(t . to):I € ( )
By examining equation (5.20), we see there exists a function, dn(z,t;y,t,;m™1),
such that

dn(z,t;y,t0;m) = Ko(az,t;y,to;m)tin(a:,t;y,to;m_l). (5.40)
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Moreover these functions are absolutely summable, and we denote that sum by

F(z,t;y,t0;m™1). It is easily seen that K(z,t;y,t,;m) admits the factorization
K(z,t;y,to;m) = Ko(z,t;y,to;m)F(z, t;y,t0;m™1). (5.41)

These identities are important because they allow a study of the analytic structure
of the propagator in the mass variable. On inspection of (5.39), we see there is an
essential singularity in m as m — 0. By making the the factorizations (5.40) and
(5.41), it should be possible to show that the functions d, and F are smooth in
the mass variable. A recent study of this problem for the Abelian case has been
done by Papiez et. al. [POM t.a.]. They have found that the function F' admits an

asymptotic expansion in m™! fo the form

F(z,t;y,to;m™1) ~ e#'](”’t;y’t"){l +m™IT, (2,859, t0) + m 2T, (z, 85y, t0) + -+ -}
(5.42)
The exponentiated factor J(z,t;y,1,) carries all the gauge dependerice for the prob-
lem and the coeflicients T;(z,t;y,1,) are explicitly gauge invariant. For the case of
atomic physics, (ie. both the vector potential a and the scalar potential ¢ are scalar
functions times the unit s x s matrix) we should expect an expansion similar to
(5.42) because of the Abelian nature of the fields @ and ¢. There still would be
differences between J and the coeflicients T; we would obtain and those found by
Papiez et. al. [POM t.a.] because of the non-Abelian nature of v. However, we
would expect that our J should carry all the gauge dependence and the T}’s would
be manifestly gauge invariant.
There is yet another closely related set of results available. If one considers the
Bloch equation (also called the heat equation) instead of the Schrodinger equation

a similar series expansion of the corresponding heat propagator exists. The Bloch
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equation is
0

~ o6 (8) = Hy(B), B>0

and the solution satisfies an appropiate Cauchy data problem;

¥(0) =, o € D(H).

The connection between the Schrédinger and Bloch equations is the following: We
first analytically extend the Bloch equation onto the right half complex 8 plane
(ReB > 0). Then using the continuity properties of this equation and its solution
with respect to the complex B parameter, we extend it to the imaginary axis bound-
ary, whereby it becomes the Schrodinger equation. Provided the potentials are now
explicitly time independent, this connection is made clear from the variable change

7

htHﬂ.

The connections between these two equations for the Abelian case having only scalar
interactions has been studied in detail by Osborn and Fujiwara [OF 83]. For the
special case of the Bloch equation subject to external electromagnetic fields, the
heat propagator has been studied under the context of the WKB approximation
and the Wigner-Kirkwood expansion [TLR 83] [BR 84] [BR 85] [BR 86] [Z 86]. The
work of Zuk [Z 86] is of particular interest to us because he examines a system
subject to non-Abelian potentials in the context of a Wigner-Kirkwood expansion.

The WKB approximation is an expansion of the heat propagator in the limit
h — 0 of the form

K(z,y) = Ko(z, y)eS(z’y)

where

S(z,y) = > B"Sn(z,y).

n=-1
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This may be rearranged [BR 84] to yield

K(z,y) = Ko(m,y)e%5-1(z,y)+50(a:,y){1 + hSi(z,y) + O(TLZ)}. (5.43)

The Wigner-Kirkwood expansion is a large mass expansion of the heat propagator,
similar to the expansion given by (5.41) and (5.42). The connections between these
two expansions have been explored by Osborn and Molzahn [OM 86]. We further
note that both of these expansions are non-perturbative — in the sense that one

always keeps some terms involving all powers of the potential v.
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CHAPTER 6

Transit Time Operators in Spinor Space

This chapter deals with the problems of describing the transit times (and
their associated operators) of a scattering state ¥ € L?%(R3;C®) through a finite
region ¥ C R3. The difference between these times for the free system and the
system subject to an interaction is the time delay for that region.

We shall also study the Born series expansion of the resolvent difference.
Specifically we are interested in the analytic structure of the trace of the resolvent

difference.

6.1 The Hamiltonlan

Our ambient space and Hamiltonians have changed somewhat from part one.
We shall reduce the dimensionality of the underlying coordinate space from R? to R®,
so that the working Hilbert space is now H = L%(R%;C*). We shall also extensively
use the Hilbert space of Schmidt class operators, Bo(H), and the Banach space of
trace class operators, B1(H).

The Hamiltonian pair, (H, H,), we will study is of the form
H=H,+V
where the free Hamiltonian is the extension of the negative Laplacian;

H, = -Al
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We have set b = 2m = 1, as they are not of interest here. The quantity I above
denotes the unit s X s matrix.

The potential V is defined by multiplication with the hermitian valued matrix
v(-). Our assumptions on v for many of the proofs can be quite weak. However
there are a few proofs in which much stronger restrictions on v were imposed to
verify the validity of the statements made in the lemma, proposition or theorem.
It is in our best interest to keep the assumptions made on the potential in any
given claim local to that claim. The two main classes under consideration will be
L'NL%(R% Cc***) and L' NF*(R%; C**®). Recall v € F*(R®; C**°) means that v is the
Fourier transform of a complex matrix valued measure and that v(z) is a hermitian
matrix for a.a. z. Also note that L1 N F*(R3;C***) C L' N L3(R3; C***).

An important difference between the Hamiltonians in part 1 and the Hamilto-
nians here is the absence of an explicit time dependence. This results in a markedly

simpler representation of the evolution family;
U(t,t,) = e—i(t—to)H; Us(t,1,) = e~ i(t—to)Ho_

If H and H, were bounded, then the exponential operators could be interpreted
as their appropiate Taylor series expansion, which would converge in the operator
norm topology. However, H and H, are not bounded. One can make sense of the
—itH

exponential operator e as the strong limit

e — g _lim <I 4 iH)
n

n—oc

~iHo  For a complete dicussion of the evolution

and a similar statement holds for e
operator defined in this manner, we refer to Kato [Ka 84], chapter IX. Since H and
H, are also self-adjoint, one can also make sense of these exponential operators by

using the spectral theorem. For a general discussion of the spectral representation
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of self-adjoint operators, we refer to Riesz and Sz.Nagy [RSz 78], chapters IX and
X. Without loss of generality we may set £, = 0 because the total and free evolution
operators depend upon the single parameter ¢ — t,.

We shall also make the small shifts in notation by denoting the total and free
evolution families by U, and U} and the total and free resolvents by R(z) and R,(z2).

The following factorization scheme will be used extensively. For each z € R®,
v(z) is a hermitian matrix. The absolute value of v(z), denoted [v(z)], is a positive
matrix that is the square root of the matrix v(z)*v(z). There exists a unitary

matrix, denoted W(z), such that

(6.1)
[v(2)] = W(z)*v(z)
Defining the two matrix valued functions
u(z) = [o(e)]"/?
(6.2)

v(z) has the representation v(z) = w(z)u(z). With |- | denoting the Euclidean

norm, we note that these functions satisfy the estimates

[u(@)] < (@)% w(e)| < ()] V2.

Let II denote the cut plane C\[0,00). If v € L' N L3(R3; C***), we can define

an important integral operator A(z) (z € II) via its kernel

A(z,y; z) = u(z)Ro(z,y; 2)w(y). (6.3)
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Here R,(z,y;z) is the kernel of the free resolvent and has the well known formula

ei\/‘glm—:ﬂ

Ro(m7y;z) = m P

where I is the unit s X s matrix. The branch of the square root taken satisfies
0 <argz < 27.

Control over the integrability properties of A(z,y;z) is given by a class of
inequalties known as Sobolev inequalities (cf. reference [Si 71], p. 9). In brief they
are the following: consider a function f € L?(R™) and a function h € L"(R") and

suppose A < m is such that

Then there exists a constant C, depending on p, », A, and n such that

/ W@ED gy, gry < o171 121 (6.4)

lz — y|A

The Sobolev inequality (with n = 3) will suffice to show that A(z,y;z) is an
L?(dz dy; C**°) kernel for all pertinent values of z. These include the boundaries
z = X+10, X > 0. Moreover, because e*VZ12=¥l is a continuous function of z and it
is uniformly bounded by 1, we have that A(-,-;z) is continuous in z with respect to

the L?(dz dy; C***) norm, for all z € 1 U [0,00). From the equality

4G, = 14,52 g g

we see A(z) is a Schmidt class operator for all z € Il = p(H,) and it has a continuous
extention onto the boundary of II with respect to the By topology. There will be
two extensions of A(z) onto the positive real axis; one from below the axis and one
from above. Let II. denote the closure of II that maintains the distinction between

these extensions of A(z).
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Proposition 6.1: Let v € L' N L%(R3; C***) be hermitian. Then the operator
A(z) is By holomorphic in II and has a By continuous extension in Il.. If z — A0,

then this extension is uniformin A, for A in a compact subset of R\{0}. Furthermore,

14(=)]l, ]]A(z)zﬂB2 and HA(z:)*A(:«:)||B2 all tend to zero as |z| — oo.

Proof: Theorem 1.22 in reference [Si 71] shows A(z) is By holomorphic on II.
The uniformity of the continuity with respect to A on a compact set K follows easily
from the joint (A,7) continuity of A(A +in) on the compact set K x [0,1].

Finally we prove the last statement. We first note the inequality

141" < A=) A=)l -

Thus we need only concern ourselves with A(z)? and A(z)*A(z). The proofs for
these two operators are virtually identical, so we only demonstrate it for A(2)?. If

sp denotes the trace in C°*° (i.e. the sum over the diagonal elements), then

|45, = O )4/dmdydmdy spw(y)*v(z')[v(z)lv(y' )w(y)

z—2'||e' —ylly —¢'| Iy’ — =|
e~ ImVz{ja—a'|+ 2" —yl+ly—y/|+]y' ~z[}+iRe Vo {ly~y' | +]y' ~2|~|e—2'| -]’ ~y]}

It is easily shown by using the Sobolev inequality (6.4) that

spw(y) o(z')[v(z)]v(y )w(y)

lz —2'||2' —y||ly — ¢'| |y — =

€ L'(dz dy dz' dy').

We also note the exponential in the above is uniformly bounded by 1. Thus we can
apply the dominated convergence theorem if Im 1/z — oo or the Riemann-Lebesgue
lemma ([Ru 73], theorem 7.5) if Re /2 — oo to conclude || A(z)? |]B2 — 0 as |z] — oo.

| o

The implication of ||A(z)|| — 0 as |z2| — oo is that [1 + A(2)]7! will exist

via the Neumann series for all z sufficiently large. This will be important in our
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study of the Born series. It also has consequences in terms of what can be said
about the singular spectrum of H. We summarize the important properties of the

Hamiltonians in the following.

Theorem 6.1: Let v € L' N L*(R3;C**°) be hermitian and define the set
E={0yU{rer\{0}: 1+ A(A+10) or 1 + A(X —10) is not injective}.

Then

(1) The Hamiltonian is self-adjoint with domain D(H) = D(H,).

(2) For every z € p(H,) N p(H), [1 + A(2)]™! € B and one has the resolvent
equation

R(z) — Ro(z) = —Ro(2z)w[l + A(2)] " uR,(2). (6.5)

Furthermore the mapping z — [1 + A(z)]~! is B holomorphic in II.
(3) € is a closed and bounded set of Lebesgue measure zero.
(4) The Mgpller wave operators

QF =s —limU_,U?

t—Foo

QiER\g =8 - hrn UgtUtEm\g
t—Foo

exist. The scattering system defined by the Hamiltonian pair (H, H,) is asymptot-

ically complete in the sense that

Range " = Range 0~ = H,(H) = Eg\eH

HS(H) C EgH.

Proof: The self-adjointness of H and its domain equality are a consequence

of the Rellich-Kato theorem (cf. propositions 8.5 and 8.7 of reference [AJS 77)).
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Equation (6.5) is shown in reference [Si 71], theorem I1.34. The first part of
statement (2) is a consequence of the Fredholm alternative: Suppose ¢ is a vector
in H such that A(z)p = —p. We show A(z)¢ and hence ¢ is in the domain of w.
Pointwise wA(z)¢p is given by

e'i\/;lz_yl
dr|z —y|

wA(2)p)(z) = / dy w(z)u(z)

w(y)e(y)-

It is enough to prove this function is square integrable in . We have

ei\/zlz_yl
dr|z — yl

< (4_71r)—2”/d$ |v(2)) {(/ dy]'al;l).(_y—;lpf (/dy' Iw(y')|2> j 2

= L]Igﬂlz‘/dmdyw(ﬁ)—]

(47)? lz — y?

w(y)e(y)

[ delwAG)ele)E = [ o

[ avu(en(e)

< 00.

Thus ¢ € D(w) and we may define ¢ = wy. Left multiplying A(z)p = —¢ by R(z)w
we obtain R(z)V R,(z)1) = —R(z). The left hand side here can be rewritten using

the second resolvent equation R(z) — Ro(z) = —R(2)V R,(2). As a result, we see

Ro(2)1p = 0. This in turn implies ¢ = —uR,(2)1) = 0 and thus by the Fredholm
alternative, [1 + A(z)]™! exists and is bounded. The B holomorphy of [1 + A(z)]~!
follows from the B; holomorphy of A(z).

Statement (3) follows with observation that ||A(X £i0)]] — 0 as |A\| — oo and
an application of the Fredholm alternative.

Statement (4) is the result of an application of the Kato-Levine theory (cf.
[AJS 77], proposition 9.16) &
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6.2 The Trace Theorem and Time Delay

We shall employ the spectral representation of H relative to H, extensively. For a
discussion of spectral representations we refer the reader to [AJS 77], chapter 5.7.
Let §(2) denote the unit sphere in R® and let H, = L*(8®). Define the Hilbert space
G =L* ([0,00),7{0) and again denote the Fourier transform of ¢ by 1. Consider

writing 1 as a function using spherical co-ordinates and use A to denote the modulo
square of the wave vector. We can define a unitary transformation ¥ mapping H

onto G by

)\1/4 . )
@), () = 9, (@) = 5P 20),  we st (6.6)

It is trivial to verify that H, is unitarily equivalent to multiplication by A under
this mapping. The operator U defines the spectral representation of H relative to
H,. With it, we can associate to each vector 1 in H a family of vectors {¥, }, where

fora.a. A, ¢, € L*(S()). The isometric nature of & can be seen by the equation

o) = [ o) dd (6.7)

where A = [0, 00) is the spectrum of H,.
The next theorem, developed by Jauch et. al. [JSM 72], allows one to find a
representation for any trace class operator in the spectral representation of H with

respect to H,.

Theorem 6.2: Let U7 be a unitary group with an absolutely continuous
self-adjoint generator H,, whose spectrum is A = [0,00). Let D, denote the dense
set {1 € H :esssup||®, ||, < oo}, where the esssup is taken over A. Then:

(1) For each T € B; the sesquilinear form

00

Br($,¢) = / (%, US*TUS o) dt (6.8)

-0
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is finite for all 1, € D,. Furthermore there exist a family of trace class operators

{t(\)} such that
Br(t,p) = /j; (%, ,1(\)p, )o dA. (6.9)

Suppose T has the canonical representation

T =) oplr,)é (6.10)
P

where {¢;} and {(Z)k} are sets of eigenvectors of T*T and TT* respectively and akz,
(af > ai_lr] > 0), is the common eigenvalue of ¢}, and ¢i. If ¢y (é1) is unitarily

equivalent to {¢ 1} ({ng,A})a then t(A) is defined by
t(A) =21 > ar(Brrs)oBra- (6.11)
k
(2) The following relations are valid:

——1—-/ tre(A)dA = Tr T, (6.12)
2w A

3 [ 1), 3 <1715, (613)

where Tr and tr are the trace in ‘H and 'H, respectively and ||- “31 is the appropriate
trace norm.

(3) Let Do be a dense set in H defined by
Do = {'qli € H :esssup O(A)[|¢, ||, < oo} , (6.14)
A€A

where © is a non-negative function on A. Suppose B(1, ) is a sesquilinear form

that is finite for all 1, ¢ € Do and has a diagonal representation, {b(\)}, of operators
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acting on ‘H, which are bounded a.e. and satisfy

Blb.e) = [ (,60)e,), (6.15)

Then if {b())'} is a second diagonal representation of B, we have for a.a. A € supp O,
b(X) = b(A).

Proof: The proofs of parts (1) and (2) are simple extensions of those ideas
presented by Jauch et. al. [JSM 72]. The proof of part (3) is given by MacMillan
and Osborn [MO 80], although there is one subtle point they don’t address but
which warrants a discussion. Their argument proceeds as follows.

If B is represented by both b()) and b(\)', then for all 1,9 € Dg we must

have

[ B0 = 53, )o a2 =

Let B(X) be the phase argument of (3, ,[b(A) — b(A)']¢, ),- If ¥ is in De, then so is
P ~ {eiﬁ(’\)¢/\}. Repeating the above reasoning with ¢ replaced by v leads to the

equation

[ 1 B03) = 8l )| 3 =o.

Thus it is clear that

(%, [6(X) = B8(N)]e, ) =0 a.a. A. (6.16)

MacMillan and Osborn [MO 80] argue that the functions {4, : 9 € Do} is a dense
set in H, and hence because the bounded operators b(A) and b(A)' coincide on a
dense set, they must be equal a.e.

Herein lies the subtlety of the proof. Let A denote the set of measure zero
for which (6.16) does not remain valid. In general, A will depend upon the choice

of 1 and ¢. If we were to allow these Hilbert space vectors to vary freely, then it

-
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is possible that the operators b(A) and b(A)' could be nonequal on a set of measure
strictly greater than zero. We can circumvent this difficulty. Let {e,} be a total
orthonormal set in H, and let »(\) be a nonzero, positive, measurable function of
A such that v € L*(A;dA) and esssup O(X)v()) < oo. Define e, y = v(A)en. Then
for each fixed n, {e, »} is isomorphic to a vector in H, which we denote by e,.

Moreover e, € Dg. Thus by (6.16) we have

(en2s [B(A) = (M) Jemn)o = 0
and v # 0 implies

(ens [B(X) = B(A) Jem), = 0. (6.17)

Let Ap,m denote the set of measure zero where (6.17) is not valid. Take the union
over these sets, Um’n An,m, and denote this set by A. We note A will still depend
upon the choice of the basis {e,}. As A is the countable union of sets of measure
zero, it too is a set of measure zero. Now (6.17) holds for all A ¢ A, independent
of m and n. Using this, the boundedness of the b’s, and the totality of {en} we can
now conclude that for all A € A,

Corollary 6.1: If A is any positive trace class operator on ‘H and {a()\)} is

its induced representation on H,, then for a.a. A, a(}) is a positive operator.

Proof: The proof is identical to that presented in [MO 80]. &

In the next lemma we introduce an explicit manifestation of the spin structure.
The chief difference between the ideas presented here and those in [MO 80] is in
the treatment of the projection operator used. Let ¥ be any measurable subset

of R* with finite Lebesgue measure and let I' denote any subspace of C*. We will
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use the projection operator P(Z,T) = P(S)P(T) = P(T)P(S). P(T) is defined
by multiplication with the characteristic function xy(z)I (here I is the unit matrix
on C**¢), while P(T') is the projection operator into the space of spinors that lie
in I'. In [MO 80], they only have the projection operator P(X) because they are

considering the spinless (s = 1) case.

Lemma 6.1: Let v € L' N L*(R3;C***) be hermitian and let the projection
operator P(%,T') be defined as above. Then the operators Ry(z)*P(%,T')R,(2) and
Ro(2)*QF* P(Z,T)Q% Ro(2) are trace class for all z € p(H,) N p(H).

Proof: The proof is almost identical to the corresponding lemma 1 presented
in reference [MO 80]. By writing P(X,T') = P(T')P(X) we have exactly as in [MO 80]
that P(2)R,(z) and P(Z)Q* R,(2) are Schmidt class operators. Since the product
of a Schmidt class operator with a bounded operator is again Schmidt class we see
both P(%,T)R,(2) and P(Z,T)Q* R,(2) must be Schmidt class. Next we recall the
adjoint of a Schmidt class operator is Schmidt class and the product of two Schmidt

class operators is trace class. This suffices to complete our proof. &

We need another lemma along similar lines to the one just given. If {E{}
denotes the spectral family H,, we replace the resolvent in lemma 6.1 by the spectral

projector Ef.

Lemma 6.2: Take (H,H,) and P(X,T') as in lemma 6.1. Then for finite ),
the operators P(%,T)E{ and P(X,T')QF E{ are Schmidt class.

Proof: The proof is almost identical to the one given in lemma 2 of [MO 80].
The obvious modifications are made for using P(%,T') instead of P(X) as was done

in the proof of the previous lemma. &

We are now in a position to discuss the theory of the time delay for the region

3. For an arbitrary state ¢ € H, the associated free and interaction evolution states



- 121 -
are ¢, = U?¢ and 'gb;h = U,N%$. These vectors are asymptotically related to each
other for large time;

viF ~ ¢, as t — Foo.

The transit time of ¢, and ¢§b through the spatial region ¥ while having spin

components in the spinor subspace I', will be given respectively by

oo o0

[ IPEDedd wd [ pEowEra @
-0 -0

We define sesquilinear forms Q° and Q% on H, with diagonal elements Q%(¢, ¢)

(e =0, £) given by (6.18). Clearly we see that Q@%(¢,$) > 0. From the polariza-

tion identity for inner products and the intertwining relation U,QF = Q*U?, the off

diagonal values of Q° and Q¥ are

Q°(4, ) = / (%, U7 P(Z,T)0S ) dts
- (6.19)
Qi(iﬁ,so):/; (b, UZ* Q™ P(2, T UL ) di.

The time delay for a particle moving through the spatial region ¥ while having

spinor components lying in T is defined by the integral
0*(6,%) = [ (PO - |PE DU (6.20)

The sesquilinear form Q@* will have the non-diagonal components

Qi(¢:‘ﬁ) = Qi(¢7 90) - QO(¢aSD)

— / <¢,Uf* [Qi*P(z,r)Qi —P(z,r)] U{’cp> dt.  (6.21)

oo
—0C0
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There exists an important distinction between the use of the spinor subspace I'
and the spin channel formalism in scattering theory*. In the spin channel formalism,
we would set I' = C* (i.e. P(I') = I) and consider scattering from spin channel o
to spin channel 8. Associated with these channels are the channel indexed Mgller

operators

Q= = 0*p,,

where P, projects onto the spin state ¥ (¥ = @, ). Then the time delay associated
with the scattering process @ — [ through the spatial region ¥ is defined by the
sesquilinear form

oo

Qus(¥5 ) =/ (4,0 [0 P(2)0) — P.PoP(3)|Up)

— 00

_ foo (4,02 [P P(2)0 s - P.PsP(S)|Ufp)  (6.22)
—0
Comparing (6.22) with (6.21), we see that P(T') appears between the Mgller op-
erators, whereas the projection operators P, and Pj are exterior to the Mgller
operators.

In the following proposition we show that the sesquilinear forms Q% generate
a family of operators, T%(A; X,T'), similar to those found in theorem 6.2. We also

establish certain properties these T%’s satisfy and develop a formula for their trace.

Proposition 6.2: Let v € L' N L%(R3;C***). Then the sesquilinear forms
defined by (6.19) induce in ‘H, a family of positive trace class operators {T%()\; Z,T)}

which satisfy
Q%(¢, ) = A (%, T*( 2, D), ), d. (6.23)

* The spin channel formalism is structurally the same as the channel formalism of multiparticle
systems. For a description of the multichannel formalism in regards to time delay, we refer
to Bollé and Osborn [BO 76]. In particular cf. equations (4.8) ~ (4.12) for comparisons.
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The operators T%(X; X, T') have traces (in H, ) given for a.a. X by the following limits;

lim TrP(Z,T)lm Rac(A +ip) P(E,T) = -;—tr TEME, D) aa )
n—
(6.24)

1i151+ Tr P(X2,T)Im Ro(A +ip)P(2,T) = —;— tr T°(\; 5, 1) a.a. A.
n—

Here Im Roc(X + ip) = £ [Rac(X + ip) — Roc(X + ip)*] and Rae()\ + i) is the the
absolutely continuous part of the resolvent of H. A similar definition applies to

Im Ro(X + ip).

Proof: We would like to be able to apply theorem 6.2 to Q%, but we cannot
because P(X,T') and QF* P(Z,T)0QF are not trace class operators. We can circum-
vent this by considering closely related forms. For each z € p(H,) N p(H), consider

the operators

T°(2) = Ro(2)*P(Z,T)Ro(z2)
and

TE(2) = Ro(2)*QF* P(Z,T)Q* R,(2).

By lemma 6.1, Y%(2) is trace class and by theorem 6.2 the sesquilinear forms Qra(z)
generate families of trace class operators acting in H,;
1 [s4

Q‘ra(z) — mT (A; E,F, Z). (6.25)
The factor |A — z|~2 is always finite for finite z and ), so we were free to introduce
it into the family of trace class operators as indicated and adjust the definition of
T¢ accordingly.

We claim the operator family T'%(); £, T, z) is independent of z. Of course the

consequence of this is all of the z dependence for the operator family generated by

Qa(;) is contained in the |A — z|72 factor. Let ¥, € Do, where we set, for some
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fixed z € p(Ho) Np(H), O(X) = |A — z|%. It is easily verified that Dg is dense in H.
We note that 1 € De implies ||, ||, < C|A — z|~% and consequently Do C D,. The

relationship between Q¢ and Qra(y) is

(e o]

Q%(¢,9) = / (¥, U (Ho — 2)"T*(H, — 2)U7p) dt

—o0

_ / (Ho — =), USYUL(H, — 2)p) dt

—00

= Q‘ra(z)((ﬂo —z),(H, — z)go).
This identity and the representation of Q@ra(,) given by theorem 6.2, lead to

1

Q(0) = [(0 =20, T T T, 20 — 2 )o

= A<¢A7TQ(A; E,F, z)‘P,\)o dA.

But the left hand side is independent of z, hence we also have

@(We) = [ W T 5T z)e,), 4

for some fixed 2, € p(H) N p(H,).
To apply theorem 6.2(3) we are required to show that 7%(\; 2, T, 2) is bounded

almost everywhere. This follows easily from theorem 6.2(2);

i 1
27 Ja |A — 2]?

= 1 T%( s E’F’Z)I[Bl < o0 a.a. A.

175 3T, 2)ll, dA < X425, < oo
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We are now free to apply the uniqueness property of theorem 6.2(3) to obtain the
equality
TN 5,T,2) =T\ 5,1, 2)

=T%NE,T), a.a. A.

This demonstrates equation (6.23).
Because T%(z) is positive, corollary 6.1 shows T*(\; X, T) is positive for a.a. A

as well. Consequently theorem 6.2(2) implies

Xe(e)l, = TrTo(e) = 5 [ S o

I E D),
J

- PR (6.26)

Moreover (6.26) implies that HT"‘(A;E,F)HB1 € L} (A,dX). This is easy to see

loc

because |A — z[? is locally bounded and |\ — z|2||T%(); E,I‘)HB1 is integrable on A.

Next we demonstrate the almost every'where equality
tr 7T (XN 2,0) = te T™ (X 2, T).
Let A be an arbitrary measurable subset of A and consider the trace class operators
TA(z) = T*(z)E}.

Since E7 is unitarily equivalent to {x, (A)I}, it is easy to verify that T4 (z) induces

the family of operators

& 1 [s3
alz) — TA____—;FXA(A)T (N E,T).
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Recall that Q*Q** is the projection operator onto the absolutely continuous

part of H. To say Ryc(z) is the absolutely continuous part of R(z) means
Roc(2) = R(2)Q5Q* = R(2)Eg\¢.
The operator R, (z) will satisfy the Hilbert identity

2iIm Roc(2) = Rac(z) — Rac(2)*
= (2 — 2" )Rac(2) Rac(2)*.

We also bring our attention to the formula below, which results from an application

of the intertwining relation;
OFRo(2)Ro(2)* 0 = R(2)QTQ R(2)* = Roe(2)Ruc(2)*.

Let 2 = A + 4 and let {E)} be the family of spectral projections associated
“with H. Then using the cyclic properties of the trace, the intertwining relation and

the above identities, we have

Tr P(Z,I)Epalm Roe(A + i) P(Z,T)

)
= pTr P(Z,T)EpRoc(M + ip)Rae(X + iu)* P(Z,T)
= pTr P(S,T)EAQ* Ro(A +ip)Ro(X + ip)* O P(3, T)
= pTr P(S,T)QFRy(A + i) ER Ro(X + ip)* QF*P(E, T)
= pTr Ro(A + ip)*QF P(Z, TV Ro( X + in) ES

= ;LTrTz()\ + i)

1 2 + /1! i
= — t A d)'. .
- A(/\—/\’)2+M2 r T5( ;5,1 (6.27)
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The left hand side of (6.27) is independent of the + sign. This implies

/(A Af;u T (V5 8,T) — tr T~ (N 3,T)]dX = 0.
alA— p

As A is an arbitrary set, this is only possible if the integrand is zero for a.a. M.

Since ()\T/\,H)"z‘m # 0, this means
tr 7T (A8, T) = tr T (M 2,T) a.a. ).

Suppose now Ea = I. A repetition of the argument leading to (6.27) yields

the expression

Tr P(S, T)lm Rao() + ip) P(E,T) = %A 5 —A;u)2-|-#2 e TE(VS 2, T) X' (6.28)

and similarily,

Tr P(Z,T)Im R,(A + ip) P(E,T) = %A oo /\f;z Tt To(X;%,T)dX. (6.29)

Theorem 13 of §1.16 of Titchmarsh [Ti 48] provides the necessary result to evaluate
the limit 4 — 0 taken in equations (6.28) and (6.29). Taking this limit, we get
(6.24). &

Define the function
g(ME,T) =t TEH( N B,T) — tr T°(A; 2, T). (6.30)

It can be interpreted as the average time delay through the region ¥ for particles

having spin lying in I' and energy equal to A. From the equation

1 [®Te(\E,T)

o B L0/ M



- 128 -

and the fact that tr T%(\; %, T") is positive for a.a. A, we see that

*® lg(X; 2, T
/0‘ wd)\ < oo, (6.31)

Combining formulae (6.12) and (6.25) yields the result

1 [®q(AX,T)

= d) = Tr R(2)* [+ P(S,T)0* — P(S,T)|Ro(2),  (6.32)
2w Jo A —z]?

while (6.28) and (6.29) lead to

-21; (%%, T)Im X‘l—z d\ = Tt P(S, T)Im [R(2) Eac — Ro(z)|P(S,T).  (6.33)
A —

We shall also require certain properties of ¢ with respect to the sets I' and X.
Suppose that I'; and I', are two orthogonal subspaces of C*. Then the projection

operator onto I';y U T, is
P(T'yUTy) = P(Ty) + P(I'y) (6.34)
and g satisfies the formula
g(A; 5, T UT,) = q(A; 5, T) + g(M %, Ty).

The proof of this is easily shown by using definition (6.30) and the formulae in
(6.24). The cyclic property of the trace is utilized to combine the two projection
operators in (6.24) into one projection. This resulting formula for ¢(X;Z,T, UT,)
can be split into the sum of two terms by using (6.34) and the linearity of the trace.

The sum of these two formulae gives exactly ¢(X; Z,T) + ¢(A; 2, T).



-129 -

Similarly, if ¥; and ¥, are two disjoint measurable sets of finite Lebesgue
measure, then P(X; U X,) = P(%;) + P(Z,) and the time delay function satisfies
the formula ¢(A; X, U %,,T') = ¢(A;2,,T) + ¢(A; 5,,T).

Consider the spin channel scattering formalism once again. There exists a
natural connection between the S-matrix and the global time delay operator. For
scattering from spin a to spin (3, the scattering operator is Sg, = QE*QZ The
scattering operator Sg, commutes with the free Hamiltonian and consequently it
admits a spectral decomposition with respect to H,. We denote this decomposition
by 554(A), and it is commonly called the S-matrix. If we take the limit ¥ — RS,
then the a — [ global time delay function, g,g, satisifies the formula (cf. [BO 76],
equation® (4.12))

- < .« d
Gop = —i ) tr55a(A) 8,6,
=1

Whether or not our time delay function has an analogous relation with the

S-matrix we leave as an open question for future studies.

6.3 The Born Series

The Born series is a high energy expansion of the resolvent that is obtained by

iterating the second resolvent equation
R(z) = Ro(z) — Ro(2)V R(2).

In our particular problem, we will have the Born series pre- and post- multiplied by
the operator P(%,T') and hence we shall include this feature in our study here. The

advantage of this is it will allow us to verify convergence properties of the series

* Bollé and Osborn use the operator analog to this equation.
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under the By topology for all z € II.. We first identify a region where the series
converges. For each § € (0,1) let Ay be the infinum of the set

{A e R : JA(2)|| < 6 < 1,Vz € T, with |z| > A}.

The Born dominant region of Il will contain the set {z € Il : |2| > Ay} as a subset
for each 0 < § < 1. Obviously in this region, [1 + A(z)]™! € B; it is given by the

Neumann series

1+ AR =1+ (~4(2)"

with the sum converging in the B norm; and it has the z uniform norm estimate

I+ A < .

Notice that for each 0 < § < 1, £ is contained in the closed interval [—Ag, Ag]. Our

next lemma concerns itself with the convergence properties of the Born series.

Lemma 6.3: Let v € L' N L%(R%; C***) be hermitian and fix 0 < § < 1. Then

for all |2| > Ag the Born series expansion
P(2,T){R(z) — R,(2)}P(Z,T) Z( —1)"P(Z,T')Ro(2)[V Ro(2)]" P(Z,T) (6.35)

converges in the By norm. Moreover the convergence is uniform in z.

Proof: We first show that the resolvent difference is trace class for all z € II..

Recall the resolvent equation (6.5). Then

P(2,T)[R(2) - Ro(2)|P(%,T) = —P(Z,T)Ro(2)w[l + A(2)] " uRo(2) P(Z,T).
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Since [14 A(z)]™! € Bfor all |z| > Ay, it is enough to prove that P(Z,T')R,(z)w and
uR,(z)P(X,T') are Schmidt class. Suppose the orthonormal vectors {¢;};2, span
the spinor subspace I'. Then the projection operator P(T') is unitarily equivalent

to multiplication with the matrix Mr;

So

P =Y ()G =S ¢ © ¢ = My (6.36)

Here the symbol (-,-) is the inner product on C° and Cj ® ¢ is the tensor product
between the column vector ¢ ; and the row vector ¢;. With this notation set, then

the By norm of uR,(z)P(X,T') has the estimate

. 2
u(z) Mp g (y)evze-y!
4|z — y|

[uRo(=)PE TS, = [ dody

< 01 [ dody Vs
|z —yl?
where the constant Cr is independent of z. The right hand side is finite via the
Sobolev inequality (6.4) and it is independent of z € II.. We note that it is the
projection operators on each side of the resolvent difference that permits us to
consider all of Il.. For the operator P(%,T')R,(z)w we have a similar estimate that
is also independent of z € II.. This establishes our claim.
Next we study the convergence properties of the Born series in the B; topology.

Recall A(z) = uR,(z)w. Then we can use the identity

N

1+ A =1+ (- A() "+ [T+ A (~A(2)

n=1

>N+1

to write
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P(Z‘,I‘)[R(z) - RO(Z)]P(Zvr)

= —P(Z,T)Ro(2)wuR,(z)P(Z,T)
N
+ Y P(Z,T)(-1)"" R (2)wA(z)"uRo(2) P(E,T)

n=1

+ (=1)N*2P(S,T)R,(2)w[l + A(2)] " A(z)¥ HuR,(2)P(Z,T). (6.37)
Consider the By norm of the third term in (6.37).

1P(,T)Ro(2)wll + A(2)] " A(2)M  uRo(2) P(2,T)| 5,

<N+ AEITHIAGIN TIPS, T)Ro (2wl luRo(2)P(E, T

gN-+1 xo(2)0(®)
< d d _E—__
—Cfl—of ST

s,

— 0 as N — oo.

Moreover, we note the convergence is uniform with respect to z. To show the second
term in right hand side of (6.37) converges in the trace norm, it is enough-to prove
it forms a Cauchy sequence, because B; is a Banach space. We will prove even more
in that we claim the sequence is uniformly Cauchy with respect to z, and hence the
series will converge uniformly with respect to z. As with the third term, we have

the z-uniform majorant

|3 CUPPE DR A w2, D)
n=N,

By

X y)l
< C /d:z:d E .
r L T y|2 Z

n=N;

Notice the right hand side converges to zero as N1, N — oo, uniformly with respect

to z.
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Thus we have shown that P(X3,T')[R(z) — Ro(2)|P(Z,T) has a series represen-
tation that converges in the trace norm, uniformly with respect to z € II.. To relate

this series to the Born series, we note the termwise identity

Ro(2)wA(2)"uR,(2) = Ro(2)[V Ro(2)]* . (6.38)

¢

As an immediate consequence of this theorem we have

Tr P(Z,1)[R(2) — Ro(2)|P(E,T) = Y _(=1)" Tr P(E,T)Ro(2)|V Ro(2)]" P(S,T)

(6.39)

and that this series converges uniformly with respect to z.
We would like to be able to perform various operations, such as integration,
termwise to the series (6.39). The z-uniform convergence of this series does much
to prove the analyticity, continuity and integrability of the series, provided each of

the individual terms have these properties.

Lemma 6.4: Let v € L' N L?(R%;C***) be hermitian. Then for each n > 1,
the function Tr P(X,T)R,(2)[V Ro(2))*P(%,T) is holomorphic in Il and continuous
in I1..

Proof: Utilizing identity (6.38), and the useful relation
Tr ST = <S*’T>52 S,T € By,

we have

Tr P(Z,T)Ro(2)[V Ry(2)]" T P(Z,T)

— ((p(z,I‘)R,,(z)w)*,A(z)nuRo(z)P(z;,r))B .

2
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It is enough to prove that each argument of the inner product is separately B,
holomorphic in II and B; continuous in II.. As A(z) has these properties and it is
uniformly bounded in z, it is enough to prove these statements for P(Z,T)R,(2)w
and uR,(z)P(Z,T). We consider uR,(z)P(Z,I') and note that similar arguments
can be applied to the other operator.
The operator uR,(2)P(X,T') is an integral operator with the matrix valued

kernel
ei‘\/zlz_y] M
u(m)sz(y) -

Now |z—y|™!xy(y)u(z)Mr € L*(dz dy; C***) via the Sobolev inequality (6.4). Since
the exponential is a continuous function of z € II; and it is uniformly bounded by
1, an applica,tion-of the dominated convergence theorem shows that the kernel of
uR,(z)P(X,I') is continuous in the L%(dz dy;C**®) norm for all z € II.. We also
have xg(y)u(z)Mr € L*(dz dy;C***), which allows us to define a Schmidt class

operator whose kernel is
1eivzlz—yl

WX:;(?J)U(“?)MF- (6.40)

It is easily shown that the kernel of uR,(z)P(%,T) is differentiable with respect to
z € Il in the L?(dzx dy;C***) topology via an application of the dominated conver-
gence theorem and that its derivative yields the L?(dz dy;C**®) function defined
in (6.40). Because of the isometry between L?(dz dy;C***) and B,, we see that
uRo(2z)P(X,T) is B, differentiable with respect 2 € II. 0

Corollary 6.2: Assume the hypothesis of lemmas 6.3 and 6.4. Then the
function Tr P(X,T')[R(z) — R,(2)|P(X,T') is holomorphic in Il and continuous in
IIc. If C is any curve that lies in a compact subset of Il. N {z : |z| > Ag}, then we

may integrate the series (6.39) termwise over the contour C. &
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As a final topic to discuss about the Born series, we write an explicit rep-
resentation for each of the terms Tr P(X,T)Ro(2)[V Ro(2)]"P(%,T). In the next
lemma the potential will be in the class L! N F*(R%;C***) and so it is the Fourier
transform of a bounded complex matrix measure. For v € F*(R*;C***), we have

the representation

ofa) = [ due) e
~ [ @)@

Since v is also in L(R3;C**¢), its classical Fourier transform exists and we note the

relation
1

dp(a) = Z27r)—3/2'8(a) do.

Before proceeding with the next lemma, we first define some notation. We

express the following two multiple integrals with the shorthands

/(;anf=A]delﬁgldez‘--ﬂgn"ld§n
/d“#= /dﬂ(an)/d#(an—l)---fd#(al)

- f &l n(en) -+ ().

and

Lemma 6.5: Let v € L! N F*(R%;C**¢). Then for all z € 1I,
Tr P(X,T)Ro(2)[VRo(2)]"P(Z,T)

T(n—1 1> )2*(011+--'+an)
- ‘(23/22)/(; "¢ /dn]#] . T spMrn(en) - -n(e1) Mr

ap — 2)"7 32

(6.41)
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where the function a, is

n

an= Y 0(&,&m)ar om >0 (6.42)
l,m=1
and
(&1, &m) = min{&(1 — &m), En(l — &)} (6.43)

Proof: The idea of the proof is to exploit the relationship between the resolvent
kernel and the kernel of the semigroup e (Ref > 0) to obtain a formula for
the kernel of P(X,T')Ro(2)[V Ro(2)|"P(X,T). For potentials in F*(R3;C***), the

semigroup kernel has the known representation [OCF 85]

K(z,y;8) = Ko(z,y; B)F(z,y; B). (6.44)
Here K,(z,y; ) is the free semigroup kernel and it is given by the formula

e 4

K (z,y;8) = WI-

The matrix valued function F(z,y; () is the series

F(z,y;8) = Z By(z,y;8)

n=0

where
Bo(z,y;8) =

‘ 1> _ (6.45)
Bu(e,if) = (<A1 [ ¢ [ druesonin
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Here the function a, is given by (6.42) and the function b, is defined by the formula

n

b= [(1—&)e+ &y - o (6.46).
=1
We note we have obtained a similar expansion for the propagator in chapter 5.
Specifically we refer to equation (5.41). We should expect this because the propa-
gator represents the Re 8 — 0 limit of the semigroup problem.
Introduce into the potential the coupling constaﬁt v so that v — 4o and
p# — vp. Then our expansion for the semigroup kernel remains valid provided we

rewrite B,(z,y;0) as

1> '
Bn(z,y;8,7) = (——7;6)"/; dn[;‘/dn'ue—ﬁan-i-zbn.

For the moment, let 2 satisfy Re 2 < —|v|||¢| and |z| > Ag. Then the resolvent

kernel is given as the Laplace transform of the semigroup kernel;

R(:c,y;z):‘/(; dB #* K (z,y; B).

For proof of this result we refer to reference [OCF 85], proposition 4. We note
that in proposition 4, the integral is along a contour Lfst. The integral along this
contour was used to consider values of z in a much larger domain than is being
considered here. For Rez <‘ —|lp2]| the integral along [0,00) is equivalent to the
integral along Lgt. Indeed, in the proof of proposition 4, Osborn et. al. used the
integral we are considering here; showed it was equivalent to the one along L?; and
then analytically extended the domain of allowed values of z.

We claim we can interchange the 3 ° ; appearing in the definition of F' and

the df integral. Because the partial series Ko(z,y;3) EnN=0 B, (z,y;3) admits the
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N independent estimate el78ll#ll and

/oo dB e®ez=1llIkB < o
0

we can apply the dominated convergence theorem to interchange the sum and inte-

gral. Thus we have

oo

R(z,y;2,7) = Ro(z,y;2) + }:(—7)"/ dB "> p"

n=1 0

1> )
X / dme / d"u Ko(z,y; B)ePantibn  (6.47)
0
To get (6.47) we have used lemma 3 of reference [OCF 85] which states
oo
Ro(z,y;2) = / dp ** K, (z,y; B) Rez < 0.
0

Thus the operator P(X,T')[R(z,v) — Ro(z)]P(Z,T") has the kernel

S 00 1>
() (- /; 4B /; dn / & Mrn(an) - - (e ) My
x Ko(z,y; B)e P tony o (v). (6.48)

Because z is in the region of Born dominance and we can consider the Born

P(Z,T)[R(2,7) = Ro(2)|P(Z,T) = Y (=7)"P(E,T)Ro(2)[V Ro(2)]" P(Z,T).

Inlemma 6.3 we established this series converges in the B; topology. Hence it also
converges in the By topology which in turn implies the sum of the kernels of these

operators converge in the L?(dz dy;C***) topology. Consequently this kernel sum
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converges in measure (cf. [Roy 68], chapter 485) and hence there is a convergent

subsequence such that

N;
(=) [ PE,D)Ro(2)[V Rof )" P(Z,T)| (2,9)
n=1
= 3 (=" [P(E,D)Ro(2)[V Bo(2)]" P(Z,T) | (2,3) (6.49)

for a.a. (z,y). On comparing the terms of equal order in v between (6.48) and

(6.49) we obtain

(=1)" [ P(5,T)Ro(2)[V Rol2)]* P(E,T)| (2,1) = / " 48 K (2,438 B (2, 3:)
(6.50)
Next we take the trace of P(Z,T')Ro(2)[V Ro(2)]"P(S,T). Let T = RS be a
trace class operator, given by the product of the two Schmidt class operators R and

S. Suppose that R and S have kernels Kr and Kg and T has kernel K7. Then
TrT = (R*,S)B2 = /dm dy sp Kp(z,y)Ks(y,z)

= /dm sp Kr(z,z). (6.51)

For proof of this result we refer to [Sch 70], theorem 2.4. Applying this to equation
(6.50) we have

Tt P(Z,T)Ro(2)[V Ro(2)]*P(E,T)
o 1> T
=i [ as A re | d”\ulspMm(an)---n(al)Mr(%()—3)—2

% IB'n.—-g-eﬁ(z~an)eim-(oz1+-~+an)'

The integrand is absolutely integrable and hence we may interchange the orders of

integration via Fubini’s theorem. We note the g integral is in the form of a gamma
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function and the z integral is a Fourier integral. After explicitly evaluating the 8
and z integrals, the resulting formula is equation (6.41), but with the restriction
Rez < —||u|| (v =1) and |z| > Ay.
Now lemma 6.4 showed that Tr P(3,T')R,(2)[V R,(2)]"P(%,T') is holomorphic
in the region II. Furthermore the right hand side of (6.41) is easily shown to
be holomorphic in II as well. As these two holomorphic functions coincide on

Rez < —||p||, they must coincide everywhere on II. &
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CHAPTER 7

Sum Rules for Spin Systems

For this chapter, we assume the same working hypotheses as stated in chapter
6. Again we shall keep our assumptions on the integrability of v specific to each of
our claims. We first state the main result of this chapter, with the detailed proof

following in the ensuing lemmas and propositions.

7.1 The Sum Rule

Let T' be an arbitrary, but fixed subspace of C° and suppose the set of or-
thonormal spinors {CJ};": 1 span I'. We will extensively use a partial trace (in C*)

of v(z) on the subspace I'. Denote this trace by

8o

vp(2) = Y (G v(2))- (7.1)

i=1

Theorem 7.1: Let v € L' N F*(R3;C**¢). Let ¥ be a Lebesgue measurable
set of finite measure and let I' be a subset of C°. If ¢(X; X,T') denotes the time delay
for the region ¥, the spinor subspace I' and the energy ), then

. b 1
lim {/{; dq(X; 2,T) + —ﬂﬁédwvr(m)—l—M(l);E,F)}

b— oo

= —2r Tr P(Z,T)E, P(Z,T). (7.2)



- 142 -

where E; is the projection operator associated with the singular spectrum of H and

o? xH(a)i.(a az
Am¢ﬂ=$/mwmﬂ&%%lm@§%%)—iﬁémgn

(7.3)
Proof: Let 6 € (0,1) be fixed and consider the contour integral of the function
Tr P(Z,T)[R(2) — Ro(2) + Ro(2)V Ro(2)] P(Z,T)

about the contour C shown below.

C(b,6)

C=0C;+Csy+Cs+C(b,8)

Figure 7.1
- Here the interval (a,b) D [—Ag,Ag]. From lemma 6.4 and corollary 6.2
Tr P(3,T)[R(z) — Ro(2) + Ro(2)V R,(2)]P(Z,T) is holomorphic inside and on C.
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Thus by Cauchy’s theorem,
f dz Tr P(X,T)[R(2) — Ro(2) + Ro(2)V Ro(2)|P(Z,T) =0
C

Formula (7.2) is the result of calculating the contributions of C; (j = 1,2,3) and
C(b,6) in the limit b — oo and § — 0. We shall calculate these limits in the

following sections. &

A couple of remarks are in order here. The first comment concerns the term
M(b,%,T) given in (7.3). The second term on the right hand side of this equation
is expected to cancel out the leading order large b behaviour of the first term of the
right hand side. To get a feeling for the large b behaviour of M(;X,T") suppose
9 has compact support. For b sufficiently large, a ball centered on the origin and
of radius b will contain the support of 5. Then for all a € supp®, the In function

appearing in the definition of M(b; X,T") has the asymptotic expansion

2
3
i 2VE+ el Ng\_f‘flJrO(’_"iL)_
2vb — || Vb b3/2
Using this expansion, M (b; £,I') behaves as

M(5;%,T) = {zgi/;dm o) + O(b“l/z)} - Z@Ldmvr(m) — 001/

in the limit b — oo. For the more general v, the ordering behaviour of M (b; Z,T') is
much more difficult to determine. However, it is implicit that if the integral over the
contour C(b, ) tends to zero in the limits § — 0 and b — oo, then for any singular
structure in b occuring in M (b; X,T"), there must be a corresponding structure in

the energy integral of g(A; £,T') that exactly cancels with it.
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Next we have a remark concerning the spin subspace I'. By restricting the

dimension of I to 1, but otherwise leaving it free, we can obtain via the polarization

8

identity* on C°, a sum rule which picks out the i5%* component of v. If {¢; HIPRC

an orthonormal basis of C*, define

vi(z) = (Cja”(l‘)Cz)

= }1{ (G + Go@g + ) = (6= o)l — )
— (¢ +i6 (@G + i) +i(¢ — i 0(@)G - i) }

This is the matrix representation of v(z) with respect to the basis {¢}ioq- Let Ty
be the subspace spanned by (; + (;; I'y be the subspace spanned by ¢; — {;; 'y be
the subspace spanned by (; +1i(;; and T’y be the subspace spanned by (; —i({;. Then
for each ', we have a sum rule corresponding to (7.2). We may take appropriate
linear combinations of these four sum rules which would allow us to invoke the
polarization identity to recover the components v;;(z) and 9;;(a). We combine the

linear combinations of the four time delay functions into a single function;

1 . .
a;u(% %) = 3 {g(AZ,T1) — g B,T,) - ig(A E,T3) +g(X 2, Ty) }.

Clearly we may form a matrix from the g;;(A;X)’s. In fact we claim this matrix
will be hermitian. To see this, interchange the indices 5 and [ above. The vectors

G +¢;and § — {; = —({; — ¢;) will still span I'; and T', respectively. However, the

* The polarization identity we refer to applies to any sesquilinear functional on a Hilbert space.
If {-,-) denotes the inner product of a Hilbert space H, then

(5, 4g) = 2{{F + 9, 4(f +9)) ~ (F — 9, A(F — )
— i(f + 19, A(f +ig)) + i(F — ig, A(f — ig))}.

where A is an operator on X with domain D(4) and f,g € D(A).
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vector (; +1(; = i({; —2{;) spans I'y and the vector {; —i(; = —i({; + i(;) spans T';.
Then g;;(A; ) will be given by

1 . .
q;; (X X%) = Q{q(/\; E,Ty) —a(X 8, T5) —ig( M X, Ty) +ig(X; 2,1‘3)}-

As the g(A;2,T,)’s are real valued (i = 1 ~ 4), we see that g;;(; 2)* = ¢;;(}; ).
This establishes our claim. We caution again, that the function g;:(A; X) is not
necessarily the same as the time delay function one obtains from the j and [ spin
channels in the channel formalism of scattering theory discussed briefly in chapter 6.
In the context presented here, g;;(A; £) is a useful construct for obtaining sum rules
that explicitly involve off diagonal components of v(z). Following the procedure

outlined, we have constructed the sum rule

b
lim {/ dA le(A; E) + —1‘\/5/ dz vjl(:c) + Mjl(b; E,I‘)}
b—o0 0 2w )

= —w{TrP(E,I‘l)ESP(E,Pl) — Tr P(2,T,)E,P(Z,T,)

—iTrP(E,P3)E3P(Z,P3)+iTrP(2,I‘4)E3P(E,I‘4)}, (7.4)

where

Mj(b;3,T) /da [ ———} X5 (o IZ}IJZ( 2) @?J’:z}) ﬁ\/g‘/‘édlivjl(w)

(7.5)
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7.2 The C;, C3, and C3; Contributions

The C3 contribution is easily found. Without loss of generality we may pick
so large that [1+A4(2)]™! exists viaits Neumann series representation. Let 0 < 6 < 1
be a fixed parameter and let Aé be the set in II. as described at the start of section

6.3. Then for all z € Ag,
| Tr P(Z,T)[R(2) — Ro(z) + Ro(2)V Ro(2)| P(Z,T)| |
= |Tr P(Z,T)Ro(2)wA(2)[1 + A(2)] " uR,(2)P(Z,T)]

4 xz(@)|v(y)
<ecp—— [ dedy =2 00
‘Cfl—ﬂfmy EErEE

where ¢, is a constant independent of z. Thus there exists a constant ¢ such that

/; dz Tr P(2,T)[R(2) — Ro(2) + Ro(2)V Ro(2)]P(,T)| < ¢6

and the right hand side tends to zero in the limit § — 0.
The C; + C; contribution requires more work. We note that if f is a holo-

morphic function satisfying f(2*) = f(z)*, then

b
/ dz f(z) = / AA[F (A +i8) — F(A — i6)]
C14+Cs9 a
b
- 2i/ d\Im f(X + i6).
In particular, Tr P(Z,T')[R(2) — Ro(2z) + Ro(2)V Ro(2)]P(Z,T) is such a function.

Proposition 7.1: Supposev € L1 N L%(R%;C***) is hermitian. For each fixed

6 € (0,1) and every finite interval (a,b) D [—Ag, Ag],



- 147 -

b

[Jim [ d\ Tr P(S,I)Im [R( +18) — Ro(A +46)|P(E,T)

b
:%/ dAq(33,T) + 7 Tr P(S,T)EP(S,T).  (7.6)
0

Here E; is the spectral projector associated with singular spectrum of H.
Proof: Let § > 0 and consider the two functions
b
I.(6) = / d)\ Tr P(X,T)Im [R(X + i8)Eqsc — Ro(X +16)|P(Z,T)
a

(7.7)
I(8) = /b d\ Tr P(Z,T)Im R() + i6)E,P(Z,T)

As Eyc + Es = I, we clearly have that I.(6) + I;(6) is the left hand side of (7.6)

before the § — 0+ limit is taken. Before proceeding further, we first verify that the

‘traces of the above operators exist. As the imaginary part of the resolvent can be

expressed as the difference of the resolvent at two different points, we can use the

Hilbert indentity R(z) — R(z') = (z — 2’ )R(2)R(2') to get
P(Z,T)Im R(X + i6)P(S,T) = 6P(S,T)R(A + i6)R(X — i6)P(Z,T).

We claim R(z)P(%,T') € By. Using the second resolvent equation we have

R(z)P(Z,T) = Ry(2)P(Z,T) — R(2)V Ro(2)P(Z,T)
= Ro(2)P(3,T) — [P(S,T)R(2* )V R(z*)]*.

Now in the proof of lemma 6.1 we showed that R,(z)P(Z,T) and P(Z,T')R,(z*)
are both Schmidt class operators. Furthermore, V is H-bounded and consequently

VR(z*) is a bounded operator. Thus P(Z,T)R,(z*)V R(z*) and its adjoint are
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also Schmidt class. This proves that P(X,I')Im R(A + :6)P(Z,T) € By. Similarly
P(Z,T)Im R(A + i6)Eo. P(Z,T') is trace class and from the identity

P(%,T)Im R() +i8)E,P(S,T)

= P(Z,T)Im R(A + i6)P(S,T) — P(S,T)Im R(A + i6) E,. P(3, T),

we must have P(X,I')Im R(X + i6)E,P(Z,T') € B;.
Consider the 6 — 0+ limit of I,.(6) first. From equation (6.33) we get the

representation

1 §
Tac(6) = g/; dA/; du (”—_W'J(#;Ear)- (7.8)

Note that
. - p
/0 dp mqw; %,T)

is a continuous function of A € [a, ] via an application of the dominated convergence
theorem, so that I,.(6) exists for each § > 0. Next we wish to interchange integral
orders. To apply Fubini’s theorem, it is enough to prove that the the integrand in

(7.8) is absolutely integrable;

b oo b o0 2
6 (1+p%)8  |g(p; 5,1
D dp—2 wenD) = o[ 4
Iy bR Dl= o PN+ 144
[o o]

lg(p; 2, T)]
< b — d
< es( a)/(; 1L 12

< 00.

Hence we are justified in interchanging orders of integration. The d) integral is

elementary, and after evaluating it we have

I.(6) = 517—1:/ dpg(p; 3,T) [arctan b-

(7.9)

# -+ arctan £—
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Next we wish to bring the limit § — 0+ through the du integral, via an ap-
plication of the dominated convergence theorem. Consider splitting the du integral
into a part where p > 2b and a part where g < 2b. Let us examine the u > 2b
integral first. Recall the arctan identity (cf. [AS 72], 4.4.34)

21t 29

arctan z; & arctan zo = arctan
1F 2129

and the simple estimate |arctané| < |£| (6 € R). Thenforall 0 <6 < 1,

b— —a 6(b—a
arctan et +arctan# 5 < (,u—a)((y-lz) s
(b—a)
“(p—a)(p-b)

Thus for the g > 2b integral, the integrand is majorized by the § independent
L(dp) function cq (1 + p2)~|q(p; Z,T)).

For the p < 2b integral, we note that

lg(p; 2,1

el L'(dp) = q(p; Z,T) € Li,.(du)

and the arctan’s are uniformly bounded by w. Thus the integrand is bounded by
an L!(dp;[0,2b]) function that is independent of 6.

The above shows we may apply the dominated convergence theorem to bring
the § — 04 limit through the dy integral. Evaluating this limit on the arctan’s is

a simple exercise, with the result

1 b
i 065 == y &, .
Jim () 2/& dprq(u; 5, T)

This gives us the first term on the right hand side of (7.6).
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The evaluation of I;(6) should yield us the second term in (7.6). We quote
the following useful result.
Suppose we have a sequence of bounded operators, {5,}2 ;, that converge

strongly to S and suppose that R and T are Schmidt class operators. Then

lim Tr RS,T = Tr RST. (7.10)

n—00

This is a result of lemma 8.23 of reference [AJS 77].
The operator P(X,T)E; € By because

P(Z,T)E, = P(S,T)R(z)(H - 2)E,,

(H —z)E; € B, and we have shown P(X,T)R(z) to be Schmidt class. This of course
implies that P(X,T)E,P(Z,T) € B;.

Consider the maps

X Im R() + i6) (7.11)
A Tr P(S,T)E,Im R(A + i6)E,P(3,T). (7.12)

The mapping (7.11) is A continuous in the B norm for each § > 0, and therefore
Im R(X + i6) has a strong Riemann integral over A. Using the result (7.10), the
mapping (7.12) is continuous and hence its Riemann integral over ) exists. Using

the identity R(2)E, = E,R(z)E,; the definition of the two integrals
b
/ d) Tr P(Z,T)E,Im R(X + i8) B, P(Z,T)

and

b
/ dAIm R() + i6);
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the linearity of the trace; and (7.10), we have
I,(6) = Tr P(E,T)E;

/b dAIm R() +i6)| E,P(S,T). (7.13)

L Now neither a nor b are singular points of H. Thus we can use the standard

result (cf. [AJS 77] p. 360)

b

s—lim [ dAImR(A +16) = mEp, .
§—0+ Jq

This in conjunction with (7.10) applied to (7.13) yields

Jim 1,(6) = = Tx P(Z,T) B By, BoP(Z, T)

=7 Tr P(X,T)E,P(Z,T)
which is the second term in the right hand side of (7.6). &

Next we discuss the contribution of Tr P(X, I')Im Ro(A+28)V Ro(A+i8) P(Z,T).

We first derive a representation of this function in the limit § — 0+.

Lemma 7.1: Let v € L' N L2(R®; C***) be hermitian. Then for all X > 0,

Tr P(Z,T)Im [Ro(A + i0)V Ro(A +i0)] P(Z,T)

_ 1 [ %@ (V34 al\]
= Tom d T In (_2\/_—|a|) (7.14)

where \/— =+ A +10.

Proof: Let 6 > 0. From lemma 6.4, the function

J(2,6) = Tr P(Z,T)Im [Ro(A + i6)V Ro(A + i6)| P(Z, T) (7.15)
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is continuous in §. Moreover if A < 0, then
J(A,0)=J, =0.

Expanding out Im [Ro(A + i)V Ro(X + 48)] explicitly, our expression for Jy is

Jy = %Tr{P(E, T)Ro() + i0)V [Ro(A + i0) — Ro(A — i0)|P(S,T)

+ P(Z,T)[Ro(A +40) — Ro(A — i0)]V Ro(A — iO)]P(E,I‘)}.

Recalling the relationship between the trace of an operator and its associated kernel

cf. equation (6.50)), the expression for J, can be written as
P

/X 2V Ae=y| _ ¢=2iV3e=3l] y_(y)v,(2)
(42 20V Mz — y| ==y

VA /dm dy {/‘1 it ezm|m_y,§} Xz (y)vr(z)

- (4m)2 -1

lz — vyl
2V 1 /5 xs(y)vp(z)
— dQ) eV AR (z—y) L2 T )
g (2w)3/d“’dy/ e Py

Here, 71 is a unit vector in a Cartesian coordinate system whose third axis coincides
with the line z — y and the integral over dfQ is the integral over the unit sphere of

this coordinate system. Define the vector
@ = 2V ).

We note that |z — y]“lxz(y)vr(:c) € L(dz dy), which follows from an application
of the Sobolev inequality (6.4). Then it is possible to interchange integral orders

via the Fubini theorem and our expression for Jy becomes
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Jy = o] 1 /dQ/dm dy ei“"'(z_y)————xz(y)vr(m)
Yy

8 (2m)3 |z —
Qo 1 iaoz’ 1
= | 2 [(27[_)3/2 /dﬂ/dw'e m(xE * Top )(2'). (7.16)

In the second equality of (7.16), we have made a change of variables z — z' =z —y

and we are using the definition of the convolution

1

——3—/2/d’y¢(m —y)e(y).

(4 0)(#) = 5

We are also using the parity mapping

(g)(z) = ¢ (—z).

Let € > 0 and define

€ __ Iaol 1 e—5|z| 100 T
J)\ = 3 W/dﬂ/dw | (XE*H’UI\)(ZD)E .

|z

As |z|7(xy * v )(z) € L'(d2dz) and the exponentials are uniformly bounded by

1, the dominated convergence theorem shows

g, 7=
Define
~ e_elml
e\T) =
@) |z (7.17)
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It is easily verified that f. € L' N L%(R%). We also have § € L1 N L%(R3) via the

Hausdorff-Young inequality;

1 *ell, < el llell, (7.18)

Then
JS = I%O—’/dﬂ [F-l(f;g)](ao). (7.19)

Here the symbol F~! denotes the inverse Fourier transform.

Recall if 1 and ¢ are both L! functions, then
(% *p)' =3¢

(cf. [Ru 73], theorem 7.2). We would like to be able to use this result for our
problem, but it will turn out f. and g are not so nicely behaved as to apply this

result directly. Nevertheless, as we shall prove in the lemma to follow,
F_l(feg) = fexg.

Let us calculate f. and g:

The inverse Fourier transform of f, is elementary to do and it is given by

2 1
(2m)1/2 & + o2’

fela) = (7.20)

For the inverse Fourier transform of §, we can use the result just quoted above to

get
9(a) = [Fal(Xs * H"’r )](e)

= Xs(—a)(Ilvp)'(~a)

= % (2)bp(a). | (7.21)



- 155 —
Notice that as Xy and o, are both in L? N L*°(R*), we have g € L' N L=(R?).

Thus our expression (7.19) for J§ becomes

e ]_gzﬂ/ 1 / 2 1 cxl e
= 8 df (27)3/2 da (2m)1/2 € + (o — a)? Xp(@)op(e).

As the integrand is absolutely integrable, we may intechange integral orders by
using the Fubini theorem. The df) integral may then be explicitly performed with

the result

o* (o) B 2 2

JS = 1 /da Xy (2)dp (@) In [f + (Jao| + lef) } .
167 || € + (eo| — [af)?

We are interested in the € — 0+ limit of this function and we would like to be able

to bring this limit through the integral. The integrand converges pointwise to the

function

X3 (@)ip(e) (1%; + |a|>2, (7.22)

|| leto] — lex]

Furthermore we notice that

0<n [ez + (Jeto] + |a|)2] <ln (laol + lal>2.

T e+ (Jao| — |af)? o] — |a

Thus to apply the dominated convergence theorem, we need only study the absolute
integrability of the function in (7.22). It suffices to study its integrability at oo; in
a neighbourhood of a,; and in a neighbourhood of the origin.

If @, = 0, the function is identically zero which is obviously L'(da). Let

lao| > 0. For |a| — oo we have

() o ()

la|™! <1 and X} (a)dp(a) € L(de). Thus (7.22) is absolutely integrableat oo.
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We are free to choose a neighbourhood of , # 0, so as to exclude the origin.
Then |a|7'x%(a)é. (@) is bounded on this neighbourhood and it is easily verified
that In (]Lg—z—{%}%{) is an L'(da) function in this neighbourhood of &,. Thus (7.22) is

absolutely integrable about a,.

Finally if a, # 0, there is a neighbourhood of the origin such that for all « in

2
I (1ol 1N
|a01 “lal

Since X} (a)ip(e) € L%(da) and |a|™! is integrable at the origin, we see that (7.22)

this neighbourhood,

is absolutely integrable at the origin.
Thus we may take the ¢ — 0+ limit through the do integral. Recalling
J§ — Jy and |a,| = 2/}, we arrive at (7.17) &

Lemma 7.2: Let v € L' N L%(R®%;C***) be hermitian and let ¢ > 0. Then

F_l[fe(Xz * H'Ur)] = fex ()2;731*)

where f. is defined in (7.17).

Proof: 1t is enough to prove that

(fe*x9)"= feq

where § is defined in (7.17). From the formula (7.20) we see f. € LI+ N L>(R?),
and we have previously argued that g € L! N L®(R3). Thus it follows from the
Hausdorff-Young inequality (cf. (7.18)) that

foxg e LTH N Lo(RY).
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In particular it is in L%(R?), so that its Fourier transform exists in the £.i.m. sense.

That is, if x, denotes the characteristic function for a ball of radius R, centered on

the origin, then

~
.

(fexg)"=s — lim[x 5 (fe * g)] (7.23)

By using Fubini’s theorem and making a change of integration variables we can get

for the pointwise representation of [x,(fe * 9)]",

Xz (fe* g)](z) = (271_—1)3/2‘/(101 e_io"zf(;(a)ﬁr(a)(feT_aXR)“(a:).

Here 7, denotes the translation operator

(ra¥)(e') = ¥(a' - a).

Then

N 2
fe§ — Ixgp(fe * g)]A”

T [

lop |12

_ ol

= Gy [ i@l = (er_oxa) P

2

[ da et @i (@) [fe) ~ (fer-axa) (@)

l 2

fe(m) - (feT_aXR)A(‘”)

ol

T (2r)? f do R (@) *|| fe = fer_o Xzl

v 1|2
= B [ dade! (@RGP [1 - xale +)f

The integrand tends to zero as R — oo and it is bounded by 4|x,(a)?|fe(a')|?,

which is integrable. Thus we can apply the dominated convergence theorem to
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conclude the right hand side tends to zero as R — oo. This yields the result
s — Um[x,(fe * 9)] = fe(xy * oy ).
R—o0

On comparing this with (7.23) we are finished. &
Next we explore the integrabilty of J(X,6) and J(X,0) = J,.

Lemma 7.3: Let v € LY N L?(R3;C***). Then J(),6), as defined by equation
(7.15), is Riemann integrable on finite intervals and

b

b
lim [ dAJ(},6) =/ N
60+ f, 0

Proof: From lemma 6.4, the function Tr P(X,I')R,(2)V Ro(z)P(Z,T) is con-
tinuous with respect to z € II.. Thus J(A,$§), which is comprised of linear com-
binations of these functions, is jointly continuous in A and §. Hence its Riemann

integral with respect to A over any finite interval exists. Furthermore, recall that

J(A,0) = J, =0 for all A < 0. Finally we note that

L[ 5@
PSRNV RAP(SD)| < (s [ dody 22770

for all z € II.. This implies that J(A,§) is uniformly bounded in X and §, which will

enable us to apply the dominated convergence theorem to arrive at our conclusion.

Y

Proposition 7.2: Let v € L' N L%(R3; C***) be hermitian. Then

b

Jim [ dX Te P(S,T)Im [Ro( +8)V Ro( + i6)| P(S,T)
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b

1
=T /s dz v (z) + §M(b, z,T), (7.24)

where M(b; 2,T') is defined in (7.3).

Proof: From lemma 7.1, equation (7.15) and lemma 7.3, the left hand side of

(7.24) is
r (@), (23 +1al)’
167r d)\/da In (2\/5‘_ |a|> . (7.25)

We wish to interchange integral orders to perform the d) integral. It is enough to

prove the the integrand is absolutely integrable and then apply Fubini’s theorem.
Take the absolute value of the integrand and integrate this over d\ and da. We
are free to interchange the order of integration here because the absolute value of
the integrand is positive. Furthermore we note that the In function is positive, and

hence equal to its own absolute value. Define

5 2
A
h(b, |a|) :/ d\1n M
0 2v/X — |
This integrable is exact and consists of linear combinations of one dimensional

integrals of the type (£2 = )

2
[degmet e = [52 -(2) ] In(es€ +e2) + 526~ 165

Using this identity and after some elementary algebra we get

h(b, |al) = 2vBla] + [ "‘2]1 (;?* iZD (7.26)
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Notice that h(b,|e|) > 0, because the integrand was positive. In particular,
for |a| > 2+/b this implies

2vbla| > [%9 —b}l (;‘;Jr :Z:) (7.27)

Then

Ze(@lon(@)] (25 + o]\’
/dA/ o] ™ (2\/5—|a|>
fd @@,

o]

W / da |%5()|[5p(c)

[ g (30

In the second equality on the right hand side, the first term is finite because x5 and

vy are both L%(R®) functions. For the second term, split the da integral into a part
where |a| < 2v/b and a part where |a| > 2v/b. For the la| < 2v/b integral, |a|™! is
in L}, (de), while the rest of the integrand is bounded. Hence this integral is finite.
For the integral outside the ball of radius 24/, we use estimate (7.27) to estimate

this integral by

2\/5 da |y« (a)||v-(a)] < co.
als2vE X5 (e)||op ()]

Hence we have shown we can interchange integral orders in (7.25). But we
have already evaluated the dX integral with the result (7.26). Substituting this

formula into (7.25) and using the Plancherel theorem to write

[ dasz@lin(a) = [ doxs(@on(e)
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we get (7.24). &

This concludes our study of the contributions over Cy, Cy and C3. On ex-
amining these terms we see they comprise our sum rule, provided the contribution
from C(b,6) tends to zero in the limit § — 0+ and b — oo. This is the topic of our

next section.

7.3 The C(b,6) Contribution

We now wish to study the limit

lim lim dz Tr P(%,T)[R(z) — Ro(2) + Ro(2)V Ro(2)]P(Z,T).
b—o0 6—0+ C(b,5)

Because the integrand is continuous and uniformly bounded with respect to z € Il,,

it is trivial to take the § — 0+ limit. From corollary 6.2 we have the result
/ dz Tr P(S,T)[R(2) — Ro(2) + Ro(2)V Ro(2)|P(Z,T)
C(b,0)

- Z L(bo) dz Tr P(Z,T)R,(2)[V R,(2)|" P(Z,T).

Thus we are motivated to study the individual terms of this series first.

Lemma 7.4: Let v € L' N F*(R3;C***). Then for alln > 2,

lHm dz Tr P(2,T)Ro(2)[V Ro(2)|"P(Z,T) = 0.
b—o0 C(b,0)

Proof: Let v > 0 be fixed but otherwise arbitrary. We shall make our choice

for v more definite in the proposition to follow. Consider breaking the curve C(5,0)
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into two pieces. The first piece is
C1(b,7) ={z € C(b,0): 0 < argz < #,0r 27 — 0, < argz < 27}
where sin 6, = vy /b. The second piece is
Ca(b,7) = C(b,0)\C1(b,7).
We examine contribution along C(b,7) first. This curve has an arc length of
E(él(b,7)> = 206, = Zbarcsin%.

Now for 0 < ¢ < 4/3/2, arcsiné < 2¢. If v is fixed, then for b sufficiently large,

v/b < +/3/2 and the arc length of the curve satisfies the esimate

¢(Calb,m)) < 4.

Next we estimate Tr P(X,T')R,(2)[V Ro(2)]"P(Z,T'). Let 0 < 8 < 1 be fixed but
otherwise arbitrary. Then for all b > Ay and all z such that |z| = b, we know that
|A(z)|| <6 <1 and

ITe P(8,T)Ro(2)[V Ro(=)" P(S,T)]| < cp 67

where

CEE [ (@)
e = Ganyr | = 2

With these inequalities, the contribution over C(b,v) has the estimate

[ dz Tr P(Z,T)R,(2)[V Ro(2)]"P(Z,T)| < depy6™',  n>2. (7.28)
C1(by) '
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Next we consider the contribution from Cy(b,7). Utilizing expression (6.41)

in lemma 6.5, we have

f dz Tz P(Z,T)Ro(2)[V Ro(2)" P(Z,T)
Ca(by7)

T(n -1 1> v n
- iz [ e [ar Bl E T o)
2 Jeem  Jo (am — 2)"

x sp Mrn(an)- - n(a1)Mr

where we recall
n

an =Y 0 €m)or- am >0
lym=1
and

0(§l>§m) = Inin{é‘l(l - gm)agm(l - fl)}

Now for z € C3(b,~) we have the estimate

1 . 71%“”, if [Im 2| > ;
lan —2[ 7 | 777, if [Imz| < 4.

With this, it is easily shown that the integrand is an L!(dz d"£ d*|u|) function and
consequently we may interchange the order of integrals. The dz integral may now

be evaluated explicitly, with the result

1 1 1 1
i dz — = 3 — 3 — 3 (-
Catm) (@ —2)""2 m—3 (@ —b—17)""2 (an—b+iy)" 2
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Here the constant b = /b2 — 42, Substituting in this result, the contribution over
02(657) is

f dz Tr P(S,T)Ro(2)[V Ro(2)]"P(Z, T)
Ca(by7)

F(n N %) 1> 3 n ~ %
T (- %)23/z/c; a 5/‘1 x5 (ea + - 4+ an)sp Mrn(an) - - - n(ea) Mp

1 1
X - ra p- 3 .
{ (an —=b—1y)""2  (an —b+iy)"73 }

This integral has the estimate

[ dz Tr P(S,T)Ro(2)[V Ro(2)]" P(Z,T)
Ca(by)

[MrPm(E)0(n — 3) ¥ o [ 1
< (n — £)21/2 /(; 5/ |l (o BP 151 (7.29)

Here, m(X) is the Lebesgue measure of 3. For all n > 2 the integrand on the right
hand side of (7.29) tends to zero as b — oo and it is uniformly bounded by

g-—n n (2
y2 " € L(d"E d*|p)).

Therefore we can apply the dominated convergence theorem to conclude

lim
b—oo

=0 (n>2). (7.30)

/_ dz Tt P(S,T)Ro(2)[V Ro(2)]" P(Z,T)
Ca(by7)

For purposes in the next proposition, we further esimate the right hand side of

(7.29) to obtain the b independent bound

72| M Pm(E)T(n - 1) (Hull)n
< .

(n — %)n!.?l/z ~
(7.31)

/. dz Tr P(Z,T)R,(2)[V Ro(z)]" P(Z,T)
Ca(b,y)
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Statement (7.30) means given € > 0, there exists b, such that for all b > b,

/_ dz Tr P(3,T)R,(2)[VRo(2)]"P(Z,T)| <
C2(b,7)

B |

In the estimate (7.28), we are free to pick 6 as small as we please. In particular,
we may pick it such that 4cI.*y0”~1 < €/2. Implicit in (7.28) is that there exists b;
such that (7.28) is valid for all b > b;.

Thus we have shown given € > 0 and for each n > 2, there exist ' such that

forallb > ¥

f dz Tr P(S, T)Ro(2)[V Ro(2)]" P(Z,T)
C(b,0)

<

/ dz Tr P(S,T)Ro(2)[V Ro(2)* P(S, T)
Cy(b)

+ / dz Tt P(S,T)Ro(2)[V Ro(2)" P(Z,T)
C2(b77)
€ €
<ptyTe ©

Proposition 7.3: Let v € L' N F*(R3;C***). Then

lim lim dz Tr P(S,T)[R(z) ~ Ro(2) + Ro(2)V R,(2)]P(Z,T) = 0.
b—o0 6=0+ JC(b,6)

Proof: We have already discussed the § — 0+ limit and we know
I(b) = / dz Tr P(%,T)[R(z) — Ro(2) + Ro(2)V Ro(2)|P(Z,T)
C(5,0)

‘Ezq'fwykﬁPEDoMWmvwmﬁm
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Dividing the curve C(b,0) up as in the proof of lemma 7.4, I(b) can be estimated
by

o0

11(8)] <

n=2

/_ dz Tt P(Z,T)Ro(2)[V Ro(2)]" P(S,T)
C1(b,y)

o0

>

n=2

= I](b) + Iz(b)

f dz Tx P(Z, T)Ro(2)[V Ro(2)]" P(3,T)
Ca(byy)

From inequality (7.28) we have

oo
I1(b) < 4yep Z 6" = dyer

n=2

1-6

The right hand side can be made as small as desired, with the corresponding Ag’s
increasing in size. This demonstrates that

lim I3(b) = 0.

b—oo

We need to be more careful with I5(b). In the proof of lemma 7.4 we demon-
strated that each term in the series for I3(b) tended to zero as b — oo. From

inequality (7.31), the series for I5(b) is majorized by the b independent series

0o 1 n 0o n
I'(n—3) <||#H) - 1 <H#H)
c < Ve .
;::Z(n—%)n! Y ;::Z(n—l)n Y

Here we have grouped all the constants on the right hand side of (7.31) into ¢. The
series on the right hand side above converges if ||u|| < 4. Since v was an arbitrary
parameter, we are free to pick it equal to ||g||. Thus the series for I5(b) converges

uniformly with respect to b and consequently

Jim I(b) = 0. ¢
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In conclusion, we have shown the existence of a new class of sum rules given
by formulas (7.2) and (7.4). The first term on the left hand side of (7.2) (before
the b — oo limit is taken) is the integral over energy of the time delay function
g(X; X,T"). This integral does not converge as the upper energy limit tends to oo.
From equations (6.24) and (6.30), we see the relationship between ¢();X,T) and
the resolvent difference P(X,T')[R(z) — Ro(2)]P(Z,T) is

g(\:Z,T) =2 li1(1;1+{TrP(E,I‘)Im Rae(A +ip)P(S,T)
s

— Tr P(3,T)Im Ro() + ip)P(S, r)}.

By using the Born series expansion of the resolvent difference, it is possible to cancel
exactly the large energy divergence of the integral of ¢(\;Z,T). The first term of
the Born series suffices to control this singularity and this is the origin of the second
and third terms on the left hand side of (7.2). The right hand side of (7.2) is related
to the number of bound states that have support in the spatial region ¥ and spinor
subspace I'. Its originates from the pole contributions of the exact resolvent to the
contour integral performed in chapter 7.

The sum rules given in (7.2) and (7.4) are structurally different from those
rules obtained via the spin channel formalism. The difference in structure occurs
between the placement of the spin projection operators relative to the Mgller op-
erators (cf. equations (6.21) and (6.22)). The spin channel formalism places these
projection operators to the exterior of the product of the two Mgller operators. This
has the advantage of allowing one to decompose the S-matrix into a matrix over
the spin channels and the global time delay may be related directly to the S-matrix
(cf. reference [BO 76], equation (4.12)). Our formalism places the projection op-
erator between the Mgller operators. While we have a particularly simple physical
interpretation of the time delay we have studied, its connection to the S-matrix

is more opaque than the spin channel case and we leave this as a problem to be
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addressed to in future studies. We note that our class of rules can also incorporate
a spin channel formalism. This is because we have not yet exploited any degree of
freedom in the choice of the asymptotic in and out states. By picking particular
polarizations of these states, we obtain the spin channel formalism.

Finally some remarks about the restriction of v to LINF*(R3; C**¢). A possible
method for showing the contribution along C(b,6) tends to 0 is given by Buslaev
[Bu 67]. In his technique, he uses an elliptical co-ordinate system to remove the
|z —y| singularity in the kernel of R,(2). By making smoothness assumptions on the
potential he was able to integrate by parts one of the integrals that appear in the
trace (cf. equation (6.50)). Each integration by parts would pull down a factor of
(1/z)7! from the exponential appearing in the free resolvent kernel Ro(z,y; z). After
a sufficient number of integrations by parts, there exist enough decay in 2z that the
contribution around the contour C(b,§) will tend to zero as b — oo. This technique
has the advantage of using only smoothness properties of the potential so that the
assumption v € L! N L2(R3%; C**¢) should only require minimal strengthening.

On the other hand, if one is interested in higher moment sum rules like those
in equation (1.12), then one must use a large energy (z) asymptotic expansion of
Tr P(2,T)[R(2) — Ro(z)|P(2,T'). A closely related expansion has been worked out
by Osborn et. al. ([OCF 85], theorem 3). We remark that this asymptotic series is
in the variable z, whereas the Born series is a series in the coupling constant that
can be associated with v. It is because these two series coincide to lowest order
that we were able to utilize the Born series in our analysis. For the higher moment
sum rules we must subtract away the leading order terms of the large z asymptotic
expansion of Tr P(X,T')[R(z) — R,(2)|P(%,T) in order to cancel the energy growth
at co. The higher the power in the moment, the more terms in the asymptotic
expansion that must be used. To be able to utilize this expansion, we must subsume
the hypotheses of Osborn et. al. [OCF 85] that v € F*(R®;Cc*>¢). In theorem 3 of

reference [OCF 85], a further smoothness in the potential was assumed so that the
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asymptotic expansion of the difference between the total and free resolvent kernels
could be carried out to higher orders. We would also still require v € L}(R*;C***) in
order to gain control over the contribution of that part of C(b,6) near the positive
real axis. This should enable us to utilize arguments similar to those presented in
section 7.3. In light of these details, the class of potentials studied for our sum rule

would be consistent with the class used to study the higher moment sum rules.
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