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Abstract

Eye movements are directed by both high-level considerations such as contextual

guidance or experience and also by observed visual patterns. A bright light or high

contrast image structure will tend to draw an observer’s attention, independent of

task. The extent to which a visual pattern attracts attention in this manner is often

described according to a quantitative measure of visual saliency. Although many

computational models of visual saliency have been published in last two decades,

current literature is mostly limited to the maximization of performance in predicting

saliency. Apart from this common challenge, we address some new aspects of image

understanding relating to saliency. For example, we explore the relationship between

natural image statistics and human visual attention, measure the extent of center bias

produced by saliency algorithms and develop ways to remove such bias, relate different

perceptual task like free viewing, object search, saliency search and explicit judgment,

and predict different image level subjective ratings. In this thesis, we present solutions

to aforementioned problems for a better basic understanding of visual saliency while

also producing some novel avenues of analysis that inform on perception of digital

media.
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Chapter 1

Introduction

1.1 General introduction

The human visual system is well adapted to finding areas of interest in a scene.

In most of the cases, unexpected phenomena like a flash of light, colorful items,

objects in motion or a location that is dissimilar to its surroundings attract our

interest. This distinct perceptual behavior is called image salience. Simulating this

attentive behavior using a computational model is an open challenge of research [23].

Models of this type produce a saliency map of an input image, with high values

corresponding to more salient pixel locations, and lower values to less salient pixel

locations. This representation can be used as input to other algorithms for scene

analysis, or for visualization in highlighting the salient regions. Models attempt to

maximize the match between the saliency maps produced, and observed fixations in

eye tracking data from user studies. This saliency map can be used as part of a larger

set of components in systems for image navigation, object detection, segmentation,

1



2 Chapter 1: Introduction

recognition etc.

1.2 Motivation and contribution

Established algorithms for characterizing image saliency have informed on differ-

ent aspects of visual attention, and have gradually produced superior performance in

predicting gaze data. In most cases, algorithms have been tested with datasets con-

taining many salient objects. However, for a natural image dataset where relatively

few salient objects or regions are present, the algorithms have not been tested exhaus-

tively. In such a case, the attentive behaviour of humans will vary significantly from

one person to another because of scarcity of salient patterns. In this thesis, we anal-

yse model behavior in considering natural images to better understand behaviour

in more naturalistic settings. Furthermore, for natural stimuli, some prior models

show the capability to predict the neural response corresponding to visual processing

[12; 27] as measured via brain imaging. As the response is related to visual attention

(or rather stimulus contrast), we attempt to provide human like saliency predictions

with a model inspired by these brain imaging efforts.

Human gaze behaviour is largely dominated by a common tendency called center

bias [47]. People have a tendency to fixate preferentially towards the middle of the

scene. We can easily find the effect of this behaviour in eye tracking fixation data for

almost any dataset. The extent of center bias inherent in this kind of data has been

addressed in detail in the literature [4]. Different saliency algorithms treat center

bias according to a variety of methods within the saliency detection process. For

example, many algorithms apply Gaussian blurring as a post processing step which
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implicitly models the effect of center bias [34]. In other research efforts, it is shown

that algorithms are very sensitive to this type of blurring [4; 15]. As the amount

of center bias inherent in the output of different algorithms varies, it is important

to measure the extent of center bias to correctly interpret benchmarking results. To

solve this problem, a modified type of ROC analysis has been proposed that considers

area under the ROC curve (AUC) subject to random selection of negative samples;

this has been proposed to remove the effect of center bias during evaluation [47].

However, there is also spatial bias in the output of different algorithms in the saliency

map itself, and this has not been addressed in the literature. In this thesis, we propose

a way to measure the extent of center bias produced by different saliency algorithms.

Moreover, the role of center bias in benchmarking and evaluation of models has not

been considered in sufficient detail, and we propose alternative ways to treat center

bias in the saliency maps to ensure a fair comparison among saliency algorithms.

While fixation data captures gaze behavior through eye tracking, this presents one

specific measure of content of relevance to an observer. There are alternatives that

are arguably subject to a different degree of cognitive control. One such measurement

proposed in prior work is deemed explicit judgment. For explicit judgment, the most

salient location in an image is selected by a human observer via manual selection using

the mouse, and is subject to a slower time-course that presumably invokes a different

set of cognitive processes. Koehler et al. [29] showed that saliency maps better

approximate explicit judgments than gaze points in fixation data. In this thesis, we

present results that improve on performance of algorithmic prediction of locations

likely to be selected via explicit judgment. We have built a new model for prediction
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of explicit judgment based on an ensemble prediction using different saliency maps

and comparing with fixation data. This includes methods for approximating the

type of data that results from measuring explicit judgment without a user study in

simulating this type of data from extent eye tracking data. This research expands

on our understanding of visual perception of digital media, and also for alternative

types of analysis that include reduces the impact of biases associated with oculomotor

control, or center bias.

In eye tracking experiments, each observer will tend to examine different locations

in an image. As mentioned before, the collection of those locations are characterized

by discrete fixations. In fixation data, there is typically correlation among the indi-

vidual locations fixated by different observers, however the extent of this correlation

will vary from one image to another. In the saliency literature, the extent of the

agreement across observers is measured and quantified according to an inter-observer

congruency (IOC) score [31; 23]. This plays a role primarily in benchmarking stud-

ies in measuring the capacity for the raw human fixation data to predict behavior

of other humans in the experiments, and to provide a bound on how well an algo-

rithm may perform in the best case [4] since this score is bounded by the inherent

variability in the data. Aside from this traditional use in benchmarking, IOC may

arguably provide a good measure of characteristics of an image, including the level

of interest an image may generate. A high IOC means that observers are inclined to

look at similar locations in the image. Such agreement indicates that observers have

an implicit tendency to examine the image in a common fashion that may be due to

salient elements of the image. There is therefore value in knowing the degree of IOC
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associated with an image, and therefore to having the capacity to infer this statistic

in the absence of existing eye tracking data [32]. IOC prediction can be an useful tool

as an intermediate level feature for analytics targeting perception of digital media.

In this thesis, we have proposed a computational model for predicting IOC when eye

tracking data is unavailable, and we suggest some simple (entropy, visual clutter and

JPEG image size) and complex (in from of HoG, Gist, histogram of predictive salience

and deep learning) diagnostic features that vary in their relationship to bottom-up

and top-down processing.

In the same spirit as measuring IOC, some other image level subjective ratings

of human observers can also be predicted in a similar fashion. In existing literature,

predictions of subjective qualities of media has been considered for video and/or text

level [28] representations. There are a handful of existing studies that consider image

level ratings including image popularity [28] and memorability [18]. In this thesis, we

have explored some other subjective ratings like brand experience, purchase intention,

interest, understanding, valance, relevance and originality for images of magazine

advertisements. We have explored different bottom-up and top-down features to

predict those subjective ratings. Predicting these subjective ratings has high value

in perception of digital media, especially in the advertising industry. There is also

insight the derives from this analysis that is applicable to alternative forms of visual

media, and prediction of subjective dimensions of media in general.



6 Chapter 1: Introduction

1.3 Thesis organization

The remainder of this thesis is organized as follows: In Chapter 2, background and

related work is introduced. This includes a description of different types of saliency

detection models and their evaluation criteria, and analysis of the impact of center

bias in evaluation. Chapter 2 also introduces a variety of background relevant to

topics covered in this thesis including statistics of natural images, details of measur-

ing explicit judgment, and measuring inter-observer congruency and subjective image

qualities. Chapter 3 demonstrates the performance of saliency algorithms on natu-

ralistic images, motivates a saliency model inspired by human vision, and considers

various factors related to benchmarking including estimation of the extent of center

bias and removal of such bias, prediction of explicit judgments and analysis of differ-

ent perceptual tasks. Chapter 4 addresses prediction of different types of image level

perceptual and subjective ratings including inter-observer congruency, brand experi-

ence, purchase intention, interest, understanding, valance, relevance and originality.

Finally, Chapter 5 concludes the dissertation describing limitations and directions for

future research.



Chapter 2

Related Work

2.1 Saliency Models

The salient locations in a scene depend on the composition of the scene including

areas of contrast, figure ground relationships and prior knowledge. Different saliency

algorithms produce differences in output dependent on the specific computational

stages that define them. The modeling assumptions for any model, also vary in

their motivation and on the nature of low-level pattern contrast that defines salient

content. Thus, it is very important to review proposed models in the literature

that are successful in revealing locations of interest. Based on differences in solution

strategy, visual saliency methods can be grouped into different categories. Categories

considered in this chapter include bottom-up, contextual guidance, spectral analysis,

learning based and region search based approaches. The nature of these categories

is somewhat evident from their names, but greater clarity on these definitions is

presented in the remainder of this chapter. Additional review papers covering this

7
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subject can be found in [4], [23] and [7].

2.1.1 Bottom-up approach

Bottom-up approaches model visual attention as a free viewing task without any

particular goal. For example, a series of images is presented to an observer without

providing any particular instruction about what to search for in the images. In

such conditions, approach to model overt visual attention is bottom-up and driven

by characteristics of the image. This type of strategy is assumed most models of

image saliency. It reveals image understanding related to color, shape, orientation, or

motion irrespective of specific objects. One of the early attempts to model saliency

by by Itti et al. [19] is based on “feature integration theory”. They considered color,

intensity and orientation feature maps from different scales as Gaussian pyramids.

They calculated the center surround difference by subtracting the pixel values of the

bottom layer from upsampled higher layers. The ranges of center surround effect

are different for color, shape or orientation and for this they normalized contrast

channels to ensure a similar range of effect. After that, they combined each of the

color, intensity and orientation maps by summing the normalized center surround

maps across different scales of the Gaussian pyramid. The final saliency map is

computed by calculating the average of three combined maps for color, intensity and

orientation. The strengths of this approach are effectively predicting the bottom-up

attention of early visual processes of primates and making it possible to implement

massively parallel computation.

Bruce and Tsotsos [8] proposed a theory of attention based on information maxi-
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mization (AIM). This approach performs an offline processing stage where the system

calculates some independent coefficients to represent local patterns in an image by

applying principal component analysis and independent component analysis (ICA) on

random image patches from a large database. After that, to process an input image,

the system extracts independent features from every patch using the coefficients of

ICA. Then, the feature density is estimated by making the normalized histogram of

features. For every pixel of the input image, the system finds the joint likelihood

of each coefficient from the histogram to calculate the self-information. Finally, the

authors model the self-information to compute a saliency map corresponding to the

input image.

Another popular saliency algorithm is Graph-Based Visual Saliency (GBVS) [14].

This algorithm works in three steps: Extraction, activation and normalization. The

extraction step is similar to traditional feature maps based on color, intensity, ori-

entation and biologically motivated filtering. In the activation step, each pixel is

assumed to be a node of a graph and connected to its surrounding neighboring pixels

by an edge. The weight of this edge is the product of pixel value dissimilarity and

closeness of the neighboring pixel spatially. In this way, the authors define a Markov

chain by normalizing the weights of outward edges of a node to 1. In the normaliza-

tion step, with the activation values the authors propose a similar Markov chain to

normalize the activation of a node by the activation of the neighbor nodes and their

spatial distance. The output of this normalization step is assumed to correspond to

the saliency value of the pixel. This approach is a different way of considering non-

linearity and normalization required for saliency detection, which also helps parallel



10 Chapter 2: Related Work

implementation.

In another work, Garcia-Diaz et al. [13] introduced a decorrelation based method

for visual saliency. They calculated local orientation energy and color features and

applied principal component analysis on those multiscale features, dividing maps

corresponding to principal components by their associated eigenvalues. Then, they

combined all features maps by simple addition. To obtain the final result they also

consider saliency normalization and Gaussian smoothing. Yan et al. [56] proposed

a saliency model using matrix decomposition of image features. They used both

spatial and feature domain statistics to learn a dictionary. This dictionary is used

to represent the image from patch-wise features. Finally, image saliency is produced

by rank sparsity decomposition of feature norm. Hou and Zhang [17] showed an

image saliency model by continuous sampling of features. They used the principle

of predictive coding strategy to explain saliency. By incremental coding length, they

calculated energy of image pixels and predicted the fixation points.

2.1.2 Contextual Guidance

In the real world, our attention is not always a free viewing task. In most of the

cases, contextual information motivates our search behaviour in paying attention to

scenes. For example, if an image contains a person, the observer may intend to look

at person’s face. Here, the semantic relevance of the face takes precedence, even if

there is no specific task involved. The contextual guidance approach takes advantage

of prior knowledge of the scene to predict fixation points. Therefore, in addition

to pattern driven salience, such approaches also consider task specific visual search.
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Models including context typically involve object specific understanding of scene, or a

representation of holistic scene structure. One of the early contributions of this kind

is proposed by Torralba et al. [49; 51] which is based on a Bayesian framework. By

calculating local and global features from image, this model demonstrates the impact

of contextual guidance in image saliency. By combining bottom up saliency and con-

textual modulation, the model produces a modulated saliency map based on holistic

scene structure. This model can also find the regions of a scene likely to contain

a certain salient object. Zhan et al. [57] also demonstrated a Bayesian framework

for contextual guidance to predict the locations of fixation points. They considered

bottom up saliency using self-information, and top-down activation as term based on

log-likelihoods of task relevant patterns combining these to determine saliency. In

this case, they did not consider any global statistics. Kanan et al. [25] combined

the two previously described approaches and the proposed object appearance based

saliency model. If the target object is previously known, this model can predict target

specific image saliency.

2.1.3 Spectral analysis approach

Models based on spectral analysis compute visual saliency in the Fourier domain

by finding the log spectrum of the image for difference scales. Image understanding

in the frequency domain may also help to locate areas of interest. Hou and Zhang

[16] published the first model of this kind. This model did not consider any image

features, categories or any prior information for contextual guidance, only calculating

the log spectrum and a spectral residual based on a smoothed version of the log
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spectrum. Wang and Li [55] extended this model by incorporating an automatic

channel selection and a decision reversal module. One of the major drawbacks of

such a strategy is that the computation has little fidelity to biological correlates of

saliency.

Another widely used model of this kind is image signature based saliency [15]. The

method assumes that an image signal is a mixture of foreground and background. The

goal is to reconstruct the image isolating the support of foreground. This approach

applies the Discrete Cosine Transform (DCT) on different channels of the input image

separately. Then, it takes the sign of the DCT output which is called the image

signature. After that, the salient image is constructed by taking the mean of the

inverse DCT of the image signature corresponding to different coloor channels. As a

post processing, the method applies Gaussian blur on the constructed image because

it is known that all different saliency algorithms assume optimal performance in the

predictions they form with blurring. The authors experimented using both RGB and

Lab channels of images and found image signature based on Lab performs better than

RGB.

2.1.4 Learning-based approaches

Learning-based approaches models visual saliency detection as a machine learning

problem. This strategy typically models image saliency as binary classification task.

A trained system can classify each pixel of the input image as either a salient or non-

salient pixel. The eyetracking data of different images from many human observer are

used to train the system. Seo and Milanfar [45] suggested a learning-based saliency
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model based on a self-resemblance measure. This model calculated local regression

features from each pixel to capture local structure of the data. By modeling likeli-

hoods through kernel density estimation, this model determines the saliency map. In

another model, Zhao and Koch [58] propose to first find color, intensity, orientation

and face conspicuity feature map for each pixel of the input image and subsequently

learned weights associated with those features. They defined an objective function

which is minimized by the least square technique to classify salient pixels.

2.1.5 Region or object search approach

All the strategies described above find the salient locations from the scene and

compare those locations with eye tracking data of human observers. But those strate-

gies can not tell whether the location belongs to any object or any background pixel

of the image. To address this problem, object search approaches find the bound-

aries of salient object pixels instead of only locating fixation points. This strategy

takes advantage of image saliency for object detection. Achanta et al. [1] proposed

a salient region detection method by using frequency domain computation. This ap-

proach found the boundary of the object which can preserve the maximum frequency

content of the entire image. Another significant contribution with a similar strategy is

established by Liu et al. [35], where they modelled the boundary search of an object

as a machine learning problem. This approach learned a conditional random field

based on the image characteristics like contrast of multi-scale decomposition, center-

surround histogram and spatial distribution of color. According to the training, this

approach located the salient object within the scene.
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2.2 Natural image statistics

Humans are able to determine if an image is natural or artificial very rapidly be-

cause all natural scenes have common features. The statistics that define the structure

of natural images are often referred to using the term natural image statistics. Exam-

ining the statistics of natural images shows that the structure of such images is not

random and in the entire domain of all possible images, natural images only reside

within a very small subspace. Neural computation within the visual system of pri-

mates exploits this structure in representing visual patterns. A consequence of this

is that natural image statistics have characteristics that are encoded efficiently by

neurons and may be represented according to simple mathematical functions moti-

vated by this statistical relationship. Many computer vision research efforts attempt

to discover statistical regularities or structure in image patterns. One of the early

attempts of this kind was done by Field [11] who showed consistent statistical prop-

erties of natural images and their relationship to the responses of visual cortical cells.

More specifically, units in early visual cortex are well represented by the output of

Gabor functions. These function are localized in both time and frequency with the

ability to represent any time varying signal. Each of the functions can be obtained by

the multiplication of Gaussian and sinusoid function. The mammalian visual system

encodes a natural scene through neurons and create a sparse representation of the

scene by maximizing information and reducing redundancy of environmental data.

Field’s results suggest that a sparse, non-redundant image coding scheme may be

produced through Gabor functions that are analogous to early neural processing for

vision. This is a famous linear model for neural coding. Later, Schwartz et al. [44]
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showed that although the linear model has a strong link between natural signal and

neural behaviour, such a model cannot imitate the non-linear behaviour of sensory

neurons. They argued that as light comes from different surfaces of the natural scene,

the sensory neurons combine light in a non-linear fashion. They applied two linear

filters having same the frequency tuning but different orientation tuning on a natural

image and observed that for a fixed spatial location, the output of the first filter can

predict the output of the second filter. This means that both of the filter responses

are mutually dependent. But, in our visual system, any two neurons behave inde-

pendently. To solve this issue, Schwartz et al. [44] proposed a non-linear model to

reduce the statistical dependency of the standard linear model. These simplistic mod-

els are successful in predicting blood oxygenation level dependent (BOLD) responses

of neurons in viewing natural images and checkerboard patterns, however responses

get saturated for low contrast energy. An improvement to this approach is proposed

by Kay et al. [27] wherein divisive normalization (DN) and second order contrast

(SOC) follow the computation of total spectral energy to achieve better prediction

of BOLD responses. Therefore, energy filters coupled with DN and SOC provide a

characterization for predicting the response of neurons to naturalistic stimuli.

The neural response is greatly altered by the top-down contextual guidance or

task associated with the natural stimuli. Torralba et al. [50] examined how top-down

contextual information affects Gabor like filter output. He showed that the image

scale as well as observers interaction with the scene affects observed image statis-

tics. Different image categories also imply different predictable statistical regularities

within a scene. Image statistics of both natural and man-made environments are
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compared in examining the average power spectrum of the image Fourier transform

within different categories. By varying the distance between the observer and the

scene, statistics are altered such that image categories with man-made objects vary

only in horizontal and vertical contours of the spectrum. On the other hand, natural

image categories have significant variation spread across the spectral signature of the

image regardless of orientation.

2.3 Center Bias

Human gaze behaviour is largely dominated by a common tendency called center

bias. People have a tendency to fixate preferentially towards the middle of the scene.

We can easily find the effect of this behaviour in eye tracking fixation data for almost

any dataset. Tatler [47] discussed in detail cause and effect of center bias in human

eye tracking data. He suggested reasons for center bias which include motor biases

in the oculomotor system, bias in the distribution of image features, viewing strategy

of subjects, set-up of the eye tracking experiment and other situational factors. The

motor bias of our visual system is the phenomenon of favoring smaller amplitude

saccades over large amplitude saccades. If the presentation time of the stimuli is very

small then the motor bias will become more dominant. Moreover, while collecting

eye tracking data, a pre-trial fixation marker is normally placed at the center of

the screen. The joint effect of motor bias and center marker may bias the observer

towards viewing the center. According to Tatler, another important factor is the

feature distribution within the image. He found that fixation data strongly correlates

with low level image features like brightness. If the image is taken in such a way that
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it exhibits a feature distribution skewed towards center, the associated distribution

of fixations will surely contain center bias. Tatler argued that fixation behavior is

also motivated by task dependence which can be viewed as top down information

considered which searching a scene. In case of task dependence involved, the fixated

locations more closely follow the regions where target objects are present.

It is important to measure the extent of center bias in fixation data because it

helps to avoid the problem of data bias influencing assessment of performance of

saliency algorithms. In a recent study, Borji et al. [4] proposed a center-bias ratio

method to quantify the degree of bias. This method imagines circles of different radii

centered in the image and calculates the ratio of number of fixation points inside the

circle to the total number of fixations. In this way, for all circle sizes this method

finds a vector of ratio values. Vector values then provide a diagnostic for the degree

of central bias. If the fixation data contains strong center bias then the first few

values of the vector will have high quantity. Using a suitable threshold Borji et al.

determine the degree of center bias.

2.4 Evaluation of saliency predictions

In most cases, saliency algorithms are evaluated by calculating area under the

curve (AUC) corresponding to ROC analysis (in plotting true positive rate vs. false

positive rate). This is the standard AUC method of evaluating algorithms [24]. How-

ever, this way of evaluating algorithms is not fair because it does not consider the

center bias present in the fixation data. To solve this problem, Tatler et al. [48]

proposed a shuffled AUC (sAUC) method for evaluation. In this approach, for any
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given image, positive samples are the fixation data of all users for that specific image

and negative samples are the fixation data of all users across all other images in the

dataset. By choosing the positive and negative samples based on the overall fixation

data, this evaluation method implicitly considers the nature of fixation distribution

and evaluates an algorithm without the effect of center bias. Again, many bottom up

saliency methods do not model the effect of center bias in the algorithms. For this

reason, those algorithms apply a Gaussian blur stage at the end of the process. This

blurring implicitly considers the effect of center bias and helps to increase the evalu-

ation measure score. Different algorithms may benefit most from different degrees of

blurring which can also make the comparison of algorithms unfair [34].

2.5 Explicit Judgment

Fixation data is recorded by an eye tracker and is largely dominated by the nature

of stimulus patterns, bottom-up, top-down and other external factors sometimes sub-

ject to a rapid time-course and with some observations outside of cognitive control.

Because of the mixed effect of all these factors, fixation data may be seen as con-

taminated in the sense that it exhibits spatial bias, poor localization of objects, and

other noise factors. For this reason, evaluating a saliency algorithm based on fixation

data may present some limitations. To address this issue, one reliable alternative for

saliency evaluation involves explicitly selecting locations/regions of interest manually

instead of measuring gaze locations. The selected location/region is called the explicit

judgment of the observer corresponding to the most salient location [5; 29]. Borji et

al.[5] investigates explicit judgment at region or object level. They performed a user
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study to let the participants choose any of the two objects presented in an image of

the SED dataset [2] by clicking inside the selected object or drawing a polygon around

the object boundary. They found that both fixation and bottom-up saliency models

can predict selections that follow this type of judgment of salient content. They also

reported that fixation prediction models can predict salient judgments better than

standard salient object detection models.

Again, in another recent study, Koehler et al. [29] pointed out the shortcomings

of fixation data to predict saliency and for the first time, published a rich dataset

containing explicit judgments. This study considers the explicit judgment task at

the pixel level. Each of the 100 participants were asked to select one pixel per image

which corresponds to the location that stands out most within the scene. They

reported the performance of three well-known fixation based saliency algorithms in

their ability to approximate the explicit judgment locations. They found that instead

of predicting this explicit judgment, all well-known saliency models attempt to predict

the gaze points in fixation data. Apart from the explicit judgment task, this work

also involved three other tasks i.e. free viewing, saliency and a cued object search

task. The free viewing task represents searching behavior without any particular goal,

which is the scenario traditionally considered in most datasets in the literature. In

the saliency searching task, observers were asked to decide whether the right or left

part of the image is more salient than the other. Finally, in the object searching task,

observers were instructed to find some pre-defined objects.
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2.6 Inter observer congruency

Looking at an image, different people may find different parts of the image to be

of interest. For this reason, image saliency algorithms attempt to produce a saliency

map that is aligned with the locations of common interest to viewers. However, after

recording many viewers’ eye tracking data, it is possible that there is little agreement

in terms of common locations of interest. In such a case, the performance of saliency

algorithms is necessarily low as the salient locations vary significantly from person

to person. To address this issue, prior research attempted to find a maximum upper

bound on performance for predicting gaze points across a set of images [4; 31; 23].

This bound is established by using the eye tracking data from many observers to

predict gaze points of an additional observer. This upper bound of performance is

termed the inter observer congruency (IOC) score. This score is normally used to

provide a reference frame for performance of algorithms that predict likelihoods of

locations of gazed-upon coordinates in a scene.

The possibility of predicting IOC score by a computational model without the use

of data from a human study is an interesting idea. Le Meur et al. [32] addressed this

idea for the first time in the literature. They discussed several underlying reasons for

inter-observer variability like cultural differences, and prior experience of observers.

They also noted that the more time a scene is viewed for, the more variability within

fixation locations is observed. They proposed the first computational model to predict

the IOC score. Considering the factors that influence IOC, they suggested 6 different

features to predict IOC i.e. the presence of faces, color harmony, depth of field, en-

tropy based scene complexity, color mean shift segmentation, and amount of contours.
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Using these features from an image, they trained a cluster-weighted model which is a

generalization of Gaussian mixture. For quantitative evaluation, they calculated the

correlation between predicted and actual IOC values. Their reported correlation is

not significant within a low confidence interval. They mentioned several facts regard-

ing the limitations such as a small number of images in the dataset, the influence of

viewing duration and low performance of the face detector. Again, they argued that

IOC within the free viewing data is less predictable than task specific fixation data

like object search. The only similar work in this line of investigation is by Rosenholtz

et al. [42] but instead of predicting IOC, they measured visual clutter which is the

level of ease to add a target that will draw attention within an existing image. Le

Meur et al. [32] confirmed that visual clutter is highly correlated with IOC.

2.7 Subjective image rating

Multimedia content can be rated according to a wide variety of different subjective

criteria. Many studies have already been undertaken on video rating prediction with

the help of visual content and text mining. However, only a few of these efforts are

based on image level (as opposed to pixel level) subjective rating where only visual

features are used in prediction. There is evident value for applications to have a sense

of expected ratings without knowing the general comments on the visual content, or

conducting a user study. Some of the most recent research on such ideas are based

on image popularity [28] and memorability [18].

Now-a-days people are uploading millions of photos to the internet, especially via

social networking websites. Among the huge number of photos, a few of these are
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viewed by a very large number of people, whereas many of the others are completely

ignored by people. It is evident that some photos must have some characteristics

which make those distinct within the huge number of available photos, or there exist

characteristics that define the continuum between these two extremes. Khosla et

al. [28] attempted to find those characteristics to predict the popularity of images.

They experimented on 2.3 million Flickr photos and considered popularity based on

number of views by people. They found that both image content and social context

contribute to the popularity of an image. To extract image context they used Gist,

texture statistics, color patches, gradients, and deep learning features as low level

image content and use object features representative of different categories as high

level image content. Moreover, they also considered some social cues in the form of

mean views, photo count, contacts, groups, member duration etc. of any given user,

number of tags, title length, description length of any photo. Using all the features

from both image content and social cues, they trained a support vector regression

(SVR) model to predict number of views (i.e. popularity) associated with the test

photo. They reported that the prediction results are highly correlated with the true

popularity value.

Like popularity, another subjective (or non-semantic) criterion is image memora-

bility. Isola et al. [18] consider memorability of images, and claim that this is one of

the more stable properties of an image. Some images become memorable because of

known people or special moments of our lifetime, but there are also some other images

which become memorable without the presence of these elements. Isola et al. [18]

addressed memorability associated with this second factor. To find a memorability
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value for each image, the authors designed a memory game for the participants of a

user study. In the study, participants are asked to find the images from an image

sequence those were previously shown to them. Then, the memorability score for any

specific image is calculated as the percentage of correct detections of that image in

the whole experiment. Finally, they experimented with different types of features like

color, object and global features to predict the memorability score using SVR model.
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Saliency Prediction

3.1 Natural image saliency

Visual saliency models have largely been tested on gaze data from this type of

experiment, but images appearing in most data sets tend to have significant con-

text, objects or salient regions that may imply the involvement of higher-level cogni-

tive routines. For this reason, it is important to understand the behavior of models

within more naturalistic settings wherein there are weaker prior on context, or objects

present. To this end, in this section, we evaluate a number of algorithms that have

performed well in recent benchmarking studies, subjected to natural images. For such

naturalistic stimuli, it is also natural to consider computational saliency from the per-

spective of visual information processing in human brain. To this end, we also test a

recent simplistic biologically motivated model that is supported by its agreement with

brain imaging data [12]. A simplistic bio-inspired model of early neural activation in

the visual cortex is based on log-Gabor filters with activation corresponding to the

24
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sum of spectral energy represented across filters corresponding to a particular loca-

tion [12]. This model is motivated by the complex cell energy model wherein energy

corresponds to paired oriented Gabor-like filters in quadrature. This simplistic model

is successful in predicting blood oxygenation level dependent (BOLD) responses in

viewing natural images and checkerboard patterns, however responses get saturated

for low contrast energy. An improvement to this approach is proposed by Kay et al.

[27] wherein divisive normalization (DN) and second order contrast (SOC) follow the

computation of total spectral energy to achieve better prediction of BOLD responses.

Therefore, it is of interest to examine the extent to which energy filters coupled with

DN and SOC provides a characterization of fixated locations for naturalistic stimuli.

This model has therefore also been implemented and included in our comparison.

3.1.1 Improvement of human-like visual saliency prediction

The primary visual cortex (V1) of the human visual system is important in basic

feature extraction, and thus plays an important role in visual attention. Gabor-like

filters may be used to model the response of cells in V1 and also to naturalistic stimuli.

This provides a basis for examining computational determination of visual saliency

from the perspective of the visual information processing in the human brain. A

great effort has been performed for predicting the responses of V1 neuron [12]. This

responses can be blood oxygenation level dependent (BOLD). Many recent research

proved that V1 energy of BOLD responses can be modeled by Gabor like filter.

Actually, LogGabor filter works well for statistical analysis of natural images. For

this reason, keeping agreement with visual system, the first step of attention modeling
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is to apply LogGabor filters on input grayscale image and sum-up all filter responses

to find a saliency map. The following equation is the frequency responses of LogGabor

filter:

Fv1(x, y) = exp
− log(x′/y′)2

2 log(σx/x′)2
.exp
−y′2

2σ2
y

(3.1)

where, x′ = x cos(θ) + y sin(θ), y′ = −x sin(θ) + y cos(θ), θ is the orientation of the

filter, x′ is the center frequency and σx and σx are the bandwidth of the filter along

the x and y direction respectively. Using different scale and orientation a bank of

filter can be produced. After that, summing up all filter responses we can get the

basic saliency map.

We can improved the described model using some steps from a recent studies

presented in [27]. The prediction of BOLD responses using Gabor like filter can

not model the fact that responses saturate at low contrasts. To solve this problem,

Kay et al. [27] proposed divisive normalization (DN). This step is able to capture

several nonlinear response properties of V1 neurons. Computationally, this step can

be performed by the following equation:

Dn =
Gr

sc,or

sr + (Σsc,orGsc,or

S×O )r
(3.2)

where, Gsc,or is the LogGabor filter responses for scth scale and orth orientation; S

and O are the total number of scale and orientation respectively; s and r controls the

strength of the normalization.

This model is still incomplete because it overestimate the actual BOLD responses.

We have to apply variance of contrast energy to get the actual responses. This is called
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Figure 3.1: Various stages of the SOC processing cascade for a naturalistic image

second order contrast step. To incorporate variance like nonlinearity we apply the

following equation:

SOC = Σiwi(Dn − cΣjwjDj) (3.3)

where, w is 2D Gaussian weights, Dj is the Gaussian filtered image of Di and c

controls the strength of non-linearity of second order contrast. SOC contains the final

saliency map.

We have implemented this model and compared the performance with 11 other

established algorithms on several image datasets. Again, both standard ROC [23] and

shuffled ROC [4; 57] analysis are reported in evaluation in Table 3.1. We have named

this model the SOC model. It shows that DN and SOC step after basic log-Gabor

filtering (i.e. V1 energy) improves the performance compared to the absence of these

additional stages of computation. Various stages of the SOC processing cascade for

a naturalistic image are showed in Figure 3.1.

Implementation: In the context of the SOC model spectral energy is charac-

terized by log-Gabor filters in quadrature, and subject to four parameters (minimum

wavelength, a multiplier that defines the centre frequency for any given scale, the σ



28 Chapter 3: Saliency Prediction

Table 3.1: Performance of SOC model at different stage on DOVES dataset

Evaluation V1 Energy Divisive SOC
Normalization Model

Standard AUC 0.572318 0.572636 0.573822
Shuffled AUC 0.551890 0.552003 0.555988

of the Gaussian envelope containing the log-Gabor filer and total number of scales).

The total number of orientation was fixed to 6 as behavior of the algorithm was

found to be relatively insensitive to this parameter. Parameters for energy filtering

were selected from a broad sample of parameter combinations to produce a best fit

to the characterization of fixation locations on the DOVES dataset. In particular,

minimum wavelength was chosen from 2, 3, 6, 12 pixels, the multiplier associated

with peak frequency of bandpass filters from one scale to the next 1.4, 1.7, 2.2, the

sigma on the Gaussian envelope (normalized by frequency) from .75, .65, .55 and

number of scales from 3, 4.The best parameter set was found to be 12, 1.7, 0.65, 4

for the four respective parameters. It is important to note that this provides even

spectral coverage over a broad band of radial frequencies. Subsequently, parameters

for divisive normalization (as defined in the SOC model) involved optimizing r and

s in choosing the best r from .7, .9, 1, 1.2 and s from .5, 4, 8, 16. The best results

were obtained in choosing r = .7 and s = 8. Finally second order contrast (SOC)

parameters were optimized with the 2 parameters σ and c optimized selecting the

best c among 0.5, 0.7, 0.9 and σ among 2, 4, 8, 16. Optimal results were obtained in

choosing σ = 2, c = 0.5. As an additional test of fidelity (and to avoid the possibility

that parameters are overfit to a specific dataset, we have also compared the results

against the best performing algorithms in prior benchmarks on the Toronto dataset
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with the same parameters optimized for the DOVES dataset. A comparison of per-

formance of algorithms that fare well in the benchmark of Borji et al. in addition to

the SOC model is presented in Table 3.2. We have use two different datasets for this

comparison, specifically the DOVES and Toronto dataset, with the latter serving as

an additional test of the simplistic SOC model. It is evident that the performance

for the DOVES dataset is significantly lower than that of the Toronto dataset. This

most likely reflects the observation that the DOVES dataset is relatively devoid of

very salient objects. It is also the case that the performance of the relatively simplis-

tic SOC model is within a similar range to some of the better performing saliency

algorithms, despite its simplicity. It is important to also note that the SOC model

operates only on a grayscale version of the Toronto dataset, and is therefore at a

disadvantage in information provided as input but nevertheless performs in a range

that is proximal to the state-of-the-art.

It is important to note that the large differences in the Standard AUC scores may

be attributed primarily to the extent to which there is central bias in the algorithms

evaluated. Based on the shuffled AUC score, we have computed the inter-observer

average auROC for the DOVES dataset to be 0.5526 ± 0.04518 with a maximum

of 0.6418, and for the Toronto dataset to be 0.7372 ± 0.0918, with a maximum of

0.8768. This suggests that the saliency algorithms tested are within the range of the

inter-observer prediction scores for the naturalistic data, but fall short of the inter-

observer predictions for the Toronto data. Inter-observer predictions were computed

on a leave-one-out basis for all observer/image combinations, with fixations from

remaining observers convolved with a Gaussian to produce a saliency map. The
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optimal σ for the Gaussian convolution was determined based on the average auROC

across all individual/image combinations to provide with the best σ on average used

to compute IO scores. This corresponded to a σ of 3% of the image width. Detail

description of inter-observer score is presented in Chapter 4.

3.1.2 Saliency benchmarking on natural image

In last few decades, many saliency algorithms have been published claiming very

good performance across different datasets. In most cases, those datasets include

images with prominent objects, faces, texts, and oddball patterns. However, there is

no benchmarking effort in the case where the dataset does not contain any significant

number of salient objects. In general, naturalistic images do not contain many highly

salient locations. For this reason, we wish to investigate some of the best saliency

algorithms and their performance on a naturalistic image database.

Table 3.2: Comparison with some of the best algorithms in the literature

DOVES dataset Toronto dataset
Algorithms [4] Standard AUC Shuffled AUC Standard AUC Shuffled AUC
Torralba [49] .582 .556 .825 .673

HouCVPR [16] .557 .551 .780 .675
HouNIPS [17] .655 .539 .780 .661

AWS [13] .534 .508 .537 .537
Itti-CIO2 [19] .808 .566 .808 .647

ImageSignatureLab [15] .612 .550 .815 .698
ImageSignatureRGB [15] .612 .549 .796 .677

SDSR [46] .543 .553 .814 .707
AIMf [8] .562 .559 .827 .685
Gbvs [14] .777 .549 .825 .615
Yanf [56] .691 .553 .810 .671

SOC (Inspired by [27]) .573 .556 .789 .652
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We have selected 12 of the best performing algorithms from the review of Borji

et al. [4]. These algorithms are applied to the natural images within the DOVES

dataset [52]. Performance in predicting fixated regions is examined through area un-

der the curve (AUC) of receiver operating characteristic (ROC) analysis. In AUC

based evaluation in this domain, there are two different types of ROC analysis named

standard ROC [23] and shuffled ROC [4; 57] that treat spatial bias differently. We

have considered both evaluation criteria to compare algorithms. To compare the per-

formance with non-natural image dataset, we also applied all algorithms on Toronto

dataset [8]. Results are reported in Table 3.2.

We have found that the established algorithms do not achieve very good per-

formance on naturalistic images (DOVES dataset) compared with images having

man-made colorful objects (Toronto dataset). The reason is naturalistic image of-

ten contains less salient region that can attract human attention. It motivates people

to look at different arbitrary locations in the scene which follows low commonality in

viewing. For having low commonality, algorithms cannot able to tune its parameters

to predict possible salient locations. Therefore, the inability of prediction does not

necessarily mean that algorithms are incapable of predicting saliency. It is only the

dataset which does not present sufficient information to let the algorithms perform.

We can infer that if the input images certain several context like prominent objects,

faces, texts, and oddball patterns, most of the algorithms are most likely to perform

well.
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3.1.3 Discussion

Given the significant number of potential applications, visual saliency has in-

creasingly become an area of interest in image and vision research. Many different

strategies for predicting visual saliency have been proposed, that differ in their com-

position or rationale, and with a significant focus on improving performance across

standard benchmarks. Recent benchmarks considering a large number of algorithms

have further provided an understanding of the behavior of different algorithms. Per-

formance evaluation has primarily focused on indoor and outdoor images of urban

environments, many of which are composed, and contain salient objects. In this

section, we have presented the performance of a number of the better performing

algorithms on data derived from naturalistic scenes. In addition, given the strong

connection to human vision, we test SOC model for early visual processing in pri-

mates tied to spectral energy and normalization. This model is motivated by the

complex cell energy model wherein energy corresponds to paired oriented Gabor-like

filters in quadrature. This simplistic model is successful in predicting blood oxygena-

tion level dependent (BOLD) responses in viewing natural images and checkerboard

patterns, however responses get saturated for low contrast energy. An improvement

to this approach is proposed by Kay et al. [27] wherein divisive normalization (DN)

and second order contrast (SOC) follow the computation of total spectral energy to

achieve better prediction of BOLD responses. Experimental results of SOC model

demonstrate significant differences between common datasets, and natural images.

In general, natural images have less salient locations and thus, influence algorithms

to perform relatively low.



Chapter 3: Saliency Prediction 33

3.2 Center bias

Observers have a tendency to look at the middle of an image or scene, a tendency

referred to as center-bias. Tatler [47] discussed in detail the cause and effect of center

bias in human eye tracking data. He showed that in free viewing, center bias is present

even if salient objects are not within the center of the scene. Reasons for center bias

include motor biases in the saccadic system, the distribution of image features, prior

bias in the viewing strategy of subjects, the specifics of the experimental setup, and

other situational factors [47; 57; 4]. To account for spatial (centre) bias in fixation

data, algorithm output is often re-weighted by a centrally located Gaussian profile

to better predict fixated regions in the data. However, there are different degrees of

systematic spatial bias in the output produced by different algorithms. Since different

saliency algorithms exhibit different degrees of center bias, this poses a challenge for

producing a fair comparison across algorithms [4]. To address this problem, Zhang et

al. [57] proposed a metric for evaluation of saliency algorithms called shuffled AUC.

In ROC analysis, this evaluation method chooses positive and negative samples in

a manner that removes the effect of center bias, by selecting negative samples from

a spatial distribution that matches fixations within the entire dataset. However, as

a side-effect, this may result in uneven importance of pixel locations in evaluation.

Given a much larger number of centrally located samples across the dataset, the

importance of saliency output at the center is relatively diminished given that there

are likely to be more negative samples within the center region. This diminishes the

capacity for an above chance prediction in a signal detection theoretic sense as a

function of spatial position. Moreover, for a saliency algorithm having a relative bias
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outside of the center allows for the true positive rate to grow more quickly than the

false positive rate due to the spatial distribution of negative samples. This issue has

not yet been addressed in existing work. In this section, we propose a method to

control for bias in both algorithm output and data such that all pixel locations are

equally important, and algorithms have no spatial bias.

3.2.1 Extent of center bias in saliency maps

The degree of center bias within data has been recognized as an important factor in

performance evaluation. In a recent study, Borji et al. [4] proposed a center-bias ratio

method to quantify the degree of bias in fixation data. This method assumes circles of

different radii centered in the image and calculates the ratio of the number of fixation

points inside the circle to the total number of fixations for all possible circle sizes,

providing a vector of ratio values that reflects the degree of central bias. Independent

of the data, different saliency algorithms may exhibit different degrees of spatial bias

due to their inherent computational structure. It is therefore of value to examine

spatial bias among saliency algorithms in a manner analogous to the case for fixation

data. We visualize this bias as follows: We first whiten individual saliency maps

for 12 different algorithms to place the output values of different saliency maps on a

common scale (and such that every saliency map has mean of 0 and standard deviation

of 1). Subsequently, the mean of all saliency maps produced by a single algorithm is

subtracted from the mean across all algorithms. This provides a topological profile

of relative spatial bias. This offers a sense of relative center bias in output produced

by each algorithm. The overall spatial bias profiles are shown in Figure 3.2. In this
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Figure 3.2: Spatial bias map of algorithms on Koehler et al. [29] dataset (a) Torralba
[49], (b) HouCVPR [16], (c) HouNIPS [17], (d) AWS [13], (e) Itti-CIO2 [19], (f)
ImageSignatureLab [15], (g) ImageSignatureRGB [15], (h) SDSR [46], (i) AIM [8], (j)
GBVS [14], (k) Yan [56] and (l) SOC [40].

figure, high values within the center region (e.g. GVBS) imply strong relative central

bias inherent in algorithm output and conversely, some algorithms (e.g. AWS) exhibit

a relative peripheral bias. This provides a useful foundation for analysing differences

in model performance across different types of data and also has implications for

both standard and shuffled ROC scores. In particular, a strong relative center bias

carries a predictable benefit for the standard ROC metric, however a stronger relative

peripheral bias carries a benefit for the shuffled AUC metric.

3.2.2 Removal of center bias

If a saliency algorithm carries a strong center bias, then significantly higher values

within the center region will appear consistently across all output maps. As stated

before, because of the presence of center bias, the evaluation of saliency algorithms

may be misleading. The term center bias removal technique refers to the strategies
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Figure 3.3: Rank order based center bias removal on Toronto dataset

we have applied to remove the effect of center bias within different saliency maps.

These techniques make the statistics of saliency values uniform at every pixel lo-

cation across all saliency maps. In this thesis, we consider two options to remove

center bias in algorithm output to diminish sensitivity to spatial bias. In the current

work, we propose two different processes of center bias removal that derives from the

computational structure of the saliency models themselves.
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Figure 3.4: Rank order based center bias removal on Judd dataset

Rank order based center bias removal

To produce a uniform spatial distribution for the output of saliency algorithms,

we wish to normalize the saliency values across all output maps on a per-pixel basis.

We achieve this through the rank ordering of values in ascending order for a given

pixel location across all saliency maps for the entire dataset. Suppose Mi(x, y) is the

pixel value corresponding to coordinate (x, y) in ith saliency map produced by any
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Figure 3.5: Rank order based center bias removal on Koehler et al. [29] dataset

algorithm where i = 1, 2, 3, ...N , and N is the total number of images considered for

each algorithm. Now, for each location (x, y) we calculate the rank order of the N

saliency values in Mi. Subsequently, values of 1
N
, 2
N
, 3
N
, ....1 are assigned sequentially

to the saliency maps based on this rank order. This imposes a uniform distribution of

scores with the range 1
N

to 1 across all maps, and for each pixel location. Following this

center bias removal from all images of the dataset, the sum of all values corresponding

to a given pixel location across all saliency maps is
∑N

i=1 Mi(x, y) = N+1
2

. After spatial
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center bias removal, saliency output may be evaluated using both standard ROC [23]

and shuffled ROC [4; 57] analysis. The rankings of algorithms after removal of spatial

bias in output on Toronto [8], Judd et al. [23] and Koehler et al. [29] datasets are

shown in Figures 3.3, 3.4 and 3.5.
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Figure 3.6: Rank order based center bias removal on Koehler et al. [29] dataset
(Explicit Judgment)
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Whitening based center bias removal

An alternative to rank ordering, is to apply a more standard statistical whitening

operation. First, individual saliency maps are whitened to produce maps with zero

mean and unitary standard deviation. Subsequently, pixel-wise whitening is carried

out across the saliency maps for each individual pixel location. After this operation∑N
i=1 Mi(x, y) = 0 and each algorithm carries a 0 mean and unit variance across all

saliency maps for each pixel location. The ranking of algorithms after center bias

removal using this process on Toronto [8], Judd et al. [23] and Koehler et al. [29]

datasets are shown in Figures 3.7, 3.8 and 3.9.

A few observations related to both strategies for center bias removal are as follows:

• Resizing the input images changes the scale space spanned by the features for

some algorithms, which may alter performance. Sensitivity to scale is a factor

that is important to control for outside of spatial bias.

• Both standard AUC analysis [23] and shuffled AUC analysis [57] produce very

similar results for a fixed image scale with normalized outputs.

• In contrast to the standard ROC benchmarks, spatial bias removal for algo-

rithm output produces more consistent performance of algorithms across differ-

ent datasets, and metrics.

3.2.3 Discussion

To address central tendency of human fixation data, different algorithms apply

different mechanisms to consider this phenomena into the saliency detection process.
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Figure 3.7: Whitening based center bias removal on Toronto dataset

For example, those mechanisms include post processing Gaussian blurring with differ-

ent kernel size and/or normalization of the pixel with respect to surrounding neighbor

pixels. As the extent of center bias is different from algorithm to algorithm, thus we

need to know the degree to which algorithms consider the bias and the process to

remove it. In this section, we first discussed the extent of center bias presented in

saliency maps. The visualization in Figure 3.2 shows the relative bias of algorithms

towards specific spatial regions. We also discuss two possible ways of removing center
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Figure 3.8: Whitening based center bias removal on Judd dataset

bias from algorithms. Furthermore, we perform algorithm benchmarking experiments

on center biased removed saliency maps of different algorithms. We find relatively

consistent ranking of saliency algorithms across different data sets and tasks.
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Figure 3.9: Whitening based center bias removal on Koehler et al. [29] dataset

3.3 Explicit judgment

3.3.1 Benchmarking of explicit judgment

In viewing an image, an observer will fixate on locations in the image by their own

volition, due to the nature of stimulus patterns or other external factors. Rather than

considering fixated locations, an alternative is having participants in an user study

select a specific location of interest. This presents an additional quantity of value
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Figure 3.10: Whitening based center bias removal on Koehler et al. [29] dataset
(Explicit Judgment)

for saliency algorithms to predict. This final selected location is called the explicit

judgment of the observer corresponding to the most salient location. Saliency models

typically attempt to predict the gaze points in fixation data rather than explicit

judgments. The recent study of Koehler et al. [29] that addresses this shortcoming,

provides a rich dataset containing explicit judgments for 100 human observers. Apart

from the explicit judgment task, Koehler et al. also considered three other tasks

(free viewing, saliency viewing and a cued object search task). The free viewing
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Table 3.3: Benchmarking performance for the Koehler et al. [29] dataset

Task Free Viewing Object Search Saliency Viewing Explicit Judgment
AUC Stand. Shuf. Stand. Shuf. Stand. Shuff. Stand. Shuf.

HouCVPR [16] .726 .639 .709 .632 .735 .652 .735 .657
SOC [40] .786 .632 .722 .630 .742 .643 .736 .643

HouNIPS [17] .719 .626 .700 .614 .733 .644 .748 .674
ImgSignRGB [15] .739 .639 .725 .634 .750 .652 .749 .657

Itti-CIO2 [19] .753 .629 .743 .638 .754 .638 .758 .654
Torralba [49] .769 .635 .749 .629 .766 .642 .763 .652

SDSR [46] .747 .643 .727 .635 .756 .657 .768 .683
ImgSignLab [15] .746 .642 .727 .633 .756 .659 .773 .688

AIM [8] .753 .632 .733 .624 .756 .640 .774 .665
AWS [13] .742 .645 .719 .632 .709 .664 .778 .699

GBVS [14] .782 .633 .772 .649 .776 .635 .781 .655
Yan [56] .769 .644 .753 .647 .775 .656 .782 .682

IOC score .847 .716 .875 .770 .847 .724 - -

task represents searching behavior without any particular goal, which is the scenario

traditionally considered in most datasets in the literature. In the saliency search task,

observers were asked to decide whether the right or left portion of the image is more

salient than the other. Finally, in the object search task, observers were instructed

to find some pre-defined objects. Except for the explicit judgment case, each of these

tasks is examined through eye tracking experiments.

Relative to fixation data, very little evaluation has focused on the ability of

saliency algorithms to approximate locations judged as salient in an explicit judg-

ment task. Although Koehler et al. [29] presented results in this regard, only a very

narrow range of algorithms were considered, and therefore there is value in considering

a wider range of established algorithms. In Table 3.3 we have reported benchmark re-

sults for 12 algorithms including AUC scores from ROC analysis for all four tasks: free

viewing, saliency viewing, cued object search and explicit judgment tasks. In AUC
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based evaluation, we have considered two different types of ROC analysis: Standard

ROC [47; 23] and shuffled ROC [4; 57] that each apply a signal detection approach to

evaluate the prediction performance of saliency maps, but that treat spatial bias dif-

ferently. As may be seen from Table 3.3, there is some consistency in the performance

of algorithms, but also significant variability dependent on the specific nature of ROC

analysis. In results that follow, we have shown that both standard and shuffled ROC

analysis may be affected by different types of data bias. To compare the results with

the upper bound of prediction [31], we have also reported the inter-observer congru-

ency (IOC) score of eyetracking data. As explicit judgment locations are not collected

by gaze locations, there is no IOC score for this case.

3.3.2 Approximation of explicit judgments

Gaze patterns in the absence of an explicit task (free viewing) and with a prior

task (object search, saliency viewing) are both experimental paradigms that have been

widely studied in the literature [26; 23]. In contrast, the more direct process of making

a manual selection proposed by Koehler et al. [29] diverges from the traditional

methods for examining the visual selection process through eye tracking. Koehler et

al. argued that algorithmic determination of saliency bears a closer resemblance to

locations selected through explicit judgment than fixation data collected from any

of the other three tasks. In the current work, this suggestion is confirmed in Table

3.3, with further information on the performance landscape for different popular

algorithms across the different tasks.

We believe that improving the prediction of explicit judgments is likely more pru-
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dent than improvements to performance for the traditional fixation tasks for several

reasons: Explicit judgment captures the most salient locations within a scene, through

a selection process that is less clouded by noise from spatial bias and fixation mecha-

nisms, and with more relation to content relevant to the role of saliency as a front-end

selection mechanism in computer vision. Although there is evidently value in focus-

ing on explicit judgment prediction, this has not been on the radar of development

in algorithms targeting visual saliency, and also there is a relative paucity of this

type of data. Moreover, in the future the tradition of examining perception through

eye tracking across many areas of study is likely to continue. In this subsection, we

therefore strive to present a means of simulating explicit judgment data via saliency

and eye tracking data. This allows for broader capability in the qualitative analysis

that explicit judgment provides, and also as a means of providing a larger corpus of

simulated explicit judgment data to drive improvements in visual saliency prediction.

3.3.3 Comparison of tasks in terms of IOC

The viewing pattern of observers varies from task to task. Being motivated by

bottom up saliency, the free viewing task is meant to capture the task-independent

bias in viewing the image. All fixation data also carries an implicit tendency to look

at the center of the scene [47]. Such center bias is present even when stimuli are

not placed at the center of the image. Unlike the free viewing task, when contextual

guidance is imposed, then fixated locations more closely follow the regions where

target objects are present rather than and center bias is somewhat diminished [57].

This scenario occurs to a significant extent for object searching task and also occurs
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to a lesser extent for the saliency viewing task. Because of the differences in viewing

pattern, the agreement among the observers varies from one task to another. To

observe this variation, we have calculated the correlation among the inter observer

congruency (IOC) scores of different types of task presented in Koehler et al. [29]

dataset. Traditionally, one IOC score is calculated for an entire dataset [31] which

is presented as human observer performance in Table 3.3. To examine this quantity

in greater detail, we have calculated IOC scores for individual images and found

correlation for IOC scores among different tasks on a per-image basis. The correlation

between free view vs. object search, free view vs. saliency view and object search

vs. saliency view are 0.28, 0.58 and 0.29 respectively. The scatter plot of these

measurements is presented in Figure 3.11. These results suggest that the agreement

in viewing pattern across observers for free viewing correlates with agreement for

saliency viewing to a greater extent than tasks. This also suggests overlap in the

underlying factors driving gaze selection for these two conditions. In the object search

task, the distinction between bottom-up and top-down factors in viewing evidently

plays a greater role, lending some credence to the bottom-up or stimulus driven claim

that is typically attached to free viewing fixation data. With that said, it is evident

that there are significant differences between any of the fixation based measurements

and the explicit judgment condition, and we shed further light on this point in the

sections that follow.
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Figure 3.11: Scatter plot showing the correlation among the IOC of free view, obj.
search and sal. view tasks

3.3.4 Relation of explicit judgment to IOC in fixation tasks

If there is strong agreement in viewing pattern across observers for fixation data

across different tasks, one might intuit that overlapping locations may be especially

salient. One might also suspect that such locations may be among those selected in the

explicit judgment task. Therefore, we hypothesize that a high IOC score for an image

may be indicative of instances wherein a fixation map makes a good approximation of

explicit judgment. To test this hypothesis, we have calculated correlation between the

auROC performance of the fixation maps in predicting locations selected via explicit

judgment, and the corresponding IOC score for a given image within-task. The scatter

plot is shown in Figure 3.12. We find that the correlation performance for the object

search task is lower than that of free view and saliency view tasks. In conjunction

with the results reported in Table 3.4, this analysis hints at the relatedness of the

different task conditions. Evidently, there is some top-down influence within each of

these tasks, and influence from cognitive processes unrelated to saliency. However,
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that algorithms bear a stronger resemblance to explicit judgment data when the

IOC score is high strongly suggests that these processes converge, and more of the

computation is stimulus driven, or bottom-up.

We know that viewing pattern of observers is dependent on both top-down and

bottom up influences. Top down influence is greater in object searching task whereas

bottom up influence dominates in free viewing and saliency viewing task. Because

of top-down influence people used to perform a guided search based on observers

experience or pre-instruction regarding task. In most cases, people normally look at

complex scenes having multiple objects or salient location. When observers view a

complex scene, based on their previous knowledge they fixate in different locations.

So the combined effect of definite target and observers past experience drive observers

to variable attention behavior. For the same reason IOC scores for those images and

the approximation performance of algorithms become unpredictable. On the other

hand, no external influence affects the viewing behaviour for the case of bottom up

saliency. Irrespective of users experience, free view or saliency view task follow similar

viewing response which is enough to correlate the algorithm performance and IOC

of image. However, top down effect does not sustain for long time because when

a observer achieves the pre-instructed goal of searching task, he switches his search

task to free view mode. In general, when searching task is more likely to free viewing

saliency driven, the viewing pattern become similar across observers intuitively.
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Figure 3.12: Scatter plot showing the correlation between Standard AUC of explicit
judgment approximation vs. IOC scores of (a) free view (b) object search (c) saliency
view fixation data

3.3.5 Explicit judgment prediction model

In this subsection, we focus on prediction of explicit judgment. There are two

goals that are central to this section. The first goal is to determine how well existing

models of visual saliency are able to predict locations selected through explicit judg-

ment. While some sense of this is already provided in our benchmarking results, we

further examine the strength of predictions that may be achieved through an ensemble

approach that relies on existing saliency algorithms. This provides a new standard

for future efforts in prediction of explicit judgment data, but also informs on how

significant the difference is between models tuned to perform well on fixation data,

and performance that is possible for explicit judgments. A second important goal of

this section is to relate explicit judgment data to fixation data through a predictive

model. Fixation data is ubiquitous, while measurement of explicit judgments of vi-

sual saliency is relatively rare. These two types of experimental data offer different
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vantage points on the saliency of image content to a human observer. There is value

to each type of data in differences in qualitative analysis that is possible through

heatmaps or other visualizations, and quantitative analysis in benchmarking and pre-

dictive models. We therefore examine the extent to which existing eye tracking data

can be used to simulate the distribution that one would expect from an explicit judg-

ment experiment. Given that both types of data are available within the Koehler et

al. [29] dataset, this also allows for the relationship between the two types of data to

be examined.

A goal of prediction in this context, is to establish the extent to which explicit

judgment prediction may be improved beyond existing standard saliency models while

relying on similar principles and features. From the benchmarking results in Table 3.3,

we know that individual saliency algorithms can approximate explicit judgment to

a certain degree. If we constrain our own prediction model to the space of features,

and saliency measures spanned by existing models of visual saliency, this provides

an indication of how well principles driving existing saliency models translate to

prediction of explicit judgment data. This evaluation also succeeds in setting an

improved benchmark score for explicit judgment prediction. To achieve these goals,

an ensemble prediction based on a range of saliency models is used to make this

prediction.

Table 3.4: Prediction of explicit judgment using Gaussian blurred free view, object
search and saliency viewing fixation map respectively.

Blur level 1 2 3 4 5 6 7
Sal. View .78 .86 .87 .86 .85 .85 .84
Free View .76 .84 .84 .84 .84 .82 .81

Obj. Search .74 .81 .81 .81 .79 .79 .79
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Before delving directly into performance of our ensemble classifier for explicit

judgment prediction, it is useful to further consider task relatedness for fixation tasks,

and explicit judgments. If data from any of the fixation conditions is converted to a

continuous density map via Gaussian blurring (as is standard in saliency evaluation),

performance in predicting explicit judgments varies as a function of the degree of

blur. Approximation of explicit judgment locations by fixation data from the three

different fixation tasks is shown in Table 3.4. Both free viewing and saliency viewing

fixation maps can approximate explicit judgment quite well, and better than object

search fixations. In the object search task, although observers are directed to find a

pre-defined object, the wide variety of objects presented in a typical scene influences

fixations on every salient items in the scene which may not be task relevant. The

relationship to explicit judgment indicates that there is indeed a significant degree

of task-independent commonality between free viewing, saliency viewing and explicit

judgment.

We have also examined how the results appearing in Table 3.4 interact with IOC

on a per-image basis. To accomplish this we compare the base IOC scores (per im-

age) within each category of fixation data with the auROC performance in predicting

explicit judgments from the fixation data. This provides an understanding of the

relationship between IOC within each type of fixation data, and the relatedness of

fixation and explicit judgment data as a function of IOC. This is measured by ex-

amining the Pearson correlation on a per image basis between image IOC for the

fixation data, and the auROC for the prediction of explicit judgments from fixations.

Correlation values from this line of experimentation are as follows:
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• Free viewing IOC vs. auROC for prediction of explicit judgment from free

viewing data: 0.41

• Object search IOC vs. auROC for prediction of explicit judgment from object

search data: 0.29

• Saliency viewing IOC vs. auROC for prediction of explicit judgment from

saliency viewing data: 0.51

The ability to predict explicit judgment based on fixations is good when the

IOC for the fixation data associated with the same image is high. Statistically, this

result indicates that when observers exhibit more similarity in their fixations for a

particular image, then factors that drive the selection of fixated locations and explicit

judgments also become less disparate. This hints at overlap in factors driving the two

processes, and also that per-image confidence for simulating explicit judgment data

from fixations, might be measured through the associated IOC score.

As mentioned, a second goal in this section is the simulation of explicit judgment

data when only eye tracking data is available. From Table 3.4, it is evident that

fixation data is also indicative of locations selected in the explicit judgment task.

Thus, it is natural to consider the combined strength of fixation data and saliency

algorithms in simulating a measure of explicit judgment. In line with this goal, we

consider only free viewing fixation data given that this tends to be the standard data

type that is widely available.

To train the prediction model, the image set with explicit judgment ground truth is

divided into training and test sets (half/half). For each image, there are 100 locations
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selected as most salient through explicit judgment and these are labelled as positive

samples. From each image, we also randomly sample locations not among the positive

samples as negative samples. Output values from 12 saliency maps for the positive

and negative pixel locations are sampled as training data. In addition, in support

of the simulation of explicit judgment, fixation density from blurred fixation maps

are sampled as an additional statistic. Given that there may also be dependency on

spatial location, and also on the spatial dispersion of positive samples across task, we

also include the (x,y) coordinates of samples as additional statistics. Features from

all the images, are used to train an ensemble of bagged decision trees for regression

(Random Forest [6]). For testing, saliency values and fixation densities for each pixel

location are then used to predict explicit judgments. Standard and shuffled AUC

scores, subject to a varying number of trees are shown in Figure 3.13 (a) and (b).

Figure 3.13 includes the decomposition into different combinations of feature types,

including only saliency output, only fixation data, and combinations thereof. Note

that center bias removal is not applied here as most of the cases explicitly include

spatial position as a feature. This illustrates the extent to which existing saliency

algorithms are capable of predicting locations selected in explicit judgment, and also

addresses the extent to which explicit judgments may be simulated from fixation

data with saliency algorithms as an adjunct source of information. Figure 3.14,

demonstrates model output that is possible under different conditions or through

different combinations of feature types.

As a baseline for assessing the boosted classification performance of saliency al-

gorithms in predicting explicit judgment locations, it is useful to also examine how
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Figure 3.13: Performance for explicit judgment prediction. (Best viewed in digital
format)
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Figure 3.14: Explicit judgment prediction using different feature sets.

much a boosting approach improves performance for the traditional fixation based

evaluation. Experiments measuring this case follow the same process described for ex-

plicit judgment prediction, in using ensemble performance across saliency algorithms

to predict fixated locations. Results relating to these experiments appear in Figure

3.13 (c). We find that although a boosted classifier based on saliency algorithms is
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Figure 3.15: Sample output column (a) input image (b) ex. judgment locations (c)
predicted ex. judgment map (d) simulated ex. judgment locations (e) free view
fixation locations (f) predicted fixation map

able to significantly improve the performance of explicit judgment prediction, there

are no significant gains in fixation data prediction (refer to Table 3.3 to make this

comparison). This suggests that similar factors are involved in determining explicit

judgment locations and fixations, however models have been more finely tuned to

characteristics of fixation data.

3.3.6 Explicit judgment performance prediction

A sample of input images and their associated actual explicit judgments, predicted

explicit judgments (saliency output) and simulated explicit judgment data are pre-

sented in Figure 3.15. This also includes the true fixation data and predicted fixations

(saliency) for comparison.
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Fixation data from a free viewing task is the most common form of data in eval-

uating visual saliency. However, there are evidently benefits to having the ability

to leverage explicit judgment data in guiding algorithm development and assessing

performance. In this section, we assess whether the prediction of explicit judgment

made possible by our model is of sufficient quality that this output may be used in

a surrogate role for quantitative assessment. For example, given a new algorithm for

visual saliency prediction, and various fixation data sets, can one predict the relative

performance of the new algorithm for the explicit judgment task when only fixation

data is available.

The predicted explicit judgment map consists of a topological representation of

expected explicit judgment locations. Evaluation, whether by fixations or explicit

judgment typically relies on binary values corresponding to discrete pixel locations.

To generate this type of representation for quantitative evaluation on simulated ex-

plicit judgment data, we first normalize the predicted explicit judgment map (saliency

output). Subsequently, 100 randomly sample locations are chosen based on the values

in the predicted explicit judgment map, ignoring locations where the value within the

explicit judgment map falls below a set threshold. This strategy was found to produce

superior results to non-thresholded sampling from the predicted explicit judgment

map. Given discrete coordinates for simulated explicit judgment data, evaluation

may proceed based on the standard methods for ROC analysis.

Saliency algorithms were evaluated based on free viewing fixation data, explicit

judgment data, and simulated explicit judgment data. The critical factor in this

analysis is the relation of performance on true explicit judgment data to simulated
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explicit judgment data. The correlation between ROC scores of different algorithms

for true explicit judgment data, and simulated explicit judgment data is 0.92. In

contrast, correlation between per image ROC scores in predicting fixation data and

in predicting explicit judgments is 0.46. This provides confidence that the simulated

explicit judgment data derived from fixation data may present a suitable approxima-

tion for analyzing relative algorithm performance for explicit judgment tasks when

only eye tracking data is available, and that saliency is necessary to provide a bridge

between these disparate sources of data.

3.3.7 Details of post-processing blur for ensemble prediction

As with most benchmarking efforts in visual saliency prediction, performance is

affected by the amount post-processing blur. This effect is presented in Table 3.5.

Table 3.5: For a fixed NTree = 15, the effect of different Gaussian blur level in the
explicit judgment prediction model

Blur level 1 2 3 4 5 6 7
Standard AUC .83 .85 .85 .86 .85 .85 0.84
Shuffled AUC .73 .74 .76 .76 .76 .75 .73

3.3.8 Saliency and Segmentation

Given that explicit judgment locations are likely to be under greater cognitive con-

trol than early fixations, explicit judgment location may arguably provide a stronger

marker for object locations than fixation data. To evaluate this hypothesis, we have

carried out experiments involving object segmentation performance based on both

predicted explicit judgment locations and predicted fixations using 200 images in-
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cluding one and two object cases from the SED dataset [2]. To evaluate segmentation

performance, we have calculated the F-measure by the following equation:

F-measure = precision×recall
0.5×(precision+recall)

F-measure scores for the overall dataset are shown in Table 3.6 and the corre-

sponding precision-recall curves in Figure 3.16. These results indicate that predicted

explicit judgment maps are more successful than predicted fixation maps in highlight-

ing segmented object locations within a scene. Moreover, the performance improve-

ment using predicted explicit judgment maps over predicted fixation maps in the two

object case is higher than that of one object. This also suggests that the distinction

between predicted explicit judgment maps vs. fixation maps becomes more prominent

for complex scenes having multiple objects.

Table 3.6: F-measure of segmentation performance

Object case Exp. judgment map Fixation map
One object 0.698 0.689
Two object 0.604 0.566
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Figure 3.16: Precision Recall Curve for one and two object case using both explicit
judgment and fixation map
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3.3.9 Discussion

In this section, we address the problem of computational modeling of visual

saliency in considering explicit judgment data, as opposed to the more common al-

ternative of predicting fixations within human gaze data. There are a number of

contributions and results of importance that are derived from this investigation:

1. Benchmarking results are presented for several algorithms across four different

tasks. This demonstrates the performance landscape of popular algorithms for

visual saliency for explicit judgment of salient locations. We also motivate

why this alternative form of ground truth may be advantageous for perception

related predictions and computer vision applications.

2. The experimentation included also provides an indication of task relatedness.

Free viewing and especially saliency viewing appear to be driven by factors that

overlap with explicit judgment. With that said, there are different confounding

factors associated with each type of data, and reason to believe that explicit

judgment is more proximal to representing the quality that saliency algorithms

aim to predict.

3. Results indicate that IOC predicts the similarity of fixation data to explicit

judgment data. This implies that IOC may be a reliable measure for gauging

the extent to which vision is stimulus driven, and how well explicit judgment

may be inferred from fixations.

4. Existing algorithms designed for fixation prediction do reasonably well in pre-

dicting explicit judgments. However, these algorithms perform much better
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when tuned to predict this data specifically. This implies that underlying prin-

ciples in existing saliency algorithms are suitable for predicting explicit judg-

ment, but that some optimizations of algorithm performance have been specific

to statistical properties of the spatial layout of fixation data.

5. Explicit judgment marks an alternative window into perceptually important

content to human observers. While eye tracking data is relatively standard in

many research domains, explicit judgment tasks are not. We have also pre-

sented a benchmarking result that surpasses current saliency algorithms for ex-

plicit judgment prediction, in addition to a method that allows for fixation data

and saliency models to approximate explicit judgment data to an extent that

qualitative interpretation and quantitative analysis towards explicit judgment

prediction may be carried out when only fixation data is available.

As a whole, this work establishes performance standards for the explicit judgment

task, introduces an alternative ROC based benchmark strategy, demonstrates the

relatedness of perceptual tasks, and provides methods for data simulation across

different perceptual tasks.
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Digital Media Rating

4.1 Inter-observer congruency prediction

If an algorithm for predicting visual saliency performs poorly for a particular

image, this may instead be due to the properties of the image itself rather than a

failure of the algorithm [31]. As mentioned, there exists an upper bound on perfor-

mance dictated by agreement in viewing patterns among observers, and quantified

by the Inter-observer Congruency score. Therefore, the performance of a saliency

detection algorithm critically depends on IOC of the input image. There are several

factors which may be responsible for a low IOC score. Firstly, IOC can be low if

the image has no salient content i.e. nothing prominent or especially significant to

attract attention. This is a scenario that is not uncommon for naturalistic images

for which algorithm performance and upper bounds dictated by IOC are especially

low [40]. Secondly, IOC can be low if the image has many salient locations, coupled

with a shorter viewing time. Such scenarios may arise when the image contains many

63
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objects or outliers with potential to attract attention in a bottom-up fashion. It is

also commonly observed that the first few fixation points show significant congruency

among observers with inter-observer agreement progressively dropping off with time

[31]. On a slightly longer time course, task dependence and contextual guidance exert

greater influence on search behaviour which also interacts with congruency. Given a

wide array of salient targets in a single scene, fixations are divided differently among

observers across targets. In Figure 4.1, we show a ranking of images corresponding

to the 5 highest and 5 lowest IOC values for the three datasets considered in the

current work. There are a few observations that may be made immediately at an

observational level concerning these images. Those that exhibit high IOC scores tend

to be marked by one of: (i) A small number of discrete, or localized regions of high

contrast (ii) the presence of people, or faces in the scene. (iii) the presence of text

within the scene. On the low end, images tend to consist of a broad distribution of

structure, cluttered or busy scenes, and landscapes. The low IOC images also appear

somewhat more generic in what they capture.

4.1.1 IOC computation

IOC is typically quantified based the average IOC across all images within a

dataset, but in the current study we consider the IOC score corresponding to single

images. For 3 individual and distinctive datasets, we have computed individual IOC

scores for each image. This is accomplished through the leave one out method for

IOC computation [51]. Each dataset involves eye tracking data from n observers. For

any i ∈ n, a predictive map based on (n−1) observers is used to predict fixation data
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for the ith observer through ROC analysis. The AUC for the ROC curve is computed

for all possible leave-one-out combinations. For AUC computation, we have used the

shuffled AUC process employed in [4; 25]. The IOC of each image is given by averaging

the AUC of all i ∈ n. In creating the predictive output from (n−1) observers, the raw

fixations of (n − 1) observers are convolved with a 2-D Gaussian distribution. The

optimal size of Gaussian window was determined independently for each data set, in

considering the maximal mean IOC score across the entire data set. The optimal σ

varies in a fashion related to the resolution/scale of the input images. This provides

a measure of the degree of agreement in viewing patterns across observers for each

image within each dataset.

4.1.2 Experimental Methods and Results

To better understand the problem of IOC prediction, we have chosen three well-

known and distinct datasets: The Bruce/Toronto dataset [8], the Mancas/LeMeur

dataset [37] and the Judd/MIT dataset [24]. The Bruce/Toronto dataset contains 120

color images of 681×511 resolution with 20 human observers. Images from the Mancas

and Le Meur [37] dataset include fixations for 17 observers, an image resolution of

384×384 pixels, and 135 total images. We have also considered 464 images (Landscape

orientation) with resolution 1024× 768 from the Judd/MIT dataset. The landscape

orientation subset was selected to avoid diminished performance from including both

landscape and portrait orientation. In particular given Gist features as one category

for testing, the squashing of images to a square shape may present a disadvantage

if differences in initial image sizes are present. Images across all databases include
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Figure 4.1: Images are sorted based on their actual IOC score from (a) Bruce (b) Judd
(c) Memorability datasets. Top rows corresponding to each dataset depict those
images having low IOC and bottom rows depict images having high IOC. Specific
properties common among higher or lower IOC scores at a semantic level are discussed
in detail throughout this section.
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a wide variety of scene categories and objects, and include natural scenes, indoor

and outdoor scenes. There are some notable differences across the datasets, with

one important difference being the relatively fewer instances of faces or text in the

Bruce/Toronto dataset (This is evident in Fig. 4.1).

Single diagnostic features

As a starting point, we consider a number of simple features related to image

complexity, some of which overlap with measures in the study of LeMeur et al. [32].

In this subsection, we describe these features and the underlying reasons for assuming

a possible relation to IOC.

Entropy: Entropy is a measure of randomness, or local heterogeneity. Images

typically exhibit correlation in their pixel values locally, and are far from being com-

pletely random. High entropy at the image level implies a weaker local correlation

structure expressed broadly across the image. This will tend to occur in instances

where there is a wide variety of objects/items/structure in the image, or sources of

noise.

Visual clutter: Visual clutter is a quantitative measure of the level of ease to add

a target that will draw attention within an existing image [42]. The clutter measure of

Rosenholtz [42] is the most well established measure of visual clutter, and is therefore

used to gauge the impact of image clutter on IOC. As clutter increases, one would

naturally expect the associated IOC to fall given the distraction from clutter may

imply less potential for individual items in the image to elicit perceptual contrast.

JPEG image size: The effect of image compression has been related to im-
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age clutter [42] and is also intuitively related to scene complexity. Regularity in an

image will tend to result in larger gains in compression. In this instance, we have

employed the JPEG 2000 method due to its use of the Dicrete Wavelet transform

as a representation. Given a Wavelet decomposition as the basis for representation

there is an inherent relationship to the spectral decomposition that one observes in

early visual cortex, in the form of Gabor-like features with selectivity for angular and

radial frequencies. An implication of this, is that one might expect the compress-

ibility of an image as expressed by a spectral decomposition, carries diagnosticity at

the level of the ability to have a relatively silent early cortical representation of a

scene. For a fixed resolution, if the JPEG image size is high, one might expect that

an image contains more irregular patterns, textures, or noise. In such a case, an ad-

ditional factor of importance is the JPEG quality, or the number of coefficients that

are driven to zero to boost compression performance at the expense of image quality.

It is worth noting that this measurement resides at the level of simplistic pattern

structure. More sophisticated mechanisms are likely at play in visual sampling by a

human observer. Repeated patterns, and higher level cortical features may also min-

imize activity through recurrent disambiguation (e.g. as in the aperture problem), or

through canonical operations such as divisive normalization [44; 41].

Without any learning these single diagnostic features demonstrate a significant

degree of inverse correlation with IOC scores. It is somewhat surprising that some

simple features are inherently tied to a complex prediction such as IOC. That said, a

common denominator across each of these is the relation to sparsity, compressibility

of signal, redundancy and efficient representation in an information theoretic sense.
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There are numerous examples that suggest that these are some of the central tenets

of cortical representation [20; 54; 39], which perhaps sheds light on the nature of this

relationship. In Table 4.1, we present the Pearson correlation value (r) with confidence

pval for each single diagnostic features. We observe that JPEG image size and visual

clutter have significant negative correlation with IOC. These values are also useful as

a relative reference point for considering the performance of IOC prediction subject to

richer feature sets that follow. We have also tested the correlation in applying varying

degrees of JPEG compression. When quality is very low, many wavelet coefficients

are ignored and below a certain threshold one may fail to adequately represent the

image even at a relatively coarse grained level. When quality is increased above a

certain threshold, then correlation does not change much with increasing quality. One

does tend to observe a maximal degree of correlation for varying degrees of JPEG

compression quality for any given dataset, that appears to be inversely related to

image size. The experimental results are shown in Table 4.2. These results suggest

a relative lack of importance of content beyond a certain high-frequency limit. This

observation is consistent with the nature of foveation (that visual acuity is only high

where one is currently looking), and that fixation patterns tend to be relatively stable

as a function of image size up to a critical limit [22]. As a matter of comparison,

features in the LeMeur et al. study [32] present r values for Pearson correlation of

0.34 for the Judd Dataset, and 0.27 for an alternative dataset [33]. It is also worth

noting that this prior study used a single image set for training and evaluation, using

the Bayesian Information Criterion to constrain model complexity.

It is interesting to note for these relatively simple features, that there is a stronger
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Table 4.1: Correlation between actual IOC scores for single diagnostic features deter-
mined to have significant correlation with IOC.

Datasets Bruce Dataset Memorability Dataset Judd Dataset
Criteria r pval r pval r pval
Entropy -0.188114 0.039636 -0.082271 0.342813 -0.071841 0.122266

JPEG size -0.327238 0.000264 -0.180868 0.035791 -0.196607 0.00002
Clutter FC -0.34532 0.000112 -0.17086 0.047552 -0.187487 0.000048

Table 4.2: Correlation between actual IOC score and JPEG image size subject to
varying degrees of JPEG quality

Datasets Bruce Dataset Memorability Dataset Judd Dataset
JPEG quality r pval r pval r pval

1 -0.273497 0.002507 -0.119214 0.168458 -0.194706 0.000024
3 -0.292802 0.001173 -0.131575 0.128217 -0.20273 0.000011
5 -0.32086 0.000353 -0.16371 0.057791 -0.208112 0.000006
20 -0.340294 0.000143 -0.178525 0.038298 -0.200152 0.000014
45 -0.336347 0.000173 -0.178588 0.038228 -0.200425 0.000014
75 -0.327222 0.000264 -0.180971 0.035683 -0.196539 0.000000
100 -0.332018 0.000212 -0.187738 0.029223 -0.193499 0.000027

degree of correlation observed with the Bruce/Toronto dataset as compared with the

2 other datasets. It is conceivable that a weaker presence of high-level patterns (e.g.

faces) is involved in this difference. In a free-viewing paradigm, one observes behavior

that is distinct from explicit judgments of visual salience [29], and there is evidently

the involvement of complex patterns involved in the range of behaviour observed.

More complex features

Having established that entropy, visual clutter and JPEG image size provide sim-

ple features with diagnostic value for predicting IOC, we now turn to the strategy

of extracting richer feature vectors in combination with a learning algorithm to de-

termine the value of scene level, structural, saliency based, or object based features

in predicting IOC. The set of features used in predicting IOC through a learning
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strategy follow:

Table 4.3: Correlation between actual IOC scores and predicted IOC scores using
different holistic feature vectors for prediction.

Datasets Bruce Dataset Memorability Dataset Judd Dataset
Criteria r pval r pval r pval

HoG 0.369516 0.003665 0.434057 0.000271 0.339512 0.299295
Gist 0.482696 0.000094 0.437934 0.000236 0.345628 0.015363

HoPS 0.504871 0.000039 0.470283 0.000068 0.430416 0.015592
DeepNet 0.330516 0.009902 0.370371 0.002205 0.397389 0.000000

DeepNet + HoPS 0.505926 0.000037 0.519035 0.000008 0.454831 0.000000

Bottom-Up and Top-Down Features

An important distinction that often appears within the visual attention literature,

is the notion of bottom-up versus top-down processing. Bottom-up processing refers

to the viewing behavior that is driven by the properties of the image content itself.

A bright pattern, an unusual patch of color, or sudden movement tends to draw

an observers gaze independent of any semantic information, or higher level concepts.

Top-Down processing refers to the portion of viewing behavior that is driven by higher

level cognition or prior knowledge. This may appear in the context of a certain task

(e.g. looking for keys), or based on inherent reward seeking behaviour. For example,

there is a strong tendency to look at faces or other socially relevant cues [32]. It is

also observed that the overall holistic structure of a scene can be understood rapidly,

and influence how a scene is examined [38]. To test the relative contribution of these

different processes to observed viewing patterns, we therefore include a number of

features that span these categories.

Saliency algorithms by design seek image content that draws interest from a stim-

ulus driven perspective. Different models rely on different simple features, and mea-
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sures of contrast with this common goal in mind. We therefore consider a rich bottom-

up feature set derived from the combined output of a variety of popular saliency al-

gorithms. The specifics of these features are described in more detail later in this

section.

We also seek to include features that convey an overall structural representation of

the scene. One popular method for representing the holistic scene envelope is through

scene Gist [38]. This provides a set of holistic receptive fields that distinguishes

between different categories of scene that carry different holistic structure. We have

also used the more standard histogram of oriented gradients (HoG) [10] feature in a

similar capacity. These representations are applied to the entire image to produce a

feature vector that captures a coarse grained representation of scene structure.

For high-level features, we rely on object specific features that have shown signifi-

cant success in large scale recognition tasks. These are features derived through deep

learning using convolutional nets. High level features are derived from the BVLC Ref-

erence CaffeNet architecture [21] based on the AlexNet architecture [30] (and trained

on the ILSVRC12 challenge data [43]). This provides a 1000 dimensional feature

vector of responses corresponding to the highest layer of the deep convolutional net.

The rationale for these features is to capture the presence of higher level concepts

and patterns within the images, and to related these measurements to IOC.

Histogram of Predicted Salience (HoPS) features:

IOC depends of variability in viewing patterns of different observers. Each ob-

server may have their own way of analyzing a scene, that guides the viewing patterns

observed in fixation data. As different saliency algorithms may emphasize different



Chapter 4: Digital Media Rating 73

types of feature contrast within an image, a feature level representation derived from

a variety of saliency models is a natural option to consider. We have considered

12 different saliency algorithms in producing a feature vector to predict IOC. These

algorithms include the Torralba [49], HouCVPR [16], HouNIPS [17], Itti-CIO2 [19],

ImageSignatureLab [15], ImageSignatureRGB [15], SDSR [46], AIM [8], GBVS [14],

AWS [13], Yan [56] and SOC [40] models. For a detailed description of these algo-

rithm, the reader may refer to the original published work, or Borji et al. [4] for a

summary. The HoPS features are computed as follows:

For each of the aforementioned saliency algorithms, a histogram is created that

provides a summary representation of the distribution of predicted visual saliency

within a rectangular region of the image. Histograms are normalized and subsequently

concatenated to produce a feature set for prediction. As these features are derived

from saliency maps, we call these features Histograms of Predicted Salience (HoPS)

in a manner similar to features based on histograms of normalized edge structure

[10; 36]. Suppose, for the ith algorithm the normalized histogram is represented by

[f i
1, f

i
2, f

i
3....f

i
b ] where i ∈ 1, 2, ..., 12 and b is number of bins in the histogram. The

HoPS feature set is given by:
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Where, any value f i
j represents jth bin feature of the ith algorithm. If different

algorithms agree with one other then this implies confidence across algorithms in

a common region. Because of this characteristic, HoPS has very good capability to

represent both variability in predicted salience, but also consistency and commonality
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across algorithms. Unlike the Gist features, HoPS features are computed without

remapping to a fixed square resolution. This is important because resizing the saliency

map to a square resolution can result in undue variability in scene level features in

determining feature salience.

Learning: Extracted features are used to learn a regression model for IOC pre-

diction. We have randomly selected half of the images from each dataset for training.

Most of the images in any dataset exhibit a shuffled ROC score that falls within the

range of 0.5 to 0.7. This may result in imbalance in the dataset in the relative repre-

sentation of high and low IOC examples relative to average cases. To accommodate

for bias in the distribution of IOC values, training is achieved in merging images of

all three datasets. This results in a greater proportion of relatively high and low IOC

values on a relative scale. As eye tracking data are derived from different numbers

of observers for different datasets, we normalize the scale of IOC values via linear

scaling for each dataset to a common range of 0 to 1. This helps to overcome the

paucity of data inherent in performing an image-level prediction (as opposed to pixel

level where there are many more samples). The limited size of datasets is the reason

for a singular dataset in training and testing within the prior work of LeMeur et al

[32], and this strategy allows us to successfully overcome this limitation. Repeated

selection of sub-samples of the training set allows for the selection of training samples

with a more uniform range following the same strategy employed by Isola et al. [18].

Given training instances represented by feature vectors (HoG, GIST, HoPS, Deep-

Net) we apply ε-SVR [9] for continuous value prediction. The dimensionality of HoPS

features may be altered by varying the number of bins. Performance is relatively con-
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Figure 4.2: Predicted IOC vs. actual IOC for each combination of the three datasets,
and HoG, GIST and HoPS features as predictors. The red line corresponds to the
least squares linear regression fit to the data.

sistent across a range of bin values (5 to 100 bins were tested) with 20 bins used in

test results. While either of HoPS or HoG may be applied subject to a grid or block-

wise decomposition of the image, it was determined that there was no significant

benefit to such a decomposition when compared with features of the same variety

derived over the complete image. This is somewhat surprising, however the degree

of contrast in the saliency maps is quite diagnostic of the presence of highly salient

regions, independent of where they are located. Parameters were also optimized for

each of HoG and Gist to achieve the greatest correlation with IOC scores. These

results correspond to HoG using a cell size of 128 and 8 orientations. Similarly, the

best performance of GIST for orientation per scale was [2 2 2] (3 scales, 2 orientations

per scale) and a subdivision using 4 blocks. As images from different datasets may

have different resolution, these are resized to a fixed dimension for HoG and GIST

which are 256× 256 and 128× 128 respectively. The results of these experiments are

shown in Table 4.3. We observe that holistic structural feature extraction and sum-
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mary statistics across saliency maps produce stronger correlation than that observed

for the simpler features that were initially considered. Moreover, HoPS features out-

perform both HoG and GIST features suggesting that the distribution of saliency

scores, and agreement across algorithms has strong diagnosticity for predicting IOC,

and may also be of similar value for other perception based predictions. A scatter

plot of predicted IOC vs. actual IOC value is depicted in Figure 4.2.

It is also interesting to note the contrast in the high level features derived from

deep learning, and the HoPS features. While the HoPS features are of greatest value

for the Bruce Dataset, they are of least value for the Judd dataset. The features

derived from the deep neural network show the opposite trend, with these features

having relatively less value for the Bruce dataset. This fits with the observation

that more of the salient patterns in the Bruce dataset are a result of simpler feature

configurations whereas the Judd dataset has a much higher incidence of people, faces

and text. It is also noteworthy, that the best performance derives from combining

the low-level stimulus driven features with the high-level object sensitive features.

This underscores the importance of modeling both bottom-up and top-down facets

of viewing behaviour.

In Figure 4.3, we show exemplar images that exhibit the greatest underestimate

of calculated IOC based on the residuals from the regression fit. These are selected

from the Judd dataset, owing to the greater number of images, and variety of content

in this data with respect to semantically meaningful patterns that seem to drive

fixation bias. The 15 images corresponding to the most underestimated IOC values

were selected for each of the HoPS and deep learning based predictions. We show
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the 7 largest differences in common to both the HoPS and deep learning features (a),

those that appear only in the bottom 15 for the HoPS based predictions (b), and

those that appear uniquely in the bottom 15 for the deep learning based predictions

(c). The largest underestimates specific to HoPS are dominated by images containing

text faces. Underestimates for the deep learning features are a bit more varied. One

of these corresponds to a simple pattern that is highly salient based on bottom-up

factors. Others contain instances of objects that may be readily interpreted by a

human observer, but may be small in the context of the overall scene, or relatively

low in contrast. There are also instances of faces, but it is notable that these represent

a blurry photo, atypical pose, and a dog face with partial occlusion of the face by

hair. Underestimates common to both types of features seem to correspond to scenes

with semantically meaningful content that are relatively complex in their structure or

lighting conditions. There is some suggestions from these cases that both bottom-up

and top-down features are important to predictive modeling of gaze behavior based

on image content.

4.1.3 Discussion

In this section, we have explored the problem of predicting IOC among human ob-

servers based on previously unseen images. The extent to which this characterization

may be made evidently depends in part on the nature of the images under considera-

tion. IOC correlation associated with a number of low-level simplistic features hints

at the importance of redundancy and neural coding in how a scene is parsed by a

human observer. The success of saliency models built on principles from informa-
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Figure 4.3: Images among the greatest 15 underestimates of actual IOC scores (based
on residuals from the regression model): (a) Common to both HoPS and Deep learning
features (b) Within the bottom 15 for HoPS only. (c) Within the bottom 15 for Deep
learning only.

tion theory, compressive sensing and coding, (divisive) normalization and whitening

evidently mirrors some of the characteristics that are relevant in characterizing gaze

behavior in a holistic fashion.

We have also introduced a novel feature representation characterized by the dis-

tribution of values produced by different saliency models for a particular image. This

provides a feature with strong diagnostic value in predicting IOC. It is also reasonable

to assume that HoPS type features may have value in alternative predictions related

to perception.

The value of features in regression, and dependence on the type of data carries

important implications for future work in computational models of perception. While

local contrast (or saliency) measures carry significant value in predictive models, there

are evidently many other elements beyond context or scene structure that factor into

viewing behaviour. There are a multitude of inherent behaviours relating to reward



Chapter 4: Digital Media Rating 79

seeking, fear or social interaction at play even within a free viewing context. The

value of more semantically grounded features drawn from a deep learning paradigm

underscores the value in marrying low-level image characteristics with higher level

image understanding. This is important in the prediction of IOC, but also more

generally in systems for active vision, early proto-object selection and any models

targeting perceptual computation.

4.2 Other subjective ratings

In the era of the internet, we now have access to millions of images. Given the large

number of images people are now exposed to, this necessitates paying attention to

any given image for a very short amount of time. However, people may experience an

affective response to any image subject to a very short time course. These subjective

feelings can be motivated by personal experience, social factors and the form and

content of the image. The ability to predict the subjective experience of people to

images without the need for a time consuming user survey is a valuable tool for

managing digital media. In some recent work, specific instances of this problem

are considered that focus on the popularity and memorability of images respectively

[28; 18].

In the same vein, we address a variety of other subjective criteria including brand

experience, purchase intention, interest, understanding, valence, relevance and orig-

inality. Images consist of 151 magazine pages from Swedish magazines, and locally

distributed flyers for product advertising. In each case, participants were asked to pro-

vide subjective ratings on the aforementioned categories on different numeric scales.
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Generally this scale consisted of a 1-5 rating, however the valence rating was based on

a -5 to +5 scale for better intuitive correspondence to positive and negative valence.

Memorability scores are more objective and reflect the capacity to discriminate be-

tween examples appearing in an experimental trial done at an earlier time. In short,

the characteristics that these ratings seek to measure are as follows:

• Brand experience: To what extent does the participant have prior experience

or familiarity with the products featured in the image

• Purchase intention: Does the participant have any intent to purchase the prod-

uct in the future?

• Interest: What level of interest does the form/content of the image elicit?

• Understanding: Is the message of the advertisement clear to the participant?

Are the product advertised, and salient features clear?

• Valence: How does the participant feel in viewing the image? (e.g. positive

feelings, negative feelings)

• Relevance: How relevant is the content of the advertisement to the product that

is featured?

• Originality: Is the advertisement original or does it stand out from other ad-

vertisements as unique, or creative?
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4.2.1 Prediction model

Feature extraction supporting different types of subject rating prediction are based

on the same features considered for the IOC case, as described in Chapter 4.1.2. As

done for IOC, we consider HoG, GIST, HoPS and deepNet features for learning. This

includes extraction of those features from the images themselves, but also based on

saliency maps produced by different algorithms, to characterize holistic structure of

the saliency output. The HoPS like feature extraction from color images is equivalent

to extracting histograms from different subdivisions of an image when applied to

the image rather than the saliency map, and is referred to as image histogram in

the list of features. For learning, we have used half of the images for training and

other half for testing. With the different types of extracted features, we have trained

an ensemble of bagged decision trees for regression (Random Forest [6]). We have

performed separate training and testing for each of the subjective rating types.

4.2.2 t-stochastic neighbor embedding (tSNE) of image fea-

tures

We have extracted features from both image and saliency maps of the algorithms,

and these represent the image contents from low level to high level features, with

different relations to the subject rating assigned by people. Based on the properties

each type of feature highlights different characteristics of the nature of images that

may express similarity in structure, edge content, colors, or objects present. To

visualize the relatedness of images subject to different types of feature representation,

we embed all testing images within a 2D plot. The embeddings are done by t-
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stochastic neighbor embedding (tSNE) [53]. The embedding for deepNet, raw image

Gist, saliency map Gist, raw image HoG, saliency map HoG, raw image histogram

and saliency map HoPS feature are shown in Figures 4.4, 4.5, 4.6, 4.7, 4.8, 4.9 and

4.10 respectively.
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Figure 4.4: 2D Embedding of deepNet feature by tSNE. DeepNet feature captures
mostly the high level features. Because of this dominant objects of similar nature
(like human, car) are grouped together in the embedding

4.2.3 Experimental results

As stated, the parameter settings for different types of feature extraction mirrors

the description appearing in Chapter 4.1.2. For features pertaining to learning, we

have used 200 trees in the random forest. In Table 4.4, we present the best results

after tuning parameters. We have only presented those results for which the corre-

lation achieves more than 95% confidence. We notice that for some subject rating

criteria like interest, understanding, memory and purchase intention, we are unable

to achieve good correlation performance (corresponding to blank space in Table 4.4).
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Figure 4.5: 2D Embedding of image Gist feature by tSNE. It is quite noticeable that
global color directs the embedding. As Gist is applied on raw image, color becomes
the distinguishing factor
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Figure 4.6: 2D Embedding of saliency Gist feature by tSNE. Images having similar
looking saliency map are embedded in close locations

The low correlation for these factors indicates that for the magazine advertisements,

those subjective ratings may be more strongly dominated by personal experience,

social cues, individual choice and other top-down factors which are not discernable

from the image content alone. On the other hand, some subjective criteria like brand
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Figure 4.7: 2D Embedding of image HoG feature by tSNE. Images having similar
local edge structure are in close location
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Figure 4.8: 2D Embedding of saliency HoG feature by tSNE. Images having similar
looking edges in saliency map are embedded in close locations

experience, relevance, valence and originality achieve relatively consistent correlation

(with confidence) for different feature types. This indicates that the image itself con-

tains significant information concerning factors that drive these subjective ratings.

In particular, brand experience and originality are noticed to be highly predictable.
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Figure 4.9: 2D Embedding of image histogram feature by tSNE. This embedding is
dominated by both color and local structure
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Figure 4.10: 2D Embedding of saliency HoPS feature by tSNE. Images having similar
looking saliency map are embedded in close locations

Intuitively, originality may have some relation to the spatial organization of content

in the image. Successful prediction of brand experience is more surprising. However,

in examining the images themselves, well known brands seem to preferentially em-

ploy advertisements with a relatively clean appearance, and highly visible logo and
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message. For this reason, predictability is not necessarily related to direct causality,

but rather to correlation due to bias in how advertisements are composed according

to the brands they represent.

Table 4.4: Prediction performance as Pearson Correlation of subjective rating of
different types of features

Rating Image Saliency Image Saliency Image Saliency Deep
Type Gist Gist HoG HoG Hist HoPS Net

Brand Experience 0.35 0.41 - 0.30 0.34 0.39 0.32
Interest - - - - - 0.27 0.28

Understanding 0.29 - - - - - -
Relevance 0.33 0.42 0.32 0.40 - 0.38 -
Valence 0.28 0.28 - - - - 0.37
Memory - - - - - - 0.29

Purchase Intention - 0.28 0.26 - - - -
Originality 0.43 0.52 0.33 0.44 0.45 0.52 0.53

Theoretically, we know that concatenation of different useful features can improve

the performance of a prediction model. To test this, we also experiment with different

combinations of high performing feature types to improve on individual performance

of the features. We have done this experiment for the subjective rating types which are

consistently predictable by individual features. In Table 4.5, 4.6, 4.7, 4.8, we report

feature combination results of brand experience, relevance, valence and originality of

image. We notice that in most of the cases the combination of features improves on

correlation relative to the correlation of individual features.

4.2.4 Discussion

In this section, we have addressed different subjective ratings associated with im-

ages and determine the value of different features in successfully approximating these

ratings. We use a wide range of subjective rating criteria including brand experi-



Chapter 4: Digital Media Rating 87

Table 4.5: Testing with combination of features for rating type Brand Experience

Combination Feature Type Pearson Correlation
1st best Sal Gist 0.41
2nd best Sal HoPS 0.39
3rd best Im Gist 0.35

1st+2nd best Sal Gist+Sal HoPS 0.44
1st+3rd best Sal Gist+Im Gist 0.35
2nd+3rd best Sal HoPS+Im Gist 0.36

1st+2nd+3rd best Sal Gist+Sal HoPS+Im Gist 0.41

Table 4.6: Testing with combination of features for rating type Relevance

Combination Feature Type Correlation
1st best Sal Gist 0.42
2nd best Sal HoG 0.40
3rd best Sal HoPS 0.38

1st+2nd best Sal Gist+Sal HoG 0.39
1st+3rd best Sal Gist+Sal HoPS 0.37
2nd+3rd best Sal HoG+Sal HoPS 0.42

1st+2nd+3rd best Sal Gist+Sal HoG+Sal HoPS 0.42

ence, purchase intention, interest, understanding, valance, relevance and originality.

Among them, a handful of criteria including brand experience, valence, relevance and

originality are consistently predictable with features that include Gist, HoG and HoPS

derived from both images and saliency maps. Moreover, concatenation of different

Table 4.7: Testing with combination of features for rating type Valence

Combination Feature Type Pearson Correlation
1st best DeepNet 0.37
2nd best Im Gist 0.28
3rd best Sal Gist 0.28

1st+2nd best DeepNet+Im Gist 0.37
1st+3rd best DeepNet+Sal Gist 0.39
2nd+3rd best Im Gist+Sal Gist 0.29

1st+2nd+3rd best DeepNet+Im Gist+Sal Gist 0.41
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Table 4.8: Testing with combination of features for rating type Originality

Combination Feature Type Pearson Correlation
1st best DeepNet 0.53
2nd best Sal HoPS 0.52
3rd best Sal Gist 0.52

1st+2nd best DeepNet+Sal HoPS 0.59
1st+3rd best DeepNet+Sal Gist 0.58
2nd+3rd best Sal HoPS+Sal Gist 0.54

1st+2nd+3rd best DeepNet+Sal HoPS+Sal Gist 0.60

combinations of features helps to improve prediction performance. Prediction of im-

age level subjective criteria is very valuable to the advertising industry because based

on the capacity to predict effectiveness a priori, and before committing expenses to

circulating the advertisement. The value of different types of features also sheds light

on effective strategies for sentiment based prediction in general.



Chapter 5

Summary, Limitations and Future

Work

5.1 Summary

As a whole, this research enriches our understanding of visual saliency computa-

tion and knowledge concerning the perception of digital media. This includes a better

understanding of reasons for success and failure of different established algorithms.

We demonstrate our hypotheses in considering a range of imagery that includes both

natural and man-made content offering deeper insight into the landscape of how dif-

ferent algorithms behave. In addition, we attempt to improve the performance of

human-like saliency computation, in better demonstrating the importance of divisive

normalization and second order contrast measures [27]. Relevant to general stan-

dards for performance evaluation in this area, confounds imposed by central bias

are solved through novel strategies to gauge the spatial bias produced by algorithms

89
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and remove center bias in evaluation. Moreover, in regards to predictive methods

targeting digital media, we present novel models for predicting explicit judgment lo-

cations, IOC and other subjective ratings at the whole image level. These predictive

models are validated through comparison with human data from user studies. This

thesis generates a number of new directions in image saliency research, and presents

some additional baseline approaches targeting new types of predictive analysis for

characterizing perceptually relevant image properties.

5.2 Limitations

As with virtually any research endeavor, there are additional avenues that would

benefit from further analysis. To this end the following identifies a few specific targets

for further investigation associated with the content presented in this thesis.

• We tune the parameters of the SOC model based on DOVES images, which

is a dataset of natural images. However, testing with Toronto dataset uses

parameters tuned to natural images. With further exploration of the parameter

space, the performance of the SOC model would have been better for the case

of Toronto dataset.

• While learning prediction models we have not calculated the feature impor-

tance during training. It might help us know which specific features are most

discriminative, to propose a reduced feature set for different prediction criteria.

• In this thesis, while training any prediction model, we have applied less rigour

to the learning strategy, with the focus on features and motivating ideas. We
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have used linear SVR, and standard random forest implementation. Learning

performance may improve by defining the formulation our problems in support

of structured prediction, transfer learning and learning with hidden variables

like latent SVM. However, the methods used are sufficient to draw some valuable

conclusions concerning different aspects of perception of digital media in what

has been considered.

5.3 Future Work

There exist many possibilities for future research derived from this thesis, and a

set of these possibilities are listed below:

• Divisive normalization and second order contrast can improve correspondence

in the match between image level outputs, and measured neural responses for

natural stimuli. We find that such improvement is also reflected in saliency

detection. Similarly, the difference in including local divisive normalization, and

second order contrast in particular may be of value to alternative problems such

as identifying natural images, or distinguishing between indoor and outdoor

settings. In this way, we can develop biologically motivated natural image

classification system and other relevant applications.

• We show that removal center bias significantly affects the ranking of algorithms

of saliency detection. In prior literature, saliency algorithms are also used in

object segmentation [34]. The role of center bias in salient object detection

has not been examined in the same degree of detail, and performance of object
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segmentation algorithms might be assessed with similar treatment of center

bias.

• Saliency models tend to exhibit a high degree of sensitivity to imaging conditions

[3]. Keeping this in mind, an user study based on different imaging conditions

for different perceptual task like free viewing, object searching, saliency view-

ing and explicit judgment would be of value to gauge what this variation looks

like for human observers. This may also reveal how saliency algorithm should

treat affine transformations, or lighting variations with sensitivity to either per-

formance as a component of a larger vision system, or in fidelity to human

behaviour.

• Predictions of subjective ratings of digital media can be improved by learning

deep neural network models for this purpose. The convolution layers of deep

networks can reveal bottom-up low level features and top layers can reveal top-

down high level features which are evidently both important from the results

of experiments included in this thesis. The primary limitation at this time in

considering such an approach is the unavailability of a dataset that includes a

sufficient number of samples to allow for this type of training.
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