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Abstract

Large hierarchies, such as trees or variants thereof, require complex interaction

models as they typically span beyond the available display spâce. Space-filling

visualizations, such as the lbeeMap, are well-suited for displaying large hierarchies

in limited viewing space. They are also designed to display the properties of nodes

in hierarchies in space-filiing visualizations. To browse the contents of the hierarchy,

the primary mode of interaction is by drilling-down through many successive layers.

In this thesis I introduce a distortion algorithm based on fisheye and continuous

zooming techniques for browsing and searching data in space-filling representations,

such as the T[eeMap. The motivation behind the distortion approach is for assisting

users to rapidly browse information displayed in the TbeeMap without opening

successive layers of the hierarchy. For searching tasks the distortion technique

assists users in identifying the search results even when the hierarchy is dense and

is capable of conveying importance level of search results.



Abstract

Three experiments were conducted to evaluate the new approach. In the first

experiment (N:20) the distortion approach is compared to the drill-down method.

Results show that subjects are quicker and more accurate in locating targets of

interest using the distortion method. The second experiment (N:12) evaluates the

effectiveness of the distortion technique in a task requiring context, we define as

the context browsing task. The results show that subjects are quicker and more

accurate in locating targets with the distortion technique in the context browsing

task. The results of both these experiments provide strong evidence that distortion

based techniques applied to space-filling visualization facilitates rapid browsing.

The last experiment (N:12) evaluates the effectiveness of the distortion technique

for presenting search results. The results do not show any improvement in the

distortion method over currently available techniques for presenting search results.

Keywords: browsing, searching, distortion, hierarchy navigation, focus*context,

drill-down, space-filling visualization, TleeMap, semantic zooming.
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Chapten 1

fntroduction

Information visualization consists of using computer-supported, interactive, visual

representations of abstract data to amplify cognition [6]. Visualization amplifies

cognition by organizing information and thereby reducing the amount of search

performed by the user for locating required data. Visual representations can also

amplify cognition by increasing the memory and processing resources avaiiable to

the user by off-loading internal cognitive structures onto a display. Finally, visual-

izations allow users to detect patterns and facilitate perceptual inferences.

However, as the visualization gets more complex (either by scaling it to larger

sizes of data or due to its limited representational capacity) users will typically

require more time to locate items of interest to make inferences from the display.
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This problem is compounded by the fact that the choice of visual encodings and

representations are chosen by the designer of the visualization and therefore users

do not have a significant amount of flexibility in selecting and modifying base

representations. Therefore, if items of interest are not 'immediately' perceived or

if patterns are not easily detectable in the visualization users will not invest time

to identify these.

In many cases, the data source of the information being visualized is structured.

For instance, temperature fluctuations on a given day can be structured linearly,

flight routes for an airline can be organized as a network and a library's directory

can be organized hierarchically. Hierarchical structures are widely and abundantly

used. A large quantity of data is organized hierarchically as it can simplify the

categorization of information. Hierarchicai data is typically represented in the

form of a tree structure (Figure 1.1). In a tree (also referred to as a classical or

conventional node-link tree), the elements or data points are represented as nodes

and the hierarchical parent-to-child relationships are represented as links.

A common research theme in information visualization is to find new techniques

for displaying large trees in a limited display space. As shown in figure 1.1, to locate

items of interest in a tree can be problematic. A lot of white space is introduced

as trees become wider and deeper. In order to view items of interest in the tree,
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Display area
(screen)

Links

,,\

\

Nodes

itt
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Figure 1.1: Typical hierarchical structure represented as a tree. Only part of the tree is visible

in the limited rectangular display region.

users have to use the scroll bars to move the focus from one area to another. For

large trees (which are deep and wide at the same time) this method of interaction is

inhibitive and users may not perceive patterns in the entire collection of the data.

Several techniques have been developed to represent and display large trees in

a limited display space. Space-filling techniques such as the TleeMap, is one ef-

fective approach. However, several problems arise with the standard navigation

scheme in the TleeMap. In the thesis, I introduce a distortion method for navigat-

ing and browsing data in space-filling representations. Distortion techniques have

been widely used to enhance information visualization tools. The basic concept
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behind distortion techniques is to increase the amount of space for items with in-

terest and decrease the space for items which are not of immediate interest to the

user [8]. The distortion algorithms were developed in this thesis for browsing nodes

in hierarchies, for allowing users to maintain relationships between nodes, and for

visualizing search results in space-filling representations, such as the TleeMap.

1.1 Goal of the Thesis

The goal of this thesis is to create distortion techniques for browsing node informa-

tion and for facilitating the visualization of search results in space-filling visualiza-

tions. Subgoals that follow from this are:

e to implement a distortion algorithm which can be applied to a well-known

space-filling visualization, the TbeeMap,

o to evaluate the effectiveness of the distortion algorithms.

L.2 Organization of the Thesis

The thesis is organized as follows.

Chapter 2 introduces work related to my research. It reviews techniques in the
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field of information visualization for the visualization of hierarchical and space-

filling hierarchical visualizations. Chapter 2 also discusses focus*context tech-

niques, browsing techniques applied to the TleeMap, and continuous semantic

zooming technique. All of these have inspired the idea of distortion in this research.

Finally, chapter 2 summarizes the relevant research on search results visualization.

Chapter 3 describes the distortion algorithm. The algorithm can be divided

into two parts, single node distortion (uni-distortion) and multiple node distortion

(multi-distortion). Both of these algorithms are described using pseudo-code in

detail.

Chapter 4 describes the user evaluation of the new techniques. Three exper-

iments that were designed to compare the distortion techniques to conventional

techniques are described and their results are discussed.

Chapter 5 summarizes the contribution of this thesis, and also outlines future

directions for this work.



Chapter 2

Related \Mork

This thesis builds upon principles developed in two main areas of information vi-

sualization, presentat'ion and interact'ion In this chapter I present the related

literature in both of these areas.

2.L Presentation

In information visualization, presentation is concerned with how to adequately dis-

play information such that users can immediately see patterns, structures or con-

tent. One area related to this thesis is the presentation of hierarchical structures.

This area focuses on different solutions for presenting large quantities of data into a

limited display space while showing necessary detailed information. In this section,
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I describe three areas of research which are directly related to the thesis. The first

group of research presents alternative presentation methods than the traditional

node-link tree for visualizing large hierarchical structures in a limited space. The

second set of work describes the various techniques referred to as space-filling vi-

sualizations. These techniques are also designed with the intent of showing large

hierarchies. The third category of research describes the concept of focus*context

techniques and their applications.

z.L.L Visualizing Hierarchical Structures

Hierarchical data structures are interacted with regularly. They describe the rela-

tionships among entities in organizations, in file systems, and in family genealogies.

The most common form of hierarchical representation is a node-link tree. However,

trees are difficult to browse and are not space efficient. A significant amount of

space remains unused in the background as a result of creating an adequate layout

for the nodes. Many techniques have been developed to represent and display large

trees in a limited display region [22]. Two techniques which have shown promising

results for depicting large trees in limited space are the Cone Tlees [19] and the

Hyperbolic Browser [13].
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TbeeMap

Johnson and Shneiderman [12] developed a space-filling visualization method called

the TfeeMap which can represent large hierarchical structures in a 2D rectangular

area (The algorithm of TÏeeMaps is described in appendix I). TleeMaps make effi-

cient use of the display area and provide structural information. In the TleeMap,

the display area is divided into nested rectangular regions to map an entire hier-

archy of nodes and their children. Each node uses an amount of space relative to

the weight of the item being represented in the hierarchy. Figure 2.4 (b) shows a

Figure 2'4: Tree structure (a) and its corresponding TbeeMap visualization (b). The letters are

the labels of nodes, the numbers following the letters are the weights of nodes.

t2

nl î2

gt

il

j1

q1

ol pl I

(b)

teeMap visualization which is constructed from the tree in figure 2.a @). TleeMaps
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give an integrated view of the entire hierarchy and thereby simplify the amount of

interaction required to locate items of interest in iarge hierarchies. In most cases,

TbeeMaps will help users quickly locate the requested nodes and with a glance allow

them to get related information. For instance, users can quickly locate the largest

or smallest element in a hierarchy, such as the largest or smallest file if the TreeMap

represented a file system.

TheeMaps are well-suited for revealing global patterns in the data such as large

pockets of empty space on a disk drive. However, the standard browsing mecha-

nisms provided for inspecting the data can be complex, in particular as the size of

the hierarchy grows larger. The method utilized by the TleeMap for browsing data

is through drilling down into (moving down) the hierarchy or rolling up (moving up)

to find nodes of interest. This interaction approach is very common and has been

widely established by file and directory explorers provided in most current operat-

ing systems. The typical user interaction for locating a node consists of clicking the

parent directory (or subtree) in which might reside a node of interest. The subtree

fills the entire space and the user can recursively select subtrees until reaching their

final location or node (Figure 2.5). This form of interaction is analogous to zooming

into a region of interest with each step of the zoom operation being a subtree in

the hierarchy. In general, and particularly in the context of this thesis, content

browsing refers to the task of locating specific content, such as a photograph or

13
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may take to reach the file adequately. In the drill-down approach, traversing each

successive layer requires abandoning the previous view. This can typically iead to

disorientation during navigation and reduce the amount of context available for the

task' The lack of context in browsing can negatively impact performance as the

user has to internally reorient and reestablish relations between views to determine

the group or cluster to which an element belongs to.

As an enhancement to the TreeMap, T\rro and Johnson [24] use animation to

present relative changes over a sequence of time. In their research the animation

is used to show the change of node weight such as an increase in stock price over

a fixed period of time. However, their animation is not continuous and works in

discrete steps. They also use animation to exaggerate the property of nodes. An

exponential function is applied to the nodes such that large nodes become very

large and small nodes shrink even further. The rationale for doing this is to show

more clearly the presence of large items in the hierarchy. Their technique does not

scale well to browsing or searching tasks. Furthermore, the distortion is simply

created by scaling the size of all the objects.

The navigation problems inherent in the teeMap representation, as discussed

above, will be addressed in this thesis by introducing a new distortion technique for

the TbeeMap. The next few sections discuss the research leading to the techniques

15
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taken by an item corresponds to the weight of the node (size of a file, importance,

etc.) and the color of an item corresponds to the type of a node. The authors

of Sunburst compared Sunburst to TleeMap. Their evaluation shows that users

perform similarly with both tools on small hierarchies.

In general space-filling techniques are well suited at displaying large quantities

of data in a limited display space. However, a high level of interaction is necessary

for providing the contents of the data being represented. As revealed in the images

presented in this section on space-filling visualizations, small items are difficult to

see as they are given a size proportional to the size or weight of all the elements

in the hierarchy. To identify and present details of regions that are not clearly

visible or that occupy a small amount of the display space, additional presentation

techniques have been developed. One such technique is the focus*context method.

2.L.3 Focusf Context

Focus*Context techniques have been designed for allowing the user to see details

that are in focus while maintaining context information of the global view. Gen-

erally in focus*context, the size of the items in focus increases to present enough

details, and the size of the non-focus items decreases but is still visible to show the

relevant information. Focusfcontext methods have been applied to the display of

18
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graphs [8], trees [18], and tabular data [i7].

Fisheye views [8] are a specific case of focus-lcontext techniques. They provide a

balance of local detaiis and global structure information. By using distortion, fish-

eye views increase the size of local space to present more detailed information. On

the other hand, fisheye views decrease the size of non-focal items that constitute the

context. Fisheye views are used in information visualization to display large infor-

mation structures, and to facilitate users' attention to local details. Focus*Context

techniques assist users in viewing peripheral information while maintaining their

focus on the elements of interest. Examples of visualizations that have adopted fish-

eye views are the Table Lens [17], Sunburst [23], and Information-Slices [1]. Table

Lens [f 7] is an example of fisheye views applied to a tabular rectangular structure.

Sunburst [23] and Information-Slices [1] are examples of hierarchical space-fitting

visualizations using fisheye views. The TfeeMap representation being a rectangu-

lar space-filling representation can take advantage of the implementation of fisheye

views discussed here.

Table Lens

Table Lens is a technique [17] that was designed for visuaiizing large tables. Using

focus*context or fisheye techniques, Table Lens modifies the layout of a table by

dividing the table into a focal area and context area. In the focal area, Table Lens

i9
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facilitate detail viewing of substructures within a hierarchy.

In both the visualizations described above, focus is created by " fanning-out" and

enlarging the subtree of interest. Context is provided by presenting the original hi-

erarchy in the same view and by visually depicting the relation between the subtree

and its location in the original hierarchy. Radial space-filling visualizations have

the added advantage of being capable of showing the hierarchical structure more

explicitly than other space-fiiling representations such as the TbeeMap. Therefore

replicating the same type of focusfcontext techniques onto the TbeeMap may not

Iead to a visually comprehensible presentation. In addition, the use of fisheye views

in the teeMap will facilitate content browsing, which has not been implemented

in the space-fiiling techniques discussed above.

2.2 Interaction

Presentation methods and interaction techniques are highly complementary in vi-

sualization tools. Interaction allows users to find specific information of interest

that is being presented. Without interaction, users cannot take full advantage of

the presentation. Interactions come in many forms which include browsing and

searching. In this thesis, the techniques that have been developed for browsing

and searching in the TleeMap will be discussed later. A review of the research on

qD
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browsing, zooming, and searching techniques is discussed in the sections below.

2.2.I Browsing Techniques Applied to the TbeeMap

Several interaction techniques have been developed for browsing information con-

tent in the TbeeMap structure. Brushing is a technique that uses highlights to

isolate important items in a dataset. Quantum teeMap is a technique that im-

proves the classical TheeMap, and Photomesa is an application that helps users

browse and organize photos. All of them are used for browsing information content

in the teeMap.

Brushing

Brushing for example, is an effective technique for browsing information and per-

forming exploratory data analysis. In particular, brushing is a technique which

assists the user in selectively isolating subsets of data for exploration and inspec-

tion. F\ra et al. [7] designed an interactive structure-based brushing technique which

can be used to perform selection in hierarchical datasets. Structure-based brush-

ing was applied to TreeMaps to assist users in selecting clusters of interest using

a structure-based coloring [7]. Using this tool, users can specifii regions of interest

based on the location or depth of the clusters of interest in the hierarchy. By dy-
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namically selecting a bounding region in

eiements in the TteeMap get highlighted.

(based on the variable being mapped in

This technique however, does not display

25

the structure-based brush, corresponding

Using such a technique clusters of interest

the display) can be selectively inspected.

the content of nodes in the TleeMap.

Quantum TleeMap

The primary variation of the TleeMap that has facilitated direct browsing of hierar-

chical content is the Quantum TleeMap [5]. Quantum teeMaps v/ere designed to

facilitate browsing of entities in a hierarchy that consist of 'quantum' or indivisible

size, such as images. An integral component of the quantum teeMap is an ordered

layout algorithm which maximizes the amount of space available for the nodes in

the hierarchy by rearranging the displav based on the size of the elements.

Photomesa

Photomesa (Figure 2.rr) l2], an application based on the euantum TleeMap, dis-

plays a thumbnail of all images in a directory. The basic mechanism for browsing

images or other content is achieved by hovering or zooming into thumbnails of in-

terest. Smooth animation between different endpoints in the zooming operation

facilitates context viewing. However, the objects zoomed into overlap the Quan-

tum TbeeMap and occlude parts of the display region. Furthermore, to navigate





CHAPTER 2. REL.\TED WORK

with elements of heterogeneous sizes and content may not be easiiy browse-able.

An implicit requirement for the technique I introduce is to allow users to investigate

node content in the tree without any transformation on the underlying hierarchical

structure. In addition, a requirement for browsing content in the TleeMap would

be to allow access to content in the structure without the need of traversing all the

layers in the hierarchy. The solution to this restriction was derived from the results

on the work in cont'inuous semant'ic zoom,ing, described next.

2.2.2 Continuous Semantic Zoorning

The work conducted in this thesis is primarily inspired by the concept of contin-

uous semantic zooming (CSZ) developed by Schaffer et al [20]. This technique is

characterized by two distinct but interrelated components: continuous zooming [4]

and presentations of semantic content at various stages of the zoom operation. CSZ

manages a 2D display by recursively breaking it up into smaller areas. A region of

interest becomes the focus and as the continuous zoom is applied, successive layers

of a display "open up" (Figure 2.12). At each level of the operation the technique

enhances continuity through smooth transitions between views and maintains lo-

cation constraints to reduce the user's sense of spatial disorientation. The amount

of detail shown in parts of the display is controlled by pruning the display and
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the size of the region available for the display. An evaluation comparing Datelens

to common calendar based interactions reveals that continuous semantic zooming

enhances content browsing in tabular structures [3]. The distortion algorithm used

in Datelens cannot be directly applied to the TreeMap as the aiignment of cells

in the TleeMap is not symmetrical. Furthermore, the TteeMap uses a hierarchical

and not a tabular structure.

The approach I have impiemented is similar in concept to the continuous seman-

tic zoom: smooth transition between zoom levels is applied and content visibility

is increased as the nodes enlarge.

2.2.3 Search and Search Results Visualization

Another form of interaction is searching. Search techniques are widely used in many

areas of interaction such as in file system search, Internet search, etc. Generally,

search includes three steps: users submit search keywords to the system, the system

searches the data base, and finally search results are presented to the users. In

most cases, the search results are presented in plain text to the users. This requires

scanning and scrolling the results. Furthermore, users have difficulty in knowing

the priority of one result and the relationship between two search results. Some

techniques such as Motion Queries [26], Wavelens [16], and Lighthouse [14], have

29





CHAPTER 2. RELATED WORK

clearly visible way is the major objective of the work in [26].

In Ware and Bobrow's solution, simple motion is used to highlight the query

results. To achieve their purpose, they demonstrate five methods which are static

highlighting and four motion hightighting methods (circular, jolt, crawl, and ex-

panding nodes). In three experiments, they record response time and âccuracy

of the participants in locating query results using the five methods. The results

suggest that querying large graphs, motion hightighting is more efficient and more

accurate than static highlighting. In this research I extend the results of Ware and

Bobrow to showing search results in the TleeMap. In particular I develop algo-

rithms to use simple motion by distorting the nodes that are relevant to the search

results.

'WaveLens

With most Internet search engines, search results are displayed as a linear list of

text. In most case, if the searching engine can return more than just a few lines of

each page which is found, users will find the particular web page easier. Typically,

users want to view enough quantities of results to compare each result in the limited

screen space. To view linear lists, scrolling is the fundamental interaction technique

available. However, scrolling can be ineffective for very large lists. Paek et at. [16]

designed a system referred to as the Wavelens to address these problems by using
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fish eyes representations.

Wavelens shows each search result in just a few numbers of lines, similar to a

normal search engine list. However, this list is compressed such that scroiling is

kept to a minimum. When the mouse cursor moves and hovers over one of the result

items, a fish eye lens is applied vertically in the page, and this result becomes the

focus of the fish eye lens. For the focused result, Wavelens fetches more samples

from the target web page and shows them on the screen and compresses other result

items to save the screen space. In addition, Wavelens magnifies the item of interest

by using a large font, and minimizes the furthest result item from the focused item

using a small font. Moving the mouse cursor over another result will change the

focus and magnify the newly selected information instead.

Paek et al. compared the Wavelens technique with normal static search results

list. Their studies show that with Wavelens, participants complete search tasks

more quickly and more accurately [16]. In my research, I wiil also apply some of

the concepts used in the Wavelens system, in particular the idea of distorting the

display to show items of relevance in the search result set.

Lighthouse

Lighthouse [1a] (Figure 2.I4) is an interface for a \Meb-based information retrieval
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the title of each result is shown. Up to 50 spheres are used and are floating in the

middle of the screen, which correspond to the search results. The structure of the

spheres are grouped and the position of each sphere represents the ranks and the

relationships of the search results. The spheres with higher ranks are closer to the

users and have larger sizes (can cover spheres with lower ranks). Two spheres that

are very similar to each other will be iocated near one another. While the mouse

cursor hovers upon a sphere, a popup window which contains a brief introduction

of the target page will appear. Thus, users can decide to click the sphere to view

the target pâge or view other spheres. Studies have shown that users are more

successful with Lighthouse than with normal text listing methods.

The concept of simpie motion as used by Ware and Bobrow [26], the fisheye

method used in Wave Lens [16], and the use of relevance order as demonstrated in

Lighthouse [14] have been adopted for displaying search results in the T]eeMap, as

discussed in Chapters 3 and 4.

34



Chapter 3

Algorithms

This chapter describes the distortion algorithm I have implemented. The distortion

algorithm modifies the sizes of the blocks for each node of interest (target node) and

its neighbours dynamically. The distortion algorithm is composed of computing

neighbours, changing node size, and distorting nodes. I applied the distortion

algorithm on browsing single node (uni-distortion) and representing multiple search

results (multi-distortion).

3.1 {.Ini-Distortion Technique

To facilitate rapid browsing of node contents within a space-filling representa-

tion of hierarchies, such as the TleeMap, I designed algorithms that apply the
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zooming [20] where additional information is provided as the user magnifies the

object. This is different than regular zooming which simply magnifies the geometry

of the object. In the following sections I describe the various algorithms developed

for achieving the distortion effect. I first describe the data structures that were

necessary for the algorithms.

3.2 Data Structure

Each displayable item in the TreeMap is represented as a node in the tree. The

algorithm for displaying a TreeMap is well-known and described in [21]. Each node

must contain enough information so that it can be redrawn as needed. In addi-

tion, each node must contain additional information, which will enable detection of

neighbours and proper distortion of nodes.

We define a node to contain the following information:

s'ize (wei,ghú): indicates the size of a node. For a data file, this may be the

size of a file. For a directory, this may be the cumulative size of all the files

contained within it.

wi'dth, hei,ght: the width and height of the node when it is drawn on the

screen. These values are computed based on its size and the size of its parent

.)/
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node.

. arnount: the increment of distortion for each step.

orientati,on: this field determines whether the node is displayed horizontally

or verticaliy with respect to its siblings in the TleeMap. Nodes at the same

level have the same orientation, and the orientation alternates between levels

of the TleeMap.

c parent: this field is a pointer to the parent node.

o preuSi,bli,ng, nertS'ibl'ing: these are pointers to the node's previous and next

siblings. A node's previous sibling is the sibling that is drawn to the left of it,

if the orientation is horizontal and is the sibling that is drawn above it, if the

orientation is vertical. A node's next sibling is the sibling that is drawn to

the right of it, if the orientation is horizontal and is the sibling that is drawn

below it, if the orientation is vertical.

o chi,ldren: this is an array of pointers to each of its children.

ø leftNei,ghbour: this pointer is set to its left sibling (in the TleeMap) which

contains the node of interest, if this is the "right-neighbour" of the node of

interest. otherwise it is set to NULL. The rightNe,ighbour, topNei,ghbour,

bottomNei,ghbour member variables are defined in a similar mânner. This
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variable is described in more detail in the next section.

In addition to the data structure for a node, there are several other important

data items in the distortion algorithm. The root of the tree is denoted by ROOT.

The constant MIN-SIZE will denote the smallest width or height that a node can

shrink to. The constant MAX-SIZE denotes the largest width or height that a

node can grow to. Finally, we have four global variables gLeftNeighbour, gfu'ight-

Nei,ghbour, gTopNei,ghbour, gBottomNei,ghbour which denote the lefb, right, top and

bottom neighbours of the node of interest. These four variables represent the nodes

that will shrink to make room for the node of interest.

3.3 Computing Neighbours

When a node A has been selected as the "node of interest", that is, the node that is

to be distorted, the first step of the distortion process is to compute the neighbours

of A. A ne'ighbour of a node A is any other node B such that:

1. A and B have overlapping borders in the TleeMap,

2. B is not an ancestor of A, and

3. B is as near the root node as possible.
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Suppose A has a left-nei,ghbour B; that is, B is a neighbour of A where B's right

border and A's lefb border intersect. F\rrthermore, suppose C is some other node

where C's right border and A's left border intersect and C is not an ancestor of A.

Then, by the above definition, it can easily be seen C must be an ancestor of B.

This is similarly true for the ri.ght-nei,ghbour, top-nei,ghbour and bottom-nei,ghbour

of A, which are defined similarly as lefb-neighbour. Thus, using this definition,

any node A has at most one left-neighbour, r,ight-ne,ighbour, top-nei,ghbour, and,

bottom-ne'ighbour.

Suppose that B is the left-neighbour of A, it is useful to keep track of the

ancestor C of A such that B and C are at the same level in the tree, which is stored

in B.ri'ghtNe'ighbour. Clearly, B and C are siblings. This information is useful when

applying the distortion algorithm, which is explained below. It is easy to see that

C must be B.nertSi,bli,ng. Note that it is possible for A and B to be at the same

level, in which case C is A, as B.nertSi.bl'ing is A. Similarly, we can define the right-

neighbour, top-neighbour and bottom-neighbour. It should be noted that the four

neighbours of a node A must be distinct and it is possible for node A to not have

a neighbour.
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3.3.1 Compute Left Neighbour

Algorithm 1 computes the left-neighbour of a node A. Since the left-neighbour of

A is to the lefb of A, we check to see if. A.PreuSibling is NULL only when the

orientation is horizontal.

Algorithm 1 ComputeleftNeighbour(A)

4T

ifA+ROOTthen
if A.ori,entat'ion : HORI Z and A.PreuSi,bli,ng + NU LL then

Le f t N eig hbour t- A. Pr eu S ibli,ng

Le f t N ei,ghbour. Ri,g ht N ei,ghbour *- A
r eturn( L e f t N ei g hb our)

else

return(ComputelefbNeighbour(-4 .par ent))

end if
else

LeftNei,ghbour <- NULL

r etur n( L e f t N ei, g hb our)

end if

When ComputeLeftNei,ghbour is called with the "node of interest", sây A, the

algorithm will determine its lefb-neighbour B such that A's left border intersects B's

right border. The routine will return B, and B.Ri,ghtNei,ghbour is set to B.NertSi.bli,ng,

which is A, if A and B are at the same level, or else an ancestor of A.
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3.3.2 Compute Right Neighbour

Algorithm 2 computes the right-neighbour of a node A. Since the right-neighbour

of A is to the right of A, we check to see tf A.NertSibli,ng is NULL only when the

orientation is horizontal.

Algorithm 2 ComputeRightNeighbour(,4)
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if A+ ROOT then

if A.ori,entat,ion: HORIZ and A.NertSibli,ng I NULL t]nen

Ri. g ht N ei, g hbour +* A. N ert S i.bli.ng

Le f t N ei,ghbour. Ri,g ht N e,ighbour <- A

return ( Rzg ht N ei, g hb our)

else

return( ComputeRightNeighbour (A .par ent))

end if
else

Ri,ght N ei,ghbour *- N U L L

return (,Rig ht N ei. g hb our)

end if

When Computefui,ghtNei,ghbour is called with the node A, the algorithm will

determine its right-neighbour B such that A's right border intersects B's left border.

The routine will return B, and B.LeftNeighbour is set to B.PreuSi,bhing, which is A,

if A and B are at the same level, or else an ancestor of A.
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3.3.3 Compute Top Neighbour

Algorithm 3 computes the top-neighbour of a node A. Since the top-neighbour of

A is to the left of A in the tree structure, we check to see if A.PreuSi.bli,ng is NULL

only when the orientation is vertical.

Algorithm 3 ComputeTopNeighbour(,4)
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if A+ ROOT then

if A.ori,entati,on : V ERT and A.PreuSibling + NU LL then

T op N ei,g hbour <- A. Pr eu Sibling

T op N ei,g hbour. B ottomN ei,ghbour <- A

return (Top N ei, g hb our)

else

return( ComputeTopNeighbour(á .par ent))

end if
else

TopNei,ghbour <- NULL

return(Top Neighbour)

end if

When ComputeTopNei,ghbour is called with the node A, the algorithm will de-

termine its top-neighbour B such that A's top border intersects B's bottom border.

The routine will return B, and B.BottomNei,ghbour is set to B.NertSi.bli,ng, which

is A, if A and B are at the same level, or else an ancestor of A.
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3.3.4 Compute Bottom Neighbour

Algorithm 4 computes the bottom-neighbour of a node A. Since the bottom-neighbour

of A is to the right of A in the tree structure, we check to see ff A.NertSi.bti,ng is

NULL only when the orientation is vertical.

Algorithm 4 ComputeBottomNeighbour(,4)
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if A+ ROOT then

if A.ori,entat'ion:VERT and A.NertSi,bli,ng + NULL then

B ottomN eig hbour *- A. N ent Sibli.ng

B ottomN ei,ghbour.T opN ei, ghbour <- A

return ( B o tt om N ei, g hb our)

else

return( ComputeTopNeighbour (A .par ent))

end if
else

BottomN ei,ghbour ç- NU LL

return ( Bott orn N ei, g hb our)

end if

\Ä/hen ComputeTopNe'ighbour is called with the node A, the algorithm will de-

termine its bottom-neighbour B such that A's bottom border intersects B's top

border. The routine will return B, and B.TopNei,ghbour is set to B.PreuS,ibling,

which is A, if A and B are at the same level, or else an ancestor of A.
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3.4 Changing Node Size

When the size of a node is modified, this needs to be propagated to all its children.

All children nodes change their size according to the original proportion. The

recursive propagation algorithm is described in algorithm 5.

Algorithm 5 ChangeNodeSize(Á, ô)

rz <- number of children of á
oldsi,ze *- A.s'ize

A.si,ze <- A.si,ze I 6

foyi:0ton-1do
ChangeNodeSize(A.chi.ldrenli.],(oldsi,ze+ð) * A.chi,ldrenli,l.sizeloldsize)

end for

3.5 Distorting Neighbours

The following algorithm decreases the size of the neighbors on each side of the

target node.

3.5.1 Distort Left Neighbour

Algorithm 6 decreases the size of the left-neighbour of the node of interest. This

lefb-neighbour is given by gLeftNei,ghbour and initially computed by ComputeLeft-

Nei,ghbour. The algorithm decreases the size of the left-neighbour by amounú and
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increases gLeftNei,ghbour.R'ightNei,ghbour by the same amount. This ensures that

the overall size of the TþeeMap is not changed, and the node of interest's size, which

is a descendent of gLeftNeighbour.Ri,ghtNe'ighbour, is increased. If node A is in-

Algorithm 6 Distortleft,(amount)
global gLeftNeighbour {Executes on iteration of the distortion algorithm}

if gLeftNei,ghbour + NULL then

if g LeftN e'ighbour.wi,dth > M I N -W I DT H then

ChangeNo deSize(g L e f t N ei, g hb our, - amount)

C hangeNo deSize ( g L e f t N ei g hb our. Ri. g ht N e,i g hb our, am ount)

else

if gLeftNei,ghbour.PreuSi,bli,ng + NULL then

temp <- g L e f t N e'i g hbour. Ri g ht N ei, g hbour

g L e f t N ei, g hb our <- g L e f t N ei, g hb our. P r eu S i.bl,in g

g Le f t N ei, ghbour. Ri, ght N ei,ghbour <- temp

else

g L e f t N ei. g hb our <- Comput eleft Neighb olr (g L e f t N ei, g hb our)

end if
end if

end if

fluenced by algorithm 6 such that its width is less than MIN-WIDTH (since the

orientation of the node is horizontal), then propagation is applied. This involves

computing the lefb-neighbour of node A. There are two possible scenarios. If A has

a sibling to the left of it, then this sibling is now the left neighbour of the node of
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interest. Otherwise, we need to compute the lefb neighbour of this node A using

the C omputeLeft N ei,ghb our method.

3.5.2 Distort Right Neighbour

Algorithm 7 decreases the size of the right-neighbour of the node of interest.

Algorithm 7 DistortRight(amount)
global gRi,ghtNei,ghbour {Executes on iteration of the distortion algorithm}

if g&i,ghtNei,ghbour + NU LL then

if g&ightNei,ghbour.width > MIN-WIDTH then

ChangeNodeSize(gA i g ht N ei g hbour, - amount)

ChangeNodeSize (94 i g ht N ei. g hbour. Le f t N ei, g hbour, amount)

else

if g Ri, g ht N e'i g hbour. N ert S i,bli,ng + N U L L then

temp <- g Ri, g ht N ei,g hbour. Le f t N ei,ghbour

g Ri, g ht N ei, g hb our <-- g Ri. g ht N e'i g hb our . N ert S ùbl i,n g

g Ri.g ht N ei,g hbour. Le f t N eighbour <-- temp

else

g Ri g ht N ei, g hb our,- C omput eRightNei ghb our (9 r? i g ht N ei, g hb our)

end if
end if

end if

This right-neighbour is given by g&i,ghtNeighbour and initially computed by Com-

pute&i,ghtNei,ghbour. The algorithm decreases the size of the right-neighbour by
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o,n7ount and increases g&i,ghtNe'ighbour.LeftNeighbour by the same amount. This

ensures that the overall size of the TleeMap is not changed, and the node of inter-

est's size, which is a descendent of gRi,ghtNei.ghbour.LeftNe'ighbour, is increased.

If node A is influenced by algorithm 7 such that its width is less lhan MIN-WIDTH

(since the orientation of the node is horizontal), then propagation is applied. This

involves computing the right-neighbour of node A. There are two possible scenarios.

If A has a sibling to the right of it, then this sibling is now the right neighbour

of the node of interest. Otherwise, we need to compute the right neighbour of the

node A using the Computefui,ghtNei.ghbour method.

3.5.3 Distort Top Neighbour

Algorithm 8 decreases the size of the top-neighbour of the node of interest. This

top-neighbour is given by gTopNeighbour and initially computed by ComputeTop-

Nei,ghbour. The algorithm decreases the size of the top-neighbour by amounú and

increases gTopNei,ghbour.BottomNei,ghbour by the same amount. This ensures that

the overall size of the TbeeMap is not changed, and the node of interest's size, which

is a descendent of gTopNei,ghbour.BottomNe'ighbour, is increased.

If node A is influenced by algorithm 8 such that its width is less lhan MIN-HEIGHT

(since the orientation of the node is vertical), then propagation is applied. This

48



CHAPTER 3. ALGORITHMS

involves computing the top-neighbour of node A. There are two possible scenarios.

If A has a sibling to the lefb of it, then this sibling is now the top neighbour of the

node of interest. Otherwise, we need to compute the top neighbour of this node A

using the ComputeTopN ei,ghbour method.

Algorithm 8 DistortTop(amount)

49

global gTopNei,ghbour {Executes on iteration of the distortion algorithm}

if gTopNei,ghbour + NU LL then

if gTopN ei,ghbour.hei.ght > M I N -H E IG Hf then

ChangeNo deSize(gT op N ei, g hbour, - amount)

ChangeNo deSize (gT op N e'i g hb our. B ott om N e,i g hb our, arn ount)

else

if gTopNei,ghbour.PreuSi,bli,ng + NULL then

ternp <- gT op N ei, g hbour. B ottom N ei, g hbour

gT op N ei, g hb our <- gT op N ei, g hb our. P r eu S i,bli,n g

gT op N ei, g hbour. B ottom N ei, g hbolrr <- ternp

else

gT op N ei, g hb our <- ComputeTop Nei ghb our (gT op N ei, g hb our)

end if
end if

end if
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3.5.4 Distort Bottom Neighbour

Algorithm 9 decreases the size of the bottom-neighbour of the node of interest. This

bottom-neighbour is given by gBottomNe'ighbour and initially computed by Com-

puteBottomNeighbour. The algorithm decreases the size of the bottom-neighbour

Algorithm 9 DistortB ottom(amount)
global gBottomNe'ighbour {Executes on iteration of the distortion algorithm}

if gBottomNei,ghbour + NULL then

if g B ottomN ei, ghbour.hei,g ht > M I N _H E I G HT then

C h angeNo deSize (g B ott om N ei, g hb our, - am ount)

ChangeNodeSize (gB ottom N ei, g hbour.T op N ei, g hbour, amount)

else

if g B ottom N ei, g hbour. N ert S i.bli,n g I N U Lt then

temp +- g B ottomN ei,g hbour.T opN ei,g hbour

g B ottom N ei, g hb our <- g B ott om N ei, g hbour. N ert S ibli,n g

g B ottomN ei,g hbour.T op N ei,ghbour <- f,¿ynp

else

g B ott orn N ei, g hb our r- C omputeB ott omNeighb our (9 B ott om N ei, g hb our)

end if
end if

end if

by amounú and increases gBottomNe'ighbour.TopNei,ghbour by the same amount.

This ensures that the overall size of the TreeMap is not changed, and the node

of interest's size, which is a descendent of gBottomNei.ghbour.TopNei,ghbour, is in-

50



CHAPTER 3. ALGORITHMS

creased.

If node A is influenced by algorithm 9 such that its width is less than MIN-HEIGHT

(since the orientation of the node is vertical), then propagation is applied. This

involves computing the bottom-neighbour of node A. There are two possible sce-

narios. If A has a sibling to the right of it, then this sibling is now the bottom

neighbour of the node of interest. Otherwise, we need to compute the bottom

neighbour of this node A using the ComputeBottomNei.ghbour method.

3.6 uni-Distortion Algorithm

The distortion algorithm increases the size of a node of interest while shrinking its

neighbours. While the user clicks on the node of interest. The node grows as the

mouse selection is maintained and returns to its original size upon release of the

mouse selection. The contents are revealed gradually as the node grows in size.

Instead of presenting only a subset of the tree during the exploration operation (as

is the case with the drill-down), in this approach the user can continuously select

items from any location in the hierarchy and inspect their contents. Tlaversing

layers of the hierarchy is thereby removed.

Algorithm 10 describes the final distortion algorithm. It begins by determining

the neighbours of the node of interest, A. Then it decreases each of the sizes of
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these neighbours of A, while increasing the size of A which provides the distortion

effect. Then the entire TleeMap is redrawn. This process is repeated until an

external event stops the distortion process, or the node of interest being increased

has reached a fixed maximum width or height.

Algorithm 10 DistortAlgorithm(A)
global g Le f t N ei,ghbour, g Right N e'ighbour

global gT op N ei,g hbour, g B ottomN ei, ghbour

g Le f t N ei ghbour <- ComputelefbNeighbour(A)

g Ri, g ht N ei, g hb our *- Comput eRight Neighb our (,4 )

gT op N ei,ghbour *- ComputeTopNeighbour(A)

g B ott om N ei, g hb our <- ComputeBottomNeighbour (,4)

while DIST)RTING: true and A.width < MAX-sIZE and A.hei,ght <

MAX-SIZE do

Distortlefb (amount)

DistortRight(amount)

DistortTop (amount)

DistortBot tom(amount)

Redrawte eMap(ROOT)

Sleep (sleep -i,nt er u aI)

end while

Figure 3.2 below shows the effect of clicking and releasing a node. The content

appears as the node is being opened and the distortion appears gradually. The next

section describes the multi-distortion algorithm used for showing search results.
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3"7 Multi-Distortion Technique

The distortion of the nodes in the TreeMap can also be applied to the represen-

tation of search results. For instance, afber viewing the TteeMap representation,

users may typically be interested in searching for items with specific content (for

example, files with certain keywords). Typically this type of interaction will result

in obtaining a set of result items with each item having a degree of importance.

In this case, the distortion technique described earlier will be applied to multiple

nodes simultaneously. The new algorithm is a special case of the general algorithm

described earlier.

Some major differences between the multi-distortion technique and the uni-

distortion technique are as follows. In the multiple distortion algorithm, a target

node cannot become a neighbour ofother target nodes, and one node cannot become

a neighbour of two target nodes. Furthermore, additional mappings will be used in

the multiple distortion algorithm. The distortion method has one primary attribute:

the amount of distortion (amplitude). This attribute can be used to distinguish

the levels of significance for each result. Therefore, significance is assigned to the

amplitude of the distortion. For instance, a distortion with a large amplitude can

imply more important content than a distortion with a small amplitude.

The behavior of the multi-distortion algorithm is depicted in figure 3.3. Figure

54





CHAPTER 3. ALGORITHMS

3.3 (a) is the initial state of the TreeMap. The highlighted nodes are the search

result nodes which will get distorted. Figure 3.3 (b) to (d) shows that the size of

the nodes increased due to the distortion. The amplitude of the distortion indicates

the priority of the node. Larger amplitude represents higher priority. Figure 3.3

(e) to (f) show that the size of nodes decrease because of the distortion. Afber state

(f), the teeMap returns back to state (a).

3.8 Multi-Distortion Algorithm

Algorithm 11 describes the distortion of one node in the multi-distortion technique.

It starts by determining the neighbours of the node of result, A. If the neighbours

are not other result nodes or neighbours ofother result nodes, it decreases the size of

these nodes. The size of A increase at the same time to provide the distortion effect.

Then the entire TleeMap is redrawn. This process is repeated until an external

event stops the distortion process or the node has reached a fixed maximum width

or height.

Algorithm 12 describes the final multi-distortion algorithm. A1.,A2,...,A, are

search result nodes which should be distorted. Algorithm 11 is applied one by one

on these result nodes to generate multiple distortions.
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Algorithm 11 OneNodeinMultiDistortAlgorithm(A)
global g Le f t N ei,ghbour, g Rig ht N e,i ghbour

global gT op N ei, ghbour, g B ottomN ei,ghbour

bool isResult {Whether a node is a search result}

bool isNeighbour {Whether a node is a neighbour of another search result}

g L e f t N ei. g hbour *- ComputeleftNeighbour (A)

g Ri, g ht N ei, g hb our *- ComputeRightNeighbour ( A)

gT opN ei, g hbour *- ComputeTopNeighbour(A)

g B ott om N e'i g hb our *- ComputeBottomNeighb our ( A)

while DISTORTING: true and A.width < MAX-SIZE and A.hei,ght <

MAX-SIZ-Ð do

if not gLeftNei,ghbour.'isResult andnot gLeftNei,ghbour.isNei,ghbour tlten
Distortlefb (amount)

end if
if not gRi,ghtNe'ighbour.'isResult and not gRi.ghtNei,ghbour.i,sNei,ghbour then

D ist o rt Ri gYft , (am ount)

end if
if not gT op N ei, g hb our .i,s Re sult and not gT op N e,i g hb our.i,s N ei. g hb our then

DistortTop (amount)

end if
if not gBottomNei,ghbour.i,sResult and not gBottomNei,ghbour.i,sNei,ghbour

then

DistortBot tom(amount)

end if
RedrawTleeMap(ROOT)

Sleep (sl eep :int er u al)

end while
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Algorithm 12 MultiDistortAlgorithm(Á1, Ar, ..., A,-)

OneNodeinMultiDistortAlgorithm (Ár )

OneNo deinMultiDistortAlgorith^(Az)

OneNodeinMultiDistortAlgorith ^(A.)

Figure 3.4 shows the implementation results of multi-distortion algorithm. Fig-

ure 3.4 (a) shows the initial state of the TreeMap. Figure 3.4 (b) shows the TleeMap

being distorted. After the search keywords submitted, all result nodes distort in

different amplitudes according to the relevance to the search keywords. According

to the amplitude of the distortion, users can give an order of each search result.

As shown in figure 3.4 (c), the labels on the nodes indicate the importance level of

each node. The node with a label "1" has the highest importance level. Afber all

search results are identified, the TleeMap goes back to (a).





Chapter 4

Evaluation

Three experiments were designed to evaluate the effectiveness of the distortion

technique. Experiment 1 evaluate the effectiveness of the distortion technique in

browsing. Experiment 2 evaluates the effectiveness of the distortion technique in

browsing with context. Experiment 3 evaluates the effectiveness of the distortion

technique in representing search results. The following results were anticipated:

4.7 flypotheses

Flom the results of the research discussed in Chapter 2, I have formulated the

following hypotheses.
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o Hypothesis 1: Overall, users will locate the contents of interest faster via the

distortion technique versus the drill-down technique.

o Hypothesis 2: In deep hierarchical structures, users will locate the targets

faster via the distortion technique versus the drill-down technique.

c Hypothesis 3: In the distortion technique, performance will not differ between

deep and wide hierarchies.

o Hypothesis 4: The distortion technique will allow users to maintain relation-

ships among various areas of a TbeeMap more efficiently than the drill-down

technique.

o Hypothesis 5: With small results set (number of results ( 5), users will iden-

tify all search results faster via the distortion technique versus the highlight

technique.

o Hypothesis 6: With small results set (number of results ( 5), users will

identifu all search results more accurately via the distortion technique versus

the highlight technique.

o Hypothesis 7: \tVith large results set (5 < number of results < 10) using the

highlight technique, users can identify all search results faster than with the

distortion technique.
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o Hypothesis 8: With large results set (5 < number of results < 10) using the

highlight technique, users can identify all search results more accurately than

with the distortion technique.

4.2 Experiment One - Browsing

Experiment 1 was designed to compare the Drill-Down method (conventional brows-

ing approach) to the Distortion method for locating specific content (pictures) in

the teeMap. In this experiment subjects were required to locate specific images,

but alternatively I could have asked subjects to locate text file or any other type

of data.

4.2.L Method

Subjects

Twenty undergraduate students participated in the experiment and were assigned

to one of the two conditions: Distortion first or Drill-Down first. Subjects were

volunteers from a computer science course in human-computer interaction. All

were familiar with the concept of file and directory structures and had reasonable

experience performing standard file management routines. None had any previous
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experience with the TbeeMap although they were familiar with space-filling concepts

and the TreeMap representation.

Materials

Two different types of hierarchy were used for the experiment: deep and wide.

The deep hierarchy was constructed using six levels, with a maximum of three

sub-directories per node. The wide hierarchy was created with a depth of three

levels, and each node contained a maximum of six sub-directories. Both types of

hierarchies, deep and wide, contained thirty different pictures each and more than

three hundred files of various other types. To reduce learning effects, I used two

sets of hierarchies (Set A and Set B) which were created with the same hierarchical

structures but entirely different images and files. Half the participants started

the experiment with the Drill-Down method and the other half started using the

Distortion method. Afber completing the tasks in one set of hierarchies with one

method, the participants switched onto the other set of hierarchies with the other

method. All tasks in the experiment required that subjects locate a specific picture

in the T}eeMap.

Participants performed the experiment on a 17" monitor with a L024x768 res-

olution. The prototype ran over Windows XP. The task was described to them

before they began running the trials.
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Procedure

Before starting the experiment, each subject got familiarized with both

techniques. The experiment started when the participant indicated that

was comfortable using the tool and its interface.

64

browsing

he or she

In each task, I randomly chose one picture as a target picture from all thirty

pictures in a hierarchy, and displayed the target picture to the participant in a

window outside of the TleeMap. Half of the image files used as targets were small

and occupied only a small fraction of space on the display. The other half of the

image files are bigger. The subject was required to browse the hierarchy until

he/she located the target image in the TleeMap. The target image was available

throughout the task. Figure 4.1 shows the interface used in experiment 1.

Each participant performed 3 trials with wide hierarchies and 3 trials with

deep hierarchies in the following sequence w1, Dl, w2, D2, w3, and D3, where

\M represents the wide hierarchies and D represents the deep hierarchies. The

participant was free to end the trial if they could not locate the specified picture.

A time limit was not imposed for this task. I recorded whether the participant

located the correct target, whether the participant withdrew from the task, and

the time to execute the task in all conditions. In summary, the whole experiment

involved: 20 participants x 2 main conditions x 2 types of hierarchies x 3 trials :
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Of these 13 attempts to locate the target, 9 attempts resulted in giving up on the

task. AII 13 incomplete/give-up results were excluded from the data analysis.

The results are summarized in Table 4.1 (The output of the analysis is in Ap-

pendix II). Average completion times were not consistent with the normality as-

sumptions in both datasets (distortion or drill-down). The analysis was therefore

performed on the log transform of the recorded performance times. The time to

locate target data were analyzed by means of. a2 x 2 (Type of Method x Hierarchi-

cal Structure) one-way analysis of variance (ANOVA), with both Type of Method

(Drill-Down vs. Distortion) and Hierarchical Structure (Deep vs. Wide) serving as

repeated measures. An alpha level of 0.05 was used for all statistical tests. Type of

Method was found to be significant (F(1, 19) : 50.70, p < 0.001) with the Distor-

tion method group's mean task time (28.79 sec) being faster than the Drill-Down

method group's (56.06 sec). The main effect for Hierarchical Structure was not

statistically significant (F(1, 19):1.74,p:0.20). However, a significant interaction

effect was found between Type of Method and Hierarchical Structure, F(1, 19) :

5.10, P : 0.036.

In conjunction with the means, it is clear that participants compieted the task

faster overall with the Distortion method vs. the Drill-Down method, regardless

of conditions of Hierarchical Structure; this supports the first hypothesis. The
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Wide Deep

Distortion

Drill-Down

31.06 (12.68) sec

47.63 (20.97) sec

26.51 (13.02) sec

64.48 (29.69) sec

Table 4.1: Average completion times for wide and deep hierarchies with both methods (standard

deviations are in parentheses).

significant interaction tells us that the effect of Type of Method depends on the

Ievel of Hierarchical Structure. The simple effect of Method for the wide hierarchical

structure clearly indicates that a faster mean task time is achieved via the Distortion

method than the Drill-Down method (31.06 seconds vs. 47.63 seconds). The simple

effect of Method for the deep hierarchy is more pronounced (26.57 seconds vs. 64.48

seconds). The 95% confidence intervals for the simple effects of Method at both

levels of Hierarchical Structure are significantly different. Taken together with the

significant main effect found for Type of Method, there is strong support for the

second hypothesis, i.e. the Distortion Method will be faster than the Drill-Down

Method, especially in deep trees.

A close observation of mean completion times for the distortion technique re-

veals that on average subjects are faster with deep hierarchies than with wide

hierarchies. A paired sample T-Test shows this difference in means to be non-

significant (T(t,10¡:f .4I2, p:Q.174), supporting hypothesis 3, i.e. subjects will
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perform equally well on deep and wide hierarchies with the distortion technique.

\Me did not observe any differences in mean completion times for targets occu-

pying a fraction of the display space. However, in certain cases we observed that

participants ignored potential targets if these occupied a small amount of space.

Less than 3.75% of the total number of trials consisted of participants missing small

targets. In hierarchies with over thousand nodes this could potentially affect the

performance of the distortion technique. A possible solution to alleviate this prob-

lem would consist of combining the drill-down to open a node (which increases the

reserved space) followed by distortions.

The results of the first experiment suggest that the distortion technique is a

better alternative than the conventional drill-down interaction used for browsing

content in TleeMaps. However the first experiment does not test whether distortion

facilitates browsing for content within some pre-specified context. Context can

serve as an aid to browsing tasks by allowing the user to view the content of data

in neighboring cells. The second experiment, described below, is designed to test

whether context around a node can be examined more efficiently with the distortion

approach.
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four images (a, b, c and d) and four other files. We hypothesize that participants

will locate objects quicker and with fewer errors using the Distortion method over

the Drill-down method in a task requiring context (Hypothesis 4).

4.3.L Method

Subjects

Twelve graduate students participated in the experiment and were assigned to one

of the two conditions: Distortion first or Drill-Down first. Subjects had a bachelor

degree in either computer science or computer engineering. All were familiar with

the concept of file and directory structures and had reasonable experience perform-

ing standard file management routines. None had any previous experience using

the TleeMap and were not familiar with space-filling concepts.

Materials

As in experiment 1, two different types of hierarchy were used for the experiment:

deep and wide. The deep hierarchy was constructed using six levels, with a max-

imum of three sub-directories per node. The wide hierarchy was created with a

depth of three levels, and each node contained a maximum of six sub-directories.

Participants performed the experiment on a 17" monitor with resolution 1024 x 768
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and ran the prototype over Windows XP. The task was described to them before

they began the trials.

Procedure

Before starting the experiment, each subject got familiarized with both browsing

methods. Once each participant indicated that he or she was comfortable using the

tool and its interface, the experiment started.

The task, defined as the context browsing task, consisted of locating a picture

within a preconfigured context. The target image was not shown to the user as v/e

wanted the subject to identify the target based on its neighbouring images and their

interrelations. In this experiment, context is defined by the spatial arrangement

and structural relation of objects with respect to the target. Figure 6 is a sample

context for node (e) used in the experiment. This task is similar in concept to the

sub-structure identification task defined in [11]. By defining such a task, subjects

would need to visually maintain the relative positions and relationships between

files while browsing for the target image. Figure 4.3 shows the interface used in

experiment 2.

Each participant performed the task with three different deep hierarchies and

three different wide hierarchies using both methods. Each hierarchy contained
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with the other method. The participant was given the choice to withdraw from the

task when he or she could not locate the target picture. For each task the subject

was given a maximum time limit of 120 seconds.

I recorded whether the participant located the correct target, whether the par-

ticipant withdrew from the task, whether the participant exceed the time limit,

and the time to execute the task in all cases. In summary, the whole experiment

involved: 12 participants x 2main conditions x 2 types of hierarchies x 3 trials:

144 trials in totai.

4.3.2 Results and Discussion

Context was held constant across all conditions. The time to locate target data

was analyzed by means of. a 2 x 2 (Type of Method x Hierarchical Structure)

univariate analysis of variance (ANOVA), with both Typu of Method (Drill Down

vs. Distortion) and Hierarchical Structure (3 Nodes Wide vs. 6 Nodes Deep) serving

as repeated measures.

The results are summarized in Table 4.2 (The output of the analysis is in Ap-

pendix II). An alpha level of 0.05 was used for all statistical tests. The main effect

of Type of Method was found to be significant, F(1, 11) : 22.69, p : 0.01, with

the Distortion method group's mean task time (37.70 seconds) being faster than

I ,-)
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Wide Deep

Distortion

Drill-Down

34.73 (8.38) sec

53.05 (16.55) sec

40.66 (11.16) sec

59.6 (23.09) sec

Table 4.2: Average completion times for Wide and Deep hierarchies with both Methods (stan-

dard deviations are in parentheses).

the Drill-Down method group's (56.33 seconds). The main effect of Hierarchical

Structure was not statistically significant, F(1, 11) : 1.06, p : 0.33. Finally, an in-

teraction effect was not found between Typ" of Method and Hierarchical Structure,

F(1, 11) : 0.007, p : 0.935.

Out of 744trials,12 timeouts were recorded over 6 participants. All 12 timeouts

were observed when subjects were interacting with the Drill-Down technique. Fbom

the 72 timeouts, 10 were reported on the Deep hierarchy. In addition to the 12

timeouts, 3 out of the I44 trials were giveups. All three trials were on the distortion

technique. Similarly, only 2 out of 144 trials \Mere recorded as incorrectly found,

one on the Distortion and the other on the Drill-Down technique.

These results support the hypothesis in that participants will perform better

in a context browsing task with the Distortion method than with the Drill-Down

approach. The context browsing task assesses the participants' ability to maintain

relations between elements in the structure. In the Distortion approach this is fa-
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cilitated as the user, upon opening nodes, can inspect them and decide whether the

appropriate relations exist. In the Drill-Down approach participants are required

to drill-down and roll-up over several iterations to assess the existence of such re-

lationships. In the Drill-Down approached we observed that in many cases nodes

that were previously visited would be visited over again to confirm their content.

\Me believe this is one factor that caused the degradation in performance with the

Drill-Down technique.

Results from experiments 1 and 2 provide evidence that distortion can be used

to efficiently browse node content in hierarchies visualized as space-filling repre-

sentations. Experiment 3 was designed to test the effectiveness of distortion as a

method for identifying search results. For distortion to be effective, users will have

to locate search results quicker and also be able to identify which results are more

relevant. Both criteria were tested in the experiment described next.

4.4 Experiment Three Search Results Repre-

sentation

Experiment 3 was designed to compare the Distortion technique to the conventionai

method of showing search results (highlight) to indicate the level of importance of
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multiple search results in the TleeMap. Importance level can be defined by how

ofben search keywords occur in a node, or whether all search keywords occur in

a node, etc. Importance levels in the distortion technique is mapped onto the

amplitude of distortion, ie. the larger the amplitude, the higher the importance.

In the highlight approach importance level is indicated by the level of saturation.

The more saturated the node, the higher the importance.

4.4.L Method

Subjects

Twelve graduate students participated in this experiment. Half of the subjects

were assigned to one condition: Distortion first, and half of them were assigned

to the other condition: Highlight first. Subjects were from the computer science

department and engineering department and were familiar with the concept of

searching in windows file systems and searching on the Internet. All subjects were

familiar with the highlight technique and the TleeMap, but none had any experience

using distortion to represent search results in the TÌeeMap.
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Materials

One hierarchy containing one thousand files was used for this experiment. Two

different types of search keywords were used for the experiment: Iong and short.

Using the short search keywords, the search would generate 3, 4, or 5 search results

(small set). Using the long search keywords, the search would generate 6, 8, or 10

search results (large set). Six short search keywords and six long search keywords

were used in the experiment. To reduce learning effects, I used two sets of search

keywords (Set A and Set B) which would generate the same numbers of search

results but in entirely different positions. Half the subjects started the experiment

with the Distortion method and the other half started with the Highlight method.

After completing the tasks using one set of keywords, the subjects switched to use

the other set of keywords with the other method.

This experiment consisted of two types of representations: distortion and high-

light. In the distortion method, all search results were animated in and out using

distortions until the subjects identified all results or the subjects withdrew from

the task. The amplitude of the distortion represented the importance level of each

result. A result with larger amplitude has a higher importance level. In the high-

light method, all search results were filled by a color. Subjects were required to

identify all the results or could withdraw from the task. The saturation of the color
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represented the importance level of the result. A result with higher saturation has

a higher importance level.

Participants performed the experiment on a 19" monitor with resolution7024x768

and ran the prototype over Windows XP. The task was described to them before

they began the trails.

Procedure

Before starting the experiment, each subject got familiarized with both represen-

tations. Once each participant indicated that he or she was comfortable using the

tool and was familiar with the interface, the experiment started.

Each participant performed the tasks with six different short keywords and six

different long keywords using both methods. The 12 trials were executed in the

following sequence 51, 52, 53, ..., 56, Ll, L2, L3, ..., and L6, where S represents

the small sets of search results and L represents the large sets of search results.

No time limit was set for this task, and the subjects were free to finish the trial

if they could not identifii all search results. Figure 4.4 shows the interface used in

experiment 3.

I recorded the time to execute the task, the number of results identified by the

subjects, and whether the subject identified the correct importance level for each
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Small Set Large Set

Distortion

Highlight

5.01 (1.47) sec

2.43 (0.66) sec

7.06 (2.83) sec

3.30 (1.11) sec

Table 4.3: Average completion times for small and large result sets with both methods (standard

deviations are in parentheses).

recorded, i.e. to get a perfect score the participant would need to select the items

from most important to least important in the correct order.

Time to locate search items and accuracy in determining the correct order of im-

portance were analyzed using a repeated measure univariate ANOVA and a paired-

sample T Test (The output of the analysis is in Appendix II). The results are

summarized in Tables 4.3 and 4.4. Ãn alpha level of 0.05 was used for all statistical

tests. The main effect of representation type on time to complete the task and the

main effect of representation type on accuracy were significant, F(1, 11) : 44.6I,

p < 0.00i and F(1, 11) : L9.25, p : 0.001 respectively. Participants performed

significantly faster and more accurately when the search results were highlighted

than when they presented using distortion.

The main effect of the size of the search result on time to complete the task was

significant, F(l, 11) : 11.68, p < 0.001. Participants performed significantly faster

when they were presented with a small set of search results (less than five items in
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Small Set Large Set

Distortion

Highlight

4.48%

3.49%

7.42%

2.65%

Table 4.4: Average error rate for small and large result set with both methods.

the result set) than when they were presented a large set of results. However, the

main effect of the size of the search result on accuracy was not significant F(1, 11)

:3.63,p:0.083.

The participants completed the tasks faster when the search results where high-

lighted vs. distorted in a small result set (T(i, 11):6.33, p < 0.001). This does not

support Hypothesis 5 (H5). However, The analysis also suggests that participants

were not less accurate in identifying the importance order of items in the result set

with the distortion technique than with the highlight representation in the small

result set (T(1, 11):1.16, p:0.27). This does not support with Hypothesis 6

(H6) In the large result set participants performed the task significantly faster

and were more accurate when the results were highlighted than when they were

distorted (T(1, 11):5.27,p < 0.001 and T(1, 11):7.96, p < 0.001, respectively).

This is a support of hypotheses 7 and 8.

In general I observe that distorting multiple nodes simultaneously does not

provide any benefit to locating items in the TleeMap. The motivation in using an-
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imated distortions was to allow small nodes, that are not clearly visible, to become

visible. However, the results do not indicate a clear advantage. One possible reason

for poor performance with the animated distortion is the amount of distortion that

results from this technique. Furthermore, having nodes distort at different levels

of ampiitude may not enhance focus and user concentration. The distortion might

only be beneficial when one node or a few nodes (less than 3 nodes) need to be in

focus.
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Conclusion and Fbture \AÃork

Interaction is necessary for leveraging the power of visualization systems. With-

out interaction the visuaiization may oniy convey partially the information being

represented. As the structures being visualized grow in size, the interaction with

the visualization becomes more complex. A common representation technique for

displaying large hierarchies is the TleeMap. In this visualization the hierarchy oc-

cupies the entire display space and parent-child relationships are presented using

nested relationships. The conventional method of interacting with or browsing the

TleeMap consists of drilling-down and rolling-up through successive layers of the

hierarchy. The disadvantage of drill-down and roll-up operations is the amount of

time it takes the user to reach ieaf nodes of the hierarchy, where content typically

83



CHAPTER 5. CONCLUSrc¡./ A¡üD FTJTT]RE WORK

resides. Furthermore, drill-down and roll-up operations do not allow the user to

maintain context of the entire hierarchy.

In this thesis I introduce a nev/ interaction technique that facilitates brows-

ing of elements represented in the common space-filling representation known as

the TleeMap. This interaction technique is based on continuous zooming tech-

niques [20] and uses distortion to allow users to inspect the content of nodes with-

out opening successive layers of the hierarchy. I implemented the algorithms for

single node and multiple node distortions (uni-distortion and multi-distortion, re-

spectively). The uni-distortion technique assists in the task of browsing, in which

the user is locating specific content and is interested in viewing nodes one at a time.

The multi-distortion technique simultaneously distorts several nodes and produces

an animated effect. It was anticipated that such a technique would assist users

in locating different items in the hierarchical structure such as when performing

a search. The conventional TleeMap algorithm was used as the starting point for

drawing the hierarchy, which I extended to implement the distortion algorithms.

Three experiments were conducted to evaluate the effectiveness of the distortion

techniques for the TbeeMap. In the first experiment, the distortion technique \Mas

compared to the drill-down approach which is the conventionai method of browsing

the teeMap. The results of the first experiment suggest that subjects are faster
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at browsing and locating objects of interest in the distortion technique. The effect

is more pronounced when the hierarchy is several layers deep. The main reason

that users perform better at the distortion technique is due to the fact that in the

drill-down approach the user has to drill-down and roll-up during several iterations

until the node is found. In the distortion technique, the user has access to leaf

nodes from the top-most view of the hierarchy. As anticipated, the results show

that performance with the distortion technique is unaffected by the depth of the

hierarchy. However, when nodes are very small, the distortion technique may not

facilitate the browsing task. The results of this experiment show that a small

percentage of nodes were not inspected in the distortion technique due to their

limited display size. A solution to this drawback could be to combine both he drill-

down and the distortion technique into one interaction mode, where the drill-down

is first applied and then the distortion, once the node becomes clearly visible.

In the second experiment, participants were required to locate a sub-structure

of the hierarchy. The sub-structure was identifiable by the number of nodes it

contained, their relative parent-child and sibling-sibling relationships, and by their

content. By browsing the hierarchy to identify the appropriate nodes and their

contents, users lvere required to locate one node within the sub-structure. This task,

referred to as the context browsing task, was designed to evaluate the effectiveness

of the distortion technique for its ability in assisting users to maintain context while
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browsing the hierarchy. The results show that participants were quicker in locating

the objects with the distortion method than with the drill-down approach. The

results of the first two experiments corroborate with those of [20] in suggesting

that interactive techniques employing variations of continuous semantic zooming

operations are an enhancement to full zoom approaches (such as drill-down) under

certain conditions.

Finally, the third experiment evaluated the effectiveness of the multi-distortion

technique for assisting users to identify search result sets and the levei of importance

for result items in search results. The results of this experiment suggest that the

multi-distortion technique is not as effective as simple highlighting for showing

search result sets. This is primarily due to the high level of distractibility created

by the animations from the multi-distortion technique. An alternative to displaying

the distortions simultaneously would have been to show them in series starting from

the most important to the least important. This would have allowed users to locate

nodes that would have not been visible otherwise but still provide a fair indication

of items in the tree.
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5.1 Contributions

This thesis offers several contributions to the area of information visualization.

These include:

o the uni-distortion and multi-distortion algorithms. Researchers in the past

have indicated having difficulty designing the distortion algorithms on the

TleeMap due to the level of instability that could result from distributing the

weights of nodes in the hierarchy [2a] The algorithms designed in this thesis

are highly stable and robust under user interaction.

ø the second contribution is the series of evaluation and their results. Typically,

very few systems in information visualization undergo the process of controlled

experiments. In this case, the technique could have been easily evaluated

since the TleeMap was created with conventional browsing techniques which

assisted as controls for the experiment.

o a final contribution is the context browsing task for testing the interaction's

capacity for allowing focus*context browsing.
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5.2 Future Work

I conclude by proposing several lines of research and applications of the distortion

technique for future endeavors. The first line of work could investigate the applica-

tion of the distortion technique to current file browsing systems. Recent work has

shown progress in this area [15], and the distortion technique may prove beneficial

in such systems. Prototypes are necessary in order to establish the best mode of

interaction for such systems.

The TleeMap can be universally used for browsing many forms of hierarchies

and on different platforms. One platform that can take advantage of the TleeMap

and the distortion methods introduced in this thesis is handheld systems, such as

PDAs. Due to the physical characteristics and limitations of handheld devices,

PDAs do not have large display spaces. For multi-tasking systems where users

have to switch between windows frequently, the distortion technique may provide

a good alternative. Multiple windows could reside in the TleeMap and. users can

simply distort the nodes for opening those windows most required. For example,

in figure 5.1, users of the PDA need to compare two pictures and read a comment

of one picture simultaneously. In this case, the users can click on the picture to

enlarge it while reading the comments of the picture. The user also can enlarge

these two pictures to compare them in detail. The users can also open more files if
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CHAPTER 5. CONCLUSIO¡,T A¡.ID FUTURE WORK

they need to execute more tasks.

Finally, the distortion technique may be applicable for viewing web pages that

are classified hierarchically. The central question then would consist of determining

whether the distortion technique, which allows focusfcontext interaction facilitate

web browsing while reducing the amount of disorientation that typically results

from browsing multiple pages in a given browsing session.

All of the above lines of research would necessitate further implementation on

the distortion technique and well-designed studies to evaluate the effectiveness of

the resulting systems.
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Appendix I TreeMap Algorithm lL2l
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DrawTrea() Ihe node gefs a rr¡essage to dtaw itseil
{ doneSize.0:

Painl 0isptayRactan gle(h
switch (myOrientation) {

oase HORIZONTAL:
startSide = rnyBounds.lef tt

casa VERTICAL:
startSide * ¡rryBounds.top I

l
if (myNodeTypo =r lntenral! |

ForEach (childNode) Do {
childNods->SstBounds(startside, donesize, myOrientarion); Sef chllds bounds based on hø paent partition taken g praviau*

chitdrea of parent
ohildNode->SetVisual{); S€t visua/ dsp lay propeníes (çotot. eta.)childNode->Or¡wTree0; Send chitd a draw command'

lll

SelEou ndr (s lartside. doneSize, parent0rienlalion)
I doneSize = doneSizs + mySize;

swr'tch (parenrOríenation) {
caae HOFIZONTAL;

myorientarhn * vERTtcAL¡
endSide = parentMdîh' doneSizo / parenlsize:
SêtMyRÊc(startSide + offset.

pârêntBounds.top + oflSer,
ÊarônlBou ndE.left + endSíde . offset,
pârentBou nds,bottorn . olf Set);

slartsido É pårenlBounds,lelt + endside;
case VERTICAL:

my0ríentation - HQHTZONTAL I
endSide - parentHeight ' doneSize 1pârsntsize;
SetThisReA(pârontBounds.lelt + of lSet,

startsijê + oflSet,
parenrgounds.nþht - olfset,
parontBounds.top + cndslde - oflSet),

startsidq E parentBounds.top + endside;
il

FlndPath(poinl thePoÍnt)
{ if node enclose$ lhePoinr then

foreach child of thisNode do I
path = FindPath(fteFoinr):
if lpath !- NULL)tren

return(lnsertlnUst(lhisNode, path)) ;

I
rsturn {NULL};

I

The Root node is set up prior þ the orlginal racursivø call
The porcant ol tåis nodes suÞrêa úavtn lhus lar
Thø no& sends itsell e PaÍnt fulessage
Ðacide whelher lo s/rcs ¡his node harizontdl¡y or wrt¡cally

Set stan lor horìzontal sliæs

Set san for wrtical etiæs

Set up eacù child and hava ¡t daw irsotl

How rnuch ol the parent will haw be€n ailoca.ted after thìs noda
Decice which direction parcnt¡s Ming slicad

Set dirøêtion fo slico lhr's nods lor its children
How much ol the parent will L'ávp baen slknd efter lhis nda
lef snle, Qllse¡ ænlroìs the nesting indantalion
Top
RighI
Eottom
Set star sr?e lor next child

Set direction ta slice this no& lor its chiÍdren

Lelt side
Top
Right
Bottom
Sef stsrl s¡de lor next child

Add ch¡ld 10 path

Stan Nth, thePoìnt is in this node, buÌ notin any of its child¡en
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Appendix II Analysis Results of Experiments L, 2,

and 3 in SPSS



Experlment 1 - Repated Meast¡res Output

Within€ubjects Factors

Measure: MEASURE_1

tech struct
Dependent

Variable
1 1

2

distortion_
wide
distortion_
deeo

21
2

drilldown_
wide
drilldown_
cleeo

Descriptive Statistics

Tests of Within-Subjects Effects

Mean Std. Deviation N

orstonron_wr0e
distortion_deep
drilldown_wide
drilldown deep

31.0657
26.5104
47.6323
64.4811

12.67520
13.02087
20.96507
29.68697

20
20
20
20

Measure: MEASURE_1

Source
Type lllSum
of Squares df Mean Square F Siq.

tech Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

14871.549
14871.549
14871.549
14871.549

1

1.000
1.000
1.000

14871.549
14871.549
14871.549
14871.549

50.697
50.697
50.697
50.697

.000

.000

.000

.000
Error(tech) Sphericity Assumed

Greenhouse-Geisser
Huynh-Feldt
Lower-bound

5573.463
5573.463
5573.463
5573.463

19

19.000
19.000
19.000

293.340
293.340
293.340
293.340

struct Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

755.646
755.646
755.646
755.646

1

1.000
1.000
1.000

755.646
755.646
755.646
755.646

1.740
'1.740

1.740
1.740

.203

.203

.203

.203
Error(struct) Sphericity Assumed

Greenhouse-Geisser
Huynh-Feldt
Lower-bound

8253.573
8253.573
8253.573
8253.573

19

19.000
19.000
19.000

434.399
434.399
434.399
434.399

tech " struct Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

2290.682
2290.682
2290.682
2290.682

1

1.000
1.000
1.000

2290.682
2290.682
2290.682
2290.682

5.096
5.096
5.096
5.096

.036

.036

.036

.036
Error(tech*struct) SphericityAssumed

Greenhouse-Geisser
Huynh-Feldt
Lower-bound

8540.580
8540.580
8540.580
8540.580

19
19.000
19.000
19.000

449.504
449.504
449.504
449.504

99





Mean N Std. Deviation
Std. Error

Mean
Parr orslonron_wtoe
1 distortion deep

31.6107
26.6458

20
20

13.34529
12.94921

2.98410
2.89553

Paired Samples Statistics

Paired Samples Correlations

Paired Samples Test

Paired Samples Test

N Correlation Sio.
PA|l. OrStOntOn_WtOe ü
1 distortion deep 20 .285 .223

Paired Differences

tMean Std. Deviation
Std. Error

Mean

95% Confidence lnterval
of the Difference

Lower Uooer
Hatr otstonron_wloe -
1 distortion_deep 4.96483 15.72102 3.51533 -2.39283 12.32250 1.412

df Sio. (2-tailed)

Patr drstoftron_wrde -
1 distortion deep 19 174
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Experiment2 - Repeated Measu¡'es Output

Within-Subjects Factors

Measure: MEASURE_1

tech struct
Dependent

Variable
'l

2
dist_wide
rJisf cleen

21
2

dd_wide
dd deep

Descriptive Statistics

Tests of Within-Subjects Effects

Mean Std. Deviation N

dist_wide
dist_deep
dd_wide
dd_deep

34.7348
40.6642
53.0511
59.6018

8.38170
11.15545
16.55274
23.08924

12

12

12

12

Measure: MEASURE_1

Source
Type lllSum
of Souares df Mean Square F Siq.

tech l'pnencrty Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

4163.568
4163.568
4163.568
4163.568

1

1.000
1.000
1.000

4163.568
4163.568
4163.568
4163.568

22.689
22.689
22.689
22.689

.UU1

.001

.001

.001

Erro(tech) Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

2018.560
2018.560
2018.560
2018.560

11

11.000
11.000
11.000

183.505
183.505
183.505
183.505

struct Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

467.263
467.263
467.263
467.263

1

1.000
1.000
1.000

467.263
467.263
467.263
467.263

1.062
1.062
1.062
1.062

.325

.325

.325

.325
Error(struct) Sphericity Assumed

Greenhouse-Geisser
Huynh-Feldt
Lower-bound

4838.107
4838.107
4838.1 07
4838.1 07

11

11.000
11.000
1 1.000

439.828
439.828
439.828
439.828

tech * struct Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

1.158
1.158
1.158
1.158

1

1.000

1.000
1.000

1.158
1.158
1.158
1.158

.007

.007

.007

.007

935
935
935
935

Error(tech*struct) SphericityAssumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

1830.850
1830.850
1830.850
1830.850

11

11.000
11.000
1 1.000

166.441
166.441
166.441
166.441
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Experiment 3 - General !-!near Mode!

Within-Subjects Factors

Measure: MEASURE_1

tech size
Dependent

Variable
1 1

2
dist_small
dist laroe

2 1

2
high_small
hioh laroe

Descriptive Statistics

Tests of Within-Subjects Effects

Measure:MEASURE 1

Mean Std. Deviation N

dtst_small
dist_large
high_small
high_large

5.0099
7.0649
2.4342
3.3009

1.46884
2.83065

.65572
1.10656

12

12

12

12

Source
Type lll Sum
of Souares df Mean Square F Sio.

tecn sphencrty Assumeo
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

120.577
120.577
120.577
120.577

1

1.000
1.000
1.000

120.577
120.577
120.577
120.577

44.610
44.610
44.610

U44.6 .000
.000
.000
.000

Error(tech) Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

29.732
29.732
29.732
29.732

11

11

11

11

000
000
000

2.703
2.703
2.703
2.703

size Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

25.609
25.609
25.609
25.609

1

1.000
1.000
1.000

25.609
25.609
25.609
25.609

11.682
11.682
11.682
11.682

.006

.006

.006

.006
Erro(size) Sphericity Assumed

Greenhouse-Geisser
Huynh-Feldt
Lower-bound

24.114
24.114
24.114
24.114

11

1 1.000
1 1.000
1 1.000

2.192
2.192
2.192
2.192

tech * size Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

4.236
4.236
4.236
4.236

1

1.000
1.000

1.000

4.236
4.236
4.236
4.236

3.531

3.531

3.531
3.531

.087

.087

.087

.087
Error(tech*size) SphericityAssumed

Greenhouse-Geisser
Huynh-Feldt
Lower-bound

1 3.1 96
1 3.1 96
13.196
1 3.1 96

11

1 1.000

11.000
11.000

1.200
1.200
1.200
1.200
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General l-inear Model

Within-Subjects Factors

Measure: MEASURE_1

Descriptive Statistics

Tests of Within-Subjects Effects

tech size
Dependent

Variable
1

'l

2

dist_small_
error
dist_large_
error

21
2

high_small_
error
high_large_
error

Mean Std. Deviation N

drst_small_error
dis(_large_error
high_small_error
high_large_error

.0448

.0742

.0349

.0265

.u:/4|.J3

.01548

.02476

.01846

12

12

12

12

Measure: MEASURE_1

Source
Type lll Sum
of Souares df Mean Square F Siq.

tecn upnencrry Assumeo
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

uU

.010

.010

.010

1

1.000
1.000
1.000

.010

.010

.010

.010

19.250
19.250
19.250
19.250

.001

.001

.001

.001

Error(tech) Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

.006

.006

.006

.006

11

11.000
11.000
11.000

.001

.001

.001

.001

size Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

.001

.001

.001

.001

1

1.000
1.000
1.000

.001

.001

.001

.001

3.628
3.628
3.628
3.628

.083

.083

.083

.083

Error(size) Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

.004

.004

.004

.004

11

11.000
11.000
11.000

000
000
000
000

tech * size Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

.004

.004

.004

.004

1

1.000
1.000
1.000

004
004
004
004

21.932
21.932
21.932
21.932

.001

.001

.001

.001

Error(tech*size) SphericityAssumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

.002

.002

.002

.002

11

11.000
11.000
11.000

000
000
000
000
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T-Test

Paired Samples Statistics

Paired Samples Correlations

Paired Samples Test

Mean N Std. Deviation
Std. Error

Mean
Pair
1

Pair
2

Pair
3

Pair
4

d¡st_small_t¡me
high_small_time
dist_large_time
high_large_time
dist_small_err
high_small_err
disr_large_err
high_large_err

5.0099
2.4342
7.0649
3.3009

.0448

.0349

.o742

.0265

12

12

12

12

12

12

12

12

1.46884
.65572

2.83065
1.10656
.02403
.02476
.01548
.01846

.42402

.18929

.81714

.31944

.00694

.00715

.o0447

.00533

N Correlation Sio.
j'a|r
1

Pair
2
Pair
3
Pair
4

orsl_smail_ilme at

high_small_time
dist_large_time &
high_large_time
dist_small_err &
high_small_err
dist_large_err &
hiqh_larqe_err

12

12

12

12

.469

.497

.260

.055

.124

.100

.414

.864

Paired Differences

tMean Std. Deviation
Std. Error

Mean

95% Confidence lnterval
of the Difference

Lower Uooer
r,atr
1

Pair
2
Pair
3
Pair
4

orst_smail_Irme -
high_small_time
dist_large_time -
high_large_time
dist_small_err -
high_small_err
dist_large_err -
hiqh_large_err

2.57572

3.76403

.00995

.04776

1.29759

2.47415

.02968

.02342

.37458

.71423

.00857

.00676

1.75127

2.19203

-.00890

.03288

3.40016

5.33603

.02881

.06265

6.876

5.270

1.162

7.064
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Paired Samples Test

df Siq. (2-tailed)

Pair
1

Pair
2

Pair
3
Pair
4

clist_small_trme -
high_small_time
dist_large_time -
high_large_time
dist_small_err -
high_small_err
dist_large_err -
hioh larqe err

11

11

11

11

.000

.000

.270

.000
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