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Abstract

Multiobjective optimization is an important research area because of its broad ap-

plicability in science and engineering. The idea of adopting nature-inspired computing,

such as bio-inspired computation and culture-inspired computation (memetic), into mul-

tiobjective optimization has recently attracted much attention from the research com-

munities. Memetic computing inspired by the theory of meme for the human cultural

evolution can favour multiobjective optimization greatly because of its hybrid combina-

tion of both global and local learnings for a fast convergence.

The thesis presents research on multiobjective optimization based on memetic com-

puting and its applications in engineering. We have introduced a framework of adaptive

multiobjective memetic optimization algorithms (AMMOA) with an information theoretic

criterion for guiding the selection, clustering, and local refinements. A robust stopping

criterion for AMMOA has also been introduced to solve non-linear and large-scale opti-

mization problems. The framework has been implemented for different benchmark test

problems with remarkable results.

This thesis also presents two applications of these algorithms. First, an optimal image

data hiding technique has been formulated as a multiobjective optimization problem

with conflicting objectives. In particular, trade-off factors in designing an optimal image

data hiding are investigated to maximize the quality of watermarked images and the

robustness of watermark. With the fixed size of a logo watermark, there is a conflict

between these two objectives, thus a multiobjective optimization problem is introduced.

We propose to use a hybrid between general regression neural networks (GRNN) and

the adaptive multiobjective memetic optimization algorithm (AMMOA) to solve this

challenging problem. This novel image data hiding approach has been implemented for

many different test natural images with remarkable robustness and transparency of the

embedded logo watermark. We also introduce a perceptual measure based on the relative

Rẽnyi information spectrum to evaluate the quality of watermarked images.

The second application is the problem of joint spectrum sensing and power con-
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trol optimization for a multichannel, multiple-user cognitive radio network. We investi-

gated trade-off factors in designing efficient spectrum sensing techniques to maximize the

throughput and minimize the interference. To maximize the throughput of secondary

users and minimize the interference to primary users, we propose a joint determination of

the sensing and transmission parameters of the secondary users, such as sensing times,

decision threshold vectors, and power allocation vectors. There is a conflict between

these two objectives, thus a multiobjective optimization problem is used again in the

form of AMMOA. This algorithm learns to find optimal spectrum sensing times, decision

threshold vectors, and power allocation vectors to maximize the averaged opportunistic

throughput and minimize the averaged interference to the cognitive radio network.

The main contributions of this thesis include: (i) A framework of adaptive multi-

objective memetic optimization algorithms (AMMOA) is introduced for multiobjective

optimization problems with remarkable results; (ii) A novel multiobjective image data

hiding method is proposed for colour image protections; and (iii) A new approach for

multiobjective joint spectrum sensing and power control is presented for a multichannel

and multiple-user cognitive radio network.
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Chapter 1

Introduction

1.1 Motivation

Optimization is one of the most important areas in engineering, computer science, and

many other fields. In engineering, dealing with uncertainty is critical. The need for a

reliable decision in every engineering designs is highly demanding, especially, a decision

process with multiple objectives and constraints. It is a challenge for engineers to find

an optimal solution of a multiple-objective designing problem. It is a difficult issue be-

cause this decision making is a non-linear optimization problem with many variables and

multiple objectives. Such multiobjective optimization problems have multiple optimal

solutions instead of one optimal solution as in single-objective optimization problems.

Based on the designing missions and constraints, one can select an optimal solution in

this set of optimal solutions for a specific design problem. Therefore, designing a frame-

work to help engineers solve those multiple-objective decision problems is my foremost

motivation for this thesis.

Stochastic optimization plays an important role in dealing with uncertainty in sci-

ence and engineering. There exist different stochastic optimization approaches in the

1
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literature. A very important and effective approach is a population-based optimization.

In the population-based optimization approach, the initial population consisting of the

number of variables is created randomly first, the algorithm refines the population several

times to find the best solution among the individuals in the population. Evolutionary

algorithms (EAs) constitute one example in this category. Evolutionary algorithms are

nature-inspired computing approaches, and include genetic algorithms (GAs), particle

swarm optimization (PSO), and memetic algorithms (MAs). They are developed based

on the mechanisms found in nature, such as gene evolution in GA, animal society in

PSO, and recently the human cultural evolution in MA. The theory of memes intro-

duced by Richard Dawkin for the human cultural evolution has been recently brought

to the algorithmic field for MA. Current literature shows that MA outperforms GA in

specific single-objective optimization problems. The main idea of MA is to adopt a local

search into an EA global search to improve the convergent speed of the searching algo-

rithm. However, when applying MAs to multiobjective optimization problems, MAs find

it difficult to maintain the diversity of the solutions or the population in each iteration.

The performance of MAs can be improved much by applying the idea of the human

cultural evolution carefully. Thus, designing an effective framework (i.e., improving the

convergent speed and maintaining the diversity of solutions) of multiobjective memetic

optimization based on the human cultural evolution is also my important motivation

behind this thesis.

In order to demonstrate the operational characteristics of the new approach, two

application areas have been selected: information hiding and cognitive radio. Informa-

tion hiding is a technique of embedding information (watermark) into a carrier signal

(video, image, audio, text) such that the watermark can be extracted or detected later

for copyright protection, content authentication, identity, fingerprinting, access control,

copy control, covert communications, and broadcast monitoring. Information hiding has
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recently attracted so much attention because of its broad applications. Designing an

optimal information hiding is a decision process under uncertainty considerations. It

requires to consider many perspectives, such as signal quality and integrity, embedding

capacity, security, and the robustness of watermark. Therefore, it is a challenging multi-

objective decision making process. I am motivated in designing an optimal and adaptive

image data hiding as one of the applications of my work in multiobjective optimization

based on memetic computing.

Cognitive radio is a major invention and development in the wireless communication

field. The cognitive radio concept has been proposed to be the next generation wireless

devices that can share underutilized spectrum. Spectrum sensing and dynamic spectrum

access are main principles of cognitive radio. In spectrum sensing, cognitive-radio users

(secondary users - SUs) sense the spectrum of licensed users (primary users -PUs) to

detect and utilize spectrum holes within the PUs’ spectrum. The challenge for a reliable

sensing algorithm is to identify suitable transmission opportunities without compromising

the integrity of the PUs. The efficiency of the employed spectrum sensing technique plays

a key role in maximizing the cognitive radio network throughput, while protecting the

PUs from interference. Hence, I also get motivated to design an efficient model that is able

to maximize the throughput of the cognitive network based on adaptive multiobjective

memetic optimization algorithms (AMMOA).

1.2 Criteria for Selecting Applications

Designing optimal image data hiding and designing effective spectrum sensing and power

control in cognitive radio networks are the selected applications for demonstrating the

applicability of AMMOA. Our motivation and objective of selecting applications are be-

yond the verification as what can be done by adopting simple benchmark test problems.

The selected applications should be able to demonstrate the applicability and ability of
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AMMOA to cope with the difficulties of nonlinear, complex, and evolutionary learning

systems in fast-changed environments. In addition to our experience in these two ap-

plications, the following groups of selection criteria have been considered: (i) partially

conflicting objective spaces; (ii) nonlinear and adaptive learning systems; (iii) complex-

ity of optimization process; and (iv) orthogonality and diversity.

1.2.1 Partially Conflicting Objective Spaces

Multiobjective optimization problems can be categorized as non-conflicting multiobjec-

tive problems, totally-conflicting multiobjective problems, or partially-conflicting multi-

objective problems. For a non-conflicting multiobjective problem, the various objectives

are correlated and the optimization of one objective leads to the subsequent improve-

ment of the other objectives. Thus, a single objective optimization can be used to solve

this problem by aggregating different objectives into a scalar function. For a totally-

conflicting multiobjective problem, all feasible solutions are also optimal, and no opti-

mization is required. The partially-conflicting multiobjective problems are perhaps the

most common real world problems. In this class of multiobjective problems, there is a

set of solutions representing the trade-offs between the different objectives instead of an

unique solution. This category is the most challenging of the three, and requires for an

effective multiobjective optimization technique.

Both designing optimal image data hiding and designing effective spectrum sensing

and power control problems are partially-conflicting multiobjective optimization prob-

lems. In image data hiding, with a fixed size of a logo watermark, there is a conflict

between the transparency (the quality of the watermarked image) and robustness of

the watermark. In cognitive radio networks, maximizing the throughput of the network

and minimizing the interferences are the objectives of network designers. These two ob-

jectives are partially-conflicting and requiring a joint determination of the sensing and
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transmission parameters. These two applications are very challenging multiobjective

optimization problems.

1.2.2 Nonlinear and Adaptive Learning Systems

We are interested in nontrivial engineering applications featured by nonlinear and adap-

tive learning systems. Those problems require learning abilities to adapt the system

parameters/structure to the changes of environments. Wide-range and dynamic search-

ing space is so common for those problems that are always challenging to be solved.

Besides, the sensitivity of learning systems to environments is also needed to investigate

carefully.

Both designing optimal image data hiding and designing effective spectrum sensing

and power control in cognitive radio networks are nonlinear and adaptive learning sys-

tems. In image data hiding, the embedding system learns from the environment by

extracting the image and environmental attacking features to adapt watermark embed-

ding parameters to maximize the transparency, robustness, and capacity objectives. Any

changes of those environmental features lead to change the parameters of the watermark-

ing system. This adaptive and evolutionary learning concept is more important in the

spectrum sensing and power control of cognitive radio networks, where the sensing and

transmission parameters are required to be updated cognitively with the changes of the

environment to maximize the throughput of the network and minimize interference to

the network.

1.2.3 Complexity of Optimization Process

From our perspective, the complexity of a optimization process is featured by the com-

plexity of searching landscapes, the high nonlinearity and sensitivity, and the scale of

the problems. It is very challenging if the problem has a dynamic searching landscape
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and a high level of sensitivity. The selected applications should possess a high level of

complexity, sensitivity, and scalability.

Both designing optimal image data hiding and designing effective spectrum sensing

and power control in cognitive radio networks are highly-complex optimization prob-

lems. They are nonlinear and large-scale multiobjective problems where the searching

landscapes are dynamical and sensitive with the environments’ changes. While scalability

of image data hiding problem mainly depends of the size of input images, the scalability

of the spectrum sensing and power control problem depends on the structure and the

size of the networks (the number of users and the number of operating channels).

1.2.4 Dissimilarity

Dissimilarity means that the computational features of the selected applications should

be different. For instance, while both the design of optimal image data hiding and

the design of effective spectrum sensing and power control in cognitive radio networks

are complex multiobjective optimization problems, the complexity of the later is very

scalable with respect to the size and structure of the network.

While the multiobjective function of the image data hiding problem is highly com-

plex since it is obtained through watermark embedding and extraction processes which

relate to different computational blocks (e.g., wavelet transform, neural networks, and

evolutionary learning systems), the multiobjective function of the spectrum sensing and

power control problem can be obtained through numerical analyses.

While the multiobjective function of the image data hiding problem is non-differentiable,

the multiobjective function of the spectrum sensing and power control problem is differ-

entiable. In our design, while the image data hiding problem does not require real-time

computation ability, the spectrum sensing and power control problem requires real-time

computation capacity. These requirements lead to different designs regarding different
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speeds of convergence.

1.3 Problem Definition and Research Questions

The work presented in this thesis relates to three following research areas: (i) designing

adaptive multiobjective memetic optimization; (ii) developing an optimal image data

hiding; and (iii) designing an effective spectrum sensing and power control mechanism

for cognitive radio networks. Thus, the research problems and questions which the thesis

tries to solve can be grouped into the following three categories.

1.3.1 Designing Adaptive Multiobjective Memetic Optimiza-

tion

There are different approaches to solve a multiobjective optimization problem (MOP).

The first approach is to scalarize the M objective functions into a single-objective func-

tion. In this approach, the multiobjective optimization problem is scalarized to a single-

objective optimization problem. The final solution of the MOP based on this method is

a single solution. The main challenge of this approach is to improve the convergent speed

of the optimization method. Another approach is to choose one objective function out

of M to be minimized; the remaining objectives are constrained to given target values.

This process is repeated M times for the M objective functions. With this approach,

the algorithm obtains one solution for each optimization process. The optimal solution

is the best solution from the M resulting solutions. This approach may not lead to

a global optimal solution for partially-conflicting multiobjective optimization problems.

Besides, it is challenging to setup wise constrained target values for the objective func-

tions since we do not know the objective search landscapes in practice. Furthermore, this

approach is too expensive in computation because it has to implement M optimization



Chapter 1. Introduction 8

processes. The third approach is to find a set of optimal solutions instead of a single

solution in the scalarization approach. This approach is usually mentioned as the Pareto-

based optimization approach. The Pareto-based approaches are more advanced than the

scalarization approaches since they are more cognitive-oriented. However, the main chal-

lenges are both for increasing the convergent speed and maintaining the diversity of the

optimal solutions in the Pareto-optimal set. In this work, we focus on the Pareto-based

optimization approach to solve large-scale multiobjective optimization problems.

The evolutionary algorithms (EAs) are suitable for multiobjective optimization be-

cause they are able to obtain a set of improved solutions in a single run. Multiob-

jective optimization using evolutionary algorithms (MOEAs) have been introduced and

applied successfully in the literature, including NSGA-II [DPAM02, Deb01], and SPEA2

[ZiLT01]. The memetic algorithms (MAs) has been recently proposed to improve the con-

vergent speed of EAs for single-objective optimization problem by employing a strategy

of both local learning (exploitation) and global learning (exploration). However, when

applying this memetic strategy for a multiobjective optimization, this strategy destroys

the diversity of the population seriously with an improper strategy for local and global

searches.

The challenging research questions in the design of an effective memetic algorithm

for solving a multiobjective optimization problem are: (i) What is the best strategy

for the hybrid between global and local searches (i.e., compromise of exploration and

exploitation) in multiobjective optimization based on memetic algorithms (MOMA)?

(ii) Can an MOMA detect the convergence to the Pareto optimal front by itself? (or

what are the online stopping criteria for MOMA?) (iii) Can we design MOMAs able to

converge in high-dimensional objective spaces, while maintaining good diversity? (iv)

Can an MOMA learn during the evolution to reveal previous unknown information about

the structure of the black-box optimization problems? (v) Can we design an MOMA
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that can be close to the cultural evolution in which an individual can interact fully and

learn from its neighbours (a small community) and the population (a big community)

to grow? and (vi) Why do the multiobjective optimization algorithms based on non-

dominated sorting techniques (e.g., Pareto ranking methods) scale poorly with respect

to the number of objectives?

1.3.2 Designing Optimal Image Data Hiding

Designing an optimal image data hiding is a multiobjective decision process under uncer-

tainty considerations because it must consider many perspectives, such as signal quality

and integrity, embedding capacity, security, and the robustness of watermark. The im-

portant requirements for image data hiding systems are imperceptibility, robustness, ca-

pacity, and security under different attacks and varying conditions. These requirements

can vary under different applications. It is challenging to design a blind watermarking

for a logo data hiding where a logo watermark is embedded into the host signal, and

then extracted from the embedded host signal without a reference from the original host

signal. These visual watermarks are not only assessed by machines but also by humans

through their ability to recognize visual patterns through human visual system (HVS).

It is very difficult to extract a high-quality visual logo from the embedded host image

without any reference from the original host signal.

Transparency and robustness are two main challenges in logo watermarking tech-

niques since the logo consists of much information that is not easy to embed perceptually

into a host signal. The transparency means that the watermark should be invisible in

the host signal. The robustness refers to the ability of the hidden watermark to survive

common attacks such as signal processing operations (compression, filtering, noise ad-

dition, desynchronization, cropping, and information insertions). In logo watermarking,

the robustness is so strict because it requires satisfactory recognition by human beings.
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With a fixed size of a logo watermark, there is a conflict between the transparency and

robustness of the watermark. Increasing the transparency of watermark (or the quality

of the watermarked image) decreases the robustness of the watermark and vice versa.

A good logo watermarking is a robust data hiding with the acceptable quality of wa-

termarked image. Thus, an optimal logo watermarking is a challenging multiobjective

optimization problem.

The challenging research questions in the design of an optimal image data hiding,

which we focus in this work, are: (i) What are the trade-off factors and conflict objec-

tives in designing an optimal logo watermarking for colour images? (ii) Why is wavelet

decomposition suitable for perceptual image data hiding? (iii) Can we design an opti-

mal wavelet function and transform for an optimal multiobjective image data hiding?

(iv) Why are the energy based measures, including signal to noise ratio (SNR) and peak

signal to noise ratio (PSNR) not sufficient for evaluating the imperceptibility (trans-

parency) of an image data hiding technique? and (v) Can we design an adaptive data

hiding technique that is able to self-adjust its parameters in regards with the attacks and

environmental changes?

1.3.3 Designing Effective Spectrum Sensing and Power Control

in Cognitive Radio Networks

In cognitive radio networks, it is challenging to design a reliable sensing strategy to iden-

tify suitable transmission opportunities for cognitive radio users (SUs) without compro-

mising the integrity of the network primary users (PUs). An effective spectrum sensing

technique plays a key role in maximizing the throughput of the cognitive network. How-

ever, maximizing the throughput of the cognitive radio users leads to increase interference

to the primary users. Maximizing the throughput of the network and minimizing the

interference to the primary users are the objectives of the network designer. However,
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these two objectives are seriously conflicting and requiring a joint determination of the

sensing and transmission parameters. Therefore, designing an effective spectrum sens-

ing and power control in cognitive radio networks is a challenging joint multiobjective

decision making problem with a large number of variables. There exists a set of optimal

solutions instead of only one solution for this joint optimization. Depend on the net-

work’s context and operational budgets, the best-suited solution is selected to configure

the network.

The challenging research questions in the design of an effective spectrum sensing

and power control strategy in cognitive radio networks, which we consider in this work,

are: (i) What are the trade-off factors and conflicting objectives in designing an efficient

spectrum sensing mechanism for cognitive wireless networks? (ii) Why does spectrum

sensing have to be considered together with power control in cognitive wireless networks?

and (iii) Can we design an efficient cooperative joint spectrum sensing and power control

in cognitive wireless networks?

1.4 Thesis Statement

This thesis investigates the following issues: (i) the speed of convergence and the di-

versity of Pareto-optimal solutions of multiobjective optimization using evolutionary al-

gorithms (MOEAs) can be improved significantly by applying the theory of memetic

learning in human cultural evolution to design a framework of adaptive multiobjec-

tive memetic optimization algorithms (AMMOA); (ii) an information-theoretic criterion

based on the polyscale relative Rényi entropy can be applied to guide the adaptive pro-

cesses of AMMOA, and the online convergence detection of AMMOA effectively; (iii)

image data hiding can be formulated as a multiobjective optimization problem which can

be solved effectively based on wavelet transforms, neural networks, and AMMOA; and

(iv) spectrum sensing and power control in cognitive radio networks can be formulated
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as a multiobjective joint optimization problem which can be solved effectively by using

AMMOA.

1.5 Thesis Objectives

The main part of the thesis is the study of multiobjective memetic optimization algo-

rithms and their applications. The theory of multiobjective optimization and memetic

computing is studied to design a framework for adaptive multiobjective memetic opti-

mization algorithms (AMMOA). The framework and its implementation are then veri-

fied by its applications to solve challenging problems in information hiding and cognitive

wireless networks. In summary, our main objectives cover the followings:

• To study and apply the theory of memes for the human cultural evolution to the

memetic computing. This is important to gain an understanding of the mechanism

of the human cultural evolution to bring this knowledge into algorithmic design.

• To design an efficient framework for adaptive multiobjective optimization based on

memetic computing (AMMOA). In particular, the framework is able to model the

human cultural evolution wisely, and is more efective than currently-used multi-

objective optimization based on evolutionary algorithms. The framework should

be also able to detect the convergence to the optimal front with online stopping

criteria.

• To apply the framework of adaptive multiobjective optimization in designing an

optimal image data hiding for copyright protection and authentication applications.

In particular, we are going to apply AMMOA to find an optimal solution to maxi-

mize the quality of the watermarked image and the robustness of the watermark.
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• To apply the AMMOA framework in designing an efficient cooperative joint spec-

trum sensing and power control in cognitive radio networks. We are going to apply

AMMOA to find the optimal trade-off factors in spectrum sensing and power con-

trol to maximize the network throughput and to reduce the interferences.

1.6 Thesis Scope and Contributions

The thesis presents an investigation of memetic evolutionary algorithms to design and

implement a framework of adaptive multiobjective memetic optimization algorithm (AM-

MOA). AMMOA is implemented and tested with variety of multiobjective optimization

benchmark test problems with remarkable results.

The thesis also presents a study of perceptual and robust image data hiding tech-

niques deeply. An optimal logo watermarking is proposed for colour image protection

based on wavelet transforms, neural networks, and AMMOA. A perceptual multiscale

measure based on the relative Rényi fractal dimension is also proposed to evaluate the

transparency of the logo watermarking method with remarkable results.

The thesis also presents a research on the problem of designing an optimal spectrum

sensing and power control in cognitive radio networks. We have formulated this prob-

lem as a multiobjective joint optimization problem. AMMOA is proposed to solve this

problem with good results.

The major contributions of this thesis are listed as follows:

• A novel and efficient framework of adaptive multiobjective memetic optimization

algorithms (AMMOA). Based on the theories of memetic computation and multi-

objective optimization, we develop a framework of AMMOA. In this framework,

we develop a new information theoretic criterion for guiding the adaptive selection,

clustering, and local searches in each evolution of AMMOA. An online stopping
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criterion is also introduced to guide AMMOA to detect its convergence. This novel

framework is implemented for different multiobjective benchmark test problems

and real-world engineering design applications with remarkable results. The com-

parison results show that AMMOA is superior to the well-known multiobjective

optimization NSGA-II for both high convergent speed and diversity of the obtained

optimal set.

• A novel multiobjective image data hiding method. The trade-off factors and con-

flicting objectives in designing an optimal image data hiding are studied carefully

to formulate a multiobjective optimization problem of image data hiding. We

then develop a novel multiobjective image data hiding method for colour images

based on wavelets, general regression neural networks (GRNN), and AMMOA. The

proposed method obtains a high level of robustness and imperceptibility of logo wa-

termark, and is more superior to the well-known image watermarking techniques

in the literature. We also introduce a multiscale perceptual measure for measuring

the transparency (imperceptibility) of the watermark with remarkable results.

• A new approach for multiobjective joint spectrum sensing and power control in cog-

nitive radio networks. The trade-off factors and conflicting objectives in designing

an effective spectrum sensing and power control method is studied carefully. We in-

troduce a multiobjective joint optimization problem of spectrum sensing and power

allocation for a multichannel, multiple-user cognitive radio network. We then de-

velop a novel multiobjective joint spectrum sensing and power allocation technique

based on AMMOA. This is the first approach to solve the joint optimization prob-

lem of spectrum sensing and power allocation using multiobjective optimization.

The experimental results show the practical applicability of the method to increase

the adaptiveness and cognition of cognitive radio networks.
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1.7 Thesis Organization

The thesis is organized into six chapters:

• Chapter 2 introduces a brief background on multiobjective optimization. This

chapter gives short introductions to the field of multiobjective optimization, in-

cluding the definitions, theories, and the literature review.

• Chapter 3 presents our proposed framework of adaptive multiobjective memetic

optimization (AMMOA). Additionally, an implementation of this framework is also

described in this chapter. The experimental results and comparisons with the well-

known multiobjective optimization based on non-dominated sort genetic algorithm

(NSGA-II) are also presented.

• Chapter 4 presents a novel application of AMMOA in designing an optimal mul-

tiobjective image data hiding. The problem of perceptual and robust data hiding

for colour images is first introduced. A novel image data hiding based on neural

networks, wavelets, and AMMOA is then presented. The experimental results and

comparisons with discussions are also presented in this chapter.

• Chapter 5 introduces a new approach for joint spectrum sensing and power control

in cognitive wireless networks. The problem of joint spectrum sensing and power

allocation in cognitive radio is discussed with a careful investigation of trade-off

factors. A novel cooperative joint spectrum sensing and power allocation approach

based on AMMOA is presented with experimental results and discussions.

• Chapter 6 is with the conclusions and the possible extensions of this research.

• Finally, the thesis ends with 124 references covering from 1970 to 2015 with the

mode at 2012 (the reference statistics are shown in Figure. 1.1), followed by five

appendixes.
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Figure 1.1: Statistics of the references used in this thesis.



Chapter 2

Literature Review on Multiobjective

Optimization

This chapter presents some background on multiobjective optimization including defini-

tions, theories, and literature reviews. The theoretic issues and applications of multiob-

jective optimization based on evolutionary algorithms are also presented.

2.1 Introduction

Multiobjective optimization is considered as a decision making process to get the most

optimal solution with the maker’s preference from the best obtained results. Multiob-

jective optimization deals with the function with more than two objectives. In most

practical decision making problems, there are multiple objectives or multiple criteria as

evidences. For instance, in engineering design, we do want to design a smart, long life,

energy efficiency, and lower cost machine. However, to design a smart, long life, and

energy efficiency machine, we need to have high quality of materials, component, and

intellectual properties. These things are very expensive. Thus, these objectives are con-

flict. A good designer should be able to find a solution that can be balance between

17
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these objectives or follows the preference of the investors. Therefore, a multiobjective

optimization problem should be adopted to find the optimal solutions.

Unfortunately, these real world problems are often difficult, if not possible, to be

solved without advanced and efficient optimization techniques. This is because these

problems are characterized by objectives that are much more complex as compared to the

single-objective optimization problems. Because of that, a multiobjective optimization

problem has been mostly combined and solved as a single-objective optimization problem.

However, this method is just looking for one solution instead of a set of optimal solutions.

In the literature, evolutionary algorithms (EAs) are widely used to solve nonlinear

optimization problems. Due to the nature of EA that has the capability of finding a set of

Pareto solutions in a single simulation run, EA is suitable for multiobjective optimization.

In this chapter, we provide a brief introduction to the multiobjective optimization

problems, evolutionary algorithms (EAs), memetic algorithms (MAs), multiobjective

optimization using EAs (MOEA), and the performance evaluations of MOEA.

2.2 Multiobjective Optimization Problems

2.2.1 Problem Formulation

Multiobjective optimization is sometimes referred to vector optimization. Let X be an

n-dimensional search space of decision variable vectors x = {x1, x2, ..., xn}. A multiob-

jective optimization problem can be generally formulated as

maximize/minimize
x∈X

f(x) = {f1(x), f2(x), f3(x), ..., fM(x)} (2.1)

subject to g(x) = {g1(x), g2(x), ..., gK(x)} ≥ 0

h(x) = {h1(x), h2(x), ..., hL(x)} = 0

There are K inequalities and L equalities constraints. Functions g(x) and h(x) are
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called constraint functions. The objective function f(x) is an M -dimensional vector

that consists of M objective functions {f1(x), f2(x), f3(x), ..., fM(x)}. The optimization

problem can be to maximize or minimize the objective function vector. According to the

duality principle [Deb01], we can convert a maximization problem into a minimization

problem by multiplying the objective function vector by −1.

If all objective functions and constraint functions are linear, the multiobjective op-

timization problem is called a multiobjective linear problem. Otherwise, if any of the

objective or constraint functions are nonlinear, the problem is called a nonlinear multiob-

jective optimization problem [Miet99, Deb01]. For a multiobjective linear problem, the

principle of linear programming can be used to solve this problem with the proof of con-

vergence; however, for nonlinear multiobjective optimization problem the current solvers

do not have convergence proofs. Unfortulately, most real world problems are nonlinear

multiobjective problems in nature. In this thesis we focus on desining multiobjective

optimization methods to solve nonlinear multiobjective optimization problems.

Multiobjective optimization problems have a multi-dimensional objective space. De-

pending on whether the objectives are conflicting or non-conflicting, a multiobjective

problems can be categorized as [GoTa09]: (i) totally conflicting multiobjective problem;

(ii) non-conflicting multiobjective problem; and (iii) partially conflicting multiobjective

problem. For the first category, no improvement of objectives can be made without vio-

lating any constraints. That means all feasible solutions are also optimal. Thus, totally

conflicting multiobjective problems are perhaps the simplest since no optimization is

required. On the other hand, in a non-conflicting multiobjective problem, the various

objectives are correlated and the optimization of one objective leads to the subsequent

improvement of the other objectives. A single objective optimization can be used to solve

this problem by aggregating different objectives into a scalar function. The solution is a

single optimal solution. The third category, partially conflicting multiobjective problem,
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is perhaps the most common real-world problems. In this class of multiobjective prob-

lems, there is a set of solutions representing the tradeoffs between the different objectives

instead of an unique optimal solution. This category is the most challenging of the three.

There are two fundamental differences between single-objective optimization and mul-

tiobjective optimization. The first difference is that in single-objective optimization, the

search for an optimum global solution is the only one goal. However, in multiobjective

optimization, the Pareto-optimal solutions (Pareto front) and the diversity of the opti-

mal solutions are two important goals. The second difference is that in single-objective

optimization, there is only one search space (the decision variable space). Nonetheless,

in multiobjective optimization, there are two search spaces (the objective space and the

decision variable space).

There exist different techniques to solve multiobjective problems. Without losing

generality, multiobjective optimization algorithms can be categorized into two groups:

(i) algorithms that use the combinations of objectives to select new solutions; (ii) algo-

rithms that do not combine objectives and do the selection by means of dominance based

criteria [NeCo12]. In the first category, the multiple objectives are combined to create

a single objective by adopting a weight values. Thus, the algorithm does not detect an

optimal front or a set of optimal solutions, but only one solution. This class of algo-

rithms has the drawback that the selection of a proper set of weights must be performed

to allow a natural dispersion of the solutions. The outcome of such an optimization

strategy depends on the chosen weights. In the second approach, the selection is based

on dominance-based ranking of all the solutions. The search result is a set of optimal

solutions or the so called Pareto front. Based on the knowledge of such multiple optimal

solutions a designer can compare and choose a compromised optimal solution. The idea

of the Pareto’s optimality and Pareto front is discussed in the next section.
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2.2.2 Pareto Dominance and Optimality

The concept of domination is very important in multiobjective optimization algorithms.

The domination concept is used to rank the solutions in the population. Specifically, two

solutions are compared on the basis of whether one dominates the other solution or not

[Deb01]. The following definitions of dominance and Pareto optimality are presented for

the minimization problem.

Definition 2.1. Dominance: A solution x1 is said to dominate the other solution x2

if fi(x1) � fi(x2), ∀i ∈ {1, ...,M}, and ∃j ∈ {1, ...,M}: fj(x1) ≺ fj(x2).

If x1 and x2 satisfy Definition 2.1, we can say x2 is dominated by x1; or x1 is non-

dominated by x2. Intuitively, if a solution x1 dominates the solution x2, the solution x1

is better than the solution x2 in the multiobjective optimization problem.

Definition 2.2. Weak Dominance: A solution x1 weakly dominates a solution x2 if

fi(x1) � fi(x2), ∀i ∈ {1, ...,M}.

Definition 2.3. Strong Dominance: A solution x1 strongly dominates a solution x2

if fi(x1) ≺ fi(x2), ∀i ∈ {1, ...,M}.

From Definition 2.3, we see that the solution x1 strongly dominates the solution x2

if solution x1 is strictly better than solution x2 in all M objectives.

Definition 2.4. Non-Dominated Set: The non-dominated set of solutions P ′ includes

non-dominated solutions that are not dominated by any member solution among the set

of solutions.

Definition 2.5. Weak Non-Dominated Set: Among a set of solutions P , the weak

non-dominated set P ′ are those solutions that are not strongly dominated by any other

member solution of the set P .



Chapter 2. Literature Review on Multiobjective Optimization 22

The Definition 2.5 suggests that a weak non-dominated set contains all member so-

lutions of the non-dominated set, which is obtained by the concept of Definition 2.1.

Definition 2.6. Pareto Optimal Set: The non-dominated set of the entire feasible

search space S is the Pareto-optimal set P ∗. In other word, the Pareto-optimal set P ∗ is

the set of solutions that are non-dominated in the objective space such that P ∗ = {x∗i—

@ fk(xj) ≺ fk(x
∗
i ), ∀i, j ∈ {1, ..., n},∀k ∈ {1, ...,M}}.

Definition 2.7. Pareto Optimal Front: The Pareto-optimal front P ∗f is the set of

non-dominated solutions with respect to the objectives in the objective space such that

P ∗f = {f ∗i |@fj ≺ f ∗i ,∀i, j ∈ {1, ..., n}}

These above principles can be explained by a graphical presentation in the Fig. 2.1,

where these relationships of Pareto front, Pareto optimal set, the non-dominated set, and

the dominated set for a bi-objective minimization problem are presented graphically.

2.3 Multiobjective Optimization Using Evolutionary

Algorithms (MOEA)

In classical methods of solving multiobjective optimization, the obtained result is a sin-

gle optimal solution. Since the real world optimization problems are multiobjective

optimization with conflicting objectives, a single optimized solution is not sufficient to

characterize the problem and does not help the decision maker much.

The Evolutionary algorithms (EAs) mimic the nature’s evolutionary principles to

constitute search and optimization procedures. EAs are population based algorithms

that use a population of solutions in each iteration, instead of a single solution in classical

methods. The outcome of EA is also a population of solutions. Thus, an EA can be
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Figure 2.1: Illustration of dominance and Pareto optimality.

efficiently used to capture multiple optimal solutions in one single simulation run for

multiobjective optimization problems.

2.3.1 Principles of Evolutionary Algorithms

EAs are stochastic search methods that mimic the metaphor of natural biological evo-

lution. EAs operate on a population of potential solutions. By applying the principle

of survival of the fitness to produce better approximations, the population of potential

solutions is improved after each iteration. Specifically, at each generation, a new set

of approximations is created by the process of selecting individuals (i.e., based on their

fitness) and breeding them together using genetic operators (e.g., crossover, mutation)
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borrowed from natural genetic evolution. This process leads to the evolution of pop-

ulation that are better suited to their environment as in the natural adaptation. EAs

model natural processes such as selection, recombination, mutation, and migration. The

structure of a simple EA is shown in Fig. 2.2.

Figure 2.2: Structure of a simple EA.

At the beginning of an EA, a population of individuals is initialized randomly. The

objective function is then evaluated for these individuals. The evolutionary process starts

with the first generation if the optimization criteria are not met. Based on their fitnesses,
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individuals are selected as parents for generating the production of offsprings. Parents

are recombined by using a genetic operator like crossover to produce offsprings. All

offspring individuals are mutated with a mutation probability. The offspring individuals

are then evaluated by the objective evaluation function to compute their own fitnesses.

The offspring individuals are then inserted into the population to compete the parents

to produce a new and improved population. The cycle continues until the optimization

criteria are met.

It can be seen that EAs are different from classical search and optimization methods

by the following points.

• EAs do not require derivative information or other auxiliary approximation knowl-

edge, instead of only the objective function and the corresponding fitness levels for

the evolutionary search.

• EAs search for a population of solutions in parallel, not a single individual in a

simulation run.

• EAs use stochastic rules, not deterministic rules.

• EAs provide a number of potential solutions to a given problem. The final choice

is left for the decision marker.

EAs are stochastic optimization methods. The differences between stochastic opti-

mization and deterministic optimization can be summarized as follows.

• In stochastic optimization, there is a random choice made for the search direction

in each step of the algorithm. In contrast, classical deterministic optimization

assumes that perfect information is available about the objective function (e.g.,

derivatives of the objective function) and that information is used to determine the

search direction in a deterministic manner at every step of the algorithm.
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• Stochastic optimization methods offer only a guarantee of probabilistic optimal

solution, while deterministic optimization methods provide a theoretical guarantee

of locating the global optimum, or at least a local optimum whose objective function

value differs by ε > 0 from the global one.

• Stochastic optimization methods adapt better to black-box problems and extremely

ill-behaved functions, whereas deterministic optimization methods usually rely on

at least some theoretical assumptions about the problem formulation and its ana-

lytical properties.

The basic components of an EA are discussed in the following sections.

Selection

The selection process is used to select or identify good individuals for mating (recom-

bination) pool. There are different selection methods currently used in the literature.

Some common approaches are proportionate selection, ranking selection, and tournament

selection [Gold89, Deb01, Mess15].

In the proportionate selection technique, solutions are assigned copies with the num-

ber of copies proportional to their fitness values. Specifically, if the average fitness of all

population members is F , a solution with a fitness fi gets an expected fi/F number of

copies. This technique is analogous to a roulette wheel with each slice proportional in

size to the fitness. This technique is also called the roulette-wheel selection (also called

stochastic sampling with replacement). This is perhaps the simplest selection scheme.

This technique is implemented as follows. The individuals are mapped to contiguous

segments of a line, such that each individual’s segment is equal in size to its fitness. A

random number is generated and the individual whose segment spans the random number

is selected. The process is repeated until the desired number of individuals is obtained for

the mating pool. An example of the proportionate selection with the population size of
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6 individuals with their fitnesses and corresponding selection probabilities are described

in Table 2.1. Suppose we need to select 3 individuals from the population. The ran-

dom number generator generates the random selection probabilities as {0.065, 0.5, 0.75}.

The selected individuals are then individual # 1, 2, and 4. The implementation of this

selection technique is shown in Fig. 2.3.

Table 2.1: Fitness values and selection probabilities

Individuals 1 2 3 4 5 6

Fitness Values 20 40 5 15 12 8

Selectrion Probability 0.2 0.4 0.05 0.15 0.12 0.08

Figure 2.3: An example of proportionate selection.

The proportionate selection has a scaling problem that the outcome of the selection

operator depends on the true value of the fitness. If one solution in the population has

a large fitness value compared to the rest of the population members, the probability of

choosing this solution would be close to 1, thereby dominating the mating pool with its

copies.

The ranking selection method is an improvement of the proportionate selection to

avoid a scaling problem. In ranking selection method, the solutions are firstly sorted

according to their fitness. Each member in the sorted list is assigned a relative fitness

equal to the rank of the solution in the list. The proportionate selection operator is then

applied with the ranked fitness values to select N solutions for the mating pool.
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In a tournament selection, two solutions are played a tournament and the better

solution is chosen and placed in the mating pool. Two other solutions are placed in a

tournament again and the better is chosen to fill the mating pool. The process continues

until the mating pool is filled fully. Each solution can be made to participate in exactly

two tournaments. The best individual wins both times, thereby making two copies

of it in the new population. The worst individual loses in both tournaments and is

eliminated from the population. It is easily seen that the tournament selection does not

have any scaling problems. By changing the comparison operator, the minimization and

maximization problems can be handled easily with the tournament selection method.

Recombination

Recombination (crossover operator in genetics) is used to produce new individuals by

combining the information contained in the parental individuals in the mating pool.

Depending on the representation of the variables of the individuals, recombination can be

categorized into real-valued recombination or binary-valued recombination. In the very

first beginning of the development of EAs, binary crossover operators are commonly

used. It can be a single point crossover or multiple point crossover. However, most

optimization problems in practice are with real-valued variables. To use binary crossover

operators, these variables have to convert to binary-valued variables first before applying

a binary crossover. Thus, there are some difficult problems such as (i) the Hamming

cliffs associated with certain strings; (ii) the inability to achieve any arbitrary precision

in the optimal solution; and (iii) the increase of the computational complexity. In this

section, we briefly introduce real-valued recombination operators.

In real-valued recombination, the operators are applied directly to real parameter

values. Thus, solving real-valued optimization problems using real-valued recombination

is easier when compared to the techniques of using binary-coded operators. There exists
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a number of real-valued recombination implementations in the literature, such as linear

crossover, Naive crossover, Blend crossover, simplex crossover, fuzzy operators, simulated

binary crossover [DeAg95, Gold89, Deb01]. The issue of comparisons between crossovers

is context-dependent. Evaluation of crossover operators depends on the chosen selection

operator for the balance between exploitation and exploration for one successful EA’s

simulation run. Most of these crossovers have two common characteristics: (i) try to

maintain the mean of population; and (ii) try to increase the population diversity. The

simulated binary crossover (SBX) is used widely in successful EAs in the literature. In

this section, we briefly introduce SBX as follows.

SBX operator simulates the principle of the single-point binary crossover on binary

strings. The procedure of computing the offspring x
(1,t+1)
i and x

(2,t+1)
i from the parents

x
(1,t)
i and x

(2,t)
i is described as follows. First, a random number ui ∈ [0, 1) is generated.

The ordinate parameter βqi is calculated by

βqi =


(2ui)

1
ηc+1 , if ui ≤ 0.5;(

1
2(1−ui)

) 1
ηc+1

, otherwise.

(2.2)

The offsprings are then calculated as

x
(1,t+1)
i = 0.5

(
(1 + βqi)x

(1,t)
i + (1− βqi)x(2,t)

i

)
(2.3)

x
(2,t+1)
i = 0.5

(
(1− βqi)x(1,t)

i + (1 + βqi)x
(2,t)
i

)
(2.4)

Where the parameter ηc is a non-negative distribution index. A large value of ηc gives a

higher probability for creating solutions near to the parents. A small value of ηc allows

distant solutions to be selected as offsprings. For a fixed ηc the offspring have a spread

which is proportional to
(
x

(2,t+1)
i − x(1,t+1)

i

)
= βqi

(
x

(2,t)
i − x(1,t)

i

)
. The SBX has an

important property that the difference (distance) between the offsprings is proportional

to the difference (distance) between the parent individuals.
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Mutation

After recombination, every offspring solutions undergo mutation. The need for mutation

is to keep diversity in the population. Offspring individuals are mutated by the addition

of small random values (size of the mutation step), with low probability. The probability

of mutating a variable is usually set to be inversely proportional to the number of variables

(dimensions). The larger dimension, an individual has, the smaller mutation probability

is applied to that individual. Mutation operators are also classified into binary-valued

mutation and real-valued mutation, based on the data representation of individuals in

the population.

In binary-valued mutation, the bit-wise procedure is randomly applied to one or more

bits in the bit string variable of the individual with a small probability. In real-valued

EAs, real-valued mutation is used to do a local perturbation for real parameter EAs.

There exists some common real-valued mutation operators such as random mutation,

non-uniform mutation, normally distributed mutation, and polynomial mutation [Deb01].

In the polynomial mutation [DeGo96], the probability distribution is considered as a

polynomial function. The mutation is performed by

y
(1,t+1)
i = x

(1,t+1)
i + (xUi − xLi )δ̄i (2.5)

where xUi is the upper bound of variable xi, x
L
i is the lower bound of variable xi. δ̄i is

calculated from a polynomial distribution by

δ̄i =


(2ui)

1
ηm+1 − 1, if ui < 0.5

1− (2(1− ui))
1

ηm+1 , if ui ≥ 0.5

(2.6)

where ui is a random number ∈ [0, 1).
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2.3.2 Multiobjective Optimization Using EAs

EAs have the important advantage of being able to sample multiple solutions simulta-

neously. This feature makes EAs common-used in multiobjective optimization (called

multiobjective optimization using EAs - MOEA). An MOEA has the capability of find-

ing a set of Pareto solutions in a single run. Genetic operators in EAs help MOEA create

candidate solutions and exchange information between them to increase the overall qual-

ity of individuals in the population. In this sub-section, the principle and framework of

MOEAs are described.

MOEA Framework

Many MOEAs have been proposed in the literature. Most of them are based on the mod-

els of genetic algorithms (GAs) [Deb01]. Recently, biologically inspired models, such as

partical swarm (PS), differential evolution (DE) have been introduced for multiobjective

optimization. The main difference between these approaches is in the method of gener-

ating new candidate solutions. In this section, we provide a framework of MOEA that

can cover these approaches for multiobjective optimization. The framework of MOEA is

described in Algorithm 1.

The MOEA starts with the initialization of the candidate population. The initial pop-

ulation is then evaluated by the objective evaluation function “Eval” for the objectives of

each individuals in the population. In the main loop, parent population P par is selected

from the current population P by the procedure “Selection”. The offspring population

P offs is generated from the parent population through the procedure “GenerateOffs”.

This new offspring population is then evaluated by the objective evaluation function,

and ranking and diversity assessments. Updating population is then performed to select

the better population from the parent population and the new offspring population by

the “Updating” function. In each iteration, the offspring individuals compete with their
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Algorithm 1 MOEA Framework

1: procedure MOEA()

2: Generate Random Population P size N

3: Objectives Evaluation P ← Eval(P )

4: repeat

5: Select Parent Population P par ← Selection(P )

6: Generate Offspring Population P offs ← GenerateOffs(P )

7: Objectives Evaluation P offs ← Eval(P offs)

8: Ranking Assessment P offs ← Ranking(P offs)

9: Diversity Assessment P offs ← Diversity(P offs)

10: Update Population P ← Updating(P ∪ P offs)

11: until Terminated Conditions

12: return Improved Population P

13: end procedure

parents for a better population. This circle continues until the terminated conditions,

such as a number of iteration are met. The main components of MOEA framework are

described as follows.

1. Ranking Assessment

Ranking assessment function (Ranking) is used to rank each individuals in the popula-

tion based on their evaluated objectives. How to assign an effective ranking value for an

individual (solution) in the population based on their multiple objectives is a challenging

step in multiobjective optimization. This procedure is also called fitness assignment.

There exist some different fitness assignment methods in the literature. We can catego-

rize them into two main classes of fitness assignment: (i) Aggregation-based assignment;

and (ii) Pareto-based assignment.

In aggregation-based assignment, multiple objectives of each individual are aggre-
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gated into a scalar by applying a weight vector [IsMu98, IsYM03, Jasz02, Jasz03, JiBr05,

Hugh05]. The multiobjective genetic local search (MOGLS) [IsMu98, IsYM03, Jasz02,

Jasz03] is a well-known example of applying aggregation-based fitness assignment for

multiobjective optimization. In this approach, a different random weight vector is used

to aggregate the multiple objectives of each individual to a fitness value in each simulation

run. The simulations showed that this aggregation-based MOEA is capable of evolving

uniformly distributed and diverse to converge to a Pareto front. The big difficulty of

this approach is that it requires a pre-defined weights or a weight generating function for

every simulation run. The performance is also too sensitive to the selected weight vec-

tors. However, with the optimization problem having more than three objectives (many

objectives or high-dimension multiobjective optimization problem), this approach seems

more effective than the Pareto-based assignment approach [Hugh05, GoTa09].

In Pareto-based assignment, the fitness (rank) for each individual is formulated based

on the property of non-dominated solutions and Pareto-optimality principle. The Pareto-

based assignment is widely used for MOEA in the literature [Deb01, GoTa09, DPAM02,

KnCo00, ZiLT01]. State-of-the-art MOEAs such as non-dominated sorting genetic al-

gorithm II (NSGA-II) [DPAM02], Pareto archived evolution strategy (PAES) [KnCo00],

and strength Pareto evolutionary algorithm 2 (SPEA2) [ZiLT01] use Pareto-based as-

signment approach for ranking assessment. For instance, in NSGA-II, the Pareto fronts

obtained after each simulation run are numbered ascendingly. The front index of each

individual is then assigned as the ranking (or fitness) of that individual in the population.

However, Pareto-based assignment MOEAS do not scale well with respect to increasing

the number of objectives (e.g., more than three objectives) [Hugh05, FaPC10]. In the

reports [Hugh05, FaPC10], Pareto-based assignment methods are more effective in low-

dimensional multiobjective optimization problems, while aggregation-based assignment

approaches scale well with increasing number of objectives.
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2. Diversity Assessment

In MOEAs, diversity refers to the diversity of the obtained solutions in the objective

space. In the final updated population, we desire to have a set of solutions that spread

equally-well on the optimal Pareto front of the multiobjective optimization problem.

Density assessment is commonly used for diversity preservation in MOEAs. Density

assessment evaluates the density at different sub-divisions in the parameter or objective

spaces. Since we want to obtain a well-distributed and diverse Pareto front, density

assessment in objective space is most used for diversity preservation in MOEAs. There

exist different density assessment methods in the literature. Based on the metric used,

they can be categorized into two main categories as: (i) distance-based assessment; and

(ii) distribution-based assessment.

In distance-based assessment, the relative distance between individuals in the objec-

tive space is adopted. This method is perhaps the most common used in the litera-

ture. Some well-known techniques include niche sharing [HoNG94], crowding distance

[DPAM02], and clustering [ZiBa11, Padm13, SiMD13]. These methods are examples of

distance based density assessment schemes that are not influenced any external param-

eters of MOEAs. However, these techniques are susceptible to scaling issues and their

effectiveness are limited by the presence of non-commensurable objectives [GoTa09].

In distribution-based density assessment, the probability density of the individuals is

used to assess the diversity of population. In [LiYu12], the probability density is used

to compute the entropy as a mean to quantify the information contributed by each in-

dividual to a Pareto front. Different from distance-based assessment, distribution-based

assessment is not affected by non-commensurable objectives. However, the tradeoff is the

computational complexity and the uncertainty in estimation of information using Parzen

window.

3. Update Population
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The process of updating population uses an elitist strategy to preserve the best individ-

uals and also to prevent the loss of good individuals in each evolution of MOEAs. The

elitism is an important procedure to improve convergence of MOEAs.

2.3.3 Multiobjective Non-dominated Sorting Genetic Algorithm

(NSGA-II)

NSGA-II [DPAM02] is a famous example of elitist MOEAs. In NSGA-II, both an elite-

preservation strategy and a diversity-preserving mechanism are adopted. NSGA-II algo-

rithm is described in the Algorithm 2.

In NSGA-II, in the evolutionary circle, the parent population P par is selected from

the current population P based on the Pareto ranks and crowding distance values. The

offspring population P offs of size N is generated from the parent population P by

using genetic operators. Next, the two populations are combined together to form the

combined population P c of size 2N . Then, a non-dominated sorting procedure NDSort()

is applied to classify the individuals in the combined population P c into different fronts.

When the sorting finishes, the new combined population P c consists of sorted solutions

of different ascending non-dominated fronts. In each front i of the sorted population, the

crowding distance metric is evaluated for each individual for the diversity assessment.

The individuals in the front i is then sorted in the descending order of the obtained

crowding distance values. The elitism of NSGA-II is performed by the procedure of

selection with replacement to select the best population P of size N from the combined

population P c of size 2N . The non-dominated sorting, crowding distance evaluation,

and selection with replacement procedures are described in details in [DPAM02].
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Algorithm 2 NSGA-II

1: procedure NSGA-II()

2: Select Parent Population P par ← Tour-Selection(P )

3: Generate Random Population P size N

4: Objectives Evaluation P ← Eval(P )

5: Non-Dominated Sorting P ← NDSort(P )

6: Crowding Distance Evaluation P ← CrowDist(P )

7: itrs = 0

8: repeat

9: Generate Offspring Population P offs size N

10: Objectives Evaluation P offs ← Eval(P offs)

11: Combination P c = P ∪ P offs

12: Non-Dominated Sorting P c ← NDSort(P c)

13: Crowding Distance Evaluation P c ← CrowDist(P C)

14: Selection with Replacement P ← Replacement(P c)

15: itrs = itrs + 1

16: until itrs ≥ MaxItrs

17: return Non-dominated Population P

18: end procedure

2.4 Multiobjective Memetic Algorithms

The term “meme” was first introduced and defined by Rechard Dawkins as the basic unit

of cultural transmission, or imitation [Dawk89]. Inspired by Darwinian’s evolutionary

theory and Dawkin’s theory of memes, the term Memetic Algorithm (MA) was first in-

troduced by Moscato in 1989 [Mosc89]. In this work, Moscato viewed MAs as extensions

of EA that adopt the hybridization between EA and an individual learning procedure

performing local refinements. The definition of MA is usually based on its implemen-
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tation features. For example,“Memetic algorithms are population-based metaheuristics

composed of an evolutionary framework and a set of local search algorithms which are

activated within the generation cycle of the external framework” [NeCo12].

The use of MA for multiobjective optimization (Mutiobjective optimization based on

memetic algorithms - MOMA) has attracted much attention and effort in recent years. In

the literature, MOMAs have been demonstrated to be much more effective and efficient

than the EAs and the traditional optimization searches for some specific optimization

problem domains [KrSm05, IHTY09, NeCo12, COLT11, BTMA12]. However, the reports

on the applications of MOMAs to real engineering problems are still limited in the

literature.

The performance of MOMAs not only relies on the evolutionary framework, but

also depends on the local search. The best tradeoff between a local search and the

global search in each evolution is an important issue of an MOMA [KrSm05]. There are

different MOMAs introduced in the literature for domain-specific applications [MLMH10,

LSCS10]. Ishibuchi et al. [IHTY09] introduced an MOMA for combinatorial optimization

problems. This work adopts a hybridization of the multiobjective genetic algorithm

NSGA-II introduced by Deb and coworkers [DPAM02] and a local search to produce

an MOMA for the Knapsack combinatorial optimization problem. In this work, a local

search is employed to refine the offsprings with a weighted sum-based scheme. The

selection criterion are based on Pareto ranking and crowding distance sorting used in

NSGA-II. This MOMA is described in the Algorithm 3.

Algorithm 3 is a hybrid between NSGA-II and a local search. The procedures “Fast

Non-Dominated Sort”, and “Crowding Distance Assignment” are parts of the NSGA-II

algorithm described in details in [DPAM02, TaKL10]. The procedure “Generate Off-

spring Population” is genetic operation procedure consisting of crossover and mutation

operations. The offsprings are refined by the local search with probability of pls. In the
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Algorithm 3 Multiobjective Optimization based on Memetic Algorithm (MOMA)

1: procedure MOMA(N, pls)

2: Generate Random Population P size N

3: Objectives Evaluation

4: Fast Non-Dominated Sort

5: Crowding Distance Assignment

6: repeat

7: Select Parent Population P par ← Selection(P )

8: Generate Offspring Population P offs

9: P impr ←Local-Search(P offs, pls)

10: P inter ← P ∪ P offs ∪ P impr

11: Fast Non-Dominated Sort

12: Crowding Distance Assignment

13: Update Population P ← Updating(P inter)

14: until Terminated Conditions

15: return Non-Dominated Population P

16: end procedure

local search, a weighted-sum fitness is used as a fitness assignment. [IHTY09]. The k

objectives (f1, f2, ...fk) are weighted to be a single objective by

f(x) =
k∑
i=1

λifi(x) (2.7)

where (λ1, λ2, ..., λk) are random normalized weights generated according to [Jasz02]



Chapter 2. Literature Review on Multiobjective Optimization 39



λ1 = 1− k−1
√
rand()

...

λj = (1−
j−1∑
l=1

λl)(1− k−1−j
√
rand())

...

λk = 1−
k−1∑
l=1

λl

(2.8)

The local search procedure is performed only on the best individuals of a given off-

spring generation. Firstly, a random weight vector is generated by Eq. (2.8). Based

on the generated random weights, the initial solution for local search is selected from

offspring population using tournament selection with replacement. The same random

weights are then used for the local search to produce improved population P impr from

selected initial individual. The intermediate population P inter is produced by combining

the current population P , the offspring population P offs, and the improved population

P impr. The non-dominated population P is finally updated by the selection with re-

placement based on the Pareto ranks and crowding distances in the Updating procedure.

The generation updating is described in Fig. 2.4. The algorithm finishes when it meets

a predefined maximum number of iterations.

2.5 Evaluation Measures

2.5.1 Benchmark Problems

Benchmark problems are test functions used to verify the important characteristics of the

algorithm design, and to explore the capabilities and also possible pitfalls of the algorithm

for further improvement. In multiobjective optimization, the test functions must have

the characteristics that pose sufficient difficulties to impede the search algorithm for
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Figure 2.4: Generation update in MOMA’s evolutionary circle.

Pareto optimal solutions. Multi-modality referred to the presence of multiple local Pareto

fronts is one of the characteristics that hinders convergence in multiobjective optimization

[Deb01, GoTa09].

There exists different test problems (test functions) for multiobjective optimization

in the literature. In this report, the problems of ZDT1, ZDT2, ZDT3, and DTLZ2

are selected to validate the effectiveness of our proposed multiobjective optimization

approaches for convergent speed and the diversity of the Pareto solutions. The Problems

ZDT1-3 and DTLZ2 are well-known test problems used widely for the evaluation of

MOEAs [DTLZ02, ZiDT00]. These problems are described as follows.
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• ZDT1:

f1(x) = x1,

g(x) = 1 +

9

(
n∑
i=2

xi

)
n− 1

(2.9)

f2(x) = 1−

√
f1(x)

g(x)

where n is the number of variables; xi ∈ [0, 1]

• ZDT2:

f1(x) = x1,

g(x) = 1 +

9

(
n∑
i=2

xi

)
n− 1

(2.10)

f2(x) = g(x)

(
1−

(
f1(x)

g(x)

)2
)

where n is the number of variables; xi ∈ [0, 1]

• ZDT3:

f1(x) = x1,

g(x) = 1 +

9

(
n∑
i=2

xi

)
n− 1

(2.11)

f2(x) = g(x)

(
1−

√
f1(x)

g(x)
− f1(x)

g(x)
sin(10πf1(x))

)

where n is the number of variables; xi ∈ [0, 1]
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• DTLZ2:

f1(x) = (1 + g(xM)). cos(0.5πx1)... cos(0.5πxM−1)

f2(x) = (1 + g(xM)). cos(0.5πx1)... sin(0.5πxM−1)

... (2.12)

fM(x) = (1 + g(xM)).sin(0.5πx1)

g(xM) =
∑
xi∈xM

(xi − 0.5)2

where xi ∈ [0, 1], i = 1, 2, ..., n; M is the number of objectives; n is the number of

variables. The last k = (n−M + 1) variables are represented as xM .

The optimal Pareto fronts of these benchmark test problems are described in Ap-

pendix A.

2.5.2 Performance Evaluation Metrics

Different from the single objective optimization, where the performance metric is just

to evaluate the one scalar-objective function, in multiobjective optimization the perfor-

mance metric must assess a number of solutions each having a vector of objectives. Once

again, the design of multiobjective optimization is to obtain the optimal population that

converges to the optimal Pareto front and maintain the diversity of the set of solutions.

Thus, the performance metrics must be able to evaluate the convergence to the optimal

Pareto front and the diversity of the obtained optimal solutions.

In this report, the Inverted Generational Distance (IGD) [CoCo05, HHBW06, SiMD13]

is used as a performance metric. IGD provides a measure for both the convergent prox-

imity and the diversity of the non-dominated population with regards to the true Pareto

optimal front. The IGD metric is calculated as follows.

Let P ∗ be the set of uniformly distributed Pareto optimal solutions in the objective

space, and P be the obtained set of non-dominated solutions. The IGD value for the set
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P is defined as

IGD(P ,P ∗) =

∑
v∈P ∗ d(v,P )

|P ∗|
(2.13)

where d(v,P ) is the minimum Euclidean distance between v ∈ P ∗ and the points in P .

When the number of elements in P ∗ is large enough, IGD(P ,P ∗) could measure both

the diversity and the convergence of P . The value of IGD(P ,P ∗) is very small if P

closely spread on the true optimal front P ∗.

2.6 Summary of Chapter 2

This chapter provides a brief background on the multiobjective optimization. The back-

ground covers from definitions, theories, algorithms, and implementation, to performance

evaluations. The terms defined in this chapter are seen frequently in the next chapters

of the thesis. This background chapter is mainly focused on the area of multiobjective

optimization to support the next chapter which is about a framework of multiobjective

memetic optimization.

However, these backgrounds presented in this chapter do not cover for all methods

used for the applications we provide in Chapter 4 and Chapter 5. The backgrounds on

methods used for the applications are presented in those chapters for the self-contained

presentations.



Chapter 3

Adaptive Multiobjective Memetic

Optimization

Multiobjective optimization based on memetic algorithms (MOMA) are recently applied

to solve nonlinear optimization with conflicting objectives. An important issue on MO-

MAs is how to identify the relative best solutions to guide the adaptive processes. Pareto

dominance has been used extensively to find the relative relations between solutions for

the fitness assessment in multiobjective optimization based on evolutionary algorithms

(MOEA). However, the approach based on the Pareto dominance criterion decreases its

convergence when the number of objectives increases. The Pareto-dominance based cri-

terion is not sufficient for guiding other adaptive processes in MOMAs. In this chapter,

we propose a framework of adaptive multiobjective optimization algorithms (AMMOA)

with an effective information-theoretic criterion. The effective information-theoretic cri-

terion is designed based on the multiscale relative Rényi entropy. This criterion is used

to guide the adaptive selection, clustering, and local learning processes in our framework

of AMMOA. The implementation is applied on several benchmark test problems with

remarkable results.

44
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3.1 Introduction

Multiobjective optimization deals with the function of more than two objectives. In most

practical decision making problems, there are multiple conflicting objectives or multiple

criteria. Unfortulately, these real world problems are often difficult, if not possible, to

be solved without advanced and efficient optimization techniques. This is because these

problems are characterized by multiple objectives that are much more complex as com-

pared to the single-objective problems. Because of that, a multiobjective optimization

problem has been mostly combined and solved as a single-objective optimization prob-

lem. However, this method is just looking for one solution instead of a set of optimal

solutions.

Evolutionary algorithms (EAs) mimic the nature’s evolutionary principles to consti-

tute search and optimization procedures. EAs are metaheuristic search techniques that

are different from heuristic search methods (e.g., greedy algorithms) as follows. Heuristic

methods are problem dependent, as such they try to take full advantage of the particu-

larities of the problem. The heuristic methods are often too greedy that they are usually

trapped in a local optimum. Whereas, metaheuristic methods (e.g., EAs) do not take

advantage of any specificity of the problem, and therefore, they can be used as black

boxes. They are not greedy, and might even accept a temporary deterioration of the

solution, which allows them to explore more thoroughly the search space to search for a

better solution.

Evolutionary algorithm is a population based metaheuristic algorithm that uses a

population of solutions in each iteration, instead of a single solution in classical meth-

ods. The outcome of an EA is also a population of solutions. Thus, an EA can be

efficiently used to capture multiple optimal solutions in its final population for multi-

objective optimization problems. EAs have the important advantage of being able to

sample multiple solutions simultaneously. This feature makes EAs common-used in mul-
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tiobjective optimization (called multiobjective optimization using EAs - MOEA). Many

MOEAs have been proposed in the literature. Most of them are based on the models of

genetic algorithms (GAs) [Deb01]. Recently, biologically inspired models, such as partical

swarm (PS), differential evolution (DE), and memetic algorithms (MAs) have been intro-

duced for multiobjective optimization [LeKi13, WaCa12, IHTY09]. The main difference

between these approaches is in the method of generating new candidate solutions.

The term “meme” was first introduced and defined by Rechard Dawkins as the basic

unit of cultural transmission, or imitation [Dawk89]. Inspired by Darwinian’s evolution-

ary theory and Dawkin’s theory of memes, the term memetic algorithm was first intro-

duced by Moscato in 1989 [Mosc89]. Moscato viewed MAs as extensions of EAs that

adopt the hybridization between EA and an individual learning procedure performing

local refinements. Different from EAs, the performance of MAs relies on both the global

evolutionary search and the local search. The definition of MA is usually based on its

implementation features. For example,“Memetic algorithms are population-based meta-

heuristics composed of an evolutionary framework and a set of local search algorithms

which are activated within the generation cycle of the external framework” [NeCo12].

With the integrated local refinements within each evolutionary iteration, MAs are shown

to be more superior to GAs in convergent for different optimization problems [KrSm05].

The use of MA for multiobjective optimization (Mutiobjective optimization based on

memetic algorithms - MOMA) has attracted much attention and effort in recent years. In

the literature, MOMAs have been demonstrated to be much more effective and efficient

than MOEAs and the traditional optimization searches for some specific optimization

problem domains [KrSm05, IHTY09, NeCo12, COLT11, BTMA12, DaKi14a, DaKi14b].

The performance of an MOMA not only relies on the evolutionary framework, but also

depends on the local searches. The performance of an MOMA is illustrated through the

effectiveness and efficiency evaluations. The effectiveness of an MOMA is evaluated by
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the convergent speed and the diversity of the obtained optimal Pareto solutions. The effi-

ciency of an MOMA is given by its applicability and complexity. There are different MO-

MAs introduced in the literature for domain-specific applications [MLMH10, LSCS10].

Several studies have shown that MOEAs scale poorly with regard to increasing the

number of objectives [KhYD03, Hugh05, FaPC10, FaPC09]. The main reason is that the

principle of Pareto dominance, which is mostly used as a ranking criterion in MOEAs,

is less effective when the number of objectives in MOEAs increases. Therefore, only

Pareto ranking based MOEAs is not sufficient for solving multiobjective optimization

problems. The current MOMAs in the literature use Pareto-dominance ranking as a

convergence measure to guide learning processes. On the other hand, diversity preserva-

tion is another critical issue of multiobjective optimization problem (MOP). The diversity

preservation is performed based on diversity assessment criteria (e.g., density, distance,

or distribution based criteria). When the number of objectives in an MOP increases,

the diversity criterion plays the key role in selecting the solutions. In this context, an

effective diversity assessment criterion can help a multiobjective optimization algorithm

(e.g., MOEA, MOMA) converges well. Thus, the need for an effective mechanism of

diversity preservation is also critical. Besides, in MOMA local searches are adopted for

individual learning. Individual refinements can help improve the convergence; however,

it can destroy the diversity of the population if we do not have a wise criteria for guiding

the search and a well-designed learning mechanism as well [DaKi15a].

In this work, we propose an effective information-theoretic criterion based on the mul-

tiscale relative Rényi entropy. This information-theoretic criterion is used to guide the

adaptive selection, clustering, and local learning processes in our adaptive multiobjective

memetic optimization algorithms (AMMOA). The AMMOA framework is proposed based

on the observation from the real human cultural evolution that the individuals are gone

through a hierarchical social learning structure. They first learn from their small com-
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munities to grow to compete with others in their local communities. The best individuals

from small communities then contribute to the bigger community. They learn and com-

pete each other to improve the community. The AMMOA framework adopts two layers

of local learning with adaptive factors. This framework uses the proposed information-

theoretic criterion to guide the adaptive selection, clustering, and local learning processes

for improving the convergence and the diversity of the obtained population. The main

contribution of this work are as follows.

1. An effective information-theoretic criterion is proposed to guide the adaptive pro-

cesses such as the selection, clustering, and local learning processes in adaptive

multiobjective optimization techniques.

2. A framework of adaptive multiobjective memetic optimization algorithms (AM-

MOA) based on the proposed information-theoretic criterion is introduced.

3. An implementation of the AMMOA framework with the adaptive tournament se-

lection, fuzzy-clustering, Tabu local searches, and an online stopping criterion, all

guided by the proposed information-theoretic criterion, is introduced with remark-

able results.

4. An robust online stopping criterion is introduced for AMMOA.

3.2 Information Theoretic Criterion

3.2.1 Relative Probability

In this section, we define the relative probability of each individual in the population for

computing the information measures. A relative probability is considered as a dominating

probability which shows the probability of an individual dominating the other individuals

in a selected pool.
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Let recall a simplified multiobjective optimization problem (MOP) from the problem

formulation in Eq. (2.1) as

minimize f(x) = {f1(x), f2(x), f3(x), ..., fM(x)} (3.1)

subject to x ∈ X

where x is a decision vector containing decision variables, f(x) is the M -dimensional

objective vector (M ≥ 2), fm(x) is the mth objective function (m = 1, 2, ...,M), and X

is the feasible variable region defined by the user constraints.

Let P is the population including NP feasible solutions for the problem in Eq. (3.1).

Let P ′ ⊂ P is the subset of P , and NP ′ ≤ NP . We define the relative probability of the

mth objective function of the solution xi in the sub population P ′ as

pm(xi) =

∑
j#i;xj ,xi∈P ′ 1(max(fm(xj)−fm(xi),0))

NP ′
(3.2)

where

1(max(fm(xj)−fm(xi),0)) =


1, if max (fm(xj)− fm(xi), 0) > 0;

0, if max (fm(xj)− fm(xi), 0) = 0;

(3.3)

Lemma 3.1. Let xt and xq (t#q, 1 ≤ t, q ≤ NP ) are the feasible solutions of the

population P . The solution xt is said to dominate the solution xq if the relative prob-

abilities of the objective functions satisfy pm(xt) ≥ pm(xq), ∀m = {1, 2, ...,M}, and

∃n ∈ {1, 2, ...,M} : pn(xt) > pn(xq).

Lemma 3.2. solution x∗ ∈ P is said to be non-dominated solution in the population P

if ∀x ∈ P , pm(x∗) ≥ pm(x), ∀m = {1, 2, ...,M}, and ∃n ∈ {1, 2, ...,M} : pn(x∗) > pn(x).

3.2.2 An Information Theoretic Criterion

From Lemma 3.1 and Lemma 3.2, it can be inferred that an optimal solution is the

solution that maximizes the relative probabilities as defined in Eq. (3.2). It can also state
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that the solution that maximizes the relative probabilities is the solution minimizes the

distance between the vector of M relative probabilities, 〈p1(x), p2(x), ...pM(x)〉 and the

reference ideally optimal vector, 〈11, 12, ..., 1M〉. There are different distance measures

that can be used to measure a distance between two vectors. They can be 1-norm

distance, 2-norm distance, p-norm distance, and information distance. While the p-norm

distances are usually used for measuring distances between two absolute real vectors, the

information distances are used for measuring the distances between two distributions or

probabilistic vectors.

Let us investigate a p-norm distance in this context. First, let’s redefine the relative

probability vector of the solution x, and the reference vector as p(x) = 〈p1(x), p2(x), ...pM(x)〉,

and r = 〈r1, r2, ..., rM〉 = 〈11, 12, ..., 1M〉, respectively. The p-norm distance between two

vector p and r is given by

fp(x) = fp(p, r) =

(
M∑
i=1

|ri − pi(x)|p
) 1

p

=

(
M∑
i=1

|1− pi(x)|p
) 1

p

(3.4)

where p is a real number.

According to this p-norm distance, the solution x1 dominates the solution x2 if

fp(x1) < fp(x2). If the value p = 1 we have the 1-norm distance, and 2-norm dis-

tance if p = 2, and so on. With this distance criterion, the best solution we want to

get is the one having all relative probabilities as close as possible to the hypothetical

reference vector r. However, in practice there exists tradeoffs between the M objective

functions. That means there are tradeoffs between the relative probabilities in the rela-

tive probability vector. Thus, the p-norm distances are not sufficient for characterizing

the distance between a solution to a reference as a criterion for guiding other procedures

in an MOMA.

In this work, we adopt the generalized Rényi divergent or Rényi relative entropy as
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an information distance measure. The Rényi divergent or Rényi relative entropy between

the distribution vector r and p(x) is defined as [KiDa06, Reny70]

fRq(x) = HRq(r||p(x)) =
1

q − 1
log

∑M
j=1 rj

(
rj

pj(x)

)q
∑M

j=1 rj

=
1

q − 1
log

∑M
j=1 1

(
1

pj(x)

)q
M

=
1

q − 1
log

∑M
j=1 (pj(x))−q

M
(3.5)

where 0 ≤ q ≤ ∞.

The Rényi relative entropy, fRq(x) in Eq. (3.5) has many interesting and good prop-

erties for an effective distance measure. These properties are described in the following

lemmas.

Lemma 3.3. The distance measure between r and p(x), fRq(x), is a monotonic non-

increasing function in q#0, 1.

Lemma 3.4. The measure fRq(x) = 0 when q = 0.

Lemma 3.5. If the distribution p(x) has reached the reference vector r, then the distance

fRq(x) = 0.

Lemma 3.6. For q ← 1, fRq(x) becomes Kullback-Leibler divergence:

fRq(x)
q←1

=
M∑
j=1

rj log
rj

pj(x)

=
M∑
j=1

− log pj(x) (3.6)

The Rényi relative entropy spectrum is a multiscale measure that is good for tuning

and comparing two distributions. However, it is too complex to be a tuning metric for a
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simulation run in multiobjective optimization algorithms. To make it applicable, we use

a scalar metric, named Rényi’s relative summation entropy (RRSE), defined as

RRSE(r||p(x)) =
20∑
q=1

fRq(x) (3.7)

In Eq. 3.7, when q = 1 (it is the case of q → 1), fRq(x) becomes Kullback-Leibler

divergence as provided in Lemma 3.6.

Lemma 3.7. Let RRSE(x1) and RRSE(x2) are the RRSE of the solution x1, and the RRSE

of the solution x2 in the feasible population P , respectively. If RRSE(x1) < RRSE(x2),

then solution x1 dominates the solution x2.

The proofs of Lemmas 3.1–3.7 are described in Appendix B. The metric RRSE is

used as a criterion for guiding our adaptive tournament selection, clustering, and local

searches in our AMMOA framework.

3.3 AMMOA Framework

In this section, a framework of adaptive multiobjective memetic optimization algorithms

(AMMOA) is presented. The skeleton of the framework is graphically described in Fig.

3.1.

The framework consists of eight following modules.

(i) Initialize Population: This module is to create the initial population P init. The

initial population can be produced by a random number generator (e.g., pseudo ran-

dom generation, Monte Carlo methods, Fibonacci sequences) or chaotic sequences

generated from chaotic maps (e.g., logistic map, Gauss map, Hẽnon map).

(ii) Selection: In this module, the parent population is selected from the current popu-

lation to form an intermediate mating pool for generating an offspring population
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Figure 3.1: The AMMOA framework.
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in the next procedure. The selection operator is based on the proposed RRSE

criterion in Eq. (3.7). There are several selection operators proposed in the liter-

ature, such as proportional selection, ranking selection, and tournament selection

[Gold89, Deb01]. The brief introductions of these selection methods are described

in Chapter 2, Sec. 2.3. In this work, the tournament selection based on the RRSE

criterion is used for the selection of parent population in the AMMOA framework.

The tournament selection with the RRSE criterion is described in Algorithm 4.

Algorithm 4 Selection Operator Using RRSE

1: procedure Selection(P , Ntour, Npar, pt)

2: Calculate the metric RRSE for each individual in the solution P .

3: repeat

4: Pick Ntour (tournament size) individuals from the population P at random.

5: Select the best individual having the least RRSE value from the tournament

with the probability pt.

6: Select the second best individual having the second least RRSE from the

tournament with the probability pt(1− pt).

7: Select the third best individual having the third least RRSE from the

tournament with the probability pt(1− pt)2, and so on.

8: until Terminated Conditions (Have Npar best individuals)

9: return Npar parent individuals

10: end procedure

In our tournament selection algorithm, to increase the population diversity, not

only the best solution is picked at each generation but also solutions that are a

bit worse is able to contribute to the evolution process. If the probability pt = 1,

only the best individual is picked to be the parent in each tournament. Thus, the

probability pt can be adjusted to increase the diversity of the parent population to
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produce a diverse offspring population.

(iii) Generate New Individuals : This is an important module of the framework. It

produces the new offspring population P offr by mating or learning from the parent

population P par. In evolutionary framework, this module consists of crossover and

mutation operators. In this work, we use the simulated binary crossover (SBX) and

the polynomial mutation to implement this module. These operators are described

in Chapter 2, Sec. 2.3.

(iv) Combining and Clustering : In this module, the parent population P par and the

new offspring population P offr are firstly combined into an intermediate population

P C . Then the metric RRSE of each individual in the new intermediate population

P C is calculated. A clustering algorithm is then applied to cluster the population

P C into C clusters. The RRSE measure is used as the feature for the clustering

algorithm. The diversity measure is also computed in this step to evaluate the

diversity of the intermediate population P C . The main processing steps of this

module are described in Algorithm 5.

It can be seen that the created diversity of the combined population P C after

performing genetic operators (e.g., crossover and mutation) is not destroyed by

the clustering algorithm. The diversity of the population P C is maintained to

contribute to the ”Combining and Updating 1” module. The clustering algorithm

is only used for checking the diversity of the population P C and helping Local

Search 1 search for a diverse and better neighborhood population, if the population

P C is checked to be well-diverse.

In this module, any fast clustering methods can be used to cluster the intermediate

population P C into Nc clusters. The proposed metric RRSE is used as the feature

for clustering and computing the clustering quality index IQ. The clustering quality
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Algorithm 5 Combining and Clustering (COM CLUS)

1: procedure com clus(P par,P offr, Nc)

2: Combine the parent population and the offspring population into the intermediate

population: P C ← P par ∪ P offr.

3: Calculate the metric RRSE for each individual in the population P C .

4: Cluster the population P C into Nc clusters denoted by CLi, i = 1, 2, ..., Nc, based

on the metric RRSE.

5: Calculate the clustering quality index IQ in Eq. (3.10).

6: return The population P C , clusters CLi, i = 1, 2, ..., Nc, the quality index IQ.

7: end procedure

index Q is computed based on both the homogeneity and separation of clusters.

While homogeneity is calculated as the average distance between each individual

and the centroid of the cluster it belongs to, separation is calculated as the weighted

average distance between cluster centroids. The expressions of homogeneity index

and separation index are given in Eq. (3.8), and (3.9), respectively.

IH =
Nc∑
i=1

1

|CLi|
∑

Sj∈CLi

D(Sj, ci) (3.8)

IS =
1

N2
c

Nc∑
i#j

D(ci, cj) (3.9)

where the distance D is Euclidean distance, ci is the centroid of the cluster CLi,

Sj is the individual j of the cluster CLi, |CLi| is the number of individuals in the

cluster CLi.

It can be seen that the index IH reflects the compactness of the clusters, and

the index IS reflects the overall distance between clusters. Thus, increasing IH or

increasing IS suggest an improvement of the diversity of the population. Therefore
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we propose a clustering quality index IQ used to evaluate the diversity is the average

of the homogeneity index and the separation index as given by

IQ = IH + IS (3.10)

If the index IQ has a small value, the individuals in the population P C are too

close to each other. The population P C is said to be diverse if the index IQ has a

large value or be greater than a bound value IQ0.

(v) Diversity Check : The clustering quality index IQ is used to check the diversity of

the population P C . The index IQ of each evolution is stored in a memory. Denote

I tQ is the clustering quality index at the evolution t, the bound of the index I tQ at

the evolution t is given by

I tQ0 =
1

t0

t−1∑
i=t−t0

1

2(t− i)
I iQ (3.11)

The diversity check compares the current clustering quality index I tQ with its bound

I tQ0. If I tQ > I tQ0, the population maintains the diversity well. To make sure the

system has a right decision, we desire to check the diversities of two sequential

evolutions before making the final decision as follows. The population is said to

be not diverse if in two sequential evolution t and t + 1, their clustering quality

indexes are smaller than their bounds I tQ0 and I t+1
Q0 , respectively.

When the module decides the population P C is not diverse at the current evolution,

it sends a control signal to reduce the picking probability pt at the “Selection”

process to increase the diversity of the parent population P par. Each time of

controlling, the adjustment step is set to 0.05.

When the population P C is evaluated to be diverse enough, Local Search 1 is

applied to Nc clusters CLi, i = 1, 2, ..., Nc with the probability of plocal1, to refine
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individuals in each cluster. If the clusters are too compact and close to each other,

the local search produces overlap improved individuals. This reduces the diversity

of the population very much. Thus, maintaining the diversity of the population

before any local refinement is very important in each evolution of the framework.

(vi) Local Search 1 : This module produces improved individuals for each cluster CLi.

The main steps involved in Local Search 1 are shown in Algorithm 6.

Algorithm 6 Local Search 1

1: procedure local search1(CL, plocal1)

2: For each cluster CLi, with the size NCLi , i = 1, 2, ..., Nc, select the best individual

having the least RRSE value.

3: For each cluster CLi, apply a local search algorithm to the selected individual

with the probability Plocal1 to find the NCLi refined individuals.

4: Combine all the refined individuals into the improved population Pimpr1.

5: return The improved population P impr1.

6: end procedure

Local Search 1 is only applied when the population P C is declared to have a good

diversity in the “Combining and Clustering” module. It can be seen that all the

clusters CLi, i = 1, ..., Nc are locally refined with the same probability plocal1. In

each cluster, only the best individual having the least RRSE value is subjected to a

local search in any generation of the local search algorithm. This best individual is

also called the initial individual for the local search in each cluster. Local Search 1

tries to find NCLi better individuals for each cluster CLi after a predefined number

of local iterations. In each local simulation run, the objectives of each individual

is combined based on the random weights defined in Eq. (2.8) for evaluation and

comparison.
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(vii) Combining and Updating 1 : This is the first elitism module in our framework. First,

the intermediate population P C and the improved population P impr1 are combined

to become the population P I1. The elitism is then applied to the combined popu-

lation P I1 to preserve the Np best individuals. These main steps involved in this

module are shown in Algorithm 7.

Algorithm 7 Combining and Updating 1

1: procedure combine update1(P impr1,P C)

2: Combine the two populations: P I1 ← P C ∪ P impr1.

3: Apply an elitist strategy to the population P I1 to preserve theNp best individuals.

These Np best individual form the population P ′.

4: return The population P ′ with Np individuals.

5: end procedure

The process of updating uses an elitist strategy to preserve the Np best individuals.

The elitism is an important procedure in this module. It should both improve the

convergence greatly and preserve the diversity of the population.

(viii) Local Search 2 : This second local search is applied to refine the population P ′.

Different from Local Search 1 that is applied to each cluster for local refinement, in

Local Search 2, the search is applied to the whole population for a global refinement.

While Local Search 1 is both for improving diversity and convergence, Local Search

2 is mainly for speeding up the convergence. The main steps in Local Search 2 are

shown in Algorithm 8.

It can be seen that Algorithm 8 has two functionalities including population refine-

ment and the calculation of stopping indicator values. For each individual x in the

population P ′, the algorithm generates Nnb neighbors surrounding x within a ra-

dius. These generated neighborhood individuals are then evaluated to calculate the
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Algorithm 8 Local Search 2

1: procedure local search2(P ′)

2: For each individual in the population P ′, generate Nnb neighborhood individuals.

3: Evaluate the objective functions and the information measure RRSE of the

generated neighborhood individuals.

4: Calculate the stopping indicator function based on dominance feature, SIDF .

5: Update the best dominating individuals to form the improved population Pimpr2.

6: return The improved population P impr2, and the stopping indicator value SIDF .

7: end procedure

information theoretic measure RRSE. Based on the information criterion RRSE, the

algorithm can evaluate the dominating quality of each individuals. The stopping

indicator feature is then calculated based on the quality and quantity of dominat-

ing individuals which dominates the solution x. The articulation and procedures

of designing this stopping criterion are provided in the section of “Termination

Criteria”.

After Local Search 2, the improved population P impr2 is competed with the popu-

lation P ′ to select the Np best individuals. This updating process is implemented

in the “Combining and Updating 2” module.

(ix) Combining and Updating 2 : In this module, the individuals of the population

P impr2 and the population P ′ are competed each other to preserve the Np best

individuals. To do that, the population P ′ and the population P impr2 are combined

into the population P I2. An elitist strategy is then applied to the population P I2

to preserve the Np best individuals forming the population P . These main steps

are shown in Algorithm 9.

(x) Termination Criteria: Most evolutionary algorithms are terminated after a pre-
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Algorithm 9 Combining and Updating 2

1: procedure combine update2(P impr2,P
′)

2: Combine the two populations: P I2 ← P ′ ∪ P impr2.

3: Apply an elitist strategy to the population P I2 to preserve theNp best individuals.

These Np best individuals form the population P .

4: return The population P with Np individuals.

5: end procedure

defined number of generations. In our framework, the algorithm can be stopped

according to a predefined number of iterations, or based on an online stopping

criterion. Specifically, we proposed an online stopping criterion calculated in Lo-

cal Search 2, which based on the dominance quality of the generated neighborhood

population. The dominance quality is calculated based on the information theoretic

criterion RRSE.

The idea of using a dominance quality as an online criterion to evaluate the

performance of a multiobjective evolutionary algorithm has recently studied in

[GMBG10, TWNP09, BWBA09]. The motivation is that if a solution x∗ is an

optimal solution in the Pareto optimal set, there are no neighborhood solutions

that dominate x∗. Ideally, the number of generated neighborhood individuals that

dominate a solution x reduces in each iteration until 0 (optimal). This articulation

is showed in Fig. 3.2.

Based on the observation in Fig. 3.2, we define the dominance quality indicator

of each neighborhood area (Ω) of the considering solution x is the number of indi-

viduals dominating the solution x over the number of generated individuals in Ω,

calculated from

dqΩ =

∑
y∈Ω 1(x,y)

Nnb

(3.12)
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Figure 3.2: Neighborhood demonstration in the objective space.

where

1(x,y) =


1, if Ry

RSE < Rx
RSE;

0, otherwise

(3.13)

The dominance quality of the whole population is the average of the dominance

quality indicators of neighborhood areas, which is used as a stopping indicator

calculated from

SIdq =

∑Nnb
i=0 dqΩ(i)

Npop

(3.14)

The indicator values SIdq calculated in each evolutionary iteration from the local

search 2 is used as feature to predict the convergence of AMMOA. Specifically,

by analyzing SIdq, we can formulate a robust stopping criterion for AMMOA.

The procedure is simply described as follows. After a number of iterations (e.g.,
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50 iterations), SIdq, calculated from Local Search 2, is analyzed by using a time

window of size 30. The new time window is setup to overlap with the previous

window in 10 elements. In each window, the mean µ and the standard deviation

σ are calculated. The mean and the standard deviation are then compared with a

predefined stopping threshold ε. If µ ≤ ε and σ ≤ ε, the algorithm indicates that

AMMOA converges to the Pareto optimal front and stops. Ideally, the threshold is

set to 0; however, in practice the threshold is a small number (e.g., ε = 10−3) and

can be varied with different multiobjective optimization problems. The procedure

of determining the stopping criterion based on the calculated indicator values SIdq

is described in Fig. 3.3.

Figure 3.3: Concept of calculating the stopping criterion.
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3.4 An Implementation of The AMMOA Framework

In this section, we present an implementation of the proposed AMMOA framework. The

new components of the implementation are as follows: (i) the function “generate off-

spring population” is implemented by simulated binary crossover (SBX) and polynomial

mutation; (ii) the clustering is implemented by fuzzy C-mean clustering; (iii) the local

searches are implemented based on the principles of Tabu local search; (iv) The updating

procedure adopts the elitist strategy of NSGA-2 with non-dominated sorting based on

Pareto ranks and crowding distance. The main implementation is described in Algorithm

10.

1) Generating the offspring population: Algorithm 10 strictly follows the proposed

AMMOA framework. The offspring population is generated by the simulated binary

crossover (SBX) with the crossover probability of px = 0.8, and the polynomial mutation

with the mutation probability pm = 1/Np. The details of these two genetic operators are

described in Chapter 2, Sec. 2.3.

2) Clustering : In AMOMA, we propose to use fuzzy c-mean (FCM) clustering method

to cluster the combined population P C into Nc clusters CLi, i = 1, 2, ..., Nc based on

the relative metric RPC
RSE.

FCM clustering algorithm was introduced by Dunn [Dunn74] and later generalized

by Bezdek [Bezd81]. FCM is an iterative clustering method that produces an optimal

Nc partitions by minimizing the following error objective function.

Jm =
N∑
i=1

Nc∑
k=1

umkid
2(xi, vk) (3.15)

where xi is the ith data item of the data set X = {xi}Ni=1, N is the number of data

items, {vk}Lk=1 are the centers of the clusters; m is fuzzy exponent; uki is the membership

function of xi in the kth cluster, d2(xi, vk) is a distance measure between object xi and

cluster center vk. The objective function can get the minimum by updating uki and vk
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Algorithm 10 Adaptive Multiobjective Memetic Algorithm (AMMOA)

1: procedure AMOMA(Np)

2: Generate random population P having (Np) individuals

3: Evaluate objectives: P ← OBJ-EVAL(P )

4: Calculate the metric vector: RPRSE ← RRSE(P )

5: repeat

6: Select the parent population: P par ← SELECTION(P ,RPRSE , psel)

7: Generate the offspring population P offs by simulated binary crossover (SBX) with

probability px, and polynomial mutation with probability pm

8: Combine populations: PC ← P ∪ P offs

9: Calculate the metric vector: RPCRSE ← RRSE(PC)

10: Fuzzy C-mean clustering: CL ← FCM-CLUSTER(PC ,R
PC
RSE , Nc)

11: Check the diversity: if PC is diverse, go to step 12; otherwise, reduce the selection

probability psel ← psel − 0.05 and go back to step 6.

12: Local search 1: P impr1 ←LOCAL-SEARCH-1(CL,RPCRSE , pls1)

13: Combine population: P I1 ← PC ∪ P impr1

14: Fast Non-Dominated Sort

15: Crowding Distance Assignment

16: Update Population: P ′ ← UPDATING(P I1)

17: Local Search 2: P impr2, SIdq ←LOCAL-SEARCH-2(P ′)

18: Combine population: P I2 ← P ′ ∪ P impr2

19: Fast Non-Dominated Sort

20: Crowding Distance Assignment

21: Update Population: P ← UPDATING(P I2)

22: Evaluate Stopping Criterion: stop flag ← STOP-EVAL(SIdq)

23: until Terminated Conditions: stop flag = 1 or reaching the max iteration

24: return Non-Dominated Population P

25: end procedure
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as follows.

uki =
1∑Nc

j=1

(
d2(xi,vk)
d2(xi,vj)

) 1
m−1

(3.16)

vk =

∑N
i=1 u

m
kixi∑N

i=1 u
m
ki

(3.17)

A defuzzification process takes place when the algorithm converges (ie., max|V t−V t+1| <

ε, where V = [v1, v2, ......vl] are the vector of the cluster’s centroids) in order to convert

the fuzzy partition matrix U to a crisp partition. This procedure assigns the data item ith

to the class CLk with the highest membership CLk = arg{max{uki}}, k = 1, 2, ..., Nc.

The FCM based clustering algorithm used in AMMOA is described in Algorithm 11.

3) Local Searches : Various local searches used in optimization have a tendency to

become stuck in suboptimal regions where many solutions are equally fit. In AMMOA,

we use a modified Tabu search for the local searches (Local Search 1 and Local Search

2) because it enhances the performance of local searches by introducing the rule of

prohibitions to discourage the search from coming back to previous-visited solutions.

In addition, at each step, worsening moves can be accepted if no improving move is

available. These rules are implemented by maintaining a Tabu list.

Local Search 1 is described in Algorithm 12. It can be seen in Algorithm 12 that

the Tabu search is applied to every cluster with the probability pls1. In each cluster the

individual having the least RRSE value is selected as the initial solution for the Tabu

local search.

Local Search 2 is very different from the local search 1 even though it uses the

principle of Tabu list to update the improved individuals. The details of Local Search 2

are described in Algorithm 13.

4) Elitist strategy (Updating): In AMMOA, the procedure “Non-dominated Sort” and

“Crowding Distance Assignment” are the components of the elitist strategy proposed in

NSGA-2 [DPAM02]. This elitism is introduced shortly in Chapter 2, Sec. 2.3. The
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Algorithm 11 FCM Based Clustering

1: procedure fcm-cluster(P C ,R
PC
RSE, Nc, ε)

2: N ← size(P C , 1)

3: Initialize the fuzzy partition matrix U (0), the fuzzy exponent m← 2

4: Set the loop counter l← 0

5: Calculate the Nc cluster centers v
(l)
k with partition matrix U (l) by

v
(l)
k =

∑N
i=1 u

m
kiR

PC
RSE(i)∑N

i=1 u
m
ki

(3.18)

6: Calculate the Euclidean error distances by

d2(RPC
RSE(i), vk(l)) = ||RPC

RSE(i)− vk(l)||2 (3.19)

7: Update the membership matrix U (l+1) by

u
(l+1)
ki =

1∑Nc
j=1

(
d2
(
R
PC
RSE(i),vk

)
d2
(
R
PC
RSE(i),vj

)
) 1

m−1

(3.20)

8: If max{U (l) − U (l+1)} < ε then stop, otherwise, set l← l + 1 and go to step 5.

9: Defuzifize and assign individuals of P C in to Nc clusters {CLi}Nci=1

10: return The Nc clusters {CLi}Nci=1

11: end procedure

Updating procedure can be summarized as follows. The non-dominated sorting uses

the Pareto ranks and crowding distance to sort the population. First each individual

in the population is evaluated the rank and sorted ascendingly based on their Pareto

ranks. The crowding distance are then evaluated and assigned for each individual. The

individuals in each rank are sorted descendingly based on their crowding distance values.

The Np best individuals are selected based on the smallest ranks first, and follow the

max crowding distance values.
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Algorithm 12 Tabu LocaL Search 1

1: procedure LOCAL-SEARCH-1(CL, pls1)

2: for k ← 1, Nc do . Do Tabu search for each cluster

3: POP ← CL{k}; NLS ← size(POP, 1);

4: TL ← ∅ . Initialize the Tabu List

5: if rand() ≥ pls1 then

6: rnd weight ← Lambda(M) . Random weights for M objectives

7: InitSolution ← LeastRRSE(POP ) . Select initial solution for the search

8: x ← InitSolution ;

9: fx ← rnd weight. ∗ InitObjs . InitObjs: objectives of InitSolution

10: itrs ← 0; BestObj ← fx

11: repeat

12: itrs ← itrs+ 1

13: x ns ← Neighbor-Generate(x,NLS) . Generate NLS neighbors

14: for i← 1, NLS do

15: x nsObjs ← OBJ-EVAL(x ns(i, :)) . Objective evaluation

16: f x ns(i) ← x nsObjs. ∗ rnd weight
17: if f x ns(i) < BestObj and x ns(i, :) /∈ TL then

18: xnew ← x ns(i, :); fnew ← f x ns(i);

19: else

20: xnew ← x; fnew ← BestObj;

21: end if

22: Update the Tabu list TL

23: end for

24: x ← xnew; BestObj ← fnew;

25: until itrs ≥MaxItrs

26: TL ← Sort(TL, rnd weight) . Sorting the Tabu list

27: end if

28: P temp{k} ← TL(1 : NLS, :)

29: end for

30: P impr1 ← P temp{1} ∪ P temp{2} ∪ ... ∪ P temp{Nc} . Combining populations

31: return P impr1

32: end procedure
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Algorithm 13 Tabu LocaL Search 2

1: procedure LOCAL-SEARCH-2(P ′)

2: Npop ← size(P ′,1)

3: TL ← ∅ . Initialize the Tabu List

4: for i← 1, Npop do

5: x nb ← NB-GENERATE(P ′(i, :), Nnb, r) . Generate Nnb neighbors within

radius r

6: for j ← 1, Nnb do

7: x nbObjs ← OBJ-EVAL(x nb(j, :)) . Objective evaluation

8: end for

9: P nb ← P ′(i, :) ∪ x nb . Combinel P ′(i, :) and xnb

10: x nbRRSE ← RRSE(P nb) . Calculate RRSE

11: Calculating the stopping indicator value SIdq by Eq. (3.14) and Eq. (3.12).

12: best nb ← min(x nbRRSE < xRRSE) . The best dominating individual

13: Update best nb in the Tabu list TL

14: end for

15: P impr2 ← TL

16: return P impr2

17: end procedure

3.5 Experimental Results and Discussion

In the experiments, we use the continuous test problems introduced in Chapter 2. They

are bi-objective ZDT test functions (ZDT1, ZDT2, ZDT3), and tri-objective test function

DTLZ2. All the test problems are setup with the number of variables n = 5. All the

experimental results are compared with the results obtained from the well-known MOEA

algorithm, NSGA-II, with the same settings.

The size of the population in this experiment for both AMMOA and NSGA-II is setup

to Np = 100 for bi-objective functions (ZDT1-3), and Np = 200 for the tri-objective
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function DTLZ2. In AMMOA, the number of cluster Nc is setup to 10 for bi-objective

problems and 20 for tri-objective problems. The probability of Local Search 1 is set to

0.5. To reduce the computation time of the relative probabilities, we setup the size of the

pool of random selected individuals is the Np/4. In the diversity check module, we set

up the autoregressive value t0 = 5 that means the lower bound of the clustering quality

index is calculated based on the 5 past values of IQ.

The convergence and diversity of the population after each simulation run are evalu-

ated by IGD metric which is introduced in Chapter 2. To calculate the IGD value after

each simulation run, we need to know the actual Pareto optimal front of the test prob-

lem. If we do not know the actual Pareto fronts of the test problems, we can produce a

very good upper approximation to the Pareto fronts by solving the linear programming

(relaxation) of the Tchebycheff’s approximation equation with a number of uniformly

distributed weights λ for simple test problems [Jasz02].

To visualize the behavior of the stopping indicator SIdq values, we first run the

algorithm with the stopping criterion is the max iterations of 500 and the algorithms. We

next implement the online stopping criterion to detect the convergence of the algorithm.

First we do the experiments with bi-objective problems (ZDT1, ZDT2, ZDT3). In

these experiments, the population size is 100, and the max iterations is 500. The evolution

of the IGD metrics for each test problems in the first 300 iterations are described in Fig.

3.4, 3.5, and 3.6.

It can be seen from Fig. 3.4, 3.5, and 3.6 that the proposed AMMOA performs

very well on the bi-objective test problems. It is more superior than the NSGA-II in

convergence and diversity. With the test problem ZDT1, AMMOA almost reaches the

minimum IGD value after 20 simulation runs, while it is 180 simulation runs for NSGA-

II. With the test problem ZDT2, AMMOA reaches the minimum IGD after 90 iteration

runs, while NSGA-II almost reaches that value after 200 iteration runs. With the test
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Figure 3.4: IGD metric in AMMOA and NSGA-II for the test problem ZDT1.

Figure 3.5: IGD metric in AMMOA and NSGA-II for the test problem ZDT2.
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Figure 3.6: IGD metric in AMMOA and NSGA-II for the test problem ZDT3.

problem ZDT3, AMMOA obtains the minimum IGD after around 25 simulation runs,

while it is 190 for NSGA-II. These results indicate that AMMOA converges much faster

than NSGA-II in minimizing the IGD metric value for the bi-objective test problems.

To show the effective of the proposed AMMOA, we visualize the Pareto fronts of the

obtained population after 30 simulation runs. These Pareto fronts of AMMOA are also

compared with the Pareto fronts obtained by NSGA-II in the same settings. The Pareto

fronts obtained by AMMOA and NSGA-II after 30 simulation runs for the bi-objective

test problems ZDT1, ZDT2, and ZDT3 are described in Fig. 3.7, Fig. 3.8, and Fig.

3.9, respectively. The results show that AMMOA obtains very good convergence and

diversity just in few simulation runs. It is much superior to the NSGA-II approach.

The online stopping indicators SIdq calculated for 500 iterations for the test problems

ZDT1, ZDT2, and ZDT3 are described in Fig. 3.10, Fig. 3.11, and Fig. 3.12, respectively.

The stopping threshold is setup by ε = 10−3. With the test problem ZDT1, the algorithm
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Figure 3.7: Pareto front of the non-dominated solutions after 30 iterations for the test

problem ZDT1.

stops at the iteration 110 (the detected stopping criterion = 110). The algorithm stops

at the iteration 170 for the test problem ZDT2, and the algorithm stops at the iteration

105 for the test problem ZDT3.

The obtained Pareto fronts of non-dominated solutions after stopping because of de-

tecting the convergence (the online stopping criterion) for the bi-objective test problems

ZDT1, ZDT2, and ZDT3 are illustrated in Fig. 3.13, Fig. 3.14, and Fig. 3.15, respec-

tively. The detected Pareto optimal fronts are also compared with the fronts obtained

by the algorithm NSGA-II with the prefixed 200 iterations. It can be seen that the

solutions obtained by AMMOA are spread extremely well on the whole optimal Pareto

fronts. Both AMMOA and NSGA-II obtained the optimal Pareto fronts. However, AM-

MOA converges very fast to the optimal front, and obtains very good diversities for the

non-dominated populations.
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Figure 3.8: Pareto front of the non-dominated solutions after 30 iterations for the test

problem ZDT2.

We next do the experiments with the three-objective test problem DTLZ2. In these

experiments, the population size Np is setup to 200, and the maximum iterations is

also setup to 500. The online stopping indicators SIdq calculated for 500 iterations for

DTLZ2 is shown in Fig. 3.16. The stopping threshold is also setup by ε = 10−3. With

this stopping threshold value, the algorithm stops at the iteration 252.

To show the performance of our proposed AMMOA, we plot the true Pareto optimal

front of the test problem DTLZ2 for comparisons. The true Pareto optimal front and its

3D surface of the test problem DTLZ2 are shown in Fig. 3.17 and Fig. 3.18.

The evolution of the IGD metric for test problem DTLZ2 is described in Fig. 3.19. It

can be also seen that that the proposed AMMOA performs well on the three-objective test

problem DTLZ2. It is more superior than the NSGA-II algorithm in both convergence

and diversity. However, both AMMOA and NSGA-II are not able to get the optimal
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Figure 3.9: Pareto front of the non-dominated solutions after 30 iterations for the test

problem ZDT3.

Figure 3.10: The online stopping indicator SIdq of the test problem ZDT1.
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Figure 3.11: The online stopping indicator SIdq of the test problem ZDT2.

Figure 3.12: The online stopping indicator SIdq of the test problem ZDT3.
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Figure 3.13: Pareto front of the non-dominated solutions for the test problem ZDT1: (a)

AMMOA stopping at 110 iterations; (b) NSGA-II with the prefixed 200 iterations.

Figure 3.14: Pareto front of the non-dominated solutions for the test problem ZDT2: (a)

AMMOA stopping at 170 iterations; (b) NSGA-II with the prefixed 200 iterations.
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Figure 3.15: Pareto front of the non-dominated solutions for the test problem ZDT3: (a)

AMMOA stopping at 105 iterations; (b) NSGA-II with the prefixed 200 iterations.

Figure 3.16: The online stopping indicator SIdq of the test problem DTLZ2.
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Figure 3.17: The true Pareto optimal front of the test problems DTLZ2.

Figure 3.18: The 3D visualization of the true Pareto optimal front’s surface of DTLZ2.
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value of IGD metrics as in the two-objective test problems.

Figure 3.19: IGD metric in AMMOA and NSGA-II for the test problem DTLZ2.

The three dimensional obtained Pareto fronts of the non-dominated solutions after

stopping at the detected convergence at the iteration 252 for the three-objective test

problem DTLZ2 are shown in Fig. 3.20. The surfaces of these obtained Pareto fronts are

depicted in Fig. 3.21. The results are compared with the fronts obtained by NSGA-II

after the fixed 300 iterations. It can be seen from Fig. 3.20 that the solutions obtained

by AMMOA are converged and spread well on the true Pareto optimal front. We can

also see from Fig. 3.21 that while the surface of the front obtained by AMMOA is closely

similar to the surface of the true Pareto optimal front. Therefore, the results obtained

by AMMOA is much better than the results obtained by NSGA-II.
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Figure 3.20: Pareto fronts of the non-dominated solutions for the three-objective test

problem DTLZ2: (a) AMMOA stopping at 252 iterations; (b) NSGA-II with the prefixed

300 iterations.
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Figure 3.21: 3-D surfaces of the Pareto fronts of the non-dominated solutions for the

three-objective test problem DTLZ2: (a) AMMOA stopping at 252 iterations; (b) NSGA-

II with the prefixed 300 iterations.
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3.6 Summary of Chapter 3

This chapter has presented a framework for adaptive multiobjective memetic optimiza-

tion algorithm (AMMOA). We have introduced a new information theoretic based cri-

terion used in AMOMA for guiding the selection, clustering, and local learning pro-

cesses. The experimental results of the implementation of AMOMA have shown that the

framework performs well on both two-objective and three-objective test problems, and

it outperforms the well-known multiobjective optimization NSGA-II.

However, this implementation of AMMOA still has some disadvantages that need to

improve in the future research. These disadvantages can be listed as follows.

• The proposed implementation of AMMOA adopts the elitist strategy of NSGA-II

that use non-dominated sorting algorithm based on Pareto ranks and crowding-

distance. This elitism works well on the problems having few objectives (2 or 3

objectives). However, it scales poorly with the problems having many objectives

(more than 4 objectives). Thus, the performance of AMMOA is also poor with

many-objective problems.

• The strategy of local refinements are still decided by observations from experimental

results. More specifically, the probability of Local Search 1 is selected based on the

experimental observations.



Chapter 4

Multiobjective Image Data Hiding

This chapter presents a hybridization of neural networks and multiobjective memetic op-

timization for an adaptive, robust, and perceptual data hiding method for colour images.

The multiobjective optimization problem of a robust and perceptual image data hiding

is introduced. In particular, trade-off factors in designing an optimal image data hiding

to maximize the quality of watermarked images and the robustness of watermark are

investigated. With the fixed size of a logo watermark, there is a conflict between these

two objectives, thus a multiobjective optimization problem is introduced. We propose to

use a hybrid between general regression neural networks (GRNN) and the adaptive mul-

tiobjective memetic optimization algorithm (AMMOA) to solve this challenging problem.

Specifically, a GRNN is used for the efficient watermark embedding and extraction in

the wavelet domain. Optimal watermark embedding factors and the smooth parameter

of GRNN are searched by AMMOA. The experimental results show that the proposed

approach achieves adaptation, robustness, and imperceptibility in image data hiding.

84



Chapter 4. Multiobjective Image Data Hiding 85

4.1 Introduction

Data hiding is the technique of embedding information (watermark) into a carrier signal

(video, image, audio, text) such that the watermark can be extracted or detected later

for copyright protection, content authentification, identity, fingerpringing, access control,

copy control, and broadcast monitoring [WuLi03]. The important requirements for the

data hiding systems are robustness, transparency, capacity, and security under different

attacks and varying conditions [PaHJ04, MaDD04]. These requirements can vary under

different applications. Consequently, a good data hiding technique should be adaptive to

the environment. A more advanced approach should involve perception, cognition, and

learning [Kins12, WABB12].

In general, data hiding can be categorized into two classes, depending on the domain

of embedding the watermark [WuLi03], (i) spatial domain data hiding, and (ii) trans-

formed domain data hiding. Spatial domain data hiding approaches [ChWo01, MuMA04,

KaBe06, CoCh07] can be implemented easily and fast; however, they are usually sus-

ceptible to signal processing attacks such as compression, adding noise, and filtering.

Transformed-domain data hiding techniques such as the watermarking methods based

on the discrete Fourier transform (DFT) [XiZH06, AhMo06], discrete cosine transform

(DCT) [SuOb03], and discrete wavelet transform (DWT) [HsWu98, ChLi03, WaLi04,

GBIB06] typically offer more robustness under most of the casual signal processing at-

tacks when compared with spatial domain watermarking schemes. Digital data hiding

techniques are also classified based on the watermark data embedded into the host sig-

nal. A logo data hiding (logo watermarking) technique requires a visual watermark like a

logo image, while a statistical data hiding (statistical watermarking) technique requires

a statistical watermark like a pseudo random sequence. In statistical watermarking ap-

proaches (eg., [BaBP01, KuAS05]), watermarks are detected by statistical method to

demonstrate that the watermark in the host signal is unchanged. In logo watermarking
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(eg., [YuTL01, ChLi10]), visual watermarks are extracted from the host signals for vi-

sual copyright proofs. These watermarks are not only assessed by machines but also by

humans through their ability to recognize visual patterns through human visual system

(HVS). Thus, the presentation of a visual watermark is much more persuasive than a

numerical value of a statistical watermark.

Transparency and robustness are two main challenges in logo watermarking tech-

niques since the logo consists of much information that is not easy to embed perceptually

into a host signal. Moreover, the robustness in logo watermarking is so strict because

it requires satisfactory recognition from human beings. With a fixed size of a logo wa-

termark, there is a conflict between the transparency and robustness of the watermark.

Increasing the transparency of watermark (or the quality of the watermarked image) de-

creases the robustness of the watermark and vice versa. A good logo watermarking is a

robust data hiding with the acceptable quality of watermarked image. Thus, an optimal

logo watermarking should be modeled as a multiobjective optimization problem.

Recently, some researchers have applied computational intelligence to design percep-

tual and robust data hiding systems, such as back-propagation neural networks (BPNN)

based watermarking [PaHJ04, YuTL01, DaKi12b], support vector machine (SVM) based

watermarking [WaYC08, TsSu07, ShFL05], and genetic algorithms (GA) based water-

marking [SHWP04, RaRa11], which can detect or extract the watermark without re-

quiring the original signal for comparison. BPNNs have been recently exploited for

intelligent watermarking methods [PaHJ04, YuTL01]. The BPNNs have been used to

extract the relationships between selected pixels or selected transformed coefficients and

their neighbours for embedding and extracting the watermark bits. Thus, these algo-

rithms are robust to the amplitude scaling and a number of other attacks. However,

one key disadvantage of the BPNN is that it can take a large number of iterations to

converge to the desired solution [Hayk99, Spec91]. The data hiding problems have been
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recently considered as single optimization problems. Shieh and coworkers [SHWP04] in-

troduced a watermarking technique that use a GA to find the optimum frequency bands

for embedding watermark bits into DCT coefficients that can improve imperceptibility

or robustness of the watermark.

In this chapter, an optimal logo watermarking for colour images is formulated as a

multiobjective optimization problem. To solve this problem, we propose a novel logo

watermarking method based on wavelets, and the hybrid of a general regression neu-

ral network (GRNN) and the adaptive multiobjective memetic optimization algorithm

(AMMOA). This new method is different from previous techniques in that it utilizes

a GRNN to extract relationships between wavelet coefficients of the Y channel of the

corresponding YCrCb image for embedding and extracting the watermark. Embedding

factors (watermarking strengths) and GRNN’s smooth parameter are searched optimally

by the AMMOA to maximize the quality of the watermarked image and the robustness

of the watermark. The main contributions of this work are as follows:

1. A novel logo watermarking method for colour images is proposed based on wavelets

and GRNN. The optimality of the method is achieved by using AMMOA;

2. Different classes of wavelets are analyzed experimentally to select an appropriate

wavelet for robust and perceptual image data hiding based on computational in-

telligence;

3. A new multiscale perceptual measure, the relative Rényi dimension spectrum, is in-

troduced for measuring the transparency of the watermark with remarkable results;

and

4. A multiobjective optimization problem of image data hiding is introduced.

The chapter is organized as follows: In Sec. 4.2, the brief introduction of information

hiding, wavelets, and GRNN are provided. The proposed watermark embedding and
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extraction algorithms are introduced in Sec. 4.3. The optimal data hiding using AMMOA

is described in Sec. 4.4. Experimental results and discussions are given in Sec. 4.5.

4.2 Background on Methods Used

4.2.1 Theory of Information Hiding

Communication Model of Information Hiding

Information hiding can be considered as a basic communication theoretical model [DaKi12a,

CoMM99, MoKo05, Cach04, MoSu03]. Cox and coworkers [CoMM99] suggested that

information hiding closely resembles communications with side information at the trans-

mitter and decoder, a configuration originally described by Shannon. Moulin et al.

[MoSu03, MoKo05] formulated the information hiding problem as a communication prob-

lem where the hiding capacity is considered as the maximum rate of reliable communi-

cation through the communication system. A game theory approach was proposed to

seek an upper bound of the hiding capacity. In this work, we use the theory of bags,

as described by [Yage86, Kins12b], to explain the communication model of information

hiding as depicted in Fig. 4.1.

Figure 4.1: Communication theoretic model of information hiding.

In this model, we denote bag S as the host signal, bag M as the hidden message
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(watermark), bag K as the secret key shared between the encoder and the decoder, bag

U as the embedded signal, bag V as the received (attacked) signal, and bag M̂ as the

extracted hidden message.

At the encoder, there are three inputs (three sub-bags) of sS ⊂ S, mM ⊂ M, and

kK ⊂ K. The message mM is first scrambled with the secret key kK which is independent

of the host signal sS, then embedded into the host signal sS to produce the embedded

signal uU ⊂ U using an embedding function uU = ϑ(sS,mM, kK).

In transit, the embedded signal uU is influenced by intended or unintended inter-

ference such as noise addition, compression, filtering, amplitude scaling, and block-lost.

These interferences are all considered as attacks created by attackers. An attacker takes

the embedded signal uU, and creates a modified signal vV by the function vV = A(vV|uU).

The attacker usually wants to produce the modified signal vV that is perceptually close

to uU, but destroys the hidden message in uU.

At the decoder, the message m̂M̂ is extracted from the received (attacked) signal vV

and the secret key kK by using the extracting function m̂M̂ = ϕ(vV, kK).

Important Technical Issues of Information Hiding

The technical issues presented here are usually considered as requirements for an infor-

mation hiding technique for a specific application. They include:

a) Transparency : In most applications, the embedded signal uU is required to be

received perceptually as the host signal sS. This means that the hidden message

mM should be invisible in the host signal sS. The transparency is measured by

comparing the two signal uU and sS using the function t = sim(uU, sS). In practice,

embedding a message into a host signal always creates a distortion, d, to the signal

sS. A perceptual information hiding should minimize the distortion d regarding

the human visual system to obtain the maximum transparency t.
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b) Robustness : Robustness refers to the ability of the hidden message (watermark),

which is embedded into the host signal by an information hiding technique, to

survive common attacks such as signal processing operations (compression, filtering,

noise addition, desynchronization, cropping, insertions) [PeAK99, MoKo05]. The

robustness of an information hiding system is measured by comparing the accuracy

of the extracted hidden message m̂M̂ to the hidden message mM by the function a =

comp(m̂M̂,mM). There is a trade-off between the robustness and the transparency

in an information hiding system.

c) Capacity : This refers to the number of bits of the hidden message mM that are able

to be perceptually embedded into the signal sS by an information hiding technique.

There is also a trade-off between the capacity and the transparency.

d) Security : In the worst case, when a pirate or attacker can extract the hidden

message from the embedded signal uU, the security guarantees that the pirate is

not able to understand the extracted hidden message. In other words, security is

the ability of the hiding algorithm to make the hidden message incomprehensible

to the pirates/attackers. To have security, the hidden message mM is scrambled

or encrypted by a scrambling or encryption technique with a secret key kK before

being embedded into the host signal sS.

e) Detectability : This refers to the ability of the hiding technique that makes the

hidden message transparent to detection techniques given by the third parties. One

might confuse the detectability with transparency. While the transparency refers to

the transparency of the hidden message to the human perception, the detectability

refers to the transparency of hidden message to the detection techniques such as

statistical detection techniques. The detectability is an important requirement for

steganography applications.
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4.2.2 Wavelet Decomposition

Many wavelet-based watermarking methods have been introduced in the literature. Wavelets

are widely used for image watermarking because wavelet decomposition is considered to

closely mimic the HVS’s structure in perception [LeKn92, WoPD99]. Extensive exper-

imental research about the HVS has been conducted by visual psychologists over the

years. They discovered that the human eye filters the image into a number of bands,

each approximately one octave wide in frequency [LeKn92]. A wavelet transform is very

suitable for identifying the disturbed areas where tamperings can be hidden more easily.

This property allows one to exploit the HVS frequency masking effect for a percep-

tual watermarking [DaKi12a]. Each wavelet-based watermarking algorithm usually uses

its own specific class of wavelets and decomposition level. More details about wavelet

transforms and HVS based on wavelets used for perceptual watermarking presented in

Appendix D. The questions of what are the optimal wavelets and what is the sufficient

level of decomposition for image watermarking are still open-ended.

In this work, we investigate 36 wavelet functions in 5 wavelet families for image wa-

termarking in connection to computational intelligence-based watermarking algorithm.

They are Haar (known as Db1), Daubechies (Db2, Db3, Db4,..., Db10), Symlets (Sym2,

Sym3,..., Sym8), Coiflets (Coif1, Coif2,..., Coif5), and Biorthogonal (Bior1.3, Bior1.5,

Bior2.2,..., Bior6.8) wavelets. The test algorithm WAT-GRNN for embedding and ex-

tracting the watermark in wavelet domain is described in details in Section 4.3.1 and

Section 4.3.2. In the first stage, we do simulations and comparisons for wavelet functions

in each wavelet family. The experimental benchmark consists of a quality (transparency)

test and common attacks such as noise addition, JPEG compression, filtering, cropping,

amplitude scaling. We then select the wavelets that produced better results, and compare

them together. Table 4.1 shows the peak signal to noise ratio (PSNR) of the watermarked

images of the Lena image using these better wavelets in the case of using embedding fac-
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tor of η = 18. An example of the robustness of watermark against Gaussian noise attack

is depicted in Fig. 4.2. All wavelets used in these experiments are decomposed in 4 level.

Based on these simulations, Sym2 wavelet offers us a better robustness and an acceptable

quality for the watermarked image.

Table 4.1: PSNRs of watermarked image using different wavelets for Lena image

Wavelets db2 db4 sym2 bior1.3 coif2

PSNR (dB) 42.25 42.66 42.46 41.97 42.81

Figure 4.2: Robustness of wavelets against Gaussian noise addition attacks for Lena

colour test image

The wavelet Sym2 is then selected to implement the algorithm with three different

levels of decomposition. It can be seen from Fig. 4.3 that four-levels of decomposition
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provides a better robustness against Gaussian-noise attacks when compared to two-levels

and three-levels of decomposition. The same behavior to JPEG compression, filtering,

amplitude scaling, cropping attacks are also observed. From the above results, we choose

Sym2 wavelet and four-levels of decomposition as the appropriate wavelet decomposition

tool for our logo watermarking approach in this paper.

Figure 4.3: Robustness of the Sym2 wavelet against Gaussian noise addition attacks in

different decomposition levels for Lena colour test image.

4.2.3 General Regression Neural Networks

Artificial neural networks are models inspired by the working of the human brain. They

are set up with some unique attributes such as universal approximation (input-output

mapping), the ability to learn from and adapt to their environment, and the ability to
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invoke weak assumptions about the underlying physical phenomena responsible for the

generation of the input data [Hayk99]. A neural network can provide an approxima-

tion to any function of the input vector, provided the network a sufficient number of

nodes [MaHi93]. Because of those universal features, neural networks are studied exten-

sively for applications in classification, pattern recognition, forecasting, process control,

image compression, and others. Various classes of neural networks such as perceptron

networks, multilayer perceptron networks, radial-basis function networks, self-organizing

map networks, recurrent networks, and probabilistic networks have been proposed. In

this section, we provide a brief overview of the GRNN.

The GRNN, proposed by Specht [Spec91], is a special network in the category of

probabilistic neural networks (PNN). GRNN is an one-pass learning algorithm with a

highly parallel structure. Different from other probabilistic neural networks, GRNNs

provide estimates of continuous variables and converges to the underlying (linear or

nonlinear) regression surface. This makes GRNN a powerful tool to do predictions,

approximation, and comparisons of large data sets. It also allows to have fast training

and simple implementation. GRNN is successfully applied for image quality assessment

[LiBW11], function approximation [GLZC07], and web-site analysis and categorization

[AAKV04].

A diagram of the GRNN is shown in Fig. 4.4. In this diagram, a simple example of

an one-dimensional input vector X[1, Q] is used to explain the calculation principle of

the network. With the input of multidimensional vectors (i.e., matrices), it is considered

as the vectors of one dimensional vector. The network has Q neurons at the input layer,

Q neurons at the pattern layer, two neurons at the summation layer, and one neuron at

the output layer. The input units are the distribution units. There is no calculation at

this layer. It just distributes all of the measurement variable X to all of the neurons in

the pattern units layer. The pattern units first calculate the cluster center of the input
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vector, X i. When a new vector X is entered the network, it is subtracted from the

corresponding stored cluster center. The square differences d2
i are summed and fed into

the activation function f(x), and are given by

d2
i = (X −X i)T ∗ (X −X i) (4.1)

fi(X) = exp

(
− d2

i

2σ2

)
(4.2)

Figure 4.4: GRNN block diagram.

The signal of a pattern neuron i going to the numerator neuron is weighted with

corresponding values of the observed values (target values), Yi, to obtain the output value

of the numerator neuron, ŶN(X). The weights of the signals going to the denumerator
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neuron are one, and the output value of the denumerator neuron is ŶD(X). The output

value of the GRNN is the division of ŶN(X) and ŶD(X).

ŶN(X) =

Q∑
i=1

Yifi(X) (4.3)

ŶD(X) =

Q∑
i=1

fi(X) (4.4)

The output of GRNN is given by

Ŷ (X) =

∑Q
i=1 Yifi(X)∑Q
i=1 fi(X)

(4.5)

In GRNN, only the standard deviation or a smooth parameter, σ, is subject to a

search. To select a good value of, σ, Specht recommends the use of the holdout method

[Spec91]. In our work, the optimal σ is searched by a multiobjective memetic algorithm

for a perceptual and robust logo image watermarking.

4.3 Proposed Methods

4.3.1 Watermark Embedding Algorithm

The proposed watermark embedding scheme is depicted in the Fig. 4.5. In this work, we

use an RGB colour image as the host image. The watermark image is a binary logo image.

The RGB image is first converted to YCrCb colour image. The luminance component Y

is decomposed by wavelet transform. In this paper, we only select the luminance com-

ponent Y of YCbCr colour image for embedding the watermark because of the following

reasons: (i) colour channels Cr and Cb have so much redundant information for HVS so

that compression techniques for colour images do most compression work in these colour

channels (hence, embedding watermark in CrCb creates more redundancy and make wa-

termark susceptible to compression attacks); (ii) luminance Y is more sensitive to HVS
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that any tampering is easily detected (this makes watermarking in Y channel more robust

than watermarking in color channels CrCb). The wavelet coefficients in each band are

grouped into 3-by-3 non-overlapping blocks. Based on the random number sequence gen-

erated from the key (i, p), the algorithm selects which blocks for embedding watermark.

These coefficients are used to train the GRNN. The watermark bits are embedded into

selected coefficients by training the GRNN. Finally, inverse wavelet transform IDWT is

applied to reconstruct the watermarked image. One can ask whether all components in

the watermark embedding algorithm are necessary; for example, is the GRNN needed?

The answer is yes. We propose to use the GRNN for a blind watermarking technique.

At the decoder side, the watermark extraction process does not need to reference the

original image to extract the watermark. It only needs to have the trained GRNN, which

is obtain by the training process for embedding watermark at the encoder side, to extract

the watermark from the watermarked image.

Figure 4.5: Block diagram of the proposed watermark embedding scheme.
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Figure 4.6: Intensity-adjusted display of 4-level wavelet decomposition of Lena colour

image (wavelet subbands are rescaled to a gray-intensity range for display), and the

scanning order of subbands for watermarking.

The Y component is decomposed by Symlet-2 (sym2) DWT in four levels as shown

in Fig. 4.6. The watermark bits are embedded only into the following subbands: HL4,

LH4, HH4, HL3, LH3, HH3, HL2, LH2, HH2, HL1, LH1. In our scheme, scaling

coefficients in LL4 and coefficients in HH1 are not used for embedding the watermark

since embedding in LL4 degrades the watermarked image while embedding the watermark

in subband HH1 makes the watermark more susceptible. These selected subbands are

divided into non-overlapping 3-by-3 blocks and then scanned to arrange into a sequence

of blocks with the subband order HL4LH4HH4HL3LH3HL2LH2HH2HL1LH1. The

blocks for embedding watermarks are then selected randomly by the sequence of random

non-repeated integer numbers generated by the Fibonacci p-code algorithm [ZAJP08]

using the key (i, p). The Fibonacci p-code algorithm [ZAJP08] is selected because of the
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following reasons: (i) it is non-bandwidth expandable scrambling; (ii) the golden rate

property of Fibonacci number offers the equally spectrum spread of the numbers; (iii) it

offers secure key for security management (key (i, p)); and (iv) it is easy to implement

in a complex watermarking algorithm. The relationship between wavelet coefficients and

its neighbours in selected 3-by-3 blocks are extracted by a given GRNN for watermark

embedding and extracting processes. The Fibonacci p-code sequence is defined by

Fp(n) =


0 if n = 0,

1 if n = 1,

F (n− 1) + F (n− p− 1) if n > 1, p ∈ Z+

(4.6)

Then for K sequence (k=1,2,...,K), the sequence of random integer numbers Tk =

T1, T2, ..., TK is generated by

Tk = k(Fp(n) + i) mod Fp(n+ 1) (4.7)

where k = 1, 2, 3, ..., K; i ∈ [−3, 3] and i is an integer such that Fp(n) + i < Fp(n + 1).

The security key or the key to generate K non repeated random integer numbers are

parameters (i, p).

We now have selected blocks for embedding watermark bits. With each block Bi

having the center coefficient I(i, j), the input vector Xi and target Ti are set up as in Eq.

(4.8) to train the GRNN with 8 input neurons, 8 pattern neurons, 2 summation neurons,

and 1 output neuron. Where i = 1, 2, ..., K; K is the number of watermark bits.

Xi =
[
I(i− 1, j − 1), I(i− 1, j), I(i− 1, j + 1),

I(i, j − 1), I(i, j + 1), I(i+ 1, j − 1),

I(i+ 1, j), I(i+ 1, j + 1)
]

Ti = [I(i, j)]

(4.8)



Chapter 4. Multiobjective Image Data Hiding 100

With each pair (Xi, Ti), the GRNN produces the ouput Î(i, j). The watermark bits are

embedded into the selected block-center coefficients according to

Iw(i, j) = Î(i, j) + η(i)(2W (i)− 1) (4.9)

where η(i) is the watermarking factor for each embedding watermark bits to selected

block-center coefficient I(i, j) of selected block Bi. They can be altered to obtain the

imperceptibility and robustness. If η is small, we get the higher quality of watermarked

image, but lower level of robustness, and vice versa. This is a trade-off between the

quality of the watermarked image with the robustness of watermark. W (i) is the ith

watermark bit in the sequential watermark bits. Iw(i, j), the watermarked coefficient, is

obtained by replacing the central coefficient I(i, j) by the combination of the output of

the GRNN Î(i, j) and the watermark bit W (i). After embedding, an inverse DWT is

performed to get the watermarked luminance Y . By combining the watermarked Y with

Cr, Cb and converting to RGB, the colour watermarked image is reconstructed. This

embedding algorithm is denoted as WAT-EMB procedure.

4.3.2 Watermark Extraction Algorithm

The watermark extraction scheme is illustrated in Fig. 4.7. The extraction process is

the inverse process of the embedding process. The colour watermarked image is first

converted to Y CrCb colour domain. The luminance Y is then decomposed by 4-level

Symlet-2 DWT. The wavelet coefficients are grouped into 3-by-3 blocks and arranged

into the ordering sequence as described in Sec. 4.3.1. From the key (i, p) received,

the sequence of random integer numbers are generated based on the Fibonacci p-code

algorithms to detect the watermarked blocks. Denote Iw is the wavelet decomposition

of the component Y of the watermarked image. From the detected blocks, we setup the

input vector X ′i as in Eq. (4.8). The trained GRNN obtained in the embedding process
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Figure 4.7: Block diagram of the proposed watermark extraction scheme.

is used to extract the watermark bits. With each input vector X ′i, the trained GRNN

produce the output Ĩ(i, j). The watermark bit extraction is performed by

W̃ (i) =


1 if Iw(i, j) ≥ Ĩ(i, j)

0 otherwise

(4.10)

where i=1,2,...,K, K is the block number, and also is the number of watermark bits.

W̃ is the extracted watermark. The extraction algorithm is denoted as WAT-EXTR

procedure.

If the watermarking algorithms described in Secs. 4.3.1 and 4.3.2 use a fixed value

η and a predefined fixed value of smooth parameter of GRNN, σ (for example η = 18,

σ = 0.5), we label it as WAT-GRNN algorithm.

4.3.3 Optimal Image Data Hiding Using AMMOA

In logo watermarking, with the fixed logo watermark, there always exist two conflicting

objectives. These are robustness of the watermark and quality of the watermarked image

(imperceptibility or transparency of watermark). In this work, we apply AMMOA to
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search for the optimal parameters. They are the smooth parameter of the GRNN σ,

and K embedding factors η(i), i = (1, 2, ..., K) to maximize the quality of watermarked

image and the averaged robustness of watermark in the cases of noise addition, JPEG

compression, amplitude scaling, and filtering attacks. The optimal image data hiding

using AMMOA is graphically described in Fig. 4.8.

Figure 4.8: Graphical description of WAT-AMMOA method.

The inputs consist of the N number of chromosomes in population P , the colour

image I, the watermark W , and key (i, p). From the key (i, p), the algorithm generates

a sequence of random numbers RN based on the Fibonacci p code algorithm from Eqs.

(4.6) and (4.7). Each chromosome consists of (1+K) genes. The first genes represents for

the smooth parameter σ of the GRNN used for embedding and extracting the watermark.

The next K genes represents K embedding factors η(i) with i = 1, 2, ..., K, where K is

the number of watermark bits embedded into the image.

The objectives evaluation procedure OBJ-EVAL is used to evaluate objectives for each
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chromosome in the given population. In this work, we search for optimal watermarking

parameters to maximize the quality of watermarked image, and the averaged robustness

of watermark in the case of noise addition attack, JPEG compression attack, amplitude

scaling attacks, and filtering attacks.

The algorithm is briefly described as follows. With each chromosome in the given

population, the algorithm extracts the parameter of GRNN and the K embedding factors

to implement the embedding process WEMB that embeds K watermark bits W to the

colour image I. The watermarked image is then tampered by the JPEG compression,

Gaussian noise addition, amplitude scaling, and median filtering attacks. After each at-

tack, the algorithm extracts the watermark and measure the robustness of the watermark

by WAR measure. The parameters PSNR, and WARs are then fitted to the objective

evaluation to setup the objective vectors for AMMOA. After each iteration of AMMOA,

a better population P is searched. The population P then replaces the initialized pop-

ulation P int for the next iteration. Thus, the population is updated after each iteration.

The process continues until reaching the termination criteria. When the algorithm fin-

ishes, the best solution or best chromosome (Sbest) is selected from the non dominated

population P . Finally, we obtained the watermarked image IW by implementing the

watermark embedding algorithm presented in Sec. 4.3.1 (WAT-EMB) with smooth pa-

rameter σ = Sbest(1), embedding factors η(i) = Sbest(i+1), i = 1, 2, ..., K. At the decoder

side, the watermark is extracted by the watermark extraction process presented in Sec.

4.3.2 (WAT-EXTR). The initialization and objective evaluation algorithms are discussed

as follows.

1) Initialization: Each chromosome represents 1 + K real nonegative parameters to

be searched. The first parameter is the smooth parameter of the GRNN, σ, which is

set in the range from 0.01 to 5. The K remaining parameters represents for the K

watermarking factors η(i), i = 1, 2, ..., K. The watermarking factors are searched in a



Chapter 4. Multiobjective Image Data Hiding 104

wide range from 1 to 50.

2) Objective Function Evaluation: The objective function uses the peak signal to

noise ratio (PSNR) as the quality objective, and the averaged watermark accuracy ratio

(WAR) in the cases of four different attacks as robustness objectives. The PSNR is

defined by

PSNR = 10 log10

(
I2
peak

MSE

)
(4.11)

where Ipeak is the maximum intensity value of the three color channels R, G, B, and the

mean squared error (MSE) computed for all three color channels R, G, and B is given

by

MSE =
1

KMN

3∑
k=1

M∑
i=1

N∑
j=1

(I(i, j, k)− IW (i, j, k))2 (4.12)

The watermark accuracy ratio is defined by

WAR =

∑Mw

i=1

∑Nw
j=1W (i, j)⊕̄W̃ (i, j)

Mw ∗Nw

(4.13)

where W and W̃ are the original and extracted watermarks, and (Mw, Nw) is the size of

the watermarks. The logic operator ⊕̄ does comparison betweenW and W̃ . W (i, j)⊕̄W̃ (i, j) =

1 if W (i, j) and W̃ (i, j) have the exactly same value of 0 or 1. If WAR ≥ 70%, the ex-

tracted watermark can be considered as the original watermark. It is close to be perfect

if WAR ≥ 85%.

Let K = Mw ∗ Nw be the number of watermark bits embedded into the image. We

denote ᾱ = [α1, α2, ..., αK+1] as the watermarking parameters to be searched, where

α1 = σ (the smooth parameter of the GRNN), α2:K+1 = η(1 : K) (the embedding

factors). The objectives function is then set up as follows

f̄(ᾱ) = [f1(ᾱ), f2(ᾱ)] (4.14)

where

f1(ᾱ) = PSNR(ᾱ) = PSNR(α1, α2, ..., αK+1)
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and

f2(ᾱ) =
WG(ᾱ) +WJ(ᾱ) +WA(ᾱ) +WM(ᾱ)

4

where WG is the WAR in the case that the watermarked image is tampered by the

Gaussian noise addition attack; WJ is the WAR under JPEG compression attack; WA is

the WAR under the amplitude scaling attack; and WM is the WAR under the median

filtering attack. Our optimal watermarking problem is to search for optimal parameters

ᾱ that can be formed by

max
ᾱ

f̄(ᾱ) = max
ᾱ

[f1(ᾱ), f2(ᾱ)] (4.15)

The pseudocode of our objective function evaluation is described in Algorithm 14.

4.4 Experimental Results and Discussion

In this section, experimental results are demonstrated and discussed to show the water-

mark robustness and transparency of the proposed algorithm. In the embedding process,

the memetic algorithm is used to search for optimal watermarking factors and the opti-

mal smooth parameter of the GRNN. In the watermark extraction process, the original

image is not required, but the secret key (i, p), the smooth and weight parameters of

the trained GRNN from the embedding process are needed. The watermark extraction

process is the same as the watermark extraction algorithm described in the Sec. 4.3.2

(WAT-EXTR). The experimental results obtained from the proposed algorithm using

multiobjective memetic algorithm (WAT-AMMOA) are compared with results of the

WAT-GRNN algorithm, Kutter’s method [KuJB98], and Yu’s method [YuTL01]. WAT-

GRNN is the watermarking algorithm used WAT-EMB in Sec. 4.3.1 and WAT-EXTR in

Sec. 4.3.2 with the fixed embedding factor (embedding strength) η = 18, and the smooth

parameter of the GRNN σ = 0.5. In the Yu’s and Kutter’s methods, we setup the wa-
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Algorithm 14 Objectives Evaluation
1: procedure OBJ-EVAL(P, I,W,RN )

2: N ← size(P , 1) . Number of chromosome in population P

3: for i← 1, N do

4: σ ← P (i, 1) . Smooth parameter of GRNN

5: [IW , grnn weight] ← WAT-EMB(P (i, :), I,W,RN )

6: f1 ← PSNR(IW , I)

7: IWG ← IW +GaussNoise . AWGN attack

8: W̃ ← WAT-EXTR(IWG, grnn weight, σ,RN )

9: WG ← WAR(W̃ ,W )

10: IWJ ← JPEG(IW ) . JPEG compression attack

11: W̃ ← WAT-EXTR(IWJ , grnn weight, σ,RN )

12: WJ ← WAR(W̃ ,W )

13: IWA ← AmplitudeScaling(IW ) . Scaling attack

14: W̃ ← WAT-EXTR(IWA, grnn weight, σ,RN )

15: WA ← WAR(W̃ ,W )

16: IWM ← MedianFilter(IW ) . Median filtering attack

17: W̃ ← WAT-EXTR(IWM , grnn weight, σ,RN )

18: WM ← WAR(W̃ ,W )

19: f2 ← (WG +WJ +WA +WM )/4

20: f(i, :)← [f1, f2]

21: end for

22: return f

23: end procedure
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termark strength α = 0.2 to have a good robustness to be compared to the proposed

algorithm WAT-AMMOA.

To evaluate the performance of our watermarking algorithms, the “Winipeg Jet”

logo is embedded into various colour images. The binary watermark of size 64-by-64

is embedded into highly-textual colour images “Lena”, “Baboon”, “Airplane-F16”, and

“House” each with size of (512-by-512)-by-3. These test images are provided in Appendix

C.

4.4.1 Results of Adaptive Multiobjective Memetic Optimiza-

tion Algorithm

In the WAT-AMMOA algorithm, which uses the multiobjective memetic optimization to

search for optimal watermarking factors and the smooth parameter of GRNN. The initial

population consisting of 100 individuals is shown in Fig. 4.9. The algorithm uses the

online stopping criterion described in Chapter 4 to detect the convergence. The stopping

threshold is setup with εs = 0.02. The obtained Pareto front is described in Fig. 4.10.

The experimental results in Fig. 4.10 shows that our WAT-AMMOA algorithm is able

to obtain a set of efficient Pareto solutions, or the Pareto front. The objective, PSNR,

and the objective, averaged WARs, are maximized significantly. We can see that these

two objectives are conflicting seriously. There exists a set of efficient solutions for this

optimization problem instead of one solution. Obtaining these efficient solutions helps

the watermarking system select the best-suited solution in the context of the working en-

vironment at every moments. This is an important behavior of an adaptive and cognitive

watermarking system. For instance, at the moment t1, the mission requires a balance

between the robustness of watermarks and the quality of embedded images. In this case,

for example with the input image of Lena, at the moment t1, the watermarking system

selects the optimal solution having the PSNR of 42.82 dB, and the averaged WARs of
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Figure 4.9: The objective space of WAT-AMMOA’s initial population for Lena colour

image.

80.72 %. This obtained solution for the image of Lena includes the smooth parameter

of GRNN and 64x64=4096 embedding factors. The obtained optimal embedding factors

are illustrated in Fig. 4.11 corresponding the smooth parameter of GRNN σ = 2.48.

If at the moment t2 > t1, the mission requires to increase the robustness of wa-

termarks, the watermarking system can then select one optimal solution in the Pareto

optimal set, with the higher value of the averaged WARs objective. In this situation, the

optimal embedding factors increase to improve the robustness of watermarks; however,

it reduces the quality of embedded images. This is a trade-off and win-win situation.

4.4.2 Quality Evaluation

To measure the transparency or the similarity of the watermarked image to the original

image, watermarking systems mostly employ the PSNR. In Fig. 4.12, the differences
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Figure 4.10: The objective space of WAT-AMMOA’s obtained Pareto optimal solutions

for Lena colour image.

between the original images and the watermarked images are difficult to observe by

human eyes. The PSNRs obtained by WAT-AMMOA for all these four colour test

images are compared with PSNRs obtained by WAT-GRNN, Yu’s method, and Kutter’s

method. The comparison results are described in Table 4.2.

However, the scalar measure PSNR is not sufficient for human visual perception,

since: (i) it considers only energy differences between pixels; (ii) it ignores the perceptual

nature of edges and textures of the images. Hence, we also employ the Relative Rényi

Fractal Dimension Spectrums (RRFDS) introduced by Kinsner and Dansereau [KiDa06],

to measure the imperceptibility of the watermark regarding to the HVS. The approach of

RRFDS for gray-scale images is described in [KiDa06]. In our application, we generalize
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Figure 4.11: The obtained watermarking factors for Lena colour image.

this measure for color images as follows.

The finite probability distribution Xl of the watermarked image (or Yl of the original

image) at the lth scale s is obtained from

xjl =

∑
∀i,j∈bjl

∑3
k=1(I(i, j, k) + 1)∑

∀i,j∈Bjl

∑3
k=1(I(i, j, k) + 1)

(4.16)

where xjl is the probability of a volume element (vel for short) bjl, Bl is the non-

overlapping covering (union of all the vels bjl). The Rényi relative entropy, HRq, is

given by

HRq(X||Y ) =
1

q − 1
log

∑N
j=1 xj

(xj
yj

)q∑N
j=1 xj

;−∞ ≤ q ≤ ∞ (4.17)

The relative Rényi fractal dimension spectrum, DRq, at all lth scale of s is then defined

as

DRq(Xl||Yl) = lim
s→0

HRq(Xl||Yl)
log(sl)

(4.18)

From Eq. (4.17) and Eq. (4.18), we can see that if Xl = Yl, DRq = 0. This means

that the watermarked image is perceived as the original image if the spectrum DRq of
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Figure 4.12: The original test images and watermarked test images: (a) original Lena

image, (b) watermarked lena image with the obtained PSNR=42.82 dB, (c) original

Baboon image, (d) watermarked Baboon image with the obtained PSNR=42.43 dB, (e)

original Airplane F16 image, (f) watermarked Airplane F16 image with the obtained

PSNR=42.80 dB, (g) original House image, (h) watermarked House image withe the

obtained PSNR=42.86 dB.
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Table 4.2: PSNR comparison of watermarked images

PSNR [dB]
Images

Kutter’s Yu’s WAT-GRNN WAT-AMMOA

Lena 41.8433 41.6670 42.4590 42.8180

Baboon 41.3612 41.2206 42.5781 42.4320

Airplane 38.6961 38.5295 42.3353 42.8027

House 39.4374 39.2806 42.3143 42.8596

watermarked image is close to zero. With q = 0 then DRq = 0, and with q = 1 then

HRq is precisely the Kullback-Leibler distance. The spectrum, DRq, for watermarked

images of Lena colourr image obtained by WAT-AMMOA, WAT-GRNN, Yu’s method,

and Kutter’s method are depicted in Fig. 4.13.

In Fig. 4.13, we evaluate the multifractal spectrum in the range of q of [−20, 20].

It is seen that the spectrum for the watermarked images of Lena with WAT-GRNN

and WAT-AMMOA are both very small (close to zero). This means that the proposed

algorithms gain good transparency in embedding the watermarks. The spectra in Fig.

4.13 also tell us that the WAT-AMMOA method is better in gaining the imperceptibility

of watermark than the other methods (WAT-GRNN, Yu’s, and Kutter’s method) that

PSNRs in Table 4.2 do not.

4.4.3 Robustness Evaluation

The robustness of the watermark is evaluated by the similarity between the extracted

watermark and the original watermark through WAR computed by Eq. (4.13). The

watermarks extracted from the watermarked images in Fig. 4.12 are shown in Fig.

4.14. The calculated WARs indicate that our method perfectly extracts watermarks
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Figure 4.13: Relative Rényi multifractal dimension spectrum for watermarked images of

Lena obtained by WAT-AMMOA, WAT-GRNN, Yu’s, and Kutter’s algorithms.

from watermarked images in the case of without any attacks.

We test the proposed algorithm with five different classes of attacks such as (i)

compression attacks (JPEG compression), (ii) noise addition attacks (AWGN, salt &

pepper, and fractional noises), (iii) filtering attacks (median filtering), (iv) amplitude

scaling attacks, (v) and geometric manipulation attacks (image cropping, and rotation).

1. Robustness Against JPEG Compression: JPEG is a common image compression

standard for multimedia application. Hence, watermarking systems should be robust to

this attack. Fig. 4.15 shows an example of JPEG compression attack with the quality

factor of 40 to the watermarked images of Lena and Baboom, and the proportional

extracted watermarks. The robustness comparison with WAT-GRNN, Yu’s and Kutter’s

methods for the watermarked image of Lena in Fig. 4.12 is displayed in Fig. 4.16.

2. Robustness Against Amplitude Scaling : The colour values of the watermarked image

are divided by a scaling factor (SF). The attack is called negative amplitude scaling attack
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Figure 4.14: Watermarks extracted from watermarked images in Fig. 4.12: (a) extracted

from Fig. 4.12(b) with WAR=100 %, (b) extracted from Fig. 4.12(d) with WAR=100

%, (c) extracted from Fig. 4.12(f) with WAR=100 %, (d) extracted from Fig. 4.12(h)

with WAR=100 %.

Figure 4.15: An example of JPEG compression attack and watermark extraction with

JPEG quality factor of 40: (a) compression of watermarked image of Lena at Fig. 4.12(b)

with SNR=26.14 dB, (b) compression of watermarked image of Baboom at Fig. 4.12(d)

with SNR=18.98 dB, (c) the extracted watermark from (a) with WAR=82.47 %, (d) the

extracted watermark from (b) with WAR=83.42 %.
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Figure 4.16: The experimental results under the JPEG compression attack for water-

marked image of Lena.

if SF is greater than one, and vice versa is the positive amplitude scaling attack. An

example of the positive amplitude scaling attack with SF= 0.3 for watermarked images of

Lena and Baboom in Fig. 4.12 are depicted in Fig. 4.17. The robustness of watermark

compared with results from WAT-GNRR, Yu’s and Kutter’s methods is illustrated in

Fig. 4.18.

It can be seen that the WAT-AMMOA algorithm is very robust to amplitude scaling

attacks. Even if with the positive attack of SF=0.3 that decreases the SNR of the attacked

watermarked image to -7.36 dB, we are still able to recover the watermark excellently.

3. Robustness Against Additive White Gaussian Noise: Since the natural features of

electronic devices and communications channels, AWGN is perhaps the most common

noise in communications systems. Thus, a good watermarking scheme should be robust

to AWGN. The robustness fo our scheme against AWGN is shown in Fig. 4.19 and Fig.
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Figure 4.17: An example of amplitude scaling attack and watermark extraction with

SF=0.3: (a) scaling the watermarked image of Lena at Fig. 4.12(b) with SNR=-7.36

dB, (b) scaling the watermarked image of Baboom at Fig. 4.12(d) with SNR=-7.36 dB,

(c) the extracted watermark from (a) with WAR=98.09 %, (d) the extracted watermark

from (b) with WAR=90.09 %.

4.20.

The AWGN is added to the watermarked images with different standard deviation σn

(corresponding SNRs). The Gaussian noise is added to the colour image of watermarked

image, IW , by

INW = IW + σnN (4.19)

where N is the normally distributed random noise, and INW is the watermarked image

corrupted by the Gaussian noise. The proposed method works really well, even with a

variance of AWGN=402 (with the equivalent SNR around 10 dB). This level is a challenge

to every watermarking and denoising techniques [Dono95, Kins02].

4. Robustness Against Salt & Pepper noise: Salt & Pepper noise is a common type

of impulse noises. It is caused by faulty camera sensors or transmission in noisy com-

munications channels with memory. When the image is corrupted by this noise, the
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Figure 4.18: The experimental results under the amplitude scaling attack for water-

marked image of Lena.

Figure 4.19: An example of AWGN noise attack and watermark extraction with variance

of AWGN= 402: (a) attacked watermarked image of Lena at Fig. 4.12(b) with SNR= 10.9

dB, (b) attacked watermarked image of Baboom at Fig. 4.12(d) with SNR=10.74 dB,

(c) the extracted watermark from (a) with WAR=75.34 %, (d) the extracted watermark

from (b) with WAR=71.73 %.
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Figure 4.20: The experimental results under the AGWN noise attack for watermarked

image of Lena.

noisy pixels have only maximum or minimum values in the color range. Thus, this noise

degrades the image considerably. Because of these features, salt & pepper noise is a

challenge for denoising and watermarking techniques. The robustness of the proposed

method is depicted in Fig. 4.21 and Fig. 4.22.

5. Robustness Against Fractional Noise: A fractional noise (coloured noise) has a

power spectrum density that decays as 1/fβ, where f denotes the frequency and β ≥ 0

[Kins12c, Kasd95, StGB11]. The coloured noise include pink noise (β = 1), brown noise

(β = 2), and black noise (β = 3). While white noise (β = 0) is independent and uncorre-

lated, the coloured noise may be independent but correlated. Thus, coloured noises are

also called correlated noises. Coloured noises have been observed in many different fields

such as in electronic devices, musical melodies, astronomy, human cognition system, fi-

nancial systems, and natural images [Kins12c, StGB11]. In fact, coloured noises exist
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Figure 4.21: An example of salt & pepper noise attack and watermark extraction with

the density of noise is 0.1: (a) attacked watermarked image of Lena at Fig. 4.12(b)

with SNR= 10.04 dB, (b) attacked watermarked image of Baboom at Fig. 4.12(d)

with SNR=9.89 dB, (c) the extracted watermark from (a) with WAR=83.11 %, (d) the

extracted watermark from (b) with WAR=79.66 %.

Figure 4.22: The experimental results under the salt & pepper noise attack for water-

marked image of Lena.
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everywhere throughout the nature. Hence, the study of the effect of coloured noises to

watermarking systems is critical.

Figure 4.23: Two dimensional coloured noises: (a) white noise; (b) pink noise; (c) brown

noise; (d) black noise.

To add the coloured noises to watermarked images, we first synthesize the fractional

noise 1/fβ. There are five methods to synthesize the fractional noises which are de-

scribed in [Kins12c]. They are: (i) superposition of relaxation processes; (ii) fractional

integration algorithm; (iii) midpoint displacement algorithm; (iv) stochastic noise syn-

thesis algorithm; (v) spectral filtering algorithm; (vi) random cut algorithm; and (vii)

functional based modeling. In this work, we utilize the spectral filtering method to syn-

thesize coloured noises. The two dimensional synthesized white, pink, brown, and black

noises are depicted in Fig. 4.23.

The coloured noises are added to the watermarked images by

ICNW = IW + γCN (4.20)
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Figure 4.24: The watermarked image of Lena and Baboon in Fig. 4.12 corrupted by

coloured noises and the corresponding extracted watermarks: (a) with pink noise; (b)

with brown noise; (c) with black noise.
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where CN is the coloured noise, IW is the watermarked image, ICNW is the watermarked

image corrupted by the coloured noise, and γ is the noise amplitude scaling factor.

We use two watermarked images of the two most complex structure images Lena and

Baboon to do this experiment. The watermarked images corrupted by coloured noises

with the same value of γ and the correspoinding extracted watermarks are shown in Fig.

4.24

The images behave differently under the influence of the different coloured noises.

With the same amplitude scaling factor γ = 1000, the pink noise degrades the image the

least (with SNR around 27 dB), followed by the brown noise (with SNR ≈ 18 dB), and

complete alteration by the black noise (with SNR ≈ -3 dB). It is seen that the proposed

method is extremely robust against the fractional noise. With pink noise, the WARs

are around 99.5%. With brown-noise attack, the WARs are around 95%. With the

black-noise attack, the algorithm still able to recover the watermark excellently with the

WARs around 86%. The comparison with other methods in the case of coloured noise

addition attacks is described in Table 4.3.

Table 4.3: Coloured-noise attacks to watermarked images of Lena

WAR [%]
Noises

Kutter’s Yu’s WAT-GRNN WAT-AMMOA

Pink Noise 85.8887 90.1123 98.0957 99.8567

Brown Noise 77.1729 82.8125 88.0615 96.6555

Black Noise 72.8760 60.1807 73.1689 88.4277

6. Robustness Against Median Filtering : Median filtering is always a serious challenge

to watermarks. This is because a median filter does average pixel values in the window

size that eliminates high dynamic values in the image in the spatial domain. Hence,
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median filtering can affect the watermark severely. An example of doing median filtering

for watermarked images of Lena and Baboon with the filter window size of 5 is displayed

in the Fig. 4.25. The robustness comparison of the proposed algorithm with other

methods for the watermarked image of Lena is depicted in Fig. 4.26.

Figure 4.25: Median filtering attack to the watermarked images with filter window =

5: (a) filtered watermarked Lena image with SNR=26.87dB; (b) filtered watermarked

Baboon image with SNR=17.43 dB; (c) watermark extracted from (a) with WAR=84.45

%; (d) watermark extracted from (b) with WAR=70.73 %.

7. Robustness Against Image Cropping : Image cropping is a class of geometric ma-

nipulation attacks which are very common in practice. This attack usually degrades the

image severely because it leads to the loss of so much information. If the data hiding

algorithm embeds the watermark in only a local area of the image, it becomes very vul-

nerable to this attack. In this experiment, we remove a part of the watermarked image

with different levels (from 10% to 60%). An example of cropping 50% of its surrounding

is displayed in Fig. 4.27. The robustness comparison of the proposed algorithm with

other methods for the watermarked image of Lena under surrounding cropping attacks

is depicted in Fig 4.28.
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Figure 4.26: Experimental results under median filtering attacks for the watermarked

images of Lena.

Figure 4.27: Cropping 50% of the watermarked images of Lena and Baboon and extracted

watermarks: (a) cropping the watermarked Lena image with SNR=2.86 dB; (b) cropping

the watermarked Baboon image with SNR=3.63 dB; (c) watermark extracted from (a)

with WAR=76.35 %; (d) watermark extracted from (b) with WAR=75.29 %.
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Figure 4.28: Experimental results under surrounding cropping attacks for the water-

marked images of Lena.

We also do experiments with block-lost attack, which is another class of cropping

geometric manipulation. The results are shown in Fig. 4.29. The results obtained in

Fig. 4.29 are very impressive. They show that our proposed algorithm has excellent

robustness against block-lost attacks. Even if the image losses 50% information, we are

still able to recover the watermark.

8. Robustness Against Rotation Attacks : Image rotation is a class of geometric trans-

formation. Since the synchronization between the extracted watermark and the embed-

ded watermark is lost after applying rotation, most watermarking extraction algorithms

are unable to detect and extract the watermark. In this experiment, rotation is varying

from 0.10 to 10 clockwise. After rotation, the rotated image is cropped the four conners

to keep the size of the rotated image as the same size of the watermarked one. The

results in Fig. 4.30 show that the proposed algorithm has little robust to this class of

attack.
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Figure 4.29: Experimental results under block-lost attacks for the watermarked image of

Lena: (a) 25 % lost; (b) 50% lost; (c) 25% lost; (d) 50 % lost.
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Figure 4.30: Experimental results under rotation attacks for the watermarked image of

Lena.

4.5 Summary of Chapter 4

In this paper, a logo watermarking for colour images is formulated as a multiobjective

optimization problem of finding the watermarking parameters to maximize the qual-

ity of watermarked image and the robustness of the watermark under different attacks.

A novel intelligent and robust logo watermarking method based on the general regres-

sion neural networks and multiobjective memetic algorithms is proposed to solve this

challenging problem. Specifically, the embedding factors and the smooth parameter of

the GRNN are searched optimally by the adaptive multiobjective memetic optimiza-

tion algorithm (AMMOA) to maximize the PSNR and the averaged WARs objectives.

The proposed algorithm obtains better results in transparency and robustnesses against

classes of additive noise, signal processing, and geometric transformation attacks than

previous approaches.
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We discuss the application of neural networks for watermarking systems. We evalu-

ated neural networks, and selected GRNN for its good fit to our problem. The GRNN is

much superior over the BPNN when solving this problem as it has very fast time conver-

gence and high prediction accuracy. We also uses the relative Rényi fractal dimension

spectrum to evaluate the quality of watermarked images with remarkable results.

However, the proposed algorithm has its own disadvantages and needs further im-

provements. For example, since it needs a sufficient time for the evolutionary and local

refining searches to find the best local and global solutions, it is not fast enough for the

real-time applications at this stage.



Chapter 5

Multiobjective Joint Spectrum

Sensing and Power Control in

Cognitive Radio Networks

The chapter deals with the problem of joint spectrum sensing and power control op-

timization for a multichannel, multiple-user cognitive radio network. In particular, we

investigate trade-off factors in designing efficient spectrum sensing techniques to maxi-

mize the throughputs and minimize the interference. To maximize the throughputs of

secondary users and minimize the interference to primary users, it requires for a joint

determination of the sensing and transmission parameters of the secondary users, such

as sensing times, decision threshold vectors, and power allocation vectors. There are

conflicts between these two objectives, thus a multiobjective optimization problem is

introduced. We propose to use a memetic learning algorithm to solve this multiobjec-

tive joint optimization problem. The algorithm evolutionarily learns to find optimal

spectrum sensing times, decision threshold vectors, and power allocation vectors to max-

imize the averaged opportunistic throughput and minimize the averaged interference to

129
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the cognitive network.

5.1 Introduction

Cognitive radios have been proposed to be the next generation wireless devices that

can share underutilized spectrum [MiMa99, Hayk05, HoBh07]. Spectrum sensing and

dynamic spectrum access (e.g., dynamic channel selection) are the important principles

of cognitive radios [HoBh07, JZOG15]. In spectrum sensing, cognitive radio users (sec-

ondary users - SU) sense the spectrum of licensed users (primary users -PU) to detect

and utilize spectrum holes within the PUs’ spectrum. The cognitive radio networks adopt

a hierarchical access structure by considering PUs as the legacy spectrum holders and

SUs as the unlicensed users.

The challenge for a reliable sensing algorithm is to identify suitable transmission

opportunities without compromising the integrity of the PUs [PaSc13, AlSt12]. The

efficiency of the employed spectrum sensing technique plays a key role in maximizing the

cognitive radio network throughput, while protecting the PUs from interference. The

popular criteria in designing sensing techniques is to minimize the probability of false

alarm as low as possible [AlSt12, PaSc13]. In addition, in order to limit the probability

of interfering with PUs, it is desirable to keep the missed detection probability as low as

possible. The sensing time is the trade-off factor between the quality and the speed of

sensing. Increasing the sensing times allows to have both low false alarm and low missed

detection probabilities, but reduces the time available for transmissions which results in

low throughputs of SUs. The throughput of an SU depends on the transmission energy

(i.e., the transmitted power integrated over a transmission time). Thus, together with

the sensing times it also requires to consider the allocation of powers on channels of SUs

to maximize the throughput and minimize the interference created by SUs. Another

trade-off factor between the false alarm and the missed detection probabilities is the
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detection thresholds. Low detection thresholds result in high false alarm probability and

low missed detection probability and vice versa. Thus, to maximize the throughput of

SUs, it requires for a joint optimization of the sensing and transmission parameters of the

SUs. They are sensing times, decision threshold vectors, and power allocation vectors.

The joint spectrum sensing design and power control for a single-channel point-to-

point cognitive radio network has been introduced in [AlSt12]. In that work, the authors

formulated the joint sensing-duration design and power control problem as a two-stage

stochastic program with recourse. The numerical results show that the method obtains

good achievable throughput for the SU. However, only the sensing time parameter in

the spectrum sensing process is considered as an optimization variable while the decision

threshold is prefixed. Furthermore, because of using two stages stochastic programming

in which the first stage is for finding the optimal sensing time and the next stage is for

finding the optimal power, the obtained throughput is not optimal.

The game theory approach for the joint sensing and power allocation optimization

problem of a multiple channels, multiple-SU cognitive radio network has been proposed

by Pang and Scutari [PaSc13]. In this work, a novel class of Nash problems where each

SU considered as a player competes against other SUs to maximize his own opportunistic

throughput by choosing jointly the sensing duration, the detection thresholds, and the

power allocation vector over multichannel link has been introduced. Several constraints

included interference constraints, probability constraints, and power budget constraints

have been used to setup the game. The resulting players’ optimization problems are so

non-convex that is challenging to solve in the traditional game theory. To deal with the

non-convexity of the game, the Quasi-Nash Equilibrium is proposed to obtain a consid-

erable performance. However, using too many constraints makes the joint optimization

problem less dynamic to obtain a global optimality.

In this chapter, we model the joint optimization problem between spectrum sensing
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and power allocation for a multichannel, multiple user cognitive radio network as a mul-

tiobjective optimization problem. Two conflicting objectives are the throughput of SUs

and the interference created by SUs [DaKi14b, DaKi15b]. We propose to use AMMOA to

search for optimal sensing times, decision threshold vector, and power allocation vector

of each SU to maximize the averaged throughput and minimize the averaged interference

of the cognitive network. The main contributions of this work are as follows.

1. A multiobjective joint optimization problem between spectrum sensing and power

allocation for a multichannel multiple SU cognitive radio network is introduced;

and

2. A novel multiobjective joint spectrum sensing and power allocation method is pro-

posed based on AMMOA. This is the first approach to solve the joint optimization

problem using multiobjective optimization.

The rest of the chapter is organized as follows. Sec. 5.2 describes the system model

and joint spectrum sensing and power control problem. Sec. 5.3 reports the proposed

multiobjective joint spectrum sensing and power control based on AMMOA. Sec. 5.4

discusses experimental results. Finally, the chapter ends with the concluding remarks.

5.2 System Model and Problem Formulation

The model is considered with NQ active SUs, each formed by a transmitter-receiver pair,

coexisting in the same area and sharing the same band. We assume that the medium

access control (MAC) frame is divided in two time slots: τ -sensing slot, and T − τ data

slot as shown in Fig. 5.1. During the sensing slot τ , the SUs stay silent and sense the

electromagnetic environment to look for the spectrum holes. During the data slot T − τ ,

the SUs transmit simultaneously over the portions of the licensed spectrum detected as
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available. The sensing problem is introduced in a cognitive radio scenario that consists

of one active PU.

Figure 5.1: Cognitive radio time-slot allocation.

The spectrum sensing problem of SU i = 1, ..., Q on subcarrier k = 1, ...N is formu-

lated as the following binary hypothesis testing at time index n = 1, 2, ..., Ki,
Hk|0 : yi,k[n] = wi,k[n],

Hk|1 : yi,k[n] = Si,k[n] + wi,k[n],

(5.1)

where the hypothesisHk|0 represents the absence of the primary signal over the subcarrier

k; Hk|1 represents the presence of at least one PU; wi,k is the additive background noise

as Gaussian process with zero mean and variance σ2
i,k; Si,k[n] is the primary signaling like

a stationary random process with zero mean and variance σ2
Si,k

; Ki = τifi is the number

of samples with τi is the sensing time, and fi is the sampling frequency.

Based on the Neyman-Pearson frame work, the decision rule of SU i over carrier k

based on the energy detector is [TaSa08, PaSc13]

D(Yi,k) =
1

Ki

Ki∑
n=1

|yi,k[n]|2
Hk|1
≷
Hk|0

γi,k (5.2)

where γi,k is the decision threshold of SU i for the carrier k to be chosen to meet the

required false alarm rate. Based on the central limit theorem, the random variableD(Yi,k)

can be approximated for sufficient large Ki by a Gaussian distribution.

D(Yi,k)|Hk|l ∼ N
(
µi,k|l, σ

2
i,k|l/Ki

)
(5.3)
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where l = 0, 1;

µi,k|l =


σ2
i,k, if l = 0

σ2
Si,k

+ σ2
i,k, if l = 1

(5.4)

σ2
i,k|l =


σ4
i,k, if l = 0

E|Si,k|4 + 2σ2
i,k −

(
σ2
Si,k
− σ2

i,k

)2

, if l = 1

(5.5)

For an easy analysis and computation, in this work it is assumed that the primary

signaling is Gaussian, the parameter σ2
i,k|l is then calculated by

σ2
i,k|l =


σ4
i,k, if l = 0(
σ2
Si,k

+ σ2
i,k

)2

, if l = 1

(5.6)

Under this framework, the probability of false alarm and probability of detection are

approximated as follows

P fa
i,k (γi,k, τi) = Q

(√
τifi

γi,k − µi,k|0
σi,k|0

)
(5.7)

P d
i,k(γi,k, τi) = Q

(√
τifi

γi,k − µi,k|1
σi,k|1

)
(5.8)

where the function Q(x) = 1√
2π

∫∞
x
e−t

2/2dt.

The missed detection probability is then calculated by

Pmd
i,k = 1− P d

i,k (5.9)

The sensing problem is to find optimal values of the detection thresholds γi,k and the

sensing time τi in order to minimize both P fa
i,k and Pmd

i,k . However, Eqs. (5.7) and (5.8)

show that there exists a trade-off between probability of false alarm and the missed de-

tection probability when selecting the optimal values of γi,k and τi. Thus, the optimality

of the sensing system cannot be obtained if we just focus on the detection problem to
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select the parameters γi,k and τi. The optimal choice of the detection thresholds and

sensing time should be the result of a joint optimization of the sensing and transmission

processes.

The transmission strategy of each SU i is the power allocation vector pi = {pi,k}Nk=1

over the N subcarriers, subject to upper and lower bounds constraints. Given the power

allocation profile of the SUs, the detection thresholds, and sensing time, the opportunistic

throughput of SU i is given by [PaSc13]

Ri(τi,p,γi) = (1− τi
T

)
N∑
k=1

[1− P fa
i,k (γi,k, τi)]ri,k(p) (5.10)

where the maximum achievable rate ri,k(p) for a specific power allocation profile p1,k, ..., pQ,k

is

ri,k(p) = log

(
1 +

|Hii(k)|2pi,k
σ2
i,k +

∑
r 6=i |Hri(k)|2pr,k

)
(5.11)

where {Hii(k)}Nk=1 is the channel transfer function of the direct link i and {Hri(k)}Nk=1

is the cross-channel transfer function between the secondary transmitter r and the sec-

ondary receiver i.

Missed detections at the SUs produces the interferences to the PU. We define the

interference created by the cognitive user i to the PU given by

ISUi (τi,γi,pi) =
Nc∑
k=1

Pmd
i,k (γi,k, τi).pi,k (5.12)

Our objective is to find the optimal sensing time τi, the decision threshold vector γi,

and the power allocation vector pi to maximize the throughput Ri and to minimize the

interference Ii at each SU i, i = 1, ..., NQ. Thus, the optimization problem can be defined

as

maximize
τi,γi,pi

Ri(τi,γi,p), and minimize
τi,γi,pi

ISUi (τi,γi,pi) (5.13)

Motivated from centralized cooperative spectrum sensing methods [YuAr09, TCSH13],

a centralized cooperative joint sensing and power allocation mechanism is proposed in
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this work. The system model is described in the Fig. 5.2. In this centralized cooperative

sensing and power allocation, a central unit is used to collect sensing information from

cognitive devices, identifies and determines optimal parameters for spectrum sensing and

power allocation, and then broadcasts these informations to other cognitive radios. The

central unit is also called the fusion center [YuAr09].

Figure 5.2: Centralized cooperative joint spectrum sensing and power control model.

In this context, SUs send its sensing statistics and parameters to the fusion center. At

the fusion center, the probability of false alarm P fa and probability of missed detection
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Pmd are calculated, and so the throughput Ri and the interference ISUi of SU i. The

averaged throughput and the averaged interference of the network are then calculated at

the fusion center by

R(τ ,p,γ) =
1

NQ

NQ∑
i=1

Ri(τi,p,γi) (5.14)

ISU(τ ,γ,p) =
1

NQ

NQ∑
i=1

ISUi (τi,γi,pi) (5.15)

The multiobjective joint optimization problem between spectrum sensing and power

control is now formulated by 
maximize

τ ,γ,p
R(τ ,p,γ)

minimize
τ ,γ,p

ISU(τ ,γ,p)

(5.16)

where τ = {τi}
NQ
i=1; p = {pi,k}

NQ,Nc
i=1,k=1; and γ = {γi,k}

NQ,Nc
i=1,k=1.

The problem (5.16) is equivalent to the following multiobjective optimization prob-

lem. 
minimize

τ ,γ,p
f1 = −R(τ ,p,γ)

minimize
τ ,γ,p

f2 = ISU(τ ,γ,p)

(5.17)

We propose to use multiobjective memetic learning algorithms to solve the joint

optimization in Eq. (5.17). The algorithms are described in the next sections.

5.3 Multiobjective Joint Spectrum Sensing and Power

Control Using AMMOA

In this joint spectrum sensing and power control problem, there always exists two con-

flicting objectives. These are the averaged throughput and the averaged interference of

the network. In this work, we apply AMMOA to search for the optimal decision policy
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(sensing time τi, decision threshold vector γi, and power allocation vector pi) for each

SU i. The execution flow of our proposed scheme is described in Fig. 5.3. Initially, the

population is generated randomly to provide candidate solutions to the problem solver.

With each individual (chromosome) in the given population, the algorithm extracts the

sensing time vector τ = {τi}Qi=1, the decision threshold vectors γ = {γi,k}Q,Ni=1,k=1, and

the power allocation vectors p = {pi,k}Q,Ni=1,k=1 to combine with the sensing statistics

received from SUs (τ = {µi,k|l}Q,Ni=1,k=1, and σ2 = {σ2
i,k|l}

Q,N
i=1,k=1, where l = 0, 1) and

the channel transfer parameters H = {Hii(k)}Nk=1 to calculate the averaged throughput

R and the averaged interference ISU by Eqs. (5.14) and (5.15), respectively. The pa-

rameters R and I are then fit to the objective evaluation to setup the objective vector

f̄ = f1 = −R; f2 = ISU for AMMOA. AMMOA searches for a better population P af-

ter each iteration. The population P then replaces the initialized population P init for

the next iteration. Thus, the population is updated after each iteration. The process

continues until reaching the termination criteria. When the algorithm finishes, the best

solution or best chromosome is selected from the non-dominated population through the

post-processing procedure. Finally, the optimal sensing times τ̃ , the optimal decision

threshold vectors γ̃, and the optimal power allocation vectors p̃ are broadcasted to SUs.

The SUs receive these updated parameters and reconfigure their radio operating system.

The inputs consist of Npop chromosomes in population P , NQ number of cognitive

users, and Nc number of channels. Each chromosome consists of NQ + 2∗Nc ∗NQ genes.

The first NQ variables are NQ genes which represent for the sensing times of NQ SUs.

The next NQ variables are NQ ∗ Nc genes representing for decision threshold vectors

of NQ SUs with Nc channels. The last NQ variables are NQ ∗ Nc genes representing

for power allocation vector of NQ SUs with Nc channels. The procedure OBJ EVAL

is used to evaluate objectives for each chromosome in the population. In this work,

we search for optimal sensing times, decision threshold vectors, and power allocation



Chapter 5. Multiobjective Joint Spectrum Sensing and Power Control 139

Figure 5.3: Execution flow of the proposed algorithm.

vectors to maximize the averaged throughput of the networkR and minimize the averaged

interference created by SUs, ISU , defined in Eqs. (5.14) and (5.15), respectively.

The best solution or the best chromosome (Sbest) is selected from the non dominated

population P . Finally, the optimal sensing time, the optimal decision threshold vector,

the optimal power allocation vector, the resulted throughput, and the resulted inter-

ference of each SU are obtained from post processing function POST PROCESS of the

best chromosome. The initialization, and objective evaluation algorithms are discussed
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as follows.

1) Initialization: Each chromosome represents (1 + 2Nc)NQ real nonnegative param-

eters to be searched. The first NQ parameters are sensing time parameters of NQ SUs,

which are searched in the range from τmin to τmax. The next NQxNc parameters are NQ

decision threshold vectors (each of size 1xNc) of NQ SUs, which are searched in the range

from γmin to γmax. The last NQxNc parameters are NQ power allocation vectors (each

of size 1xNc) of NQ SUs, which are searched in the range from pmin to pmax.

2) Objective Evaluation Function: The objective functions f1 = −R in Eq. (5.14),

and f2 = ISU in Eq. (5.15) are the two objectives to be minimized. We denote α̂ =

[ᾱ1, ᾱ2, ..., ᾱ3NQ ] as the parameters to be searched, where {ᾱi}
NQ
i=1 are sensing times of

NQ SUs, {ᾱi,k}
2NQ,Nc
i=NQ+1,k=1 are decision threshold vectors of NQ SUs for Nc channels, and

{ᾱi,k}
3NQ,Nc
i=2NQ+1,k=1 are power allocation vectors of NQ SUs for Nc channels. The objectives

function is then set up as

f̄(α̂) = [f1(α̂), f2(α̂)] (5.18)

where

f1(α̂) = −R(α̂) = −R(ᾱ1, ᾱ2, ..., ᾱ3Q)

f2(α̂) = ISU(α̂) = ISU(ᾱ1, ᾱ2, ..., ᾱ3Q)

Our joint optimization problem is to search for the optimal parameter α̂ that can be

formed by

minimize
α̂

f̄(α̂) = minimize
α̂

[f1(α̂), f2(α̂)] (5.19)

The pseudocode of our objective evaluation function is described in the Algorithm 15.

5.4 Experimental Results and Discussion

In this scope of the paper, we setup the system for simulation with NQ = 10 SUs; the

available bandwidth is divided in Nc = 12 subchannels; the time sensing frame for each
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Algorithm 15 OBJ EVAL

1: procedure OBJ EVAL(Chromosome,Nvar, NQ, Nc)

2: for i← 1, NQ do

3: τ(i)← Chromosome(i, 1)

4: for k ← 1, Nc do

5: γ(i, k)← Chromosome(NQ + i, k)

6: p(i, k)← Chromosome(2NQ + i, k)

7: end for

8: end for

9: [Hqq,Hrq] ← Channel tf(NQ, Nc) . Channel parameters

10: for i← 1, NQ do

11: for i← 1, Nc do

12: Calculate P fa
i,k by Eq. (5.7)

13: Calculate P de
i,k by Eq. (5.8)

14: Calculate Pmd
i,k by Eq. (5.9)

15: Calculate achievable rate ri,k by Eq. (5.11)

16: end for

17: end for

18: for i← 1, NQ do

19: Calculate the throughput R(i) by Eq. (5.10)

20: Calculate the interference ISU(i) by Eq. (5.12)

21: end for

22: f(1) ← −R calculated by Eq. (5.14) . Objective 1

23: f(2) ← ISU calculated by Eq. (5.15) . Objective 2

24: return f

25: end procedure
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SU is Tf = 0.01 s; minimum sensing time for each SU for a channel is τmin = 10−4 s,

and maximum sensing time for each SU for a channel is τmax = 5 ∗ 10−3 s; the minimum

power allocated for a channel is pmin = −30 dBm; the maximum power allocated for a

channel is pmax = −3 dBm; the minimum decision threshold for a channel is γmin = −30

dB; the maximum decision threshold for a channel is γmax = −3 dB. The transmitted

power of the primary signal is 0.5 W. In the JSSPA-AMMOA algorithm, the number of

initial population Npop is setup to 100. The online stopping criterion is setup with the

stopping threshold εs = 0.01.

The initial populations consisting of 100 chromosomes are described in Fig. 5.4. With

the stopping threshold εs = 0.01, the algorithm converges to the efficient Pareto front at

the iteration 380. The obtained Pareto front is described in Fig. 5.5.

Figure 5.4: The objective space of the initial population.

It can be seen from Fig. 5.5 that our method is able to obtain a set of efficient

Pareto solutions, or the Pareto front. The averaged throughput R is maximized, and

the averaged interference ISU is minimized significantly. We can see that these two
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Figure 5.5: The objective space of the obtained Pareto optimal solutions.

objectives are conflicting seriously. There exists a set of efficient solutions for this joint

optimization problem instead of one solution. Obtaining these efficient solutions helps

the network select the best-suited solution in the context of the working environment

at every moments. This is an important behavior of a cognitive system. For instance,

at the moment t, for the reason of low-cost and a guaranteed quality of services, the

network decides to select a solution that balances between the averaged throughput of

the network and the averaged interference. In this case, at the moment t, the network

selects the optimal solution with the averaged throughput R = 16.5984, and the averaged

interference ISU = 0.5513. The sensing times for each SU, the power control vector for

each SU on each channel, and the decision threshold parameters for each SU on each

channel are described in Fig. 5.7, Fig. 5.6, and Fig. 5.8, respectively.

If at the moment t + 1 the network is required to increase the network throughput,

it can select the optimal solution in the Pareto optimal set, with the higher value of the

averaged throughput objective. In this situation, the SUs are required to increase the
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Figure 5.6: The decision threshold parameters of SUs obtained from the best-suited

solution in the Pareto optimal set.

power for each channel and reduce the sensing time. The network throughput increases

significantly. However, the interference generated by SUs to PU increases rapidly. This

is a trade-off and win-win situation.

To observe the convergent behaviour of JSSPA-AMMOA, we run the algorithm with-

out the online stopping criterion. That means the algorithm stops at a specified number

of iterations. We observe the stopping indicator values SIdq in 500 simulation run, as

illustrated in Fig. 5.9. It can be seen that the algorithm converges well.

5.5 Summary of Chapter 5

In this chapter, a joint spectrum sensing and power allocation problem of a multiple-user

multiple-channel cognitive radio network is formulated as a multiobjective optimization

of finding sensing times, decision threshold vector, and power allocation vector of each
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Figure 5.7: The sensing times of SUs obtained from the best-suited solution in the Pareto

optimal set.
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Figure 5.8: The power control vectors of SUs obtained from the best-suited solution in

the Pareto optimal set.
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Figure 5.9: The online stopping indicator values SIdq.
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cognitive user to maximize the network throughput and minimize the interferences. A

multiobjective memetic algorithm is proposed to solve this challenging multiobjective

joint optimization problem. The simulation results show that the proposed method

obtains very good performance and dynamic parameters in cooperative spectrum sensing

and power allocation for cognitive radios. The effectiveness of applying memetic learning

algorithm in solving multiobjective optimization is also stressed in this chapter.

In this work, we have so far considered the problem in which there is only one active

primary user (PU) for simplification. This work can be extended to the multiobjective

joint optimization problem with the presence of multiple PUs. To reduce the network re-

sources, each secondary user should be able to learn cooperatively from the environment

to obtain its optimal parameters. Therefore, no fusion center is preferred to used in this

context. Distributed-cooperative memetic learning can be developed in the sense that

each cognitive user (SU) is an memetic agent in an multiagent memetic learning algo-

rithm. The distributed multiobjective joint spectrum sensing and power allocation based

on multiagent memetic learning algorithms will be developing for our future research.



Chapter 6

Conclusions and Possible Extensions

6.1 Summary of Findings

This thesis presents our research results related to the multiobjective memetic optimiza-

tion problem, including its theory and applications. In particular, a framework for adap-

tive multiobjective memetic optimization algorithms (AMMOA) has been introduced

and studied. An adaptive online stopping criterion is introduced to assist AMMOA to

detect its convergence in solving multiobjective optimization problems. An implementa-

tion of AMMOA is also presented with remarkable results for both test problems and for

two applications of multiobjective image data hiding, and multiobjective joint spectrum

sensing and power control in cognitive radio networks.

In adaptive multiobjective memetic optimization algorithms (AMMOA) presented

in Chapter 3, we introduce a new information theoretic criterion used in AMOMA for

guiding the adaptive learning processes, such as the selection, clustering, local searches,

and the online stopping criterion. The experimental results of the implementation of

AMOMA show that the framework performs well on both two-objective and three-

objective optimization problems, and it outperforms the well-known multiobjective op-

149
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timization NSGA-II.

In multiobjective image data hiding described in Chapter 4, we pose the issue of

optimal image data hiding as a multiobjective optimization problem, and introduce a

novel method of embedding and extracting a logo watermark into and from a colour

image, based on a wavelet decomposition and a probabilistic neural network. The op-

timal embedding factors and the parameter of the used neural network are searched

by AMMOA to maximize the quality of watermarked image and the robustness of the

embedded watermark under different attacks. The proposed algorithm obtains better

results in transparency and robustnesses against classes of additive noise, signal process-

ing, and geometric transformation attacks than previous approaches. A new multiscale

perceptual measure is also introduced to evaluate the imperceptibility of watermark with

remarkable results.

In multiobjective joint spectrum sensing and power control of cognitive wireless net-

works described in Chapter 5, we have introduced the joint sensing and power control

problem in a multichannel and multiple-user cognitive radio network as a multiobjective

optimization problem of finding sensing times, decision threshold vector, and power allo-

cation vector of each cognitive user to maximize the network throughput and minimize

the interference. AMMOA is used to design a cooperative joint spectrum sensing and

power allocation mechanism for a multiple-channel multiple-user cognitive radio network.

The simulation results show that the proposed method obtains very good performance

and dynamic parameters in cooperative spectrum sensing and power allocation for cog-

nitive radios.

With the theoretic development, implementation, and experimentation for AMMOA,

multiobjective image data hiding, and multiobjective joint spectrum sensing and power

control in cognitive radio networks, it is concluded that the objectives of this thesis have

been achieved. The following section lists the contributions of this thesis.
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6.2 Contributions

We believe that the research done towards the thesis’s completion has provided the

following contributions.

1. An effective information-theoretic criterion is proposed to guide the adaptive pro-

cesses such as the selection, clustering, and local learning processes in adaptive

multiobjective optimization techniques.

2. A framework of adaptive multiobjective optimization algorithms (AMMOA) based

on the proposed information-theoretic criterion is introduced.

3. An robust online stopping criterion is introduced for AMMOA.

4. An implementation of the AMMOA framework with the adaptive tournament se-

lection, fuzzy-clustering, Tabu local searches, and an online stopping criterion, all

guided by the proposed information-theoretic criterion, is introduced with remark-

able results.

5. A multiobjective optimization problem of image data hiding is introduced.

6. Different classes of wavelets are analyzed experimentally to select an appropriate

wavelet for robust and perceptual image data hiding based on computational in-

telligence.

7. A novel logo watermarking method for colour images is proposed based on wavelets

and GRNN. The optimality of the method is achieved by using AMMOA.

8. A new multiscale perceptual measure, the relative Rényi dimension spectrum, is

introduced for measuring the transparency of the watermark with remarkable re-

sults.
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9. A multiobjective joint optimization problem between spectrum sensing and power

control for a multichannel multiple-user cognitive radio network is introduced.

10. A novel multiobjective joint spectrum sensing and power control method is pro-

posed based on AMMOA. This is the first approach to solve the joint optimization

problem using multiobjective optimization.

6.3 Possible Extensions of This Research

The implementation of AMMOA presented in Chapter 3 obtained a very good perfor-

mance in convergence and diversity for two- and three-objective problems. However, this

implementation still have some disadvantages and need to be improved. Base on the

work done in this thesis, we provide some possible extensions of this research as follows.

1. Studying for improvements of AMMOA’s implementations by developing an effec-

tive fitness evaluation method and an efficient global-local learning strategy.

2. Studying on designing and implementing memetic evolvable hardwares based on

FPGA for both adaptive and cognitive systems.

3. Studying on practical applications of AMMOA to solve variety of engineering design

problems (e.g., multifractal antenna design, multiobjective navigation of robots).

More detailed analyses and discussions for the future research directions 1 and 2 are

provided in Appendix E.
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Appendix A

Pareto-optimal Fronts of Test

Problems

In this appendix, we provide the Pareto-optimal fronts of test problems provided in

Chapter 2. These reference Pareto-optimal fronts play an important roles in evaluating

and comparing our proposed adaptive multiobjective memetic optimization algorithms

with existing and widely-used multiobjective optimization evolutionary algorithms.

A.1 Test Problem: ZDT1

f1(x) = x1,

g(x) = 1 +

9

(
n∑
i=2

xi

)
n− 1

(A.1)

f2(x) = 1−

√
f1(x)

g(x)

where n is the number of variables; xi ∈ [0, 1]

The Pareto-optimal front of ZDT1 is described in Fig. A.1.
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Figure A.1: The Pareto-optimal front of the test problem ZDT1

A.2 Test Problem: ZDT2

f1(x) = x1,

g(x) = 1 +

9

(
n∑
i=2

xi

)
n− 1

(A.2)

f2(x) = g(x)

(
1−

(
f1(x)

g(x)

)2
)

where n is the number of variables; xi ∈ [0, 1]

The Pareto-optimal front of ZDT2 is described in Fig. A.2.
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Figure A.2: The Pareto-optimal front of the test problem ZDT2

A.3 Test Problem: ZDT3

f1(x) = x1,

g(x) = 1 +

9

(
n∑
i=2

xi

)
n− 1

(A.3)

f2(x) = g(x)

(
1−

√
f1(x)

g(x)
− f1(x)

g(x)
sin(10πf1(x))

)

where n is the number of variables; xi ∈ [0, 1]

The Pareto-optimal front of ZDT3 is described in Fig. A.3.
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Figure A.3: The Pareto-optimal front of the test problem ZDT3

A.4 Test Problem: DTLZ2

f1(x) = (1 + g(xM)). cos(0.5πx1)... cos(0.5πxM−1)

f2(x) = (1 + g(xM)). cos(0.5πx1)... sin(0.5πxM−1)

... (A.4)

fM(x) = (1 + g(xM)).sin(0.5πx1)

g(xM) =
∑
xi∈xM

(xi − 0.5)2

where xi ∈ [0, 1], i = 1, 2, ..., n; M is the number of objectives; n is the number of

variables. The last k = (n−M + 1) variables are represented as xM .

The Pareto-optimal front of DTLZ2 is described in Fig. A.4.
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Figure A.4: The Pareto-optimal front of the test problem DTLZ2



Appendix B

Proofs of Lemmas and Theorems

In this appendix, we provide the proofs for Lemmas 3.1 – 3.7 in Chapter 3.

B.1 Proof of Lemma 3.1

Lemma 3.1: Let xt and xq (t#q, 1 ≤ t, q ≥ NP ) are the feasible solutions of the

population P . The solution xt is said to dominate the solution xq if the relative

probabilities of objective functions satisfies pm(xt) ≥ pm(xq), ∀m = {1, 2, ...,M}, and

∃n ∈ {1, 2, ...,M} : pn(xt) > pn(xq).

Proof of Lemma 3.1. The Eq. (3.3) is equivalent to

1(max(fm(xj)−fm(xi),0)) =


1, if fm(xi) < fm(xj);

0, if fm(xi) ≥ fm(xj);

(B.1)

From Eqs. (3.2) and (B.1), it can be stated that pm(xt) > pm(xq) if fm(xt) < fm(xq),

∀m = 1, 2, ...,M . This means that the solution xq is dominated by the solution xt.
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B.2 Proof of Lemma 3.2

Lemma 3.3: solution x∗ ∈ P is said to be non-dominated solution in the population P

if ∀x ∈ P , pm(x∗) ≥ pm(x), ∀m = {1, 2, ...,M}, and ∃n ∈ {1, 2, ...,M} : pn(x∗) > pn(x).

Proof of Lemma 3.2. Follow the proof of Lemma 3.1, it can be easily inferred that

fm(x∗) ≤ fm(x), ∀m = 1, 2, ...,m and ∃n ∈ {1, 2, ...,M} : fn(x∗) > fn(x) iff ∀x ∈ P ,

pm(x∗) ≥ pm(x), ∀m = {1, 2, ...,M}, and ∃n ∈ {1, 2, ...,M} : pn(x∗) > pn(x). This

means x∗ is a non-dominated solution in the population P .

B.3 Proof of Lemma 3.3

Lemma 3.3: The distance measure between r and p(x), fRq(x), is a monotonic non-

increasing function in q#0, 1.

Proof of Lemma 3.3. Consider the first derivative of fRq(x) with respect to q as follows.

fRq(x)

dq
=

[
log

∑M
j=1(pj(x))−q

M

]′
q

(q − 1)− log
∑M
j=1(pj(x))−q

M

(q − 1)2

=

(q−1)
∑M
j=1(pj(x))−q log pj(x)∑M
j=1(pj(x))−q

− log
∑M
j=1(pj(x))−q

M

(q − 1)2

=
−
∑M

j=1(pj(x))−q log(pj(x))1−q −
∑M

j=1(pj(x))−q. log
∑M
j=1(pj(x))−q

M

(q − 1)2
∑M

j=1(pj(x))−q
(B.2)

We must show that Eq. (B.2) is negative everywhere. Since the denumerator of Eq.

(B.2) is always positive, we just need to proof the numerator of Eq. (B.2) is always

negative. According to the log sum inequality, we have

−
M∑
j=1

(pj(x))−q log(pj(x))1−q ≤
M∑
j=1

(pj(x))−q log

∑M
j=1(pj(x))1−q∑M

j=1 1

=
M∑
j=1

(pj(x))−q log

∑M
j=1(pj(x))1−q

M
(B.3)
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The numerator of Eq. (B.2) can now derive as

Fp = −
M∑
j=1

(pj(x))−q log(pj(x))1−q −
M∑
j=1

(pj(x))−q. log

∑M
j=1 (pj(x))−q

M

≤
M∑
j=1

(pj(x))−q . log

∑M
j=1(pj(x))1−q

M
− sumM

j=1(pj(x))−q. log

∑M
j=1 (pj(x))−q

M

=
M∑
j=1

(pj(x))−q .

(
log

∑M
j=1(pj(x))1−q

M
− log

∑M
j=1 (pj(x))−q

M

)

=
M∑
j=1

(pj(x))−q . log

∑M
j=1(pj(x))1−q∑M
j=1 (pj(x))−q

=
M∑
j=1

(pj(x))−q . log

∑M
j=1 pj(x)(pj(x))−q∑M

j=1 (pj(x))−q

≤
M∑
j=1

(pj(x))−q . log

∑M
j=1(pj(x))−q∑M
j=1 (pj(x))−q

≤ 0 (B.4)

Therefore, fRq(x) is a monotonic non-increasing function in q#0, 1.

B.4 Proof of Lemma 3.4

Lemma 3.4: The measure fRq(x) = 0 when q = 0.

Proof. When q = 0, fRq(x) reduces to

fRq(x) = − log

∑M
j=1 (pj(x))0

M

= − log
M

M

= 0 (B.5)
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B.5 Proof of Lemma 3.5

Lemma 3.5: If the distribution p(x) has reached the reference vector r, then the distance

fRq(x) = 0.

Proof. When the relative probability vector p(x) reach the reference vector r, we have

pj(x) = 1, ∀j = {1, 2, ..,M}. Then, fRq(x) deduce to

fRq(x) =
1

q − 1
log

∑M
j=1 (1)−q

M

=
1

q − 1
log

M

M

= 0 (B.6)

B.6 Proof of Lemma 3.6

Lemma 3.6: For q ← 1, fRq(x) becomes Kullback-Leibler divergence:

fRq(x)
q←1

=
M∑
j=1

rj log
rj

pj(x)

=
M∑
j=1

− log pj(x) (B.7)

B.7 Proof of Lemma 3.7

Lemma 3.7: Let RRSE(x1) and RRSE(x2) are the RRSE of the solution x1, and the RRSE

of the solution x2 in the feasible population P , respectively. if RRSE(x1) < RRSE(x2),

then solution x1 dominates the solution x2.

Proof. Let define function f(x1,x2) = RRSE(x1) − RRSE(x2). We now prove that if x1

is said to dominate the solution x2, then f(x1,x2) < 0.
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From Eq. (3.5), we can derive f(x1,x2) as follows

f(x1,x2) =
20∑
q=1

(
fRq(x1)− fRq(x2)

)
=

20∑
q=1

1

q − 1

(
log

∑M
j=1 (pj(x1))−q

M
− log

∑M
j=1 (pj(x2))−q

M

)

=
20∑
q=1

1

q − 1
log

∑M
j=1 (pj(x1))−q∑M
j=1 (pj(x2))−q

(B.8)

• If q = 1, based on Lemma 3.6, we have

f(x1,x2) =
M∑
j=1

− log pj(x1)−
M∑
j=1

− log pj(x2)

=
M∑
j=1

log
pj(x2)

pj(x1)

Since x1 dominates x2, according to Lemma 3.1, pj(x2) < pj(x1), j = 1, 2, ...,M .

Thus, following Eq. (B.7), f(x1,x2) < 0.

• if q > 1, we have, x1 dominates x2 then pj(x1) > pj(x2), j = 1, 2, ...,M . It is

equivalent to

(pj(x1))−q < (pj(x2))−q, j = 1, 2, ...M . This leads to

f(x1,x2) =
20∑
q=1

1

q − 1
log

∑M
j=1 (pj(x1))−q∑M
j=1 (pj(x2))−q

<
20∑
q=1

1

q − 1
log 1 = 0 (B.9)

Therefore, if 1 ≤ q ≤ 20, RRSE(x1) < RRSE(x2) if the solution x1 is said to dominate

the solution x2.
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Benchmark Test Images

We use four highly-texture colour images which are commonly used in image processing

research for the test images. The test images of Lena, Babbon, Airplane-F16, and House

images with the size of (512-by-512)-by-3 from [USCSIPI] are shown in Fig. C.2, C.3,

C.4, and C.5, respectively. The watermark image used for testing is the Winnipeg Jet

logo with the size of 64-by-64 from [WinJET] shown in Fig. C.1.

Figure C.1: The Winnipeg-Jet logo watermark image.
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Figure C.2: Lena test image.

Figure C.3: Baboon test image.
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Figure C.4: Airplane-F16 test image.

Figure C.5: House test image.



Appendix D

Wavelets and HVS for Perceptual

Data Hiding

In this appendix, we provide some basis of human visual system (HVS) models for image

data hiding, wavelet decomposition technique, and a brief introduction of our perceptual

image watermarking based on HVS and wavelets.

D.1 Concept of Using HVS Models for Perceptual

Data Hiding

The human visual system has been extensively studied over the years in order to use

this knowledge for image and video processing applications [LeKn92, JaJS93, Wand95,

WoPD99]. Lewis and Knowles [LeKn92] defined the HVS as an information process-

ing system, receiving spatially sampled images from the cones and rods in the eye, and

deducing the nature of the objects it observes by processing this image data. More struc-

turally, Wandell [Wand95] defined the HVS as an information system of three successive

processing stages: encoding, representation, and interpretation. The lowest-level stage

183



Appendix D 184

(e.g., encoding) encodes light into electrical signals by the photocells of the retina. The

representation turns encoded visual signal from the en-coding stage to specific charac-

teristics of the image. The interpretation stage is the highest stage of human vision.

This stage is located in the brain, and it depends on each individual experience. The

effects of motion, depth, color appearance, and visual understanding are created in the

interpretation stage.

The HVS has a limited sensitivity, depending on the anatomy of the eye, its limitations

and imperfections, and the characteristics of the visual signals [WoPD99, VlDM02]. In

the context of image coding, there are three important sensitivities: frequency sensitivity,

luminance sensitivity, and contrast sensitivity. The frequency sensitivity provides a basic

visual model that depends only on viewing conditions and is independent of image con-

tent. Luminance sensitivity is a way to measure the effect of the detectability threshold

of noise on a constant background of the image. The contrast sensitivity refers to the

detectability of one signal in the presence of another signal. The effect of contrast

sensitivity is strongest when both signals are of the same spatial frequency, orientation,

and location [WoPD99]. These three sensitivities create visibility thresholds of the HVS,

and are a basis for visual masking effects.

Figure D.1: Using HVS for perceptual data hiding.
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An effective perceptual model allows us to take advantage of characteristics of the

human visual systems not only in order to remove redundancy in designing optimal

compression algorithms, but also to select suitable locations for perceptually embedding

data into the image. How can we create a mathematical visual model that effectively

exploits these visual masking effects for image and video processing applications? To find

the most effective visual model has been an open-ended issue for researchers for many

years. The frequency decomposition techniques such as the DCT and wavelets can mimic

the HVSs structure in order to gain the most in terms of visual masking. The visual

models based on the DCT and wavelets have been studied widely for optimal compression

and perceptual watermarking [LeKn92, JaJS93]. The framework for applying a visual

model for data hiding is described in Fig. D.1.

D.2 Wavelets Decomposition

Extensive experimental researches about HVS have been conducted by visual psycholo-

gists over the years. They discovered that the human eye filters the image into a number

of bands, each approximately one octave wide in frequency [LeKn92]. Wavelet decomposi-

tion is considered to closely mimic the HVSs structure in perception [LeKn92, WoPD99].

A wavelet transform is very suitable for identifying the disturbed areas where tam-

perings can be hidden more easily. This property allows one to exploit the HVS fre-

quency masking effect. If a wavelet coefficient is modified, only the region of the image

where the particular frequency corresponding to that coefficient is present is modified

[JaJS93, ChLi10]. Due to space limitation, this section provides just a short review of

wavelet decomposition.

One dimensional wavelets (wavelet bases) are functions generated from one single

function so-called a single mother wavelet, ψ, by dilation and translations [Daub90,

Daub92]. The mother wavelet ψ has to satisfy
∫
ψ(x)dx = 0, and

∫
|Ψ(w)|2|w|−1dw <∞,
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where Ψ(w) is the Fourier transform of the mother wavelet function ψ(t). A wavelet atom

ψi,j(t), localized around the point 2ij and has a support size proportional to the scale 2i,

is defined by

[
ψi,j(t) =

1

2i
ψ

(
t− 2ij

2i

)]
i∈Z,j∈Z

(D.1)

The basic idea of the wavelet transform is to represent any arbitrary function f as

a superposition of wavelets [Daub92]. That means the function f is decomposed into

different scale levels, where each level is then further decomposed with a resolution

adapted to it. The wavelet decomposition can be then expressed by

f =
∑

ci,j(f)ψi,j (D.2)

where the wavelet coefficients

ci,j(f) = 〈ψi,j, f〉 =

∫
ψi,j(x)f(x)dx (D.3)

In a multiresolution analysis, there have two functions: the mother wavelet ψ, and

a scaling function φ. The scaling function φ defines an orthogonal basis using dyadic

dilations and translations. The dilated and translated versions of the scaling function is

given by

φi,j(x) = 2−i/2φ(2−i − j) (D.4)

The wavelet transform can be implemented by quadrature mirror filters [Mall89,

Wick96]. In the forward wavelet transform, we use analytic filters including the low-pass

filters L = (l(n)), n ∈ Z, and the high-pass filters H = (h(n)), n ∈ Z, where l(n) and

h(n) are defined by

l(n) =
1

2
〈φ(x/2), φ(x− n)〉 (D.5)
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h(n) = (−1)nl(1− n) (D.6)

The reconstruction filters including the low-pass filter L̃, and the high-pass filter H̃

have impulse responses l̃(n) = l(1 − n), h̃(n) = h(1 − n), respectively. The filter bank

structure for one-dimensional (1D) wavelet decomposition and reconstruction in 1-level

is illustrated in Fig D.2.

Figure D.2: Filter bank structure for 1-level wavelet transform.

For two dimensional signals (i.e., images), we use the hierarchical wavelet decomposi-

tion introduced by Mallat [Mall89]. The low-pass and high-pass filters L,H are applied to

the image in both horizontal and vertical directions. The filter outputs are then subsam-

pled by a factor of two to generate three orientation selective high-pass subbands HH,

HL, LH, and a low-pass subband LL. The process is then repeated on the subband LL

to create the next level of the wavelet decomposition. The 4-level wavelet decomposition

using the filter bank technique resulting in thirteen subbands can be displayed by filter

bank structure in Fig. D.3, or can be displayed by wavelet tree structure by Fig. D.4.
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Figure D.3: Four-level wavelet decomposition (Displaying by filter bank structure).

Figure D.4: Four-level wavelet decomposition (Displaying by wavelet tree structure).



Appendix D 189

D.3 A Perceptual Image Watermarking Based on

HVS and Wavelets

In this section, we provide an example of using HVS in wavelet domain for a perceptual

image watermarking. Studies in HVS models have shown that the human eye is: (i)

less sensitive to noise in high resolution bands; (ii) less sensitive to noise in those areas

of the image where brightness is high or low; and (iii) less sensitive to noise in highly

texture areas but, among these, more sensitive near the edges. To have a perceptual

image watermarking, the watermarking system should adopt HVS to analyze the local

properties of the host signal to find the suitable area in transformed or non-transformed

domain for embedding the watermark. To adapt the watermarking system to the local

properties of the image, we use the quantization model based on HVS introduced in

[LeKn92] to calculate the HVS mask in wavelet domain for a perceptual watermark

embedding algorithm.

The watermark embedding scheme is depicted in Fig. D.5.

Figure D.5: Block diagram of the watermark embedding scheme based on HVS and

wavelets.
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The embedding algorithm is briefly described as follows. The RGB image is first con-

verted to YCrCb colour image. The luminance component Y is decomposed by wavelet

transform in 4-level of decomposition. The wavelet coefficients in each subband are

grouped into 3-by-3 non-overlapping blocks. The HVS weights are then calculated for

each blocks by the HVS weighting function. Based on the HVS weights, the algorithm

decides which blocks are suitable for embedding watermark. The wavelet coefficients

in selected coefficient blocks are used to train the general regression neural network

(GRNN). The watermark bits which are scrambled by a scrambling technique with a

secret key are embedded to selected coefficients by the trained GRNN. Finally, inverse

wavelet transform IDWT is applied to reconstruct the watermarked image.

The intensity display of 4-level Daubechies-2 wavelet decomposition of Lena image is

shown in Fig. D.6.

Figure D.6: Intensity display of 4-level Db2 wavelet decomposition of Lena image.
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The HVS model calculates the HVS mask for embedding the watermark in 4-level

wavelet transformed domain by calculating the weighting function for each block, Wf(r, s, x, y).

we denote I(r,s)(x, y), as the central wavelet coefficient value of the block B(r,s)(x, y) at

subband s, level r. For 4-level wavelet decomposition, r = 1, 2, 3, 4, and s is the subband

of HH, HL, LD, LL. The HVS weighting function is then calculated from

Wf(r, s, x, y) = F (r, s) ∗ L(r, x, y) ∗ T (r, x, y)α (D.7)

where α is the weighting parameter, deciding the perceptual quality of HVS mask. In this

work, we choose α = 0.17. The functions F (r, s), L(r, x, y), and T (r, x, y) are calculated

by Eq. (D.8), Eq. (D.11), and Eq. (D.12), respectively.

F (r, s) = f1(s) ∗ f2(r) (D.8)

where

f1(s) =


√

2, if s = HH

1, otherwise

(D.9)

f2(r) =



1.00, if r = 1

0.32, if r = 2

0.16, if r = 3

0.10, if r = 4

(D.10)

L(r, x, y) =
1

256
I4
LL

(
1 +

∣∣∣ x

24−r

∣∣∣ , 1 +

∣∣∣∣ 1

24−r

∣∣∣∣) (D.11)

T (r, x, y) =
4−r∑
k=1

16−k
HH,HL,LH∑

s

1∑
i=0

1∑
j=0

(
Ik+r,s

(
i+

x

2k
, j +

y

2k

))2

∗

V ar
{
I4

4

(
1 + i+

x

24−r , 1 + j +
y

24−r

)}
(D.12)
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The suitable blocks (HVS mask) for embedding the watermark are selected by com-

paring the center coefficient values I(r,s)(x, y) with its corresponding weighting function

value Wf(r, s, x, y), given by

B(r,s)∗(x, y) =

{
B(r,s)(x, y) : I(r,s)(x, y) >

1

4
Wf(r, s, x, y)

}
(D.13)

The process of training GRNN to embed the watermark bits into the selected wavelet

coefficients has the same procedure described in Section 4.3 of Chapter 4. The watermark

extraction process is the inverse of the embedding process. In the experiment, the binary

logo watermark image of “Winnipeg Jet” is embedded into the colour images of Lena,

Baboon, Airplane, and House, with the same watermarking factor η = 18. The water-

marked image of Lena and Baboon are shown in Fig. D.7 and Fig. D.8, respectively.

More experimental results can be found in [DaKi12a].

Figure D.7: Watermarked image of Lena: (a) The original Lena image; (b) The water-

marked image with PSNR=42.83 dB.
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Figure D.8: Watermarked image of Baboon: (a) The original Baboon image; (b) The

watermarked image with PSNR = 42.90 dB.
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Possible Research Extensions

E.1 Effective fitness evaluation and global-local learn-

ing strategy of AMMOA for many-objective op-

timization problems

The implementation used Pareto ranking and crowding distance for updating the popu-

lation can work well with a two- or three-objective optimization problems. However, it

scales poorly with many objective problems because of the nature of using the Pareto

dominance principle for ranking. Thus, to improve the performance for many objective

optimization problems (e.g., more than 4 objectives), AMMOA needs to adopt an ef-

ficient ranking method that can improve the convergence and preserve the diversity of

populations well.

We have proposed an information theoretic criterion for guiding the selection, cluster-

ing, and local learning processes. This criterion can be used for ranking the individuals

in the population for updating processes. This information criterion based ranking can

improved the convergence well; however, it is poor in preserving the diversity of the

194
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population. Thus, a careful study of using this information theoretic criterion with sup-

porting methods for an effective elitist strategy needs to be placed in our priority for the

future research.

The issue of adopting a right strategy for local learning and global learning in memetic

optimization algorithms is always a challenging problem. In the implementation of AM-

MOA in Chapter 3, we used a strategy based on experimental results for the local learning

and global learning. In particular, the probability of the local search 1 in one simulation

run was selected based on the experimental results. In our future research, this issue

should be carefully investigated for an adaptive problem driven strategy.

E.2 FPGA based memetic evolvable hardware for

cognitive systems

Evolvable hardware combines together reconfigurable hardware, computational intelli-

gence, fault tolerance, and autonomous systems. Evolvable hardware uses simulated

evolution to search for new hardware configurations. The evolution is performed by a va-

riety of different stochastic search algorithms such as evolutionary algorithms [CBBC11,

GrTy07, GoBe02]. The evolvable hardware is implemented on reconfigurable devices such

as field programmable gate arrays (FPGA), field programmable analog arrays (FPAA),

or field programmable transitor arrays (FPTA) [GrTy07]. Each device is configured to

define its best architecture by itself for the given application.

This research area has achieved important progresses in the last decade; however, be-

cause of the complexity, it still stops at simple example demonstrations. It should start

dealing with more complex and real-world applications. Thanks to the fast development

of FPGA technology, FPGAs have changed to a powerful reconfigurable devices with

more resources and features, such as dynamic partial reconfiguration makes FPGAs be
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able to implement different types of evolution. The principle of adaptive memetic algo-

rithm we developed for AMMOA is a good candidate for FPGA based memetic evolvable

hardware because of its fast convergence and adaptiveness. It is necessary to scale down

the complexity and the size of AMMOA when applying it for a memetic evolvable hard-

ware. It can be applied for both single-objective and multiobjective applications. With

a single-objective, the number of clusters in the clustering process of AMMOA will be

scaled down to 0, and the non-dominated sorting procedures will be applied with the

probability of 0. Each evolution in this situation just includes simple global and local

searches for a single-objective function.

The autonomous navigation of spacecrafts is one of the potential applications of the

memetic evolvable hardware. This is an important feature of future space missions. An

intelligent and autonomous spacecraft must be able to adapt to new environments and

be able to deal with unexpected changed situations, fast and robustly. Thus, adaptive

electronic hardware that is able to reconfigure its electronics circuits by itself is a special

need for autonomous spacecrafts.
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