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Abstract

As the key component for ubiquitous realtime healthcare monitoring systems, wireless

body area networks (WBANs) emerge as a promising solution to relieve the financial and

social burdens resulting from the growth of aging population and rising healthcare costs.

Although WBANs are commonly regarded as the extension of wireless sensor networks

(WSNs), most existing studies on WSNs cannot satisfy the communication requirements

because of complicated communication environments around the human body tissue and

more stringent energy constraints in WBANs, which prompts a lot of research efforts

recently. In this thesis, we focus on the packet transmission scheduling in WBANs, where

we carefully study the energy efficient issue and investigate the channel shadowing effects.

After presenting some fundamentals and related works, we propose a general analytical

framework to evaluate the performance of IEEE 802.15.6 based CSMA/CA scheduling in

WBANs, with joint considerations of instantaneous delay constraints and body shadowing

effects. In addition, we also propose a multi-threshold based transmission strategy for

joint data and energy scheduling in WBANs, where rechargeable sensors can efficiently

manage their transmission energy allocations by simultaneously considering the amount of

waiting packets in the buffers and available energy in the batteries. Extensive simulations

are conducted to verify our proposed analytical models and demonstrate performance gains

of our proposed strategy.
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Chapter 1

Introduction

1.1 Background and Motivations

Advances in low-power wireless technologies, intelligent integrated circuits and low-cost

miniaturized sensors have enabled a new generation of wireless sensor networks that could

continuously detect vital physiological data profiling the human body activities, called

wireless body area networks (WBANs) [4]. WBANs, also referred as body area networks

(BANs) or as body sensor networks (BSNs), are a new type of network architecture that

enables wireless data communication around the human body. WBANs have become a

promising solution to relieve the financial and social burdens to meet increasing demands

on ubiquitous realtime healthcare and fitness monitoring [5]. The inherently affordable

and convenient features of WBANs can significantly improve the efficiency of healthcare

services. Besides healthcare systems, WBANs can also supports a number of innovative

and interesting applications such as sports, entertainments and military applications.

In WBANs, tiny and ultra-low-power sensors are deployed in, on or around the human

body for continuously sensing vital physiological signals, such as electrocardiogram, heart

rate, oxygen saturation, body temperature, blood pressure, etc. The sensed signals are then

aggregated at a coordinator (or hub) via wireless links and forwarded to remote servers

for interpretation and diagnosis. The coordinator can be a smart phone or any other smart
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device, and ordinarily has less stringent constraints on processing and power capabilities

compared with biosensors.

Although WBAN-based wireless technologies can provide advantages over the con-

ventional monitoring systems, there are still many problems that prevent wide application

of WBANs in practice [1]. Compared with traditional wireless sensor networks (WSNs),

small lightweight sensors in WBANs have more strict energy constraints, especially in

terms of transmit power. Besides, the sensor replacement or recharging, particularly for

implanted sensors, may cause many discomforts for users with WBANs. More importantly,

the radio frequency (RF) transmission, which is the only practical mechanism for data

transmissions in WBANs [6], suffers considerably from human body shadowing in a

highly variable way [7]. Furthermore, constrained by ultra-low power requirements, data

transmissions in the vicinity of the human body become highly lossy and unreliable [8].

In addition, the entire WBAN is in motion due to postural body movements, so that the

network topology changes with group-based movement rather than node-based movement.

In that sense, WBANs are very similar to mobile ad hoc networks (MANETs) [9], but

WBANs have more frequent topology changes.

All these problems bring new challenges on the packet transmission scheduling in

WBANs, which has motivated a lot of research efforts in recent years. Compared

with conventional scheduling schemes, WBANs bring two main research challenges: the

complicated and unpredictable variation in channel conditions and more stringent energy-

saving requirements. Specifically, affected by the human body shadowing, the wireless

service in WBANs may be interrupted in a highly random way with respect to human

bodies. Besides, small lightweight sensor devices in WBANs commonly have very scarce

energy resources. Therefore, preserving energy at sensor nodes by design more efficient

scheduling strategies becomes increasingly crucial to prolong the lifetime of WBANs. In

addition, there are other unique challenges posed by WBAN applications, including low

radio transmission range, private securities, severe mutual interference, and heterogeneous

data collections from different sensors with different sampling rates.
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The motivation of this thesis mainly concentrates on the following two aspects:

First, most existing works on energy-saving issues, such as sleep and wakeup strategies

designs [10] and efficient routing protocol designs [11], were not feasible for WBANs due

to the long-term continuous monitoring and low delay requirements. In WBANs, we should

focus more on decreasing the amount of data that need to be transmitted as communication

was ordinarily considered to be the most energy consuming operation [12]. Besides, since

the communication environment around the human body is very complicated and body

sensors are low-complexity devices that work in a very low power regime, the wireless

service in WBANs may be interrupted in a highly variable way. However, such service

interruption resulting from human body shadowing in WBANs has not been well addressed.

Moreover, the arrival correlation which is one of most important features of telemedicine

signals sensed from human bodies [13] was also ignored in the literature. To address these

issues, in Chapter 3, we propose a novel energy-saving scheme with instantaneous delay

constraints and design a random time limited single vacation to describe the shadowing

interruptions.

Second, by considering the unreliable feature of communication links around the

human body and the randomness of energy harvesting, the energy allocation should be

adaptively adjusted based on the current status of the data buffer, energy battery and

wireless channel. Therefore, in order to meet the stringent quality of service (QoS)

requirements in WBANs, energy efficient transmission scheduling and energy allocation

strategies are required. Although Markov decision process was widely adopted to formulate

the joint data and energy scheduling problems, the high computational complexity made

it infeasible for practical applications due to huge state spaces. In addition, most existing

works on WBANs assumed independent and identically distributed (i.i.d.) fading channels,

which ignored the channel correlation around the human body. In Chapter 4, we propose a

multi-threshold based transmission strategy for joint data and energy scheduling in WBANs

with the consideration of channel correlation.

In the following sections, we provide the brief summary of our contributions and then
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conclude the chapter with the thesis organization.

1.2 Summary of Contributions

The contributions of this thesis are summarized as follows:

In Chapter 3, a general analytical framework is formulated to evaluate the performance

of WBANs under the instantaneous delay constraints and body shadowing effects. Based

on the IEEE standard, we construct a two-absorbing-state Markov chain to model the

MAC protocol with error controls, and introduce a phase type (PH) distribution with a

specific blocking rate to mathematically describe such a Markov chain. In the framework,

body shadowing effects are considered as a shadowing interruption process, which is

further modeled as a random time limited single vacation. We refer to the Markov arrival

process to capture the correlations of arrival traffics in WBANs. In addition, we propose

a novel energy-saving scheme to decrease packet transmissions, where the service of

sensed packets is constrained by a firm instantaneous delay limit. The long-waited packets

with poor timeliness are considered to be valueless and will be dropped to guarantee the

timeliness of valuable packets and avoid energy waste for transmitting valueless packets.

Extensive simulations are conducted to validate the theoretical analysis and evaluate system

performance. This work contributes to a journal paper, which is submitted to IEEE

Transaction on Vehicular Technology.

In Chapter 4, we propose a multi-threshold based transmission strategy for joint data

and energy scheduling in WBANs, where rechargeable sensors can efficiently manage

their transmission energy allocations by simultaneously considering the amount of waiting

packets in the buffers and available energy in the batteries. A queueing model is formulated

to analyze the performance of the proposed transmission strategy. In our analysis, a

discrete Markov arrival process (DMAP) is introduced to model the service process, which

jointly considers channel correlations and energy allocations. Because of the existence of

multiple thresholds in both data and energy buffers, a level dependent Quasi-Birth-and-
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Death (QBD) Markov chain is developed for analyzing performance metrics in terms of

the stationary queue length distribution, average delay, queueing throughput and average

system-offline probability. At last, we formulate an optimization problem to find the

optimal threshold settings and corresponding energy allocations for maximizing the energy

efficiency while maintaining QoS requirements in terms of the average delay and system-

offline probability. Simulation results are provided to verify our analytical models and

demonstrate the performance gain of our proposed strategy in WBANs over counterparts.

This work has contributed to an invited conference paper, which has been accepted by IEEE

Vehicular Technology Conference (VTC’2017-Fall).

1.3 Outline of the Thesis

The rest of the thesis is organized as follows. Chapter 2 introduces some fundamentals and

related works that are relevant to our research. In Chapter 3, we construct a general discrete

time queueing system to model the operation of IEEE standard 802.15.6 CSMA/CA

access mechanism integrating instantaneous delay constraints and shadowing interruptions.

Motivated by threshold-based and state-aware scheduling strategies, a multi-threshold

based strategy for joint data and energy scheduling is proposed and analyzed for WBANs

with rechargeable sensors in Chapter 4. Finally, Chapter 5 concludes this thesis and

summarizes some potential future extensions.
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Chapter 2

Fundamentals and Related Works

In this chapter, fundamental knowledge and related literature are presented as the basis

for future references. We first provide an overview of wireless body area networks

including the network characteristics, communication architecture, potential applications,

and research challenges. Although the packet transmission scheduling has been widely

discussed in wireless communication networks, the traditional strategies were challenged

by many new features in WBANs. Thus, we then provide a comprehensive literature review

for most of recent researches on the packet transmission scheduling in WBANs.

2.1 Overview of Wireless Body Area Networks

With the growth of aging population [14] and the increasing demand for high quality of

healthcare, exiting medical systems and hospital facilities have been confronting a burden

of overload. To overcome this issue, a new network concept, wireless body area networks

(WBANs), has been proposed as a promising solution to revolutionize the telemedicine

system, which adopts advanced information processing and communication technologies

to enhance efficiency and flexibility of traditional medical services [15].

A WBAN typically consists of several sensors that collect various physiological

changes of the human body, together with a central network coordinator (or called a hub).
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Figure 2.1: An example of a WBAN in healthcare systems

The sensors can be deployed around the human body, placed on the body surface, or

even implanted inside the body to monitor the human body functions and the surrounding

environment. The sensed signals are aggregated at the coordinator via wireless links and

forwarded to remote servers for interpretation and diagnosis. An example of a WBAN

in healthcare systems is illustrated in Fig. 2.1. WBANs have the potential to facilitate

inexpensive and continuous health monitoring, computer-assisted rehabilitation, and early

detection of medical conditions, with real-time record updates through the Internet.

2.1.1 Network Characteristics

WBANs is commonly considered to be the extension of wireless sensor networks (WSNs).

However, compared with conventional WSNs, WBANs have their own special characteris-

tics and requirements, which distinguish them from general WSNs and also introduce new

technical challenges. Formally, the main characteristics are summarized as follows [16]:

• Node Deployment and Density: WBAN sensors are deployed in, on or around the
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human body and typically form a star-topology network together with a powerful

coordinator, where the wireless communication is centrally organized [17]. Besides,

affected by human motions, the data transmission in WBANs is comparatively

sensitive and unreliable. WSNs commonly need to add redundant nodes to solve the

node lost or failure problem which is unnecessary in WBANs, and thus WBANs do

not have high node density. In addition, WBAN sensors are often very heterogeneous

and may have very different demands in terms of data rates and reliability [18].

• Limited Energy: WBANs commonly need to support continuous monitoring for

months or even years, but biosensors comprising WBANs have very limited energy

resources available due to the small form factor [19]. Moreover, the sensor

replacement and recharging, especially for implanted sensors, are very difficult and

sometimes invasive to human bodies. Signal transmission attenuation is very large

because of the specificity of the body tissue structure and the shadowing effect [16].

Thus, WBAN biosensors must be extremely frugal in their energy managements.

• Reliability: The reliability of WBANs relies on the transmission delay and packet

dropping probability. Different from the requirements in traditional WSNs, whose

design objective is commonly to maximize network throughput (or minimize the

packet dropping probability), WBANs draw more attention on whether the data

can be timely transmitted to the medical center, i.e., a lower transmission delay.

Moreover, an extremely low transmit power for biosensors is adopted to minimize the

interference and cope with health concerns [20]. Since the delay is directly affected

by the channel stability and energy allocations, the high randomness of wireless

channel in the proximity of human bodies and the low transmission power usually

greatly increase the transmission delay.

• Mobility and Security: Since wearers of WBANs may move around, WBAN nodes

affiliated with the same wearer may move together and in the same direction [21].

In contrast, WSN nodes are usually thought of as stationary, and any node mobility
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does not occur in groups. Besides, in WBANs, stringent security mechanisms are

also required to keep the user data, especially the medical data, strictly private,

confidential and safe.

2.1.2 Architecture and Applications

Figure 2.2: The communication tiers in WBANs [1]

As shown in Fig.2.2, the generalized system architecture of a WBAN can be divided in

three fundamental communication levels or tiers [1, 22, 23].

• Tier-1 communication (intra-WBAN). The intra-WBAN communication refers to the

radio communication range of about 2 meters around the human body [23]. In

the intra-WBAN, various biosensors transmit collected body signals to a personal

server (PS) (works as a coordinator or hub) which in turn forwards the processed

physiological data to an access point (AP) in Tier-2.

• Tier-2 communication (inter-WBAN). Inter-WBANs usually involve the communi-

cation between the PS and one or more APs, and aim at interconnecting WBANs

with other networks, such as cellular networks, WLAN or even other WBANs.
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Figure 2.3: The applications of WBANs [2]

• Tier-3 communication (beyond-WBAN). The beyond-WBAN communication is

designed for metropolitan areas and is usually application-specific [1]. This tier

involves communication between a WBAN and an outside network, e.g., internet

or some medical centers [22].

WBAN is an emerging enabling technology with a broad range of potential applications

and use cases in diverse application domains including medical, fitness and wellness

management, military, sport, entertainment and so on. Based on the IEEE standard

802.15.6 [24], the WBANs application can be divided into medical and non-medical

applications. The use of WBANs for medical applications is expected to enable more

effective management and detection of illnesses and reaction to crisis [25]. In such

applications, WBANs continuously collect vital information of patients and forward it to a

remote monitoring station for real-time analysis [26]. Non-medical applications commonly

include five subcategories, real-time streaming, entertainment, emergency (non-medical)

applications, emotion detection and secure authentications [1]. Fig. 2.3 illustrates all the

potential WBANs applications.
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Figure 2.4: The power requirements and data rates in WBANs [3]

2.1.3 Research Challenges

Despite the suitability of IEEE 802.15.6 for WBANs [24], successful systems are highly

dependent on the characteristics of the wireless channel around human bodies and specific

application requirements, which are still confronted with lots of challenges. In this section,

we list some major research challenges that need to be taken into consideration in the design

of WBANs.

• Extreme energy efficiency: In order to deliver the levels of comfort and unobtru-

siveness required for widespread adoption, WBAN biosensors must be small [27].

However, the size requirement obviously limits the size of the batteries and further

the energy storage. In addition, depending on the specific applications, WBANs

are commonly required to work unobtrusively for months or even years. Therefore,
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achieving a high energy efficiency is the most important goal in WBANs.

• Unique characteristics of the wireless channel: The behavior of the wireless channel

around the human body poses a unique set of challenges to reliable communications.

It has been widely recognized that the wireless propagation environment in the

vicinity of the human body is considerably different from conventional network

environments [28]. The radio frequency (RF) transmission, which is the only

practical mechanism for data transmission in WBANs [6], suffers siginificantly from

human body shadowing in a highly variable way with respect to human bodies [7] [8].

Human motions can constantly change the attenuation at a rate that depends on the

type of physical activity. Furthermore, constrained by ultra low power requirements,

the data transmission around the human body becomes very unreliable and is very

sensitive to human motions.

• Interference management: Biosensors in WBANs can be centrally coordinated by

the hub, thus allowing a large number of devices to coexist in a single network

without interference with each other. However, the coordination may become very

complicated when multiple people wearing WBANs come into the range of each

other since closely-located WBANs will cause severe mutual interference. This issue

becomes even more crucial in the high coverage areas [29], such as hospitals or

nursing homes. Besides, the human motions are unpredictable from a network’s

viewpoint, which may lead to networks randomly moving into and out of range

of each other. Therefore, efficient interference mitigation schemes are required to

manage the inter-WBANs interference [30].

• Heterogeneous requirements: In order to accommodate higher throughput appli-

cations, WBANs need to support a wide range of data rates varying from 1

Kbit/s to 10 Mbit/s [24], while still satisfying the high reliability and low-latency

required in many WBAN applications. Since biosensors deployed around human

bodies commonly aim at monitoring different physiological signs, they usually have
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different demands in terms of data rates and reliability. Furthermore, as shown in

Fig. 2.4, the existing technologies like Bluetooth or Zig-Bee cannot simultaneously

meet the data and power requirements for all WBAN applications.

• Security and Privacy: Since the collected data in WBANs has significantly legal,

financial and private meanings, keeping the information private, confidential and

authorized is a fundamental requirement. However, the conventional security and

private mechanisms are not feasible for WBANs due to stringent resource constraints

in terms of energy, memory, processing ability, as well as the lack of user interface,

unskilled users, and global roaming [2]. As a high priority for safe communications,

security issues should be well addressed in WBANs [31].

2.2 Packet Transmission Scheduling in Wireless Body

Area Networks

The traditional packet transmission scheduling strategies were challenged by many new

features in WBANs. In this section, we present a general survey for most of recent

researches on transmission scheduling in WBANs. To facilitate reading, we classify the

existing researches in three groups in terms of energy efficient medium access control

(MAC) protocol designs, transmission scheduling with energy harvesting, and IEEE

standard based analyses and improvements.

1) Energy Efficient MAC Protocol Designs: In WBANs, energy limitation plays a

dominant role in determining average system performance and lifetime [32]. The unique

channel characteristics, coupled with the need for extreme energy efficiency in healthcare

applications, require novel solutions in MAC protocols. Generally, MAC protocols for

WBANs can be categorized into two types: contention-based and schedule-based. In

contention-based protocols, such as CSMA/CA, sensors have to compete to gain the

transmission opportunity. Such protocols have no need to establish infrastructure and
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have shown good scalability, so that they may be affected less by human motions. But

contentions among sensor nodes may incur packet collisions and further cause great energy

wastage. On the other hand, schedule-based protocols, such as TDMA, divide the channel

into time slots and explicitly allocate slots to nodes. Each node transmits data in their own

slots and keeps asleep in other slots. Consequently, collisions are avoided and energy waste

is reduced. However, the performance of TDMA-based designs is deteriorated due to the

large overhead necessitated by the synchronization, and it will inevitably introduce extra

delay and energy consumption.

To overcome these weaknesses, there have been a lot of researches working on the

medium access control (MAC) protocol design with emphases on energy efficiency [33,34].

Omeni et al. in [35] proposed a TDMA-based MAC protocol to reduce the collision and

energy cost, which was based on centrally controlled wakeup and sleep mechanisms to

maximize energy efficiency. In [36], an energy efficient MAC protocol using modified

TDMA structure with extra reserved slots was proposed, where the reserved slots were used

for re-transmission based on sensors’ requests. Li et al. in [13] proposed a TDMA-based

MAC protocol with a novel synchronization scheme, where heartbeat rhythm information

extracted from the sensory data was exploited to synchronize the sensors. In [37], a

contention-based MAC protocol designed for falls assessment was presented to guarantee

different prioritized data latency requirements. In the design, high priority nodes could

interrupt low priority nodes and exploit data fusion to improve system throughput. Su

et al. in [38] proposed a battery-aware TDMA based MAC protocol with cross-layer

design to maximize the network lifetime. In summary, the main goal of these works was

to make full use of limited energy to transmit more sensed packets under average delay

and packet dropping constraints, i.e., to achieve a higher system throughput with average

QoS provisioning. However, average requirements are not sufficient to guarantee system

performances in practice, especially when long-tail traffic occurs [39] [40], i.e., waiting

delays need to be constrained in a instantaneous sense instead of in the average sense.

In conventional WSNs, sleep and wakeup strategies [10] were widely adopted to reduce
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the energy waste and prolong the system lifetime. However, these strategies are not

feasible for WBANs, which need to satisfy long-term continuous monitoring and low delay

requirements. In WSNs, energy can also be significantly saved through improving routing

protocols [11]. However, this method is still not applicable for WBANs because body

sensors are commonly very proximate, leading to a single-hop topology [41]. Different

from conventional WSNs, energy-saving techniques in WBANs frequently focused on

decreasing the amount of data that need to be transmitted [12] since communication was

ordinarily considered to be the most energy consuming operation for sensors [42]. For that

purpose, IEEE standard 802.15.6 [24] specified re-transmission limits and Ghasemzadeh et

al. in [41] investigated the communication minimization by means of buffers in WBANs.

However, waiting delays of packets have not been considered in these works. Since packets

that have been waiting for a long time are considered to be less valuable due to their poor

timeliness [43], it is unnecessary to transmit these valueless packets, so as to save the

transmission energy.

2) Transmission Scheduling with Energy Harvesting: Since energy harvesting is

projected to be an ideal solution for eliminating the stringent energy constraints, the

research interests in transmission scheduling with energy harvesting have significantly

increased [44]. In WBANs, the human body is surrounded by various energy sources,

such as solar, wind, human motion, radio frequency, and body heat, which make energy

harvesting become a promising solution to relieve energy burdens. Affected by the

randomness of energy harvesting, energy efficient transmission scheduling and energy

allocation strategies are required to meet stringent quality of service requirements in

WBANs [45]. Markov decision process (MDP) [46] was widely adopted to formulate such

joint data and energy scheduling problems [47], [48]. However, the high computational

complexity made it infeasible for practical applications with multiple queues and huge state

spaces. Xiao et al. in [49] defined several transmission power levels and adapted transmit

power in real-time based on feedback information from the receiver. Su and Zhang in [38]

introduced two thresholds to control data transmissions based on data queue dynamics.
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Chiti et al. in [50] proposed a novel cross-layer protocol that utilized a battery threshold

to switch sensor working modes. However, more general multi-threshod cases with joint

considerations of battery states and packet queuing characteristics are not studied in these

works. In additon, most existing works on WBANs assumed independent and identically

distributed (i.i.d.) fading channels for simplicity and tractability [51]. However, since

wireless links around human bodies are closely related to human motions that usually

follow a stable moving pattern, the channel correlation around the human body [52] cannot

be ignored.

3) IEEE Standard based Analyses and Improvements: With the aid of the scientific and

industrial communities, the IEEE Task Group 6 published the IEEE 802.15.6 standard for

WBANs on February, 29 2012 [24]. The standard defined a new set of PHY layer and MAC

layer specifications for short-range wireless communications in the vicinity of, or inside the

human body. More specifically, it presented supports for heterogeneous QoS, extremely

low power and high data rates, defined specific priorities for different kinds of traffics,

and designed a contention window updating mechanism with re-transmission limits for

access control. These new features motivated a lot of researches on performance evaluation

for IEEE standard 802.15.6 based WBANs [53–56]. Rashwand et al. in [53] and [54]

presented a Markov chain-based analysis under both non-saturation and saturation traffic

conditions. Ullah et al. [55] provided a non-Markovian analysis in terms of throughput

and average delay limits. In [56], a discrete-time Markov chain was constructed to model

the IEEE 802.15.6 CSMA/CA access protocol with an immediate acknowledge (I-ACK)

policy under non-ideal channel conditions. However, all these works ignored the arrival

correlation that is one of most important features of telemedicine signals sensed from

human bodies [13]. Moreover, the unreliability of RF communication around the human

body, especially the body shadowing effect, has not been well modeled in these works.
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Chapter 3

An Analytical Framework for IEEE

802.15.6 Based Wireless Body Area

Networks with Instantaneous Delay

Constraints and Shadowing

Interruptions

In this chapter, a novel queueing analytical framework is proposed to evaluate the per-

formance of IEEE 802.15.6-based CSMA/CA scheduling in wireless body area networks

with joint consideration of instantaneous delay constraints and body shadowing effects.

Specifically, we develop an absorbing Markov chain to model the IEEE standard defined

medium access process with error controls, and design a random time limited single

vacation to describe the potential body shadowing interruption process. To guarantee the

timeliness of received packets and avoid energy waste for transmitting valueless packets,

an instantaneous delay constraint is carefully considered, which then is characterized by an

over-deadline packet dropping process with a predefined waiting deadline. In our analysis,

a Markovian arrival process is also adopted to capture the correlation of arrival traffic,
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Figure 3.1: An illustration of the communication architecture in WBANs

and all other random processes are modeled by phase type distributions, which make our

framework more general and comprehensive. To address the inherent complexity of the

original model, based on the transient queueing analysis, we develop a buffer-overflowing

queueing principle to approximate the over-deadline packet dropping principle by solving

a buffer length optimization problem. After that, we construct a multidimensional discrete-

time Markov chain to analyze the stationary distribution through the matrix-geometric

method. Performance metrics, such as the average delay, waiting time distribution, and

packet transmission failure probability are derived. The accuracy of our proposed analytical

framework is validated by extensive simulations. Based on the result analysis, we justify the

importance of instantaneous delay limits comparing with mean constraints, and investigate

the impact of human body shadowing on system performance.

3.1 System Model

In this section, we describe the system model under consideration by introducing the

communication architecture of WBANs, wireless channel model and IEEE 802.15.6 based

MAC protocol.
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3.1.1 Network Framework

We concentrate on a continuous healthcare monitoring system where one person is

equipped with a WBAN. The general architecture is based on the standard IEEE 802.15.6

[24], as shown in Fig. 3.1. In particular, we mainly focus on the up-link transmissions

in intra-WBAN (communications from sensors to the coordinator). N various medical

sensors are deployed on the human body, and a powerful personal device, such as a smart

phone, works as a coordinator. Usually, these nodes form a star-topology network and low-

power sensors transmit the sensed physiological signals to the coordinator with a constant

power through one-hop communication [38].

The time axis is divided into slots with equal lengths. Each data packet requires at least

one time slot for its transmission and there is at most one new packet arrival within a time

slot. We assume that all the events that occur during a time slot are observable at the end of

the slot. Furthermore, we also assume that all packet arrivals occur just before the end of a

slot and services terminate at the end of a slot, i.e., late arrival with delayed access [57].

3.1.2 Wireless Channel Model

Different from the conventional wireless networks, the distance is no longer a dominant

factor that affects the signal attenuation in WBANs. Instead, small-scale fading has more

influences on transmitted signals due to the complex structure of the body shape and human

tissue [58]. Ordinarily, the wireless link in WBANs can be characterized by a slow flat

fading channel [38]. Since the line of sight path is much stronger than others, the channel

state, characterized by the received signal-to-noise ratio (SNR), follows an independent

and identically distributed (i.i.d.) Rician-square (the envolop follows a Rician distribution)

distribution among time slots but remains unchanged within each time slot [59]. The

probability density function (PDF) of the received SNR (γ) is given by

ρ(γ) =
κ+ 1

γ̄
exp[−γ(κ+ 1)

γ̄
− κ]I0(2

√
γκ(κ+ 1)

γ̄
), (3.1)
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where I0(·) is the modified Bessel function of the first kind and 0th order. κ and γ̄ denote

the Rician K-factor (i.e., secular-to-scattered power ratio) and average SNR, respectively.

Furthermore, by adopting the non-coherent differential encoded binary phase shift keying

(DPSK) modulation scheme in WBANs [60], the average bit error rate (BER) under the

Rician fading channel is

P̄ b
e =

∫
P b
e (γ)ρ(γ)dγ =

1 + κ

2(1 + γ̄ + κ)
exp(− κγ̄

1 + γ̄ + κ
), (3.2)

where P b
e (γ) is the probability of BER in AWGN channel at a specific value of SNR γ.

Therefore, the average packet error rate P̄e for a M−bit packet equals

P̄e = 1− (1− P̄ b
e )M . (3.3)

3.1.3 Medium Access Control

According to the IEEE 802.15.6 stand, the medium access control (MAC) protocol for

intra-WBAN consists of the slotted carrier sense multiple access with collision avoidance

(CSMA/CA) [24] and automatic repeat request (ARQ) mechanism for error recovery. The

standard specified eight user-priorities (UP) with different values of the minimum and

maximum sizes of contention windows based on different traffic designations, and also

a special contention window updating mechanism. Specifically, the contention window

Wi,r at a node i is represented as

Wi,r =


CWi,min if r = 0

Wi,r−1 if r is an odd number, and 1 ≤ r ≤ R

min{2Wi,r−1, CWi,max} if r is an even number, and 2 ≤ r ≤ R

, (3.4)

where r denotes the number of re-transmissions that a data packet has underwent, and R is

the transmission retry limit. CWi,min and CWi,max represent the minimum and maximum

contention windows of node i respectively, and depend on the traffic priority of node i.

With this contention-based MAC, the probability that the channel is accessed by node i can
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Figure 3.2: The 2-tuple Absorbing Markov Chain at a medical sensor node

be calculated as [61]

Pa(Wi,r) =

Wi,r∑
j=1

[
1

Wi,r

N∏
k=1,k 6=i

(
Wk − j
Wk

)]. (3.5)

Note that the channel is occupied by the node i for its packet transmission until the packet

is successfully transmitted or blocked after R re-transmissions.

Furthermore, we formulate the service process for the node i as a two-tuple (Wi,r, r)

discrete time absorbing Markov chain, where (0, 0) and (CWi,max, R+1) are two absorbing

states, representing the service process is terminated due to the successful transmission and

failed transmission after R retries, respectively. One example of such a Markov chain

for a medical sensor node (CWmin = 2, CWmax = 8) is illustrated in Fig. 3.2. Then the

transition probabilities of the formulated 2-tuple Markov chain at node i could be calculated
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as follows. For the transitions between two transient states (0 < r < R + 1), we have

P1(r) = Prob{(Wi,r, r)|(Wi,r, r)} = 1− Pa(Wi,r), (3.6)

P2(r) = Prob{(Wi,r+1, r + 1)|(Wi,r, r)} = P̄ePa(Wi,r), (3.7)

where P1(r) represents the situation that the service remained in the same state since the

sensor failed accessing the channel, and P2(r) represents the situation that the service

switched to the next adjacent state when the channel was successfully accessed but

transmission errors happened. Similarly, for the transition probabilities from any transient

state to the absorbing state, we have

P0(r) = Prob{(0, 0)|(Wi,r, r)} =


(1− P̄e)Pa(Wi,r) if 0 ≤ r ≤ R

0 if r = R + 1

, (3.8)

P3(r) = Prob{(CWi,max, R + 1)|(Wi,r, r)} =


0 if 0 ≤ r < R

P̄ePa(Wi,R) if r = R

. (3.9)

Note that for P0(r), only when the sensor successfully gained the channel access

opportunity and no transmission errors occurred, the packet can be successfully served, i.e.,

absorbed in state (0, 0). P3(r) represents the case that packet re-transmissions exceeded the

retry limit R, which occurred only when a packet had been re-transmitted R times before

the past slot, and the sensor successfully accessed the channel but failed transmitting the

packet in the past slot because of errors. In summary, the transition probability matrix Pt

of the formulated 2-tuple absorbing Markov chain can be represented as

Pt =

Q H

0 I2

 ,
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where

Q(R+1)×(R+1) =



P1(0) P2(0)

P1(1) P2(1)

P1(2) P2(2)

. . . . . .

P1(R− 1) P2(R− 1)

P1(R)


, (3.10)

H(R+1)×2 =



P0(0) 0

P0(1) 0

P0(2) 0

...
...

P0(R− 1) 0

P0(R) P3(R)


, (3.11)

and I2 is an identity matrix of dimension 2 × 2. Define a (R + 1) × 2 matrix B, where

each element bi,j represents the probability that the system finally gets absorbed in state

j ∈ {(0, 0), (CWi,max, R + 1)}, given that the system starts from the transient state i.

Then, we have

B = (Q0 +Q1 +Q2 + ...)H = (IR+1 −Q)−1H. (3.12)

Note that once a packet is successfully transmitted, this renewal process will always

start from the initial state (Wi,0, 0). Therefore, we can derive the initial probability vector

of R + 1 transient states as a = [1, 0, 0, ..., 0]. Thus the probability bj of getting absorbed

into the absorbing state j ∈ {(0, 0), (CWi,max, R + 1)} can be calculated as

[b(0,0), b(CWi,max,R+1)] = aB. (3.13)

Furthermore, both absorbing states represent that the packets’ services are terminated

because either the packet is successfully served at the absorbing state (0, 0) or the packet
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Figure 3.3: A new absorbing Markov Chain with a single absorbing state

under service is blocked due to reaching the re-transmission limit at the absorbing state

(CWi,max, R+ 1). Define ρd as the blocking rate of all these ’served’ packets. Then ρd can

be calculated as

ρd =
b(CWi,max,R+1)

b(0,0) + b(CWi,max,R+1)

. (3.14)

To simplify the structure of the two-tuple Markov chain, we introduce a new Markov

chain with a single compound absorbing state, as shown in Fig.3.3. LetK ∈ {0, 1, 2, ..., R,R+

1} denotes the compound state of (Wi,r, r) in the new Markov chain. Then, K = 0

represents the absorbing state with blocking rate ρd, while K 6= 0 represents the transient

state corresponding to the state (Wi,K−1, K − 1) in the 2-tuple Markov chain. This newly

introduced absorbing Markov chain can be represented by a phase type distribution (β, S)

of order ns = R + 1, and the associated transition probability matrix is given by

P
′

t =

1 0

s S

 ,
where S = Q, s = 1 − S1. Similar to the two-tuple Markov chain, the initial probability

vector β is given by, β = [β1, β2, ..., βR, βR+1] = [1, 0, ..., 0] and β0 = 1− β1 = 0.

3.2 Formulation of the Queueing Model

In this section, the IEEE 802.15.6-based CSMA/CA scheduling at a single sensor is

modeled as a discrete time queueing system with random time limited vacations. Since

various different types of biosensors are independent from each other in WBANs, we only

focus on one general sensor node and similar analysis can be performed on any other type
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of sensors. The basic queueing components (arrival process, service process, and service

principle) are described as follows.

3.2.1 Correlated Traffic Arrivals

Since the packet inter-arrival time is usually correlated in WBANs [13], we model the

packet arrival process at a sensor node as a Markovian arrival process (MAP), which has

been widely used to fit different arrival patterns with highly correlated inter-arrival times

[62]. The formulated MAP is associated with an absorbing Markov chain and the packet

arrival probability at any time slot depends on both current and previous states (phases).

Besides, the MAP can be described by two sub-stochastic matricesD0 andD1 of dimension

na, where the elements (D0)ij and (D1)ij represent the transition probabilities from state

i to state j without and with a packet arrival, respectively. Let D = D0 + D1. Then the

matrix D is stochastic and irreducible, and D1 = 1, where 1 represents a column vector

of ones with an appropriate dimension. Given D0 and D1, the autocorrelation between

inter-arrival times can be captured as [62]

Pr{Xi = k} = πDk−1
0 D11, k ≥ 1, (3.15)

where Xi represents the ith inter-arrival time, π = π(I −D0)−1D1, and π1 = 1.

3.2.2 Service Process with Shadowing Interruptions

Different from conventional communication environments, the data transmission between

sensor nodes and the coordinator is very complicated in WBANs. This is because the

human body has a complex shape and people are usually in motion, which result in highly

random changes in the relative locations between sensors and the coordinator. Therefore,

the strength of a received signal in WBANs is greatly affected by the physical location

and orientation of the nodes in relation to each other as well as the human body [58].

Moreover, since WBANs are deployed around human bodies and have to be user-harmless,
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the transmission power is required to stay at a very low level. Consequently, the packet

transmission is more likely to be interrupted when the wireless link is blocked by the human

body. In this chapter, we model the human body shadowing effect on the wireless service

as a shadowing interruption process. However, mathematically modeling such a shadowing

interruption process is very difficult due to the following challenges

• The wireless link for data transmissions could be blocked by the human body

shadowing at any time. Therefore, the working or effective duration T1 of a wireless

link is a random variable with a general distribution.

• Similarly, a blocked wireless link may rebecome effective at any time. i.e., the

interruption period for a wireless link, denoted by T2, is also a generally distributed

random variable.

To address these issues, we introduce two general PH distributions to describe the

randomness of T1 and T2, which are denoted as (α, T ) with order nb and (φ, V ) with order

nv, respectively. The selection of PH distribution is because it can approximately model any

arbitrary distribution through moment matching approach based on three moments [63].

Consequently, a packet in the queue can be correctly received at the coordinator only

if the link is unblocked by the human body and the packet service is successful. As for

the human body blocking effect, which has been described by a shadowing interruption

process, we model it as a interruption vacation with random time limited visits. Specifically,

the server will be available for a random amount of time slots, T1, and will be blocked to go

on an interruption vacation with a random time duration, T2. Thus, the probability Pf (k1)

that the server attends to the queue for k1 time slots (i.e. T1 = k1), and the probability

Pv(k2) that the server takes k2 time slots to return from an interruption vacation (i.e. T2 =

k2) can be calculated as

Pf (k1) =


α0 k1 = 0

αT k1−1t k1 6= 0

, (3.16)
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Pv(k2) =


φ0, k2 = 0

φV k2−1v k2 6= 0

, (3.17)

where t = 1− T1 and v = 1− V 1.

Recall that the packet service process, which is determined by the MAC protocol and

the corresponding controlling schemes (e.g. error controls), has been modeled by a PH

distribution (β, S) of order R + 1 with a blocking rate ρd in Section 3.1.3. The mean

service rate µ can be derived as µ−1 = β(I −S)−1s. Hence when server is on the working

state, the probability Ps(t) that a packet was served by using t time slots can be represented

as

Ps(t) =


β0 t = 0

βSt−1s t 6= 0

. (3.18)

In addition, by considering a general interruption vacation case, we further define a

stochastic matrix Q with the element Qj′ ,j referring to the probability that the service of a

packet will resume in phase j after the server returns from the interruption vacation, given

that the service was interrupted at phase j ′ at the start of the vacation. Besides, we assume

a single vacation, i.e., when the server returns from a vacation, it will start to offer services

immediately if there are packets available in the system, or wait for arrivals of new packets

and then begin to serve.

3.2.3 Over-deadline Dropping Principle with Instantaneous Delay

Constraints

Body sensors have very limited storage and communication abilities due to their small

physical sizes and stringent energy constraints. Thus, sensors need to make full use of

their finite energy by transmitting the most valuable and emergent data, especially when

the transmission channel suffers from human body effects. As we discussed in Section

I, different from conventional sensor networks, whose objective is commonly aimed at

27



maximizing the system throughput under the average delay constraints, in WBANs, we

focus more on maximize the valuable packets’ transmissions under a instantaneous delay

constraint. Thus, in order to ensure the timeliness of served packets and avoid energy waste

for transmitting valueless packets, we need to carefully design the service principle.

Different from the tranditional wireless communications, in WBANs, the packet

suffering from long waiting time becomes less valuable than newly arrived packets [43].

Therefore, in contrast to the widely used earliest deadline transmission policy [64], packets

with long waiting time should be dropped, such that important packets can be transmitted

with shorter delay and the transmission energy for these valueless packets can be saved. On

the other hand, since the chronological order of sensed data is also valuable information for

the diagnosis of patients’ medical conditions, the packets’ transmission should also obey

a first-come-first-service (FCFS) fashion. By jointly considering these two completely

distinct requirements, the designed energy-saving service principle, named as the over-

deadline dropping principle, is summarized as follows.

• The system follows a FCFS service discipline.

• Over-deadline dropping: The waiting time of all buffered packets will be examined

at the beginning of each time slot and a packet will be dropped if its waiting time in

the queue has exceeds its instantaneous delay constraint.

In practice, these delay limits for various packets sensed from different types of sensors

can be predefined by referring to the real application requirements or recommended QoS

requirements in standard IEEE 802.15.6. Since the packets services at a same sensor node

are homogeneous, the underlying processes and parameters for all packets are the same,

i.e., all packets in the queue are statistically identical. In addition, we assume infinite

buffer size at the sensor nodes.

Obviously, with our designed over-deadline dropping principle, the server should

constantly examine the waiting time of all buffered packets and discard the long-waited

packets that exceed their instantaneous delay constraints. However, such real-time
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detection requirement makes the queueing analysis very complicated. By considering the

fact that the head of line (HOL) packet in the queue always has the longest waiting time

under the FCFS principle, the over-deadline dropping principle can be modeled by the

HOL packet dropping (HOL-PD) principle. Nevertheless, the queueing model with the

HOL-PD principle is still too difficult to be analyzed directly because of the HOL packet

dropping process and instantaneous delay tracking. In the next section, we will explore

the tail behavior of the delay distributions, and transform the HOL-PD principle into a

buffer-overflowing principle.

3.3 Queueing Analysis

In this section, we develop a buffer-overflowing queueing principle to approximate the

over-deadline principle by finding the optimal buffer length, and then the newly formulated

queueing model is analyzed in details.

3.3.1 Buffer-overflowing Approximation

Inspired by the fact that the queueing length can indicate waiting time to some extend, we

develop a buffer-overflowing principle to approximate the over-deadline principle through

analyzing the tail probability of the waiting time in the queue. The new buffer-overflowing

queueing model has the same queueing elements as the over-deadline queueing model,

except a finite buffer length and the packet dropping principle, i.e., the HOL packet

will be dropped when a new packet arrives in the already fully-occupied buffer. The

approximation error between these two principles can be minimized when for the majority

of served packets, their instantaneous waiting delay under the buffer-overflowing dropping

principle is strictly less the deadline ( i.e., instantaneous delay constraint). Therefore, by

further considering the objective to maximize the system throughput (i.e., minimize the

packet transmission failure probability), we aim at looking for an optimal buffer size L∗

to minimize the tail probability of packet waiting time distribution for served packets that
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exceed their delay limits. Such optimization problem can be formulated as follows,

L∗ = argmin
L∈Z

(Ptf (L) +
∞∑

i=tbnd+1

Wi(L)) (19)

s.t. L ∈ [1, Lbnd],

where tbnd is the predefined limit of packet waiting time. Ptf (L) and Wi(L) represent the

packet transmission failure probability and waiting time distribution when the buffer size

is L, respectively. Z denotes the set of integers and Lbnd denotes the largest buffer size.

Note that the queueing system changes with respect to the buffer size, and the close-form

expressions for packet waiting time distribution and transmission failure probability are

commonly not available. Owing to the finite solution space, we can adopt heuristic direct

search techniques, such as the Hooke and Jeeves direct search method [65], to find the

optimal buffer length.

However, obtaining the packet transmission failure probability and waiting time

distribution requires deriving the queue length stationary distribution, which will results

in high computational complexity. Optionally, we propose an approximation method to

find the optimal solution with low complexity. Let C1 denote the event that the maximum

waiting time of served packets in the queue is larger than tbnd, and C2 denote the event

that the minimum waiting time of dropped packets is less than tbnd. C1 and C2 can

indicate the proportion of valueless packets (i.e. exceed the limit) in the served packets

and the proportion of valuable packets in the dropped packets, respectively. Obviously,

the optimal buffer length should make both events C1 and C2 less likely to happen, i.e.,

Pr{C1|L∗} → 0 and Pr{C2|L∗} → 0. Hence, we formulate a new optimization problem

as

L∗ = argmin
L∈Z

(Pr1 + Pr2) (20)

s.t. L ∈ [1, Lbnd],

where Pr1 = Prob{C1|L} and Pr2 = Prob{C2|L}. Since the packet dropping only happens
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when the buffer is full and at most one packet arrives in each slot, the optimal buffer size

must be less than tbnd, so that we can set Lbnd = tbnd. In addition, it is obvious that a higher

Pr1 will make more served packet become valueless (i.e., breaking the delay limit) and a

higher Pr2 will increase the packet transmission failure probability. Intuitively, these two

probabilities corresponds to the tail probability and transmission failure probability in the

original optimization problem receptively. Next, we focus on the derivation of these two

probabilities.

We first define the packets that suffer the longest waiting periods in the buffer but

get served eventually as Late Packets [43]. Since the maximum waiting time means the

worst case, the distribution of maximum waiting time can be approximately indicated

by the waiting duration that Late Packets experience and the corresponding probabilities.

Specifically, the queueing behavior of such a Late Packet can be separated into three periods

: 1) waits t1 time slots until it becomes the HOL packet and all the ahead packets are

dropped due to over-deadline; 2) just stays at the HOL position for t2 time slots without

any packet arrivals and departures in the system; 3) leaves the queue buffer and starts to get

service just before a new packet arrives. Accordingly, the waiting time distribution of such

a Late Packet, denoted by ωj , can be derived as

ωj =

j−1∑
t=L−1

Pb1(t)Pb2(j − t), j = t1 + t2 + 1, (3.21)

with

Pb1(t) '
(
t− 1

L− 2

)
π[(D1)L−1(D0)t−L+1]1 (3.22)

Pb2(t) ' (πDt−1
0 D11)

t∑
k=1

Ps(k)(1−
k−1∑
m=0

Pf (m))Pv(t− k) (3.23)

where Pb1(t) and Pb2(t) are the corresponding probabilities of first period and following
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two periods respectively. Consequently, the probability Pr1 can be calculated as

Pr1 ' 1−
tbnd∑
j=L

ωj. (3.24)

Similarly, the minimum waiting time of dropped packets can be approximated by the

waiting duration for those arrival packets that are dropped as early as possible, which are

defined as Early Dropped Packets. Such a early dropped packet is dropped due to the busty

arrival packets. Thus, Pr2 can be calculated as

Pr2 '
tbnd∑
i=L

(
i− 1

L− 1

)
π[(D1)L(D0)i−L]1. (3.25)

Although the actual tail behaviors cannot be fully described by equations (3.24) and

(3.25), if a served packet holds a very long waiting time, it is most likely be of a Late

Packet. In other words, the late packets dominate the calculation of the maximum waiting

time distribution. Likewise, the Early dropped packet accounts most for the minimum

waiting time of dropped packets. These ideas are verified through extensive simulations in

Chapter 3.4.

3.3.2 Matrix-Geometric Analysis

In the long run, HOL packet dropping principle is equivalent to the end-of-the-line (EOL)

packet dropping principle. This is because i) packet dropping occurs only if the buffer

is fully occupied, which is same for both principles, and hence HOL and EOL will have

identical packet dropping probability; ii) all the packets sensed from the same sensor are

statistically identical. Thus the only difference between these two principles is that dropped

packets under HOL hold some waiting delay while dropped packets under EOL do not.

However, the dropped packets under either EOL or HOL won’t affect the waiting time for

those packet that get served eventually. Thus the difference has no influence on analyzing

the performance of these served packets. Therefore, after deriving the optimal buffer length

L∗, the queueing model is reformulated as a discrete-time queue with buffer-overflowing
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EOL dropping principle. The state space for the newly formulated queueing system is

Ω = Ωs
0 ∪ Ωv

0 ∪ Ωs ∪ Ωv, (3.26)

where

Ωv
0 = {(0, k, l)},

Ωs
0 = {(0, u, k, j)},

Ωv = {(i, k, l, j ′)},

Ωs = {(i, u, k, j)}.

Here the variable k represents the arrival phase of the MAP with k = 1, 2, ..., na, l stands

for the phase of the interruption vacation with l = 1, 2, ..., nv, j and j ′ denotes the service

phase and the interrupted phase of the service process with j, j ′ = 1, 2, ..., ns, respectively,

i represents the number of packets in the system with i = 1, 2, ..., L∗+1, and u is the phase

of the effective service time for the queue with u = 0, 1, 2, ..., nb.

Specifically, Ωv
0 and Ωs

0 represent an empty system with the server in a vacation period

and in a effective service period, respectively. In Ωv, there are i packets waiting in the

system and the server is on a vacation with an interrupted service phase j ′ . The last tuple

Ωs represents the case that when the server is attending to the system (i.e. on the working

state), there are i packets in the system with u as the phase of an effective service. Then

the associated transition matrix P can be written as

P =



B C

E A1 A0

A2 A1 A0

. . . . . . . . .

A2 A1 A0

A2 A1 + A0


,

where each row of this matrix corresponds to the number of packets in the system. All the
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block matrices are explained in details below.

Matrix B stands for the scenario that the packet number remains unchanged because

there is no new packet departure and no new arrival. It can be further represented as

B =

Bs,s Bs,v

Bv,s Bv,v

 , (3.27)

where Bs,s = T ⊗ D0 represents the situation that there is no new packet arrival and the

service is effective while the system remains empty. The operator⊗ denotes the Kronecker

Product. Bs,v = t⊗D0 ⊗ φ represents the situation that the server is blocked and goes to

a vacation with no new arrival and no packet in the system. Bv,s = α⊗D0 ⊗ v represents

that the system remains empty without any new arrival while the vacation period ends and

the server becomes effective in the current time slot. Lastly, Bv,v = D0 ⊗ V represents the

situation that the system remains empty and the server continues on vacation without any

new arrival.

MatrixA1 represents the scenario that the number of packets in the system is unchanged

in two consecutive time slots due to either no packet arrival and departure, or one packet

departure and one packet arrival. Obviously, A1 is the general case of B and can be

represented as

A1 =

As,s1 As,v1

Av,s1 Av,v1

 , (3.28)

where

• As,s1 = T ⊗ [D0⊗S+D1⊗ (sβ)], denotes cases that i) there is no new packet arrival

and the server is still effective without any packet departure, or ii) there is one new

packet arrival while the server remains effective as one packet is served.

• As,v1 = t⊗ [D0⊗φ⊗S∗+D1⊗φ⊗ (seT1 (ns+ 1)), denotes cases that i) the effective

period of the server ended and the vacation period starts without any packet arrival

or departure, or ii) there is one packet arrival and one packet departure as the server
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begins a vacation at the ends of this time slot.

• Av,s1 = α ⊗ D0 ⊗ v ⊗ Q∗, represents the situation that the server returns from a

vacation and begins to offer service without any packet arrival and departure.

• Av,v1 = D0 ⊗ V ⊗ Ins+1, represents the situation that there is no new packet arrival

and the server continues on vacation.

Note that S∗ = [0 S] of ns × (ns + 1), Q∗ = [β Q]T , ej denotes the jth column of an

identity matrix, and the super script (·)T represents the matrix transpose.

Matrix E stands for the scenario that the system becomes empty after a packet is

successfully served without new packet arrival. Specifically, it can be represented as

E =

Es,s Es,v

Ev,s Ev,v

 , (3.29)

where Es,s = T ⊗ D0 ⊗ s represents the case that there is no new packet arrival and the

service is still effective after one packet was served, while the system becomes empty at

the end of this time slot. Submatrix Es,v = t⊗D0⊗ φ⊗ s represents the case that there is

a packet departure without any new arrival and the server is blocked and goes to a vacation.

Since there cannot be any packet departure when the server is on vacation, we then have

Ev,s = 0, Ev,v = 0.

Matrix A2 represents the scenario that there is a packet departure and no new arrival,

i.e., a typical death process. Intuitively, A2 represents a general form of E and can be

represented as

A2 =

As,s2 As,v2

Av,s2 Av,v2

 , (3.30)

with As,s2 = T ⊗D0 ⊗ (sβ), As,v2 = t⊗D0 ⊗ φ⊗ (seT1 (ns + 1)) and Av,s2 = Av,v2 = 0.

Matrix A0 represents a birth process, i.e., there is a new packet arrival without any

packet served. The birth process consists of the following four cases: i) there is a new

packet entering the non-empty system, while the server fails offering a successful service
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but keeping at the effective state; ii) the service is interrupted and the server goes to a

vacation with a new packet arrival; iii) there is a new packet arrival and the server becomes

effective after returning from an interruption vacation; and iv) there is one new packet

arrival but the server remains on vacation. In summary, the transition submatrix A0 can be

represented as

A0 =

 T ⊗D1 ⊗ S t⊗D1 ⊗ φ⊗ S∗

α⊗D1 ⊗ v ⊗Q∗ D1 ⊗ V ⊗ Ins+1

 . (3.31)

Matrix C represents the special case of A0 when the system starts with a empty state,

and can be represented as

C =

 T ⊗D1 ⊗ β t⊗D1 ⊗ φ⊗ eT1 (ns + 1)

α⊗D1 ⊗ v ⊗ β D1 ⊗ V ⊗ eT1 (ns + 1)

 . (3.32)

3.3.3 Stationary Distribution

Since the transition matrix P belongs to a finite quasi-birth-death (QBD) type, we apply

the matrix-geometric method to analyze the steady-state distribution. Let x denote the

stationary queue length distribution. Then, we have

x = xP,x1 = 1, (3.33)

where

x = [x0,x1, ...,x
∗
L],x0 = [xs0,x

v
0],xi = [xsi ,x

v
i ], i ≥ 1

xvi = [xi,1,xi,2, ...,xi,k, ...,xi,na ],xsi = [xi,1,xi,2, ...,xi,u, ...,xi,nb
],

xvi,k = [xi,k,1,xi,k,2, ...,xi,k,l, ...,xi,k,nv ],xsi,u = [xi,u,1,xi,u,2, ...,xi,u,k, ...,xi,u,na ],

xvi,k,l = [xi,k,l,1, xi,k,l,2, ..., xi,k,l,ns ],x
s
i,u,k = [xi,u,k,1, xi,u,k,2, ..., xi,u,k,ns ],

xv0 = [xv0,1,x
v
0,2, ...,x

v
0,k, ..,x

v
0,na

],xv0,k = [x0,k,1, x0,k,2, ..., x0,k,nv ],

xs0 = [xs0,1, ...,x
s
0,u, ...,x

s
0,nb

],xs0,u = [xs0,u,1, ...,x
s
0,u,k, ...,x

s
0,u,na

],xs0,u,k = [x0,u,k,1, ..., x0,u,k,ns ].
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According to [66], the stationary distribution x has the following structure,

xi = η1R
i−1
1 + η2R

L∗−i
2 , i ≥ 1, (3.34)

where η1 and η2 are two constant vectors. R1 and R2 are the unique minimal non-negative

solutions of following quadratic matrix equations, respectively,

R1 = A0 +R1A1 +R2
1A2, (3.35)

R2 = A2 +R2A1 +R2
2A0. (3.36)

Matrices R1 and R2 can be solved by using the cyclic reduction (CR) method [62]. Given

R1 and R2, the boundary value x0 and the two constant vectors η1, η2 can be obtained by

solving the following equations
[x0, η1, η2] = [x0, η1, η2]Γ[R1, R2],

x01 + (η1Λ1 + η2Λ2)1 = 1,

(3.37)

where

Λ1 =
L∗−1∑
i=0

Ri
1, Λ2 =

L∗−1∑
i=0

Ri
2, (3.38)

Γ[R1, R2] =


B C 0

E A1 +R1A2 RL∗−2
1 [A0 +R1(A0 + A1)−R1]

RL∗−1
2 E RL∗−2

2 (A2 +R2A1 −R2) R2A0 + A0 + A1

 .
(3.39)

Obviously, [x0, η1, η2] is the left-invariant eigenvector of Γ[R1, R2] with normalization to

make the probabilities sum up to unity. Then, according to equation (3.34), the stationary

distribution can be obtained accordingly.
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3.3.4 Performance Metrics

Based on the derived stationary distribution, system performance in terms of the average

queue length, packet transmission failure probability, queue throughput, and average delay

can be analyzed as follows.

Average Queue Length

According to the server states (i.e., working and vacation), the average number of packets

in the system equals

x̄ =
L∗∑
i=1

i(xi1) =
L∗∑
i=1

i(xsi1 + xvi 1). (3.40)

Let x̄s =
∑L∗

i=1 i(x
s
i1), and x̄v =

∑L∗

i=1 i(x
v
i 1). Then we have, x̄ = x̄s + x̄v. Note that

x̄s and x̄v denote the expected number of packets in the system during the server working

period and the server vacation period, receptively. They can be calculated as follows

x̄s =
L∗∑
i=1

i(xsi1) =
L∗∑
i=1

nb∑
u=1

na∑
k=1

ns∑
j=1

ixi,u,k,j, (3.41)

x̄v =
L∗∑
i=1

i(xvi 1) =
L∗∑
i=1

na∑
k=1

nv∑
l=1

ns∑
j′=1

ixi,k,l,j′ . (3.42)

By removing the packet under service, the average queue length can be obtained by

x̄q =
L∗∑
i=2

(i− 1)xi1. (3.43)

Transmission Failure Probability

A buffered packet will be dropped if its waiting time in the queue reaches the delay

limit (i.e., becomes valueless). Such packet dropping has been transformed into buffer-

overflowing dropping, where the HOL packet will be dropped if the queue buffer is full

and a new packet arrives. Thus, the queueing dropping probability can be calculated as

Pdr = xL∗+11. (3.44)
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Besides, the packet under service can also be blocked when its re-transmission times

are larger than the retry limit. Thus, the blocking probability can be represented as

Pbl = (1− Pdr)ρd. (3.45)

In summary, we define a packet transmission failure probability Ptf as the probability

that the transmission of a sensed packet is failed due to either over-deadline (i.e., dropped)

or over-retry (i.e., blocked). It can be obtained as

Ptf = Pdr + Pbl. (3.46)

Queue throughput

If a packet is neither blocked nor dropped under service, it will be successfully transmitted

in the end. Therefore the queue throughput, defined as the expected number of effectively

served packets, can be obtained as

ε = λ(1− Ptf ), (3.47)

where λ denote the average discrete arrival rate, and can be obtained as λ = (πD−1
1 1)−1.

Average waiting delay and average access delay

The average waiting delay of a served packet W̄ is defined as the number of time slots

from its arrival to when it starts to receive service. The average access delay d̄ is the mean

system time from a packet’s arrival to its departure, and equals the waiting delay plus the

time to receive service. By using Little’s Law, we have

W̄ =
x̄q
ε
, (3.48)

d̄ =
x̄

ε
. (3.49)
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Waiting time distribution

Since this buffer-overflowing queue has a finite buffer, a packet cannot receive services if it

arrives to find the buffer full. We only focus on those packets that can be served eventually.

Under the EOL packet dropping principle, the waiting time of an undropped packet equals

the service duration of all the packets ahead of it. Furthermore, for a new arrival packet,

the probability that there are m packets ahead of it in the system is xm1
1−xL∗+11

,m ≤ L∗. To

analyze the waiting time distribution, we construct an absorbing Markov chain to represent

the departure process of ahead packets with transient states {(m,u, j), (m, l, j ′)},m > 0,

and the absorbing state {m = 0}. Define U as the sub-stochastic matrix representing the

transient state transitions. Then U can be written as

U =



F

G F

G F

. . . . . .

G F


, (3.50)

where

F =

 T ⊗ S t⊗ φ⊗ S∗

α⊗ v ⊗Q∗ V ⊗ Ins+1

 , G =

T ⊗ (sβ) t⊗ φ⊗ (teT1 (ns + 1))

0 0

 . (3.51)

Moreover, the initial state vector σ can be obtained as, σ = (1−xL∗+11)[x1,x2, ...,xL∗ ].

Following the formulated absorbing Markov chain, the waiting time distribution Wi can be

calculated as

Wi =


(1− xL∗+11)x01, i = 0

σU i−1u, i ≥ 1

, (3.52)

where u = 1− U1.
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3.4 Numerical and Simulation Results

In this section, we analyze the system performance of IEEE 802.15.6-based WBANs

and verify our proposed analytical framework via extensive simulations. The impacts

of the human body shadowing and instantaneous delay limit on the performance are also

investigated.

3.4.1 Simulation Parameters

We consider a CAMS/CA based uplink transmission scenario in a star-topology WBAN

with N = 8 sensors and a coordinator. Each sensor corresponds to one specific type

of traffic loads with different contention window sizes. Here, we take one medical sensor

node as an example for the performance evaluation, and the maximum re-transmission limit

for a medical packet is set as R = 3. The arrival process is modeled by a MAP distribution

with the following parameters:

D0 = (I − aΛ)

0.1 0.9

0.2 0.8

 , D1 = aΛ

0.1 0.9

0.2 0.8

 , (3.53)

where aΛ is a diagonal matrix representing the arrival rate at each phase. In our simulation,

we set Λ =
[

0.12 0
0 0.15

]
and vary a from 1 to 3 to indicate different arrival traffic intensities.

The packet error rate is set as P̄e = 0.08. Consequently, the matrices of the PH model for

the service process can be obtained by equations 3.10 and 3.13

S =


0.2897 0.0568 0 0

0 0.2897 0.0568 0

0 0 0.3759 0.0499

0 0 0 0.3759


, s =


0.6535

0.6535

0.5742

0.6241


, (3.54)

and the dropping rate ρd ' 0.0028. In our simulation, we assume the packet service will

resume from the state where the service is interrupted, i.e. matrix Q is an identity matrix.

Moreover, as for the shadowing interruption, we consider a geometric distribution as a
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Table 3.1: The verification of queue length stationary distribution under different arrival intensities

Queue length
a = 1 a = 1.5 a = 2

OD(sim) BO(analysis) OD(sim) BO(analysis) OD(sim) BO(analysis)
0 63.8590 65.1080 49.4520 49.1210 33.4770 33.4710
1 25.6220 25.2060 30.1240 29.8200 29.0500 29.1960
2 7.2300 6.6260 11.5390 11.5260 15.0660 14.8820
3 2.2600 2.1260 4.7930 5.2000 8.9730 8.6100
4 0.7020 0.6400 2.2520 2.3660 5.4830 5.5510
5 0.2320 0.2310 0.9910 1.0670 3.4390 3.3250
6 0.0720 0.0480 0.4990 0.5340 2.0030 2.1090
7 0.0220 0.0130 0.2070 0.2090 1.2570 1.2460
8 0.0010 0.0020 0.1200 0.1230 0.6570 0.6740
9 0.0000 0.0000 0.0210 0.0308 0.3560 0.3970
10 0.0000 0.0000 0.0020 0.0032 0.1620 0.2420
11 0.0000 0.0000 0.0000 0.0000 0.0530 0.1730
12 0.0000 0.0000 0.0000 0.0000 0.0210 0.0860
13 0.0000 0.0000 0.0000 0.0000 0.0030 0.0340
14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0040
Ptf 0.0038 0.0042 0.0049 0.0054 0.0066 0.0070

special case of PH distribution with single phase [67]: α = 1, T = 1− wp, t = wp, φ = 1,

V = 1− vq, v = vq. By default, we set wp = 0.1 and vq = 0.3 in the evaluation.

Note that some of the above parameters may vary depending on different evaluation

scenarios and specific parameter settings won’t affect the observation results. We develop a

time-driven simulator in Matlab to evaluate over-deadline scenarios with different settings.

For each parameter setting, we conduct 5 simulations and the time length of each simulation

is 106 slots. A Matlab toolbox on matrix analytic methods developed by Bini et al. in [68]

is used to solve the QBD Markov chain.

3.4.2 Queueing Dynamics Verification

Table 3.1 shows the comparison of the stationary queue length distribution obtained through

simulation under the over-deadline (OD) principle with that obtained through approximated

theoretical analysis under the buffer-overflowing (BO) principle. It can be seen that both

results are very close under different arrival intensities, a = 1, a = 1.5 and a = 2.

Moreover, we can see that the packet transmission failure probability obtained through
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Figure 3.4: The verification of packet waiting time distribution under different arrival intensities

simulation is also close to the analytical results, which further verifies the accuracy of our

proposed analytical framework and the validity of our buffer-overflowing approximation.

Note that when a = 2, the maximum queue length of the analytical result is 14 while that

of the simulation result is 13. This is because the buffer size is constrained to an integer,

so that the optimal buffer length in our buffer-overflowing approximation may sometimes

be greater or less than the buffer size of simulation results by one. However, as the table

shows, the approximation only results in slight differences.

Fig. 3.4 compares the average waiting delay between simulation and analytical results

with respect to the arrival intensity. From the figure, we can see that the maximum

waiting time of the OD simulation results is always fixed at the instantaneous delay limit

(20 slots) while that of the BO analytical results is greater than 20 slots and varies with

arrival intensities. However, we have to point out that the BO analytical results are very

close to the OD simulation results and the probabilities that the waiting time is larger

43



0 0.05 0.1 0.15 0.2 0.25 0.3
w

p

0

2

4

6

8

10

12

14

A
v
e
ra

g
e
 w

a
it
in

g
 d

e
la

y

v
q
 = 0.1

v
q
 = 0.3

v
q
 = 0.5

Figure 3.5: The effect of shadowing interruption on the average waiting delay

than the instantaneous delay limit only contribute less than 0.0001 in total. Therefore,

our proposed analytical framework can provide accurate and computationally efficient

analyses on system performance by jointly considering instantaneous delay constraints and

shadowing interruptions.

3.4.3 Impacts of Body Shadowing Interruption

We investigate the effect of the human body shadowing interruption on the system

performance under different working and vacation probabilities. Fig. 3.5 shows the average

waiting delay changes with respect to the probability wp that the service becomes invalid

and vacation starts, and the probability vq that the vacation ends and the service resumes.

From the figure, we can observe that the average waiting delay increases as the probability

wp increases, which is because a larger wp means the service will be interrupted more

frequently. With the fixed wp, the waiting delay decreases as the probability vq increases.
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Figure 3.6: The effect of shadowing interruption on the transmission failure probability

This is because a larger vq indicates the service is more likely to return from a vacation

interruption.

The effect of shadowing interruption on the packet transmission failure probability

is shown in Fig. 3.6. As expected, the failure probability increases when the working-

interrupted probability wp increases or the vacation-ending probability vq decreases.

Specially, when wp = 0, the service is not affected by the human body shadowing, so that

the system can achieve the best performance (i.e. the lowest waiting delay and transmission

failure probability). Obviously, the body shadowing interruption causes great performance

degradation for packet transmission with stringent instantaneous delay constraints.

3.4.4 Impacts of Instantaneous Delay Constraint

Fig. 3.7 and Fig. 3.8 demonstrate the effects of the instantaneous delay constraint on

the average packet waiting delay and the transmission failure probability, respectively,
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Figure 3.7: The effect of instantaneous delay limit on the average waiting delay

under two different traffic loads, a = 1 and a = 2. For both figures, the shadowing

interruption is configured to be same with wp = 0.1, vq = 0.3. As shown in Fig. 3.7, the

average waiting delay increases with the value of instantaneous delay limit. It is also noted

that the average waiting delay is much smaller than the instantaneous delay limit. This

is because the instantaneous delay limit represents the maximum waiting time of served

packets. This observation clearly validate the existence of differences between average

delay constraints and instantaneous delay constraints. In addition, a larger delay limit

provides more transmission opportunities for long-waited packets, which leads to a lower

packet transmission failure probability accordingly. It can be seen from Fig. 3.8 that the

packet transmission failure probability decreases as the delay limit increases. Clearly, we

can also observe that with a fixed delay limit, the higher arrival intensity results in a larger

average waiting delay and a larger transmission failure probability.
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Figure 3.8: The effect of instantaneous delay limit on the transmission failure probability
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Chapter 4

Energy Efficient Packet Transmission

Strategies for Wireless Body Area

Networks with Rechargeable Sensors

In this chapter, we investigate energy efficient packet transmission strategies for wireless

body area networks (WBANs) with rechargeable sensors. For practical implementations,

we propose a multi-threshold based transmission strategy by taking into account the

channel state, battery state and number of buffered packets in the system. A discrete

Markov arrival process (DMAP) is introduced to jointly model channel correlations and

energy allocations. After that, with given thresholds and corresponding energy allocations,

a level dependent Quasi-Birth-and-Death Markov chain is constructed to evaluate the

system performance. According to the derived performance metrics, we formulate an

optimization problem to find optimal thresholds for energy efficiency maximization with

reasonable performance provisioning. Extensive simulations are conducted to verify our

proposed queueing analytical model and demonstrate performance gains of our proposed

strategy in WBANs over counterparts.
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Figure 4.1: Threshold-based queueing system under study

4.1 System Model

4.1.1 Network Model

We consider a star-topology WBAN, where each sensor node is capable of recharging its

capacity-limited battery from human bodies or external energy sources in the surrounding

environment. The harvesting process is independent from data transmission, and each

sensor node can transmit data and collect energy simultaneously.

The time is divided into slots with equal lengths. Each data packet needs at least one

time slot for transmission and there is at most one new packet arrival in a slot. We quantize

the battery energy into discrete units, and assume that at least one unit of energy is required

to transmit one packet [69]. Initially, each sensor node stored E0 units of energy and new

units of energy are randomly collected when the battery is not full. The service of the

node will be suspended if the battery is depleted, and will be restarted until new energy is

harvested.

4.1.2 Channel Model

The fading channel around human bodies are correlated [52] and IEEE standard 802.15.6

[45] suggested the use of Markov channel models for WBANs. Like [70], we consider a

slow-fading channel where the instantaneous channel gain h remains the same in a slot,
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but it may change slot by slot. Through partitioning the range of channel gain into K

intervals, the channel is modeled as a finite state Markov chain (FSMC) and the state space

is denoted as S = {s1, s2, ..., sK}. The transition probability Pi,j , i, j ∈ {1, 2, ..., K}, from

state i to j can be obtained from practical measurements or statistical models [70]. Since

the correlations only exist between adjacent states, we have Pi,j = 0, if |i− j| > 1.

4.1.3 Queueing Model

A sensor node has two queues to store data and energy arrivals, respectively. The data queue

has a finite buffer length `D and the energy queue has a buffer length of `E . Both queues

follow a first come first served fashion, and the service of one packet requires at least one

unit of energy. In this discrete-time system, we model packet arrivals and energy arrivals

by Bernoulli processes with probabilities α and β, respectively. The queueing structure of

the system under study at a sensor node is illustrated in Fig. 4.1.

In the channel model, the packet error rate εi(θ) at the ith state is dependent on the

allocated amount of transmission energy in one slot, θ. Since energy allocations in our

strategy are adaptively adjusted based on the status of data buffer and energy battery,

we construct an absorbing Markov chain to model the service process which jointly

considers the channel characteristics and energy allocations. Let S ′ = {s0, S} denote the

state space of the absorbing chain, where the absorbing state s0 represents the successful

packet transmission, i.e., a successful departure. Then a discrete Markov arrival process is

introduced to model the absorbing Markov chain, and can be represented by a matrix pair

(D0, D1), where both matrices have an order of K equal to the number of non-absorbing

states. The elements (D0)ij and (D1)ij represent the transition probabilities from state

i to state j without and with a successful packet transmission (i.e., a packet departure),

respectively, which can be derived by

(D0)ij = εi(θ)Pi,j, |i− j| ≤ 1, (4.1)

(D1)ij = (1− εi(θ))Pi,j, |i− j| ≤ 1. (4.2)
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For clarity, we use the matrix pair (D0(θ), D1(θ)) to represent the service processes with

energy allocation θ.

LetD = D0+D1. Then, the matrixD is stochastic and irreducible, andD1 = 1, where

1 represents a column vector of ones with an appropriate dimension. The mean packet

service rate can be calculated by µ̄ = $D11, where $ is the steady state distribution of the

absorbing Markov chain and can be calculated from $1 = 1 and $D = $.

4.2 Energy Efficient Transmission Strategy

A sensor node can choose different transmission strategies based on the channel state,

battery state and the number of buffered packets. Obviously, allocating more energy for

data transmission in one slot can achieve better performance, i.e., a lower dropping packet

probability and a smaller average delay, but it will accelerate the energy consumption

as well. Motivated by threshold-based and state-aware scheduling strategies in [38, 50],

the energy allocation has to be adaptively adjusted based on current system states.

Intuitively, when a sensor node stores a large amount of packets in the buffer and holds

sufficient energy for transmissions, in order to guarantee the system performance, more

energy is allocated to achieve a higher successful transmission probability, i.e., a higher

average service rate. In order to efficiently manage the energy allocation with QoS

guarantees in terms of the reliability and timeliness, we propose a multi-threshold based

transmission strategy to better balance the trade-off between the energy consumption and

QoS performance provisioning.

In our proposed scheme, we define two threshold vectors νE and νD with M + 1

elements (i.e., thresholds) for partitioning the state spaces of data and energy queues,

respectively. Without loss of generality, we assume φ0 < φ1 < · · · < φm < · · · <

φM−1 < φM , φm ∈ νD and ψ0 < ψ1 ≤ · · · ≤ ψm ≤ · · · ≤ ψM−1 < ψM , ψm ∈ νE ,

with φM = `D, ψM = `E representing full queues and φ0 = ψ0 = 0 representing empty

queues. Obviously, the threshold-based transmission strategy will divide the data queue
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and energy queue into M + 1 successive intervals, 0, (φ0, φ1), [φ1, φ2), . . . , [φM−1, φM ]

and 0, (ψ0, ψ1), [ψ1, ψ2), . . . , [ψM−1, ψM ]. When data queue (energy queue) state is in the

interval of [φm−1, φm) ([ψm−1, ψm)), data queue (energy queue) is said to be at the mth

stage.

According to the energy and data queue states, different energy units will be allocated.

It is obvious that there are (M + 1)2 combinations of energy and data stages based on our

designed thresholds and the energy allocation for each combination should be specified.

However, this may still result in high complexity and analysis difficulty. By considering

the fact that current energy harvesting technologies are still at the early stage and the

harvesting efficiency is still very low [71], we limit our focus on energy-saving transmission

strategies. Specifically, with data queue at the mth stage and energy queue at the nth stage,

θκ units of energy will be allocated for one packet transmission, where κ = min{m,n}

and θκ ≤ ψn−1. Consequently, these (M + 1)2 combinations are simplified into M + 1

cases. For instance, when the energy storage is low and data queue holds large amount of

packets, we should allocate small amount of energy based on the energy queue state. On

the contrary, when the amount of buffered packets is low and sensor has adequate energy

storage, we still allocate small amount of energy based on the data queue state for the sake

of reserving energy for future packet transmissions, since the average delay and packet

dropping probability is already low when data queue length is small.

Therefore, M + 1 energy allocation levels Θ = {θκ, κ = 0, 1, 2, ...M} will be

constructed based on all the M + 1 cases. Considering efficient energy managements,

we set θ0 < θ1 ≤ · · · ≤ θM with minimum energy consumption θ0 = 0. Since the

packet service time is dependent on the channel condition and allocated energy, the service

process in the κth energy allocation level will follow the DMAP distribution with a pair

representation (D0(θκ), D1(θκ)) with order K. The optimal threshold settings and energy

allocations will be discussed in Chapter 4.4.
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4.3 Queueing Analysis

In this section, a queueing system is established to analyze the performance of the proposed

multi-threshold based transmission strategy with given thresholds at a sensor node.

4.3.1 Stationary Analysis

Assume that the system state is observed at the end of each slot. The constructed queueing

system consists of the following state space,

Ω = {(X ,Y , C), 0 ≤ X ≤ `D + 1, 0 ≤ Y ≤ `E, 1 ≤ C ≤ K}, (4.3)

where X is the number of packets in the system, Y is the number of energy units in the

energy queue, and C represents the phase of service process, i.e., the channel state.

Since the energy consumption and packet service process depend on different states

in this queueing system, the transition probabilities become state-dependent as well and a

general formula does not exist. To address this challenge, we develop a level dependent

QBD discrete time Markov chain (DTMC). The associated transition matrix P can be

represented in the block partitioned form as

P =



B0,0 B0,1

B1,0 B1,1 B1,2

B2,1 B2,2 B2,3

. . . . . . . . .

B`D,`D−1 B`D,`D B`D,`D+1

B`D+1,`D B`D+1,`D+1


(4.4)

where each row of this matrix corresponds to the number of packets in the data queue, and

each block matrix Bx,x′ represents the transition probability from data queue state x to x′

(x′ ∈ {x− 1, x, x + 1}). Note that the dependence of the energy allocation on data queue

state leads to a level dependent birth and death process. Thus we next derive the block

matrix for energy queue state transitions when the data queue is at the mth stage.
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When m = 0, i.e., no packet exists in the system, we can derive the block matrices

B0,0, B0,1 directly following a standard QBD.

B0,0 =



ᾱβ̄ ᾱβ

ᾱβ̄ ᾱβ

. . . . . .

ᾱβ̄ ᾱβ

ᾱ


⊗D(θ0), (4.5)

B0,1 =



αβ̄ αβ

αβ̄ αβ

. . . . . .

αβ̄ αβ

α


⊗D(θ0), (4.6)

where the symbol ⊗ denotes the Kronecker product. We take B0,0 as an example to show

the derivation process. B0,0 denotes the case that there is no packet in the system and no

new packet arrival at the end of the slot. Each row of B0,0 represents the number of energy

units in the system. Since m = 0, θ0 is adopted for energy allocation, i.e. no energy is

allocated. Since during the past time slot, the data queue remains empty and there is no

energy consumption for data transmission, the corresponding probability with no energy

arrival is ᾱβ̄D(θ0); otherwise, the probability is ᾱβD(θ0). When energy queue is full,

since new energy arrivals will be dropped, the transition probability becomes ᾱD(θ0).

Whenm 6= 0, the transition sub-matrices will change from stage to stage. Here, we take

the block matrix Bx,x−1 (when x > 1) as an example where a data packet is successfully

transmitted. According to different energy queue status, Bx,x−1 consists of M + 1 subparts
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{An}, n = 0, 1, 2, ...,M , and can be represented as

Bx,x−1 =



A0

A1

. . .

An
. . .

AM


. (4.7)

At the nth energy stage, the energy allocation will be θκ, where κ = min{m,n}. An is a

sub-transition matrix from energy states [ψn, ψn + 1, ..., ψn+1 − 1] to states [ψn − θκ, ψn −

θκ+1, ..., ψn, ..., ψn+1−1], of dimension (ψm+1−ψm)×(ψm+1−ψm+θκ). The transition

probability with and without new energy arrival can be respectively calculated as:

Pr{(x− 1, y − θκ + 1)|(x, y)} = ᾱβD1(θκ),

P r{(x− 1, y − θκ)|(x, y)} = ᾱβ̄D1(θκ).

where x ∈ [φm, φm+1) and y ∈ [ψn, ψn+1). The application of D1 results from the

successful packet transmission. Likewise, block matrices for other stages can be obtained

in a similar manner. As for Bx,x+1 and Bx,x, the transition probabilities in sub-transition

matrix An will be,

Pr{(x+ 1, y − θκ)|(x, y)} = αβ̄D0(θκ),

P r{(x+ 1, y − θκ + 1)|(x, y)} = αβD0(θκ),

P r{(x, y−θκ)|(x, y)}= β̄(ᾱD0(θκ)+αD1(θκ)),

P r { (x,y−θκ+1)|(x, y)}=β(ᾱ D0 ( θκ ) +αD1(θκ)).

Here, we take m = 1, θ1 = 1 as an example to show the details of block matrices
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B1,0, B1,1, B1,2 which can be represented as

B1,0 =


0 · IK 0 · IK

ᾱβ̄D1(θ1) ᾱβD1(θ1)

. . . . . .

ᾱβ̄D1(θ1) ᾱβD1(θ1)


, (4.8)

B1,1 =


ᾱβ̄ · IK ᾱβ · IK

β̄Γ βΓ

. . . . . .

β̄Γ βΓ


, (4.9)

B1,2 =


β̄α · IK αβ · IK

αβ̄D0(θ1) αβD0(θ1)

. . . . . .

αβ̄D0(θ1) αβD0(θ1)


, (4.10)

where Γ = (ᾱD0(θ1) + αD1(θ1)), ᾱ = 1 − α, β̄ = 1 − β, and IK is the identity matrix

with dimension of K.

After this level dependent QBD is constructed, a matrix analytic method can be used

to obtain the stationary distribution. Let π be the stationary probability vector associated

with the transition matrix P . Vector π contains the steady state probabilities π(x, y, c)

corresponding to x data packets in the system, y units of energy in the battery, and channel

state being c. Then π can be obtained from

πP = π,π1 = 1, (4.11)

where π = [π0,π1, ...,πx, ...,π`D+1], and each element πx denotes the steady-state

probability of x packets in the system. Based on matrix-geometric methods [72], we can
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obtain the non-negative solutions Rx and Gx from

Rx = Bx−1,x +RxBx,x +RxRx+1Bx+1,x, (4.12)

Gx = Bx−1,x +Bx,xGx +Bx+1,xGx+1Gx. (4.13)

Given that this QBD process is positive recurrent, there exists a strictly positive solution to

π0 = π0(B0,0 +B0,1G1). And further we have the matrix product solution, πx+1 = πxRx.

4.3.2 Performance Measures

In this subsection, various performance measures are derived from the stationary distribu-

tion π.

Queue length distribution

Let q1(x) and q2(y) be the probabilities that there are x data packets in the system, and

there are y units of energy in the system, respectively. Then, we have

q1(x) =

`E∑
y=0

K∑
c=1

π(x, y, c), q̄1 =
∑
x

xq1(x), (4.14)

q2(y) =

`D+1∑
x=0

K∑
c=1

π(x, y, c), q̄2 =
∑
y

xq2(y), (4.15)

where q̄1 and q̄2 represent corresponding average queue length.

Queueing throughput

A buffered data packet will be served eventually if it is not blocked upon its arrival. Thus,

the queueing throughput is the mean number of transmitted packets within one slot, which

can be calculated by

S = α(1− q1(`D + 1)). (4.16)
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Average energy waste

We define the energy units that were dropped due to a full energy queue as the energy

waste, denoted by ω̄. Then, ω̄ (units/time slot) can be obtained from

ω̄ = q2(`E)β. (4.17)

Average delay

The average delay of buffered packets is the average time duration between a packet arrival

and its departure. We can derive average delay τ̄ by using Little’s Law as

τ̄ =
q̄1

S
. (4.18)

Average system-offline probability

We define the system is at offline state if the whole service is suspended when there is no

energy available for data transmissions. Since the energy queue is empty at the offline state,

the average system-offline probability δ̄ can be calculated by

δ̄ = q2(0). (4.19)

4.4 Energy Efficiency Optimization

According to the analysis procedure shown in the previous section, it is important to

set thresholds and corresponding energy allocations appropriately for specific application

requirements. For explanation purpose, we focus on finding an optimal strategy such that

energy efficiency is maximized subject to the constraints on the average delay and system-

offline probability. Here, the energy efficiency is defined as the queueing throughput per
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unit-energy consumption. Such optimization problem can be formulated as follows,

max
νE ,νD ,Θ

S
β

(4.20)

s.t. τ̄ ≤ τ̂ , (a)

δ̄ ≤ δ̂, (b)

φ0 < φ1 < · · · < φM , (c)

ψ0 < ψ1 ≤ · · · ≤ ψM , (d)

θ0 < θ1 ≤ · · · ≤ θM . (e)

where νE,νD,Θ are decision variables. Constraints (a) and (b) aim to guarantee the

requirements for the average delay and system-offline probability, respectively, where τ̂ and

δ̂ are predefined. According to our previous discussions, thresholds settings for data queue

and energy queue are constrained by (c) and (d), respectively, and the energy allocation

levels are limited in constraint (e).

Note that transition probability matrices are functions of our decision variables,

and close-form expressions for queue length distributions and performance metrics are

commonly not available. However, by considering the fact that the number of thresholds,

M , adopted by the sensor node in WBANs is usually not too large, we can adopt heuristic

direct search techniques, such as the Hooke and Jeeves direct search method [65], to find

the optimal strategy.

4.5 Numerical Results

A time-driven simulator is developed in Matlab to evaluate the system performance and

validate the correctness of our analytical model. For each parameter setting, we conduct 10

simulations and the time length of each simulation is 106 slots. A Matlab toolbox in [73]

and direct search method in [65] are used to solve the level dependent QBD chain and

obtain the optimal strategy, respectively. We consider a Gilbert-Elliott correlated channel
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Figure 4.2: Energy efficiency comparison for different transmission strategies

with parameters K = 2, P1,1 = 0.6, P1,2 = 0.4, P2,1 = 0.3, P2,2 = 0.7, and buffer

lengths are set to `D = 12, `E = 12. We investigate performance results for different

transmission strategies (i.e., M = 0, 1, 2) with increasing data arrival rates.

In Figs. 4.2 - 4.5, we evaluate the system performance versus packet arrival rates

for three different transmission strategies under a constant energy arrival rate β = 0.4.

Obviously, all the simulation results match the analytical results very well, which justifies

the accuracy of our proposed queueing analytical model. It can also be seen from the figures

that multi-threshold (M = 2) transmission strategy outperforms the single-threshold

(M = 1) and non-threshold (M = 0) strategies in terms of average energy waste, average

delay and packet dropping probability. It is because our threshold-based transmission

strategies can efficiently utilize the harvested energy by allowing more flexible energy

allocations based on system states.

In addition, as we expected, when the arrival rate increases, the packet dropping

probability, average delay and energy efficiency increase for all strategies due to high
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Figure 4.3: Energy waste comparison for different transmission strategies
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Figure 4.4: Packet dropping probability comparison for different transmission strategies
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Figure 4.5: Average delay comparison for different transmission strategies

arrival traffics while the average energy waste decreases. Note that when a very high

data arrival rate is applied, the energy waste for all strategies is close to zero, and poor

QoS performance such as long average waiting time and high dropping probability become

inevitable. This is because the energy storage becomes insufficient with large amounts

of data packets waiting for transmissions. Consequently, the performance gap between

non-threshold and threshold-based strategies is relatively small at this case. Moreover, we

can also observe that when the packet arrival rate is low, the packet dropping probability

and the average delay gradually approach zeros for all strategies, but the non-threshold

strategy waste much more energy than threshold-based ones. Except those two extreme

cases, the superiority of threshold-based strategies is obvious. It can also be expected that

the transmission strategy with more thresholds is more flexible in energy allocation and can

better adapt to the dynamics of system states.
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Chapter 5

Conclusions and Future Works

5.1 Conclusion and Comments

In this thesis, the network characteristics, communication architecture, and potential

applications of WBANs have been firstly reviewed. Then the new research challenges

resulting from the complicated channel environments and more stringent energy efficient

requirements in WBANs were illustrated in Chapter 2. Since our research mainly focuses

on the packet transmission scheduling in WBANs, a comprehensive literature survey on

recent scheduling designs were also provided.

In Chapter 3, a queueing analytical framework has been presented to analyze the

performances of a WBAN with instantaneous delay constraints and human body shadowing

effects. Through carefully analyzing the MAC mechanism defined in the IEEE 802.15.6,

we developed a PH distribution with a specific blocking rate to model the access process.

A random time limited vacation has been considered to describe the random shadowing

interruption process, i.e., random blocking and random recovering of the service. In

addition, a buffer length optimization problem has been solved to approximately model

the effects of instantaneous delay constraints. To make the proposed analytical framework

more general and comprehensive, we introduced the MAP distribution for modeling

arrival traffics and PH distributions to mathematically describe the service process and
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random interruption vacation. Theoretical and simulation results showed that the proposed

analytical framework was both accurate and computationally efficient. In addition,

the results also demonstrated that instantaneous delay constraints could guarantee the

timeliness of served packets and the human body shadowing had considerably effects on

the packet average delay and transmission failure probability.

In Chapter 4, we have presented a multi-threshold based packet transmission strategy

for a rechargeable sensor in WBANs. Sensors can efficiently allocate the transmission

energy while jointly taking into account the battery state and data buffer state. A general

discrete-time queueing system is constructed for performance evaluations of our proposed

scheme. After deriving various performance metrics through analyzing a level dependent

QBD Markov chain, an optimization problem is formulated to investigate optimal threshold

configurations for maximizing the energy efficiency with QoS guarantee. Numerical results

verify our analytical models and demonstrate performance gains of our proposed strategy.

5.2 Future Works

In our proposed multi-threshold based packet transmission strategies, we considered a

simple channel model without modeling the human body shadowing effects, and assumed

the geometric distributions for both data and energy arrivals. A more practical extension is

to consider the shadowing interruptions and adopt more practical distributions to capture

the arrival correlations. Besides, to achieve a better energy efficiency, we can also apply the

instantaneous delay constraints like we proposed in Chapter 3 into the joint data and energy

scheduling issues. However, these extensions will cause great analyses difficulties, which

require more advanced queueing theory and more reasonable approximation methods.

In addition, since the sensor cannot transmit data and collect energy simultaneously in

some practical scenarios, studying the optimal pattern selection policy for the sensor also

becomes necessary.

In our presented analytical framework, the human body shadowing could randomly
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interrupt the packet transmission, i.e., the service rate becomes zero when the server starts

a shadowing vacation. One potential extension is to consider the service degradation

when shadowing vacation occurs instead of complete interruptions. Moreover, a priority

queueing structure may also be taken into account to introduce the effects of the emergency

traffics. Apart from the instantaneous delay constraints, we may also consider a priority-

changing scheme to improve the emergency data transmissions. For example, we can

consider the priority falling scheme between different class priority queues based on the

packet waiting time [43]. Moreover, for future works, extensive real experiments need to be

carried out to verify our analysis and test the performance of our proposed multi-threshold

transmission strategies.

In addition, my current research mainly focuses on intra-WBANs, where the inter-

ference among multiple WBANs (inter-WBANs) has not been considered. However, the

data transmission of WBANs in practice may be influenced by the interfering neighbors.

Specifically, human motions that are commonly highly unpredictable may result in the

WBAN randomly moving into and out of each other’s coverage, which will cause

severe mutual interference. Obviously, the existence of the unexpected interference will

inevitably cause grate performance degradation on our proposed transmission scheduling

schemes. Thus not only the energy efficiency and channel randomness but also the

inter-WBAN interference mitigation should be carefully considered. Therefore, exploring

a robust transmission scheduling design to support multiple WBANs scenarios without

compromising QoS requirements will be another interesting future work.
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