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i 

 

Abstract 

 

 

Climatic change has been observed in many locations and has been seen to have dramatic 

impact on a wide range of ecosystems. The traditional method to analyse trends in 

climatic series is regression analysis. Koenker and Bassett (1978) developed a regression-

type model for estimating the functional relationship between predictor variables and any 

quantile in the distribution of the response variable. Quantile regression has received 

considerable attention in the statistical literature, but less so in the water resources 

literature. This study aims to apply quantile regression to problems in water resources and 

climate change studies. The core of the thesis is made up of three papers of which two 

have been published and one has been submitted. One paper presents a novel application 

of quantile regression to analyze the distribution of sea ice extent. Another paper 

investigates changes in temperature and precipitation extremes over the Canadian Prairies 

using quantile regression. The third paper presents a Bayesian model averaging method 

for variable selection adapted to quantile regression and analyzes the relationship of 

extreme precipitation with large-scale atmospheric variables. This last paper also 

develops a novel statistical downscaling model based on quantile regression. The various 

applications of quantile regression support the conclusion that the method is useful in 

climate change studies.  
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Chapter 1 

Introduction 

Climatic change has been observed in many locations and has been seen to have dramatic 

impact on a wide range of ecosystems (Walther et al., 2002). The Fourth IPCC report 

showed that human-induced climate change will be a major additional stress in a world 

where the environment is already being seriously damaged and depleted by increasing 

resource demands and non-sustainable management practices. The report also indicated 

that climate change will directly impact the Canadian environment and society, and also 

indirectly as a result of impacts elsewhere in the world. Major impacts of climate change 

are expected on water systems, as well as on natural ecological systems, forests, 

agriculture, and coastal ecosystems. Moreover, there is a serious threat to human health. 

In many areas, there is a danger of increased exposure to heat stress, weather hazards 
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such as droughts, floods, wildfires, and severe storms, with resulting injuries, deaths, and 

damage to infrastructure that supports public health (IPCC, 2007).  

Observations in many areas have shown that changes in total precipitation are 

significantly influenced by changes in the tails of precipitation distributions. Similarly, 

changes in some temperature extremes have been observed. There are some lingering 

questions about whether such changes are part of decadal fluctuations, or whether they 

are indicative of long-term trends related to climate change (Easterling et al., 2000). 

Generally, a significant decrease in the number of days with extreme cold temperatures, 

an increase in the number of days with extreme warm temperatures, and some detectable 

increase in the number of extreme wet days have been observed in many parts of the 

world (Vincent and Mekis, 2006). Whether the observed climate of the Earth is becoming 

more variable and more extreme is one of the key questions in the review reports of the 

Intergovernmental Panel on Climate Change (IPCC, 2007). 

The traditional method to analyse trends in climatic series, to examine the 

relationships between climate variables (e.g., link between atmospheric circulation 

variables and local weather variables, such as precipitation and temperature), or to 

forecast weather is regression analysis. The purpose of regression analysis is to establish 

a relationship between a response variable and one or more predictor variables. However, 

the traditional regression analysis most often used to compute climate trends 

characterizes only the trend of the mean value of the dependent variable (meteorological 

variable) for a given set of independent variables. An assumption in traditional regression 

technique is the so-called homoscedasticity of observational data, i.e. the variance of the 

error term is assumed to be independent of the value of the covariates which is often not 
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satisfied. If heteroscedasticity is present but is ignored, there will be obvious errors in the 

conditional distribution. 

Another peculiarity of the OLS regression technique when analyzing climate trends is 

the lack of focus on the entire conditional distribution of meteorological variables for 

every value of the independent variable. The remark of Mosteller and Tukey (1982) is to 

the point: “…All that the regression curve can give is the generalization for average 

values of dependent variable Y distributions corresponding to every value of the 

independent variable X. One could go further and plot several regression curves, 

corresponding to various percentile values of distributions, having obtained, ipso facto, 

more complete picture of available data. It is not done, usually, and, therefore, the 

regression curve gives rather incompletely such a picture just as the average value gives 

the incomplete picture of the distribution of values of one variable.” 

Also, heavy-tailed distributions commonly occur in climate studies (e.g. precipitation 

modeling), leading to a preponderance of outliers. The conditional mean can then become 

an inappropriate and misleading measure of central location because it is heavily 

influenced by outliers. 

One common characteristic of climate variables is the existence of unequal variation. 

In standard statistical methods, unequal variation is considered an inconvenience and 

transformations are often used to equalize variances (e.g., fourth root transformation for 

precipitation). An alternative view is that unequal variation in climate variables reflects 

important processes and should be modeled explicitly. 

Koenker and Bassett (1978) developed a regression-type model for estimating the 

functional relationship between predictor variables and any quantile in the distribution of 
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the response variable. Quantile regression overcomes some of the limitations of standard 

regression and is suitable for the study of changes in the frequency of environmental 

extremes over time. Quantile regression produces different rates of change in different 

quantiles of the response variable, providing a more complete picture of the relationships 

between variables missed by other regression methods. The particular focus of quantile 

regression is to estimate quantiles of the conditional distribution of a response variable. It 

differs from traditional linear regression in a number of ways, as will be explained in 

Chapter 2, and it largely overcomes the problems with traditional regression enumerated 

above. 

Barbosa (2008) applied quantile regression to characterize long-term sea level 

variability in the Baltic Sea. She concluded that quantile trends provide a more complete 

description of regional sea-level long-term variability than OLS regression. Baur et al. 

(2004) used the conditional quantile regression approach for the interpretation of the 

nonlinear relationships between daily maximum 1-h ozone concentrations and both 

meteorological and persistence information at four stations in Greece. They concluded 

that quantile regression has the advantage of easy implementation and transparency of 

results, which is in contrast to black box models such as neural networks where the 

predictor-predictand relationships are less clear. Dunham et al. (2002) analyzed the 

relationship of the abundance of Lahontan cutthroat trout to the ratio of stream width to 

depth. They found a negative relationship in upper tails while a least squares regression 

estimated zero change. They remarked that if they used mean regression estimates, their 

conclusion would mistakenly be that there is no relation between trout densities and the 

ratio of stream width to depth. Bremnes (2004) made precipitation forecasts in terms of 
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quantiles to improve or enrich numerical weather prediction outputs. They demonstrated 

how reliable probabilistic precipitation forecasts in terms of quantiles can be made using 

quantile regression. 

Quantile regression has received considerable attention in the statistical literature, but 

less so in the water resources literature. This study aims to apply quantile regression to 

problems in water resources and climate change studies. Special objectives of this study 

are: 

 Present a novel application of quantile regression to analyze the distribution of 

sea ice extent. 

 Investigate changes in temperature and precipitation extremes over the 

Canadian Prairies using quantile regression. 

 Present a Bayesian model averaging method for variable selection adapted to 

quantile regression. 

 Analyze the relationship of extreme precipitation with large-scale atmospheric 

variables using quantile regression. 

 Develop a novel statistical downscaling model based on quantile regression. 

 

Case 1: Antarctic Minimum Sea Ice Extent 

In order to investigate changes in climate extremes, the slope of the 20
th

, 50
th

, and 80
th

 

quantile regression lines of the 32 years (1979-2010) of annual minimum ice extent for 

Antarctic have been estimated and compared with trends in the mean slope (Figure 1.1). 

The slope of the 80
th

 percentile line for Antarctic minimum ice extent is much larger than 

the slope of the mean and lower quantiles, suggesting increased variability.  
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Figure 1.1. Quantile regressions (20th, 50th, and 80th percentiles) and 

standard linear regression of Antarctic minimum sea ice extent.  

 

In Chapter 3, the paper “Analysis of Arctic and Antarctic Sea Ice Extent using 

Quantile Regression” is presented (Tareghian and Rasmussen, 2012). Sea ice is an 

important component of the global climate system. Global climate change affects the 

Arctic and Antarctic in different ways. The change in the sea ice extent is often assessed 

using linear trend models estimated by ordinary least squares regression. In this study, a 

novel application of quantile regression is presented to analyze other aspects of the 

distribution of sea ice extent.  
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Case 2: Dauphin Annual Precipitation 

The 5
th

 and 95
th

 quantiles of 45 years (1945-1990) of Dauphin annual precipitation have 

been estimated by quantile regression and compared with changes in the trend of mean 

levels. As mentioned above, the application of standard regression for modeling extreme 

events may lead to incorrect conclusions regarding percentiles in the conditional 

distributions. As illustrated in Figure 1.2, annual precipitation in Dauphin show no 

particular change in the mean over time, but there is evidence that the precipitation 

distribution is narrowing over time 

 

Figure 02.Quantile regressions (5th and 95th percentiles) and standard linear 

mean regression trends for Dauphin annual precipitation.  

 

In Chapter 4, the paper “A Study of Climate Extremes Changes over the Canadian 

Prairies using Quantile Regression” is presented (Tareghian et al., 2010). The economic 

cost of extreme events over the Canadian Prairies, particularly in the agricultural, 
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environmental, and hydroelectric sectors, calls for a detailed investigation of changes in 

extremes. This study investigates changes in temperature and precipitation extremes over 

the Canadian Prairies using quantile regression.  

 

Case 3: Comparison of Winnipeg Winter and Summer Precipitation with 500hPa 

Air Temperature (AIRTEMP500) 

Rainfall from thunderstorms is a major contributor to summer precipitation in Winnipeg. 

Thunderstorms need unstable air, characterized by a temperature profile with warm air 

near the ground and cold air aloft. As seen in Figure 1.3, the relationships between 

precipitation and AIRTEMP500 for summer and winter are similar in nature, but the 

quantile slopes are much higher for summer compared to winter for Winnipeg extreme 

precipitation (b1 – values of 2.60 and 0.65 for summer and winter, respectively, in the 

98
th

 quantile regression). This conclusion cannot be reached from simply looking at the 

mean slopes. 

In Chapter 5, the paper “Statistical Downscaling of Precipitation using Quantile 

Regression” is presented (Tareghian and Rasmussen, 2012). Although predictor selection 

is one of the most important components in the development of any statistical 

downscaling model, it is often approached in a rather superficial way. In this study, we 

employed a Bayesian model averaging method, adapted to quantile regression, for 

variable selection. The advantage of this method is that different predictors can be 

selected for different parts of the conditional distribution. The variance underestimation 

and poor representation of extreme events by statistical downscaling methods motivated 

us to develop a novel statistical downscaling model based on quantile regression. The 
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concluding chapter includes a discussion on how this thesis, with its findings, provides a 

distinct contribution to knowledge in the research area.  

 

 

Figure 1.3. Relationship between daily precipitation in Winnipeg and 

AIRTEMP500 for winter (left) and summer (right). The bottom plots show 

the slopes of the estimated regression lines. The quantile regression 

coefficients (black dots) are presented with their 95% confidence bounds 

(shaded in grey). The least-squares regression coefficients (solid red line) are 

also given with their 95% confidence bounds (dashed red lines). The vertical 

axis shows the slopes (%), and the horizontal axis shows the p -value of the 

quantile (1-99th). 
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Chapter 2 

Quantile Regression 

In this chapter, the fundamental principles of quantile regression will be presented. The 

chapter starts with some basic definitions related to quantile functions. Next, the concepts 

are extended to a regression setting. Various properties of quantile regression will be 

illustrated, including, two methods for calculating confidence intervals for quantile 

regression. Finally, a number of studies on climate change using quantile regression will 

be listed. 

 

2.1 Basics 

2.1.1 Quantiles and Quantile Functions 

The median is perhaps the best-known example of a quantile. The median is the middle 

value of a set of ranked data. In other words, the median ( m ) splits the ordered data into 
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two parts with an equal number of data points in each. The median of a random variable 

Y  may be defined by the probability statement 2/1)()(  mYPmYP . Any real-

valued random variable Y  may be characterized by its (right-continuous) distribution 

function 

)()( yYPyF                                                                                        (2.1) 

whereas for a proportion p (0 < p < 1), 

 pyFypF  )(:inf)(1

                                                                      (2.2) 

is called the pth quantile of Y . The median, )2/1(1F , defines the central location, and 

other quantiles can be used to describe non-central positions of a distribution. 

The general procedure to find the desired quantile of a sample is to sort and rank the 

observations and then check at which observation the threshold is reached. Koenker and 

Bassett (1978) showed that determination of a quantile may alternatively be done by 

optimizing a (weighted) loss function of the form: 





}|{}|{

-1 )1(minarg(p) F
pipip yii

pi

yii

pi ypyp




 
          (2.3) 

In other words, the absolute value of the difference between an observation iy  and the 

unknown optimal value 
p  is weighted by )1( p  if the observation is below the 

optimum and by p if the observation is above the optimum (Schulze, 2004). This concept 

of optimizing a loss function will be employed later in this chapter for estimating the 

quantile regression coefficients. To illustrate Koenker and Bassett’s (1978) new approach 

to quantile estimation, twenty random observations from a standard normal distribution 

were drawn and sorted in ascending order (column 2 in Table 2.1). The two sums in 
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Equation (2.3) were evaluated at each observation, i.e. assuming 
ip y , for p=0.80 and 

listed in columns 3 and 4. The resulting values of the composite objective function are 

listed in the last column. Columns 3-5 are shown graphically in Figure 2.1. It can be seen 

from Table 2.1 and Figure 2.1 that any value in the interval [0.49430, 0.81860] 

minimizes the objective function in Equation (2.3) and therefore qualifies as an estimate 

of the 80
th

 sample quantile. 

 

Table 2.1. Evaluation of the objective function in Equation (2.3) for a random sample 

(n=20) taken from a standard normal distribution for p=0.80. 

i yi Leftsum Rightsum Objfun 

1 -1.48310 22.44736 0 22.44736 

2 -1.48140 22.42152 0.00034 22.42186 

3 -1.09660 16.88040 0.15426 17.03466 

4 -1.02030 15.84272 0.20004 16.04276 

5 -0.65680 11.18992 0.49084 11.68076 

6 -0.54080 9.79792 0.60684 10.40476 

7 -0.44700 8.74736 0.71940 9.46676 

8 -0.30860 7.30800 0.91316 8.22116 

9 -0.29260 7.15440 0.93876 8.09316 

10 -0.29000 7.13152 0.94344 8.07496 

11 0.10970 3.93392 1.74284 5.67676 

12 0.12690 3.81008 1.78068 5.59076 

13 0.15550 3.62704 1.84932 5.47636 

14 0.26960 2.98808 2.14598 5.13406 

15 0.47540 2.00024 2.72222 4.72246 

16 0.49430 1.92464 2.77892 4.70356 

17 0.81860 0.88688 3.81668 4.70356 

18 1.12870 0.14264 4.87102 5.01366 

19 1.17410 0.07000 5.03446 5.10446 

20 1.26160 0 5.36696 5.36696 
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Figure 2.1. The graphical representation of Table 2.1. The two weighted sums 

of Equation (2.3) are represented by the two dashed lines and the solid line 

shows the composite objective function, all for p=0.80.   

 

2.1.2 Regression Quantiles  

To understand quantile regression, it is useful to contrast it with standard linear 

regression. The classical simple linear regression model is given by 

 xY 10             (2.4) 

where   is a random error term, assumed to have zero mean and constant variance, 2 . 

The additional assumption that   is normally distributed is required only for the purpose 

of statistical hypothesis testing and for calculation of confidence intervals. The fitted 

regression model is in essence a model for the conditional mean, i.e. xxYE 10]|[  . 

Here, the particular interest is conditional quantiles, which for the standard regression 

model would be calculated as: 

)()( 1

10 pxxyp


 

           (2.5) 
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where )(xyp
 is the p'th quantile of Y, conditioned on x, and )(1 p  is the p'th quantile in 

a standard normal distribution. This assumes that the error distribution is normal and 

constant. Both of these assumptions are likely to be violated when studying time series 

with trends. Nature is rarely normal and if there is a trend in the mean, there is likely to 

also be a trend in the variance which would violate the assumption of homoscedasticity 

(constant variance).  

Quantile regression attempts to overcome some of the above constraints of standard 

linear regression by developing specific models for preselected quantiles. In linear 

quantile regression we seek models of the form 

xxy pp

p 10)( 
 

           (2.6) 

where the parameters p

0  and p

1  now specifically define a model for the p'th quantile of 

Y, conditioned on x. Here, for presentation simplicity, the predictor variable x is 

considered univariate. However, in real applications, it can be multivariate as well. No 

assumption regarding the error distribution is required. In linear quantile regression, each 

quantile of the conditional distribution is represented by an individual line. By estimating 

the model for a range of p value, one can obtain a good description of the distribution of 

Y conditional on a given x.  

In standard linear regression, parameters are estimated by minimizing the sum of 

squared errors. This ensures that the model is indeed an optimal estimate of the 

conditional mean. It can be shown that the optimal parameters of a quantile regression 

model are also the solution to a minimization problem along the same logic as in 



15 

 

Equation (2.3). However, rather than minimizing the sum of squared errors, quantile 

regression involves the minimization of a weighted average of absolute errors. 

Specifically, to estimate the parameters of the p'th quantile regression model, one must 

minimize the following objective function:  





)}(ˆ|{)}(ˆ|{

10 )(ˆ)(ˆ)1(),(
ipiipi xyyi

ipi

xyyi

ipi

pp xyypxyypf 

 
      (2.7) 

where, in the case of linear quantile regression on one variable, i

pp

ip xxy 10
ˆˆ)(ˆ  . In 

other words, the absolute value of the difference between an observation iy  and the 

corresponding p'th quantile )(ˆ
ip xy  is weighted by )1( p  if the observation is below the 

quantile line and by p if the observation is above the line. While perhaps not as intuitive 

as the method of least squares, the estimation procedure is straightforward to implement. 

One of the characteristics of the fitted quantile line is that a fraction p of observation 

points will lie below the curve as one would expect. Figure 2.2 shows the result of 

quantile regression (10
th

, 50
th

, and 90
th

) and standard regression of Winnipeg annual 

temperature against time.  
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Figure 2.2. Graphical illustration of 10th, 50th, and 90th quantile regression 

and standard regression. 

 

2.2 Properties 

2.2.1 Equivariance and Robustness 

Researchers often apply scale transformations to aid interpretation and modeling of a 

response variable. Equivariance properties of models and estimates refer to situations 

when, if the data are transformed, the models or estimates go through the same 

transformation, and the interpretations of the results are invariant (Hao and Naiman, 

2007). The following basic equivariance properties of the estimated quantile regression 

coefficients apply (Koenker and Bassett, 1978): 

),(ˆ),(ˆ xyxy pp  
 

),0[                   (2.8) 
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),(ˆ),(ˆ 1 xyxy pp  
 

),0[                (2.9) 

  ),(ˆ),(ˆ xyxxy pp  
k           (2.10) 

where ),( xyp  are the parameters of a regression model for the p'th quantile of y 

conditioned on x. Equations (2.8) and (2.9) express that if the response variable y is 

rescaled by a factor  , then p̂  is rescaled by the same factor and p̂  is scale 

equivariant. Equation (2.10) represents location, shift, or regression equivariance. The 

least squares estimators have the same properties (Schulze, 2004).  

The conditional quantiles possess another equivariance property which is much 

stronger than those in Equations (2.8-2.10), called the monotone property. A 

transformation h is monotone if )()( yhyh   whenever yy  . For a monotone function  

h: 

))|(()|)(( XyQhXyhQ pp                                                                    (2.11) 

For example, if the h function is the log transformation, Equation (2.11) can be 

expressed as: 

))|(log()|)(log( XyQXyQ pp                                                              (2.12) 

and equivalently, 

)|)(log()|( XyQp p

eXyQ                                                                             (2.13) 
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This property allows reinterpreting the fitted quantile regression models for 

transformed variables (Hao and Naiman, 2007). By contrast, unless h is a linear function, 

the conditional mean does not share this property: 

))|(()|)(( XyEhXyhE                                                                        (2.14) 

In other words, the monotone equivariance property fails to hold for conditional 

means. The monotone equivariance property is particularly important for studies 

involving skewed distribution where quantile regression can be used, featuring no loss of 

information due to the transformation process. 

Robustness against outliers (insensitivity to outliers) of the response variable is 

another important property of quantile regression which may be contrasted to the high 

sensitivity of the conditional mean to outliers (Buchinsky, 1998). Outliers are defined as 

observations that lie outside the overall pattern of a distribution. This robustness arises 

because of the nature of the minimization of the absolute deviations in the quantile 

regression objective function. This property implies that if 0ˆ  pi Xy  , then iy  can be 

made arbitrarily large (up to +∞), or if 0ˆ  pi Xy  , iy  can be made arbitrarily small (up 

to -∞) without altering the solution p̂ . In other words, if the sign of the residuals does 

not change, modifying the values of the response variable would not affect the fitted line.   

 

2.2.2 Homogenous and Heterogeneous Models 

A basic assumption of the OLS regression technique is the so-called homoscedasticity of 

observational data, i.e., that the error term is independent of the value of the covariates 

which is often not satisfied. In this section, two examples will be used to elucidate the 
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difference of homogenous and heterogeneous models, and to highlight the advantage of 

using quantile regression in the case of heterogeneous models. Two simple bivariate 

models (i.e. models with one predictor variable) were chosen for illustration of the 

results. 

When the standard deviation of the error term is constant and independent of the x 

values, the homogenous variance regression model form associated with the OLS 

regression is appropriate. Two hundred independent and uniformly distributed 

observations on the interval (0,200) were created as a predictor variable x. The response 

variable y was generated from a homogenous error (lognormal with median=0 and  =1) 

model by: 

iii xy  05.05
 with )1,0(~ Logni  (2.15) 

It can be seen that the homogeneity of variance assumption is satisfied. The sample 

data (dots) and the mean regression line (black dashed line) along with the 10
th

, 25
th

, 50
th

 

(median), 75
th

, and 90
th

 quantile regression are illustrated in Figure 2.3 (top). 

As it was mentioned, the error distribution is log normal and consequently the 

response distribution is skewed. One method to check that the assumption of normally 

distributed errors in OLS regression model would not have correct coverage in this case 

is using prediction intervals. Prediction intervals are directly related to quantiles: the 10th 

and 90th regression quantiles provide an 80% prediction interval at a specific value of x 

(predictor variables). Assuming a normal error distribution and using the mean and 

standard deviation resulting from the least squares estimation, the 80% prediction interval 

can be calculated using the normal inverse cumulative function at the 0.1 and 0.9 

probabilities for OLS regression. For example, at x=160, the width of the 80% prediction 
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interval is 16.65 - 12.14 = 4.51 based on the least squares estimate assuming a normal 

error distribution, whereas the interval based on the 10
th

 and 90
th

 quantile regression 

estimates is  15.82 – 13.28 = 2.54. The difference verifies the non-normality of error 

distribution.  

As previously mentioned, the assumption of homoscedasticity is often not satisfied. If 

heteroscedasticity is present but is ignored, there will be obvious errors in the conditional 

distribution. In the second example, the response variable y generated with a 

heterogeneous error (normal with µ=0 and  =(x+0.5)
0.5

) model and with the same 

sample (Figure 2.3, bottom):  

iii xy  05.05
 with ))5.0(,0(~ 5.0ii xN

 (2.16) 

It is clear that the classical assumption of independence between the error term and 

predictor variable is violated. The difference between homogenous and heterogeneous 

models can be appreciated by comparing Figure 2.3 top and bottom. In Figure 2.3, 

bottom, the slope estimates differ significantly across the quantiles.  

For the heterogeneous models, OLS regression can be used by incorporating weights 

that are inversely proportioned to the variance function (Neter et al., 1996) or by using 

generalized linear models based on assuming some kind of distribution, from the 

exponential family like Poisson, negative binomial, or Gamma distributions  to link 

changes in the variance of y with changes in the mean (McCullagh and Nelder, 1989). 

Although such methods are useful, they are not always entirely successful in resolving a 

particular issue and may raise a number of other concerns (Cade and Noon, 2003).  
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Figure 2.3. A sample (n=200) from a homogenous (top) and  heterogeneous 

(bottom) error models (dots) along with 10th, 25th, 50th, 75th, and 90th 

quantile regression estimates (solid lines) and OLS regression estimates 

(dashed line). 
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Koenker and Machado (1999) in their study on quantile regression inferences 

highlighted the advantages of quantile regression to model heterogeneous variation 

models where there is no need to specify how variance changes are linked to mean. They 

also showed that quantile regression has the ability to detect changes in the shape of the 

distribution of y across the predictor variables. 

Instead of only analyzing some selected conditional quantiles, it is also possible to 

consider the whole range between 0 and 1. Figure 2.4 summarizes the slopes of linear 

quantile functions as a function of p ( }99.0,...,01.0{p ). The precision of the estimates 

are indicated by 95% confidence intervals (see next section). Also shown is the slope of 

the mean which does not depend on p and therefore appears as a horizontal line. Here, the 

difference of homogenous and heterogeneous models can again be clearly seen. In the 

homogenous model (Figure 2.4, top), for most of the quantiles, the trends in quantiles are 

the same as the mean trend. For some higher quantiles (p>0.8), the slopes are different 

than the mean slope. This happens because the response distribution is skewed. This 

difference demonstrates that the quantile regression model provides a more complete 

view of the changes in the shape of the distribution.       

In the heterogeneous model (Figure 2.4, bottom), the slopes of quantiles are 

significantly different from the mean trend for most of the quantiles. For lower quantiles 

(p<0.2), the slopes are negative and as the quantiles increases the sign of slopes changes 

to positive. From the significant change of the slopes of quantile regressions, it can be 

inferred that the variability of the response variable increases with x as it was observed in 

Figure 2.3 (bottom).   
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Figure 2.4. Slopes of quantile regression lines. The quantile regression 

coefficients (black dots) are presented with their 95% confidence bounds 

(shaded in grey). The least-squares regression coefficients (solid line) are 

also given with their 95% confidence bounds (dashed lines). The vertical axis 

shows the slopes (%), and the horizontal axis shows the p -value of the 

quantile. 
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2.2.3 The Bootstrapping Method for the Quantile Regression  

It is common practice to provide confidence intervals for estimated parameters of a 

statistical model (Koenker and Hallock, 2001). Suffice it to say that confidence intervals 

for parameters of quantile regressions have a similar interpretation as confidence 

intervals for parameters in standard regression models. The bootstrap method, proposed 

by Efron (1979), is a Monte-Carlo method for estimating the sampling distribution of a 

parameter estimator that is calculated from a sample of size n from some population (Hao 

and Naiman, 2007). There has been considerable interest in using the bootstrap method to 

compute standard errors and estimate confidence intervals in quantile regression 

applications (e.g. Buchinsky, 1995; Kocherginsky et al., 2005).  

Efron (1982) suggested the first implementation of the bootstrap method, called the 

residual bootstrap, for a non-linear median regression problem, and this approach was 

further developed in several studies for general quantile regression settings (e.g. De 

Angelis et al., 1993). The method is based on resampling with replacement from the 

residual vector: 

piii xyu ̂ˆ 
 

ni ,...,1
 

        (2.17) 

Drawing bootstrap samples **,..., ni uu  with replacement from the estimated empirical 

distribution and setting ** ˆ
ipii uxy   , a bootstrapped regression coefficient is computed 

as:  





)}|{

*

)}|{

**

**

)))1(minarg

piipii xyi

pii

xyi

piip xypxyp




 
(2.18) 
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By repeating this process B times, *

,

*

1,
ˆ,...,ˆ

Bpp   are obtained and the asymptotic 

variance of p̂  can be consistently estimated (Koenker, 2005). 

This method is not useful in quantile regression, because it is only valid under the i.i.d 

error assumption which is rarely satisfied (Koenker, 1994). Alternatively, the (x, y)-pair 

bootstrap or the so-called design matrix method can be used for independent but not 

identically distributed error terms. In this method, instead of resampling from the 

empirical distribution of the residuals, the (x, y) pairs are resampled n times with 

replacement from the joint empirical distribution of the sample yielding a new sample of 

size n, (xi
*
, yi

*
). A regression coefficient *ˆ

p  is estimated for each bootstrap sample of 

(xi
*
, yi

*
). Repeating the process B times, the asymptotic variance of p̂  can be estimated. 

The discussion about the proper number of repeations, B, has been covered by Andrews 

and Buchinsky (2000). Horowitz (1998) suggested to smooth the quantile regression 

objective function as a refinement of the (x, y)-pair bootstrap method. 

   

2.3 Quantile Regression Model Justification using a Chi-squared (χ
2
) 

Test  

In this section, we have adapted a chi-squared (χ
2
) test to justify the quantile regression 

model. The chi-squared (χ
2
) test is a simple and common goodness-of-fit test. It 

essentially compares a data histogram with the probability distribution (for discrete 

variables) or probability density (for continuous variables) function. The test statistic 

involves the counts of data values falling into each class in relation to the computed 

theoretical probabilities, 
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



classes Expected

ExpectedObserved

#

)#(# 2
2

 

            (2.19) 

If the fitted distribution is very close to the data distribution, the expected and 

observed counts will be very close for each class, and the squared differences in the 

numerator of Equation (2.10) will all be very small, yielding a small χ
2
. If the fit is not 

good, at least a few of the classes will exhibit large discrepancies resulting in large values 

of χ
2
. Under the null hypothesis that the data were drawn from the fitted distribution, the 

sampling distribution for the test statistic is the χ
2 
distribution with parameter υ = 

(number of classes – number of parameters fit - 1) degrees of freedom (Wilks, 2011). 

Based on quantile regression definitions, for example for the 80
th

 quantile regression, 

80% of observations should be under the 80
th

 quantile regression line and 20% of 

observations above the line. Now, if we divide the X axis into 10 bins with the same 

number of observations in each and estimate the 20, 40, 60, and 80
th

 quantile regressions, 

the perfect quantile regression model would include equal observations in each of 10×5 

zones which is the null hypothesis for the adapted χ
2 

test. So, here two examples of winter 

and summer precipitation amounts and the 850hPa East component of wind 

(UWIND850) relationships are presented. For Winnipeg summer case, the total number 

of observations is 950 and the expected value for each zone is 19. The number of 

observations in each zone has been counted (Figure 2.5). The calculated χ
2 

value is 36.74. 

As mentioned above, in the traditional χ
2 

test, we subtract one degree of freedom because 

we know the total number of observations, so once we have observed n-1 bins counts, we 

will know exactly the number of observations in the last bin. Hence, there is no degree of 

freedom for the last bin. In our case, we know the total number of observations in 10 
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bins, so in each bin we will lose a degree of freedom (50-10=40). The critical value for 

40 degrees of freedom at the 5% level is 55.8, so the null hypothesis would not be 

rejected (36.74<55.8) for Winnipeg summer which implies that the quantile regression 

model is reasonable. For the winter case, the number of observations is 820 and the 

expected value for each zone is 16.4, and the calculated χ
2 

value is 38.64 (Figure 2.6). 

The null hypothesis would not be rejected (38.64<55.8) for Winnipeg winter as well.  

  

 

Figure 2.5. Winnipeg summer precipitation-UWIND850 quantile regression 

trends (top), the bottom figure shows a zoom of a particular region in the top 

figure. 
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Figure 2.6. Winnipeg winter precipitation-UWIND850 quantile regression 

trends (top), the bottom figure shows a zoom of a particular region in the top 

figure. 

 

2.4 Applications 

The quantile regression technique has been used widely in economics (e.g. Koenker and 

Hallock, 2001; Auld and Powell, 2009) and occasionally in ecological and biological 
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studies (e.g. Dunham et al., 2002; Cade et al., 2008). Unequal variation in climate 

variables (e.g. precipitation) and complex relationships between environmental processes 

in climate change studies have motivated researchers to look for new techniques like 

quantile regression to analyze these relationships. Koenker and Schorfheide’s (1994) 

research on global temperature change was one of the first studies on climate change 

using quantile regression. They concluded that a flexible and reasonably parsimonious 

quantile regression technique may find useful applications in other aspects of climate 

change research.  

The application of Quantile regression in climate studies can be roughly divided into 

three categories. These categories are not strictly distinct and some of the studies could 

be considered in two or three categories.  

 

2.4.1 Trend Detection 

Quantile regression has been extensively applied for detecting trends. Two of three 

papers presented in this thesis can be classified in this category. Providing multiple rates 

of change for different parts of conditional distribution and enabling researchers to 

analyze the tails have made this technique applicable for identifying distinct rates of 

change and quantifying long-term variability in climate variables.  

Using quantile regression, Barbosa (2008) characterized long-term sea level variability 

in the Baltic Sea. She concluded that quantile trends provide a more complete description 

of regional sea-level long-term variability than OLS regression. Chamaille-James et al.’s 

(2007) study showed that drought severity increased in Zimbabwe in the course of the 

20
th

 century. They suggested the quantile regression technique should be considered more 
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often as a valuable tool to investigate climatic changes in arid and semi-arid regions, 

because asymmetric trends appear to be a common feature of the recent climate changes. 

Studies that can be referenced in this category including: tropical cyclones trend changes 

study (Elsner et al., 2008); annual streamflow distributions analysis (Luce and Holden, 

2009);  annual rainfall changes over time in Zimbabwe (Mazvimavi, 2010); climate 

characteristics changes analysis (Teemofeev and Sterin, 2010); air temperature changes 

over Central Europe (Barbosa et al., 2011); distributional changes detection in 

environmental processes (Reich, 2012); and spatial patterns of trends in Baltic sea-level 

variability (Donner et al., 2012). 

 

2.4.2 Interpretation of Non-Linear Relationships  

As mentioned previously, quantile regression provides a basis for analyzing the entire 

conditional distribution of the predictand rather than a single measure of the central 

tendency of its distribution. Quantile regression’s flexibility to allow covariates to have 

different relationships in different parts of the conditional distribution and the robustness 

to departures from normality and skewed tails can be an asset when the functional 

relationship between predictor variables and the response distribution is multifaceted 

(Mata and Machado, 1996). 

Baur et al. (2004) used the conditional quantile regression approach for the 

interpretation of the nonlinear relationships between daily maximum 1-h ozone 

concentrations and both meteorological and persistence information at four stations in 

Greece. They concluded that quantile regression has the advantage of easy 

implementation and transparency of results, which is in contrast to black box models such 

http://www-scopus-com.proxy1.lib.umanitoba.ca/record/display.url?eid=2-s2.0-78650622189&origin=resultslist&sort=plf-f&src=s&st1=quantile+regression&st2=climate&sid=GwGTpFB2ZT-yOf7iAllQp8o%3a160&sot=b&sdt=b&sl=63&s=%28TITLE-ABS-KEY%28quantile+regression%29+AND+TITLE-ABS-KEY%28climate%29%29&relpos=0&relpos=0&searchTerm=%28TITLE-ABS-KEY%28quantile%20regression%29%20AND%20TITLE-ABS-KEY%28climate%29%29
http://www-scopus-com.proxy2.lib.umanitoba.ca/record/display.url?eid=2-s2.0-84855548019&origin=resultslist&sort=plf-f&src=s&st1=%22quantile+regression%22&st2=%22climate+change%22&nlo=&nlr=&nls=&sid=aBkUr1ROAR-GFcSwcC6Ob0M%3a80&sot=b&sdt=b&sl=74&s=%28TITLE-ABS-KEY%28%22quantile+regression%22%29+AND+TITLE-ABS-KEY%28%22climate+change%22%29%29&relpos=4&relpos=4&searchTerm=(TITLE-ABS-KEY(/%22quantile%20regression/%22)%20AND%20TITLE-ABS-KEY(/%22climate%20change/%22))
http://www-scopus-com.proxy2.lib.umanitoba.ca/record/display.url?eid=2-s2.0-84855548019&origin=resultslist&sort=plf-f&src=s&st1=%22quantile+regression%22&st2=%22climate+change%22&nlo=&nlr=&nls=&sid=aBkUr1ROAR-GFcSwcC6Ob0M%3a80&sot=b&sdt=b&sl=74&s=%28TITLE-ABS-KEY%28%22quantile+regression%22%29+AND+TITLE-ABS-KEY%28%22climate+change%22%29%29&relpos=4&relpos=4&searchTerm=(TITLE-ABS-KEY(/%22quantile%20regression/%22)%20AND%20TITLE-ABS-KEY(/%22climate%20change/%22))
http://www-scopus-com.proxy2.lib.umanitoba.ca/record/display.url?eid=2-s2.0-84856854612&origin=resultslist&sort=plf-f&src=s&st1=%22quantile+regression%22&st2=%22climate+change%22&sid=aBkUr1ROAR-GFcSwcC6Ob0M%3a80&sot=b&sdt=b&sl=74&s=%28TITLE-ABS-KEY%28%22quantile+regression%22%29+AND+TITLE-ABS-KEY%28%22climate+change%22%29%29&relpos=0&relpos=0&searchTerm=(TITLE-ABS-KEY(/%22quantile%20regression/%22)%20AND%20TITLE-ABS-KEY(/%22climate%20change/%22))
http://www-scopus-com.proxy2.lib.umanitoba.ca/record/display.url?eid=2-s2.0-84856854612&origin=resultslist&sort=plf-f&src=s&st1=%22quantile+regression%22&st2=%22climate+change%22&sid=aBkUr1ROAR-GFcSwcC6Ob0M%3a80&sot=b&sdt=b&sl=74&s=%28TITLE-ABS-KEY%28%22quantile+regression%22%29+AND+TITLE-ABS-KEY%28%22climate+change%22%29%29&relpos=0&relpos=0&searchTerm=(TITLE-ABS-KEY(/%22quantile%20regression/%22)%20AND%20TITLE-ABS-KEY(/%22climate%20change/%22))
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as neural networks where the predictor-predictand relationships are less clear. Dunham et 

al. (2002) analyzed the relationship of the abundance of Lahontan cutthroat trout to the 

ratio of stream width to depth. They found a negative relationship in upper tails while a 

least squares regression estimated zero change. They remarked that if they used mean 

regression estimates, no relation between trout densities and the ratio of stream width to 

depth would mistakenly be their conclusion. Identification of necessary river flows to 

protect and enhance migratory birds habitat (Zoellick et al., 2004), the response of 

nematodes to deep-sea CO2 sequestration (Fleeger et al., 2010), unravelling the effects of 

soil properties on water infiltration (Mills et al., 2006), modeling tropical cyclone 

intensity (Jagger and Elsner, 2009), climate change effects on relationships between 

forest fine and coarse woody debris carbon stocks (Woodall and Liknes, 2008) are studies 

that can be classified in this category. 

 

3.4.3 Forecasting 

No assumption regarding the error distribution is required in quantile regression. This 

advantage as well as possession of the monotone property make quantile regression a 

potentially useful forecasting approach. Bremnes (2004) made precipitation forecasts in 

terms of quantiles to improve or enrich numerical weather prediction outputs. They 

demonstrated how reliable probabilistic precipitation forecasts in terms of quantiles can 

be made using quantile regression. Friederichs and Hense (2007) statistically downscaled 

extreme precipitation events using a censored quantile regression technique. They 

concluded that the conditional quantile forecasts are sensitive enough to assess the 

probability of extreme events. Studies on probabilistic wind power forecasts (Bremnes, 



32 

 

2006), forecast verification scores for extreme value distributions with an application to 

probabilistic peak wind prediction (Friederichs and Thorarinsdottir, 2012), and estimation 

of predictive hydrological uncertainty (Weerts et al., 2010) are examples that fall in this 

category.          
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Chapter 3 

Article1: Analysis of Arctic and Antarctic Sea Ice 

Extent using Quantile Regression 

  

Abstract 

A number of recent studies have examined trends in sea ice cover using ordinary least 

squares regression. In this study, quantile regression is applied to analyze other aspects of 

the distribution of sea ice extent. More specifically, trends in the mean, maximum, and 

minimum sea ice extent in the Arctic and Antarctic are investigated. While there is a 

significant decreasing trend in mean Arctic sea ice extent of -4.5% per decade from 1979 

through 2010, the Antarctic results show a small positive trend of 2.3% per decade. In 

some cases such as the Antarctic minimum ice cover, selected quantile regressions yield 
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slope estimates that differ from trends in the mean. It was also found that the variability 

in Antarctic sea ice extent is higher than in the Arctic sea ice. 

Keywords: Sea Ice Extent, Quantile Regression, Arctic, Antarctic. 

    

3.1 Introduction 

Sea ice is an important component of the global climate system. The change in sea ice 

cover has been a central focus of many climate change studies in recent years (e.g., 

Comiso and Parkinson, 2004; Singarayer et al., 2006), both because of the ice-albedo 

feedback mechanism that enhances climate response at high altitudes, and because sea ice 

modifies the exchange of heat, gases, and momentum between the atmosphere and polar 

oceans (IPCC, 2007). 

Among the climatically important characteristics of sea ice (concentration, extent, 

thickness, velocity, and growth and melt rates), extent is the only variable for which 

observations are available for more than a few decades. Comiso (2010) found a 

decreasing trend of -3.8% per decade in Arctic annual average sea ice extent, whereas a 

small positive trend of 1.2% per decade was observed for Antarctic sea ice during the 

period 1978-2008. Some studies have used other sources than satellite data to analyze sea 

ice extent over longer time scales. Rayner et al. (2003) used the Hadley Centre sea ice 

reanalysis data set for the months of March and September for the 20
th

 century and 

indicated a sustained decline in arctic ice extent since around the early 1970s. 

Information from ship reports was used by Vinje (2001) to estimate the April Nordic Seas 

(i.e. the Greenland, Iceland, Norwegian, Barents, and Western Kara Seas, bounded by 
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30°W, 70°E, and 80°N) ice extent since around 1860. He reported a generally continuous 

decline over the period.  

Another notable observation in Arctic ice cover is the significant decrease of -11.3% 

per decade in the summer minimum sea ice extent between 1979 and 2008 (Comiso, 

2010). Early onsets of significant melting north of Alaska and Siberia have been observed 

in 2002 satellite records. In addition, the smallest recovery of winter sea ice cover in the 

satellite records, and the earliest onset of melt were observed in 2004 and 2005 (NASA, 

2005). The sea ice extent in the Arctic in September of 1979 and 2010 are compared in 

Figure 3.1. September is the month where the annual minimum extent usually occurs. 

The difference between these two years is significant.  

Global climate change affects the Arctic and Antarctic in different ways. Turner and 

Overland (2009) suggest that topographic factors and the land/sea distribution account for 

most of the differences. The ice-albedo feedback mechanism operates effectively in the 

Arctic Ocean because of the high level of solar radiation received in summer. Turner and 

Overland also concluded that the ozone hole in the Antarctic affects the high latitude 

ocean and atmosphere significantly, isolating the continent, and increasing the westerly 

winds over the Southern Ocean, especially during the summer and winter.    

The change in sea ice extent is often assessed using linear trend models estimated by 

ordinary least squares regression. Standard regression models provides information on 

the slope of the mean, but does not specifically address other aspects of the conditional 

distribution. Changes in extremes can be equally or even more concerning in climate 

change studies than trends in the mean. In this paper, a technique known as quantile 

regression is applied to study changes in the Arctic and Antarctic sea ice extent. Quantile 
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regression extends traditional regression models to the estimation of conditional quantile 

functions. Time series of monthly mean and annual minimum and maximum sea ice 

extent are investigated for trends. Trends in the mean of these variables will be compared 

with trends in low, median, and high (20%, 50%, and 80%) quantiles.  

 

3.2 Quantile Regression 

Standard linear regression models are extensively used in statistical analyses. Despite 

their popularity, these conditional mean models have some limitations. When interest is 

in the quantiles of the conditional distribution rather than the mean, standard regression 

models may fail to provide the desired information because the assumption of normally-

distributed residuals with constant variance may not be justified. Standard regression 

models are sensitive to outliers and can lead to unreasonable models if outliers are 

present in the data set. This is especially a problem if the sample size is moderately small 

and the error distribution is heavy-tailed (Hao and Naiman, 2007).  

Koenker and Bassett (1978) developed a regression-type model for estimating the 

functional relationship between predictor variables and any quantile in the distribution of 

the response variable. Quantile regression overcomes some of the limitations of standard 

regression and is suitable for the study of changes in the frequency of environmental 

extremes over time. A brief description of the principles of quantile regression is given 

below. 

To understand quantile regression, it is useful to contrast it with standard linear 

regression. The classical simple linear regression model is given by 
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  xY 10                                         (3.1) 

where   is a random error term, assumed to have zero mean and constant variance, 2 . 

The additional assumption that   is normally distributed is required only for the purpose 

of statistical hypothesis testing and for calculation of confidence intervals. The fitted 

regression model is in essence a model for the conditional mean, i.e. xxYE 10]|[  . 

The particular interest in the paper is conditional quantiles, which for the standard 

regression model would be calculated as: 

)()( 1

10 pxxyp

 
 

                                      (3.2) 

where )(xyp  is the p'th quantile of Y, conditioned on x, and )(1 p  is the p'th quantile in 

a standard normal distribution. This assumes that the error distribution is normal and 

constant. Both of these assumptions are likely to be violated when studying time series 

with trends. Nature is rarely normal and if there is a trend in the mean, there is likely to 

also be a trend in the variance which would violate the assumption of homoscedasticity 

(constant variance).  

Quantile regression attempts to overcome some of the above constraints of standard 

linear regression by developing specific models for preselected quantiles. In linear 

quantile regression we seek models of the form 

xxy pp

p 10)( 
 

                                        (3.3) 

where the parameters p

0  and p

1  now specifically define a model for the p'th quantile of 

Y, conditioned on x. No assumption regarding the error distribution is required. In linear 

quantile regression, each quantile of the conditional distribution is represented by an 
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individual line. By estimating the model for a range of p value, one can obtain a good 

description of the distribution of Y conditional on a given x.  

In standard linear regression, parameters are estimated by minimizing the sum of 

squared errors. This ensures that the model is indeed an optimal estimate of the 

conditional mean. It can be shown that the optimal parameters of a quantile regression 

model are also the solution to a minimization problem. However, rather than minimizing 

the sum of squared errors, quantile regression involves the minimization of a weighted 

average of absolute errors. Specifically, to estimate the parameters of the p'th quantile 

regression model, one must minimize the following objective function:  





)}(ˆ|{)}(ˆ|{

10 )(ˆ)(ˆ)1(),(
ipiipi xyyi

ipi
xyyi

ipi

pp xyypxyypf

 
  (3.4) 

with i

pp

ip xxy 10
ˆˆ)(ˆ  . In other words, the absolute value of the difference between an 

observation iy  and the corresponding p'th quantile )(ˆ
ip xy  is weighted by )1( p  if the 

observation is below the quantile line and by p if the observation is above the line. While 

perhaps not as intuitive as the method of least squares, the estimation procedure is 

straightforward to implement. One of the characteristics of the fitted quantile line is that a 

fraction p of observation points will lie below the curve as one would expect.  

Further details about quantile regression models can be found in Cade and Noon 

(2003), Koenker (2005), and Hao and Naiman (2007). In this study, the quantreg package 

add-on to the R language combined with Matlab coding was used for quantile regression 

modeling. 

Several studies have employed quantile regression for environmental modeling and 

climate change impact assessment. Table 3.1 provides a list of some recent studies. 
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3.3 Data and Analysis 

Sea ice extent, defined as the area in which ice concentration is at least 15 percent, is 

used to quantify the sea ice cover. Monthly sea ice extent data for both northern and 

southern hemispheres for 32 years (1979-2010) were extracted from the National Snow 

and Ice Data Center (Fetterer et al., 2002) to examine how the sea ice cover changes in 

extent during an annual cycle. As seen in Figure 3.2, while the duration of the growth and 

decay periods are almost the same in the northern hemisphere, the growth and decay 

seasons last about 7 and 5 months respectively in the southern hemisphere. 

 

3.4 Results 

In order to investigate changes in climate extremes, the slope of the 20
th

 and the 80
th

 

quantile regression lines of the 32 years of monthly and annual maximum and minimum 

ice extent for both the northern and southern hemispheres have been estimated and 

compared with trends in the mean slope. Statistical significance of trends will be 

discussed later where the results of Figure 3.7 and Table 3.2 presented. As illustrated in 

Figure 3.3, trends in the quantiles of monthly sea ice extent are almost the same as the 

trends in the mean for both hemispheres. The results for trend in the mean agrees with the 

findings in previous studies (e.g., Comiso et al., 2008; Comiso, 2010) that report a 

significant decreasing trend (-4.5% per decade) in Arctic sea ice and an increasing trend 

(2.3% per decade) in Antarctic sea ice extent. 
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Ice that survives the summer, often referred to as the perennial ice cover, consists 

mainly of relatively thick, multiyear ice floes. The minimum value for each year is a 

reasonable proxy for estimation of the perennial ice extent. The annual maximum and 

minimum sea ice extents for both hemispheres have been examined by quantile 

regression to determine the nature of trend in the tail of these distributions (Figure 3.4 

and Figure 3.5). For Arctic sea ice extent, a decreasing trend can be seen for both the 

maximum and the minimum. Figures 3.4a and 3.4b show that the 20
th

 and 80
th

 percentile 

lines are almost parallel, suggesting that although the mean may be changing, the 

variability, as measured by the 20
th

-to-80
th

 quantile range, in Arctic sea ice extent has not 

changed dramatically, neither for maximum, nor for minimum ice cover.  

Figure 3.5 suggests that the variability in Antarctic minimum sea ice extent has 

changed over time. The slope of the 80
th

 percentile line for Antarctic minimum ice cover 

is much larger than the slope of the mean and lower quantiles, suggesting increased 

variability.  

The median regression model may be compared to the mean regression model, 

obtained from standard linear regression. It is noted that the median regression and mean 

regression should be similar for symmetrical error distributions (Bancayrin–Baguio, 

2009). The difference between mean and median quantile regression in the Antarctic 

minimum ice cover is notable and shows that Antarctic minimum ice cover is 

asymmetrical and skewed. 

To compare the conditional distributions estimated by standard regression and by 

quantile regression, the case of sea ice extent for 2010 is considered (y|x=2010). In the case 

of standard regression, residuals (  ) are assumed to be normally distributed around the 
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conditional mean value (ymean|x=2010), so the conditional distribution is also normal. The 

cumulative distribution functions (CDFs) associated with the standard linear regression 

assuming normal distribution of residuals have been calculated and compared with 

quantile regression predictions (y0.01,0.02,…,0.99|x=2010) for the Arctic and Antarctic 

maximum and minimum sea ice cover. As it can be seen in Figure 3.6, the 2010 Arctic 

maximum sea ice cover (Figure 3.6a) and the 2010 Antarctic minimum ice cover (Figure 

3.6d) quantile regression predictions are quite different from the results from 

conventional linear regression, just as one would expect based on the graphs shown in 

Figure 3.4a and Figure 3.5b. As mentioned above, the increasing trend in high quantiles 

for the Antarctic minimum ice cover is higher than the mean trend. For example, the 

quantile regression sea ice prediction for the 80
th

 percentile is 3.75×10
6
 km

2 
while the 

standard regression prediction is 3.4×10
6
 km

2
, a difference of 10%. 

It is common practice to provide confidence intervals for estimated parameters of a 

statistical model (Koenker and Hallock, 2001). Several methods have been proposed to 

compute approximate confidence intervals for the parameters of quantile regression 

models, including the rank-score method and bootstrap resampling. The rank-score 

method, which produces confidence intervals for the estimated parameters by inverting a 

rank test, has been used in this study. The details of the method are not given here, but 

can be found in Koenker (1994). Suffice to say that confidence intervals for parameters 

of quantile regressions have a similar interpretation as confidence intervals for 

parameters in standard regression models. Figure 3.7 summarizes the slopes of linear 

quantile functions as a function of p. The precision of the estimates are indicated by 

confidence intervals. Also shown is the slope of the mean which does not depend on p 
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and therefore appears as a horizontal line. The quantile regression model provides a more 

complete view of the changes in the shape of the distribution of sea ice extent. As Figure 

3.7 illustrates, in several cases trends in quantiles are different from the mean trends, 

including the Arctic mean ice extent and the Antarctic minimum ice cover. The 

advantage of the quantile regression model can be seen in the Arctic mean plot (top left). 

In the Arctic, it has been observed that the decreasing trend in September sea ice (annual 

minimum ice cover) is higher than in other months (e.g. Comiso, 2010) and this can be 

seen in the lower quantiles of Arctic means where the most negative slopes are observed. 

The ordinary linear regression model on the other hand produces a constant -0.5% trend 

in all quantiles. The existence of a strong seasonal cycle in the mean plots (top plots) may 

raise some concern about the appropriateness of quantile regression, or indeed any other 

type of regression. It can be seen that the confidence envelopes for the slope of the 

quantile models are wider (statistically less precise estimates) in the central quantiles 

(0.4<p<0.6) compared to the tail quantiles (p<0.2 and p>0.8) which may at first glance 

appear somewhat counterintuitive. A more thorough analysis of the data shows that the 

seasonal cycle and the data dispersion in the central quantiles are the reasons for less 

precise estimations.  

Another observation from Fig 3.7 is that the confidence envelopes in the Arctic do not 

cross the zero line, confirming that the decreasing trend in the Arctic is statistically 

significant for all quantiles. This is in contrast to the Antarctic where confidence 

envelopes in most cases include zero, suggesting that trends are not statistically 

significant.  
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A quantile-based measure of skewness (QSK) of the conditional distribution can be 

defined as: 

 5.00,1
5.0

5.0)1()( 






p

yy

yy
QSK

p

pp                                                   (3.5) 

where p is preselected value and the specific conditioning on x has been omitted to 

simplify the notation. This measure represents the ratio of the upper spread to the lower 

spread minus one. A zero value for QSK over the full range of p-values indicates a 

symmetric distribution, while positive and negative values indicate right- and left-

skewness, respectively (Hao and Naiman, 2007). The QSK measure for p=0.4 are shown 

in the last column in Table 3.2. Because of the range of slopes changes in the plots in 

Figure 3.7, the left-skewness can be seen more clearly in Arctic and Antarctic maximum 

ice cover plots, where the difference between the slopes of the 40
th

 and 50
th

 percentiles is 

higher than the difference between the slopes of the 60
th

 and 50
th

 percentiles. 

The results for changes in sea ice extent based on standard regression and quantile 

regression are summarized in Table 3.2. The table provides the slope coefficients of mean 

and quantile regression lines (20
th

 and 80
th

) and calculated sea ice extent changes from 

1979 through 2010 (y|x=2010 – y|x=1979) for mean and quantile regressions. Some of these 

changes are statistically significant. For example, the decrease of 2.52×10
6
 km

2
 (35% of 

1979) in the lower quantiles of minimum Arctic sea ice extent from 1979 to 2010 is quite 

notable.  

  



44 

 

3.5 Discussion and Conclusions 

Temperatures, winds, waves, and currents are some of the factors affecting the Arctic sea 

ice cover. The warming Arctic temperatures are clearly manifested in the declining sea 

ice cover. Oscillations within the atmosphere are also associated with sea ice cover and 

several studies have analyzed the possible connections of the Arctic Oscillation (e.g., 

Rigor and Wallace, 2004), the North Atlantic Oscillation (e.g., Parkinson, 2000), and 

periodic changes in wind patterns (e.g., Proshutinsky and Johnson, 1997) with sea ice. 

Comiso et al. (2008) suggested that despite changes in the modes of Arctic and North 

Atlantic Oscillations and in the predominant wind patterns, the decline in sea ice cover 

has continued, implying that the warming conditions may be overriding the oscillations. 

The Arctic and Antarctic have experienced different changes in recent years. This 

study has highlighted the fact that changes are not simply in the mean of the key ice 

variables, but that their entire distribution shape may be impacted. As discussed by 

Turner and Overland (2009), the mechanisms behind the different changes in Arctic and 

Antarctic are complex and not easy to decipher. More detailed analyses on the link 

between observed changes and the ocean and atmospheric forcings of the sea ice extent 

should be pursued in the future.    

This study found a significant decreasing trend in mean Arctic sea ice extent of -4.5% 

per decade from 1979 through 2010. The results are even more pronounced for summer 

minimum sea ice cover where a mean trend of -10.1% per decade in 1979-2010 was 

observed. These findings suggest that if the warming trend continues, Arctic sea ice may 

practically disappear some time in the future in summer. While the decreasing trend of 
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sea ice cover in the Arctic is significant, the Antarctic results show a small positive trend 

of 2.3% per decade in mean sea ice extent for the same period.  

The advantage of the quantile regression model can be seen in the Arctic mean sea ice 

extent (Figure 3.7 top left). In the Arctic, it has been observed that the decreasing trend in 

September sea ice (annual minimum ice cover) is higher than in other months (e.g. 

Comiso, 2010) and this can be seen in the lower quantiles of Arctic means where the 

most negative slopes were observed. In some cases, such as the Antarctic minimum sea 

ice cover, the trends in the two quantiles considered were found to be different from 

mean trends and the conditional distributions are asymmetric and skewed (Figure 3.5). It 

was also found that the Antarctic sea ice variability is higher than the Arctic sea ice.   

Standard regression for analyzing sea ice extent might have caused some of the above 

observations to go undetected. This includes the observed change in variability in the 

Antarctic minimum ice cover and the left-skewness of conditional distributions. The 

asymmetric distribution in Antarctic minimum ice cover (Figure 3.5b and Figure 3.7) is a 

good example of a situation where qquantile regression provides a more detailed picture 

of the evolution of the conditional distribution.  

Quantile regression has the advantage of easy implementation and transparency of 

results, which is in contrast to black box models such as neural networks (Baur et al., 

2004) where the functional relationship between predictor variables and the response 

distribution is less clear. As noted by Barbosa (2008), quantile regression is a useful 

technique for identifying distinct rates of change in geophysical time series and should be 

used for quantifying long-term variability in climatic and oceanographic variables. Future 
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work will explore the role of atmospheric variables on sea ice cover using quantile 

regression. 
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 Table 3.1. Quantile regression applications in environmental modeling and climate 

change impact assessment. 

Global temperature change over the last century Koenker and 

Schorfheide (1994) 

Effects of meteorological variables on Ozone concentration Baur et al. (2004) 

Climate change effects on relationships between forest fine and 

coarse woody debris carbon stocks 

Woodall and Liknes 

(2008) 

Tropical cyclones trend changes Elsner et al. (2008) 

Quantile trends in Baltic sea level Barbosa (2008) 

The response of nematodes to deep-sea CO2 sequestration Fleeger et al. (2010) 

Changes over time of annual rainfall in Zimbabwe Mazvimavi (2010) 
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Table 3.2. Slope and sea ice extent changes (1979-2010) of standard and quantile 

regression. 

 Mean 20
th

 Quantile 80
th

 Quantile QSK 

Slope 

(%) 

Extent 

Changes 

(10
6 
Km

2
) 

Slope 

 (%) 

Extent 

Changes 

(10
6 
Km

2
) 

Slope 

 (%) 

Extent 

Changes  

(10
6 
Km

2
) 

P=0.4 

NH -0.48
a 

-1.85 -0.49
a 

-1.89 -0.35
a 

-1.33 -4.20 

SH 0.23 0.87 0.19 0.73 0.11 0.41 -2.93 

NH-Max -4.14
a 

-1.28 -4.83
a 

-1.50 -3.86
a 

-1.20 -1.04 

NH-Min -8.13
a 

-2.52 -8.12
a 

-2.52 -8.21
a
 -2.55 -4.86 

SH-Max 1.09
a 

0.34 1.48 0.46 1.00
a 

0.31 -0.77 

SH-Min 0.92 0.29 0.21
 

0.07 2.60
a 

0.81 -1.21 
a
Statistically significant at the 95% confidence level 
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Figure 3.1. Extent of annual minimum sea ice in 1979 and 2010. Source: 

National Snow and Ice Data Center  
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Figure 3.2. Seasonal variation in sea ice extent based on data from 1979 to 

2010 in (a) the northern hemisphere, (b) the southern hemisphere and (c) 

combined northern and southern hemisphere. The middle line represent s the 

climatological means, while the top and bottom lines represent the  highest 

and lowest monthly values for each month.  
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Figure 3.3. Quantile regressions (20
th

, 50
th

, and 80
th

 percentiles) and standard 

linear regression of monthly sea ice extent (1979-2010) for (a) the northern 

hemisphere, and (b) the southern hemisphere  
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Figure 3.4. Quantile regressions (20
th

, 50
th

, and 80
th

 percentiles) and standard 

linear regression of northern hemisphere sea ice extent for (a) annual 

maximum ice cover, and (b) annual minimum ice cover. 
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Figure 3.5. Quantile regressions (20
th

, 50
th

, and 80
th

 percentiles) and standard 

linear regression of southern hemisphere sea ice extent for (a) annual 

maximum ice cover, and (b) annual minimum ice cover. 
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Figure 3.6. Comparison of cumulative distribution function of standard linear 

regression and quantile regression predictions for 2010 (a) Arctic maximum 

ice cover, (b) Arctic minimum ice cover, (c) Antarctic maximum ice cover, 

(d), Antarctic minimum ice cover.  
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Figure 3.7. Slopes of estimated sea ice extent regression lines. The quantile 

regression coefficients (black dots) are presented with their 95% confidence 

bounds (shaded in grey). The least-squares regression coefficients (solid line) 

are also given with their 95% confidence. 
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Chapter 4 

Article 2: A Study of Climate Extremes Changes over 

the Canadian Prairies using Quantile Regression 

 

Abstract 

Changes in the frequency and intensity of extreme events may have a dramatic impact on 

society and the natural environment. This study investigates changes in temperature and 

precipitation extremes over the Canadian Prairies (three stations in each of Alberta and 

Saskatchewan, four in Manitoba and one in Ontario). Quantile regression analysis has 

been applied to investigate trends in the annual and seasonal extremes using monthly 

homogenized data. In order to examine the advantages of quantile regression analysis 

over standard regression models for modeling extremes, mean trends have been 

compared with low and high (5% and 95%) quantile regression estimates. The results 

revealed that extreme temperatures have increased significantly over most of the 

Canadian Prairies. However, no general pattern can be detected in extreme precipitation. 
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4.1 Introduction 

Extreme weather and climate events have significant impact on both human society and 

the natural environment. Loss of life and damage costs due to weather hazards have 

raised attention towards extreme events. In 2005, Hurricane Katrina caused 1500 deaths 

in New Orleans and Hurricane Mitch caused more than 10,000 deaths Central America. 

Significant loss of life has occurred due to flooding events in India and Indonesia. In the 

United States, the Midwest drought of 1988-1989, Hurricane Andrew in South Florida in 

1992, and the Midwest flood of 1993 resulted in damages of 39, 30, and 19 billion 

dollars, respectively (Changnon et al., 2000). Although extreme events in Canada have 

not caused problems as serious as in the United States, some human life and economic 

losses have occurred. Four deaths resulted from three weeks of flooding in Calgary, and a 

debris flow at Five-Mile Creek in Banff National Park blocked the Trans-Canada 

Highway for several days at the peak of the tourist season (Evans, 2002). Other examples 

include an Edmonton thunderstorm, hailstorms in Winnipeg, and the Saguenay flood that 

produced insurance claims of 160, 120, and 350 million dollars (Environment Canada, 

2004; White and Etkin, 1997). 

Observations in many areas have shown that changes in total precipitation are 

significantly influenced by changes in the tails of precipitation distributions. Similarly, 

changes in some temperature extremes have been observed. There are some lingering 

questions about whether such changes are part of decadal fluctuations, or whether they 

are indicative of long-term trends related to climate change (Easterling et al., 2000). 

Generally, a significant decrease in the number of days with extreme cold temperatures, 
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an increase in the number of days with extreme warm temperatures, and some detectable 

increase in the number of extreme wet days have been observed in many parts of the 

world (Vincent and Mekis, 2006). 

Significant changes in Canada’s temperature and precipitation have been observed 

during the twentieth century. According to Zhang et al. (2000), an increase of about 0.9˚C 

in the annual mean temperature along with a 12%-increase in mean annual precipitation 

has been observed in Southern Canada from 1900 to 1998.  

Most of southern Canada has been faced with significant increasing trends in the lower 

and higher percentiles of the daily minimum and maximum temperature distributions 

(Bonsal et al., 2001). Precipitation extremes show no consistent trends in the number of 

events or in the intensity (Zhang et al., 2001). 

The economic cost of extreme events over the Canadian Prairies, particularly in the 

agricultural, environmental, and hydroelectric sectors, calls for a detailed investigation of 

changes in extremes. Lawson (2003) investigated the extreme minimum winter 

temperatures over the Canadian Prairies during the period 1914-1994. He found a 

significant downward trend in the occurrence of very cold minimum daily temperatures 

during January and February. No significant trends were detected for the month of 

December and only a few sites were found to have significant trends in the month of 

March. Based on an association of tropical sea surface temperature and atmospheric 

circulation over the Canadian Prairies, Shabbar and Bonsal (2004) found longer winter 

warm spells during warm ENSO years across the Central Prairies. 

In this paper, quantile regression has been applied to study changes in climate 

extremes over the Canadian Prairies. Monthly homogenized temperature and 
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precipitation data have been used to investigate the annual and seasonal trends. Mean 

trends have been compared with low and high (5% and 95%) quantile regression 

estimates.  

 

4.2 Quantile Regression 

Standard regression models are extensively used in statistical analyses. Despite their 

popularity, these conditional mean models have some limitations. When interest is in the 

quantiles of the conditional distribution rather than the mean, standard regression models 

may fail to provide the desired information because the assumption of homoscedasticity 

may not be justified. Standard regression models can also fail to capture trends in heavy-

tailed distributions.  

Koenker and Bassett (1978) developed the quantile regression model for estimating 

the functional relationship between predictor variables and any quantile in the response 

distribution. Quantile regression overcomes some of the limitations of standard 

regression and is suitable for the study of changes in the frequency of environmental 

extremes over time.  

Let       ),          , be pairs of random variables where    is a time series of 

annual or seasonal temperature or precipitation and    is a covariate of   . The linear 

conditional quantile function has the following form: 

       )      )      )       )                                                     (4.1)                                                                            

where     ) and     ) are the intercept and slope coefficients of the  th quantile 

regression line.      ) is the error distribution function where  [     )]   . The  th 
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quantile regression,      , can be defined as any solution to the following 

minimization function: 

  ̂   )              ) {∑  |         )|            )  ∑                )

 )|         )|}                                                                                     (4.2)                          

More information about the quantile regression technique can be found in Buchinsky 

(1998), Cade and Noon (2003), Yu et al. (2003), Koenker (2005), and Hao and Naiman 

(2007). A few studies have used this technique for climate modeling and climate change 

impact assessment (Table 4.1). 

The “quantreg” package add-on to the R language (http://www.r-project.org/) can be 

used for quantile regression analysis. Other packages for quantile regression include 

Blossom statistical package, Stata and Shazam. In this study, the quantreg package 

combined with Matlab coding has been used for quantile regression modeling. 

 

4.3 Study Area and Data 

The meteorological stations selected for the study are listed in Table 4.2 and their 

locations are shown in Figure 4.1. The stations cover the southern part of the Canadian 

Prairies, as well as Churchill in northern Manitoba.  

Only stations with 45 years of good records covering the period 1945-1990 were used 

in this study. Data were extracted from the homogenized Canadian monthly temperature 

and precipitation archive of weather data. The data have been adjusted to account for 

inhomogenities caused by station alterations including changes in site exposure, location, 
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instrumentation, observer, observing program, or a combination of the above (Vincent, 

1998; Vincent and Gullett, 1999). 

 

4.4 Results 

In order to investigate the changes in climate extremes, the 5%- and the 95%-quantiles of 

annual and seasonal distributions have been estimated by quantile regression and 

compared with changes in the trend of mean levels. As mentioned above, the application 

of standard regression for modeling extreme events may lead to incorrect conclusions 

regarding percentiles in the conditional distributions. As illustrated in Figure 4.2, 

percentiles in the conditional distribution of temperature and precipitation extremes may 

be different from trends in the mean. For example, annual precipitation in Dauphin and 

autumn temperature in Estevan show no particular change in the mean over time, but 

there is evidence that the precipitation distribution is narrowing over time and there is a 

significant decreasing trend in temperature extremes as illustrated by the results of 

quantile regressions of the 5
th

 and 95
th

 percentiles.  

Figures 4.3 and 4.4 summarize the results of the estimated trends in the mean, the 5
th

 

and the 95
th

 percentiles of annual and winter distributions of temperature and 

precipitation. Figure 4.3 reveals a significantly increasing trend in annual mean 

temperatures over all the Prairies. For warm (95
th

 percentiles) and cold (5
th

 percentiles) 

temperatures, trends of similar magnitude can be seen in the central and eastern part of 

the Prairies. It is a different story for annual precipitation where no particular spatial 

pattern of change in mean and percentiles can be found. 
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In the winter season, there is a warming trend in the mean and the cold and warm 

temperature percentiles over all of the Prairies except for western Alberta. Most of the 

southern parts of the Prairies experienced a precipitation decrease, especially in low 

quantiles. Figure 4.4 shows that winters with high precipitation are becoming less 

frequent in Manitoba except for Churchill. 

 As a brief description of the results for other seasons, spring temperatures have 

similar trends as annual temperatures except over northern Manitoba where warm 

extremes are becoming colder. The temperature in the central Prairies has increased 

considerably in summer, while the central and eastern Prairies have experienced a 

significant negative trend in high precipitation quantiles. Interestingly, most of the 

stations show a negative trend in mean and extremes temperature in autumn, while there 

are no discernible trends in extreme precipitation.  

 

4.4.1 Summary of Results 

Of the 11 stations studied, 10 showed an increasing annual temperature trend for warm 

and cold quantiles. Table 4.3 shows where the most significant trends in annual and 

seasonal temperature have been observed. Most of these stations are from the central 

Prairies, demonstrating the high impact of climate change over this area. An average 

increase of 1.8 and 1.6 ˚C in annual warm and cold extremes as well as seasonal increases 

(e. g., 1.7˚C average increase in winter cold extremes and 1.0 ˚C average increase in 

spring warm extremes) for the prairie region. In the case of cold extremes (low quantiles), 

changes of different magnitudes have been observed. In the case of warm extremes, the 

central and eastern Prairies show a significant positive trend. Western Alberta shows a 
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different temperature trend than other parts of the Prairies which may be because of the 

influence of the Rocky Mountains. 

As seen in Table 4.4, more variable (positive and negative) trends are observed in 

precipitation changes which suggest that no general pattern of change in precipitation can 

be detected for the prairie region. Winter dry extremes show a decreasing trend in most of 

the stations (8 stations), and the eastern Prairies would expect less precipitation in winter 

wet extremes.  

 

4.5 Discussion and Conclusions 

This study has examined the complementary value of quantile regression analysis over 

standard regression models for modeling temperature and precipitation extremes. The 

results show that some of the extreme patterns might have gone undetected if a standard 

regression model had been used. Quantile regression on the other hand provides a more 

detailed picture of these patterns. We suggest that quantile regression analysis is a 

valuable tool in climate change studies. 

Bonsal et al. (2001) and Vincent and Mekis (2006) indicated that most of southern 

Canada show significant increasing trends in the lower and higher percentiles of the 

temperature distribution over the twentieth century. The results from the present study 

reach similar conclusions for the entire Prairie region. No consistent pattern of trends in 

precipitation extremes was found for the Prairie region, supporting the conclusions of 

Zhang et al. (2001) and Vincent and Mekis (2006) for all of Canada. 

Lawson (2003) investigated the extreme minimum winter temperatures at selected 

Prairie locations. He found a significant trend towards fewer occurrences of very cold 
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minimum daily temperature, particularly in the southern, central and western Prairies 

during the period 1914-94. Quantile regression estimates for winter cold temperatures 

reveal significant increasing trends for most of the northern and eastern Prairies as well as 

the central Prairies.     

Trends in extreme temperature and precipitation events were investigated over the 

Canadian Prairies. It was found that temperature has increased significantly over most of 

the Prairies. Many of the detected trends are expectedly to be associated with the global 

mean temperature increase.  

Our analysis did not demonstrate any significant patterns of trends in precipitation in 

the Prairie region. The difficulty of detecting trends in precipitation extremes is in some 

cases caused by the high variability of the extreme events and in other cases by the short 

records available for analysis. Further investigations on circulation patterns and the 

relationship between low frequency variability modes like El Niño-Southern Oscillation 

(ENSO) and the Arctic Oscillation (AO) may provide further information about changes 

in precipitation extremes over the Canadian Prairies.  
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Table 4.1. Quantile regression applications in climate modeling and climate change 

impact assessment 

Global temperature change over the last century Koenker and 

Schorfheide (1994) 

Estimation of flood quantiles in a changing climate Sankarasubramanian 

and Lall (2003) 

Forecasting probabilistic wind power Bremnes (2004) 

Modeling the effects of meteorological variables on Ozone 

concentration 

Baur et al. (2004) 

Changes in timing of autumn migration in North European 

songbird populations 

Tottrup et al. (2006) 

Statistical downscaling of extreme precipitation Friederichs and 

Hense (2007) 

Analysis of relationship between spring temperature and arrival 

dates of migratory breeding birds 

Wilson Jr. (2007) 

Climate change effects on relationships between forest fine and 

coarse woody debris carbon stocks 

Woodall and Liknes 

(2008) 

Tropical cyclones trend changes Elsner et al. (2008) 

Changes of extreme annual rainfall in Zimbabwe Mazvimavi (2008) 
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Table 4.2. Location and available data for utilized stations. 

Province Station Latitude 
Longitu

de 

Average 

Annual 

Temperature

(˚C)  

Average 

Annual 

Precipitation 

(mm)  

Alberta 

Beaverlodge 55.20 -119.40 1.77 518.1 

Calgary 51.12 -114.02 3.74 480.2 

Edson 53.58 -116.47 1.84 606.0 

Saskatchewan 

Estevan 49.07 -103.00 3.01 493.6 

Klintonel 49.68 -108.92 2.44 494.5 

Prince albert 53.22 -105.68 0.52 486.8 

Manitoba 

 

Churchill 58.73 -94.07 -7.23 553.6 

The Pas 53.97 -101.10 1.57 577.7 

Dauphin 51.15 -100.3 -0.41 534.0 

Winnipeg 49.90 -97.23 1.79 604.7 

Ontario 
Sioux 

Lookout 
50.12 -91.90 1.47 797.6 
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Table 4.3. Temperature changes (˚C) at stations with the most significant trends  

Period Station Mean 
Quantiles 

5% 95% 

Annual 

Dauphin 1.30 2.31 2.57 

Sioux Lookout 1.12 2.31 3.09 

Beaverlodge 1.44 -1.02 -2.83 

Estevan 1.70 2.57 2.44 

Winter 

Beaverlodge -2.96 -1.97 -3.30 

Calgary 2.35 1.84 5.12 

Estevan 2.60 2.09 5.89 

Prince Albert 2.80 3.57 5.40 

Spring 

Sioux Lookout 2.47 3.92 2.52 

Beaverlodge -2.20 -2.41 -1.41 

Estevan 3.25 3.19 2.30 

Prince Albert 2.95 4.28 0.77 

Summer 

Winnipeg 0.72 0.13 1.67 

Edson 1.06 1.58 0.32 

Estevan 1.17 1.00 2.63 

Klintonel 1.27 1.59 1.85 

Autumn 

Churchill -0.81 -1.01 -1.45 

Buffalo Narrows -0.53 -1.32 -1.29 

Estevan -0.27 -2.25 -0.58 

Klintonel -0.19 -2.08 -2.12 
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Table 4.4. Precipitation changes (%) at stations with the most significant trends. 

Period Station Mean 
Quantiles 

5% 95% 

Annual 

Dauphin -2.64 76.34 -23.18 

Edson 20.31 11.24 20.72 

Estevan -6.50 34.24 25.19 

Klintonel 0.30 -35.67 -8.49 

Winter 

Churchill 54.05 65.03 39.88 

The Pas 15.83 150.06 -32.25 

Dauphin -26.89 -49.66 -44.13 

Klintonel 45.53 -21.25 115.94 

Spring 

Churchill 27.54 16.25 -35.81 

Sioux Lookout -5.18 -19.85 42.34 

Beaverlodge -9.91 -64.30 63.21 

Calgary -7.58 -24.22 -29.37 

Summer 

Churchill 9.57 81.86 -10.96 

Beaverlodge 23.62 101.72 -23.95 

Estevan -20.06 359.86 3.75 

Prince Albert 16.74 47.85 -11.96 

Autumn 

Dauphin 26.30 70.77 54.18 

Calgary 16.97 50.00 40.18 

Estevan -8.87 -60.38 -30.84 

Klintonel -43.72 -69.91 -59.53 
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Figure 4.1. Study Area and stations used in the study 
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Figure 4.2. Examples of quantile regressions (5
th

 and 95
th

 percentiles) and 

standard linear mean regression trends for a) Estevan autumn temperature and 

b) Dauphin annual precipitation.  
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Figure 4.3. Trends in annual mean and extreme temperatures (˚C) and 

precipitations (%). The numbers represent the changes in temperature and 

precipitation from 1945 to 1990 based on the slope of the regression line.  
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Figure 4.4. Trends in winter mean and extreme temperatures (˚C) and 

precipitations (%). The numbers represents the changes in temperature and 

precipitation from 1945 to 1990 based on the slope of the regression line.  
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Chapter 5 

Article 3: Statistical Downscaling of Precipitation using 

Quantile Regression 

 

Abstract 

Statistical downscaling is based on establishing an empirical relationship between 

predictands (a set of regional climate variables) and predictors (a set of large-scale 

atmospheric variables). The well-known challenge of predictor selection, variance 

underestimation, and poor representation of extreme events by statistical downscaling 

methods motivated us to investigate the use of quantile regression to better predict 

extreme precipitation. Quantile regression extends traditional regression models to the 

estimation of conditional quantile functions. A Bayesian method adapted to quantile 

regression was used to select predictor variables. The advantage of this method is that 

different predictors can be selected for different parts of the conditional distribution. 

Fifteen potential predictor variables were used to downscale precipitation amounts at five 
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stations in the Canadian Prairie region. A novel method, involving the fitting of different 

distributions to predicted regression quantiles, has been introduced to downscale 

precipitation. The results show the general superiority of the quantile regression statistical 

downscaling model over the standard regression model, not only in the tails but over the 

entire distribution for the summer precipitation, while in the case study there was little 

difference between the two models in the case of winter precipitation. 

Keywords: Statistical downscaling, Precipitation, Quantile regression, Variable selection 

 

5.1 Introduction 

It is well known that there is a general mismatch between the spatial resolution of output 

from global climate models (GCM) and the scale of interest in regional assessments of 

climate change impacts. Various downscaling techniques have been developed in an 

attempt to bridge this resolution gap. Downscaling methods are usually classified as 

either dynamical or statistical. Dynamical downscaling involves the use of high-

resolution, limited-area climate models within the domain of interest, whereas statistical 

downscaling use relatively simple statistical models to represent the link between 

atmospheric circulation variables, presumably well simulated by the GCMs, and local 

weather variables, such as precipitation and temperature. In a very simplistic form, a 

statistical downscaling model can be written as )(XfY   where Y is the predictand such 

as precipitation and X is a vector of atmospheric variables such as geopotential height, 

wind speed, humidity variables, etc. The functional relationship is established using 

observed time series. The two main challenges in statistical downscaling are the 

determination of the functional relationship and the identification of the predictor 
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variables than convey the most relevant information about the predictand and the climate 

change signal.  

A range of techniques have been proposed to model the relationship between a 

predictand and a set of predictor variables. These methods include the classical multiple 

regression models (e.g. Jeong et al., 2012), techniques using principal components of 

pressure fields or geopotential heights (e.g. Li and Smith, 2009), and more sophisticated 

methods such as artificial neural networks (e.g. Tolika et al., 2008), canonical correlation 

analysis (e.g. Palatella et al., 2010), and singular value decomposition (e.g. Chen et al., 

2011). 

Fowler et al. (2007) discussed several key assumptions inherent in statistical 

downscaling techniques. Predictor variables must be physically sensible, realistically 

modeled by the GCM, and able to fully reflect the climate change signal. For example, 

the use of only circulation-based predictors may not be a good idea, because the change 

in atmospheric humidity in a warmer climate might be disregarded. Fowler et al. (2007) 

also emphasized the inherent assumption that the predictor–predictand relationship 

remains valid in the future. Wilby (1998) attributed the potential non-stationarity of 

predictor–predictand relationships in statistical downscaling models to three factors: an 

inadequate sampling or calibration period, an incomplete set of predictor variables that 

disregards low-frequency climate behaviour, and, most seriously, temporal change in 

climate system structures. For example, there is a risk that an important predictor of 

climate change may appear insignificant when developing a downscaling model under 

present climate. However, failure to include such a variable may seriously limit the 

ability to correctly project climate change (Buishand et al., 2004). Although predictor 
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selection is an important component in the development of a statistical downscaling 

model, it is often approached in a rather superficial way.  

Conventional regression models have been used in numerous statistical downscaling 

studies and are the cornerstone of software packages such as SDSM (Wilby et al., 2002) 

and ADS (Hessami et al., 2008). Despite their popularity, these conditional mean models 

have some limitations. When interest is in the quantiles of the conditional distribution 

rather than the mean, standard regression models may fail to provide the desired 

information because the assumption of homogenous variance may not be justified. Also, 

it is common practice to assume that regression residuals are normally distributed but this 

may not be a valid assumption, even after application of some normalizing 

transformation. The non-normality of residuals may not be a serious issue if the only 

interest is in the mean of the conditional distribution. However, when interest is in the 

tails of the conditional distribution, the distribution of residuals becomes important. We 

also note that conventional regression models can be sensitive to outliers. While methods 

are available to deal with outliers, it is an issue that is often not properly dealt with in 

practice. 

In this paper, we address the problem of downscaling daily precipitation from global 

climate model output using regression models. One common characteristic of predictor–

predictand relationships is unequal variation of precipitation in relation to large-scale 

forcing. To satisfy the assumption of homogeneous variance of regression residuals, it is 

common practice to transform observed precipitation first, for example by taking the 

third or fourth root, before estimating the regression model. An alternative point of view 
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is that unequal variation in precipitation reflects important processes that should be 

modeled explicitly. 

Koenker and Bassett (1978) introduced quantile regression for estimating the 

functional relationship between predictor variables and any quantile in the response 

distribution. Quantile regression has received considerable attention in the statistical 

literature, but less so in the water resources literature. Quantile regression overcomes 

some of the limitations of standard regression models mentioned above and provides a 

more complete picture of the relationships between variables that may be missed by other 

regression methods.  

On the issue of variable selection, we note that the classical approach of stepwise 

regression does not always produce satisfactory results. For example, the choice of sub-

set variables can in some cases be quite sensitive to small changes in the data, leading to 

instability in the variable selection (Breiman, 1996). In recent years, penalized likelihood 

methods for variable selection have attracted much interest. Techniques such as the Lasso 

(Tibshirani, 1996), the SCAD (Smoothly Clipped Absolute Deviation; Fan and Li, 2001), 

and the LARS (Least Angle Regression; Efron et al., 2004) have been proposed as 

alternatives to classical stepwise regression. In this paper, we employ a technique called 

Bayesian stochastic search variable selection (SSVS) (George and McCulloch, 1993). 

The SSVS method has been adapted to variable selection in quantile regression by Reed 

et al. (2009), Li et al. (2010), and Alhamzavi and Yu (2012). In this study, the variable 

selection model developed by Reed et al. (2009), called SSVSquantreg, is used and will 

be briefly described later. 



84 

 

Bremnes (2004), Friederichs and Hense (2007), Friederichs (2010), and Cannon 

(2011) applied quantile regression to downscale precipitation, but their focus was on the 

capability of quantile regression for forecasting, and not so much the analysis of extreme 

precipitation and relationships with large-scale variables. In addition to developing a 

novel statistical downscaling model based on quantile regression, we will specifically 

focus on the analysis of extreme precipitation. In the above-mentioned studies, sets of 1 

to 3 similar predictors were used, but here, a Bayesian method will be applied to select 

the predictors for each station and season. In our case study, different predictor variables 

are selected to downscale daily precipitation amounts at five stations in the Canadian 

Prairie provinces for the winter and summer seasons. A novel method is then introduced 

to downscale precipitation by fitting probability distributions to predicted regression 

quantiles. The performance of this new procedure, with special emphasis on extreme 

precipitation, is evaluated by comparison with traditional regression-based downscaling. 

 

5.2 Methodology 

5.2.1 Quantile regression 

In this section, we provide a brief description of linear quantile regression, the main tool 

used in the remainder of the paper for downscaling precipitation. Quantile regression was 

proposed by Koenker and Bassett (1978). In quantile regression, a regression model is 

developed for selected quantiles of the conditional distribution of the response variable. 

Contrary to conventional linear regression, quantile regression does not assume 

homogenous residual variance and does not make any assumptions about the error 

distribution. In this sense, it can be considered a more flexible approach than linear 
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regression. In cases where all assumptions of the conventional linear regression model 

are satisfied, quantile regression should in principle provide answers similar to the 

traditional model.  

While standard regression seeks a model for the conditional expectation of the 

response variable, quantile regression is concerned with the determination of models for 

user-selected quantiles in the conditional distribution of the response y. The linear 

conditional quantile function employed in this paper has the form 

p

T

p yQ βxx )|(
 

           (5.1) 

where x is a vector of explanatory variables and pβ  is a vector of parameters related to 

the pth quantile regression. The parameters may include an intercept for the regression 

model in which case the first element of x is a 1. In linear quantile regression, each 

quantile of the conditional distribution is represented by an individual hyper-plane. For a 

given set of observations niyii ,,1),,( x , an estimate of the parameters pβ  is given 

by: 
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In other words, the absolute value of the difference between an observation iy  and the 

corresponding p'th quantile )(ˆ
ip xy  is weighted by )1( p  if the observation is below the 

quantile plane and by p if the observation is above the plane. As a special case, one sees 
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that the median regression model is obtained by minimizing the sum of absolute errors. 

This can be compared with the mean regression model which involves the minimization 

of the sum of squared errors. One of the characteristics of the fitted quantile plane is that 

a fraction p of observation points will lie below the surface, just as one would expect. 

Further details about quantile regression models can be found in Cade and Noon (2003), 

Koenker (2005), and Hao and Naiman (2007). In this study, we have employed the R-

package quantreg for model estimation. 

Table 5.1 lists some recent studies that have employed quantile regression for 

environmental modeling and climate change impact assessment. 

 

5.2.2 Selection of predictor variables in quantile regression  

In regression analyses, one typically starts out with a large number of potential predictor 

variables and part of the modeling task involves identifying the best sub-set of predictors. 

Models with an excessive number of predictors tend to have poor prediction accuracy and 

are difficult to interpret. In traditional regression analysis, stepwise regression is often 

used although several studies have pointed to a range of shortcomings of this procedure 

(Harrell, 2001). In recent years, much interest in the statistical literature has focussed on 

shrinkage methods such as Ridge regression and the Lasso method, see for example 

Hastie et al. (2001). Most of the methods applicable for traditional linear models cannot 

be directly applied to quantile regression. In this study, we employ a Bayesian method for 

variable selection. The general principles of the method were developed for traditional 

linear models. Madigan et al. (1996) showed that the predictive accuracy of models 
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selected using Bayesian Model Averaging (BMA) is always higher than any single 

model. The BMA method has been adapted to quantile regression by Reed (2009).  

Here we provide only a brief outline of the BMA method for variable selection in 

quantile regression models. A more detailed description can be found in Reed (2009) and 

the method is implemented in the R-package SSVSquantreg, an abbreviation of 

"Stochastic Search Variable Selection for Quantile Regression". The Bayesian analysis 

implemented in SSVSquantreg aims at producing posterior probabilities for the various 

model candidates where "model candidate" refers to a particular subset of predictor 

variables. If there are k potential predictor variables, then there are k2  possible model 

candidates. The model candidates are identified by the binary vector variable 

),,( 1 k   where 1i  if the coefficient of predictor i is large and is equal to zero if 

the coefficient is small. The model parameters are therefore ),( β . Starting with a prior 

distribution ),(  β  and letting ),,,( 21 nyyy y  denote the observations, our goal is to 

determine the posterior distribution )|,( yβ  . We are specifically interested in the 

model probabilities )|( y  and β  must therefore be eliminated by marginalization. 

There are two main challenges in the Bayesian analysis: (1) Analytical solutions are 

generally not available so numerical methods must be applied; and (2) an accurate 

estimate of the posterior probability of the k2  model candidates can be an overwhelming 

task even for moderate values of k. Both of these obstacles can be overcome using the 

Gibbs sampler, a well-known Markov Chain Monte Carlo method. 

The prior distribution of ),( β  can be decomposed as )()|(),(  ββ . For )(  

SSVSquantreg assigns a Bernoulli prior to each of the indicator variables j  
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independently, with prior probability of inclusion 0 . A hierarchical approach is used to 

specify 0  which is not given a specific value but is treated as an unknown parameter 

described by a Beta distribution, ),(~0 baB , where a and b are hyper-parameters. 

According to Reed (2009), treating 0  as an unknown parameter leads to a more flexible 

prior which allows more information to be extracted from the data about the model size. 

The prior distribution of the regression parameters β  is defined independently for 

each component as 

)1,0()-(1)|( 0 Cjjjj 
            (5.4) 

where the quantity 0  is a degenerate distribution with all probability mass at 0 and 

)1,0(C  is a Cauchy distribution with parameters 0 and 1. The above specification 

assumes that all predictors have been standardized to have mean value 0 and variance 1. 

The rationale for using the Cauchy distribution is outlined in Reed (2009). 

Bayes' theorem defines the posterior distribution as  
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           (5.5) 

where ),|( βyf  is the density function of the observations given the model and the 

model parameters, or equivalently the likelihood function when viewed as a function of 

),( β  for given y. A complication in the use of Bayesian analysis in quantile regression is 

that the distribution of regression errors is not specified and the likelihood function for 

the parameters is therefore undefined. Yu and Moyeed (2001) proposed the use of a 

pseudo-likelihood function of the form: 
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where )(, ix  is the sub-set of predictors for model   and )(, pβ  are the corresponding 

regression coefficients. The above likelihood function is equivalent to assuming that the 

residuals from the quantile regression have an asymmetric Laplace distribution. This is 

not an unreasonable approximation and it is used here primarily for implementing the 

variable selection procedure. The final estimation does not make assumptions about the 

distribution of residuals. It can be shown that the maximization of (5.6) with respect to 

the model parameters is equivalent to the solution of (5.2).  

The Gibbs sampler can be set up to simulate the posterior distribution. This involves 

simulating each of the model parameters independently, conditional on previously 

simulated values of all other parameters. The limiting distribution of this Markov chain 

converges to the posterior distribution. In particular, the sequence of model candidates 

that are generated in the Gibbs sampler can be used to estimate the posterior model 

probabilities. Obtaining an accurate estimate of all k2  models may require a very large 

number of iterations of the Gibbs sampler. However, the most likely models will occur 

frequently and quickly, and since there is limited interest in "unlikely" models, a good 

estimate of the most relevant probabilities can typically be obtained with a moderate 

number of iterations. The MC
3 

Bayesian stochastic search algorithm is used in the 

SSVSquantreg model. More detailed information about the MC
3 

algorithm can be found 

in Fernandez et al (2001).  

The BMA provides posterior inclusion probabilities of candidate regressors which are 

quantities of practical interest for variable selection. The sum of the posterior model 
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probabilities of all models containing the candidate regressor j ( )|0Pr(  j ) is defined 

as posterior inclusion probabilities. Barbieri and Berger (2004) proposed to retain 

variables with posterior inclusion probability greater or equal to 1/2. They showed that 

their model often outperforms the highest posterior probability model. Hence, the median 

probability model is used in this study for variable selection. 

 

5.2.3 Downscaling precipitation occurrence 

Precipitation is an intermittent process with a significant number of dry days. To 

downscale precipitation from GCMs, we follow a widely-used two-step procedure. In the 

first step, the occurrence of precipitation is simulated. If a day is determined to be wet, a 

second step is used to simulate the precipitation amount. The focus of our study is on 

precipitation amounts, but we will here briefly discuss the issue of downscaling 

precipitation occurrence.  

Following Wilby et al. (1999), we simulate the precipitation occurrence using a linear 

regression model of the form  

niniiiiii PPOOE   ...][ 11110   (5.7) 

where iO  is the precipitation occurrence on day i, coded as 0 if the day is dry and 1 if it is 

wet, and P are predictors chosen using stepwise regression model. The above model also 

includes 1iO , the occurrence variable on the previous day, as predictor variable. This 

improves the ability of the model to simulate realistic sequences of wet and dry spells and 

embeds some aspects of a Markov chain structure in the model. By using 0 and 1 for the 

coding of dry and wet days, it is readily seen that ][ iOE  represents the probability of day 
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i being wet. The downscaled occurrence is therefore random and can be simulated using a 

random number generator.  

It should be noted that although we interpret ][ iOE  as a probability, nothing 

technically prevents this quantity from falling outside the range of 0 to 1 for a given 

combination of predictor variables. However, this does not preclude us from proceeding 

with the downscaling. A negative value simply implies a definite dry day while a value 

greater than 1 implies a definite wet day.  

 

5.2.4 Statistical downscaling of daily precipitation amounts using quantile 

regression 

There are two key issues that we wish to address using quantile regression. First, the best 

description of the conditional distribution of daily precipitation may require the use of 

different subsets of predictor variables for different quantiles; and second, the conditional 

distribution may take different forms (in addition to the mean level) for different 

predictor conditions. Let ),,,( 21 kxxx x  denote the set of potential daily predictor 

variables. Our goal is to derive, for each wet day, the most accurate precipitation 

distribution, conditioned on the set of predictor variables for the day. This conditional 

distribution can then be used to determine the expected value of precipitation or to 

sample a random value to represent the downscaled precipitation for the location. 

Random sampling from the conditional distribution is common practice, used to ensure 

that downscaled precipitation time series have realistic variability. However, compared to 

more conventional approaches to downscaling, we do not limit the error distribution to be 

Gaussian. To obtain a detailed representation of the conditional distribution, we perform 
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quantile regression for a range of quantiles, for example corresponding to non-

exceedance probabilities 0.01 to 0.99 in steps of 0.01. A regression model is developed 

for each of these quantiles and the different models will typically involve different 

subsets of predictor variables. To further illustrate this idea, Figure 5.1 shows the results 

obtained for a particular day, using data described later in the paper. Each probability 

level (0.01, 0.02,…,0.99) produces a quantile estimate from the corresponding regression 

model and these values are shown as blue circles in Figure 5.1. Clearly, the estimated 

points on the cumulative distribution function (CDF) curve do not constitute a monotone 

sequence as required of a CDF, but this is merely a result of sampling variability and 

model approximation. The general shape of the CDF is clearly discerned and can be 

approximated by one of the common probability distributions.  

Figure 5.1 shows the fit of a Gamma distribution to the quantile points (dotted line). 

Also shown is the conditional distribution based on the traditional regression model. For 

this regression model, precipitation was first transformed by taking the fourth root and 

the regression model developed for the transformed precipitation, assuming a normal 

distribution of residuals. The curve in Figure 5.1 corresponds to the back-transformed 

quantiles (solid line). There are some differences in the two curves, suggesting that one 

may get different downscaling results depending on which model is used. 

 

5.3 Data and analysis 

Daily precipitation data from five weather stations in the central part of Canada were 

used in our study. The locations of the stations are shown in Figure 5.2 and some 

additional details are given in Table 5.2. For the application of quantile regression, we 
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considered two seasons, summer and winter, defined respectively as June-July-August 

and December-January-February. Predictor variables were obtained from the NCEP-

NCAR Global Reanalysis 1 (GR1). The data used here covers the period 1961 to 1990. 

The 30-year record was split into two sub-samples: 1961-1980 was used for model 

calibration, and 1981-1990 for model validation. A total of 15 candidate predictor 

variables were selected and extracted for the grids covering each station. The selected 

GR1 predictors are listed in Table 5.3. 

 

5.4 Results 

5.4.1 Selection of predictor variables 

The variable selection method described in Section 5.2.2 was used to identify the best 

sub-set of predictor variables for each quantile level (0.01, 0.02,…,0.99). The 

computations were done using the R-package SSVSquantreg 

(http://mcmcpack.wustl.edu/). As examples of results, Tables 5.4 and 5.5 report the 

posterior inclusion probabilities resulting from the Bayesian analysis of the quantile 

regression at each decile, as well as the 98
th

 percentile for Churchill summer and winter 

precipitation. The variables with posterior inclusion probability greater than 0.5 are 

retained and highlighted. The tables show that some of the variables are important across 

a range of quantiles (e.g. RHUM500 for Churchill summer precipitation) and others are 

important only for certain parts of the conditional distribution (e.g. VWIND500 which is 

significant only for Churchill summer high precipitation). This finding suggests that 

downscaling precipitation with a fixed set of predictors for the entire conditional 

http://mcmcpack.wustl.edu/
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distribution of precipitation, as done in traditional statistical downscaling models, may 

not make optimal use of available information.  

A comparison of Tables 5.6 and 5.7 shows that the prediction of summer precipitation 

is more complex than the prediction of winter precipitation in the sense that more 

variables are required for summer precipitation. This is particularly apparent in the 

extreme right tail (98
th

 quantile) of the precipitation distributions where for example 13 

predictors for Winnipeg are retained to explain summer precipitation compared with 4 

predictors for winter precipitation. Summer precipitation is predominantly convective and 

more complex in nature whereas most winter precipitation is the result of synoptic-scale 

systems. A comparison of selected predictors for the 50
th

 and 98
th

 percentiles for 

Winnipeg summer precipitation shows that upper air temperature is an important factor 

for extreme precipitation. Rainfall from thunderstorms is a major contributor to summer 

precipitation in Winnipeg. Thunderstorms need unstable air, characterized by a 

temperature profile with warm air near the ground and cold air aloft. As seen in Figure 

5.3, the relationships between precipitation and AIRTEMP500 for summer and winter are 

similar in nature, but the slopes are much higher for summer compared to winter for 

Winnipeg extreme precipitation (b1 – values of 2.60 and 0.65 for summer and winter, 

respectively, in the 98
th

 quantile regression). For non-extreme precipitation events, the 

upper air temperature is less important - an observation that is in agreement with the 

conclusions of Harnack et al. (1999) and Hellestrom (2005). 

Another illustration of the value of quantile regression for analyzing the predictor-

predictand relationships can be seen in Figure 5.4. Here, the relationships of precipitation 

amounts and 500 mb relative humidity in Sioux Lookout and Cold Lake are compared. 



95 

 

The reason why there is a stronger relationship between extreme precipitation (98
th

 

quantile regression) and RHUM500 in Sioux Lookout than in Cold Lake is likely because 

Sioux Lookout is the recipient of southerly flows of warm moist air from the Central 

United States and the Gulf of Mexico, while in Cold Lake, the Rocky Mountains has a 

pronounced effect on the climate, and the air masses that do cross the Rockies lose much 

of their moisture (Vickers et al., 2000).   

The standard regression predictors were selected using stepwise regression as 

implemented in the SDSM model (Wilby et al., 2002) and the ASD model (Hessami et 

al., 2008). 

  

5.4.2 Downscaling precipitation occurrence 

The first step in the downscaling process is to simulate the days on which precipitation 

occurs. The predictors required in Equation (5.7) were chosen using stepwise regression. 

Generally, due to the large number of data points, stepwise regression tends to include 

variables that are only very vaguely related to the predictand and it may be appropriate to 

use the R-square value or the error variance to terminate the variable selection.  

Equation (5.7) provides unbiased estimates of the frequency of wet and dry days, but 

in general the prediction skill is not very good. This is a well-known problem in statistical 

downscaling. The quality of the downscaling of precipitation occurrence may be 

measured by one of several skill scores proposed for 2-class categorical forecasts. Table 

5.8 shows the Heidke Skill Score (HSS) for the five sites and two seasons. The HSS is 

defined as  



96 

 

E

EC

P

PP
HSS






1
 

 (5.8) 

where CP  is the observed probability of correct forecasts, i.e. the frequency of cases 

where the downscaled occurrence matches the observed occurrence, and EP  is a 

reference value, equal to the probability of a correct guess if the downscaled values are 

completely random. A perfect downscaling model will have a HSS value of 1 and a 

completely random model will have a value of 0. Table 5.8 shows that the HSS for the 

various sites and seasons are in the range of 0.15 to 0.25 which is rather low but still 

considerably better than random sampling. 

It may be of interest to examine more complex properties of the downscaled 

occurrence sequences. Figure 5.5 shows observed and simulated wet and dry spell lengths 

for the Winnipeg location. These are properties of practical interest in hydrology. The 

plots indicate that the downscaling models tend to shift the probability distributions of 

wet and dry spell lengths towards shorter durations for both summer and winter seasons. 

The results are similar to those obtained by Wilby et al. (2002) using SDSM.  

 

5.4.3 Downscaling of daily precipitation amounts 

For each of the five sites and two seasons, daily precipitation on wet days was generated 

using the procedure described in Section 5.2.4. More specifically, on any given day, 

quantile regression was used to produce quantiles of the conditional distribution 

corresponding to different p-values. Initially, the Gamma, the Generalized Extreme Value 

(GEV), the Generalized Pareto, and the Lognormal distributions were considered 

candidates for representing the quantiles. Several options can be considered for fitting the 
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distributions. If one considers, as we did, p-values from 0.01 to 0.99 in steps of 0.01, then 

it is not unreasonable to view the quantiles as a sample of pseudo-random variables from 

the conditional distribution, and conventional methods such as maximum likelihood or 

the method of moments can be used to estimate the distribution parameters. We used the 

method of maximum likelihood. If one calculates only a few quantiles that are not 

equally spaced in probability space, then it may be more appropriate to use some curve-

fitting technique.  

Although in principle one could conduct a goodness-of-fit test to determine which 

distribution type best fits the set of quantiles on a given day, we simplified the procedure 

by using a single distribution type for every day and every site. In a set of preliminary 

runs, the four candidate distributions were therefore applied consistently to determine 

which distribution overall provides the best result. Figure 5.6 shows the downscaling 

results for the summer season in Winnipeg in the form of quantile-quantile (Q-Q) plots. 

The Gamma distribution provides excellent results while the other three distributions 

produce some unrealistically large precipitation values. For example, the GEV 

distribution is clearly not suitable. This fact can be understood when recalling that no 

transformation of precipitation was done, so the conditional distribution tends to be 

highly skewed with a lower bound at zero. The GEV simply cannot accommodate this 

shape whereas the Gamma, which has a lower bound at zero, can. The log-normal and 

Generalized Pareto distributions do better than the GEV, but still produces some 

unreasonable values of large precipitation. Based on the above evaluation, the Gamma 

distribution was retained for the further use.  
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To assess the performance of the proposed QR model, we compare it to traditional 

downscaling based on multiple regression. One could compare the two models using 

scatter plots of observed versus downscaled values, but because there is a significant 

random component in both models, it can be difficult to appreciate differences in model 

performance using scatter plots. Therefore model performance is evaluated on the basis 

of Q-Q-plots which better reveals differences, especially in the right tail of precipitation 

distributions. The Q-Q plots of quantile regression and standard regression for the five 

stations in summer and winter are compared in Figures 5.7 and 5.8, respectively, for the 

calibration period.  

For the summer season, there appears to be an advantage of quantile regression for 

some of the sites. In particular, the precipitation distributions at Winnipeg and Churchill 

appear to be better simulated by the QR downscaling model than by the traditional 

model. This is generally true not only for extreme right tail of the distribution but also for 

the central part of the distribution. For winter precipitation, there appears to be no 

significant difference between the two downscaling approaches (Figure 5.8). This may be 

because winter precipitation tend to be less extreme and easier to model with a 

conventional regression model. The conditional distribution of summer precipitation on 

the other hand may be heavily skewed and heavy-tailed. For example, for the Cold Lake 

station, the maximum value of winter precipitation is 13.5 mm and the coefficient of 

skewness is 2.4, while the maximum is 93.7 mm and the skewness is 3.8 for summer 

precipitation amounts. 

The results for the validation period follow the same trend as calibration period 

(Figure 5.9 and Figure 5.10). The superiority of the QR statistical downscaling model for 
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summer and similar results of quantile and standard regression models for winter (Figure 

5.10) can be seen in the Q-Q plots comparisons. 

To further compare the two modeling approaches, the mean value, standard deviation, 

and three STARDEX indices of extreme precipitation are listed in Table 5.9. The 

STARDEX indices (Goodess, 2003) are the 90
th

 percentile of rain day amounts (pq90), 

the percentage of total rainfall from events greater than the long-term 90
th

 percentile 

(pfl90), and the percentage of the of the number of days with more than 20 mm for 

summer (psh20) and more than 5 mm for winter (psh5). The results in Table 5.9 

corroborate the conclusions from the Q-Q plots that the QR model performs better than 

the standard model in summer for most of the cases, especially in terms of standard 

deviation, and the pq90, pfl90, and psh20 indices. For winter precipitation, no particular 

method stands out as superior, although quantile regression outperforms the standard 

regression at more stations and for more indices.  

The bar plot in Figure 5.11 illustrates the advantage of the QR downscaling model in 

summer for simulating the percentage of days with more than 20 mm of precipitation. 

There is no significant difference between standard and quantile regression performance 

for simulating the percentage of days with more than 5 mm in winter.  

Comparison of the inverse cumulative distribution function of the two model 

simulations at Prince Albert for summer (Figure 5.12 left) and for winter (Figure 5.12 

right) further highlights the advantage of the OR downscaling model for summer, 

especially in the extremes. 
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5.4 Discussion and conclusions 

Bremnes (2004) argued that a flexible predictor selection model would possibly improve 

forecasts from a precipitation downscaling model. In this study, we have taken advantage 

of some recent developments in quantile regression and have employed a flexible 

predictor selection model called SSVSquantreg developed by Reed et al. (2009). Using a 

Bayesian framework, this model provides a basis for selecting different predictors for 

different quantiles, resulting in what we believe is a more flexible and more accurate 

description of the conditional distribution. One of the issues of regression-based 

statistical downscaling models is the potential for over-fitting (Wetterhall et al., 2007; Liu 

et al., 2011). Traditional models like SDSM are susceptible to this problem, and typically 

one should not use more than say 5 or 6 predictors to avoid over-fitting. The developed 

QR statistical downscaling model in this study has the advantage that different numbers 

of predictors can be used for different part of the conditional distribution.  

In addition to its general downscaling application, quantile regression can provide 

valuable information for analyzing the relationships between extreme precipitation and 

atmospheric variables, for example by highlighting the different processes that govern 

summer and winter precipitation.  

In our comparison study, the proposed QR model showed better performance for 

summer precipitation than the standard regression model. However, the two models 

produced fairly similar results for winter precipitation. It is not surprising that there is 

more difference in the summer where precipitation processes are far more complex and 

the distribution of daily precipitation is highly skewed and heavy-tailed.  
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As noted by Timofeev and Sterin (2010), quantile regression provides a more detailed 

understanding of processes in the climate system, such as surface and tropospheric 

warming, stratospheric cooling, changes in climate variability and extreme 

characteristics. Baur et al. (2004) argued that quantile regression has the advantage of 

easy implementation and transparency of results, which is in contrast to black box models 

such as neural networks where the functional relationship between predictor variables 

and the response distribution is less clear. The model developed in this study has this 

advantage that it requires no strong assumptions and it can be easily applied to other 

variables such as temperature and wind speed.  
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Table 5.1. Quantile regression applications in environmental modeling and climate 

change impact assessment. 

Global temperature change over the last century 
Koenker and 

Schorfheide (1994) 

Effects of meteorological variables on Ozone concentration Baur et al. (2004) 

Tropical cyclones trend changes Elsner et al. (2008) 

Quantile trends in Baltic sea level Barbosa (2008) 

Changes over time of annual rainfall in Zimbabwe Mazvimavi (2010) 

Estimation of predictive hydrological uncertainty Weerts et al. (2010) 

Hydrometeorological analysis of the December 2008 flood in 

Rome 
Villarini et al. (2011) 

Analysis of Arctic and Antarctic sea ice extent 
Tareghian and 

Rasmussen (2012) 
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Table 5.2. Station information. 

Station Province 
Average Annual 

Precipitation (mm) 

Average Annual 

Temperature(˚C) 

Cold Lake Alberta 427 1.7 

Prince Albert Saskatchewan 487 0.5 

Winnipeg Manitoba 605 1.8 

Churchill Manitoba 554 -7.2 

Sioux Lookout Ontario 716 1.5 
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Table 5.3. Selected NCEP predictor variables 

Predictor variable Abbreviation Predictor variable Abbreviation 

500hPa Air 

temperature 
AIRTEMP500 

Specific humidity at 2-meter 

height 
SQ 

850hPa Air 

temperature 
AIRTEMP850 

E-component of wind at 10-

meter height 
SUWIND 

500hPa Geopotential 

height 
PHI500 

V-component of wind at 10-

meter height 
SVWIND 

850hPa Geopotential 

height 
PHI850 500hPa East component of wind UWIND500 

Mean sea level 

pressure 
PMSL 850hPa East component of wind UWIND850 

500hPa Relative 

Humidity 
RHUM500 

500hPa North component of 

wind 
VWIND500 

850hPa Relative 

Humidity 
RHUM850 

500hPa North component of 

wind 
VWIND850 

1000hPa Relative 

Humidity 
RHUM1000   
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Table 5.4. Posterior inclusion probabilities across quantiles for Churchill summer 

precipitation. 

Variable 10
th

 20
th

 30
th

 40
th

 50
th

 60
th

 70
th

 80
th

 90
th

 98
th

 

(Intercept) 0.97 0.44 0.39 0.36 0.34 0.49 0.55 0.54 0.61 0.57 

PHI500 0.00 0.00 0.01 0.08 0.10 0.13 0.16 0.31 0.10 0.21 

PHI850 0.00 0.00 0.00 0.61 0.94 0.96 0.99 1.00 0.99 0.96 

PMSL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.01 

RHUM500 0.00 0.59 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

RHUM850 0.01 0.01 0.04 0.02 0.02 0.27 0.28 0.22 0.02 0.17 

RHUM1000 0.01 0.00 0.01 0.01 0.01 0.03 0.06 0.24 0.95 1.00 

SQ 0.12 0.13 0.19 0.28 0.34 0.46 0.53 0.54 0.52 0.53 

UWIND500 0.00 0.00 0.00 0.01 0.01 0.04 0.05 0.08 0.38 0.19 

UWIND850 0.00 0.00 0.01 0.01 0.02 0.78 1.00 0.93 0.40 0.34 

VWIND500 0.00 0.04 0.48 0.34 0.11 0.99 1.00 1.00 1.00 1.00 

VWIND850 0.01 0.14 0.39 0.68 0.97 0.08 0.63 0.49 0.15 0.34 

SUWIND 0.00 0.02 0.01 0.03 0.08 0.97 1.00 1.00 0.99 0.61 

SVWIND 0.00 0.02 0.03 0.02 0.04 0.14 0.25 0.36 0.18 0.48 

AIRTEMP500 0.01 0.00 0.01 0.59 0.91 0.87 0.86 0.73 0.77 0.65 

AIRTEMP850 0.01 0.01 0.01 0.07 0.08 0.14 0.14 0.30 0.27 0.45 
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Table 5.5. Posterior inclusion probabilities across quantiles for Churchill winter 

precipitation. 

Variable 10
th

 20
th

 30
th

 40
th

 50
th

 60
th

 70
th

 80
th

 90
th

 98
th

 

(Intercept) 0.99 0.94 0.65 0.12 0.07 0.19 0.35 0.75 0.64 0.31 

PHI500 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.28 0.23 

PHI850 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.68 0.67 0.68 

PMSL 0.00 0.00 0.00 0.00 0.00 0.00 0.65 0.28 0.06 0.00 

RHUM500 0.00 0.01 0.26 0.81 0.67 0.76 1.00 1.00 1.00 0.99 

RHUM850 0.00 0.01 0.07 0.18 0.43 0.82 0.24 0.01 0.01 0.02 

RHUM1000 0.01 0.04 0.03 0.01 0.00 0.00 0.00 0.01 0.01 0.02 

SQ 0.12 0.12 0.12 0.13 0.13 0.21 0.24 0.29 0.29 0.30 

UWIND500 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.03 0.10 

UWIND850 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.08 

VWIND500 0.00 0.00 0.00 0.00 0.01 0.02 0.01 0.01 0.01 0.26 

VWIND850 0.00 0.00 0.00 0.01 0.04 0.07 0.01 0.01 0.05 0.08 

SUWIND 0.00 0.00 0.01 0.01 0.03 0.05 0.02 0.03 0.03 0.10 

SVWIND 0.00 0.00 0.00 0.01 0.01 0.01 0.03 0.03 0.08 0.21 

AIRTEMP500 0.00 0.00 0.01 0.00 0.00 0.07 0.75 0.98 0.99 0.32 

AIRTEMP850 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.03 0.04 0.66 
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Table 5.6. Selected predictor variables for standard regression (mean) and 25
th

, 50
th

, 75
th

, 

and 98
th

 quantiles for the five stations – Summer season.  

Station Quantile Selected Predictors 

Churchill 

Mean PMSL,RHUM500,RHUM1000,VWIND500,SUWIND  

25
th
 RHUM500, VWIND850 

50
th
 PHI850,RHUM500,VWIND850,AIRTEMP500 

75
th
 PHI850,RHUM500,UWIND850,VWIND500,VWIND850,SUWIND,AIRTEMP500 

98
th
 PHI850,RHUM500,RHUM1000,VWIND500,AIRTEMP500                   

Cold Lake 

Mean PMSL,RHUM500,SQ,UWIND850 

25
th
 RHUM500, SUWIND 

50
th
 PMSL,RHUM500,UWIND850,AIRTEMP500 

75
th
 

(Intercept),RHUM500,RHUM850,RHUM1000,SQ,VWIND500,SUWIND,SVWIN

D 

98th 

(Intercept),PHI850,SQ,UWIND500,UWIND850,VWIND500,SUWIND,AIRTEMP

500, 

AIRTEMP850                                                                

Prince 

Albert 

Mean PMSL,RHUM500,SQ,UWIND850,AIRTEMP850 

25
th
 (Intercept),UWIND850          

50
th
 PHI500,RHUM850,UWIND850,VWIND850,AIRTEMP850                      

75
th
 

(Intercept),PHI500,PMSL,RHUM500,RHUM1000,SQ,UWIND850,VWIND500,SU

WIND,AIRTEMP500,AIRTEMP850              

98
th
 

(Intercept),PHI850,SQ,UWIND850,VWIND500,SUWIND,SVWIND,AIRTEMP50

0                                   

Sioux 

Lookout 

Mean RHUM500,SQ,VWIND500,SUWIND 

25
th
 RHUM500,VWIND850                      

50
th
 (Intercept),RHUM500,SQ,VWIND500,SUWIND                                  

75
th
 

(Intercept),PHI850,RHUM500,SQ,VWIND850,SUWIND,SVWIND,AIRTEMP500, 

AIRTEMP850       

98
th
 RHUM500,SQ,VWIND850,SUWIND                            
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Winnipeg 

Mean RHUM500,RHUM1000,VWIND500,SUWIND,AIRTEMP500 

25
th
 RHUM1000,VWIND850          

50
th
 RHUM500,RHUM1000,VWIND500,SUWIND             

75
th
 

(Intercept),RHUM500,RHUM850,SQ,UWIND500,UWIND850,VWIND500,SUWI

ND, 

SVWIND                

98
th
 

(Intercept),PHI500,PHI850,RHUM500,RHUM1000,SQ,UWIND500,UWIND850, 

VWIND500,VWIND850,SUWIND,SVWIND,AIRTEMP500,AIRTEMP850               
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Table 5.7. Selected predictor variables for standard regression (mean) and 25
th

, 50
th

, 75
th

, 

and 98
th

 quantiles for five stations – Winter season.  

Station Quantile Selected Predictors 

Churchill 

Mean PMSL,RHUM500,UWIND500,SVWIND,AIRTEMP500 

25
th
 (Intercept),SQ       

50
th
 RHUM500,SUWIND               

75
th
 RHUM500,SUWIND 

98
th
 PHI850,RHUM500,AIRTEMP500                   

Cold Lake 

Mean RHUM500,SUWIND,SVWIND,AIRTEMP500 

25
th
 (Intercept),SQ             

50
th
 RHUM500,SUWIND                   

75
th
 RHUM500,SUWIND                             

98th RHUM500,SUWIND                                                                                     

Prince Albert 

Mean PHI500,PMSL,VWIND500,AIRTEMP500 

25
th
 (Intercept),RHUM500                  

50
th
 RHUM500,VWIND850                   

75
th
 (Intercept),RHUM500,VWIND500,AIRTEMP500                                

98
th
 (Intercept),VWIND500,AIRTEMP500            

Sioux 

Lookout 

Mean PHI850,SQ,VWIND850,SVWIND,AIRTEMP850 

25
th
 RHUM500,SUWIND                   

50
th
 RHUM500,SUWIND                   

75
th
 (Intercept),PHI850,RHUM500,SQ,VWIND850,SUWIND,AIRTEMP500 

98
th
 (Intercept),RHUM500,VWIND850,SVWIND,AIRTEMP500                            

Winnipeg 

Mean 

PHI500,RHUM500,UWIND500,VWIND500,SUWIND,SVWIND, 

AIRTEMP500 

25
th
 (Intercept),SUWIND          

50
th
 RHUM500,SUWIND                      
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75
th
 (Intercept),VWIND850,SVWIND,AIRTEMP500                  

98
th
 (Intercept),VWIND500,SUWIND,SVWIND,AIRTEMP500                
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Table 5.8. Heidke skill score (Equation 5.8) for downscaling precipitation occurrence. 

 Heidke Skill Score 

Station Summer Winter 

Churchill 0.15 0.22 

Cold Lake 0.24 0.20 

Prince Albert 0.17 0.20 

Sioux Lookout 0.23 0.23 

Winnipeg 0.25 0.19 
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Table 5.9. Comparison of standard regression (SR) and quantile regression (QR) with 

observed (OBS) precipitation statistics. The STARDEX indices Pq90, Pfl90, and Psh20 

are defined in the text. 

Indices Station 
Summer Winter 

Obs SR QR Obs SR QR 

Mean 

Churchill 4.26 4.18 4.65 1.41 1.32 1.23 

Cold Lake 5.82 5.14 6.63 1.85 1.79 1.65 

Prince Albert 5.75 5.46 6.03 1.54 1.50 1.50 

Sioux 

Lookout 
6.98 6.49 6.82 2.35 2.16 2.60 

Winnipeg 6.95 6.48 6.84 1.85 1.69 1.84 

Standard 

Deviation 

Churchill 5.83 4.90 5.87 1.81 1.14 1.19 

Cold Lake 8.05 6.61 8.17 2.14 1.84 1.51 

Prince Albert 8.09 6.59 7.69 1.85 1.40 1.50 

Sioux 

Lookout 
8.86 7.55 8.38 3.21 2.26 2.98 

Winnipeg 10.09 8.32 9.22 2.48 1.71 2.20 

Pq90 

Churchill 11.20 9.68 11.15 3.00 2.81 2.61 

Cold Lake 14.20 13.02 17.16 4.60 4.10 3.49 

Prince Albert 14.18 14.40 14.47 3.60 3.19 3.18 

Sioux 

Lookout 17.30 15.21 17.04 5.60 5.06 6.21 

Winnipeg 17.80 16.15 16.71 4.80 3.88 4.42 

Pfl90 

Churchill 42.51 36.86 39.64 39.11 29.50 31.79 

Cold Lake 42.05 41.26 39.69 35.14 34.21 30.54 

Prince Albert 44.72 38.90 39.82 36.06 31.03 33.00 
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Sioux 

Lookout 40.19 36.32 39.48 41.26 34.32 36.60 

Winnipeg 44.56 39.84 41.64 41.22 33.62 38.63 

Psh20 (S) 

Psh5 (W) 

Churchill 2.59 1.90 2.60 4.15 1.50 1.60 

Cold Lake 5.84 4.60 6.90 7.73 5.60 3.40 

Prince Albert 6.65 4.20 5.30 4.67 2.80 3.30 

Sioux 

Lookout 8.06 5.00 7.50 12.10 10.40 15.10 

Winnipeg 8.47 6.70 6.90 9.14 5.70 8.00 
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Figure 5.1. Quantile regression predictions along with a fitted Gamma 

distribution and standard regression predictions for Winnipeg summer 

precipitation.  
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Figure 5.2.  Location of stations used in the study.  
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Figure 5.3. Relationship between daily precipitation in Winnipeg and 

AIRTEMP500 for winter (left) and summer (right). The bottom plots show 

the slopes of the estimated regression lines. The quantile regression 

coefficients (black dots) are presented with their 95% confidence bounds 

(shaded in grey). The least-squares regression coefficients (solid red line) are 

also given with their 95% confidence bounds (dashed red lines). The vertical 

axis shows the slopes (%), and the horizontal axis shows the p -value of the 

quantile (1-99
th

). 
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Figure 5.4. Relationship of RHUM500 and daily summer precipitation in 

(left) Sioux Lookout and (right) Cold Lake. The bottom plots are the same as 

in Figure 5.3.  
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Figure 5.5. Frequency distribution of dry spell lengths (top) and wet spell 

lengths (bottom) of observed and simulated precipitation at the Winnipeg 

station for (left) summer and (right) winter seasons.  
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Figure 5.6. Q-Q plot comparison of different fitted distributions.  
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Figure 5.7. Q-Q plot comparison of simulated summer precipitation with the 

quantile regression and standard regression statistical downscaling models 

for the five stations in the calibration period.  
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Figure 5.8. Q-Q plot comparison of simulated winter precipitation with the 

quantile regression and standard regression statistical downscaling models 

for the five stations in the calibration period.  
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Figure 5.9. Q-Q plot comparison of simulated summer precipitation with the 

quantile regression and standard regression statistical downscaling models 

for the five stations in the val idation period. 
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Figure 5.10. Q-Q plot comparison of simulated winter precipitation with the 

quantile regression and standard regression statistical downscaling models 

for the five stations in the validation period.  
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Figure 5.11. Comparison of quantile regression and standard regression 

statistical downscaling models for simulating the percentage of summer days 

with more than 20 mm precipitation (left) and the percentage of winter days 

with more than 5 mm precipitation (right).  
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Figure 5.12. Inverse cumulative distribution function for the  standard 

regression (top) and the quantile regression (bottom) statistical downscaling 

models for the Prince Albert. Left panels are summer precipitation; right 

panels are winter precipitation.  
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Chapter 6 

Discussion and Conclusions 

In this thesis, the advantages of quantile regression over OLS regression have been 

discussed and illustrated by different applications. In summary, quantile regression 

provides a more detailed description of the conditional distribution which enables 

researchers to analyze the tails and identify trends not only in mean values but also 

different quantiles of climate variables. Flexibility to allow covariates to have different 

relationships in different parts of the conditional distribution, the robustness to departures 

from normality, and the invariance under monotone transformation are some of the other 

properties that make quantile regression a useful statistical approach.      

As discussed in Section 2.4, three application categories were defined for quantile 

regression: detection of trends, interpretation of non-linear relationships, and forecasting. 

The three papers presented in this thesis cover all three applications. The first two papers 
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can be categorized in the trend detection class, and the third paper covers the 

interpretation of non-linear relationships and forecasting classes. 

The Arctic and Antarctic have experienced different climatic changes in recent years. 

A number of recent studies have examined trends in sea ice cover using ordinary least 

squares regression (e.g., Comiso, 2010). Sea ice is important in the global climate system 

and there is a need for studies analyzing the trend of the whole distribution of sea ice 

extent. In our study, quantile regression was applied to analyze other aspects of the 

distribution of sea ice extent than the mean value. More specifically, trends in the mean, 

maximum, and minimum sea ice extent in the Arctic and Antarctic were investigated. We 

found a significant decreasing trend in mean Arctic sea ice extent of -4.5% per decade 

from 1979 through 2010, while the Antarctic results showed a small positive trend of 

2.3% per decade. We showed that the changes are not simply in the mean of the key ice 

variables, but that their entire distribution shape may be impacted. The advantage of the 

quantile regression model was observed particularly in cases with asymmetric response 

distributions such as Antarctic minimum ice cover. We also found that the variability in 

Antarctic sea ice extent is higher than in the Arctic sea ice.  

Observations in many areas have shown that changes in total precipitation are 

significantly influenced by changes in the tails of precipitation distributions. Also 

changes of daily temperatures are much more evident in the tails of the distributions (hot 

and cold days) than in the average temperatures. Changes in the frequency and intensity 

of extreme events may have a dramatic impact on society and the natural environment. In 

this study, we investigated changes in temperature and precipitation extremes over the 

Canadian Prairies using quantile regression. The results revealed that extreme 
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temperatures have increased significantly over most of the Canadian Prairies. However, 

no general pattern can be detected in extreme precipitation. We also found that some of 

the extreme patterns might have gone undetected if a standard regression model had been 

used.  

Statistical downscaling use relatively simple statistical models to represent the link 

between atmospheric circulation variables, presumably well simulated by the GCMs, and 

local weather variables, such as precipitation and temperature. As discussed by Wilby et 

al. (2002), the selection of appropriate downscaling predictor variables is one of the most 

challenging stages in the developing of any statistical downscaling models. The 

inflexibility of predictor selection methods for standard regression models is one of the 

concerning issues. In this study, we used a Bayesian method adapted to quantile 

regression to select predictor variables. The advantage of this method is that different 

predictors can be selected for different parts of the conditional distribution. We found that 

downscaling precipitation with a fixed set of predictors for the entire conditional 

distribution of precipitation, as done in traditional statistical downscaling models, may 

not make optimal use of available information. The results showed that more predictor 

variables were retained to explain summer precipitation than winter precipitation. This 

occurs because summer precipitation is predominantly convective and more complex in 

nature whereas most winter precipitation is a result of synoptic-scale systems. Using 

quantile regression for analyzing the relationships between extreme precipitation and 

atmospheric variables provided valuable information by highlighting the different 

processes that govern summer and winter precipitation. 
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In order to downscale precipitation, in the first step, the occurrence of precipitation was 

simulated using a linear regression model. To address the issue of variance 

underestimation and poor representation of extreme events by statistical downscaling 

models, a novel method, involving the fitting of different distributions to predicted 

regression quantiles, was introduced to downscale precipitation, and the performance of 

this new procedure, with special emphasis on extreme precipitation, was evaluated by 

comparison with traditional regression-based downscaling. Initially, the Gamma, the 

Generalized Extreme Value (GEV), the Generalized Pareto, and the Lognormal 

distributions were considered candidates for representing the response distribution. The 

Gamma distribution provided the best results compared with the other distribution 

candidates. Comparison of our proposed quantile regression model and the standard 

regression model demonstrated the superiority of quantile regression for modelling 

summer precipitation. However, the two models produced fairly similar results for winter 

precipitation. These results could be anticipated since summer precipitation processes are 

far more complex and the distribution of daily precipitation is highly skewed and heavy-

tailed. 

Quantile regression has the advantage of easy implementation and transparency of 

results, which is in contrast to black box models such as neural networks (Baur et al., 

2004) where the functional relationship between predictor variables and the response 

distribution is less clear. As noted by Barbosa (2008), quantile regression is a useful 

technique for identifying distinct rates of change in geophysical time series and should be 

used for quantifying long-term variability in climatic and oceanographic variables.  
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