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Summary

Small signal stability analysis is typically concerned with electromechanical oscilla-
tions in a power system. For this purpose, it is adequate to model the transmission
system using a constant admittance matrix. For torsional oscillations and HVDC
interactions, the frequency of interest is much higher and the constant admittance
representation is not sufficient. T.he modeling details necessary to adequately repre-
sent the dynamics of the HVDC converters and the AC network are investigated and
the models are validated against an electromagnetic transient simulation program.
The thesis shows that AC network dynamics must be modeled in order to obtain
meaningful results from the small signal stability study of the high frequency interac-
tions (up to 200Hz). The dynamic phasor representation of the AC network is used
to model the network and the dynamic devices are combined with the network model
using current injection models. However, it is impractical to model the dynamics of
the entire AC network of a large power system because of high computational burden.

This thesis proposes a hybrid model, which allows the parts of the transmission
network in the vicinity of HVDC converters or any other dynamic devices to be
modeled with their dynamics and the remaining parts to be modeled as constant ad-
mittances. This model can be efficiently used for large power systems. The proposed
hybrid methodology is validated against an electromechanical transient program using
time responses.

The thesis presents an analysis of multi-in-feed HVDC interactions using small
signal analysis techniques. A small test system with two HVDC in-feeds and the
IEEE New England 39 bus system with two HVDC in-feeds are used to demonstrate
the presence of interactions in those systems. The case studies presented in the thesis
indicate that it is possible to have interactions between the HVDC terminals in an

iv
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AC system. The thesis recommends that a small signal interaction study similar to
what is presented in the thesis should be performed to identify these interactions.
For large power systems, the proposed hybrid model can be used to accurately and
efficiently analyze these interactions.

Furthermore, the thesis demonstrates that the small signal stability assessment
techniques described in the thesis can be used to identify the HVDC-generator-turbine
torsional interactions in power systems. Two case studies are performed using the
small signal model including the dynamics of the entire AC network and the pro-
posed hybrid small signal model. The case studies indicate that it is possible to
have subsynchronous frequency torsional interactions between the HVDC systems
and generator-turbine units and these interactions may cause instabilities under cer-
tain conditions. Further, the electromagnetic transient simulations validate these
findings.

The thesis further investigates the inclusion of the auxiliary controllers at the
HVDC terminal to control the electromechanical and torsional oscillations of the
nearby generator-turbine units. The design procedures are briefly described using
small signal stability assessment and the performances of them are evaluated using
time domain simulations.

In general, the analytical techniques proposed in this thesis would be useful to
analyze the high frequency interactions of HVDC systems, generator-turbine units
and FACTS devices. The modeling techniques can be used for very large power

systems.
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Converter transformer turns ratio (AC/DC)

Number of 6-pulse bridges in a converter

Converter firing angle, commutation angle and extinction angle
DC line inductance, resistance and capacitance
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Damping and inertia constants of a generator

Generator input mechanical torque and output electrical torque
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An eigenvalue
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Chapter 1

Introduction

1.1 Background

Since the first commercial project in 1950s, the High Voltage Direct Current (HVDC)
power transmission technology has been well developed over 50 years and widely used
in modern power systems [1]. Line commutated converters and capacitor commutated
converters are used in the HVDC systems. Although the capacitor commutated
HVDC converters have gained some popularity recently for low power applications,
the line commutated HVDC conveners are still leading in high power applications
and can be found all around the world [2].

In HVDC systems, the AC power is converted into DC at a converter (Rectifier)
and the power is transported in DC form to another converter at which the DC power
is again converted into AC (Inverter). In line commutated converters, the smoothing
reactors connected in series with the converters in the DC side are used to facilitate
the AC to DC conversion of the thyristor based converters. A DC transmission line
is used to transport the power from the rectifier to the inverter. In some cases, the

rectifier and the inverter are placed at the same location and they are connected

1



CHAPTER 1. INTRODUCTION

together without having a DC line (back to back HVDC links). These back to back
HVDC links are used either to connect two power systems with unequal operating
frequencies or to enhance the stability of two power systems by effectively separating
them.

The conversion process of the HVDC converters produces higher order harmonics
in addition to the fundamental frequency component. For example, a 12 pulse HVDC
converter generates 12n+1 (n=1,2,3...) harmonics in the AC side and 12n (n=1,2,3...)
harmonics in the DC side. The harmonic filters are connected at the AC and DC
sides to suppress the significant harmonic components.

This thesis is concerned with the interactions of the line commutated HVDC sys-
tems. The HVDC systems may interact with the other dynamic devices in the power
systems. The HVDC controllers may affect the damping of the electromechanical
modes [3]. Especially, the damping controllers can be incorporated with the HVDC
controllers to damp out some troublesome electromechanical modes [4] [5] [6].

Some HVDC systems may interact with tightly coupled generator-turbine sys-
tems, which have torsional oscillations. These torsional interactions, which lie in
the subsynchronous frequency range (0 to fundamental frequency), occur between
the rectifier current/power controller and the multi-mass rotor-turbine systems of
the generators [7]. In some practical cases, torsional instabilities caused by HVDC-
generator-turbine interactions have been reported. In Square Butt project in North
Dakota, The rectifier current controller interacted in an adverse way with a 11.5 Hz
torsional mode of an adjacent generator-turbine unit [8]. Investigations carried out
in the Coal Creek HVDC station, North Dakota have indicated some possibility of a
torsional instability at a 19 Hz torsional mode associated with a nearby generator-

turbine unit [9]. Although, the HVDC controllers may cause torsional instabilities
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in generator-turbine units, they can also be utilized to improve the damping of the
torsional modes. A subsynchronous damping controller (SSDC) can be included in
the rectifier current/power controller as an auxiliary controller {10, 11, 12, 13]. SSDC
consists of gain blocks, washout filters and lead-lag blocks to appropriately damp out
one or more troublesome torsional modes.

Multi-HVDC systems, in which more than one HVDC system is connected to the
power system within close proximity, can also be found in modern power systems
[14]. When more than one HVDC inverters are connected to a power system within
close proximity, they are considered as “multi-in-feed HVDC systems”. In multi-in-
feed HVDC systems, the HVDC links may interact with each other as well as with
other dynamic devices in the power system. Sufficient attention has not been paid
in the literature to the interactions among the HVDC links in multi-in-feed HVDC
environments.

It is important to identify these multi-HVDC and HVDC-generator-turbine inter-
actions accurately for stability analysis and controller design. Electro-Magnetic Tran-
sient (EMT) type time domain simulations, transient stability analysis techniques and
small signal stability assessment are the most common techniques employed for the
stability assessment. EMT type simulations use detailed models and therefore, give
more accurate results. The major limitations in EMT type simulations are the size
of the system and the simulation time. Only small power systems can be modeled
in this type of programs and the simulation time increases as the size of the system
increases. These limitations are overcome in transient stability simulations by using
simplified models. The interactions in HVDC systems can be analyzed qualitatively,
using the time domain responses obtained from these EMT and transient stability

simulation techniques. However, some of the modes in the system may not be ob-
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servable in the responses. Although, the modes are observable, the contributions for
these modes cannot be identified accurately using the responses. The interactions at
a particular steady state operating point of the power system can be analyzed quan-
titatively in the frequency domain using small signal stability assessment techniques.
The contributions towards the interactions are identified accurately using eigenvalue
analysis techniques [15]. Furthermore, this technique can be applied for large systems
efficiently [16].

Small signal stability is concerned with the ability of power systems to maintain
synchronism under small disturbances [17]. The disturbances are considered to be
sufficiently small that the linearization of the system’s nonlinear behavior is permis-
sible. The nonlinear behavior of the dynamic devices of the power system is first
linearized at a particular steady state operating point. The linear state space model
of the power system is then obtained by combining the linearized model of the dy-
namic devices together. The small signal stability of the power system is determined
from the eigenvalues of the system matrix of the state space model using Lyapunov’s
stability criteria [18].

In order to apply in large power systems, some simplification techniques are used
in conventional small signal stability programs. The objective of these programs is to
analyze the low frequency electromechanical oscillations (< 3Hz) of power systems.
Therefore, the electrical network is modeled using algebraic equations (admittance
matrix), ignoring high frequency network transients. Furthermore, the generator
stator dynamics are also ignored to be consistent with the algebraic network model
[15]. The admittance matrix representation of the AC network helps to reduce the
size of the system matrix dramatically. SSAT (DSA Power Tools) [19], PacDyn [20],
NEVA (PSS/E) and DIgSILENT PowerFactory are some of the commercial software
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packages, which can be employed to analyze the electromechanical oscillations of large
power systems.

In order to accurately analyze the interactions related to HVDC and flexible AC
transmission system (FACTS) devices and the torsional interactions, the conventional
small signal stability assessment technique has to be modified. These interactions may
contain frequencies up to 200Hz [21] and therefore, the above approximations are not
valid. The AC network dynamics have to be included and the generators are required
to be modeled including stator winding dynamics. The network components can be
modeled using the dynamic phasor model [22, 23, 24]. The higher order harmonics
in the HVDC systems can still be ignored since they are well above the frequencies
of interest. For example, the lowest AC side harmonic in a 60Hz, 12 pulse converter
is 660Hz and there is no influence of this harmonic on the low frequency interactions
(up to 200Hz).

Inclusion of network dynamics and stator dynamics of generators increases the
number of state variables and hence the size of the system matrix. Therefore, it is
impractical to model all the network dynamics of large power systems. Therefore,
the HVDC interaction studies reported in the literature [5, 6, 21, 25, 26] have been
limited to very small test systems such as CIGRE benchmark HVDC test system
[27]. When high frequency interactions need to be studied, only a small portion of
the power system is modeled including network dynamics and the rest of the system
is represented using simplified models such as an infinite bus behind the Thevenin’s
impedance. Some locally spread interactions can be analyzed using these simplified
models. However, the effect of these interactions on the rest of the system cannot be
investigated. Especially, when designing controllers to control some high frequency

interactions, the effect of them on widely spread interactions such as inter-area modes
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cannot be analyzed using these simplified models.

In summary, the HVDC systems may interact with the other dynamic devices
of power systems. The small signal stability assessment can be used to analyze the
interactions quantitatively if it is modified appropriately to be accurate up to around
200Hz frequency oscillations in the power systems. However, the capabilities of the
small signal stability assessment in analyzing HVDC interactions have not been well

explored in the literature.

1.2 Thesis Objectives

The main objective of this research is to analyze the HVDC interactions in power
systems using small signal stability assessment techniques. The following goals were
set to achieve the main objective.

The nonlinear devices in power systems such as HVDC systems, generators and
AC network are linearized at a particularv steady state operating point such that the
linear models are accurate for the desired frequency range. The linearized models
are presented as current injection models, which can be easily combined with the
conventional small signal stability models of other devices. A linearized model of
an HVDC system including converter models, rectifier and inverter controllers, DC
transmission system and Phase Lock Oscillators (PLOs) are developed using the
knowledge provided in [25] and [21]. The dynamic phasor model [22][23](24] are used
to model the AC network. Transmission lines, transformers, static loads and AC
filters are included in the AC network model. The generators are modeled including
their stator dynamics. The modeling adequacy in the range of frequencies of interest
are evaluated using the time domain simulations and the frequency domain analysis.

The ultimate goal of this research is to analyze HVDC interactions in large power

6
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systems. For this, a single platform, which can be employed to analyze conventional
electromechanical oscillations as well as high frequency interactions is proposed in
this thesis. The areas of the network, which consist of dynamic devices causing high
frequency oscillations, are modeled including network dynamics and the rest of the
network is modeled using the power frequency admittance matrix. The linearized
models of the dynamic devices are combined with the dynamic network models using
Kirchhoff’s laws. The resultant linearized models of the dynamic network areas are
combined with the admittance matrix of the rest of the network using current injection
models. The model is referred to in this thesis as “hybrid AC network model” or
“hybrid small signal model”. The accuracy of the proposed model is evaluated using
detailed models and time domain simulations.

The HVDC interactions are analyzed in the frequency domain using developed
models. The interactions between the HVDC terminals in multi-in-feed HVDC power
systems, the HVDC-generator electromechanical interactions and the HVDC-generator-
turbine torsional interactions are mainly focused on the studies. The methodology
can be directly used for the interaction studies of the other dynamic devices such as
FACTS devices. However, these devices are not included in the analysis carried out

in this thesis.

1.3 Thesis Outline

The linearized models of the power systems are presented in Chapter 2. The lin-
earized model of an HVDC system and its accuracy is extensively discussed. The
model is validated up to 200Hz using frequency response analysis. The linearized
models of generators with and without stator dynamics are briefly discussed in this
chapter and the models are given in Appendix C. The conventional model of the AC

7
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network (admittance matrix representation) and the dynamic phasor model are pre-
sented and the accuracy of these two models in analyzing high frequency HVDC inter-
actions are evaluated using time domain simulations obtained for a small multi-in-feed
HVDC test system. The detailed EMT simulations obtained using PSCAD/EMTDC
[28] are used as a benchmark for the comparisons.

The proposed hybrid AC network model is presented in Chapter 3. The forma-
tion of the dynamic network areas and combination of the dynamic network areas
with the rest of the system (admittance matrix model) are discussed using simple
examples. The model is tested using a modified version of the IEEE New England 39
bus test system [29]. Two generators of the test system are replaced with two HVDC
in-feeds and the neighborhood of these HVDC in-feeds are modeled including the net-
work dynamics. The performance of the hybrid model is compared against an EMT
model, the conventional small signal model and the small signal model including the
dynamics of the entire AC network.

The small signal stability assessment of power system is briefly summarized in
Chapter 4. The modes in the power systems are identified using eigenvalues of
the linearized model and the modal characteristics are given by the properties of the
eigenvalues and eigenvectors.

The HVDC interactions of the power systems are analyzed in Chapter 5 using the
small signal stability assessment. This includes the multi-in-feed HVDC interactions
and the HVDC-generator electromechanical interactions. The interactions are first
analyzed for a small multi-in-feed HVDC test system (Case Study-1) using a small
signal model including the dynamics of the entire AC network. The analysis is then
extended to the IEEE New England 39 bus test system in Case Study-2 using the

proposed hybrid small signal model. The detailed model including the dynamics of
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the entire AC network is also used to validate the results of the hybrid model.

The HVDC-generator-turbine torsional interactions are discussed in Chapter 6.
The studies are carried out using a simple test system to show that a small signal
stability model with the AC network dynamics modeled is adequate to analyze the
interactions. Furthermore, the hybrid model is used to analyze torsional interactions
in the IEEE New England 39 bus test system. The possibilities of designing subsyn-
chronous damping controllers for the HVDC systems are briefly discussed using small
signal stability assessment.

Chapter 7 presents the conclusions of the research and the recommended future

studies.



Chapter 2

Linearized Models of

Power Systems

2.1 Introduction

In small signal stability assessment, nonlinear behavior of dynamic devices is first
linearized at a particular steady state operating point. It is assumed that the power
system is balanced among the three phases and therefore, only the positive sequence
relationships are considered. This helps to reduce the size of the equivalent linear
model significantly.

In general, linearization of a nonlinear function is carried out by expanding it
into a Taylor series at the nominal operating point. Only the first order terms of
the expansion are considered assuming that the higher order changes are negligible.
Therefore, the method is applied to smooth nonlinearities with small deviations from
the operating point.

Consider the nonlinear function given in Equation (2.1). The variables z1, 2o, .., Zn,
may be state variables, inputs, outputs or their derivatives.

10



CHAPTER 2. LINEARIZED MODELS OF POWER SYSTEMS

y = f(z1, 22, .., Zs) (2.1)

At the steady state operating point at which the linearization is done, the value

of the function is given by,

Y = f(ah, 25, .. 73). (2:2)

9,29, .., 2% are the values of variables at the steady state operating point.

The change in the value of the function from the steady state, i.e. ¥ — y°, can be

obtained using the first order Taylor series expansion as given in Equation 2.3.

Ay= 3 (gi >0Aa:z- (2.3)

Where, (%)O is the steady state value of the partial derivative of the function
with respect to the i variable. Az; is the change in i** variable from the steady
state operating point (z; — z?).

This analytical technique is used to linearize nonlinear dynamic behaviors of the
power system devices. The linearized models of the dynamic devices are combined
together to obtain the linear state space model of the power system. It is important
to evaluate the adequacy of the linearized models in small signal stability assessment,
since there are approximations associated with each model. The linearization of some
of the important dynamic devices and the adequacy of them are discussed in this
chapter. This includes HVDC systems, synchronous generator-turbine units and their
controllers, multi mass torsional turbine models and AC network models. The linear
models are tested for the accuracy in the time domain as well as in the frequency

domain by comparing with the detailed electromagnetic transient (EMT) simulations

11
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obtained using PSCAD/EMTDC [28].

2.2 Linearized Model of an HVDC System

The linearization of HVDC converter models is challenging because of the non-linear
switching and self commutation of the converter valves. For small changes, the lin-
earization is carried out based on some approximations. The higher order harmonics
generated in the conversion process are ignored and the fundamental AC components
are assumed to be balanced among three phases. Some linearized models based on
these assumptions can be found in [21, 25].

In [25], a linearized converter model has been derived from the well known HVDC
steady state relationships. A more extensive approach has been employed in [21] to
obtain the linearized model, where the frequency conversion process of the converters
has been taken into account by frequency shifting the equations of the AC network
dynamics. The HVDC converter model has been based on the frequency dependent
model described in [30] and [31]. The original idea came from Larsen [32] and there-
fore, the equations are referred to as Larsen’s equations. However, the frequency
dependency could not be included in the small signal stability model. The changes
in zero frequency component in DC side and the fundamental frequency component
in the AC side have been considered. The AC side equations were frequency shifted
by + fundamental frequency to combine the AC side and DC side equations. Pre-
liminary studies done on the CIGRE benchmark HVDC test system [27], have shown
that the above two methods give similar results as far as the converter operation is
concerned. Neither of the above references include the inverter firing controllers in
the models.

In this thesis, a current injection model, which can be easily combined with the

12
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other devices in power systems is proposed to be used as the linearized model of the
HVDC system. The converter linearized model is obtained using the the fundamental
frequency relationships derived from the converter switching waveforms. The HVDC
system consists of the converter model, rectifier constant current controller (CC),
inverter constant extinction angle controller (CEA) or constant voltage controller

(VC) and the DC transmission system.

2.2.1 Converter Model

The 6-pulse Graetz bridge shown in Figure 2.1 is the basic building block of the HVDC
converters. Six thyristor valves are connected between three phase AC side and DC
side such that three valves (1,3 and 5) are in the upper limb and the other three
valves (4,6 and 2) are in the lower limb. Each valve is fired at a particular instant.
The firing instant with respect to a reference is called “firing angle” («). The DC
side voltage can be changed by changing the firing angle. When the next valve on the
same limb is fired, the valve conducting will stop. There is a period in which the both
of the valves conduct, before the first valve completely stops conduction. This period
is called “commutation period” and the corresponding phase angle is referred to as
“commutation angle” (). The conduction pattern of the valves and the commutation
periods are given in Table 2.1 for a cycle of the fundamental frequency. The angle is
measured with respect to the phase-a terminal voltage.

Each valve in the bridge has a normal conduction period of 120° and two com-
mutation periods (2 x u) in each cycle. During the normal conduction of Valve-1
(phase-a), the upper DC side voltage with respective to the ground (Vy;) and the
AC side phase a current (z,) are given by Equations (2.4) and (2.5) respectively. L,

is the leakage inductance of the converter transformer.

13
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Figure 2.1: 6-pulse converter bridge

Table 2.1: Conduction pattern of valves in a 6 pulse bridge

Angle [°] (w.r.t. phase-a) | Valves to be conducted Comments
From To
Upper limb
0 30+« 5
30+« 0+a+t+p 5,1 commutation period
0+a+p 150 + « 1
150 + o 150 +a+p 1,3 commutation period
150+ a+pu 2710+ o 3
270+ o 210+ a+u 3,5 commutation period
210+ a+ 360 5
Lower limb
0 90 + « 6
0+« N+a+u 6,2 commutation period
NV+a+p 210+ o 2
2104+ « 20+ a+pu 2,4 commutation period
210+ a+u 330+ o 4
330+ o 330 +a+u 4.6 commutation period
330+a+u 360 6

14
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dlue
dt

io = Iy (2.5)

Vier = v4 — Le (2.4)

During the commutation period (u) of valves 1 (phase-a) and 3 (phase-b), the
upper DC side voltage (V1) and the AC side phase a current (i,) are given by

Equations (2.6) and (2.7) respectively.

Vg + Up Lc dIdc
2 2 dt

d’ia . Vg — Up 1 dIdc

dt 2L, 2 dt

Vdcl == (26)

2.7)

If the derivatives of the DC current are ignored, the resultant upper limb DC side
voltage (Vg ), lower limb DC side voltage (Vye) and the AC side current in phase a
(¢4) can be obtained as shown in Figure 2.2. The zero frequency component of the
resultant DC side voltage (Vi1 — Vieo) is given by Equation 2.8.

_ 3V2B 3X.B

Vie T Vicosa —

Idc (28)

AC currents and voltages are represented using phasors, which are defined by a
magnitude and an angle with respect to a reference voltage waveform. The phasor
of the reference voltage has zero angle. The phasor quantities can be transformed
into two quadrature directions: one is along the reference voltage (real component)
and the other one is 90° ahead of the real component (imaginary component). These

real and imaginary components are also used to represent the voltage and current

15
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Figure 2.2: DC side voltages and AC side phase a current of a 6-pulse Bridge

phasors.

The fundamental frequency component of the converter AC current can be ob-

tained from the current waveform shown in Figure 2.2 using Fourier series expansion.

The fundamental component of the phase-a current is given by,

ial = Aal COS(th) —+ Bal Sil’l(wot)
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where,
Ay = \/iBV; /%+a+u[cos(a) — cos(f — z)] cos(6)df + 2B o Iqc cos(0)db
X T z 4o 6 ol Z g
_;/E(JCBTYQ /%izaﬂ[cos(a) — cos(f — 5%)] cos(0)do
By = ;/f(i;g /::lﬂ[cos(a) — cos(f — %)] sin(6)d6 + ?T—l;—, %:%:aﬂt I4esin{6)d6
_7@?‘2 /%jiw[cos(a) ~ cos(6 — %”)] sin(6)do

The real phasor component (Ig) and the imaginary phasor component (I;) of the
fundamental AC current can be obtained from,

Ir _ —sin(d) cos(d) Aa/V?2 (2.10)

Iy cos(d) sin(d) Ba/V?2
where, ¢ is the phase angle of the converter AC voltage with respect to the common
reference.
The real and the imaginary components of the AC current can be simplified as

given in Equations (2.11) and (2.12) respectively.

_VBBX.3Ve  VBBM\Vi  V6Bli

1o - _ §—a— 2.11
R VE T onX.1 7 cos0—a—p) (2.11)
BM,;V; BX.I? 6814 .
]I:_\/§ 1 R__\/§ 2chI_\/_ d sm(5—a—,u) (2.12)
2n X T2 TV, T

In the above equations,

17



CHAPTER 2. LINEARIZED MODELS OF POWER SYSTEMS

M1 =(1—cos(u))sin(2a + p) + sin(p) — p

B - Number of 6 pulse bridges

T - Converter transformer turns ratio (AC/DC)

a - Converter firing angle

L - commutation angle

X, - Transformer reactance referred to DC side

V; - L-L voltage magnitude of the AC bus

0 - angle of the AC bus voltage with respect to the common reference
Vg - real component of the AC bus voltage

Vi - imaginary component of the AC bus voltage

The higher order harmonics of the DC side voltage and the AC side currents are
neglected since they are well above the range of frequency of interest (0-200Hz). For
example, in a commonly used 12 pulse bridge, the DC side voltage produces 12t
harmonic next to the DC component [33]. In the AC side, 11%* and 13* harmonics
are next to the fundamental component [33]. These frequencies are well above 200Hz.

In the above steady state relationships, the derivatives of the DC current are ig-
nored. In the small signal stability model, the derivative part is considered separately
with the DC transmission system. This is explained in Section 2.2.2.

The DC side voltage and real and imaginary components of the AC current (Equa-
tions 2.8, 2.11 and 2.12) depend on the commutation angle (u). If it is assumed that
the change in the DC current during the commutation period is negligible, the com-
mutation angle can be obtained as a function of DC side current, AC side voltage and
firing angle as given in Equation (2.13). The commutation period is usually small

(< 30°) and the DC current cannot be changed very quickly because of the high
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smoothing and line inductance. Therefore, this assumption is fairly accurate.

\/éX CTI de

7 ) — o (2.13)

p=cos *(cosa —

The fundamental frequency relationships (Equations 2.8, 2.11 and 2.12) derived
from the converter switching waveforms are used to obtain the linearized model. The
commutatioﬁ angle appeared in these relationships is replaced by Equation (2.13).
The converter linearized relationships can be defined using four inputs (real compo-
nent and imaginary component of AC side voltage, DC side current and firing angle)
and three outputs (real component and imaginary component of AC side current and
DC side voltage). The changes of the outputs for small changes in the inputs are

given by Equation (2.14).

- AVg
Alg Ka Kb Kc Kd
AVy
Al | =| Ke Kf Kg Kh (2.14)
A]dc
NS Ki Kj Kk KI
- Ax

The parameters of the linearized model (Equation 2.14) can be obtained using the

following equations at a particular steady state condition.
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_VBBX.I, V6Bl Visin(6 — a— p)

Ka= % nTV?
Kb — V3BM1 N V6BIVrsin(d — a — p)
C X, T? 7 TV;?
Ko e _\/éBcos((S —a—pu)
' 7wl
Kd = V6B sin(a)sin(é — o — 11/2)
B 7T sin(a + p/2)
Ko V3BM1  6BI;Vicos(6 —a — p)
2n X T2 TV}
Kf— V3BX.I2, _ VBBI4Vrcos(6 — a — p)
V2 TV}
Kg— _\/éBsin((S— a— pu)
wl
VBB sin(a) cos(d — o — p/2)
Kh = -
w1 sin(a + p/2)
i = 3v/2B Vg cos(a)
7TV,
Kj= 3v2BV; cos(a)
7TV,
Kl — _3X.B
s
3v/(2)BV;sin(a)
Kl=—
7wl

This model is similar to the one given in [21], except, the real and imaginary

components are used as the variables to be consistent with the common approach

of linearized power systems, instead of positive and negative sequences. Note that

the signs of K4, Kj, Kk and K1 should be inverted in order to represent a positive

voltage pole inverter.
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Figure 2.3: Phase Locked Oscillator

Phase Locked Oscillator

Firing control of valves is one of the major parts in HVDC converters. The firing
instant of a value is determined based on the phase of the AC voltage. Phase Locked
Oscillators (PLO) based on the phase vector techniques are used to determine the
AC voltage phase in HVDC converters [34]. A simplified version of PLO is shown in
Figure 2.3. The simplification is carried out based on the assumption that the three
phases are balanced. An error signal [sin(d — d,,)] of the actual phase angle (§) and
the calculated phase angle (d,,) is given to a P-I controller, in order to obtain the
angular frequency error. The frequency error is added to the nominal frequency (wp)
and the resultant frequency is integrated to obtain the phase angle.

The actual phase angle can be obtained in terms of Vg and V; (note that, tan(§) =
V1/VRr). Two state variables: Xpro and 4,, are used to represent the P-I controller
and the integrator respectively. The small signal PLO model is given in Equation

2.15.

' v v
AXfDLO _ 0 -1 AXpro N —‘—/l—jg —VTRf AVy (2.15)
Adm Kip —Kpp AN - —rK’f,lp & —r—K’{,f Y2 || AV,
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Figure 2.4: DC transmission system

The phase angle (6,,) determined by the PLO is added to the desired firing angle

(c) to obtain the firing instant.

2.2.2 DC Transmission System

A T-model is used to represent the DC system as shown in Figure 2.4. The DC side
inductance and resistance are distributed into two series inductor-resistor units and
the line to ground capacitance is concentrated at the middle.

In the steady state relationships, the time derivative terms of the DC current are
ignored. In the small signal model, these derivative parts are included by considering
the average effect of the converter transformer leakage reactance. It is shown in
Equations (2.4) and (2.6), that the contribution of the transformer leakage inductance
is different during the normal conduction and commutation periods. Therefore, an
average inductance is obtained and it is added to the half of the DC line inductance
to obtain the effective inductance [35] given in Equation (2.16).

Lac

3u
Legs = =~ + B2~ o)L (2.16)

Lg. is the DC side total inductance and L. is the transformer leakage inductance.

The effective inductances in the rectifier side and the inverter side are different because
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the transformer leakage inductances are different.

The dynamics of the DC line are modeled using three state variables, namely,
the rectifier side DC current (Alge), the inverter side DC current (Aly;) and the
mid-point capacitor voltage (AV,,p). The linearized model of the DC line is given in

Equation (2.17).

- __Re ] .
A]dcr 2Leffr Leff,r A]dcr Lejsr AVd
- R 1 , 1 “(2.17
A]dcz O _(L_.._QLeff’i Leff,i AIdcl 0 Leff,i AVd ‘ ( )
_AVcap_ i _é" - % 0 | _Avcap _ L 0 0 -

Where, Vier and Vg are the rectifier and the inverter side DC voltages. Lejs.
and L.yss; are the rectifier and the inverter side effective inductances. R4 and C are

the DC resistance and the capacitance respectively.

2.2.3 HVDC Controllers

In small signal stability, only the active controllers under nominal conditions are
considered. Usually, rectifier constant current controller (CC) and inverter constant
extinction angle controller (CEA) or inverter constant voltage controller (VC) are
included. Other auxiliary controllers such as damping controllers can also be included.

In this thesis, two different operating points are considered as shown in Figure
2.5. The rectifier current controller and the inverter extinction angle controller are the
active controllers in the operating point shown in Figure 2.5(a). The rectifier current
controller and the inverter voltage controller are the active controllers in the operating

point shown in Figure 2.5(b). Small Signal models of the individual controllers are
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Figure 2.5: HVDC operating points at nominal conditions

described in the following sections.

Rectifier Constant Current Control

The PI controller shown in Figure 2.6(a) is used to control the firing angle of the
rectifier. The difference between the measured DC current and the desired current is
used as the input. One state variable (X, ) is used to represent the integral controller.
The state space equation and the change in required firing angle (Aar*) are given by

Equations (2.18) and (2.19) respectively.

AXar = AIclcr - AIdc,order (218)

Aar* = K]TAXQT + KPTAIdcr ”‘" KPTAIdc,order (219)

Kp, and K, are the proportional and integral gains respectively and Iy orger iS

the rectifier current reference.
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Figure 2.6: HVDC control schemes

Inverter Constant Extinction Angle Control

The PI controller shown in Figure 2.6(b) is used to control the firing angle of the
inverter. One state variable (X,;) is used to represent the integral controller. The
difference between the measured extinction angle and the desired angle is used as
the input. The measured extinction angle is equal to (m — o — ). Therefore, the

linearized model of the controller can be obtained as in Equations (2.20) and (2.21).

AX oy = —Aai* = Ap; — AYorder (2.20)

(1 + KPz)ACY’&* = K]iAXai - KP’LA,LLZ - KPiA’)Iorder (221)

As shown in Equation 2.13, the commutation angle (u) is a function of the AC
side voltages, the inverter DC current and the firing angle. Therefore, the change in
commutation angle (Au) can be replaced by those variables. The resultant linearized

model of the controller is given in Equations (2.22) and (2.23).
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AXai = k1a8Xo; + kool gei + k3a AV + kaaAVi; + ksoDAVorger  (2.22)

Aai™ = Kpik1oAX i + Kpikoo Al ye; + Kpikaa AVig; —

In the above Equations,

K

sin(a + u)

+KP'L' kSa A7wder

k1o = —
e sin(a;) + sin(o; + ;)

V2T X,
koo = —

WZ(KPZ Sin(ai) + sin(ai + ,U:z))

\/ETX c I dei VRz'
k3a -

Vi3 (K pssin(a;) + sin{a; + 1))
ﬂTXc[dciV}i

k a — - ;
4 V2 (Kp;sin(a;) + sin(o; + p;))

sin(oy; + ;)

k a = — N R
° Kpssin(o;) + sin(a; + p;)

Inverter Constant Voltage Control

(2.23)

The PI controller shown in Figure 2.6(c) is used to control the firing angle of the

inverter. Since only one of the excitation angle controller or the voltage controller is

active, the same notation of the state variable used in the excitation controller (X i) 18

used to represent the integral controller. The difference between the measured inverter

side DC voltage and the desired DC voltage is used as the input. The inverter side

DC voltage is a function of the AC side voltages, the inverter DC current and the

firing angle as given in the linearized converter model in Equation (2.14). Therefore,

AVjye; terms in the controller can be replaced by the corresponding terms of Equation

(2.14). The resultant linearized model is given in Equations (2.24) and (2.25).
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AXyi = kipAX i + kopAlye + ksp AV + ks AV + kspAViae order (2.24)
k
Aai”™ = —%Axcxi + KpikoapAlye; + Kpikapy AVp; + KpikyAVy;

+KPik5bAVdc,order (225>

In the above Equations,

by o KKl
1+ Kp; K

o Kk
T I KpiKL,

ka _ K?,i
1+ Kp K

hep = — Kj;
14+ Kp; K,

1

Fsbp = 7 + Kp; K1,

K1i;, K3;, Kk; and Kl; can be obtained from the linearized converter model given
in (2.14) by substituting the values corresponding to the inverter. Note that, suffix

7530
1

is used to represent the inverter.
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2.2.4 State Space Model of HVDC System

The linearized models of the subsystems are combined together to obtain the state
space model of the HVDC system. This combination process is illustrated in the
control block diagram shown in Figure 2.7.

The change in desired firing angle (Aar*) given by the rectifier current controller
(Equation (2.19)) is added to the change in phase angle (Ady,,) given by the PLO
model (Equation (2.15)) to obtain the change in firing instant of the rectifier (Aar)
as shown in Equation (2.26). Similarly, for the inverter, the change in desired firing
angle (Aai*) given by the extinction angle controller (Equation (2.23)) or the voltage
controller (Equation (2.25)) is added to the change in phase angle (Adn;) to obtain

the change in firing instant (Acs) as shown in Equation (2.27).

Acr = Aar* + Ad,,, (2.26)

Aci = Aai* + Abpy; (2.27)

The firing instants are substituted in the rectifier and inverter models obtained
using Equation (2.14). The changes in DC voltages given by the rectifier and inverter
models are substituted in the DC transmission system (Equation (2.17)). This proce-
dure results in the state space model of the HVDC system given in Equation (2.28).
The overall system consists of nine state variables and two control inputs. The real
and imaginary components of the rectifier and inverter output currents are obtained

from Equation (2.29).

AXy = Aw (DXy)+ By (AUy)+ Ex (AVy) (2.28)
(9%x9) (9%x2) (9x4)
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Aly = Cy (AXg)+ Dy (AUx)+ Yg (AVy) (2.29)

(4x9) (4%2) (4x4)

T
Where, A)(H: AXar AXai A]dcr AIdci A‘/cap AXPLOT‘ A(Smr AXPLOi Aémz:l )

- - . —

AVRT‘ A]R'r
AIdc,order A‘/]r A]Ir
AUH == s AVH = and A]H -
' Zk’)’orde'r AVRz Al Ri
AV, Aly;

An, By, En, Cg, Dy and Yy matrices are obtained using the procedure de-

scribed above.

2.2.5 Validation of Linearized HVDC Model

Since the system harmonics are ignored, the linearized HVDC model is accurate only
up to a certain frequency. According to [21], the linearized model of a 12 pulse HVDC
converter is accurate up to around 200Hz. A 60Hz, 12 pulse converter produces lowest
harmonic of 660Hz in the AC side. In order to neglect the effect of this frequency
component, the maximum frequency of the system should be less than the Nyquist
frequency, which is the half of that frequency (330Hz). The practical limit is much
lower than this value. Therefore, 0-200Hz is an acceptable frequency range. This
frequency range (0-200Hz) is good enough to analyze the HVDC-generator interac-
tions and the multi-HVDC interactions accurately. However, it is required to validate
the linearized model for small disturbances within this frequency range. For this, an
empirical approach is used in this thesis. The responses obtained from the linearized
HVDC model and the detail PSCAD/EMTDC simulation models are compared in
the time and frequency domains. The HVDC simulations produced by the electro-

magnetic transient program PSCAD/EMTDC have been validated using field tests
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Figure 2.8: CIGRE benchmark test system with infinite AC buses

[36] and therefore those simulations can be used as a benchmark.

Frequency Response Analysis

For the simplicity, the HVDC system without controllers are considered in the analy-
sis. Therefore, constant firing angle operation of the HVDC controllers is considered.
The CIGRE benchmark HVDC test system [27] is used in the validations. The recti-
fier and inverter AC buses are modeled as infinite buses, in which the voltage can be
controlled. The test system is shown in Figure 2.8 and the relevant data are given in
Appendix A.

In the PSCAD/EMTDC simulation, a sinusoid in which the peak value is 5% of
the nominal value is added to one of the inputs of the converters. The rectifier firing
angle and the rectifier side AC voltage are considered as the inputs. The frequency
of the sinusoid is changed from 0 to 200Hz in small steps and the relevant frequency
components of the state variables and the outputs are scanned. The frequency re-
sponses between the inputs and the outputs/state variables obtained in this manner

are compared with the responses of the linearized model. The frequency responses
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Figure 2.9: Frequency response between rectifier firing angle and state vari-
ables/outputs (magnitude is given as % change for a 5% change in a,)

between different inputs and outputs are discussed below.

e Input at rectifier firing angle:
The rectifier firing angle is considered as the input. The frequency response
(magnitude and phase plots) between the firing angle and the rectifier side DC
current is shown in Figure 2.9(a). The frequency responses obtained at the in-
verter side DC current and the mid point capacitor voltage are shown in Figures

2.9(b) and 2.9(c) respectively. In these plots, the frequency is expressed with
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respect to the DC side. The responses obtained from the small signal stability
model and the PSCAD/EMTDC model match very well within the required
frequency range. The magnitude plots show the DC line resonance frequency
around 50 Hz. As the frequency increases, the gains between the input and the
out puts decrease and they are small at 200Hz.

The frequency response (only the magnitude plot) at the AC side current is
shown in Figure 2.9(d). The magnitude of the DC side frequency embedded in
the AC current obtained from the PSCAD/EMTDC model is extracted using
the fast fourier transform. The results are compared with those of small signal
stability model. The close match in Figure 2.9(d) confirms that the DC to AC
current transformation in the small signal model is accurately modeled within

the frequency range.

e Input at rectifier AC voltage:

In order to examine the accuracy of the AC to DC transformation of the lin-
earized model, the rectifier AC voltage is considered as the input and the si-
nusoidal signal is added to the voltage magnitude. The frequency responses
obtained at the rectifier side DC current, the inverter side DC current and the
mid point capacitor voltage are shown in Figures 2.10(a), 2.10(b) and 2.10(c)
respectively. The responses are similar to the responses obtained between the
firing angle and the outputs in shape, but the gains are high in the responses
between the AC voltage and the outputs.

Furthermore, the comparisons of the responses between the AC voltage magni-

tude and AC current magnitude given in Fig. 2.10(d) also show a close match.

The frequency domain analysis shows that the Linearized small signal HVDC
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Frequency response between rectifier AC voltage and state vari-

ables/outputs (magnitude is given as % change for a 5% change in Vg,

model gives very close results to those of the detailed electromagnetic transient sim-

ulation model within the frequency range of 0-200Hz.

Time Domain Simulations

The accuracy of the linearized HVDC model is further validated using time domain

simulations. The test system shown in Figure 2.8 is used for the simulations. The rec-

tifier constant current controller and the inverter constant extinction angle controller
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Figure 2.11: Changes in state variables for a 5%, 0.3s pulse on the rectifier current
controller input.

are included in the model.
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Figure 2.12: Changes in state variables for a 5%, 200Hz sinusoidal change in rectifier
AC voltage magnitude.

A pulse of magnitude of +5% and duration of 0.3s was applied to the rectifier
current controller input. The responses of the controller and DC line state variables
obtained using the small signal model are compared with those of PSCAD/EMTDC
model in Figure 2.11. It is seen that the results of the linearized model agree well
with those of PSCAD/EMTDC. Similar results were obtained for the perturbations
applied on the other inputs as well.

In order to demonstrate the accuracy at high frequencies, a 5%, 200Hz sinusoidal
change is added to the rectifier AC voltage magnitude and the rectifier side DC
current and the mid point capacitor voltage are compared in Figures 2.12(a) and
2.12(b) respectively. The comparisons show a close match even at 200Hz.

Both frequency domain and time domain comparisons verify that the linearized
HVDC model adequately represents the dynamics in the frequency range of 0-200Hz.
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Therefore, the model is suitable for analyzing interactions such as subsynchronous
oscillations.

The AC side converter transformers are included in the HVDC model. The rest
of the AC network components are to be modeled separately. In order to obtain
meaningful results from an analysis of a AC-DC power system, it is important to

model the AC network adequately.

2.3 AC Network Model

All the transmission lines, transformers, static loads and AC filters are included in the
AC network model. In conventional small signal stability assessment tools designed
for electromechanical oscillation studies, the AC network is represented using the
admittance matrix. This method is accurate only for low frequency oscillations (0-
3Hz). However, in HVDC and SSO interaction studies, it is necessary to consider
some higher frequency interactions (0-60Hz). A more accurate way of representing
the AC network is to use a dynamic model [24][23][22]. These representations of the

AC network are discussed in the following sections.

2.3.1 Admittance Matrix Representation

In electromechanical oscillation studies, the AC network dynamics are ignored and
the network is represented using the power frequency admittance matrix [15]. The
relationship between the node voltages and the node current injections are given by

Equation 2.30.

[AT] = [Yous][AV] (2.30)
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AT consists of the changes in the currents injected by the dynamic devices at the
nodes (busbars). AV includes the voltages of the those busbars. Y, is calculated
using the power frequency admittances of the network components.

The modeling details of this technique can be found in [15]. An example case is

explained in Appendix B.

2.3.2 Dynamic Network Model

The dynamics of the R-L-C components of the AC network are included in this
model. However, the well known dynamic relationships of these components cannot
be directly used with the phasor quantities of the voltages and currents. Therefore, a
dynamic phasor model [24][23][22], which consists of the relationships of the phasor
quantities, is used. The basis of this model is briefly described below.

The complex rotating phasor of an AC current (or voltage) can be expressed as

in Equation 2.31.

fge = Ame?®e? = [A,, cos(@) + j A sin(¢)]e?=0? (2.31)

Where, A,, is the magnitude of the current and ¢ is the phase of the current.
These parameters are referred to as phasor components. wy is the nominal system
frequency.

Equation 2.31 can also be written in terms of rectangular coordinate components
(real and imaginary axes components) of the phasor components, as shown in Equa-

tion 2.32.

loe = (]R + jII)eijt (232)
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Where I = A, cos(¢) and I; = A, sin(d).

The oscillatory frequencies generated by the dynamic devices are included in the
phasor current (Ig + jI;). For example, the output phasor currents of an HVDC
system contain the DC side oscillatory frequencies.

Therefore, the oscillations can be analyzed with respect to the DC side frequencies
by considering only the phasor components. Equation 2.32 and the fundamental
relationships of the R-L-C components of the network are combined together to obtain
the dynamic phasor relationships. It is assumed that the fundamental frequency of
the system is constant.

Most of the AC network components can be represented as combinations of series
R-L components and parallel R-C components. Therefore, linearized models of series

R-L components and parallel R-C components are given below as examples.

Example 1: Series R-L Component

Consider a series R-L circuit connected between nodes 1 and 2. The instantaneous
voltage across node 1 and 2 can be written as,
diyy

V12 = L_Et— + Rilg (233)

The complex rotating phasor relationships of the currents (eg: Equation 2.32) and

voltages are substituted into Equation (2.33) as follows.

d(Ig + jI;)e?

Vi)edwot = [,
(VR +7 1)(3 o

+ R(]R + j[])@jwot (234)

'The phasor relationship given in equation (2.35) is obtained from Equation (2.34)

by assuming that the nominal system frequency (wyp) is constant.
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d(Ip+711)

V V=L
rRTIVI 7

+ (R + jwoL)(Ir + jIr) (2.35)

In Equation 2.35, Vg (= V1g — V2g) and V; (= V1; — V2;) are the real part and
imaginary part of the phasor voltage deference between node-1 and node-2.
The linearized model of Equation (2.35) is given by Equation (2.36). Note that,

all the values are in pu. Since L is in pu, (wp/L) terms appear instead of (1/L).

AVlg
. $O 0
Alg —feo | | Al AV
Al —wy R0 | AL AV2p
0 Y (g =w
L L
AV

Example 2: Parallel R-C Component

Consider a parallel R-C circuit connected between node 1 and the ground. The
instantaneous current injected to the circuit can be written as,
d’Ul 1

'The phasor relationship similar to Equation (2.35) is given by,

d(Vir + 3Var) + 1

I [ =C —
R+ I 2t (R

+ jwoC)(Var + jVir) (2.38)

The linearized model of Equation (2.38) is given by Equation (2.39). Note that,

all the values are in pu. Since C is in pu, (wo/C) terms appear instead of (1/C).

40



CHAPTER 2. LINEARIZED MODELS OF POWER SYSTEMS

“ 0
. ]
I Al (2.39)
AVyp —Wp i%l AVir Alp
0 «
C_

All the R-L-C components of the AC network are modeled using the same method-
ology. The overall network model, which consists of inductor currents and capacitor
voltages as state variables, is obtained by combining the currents and voltages using

Kirchhoft’s laws. A simple example is given in Appendix B.

2.4 Generator Model

The AC network dynamics are neglected in conventional stability models of power
systems. To be consistent with the network representation, the stator dynamics
of the synchronous generators are also neglected [15]. Therefore, the conventional
round rotor (6" order) and the salient pole (5* order) models [15] are used when the
admittance matrix is used to represent the AC network. T'wo additional differential
equations for the stator flux components in d-q axes are added to the synchronous
machine model, when the AC network is represented using a dynamic phasor model.
Therefore, an 8" order model is used for round rotor type and a 7" order model
is used for salient pole type. The linearized models of AC4A exciter [37] and non-
elastic water column hydro turbine and governor system [38] are combined with the
generator models. The linearized models of the generators, the exciters and the

governor-turbines are given in Appendix C.
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2.5 Multi-Mass Turbine Model

The multi-mass turbine model described in [39] is linearized for analyzing the HVDC-
generator-turbine torsional interactions. The masses of the high pressure (HP), inter-
mediate pressure (IP) and low pressure (LPA and LPB) turbines and the generator
are included in the analysis. Since the inertia of the exciter mass is low, it is not

included in the study. The linearized model is obtained as described in Appendix C.

2.6 Linearized Model of Entire Power System

The linearized models of the dynamic devices of the power system are combined with
the AC network model to obtain the overall state space model of the power system.
Two small signal models can be obtained based on the AC network model. The
admittance matrix representation of the AC network is used in conventional model
and the AC network dynamics are included in the other model as described in Section

2.3.2. These linearized models are briefly discussed in the following sections.

2.6.1 Conventional Model

The linearized models of the dynamic devices in the power system are represented
using current injection models. The synchronous generators are modeled using 6%
order (round rotor type) or 5 order (salient pole rotor type) models neglecting stator
winding dynamics. In general, the state space model of the dynamic devices is given

by Equations (2.40) and (2.41).

AX = Ag AX + By AU + E; AV (2.40)

Al =Cy AX + Dy AU +Y; AV (2.41)
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The AC network dynamics are ignored and the network is represented using the
admittance matrix model described in Section 2.3.1. The admittance matrix of the
network (Equation 2.30) is combined with the current injection equations of the dy-
namic devices (Equation 2.41) to obtain the voltage terms (AV) in terms of state

variables and the inputs as given in Equation (2.42).

AV = [V — Y] (Cy AX + Dy AU) (2.42)

The voltage terms obtained in this manner are substituted in the state space
equation (Equation 2.40) to obtain the overall state space model given in Equation

(2.43).

AX =AAX +BAU (2.43)

Where, A= (Ad -+ Ed[ybus - Y:i]_lcd) and B = (Bd + EdD/i)us — Yd]ulDd).

More details of this conventional model can be found in Chapter 12 of [15].

2.6.2 Small Signal Model With Network Dynamics

The dynamics of the entire network are included in the small signal model. The
network is modeled using the dynamic network model described in Section 2.3.2.
Differential and algebraic equations of the dynamic devices are combined with those
of the network using Kirchhoff’s laws.

In order to explain the implementation aspects, formation of the state space model
is briefly discussed in the following text using a simple test system shown in Figure

2.13. In this test system a generator and an HVDC system feed a load in a remote
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Figure 2.13: Test system used to discuss implementation aspects of dynamic network
model

location through a transmission line.

Example: Combining Network Components

The dynamics of series R-L components in the network are given by,

: AV,

Aly | = Aj Aly | + Mp [AVl] + My . (244)
. AVy

Ay Al

Ar, My and Mjs matrices can be obtained as described in Section 2.3.2. Each
voltage and current component has two entities for the real and imaginary parts.

Similarly, the dynamics of parallel R-C components are given by,
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. AIIZ
AV, AV,
i - AV + NVl A]gg + Nya [A[h] : (245)
AV AVs
Alj

The state variables in Equations (2.44) and (2.45) are combined together to obtain

the state space model of the network given in Equation (2.46).

A)i"mzi& = Anet AXnet + Mnet A‘/l + Nnet A]h (246)

Where, AX,e: contains the three current components and the two voltage com-

o . , Ar My
ponents given in Equations (2.44) and (2.45) respectively. Aper = ,
Ny1 Ay
Mp 0 0 O
Mnet = and Nnet —
0 0 0 Ny

Example: Combining HVDC System

The linear state space model of an HVDC system (or any other dynamic device) can

be represented as in Equations (2.47) and (2.48).

AXy = Ap AXy + By, AUy + Ey AV, (2.47)
Al =Cy, AXy, + Dy, AU, + Y, AV, (248)

Equation (2.48) is substituted in the network model (Equation 2.46) to eliminate

Al terms. The modified Equation (2.46) and the HVDC state Equation (2.47) are
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combined together to obtain the resultant state space model.

Example: Combining The Generator

"The generator including stator dynamics can be represented as in Equations (2.49)

and (2.50). The output current of the generator is a function of the state variables.

AX, = A, AX, + B, AU, + E, AV, (2.49)
Al =Cy AX, (2.50)

The generator output current I, is equal to the generator-transformer current flow
Iy, which is a state variable of the network model. The relevant network equation is

rewritten in Equation (2.51) in terms of the generator current.

Aly= Ay Al + Ejpy AV + Eyps AV, (2.51)

The time derivative of Equation (2.50) is combined with Equations (2.49) and
(2.51) to find AV; in terms of the state variables, inputs and AV, (a state variable of
the network model). AV; is then substituted in Equations (2.46) and (2.49) to obtain

the overall state space model.

2.7 Adequacy of Linearized Models of Power Systems

The conventional small signal model is accurate enough to analyze electromechanical
oscillations of a power system. However, a better model, which includes the AC
network dynamics is required to analyze higher frequency oscillations such as HVDC

interactions. It is shown in Section 2.2.5 that the linearized HVDC model produces
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Figure 2.14: Multi-in-feed HVDC test system

accurate results in the frequency range of 0-200Hz. However, when it is combined
with the AC networks, the representation of the AC network may also affect the
results. Therefore, it is required to validate the linearized models of power systems,
which include different AC network models.

In order to analyze the adequacy of the AC network models, a simple test system,
in which two HVDC in-feeds are connected through a tie-line, is used. The circuit
is shown in Figure 2.14. A synchronous generator is connected at S2 and all other
sources are voltage sources. The relevant data are given in Appendix A.

The linearized power system models discussed in Section 2.6 are evaluated for the

adequacy. The models are summarized below.

Model-1: Conventional Model (admittance matrix representation for AC network

and standard dynamic model of synchronous machine used in stability studies)

Model-2: Small signal model including network dynamics (dynamic phasor represen-
tation for AC network and synchronous machine with stator winding differential

equations)
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Figure 2.15: Accuracy of different models (initial changes in Rectifier side DC currents
for a 5%, 0.3s pulse on the current controller input in HVDC1)

The linearized state space models of the test system were formulated in MATLAB.
For small perturbations in the control inputs, the system responses obtained using the
linearized models were compared with the responses of the detailed electro-magnetic
transient simulations obtained using PSCAD/EMTDC.

A pulse of magnitude of +5% and duration of 0.3s was applied to the rectifier
current controller input in HVDCI. The initial transients obtained with small signal
models are compared with those of PSCAD/EMTDC in Figure 2.15. Note that the
scales of the y-axes of the sub figures (a) and (b) are different. Since the perturbation
was applied at HVDC1, much larger changes in the HVDC1 rectifier side DC current
can be observed compared to that of HVDC2. It is seen that Model-2 agrees well
with PSCAD/EMTDC. Model-1 shows a poorly damped oscillatory frequency which
does not agree with PSCAD/EMTDC results.

An extended simulation up to 1.5s for the same perturbation is shown in Figure
48



CHAPTER 2. LINEARIZED MODELS OF POWER SYSTEMS
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Figure 2.16: Changes in Rectifier side DC currents for a 5%, 0.3s pulse on the current
controller input in HVDC1 (An extended simulation)
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Figure 2.17: Change in generator speed for a 5%, 0.3s pulse on the current controller
input in HVDC1

2.16. The DC current of HVDC1 increases by 5% (0.05kA) during the disturbance (0
to 0.3s). The changes in the AC network voltages cause small changes in the HVDC2
currents. The results of Model-2 show a good agreement with the average variation
of the time response. It is noticed that the effect of electromechanical oscillations of

the generator is also embedded in the current waveforms. Although Model-1 gives
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Figure 2.18: Changes in Rectifier side DC currents for a 5%, 200Hz sinusoidal change
of the HVDC1 rectifier side AC source voltage (V)

quite different results for high frequency transients, the waveforms coincide with those
of Model-2 and PSCAD/EMTDC in the latter part, where only the low frequency
electromechanical oscillations are present. Furthermore, the comparison given in
Figure 2.17 for the rotor speed of the generator confirms that both of the models are
good for low frequency electromechanical oscillation studies.

Accuracy of the models at high frequencies was further verified by applying a 5%,
200Hz sinusoidal change to the HVDCI rectifier side AC source voltage (Vs;). The
changes in rectifier side DC currents of HVDC1 and HVDC2 are compared in Figure
2.18. The disturbance applied at S1 propagates through the AC network (Z1) to the
HVDC1. The 200Hz sinusoidal signal can be observed in the rectifier DC current
of HVDC1 obtained using PSCAD/EMTDC. The rectifier side DC current obtained

50



'CHAPTER 2. LINEARIZED MODELS OF POWER SYSTEMS

using Model-2 follows PSCAD/EMTDC results well. However, the results of the
conventional model (Model-1) is inaccurate at this frequency. The high frequency
oscillations dies out at HVDC2 while propagating through Z1, HVDC1 and the tie
line (Ztie). Therefore, the 200Hz signal cannot be observed in the rectifier side DC
current of HVDC2. PSCAD/EMTDC and Model-2 results well agree for the low
frequency changes observed in that current and Model-1 does not show these changes
accurately.

In conclusion, The time domain validations provided in this section confirm that
the admittance matrix representation of the AC network exhibits some oscillations,
which are not present in the more accurate EMT simulations. This confirms that for
HVDC interaction studies, a simple model with admittance matrix representation of
the network and the generators without stator dynamics is not adequate. The model
with dynamic phasor representation of AC network and the generators with stator
dynamics shows accurate results, which agree with EMT simulations in the required
frequency range. Therefore, this model is used in this thesis to analyze the HVDC

interactions in power systems.

2.8 Concluding Remarks

The modeling requirements for small signal stability analysis of power systems with
HVDC lines have been analyzed in this chapter. The linearized models of the power
system dynamic devices including HVDC systems have been presented. Frequency
and time domain comparisons carried out for the small signal and EMT type models
confirm that the linearized HVDC model is accurate in the frequency range of 0-
200Hz. In the generators, the stator dynamics have been included in the linearized

models in order to obtain accurate results in this frequency range.
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The adequacy of the admittance matrix representation and the dynamic phasor
representation of the AC networks to analyze HVDC interactions in power systems has
been investigated. The comparisons of small signal model simulations against EMT
type simulations have been used to conclude that the dynamic network representation
of the AC network is essential to produce meaningful results from a small signal

analysis.
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Chapter 3

Hybrid AC Network Model for

Large Power Systems

3.1 Introduction

As concluded in Chapter 2, the dynamic network representation of the AC network is
essential to produce meaningful results from a small signal analysis of a power system
with high frequency interactions such as HVDC interactions. In addition to that, the
generators are required to be modeled including stator winding dynamics. Including
network dynamics and stator dynamics of generators increase the number of state
variables and hence the size of the system matrix A. Therefore, it is impractical to
model all the network dynamics of large power systems.

This thesis proposes a single platform, which can be employed to analyze conven-
tional low frequency electromechanical oscillations as well as high frequency interac-
tions using small signal stability assessment. The areas of the network that consist of
dynamic devices causing high frequency oscillations are modeled including network
dynamics and the rest of the network is modeled using the power frequency admit-

93



CHAPTER 3. HYBRID AC NETWORK MODEL

tance matrix. The linearized models of the dynamic devices are combined with the
dynamic network models using Kirchhoft’s laws. The resultant linearized models of
the dynamic network areas are combined with the admittance matrix of the rest of
the network using current injection models.

The proposed technique is compared with two small signal stability models: the
conventional model with the admittance matrix representation of the network and
a more detailed model with a dynamic network model for the entire network. Elec-
tromagnetic transient simulations obtained using PSCAD/EMTDC are used as the
benchmark for the comparisons. The IEEE New England 39 bus test system [29] with

some modifications is used to validate the proposed technique.

3.2 Proposed Hybrid AC Network Model

The areas with the dynamic devices, which produce high frequency oscillations are
modeled including network dynamics. For example, the areas with multi-in-feed
HVDC systems, generator-turbine torsional oscillations and other FACT devices can
be considered. These areas are modeled using the dynamic phasor model described
in Section 2.3.2. The rest of the network is modeled using the admittance matrix
representation described in Section 2.3.1. The transmission lines at the boundary
between two models are treated in a slightly different way. For example, consider the
transmission line shown in Figure 3.1. Node 1 is included in the admittance matrix
and node 2 is in the dynamic network model. The line capacitance connected to
node 2 is modeled using the dynamic model and the line capacitance connected to
node 1 is included in the admittance matrix. The series R-L component of the line
is modeled using the dynamic model and the current in the series R-L component

(I12) is considered as the current injected to the admittance matrix model from the
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Figure 3.1: Transmission line model at the boundary

dynamic network model. The multiple lines connected between the admittance matrix
model and a dynamic network model are treated in the same manner. Therefore, one
dynamic network area can be considered as a single dynamic device connected to the
admittance matrix model with single or multiple current injections.

In general, the state space model of a dynamic network area can be represented

by Equations (3.1) and (3.2).

AXgi = Agi AXoi 4 Bog AUy + Eoi AV (3.1)
A[ouz‘,,ai = Cai AXai (32)

AX, and AU, contain all the state variables and the inputs of the dynamic
devices of i dynamic area respectively. AV,; contains the voltages of the boundary
nodes in the admittance matrix model side (similar to node 1 of Figure 3.1). Al
represents the current injections from the dynamic network to the admittance matrix
model at those nodes.

The state space model of the dynamic devices connected to the rest of the network

(admittance matrix model) is given by Equations (3.3) and (3.4).
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AX, = A, AX, + B, AU, + E, AV (3.3)
Alyiy = Cr AX, + D, AU, +Y, AV (3.4)

AX, and AU, contain all the state variables and the inputs of the dynamic devices
connected to the network except the dynamic areas, respectively. AV contains the bus
voltages of the network including the boundary nodes (similar to node 1 of Figure 3.1).
Al represents the current injections from the dynamic devices to the network.

The state space Equations (3.1) and (3.3) are combined as in Equation (3.5) to

obtain the state space equation of the entire system.

AX, A. 0 AX, B, 0 AU, E.
AXy 0 Aw | | AXa 0 Bu | | AU, E,

In E,, the value corresponding to it* node is E,; and all the other elements are
Zero.
The total current injections to the network (admittance matrix model) can be

obtained by combining Equations (3.2) and (3.4) as follows.

Al C. 0 AX, D, 0| | AU, Y,
_ + + [AV} (3.6)
Aot a; 0 Cu| | AXu 00| | AU, 0

In summary, the state space Equation (3.5) and the current injections (3.6) can

be represented by Equations (3.7) and (3.8) respectively.
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AX = Ay AX + B; AU + E; AV (3.7)
Alyy =Cy AXy+ Dy AU +Y; AV (3.8)

Equation (3.8) is combined with the admittance matrix relationship (Al =Y AV)
of the network, which is to be modeled using conventional model, to obtain the bus
voltages in terms of state variables and inputs. The result is then substituted in
Equation (3.7) to obtain the overall state space model (AX = A AX + B AU).

A computer algorithm to implement the proposed hybrid model is described in

Appendix D.

3.3 Validation of Proposed Model

The New England 39 bus test system [29] with some modifications is used to validate
the proposed method. The modified test system is shown in Figure 3.2. Bus 38 is
kept as an infinite bus and therefore, generator 38 is modeled as a voltage source.
Two HVDC in-feeds are connected at busbars 22 and 23 instead of generators 35
and 36. These two HVDC systems along with two capacitor banks provide the same
active and reactive power provided by the generators in the original system. CIGRE
benchmark HVDC test system [27] with modified current orders are used to model

the HVDC in-feeds. The test system details are given in Appendix A.

3.3.1 Small Signal Models of Test System

The following three linearized small signal models are used for comparisons.

Model-1: Conventional Model [admittance matrix representation for AC network

and standard dynamic model of synchronous machine used in stability studies]
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== 345kV w110 kV == 13.8kV

Figure 3.2: 39 bus test system with two HVDC in-feeds

Model-2: Small signal model including network dynamics of entire network [dynamic
phasor representation for AC network and synchronous machine models with

stator winding differential equations included]

Model-3: Proposed Hybrid Model [the area highlighted in Figure 3.2 is modeled
including network dynamics (as in Model-2) and the rest is modeled using con-

ventional model (Model-1)]

The three linearized models of the dynamic devices are obtained as described in

Chapter 2. The generators in Model-1 are modeled using 6 order generator model
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Table 3.1: State Variables in Small Signal Models

System State Variables
Model-1 | Model-2 | Model-3
HVDCI1- Controllers & DC line 5 5 5
HVDC1- PLLs 4 4 4
HVDCI1- AC filters 0 24 24
HVDC2- Controllers & DC line 5 5 5
HVDC2- PLLs 4 4 4
HVDC2- AC filters 0 24 24
Generators 33 & 34 28 32 32
Generators 30,31,32,37 & 39 70 80 70
AC network- highlighted area 0 42 42
AC network- other areas 0 138 0
| Total state variables | 116 | 358 | 210 |

and the generators in Model-2 are modeled including stator dynamics (8" order).
In Model-3, generators 33 and 34 are modeled using 8* order model and the rest
is modeled using 6 order model. The linearized models of AC4A exciter [37] and
non-elastic water column hydro turbine and governor system [38] are combined with
the generator models.

In the linearized HVDC models, constant current controllers are included at the
rectifier ends and constant DC voltage controllers are used at the inverter ends.

The state variables in the systems are summarized in Table 3.1. Model-1 consists
of 116 state variables. When the entire system is modeled including the network
dynamics (Model-2), the state space model has 358 state variables. This number can

be significantly reduced to 210 when the proposed model (Model-3) is used.

Selection of Dynamic Area

The studies have shown that the same results can be obtained as in Model-3 by mod-

eling Buses 21, 22, 23 and 24 in the dynamic area and Bus 16 as the boundary bus
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(186 state variables in total). This has been expected since the points of interconnec-
tions of HVDC systems (Bus 22 and Bus 23) are around 100 km away from Bus 16 at
which the highlighted area is connected to the rest of the systems. This gives an idea
how the buses in the dynamic areas should be selected. In order to obtain accurate
results, a considerable distance from the dynamic devices with the high frequency
interactions should be modeled in the dynamic area.

The increment in number of state variables in this example from conventional
model to the hybrid model is 116 to 210, which appears to be significant. It should
be noted that in this example a significant portion of the network is included in the
dynamic network. In practice, for a large network, the dynamic part of the network
model is a small proportion of the entire network and therefore, the relative increment
in number of state variables will be much smaller. For example, consider a mid size
power system with 3000 buses, 3000 branches and 100 generators. The conventional
model may contain around 1400 state variables if the generators, exciters and turbine-
governor units are modeled. If there is one area with multi-HVDC in-feeds and 20
transmission lines are to be included in the dynamic area, this may add at most 150
state variables, making 1550 state variables in total (10.7% increase in state variables).

This does not make a significant computation burden.

3.3.2 Validations Using Time Domain Simulations

Small signal responses of the models 1, 2 and 3 are obtained for the disturbances
applied at the inputs and the results are compared with the detailed EMT simulation
results obtained using PSCAD/EMTDC.

A step of magnitude of +5% and duration of 0.3s was applied to the rectifier

current controller input in HVDC1. The initial transients of the rectifier side DC
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currents and the inverter side DC currents obtained using the small signal models are
compared with those of PSCAD/EMTDC in Figure 3.3 and Figure 3.4 respectively.
Note that the scales of the y-axes of the sub figures (a) and (b) are different. Since
the perturbation was applied at HVDCI1, much larger changes in the HVDC1 DC
currents can be observed compared to those of HVDC2.

The results obtained using Model-2 match well with PSCAD/EMTDC results.
The proposed model (Model-3) also gives results close to the results of Model-2 and
PSCAD/EMTDC. The results obtained using the conventional model (Model-1) are
quite different from the others. Much more differences can be observed in HVDC2
currents since the changes in HVDC2 are due to the changes in AC network voltages
and currents which are caused by the current injections of HVDCI, in which the
disturbance is applied.

As far as electromechanical oscillations are concerned, all the small signal models
give accurate results. This is evident in the generator speed comparisons given in
Figure 3.5. Therefore, the proposed technique can be used for electromechanical
oscillation studies as well.

Accuracy of the models at high frequencies was further verified by applying a 5%,
200Hz sinusoidal change to the HVDC1 rectifier side AC source voltage. The changes
in rectifier side DC currents of HVDC1 and HVDC2 are compared in Figure 3.6.
The model with AC network dynamics of entire system (Model-2) and the proposed
hybrid model (Model-3) give the same results, which show a very good agreement
with the PSCAD results. The conventional model (Model-1) is not accurate at this
frequency.

In conclusion, the proposed model gives accurate results for HVDC high frequency

oscillations as well as for electromechanical oscillations. The accuracy of the model
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Figure 3.5: Changes in generator rotor speeds (in pu) for a 5%, 0.3s step on the
current controller input in HVDC1

is further investigated in Chapters 5 and 6 while analyzing HVDC interactions using

modal analysis.
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Figure 3.6: Changes in rectifier side DC currents for a 10%, 200Hz 200Hz sinusoidal
change of the HVDC1 rectifier side AC source voltage

3.4 Concluding Remarks

A computationally efficient small signal stability model suitable for studying HVDC
interactions has been proposed in this chapter. The required accuracy and the com-
putation efliciency have been achieved using a hybrid AC network model that al-
lows the parts of the transmission network in the vicinity of HVDC converters or
any other dynamic devices to be modeled with their dynamics and the remaining
parts to be modeled as constant admittances. The time responses of the proposed
model have been validated against an electromagnetic transient simulation program
(PSCAD/EMTDC). The constant admittance transmission network model (Model-
1) produces inaccurate time responses. When the entire network is modeled with
its dynamics (Model-2) the time response closely agrees with the PSCAD/EMTDC
simulation. However, for large networks, the dynamic representation of the entire
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transmission network leads to large computation burden due to the large system ma-
trix. The proposed model (Model-3), which is a hybrid of the above two, gives time
responses that are almost identical to those obtained for Model-2. The proposed hy-
brid modeling approach would be useful for studying subsynchronous frequency range

interactions in power systems.
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Chapter 4

Small Signal Stability Assessment

of Power Systems

4.1 Introduction

Small signal stability is concerned with the ability of power systems to maintain the
synchronism under small disturbances [17]. This type of stability is analyzed by
applying Lyapunov’s first stability criteria [18] to the linearized state space model of
the power system.

Chapters 2 and 3 described the linearized models of the power systems. The local
stability around the operating point, at which the system is linearized, is analyzed
using the eigenvalue analysis of the system matrix of the linearized state space model.
This chapter briefly describes the small signal stability and eigenvalue (modal) anal-
ysis of power systems. More details can be found in [15] (power system aspects) and

in [40] (linear control theory).
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4.2 Stability of Linearized Systems

The linearized state space model of a dynamical system is given in Equation (4.1).

AX =AAX +B AU (4.1)

Where, AX is the vector of state variables and AU is the vector of inputs in the

system.

The eigenvalues of the system matrix (A) are obtained by solving Equation (4.2).

det(A— \I) =0 (4.2)

If the system has ‘n’ state variables, Equation 4.2 has ‘n’ independent solutions
(A1, A2, ..., An). These solutions are the eigenvalues of the system.

The local stability (stability in the small) of the system at the operating point,
where the system is linearized, is determined using Lyapunov’s first theorem [18].

The criterion is summarized in [15] as follows.

o “When the eigenvalues have negative real parts, the original system is asymp-

totically stable.”

e “When at least one of the eigenvalues has a positive real part, the original

system is unstable.”

o “When the eigenvalues have real parts equal to zero, it is not possible on the

basis of the first approximation to say anything in the general.”

This stability criterion is interpreted as the stability of the modes of the system

as described in the following section.
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4.3 Modes and Modal Characteristics

The modes of the system are identified using eigenvalues and the modal characteristics
are analyzed using eigenvectors. Some important concepts are summarized in this

section.

4.3.1 Modes

If there are no changes in the system inputs, the state space model of the system can

be rewritten as in Equation (4.3). This is the free motion of the system.

AX = AAX (4.3)

The rate of change of each state variable is a linear combination of all the state
variables of the system. These cross couplings of the state variables can be eliminated

by using the transformation given by,

AX =7 (4.4)

Where, ® is right eigenvector matrix of the system matrix (A).

After the transformation, the state space model becomes

Z=AZ (4.5)

A is a diagonal matrix with the eigenvalues as the diagonal elements. Therefore,

the rate of change of 7t* variable is given by,
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The transformation produces ‘n’ independent variables. These variables are called
the modes of the dynamical system. The modes describe the dynamic behavior of

the system. The time response of i mode is given by Equation (4.7).

zi(t) = z(0)et (4.7)

The time dependent characteristic of i mode is given by e*?. Therefore, the

modes and their stability is described by the eigenvalues as follows.

e A real eigenvalue corresponds to an aperiodic (non-oscillatory) mode. If the
eigenvalue is negative the mode is a decaying mode and if it is positive, the

mode is unstable (aperiodic instability).

e A complex conjugate pair of eigenvalues corresponds to an oscillatory mode. If
the eigenvalue pair is, A = 0 + jw,

The frequency of oscillation is given by,

f=2 (48)

The damping ratio is given by,

g

S - 4.9
¢ Vo? 4+ w? (4.9)
If the real part of the eigenvalues is negative (i.e. damping ratio is positive),

the mode is stable. The magnitude of the damping ratio determines the rate of

decay of the amplitude of the oscillation.
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4.3.2 Mode Shapes (Right Eigenvectors)

The right eigenvector of a particular mode gives the mode shape, which shows the
relative phasors of the state variables when that mode is excited. The right eigenvector
(®;) of 7" mode is given by,

Assume, only i* mode of the system is excited. Then, the state variables are

given by,
AX, bi1
AX d;
=1 |4 (4.11)
AX3 bis
bi1, Pi2, - - -, Pin are the elements of 7™ right eigenvector (®;).

The magnitudes of the elements of ®; give the relative activities of the state
variables in i® mode and the phase angles give the phase displacement of the state
variables with regards to the mode. Since the units and scaling of the state variables
are different, the magnitudes of the elements cannot be compared against each other.
Therefore, only the phase angles of the mode shapes are considered in this thesis

while analyzing HVDC interactions.

4.3.3 Left Eigenvectors

The left eigenvector (¥;) of 5% mode is given by,
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U, A =\, (4.12)

Assume, only i** mode of the system is excited. The mode is given by,

zi = YaAXy +YpAXo + -+ i AX, (4.13)

i1, Yin, - - ., Uin are the elements of i™ right eigenvector (0;).

The elements of ®; are the weights of the state variable to the i** mode.

4.3.4 Participation Factors

The participation factors [41][42], which are independent of the units and scaling of the
state variables are used to measure the relative participation (magnitude) of the state
variables in a mode. The participation factors are obtained from the multiplications
of the elements of the right eigenvector and the left eigenvector.

The participation factor (pg;) is given by,

Pri = Qriik (4.14)

Where, ¢y; is the k™ element of i** right eigenvector (a column vector) and 1, is
the k" element of ™" left eigenvector (a raw vector).

pri is the relative participation of the k™ state variable in the i* mode. All the
participation factors of the i** mode are arranged in a vector to obtain the participa-

tion vector as given in Equation (4.15).
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P1i

D2;

pi (4.15)

Dni

The elements of p; are dimensionless and the sum of the elements is 1. Therefore,
the participation factors (elements) can be used as an index to compare the relative
participation of the state variables in that mode. Since the participation factors of an
oscillatory mode are complex numbers, the magnitudes of the participation factors
are used for the comparisons. In this thesis, the magnitude of the highest participant
is considered as 100% and other participations are scaled accordingly.

The participation factor matrix of the system is, P = [py, pa, . .., pn]. This matrix

gives the participation of the state variables in all the modes of the system.

4.3.5 Mode Controllability and Observability

The decoupled forms of the state equations are given by,

Z=AZ+UBAU (4.16)

AY =C® Z+ D AU (4.17)

Where, right eigenvector matrix, ® = [@1, 5, ..., D,] and

left eigenvector matrix, ¥ = [9T oI . @IT,

In Equation (4.16), the element of [¥B] corresponding to a particular mode and
an input determines whether the mode can be controlled through that input. If the

element is zero, the mode cannot be controlled (uncontrollable). Therefore, [¥B] is
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referred to as the mode controllability matriz.

The system response at an output (Y) can be obtained by Equation (4.17). The
element of [C®] corresponding to a particular mode and an output determines whether
the mode can be observed in that output. If the element is zero, the mode cannot
be observed (unobservable). Therefore, [C®] is referred to as the mode observability

matriz.

4.4 Summary: Modal Analysis Used in The Thesis
The modal analysis technique used in the thesis is summarized below.

e The aperiodic and oscillatory modes are identified using eigenvalues and stabil-
ity of the modes are evaluated. The frequency and the damping of the oscillatory

modes are obtained using Equations (4.8) and (4.9).

e The relative participation of the state variables in the modes are obtained using
participation factors. The interactions among the state variables of different

dynamical systems are identified using these participations.

e The phase angles of the mode shapes are used to identify the relative action of

the state variables in a particular mode.

If two state variables have almost the same phase angle (around 0° phase dis-
placement) in the mode shapes of a particular mode, the two state variables are

said to be “oscillating together” in that mode.

If two state variables have almost 180° phase displacement in the mode shapes
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of a particular mode, the two state variables are said to be “oscillating against

each other” in that mode.

e Observability and controllability matrices are used to identify the inputs and

the outputs for the controllers, which are utilized to improve the damping of

some lightly damped modes.
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Chapter 5

HVDC Interactions in Power

Systems

5.1 Introduction

The HVDC interactions in power systems are analyzed using the small signal stability
assessment described in Chapter 4. The following interactions in power systems are

discussed in this chapter.

e Multi-in-feed HVDC interactions - Interactions among the controllers and DC

lines of different HVDC links connected to a power system in a close proximity.

e HVDC-generator electromechanical interactions - Interactions between an HVDC

link and a generator connected to a power system in a close proximity.

These HVDC interactions are analyzed in detail using two case studies: a small
multi-in-feed test system (Case Study-1) and a large power system (Case Study-2).

In Case Study-2, the proposed hybrid AC network model (Chapter 3) is also used to
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Figure 5.1: Multi-in-feed HVDC test system (redrawn - same as Figure 2.14 )

analyze the interactions and the performance of the model is compared against the
detailed model.
In addition to these interactions, the HVDC-generator-turbine torsional interac-

tions (subsynchronous oscillations) are analyzed in Chapter 6.

5.2 Case Study-1: Multi-in-feed HVDC Interactions

The multi-in-feed HVDC test system shown in Figure 2.14 of Chapter 2 is used to
analyze the interactions. For the clarity of the readers, the test system is redrawn in
Figure 5.1. There are two HVDC in-feeds (HVDC1 and HVDC2) connected through

a tie-line and one generator (S2) is connected close to HVDCI.

5.2.1 Small Signal Model of Test System

The linearized model of the test system is obtained as described in Chapter 2. The
rectifier current controller, the inverter extinction angle controller and the PLOs are

included in the HVDC models. The dynamic AC network model is used to model the
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Table 5.1: Major Participations of Some Selected Modes in Multi-in-feed Test System

Mode | Freq. | D Major Participants
(Hz) | (%)

1 1481 ] 3.1 172(100%), F2(80%),

124(70%), F4(70%)

2 104.8 | 30.4 F4(100%), F2(50%),
T4 (40%)

3 75.9 | 10.9 Lier1(100%), 171(70%),

' Lira(60%), F1(50%)

4 74.9 | 10.4 Lier2(100%),  123(70%),

L1 (60%), F'3(50%)
5 66.0 | 17.6 | 121 (100%), F2(80%), I72(60%),
Liei2(60%), FA(40%), I74(40%)

6 34.0 |20.2 Veap2(100%), Tuei2(80%),
chapl(60%)7 [dczl(so%)
7 17.9 | 30.9 Veap1(100%), Xor1(70%),
125(70%), Vigpa(60%)
8 17.0 | 72.7 Xor1(100%), Taer (70%),
Vo1 (70%), X 0ra(60%)
9 7.0 |93.7 Xor2(100%), X or1(60%),

Idcr2(50%)a ]dcrl(?’o%)
10 1.2 | 46 | 06(100%), #4(100%), w(90%),
129(40%)

network. The synchronous machine is modeled using an 8" order model including
stator winding dynamics. The exciter and governor models are also included in the
generator model. The entire system consists of 96 state variables. Most of the state
variables are associated with the AC network and 9 state variables of each HVDC
system and 16 state variables of the generator are also included. Some important
modes of the system are given in Table 5.1. In the participations, Fn (n = 1..4)
represents the state variables of n* AC filter and Iz, (n = 1..4) represents the
currents of n'* source impedance. The numbers shown within parentheses are the
scaled participations. Since the AC filters and impedances involve a large number of

state variables, the rounded value of the highest participant of them is presented in
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the table.
The oscillatory modes given in Table 5.1 are used to identify the interactions. The
modes are categorized into AC network interactions, DC line resonance interactions

and controller interactions based on the highest participants.

5.2.2 AC Network Interactions

Modes 1 to 5 show the AC network interactions. Inspection of major participants
shown in Table 5.1 reveals that, Mode 1 is the most critical mode in the system in
which the inverter side AC network and filter state variables participate the most.
There are minor contributions of the inverter side DC currents and the generator
stator flux components in this mode. Mode 2 shows the interactions among the
inverter side filters and the tie line. The interactions among the DC currents, the AC

network and the filters are given by modes 3,4 and 5.

5.2.3 DC Line Resonances

Modes 6 and 7 in Table 5.1 are due to the inductor-capacitor resonances of the DC
lines. The participation of all 88 state variables in Mode 6 is illustrated in Figure 5.2.
Note that in Figure 5.2, the state variables of HVDC systems are arranged in the order
[ Xary Xai, Laers Tici, Veap and four PLO variables]. The mid-point capacitor voltage
(100%) and the inverter side DC current (80%) of HVDC2 participate the most in
this mode. There are significant contributions from the mid point DC voltage (60%)
and the inverter side DC current (50%) of HVDC1 as well. The mode shapes of
mode 6 illustrated in Figure 5.3 show that the relevant state variables of HVDC1 and
HVDC2 are almost 180° out of phase with each other. For example, I .4 of HVDC1
and Iyer2 of HVDC2 are almost 180° apart. Therefore, the relevant state variables of
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Figure 5.2: Participation of state variables in mode 6 of Model-1 (Table 5.1). Note
that, the state variables of HVDC systems are arranged in the order [Xur, Xai, licr,
Iici, Veap and four PLO variables].

HVDC1 and HVDC2 “oscillate against each other” in this mode.

The major contributor for Mode 7 is HVDC1. The mode shapes (Figure 5.3) show
that the angle between the relevant state variables of HVDC1 and HVDC? is small.
Therefore, the relevant state variables of HVDC1 and HVDC2 “oscillate together” in

this mode.

5.2.4 Controller Interactions

The controller state variables X,,; and X, participate most in modes 8 and 9 as
in Table 5.1. Therefore these modes are identified as controller modes. The major
contributor for Mode 8 is HVDC1. The mode shapes (Figure 5.3) show that HVDC1
and HVDC2 oscillate together in this mode. The participation of state variables in
Mode 9 is illustrated in Figure 5.4. The major contributor in this mode is the rectifier
current controller state variable of HVDC2 (X2 - 100%). The participation of the
rectifier current controller state variable of HVDC1 (X,,1) is 60%. In addition to
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Figure 5.3: Mode shapes of major participants - Modes 6,7,8 and 9 (Table 5.1)

those, the rectifier side DC currents of HVDC2 (50%) and HVDC1 (30%), and the

inverter side DC currents of HVDC2 (20%) and HVDC1 (10%) participate in this

mode. The mode shapes of the major participants illustrated in Figure 5.3 reveal

that HVDC1 and HVDC2 state variables oscillate against each other in this mode.

In this test system, the controller modes are highly damped and therefore, can hardly

be observed in the responses.
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Figure 5.4: Participation of state variables in mode 9 of Model-1 (Table 5.1). Note
that, the state variables of HVDC systems are arranged in the order [X,r, Xas, Ticr,
ITiciy Veop and four PLO variables].

5.2.5 Effect of Tie Line Impedance

The interaction between HVDC1 and HVDC2 depends on the tie line impedance (i.e.
how tightly the HVDC systems are coupled). If the tie line impedance is high, the
interactions between the two HVDC lines diminish. For example, when the tie line
impedance is 5 times larger, the participation in the similar DC line resonance mode
corresponding to Mode 6 is as shown in Figure 5.5 and the participation in the similar
controller mode corresponding to Mode 9 is as shown in Figure 5.6. It can be seen
that, the contributions of HVDC1 in these modes are negligible. The participations
of the corresponding modes of Modes 7, 8 also show that the interactions between

the HVDC systems are negligible when the tie line impedance is increased.

5.2.6 Effect of Current Controller

It is found from the above analysis that the rectifier current controller significantly

contributes to the DC line resonance and controller modes. The current controller
&1
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Figure 5.5: Participation of state variables in the similar mode corresponding to mode
6 (Table 5.1) when the tie line impedance is increased by 5 times
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Figure 5.6: Participation of state variables in the similar mode corresponding to mode
9 (Table 5.1) when the tie line impedance is increased by 5 times

contributions are further analyzed by changing the rectifier PI controller input gain
(G) of HVDCI1 in the range of 0.2 to 10. The polar plot of modes 6 to 10 are given
in Figure 5.7. The frequency and damping of Mode 6 (a DC resonance mode) show

minor changes when the gain is changed. In modes 7,8 and 9, the frequency and
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Figure 5.7: Polar plot of modes 6,7,8,9 and 10 - HVDCI rectifier PI controller input
gain is changed from 0.2 to 10

damping change in a wide range. For example, Mode 7 has around 5% damping
when the gain is 10. Mode 9 becomes aperiodic as the gain increases to 1.3.

Especially, the electro-mechanical mode (Mode 10) becomes unstable as the gain
decreases to 0.2. This instability can be seen in the comparisons of small signal model
results and PSCAD/EMTDC results shown in Figure 5.8. This comparison further
confirms the accuracy of the small signal model in predicting small signal stability of
the system.

This analysis shows that the current controller action affects the performance of
the electromechanical mode. This gives an indication that the damping of some elec-
tromechanical oscillations can be controlled through HVDC. This controlling mecha-

nism is briefly described in the following section.
83



CHAPTER 5. HVDC INTERACTIONS IN POWER SYSTEMS

{a) Change in Idcr of HVDC1

0.08 T T T T T T
) ————- PSCAD/EMTDC
\ ———— $SS model

0.06

0.04H

kA)

current {

-0.02

-0.04

time(s)

Figure 5.8: Change in rectifier side DC current of HVDCI1 for a 5%, 0.3s step on the
current controller input in HVDCI, when the HVDCI rectifier PI controller input
gain is 0.2

5.2.7 HVDC Controllers For Electromechanical Oscillations

The damping of some local and inter-area modes of the power systems can be con-
trolled through the HVDC. These controllers are called HVDC damping controllers
or HVDC modulation controllers and the implementation aspects have been readily
discussed in the literature [6][4][43].

The damping controller can be applied at the rectifier current controller (current
modulation) or at the inverter extinction angle controller as an auxiliary controller.
For example, the rectifier damping controller modifies the current reference such that
the damping of some electromechanical modes are improved. A remote signal (eg:
rotor speed of a generator) or a local signal can be used as the input. According to
[4], the frequency deviations of the converter terminals can be used as a local input.

For the completeness of the analysis, the designing aspects of the HVDC damping
controller to improve the damping of Mode 10 are briefly discussed. The generator
rotor speed is used as the input. The communication delays between the generator

station and the converter station are ignored.
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The controller is attached at the current reference of the rectifier current controller.
The same procedure, which is followed to tune power system stabilizers (PSS) [44]
can be employed to design the damping controller as well. The phase lag between the
rectifier current controller input and the generator electrical torque is obtained from
the frequency response analysis while keeping the generator rotor locked. It is found
that the phase lag is 175°. This phase lag has to be compensated using a phase lead
block. Since the phase lag is close to 180°, the inverted signal of the controller output
can be added to the current reference without using a lead-lag block. Therefore, only
a washout filter and a gain block are used as the damping controller and the controller
output is subtracted from the current reference.

When the controller gain is 50 and the washout filter time constant is 5s, the
damping of the electromechanical mode (Mode 10) improves to 40%. The changes
in the rotor speed are compared in Figure 5.9, for a 5%, 0.3s step change on the
current controller input of HVDC1. The stability enhancement of the generator can
be observed clearly in Figure 5.9. In addition to that, this demonstrate the accuracy of
the small signal model in designing controllers. It is important to track the damping of
the other modes in the system while changing the damping controller gain to improve
the generator stability. However, for the given controller parameters, the damping of
the DC line resonance modes and the controller modes does not change much from

the values given in Table 5.1.

5.2.8 Summary of Analysis

The analysis shows that the rectifier current controllers and the DC lines significantly
contribute to the multi-HVDC interactions. The inverter extinction angle controller

does not participate significantly in these modes. Although the HVDC systems are
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Figure 5.9: Change in generator speed for a 5%, 0.3s step on the current controller
input in HVDC1, when the HVDC damping controller gain is 50.

identical, the network is not symmetrical. HVDCI is electrically closer to the syn-
chronous generator than HVDC2 because of the tie line. Therefore, the modes associ-
ated with the two HVDC systems are different. The strong tie line makes both of the
HVDC systems to participate in these modes. The interactions between HVDC1 and
HVDC2 diminish as the tie line impedance increases. The rectifier current controller
action influences the behavior of the HVDC associated modes and the electrome-
chanical modes. Especially, HVDC damping controllers can be used to improve the
damping of the electromechanical modes.

In this case study, the HVDC interactions were analyzed for a simple test system
in which the entire AC network was modeled using the dynamic network model.
However, for a large power system, the entire network dynamics cannot be modeled
and the proposed hybrid AC network model has to be used. The following study
(Case Study-2) demonstrate the abilities of the hybrid model in analyzing the HVDC

interactions.
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5.3 Case Study-2:

HVDC Interactions in Large Power Systems

In this study, the HVDC interactions are analyzed in a larger power system using
the hybrid model. Especially, the modal analysis results are compared with the
conventional model (Y matrix representation of AC network) and the detail model,
which includes the AC network dynamics of the entire network. This will demonstrate
the accuracy of the proposed hybrid model in analyzing HVDC interactions.

The modified New England 39 bus test system shown in Figure 3.2 of Chapter 3 is
used to analyze the interactions. The three small signal models described in Section
3.3.1 are used for the comparisons of the results. For the clarity of the readers, the

models are redescribed below.

Model-1: Conventional Model [admittance matrix representation for AC network

and standard dynamic model of synchronous machine used in stability studies]

Model-2: Small signal model including network dynamics of entire network [dy-
namic phasor representation for AC network and synchronous machine models

including stator winding differential equations]

Model-3: Proposed Hybrid Model [the area highlighted in Figure 3.2 is modeled
including network dynamics (as in Model-2) and the rest is modeled using con-

ventional model (Model-1)]

The modes and modal characteristics are analyzed using small signal stability
assessment as done in Case Study-1. Some of the modes are analyzed in the following

sections.
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Table 5.2: HVDC Interaction Modes of Test System
+# Model-1 Model-2 Model-3
f (Hz) | D (%) | £ (Hz) | D (%) | f (H2) | D (%)
Mode-a | 374 11.2% | 309| 6.7% | 31.7| 6.2%
Mode-b | 37.1 | 19.7% 33.1133% | 33.1] 13.4%

5.3.1 HVDC Interaction Modes

The oscillatory modes associated with HVDC systems are tabulated in Table 5.2.
There are two DC line resonance modes in which the DC line currents and the voltages
participate the most.

The participations of the HVDC1 and HVDC2 state variables in Mode-a and
Mode-b are illustrated in Figure 5.10 and Figure 5.11 respectively. The first 9 state
variables belong to HVDC1 and the rest belong to HVDC2. The state variables
in each HVDC system are arranged in the order of [Xur, Xas, Ticr, ldcis Veap and
four PLO variables]. The phase angles of the mode shapes of Mode-a and Mode-b
are illustrated in Figure 5.12. The phasors “la to le” represent the state variables of
HVDC1 in the order of [ Xy, Xai, Lacr, Laci, Veap) and the phasors “2a to 2e” represent

the same state variables of HVDC2.

Comparisons

Model-2 which includes the AC network dynamics of entire network can be used as a
benchmark to analyze the interactions. Model-2 gives Mode-a at 30.9 Hz with 6.7%
damping (Table 5.2). The mid-point DC voltage (100%) and the inverter side DC
current (100%) of HVDC1 participate the most in this mode (Figure 5.10). There
are significant contributions of the mid-point DC voltage (80%) and the inverter

side DC current (80%) of HVDC2 as well. The mode shapes of Mode-a illustrated
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Figure 5.10: Participations of HVDC1 and HVDC2 state variables in Mode-a
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Figure 5.11: Participations of HVDC1 and HVDC2 state variables in Mode-b

in Figure 5.12 show that the angle between the relevant state variables of HVDC1
and HVDC?2 is small. For example, the angle between the mid-point DC voltage
of HVDC1 (“le”) and the mid-point DC voltage of HVDC2 (“2¢”) is around 20°.
Therefore, the relevant state variables of HVDC1 and HVDGC2 oscillate together in
this mode. According to Model-2, Mode-b is at 33.1 Hz with 13.3% damping. HVDC2

is the highest participant in this mode (Figure 5.11). The inverter side DC current
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Figure 5.12: Modeshapes of HVDC interaction modes

(100%) and the mid-point DC voltage (90%) participate the most. The inverter side
DC current (90%) and the mid-point DC voltage (80%) of HVDC1 also participate
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in this mode. The mode shapes (Figure 5.12) show that the relevant state variables
of HVDC1 and HVDC?2 are almost 180° out of phase with each other. Therefore, the
relevant state variables of HVDC1 and HVDC2 oscillate against each other in this
mode.

The frequencies and the damping of Mode-a and Mode-b obtained using con-
ventional model (Model-1) are significantly different from those of Model-2 (Table
5.2). Much higher differences can be observed in the participations. For example,
in Mode-a, Model-1 shows that participations of the mid-point DC voltage and the
inverter side DC current of HVDCI1 are 10%. However, the correct participations
given by Model-2 are around 80% (Figure 5.10). Some considerable changes of the
mode shapes can also be noticed in Model-1 compared to Model-2 (Figure 5.12).

The proposed hybrid model (Model-3) gives close results to those of Model-2.
The frequencies and the damping of Mode-a and Mode-b are closely matched with
Model-2 (Table 5.2). The participations also show close matches. For example, in
Mode-a, participations of the mid-point DC voltage and the inverter side DC current
of HVDC1 and HVDC2 are (100%, 100%) and (70%, 70%). These values match well
with the values found using Model-2. The accuracy of the proposed model can be
further verified by observing the mode shapes (Figure 5.12). Model-2 and Model-3
show similar mode shapes for the HVDC interaction modes. The conventional model

(Model-1) results are much different from those results.

5.3.2 Electromechanical Modes

The electromechanical modes of the system are tabulated in Table 5.3. All the small
signal stability models give similar results for the frequency and the damping of the

modes. The participation factors and the mode shapes also show the same results.
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Table 5.3: Electromechanical Modes of Test System

+# Model-1 Model-2 Model-3 Generator

f (Hz) | D(%) | f (Hz) | D(%) | £ (Hz) | D(%) | Participation

mode-1 1.51 5.8 1.51 5.8 1.51 5.8 30,37
mode-2 1.27 4.9 1.27 5.0 1.27 5.0 37,30,39
mode-3 1.19 5.3 1.19 5.3 1.19 5.3 32,31
mode-4 1.17 6.2 1.17 6.2 1.17 6.2 33,34
mode-5 1.09 4.8 1.09 4.9 1.09 4.8 39,31,32
mode-6 0.91 9.0 0.91 5.6 0.91 5.6 34,33-39,31
mode-7 0.48 4.1 0.47 4.5 0.47 4.3 All

Modes 1 to 5 are local oscillatory modes, in which some generators oscillate against
some other generators in the same area. Mode-6 is an inter-area mode, in which
generators 33 and 34 oscillate against generators 31 and 39. In mode-7, all the

generators in the system oscillate together.

5.3.3 Summary of Analysis

The proposed hybrid model and the other two models have been compared against
each other in the frequency domain using modal analysis. All three models pro-
duce similar modal information for low frequency electromechanical oscillation modes.
However, for the high frequency HVDC interactions, the conventional model (Model-
1) does not produce correct modal information produced by Model-2, in which the
entire network is modeled with its dynamics. The proposed hybrid model (Model-3)

produces modal information consistent with Model-2.

5.4 Concluding Remarks

Multi-in-feed HVDC interactions have been analyzed using the eigenvalues and eigen-

vectors obtained from the linearized state space model. This analysis has shown that
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there are several modes where the state variables associated with HVDC converter
terminals interact with each other. The rectifier current controllers and the DC line
state variables participate the most in these modes. If the HVDC in-feeds are tightly
connected in the AC side, they strongly interact with each other. These interactions
diminish as the resultant AC impedance between HVDC terminals is increased. Fur-
ther, the rectifier current controller gain affects the HVDC interaction modes and the
electromechanical modes. Especially, the stability of some of the electromechanical
modes can be improved using an auxiliary controller attached to the rectifier current
controller.

In Case Study-2, the proposed hybrid model has been employed to analyze the
HVDC interactions. The analysis has shown that the proposed hybrid model produces
modal information consistent with the detailed model, in which the entire network
is modeled including dynamics. Unlike the detailed model, the hybrid model can be
used to model large power systems efficiently. Therefore, the proposed hybrid model
can be used to analyze high frequency interactions of the HVDC systems as well as

electromechanical oscillations of large power systems.
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Chapter 6

HVDC-Generator-Turbine

Torsional Interactions

6.1 Introduction

Small signal stability assessment techniques described in Chapter 4 can be employed
to analyze subsynchronous oscillations in generator-turbine units [15]. When lin-
earized models are used to study the damping of low frequency electromechanical
oscillations in power systems, the transmission network is modeled using the bus ad-
mittance matrix and the generator stator winding dynamics are ignored. However,
the frequencies associated with torsional oscillations are much higher than those of
electromechanical oscillations. Therefore, simplified network models and generator
models are not adequate. The dynamic representation of the transmission network
and the modeling of stator dynamics of the generators described in Chapter 2 are
required to analyze torsional interactions accurately. In Appendix E, these modeling
techniques are used to analyze the generator-turbine torsional interactions with the
AC network in the IEEE first benchmark model [39).
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HVDC systems can also interact with the torsional oscillations of the generator-
turbine units, if they are tightly coupled in the AC system [7][8][9]. These interactions
may occur between the rectifier current/power controller and the multi-mass rotor-
turbine systems of the generators and they may even lead to the torsional instabilities.
These HVDC-generator turbine torsional interactions are investigated in this chapter
using a simple test system. Small signal stability assessment is used for the analysis
and the validations are carried out using the EMT simulations. The investigations
are extended to larger power systems in the latter part, using the hybrid small signal

stability model described in Chapter 3.

6.2 HVDC-Generator-Turbine Torsional Interactions Anal-

ysis Using a Small Test System

The CIGRE benchmark HVDC test system [27] with some modifications is used to
analyze subsynchronous oscillations. The test system is shown in Figure 6.1. A
synchronous generator is connected at the rectifier side AC bus to supply half of the
P-Q requirement of the rectifier. The generator-turbine parameters are as given in the
IEEE first benchmark model for computer simulation of subsynchronous resonance
[39]. Since a static exciter is used, the exciter mass is not included in the analysis.
The effective short circuit ratios (ESCR) without the synchronous generator are kept

around 4.4 at the rectifier and the inverter ends.

6.2.1 Linearized Model

The linearized model is obtained as described in Chapter 2. Following details are

included in the linearized model.
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Figure 6.1: Test system used to analyze HVDC-generator turbine interactions

Synchronous generator model including stator dynamics (8 order) is used. An

exciter model (AC4A) is also included with the generator model.
e A four-mass turbine model (HP, IP, LPA and LPB) as described in [39)].

e HVDC system with linearized converter models, DC transmission system, rec-

tifier current controller and inverter extinction angle controller are used.

The dynamic AC network model is used.

The accuracy of the linearized models are evaluated using time domain simula-
tions. Small perturbation simulations obtained using the linearized model are com-
pared with EMT simulation results obtained using PSCAD/EMTDC.

A pulse of magnitude of +10% and duration of 10ms was applied to the rectifier
current controller input. The change in rectifier side DC current is shown in Figure
6.2. All the high frequency oscillations except higher order system harmonics match
with the PSCAD/EMTDC results. Figure 6.3 shows changes in the generator speed.
Small signal model results show a close match with the PSCAD/EMTDC results for
the subsynchronous frequencies embedded in the generator speed. These comparisons
verify that the linearized model with the level of details considered above accurately

represents the subsynchronous oscillations in the system. Therefore, the linear state
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Figure 6.2: Changes in rectifier side DC currents for a 10%, 10ms pulse on the rectifier
current controller input
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Figure 6.3: Changes in generator rotor speed (in pu) for a 10%, 10ms pulse on the
rectifier current controller

space model can be used to analyze these oscillations using small signal stability

assessment.

6.2.2

Modal Analysis of Test System

The small signal model of the test system consists of 60 state variables: generator-

turbine system (19), HVDC system (9) and AC network including filters (32). Some

97



CHAPTER 6. HVDC-GENERATOR-TURBINE TORSIONAL INTERACTIONS

important modes obtained under nominal operating conditions are shown in Table 6.1.
The generator-turbine system shows 4 torsional oscillation modes (Modes 1 to 4). The
frequencies of oscillations are 16.33, 25.6, 32.53 and 47.46Hz respectively. Although
the mechanical damping of multi-mass system is ignored, these modes show very low
damping caused by the electrical torque. The participation factors and the phase an-
gles of the mode shapes of the multi-mass speed terms (Wgen, WLPB, WLPA, WIP, WHP)
in these torsional modes are shown in Table 6.2. The participation of the highest
participant is considered as 100% and the angle of the mode shape of the highest
participant is considered as the reference (0°).

All the mass units participate in Mode-1, in which the generator mass is the main
participant. Mode shapes show that the generator and LPB masses oscillate against
the other three turbine masses in this mode. The HP turbine is the main participant
of Mode-2 and all other mass units also contribute to this mode. LPA and LPB
turbines oscillate against the generator and IP and HP turbines in this mode. The
LPB turbine oscillates against the generator and LPA turbine in Mode-3. HP and
IP turbine participations in this mode are minor. Mode-4 shows the interactions of
IP and HP turbines. IP turbine oscillate against HP turbine in this mode. The LPB
turbine and the generator do not contribute to this mode. It is noticed that there
are no significant participations of the state variables of the HVDC system in these
torsional modes under the given conditions.

Mode 5 and 6 in Table 6.1 show the interactions of the HVDC system. The
rectifier current controller state variable and the DC line state variables participate
the most in these modes. There are some minor participations of the generator speed
as well. These modes are also in subsynchronous frequency range (10.33 and 42.32Hz).

However, these modes are well damped.
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Table 6.1: Some important modes of the test system

Mode | Freq. D Major Participant
(Hz) | (%)
1 16.33 | 0.0781 Gen-Turbine (SSO)
2 25.60 | 0.00975 Gen-Turbine (SSO)
3 32.53 | 0.0102 Gen-Turbine (SSO)
4 47.46 | 0.000003 Gen-Turbine (SSO)
5 10.33 51.9 Rectifier Current Controller
6 42.32 22.7 DC line
7 1.36 3.2 Generator (Electromechanical)

Table 6.2: Participations and mode shapes of multi-mass speed terms in torsional
modes

Mode | Participations (%) and Mode shapes (Deg.)
Ween ] WLPB | wLpa wip WHp
1 10040 | 1640 | 704180 | 434180 | 48/180
2 2540 | 84180 | 504180 | 2040 10020
3 41180 | 10040 | 234180 | 0£180 720
4 0£180 0£0 7180 | 100£0 37180

The electromechanical mode of the system is given by Mode 7. The frequency of

oscillation is 1.36Hz and the mode has 3.2% damping.

6.2.3 HVDC-Generator-Turbine Torsional Interactions

Under the given conditions, the test system does not show any interactions between
the HVDC system and generator-turbine system. However, there might be some in-
teractions if the operating conditions are changed or the controller parameters are
changed. In order to demonstrate this, the analysis was carried out by changing the
rectifier current controller proportional and integral gains. It was observed that, if
there is a slightly damped HVDC controller mode, in which the frequency is close to
a torsional mode of the generator-turbine system, the two systems interact strongly

even causing instabilities. When the rectifier current controller proportional gain is
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Table 6.3: Participating modes in torsional interactions when controller gains are
adjusted

Mode | Freq. | D Major Participants
(Hz) | (%)
A 16.24 | -0.03 | HVDC-Generator-Turbine
B 16.36 | 1.05 | HVDC-Generator-Turbine

0.11 and the integral time constant is 0.0045s, the controller mode (Mode 5) gets
close to Mode 1 (torsional mode) in frequency and the resultant torsional mode be-
comes unstable. The resultant modes close to Mode 1 are shown in Table 6.3. The
participation factors (%) of multi-mass speed terms (wgen, WrpB, Wrpa, Wip, WHP)
and HVDC state variables [rectifier current controller state variable (X, ), inverter
extinction angle controller state variable (X, ;), rectifier side DC current (Ig.), in-
verter side DC current (/4;) and midpoint capacitor voltage (V,q,)] in these modes
are illustrated in Figure 6.4.

Mode-A is negatively damped and the frequency is at 16.24 Hz. The state variables
of the generator-turbine system and the HVDC system strongly interact with each
other in this mode (Figure 6.4). The HVDC system state variables: X, ,(100%),
14¢i(60%) and I4.,(30%) and the generator-turbine system state variables: wgen(70%),
wr.pa(50%), wrp(30%) and wyp(30%) are the major participants.

The HVDC state variables participate the most in slightly damped Mode-B (Fig-
ure 6.4). The frequency is at 16.36 Hz and the damping is 1.05 %. The HVDC
system state variables: X, .(100%), I4:(60%) and I4.(30%) are the major partici-
pants. There are some participations of the multi-mass speed terms as well [wge,(20%)
and wrpa(20%)].

The comparisons of the change in rectifier side DC current and the change in

generator speed for the perturbation mentioned earlier are shown in Figures 6.5 and
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Figure 6.4: Participation factors (%) of multi-mass speed terms and HVDC state
variables in Modes A and B

6.6 respectively. Mode-A can be observed in the unstable oscillations of the generator
speed (Figure 6.6) and Mode-B can be observed in the rectifier side DC current
(Figure 6.5). The close match with the PSCAD/EMTDC results further demonstrate
the accuracy of the small signal model in identifying the torsional interactions.

If the AC network dynamics are ignored (admittance matrix model), the small
signal model shows inaccurate results. In that model, Mode-A is at 16.3Hz with
+0.07% damping. According to this, the torsional mode is stable. Furthermore,
Mode-B is at 18.4Hz and it has +4.7% damping. These results are significantly
different from the results presented in the above analysis. Therefore, the admittance
matrix representation is not adequate to analyze torsional interactions accurately.

It was found using the small signal model that there is a similar torsional instability
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Figure 6.5: Changes in rectifier side DC currents for a 10%, 10ms pulse on the rectifier
current controller input (when current controller gains are adjusted)
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Figure 6.6: Changes in generator rotor speed (in pu) for a 10%, 10ms pulse on the
rectifier current controller (when current controller gains are adjusted)

in the generator-turbine system when the rectifier current controller proportional gain

is 2.8571 and the integral time constant is 0.0012s. This produces a controller mode
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Figure 6.7: Subsynchronous damping controller attached to the rectifier current con-
troller

close to Mode 2 (= 25H z) and causes instability in the torsional mode.

In conclusion, the HVDC-generator-turbine interactions may happen if there is a
slightly damped HVDC controller mode in which the frequency is close to a torsional
frequency in the system. These conditions may even lead to torsional instabilities.
The small signal stability assessment can be employed to identify the conditions for

these torsional instabilities.

6.2.4 Design of SSDC Using Small Signal Stability Assess-

ment

The same procedure, which is followed to tune power system stabilizers (PSS) [44]
can be employed to design subsynchronous damping controllers (SSDCs) attached
to the HVDC system. The torsional modes in the generator-turbine system can be
controlled through the rectifier current controller input as shown in Figure 6.7. A
lead-lag block, a gain block and a washout filter are included in the controller.

The controllability of the modes can be analyzed using the mode controllability
indices as described in Chapter 4. For the above mentioned test system under nom-

inal conditions, the magnitudes of the controllability indices obtained between four
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Figure 6.8: Controllability of torsional modes through rectifier current controller input

torsional modes (Table 6.1) and the current controller inputs are illustrated in Figure
6.8. Mode-1 (16.33Hz) is the most controllable mode among the torsional modes.
Modes 2 and 3 are also controllable using the current controller input. However,
Mode-4 (47.46Hz) cannot be controlled using the current controller input.

The first three torsional modes can be observed in the generator speed (Table 6.2)
and therefore, the speed can be used as an input to the SSDC.

In order to provide positive damping at required frequency range, the SSDC should
have an appropriate phase characteristic to compensate the phase lag/lead between
the current controller input and the electrical torque of the generator. The frequency
response for the transfer function between the current controller input and the elec-
trical torque is obtained while keeping the generator rotor angle constant (this can be
done by increasing the inertia to a very large value [44]). The phase characteristics of
the test system obtained as described, is shown in Figure 6.9. The transfer function
shows a phase lag of 10° to 20° in the range of frequenciés corresponding to Modes 1,
2 and 3. At the frequency of Mode-4, the system shows a phase lead of around 50°.

We are not concerned about this mode because it is neither observable in generator
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Figure 6.9: Phase plot of frequency response between generator electrical torque and
rectifier current controller input

speed nor controllable through the current controller input.

One lead-lag block with a phase lead of 10° at 25 Hz (73 = 0.0076s, Ty = 0.0053s)
is used to compensate the phase lag in the corresponding frequency range. A washout
filter (T, = 20s) is also included to block the steady (DC) changes in the speed [44].

The SSDC gain is adjusted to improve the damping of torsional modes, while
keeping the damping of other modes at appropriate levels. Figure 6.10 shows the
damping versus SSDC gain characteristics obtained for the torsional modes and the
other modes in the range of 0 to 200 of SSDC gain. As the gain increases the damping
of Mode-1 increases significantly. Around 5% damping can be obtained when the gain
is 100. The damping of Modes 2 and 3 also increases as the gain increases. There is no
improvement in Mode-4, since it is uncontrollable through the SSDC. The decrements
in damping of HVDC system modes (Mode 5 and 6 ) are comparatively small and the
damping factors are at acceptable levels. The SSDC helps to improve the damping

of electromechanical mode (Mode-7) as well. Around 18% damping can be obtained
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Figure 6.10: Changes in mode dampings with SSDC gain

when the gain is 100.

Based on the above observations, the SSDC gain is set at 100, in order to obtain

5% damping in the first torsional mode (Mode-1). Furthermore, this does not cause

any adverse effect on the other modes. Small perturbation simulations are used to

demonstrate the performance of the developed SSDC in damping the oscillations

in the generator-turbine unit. For the pre-described perturbation, the changes in

rectifier side DC current and the generator speed are compared in Figures 6.11 and

6.12 respectively. Some oscillations in the rectifier side DC current can be observed

due to the introduction of SSDC. However, the oscillations die down fast. A good

improvement in the generator speed compared to the case without SSDC (Figure

6.3) can be observed . The torsional oscillations decay within 2s when the SSDC is

106



CHAPTER 6. HVDC-GENERATOR-TURBINE TORSIONAL INTERACTIONS

Change in Rectifier side DC current

0.12 T T T T — T | I

0.1 *1

1
! PSCAD/EMTDC
ﬁ ----- SSS model

0.08 15
ooeji
0.04 2

current (kA)

0.02F %{
il ‘}M w A

-0.02 *“H

Wil

M% i

i

h

_0.04 1 1 i ! 1 1 ] 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

time(s)

0.45 0.5

Figure 6.11: Changes in rectifier side DC currents for a 10%, 10ms pulse on the

rectifier current controller input (when SSDC is connected at rectifier)
Change in Generator speed
T T T T I I
PSCAD/EMTDC H
----- SSS model

0.8 1 1.2 1.4 1.6
time(s)

1.8

Figure 6.12: Changes in generator rotor speed (in pu) for a 10%, 10ms pulse on the

rectifier current controller (when SSDC is connected at rectifier)

mtroduced.

The idea of this example was to demonstrate the basic concepts of designing

SSDCs using small signal stability assessment. However, the performance of the

SSDC has to be tested under different operating conditions such as different DC power

output levels and under different transient conditions. The limits to the controller
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have to be enforced accordingly.

This analysis further confirms the accuracy of the small signal model. As shown in
Figures 6.11 and 6.12, the small signal model gives accurate results as in PSCAD/EMTDC.
Therefore, a small signal stability model which includes the AC network dynamics
and synchronous generator stator dynamics, is adequate for analyzing subsynchronous

oscillations and for designing controllers to mitigate them.

6.3 HVDC-Generator-Turbine Torsional Interactions Anal-

ysis in Large Power Systems

The HVDC-generator torsional interactions in large power system can also be studies
as in the above section using the hybrid small signal model proposed in Chapter 3.
In this section, the New England 39 bus test system [29] with some modifications
is used to demonstrate the performances of the hybrid model in analyzing torsional
interactions. This test system is a modified version of the 39 bus test system used
in Chapter 3 (Figure 3.2). The modified test system is shown in Figure 6.13. The
generator 36 is inserted back at bus 23 instead of HVDC2. A multi-mass turbine
model is attached to the generator 36. The turbine parameters are as given in the
IEEE first benchmark model [39]. Note that, the HVDC infeed and the generator-
turbine multi-mass unit are in the close proximity (around 35Km apart) in the test

system. The test system details are given in Appendix A.

6.3.1 Modal Analysis of Test System

The hybrid small signal model of the test system consists of 195 state variables:

generator-turbine multi mass system (16), HVDC system (9), AC network including
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Figure 6.13: 39 bus test system used to analyze HVDC-generator turbine torsional
interactions

filters (68), generators in the dynamic area (32) and the other generators in the admit-
tance matrix model (70). Some important modes obtained under nominal operating
conditions are shown in Table 6.4.

The generator-turbine system shows 4 torsional oscillation modes (Modes 1 to 4).
Since the same turbine data are used, these modes are similar to the torsional modes
obtained for the small test system used in Section 6.2 (Table 6.1). Mode 5 shows the
DC line resonance mode of the HVDC system. Since this test system is similar to
the 39 bus test system used in Chapters 3 and 5(Figure 3.2), the electromechanical

modes 6, 7, 8, 9, 10, 12 and 13 are similar to those obtained in Chapter 5 (Table
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Table 6.4: Some important modes of the 39 bus test system used to analyze HVDC-
generator-turbine torsional interactions
| Mode | frequency(Hz) | Damping (%) | Major Participants ]

Torsional Modes
1 12.07 1.33e-2 Gen36,LPA,HP,IP
2 23.99 3.36e-4 HP,LPB,IP,LPA,Gen36
3 30.12 2.62e-4 LPB,LPA ,HP,Gen36
4 47.46 3.11e-8 IP,.HP
HVDC Interaction Modes
5 | 32.59 { 11.19 | Veap, Idci,Ider
Electromechanical Modes
6 1.51 5.81 Gen 30,37
7 1.27 4.96 Gen 37,30,39
8 1.19 5.32 Gen 32,31,33
9 1.17 6.02 Gen 33,34,31,32
10 1.09 4.78 Gen 39,31,32
11 0.94 5.17 Gen 34,36,33
12 0.89 4.39 Gen 34,39,36
13 0.43 3.26 Gen 34,33,36

5.3). There are some contributions of newly introduced generator 36 in modes 12 and
13. Further, a new electromechanical mode (Mode 11) appears after introduction of
generator 36. Generators 33 and 34 oscillate against generator 36 in this mode (a

local mode).

6.3.2 HVDC-Generator-Turbine Torsional Interactions

Under the given conditions, the test system does not show any interactions between
the HVDC system and generator-turbine system. The interactions were analyzed as
in Section 6.2.3 by changing the rectifier current controller proportional and integral
gains. According to the conclusions of the analysis in Section 6.2.3, the two systems
might interact if there is a slightly damped HVDC controller mode in which the

frequency is close to one of the torsional modes. However, this system does not
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show any interaction or instability when the controller mode is close to Mode-1 or
Mode-2 in frequency. There are few reasons for the two systems not to interact
under these conditions. One is, the multi-mass generator-turbine unit is connected at
the inverter side of the HVDC system and therefore, the generator and the rectifier
current controller are electrically far apart. The other reason is, the controller modes
are well damped (more than 80%) at these frequencies and therefore, these modes

hardly be observed at the generator.

6.3.3 Control of Torsional Modes Through HVDC

As described in Section 6.2.4, the damping of the torsional modes can be improved
through the HVDC controllers. The same procedure was followed for this test sys-
tem as well. The SSDC can be added either at the rectifier current controller or at
the inverter DC voltage controller in this test system. These possibilities are briefly
analyzed using the hybrid small signal model in the following sections. Further, the
accuracy of the analysis is demonstrated using the time domain simulation compar-

isons.

SSDC at Rectifier Current Controller

The SSDC at the rectifier current controller can be designed as described in Section
6.2.4. The controllability indices show that Mode-1 and Mode-2 are the most con-
trollable torsional modes at the rectifier current controller input and Mode-3 shows a
little controllability. Mode-4 cannot be controlled at that input. Since generator 36
speed participates in Mode-1, Mode-2 and Mode-3 (Table 6.4), the speed is used as
the input to the SSDC. The frequency response analysis shows around 180° phase lead
between the rectifier current controller input and the generator 36 electrical torque in
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the frequency range of 0-30Hz. This phase lead can be compensated using an inverted
signal of the generator speed. Therefore, only a gain block is used as the SSDC for the
simplicity of the analysis. However, good phase compensations and washout filters
would be required for better accuracy.

When the SSDC gain (Ksspc) is 400, Mode-1 shows 2.1% damping and Mode-2
damping is improved to 0.21%. Mode-3 has 0.08% damping. Mode-4 does not show
any improvement. The performance of the SSDC has been evaluated in Figure 6.14.
Figure 6.14(a) shows the time domain comparisons of the change in generator 36
speed for a 10%, 10ms pulse applied on the rectifier current controller input, when
the SSDC is not connected. The dominating 12 Hz mode (Mode-1) can be observed in
the generator speed. When the SSDC is connected at the rectifier current controller,
Figure 6.14(b) shows the time domain comparisons of the change in generator 36
speed for the same disturbance. The 12 Hz mode can be observed in the first second
and it decays rapidly. The low damped 30 Hz mode (Mode-3) can be observed in the
latter part. The results are validated using PSCAD/EMTDC simulation results in
these figures.

When designing SSDCs in large power systems, it is important to investigate the
effect of SSDC on the electromechanical modes and the other modes of the system
as well. In this test system, there is no significant improvement or decrement in the
damping of the electromechanical modes 6, 7, 8, 9 and 10 due to the insertion of
the SSDC at the rectifier current controller. The damping of the modes in which the
generator 36 participates are significantly improved after insertion of the SSDC at the
rectifier current controller. The damping of Mode-10 improves from 5.17% to 6.47%.
Mode-11 has 12.26% damping after insertion of the SSDC. Especially, the most critical

electromechanical mode (Mode-12), in which all the generators oscillate together, is
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(c) Change in generator-36 speed when SSDC connected at inverter DC voltage controller
(Ksspc = 400)

Figure 6.14: Change in generator-36 speed (in pu) for a 10%, 10ms pulse on the
rectifier current controller input
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Figure 6.15: Changes in DC side currents of HVDC system for a 10%, 10ms pulse on
the rectifier current controller input
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largely affected and the mode becomes aperiodic as the SSDC gain increases to 400.
This mode has only 3% damping before insertion of the SSDC and the resultant
aperiodic modes after insertion of the SSDC are well stable (eigenvalues are close to -
5). Therefore, the insertion of the SSDC at the rectifier current controller is positively
impacted on the stability of the electromechanical modes.

Further, the SSDC has some impact on the HVDC interaction mode (Mode-5).
The damping of Mode-5 decreases as the SSDC gain increases. When the gain is
400, Mode-5 has 8.9% damping. However, this decrement is not significant and
therefore, the effect of the SSDC on the HVDC system is negligible. The changes
in DC side currents for the pre-described perturbation are compared in Figure 6.15.
Figure 6.15(a) shows the DC currents without SSDC and Figure 6.15(b) shows the
DC currents with the SSDC at the rectifier current controller. There is no significant
difference in the currents with and without SSDC. When the SSDC is inserted, some
oscillations resulted due to torsional frequencies can be observed in the latter part of

the simulation ( Figure 6.15(b)).

SSDC at Inverter DC Voltage Controller

A SSDC can be inserted at the inverter DC voltage controller using the same pro-
cedure described in Section 6.2.4. The controllability indices show that Mode-1 ,
Mode-2 and Mode-3 are controllable at the inverter DC voltage controller input and
Mode-4 cannot be controlled at that input. Modes 1, 2 and 3 can be observed in the
generator-36 speed and therefore it is used as the input to the SSDC. The frequency
response analysis shows around 20°-40° phase lead between inverter DC voltage con-
troller input and the generator 36 electrical torque in the frequency range of 0-30Hz.

For the simplicity, a phase compensation for this phase lead is not included and only
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a gain block is used as the SSDC. A phase compensator and a washout filter would
be required for better accuracy.

When the SSDC gain (Ksspc) is 400, Mode-1 shows 1.81% damping and Mode-2
damping is improved to 0.21%. Mode-3 has 0.32% damping. Mode-4 does not show
any improvement. Compared to the SSDC at rectifier current controller, the SSDC
at inverter DC voltage cohtroller provides more damping for Mode-3. This can be
observed in the time domain responses shown in Figure 6.14. As mentioned in the
above section, the low damped 30 Hz mode (Mode-3) can be observed in the latter
part (close to 4s) of the change in generator 36 speed obtained when the SSDC is at
the rectifier current controller (Figure 6.14(b)). When the SSDC is connected at the
inverter DC voltage controller, Figure 6.14(c) shows the time domain comparisons of
the change in generator 36 speed for the same disturbance. The 30 Hz mode (Mode-3)
decays well in this case and cannot be observed in the latter part. Therefore, in this
case, the SSDC at inverter DC voltage controller shows better performances compared
to the SSDC at the rectifier current controller. The reason is that the inverter is
electrically more closer to generator 36 than the rectifier in this test system.

As far as electromechanical oscillations are concerned, this SSDC is also positively
impacted the stability of those modes. Major improvements can be observed in Modes
12 and 13. Mode 12 damping is improved to 7.03% and the frequency does not change
significantly. Mode 13 is at 0.28Hz with 81.15% damping.

There is negligible impact of the SSDC on the HVDC interaction mode (Mode-5).
The damping of Mode-5 is at 9%. When the SSDC connected at the inverter DC
voltage controller, the changes in the DC currents for the pre-described disturbance
are shown in Figure 6.15(c). This comparison verifies that the impact on the HVDC

system is negligible.
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6.3.4 Importance of The Hybrid Model

This analysis demonstrate that both low frequency electromechanical oscillations and
subsynchronous frequency oscillations can be accurately analyzed using the proposed
hybrid small signal stability model. If this model was not available, the subsyn-
chronous interactions have to be analyzed for a small portion of the power system
modeled in details either using a small signal model with the entire network dynam-
ics included or using an EMT program. Especially, when designing subsynchronous
damping controllers, the above analysis shows that some inter-area electromechani-
cal modes of the power system may be severely affected (eg: Mode-13 in Table 6.4).
These inter-area electromechanical modes cannot be analyzed using the small portion
of the power system modeled. For this, the entire power system has to be analyzed
using a conventional small signal stability program or a transient stability program.
If there is some adverse effect on the electromechanical modes, the controller param-
eters have to be readjusted. Therefore, the detailed model of the small portion of the
power system and the conventional small signal model or the transient stability model
of the entire power system have to be repeatedly used to obtain the optimal values
of the controller parameters. The proposed model would avoid these difficulties and

helps to obtain more reliable results.

6.4 Concluding Remarks

A linearized model of a power system with dynamic phasor representation of the
transmission network and the stator winding dynamics modeled for the generators
is adequate to analyze HVDC-generator-turbine torsional interactions. The HVDC-
generator-turbine torsional interactions may occur if there is a slightly damped HVDC

controller mode, in which the frequency is close to a torsional mode of the generator-
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turbine system. These interactions may even lead to torsional instabilities. This has
been demonstrated using electromagnetic transient simulations. A damping controller
has been introduced to the HVDC system to damp out the torsional oscillations. The
design procedure has been discussed using small signal stability assessment.

In large power systems these subsynchronous oscillations can be analyzed using
proposed hybrid small signal stability model. The performance of the hybrid model
has been evaluated for the 39-bus test system in designing subsynchronous damping
controllers at the HVDC system. The analysis has shown that the damping controller
can be introduced either at the rectifier current controller or at the inverter DC
voltage controller. Further, the analysis has shown that the controllers may affect the
stability of the electromechanical modes as well. The hybrid model has facilitated to
accurately analyze both subsynchronous modes and electromechanical modes of the

system at the same time.
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Chapter 7

Conclusions

7.1 General Conclusions

A small signal stability model suitable for studying HVDC interactions of large power
systems has been proposed in this thesis. The modeling requirements for the power
systems with HVDC lines have been analyzed. Comparisons of small signal model
simulations against EMT type simulations have been used to conclude that the dy-
namic network representation of the AC network and the stator winding dynamics
modeled for the generators are essential to produce meaningful results from a small
signal analysis. However, it is not practical to include the dynamics of the entire
AC network of a large power system. To overcome this, a hybrid AC network model
that allows the parts of the transmission network in the vicinity of HVDC converters
or any other dynamic devices to be modeled with their dynamics and the remaining
parts to be modeled as constant admittances has been proposed. The hybrid small
signal model produces the same results as in the model including the dynamics of
the entire AC network. The comparisons with the EMT type simulations have been

further confirmed the accuracy of the proposed model. The proposed model and the
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model including the dynamics of the entire network have been used in this thesis
to accurately analyze multi-in-feed HVDC interactions, HVDC-generator electrome-
chanical interactions and the HVDC-generator-turbine torsional interactions in power
systems.

The linearized models of the dynamic devices in power systems and their adequacy
in analyzing interactions up to 200Hz have been discussed in Chapter 2. A current
injection model of an HVDC system, which can be easily combined with the current
injection models of the other dynamic devices, has been proposed in this chapter. The
linearized converter models, the HVDC controllers, the phase locked oscillators and
the DC transmission system have been included with their dynamics. The dynamic
phasor representation has been used to model the AC network and the stator winding
dynamics have been included in the synchronous generator model. The models have
been validated using time and frequency responses of the EMT simulations.

Chapter 3 describes the proposed hybrid small signal model. Formation of the
model has been discussed using examples. The model has been validated using time
domain comparisons with the EMT type simulations.

In Chapter 5, multi-in-feed HVDC interactions have been analyzed using the eigen-
values and eigenvectors obtained from the linearized state space model. This analysis
has shown that there are several modes where the state variables associated with
HVDC converter terminals interact with each other. The rectifier current controllers
and the DC line state variables participate the most in these modes. If the HVDC
in-feeds are tightly connected in the AC side, they strongly interact with each other.
These interactions diminish as the resultant AC impedance between HVDC terminals
is increased. In addition to the interactions between the HVDC lines, the electrome-

chanical oscillations of the generators may also be affected by the HVDC systems.
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The rectifier current controller parameters affect the stability of the electromechan-
ical modes and some modes become unstable when the controller parameters are
adjusted to certain values. Further, the stability of the modes can also be improved
using the auxiliary damping/modulation controllers at the rectifier. The design of
the controllers has been discussed briefly.

The HVDC-generator-turbine torsional interactions have been analyzed in Chap-
ter 6 using small signal stability assessment. The model including the dynamics of the
entire AC network and the proposed hybrid small signal model has been used. The
interactions can be accurately identified using the small signal stability assessment.
The HVDC-generator-turbine torsional interactions may occur if there is a slightly
damped HVDC controller mode, in which the frequency is close to a torsional mode of
the generator-turbine system. These interactions may even lead to torsional instabili-
ties. These observations have been verified using EMT type simulations. Further, the
possibilities of controlling the torsional modes through HVDC controllers have been
investigated. The subsynchronous damping controllers (SSDC) can be included at
the rectifier or the inverter controllers to improve the stability of the torsional modes.
In addition to these modes, the SSDCs may affect the stability of the widely spread
inter-area electromechanical modes as well. The effect of SSDCs on these modes can
not be analyzed using a small portion of a power system, which has been modeled in
detail. The proposed hybrid model enables the analysis of both of the interactions
simultaneously.

This thesis shows the importance of conducting a small signal interaction study for
any proposed multi-HVDC system or HVDC-generator-turbine system with torsional
oscillations to ascertain whether such interactions exist and if so, whether they pose

a threat to the operation of the power system. The modeling procedure including the
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hybrid small signal model proposed in this thesis can be used for such studies.

7.2 Contributions

The main contributions of the work presented in this thesis are as follows.

e Evaluated the adequacy of the linearized models of the power systems in analyz-
ing high frequency interactions up to 200Hz. A current injection model of the
linearized HVDC system has been developed and it has been combined with the
dynamic phasor model of the AC network to analyze the high frequency HVDC

interactions on power systems accurately.

Proposed and validated a hybrid small signal model of power systems, which
can be used to analyze low frequency electromechanical oscillations as well as
high frequency interactions (up to 200Hz) in large power systems. The dynamic
phasor model, which is used to model the areas with high frequency interactions,
is combined with the admittance matrix representation of the rest of the power

system to obtain the hybrid model.

Evaluated the capabilities of small signal stability assessment technique in iden-

tifying high frequency interactions such as HVDC interactions.

Proposed a methodology to quantitatively analyze interactions between the
HVDC terminals in multi-in-feed HVDC systems, using a small signal stability
model. The interactions among the DC lines (DC line resonance modes ) and
the interactions among the HVDC controllers (HVDC controller modes) can
be identified. The stability of these modes can be evaluated under different

operating conditions and/or under different controller parameters.
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e Proposed to use the small signal stability assessment to analyze HVDC-generator-
turbine torsional interactions. The conditions to be satisfied for the torsional
interactions between the generator-turbine units and the HVDC systems has
been identified using this methodology. Furthermore, the design and the per-
formance of the subsynchronous damping controllers attached to the HVDC

systems has been investigated using the same technique.
These contributions have led to the following publications;

C. Karawita and U.D. Annakkage, “Multi-In-Feed HVDC Interaction Studies

Using Small Signal Stability Assessment”, IEEFE Transactions on Power Deliv-
ery, Vol.24, No. 2, April 2009.

e C. Karawita and U.D. Annakkage, “A Hybrid Network Model for Small Signal
Stability Analysis of Power Systems”, submitted to review in IEEFE Transactions

on Power Systems.

e C. Karawita and U.D. Annakkage, “HVDC-Generator Torsional Interaction
Studies Using A Linearized Model With Dynamic Network Representation”,
Accepted to present in International Conference on Power Systems Transients

(IPST), June 3-6 2009, Kyoto, Japan.

e C. Karawita, U.D. Annakkage and D. Muthumuni, “Verification of PSCAD
simulation results using small signal stability analysis”, Pulse-Manitoba HVDC

Research Center Newsletter, Winter 2007.

e J.R. Lucas, U.D. Annakkage, C. Karawita, R.P. Jayasinghe, D. Muthumuni,
“Inclusion of Small Signal Stability Assessment to Electromagnetic Transient
Programs”, Fourth IASTED Asian Conference on Power and Energy Systems,

Langkawi, Malaysia, April 2008.
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7.3 Suggestions for Future Research

The work presented in this thesis has focused on the analysis of HVDC interactions
using small signal stability assessment. In order to analyze these high frequency
interactions accurately, suitable small signal models have been developed and they
have been validated against EMT type simulations. Ultimately, a hybrid small signal
model suitable for large power systems has been proposed. The interéctions among
the HVDC terminals in multi-in-feed HVDC systems, HVDC-generator electrome-
chanical oscillations and the HVDC-generator-turbine torsional interactions have been
analyzed using the developed small signal models.

The proposed small signal model can be used to analyze the interactions of the
other dynamic devices in the power systems as well. Further research can be carried

out to investigate the interactions of some important devices mentioned below.

e Multi-terminal HVDC links are gaining further popularity in modern power
systems. The same methodology used to develop the linearized model of the
two-terminal HVDC system can be used and the interactions among the ter-
minals can be analyzed using the small signal stability assessment. Further

investigations are required to be performed to identify these interactions.

e The dynamics of the FACTS devices can be added into the small signal models
developed in this thesis. Especially, voltage source converter (VSC) type HVDC
links have been proposed to be widely used in modern power systems. Apart
from that, SVCs, STATCOMs and UPFCs are used in power systems. Fast
controllers are used in these devices and these controllers may produce high
frequency interactions. The methodology described in this thesis can be used

to analyze these interactions as well. Although the linearized models of these
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devices are readily available, further investigations are required to identify the
interactions between different dynamic devices in power system. The proposed

hybrid small signal model can be used for this.

o Nowadays, wind turbines are used to generate electric power all over the world.
Various technologies are used to generate the power. Doubly-fed induction
generators, permanent magnet generators and induction generators with back
to back converters are some of the generating mechanisms. These devices with
their controllers may produce high frequency interactions, which can not be
analyzed using the conventional small signal models. The linearized models of
these devices can be added into the small signal models described in this thesis

and further studies are required to investigate these interactions.

The hybrid small signal model proposed in this thesis can be easily incorporated
with the commercial software packages designed for the conventional small signal
stability assessment. This would be useful to analyze the interactions described in

this thesis and the other interaction studies suggested in this section.
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Test Systems Data

A.1 CIGRE Benchmark HVDC Test System

Converter Data

B, =2 B =2 Xz = 0.18pu | X, = 0.18pu

Ve, = 345kV L0 | Ve s = 230KV L0° | T, = 1.6163 | T; = 1.0993

Idc,order =2kA Yorder = 15° Qp = 15° Q; = 141.8°

DC Line Data

Rge =50 | Ly = 1.1963H | C = 26uF

HVDC Controller Data

Kp, =1.0989 | K, =91.575 | Kp; = 0.7506 | K; = 18.3824

Phase Lock Oscillators

Kppr =10 | Kipr =50 | Kpp; =10 | K;p; = 50

All the AC filters and the line impedances are kept as in [27].
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A.2 Multi-in-feed HVDC Test System

The test system is shown in Figure 2.14 of Chapter 2.

A.2.1 AC voltage Sources

Sources were kept at the following values.

Source | Voltage (kV) | Angle (Deg.)

S1 & S3 314.14 11.4

54 211.60 0.0

A.2.2 HVDC systems

HVDC1 and HVDC2 were at 500MW, 500kV(DC). For both of the HVDC systems,

B, =2 B; =2 T, = 1.6163
X =0.18pu | Xz = 0.18pu Ry, = 50
Lgs. =1.1963H C = 26uF T ora = 1kA

Yord = 15° Kp, = 1.0989 K =91.575

Kp; =0.7506 | Kj; = 18.3824 | Vac, = 345kV £L0°

Following quantities were individually selected for the HVDC systems.
T = 1.2094 Tis = 1.1539

Vaca1 = 253.05kV £36.18° | Ve = 241.43kV £22.99°

The PLO parameters are as in Section A.1.

All the AC filters in the system was kept as in [27]. The inductances and the
resistances in the source impedances were decreased from the original values by factor
of 1.3.

The tie line has a resistance of 2.4285¢) and an inductance of 51.347mH.
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A.2.3 Generator at S2

500MVA, 22kV generator with a 230kV /22kV transformer were included at S2 . The

transformer reactance was included in the source impedance. The generator param-

eters are given below.

Vi=105|6=4312°| P, =08 | Q;=—0.51
Lg=14 | [,=03 | I}=02 | R,=0
Ly=135| L;,=06 | L;=02 Ly =01
T,=6 | T,,=1 |T4=005| T =005
H=3 Ky=0
ACA4A exciter parameters are as follows.
Ky=30|Ts=005|Tg=10|Tc =1 T, =0.002

The governor and turbine parameters are given below.

R, = 0.04

T, = 0.05

Q=5

T, = 0.2

R, =0.8

Tpr =2

gy = 0.05

Tw=2

fp=0.02

D =05

128




APPENDIX A. TEST SYSTEMS DATA

A.3 New England 39 Bus System

A.3.1 Power Flow - AC Bus Data

Bus Voltage
Number Name Base kV Type Magnitude Angle
1 LOAD 1 345. 345 Load Bus 1.0474 1.6114
2 LOAD 2 345. 345 Load Bus 1.0487 4.2917
3 LOAD 3 345. 345 Load Bus 1.0302 1.4456
4 LOAD 4 345. 345 Load Bus 1.0039 0.4357
5 LOAD 5 345. 345 Load Bus 1.0053 1.4296
6 LOAD 6 345. 345 Load Bus 1.0077 2.0913
7 LOAD 7 345. 345 Load Bus 0.9970 -0.0819
8 LOAD 8 345. 345 Load Bus 0.9960 -0.5730
9 LOAD 9 345. 345 Load Bus 1.0282 -0.2732
10 LOAD 10 345. 345 Load Bus 1.0172 4.6144
11 LOAD 11 345. 345 Load Bus 1.0127 3.7571
12 LOAD 12 345. 345 Load Bus 1.0002 3.7979
13 LOAD 13 345. 345 Load Bus 1.0143 3.9440
14 LOAD 14 345. 345 Load Bus 1.0117 2.3858
15 LOAD 15 345. 345 Load Bus 1.0154 2.3070
16 LOAD 16 345. 345 Load Bus 1.0318 3.8559
17 LOAD 17 345. 345 Load Bus 1.0336 2.7425
18 LOAD 18 345. 345 Load Bus 1.0309 1.8201
19 LOAD 19 345. 345 Load Bus 1.0499 9.0207
20 LOAD 20 110. 110 Load Bus 0.9912 8.0288 °
21 LOAD 21 345. 345 Load Bus 1.0318 6.2629
22 LOAD 22 345. 345 Load Bus 1.0498 10.7117
23 LOAD 23 345. 345 Load Bus 1.0448 10.5134
24 LOAD 24 345. 345 Load Bus 1.0373 3.9755
25 LOAD 25 345. 345 Load Bus 1.0576 5.6819
26 LOAD 26 345. 345 Load Bus 1.0521 4.5178
27 LOAD 27 345. 345 Load Bus 1.0377 2.5488
28 LOAD 28 345. 345 Load Bus 1.0501 8.0296
29 LOAD 29 345. 345 Load Bus 1.0499 10.7889
30 GEN 30 13.8 13.8 Gen. Bus 1.0475 6.7115
31 GEN 31 13.8 13.8 Gen. Bus 0.9820 10.0327
32 GEN 32 13.8 13.8 Gen. Bus 0.9831 12.6104
33 GEN 33 13.8 13.8 Gen. Bus 0.9972 14.2381
34 GEN 34 13.8 13.8 Gen. Bus 1.0123 13.2184
35 GEN 35 13.8 13.8 Gen. Bus 1.0493 15.6735
36 GEN 36 13.8 13.8 Gen. Bus 1.0635 18.3663
37 GEN 37 13.8 13.8 Gen. Bus 1.0278 12.4663
38 GEN 38 13.8 13.8 Gen. Bus 1.0265 17.8522
39 GEN 39 13.8 345 Swing Bus 1.0300 0.0000
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A.3.2 Power Flow - Load Data

Bus Number MW MVAr
3 322.00 2.40
4 500.00 184.00
7 233.80 84.00
8 522.00 176.00
12 7.50 88.00
15 320.00 153.00
16 329.00 32.30
18 158.00 30.00
20 628.00 103.00
21 274.00 115.00
23 247.50 84.60
24 308.60 -92.20
25 224.00 47.20
26 139.00 17.00
27 281.00 75.50
28 206.00 27.60
29 283.50 26.90
31 9.20 4.60
39 1104.00 250.00

A.3.3 Power Flow - Generator Data

Bus Number MW MVAr
30 250.00 146.14
31 520.28 198.13
32 650.00 205.10
33 632.00 109.89
34 508.00 165.76
35 650.00 212.39
36 560.00 101.16
37 540.00 0.43
38 830.00 22.84
39 1000.52 88.21
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A.3.4 Power Flow - Line Data

From Bus To Bus Series Charging
Number Number Resistance Reactance Conductance Susceptance
1 2 0.00350 0.04110 0.00000 0.69870
1 39 0.00100 0.02500 0.00000 0.75000
2 3 0.00130 0.01510 0.00000 0.25720
2 25 0.00700 0.00860 0.00000 0.14600
3 4 0.00130 0.02130 0.00000 0.22140
3 18 0.00110 0.01330 0.00000 0.21380
4 5 0.00080 0.01280 0.00000 0.13420
4 14 0.00086 0.01290 0.00000 0.13820
5 6 0.00020 0.00260 0.00000 0.04340
5 8 0.00080 0.01120 0.00000 0.14760
6 7 0.00060 0.00920 0.00000 0.11300
6 11 0.00070 0.00820 0.00000 0.13890
7 8 0.00040 0.00460 0.00000 0.07800
8 9 0.00230 0.03630 0.00000 0.38040
9 39 0.00100 0.02500 0.00000 1.20000
10 11 0.00040 0.00430 0.00000 0.07290
10 13 0.00040 0.00430 0.00000 0.07290
13 14 0.00090 0.01010 0.00000 0.17230
14 15 0.00180 0.02170 0.00000 0.36600
15 16 0.00090 0.00940 0.00000 0.17100
16 17 0.00070 0.00890 0.00000 0.13420
16 19 0.00160 0.01950 0.00000 0.30400
16 21 0.00080 0.01350 0.00000 0.25480
16 24 0.00030 0.00590 0.00000 0.06800
17 18 0.00070 0.00820 0.00000 0.13190
17 27 0.00130 0.01730 0.00000 0.32160
21 22 0.00080 0.01400 0.00000 0.25650
22 23 0.00060 0.00960 0.00000 0.18460
23 24 0.00220 0.03500 0.00000 0.36100
25 26 0.00320 0.03230 0.00000 0.51300
26 27 0.00140 0.01470 0.00000 0.23960
26 28 0.00430 0.04740 0.00000 0.78020
26 29 0.00570 0.06250 0.00000 1.02900
28 29 0.00140 0.01510 0.00000 0.24900

Per unit values are based on 100MVA rating.
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A.3.5 Power Flow - Transformer Data

From Bus To Bus Ratio Series

Number Number From To Resistance Reactance
2 30 1.02500 1.00000 0.00000 0.01810
6 31 1.07000 1.00000 0.00000 0.02500
10 32 1.07000 1.00000 0.00000 0.02000
12 11 1.00600 1.00000 0.00160 0.04350
12 13 1.00600 1.00000 0.00160 0.04350
19 20 1.06000 1.00000 0.00070 0.01380
19 33 1.07000 1.00000 0.00070 0.01420
20 34 1.00900 1.00000 0.00090 0.01800
25 37 1.02500 1.00000 0.00060 0.02320
29 38 1.02500 1.000006 0.00080 0.01560

A.3.6 Dynamic Data - Generators

IBUS T'do T”do T'qo T”qo H D Xd Xq Xd X’q Xrd Xl MVA Rsource
30 10.20 0.02 1.50 0.02 4.20 0 1.00 | 0.69 0.31 0.30 0.20 0.13 1000 0.0010
31 6.56 0.02 1.50 0.02 3.03 0 2.95 2.82 0.70 1.67 0.53 0.35 1000 0.0010
32 5.70 0.02 1.50 0.02 3.58 o] 2.50 2.37 0.53 0.88 0.40 0.30 1000 0.0010
33 5.69 0.02 1.50 0.02 2.86 [ 2.62 2.58 0.80 1.43 0.60 0.30 1000 0.0010
34 5.40 0.02 0.44 0.02 2.60 0 6.70 | 6.20 1.32 1.66 0.99 0.54 1000 0.0010
35 7.30 0.02 0.40 0.02 3.48 0 2.54 2.41 0.50 0.81 0.38 0.22 1006 0.0010
36 5.66 0.02 1.50 0.02 2.64 0 2.95 2.92 0.90 1.67 0.68 0.32 1000 0.0010
37 6.70 0.02 0.41 0.02 2.43 [¢] 2.90 2.80 0.57 0.91 0.43 0.28 1000 0.0010
38 4.79 0.02 1.96 0.02 3.45 [} 2.11 2.05 0.57 | 0.70 0.43 0.30 1000 0.0010
39 5.70 0.02 1.50 0.02 6.13 0 1.46 1.38 0.31 0.51 0.23 0.18 1000 0.0006

A.3.7 Dynamic Data - Exciters (AC4A)

Bus Number TA TB TC KA Tr
30 0.05 10 1 6.2 0.002
31 0.06 10 1 5 0.002
32 0.06 10 1 5 0.002
33 0.02 10 1 40 0.002
34 0.02 10 1 5 0.002
35 0.02 10 1 40 0.002
36 0.02 10 1 5 0.002
37 0.02 10 1 40 0.002
39 0.06 10 1 5 0.002
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A.3.8 Dynamic Data - Turbines & Governors (HyTurl and

HyGov1l)

The Same turbine and governor data were used for all generators. The data are as

follows.

R,=004| T, =005 | Q=5 | T,=02 | R,=0.8

Tp=2 |gny=005|Ty=2]|f,=002] D=0.5
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Appendix B
AC Network Models

B.1 Linearized AC network models-An Example

The formation of the admittance matrix representation and the dynamic phasor model

of the AC network is explained using the network shown in Figure B.1.

1 R, Lz 2

Lk +jIn

Figure B.1: AC Network Example
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B.1.1 Admittance Matrix Representation

The admittances at the fundamental frequency

are considered. The 7w model is used

for the transmission lines. The relationship between the changes in current injections

at the nodes and the node voltages is given by,

AlLp gin —bin —gi2 b2
Al bu  gu —bia —g12
Alp | 792 biz  ga2 —bx
Aly —biz —g12 b2 g2
Alzp —g13 b1z —ga3  bas
| Ay | | b1z —g13 —bas —gas

In the above equation,

911 = g12 + g13

by = by + byg + 22&12 4 w0lis 513

g22 = g12 + 923

bas = big + bog + 0S12 4 wolas

933 = g13 + gos + gr3

b3z = b + baz + bpz + 20513 4 vl

where, the conductance and the susceptance

—g13 b3 AVig
—bizs —g13 AViy
—g2s b3 AVap
—bos —go3 AVyr

g3z —bs3 AVsg

bss  gs3 AVay

between node-m and node-n are given

1

by, 9mn = %{m} and bmn = %{m} respectively. ars and bL3 are

the conductance and the susceptance of the load at bus 3.
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B.1.2 Dynamic Phasor Representation

The series R-L components in the circuit shown in Figure B.1 are modeled using
equation (2.36) given in Chapter 2. There are four series R-L components (three
transmission lines and one load) and therefore 8 state variables are in the system.

The state space model is given in equation (B.2).

Alrar Alsr
Al AVELYS AVir
Alsg Alizr AVip
Al _ do AVEEY, | el AVar (B.2)
Alyg Alssp AVyr
Alss; Aly; AVsp
Alrsg Alrsr I AN |
i Alpss | ] Alpsr |

In the above equation,
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sy 0 0 0 0 0 0
—wp e g 0 0 0 0 0
0 0 e 0 0 0 0
0 0 —wp =fu= g 0 0 0
Anet1: *
0 0 0 0 =Haw 0 0
23
0 0 0 —wp ~Hme g 0
—Rp3w
0 0 0 0 0 0 ey
0 0 0 0 0 0 —wy =fmwx
| 23
and i} -
=03 0 0 0
02 0 72 0 0
=0 0 0 3 0
Eretn = ’ Z)_log ’ ’ ’ z_:;g_
0 0 2 0 32 0
0.0 0z 0 23
00 0 0 2 0
|00 0 0 0 2|

All the capacitances of the transmission lines are added together at the bus bars
to find the total capacitances at the bus bars. For example, Busl total capacitance
is the capacitances of the lines 1-2 and 1-3 (<2 + <2) connected to it. All the bus
voltages are modeled as state variables. The linearized models of the bus capacitances
are obtained using equation (2.39). The state space model of the bus voltages are

given by equation (B.3).
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AVig
AVy;
AVag
AV
AVig
AVzy

- Anet2

In the above equation,

Anet2 =

and

D net2 —

0

0

0 0 -wp 0 O

wOO 0

—wp 0 0 0 O

0 OUJO

AVigr
AVyy
AVsp
AVyr
AVsg

+ Cnet2

AVsy

0

0
0
0 0
0

3 Cnet? -
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where, C; = C‘%Qﬁ—, Cy = Q—Z%Qﬁ and Cs = ©3t%s  A]] the R-L-C values are in

pu.

The overall state space model of the AC network given in equation (B.4) is ob-

tained by combining equations (B.2) and (B.3) together.

[AX acnet] = [Aacnet] [AX acnet] + [Dacnet] [Alinj] (B.4)

[Al;n;] is the change in current injections of the dynamic devices at the bus bars.
This state space model of the network can be easily combined with the current injec-

tion models of the dynamic devices to eliminate [Al;,;] terms.
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Appendix C

Generator, Exciter And

Governor-Turbine Models

C.1 Linearized Generator Models

The conventional round rotor (6 order) and salient pole (5% order) models are used
when the admittance matrix is used to represent the AC network. Two additional
differential equations for the stator flux components in d-q axes are added to the
synchronous machine model, when the AC network is represented using a dynamic
phasor model. Therefore, an 8" order model is used for round rotor type and a 7t
order model is used for salient pole type. These linearized models are summarized in

the following sections.

C.1.1 Conventional Generator Model

The round rotor type (6™ order) generator model is formulated in the following text.
The model can be easily simplified to the salient pole model by removing the second

damper winding in the g-axis. The d-q axes are selected according to the convention
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given in [15]. The standard notations given in [15] are used. The steady state relation-

ships and other details can be found in [15]. Only the linearized model is given below.

The changes in the d-q axes currents are given by equations (C.1) and (C.2)
respectively. The currents are expressed in terms of the six state variables and the

terminal voltage (R-I components with respect to the common reference).

Atg = Kin &S + KigoAw, + Kz AP pg + Kiag AD1g + Kigs A1 + Kias ADy,

+ Kigt AV + Kigs AV (C.1)

In the above equation,

Ky = % Kigp =0
Kigg = Eﬁ% Kigq = H.z(iéze—_,{:{l-—fiﬁ)-
b - - g P

A’I:q = KiqlA(S -+ Kiquwr + Kiqu(I)fd 4 Kiq4A(I)1d + Kz‘qg,A(I)lq -+ Kiqu(I)gq

+ Ki7AVg + Kiis AV; (C.2)

In the above equation,

Raed—l—L;’eq
Kigp = LIL]+ER2 Kigz =0
_ U S .
Riss = zralferem Koot = molfigemn
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Lty L L, Ly

. P —.. i - F— . — . 9q77d

qus L1g(LY LY +R2) K"IG Log (LY LY +R2)

Koo = L] sin(8)— Rqa cos(6) Koo = — L] cos(8)+ R sin(3)
g7 = LIL7+RZ ig8 = LLI+R2

The generator state space model is given by equation (C.3). The model is given in
the form of (AX, = A, AX,+ B, AUg+E4; AVy). There are six state variables: rotor
angle(d), rotor speed (wp), d-axis field winding flux (®,), d-axis damper winding flux
(®14), g-axis first damper winding flux ($,) and g-axis second damper winding flux
(®4q) and two inputs: mechanical torque (T},,) and voltage applied to the field winding

(Efq4) in the system.

[ AG -Oa9120000_—A5—
Aw, agz1 agsr Ggoz Agoa Ggas QYo Aw,
Adyy | eg9s 0 agss agss agss agss Adgy
Adyy agar 0 agss agas agss agss Adyy
Ady, ags1 0 agss agss agss agss Ady,

| A(qu | | @961 0 age3 ages agss ages 11 Ady, |

i 0 O ] - 0 0 _
bga; O €ga1 €G22
N 0 bgs AT, N egs1 egs2 | | AVr (©3)
0 0 AEyq ega1 €ga2 AVy
0 O €951 €gs2
| 0 0 | | €961 €962 |

In the above equation,
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The parameters of the A, matrix are given by,

agiz = Wo

ago; = —Alz[zdeq —igeq + (eq + 2Roia) Kig1 + (eq + 2R41,) Kig1]
ages = *‘%

agez = if[(ed + 2Raiq) Kigs + (eq + 2R4iq) Kigs)

agos = %[(ed + 2Raiq) Kias + (eq + 2R4i4) Kiga

agos = —Alz[(ed + 2Raiq) Kigs + (eq + 2R4iq) Kigs)

agos = —%[(ed + 2Rqatq) Kigs + (eq + 2Rqi4) Kige)

ags) = —@%—LZ" id1

agss = ————woiffdf:{d[fb + 1+ Kias]
g = _WO}szddLgd [_ﬁ_g + K4
agss = —%%Kids

agse = _% id6

aga = —wo—Iz'Z—al,ﬁKidl

ag43 = —wo—iﬁﬂé[—ﬁ; + Kiq3)
agas = —%[I’l + 1 Lfd + Kigd]
agss = —%Kw

agss = wo}j—f dL“d Kigs

agsy = *ﬂ%fﬂ iql

agsz = ”w_o‘%'%KiqS

agss = “'ule;jig—q iq4

agss = —&%&[L—i; + ‘Ii‘q + KiqS]
agse = —@gzﬁ[*f;; + Kige)
ager = —wo%:fgq iql

ages = —“WOI;ZLZQ iq3
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woququ
ages = — I, iq4
. woququ 1
ages = Lag [ I1, + qu5]
_ woRagLg,r g 1
ages = — ot 1o T Toy T Kigs]

The parameters of the B, matrix are given by,

1

bgo1 = 57
_ woRyq
bg32 = IL.a

The parameters of the F, matrix are given by,
ega1 = — a5 [Ir + (ea + 2Raia) Kiar + (eq + 2Rutg) Kigr]

ega2 = — 37 U1 + (eq + 2Ruia) Kigs + (g + 2Ruiq) Kigs]

€gs1 = —w—o%%% id7
egs = —%K ids
€ga1 = —%K id7
€Ga2 = —ﬂ%ff—gé id8
€951 = —wo—?ﬂlﬂﬁ iq7
egs2 = —woilququ ig8
€961 = —% iq7
ege2 = —WO%:QLQIQ iq8

The R-I components of the output current of the generator can be expressed in
terms of the state variables and the voltage as given in equation (C.4). The current

equation is given in the form of (Al; = Cy AX, — Y, AV,).
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i, N ;
Aw,
Al _ | egm 0 cg13 cgi4 cg15 cgis | | APsq | Y9 ygr2 AVg ()
Al cga 0 cga3 cgaa cgos cgos | | APy Yga1 yg2e | | AVr
AD,,
Ady,
In the above equation,
The parameters of the Cy matrix are given by,
cgi1 = ~I; +sin(d) K;g1 + cos() Kiq1 cgi1s = sin(d) K;qz + cos() Kigs
cgia = sin(6) Kiaa + cos(0) Kiga cgis = sin(0) Kygs + cos(0) Kigs
cg16 = sin(0) Kige + cos(0) Kige cga1 = Ip — cos(0) K;q1 + sin(0) K1
cgoz = — c0s(8) Kyq3 + sin(6) Kygs cgas = — c05(0) Kiga + sin(d) Ky
cgas = — c0s(0) Kias + sin(d) Kigs cgas = — c08(6) Kias + sin(6) Kige

The parameters of the Y, matrix are given by,
Yygii = — sin(é)Kid-/ — COS(5)Kiq7 Ygio — — Sin(é)Kidg _ COS(5)Kiq8

Ygoy = COS((S)Ki(ﬁ — sin(é)Kiq7 Ygog = COS(5)Kid8 - sin(5)K2-q8

C.1.2 Generator Model Including Stator Transients

Two additional differential equations for the stator flux components in d-q axes are
added to the synchronous machine model, when the AC network is represented using

a dynamic phasor model. Therefore, an 8" order model is used for round rotor
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type and a 7" order model is used for salient pole type. The round rotor type (8t
order) generator model is formulated in the following text. The model can be easily
simplified to the salient pole model by removing the second damper winding in the
g-axis.

The changes in the d-q axes currents are given by equations (C.5) and (C.6)

respectively.

Aty = Kignn APg + Kignn AP pq + Kigsp AD14 (C.5)

In the above equation,

. _ Ladepd(Lfd+L1d) _ 1
Kiazp = LiLgLysgLlyg Ly
Lypa
Kiaaw = 7,7
Kigsy = 722
idbb — LiL1a

where, Ly,q = 1/[%1 € L_id. 4Ly L%d]

Adg = Kigey A®g + KignAP1g + KigspADoq (C.6)

In the above equation,

. _ LagLppg{Lig+Lag) 1
quﬁb - Ly LqL1qL2g I,
. — Lopg
qu7b - Lilag
. _ Lopg
Kqub - L1L2g

where, Lpp, = 1/[117 + fi‘q‘ + 311; + L%)q]

The generator state space model is given by equation (C.7). The model is given
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in the form of (AX, = Ay, AX,+ B, AU, + E, AV,). There are eight state variables:
rotor angle(d), rotor speed (wp), d-axis stator winding flux (®4), d-axis field winding
flux (®4), d-axis damper winding flux (®44), g-axis stator winding fux (®,), g-axis
first damper winding flux (®1,) and g-axis second damper winding flux (®,,) and two

inputs: mechanical torque (T;,) and voltage applied to the field winding (FEy,) in the

system.
A 0 agy 0 0 O O 0 O AS
Aw, 0 agas agess agaas agoss agaes agars agass Aw,
Ad, agsiy agsas agssy agaaw agssh agses O 0 Ady
Adyy _ 0 O agspagapagsss 0 0 O ADsq N
Adyy 0 0 agsspagssagsss, 0 0 0O Adyy
Ad, ageib agezs agess 0 0 agess agems agess Ad,
Ady, 0 0 0 0 0 agm agrm agmss | | Ay,
| Ay | | 0 0 0 0 0 agse agsn agss | | Ady |
0 0 0 0
bgay 0 0 0
0 O €931b €932b
0 bgsop AT, N 0 0 AVg )
0 0 ||AB. 0 0 ||aw
0 0 €961b €J62b
0 0 0 0
0 0 0 0

In the above equation,
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The parameters of the A, matrix are given by,

agios = Wy agazy = —%

agass = 37| —tq + PgKias) agoas = 77| PqKias]

agasy = 57| P Kiasy) agoss = — 37| —ta + PaKigep)

agory = — 27| PaKigr) agasy = — 37 [PaKigs)

ags1p = Woeq agsg = wod,

agssy = Wolle Kigzp agsa = wWolly Kiap

agssp = wo e Kigsp agsey = Wo

agasp = w———ogf zf:pd agasy = —w———Ojof”’ i+ oo+ ]
agasy = —"—wOL}ZdLﬁZPd agssp = w———of:ZILdppd

agsap = wﬁ__ﬁ;di ’;”d agssp = —w————ORLl'lif””d [%l + Ltd ﬁ;]
ageiy = —Woeq agezn = —woPqy

agesp, = —Wwp agees = wWolla Kigep

agers = wolta Kigmp agesy = wolta Kigsp

agrep = % agrre = _@%ﬂ[% fla_q + L%q]
agrsy = ——w(ﬁr}i’:’q agsey = *—*woﬁfﬁ:pq

agsry = ——woﬁji’;pq agssp = —‘“——WOREZ?M b L_t; L%q]
The parameters of the B, matrix are given by,

bgate = 5 bz = %‘f‘i

The parameters of the £, matrix are given by,

ega1 = wosin(d) eg3os = —wp Cos(d)

ege1 = wp cos(d) egs2 = wp sin(d)
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The R-I components of the output current of the generator can be expressed in
terms of the state variables as given in equation (C.8). The current equation is given

in the form of (Al, = Cy AX)).

Ad
Aw,
Ady
Alg cgi 0 cgise cgian cgise cgiep cqimy cisy | | APsqa
Al cga1b O cgosp Cgaap Cgasp Cgoen Cgamy Casy | | APig
AD,
Ady,

A(I)Qq

In the above equation,

The parameters of the Cy matrix are given by,

cgip = — 1y cg1zp = sin(6) Kiazp
cg1ap = sin(0) Kiqap cgise = sin(0) Kiasp
cgie = c0s(0) Kigep cg1mp = €0s(0) Kigrp

cgisp = c08(6) Kigsp

cgn = Ip cgasy = — c08(0) Kiasp
cgoap = — c08(8) Kiaap cgasy = — c08(8) Kiasp
CQosh = sin(é)Kz-q% Cgorp = Sin((S)Kiqn)

Cgogy = Sin(é) King
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C.2 Linearized Exciter Model (AC4A)

The alternator supplied controlled rectifier type exciter system (AC4A) given in [37]

is used in the analysis. The simplified control block diagram is shown in Figure C.1.

Avrcf

Ka
AV—>

— AEgy

1+ ST, 1+ STa

Figure C.1: AC4A exciter control block diagram (simplified as required for small
signal stability assessment)

The linearized model consists of three state variables: Field voltage (Eq), Xg1
and Xpgo. The linearized model is given in Equation (C.9) in the form of (AXe =

A. AX.+ B, AU, + E. AV,).

r ) - ~ -
AEfd acii aeyp aexs AEfd b€1
AXg | = 0 aexp aegs | | AXpr | + | beg [AVref:l
AXEg 0 0 aess AXEz 0
0 0
AVg
+| 0 o0 (C.9)
AV;
€€31 €€32

In the above equation,

The parameters of the A, matrix are given by,

1 Ka TQ
aen Ta aci2 = T, 1 TB]
KT
aeis = — .7 a2 = —7,
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1
acgy = —’TE

The parameters of the B, matrix are given by,

_ KaTe
be; = T

The parameters of the E, matrix are given by,

_ Vr
ez = TV,

b€2:L

€39 — TV

T

1
acag = _.'Tr—

Vi

where V; is the magnitude of the terminal voltage.

C.3 Linearized Governor-Turbine Model

The mechanical-hydraulic governor and the hydro turbine with non-elastic water col-

umn (without surge tank) given in [38] are used. The control block diagram is shown

in Figure C.2.

The linearized model consists of five state variables, four from the governor (X;;),

X2, X3 and Xi4) and the flow rate (q) from the turbine. The linearized model is

given in Equation (C.10) in the form of (AXT = Ar AXt+ AAr Aw, + Br AU7).

Ath atllatlg 0 at14 0

AXp ats;y 0 0 0 0
Ath = | O atsatzzs 0 0
AXyy 0 atg 0 aty O
Ag 0 0 ats3 0 atss

In the above equation,

The parameters of the Ar matrix are given by,

AXio
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Non-Elastic Water Column without Surge Tank (TUR1)

Figure C.2: Governor-turbine control block diagram (simplified as required for small
signal stability assessment)

_ 1 Ryt
atn = —--ﬁ; atlg - — TpRp
Fig = & tog =
atyg = T, ata1 = (¢
1 _ 1
atze = T; atsz = T,
= = L
___2¢* o 21 1
oss = 7,67 atss = —7. [gz — fol

where, q is the flow rate and G is the gate position (= X;3)

The contributions from the generator speed are given by parameters of AAr matrix,
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The parameters of the B, matrix are given by,

bty = 7-

The mechanical torque produced by the turbine is given in equation (C.11).

AXp
AXyo
l:ATm:‘ = {0 0 Ct3 0 Ctg,} Ath + [“DG — AC';,ZQ [q - qNL]] [Au@{l(Cll)
AXiy
Ag
In the above equation,
cty = ~2—§—;-;L2[q —qni] cts = £513¢° — 2qn1q]

where, gy is the no-load flow rate of the turbine.

C.4 State Space Generator Model With Exciter And Gover-

nor

The linearized generator model is combined with the exciter and governor models. In

summery, the generator model can be written as,

AX, = A, AX,+ B, AU, + E, AV, (C.12)

Al =C, AX,—Y, AV, (C.13)
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This model is equivalent to the conventional generator model given by equations
(C.3) and (C.4) and to the detailed generator model given by equations (C.7) and

(C.8). In the detailed model, all the elements of Y, matrix are zero.

C.4.1 Generator-Exciter Combination

The summarized exciter model can be written as,

AX, = A. AX.+ B, AV,ey + E. AV, (C.14)

This model is equivalent to the exciter model given by equation (C.9).
AFEy4, which is a state variable of the exciter model (equation (C.14)), is an input
to the generator model(equation (C.12)). Therefore, the generator and the exciter

are combined through AEy,.

C.4.2 Generator-Governor-Turbine Combination

The summarized governor-turbine model can be written as,

AXr = Ap AX7p 4+ AAr Aw, + By Aw,es (C.15)

ATm = CT AXT + CCT Awr (016)

This model is equivalent to the governor-turbine model given by equations (C.10)
and (C.11).

AT,,, which is the output of the governor-turbine model (equation (C.16)), is
an input to the generator model(equation (C.12)). Therefore equations (C.12) and

(C.16) are combined together to eliminate AT, terms.
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C.4.3 Overall State Space Model

The overall system given in equations (C.17) and (C.18) can be obtained by combining
the generator, exciter and governor-turbine modes as mentioned above. The overall
system has the exciter voltage reference (AV,es) and the governor speed reference

(Awyes) as the inputs. Ag, Bg, Fg, Cg and Y5 are the resultant matrices.

AX, AX,
. . AW'r‘ AVvR
AX,| = | Ac AX. | +| Bg + | Eg (C.17)
) i AVies AVy
AXT A)(T
AX,
. AVg
Al | = Cg AX, | = | Yo (C.18)
) AVy
AXr

C.5 Multi Mass Turbine Model

Figure C.3: Multi-mass generator-turbine system

The five-mass generator turbine system shown in Figure C.3 is used in the analysis.

The speed and the rotor angle of each mass unit are modeled as state variables. The
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dynamic equations of the rotor speed and the angle of each mass unit are given by

Equations C.19 and C.20 respectively.

2Hz sz == kHl,i(A&-H - Aéz) — ki,i—l(Aéi - Aéi—l) - Kdi Awi + AT’Z (019)

Wo

Where, k;; is the spring constant between i** mass and j** mass and so on. H;
and Ky are the inertia constant and the damping coefficient of i** mass respectively.
T is the torque generated by :** mass.

The dynamic equations of the rotor speed and the angle of each mass unit are
combined together to obtain the overall dynamic model of the entire multi-mass
system. The entire system has 10 state variables including the generator speed and

rotor angle.
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An Algorithm For Proposed
Hybrid Small Signal Model

The proposed hybrid small signal model can be added into existing small signal sta-
bility analysis programs. The flowchart is given in Figure D.1 and the procedure is

described as follows.

e The power flow data (Eg: PSS™E raw data file) and the dynamic data (dy-
namic data file) are required in conventional small signal programs to create
the linearized model of the power system. In this new technique, an additional
data file (dynamic representation file) is required to define the dynamic areas.
Bach dynamic area and the bus numbers in the dynamic area should be defined

in this file.

e The data files are read and the data are divided into dynamic area data and con-
ventional model (admittance matrix model) data. The raw data and dynamic
data files are created for each dynamic area and for the rest of the system

(conventional model).
157



APPENDIX D. ALGORITHM FOR HYBRID SMALL SIGNAL MODEL
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Figure D.1: Flowchart of proposed hybrid small signal model
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e For each dynamic area, the dynamic AC network model is created and it is
combined with the linearized dynamic models of the dynamic devices in that
area to obtain the state space model of the dynamic area (a current'injection

model to the rest of the system).

e Ior the rest of the systems, the linearized state space models of the dynamic
devices are obtained and the admittance matrix relationship of the AC network

is obtained.

e The current injection models of the dynamic areas and the dynamic devices of
the rest of the system are combined with the admittance matrix AC network
model of the rest of the system to obtain the overall state space model of the

System.

e The eigenvalues and the eigenvectors of the system state matrix are obtained
and the small signal stability of the system is analyzed. Further, the time and

frequency responses can be obtained from the state space model.
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Appendix E

Governor-Turbine Torsional

Interactions With AC Network

E.1 Test System -IEEE First Benchmark Model

The IEEE first benchmark model for the subsynchronous resonance studies is used
to analyze the torsional interactions between the generator-turbine unit and the AC
network. The test system is shown in Figure E.1. The generator and the turbine pa-
rameters are as in [39]. For the simplicity, an exciter is not included and the exciter
mass is not modeled. Under nominal conditions, the following parameters are used

for the AC network.

Generator transformer inductance, L; = 0.14pu

Transmission line resistance, R; = 0.02pu

Transmission line total inductance, L; = 0.56pu

Series compensation capacitance (value is changeable), C = 2.7pu
(Percentage compensation of the line = 66%)
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Generator with

a multi-mass turbine Infinite Bus

HP IP LPA LPB

Figure E.1: IEEE first benchmark model for subsynchronous resonance studies - fault
reactance is not included

Table E.1: Some important modes of the test system

Mode | Freq. D Major Participant
(Hz) (%)

1 16.25 | -0.11952 Gen,LPA,HP,IP,LPB (SSO)
2 25.43 | 0.00975 HP,LPB,IP,Gen,LPA (SSO)
3 32.19 | -0.000036 LPB,Gen,LPA HP (SSO)
4 47.45 | 0.0000001 IP,HP,LPA (SSO)
5 20.62 2.25 AC network
6 1.69 3.2 Generator (Electromechanical)

E.2 Small Signal Stability Model of Test System

The linearized model of the test system consists of 20 state variables: generator &
turbine - 16 state variables and AC netwotk - 4 state variables. The modes and the
modal characteristics of the system are obtained from the eigenvalue analysis of the
linearized model. Some important modes of the system are given in Table E.1.
Modes 1 to 4 are the torsional modes of the generator-turbine unit. Since the
mechanical damping of the generator-turbine unit is ignored, the modes show very low
damping. Modes 1 and 3 have slightly negative damping under the given conditions.
All the mass units participate in Mode-1, in which the generator mass is the main
participant. Mode shapes show that the generator and LPB masses oscillate against
the other three turbine masses in this mode. The HP turbine is the main participant

of Mode-2 and all other mass units also contribute to this mode. LPA and LPB
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turbines oscillate against the generator and IP and HP turbines in this mode. The
LPB turbine oscillates against the generator and LPA turbine in Mode-3. HP and
IP turbine participations in this mode are minor. Mode-4 shows the interactions of
IP and HP turbines. IP turbine oscillate against HP turbine in this mode. The LPB
turbine and the generator do not contribute to this mode. There are no significant
-participations of the state variables of the AC network in the torsional modes under
the given conditions.

Mode-5 is a network mode, in which the AC network currents and voltages par-

ticipates the most. Mode-6 is the electro mechanical mode of the system.

E.3 Generator-Turbine-AC network Torsional Interactions

The torsional interactions between the generator-turbine unit and the AC network
depend on the level of series compensation of the transmission line. In order to inves-
tigate this, the value of the series capacitor is changed such that the line compensation
varies in the range of 5% to 110%. The stability of the modes are evaluated using
small signal model derived at each compensation level. Figure E.2 shows the polar
plot of the modes obtained when the compensation level is changed. The damping
versus compensation level characteristics are shown in Figure E.3.

The frequency of the network mode (Mode-5) changes from 10Hz to 50Hz within
the range of compensation levels considered. When the line compensation is decreased
from 110%, the network mode gets close to 16 Hz and the damping of Mode-1 de-
creases. When the line compensation is 83%, Mode-1 has highest negative damping.
At this point, the frequency of the network mode is very close to the frequency of
Mode-1 (16 Hz). In contrast to Mode-1, the network mode has highest positive damp-

ing at this point. High interactions between the state variables of generator-turbine
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Figure E.2: Polar plot of the modes obtained when the compensation level is changed

unit and the state variables of the network can be observed in Mode-1 and network
mode. The damping of Mode-1 starts to increase again as the line compensation is
reduced further.

Similarly, the network mode gets close to Mode-2 (25Hz) in frequency as the line
compensation drops to 51%. At this point, Mode-2 has highest negative damping.
The damping of the mode starts to improve again as the line compensation drops
further. If the line compensation is reduced further, the damping of Mode-3 gets
worst. When the line compensation is 33%, the network mode is very close to Mode-
3 (32Hz) in frequency and the torsional mode has worst damping.

It can be evidenced in Figures E.2 and E.3 that the changes in the network do not
cause significant changes in Mode-4 (47Hz). Modal analysis shows that the generator
mass does not participate in Mode-4 and the mode can not be observed in the gen-

erator speed or any other state variable of the generator. Therefore, Mode-4 can not
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Figure E.3: Damping versus compensation level characteristics of the modes

be observed in the generator terminal or in the network. Because of this, the network
mode can not interact with Mode-4 although it is close to Mode-4 in frequency.
The results of this analysis were verified using time domain simulations obtained
using PSCAD/EMTDC. The IEEE first benchmark model available in the PSCAD/EMTDC
library was used in the simulations. Under nominal conditions (66% line compensa-
tion), the changes in the generator speed for a 5%, 100ms pulse on the generator
field voltage is shown in Figure E.4(a). Very low (-ve) damping of Mode-1 can be
observed in the speed. As the line compensation decreases, the mode becomes more
and more unstable. Figure E.4(b) shows the changes in generator speed when the
line compensation is 73%. High instability of Mode-1 can be clearly observed in the

speed. The good comparisons of the results of the small signal model with the results
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Figure E.4: Change in generator speed (in pu) for a 5%, 100ms pulse on the generator
field voltage
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of the PSCAD/EMTDC model confirm the accuracy of the linearized small signal

model used in this analysis.

E.4 Summary of Analysis

The torsional modes of the generator-turbine units may interact with some modes of
the AC network. If the network mode is close the torsional mode in frequency, the
two modes may highly interact and this may even cause the instability in the torsional
mode. In order to interact with the network, the torsional mode should be observed
at the network. If it is not so, the torsional mode does not react to the changes in
the network (or network mode).

This analysis further demonstrates the performance of the small signal stability
assessment in analyzing subsynchronous frequency torsional interactions in power
systems. The interactions can be analyzed quantitatively and the causes can be
identified accurately. The modeling techniques described in this thesis can be used

to obtain the linearized small signal model.



AC
cc
CEA
CIGRE
DAE
DC
EMT
ESCR
FACTS
HP
HVDC
IEEE
1P
LPA
LPB
PI
PLO
SSDC
SSO
SSR
SSS
STATCOM
SVC
UPFC
VO
VSC

Acronyms

Alternating Current

Constant Current controller (rectifier)

Constant Extinction Angle controller (inverter)
International Council on Large Electric Systems
Dynamic and Algebraic Equations

Direct Current

Electro Magnetic Transient

Effective Short Circuit Ratio

Flexible Alternative Current Transmission System
High Pressure (turbine)

High Voltage Direct Current,

Institution of Electrical and Electronics Engineers
Intermediate Pressure (turbine)

Low Pressure - A (turbine)

Low Pressure - B (turbine)

Proportional and Integral (controller)

Phase Lock Oscillator

SubSynchronous Damping Controller
SubSynchronous Oscillation

SubSynchronous Resonance

Small Signal Stability

Static Synchronous Compensator

Static Var Compensator

Unified Power Flow Controller

Voltage Controller (inverter)

Voltage Source Converter
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