
Application of Energy-Based Power

System Features for Dynamic Security

Assessment

by

Janath Chaminda Geeganage

A Thesis submitted to the Faculty of Graduate Studies of

The University of Manitoba

in partial fulfilment of the requirements of the degree of

DOCTOR OF PHILOSOPHY

The Department of Electrical and Computer Engineering

The University of Manitoba

Winnipeg, Manitoba, Canada

Copyright c© by Janath Chaminda Geeganage



Abstract

To date, the potential of on-line Dynamic Security Assessment (DSA)—to monitor,

alert, and enhance system security—is constrained by the longer computational cycle

time. Traditional techniques requiring extensive numerical computations makes it

challenging to complete the assessment within an acceptable time. Longer compu-

tational cycles produce obsolete security assessment results as the system operating

point evolves continuously. This thesis presents a DSA algorithm, based on Transient

Energy Function (TEF) method and machine learning, to enable frequent computa-

tional cycles in on-line DSA of power systems.

The use of selected terms of the TEF as pre-processed input features for machine

learning demonstrated the ability to successfully train a contingency-independent

classifier that is capable of classifying stable and unstable operating points. The net-

work is trained for current system topology and loading conditions. The classifier can

be trained using a small dataset when the TEF terms are used as input features. The

prediction accuracy of the proposed scheme was tested under the balanced and un-

balanced faults with the presence of voltage sensitive and dynamic loads for different

operating points. The test results demonstrate the potential of using the proposed

technique for power system on-line DSA. Power system devices such as HVDC and

FACTS can be included in the algorithm by incorporating the effective terms of a

corresponding TEF.

An on-line DSA system requires the integration of several functional components.

Some of these components already exist and the others are newly introduced to the
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power system. The practicality of the proposed technique in terms of a) critical data

communications aspects b) computational hardware requirements; and c) capabilities

and limitations of the tools in use was tested using an implementation of an on-line

DSA system. The test power system model was simulated using a real-time digital

simulator. The other functional units were distributed over the Local Area Network

(LAN). The implementation indicated that an acceptable computational cycle time

can be achieved using the proposed method.

In addition, the work carried out during this thesis has produced two tools that

can be used for a) web-based automated data generation for power system studies;

and b) testing of on-line DSA algorithms.
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Chapter 1

Introduction

Modern power systems are compelled to operate close to stability limits due to in-

creasing demand, competition, and social constraints on the expansion of transmission

systems. The operation of a power system with small stability margins increases the

risk of wide spread and high impact events. Recent major blackouts reported all

over the world indicated that the power interruptions resulting from power system

instabilities have a significant impact on the entire society and the economy [1–3].

To date, power systems are usually operated based on the margins obtained by

off-line studies. Most Energy Management Systems (EMSs) in control centres are

capable of performing on-line Static Security Assessment (SSA) to ensure that the

power system can withstand the set of credible contingencies. During the SSA the

postfault operating point of the power system under credible contingencies are evalu-

ated for acceptable operating conditions. The Transient Stability Assessment (TSA)

examines the dynamic behaviour of the power system for a set of probable events.

These studies require a very long time when compared to SSA. The usual practice

is to perform off-line TSA for a set of selected operating conditions. A typical study

may range from several hours to days depending on the number of operating points,

number of contingencies and the duration (simulation time) of the dynamic simula-

tions. Typically the set of operating guidelines are determined based on the results
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of these off-line TSA. Instead of relying on the off-line studies, which are usually

based on the worst case assumptions, on-line TSA attempts to determine the system

security based on the system and the operating conditions at the time of assessment

or using a most recently available system snapshot.

1.1 Real–time Dynamic Security Assessment (DSA)

The real-time TSA involves capturing the recent system snapshot and examining

the dynamic behaviour of the power system for a set of probable events. As the

system conditions evolve with time, the use of conventional TSA techniques produce

outdated assessment results due to the longer time taken for the computational cycle.

The industry accepted time for a computational cycle is about 15-30 min [4]. However,

the results of the security assessment becomes more accurate and relevant when the

computational cycle is more frequent. Further, if the actual operating conditions

and the stability margins are known, the systems can be operated beyond the worst

case operating conditions obtained using the off-line studies (i.e. closer to the known

actual stability margins at a particular time). The ability to operate closer to the

known stability margins directly contribute to the increase of revenue. For example,

if the secure transfer capabilities are known at a particular time, the maximum power

export/import can be set to maximize the revenue.

The term on-line TSA is coined for real-time/ near real-time DSA systems. Func-

tions of a typical on-line DSA system, according to [5], can be classified as follows:

• measurements

• modelling

• computation

• reporting and visualisation

• control actions; and
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• other functions

The time consuming numerical computations take place in the computation phase.

Invention of faster algorithms for the said phase has been a research topic for many

years. This thesis presents a novel approach for faster TSA to be applied for on-line

DSA based on the direct methods of stability assessment and machine learning.

1.2 Classification of power system stability and se-

curity

A typical power system stability assessment study may include several techniques in

order to assess various forms of stability.

The stability of a power system in general is defined in [6] as

the ability of an electric power system, for a given initial operating con-

dition, to regain a state of operating equilibrium after being subjected

to a physical disturbance, with most system variables bounded so that

practically the entire system remains intact.

The potential instabilities in modern power systems can be of various forms. The

accurate identification of different types of instabilities leads to broader understanding

and effective mitigation of those instabilities. Stability analysis is facilitated by the

classification of stability into appropriate categories based on a) physical nature of

resulting instability; b) the size of disturbance considered; c) the devices, processes

and the time span; and d) the most appropriate method of calculation and prediction

of stability [7].

The physical disturbances that occur in a power system can be classified as small

or large. Continuous load changes are considered as a small disturbance. The dis-

turbances such as faults in transmission lines and tripping of large generators are

considered as large disturbances. Based on the duration for such an event to result
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in a system instability, the resulting instabilities can be further classified into short

term or long term. Practically, the power system stability is assessed with respect

to a set of predefined disturbances. These scenarios are selected based on the high

probability of occurrence and their impact to the system operation. As in [6], the

power system stability can be classified into three main forms:

• Rotor angle stability: refers to the ability of synchronous machines of an inter-

connected power system to remain in synchronism after being subjected to a

disturbance

• Frequency stability: refers to the ability of a power system to maintain steady

frequency following a severe system upset resulting in a significant imbalance

between generation and load.

• Voltage stability: refers to the ability of a power system to maintain steady

voltages at all buses in the system after being subjected to a disturbance from

a given initial operating condition.

Rotor angle stability of large disturbances is studied under transient stability. The

rotor angle stability under the small disturbances are studied under small-disturbance

rotor angle stability. Similarly, voltage stability is studied for large and small magni-

tude of disturbances.

The type of stability assessment focussed in this thesis is the rotor angle stability

under large disturbances. The rotor angle variations of the post disturbed system may

result in aperiodic angular separation resulting in system instability. The angular

separation resulting in losing synchronism due to insufficient synchronising torque is

referred to as first swing instability. The study duration for first swing instability

is usually within 3 s to 5 s [8]. In addition, in large power systems the instability

may occur beyond the first swing. The accepted study duration for multi-swing

instabilities is 10 s to 20 s [4, 6, 9].
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Power system security

The power system security refers to its ability to survive from a set of credible con-

tingencies. The two phases of the stability assessment process are to:

1. check if the postfault power system settles in a stable operating point

2. check if the equipment and voltage ratings are not violated at the postfault

operating point

DSA is performed for the set of credible contingencies to see if the postfault power

system converges to a stable operating point. An operating point is said to be secure

if the system is stable under the set of probable contingencies. Otherwise, the system

is considered as insecure. SSA is performed at the postfault operating points to check

if the operating point is acceptable in terms of the second phase. SSA requires the

steady state power flow of the network. DSA, in addition, requires the dynamic data

(model data of dynamic devices), the list of contingencies, relay data (characteristics

of the protection data) and the set of variables to monitor. This study usually assumes

that the power system is in a steady state prior to the occurrence of the disturbance.

The derivation of the set of credible contingencies is influenced by the likelihood of

occurrence and the reliability criteria.

The DSA refers in this thesis includes the transient stability analysis of a particular

power system operating point subject to a contingency listed in a set of credible

contingencies. This type of study is also called TSA or transient rotor angle stability

assessment. Further, it should be noted that the DSA mentioned in this thesis does

not include the study of small-signal rotor angle stability.

1.3 Motivation

The need and the advantages of being able to accurately monitor the security of a

power system, based on the current system topology and the operating conditions,

5



have been identified. The long time taken to complete the computational phase is

the most significant limiting factor for the successful implementation of on-line DSA

systems (A detailed classification of techniques proposed in literature for this problem

has been presented in Chapter 2). The development of computationally faster and

accurate classifying algorithms enables more frequent TSA cycles and in turn leads to

successful implementations of on-line DSA systems. Accordingly, the main motivation

of this thesis is to investigate a TSA algorithm which is appropriate for on-line DSA.

A. M. Lyapunov presented a method for stability assessment of a non-linear dy-

namic system without solving differential equations [10]. Based on this approach, an

alternative method called direct method for power system TSA was initially proposed

in [11]. In [11], the stability is assessed based on the energy acquired at a particular

time which is computed using a function called an energy function. If the energy

is less than the critical energy, the system is stable and the system may be unsta-

ble otherwise– Lyapunov stability provides only the sufficient conditions for assessing

the stability [12]. The critical energy is the amount of energy that the system can

absorb without losing synchronism. Direct methods conclude the system stability

status by simulating the fault-on power system model up to the fault clearing time.

Accordingly, this method demands very less computational effort when compared to

the time domain numerical integration, which is the most accurate method of TSA,

that requires the simulation of post fault power system model for several seconds.

Researchers’ interest on direct methods decreased rapidly with the ability to perform

faster time domain simulations of power system models due to the increased com-

putational power in the modern computers. Another reason for lack of progress in

this direction was due to the fact that analytical energy functions for multi-machine

power system models with detailed device models cannot be derived [13]. Further, the

assessment accuracy obtained using the direct method of stability assessment using

simplified power system models along with simple methods of critical energy com-

putation (Potential Energy Boundary Surface (PEBS) [14]) is insufficient for DSA
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of practical power systems. Energy functions, that are the basis of stability assess-

ment in direct methods, represent the energy acquired by the generators at a given

time subsequent to a disturbance. Energy functions represent the acquired energy in

terms of physically meaningful quantities: kinetic and potential energies. Although

the classical direct methods alone do not qualify as a stand-alone TSA technique, it

was motivating to investigate if the theoretically sound information produced by the

energy functions within a very short simulation time may serve as valuable features

for machine learning based implementations towards faster TSA.

The applicability of machine learning for transient stability assessment has been

investigated in literature for DSA and for post disturbance transient stability assess-

ment and has shown promising results in recent literature [15–21]. The approaches

presented in [15–20] use databases generated off-line aiming to cover all possible oper-

ating conditions and topology changes. However, it is challenging to determine if an

initially trained network is valid to assess the stability of a particular system operating

state once the system is evolved to a different operating state or a different network

topology. On the other hand, producing a single learned network to address the en-

tire set of operating conditions of a power system is most unlikely to succeed. The

recently proposed approach in [21] recognizes the significance of frequently updating

the classification model and has made provisions to revise the decision tree in use.

Another practical difficulty in application of machine learning methods is that these

methods require large sets of data generated for training the networks. Although the

training data generation can be performed off-line using distributed processing tech-

niques the time spent on data generation process makes these techniques unattractive

for on-line DSA. Therefore, the investigation on machine learning based TSA tech-

niques that can perform accurate stability assessments using the networks trained

using smaller sized datasets is necessary in order to enable practical implementations

of on-line DSA that incorporates machine learning techniques.

It is agreed upon that the key to enable frequent computational cycles in on-line
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DSA is to investigate innovative TSA algorithms. A practical on-line DSA system is

an integration of many functional entities. Some of these entities (e.g.: EMS, existing

software tools used for off-line data generation) already exist in today’s operational

power systems. Other functional entities will be newly introduced (e.g.: compu-

tational hardware for data generation and machine learning). The implementation

requires the seamless integration of these functional units while ensuring the expected

performance. These existing entities may have inherent limitations (and/or incom-

patibilities) to introduce bottlenecks for the entire on-line DSA system. Therefore, it

is inappropriate to conclude the performance of an on-line DSA system based only on

the algorithmic performance. The most accurate way of assessing the performance

of an on-line DSA system is through the implementation. Accordingly, the need for

the design and development of an appropriate general purpose framework for testing

on-line DSA algorithms has been a motivation for this thesis. In addition, it is un-

derstood that the development of data generation algorithms for power system based

machine learning applications consumes a significant portion of time of a research or

a study. Having a ready-made and a customizable tool is an advantage. The need

for the design and development of a stand-alone tool to automate data generation for

power system stability studies has been another objective of this research.

1.4 Research Objectives

The main objective of the thesis is to propose a novel algorithm to enable frequent

computational cycles in on-line DSA by using the techniques of direct method of

stability assessment and machine learning. It is expected to investigate the ability

to utilize the advantage of direct method, which is to conclude the stability status of

the post fault system without explicit numerical integration, of stability assessment

in modern on-line DSA systems. Also, in order to make the on-line DSA systems

viable for practical implementations, it is expected to investigate the ability to train
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accurately classifying learned networks with small sized datasets.

This overall goal is to be achieved by achieving the following specific objectives:

• Study of proposed approaches for on-line DSA and their performance.

• Development of the direct method of stability assessment algorithms for a test

power system model.

• Development of a novel algorithm that uses the outcome of energy functions

computed at the fault clearing time as input features to machine learning algo-

rithms.

• Development and implementation of software algorithms to automate data gen-

eration for machine learning to enable testing of the proposed algorithm for

different power system models, operating conditions and contingencies.

• Investigation of an appropriate configuration of the above algorithm in terms

of implementation of on-line DSA.

• Development of an integrated on-line DSA framework for testing the perfor-

mance of the proposed algorithm in real-time. This is expected to resolve criti-

cal data communications aspects, identify the computational hardware require-

ments; and to identify the capabilities and limitations of the existing tools to be

used in automation. The completion of this phase involves: a) the development

of the real-time simulation model of the test power system; b) configuration of

the automated data generation software system; c) design of the distributed

processing architecture of the final implementation; d) incorporate the EMS

functionality to the real-time simulated test power system.

In addition to the core research objective, following two tools/frameworks are

expected to be designed and developed:
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• A general purpose and a stand-alone software system for automating data gen-

eration for power system transient stability studies.

• A general purpose framework for testing on-line DSA algorithms.

1.5 Thesis Overview

The rest of the thesis is organized as follows. Chapter 1 presents a classification of

techniques related to improving the computational performance of the on-line DSA

and the background theory of power system modelling for DSA. Chapter 2 presents the

relevant theory and application details of direct method for the stability assessment

of electrical power systems. Chapter 3 describes the data generation process and

the details of the design and the development of the software system for automating

the data generation. Chapter 4 presents the novel algorithm proposed for the on-line

DSA. Chapter 5 presents the details of the real-time testing of the proposed algorithm

along with the design and development details of the framework for testing on-line

DSA algorithms. Finally, Chapter 6 presents the conclusions, contributions and the

recommendations for future research.
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Chapter 2

Power System Dynamic Security

Assessment

2.1 Introduction

This chapter presents a survey of approaches presented in literature for fast TSA. Fur-

ther, the theoretical background of modelling the power system and its components

for DSA is discussed.

2.2 Techniques for fast DSA

2.2.1 Machine Learning Techniques

Machine learning applications for TSA can be for prefault security assessment sys-

tems, which is for a pre-fault system to determine the system stability state with

respect to an anticipated set of contingencies, or for a fault-on/postfault system to

predict the security status with respect to an ongoing disturbance.

The research work presented in [18] proposes the use of an ensemble learning

scheme using Extreme Learning Machines (ELMs). ELM proposes a simplified train-

ing scheme for single layer feed forward neural networks by randomly selecting inputs
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weights and biases for hidden nodes and analytically determining the output weights

via direct calculations. Based on the ELM output, the credibility of the assessment

is declared. Next, based on the comparison of the sum of the critical assessments

and a user defined threshold for the credibility evaluation, the contingency is classi-

fied as credible or incredible. The entire database of past data is used for training.

Randomly partitioned sample database is used to train a set of ELMs with randomly

selected input features, number of hidden nodes and activation functions. The can-

didate input features are P load, Q load, voltage magnitude and angle of each load

bus, P , Q generation of each generator, total P and Q loads and generation of the

entire system. The authors recommend to perform numerical integration for the con-

tingencies classified as incredible. For the IEEE 50 generator system [22], using 6345

operating points generated by varying loads in the range of 20 − 50% and and with

the randomly generated network topologies for a single contingency, the authors have

obtained accurate classification results for 93.85% of identified credible cases. Au-

thors have observed an accuracy drop when multiple contingencies are introduced.

Further, authors have proposed to use three ELMs to extend the assessment to four

contingencies. However, the decision to have three ELM ensembles is obtained by

a trial and error approach. As mentioned above, the credibility of a classification

is decided by comparing to a user specified threshold parameter and that leaves the

flexibility to the user but lack of a generalised procedure for the parameter selection

may have a significant impact on the performance.

The approach presented in [19], which is for the post fault security assessment,

uses an Artificial Neural Network (ANN) to predict the transient instabilities from

the Phasor Measurement Unit (PMU) measurements in order to initiate the remedial

actions such as load shedding, islanding, generation tripping or a combination of

these actions. For the IEEE 39 bus test power system, the authors have proposed

an ANN with two hidden layers consisting of 10 and 5 hidden nodes respectively

in layer 1 and layer 2. The inputs to the neural network is the rate of change of
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generator bus voltages and angles. Output of the network is a boolean value indicating

the instability of the post-fault system by 1 and the stability by 0. The prediction

accuracy is reported as 98%. Although it is mentioned that a 30% of the simulated

cases were used for training, the total number of simulation cases generated were not

mentioned in the paper. Further, load and generation deviations simulated during

the database generation is not indicated in the paper. Size of the training dataset and

the loading changes accommodated successfully are significant in terms of evaluating

the applicability of a proposed machine learning algorithm for the on-line security

assessments.

The application based on Support Vector Machine (SVM) for the post-fault tran-

sient stability prediction is presented in [17]. To enable the predictions for unbalanced

faults, the authors has proposed to train a SVM per phase (three SVMs for the three

phase system model). For the IEEE 39 bus test power system a SVM was trained

using 492 simulation cases generated by creating faults at every transmission line at

25%, 50% and 75% of the transmission line length. A standard fault clearing time of

5 cycles was applied to all contingencies. The above simulations were done at three

increased loading levels (5%, 7% and 10%). Over 97% accuracy was obtained by

using four consecutive samples of each generator bus voltage of the post fault system

trajectory. The method demands the time domain simulation of four cycles beyond

the fault clearance. The number of inputs to the SVM in this case is 40. The overall

prediction accuracy indicates no False Alarms (FAs) but 4.5% of False Dismissals

(FDs).

The research work presented in [23] proposes a continuation of the work presented

in [17] by using only a selected set of generator variables as the inputs to the SVM

and by using multiple SVMs to support the prediction in selected areas (named

as incredible area). Further, authors have attempted to have shorter durations for

postfault trajectory simulation. The test results are presented based on the IEEE 39

bus test power system. Number of training cases generated is 1656. Three phase to
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ground faults were created at each transmission line at three loading levels (80%, 100%

and 120%). The paper presents two schemes. In both schemes the number of inputs

can vary depending on the length of the post-fault simulation. The SVMs generated

using power imbalance or the electromagnetic power as the inputs, with a 20ms

post-fault trajectory simulation, has predicted the stability about 94% accurately

with 60 inputs to the SVM. This accuracy has increased up to 99% for a 240ms

post-fault trajectory simulation. However, in that case the number of inputs to the

SVM was 250. In the second scheme, the authors propose to have another SVM

trained using a combination of generator variables for about 60− 80ms of post-fault

trajectory. Scheme 2 uses a combination of the above mentioned two feature sets

as inputs. Therefore, the number of inputs for a SVM in scheme 2 will be doubled

as the SVM trained in scheme 1 for the same duration of the post-fault trajectory.

Authors propose to consider the vote of the scheme 2 SVM, if the scheme 1 SVM

indicates the assessment in the incredible area. As presented, the results indicates

some improvement in the classification accuracy and also there is a flexibility in

selecting the duration for the post-fault trajectory simulation. However, this method

requires a very large set of training data and a large number of inputs to the SVM

when compared to the method proposed in [17].

Machine learning techniques have captured researchers attention as a candidate

technique for faster on-line DSA. SVMs have indicated better classification accuracy

[24] over the multi-layer perceptron networks (such as ANNs). The above discussed

approaches, including [16], uses databases generated in off-line aiming to cover all the

possible operating conditions and topology changes. The application of data mining

techniques to speed up the DSA process by using the historical data from large

databases is investigated in [25] and [26]. However, it is challenging to determine if

an initially trained network is valid to assess the stability of a particular system state

once the system state is evolved to a different operating state or a different network

topology. The recently proposed approach in [21] recognizes significance of frequently
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updating the classification model and has made provisions to revise the decision tree

in use.

2.2.2 Direct Assessment Methods

The research work presented in [27] focuses on the implementation of a method named

group based Controlling Unstable Equilibrium Point (CUEP) method which is to de-

termine a common CUEP for a set of contingencies. Therefore, the time spent on

the computation of the CUEP becomes less. The authors propose to group the con-

tingencies involving geographically close events to share the same CUEP for stability

assessment calculations. This grouping has been done based on rigorous studies of nu-

merical simulations of the particular set of contingencies. The method has been used

to classify the contingencies into two categories: a) highly stable cases; and b) un-

stable/undecided cases. For the marginal stable cases identified above, the authors

propose to perform time domain stability analysis. The results are presented for a list

of 200 contingencies comprised of 2 unstable, 20 critically stable and 178 stable. The

TEPCO-BCU algorithm was able to capture the 2 unstable contingencies accurately.

An 86% of stable cases were classified as stable. The status of classification of the

marginally stable cases is not mentioned in the paper. Assuming those were identi-

fied as unstable/undecided, altogether 25 + 20 = 45 (out of a 200) cases demands for

detailed time domain stability analysis. The main advantage of the proposed method

is to have no FDs. The authors have proposed to use parallel processing in order to

speed-up the computation process. The authors have also tested the proposed scheme

for contingency classification in the PJM Interconnections’s Transient Stability Anal-

ysis and Control system. The average computational time per contingency is reported

as 1.18s on a single node computer. However, the grouping details of contingencies

list of 200 contingencies are not reported. According to this method, the number of

CUEPs to be calculated depends on the number of groups of contingencies. There-

fore, the computational complexity of the algorithm strongly depends on the number
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of contingency groups.

The Second-Kick method, based on the PEBS method, has been developed by

BC Hydro as part of it’s on-line DSA system [28]. The purpose of the method is to

find the Transient Energy Margin (TEM) of a particular contingency by calculating

the PEBS crossing point (Calculation of PEBS crossing point is explained in Section

3.5.1). First, after application of the contingency (t = tkemin1), if the minimum kinetic

energy is greater than zero, the system is unstable. If the minimum kinetic energy

is zero, the system is stable. If the system is stable at t = tkemin1, a prolonged

fault, called Second Kick, capable of making the system unstable is applied and

the simulation is continued for one time step following the fault recovery. The dot

product, as mentioned in Equation (3.31), is obtained at the second fault clearing

time. A sign change is observed if the PEBS is crossed during that time, therefore,

the exact crossing point is obtained using the interpolation, t = tPEBS. However, as

the network structure during the fault is different to the post-contingency network,

the PEBS crossing point obtained is not specific to the post-contingency network,

but, that is the upper boundary of the fault to apply. Then, a fault shorter than

tPEBS is applied and simulated until a minimum of kinetic energy, Kemin2, is reached.

A minimum of kinetic energy will be observed at the PEBS crossing point.

Time

Ke

Contingency

Second Kick

Tkemin1 Tkemin2Kerec2

Kemin2

Kerec2

Figure 2-1: Kinetic energy variations of the Second Kick method [29]

Therefore, the TEM is obtained based on the idea that it is obtained by the
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difference of the kinetic energy at the PEBS crossing, Kemin2, and the kinetic energy

injected by the Second Kick at the fault clearing time, Kerec2, along with the potential

energy change, DPE, during the Second Kick, TEM = Kerec2−Kemin2 +DPE (Figure

2-1).

As this research work is reported in 1996, the simulation times taken are not

comparable to the modern research due to the speed of the present day computers.

The authors have proposed several techniques to enhance the performance of the

Second Kick method: a) Kiana method; b) Fast Second Kick method [29]; and c) use

of ANN to predict the TEM [30].

The research work reported in [30] is an initial step towards the application of

machine learning to predict the TEM which is originally proposed to obtain using

extensive time domain simulations as mentioned above in the Second Kick method.

The authors propose to use a large number of features, about 57− 61, as the inputs

to the ANN. The TEM has been estimated with an average 5% error when compared

to the Second Kick method. The average misclassifications resulted during the esti-

mation of the TEM using the ANN is 4%, the misclassified cases were reported to

have an average of 10% error with the TEM obtained using the Second Kick method.

However, the results reported are only for the estimation of the TEM using the ANN,

not for predicting the system security state.

A method to calculate the critical energy based on the energy of a critical group

of generators is proposed in [31]. The energy function used is obtained by the first

integral of motion as mentioned in Equation (3.27). The critical group of generators

is the set of generators having a larger rotor angle than the maximum difference

between any two rotor angles at the point where the potential energy reaches to

a maximum. The authors have tested the concept for a single operating point of

IEEE 39 generator system and for a single operating point of a 50 generator system

for several contingencies and indicated that the critical clearing time obtained using

the energy of the critical group of generators are close to the value obtained using
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the numerical integration than the value obtained using the conventional individual

energy function method.

2.2.3 Functional Representation of Stability Boundary

For a power system, if a mapping function f(x) can be obtained to uniquely map

the current operating point, x, to a stability index, y, the transient stability or mar-

gin can be expressed as a non-linear function of the power system variables. This

mapping function, f(x), can not be derived using analytical methods due to the in-

volvement of large number of coupled Differential and Algebraic Equations (DAEs).

In [15], the authors have attempted an empirical approximation to f(x) using ma-

chine learning techniques along with a non-linear transformation to a higher feature

space. The significance is that a non-linear transformation is applied to the origi-

nal variables: voltage magnitudes; and phase angles, so that the transient stability

boundary is approximately linear in terms of the transformed variables. However,

the linear function obtained using the transformed variables is non-linear in terms of

original variables. The attractiveness of this method is that the estimated function is

not a linearised approximation, although a linear estimation method, Kernel Ridge

Regression, is used. The authors propose to train a separate learned network for each

contingency. The stability assessment results are reported using the IEEE 39 bus

test power system. A 95% of classification accuracy is reported for a network trained

using 100 data points. The maximum FDs resulted by the two learned networks

is 5%. During the database generation, loads and generation have been randomly

perturbed by 10% (for active and reactive power) and by 2% for generator reference

voltage settings. The resulted power mismatch has been taken care of by the infinite

bus. Authors have demonstrated the possibility of increasing the range of deviations

up to 20% (generator voltage magnitude setting was remained at 2%) by doubling

the size of the dataset. Another advantage is the ability to predict the stability using

the pre-fault system variables without performing additional numerical integrations

18



or calculations to obtain the input data to the learned network. This method requires

the training of a dedicated network for each contingency. Accordingly, it requires a

dedicated training dataset for training the networks for each contingency.

The authors of [20] were able to obtain 0% FDs on the same dataset used in [15]

by using the Multi-Step Lasso technique.

2.2.4 Using Hyperplanes and Nomograms

A commonly used practice in the industry for stability boundary characterizations is

to use a two dimensional graph called a nomogram which is constructed based on two

selected critical parameters. In order to develop a nomogram, the selected critical

parameter is varied while other critical parameters are set to a selected value. All

the other non-critical parameters are set to constant values. Points on the nomogram

plot are calculated using multiple computer simulations. This approach for security

boundary estimation has several disadvantages including the inaccurate boundary

representation, intensive computational burden and a very little possibility in inte-

grating the limits with the EMS. Further, limited security constraints considered in

nomograms are incapable of accounting for the coupling effects on a system-wide

basis.
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Figure 2-2: Conceptual view of an approximated security region [32]
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Instead, the wide area security region in higher dimensions is an extension to the

nomograms to incorporate a number of critical parameters to monitor the system

security in a wide area. According to [33], Figure 2-2 shows an example of an ap-

proximated security region as a polyhedron where D0 is the base operating point,Hi

is the hyperplane i, and ξi is the stress vector.

In [33], authors proposes to use hyperplanes in multi-dimensional space consisting

of system parameters that are critical for security analysis. The authors propose

to construct the hyperplanes using off-line simulations reflecting thermal, voltage,

voltage stability, small signal or transient stability constraints. Authors follow the

approach proposed in [32] to define the following parameters.

1. Control and descriptor parameter spaces : Zonal generation (and loads in emer-

gency cases) can be controlled directly by operators are called control parame-

ters. Transmission path flows depend on control parameters are called descriptor

parameters.

2. Stress Direction: the stress direction and the procedure specifies how the system

parameters are changed from their base toward the stability boundary as a

function of a scalar stress parameter as shown in Equation (2.1).

D = D0 + α∆D (2.1)

where D0 is the base point in D-space, ∆D defines the stress direction and α

is a scalar parameter.

Authors have reported the simulation results for the full size Western Electricity Co-

ordinating Council (WECC) system model which comprise of remedial action schemes

and other controls affecting the system behaviour. The simulations were carried out

based on 8 descriptor parameters and 9 control parameters. These parameters were

selected based on the experience—having the most impact on the system security. Us-

ing the simulation results authors point out the significance of the multidimensional
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approach in investigation of coupling effects between critical parameters. Estimation

error of the stability margin is evaluated using the difference between: a) the shortest

distance to the security region boundary obtained by starting from the current operat-

ing point and and following the stress direction (normal to the hyperplane considered

until the intersection point is found), and b) obtaining the distance to the respective

hyperplane using the proposed method. The results demonstrates the feasibility of

the developed method. The method can be used to obtain the security margin for

significant and small number of parameters such as transfer limits.

2.2.5 Variable Time-step Integration and Early Termination

Methods

The selection of the appropriate simulation time-step is important in power system

dynamic simulations. The algorithms designed to capture system transients using

explicit integration formulas and small time steps of integration are inefficient to

simulate scenarios spanning in the order of minutes or more. On the other hand, the

larger time-steps are incapable of capturing the fast dynamics. Variable time-step

integration methods facilitates to alter the time-step on the run based on a local error

of an estimated value for a time step and an actual value. If the local error is above a

threshold, the program automatically alters the time-step of the integration [34, 35].

Literature have reported about a 10 times speed up when compared to the fixed

time-step integration [36].

2.2.6 Dynamic Equivalencing Techniques

Dynamic equivalencing is mainly proposed for two reasons: a) to speed up the com-

putational time for transient stability assessment in large system models, and b) due

to the unavailability of the Supervisory control and data acquisition (SCADA) data

of the external systems in large interconnected power networks. [37]. Some commer-
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cial tools are capable of dynamic equivalencing. However, generation of an equivalent

model capable of delivering the expected performance for on-line DSA studies is chal-

lenging.

For example, TSA of the entire interconnected North American power system

(which operates under several operators) has to solve a very large number of dif-

ferential equations. The model of Midwest Reliability Organization (MRO) system,

where Manitoba Hydro is included, has more than 50, 000 buses. It can take hours to

complete a DSA. Therefore, the computational cycle time is inappropriate for power

systems monitoring. The usual practice is to use the system equivalents at the bound-

ary buses of a particular operator or the study area. Manitoba Hydro uses a buffer

zone and the system equivalents are used at the boundary of the buffer zone and the

external system. The selection of an appropriate equivalent circuit plays a key role

towards the accuracy of the outcome of a particular study. The equivalent circuits

are used in rotor angle TSA for which the studies about the electromechanical oscil-

lations typically are in the range of 0-2 Hz [38], are also referred to as Low-Frequency

Equivalents (LFEs).

The three main approaches as stated in [38] to obtain a LFE are:

1. approximate using linear models (modal methods)

2. identification and representation of coherent generator groups using equivalent

generators, and

3. measurement or simulation based methods to approximate the model parame-

ters of a large system

In literature, dynamic equivalencing is also proposed in relation to the Equal

Area Criterion (EAC). The idea behind the EAC was further extended to multi ma-

chine power systems through the introduction of the Extended Equal Area Criterion

(EEAC). The EEAC is based on the notion that transient instability is a result of

the separation of generator rotor angles into two clusters after being subjected to a

22



severe transient disturbance. These two sets of generators are transformed into an

equivalent two machine system, one machine representing the dynamics of the critical

cluster and the other representing the dynamics of the remaining cluster of machines.

Finally, the equivalent two-machine system is reduced to a Single Machine to Infi-

nite Bus (SMIB) system for which the EAC can be applied to estimate the transient

stability margin [39]. EEAC formulation uses the classical generator model. Since it

was originally proposed, many variations have been proposed in literature to enhance

the performance of the EEAC method and has been implemented in various DSA

applications in its original form or including modifications [36, 40,41].

2.2.7 High Performance Computing

Distributed and parallel processing has become an essential technique in modern on-

line DSA systems [36, 42–46]. This technique can effectively accomplish significant

speed improvement as the TSA usually includes the assessment of many contingencies.

In [43], the authors have reported a significant and almost linear reduction of the

computation time by using the parallel processing in multi-core processors.

The utilization of multiple core processors along with simulation decomposition

and localisation is proposed for faster processing in [46]. In large power systems, the

effects of some disturbances may only be local. The reported work also investigates

the possibility of partitioning the DAE solution into several stand-alone solutions.

However, it is challenging to propose a general criteria for localisation and partition-

ing.

2.2.8 Other Approaches

Although the requirements of the on-line DSA demands for the faster computations,

to date, some large interconnected power system models include dynamic models

that demand small integration time-steps to the maintain numerical stability of the
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simulation tools in use. If these models are revised to ensure the numerical stability

during simulations, the simulations can be made faster by using larger time steps [4].

The use of look up table approach avoids performing any simulations using real

time conditions to obtain stability limits. In this approach, stability limits are cal-

culated by extensive off-line simulations to address the possible operating conditions.

These limits are stored in a database and accessed based on similarity of the on-line

operating conditions obtained from the real power system in operations [43]. This is

obviously a very fast method to obtain the stability limits as it requires no additional

simulations or calculations. However, this method is subjected to two shortcomings:

a) if the real time conditions are not matched appropriately, there will be no use of the

system, and b) off-line stability limits calculated are often more conservative than the

stability limits calculated on-line according to the actual operating conditions, there-

fore, the stability margins obtained will be conservative. This would result limiting

the benefits of the on-line DSA.

2.3 Modelling of Power System Components for

DSA

The power system component models are to be selected depending on the type of the

targeted study or the analysis. The dynamic phenomena studies can be divided into

three categories as in [38].

1. high-frequency transients studies – includes frequency dependant transmission

line models and detailed generator models

2. low-frequency electromechanical oscillations studies – transmission lines as con-

stant admittances and generator dynamics excluding stator and network tran-

sients

3. sub-synchronous oscillation studies – turbine-generator dynamics and network
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transients need to be modelled adequately

DSA based on time domain TSA belongs to the second category. The interested

range of electromechanical oscillations is approximately in the range of 0-2 Hz. The

network transients occur typically at very high frequencies. Therefore, the network

transients and the stator transients of the synchronous machines are ignored during

modelling the power system for electromechanical studies. Accordingly, the transmis-

sion network is modelled using admittances calculated at the fundamental frequency.

Generators and the auxiliary controllers are modelled using first order DAEs in the

following form [38]

ẋk = f(xk, Vk, uk) (2.2)

Ik = g(xk, Vk) (2.3)

where,

xk: state vector of the kth device

Vk: R and I components of bus voltage

uk: input vector of the kth device

The following subsections presents the device models that are used for simulations

in this thesis.

2.3.1 Synchronous Generator Models

Fifth order model

This synchronous generator model includes five differential equations to represent

a) rotor dynamics using the swing equation (δ and ∆ω) b) flux variations of the rotor

field winding (ψfd) c) flux variations of two rotor damper windings (ψ1d and ψ1q).
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For simplification, the ωr in the stator voltage equations are assumed equal to 1 pu.

This assumes that the effect of the speed variations have negligible effect on stator

voltage. The resultant set of first order differential equations are (2.4, 2.5, 2.6, 2.7,

and 2.8)

d

dt
ψfd = ω0

[
efd −

Rfd

Lfd
ψfd +

Rfd

Lfd
L′′ad

(
−id +

ψfd
Lfd

+
ψ1d

L1d

)]
(2.4)

d

dt
ψ1d = ω0

[
−R1d

L1d

ψfd +
R1d

L1d

L′′ad

(
−id +

ψfd
Lfd

+
ψ1d

L1d

)]
(2.5)

d

dt
ψ1q = ω0

[
−R1q

L1q

ψ1q +
R1q

L1q

L′′aq

(
−iq +

ψ1q

L1q

)]
(2.6)

d

dt
∆ωr =

1

2H
(Tm − edid − eqiq − kD∆ωr) (2.7)

d

dt
δ = ω0∆ωr (2.8)

Where

ω0: synchronous speed in electrical rad/s

∆ωr: rotor speed deviation (pu)

ψfd, ψ1d, ψ1q: flux in the field winding, d axis damper winding and q axis damper

winding (pu)

Tm: mechanical torque (pu)

H: inertia constant (MW· s/MVA)

Kd: damping coefficient(pu)

ed, eq: d and q axis armature voltages (pu)

id, iq: d and q axis armature currents (pu)

efd: field voltage (pu)
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Rfd, R1d, R1q: resistances of field winding, d axis damper winding and q axis damper

winding (pu)

Lfd, L1d, L1q: inductances of field winding, d axis damper winding and q axis damper

winding (pu)

L′′ad, L
′′
aq: subtransient mutual inductances of d and q axis (pu)

t: time (s)

The initial conditions are calculated using the network power flow solution.

Classical generator model

This simplified model is used in studies where the focus is on the first swing sta-

bility analysis. In large power system models, some generators are modelled using

the classical generator model due to the unavailability of the generator parameters.

The foundational work on direct method of stability assessment of power systems

was based on the classical generator model. The model is derived based on the fol-

lowing assumptions a) machines are modelled using the constant flux linkage model

b) mechanical damping of the rotor is neglected c) the effects of generator auxiliary

controls are neglected.

Generator auxiliary controls

Generator auxiliary controllers mainly include the excitation system and the Power

System Stabilizers (PSSs). An exciter may have a number of control, limiting and

protective functions. The axillary controllers contribute to maintain the required

performance of the synchronous generator and the power system. The main purpose

of an exciter is to control the field current of the synchronous generator to maintain

the terminal voltage during the load changes and transients periods [7]. In addition it

is expected to provide limiting and protective functions to prevent damage to power
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system equipments including itself. The functions of a given excitation system may

depend on the type of the exciter and the application requirements.

PSSs are usually designed based on the small signal analysis to damp out generator

rotor oscillations. This is achieved by modulating the generator excitation system

reference voltage level.

2.3.2 Transmission Line Model

Transmission lines are modelled as an equivalent π network between network buses

which comprised of a series impedance (R + jX) and two admittance branches rep-

resenting the line’s capacitive admittance(jB/2). The reactance and the susceptance

values are calculated at the nominal frequency.

2.3.3 Load Models

Modelling load characteristics is a difficult task due to a) the existence of many load

types b) unavailability of load composition information c) changing composition of

loads depending on the time of the day, seasons, etc. The extent of the load model

complexity depends on the magnitude of the effect of the response of that particular

component during a particular study [47].

Constant Admittance Model

This is a static load model and the power varies directly with the square of the voltage

magnitude. This load model is usually used for in the first swing TSA. The use of

this model allows for convenient network reduction by incorporating the loads into the

transmission network. The early work on theoretical foundations on the applications

of direct method of stability assessment for power systems is performed using the

constant admittance load model.
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Dynamic Load Model

It is recommended in [47] to typically have 50% to 70% of load with motor models.

The motor models are to be based on typical induction motor data. Further, it is not

necessary to include dynamic motors in every bus load, so long as the desired portion

of total load in an area is represented as motors. Accordingly, a dynamic load model

representing induction motors, lighting, and other types of equipment is selected for

simulations.

2.3.4 Interfacing Components

With the use of constant admittance load model and the classical generator model, the

interfacing of loads and generators and the transmission network is straightforward.

The loads are converted to constant admittances and then incorporated into the

transmission network as shunt admittances. Similarly, generator reactants are also

incorporated into transmission network. Then the network is reduced to the generator

buses. Initial conditions are computed using the power flow solution of the prefault

system. Numerical integration of the set of differential equations is used to obtain

the values of current injections of generators for the next time step [7].

When the generators are modelled using d − q references, the set of differential

equations corresponding to each generator and it’s auxiliary controllers are modelled

in it’s own d − q reference frame. At each time step, those values in d − q reference

frames are converted to the common R − I frame for interfacing. The transmission

network is reduced to the buses connecting dynamic devices (i.e. synchronous gen-

erators, dynamic loads, Flexible Alternative Current Transmission System (FACTS)

devices, etc.) [7].
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2.4 Concluding Remarks

The approaches presented in recent literature for fast TSA were discussed under 8

categories. Further, the theoretical background of modelling the power system and

its components for DSA is discussed.
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Chapter 3

Direct Methods for Power System

Stability Assessment

3.1 Introduction

This chapter presents the background theory and information on the non-linear sys-

tems and the direct method of stability assessment in general and in relation to the

power systems. The Transient Energy Function (TEF) and the significance of numer-

ical energy functions are discussed. A set of widely used critical energy computation

methods are discussed. The computational details of the assessment algorithms are

illustrated using numerical simulations. The objective of this chapter is to provide

the necessary theoretical background for the TSA algorithm proposed in this thesis.

3.1.1 Introduction to Direct Methods of Stability Assess-

ment

Lyapunov presented two methods for stability analysis of non-linear dynamical sys-

tems [10].

1. a method to examine the local stability of a non-linear system around an Stable
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Equilibrium Point (SEP) using the properties of it’s linear approximation.

2. a method for stability assessment without solving the differential equations of

the system. This method is referred to as the direct method.

The principle behind the Lyapunov’s direct method is a mathematical extension to

the relationship between the total energy of a mechanical system and its stability. If

the total energy in a mechanical system is continuously dissipating, the system must

eventually settle down to an equilibrium point [12].

3.1.2 Stability in the Sense of Lyapunov

Let BR and Br be spherical regions (or balls) defined respectively by ‖ x ‖< R

and ‖ x ‖< r in the state space. Let SR and Sr be spheres defined respectively by

‖ x ‖= R and ‖ x ‖= r. The equilibrium state x = 0 is said to be stable in the

sense of Lyapunov, if for any R > 0, there exists r > 0 such that if ‖ x(0) ‖< r, then

‖ x ‖< R for all t ≥ 0. Otherwise, the equilibrium point is unstable. This definition

can be represented as follows.

∀R > 0,∃r > 0, ‖ x(0) ‖∈ Br ⇒ ∀t ≥ 0, ‖ x(t) ‖< R. (3.1)

Further, the equilibrium point is said to be asymptotically stable if it is stable,

and there exist r > 0 such that ‖ x(0) ‖< r implies that x(t) → 0 as t → ∞. An

equilibrium point that is stable in the sense of Lyapunov but is not asymptotically

stable is called marginally stable equilibrium point (Figure 3-1). If the asymptotic

stability holds for any initial state, then the equilibrium point is said to be globally

asymptotically stable [12].
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Figure 3-1: Concepts of stability (1: asymptotically stable, 2: marginally stable, 3: unstable, 4:
globally stable) [12]

3.1.3 Lyapunov Function

A function V (x) is said to be a Lyapunov function for a given system if in a ball

BR, the function V (x) is positive definite, has continuous partial derivatives, and its

time derivative along any state trajectory of the system is negative semi-definite, i.e.,

V̇ (x) ≤ 0. The Lyapunov function is also called the energy function.

A scalar continuous function V (x) is said to be locally positive definite if V (0) = 0

and in a ball BR0, x 6= 0⇒ V (x) > 0. Further, if the above properties hold over the

whole state space, then V (x) is said to be globally positive definite. The prefix semi

is used to reflect the possibility of a function being equal to zero for x 6= 0.

There is no systematic way of constructing Lyapunov functions for general non-

linear systems. This is a fundamental drawback of the direct method. It often requires

experience, intuition, trial and error and physical insights to search for an appropriate

Lyapunov function. Lyapunov stability theory only provides sufficient conditions for

stability. If for a particular Lyapunov function candidate, V , the required conditions

on the derivative of V , V̇ , are not met, then conclusions regarding the stability or

instability of the equilibrium point can not be drawn [9].
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3.1.4 Local and Global Stability Using the Lyapunov Theo-

rem

If in a ball BR0, there exists a scalar function V (x) with continuous partial derivatives

such that

• V (x) is positive definite (locally in BR0)

• V̇ (x) negative semi-definite (locally in BR0)

then the equilibrium point is stable. Further, if the derivative V̇ (x) is locally negative

definite in BRO, then the stability is asymptotic.

In order to assert global asymptotic stability, radial unboundedness (V (x) → ∞

as ‖ x ‖→ ∞) of the function V has to be ensured in addition to expanding the local

asymptotic stability to the entire state space. Radial unboundedness ensures that the

contour curves of constant energy level correspond to closed curves. It is possible for

the state trajectories to drift away from the equilibrium point if the curves are not

closed. The following figure illustrates the divergence of the state trajectories while

moving towards lower energy levels in a second order system.

X1

X2

V(x)=V1

V >V >V3 2 1 V(x)=V2

V(x)=V3

x(t)

SEP

Figure 3-2: Drift of trajectories away from the SEP when the radial unboundedness not assured

Therefore, for a scalar function V of the state x with continuous first order deriva-

tives such that
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• V (x) is positive definite

• V̇ (x) negative definite

• V (x)→∞ as ‖ x ‖→ ∞

the equilibrium point at the origin is globally asymptotically stable [12].

3.1.5 Stability Region of an SEP

For an SEP, xs, there exists a number ε > 0 such that every point in the set,

‖ x0 − xs ‖ < ε implies that the trajectory starting from the initial point x0

converges to the SEP xs; that is, φi(x0) → xs as (t → ∞). If ε is arbitrarily large,

then xs is called a global SEP.

As the time evolves, every trajectory in the stability region approaches the SEP,

xs, and every trajectory on the stability boundary evolves on the boundary and

approaches the equilibrium points (Unstable Equilibrium Points (UEPs)) on the sta-

bility boundary(figure 3-3). The dimension of the stability region is n, which is the

order of the state space [9].

xs

Stability region

Boundary of 
the stability region

x

x

UEP

UEP

x UEP

Figure 3-3: Evolution of trajectories within the stability boundary and on the stability boundary [9]
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3.2 Application of Direct Methods to Power Sys-

tems

An autonomous non-linear system can be represented by a set of non-linear differential

equations in the following form:

ẋ = f(x) (3.2)

where f is an n×1 non-linear vector function and x is an n×1 state vector. A state

x? is an equilibrium point of the system if x(t) = x? and it remains equal to x? for all

future time. An equilibrium point can be found by solving the non-linear algebraic

equation shown in Equation (3.3). Usually, the equilibrium point is transferred to

the origin of the state space.

0 = f(x) (3.3)

Based on the model proposed in Equation (3.2), a power system (represented

using the simplified generator model) undergoing a disturbance can be described by

the following three sets of differential equations:

ẋ(t) = fprefault(x) −∞ < t ≤ 0 (3.4)

ẋ(t) = ffaulted(x) 0 < t ≤ tcl (3.5)

ẋ(t) = fpostfault(x) tcl < t <∞ (3.6)

In a practical power system, many events may occur between t = 0 to t = tcl. For

simplicity, no structural changes are assumed during the faulted time. The prefault

operating point is assumed to be in a steady state. Prefault operating point becomes

the initial conditions for the evolving faulted trajectories. Similarly, the faulted tra-
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jectory at t = tcl provides the initial conditions for the postfault trajectory. Stability

assessment of the contingency involves the accurate identification of the location of

the initial point of the postfault trajectory in terms of inside or outside the region

of attraction of the postfault SEP, assuming there exists an SEP for the postfault

system.

3.2.1 TEF

For the multi-machine power system represented by the classical generator model and

the constant admittance load model, the motion of generators are governed by the

Equation (3.7) [48].

2H i

ωs

d2δi
dt2

+Di
dδi
dt

= Pmi − Pei, i = 1, . . . ,m (3.7)

where

Pei = E2
iGii +

m∑
j=1,j 6=i

(Cij sin δij +Dij cos δij) (3.8)

Cij = EiEjBij (3.9)

Dij = EiEjGij (3.10)

Denoting 2H
ωs

= M and Pi = Pmi − E2
iGii, Equation (3.7) becomes,

Mi
d2δi
dt2

+Di
dδ

dt
= Pi −

m∑
j=1,j 6=i

(Cij sin δij +Dij cos δij) (3.11)

Let αi be the rotor angle with respect to a fixed reference. Then δi = αi − ωst.

δ̇i = dαi

dt
− ωs = ωri − ωs where ωri is the rotor angular speed and the ωs is the

synchronous speed in radians per second. Denoting ωi = ωri − ωs, the Equation

(3.24) is represented in first-order differential equations with the state variables δi

and ωi.
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δ̇i = ωi

ω̇i =
1

Mi

(Pi − Pei (δ1, . . . , δm)−Di (ωi)) (3.12)

i = 1, . . . ,m

The classical TEF has been proposed based on the power system model repre-

sented with respective to the Center of Inertia (COI). Further, the said formulation

ignores the mechanical damping (D) of the generator. The COI represents the mean

motion of the system. The generator rotor angles and the speeds are referred to the

mean motion represented by the angle and the speed of the COI.

The COI is defined as:

δ0 =
1

MT

m∑
i=1

Miδi (3.13)

where

MT =
m∑
i=1

Mi (3.14)

accordingly, the center of speed is defined as:

ω0 =
1

MT

m∑
i=1

Miωi (3.15)

The transformation of the generator rotor angles and the generator angular speeds

to the COI leads to the following two equations. θi and ω̃i are the rotor angle and

the angular speed of the ith generator with reference to the COI.

θi = δi − δ0, ω̃i = θ̇i = ωi − ω0 (3.16)

The motion of the COI is defined as:

MT ω̇0 =
m∑
i=1

(Pmi − Pei) (3.17)
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Further simplification leads to:

MT ω̇0 =
m∑
i=1

Pmi −
m∑
i=1

Pei (3.18)

=
m∑
i=1

Pmi −
m∑
i=1

E2
iGii −

m∑
i=1

m∑
j=1,j 6=i

(Cij sin δij +Dij cos δij) (3.19)

=
m∑
i=1

Pi −
m∑
i=1

m∑
j=1,j 6=i

(Cij sin δij +Dij cos δij) (3.20)

Using the relationships Cij = Cji, Dij = Dji, sin(−θ) = − sin(θ),

and cos(−θ) = cos(θ):

MT ω̇0 =
m∑
i=1

Pi − 2
m−1∑
i=1

m∑
j=i+1

Dij cos δij , Pcoi (3.21)

d2δ0
dt2

=
1

MT

PCOI (3.22)

Transformation of Equation (3.7) to refer to the COI by using Equation (3.16) and

by ignoring the mechanical damping (δij = δi−δj = (θi+δ0)−(θj+δ0) = θi−θj , θij):

Mi
d2

dt2
(θi + δ0) = Pi −

m∑
j=1,j 6=i

(Cij sin θij +Dij cos θij) (3.23)

Mi
d2θi
dt2

= Pi −
m∑

j=1,j 6=i

(Cij sin θij +Dij cos θij)−
Mi

MT

PCOI (3.24)

The TEF is derived by obtaining the energy integral [49, 50] by multiplying the

ith post-fault system Equation (3.24) by θ̇i

Vi =

[
Mi

˙̃ωi − Pi + Pei +
Mi

MT

PCOI

]
θ̇i, i = 1, . . . ,m (3.25)
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Integrating Equation (3.25) using a lower limit t = ts, where ω̃(ts) = 0 and

θ(ts) = θs is the SEP, results in Equation (3.26).

Vi =
1

2
Miω̃i

2 − Pi (θi − θsi ) +
m∑

j=1,j 6=i

Cij

∫ θi

θsj

sin θijdθi

+
m∑

j=1,j 6=i

Dij

∫ θi

θsj

cos θijdθi +
Mi

MT

∫ θi

θsi

PCOIdθi

i = 1, . . . ,m

(3.26)

For a multi-machine system, the energy function of the first integral of the motion

is obtained as in Equation (3.27) [48].

V (θ, ω̃) =
1

2

m∑
i=1

Miω̃i
2

︸ ︷︷ ︸
KE

−
m∑
i=1

Pi(θi − θsi )︸ ︷︷ ︸
PE1

−
m−1∑
i=1

m∑
j=i+1

[Cij(cosθij − cosθsij)]︸ ︷︷ ︸
PE2

+
m−1∑
i=1

m∑
j=i+1

[∫ θi+θj

θsi+θ
s
j

Dijcosθijd(θi + θj)

]
︸ ︷︷ ︸

PE3

= VKE(ω̃) + VPE(θ)

(3.27)

The steps for deriving the Equation (3.27) are given in Appendix A by using a

3-bus power system model as an example.

The terms in Equation (3.27) are interpreted in [51] as follows:

• KE: total change in rotor kinetic energy relative to COI,

• PE1: total change in rotor potential energy relative to COI,

• PE2: total change in magnetic stored energy of network branches; and

• PE3: total change in dissipated energy of network branches.

The sum of PE1, PE2 and PE3 is referred to as potential energy.
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Equation (3.27) contains path dependant integral terms. Since, the positive def-

initeness of V (θ, ω) is not guaranteed, Equation (3.27) is not a candidate Lyapunov

function for the system in Equation (3.24). If Dij ≡ 0 (i.e., transfer conductances

of network Y matrix are ignored), it is shown that V (θ, ω) constitutes a proper Lya-

punov Function [48]. According to Equation (3.10), V (θ, ω) becomes a candidate

Lyapunov function if the network losses are ignored. Although many attempts were

made so far, there is no analytical energy function derived for multi-machine power

systems with lossy networks [13]. The existence of a candidate Lyapunov function

(CLF) for an SMIB system with transmission network modelled with losses has been

proven in [50].

3.3 Numerical Energy Functions

Numerical energy functions consists of two major terms: analytical terms (path in-

dependent terms) and numerical (path dependant) terms. Path dependant terms

require numerical approximations. In Equation (3.27), terms KE, PE1 and PE2 are

analytically solvable terms. The term PE3 requires a numerical solution. Numerical

energy functions were introduced to resolve the difficulty of constructing analytical

energy functions for the lossy power system stability models. Path dependant terms

can be evaluated using trapezoidal approximation or ray approximation [9, 52]

3.4 Stability Assessment

3.4.1 Steps for Stability Assessment Using the Direct Method

1. Numerically simulate the fault-on trajectory

2. Compute the initial point of the postfault trajectory

3. Construct an energy function for the postfault system (Section 3.2.1 and Section
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3.5.5)

4. Compute the energy function value at the initial point of the postfault system,

V

5. Compute the critical energy for the fault-on trajectory, Vcr (Section 3.5)

6. If V < Vcr, the system is stable, otherwise, the system may be unstable

Figure 3-4 shows the variation of the total and the potential energies of a fault-on

trajectory obtained using the TEF. This Matlab simulation is performed on the IEEE

3 generator 9 bus test power system model [53] for a three phase to ground fault at

bus 7.
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Figure 3-4: Total and potential energy variation during a fault-on trajectory computed using the
TEF

In Figure 3-4, the potential energy curve represents the total of the 3 potential

energy terms (PE1, PE2 and PE3) expressed in Equation (3.27). The maximum

of the potential energy curve can be considered as Vcr (Critical energy calculation

methods are described in detail in Section 3.5). The energy acquired by the system

at a particular time can be obtained by the total energy curve (V ). As per the step 6

42



shown above, at a given time t if V < Vcr, the postfault system is stable. Otherwise,

the system may be unstable. Accordingly, Figure 3-4, if the value of the total energy

curve at a particular time is less than the maximum of the potential energy curve,

the the system is stable.
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Figure 3-5: Contributions of the individual terms of the TEF for the potential energy

Figure 3-5 shows contributions of potential energy terms of the potential energy

curve shown in Figure 3-4. The term K, referred to as V correction term [54], is the

potential energy difference of prefault SEP and the postfault SEP. If the fault is a

self clearing fault, there will be no potential energy difference as both prefault and

postfault systems have the same SEP, i.e. K = 0. Otherwise, the potential energy

difference is accounted in the TEF. Accordingly, K will be a contingency dependant

constant. Inclusion of potential energy difference of prefault SEP and the postfault

SEP is explained in Section 3.4.2.

3.4.2 Calculation of TEF Terms

The TEF is used to calculate the energy acquired by the generators at a given time.

The use of the TEF derived in 3.27 requires the computation of four terms (KE,
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PE1, PE2 and PE3). Computation of these terms requires a) the rotor angles and

speed deviations of generators; and b) the postfault SEP. However, the term PE3

comprised of an integral term which is to be computed using numerical integration

along the system trajectory. Several methods that can be used to compute this term

are discussed in [52] where the path dependant integration using trapezoidal method is

proposed as the most appropriate and a theoretically sound method. The application

of the trapezoidal integration for computation of the term PE3 leads to Equation

(3.28). The value at simulation time step n is obtained as follows:

Iij(n) = Iij(n− 1) +
1

2
Dij[cos(θi(n)− θj(n)) + cos(θi(n− 1)− θj(n− 1))]

× [θi(n) + θj(n)− θi(n− 1)− θj(n− 1)]

(3.28)

Further, the initial condition for the system trajectories is the prefault SEP. Initial

condition for the TEF is the postfault SEP. The potential energy at the postfault

SEP is 0. If the contingency results in no network configuration change, there is no

potential energy difference. Otherwise, there is a potential energy difference between

two operating points and this has to be considered during the energy computation.

In Figure 3-5, term K shows the potential energy difference between the prefault

SEP and the postfault SEP due to that particular network structure change. This

is calculated by using potential energy terms (PE1, PE2 and PE3) of the TEF

(Equation (3.27)) as shown in the following Equation (3.29).

VPE(θ0) =−
m∑
i=1

Pi(θ
0
i − θsi )−

m−1∑
i=1

m∑
j=i+1

[Cij(cosθ
0
ij − cosθsij)]

+
m−1∑
i=1

m∑
j=i+1

[∫ θ0i+θ
0
j

θsi+θ
s
j

Dijcosθijd(θi + θj)

] (3.29)

Assuming the prefault SEP and the postfault SEP are close, linear approximation
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can be used to compute the path dependant term. Accordingly, the TEF with the

potential energy correction term is shown in Equation (3.30).

V (θ, ω̃) = VKE(ω̃) + VPE(θ)− VPE(θ0) (3.30)

As the initial difference of potential energy is considered in Equation (3.30), the

initial value of the integration in Equation (3.28) is zero (Iij(0) = 0).

3.5 Methods for Critical Energy Calculation

The accuracy of the critical energy, VCR, estimation has a significant impact on the

overall accuracy of the direct method of stability assessment. If the critical energy

is calculated in a conservative manner, the results of the respective method becomes

conservative. On the other hand, if the critical energy is an over estimation, the

respective method will produce incorrect results.

In literature, researchers have obtained VCR by computing the potential energy

at following four locations 1) Potential Energy Boundary Surface (PEBS) crossing

point 2) Closest Unstable Equilibrium Point (UEP) 3) Controlling Unstable Equilib-

rium Point (CUEP); and 4) Boundary of Stability Region based Controlling Unstable

Equilibrium Point (BCU).

The discussion on the stability region of an SEP in Section 3.1.5 can be extended

to identify the above mentioned points. A power system, in its steady state, operates

at the SEP. During a disturbance (e.g.: a fault), the system operating point moves

away from the SEP. Assume that a fault is cleared without changing the network

structure, the system operating point, according to Figure 3-3, can be a) within the

stability region b) on the stability boundary; or c) outside the stability boundary. If

the system operating point at the fault clearing time lies within the stability region

(i.e.:a), the system will eventually approach the SEP, and the system state is classified

as stable. If the system operating point lies outside the stability region (i.e.:b), the
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system state is classified as unstable. Assume if the system operating point at the

fault clearing time lies on the stability boundary (i.e.:c), theoretically, the system

trajectory evolves on the stability boundary and eventually converges to a UEP. The

exact VCR is the potential energy computed at that particular UEP which is called

the CUEP.

Among all the UEPs on the stability boundary, closest UEP is the UEP which has

the lowest potential energy value for the energy function that is in use for stability

assessment. The closest UEP may not be the controlling UEP [9]. PEBS is formed by

joining the potential energy maxima of each UEP to form an equipotential boundary.

For the SMIB system, the UEP can be analytically calculated. Furthermore, along the

direction orthogonal to the PEBS, the potential energy VP achieves a local maximum

at the PEBS [9].

The calculation of the CUEP for the SMIB system is analytical and straightfor-

ward (Appendix B). However, for a multi-machine power system with lossy network

models, the CUEP is one of the UEPs in a large degree state-space. Therefore, the

computation of the CUEP is highly numerically intensive [9].

3.5.1 Potential Energy Boundary Surface (PEBS) Method

The PEBS method was initially proposed in [14] and [51]. This method avoids the

computation of the CUEP and requires only the faulted trajectory to be simulated.

Further, the calculation of the postfault SEP can also be avoided depending on how far

apart are the postfault and the prefault SEP. However, the PEBS method is incapable

of consistently assuring the conservativeness of the stability assessment results [55]. It

may produce overestimated or underestimated stability assessment results [9, 55]. In

literature, there are several modifications proposed to the PEBS method to improve

the assessment accuracy.

The path dependent term in Equation (3.27) is obtained using the trapezoidal

integration [52]. The faulted trajectory is simulated until the zero crossing point

46



of Equation (3.31) is found, where f(θ) is the accelerating power of the post fault

system, θ is the rotor angle at the current time step, and θs is the respective angle at

the postfault SEP.

fT (θ − θs) = 0 (3.31)
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Figure 3-6: PEBS Crossing is identified at the zero crossing point of fT (θ − θS)

Critical energy, VCR, is calculated at the zero crossing point of the Equation (3.31).

Figure 3-6 shows the Matlab simulation results of IEEE 3 generator 9 bus system to

obtain the zero crossing point of the following contingency: three phase to ground

fault occurred on line 5− 7 closer to the bus 7 and cleared by isolating the line 5− 7.

A comparison of stability assessment accuracy of the PEBS method and the time

domain simulations are presented in [56].

3.5.2 CUEP Method

The accuracy of the stability assessment of the PEBS method is enhanced if the

VCR is calculated at the exact relevant CUEP. There are several methods proposed
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in literature to calculate the CUEP [9, 52]. The method mentioned in [52] is to

continue the integration of the reduced set of gradient Equation (3.32), by using the

zero crossing point found in section 3.5.1 as the initial condition, until the minimum

gradient point, which is the minimum of ‖ f(θ) ‖, is found. The rotor angles obtained

at the ‖ f(θ) ‖ minimum are used to calculate the critical energy [52].

θ̇ = Pmi − Pei −
Mi

MT

PCOI = fi(θ) i = 1, . . . ,m (3.32)

The time domain method to find the CUEP as mentioned in [9] is a three step

procedure: 1) Iteratively compute the exit point relative to a fault-on trajectory;

2) Using the exit point as the initial condition, integrate post fault system until the

sum of squares of speed state-variables is smaller than a threshold value; and 3) Solve

the non-linear algebraic equations using the rotor angles found at the previous step

as the initial condition.

If the minimum gradient point found in the former method or the point found

at step 2 of the latter method is sufficiently close to the exact CUEP, solving the

non-linear algebraic equations, f(θ) = 0, using an iterative solving technique such as

the Newton-Rapson method would converge to the exact CUEP. However, the size of

the region of convergence depends on the technique in use for solving the non-linear

algebraic equations. Finding initial conditions within the convergence region of the

CUEP is challenging for large systems with multi dimensional state space [9].

Figure 3-7 shows a phase plot of two rotor angles of IEEE 3 generator 9 bus test

system during the CUEP computation process using the time domain method. The

third generator is modelled as an infinite bus, therefore, no variation of rotor angle is

observed. The CUEP is calculated relevant to a three phase to ground fault occurred

on line 5− 7 closer to the bus 7, and cleared by isolating the line 5-7.

Initially, the system is at the prefault SEP. The value of two rotor angles are

indicated by point a. The post fault SEP relevant to the contingency considered

here is also shown in Figure 3-7. The exit point, b, is assumed to be on the stability
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Figure 3-7: Phase plot of the CUEP computation using the time domain method

boundary. In order to find the exit point, a three phase to ground fault is applied and

cleared by isolating the line 5-7 (similar to the contingency). If the system converges

to the postfault SEP, then the fault duration is increased step by step until the

postfault system diverges. Otherwise, the fault duration is decreased step by step

until the postfault system converges to the SEP. This iterative process identifies two

consecutive time steps where the exit point of the system trajectory lies somewhere

in between. Bisection rule is proposed in [9] to be applied in between two time steps

to further enhance the accuracy of the exit point calculation.

When the fault is cleared exactly on the exit point, the system trajectory lies on

the stability boundary of the postfault system. According to the stability theory [9],

the system trajectory evolves on the stability boundary and eventually converges

to a CUEP on the stability boundary, which is the controlling CUEP. Accordingly,

the postfault system is simulated by using the previously determined exit point as

the initial conditions. Due to the numerical errors that occur in the simulation,

the system trajectory is unlikely to follow the stability boundary. Therefore, during

the simulations, the total sum of square errors of speed trajectories was observed
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against a threshold value (theoretically the speed deviations become zero once the

system trajectories converge to an UEP). Finally, as mentioned in step 3 of the time

domain method to find the CUEP, the non-linear algebraic equations are solved using

the initial conditions at point c to find the exact CUEP. In this case, the Newton-

Raphson algorithm converged to the exact CUEP. Even if it is not converged to the

exact point, usually, point c is a sufficiently close point to the exact CUEP.

CUEP method is recognized as the most viable method for direct stability assess-

ment of power systems.

3.5.3 Closest UEP Method

The closest UEP is defined as the UEP on the stability boundary that has the lowest

potential energy among all the UEPs on the stability boundary [57]. This method

does not consider the relevant CUEP, therefore, it does not consistently provide an

accurate approximation of the relevant stability boundary [58]. Figure 3-8 shows the

simulation results of the potential energy variation for an SMIB system. The SEP

and the two UEPs are shown the figure. In this specific situation the CUEP and the

closest UEP refers to the same UEP.

3.5.4 Boundary of Stability Region based Controlling Unsta-

ble Equilibrium Point (BCU) Method

Although the CUEP method is considered as the most viable direct method for power

system applications, the task of computing the exact and the relevant CUEP to a

contingency is a difficult task.

The BCU method proposes to develop the models tailored to the underline power

system transient stability model along with mathematical insights. This model is

an artificial, reduced-state model capturing all the equilibrium points in the power

system model under investigation.
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Figure 3-8: Potential energy vs rotor angle, including two UEPs and the SEP for a SMIB system

The authors of [9] propose following two sets of properties associated with the

original model to be satisfied with the reduced-state model.

Static Properties

• equilibrium points of the reduced-state model should have the corresponding

equilibrium point in the original system model.

• type of the equilibrium point of the reduced-state model should be the same

type of an equilibrium point of the original system model.

Dynamic Properties

• A valid CLF should exist for the reduced-state model.

• An equilibrium point on the stability boundary of the reduced-state model

should be on the stability boundary of the original system model.

• It should be computationally feasible to efficiently identify the intersection of

the fault-on trajectory and the stability boundary of the reduced-state system
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without performing a detailed time domain simulation.

The CUEP of the original model is computed by computing the CUEP of the reduced-

state model of which the CUEP can be effectively computed due to the smaller number

of states.

3.5.5 Other Attempts

This section provides a brief background to a set of selected energy functions proposed

in the literature for the completeness. All of these energy functions are numerical

energy functions. The main objective of proposing various energy functions is to im-

prove the accuracy of stability assessment by incorporating detailed device properties

and to include different power system devices (such as High Voltage Direct Current

(HVDC) and FACTS devices.

There are many attempts reported on incorporating detailed device models into

energy functions. A 23 term energy function comprised of 13 path dependant nu-

merical terms has been proposed in [9]. This energy function considers the rotor

circuit equations of the two–axis detailed generator model. An energy function for a

detailed generator model with a simple exciter (one gain and one time constant) is

presented in [59]. Incorporating non-linear load models [60, 61] and FACTS devices

(Section 5.4.8) has been also discussed in literature. The effect of load models has

been analysed to improve the accuracy of the first swing TSA.

Initially, the energy functions have been developed for loss–less network–reduction

models. In loss–less power system models, the transfer conductances in the Y matrix

are ignored. This representation includes the loads in the Y matrix by computing

respective constant admittances [48]. The network is then reduced to the generator

internal buses. Although no analytical energy functions exist for lossy multi-machine

power system models, lately, network preserving numerical energy functions have been

proposed with an aim to incorporate the transfer conductances in the energy func-

tions and for a better representation of the transmission network instead of network
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reduction [60–62]. These methods were not attractive due to the level of complexity

and the topological dependence [9, 59].

The use of energy functions in this thesis is limited to computing a set of input fea-

tures for machine learning. The transient stability of the system is estimated not only

based on the TEF outcomes. Since the potential application of the proposed technique

is the on-line DSA, the processing power requirement is a main factor to determine

the feasibility of application. The TEF based pre-processing is designed to have a

balance between the complexity of processing and the effectiveness of pre-processing.

Therefore, the direct method based techniques and energy functions involving highly

numerically extensive computations are not discussed in detail in this thesis. Further,

BCU methods requires the validity assessment of the reduced state model against the

original system model. This process requires the examination of certain properties

of both system models which requires the physical and mathematical insights of the

power system transient stability model. The applicability of these methods in on-line

DSA were not comprehensively studied and reported in literature.

3.6 Limitations and Issues of Direct Method of

Stability Assessment

Direct method has the advantage of stability assessment without performing the time

domain numerical integration of the postfault system, i.e., time domain simulation

is required only upto the fault clearing time. However, there are several limitations

and issues for direct methods to overcome before becoming a practical tool for power

system transient stability analysis.

Following are a list of issues and limitations applied to direct methods:

• the energy functions are derived in a way assuming the postfault system should

be autonomous as shown in Equation (3.2). Therefore, the sequence of events

has to be defined in advance.

53



• the existence of an energy function is not guaranteed for every power system

model.

• no analytical energy functions exist for lossy systems.

• challenges in computing the exact CUEP; and

• mostly applicable for the first swing stability analysis [9, 48].

3.7 Concluding Remarks

This chapter presented a brief introduction to non-linear systems theory in relation

to the direct method of stability assessment. The application of the direct method of

stability assessment to power systems was discussed. The derivation of the TEF and

the numerical energy functions were presented. Several critical energy computation

algorithms were discussed and illustrated using numerical simulations.
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Chapter 4

Automated Database Generation

for Dynamic Security Assessment

4.1 Introduction

The development of the data generation algorithms for machine learning based ap-

plications require a significant portion of time of a research or a study. Therefore,

having a ready-made and a customizable tool is an advantage. This chapter presents

the design and the development details of automated database generation algorithms

developed during the research reported in this thesis. The developed software is not

system specific and it is a stand-alone tool for data generation for power system sta-

bility studies. Further, it provides means to incorporate system specific constraints

and corrective actions based on the insights of the system operation engineers. The

developed software has been configured to optionally compute the potential and ki-

netic energy terms based on the TEF method at a given time during the transient

stability simulations. These datasets can be exported conveniently for supervisory

learning applications. The software comprised of a web-based interface that allows

the authenticated users to operate remotely without explicit software installations on

the client computer.
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4.2 Requirement Specifications

Supervisory learning applications require datasets generated for training, testing and

validation of learned networks. The quality of these datasets determine the prediction

accuracy of the learned network. The speed of the data generation process plays a

key role when the application is for time critical reporting such as real-time DSA of

electrical power systems. Further, the complexity of the power system model makes

the data generation process computationally demanding.

A data generation software system for application of supervisory learning for power

system on-line DSA needs to address the following key aspects

1. Generate representative datasets for training, testing and validation.

2. Fast generation of datasets to enable application in on-line DSA.

3. Ability to integrate with the other functional units of the on-line DSA imple-

mentation.

Accordingly, the automated data generation software system, Machine Learning

for Dynamic Security Assessment (ML4DSA), has been developed to fulfil the follow-

ing list of functional and non-functional requirements:

Functional requirements.

The ability to:

1. specify the range of the operating point deviation to be accommodated in a

particular dataset.

2. incorporate the user defined corrective actions

3. classify a given operating point as acceptable or unacceptable depending on a

set of user defined constraints.

4. use the existing power system models, obtain the power flow and the dynamic

simulation results using the industry accepted tools.
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5. continuously generate the required number of acceptable steady state operating

points and then perform the dynamic simulations for each contingency in the

set of credible contingencies; and

6. to conclude the stability status of a particular dynamic simulation according to

a given stability assessment algorithm.

Non-functional requirements.

The ability to:

1. specify various parameters required for the process using a convenient user

interface.

2. archive simulation results and datasets and serve for extended applications and

reporting; and

3. specify access rights to operators performing different roles.

The system is designed in a task oriented modular manner. Tasks can be identified

into the following main categories: data input, perturbation and random operating

point generation, case specific corrective actions, dynamic simulation and stability

assessment.

4.3 System Structure

Python algorithms of ML4DSA execute on the Web2Py
TM

Web Framework (Web2Py)

framework [63]. As shown in Figure 4-1, ML4DSA interacts with Power System

Simulator for Engineering R© (PSSE) using the Psspy module [64] available in PSSE.

The automation process creates two sets of files using PSSE: steady state operating

points (SAV files) and time series data of dynamic simulations (OUT files). Time

series data made available to ML4DSA using the Dyntools [64] module available in

PSSE
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Figure 4-1: Overall block diagram of ML4DSA.

4.3.1 Inputs

ML4DSA requires PSSE to be installed on the server computer. Initially, it locates

the PSSE installation and establishes the connection by starting a PSSE instance.

Power system network structure is introduced to ML4DSA by using the standard

SAV type file. As with the other input files to the system, SAV files are stored in the

database to enable the user to have easy access to input data within ML4DSA. In

addition, dynamic simulations require the device model parameters of the dynamic

devices in the power system. In addition, unbalanced network simulations require

the sequence data. Typical dynamic devices are the electrical machines together with

their auxiliary controls (such as exciters, governors, stabilizers, limiters, etc.), FACTS

devices and loads. The dynamic device models are introduced to ML4DSA using the

standard SNP type file. ML4DSA is capable of reading the contingency specification

files. Also, the user can construct the list of credible contingencies according to the

format compatible to ML4DSA’s contingency reader.
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4.4 Steady State Operating Point Generation

The electrical power generation levels and the unit dispatch changes continuously

with varying loads and system topology to maintain the power system in normal

operation. Load forecasting provides accurate means to predict load changes for a

period of time ahead. To produce a learned network using supervisory learning, it is

necessary to have the knowledge of the range of variation of the system parameters to

generate the database representing the entire range of parameter deviation. ML4DSA

allows the user to specify the range of parameter deviation for each generator and

load in the power system. Active and reactive power of the loads have been varied

respectively by using (4.1) and (4.2) [65]. ε is a uniform independent random variable

between 0 and 1. For example, ±20% deviation for active and reactive power of the

load on bus i is enabled by setting ∆P (i) = ∆Q(i) = 0.2.

P
(i)
L (k) = P

(i)
LO

{
1 + 2∆P (i)

[
0.5− ε(i)PL(k)

]}
(4.1)

Q
(i)
L (k) = Q

(i)
LO

{
1 + 2∆Q(i)

[
0.5− ε(i)QL(k)

]}
(4.2)

Active power generation and the terminal voltage of a generator bus were varied

respectively using (4.3) and (4.4). Accordingly, ±20% change of the power reference

and the terminal voltage by ±2% of the base case conditions is allowed by setting

∆P (i) = 0.2 and ∆V (i) = 0.02 respectively.

P
(i)
G (k) = P

(i)
GO

{
1 + 2∆P (i)

[
0.5− ε(i)PG(k)

]}
(4.3)

V
(i)
G (k) = V

(i)
GO

{
1 + 2∆V (i)

[
0.5− ε(i)V G(k)

]}
(4.4)

Then, the power flow is solved with the changed loading and generation. IEEE 39

bus 10 generator power system model has been used for the data generation reported
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in this chapter. The power mismatch during network structure changes is assumed to

be supplied by the swing generator. If the power flow is converged, the general limit

checks are performed on the new operating point to identify if that is an acceptable

operating point. If the violations are identified, the particular operating point is

discarded. If not, that operating point is saved into the database.

For the convenience of operation rather than individual parameter specification,

the user can specify a maximum deviation to generate random deviations for all loads

and generators. Perturbed values for loads and generation are stored in the database

and are editable by the user. If the user wants to keep some loads or generators unper-

turbed over the database generation process that is allowed by setting the deviation

to zero in the perturbation parameters for that particular device(s) in the database.

ML4DSA is capable of iteratively generating a user specified number of acceptable

operating points. Maximum number of iterations is specified as a parameter to avoid

indefinite looping if no acceptable operating points exist. The process flow chart to

create a single operating point by perturbing the load and the generation is shown in

Figure 4-2.

The process begins by solving the power flow using PSSE for perturbed loads and

generation to check if there is a steady state operating point. If there is no power flow

solution, ML4DSA ignores the set of randomly perturbed loads and generation and

starts from the beginning. If the power flow is converged, the algorithm proceeds to

system specific limit checks to decide if the operating point is an acceptable operating

point. A screenshot of the ML4DSA interface for operating point generation is shown

in Figure 4-3.
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Figure 4-2: Overall block diagram of acceptable steady state operating point generation process.
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Figure 4-3: A screen-shot of the ML4DSA interface for acceptable operating point generation.

4.5 System Specific Limit Checks and Corrective

Actions

The power system behaviour varies from system to system. The knowledge and insight

gained by various studies and actual system events help the operators to allow certain

violations acceptable to a particular system. For example, the reliability criteria

imposed on systems sometimes require a part of the system to operate strictly within

tight voltage limits when compared to the rest of the system. Therefore, the data

generation program should accommodate the system specific operating conditions.

ML4DSA facilitates packaging the system specific rules and parameters in a single

folder as shown in Figure 4-4. Rules are scripts written in Python and parameters are

in the form of comma separated text files. For example, to allow a higher voltage limit

in a particular bus, the user can write a Python script in the rule set folder accessing

the bus number and the new limits in the respective text file in the parameters folder.

Having the parameters separately from rules allow the reuse of rules and alternation

62



Corrective Actions

Rule set (contains python scripts)

Parameters (contains .csv files)

Figure 4-4: Structure of a typical corrective actions folder compatible for ML4DSA.

of parameters without making changes to Python scripts. Data interchange between

ML4DSA and Python scripts for specific corrective actions is performed via two shared

data structures.

The corrective actions folder is read by ML4DSA during the random operating

point generation. The user can have different folders containing system specific cor-

rective actions and parameters for different studies. Further, ML4DSA allows the

rule selection to enable or disable individual rules in a set of rules.

4.6 Automated Dynamic Simulations

Once the acceptable steady state operating points are created, for each operating

point, the system stability under each contingency is assessed. This involves the

time domain simulation of each contingency and creating the time series data (OUT

files). ML4DSA creates a separate folder for each perturbed operating point and

stores its contingency simulations outputs within. The process flow chart for dynamic

simulation is shown in Figure 4-5. The naming convention for output files (OUT files)

is the contingency number followed by the contingency name.

The set of contingencies to be applied are input to the system using a text file.

ML4DSA is also capable of reading the contingency specification file format used in

Transient Security Analysis Tool R© (TSAT). Preparation of the list of contingencies

in the above mentioned format is straightforward. ML4DSA has the capability of

generating the respective PSSE commands required to perform dynamic simulation
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for the set of input contingencies. Generated PSSE commands are stored in the

database and sequentially executed during dynamic simulation of contingencies.

By default, PSSE records a large number of output channels during dynamic simu-

lations which involves a significant overhead time for text file manipulation. ML4DSA

allows the user to specify the necessary output channels to be recorded. Recording

only the necessary channels enhance the simulation efficiency as well as enables faster

reading of OUT files by the stability assessment algorithms.

4.6.1 Stability Classification

ML4DSA facilitates integration of different stability assessment algorithms. Further,

it is also capable of reading the simulation output channels, created during the dy-

namic simulations, to the Python environment as per the requirement of the stability

assessment algorithm.

At the present stage of development, ML4DSA is capable of assessing the system

stability using the power angle based stability margin [40]. This index is being used

only to classify stable and unstable operating points under the list of credible con-

tingencies. The assessment results are presented to the user using a boolean value

as shown in the Figure 4-6. The simulation id is a unique alpha numeric value that

distinguish a database generation cycle. Moreover, the simulation id allows the user

to record and retrieve results of every database generation attempt.

4.6.2 TEF Terms Computation

A general list of steps for stability assessment using the TEF method is listed in

3.4.1. In this thesis, the computation results of the TEF method is not directly used

to assess the stability. Corresponding value of each term of the TEF (KE, PE1, PE2,

and PE3 ) for the set of generators are computed for each operating point under each

credible contingency. This requires one additional dynamic simulation of the fault-on

system as mentioned in Section 4.6. The simulation time of this simulation is usually
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Figure 4-5: Process flow of iterative dynamic simulation.

65



Stability Assessment
Query Search Clear

162 records found

1       test                           perturbed_1.sav             1_Bus_12                1                      View 

2       test                           perturbed_2.sav             1_Bus_12_u             0                       View

3       test                           perturbed_3.sav             1_Bus_12                1                      View 

4       test                           perturbed_4.sav             1_Bus_12_u             0                      View 

5       test                           perturbed_5.sav             1_Bus_12                1                      View 

Add Export

Id       Simulation Id                Sav file                              Contingency             Stability 

Figure 4-6: Screen-shot of stability assessment of a dynamic simulation.

about 5 to 15 cycles (83-250 ms). The computation method has been described in

detail in Section 3.4.2.

4.7 Testing Process

The capability of the developed software system has been tested for the computational

accuracy and for the computation speed for two power system models.

1. New England 39-bus test power system model; and

2. MRO power system model with over 50,000 buses.

The steady state operating point generation in Section 4.4 and application of case

specific limit checks and corrective actions in Section 4.5 have been tested using both

power system models. Automated dynamic simulations in Section 4.6, the stability

assessment based on the angle margin algorithm in Section 4.6.1 and the TEF term

computation in Section 4.6.2 have been tested using the IEEE 39 bus 10 generator

test power system model.
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The bottom-up testing and integration testing strategies have been used during

the software development.

4.8 Additional Features of the Software

4.8.1 Web Interface

ML4DSA comprised of a web-based interface. The application is developed on Web2Py

which is a free and an open-source web framework for agile development of secure

database-driven web applications. Web2Py facilitates the software design using the

Model View Controller (MVC) pattern by separating the data representation (the

model) from the data presentation (the view) [66]. Moreover, the framework facili-

tates the use of Python language throughout the different stages of development.

ML4DSA also facilitates the user authentication by utilising the features available

in Web2Py. The user authentication allows the implementation of software access

policies within an organization in order to ensure the fair access to propriety software

resources.

4.8.2 Configurability

The developed software system is conveniently configurable to different types of:

• power system models,

• stability assessment algorithms; and

• contingencies including balanced and unbalanced fault conditions.

4.8.3 Relational DBMS Integration and Study Reports

ML4DSA is connected to a SQLite [67] relational Database Management System

(DBMS). This database connectivity enables the ML4DSA to archive intermediate
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data computed during the computational process. For example, stability classifica-

tions, computed TEF terms, generator bus voltage magnitudes and phase angles are

available to view as reports or to download as datasets. These data can be utilised

by various extended applications.

4.9 Concluding Remarks

The steps involved in data generation for supervisory learning applications for power

systems transient stability assessment were explained. The requirement specifica-

tion and the development details of the stand-alone software system, ML4DSA, were

presented. Practical implementations of on-line DSA systems, based on supervisory

learning techniques, requires fast data generation algorithms with a possibility of

integrating with the other functional units.

ML4DSA automates PSSE. This can also be used for automated data generation

for power system studies in general. Further, it facilitates the user to plug-in the

customized algorithms for case specific limit checks and for system specific correc-

tive actions. The web-based software interface enables access over the web requiring

no additional software installed on client computers. Built in database integration

provides convenient access to resources.
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Chapter 5

Proposed Method for TSA using

Energy Based Power System

Features and Machine Learning

5.1 Introduction

This chapter presents the algorithm proposed in this thesis to enable more frequent

assessment cycles in on-line DSA, based on energy based power system features and

machine learning. The assessment accuracy of the proposed method is examined in

detail, for datasets of different sizes, operating conditions and disturbances. The in-

clusion of FACTS devices in the proposed algorithm is discussed. Further, the method

of practical implementation using two simultaneously running processes is discussed.

The computational resource requirements and the ways of achieving parallelism on

computation is discussed. Finally, the advantages and the significance of the proposed

method is discussed in relation to the similar methods proposed in recent literature.
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5.2 The Concept of Combining Direct Methods

and Machine Learning

Power system rotor angle instability is a result of the synchronous machines being

unable to release the energy accumulated during a disturbance to reach a new steady

state. Accordingly, the energy accumulation of generating units are direct indica-

tors of the stability of the system. Energy functions, that are the basis of stability

assessment in direct methods, represent the energy acquired by the generators at a

given time subsequent to a disturbance. Although the assessment accuracy of direct

methods is insufficient for on-line DSA, the terms calculated by the energy functions

can be considered as a set of pre-processed meaningful input features to a machine

learning algorithm. The significance of the direct method of stability assessment is

that the numerical integration is required only on the fault-on trajectory, usually less

than 500 ms, whereas the stability assessment using the time domain integration re-

quires at least about 3 s of simulation time of the post fault system to conclude the

stability status [8].

Recent literature on the application of machine learning for TSA have proposed to

use the following raw network quantities as candidate input features: a) generator bus

voltage magnitudes [17,18,23]; b) generator bus voltage phase angles [15,18,19]; and

c) active and reactive power injections of individual generators [18]. These network

quantities could be captured from the prefault system, at the fault clearing time

or several cycles after the fault clearing time. When the energy terms calculated

by the energy functions are used as input features, the input–output relationship to

be captured by the supervisory learning technique is expected to be less complicated

compared to the use of above mentioned raw network quantities as inputs. Therefore,

it can be expected that the machine learning algorithm would be able to capture the

underlying relationships with smaller sized training datasets and with higher accuracy

when meaningful features are used as inputs. The reduction of the size of the required
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training dataset will in turn result in shorter data generation time enabling more

frequent computational cycles.

Further, the thesis proposes to use a) load forecasting data; and b) a snapshot

obtained from the EMS to estimate an appropriate range for the operating point de-

viation. A network trained using the data generated in this manner is used for the

next computational cycle. Therefore, the trained network has the most recent infor-

mation about the system topology and operating conditions. The proposed technique

requires numerical integration of the fault-on system to calculate the energy terms.

However, it is proposed to use simplified generator models (classical generator model)

to perform the numerical simulation and to calculate the energy terms.

5.3 Proposed Method

5.3.1 A Simple Example

The following example is presented to demonstrate and investigate the performance

of the learnability with two different input sets. The non-linear function shown in

Equation (5.1) has inputs a, b, c, d and e.

y = a+ b sin(c) + c cos(d) + e2 sin(a) (5.1)

The variables t1, t2 and t3 are obtained using inputs a, b, c and d as shown in

equations (5.2), (5.3) and (5.4). t1, t2 and t3 serve as a set of pre-processed inputs to

the original function given in Equation (5.1).

t1 ← a+ b sin(c) (5.2)

t2 ← cos(d) (5.3)

t3 ← sin(a) (5.4)
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The simplified equation with the introduction of the pre-processed variables is

given in Equation (5.5). In order to perform the pattern classification, output y in

equations (5.1) and (5.5) is converted to a boolean value by considering the condition

y ≥ 0.

y = t1 + ct2 + e2t3 (5.5)

The hypothesis is that if the machine learning technique is fed with a pre-processed

set of data, the learning process becomes a) possible with a smaller dataset; b) more

accurate; and c) faster. In this analogous example, two neural networks are trained

to map the inputs and outputs of the non-linear functions given in equations (5.1)

and (5.5). The input set for the first network is the randomly generated variables a,

b, c, d and e. The second network is trained using the pre-processed inputs t1, t2 and

t3 along with the raw inputs c and e as shown in equations (5.2), (5.3) and (5.4).

Table 5.1: Cross validated classification accuracy of two networks trained using raw and pre-
processed inputs

Dataset Dataset
size

Number
of hidden
nodes

Number of
inputs

Accuracy of
classification
(5–fold CV) (%)

raw
200 14 5

83.0

pre processed 96.5

raw 200 35
5

93.5

pre-processed 100 14 95

Table 5.1 lists the specifications of the trained networks and the classification ac-

curacy resulted in 5-fold cross validation. The first two rows indicate the classification

accuracy of two networks trained using raw input features and pre-processed input

features (i.e. dataset size, number of hidden nodes and number of inputs). It can

be seen that the pre-processed input features are capable of producing more accurate

estimations. The third row lists the classification accuracy of a network trained with

the original dataset (i.e. 200) to obtain the best accuracy. In this case, the higher
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classification accuracy (93.5%) is obtained by using a higher number of hidden nodes

(i.e. 35). However, the best classification accuracy achieved was still lower than what

was obtained using the pre-processed input features. Also, as listed in the fourth row,

when trained with pre-processed input features, the accuracy drops only marginally

(from 96.5% to 95%) when the dataset size was reduced to a half (i.e. 100). Moreover,

the classification accuracy was still higher than the best accuracy achieved using the

raw input features.

The results indicate that a network trained with pre-processed data outperforms

the network trained using the raw inputs in following ways:

1. smaller dataset is sufficient to produce a well trained network;

2. faster training process due to lesser hidden nodes used to capture the non-

linearities; and

3. higher prediction accuracy.

5.3.2 Candidate Input Features of the TEF

The example in Section 5.3.1 demonstrated the advantage of appropriately pre-

processing the input features. The meaningful information captured in the TEF

terms can be considered as an intermediate set of results of the stability assessment.

Therefore, it is logical to consider the energy terms as a pre-processed set of input

features. The use of said features as inputs to the machine learning application is

expected to produce accurately classifying networks using smaller training datasets.

This will also result in a shorter duration for data generation which will in turn enable

more frequent computational cycles as well as accurate security assessments.

Classical energy functions are derived for the simplified power system model (clas-

sical generator model and the constant impedance load model) shown in Equation

(3.24) [48]. Equation (3.7) has been reprinted as Equation (5.6).

73



Mi
d2δi
dt2

+Di
dδi
dt

= Pi −
m∑

j=1,j 6=i

(Cij sin δij +Dij cos δij) (5.6)

The TEF (Equation (3.27)) explained in Section 3.2.1 has been reprinted as Equa-

tion (5.7) for clarity. The energy function shown in Equation (5.7) has been pro-

posed for the simplified power system model represented in Equation (3.24) (when

Di ≡ 0) [48, 51]. when the the mth synchronous generator is considered as the

infinite bus, θi = δi− δm and ω̃ = ωi−ωm. θsi is the respective rotor angle at the post

fault operating point.

V (θ, ω̃) =
1

2

m∑
i=1

Miω̃i
2

︸ ︷︷ ︸
KE

−
m∑
i=1

Pi(θi − θsi )︸ ︷︷ ︸
PE1

−
m−1∑
i=1

m∑
j=i+1

[Cij(cosθij − cosθsij)]︸ ︷︷ ︸
PE2

+
m−1∑
i=1

m∑
j=i+1

[∫ θi+θj

θsi+θ
s
j

Dijcosθijd(θi + θj)

]
︸ ︷︷ ︸

PE3

(5.7)

As shown in Equation (5.6), the four terms KE, PE1, PE2 and PE3 correspond-

ing to each generator are the candidate input features for machine learning. The three

terms, except PE3, can be evaluated analytically. The path dependant term, PE3,

can be evaluated using the trapezoidal approximation [9, 52].

5.3.3 Application of SVMs for Classification

The goal of security assessment is to determine a boundary that separates secure

and insecure data points in the most accurate manner. This boundary exists in a

very high dimensional state space, and the boundary is non-linear. The concept of

SVM is to transform the original coordinates into a new coordinate set so that the
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boundary of separation is linear. SVMs have demonstrated better performance over

multi-layer perceptron networks for TSA of power systems [24]. Recently, researchers

have obtained successful results by applying the SVM as the learning technique and

the Radial Basis Function (RBF) as the kernel function for the power system transient

stability classification problem [17,23,24]. Although the SVM is used as the machine

learning technique in this thesis, the proposed method can be implemented with other

candidate machine learning techniques.

Two linearly separable sets of data can be separated by using many different lines

(linear boundaries). In the said situation, many machine learning techniques are

capable of identifying a solution (i.e. a line). However, with the noisy data, the

chances of misclassification are higher when the margin between the separating line

and the dataset is narrow. The SVM minimizes the misclassification by finding this

linear boundary to separate with the maximum margin. The linear boundary with

the largest margin maximizes the distance to the closest point from both classes and

is called the optimal separating hyperplane [68]. The SVM problem formulation and

the application is briefly discussed in Appendix D. The LIBSVM toolbox [69] which

is available in public domain was used to implement the SVM for the simulations

reported during this thesis.

5.3.4 Two Simultaneous Processes: Training and Assessment

The electrical power generation levels and unit dispatch changes continuously with

varying loads to maintain the power system in the normal state of operation. Accord-

ing to [7], in the normal state “all system variables are within the normal range and

no equipment is being overloaded. The system operates in a secured manner and is

able to withstand a contingency without violating any of the constraints”. The range

of deviation of operating point makes it difficult to train a single learned network

that is capable of assessing the dynamic security of a practical power system. Such

an attempt will end up in generating a huge amount of training data which are mostly
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irrelevant to a given operating state of a power system. Therefore, it is more practical

to train a network for a given time window (for example 15 minutes) into the future.

For example, if the system state is captured at 6.00 a.m., then the goal is to train

a network valid for the time period from 6.15 a.m. to 6.30 a.m.. With the help of

load forecasting, it is possible to determine the range of load variations applicable to

a relatively small window of time.

This process can be implemented as a continuous process as shown in figure 5-1.

During any period of time (for example between t2 to t3) following two simultaneous

processes are happening.

1. the data generation and training of a new network capable of security assessment

for the next period of time (t3 to t4); and

2. security assessment using a network trained during the previous period of time

(t1 to t2).

On-line DSA involves capturing a real-time snapshot of the power system and

simulating the dynamic behaviour of the power system for a list of credible con-

tingencies. The results of the recently computed computational cycle can be used

to determine the system security until the next computational cycle is completed.

Shorter computational cycles enable capturing the operating state more frequently.

Therefore, the assessment results are more relevant to the system operational state.

When the application of machine learning is considered, the frequent training of net-

works requires relatively less complicated non-linearities to be captured by the learned

network. Therefore, the training process is simplified. Further, it will minimise the

generation of unnecessary training data which are irrelevant to the present operating

conditions of the power system. Accordingly, training a network capable of secu-

rity assessment for a short time interval is more effective, useful and practical. The

process of producing a learned network is comprised of two main steps

1. database generation for training data; and
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Figure 5-1: Two simultaneous processes 1) data generation and training a network for the next
period of time 2) security assessment using the previously trained network

2. training of a network.

Process A: Data Generation and Network Training

This process, as shown in Figure 5-2, starts with creating the database of training

data. Database generation requires the ranges of the system parameter deviation to

be estimated. For a practical power system, the load changes during a computational

cycle can be approximated using load forecasting. Usually the primary and secondary

frequency controls respond to maintain the balance of load and generation by changing

the power reference. This is facilitated by enabling a set of generators to change the

power reference to cater to the mismatch between the loads and generation. Data

generation starts with the generation of acceptable steady state operating points.

The loading is changed randomly within the specified ranges of the deviation. Then,

the power flow is solved and the bus voltages and controller parameters are checked.

If all quantities are found to be within proper pre-determined ranges, that operating

point becomes an acceptable operating point. If not, corrective actions are executed

to bring the system parameters to acceptable values. If the corrective actions are

capable of bringing the system parameters to normal values, the particular operating

point becomes an acceptable operation point. Otherwise, that operating point is

discarded. The steady state operating point generation procedure continues until the

required number of operating points are generated.
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Figure 5-2: Process A: Flow chart for data generation and network training for the next compu-
tational cycle.

The next step is to perform the time-domain simulations and to determine whether

the system is transiently stable or not for each credible contingency. The system

stability state is the target value for training the network. The inputs are the energy

terms computed at the fault clearing time. For the purpose of generating these

inputs, a simplified power system model (classical generator model and the constant

admittance load model) is simulated up to the fault clearing time. Four energy terms

as indicated in Equation (5.7) are computed for each synchronous generator. The

determination of the stability status requires the complete power system model with

detailed generator models to be simulated for each and every contingency for the set

of selected steady state operating points. Therefore, the database generation takes

a significantly longer duration and more computing resources when compared to the

training of a network.

Process B: Security Assessment Using a Trained Network

Algorithm (5.1) indicates the steps for security assessment using a trained network.

The system snapshot is assumed to be received from the EMS. To prepare the inputs

to the learned network, the simplified power system model is simulated up to the fault

clearing time and the energy terms are computed based on the faulted trajectory

information and the network structure. Then, the stability of the contingencies is
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estimated using the set of input features including the energy terms. This process

is repeated for all contingencies. Moreover, the simulation of contingencies and the

computation of the energy terms can be performed in parallel. That enables the

implementation of the entire process to complete even faster. The system security

state is determined after the stability of the system under all contingencies is assessed.

Algorithm 5.1 Process B: Steps for Security Assessment Using a Trained Network

Obtain the system state from the EMS
system state = secure
for all credible contingencies do

compute energy terms
estimate the system transient stability using the trained network
if the system is transiently unstable then

system state=insecure
end if

end for

5.4 Simulation and Results

5.4.1 Test System Model

The performance of the proposed technique is evaluated using the New England 39-

bus test power system [70]. This test power system model has been used in studies

and documented in the literature for testing TSA algorithms. The single line diagram

of the test system is shown in Figure 5-3. This test system is comprised of 39 buses,

10 generating units, 19 loads, and 46 transmissions lines (Appendix C).

The system dynamics for TSA and for the energy term calculation are modelled

as follows:

• For TSA: a) synchronous generator (fifth–order model); b) excitation system:

exciter, stabilizing feedback, and terminal voltage transducer c) power system

stabilizer consisting of washout filter and lag/lead phase compensation; and

d) load model: constant admittances.

79



Figure 5-3: Single line diagram of the New England 39 bus 10 generator test power system

• For energy terms calculation: the generating units were modelled using the

classical generator model and the loads were modelled as constant admittances.

Further, the swing generator was modelled as an infinite bus.

5.4.2 Data Generation

In order to generate a representative and statistically sound dataset, the loads and the

generation of the current operating point were changed. Active and reactive power

of the loads were varied by ±20% (i.e. ∆P (i) = ∆Q(i) = 0.2) respectively using

Equation (4.1) and Equation (4.2) [65]. ε is a uniform independent random variable

between 0 and 1.

Active power generation and the terminal voltage of a generator bus were varied

respectively using Equation (4.3) and Equation (4.4). Accordingly, the generators on
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bus 34 and 38 were allowed to change the power reference by ±20% (i.e. ∆P (i) = 0.2)

and the terminal voltage by ±2% (i.e. ∆V (i) = 0.02) of the base case conditions.

Then, the power flow is solved with the changed loading and generation. The

power mismatch is assumed to be supplied by the swing generator on bus 39. If the

power flow is converged, the general limit checks are performed on the new operating

point to identify if that is an acceptable operating point. If the violations are iden-

tified, the particular operating point is discarded. If not, that particular operating

point is considered as an acceptable operating point and is saved into the database.

This process is repeated until 70 operating points are generated. The first 50 operat-

ing points were selected to generate the training dataset and the remaining 20 were

used to validate the trained network.

After that, the stability state (i.e. 1 for stable and 0 for unstable) of each operating

point for each credible contingency is assessed by performing a non-linear time domain

simulation with the full detailed models of generators. This stability state is the

target value in the dataset for training and testing of the SVM. The most severe

type of fault, three phase to ground, is considered as the type of fault. Following

contingencies were selected for simulations: 1) fault on the line 26-29 closer to the

bus 26 cleared by isolating the line; 2) fault on the line 2-3 closer to the bus 2 cleared

by isolating the line; 3) fault on the line 15-16 closer to the bus 16 cleared by isolating

the line; 4) fault on the line 11-12 closer to the bus 12 cleared by isolating the line;

and 5) fault on the line 16-21 closer to the bus 21 cleared by isolating the line. The

faults were expected to be cleared by the primary protection, thus, a 100 ms fault

clearing time was assumed. The other 5 contingencies are the same as above except

the fault is assumed to be cleared by the back-up protection, thus, a 300 ms fault

clearing time is assumed. Accordingly, the size of the training dataset is 500 (50

operating points × 10 contingencies) and the size of the validation dataset is 200 (20

operating points × 10 contingencies). The dynamic simulations are performed using

the complete dynamic models (not the classical model) and the stability status is
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recorded in the built in database of the data generation software ML4DSA. At the

end of the time domain simulation of the postfault system for a duration of 3 s, the

transient stability of the system under a particular contingency is concluded based

on the power angle based stability index shown in Equation (5.8) as proposed in [40].

∆δmax is the absolute value of the maximum angle separation of any two generators

at the end of the postfault system simulation. If η > 0 the system is considered

as transiently stable, otherwise, the system is transiently unstable. The system was

classified as transiently stable for 249 contingencies and unstable for 251 contingencies

in the training set. In the validation set, the system was transiently stable for 101

contingencies and unstable for 99 contingencies. The same validation set is used for

the reported results in Section 5.4.4 and 5.4.5, therefore, the size of the validation set

is not included in the tables.

η =
360o −∆δmax
360o + ∆δmax

(5.8)

The swing generator was modelled as an infinite bus during the fault-on trajectory

simulation using the simplified power system model.

5.4.3 Accuracy Indexes

The classification accuracy is evaluated by the following indexes.

1. %FA = (
∑

(False Alarms)/n)× 100

2. %FD = (
∑

(False Dismissals)/n)× 100

3. %FC = (
∑

(False Alarms+False Dismissals )/n)× 100

where n is the number of samples in the validation dataset. A FA occurs when a

stable operating point for a particular contingency is classified as unstable, and a FD

occurs when an unstable operating point for a particular contingency is classified as
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stable. A False Classification (FC) is a misclassification occurred due to a FA or a

FC.

5.4.4 Feature Selection for Machine Learning

The cross validation accuracies obtained on two input feature sets based on the can-

didate feature sets mentioned in Section 5.3.2 are shown in Table (5.2). In the first

set, the input features are the energy terms, thus, the number of terms is 36 (i.e. 4

terms per generator × 9 generators). The other dataset has two inputs per generator

(kinetic energy and sum of potential energy terms). In this dataset the total number

of input features is 18 (i.e. 2 terms per generator × 9 generators).

Table 5.2: 5-fold cross validation accuracy of two feature sets based on the four TEF terms

Input features Dataset size %FC (5-fold CV)
KE, PE1, PE2, PE3

500
1.2

KE, PE1 + PE2 + PE3 1.2

The computation burden of computing the PE3 term is significantly higher than

the other terms because it involves numerical integration. Therefore, the computa-

tional complexity could be further decreased if the network can be trained without

using the PE3 term. The accuracy of the classification excluding the term PE3

presented in Table 5.3 indicates that the said term can be excluded from the input

features without losing the accuracy. In addition to the results presented in the Ta-

ble 5.3, numerous sensitivity studies were performed to determine the best set of

input features. It was found that the input sets shown in Table 5.3 gave the best

performance when only the energy terms are present in the input feature set.

Table 5.3: Training and validation accuracy of two networks trained without the numerically
intensive PE3 term

Training Validation
Input features Dataset size %FC (5-fold CV) %FA %FD %FC
KE, PE1, PE2

500
1.2 1 0.5 1.5

KE, PE1+PE2 1.2 1.5 0.5 2
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Generator bus voltage magnitudes and phase angles are identified as strong fea-

tures for application of machine learning for TSA [15, 17]. Table 5.4 shows the clas-

sification accuracy obtained using the two networks trained by incorporating the per

unit generator bus voltage magnitudes and phase angles (in radians), obtained at

fault clearing time, in the input features. Therefore, the feature sets in Table 5.4 are

identified as a better combination of input features.

Table 5.4: Training and validation accuracy once the generator bus voltage related input features
are incorporated

Training Validation
Input features Dataset size %FC (5-fold CV) %FA %FD %FC
KE, PE1, PE2, Vmag,
Vang 500

1 1 0.5 1.5

KE, PE1+PE2, Vmag,
Vang

1.5 1 0.5 1.5

In order to demonstrate the effectiveness of using the energy terms, we trained a

network with only the voltage magnitude terms and phase angles as input features.

The best performance was 7.6% of FCs using the 5-fold cross validation. This clearly

indicates the improvement of assessment accuracy achieved by using energy terms

along with generator bus voltage magnitudes and phase angles.

5.4.5 Accuracy of Classification for Smaller Training Datasets

This section determines whether the size of the training dataset can be reduced with-

out sacrificing the accuracy of classification. The size of the dataset used for the

results presented in Table 5.4 is 500. The training process was repeated with smaller

datasets of 250 and 125. The results are shown in Table 5.5. The number of contin-

gencies in the training dataset for which the system was classified as stable (S) and

unstable (U) are also given in the Table 5.5.

The results shown in Table 5.5 confirm the half-sized training dataset is capable of

producing well trained networks. Although, there is an increase of classification error

with respect to the original (500) dataset, the classification accuracy is acceptable.
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Table 5.5: Training and validation accuracy of networks trained using a half and a quarter sized
training dataset

Training Validation
Input features Dataset size %FC (5-fold CV) %FA %FD %FC
KE, PE1, PE2, Vmag,
Vang

250
2.4 1 1.5 2.5

KE, PE1+PE2, Vmag,
Vang

(S: 125 U: 125)
2.4 1 1.5 2.5

KE, PE1, PE2, Vmag,
Vang

125
4.8 2.5 1.5 4

KE, PE1+PE2, Vmag,
Vang

(S: 60 U: 65)
3.2 2.5 1.5 4

The quarter-sized training dataset (125) is still capable of producing networks with

over 95% classification accuracy. The performance on the validation dataset indicates

a proper generalisation of the trained networks. Further, the percentage of FDs shows

no increase for a network trained using a half-sized or a quarter-sized dataset.

5.4.6 Classification Accuracy for Unbalanced Faults with the

Presence of Voltage Sensitive and Dynamic Loads

The study was extended by introducing unbalanced faults in the presence of voltage

sensitive and dynamic loads. The load characteristics affect the transient stability of

a power system [47]. In order to assess the performance of the proposed algorithm

in the presence of the voltage dependant and dynamic loads, the loads connected to

bus 4, 12, 16 and 18 were replaced by composite loads. The composite loads are

comprised of 40% large induction generators, 20% small induction generators, 20%

discharge lighting and 20% constant power load. This composition was selected based

on the typical range of values mentioned in [47]. During this study, dynamic loads

were included in the system model for TSA. The same model as in Section 5.4.1 was

used for TEF term calculation.

Contingencies of single line to ground faults at the middle of following lines were

included. 1) 26-29; 2) 2-3; 3) 15-16; 4) 11-12; and 5) 16-21. The faults were cleared by
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isolating the faulted line. Similar to the contingency specifications in Section 5.4.2, a

faulted time of 100 ms was assumed for the faults cleared by the primary protection

and 300 ms was assumed for the faults cleared by the backup protection. The sum of

negative sequence fault impedance, Z2, and the zero sequence fault impedance, Z0,

was used as the effective fault impedance, Zef , in the positive sequence model for

TSA, as shown in Equation (5.9), in order to represent the effect of the single line to

ground fault [7] .

Zef = Z2 + Z0 (5.9)

Table 5.6 shows the classification accuracy of the networks trained using a dataset

of size 250. The simulation was performed for two operating points. The first oper-

ating point was the same as previous. The second operating point was obtained by

scaling-up system wide loads and generation by 10% to obtain a more stressed oper-

ating point. Table 5.7 shows the classification accuracy of the networks trained using

a dataset of size 125. The results confirm that the proposed method is valid in un-

balanced fault situations and with the presence of the voltage sensitive and dynamic

loads.

Table 5.6: Training and validation accuracy of networks trained using a dataset of 250 items for
line to ground faults with the presence of voltage dependant and dynamic loads

Operating
point

Input features %FC (5-
fold CV)

%FA %FD %FC

1
KE, PE1, PE2, Vmag, Vang 0 0 1 1
KE, PE1+PE2, Vmag, Vang 0 0 1 1

2
KE, PE1, PE2, Vmag, Vang 0.8 1 0 1
KE, PE1+PE2, Vmag, Vang 0.8 0 2.5 2.5

5.4.7 Computational Performance and Resource Requirement

Training data generation for the SVM mentioned in Table 5.5 (dataset size 125) re-

quired 2 minutes. The parameter search process was completed in 0.6 s. The training
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Table 5.7: Training and validation accuracy of networks trained using a dataset of 125 items for
line to ground faults with the presence of voltage dependant and dynamic loads

Operating
point

Input features %FC (5-
fold CV)

%FA %FD %FC

1
KE, PE1, PE2, Vmag, Vang 0 1 0 1
KE, PE1+PE2, Vmag, Vang 0 0 1 1

2
KE, PE1, PE2, Vmag, Vang 1.6 1.5 0 1.5
KE, PE1+PE2, Vmag, Vang 1.6 0 2.5 2.5

of the SVM required 0.03 s. A prediction using the trained SVM was completed

in negligible time (reported 0 s). A fault-on trajectory simulation for a particular

contingency took less than 0.01 s. The computing times reported are based on a

Windows 7 PC with Intel Core i7 3.4 GHz processor with 8 GB RAM. Accordingly,

with the reported hardware and for test power system, it is possible to implement a

DSA system with a 3 minute computational cycle. The data generation process is

comprised of highly parallelisable tasks (e.g.: stability status of a single steady state

acceptable operating point under each contingency can be assessed as a stand-alone

task). For larger power systems, the speed-up of the entire process can be achieved

by introducing more computing resources.

5.4.8 Inclusion of FACTS Devices Including HVDC Lines

The proposed approach facilitates the stability assessment of power systems integrated

with FACTS devices by introducing the device specific terms of the TEF to the input

features of the SVM. For example, [71] presents the proposed energy function with

additional terms to Equation (5.7) in order to represent the dynamics of a unified

power flow controller (UPFC). An energy function for a static series synchronous

compensator (SSSC) in the similar structure is reported in [72]. The method proposed

in [73] can be used to incorporate the HVDC dynamics into the TEF by excluding

the integral terms in the proposed TEF.
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5.4.9 Significance of the Proposed Method

This section discusses the comparative advantages of different machine learning based

methods proposed in literature on the accuracy of the assessment, specifications of

the dataset, speed of assessment and the specifications of the machine learning ap-

plication. The classification accuracy reported in this thesis obtained for the IEEE

39 bus 10 generator test power system which is about 96% is comparable to the sim-

ilar research carried out in recent past [15, 17, 20]. Moreover, the percentage of FDs,

which is about 1.5%, occurred in the proposed method is lower than the reported

FDs in [15] and [17]. Research work proposed in [20] and [15] requires the contin-

gency specific networks to be trained, whereas, the proposed technique requires only

a single network to be trained for the set of credible contingencies. This is expected

because the contingency specific information is already embedded in the energy terms

used in the proposed method. In addition, the TEF features are capable of training

networks with significantly smaller training datasets as shown in Table 5.5. For ex-

ample, the technique proposed in [20] and [15] requires a dataset of 100 elements to

train a network for each and every contingency. The technique proposed in [17] for

protection applications, requires 492 elements in the dataset to train a network to

detect the transient stability of the system. This improved performance was also ex-

pected because pre-processed input features were used in the proposed method (this

was illustrated in the simple example in 5.3.1).

The duration and the model complexity of the time domain simulation required to

compute the input features for the learned networks is significant in determining how

fast the assessment can be made by a particular technique. The proposed technique

requires only the fault-on trajectory (up to the fault clearing time) to be simulated

for computing the input features. The range of the operating point deviation that

can be accommodated for accurate stability assessments is also a strength in the

proposed method. The proposed technique is capable of accommodating load and

generation (real power) deviations in the range of −20% to +20%. This is a wider

88



range compared to the −10% to +10% captured in [15] and upto +10% in [17,23].

The duration of the post fault trajectory simulation which is performed in Process A,

training data generation for machine learning, can be experimentally adjusted based

on the system insights. In a context where multi-swing instabilities may occur, the

initial step is to extend the duration, for example up to 10 − 20 s, of the post fault

trajectory simulation. That results in capturing the multi-swing unstable cases into

the training dataset.

5.5 Concluding Remarks

The novel algorithm to enable more frequent assessment cycles in on-line DSA, based

on energy based power system features and machine learning, proposed in this thesis

was presented in this chapter. It was shown that the proposed method is capable

of producing learned networks with significantly smaller sized datasets. The classi-

fication accuracy of the proposed algorithm was examined for different datasets and

for different operating conditions. Further, the proposed algorithm was tested for

unbalanced faults with the presence of voltage sensitive and dynamic load models.

The results indicated that estimation accuracy is applicable for TSA.

The implementation details of the proposed technique which involves two simul-

taneously running processes was explained in detail. Integration of the proposed

method for practical power systems was discussed in brief. The proposed method en-

ables the application of machine learning based on a most recent operating point and

for the operating point deviations estimated based on load forecasting that minimise

the data generation on practically irrelevant operating conditions. Further, as a sin-

gle trained network is in use only for a single computational cycle, the non-linearities

to be captured by the machine learning is limited. This makes the learning process

simple and fast.
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Chapter 6

Implementation of on-line DSA

6.1 Introduction

A DSA scheme comprises of many components dedicated to perform different func-

tionalities. Some of these components already exist in the power system, whereas,

the other components may be newly introduced. A practical implementation requires

the integration of these components to work in a seamless manner.

By considering the computational demand of the automation and amount of data

to be generated, a reasonable question one might ask, having agreed to the method

proposed in Chapter 5, is that “can this be practically implemented to be an on-

line DSA system?”. The main objective of this chapter is to present the framework

developed for real-time and integrated testing of the DSA algorithm presented in

this thesis. This chapter also highlights the importance of real-time testing of DSA

algorithms. Finally, the current stage of development and the proposed improvements

for applications to large power system models are discussed.
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6.2 The Proposed Framework

The main challenge of the on-line DSA is to conclude the system security within

an acceptable computational cycle time. Long computation cycles taken by the DSA

algorithms produce obsolete security assessment results as the power system operating

state continues to evolve with the changes in loads, generation and the disturbances.

The proposed DSA scheme in Chapter 5 comprises of two continuous processes

named Process A and Process B. Each of these processes comprise of several seamlessly

integrated components. For example, at a glance, the Process A, which produces a

learned network, generates the acceptable steady state operating points upon receiv-

ing the most recent snapshot of the power system. Then, the system stability state

under each credible contingency is assessed for the set of previously generated steady

state operating points.

The future developments of machine learning based DSA will more likely be in the

direction of adapting and frequent training of new networks as indicated in Figure 5-1.

Although the real-time implementation is demonstrated for the algorithm proposed

in Chapter 5, it is equally applicable for testing any other DSA algorithm.

6.2.1 Requirement Specification

A practically integrated implementation of on-line DSA scheme needs to address the

following key aspects:

• critical data communications aspects.

• computational hardware requirements; and

• capabilities and limitations of the existing tools available at present.

The general list of specifications is listed as follows. The developed framework

should be able to:
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(A) seamlessly integrate the different functional components of the entire security

assessment process (i.e.: real-time simulators, data conversion and generation,

machine learning, security assessment, operator information systems, etc.).

(B) configure distributed processing over many computational units to achieve the

target computational cycle time.

(C) conveniently configurable to different power system models and for testing dif-

ferent DSA algorithms.

(D) utilize the industry proven tools for real-time simulations, power flow and dy-

namic simulations; and

(E) facilitate data archiving for on-demand applications.

The main functional requirement is to be able to complete the computations within

the acceptable computational time–which is about 15 min. Accordingly, within a

single computational cycle, the scheme should be able to:

• generate the training data set upon receiving the most recent system snapshot

(for training) and to train an accurately classifying network (once in a compu-

tational cycle); and

• continuously assess the system security using the system snapshots generated

by the EMS (usually in every 2 min).

These functional requirements leads to the following set of specifications.

(A) real-time simulation of the power system model: the proposed scheme should

be able to a) change the loading and generator dispatch according to a pre-

specified load profile; and b) produce the system snapshots for machine learning

and security assessment purposes.
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(B) should be able to convert the power system snapshot (in the form of meter

captures) generated by the real-time simulator into a compatible form for the

data generation algorithms including the load data, generation data and the

breaker status.

(C) should be able to produce a learned network for the next computing cycle. Fol-

lowing steps of the process were explained in Section 5.4.2 to (5.4.4). a) Gen-

erate acceptable steady state operating points b) simulate the list of credible

contingencies and conclude the stability based on a stability assessment algo-

rithm (explained in Section 4.6) c) simulate the fault-on trajectory and compute

the energy terms at the fault clearing time; and d) train the learned network.

(D) perform the security assessment using a learned network; and

(E) communicate the system security state to the operator.

6.3 Overall Structure of the Proposed Framework

The overall block diagram of the framework is illustrated in Figure 6-1.

The power system is simulated in a real-time digital simulator (RTDS). The load

variations in the real-time simulated power system are implemented using a pre-

specified system load curve. Similarly, the pre-specified generation dispatch schedule

is used to alter the generation. This algorithm is described in Section 6.4. Section

6.5 describes the system snapshot generation algorithm.

Process A and Process B are two independently running processes in two (or more)

processing units over the Local Area Network (LAN). Both processes are triggered by

the availability of the most recently captured power system snapshot. The snapshot

produced by the Real Time Digital Simulator R© (RTDS) is made available to these

two processes in a dedicated folder over the LAN. Process A uses the snapshot for

producing a DSA learned network for the next computational cycle. Process B uses
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Figure 6-1: Overall block diagram of the real-time DSA framework

the snapshot for DSA by using the trained network produced by Process A.

The next stage of the process, which is common to both Process A and Process

B, is to convert the RTDS snapshot to a PSSE compatible power system snapshot.

During this process, the base case power system model is altered to have the most

recently captured values obtained from the RTDS snapshot. This process is designed

in a way independent of the power system model. Then, the PSSE compatible power

system snapshot is used for the production of a DSA learned network by Process

A. The next two steps of the Process A are: 1) generate acceptable steady state

operating points; and 2) system stability assessment of the set of operating points

generated in step 1. The computation process of the energy features are common to

Process A and Process B. Process A computes the energy features (of the system

under each credible contingency and for all the operating points generated in step

1 ) for machine learning. Process B computes the energy features (for all credible
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contingencies using the most recently captured system snapshot) for DSA. The final

step of Process A is to produce the DSA learned SVM using the generated data. The

output of the Process A is made available to the Process B over a Network Attached

Storage (NAS). Process B uses the output of the Process A, i.e. the DSA learned

network, to estimate the system stability state under each credible contingency using

the energy features as inputs.

The final stage of a computational cycle is to alert the system operator on the

overall system security state under the current operating conditions. At present stage

of development, if the system is insecure, the list of contingencies where the system

is unstable is shown to the operator.

6.4 Real-Time Simulation of Power System Oper-

ation

The practical power system operation is simulated in the RTDS. The key feature

of the real-time simulators is to ensure the system simulation results are available in

real-time. Further, the said feature demands for specific hardware requirements based

on the power system model being simulated. The implementation of the complete

IEEE 39-bus 10-generator system required 5-PCB processing cards. Two RTDS racks

were connected using a point to point Global Bus Hub (GBH) connection [74]. Data

communication is facilitated by the Inter Rack Communication (IRC) interface which

is built-in to GTWIF cards. The split of the power system model into two subsystems

is as shown in Figure 6-2.
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Figure 6-2: Boundaries of the two subsystems implemented on two RTDS racks (IEEE 39-bus
10-generator test power system)

RTDS is an Electro Magnetic Transient (EMT) simulator. Transmission lines are

modelled using the Bergeron model [75]. Further, the system is modelled as a three

phase system.

The power system operating point continuously evolves due to the continuously

occurring loading changes. It is important to test the DSA algorithms under changed

operation conditions. Load forecasting provides accurate estimations of the load

changes in a practical power system. Operating point deviation is facilitated by

changing the power system loads according to a given load curve as shown in Figure

6-3. In Figure 6-3, the load change is represented by the fraction of the base case

load.

Generation changes are implemented by changing the power reference of the gen-

erator governor. In practical power systems the generator/s (one or a small group
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Figure 6-3: Representation of the load curve in 15 s intervals for a single load

of generators) on Automatic Generation Control (AGC) mode are responsible for

changing the power reference to cater for the power mismatch. However, a genera-

tion re-dispatch can be ordered by the power system operators due to economic or

maintenance purposes. These situations can be modelled in a similar manner.

6.5 Construction of the System Snapshot

Process A and Process B are triggered by the availability of the most recent power

system snapshot in the dedicated folders in the LAN. The script running on RTDS ex-

ports the system snapshots in 15 min and 2 min time intervals respectively for Process

A and Process B. Algorithm (6.1) is the pseudo code algorithm of the script running

on RTDS. Component 1 and Component 2 are executed simultaneously using RTDS

timer components by the time intervals defined for process A(15 min) and process

B(2 min).

A power system snapshot is generated using the measurements of voltages, cur-

rents, breaker states, power flows, etc., collected from all over the power system com-

ponents having the measurement units installed. A power system snapshot is typically

prepared by the EMS by utilizing the measurements collected by the SCADA sys-

tem. Integration of PMUs enable the production of more accurate snapshots by using

time aligned data collected over the Wide Area Measurement System (WAMS). In

practical systems, the EMS output is usually a solved power flow.
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Algorithm 6.1 Snapshot generation process
Input: meter names.tex
Output: snapshot.csv

Component 1 Snapshot for process A
from meter names.tex as meters
Create the empty snapshot.csv in the dedicated storage location on the LAN
foreach meter in meters do

Capture the reading from RTDS runtime as value
Insert a record to the snapshot file. record format: [meter, value]

end
End Component

Component 2 Snapshot for process B
Same as Component 1, except the change of the location of snapshot.csv correspond-
ing to process B
End Component

In the developed framework, each entry of the generated snapshot (snapshot.csv)

corresponds to the instantaneous value of a meter in the RTDS runtime environment.

Each row of the snapshot.csv, as shown in Figure 6-4, comprise of three mandatory

fields (Meter Name, Type and Bus) and an optional field (Id). A meter is assigned to

measure 1) active power generation of a generator 2) reactive power generation of a

generator 3) bus voltage magnitude 4) bus voltage angle 5) active power consumption

of a load 6) reactive power consumption of a load ; or 7) plant voltage magnitude. The

set of captured meters are selected based on the necessity of the measurements for the

construction of the system snapshot. The captured readings of the meters are used to

change the respective quantities of the base case power system model. This current

development state is limited to facilitate only the load and generation changes of the

base case, thus, allows no structure changes for a snapshot captured during on-line

operation. This feature can be enabled by capturing the breaker status and applying

those in the base case snapshot similar to changing the loads and generations. The

names of the meters of which the values to be captured are given as an input to the

RTDS script. This parametrization process makes the snapshot capturing process

independent of the power system model.
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Meter Name Type Bus Id

Gen P Gen Q Load P Load Q Plant VBus V Bus 0

Figure 6-4: The format of a meter capture record in snapshot.csv and the 7 types of faciltated
quantities

The snapshot created by the RTDS is to be converted into the PSSE compatible

form to make it accessible by Process A and Process B (to automate the PSSE for

training data generation and energy features computation). The inputs and output

of the conversion process is shown in Figure 6-5. The algorithm should be capable of

identifying the corresponding device type by the name of the meter where the value

is captured in the snapshot.csv. This is facilitated by introducing an intermediate

input meter names to components which comprises of the information required to

alter the respective value in the base case snapshot.

Algorithm
Power system snapshot 

compatible for 
data generation algorithms 

Meter_names_to_components 

Real time simulator 
generated snapshot

Base case 
power system snapshot

Figure 6-5: Representation of the load curve in 15 s intervals for a single load

Algorithm (6.2) shows the overall process flow of the snapshot conversion process.

The Python based PSSpy Application Programming Interface (API) [64] is used to

alter the base case parameters of respective components according to the RTDS snap-

shot. This process is independent of the power system model in use, therefore, only

the input meter names to components to be set appropriately for testing a different

power system model. In addition, the snapshot generated by the RTDS and the PSSE

compatible snapshots are stored in the built-in database for archiving purposes.
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Algorithm 6.2 Convert snapshot.csv to the PSSE compatible format

Input: snapshot.csv, meter captures to snapshot, base case power system model
Output: PSSE compatible system snapshot
Read snapshot.csv as snapshot
Read meter captures to snapshot as device types
Initialize PSSE
Open the base case power system in PSSE
foreach entry in snapshot do

Find the respective device type

switch device type do
case Gen P

change generator active power in PSSE case using Bus and Id
(psspy.machine data 2)

case Gen Q
change generator reactive power in PSSE case using Bus and Id
(psspy.machine data 2)

case | BusV |
change bus voltage magnitude in PSSE case using Bus
(psspy.bus data 2)

case Bus θ
change bus voltage angle in PSSE case using Bus
(psspy.bus data 2)

case Load P
change load active power in PSSE case using Bus and Id
(psspy.load data 3)

case Load Q
change load reactive power in PSSE case using Bus and Id
(psspy.load data 3)

case Plant V
change plant voltage magnitude in PSSE case using Bus
(psspy.plant data, bus data 2)

otherwise
Raise Error: invalid device type

endsw

endsw

end
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6.6 Process A: Producing a Learned Network

The developed framework seamlessly integrates the functionality of the following

phases of process A:

1. generation of steady state acceptable operating points.

2. simulation of credible contingencies and system stability state computation of

each operating point.

3. fault-on trajectory simulation of simplified power system model.

4. computation of energy features using the fault-on trajectory; and

5. training the SVM.

6.6.1 Scalability of Process A

Process A comprises of highly computationally intensive tasks. For a practical power

system, performing the time domain simulation of each credible contingency on each

operating point is a highly time consuming process. For a power system suspicious

of having multi-swing instabilities, the time domain numerical integration has to be

performed for about 20 s. With the computing power available in today’s computers,

it is challenging to ensure the computational cycle time while simulating all contin-

gencies in a single computing unit. Simulating a single contingency on an operating

point is a stand-alone task. Likewise, the step 2, in Section 6.6, comprises of a set of

stand-alone processing tasks, thus, parallel processing can be conveniently introduced

to achieve the speed-up (i.e.: by introducing more computing units). Therefore, for

practical and large power system models the computational cycle time can be assured

by introducing more computing units in step 2. This strategy is also applicable to

step 1.
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6.7 Process B: Security Assessment Using the Learned

Network

Process B computes the dynamic security status based on the most recent system

snapshot and alerts the power system operator about the system security state. This

entire process is explained in Section 5.3.4. The developed framework seamlessly

integrates the functionality of following phases of Process B:

1. fault-on trajectory simulation of simplified power system model

2. computation of energy features using the fault-on trajectory

3. DSA estimation

4. alerting the operator

Once the system security state is computed, the next two steps are to

1. alert the power system operator

2. initiate the corrective actions

At present, the developed framework is capable of alerting the user on the system

dynamic security state. If the system is insecure, the list of contingencies for which

the system is unstable is shown to the user. The corrective actions may be initiated

with or without the intervention of the system operator. Implementation of corrective

actions is out of scope of this thesis.

6.8 Concurrent Implementation of Process A and

Process B

At the present state of development, process A and process B are running in two

computers. These two processes share the data over the LAN. The real-time simulator
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runs on two RTDS racks and the snapshots are exported to an NAS. The overall

implementation is illustrated in Figure 6-6.

Alerts to the userAlerts to the userAlerts to the user

DSA 
Learned network

Snapshot 
for Process A

Snapshot 
for Process B

Load 
Pro�le

Storage onStorage on
Local Area NetworkLocal Area Network

Storage on
Local Area Network

Process AProcess AProcess A

Process BProcess BProcess B

RDBMS

RDBMS

Real-time Real-time 
digital simulatordigital simulator
(RTDS)(RTDS)

Real-time 
digital simulator
(RTDS)

Figure 6-6: Illustration of the real-time implementation of DSA

Process A and B continuously checks for the availability of new snapshots. Once

a snapshot is available, the respective process is triggered.

6.9 Continuation at a Network Topology Change

In on-line operation, the security assessment is performed using the most recently

captured system snapshot. The assessment results will indicate if the system has

moved to a new operating state such as alert or emergency. [6]. These information

can be used to alert the operator or to trigger the controller actions. However, once

the system is subjected to a contingency, the network structure is changed and data

generated so far (to produce the learned network for the next period of time) becomes

irrelevant for the new operating point. Therefore, the ongoing data generation should

be paused and restated with respect to the new operating point. A similar situation
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arises at a generation re-dispatch or at a scheduled maintenance.

6.10 Other features

6.10.1 DBMS

Both Process A and Process B have access to built-in relational DBMSs. The frame-

work is configured to archive information at different stages of the process. For

example, the snapshots received from the RTDS and the PSSE compatible snapshot

are archived in the database. This information is available to extended application

development and for data mining purposes.

6.10.2 User Authentication

The proposed framework automates commercial software. Therefore, only the users

who have been granted the privileges to access these software are eligible to operate

the framework. The built-in user authentication module can be configured according

to the software access policies of an organization.

6.10.3 Web-based Interface

The operator interface to the developed framework is a web interface and is based

on web2py framework [63]. Accordingly, no software installations are required on the

client computer.

6.11 Testing

During all stages of the development process, unit testing was performed on func-

tional components to verify the functional requirements. Comprehensive complexity
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analysis has been performed during the development of each module to achieve the

optimum performance.

Several tests were performed to ensure the fulfilment of the requirement specifica-

tions mentioned in Section 6.2.1 with a focus on the following aspects a) the capability

of maintaining a consistent computation cycle time; b) to check if any incompatibili-

ties exist among integrated functional components; and c) data communication issues.

The test system, data generation, machine learning and the contingency specifications

of the tests performed are based on the specifications provided in Section 5.4. An

average of 2.5 min computation cycle time was observed during a seven hours of con-

tinuous operation of the framework. Maximum computation cycle time recorded is

2 min and 40 s.

6.11.1 Further Developments

• Introduction of additional computing resources to speed-up the system stability

assessment under the set of contingencies requires the development of process

allocation algorithms. These algorithms are expected to divide the number of

stand-alone simulations among the available computing resources.

• At present, the RTDS snapshot entries are used to alter the base case power

system model which is available in the database. However, the application is to

be developed to enable communication of the structural changes occurred in the

base case in system model. For example, as a result of a scheduled maintenance

event, one or more transmission line outages can be observed in the power

system in operation. These scenarios can be facilitated by communicating the

breaker status using the RTDS snapshot. The current state of the program

requires the base case to be loaded with the particular line is disconnected.

• SVM training algorithms that are currently running in Matlab can be integrated

to the ML4DSA which is based on Python.
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• It has been observed that the data file handling related to the Step 2 of Process

A introduces significant delays to the entire process. The time series values of

the recorded channels which are stored by the PSSE are read once again to

assess the system stability status using the stability assessment algorithm. The

same process for the fault-on trajectory happens in the steps 3 and 4 of Process

A and in steps 1 and 2 of Process B. A significant speed-up can be achieved if

the data transfer between two processes is developed to be more efficient.

• The scope of this research is to monitor the dynamic security status of a power

system in terms of the transient stability. The next step is to decide and apply

the corrective actions to bring the system to the normal state, if the system

state is insecure.

• Develop algorithms for on-line assessment of voltage stability and small signal

stability.

6.12 Concluding Remarks

The implementation details of the algorithm proposed for on-line DSA in this thesis

were presented in this chapter. The test power system model has been simulated

using a RTDS. Implementation details of process A and process B were presented

in detail. During a 7 hour long continuous operation, using the test power system

model, a 2.5 min computational cycle time has been achieved. The techniques to

achieve short computational cycles for large power system models were discussed.

The overall organisation of the proposed framework over the LAN was discussed.

The real-time implementation framework was designed to enable convenient con-

figuration for testing of different on-line DSA algorithms for different power system

models. Implementation of a real-time security assessment scheme requires the inte-

gration of several functional components. This framework can be used to evaluate
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the performance and to assess the processing infrastructure requirements in a prac-

tical implementation in order to achieve a desired computational cycle time. The

utilization of available computational tools and the networking infrastructure was

also investigated.
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Chapter 7

Conclusions, Contributions and

Suggestions for Future Work

7.1 Conclusions

The investigation of a TSA algorithm to enable frequent computational cycles in

on-line DSA has resulted in following conclusions:

• For the application of TSA of power systems, the use of non-path dependant

terms of the TEF along with the generator bus voltage magnitudes and the

angles as input features to machine learning, enables the training of accurately

classifying networks with significantly small sized datasets.

• A learned network produced as above is capable of predicting the power system

transient stability under multiple contingencies. Also, the prediction accuracy

remains acceptable for on-line DSA for unbalanced faults with the presence of

voltage-sensitive and dynamic loads.

• The use of TEF terms as input features to machine learning enables the pro-

posed technique to produce learned networks capable of making accurate pre-

dictions of system stability over a larger range of operating point deviation when
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compared to the methods that have already been proposed in literature.

• The computationally complicated path dependant terms of the TEF that de-

mands for numerical integration can be excluded from the input feature set

without losing the estimation accuracy.

• It has also been demonstrated that the proposed approach requires a signif-

icantly smaller set of training data due to: a) the network is trained for a

recently captured snapshot of the power system in operation and b) the load

forecasting information is used to specify the load and generation deviation

during a given period of time to which a network has been trained for DSA.

• Power system devices such as HVDC and FACTS can be included in the pro-

posed algorithm by incorporating the appropriate terms of the device specific

TEF. The steps to follow have been highlighted in the thesis.

• An on-line DSA system can be implemented by using the method proposed in

this thesis. The investigations confirmed that the following issues have been

successfully addressed: a) critical data communications aspects; b) capabilities

of computational hardware at present; and c) the capabilities and limitations

of the existing tools to be used in automation.

The main contributions of this thesis are as follows:

• An algorithm based on energy based power system features to enable more

frequent computational cycles in on-line DSA.

• Design and implementation of an on-line DSA system based on the algorithm

proposed in this thesis (by integrating the following functional entities dis-

tributed over the LAN: real-time simulated power system model with changing

load and generation based on load forecasting; simplified EMS; and data gener-

ation and security assessment algorithms running on distributed computers on

the LAN).
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• Development of an integrated framework for testing the on-line DSA algorithms

that can be configured for testing different DSA algorithms for different power

system models.

• Design and development of a stand-alone software system for data generation

for power system DSA studies.

These contributions have led to following publications:

J. Geeganage, U. Annakkage, T. Weekes, and B. Archer, “Application of energy-

based power system features for dynamic security assessment,” Power Systems,

IEEE Transactions on, vol. 30, no. 4, pp. 1957–1965, July 2015

J. Geeganage, U. Annakkage, M. Weekes, and B. Archer, “Application of energy-

based power system features for dynamic security assessment,” in Power Energy

Society General Meeting, 2015 IEEE, July 2015, pp. 1–1

J. Geeganage, U. Annakkage, B. Archer, T. Weekes, and H. Meiklejohn, “Real-

time testing of dynamic security assessment algorithms,” in CIGRE Interna-

tional Symposium, Lund, Sweden, May 2015

J. Geeganage and U. D. annakkage, “Estimation of transient energy terms using

machine learning,” in 2014 CIGRE Canada Conference, 2014

J. Geeganage, U. Annakkage, B. Archer, and T. Weekes, “A web based software

system for database generation for online dynamic security assessment studies

(ml4dsa),” in Electrical and Computer Engineering (CCECE), 2013 26th An-

nual IEEE Canadian Conference on, 2013, pp. 1–4

D. P. Wadduwage, J. Geeganage, U. D. Annakkage, and C. Q. Wu, “Investi-

gation of the applicability of lyapunov exponents for transient stability assess-

ment,” in Electrical Power Energy Conference (EPEC), 2013 IEEE, Aug 2013,

pp. 1–6
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7.2 Suggestions for Future Work

• This thesis identified the methodology of incorporating the FACTS and HVDC

devices, however, further investigation is necessary on selecting the effective in-

put features of the appropriate energy functions that are proposed in literature.

Then, the DSA algorithm needs to be updated to accommodate these features

to allow the DSA of power systems with these devices.

• Further study is to be carried out to identify the extent and the techniques to

represent the external systems as dynamic equivalents. The classification accu-

racy of the proposed algorithm is recommended to be tested with the presence

of dynamic equivalents.

• It is recommended to investigate effective techniques to enable the reuse of al-

ready generated training data to reduce the computational burden on Process A

which will eventually result in further shortening the computational cycle time.

Data mining is a potential technique to investigate in this context. At the be-

ginning of the data generation cycle, if data mining can be used to discover

the existing valid operating points in a database of archived training data, the

dynamic simulation results corresponding to that particular operating points

qualify to represent the current training dataset. The saving of computational

time and the resources is expected to be significant.

• This thesis showed the possibility of introducing parallel processing into Pro-

cess A, however, further developments are to be carried out to integrate this

feature into the proposed scheme of on-line DSA. The algorithms to be devel-

oped to distribute the set of acceptable steady state operating points generated

at the beginning of Process A, across a cluster of computational units over the

LAN and to acquire the system stability status under each contingency once

the dynamic simulations and the stability assessment is done.
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• It has been noted that a significant time during the data generation is spent on

writing and reading the time-series data of dynamic simulations in the form of

text files. The entire process can be performed faster if an efficient data transfer

method is developed between the data generation software (ML4DSA) and the

commercial software PSSE.
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Appendix A

Derivation of the TEF for 3-Bus

Test Power System

Using Equation (3.25)

=
3∑
i=1

[
Mi

˙̃ωi − Pi + Pei +
Mi

MT

PCOI

]
θ̇i, i = 1, . . . ,m

The TEF is derived for the post fault power system. Assuming the generator rotor

speed deviation is zero (i.e. ω̃ = 0), generator rotor angle, θs, at the post fault SEP is

found by solving the non-linear algebraic equations (power flow solution). The rotor

Figure A-1: A diagram of the reduced 3-machine 9-bus test power system model
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angles at the fault clearing time is assumed as θtcl. Accordingly, the energy acquired

at the fault clearing time is obtained by integrating Equation (A.1) between (θs, 0)

and (θtcl, ω̃tcl).

=
3∑
i=1

Mi
˙̃ωiθ̇i︸ ︷︷ ︸

term1

−
3∑
i=1

Piθ̇i︸ ︷︷ ︸
term2

+
3∑
i=1

m∑
j=1,j 6=i

Cij sin θij θ̇i︸ ︷︷ ︸
term3

+
3∑
i=1

m∑
j=1,j 6=i

Dij cos θij θ̇i︸ ︷︷ ︸
term4

+
3∑
i=1

Mi

MT

PCOI θ̇i︸ ︷︷ ︸
term5

(A.1)

Following section illustrates the simplification of each term of the Equation (A.1)

for clarity.

Term 1 :

=
3∑
i=1

∫ θtcl

θs
Mi

˙̃ωiθ̇i

=
3∑
i=1

Mi

∫ ω̃tcl

ω̃s

ωi ˙̃ωi

=
3∑
i=1

Mi

[
1

2
ω̃i

2

]ω̃tcl

ω̃s

, considering ω̃si = 0

=
3∑
i=1

1

2
Mi(ω̃

tcl)2

Term 2 :

=
3∑
i=1

∫ θtcl

θs
Piθ̇i

=
3∑
i=1

Pi(θ
tcl − θs) (A.2)
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Term 3 :

=
3∑
i=1

m∑
j=1,j 6=i

Cij sin θij θ̇i

= C12 sin θ12θ̇1 + C13 sin θ13θ̇1 + C21 sin θ21θ̇2 + C23 sin θ23θ̇2 + C31 sin θ31θ̇3 + C32 sin θ32θ̇3

considering sin(−θ) = − sin θ, and Cij = Cji

= C12 sin θ12(θ̇1 − θ̇2) + C13 sin θ13(θ̇1 − θ̇3) + C23 sin θ23(θ̇2 − θ̇3)

= C12 sin θ12 ˙θ12 + C13 sin θ13 ˙θ13 + C23 sin θ23 ˙θ23

=

∫ θtclij

θsij

2∑
i=1

3∑
j=i+1

Cij sin θij ˙θij

=
2∑
i=1

3∑
j=i+1

−[Cij cos θij]
θtclij

θsij

= −
2∑
i=1

3∑
j=i+1

−Cij(cos θtclij − cos θsij)

Term 4 : Similar to term 3, by considering cos(−θ) = cos θ

=
2∑
i=1

3∑
j=i+1

Dij cos θij(θ̇i + θ̇j) (A.3)

=

∫ θcli +θclj

θsi+θ
s
j

2∑
i=1

3∑
j=i+1

Dij cos θij d(θ̇i + θ̇j) (A.4)

Term 5 : According to the following simplification, the contribution of term 5
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becomes 0.

=
3∑
i=1

Mi

MT

PCOI θ̇i

=
PCOI
MT

[M1θ̇1 +M2θ̇2 +M2θ̇2]

=
PCOI
MT

[M1(ω1 − ω0) +M2(ω2 − ω0) +M3(ω3 − ω0)]

=
PCOI
MT

[−ω0(M1 +M2 +M3) + (M1ω1 +M2ω2 +M3ω3)]

substituting from Equation (3.15)

= 0

Finally, the resultant equation is found in the form of Equation (3.27).
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Appendix B

Energy Function for a Lossless

SMIB System and the Equal Area

Criterion (EAC)

This section interprets an energy function derived for an SMIB system using the

EAC. The motion of the system, represented in Equation (3.24) connected to an

infinite bus, is shown in Equation (B.1). Mi

MT
PCOI ≈ 0(i 6= m) due to the very large

inertia constant of the infinite bus, Mm. Further, δm = 0 enables the COI variables

Prefault

Postfault

Faulted
Pm

FPe  

MaxPe

A1A1A1

A2A2A2A3A3A3

0d d���CldSEPd

Pe

d
0 ppp

Figure B-1: SMIB system representation using EAC
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θi = δi − δm and ω̃i = ωi − ωm become θi = δi and ω̃i = ωi.

M
d2δ

dt2
= Pm − Pmax

e sin δ (B.1)

Multiplying the Equation (B.1) by dθ
dt

leads to

M
d

dt

[
dδ

dt2

]2
=
dθ

dt

[
−∂VPE (δ)

∂δ

]
(B.2)

where VPE(δ) = −Pmδ − Pmax
e cos δ

d

dt
ω2 = 2ω

dω

dt
= 2

d

dt

(
dδ

dt

)2

(B.3)

therefore,

d

dt

(
dδ

dt

)2

=
1

2

d

dt
ω2 (B.4)

hence,

d

dt

[
1

2
Mω2 + VPE(δ)

]
= 0 (B.5)

The energy function V (δ, ω) = 1
2
Mω2 +VPE(δ) is a valid energy function. At equilib-

rium points, from Equation (B.1), δ = sin−1
(

Pm

P e
max

)
. To make VPE = 0 at the SEP,

the equation is rearranged as Equation (B.6)

V (δ, ω) =
1

2
Mω2 − Pm(δ − δs)− Pmax

e (cos δ − cos δs) (B.6)

Variation of potential energy with respect to the rotor angle variation of an SMIB

system obtained from a Matlab simulation is shown in Figure 3-8. Potential energy

reaches a maxima at UEPs. The SMIB network is modelled according to the data

given in the example 13.1 of [7].
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Interpretation Using the EAC

In Figure B-1, δ0 is the pre-fault SEP, δSEP is the post-fault SEP, δcl is the rotor

angle at the fault clearing time, δUEP is the UEP. In terms of the EAC, the system

is stable if the areas A1 < A2.

The area A1 is given by
∫ δcl
δ0

(
Pm − P F

e sin δ
)
dδ. Further simplification leads the

expression A1 = 1
2
M
(
ωcl
)2

. Therefore, A1 is the kinetic energy injected to the system

during the faulted period.

The areaA2 is given by
∫ δUEP

δcl

(
PMax
e sin δ − Pm

)
dδ = −PMax

e

(
cos δUEP − cos δcl

)
−

Pm
(
δUEP − δcl

)
. Further simplification leads to the expression A2 = VPE

(
δUEP

)
−

VPE
(
δcl
)
.

By adding A3 to both sides of the assessment criterion A1 < A2, the new criteria

A1 + A3 < A2 + A3 is obtained.

The area A3 is given by
∫ δcl
δSEP (Pmax

e sin δ − Pm) dδ. Further simplification leads

to A3 = −Pm
(
δcl − δSEP

)
− PMax

e

(
cos δcl − cos δs

)
.

The rotor angle increase due to acceleration results the potential energy maximum

at the UEP at δ = π− δSEP . From Equation (B.6), the potential energy at the UEP

is obtained as V (δ, ω)|δ=δUEP ,ω=0 = −Pm(π− 2δs) + 2P − emax cos δs = A2 +A3 which

is denoted by Vcr.

The area A1 +A3 is given by Equation (B.6) for any δ and ω which is the energy

acquired at the fault clearing time. Therefore, the stability assessment criterion

A1 < A2 of EAC is equivalent to the direct method assessment criterion V (δ, ω) < Vcr

[48].
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Appendix C

Test System Data: IEEE 10

Generator 39 Bus System

Table C.1: Real and reactive power at load buses of the IEEE 10 generator 39 bus power system

Bus Number Pload(MW ) Qload(MV ar)

3 322 2.4

4 500 184

7 233.8 84

8 522 176

12 7.5 88

15 320 153

16 329 32.3

18 158 30

20 628 103

21 274 115

23 247.5 84.6

24 308.6 -92.2

25 224 47.2
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Table C.1: Real and reactive power at load buses of the IEEE 10 generator 39 bus power system

Bus Number Pload(MW ) Qload(MV ar)

26 139 17

27 281 75.5

28 206 27.6

29 283.5 26.9

31 9.2 4.6

39 1104 250

Table C.2: Transmission Line Data of the IEEE 10 generator 39 bus power system. The quantities
are specified in per unit on 100MVA

To bus From bus Resistance Reactance Susceptance

1 2 0.0035 0.0411 0.6987

1 39 0.001 0.025 0.75

2 3 0.0013 0.0151 0.2572

2 25 0.007 0.0086 0.146

3 4 0.0013 0.0213 0.2214

3 18 0.0011 0.0133 0.2138

4 5 0.0008 0.0128 0.1342

4 14 0.0008 0.0129 0.1382

5 6 0.0002 0.0026 0.0434

5 8 0.0008 0.0112 0.1476

6 7 0.0006 0.0092 0.113

6 11 0.0007 0.0082 0.1389

7 8 0.0004 0.0046 0.078

8 9 0.0023 0.0363 0.3804
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Table C.2: Transmission Line Data of the IEEE 10 generator 39 bus power system. The quantities
are specified in per unit on 100MVA

To bus From bus Resistance Reactance Susceptance

9 39 0.001 0.025 1.2

10 11 0.0004 0.0043 0.0729

10 13 0.0004 0.0043 0.0729

13 14 0.0009 0.0101 0.1723

14 15 0.0018 0.0217 0.366

15 16 0.0009 0.0094 0.171

16 17 0.0007 0.0089 0.1342

16 19 0.0016 0.0195 0.304

16 21 0.0008 0.0135 0.2548

16 24 0.0003 0.0059 0.068

17 18 0.0007 0.0082 0.1319

17 27 0.0013 0.0173 0.3216

21 22 0.0008 0.014 0.2565

22 23 0.0006 0.0096 0.1846

23 24 0.0022 0.035 0.361

25 26 0.0032 0.0323 0.513

26 27 0.0014 0.0147 0.2396

26 28 0.0043 0.0474 0.7802

26 29 0.0057 0.0625 1.029

28 29 0.0014 0.0151 0.249
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Table C.3: Generator dynamic parameters – Salient Pole Generator Model

Bus # T ′do T ′′do T ′′qo H D Xd Xq X ′d X ′′d Xl S(1.0) S(1.2) MVA Base

30 10.2 0.05 0.06 4.2 0.4 1 0.69 0.31 0.3 0.125 0.15 0.425 1000

31 6.56 0.05 0.06 3.03 0.975 2.95 2.82 0.697 0.6 0.35 0.07 0.391 1000

32 5.7 0.05 0.06 3.58 1 2.495 2.37 0.531 0.5 0.304 0.08 0.283 1000

33 5.69 0.05 0.06 2.86 1 2.62 2.58 0.436 0.4 0.295 0.14 0.591 1000

34 5.4 0.05 0.06 2.6 0.3 6.7 6.2 1.32 1.3 0.54 0.15 0.6 1000

35 7.3 0.05 0.06 3.48 1 2.54 2.41 0.5 0.4 0.224 0.09 0.291 1000

36 5.66 0.05 0.06 2.64 0.8 2.95 2.92 0.49 0.4 0.322 0.14 0.529 1000

37 6.7 0.05 0.06 2.43 0.9 2.9 2.8 0.57 0.5 0.28 0.08 0.268 1000

38 4.79 0.05 0.06 3.45 1.4 2.106 2.05 0.57 0.5 0.298 0.11 0.447 1000

39 7 0.05 0.06 50 1 0.2 0.19 0.06 0.05 0.03 0 0 1200
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Table C.4: Exciter parameters – IEEE Type 1 Excitation System

Bus # TR KA TA VRMAX VRMIN KE TE (> 0) KF TF (> 0) Switch E1 SE(E1) E2 SE(E2)

30 0.001 5 0.06 10 -10 1 0.25 0.04 1 0 3.55 0.08 4.73 0.26

31 0.001 6.2 0.05 10 -10 0.06 0.405 0.057 0.5 0 3.03 0.66 4.05 0.88

32 0.001 5 0.06 10 -10 1 0.5 0.08 1 0 2.34 0.13 3.12 0.34

33 0.001 5 0.06 10 -10 1 0.5 0.08 1 0 2.87 0.08 3.82 0.314

34 0.001 20 0.02 10 -10 1 0.785 0.03 1 0 3.93 0.07 5.24 0.91

35 0.001 5 0.02 10 -10 1 0.471 0.0754 1.246 0 3.59 0.064 4.78 0.251

36 0.001 40 0.02 10 -10 1 0.73 0.03 1 0 2.8 0.53 3.74 0.74

37 0.001 5 0.02 10 -10 1 0.528 0.0854 1.26 0 3.19 0.072 4.26 0.282

38 0.001 40 0.02 10.5 -10 1 1.4 0.03 1 0 4.26 0.62 5.68 0.85

39 0.001 40 0.02 10.5 -10 1 1.4 0.03 1 0 4.26 0.62 5.68 0.85
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Table C.5: PSS parameters – Speed sensitive stabilizing model (STAB1)

Bus # K/T T T1/T3 T3 T2/T4 T4 HLIM

39 38 0.05 5 0.09 5 0.09 10

38 15 0.05 4.5 0.07 4.5 0.07 10

37 2.5 0.05 7.8 0.04 7.8 0.04 10

35 8 0.05 4.2 0.05 4.2 0.05 10

34 15 0.05 3.5 0.07 3.5 0.07 10

33 2.5 0.05 3.7 0.1 3.7 0.1 10

32 17 0.05 5.8 0.04 5.8 0.04 10

31 6 0.05 5.5 0.07 5.5 0.07 10

30 14 0.05 6.1 0.04 6.1 0.04 10
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Appendix D

Classification using SVM

D.1 Introduction

This section presents the SVM problem formulation and the application in brief.

This optimization problem is initially formulated for the hard margin SVM allowing

no margin violations. The application for linearly non-separable datasets is achieved

by the use of Kernel method to map the dataset in the feature space to a higher

dimension. Then, the soft margin SVM is introduced to account for the margin

violations in the transformed feature space.

D.2 Support Vector Machines

Separating hyperplanes form linear decision boundaries which explicitly separate data

into different classes as much as possible. A linearly separable set of data as shown

in Figure D-1 can be separated using any machine learning technique. There can be

many solutions for the said classification problem. The new addition in the SVM is

to select the best hyperplane for classification. That provides the basis for support

vector classifiers. In this context, the best selection is the hyperplane with the largest

margin. In the presence of noise, the chances are higher for misclassification for the
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Figure D-1: Possible solutions from different machine learning techniques [81]

Figure D-2: Margins of different solution shown in Figure D-1

hyperplanes with smaller margins. Figure D-2 shows the available margin at each

solution. The hyperplane with the largest margin maximizes the distance to the

closest point from either class and is called the optimal separating hyperplane.

D.3 Hard Margin SVM

The computation of optimally separating hyperplanes leads to the following formu-

lation of the problem for the hard margin SVM. The following formulation is mathe-

matically valid only if there is a feasible linearly separable solution. Once the SVMs

are computed the solution can be checked for the existence of misclassification. If

misclassifications exist, practically there should be no solution.
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L(α) =
N∑
n=1

αn −
1

2

N∑
n=1

N∑
m=1

ynymαnαmx
T
nxm

Maximize w.r.t. α subject to αn ≥ 0 for n = 1, ..., N and
N∑
n=1

αnyn = 0

(D.1)

where α is a Lagrangian multiplier. N is the dataset size. yn is the output label,

yn ∈ −1,+1, of the data point xn. αs having positive values correspond to the support

vectors. The other internal points will have zero for respective values of α.

D.3.1 Non-linear Transformation to Higher Dimensions

The above Equation (D.1) is presented assuming the data set is linearly separable.

This methodology can be applied to a non-linearly-separable dataset in the same

manner by transforming the dataset from X to a higher dimensional Z space where

the dataset becomes linearly separable. The said transformation changes the form of

Equation (D.1) to the following form Equation (D.2).

L(α) =
N∑
n=1

αn −
1

2

N∑
n=1

N∑
m=1

ynymαnαmz
T
nzm

Constrainits: αn ≥ 0 for n = 1, ..., N and
N∑
n=1

αnyn = 0

(D.2)

Equation (D.2) shows that the dimensionality of the Z domain does not have an

impact on the complexity of the solution once the inner product zT zn is calculated.

In this case the support vectors are in Z space. Support vectors in the feature space

(X ) would look like the highlighted data points in Figure D-3. The distance between

the data points and the margins are not the margins of support vectors. The margins

are maintained in the Z space.
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Figure D-3: Suppport vectors in the feature space [81]

D.3.2 Use of Kernels

The kernels are used to transform a dataset to a very high dimensional Z space

without making the computation process complex. According to Equation (D.2), from

the Z space, only the inner product of zTn zm is required for both a) the Lagrangian

equation, and b) the inequalities. The kernel methods are capable of providing the

inner product of the vectors (in the very high dimensional Z space) without explicitly

transforming the dataset to the Z space.

D.3.3 RBF Kernel

Kernel methods achieve flexibility by fitting simple models in a region local to the

target point x. Localization is achieved via a weighting kernel. RBF combine these

ideas, by treating the kernel functions K(x, x′) as basis functions leads to the model

in Equation (D.3).

K(x, x′) = exp(−γ‖x− x′‖2) (D.3)

The following example illustrates that the kernel function Equation (D.3) corre-

sponds to the inner product in the infinite dimensional L space. Assuming both x
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and x′ are scalars and γ = 1, the expansion of (Equation (D.3)) using the Taylor

series, ex =
∑∞

n=0
xn

n!
, leads to Equation (D.4).

K(x, x′) = exp(−‖x− x′‖2)

= exp(−x2)exp(−x′2)
∞∑
k=0

2k(x)k(x′)k

k!︸ ︷︷ ︸
exp(2xx′)

(D.4)

Equation (D.4) can be arranged as the inner product of two vectors, x and x′ in

infinite-dimensional space as the summation continues from zero to infinity.

D.4 Soft Margin SVM

This section introduces the extension of the linearly separable case to the non-linearly

separable case of SVM allowing misclassifications upto a certain extent in order to

avoid outliers which results in unduly complex non-linear transformations.

D.4.1 Accounting for Margin Violations

As shown in Figure D-4, margin violations can be quantified by introducing a slack in

potentially every point. Accordingly, Equation (D.1) is modified to Equation (D.5).
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Tw x+b=0

x

Figure D-4: Margin violation in a linearly separable dataset [81]

The terms introduced to the Lagrange equation to account for margin violations

cancel out during simplification resulting the same Lagrange equation as in Equation

(D.1). The new addition is the upper limit of α which is the cost parameter, C.

L(α) =
N∑
n=1

αn −
1

2

N∑
n=1

N∑
m=1

ynymαnαmx
T
nxm

Maximize w.r.t. α

subject to 0 ≤ αn ≤ C for n = 1, ..., N and
N∑
n=1

αnyn = 0

(D.5)

This leads to the introduction of two types of support vectors depending on the

value of α.

1. Margin support vectors (0 < α < C)

As α < C, β > 0. When the Lagrange multiplier is greater than zero, the

respective slack becomes zero (ξ = 0)

2. Non margin support vectors (αn = C)

When αn = C, β = 0. When Lagrange multiplier is zero,the respective slack
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becomes positive (ξ > 0)

Other points where α = 0 are the inner points.

The value of the cost parameter, C, decides how many violations are permitted for

a given width of the margin. In practical problems optimum C is determined using

cross validation [82]. γ in Equation (D.3) determines the best shape of the Gaussian

function which is the other parameter to be determined by the cross validation.
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