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Abstract

HONGWEI LIU

Physics-based characterization of complex geomaterials using stress
waves based on a hybrid poromechanical and inverse method

Non-destructive testing (NDT) plays an important role in the engineering, construction,

and geophysical fields. The application of NDT in civil engineering is broad from qual-

ity control, structural health monitoring of infrastructure, geophysical and geotechnical

field investigation and material characterization to detection of underground anomaly,

among others. More specifically, in geotechnical and permafrost engineering, the physical

and mechanical properties of foundation soils are of great importance in the design of

earthquake-resistant and climate-adaptive structures. One of the frequently used NDT tech-

niques for the characterization of geomaterials is based on the propagation of stress waves

generated by an excitation source (e.g., piezoelectric transducers in laboratory-scale tests or

vibroimpact sources in in-situ tests). However, the existing signal interpretation methods

still predominantly rely on empirical relations or subjective judgements that are insufficient

for the characterization of multiphase complex geomaterials. This research aims to develop

novel physics-based signal interpretation methods to characterize physical and mechanical

properties of multiphase geomaterials in both field and laboratory investigation scales. For

this purpose, several hybrid inverse and poromechanical models are developed to qualita-

tively and quantitatively characterize dry, saturated, and frozen geomaterials subject to

stress waves. First, a highly-efficient semi-analytical elastodynamic forward solver was

proposed for the Multichannel Analysis of Surface Waves (MASW) using the spectral ele-

ment technique to determine effectively and efficiently the soil stratigraphy as well as soil

properties. Next, a coupled piezoelectric and solid mechanics model is proposed to study

the real response of the bender element (BE) and its interaction with soil samples in the BE

test. A comprehensive laboratory investigation is also performed to better understand the

response of the BEs inside different soil types. Then, a two-phase poromechanics-based
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signal interpretation model is developed for laboratory-scale ultrasonic non-destructive

testing to determine the physical and mechanical properties of saturated soil samples

based on the distribution of stress waves. Subsequently, a three-phase poromechanical

transfer function model is developed using the spectral element technique for pore-scale

characterizations of permafrost samples. Furthermore, a comprehensive ultrasonic testing

program is conducted to determine the properties of permafrost samples (e.g., ice content,

unfrozen water content, porosity, ice lenses, soil type, and mechanical properties) recon-

stituted in the laboratory. Thereafter, a hybrid inverse and three-phase poromechanical

approach is proposed for in-situ characterization of permafrost sites using surface wave

techniques. Finally, the GeoNDT software developed to provide physics-based solutions

for the interpretation of non-destructive testing (NDT) measurements used in geotechnical

and geophysical applications is presented. The advanced physics-based signal interpreta-

tion methods proposed in this thesis allow the quantitative characterization of geophysical

and geomechanical properties of geomaterials and multilayered geosystems independently

without making any simplified assumptions as common in the current practice.
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Chapter 1

Introduction

1.1 The big picture

Appropriate characterization of foundation soils and health monitoring of geo-structures

are the twin pillars of engineering practice within a multi-hazard context. The ability

to quantitatively and non-invasively characterize complex multiphase geomaterials and

predict the performance of subsurface systems subject to complex loading are still a major

challenge to the engineering, construction, and geophysical fields.

In remote areas, the development of portable, time-efficient and cost-effective tech-

niques for the characterization of geomaterials can play an important role in the preliminary

geotechnical investigation. In geotechnical practice, the physical and mechanical prop-

erties are obtained through field and laboratory geotechnical/geophysical testings. The

conventional field methods require heavy equipment that may not be accessed in remote

areas or extreme environments. For the laboratory tests, soil samples from sites under

investigation are required to be transported to a geotechnical laboratory for various tests,

which can cause the disturbance of soil samples and potentially lead to erroneous conclu-

sions. Currently, the ability to quantitatively and non-invasively characterize geomaterials

in remote areas is still a major challenge to the engineering and construction.

In the context of accelerating climate change, construction on foundation permafrost

also requires remedial measures and an appropriate characterization of permafrost (e.g., ice

content, unfrozen water content, porosity, ice lenses, soil type, and mechanical properties).

The adverse effects of climate warming on the built environment in (sub)arctic regions

are unprecedented and accelerating. According to Canada’s Changing Climate Report

(2019), in the Arctic regions, temperatures have been warming at approximately twice the

rate of the rest of the world. This drastic trend in climate warming will no doubt affect
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permafrost temperatures and conditions, continued rise in greenhouse gas emissions, and

further adding to the high cost of development in northern regions. The construction

on ice-rich permafrost foundations and studies on permafrost carbon feedback require

appropriate measurements of permafrost properties. Furthermore, the early detection and

warning systems to monitor infrastructure impacted by permafrost-related geohazards,

and to detect the presence of layers vulnerable to permafrost carbon feedback and emis-

sion of greenhouse gases into the atmosphere require the fundamental understanding of

permafrost properties.

In the light of the above, this research aims to pave the way to encompassing different

fields including geomechanics, geophysics, geotechnical engineering, signal processing,

and ultrasonic sensing to develop novel non-invasive investigation tools and physics-based

interpretation methods for characterization of multiphase geomaterials using stress waves.

1.2 Background and literature review

A wide variety of field (in-situ) and laboratory techniques are available in geotechnical

engineering and geophysical science for the measurement of physical and mechanical

properties of geomaterials. Many techniques are oriented toward the measurement of

properties at low strains (below 0.001%) and many others toward properties mobilized

at larger strains. The literature review consists of four sections, aiming to review both

field and laboratory techniques used for the characterization of geomaterials. Section 1.2.1

reviews the state of the art of near surface geophysics for the non-invasive in-situ site

investigation. Section 1.2.2 reviews various borehole or subsurface geophysical methods

used for the destructive in-situ site investigation. Section 1.2.3 reviews various dynamic

penetration tests used in geotechnical site investigation for the estimation of dynamic

soil properties at large strain levels. Finally, Section 1.2.4 reviews different laboratory

techniques for the measurement of dynamic soil properties at various strain levels.

1.2.1 Near surface geophysics

The surface geophysical methods are non-invasive techniques that are carried out for the

site investigation without any intrusion of the ground. In comparison to other techniques

(e.g., subsurface geophysics and conventional dynamic penetration tests), the surface

geophysical methods are considered as more rapid and cost-effective. The surface geo-

physical methods have particular application advantages in sites that are difficult to have
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access or penetrate (such as pavements, underwater tunnel linings, retaining walls, and

slopes) (Campanella, 1994). The surface geophysical methods are also appealing in other

cases such as preliminary investigation over a large area, quality assurance and check

of foundation structures as well as site monitoring. However, the interpretation of field

measurements by surface geophysical techniques is normally difficult and associated with

lots of uncertainties related to the ground properties and stratigraphy. Therefore, surface

geophysical methods often require other complementary techniques to increase the reliabil-

ity of interpreted results. It is often good practice to complement and calibrate the surface

geophysical models with a few direct tests made by borehole investigations (e.g., seismic

crosshole, down-hole and up-hole tests) or geotechnical tests (e.g., cone penetration tests

or piezocone tests) (Lorenzo, Hicks, and Vera, 2014).

A wide variety of seismic methods are available for different applications. The seismic

reflection test is used for the investigation of large-scale and very deep stratigraphy. This

test is performed by producing an impulse load (rich in P wave content) at the source and

measuring the P wave arrival time at the receiver location. However, the seismic reflection

method often fails to detect near-surface targets due to the lack of high frequency (low

wavelength) components (Steeples and Miller, 1998). Therefore, it is rarely used for the

near-surface investigation. It also has a limitation with regard to determining the arrival

time of the reflected waves due to the contamination of surface waves. Seismic refraction

test is another seismic geophysical method used for in-situ soil investigations. The test

measures the travel times of P and S waves using an array of geophones. However, the

majority of available signal interpretation methods for seismic refraction is based on this

assumption that the soil stiffness (wave velocity) increases with depth (Pelton, 2005).

The Spectral Analysis of Surface Waves (SASW) is another in-situ investigation method

that uses surface wave for soil characterisation. The SASW test records data in two stations.

In this test, a vertical impact is generated on the ground surface through an impulse source,

which induces Rayleigh waves and can be used to map the near-surface shear velocity

profile. Two geophones are normally used and the spacing between them are varied to

cover the desired investigation depth. It is known that using only a pair of geophones, the

different modes of wave propagation cannot be differentiated and the dispersion inversion

can be difficult. The Multichannel Analysis of Surface Waves (MASW), on the other hand,

samples data at multiple locations using several geophones. This allows the investigation

of a broader area and depth from a single survey. The data interpretation techniques

for the MASW test normally require a forward solver and an inverse algorithm. The
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forward solver computes the dispersion curves for a given soil stratigraphy and the inverse

algorithm updates the soil parameters until the calculated dispersion curves match well

with the measured ones.

With regard to the in-situ characterization of permafrost sites, several in-situ techniques

have been employed to characterize or monitor permafrost conditions. For example, the

techniques such as remote sensing (Witharana, Bhuiyan, Liljedahl, Kanevskiy, Epstein,

Jones, Daanen, Griffin, Kent, and Jones, 2020; Bhuiyan, Witharana, and Liljedahl, 2020;

Zhang, Witharana, Liljedahl, and Kanevskiy, 2018), and the ground penetrating radar

(GPR) (Munroe, Doolittle, Kanevskiy, Hinkel, Nelson, Jones, Shur, and Kimble, 2007;

Christiansen, Matsuoka, and Watanabe, 2016; Williams, Haltigin, and Pollard, 2011) have

been used to detect ice-wedge formations within the permafrost layers. Also, the electrical

resistivity tomography (ERT) has been extensively used to qualitatively detect pore-ice or

segregated ice in permafrost based on the correlation between the electrical conductivity

and the physical properties of permafrost (e.g., unfrozen water content and ice content)

(Glazer, Dobiński, Marciniak, Majdański, and Błaszczyk, 2020; Hauck, 2013; Scapozza,

Lambiel, Baron, Marescot, and Reynard, 2011; You, Yu, Pan, Wang, and Guo, 2013). The

apparent resistivity measurement by ERT is higher in areas having high ice contents

(You, Yu, Pan, Wang, and Guo, 2013); however, at high resistivity gradients, the inversion

results become less reliable, especially for the investigation of permafrost base (Hilbich,

Marescot, Hauck, Loke, and Mäusbacher, 2009; Marescot, Loke, Chapellier, Delaloye,

Lambiel, and Reynard, 2003). Furthermore, in ERT investigations, the differentiation

between the ice and certain geomaterials can be highly uncertain due to their similar

electrical resistivity properties (Kneisel, Hauck, Fortier, and Moorman, 2008). GPR has

been also used for mapping the thickness of the active layer; however, its application is

limited to a shallow penetration depth in conductive layers due to the signal attenuation

and high electromagnetic noise in ice and water (Kneisel, Hauck, Fortier, and Moorman,

2008).

The MASW test (Dou and Ajo-Franklin, 2014; Glazer, Dobiński, Marciniak, Majdański,

and Błaszczyk, 2020), passive seismic test with ambient seismic noise (James, Knox, Abbott,

Panning, and Screaton, 2019; Overduin, Haberland, Ryberg, Kneier, Jacobi, Grigoriev, and

Ohrnberger, 2015)), seismic reflection (Brothers, Herman, Hart, and Ruppel, 2016), and

seismic refraction method (Wagner, Mollaret, Günther, Kemna, and Hauck, 2019) have

been previously employed to map the permafrost layer based on the measurement of shear

wave velocity. In the current seismic testing practice, it is commonly considered that the



1.2. Background and literature review 5

permafrost layer (frozen soil) is associated with a higher shear wave velocity due to the

presence of ice in comparison to unfrozen ground.

1.2.2 Borehole geophysics

Borehole or subsurface geophysical investigations (e.g., seismic cross-hole test, seismic

down-hole test, seismic up-hole test and seismic cone test) can be used to map P-wave

and S-wave velocities at different depths at low-strain levels. Borehole geophysics are

most useful in site investigations where drilling is required (Campanella, 1994). In the

seismic cross-hole test, two or three boreholes are used for setting up transmitters and

receivers to measure the travel times of seismic waves between these boreholes. Several

types of transmitter can be used for the generation of stress waves, such as mechanical

wedge-type transmitter (Mok, Kim, and Kang, 2003), piezoelectric transmitters (Roblee,

Stokoe, Fuhriman, and Nelson, 1994), solenoid-coil type transmitters (Roblee, Stokoe,

Fuhriman, and Nelson, 1994) and blasting transmitters (Malmgren, Saiang, Töyrä, and

Bodare, 2007). The geophone or accelerometer can be used as the receiver to measure

the induced responses in the subsurface geophysical investigation. In the seismic down-

hole test, a seismic source is set up at the ground surface and receivers are located in the

borehole to measure the induced stress waves generated by the surface source (Takahashi,

Takeuchi, and Sassa, 2006). The seismic up-hole method uses reverse source and receiver

configurations to the down-hole method (with a down-hole source and surface receivers)

(Takahashi, Takeuchi, and Sassa, 2006). The addition of a seismic sensor (a geophone

or accelerometer) inside the barrel of a cone penetrometer is known as a Seismic Cone

Penetrometer Test (SCPT) (Robertson, 1986). In the SCPT, the seismic source can be

generated at the ground surface. Then the induced stress wave propagates into the ground

and is captured by the sensors installed inside the cone penetrometer. By repeating the

measurement at another depth, the SCPT can be used to determine the average seismic

wave velocities over the depth from the measured signal traces (Butcher, Campanella,

Kaynia, and Massarsch, 2005). In those seismic borehole geophysical tests, the seismic

velocities are obtained by empirically selecting of first arrival time for P-wave and S-wave

velocities.

In general, the cross-hole methods have the advantage of maintaining the signal-to-

noise ratio with depth in comparison to the down-hole or up-hole methods, but do require

additional boreholes and greater cost. The down-hole methods or up-hole methods, on the

other hand, have the advantage of determining average parameters over discrete depth
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intervals. Overall, all borehole seismic methods can measure the P-wave and S-wave

velocity at various depths due to the direct access to geomaterials. However, the high

cost of the drilling and uncertain drilling disturbance effects on geomaterials prevent the

borehole geophysical methods from having a greater use in geotechnical site investigations

(Campanella, 1994).

1.2.3 Dynamic penetration tests

Other than the surface and borehole geophysical methods, dynamic penetration tests are

also used for the estimation of dynamic soil properties at large strain levels. Dynamic

penetration techniques range from Standard Penetration Tests (SPT), to any other devices

that are driven into the soil by the struck of hammers (e.g., the Large Diameter Penetrometer

(LPT) and the Becker Penetrometer) (Schnaid, Odebrecht, Rocha, and Paula Bernardes,

2009). In these techniques, the penetrometer or sampler positioned on the end of the boring

rod is lowered to the bottom of the borehole. The blow counts are recorded while the

penetrometer or sampler is driven into the foundation soils. The recorded blow counts are

then used to empirically estimate the dynamic soil properties and other parameters (e.g.,

shear strength, compressibility and liquefaction resistance of soils) (Schnaid, Odebrecht,

Rocha, and Paula Bernardes, 2009). The cone penetration test (CPT) is another method

used for the in-situ geotechnical investigation. In this test, a cone penetrometer is pushed

into the ground at a controlled rate and the required thrusts are measured to determine

the tip resistance as well as side friction (Budhu, 2015). Then the measured tip resistance

and side friction are used to estimate soil properties (e.g., density, grain size distribution,

hydraulic conductivity, friction angle and shear strength) based on empirical or statistic

models (Lin, Li, Liu, and Chen, 2019; Tillmann, Englert, Nyari, Fejes, Vanderborght, and

Vereecken, 2008; Eid and Stark, 1998; Wang, Wang, Liang, Zhu, and Di, 2018).

The dynamic penetration tests, in general, are straightforward to carry out and the

measured blow counts can be used to estimate a wide range of parameters. However, the

repeatability of test results is normally very poor in dynamic penetration tests. Other limi-

tations of dynamic penetration tests include the inaccuracy and errors in the measurements

of the blow counts due to the variability of procedures that are not fully standardized

(Clayton, 1995). The uncertainties of the dynamic penetration test results also raise from

the irrationality of available empirical methods in the interpretation of test results (Clayton,

1995).
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1.2.4 Laboratory techniques

Since borehole sampling is always required in the stage of geotechnical design, laboratory

techniques can also be used for the measurement of dynamic soil properties at various

conditions.

In the laboratory-scale tests, the Resonant Column (RC) test, Bender Element (BE)

test and Piezoelectric Ring-Actuator Technique (P-RAT) are frequently used for the mea-

surement of low-strain dynamic properties (especially for the shear wave velocity), (Liu,

Cascante, Maghoul, and Shalaby, 2021; Karray, Ben Romdhan, Hussien, and Éthier, 2015).

The RC test is time-consuming, costly, bulky, and typically only used in laboratory in-

vestigations. The BE utilizes piezo-ceramic materials for the conversion of an electrical

signal into mechanical energy. Two bender elements are placed at the two ends of the

soil specimen in which one BE is used to introduce a mechanical impulse and the other

one is used to receive the propagating pulse (normally in mV). The BE generates not

only S-waves in the direction of their plane but also P-waves in the direction normal to

their plane. The P-waves reflected from the cell walls can interfere with the generated

S-waves (Lee and Santamarina, 2005). In comparison to the BE test, the P-RAT reduces

the generation of P-waves due to the constraint in the potential compression from the

direct contact between piezoelectric elements and the soil samples (Karray, Ben Romdhan,

Hussien, and Éthier, 2015). However, the P-waves can still be generated in the P-RAT test

(Karray, Ben Romdhan, Hussien, and Éthier, 2015), which interferes with the selection of

S-wave arrival time in the current arrival time-based methods.

The ultrasonic test is another technique that can be used to evaluate the dynamic

properties of geomaterials at low strain levels. The mechanical properties of geomaterial

samples (mostly for P wave velocities) can be evaluated by interpreting the signal recorded

by an ultrasonic receiver. In the current practice, the first arrival time is predominantly

used for the evaluation of P wave velocity of geomaterials (especially for concrete).

Cyclic triaxial test is one of the most commonly used techniques for the evaluation of

cyclic strength and strain-dependent dynamic soil properties at high strain levels. The

cyclic triaxial apparatus comprises a load frame, dynamic actuator, triaxial cell, automatic

pressure controllers, sensors (e.g., load measuring sensor, displacement measuring sensor

and pore water pressure measuring sensor) and a data acquisition system. The typical

frequencies used in the cyclic triaxial test can range from 0.1 Hz to 20 Hz (Kirar and

Maheshwari, 2018). The cyclic loading can be applied to the soil sample by a mechanical
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or hydraulic actuator. The stresses and strains measured in the cyclic triaxial test are then

used to compute the shear modulus and damping ratio.

In the characterization of three-phase frozen geomaterials, the popular techniques

used for unfrozen water content measurement include Time Domain Reflectometry (TDR),

Frequency Domain Reflectometry (FDR), Time Domain Transmissometry (TDT) and Nu-

clear Magnetic Resonance (NMR) (Stein and Kane, 1983; Noborio, 2001; Yoshikawa and

Overduin, 2005). In these techniques, the soil water content is estimated from the empirical

relation between the relative dielectric permittivity and unfrozen water content of soil

samples (Hallikainen, Ulaby, Dobson, El-Rayes, and Wu, 1985; Topp, Davis, and Annan,

1980). These methods require frequent laboratory calibration to obtain unique empirical

relations based on soil types, test temperature, and the type of transducer (Yoshikawa

and Overduin, 2005). Porosity can be measured using techniques such as Computed

Tomography (CT scan) (Duliu, 1999; Périard, Gumiere, Long, Rousseau, and Caron, 2016),

Imbibition methods (immersion of the soil sample in a fluid) (Gu, Zhu, Zhang, and Liu,

2019), Water Evaporation method (Schindler, Durner, Von Unold, Mueller, and Wieland,

2010; Castellini, Di Prima, and Iovino, 2018) and Mercury Intrusion (Yao and Liu, 2012).

These techniques (all but CT method) are invasive such that the original soil state is dis-

turbed. X-ray Computed Tomography imaging has been used in recent years to scan

permafrost samples (Wagner, Lindsey, Dou, Gelvin, Saari, Williams, Ekblaw, Ulrich, Bor-

glin, Morales, et al., 2018). Such a technique requires bulky and expensive instruments

that are not suitable for field applications. Permafrost samples need to be transported

to a laboratory, which can be costly and causes sample disturbance. Furthermore, the

CT imaging can only shows the distribution of ice patches within the sample without

any quantitative characterization; the CT imaging is also challenging to differentiate the

water and ice from soil grains in fine-grained soils (Wu, Nakagawa, Kneafsey, Dafflon, and

Hubbard, 2017).

1.3 Gaps in knowledge

This thesis mainly focuses on the stress wave-based Non-Destructive Testing (NDT) tech-

niques that are developed for the characterization of multiphase geomaterials in terms

of physical and mechanical properties at small strain levels. In the light of the above

literature review, the main limitations and challenges in the characterization of multiphase

geomaterials using existing non-invasive techniques (including MASW, BE and ultrasonic
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tests) and interpretation methods are briefly summarized as follows:

Characterization of dry geomaterials

The data interpretation techniques for the MASW test normally requires a forward

solver and an inverse algorithm. However, the available solvers of MASW technique

have numerical instability to different extents, especially at high frequencies due to the

exponential increasing terms. The inverse algorithms reported in the literature are mostly

limited to gradient-free methods that have a extremely low convergence rate and high

computational costs. In BE tests, the actual behavior of the BE inside a soil specimen

still remains unknown. The current ASTM standard does not consider the interference of

compressional and shear waves in the BE testing, which can lead to significant errors in

the evaluation of shear wave velocities. The accurate interpretation of BE measurements

and wave propagation analysis is impossible without knowing the motion of the BE inside

the soil samples.

Characterization of saturated geomaterials

Rock physics models have been developed to provide a link between rock properties.

These properties include porosity, fluid saturation, and lithology as well as mechanical

properties such as velocities or impedances. These models are mostly used in oil and gas

explorations, reservoir characterization, and quantitative seismic interpretation.

In these models, multiple velocity-porosity models are developed for the estimation of

porosity based on the measured P-wave or/and S-wave velocity. Foti, Lai, and Lancellotta

(2002) developed a velocity-porosity model based on the Biot’s theory under the assump-

tion that no relative movement occurs between the solid and the fluid phases in porous

media. The model requires a) P-wave and S-wave velocity are measured experimentally; b)

the density and bulk modulus of fluid are provided; c) the density, bulk modulus and shear

modulus of the soil grain are provided (Foti, Lai, and Lancellotta, 2002). Geertsma and Smit

(1961) proposed an empirical velocity-porosity model that relates bulk modulus to porosity

in rocks with a porosity ranges from 0 to 0.3. Similarly, Wyllie, Gardner, and Gregory

(1962) proposed a time-average relation that revealed a simple monotonic relation between

P-wave velocity and porosity in fully saturated sedimentary rocks with relatively uniform

mineralogy. However, the time-average relation can not be justified theoretically and is

only applicable when a) the wavelength is smaller than the pore size and grain size; b) rocks
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are isotropic and saturated with fluid and c) rocks are not unconsolidated or uncemented

(Mavko, Mukerji, and Dvorkin, 2020). Raymer, Hunt, and Gardner (1980) proposed the

’Raymer–Hunt–Gardner’ relations to expand the time-average relation proposed by Wyllie,

Gardner, and Gregory (1962) for the rocks with porosity ranging from 0 to 1. However, the

’Raymer–Hunt–Gardner’ model is still an empirical relation which has similar limitations

as the time-average relation (as mentioned above). Han, Nur, and Morgan (1986), Tosaya

and Nur (1982), and Castagna, Batzle, and Eastwood (1985) proposed several empirical

relations that relate P-wave and S-wave velocities measured by ultrasonic methods to the

porosity and clay content in shaly sandstones. However, these models are still empirical

and only applicable for the set of rocks under high confining pressure (above 40 MPa)

(Mavko, Mukerji, and Dvorkin, 2020).

In general, the existing rock physics models require the measurement of P-wave and

S-wave velocities to estimate the porosity of geomaterials. However, the current techniques

and interpretation methods still have problems in the measurement of S-wave velocity

for soils. For the rock-physics models developed based on Biot’s theory, the estimation of

porosity requires to make assumptions of bulk modulus and shear modulus of the soil

skeleton. In terms of the empirical rock physics models, they are only applicable under

limited conditions.

In the ultrasonic test, the first arrival time is predominantly used for the evaluation

of P wave velocity. There are no robust methods to interpret the remaining signals to

obtain more information on the other properties of saturated soil samples, e.g., shear wave

velocity, porosity or water content. The application of the ultrasonic test for soil characteri-

zation is still limited due to the difficulties with signal interpretation and complex nature of

geomaterials. Currently, there are no available algorithms developed for the interpretation

of ultrasonic signals in saturated soils.

Characterization of multiphase frozen geomaterials

In the characterization of three-phase frozen geomaterials using ultrasonic tests, the

exact induced mechanical energy (force) still remains unknown due to the complexity of

piezoelectric behavior and transducer structure. The existing literature mostly focused

on the mechanism of wave propagation within frozen soils with assumed input force as

boundary conditions. Therefore, these methods are incapable of interpreting the ultrasonic

signals accurately. A literature search yielded no algorithms for the characterization of
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frozen soils using ultrasonic techniques. In the current seismic testing practice, it is com-

monly considered that the permafrost layer (frozen soil) is associated with a higher shear

wave velocity due to the presence of ice in comparison to unfrozen ground. However, the

porosity and soil type can also significantly affect the shear wave velocity (Liu, Maghoul,

and Shalaby, 2020b). In other words, a relatively higher shear wave velocity could be

associated to an unfrozen soil layer with a relatively lower porosity or stiffer solid skeletal

frame, and not necessarily related to the presence of a frozen soil layer. Therefore, the de-

tection of the permafrost layer and permafrost base from only the shear wave velocity may

lead to inaccurate and even misleading interpretations. Currently, there are no quantitative

algorithms available for the characterization of multiphase frozen geomaterials.

1.4 Goals and objectives

The main objective of this research is to develop novel non-invasive investigation tools and

physics-based interpretation methods for the characterization of multiphase geomaterials

(e.g., dry, saturated and frozen soils) using stress waves at small strain levels. To address the

limitations of the above-mentioned techniques and interpretation methods, this research

specifically aims to:

• Develop a highly-efficient and stable semi-analytical elastodynamic forward solver

for the MASW using the spectral element technique to characterize effectively and

efficiently the soil stratigraphy as well as soil properties.

• Develop a coupled piezoelectric and solid mechanics model for the BE system to

better understand the response of the BEs inside a soil sample. Also, investigate the

soil-BE interaction and provide a new understating of the significant interactions of

P-waves and S-waves within the soil sample in the BE test by the proposed coupled

piezoelectric and solid mechanics model.

• Develop a physics-based hybrid inverse and two-phase poromechanical model for

the characterization of saturated soil samples (e.g., shear wave velocity, compression

wave velocity and porosity) based on the distribution of stress waves in the ultrasonic

tests.

• Develop an ultrasonic sensing technique and a signal interpretation method based

on a three-phase poromechanical transfer function approach for the characterization
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of permafrost (e.g., ice content, unfrozen water content, porosity, ice lenses, soil type,

and mechanical properties).

• Develop a novel algorithm for analysis of surface waves to quantitatively estimate the

physical and mechanical properties of a permafrost site by decomposition of Rayleigh

waves dispersion relations via a hybrid inverse and multiphase poromechanical

approach.

• Develop a physics-based general-purpose computational tool, GeoNDT, for robust

solutions in the interpretation of NDT measurements used in geotechnical and

geophysical applications.

1.5 Validation of solvers

The Elastodynamic solver developed in Chapter 2 was validated numerically with the

results presented by (Beaty, Schmitt, and Sacchi, 2002). The Piezoelectric solver developed

in Chapter 3 was validated with laboratory tests using independent BE and RC tests

performed in this research. The Poroelastodynamic solver developed in Chapter 4 was

validated with the results presented by (Chai, Zhang, Lu, et al., 2015). The multiphase

poromechanical transfer function solver used in Chapter 5 was validated with ultrasonic

laboratory tests on reconstituted frozen samples. The multiphase poroelastodynamic solver

used in Chapter 6 was validated with field seismic data provided by (Glazer, Dobiński,

Marciniak, Majdański, and Błaszczyk, 2020).

1.6 Thesis structure

This thesis is composed of four parts in the order of complexity of the forward solver:

1) Elastodynamic and Piezoelectric Solver; 2) Poroelastodynamic Solver; 3) Multiphase

Poroelastodynamic, as well as 4) Programming and Further Applications. The linkages of

different chapters are summarized in Figure 1.1.
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FIGURE 1.1: Linkages of different chapters for the NDT characterization of
complex geomaterials

Each part contains one or two chapters and the style of each chapter is similar to a

journal paper starting with an introduction which includes literature reviews, mathematical

formulations, computational details, results and discussion, conclusion and supplementary

materials (the order may vary in different chapters). Then, conclusions and potential future

research plans are presented. The shared appendices and bibliography are given at the

end of thesis.

The outlines of the four parts and seven chapters of this dissertation are as follows:

Part I: Elastodynamic and Piezoelectric Solver

• Chapter 2 Integrated approach for the MASW dispersion analysis using the spectral

element technique and trust region reflective method

In this chapter, a cylindrical-coordinate-based dispersion forward solver is developed

using the spectral element method. A root finding method based on Brent’s algorithm

was proposed to accurately extract the dispersion curves. The trust region reflective

method, an effective bound-supported least square algorithm, was applied for the

inversion analysis of MASW data. Also, a parametric study was performed to

determine the effect of discontinuity in the soil stratigraphy on the dispersion curves.
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Finally, the integrated approach developed in this study was used to analyze the

MASW data collected in a site in south Iceland.

• Chapter 3 Experimental investigation and numerical modeling of piezoelectric BE

motion and wave propagation analysis in soils

In this chapter, a piezoelectric-solid mechanics model is proposed to study the BE

motion in different media. The model is validated using the BE motion in the air,

transparent soil, and Ottawa sand monitored by a laser vibrometer device. The

estimation of the soil parameters such as the shear wave velocity and damping

ratio of the Ottawa sand using the piezoelectric-solid mechanics model developed

in this paper is then compared with independent experimental data obtained via

the conventional RC test. Finally, the propagation of P- and S-waves within a soil

specimen due to the BE motion is thoroughly studied and the suitability of empirical

methods in estimating the arrival time of the S-wave is discussed.

Part II: Poroelastodynamic Solver

• Chapter 4 Laboratory-scale characterization of saturated soil samples through ultra-

sonic techniques

In this chapter, the laboratory-scale characterization of saturated soil samples through

ultrasonic techniques is presented. The poro-elastodynamic forward solver was

developed based on a semi-analytical solution which does not require intensive

computational efforts encountered in standard numerical techniques such as the

finite element method. A robust global optimization algorithm is then applied to

characterize the porosity, density, and other mechanical properties for a soil sample

given the ultrasonic signal measured at the receiver location.

Part III: Multiphase Poroelastodynamic

• Chapter 5 Pore-scale quantitative characterization of permafrost samples using ultra-

sonic waves

In this chapter, the Quantitative Ultrasound (QUS) package is developed to interpret

the measured ultrasonic electrical signal and efficiently determine the most proba-

ble permafrost properties using the proposed inverse spectral element multiphase

poromechanical approach. Several case studies are performed on different soil types
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including clay, silt, and till (a mix of clay, silt, sand, and limestone) to demonstrate

the robustness of the proposed QUS setup in characterizing frozen soils in terms of

both physical and mechanical properties.

• Chapter 6 Quantitative and qualitative characterization of permafrost sites using

surface waves

In this chapter, we present a hybrid inverse and multi-phase poromechanical ap-

proach for in-situ characterization of permafrost sites using surface wave techniques.

The role of two different types of Rayleigh waves in characterizing the permafrost is

presented based on an MASW seismic investigation in a field located at SW Spits-

bergen, Norway. Multiphase poromechanical dispersion relations are developed for

the interpretation of the experimental seismic measurements at the surface based

on the spectral element method. Case studies are performed to demonstrate the

potential of seismic surface wave testing accompanied with our proposed hybrid

inverse and poromechanical dispersion model for the assessment and quantitative

characterization of permafrost sites.

Part IV: Programming and Further Applications

• Chapter 7 GeoNDT: a fast general-purpose computational tool for geotechnical

non-destructive testing applications

In this chapter, we present the GeoNDT software, which is developed to provide

fast and stable solutions for the interpretation of non-destructive testing (NDT)

measurements used in geotechnical and geophysical applications. In this software,

the above-mentioned multiphase models for the propagation of stress waves in dry

(elastodynamic), saturated (two-phase poroelastodynamic), and three-phase frozen

(multiphase poroelastodynamic) geomaterials using the meshless spectral element

method are implemented.

• Chapter 8 Conclusion and potential of future research plan

In this chapter, the contributions of this research along with the conclusions as well

as the future research plan are outlined.



Part I: Elastodynamic and Piezoelectric
Solver
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Chapter 2

Integrated approach for the MASW
dispersion analysis using the spectral
element technique and trust region
reflective method

Abstract

In this paper, a semi-analytical elastodynamic forward solver was proposed for the Mul-

tichannel Analysis of Surface Waves (MASW) using the spectral element technique for

the first time. A root finding method based on Brent’s algorithm was proposed to ac-

curately extract the dispersion curves. The trust region reflective method, an effective

bound-supported least square algorithm, was applied, for the first time, for the inversion

analysis of MASW data. In comparison to the commonly used neighborhood algorithm,

the proposed solver converges rapidly; the Euclidean distance between the measured

and numerically calculated dispersion curves are significantly reduced within only 300

runs of the forward solver in comparison to over 10,000 runs using the neighborhood

algorithm. Several numerical case studies were performed to demonstrate the selection of

initial guesses as well as the bounds of each optimization parameter. Also, a parametric

study was performed to determine the effect of discontinuity in the soil stratigraphy on

the dispersion curves. Finally, the integrated approach developed in this study was used

Liu H., Maghoul P., Shalaby A., Bahari A., and Moradi F., 2020. Integrated approach for the MASW dispersion
analysis using the spectral element technique and trust region reflective method. Computers and Geotechnics, 125,
103689. https://doi.org/10.1016/j.compgeo.2020.103689.

https://doi.org/10.1016/j.compgeo.2020.103689
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to analyze the MASW data collected in a site in south Iceland. It was concluded that the

proposed approach determines effectively and efficiently the soil stratigraphy as well as

soil properties.
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2.1 Introduction

The seismic non-destructive testing (NDT) techniques have been widely used for the char-

acterization of subsurface materials without disturbing their original state. The commonly

used seismic NDT includes the Spectral Analysis of Surface Waves (SASW), Multichannel

Analysis of Surface Waves (MASW), Continuous Surface Waves (CSW), and Falling Weight

Deflectometer (FWD) methods. In these techniques, the determination of soil parameters

requires a physical forward solver and a back-calculation algorithm to fit the field mea-

surements. The SASW that records data in two stations was introduced in the 1980s by

(Nazarian and Stokoe, 1984). In this test, a vertical impact is generated on the ground

surface through an impulse source, which induces Rayleigh waves and can be used to map

the near-surface shear velocity profile. Two geophones are normally used and the spacing

between them is varied to cover the desired investigation depth. It is known that using

only a pair of geophones, the different modes of wave propagation can not be differentiated

and the dispersion inversion can be difficult (Lin, Lin, and Chien, 2017). The MASW, on

the other hand, samples data at multiple locations using several geophones. This allows

the investigation of a broader area and depth from a single survey. The displacement

data measured at various locations at the ground surface can be first transformed into

a dispersion image through methods such as the phase-shift method (Park, Miller, and

Xia, 1998) and 2D FFT techniques. The dispersion image depicts the patterns of energy

accumulation in the space and the desired dispersion curve can then be extracted manually

or through mode picking algorithms.

The interpretation of MASW test data normally requires a forward solver and an

inverse algorithm. The forward solver computes the dispersion curves for a given soil

stratigraphy and the inverse algorithm updates the soil parameters until the calculated

dispersion curves match well with the measured ones. Several forward solvers have

been developed since 1950s. The two most popular approaches are the transfer function-

based method and stiffness matrix (Global matrix)-based method. By using the transfer

function matrix, the relation between the upper layer and lower layer can be obtained.

Such techniques avoid the global stiffness matrix inversion by replacing it with a matrix

multiplication. The well-known Thomson-Haskell matrix method was first proposed in

1953 by (Haskell, 1953). However, it was found that a numerical instability occurs in this

method, especially at high frequencies due to the exponential increasing terms (Ke, Dong,

Kristensen, and Thompson, 2011; Kamal and Giurgiutiu, 2014; Lowe, 1995; Wang and
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Rokhlin, 2001). In addition, the displacement and stress components are placed in the same

matrix. Since the stress components are normally much greater than the displacement

components (roughly from 106 to 109 times greater), the inversion of such a matrix is highly

unstable. Therefore, numerous attempts have been made through various scaling and

matrix transformation including Schwab-Knopoff method (Schwab and Knopoff, 1972),

Abo-Zena method (Abo-Zena, 1979), reflection and transmission (RT) matrix method

(Kennett, 1974) among others.

In the global stiffness matrix-based method, the relations between the displacement

and stress for each layer are obtained, which ensures the numerical stability even at high

frequencies (Kamal and Giurgiutiu, 2014; Lowe, 1995). The fundamental global matrix

method was first developed by (Knopoff, 1964) using the elstodynamic theory in Cartesian

coordinates. A matrix-based method similar to finite element formulation was developed

by (Rizzi and Doyle, 1992) to study the structure response in frequency and time domain.

It was shown that such a formulation is more computationally efficient than the global

matrix method. The global stiffness matrix-based method requires to solve four wave

coefficients in each layer, whereas in spectral element method, only two quantities (ur

and uz) are required to be computed (Rizzi and Doyle, 1992). Therefore, the system size

is approximately doubled in the global stiffness matrix-based method (Rizzi and Doyle,

1992). The spectral element method was developed for the solution of elastodynamic

problems, which are mostly used for the soil response analysis in the FWD test (Al-

Khoury, Scarpas, Kasbergen, and Blaauwendraad, 2001; Lee, 2014). However, there is not

enough attention paid in the dispersion relation analysis using the spectral element method.

During the inversion process in the MASW test, the dispersion-based method are more

commonly applied since the distribution of dispersion curve is independent of the applied

loading source which is normally unknown in practice. The determination of dispersion

curves requires solving the root-finding problem by setting the global stiffness matrix’s

determinant to zero. The computational cost increases with the size of the global stiffness

matrix due to the determinant calculation. Therefore, the spectral element formulation

improves the root-search speed in comparison to the global matrix method.

Several MASW inversion algorithms have been proposed in the literature. The neigh-

bourhood algorithm, a gradient free method, was used by (Sambridge, 1999; Wathelet,

Jongmans, and Ohrnberger, 2004) for the inversion of passive MASW test data in south

of Brussels, Belgium. This method was also tested using several synthetic data and was

proved to have predictions consistent with the borehole data. The simulated annealing
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method was used by (Beaty, Schmitt, and Sacchi, 2002) and the inversion was applied to

a site with glacial tills located at a depth of 10 m. A reasonable prediction was obtained

despite of its large computational cost. A linearized algorithm that applies inequality

constraints during the MASW inversion was developed by (Cercato, 2009) to address the

non-uniqueness problem. The 2D genetic algorithm was applied by (Rehman, El-Hady,

Atef, and Harbi, 2016) for the inversion of MASW dispersion curves obtained in vertically

heterogeneous medium. It is reported that the genetic algorithm successfully locates the

depth of the bedrock (varying from 4 to 30 m). Recently, MASWaves, an open source

tool for the forward and inverse MASW test, proposed a trial and error method for the

inversion analysis (Olafsdottir, Erlingsson, and Bessason, 2017). A good agreement was

also achieved between the experimental and numerical dispersion curves.

In this paper, a cylindrical-coordinate-based dispersion forward solver is obtained

using the spectral element method. The Brent root-finding method is used to accurately

determine the phase velocity for a given frequency. It should be noted that this study still

deals with horizontally distributed soil layers. Then, the trust-region reflective method, a

bound supported least square algorithm, is applied in the inversion analysis. Finally, the

performance of such an integrated approach is compared with the neighborhood algorithm

proposed by (Sambridge, 1999).

2.2 Forward solver for the MASW dispersion analysis

2.2.1 Problem definition

A general schematic of the problem is illustrated in Figure 2.1. The domain is composed of

horizontally distributed multilayers with different soil properties. Various impact loading

sources (hammer, falling weight or vibrating machine) can be applied at the ground surface.

The geophones are used to measure the corresponding soil responses at multiple locations.
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FIGURE 2.1: A general configuration of the problem

2.2.2 Conventions and assumptions

In this study, the state variables are the components of the displacement vector, ui. The

assumptions and conventions used in developing the governing equations are listed as

follows:

• The domain consists of a multi-layered system.

• Each layer is composed of a continuum deformable solid body.

• The elastic medium of the skeleton is homogeneous, isotropic and linear.

• Transient conditions and infinitesimal deformations are considered.

2.2.3 Kinematic and constitutive model

The linearized form of the Green-Lagrange strain tensor, ε ij, for infinitesimal deformations

is described as:

ε ij =
1
2
(
ui,j + uj,i

)
(2.1)

where ui,j represents ∂ui
∂xj

; ui represents the displacement vector components in each direc-

tion and xj represents the coordinates.

The constitutive law of soils that describes the stress-strain relations is defined as:

σij = Dijkl εkl (2.2)

where σij and εkl are the total stress and the strain tensor, respectively. Also, Dijkl is the

fourth-order linear elastic stiffness tensor described as:

Dijkl = λδijδkl + µ
(
δikδjl + δilδjk

)
(2.3)
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in which λ and µ are the Lamé coefficients.

By replacing Equation (2.3) into Equation (2.2), the constitutive equation can be written

as:

σij = λδijεkk + 2µε ij (2.4)

2.2.4 Conservation of linear momentum

The conservation of the linear momentum for the elastodynamic medium is written as:

σij,i + fi = ρüi (2.5)

where ρ is the bulk density of soil and fi is the body force.

2.2.5 Governing equations

The Navier equation for the elastic wave propagation is obtained from Equation (2.1) to

(2.5), as follows.

(λ + 2µ)∇∇ · u− µ∇×∇× u = ρü (2.6)

where u is the displacement vector.

The Lamé coefficients (λ, µ) can be expressed in terms of Young’s modulus (E) and

Poisson’s ratio (ν) through Equation 2.7.

λ =
Eν

(1 + ν)(1− 2ν)
(2.7a)

µ =
E

2(1 + ν)
(2.7b)

2.2.6 Helmholtz’s decomposition

Using the Helmholtz decomposition theorem allows us to resolve the displacement field,

u, into the longitudinal and transverse vector components as follows,

u = ∇φ +∇× ~ψ (2.8)
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where φ is the scalar compressional (longitudinal) wave potential and ~ψ is the shear

(transverse) wave vector potential. For the uniqueness of the solution, the following Gauge

condition shall be satisfied as:

∇ · ~ψ = 0 (2.9)

By substituting Equation (2.8) into the field equation of motion, Equation (2.6), we

obtain two sets of uncoupled partial differential equations relative to the compressional

wave P related to the Helmholtz scalar potentials φ, and to the shear wave S related to

the Helmholtz vector potential ~ψ, respectively. In the axi-symmetric condition, only the

second components exist in vector ~ψ, which is denoted as ψ̂. They can be written in the

Laplace transform domain by considering zero initial conditions as follows:

c2
p∇2φ̂− s2φ̂ = 0 (2.10a)

c2
s∇2ψ̂− s2ψ̂ = 0 (2.10b)

where cp = λ+2µ
ρ is the P wave velocity and cs =

µ
ρ is the S wave velocity.

The solution to the wave equations (2.10) is obtained using the Laplace transform and

Fourier-Bessel series.

2.2.7 Time variable treatment

The time variable, t, in Equation (2.10) can be treated using the Laplace transform (t→ s)

as

L{θ(t)} = θ̂(s) =
∫ γ+i∞

γ−i∞
θ(t)e−stdt (2.11)

2.2.8 Solutions for potential variables

Referring to Equation (2.10), the scalar potential φ̂(r, z) and vector ψ̂(r, z) can be decom-

posed into two independent functions of R̂ and Ẑ. For instance, φ̂(r, z) in the cylindrical

coordinates (r, θ, z) can be written as:

φ̂(r, z) = R̂(r)Ẑ(z) (2.12)

where r, θ and z denotes the radial, azimuthal, and vertical coordinates, respectively.
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Substituting Equation (2.12) into Equation (2.10) and setting both sides of the equation

equal to an arbitrary constant −k2 (then move the k2 term to left-hand side), we can obtain

two independent ordinary equations (ODE) :

d2R̂(r)
dr2 +

1
r

dR̂(r)
dr

+ k2R̂(r) = 0 (2.13a)

d2Ẑ(z)
dz2 −

(
s2

c2
p
+ k2

)
Ẑ(z) = 0 (2.13b)

Introducing variable a = kr where k is known as the wavenumber and r is the distance

between the impact source and the receiver in the radial direction, Equation 2.13a is

transformed to Bessel’s equation:

d2R̂(a)
da2 +

1
a

dR̂(a)
da

+ R̂(a) = 0 (2.14)

The radial space variable treatment, shown in Equation 2.14 is refereed as the radial

relaxation method. The solution of Equation (2.14) is a function of Bessel functions J0 and

Y0 of first and second kind, respectively, as follows

R̂m(r) = A1m J0 (km r) + A2mY0 (km r) (2.15)

where m represents the mode number; A1m and A2m are the arbitrary coefficients for

each mode; km = αm
R (R represents the location where induced displacement becomes

negligible, taken as 20m (Al-Khoury, Scarpas, Kasbergen, and Blaauwendraad, 2001)) is

the wavenumber in radial direction for mode m; αm is the positive roots of J0 function

(Abramowitz, 1985).

Since the oscillation at the origin (r = 0) is finite and the value of Y0 goes to infinite at

r = 0, the term with Y0 is dropped (Al-Khoury, Scarpas, Kasbergen, and Blaauwendraad,

2001). Applying the boundary conditions that R̂m(R) = J0(kR) = 0 when the distance

is far enough (r → R), the solution of R̂m(r) is obtained in Equation 2.16. The applied

boundary condition ensures that the response due to an impact load is damped at a long

distance.

R̂m(r) = A1m J0 (km r) (2.16)
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The solution for Equation (2.13b) is:

Ẑ(z) = A2me−kpz (2.17)

where

kp =

√
s2

c2
p
+ k2

m (2.18)

Therefore, the solution for the scalar potential φ̂(r, z) is given by:

φ̂(r, z) = Am e−kpz J0(km r) (2.19)

where Am is the coefficient to be determined from boundary conditions.

Similarly, the solution for the vector potential ψ̂(r, z) is obtained as:

ψ̂(r, z) = Cm e−ksz J1(km r) (2.20)

where J1 is the first-kind Bessel function of order one.

ks =

√
s2

c2
s
+ k2

m (2.21)

2.2.9 Two-node element for layers with finite thickness

By including both incident wave and reflected wave, the potentials for a layer with finite

thickness can be written as:

φ̂(r, z) =
(

Am e−kpz + Bm e−kp(h−z))︸ ︷︷ ︸
φ

J0(km r) (2.22a)

ψ̂(r, z) =
(
Cm e−ksz + Dm e−ks(h−z))︸ ︷︷ ︸

ψ

J1(km r) (2.22b)

where h (m) represents the thickness of each layer.

By substituting Equations (2.22) into Equation (2.8), the displacement components in

the matrix form can be written as:
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

ur1

uz1

ur2

uz2


=


−km −km e−hkp ks −ks e−hks

−kp kp e−hkp km km e−hks

−km e−hkp −km ks e−hks −ks

−kp e−hkp kp km e−hks km


︸ ︷︷ ︸

S′1



Am

Bm

Cm

Dm


(2.23)

where ur and uz represents the radial and vertical displacement in frequency domain; the

subscript 1 and 2 represents the top and bottom node.

The stress component can be also written in terms of potentials by combining Equations

(2.4) and (2.23):



σrz1

σz1

σrz2

σz2


=


2kpkmµ −2kmkpµe−hkp −(k2

m + k2
s)µ −(k2

m + k2
s)µe−hks

k2
n k2

n e−hkp −2kmksµ 2kmksµ e−hks

2kmkpµ e−hkp −2kmkpµ −(k2
m + k2

s)µ e−hks −(k2
m + k2

s)µ

k2
ne−hkp k2

n −2kmksµ e−hks 2kmksµ


︸ ︷︷ ︸

S′2



Am

Bm

Cm

Dm


(2.24)

where k2
n = k2

p(λ + 2µ)− k2
mλ; Am, Bm, Cm and Dm are the coefficients to be determined

from boundary conditions.

According to the Cauchy stress principle, the traction force ([T̄rz1, T̄z1, T̄rz2. T̄z2]T) is

taken as the dot product between the stress tensor and unit vector along the outward

normal direction. Due to the convention that the upward direction is negative, the upper

boundary becomes ([−σrz1, −σz1]
T). Similarly, to make the sign consistent, the N matrix is

applied to matrix S′2 · S′1
−1. In the future, the matrix N · S′2 · S′1

−1 will be denoted as Gi

matrix, in which i denotes the layer number.



T̄rz1

T̄z1

T̄rz2

T̄z2


i

=



−σrz1

−σz1

σrz2

σz2


i

= N · S′2 · S′1
−1︸ ︷︷ ︸

Gi

·



ur1

uz1

ur2

uz2


i

(2.25)
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where

N =


−1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1

 (2.26)

2.2.10 One-node semi-infinite element

By assuming that no wave reflects back to a semi-infinite element, the displacement

components for a layer with the infinite thickness in the matrix form can be written as:

ur

uz

 =

−km ks

−kp km


︸ ︷︷ ︸

S′3

A

C

 (2.27)

Similarly, the stress component can be obtained in terms of potentials, as shown in

Equation (2.28). The relation between the stress components and displacement components

are shown in Equation (2.29). The matrix −S′4 · S′−1
3 will be denoted as S matrix for

simplicity in the future.

σr

σz

 =

2kmkpµ −µ(k2
m + k2

s)

k2
n −2kmksµ


︸ ︷︷ ︸

S′4

A

C

 (2.28)

−σr

−σz

 = −S′4 · S′3
−1︸ ︷︷ ︸

S

·

ur

uz

 (2.29)

After obtaining the matrix for each element, the global matrix can be obtained by

applying the continuity conditions between layer interfaces. The stiffness assembling

method is shown in Figure 2.2. The global stiffness is denoted as H matrix for simplicity.

An example of global stiffness matrix for a three layer system is provided in Section 2.7.
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FIGURE 2.2: Global stiffness matrix construction

The system of equation then can be expressed as:

T = H U (2.30)

where T is the external traction force vector; H is the stiffness matrix and U is the displace-

ment vector.

The dispersion relation is obtained by setting a zero stress condition (T = 0) at the

surface (z = 0). To obtain the non-trial solution, the determinant of the global stiffness

matrix has to be zero, as expressed in Equation 2.31 (Zomorodian and Hunaidi, 2006).

det H(ω, k) = 0 (2.31)

It should be noted that the global stiffness matrix, H(ω, k), is a function of angular

frequency ω and wavenumber k. The relation between the angular frequency ω and s in

Laplace domain is ω = −si where −1 =
√

i. The global matrix contains the terms related

to ks and kp, which are dependent on the frequency. For a constant frequency, the value

of wavenumber can be determined when the determinant of the global stiffness matrix is

zero. This is similar to a root finding problem. The different wavenumbers determined at

a given frequency corresponds to dispersion curves with different modes. For instance,

the largest wavenumber for a frequency belongs to the fundamental mode and the second

largest wavenumber belongs to the second mode. The dispersion curve is also commonly

displayed as frequency versus phase velocity, v = ω
k , in which k is the wavenumber.

In this paper, a simple algorithm is proposed to effectively find the wavenumber or

phase velocity for a given frequency and soil parameters. The algorithm performs a sweep

in a broad range of wavenumbers for a given frequency. A rough interval where roots

exist needs to be found first and then Brent’s method can be applied to accurately locates

the roots. The following notations are used in the algorithm: ε for the wavenumber
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sweep increment; n for the number of iterations; k0 for the initial wavenumber, k for the

wavenumber at the current step; k′ for the wavenumber at the previous step; f (k) gives

the determinant value of the stiffness matrix at wavenumber k; δ for the tolerance used

to check if the determinant of the stiffness matrix is close to zero; Brent(k, k′) is Brent’s

method that takes an internal (k, k′) as input where f (k) and f (k′) must have different

sign; r is the root calculated from Brent’s function.

The algorithm is shown as follows:



Given ε, k0, δ, n

f or i = 1, 2, ...n

k = k + ε

k′ = k− ε

v1 = f (k)

v2 = f (k′)

i f v1 · v2 ≤ 0

r = Brent(k, k′)

i f f (r) < δ

return r

end f or

(2.32)

In the dispersion analysis, the ultimate goal is to find pairs of frequency and wave

number so that the determinant of the global stiffness matrix becomes zero. Therefore, the

scaling can be applied to the stiffness matrix as long as the sign remains the same. It is

found that by multiplying the stiffness matrix by 10−10, the occurrences of large numbers

are avoided in the determinant calculation, which enhances the stability of the proposed

algorithm.

2.3 MASW inversion analysis

The determination of soil parameters requires a physical forward solver and a back-

calculation algorithm to fit the field measurements. The inversion can be based on the

dispersion curve of Rayleigh wave (known as the surface wave inversion).
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2.3.1 Objective function

In this paper, the Euclidean norm is used to construct the objective function. The problem

is formulated as the following form:


minimize f (x) = 1

2 ∑N
i=1(yi − ȳi(x))2

subject to ai ≤ xi ≤ bi, i = 1, . . . , m
(2.33)

where x = (x1, x2, ...xm) is the optimization variable; f (x) is the objective function; the

constant ai and bi are limits or bounds for each variable.

By assuming that the soil is elastic, the optimization parameter x normally includes

soil’s Young’s modulus (E), Poisson’s ratio (µ), density (ρ) and thickness (H) for each layer.

The parameter yi is the phase velocity at a frequency. The value of ȳi is calculated using

the proposed forward solver via the trial parameters x.

It is known that the dispersion curve (or the objective function) is relatively less sensitive

to the density and Poisson’s ratio compared to Young’s modulus. However, the predicted

soil parameters and layer thicknesses can deviate from the real values even more if the

assumed Poisson’s ratio and density are not reasonable. Therefore, Poisson’s ratio and

density are required to be included in the optimization process unless their values are

available based on prior information.

2.3.2 Trust-region reflective method

According to (Ahsan and Choudhry, 2017), the trust-region reflective method (TRR) offers

higher accuracy with less cost as compared to Gauss-Newton and Levenberg Marquardt

methods. Meanwhile, the TRR method supports the bounds for optimization variables.

The trust region reflective method transform bounded least square algorithm into uncon-

strained optimization by incorporating the line search method. The general formulation

is still similar to the traditional trust region method. In general, the trust region method

approximates the objective function using Taylor-series expansion around the evaluation

point. The gradient and Hessian matrix of residual function with respect to the optimiza-

tion variable (x) is obtained by evaluating:


g(x) = ∇ f (x) = ∑m

j=1 rj (x) ∂rj
∂xi

= J (x)T r (x)

H(x) = ∇2 f (x) == J (x)T J (x) + ∑m
j=1 rj (x)∇2rj (x)

(2.34)
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in which r = yi − ȳi and J (x) is defined as:

J (x) =
[

∂rj

∂xi

]
j=1,2,...m i = 1,2,...n

(2.35)

An appealing feature of this problem is that by knowing the Jacobian J (x), we can

obtain Hessian (∇2 f (x)) for free. Moreover, the first term, J (x)T J (x), usually is more

important than the second term, ∑m
j=1 rj (x)∇2rj (x) since the residual is assumed to be

small enough. Therefore, the second derivative, ∇2 f (x), simply reduces to J (x)T J (x),

which essentially is the advantage of the least square algorithm. It should be noted the

J(x) function is computed numerically in this paper.

To incorporate the bound constraint to the optimization variable, the first order neces-

sary conditions for x to be a local minimum is shown in Equation (2.36).

g(x)i = 0 i f li < xi < ui (2.36a)

g(x)i ≤ 0 i f xi = ui (2.36b)

g(x)i ≥ 0 i f xi = li (2.36c)

A vector v(x) is defined to measure the distance to the bounds, as shown in Equation

(2.37):

v(x)i =


ui − xi g(x)i < 0 and ui < ∞

xi − li g(x)i > 0 and li > −∞

1 otherwise

(2.37)

The first order necessary conditions are then modified in Equation (2.38). If the opti-

mization variable (x) falls on the bounds, D(x) becomes zero. On the other hand, if the

variable located between the lower and upper bounds, g(x) becomes zero.

D(x)2g(x) = 0 (2.38)

in which D(x) is defined as Diag(v(x)1/2).

The trust region reflective formulation is similar to the traditional trust region method,

except with different definitions for the gradient, Hessian and other parameters. After

introducing Newton’s step (line search method), the trust region subproblem is defined as
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follows:

min mi ( p̂) = ĝT p̂ +
1
2

p̂T Ĥi p̂ p̂ ≤ ∆i (2.39)

where m represents the function value at current point; ĝ = D g is the modified gradient; p̂

is the modified trust region steps; Ĥ = D H D + C is the modified Hessian matrix where

C = diag(g)Jv and Jv is the Jacobian of v(x); ∆i is the trust region radius.

In each step, the trust region algorithm updates the size and an improvement ratio

is defined to evaluate the performance of the approximation. In this case, a modified

improvement ratio of the trust-region solution is computed as follows:

ρi =
f (xi)− f (xi + pi) +

1
2 P̂TCP̂

mi ( p̂i)
(2.40)

It should be realized that if ρk is smaller than zero, which means the actual reduction is

not achieved, then such step should be rejected. However, if ρk is close to one, it means

that the model used to approximate the function has in a good agreement with the original

function. Therefore, it is safe to expand the trust region. If the value is close to zero, we

should shrink the trust region. With the modified parameters used in the trust region

algorithm, the traditional update rule can then be applied. The detailed description is

given in (Nocedal and Wright, 2006).

In the trust region reflective optimization, the gradient needs to be calculated before

switching to the next trust region, which ensures that the cost function reduces in each

step. However, such gradient dependent method could not utilize the parallel computing

techniques since the calculation needs to be done step by step. To increase the calculation

speed without sacrificing the advantages of using the trust region reflective method, the

parallel computing is only implemented for the forward solver computation. The calcula-

tion of the phase velocity at different frequencies is independent and can be evaluated in

parallel through multi-processing controls.

The integrated approach for the MASW forward and inversion algorithms, as presented

above, is implemented in an open source code, Intelligent MASW, which can be find in (Liu,

Maghoul, and Shalaby, 2020a) or https://github.com/Siglab-code/Intelligent-MASW.

2.4 Model validation

It should be noted that the dispersion curve and soil response analysis possess different

features. The dispersion curve reflects the geometry and soil properties. Meanwhile, the

https://github.com/Siglab-code/Intelligent-MASW
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distribution of dispersion curves is an intrinsic property of the system and is independent

of the applied loads. During the inverse process, such a feature can be beneficial since users

are not required to measure the applied loads, which eventually reduces the computational

effort.

2.4.1 Dispersion model validation

In this section, a case study was performed to validate the proposed integrated approach.

A four-layer system was studied by (Beaty, Schmitt, and Sacchi, 2002) and the parameters

used in the analysis are shown in Table 2.1.

TABLE 2.1: Soil Parameters used in the dispersion analysis (Beaty, Schmitt,
and Sacchi, 2002) (Case Study 1)

Layer vs (m/s) vp (m/s) ρ (kg/m3) Thickness (m)

1 80 185 1180 0.8

2 140 480 1780 3.7

3 140 1650 1780 2.5

4 1040 1650 2180 ∞

The dispersion curves from the first to fourth modes were obtained by (Beaty, Schmitt,

and Sacchi, 2002) using Menke’s method in which the transfer function was used, as a

forward solver, to obtain the dispersion relation of multilayered systems. The proposed

approach in this paper, on the other hand, used the global matrix method. Figure 2.3

shows the results obtained from the proposed approach in this paper and Menke’s method.

Despite of different methodologies, a good agreement was achieved in dispersion curves,

which proves the accuracy of the proposed algorithm.
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FIGURE 2.3: Comparison between the dispersion curves obtained through
the integrated approach proposed in this study and data provided by (Beaty,

Schmitt, and Sacchi, 2002)

For the system with low velocity half space, the model is validated with the case study

performed by (Pan, Xia, and Zeng, 2013). In this case study, a six-layer system was studied

and the corresponding soil parameters for each layer can be found in Table 2.2 (Pan, Xia,

and Zeng, 2013). The dispersion curves are obtained at the locations where the determinant

of the stiffness matrix is zero. As shown in Figure 2.4, the first-mode dispersion curve

matched well with the results obtained by (Pan, Xia, and Zeng, 2013). Furthermore, the

second and third modes are also given in this paper.

TABLE 2.2: Six-layer earth model with low velocity half-space layer ((Pan,
Xia, and Zeng, 2013))

Layer number vs (m/s) vp (m/s) ρ (kg/m3) Thickness (m)

1 194 650 1820 2.0

2 270 750 1860 2.3

3 367 1400 1910 2.5

4 485 1800 1960 2.8

5 603 2150 2020 3.2

6 350 1350 2090 infinite
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FIGURE 2.4: Comparison between the dispersion curves obtained through
the integrated approach proposed in this study and data provided by (Pan,

Xia, and Zeng, 2013)

2.5 Results and discussion

In this section, five different cases are studied, as follows. The soil domain in Cases 1 to 3

is composed of a four-layered system while in Cases 4 and 5 the soil domain is composed

of a three-layered system.

• Case 1: in which the soil stiffness increases monotonically with depth. This is one of

the most important assumptions made in the conventional seismic non-destructive

testing analyses. The results demonstrated in the section 4.1 were obtained for this

case.

• Case 2: in which it is assumed that a stiff layer is located between two relatively soft

layers. This can represent a case when a frozen soil layer is located between a melting

layer at the top and an unfrozen soil layer at the bottom.

• Case 3: in which it is assumed that a soft layer is located between two stiff layers.

This can represent a case when a soft soil layer is located between a stiff layer at the

bottom and a freezing soil layer at the top.

• Case 4 and Case 5: in which the stiffness of the soil layers increases with depth. This

represents a simplified soil stratigraphy at the subsurface, which is followed by a

bedrock layer.
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2.5.1 The effect of soil stratigraphy on dispersion relations

To study the effect of soil stratigraphy on dispersion curves, the dispersion curves for Case

1 (shown in Table 2.1) and Case 2 are compared. As mentioned above, the soil stiffness in

Case 1 increases monotonically with depth while in Case 2, it is assumed that a stiff layer

is located between two relatively soft layers. The soil parameters can be found in Table 2.3.

TABLE 2.3: Soil parameters used in case study 2

Layer vs (m/s) vp (m/s) ρ (kg/m3) Thickness (m)

1 80 185 1180 0.8

2 140 480 1780 3.7

3 1040 1650 2180 2.5

4 140 1650 1780 ∞

A comparison of dispersion curves between Case 1 and Case 2 are shown in Figure

2.5. The dispersion curve distribution for each mode is different in Case 1 and Case 2.

For the first mode (fundamental mode), the separation was visualized for frequencies less

that 20 Hz. As frequency increases, the dispersion curve starts to overlap. The similar

phenomenon was visualized for higher modes.

An interesting observation is that in Case 1 where the soil stiffness increases monotoni-

cally with depth, the phase velocity of each mode decreases continuously with frequency.

When frequency is relatively low, the penetration depth of Rayleigh wave is deeper. Con-

sequently, geomaterials located at greater depths with a higher stiffness affect the phase

velocity profile more. Therefore, the phase velocity is higher at low frequencies than that

at high frequencies when the soil stiffness increases monotonically with depth.
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FIGURE 2.5: Dispersion curves for Case 1 and Case 2

The dispersion curve comparison between Case 1 and Case 3 is shown in Figure 2.6.

The soil parameters used for Case 3 can be found in Table 2.4. At the same frequency, the

phase velocity (Rayleigh wave velocity ) is larger in Case 3, which is due to the stiffer

materials in the second layer. The existence of a soft layer makes the dispersion curve

non-continuous. A transition interval is observed between the phase velocities of 400 m/s

and 500 m/s in Case 3.

TABLE 2.4: Soil Parameters used in Case study 3

Layer vs (m/s) vp (m/s) ρ (kg/m3) Thickness (m)

1 80 185 1180 0.8

2 1040 1650 2180 2.5

3 140 480 1780 3.7

4 1040 1650 2180 ∞
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FIGURE 2.6: Dispersion curve for Case 1 and Case 3

As shown in Figure 2.7, four different slopes are visualized for the first mode in

these three cases in terms of frequency-wavenumber, in which each slope represents

one layer. For example, the layers are labeled for Case 3 in Figure 2.7. Therefore, it is

concluded that the distribution of dispersion curves reflects the soil stratigraphy. When

the stiffness of soil layers increases monotonically with depth (Case 1), the phase velocity

decreases monotonically with frequency. The discontinuity (fluctuation) of soil layout,

such as existence of a soft and stiff layer, also induces discontinuity in dispersion curves.

The number of transition can roughly reflects the number of layers in the field. Such

information could largely reduce the computational cost during the full wave inversion

since the number of layers can be obtained from the dispersion curves.

FIGURE 2.7: First mode dispersion curves for three Cases
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2.5.2 Wavelength of dispersion curves considering various modes

In this section, the wavelength of fundamental and higher-mode dispersion curves in

different cases are discussed. The following case studies are used to demonstrate the

sensitivity of fundamental and higher-mode dispersion curves to soil layers located at a

greater depth. A three-layered system is used for the case studies and parameters used in

the analysis are listed in Table 2.5.

TABLE 2.5: Parameters used in the dispersion mode analysis

Case Layer vs (m/s) vp (m/s) ρ (kg/m3) Thickness (m)

Case 4

1 200 400 1600 20

2 300 700 1800 30

3 400 1200 2000 ∞

Case 5

1 200 400 1600 20

2 300 700 1800 30

3 800 1200 2000 ∞

In Case 4, the wavelength of each mode is shown in Figure 2.8. The phase velocity for

frequencies less than 5 Hz is difficult to measure in practice. Therefore, only the data for

frequencies higher than 5 Hz can be used in geotechnical non-destructive testing. As shown

in Figure 2.8, the dispersion curves for higher modes give a relatively larger wavelength.

For the fundamental mode, the largest wavelength is 41 m for the frequencies between 5

Hz and 40 Hz.
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FIGURE 2.8: Phase velocity and wavelength variation with frequency in

Case 4
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In Case 5, the shear wave velocity of the third layer (50 m below the ground surface)

increased to 800 m/s. The phase velocity variation with frequency in both cases are shown

in Figure 2.9. Since the largest wavelength of the fundamental mode is 41 m, the soil

parameter variation below 50 m is not captured by the fundamental mode, as shown in

Figure 2.9. The wavelength of the second-mode dispersion curve are larger than 50 m for

frequencies smaller than about 8 Hz. Therefore, the variation of phase velocity between

Case 4 and Case 5 for frequencies between 5 Hz and 8 Hz can be visualized in Figure 2.9.

The variations of phase velocity between Case 4 and Case 5 are amplified for the third

mode and the fourth mode. Therefore, in this case, the higher-mode dispersion curves are

important in determining the soil parameters for soil layers located at greater depths.

FIGURE 2.9: Phase velocity variation with frequency comparison for case 4
and case 5

2.5.3 MASW inversion case study

In this case study, the MASW data collected by (Olafsdottir, Erlingsson, and Bessason,

2017) in a site in Arnarbaeli (south Iceland) is used for the demonstration of the integrated

approach proposed in this study. The data was collected using 24 geophones with a spacing

of 1 m in between. The first geophone was located 10 m away from the source to avoid the

near field effect. The detailed description of data collection is documented in (Olafsdottir,

Erlingsson, and Bessason, 2017). The field measurement is shown in Figure 2.10a and the

corresponding dispersion image is shown in Figure 2.10b.
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FIGURE 2.10: MASW filed measurement in Arnarbaeli in south Iceland with
24 channels

In this study, the inversion is performed based on the average dispersion curve shown

in Figure 2.10b. Based on the frequency-wavenumber curves shown in Figure 2.11, two

distinguished slopes are visualized, which might represent a two-layered system in the

field based on the case study shown in Section 5.1. Out of conservative considerations,

a four-layered system is initially assumed for this case study. In addition, the maximum

wavelength is found to be around 30 m. Since only the fundamental mode is used for the

inversion, the maximum investigation depth should be close to the maximum wavelength

during the inversion. Therefore, the upper bound for thickness in each layer is set to be

30 m. Meanwhile, the phase velocity decreases with frequency, the shear wave velocity

is initially assumed to increase monotonically with depth. The upper bound of shear

wave velocity should be greater than the maximum value of the phase velocity, which is

taken as 300 m/s. The lower bound for the shear velocity is taken as 15 m/s, which is

smaller than the minimum phase velocity in the dispersion curve. The initial value and the

lower/upper bound settings are shown in Table 2.6. It should be noted that Poisson’s ratio

is used as an optimization variable instead of P wave velocity due to the relatively easier

implementation of bound constraint.
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FIGURE 2.11: Frequency vs wavenumber/wavelength for Arnarbaeli in
south Iceland (Olafsdottir, Erlingsson, and Bessason, 2017)

TABLE 2.6: Initial values and bounds setting for MASW Inversion

Layer number vs (m/s) µ ρ (kg/m3) Thickness (m)

1 30 0.35 2000 1

2 50 0.35 2000 5

3 75 0.35 2000 10

4 200 0.35 2000 infinite

Bounds 15 - 300 0.05-0.45 1200-5000 0.5-30

Through the trust region reflective method, the numerical dispersion curve quickly

converges to the measured dispersion curve. Since the calculation of the phase velocity

in each frequency is independent, the multiprocessing implementation can be used to

significantly speed up the calculation. The calculation is done in a computer with Intel(R)

Xeon(R) Gold 5115 CPU @ 2.40GHz and 40 cores. It is found that the inversion took around

62 seconds to finish. The loss function (Euclidean distance) reduced to 7 after 100 iterations,

as shown in Figure 2.12.
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FIGURE 2.12: Loss function (neighborhood algorithm vs trust region reflec-
tive) with number of run for forward solver

A comparison between the commonly used neighborhood algorithm (10 samples

are used for random sampling and neighborhood sampling) and the trust region reflec-

tive method is also given in Figure 2.12. The neighborhood algorithm can handle large-

dimension inversion problems in which the gradients are costly to be evaluated. However,

for the elastic-based MASW inversion, the trust region reflective method converges much

faster and the minimum loss function can be obtained within 300 runs of the forward

solver. Based on the inversion analysis of the MASW data, the final soil parameters for

the site are shown in Table 2.7 and Figure 2.13. The comparison between the numerical

predictions and measured dispersion curve is shown in Figure 2.14. A good agreement

can be observed between the experimental data and the theoretical dispersion obtained

through the integrated approach proposed in this study.

TABLE 2.7: Results for the MASW Inversion

Layer number vs (m/s) vp (m/s) ρ (kg/m3) Thickness (m)

1 80.0 116.8 2144.4 1.1

2 137.0 451.7 2391.9 2.4

3 285.1 610.3 1376.5 7.9

4 305.5 468.7 2681.6 infinite
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FIGURE 2.13: MASW inversion results for a site in Arnarbaeli in south
Iceland
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FIGURE 2.14: Comparison between experimental and theoretical dispersion
curves

2.6 Conclusions

In this paper, a semi-analytical forward solver was obtained for the dispersion analysis

using the spectral element method. An effective Brent’s root-finding method was applied

to obtain the exact dispersion curve. Based on the numerical case studies, it is concluded

that when the stiffness of soil layers increases monotonically with depth, the phase velocity



46
Chapter 2. Integrated approach for the MASW dispersion analysis using the
spectral element technique and trust region reflective method

decreases monotonically with frequency. The non-continuity of the soil stratigraphy, such

as having soft or stiff intermediate layers, also induces non-continuity in the dispersion

curves. The number of transition points reflects the number of layers in the field. Such an

understanding of the dispersion curve can be used for the determination in initial guesses

of the soil stratigraphy for the inversion analysis. The trust region reflective method was

used in the inversion analysis to reduce the Euclidean distance between the experimental

and numerically calculated dispersion curves. Based on a case study in Arnarbaeli in

south Iceland, it is found that the integrated approach proposed in this study effectively

determines the soil stratigraphy as well as the soil properties to match the measured

dispersion curve within only 300 runs of the forward solver.

2.7 Supplementary materials

The stiffness matrix for a three-layered system is assembled as shown:

where G1, G2 and G3 are the stiffness matrix for the first, second and third layer, respectively.
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Chapter 3

Experimental investigation and
numerical modeling of piezoelectric
bender element motion and wave
propagation analysis in soils

Abstract

The bender element (BE) test has been widely used for the dynamic characterization of

soil specimens at low-shear strain levels. However, the actual behavior of the BE inside a

soil specimen remains unknown. Thus, the current ASTM standard does not consider the

interference of compressional and shear waves in BE testing, which can lead to significant

errors in the evaluation of shear wave velocities. The main objective of this paper is to

present a numerical model of the BE system to better understand the response of the BEs

inside a soil sample. The model is calibrated, verified, and then used to demonstrate

the importance of taking into consideration the interaction between compressional and

shear waves for the correct interpretation of BE measurements. The model successfully

captured the measured vibrations of the BE in air as well as inside transparent soils. More

importantly, the numerical simulations provide a new understating of the significant

interactions of P-waves and S-waves especially in clay soils. Thus, the proposed coupled

piezoelectric and solid mechanics model can be used to study the soil-BE interaction so

Liu H., Cascante G., Maghoul P. and Shalaby A., 2021. Experimental investigation and numerical modeling
of piezoelectric Bender Element motion and wave propagation analysis in soils, Canadian Geotechnical Journal
(Canadian Science Publishing), In Press. https://doi.org/10.1139/cgj-2020-0757.

https://doi.org/10.1139/cgj-2020-0757
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that sound recommendations can be given to improve the interpretation of BE tests in

different soils.
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3.1 Introduction

The dynamic soil properties play an important role in the design of earthquake-resistant

structures and foundations. The bender element (BE) test and resonant column (RC) test

are the most popular methods used for the evaluation of dynamic soil properties such as

the shear wave velocity at low shear strains. The RC test is used to determine the resonant

frequency of a soil column, which is related to the shear wave velocity and shear modulus.

However, the RC test is time-consuming and costly in comparison to the BE test. The BE

utilizes piezo-ceramic materials for the conversion of an electrical signal into mechanical

energy. Two bender elements are placed at the two ends of the soil specimen in which

one BE is used to introduce a mechanical impulse and the other one is used to receive the

propagating pulse (normally in mV). The BE generates not only S-waves in the direction of

their plane but also P-waves in the direction normal to their plane. The P-waves reflected

from the cell walls can interfere with the generated S-waves (Lee and Santamarina, 2005).

The behavior of the BE has been studied both numerically and experimentally in the

literature. For example, (Lee and Santamarina, 2005) showed that the P-wave reflected

from the cell wall in the BE test arrives to the BE receiver earlier than the direct S-wave. In

practice, the interpretation of the BE test results requires the consideration of the geometry

of the specimen, such as the radius-to-height ratio (Lee and Santamarina, 2005). It is found

that the resonant frequency of the BE embedded within the soil specimen depends on

the stiffness of the BE, soil stiffness, and stress level in the soil (Camacho-Tauta, Cascante,

Viana DA Fonseca, and, 2015). The BE has been also used in a triaxial apparatus for the

measurement of anisotropy of fine-grained soils (Jovičić and Coop, 1998); it has shown that

the BE is effective in measuring the inherent anisotropy resulting from the plastic strain

history. (Youn, Choo, and Kim, 2008) compared the BE test with the resonant column test

as well as the torsional shear test in sands; the results showed that the values of the shear

wave velocity determined from the BE test correspond well with the resonant column test

as well as the torsional test in dry conditions (Youn, Choo, and Kim, 2008). In saturated

conditions, however, the current interpretation methods for BE measurements tends to

overestimate the shear wave velocity in comparison to the two other tests (resonant column

test and the torsional test), which is likely due to the interaction between the S- and P-

waves (Youn, Choo, and Kim, 2008). The stiffness of unsaturated soils was tested with the

BE and suction-controlled resonant column tests by (Hoyos, Suescún-Florez, and Puppala,

2015). A good agreement between the BE and resonant column tests was reported in terms
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of the measurement in stiffness of silty sand under a suction-controlled condition. (Gu,

Yang, Huang, and Gao, 2015) compared the results of the BE test with the RC test and

the cyclic torsional shear test at various confining pressures, densities, and degrees of

saturation. It was found that the travel time, under saturated conditions, obtained from

the BE test is considerably smaller than that from the RC test due to the dispersion of the

S-wave. However, this result could be attributed to the strong participation of P-waves

observed in BE tests in saturated media. Recommendations in terms of the selection of

the impulse frequency is given to reduce the subjectivity in interpreting the arrival time

of S waves (Camacho-Tauta, Jimenez-Alvarez, and Reyes-Ortiz, 2012); a single sinusoidal

pulse is recommended and the travel length-to-wavelength ratio should be high enough to

reduce the near-field effect.

It is known that the transmitter response of the BE inside the soil specimen is very

different from the input electrical signal. The BE response is not well represented by a

cantilever beam as typically assumed in the literature (Karl, Haegeman, Pyl, and Degrande,

2003; Lee and Santamarina, 2005; Zhou, Chen, and Ding, 2007). Hence, to investigate the

disparity between the input signal and the actual transmitter response, (Irfan, Cascante,

Basu, and Khan, 2019) used a new BE test setup using a laser vibrometer. They used a

transparent granular soil specimen such that the real transmitter response can be measured

by the laser vibrometer. The BE was inserted in the water, sucrose solutions, mineral oils,

and air to account for the effects of viscosity and density of the fluid medium and for the

calibration of the BE transducer. The important findings from such experimental tests

were: 1) the input square and step function pulses excite higher modes in comparison to

the sine function pulses; 2) the fluid density dominates the transmitter response more than

the viscosity of fluid; 3) there are P-wave components generated in typical BE tests.

Several methods have been developed in the past to interpret the signal obtained

through the BE test. The first group is to calculate the shear wave velocity based on the

first arrival time of S-wave, which includes the start-start method, peak-peak method,

cross correlation method and cross power method. The cross correlation method is used

to measure the degree of correlation of input and output signals (Viggiani and Atkinson,

1995) and the cross power method measures the correlation of input and output signal in

frequency domain. However, the arrival-time based methods usually results in subjective

and inaccurate interpretation of the shear wave velocity. Currently, it is still unclear

which method provides the most reliable results (Gu, Yang, Huang, and Gao, 2015). An

automatic shear wave velocity estimation method was developed by (Finas, Ali, Cascante,
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and Vanheeghe, 2016) by applying the Akaike information criteria, which is effective for a

signal-to-noise ratio (SNR) smaller than 4. This inherent complexity in the analysis of BE

tests is clarified in this paper by the use of calibrated numerical simulations.

The behaviour of the BE has been numerically studied in the literature. (Arulnathan,

Boulanger, and Riemer, 1998) used the finite element (FE) method to illustrate that the

interpretation of the BE signals based on the cross correlation between the input and

output signals is misleading due to the effects of wave interference at the boundaries, the

phase lag between the mechanical energy and electrical input and multi-dimensional wave

travel issues. A two-dimensional (2D) discrete element method was used by (O’Donovan,

O’Sullivan, and Marketos, 2012) to study the response of an idealised granular material in

the BE test. The particle velocity data was used to show the propagation of a central S-wave

accompanied by P-waves moving along the sides of the soil specimen. A 2D finite element

model was used by (Ingale, Patel, and Mandal, 2020) to study the effect of soil types and

frequency on BE measurements. It was shown that the FE analysis is consistent with the

S-wave velocity obtained through the peak-to-peak method. (Arroyo, Muir, Greening,

Medina, and Rio, 2006) studied the effect of sample size on BE measurements by means

of 3D finite element modeling. It was assumed that the displacement at the tip of the

BE transmitter has the same displacement as the input voltage. However, this boundary

condition assumed by (Arroyo, Muir, Greening, Medina, and Rio, 2006; Arulnathan,

Boulanger, and Riemer, 1998; Hardy, Zdravkovic, and Potts, 2002; Jovicic, Coop, and Simic,

1996) does not consider the piezoelectric behavior of the BE transmitter and the disparity

between the input signal and the actual transmitter response.

An analytical model of the piezoelectric BE motion was developed by (Zhou, Chen,

and Ding, 2007) based on the first-order shear deformation theory by assuming a single

rotation angle. An analytical modelling approach was also developed based on the beam

theory under the quasi-static equilibrium condition, which can be used for the optimized

design of piezoelectric bending actuators (Dunsch and Breguet, 2007). A close-form 3D

piezoelectric model was developed by (Rabbani, Bahari, Hodaei, Maghoul, and Wu, 2019)

to investigate the free vibration of triclinic piezoelectric hollow cylinder using the transfer

matrix method and the state space method.

Despite the above-mentioned efforts, the actual behaviour of the BE inside the soil still

remains unknown. Currently, there is no standard interpretation of the BE measurements

due to the complex wave interaction introduced by the BE within the soil specimens. The

accurate interpretation of BE measurements and wave propagation analysis is impossible
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without knowing the motion of the BE inside the soil.

In this paper, a piezoelectric-solid mechanics model is proposed to study the BE motion

in different media. The model is validated using the BE motion in the air, transparent

soil, and Ottawa sand monitored by a laser vibrometer device. The estimation of the

soil parameters such as the shear wave velocity and damping ratio of the Ottawa sand

using the piezoelectric-solid mechanics model developed in this paper is then compared

with independent experimental data obtained via the conventional RC test. Finally, the

propagation of P- and S-waves within a soil specimen due to the BE motion is thoroughly

studied and the suitability of empirical methods in estimating the arrival time of the

S-wave is discussed.

3.2 Methodology and experimental setup

In this work, a FE model of a BE-soil sample is calibrated and verified using the laser

vibrometer measurements on a) BE in air, b) BE in transparent soil, and c) BE in Ottawa

sand specimen. Then, the results are independently verified using resonant column

measurements. The detailed procedure is summarized in Figure 3.1.
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FIGURE 3.1: Flowchart of the detailed procedures for the calibration and
verification of the BE motion as well as wave analysis within a soil specimen.

3.2.1 Experimental setup

A general schematic of the experimental setup is illustrated in Figure 3.2. The soil specimen

is vibrated at the bottom via a piezoelectric BE. The generated P wave and S wave contribute

to the overall displacement at the top surface of the soil specimen. The BE motion is then

studied through the laser vibrometer readings as well as a piezoelectric-solid mechanics

FE modeling using two main soil sample configurations: a) transparent soil to evaluate the

BE response and b) an Ottawa sand specimen to evaluate the surface response induced by

the BE.
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FIGURE 3.2: Configuration of the BE test and the laser vibrometer apparatus

The BE response under a sinusoidal electrical impulse is monitored in the air through a

laser vibrometer apparatus. Based on the response of the BE, a coupled piezoelectrical-solid

mechanics finite element model is calibrated so that the numerical prediction fits with the

laser vibrometer measurements. The calibrated model in the air is then verified against the

laser vibrometer readings in a transparent soil. In the end, the calibrated model is used to

predict independent vibrations induced by the BE motion within an Ottawa sand specimen

under a confining pressure of 100 kPa. The soil parameters determined through trial and

error from the FE model are then compared with the values obtained from a conventional

RC test.

3.2.2 Experimental tests

In the experimental BE tests shown in Figure 3.2, a function generator (model HP-33120A)

generates the desired input voltage signal applied to the BE transmitter through the steel

base. The signal is monitored by the oscilloscope (HP-54645A). The BE transforms the

electrical energy into the mechanical energy, which then applies an ultrasonic impulse

to the soil specimen. The BE transmitter used in this test protrudes 6 mm into the soil

specimen and has a 14 mm by 1.0 mm cross section. The laser vibrometer (polytec, 2013)

measures the displacement at a single point.
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The measurements from the Ottawa sand specimen are used for the further verification

of the proposed numerical model. The soil sample is 7.0 cm in diameter and 14 cm in height.

The density of the dry sand is 1,848 kg/m3. The soil specimen is slightly compacted and

covered with a latex membrane to hold the sand in place. A 100 kPa vacuum pressure is

applied at the bottom of the sand specimen. The vibration introduced by the BE transmitter

was captured through the laser vibrometer on the wall of the soil specimen membrane, as

shown in Figure 3.3. The measurements along the specimen are taken for every 1 cm. A

reflective adhesive tape is applied to the membrane wall to improve the signal intensity.

The rubber membrane has a negligible effect on the displacement measurement as it is

very thin (0.2 mm thick).

FIGURE 3.3: Vibration measurements through the laser vibrometer for the
Ottawa sand specimen

Furthermore, the resonant column test is performed based on the ASTM standard

D4015-15e1, 2015 for verification of the BE measurements at 100 kPa. The built-in source

in the spectrum analyzer (HP-35670A) is used to apply a sinusoidal sweep input voltage.

Due to the limited power in the spectrum analyzer, the power amplifier (Bogen GS-250)

is used to amplify the input voltage. Such input current introduces the vibration of the

magnets, which in turn induce a torsional excitation in the soil sample. The response of

the specimen is recorded in terms of acceleration via the accelerometers (PCB353A78 and

PCB 353B65) mounted on the driving plate. The current in the coils and the acceleration

are amplified and filtered (200 Hz low pass) using a filter amplifier (KrohnHite 3384)

before being processed by the spectrum analyzer for the transfer function calculations. The
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spectrum analyzer calculates the transfer function in real time. The resonance frequency

and damping ratio of the soil specimen are computed from the transfer function.

3.3 Theoretical background

The motion of the BE in different media considering the converse piezoelectric effect can be

numerically simulated using a piezoelectric-solid mechanics theoretical framework. Also,

the soil is considered as a solid, isotropic, and homogeneous medium. This framework can

be then implemented in a FE numerical tool for further analyses. In this section, we will

briefly review the assumptions and field equations. The FE modeling is then discussed.

3.3.1 Kinematic assumptions

The linearized form of the Green-Lagrange strain tensor, ε ij, for infinitesimal deformations

of solid media (BE and soil) and electrical field E f
i are described, respectively, as follows

Matin, Akai, Kawazu, Hanebuchi, Sawada, and Ishida, 2010.

ε ij =
1
2
(
ui,j + uj,i

)
E f

i = −φ,i

(3.1)

where ui,j represents ∂ui
∂xj

; ui represents the displacement vector components of the solid

medium in each direction and xj represents the coordinates; E f
i denotes the electrical field

vector; φ is the electric potential.

3.3.2 Constitutive models

The constitutive models that describe the stress-strain and electrical displacement-field

relationships are defined as:

σij = Cijkl εkl − ekijEk

Di = eiklεkl + εikEk

(3.2)

where σij is the stress tensor; ekij and εik denote the piezoelectric tensor and dielectric

permittivity tensor, respectively. Di represents the electrical displacement. Cijkl is the

fourth-order linear elastic stiffness tensor described in Equation 3.3 for isotropic materials

Liu, Maghoul, Shalaby, Bahari, and Moradi, 2020; Mase and Mase, 2009:

Cijkl = λδijδkl + µ
(
δikδjl + δilδjk

)
(3.3)



3.3. Theoretical background 57

where C11 = C33 = E′(1−ν)
(1+ν)(1−2ν)

; C12 = C13 = E′ν
(1+ν)(1−2ν)

; C44 = C55 = C66 = E′
2(1+ν)

; E′ and

µ are Young’s modulus and Poisson’s ratio, respectively. It is worth mentioning that the

stress-strain relationship for soils can be written as σij = Cijklεkl . Also, the piezoelectric

tensor eijk (coulomb/m2) is written as Myers, Anjanappa, and Freidhoff, 2010:

e =


0 0 0 0 e15 0

0 0 0 e15 0 0

e31 e31 e33 0 0 0

 (3.4)

Piezoelectric materials have the ability to produce an electrical voltage with an applied

load; vice versa, motions are generated if an electric field is applied. Such phenomena is

described through the piezoelectric tensor.

3.3.3 Conservation laws

Conservation of the linear momentum for a solid medium (BE and soil) is written as:

σij,j = ρüi (3.5)

where ρ is the bulk density.

Gauss’s law is used to describe the conversation of charge in the piezoelectric BE:

Di,i = 0. (3.6)

3.3.4 Field equations

The governing equations for the BE can be written in terms of the displacement vector ui

as well as the electric field vector E f
i as:

µui,jj + (λ + µ)uj,ji − ekij,jE
f
k = ρüi

eikl,iεkl + εik,iE
f
k = 0.

(3.7)

It should be noted the field equation 3.7 is obtained through the conservation of

momentum and the conservation of charge, respectively. The coupled field equations are

then solved simultaneously due to the coupling tensor eikl , which represents the inherent

properties of the piezoelectric materials.
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Similarly, the field equation governing the propagation of stress waves into the soil

specimen due to the piezoelectric BE motion can be written as

µui,jj + (λ + µ)uj,ji = ρüi. (3.8)

3.3.5 Finite element modeling and boundary conditions

The 2D FE method is used to solve the field equations described above via COMSOL

Multiphysics (Multiphysics, 1998). The triangular element type is used for the analysis.

The direct solver is used instead of an iterative solver due to its robust nature (Liu, Maghoul,

Bahari, and Kavgic, 2019). There are 5,145 elements with an average quality of 0.8592

(length to width ratio). Based on a extensive mesh sensitivity analysis, it is found that the

numerical results are no longer sensitive to the mesh size if a finer mesh is used. With such

settings in COMSOL Multiphysics, the relative error can be controlled to an acceptable

tolerance. The mesh distribution in the soil specimen and BE is shown in Figure 3.4.

FIGURE 3.4: Mesh distribution for the BE test

The BE having a height of 6 mm, a length of 14 mm, and a width of 1.0 mm is shaped

as a cantilever beam and contains two layers of piezoelectric ceramic plates with a metal

plate in the middle. If the poling direction of these two layers of piezoelectric elements is

in the same direction, it would be called parallel and if the poling direction is in opposite

directions, it would be called series type. The parallel type needs a low voltage to work,

but the series type needs, for the same application, twice the voltage magnitude to work
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(Zhou, Chen, Ding, and Chen, 2008; Mulmi, Sato, and Kuwano, 2008). The parallel BE is

used as an transmitter and the series type is used as a receiver (Zhou, Chen, Ding, and

Chen, 2008; Mulmi, Sato, and Kuwano, 2008). The Ottawa sand specimen has a width of

70 mm and a height of 140 mm.

A sinusoidal impulse voltage with a frequency of 9 kHz, which is close to the resonant

frequency of the BE used in our tests, is applied to the BE (plus sign in Figure 3.4). A fixed

boundary condition is applied to the top and bottom of the soil specimen. A fixed boundary

condition is also applied to one end of the BE transmitter (lower end) and receiver (upper

end). The remaining boundaries are considered as a free surface (zero stress) to allow the

reflection of stress waves. The interface between the BE and surrounding soil is modeled

by meeting the continuity conditions. The initial displacement and velocity of the BE and

surrounding soils are set to be zero. The components of the coupling tensor in Equation

3.4 has the following values: e31 = −5.35 C/m2; e15 = 15.78 C/m2 and e33 = 12.29 C/m2

(Myers, Anjanappa, and Freidhoff, 2010). The density of the piezoelectric ceramic plates

used in the BE structure is 7,870 kg/m3. The mechanical properties of the piezoelectric

ceramic plates and the metal plate used in the BE structure, transparent soil and Ottawa

sand are obtained through the calibration procedure by trial and error as presented in

Section 3.4.1 and Section 3.4.2.

3.4 Results and discussion

3.4.1 BE motion calibration and verification

The laser pointer is concentrated at a point with a height of 5 mm shown in Figure 3.2.

The comparison of the BE motion in the air between the experimental measurements

and numerical predictions in time and frequency domains is shown in Figures 3.5a and

3.5b, respectively. As can be seen in Figure 3.5, the numerical results using the calibrated

piezoelectric-solid mechanics model are in good agreement with the experimental mea-

surements.

The mechanical properties of the BE are calibrated through trial and error to best fit

the numerical predictions with the laser measurements. The best matching between the

numerical results and the laser measurements was achieved when Young’s modulus and

Poisson’s ratio of the piezoelectric ceramic plates are 65 GPa and 0.3, respectively; Young’s

modulus of the metal plate used in the BE structure is 243 GPa; and, the damping ratio for

the piezoelectric ceramic plates and the metal plate used in the BE structure is 2.5%.
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FIGURE 3.5: Comparison between the experimental measurements and nu-
merical results for the BE motion in the air in (a) time domain, (b) frequency

domain.

The calibrated FE model is further verified through the experimental BE tests on the

transparent soil (made of silica and oil) where the BE motion was monitored via the laser

vibrometer. Under the same impulse voltage, the comparison between the numerical FE

results and the experimental measurements of the BE motion are shown in Figure 3.6 in

time and frequency domains.
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FIGURE 3.6: Comparison between the experimental measurements and
numerical results for the BE motion in the transparent soil in (a) time domain,

(b) frequency domain.

The mechanical properties of the transparent soil used in the FE analysis are calibrated

by trial and error. It is found that the speeds of the P wave and S wave in the transparent soil

studied in this test are approximately 1,200 m/s and 15 m/s, respectively. The equivalent

damping ratio of the transparent soil including the visco-elastic effect is assumed as 0.3.

This damping value is high because it is representing not only the damping of the soil, but

also the effect of the added mass of the transparent soil to the response of the BE (Irfan,

Cascante, Basu, and Khan, 2019). The very low shear wave velocity derived numerically

is due to the fact that the confining pressure is practically zero in this experiment. The

high value of the P-wave velocity is generated because of the saturated conditions. The
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calibrated piezoelectric-solid mechanics model for the BE motion is still able to capture the

motion of the BE in the transparent soil.

3.4.2 BE motion in Ottawa sand

The BE motion can be directly monitored in the air and transparent soil through the laser

vibrometer since the laser light can penetrate into these media. It is not, however, the case

for the BE test performed on real soils. Therefore, the displacement at the sides of the soil

specimen is monitored instead of the BE itself. The setup for this test can be seen in Figure

3.3. The original laser measurements at the elevations of 2.5 cm (trace 0) to 13.5 cm (trace

12), with an interval of 1 cm, are shown in Figure 3.7. This signal is contaminated with the

higher resonant modes of the BE motion (Lee and Santamarina, 2005). Since the applied

voltage signal is 9 kHz, the components above 15 kHz are removed through the wavelet

synchrosqueezed transform (Daubechies, Lu, and Wu, 2011). The components below 15

kHz are obtained through the inverse wavelet synchrosqueezed transform.
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FIGURE 3.7: Original displacement measurement along Ottawa sand speci-
men using the laser vibrometer

Based on the calibrated piezoelectric-solid mechanics model for the BE, the soil pa-

rameters are then modified through trial and error to match the filtered laser vibrometer
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measurements. For example, the comparison between numerical and experimental dis-

placements is shown in Figure 3.8. The best fitting was achieved by using the shear wave

velocity of 240 m/s, compression wave velocity of 380 m/s (equivalent to a Young’s modu-

lus of 249 MPa and a Poisson’s ratio of 0.17), and a damping ratio of 1% for the Ottawa

sand. The determined P and S wave velocities can also be verified from the original laser

measurements. A constant slope (400 m/s slope) is also clearly visualized in the original

displacement measurements, as labeled in Figure 3.7. The determined P wave velocity

(380 m/s) was relatively close to the P wave velocity (400 m/s) visualized in the original

laser measurements. Furthermore, the dispersion curves were also computed using the

numerical and measured displacement data. Figure 3.9 shows the comparison between

the measured and numerical dispersion curves for both symmetric and antisymmetric

modes. The symmetric modes, also called longitudinal modes, are generated due to the

wave propagation in the longitudinal direction. On the other hand, the antisymmetric

modes are generated because of the wave propagation in the transverse direction (Graff,

1991).

The numerical predictions showed a reasonable agreement with the laser measure-

ments in terms of the distribution of dispersion curves. Therefore, the P wave and S

wave velocities for the Ottawa sand are 380 m/s and 240 m/s, which is verified through

comparison in displacement measurements and dispersion curves. The RC test was also

performed to validate the shear wave velocity and damping ratio of the Ottawa sand

under various confining pressures. Under a confining pressure of 100 kPa, the shear wave

velocity and damping ratio are found to be 263 m/s and 1.06%, which are consistent with

the values used in the numerical model through trial and error.
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3.4.3 Wave analysis within soil specimen

The wave propagation is further analyzed through the displacement distribution within

the Ottawa sand specimen. The transmitter started the generation of mechanical energy

around t = 0.31 ms. This reference value is shown by Trigger Point in Figure 3.10.

The S wave velocity determined by the BE is relatively higher than the value obtained

by the standard RC test (Fam, Cascante, and Dusseault, 2002). The S wave velocity in

the BE test is commonly calculated as travel distance divided by the S wave arrival time.

However, the arrival time of the S wave is normally empirically selected around the

first peak in the output signal. Based on the determined S wave velocity from previous

discussion, the exact S wave arrival time can be located around 0.53 ms relative to the

beginning of impulse (as labeled by Trigger Point in Figure 3.10). The measured response

in BE testing is given in terms of voltage (Volts) while the numerical response is given by

displacement (nm). These two signals are not expected to be identical as the received signal

does not have units of displacement, velocity, or acceleration. The comparison between

the measured and numerically calculated signal at the BE receiver location is shown in

Figure 3.10. A reasonable agreement between the numerical results and experimental data

is achieved. The S wave arrival time is normally selected shortly before the peak in the BE

receiver signal. However, it is shown that the S wave arrival time is actually affected by

the interaction with the P-wave. Therefore, the proposed numerical model can be used to

improve the interpretation of the effects of P-waves on BE tests results.
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FIGURE 3.10: Comparison between the experimental data and numerical
results at the location of the BE receiver (this figure shows a relative compar-
ison; the BE signals are not linearly related to the vibration measurements in

terms of displacement, velocity, or acceleration).

The horizontal displacement contours corresponding to the travel times equal to one

up to five excitation periods of BE are shown in Figure 3.11. The positive and negative dis-

placements are shown in blue and red colors, respectively. A full wavelength is defined by

a positive (red) and negative displacement (blue) wavefronts. For the dominant frequency

of 8.7 kHz for the BE vibration in Ottawa sand, the S and P waves’ wavelengths can be

calculated as λs = 2.8 cm and λp = 4.4 cm, respectively. Two wavelengths are identified

due to the different propagation speeds of P and S waves. In the BE test, the generation

of the S wave mode (in terms of its amplitude) is much stronger than that of the P wave

mode. Only a half wavelength (blue front) was identified for the P wave mode due to its

weaker generation in the BE test. Furthermore, P wave attenuates with travelling distance

and the identification of its full wavelength becomes impractical. Therefore, only a half

wavelength of the P wave mode is labeled in Figure 3.11. After the first period (1T), the

reflection of P and S waves can be visualized clearly. The separation between the P wave

and S wavefronts increased from the 2nd and 3rd periods. The P wavefront arrives at the BE

receiver tip sometime between the 3rd and 4th periods. Similarly, the S wavefront arrives at

the BE receiver tip sometime between the 4th and 5th periods.
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FIGURE 3.11: Horizontal displacement contour in Ottawa sand (video 1 in
the Supplementary materials)

Based on previous studies (e.g., (Khan, Moon, and Ku, 2020; Leong, Yeo, and Rahardjo,

2005)), it is recommended that the wave path length to wavelength ratio is at least 3.33. In

our BE measurement, as shown in Figure 3.10, the wavelength is 2.8 cm and the length of

the sample is 14 cm. Thus, the length to wavelength ratio is 5, which is bigger than the

recommended 3.33. However, the interference of the P wave still exists, and these effects

of P-wave reflections were not included in previous recommendations.

3.4.4 Numerical study of the effect of different Poisson’s ratios (loose sand,

soft clay)

The wave propagation is also investigated in two different soil specimens using the

piezoelectric-solid mechanics FE model. In Case 1, the P and S wave velocities are 120 m/s

and 69.3 m/s (equivalent to a Young’s modulus of 22 MPa and a Poisson’s ratio of 0.25) to

simulate a loose sand specimen. In Case 2, a soft clay soil sample with a P wave velocity of

120 m/s and an S wave velocity of 35.2 m/s (equivalent to a Young’s modulus of 6.7 MPa

and a Poisson’s ratio of 0.45) is studied. The horizontal displacements at the BE receiver

location are shown in Figure 3.12 for Case 1 and Case 2. The exact P wave travel time is

1.07 ms relative to the beginning of the impulse as labeled by Trigger Point. In Case 1, the

exact S wave travel time is 1.85 ms relative to the beginning of the impulse. Similarly, in

Case 2, the S wave travel time is 3.63 ms.
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FIGURE 3.12: Horizontal displacement at the receiver location for Case 1
(Poisson’s ratio = 0.25, loose sand, video 2 in the Supplementary materials)
and Case 2 (Poisson’s ratio =0.45, soft clay, video 3 in the Supplementary

materials)

The signal obtained in Case 2 is more contaminated by the P wave because of its slower

S wave velocity. The components located between the first P wave arrival time (1.37 ms)

and first S wave arrival time (3.94 ms) are due to the P wave reflection from the sides

of the soil specimen. This can be captured by the horizontal displacement contour at

various wave peaks before the S-wave arrival, as illustrated in Figure 3.12. The horizontal

displacement contour at various time (normalized in terms of the period) is shown in

Figure 3.14. In this case, the selection of the S wave arrival time is rather challenging and

unpredictable based on the empirical methods (e.g., start-start method and peak-peak

method). However, the real arrival time of the S wave is not closely near to the largest

amplitude, as shown in Figure 3.12.
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FIGURE 3.13: Horizontal displacement of BE transmitter numerically pre-
dicted at a height of 5 mm for Case 1 (Poisson’s ratio = 0.25, loose sand) and

Case 2 (Poisson’s ratio =0.45, soft clay)

The horizontal displacement of the BE transmitter is shown in Figure 3.13 for both

Case 1 and Case 2. From Figure 3.13, it is found that the BE transmitter vibrates with the

dominant frequency of 7.8 kHz for the BE vibration in Case 1. Corresponding, the S and

P waves’ wavelengths can be calculated as λs = 0.89 cm and λp = 1.5 cm, respectively.

In Case 2, the dominant frequency of the BE motion is 7.5 kHz and the S and P waves’

wavelengths can be calculated as λs = 0.47 cm and λp = 1.6 cm, respectively. The

displacement contours at different times (normalized in terms of period) are shown in

Figure 3.14 and Figure 3.15 for Case 1 and Case 2, respectively. It is confirmed from Figure

3.14 and Figure 3.15 that the reflected P waves from the sides of the specimen can arrive at

the BE receiver location faster than the shear wavefront. Therefore, the wave interactions

of P and S waves with soil boundaries can largely increase the complexity of the selection

of the S wave arrival time. The traditional empirical methods ((e.g., start-start method and

peak-peak method)) cannot accommodate the complex nature of wave interaction and may

result in misleading predictions of the S wave velocity.
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FIGURE 3.14: Horizontal displacement contour in low-stiffness clay for Case
2 (Poisson’s ratio =0.45, soft clay, video 3 in the Supplementary materials)

FIGURE 3.15: Horizontal displacement contour in low-stiffness sand for
Case 1 (Poisson’s ratio = 0.25, loose sand, video 2 in the Supplementary

materials)

3.5 Conclusion

In this paper, the response of different media to a BE motion is thoroughly studied via

a piezoelectric-solid mechanics FE model as well as experimental tests. The numerical

results are compared with the motion of the BE in the air, transparent soil, as well as the

Ottawa sand captured by a laser vibrometer. It is concluded that:

• The proposed piezoelectric-mechanical model captures the motion of the BE with

sufficient accuracy in the air, transparent soil, as well as the Ottawa sand. The best

agreement was achieved for the BE motion in the air.
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• The numerical response obtained by the proposed model is consistent with the laser

vibrometer measurement at the sides of the Ottawa sand specimen. Furthermore, the

numerical predictions show a reasonable agreement with the laser measurements in

terms of the distribution of dispersion curves for both symmetric and antisymmetric

modes.

• A reasonable agreement between the numerical BE response and experimental BE

measurement is achieved at the receiver location. The shear wave velocity and

damping ratio obtained through the proposed model are consistent with the ones

obtained by the resonant column test.

• The proposed numerical method shows that there is a significant P-wave/S-wave

interaction that demonstrates why the empirical methods for the selection of S-waves

in BE testing could be incorrect depending on the different parameters that affect the

participation of P-waves.

• The proposed piezoelectric-solid mechanics model can be used to study the complex

wave interactions, which significantly improves the interpretation of the effects of

P-waves on BE test results. The proposed model clearly show that the interpreta-

tion of BE measurements in clays could be more challenging because of the strong

participation of P-waves on the response of the BE.
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Connecting section

Part I, consisting of Chapter 2 and 3, presented elastodynamic and Piezoelectric solvers

for the characterization of dry geomaterials. Chapter 2 presented a semi-analytical elas-

todynamic forward solver was proposed for the analysis of MASW measurements using

the spectral element technique. Several numerical case studies were performed to demon-

strate the selection of initial guesses as well as the bounds of each optimization parameter.

Also, a parametric study was performed to determine the effect of discontinuity in the

soil stratigraphy on the dispersion curves. Finally, the integrated approach developed

in this study was used to analyze the MASW data collected in a site in south Iceland. It

was concluded that the proposed approach determines effectively and efficiently the soil

stratigraphy as well as soil properties. Chapter 3 presented a coupled piezoelectric and

solid mechanics model to better understand the response of the BEs inside a soil sample.

The model was calibrated, verified, and then used to demonstrate the importance of taking

into consideration the interaction between compressional and shear waves for the correct

interpretation of BE measurements. The model successfully captured the measured vibra-

tions of the BE in air as well as inside transparent soils. More importantly, the numerical

simulations provide a new understating of the significant interactions of P-waves and

S-waves especially in clay soils.

The next part, Part II, presents a poroelastodynamic solver for the laboratory-scale char-

acterization of saturated soil samples in terms of the physical and mechanical properties

based on the distribution of stress waves.



Part II: Poroelastodynamic Solver
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Laboratory-scale characterization of
saturated soil samples through
ultrasonic techniques

Abstract

The propagation of poroelastic waves in a soil specimen is dependent on the physical

and mechanical properties of the soil. In geotechnical practice, such properties are ob-

tained through in-situ geotechnical testings or element soil testings in the laboratory.

These methods require advanced equipment and both testing and sample preparation

may be expensive and time-consuming. This paper aims to present an algorithm for

a laboratory-scale ultrasonic non-destructive testing to determine the physical and me-

chanical properties of saturated soil samples based on the distribution of stress waves.

The ultrasonic setup, in comparison to most conventional soil lab testing equipment, is

low-cost and non-invasive such that it reduces the soil disturbance. For this purpose, a

poro-elastodynamic forward solver and differential evolution global optimization algo-

rithm were applied to characterize the porosity, density, and other mechanical properties

for a soil column. The forward solver was developed based on a semi-analytical solution

which does not require intensive computational efforts encountered in standard numerical

techniques such as the finite element method. It was concluded that the proposed high-

frequency ultrasonic technique characterizes effectively the saturated soil samples based

on the output stress wave measured by the receiver. This development makes geotechnical

Liu H., Maghoul P., and Shalaby A., 2020. Laboratory-scale characterization of saturated soil samples through
ultrasonic techniques. Scientific Reports 10, 3216. https://doi.org/10.1038/s41598-020-59581-4.

https://doi.org/10.1038/s41598-020-59581-4
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investigations time-efficient and cost-effective, and as such more suited to applications in

remote areas.
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4.1 Introduction

Characterizing foundation soils is the first step in design and construction of civil infras-

tructure. The measurement of physical and mechanical properties of soils (e.g shear wave

velocity, compression wave velocity, density and porosity) requires intensive in-situ or

laboratory tests, which can be time consuming and costly. Soil samples, especially from

projects in remote areas, are required to be transported to a geotechnical laboratory for

various tests. This can cause the disturbance of soil samples, and laboratory tests on

disturbed samples may lead to erroneous conclusions.

The laboratory methods for measuring the shear wave velocity of soil samples include

the resonant column test, bender element test among others. However, there is no estab-

lished standard developed for the interpretation of the dynamic test results (Da Fonseca,

Ferreira, and Fahey, 2008). The bender element method was developed in the 1980s and

its simplicity is widely recognized: one transducer is placed at one end of a soil specimen

for the generation of stress waves; one receiver is placed at the other end to record the

induced stress waves. Various interpretation methods have been proposed in the past.

The shear wave velocity can be calculated from the time difference between the input

and output waves by assuming the absence of reflected or refracted waves (Arulnathan,

Boulanger, and Riemer, 1998). However, it is well known that the identification of the

arrival time of the output wave is subjective (Da Fonseca, Ferreira, and Fahey, 2008). Other

signal processing techniques such as the cross-correlation of the input and output stress

waves (Viggiani and Atkinson, 1995) and the second arrival of the output wave (Lee and

Santamarina, 2005) are based on the peak values of the stress wave for the estimation of

the shear wave velocity. Some other methods (e.g. π-point identification (Brocanelli and

Rinaldi, 1998) and frequency spectral analysis (Greening, Nash, Benahmed, Ferreira, and

Fonseca, 2003)) are used for estimating the relation between the phase angle and shear

wave velocity in the frequency domain.

The elastodynamic theory has been also used by several researchers (O’Donovan,

O’Sullivan, and Marketos, 2012; Arroyo, Medina, and Muir Wood, 2002; O’Donovan,

O’sullivan, Marketos, and Wood, 2015) through the finite difference, finite element, and

discrete element methods to interpret the output stress waves. The elastodynamic algo-

rithm assumes that the domain is composed of solid materials. Under a dynamic load,

the generated P waves and S waves penetrate into different layers of a soil and the re-

flected waves received at the receiver can be used to determine the soil strata. However,
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the estimation of the shear wave velocity is still based on the simple signal processing

techniques. In addition, in elastodynamic algorithms, the effect of porous structure of soil

layers and pore water in dynamic responses of geomaterials is neglected. In fact, the wave

propagation in porous soil layers can be better represented by using dynamic poroelastic

models instead of elastodynamic models, especially in fully saturated soils in which the

pore water can significantly attenuate the stress waves, and in high frequency regimes. The

dynamic poroelastic models consider the coupling effect between the pore water and solid

skeleton, which induces three types of waves (fast P wave, slow P wave, and S wave in the

solid skeleton). Under an impact load, those three waves travel at different speeds, which

are captured by the receiver placed at the end of the soil specimen in an ultrasonic setup.

The problem of dynamic poroelasticity (Biot, 1956a; Biot, 1956b) has been solved

using various analytical and numerical methods. A direct boundary element approach

for solving three-dimensional problems of dynamic poroelasticity in the time domain

was developed by (Wiebe and Antes, 1991). Such a technique was based on an integral

equation formulation in terms of solid displacements and fluid stress. The 2D and 3D

fundamental solutions of dynamic poroelasticity was further developed by (Chen, 1994b;

Chen, 1994a; Maghoul, Gatmiri, and Duhamel, 2011a; Maghoul, Gatmiri, and Duhamel,

2011b). The solutions were obtained in both time and Laplace transform domain, and can

be recovered to elastodynamics and steady-state poroelasticity. In layered saturated media,

similar approaches have been reported by (Jianwen and Hongbing, 2004; Rajapakse and

Senjuntichai, 1995). Other than the boundary element method, the finite element method

has also been applied by (Panneton and Atalla, 1997). The finite difference method is also

used to simulate the wave propagation in heterogeneous poroelastic media by (Wenzlau

and Müller, 2009).

In a conventional geotechnical apparatus used to determine the dynamic properties

of a soil specimen, the focus is mainly on the estimation of shear wave velocity and the

interpretation method is mostly based on the time interval difference between the input and

output stress waves. To the best of our knowledge, there is currently no laboratory-scale

ultrasonic setup which is able to determine a range of physical and mechanical properties

of a soil sample. Furthermore, the development of cheaper, faster and portable means

of soil characterization may significantly lower the cost of overall soil testing, and make

better assessments possible in sensitive locations.

This paper aims to present an ultrasonic-based poroelastodynamic algorithm, which

can be used in an ultrasonic setup to determine a range of physical and mechanical
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properties of a soil sample such as shear wave velocity, compression wave velocity, density

and porosity. Such a setup can also be used for geotechnical investigation on extracted soil

samples. In this algorithm, the poro-elastodynamic forward solver for the characterization

of soil samples in high frequency regimes is developed using the spectral element method.

Such a meshless semi-analytical technique reduces significantly the computational efforts

by avoiding unnecessary calculations for the entire domain. Instead, only the response at

the receiver location is calculated, which will then be used during the optimization process.

A robust global optimization algorithm is then applied to predict the soil properties given

the stress signal measured by the receiver.

4.2 Problem statement

A general schematic of the problem is illustrated in Figure 4.1. The domain is composed of

a saturated porous medium. The transmitter located at one end of the sample generates

the stress waves which travel through the specimen and is received by a receiver at the

other end of the sample. The soil properties (Young’s modulus, Poisson’s ratio, density

and porosity) will be captured by the proposed solver using the distribution of transmitted

stress waves.

FIGURE 4.1: General schematic of the problem
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4.3 Dynamic poroelastic forward solver

By assuming the infinitesimal deformation of solid skeleton, the dynamic poroelastic

governing equations are written as follows:

µui,jj + (λc + µ)uj,ji + αMwj,ji = −ρbi + ρüi + ρ f ẅi, (4.1a)

αMuj,ji + Mwj,ji = − f + ρ f üi + mẅi + bẇi, (4.1b)

where u is the displacement vector of the solid skeleton; w is the fluid displacement relative

to the solid skeleton; λ and µ are the Lamé constants; α is the Biot coefficient; p is the

pore-water pressure; M is 1/( φ
K f

+ α−φ
Ks

) in which K f is the bulk modulus of the fluid; Ks is

the bulk modulus of the solid skeleton and φ is the porosity. λc = λ + α2M; m = ρ f β/φ

in which β is the tortuosity which is used to describe the diffusion properties in porous

media, and ρ f is the density of pore-water, taken as 1000 kg/m3. The drag-force damping

coefficient b is calculated as (Zhang, Xu, and Xia, 2011):

b = η/κ F, (4.2)

where η is the fluid dynamic viscosity and κ is the permeability coefficient; F is the viscous

correction factor (Johnson, Koplik, and Dashen, 1987):

F(ω) =

√
1 +

i
2

Ms
ω

ωc
, ωc =

ηφ

2πβρ f κ
, (4.3)

in which Ms is taken as 1; i =
√
−1 and ω is the angular frequency.

The governing equations can be written in frequency domain through the Fourier

transform by performing convolution with e−iωt in which i =
√
−1; ω is the frequency

and t denotes time variable. The governing equations in Laplace domain can be obtained

by replacing ω with −i s where s is the Laplace variable.

To obtain the analytical solution, the Helmholtz decomposition is used to decouple the

P and S waves. The displacement vector is usually expressed in terms of a scalar potential

(φ) and a vector potential (~ψ = [ψr, ψθ , ψz]), as shown in Equation (4.4). In axisymmetric

conditions, only the components in r and z directions are considered. Since P wave exists



80
Chapter 4. Laboratory-scale characterization of saturated soil samples through

ultrasonic techniques

in solid skeleton and fluid, two P wave potentials are used, φs and φ f , respectively.

~u(r, z) = ∇φs(r, z) +∇× ~ψs(r, z) and ∇ · ~ψs(r, z) = 0, (4.4a)

~w(r, z) = ∇φ f (r, z) +∇× ~ψ f (r, z) and ∇ · ~ψ f (r, z) = 0. (4.4b)

The governing equations in frequency domain in terms of potentials are finally obtained

as shown in Equation (4.5):

(λc + 2µ)∇2φ̂s(r, z) + αM∇2φ̂ f (r, z) = −ρω2φ̂s(r, z)− ρ f ω2φ̂ f (r, z), (4.5a)

−µ∇2~̂ψs(r, z) = ρω2~̂ψs(r, z) + ρ f ω2~̂ψ f (r, z), (4.5b)

αM∇2φ̂ f (r, z) + M∇2φ̂ f (r, z) = −ω2(ρ f φ̂ f (r, z) + ρmφ̂ f (r, z)), (4.5c)

0 = ρ f ω2~̂ψs(r, z) + ρmω2~̂ψ f (r, z), (4.5d)

where ρm = m− ib/ω; ˆ represents the terms in frequency domain.

4.3.1 Solution of dilation wave (P waves) using Eigen decomposition

The equations in terms of P wave potentials (Equation (4.5a) and (4.5b)) in a matrix form is

shown as: λc + 2µ αM

αM M


︸ ︷︷ ︸

KP

∇2φ̂s(r, z)

∇2φ̂ f (r, z)

 = −ω2

 ρ ρ f

ρ f ρm


︸ ︷︷ ︸

M

φ̂s(r, z)

φ̂ f (r, z)

 . (4.6)

It can be seen from Equation (4.6) that φ̂s and φ̂ f are coupled in the governing equations.

The diagonalization of such a matrix is required to decouple the system. The Equation (4.6)
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is then rearranged into:

∇2φ̂s(r, z)

∇2φ̂ f (r, z)

 =

k11 k12

k21 k22


︸ ︷︷ ︸

K

φ̂s(r, z)

φ̂ f (r, z)

 , (4.7)

where

k11 =
ω2 (ρ− αρ f

)
Mα2 − 2µ− λc

, k12 =
ω2 (ρ f − αρm

)
Mα2 − 2µ− λc

,

k21 =
ω2 ((2µ + λc) ρ f −Mαρ

)
M (Mα2 − 2µ− λc)

, k22 =
ω2 ((2µ + λc) ρm −Mαρ f

)
M (Mα2 − 2µ− λc)

.

The K matrix can be rewritten using the Eigen decomposition method:

K = P D P−1, (4.9)

where P is the eigenvector matrix and D is the eigenvalue matrix of the K matrix:

P =
1

k21

−
√

(k11−k22)2+4k12k21−k11+k22
2

√
(k11−k22)2+4k12k21+k11−k22

2

k21 k21

 ,

D =


1
2

(
−
√
(k11 − k22) 2 + 4k12k21 + k11 + k22

)
0

0 1
2

(√
(k11 − k22) 2 + 4k12k21 + k11 + k22

)
 .

It should be noted that Equation (4.9) is still valid after neglecting the term 1
k21

in the

eigenvector matrix P due to the existence of the term P−1. Introducing Equation (4.9) into

Equation (4.7) and by multiplying P−1 and P in the left and right sides, respectively, we

can obtain:

P−1 ∇2~̂φ(r, z) P = D P−1 ~̂φ(r, z) P. (4.10)

By setting ~̂φ(r, z) = P ~y(r, z) in which~y(r, z) = [φ̂p1(r, z), φ̂p2(r, z)], the system is finally

decoupled as:

∇2~y(r, z) = D~y(r, z). (4.11)



82
Chapter 4. Laboratory-scale characterization of saturated soil samples through

ultrasonic techniques

Under axisymmetric conditions, Equation (4.11) for ~y(r, z) = [φ̂p1(r, z), φ̂p2(r, z)] in

cylindrical coordinates is written as:

(
∂2φ̂p1(r, z)

∂r2 +
1
r

∂φ̂p1(r, z)
∂r

+
∂2φ̂p1(r, z)

∂z2

)
− D11φ̂p1(r, z) = 0, (4.12a)

(
∂2φ̂p2(r, z)

∂r2 +
1
r

∂φ̂p2(r, z)
∂r

+
∂2φ̂p2(r, z)

∂z2

)
− D22φ̂p2(r, z) = 0. (4.12b)

Since the variables φ̂p1(r, z) and φ̂p2(r, z) are a function of r and z in the cylindrical

coordinates, the separation of variable φ̂p1 = R̂(r) Ẑ(z) can be used. By setting the both

sides equal to −k2 where k is the wavenumber in the radial direction, we can obtain the

following equations:

d2R̂(r)
dr2 +

1
r

dR̂(r)
dr

+ k2R̂(r) = 0, (4.13a)

d2Ẑ(z)
dz2 − (k2 + D11) Ẑ(z) = 0. (4.13b)

The solutions to Equation (4.13) are:

R̂(r) = C1 J0(kr), (4.14a)

R̂(z) = C2 e−
√

k2+D11 z, (4.14b)

in which J0 is the Bessel function of the first kind; C1 and C2 are the coefficients to be

determined from the boundary conditions. Similarly, the solution for φ̂p1 can be obtained.

The solution for ~y = [φ̂p1, φ̂p2] is summarized as:

φ̂p1(r, z) = Ae−
√

k2+D11 z J0(kr), (4.15a)

φ̂p2(r, z) = Be−
√

k2+D22 z J0(kr), (4.15b)
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where A and B are the coefficients to be determined from the boundary conditions. For

simplicity, the term
√

k2 + D11 and
√

k2 + D22 is denoted as kp1 and kp2, respectively.

Since ~̂φ = P~y, the solution for φ̂s and φ̂ f can be finally obtained as:

φ̂s(r, z) = p11Ae−
√

k2+D11 z J0(kr) + p12Be−
√

k2+D22 z J0(kr), (4.16a)

φ̂ f (r, z) = p21Ae−
√

k2+D11 z J0(kr) + p22Be−
√

k2+D22 z J0(kr). (4.16b)

4.3.2 Solution of rotational wave (S wave)

The rotational wave is governed by Equations (4.5c) and (4.5d). By replacing ~̂ψ f by ~̂ψs, we

obtain:

∇2~̂ψs(r, z)−

(
ρ2

f
ρm
− ρ

)
ω2

µ
~̂ψs(r, z) = 0. (4.17)

Under axisymmetric conditions, the solution for Equation (4.17) in the cylindrical

coordinates is obtained as:

ψ̂s(r, z) = Ce
−

√√√√√
k2+

 ρ2
f

ρm −ρ

ω2

µ z
J1(k r), (4.18)

where C is the coefficient to be determined from the boundary conditions and J1 is the

Bessel function of the first kind of order one. For simplicity, the term

√√√√
k2 +

(
ρ2

f
ρm−ρ

)
ω2

µ is

denoted as ks.

4.3.3 Displacement, stress and pore-water pressure in terms of potentials

In the cylindrical coordinates (r, θ, z), considering the axisymmetric conditions ( ∂
∂θ = 0),

the vector potential ~̂ψ has only the component in the θ direction that does not vanish. For

simplicity, the vector potential ~̂ψ in the θ direction is denoted as φ̂s and φ̂ f for solid skeleton

and porewater, respectively. This property reduces the displacement to the following

forms:

ûr(r, z) =
∂φ̂s(r, z)

∂r
− ∂ψ̂s(r, z)

∂z
, ûz(r, z) =

∂φ̂s(r, z)
∂z

+
1
r

∂(rψ̂s(r, z))
∂r

, (4.19a)
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ŵr(r, z) =
∂φ̂ f (r, z)

∂r
−

∂ψ̂ f (r, z)
∂z

, ŵz(r, z) =
∂φ̂ f (r, z)

∂z
+

1
r

∂(rψ̂ f (r, z))
∂r

. (4.19b)

The effective stress and pore-water pressure are written as:

σ̂′zr(r, z) = µ

(
∂ûr(r, z)

∂z
+

∂ûz(r, z)
∂r

)
, (4.20a)

σ̂′zz(r, z) = λ

(
∂ûr(r, z)

∂r
+

ûr(r, z)
r

+
∂ûz(r, z)

∂z

)
+ 2µ

∂ûz(r, z)
∂z

, (4.20b)

p̂(r, z) = −αM
(

∂2φ̂s(r, z)
∂r2 +

1
r

∂φ̂s(r, z)
∂r

+
∂2φ̂s(r, z)

∂z2

)
(4.20c)

−M

(
∂2φ̂ f (r, z)

∂r2 +
1
r

∂φ̂ f (r, z)
∂r

+
∂2φ̂ f (r, z)

∂z2

)
. (4.20d)

4.3.4 Spectral element formulation for dynamic poroelasticity

In u-w formulation (displacement of solid and relative displacement of porewater), the

displacement components wr and wz are linearly dependent. In this paper, only wz is used

in the stiffness matrix. For two-node elements where a layer has a finite thickness, the

matrix for the displacement components are written as follows:



ûr1(r, z)

ûz1(r, z)

ŵz1(r, z)

ûr2(r, z)

ûz2(r, z)

ŵz2(r, z)


=



−kp11 −kp12 ks −e−hkp1 kp11 −e−hkp2 kp12 −e−hks ks

−kp1 p11 −kp2 p12 k e−hkp1 kp1 p11 e−hkp2 kp2 p12 e−hks k

−kp1 p21 −kp2 p22 − ρ f
ρm

k e−hkp1 kp1 p21 e−hkp2 kp2 p22 −
ρ f
ρm

e−hks k

−e−hkp1 kp11 −e−hkp2 kp12 e−hks ks −kp11 −kp12 −ks

−e−hkp1 kp1 p11 −e−hkp2 kp2 p12 e−hks k kp1 p11 kp2 p12 k

−e−hkp1 kp1 p21 −e−hkp2 kp2 p22 −
ρ f
ρm

e−hks k kp1 p21 kp2 p22 − ρ f
ρm

k


︸ ︷︷ ︸

S′1



A1

B1

C1

A2

B2

C2


(4.21)

Similarly, the matrix for effective stress components and porewater pressure in fre-

quency domain is shown in Equation 4.22 in which the components for matrix S′2 can be



4.3. Dynamic poroelastic forward solver 85

found in Appendix A.



σ̂′zr1(r, z)

σ̂′zz1(r, z)

p̂1(r, z)

σ̂′zr2(r, z)

σ̂′zz2(r, z)

p̂2(r, z)


=



m11 m12 m13 m14 m15 m16

m21 m22 m23 m24 m25 m26

m31 m32 m33 m34 m35 m36

m41 m42 m43 m44 m45 m46

m51 m52 m53 m54 m55 m56

m61 m62 m63 m64 m65 m66


︸ ︷︷ ︸

S′2



A1

B1

C1

A2

B2

C2


. (4.22)

According to the Cauchy stress principle, the traction force ([T̄rz1, T̄z1, T̄1 T̄rz2. T̄z2, T̄2]T)

is taken as the dot product between the stress tensor and the unit vector along the outward

normal direction. Due to the convention that the upward direction is negative, the upper

boundary becomes ([−σ̂rz1, −σ̂zz1,− p̂1]
T). Similarly, to make the sign consistent, the N

matrix is applied to matrix S
′
2 · S

′−1
1 . In the future, the matrix N · S′2 · S

′−1
1 will be denoted

as the Gi matrix, in which i denotes the layer number.



T̄rz1

T̄z1

T̄1

T̄rz2

T̄z2

T̄2


i

=



−σ̂rz1(r, z)

−σ̂zz1(r, z)

− p̂1(r, z)

σ̂rz2(r, z)

σ̂zz2(r, z)

p̂2(r, z)


i

= N · S′2 · S′−1
1︸ ︷︷ ︸

Gi

·



ûr1(r, z)

ûz1(r, z)

ŵz1(r, z)

ûr2(r, z)

ûz2(r, z)

ŵz2(r, z)


i

, (4.23)

where

N =



−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


. (4.24)

After obtaining the stiffness matrix for each element, the global stiffness matrix can be

obtained by applying the continuity conditions between the layer interfaces. The stiffness

assembling method is shown in Figure 4.2. The global stiffness is denoted as H matrix for
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simplicity. An example of the global stiffness matrix for a two layer system is provided in

Appendix B.

FIGURE 4.2: Global stiffness matrix construction

4.3.5 Soil response under dynamic load (boundary conditions)

In the ultrasonic tests, a vertical impulse load f (t, r) is applied to one end of the soil

specimen. The surface is assumed to be permeable, which implies the porewater pressure

at the surface is zero. Under such conditions, the displacements in the frequency domain

can be written as: 

0

f̂ (s, r)

0

.

.

.

0



=



H





ûr1

ûz1

ŵz1

.

.

.

ŵzn



. (4.25)

The impulse load f is firstly defined in time domain and can decomposed into two

independent functions in terms of time variable fn(t) and radial variable fr(r):

f (t, r) = fn(t) fr(r). (4.26)

The mathematical expression for the function fn(t) depends mainly on the type of

impulse loads created by the signal generator. In this paper, a sinusoidal impulse function

is used as the external load to simulate the applied load. The load with amplitude of one is

mathematically described in Equation (4.27).

fn(t) = sin(2π f t) [1− H(t− 1/ f )], (4.27)
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where t(s) is time and f (Hz) is the frequency; H() is the Heaviside step function.

Meanwhile, the function fr(r) is normally written using the Fourier-Bessel series:

fr(r) =
∞

∑
m=1

Fm J0(kmr), (4.28)

where

Fm(m) =
2r0 sin (r0km)

r2
∞km J2

1 (r∞km)

n + 1−m
n + 1

,

where r0 is the radius of the contact area; km is the mode number; n is the total mode

number; r∞ is the diameter of the soil specimen.

4.4 Model validation

4.4.1 Limiting case: Elastodynamics

By setting α, ρ f , m, b and M to approach zero, the parameters in Equation (4.7) are reevalu-

ated as:

k11
α=0,ρ f =0,M=0
−−−−−−−−→ ω2ρ

−2µ− λ
; k12

α=0,ρ f =0,M=0
−−−−−−−−→ 0 (4.29a)

k21 =
α=0,ρ f =0,M=0
−−−−−−−−→ 0; k22 =

α=0,ρ f =0,M=0
−−−−−−−−→ 0 (4.29b)

The wavenumber terms kp1, kp2 and ks in the limiting case become:

kp1 =

√
k2 − ω2ρ

−2µ− λ
=

√
k2 − ω2

c2
p

(4.30a)

kp2 = k (4.30b)

ks =

√
k2 − ρω2

µ
=

√
k2 − ω2

c2
s

(4.30c)

in which cp =
√

λ+µ
ρ and cs =

√
µ
ρ .
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Then the eigenvector matrix (P) in Equation (4.9) becomes:

P
α=0,ρ f =0,M=0
−−−−−−−−→


√

k2 − ω2

c2
p

0

0 0

 (4.31)

Finally we can see that by taking the limits of fluid-related parameters, the obtained

potentials are the same as in the elastodynamic conditions shown by Al-Khoury, Scarpas,

Kasbergen, and Blaauwendraad, 2001.

φ̂s(r, z) = kp1Ae−kp1 z J0(kr) = Be−kp1 z J0(kr) (4.32a)

φ f (r, z) = 0 (4.32b)

ψ̂s(r, z) = Ce−ks z J0(kr) (4.32c)

4.4.2 Validation using a four-layer system

The dispersion relation for a four-layered saturated soil system was investigated by (Chai,

Zhang, Lu, et al., 2015) through the modified ’thin-layer matrix’ method. For the purpose

of model validation, the same four-layered system is studied using the proposed algorithm

in this paper. The soil properties for each layer are shown in Table 4.1.

TABLE 4.1: Soil properties of each layer Chai, Zhang, Lu, et al., 2015

Layer Cp (m/s) Cs (m/s) ρ (kg/m3) n κ (m2) Thickness (m)

1 1532 149.2 2000 0.388 10.2× 10−6 1

2 1597 182.7 2000 0.388 10.2× 10−6 4

3 1637 217.3 2000 0.388 10.2× 10−6 10

4 1745 235.9 2000 0.388 10.2× 10−6 ∞
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FIGURE 4.3: Model validation with data provided by Chai, Zhang, Lu, et al.,
2015

The dispersion curves calculated by using the proposed algorithm and the dispersion

curves obtained by Chai, Zhang, Lu, et al., 2015 are shown in Figure 4.3. The first and

second modes of Rayleigh waves are used for the comparison. It can be seen that the

proposed model is in good agreement with the method used by Chai, Zhang, Lu, et al.,

2015, despite of different methods used for solving the dynamic poroelastic problem.

The displacement obtained in Equation (4.25) is in the frequency domain. To obtain the

soil response in time domain, the numerical Durbin inverse transform method is applied

(Abate and Valkó, 2004):

L−1{θ̂(s)} = θ(t) =
∫ ∞

0
θ̂(s)estds. (4.33)

4.5 Results and discussion

The characterization of porosity has been a challenge because soil porosity can not be

captured through traditional low-frequency tests. Such limitations can be explained by

comparing the size of pore space and wavelength. A sensitivity analysis of the soil porosity

is performed to verify such limitations. In this study, a soil column with a height and

radius of 0.1m is studied. The impulse load is applied to an area with a radius of 1cm at

the center of the top end of the soil column. The displacement at the center (r = 0) in the

other end is recorded and compared.

The typical values of Young’s modulus, porosity, density, permeability and Poisson’s

ratio are well documented in the literature (Obrzud, 2012; Kézdi and Rétháti, 1974; Prat,
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Bisch, Millard, Mestat, Pijaudier-Calot, et al., 1995; Kulhawy and Mayne, 1990). For

example, high-plasticity clay (CH based on the Unified Soil Classification System (USCS))

has a Young’s modulus ranging from 0.35 to 32 MPa and porosity from 0.39 to 0.59; Silts

and clays of low plasticity (ML, CL) have a typical value of Young’s modulus ranging from

1.5 to 60 MPa and porosity from 0.29 to 0.56; poorly graded sands (SP) normally have a

Young’s modulus from 10 to 80 MPa and porosity from 0.23 to 0.43; The Young’s modulus

of well-graded gravel (GW) is between 30-320 MPa and its porosity is from 0.21 to 0.32.

The average dry density ranges from 1700 to 2300 kg/m3. The average permeability varies

from 5× 10−10 (clay of high plasticity) to 0.4 m/s (sand and gravel). The typical values of

Poisson’s ratio vary from 0.1 to 0.49 for clay and from 0.3 to 0.35 for silt.

In this paper, two groups of soils are studied: the first group includes clay, silt, sand

and loose gravel which generally have a relatively low Young’s modulus (lower than 100

MPa). The second group includes dense gravel which has a Young’s modulus equal or

greater than 200 MPa.

4.5.1 The effect of frequency and soil parameters on dynamic response

The effect of impulse load frequency and soil parameters on the dynamic soil response is

studied in this section for the above-mentioned groups of soils. For the first group, the soil

properties are taken as: Young’s modulus is 20 MPa; Poisson’s ratio is 0.35; dry density

is 1800 kg/m3. The wavelength can be calculated using the algorithm shown in Section

4.7.3. Several sensitivity analyses under three impulse loads with various predominant

frequencies are performed. The impulse load distributions in time and frequency domains

are shown in Figure 4.4. The loads 1, 2 and 3 have a predominant frequency of 0.05, 0.5

and 5 kHz, respectively. The amplitude of the input force is assumed to be 1 kN. The

corresponding soil response at the receiver location is shown in Figure 4.5.
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FIGURE 4.4: Impulse load in time and frequency domains

As shown in Figure 4.5, the different porosities (0.2, 0.4 and 0.6) give similar output

displacement for load 1 and 2, which verifies that the size of pore space is not captured by

the low-frequency impulse loads. In the inversion process, the porosity will be located at

the shallow dimension, which makes the optimization algorithm difficult to be updated.

Therefore, the characterization of saturated soil under low-frequency impulse load (below

5 kHz in this case) is nearly impossible. However, in the case of load 3 with a predominant

frequency around 5 kHz, the effect of porosity is clearly triggered. The pore-scale of sand,

for example, is around 760 µm as reported by (Lee, Truong, and Lee, 2010). Through

the root search algorithm described in Section 4.7.3, the wavelength under the load 3 is

calculated around 1000-2000 µm, which is close to the poro-space scale of the studied soil.

Therefore, the impulse load 3 is a good choice for the lab-scale characterization of soil

specimens for group 1.
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FIGURE 4.5: Sensitivity analysis of porosity under (a) load 1 (b) load 2 and
(c) load 3

Similarly, the sensitivity analyses are performed by considering different densities,

Young’s modulus and Poisson’s ratios. The output displacement is shown in Figure 4.6.

The effects of Young’s modulus, Poisson’s ratio and density of soil are also shown in Figure

4.6. A higher Young’s modulus leads to a faster wave travelling speed and a smaller
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amplitude of the output wave. A higher density, on the contrary, leads to a lower travelling

wave speed. Poisson’s ratio that measures the tendency of material to expand in directions

perpendicular to the direction of compression has an inverse relation with the wave speed.

Therefore, it can be seen that the distribution of the output stress wave is a function of

porosity, density, Young’s modulus and Poisson’s ratio.
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FIGURE 4.6: Sensitivity analysis of soil (group 1) parameters under impulse
load

In the case of soil group 2, dense gravel whose Young’s modulus is up to 320 MPa, it

is found that the load 3 (up to 5kHz) generates similar displacement outputs at different

porosities (0.1, 0.3 and 0.5), as shown in Figure 4.7. It means that load 3 can not trigger

the effect of porosity. In order to characterize the porosity for very dense soils, one of

the techniques is to further reduce the wavelength of the stress wave by increasing the

frequency of the impulse load. It is found that an impulse load 4 with a higher predominant

frequency (up to 0.5 MHz), as shown in Figure 4.8, can effectively differentiate dense soils

with various porosities.
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FIGURE 4.8: High-frequency (ultrasonic) impulse load 4 in time and fre-
quency domain



4.5. Results and discussion 95

 � � � � � � �

 � � � � � � �

 � � � � � � �

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0
- 0 . 0 2
- 0 . 0 1
0 . 0 0
0 . 0 1
0 . 0 2

Dis
pla

ce
me

nt 
(m

m)

T i m e  ( m s )
(A) load 3

 � � � � � � �

 � � � � � � �

 � � � � � � �

0 . 0 0 . 1 0 . 2 0 . 3
- 0 . 0 0 1 2

- 0 . 0 0 0 6

0 . 0 0 0 0

0 . 0 0 0 6

0 . 0 0 1 2

Dis
pla

ce
me

nt 
(um

)

T i m e  ( m s )

(B) load 4

FIGURE 4.7: Sensitivity of soil parameters under impulse load for dense
gravel

4.5.2 Case study

In this section, a case study is presented to show the process of saturated soil characteriza-

tion. For this purpose, synthetic data is firstly generated to simulate real measurements.

For simplicity, the results are only presented for soil group 1. The nature of this inversion

problem and inversion algorithm selection are discussed in detail in the following sections.

At the end, the inversion results (soil parameters) are given based on the synthetic data

and selected inversion algorithm.

Synthetic data

A synthetic data set (the displacement measured by a piezoelectric receiver) is firstly

obtained using the following settings: Young’s modulus is 20 MPa; Poisson’s ratio is 0.35;

density of solid skeleton is 1800 kg/m3 and porosity is taken as 0.3; The time interval
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is set to be 2 ms. Under the impulse load 3, as shown in Figure 4.4, the snap shot of

displacement contours (symmetric) at various time spans are shown in Figure 4.9. The

locations of impulse load and receiver are shown in Figure 4.9. It is shown that the stress

wave propagates through the sample and reaches the receiver at about 0.6 ms. The wave

reflection at the bottom boundary is clearly visualized at time 0.8 ms and 0.9 ms.

0 . 0 0 0 . 0 2 0 . 0 4 0 . 0 6 0 . 0 8 0 . 1 00 . 0 0

0 . 0 2

0 . 0 4

0 . 0 6

0 . 0 8

0 . 1 0

R e c e i v e r

I m p u l s e  L o a d

R a d i u s  ( m )

Ele
va

tio
n (

m)

- 0 . 0 1 0
- 0 . 0 0 7 5
- 0 . 0 0 5 0
- 0 . 0 0 2 5
0 . 0
0 . 0 0 2 5
0 . 0 0 5 0
0 . 0 0 7 5
0 . 0 1 0

D i s p l a c e m e n t  ( m m )

(A) t = 0.0004 s

0 . 0 0 0 . 0 2 0 . 0 4 0 . 0 6 0 . 0 8 0 . 1 00 . 0 0

0 . 0 2

0 . 0 4

0 . 0 6

0 . 0 8

0 . 1 0

R e c e i v e r

I m p u l s e  L o a d

R a d i u s  ( m )
Ele

va
tio

n (
m)

- 0 . 0 1 0
- 0 . 0 0 7 5
- 0 . 0 0 5 0
- 0 . 0 0 2 5
0 . 0
0 . 0 0 2 5
0 . 0 0 5 0
0 . 0 0 7 5
0 . 0 1 0

D i s p l a c e m e n t  ( m m )

(B) t = 0.00006 s

0 . 0 0 0 . 0 2 0 . 0 4 0 . 0 6 0 . 0 8 0 . 1 00 . 0 0

0 . 0 2

0 . 0 4

0 . 0 6

0 . 0 8

0 . 1 0

R e c e i v e r

I m p u l s e  L o a d

R a d i u s  ( m )

Ele
va

tio
n (

m)

- 0 . 0 1 0
- 0 . 0 0 7 5
- 0 . 0 0 5 0
- 0 . 0 0 2 5
0 . 0
0 . 0 0 2 5
0 . 0 0 5 0
0 . 0 0 7 5
0 . 0 1 0

D i s p l a c e m e n t  ( m m )

(C) t = 0.0008 s

0 . 0 0 0 . 0 2 0 . 0 4 0 . 0 6 0 . 0 8 0 . 1 00 . 0 0

0 . 0 2

0 . 0 4

0 . 0 6

0 . 0 8

0 . 1 0

R e c e i v e r

I m p u l s e  L o a d

R a d i u s  ( m )

Ele
va

tio
n (

m)

- 0 . 0 1 0
- 0 . 0 0 7 5
- 0 . 0 0 5 0
- 0 . 0 0 2 5
0 . 0
0 . 0 0 2 5
0 . 0 0 5 0
0 . 0 0 7 5
0 . 0 1 0

D i s p l a c e m e n t  ( m m )

(D) t = 0.0009 s

FIGURE 4.9: Displacement contour snap shots at various time

The response measured at the receiver location is summarised in Figure 4.10. In the

laboratory ultrasonic test, the soil response is only recorded at the receiver location. Thus,

in the following inversion process, only the results at the receiver location will be used as

the input instead of the displacement at the entire domain.
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FIGURE 4.10: Soil dynamic response measured at the receiver location under
impulse load 3

Inversion algorithm

The inversion algorithm takes the measured displacement at the receiver location (shown

in Figure 4.10) as the input. The goal of the inversion process is to predict the soil properties

including Young’s modulus, Poisson’s ratio, density and porosity based on the receiver

signals. Given the initial guesses for the soil parameters, the inversion algorithm updates

the prediction based on the difference between the displacement measured by the receiver

and the predicted displacement response.

The update process can be achieved through the gradient-based and gradient-free

optimization method. The gradient-based optimization is efficient in large convex problems

such as linear least square problems and are commonly used in large optimization problems

(e.g. deep learning and adjoint method). Therefore, the gradient based method is preferred

in most cases, especially for convex optimization problems. However, such a method is

highly likely to be affected by the local minimum since the gradient at any local minimum

is zero. Thus, it is not favorable for non-convex problems.
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FIGURE 4.11: Non-convex optimization space for porosity and Poisson’s
ratio

FIGURE 4.12: Flowchart of differential evolution for the optimization of soil
parameters

An analysis was performed to show the nature of the soil characterization optimization

problem. It is important to determine whether such application belongs to convex or

non-convex problem. Then the corresponding optimization algorithm can be selected

based on the nature of the problem. The aim (cost) function is defined as the Euclidean

norm between the synthetic and predicted data. The optimization space can be visualized

by performing parameter sweep. For example, the optimization space for the porosity and

Poisson’s ratio is shown in Figure 4.11.
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It is shown in Figure 4.11 that a multiple local minimum exists in the optimization

space. Therefore, the characterization of soil parameters is a non-convex optimization

problem. If the gradient-based optimization algorithm is applied, the predictions will be

highly dependent on the initial guess, which may leads to erroneous predictions in most

cases. To make the estimation robust and accurate, a global optimization algorithm is

favorable. In this work, the differential evolution algorithm that is designed for nonlinear

and non-differential problems is used. Such an algorithm requires fewer control variables

in comparison to other algorithms (e.g. genetic algorithm) and can be easily implemented

in parallel computation (Storn and Price, 1997).

A brief description of the differential evolution algorithm is given in Figure 4.12. First,

a population of candidate solutions are generated randomly; Then by moving around

in the search space through a combination of the existing temporary solutions, a series

of better solutions is expected to be obtained. In the differential evolution, the mutation

constant is taken in the range of 0.5 to 1 and the recombination constant is recommended

to be 0.9 (Montgomery and Chen, 2010).

Inversion results

Combining the synthetic data (as the input) shown in Figure 4.10 and the differential evolu-

tion algorithm described above, the updates of the soil parameters and the corresponding

values of the cost function are shown in Figure 4.13. The iteration number shows the

number of times that the forward problem is solved independently. After 200 iterations,

the differential evolution algorithm stabilizes. The predicted soil parameters are as follows:

Young’s modulus is 20 MPa; Poisson’s ratio is 0.35; density is 1800 kg/m3; porosity is 0.3

and loss function is 0. It can be seen that the prediction of soil parameters based on the

transmitted wave measured by the receiver (as shown in Figure 4.10) is exactly the same as

the original input.
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FIGURE 4.13: Updates of each parameter through a differential evolution
algorithm

The differential evolution algorithm successfully finds the global minimum, despite

of the existence of multiple local minimum. The spatial distribution of soil parameters

updates are shown in Figure 4.14 and 4.15. Through the projection of each parameter,

it can be seen that Young’s modulus is relatively easier to update. For the other three

parameters (Poisson’s ratio, density and porosity), there are multiple locations where cost

function is close to zero. Thus, it took more number of iterations to update to the true

values. However, it can be seen such a multidimensional optimization problem is well

handled by the differential evolution algorithm.



4.5. Results and discussion 101

P r o j e c t i o n  o f  P o i s s o n  R a t i o

G l o b a l  M i n i m u m

P r o j e c t i o n  o f  P o r o s i t y
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FIGURE 4.15: Updates of Young’s modulus and density through a differen-
tial evolution algorithm
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4.5.3 Uncertainty analysis

The predicted soil properties (Young’s modulus, Poisson’s ratio, density and porosity) are

likely to be affected by the noise level of the measurement data, which could be introduced

by the sensor measurement errors and ambient noise. In this uncertainty analysis, random

white noise is added to measured displacement data with targeted signal-to-noise (SRN)

ratio. For example, the noisy data with 10 and 20 dB of SRN is shown in Figure 4.16a. A

normal distributed probability density function of SRN is used as the input to account the

uncertainty introduced by noise, as shown in Figure 4.16b. It is assumed that there is a

28% possibility to have a SRN of 20 dB in measured data.
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FIGURE 4.16: Probability density function for the signal to noise ratio

In addition, the uncertainty can be introduced by the unknown coupling performance
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in the interface of piezoelectric sensors and soil specimens. The input electricity signal

does not necessarily generate the desired input pressure. To account for such uncertainties,

the magnitude of input load is assumed to be in normal distribution, as shown in Figure

4.17a. The uncertainty also comes from the inherent soil property assumptions made in soil

specimen during the inversion analysis, such as hydraulic conductivity. Thus, a normal

probability distribution is also applied to account such uncertainty, as shown in Figure

4.17b.
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FIGURE 4.17: Probability density function for input load and hydraulic
conductivity

The generalized Polynomial Chaos Expansions (PCE) method developed by (Xiu and

Hesthaven, 2005) is used for the uncertainty analysis in this paper. The PCE technique,

as a rigorous uncertainty quantification method, provides reliable numerical estimates of
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uncertain physical quantities. It was also reported that the PCE is much faster than Monte

Carlo methods when the number of uncertainty parameters are lower than 20 (Crestaux,

Le Maıtre, and Martinez, 2009). The 90% confident interval of the displacement at the

receiver location is calculated through the PCE technique, shown in Figure 4.18.
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FIGURE 4.18: The 90% confidence interval of displacement distribution

Then, based on the inversion analysis, the predicted soil properties in the 90% confi-

dence interval are shown in Table 4.2. Then, the variation ratio is calculated by comparing

the mean values (obtained through uncertainty analysis) with the original predictions. It is

found the prediction of porosity could be affected by the uncertainty introduced by the

white Gaussian noise, coupling effect between transmitter and soil specimen as well as

other factors. However, various signal processing methods can be used to improve the

noisy measurements.

TABLE 4.2: The soil parameter variation range based on uncertainty analysis

Soil Properties Lower Bound Higher Bound Variation Ratio

Young’s Modulus (MPa) 20.42 20.92 3.3%

Poisson Ratio 0.352 0.354 0.3%

Density (kg/m3) 1813.59 1878.58 2.6%

Porosity 0.26 0.27 11.7%
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4.6 Conclusions

In this paper, an ultrasonic-based characterization of soil specimens is developed for

the instant measurement of soil properties including Young’s modulus and Poisson’s

ratio (compression/shear wave velocity), density and porosity. The developed meshless

semi-analytical algorithm reduces the computational effort significantly in comparison to

standard numerical techniques such as the finite element method. In fact, the advantage of

such a solution is that the dynamic response is evaluated at the receiver location only rather

than the entire domain. The soil response in other locations is not measured in the real

application and does not factor in soil characterization. It is concluded that high-frequency

impulse loads (with predominant frequency of up to 5 kHz) is required to trigger the effect

of porosity for soils with relatively low Young’s modulus (e.g clay, silt and sand). For

stiffer materials, such as very dense gravels, an impulse load with predominant frequency

of 0.5 MHz is required to characterize their porous nature. The characterization of soil

properties has been proved as a highly non-convex optimization problem in this paper.

The differential evolution algorithm, as a global optimization method, is found efficient

and effective in finding the optimum soil properties, such that the difference between

the predicted and measured stress waves is minimized. In conclusion, the developed

method in interpreting dynamic response of saturated soil can be used for the immediate

characterization of Young’s modulus, Poisson’s ratio, density and porosity for a given soil

specimen.
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4.7 Supplementary materials

4.7.1 Components of matrix S′2

The components of the matrix S′2 for effective stress components and porewater pressure

in frequency domain is shown as follows:

m11 = 2kkp1 p11µ m12 = 2kkp2 p12µ m13 = −
(
k2 + k2

s
)

µ

m14 = −2e−hkp1 kkp1 p11µ m15 = −2e−hkp2 kkp2 p12µ m16 = −e−hks
(
k2 + k2

s
)

µ

m21 = p11

(
k2

p1(λ + 2µ)− k2λ
)

m22 = p12

(
k2

p2(λ + 2µ)− k2λ
)

m23 = −2kksµ

m24 = e−hkp1 p11

(
k2

p1(λ + 2µ)− k2λ
)

m25 = e−hkp2 p12

(
k2

p2(λ + 2µ)− k2λ
)

m26 = 2e−hks kksµ

m31 = (k− kp1)(k + kp1)M(p21 + p11α) m32 = (k− kp2)(k + kp2)M(p22 + p12α) m33 = 0

m34 = e−hkp1(k− kp1)(k + kp1)M(p21 + p11α) m35 = e−hkp2(k− kp2)(k + kp2)M(p22 + p12α) m36 = 0

m41 = 2e−hkp1 kkp1 p11µ m42 = 2e−hkp2 kkp2 p12µ m43 = −e−hks
(
k2 + k2

s
)

µ

m44 = −2kkp1 p11µ m45 = −2kkp2 p12µ m46 = −
(
k2 + k2

s
)

µ

m51 = e−hkp1 p11

(
k2

p1(λ + 2µ)− k2λ
)

m52 = e−hkp2 p12

(
k2

p2(λ + 2µ)− k2λ
)

m53 = −2e−hks kksµ

m54 = p11

(
k2

p1(λ + 2µ)− k2λ
)

m55 = p12

(
k2

p2(λ + 2µ)− k2λ
)

m56 = 2kksµ

m61 = e−hkp1(k− kp1)(k + kp1)M(p21 + p11α) m62 = e−hkp2(k− kp2)(k + kp2)M(p22 + p12α) m63 = 0

m64 = (k− kp1)(k + kp1)M(p21 + p11α) m65 = (k− kp2)(k + kp2)M(p22 + p12α) m66 = 0

4.7.2 Stiffness matrix of a two-layer system

where G1 and G2 are matrix for the first and second layer, respectively.
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4.7.3 Phase velocity

The algorithm performs a sweep in a broad range of wavenumbers for a given frequency. A

rough interval where roots exist needs to be found first and then the classic Brent’s method

can be applied to accurately locates the roots. The following notations are used in the

algorithm: ε for the wavenumber sweep increment; n for the number of iterations; k0 for

the initial wavenumber, k for the wavenumber at the current step; k′ for the wavenumber at

the previous step; f (k) gives the determinant value of the stiffness matrix at wavenumber

k; δ for the tolerance used to check if the determinant of the stiffness matrix is close to zero;

Brent(k′, k) is the Brent’s method that takes an internal (k′, k) as input where f (k) and f (k′)

must have different sign; r is the root calculated from Brent function.

The algorithm is shown as follows:



Given ε, k0, δ, n

f or i = 1, 2, ...n

k′ = k

k = k + ε

v′ = f (k′)

v = f (k)

i f v′ · v ≤ 0

r = Brent(k′, k)

i f | f (r)| < δ

return r

end f or

(4.34)



108
Chapter 4. Laboratory-scale characterization of saturated soil samples through
ultrasonic techniques

Connecting section

Part II presented an algorithm for a laboratory-scale ultrasonic non-destructive testing

to determine the physical and mechanical properties of saturated soil samples based on

the distribution of stress waves. A poro-elastodynamic forward solver and differential

evolution global optimization algorithm were applied to characterize the porosity, density,

and other mechanical properties for a soil sample. It was concluded that the proposed

high-frequency ultrasonic technique characterizes effectively the saturated soil samples

based on the output stress wave measured by the receiver.

The next part, Part III (Chapter 5 and 6), presents multiphase poroelastodynamic solvers

for both laboratory and in-situ characterization of permafrost soils. Chapter 5 presents a

physics-based characterization method for the laboratory-scale ultrasonic non-destructive

testing to determine the physical and mechanical properties of saturated soil samples based

on the distribution of stress waves. Chapter 6, presents a hybrid inverse and multi-phase

poromechanical approach for in-situ characterization of permafrost sites using surface

wave techniques.



Part III: Multiphase
Poroelastodynamic
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Chapter 5

Pore-scale quantitative
characterization of frozen and
permafrost samples using ultrasonic
waves

Abstract

The ability to quantitatively and non-invasively characterize complex multiphase geomate-

rials is still a major challenge to the engineering, construction, and geophysical fields. In

the context of accelerating climate change, construction on foundation permafrost requires

remedial measures and an appropriate characterization of permafrost (e.g., ice content,

unfrozen water content, porosity, ice lenses, soil type, and mechanical properties). Current

techniques are insufficient for efficient characterization of permafrost samples. Here, we

propose an ultrasonic sensing technique and a signal interpretation method based on a

spectral element multiphase poromechanical approach to overcome critical gaps in per-

mafrost characterization. Ultrasonic sensing produces high-quality response signals that

are sensitive to the permafrost properties. We show that our proposed transfer function, i.e.

a ratio of induced displacement and applied force in the frequency domain, is independent

of the distribution of the stress force applied by the transducer to the permafrost sample.

This finding allows us to interpret the measured electrical signal using a theoretical transfer

Liu H., Maghoul P., Shalaby A., Thomson D., 2021. Pore-scale quantitative characterization of frozen and
permafrost samples using ultrasonic waves, Communications Engineering, Manuscript ID: COMMSENG-21-0018,
in Review.
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function relation and efficiently determine the most probable permafrost properties from

response signals using our proposed inverse spectral element multiphase poromechanical

approach. Our study demonstrates the potential of the ultrasonic sensing technique for

the rapid characterization of permafrost samples in terms of both physical and mechanical

properties. The Quantitative Ultrasound (QUS) package developed in this study can be

used in a laboratory setup or brought to the site for in-situ investigation of permafrost

samples.

5.1 Introduction

Design and construction of infrastructure on permafrost (frozen soil) normally follow one

of two broad principles which are based on whether the frozen foundation is thaw-stable or

thaw-unstable (ice-rich permafrost). The distinction between thaw-stable or thaw-unstable

permafrost soils is a function of the amount of ice within the soil mass (Subcommittee,

1988). Ice-rich permafrost contains ice in excess of the water content at saturation. Thawing

permafrost will experience significant thaw-settlement and suffer a significant loss of

strength in comparison to frozen state. Consequently, any remedial measures for excessive

soil settlements or new design of infrastructure in ice-rich permafrost zones affected by

climate warming requires a reliable estimate of ice (pore ice and ice lenses) within the

permafrost. Another important factor that affects the rate of settlement of permafrost

foundation is the mechanical properties of foundation soils defined by its stiffness and

creep properties (Wang, Qi, Yu, and Liu, 2016).

The characterization of permafrost or frozen soil includes the measurement of both

physical properties (e.g., unfrozen water, ice, and porosity) and mechanical properties

(e.g., bulk modulus and shear modulus, or compression and shear wave velocity). It is

well known that the freezing point in soils lies below 0◦C (freezing-point depression) and

some amount of pore water may remain unfrozen (Liu, Maghoul, and Shalaby, 2019).

The popular techniques used for unfrozen water content measurement include Time

Domain Reflectometry (TDR), Frequency Domain Reflectometry (FDR), Time Domain

Transmissometry (TDT) and Nuclear Magnetic Resonance (NMR) (Stein and Kane, 1983;

Noborio, 2001; Yoshikawa and Overduin, 2005). In these techniques, the soil water content

is estimated from the empirical relation between the relative dielectric permittivity and

unfrozen water content of soil samples (Hallikainen, Ulaby, Dobson, El-Rayes, and Wu,

1985; Topp, Davis, and Annan, 1980). These methods require frequent laboratory calibration
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to obtain unique empirical relations based on soil types, test temperature, and the type of

transducer (Yoshikawa and Overduin, 2005). Porosity can be measured using techniques

such as Computed Tomography (CT scan) (Duliu, 1999; Périard, Gumiere, Long, Rousseau,

and Caron, 2016), Imbibition methods (immersion of the soil sample in a fluid) (Gu, Zhu,

Zhang, and Liu, 2019), Water Evaporation method (Schindler, Durner, Von Unold, Mueller,

and Wieland, 2010; Castellini, Di Prima, and Iovino, 2018) and Mercury Intrusion (Yao

and Liu, 2012). These techniques (all but CT method) are limited to the applications

in unfrozen soils and are invasive such that the original soil state is disturbed. X-ray

Computed Tomography imaging has been used in recent years to scan permafrost samples

(Wagner, Lindsey, Dou, Gelvin, Saari, Williams, Ekblaw, Ulrich, Borglin, Morales, et al.,

2018). Such a technique requires bulky and expensive instruments that are not suitable for

field applications. Permafrost samples need to be transported to a laboratory, which can be

costly and causes sample disturbance. Furthermore, the CT imaging can only shows the

distribution of ice patches within the sample without any quantitative characterization;

the CT imaging is also challenging to differentiate the water and ice from soil grains in

fine-grained soils (Wu, Nakagawa, Kneafsey, Dafflon, and Hubbard, 2017).

The Bender Element (BE) test, Piezoelectric Ring-Actuator Technique (P-RAT) and

Resonant Column (RC) test are frequently used for the evaluation of dynamic soil proper-

ties, such as the shear wave velocity (Liu, Cascante, Maghoul, and Shalaby, 2021; Karray,

Ben Romdhan, Hussien, and Éthier, 2015). The RC test is used to determine the resonant

frequency of a soil column, which is related to the shear wave velocity and shear modulus

(Liu, Cascante, Maghoul, and Shalaby, 2021). However, the RC test is time-consuming,

costly, bulky, and typically only used in laboratory investigations. The BE generates shear

waves (S-waves) in the direction of their plane and also primary waves (P-waves) in the

direction normal to their plane. The P-waves reflected from the cell walls can interfere

with the generated S-waves (Lee and Santamarina, 2005). The arrival time-based methods

usually result in subjective and inaccurate interpretation of the shear wave velocity. The

lack of efficient contact between the BE and surrounding soils as well as protruding the

BE into opposite ends of a soil sample are among the main drawbacks of the application

of bender element test for frozen soils. In comparison to the BE test, the P-RAT reduces

the generation of P-waves due to the constraint in the potential compression from the

direct contact between piezoelectric elements and the soil samples (Karray, Ben Romdhan,

Hussien, and Éthier, 2015). However, the P-waves can still be generated in the P-RAT test

(Karray, Ben Romdhan, Hussien, and Éthier, 2015), which interferes with the selection
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of S-wave arrival time in the current arrival time-based methods. Currently, those avail-

able techniques and interpretation methods are insufficient for the characterization of soil

samples(Gu, Yang, Huang, and Gao, 2015).

Ultrasonic techniques are another method frequently used to evaluate the properties of

construction materials such as concrete, however its use for soil characterization has been

limited due to difficulties in signal interpretation and the complex nature of geomaterials

(Liu, Maghoul, and Shalaby, 2020b). In theory, the mechanical properties of a soil sample

can be computed from the P-wave arrival times. However, there are several uncertainties

in the interpretation of the obtained signals. In the current practice, the first arrival time

can be used for the evaluation of P wave velocity. However, the P wave velocity alone is

insufficient for full characterization of soil samples, especially for determining the physical

properties. There are no robust methods to interpret the remaining signals to obtain more

information on other properties of soil samples, e.g., shear wave velocity, porosity, ice

content and unfrozen water content, and no available algorithms for the interpretation of

ultrasonic signals in frozen soils.

Several studies on the effect of ice content on the compression and shear wave veloci-

ties of frozen soils have been reported in the literature. The compression and shear wave

velocities of frozen clay, loess, and sand were measured through the ultrasonic test by

Wang, Zhu, Ma, and Niu (2006). The experimental results showed that the wave velocities

increased with ice content at a different rate (following order: clay<loess<sand). The rela-

tionship between the P-wave velocity and ice content was also studied by Dou, Nakagawa,

Dreger, and Ajo-Franklin (2016) and Dou, Nakagawa, Dreger, and Ajo-Franklin (2017). The

volumetric unfrozen water content was firstly related to temperature through empirical

water retention curves; then, the P-wave velocity was measured at the corresponding

temperature for a correlation with ice content. Laboratory experiments were performed

by Matsushima, Suzuki, Kato, Nibe, and Rokugawa (2008) in partially frozen brine. A

positive relationship between the attenuation of ultrasonic waves and unfrozen brine was

observed in a frequency range of 350-600 kHz.

Several theoretical studies have been performed for the estimation of frozen soil prop-

erties based on the correlation between the mechanical properties and ice content. The

Kuster-Toksoz-Leurer model was proposed for the calculation of P-wave and S-wave

velocities in two-phase media saturated with water or air (Kuster and Toksöz, 1974). This

model was modified by King, Zimmerman, and Corwin (1988) to estimate P-wave and

S-wave velocities in frozen soils by assuming that ice plays the same role as solid skeleton;
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for example, the original bulk modulus (Ks) of solid skeleton is replaced by the volumetric

average modulus of ice (Ki) and solid skeleton bulk modulus (i.e., Ks → (1− n)Ks + nSrKi

where n is the porosity and Sr is the degree of saturation of unfrozen water). As a result of

the interaction between the solid skeleton, pore-water and pore-ice, three types of P-waves

and two types of S-waves are generated in three-phase frozen soils (Carcione, Gurevich,

and Cavallini, 2000; Lee and Waite, 2008). The degree of saturation of unfrozen water in

frozen soils depends on the P1 wave (the fastest P-wave among the three types of P-waves)

and S1 wave (the fastest S-wave among the two types of S-waves) velocities among oth-

ers. However, the mechanical and physical properties of soils still can not be inversely

determined given the P1 wave and S1 wave velocities. The wave propagation within a

three-phase medium using the Biot theory of poroelasticity was developed by Leclaire,

Cohen-Ténoudji, and Aguirre-Puente (1994), Carcione, Gurevich, and Cavallini (2000), Car-

cione and Seriani (2001), Carcione, Santos, Ravazzoli, and Helle (2003), Maghoul, Gatmiri,

and Duhamel (2011a), Maghoul, Gatmiri, and Duhamel (2011b), and Liu, Maghoul, and

Shalaby (2021b). The solution was obtained through various numerical methods, such as a

grid method based on the Fourier differential operator and a Runge–Kutta time-integration

algorithm (Carcione and Seriani, 2001), finite element method (Santos and Sheen, 2007),

Zener element method for poro-viscoacoustic model (Liu, Greenhalgh, and Zhou, 2009),

and boundary element method (Maghoul, Gatmiri, and Duhamel, 2011b; Maghoul and

Gatmiri, 2017).

In ultrasonic tests, an ultrasonic transmitter transforms electrical energy into mechanical

energy (piezoelectric effect) to generate stress waves within a soil sample. However, the

exact induced mechanical energy (force) still remains unknown due to the complexity of

piezoelectric behavior and transducer structure. The existing literature mostly focused

on the mechanism of wave propagation within frozen soils with assumed input force as

boundary conditions. Therefore, these methods are incapable of interpreting the ultrasonic

signals accurately. A literature search yielded no algorithms for the characterization of

frozen soils using ultrasonic techniques.

Here we present a spectral element multiphase poromechanical transfer function

method for the signal interpretation of ultrasonic measurements for the first time. Our

signal interpretation approach provides an objective result, unlike the existing subjective

empirical signal interpretation methods. Our proposed ultrasonic sensing technique can

directly measure several physical and mechanical properties of frozen soils in a single

ultrasonic test by interpreting the full signal unlike existing techniques that normally
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relate only one or two parameters for a soil sample to the measured signal in each test.

Similar to other problems involving inverse analyses, we can ensure the accuracy of the

results or reduce the uncertainty in the inverse analysis by providing complementary

information through conventional tests to determine temperature, soil type, density, and

so on. Our results demonstrate the proposed ultrasonic sensing technique and the signal

interpretation method based on the spectral element multiphase poromechanical approach

can be used in a laboratory setup or in the field for rapid and reliable characterization of

permafrost samples.

5.2 Methods

5.2.1 Methodology overview

Figure 5.1 shows an overview of the proposed Quantitative Ultrasound (QUS) sensing

system for the ultrasonic characterization of frozen or permafrost soil samples using

our spectral element multiphase poromechanical approach. Firstly, the ultrasonic test is

performed with the calibration bar. Based on the ultrasonic measurements (Figure 5.1a) for

the calibration bar, we can determine the product of transfer function H1 and H3, as shown

in Figure 5.1b. Then, from the ultrasonic measurements for frozen soils (Figure 5.1c), we

can obtain the experimental P1 wave velocity and transfer function H2, as shown in Figure

5.1d. A random sample of soil properties (Figure 5.1e)is initially generated to ensure that

soil parameters are not affected by a local minimum. Then our proposed forward spectral

element multiphase poromechanical transfer function is used to compute the theoretical

P1 wave velocity and transfer function H2 (Figure 5.1f). Then we rank the samples based

on the L2 norm between the experimental and theoretical values. Based on the ranking of

each sample, the Voronoi polygons (Neighborhood sampling method) are used to generate

better samples with a smaller objective function until the solution converges (Figure 5.1h).

We can select the best two candidate clusters (Figure 5.1i) based on the ranking of the

loss function (L2 norm) and obtain the most likely physical and mechanical properties

considering other complementary information of the test sample (Figure 5.1j).
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FIGURE 5.1: Overview of the proposed Quantitative Ultrasound (QUS)
sensing system and the inverse spectral element multiphase poromechanical
approach for the ultrasonic characterization of frozen or permafrost soil
samples. a Ultrasonic signals obtained from the calibration bar. b The
product of transfer function H1 and H3 determined in the calibration process.
c Ultrasonic signals obtained from experimental tests for frozen soils. d
Experimental transfer function H2 and P1 wave velocity (objective for the
inversion). e Initial guess of the physical and mechanical properties of the
frozen or permafrost sample. f Calculation of the theoretical P1 wave velocity
and transfer function H2 using the forward spectral element multiphase
poromechanical transfer function. g Solution ranking based on L2 norm
(experimental vs theoretical). h Neighborhood sampling for the reduction
of L2 norm. i Select the best two candidate clusters based on the rank of the
L2 norm. j Obtain the physical properties and mechanical properties of the
frozen or permafrost sample considering other complementary information.

5.2.2 Spectral element multiphase poromechanical transfer function

We consider the frozen soil sample to be composed of three phases: solid skeleton, pore-

water, and pore-ice. Through the infinitesimal kinematic assumption (Equation 5.8),
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the stress-strain constitutive model (Equation 5.9), and the conservation of momentum

(Equation 5.10), the field equations can be written in the matrix form as presented in

Equation 5.11. The matrix ρ̄, b̄, R̄ and µ̄ are given in Appendix A. The field equations can

also be written in the frequency domain by performing convolution with eiωt. The field

equations in the Laplace domain are obtained by replacing ω with i · s (i2 = −1 and s the

Laplace variable).

To obtain the analytical solution, the Helmholtz decomposition is used to decouple the

P waves (P1, P2, and P3) and S waves (S1 and S2). The displacement vector (ū) is composed

of the P wave scalar potentials φ and S wave vector potentials ψ̄ = (ψr, ψθ , ψz). Since P

waves exist in the solid skeleton, pore-ice and pore-water phases, three P wave potentials

are used, including φs, φi and φ f (Equation 5.13). The detailed steps for obtaining analytical

solutions for P waves and S waves using the Eigen decomposition are summarized in

Section 5.5.3.

In the ultrasonic tests, an assumed impulse load f̂ (ω, r) is applied to one end of the soil

sample. The surface is assumed to be permeable, which implies the pore water pressure at

the surface is zero. Under such conditions, the relation for load vector ~f , stiffness matrix G

and displacement vector ~u in the frequency domain is shown the Equation 5.1:



0

f̂ (ω, r)

0

.

.

.

0


︸ ︷︷ ︸

~f

=


G





u1
r1

u1
z1

u2
z1

.

.

.

u3
zn


︸ ︷︷ ︸

~u

(5.1)

where G is the stiffness matrix described in Equation 5.28 by means of the spectral element

method. The displacement of the solid skeleton and the relative displacements of pore

water and pore ice are denoted by u1
i , u2

i and u3
i . The radial and vertical components of

the displacement vector is denoted by the subscripts r and z, respectively. The subscript n

represents the node number, taken as 1 and 2 for the ultrasonic transmitter and receiver

locations, respectively.

The main steps for the derivation of the stiffness matrix G by means of the spectral

element method are given in Section 5.5.3, such as the derivation of solutions for the
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longitudinal waves (P waves) and shear waves (S waves) by eigen-decomposition.

The impulse load can be decomposed into two independent functions in terms of

Fourier or Laplace variable fn(ω) and radial variable fr(r):

f (ω, r) = fn(ω) fr(r) (5.2)

The mathematical expression for the function fn(ω) depends mainly on the type of

impulse loads created by a function generator and the mechanical force transformed by

the ultrasonic transmitter. Meanwhile, the function fr(r), written using the Fourier-Bessel

series (Equation 5.30), depends on the diameter of the ultrasonic transmitter. Then the

transfer function H2 (independent of the applied load distribution fn) is defined as follows:

H2 :=
uz2(ω)

fn(ω)
=

∞

∑
m=1

ûz2Fm J0(kmr) (5.3)

where uz2 is the displacement at the ultrasonic receiver location; ûz2 is the displacement

component before applying the external load; fn is the input force at the ultrasonic trans-

mitter location; m is the total mode number; Fm is the Fourier-Bessel series components

(Equation 5.30); J0 is the first kind of Bessel function; km is the mode number; r is the radial

location of the ultrasonic receiver.

5.2.3 Inversion

We used the distance between the experimentally measured and numerically predicted

P1 wave velocity as well as the Euclidean norm between the experimental and numerical

transfer functions H2 as the components of the loss function. The problem is formulated as

follows: 
minimize f (x) = 1

2 ∑N
i=1 w(yi − ȳi(x))2 + (1− w) |(Vp1 − V̄p1)|

subject to ai ≤ xi ≤ bi, i = 1, . . . , m
(5.4)

where f is the loss function; x = (x1, x2, ...xm) is the optimization variable (e.g., porosity,

the degree of saturation of unfrozen water, bulk modulus and shear modulus of solid

skeleton); the constant ai and bi are the limits or bounds for each variable; m is the total

number of variables; y and ȳ are the numerical and experimental normalized transfer

functions H2. Vp1 and V̄p1 are the the numerical and experimental P1 wave velocities,
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respectively; w the weight for the L2 norm to balance the contribution of transfer function

and P1 wave velocity, taken as 800.

Here, we used the Neighborhood algorithm that benefits from the Voronoi cells to

search the high-dimensional parameter space and reduce overall cost function (Sambridge,

1999). The algorithm contains only two tuning parameters. The Neighborhood sampling

algorithm includes the following steps: a random sample is initially generated to ensure

the soil parameters are not affected by the local minimum. Based on the ranking of each

sample, the Voronoi polygons are used to generate better samples with a smaller objective

function. The optimization parameters are scaled between 0 and 1 to properly evaluate the

Voronoi polygon limit. After generating a new sample, the distance calculation needs to be

updated. Through enough iterations of these processes, the aim function can be reduced.

The detailed description of the neighborhood algorithm is described by Sambridge (1999).

5.3 Results

5.3.1 Instrumentation and system calibration

The ultrasonic setup consists of a function generator, receiver amplifier, oscilloscope, ultra-

sonic transmitter and receiver. The ultrasonic setup is summarized in Figure 5.2a. Figure

5.2b illustrates the components of an ultrasonic transducer, mainly the matching layer,

a piezoelectric element and backing material. The matching layer reduces the reflection

of transmitted waves so that the acoustic waves can efficiently enter the object. With an

applied electrical impulse, the piezoelectric element generates a mechanical force that

depends on the design of the backing material, matching layer and other components.

The backing material (a highly attenuative and very dense material) is used to reduce the

vibration of the transducer crystal by absorbing the energy that radiates from the back

face of the piezoelectric element (Medina, Buiochi, and Adamowski, 2006). Due to the

complexity of the mechanical response of ultrasonic transducer and the coupling between

the transducer and soil sample, the induced force generated by the ultrasonic transmitter

cannot be determined reliably (Figure 5.2c). The function waveform generator applies di-

rect digital-synthesis techniques to create a stable, accurate output signal for the ultrasonic

test. An applied electrical charge is transmitted to the ultrasonic transmitter to generate

the mechanical energy used in the ultrasonic test (Figure 5.2c). The ultrasonic wave travels

through the soil sample (Figure 5.2d) and is captured by an ultrasonic receiver which

transforms the displacement into electrical output (Figure 5.2e). Due to the attenuation
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of waves propagating within soil and water, a receiver amplifier is needed to reduce the

noise content in the ultrasonic measurement. The input and output signals are displayed

and exported through an oscilloscope.

In the proposed ultrasonic sensing system, the output voltage measured at the ultra-

sonic receiver can be related to the input voltage exciting the ultrasonic transducer in the

frequency domain, as shown in Equation 5.5:

Force(ω)

Voltagein(ω)︸ ︷︷ ︸
H1

× Displacement(ω)

Force(ω)︸ ︷︷ ︸
H2

×
Voltageout(ω)

Displacement(ω)︸ ︷︷ ︸
H3

=
Voltageout(ω)

Voltagein(ω)︸ ︷︷ ︸
H4

(5.5)

where ω is the angular frequency of the input or output signal; H1 is the ratio of the

induced force and the input voltage in the frequency domain; H2 is the ratio of the

calculated displacement at the receiver location and the force at the transmitter location in

the frequency domain; H3 is the ratio of the output voltage and the displacement at the

receiver location in the frequency domain; and H4 is the output voltage over the input

voltage in the frequency domain.

FIGURE 5.2: Ultrasonic sensing system working principle. a Schematics of
the proposed ultrasonic setup. b Inner structure of ultrasonic transducer
that include several different components.c Ultrasonic transmitter working
principles and the defined transfer function H1 in the frequency domain. d
Wave propagation in three-phase frozen soil samples with an assumed force
as well as the transfer function H2 defined with calculated displacement and
arbitrary input force in the frequency domain. e Ultrasonic receiver working

principles and the defined transfer function H3 in the frequency domain
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The transfer function H2, which is calculated by means of a spectral element multiphase

poromechanical solver, is defined in Equation 5.3 in Methods. The transfer function H2

is dependent on the properties of the soil sample, sample geometry, and the transducer

diameter. Based on Equation 5.3, the transfer function H2 is independent of the distribution

of the applied force to the soil sample in both time and frequency domains. Hence,

in the ultrasonic sensing system (as explained in Figure 5.2 and Equation 5.5), we can

determine the transfer function H2 given the testing material properties, sample geometry

and transducer diameter. The transfer function H4 can be measured based on the input and

output electrical signals in the frequency domain. Therefore, despite the unknown induced

force of the ultrasonic transmitter under an electrical impulse, we can still determine the

product of H1 and H3 given the transfer function H2.

In the calibration process, we firstly used the calibration bar (polymethyl methacrylate

with the P-wave and S-wave velocities of 2,717 m/s and 1,516 m/s, respectively, and the

density of 2,400 kg/m3 (Proceq, 2006) to obtain the transfer function H2. With the measured

transfer function H4, we can finally determine the product of the transfer functions H1 and

H3. Figure 5.3a and 5.3b shows the ultrasonic input and output signals at the transmitter

and receiver location during the calibration process, respectively. Figure 5.3c summarizes

the transfer function H4 (calculated using the ultrasonic output signal divided by the input

signal in the frequency domain), transfer function H2 (calculated using the spectral element

multiphase poromechanical solver given the above-mentioned material properties) and

consequently the product of H1 and H3 by dividing H4 by H2. Figure 5.3d shows the real

laboratory setup for the proposed ultrasonic sensing technique in the calibration process.

The product of H1 and H3 physically and quantitatively describes the transformation from

electrical energy to mechanical energy (transmitter) and vice versa (receiver). The product

of H1 and H3 depends on the inherent properties of the ultrasonic transducer components.

Therefore, under the same electrical input, the product of H1 and H3 is believed to have

the same distribution regardless the type of the test samples.
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FIGURE 5.3: Ultrasonic sensing system calibration. a Ultrasonic transmitter
input electrical signal. b Ultrasonic output electrical signal at the receiver
location. c Results of the transfer functions H4 and H2 and the product of H1
and H3. d Laboratory setup for the ultrasonic sensing system calibration.

5.3.2 Frozen soil (permafrost) characterization.

Different soil types including clay, silt, and till (a mix of clay, silt, sand, and limestone) are

used to demonstrate the robustness of the proposed QUS setup in characterizing frozen

soils. The soils were reconstituted and saturated to minimize the inhomogeneity of the soil

samples. Some specimens extracted from the different saturated soil samples were dried

in an oven at 110◦C for three days based on the ASTM standards (Testing and Materials,

2005) to determine the initial porosity of those samples. These samples were then under

different isothermal freezing conditions (-20◦C, -10◦C and -2◦C) prior to the ultrasonic test.

All the frozen soil samples were 170 mm in length and 100 mm in diameter. A summary

of the ultrasonic test program including the soil type, temperature and initial porosity of

each sample is given in Table 5.1.

TABLE 5.1: Summary of the test soil type, temperature and initial porosity
of each sample

Ultrasonic test program

Soil type Clay Silt Till

Temperature -20◦C -10◦C -2◦C -20◦C -2◦C -20◦C

Initial porosity 0.57 0.57 0.60 0.33 0.33 0.28
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The initial water content of the clay soil was measured as 0.503. Based on the specific

gravity of most clay minerals (ranging from 2 to 3 g/cm3, but normally around 2.65 g/cm3

(Blake and Steinhardt, 2008)), the initial porosity of the sample was most likely around

0.57. We performed the ultrasonic test firstly on the clay sample at a freezing temperature

of -20◦C. The ultrasonic transmitter applied a sinusoidal impulse with a frequency of 54

kHz to the left end of the sample. Figure 5.4a shows the ultrasonic input signal (at the

transmitter location) and the output signal (at the receiver location). The first arrival time of

the P1 wave is 0.75 ms and subsequently the P1 wave velocity can be obtained as 2,433 m/s

(travelling distance (sample’s height), divided by the first arrival time). Figure 5.4b shows

the transfer function H4 based on the ultrasonic input and output signals. The transfer

function H4 shows that the ultrasonic measurement mostly concentrates at a frequency

bandwidth between 65 kHz and 78 kHz. With the product of the transfer functions H1 and

H3, determined in the previous calibration process, we obtained the experimental transfer

function H2 (Figure 5.4c) that represents the inherent properties of the testing frozen soil

sample at -20◦C. Figure 5.4d shows the real ultrasonic sensing setup for the frozen soil

tests.

The transfer function H4 depends on both ultrasonic transducer characteristics and the

soil properties. On the other hand, the transfer function H2 is dependent on the properties

of the test sample and transducer diameter, but independent on the characteristics of the

transducer. By means of calibration, we can eliminate the contribution of the transducer to

the original transfer function H4 using the relation H2 = H4/(H1H3) (H1H3 is determined

in the calibration process). The dominant frequency of the transfer function H2 (around 68

kHz) is different from the dominant frequency of the transfer function H4 (around 75 kHz).

The strong response around 75 kHz observed in the measurement of H4 is likely due to the

characteristics of the ultrasonic transducers (resonant frequency). However, the transfer

function H2 is not affected by the 75 kHz frequency component in the measured signal

because of the calibration process.
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FIGURE 5.4: Ultrasonic signal and transfer functions at -20◦C. a Ultrasonic
input and output signals at the transmitter and receiver locations, respec-
tively. b Transfer function H4 (ultrasonic output divided by input signal
in frequency domain). c Normalized experimental transfer function H2

(transfer function H4 divided by H1H3). d Ultrasonic sensing setup.

Figure 5.5a shows the comparison between the experimental measurement and numer-

ical predictions of the transfer function H2 for the selected two candidate clusters showing

the most optimum properties of the clay sample at -20◦C. The theoretical transfer function

H2 obtained by means of our proposed spectral element multiphase poromechanical solver

shows a good agreement with the experimental measurement. Figure 5.5b and Figure 5.5c

show the top two candidate clusters (the subspace between the porosity and degree of

saturation of unfrozen water as well as the subspace between the bulk modulus and shear

modulus, respectively) resulted from the inversion procedures based on the ranking of

the loss function. The two components of the loss function, as defined in Equation 5.4

in Methods, are the difference between the experimental and theoretical P1 wave veloci-

ties (the theoretical value is given in Section 5.5.1) and the experimental and theoretical

transfer functions H2, respectively. Both the P1 wave velocity and transfer function H2 are

independent of the force applied to the soil sample by the transducer but dependent on

the properties of the test soil sample. Our results, as presented in Figure 5.5b and 5.5c,

show that the top two candidate clusters predict similar P1 wave velocity. Figure 5.5a also

illustrates that those two clusters predict similar transfer functions H2. The predicted P1

wave velocity in those two clusters (2,199 m/s and 2,200 m/s for the candidates 1 and 2,
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respectively) is sufficiently close to the measured P wave velocity (2,267 m/s).

We recognize the non-uniqueness and uncertainty in the inversion results due to the

highly nonlinear and non-convex nature of the inverse poromechanical problem. The

optimization space (composed of bulk modulus [K], shear modulus [G], porosity [n], the

degree of saturation of unfrozen water [Sr]) is highly non-convex. The direct search in the

entire space is almost impossible to find the most optimum soil parameters for test samples.

To address this issue, we divided the search space into smaller subspaces, which ensures

the parameter space is well explored to mitigate the local minimum issue. The inversion

algorithm determines multiple possible solutions for the sample properties based on the

measured P1 wave velocity and the transfer function H2.

The first candidate cluster as shown in Figure 5.5b and Figure 5.5c is concentrated to a

porosity of 0.46, degree of saturation of unfrozen water of 93%, a bulk modulus of 10.3 GPa,

and a shear modulus of 11.6 GPa. The second candidate cluster has an average porosity

of 0.53, degree of saturation of unfrozen water of 12%, a bulk modulus of 6.3 GPa, and

a shear modulus of 5.9 GPa. These two candidates are acceptable solutions, since they

both show excellent agreement with the measured P1 wave velocity and transfer function

H2. However, additional information, such as test temperature, soil types, soil moisture

characteristics, or other complementary conventional characterization tests, can be used

to add more constraints to the solution and to more accurately select the most probable

solution. In this case, the measurement was taken at a temperature of -20◦C. The first

candidate cluster is not a plausible solution given its extremely high degree of saturation

of unfrozen water at -20◦C, despite the fact that it has a relatively smaller loss function

than the second candidate. We found the second candidate cluster is also consistent with

our prior geotechnical testing (porosity ranges from 0.5-0.6). Within the candidate 2 cluster,

the predicted porosity ranges from 0.52 to 0.53; the degree of saturation of unfrozen water

ranges from 12% to 15%; the bulk modulus of solid skeleton is between 6.2 GPa and 6.8

GPa, and the shear modulus of solid skeleton ranges from 5.9 GPa to 6.2 GPa. Other

physical properties such as the degree of saturation of ice, volumetric water content and

volumetric ice content can also be obtained based on the porosity and degree of saturation

of unfrozen water.
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FIGURE 5.5: Experimental and theoretical transfer functions H2 obtained
through our proposed spectral element multiphase poromechanical solver as
well as the top two optimum candidates in the inverse solution for the clay
sample at -20◦C. a Comparison between the experimental and theoretical
transfer functions H2. b Density contour of top two candidate clusters at a
subspace between the degree of saturation of unfrozen water and porosity.
c Density contour of top two candidate clusters at a subspace between the

shear modulus and bulk modulus of the solid skeleton.

Figure 5.6 illustrates the inversion process by means of the Neighborhood algorithm for

the second candidate cluster. Figure 5.6a shows that the Neighborhood algorithm generates

random search points to cover the searching space in the first step. By means of the Voronoi

decomposition, more sampling points were generated around the locations where the loss

function is relatively smaller than that in other locations (Figure 5.6b). Within 20 iterations,

the searching space is converged to the minimum location (Figure 5.6b). The sampling

points between the degree of saturation of unfrozen water and porosity are summarized

in Figure 5.6c. It shows that the solution is converged to a point where the degree of

saturation of unfrozen water is 12% and the porosity is 0.53. The updates of each parameter

(porosity, degree of saturation of unfrozen water, bulk modulus and shear modulus of the

solid skeleton) are shown in Figure 5.6d. The iteration number in Figure 5.6d represents

the number of times that the forward problem is solved independently. The loss function

was reduced from 6000 to 335 in 100 iterations.



5.3. Results 127

FIGURE 5.6: Inversion results for the second candidate cluster. a Visualiza-
tion of the Neighborhood algorithm searching method in the 1st, 2nd, 5th

and 20th iteration. b Sampling points in the subspace between the degree
of saturation of unfrozen water and porosity. c Updates of each parameter
through the Neighborhood algorithm as well as the loss function with the

iteration number

We also performed the ultrasonic test for the same clay soil sample at a freezing temper-

ature of -10◦C using the same setup and input electrical signals. Figure 5.7a illustrates the

ultrasonic input and output signals in the time domain. Figure 5.7b shows the experimental

transfer function H2. The measured P1 wave velocity is 1,976 m/s. Figure 5.7c and Figure

5.7d show the density contours of the top two candidate clusters that have the lowest loss

function in comparison with other searching points in the subspace between the degree of

saturation of unfrozen water and porosity as well as the subspace between shear modulus

and bulk modulus, respectively. In the first candidate cluster, the degree of saturation of

unfrozen water and porosity converged to 11% and 0.47, respectively. The shear modulus

and bulk modulus were also converged to 4.4 and 7.4 GPa, respectively. In the second
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candidate cluster, the degree of saturation of unfrozen water and porosity converged to

18% and 0.45, respectively. The shear modulus and bulk modulus were converged to 5.4

and 6.0 GPa, respectively. Our results show that the predicted P1 wave velocity (1,970

m/s) in the second candidate cluster matches better with the measured P1 wave velocity

(1,976 m/s) in comparison with the first candidate cluster (even though the overall loss

function is relatively smaller in candidate 1 due to the contribution of the transfer function

H2 component). Theoretically, both candidates are acceptable for the prediction of the

properties of the frozen soil sample. However, with the previous measurement under

-20◦C, we expect that the degree of saturation of unfrozen water increases by increasing

the temperature. The degree of saturation of unfrozen water at -20◦C was 12%. Under the

current freezing temperature of -10◦C, candidates 1 and 2 predict a degree of saturation

of unfrozen water of 11% and 18%, respectively. Therefore, it is most likely that the test

sample has the following properties: a shear modulus of solid skeleton of 5.4 GPa, a bulk

modulus of solid skeleton of 6.0 GPa, a porosity of 0.45, and a degree of saturation of

unfrozen water of 18%.
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FIGURE 5.7: Ultrasonic measurement and inversion results summary for
the clay sample at -10◦C. a Ultrasonic input and output signals in the time
domain. b Experimental transfer function H2. c Density contour of top
two candidate clusters at a subspace between the degree of saturation of
unfrozen water and porosity. d Density contour of top two candidate clusters
at a subspace between the shear modulus and bulk modulus of the solid

skeleton.
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As mentioned previously, we also performed the ultrasonic tests for the silt and till

soil samples under -20◦C. Figure 5.8 summarizes the ultrasonic measurements, the experi-

mental transfer function H2 and the top two candidate clusters that have the lowest loss

functions for the silt soil sample. Based on the traditional geotechnical tests performed in

the laboratory, the initial porosity of the silt sample is around 0.33. The candidate 1 cluster

determined by our inverse multiphase poromechanical algorithm (Figure 5.8c and Figure

5.8d) represents the properties of the frozen silt soil sample as follows: a shear modulus

of solid skeleton of 12.2 GPa, a bulk modulus of solid skeleton of 12.4 GPa, a porosity of

0.30, and a degree of saturation of unfrozen water of 11%. Similarly, Figure 5.9 shows the

ultrasonic measurements, the experimental transfer function H2 and the top two candidate

clusters that have the lowest loss functions for the till soil sample. The initial porosity of

the till sample is around 0.28 based on the traditional geotechnical tests performed in the

laboratory. The candidate 1 cluster determined by our inverse multiphase poromechanical

algorithm (Figure 5.9c and Figure 5.9d) represents the properties of the frozen till soil

sample as follows: a shear modulus of solid skeleton of 10.9 GPa, a bulk modulus of solid

skeleton of 20.5 GPa, a porosity of 0.28, and a degree of saturation of unfrozen water of

6.7%.

The ultrasonic test was also performed for the silt and clay samples under a freezing

temperature of -2◦C. Figure 5.10 shows the ultrasonic measurements, the experimental

transfer function H2 and the top two candidate clusters that have the lowest loss functions

for the silt soil sample under -2◦C. Based on the conventional geotechnical tests performed

in the laboratory to determine the porosity and previous ultrasonic test results at -20◦C,

the candidate 1 cluster determined by our inverse multiphase poromechanical algorithm

(Figure 5.10c and 5.10d) represents the properties of the silt sample at -2◦C as follows: a

shear modulus of solid skeleton of 10 GPa, a bulk modulus of solid skeleton of 12 GPa, a

porosity of 0.25, and a degree of saturation of unfrozen water of 26%. Similarly, Figure 5.11

shows the ultrasonic measurements, the experimental transfer function H2 and the top two

candidate clusters that have the lowest loss functions for the new clay soil sample under

-2◦C. Based on the traditional geotechnical tests performed in the laboratory, the initial

porosity of the new clay sample is around 0.60. The candidate 1 cluster determined by

our inverse multiphase poromechanical algorithm (Figure 5.11c and 5.11d) represents the

properties of the new clay sample under -2◦C as follows: a shear modulus of solid skeleton

of 4.4 GPa, a bulk modulus of solid skeleton of 4.2 GPa, a porosity of 0.58, and a degree of

saturation of unfrozen water of 64%.
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5.4 Discussion and conclusions

We developed a spectral element multiphase poromechanical transfer function method

and a Quantitative Ultrasound (QUS) sensing system that can be used as a portable and

instant characterization tool for frozen or permafrost soil samples. With a simple portable

setup, the physical and mechanical properties are measured using only a single ultrasonic

test. Compared with traditional methods (TDR, FDR, TDT and NMR) for the measurement

of only unfrozen water content, our proposed technique offers clear advantages. In our

QUS sensing system, the unfrozen water content can be determined without any specific

empirical relations unlike the traditional methods that rely on intensive laboratory calibra-

tion to determine the empirical equations between the relative dielectric permittivity and

unfrozen water content. Our proposed spectral element multiphase poromechanical trans-

fer function considers the multiphase physics of wave propagation in the test samples and

makes no assumptions about the soil types, ice content, porosity, and testing temperature.

Furthermore, the above-mentioned traditional methods (TDR, FDR, TDT and NMR) can

only estimate the unfrozen water content; but the information on ice content, porosity and

mechanical properties can not be evaluated. In terms of the mechanical properties, the

proposed ultrasonic technique also shows clear advantages compared with the traditional

RC and BE tests. In the proposed ultrasonic sensing technique, the bulk modulus and shear

modulus of solid skeleton particles can be determined at the same time without costly and

time-consuming laboratory geophysical setups.

The inverse spectral element multiphase poromechanical algorithm is highly non-

linear and non-convex. The components of the stiffness matrix as shown in Appendix

B involve soil parameters such as bulk modulus, shear modulus, the saturation degree

of unfrozen water, and porosity, which make the algebraic operations highly non-linear.

Given the ultrasonic measurements in terms of the P1 wave velocity and experimental

transfer function H2, multiple possible theoretical predictions with similar loss functions

can match well with the experimental measurements. The proposed inversion scheme

successfully locates these possible solutions that fit well with the measured P1 wave

velocity and transfer function H2. However, additional information may be required to

make the final decisions on the most probable soil properties. The non-uniqueness nature

and the inherent uncertainty of this inverse problem are due to the lack of constraints of

the soil parameters. Supplementary information (e.g., prior tests and typical values for soil

properties) can reduce the search space and add constraints on the inversion analysis. For
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example, the two most probable solutions (clusters) were selected based on the ranking of

the loss function in this paper. Traditional geotechnical tests performed in the process of

preparing soil samples provided estimated soil porosity. Combining with the measured

freezing temperature, we can eliminate the first candidate from the inversion results at a

temperature of -20◦C for the frozen clay sample (Figure 5.5).

We further verified the inversion results by comparing the predicted soil properties

at -20◦C and -10 ◦C. Our results showed that the degree of saturation of unfrozen water

increases (from 12% to 17%) with the temperature increase. The porosity slightly decreases

(from 0.53 to 0.45) with the increase of temperature. This is explained by the reduction

in volume when the in-situ ice is transformed into porewater. In addition, the variation

of volumetric ice content (from 0.47 to 0.37, calculated by n(1− Sr)) is consistent with

the temperature increase. The volume of ice is about 9% higher than that of water under

the same weight. This is consistent with the 8% variation of total volume (The volume

reduction is mostly reflected by the reduction in the porosity). Meanwhile, the volumetric

unfrozen water content increased from 0.06 to 0.08. Both bulk modulus and shear modulus

are reduced (from 6.3 GPa to 6 GPa in the bulk modulus; from 5.9 GPa to 5.4 GPa in

shear modulus) when the temperature increases from -20◦C to -10◦C. Such a conclusion

is consistent with the temperature-dependent feature of elastic properties of frozen soil

reported by Wang, Zhu, Ma, and Niu (2006). Comparing the inversion results of the silt

sample at -20◦C and -2◦C, the degree of saturation of unfrozen water increased from 11%

to 26%, which is consistent with the thermodynamic model of silt derived by Xiao, Lai, and

Zhang (2020). The till soil sample has a relatively lower degree of saturation of unfrozen

water in comparison to clay and silt sample due to the existence of sand in the test soil

sample. However, the till soil sample has the largest bulk modulus in comparison to other

test samples due to the existence of limestone.

Future work on the ultrasonic characterization of permafrost should explore ways

to reduce the uncertainty in the proposed inverse spectral element multiphase porome-

chanical transfer function. The uncertainty originates from the non-uniqueness in the

inverse analysis (local minima problem) and the limited number of constraints in the

inversion analysis. Even though the local minima problem has been mitigated by perform-

ing inversion analysis in smaller optimization subspace, it is recommended to integrate

other techniques (e.g., electrical resistance test and thermal imaging) with the proposed

ultrasonic method to further reduce the uncertainty of the permafrost characterization.
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5.5 Supplementary materials

5.5.1 Calculation of P1 wave velocity

The P1 wave velocity (vp1) is determined by a third degree characteristic equation:

Λ3R̃−Λ2 ((ρ11R̃iw + ρ22R̃si + ρ33R̃sw)− 2(R11R33ρ23 + R33R12ρ12)
)

+Λ ((R11ρ̃iw + R22ρ̃si + R33ρ̃sw)− 2(ρ11ρ23R23 + ρ33ρ12R12))− ρ̃ = 0
(5.6)

where
R̃ = R11R22R33 − R2

23R11 − R2
12R33

R̃sw = R11R22 − R2
12

R̃iw = R22R33 − R2
23

R̃si = R11R33

ρ̃ = ρ11ρ22ρ33 − ρ2
23ρ11 − ρ2

12ρ33

ρ̃sw = ρ11ρ22 − ρ2
12

ρ̃iw = ρ22ρ33 − ρ2
23

ρ̃si = ρ11ρ33

The roots of the third degree characteristic equation, denoted as Λ1, Λ2 and Λ3, can be

found by computing the eigenvalues of the companion matrix. The velocities of the three

types of P-wave (Vp1 > Vp2 > Vp3) are given in the Equation 5.7. The P1 wave velocity

(Vp1) is the fastest one among those three velocities.

Vp1 =

√
1

Λ1
; Vp2 =

√
1

Λ2
; Vp3 =

√
1

Λ3
(5.7)
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5.5.2 Supplementary testing program

The ultrasonic measurements, the experimental transfer function H2 and the top two

candidate clusters that have the lowest loss functions for silt, till and clay soil samples at

various freezing temperatures are given in Figure 5.8 to Figure 5.11.
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FIGURE 5.8: Ultrasonic measurement and inversion results summary for
the silt sample at -20◦C. a Ultrasonic input and output signals in the time
domain. b Experimental transfer function H2. c Density contour of top
two candidate clusters at a subspace between the degree of saturation of
unfrozen water and porosity. d Density contour of top two candidate clusters
at a subspace between the shear modulus and bulk modulus of the solid

skeleton.
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FIGURE 5.9: Ultrasonic measurement and inversion results summary for
the till sample (a mix of silt, clay, sand, and limestone) sample at -20◦C. a
Ultrasonic input and output signals in the time domain. b Experimental
transfer function H2. c Density contour of top two candidate clusters at a
subspace between the degree of saturation of unfrozen water and porosity.
d Density contour of top two candidate clusters at a subspace between the

shear modulus and bulk modulus of the solid skeleton.
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FIGURE 5.10: Ultrasonic measurement and inversion results summary for
the silt sample at -2◦C. a Ultrasonic input and output signals in the time
domain. b Experimental transfer function H2. c Density contour of top
two candidate clusters at a subspace between the degree of saturation of
unfrozen water and porosity. d Density contour of top two candidate clusters
at a subspace between the shear modulus and bulk modulus of the solid

skeleton.
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FIGURE 5.11: Ultrasonic measurement and inversion results summary for
the new clay sample at -2◦C. a Ultrasonic input and output signals in the
time domain. b Experimental transfer function H2. c Density contour of
top two candidate clusters at a subspace between the degree of saturation
of unfrozen water and porosity. d Density contour of top two candidate
clusters at a subspace between the shear modulus and bulk modulus of the

solid skeleton.
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5.5.3 Spectral element multiphase poromechanical model

Kinematics assumptions

The Green-Lagrange strain tensor (εij) for infinitesimal deformations expressed as displace-

ment vector u1
i , u2

i and u3
i for solid skeleton, pore water and pore ice are shown in Equation

5.8. 
ε1

ij =
1
2 (u

1
i,j + u1

j,i)

ε2
ij =

1
3 ε2

kkδij (ε2
kk = u2

k,k)

ε3
ij =

1
2 (u

3
i,j + u3

j,i)

(5.8)

where δij is the identity tensor.

The strain tensor of pore water ε2
ij is diagonal since the shear deformation does not

exist in pore water component.

Constitutive model

The constitutive models defined as the relation between the stress and strain tensors for

solid skeleton, pore water and pore ice are given in Equation 5.9:


σ1

ij = (K1θ1 + C12θ2 + C13θ3)δij + 2µ1d1
ij + µ13d3

ij

σ2 = C12θ1 + K2θ2 + C23θ3

σ3
ij = (K3θ3 + C23θ2 + C13θ1)δij + 2µ3d3

ij + µ13d1
ij

(5.9)

in which σ1, σ2 and σ3 are the effective stress, pore water pressure and ice pressure,

respectively. The definition of each term (e.g., K1, C12, C13, µ1, µ13, K2, C23, K3, µ3) in

Equation 5.9 is given in Appendix A. The term θm, dm
ij and εm

ij (m, ranging from 1 to 3,

represents the different phases) are defined as follows:


θm = εm

kk

dm
ij = εm

ij −
1
3 δijθm

εm
ij =

1
2 (u

m
i,j + um

j,i).

Conservation laws

The momentum conservation considers the acceleration of each component and the existing

relative motion of the pore ice and pore water phases with respect to the solid skeleton.
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The momentum conservation for the three phases is given by Equation 5.10.


σ1

ij,j = ρ11ü1
i + ρ12ü2

i + ρ13ü3
i − b12(u̇2

i − u̇1
i )− b13(u̇3

i − u̇1
i )

σ2
,i = ρ12ü1

i + ρ22ü2
i + ρ23ü3

i + b12(u̇2
i − u̇1

i ) + b23(u̇2
i − u̇3

i )

σ3
ij,j = ρ13ü1

i + ρ23ü2
i + ρ33ü3

i − b23(u̇2
i − u̇1

i ) + b13(u̇3
i − u̇1

i ).

(5.10)

in which the expressions for the density terms (ρij or ρ̄ in matrix form) and viscous matrix

(bij or b̄ in matrix form) are given in Appendix A; ü and u̇ represent second and first

derivative of displacement vectors with respect to time; the subscript i represents the

component in r, θ and z direction in cylindrical coordinates.

Through the infinitesimal kinematic assumptions, the stress-strain constitutive model

and conversation of momentum, the field equation can be written in the matrix form, as

shown in Equation 5.11.

ρ̄


ü1

i

ü2
i

ü3
i

+ b̄


u̇1

i

u̇2
i

u̇3
i

 = R̄ ∇∇ ·


u1

i

u2
i

u3
i

− µ̄ ∇×∇×


u1

i

u2
i

u3
i

 . (5.11)

in which the matrix R̄ and µ̄ are given in Appendix A.

By performing divergence operation (∇·) and curl operation (∇×) on both sides of

Equation 5.11, the field equation in the frequency domain can be written as Equation 5.12.



−ρ̄ ω2 ∇ ·


u1

i

u2
i

u3
i

− b̄ i ω ∇ ·


u1

i

u2
i

u3
i

 = R̄ ∇2∇ ·


u1

i

u2
i

u3
i



−ρ̄ ω2 ∇×


u1

i

u2
i

u3
i

− b̄ i ω ∇×


u1

i

u2
i

u3
i

 = µ̄ ∇2∇×


u1

i

u2
i

u3
i


(5.12)

Using the Helmholtz decomposition theorem allows us to decompose the displacement

field, ū (equivalent to ui), into the longitudinal potential and transverse vector components
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as follows, 
ū1 = ∇φ1 +∇× ψ̄1 and ∇ · ψ̄1 = 0

ū2 = ∇φ2 +∇× ψ̄2 and ∇ · ψ̄2 = 0

ū3 = ∇φ3 +∇× ψ̄3 and ∇ · ψ̄3 = 0

(5.13)

By substituting Equation 5.13 into the field equation of motion, Equation 5.12, we

obtain two sets of uncoupled partial differential equations relative to the compressional

wave P related to the Helmholtz scalar potentials , and to the shear wave S related to the

Helmholtz vector potential, respectively (Equation 5.14). In the axi-symmetric condition,

only the second components exits in vector ψ̄, which is denoted as ψ in the future. It

should be mentioned that the field equations in Laplace domain can be easily obtained by

replacing ω with i.s (i2 = −1 and s the Laplace variable).



−ρ̄ ω2


φ1

φ2

φ3

− b̄ i ω


φ1

φ2

φ3

 = R̄ ∇2


φ1

φ2

φ3



−ρ̄ ω2


ψ1

ψ2

ψ3

− b̄ i ω


ψ1

ψ2

ψ3

 = µ̄ ∇2


ψ1

ψ2

ψ3

 .

(5.14)

Solution for the longitudinal waves (P waves) by eigen decomposition

Equation (5.14) shows that φ1, φ2 and φ3 are coupled in the field equations. The diago-

nalization of such a matrix is required to decouple the system. Equation (5.14) is then

rearranged into Equation (5.15):

∇2


φ1

φ2

φ3

 = −R̄−1(ρ̄ω2 + b̄ i ω)︸ ︷︷ ︸
K̄


φ1

φ2

φ3

 (5.15)

where the K̄ matrix can be rewritten using the Eigen decomposition:

K̄ = P̄ D̄ P̄−1 (5.16)
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where P̄ is the eigenvector and D̄ is the eigenvalue matrix of K̄.

By setting φ̄ = P̄ȳ, where ȳ = [φp1, φp2, φp3], we can obtain ∇2ȳ = D̄ȳ. The equation

of longitudinal wave has been decoupled. In cylindrical coordinates, the solution for

ȳ = [φp1, φp2, φp3] is summarized as follows:


φp1(r, z) = Ae−

√
k2+D11 z J0(k r)

φp2(r, z) = Be−
√

k2+D22 z J0(k r)

φp3(r, z) = Ce−
√

k2+D33 z J0(k r)

(5.17)

where k is the wave number; coefficient A, B and C will be determined by boundary

conditions; D11, D22, and D33 are the diagonal components of D̄; J0 is the Bessel function

of the first kind. For simplicity, The term
√

k2 + D11,
√

k2 + D22 and
√

k2 + D33 is denoted

as kp1, kp2 and kp3, respectively.

Now, the P wave potentials can be written as:


φ1

φ2

φ3

 =


p11 p12 p13

p21 p22 p23

p31 p32 p33




φp1

φp2

φp3

 (5.18)

where pij are the components for the eigenvector of P̄.

Solution for shear waves (S waves)

The solutions for the S wave potentials can be solved in a similar manner. The Equation

5.19 is firstly rearranged into Equation 5.20:

− ρ̄ ω2


ψ1

ψ2

ψ3

− b̄ i ω


ψ1

ψ2

ψ3

 = µ̄ ∇2


ψ1

ψ2

ψ3

 (5.19)

−ρ̄ω2 − b̄ i ω︸ ︷︷ ︸
Ā


ψ1

ψ2

ψ3

 = µ̄ ∇2


ψ1

ψ2

ψ3

 (5.20)
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Since ψw can be expressed as a function of ψs and ψi (shown in Equation 5.21), the

Equation 5.20 is further simplified and rearranged into Equation 5.22.


A21ψ1 + A22ψ2 + A23ψ3 = 0

ψ2 = − A21ψ1+A23ψ3
A22

(5.21)

∇2

ψ1

ψ3

 =

µ11 µ13

µ13 µ33

−1

C̄

︸ ︷︷ ︸
N̄

ψ1

ψ3

 . (5.22)

where

C̄ =

 A11 − A12 A21
A22

A13 − A12 A23
A22

A31 − A32 A21
A22

A33 − A32 A23
A22


The N̄ matrix can be rewritten using the eigen decomposition (N̄ = Q̄ Ḡ Q̄−1), where

Q̄ is the eigenvector and Ḡ is the eigenvalue matrix of N̄. By setting ψ̄ = Q̄ ȳ′ where

ȳ′ = [ψs1, ψi1], we can obtain:

ψs1 = Ee−
√

k2+G11 z J1(k r) (5.23)

ψi1 = Fe−
√

k2+G22 z J1(k r) (5.24)

where J1 is the Bessel function of the first kind with order 1. G11 and G22 are the diagonal

components of matrix Ḡ. For simplicity, the term
√

k2 + G11 and
√

k2 + G22 is denoted as

ks1 and ks2.

Finally, the solution of S wave potentials can be written as:

ψ1

ψ3

 =

Q11 Q12

Q21 Q22


ψs1

ψi1

 (5.25)

where Qij are the components for eigenvector of Q̄.
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Layer element with finite thickness

By including both incident wave and reflected wave, the potentials for a layer with finite

thickness can be written in Equation 5.26:



u1
r1

u1
z1

u2
z1

u3
r1

u3
z1

u1
r2

u1
z2

u2
z2

u3
r2

u3
z2



=



S1





A1

B1

C1

E1

F1

A2

B2

C2

E2

F2



(5.26)

where the components of S1 is given in Appendix B; the subscript 1 and 2 represent the

nodes for the upper and lower layer, respectively. The coefficient A to F is determined by

the boundary condition.

The matrix of effective stress, pore water pressure and pore ice pressure in the frequency

domain is shown in Equation 5.27 in which the components for matrix S2 can be found in

the Appendix B. 

σ1
r1

σ1
z1

p1

σ3
r1

σ3
z1

σ1
r2

σ1
z2

p2

σ3
r2

σ3
z2



=



S2





A1

B1

C1

E1

F1

A2

B2

C2

E2

F2



(5.27)

According to the Cauchy stress principle, the traction force (T) is taken as the dot

product between the stress tensor and the unit vector along the outward normal direction.

Due to the convection that the upward direction is negative, the upper boundary becomes
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negative. Similarly, to make the sign consistent, the N matrix is applied to matrix S2 · S−1
1 .

In the future, the matrix N · S2 · S−1
1 will be denoted as the G matrix.



T1
r1

T1
z1

T1

T3
r1

T3
z1

T1
r2

T1
z2

T2

T3
r2

T3
z2



=



−σ1
r1

−σ1
z1

−p1

−σ3
r1

−σ3
z1

σ1
r2

σ1
z2

p2

σ3
r2

σ3
z2



= N · S2 · S−1
1︸ ︷︷ ︸

G

·



u1
r1

u1
z1

u2
z1

u3
r1

u3
z1

u1
r2

u1
z2

u2
z2

u3
r2

u3
z2



(5.28)

where

N =



−1 0 0 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0 0

0 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1



(5.29)

The radial component of the applied load decomposed from the external load is defined

as:

fr(r) =
∞

∑
m=1

Fm J0(kmr) (5.30)

where

Fm(m) =
2r0 sin (r0km)

r2
∞km J2

1 (r∞km)

where r0 is the radius of the contacting area of the ultrasonic transmitter; n is the total

mode number; r∞ is the diameter of the soil sample.
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Chapter 6

Seismic physics-based
characterization of permafrost sites
using surface waves

Abstract

The adverse effects of climate warming on the built environment in (sub)arctic regions

are unprecedented and accelerating. According to Canada’s Changing Climate Report

(2019), in the Arctic regions, temperatures have been warming at approximately twice

the rate of the rest of the world. This drastic trend in climate warming will no doubt

affect permafrost temperatures and conditions, continued rise in greenhouse gas emissions,

and further adding to the high cost of development in northern regions. Planning and

design of climate-resilient northern infrastructure as well as predicting deterioration

of permafrost from climate model simulations require characterizing permafrost sites

accurately and efficiently. Here, we propose a novel algorithm for analysis of surface

waves to quantitatively estimate the physical and mechanical properties of a permafrost

site. We show the existence of two types of Rayleigh waves (R1 and R2; R1 travels relatively

faster than R2). The R2 wave velocity is highly sensitive to the physical properties (e.g.,

unfrozen water content, ice content, and porosity) of permafrost or soil layers while it is

less sensitive to their mechanical properties (e.g., shear modulus and bulk modulus). The

R1 wave velocity, on the other hand, depends strongly on the soil type and mechanical

Liu H., Maghoul P., Shalaby A., 2021. Seismic physics-based characterization of permafrost sites using surface
waves, The Cryosphere Discuss. [preprint], in Review.
https://doi.org/10.5194/tc-2021-219.

https://doi.org/10.5194/tc-2021-219
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properties of permafrost or soil layers. In-situ surface wave measurements revealed the

experimental dispersion relations of both types of Rayleigh waves from which relevant

properties of a permafrost site can be derived by means of our proposed hybrid inverse and

multi-phase poromechanical approach. Our study demonstrates the potential of surface

wave techniques coupled with our proposed data-processing algorithm to characterize a

permafrost site more accurately. Our proposed technique can be used in early detection and

warning systems to monitor infrastructure impacted by permafrost-related geohazards,

and to detect the presence of layers vulnerable to permafrost carbon feedback and emission

of greenhouse gases into the atmosphere.

6.1 Introduction

Permafrost is defined as the ground that remains at or below 0◦C for at least two con-

secutive years. The upper layer of the ground in permafrost areas, termed as the active

layer, may undergo seasonal thaw and freeze cycles. The thickness of the active layer

depends on local geological and climate conditions such as vegetation, soil composition,

air temperature, solar radiation and wind speed.

Within the permafrost, the distribution of ice formations is highly variable. Ground ice

can be present under distinctive forms including (1) pore ice, (2) segregated ice, and (3)

ice-wedge (Couture and Pollard, 2017; Mackay, 1972). Pore water, which fills or partially

fills the pore space of the soil, freezes in-place when the temperature drops below the

freezing point (Porter and Opel, 2020). On the other hand, segregated ice is formed

when water migrates to the freezing front and it can cause excessive deformations in

frost-susceptible soils. Frost-susceptible soils, e.g. silty or silty clay soils, have relatively

high capillary potential and moderate intrinsic permeability. During the winter months,

ground ice expands as the ground freezes, and forms cracks in the subsurface (Liljedahl,

Boike, Daanen, Fedorov, Frost, Grosse, Hinzman, Iijma, Jorgenson, Matveyeva, et al., 2016).

Ice wedges are large masses of ice formed over many centuries by repeated frost cracking

and ice vein growth.

Design and construction of structures on permafrost normally follow one of two broad

principles which are based on whether the frozen foundation soil in ice-rich permafrost

is thaw-stable or thaw-unstable. This distinction is determined by the amount of ice

content within the permafrost. Ice-rich permafrost contains ice in excess of its water

content at saturation. The construction on thaw-unstable permafrost is challenging and
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requires remedial measures since upon thawing, permafrost will experience significant

thaw-settlement and suffer loss of strength to values significantly lower than that for

similar material in an unfrozen state. Consequently, remedial measures for excessive

soil settlements or design of new infrastructure in permafrost zones affected by climate

warming would require a reasonable estimation of the ice content within the permafrost

(frozen soil). The rate of settlement relies on the mechanical properties of the foundation

permafrost at the construction site. Furthermore, a warming climate can accelerate the

microbial breakdown of organic carbon stored in permafrost and can increase the release

of greenhouse gas emissions, which in return would accelerate climate change (Schuur,

McGuire, Schädel, Grosse, Harden, Hayes, Hugelius, Koven, Kuhry, Lawrence, et al.,

2015).

Several in-situ techniques have been employed to characterize or monitor permafrost

conditions. For example, techniques such as remote sensing (Witharana, Bhuiyan, Liljedahl,

Kanevskiy, Epstein, Jones, Daanen, Griffin, Kent, and Jones, 2020; Bhuiyan, Witharana, and

Liljedahl, 2020; Zhang, Witharana, Liljedahl, and Kanevskiy, 2018), and ground penetrating

radar (GPR) (Munroe, Doolittle, Kanevskiy, Hinkel, Nelson, Jones, Shur, and Kimble, 2007;

Christiansen, Matsuoka, and Watanabe, 2016; Williams, Haltigin, and Pollard, 2011) have

been used to detect ice-wedge formations within the permafrost layers. Also, electrical

resistivity tomography (ERT) has been extensively used to qualitatively detect pore-ice or

segregated ice in permafrost based on the correlation between the electrical conductivity

and the physical properties of permafrost (e.g., unfrozen water content and ice content)

(Glazer, Dobiński, Marciniak, Majdański, and Błaszczyk, 2020; Hauck, 2013; Scapozza,

Lambiel, Baron, Marescot, and Reynard, 2011; You, Yu, Pan, Wang, and Guo, 2013). The

apparent resistivity measurement by ERT is higher in areas having high ice contents

(You, Yu, Pan, Wang, and Guo, 2013); however, at high resistivity gradients, the inversion

results become less reliable, especially for the investigation of permafrost base (Hilbich,

Marescot, Hauck, Loke, and Mäusbacher, 2009; Marescot, Loke, Chapellier, Delaloye,

Lambiel, and Reynard, 2003). Furthermore, in ERT investigations, the differentiation

between ice and certain geomaterials can be highly uncertain due to their similar electrical

resistivity properties (Kneisel, Hauck, Fortier, and Moorman, 2008). GPR has been also

used for mapping the thickness of the active layer; however, its application is limited to

a shallow penetration depth in conductive layers due to the signal attenuation and high

electromagnetic noise in ice and water (Kneisel, Hauck, Fortier, and Moorman, 2008). It is

worth mentioning that none of the above-mentioned methods characterizes the mechanical
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properties of permafrost layers.

Non-destructive seismic testing, including multi-channel analysis of surface waves

(MASW) (Dou and Ajo-Franklin, 2014; Glazer, Dobiński, Marciniak, Majdański, and

Błaszczyk, 2020), passive seismic test with ambient seismic noise (James, Knox, Abbott,

Panning, and Screaton, 2019; Overduin, Haberland, Ryberg, Kneier, Jacobi, Grigoriev, and

Ohrnberger, 2015), seismic reflection (Brothers, Herman, Hart, and Ruppel, 2016), and

seismic refraction method (Wagner, Mollaret, Günther, Kemna, and Hauck, 2019) have

been previously employed to map the permafrost layer based on the measurement of shear

wave velocity. In the current seismic testing practice, it is commonly considered that the

permafrost layer (frozen soil) is associated with a higher shear wave velocity due to the

presence of ice in comparison to unfrozen ground. However, the porosity and soil type can

also significantly affect the shear wave velocity (Liu, Maghoul, and Shalaby, 2020b). In

other words, a relatively higher shear wave velocity could be associated to an unfrozen

soil layer with a relatively lower porosity or stiffer solid skeletal frame, and not necessarily

related to the presence of a frozen soil layer. Therefore, the detection of permafrost layer

and permafrost base from only the shear wave velocity may lead to inaccurate and even

misleading interpretations.

Here, we present a hybrid inverse and multi-phase poromechanical approach for in-situ

characterization of permafrost sites using surface wave techniques. In our method, we

quantify the physical properties such as ice content, unfrozen water content, and porosity

as well as the mechanical properties such as the shear modulus and bulk modulus of

permafrost or soil layers. Through the mechanical properties of the solid skeleton frame,

we can also predict the soil type and the sensitivity of the permafrost layer to permafrost

carbon feedback and emission of greenhouse gases to the atmosphere. We also deter-

mine the depth of the permafrost table and permafrost base. The role of two different

types of Rayleigh waves in characterizing the permafrost is presented based on an MASW

seismic investigation in a field located at SW Spitsbergen, Norway. Multiphase porome-

chanical dispersion relations are developed for the interpretation of the experimental

seismic measurements at the surface based on the spectral element method. Our results

demonstrate the potential of seismic surface wave testing accompanied with our proposed

hybrid inverse and poromechanical dispersion model for the assessment and quantitative

characterization of permafrost sites.
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6.2 Methods

6.2.1 Methodology overview

Figure 6.1 shows the overview of the proposed hybrid inverse and poromechanical ap-

proach for in-situ characterization of permafrost sites. We can obtain the experimental

dispersion relations for R1 and R2 Rayleigh wave types from the surface wave measure-

ments. Then, we use the experimental dispersion of R2 waves to characterize the physical

properties of the layers. A random sample is initially generated to ensure that soil parame-

ters are not affected by a local minimum. Then the forward three-phase poromechanical

dispersion solver is used to compute the theoretical dispersion relation of the R2 wave.

Therefore, we can rank samples based on the L2 norm between the experimental and

theoretical dispersion relations. Based on the ranking of each sample, the Voronoi polygons

(Neighborhood sampling method) are used to generate better samples with a smaller

objective function until the solution converges. We can select the best samples with the

minimum loss function and obtain the most likely physical properties and thickness of

the active layer, permafrost layer, and unfrozen ground. After obtaining the physical

properties, the mechanical properties can be derived based on the dispersion relation of the

R1 wave mode in a similar manner, as summarized in Figure 6.1h (optimization variables

exclude the physical properties and the thickness of each layer in this process).
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FIGURE 6.1: a A general schematic of the MASW test at a permafrost site
b Dispersion relations of R1 and R2 waves obtained from the experimen-
tal measurements. c Initial guess of the physical properties of active layer,
permafrost layer and unfrozen ground. d Calculation of the theoretical dis-
persion relation of R2 wave using the forward three-phase poromechanical
dispersion solver. e Solution ranking based on L2 norm for R2 dispersion
relations (experimental vs theoretical) using the hybrid inverse and porome-
chanical approach. f Neighborhood sampling for the reduction of L2 norm
using the hybrid inverse and poromechanical approach. g Select the best
samples based on the minimum L2 norm and obtain the physical properties
and thickness for each layer. h Repeat the steps for dispersion inversion (c-f)
of R1 dispersion relation to derive the mechanical properties of active layer,
permafrost layer and unfrozen ground. i Select the best samples based on

the minimum L2 norm and obtain the mechanical properties.

6.2.2 Rayleigh wave dispersion relations

We consider the frozen soil specimen to be composed of three phases: solid skeletal frame,

pore-water, and pore-ice. Through the infinitesimal kinematic assumption (Equation 6.3),

the stress-strain constitutive model (Carcione and Seriani, 2001) (Equation 6.4), and the

conservation of momentum (Equation 6.5), the field equations can be written in the matrix

form (Equation 6.6). The matrix ρ̄, b̄, R̄ and µ̄ are given in Section 6.5.4. The field equations

can also be written in the frequency domain by performing convolution with eiωt. The field
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equations in the Laplace domain are obtained by replacing ω with i · s (i2 = −1 and s the

Laplace variable).

To obtain the spectral element solution, the Helmholtz decomposition is used to decou-

ple the P waves (P1, P2, and P3) and S waves (S1 and S2). The displacement vector (ū) is

composed of the P wave scalar potentials φ and S wave vector potentials ψ̄ = (ψr, ψθ , ψz).

Since P waves exist in the solid skeleton, pore-ice and pore-water phases, three P wave

potentials are used, including φs, φi and φ f (Equation 6.8). The detailed steps for obtain-

ing the closed-form solutions for P waves and S waves using the Eigen decomposition

are summarized in Section 6.5.4. After obtaining the stiffness matrix for each layer, the

global stiffness matrix, H, can be assembled by applying the continuity conditions at layer

interfaces. The stiffness assembling method is shown in Figure 6.2.

FIGURE 6.2: Construction of the global stiffness matrix

The dispersion relation is obtained by setting a zero stress condition at the surface

(z = 0). To obtain the non-trivial solution, the determinant of the global stiffness matrix

has to be zero, as expressed in Equation 6.1 (Zomorodian and Hunaidi, 2006).

det H(ω, k) = 0. (6.1)

The global stiffness matrix, H(ω, k), is a function of angular frequency ω and wavenum-

ber k. For a constant frequency, the value of the wavenumber can be determined when

the determinant of the global stiffness matrix is zero. The dispersion curve is also com-

monly displayed as frequency versus phase velocity, v = ω
k . The different wavenumbers

determined at a given frequency correspond to dispersion curves of different modes. To

extract the fundamental mode of the R1 wave, the velocities of P1 wave and S1 wave are

calculated first for the given physical properties and mechanical properties of each layer.

The global stiffness matrix for the R1 wave can be decomposed into the components related

only to the P1 and S1 wave velocities. This is viable since we have proved that the R1 wave

is generated by the interaction between the P1 and S1 waves. This approach avoids the
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difficulties in differentiating the higher modes of R2 wave from the fundamental mode

of the R1 wave. The detailed root search method has been documented in Liu, Maghoul,

Shalaby, Bahari, and Moradi (2020).

6.2.3 Inversion

The aim function is defined as the Euclidean norm between the experimental and numerical

results of the dispersion relations. The problem is formulated in Equation 6.2:


minimize f (x) = 1

2 ∑N
i=1(yi − ȳi(x))2

subject to ai ≤ xi ≤ bi, i = 1, . . . , m
(6.2)

where f is the objective function; x = (x1, x2, ...xm) is the optimization variable (e.g.,

porosity, and degree of saturation of unfrozen water, bulk modulus and shear modulus of

solid skeleton frame as well as thickness of each layer); the constant ai and bi are limits or

bounds for each variable; m is the total number of variables; y and ȳ are the numerical and

experimental dispersion relations for the R1 or R2 waves.

Here, we used the neighborhood algorithm that benefits from the Voronoi cells to

search the high-dimensional parameter space and reduce overall cost function (Sambridge,

1999). The algorithm contains only two tuning parameters. The neighborhood sampling

algorithm includes the following steps: a random sample is initially generated to ensure

the soil parameters are not affected by the local minima. Based on the ranking of each

sample, the Voronoi polygons are used to generate better samples with a smaller objective

function. The optimization parameters are scaled between 0 and 1 to properly evaluate the

Voronoi polygon limit. After generating a new sample, the distance calculation needs to be

updated. Through enough iterations of these processes, the aim function can be reduced.

The detailed description of the neighborhood algorithm is described by Sambridge (1999).

6.3 Results

6.3.1 Fast and slow Rayleigh wave dispersion relations.

From a poromechanical point of view, permafrost (frozen soil) is a multi-phase porous

medium that is composed of a solid skeletal frame and pores filled with water and ice

with different proportions. Here, we analyze the seismic wave propagation in permafrost
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based on the three-phase poroelastodynamic theory. Three types of P wave (P1, P2 and

P3) and two types of S wave (S1, S2) coexist in three-phase frozen porous media (Carcione,

Gurevich, and Cavallini, 2000; Carcione and Seriani, 2001; Carcione, Santos, Ravazzoli, and

Helle, 2003). The P1 and S1 waves are strongly related to the longitudinal and transverse

waves propagating in the solid skeletal frame, respectively, but are also dependent on the

interactions with pore ice and pore water (Carcione and Seriani, 2001). The P2 and S2

waves propagate mainly within pore ice (Leclaire, Cohen-Ténoudji, and Aguirre-Puente,

1994). Similarly, the P3 wave is due to the interaction between the pore water and the

solid skeletal frame. The velocity of different types of P waves and S waves is provided in

Section 6.5.1.

Here a uniform frozen soil layer is used to show the propagation of different types

of P and S waves and subsequently the formation of Rayleigh waves (R1 and R2) at the

surface. It is assumed that an impulse load with a dominant frequency of 100 Hz is applied

at the ground surface. The wave propagation analysis was performed in clayey soils by

assuming a porosity (n) of 0.5, a degree of saturation of unfrozen water (Sr) of 50%, a bulk

modulus (K) of 20.9 GPa and a shear modulus (G) of 6.85 GPa for the solid skeletal frame

(Helgerud, Dvorkin, Nur, Sakai, and Collett, 1999). The velocities of the P1 and P2 waves

are calculated as 2,628 m/s and 910 m/s, respectively, based on the relations given in

Section 6.5.1. The velocity of P3 wave (16 m/s) is relatively insignificant in comparison to

P1 and P2 wave velocities. Similarly, the velocities of the S1 and S2 waves are calculated as

1,217 m/s and 481 m/s, respectively. Accordingly, the observed displacements measured

at the ground surface with an offset from the impulse load ranging from 0 to 120 m are

illustrated in Figure 6.3a. Figure 6.3b and 6.3c illustrate the appearance of two types of

Rayleigh waves (R1 and R2) in a three-phase permafrost subsurface at 70 ms and 100 ms,

respectively. The animation in Section 6.5.2 show the propagation of P, S, and R waves

in the domain. Our results convincingly demonstrate that R1 waves appear due to the

interaction of P1 and S1 waves. The phase velocity of R1 waves is slightly slower than the

phase velocity of S1 waves. Similarly, the phase velocity of R2 waves is also slightly slower

than the phase velocity of S2 waves. Briefly, the order of phase velocities of different waves

propagating within the domain is as follows: P1>P2>S1>R1>S2>R2>P3. The seismic

measurements shown in Figure 6.3a are indeed a combination of both R1 and R2 waves.
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FIGURE 6.3: a Theoretical time-series measurements for R1 and R2 Rayleigh
waves at the ground surface b Displacement contour at time 70 ms. c
Displacement contour at time 100 ms with the labeled R1 and R2 Rayleigh
waves. d Effect of shear modulus and bulk modulus of the solid skeletal
frame on phase velocity of R1 and R2 waves. e Effect of degree of saturation

of ice on the phase velocity of R1 and R2 waves.

The phase velocities of R1 and R2 waves are a function of physical properties (e.g.,

degree of saturation of unfrozen water, degree of saturation of ice, and porosity) and

mechanical properties of the solid skeletal frame (e.g., bulk modulus and shear modulus).

Figure 6.3d illustrates the effect of shear modulus and bulk modulus of the solid skeletal

frame on the phase velocity of R1 and R2 waves. Similarly, Figure 6.3e illustrates the

effect of porosity and degree of saturation of ice on the phase velocity of R1 and R2 waves.

It can be seen that the phase velocity of the R1 wave is mostly sensitive to the shear

modulus of the solid skeletal frame; it is also dependent on the bulk modulus, porosity,

and degree of saturation of ice. On the other hand, the phase velocity of the R2 wave is

almost independent of the mechanical properties of the solid skeletal frame (Figure 6.3d),
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while it is strongly affected by the porosity and degree of saturation of ice (Figure 6.3e).

Our results also show that an increase in the degree of saturation of ice leads to an

increase in the phase velocity of both types of Rayleigh waves. An increase in porosity leads

to an increase in the phase velocity of R2. However, an increase in porosity may lead to

either a decrease or an increase in the phase velocity of R1 wave, depending on the level of

the degree of saturation of ice. Hence, we use the phase velocity of R2 waves identified by

processing the seismic surface wave measurements to characterize the physical properties

(e.g., porosity, degree of saturation of ice or degree of saturation of unfrozen water) of

permafrost or soil layers.

6.3.2 In-situ case study in permafrost characterization.

The case study site is located at the Fuglebekken coastal area in SW Spitsbergen, Sval-

bard (77◦00’30”N and 15◦32’00”E). The study area has a a thick layer of unconsolidated

sediments that are suitable for near-surface geophysical investigations (Glazer, Dobiński,

Marciniak, Majdański, and Błaszczyk, 2020). The unconsolidated sedimentary rock con-

tains a high proportion of pore spaces; consequently, they can accumulate a large volume

of pore-water or pore-ice. From meteorological records, the mean annual air temperature

(MAAT) at the testing site was historically below the freezing point, but more recently and

due to a trend of climate warming, the MAAT recorded in 2016 is approaching 0◦C (Glazer,

Dobiński, Marciniak, Majdański, and Błaszczyk, 2020). Glazer, Dobiński, Marciniak, Maj-

dański, and Błaszczyk (2020) performed both seismic surveys (MASW test) and electrical

resistivity investigations at the site in October 2017 to study the evolution and formation

of permafrost considering surface watercourses and marine terrace. The MASW test was

performed by using the geophone receivers distributed at 2 m spacing. Figure 6.4a shows

the test site. Figure 6.4b illustrates the collected original seismic measurements at distances

between 0 m and 120 m (hereafter referred to Section 1). The R1 and R2 Rayleigh waves

are identified by visual inspection to obtain the experimental dispersion relations (Figure

6.4c and 6.4d). The phase velocity of R1 wave increases with frequency from 24 Hz to 80

Hz. The phase velocity of R2 wave decreases with frequency in the span of 18 Hz to 32 Hz.

In our simulations, the permafrost site is modeled as a three-layered system, consisting

of an active layer at the surface followed by two permafrost layers. The ERT results

reported by Glazer, Dobiński, Marciniak, Majdański, and Błaszczyk (2020) proved that

the active layer is almost completely unfrozen during the MASW testing performed in

September. The degree of saturation of unfrozen water is considered 100% for the active
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layer in our study. The temperature of the permafrost layer remains below or at 0◦C

year round, but the volumetric ice content of the test site is unknown. Therefore, in our

simulation, the degree of saturation of unfrozen water in the permafrost layer is considered

to be between 1% and 85% to be conservative. The porosity of all three layers is distributed

between 0.1 and 0.7. We previously showed that the dispersion relation of the R2 wave is

strongly dependent on the physical properties (e.g., porosity and degree of saturation of

unfrozen water). Hence, the R2 dispersion relation (Figure 6.4d) is used first to determine

the most probable distributions of porosity and degree of saturation of unfrozen water

with depth. The other physical properties such as degree of saturation of ice, volumetric

water content and volumetric ice content can also be obtained by knowing porosity and

degree of saturation of unfrozen water.

The mechanical properties of the solid skeletal frame in each layer are then obtained

using the R1 wave dispersion relation. The mechanical properties can be then used to

determine whether the permafrost site is ice-rich. In fact, the direct detection of the thin

ice lenses using low frequency seismic waves is highly impossible due to the mismatch

between the thickness of the ice segregation layers and the wavelength generated in seismic

tests. However, the mechanical properties of permafrost reveal the mineral composition of

the soil and soil type, which is valuable in the classification of ice-rich permafrost or even

detection of whether the permafrost layer is prone to greenhouse gases carbon dioxide and

methane emission to the atmosphere.
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FIGURE 6.4: Surface wave measurement in Section 1 (from 0 m to 120
m). a Study area in Holocene, Fuglebekken, SW Spitsbergen. b Waveform
data from the measurements at different offsets in horizontal distance. c
Experimental dispersion image for R1 wave. d Experimental dispersion

image for R2 wave

Figure 6.5a shows the probabilistic distribution of the degree of saturation of unfrozen

water with depth in Section 1. Our results show that the active layer has a thickness of

about 1.5 m. The predicted permafrost layer (second layer) has a nearly 32% of degree

of saturation of unfrozen pore water. Given the high ice-to-water ratio, we therefore

interpret the permafrost is currently in a stable frozen state. Figure 6.5b shows the degree

of saturation of ice with depth. The degree of saturation of ice in the permafrost layer

(second layer) is about 68%. Figure 6.5c illustrates the porosity distribution with depth. The

porosity is around 0.61 in the first layer (active layer), 0.44 in the second layer (permafrost)

and 0.56 in the third layer (permafrost). Figure 6.5d and 6.5e show the predicted mechanical

properties of the solid skeletal frame (shear modulus and bulk modulus) in each layer. The

predicted shear modulus and bulk modulus for the solid skeletal frame in the permafrost

layer (second layer) are about 13.0 GPa and 12.7 GPa, which are in the range for silty-clayey

soils (Vanorio, Prasad, and Nur, 2003). Figure 6.5f and 6.5g show the comparison between

the numerical and experimental dispersion relations for R2 and R1 waves, respectively.

The numerical predictions are sufficiently close to the experimental dispersion curves for
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both R1 and R2 waves.

FIGURE 6.5: Surface wave inversion results for Section 1: 0m to 120m.
a Degree of saturation of unfrozen water, b Degree of saturation of ice,
c Porosity distribution, d Shear modulus of solid skeletal frame, e Bulk
modulus of solid skeletal frame, f Experimental and numerical dispersion
curves for R2 wave, g Experimental and numerical dispersion curves for R1

wave.

Figure 6.6 illustrates the inversion process of the surface wave measurements for the

R2 wave by means of the Neighborhood algorithm. Initially, 20 random samples were

employed in the entire space (to avoid the local minimum problem). Voronoi decompo-

sition is used to generate representative sampling points about the best samples in the

previous steps. Figure 6.6a shows the entire set of sampling points in the subspace between

the porosity and the thickness of the active layer. Most sampling points are concentrated
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at the location where the porosity is 0.61 and the thickness of the active layer is 1.5 m.

Similarly, in the subspace of the degree of saturation of unfrozen water and the porosity of

the permafrost layer (second layer), our results showed that the permafrost layer (second

layer) is most likely having a degree of saturation of unfrozen water of 32% and a porosity

of 0.44. Figure 6.6c shows the updates of each parameter (thickness, degree of saturation of

unfrozen water and porosity) with the number of run in our forward solver. Our results

show that the Neighborhood algorithm fully explores the searching space of each parame-

ter. Figure 6.6c also illustrates that the solution converged after roughly 4,000 iterations

and the loss function was reduced from 1000 to only only 27 at the end.

FIGURE 6.6: Inversion process for the R2 wave dispersion relation. a Sam-
pling subspace between the degree of saturation of unfrozen water and the
thickness of the active layer. b Sampling subspace between the degree of
saturation of unfrozen water and the thickness of the permafrost layer. c
Updates of thicknesses of the active layer and permafrost layer as well as the
physical properties in each layer by means of the Neighborhood algorithm

We have previously shown the inversion process and results for Section 1 from 0

m to 120 m. Five additional sections spanning from 120 m to 600 m were also studied

using a similar approach. The seismic measurements and dispersion relations for each

section are given in Section 6.5.3. Figure 6.7a shows the distribution of the degree of

saturation of unfrozen water in the ground based on the five independent MASW tests.
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The result demonstrates that the permafrost table is generally located at about 1.5-1.9 m

below the ground surface. It was reported by Dolnicki, Grabiec, Puczko, Gawor, Budzik,

and Klementowski (2013) and Dobiński and Leszkiewicz (2010) that the active layer in

Hornsund is approximately 1.5–2.0 m deep for areas not covered by tundra vegetation.

The ERT results reported by Glazer, Dobiński, Marciniak, Majdański, and Błaszczyk, 2020

for the same testing site also indicated that active layer is roughly located at a depth of 2 m.

We predicted that at the offset distance from 360 m to 480 m, the volumetric ice content in

the second layer is the highest (about 0.44). Figure 6.7b illustrates the distribution of the

predicted porosity in the test site. We also predicted a higher porosity ranging from 0.57 to

0.69 in the active layer than other layers spanning from 0 m to 600 m. Similarly, figure 6.7c

illustrates the distribution of the predicted degree of saturation of unfrozen water in the

test site. Sufficient agreement exists between the numerical and experimental dispersion

relations for the R2 wave (Figure 6.7d) which confirms the acceptance of the predicted

values for the volumetric ice content (calculated as the product of porosity and the degree

of saturation of ice) and porosity. Similarly, we obtain the mechanical properties of the

solid skeletal frame for each layer (Figure 6.7e) based on the phase velocity of R1 waves.
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FIGURE 6.7: Summary of the inversion results at the offset distance from 0 m
to 600 m. a Volumetric ice content distribution. b Soil porosity distribution.
c Distribution of degree of saturation of unfrozen water. d Comparison
between the numerical and experimental dispersion curves for R2 wave. e

Distribution of the shear modulus of the solid skeletal frame..

6.4 Discussion and conclusion

We developed a hybrid inverse and multi-phase poromechanical approach to quantitatively

estimate the physical and mechanical properties of a permafrost site. The identification

of two distinctive types of Rayleigh waves in the surface wave field measurements in

permafrost sites is critical for quantitative characterization of the layers. The identification

of the R2 wave allows the quantitative characterization of physical properties of soil layers

independently without making assumptions of the mechanical properties of the layers.

This approach simplifies the inversion of the multi-layered three-phase poromechanical

model since the dependent optimization variables are largely reduced. The inversion

results from the R2 wave dispersion relation can be further used in the characterization of

the mechanical properties of soil layers based on the R1 wave dispersion relation. This also



6.4. Discussion and conclusion 161

increases the stability and convergence rate of the inversion solver and makes the analysis

more efficient.

In ice-rich permafrost that contains ice in excess of the water content required to fill

pore space in the unfrozen state (normally shown as ice lenses), the direct detection of the

thin ice lenses using the surface waves is almost impossible due to the mismatch between

the thickness of the ice segregation layers and the wavelength generated in the seismic

tests. However, the mechanical properties of the solid skeletal frame can reveal the type of

soil, which can be used to identify an ice-rich permafrost layer. Furthermore, the sensitivity

of the permafrost layer to permafrost carbon feedback and emission of greenhouse gases

(e.g., methane, carbon dioxide etc.) to the atmosphere can be determined. For example,

if the mechanical properties of the solid skeletal frame correspond to the ones for peat

we can perform more detailed investigation to assess the sensitivity of the permafrost to

greenhouse gases emission.

Additional work on the characterization of permafrost should explore ways to re-

duce the uncertainty in the proposed hybrid inverse and multi-phase poromechanical

approach. The uncertainty originates from the non-uniqueness in the inverse analysis

(local minima problem) and the limited number of constraints in the inversion analysis. It

is recommended to use other geophysical methods to improve the resolution and reduce

uncertainty of the permafrost mapping. With the proposed seismic wave-based method as

the main investigation tool, ERT, GPR and electromagnetic (EM) Tomography can augment

the investigation data and supply additional constraints to the inversion analysis.

The proposed hybrid inverse and multi-phase poromechanical approach can potentially

be used for the design of an early warning system for permafrost by means of an active

or passive seismic test. The seismic noise from traffic can generate stress waves as they

travel on the permafrost foundation. Pre-installed geophones can be used to capture the

propagation of R1 and R2 waves. By applying the proposed signal processing approach, we

can estimate the physical and mechanical properties of permafrost for monitored sites. The

early warning system can provide long-term tracking of permafrost conditions particularly

when the ice content or mechanical properties of permafrost approach critical values.
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6.5 Supplementary materials

6.5.1 Definition of phase velocities

The velocities of the three types of P waves are determined by a third degree characteristic

equation:

Λ3R̃−Λ2 ((ρ11R̃iw + ρ22R̃si + ρ33R̃sw)− 2(R11R33ρ23 + R33R12ρ12)
)

+Λ ((R11ρ̃iw + R22ρ̃si + R33ρ̃sw)− 2(ρ11ρ23R23 + ρ33ρ12R12))− ρ̃ = 0

where
R̃ = R11R22R33 − R2

23R11 − R2
12R33

R̃sw = R11R22 − R2
12

R̃iw = R22R33 − R2
23

R̃si = R11R33

ρ̃ = ρ11ρ22ρ33 − ρ2
23ρ11 − ρ2

12ρ33

ρ̃sw = ρ11ρ22 − ρ2
12

ρ̃iw = ρ22ρ33 − ρ2
23

ρ̃si = ρ11ρ33

The roots of the third degree characteristic equation, denoted as Λ1, Λ2 and Λ3, can be

found by computing the eigenvalues of the companion matrix (Horn and Johnson, 2012).

The velocities of the three types of P-wave (vp1 > vp2 > vp3) are given as follows:

vp1 =

√
1

Λ1
; vp2 =

√
1

Λ2
; vp3 =

√
1

Λ3

The velocities of the two types of S-wave are determined by a second degree character-

istic equation:

δ2ρ22µ̃si − δ(µ11ρ̃iw + µ33ρ̃sw) + ρ̃ = 0

The roots of this second degree characteristic equation is denoted by δ1 and δ2. The

velocities of the two types of S-wave (vs1 > vs2) are given as follows:

vs1 =

√
1
δ1

; vs2 =

√
1
δ2

;
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6.5.2 Animation
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6.5.3 Inversion results for other sections

The inversion results for the sections ranging from 120 m to 600 m are summarized in

Figure 6.5.1 to Figure 6.5.4.

FIGURE 6.5.1: Surface wave inversion results for Section 2: 120m to 240m.
a Degree of saturation of unfrozen water, b Degree of saturation of ice,
c Porosity distribution, d Shear modulus of solid skeletal frame, e Bulk
modulus of solid skeletal frame, f Experimental and numerical dispersion
curves for R2 wave, g Experimental and numerical dispersion curves for R1

wave.
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FIGURE 6.5.2: Surface wave inversion results for Section 3: 240m to 360m.
a Degree of saturation of unfrozen water, b Degree of saturation of ice,
c Porosity distribution, d Shear modulus of solid skeletal frame, e Bulk
modulus of solid skeletal frame, f Experimental and numerical dispersion
curves for R2 wave, g Experimental and numerical dispersion curves for R1

wave.
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FIGURE 6.5.3: Surface wave inversion results for Section 4 (from 360m to
480m). a Degree of saturation of unfrozen water, b Degree of saturation of
ice, c Porosity distribution, d Shear modulus of solid skeletal frame, e Bulk
modulus of solid skeletal frame, f Experimental and numerical dispersion
curves for R2 wave, g Experimental and numerical dispersion curves for R1

wave.
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FIGURE 6.5.4: Surface wave inversion results for Section 5 (from 480m to
600m). a Degree of saturation of unfrozen water, b Degree of saturation of
ice, c Porosity distribution, d Shear modulus of solid skeletal frame, e Bulk
modulus of solid skeletal frame, f Experimental and numerical dispersion
curves for R2 wave, g Experimental and numerical dispersion curves for R1

wave.
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6.5.4 Forward three-phase poromechanical model

The three-phase poromechanical model in Chapter 6 is used to construct the global stiffness

matrix which includes elements from both soil layers with finite thickness and infinite

layer. However, the poromechanical model in Chapter 5 is used to define the transfer

function H2 for frozen soil samples with finite thickness.

Kinematics assumptions

The Green-Lagrange strain tensor (εij) for infinitesimal deformations expressed as displace-

ment vector u1, u2 and u3 for the solid skeleton, pore water and pore ice are shown in

Equation 6.3. 
ε1

ij =
1
2 (u

1
i,j + u1

j,i)

ε2
ij =

1
3 ε2

kkδij (ε2
kk = u2

k,k)

ε3
ij =

1
2 (u

3
i,j + u3

j,i)

(6.3)

where δij is the identity tensor.

The strain tensor of pore water ε2
ij is diagonal since the shear deformation does not

exist in pore water component.

Constitutive model

The constitutive models defined as the relation between the stress and strain tensors for

solid skeleton, pore water and pore ice are given in Equation 6.4:


σ1

ij = (K1θ1 + C12θ2 + C13θ3)δij + 2µ1d1
ij + µ13d3

ij

σ2 = C12θ1 + K2θ2 + C23θ3

σ3
ij = (K3θ3 + C23θ2 + C13θ1)δij + 2µ3d3

ij + µ13d1
ij

(6.4)

in which σ1, σ2 and σ3 are the effective stress, pore water pressure and ice pressure,

respectively. The definition of each term (e.g., K1, C12, C13, µ1, µ13, K2, C23, K3, µ3) in

Equation 6.4 is given in Appendix A. The term θm, dm
ij and εm

ij (m, ranging from 1 to 3,
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represents the different phases) are defined as follows:


θm = εm

kk

dm
ij = εm

ij −
1
3 δijθm

εm
ij =

1
2 (u

m
i,j + um

j,i).

Conservation laws

The momentum conservation considers the acceleration of each component and the existing

relative motion of the pore ice and pore water phases with respect to the solid skeleton.

The momentum conservation for the three phases is given by Equation 6.5.


σ1

ij,j = ρ11ü1
i + ρ12ü2

i + ρ13ü3
i − b12(u̇2

i − u̇1
i )− b13(u̇3

i − u̇1
i )

σ2
,i = ρ12ü1

i + ρ22ü2
i + ρ23ü3

i + b12(u̇2
i − u̇1

i ) + b23(u̇2
i − u̇3

i )

σ3
ij,j = ρ13ü1

i + ρ23ü2
i + ρ33ü3

i − b23(u̇2
i − u̇1

i ) + b13(u̇3
i − u̇1

i )

(6.5)

in which the expressions for the density terms (ρij or ρ̄ in matrix form) and viscous matrix

(bij or b̄ in matrix form) are given in Appendix A; ü and u̇ represent second and first

derivative of displacement vectors with respect to time; the subscript i represents the

component in r, θ and z direction in cylindrical coordinates.

Through the infinitesimal kinematic assumptions, the stress-strain constitutive model

and conversation of momentum, the field equation can be written in the matrix form, as

shown in Equation 6.6.

ρ̄


ü1

i

ü2
i

ü3
i

+ b̄


u̇1

i

u̇2
i

u̇3
i

 = R̄ ∇∇ ·


u1

i

u2
i

u3
i

− µ̄ ∇×∇×


u1

i

u2
i

u3
i

 (6.6)

in which the matrix R̄ and µ̄ are given in Appendix A.
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By performing divergence operation (∇·) and curl operation (∇×) on both sides of

Equation 6.6, the field equation in the frequency domain can be written as Equation 6.7.



−ρ̄ ω2 ∇ ·


u1

i

u2
i

u3
i

− b̄ i ω ∇ ·


u1

i

u2
i

u3
i

 = R̄ ∇2∇ ·


u1

i

u2
i

u3
i



−ρ̄ ω2 ∇×


u1

i

u2
i

u3
i

− b̄ i ω ∇×


u1

i

u2
i

u3
i

 = µ̄ ∇2∇×


u1

i

u2
i

u3
i

 .

(6.7)

Using the Helmholtz decomposition theorem allows us to decompose the displacement

field, ū (equivalent to ui), into the longitudinal potential and transverse vector components

as follows: 
ū1 = ∇φ1 +∇× ψ̄1 and ∇ · ψ̄1 = 0

ū2 = ∇φ2 +∇× ψ̄2 and ∇ · ψ̄2 = 0

ū3 = ∇φ3 +∇× ψ̄3 and ∇ · ψ̄3 = 0.

(6.8)

By substituting Equation 6.8 into the field equation of motion, Equation 6.7, we obtain

two sets of uncoupled partial differential equations relative to the compressional wave

P related to the Helmholtz scalar potentials , and to the shear wave S related to the

Helmholtz vector potential, respectively (Equation 6.9). In the axi-symmetric condition,

only the second components exits in vector ψ̄, which is denoted as ψ in the future. It

should be mentioned that the field equations in Laplace domain can be easily obtained by

replacing ω with i.s (i2 = −1 and s the Laplace variable).



−ρ̄ ω2


φ1

φ2

φ3

− b̄ i ω


φ1

φ2

φ3

 = R̄ ∇2


φ1

φ2

φ3



−ρ̄ ω2


ψ1

ψ2

ψ3

− b̄ i ω


ψ1

ψ2

ψ3

 = µ̄ ∇2


ψ1

ψ2

ψ3

 .

(6.9)
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Solution for the longitudinal waves (P waves) by eigen decomposition

Equation (6.9) shows that φ1, φ2 and φ3 are coupled in the field equations. The diagonaliza-

tion of such a matrix is required to decouple the system. Equation (6.9) is then rearranged

into Equation (6.10):

∇2


φ1

φ2

φ3

 = −R̄−1(ρ̄ω2 + b̄ i ω)︸ ︷︷ ︸
K̄


φ1

φ2

φ3

 (6.10)

where the K̄ matrix can be rewritten using the Eigen decomposition:

K̄ = P̄ D̄ P̄−1 (6.11)

where P̄ is the eigenvector and D̄ is the eigenvalue matrix of K̄.

By setting φ̄ = P̄ȳ, where ȳ = [φp1, φp2, φp3], we can obtain ∇2ȳ = D̄ȳ. The equation

of longitudinal wave has been decoupled. In cylindrical coordinates, the solution for

ȳ = [φp1, φp2, φp3] is summarized as follows:


φp1(r, z) = Ae−

√
k2+D11 z J0(k r)

φp2(r, z) = Be−
√

k2+D22 z J0(k r)

φp3(r, z) = Ce−
√

k2+D33 z J0(k r)

(6.12)

where k is the wave number; coefficient A, B and C will be determined by boundary

conditions; D11, D22, and D33 are the diagonal components of D̄; J0 is the Bessel function of

the first kind. For simplicity, The terms
√

k2 + D11,
√

k2 + D22 and
√

k2 + D33 are denoted

as kp1, kp2 and kp3, respectively.

Now, the P wave potentials can be written as:


φs

φw

φi

 =


p11 p12 p13

p21 p22 p23

p31 p32 p33




φp1

φp2

φp3

 (6.13)

where pij are the components for the eigenvector of P̄.
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Solution for shear waves (S waves)

The solutions for the S wave potentials can be solved in a similar manner. The Equation

6.14 is firstly rearranged into Equation 6.15:

− ρ̄ ω2


ψs

ψw

ψi

− b̄ i ω


ψs

ψw

ψi

 = µ̄ ∇2


ψs

ψw

ψi

 (6.14)

−ρ̄ω2 − b̄ i ω︸ ︷︷ ︸
Ā


ψs

ψw

ψi

 = µ̄ ∇2


ψs

ψw

ψi

 (6.15)

where the matrix Ā is given in Appendix A.

Since ψw can be expressed as a function of ψs and ψi (shown in Equation 6.16), the

Equation 6.15 is further simplified and rearranged into Equation 6.17.


A21ψs + A22ψw + A23ψi = 0

ψw = − A21ψs+A23ψi
A22

(6.16)

∇2

ψs

ψi

 =

µ11 µ13

µ13 µ33

−1

C̄

︸ ︷︷ ︸
N̄

ψs

ψi

 . (6.17)

where

C̄ =

 A11 − A12 A21
A22

A13 − A12 A23
A22

A31 − A32 A21
A22

A33 − A32 A23
A22


The N̄ matrix can be rewritten using the eigen decomposition (N̄ = Q̄ Ḡ Q̄−1), where

Q̄ is the eigenvector and Ḡ is the eigenvalue matrix of N̄. By setting ψ̄ = Q̄ ȳ′ where

ȳ′ = [ψs1, ψi1], we can obtain:

ψs1 = Ee−
√

k2+G11 z J1(k r) (6.18)

ψi1 = Fe−
√

k2+G22 z J1(k r) (6.19)

where J1 is the Bessel function of the first kind with order 1. G11 and G22 are the diagonal

components of matrix Ḡ. For simplicity, the term
√

k2 + G11 and
√

k2 + G22 is denoted as

ks1 and ks2.
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Finally, the solution of the S wave potentials can be written as:

ψs

ψi

 =

Q11 Q12

Q21 Q22


ψs1

ψi1

 (6.20)

where Qij are the components for eigenvector of Q̄.

Layer element with finite thickness

By including both incident wave and reflected wave, the potentials for a layer with finite

thickness can be written in Equation 6.21:



u1
r1

u1
z1

u2
z1

u3
r1

u3
z1

u1
r2

u1
z2

u2
z2

u3
r2

u3
z2



=



S1





A1

B1

C1

E1

F1

A2

B2

C2

E2

F2



(6.21)

where the components of S1 is given in Appendix B; the subscript 1 and 2 represent node

for the upper and lower layer, respectively. The coefficient A to F is determined by the

boundary condition.

The matrix of effective stress, pore water pressure and pore ice pressure in the frequency

domain is shown in Equation 6.22 in which the components for matrix S2 can be found in
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the Appendix B. 

σ1
r1

σ1
z1

p1

σ3
r1

σ3
z1

σ1
r2

σ1
z2

p2

σ3
r2

σ3
z2



=



S2





A1

B1

C1

E1

F1

A2

B2

C2

E2

F2



. (6.22)

According to the Cauchy stress principle, the traction force (T) is taken as the dot

product between the stress tensor and the unit vector along the outward normal direction.

Due to the convection that the upward direction is negative, the upper boundary becomes

negative. Similarly, to make the sign consistent, the N matrix is applied to matrix S2 · S−1
1 .

In the future, the matrix N · S2 · S−1
1 will be denoted as the Gi matrix, in which i denotes

the layer number.



T1
r1

T1
z1

T1

T3
r1

T3
z1

T1
r2

T1
z2

T2

T3
r2

T3
z2


i

=



−σ1
r1

−σ1
z1

−p1

−σ3
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where

N =



−1 0 0 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0 0

0 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1



. (6.24)

Layer element with infinite thickness

By assuming that no wave reflects back to a semi-infinite element, one-node element with

infinite thickness is applied. The matrix for the displacement components in one-node

layer are written as Equation 6.25. The matrix S1 is reduced into a 5 by 5 matrix (S1ij where

i and j range from 1 to 5). The value of each components are shown in Appendix B.
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. (6.25)

Similarly, the matrix of effective stress components and porewater pressure in the

frequency domain is shown in Equation 6.26. The matrix S2 is reduced into a 5 by 5

matrix (S2ij where i and j range from 1 to 5). The matrix Gh in Figure 6.2 is calculated as

Gh = S2 S−1
1 . The value of each components are shown in Appendix B.
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Connecting section

Part III (Chapter 5 and 6), presented multiphase poroelastodynamic solvers for both labo-

ratory and in-situ characterization of permafrost soils. Chapter 5 presented an ultrasonic

sensing technique and a physics-based signal interpretation method based on a spectral

element multiphase poromechanical approach to overcome critical gaps in permafrost

characterization. The study demonstrates the potential of the ultrasonic sensing tech-

nique for the rapid characterization of permafrost samples in terms of both physical and

mechanical properties. The Quantitative Ultrasound (QUS) package developed in this

study can be used in a laboratory setup or brought to the site for in-situ investigation of

permafrost samples. Chapter 6 presented a novel algorithm for analysis of surface waves

to quantitatively estimate the physical and mechanical properties of a permafrost site. It

was concluded that the R2 wave velocity is highly sensitive to the physical properties (e.g.,

unfrozen water content, ice content, and porosity) of permafrost or soil layers while it is

less sensitive to their mechanical properties (e.g., shear modulus and bulk modulus). The

R1 wave velocity, on the other hand, depends strongly on the soil type and mechanical

properties of permafrost or soil layers. This study demonstrates the potential of surface

wave techniques coupled with the proposed data-processing algorithm to characterize a

permafrost site more accurately.

The next part, Part IV, presents the programming and further applications of the

advanced solvers developed in Part I to Part III based on the spectral element technique.



Part IV: Programming and Further
Applications
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Chapter 7

GeoNDT: an open source
physics-based multiphase
geomechanical solver for
geotechnical and geophysical
applications

Abstract

In this paper, we present the GeoNDT software, which is developed to provide fast and

robust solutions for the interpretation of non-destructive testing (NDT) measurements

used in geotechnical and geophysical applications. The software includes a Python so-

called glue to facilitate transfer of geomechanical parameters under JavaScript Object

Notation to an advanced computational geomechanical forward solver called PoroSEM.

PoroSEM, written in Fortran language, is able to model the propagation of stress waves

and dispersion relations in dry (elastodynamic), saturated (two-phase poroelastodynamic),

and three-phase frozen (multiphase poroelastodynamic) geomaterials using the meshless

spectral element method. PoroSEM is called in the Python modules by means of Numpy

F2PY that automatically generates the Fortran to Python bindings. GeoNDT is flexible,

general-purpose, and can be used seamlessly for advanced signal interpretation in geo-

physical laboratory testing including the bender element (BE) and ultrasonic pulse velocity

Liu H., Maghoul P., Mantelet G., Shalaby A., 2021. GeoNDT: an open source physics-based multiphase
geomechanical solver for geotechnical and geophysical applications, Acta Geotechnica, Manuscript ID: AGEO-D-21-
00565, in Review (2021).
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(UPV) tests, characterization of complex multiphase geomaterials, in-situ shallow seismic

geophysics including the falling weight deflectometer (FWD) and multichannel analysis of

surface waves (MASW) tests. The advanced physics-based signal interpretation feature

of GeoNDT allows the quantitative characterization of geophysical and geomechanical

properties of geomaterials and multilayered geosystems independently without making

any simplified assumptions as common in the current practice.

7.1 Introduction

Non-destructive testing (NDT) plays an important role in the engineering, construction,

and geophysical fields. The application of NDT in civil engineering is broad from quality

control, structural health monitoring of infrastructure, geophysical and geotechnical field

investigation, and material characterization to detection of underground anomaly, among

others. More specifically in geotechnical engineering, the shear wave velocity of foundation

soil is of great importance in the design of earthquake-resistant structures and determining

the soil layers sensitive to liquefaction and resistance loss.

The most common techniques used for non-destructive evaluation and geophysical

surveys include seismic methods, sonic echo/impulse response tests, ultrasonic tests, elec-

trical resistivity tests, ground penetrating radar, magnetic methods, and gravity methods.

The non-destructive material characterization tools, depending on the application and size,

can be used in a laboratory setup or in the field. The GeoNDT software proposed in this

paper provides advanced signal interpretation methods for ultrasonic-based as well as

seismic-based geophysical surveys. Hereafter, we will briefly review the popular NDT

techniques used in geotechnical engineering and the state-of-the-art literature regarding

the physics-based signal interpretation methods.

The Bender Element (BE) test is one of the most popular laboratory techniques used for

the evaluation of the shear wave velocity of soil samples. The BE utilizes piezo-ceramic

materials for the conversion of an electrical signal into mechanical energy. Two bender

elements are placed at the two ends of the soil specimen in which one BE is used to

introduce a mechanical impulse and the other one is used to receive the propagating

pulse. In a recent study by Liu, Cascante, Maghoul, and Shalaby (2021), the inefficiency of

existing empirical methods in the selection of S-waves was discussed. They showed that

the participation of P-waves, especially in loose sands and soft clays, cannot be predicted

by existing empirical methods, which leads to an incorrect interpretation of S-waves arrival
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time. They proposed a physics-based finite element model to study the soil-BE interaction

so that sound recommendations can be given to improve the interpretation of BE tests in

different soils (Liu, Cascante, Maghoul, and Shalaby, 2021). The Ultrasonic Pulse Velocity

(UPV) test is commonly used for anomaly detection and strength evaluation of construction

materials (e.g., concrete and steel). In the UPV test, an electrical charge is transmitted to the

ultrasonic transmitter to generate the mechanical energy at one side of a test sample. The

ultrasonic wave travels through the testing specimen and the induced motion is captured

by an ultrasonic receiver. In the current practice, the first arrival time is used for the

evaluation of P-wave velocity. However, the P-wave velocity alone is insufficient for full

characterization of geomaterial samples, especially for determining the physical properties

(Liu, Maghoul, and Shalaby, 2020b; Liu, Maghoul, and Thomson, 2021). The complex wave

propagation in multiphase materials (e.g., saturated and frozen soils) and interactions

with boundaries can be studied using the physics-based geomechanical models to better

interpret the ultrasonic measurements.

The Multichannel Analysis of Surface Waves (MASW) is one of the most popular

techniques for the in-situ evaluation of the shear wave velocity in different soil layers. In

the MASW test, a vertical impact load is used to generate Rayleigh waves that propagate

into different soil layers. The induced dynamic response is captured by a series of Geo-

phones located at the ground surface. The interpretation of MASW measurements requires

physics-based models to numerically reproduce the experimental dispersion relation for

the prediction of the soil stratigraphy and soil properties. Falling weight deflectometer

(FWD) is another in-situ testing method used to evaluate the mechanical properties of pave-

ment structures. The FWD test measures the surface deflections induced by a dropping

mass from a specific height onto a load plate placed on the pavement surface. Geophones

are used to record the time histories of the vertical deflections of the pavement surface at

various distances from the center of the load plate. Similarly, the interpretation of FWD

measurements requires physics-based models to inversely analyze the measured displace-

ment at various locations for the evaluation of the mechanical properties of pavement

structures.

In the NDT techniques mentioned above, the dynamic response or dispersion analysis

can be used to better interpret the measured signals by modeling the wave propagation

in the ground, soil samples, and other construction materials. The dynamic response or

dispersion analysis can be performed using various physics-based models. The existing

methods used for solving these physics-based models are briefly reviewed as follows.
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The elastodynamic model can be solved using numerical methods such as finite element

(Fantuzzi, 2014; Huthwaite, 2014; Idesman, Schmidt, and Foley, 2011; Velichko and Wilcox,

2010) and finite difference methods (Bernth and Chapman, 2011; Dovgilovich and Sofronov,

2015; Saenger, Gold, and Shapiro, 2000; Zahradník and Priolo, 1995). The finite element

method mainly has the following steps: a) discretization of the domain; b) selection of

the interpolation functions (to provide an approximation of the unknown solution within

an element) c) formulation of the system of equations and d) solution of the system of

equations. In the finite difference method, the discretization of the domain is also required

and the finite difference is used to replace the derivatives; in the end, a recursive algorithm

is used to solve the system of equations. The boundary element method is also used for

solving the elastodynamic model (Manolis, 1983; Banerjee, Ahmad, and Manolis, 1986;

Cheng and Peng, 2005; Schanz and Antes, 1997; Kamalian, Jafari, Sohrabi-Bidar, Razmkhah,

and Gatmiri, 2006). The boundary element method fits boundary values into the integral

equation based on the given boundary conditions rather than values throughout the space

defined by a partial differential equation. Then, the obtained integral equation is used

again to calculate the solution at any desired point inside the study domain in the post-

processing stage. The spectral element method was also developed for the solution of

the elastodynamic model, which is mostly used for the soil response analysis in the FWD

test (Al-Khoury, Scarpas, Kasbergen, and Blaauwendraad, 2001; Lee, 2014). The spectral

element method combines the exact solution of wave propagation with the finite element

framework of multilayered systems (Al-Khoury, Scarpas, Kasbergen, and Blaauwendraad,

2001). The advantage of the spectral element method is that one element is sufficient to

describe a whole layer without the need for subdivisions or discretization, which results in a

relatively smaller size of the system of equations and hence more computationally efficient.

Recently, Liu, Maghoul, Shalaby, Bahari, and Moradi (2020) developed the dispersion

relation of Rayleigh wave based on the spectral element method for the interpretation of

MASW measurements.

The poroelastodynamic model is important in studying the interaction between the

pore water and solid skeleton within saturated soils. The solution of the poroelastody-

namic model has been developed through finite element method (Phillips and Wheeler,

2008; Panneton and Atalla, 1997; Berger, Bordas, Kay, and Tavener, 2017), analytical so-

lution (limited to single-layer) (Zheng, Zhao, and Ding, 2013; Zhou, He, and Di, 2016;

Chen, Beskou, and Qian, 2018; Zhou, He, Di, Guo, and Zhang, 2017), boundary element

method (Ozyazicioglu and Ozkan, 2011; Soares and Godinho, 2020; Maghoul, Gatmiri, and
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Duhamel, 2011a; Maghoul, Gatmiri, and Duhamel, 2011b) and spectral element method

(Liu, Maghoul, Shalaby, Bahari, and Moradi, 2020; Liu, Maghoul, and Shalaby, 2021a). The

extension of the poroelastodynamic model in frozen soil is another important area in study-

ing the wave propagation in frozen or permafrost soils. The Biot theory of poroelasticity

for three-phase media (solid skeleton, pore-water, and pore-ice) was developed by Leclaire,

Cohen-Ténoudji, and Aguirre-Puente (1994), Carcione, Gurevich, and Cavallini (2000), Car-

cione and Seriani (2001), and Carcione, Santos, Ravazzoli, and Helle (2003). The solution

was obtained through various numerical methods, such as a grid method based on the

Fourier differential operator and a Runge–Kutta time-integration algorithm (Carcione and

Seriani, 2001), finite element method (Santos and Sheen, 2007) and Zener element method

(Liu, Greenhalgh, and Zhou, 2009). However, to the best of our knowledge, there is no

commercially available software to solve the poroelastodynamic model and its extension

for three-phase soils for multi-layered systems.

In the above-mentioned NDT applications, the measurements are mostly only available

at locations where sensors are deployed. For example, the displacement measurement that

is used for the site characterization is only monitored at the ground surface (rather than

the entire domain) in the seismic tests. In the ultrasonic test or BE test, the measurement

used for material characterization is only available at the receiver locations. In the volume-

discretization numerical methods (e.g., finite element and finite difference methods), the

solution is obtained by discretizing the entire domain. However, only the solutions

obtained at the sensor locations are useful in the interpretation of NDT measurements and

the computations in the remaining domain are not necessary. Therefore, the discretization

of the entire domain significantly increases the computational time and cost.

In the GeoNDT software, by means of the meshless spectral element method, the

solution can be accurately obtained at desired locations without solving the entire domain.

GeoNDT supports the wave propagation analysis and dispersion analysis in multiphase

media (dry, saturated and frozen geomaterials). In this paper, the structure of GeoNDT

software and theoretical background of various computational geomechanical models are

presented. Then, several case studies (e.g.,BE tests for dry and saturated soil samples,

FWD tests for pavement system, MASW based liquefaction analysis and ultrasonic test for

the scour detection around pile foundations) are presented to demonstrate the powerful

capability of the GeoNDT software in NDT applications.
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7.2 GeoNDT structure and theoretical background

7.2.1 GeoNDT structure

Considering the computational efficiency and user-friendly environment, the GeoNDT

software is developed using a dual layer/hybrid Python and Fortran environment to

benefit from the strengths of the two languages, as follows: a) Fortran is a compiled lan-

guage; it is closer to the material architecture it is executed on; it benefits from established

mathematical libraries and thus compensates for the lower computational performance

of interpreted languages such as Python under CPU intensive tasks; b) Python is a user-

friendly language; it has a wide support online; it has a rich set of high-quality scientific

computational libraries and frameworks; and it offers improved code reusability, faster and

cost-effective development. One of Python’s scientific libraries, Numpy, proposes the F2PY

tool (Peterson, 2009) to efficiently bind Fortran and Python functions together, and helped

us develop a framework that can simply a) load data from configuration files, in formats

widely supported in the IT field (such as JavaScript Object Notation (JSON)), and b) calls

Fortran subroutines. Python’s slower overhead and function calls is alleviated by its ability

to effectively load interchangeable models by using Object Oriented Programming (OOP)

practices such as inheritance and composition.

GeoNDT uses state-of-the-art practices, and the Fortran and Python languages are

combined to obtain a tradeoff between a resourceful user-friendly environment and high

computational efficiency. In the hybrid Python and Fortran environment, the dependencies

required to be installed include a Fortran compiler (e.g., GFortran, Intel Fortran, Absoft

Fortran), Fortran Linear Algebra Package (LAPACK), as well as several Python libraries

(e.g., Numpy, Scipy, Joblib and Matplotlib). The definition of a setup script that can be

easily interpreted by Python setuptools enables and simplifies automatic installation of

these required libraries on both Windows and Linux operating systems.

The main components of GeoNDT include a) the Python setup script, called Setup.py,

that automatically writes the Python-Fortran interface using the F2PY tool and installs

required python dependencies for GeoNDT (Numpy, Scipy, Joblib, Matplotlib); b) a Fortran-

written computational geomechanics source code, called PoroSEM.f90, that includes sev-

eral subroutines for dynamic analyses of finite (for laboratory geotechnical testing) and half-

space (for in-situ seismic geophysical testing) domains for dry (one_phase_finite.f90 and

one_phase_infinite.f90), saturated (two_phase_finite.f90 and two_phase_infinite),

and frozen soils
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(three_phase_finite.f90 and three_phase_infinite.f90) as well as dispersion analy-

ses (one_phase_dispersion.f90, two_phase_dispersion.f90, and

three_phase_dispersion.f90); c) independent Python geomechanical modules and classes

(e.g., one_phase_dispersion.py, one_phase_dynamic.py,

two_phase_dispersion.py, two_phase_dynamic.py, three_phase_dispersion.py and three_phase_dynamic.py)

inheriting from generic classes, and offering the ability to extend existing models, and

connect to future Fortran subroutines as they are added to enrich our model; and d) Python

main script (main.py) to set up the geomechanical model (e.g., the specification of python

modules and classes, material properties, geometry, time interval and time step, and the

position of sensors during geophysical measurements as inputs).

Figure 7.1 shows a simplified representation of execution in the dual hybrid For-

tran/Python approach. Functionalities provided by Python, such as the dataclasses in

Python 3.7, that allows neat description of the Python geomechanical modules and classes,

or the native JSON package, can be assembled to enable the parsing of a configuration file,

and its translation to a dictionary of parameters. These geomechanical parameters can

then be easily transferred, for example, as dummy arguments to Python geomechanical

modules and classes as well as target Fortran subroutines with a handful lines of source

code. Python layer (Python geomechanical modules and classes as well as Python main

program, main.py) presents to Fortran subroutines (implemented in PoroSEM.f90) a set of

inputs from JSON files. F2PY provides bindings from Fortran to Python and vice versa,

so that Python functions or methods can call Fortran subroutines, and likewise, Fortran

subroutines can call back Python functions. The Python layer also benefits from Python li-

braries such as Joblib to enable parallel computing, thus executing simultaneously multiple

Fortran calls.

FIGURE 7.1: Simplified representation of execution in the dual hybrid For-
tran/Python approach

The logical structure of the computational source code in GeoNDT is presented as a

matrix in Figure 7.2. Each Python module and class (from bottom layer) corresponds to
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a set of Fortran subroutines (top layer) to be bound. Fortran and Python modules are

organized depending on the application and logical function they intend to achieve (e.g.

one-phase, two-phase, or three-phase solver), as presented in dashed columns in Figure 7.2.

By means of the F2PY tool, these Fortran subroutines (*.f90) are converted into Python

wrapper (PoroSEM library) in which various solver functions (e.g., one_phase_finite,

one_phase_infinite, one_phase_dispersion, two_phase_finite, two_phase_infinite,

two_phase_dispersion, three_phase_finite,

three_phase_infinite, three_phase_dispersion) are defined. The selection of these

functions depends on the type of analysis (dynamic response analysis or dispersion anal-

ysis) and the soil domain in each geophysical application (finite domain for laboratory

geophysical testing or half-space domain in in-situ seismic geophysical testing). The

PoroSEM library is then imported to the Python geomechanical modules and classes,

which is then called in the Python main program (main.py) for geophysical applications.

FIGURE 7.2: Logical structure of the source code in GeoNDT package

As mentioned above, the Python geomechanical modules and classes are developed

for the dynamic response and dispersion analyses of bounded or half-space geomaterials.

In the Python geomechanical modules and classes, designed for the dynamic response

analysis, several components are included to a) call the desired function through the

PoroSEM library; b) define external loads in the Laplace domain; c) perform inverse

Laplace transform. The Python joblib library, imported in various python modules, offers
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a simple and efficient option to parallel computing (see Figure 7.1); an approach that

can make GeoNDT span up to multiple CPU cores and threads in parallel to solve a) the

dispersion analysis, b) the geomechanical models, and c) root searching algorithm for

inverse calculations.

The Python main program (main.py) of GeoNDT can provide the Python geomechan-

ical modules and classes with inputs from different sources, either under JSON, CSV

or XML format, or even under static TXT format requiring specific parsing. The main

benefit of the JSON format is that Python comes with a native package to load the file

and obtain the data on a flexible dictionary. In the case of the one-phase solver (e.g.,

one_phase_dispersion.py and one_phase_dynamic.py), for instance, the P-wave velocity,

S-wave velocity, (equivalent to the Young’s modulus and Poisson’s ratio) and density are

required for dynamic response or dispersion analyses in GeoNDT. The two-phase solver

(e.g., two_phase_dispersion.py and two_phase_dynamic.py), on the other hand, needs

the porosity, P-wave velocity, S-wave velocity, (equivalent to the Young’s modulus and

Poisson’s ratio) and density as inputs of geomaterial properties. In the three-phase solver

(e.g., three_phase_dispersion.py and three_phase_dynamic.py), the porosity, ice con-

tent, P-wave velocity, S-wave velocity (equivalent to the Young’s modulus and Poisson’s

ratio), and density of the solid skeleton are required as the inputs of geomaterial properties.

Other inputs including geometrical parameters (e.g., the diameter and thickness of each

soil layer), the specification of the nodes corresponding to the external load and sensor

locations, and the time/frequency ranges are also required in GeoNDT. The distribution of

the external load in the Laplace domain is pre-defined in Python geomechanical modules

and classes for the dynamic analysis. Subclassing the implementation allows users to over-

ride this method for extending the model to their needs. Other properties (e.g., properties

of pore water and pore ice, number of cores in parallel computing, number of iteration in

the inverse Laplace transform) are also optional inputs in GeoNDT and can either be set to

defaults or added by subclassing in our Python geomechanical modules and classes.

The main steps used in the Python main program (main.py), modules and classes as

well as Fortran PoroSEM library are summarized in Figure 7.3 and are briefly described as

follows:

• Input geomaterial properties, geometry of the modeling domain and other parame-

ters (e.g., the specification of the nodes corresponding to the external load and sensor

locations, and the time/frequency ranges). These inputs are firstly defined in JSON

configuration file, and then parsed to a Python dictionary, as shown in Figure 7.3.
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• Determine solver types (e.g., one-phase solver, two-phase solver and three-phase

solver) based on the degree of complexity of geomaterials or geostructures to be

analyzed, as listed in Figure 7.3.

• Determine the analysis types, which can be dynamic response analysis or dispersion

analysis (Figure 7.3). As illustrated in Figure 7.4, each of the solvers (e.g., one-phase

solver, two-phase solver and three-phase solver) has options for performing either

dynamic response analysis or dispersion analysis.

• Call the corresponding Python modules and classes based on the selected solver and

analysis types. For example, by selecting the one-phase solver for dynamic analysis,

the corresponding Python modules that should be called is one_phase_dynamic.py,

as indicated in Figure 7.4.

• Determine the attribute (finite or half-space) of the last layer in the domain for

the dynamic analysis, as shown in Figure 7.4. In GeoNDT, it is assumed that the

dispersion analysis is performed for only the half-space domain.

• Call the corresponding Python functions (e.g., run_f(), run_f(), run(),

run_R1(), run_R2()) embedded in Python modules and classes based on the selected

attribute of the last layer in the domain. As shown in Figure 7.4, the Python functions,

run_f() and run_i(), should be called for dynamic analysis in finite domain and half-

space domain, respectively. For the dispersion analysis in the one-phase solver and

two-phase solver, the Python function, run(), should be called. In the three-phase

solver, the Python function, run_R1() and run_R2() are called for the dispersion

analysis of R1 and R2 Rayleigh waves.

• Compute the displacement, stress and stiffness matrices of each layer based on the

selected Fortran subroutine (PoroSEM.f90). Then assemble the global stiffness matrix

based on the stiffness matrix calculated for each layer, as shown in Figure 7.3.

• For the dynamic analysis, the PoroSEM.f90 code obtains the dynamic response (e.g.,

displacement or stress) for the given input load in the Laplace domain. Then the

Python-based inverse Laplace transform (Horváth, Horváth, Almousa, and Telek,

2020) is used to calculate the response in the time domain, as shown in Figure 7.3.

The inverse Laplace transform is a time intensive task that can be quickened by

using a thread pool. Python Joblib enables parallel computing to take advantage of

multicore and multithreaded architectures offered by modern workstations.
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• For the dispersion analysis, the global stiffness matrix is exported from PoroSEM.f90

and the Python-based root searching algorithm (Liu, Maghoul, Shalaby, Bahari, and

Moradi, 2020) is applied to determine the dispersion relation for the given domain,

as shown in Figure 7.3. The global stiffness matrix is a function of angular frequency

and wavenumber. For a constant frequency, the value of the wavenumber can be

determined when the determinant of the global stiffness matrix is zero. The different

wavenumbers determined at a given frequency correspond to dispersion curves of

different modes.

FIGURE 7.3: Overall flow and main steps in the Python main program,
modules and classes as well as Fortran PoroSEM library
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FIGURE 7.4: Selection of solver types and corresponding Python modules
and Fortran subroutines

7.2.2 Theoretical background

Based on the assumption of infinitesimal deformation, the governing equation of elastody-

namic model (one-phase solver) that describes elastic wave propagation in dry geomateri-

als, is written as (Liu, Maghoul, Shalaby, Bahari, and Moradi, 2020):

(λ + 2µ)∇∇ · ui − µ∇×∇× ui = ρüi (7.1)

where λ and µ are the Lamé coefficients; ui is the displacement vector; ρ is the bulk density

of soil; üi is the second derivative of displacement in terms of time.

In saturated geomaterials, by assuming the infinitesimal deformation of the solid

skeleton, the governing equations of two-phase poromechanical model (two-phase solver)

is written in matrix form, as shown in Equation 7.2. The detailed description of the

two-phase poromechanical model can be found in Liu, Maghoul, and Shalaby (2020b).

ρ

 üi

ẅi

+ b

 u̇i

ẇi

 = R∇∇ ·

ui

wi

− µ∇×∇×

ui

wi

 (7.2)

where
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ρ =

 ρ ρ f

ρ f m

 b =

0 0

0 b



R =

λc + 2µ αm

αm M

 µ =

µ 0

0 0


where ui is the displacement vector of the solid skeleton; wi is the fluid displacement

relative to the solid skeleton; λ and µ are the Lamé constants; α is the Biot coefficient; M is

1/( φ
K f

+ α−φ
Ks

) in which K f is the bulk modulus of the fluid; Ks is the bulk modulus of the

solid skeleton and φ is the porosity. λc = λ + α2M; m = ρ f β/φ in which β is the tortuosity

which is used to describe the diffusion properties in porous media, and ρ f is the density

of pore-water, taken as 1000 kg/m3. The drag-force damping coefficient b is calculated as

(Zhang, Xu, and Xia, 2011): b = η/κ F, where η is the fluid dynamic viscosity and κ is the

permeability coefficient; F is the viscous correction factor (Johnson, Koplik, and Dashen,

1987).

In three-phase frozen geomaterials, through the infinitesimal kinematic assumption,

the stress-strain constitutive model (Carcione and Seriani, 2001; Liu, Maghoul, Shalaby,

and Douglas, 2021; Liu, Maghoul, and Shalaby, 2021b) and conversation of momentum,

the field equation of three phase poromechanical model (three-phase solver) can be written

in the matrix form, as shown in Equation 7.3. The terms in matrix ρ, b, R and µ can be

found in Carcione and Seriani (2001), Liu, Maghoul, Shalaby, and Douglas (2021), and Liu,

Maghoul, and Shalaby (2021b).

ρ


üs

i

üw
i

üi
i

+ b


u̇s

i

u̇w
i

u̇i
i

 = R∇∇ ·


us

i

uw
i

ui
i

− µ∇×∇×


us

i

uw
i

ui
i

 (7.3)

where

ρ =


ρ11 ρ12 ρ13

ρ12 ρ22 ρ23

ρ13 ρ23 ρ33

 b =


b12 + b13 −b12 −b13

−b12 b12 + b23 −b23

−b13 −b23 b13 + b23


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R =


R11 R12 R13

R12 R22 R23

R13 R23 R33

 µ =


µ11 0 µ13

0 0 0

µ13 0 µ33


GeoNDT solves the above-mentioned geomechanical models through the spectral

element method. The important steps used in the spectral element method include: a)

decomposing the displacement fields into longitudinal and transverse vector components

by means of Helmholtz’s decomposition, then we can obtain several uncoupled partial

differential equations (the number of equations depends on the number of phases in soils);

b) performing the Laplace transform for the time variable treatment; c) decomposing each

of the uncoupled partial differential equations into two independent functions in radial

and vertical directions in cylindrical coordinates; d) deriving two-node element solutions

for a layer with finite thickness; e) deriving one-node element solutions for the half-space

layer. GeoNDT calculates the stiffness matrix of each layer and then assembles the global

stiffness matrix using a method similar to the finite element framework. With the input

boundary conditions (external forces), GeoNDT obtains the solution in the Laplace or

Frequency domain. For dynamic analysis, the inverse Laplace transform is used to obtain

the solution in the time domain. For dispersion analysis, the root searching algorithm is

used to determine the dispersion relation for the given system. More details about this

procedure can be find in Liu, Maghoul, Shalaby, Bahari, and Moradi (2020), Liu, Maghoul,

and Shalaby (2020b), and Liu, Cascante, Maghoul, and Shalaby (2021).

7.3 GeoNDT application examples

In this section, GeoNDT is used to study four different NDT applications, including BE

tests for dry and saturated soil samples, FWD tests for pavement systems, liquefaction

analysis for foundation soils using MASW and ultrasonic test for the scour detection

around pile foundations.

7.3.1 Bender Element testing

GeoNDT can efficiently study the three-dimensional wave propagation within soil samples

in the BE test. In this case study, the soil sample is assumed to be 7.0 cm in diameter and

14 cm in height. The density of the dry sand is 1,800 kg/m3. The P-wave and S-wave

velocities of the soil sample are assumed as 380 m/s and 240 m/s (equivalent to a Young’s
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modulus of 242 MPa and Poisson’s ratio of 0.168), respectively (Liu, Cascante, Maghoul,

and Shalaby, 2021). A 10 kHz impulse is applied at the base of a soil sample to simulate the

BE transmitter motion. GeoNDT can model the wave propagation within the soil specimen

with only two nodes (one at the transmitter and the other one at the receiver location) and

one element. Based on the provided time range, Young’s modulus, Poisson’s ratio, density

as well as the geometrical parameters of the soil sample, GeoNDT predicts the dynamic

response at the receiver location by calling the Python module one_phase_dynamic.py and

Python function run_f(). The JSON configuration file and code example for BE modeling

in the Python main program is shown in Listing 1 and 2, respectively. The BE transmitter

signal and predicted signal at the receiver location are shown in Figure 7.5.

1 {

2 "input ":{

3 "tmin": 3e-4, # minimum time (s)

4 "tmax": 150e-5, # maximum time (s)

5 "tlin": 200, # number of points within tmin and tmax

6 "E": [2.42 e8], # Young ’s modulus (Pa)

7 "mu": [0.168] , # Poisson ’s ratio

8 "rho": [1800] , # density (kg/m^3)

9 "H": [0.14] , # thickness (m)

10 "r": 0.0001 , # radial location of ultrasonic receiver

11 "rmax": 0.035, # radius of soil sample

12 "node": 1, # output node

13 "loc": 3, # input node

14 "st": 0, # displacement output

15 "lap_num ": 50, # number of iteration in inverse Laplace transform

16 "ncore": -1 # the number of cores (-1 denotes for all cores)}

17 }

LISTING 7.1: JSON configuration file (BE_dry.json) for BE test within the

dry soil sample

1 from geondt import one_phase_dynamic

2 import json

3

4 with open(’BE_dry.json’, "r") as f:

5 data = json.load(f)

6

7 BE = one_phase_dynamic (** data["input"])
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8 yt = BE.run_f() # run model for finite domain

LISTING 7.2: Python main program for wave propagation modeling within

the dry soil sample in BE test by the GeoNDT
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FIGURE 7.5: Predicted dynamic response at the BE receiver location for the
dry soil sample by GeoNDT

Users can easily modify the input signal at the BE transmitter location by defining a

Python function that describes the input signal in the Laplace domain. For example, a 10

kHz impulse can be defined and passed to Python module (one_phase_dynamic.py) as

shown in Listing 3 (assuming the same inputs as the Listing 1).

1 import numpy as np

2 from geondt import one_phase_dynamic

3 import json

4

5 def load(s):

6 ’’’ Define external load in the Laplace domain (for BE example)’’’

7 fn1=-2e4*(np.exp(-np.complex(s)/(2000)))*np.pi/(4e8*np.pi**2+np.complex

(s)**2)

8 fn2=2e4*(np.exp(-np.complex(s)/(2500)))*np.pi/(4e8*np.pi**2+np.complex(

s)**2)

9 fn=fn1+fn2

10 return fn

11

12 with open(’BE_dry.json’, "r") as f:

13 data = json.load(f)

14

15 BE = one_phase_dynamic (** data["input"])
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16 BE.load_f = load

17 yt = BE.run_f() # run model for finite domain

LISTING 7.3: Customize the input signal in BE test by GeoNDT

Similarly, GeoNDT can study the wave propagation in saturated soil samples in the BE

test. In this case study, the dynamic response at the BE receiver location is studied for soil

sample with a volumetric water content of 20% and 50%. The P-wave and S-wave velocities

of the saturated soil sample can be calculated based on the properties of solid skeleton and

volumetric water content (Foti, Lai, and Lancellotta, 2002), as shown in Equation 7.4.

Vp =

√√√√ Ksk +
4
3 G + KF

φ

(1− φ)ρs + φρ f
(7.4a)

Vs =

√√√√√V2
p −

K f
φ(φ(ρ f−ρs)+ρs)

2 1−µsk

1−2µsk

(7.4b)

where Ksk is the bulk modulus of the soil skeleton, taken as 30 kPa; G is the shear modulus

of the soil skeleton, taken as 18 kPa; K f is the bulk modulus of pore water, taken as 2.25

GPa; φ is the porosity or volumetric water content; ρs and ρ f are the density of soil particles

and pore water, taken as 2700 kg/m3 and 1000 kg/m3, respectively; µsk is the Poisson’s

ratio of the soil skeleton, taken as 0.25 (Foti, Lai, and Lancellotta, 2002).

Based on Equation 7.4, the shear wave velocities for the soil sample with a volumetric

water content of 20% and 50% are 87 m/s and 99 m/s, respectively. Figure 7.6 illustrates

the effect of volumetric water content on the BE measurement at the receiver location. The

BE measurement is predicted to be sensitive to the amount of volumetric water content

in soil samples (as shown in Figure 7.6). This case study also demonstrates the potential

for the measurement of porosity by means of the BE test. The JSON configuration file and

sample code for Python main program for the BE testing in the saturated soil sample is

given in Listing 4 and 5, respectively. The input parameters are firstly defined and then

passed to the Python module two_phase_dynamic.py for the prediction of the dynamic

response at the BE receiver location.
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FIGURE 7.6: GeoNDT modeling of the BE test in two saturated soil samples
with volumetric water contents of 20% and 50%

1 {

2 "input": {

3 "tmin": 4e-5, # minimum time (s)

4 "tmax": 600e-5, # maximum time (s)

5 "tlin": 400, # number of points within tmin and tmax

6 "E": [465066] , # Young ’s modulus (Pa)

7 "mu": [0.47] , # Poisson ’s ratio

8 "rho": [1800] , # density (kg/m^3)

9 "H": [0.14] , # thickness (m)

10 "kh": [10e-6], # permeability coefficient (m^2) of bulk soil

11 "porosity ": [0.2] , # porosity

12 "r": 0.0001 , # radial location of ultrasonic receiver

13 "rmax": 0.035, # radius of soil sample

14 "node": 1, # output node

15 "loc": 3, # input node

16 "st": 0, # displacement output

17 "lap_num ": 50, # number of iteration in inverse Laplace transform

18 "ncore": -1 # the number of cores (-1 denotes for all cores)}

19 }

LISTING 7.4: JSON configuration file (BE_saturated.json) for BE test within

the saturated soil sample

1 from geondt import two_phase_dynamic

2 import json

3
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4 with open(’BE_saturate.json’, "r") as f:

5 data = json.load(f)

6

7 BE = two_phase_dynamic (** data["input"])

8 yt = BE.run_f() # run model for finite domain

LISTING 7.5: Wave propagation modeling in the saturated soil sample in the

BE test by GeoNDT

7.3.2 Falling Weight Deflectometer

The dynamic response model in GeoNDT is validated with the FWD case study performed

by Al-Khoury, Scarpas, Kasbergen, and Blaauwendraad (2001). A pavement with a three-

layer system (asphalt, concrete and subgrade) is subjected to a 50 kN impact load with a 25

ms duration. A detailed description of such a system can be found in Al-Khoury, Scarpas,

Kasbergen, and Blaauwendraad (2001). The deflection results at various radial locations (0

mm, 300 mm and 600 mm) calculated by GeoNDT are compared with the results reported

by Al-Khoury, Scarpas, Kasbergen, and Blaauwendraad (2001). As shown in Figure 7.7,

an excellent agreement is achieved despite different methods employed for time-variable

treatment.

FIGURE 7.7: Validation of the dynamic response of a three-layer pavement
system during a FWD test in comparison with Al-Khoury, Scarpas, Kasber-

gen, and Blaauwendraad (2001)

The mandatory and optional parameters (e.g., mechanical properties, the thickness of

each layer, sensor locations and so on) need to be defined first in the JSON configuration

file, as illustrated in Listing 6. It should be noted that the thickness in the last layer is not
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used for the calculation. However, it is required to provide an arbitrary input to ensure con-

sistency in the dimension of variables. The Python code considering a three-layer system

with non-reflecting boundary conditions in the last layer is demonstrated in Listing 7. By

calling Python module one_phase_dynamic.py and Python function run_i() in GeoNDT,

the user can obtain the dynamic response at the pavement surface at any given location.

1 {

2 "input ":{

3 "tmin": 0.001, # minimum time (s)

4 "tmax": 0.05, # maximum time (s)

5 "tlin": 200, # number of points within tmin and tmax

6 "E": [1000.0e6, 200.0e6 , 100.0 e6], # Young ’s modulus (Pa)

7 "mu": [0.35, 0.35, 0.35], # Poisson ’s ratio

8 "rho": [2300.0 , 2000.0 ,1500.0] , # density (kg/m^3)

9 "H": [0.15, 0.25, 5], # thickness (m)

10 "r": 0, # radial distance of sensor location

11 "rmax": 20, # maximum radius

12 "node": 2, # node for sensor location

13 "loc": 2, # node for impact load}

14 }

LISTING 7.6: JSON configuration file (FWD.json) for the FWD test

1 from geondt import one_phase_dynamic

2 import json

3

4 with open(’FWD.json’, "r") as f:

5 data = json.load(f)

6

7 FWD = one_phase_dynamic (** data["input"])

8 yt = FWD.run_i() # run model for infinite domain

LISTING 7.7: Python main program for the dynamic response analysis of

the FWD Test by GeoNDT

GeoNDT also supports the inversion analysis to back-calculate the mechanical prop-

erties of pavement layers. For the demonstration purpose, the synthetic displacement

measurements at 0 mm shown in Figure 7.7 are used to determine the mechanical prop-

erties in each pavement layer. Various methods such as the trust region reflective (TRR)

method, Powell method, BFGS algorithm, TNC algorithm (available in Python Scipy li-

brary) are used to reduce the Euclidean distances between the synthetic and calculated
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displacement. In this inversion analysis, it is assumed that Young’s modulus and Poisson’s

ratio are unknown. Figure 7.8 shows the loss function using the above-mentioned algo-

rithms. It is found that the prediction by TRR method has the minimum loss function in

comparison to other methods. The updates of Young’s modulus are also given in Figure

7.8b. After 700 iteration, Young’s modulus converged to 755 MPa, 194 MPa and 100 MPa

for first, second and third layer, respectively. Overall, these predicted values are consistent

with the original values used by Al-Khoury, Scarpas, Kasbergen, and Blaauwendraad

(2001), which shows the potential of GeoNDT in the evaluation of the pavement system

properties by the FDW test.
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FIGURE 7.8: Inversion results of the FWD test (a) loss function of four
different methods (2) update of Young’s modulus by the TRR method

The implementation of GeoNDT-based inversion analysis is given in Listing 8. Firstly,

users need to define the objective function in Python that takes optimization variables as

inputs (i.e. Young’s modulus and Poisson’s ratio in this case study). Then based on the

provided bounds and initial guess of each variable, various Python optimization functions

(e.g., BFGS, Powell, TRR and TNC) can be used to find the best solution with the minimum

objective function. In this case study, it is found the initial guesses can play an important

role in the final prediction of the pavement structure properties due to the limitations of the
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local optimization methods. The global optimization methods are expected to reduce the

effect of initial guesses on the final solutions (this can also be easily integrated in GeoNDT).

1 import numpy as np

2 from geondt import one_phase_dynamic

3 from scipy.optimize import minimize

4

5 def obj(x):

6 global yt_m , tmin , tmax. tlin , rho , r, rmax , H, loc , node

7 E = np.array ([x[0],x[1],x[2]]) *(10.0**6) # Young’s modulus (Pa)

8 mu = [x[3],x[4],x[5]] # Poisson ’s ratio

9 FWD=one_phase_dynamic(tmin ,tmax ,tlin ,E,mu ,rho ,H,r,rmax ,loc ,node)

10 yt = FWD.run_i()

11 loss = np.abs(yt -yt_m)) # loss function (yt_m is experimental

measurement)

12 return loss

13

14 bnds = ((500 ,1500) ,(100 ,500) ,(50 ,200) ,(0.15 ,0.4) ,(0.15 ,0.4) ,(0.15 ,0.4)) #

Bounds for each variable

15 init = (750 ,100 ,50 ,0.1 ,0.1 ,0.15) # Inital guess for each variable

16 results = minimize(obj ,init ,method=’Powell ’,bounds=bnds) # Optimization

LISTING 7.8: GeoNDT inversion analysis for the FWD test

7.3.3 MASW application for liquefaction analysis

The shear wave velocities obtained by the MASW test can be used for the liquefaction

analysis of a site. In this case study, the three-layer system studied by Wood, Cox, Green,

Wotherspoon, Bradley, and Cubrinovski (2017) is used to demonstrate the liquefaction

analysis using GeoNDT. The MASW dispersion measurement is used firstly to predict

the shear wave velocity of each layer through an inversion analysis. The sample code

for MASW inversion analysis is given in Listing 9. By means of the TRR method, the

calculated dispersion curve fits well with the experimental dispersion curve, as shown in

Figure 7.9a. Figure 7.9b shows the corresponding loss function that is reduced to almost

zero after 1800 iterations. It is found that the shear wave velocity is 100 m/s, 125 m/s

and 300 m/s for the first, second and third layer, respectively. The update of shear wave

velocity and thickness of each layer in MASW inversion analysis is given in Figure 7.10.

Based on the relation between volumetric water content and shear wave velocity derived

by Foti, Lai, and Lancellotta (2002), the volumetric water content is computed as 0.243,

0.245 and 0.262 for the first, second and third layer, respectively.
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1 import numpy as np

2 from geondt import one_phase_dispersion

3 from scipy.optimize import minimize

4

5 def obj(x):

6 global f1, f2 , flin , yt_m

7 mu = [0.3, 0.3, 0.3] # Poisson ’s ratio

8 vs = np.array([x[0]**2 , x[1]**2 , x[2]**2]) # S-wave velocity (m/s)

9 H = np.array ([x[3],x[4], 5]) # Thickness (m)

10 E = rho1*vs *2*(1+ mu) # Young ’s modulus (Pa)

11 MASW = one_phase_dispersion(f1 , f2 , flin , E, mu , rho , H)

12 yt = MASW.run() # Numerical prediction

13 loss = np.sum(np.abs(yt-yt_m)) # yt_m is the experimental measurement

14 return loss

15

16 bnds = ((50 ,500) ,(50,500) ,(50 ,500) ,(1,10) ,(1,10)) # bounds for each

variable

17 init = (50,50,50,5,5) #initial guess of each variable

18 res = minimize(fun ,init ,method=’trust -constr ’,bounds=bnds) # Optimization

LISTING 7.9: Dispersion and inversion analysis for MASW test using

GeoNDT
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FIGURE 7.9: Application of GeoNDT for the MASW test (a) comparison
between the experimental and numerical dispersion curves. (b) loss function

with iteration steps
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FIGURE 7.10: Update of shear wave velocity and thickness of each layer in
the MASW inversion analysis

In this case study, the liquefaction analysis is performed under a blasting load. The soil

layers are assumed to be saturated and the two-phase poroelastodynamic solver in the

GeoNDT is used to predict the ground surface response. The cyclic stress ratio (CSR) and

cyclic resistance ratio (CRR) are evaluated using Equation 7.5 (Andrus and Stokoe II, 2000;

Liew, Xiao, Liu, and Rudenko, 2020):

CSR = 1.0
(

amax

g

)(
σv

σ′v

)
rd (7.5a)

CRR =

(
a
(

Vs1

100

)2

+ b
(

1
V∗s1 −Vs1

− 1
V∗s1

))
MSF (7.5b)

where amax is the peak horizontal ground surface acceleration; σv and σ′v is vertical total

stress and vertical effective stress; rd is the shear stress reduction coefficient; Vs1 is the

corrected shear wave velocity; V∗s1 is an upper limit of Vs1, taken as 215 m/s (Andrus and

Stokoe II, 2000); MSF is the magnitude scaling factor, taken as 1.82 (Liew, Xiao, Liu, and

Rudenko, 2020); a and b are the empirical coefficients taken as 0.022 and 2.8, respectively

(Andrus and Stokoe II, 2000).

The blasting load is assumed to be a Gaussian function with a duration of 0.2 ms (Wang,

Lu, and Bai, 2008). The blasting load is applied at the top of the third layer (half space).
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The maximum horizontal acceleration is determined using the poroelastodynamic solver

in GeoNDT from 0 m to 100 m from the source load at the ground surface. The saturated

unit weight is assumed to be 21 kN/m3 (Kumar, Choudhury, and Bhargava, 2014). The

water table is assumed to be at the ground surface. The stress-corrected velocity (Vs1) is

evaluated based on the proposed relation presented by Andrus and Stokoe II (2000). As

shown in Figure 7.11, the horizontal peak acceleration is 0.8 m/s2 based on the two-phase

poroelastodynamic solver of GeoNDT. The factor of safety is then evaluated by the ratio of

CRR to CRS, as shown in Figure 7.12. The factor of safety is below the allowable value of

1.5 above the depth of 21 m. The JSON configuration file and python code for this case

study is given in Listings 10 and 11, respectively.
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FIGURE 7.12: Liquefaction analysis under a blasting load

1 {

2 "input": {

3 "tmin": 0.001, # minimum time (s)

4 "tmax": 0.5, # maximum time (s)

5 "tlin": 200, # number of points within tmin and tmax

6 "E": [5.98e7, 8.12e7 , 5.85e8, 5.85e8], # Young ’s modulus (Pa)

7 "mu": [0.3, 0.3, 0.3, 0.3], # Poisson ’s ratio

8 "rho": [2300.0 , 2000.0 ,2500.0 , 2500.0] , # density (kg/m^3)

9 "H": [3.2,7.8,19 , 10], # thickness (m)

10 "kh": [10e-6,10e-6,10e-6,10e-6], # permeability coefficient (m^2)

11 "porosity ": [0.243 , 0.245, 0.262 , 0.262] , # porosity

12 "r": 10, # radial location of ultrasonic receiver

13 "rmax": 50, # radius of soil sample

14 "node": 1, # output node

15 "loc": 10, # input node

16 "st": 0, # displacement output

17 "lap_num ": 35, # number of iteration in inverse Laplace transform

18 "ncore": -1, # the number of cores (-1 denotes for all cores)}

19 }

LISTING 7.10: JSON configuration file (seismic_saturate.json) used for the

seismic response analysis under a blasting load

1 from geondt import two_phase_dynamic

2 import json

3
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4 with open(’seismic_saturate.json’, "r") as f:

5 data = json.load(f)

6

7 seismic = two_phase_dynamic (** data["input"])

8 yt = seismic.run_i () # run model for half_space domain

LISTING 7.11: Python main program in GeoNDT for the seismic response

analysis under a blasting load

7.3.4 Ultrasonic test for pile scour detection

The ultrasonic test has been used for pile integrity tests, especially for the anomaly detection

in the piles (Beckhaus and Heinzelmann, 2015). In this case study, we demonstrate that

GeoNDT can also be used to detect the scour around pile foundations using the ultrasonic

test. Scour around pile foundations can decrease the stability of the pile structure and

thus requires early detection. At the scour location, the interface of the pile and soil can

be considered as zero-stress boundary conditions (air interface). The acoustic impedance,

defined as the product of density and acoustic velocity, describes the resistance that the

stress wave encounters as it passes through another media. With an air interface at the

scour location, almost all the wave energy will be reflected. For the soil with a high acoustic

impedance, the wave reflection is reduced in comparison to the air boundary condition.

Therefore, we can determine the scour location based on the amplitude of the reflective

wave. The reflection coefficient at the pile-soil interface can be used to indicate the extent

of the scour, as shown in Equation 7.6.

F =
Zl − Z0

Zl + Z0
(7.6)

where F is the reflection coefficient; Zl is the acoustic impedance of pile; Z0 is the acoustic

impedance of soil.

A value of 1 for the reflection coefficient represents the air interface (scour condition).

A value of 0 for the reflection coefficient shows the same impedance of the pile and

surrounding soil (extreme condition). In this test, two pipes are required for the installation

of ultrasonic transmitter and receiver, as shown in Figure 7.13. It is assumed that the

input voltage has a frequency of 50 kHz. The ultrasonic transmitter is located at the center

location, while the ultrasonic receiver is located 0.4 m away from the ultrasonic transmitter.

The radius of the pile is assumed as 0.5 m. The P-wave and S-wave velocities for the

concrete pile is assumed to be 3500 m/s and 2000 m/s, respectively. The ultrasonic receiver
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measurement is normalized based on the incident wave amplitude, as labeled in Figure

7.14. Based on the elastodynamic solver in GeoNDT, the amplitude of the reflective wave

is 0.6 (reflection coefficient of 1) for the scour location, as shown in Figure 7.14.

FIGURE 7.13: Pile-soil interaction conditions and configuration of the
ultrasonic-based pile integrity test
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FIGURE 7.14: Ultrasonic receiver signal with no reflection (perfect contact
between the pile and surrounding soil with same impedance) and scour

condition (air contact)

With P-wave velocities of surrounding soil varying from 1000 m/s to 200 m/s, the

relation between reflection coefficient at the pile-soil interface and the amplitude of the
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reflective wave is shown in Figure 7.15. In the scour condition (air interface), the reflection

coefficient is one, and the reflection amplitude in the ultrasonic receiver is 0.6. The reflection

coefficient and reflection amplitude from the ultrasonic receiver tends to decrease when

the wave velocity of the surrounding soil increases. Therefore, based on the reflection

amplitude from the ultrasonic receiver, we can evaluate the pile-soil interaction, especially

in the condition of scour around the pile. The JSON configuration file and sample code

for this case study in the Python main program in GeoNDT is given in Listings 12 and 13,

respectively.
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FIGURE 7.15: Relation between the reflection coefficient at the pile-soil
interface and reflection amplitude at the ultrasonic receiver location

1 {

2 "input ":{

3 "tmin": 2e-5, # minimum time (s)

4 "tmax": 100e-5, # maximum time (s)

5 "tlin": 500, # number of points within tmin and tmax

6 "E": [2.41e10 , 2.41e10 , 1.76e7], # Young ’s modulus (Pa)

7 "mu": [0.258 , 0.258 , 0.1], # Poisson ’s ratio

8 "rho": 2400, 2400, 1800], # density (kg/m^3)

9 "H": [0.4 ,0.1 ,10] , # thickness (m)

10 "r": 0, # radial location of ultrasonic receiver

11 "rmax": 5, # radius of soil sample

12 "node": 4, # output node

13 "loc": 2, # input node

14 }

LISTING 7.12: JSON configuration file (pile.json) for the scour detection

around a pile foundation
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1 from geondt import one_phase_dynamic

2 import json

3

4 def load(s):

5 ’’’ Define external load in the Laplace domain (for pile -soil

interaction example)’’’

6 fn1 = -100*10**3*( np.exp(-np.complex(s)/(10*10**3)))*np.pi /(10*10.0**9

*np.pi**2 + np.complex(s)**2)

7 fn2 = 100*10**3*( np.exp(-np.complex(s)/(12.5*10**3)))*np.pi /(10*10.0**9

*np.pi**2 + np.complex(s)**2)

8 fn = fn1 + fn2

9 return fn

10

11 with open(’pile.json’, "r") as f:

12 data = json.load(f)

13

14 pile = one_phase_dynamic (** data["input"])

15 pile.load_i = load

16 yt = pile.run_i()

LISTING 7.13: Python main program in GeoNDT for the scour detection

around a pile foundation using ultrasonic testing

7.4 Conclusion

In this paper, a meshless computational software, GeoNDT, is proposed for the geotechnical

non-destructive testing applications including BE test, ultrasonic testing, FWD and MASW

in multiphase, multilayered geo-systems. GeoNDT can efficiently and accurately describe

the wave propagation in geomaterials without discretizing the entire domain. GeoNDT can

provide the solution in both frequency domain for dispersion analysis and time domain

for dynamic response analysis. Based on the case studies performed in this paper, it is

concluded:

• GeoNDT can model the wave propagation within dry and saturated soil samples in

the BE test. In saturated soil sample, The BE measurement is predicted to be sensitive

to the extent of volumetric water content of a saturated soil sample.

• GeoNDT is capable of modeling the dynamic response of pavement structure and

inverse analysis in the FWD test. It is found that the TRR method is more efficient in

the inversion analysis in comparison to BFGS, Powell and TNC methods.
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• GeoNDT also supports dispersion analysis that can be used for the MASW inversion

analysis and liquefaction analysis. Based on the shear wave velocity obtained from

GeoNDT solvers, the factor of safety at any depth can be calculated to evaluate the

risk of liquefaction under a blasting load.

• GeoNDT can be used for the ultrasonic-based pile integrity test for the scour de-

tection around a pile and asses the pile-soil interaction based on the amplitude of

the reflective wave measured by the ultrasonic receiver. The ultrasonic test can

potentially be used to detect the location of the scour based on the amplitude of the

reflective wave.
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Chapter 8

Conclusions and future research
plans

8.1 Conclusion

The main objective of this thesis was to develop efficient non-invasive techniques and

advanced signal interpretation methods for the characterization of multiphase geomaterials

in both laboratory scale and field investigation. A summary of each project with its major

contributions are presented as follows.

8.1.1 Integrated approach for MASW dispersion analysis

A semi-analytical forward solver was developed for the dispersion analysis using the

spectral element method. An effective Brent’s root-finding method was applied to obtain

the exact dispersion curve. Based on the numerical case studies, it is concluded that when

the stiffness of soil layers increases monotonically with depth, the phase velocity decreases

monotonically with frequency. The non-continuity of the soil stratigraphy, such as having

soft or stiff intermediate layers, also induces non-continuity in the dispersion curves. The

number of transition points reflects the number of layers in the field. Such an understand-

ing of the dispersion curve can be used for the determination in initial guesses of the soil

stratigraphy for the inversion analysis. The trust region reflective method was used in the

inversion analysis to reduce the Euclidean distance between the experimental and numeri-

cally calculated dispersion curves. Based on a case study in Arnarbaeli in south Iceland, it

is found that the integrated approach proposed in this study effectively determines the soil

stratigraphy as well as the soil properties to match the measured dispersion curve within
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only 300 runs of the forward solver.

8.1.2 Experimental investigation and numerical modeling of piezoelectric

bender element motion

The response of different media to a BE motion is thoroughly studied via a piezoelectric-

solid mechanics FE model as well as experimental tests. The numerical results are com-

pared with the motion of the BE in the air, transparent soil, as well as the Ottawa sand

captured by a laser vibrometer. It is concluded that the proposed piezoelectric-mechanical

model captures the motion of the BE with sufficient accuracy in the air, transparent soil,

as well as the Ottawa sand. The best agreement was achieved for the BE motion in the

air. The numerical response obtained by the proposed model is consistent with the laser

vibrometer measurement at the sides of the Ottawa sand specimen. Furthermore, the nu-

merical predictions show a reasonable agreement with the laser measurements in terms of

the distribution of dispersion curves for both symmetric and antisymmetric modes. A rea-

sonable agreement between the numerical BE response and experimental BE measurement

is achieved at the receiver location. The shear wave velocity and damping ratio obtained

through the proposed model are consistent with the ones obtained by the resonant column

test. The proposed numerical method shows that there is a significant P-wave/S-wave

interaction that demonstrates why the empirical methods for the selection of S-waves in

BE testing could be incorrect depending on the different parameters that affect the partici-

pation of P-waves. The proposed piezoelectric-mechanical model can be used to study the

complex wave interactions, which significantly improves the interpretation of the effects

of P-waves on BE test results. The proposed model clearly show that the interpretation of

BE measurements in clays could be more challenging because of the strong participation of

P-waves on the response of BE.

8.1.3 Laboratory-scale characterization of saturated soil samples

An ultrasonic-based characterization of soil samples is developed for the instant measure-

ment of soil properties including Young’s modulus and Poisson’s ratio (compression/shear

wave velocity), and porosity. The developed meshless semi-analytical algorithm reduces

the computational effort significantly in comparison to standard numerical techniques

such as the finite element method. In fact, the advantage of such a solution is that the
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dynamic response is evaluated at the receiver location only rather than the entire do-

main.The soil response in other locations is not measured in the real application and does

not factor in soil characterization. It is concluded that high-frequency impulse loads (with

predominant frequency of up to 5 kHz) is required to trigger the effect of porosity for

soils with relatively low Young’s modulus (e.g clay, silt and sand). For stiffer materials,

such as very dense gravels, an impulse load with predominant frequency of 0.5 MHz is

required to characterize their porous nature. The characterization of soil properties has

been proved as a highly non-convex optimization problem in this paper. The differential

evolution algorithm, as a global optimization method, is found efficient and effective in

finding the optimum soil properties, such that the difference between the predicted and

measured stress waves is minimized. In conclusion, the developed method in interpreting

dynamic response of saturated soil can be used for the immediate characterization of

Young’s modulus, Poisson’s ratio, and porosity for a given soil specimen.

8.1.4 Ultrasonic characterization of permafrost samples

A spectral element multiphase poromechanical transfer function method is developed for

the signal interpretation of ultrasonic measurements for the first time. We show that our

proposed transfer function, i.e. a ratio of induced displacement and applied force in the

frequency domain, is independent of the distribution of the stress force applied by the

transducer to the permafrost sample. Our signal interpretation approach is objective unlike

the existing subjective empirical signal interpretation methods. Our proposed ultrasonic

sensing technique can directly measure several physical and mechanical properties of

frozen soils in a single ultrasonic test by interpreting the full signal unlike existing tech-

niques that normally relate only one or two parameters for a soil sample to the measured

signal in each test. Similar to other problems involving inverse analyses, we can ensure

the accuracy of the results or reduce the uncertainty in the inverse analysis by provid-

ing complementary information through conventional tests to determine temperature,

soil type, density, and so on. Our results demonstrate the proposed ultrasonic sensing

technique and the signal interpretation method based on the spectral element multiphase

poromechanical approach can be used in a laboratory setup or in the field for rapid and

reliable characterization of permafrost samples.
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8.1.5 In-situ characterization of permafrost

A hybrid inverse and multi-phase poromechanical approach is developed for in-situ char-

acterization of permafrost sites using surface wave techniques. In our method, we quantify

the physical properties such as ice content, unfrozen water content, and porosity as well as

the mechanical properties such as the shear modulus and bulk modulus of permafrost or

soil layers. Through the mechanical properties of the solid skeleton frame, we can also pre-

dict the soil type and the sensitivity of the permafrost layer to permafrost carbon feedback

and emission of greenhouse gases to the atmosphere. We also determine the depth of the

permafrost table and permafrost base. The role of two different types of Rayleigh waves

in characterizing the permafrost is presented based on an MASW seismic investigation

in a field located at SW Spitsbergen, Norway. Multiphase poromechanical dispersion

relations are developed for the interpretation of the experimental seismic measurements

at the surface based on the spectral element method. Our results demonstrate the poten-

tial of seismic surface wave testing accompanied with our proposed hybrid inverse and

poromechanical dispersion model for the assessment and quantitative characterization of

permafrost sites.

8.1.6 GeoNDT software development

A meshless computational software, GeoNDT, can be used seamlessly for advanced signal

interpretation in geophysical investigation and laboratory testing including BE test, ultra-

sonic test, FWD test and MASW test in multiphase, multilayered geo-systems. GeoNDT

can efficiently and accurately describe the wave propagation in geomaterials without

discretizing the entire domain. GeoNDT can also provide the solution in both frequency

domain for dispersion analysis and time domain for dynamic response analysis.

8.2 Recommendations for future work

• Extension of current geomechanical models

The current solvers are still limited to horizontally distributed soil layers. In the

future work, these solvers can be extended for soil domain that is non-homogeneous

in horizontal direction. The developed multiphase geomechanical models can also

be further extended to four phases (i.e., solid skeleton, pore air, pore water, and pore

ice) for unsaturated soils based on the similar framework (spectral element method)

developed in this research.
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• Development of joint geophysical permafrost mapping

Geophysical techniques can be used to examine the spatial distribution of permafrost

deposits. However, a single geophysical investigation method normally yields

an uncertain permafrost mapping result. A combination of different geophysical

methods will largely improve resolution and uncertainty. Seismic methods (i.e.

MASW) constitute the best way to quantify the amount of ice and water in permafrost

since freezing has remarkable effect on seismic wave velocities. With the MASW

seismic wave-based method as the main investigation method, the ERT, GPR and

EM Tomography work as the complementary investigation methods to provide

more information and constraints to the predicted solution. The preliminary results

in terms of the permafrost distribution obtained in ERT, GPR or EM Tomography

method can provide a reasonable initial guess and more constraints in MASW solver.
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Appendix A

Parameters definition

The matrix ρ, b, R and µ are shown as following:

ρ =

ρ11 ρ12 ρ13

ρ12 ρ22 ρ23

ρ13 ρ23 ρ33

 b =

b12 + b13 −b12 −b13

−b12 b12 + b23 −b23

−b13 −b23 b13 + b23



R =

R11 R12 R13

R12 R22 R23

R13 R23 R33

 µ =

µ11 0 µ13

0 0 0
µ13 0 µ33


where
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ρ13 = −(a13 − 1)φsρs − (a31 − 1)φiρi :

ρ33 = (a13 − 1)φsρs + (a23 − 1)φwρw + a31φiρi :

κi = κi0φ3/[(1− s2
r )(1− φ)3] :

κs = κs0s3
r :

µ13 = (1− g1)(1− g3)µav :

µim = φiµi/[1 + αγ(1− φi)] : shear modulus of the matrix formed by the ice

µsm = (1− φw − ξ̄φi)µs/[1 + αγ(φw + ξ̄φi)] : soil skeleton-frame shear modulus

ρ12 = −(a12 − 1)φwρw :

b13 = b0
13(φiφs)2 : friction coefficient between soil skeleton and ice matrix

b23 = ηwφ2
w/κi : friction coefficient between porewater and ice matrix

c1 = Ksm/(φsKs) : consolidation coefficient for the soil skeleton

c3 = Kim/(φiKi) : consolidation coefficient for the ice

g3 = µim/(φiµi) :

K1 = [(1− c1)φs]2Kav + Ksm :

K3 = [(1− c3)φi]
2Kav + Kim :

Kim = φiKi/[1 + α(1− φi)] : bulk modulus of the matrix formed by the ice

Ksm = (1− φw − ξ̄φi)Ks/[1 + α(φw + ξ̄φi)] : bulk modulus of the matrix formed by the
solid phase

R11 = [(1− c1)φs]2Kav + Ksm + 4µ11/3 :

Sc2 = C13 − 1
3 µ13 :

Sc3 = K3 − 2
3 µ3 :

Sc4 = C13 − 1
3 µ13 :
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µ11 = [(1− g1)φs]2µav + µsm :

µ33 = [(1− g3)φi]
2µav + µim :

ρ11 = a13φsρs + (a12 − 1)φwρw + (a31 − 1)φiρi

ρ22 = (a12 + a23 − 1)φwρw :

ρ23 = −(a23 − 1)φwρw :

a12 = r12
φs(φwρw+φiρi)
φwρw(φw+φi)

+ 1 : tortuosity for water flowing through the soil skeleton

a13 = r13
φi(φsρs+φiρi)
φsρs(φs+φi)

+ 1 : tortuosity for solid grains flowing through the ice matrix

a23 = r23
φs(φwρw+φsρs)
φwρw(φw+φs)

+ 1 : tortuosity for water flowing through the ice matrix

a31 = r31
φs(φsρs+φiρi)
φiρi(φs+φi)

+ 1 : tortuosity for ice flowing through the rock frame

b12 = ηwφ2
w/κs : friction coefficient between soil skeleton and porewater

g1 = µsm/(φsµs) :

R12 = (1− c1)φsφwKav :

R13 = (1− c1)(1− c3)φsφiKav + 2µ13/3 :

R22 = φ2
wKav :

R23 = (1− c3)φwφiKav :

R33 = [(1− c3)φi]
2Kav + Kim + 4µ33/3 :
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Appendix B

Spectral element matrix components

The components of S1 matrix are shown as following:

S1(1, 1) = −kp11 S1(1, 2) = −kp12

S1(1, 3) = −kp13 S1(1, 4) = ks1q11

S1(1, 5) = ks2q12 S1(1, 6) = kp11

(
−e−hkp1

)
S1(1, 7) = kp12

(
−e−hkp2

)
S1(1, 8) = kp13

(
−e−hkp3

)
S1(1, 9) = ks1q11

(
−e−hks1

)
S1(1, 10) = ks2q12

(
−e−hks2

)

S1(2, 1) = −kp1 p11 S1(2, 2) = −kp2 p12

S1(2, 3) = −kp3 p13 S1(2, 4) = kq11

S1(2, 5) = kq12 S(2, 6) = e−hkp1 kp1 p11

S1(2, 7) = e−hkp2 kp2 p12 S1(2, 8) = e−hkp3 kp3 p13

S1(2, 9) = e−hks1 kq11 S1(2, 10) = e−hks2 kq12

S1(3, 1) = −kp1 p21 S(3, 2) = −kp2 p22

S1(3, 3) = −kp3 p23 S1(3, 4) = k(G1q11 + G2q21)

S1(3, 5) = k(G1q12 + G2q22) S1(3, 6) = e−hkp1 kp1 p21

S1(3, 7) = e−hkp2 kp2 p22 S1(3, 8) = e−hkp3 kp3 p23

S1(3, 9) = e−hks1 k(G1q11 + G2q21) S1(3, 10) = e−hks2 k(G1q12 + G2q22)

S1(4, 1) = −kp1 p21 S(4, 2) = −kp2 p22

S1(4, 3) = −kp3 p23 S1(4, 4) = k(G1q11 + G2q21)

S1(4, 5) = k(G1q12 + G2q22) S1(4, 6) = e−hkp1 kp1 p21

S1(4, 7) = e−hkp2 kp2 p22 S1(4, 8) = e−hkp3 kp3 p23

S1(4, 9) = e−hks1 k(G1q11 + G2q21) S1(4, 10) = e−hks2 k(G1q12 + G2q22)
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S1(5, 1) = −kp1 p21 S(5, 2) = −kp2 p22

S1(5, 3) = −kp3 p23 S1(5, 4) = k(G1q11 + G2q21)

S1(5, 5) = k(G1q12 + G2q22) S1(5, 6) = e−hkp1 kp1 p21

S1(5, 7) = e−hkp2 kp2 p22 S1(5, 8) = e−hkp3 kp3 p23

S1(5, 9) = e−hks1 k(G1q11 + G2q21) S1(5, 10) = e−hks2 k(G1q12 + G2q22)

S1(6, 1) = −kp1 p21 S(6, 2) = −kp2 p22

S1(6, 3) = −kp3 p23 S1(6, 4) = k(G1q11 + G2q21)

S1(6, 5) = k(G1q12 + G2q22) S1(6, 6) = e−hkp1 kp1 p21

S1(6, 7) = e−hkp2 kp2 p22 S1(6, 8) = e−hkp3 kp3 p23

S1(6, 9) = e−hks1 k(G1q11 + G2q21) S1(6, 10) = e−hks2 k(G1q12 + G2q22)

S1(7, 1) = −kp1 p21 S(7, 2) = −kp2 p22

S1(7, 3) = −kp3 p23 S1(7, 4) = k(G1q11 + G2q21)

S1(7, 5) = k(G1q12 + G2q22) S1(7, 6) = e−hkp1 kp1 p21

S1(7, 7) = e−hkp2 kp2 p22 S1(7, 8) = e−hkp3 kp3 p23

S1(7, 9) = e−hks1 k(G1q11 + G2q21) S1(7, 10) = e−hks2 k(G1q12 + G2q22)

S1(8, 1) = −kp1 p21 S(8, 2) = −kp2 p22

S1(8, 3) = −kp3 p23 S1(8, 4) = k(G1q11 + G2q21)

S1(8, 5) = k(G1q12 + G2q22) S1(8, 6) = e−hkp1 kp1 p21

S1(8, 7) = e−hkp2 kp2 p22 S1(8, 8) = e−hkp3 kp3 p23

S1(8, 9) = e−hks1 k(G1q11 + G2q21) S1(8, 10) = e−hks2 k(G1q12 + G2q22)

S1(9, 1) = −kp1 p21 S(9, 2) = −kp2 p22

S1(9, 3) = −kp3 p23 S1(9, 4) = k(G1q11 + G2q21)

S1(9, 5) = k(G1q12 + G2q22) S1(9, 6) = e−hkp1 kp1 p21

S1(9, 7) = e−hkp2 kp2 p22 S1(9, 8) = e−hkp3 kp3 p23

S1(9, 9) = e−hks1 k(G1q11 + G2q21) S1(9, 10) = e−hks2 k(G1q12 + G2q22)

S1(10, 1) = −kp1 p21 S(10, 2) = −kp2 p22

S1(10, 3) = −kp3 p23 S1(10, 4) = k(G1q11 + G2q21)

S1(10, 5) = k(G1q12 + G2q22) S1(10, 6) = e−hkp1 kp1 p21

S1(10, 7) = e−hkp2 kp2 p22 S1(10, 8) = e−hkp3 kp3 p23

S1(10, 9) = e−hks1 k(G1q11 + G2q21) S1(10, 10) = e−hks2 k(G1q12 + G2q22)

The components of S2 stress matrix are shown as following:
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S2(1, 1) = kkp1(2p11µ1 + p31µ13)

S2(1, 2) = kkp2(2p12µ1 + p32µ13)

S2(1, 3) = kkp3(2p13µ1 + p33µ13)

S2(1, 4) = − 1
2

(
k2 + k2

s1

)
(2q11µ1 + q21µ13)

S2(1, 5) = − 1
2

(
k2 + k2

s2
)
(2q12µ1 + q22µ13)

S2(1, 6) = −e−hkp1 kkp1(2p11µ1 + p31µ13)

S2(1, 7) = e−hkp2 kkp2(2p12µ1 + p32µ13)

S2(1, 8) = −e−hkp3 kkp3(2p13µ1 + p33µ13)

S2(1, 9) = − 1
2 e−hks1

(
k2 + k2

s1

)
(2q11µ1 + q21µ13)

S2(1, 10) = − 1
2 e−hks2

(
k2 + k2

s2
)
(2q12µ1 + q22µ13)

S2(2, 1) = −(p11Sc1 + p31Sc2)k2 + C12

(
k2

p1 − k2
)

p21 + k2
p1(p11(Sc1 + 2µ1) + p31(Sc2 + µ13))

S2(2, 2) = −(p12Sc1 + p32Sc2)k2 + C12

(
k2

p2 − k2
)

p22 + k2
p2(p12(Sc1 + 2µ1) + p32(Sc2 + µ13))

S2(2, 3) = −(p13Sc1 + p33Sc2)k2 + C12

(
k2

p3 − k2
)

p23 + k2
p3(p13(Sc1 + 2µ1) + p33(Sc2 + µ13))

S2(2, 4) = kks1(2q11µ1 + q21µ13)

S2(2, 5) = kks2(2q12µ1 + q22µ13)

S2(2, 6) = e−hkp1

(
−(p11Sc1 + p31Sc2)k2 + C12

(
k2

p1 − k2
)

p21 + k2
p1(p11(Sc1 + 2µ1) + p31(Sc2 + µ13))

)
S2(2, 7) = e−hkp2

(
−(p12Sc1 + p32Sc2)k2 + C12

(
k2

p2 − k2
)

p22 + k2
p2(p12(Sc1 + 2µ1) + p32(Sc2 + µ13))

)
S2(2, 8) = e−hkp3

(
−(p13Sc1 + p33Sc2)k2 + C12

(
k2

p3 − k2
)

p23 + k2
p3(p13(Sc1 + 2µ1) + p33(Sc2 + µ13))

)
S2(2, 9) = e−hks1 kks1(2q11µ1 + q21µ13)

S2(2, 10) = e−hks2 kks2(2q12µ1 + q22µ13)

S2(3, 1) = (kp1 − k)(k + kp1)(C12 p11 + k2 p21 + C23 p31)

S2(3, 2) = −(k− kp2)(k + kp2)(C12 p12 + k2 p22 + C23 p32)

S2(3, 3) = −(k− kp3)(k + kp3)(C12 p13 + k2 p23 + C23P33)

S2(3, 4) = 0
S2(3, 5) = 0
S2(3, 6) = e−hkp1(kp1 − k)(k + kp1)(C12 p11 + k2 p21 + C23 p31)

S2(3, 7) = e−hkp2(kp2 − k)(k + kp2)(C12 p12 + k2 p22 + C23 p32)

S2(3, 8) = e−hkp3(kp3 − k)(k + kp3)(C12 p13 + k2 p23 + C23P33)

S2(3, 9) = 0
S2(3, 10) = 0
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S2(4, 1) = kkp1(p11µ13 + 2p31µ3)

S2(4, 2) = kkp2(p12µ13 + 2p32µ3)

S2(4, 3) = kkp3(p13µ13 + 2P33µ3)

S2(4, 4) = − 1
2

(
k2 + k2

s1

)
(q11µ13 + 2q21µ3)

S2(4, 5) = − 1
2

(
k2 + k2

s2
)
(q12µ13 + 2q22µ3)

S2(4, 6) = −e−hkp1 kkp1(p11µ13 + 2p31µ3)

S2(4, 7) = −e−hkp2 kkp2(p12µ13 + 2p32µ3)

S2(4, 8) = −e−hkp3 kkp3(p13µ13 + 2P33µ3)

S2(4, 9) = − 1
2 e−hks1

(
k2 + k2

s1

)
(q11µ13 + 2q21µ3)

S2(4, 10) = − 1
2 e−hks2

(
k2 + k2

s2
)
(q12µ13 + 2q22µ3)

S2(5, 1) = −(p31Sc3 + p11Sc4)k2 + C23

(
k2

p1 − k2
)

p21 + k2
p1(p11(Sc4 + µ13) + p31(Sc3 + 2µ3))

S2(5, 2) = −(p32Sc3 + p12Sc4)k2 + C23

(
k2

p2 − k2
)

p22 + k2
p2(p12(Sc4 + µ13) + p32(Sc3 + 2µ3))

S2(5, 3) = −(P33Sc3 + p13Sc4)k2 + C23

(
k2

p3 − k2
)

p23 + k2
p3(p13(Sc4 + µ13) + p33(Sc3 + 2µ3))

S2(5, 4) = −kks1(q11µ13 + 2q21µ3)

S2(5, 5) = −kks2(q12µ13 + 2q22µ3)

S2(5, 6) = e−hkp1

(
−(p31Sc3 + p11Sc4)k2 + C23

(
k2

p1 − k2
)

p21 + k2
p1(p11(Sc4 + µ13) + p31(Sc3 + 2µ3))

)
S2(5, 7) = e−hkp2

(
−(p32Sc3 + p12Sc4)k2 + C23

(
k2

p2 − k2
)

p22 + k2
p2(p12(Sc4 + µ13) + p32(Sc3 + 2µ3))

)
S2(5, 8) = e−hkp3

(
−(P33Sc3 + p13Sc4)k2 + C23

(
k2

p3 − k2
)

p23 + k2
p3(p13(Sc4 + µ13) + p33(Sc3 + 2µ3))

)
S2(5, 9) = e−hks1 kks1(q11µ13 + 2q21µ3)

S2(5, 10) = e−hks2 kks2(q12µ13 + 2q22µ3)

S2(6, 1) = kkp1e−hkp1(2µ1 p11 + µ13 p31)

S2(6, 2) = kkp2e−hkp2(2µ1 p12 + µ13 p32)

S2(6, 3) = kkp3e−hkp3(2µ1 p13 + µ13 p33)

S2(6, 4) = − 1
2 e−hks1

(
k2 + k2

s1

)
(2µ1q11 + µ13q21)

S2(6, 5) = − 1
2 e−hks2

(
k2 + k2

s2
)
(2µ1q12 + µ13q22)

S2(6, 6) = −kkp1(2µ1 p11 + µ13 p31)

S2(6, 7) = −kkp2(2µ1 p12 + µ13 p32)

S2(6, 8) = −kkp3(2µ1 p13 + µ13 p33)

S2(6, 9) = − 1
2

(
k2 + k2

s1

)
(2µ1q11 + µ13q21)

S2(6, 10) = − 1
2

(
k2 + k2

s2
)
(2µ1q12 + µ13q22)
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S2(7, 1) = e−hkp1

(
−(p11Sc1 + p31Sc2)k2 + C12

(
k2

p1 − k2
)

p21 + k2
p1(p11(Sc1 + 2µ1) + p31(Sc2 + µ13))

)
S2(7, 2) = e−hkp2

(
−(p12Sc1 + p32Sc2)k2 + C12

(
k2

p2 − k2
)

p22 + k2
p2(p12(Sc1 + 2µ1) + p32(Sc2 + µ13))

)
S2(7, 3) = e−hkp3

(
−(p13Sc1 + p33Sc2)k2 + C12

(
k2

p3 − k2
)

p23 + k2
p3(p13(Sc1 + 2µ1) + p33(Sc2 + µ13))

)
S2(7, 4) = −e−hks1 kks1(2q11µ1 + q21µ13)

S2(7, 5) = −e−hks2 kks2(2q12µ1 + q22µ13)

S2(7, 6) = −(p11Sc1 + p31Sc2)k2 + C12

(
k2

p1 − k2
)

p21 + k2
p1(p11(Sc1 + 2µ1) + p31(Sc2 + µ13))

S2(7, 7) = −(p12Sc1 + p32Sc2)k2 + C12

(
k2

p2 − k2
)

p22 + k2
p2(p12(Sc1 + 2µ1) + p32(Sc2 + µ13))

S2(7, 8) = −(p13Sc1 + p33Sc2)k2 + C12

(
k2

p3 − k2
)

p23 + k2
p3(p13(Sc1 + 2µ1) + p33(Sc2 + µ13))

S2(7, 9) = kks1(2q11µ1 + q21µ13)

S2(7, 10) = kks2(2q12µ1 + q22µ13)

S2(8, 1) = e−hkp1(kp1 − k)(k + kp1)(C12 p11 + k2 p21 + C23 p31)

S2(8, 2) = e−hkp2(kp2 − k)(k + kp2)(C12 p12 + k2 p22 + C23 p32)

S2(8, 3) = e−hkp3(kp3 − k)(k + kp3)(C12 p13 + k2 p23 + C23P33)

S2(8, 4) = 0
S2(8, 5) = 0
S2(8, 6) = (kp1 − k)(k + kp1)(C12 p11 + k2 p21 + C23 p31)

S2(8, 7) = (kp2 − k)(k + kp2)(C12 p12 + k2 p22 + C23 p32)

S2(8, 8) = (kp3 − k)(k + kp3)(C12 p13 + k2 p23 + C23P33)

S2(8, 9) = 0
S2(8, 10) = 0

S2(9, 1) = kkp1e−hkp1(µ13 p11 + 2µ3 p31)

S2(9, 2) = kkp2e−hkp2(µ13 p12 + 2µ3 p32)

S2(9, 3) = kkp3e−hkp3(µ13 p13 + 2µ3 p33)

S2(9, 4) = − 1
2 e−hks1

(
k2 + k2

s1

)
(µ13q11 + 2µ3q21)

S2(9, 5) = − 1
2 e−hks2

(
k2 + k2

s2
)
(µ13q12 + 2µ3q22)

S2(9, 6) = −kkp1(µ13 p11 + 2µ3 p31)

S2(9, 7) = −kkp2(µ13 p12 + 2µ3 p32)

S2(9, 8) = −kkp3(µ13 p13 + 2µ3 p33)

S2(9, 9) = − 1
2

(
k2 + k2

s1

)
(µ13q11 + 2µ3q21)

S2(9, 10) = − 1
2

(
k2 + k2

s2
)
(µ13q12 + 2µ3q22)
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S2(10, 1) = e−hkp1

(
−(p31Sc3 + p11Sc4)k2 + C23

(
k2

p1 − k2
)

p21 + k2
p1(p11(Sc4 + µ13) + p31(Sc3 + 2µ3))

)
S2(10, 2) = e−hkp2

(
−(p32Sc3 + p12Sc4)k2 + C23

(
k2

p2 − k2
)

p22 + k2
p2(p12(Sc4 + µ13) + p32(Sc3 + 2µ3))

)
S2(10, 3) = e−hkp3

(
−(P33Sc3 + p13Sc4)k2 + C23

(
k2

p3 − k2
)

p23 + k2
p3(p13(Sc4 + µ13) + p33(Sc3 + 2µ3))

)
S2(10, 4) = −e−hks1 kks1(q11µ13 + 2q21µ3)

S2(10, 5) = −e−hks2 kks2(q12µ13 + 2q22µ3)

S2(10, 6) = −(p31Sc3 + p11Sc4)k2 + C23

(
k2

p1 − k2
)

p21 + k2
p1(p11(Sc4 + µ13) + p31(Sc3 + 2µ3))

S2(10, 7) = −(p32Sc3 + p12Sc4)k2 + C23

(
k2

p2 − k2
)

p22 + k2
p2(p12(Sc4 + µ13) + p32(Sc3 + 2µ3))

S2(10, 8) = −(P33Sc3 + p13Sc4)k2 + C23

(
k2

p3 − k2
)

p23 + k2
p3(p13(Sc4 + µ13) + p33(Sc3 + 2µ3))

S2(10, 9) = kks1(q11µ13 + 2q21µ3)

S2(10, 10) = kks2(q12µ13 + 2q22µ3)
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