
Computationally Efficient Methods for Sparse

Tensor Signal Processing

by

Ishan Maduranga Wickramasingha

A Thesis submitted to the Faculty of Graduate Studies of

The University of Manitoba

in partial fulfillment of the requirements of the degree of

DOCTOR OF PHILOSOPHY

Department of Electrical and Computer Engineering

University of Manitoba

Winnipeg

Copyright © 2021 by Ishan Maduranga Wickramasingha

Ishan Wickramasingha

ii

Abstract

Many modern applications solve multidimensional problems using linear algebra by vectorizing

multidimensional signals (Tensor). However, the size of the vectorized signal increases in

polynomial order with the number of dimensions of the signal (Order of the Tensor). Therefore

solving large multidimensional problems using vectorized signals is computationally infeasible.

This research aimed to develop novel methods that could efficiently solve large multidimensional

problems using significantly less computational resources. We studied Sparsity, Tensors, and

Multilinear Algebra during this research, and we developed several tensor-based algorithms using

multilinear algebra to process large multidimensional signals efficiently.

Sparse signal representations result in simpler and faster processing and lower memory storage

requirements. However, obtaining a sparse signal representation of a large multidimensional signal

by solving a sparse linear least-squares problem is computationally infeasible. Therefore, in this

thesis, we develop the Tensor Least Angle Regression (T-LARS) algorithm, a generalization of

Least Angle Regression (LARS) that could efficiently solve large L0 or large L1 constrained sparse

multilinear least-squares problems (underdetermined or overdetermined) for all critical values of

the regularization parameter λ.

Sparse weighted multilinear least-squares is a generalization of the sparse multilinear least-squares

problem, where prior information about, e.g., parameters and data is incorporated by multiplying both

sides of the original problem by a typically diagonal weights matrix. If the diagonal weight matrix does

not have a Kronecker structure similar to the dictionary matrix, we could not use T-LARS to solve this

problem efficiently. Therefore, we introduced the Weighted Tensor Least Angle Regression (WT-

LARS) algorithm to efficiently solve the sparse weighted multilinear least-squares problem for a

non-separable weight matrix.

The T-LARS could not be initialized with a solution outside of the Pareto curve because it will

violate the optimality conditions of T-LARS. Therefore, we developed the Tensor Dynamic Least

Angle Regression (TD-LARS) algorithm, a multilinear generalization of the one-dimensional L1-

Homotopy algorithm to efficiently solve multilinear L1 minimization problems using nonzero

initial solutions of close problems located on or off of the Pareto curve.

Computationally Efficient Methods for Sparse Tensor Signal Processing

iii

We also introduced the Multilinear Elastic Net problem by generalizing the one-dimensional

Elastic Net problem, which solves a strictly convex 𝐿𝐿1 and 𝐿𝐿2 constrained multilinear least-squares

problem, and it has the best properties of both 𝐿𝐿1 and 𝐿𝐿2 minimization problems. The dictionary

of the Multilinear Elastic Net problem has a partitioned Kronecker structure, which could not be

efficiently solved with T-LARS. Therefore, we introduced the Tensor Elastic Net (T-NET)

algorithm to efficiently solve the Multilinear Elastic Net problem by utilizing the partitioned

Kronecker structure of the dictionary matrix.

Learned dictionaries could be used in classification or regression tasks. However, regression and

classification performance could be improved significantly by supervised learning of task-specific

dictionaries. Therefore, we extended the one-dimensional task-driven dictionary learning (TDDL)

to develop the tensor task-driven dictionary learning (T-TDDL) that could work as an efficient

online data-driven or task-driven dictionary learning algorithm for supervised and semi-supervised

learning of mode-n dictionaries and mode-n model parameters. We also presented a compressed

sensing extension to the T-TDDL formulation to efficiently solve large tensor task-driven

dictionary learning problems.

Experimental results show the validity and performance of T-LARS, WT-LARS, TD-LARS, and

T-NET in obtaining sparse multilinear representations of multidimensional signals and the

performance of T-TDDL in multidimensional regression and classification tasks.

Ishan Wickramasingha

iv

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my academic advisor Dr. Sherif

Sherif for his tremendous support and guidance throughout my Ph.D. research and his patience,

motivation, enthusiasm, and immense knowledge. Thank you for your insightful feedback and

encouragement that pushed me to grow as a research scientist and take the extra mile.

I would like to take this opportunity to thank my Ph.D. advisory committee members, Dr. Pradeepa

Yahampath and Dr. Andrew Goertzen, for their insightful comments, valuable support, and

encouragement throughout the Ph.D. research.

I would also like to extend my deepest gratitude to my family members and parents for their love,

support, encouragement, and patience throughout my Ph.D. research. I want to thank my wife, Dr.

Randima Hettiarachchi, for her continuous support and encouragement throughout the Ph.D. and

for being there to discuss my research ideas, and my daughter Tanushi for bearing with me,

especially when I had to finalize my Ph.D. research and write the Ph.D. thesis during the COVID-

19 pandemic. Sadly, I had to remove the random letters contributed by my 2-year-old daughter

from the thesis.

I would not be here without my mother, Kusum Wickramasingha, and my late father, W.A.

Sirisoma, my first teachers who believed in me since I was young, and I’m eternally grateful for

their unconditional love, support, encouragement, and sacrifices. Therefore, I would like to

dedicate this thesis to my family and parents.

I’m grateful to the University of Manitoba for providing me with financial support through the

University of Manitoba Graduate Fellowship (UMGF), which allowed me to focus entirely on the

Ph.D. research. Finally, I would like to thank my colleagues and friends for their constant support,

feedback, and encouragement and the staff of the University of Manitoba for providing a

supportive working environment, especially during the COVID-19 pandemic.

Computationally Efficient Methods for Sparse Tensor Signal Processing

v

Table of Contents

Abstract ... ii

Acknowledgments.. iv

Table of Contents .. v

List of Tables ... ix

List of Figures ... x

List of Algorithms ... xv

1. Introduction ... 1

1.1. Thesis Contributions ... 5
1.1.1. Related publications ... 7

1.1.2. Publications Plan ... 8
1.2. Thesis Outline ... 8

2. Tensors and Sparse Signal Representation ... 10

2.1. Tensors and Multilinear Algebra .. 10

2.1.1. Vectorization of a tensor .. 11
2.1.2. Mode-n Matricization of a tensor .. 12
2.1.3. Tensor Mode-n Product ... 12

2.1.4. Other Important Products .. 13
2.1.5. Multilinear Transformation of Tensors .. 14

2.2. Sparse Signal Representation .. 16

2.2.1. Sparse Least-Squares Problems ... 17
2.2.2. Obtaining Optimum Sparse Signal Representations .. 18

2.3. Sparse Tensor Signal Representation.. 20
2.3.1. Sparse Multilinear Least-squares Problem .. 20
2.3.2. Thesis Problem Statement ... 21

3. Tensor Least Angle Regression (T-LARS) ... 23

3.1. Introduction .. 24
3.2. Problem Formulation .. 26

3.2.1. Tensors and multilinear transformations ... 26

3.2.2. Sparse Multilinear Least-squares Problem .. 28
3.2.3. Multilinear Compressed Sensing ... 29

3.3. Tensor Least Angle Regression (T-LARS) ... 30

3.3.1. Least Angle Regression (LARS) ... 30
3.3.2. Tensor Least Angle Regression (T-LARS) Algorithm .. 32

3.4. Algorithm Computational Complexity ... 39

Ishan Wickramasingha

vi

3.4.1. The Computational complexity of T-LARS .. 39
3.4.2. Comparison of computational complexities of Kronecker-OMP and T-LARS ... 40

3.5. Experimental Results .. 43
3.5.1. Experimental Datasets ... 43

3.5.2. Experimental Setup .. 43
3.5.3. Experimental Results for 3D MRI Brain Images ... 44
3.5.4. Experimental Results for 3D PET-CT Brain Images ... 49

3.5.5. Experimental Results for Reconstructing 3D PET-CT Brain Images Using Compressed Sensing Samples
 ... 53

3.6. Conclusions .. 55

4. Weighted Tensor Least Angle Regression (WT-LARS) .. 57

4.1. Introduction .. 57
4.2. Problem Formulation .. 60

4.2.1. Sparse weighted tensor least-squares problem ... 60
4.2.2. Calculating the mutual coherence of a large weighted Kronecker dictionary .. 60

4.3. Weighted Tensor Least Angle Regression (WT-LARS) .. 61

4.3.1. Weighted Tensor Least Angle Regression Algorithm ... 65
4.4. Experimental Results .. 66

4.4.1. Inpainting Experiment ... 66
4.5. Conclusions .. 68

5. Tensor Dynamic Least Angle Regression (TD-LARS) .. 70

5.1. Introduction .. 70

5.2. Background ... 73
5.2.1. Sparse Multilinear Least-squares Problem .. 73
5.2.2. Tensor Least Angle Regression (T-LARS) .. 73

5.3. Tensor Dynamic Least Angle Regression (TD-LARS) .. 74
5.3.1. Problem Formulation ... 74
5.3.2. Tensor Dynamic Least Angle Regression (TD-LARS) Formulation ... 75

5.3.3. Tensor Dynamic Least Angle Regression Algorithm (TD-LARS) .. 77
5.4. Experimental Results .. 79

5.4.1. Obtaining Sparse Representations of Successive RGB Video Frames Using TD-LARS 79
5.4.2. Obtaining Sparse Representations of Successive 3D MRI Images Using the TD-LARS 82

5.5. Conclusions .. 84

6. Tensor Elastic Net (T-NET).. 86

6.1. Introduction .. 86
6.2. Tensor Elastic Net... 89

6.2.1. Problem Formulation ... 89

Computationally Efficient Methods for Sparse Tensor Signal Processing

vii

6.2.2. Tensor Elastic Net Formulation ... 90
6.2.3. Tensor Elastic Net Algorithm .. 94

6.3. Experimental Results .. 95
6.3.1. Experimental Setup .. 95

6.3.2. Experimental Results for 3D OCT Mouse Brain Images ... 96
6.3.3. Experimental Results for RGB video .. 99

6.4. Conclusions .. 101

7. Tensor Task-Driven Dictionary Learning (T-TDDL) ... 103

7.1. Introduction .. 104

7.2. Task Driven Dictionary Learning ... 106
7.3. Tensor Task Driven Dictionary Learning(T-TDDL) .. 107

7.3.1. Proposed Formulation .. 108
7.3.2. Optimization .. 108
7.3.3. Tensor Task-Driven Dictionary Learning Algorithm .. 113

7.4. Applications .. 114
7.4.1. Regression ... 114

7.4.2. Binary Classification ... 115
7.4.3. Multiclass Classification .. 116

7.5. Compressed Sensing Extension .. 118

7.6. Experimental Results .. 121
7.6.1. Regression Experiment .. 121
7.6.2. Binary Classification Experiment .. 124

7.6.3. Multiclass Classification Experiment .. 127
7.7. Conclusions .. 131

8. Conclusions And Future Directions .. 133

8.1. Conclusions .. 133

8.2. Future Directions .. 137

References ... 139

Appendix A ... 151

A.1 Mapping of Tensor Indices to Corresponding Vector Indices of vec(𝒳𝒳) ∈ ℝ𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 − 1 … 𝐼𝐼1 151

Appendix B ... 153

B.1 Mapping of column indices of dictionary Φ to column indices of mode-n dictionaries 153

B.2 Normalization of the tensor 𝒴𝒴 ∈ ℝ𝐽𝐽1 × … × 𝐽𝐽𝐽𝐽 × … × 𝐽𝐽𝐽𝐽 ... 155

B.3 Normalization of columns of the separable dictionary 𝜱𝜱 to have a unit 𝐿𝐿2 norm .. 156

B.4 Obtaining the initial correlation tensor 𝒞𝒞1 .. 156

B.5 Creating a Gram matrix for each mode-n dictionary 𝜱𝜱𝑛𝑛 .. 157

Ishan Wickramasingha

viii

Appendix C ... 158

C.1 Obtain the inverse of the Gram matrix of the active columns of the dictionary in WT-LARS 158

Appendix D ... 159

D.1 Obtain the inverse of the Gram matrix of the active columns of the dictionary in TD-LARS 159

Appendix E ... 160

E.1 Obtain The Inverse Of The Gram Matrix Of The Active Columns Of The Dictionary in T-NET 160

Appendix F.. 161

F.1 Proof of Proposition 7.1 .. 161

F.2 Proof of Proposition 7.2 .. 161
F.3 Proof of Proposition 7.3 .. 163

Computationally Efficient Methods for Sparse Tensor Signal Processing

ix

List of Tables

Table 3.1. Term by term comparison of the computational complexity of Kronecker-OMP

and T-LARS given in 3.36 and 3.37 ... 41

Table 3.2. Summary of experimental results for our 3D MRI brain image 45

Table 3.3. Summary of experimental results for our 3D PET-CT brain image 49

Table 3.4. Summary of compressed sensing experimental results ... 54

Table 6.1. DCT mode-n dictionary sizes and coherence of the Kronecker Dictionary 𝜱𝜱 96

Table 6.2. Experimental results for T-LARS and T-NET to represent 3D OCT mouse

brain images using overcomplete DCT dictionaries with different coherence

values .. 97

Table 6.3. DCT mode-n dictionary sizes and coherence of the Kronecker Dictionary 𝜱𝜱 99

Table 6.4. Experimental results for T-LARS and T-NET to represent RGB video using

overcomplete DCT dictionaries with different coherence values. 100

Table 7.1. Comparison of Super-resolution experimental results for T-TDDL 𝜇𝜇 = 0 and

Semi-Supervised T-TDDL 𝜇𝜇 = 0.1 .. 123

Table 7.2 Binary Classification Report ... 126

Table 7.3 Multiclass Classification Report ... 129

Ishan Wickramasingha

x

List of Figures

Figure 2.1. A 3rd-order tensor and mode-n fibers .. 10

Figure 2.2 Multilinear transformation of a 3rd-order tensor 𝒳𝒳 ∈ ℝ𝐼𝐼1 × 𝐼𝐼2 × 𝐼𝐼3 14

Figure 2.3. Contours of the least-squares error and the unit ball for a) 𝐿𝐿0 norm and b) 𝐿𝐿1

norm c) 𝐿𝐿2 norm ... 18

Figure 3.1. Original 3D MRI brain image (a), its reconstruction using 5% non-zero

coefficients (𝐾𝐾 = 13,125) obtained by Kronecker-OMP (b) and T-LARS (c)

using fixed mode-n overcomplete dictionaries (Experiment 1) .. 45

Figure 3.2. a) Number of non-zero coefficients vs. computation time; b) Residual error

vs. computation time c) Residual error vs. number of non-zero coefficients,

obtained by applying Kronecker-OMP and T-LARS to our 3D MRI brain image

and using fixed mode-n overcomplete dictionaries (Experiment 1) 46

Figure 3.3. Original 3D MRI brain image (a), its reconstructions using 5% non-zero

coefficients (𝐾𝐾 = 13,125), (b) - (e), the difference images, (f) - (i) obtained using

Kronecker-OMP and T-LARS, using our learned overcomplete dictionaries

(Experiment 2 & 3) ... 46

Figure 3.4. a) Number of non-zero coefficients vs. computation time; b) Residual error

vs. computation time c) Residual error vs. number of non-zero coefficients,

obtained by applying Kronecker-OMP and T-LARS to our 3D MRI brain image

and using our learned overcomplete dictionaries (Experiment 2 & 3) 47

Figure 3.5. Original 3D MRI brain image (a), its reconstruction using 5% non-zero

coefficients (𝐾𝐾 = 13,125) obtained by T-LARS using fixed mode-n

overcomplete dictionaries (b), and the difference image (c) (Experiment 4) 47

Figure 3.6. a) Number of non-zero coefficients vs. computation time; b) Residual error

vs. computation time c) Residual error vs. number of non-zero coefficients,

obtained by applying T-LARS to our 3D MRI brain image and using fixed mode-

n overcomplete dictionaries (Experiment 4) ... 48

Computationally Efficient Methods for Sparse Tensor Signal Processing

xi

Figure 3.7. Original 3D MRI brain image (a), and its reconstruction using 5% non-zero

coefficients (𝐾𝐾 = 13,125) obtained by T-LARS using our learned over-complete

dictionary (b), and the difference image (c) (Experiment 5). ... 48

Figure 3.8. a) Number of non-zero coefficients vs. computation time; b) Residual error

vs. computation time c) Residual error vs. the number of non-zero coefficients,

obtained by applying T-LARS to our 3D MRI brain image and using our learned

overcomplete dictionary (Experiment 5). ... 49

Figure 3.9. Original PET-CT brain image (a), its reconstruction using 5% non-zero

coefficients (𝐾𝐾 = 14,400) obtained by Kronecker-OMP (b) and T-LARS (c)

using fixed mode-n overcomplete dictionaries (Experiment 1) .. 50

Figure 3.10. a) Number of non-zero coefficients vs. computation time; b) Residual error

vs. computation time c) Residual error vs. number of non-zero coefficients,

obtained by applying Kronecker-OMP and T-LARS to our 3D PET-CT brain

image and using fixed mode-n overcomplete dictionaries (Experiment 1) 50

Figure 3.11. Original 3D PET-CT brain image (a), its reconstructions using 5% non-zero

coefficients (𝐾𝐾 = 14,400), (b) - (e), the difference images, (f) - (i) obtained using

Kronecker-OMP and T-LARS, using our learned overcomplete dictionaries

(Experiment 2 & 3) ... 51

Figure 3.12. a) Number of non-zero coefficients vs. computation time; b) Residual error

vs. computation time c) Residual error vs. number of non-zero coefficients,

obtained by applying Kronecker-OMP and T-LARS to our 3D PET-CT brain

image and using our learned overcomplete dictionaries (Experiment 2 &3) 51

Figure 3.13. Original 3D PET-CT brain image (a), its reconstruction using 5% non-zero

coefficients (𝐾𝐾 = 14,400) obtained by T-LARS using fixed mode-n

overcomplete dictionaries (b), and the difference image (c) (Experiment 4) 52

Figure 3.14. a) Number of non-zero coefficients vs. computation time; b) Residual error

vs. computation time c) Residual error vs. number of non-zero coefficients,

obtained by applying T-LARS to our 3D PET-CT brain image and using fixed

mode-n overcomplete dictionaries (Experiment 4) ... 52

Ishan Wickramasingha

xii

Figure 3.15. Original 3D PET-CT brain image (a), and its reconstruction using 5% non-

zero coefficients (𝐾𝐾 = 14,400) obtained by T-LARS using our learned

overcomplete dictionary (b), and the difference image (c) (Experiment 5) 53

Figure 3.16. a) Number of non-zero coefficients vs. computation time; b) Residual error

vs. computation time c) Residual error vs. number of non-zero coefficients,

obtained by applying T-LARS to our 3D PET-CT brain image and using our

learned overcomplete dictionary (Experiment 5) ... 53

Figure 3.17. Original 3D PET-CT brain image (a), Reconstructed 3D PET-CT brain

image using 12% non-zero coefficients (𝐾𝐾 = 15,323) obtained by solving an 𝐿𝐿0

minimization problem using Kronecker-OMP (b) and T-LARS (c), and solving a

𝐿𝐿1 minimization problem using T-LARS (d), and respective differences (e), (f),

and (g) in our compressed sensing experiment. .. 55

Figure 3.18. a) Number of non-zero coefficients vs. computation time; b) Residual error

vs. computation time c) Residual error vs. the number of non-zero coefficients,

for both Kronecker-OMP and T-LARS for our compressed sensing experiment. 55

Figure 4.1. a) Original image with a fence b) Weights image with zero weights for the

fence c) WT-LARS reconstructed image (Fence Removed) .. 67

Figure 4.2. a) Original image with a fence b) Weights image with zero weights for the

fence c) WT-LARS reconstructed image (Fence Removed) .. 67

Figure 4.3. a) Original image with a person b) Weights image with zero weights for the

person c) WT-LARS reconstructed image (Person Removed) ... 68

Figure 5.1. a) Original RGB video Frame 1 b) Original RGB video Frame 2 c) The

difference between the original RGB video Frame 1 and the original RGB video

Frame 2 d) T-LARS reconstructed RGB video Frame 1 e) T-LARS reconstructed

RGB video Frame 2 f) TD-LARS reconstructed RGB video Frame 2 81

Figure 5.2. a) ε vs. the number of iterations b) Residual error vs. 𝒳𝒳1 c) Residual error vs.

number of iterations d) Residual error vs. computation time (Sec.), obtained by

applying T-LARS and TD-LARS to our RGB video Frame 1 and Frame 2 81

Computationally Efficient Methods for Sparse Tensor Signal Processing

xiii

Figure 5.3. a) Original 3D MRI Image 1 b) Original 3D MRI Image 2 c) The difference

between the original 3D MRI Image 1 and the original 3D MRI Image 2 d) T-

LARS reconstructed 3D MRI Image 1 e) T-LARS reconstructed 3D MRI Image

2 f) TD-LARS reconstructed 3D MRI Image 2 .. 83

Figure 5.4. a) ε vs. the number of iterations b) Residual error vs. 𝒳𝒳1 c) Residual error vs.

number of iterations d) Residual error vs. computation time (Sec.), obtained by

applying T-LARS and TD-LARS to our 3D MRI Image 1 and 2 83

Figure 6.1. Original 3D OCT mouse brain image (a) and its reconstruction using 10%

nonzero coefficients (K = 7,000) obtained by T-LARS (b)-(f) and T-NET (g)-(k)

using our overcomplete DCT dictionaries with different coherence values (μ). 97

Figure 6.2. (a) Number of nonzero coefficients versus computation time. (b) Residual

error versus computation time. (c) Residual error versus the number of nonzero

coefficients. (a) The number of nonzero coefficients versus the number of

iterations, obtained by applying T-LARS and T-NET to our 3D OCT mouse brain

image using overcomplete DCT dictionaries with different coherence values (𝜇𝜇). 98

Figure 6.3. Original RGB video (a) and its reconstruction using 4% nonzero coefficients

(K = 15,206) obtained by T-LARS (b)-(f) and T-NET (g)-(k) using our

overcomplete DCT dictionaries with different coherence values (μ). 100

Figure 6.4. (a) Number of nonzero coefficients versus computation time. (b) Residual

error versus computation time. (c) Residual error versus the number of nonzero

coefficients. (a) The number of nonzero coefficients versus the number of

iterations, obtained by applying T-LARS and T-NET to our RGB video using

overcomplete DCT dictionaries with different coherence values (𝜇𝜇). 101

Figure 7.1. a) Original low-resolution video, b) 4X super-resolution video obtained using

supervised T-TDDL (μ = 0), c) 4X super-resolution video obtained using semi-

supervised T-TDDL (μ = 0.1), d) High-resolution ground-truth video, and

difference videos e) and f) (Super Resolution Experiment 1) 122

Figure 7.2. a) Original low-resolution video, b) 4X super-resolution video obtained using

supervised T-TDDL 𝜇𝜇 = 0, c) 4X super-resolution video obtained using semi-

Ishan Wickramasingha

xiv

supervised T-TDDL 𝜇𝜇 = 0.1, d) High-resolution ground-truth video, and

difference videos e) and f) (Super Resolution Experiment 2) .. 123

Figure 7.3. 3D, Axial, Sagittal, Coronal view of a) 3D-CT chest scan of a healthy person

and b) a 3D-CT chest scan of a COVID-19 patient with Pneumonia 124

Figure 7.4. Normalized confusion matrices for a) 3D-CNN and b) T-TDDL Binary

Classification Experiment ... 127

Figure 7.5 Sample 3D-CAD models from the ModelNet10 dataset ... 128

Figure 7.6. Normalized confusion matrices for a) 3D-CNN and b) T-TDDL Multiclass

Classification Experiment ... 130

Computationally Efficient Methods for Sparse Tensor Signal Processing

xv

List of Algorithms

Algorithm 3.1: Least Angle Regression (LARS) .. 32

Algorithm 3.2: Tensor Least Angle Regression (T-LARS) .. 38

Algorithm 4.1: Weighted Tensor Least Angle Regression (WT-LARS) 65

Algorithm 5.1: Tensor Dynamic Least Angle Regression (TD-LARS) 78

Algorithm 6.1: Tensor Elastic Net (T-NET) ... 94

Algorithm 7.1: Tensor Task-Driven Dictionary Learning (T-TDDL) .. 113

1

Chapter 1

1. Introduction

Many modern applications process multidimensional signals, where each dimension (mode) of the

signal has a physical meaning such as space, time, or frequency. The 3D/4D images generated by

Magnetic resonance imaging (MRI), Positron emission tomography (PET), or optical coherence

tomography (OCT) are such example applications in Biomedical Imaging. Typically,

multidimensional signals in such applications are generated by sampling multivariate functions

and stored as multidimensional arrays (Tensors).

Processing and storing multidimensional signals quickly become computationally expensive as the

number of dimensions (modes) increases. For example, a 3D signal, 𝒳𝒳 ∈ ℝ100×100×100, has one

million (106) samples and a 4D signal, 𝒴𝒴 ∈ ℝ100×100×100×100 has hundred million (108) samples.

The motivation behind this research came from exploring the possibility of solving full-wave

simulation of light propagation inside a 5mm×5mm×5mm tissue sample when a light source with

1𝜇𝜇𝜇𝜇 central wavelength is used, which requires solving the scalar scattering equation for a volume

of 5000𝜆𝜆 × 5000𝜆𝜆 × 5000𝜆𝜆. We could use the Method of Moments (MoM) [1]–[3] to solve the

scalar scattering equation by converting it to a linear system of the form 𝑨𝑨𝑨𝑨 = 𝒃𝒃, where the matrix

𝑨𝑨 has 1.25 × 1011 rows and columns, or 1.5625 × 1022 elements. Therefore, to store the

uncompressed matrix 𝑨𝑨 in double precision, 125 zettabytes of memory is required, which is more

than the total data storage capacity available in the world as of 2021 [4].

This research aimed to develop novel methodologies that could efficiently solve large

multidimensional problems using much lower computational resources. To achieve this aim, we

researched several topics such as Sparsity, Tensors, and Multilinear Algebra [5]–[7].

Sparse signal representation has gained much interest due to its ability to represent large signals

using a few nonzero samples. A sparse signal representation usually results in simpler and faster

Ishan Wickramasingha

2

processing and lower memory storage requirements for fewer coefficients [8], [9]. Obtaining

sparse signal representations typically involves solving L0 or L1 constrained least-squares problems

[10], [11]. Many methods have been proposed to solve the sparse least-squares problem, including

Matching Pursuit (MP) [12], Orthogonal Matching Pursuit (OMP) [13], Lasso also known as

Basis Pursuit (BP) [14], [15], and Least Angle Regression (LARS) [15].

Most of the multidimensional problems are currently solved using such methods based on linear

algebra by vectorizing multidimensional signals. However, none of the above methods are suitable

for obtaining sparse signal representations of large multidimensional signals because they require

extensive computational power and memory.

We explored the possibility of using tensors and multilinear algebra to obtain sparse signal

representations of multidimensional signals efficiently. Even though the term tensor has a specific

mathematical definition in physics, it has been widely accepted in many disciplines, e.g.,

mathematics, signal processing, and statistics, to mean a multidimensional array. Tensor of order

one is a vector; tensor of order two is a matrix; tensors of order three or higher are called higher-

order tensors.

A multilinear representation of a tensor 𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁 could be obtained by multiplying each

mode of the tensor by a mode-n matrix 𝜱𝜱(𝑛𝑛) ∈ ℝ𝐽𝐽n×𝐼𝐼𝑛𝑛; 𝑛𝑛 ∈ {1,2, … , 𝑁𝑁} [5]–[7]. The multilinear

representation has an equivalent vectorized form, in which the vectorized tensor vec(𝒳𝒳) is

multiplied by a separable Kronecker matrix 𝜱𝜱 = (𝜱𝜱(𝑁𝑁) ⊗ 𝜱𝜱(𝑁𝑁−1) ⊗ ⋯ ⊗ 𝜱𝜱(2) ⊗ 𝜱𝜱(1)) to

obtain the vectorized representation of the tensor. A sparse multilinear representation of a tensor

could be obtained by solving a sparse multilinear least-squares problem. See section 2.1 and

section 3.2 for more details.

An earlier generalization of OMP, known as Kronecker-OMP [16], was developed to solve the L0

constrained multilinear least-squares problem for large multidimensional signals. However, its

memory usage and computation time increase fast with the number of problem dimensions

and iterations.

Elrewainy and Sherif earlier developed the Kronecker Least Angle Regression (K-LARS)

algorithm to solve either large L0 or large L1 constrained sparse least-squares problems

(overdetermined) efficiently, with a particular Kronecker form 𝑨𝑨 ⊗ 𝑰𝑰, for all critical values of the

Computationally Efficient Methods for Sparse Tensor Signal Processing

3

regularization parameter λ [17]. They used K-LARS to sparsely fit one-dimensional multi-channel

hyperspectral imaging data to a Kronecker model 𝑨𝑨 ⊗ 𝑰𝑰.

By using tensors and multilinear algebra, we develop the Tensor Least Angle Regression (T-

LARS) algorithm [18] in chapter 3, a generalization of K-LARS that could efficiently solve either

large L0 or large L1 constrained sparse multilinear least-squares problems (underdetermined or

overdetermined) for all critical values of the regularization parameter λ, and which has lower

computational complexity and lower memory usage than Kronecker-OMP.

Computing a sparse signal representation of a large dense signal requires many dense

measurements and considerable computational resources. Compressed sensing solves this problem

by projecting the dense signal to a sparse domain using a sensing matrix 𝒁𝒁, where a small number

of nonzero measurements are obtained in the sparse domain [19], [20]. Kronecker compressed

sensing [16], [21] generalizes the compressed sensing [19], [20] formulation to multidimensional

signals, where a sparse representation is obtained using Kronecker dictionaries. Kronecker

compressed sensing problems, where the sensing matrix and the dictionary are separable [16],

[21], could be efficiently solved using our T-LARS algorithm.

Sparse weighted multilinear least-squares is a generalization of the sparse multilinear least-squares

problem, where prior information about, e.g., parameters and data is incorporated by multiplying

both sides of the original problem by a typically diagonal weights matrix [22]. We could use T-

LARS to solve this problem efficiently if the diagonal weight matrix has a Kronecker structure

similar to the dictionary matrix. Typically, these arbitrary diagonal weights matrices are non-

Kronecker, leading to a linear least-squares problem that could be very large to store or solve

practically. Therefore, we generalized T-LARS to develop the Weighted Tensor Least Angle

Regression (WT-LARS) algorithm to efficiently solve either L0 or L1 constrained weighted sparse

multilinear least-squares problems for a non-separable diagonal weights matrix.

Efficiently solving either large L0 or large L1 constrained sparse multilinear least-squares problems

is essential to obtain sparse multilinear representations of large multidimensional signals. We

could initialize T-LARS with an L1 solution located on the Pareto curve [23] and obtain an L1

solution with a lower residual error, where the Pareto curve contains every solution to a

linear/multilinear least-squares problem. However, we could not initialize T-LARS with any

Ishan Wickramasingha

4

solution outside of the Pareto curve because it will violate the optimality conditions of T-LARS.

Asif & Romberg [24] introduced the L1-Homotopy method to dynamically update the solutions of

the one-dimensional L1 minimization problems, using the previous solution as the initial solution

for a streaming set of measurements. Therefore, we extend T-LARS and the one-dimensional L1-

Homotopy method to develop the Tensor Dynamic Least Angle Regression (TD-LARS) algorithm,

which could be used to obtain the solutions to L1 constrained multilinear least-squares problems

efficiently by initializing with non-zero solutions of close L1 minimization problems located on or

off of the Pareto curve.

A sparse signal representation could be obtained by solving an 𝐿𝐿0 constrained sparse least-squares

problem, which is a nonconvex problem [12], [13]. Lasso, also known as Basis Pursuit (BP) [14],

[25], solves a relaxed 𝐿𝐿1 constrained least-squares problem, which is a convex problem, to obtains

a sparse signal representation. Ridge Regression solves a strictly convex 𝐿𝐿2 constrained least-

squares problem, nevertheless it could not be used to obtain a sparse signal representation [26].

Zou and Hastie developed the Elastic Net to improve the performance of 𝐿𝐿1 constrained least-

squares problem by adding an additional 𝐿𝐿2 constraint [27], [28]. Elastic Net solves a strictly

convex problem, to obtain a sparse solution when both regularization coefficients of 𝐿𝐿1 and 𝐿𝐿2 are

nonzero. Elastic Net selects all the coefficients from a group of highly correlated coefficients, and

it could also obtain more than 𝑛𝑛 nonzero coefficients for a 𝑛𝑛 dimensional signal. The one-

dimensional Elastic Net problem could be easily solved using the LARS algorithm.

A sparse signal representation of a multidimensional signal with better statistical properties could

be obtained by solving a multilinear Elastic Net problem with both L1 and L2 constraints. However,

the dictionary in the multilinear Elastic Net problem has a partitioned Kronecker structure, which

could not be efficiently solved using T-LARS. Therefore, we develop the Tensor Elastic Net (T-

NET) algorithm to solve the multilinear Elastic Net problem efficiently.

We could use fixed or learned separable dictionaries in obtaining a sparse multilinear

representation of multidimensional signals using our T-LARS, WT-LARS, TD-LARS, T-NET,

algorithms, or Kronecker-OMP. However, the dictionaries learned from the data are much more

efficient in obtaining sparse representations than fixed dictionaries [29].

Computationally Efficient Methods for Sparse Tensor Signal Processing

5

Roemer et al. [30] introduced Tensor Method of Optimal Directions (T-MOD) and Kronecker

Higher-Order SVD (K-HOSVD) algorithms to learn data-driven separable dictionaries to solve

multilinear problems by generalizing one-dimensional data-driven dictionary learning algorithms,

Method of Optimal Direction(MOD) [31], and K-SVD [32], respectively.

Learned dictionaries could be used in classification or regression tasks [33]–[35]. However,

regression and classification performance could be improved significantly by supervised learning

of task-specific dictionaries [36], [37]. Mairal et al. introduced a generalized Task-Driven

Dictionary Learning(TDDL) framework for supervised learning of dictionaries and model

parameters to solve one-dimensional problems [38].

Many multidimensional classification and regression problems have been solved using the TDDL

formulation after vectorizing multidimensional data [39]–[41]. However, using T-DDL

formulation for large multidimensional tasks is computationally infeasible. Compared to

vectorized tensors, sparse multi-linear representation of tensors requires significantly lower

memory and computational resources.

Therefore, we extend the T-DDL framework using multi-linear algebra to develop the Tensor

Task-Driven Dictionary Learning (T-TDDL), an efficient multi-linear task-driven dictionary

learning framework to learn task-specific mode-n dictionaries and mode-n model parameters

jointly for classification or regression tasks. We used our T-NET algorithm developed in this thesis

to obtain the sparse multi-linear representations of tensors in the sparse coding step of T-TDDL.

We have also developed a compressed sensing extension for T-TDDL.

1.1. Thesis Contributions

1. Development of the Tensor Least Angle Regression (T-LARS) - A computationally efficient

algorithm to solve both 𝐿𝐿0 and 𝐿𝐿1 sparse multilinear least-squares problems.

a. Formulation of the sparse multilinear least-squares problem.

b. Developed the Tensor Least Angle Regression (T-LARS) algorithm by extending Least

angle Regression(LARS) [15] to solve both 𝐿𝐿0 and 𝐿𝐿1 constrained multilinear least-

squares problems and implemented it in Matlab. The Matlab implementation of T-

LARS is published on Github.

Ishan Wickramasingha

6

c. We presented experimental results to compare the performance of Kronecker-OMP and

T-LARS in obtaining the sparse representation of 3D signals when solving both 𝐿𝐿0 and

𝐿𝐿1 sparse multilinear least-squares problems.

2. Development of the Weighted Tensor Least Angle Regression (WT-LARS) - A

computationally efficient algorithm to obtain a sparse signal representation of

multidimensional signals using weighted samples.

a. Formulation of the sparse weighted tensor least-squares problem.

b. Developed the Weighted Tensor Least Angle Regression (WT-LARS) algorithm by

extending T-LARS and implemented it in Matlab.

c. We successfully solved the inpainting problem using WT-LARS to remove foreground

objects from color images and presented them in WT-LARS experimental results.

3. Development of the Tensor Dynamic Least Angle Regression (TD-LARS) - A

computationally efficient algorithm to solve the tensor 𝐿𝐿1 minimization problem by using 𝐿𝐿1

solution of a close problem as the initial solution.

a. Formulation of the Tensor Dynamic Least Angle Regression (TD-LARS) formulation

by extending the vector-based 𝐿𝐿1-Homotopy formulation [24], [42] .

b. Developed the Tensor Dynamic Least Angle Regression (TD-LARS) algorithm by

extending T-LARS and 𝐿𝐿1-Homotopy algorithm and implemented it in Matlab.

c. We presented experimental results to compare the performance of T-LARS and TD-

LARS in obtaining the sparse representation of 3D signals when the 𝐿𝐿1 solution of a

close problem is available.

4. Development of the Tensor Elastic Net (T-NET) - A computationally efficient algorithm to

solve the multilinear Elastic Net problem.

a. Formulated the multilinear Elastic Net problem by extending one-dimensional Elastic

Net [28].

b. Developed the Tensor Elastic Net (T-NET) algorithm by extending T-LARS and

implemented it in Matlab.

c. We presented experimental results to compare T-LARS and the performance of T-NET

in obtaining the sparse representation of 3D signals using overcomplete DCT

dictionaries with different mutual coherences.

Computationally Efficient Methods for Sparse Tensor Signal Processing

7

5. Development of the Tensor Task-Driven Dictionary Learning (T-TDDL) - A

computationally efficient task-driven dictionary learning algorithm to learn mode-n

dictionaries and mode-n model parameters to predict a tensor 𝒴𝒴 from a tensor 𝒳𝒳.

a. Developed the Tensor Task-Driven Dictionary Learning (T-TDDL) formulation by

extending the one-dimensional Task-Driven Dictionary Learning formulation[38].

b. Developed the Tensor Task-Driven Dictionary Learning (T-TDDL) algorithm and

implemented it in Matlab.

c. Multilinear generalization of the projected stochastic gradient descent algorithm to

optimize Kronecker matrices efficiently while keeping the Kronecker structure intact.

d. Developed the compressed sensing extension to the T-TDDL algorithm.

e. Presented calculations for T-TDDL regression, binary classification, and multiclass

classification applications.

f. We presented experimental results for solving the tensor regression and tensor binary

classification problems by learning mode-n dictionaries, mode-n model parameters, and

mode-n sensing matrices using T-TDDL.

1.1.1. Related publications

1. I. Wickramasingha, M. Sobhy, A. Elrewainy, and S. S. Sherif, “Tensor least angle

regression for sparse representations of multidimensional signals,” Neural Comput., vol.

32, no. 9, pp. 1697–1732, Sep. 2020,https://doi.org/10.1162/neco_a_01304.

2. I. Wickramasingha, M. Sobhy, and S. S. Sherif, “Sparsity in Bayesian Signal Estimation,”

in Bayesian Inference, vol. 37, no. 2, J. P. Tejedor, Ed. InTech, 2017,

https://doi.org/10.5772/intechopen.70529.

3. I. Wickramasingha and S. S. Sherif, “Multilinear Compressed Sensing using Tensor Least

Angle Regression (T-LARS),” Accepted to the International Conference on Digital Signal

Processing, Chengdu, China, Feb. 2022.

4. I. Wickramasingha, and S. S. Sherif, (2021). “Weighted Tensor Least Angle Regression

for solving weighted sparse multilinear least-squares problems” (submitted to IEEE Signal

Processing Letters, 2021).

https://doi.org/10.1162/neco_a_01304
https://doi.org/10.5772/intechopen.70529

Ishan Wickramasingha

8

5. I. Wickramasingha, and S. S. Sherif, “Tensor Elastic Net for Sparse Multilinear

Regression With Elastic Net Constraint,” (submitted to Journal of Statistical Software,

2021).

1.1.2. Publications Plan

1. I. Wickramasingha, and S. S. Sherif, “Tensor Dynamic Least Angle Regression for

Efficiently Solving Tensor 𝐿𝐿1 Minimization Problems with Non-zero Initial Solutions,”

(in preparation for submission to IEEE Transactions on Circuits and Systems for Video

Technology).

2. I. Wickramasingha, and S. S. Sherif, “Tensor Task-Driven Dictionary Learning,”

(in preparation for submission to Pattern Recognition).

3. B. Mezgebo, I. Wickramasingha, B. Kordi, and S. S. Sherif, “Gradient-Based

Multidimensional Signal Recovery from Incomplete Samples in Arbitrary Separable

Dictionaries,” (in preparation for submission to IEEE Transactions on Image Processing).

1.2. Thesis Outline

This thesis is structured as follows.

Chapter 2 discusses background theory on Tensors, Multilinear Algebra, the one-dimensional

Sparse Signal Representation problem, and the Sparse tensor signal representation problem.

Chapter 3 presents our Tensor Least Angle Regression (T-LARS) algorithm, a computationally

efficient algorithm to solve both 𝐿𝐿0 and 𝐿𝐿1 sparse multilinear least-squares problems.

Chapter 4 presents our Weighted Tensor Least Angle Regression (WT-LARS) algorithm, which

could be used to obtain a sparse signal representation of multidimensional signals using weighted

samples.

Computationally Efficient Methods for Sparse Tensor Signal Processing

9

Chapter 5 presents our Tensor Dynamic Least Angle Regression (TD-LARS) algorithm, which

could be used to obtain the 𝐿𝐿1 solution of a multilinear sparse least-squares problem efficiently by

using the 𝐿𝐿1 solution of a close problem.

Chapter 6 presents our Tensor Elastic Net (T-NET) algorithm, a computationally efficient

algorithm to solve the multilinear elastic net problem.

Chapter 7 presents our Tensor Task-Driven Dictionary Learning (T-TDDL), a computationally

efficient task-driven dictionary learning framework to learn mode-n dictionaries and mode-n model

parameters to predict a tensor 𝒴𝒴 from a tensor 𝒳𝒳.

Finally, Chapter 8 provides the conclusions and future directions.

Ishan Wickramasingha

10

Chapter 2

2. Tensors and Sparse Signal Representation

2.1. Tensors and Multilinear Algebra

The term tensor has a specific mathematical definition in physics, but it has been widely accepted

in many disciplines, e.g., signal processing and statistics, to mean a multidimensional array (Multi-

way Arrays, ND Array). A vector is a first-order tensor; a matrix is a second-order tensor; an N-

dimensional array is an 𝑁𝑁𝑡𝑡ℎ order tensor, whose N dimensions are also known as modes [6], [43].

The 𝑁𝑁𝑡𝑡ℎ order tensor 𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼N has 𝑁𝑁 modes, with dimensions, 𝐼𝐼1, 𝐼𝐼2, … , 𝐼𝐼𝑁𝑁, where

vectors along a specific mode, n, are called mode-n fibers. For example, for the 3rd order tensor

shown in Figure 2.1, vectors along mode-1 are called mode-1 fibers, and vectors along mode-2 and

mode-3 are called mode-2 and mode-3 fibers, respectively.

Vectorization and mode-n Matricization of Tensors [5]–[7] are two important tensor reshaping

operations. As the names imply, vectorization generates a vector, and matricization generates a

matrix.

Mode-2

M
od

e-
1

Mode-1 Fibers Mode-2 Fibers Mode-3 Fibers

Figure 2.1. A 3rd-order tensor and mode-n fibers

Computationally Efficient Methods for Sparse Tensor Signal Processing

11

2.1.1. Vectorization of a tensor

Tensors are vectorized by stacking mode-1 fibers in reverse lexicographical order, where this

vectorization is denoted by vec(𝒳𝒳).

𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁 ⟶ vec(𝒳𝒳) ∈ ℝ𝐼𝐼N𝐼𝐼𝑁𝑁−1…𝐼𝐼1

In vec(𝒳𝒳), 𝐼𝐼1 varies the fastest and 𝐼𝐼N varies the slowest. The vector index 𝑙𝑙 corresponding to the

tensor element 𝑥𝑥𝑖𝑖1…𝑖𝑖𝑛𝑛…𝑖𝑖𝑁𝑁 ∈ 𝒳𝒳 is given by,

𝑙𝑙 = 𝑖𝑖1 + ��𝑖𝑖𝑝𝑝 − 1�𝐼𝐼1𝐼𝐼2 … . 𝐼𝐼𝑝𝑝−1

N

𝑝𝑝=2

(2. 1)

Proposition 2.1 shows how to obtain tensor indices {𝑖𝑖1 … 𝑖𝑖𝑁𝑁}, corresponds to the vector index 𝑙𝑙.

Proposition 2.1: Let 𝑙𝑙 be the vector index of an element 𝑣𝑣𝑙𝑙 in 𝑣𝑣𝑣𝑣𝑣𝑣(𝒳𝒳) ∈ ℝ𝐼𝐼𝑁𝑁𝐼𝐼𝑁𝑁−1…𝐼𝐼1 and 𝐼𝐼𝑛𝑛 be the

dimension of the mode-n of the tensor 𝒳𝒳 where, 𝑛𝑛 ∈ {1,2, … , 𝑁𝑁}. The tensor indices 𝑖𝑖𝑛𝑛; 𝑛𝑛 ∈

{1,2, … , 𝑁𝑁}, corresponding to the vector element 𝑣𝑣𝑙𝑙 , could be obtained by,

𝑖𝑖𝑛𝑛 = �
𝑙𝑙

𝐼𝐼1 × … × 𝐼𝐼𝑛𝑛−1
− � �𝑖𝑖𝑝𝑝 − 1� � 𝐼𝐼𝑞𝑞

𝑝𝑝−1

𝑞𝑞=𝑛𝑛;𝑞𝑞>0

𝑁𝑁

𝑝𝑝=𝑛𝑛+1;𝑝𝑝≤𝑁𝑁

 � (2. 2)

where ⌈∗⌉ indicate the ceiling function. For example,

𝑖𝑖1 = ⌈𝑙𝑙 − (𝑖𝑖𝑁𝑁 − 1)𝐼𝐼𝑁𝑁−1 × … .× 𝐼𝐼1 − ⋯ − (𝑖𝑖2 − 1)𝐼𝐼1⌉

⋮

𝑖𝑖𝑁𝑁−1 = �
𝑙𝑙

𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−2
− (𝑖𝑖𝑁𝑁 − 1)𝐼𝐼𝑁𝑁−1�

𝑖𝑖𝑁𝑁 = �
𝑙𝑙

𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−1
�

The proof is in Appendix A.1.

Ishan Wickramasingha

12

2.1.2. Mode-n Matricization of a tensor

A tensor 𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁 has 𝑁𝑁 different modes (1,2, … , 𝑁𝑁). Consider splitting these modes

into two different disjoint sets: {1, … , 𝑁𝑁} = 𝑃𝑃 ∪ 𝑄𝑄 with 𝑃𝑃 = {𝑝𝑝1, … , 𝑝𝑝𝑘𝑘} and 𝑄𝑄 = {𝑞𝑞1, … , 𝑞𝑞𝑁𝑁−𝑘𝑘}.

Tensor 𝒳𝒳 could be matricized by merging the group 𝑃𝑃 into row indices and the group 𝑄𝑄 into

column indices [44]. The mode-n tensor matricization is a special case of tensor matricization,

where the mode-n indices 𝑖𝑖𝑛𝑛 are the row indices, and all other tensor modes are merged to get

column indices. Therefore, in tensor mode-n matricization, mode-n fibers become the columns of

the resulting matrix. We note that ordering of these columns is not consistent across the literature

[5], [45]. Therefore, we use the reverse lexicographical order (𝐼𝐼𝑁𝑁 … 𝐼𝐼𝑛𝑛+1𝐼𝐼𝑛𝑛−1 … 𝐼𝐼1), for the column

ordering of the tensor mode-n matricization in this thesis. In the reverse lexicographical order, 𝐼𝐼1

varies the fastest and 𝐼𝐼𝑁𝑁 varies the slowest. Let 𝑿𝑿(𝑛𝑛) denote mode-n matricization of a tensor 𝒳𝒳.

𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁 ⟶ 𝑿𝑿(𝑛𝑛) ∈ ℝ𝐼𝐼𝑛𝑛×(𝐼𝐼𝑁𝑁…𝐼𝐼𝑛𝑛+1𝐼𝐼𝑛𝑛−1…𝐼𝐼1)

Let 𝑥𝑥(𝑛𝑛)
𝑖𝑖𝑛𝑛𝑗𝑗 ∈ 𝑿𝑿(𝑛𝑛) be the tensor element 𝑥𝑥𝑖𝑖1…𝑖𝑖𝑛𝑛…𝑖𝑖𝑁𝑁 ∈ 𝒳𝒳, in the mode-n matrix. Therefore, the

column index 𝑗𝑗 is given by [5], [6], [45],

𝑗𝑗 = 1 + � �𝑖𝑖𝑝𝑝 − 1�𝐼𝐼1 … 𝐼𝐼𝑛𝑛−1𝐼𝐼𝑛𝑛+1 … 𝐼𝐼𝑝𝑝−1
N

𝑝𝑝=1;𝑝𝑝 ≠ 𝑛𝑛

(2. 3)

2.1.3. Tensor Mode-n Product

Another important operation that could be performed on a tensor is its mode-n product, i.e., its

multiplication by a matrix along one of its modes. Let the tensor 𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁 and a matrix

𝜱𝜱(𝑛𝑛) ∈ ℝ𝐽𝐽n×𝐼𝐼𝑛𝑛, then their mode-n product, 𝒴𝒴𝑛𝑛 ∈ ℝ𝐼𝐼1×…×𝐽𝐽n×…×𝐼𝐼𝑁𝑁 , is denoted as

𝒴𝒴𝑛𝑛 = 𝒳𝒳 ×𝑛𝑛 𝜱𝜱(𝑛𝑛) (2. 4)

In the mode-n product, all mode-n fibers of the tensor are multiplied by the matrix 𝜱𝜱(𝑛𝑛). Therefore

(2.4) could be written as

𝒀𝒀(𝑛𝑛) = 𝜱𝜱(𝑛𝑛)𝑿𝑿(𝑛𝑛) (2. 5)

Computationally Efficient Methods for Sparse Tensor Signal Processing

13

where 𝒀𝒀(𝑛𝑛) is the mode-n matricization of the tensor 𝒴𝒴𝑛𝑛 and 𝑿𝑿(𝑛𝑛) is the mode-n matricization of

the tensor 𝒳𝒳. A mode-n product could be thought of as a linear transformation of the mode-n fibers

of a tensor.

2.1.4. Other Important Products

This section presents some important products used throughout the thesis; Tensor outer product,

Kronecker Product, Khatri-Rao product, and Hadamard Product [5]–[7].

2.1.4.1. Tensor Outer Product - 𝒜𝒜 ∘ ℬ

Let 𝒜𝒜 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑀𝑀 be a mode 𝑀𝑀 tensor and ℬ ∈ ℝ𝐽𝐽1×…×𝐽𝐽𝑁𝑁 be a mode 𝑁𝑁 tensor. Therefore the

tensor outer product 𝒞𝒞 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑀𝑀×𝐽𝐽1×…×𝐽𝐽𝑁𝑁 is a mode (𝑀𝑀 + 𝑁𝑁) tensor.

𝒜𝒜 ∘ ℬ = 𝒞𝒞 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑀𝑀×𝐽𝐽1×…×𝐽𝐽𝑁𝑁

with

𝑐𝑐𝑖𝑖1…𝑖𝑖𝑀𝑀𝑗𝑗1…𝑗𝑗𝑁𝑁 = 𝑎𝑎𝑖𝑖1…𝑖𝑖𝑀𝑀𝑏𝑏𝑗𝑗1…𝑗𝑗𝑁𝑁

Where 𝑎𝑎𝑖𝑖1…𝑖𝑖𝑀𝑀 ∈ 𝒜𝒜, 𝑏𝑏𝑗𝑗1…𝑗𝑗𝑁𝑁 ∈ ℬ and 𝑐𝑐𝑖𝑖1…𝑖𝑖𝑀𝑀𝑗𝑗1…𝑗𝑗𝑁𝑁 ∈ 𝒞𝒞.

2.1.4.2. Kronecker Product - 𝑨𝑨 ⊗ 𝑩𝑩

Let 𝑨𝑨 and 𝑩𝑩 be matrices. Therefore the Kronecker product denoted by 𝑨𝑨 ⊗ 𝑩𝑩 is given by

𝑨𝑨𝑛𝑛1×𝑚𝑚1 ⊗ 𝑩𝑩𝑛𝑛2×𝑚𝑚2 =

⎣
⎢
⎢
⎡ 𝑎𝑎11𝑩𝑩 𝑎𝑎12𝑩𝑩

𝑎𝑎21𝑩𝑩 𝑎𝑎22𝑩𝑩
… 𝑎𝑎1𝑚𝑚1𝑩𝑩
… 𝑎𝑎2𝑚𝑚1𝑩𝑩

⋮ ⋮
𝑎𝑎𝑛𝑛11𝑩𝑩 𝑎𝑎𝑛𝑛12𝑩𝑩

⋱ ⋮
… 𝑎𝑎𝑛𝑛1𝑚𝑚1𝑩𝑩⎦

⎥
⎥
⎤

 𝑛𝑛1𝑛𝑛2×𝑚𝑚1𝑚𝑚2

where 𝑎𝑎𝑖𝑖𝑖𝑖 are elements of the matrix 𝑨𝑨.

2.1.4.3. Khatri-Rao Product - 𝑨𝑨 ⊙ 𝑩𝑩

Let 𝑨𝑨 and 𝑩𝑩 be matrices with the same number of columns. Therefore the Khatri-Rao product

denoted by 𝑨𝑨 ⊙ 𝑩𝑩 is defined as,

𝑨𝑨𝑛𝑛1×𝑚𝑚 ⊙ 𝑩𝑩𝑛𝑛2×𝑚𝑚 = [𝒂𝒂1 ⊗ 𝒃𝒃1 𝒂𝒂2 ⊗ 𝒃𝒃2 … 𝒂𝒂𝑚𝑚 ⊗ 𝒃𝒃𝑚𝑚]𝑛𝑛1𝑛𝑛2×𝑚𝑚

where 𝒂𝒂1, … , 𝒂𝒂𝑚𝑚 are the column vectors of 𝑨𝑨 and 𝒃𝒃1, … , 𝒃𝒃𝑚𝑚 are the column vectors of 𝑩𝑩.

Ishan Wickramasingha

14

2.1.4.4. Hadamard Product - 𝑨𝑨 ⊛ 𝑩𝑩

Let 𝑨𝑨 and 𝑩𝑩 be matrices with the same number of rows and columns. Therefore the Hadamard

product denoted by 𝑨𝑨 ⊛ 𝑩𝑩 is defined as,

𝑨𝑨𝑛𝑛×𝑚𝑚 ⊛ 𝑩𝑩𝑛𝑛×𝑚𝑚 = �

𝑎𝑎11𝑏𝑏11 𝑎𝑎12𝑏𝑏12
𝑎𝑎21𝑏𝑏21 𝑎𝑎22𝑏𝑏22

… 𝑎𝑎1𝑚𝑚𝑏𝑏1𝑚𝑚
… 𝑎𝑎2𝑚𝑚𝑏𝑏2𝑚𝑚

⋮ ⋮
𝑎𝑎𝑛𝑛1𝑏𝑏𝑛𝑛1 𝑎𝑎𝑛𝑛2𝑏𝑏𝑛𝑛2

⋱ ⋮
… 𝑎𝑎𝑛𝑛𝑚𝑚𝑏𝑏𝑛𝑛𝑛𝑛

�

 𝑛𝑛×𝑚𝑚

where 𝑎𝑎𝑖𝑖𝑖𝑖 are elements of the matrix 𝑨𝑨 and 𝑏𝑏𝑖𝑖𝑖𝑖 are elements of the matrix 𝑩𝑩.

2.1.5. Multilinear Transformation of Tensors

The mode-n product could be thought of as a linear transformation of the mode-n fibers of a tensor.

Therefore the multilinear transformation of a tensor 𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁 could be defined as

𝒴𝒴 = 𝒳𝒳 ×1 𝜱𝜱(1) ×2 𝜱𝜱(2) ×3 ⋯ ×𝑁𝑁 𝜱𝜱(𝑁𝑁) (2. 6)

where, 𝜱𝜱(𝑛𝑛); 𝑛𝑛 ∈ {1,2, … , 𝑁𝑁} are matrices with dimensions 𝜱𝜱(𝑛𝑛) ∈ ℝ𝐽𝐽n×𝐼𝐼𝑛𝑛; 𝑛𝑛 ∈ {1,2, … , 𝑁𝑁} and

𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽n×…×𝐽𝐽N [6], [43]. In the multilinear transformation, each mode 𝑛𝑛 ∈ {1,2, … , 𝑁𝑁} of the

tensor is transformed by the respective mode-n matrix 𝜱𝜱(𝑛𝑛) ∈ ℝ𝐽𝐽n×𝐼𝐼𝑛𝑛; 𝑛𝑛 ∈ {1,2, … , 𝑁𝑁} to get the

transformed tensor 𝒴𝒴.

In mathematics, the equation (2.6) is widely known as the Tucker decomposition [5], where a

tensor 𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽n×…×𝐽𝐽N is decomposed to obtain a core tensor 𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁 multiplied

by a set of factor matrices 𝜱𝜱(𝑛𝑛) ∈ ℝ𝐽𝐽n×𝐼𝐼𝑛𝑛; 𝑛𝑛 ∈ {1,2, … , 𝑁𝑁} along each mode.

𝜱𝜱(1)

𝜱𝜱(2)

𝒴𝒴
𝒳𝒳

 𝜱𝜱(3)

Figure 2.2 Multilinear transformation of a 3rd-order tensor 𝒳𝒳 ∈ ℝ𝐼𝐼1×𝐼𝐼2×𝐼𝐼3

Computationally Efficient Methods for Sparse Tensor Signal Processing

15

Figure 2.2 shows the multilinear transformation 𝒴𝒴 ∈ ℝ𝐽𝐽1×𝐽𝐽2×𝐽𝐽3 of a 3rd-order core tensor 𝒳𝒳 ∈

ℝ𝐼𝐼1×𝐼𝐼2×𝐼𝐼3 obtained by multiplying each mode of the core tensor 𝒳𝒳 with a mode-n matrices 𝜱𝜱(𝑛𝑛) ∈

ℝ𝐽𝐽n×𝐼𝐼𝑛𝑛; 𝑛𝑛 ∈ {1,2,3}. Therefore as shown in Figure 2.2, a large tensor 𝒴𝒴 could be represented using

a smaller core tensor and a smaller set of factor matrices 𝜱𝜱(𝑛𝑛).

The multilinear transformation could also be written as a product of vec(𝒳𝒳) and the Kronecker

product of matrices 𝜱𝜱(𝑛𝑛); 𝑛𝑛 ∈ {1,2, … , 𝑁𝑁} [6], [43].

vec(𝒴𝒴) = (𝜱𝜱(𝑁𝑁) ⊗ 𝜱𝜱(𝑁𝑁−1) ⊗ ⋯ ⊗ 𝜱𝜱(1))vec(𝒳𝒳) (2. 7)

Let

𝜱𝜱 = (𝜱𝜱(𝑁𝑁) ⊗ 𝜱𝜱(𝑁𝑁−1) ⊗ ⋯ ⊗ 𝜱𝜱(2) ⊗ 𝜱𝜱(1)) (2. 8)

Therefore,

vec(𝒴𝒴) = 𝜱𝜱vec(𝒳𝒳) (2. 9)

Equation (2.9) is a linear system of equations with a separable dictionary 𝜱𝜱, input vec(𝒳𝒳), and

output vec(𝒴𝒴).

Ishan Wickramasingha

16

2.2. Sparse Signal Representation

A sinusoid is a dense signal in the time domain, but it could be uniquely represented with its

frequency and phase. Therefore a sinusoid signal has a sparse signal representation in the

frequency domain.

Consider a linear system, where a finite-dimensional signal 𝒚𝒚 is represented using a dictionary 𝜱𝜱,

and a coefficient vector 𝒙𝒙.

𝒚𝒚 = 𝜱𝜱𝜱𝜱 + 𝒆𝒆 (2. 10)

where 𝒆𝒆 is the error term.

In sparse signal representations, a signal 𝒚𝒚 is represented in a sparse domain using a dictionary 𝜱𝜱

where most of its coefficients 𝒙𝒙 are zero. Sparse signal representations require less memory

storage, simpler and faster processing, and fewer computational resources than their dense

counterparts.

The dictionary 𝜱𝜱 could be a basis, frame, or a tight frame(union of basis) [8], [9]. Common

dictionaries include Fourier dictionary, Discrete Cosine Transform (DCT) dictionary, Wavelet

dictionaries, Chirplet dictionaries, or a union of any of the above dictionaries. The dictionaries

could also be learned from the data using dictionary learning algorithms [31], [32][32].

The least-squares problem provides a mathematical framework for solving the inverse problem of

(2.10) to obtain coefficients 𝒙𝒙. Let the vectors 𝒚𝒚 ∈ ℝ𝑚𝑚 , 𝒙𝒙 ∈ ℝ𝑛𝑛 and the dictionary 𝜱𝜱 ∈ ℝ𝑚𝑚×𝑛𝑛

in (2.10), where 𝑚𝑚 and 𝑛𝑛 are the row rank and column rank of the dictionary 𝜱𝜱 respectively. The

least-squares method minimizes the 𝐿𝐿2 norm of the residual vector 𝒓𝒓 = 𝜱𝜱 𝒙𝒙 − 𝒚𝒚 [46]–[48].

𝒙𝒙� = arg min
𝑥𝑥

‖𝜱𝜱 𝒙𝒙 − 𝒚𝒚 ‖2
2 (2. 11)

An inverse problem is well-posed if it satisfies the three Hadamard conditions; Existence,

Uniqueness, and Continuity [9], [49], [50]. For example, if the dictionary 𝜱𝜱 ∈ ℝ𝑚𝑚×𝑛𝑛 is a square

matrix, where 𝑚𝑚 = 𝑛𝑛, has a full rank and well-conditioned, the inverse problem of (2.10) is well

posed [51]. Therefore, for a well-posed problem, 𝒚𝒚 ∈ ℛ(𝜱𝜱), the solution of the least-squares

problem is also the solution of the linear system in (2.10).

Computationally Efficient Methods for Sparse Tensor Signal Processing

17

The inverse problems for overdetermined and underdetermined linear systems are ill-posed.

Because the overdetermined linear systems, where 𝑚𝑚 > 𝑛𝑛, violate the existence condition, and the

underdetermined linear systems, where 𝑚𝑚 < 𝑛𝑛, violate the uniqueness condition [9], [50]–[54].

However, the least-squares methods could obtain a desirable approximate solution to ill-posed

problems. Generally, overdetermined problems could be solved with the least-squares methods

without additional constraints. However, additional constraints are necessary to find a unique

solution to underdetermined problems [52].

2.2.1. Sparse Least-Squares Problems

The sparsity could be imposed by adding a sparsity constraint to the least-squares problem. We

could formulate the sparse least-squares problem as an 𝐿𝐿𝑝𝑝 minimization problem [9],

𝒙𝒙� = arg min
𝑥𝑥

‖𝜱𝜱 𝒙𝒙 − 𝒚𝒚 ‖2
2 + 𝜆𝜆‖𝒙𝒙‖𝑝𝑝 (2. 12)

where the p-norm of a vector is defined as,

‖𝒙𝒙‖𝑝𝑝 = ��|𝑥𝑥𝑖𝑖|𝑝𝑝
𝑚𝑚

𝑖𝑖=1

�

1
𝑝𝑝

(2. 13)

Norms with 𝑝𝑝 < 1 are called pseudo-norms since they do not satisfy the triangular inequality. We

note that in (2.12), it is a nonconvex optimization problem for 0 ≤ 𝑝𝑝 < 1 and a convex

optimization problem for 𝑝𝑝 ≥ 1. The sparsest solutions are given when 𝑝𝑝 = 0, and the sparsity

reduces as 𝑝𝑝 increases.

Let us consider a 2-dimensional sparse least-squares problem. Figure 2.3 a) shows that the contours

of the least-squares error(in red) and the unit ball for the 𝐿𝐿0 constraint(in blue) always intersect at

an axis to obtain a sparse solution 𝒙𝒙� (e.g. 𝑥𝑥1 = 0 at 𝒙𝒙�), where 𝒙𝒙�𝑂𝑂𝑂𝑂𝑂𝑂 is the solution for the

unconstrained least-squares problem.

Ishan Wickramasingha

18

The 𝐿𝐿0 constrained least-squares problem is a non-convex optimization problem that can be solved

using hard thresholding if 𝜱𝜱 is orthogonal [8]. Matching Pursuit (MP) [12], Orthogonal Matching

Pursuit (OMP) [13], Group OMP [55], and Least Angle Regression(LARS) [15] are some other

algorithms for solving the 𝐿𝐿0 constrained least-squares problem.

We could slightly relax the sparsity constraint to obtain the convex 𝐿𝐿1 constrained least-squares

problem. Figure 2.3 b) shows the contours of the least-squares error and the unit ball of 𝐿𝐿1 norm

has a high chance of intersecting at an axis to obtain a sparse solution 𝒙𝒙�. If 𝜱𝜱 is orthogonal, the 𝐿𝐿1

constrained least-squares problem could be solved using soft thresholding [8]. Basis Pursuit(BP)

[14], Iterative Thresholding [56], Lasso [25], LARS [15], and Grouped LARS/Lasso [57] are a

few other algorithms to solve the 𝐿𝐿1 constrained least-squares problem.

The 𝐿𝐿2 constrained least-squares problem, also known as ridge regression [26], solves a strictly

convex problem. However, as shown in Figure 2.3 c), the contours of the least-squares error and

the unit ball of 𝐿𝐿2 norm has a less chance of intersecting at an axis. Therefore, the 𝐿𝐿2 constrained

least-squares problem, could not be used to obtain a sparse signal representation.

2.2.2. Obtaining Optimum Sparse Signal Representations

An optimum sparse signal representation should be able to represent a given signal using a few

elementary atoms from a dictionary. However, it is impossible to find an ideal dictionary to obtain

optimum sparse signal representations for all signals [8].

Figure 2.3. Contours of the least-squares error and the unit ball for a) 𝐿𝐿0 norm and b) 𝐿𝐿1 norm c) 𝐿𝐿2 norm

 (a)

𝒙𝒙𝟏𝟏

𝒙𝒙𝟐𝟐

𝒙𝒙�

𝒙𝒙�𝑂𝑂𝑂𝑂𝑂𝑂

 (b)

𝒙𝒙𝟏𝟏

𝒙𝒙𝟐𝟐

𝒙𝒙�

𝒙𝒙�𝑂𝑂𝑂𝑂𝑂𝑂

 (c)

𝒙𝒙𝟏𝟏
𝒙𝒙�

𝒙𝒙�𝑶𝑶𝑶𝑶𝑶𝑶

𝒙𝒙𝟐𝟐

Computationally Efficient Methods for Sparse Tensor Signal Processing

19

Orthogonal bases (𝜱𝜱 ∈ ℝ𝑚𝑚×𝑛𝑛| 𝑚𝑚 = 𝑛𝑛), a dictionary of minimum size, could be designed to

obtain sparse signal representations of signals efficiently by hard thresholding, which solves an 𝐿𝐿0

minimization problem in (2.12), or by soft thresholding, which solves an 𝐿𝐿1 minimization problem

in (2.12).

However, a sparse signal representation obtained over a single basis or a smaller frame is not

always optimum for an arbitrary signal [8], [53], [58]. For example, if a signal has time localized

components, the Fourier basis fails to obtain an optimum sparse signal representation. Whereas, if

the Fourier transform of the signal has components with narrow high-frequency support, wavelet

bases fail to obtain an optimum sparse signal representation [12]. Therefore, a union of both

Fourier and a wavelet basis could obtain a better sparse signal representation for a signal with both

time localized and localized frequency components than either basis alone.

Therefore, richer overcomplete dictionaries (𝜱𝜱 ∈ ℝ𝑚𝑚×𝑛𝑛| 𝑛𝑛 > 𝑚𝑚) could be used to obtain

optimum sparse signal representations of complicated signals [8], [53]. Typically, sparse signal

representations are obtained by solving an 𝐿𝐿𝑝𝑝 constrained least-squares problem in (2.12) using

OMP, BP, or LARS. However, the computational requirement for solving the sparse signal

representation problem increases significantly with the size of the dictionary. Therefore,

overcomplete dictionaries are typically designed as a union of a few orthogonal bases(tight frames)

or frames.

Fixed dictionaries are designed for sparse representation of certain regularities of signals. The

Fourier transform promotes a sparse representation of uniformly regular functions, and Discrete

Cosine Transform (DCT) could be used to obtain real-valued representations of such signals, with

applications in signal compression. Wavelet bases promote the sparse representation of piecewise

continuous signals, including transients and singularities [8]. Therefore, wavelets could be used to

represent edges in images efficiently. Wavelet packets [59], steerable wavelets [60], curvelets [61],

contourlets [62], and bandelets [63] could be used to represent specific types of edges in images

[8], [53]. Typically dictionaries learned for a specific type of signal obtain better sparse signal

representations than fixed dictionaries [53].

Ishan Wickramasingha

20

2.3. Sparse Tensor Signal Representation

The size of tensors quickly grows with the number of modes and dimensions along each mode.

Therefore, obtaining sparse tensor signal representations enables solving large tensor problems

because sparse tensors have fewer non-zero coefficients and require significantly lower computer

power and memory than their dense counterparts.

As shown in (2.6), a finite dimensional tensor signal 𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽n×…×𝐽𝐽N could be represented

using a tensor 𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁 and a set of mode-n dictionary matrices 𝜱𝜱(𝑛𝑛) ∈ ℝ𝐽𝐽n×𝐼𝐼𝑛𝑛; 𝑛𝑛 ∈

{1,2, … , 𝑁𝑁}. Each mode-n dictionary matrix 𝜱𝜱(𝑛𝑛) could be a basis, frame, or a tight frame. The

mode-n dictionary matrices could be selected independently to obtain an optimum representation

of each tensor mode.

For example, consider 30 frames of an RGB video with the resolution 640 × 480. The

corresponding tensor 𝒴𝒴 ∈ ℝ640×480×3×30, could be represented using four mode-n dictionary

matrices {𝜱𝜱(1), ⋯ , 𝜱𝜱(4)}. Therefore, we could select 𝜱𝜱(1), and 𝜱𝜱(2) to be a union of DCT

dictionary and a wavelet dictionary to represent each video frame, 𝜱𝜱(3) to be an identity matrix to

represent three RGB channels, and 𝜱𝜱(4) to be a wavelet dictionary to obtain a time-frequency

representation of temporal variations in video frames.

Obtaining a sparse signal representation of a large tensor is a computationally challenging

problem.

2.3.1. Sparse Multilinear Least-squares Problem

The equation (2.7) is an equivalent vector formulation of (2.6). Therefore, a sparse tensor 𝒳𝒳 could

be obtained by rewriting (2.7) as an 𝐿𝐿𝑝𝑝 minimization problem [9],

𝒙𝒙� = arg min

𝒙𝒙
‖𝜱𝜱vec(𝒳𝒳) − vec(𝒴𝒴) ‖2

2 + λ‖vec(𝒳𝒳)‖𝑝𝑝 (2. 14)

where 𝜱𝜱 = �𝜱𝜱(𝑁𝑁) ⊗ ⋯ ⊗ 𝜱𝜱(𝑛𝑛) ⊗ ⋯ ⊗ 𝜱𝜱(1)�, λ is a regularization parameter.

Equation (2.14) is an 𝐿𝐿𝑝𝑝 constrained linear least-squares problem, where for a large tensors 𝒳𝒳,

and 𝒴𝒴, solving the 𝐿𝐿𝑝𝑝 minimization problem by constructing the Kronecker dictionary 𝜱𝜱, might

be computationally infeasible.

Computationally Efficient Methods for Sparse Tensor Signal Processing

21

Therefore, we could reformulate (2.14) as a multilinear least-squares problem using (2.6) and

(2.7),

𝒳𝒳� = arg min
𝒳𝒳

�𝒳𝒳 ×1 𝜱𝜱(1) ×2 𝜱𝜱(2) ×3 ⋯ ×𝑁𝑁 𝜱𝜱(𝑁𝑁) − 𝒴𝒴 �
2
2

+ λ‖𝒳𝒳‖𝑝𝑝 (2. 15)

where 𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽𝑛𝑛×…×𝐽𝐽𝑁𝑁 and 𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁.

The 𝐿𝐿𝑝𝑝 constrained least-square problems in (2.14) and (2.15) are equivalent. However, the

results of (2.14) are in vector form, and the results of (2.15) are in tensor form.

2.3.2. Thesis Problem Statement

A large tensor problem could be solved efficiently by using a sparse tensor signal representation,

which is typically obtained by solving an 𝐿𝐿𝑝𝑝 constrained linear least-squares problem in (2.14).

However, obtaining a sparse signal representation of a tensor 𝒴𝒴, by solving (2.14) requires

constructing and inverting a significantly large Kronecker dictionary matrix 𝜱𝜱.

For example, a third-order tensor 𝒴𝒴 ∈ ℝ100×100×100, would require constructing a Kronecker

dictionary, 𝜱𝜱 ∈ ℝ106×106, with at least 1 trillion (1012) elements, in solving (2.14) using method

discussed in section 2.2.1, and a fourth-order tensor 𝒴𝒴 ∈ ℝ100×100×100×100 would require

constructing a Kronecker dictionary 𝜱𝜱 ∈ ℝ108×108, with at least 10 quadrillion (1016) elements.

Therefore, solving (2.14) for a tensor problem using OMP, BP, LARS, or any other one-

dimensional method discussed in section 2.2.1 quickly become computationally intractable as the

number of modes and the dimensions of each tensor mode increases.

The main objective of this research is to develop novel methods that could efficiently obtain sparse

signal representations of tensors to solve large multidimensional problems efficiently. The novel

methods developed in this research is primarily based on the relationship between (2.14) and

(2.15).

This thesis presents four novel methods, developed in chapters 3, 4, 5, and 6, by extending their

one-dimensional counterparts using tensors and multilinear algebra. These methods obtain sparse

signal representations of large tensors efficiently by solving variations of (2.15) without explicitly

constructing or inverting large matrices such as the Kronecker dictionary matrix 𝜱𝜱. Instead our

methods use much smaller mode-n dictionary matrices 𝜱𝜱(𝑛𝑛) in their calculations.

Ishan Wickramasingha

22

These four methods use fixed or previously learned mode-n dictionaries 𝜱𝜱(𝑛𝑛) ∈ ℝ𝐽𝐽𝑛𝑛×𝐼𝐼𝑛𝑛 to obtain

a sparse signal representation 𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁 of a large tensor 𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽𝑛𝑛×…×𝐽𝐽𝑁𝑁. Our fifth

method developed in chapter 7, which is also an extension of its one-dimensional counterpart using

tensors and multilinear algebra, could be used for online learning of mode-n dictionaries 𝜱𝜱(𝑛𝑛) ∈

ℝ𝐽𝐽𝑛𝑛×𝐼𝐼𝑛𝑛 in (2.15) using data tensors 𝒴𝒴.

Also, the fifth method is a tensor task-driven dictionary learning framework that uses the sparse

signal representations of tensors obtained using our novel methods to efficiently solve large

multidimensional supervised or semi-supervised machine learning problems such as tensor

regression or tensor classifications. This method predicts a tensor 𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽𝑛𝑛×…×𝐽𝐽𝑁𝑁 from a

tensor 𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁, when 𝒳𝒳 is associated with 𝒴𝒴, by jointly learning mode-n dictionaries

and mode-n model parameters online.

Computationally Efficient Methods for Sparse Tensor Signal Processing

23

Chapter 3

3. Tensor Least Angle Regression (T-LARS)

Sparse signal representations have gained much interest recently in both signal processing and

statistical communities. Compared to Orthogonal Matching Pursuit (OMP) [13], and Basis Pursuit

(BP) [25], [27], that solve the L0 and L1 constrained sparse least-squares problems respectively,

for a specific value of the regularization parameter λ, Least Angle Regression (LARS) [15] is a

computationally efficient method to solve both problems for all critical values of λ. However, these

methods are not suitable for solving large multidimensional sparse least-squares problems, as they

would require extensive computational power and memory. An earlier generalization of OMP,

known as Kronecker-OMP [16], was developed to solve the L0 problem for large

multidimensional sparse least-squares problems. However, its memory usage and computation

time increase fast with the number of problem dimensions and iterations. In this chapter, we

develop a generalization of LARS, Tensor Least Angle Regression (T-LARS) [18] that

could efficiently solve either large L0 or large L1 constrained multidimensional sparse least-

squares problems (underdetermined or overdetermined) for all critical values of the regularization

parameter λ, and which has lower computational complexity and lower memory usage than

Kronecker-OMP. To demonstrate the validity and performance of our T-LARS algorithm, we

used it to successfully obtain different sparse representations of two relatively large 3-D brain

images, using fixed and learned separable over-complete dictionaries, by solving both L0 and L1

constrained sparse least-squares problems and compared with Kronecker-OMP. We also present

the multilinear compressed sensing problem, and we compared Kronecker-OMP and T-LARS in

reconstructing 3D brain images using compressed sensed samples.

Ishan Wickramasingha

24

3.1. Introduction

Sparse signal representations have gained much interest recently in both Signal Processing and

Statistics communities. A sparse signal representation usually results in simpler and faster

processing, in addition to lower memory storage requirements for fewer coefficients [8], [9].

However, finding optimal sparse representations for different signals is not a trivial task [8].

Therefore, redundant signal representations using overcomplete dictionaries have been introduced

to facilitate finding more sparse representations for different signals [8], [9], [12], [13]. Under

complete dictionaries could also be used to obtain approximate signal representations [64]–[66].

We note that at their core, such signal representation problems typically involve solving a least-

squares problem [10], [11].

A number of methods have been proposed to solve the sparse least-squares problem, including the

Method of Frames (MOF) [67], Matching Pursuit (MP) [12], Orthogonal Matching Pursuit (OMP)

[13], Best Orthogonal Basis (BOB) [68], Lasso also known as Basis Pursuit (BP) [25], [27], and

Least Angle Regression (LARS) [15]. Matching Pursuit (MP) and Orthogonal Matching Pursuit

(OMP) obtain sparse signal representations by solving a non-convex L0 constrained least-squares

problem [69]. Matching Pursuits are heuristic methods that construct sparse signal representations

by sequentially adding atoms from a given dictionary in a greedy, i.e., non-globally optimal

manner. Basis Pursuit (BP) relaxes the non-convex L0 constrained optimization problem to solve

a convex L1 constrained least-squares problem instead [14]. In both problem formulations, a

regularization parameter λ determines the trade-off between the representation error of the signal

and its sparsity, as shown in the Pareto curve in [23]. A common approach to obtaining a sparse

signal representation using Basis Pursuit is to solve the optimization problem multiple times, for

different values of λ, before choosing the most suitable solution for the application at hand [23].

Compared to the above methods, Least Angle Regression efficiently solves the L0, or with a slight

modification, the L1 constrained least-squares problem for all critical values of the regularization

parameter λ [15]. However, even LARS is not suitable for large-scale problems as it would require

multiplication and inversion of very large matrices [70]. For example, for 𝑚𝑚 unknown variables

and 𝑛𝑛 equations, the LARS algorithm has O(𝑚𝑚3 + n𝑚𝑚2) computational complexity [15].

Computationally Efficient Methods for Sparse Tensor Signal Processing

25

LARS and other algorithms to solve sparse least-squares problems are directly applicable to one-

dimensional signals. Therefore, multidimensional signals that are represented by tensors, i.e.,

multidimensional arrays, would need to be vectorized first to enable the application of these

methods [7], [45], [71]. For 𝐼𝐼𝑁𝑁 number of vectorized variables, a dictionary of the size 𝐼𝐼𝑁𝑁 × 𝐽𝐽𝑁𝑁,

where 𝐽𝐽 > 𝐼𝐼 for an overcomplete dictionary, is required to solve the sparse linear least-squares

problem, using LARS and other algorithms mentioned above. 𝑁𝑁 is the order of the tensor, also

known as the number of modes, and 𝐼𝐼 is the dimension of each mode. Therefore, the number of

vectorized unknown variables 𝐼𝐼𝑁𝑁 would increase exponentially with the order of the tensor N.

Thus, such problems would quickly become increasingly large and computationally intractable.

For example, a 3D tensor with 100 unknown variables in each mode has a total of 1 million

unknowns, which requires a dictionary with at least 1 trillion (1012) elements, whereas a 4D tensor

with 100 unknown variables in each mode has a total of 100 million unknowns, which requires a

dictionary of at least ten quadrillion (1016) elements.

Mathematically separable signal representations, i.e., using separable dictionaries, have been

typically used for multidimensional signals, as they are simpler and easier to obtain than non-

separable representations [16], [72]. Caiafa et al. introduced Kronecker-OMP, a generalization of

OMP that could represent multidimensional signals, represented by tensors, using separable

dictionaries [16]. They also developed the N-BOMP algorithm to exploit block-sparse structures

in multidimensional signals. However, similar to OMP, Kronecker-OMP could only obtain an

approximate nonglobally optimal solution of the nonconvex L0 constrained sparse least-squares

problem [17], [23]. Also, there is currently no computationally efficient method to obtain a sparse

representation of a multidimensional signal by solving the convex L1 constrained sparse least-

squares problem for all critical values of the regularization parameter λ. However, two of our co-

authors, Elrewainy and Sherif, earlier developed the Kronecker Least Angle Regression (K-LARS)

algorithm to efficiently solve either large L0 or large L1 sparse least-squares problems

(overdetermined) with a particular Kronecker form 𝑨𝑨 ⊗ 𝑰𝑰, for all critical values of the

regularization parameter λ. They used K-LARS to sparsely fit one-dimensional multi-channel

hyperspectral spectral imaging data to a Kronecker model 𝑨𝑨 ⊗ 𝑰𝑰 [17].

In this chapter, we develop a generalization of K-LARS, Tensor Least Angle Regression (T-LARS)

[18] that could efficiently solve either large L0 or large L1 multidimensional sparse least-squares

Ishan Wickramasingha

26

problems (underdetermined or overdetermined) for all critical values of the regularization

parameter λ. We also discuss the compressed sensing problem and use T-LARS to efficiently

obtain a sparse representation of large tensors using compressed sensed samples.

The applications of T-LARS include compression of large multidimensional signals, e.g.,

multidimensional biomedical images, videos, satellite imaging, communication. The T-LARS

could also be used in the sparse coding methods of the tensor dictionary learning algorithms such

as the Tensor Method of Optimal Directions(T-MOD) and Kronecker Higher-Order SVD (K-

HOSVD) [30] to learn mode-n dictionaries efficiently. Also, T-LARS with T-MOD or K-HOSVD

could be used to efficiently solve tensor regression problems [72], [73]. In this chapter, we used

T-LARS to represent 3D MRI brain images and 3D PET-CT brain images using significantly lower

coefficients than the number of elements in the original signals.

This chapter is organized as follows: Section 3.2 includes a brief introduction to tensors, tensor

operations, multilinear sparse least-squares problems, and multilinear compressed sensing. In

Section 3.3, we review Least Angle Regression (LARS) and describe our Tensor Least Angle

Regression (T-LARS) algorithm in detail. Section 3.4 presents the computational complexity of

our T-LARS algorithm and compares its computational complexity with that of Kronecker-OMP.

Section 3.5 provides experiment results of applying both T-LARS and Kronecker-OMP. We

present our conclusions in Section 3.6.

3.2. Problem Formulation

3.2.1. Tensors and multilinear transformations

The term tensor has a specific mathematical definition in physics, but it has been widely accepted

in many disciplines, e.g., signal processing and statistics, to mean a multidimensional array.

Therefore, a vector is a first-order tensor, and a matrix is a second-order tensor. An N-dimensional

array is an 𝑁𝑁𝑡𝑡ℎ order tensor, whose N dimensions are also known as modes [6], [43]. The 𝑁𝑁𝑡𝑡ℎ

order tensor 𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁 has 𝑁𝑁 modes, with dimensions, 𝐼𝐼1, 𝐼𝐼2, … , 𝐼𝐼𝑁𝑁, where vectors along

a specific mode, n, are called mode-n fibers.

Vectorization and mode-n matricization of tensors [6], [43] are two important tensor reshaping

operations. As the names imply, the vectorization of a tensor generates a vector, and the

Computationally Efficient Methods for Sparse Tensor Signal Processing

27

matricization of a tensor generates a matrix. Tensors are vectorized by stacking mode-1 fibers in

reverse lexicographical order, where this vectorization is denoted vec(𝒳𝒳).

𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁 ⟶ vec(𝒳𝒳) ∈ ℝ𝐼𝐼N𝐼𝐼𝑁𝑁−1…𝐼𝐼1

In mode-n tensor matricization, mode-n fibers become the columns of the resulting matrix. We

note that such ordering of these columns is not consistent across the literature [5], [45]. In this

chapter, we use reverse lexicographical order (𝐼𝐼𝑁𝑁 … 𝐼𝐼𝑛𝑛+1𝐼𝐼𝑛𝑛−1 … 𝐼𝐼1) for the column ordering in

mode-n tensor matricization. In such reverse lexicographical order, 𝐼𝐼1 varies the fastest and 𝐼𝐼𝑁𝑁

varies the slowest. Let 𝑿𝑿(𝑛𝑛) denote mode-n matricization of a tensor 𝒳𝒳

𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁 ⟶ 𝑿𝑿(𝑛𝑛) ∈ ℝ𝐼𝐼𝑛𝑛×(𝐼𝐼𝑁𝑁…𝐼𝐼𝑛𝑛+1𝐼𝐼𝑛𝑛−1…𝐼𝐼1)

Another important operation that could be performed on a tensor is its mode-n product, i.e., its

multiplication by a matrix along one of its modes. Let the tensor 𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁 and a matrix

𝜱𝜱(𝑛𝑛) ∈ ℝ𝐽𝐽n×𝐼𝐼𝑛𝑛, then their mode-n product, 𝒴𝒴𝑛𝑛 ∈ ℝ𝐼𝐼1×…×𝐽𝐽n×…×𝐼𝐼𝑁𝑁 , is denoted as

𝒴𝒴𝑛𝑛 = 𝒳𝒳 ×𝑛𝑛 𝜱𝜱(𝑛𝑛) (3. 1)

where all mode-n fibers of the tensor are multiplied by the matrix 𝜱𝜱(𝑛𝑛). Equation (3.1) could also

be written as 𝒀𝒀(𝑛𝑛) = 𝜱𝜱(𝑛𝑛)𝑿𝑿(𝑛𝑛), where 𝒀𝒀(𝑛𝑛) and 𝑿𝑿(𝑛𝑛) are mode-n matricizations of tensors 𝒳𝒳 and

𝒴𝒴, respectively. A mode-n product could be thought of as a linear transformation of the mode-n

fibers of a tensor. Therefore, a multilinear transformation of a tensor 𝒳𝒳 could be defined as

𝒴𝒴 = 𝒳𝒳 ×1 𝜱𝜱(1) ×2 𝜱𝜱(2) ×3 ⋯ ×𝑁𝑁 𝜱𝜱(𝑁𝑁) (3. 2)

where, 𝜱𝜱(𝑛𝑛); 𝑛𝑛 ∈ {1,2, … , 𝑁𝑁} are matrices with dimensions 𝜱𝜱(𝑛𝑛) ∈ ℝ𝐽𝐽n×𝐼𝐼𝑛𝑛; 𝑛𝑛 ∈ {1,2, … , 𝑁𝑁} and

𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽n×…×𝐽𝐽N [6], [43]. This multilinear transformation could also be written as a product

of vec(𝒳𝒳) and the Kronecker product of matrices 𝜱𝜱(𝑛𝑛); 𝑛𝑛 ∈ {1,2, … , 𝑁𝑁} [6], [43].

vec(𝒴𝒴) = �𝜱𝜱(𝑁𝑁) ⊗ 𝜱𝜱(𝑁𝑁−1) ⊗ ⋯ ⊗ 𝜱𝜱(1)�vec(𝒳𝒳) (3. 3)

We note that (3.3) is a linear system relating to 𝒙𝒙 = vec(𝒳𝒳) and 𝒚𝒚 = vec(𝒴𝒴). If matrix 𝜱𝜱

represents a separable dictionary, i.e.,

𝜱𝜱 = (𝜱𝜱(𝑁𝑁) ⊗ 𝜱𝜱(𝑁𝑁−1) ⊗ ⋯ ⊗ 𝜱𝜱(2) ⊗ 𝜱𝜱(1)) (3. 4)

Ishan Wickramasingha

28

Then (3.3) describes a representation of 𝒚𝒚 = vec(𝒴𝒴) using a dictionary 𝜱𝜱, where 𝒙𝒙 =

vec(𝒳𝒳) represents its coefficients (𝒚𝒚 = 𝜱𝜱𝒙𝒙). Similarly, we could think of (3.2) as a

representation of tensor 𝒴𝒴 using dictionaries 𝜱𝜱(𝑛𝑛); 𝑛𝑛 ∈ {1,2, … , 𝑁𝑁}, where tensor 𝒳𝒳 represents its

coefficients.

3.2.2. Sparse Multilinear Least-squares Problem

A sparse multilinear representation of (3.3) could be obtained by rewriting it as an 𝐿𝐿𝑝𝑝

minimization problem [9],

𝒙𝒙� = arg min
𝒙𝒙

��𝜱𝜱(𝑁𝑁) ⊗ ⋯ ⊗ 𝜱𝜱(𝑛𝑛) ⊗ ⋯ ⊗ 𝜱𝜱(1)� vec(𝒳𝒳) − vec(𝒴𝒴) �
2
2

+ λ‖vec(𝒳𝒳)‖𝑝𝑝 (3. 5)

where λ is a regularization parameter.

Alternatively, using (3.2) and (3.3), (3.5) could be written as

𝒳𝒳� = arg min
𝒳𝒳

�𝒳𝒳 ×1 𝜱𝜱(1) ×2 𝜱𝜱(2) ×3 ⋯ ×𝑁𝑁 𝜱𝜱(𝑁𝑁) − 𝒴𝒴 �
2
2

+ λ‖𝒳𝒳‖𝑝𝑝 (3. 6)

where 𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽𝑛𝑛×…×𝐽𝐽𝑁𝑁 and 𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁.

For the same values of 𝑝𝑝, the 𝐿𝐿𝑝𝑝 minimization problems in (3.5) and (3.6) are equivalent, even

though their formulations are in vector and tensor forms, respectively. We note that for 0 ≤ 𝑝𝑝 <

1, (3.5) and (3.6) are nonconvex optimization problems, while for 𝑝𝑝 ≥ 1, they are convex

optimization problems. The most sparse solution of (3.5) and (3.6) would be obtained when 𝑝𝑝 =

0, i. e. , 𝐿𝐿0 constrained problem, but its sparsity would be reduced as 𝑝𝑝 increases.

The 𝐿𝐿0 minimization problem (𝑝𝑝 = 0) is a nonconvex optimization problem, whose vector

formulation, problem (3.5), could be solved approximately, i.e., non-globally, using Orthogonal

Matching Pursuit (OMP) or Least Angle Regression (LARS) [23]. The 𝐿𝐿1 minimization problem

(𝑝𝑝 = 1) is a convex optimization problem, whose vector formulation, problem (3.5), could be

exactly, i.e., globally, solved using Basis Pursuit (BP) or LARS [73]. However, OMP, BP, and

LARS share a serious drawback in that they are not suitable for solving very large sparse least-

squares problems as they involve multiplication and inverting of very large matrices.

Computationally Efficient Methods for Sparse Tensor Signal Processing

29

As a way of overcoming this drawback, Caiafa et al. proposed Kronecker-OMP, a tensor-based

generalization of OMP, for solving sparse multilinear least-squares problems. However, similar to

OMP, Kronecker-OMP could only obtain a non-globally optimal solution of the nonconvex L0

constrained sparse least-squares problem [73].

3.2.3. Multilinear Compressed Sensing

Consider a multilinear transformation of a tensor 𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁 by mode-n dictionary

matrices 𝑫𝑫(𝑛𝑛) ∈ ℝ𝐿𝐿n×𝐼𝐼𝑛𝑛; 𝑛𝑛 ∈ {1,2, … , 𝑁𝑁} to obtain a large tensor 𝒜𝒜 ∈ ℝ𝐿𝐿1×…×𝐿𝐿𝑛𝑛×…×𝐿𝐿𝑛𝑛 .

𝒜𝒜 = 𝒳𝒳 ×1 𝑫𝑫(1) ×2 𝑫𝑫(2) ×3 ⋯ ×𝑁𝑁 𝑫𝑫(𝑁𝑁) (3. 7)

The main objective of the multilinear compressed sensing is to obtain a sparse coefficient tensor

𝒳𝒳 by sampling the large tensor signal 𝒜𝒜 in a sparse domain, where a much smaller sample tensor

𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽𝑛𝑛×…×𝐽𝐽𝑁𝑁; ∀𝑛𝑛 𝐽𝐽𝑛𝑛 ≤ 𝐿𝐿𝑛𝑛, is obtained. The smaller sample tensor 𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽𝑛𝑛×…×𝐽𝐽𝑁𝑁 is a

projection of the tensor 𝒜𝒜 to a sparse domain using mode-n sensing matrices 𝒁𝒁(𝑛𝑛) ∈ ℝ𝐽𝐽n×𝐿𝐿𝑛𝑛; 𝑛𝑛 ∈

�1,2, … , 𝑁𝑁�, where 𝒴𝒴 = 𝒜𝒜 ×1 𝒁𝒁(1) ×2 ⋯ ×𝑁𝑁 𝒁𝒁(𝑁𝑁) [16], [21], [74].

Therefore, the relationship between the sparse coefficient tensor 𝒳𝒳 and the compressed sensing

samples tensor 𝒴𝒴 is given by,

𝒴𝒴 = 𝒳𝒳 ×1 𝜱𝜱(1) ×2 𝜱𝜱(2) ×3 ⋯ ×𝑁𝑁 𝜱𝜱(𝑁𝑁) (3. 8)

Where 𝜱𝜱(𝑛𝑛) ∈ ℝ𝐽𝐽n×𝐼𝐼𝑛𝑛 = 𝒁𝒁(𝑛𝑛)𝑫𝑫(𝑛𝑛); ∀ 𝑛𝑛 ∈ {1,2, … , 𝑁𝑁}.

As shown in (3.7), the tensor 𝒜𝒜 could be reconstructed using the sparse coefficient tensor 𝒳𝒳, and

mode-n dictionary matrices 𝑫𝑫(𝑛𝑛) ∈ ℝ𝐿𝐿n×𝐼𝐼𝑛𝑛; 𝑛𝑛 ∈ {1,2, … , 𝑁𝑁}, where the sparse coefficient tensor 𝒳𝒳,

could be calculated using the much smaller sample tensor 𝒴𝒴 by solving a sparse multilinear least-

squares problem,

𝒳𝒳� = arg min
𝒳𝒳

�𝒳𝒳 ×1 𝜱𝜱(1) ×2 ⋯ ×𝑁𝑁 𝜱𝜱(𝑁𝑁) − 𝒴𝒴�
2
2

+ λ‖𝒳𝒳‖𝑝𝑝 (3. 9)

Equation (3.6) and (3.9) are 𝐿𝐿𝑝𝑝 constrained multilinear least-squares problems. A sparse tensor

𝒳𝒳 could be obtained by solving either 𝐿𝐿0 or 𝐿𝐿1 constrained minimization problems. As we

discussed in section 3.2.2, Kronecker-OMP could be used to obtain a non-globally optimal solution

of the nonconvex L0 constrained multilinear least-squares problem.

Ishan Wickramasingha

30

In this chapter, we develop Tensor Least Angle Regression (T-LARS), a computationally efficient

method to solve either large 𝐿𝐿0 or 𝐿𝐿1 constrained multilinear least-squares problem in (3.6) and

(3.9) for all critical values of the regularization parameter λ.

3.3. Tensor Least Angle Regression (T-LARS)

Least angle regression (LARS) is a computationally efficient method to solve either 𝐿𝐿0 or 𝐿𝐿1

constrained minimization problem in vector form, problem (3.5), for all critical values of the

regularization parameter λ [15]. In this chapter, we develop a generalization of LARS, Tensor

Least Angle Regression (T-LARS), to solve large sparse tensor least-squares problems to, for

example, obtain sparse representations of multidimensional signals using a separable dictionary as

described by (3.3). As shown below, our T-LARS calculations are performed without explicitly

generating or inverting large matrices, thereby keeping its computational complexity and memory

requirement relatively low. Both T-LARS and Kronecker-OMP algorithms use the Schur

complement inversion formula for inverting large matrices without explicitly inverting them [16].

3.3.1. Least Angle Regression (LARS)

Least angle regression (LARS) solve the 𝐿𝐿0 or 𝐿𝐿1 constrained minimization problem in (3.5) for

all critical values of the regularization parameter λ. LARS starts with a very large value of λ that

results in an empty active columns matrix, 𝜱𝜱𝐼𝐼, and a solution 𝒙𝒙�𝑡𝑡=0 = 𝟎𝟎. The set 𝐼𝐼 denotes an active

set of the dictionary 𝜱𝜱, i.e., column indices where the optimal solution 𝒙𝒙�𝑡𝑡 at iteration 𝑡𝑡, is nonzero,

and 𝐼𝐼𝑐𝑐 denotes its corresponding inactive set. Therefore, 𝜱𝜱𝐼𝐼 contains only the active columns of

the dictionary 𝜱𝜱 and 𝜱𝜱𝐼𝐼𝑐𝑐 contains only its inactive columns.

 At each iteration 𝑡𝑡, a new column is either added (𝐿𝐿0) to the active set 𝐼𝐼 or a new column is either

added or removed (𝐿𝐿1) from the active set 𝐼𝐼, and λ is reduced by a calculated value 𝛿𝛿𝑡𝑡
∗. As a result

of such iterations, new solutions with an increased number of coefficients that follow a piecewise

linear path are obtained until a predetermined residual error 𝜀𝜀 is obtained. One important

characteristic of LARS is that the current solution at each iteration is the optimum sparse solution

for the selected active columns.

Initialization of LARS includes setting the active set to an empty set, I= {}, the initial solution

vector 𝒙𝒙�0 = 0, the initial residual vector 𝒓𝒓0 = 𝒚𝒚 and initial regularization coefficient 𝜆𝜆1 =

Computationally Efficient Methods for Sparse Tensor Signal Processing

31

 max(𝒄𝒄1) where, 𝒄𝒄1 = 𝜱𝜱𝑇𝑇𝒓𝒓0. The optimal solution 𝒙𝒙�𝑡𝑡 at any iteration, 𝑡𝑡 must satisfy the following

two optimality conditions,

�𝜱𝜱𝐼𝐼𝑐𝑐
𝑇𝑇 𝒓𝒓𝑡𝑡 �

∞
 ≤ 𝜆𝜆𝑡𝑡 (3. 10)

𝜱𝜱𝐼𝐼
𝑇𝑇 𝒓𝒓𝑡𝑡 = −𝜆𝜆𝑡𝑡𝒛𝒛𝑡𝑡 (3. 11)

where, 𝒓𝒓𝑡𝑡 is the residual vector at iteration 𝑡𝑡, 𝒓𝒓𝑡𝑡 = 𝒚𝒚 − 𝜱𝜱𝒙𝒙�𝑡𝑡, and 𝒛𝒛𝑡𝑡 is the sign sequence of 𝒄𝒄𝑡𝑡

on the active set 𝐼𝐼.

The condition in (3.11) ensures that the magnitude of the correlation between all active columns

and the residual is equal to |𝜆𝜆𝑡𝑡| at each iteration, and the condition in (3.10) ensures that the

magnitude of the correlation between the inactive columns and the residual is less than or equal to

|𝜆𝜆𝑡𝑡|.

For 𝐿𝐿1 constrained minimization problem, at each iteration, if an inactive column violates the

condition (3.10), it is added to the active set, and if an active column violates the condition (3.11),

it is removed from the active set. For 𝐿𝐿0 constrained minimization problem only the columns that

violate the condition (3.10) are added to the active set at each iteration.

For a given active set 𝐼𝐼, the optimal solution 𝒙𝒙�𝑡𝑡 could be written as

𝒙𝒙�𝑡𝑡 = � �𝜱𝜱𝐼𝐼𝑡𝑡
𝑇𝑇𝜱𝜱𝐼𝐼𝑡𝑡�

−1
�𝜱𝜱𝐼𝐼𝑡𝑡

𝑇𝑇𝒚𝒚 − 𝜆𝜆𝑡𝑡𝒛𝒛𝑡𝑡�, on 𝐼𝐼
 0, Otherwise

(3. 12)

where, 𝒛𝒛𝑡𝑡 is the sign sequence of 𝒄𝒄𝑡𝑡 on the active set 𝐼𝐼, and 𝒄𝒄𝑡𝑡 = 𝜱𝜱𝑇𝑇rt−1 is the correlation vector

of all columns of the dictionary 𝜱𝜱 with the residual vector 𝒓𝒓𝑡𝑡−1 at iteration t. The Least Angle

Regression (LARS) algorithm is summarized below.

Ishan Wickramasingha

32

3.3.2. Tensor Least Angle Regression (T-LARS) Algorithm

Tensor Least Angle Regression (T-LARS) is a generalization of Least Angle Regression (LARS)

to solve the sparse multilinear least-squares problem in (3.6) using tensors and multilinear algebra.

Unlike LARS, T-LARS does not calculate large matrices such as the Kronecker dictionary, 𝜱𝜱 in

(3.4), which is required in vectorized sparse multilinear least-squares problems. Instead, T-LARS

uses much smaller mode-n dictionaries for calculations. A mapping between column indices of

Algorithm 3.1: Least Angle Regression (LARS)

Input: LARS_mode = 𝐿𝐿1 or 𝐿𝐿0; stopping criterion: residual error: 𝜀𝜀, or number of non-zero
coefficients: 𝐾𝐾; normalized 𝒚𝒚; dictionary 𝜱𝜱
Initialization: Residual: 𝒓𝒓0 = 𝒚𝒚; 𝒙𝒙 = 𝟎𝟎; active set: 𝐼𝐼 = {};
1. 𝒄𝒄1 = 𝜱𝜱𝑇𝑇𝒓𝒓0
2. [𝜆𝜆1, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖] = 𝑚𝑚𝑚𝑚𝑚𝑚(𝒄𝒄1);
3. 𝐼𝐼 = {𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖};
4. while stopping criterion not reached
5. 𝒛𝒛𝑡𝑡 = sign (𝒄𝒄𝑡𝑡(𝐼𝐼))

6. 𝒅𝒅𝑡𝑡 = �𝜱𝜱𝐼𝐼𝑡𝑡
𝑇𝑇𝜱𝜱𝐼𝐼𝑡𝑡�

−1𝒛𝒛𝑡𝑡
7. 𝒗𝒗𝑡𝑡 = 𝜱𝜱𝑇𝑇𝜱𝜱𝐼𝐼𝑡𝑡𝒅𝒅𝑡𝑡
8. for 𝑖𝑖 = 1 to column length of 𝜱𝜱 do
9. if 𝑖𝑖 ∈ 𝐼𝐼𝑐𝑐

10. 𝛿𝛿𝑡𝑡
+ = min �𝜆𝜆𝑡𝑡−𝒄𝒄𝑡𝑡(𝑖𝑖)

1−𝒗𝒗𝑡𝑡(𝑖𝑖) , 𝜆𝜆𝑡𝑡+𝒄𝒄𝑡𝑡(𝑖𝑖)
1+𝒗𝒗𝑡𝑡(𝑖𝑖) �

11. if 𝛿𝛿𝑡𝑡
+ < 𝛿𝛿𝑡𝑡

∗
12. 𝛿𝛿𝑡𝑡

∗ =𝛿𝛿𝑡𝑡
+; 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑖𝑖; add_column = True;

13. end
14. elseif LARS_mode == 𝐿𝐿1

15. 𝛿𝛿𝑡𝑡
− = − 𝒙𝒙𝑡𝑡−1(𝑖𝑖)

𝒅𝒅𝑡𝑡(𝑖𝑖)

16. if 𝛿𝛿𝑡𝑡
− < 𝛿𝛿𝑡𝑡

∗
17. 𝛿𝛿𝑡𝑡

∗ =𝛿𝛿𝑡𝑡
−; 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖 = i; add_column = False;

18. end
19. end
20. end for
21. 𝒙𝒙 = 𝒙𝒙 + 𝛿𝛿𝑡𝑡

∗𝒅𝒅𝑡𝑡
22. 𝜆𝜆𝑡𝑡 = 𝜆𝜆𝑡𝑡 − 𝛿𝛿𝑡𝑡

∗
23. 𝒄𝒄𝑡𝑡 = 𝜱𝜱𝑇𝑇𝒓𝒓𝑡𝑡
24. 𝒓𝒓𝑡𝑡 = 𝒓𝒓𝑡𝑡−1 − 𝛿𝛿𝑡𝑡

∗𝜱𝜱𝐼𝐼𝑡𝑡 𝒅𝒅𝑡𝑡
25. if add_column == True
26. 𝐼𝐼 = 𝐼𝐼 + {𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖}
27. else
28. 𝐼𝐼 = 𝐼𝐼 – {𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖}
29. end
30. end while
31. return 𝐼𝐼, 𝒙𝒙

Computationally Efficient Methods for Sparse Tensor Signal Processing

33

dictionary Φ and column indices of mode-n dictionaries 𝜱𝜱(𝑛𝑛); 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁} is essential in T-

LARS calculations (See Appendix 1).

Required inputs to the T-LARS algorithm are the tensor 𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽𝑛𝑛×…×𝐽𝐽𝑁𝑁, mode-n dictionary

matrices 𝜱𝜱(𝑛𝑛); 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁} and the stopping criterion as a residual tolerance 𝜀𝜀 or the maximum

number of non-zero coefficients 𝐾𝐾 (K-sparse representation). The output is the solution tensor 𝒳𝒳 ∈

ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁.

First, normalize the tensor 𝒴𝒴 and columns of each dictionary 𝜱𝜱(𝑛𝑛); 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁} to have a unit

𝐿𝐿2 norm. Note that normalizing columns of each dictionary 𝜱𝜱(𝑛𝑛); 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁} ensure

normalization of the separable dictionary 𝜱𝜱 in (3.4) (See Appendix 2). For notational simplicity

in the following sections, we will use 𝒴𝒴 to represent the normalized tensor and 𝜱𝜱(𝑛𝑛) to represent

normalized dictionary matrices.

Gram matrices are used in several steps of T-LARS. For a large separable dictionary, 𝜱𝜱, its Gram

matrix 𝑮𝑮 = 𝜱𝜱𝑇𝑇𝜱𝜱 would be large as well. Therefore, explicitly building this Gram matrix and using

it in computations could be very inefficient for large problems. Instead, T-LARS uses Gram

matrices of mode-n dictionary matrices, 𝜱𝜱(1), 𝜱𝜱(2), … , 𝜱𝜱(𝑁𝑁), defined as 𝑮𝑮(1), 𝑮𝑮(2), … , 𝑮𝑮(𝑁𝑁). We

could obtain a Gram matrix 𝑮𝑮(𝑛𝑛); 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁} for each mode-n dictionary 𝜱𝜱(𝑛𝑛); 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁}

by,

𝑮𝑮(𝑛𝑛) = 𝜱𝜱(𝑛𝑛)𝑇𝑇
𝜱𝜱(𝑛𝑛) (3. 13)

The tensor 𝒞𝒞1 is the correlation between the tensor 𝒴𝒴 and the mode-n dictionary matrices 𝜱𝜱(𝑛𝑛); 𝑛𝑛 ∈

{1, ⋯ , 𝑁𝑁}.

𝒞𝒞1 = 𝒴𝒴 ×1 𝜱𝜱(1)𝑇𝑇
×2. . .×𝑛𝑛 𝜱𝜱(𝑛𝑛)𝑇𝑇

×𝑛𝑛+1. . .×𝑁𝑁 𝜱𝜱(𝑁𝑁)𝑇𝑇 (3. 14)

The tensor 𝒞𝒞1 could be calculated efficiently as 𝑁𝑁 mode-n products, and the initial correlation

vector is obtained by vectorizing 𝒞𝒞1, where, 𝒄𝒄1 = vec(𝒞𝒞1) (See Appendix 3).

T-LARS requires several parameters to be initialized before starting the iterations. The

regularization parameter 𝜆𝜆1 is initialized to the maximum value of the correlation vector 𝒄𝒄1 and

the corresponding most correlated column 𝝓𝝓𝐼𝐼1 from the separable dictionary, 𝜱𝜱 is added to the

initial active set I. The initial residual tensor ℛ0 is set to 𝒴𝒴 and the initial solution vector 𝒙𝒙0 and

Ishan Wickramasingha

34

the initial direction vector 𝒅𝒅0 is set to 𝟎𝟎. Initial step size 𝛿𝛿0
∗ is also set to 0. T-LARS starts the

iterations at 𝑡𝑡 = 1 to run until a stopping criterion is reached.

• Initial residual tensor: ℛ0 = 𝒴𝒴

• Initial solution vector: 𝒙𝒙�0 = 𝟎𝟎

• Initial direction vector: 𝒅𝒅0 = 𝟎𝟎

• Initial step size: 𝛿𝛿0
∗ = 0

• Initial regularization parameter: 𝜆𝜆1 = max(𝒄𝒄1)

• Active set: 𝐼𝐼 = �𝝓𝝓𝐼𝐼1�

• Start iterations at 𝑡𝑡 = 1

The following calculations are performed at every iteration 𝑡𝑡 = 1, 2, … of the T-LARS algorithm

until the stopping criterion is reached.

3.3.2.1. Obtain the inverse of the Gram matrix of the active columns of the dictionary

We obtain the Gram matrix of the active columns of the dictionary 𝑮𝑮𝑡𝑡 = 𝜱𝜱𝐼𝐼𝑡𝑡
𝑇𝑇𝜱𝜱𝐼𝐼𝑡𝑡 at each iteration

𝑡𝑡. The size of this Gram matrix would either increase (dictionary column addition) or decrease

(dictionary column removal) with each iteration 𝑡𝑡. Therefore, for computational efficiency, we use

the Schur complement inversion formula to calculate 𝑮𝑮𝑡𝑡
−1 from 𝑮𝑮𝑡𝑡−1

−1 , thereby avoiding its full

calculation [16], [75], [76].

a) Updating the Gram matrix after adding a new column 𝒌𝒌𝒂𝒂 to the active set

Let the column 𝑘𝑘𝑎𝑎 ∈ 𝐼𝐼 be the new column added to the active matrix. Given 𝑮𝑮𝑡𝑡−1
−1 , the inverse of

the Gram matrix 𝑮𝑮𝑡𝑡
−1 could be calculated using the Schur complement inversion formula for a

symmetric block matrix [77]–[79],

𝑮𝑮𝑡𝑡
−1 = �𝑭𝑭11

−1 𝛼𝛼𝒃𝒃
𝛼𝛼𝒃𝒃T 𝛼𝛼

� (3. 15)

where, 𝑭𝑭11
−1 = 𝑮𝑮𝑡𝑡−1

−1 + 𝛼𝛼𝒃𝒃𝒃𝒃T, 𝒃𝒃 = −𝑮𝑮𝑡𝑡−1
−1 𝐠𝐠a and 𝛼𝛼 = 1 / �g(𝑘𝑘𝑎𝑎,𝑘𝑘𝑎𝑎) + 𝐠𝐠a

𝑇𝑇𝒃𝒃� and the column

vector 𝐠𝐠a
𝑇𝑇 is given by,

𝐠𝐠a
𝑇𝑇 = [g(𝑘𝑘1,𝑘𝑘𝑎𝑎) ⋯ g(𝑘𝑘𝑛𝑛,𝑘𝑘𝑎𝑎) ⋯ g(𝑘𝑘𝑎𝑎−1,𝑘𝑘𝑎𝑎)]1×𝑎𝑎−1

Computationally Efficient Methods for Sparse Tensor Signal Processing

35

The elements, g(𝑘𝑘𝑛𝑛,𝑘𝑘𝑎𝑎) of 𝐠𝐠a
𝑇𝑇 are elements of the gram matrix, 𝑮𝑮𝑡𝑡 that are obtained using mode-n

gram matrices 𝑮𝑮(𝑛𝑛); 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁}.

g(𝑘𝑘𝑛𝑛, 𝑘𝑘𝑎𝑎) = g(𝑁𝑁)�𝑘𝑘𝑛𝑛𝑁𝑁 , 𝑘𝑘𝑎𝑎𝑁𝑁� ⊗ … ⊗ g(1)�𝑘𝑘𝑛𝑛1, 𝑘𝑘𝑎𝑎1�

where, 𝑘𝑘𝑛𝑛𝑁𝑁 ⋯ 𝑘𝑘𝑛𝑛1 are the tensor indices corresponds to the column index 𝑘𝑘𝑛𝑛 and 𝑘𝑘𝑎𝑎𝑁𝑁 ⋯ 𝑘𝑘𝑎𝑎1are

the tensor indices corresponds to the column index 𝑘𝑘𝑎𝑎 (See Appendix 1).

b) Updating the Gram matrix after removing a column 𝒌𝒌𝒓𝒓 from the active set

Let the column 𝑘𝑘𝑟𝑟 ∈ 𝐼𝐼 be the column removed from the active set. We move column 𝑘𝑘𝑟𝑟 and row

𝑘𝑘𝑟𝑟 of 𝑮𝑮𝑡𝑡−1
−1 to become its last column and last row, respectively. We denote this new matrix as

𝑮𝑮�𝑡𝑡−1
−1 . By using the Schur complement inversion formula for a symmetric block matrix, the inverse

𝑮𝑮�𝑡𝑡−1
−1 could be interpreted as

𝑮𝑮�𝑡𝑡−1
−1 = �𝑭𝑭11

−1 𝛼𝛼𝒃𝒃
𝛼𝛼𝒃𝒃T 𝛼𝛼

�
N×N

(3. 16)

where, 𝑭𝑭11
−1 = 𝑮𝑮𝑡𝑡

−1 + 𝛼𝛼𝒃𝒃𝒃𝒃T. Therefore, we could calculate the inverse of the Gram matrix at

iteration 𝑡𝑡 as [75], [76],

𝑮𝑮𝑡𝑡
−1 = 𝑭𝑭11

−1 − 𝛼𝛼𝒃𝒃𝒃𝒃T (3. 17)

Both 𝑭𝑭11
−1 and 𝛼𝛼𝒃𝒃𝒃𝒃𝑇𝑇 could be easily obtained from (𝑮𝑮�𝑡𝑡−1

−1) as follows (MATLAB notation)

𝑭𝑭11
−1 = 𝑮𝑮�𝑡𝑡−1

−1 (1: 𝑁𝑁 − 1, 1: 𝑁𝑁 − 1) (3. 18)

𝛼𝛼𝒃𝒃𝒃𝒃T =
𝑮𝑮�𝑡𝑡−1

−1 (1: 𝑁𝑁 − 1, 𝑁𝑁)𝑮𝑮�𝑡𝑡−1
−1 (𝑁𝑁, 1: 𝑁𝑁 − 1)

𝑮𝑮�𝑡𝑡−1
−1 (𝑁𝑁, 𝑁𝑁)

 (3. 19)

3.3.2.2. Obtain direction vector 𝑑𝑑𝑡𝑡

The direction vector, along which the solution 𝒙𝒙 follows in a piecewise linear fashion when an

active column is added to or removed from the active set, is given by

𝒅𝒅𝑡𝑡 = 𝑮𝑮𝑡𝑡
−1𝒛𝒛𝑡𝑡 (3. 20)

where, 𝒛𝒛𝑡𝑡 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝒄𝒄𝑡𝑡(𝐼𝐼)�, i.e., the sign sequence of the correlation vector over the active set.

Ishan Wickramasingha

36

3.3.2.3. Obtain 𝑣𝑣𝑡𝑡

A vector 𝒗𝒗𝑡𝑡 could be defined as

 𝒗𝒗𝑡𝑡 = 𝜱𝜱𝑇𝑇𝜱𝜱𝐼𝐼𝑡𝑡𝒅𝒅𝑡𝑡 (3. 21)

This vector 𝒗𝒗𝑡𝑡 could be efficiently obtained as a multilinear transformation of a direction tensor

𝒟𝒟t by the Gram matrices 𝑮𝑮(𝑛𝑛); 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁}

 𝒱𝒱t = 𝒟𝒟t ×1 𝑮𝑮(1) ×2. . .×𝑛𝑛 𝑮𝑮(2) ×𝑛𝑛+1. . .×𝑁𝑁 𝑮𝑮(𝑁𝑁) (3. 22)

where vec�𝒟𝒟t(𝐼𝐼)� = 𝒅𝒅𝑡𝑡, and 𝒟𝒟t(𝐼𝐼𝑐𝑐) = 0. We note that vec(𝒱𝒱t) = 𝒗𝒗𝑡𝑡.

3.3.2.4. Obtain the correlation vector 𝑐𝑐𝑡𝑡

As 𝒄𝒄𝟏𝟏 would be obtained at initialization, the following calculations are needed only any iteration

𝑡𝑡 ≥ 2. The correlation vector 𝒄𝒄𝒕𝒕 is given by

 𝒄𝒄𝒕𝒕 = 𝜱𝜱𝑇𝑇vec(ℛ𝑡𝑡−1) (3. 23)

where ℛ𝑡𝑡−1 is the residual tensor from the previous iteration.

Since

 vec(ℛ𝑡𝑡−1) = vec(ℛ𝑡𝑡−2) − 𝛿𝛿𝑡𝑡−1
∗ 𝜱𝜱𝐼𝐼𝑡𝑡−1𝒅𝒅𝑡𝑡−1 (3. 24)

we could update the correlation vector 𝒄𝒄𝒕𝒕 by,

 𝒄𝒄𝒕𝒕 = 𝜱𝜱𝑇𝑇vec(ℛ𝑡𝑡−2) − 𝛿𝛿𝑡𝑡−1
∗ 𝜱𝜱𝑇𝑇𝜱𝜱𝐼𝐼𝑡𝑡−1𝒅𝒅𝑡𝑡−1 (3. 25)

Substituting (3.21) and (3.23) into (3.25), we obtain an update for the correlation

 𝒄𝒄𝒕𝒕 = 𝒄𝒄𝑡𝑡−1 − 𝛿𝛿𝑡𝑡−1
∗ 𝒗𝒗𝑡𝑡−1 (3. 26)

3.3.2.5. Calculate step size 𝛿𝛿∗

The minimum step size for adding a new column to the active set is given by,

𝛿𝛿𝑡𝑡
+ = min

𝑖𝑖∈𝐼𝐼𝑐𝑐
�

𝜆𝜆𝑡𝑡 − 𝒄𝒄𝑡𝑡(𝑖𝑖)
1 − 𝒗𝒗𝑡𝑡(𝑖𝑖) ,

𝜆𝜆𝑡𝑡 + 𝒄𝒄𝑡𝑡(𝑖𝑖)
1 + 𝒗𝒗𝑡𝑡(𝑖𝑖) � (3. 27)

The minimum step size for removing a column from the active set is given by,

Computationally Efficient Methods for Sparse Tensor Signal Processing

37

𝛿𝛿𝑡𝑡
− = min

𝑖𝑖∈𝐼𝐼
�−

𝒙𝒙𝑡𝑡−1(𝑖𝑖)
𝒅𝒅𝑡𝑡(𝑖𝑖) � (3. 28)

Therefore, the minimum step size for 𝐿𝐿1 constrained sparse least-squares problem is

𝛿𝛿𝑡𝑡
∗ = min {𝛿𝛿𝑡𝑡

+, 𝛿𝛿𝑡𝑡
−}. (3. 29)

For the 𝐿𝐿0 constrained sparse least-squares problem, only new columns are added to the active set

at every iteration. Therefore, the minimum step size for 𝐿𝐿0 constrained sparse least-squares

problem is 𝛿𝛿𝑡𝑡
∗ = 𝛿𝛿𝑡𝑡

+.

3.3.2.6. Update the solution 𝑥𝑥�𝑡𝑡, regularization parameter, and residual

The current solution 𝒙𝒙�t = vec(𝒳𝒳�𝑡𝑡) is given by,

𝒙𝒙�𝑡𝑡 = 𝒙𝒙�𝑡𝑡−1 + 𝛿𝛿𝑡𝑡
∗𝒅𝒅𝑡𝑡 (3. 30)

Update 𝜆𝜆𝑡𝑡+1 and ℛ𝑡𝑡 for the next iteration

𝜆𝜆𝑡𝑡+1 = 𝜆𝜆𝑡𝑡 − 𝛿𝛿𝑡𝑡
∗ (3. 31)

The residual tensor ℛ𝑡𝑡 could be calculated as,

ℛ𝑡𝑡 = ℛ𝑡𝑡−1 − 𝛿𝛿𝑡𝑡
∗𝒟𝒟t ×1 𝜱𝜱(1) ×2 𝜱𝜱(2) ×3 ⋯ ×𝑁𝑁 𝜱𝜱(𝑁𝑁) (3. 32)

3.3.2.7. Check stopping criterion

Check if either of the following stopping criteria has been reached

‖ℛ𝑡𝑡‖2 < 𝜀𝜀 (3. 33)

or

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(𝐼𝐼) ≥ 𝐾𝐾 (3. 34)

where ‖ℛ𝑡𝑡‖2 = �𝒴𝒴 − 𝒳𝒳�𝑡𝑡 ×1 𝜱𝜱(1) ×2 ⋯ ×𝑁𝑁 𝜱𝜱(𝑁𝑁) �
2
 is the 𝐿𝐿2 norm of the residual error after the

iteration t, where for a normalized 𝒴𝒴 and column normalized mode-n dictionaries 𝜱𝜱(𝑛𝑛),

0 ≤ ‖ℛ𝑡𝑡‖2 ≤ 1

T-LARS algorithm solves the sparse tensor least-squares problem in (3.6) to obtain a sparse

solution 𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁 for a tensor 𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽𝑛𝑛×…×𝐽𝐽𝑁𝑁 using N mode-n dictionaries 𝜱𝜱(𝑛𝑛) ∈

Ishan Wickramasingha

38

ℝ𝐽𝐽n×𝐼𝐼𝑛𝑛; ∀ 𝑛𝑛 ∈ {1, . . 𝑁𝑁}. Tensor 𝒴𝒴 and N mode-n dictionaries 𝜱𝜱(1), 𝜱𝜱(2), … , 𝜱𝜱(𝑁𝑁), are the inputs

to the T-LARS algorithm, where 𝑁𝑁 ≥ 1. T-LARS algorithm could be used to solve

underdetermined, square, or overdetermined sparse tensor least-squares problems, where the

mode-n dictionaries 𝜱𝜱(𝑛𝑛) ∈ ℝ𝐽𝐽n×𝐼𝐼𝑛𝑛; ∀ 𝑛𝑛 ∈ {1, . . 𝑁𝑁}, are over-complete dictionaries (𝐽𝐽n < 𝐼𝐼𝑛𝑛),

complete dictionaries (𝐽𝐽n = 𝐼𝐼𝑛𝑛) or under-complete dictionaries (𝐽𝐽n > 𝐼𝐼𝑛𝑛), respectively.

The complete T-LARS algorithm is summarized below (Matlab notation). T-LARS algorithm

given in this section solves the 𝐿𝐿𝑝𝑝 sparse separable least-squares problem when T-LARS_mode is

set to 𝐿𝐿𝑝𝑝.

Algorithm 3.2: Tensor Least Angle Regression (T-LARS)
Input: T-LARS_mode = 𝐿𝐿1 or 𝐿𝐿0, normalized tensor 𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽𝑛𝑛×…×𝐽𝐽𝑁𝑁 ; normalized dictionary
matrices 𝜱𝜱(𝑛𝑛) ∈ ℝ𝐽𝐽𝑛𝑛×𝐼𝐼𝑛𝑛; 𝑛𝑛 ∈ {1, . . 𝑁𝑁}; stopping criterion: residual tolerance: 𝜀𝜀 or number of non-
zero coefficients: 𝐾𝐾
Initialization: Residual: ℛ0 = 𝒴𝒴; 𝒙𝒙0 = 0; active set: 𝐼𝐼 = {};
1. 𝒞𝒞1 = ℛ0 ×1 𝜱𝜱(1)𝑇𝑇

×2. . .×𝑛𝑛 𝜱𝜱(𝑛𝑛)𝑇𝑇
×𝑛𝑛+1. . .×𝑁𝑁 𝜱𝜱(𝑁𝑁)𝑇𝑇

2. 𝒄𝒄1 = vec(𝒞𝒞1)
3. [𝜆𝜆1, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖] = 𝑚𝑚𝑚𝑚𝑚𝑚(𝒄𝒄1)
4. 𝐼𝐼 = {𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖}
5. for 𝑛𝑛 = 1 to N do
6. 𝑮𝑮(𝑛𝑛) = 𝜱𝜱(𝑛𝑛)𝑇𝑇

𝜱𝜱(𝑛𝑛)
7. end for
8. while stopping criterion not reached (‖ℛ𝑡𝑡−1‖2 > 𝜀𝜀 or 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(𝐼𝐼) < 𝐾𝐾)
9. 𝒛𝒛𝑡𝑡 = sign (𝒄𝒄𝑡𝑡(𝐼𝐼))
10. 𝑮𝑮𝑡𝑡

−1 =updateInverseGramMatrix(𝑮𝑮𝑡𝑡−1
−1 , { 𝑮𝑮(1), . . . , 𝑮𝑮(𝑁𝑁)}, I, add_column, column_idx) %

See Section (3.3.2.1)
11. 𝒅𝒅𝑡𝑡 = 𝑮𝑮𝑡𝑡

−1𝒛𝒛𝑡𝑡
12. vec(𝒟𝒟t(𝐼𝐼)) = 𝒅𝒅𝑡𝑡
13. 𝒱𝒱t = 𝒟𝒟t ×1 𝑮𝑮(1) ×2 … ×𝑛𝑛 𝑮𝑮(2) ×𝑛𝑛+1 … ×𝑁𝑁 𝑮𝑮(𝑁𝑁)
14. 𝒗𝒗𝑡𝑡 = vec(𝒱𝒱t)
15. 𝛿𝛿𝑡𝑡

+
1= (𝜆𝜆𝑡𝑡 − 𝒄𝒄𝑡𝑡(𝐼𝐼𝑐𝑐))./ (1 − 𝒗𝒗𝑡𝑡(𝐼𝐼𝑐𝑐)) % “./” - Elementwise division

16. 𝛿𝛿𝑡𝑡
+

2= (𝜆𝜆𝑡𝑡 + 𝒄𝒄𝑡𝑡(𝐼𝐼𝑐𝑐))./ (1 + 𝒗𝒗𝑡𝑡(𝐼𝐼𝑐𝑐))
17. 𝛿𝛿𝑡𝑡

− = −𝒙𝒙𝑡𝑡−1./ 𝒅𝒅𝑡𝑡
18. [𝛿𝛿𝑡𝑡

∗, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖] = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝛿𝛿𝑡𝑡
+

1, 𝛿𝛿𝑡𝑡
+

2�
19. add_column == True
20. if T-LARS_mode == 𝐿𝐿1 && min (𝛿𝛿𝑡𝑡

−) < 𝛿𝛿𝑡𝑡
∗

21. [𝛿𝛿𝑡𝑡
∗, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖]= min (𝛿𝛿𝑡𝑡

−)
22. add_column = False
23. end
24. 𝒙𝒙𝑡𝑡 = 𝒙𝒙𝑡𝑡−1 + 𝛿𝛿𝑡𝑡

∗𝒅𝒅𝑡𝑡
25. 𝜆𝜆𝑡𝑡+1 = 𝜆𝜆𝑡𝑡 − 𝛿𝛿𝑡𝑡

∗
26. 𝒄𝒄𝑡𝑡+1 = 𝒄𝒄𝑡𝑡 − 𝛿𝛿𝑡𝑡

∗𝒗𝒗𝑡𝑡
27. ℛ𝑡𝑡 = ℛ𝑡𝑡−1 − 𝛿𝛿𝑡𝑡

∗𝒟𝒟t ×1 𝜱𝜱(1) ×2 𝜱𝜱(2) ×3 ⋯ ×𝑁𝑁 𝜱𝜱(𝑁𝑁)

Computationally Efficient Methods for Sparse Tensor Signal Processing

39

28. if add_column == True
29. 𝐼𝐼 = 𝐼𝐼 + {𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖}
30. else
31. 𝐼𝐼 = 𝐼𝐼 – {𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖}
32. end
33. end while
34. return 𝐼𝐼, 𝒙𝒙

3.4. Algorithm Computational Complexity

In this section, we analyze the computational complexity of our T-LARS algorithm and compare

it with the computational complexity of Kronecker-OMP. We show that the computational

complexity of T-LARS is significantly lower than Kronecker-OMP when solving sparse tensor

least-squares problems.

3.4.1. The Computational complexity of T-LARS

Let 𝐾𝐾 be the number of iterations used in T-LARS, 𝑃𝑃 = 𝐼𝐼1 × … × 𝐼𝐼𝑛𝑛 × … × 𝐼𝐼𝑁𝑁 is the number of

atoms in the Kronecker dictionary 𝜱𝜱, and 𝑄𝑄 = 𝐽𝐽1 × … × 𝐽𝐽𝑛𝑛 × … × 𝐽𝐽𝑁𝑁 be the total number of

elements in tensor 𝒴𝒴. In a typical sparse solution obtained by T-LARS 𝐾𝐾 ≪ 𝑃𝑃. In the following

analysis, we refer to Algorithm 3.2 above, which describes the T-LARS algorithm.

Step 1 of the T-LARS algorithm runs only once and has a computational complexity of,

�𝐼𝐼1𝑄𝑄 +
𝐼𝐼1𝐼𝐼2𝑄𝑄

 𝐽𝐽1
+ ⋯ +

P𝑄𝑄
 𝐽𝐽1 … 𝐽𝐽n−1 × 𝐼𝐼𝑛𝑛+1 … 𝐼𝐼𝑁𝑁

+ ⋯ + 𝑃𝑃JN�

Step 10 of the T-LARS algorithm obtains the inverse Gram matrix, using Schur complement

inversion, and has complexity 𝒪𝒪(𝑃𝑃𝑘𝑘 + 𝑘𝑘3) where 𝑘𝑘 is the iteration number whose maximum value

is K. The computational complexity of step 10 for column addition is (𝑃𝑃𝐾𝐾 + 4 ∑ 𝑘𝑘2𝐾𝐾
𝑘𝑘=1) and the

computational complexity of step 10 for column removal is (2 ∑ 𝑘𝑘2𝐾𝐾
𝑘𝑘=1). Therefore, the maximum

computational complexity of step 10 is given by,

𝑃𝑃𝐾𝐾 + 4 � 𝑘𝑘2
𝐾𝐾

𝑘𝑘=1

Ishan Wickramasingha

40

Steps 13 and 27 of the T-LARS algorithm involve multilinear transformations. In both steps 𝒟𝒟t is

a sparse tensor with at most k non-zero entries at any iteration k. Therefore, for K iterations, the

computational complexities of step 13 and step 27 are,

2 � � 𝑘𝑘𝐼𝐼𝑛𝑛

𝑁𝑁

𝑛𝑛=1

𝐾𝐾

𝑘𝑘=1

and

2 � � 𝑘𝑘𝐽𝐽𝑛𝑛

𝑁𝑁

𝑛𝑛=1

𝐾𝐾

𝑘𝑘=1

+ 2𝐾𝐾𝐾𝐾

respectively.

3.4.1.1. Case of overcomplete mode-n dictionaries

For over-complete mode-n dictionaries 𝜱𝜱(𝑛𝑛) ∈ ℝ𝐽𝐽n×𝐼𝐼𝑛𝑛; 𝐽𝐽n < 𝐼𝐼𝑛𝑛, 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁}, step13 of the T-

LARS algorithm would have higher computational complexity compared to step 27. Therefore,

the computational complexity for most computationally intensive steps of the T-LARS algorithm

would be less than,

⎝

⎜
⎜
⎛�𝐼𝐼1𝑄𝑄 +

𝐼𝐼1𝐼𝐼2𝑄𝑄
 𝐽𝐽1

+ ⋯ +
P𝑄𝑄

 𝐽𝐽1 … 𝐽𝐽n−1 × 𝐼𝐼𝑛𝑛+1 … 𝐼𝐼𝑁𝑁
+ ⋯ + 𝑃𝑃JN � + �𝑃𝑃𝐾𝐾 + 4 � 𝑘𝑘2

𝐾𝐾

𝑘𝑘=1

�

+ �2 � � 𝑘𝑘𝐼𝐼𝑛𝑛

𝑁𝑁

𝑛𝑛=1

𝐾𝐾

𝑘𝑘=1

+ 2𝐾𝐾𝐾𝐾�
⎠

⎟
⎟
⎞

(3. 35)

3.4.2. Comparison of computational complexities of Kronecker-OMP and T-LARS

Caiafa et al. earlier analyzed the computational complexity of Kronecker-OMP to solve the

problem (5) given 𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽𝑛𝑛×…×𝐽𝐽𝑁𝑁, 𝐽𝐽n = 𝐽𝐽; ∀ 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁} and mode-n dictionaries 𝜱𝜱(𝑛𝑛) ∈

ℝ𝐽𝐽×𝐼𝐼. From [16], after 𝐾𝐾 iterations, the combined computational complexity of Kronecker-OMP

was given by

Computationally Efficient Methods for Sparse Tensor Signal Processing

41

⎝

⎜
⎜
⎜
⎜
⎛ 2𝐼𝐼𝑁𝑁𝐽𝐽 �

1 − �𝐽𝐽
𝐼𝐼�

𝑁𝑁

1 − 𝐽𝐽
𝐼𝐼

� 𝐾𝐾 + �2𝐼𝐼𝑁𝑁𝐾𝐾 + 7 � 𝑘𝑘2𝑁𝑁
𝐾𝐾

𝑘𝑘=1

� +

�(2𝑁𝑁𝑁𝑁 + 𝑁𝑁 + 4) � 𝑘𝑘𝑁𝑁
𝐾𝐾

𝑘𝑘=1

� + �(𝑁𝑁(𝑁𝑁 − 1) + 3)𝐾𝐾𝐽𝐽𝑁𝑁�

 ⎠

⎟
⎟
⎟
⎟
⎞

(3. 36)

To obtain the computational complexity of T-LARS to solve the problem (3.6), given 𝒴𝒴 ∈

ℝ𝐽𝐽1×…×𝐽𝐽𝑛𝑛×…×𝐽𝐽𝑁𝑁, 𝐽𝐽n; ∀ 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁} and mode-n dictionaries 𝜱𝜱(𝑛𝑛) ∈ ℝ𝐽𝐽×𝐼𝐼, we substitute 𝐼𝐼n =

𝐼𝐼 and 𝐽𝐽n = 𝐽𝐽; ∀ 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁}, in (3.35) to obtain

�2𝐼𝐼𝑁𝑁𝐽𝐽 �
1 − �𝐽𝐽

𝐼𝐼�
𝑁𝑁

1 − 𝐽𝐽
𝐼𝐼

� + �𝐼𝐼𝑁𝑁𝐾𝐾 + 4 � 𝑘𝑘2
𝐾𝐾

𝑘𝑘=1

� + 2𝑁𝑁𝑁𝑁 � 𝑘𝑘
𝐾𝐾

𝑘𝑘=1

+ 2𝐾𝐾𝐽𝐽𝑁𝑁 � (3. 37)

Table 3.1. Term by term comparison of the computational complexity of Kronecker-OMP and T-

LARS given in (3.36) and (3.37)

 Kronecker-OMP T-LARS

1st Term

2𝐼𝐼𝑁𝑁𝐽𝐽 �
1 − �𝐽𝐽

𝐼𝐼�
𝑁𝑁

1 − 𝐽𝐽
𝐼𝐼

� 𝐾𝐾 2𝐼𝐼𝑁𝑁𝐽𝐽 �
1 − �𝐽𝐽

𝐼𝐼�
𝑁𝑁

1 − 𝐽𝐽
𝐼𝐼

�

2nd Term
2𝐼𝐼𝑁𝑁𝐾𝐾 + 7 � 𝑘𝑘2𝑁𝑁

𝐾𝐾

𝑘𝑘=1

 𝐼𝐼𝑁𝑁𝐾𝐾 + 4 � 𝑘𝑘2
𝐾𝐾

𝑘𝑘=1

3rd Term
(2𝑁𝑁𝑁𝑁 + 𝑁𝑁 + 4) � 𝑘𝑘𝑁𝑁

𝐾𝐾

𝑘𝑘=1

 2𝑁𝑁𝑁𝑁 � 𝑘𝑘
𝐾𝐾

𝑘𝑘=1

4th Term (𝑁𝑁(𝑁𝑁 − 1) + 3) 𝐾𝐾𝐽𝐽𝑁𝑁 2𝐾𝐾𝐽𝐽𝑁𝑁

Table 1. shows a term by term comparison of the computational complexity of Kronecker-OMP

and T-LARS given in (3.36) and (3.37), respectively.

Ishan Wickramasingha

42

On comparing (3.36) and (3.37), we note that the first term of the computational complexity of

T-LARS is more than 𝐾𝐾 times lower than the first term of the computational complexity of

Kronecker-OMP.

2𝐼𝐼𝑁𝑁𝐽𝐽 �
1 − �𝐽𝐽

𝐼𝐼�
𝑁𝑁

1 − 𝐽𝐽
𝐼𝐼

� < 2𝐼𝐼𝑁𝑁𝐽𝐽 �
1 − �𝐽𝐽

𝐼𝐼�
𝑁𝑁

1 − 𝐽𝐽
𝐼𝐼

� 𝐾𝐾 (3. 38)

On comparing (3.36) and (3.37), we note that the second term of the computational complexity

of T-LARS is 𝑂𝑂(𝐼𝐼𝑁𝑁𝐾𝐾 + 𝐾𝐾3) while the second term of the computational complexity of Kronecker-

OMP is 𝑂𝑂(𝐼𝐼𝑁𝑁𝐾𝐾 + 𝐾𝐾2𝑁𝑁+1). Therefore, for 𝑁𝑁 ≥ 2 and the same number of iterations

𝐼𝐼𝑁𝑁𝐾𝐾 + 4 � 𝑘𝑘2
𝐾𝐾

𝑘𝑘=1

< 2𝐼𝐼𝑁𝑁𝐾𝐾 + 7 � 𝑘𝑘2𝑁𝑁
𝐾𝐾

𝑘𝑘=1

. (3. 39)

On comparing (3.36) and (3.37), we note that the third term of the computational complexity of

T-LARS is 𝑂𝑂(𝐾𝐾2) while the third term of the computational complexity of Kronecker-OMP is

𝑂𝑂(𝐾𝐾𝑁𝑁+1). Therefore, for 𝑁𝑁 ≥ 2 and the same number of iterations

2𝑁𝑁𝑁𝑁 � 𝑘𝑘
𝐾𝐾

𝑘𝑘=1

< (2𝑁𝑁𝑁𝑁 + 𝑁𝑁 + 4) � 𝑘𝑘𝑁𝑁
𝐾𝐾

𝑘𝑘=1

 (3. 40)

On comparing (3.36) and (3.37), we note that both fourth terms of the computational complexity

of T-LARS and the fourth term of the computational complexity of Kronecker-OMP are 𝑂𝑂(𝐽𝐽𝑁𝑁).

Therefore,

2𝐾𝐾𝐽𝐽𝑁𝑁 < (𝑁𝑁(𝑁𝑁 − 1) + 3)𝐾𝐾𝐽𝐽𝑁𝑁 (3. 41)

Therefore, from (3.38), (3.39), (3.40), and (3.41), we observe that the computational complexity

of our T-LARS algorithm is significantly lower than Kronecker-OMP when solving sparse tensor

least-squares problems with 𝑁𝑁 ≥ 2 with the same number of iterations.

For multi-dimensional problems, 𝑁𝑁 ≥ 2, typically 𝐾𝐾 ≫ 𝐼𝐼, therefore, the 2nd terms of the

computational complexities of both T-LARS and Kronecker-OMP dominate over all other terms.

Therefore, for K iterations, the asymptotic computational complexities of T-LARS and Kronecker-

OMP are 𝑂𝑂(𝐼𝐼𝑁𝑁𝐾𝐾 + 𝐾𝐾3) and 𝑂𝑂(𝐼𝐼𝑁𝑁𝐾𝐾 + 𝐾𝐾2𝑁𝑁+1), respectively.

Computationally Efficient Methods for Sparse Tensor Signal Processing

43

3.5. Experimental Results

In this section, we present experimental results to compare the performance of Kronecker-OMP

and T-LARS when used to obtain sparse representations of 3-D brain images using both fixed and

learned mode-n overcomplete dictionaries.

3.5.1. Experimental Datasets

For our computational experiments, we obtained a 3D MRI brain image, and a 3D PET-CT brain

image, from publicly available datasets.

Our used 3D MRI brain image consists of 175 × 150 × 10 voxels and was obtained from the

OASIS-3: Longitudinal Neuroimaging, Clinical, and Cognitive Dataset for Normal Aging and

Alzheimer’s Disease [80]. This 3D MRI image shows a region in the brain of a 38-year-old male

patient with a tumor in his right frontal lobe.

Our used 3D PET-CT brain image consisted of 180 × 160 × 10 voxels and was obtained from

the Cancer Genome Atlas Lung Adenocarcinoma (TCGA-LUAD) data collection [81]. This 3D

PET-CT image shows a region in the brain of a 38-year-old female patient.

3.5.2. Experimental Setup

We compared the performance of T-LARS and Kronecker-OMP when used to obtain different

sparse representations for our 3-D MRI and PET-CT brain images by solving 𝐿𝐿0 and 𝐿𝐿1 constrained

sparse multilinear least-squares problems, using both fixed and learned overcomplete dictionaries.

We also compared the performance of T-LARS and Kronecker-OMP when used to obtain sparse

representations of 3D PET-CT images using compressed sensed samples.

Our fixed mode-n overcomplete dictionaries were unions of a Discrete Cosine Transform (DCT)

dictionaries and a Symlet wavelet packet with four vanishing moments dictionaries. In this case of

using fixed mode-n dictionaries, we obtained the required 3D sparse representations by solving

either the 3-D 𝐿𝐿0 or 𝐿𝐿1 minimization problem.

Our learned mode-n overcomplete dictionaries were learned using the Tensor-Method of Optimal

Directions (T-MOD) [30] algorithm. We used T-MOD to learn, three overcomplete mode-n

dictionaries, 𝜱𝜱(1) ∈ ℝ32×38, 𝜱𝜱(2) ∈ ℝ32×38and 𝜱𝜱(3) ∈ ℝ10×12, using random patches, 32 ×

Ishan Wickramasingha

44

32 × 10 voxels, with a 10% overlap from either one of our used 3-D brain images (MRI or PET-

CT) [29], [82]. In this case of using learned dictionaries, we obtained the required 3D sparse

representations by solving either a 4-D (due to the use of image patches) 𝐿𝐿0 or 𝐿𝐿1 minimization

problem. For fair comparison of the performance of T-LARS and Kronecker-OMP, we generated

our results using two learned dictionaries, 𝜱𝜱𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 and 𝜱𝜱𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, that were obtained using

Kronecker-OMP and T-LARS as the sparse coding algorithm used by T-MOD, respectively.

To compare the performance of T-LARS and Kronecker-OMP when used to solve 𝐿𝐿0 and 𝐿𝐿1

constrained sparse multilinear least-squares problems, we designed the following experiments to

obtain sparse representations of our used 3-D brain images under different conditions.

1. Experiment 1: Fixed mode-n dictionaries - 3D 𝐿𝐿0 minimization problem

2. Experiment 2: Learned mode-n dictionaries(𝜱𝜱𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾) - 4D 𝐿𝐿0 minimization problem

3. Experiment 3: Learned mode-n dictionaries(𝜱𝜱𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) - 4D 𝐿𝐿0 minimization problem

4. Experiment 4: Fixed mode-n dictionaries - 3D 𝐿𝐿1 minimization problem

5. Experiment 5: Learned mode-n dictionaries(𝜱𝜱𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) - 4D 𝐿𝐿1 minimization problem

All our experimental results were obtained using a MATLAB implementation of T-LARS and

Kronecker-OMP on an MS-Windows machine: 2 Intel Xeon CPUs E5-2637 v4, 3.5GHz, 32GB

RAM, and NVIDIA Tesla P100 GPU with 12GB memory.

3.5.3. Experimental Results for 3D MRI Brain Images

In this section, we compare the performance of T-LARS and Kronecker-OMP to obtain K-sparse

representations of our 3D MRI brain image, 𝒴𝒴, 175 × 150 × 10 voxels. by solving the 𝐿𝐿0

constrained sparse tensor least-squares problem. We also obtained similar K-sparse representations

using T-LARS by solving the L1 optimization problem. Table 3.2 summarizes our results for the

1-5 experiments described in Section 5.2. In all experiments, the algorithms were stopped when

the number of non-zero coefficients 𝐾𝐾 reached 13,125, which is 5% of the number of elements in

𝒴𝒴. We note that in Table 2, the number of iterations for L1 optimization problems is larger than K

because, as shown in Algorithm 3.2, at each iteration, T-LARS could either add or remove non-

zero coefficients to or from the solution.

Computationally Efficient Methods for Sparse Tensor Signal Processing

45

Table 3.2. Summary of experimental results for our 3D MRI brain image

Experim

ent
Image Size

Optimization

Problem
Dictionary Type

of

Iterations

Computation

Time (sec)

K-OMP

Computation

Time (sec)

T-LARS

1 175×150×10 𝐿𝐿0 Fixed 13,125 20,144 434

2 32×32×10×36 𝐿𝐿0 Learned

(𝜱𝜱𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾)
13,125 25,002 394

3 32×32×10×36 𝐿𝐿0 Learned

(𝜱𝜱𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)
13,125 22,646 400

4 175×150×10 𝐿𝐿1 Fixed 14,216 - 495

5 32×32×10×36 𝐿𝐿1 Learned

(𝜱𝜱𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)
14,856 - 490

Experiment 1: Figure 3.1 and Figure 3.2 show obtained experimental results for representing our

3D MRI brain image using three fixed mode-n overcomplete dictionaries, 𝜱𝜱(1) ∈ ℝ175×351,

𝜱𝜱(2) ∈ ℝ150×302 and 𝜱𝜱(3) ∈ ℝ10×26, by solving the 𝐿𝐿0 minimization problem, using both T-LARS

and Kronecker-OMP. The residual error of the reconstructed 3-D images obtained using T-LARS

was ‖ℛ‖2 = 0.0839 (8.39 %) and Kronecker-OMP was ‖ℛ‖2 = 0.0624 (6.24 %).

Figure 3.1. Original 3D MRI brain image (a), its reconstruction using 5% non-zero coefficients (𝐾𝐾 =
13,125) obtained by Kronecker-OMP (b) and T-LARS (c) using fixed mode-n overcomplete dictionaries
(Experiment 1)

Ishan Wickramasingha

46

Figure 3.2. a) Number of non-zero coefficients vs. computation time; b) Residual error vs. computation
time c) Residual error vs. number of non-zero coefficients, obtained by applying Kronecker-OMP and T-
LARS to our 3D MRI brain image and using fixed mode-n overcomplete dictionaries (Experiment 1)

Experiment 2 & 3: Figure 3.3 and Figure 3.4 show obtained experimental results for representing

our 3D MRI brain image using our learned overcomplete dictionaries, 𝜱𝜱𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 and 𝜱𝜱𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, by

solving the 𝐿𝐿0 minimization problem, using both T-LARS and Kronecker-OMP. For the 𝜱𝜱𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾

dictionary, the residual error of the reconstructed 3-D images obtained using T-LARS was

‖ℛ‖2 = 0.1368 (13.68 %) and Kronecker-OMP was ‖ℛ‖2 = 0.1143 (11.43 %). For the 𝜱𝜱𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

dictionary, the residual error of the reconstructed 3-D images obtained using T-LARS was

‖ℛ‖2 = 0.1127 (11.27 %) and Kronecker-OMP was ‖ℛ‖2 = 0.0955 (9.55 %).

Figure 3.3. Original 3D MRI brain image (a), its reconstructions using 5% non-zero coefficients (𝐾𝐾 =
13,125), (b) - (e), the difference images, (f) - (i) obtained using Kronecker-OMP and T-LARS, using our
learned overcomplete dictionaries (Experiment 2 & 3)

Computationally Efficient Methods for Sparse Tensor Signal Processing

47

Figure 3.4. a) Number of non-zero coefficients vs. computation time; b) Residual error vs. computation
time c) Residual error vs. number of non-zero coefficients, obtained by applying Kronecker-OMP and T-
LARS to our 3D MRI brain image and using our learned overcomplete dictionaries (Experiment 2 & 3)

Experiment 4: Figure 3.5 and Figure 3.6 show obtained experimental results for representing our

3D MRI brain image using three fixed mode-n overcomplete dictionaries, 𝜱𝜱(1) ∈ ℝ175×351,

𝜱𝜱(2) ∈ ℝ150×302 and 𝜱𝜱(3) ∈ ℝ10×26, by solving the 𝐿𝐿1 minimization problem, using T-LARS.

The residual error of the reconstructed 3D image obtained using T-LARS was ‖ℛ‖2 = 0.121

(12.1 %).

Figure 3.5. Original 3D MRI brain image (a), its reconstruction using 5% non-zero coefficients (𝐾𝐾 =
13,125) obtained by T-LARS using fixed mode-n overcomplete dictionaries (b), and the difference image
(c) (Experiment 4)

Ishan Wickramasingha

48

Figure 3.6. a) Number of non-zero coefficients vs. computation time; b) Residual error vs. computation
time c) Residual error vs. number of non-zero coefficients, obtained by applying T-LARS to our 3D MRI
brain image and using fixed mode-n overcomplete dictionaries (Experiment 4)

Experiment 5: Figure 3.7 and Figure 3.8 show obtained experimental results for representing our

3D MRI brain image using our learned over-complete dictionary, 𝜱𝜱𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, by solving the 𝐿𝐿1

minimization problem, using T-LARS. The residual error of the reconstructed 3D image was

‖ℛ‖2 = 0.138 (13.8 %).

Figure 3.7. Original 3D MRI brain image (a), and its reconstruction using 5% non-zero coefficients (𝐾𝐾 =
13,125) obtained by T-LARS using our learned over-complete dictionary (b), and the difference image (c)
(Experiment 5).

Computationally Efficient Methods for Sparse Tensor Signal Processing

49

Figure 3.8. a) Number of non-zero coefficients vs. computation time; b) Residual error vs. computation
time c) Residual error vs. the number of non-zero coefficients, obtained by applying T-LARS to our 3D
MRI brain image and using our learned overcomplete dictionary (Experiment 5).

3.5.4. Experimental Results for 3D PET-CT Brain Images

In this section, we compare the performance of T-LARS and Kronecker-OMP to obtain K-sparse

representations of our 3D PET-CT brain image, 𝒴𝒴, 180 × 160 × 10 voxels. by solving the 𝐿𝐿0

constrained sparse tensor least-squares problem. We also obtained similar K-sparse representations

using T-LARS by solving the L1 optimization problem. Table 3.2 summarizes our results for the

1-5 experiments described in Section 5.2. In all experiments, the algorithms were stopped when

the number of non-zero coefficients 𝐾𝐾 reached 14,400, which is 5% of the number of elements in

𝒴𝒴. We note that in Table 2, the number of iterations for L1 optimization problems is larger than K

because, as shown in Algorithm 3.2, at each iteration, T-LARS could either add or remove non-

zero coefficients to or from the solution.

Table 3.3. Summary of experimental results for our 3D PET-CT brain image

Experiment Image Size
Optimization

Problem

Dictionary
Type

of
Iterations

Computation Time
(sec)

K-OMP

Computation Time
(sec)

T-LARS

1 180×160×10 𝐿𝐿0 Fixed 14,400 29,529 505

2 32×32×10×42 𝐿𝐿0 Learned
(𝜱𝜱𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾) 14,400 33,453 476

3 32×32×10×42 𝐿𝐿0 Learned
(𝜱𝜱𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) 14,400 31,083 490

Ishan Wickramasingha

50

Experiment 1: Figure 3.9 and Figure 3.10 show obtained experimental results for representing

our 3D PET-CT brain image using three fixed mode-n overcomplete dictionaries, 𝜱𝜱(1) ∈

ℝ180×364, 𝜱𝜱(2) ∈ ℝ160×320 and 𝜱𝜱(3) ∈ ℝ10×26, by solving the 𝐿𝐿0 minimization problem, using

both T-LARS and Kronecker-OMP. The residual error of the reconstructed 3D images obtained

using T-LARS was ‖ℛ‖2 = 0.054 (5.4 %) and Kronecker-OMP was ‖ℛ‖2 = 0.0368 (3.68 %).

Figure 3.9. Original PET-CT brain image (a), its reconstruction using 5% non-zero coefficients (𝐾𝐾 =
14,400) obtained by Kronecker-OMP (b) and T-LARS (c) using fixed mode-n overcomplete dictionaries
(Experiment 1)

Figure 3.10. a) Number of non-zero coefficients vs. computation time; b) Residual error vs. computation
time c) Residual error vs. number of non-zero coefficients, obtained by applying Kronecker-OMP and T-
LARS to our 3D PET-CT brain image and using fixed mode-n overcomplete dictionaries (Experiment 1)

Experiment 2 & 3: Figure 3.11 and Figure 3.12 show obtained experimental results for

representing our 3D PET-CT brain image using our learned overcomplete dictionaries, 𝜱𝜱𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 and

𝜱𝜱𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, by solving the 𝐿𝐿0 minimization problem, using both T-LARS and Kronecker-OMP. For

4 180×160×10 𝐿𝐿1 Fixed 16,059 - 591

5 32×32×10×42 𝐿𝐿1 Learned
(𝜱𝜱𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) 18,995 − 𝟕𝟕𝟕𝟕𝟕𝟕

Computationally Efficient Methods for Sparse Tensor Signal Processing

51

the 𝜱𝜱𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 dictionary, the residual error of the reconstructed 3D images obtained using T-LARS

was ‖ℛ‖2 = 0.096 (9.6 %) and Kronecker-OMP was ‖ℛ‖2 = 0.077 (7.7 %). For the 𝜱𝜱𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

dictionaries, the normalized residual error of the reconstructed 3D images obtained using T-LARS

was ‖ℛ‖2 = 0.0877 (8.77 %) and Kronecker-OMP was ‖ℛ‖2 = 0.0722 (7.22 %).

Figure 3.11. Original 3D PET-CT brain image (a), its reconstructions using 5% non-zero coefficients (𝐾𝐾 =
14,400), (b) - (e), the difference images, (f) - (i) obtained using Kronecker-OMP and T-LARS, using our
learned overcomplete dictionaries (Experiment 2 & 3)

Figure 3.12. a) Number of non-zero coefficients vs. computation time; b) Residual error vs. computation
time c) Residual error vs. number of non-zero coefficients, obtained by applying Kronecker-OMP and T-
LARS to our 3D PET-CT brain image and using our learned overcomplete dictionaries (Experiment 2 &3)

Experiment 4: Figure 3.13 and Figure 3.14 shows the experimental results for representing 3D

PET-CT brain images using three fixed overcomplete mode-n dictionaries, 𝜱𝜱(1) ∈ ℝ180×364,

𝜱𝜱(2) ∈ ℝ160×320and 𝜱𝜱(3) ∈ ℝ10×26, by solving the 𝐿𝐿1 minimization problem, using T-LARS. The

Ishan Wickramasingha

52

residual error of the reconstructed 3D PET-CT brain images obtained using T-LARS is ‖ℛ‖2 =

0.0838 (8.38 %).

Figure 3.13. Original 3D PET-CT brain image (a), its reconstruction using 5% non-zero coefficients (𝐾𝐾 =
14,400) obtained by T-LARS using fixed mode-n overcomplete dictionaries (b), and the difference image
(c) (Experiment 4)

Figure 3.14. a) Number of non-zero coefficients vs. computation time; b) Residual error vs. computation
time c) Residual error vs. number of non-zero coefficients, obtained by applying T-LARS to our 3D PET-
CT brain image and using fixed mode-n overcomplete dictionaries (Experiment 4)

Experiment 5: Figure 3.15 and Figure 3.16 shows the experimental results for representing the

3D PET-CT brain images using our learned overcomplete dictionary, 𝜱𝜱𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, by solving the 𝐿𝐿1

minimization problem, using T-LARS. The residual error of the reconstructed 3D PET-CT brain

images obtained using T-LARS is ‖ℛ‖2 = 0.106 (10.6 %).

Computationally Efficient Methods for Sparse Tensor Signal Processing

53

Figure 3.15. Original 3D PET-CT brain image (a), and its reconstruction using 5% non-zero coefficients
(𝐾𝐾 = 14,400) obtained by T-LARS using our learned overcomplete dictionary (b), and the difference
image (c) (Experiment 5)

Figure 3.16. a) Number of non-zero coefficients vs. computation time; b) Residual error vs. computation
time c) Residual error vs. number of non-zero coefficients, obtained by applying T-LARS to our 3D PET-
CT brain image and using our learned overcomplete dictionary (Experiment 5)

3.5.5. Experimental Results for Reconstructing 3D PET-CT Brain Images Using

Compressed Sensing Samples

For our compressed sensing experiment, we obtained a tensor 𝒜𝒜 ∈ ℝ150×150×10 having

150 × 150 × 10 voxels from the 3D PET-CT brain images dataset. Then, we generated the

compressed sensing samples tensor 𝒴𝒴 ∈ ℝ113×113×10 from the 3D PET-CT brain images tensor,

𝒜𝒜 ∈ ℝ150×150×10, by projecting the tensor 𝒜𝒜 using three mode-n Gaussian random sensing

matrices, 𝒁𝒁(1) ∈ ℝ113×150, 𝒁𝒁�2� ∈ ℝ113×150 and 𝒁𝒁�3� ∈ ℝ10×10. The resulting sampling ratio is
113×113×10
150×150×10 = 0.5675.

Ishan Wickramasingha

54

The used overcomplete mode-n dictionaries 𝑫𝑫�1� ∈ ℝ150×302, 𝑫𝑫�2� ∈ ℝ150×302 and 𝑫𝑫�3� ∈ ℝ10×10

were a union of a Symlet wavelet packet with four vanishing moments dictionary and a discrete

cosine transform (DCT) dictionary.

We solved an 𝐿𝐿0 minimization problem using Kronecker-OMP and T-LARS, and an 𝐿𝐿1

minimization problem using T-LARS to recover the sparse tensor 𝒳𝒳 ∈ ℝ113×113×10 using the

compressed sensing samples tensor 𝒴𝒴 ∈ ℝ113×113×10 for three mode-n dictionaries, 𝜱𝜱(1) ∈

ℝ113×302, 𝜱𝜱�2� ∈ ℝ113×302 and 𝜱𝜱�3� ∈ ℝ10×10, where 𝜱𝜱(𝑛𝑛) = 𝒁𝒁(𝑛𝑛)𝑫𝑫(𝑛𝑛); ∀ 𝑛𝑛 ∈ {1,2, … , 𝑁𝑁}.

Table 3.4 summarizes experiment results for reconstructing the 3D PET-CT image, 𝒜𝒜 ∈

ℝ150×150×10, using compressed sensing samples tensor 𝒴𝒴 ∈ ℝ113×113×10 and three mode-n

dictionaries, 𝜱𝜱(1), 𝜱𝜱�2� and 𝜱𝜱�3�. The number of compressed sensing samples in the tensor 𝒴𝒴 is

only 56.75% of the tensor signal 𝒜𝒜.

In the experimental results shown in Table 3.4, we obtained a K-Sparse solution for the 3D PET-

CT images, using 𝐾𝐾 = 15,323 coefficients, which is only 12% of the elements in 𝒴𝒴. As shown in

the Table 3.4, the 𝐿𝐿1 minimization problem took more iterations compared to the 𝐿𝐿0 minimization

problems because T-LARS only adds columns to the active set 𝐼𝐼 when solving the 𝐿𝐿0 minimization

problems, and T-LARS either adds or removes columns from the active set when solving the 𝐿𝐿1

minimization problems.

Table 3.4. Summary of compressed sensing experimental results

Algorithm
Optimization

Problem
#of Iterations Residual Error

Computation Time

(sec)

K-OMP 𝐿𝐿0 15,323 0.1144 28,045

T-LARS 𝐿𝐿0 15,323 0.1221 496

T-LARS 𝐿𝐿1 17,229 0.1217 612

Figure 3.17 and Figure 3.18 show experimental results for reconstructing the 3D PET-CT brain

image 𝒜𝒜 from the compressed sensing samples using T-LARS and Kronecker-OMP.

Computationally Efficient Methods for Sparse Tensor Signal Processing

55

Figure 3.17. Original 3D PET-CT brain image (a), Reconstructed 3D PET-CT brain image using 12% non-
zero coefficients (𝐾𝐾 = 15,323) obtained by solving an 𝐿𝐿0 minimization problem using Kronecker-OMP
(b) and T-LARS (c), and solving a 𝐿𝐿1 minimization problem using T-LARS (d), and respective differences
(e), (f), and (g) in our compressed sensing experiment.

Figure 3.18. a) Number of non-zero coefficients vs. computation time; b) Residual error vs. computation
time c) Residual error vs. the number of non-zero coefficients, for both Kronecker-OMP and T-LARS for
our compressed sensing experiment.

3.6. Conclusions

In this chapter, we developed Tensor Least Angle Regression (T-LARS), a generalization of Least

Angle Regression, to efficiently solve either large L0 or L1 constrained multi-dimensional (tensor)

sparse least-squares problems (underdetermined or overdetermined) for all critical values of the

regularization parameter λ. An earlier generalization of OMP, known as Kronecker-OMP, has been

Ishan Wickramasingha

56

developed to solve the L0 problem for large multi-dimensional sparse least-squares problems. To

demonstrate the validity and performance of our T-LARS algorithm, we used it to successfully

obtain different K-sparse signal representations of two 3-D brain images, using fixed and learned

separable over-complete dictionaries, by solving 3D and 4D, L0 and L1 constrained sparse least-

squares problems. Our different numerical experiments demonstrate that our T-LARS algorithm

is significantly faster (46 - 70 times) than Kronecker-OMP in obtaining K-sparse solutions for

multilinear least-squares problems. However, the K-sparse solutions obtained using Kronecker-

OMP always have a slightly lower residual error (1.55% - 2.25%) than ones obtained by T-LARS.

These numerical results confirm our analysis in Section 3.4.2 that showed that the computational

complexity of T-LARS is significantly lower than the computational complexity of Kronecker-

OMP.

We also discussed the multilinear compressed sensing problem, and we compared Kronecker-

OMP and T-LARS in reconstructing 3D PET-CT brain images, using compressed sensing samples

and fixed mode-n over-complete dictionaries by solving 3D, L0 and L1 constrained multilinear

least-squares problems. Our experimental results demonstrate that the T-LARS is 56 times faster

than Kronecker-OMP in reconstructing the 3D PET-CT brain images using compressed sensing

samples. Therefore, as future work, we plan to exploit this significant computational efficiency of

T-LARS to develop more computationally efficient Kronecker dictionary learning methods.

Computationally Efficient Methods for Sparse Tensor Signal Processing

57

Chapter 4

4. Weighted Tensor Least Angle Regression (WT-LARS)

Sparse weighted multilinear least-squares is a generalization of the sparse multilinear least-squares

problem, where prior information about, e.g., parameters and data is incorporated by multiplying

both sides of the original problem by a typically diagonal weights matrix [22]. If the diagonal

weight matrix has a similar Kronecker structure to the dictionary matrix, we could use the Tensor

Least Angle Regression (T-LARS) [18] algorithm developed in chapter 3 to solve this problem

efficiently. Typically, introducing arbitrary diagonal weights would result in a non-Kronecker

least-squares problem that could be very large to store or solve practically. In this chapter, we

generalize the Tensor Least Angle Regression (T-LARS) algorithm developed in chapter 3 to

efficiently solve either L0 or L1 constrained multilinear least-squares problems with arbitrary

diagonal weights for all critical values of their regularization parameter. To demonstrate the

validity of our new Weighted Least Angle Regression (WT-LARS) algorithm, we used it to

successfully solve three different image inpainting problems by obtaining sparse representations

of binary-weighted images.

4.1. Introduction

Weighted least squares is a generalization of the least-squares (LS) problem, where prior

information about parameters and data is incorporated by multiplying both sides of the original LS

problem by a typically diagonal weights matrix. Applications of weighted least-squares in Signal

Processing include signal restoration [83], [84], source localization in wireless networks [85]–[87],

adaptive filters [86], [88], [89], and image smoothing [90]. In Statistics, weighted least-squares

regression is often used to reduce bias from non-informative data samples [91], [92]. Also, a best

linear unbiased estimator (BLUE) is obtained by using the inverse of the data covariance matrix

as the weights matrix [93].

Ishan Wickramasingha

58

Recently, sparsity has become a commonly desired characteristic of a least-squares solution [8],

[9]. Because of its relatively small number of non-zero values, a sparse solution could result in

faster processing with lower computer storage requirements [8], [9]. A sparse solution is usually

obtained by solving a least-squares problem while minimizing either the L0 norm of the solution

(non-convex optimization problem) or minimizing the L1 norm of the solution (convex

optimization problem). Several methods have been proposed to solve sparse least-squares

problems, including the Method of Frames [67], Matching Pursuit (MP) [12], Orthogonal

Matching Pursuit (OMP) [13], Best Orthogonal Basis [68], Least Absolute Shrinkage and

Selection Operator (LASSO) that is also known as Basis Pursuit [14], [15], and Least Angle

Regression (LARS) [15]. Both MP and OMP solve the L0 constrained least-squares problem [69]

using sequential heuristic steps that add solution coefficients in a greedy, i.e., non-globally

optimal, way. LASSO relaxes the non-convex L0 constrained least-squares problem to solve the

convex L1 constrained least-squares problem instead [14]. Among the above solution methods,

only Least Angle Regression(LARS) could efficiently solve both the L0 and, with a slight

modification, L1 constrained least-squares problem for all critical values of their regularization

parameters. This parameter is required to balance the minimization of the LS residual with the

minimization of the norm of the solution [15].

In addition to incorporating a priori information, weights also could be introduced to sparse least-

squares problems to improve the 𝐿𝐿1 minimization problem results [94], [95]. Candès et al. also

used a reweighted 𝐿𝐿1 minimization approach to enhance sparsity in compressed sensing [96].

Also, weighted L1 constrained least-squares regression has been used to extract information from

large data sets for statistical applications [97], [98]. We note that sparse weighted least-squares

problems could be solved using any of the above optimization methods.

Multilinear least-squares is a multidimensional generalization of least-squares [5], [7], [18], where

the least-squares matrix has a Kronecker structure [16], [72]. Sparse multilinear least-squares

could be either an L0 constrained or an L1 constrained multilinear least-squares problem. Caiafa

and Cichocki introduced a generalization of OMP, Kronecker-OMP, to solve the L0 constrained

sparse multilinear least-squares problem [16]. Elrewainy and Sherif [17] developed Kronecker

Least Angle Regression (K-LARS) to efficiently solve both L0 and L1 constrained sparse least-

squares having a specific Kronecker matrix form, 𝑨𝑨 ⊗ 𝑰𝑰, for all critical values of the regularization

Computationally Efficient Methods for Sparse Tensor Signal Processing

59

parameter. To overcome this limitation, in chapter 3 we developed the Tensor Least angle

Regression (T-LARS) [18], a generalization of K-LARS that does not require any special form of

the LS matrix beyond being Kronecker. T-LARS solves either large L0 or large L1 constrained,

sparse multilinear least-squares problems (underdetermined or overdetermined) for all critical

values of the regularization parameter λ with significantly lower computational complexity and

memory usage than Kronecker-OMP.

Weighted multilinear least-squares is a generalization of multilinear least-squares that introduces

a typically diagonal weight matrix to both sides of the original LS problem. Since an arbitrary

diagonal weight matrix would not be Kronecker, the weighted LS matrix would lose its original

Kronecker structure, resulting in a potentially very large non-Kronecker LS matrix. Thus, solving

these weighted sparse multilinear least-squares problems could become highly impractical, as it

would require significant memory and computational power.

Therefore, in this chapter, we extend T-LARS to Weighted Tensor Least Angle Regression (WT-

LARS) that could solve both 𝐿𝐿0 and 𝐿𝐿1 constrained sparse weighted multilinear least-squares

problems efficiently for all critical values of the regularization parameter.

Weighted multilinear least-squares problems could be used to include prior information about

parameters and tensor data to a multilinear least-squares problem. Therefore, WT-LARS could be

used to solve multidimensional counterparts of applications of weighted least squares such as

tensor signal restoration, video smoothing, and reduce bias in multilinear regression applications.

In the experimental results, we used WT-LARS to solve image inpainting problems successfully

using binary-weighted images.

This chapter is organized as follows: Section 4.2 includes a brief introduction to the sparse

weighted tensor least-squares problem. Section 4.3 describes our Weighted Tensor Least Angle

Regression (WT-LARS) algorithm in detail. Section 4.4 provides results of applying WT-LARS

to solve three different image inpainting problems by obtaining sparse representations of binary-

weighted RGB images. We present our conclusions in Section 4.5.

Ishan Wickramasingha

60

4.2. Problem Formulation

4.2.1. Sparse weighted tensor least-squares problem

A multilinear transformation of a tensor 𝒳𝒳 could be defined as, 𝒴𝒴 = 𝒳𝒳 ×1 𝜱𝜱(1) ×2 ⋯ ×𝑁𝑁 𝜱𝜱(𝑁𝑁),

where 𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽𝑛𝑛×…×𝐽𝐽𝑁𝑁 and 𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁 are Nth order tensors, with the equivalent

vectorized form

𝜱𝜱vec(𝒳𝒳) = vec(𝒴𝒴) (4. 1)

Where 𝜱𝜱 ∈ ℝ𝐽𝐽×𝐼𝐼 , and 𝜱𝜱 = 𝜱𝜱(𝑁𝑁) ⊗ ⋯ ⊗ 𝜱𝜱(1).

Let 𝑾𝑾 = 𝑺𝑺𝐻𝐻𝑺𝑺, be a diagonal weight matrix. We could obtain a weighted linear transformation [22]

of (4.1) as

𝑺𝑺𝜱𝜱vec(𝒳𝒳) = 𝑺𝑺vec(𝒴𝒴) (4. 2)

A sparse solution of the weighted linear system in (4.2) could be obtained by solving an 𝐿𝐿𝑝𝑝 (p =

0 or p = 1) minimization problem,

𝒳𝒳� = arg min
𝒳𝒳

‖𝑺𝑺𝜱𝜱vec(𝒳𝒳) − 𝑺𝑺vec(𝒴𝒴) ‖2
2 + λ‖vec(𝒳𝒳)‖𝑝𝑝 (4. 3)

If 𝑺𝑺 is a Kronecker matrix, then 𝑺𝑺𝜱𝜱 = �𝑺𝑺(𝑁𝑁)𝜱𝜱(𝑁𝑁) ⊗ ⋯ ⊗ 𝑺𝑺(1)𝜱𝜱(1)� and we could use T-LARS

[18] developed in chapter 3, to obtain a sparse solution for either 𝐿𝐿0 or 𝐿𝐿1 optimization problem in

(4.3) efficiently. However, 𝑺𝑺 is not typically Kronecker, so 𝑺𝑺𝜱𝜱 would not have a Kronecker

structure, and (4.3) should be solved as a potentially very large vectorized (one-dimensional)

sparse least-squares problem which could be very challenging in terms of memory and

computational power requirements. Therefore, in this chapter, we develop Weighted Tensor Least

Angle Regression (WT-LARS), a computationally efficient method, to solve either 𝐿𝐿0 or 𝐿𝐿1

constrained sparse weighted multilinear least-squares problems in (4.3) for an arbitrary diagonal

weights matrix 𝑾𝑾 = 𝑺𝑺𝐻𝐻𝑺𝑺 ∈ ℝ𝐽𝐽×𝐽𝐽.

4.2.2. Calculating the mutual coherence of a large weighted Kronecker dictionary

The mutual coherence 𝜇𝜇 [14], [99] is an important parameter for analyzing the uniqueness and the

accuracy of a K-sparse solution. The mutual coherence for a weighted dictionary 𝑺𝑺𝜱𝜱 is given by,

Computationally Efficient Methods for Sparse Tensor Signal Processing

61

𝜇𝜇 = max
𝑖𝑖≠𝑗𝑗

�(𝜱𝜱𝑯𝑯𝑾𝑾𝜱𝜱)𝑖𝑖𝑖𝑖� (4. 4)

Where 𝑾𝑾 = 𝑺𝑺𝐻𝐻𝑺𝑺.

For an arbitrary diagonal weights matrix 𝑾𝑾, the matrix 𝜱𝜱𝑯𝑯𝑾𝑾𝜱𝜱 does not have a Kronecker

structure. Therefore, calculating 𝜇𝜇 for a large dictionary matrix 𝑺𝑺𝜱𝜱 by constructing the matrix

𝜱𝜱𝑯𝑯𝑾𝑾𝜱𝜱 is computationally infeasible. However, we could efficiently calculate the mutual

coherence using,

𝜇𝜇 = max
𝑖𝑖≠𝑗𝑗;1≤𝑗𝑗≤𝐽𝐽

��𝜱𝜱(𝑁𝑁) ⊗ ⋯ ⊗ 𝜱𝜱(1)�
𝑯𝑯

𝑾𝑾𝜱𝜱𝑗𝑗� (4. 5)

Where 𝜱𝜱𝑗𝑗 is the jth column of the Kronecker matrix 𝜱𝜱 and we could efficiently calculate each

column vector �𝜱𝜱(𝑁𝑁) ⊗ ⋯ ⊗ 𝜱𝜱(1)�
𝑯𝑯

𝑾𝑾𝜱𝜱𝑗𝑗 using the full multilinear product between the mode-n

matrices 𝜱𝜱(𝑛𝑛) and the column vector 𝑾𝑾𝜱𝜱𝑗𝑗 .

4.3. Weighted Tensor Least Angle Regression (WT-LARS)

In this section, we develop the Weighted Tensor Least Angle Regression (WT-LARS) by

extending Tensor Least Angle Regression (T-LARS) to solve the sparse tensor least-squares

problem in (4.2) for weights 𝑾𝑾 = 𝑺𝑺𝐻𝐻𝑺𝑺 and Kronecker dictionaries 𝜱𝜱.

Inputs to WT-LARS are the data tensor 𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽𝑛𝑛×…×𝐽𝐽𝑁𝑁, mode-n dictionary matrices

𝜱𝜱(𝑛𝑛); 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁}, where 𝜱𝜱 = 𝜱𝜱(𝑁𝑁) ⊗ ⋯ ⊗ 𝜱𝜱(1), the diagonal weight matrix 𝑾𝑾 = 𝑺𝑺𝐻𝐻𝑺𝑺, and

the stopping criterion as a residual tolerance 𝜀𝜀 or the maximum number of non-zero coefficients 𝐾𝐾

(K-sparse representation). The output is the solution tensor 𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁.

WT-LARS requires weighted data 𝑺𝑺vec(𝒴𝒴), and columns of the weighted dictionary 𝑺𝑺𝑺𝑺 to have

a unit 𝐿𝐿2 norm. Normalized weighted data could be easily calculated by 𝒴𝒴𝑊𝑊 =

𝑺𝑺vec(𝒴𝒴) ‖𝑺𝑺vec(𝒴𝒴)‖2⁄ . However, the dictionary matrix 𝑺𝑺𝑺𝑺 does not have a Kronecker structure.

Hence, normalizing mode-n dictionary matrices 𝜱𝜱(𝑛𝑛) does not ensure normalization of the columns

of 𝑺𝑺𝑺𝑺. Therefore, in WT-LARS, we use the normalized weighted dictionary matrix 𝜱𝜱𝑊𝑊 = 𝑺𝑺𝑺𝑺𝑺𝑺

instead of the normalized dictionary matrix 𝜱𝜱 in T-LARS, where 𝑸𝑸 is a diagonal matrix,

𝑸𝑸𝑖𝑖,𝑖𝑖 =
1

‖(𝑺𝑺𝑺𝑺)𝑖𝑖‖2
(4. 6)

Ishan Wickramasingha

62

Where (𝑺𝑺𝑺𝑺)𝑖𝑖 is the 𝑖𝑖𝑡𝑡ℎ column of the weighted dictionary matrix 𝑺𝑺𝑺𝑺. We can efficiently calculate

the diagonal matrix 𝑸𝑸 as,

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑸𝑸) = 𝟏𝟏./�(𝜱𝜱∗2)𝑻𝑻 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑾𝑾) (4. 7)

Where, 𝜱𝜱∗2 [100] denotes the Hadamard square of 𝜱𝜱, such that 𝜱𝜱𝑖𝑖,𝑗𝑗
∗2 = �𝜱𝜱𝑖𝑖,𝑗𝑗�

2
, "./" denotes

elementwise division, and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑸𝑸) and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑾𝑾) are diagonal vectors of 𝑸𝑸 and 𝑾𝑾 respectively.

We could efficiently calculate (𝜱𝜱∗2)𝑻𝑻𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑾𝑾) using the full multilinear product.

WT-LARS solves the 𝐿𝐿0 or 𝐿𝐿1 constrained minimization problems in (4.3) for all critical values

of the regularization parameter λ. WT-LARS starts with a large value of λ that results in an empty

active set 𝐼𝐼 = {}, and a solution 𝒳𝒳�𝑡𝑡=0 = 0. The set 𝐼𝐼 denotes an active set of columns of the

dictionary 𝜱𝜱𝑊𝑊, i.e., column indices where the optimal solution 𝒳𝒳�𝑡𝑡 at iteration 𝑡𝑡, is nonzero, and

𝐼𝐼𝑐𝑐 denotes its corresponding inactive set. Therefore, 𝜱𝜱𝑊𝑊𝐼𝐼 contains only the active columns of the

dictionary 𝜱𝜱𝑊𝑊 and 𝜱𝜱𝑊𝑊𝐼𝐼𝑐𝑐 contains only its inactive columns.

At each iteration 𝑡𝑡, a new column is either added (𝐿𝐿0) to the active set 𝐼𝐼 or a new column is either

added or removed (𝐿𝐿1) from the active set 𝐼𝐼, and λ is reduced by a calculated value 𝛿𝛿𝑡𝑡
∗.

As a result of such iterations, new solutions with an increased number of coefficients that follow

a piecewise linear path are obtained until a predetermined residual error 𝜀𝜀 or a predetermined

number of active columns 𝐾𝐾 is obtained.

The regularization parameter λ is initialized to the maximum of the correlation 𝒄𝒄1, between the

columns of 𝜱𝜱𝑊𝑊 and the initial residual 𝒓𝒓0 = vec(𝒴𝒴).

𝒄𝒄1 = 𝜱𝜱𝑾𝑾
𝑇𝑇 𝒓𝒓0 (4. 8)

Since 𝜱𝜱𝑾𝑾
𝑇𝑇 = 𝑸𝑸𝜱𝜱𝑻𝑻𝑺𝑺, we can easily calculate 𝜱𝜱𝑻𝑻𝑺𝑺𝒓𝒓0 using the full multilinear product as

𝒞́𝒞1 = ℛ𝑺𝑺0 ×1 𝜱𝜱(1)𝑇𝑇
×2 ⋯ ×𝑁𝑁 𝜱𝜱(𝑁𝑁)𝑇𝑇

 (4. 9)

where vec�ℛ𝑺𝑺0� = 𝑺𝑺𝒓𝒓0 and 𝒄𝒄1 = 𝑸𝑸vec�𝒞́𝒞1�. The column index corresponding to the maximum

correlation 𝒄𝒄1 is added to the active set. For a given active set 𝐼𝐼, the optimal solution 𝒳𝒳�𝑡𝑡 at any

iteration 𝑡𝑡, could be written as

Computationally Efficient Methods for Sparse Tensor Signal Processing

63

vec�𝒳𝒳�𝑡𝑡� = ��𝜱𝜱𝑊𝑊𝐼𝐼𝑡𝑡
𝑇𝑇 𝜱𝜱𝑊𝑊𝐼𝐼𝑡𝑡

�
−1

�𝜱𝜱𝑊𝑊𝐼𝐼𝑡𝑡
𝑇𝑇 vec(𝒴𝒴) − 𝜆𝜆𝑡𝑡𝒛𝒛𝑡𝑡� , 𝑜𝑜n 𝐼𝐼

 0, Otherwise
(4. 10)

where, 𝒛𝒛𝑡𝑡 is the sign sequence of 𝒄𝒄𝑡𝑡 on the active set 𝐼𝐼, and 𝒄𝒄𝑡𝑡 = 𝜱𝜱𝑊𝑊
𝑇𝑇 𝒓𝒓𝑡𝑡−1 is the correlation vector

of all columns of the dictionary 𝜱𝜱𝑊𝑊 with the residual 𝒓𝒓𝑡𝑡−1 at any iteration t.

The optimal solution at any iteration, 𝑡𝑡 must satisfy the following two optimality conditions,

𝜱𝜱𝑊𝑊𝐼𝐼𝑡𝑡
𝑇𝑇 𝒓𝒓𝑡𝑡 = −𝜆𝜆𝑡𝑡𝒛𝒛𝑡𝑡 (4. 11)

�𝜱𝜱𝑊𝑊𝐼𝐼𝑡𝑡
𝑐𝑐

𝑇𝑇 𝒓𝒓𝑡𝑡 �
∞

 ≤ 𝜆𝜆𝑡𝑡 (4. 12)

where, 𝒓𝒓𝑡𝑡 = vec(𝒴𝒴) − 𝜱𝜱𝑊𝑊vec�𝒳𝒳�𝑡𝑡� is the residual at iteration 𝑡𝑡, and 𝒛𝒛𝑡𝑡 is the sign sequence of

the correlation 𝒄𝒄𝑡𝑡 at iteration 𝑡𝑡, on the active set 𝐼𝐼. The condition in (4.11) ensures that the

magnitude of the correlation between all active columns of 𝜱𝜱𝑊𝑊 and the residual is equal to |𝜆𝜆𝑡𝑡| at

each iteration, and the condition in (4.12) ensures that the magnitude of the correlation between

the inactive columns of 𝜱𝜱𝑊𝑊 and the residual is less than or equal to |𝜆𝜆𝑡𝑡|.

At each iteration 𝑡𝑡, 𝜆𝜆𝑡𝑡 is reduced by a small step size 𝛿𝛿𝑡𝑡
∗, until a condition in either (4.11) or

(4.12) violates. For 𝐿𝐿0, and 𝐿𝐿1 constrained minimization problems, if an inactive column violates

the condition (4.12), it is added to the active set, and for 𝐿𝐿1 constrained minimization problems,

if an active column violates the condition (4.11), it is removed from the active set.

As λ is reduced by 𝛿𝛿𝑡𝑡
∗, the solution 𝒳𝒳�𝑡𝑡 change by 𝛿𝛿𝑡𝑡

∗𝒅𝒅𝑡𝑡 along a direction 𝒅𝒅𝑡𝑡, where 𝒅𝒅𝐼𝐼𝑡𝑡
𝑐𝑐 = 0 and

𝒅𝒅𝐼𝐼𝑡𝑡 = 𝑮𝑮𝑡𝑡
−1𝒛𝒛𝑡𝑡, and 𝑮𝑮𝑡𝑡

−1 is the inverse of the Gram matrix of the active columns of the dictionary

𝑮𝑮𝑡𝑡 = 𝜱𝜱𝑊𝑊𝐼𝐼𝑡𝑡
𝑇𝑇 𝜱𝜱𝑊𝑊𝐼𝐼𝑡𝑡

.

The size of this Gram matrix would either increase (dictionary column addition) or decrease

(dictionary column removal) with each iteration 𝑡𝑡. Therefore, for computational efficiency, we use

the Schur complement inversion formula to calculate 𝑮𝑮𝑡𝑡
−1 from 𝑮𝑮𝑡𝑡−1

−1 , thereby avoiding its full

calculation [18], [101]. See Appendix C.1 for updating the inverse of the Gram matrix using the

Schur complement inversion formula.

Ishan Wickramasingha

64

The smallest step size for 𝐿𝐿1 constrained sparse least-squares problem 𝛿𝛿𝑡𝑡
∗ = min {𝛿𝛿𝑡𝑡

+, 𝛿𝛿𝑡𝑡
−} is the

minimum of 𝛿𝛿𝑡𝑡
+, minimum step size for adding a column, and 𝛿𝛿𝑡𝑡

−, minimum step size for removing

a column. The minimum step size for removing a column from the active set is given by,

𝛿𝛿𝑡𝑡
− = min

𝑖𝑖∈𝐼𝐼
�−

𝒙𝒙𝑡𝑡−1(𝑖𝑖)
𝒅𝒅𝑡𝑡(𝑖𝑖) � (4. 13)

The minimum step size for adding a new column to the active set is given by,

𝛿𝛿𝑡𝑡
+ = min

𝑖𝑖∈𝐼𝐼𝑐𝑐
�

𝜆𝜆𝑡𝑡 − 𝒄𝒄𝑡𝑡(𝑖𝑖)
1 − 𝒗𝒗𝑡𝑡(𝑖𝑖) ,

𝜆𝜆𝑡𝑡 + 𝒄𝒄𝑡𝑡(𝑖𝑖)
1 + 𝒗𝒗𝑡𝑡(𝑖𝑖) � (4. 14)

where

𝒗𝒗𝑡𝑡 = 𝜱𝜱𝑊𝑊
𝑇𝑇 𝜱𝜱𝑊𝑊𝒅𝒅𝑡𝑡 (4. 15)

Since 𝜱𝜱𝑊𝑊 = 𝑺𝑺𝑺𝑺𝑺𝑺 , We can efficiently calculate 𝒗𝒗𝑡𝑡 using two full multilinear products.

Let 𝒗𝒗𝑡𝑡 = 𝑸𝑸vec�𝒱́𝒱𝑡𝑡�, where

𝒱́𝒱𝑡𝑡 = 𝒰𝒰𝑤𝑤𝑡𝑡 ×1 𝜱𝜱(1)𝑇𝑇
×2 … ×𝑁𝑁 𝜱𝜱(𝑁𝑁)𝑇𝑇

 (4. 16)

And vec�𝒰𝒰𝑤𝑤𝑡𝑡� = 𝑾𝑾vec�𝒟́𝒟𝑡𝑡 ×1 𝜱𝜱(1) ×2 … ×𝑁𝑁 𝜱𝜱(𝑁𝑁)�, and vec�𝒟́𝒟𝑡𝑡� = 𝑸𝑸𝒅𝒅𝑡𝑡.

The residual 𝒓𝒓𝑡𝑡 is calculated at the end of each iteration using,

𝒓𝒓𝑡𝑡 = 𝒓𝒓𝑡𝑡−1 − 𝛿𝛿𝑡𝑡
∗𝜱𝜱𝑊𝑊𝒅𝒅𝑡𝑡 (4. 17)

We can efficiently calculate 𝜱𝜱𝑊𝑊𝒅𝒅𝑡𝑡 as

𝜱𝜱𝑊𝑊𝒅𝒅𝑡𝑡 = 𝑺𝑺vec�𝒟́𝒟𝑡𝑡 ×1 𝜱𝜱(1) ×2 ⋯ ×𝑁𝑁 𝜱𝜱(𝑁𝑁)� (4. 18)

WT-LARS stops at a predetermined residual error ‖𝒓𝒓𝑡𝑡‖2 ≤ 𝜀𝜀 or when a predetermined number of

active columns 𝐾𝐾 is obtained. The residual error ‖𝒓𝒓𝑡𝑡‖2 = �vec(𝒴𝒴) − 𝜱𝜱𝑊𝑊vec�𝒳𝒳�𝑡𝑡��
2

 is the 𝐿𝐿2

norm of the residual error after the iteration t, where 0 ≤ ‖𝒓𝒓𝑡𝑡‖2 ≤ 1 for a normalized 𝒴𝒴 and column

normalized weighted dictionary 𝜱𝜱𝑊𝑊𝐼𝐼𝑡𝑡
.

Computationally Efficient Methods for Sparse Tensor Signal Processing

65

4.3.1. Weighted Tensor Least Angle Regression Algorithm

Algorithm 4.1: Weighted Tensor Least Angle Regression (WT-LARS)

Input: WT-LARS_mode = 𝐿𝐿1 or 𝐿𝐿0, normalized tensor 𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽𝑛𝑛×…×𝐽𝐽𝑁𝑁 ; Mode-n dictionary
matrices 𝜱𝜱(𝑛𝑛) ∈ ℝ𝐽𝐽𝑛𝑛×𝐼𝐼𝑛𝑛; 𝑛𝑛 ∈ {1, . . 𝑁𝑁}; Diagonal Weights Matrix 𝑾𝑾 ∈ ℝ(𝐽𝐽1×…×𝐽𝐽𝑁𝑁)×(𝐽𝐽1×…×𝐽𝐽𝑁𝑁);
Stopping criterion: residual tolerance: 𝜀𝜀 or number of non-zero coefficients: 𝐾𝐾
Initialization: 𝑺𝑺 = √𝑾𝑾, Residual: 𝒓𝒓0 = 𝑺𝑺𝑣𝑣𝑣𝑣𝑣𝑣(𝒴𝒴); 𝒙𝒙0 = 0; active set: 𝐼𝐼 = {};
1. 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑸𝑸) = 𝟏𝟏./�(𝜱𝜱2)𝑻𝑻 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑾𝑾)
2. vec�ℛ𝑺𝑺0� = 𝑺𝑺𝒓𝒓0

3. 𝒞𝒞1 = ℛ𝑺𝑺0 ×1 𝜱𝜱(1)𝑇𝑇
×2. . .×𝑁𝑁 𝜱𝜱(𝑁𝑁)𝑇𝑇

4. 𝒄𝒄1 = 𝑸𝑸vec(𝒞𝒞1)
5. [𝜆𝜆1, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖] = 𝑚𝑚𝑚𝑚𝑚𝑚(𝒄𝒄1)
6. 𝐼𝐼 = {𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖}
7. while (‖𝒓𝒓𝑡𝑡−1‖2 < 𝜀𝜀 𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(𝐼𝐼) < 𝐾𝐾)
8. 𝒛𝒛𝑡𝑡 = sign (𝒄𝒄𝑡𝑡(𝐼𝐼))
9. 𝑮𝑮𝑡𝑡

−1 =updateWeightedInverseGramMatrix(𝑮𝑮𝑡𝑡−1
−1 , 𝑾𝑾 , 𝑸𝑸 , { 𝜱𝜱(1), . . ., 𝜱𝜱(𝑁𝑁)}, I, add_column,

column_idx) % See Appendix C.1
10. 𝒅𝒅𝐼𝐼𝑡𝑡 = 𝑮𝑮𝑡𝑡

−1𝒛𝒛𝑡𝑡
11. vec�𝒟́𝒟𝑡𝑡� = 𝑸𝑸𝒅𝒅𝑡𝑡
12. 𝒰𝒰𝑡𝑡 = 𝒟́𝒟𝑡𝑡 ×1 𝜱𝜱(1) ×2 … ×𝑁𝑁 𝜱𝜱(𝑁𝑁)
13. vec�𝒰𝒰𝑤𝑤𝑡𝑡� = 𝑾𝑾vec(𝒰𝒰𝑡𝑡)

14. 𝒱𝒱𝑡𝑡 = 𝒰𝒰𝑤𝑤𝑡𝑡 ×1 𝜱𝜱(1)𝑇𝑇
×2 … ×𝑁𝑁 𝜱𝜱(𝑁𝑁)𝑇𝑇

15. 𝒗𝒗𝑡𝑡 = 𝑸𝑸𝑣𝑣𝑣𝑣𝑣𝑣(𝒱𝒱𝑡𝑡)
16. 𝛿𝛿𝑡𝑡

+
1= (𝜆𝜆𝑡𝑡 − 𝒄𝒄𝑡𝑡(𝐼𝐼𝑐𝑐))./ (1 − 𝒗𝒗𝑡𝑡(𝐼𝐼𝑐𝑐)) % “./” - Elementwise division

17. 𝛿𝛿𝑡𝑡
+

2= (𝜆𝜆𝑡𝑡 + 𝒄𝒄𝑡𝑡(𝐼𝐼𝑐𝑐))./ (1 + 𝒗𝒗𝑡𝑡(𝐼𝐼𝑐𝑐))
18. 𝛿𝛿𝑡𝑡

− = −𝒙𝒙𝑡𝑡−1./ 𝒅𝒅𝑡𝑡
19. [𝛿𝛿𝑡𝑡

∗, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖] = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝛿𝛿𝑡𝑡
+

1, 𝛿𝛿𝑡𝑡
+

2�
20. add_column == True
21. If WT-LARS_mode == 𝐿𝐿1 && min (𝛿𝛿𝑡𝑡

−) < 𝛿𝛿𝑡𝑡
∗

22. [𝛿𝛿𝑡𝑡
∗, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖]= min (𝛿𝛿𝑡𝑡

−)
23. add_column = False
24. end
25. 𝒙𝒙𝑡𝑡 = 𝒙𝒙𝑡𝑡−1 + 𝛿𝛿𝑡𝑡

∗𝒅𝒅𝑡𝑡
26. 𝜆𝜆𝑡𝑡+1 = 𝜆𝜆𝑡𝑡 − 𝛿𝛿𝑡𝑡

∗
27. 𝒄𝒄𝑡𝑡+1 = 𝒄𝒄𝑡𝑡 − 𝛿𝛿𝑡𝑡

∗𝒗𝒗𝑡𝑡
28. ℛ́𝑡𝑡 = 𝒟́𝒟𝑡𝑡 ×1 𝜱𝜱(1) ×2 ⋯ ×𝑁𝑁 𝜱𝜱(𝑁𝑁)
29. 𝒓𝒓𝑡𝑡 = 𝒓𝒓𝑡𝑡−1 − 𝛿𝛿𝑡𝑡

∗𝑺𝑺vec�ℛ́𝑡𝑡�
30. if add_column == True
31. 𝐼𝐼 = 𝐼𝐼 + {𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖}
32. else

Ishan Wickramasingha

66

33. 𝐼𝐼 = 𝐼𝐼 – {𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖}
34. end
35. end while
36. return 𝐼𝐼, 𝒙𝒙

4.4. Experimental Results

In this section, we present experimental results for WT-LARS using inpainting as an example. For

experiments shown in Figure 4.1 and Figure 4.2, we obtained fenced images from the Image

datasets for MSBP deformable lattice detection Algorithm [102], and for the experiment shown in

Figure 4.3, we obtained a landscape image from the DIV2K dataset [103].

Our experimental results were obtained using a MATLAB implementation of T-LARS and

Kronecker-OMP on an MS-Windows machine: 2 Intel Xeon CPUs E5-2637 v4, 3.5GHz, 32GB

RAM, and NVIDIA Tesla P100 GPU with 12GB memory.

4.4.1. Inpainting Experiment

In this experiment, we use WT-LARS for inpainting. After applying zero weights to the missing

data, we obtained a sparse representation of the inpainted image using WT-LARS.

In our experimental results shown in Figure 4.1 and Figure 4.2, we obtained a fenceless image by

considering pixels behind the fences as missing data. Figure 4.1 a) and Figure 4.2 a) show the

original images with fences, and Figure 4.1 b) and Figure 4.2 b) show the respective masks applied

to each pixel of the original image, where black indicates zero and white indicate one. Figure 4.1

c) and Figure 4.2 c) show the reconstructed fenceless images using the sparse representation of

images behind fences obtained by WT-LARS.

We obtained RGB image patches, 200 × 200 × 3 pixels, from the original images in Figure 4.1

a) and Figure 4.2 a). For each patch, we obtained a weighted K-sparse representation using WT-

LARS, with 10% nonzero coefficients, for three fixed mode-n overcomplete dictionaries, 𝜱𝜱(1) ∈

ℝ200×400, 𝜱𝜱(2) ∈ ℝ200×400 and 𝜱𝜱(3) ∈ ℝ3×4, by solving a 𝐿𝐿1 constrained sparse weighted least-

squares problem. Weights consists of zeros for the pixels that belong to the fence in the original

images and ones for everywhere else. Used fixed mode-n overcomplete dictionaries were a union

of a Discrete Cosine Transform (DCT) dictionaries and a Symlet wavelet packet with four

vanishing moments dictionaries. In the experimental results shown in Figure 4.1 and Figure 4.2,

Computationally Efficient Methods for Sparse Tensor Signal Processing

67

the RGB patches with the minimum number of nonzero samples had 79,834 and 92,748 nonzero

samples, respectively.

Figure 4.1. a) Original image with a fence b) Weights image with zero weights for the fence c) WT-LARS
reconstructed image (Fence Removed)

Figure 4.2. a) Original image with a fence b) Weights image with zero weights for the fence c) WT-LARS
reconstructed image (Fence Removed)

In the experimental results shown in Figure 4.3, we used WT-LARS to obtain a landscape image

occluded by a person in Figure 4.3 a). Figure 4.3 b) shows the weights, and Figure 4.3 c) shows

the inpainting result after removing the person from the foreground of the landscape image.

The RGB images in Figure 4.3 a) are a scaled version of the original image with 200 × 300 × 3

pixels. We obtained a weighted K-sparse representation for the scaled image in Figure 4.3 a) using

WT-LARS, with 20% non-zero coefficients, for three fixed mode-n overcomplete dictionaries,

Ishan Wickramasingha

68

𝜱𝜱(1) ∈ ℝ200×400, 𝜱𝜱(2) ∈ ℝ300×604 and 𝜱𝜱(3) ∈ ℝ3×4, by solving a weighted 𝐿𝐿1 constrained sparse

least-squares problem.

Figure 4.3. a) Original image with a person b) Weights image with zero weights for the person c) WT-
LARS reconstructed image (Person Removed)

Weights consist of zeros for the pixels belonging to the person in the original image and ones for

everywhere else. Used fixed mode-n overcomplete dictionaries were a union of a Discrete Cosine

Transform (DCT) dictionaries and a Symlet wavelet packet with four vanishing moments

dictionaries. In the experimental results shown in Figure 4.3, a total of 170,829 nonzero samples

have been used to obtain a sparse signal representation of the landscape image. Therefore, the

inpainting results in, Figure 4.1 c), Figure 4.2 c) and Figure 4.3 c) clearly show that WT-LARS

could be successfully used to approximate missing/incomplete data.

4.5. Conclusions

Sparse weighted multilinear least-squares is a generalization of the sparse multilinear least-squares

problem, where both sides of the Kronecker LS system are multiplied by an arbitrary diagonal

weights matrix. These arbitrary weights would result in a potentially very large non-Kronecker

least-squares problem that could be impractical to solve as it would require significant memory

and computational power.

This chapter extended the T-LARS algorithm, developed in chapter 3 [18], to become the

Weighted Tensor Least Angle Regression (WT-LARS) algorithm that could efficiently solve either

L0 or L1 constrained multilinear least-squares problems with arbitrary diagonal weights for all

critical values of their regularization parameter 𝜆𝜆. To validate our new WT-LARS algorithm, we

used it to solve three image inpainting problems. In our experimental results using WT-LARS

shown in Figure 4.1 and Figure 4.2, we obtained the exact sparse signal representation of RGB

Computationally Efficient Methods for Sparse Tensor Signal Processing

69

images behind fences after applying zero weights to the pixels representing the fences. In the

experimental result using WT-LARS shown in Figure 4.3, we successfully obtained an exact

sparse signal representation of an RGB landscape image occluded by a person by applying zero

weights to the pixels representing this person. These results demonstrate the validity and

usefulness of our new Weighted Least Angle Regression (WT-LARS) algorithm.

Ishan Wickramasingha

70

Chapter 5

5. Tensor Dynamic Least Angle Regression (TD-LARS)

The Tensor Least Angle Regression (T-LARS) [18] developed in chapter 3 is a computationally

efficient method to solve large L0 or L1 constrained sparse multilinear least-squares problems for

all critical values of the regularization parameter λ. We could initialize T-LARS with an L1

solution located on the Pareto curve [23] and obtain an L1 solution with a lower residual error,

where the Pareto curve contains every solution to a linear/multilinear least-squares problem.

However, we could not initialize T-LARS with a solution outside of the Pareto curve because it

will violate the optimality conditions of T-LARS. Therefore, this chapter extends T-LARS and the

one-dimensional L1-Homotopy method [24] to develop the Tensor Dynamic Least Angle

Regression (TD-LARS) algorithm to obtain a solution to an L1 constrained multilinear least-squares

problem when initialized with a non-zero initial solution located on or off of the Pareto curve.

Therefore, with TD-LARS, we could efficiently obtain a solution to a multilinear L1 minimization

problem by initializing with an L1 solution of a close problem.

5.1. Introduction

Efficiently solving either large L0 or large L1 constrained sparse multilinear least-squares problems

is essential to obtain sparse multilinear representations of large multi-dimensional signals. Caiafa

and Cichocki introduced Kronecker-OMP, a generalization of OMP, for solving nonconvex L0

constrained sparse multilinear least-squares problems [16]. Elrewainy and Sherif [17] developed

the Kronecker Least Angle Regression (K-LARS) algorithm to solve either L0 or L1 sparse least-

squares problems efficiently (overdetermined) with a Kronecker form 𝑨𝑨 ⊗ 𝑰𝑰, for all critical values

of the regularization parameter λ. In chapter 3 we have developed the Tensor Least angle

Regression (T-LARS) [18], a generalization of Least angle Regression (LARS) [15], to solve large

L0 or large L1 constrained sparse multilinear least-squares problems efficiently for all critical values

Computationally Efficient Methods for Sparse Tensor Signal Processing

71

of the regularization parameter λ, with lower computational complexity and memory usage than

Kronecker-OMP [18].

T-LARS is a Homotopy algorithm that typically starts with an empty active set 𝐼𝐼 = {}, and the

solution 𝒳𝒳 = 0 for both L0 or L1 minimization problems, where the active set contains the column

indices corresponding to nonzero coefficients.

Each L1 constrained linear/multilinear least-squares problem has a unique Pareto curve [23], which

contains all possible L1 solutions to a particular L1 constrained linear/multilinear least-squares

problem, where the X-axis of the Pareto curve is the L1 norm of the solution, ‖𝒳𝒳‖1; Y-axis is the

L2 norm of the residual error; The gradient is the regularization parameter λ.

If we initialize an L1 constrained multilinear least-squares problem with a nonzero initial solution

tensor, 𝒳𝒳� with the corresponding regularization parameter, 𝜆̂𝜆, located on the Pareto curve, we

could use T-LARS to obtain an L1 solution with 𝜆𝜆 < 𝜆̂𝜆. However, T-LARS could not use an initial

solution, which is not located on the Pareto curve, because it would violate the optimality

conditions of T-LARS.

Initializing an L1 constrained least-squares problem with an arbitrary initial solution on or off the

Pareto curve would have applications in many disciplines, including Signal Processing, Statistics,

and Machine Learning.

Typically, in dynamic programming [104], image and video coding, and compression [105], [106],

a large problem is broken down into overlapping small sub-problems, and the solutions of each

sub-problem are combined to obtain the final solution. Since two close sub-problems with small

condition numbers have close solutions, we could efficiently solve one sub-problem by initializing

with the solution of the other sub-problem.

Transfer Learning is used widely in the Statistics and machine learning community due to its

ability to transfer knowledge acquired in previous tasks to learn a new task efficiently [107], [108].

The parameter transfer approach in transfer learning assumes the two models are close and share

common parameters or prior distributions [107], [109]. Kumagai & Kanamori [109], Maurer et al.

[110], and Raina et al. [34] worked on parameter transfer in sparse coding, where the parameters

transferred were the dictionaries learned from data, but they did not transfer the coefficients.

However, one could improve parameter transfer in sparse coding-based dictionary learning

Ishan Wickramasingha

72

methods and in regression by transferring the L1 solution of an L1 minimization problem to another

L1 minimization problem.

Asif & Romberg [24] introduced an L1-Homotopy method to dynamically update the solutions of

one-dimensional L1 minimization problems, using the previous solution as the initial solution for

a streaming set of measurements. The L1-Homotopy method successfully update the L1 solution,

𝒙𝒙�, to obtain the L1 solution to the new L1 minimization problem when the signal or the dictionary

change.

Therefore, in this chapter, we extend the T-LARS and the one-dimensional L1-Homotopy

algorithm to develop the Tensor Dynamic Least Angle Regression (TD-LARS) algorithm to obtain

the solution to an L1 constrained multilinear least-squares problem efficiently by initializing with

a nonzero initial solution tensor 𝒳𝒳� that is located on or off the Pareto curve.

TD-LARS would allow using the solution of an L1 constrained multilinear least-squares problem

to solve another problem efficiently when the data tensor or the dictionary changes slightly if the

condition number of the multilinear least-squares problem is small [9], [111]. Therefore, TD-

LARS will have applications in multiple areas, including sparse representation of multi-

dimensional streaming signals, compressing multidimensional biomedical signals, video

encoding, transfer learning in tensor regression, and parameter transfer in multilinear dictionary

learning.

This chapter is organized as follows: Section 5.2 provides the background theory into the sparse

multilinear least-squares problem and Tensor Least Angle Regression (T-LARS). We describe the

problem formulation and the Tensor Dynamic Least Angle Regression algorithm (TD-LARS) in

Section 5.3. Section 5.4 provides experiment results of applying both TD-LARS and T-LARS to

L1 constrained sparse multilinear least-squares problem. We present our conclusions in Section

5.5.

Computationally Efficient Methods for Sparse Tensor Signal Processing

73

5.2. Background

5.2.1. Sparse Multilinear Least-squares Problem

A multilinear transformation of a tensor 𝒳𝒳 could be defined as, 𝒴𝒴 = 𝒳𝒳 ×1 𝜱𝜱(1) ×2 ⋯ ×𝑁𝑁 𝜱𝜱(𝑁𝑁),

where 𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽𝑛𝑛×…×𝐽𝐽𝑁𝑁 and 𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁 are Nth order tensors, with the equivalent

vector form

𝜱𝜱vec(𝒳𝒳) = vec(𝒴𝒴) (5. 1)

Where 𝜱𝜱 = 𝜱𝜱(𝑁𝑁) ⊗ ⋯ ⊗ 𝜱𝜱(1) and 𝜱𝜱(𝑛𝑛) ∈ ℝ𝐽𝐽𝑛𝑛×𝐼𝐼𝑛𝑛; 𝑛𝑛 ∈ {1, . . 𝑁𝑁}.

A sparse solution of the linear system in (5.1) could be obtained by rewriting it as an 𝐿𝐿𝑝𝑝

minimization problem,

𝒳𝒳� = arg min
𝒳𝒳

‖𝜱𝜱vec(𝒳𝒳) − vec(𝒴𝒴) ‖2
2 + λ‖𝒳𝒳‖𝑝𝑝 (5. 2)

5.2.2. Tensor Least Angle Regression (T-LARS)

We could use T-LARS [18] developed in chapter 3 to obtain a sparse solution efficiently for 𝐿𝐿0 or

𝐿𝐿1 constrained sparse multilinear least-squares problem in (5.2) for all critical values of the

regularization parameter λ.

T-LARS starts with a large value of λ, which results in an empty active set 𝐼𝐼 = {}, and a solution

𝒳𝒳�𝑡𝑡=0
∗ = 0. The set 𝐼𝐼 denotes an active set of columns of the dictionary 𝜱𝜱, i.e., column indices

where the optimal solution 𝒳𝒳�𝑡𝑡
∗ at iteration 𝑡𝑡, is nonzero, and 𝐼𝐼𝑐𝑐 denotes its corresponding inactive

set. Therefore, 𝜱𝜱𝐼𝐼 contains only the active columns of the dictionary 𝜱𝜱 and 𝜱𝜱𝐼𝐼𝑐𝑐 contains only its

inactive columns.

At each iteration 𝑡𝑡, a new column is either added or removed from the active set 𝐼𝐼, and λ is reduced

by a calculated value 𝛿𝛿𝑡𝑡
∗ and the solution 𝒳𝒳�𝑡𝑡

∗ is moved in a direction 𝒅𝒅𝑡𝑡.

The optimal solution at any iteration, 𝑡𝑡 must satisfy the following two optimality conditions,

𝜱𝜱𝐼𝐼𝑡𝑡
𝑇𝑇 �𝜱𝜱vec�𝒳𝒳�𝑡𝑡� − vec(𝒴𝒴)� = −𝜆𝜆𝑡𝑡𝒛𝒛𝑡𝑡 (5. 3)

�𝜱𝜱𝐼𝐼𝑡𝑡
𝑐𝑐

𝑇𝑇 �𝜱𝜱vec�𝒳𝒳�𝑡𝑡� − vec(𝒴𝒴)� �
∞

 ≤ 𝜆𝜆𝑡𝑡 (5. 4)

Ishan Wickramasingha

74

where, 𝜆𝜆𝑡𝑡 is the regularization parameter at iteration 𝑡𝑡 and 𝒛𝒛𝑡𝑡 is the sign sequence of the nonzero

coefficients of vec�𝒳𝒳�𝑡𝑡� on the active set 𝐼𝐼.

T-LARS obtain a new solution at each iteration 𝑡𝑡, with an increasing number of coefficients, which

follows a piecewise linear path until obtaining a predetermined number of active columns 𝐾𝐾 or

reaching a predetermined residual error 𝜀𝜀.

5.3. Tensor Dynamic Least Angle Regression (TD-LARS)

In this section, we develop the Tensor Dynamic Least Angle Regression (TD-LARS) algorithm by

extending the one-dimensional 𝐿𝐿1-Homotopy algorithm [24], [42], and T-LARS [18] that we

developed in chapter 3 to efficiently obtain the solution to an 𝐿𝐿1 constrained multilinear least-

squares problem using a solution of a slightly different problem.

Let us assume we have a sparse coefficient tensor 𝒳𝒳�, with support 𝐼𝐼 and sign sequence 𝒛𝒛�, where

𝒛𝒛� = sign �vec�𝒳𝒳���, which is close to the solution of (5.2). Our objective is to obtain the 𝐿𝐿1

solution to (5.2) efficiently, by using 𝒳𝒳� as the initial solution.

If 𝒳𝒳� is not the 𝐿𝐿1 solution of (5.2) for a certain λ, T-LARS could not use 𝒳𝒳� as the initial solution

because 𝒳𝒳� would violate the optimality conditions in (5.3) and (5.4). Therefore, the Tensor

Dynamic Least Angle Regression problem is formulated by adding an extra term to (5.2) to satisfy

the optimality conditions for a given initial solution.

5.3.1. Problem Formulation

Asif & Romberg [24], [42] introduced an L1-Homotopy method to dynamically update the

solutions of one-dimensional L1 minimization problems, using the previous solution as the initial

solution.

𝐹𝐹(𝒙𝒙) = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝒳𝒳

1
2

‖𝜱𝜱𝒙𝒙 − 𝒚𝒚 ‖2
2 + 𝜆𝜆‖𝒙𝒙‖1 + (1 − 𝜖𝜖)𝒖𝒖𝑇𝑇𝒙𝒙 (5. 5)

Therefore, we could formulate the Tensor Dynamic Least Angle Regression problem by extending

the vector-based 𝐿𝐿1-Homotopy formulation in (5.5) as [24], [42].

𝐹𝐹(𝒳𝒳) = arg min
𝒳𝒳

1
2

‖𝜱𝜱vec(𝒳𝒳) − vec(𝒴𝒴) ‖2
2 + λ‖𝒳𝒳‖1 + 𝜖𝜖𝒖𝒖𝑇𝑇vec(𝒳𝒳) (5. 6)

Computationally Efficient Methods for Sparse Tensor Signal Processing

75

where 0 ≤ 𝜖𝜖 ≤ 1 and 𝒖𝒖 ∈ ℝ𝐼𝐼1…𝐼𝐼𝑁𝑁 is a vector.

𝜕𝜕𝜕𝜕(𝒳𝒳)
𝜕𝜕vec(𝒳𝒳) = 𝜱𝜱𝑇𝑇�𝜱𝜱vec(𝒳𝒳) − vec(𝒴𝒴)� + λvec(𝜕𝜕‖𝒳𝒳‖1) + 𝜖𝜖𝒖𝒖 = 0 (5. 7)

Where, 𝜕𝜕‖𝒳𝒳‖1 denotes the sub-differential of the 𝐿𝐿1 norm that could be described as,

vec(𝜕𝜕‖𝒳𝒳‖1) = �𝒈𝒈 ∈ ℝ𝐼𝐼1…𝐼𝐼𝑁𝑁 �
𝑔𝑔𝑖𝑖 = +1, where 𝑥𝑥𝑖𝑖 > 0
𝑔𝑔𝑖𝑖 = −1, where 𝑥𝑥𝑖𝑖 < 0
𝑔𝑔𝑖𝑖 ∈ [−1, +1], where 𝑥𝑥𝑖𝑖 = 0

(5. 8)

Where 𝑥𝑥𝑖𝑖 is the 𝑖𝑖𝑡𝑡ℎ element of vec(𝒳𝒳).

Using the sub-differential 𝒈𝒈 = vec(𝜕𝜕‖𝒳𝒳‖1), we could describe the optimality condition 0 ∈

 𝜕𝜕𝑓𝑓(𝒳𝒳∗) for a tensor 𝒳𝒳∗ as,

λ𝒈𝒈 + 𝜱𝜱𝑇𝑇(𝜱𝜱vec(𝒳𝒳∗) − vec(𝒴𝒴)) + 𝜖𝜖𝒖𝒖 = 0 (5. 9)

Where ‖𝒈𝒈‖∞ ≤ 1 and 𝒈𝒈𝑇𝑇vec(𝒳𝒳∗) = ‖𝒳𝒳∗‖1

5.3.2. Tensor Dynamic Least Angle Regression (TD-LARS) Formulation

The objective of TD-LARS is to start with a nonzero initial solution 𝒳𝒳�, with a support 𝐼𝐼 and

efficiently obtain the solution to (5.2) for a given λ. Similar to T-LARS, we normalize the data

tensor 𝒴𝒴, and the columns of each dictionary 𝜱𝜱(𝑛𝑛); 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁} to have a unit 𝐿𝐿2 norm. Note

that normalizing columns of each dictionary 𝜱𝜱(𝑛𝑛); 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁} ensure normalization of the

separable dictionary 𝜱𝜱 [18]. For notational simplicity in the following sections, we will use 𝒴𝒴 to

represent the normalized data tensor and 𝜱𝜱(𝑛𝑛) to represent normalized dictionary matrices.

The TD-LARS algorithm starts at 𝑡𝑡 = 0 and 𝜖𝜖𝑡𝑡 = 1, where 𝜖𝜖𝑡𝑡 denotes the 𝜖𝜖 of (5.6) at any iteration

𝑡𝑡. At each iteration 𝑡𝑡, 𝜖𝜖𝑡𝑡 is decreased by a small value 𝛿𝛿𝑡𝑡 until 𝜖𝜖𝑡𝑡 goes to zero. Note that when

𝜖𝜖𝑡𝑡 = 0, both problems (5.2) and (5.7) are identical. Therefore the solution of (5.7) at 𝜖𝜖𝑡𝑡 = 0 is

also the solution of (5.2) for a specific λ.

From (5.8) and (5.9), we could define the optimality conditions for TD-LARS at any iteration 𝑡𝑡,

and for any 0 ≤ 𝜖𝜖𝑡𝑡 ≤ 1 as,

𝜱𝜱𝐼𝐼𝑡𝑡
𝑇𝑇 �𝜱𝜱vec�𝒳𝒳�𝑡𝑡� − vec(𝒴𝒴)� + 𝜖𝜖𝑡𝑡𝒖𝒖𝐼𝐼𝑡𝑡 = −λ𝒛𝒛𝑡𝑡 (5. 10)

Ishan Wickramasingha

76

�𝜱𝜱𝐼𝐼𝑡𝑡
𝑐𝑐

𝑇𝑇 �𝜱𝜱vec�𝒳𝒳�𝑡𝑡� − vec(𝒴𝒴)� + 𝜖𝜖𝑡𝑡𝒖𝒖𝐼𝐼𝑡𝑡
𝑐𝑐� ≤ λ (5. 11)

Where 𝒳𝒳�𝑡𝑡 is the optimal solution, 𝒛𝒛𝑡𝑡 = sign �vec�𝒳𝒳�𝑡𝑡��, 𝐼𝐼𝑡𝑡 denotes the active set, and 𝐼𝐼𝑡𝑡
𝑐𝑐 denotes

the inactive set at any iteration 𝑡𝑡.

TD-LARS starts at, 𝑡𝑡 = 0, 𝜖𝜖𝑡𝑡 = 1, 𝒳𝒳 = 𝒳𝒳� and the active set 𝐼𝐼. At 𝜖𝜖𝑡𝑡 = 1 the initial optimum

solution 𝒳𝒳� should satisfy the optimality conditions in (5.10) and (5.11). Therefore, for 𝒳𝒳� to

become the initial optimum solution of (5.6), we should define 𝒖𝒖 as,

 𝒖𝒖 = −𝜱𝜱𝑇𝑇 �𝜱𝜱vec�𝒳𝒳�� − vec(𝒴𝒴)� − λ𝒛𝒛� (5. 12)

Where 𝒛𝒛� = sign �vec�𝒳𝒳��� on the active set 𝐼𝐼 and zero everywhere else.

At each iteration 𝑡𝑡, we decrease 𝜖𝜖𝑡𝑡 by a small value 𝛿𝛿𝑡𝑡, and the optimal solution vec�𝒳𝒳�𝑡𝑡� is updated

by 𝛿𝛿𝑡𝑡𝒅𝒅𝑡𝑡 along a direction 𝒅𝒅𝑡𝑡,

�𝜱𝜱𝐼𝐼𝑡𝑡
𝑇𝑇 �𝜱𝜱vec�𝒳𝒳�𝑡𝑡� − vec(𝒴𝒴)� + 𝜖𝜖𝑡𝑡𝒖𝒖𝐼𝐼𝑡𝑡 + 𝛿𝛿𝑡𝑡�𝜱𝜱𝐼𝐼𝑡𝑡

𝑇𝑇 𝜱𝜱𝒅𝒅𝑡𝑡 − 𝒖𝒖𝐼𝐼𝑡𝑡�� = −λ𝒛𝒛𝑡𝑡 (5. 13)

�𝚽𝚽𝐼𝐼𝑡𝑡
𝑐𝑐

𝑇𝑇 �𝜱𝜱vec�𝒳𝒳�𝑡𝑡� − vec(𝒴𝒴)� + 𝜖𝜖𝑡𝑡𝒖𝒖𝐼𝐼𝑡𝑡
𝑐𝑐�����������������������

𝒑𝒑𝑡𝑡

+ 𝛿𝛿𝑡𝑡 �𝜱𝜱𝐼𝐼𝑡𝑡
𝑐𝑐

𝑇𝑇 𝜱𝜱𝒅𝒅𝑡𝑡 − 𝒖𝒖𝐼𝐼𝑡𝑡
𝑐𝑐������������

𝒗𝒗𝑡𝑡

� ≤ λ (5. 14)

We obtain the update direction 𝒅𝒅𝑡𝑡, by setting 𝜱𝜱𝐼𝐼𝑡𝑡
𝑇𝑇 𝜱𝜱𝒅𝒅𝑡𝑡 − 𝒖𝒖𝐼𝐼𝑡𝑡 = 0.

𝒅𝒅𝑡𝑡 = � 𝑮𝑮𝑡𝑡
−1𝒖𝒖𝐼𝐼𝑡𝑡 , on 𝐼𝐼

0, Otherwise
(5. 15)

where 𝑮𝑮𝑡𝑡
−1 is the inverse of the Gram matrix 𝑮𝑮𝑡𝑡 = �𝜱𝜱𝐼𝐼𝑡𝑡

𝑇𝑇 𝜱𝜱𝐼𝐼𝑡𝑡�. The size of this Gram matrix would

either increase (dictionary column addition) or decrease (dictionary column removal) with each

iteration 𝑡𝑡. Therefore, for computational efficiency, we use the Schur complement inversion

formula to calculate 𝑮𝑮𝑡𝑡
−1 from 𝑮𝑮𝑡𝑡−1

−1 , thereby avoiding its full calculation (See section 3.3.2.1).

The optimal solution vec�𝒳𝒳�𝑡𝑡� is moved in the direction 𝒅𝒅𝑡𝑡 until a condition in (5.10) and (5.11)

violates. If the condition in (5.11) is violated, an additional column of 𝜱𝜱𝐼𝐼𝑐𝑐 should be added to the

active set 𝐼𝐼; If the condition in (5.10) is violated an active column of 𝜱𝜱𝐼𝐼 must be removed.

Computationally Efficient Methods for Sparse Tensor Signal Processing

77

The smallest step size that would violate the condition in (5.11) is given by,

𝛿𝛿𝑡𝑡
+ = 𝑚𝑚𝑚𝑚𝑚𝑚

𝑖𝑖∈𝐼𝐼𝑐𝑐
�

λ − 𝒑𝒑𝑡𝑡(𝑖𝑖)
𝒗𝒗𝑡𝑡(𝑖𝑖) ,

−λ − 𝒑𝒑𝑡𝑡(𝑖𝑖)
𝒗𝒗𝑡𝑡(𝑖𝑖) � (5. 16)

The smallest step size that would violate condition in (5.10) is given by,

𝛿𝛿𝑡𝑡
− = 𝑚𝑚𝑚𝑚𝑚𝑚

𝑖𝑖∈𝐼𝐼
�−

𝒙𝒙�𝑡𝑡−1(𝑖𝑖)
𝒅𝒅𝑡𝑡(𝑖𝑖) � (5. 17)

Where 𝒙𝒙�𝑡𝑡−1 = vec�𝒳𝒳�𝑡𝑡−1�.

Therefore, 𝛿𝛿𝑡𝑡
∗ = min (𝛿𝛿𝑡𝑡

+, 𝛿𝛿𝑡𝑡
−), is the smallest step size that would violate one of the optimality

conditions given in (5.10) or (5.11). If 𝛿𝛿𝑡𝑡
∗ = 𝛿𝛿𝑡𝑡

+ an additional column 𝑖𝑖 ∈ 𝐼𝐼𝑐𝑐 is going to be added

to the active set 𝐼𝐼 and if 𝛿𝛿𝑡𝑡
∗ = 𝛿𝛿𝑡𝑡

− a column 𝑖𝑖 ∈ 𝐼𝐼 is removed from the active set 𝐼𝐼.

The solution 𝒳𝒳�𝑡𝑡 is updated as

vec�𝒳𝒳�𝑡𝑡� = vec�𝒳𝒳�𝑡𝑡−1� + 𝛿𝛿𝑡𝑡
∗𝒅𝒅𝑡𝑡 (5. 18)

𝜖𝜖𝑡𝑡+1 is updated as

𝜖𝜖𝑡𝑡+1 = 𝜖𝜖𝑡𝑡 − 𝛿𝛿𝑡𝑡
∗ (5. 19)

TD-LARS evaluate 𝒅𝒅𝑡𝑡 , and 𝛿𝛿𝑡𝑡
∗ for each iteration 𝑡𝑡 and update the solution 𝒳𝒳�𝑡𝑡 before continuing to

the next iteration. The TD-LARS algorithm stops when (𝜖𝜖𝑡𝑡 − 𝛿𝛿𝑡𝑡
∗) ≤ 0.

5.3.3. Tensor Dynamic Least Angle Regression Algorithm (TD-LARS)

Inputs to TD-LARS are the data tensor 𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽𝑛𝑛×…×𝐽𝐽𝑁𝑁, initial solution tensor 𝒳𝒳� ∈

ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁, mode-n dictionary matrices 𝜱𝜱(𝑛𝑛) ∈ ℝ𝐽𝐽𝑛𝑛×𝐼𝐼𝑛𝑛; 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁} where 𝜱𝜱 = 𝜱𝜱(𝑁𝑁) ⊗

⋯ ⊗ 𝜱𝜱(1), and the regularization parameter 𝜆𝜆. The output is the solution tensor 𝒳𝒳 ∈

ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁.

Ishan Wickramasingha

78

Algorithm 5.1 shows the complete TD-LARS algorithm using MATLAB notation.

Algorithm 5.1: Tensor Dynamic Least Angle Regression (TD-LARS)
Input: normalized Tensor 𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽𝑛𝑛×…×𝐽𝐽𝑁𝑁 ; initial solution 𝒳𝒳� ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁; 𝐿𝐿1
regularization parameter𝜆𝜆; normalized dictionary matrices 𝜱𝜱(𝑛𝑛) ∈ ℝ𝐽𝐽𝑛𝑛×𝐼𝐼𝑛𝑛; 𝑛𝑛 ∈ {1, . . 𝑁𝑁};

Initialization: Initial Residual: ℛ0 = �𝒳𝒳� ×1 𝜱𝜱(1) ×2 ⋯ ×𝑁𝑁 𝜱𝜱(𝑁𝑁) − 𝒴𝒴�; ε=1; active set: I =
{𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 �𝒳𝒳� ≠ 0�};
1. 𝒞𝒞1 = ℛ0 ×1 𝜱𝜱(1)𝑇𝑇

×2. . .×𝑛𝑛 𝜱𝜱(𝑛𝑛)𝑇𝑇
×𝑛𝑛+1. . .×𝑁𝑁 𝜱𝜱(𝑁𝑁)𝑇𝑇

2. 𝒄𝒄𝟏𝟏 = vec(𝒞𝒞1)

3. 𝒛𝒛 = �𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �vec�𝒳𝒳� �� , 𝑜𝑜𝑜𝑜 𝐼𝐼
0, 𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

4. 𝒖𝒖 = −𝒄𝒄𝟏𝟏 − 𝝀𝝀𝒛𝒛
5. 𝒙𝒙0 = vec�𝒳𝒳� �
6. for n=1 to N, do
7. 𝑮𝑮(𝑛𝑛) = 𝜱𝜱(𝑛𝑛)𝑇𝑇

𝜱𝜱(𝑛𝑛)

8. end for
9. 𝑮𝑮0

−1 = �𝜱𝜱𝐼𝐼
𝑻𝑻𝜱𝜱𝐼𝐼�−1

10. while 𝜀𝜀 > 0
11. 𝑮𝑮𝑡𝑡

−1 =updateInverseGramMatrix (𝑮𝑮𝑡𝑡−1
−1 , { 𝑮𝑮(𝟏𝟏), . . . , 𝑮𝑮(𝑁𝑁)}, I, add_column, column_idx)

% See section 3.3.2.1 [18]
12. 𝒅𝒅𝐼𝐼𝑡𝑡 = 𝑮𝑮𝑡𝑡

−1𝒖𝒖𝐼𝐼𝑡𝑡
13. vec(𝒟𝒟𝑡𝑡) = 𝒅𝒅𝑡𝑡
14. 𝒑𝒑𝑡𝑡 = 𝒄𝒄𝑡𝑡 + ε𝒖𝒖
15. 𝒬𝒬𝑡𝑡 = 𝒟𝒟𝑡𝑡 ×𝟏𝟏 𝑮𝑮(𝟏𝟏) ×𝟐𝟐 … ×𝒏𝒏 𝑮𝑮(𝑛𝑛) ×𝒏𝒏+𝟏𝟏 … ×𝑵𝑵 𝑮𝑮(𝑁𝑁)

16. 𝒒𝒒𝑡𝑡 = vec(𝒬𝒬𝑡𝑡)
17. 𝒗𝒗𝑡𝑡 = 𝒒𝒒𝑡𝑡 − 𝒖𝒖
18. 𝛿𝛿𝑡𝑡1

+ = (−𝜆𝜆 − 𝒑𝒑𝐼𝐼𝑡𝑡
𝑐𝑐)./𝒗𝒗𝐼𝐼𝑡𝑡

𝑐𝑐 % “./” - Elementwise division
19. 𝛿𝛿𝑡𝑡2

+ = (𝜆𝜆 − 𝒑𝒑𝐼𝐼𝑡𝑡
𝑐𝑐)./𝒗𝒗𝐼𝐼𝑡𝑡

𝑐𝑐

20. 𝛿𝛿𝑡𝑡
− = −𝒙𝒙𝐼𝐼𝑡𝑡−1 ./𝒅𝒅𝐼𝐼𝑡𝑡

21. [𝛿𝛿𝑡𝑡
∗, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖] = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝛿𝛿𝑡𝑡1

+ , 𝛿𝛿𝑡𝑡2
+ �

22. add_column == True
23. if min (𝛿𝛿𝑡𝑡

−) < 𝛿𝛿𝑡𝑡
∗

24. [𝛿𝛿𝑡𝑡
∗, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖]= min (𝛿𝛿𝑡𝑡

−)
25. add_column = False
26. end
27. 𝒙𝒙𝐼𝐼𝑡𝑡 = 𝒙𝒙𝐼𝐼𝑡𝑡−1 + 𝛿𝛿𝑡𝑡

∗𝒅𝒅𝐼𝐼𝑡𝑡
28. ε𝑡𝑡+1 = ε𝑡𝑡 − 𝛿𝛿𝑡𝑡

∗

29. 𝒄𝒄𝑡𝑡+1 = 𝒄𝒄𝑡𝑡 + 𝛿𝛿𝑡𝑡
∗𝒒𝒒𝑡𝑡

30. ℛ𝑡𝑡 = ℛ𝑡𝑡−1 + 𝛿𝛿𝑡𝑡
∗𝒟𝒟𝑡𝑡 ×1 𝜱𝜱(1) ×2 𝜱𝜱(2) ×3 ⋯ ×𝑁𝑁 𝜱𝜱(𝑁𝑁)

31. if add_column == True
32. I = I + {𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}
33. else
34. I = I – {𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}
35. end

Computationally Efficient Methods for Sparse Tensor Signal Processing

79

36. end while
37. vec(𝒳𝒳) = 𝒙𝒙
38. return I, 𝒳𝒳

5.4. Experimental Results

This section presents experimental results to compare the performance of the T-LARS and the TD-

LARS algorithms when used to obtain a sparse representation of 3D signals using overcomplete

mode-n dictionaries. When comparing, T-LARS starts at a solution 𝒳𝒳 = 0 and TD-LARS starts at

a nonzero initial solution 𝒳𝒳�.

For our computational experiments, we obtained two successive RGB video frames of a color

video with a frame rate of 30 frames/Sec. and two successive 3D MRI images from a sequence of

3D MRI images from publicly available datasets.

The two RGB video frames used in our experiments consist of 232 × 424 × 3 voxels, and they

are the first two frames of a video of an Acorn Woodpecker obtained from the VB100 Video Bird

Dataset [112].

The two 3D MRI images used in the experiments consist of 100 × 75 × 10 voxels, and they are

the corresponding sub-tensors of two successive 3D MRI images obtained from a sequence of 3D

MRI images (4DMRI dataset) of respiratory liver motion obtained from the computer vision

laboratory of ETH Zurich [113], [114].

We obtained our experimental results using a MATLAB implementation of TD-LARS and T-

LARS on an MS-Windows machine: 2 Intel Xeon CPUs E5-2637 v4, 3.5GHz, 32GB RAM, and

NVIDIA Tesla P100 GPU with 12GB memory.

5.4.1. Obtaining Sparse Representations of Successive RGB Video Frames Using

TD-LARS

In this experiment, we used TD-LARS to obtain the sparse representation of the RGB video frame

“Frame 2” by using the sparse representation of the previous RGB video frame “Frame 1,” and we

compared the performance with T-LARS, where Frame 1 and Frame 2 each consisted of

232 × 424 × 3 voxels.

Ishan Wickramasingha

80

For a given data tensor 𝒴𝒴, mode-n dictionaries 𝜱𝜱(𝑛𝑛) ∈ ℝ𝐽𝐽𝑛𝑛×𝐼𝐼𝑛𝑛; 𝑛𝑛 ∈ {1, . . 𝑁𝑁} and a regularization

parameter 𝜆𝜆, both T-LARS and TD-LARS should obtain the same 𝐿𝐿1 solution to (2). Therefore, to

compare the accuracy and speed of the 𝐿𝐿1 solutions obtained using TD-LARS and T-LARS, we

obtained the 𝐿𝐿1 solution of RGB video Frame 2 using TD-LARS and T-LARS for three fixed

mode-n overcomplete dictionaries, 𝜱𝜱(1) ∈ ℝ232×464, 𝜱𝜱(2) ∈ ℝ424×848 and 𝜱𝜱(3) ∈ ℝ3×4 and a

fixed regularization parameter 𝜆̂𝜆.

The mode-n dictionaries, 𝜱𝜱(1) and 𝜱𝜱(2) were a union of a Discrete Cosine Transform (DCT)

dictionaries and a Symlet wavelet packet with four vanishing moments dictionaries, and the mode-

n dictionary 𝜱𝜱(3) was a union of an Identity matrix with a dc column where each element is 1. The

regularization parameter 𝜆̂𝜆 was selected at the residual error ‖𝑅𝑅‖ = 0.02 of the 𝐿𝐿1 solution of

Frame 2.

Figure 5.1 a) and Figure 5.1 b) show the original RGB video Frame 1 and Frame 2, respectively.

Figure 5.1 c) shows the exaggerated difference between the original Frame 1 and original Frame

2, where 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 10 × (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 1 − 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 2). Figure 5.1 d) and Figure 5.1 e) show the

reconstructed Frame 1 and Frame 2, respectively, at the residual error ‖𝑅𝑅‖ = 0.02, using the 𝐿𝐿1

solutions obtained by T-LARS. Figure 5.1 e) shows the reconstructed Frame 2 obtained using TD-

LARS by using the 𝐿𝐿1 solution of Frame 1 as the initial solution.

Figure 5.2 a) shows the change of the parameter ε with iterations. At 𝜀𝜀 = 1, the TD-LARS solution

𝒳𝒳 is same as the 𝐿𝐿1 solution 𝒳𝒳� of Frame 1, and as ε goes to zero, the TD-LARS solution 𝒳𝒳 goes

to the 𝐿𝐿1 solution of Frame 2.

Figure 5.2 b) shows the residual error vs. ‖𝒳𝒳‖1, which is also called the Pareto curve [23]. As

shown in the Pareto curve, both 𝐿𝐿1 solutions of Frame 1 and Frame 2 are close. The zoomed graph

of Figure 5.2 b) shows the TD-LARS solution starts away from both Pareto curves of Frame 1 and

Frame 2 and reach the 𝐿𝐿1 solution of Frame 2, when the residual error reaches ‖𝑅𝑅‖ = 0.02. Figure

5.2 c) shows the number of iterations required to reach the residual error ‖𝑅𝑅‖ = 0.02, where T-

LARS took 8,385 iterations to obtain 8,166 active columns and 8,295 iterations to obtain 8,090

active columns for Frame 1 and Frame 2, respectively. TD-LARS only took 764 iterations to obtain

the 8090 active columns of the 𝐿𝐿1 solution of Frame 2 to reach the residual error ‖𝑅𝑅‖ = 0.02. As

shown in Figure 5.2 d), T-LARS took 215s and 211s to obtain the 𝐿𝐿1 solutions of Frame 1 and

Computationally Efficient Methods for Sparse Tensor Signal Processing

81

Frame 2, respectively, whereas TD-LARS obtained the 𝐿𝐿1 solution of Frame 2 in just 22s, which

is just 10% of the time it took for T-LARS to obtain the 𝐿𝐿1 solution of Frame 2.

Figure 5.1. a) Original RGB video Frame 1 b) Original RGB video Frame 2 c) The difference between the
original RGB video Frame 1 and the original RGB video Frame 2 d) T-LARS reconstructed RGB video
Frame 1 e) T-LARS reconstructed RGB video Frame 2 f) TD-LARS reconstructed RGB video Frame 2

Figure 5.2. a) ε vs. the number of iterations b) Residual error vs. ‖𝒳𝒳‖1 c) Residual error vs. number of
iterations d) Residual error vs. computation time (Sec.), obtained by applying T-LARS and TD-LARS to
our RGB video Frame 1 and Frame 2

Ishan Wickramasingha

82

5.4.2. Obtaining Sparse Representations of Successive 3D MRI Images Using the

TD-LARS

In this experiment, we used TD-LARS to obtain the sparse representation of the 3D MRI Image

“3D MRI Image 2” by using the 𝐿𝐿1 solution of the previous 3D MRI Image “3D MRI Image 1” as

the initial solution and compared the performance with T-LARS, where 3D MRI Image 1 and 3D

MRI Image 2 each consisted of 100 × 75 × 10 voxels.

To compare the accuracy and speed of the 𝐿𝐿1 solutions obtained using TD-LARS and T-LARS,

we obtained the 𝐿𝐿1 solution of the 3D MRI Image 2 using TD-LARS and T-LARS for three fixed

mode-n overcomplete dictionaries, 𝜱𝜱(1) ∈ ℝ100×204, 𝜱𝜱(2) ∈ ℝ75×155 and 𝜱𝜱(3) ∈ ℝ10×26 and a

fixed regularization parameter 𝜆̂𝜆.

The mode-n dictionaries, 𝜱𝜱(1), 𝜱𝜱(2) and 𝜱𝜱(3) were a union of Discrete Cosine Transform (DCT)

dictionaries and a Symlet wavelet packet with four vanishing moments dictionaries. The

regularization parameter 𝜆̂𝜆 was selected at the residual error ‖𝑅𝑅‖ = 0.075 of the 𝐿𝐿1 solution of

Frame 2.

Figure 5.3 a) and Figure 5.3 b) show the original 3D MRI Image 1 and 3D MRI Image 2. Figure

5.3 c) shows the difference between the original 3D MRI Image 1 and the original 3D MRI Image

2. Figure 5.3 c) shows a significant difference between the original 3D MRI Image 1 and the

original 3D MRI Image 2. Figure 5.3 d) and Figure 5.3 e) show the reconstructed 3D MRI Image

1 and 3D MRI Image 2, respectively, at the residual error ‖𝑅𝑅‖ = 0.075, using 𝐿𝐿1 solutions

obtained by T-LARS. Figure 5.3 e) shows the reconstructed 3D MRI Image 2 obtained using TD-

LARS by using the 𝐿𝐿1 solution of the 3D MRI Image 1 as the initial solution.

Figure 5.4 a) shows the change of the parameter ε with iterations. At 𝜀𝜀 = 1, the TD-LARS solution

𝒳𝒳 is same as the 𝐿𝐿1 solution 𝒳𝒳� of the 3D MRI Image 1, and as ε goes to zero, the TD-LARS

solution 𝒳𝒳 goes to the 𝐿𝐿1 solution of the 3D MRI Image 2.

Computationally Efficient Methods for Sparse Tensor Signal Processing

83

Figure 5.3. a) Original 3D MRI Image 1 b) Original 3D MRI Image 2 c) The difference between the original
3D MRI Image 1 and the original 3D MRI Image 2 d) T-LARS reconstructed 3D MRI Image 1 e) T-LARS
reconstructed 3D MRI Image 2 f) TD-LARS reconstructed 3D MRI Image 2

Figure 5.4. a) ε vs. the number of iterations b) Residual error vs. ‖𝒳𝒳‖1 c) Residual error vs. number of
iterations d) Residual error vs. computation time (Sec.), obtained by applying T-LARS and TD-LARS to
our 3D MRI Image 1 and 2

Ishan Wickramasingha

84

Figure 5.4 b) shows the residual error vs. ‖𝒳𝒳‖1, which is also called the Pareto curve [23]. The

zoomed graph of Figure 5.4 b) shows the TD-LARS solution starts further away from the Pareto

curves of the 3D MRI Images and reach the 𝐿𝐿1 solution of 3D MRI Image 2, when the residual

error reaches ‖𝑅𝑅‖ = 0.075. Figure 5.4 c) shows the number of iterations required to reach the

residual error ‖𝑅𝑅‖ = 0.075, where T-LARS took 18,246 iterations to obtain 16,381 active

columns and 18,197 iterations to obtain 16,372 active columns for the 3D MRI Image 1, and 3D

MRI Image 2, respectively. TD-LARS took 14,882 iterations to obtain the 16,372 active columns

of the 𝐿𝐿1 solution of the 3D MRI Image 2 to reach the residual error ‖𝑅𝑅‖ = 0.075. As shown in

Figure 5.4 d), T-LARS took 686s and 691s to obtain the 𝐿𝐿1 solution of the 3D MRI Image 1 and

3D MRI Image 2, respectively, whereas TD-LARS took 990s to obtain the 𝐿𝐿1 solution of the 3D

MRI Image 2.

Even though TD-LARS required 18% fewer iterations than T-LARS to obtain the 𝐿𝐿1 solution of

the 3D MRI Image 2, TD-LARS required an additional 299s, which is 43% more than the time

required by T-LARS. T-LARS starts with an empty active set, and the size of the active set

increases with iterations, whereas TD-LARS starts with a large active set. Therefore, TD-LARS

required more time than T-LARS to obtain the 𝐿𝐿1 solution of the 3D MRI Image 2.

Figure 5.3 c) shows a significant difference between the 3D MRI Image 1 and 3D MRI Image 2.

Therefore, when the two 𝐿𝐿1 solutions are not close, TD-LARS requires a significant amount of

computation time compared to T-LARS to obtain the 𝐿𝐿1 solution.

5.5. Conclusions

Our Tensor Dynamic Least Angle Regression (TD-LARS) algorithm is a multilinear

generalization of the one-dimensional L1-Homotopy algorithm developed by Asif & Romberg to

efficiently solve multilinear L1 minimization problems by using a nonzero initial solution. By

initializing TD-LARS with a close solution, we could obtain the desired solution to an L1

constrained multilinear least-squares problem more efficiently than solving it using T-LARS.

For experimental results, we obtained a sparse multilinear representation of an RGB video frame

and a 3D MRI Image using TD-LARS by initializing with the L1 solution of the previous video

frame and the previous 3D MRI Image in a sequence, respectively. Experimental results show that

Computationally Efficient Methods for Sparse Tensor Signal Processing

85

the TD-LARS solution starts away from the Pareto curves of the respective L1 minimization

problems and reaches the Pareto curve when the gradient is equal to the respective regularization

parameter 𝜆̂𝜆.

The normalized difference between the two original RGB video frames is much smaller, at 0.0047,

compared to the normalized difference between the two 3D MRI Images, which is 0.0709.

Therefore, TD-LARS obtains the L1 solution of the video frame “Frame 2” much faster than T-

LARS, where TD-LARS just took 10% of the time taken for T-LARS. However, TD-LARS

required 43% more time than T-LARS to obtain the L1 solution of the 3D MRI Image 2, even if it

obtained the solution in 18% fewer iterations. Usually, TD-LARS starts with a large active set,

and T-LARS starts with an empty active set and increases its size with iterations. Therefore, TD-

LARS requires significantly more time than T-LARS to run an equal number of iterations.

Therefore, TD-LARS requires more iterations and computation time than T-LARS to obtain the

L1 solution of a multilinear L1 minimization problem when the normalized difference between the

images increases.

However, when the two problems are close, like in the video frames example, TD-LARS could be

used to obtain the solutions of L1 constrained multilinear least-squares problems much more

efficiently than any other available method. Therefore, TD-LARS will have applications in

multiple areas, including sparse representation of multi-dimensional streaming signals, video

encoding, transfer learning in regression, and parameter transfer in dictionary learning.

Ishan Wickramasingha

86

Chapter 6

6. Tensor Elastic Net (T-NET)

A sparse representation of a multi-dimensional signal could be obtained efficiently by solving

either L0 or L1 constrained sparse multilinear least-squares problem using the Tensor Least Angle

Regression (T-LARS) [18] algorithm developed in chapter 3. The L0 minimization problem is

nonconvex, and the slightly relaxed L1 minimization problem is convex. Even though the L2

minimization problem is strictly convex, the L2 solution is not sparse. Zou and Hastie proposed

the Elastic Net formulation [27], [28] to obtain sparse solutions to one-dimensional problems by

solving strictly convex L1 and L2 constrained sparse linear least-squares problems. The one-

dimensional Elastic Net problems could be easily solved using Least Angle Regression(LARS)

[15]. This chapter proposes a multilinear Elastic Net (multi-dimensional) formulation by extending

the Elastic Net (one-dimensional) to solve the strictly convex L1, and L2 constrained sparse

multilinear least-squares problems. However, the dictionary in the multilinear Elastic Net problem

has a partitioned Kronecker structure, which could not be efficiently solved using T-LARS.

Therefore, in this chapter, we develop the Tensor Elastic Net (T-NET) algorithm to efficiently

solve the multilinear Elastic Net problem using the partitioned Kronecker structure of the

dictionary matrix.

6.1. Introduction

A sparse signal representation could be obtained by solving a 𝐿𝐿0 constrained sparse least-squares

problem, which is a nonconvex problem [12], [13]. Lasso, also known as Basis Pursuit (BP) [14],

[25], solves a relaxed 𝐿𝐿1 constrained least-squares problem, which is a convex problem, to obtains

a sparse signal representation. Efron et al. introduced Least Angle Regression (LARS) [15], a

computationally efficient method to solve both 𝐿𝐿0 and with a slight modification 𝐿𝐿1 constrained

Computationally Efficient Methods for Sparse Tensor Signal Processing

87

least-squares problems. Even though, Ridge Regression, solves a strictly convex 𝐿𝐿2 constrained

least-squares problems, it could not be used to obtain a sparse signal representation [26].

Basis pursuit, which solves the 𝐿𝐿1 constrained least-squares problem selects a single nonzero

coefficient from a group of highly correlated coefficients. For a 𝑛𝑛 dimensional signal, Basis

pursuit could only select at most 𝑛𝑛 coefficients due to the nature of the convexity of 𝐿𝐿1 constrained

least-squares problems. To obtain an accurate sparse signal representation, solutions of both 𝐿𝐿0

and 𝐿𝐿1 constrained least-squares problems could select at most 𝑆𝑆 < (1 + 𝜇𝜇−1) 2⁄ nonzero

coefficients, where S is the sparsity and 𝜇𝜇 is the coherence of the dictionary [73]. Therefore, as the

coherence of the dictionary increases, the number of nonzero coefficients that could be selected

for a sparse signal representation decreases.

Zou and Hastie developed the Elastic Net to improve the performance of 𝐿𝐿1 constrained least-

squares problems by adding an additional 𝐿𝐿2 constraint [27], [28]. Elastic Net solves a strictly

convex problem to obtain a sparse solution when both regularization coefficients of 𝐿𝐿1 and 𝐿𝐿2 are

nonzero. Elastic Net selects all the coefficients from a group of highly correlated coefficients, and

it could also obtain more than 𝑛𝑛 nonzero coefficients for a 𝑛𝑛 dimensional signal. However, due to

the group selection, for a given residual error, the Elastic Net usually includes more nonzero

coefficients than 𝐿𝐿0 and 𝐿𝐿1 minimization problems. Therefore, the Elastic Net is an important tool

to obtain a sparse representation of a signal when the number of atoms in the dictionary is much

higher than the signal's dimension. Elastic Net problems could be easily solved using the LARS

algorithm [28].

Sparse representations of multi-dimensional signals are simpler and easier to obtain using

separable dictionaries than non-separable dictionaries [16], [72]. Caiafa and Cichocki introduced

Kronecker-OMP, a generalization of OMP, to represent multi-dimensional signals, using separable

dictionaries, by solving a nonconvex L0 constrained sparse tensor least-squares problem [16].

Elrewainy and Sherif developed the Kronecker Least Angle Regression (K-LARS) algorithm to

efficiently solve either large L0 or large L1 sparse least-squares problems (overdetermined) with a

Kronecker form 𝑨𝑨 ⊗ 𝑰𝑰, for all critical values of the regularization parameter λ. By extending K-

LARS, authors have previously developed Tensor Least angle Regression (T-LARS) [18] in

chapter 3, a generalization of LARS, to solve large L0 or large L1 constrained, sparse tensor least-

Ishan Wickramasingha

88

squares problems (underdetermined or overdetermined) for all critical values of the regularization

parameter λ and with lower computational complexity and memory usage than Kronecker-OMP.

Usually, a small dictionary has a higher coherence than a large dictionary for the same frame.

Therefore, a Kronecker dictionary, a Kronecker product of smaller dictionaries, has a higher

coherence than a non-Kronecker dictionary of the same size for the same frame [115]. Therefore,

a sparse signal representation of a multi-dimensional signal would be obtained more efficiently

and accurately by solving a multilinear Elastic Net problem with both L1 and L2 constraints.

The dictionary matrix in a multilinear Elastic Net problem does not have a Kronecker structure.

Therefore multilinear Elastic Net problems could not be efficiently solved with T-LARS.

However, as shown in section 6.2, the dictionary matrix in the multilinear Elastic Net problem has

a partitioned Kronecker structure. Therefore, in this chapter, we develop the Tensor Elastic Net

(T-NET) algorithm by exploiting the partitioned Kronecker structure of the dictionary matrix to

solve multilinear Elastic Net problems efficiently.

T-LARS could be used to solve a multilinear generalization of a LASSO-based regression model

[25], [116], and similar to LASSO, it could be a poor variable selection(feature selection in

machine Learning) method for tensor regression models with highly coherent predictor variables.

Also, LASSO-based regression models could not select all the variables from a group of highly

correlated variables and more than 𝑁𝑁 predictor variables for a tensor with 𝑁𝑁 elements. Therefore,

T-NET allows obtaining robust solutions with better statistical properties to sparse tensor signal

representation problems and tensor regression problems than T-LARS. Therefore, T-NET could

be used to obtain optimum sparse signal representations of large multidimensional signals such as

3D/4D biomedical images, videos, satellite images, hyperspectral images using large over

complete mode-n dictionaries with high coherence. T-NET also allows better convergence when

used in the sparse coding step of the tensor dictionary learning algorithms such as the Tensor

Method of Optimal Directions(T-MOD) and Kronecker Higher-Order SVD(K-HOSVD) [30] than

T-LARS.

This chapter is organized as follows: In Section 6.2, we describe the problem formulation, Tensor

Elastic Net Formulation, and the Tensor Elastic Net algorithm. Section 6.3 provides experiment

results of applying both T-NET and T-LARS to a sparse multi-dimensional signal representation

problem. We present our conclusions in Section 6.4.

Computationally Efficient Methods for Sparse Tensor Signal Processing

89

6.2. Tensor Elastic Net

6.2.1. Problem Formulation

The Elastic Net [28] minimizes a linear least-squares problem with both 𝐿𝐿1 and 𝐿𝐿2 constraints.

Similarly, we can define a multilinear Elastic Net to obtain a sparse tensor solution 𝒳𝒳� by

minimizing a multilinear least-squares problem with both 𝐿𝐿1 and 𝐿𝐿2 constraints.

𝒳𝒳� = argmin
𝒳𝒳

�𝒴𝒴 − 𝒳𝒳 ×1 𝜱𝜱(1) ×2 ⋯ ×𝑁𝑁 𝜱𝜱(𝑁𝑁)�
2
2

+ 𝛾𝛾1‖𝒳𝒳‖1 + 𝛾𝛾2‖𝒳𝒳‖2
2 (6. 1)

where 𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁 , 𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽𝑛𝑛×…×𝐽𝐽𝑁𝑁, mode-n dictionary matrices 𝜱𝜱(𝑛𝑛) ∈

ℝ𝐽𝐽𝑛𝑛 × 𝐼𝐼𝑛𝑛; 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁}. 𝛾𝛾1 and 𝛾𝛾2 are regularization parameters for 𝐿𝐿1 and 𝐿𝐿2 constraints,

respectively.

We could write the equivalent vector formulation of (6.1) as,

𝒳𝒳� = argmin
𝒳𝒳�

 ‖vec(𝒴𝒴) − 𝜱𝜱vec(𝒳𝒳) ‖2
2 + 𝛾𝛾1‖vec(𝒳𝒳)‖1 + 𝛾𝛾2‖vec(𝒳𝒳)‖2

2 (6. 2)

where 𝜱𝜱 = 𝜱𝜱(𝑁𝑁) ⊗ ⋯ ⊗ 𝜱𝜱(1) is a separable dictionary.

Let

 𝜳𝜳 = 1
�1+𝛾𝛾2

� 𝜱𝜱
√𝛾𝛾2 𝑰𝑰� (6. 3)

And

vec(𝒴𝒴∗) = �vec(𝒴𝒴)
𝟎𝟎

� (6. 4)

Where 𝜳𝜳 ∈ ℝ(𝐽𝐽1×…×𝐽𝐽𝑁𝑁+𝐼𝐼1×…×𝐼𝐼𝑁𝑁)×(𝐼𝐼1×…×𝐼𝐼𝑁𝑁) is a partitioned dictionary matrix, 𝑰𝑰 ∈

ℝ(𝐼𝐼1×…×𝐼𝐼𝑁𝑁)×(𝐼𝐼1×…×𝐼𝐼𝑁𝑁) is an identity matrix, vec(𝒴𝒴∗) ∈ ℝ(𝐽𝐽1…𝐽𝐽𝑁𝑁+𝐼𝐼1…𝐼𝐼𝑁𝑁) and 𝟎𝟎 ∈ ℝ𝐼𝐼1…𝐼𝐼𝑁𝑁 is a zero

vector.

Therefore, we can reformulate (6.2) as,

𝒳𝒳�∗ = argmin
𝒳𝒳∗

‖vec(𝒴𝒴∗) − 𝜳𝜳vec(𝒳𝒳∗) ‖2
2 + 𝜆𝜆‖vec(𝒳𝒳∗)‖1 (6. 5)

Where 𝜆𝜆 = 𝛾𝛾1

�1+𝛾𝛾2
.

Ishan Wickramasingha

90

The Elastic Net solution 𝒳𝒳� is given by

 𝒳𝒳� = �1 + 𝛾𝛾2 𝒳𝒳�∗ (6. 6)

Equation (6.5) is a vector 𝐿𝐿1 minimization problem, which can be solved using LARS [15].

We introduced Tensor Least Angle Regression (T-LARS) [18] in chapter 3, which is a

computationally efficient algorithm to solve multilinear 𝐿𝐿1 minimization problems with a

separable dictionary 𝜱𝜱. However, the matrix 𝜳𝜳 in (6.5) is a nonseparable partitioned matrix,

which does not have a Kronecker structure. Therefore, both T-LARS and LARS are

computationally inefficient at solving the 𝐿𝐿1 minimization problem in (6.5) because they require

to construct large matrices such as the dictionary matrix 𝜳𝜳.

However, both the matrices 𝜱𝜱 and 𝑰𝑰 in the partitioned matrix 𝜳𝜳 are individually separable.

Therefore, in this chapter, we extend T-LARS to develop the Tensor Elastic Net (T-NET)

algorithm to solve the multilinear Elastic Net problem in (6.5) efficiently, by using the partitioned

Kronecker structure of 𝜳𝜳, without constructing large matrices.

6.2.2. Tensor Elastic Net Formulation

Tensor Elastic Net (T-NET) is an extension of the Tensor Least Angle Regression (T-LARS) to

solve the multilinear Elastic Net problem in (6.5) using tensors and multilinear algebra. T-NET

does not construct large matrices such as the partitioned dictionary, 𝜳𝜳, which is required in solving

(6.5) using LARS [15] or T-LARS [18] developed in chapter 3. Instead, T-NET uses much smaller

mode-n dictionaries 𝜱𝜱(n); 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁} for calculations.

Inputs to T-NET are the data tensor 𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽𝑛𝑛×…×𝐽𝐽𝑁𝑁, mode-n dictionary matrices 𝜱𝜱(𝑛𝑛); 𝑛𝑛 ∈

{1, ⋯ , 𝑁𝑁} where 𝜱𝜱 = 𝜱𝜱(𝑁𝑁) ⊗ ⋯ ⊗ 𝜱𝜱(1), 𝐿𝐿2 regularization parameter 𝛾𝛾2, and the stopping

criterion as a residual tolerance 𝜀𝜀 or the maximum number of non-zero coefficients 𝐾𝐾 (K-sparse

representation). The output is the Elastic Net solution tensor 𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁.

T-NET requires data tensor 𝒴𝒴, and columns of each dictionary 𝜱𝜱(𝑛𝑛); 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁} to have a unit

𝐿𝐿2 norm. Note that normalizing columns of each dictionary 𝜱𝜱(𝑛𝑛); 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁} ensure

normalization of the separable dictionary 𝜱𝜱. For notational simplicity in the following sections,

Computationally Efficient Methods for Sparse Tensor Signal Processing

91

we will use 𝒴𝒴 to represent the normalized tensor and 𝜱𝜱(𝑛𝑛) to represent normalized mode-n

dictionary matrices.

T-NET solves the 𝐿𝐿1 constrained minimization problems in (6.5) for all critical values of the

regularization parameter λ. T-NET starts with a large value of λ, which results in an empty active

set 𝐼𝐼 = {}, and a solution 𝒳𝒳�𝑡𝑡=0
∗ = 0. The set 𝐼𝐼 denotes an active set of columns of the dictionary

𝜳𝜳, i.e., column indices where the optimal solution 𝒳𝒳�𝑡𝑡
∗ at iteration 𝑡𝑡, is nonzero, and 𝐼𝐼𝑐𝑐 denotes its

corresponding inactive set. Therefore, 𝜳𝜳𝐼𝐼 contains only the active columns of the dictionary 𝜳𝜳

and 𝜳𝜳𝐼𝐼𝑐𝑐 contains only its inactive columns.

At each iteration 𝑡𝑡, a new column is either added or removed from the active set 𝐼𝐼, and λ is reduced

by a calculated value 𝛿𝛿𝑡𝑡
∗. As a result of such iterations, new solutions with an increased number of

coefficients that follow a piecewise linear path are obtained until a predetermined residual error 𝜀𝜀

or a predetermined number of active columns 𝐾𝐾 is obtained.

The regularization parameter λ is initialized to the maximum of the correlation 𝒄𝒄1, between the

columns of 𝜳𝜳 and the initial residual ℛ0
∗ = 𝒴𝒴∗.

𝒄𝒄1 = 𝜳𝜳𝑇𝑇vec(ℛ0
∗) =

1

�1 + 𝛾𝛾2
�𝜱𝜱𝑇𝑇|�𝛾𝛾2 𝑰𝑰� �vec(𝒴𝒴)

𝟎𝟎
� (6. 7)

Therefore,

 𝒄𝒄1 =
1

�1 + 𝛾𝛾2
𝜱𝜱𝑇𝑇vec(𝒴𝒴) (6. 8)

Since 𝜱𝜱𝑇𝑇 is a Kronecker matrix, we could easily calculate the initial correlation 𝒄𝒄1 using the full

multilinear product as

𝒞𝒞1 =
1

�1 + 𝛾𝛾2
𝒴𝒴 ×1 𝜱𝜱(1)𝑇𝑇

×2 ⋯ ×𝑁𝑁 𝜱𝜱(𝑁𝑁)𝑇𝑇 (6. 9)

Where 𝒄𝒄1 = vec(𝒞𝒞1). The column index corresponding to the maximum correlation 𝒄𝒄1 is added to

the active set 𝐼𝐼.

For a given active set 𝐼𝐼, the optimal solution 𝒳𝒳�𝑡𝑡
∗ at any iteration 𝑡𝑡, could be written as

Ishan Wickramasingha

92

vec�𝒳𝒳�𝑡𝑡
∗� = ��𝜳𝜳𝐼𝐼𝑡𝑡

𝑇𝑇 𝜳𝜳𝐼𝐼𝑡𝑡�
−1

�𝜳𝜳𝐼𝐼𝑡𝑡
𝑇𝑇 vec(𝒴𝒴∗) − 𝜆𝜆𝑡𝑡𝒛𝒛𝑡𝑡�, 𝑜𝑜n 𝐼𝐼

0, Otherwise
(6. 10)

where, 𝜆𝜆𝑡𝑡 is the regularization parameter 𝜆𝜆 at iteration 𝑡𝑡, 𝒛𝒛𝑡𝑡 is the sign sequence of 𝒄𝒄𝑡𝑡 on the active

set 𝐼𝐼, and 𝒄𝒄𝑡𝑡 = 𝜳𝜳𝑇𝑇vec(ℛ𝑡𝑡−1
∗) is the correlation vector between the columns of the dictionary 𝜳𝜳

and the residual vec(ℛ𝑡𝑡−1
∗) at any iteration t.

The optimal solution at any iteration, 𝑡𝑡 must satisfy the following two optimality conditions,

𝜳𝜳𝐼𝐼𝑡𝑡
𝑇𝑇 vec(ℛ𝑡𝑡

∗) = −𝜆𝜆𝑡𝑡𝒛𝒛𝑡𝑡 (6. 11)

�𝜳𝜳𝐼𝐼𝑡𝑡
𝑐𝑐

𝑇𝑇 vec(ℛ𝑡𝑡
∗) �

∞
 ≤ 𝜆𝜆𝑡𝑡 (6. 12)

where, vec(ℛ𝑡𝑡
∗) = vec(𝒴𝒴∗) − 𝜳𝜳vec�𝒳𝒳�𝑡𝑡

∗� is the residual at iteration 𝑡𝑡, and 𝒛𝒛𝑡𝑡 is the sign sequence

of the correlation 𝒄𝒄𝑡𝑡 at iteration 𝑡𝑡, on the active set 𝐼𝐼.

The condition in (6.11) ensures that the magnitude of the correlation between all active columns

of 𝜳𝜳 and the residual is equal to |𝜆𝜆𝑡𝑡| at each iteration 𝑡𝑡, and the condition in (6.12) ensures that

the magnitude of the correlation between the inactive columns of 𝜳𝜳 and the residual is less than

or equal to |𝜆𝜆𝑡𝑡|.

At each iteration 𝑡𝑡, 𝜆𝜆𝑡𝑡 is reduced by a small step size 𝛿𝛿𝑡𝑡
∗, until a condition in either (6.11) or

(6.12) violates. If an active column violates the condition (6.11), it is removed from the active

set, and if an inactive column violates the condition (6.12), it is added to the active set.

As 𝜆𝜆𝑡𝑡 is reduced by 𝛿𝛿𝑡𝑡
∗, the solution 𝒳𝒳�𝑡𝑡

∗ change by 𝛿𝛿𝑡𝑡
∗𝒅𝒅𝑡𝑡 along a direction 𝒅𝒅𝑡𝑡, where 𝒅𝒅𝐼𝐼𝑡𝑡

𝑐𝑐 = 0 and

𝒅𝒅𝐼𝐼𝑡𝑡 = 𝑮𝑮𝑡𝑡
−1𝒛𝒛𝑡𝑡. Matrix 𝑮𝑮𝑡𝑡

−1 is the inverse of the Gram matrix of the active columns of the dictionary

𝑮𝑮𝑡𝑡 = 𝜳𝜳𝐼𝐼𝑡𝑡
𝑇𝑇 𝜳𝜳𝐼𝐼𝑡𝑡.

The size of the Gram matrix would either increase (dictionary column addition) or decrease

(dictionary column removal) with each iteration 𝑡𝑡. Therefore, for computational efficiency, we use

the Schur complement inversion formula, similar to T-LARS, to calculate 𝑮𝑮𝑡𝑡
−1 from 𝑮𝑮𝑡𝑡−1

−1 thereby

avoiding its full calculation [18], [101]. See Appendix E.1 for updating the inverse of the Gram

matrix using the Schur complement inversion formula.

Computationally Efficient Methods for Sparse Tensor Signal Processing

93

The smallest step size 𝛿𝛿𝑡𝑡
∗ = min {𝛿𝛿𝑡𝑡

+, 𝛿𝛿𝑡𝑡
−} is the minimum of 𝛿𝛿𝑡𝑡

+, minimum step size for adding a

column, and 𝛿𝛿𝑡𝑡
−, minimum step size for removing a column. The minimum step size for removing

a column from the active set is given by,

𝛿𝛿𝑡𝑡
− = min

𝑖𝑖∈𝐼𝐼
�−

𝒙𝒙𝑡𝑡−1(𝑖𝑖)
𝒅𝒅𝑡𝑡(𝑖𝑖) � (6. 13)

Where 𝒙𝒙𝑡𝑡−1 = vec�𝒳𝒳�𝑡𝑡−1
∗ �. The minimum step size for adding a new column to the active set is

given by,

𝛿𝛿𝑡𝑡
+ = min

𝑖𝑖∈𝐼𝐼𝑐𝑐
�

𝜆𝜆𝑡𝑡 − 𝒄𝒄𝑡𝑡(𝑖𝑖)
1 − 𝒗𝒗𝑡𝑡(𝑖𝑖) ,

𝜆𝜆𝑡𝑡 + 𝒄𝒄𝑡𝑡(𝑖𝑖)
1 + 𝒗𝒗𝑡𝑡(𝑖𝑖) � (6. 14)

where

𝒗𝒗𝑡𝑡 = 𝜳𝜳𝑇𝑇𝜳𝜳𝒅𝒅𝑡𝑡 = 1
1+𝛾𝛾2

(𝜱𝜱𝑇𝑇𝜱𝜱𝒅𝒅𝑡𝑡 + 𝛾𝛾2𝒅𝒅𝑡𝑡) (6. 15)

This vector 𝒗𝒗𝑡𝑡 could be efficiently obtained as a multilinear transformation of the direction tensor

𝒟𝒟t by mode-n Gram matrices 𝑮𝑮(𝑛𝑛) = 𝜱𝜱(𝑛𝑛)𝑇𝑇
𝜱𝜱(𝑛𝑛); 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁}.

𝒱𝒱t =
1

1 + 𝛾𝛾2
�𝒟𝒟t ×1 𝑮𝑮(1) ×2 … ×𝑁𝑁 𝑮𝑮(𝑁𝑁) + 𝛾𝛾2𝒟𝒟t� (6. 16)

Where 𝒗𝒗𝑡𝑡 = vec(𝒱𝒱t) and vec(𝒟𝒟t) = 𝒅𝒅𝑡𝑡. The correlation vector 𝒄𝒄𝒕𝒕 at iteration 𝑡𝑡, is 𝒄𝒄𝒕𝒕 =

𝜳𝜳𝑇𝑇vec(ℛ𝑡𝑡−1
∗), where (ℛ𝑡𝑡−1

∗) is the residual tensor from the previous iteration. Since vec(ℛ𝑡𝑡−1
∗) =

vec(ℛ𝑡𝑡−2
∗) − 𝛿𝛿𝑡𝑡−1

∗ 𝜳𝜳𝑡𝑡−1𝒅𝒅𝑡𝑡−1,

 𝒄𝒄𝒕𝒕 = 𝜳𝜳𝑇𝑇vec(ℛ𝑡𝑡−2
∗) − 𝛿𝛿𝑡𝑡−1

∗ 𝜳𝜳𝑇𝑇𝜳𝜳𝒅𝒅𝑡𝑡−1 (6. 17)

We could update the correlation vector 𝒄𝒄𝒕𝒕 by

𝒄𝒄𝒕𝒕 = 𝒄𝒄𝑡𝑡−1 − 𝛿𝛿𝑡𝑡−1
∗ 𝒗𝒗𝑡𝑡−1 (6. 18)

At the end of each iteration T-NET update 𝒳𝒳�𝑡𝑡
∗, 𝜆𝜆𝑡𝑡+1 using the following equations

𝒳𝒳�𝑡𝑡
∗ = 𝒳𝒳�𝑡𝑡−1

∗ + 𝛿𝛿𝑡𝑡
∗𝒟𝒟t (6. 19)

𝜆𝜆𝑡𝑡+1 = 𝜆𝜆𝑡𝑡 − 𝛿𝛿𝑡𝑡
∗ (6. 20)

Ishan Wickramasingha

94

T-NET stops at a predetermined residual error ‖ℛ𝑡𝑡‖2 < 𝜀𝜀 or when a predetermined number of

active columns 𝐾𝐾 is obtained, where the Elastic Net residual tensor ℛ𝑡𝑡 for the Elastic Net solution

𝒳𝒳�𝑡𝑡 is given by, ℛ𝑡𝑡 = 𝒴𝒴 − 𝒳𝒳�𝑡𝑡 ×1 𝜱𝜱(1) ×2 ⋯ ×𝑁𝑁 𝜱𝜱(𝑁𝑁). Therefore, the residual tensor ℛ𝑡𝑡 could be

easily obtained using,

ℛ𝑡𝑡 = ℛ𝑡𝑡−1 − 𝛿𝛿𝑡𝑡
∗𝒟𝒟𝑡𝑡 ×1 𝜱𝜱(1) ×2 𝜱𝜱(2) ×3 ⋯ ×𝑁𝑁 𝜱𝜱(𝑁𝑁) (6. 21)

For a normalized tensor 𝒴𝒴 and column normalized mode-n dictionaries 𝜱𝜱(𝑛𝑛), the 𝐿𝐿2 norm of the

residual is 0 ≤ ‖ℛ𝑡𝑡‖2 ≤ 1.

The Elastic Net solution is given by

𝒳𝒳�𝑡𝑡 = �1 + 𝛾𝛾2 𝒳𝒳�𝑡𝑡
∗ (6. 22)

6.2.3. Tensor Elastic Net Algorithm

The complete T-NET algorithm is summarized below (Matlab notation).

Algorithm 6.1: Tensor Elastic Net (T-NET)
Input: normalized tensor 𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽𝑛𝑛×…×𝐽𝐽𝑁𝑁 ; normalized dictionary matrices 𝜱𝜱(𝑛𝑛) ∈ ℝ𝐽𝐽𝑛𝑛×𝐼𝐼𝑛𝑛; 𝑛𝑛 ∈
 {1, . . 𝑁𝑁};𝐿𝐿2 regularization parameter 𝛾𝛾2; stopping criterion: residual tolerance: 𝜀𝜀 or number of non-
zero coefficients: 𝐾𝐾
Initialization: Residual: ℛ0

∗ = 𝒴𝒴∗; 𝒙𝒙0
∗ = 0; active set: 𝐼𝐼 = {};

1. 𝒞𝒞1 = 1
�1+𝛾𝛾2

ℛ0
∗ ×1 𝜱𝜱(1)𝑇𝑇

×2. . .×𝑁𝑁 𝜱𝜱(𝑁𝑁)𝑇𝑇

2. 𝒄𝒄1 = vec(𝒞𝒞1)
3. [𝜆𝜆1, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖] = 𝑚𝑚𝑚𝑚𝑚𝑚(𝒄𝒄1)
4. 𝐼𝐼 = {𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖}
5. for 𝑛𝑛 = 1 to N do

6. 𝑮𝑮(𝑛𝑛) = 𝜱𝜱(𝑛𝑛)𝑇𝑇
𝜱𝜱(𝑛𝑛)

7. end for
8. while stopping criterion not reached(‖ℛ𝑡𝑡−1‖2 > 𝜀𝜀 or length(𝐼𝐼) < 𝐾𝐾)
9. 𝒛𝒛𝑡𝑡 = sign (𝒄𝒄𝑡𝑡(𝐼𝐼))
10. 𝑮𝑮𝑡𝑡

−1 =updateInverseGramMatrix(𝑮𝑮𝑡𝑡−1
−1 ,{ 𝑮𝑮(1), . . . , 𝑮𝑮(𝑁𝑁)}, I, 𝛾𝛾2, add_column,

column_idx)%See Appendix E.1
11. 𝒅𝒅𝐼𝐼𝑡𝑡 = 𝑮𝑮𝑡𝑡

−1𝒛𝒛𝑡𝑡
12. vec(𝒟𝒟𝑡𝑡) = 𝒅𝒅𝑡𝑡
13. 𝒱𝒱𝑡𝑡 = 1

1+𝛾𝛾2
�𝒟𝒟𝑡𝑡 ×1 𝑮𝑮(1) ×2 … ×𝑁𝑁 𝑮𝑮(𝑁𝑁) + 𝛾𝛾2𝒟𝒟𝑡𝑡�

14. 𝒗𝒗𝑡𝑡 = vec(𝒱𝒱𝑡𝑡)
15. 𝛿𝛿𝑡𝑡

+
1= (𝜆𝜆𝑡𝑡 − 𝒄𝒄𝑡𝑡(𝐼𝐼𝑐𝑐))./ (1 − 𝒗𝒗𝑡𝑡(𝐼𝐼𝑐𝑐)) % “./” - Elementwise division

16. 𝛿𝛿𝑡𝑡
+

2= (𝜆𝜆𝑡𝑡 + 𝒄𝒄𝑡𝑡(𝐼𝐼𝑐𝑐))./ (1 + 𝒗𝒗𝑡𝑡(𝐼𝐼𝑐𝑐))
17. 𝛿𝛿𝑡𝑡

− = −𝒙𝒙𝑡𝑡−1./ 𝒅𝒅𝑡𝑡(𝐼𝐼)
18. [𝛿𝛿𝑡𝑡

∗, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖] = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝛿𝛿𝑡𝑡
+

1, 𝛿𝛿𝑡𝑡
+

2�

Computationally Efficient Methods for Sparse Tensor Signal Processing

95

19. add_column == True
20. if min (𝛿𝛿𝑡𝑡

−) < 𝛿𝛿𝑡𝑡
∗

21. [𝛿𝛿𝑡𝑡
∗, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖]= min (𝛿𝛿𝑡𝑡

−)
22. add_column = False
23. end
24. 𝒙𝒙�𝑡𝑡

∗ = 𝒙𝒙�𝑡𝑡−1
∗ + 𝛿𝛿𝑡𝑡

∗ 𝒅𝒅𝐼𝐼𝑡𝑡
25. 𝜆𝜆𝑡𝑡+1 = 𝜆𝜆𝑡𝑡 − 𝛿𝛿𝑡𝑡

∗

26. 𝒄𝒄𝑡𝑡+1 = 𝒄𝒄𝑡𝑡 − 𝛿𝛿𝑡𝑡
∗𝒗𝒗𝑡𝑡

27. ℛ𝑡𝑡 = ℛ𝑡𝑡−1 − 𝛿𝛿𝑡𝑡
∗𝒟𝒟𝑡𝑡 ×1 𝜱𝜱(1) ×2 ⋯ ×𝑁𝑁 𝜱𝜱(𝑁𝑁)

28. if add_column == True
29. 𝐼𝐼 = 𝐼𝐼 + {𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖}
30. else
31. 𝐼𝐼 = 𝐼𝐼 – {𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖}
32. end

33. end while
34. vec�𝒳𝒳�𝐼𝐼𝑡𝑡

∗ � = 𝒙𝒙�𝑡𝑡
∗

35. 𝒳𝒳 = �1 + 𝛾𝛾2 𝒳𝒳�𝑡𝑡
∗ %Elastic Net Solution

36. return 𝐼𝐼, 𝒳𝒳

6.3. Experimental Results

This section presents experimental results to compare T-LARS and T-NET's performance to obtain

sparse representations of 3D images using overcomplete DCT dictionaries with different mutual

coherence values.

For our experiments shown in Figure 6.1 and Figure 6.2, we obtained 3D OCT mouse brain images

from the Mendeley dataset [117], and for our experiments shown in Figure 6.3 and Figure 6.4, we

obtained RGB video frames from the vid4 dataset [118]. Our experimental results were obtained

using a MATLAB implementation of T-LARS and T-NET on an MS-Windows machine: 2 Intel

Xeon CPUs E5-2637 v4, 3.5GHz, 32GB RAM, and NVIDIA Tesla P100 GPU with 12GB

memory.

6.3.1. Experimental Setup

We compared the performance of T-LARS and T-NET when used to obtain sparse representations

for our 3D OCT mouse brain images and RGB video frames by solving sparse multilinear least-

squares problems using overcomplete DCT dictionaries with different coherence (𝜇𝜇) values.

We obtained overcomplete DCT dictionaries by oversampling the DCT basis to add non-

orthogonal atoms between orthogonal atoms [32], [119].

Ishan Wickramasingha

96

𝑫𝑫𝑘𝑘 = � 𝑥𝑥𝑛𝑛

𝑁𝑁−1

𝑛𝑛=0

cos �
𝜋𝜋
𝑁𝑁

�𝑛𝑛 +
1
2

� 𝑘𝑘� 𝑘𝑘 = 0,
𝑁𝑁
𝑀𝑀

, ⋯ , 𝑁𝑁 −
𝑁𝑁
𝑀𝑀

(6. 23)

Where 𝑁𝑁 is the number of rows and 𝑀𝑀 is the number of atoms in the overcomplete DCT dictionary

𝑫𝑫. For a fixed 𝑁𝑁, as 𝑀𝑀 increases, the coherence (𝜇𝜇) of the dictionary also increases.

6.3.2. Experimental Results for 3D OCT Mouse Brain Images

In this experiment, we compare the performance of T-LARS and T-NET, to obtain K-sparse

representations of 3D OCT mouse brain images, 𝒴𝒴, 70 × 100 × 10 voxels, using five sets of mode-

n overcomplete DCT dictionaries 𝜱𝜱(1), 𝜱𝜱(2) and 𝜱𝜱(3) with different coherence values.

Table 6.1 shows the overcomplete DCT mode-n dictionary sizes and coherence of the Kronecker

Dictionary 𝜱𝜱 = 𝜱𝜱(3) ⊗ 𝜱𝜱(2) ⊗ 𝜱𝜱(1) for each experiment.

Table 6.1. DCT mode-n dictionary sizes and coherence of the Kronecker Dictionary 𝜱𝜱

Exp. Columns to rows

ratio �𝑀𝑀
𝑁𝑁

�

Size of

𝜱𝜱(1)

Size of

𝜱𝜱(2)

Size of

𝜱𝜱(3)

Coherence of 𝜱𝜱

(𝜇𝜇)

1 1.25 70 × 87 100 × 125 10 × 12 0.4173

2 2 70 × 140 100 × 200 10 × 20 0.9012

3 3 70 × 210 100 × 300 10 × 30 0.9839

4 5 70 × 350 100 × 500 10 × 50 0.9985

5 10 70 × 700 100 × 1000 10 × 100 0.9999

We obtained 10% non-zero coefficients, K=7,000 nonzero coefficients, for each experiment using

T-LARS and T-NET to represent 3D OCT mouse brain images, where we used 𝛾𝛾2 = 0.1 for the

regression coefficients of the 𝐿𝐿2 norm of the solution in T-NET. Figure 6.1 and Figure 6.2 show

the experimental results for representing our 3D OCT mouse brain images, using K=7,000 nonzero

coefficients, over overcomplete DCT dictionaries with different coherence values (𝜇𝜇) shown in

Table 6.1. As the columns to rows ratio (𝑀𝑀 𝑁𝑁⁄) in mode-n DCT dictionaries increases, coherence

of the Kronecker dictionary 𝜱𝜱 increases.

Computationally Efficient Methods for Sparse Tensor Signal Processing

97

Table 6.2 shows the number of iterations, computation time, and residual error for representing 3D

OCT mouse brain images using T-LARS and T-NET for experiments 1-5.

Table 6.2. Experimental results for T-LARS and T-NET to represent 3D OCT mouse brain images using
overcomplete DCT dictionaries with different coherence values

Figure 6.1. Original 3D OCT mouse brain image (a) and its reconstruction using 10% nonzero coefficients
(K = 7,000) obtained by T-LARS (b)-(f) and T-NET (g)-(k) using our overcomplete DCT dictionaries with
different coherence values (μ).

In both Figure 6.2 and Table 6.2, as the Kronecker dictionary's coherence increases, the number of

iterations and the computations time required to obtain 7,000 nonzero coefficients using T-LARS

increases significantly compared to T-NET. However, the residual error slightly decreases in T-

LARS and increases in T-NET with the coherence for each experiment.

T-LARS only keep one atom from a group of coherent atoms. Therefore, when the dictionary's

coherence is high, T-LARS adds and removes coherent atoms until it is left with one atom per

group, resulting in a significantly large number of iterations to obtain 7000 nonzero coefficients.

Exp. Coherence

of 𝜱𝜱

(𝜇𝜇)

T-LARS T-NET

Number of

Iterations

Computation

Time (Sec)

Residual

Error

Number of

Iterations

Computation

Time (Sec)

Residual

Error

1 0.4173 7144 128.54 0.0467 7052 137.38 0.0532

2 0.9012 7846 149.35 0.0419 7102 137.66 0.0619

3 0.9839 9416 198.28 0.0410 7238 149.17 0.0728

4 0.9985 12960 420.29 0.0408 7392 228.28 0.0891

5 0.9999 21604 2979.73 0.0405 7916 944.74 0.1156

Ishan Wickramasingha

98

Due to the grouping effect of T-NET, coherent atoms are grouped in the active set. Therefore, T-

NET requires fewer iterations than T-LARS to obtain 7000 non-zero coefficients. Also, due to the

grouping effect, T-NET requires more non-zero coefficients to obtain the same residual error as

T-LARS in dictionaries with higher coherence.

Figure 6.2. (a) Number of nonzero coefficients versus computation time. (b) Residual error versus
computation time. (c) Residual error versus the number of nonzero coefficients. (a) The number of nonzero
coefficients versus the number of iterations, obtained by applying T-LARS and T-NET to our 3D OCT
mouse brain image using overcomplete DCT dictionaries with different coherence values (𝜇𝜇).

Computationally Efficient Methods for Sparse Tensor Signal Processing

99

6.3.3. Experimental Results for RGB video

In this experiment, we compared the performance of T-LARS and T-NET, to obtain K-sparse

representations of a 4D signal, 𝒴𝒴, five RGB video frames of a 144 × 176 video, with 144 × 176 ×

3× 5 voxels, using five sets of mode-n overcomplete dictionaries 𝜱𝜱(1), 𝜱𝜱(2), 𝜱𝜱(3) and 𝜱𝜱(4) with

different coherence values. Our selected mode-n overcomplete dictionaries 𝜱𝜱(1), 𝜱𝜱(2), and 𝜱𝜱(4)

are overcomplete DCT dictionaries and 𝜱𝜱(3) is an Identity matrix with a dc column where each

element is 1. Table 6.1 shows the overcomplete DCT mode-n dictionary sizes and coherence of

the Kronecker Dictionary 𝜱𝜱 = 𝜱𝜱(4) ⊗ 𝜱𝜱(3) ⊗ 𝜱𝜱(2) ⊗ 𝜱𝜱(1) for each experiment.

Table 6.3. DCT mode-n dictionary sizes and coherence of the Kronecker Dictionary 𝜱𝜱

Exp. Columns to

rows ratio

�𝑀𝑀
𝑁𝑁

�

Size of

𝜱𝜱(1)

Size of

𝜱𝜱(2)

Size of

𝜱𝜱(3)

Size of

𝜱𝜱(4)

Coherence of

𝜱𝜱

(𝜇𝜇)

6 1.25 144 × 180 176 × 220 3 × 4 5 × 6 0.5773

7 2 144 × 288 176 × 352 3 × 4 5 × 10 0.9040

8 3 144 × 432 176 × 528 3 × 4 5 × 15 0.9848

9 5 144 × 720 176 × 880 3 × 4 5 × 25 0.9986

10 7 144 × 1008 176 × 1232 3 × 4 5 × 35 0.9996

We obtained 4% non-zero coefficients, K=15,206 nonzero coefficients, for each experiment using

T-LARS and T-NET to represent the RGB video, where we used 𝛾𝛾2 = 0.1 for the regression

coefficients of the 𝐿𝐿2 norm of the solution in T-NET. Figure 6.3 and Figure 6.4 show the

experimental results for representing our RGB video, using K=15,206 nonzero coefficients, over

overcomplete DCT dictionaries with different coherence values (𝜇𝜇) shown in Table 6.3. As the

columns to rows ratio (𝑀𝑀 𝑁𝑁⁄) in mode-n DCT dictionaries increases, coherence of the Kronecker

dictionary 𝜱𝜱 increases.

Table 6.4 shows the number of iterations, computation time, and residual error for representing

RGB video using T-LARS and T-NET for experiments 6-10.

Ishan Wickramasingha

100

Table 6.4. Experimental results for T-LARS and T-NET to represent RGB video using overcomplete DCT
dictionaries with different coherence values.

Figure 6.3. Original RGB video (a) and its reconstruction using 4% nonzero coefficients (K = 15,206)
obtained by T-LARS (b)-(f) and T-NET (g)-(k) using our overcomplete DCT dictionaries with different
coherence values (μ).

In both Figure 6.4 and Table 6.4, as the Kronecker dictionary's coherence increases, the number of

iterations and the computations time required to obtain 15,206 nonzero coefficients using T-LARS

increases significantly compared to T-NET. However, the residual error slightly decreases in T-

LARS and increases in T-NET with the coherence for each experiment.

T-LARS only keep one atom from a group of coherent atoms. Therefore, when the dictionary's

coherence is high, T-LARS adds and removes coherent atoms until it is left with one atom per

group, resulting in a significantly large number of iterations to obtain 15,206 nonzero coefficients.

Due to the grouping effect of T-NET, coherent atoms are grouped in the active set. Therefore, T-

NET requires fewer iterations than T-LARS to obtain 15,206 non-zero coefficients. Also, due to

Exp. Coherence

of 𝜱𝜱

(𝜇𝜇)

T-LARS T-NET

Number of

Iterations

Computation

Time (Sec)

Residual

Error

Number of

Iterations

Computation

Time (Sec)

Residual

Error

6 0.5773 15380 539 0.0623 15232 480 0.3293

7 0.9040 16767 705 0.0611 15454 592 0.3377

8 0.9848 19697 1320 0.0611 15750 938 0.3671

9 0.9986 26033 5792 0.0614 16401 2953 0.4189

10 0.9996 32676 29680 0.0615 16939 9859 0.4576

Computationally Efficient Methods for Sparse Tensor Signal Processing

101

the grouping effect, T-NET requires more non-zero coefficients to obtain the same residual error

as T-LARS in dictionaries with higher coherence.

Figure 6.4. (a) Number of nonzero coefficients versus computation time. (b) Residual error versus
computation time. (c) Residual error versus the number of nonzero coefficients. (a) The number of nonzero
coefficients versus the number of iterations, obtained by applying T-LARS and T-NET to our RGB video
using overcomplete DCT dictionaries with different coherence values (𝜇𝜇).

6.4. Conclusions

Sparse signal representation of a multi-dimensional signal could be easily obtained using

Kronecker dictionaries by solving a sparse multilinear least-squares problem, using T-LARS,

which could be used to solve both 𝐿𝐿0 and 𝐿𝐿1 constrained multilinear least-squares problems

efficiently. The 𝐿𝐿0 minimization problem is a non-convex problem, and the relaxed 𝐿𝐿1

minimization problem is a convex problem. Even though, 𝐿𝐿2 minimization problem is strictly

Ishan Wickramasingha

102

convex; it does not provide a sparse solution. Also, both 𝐿𝐿0 and 𝐿𝐿1 minimization problems have

an upper limit for selecting the number of coefficients for a unique and accurate solution based on

the dictionary's coherence. The group selection ability is important in some applications; however,

the 𝐿𝐿1 minimization problem does not have the group selection ability.

Tensor Elastic Net solves a strictly convex 𝐿𝐿1 and 𝐿𝐿2 constrained multilinear least-squares

problem, which has the best properties of both 𝐿𝐿1 and 𝐿𝐿2 minimization problems such as sparsity

and group selection ability. In addition to the group selection ability, Tensor Elastic Net can obtain

more than 𝑛𝑛 nonzero coefficients for a signal with 𝑛𝑛 elements. Therefore, Tensor Elastic Net is

ideal for solving multilinear sparse least-squares problems with highly coherent dictionaries.

The dictionary in tensor Elastic Net problem has a partitioned Kronecker structure, which could

not be efficiently solved with T-LARS. Therefore, we introduced the Tensor Elastic Net (T-NET)

algorithm in this chapter to efficiently solve the tensor Elastic Net problem using the partitioned

Kronecker structure of the dictionary matrix.

Experimental results show that both T-LARS and T-NET behave similarly in solving the

multilinear sparse representation problem for dictionaries with lower coherence. As the

dictionary's coherence increases, T-LARS requires a large number of iterations and a much longer

time to obtain K-Sparse solutions, whereas, for T-NET, the required number of iterations or the

required time does not change significantly. However, due to group selection ability, the T-NET

solution always has a higher residual error than the T-LARS solution.

Therefore, T-NET could be used to obtain a robust solution with better statistical properties to the

sparse multilinear least-squares problem than T-LARS. We will be using T-NET as the primary

tool to solve the sparse least-squares problems in many applications, including the Tensor Task

Driven Dictionary Learning (T-TDDL) in chapter 7.

Computationally Efficient Methods for Sparse Tensor Signal Processing

103

Chapter 7

7. Tensor Task-Driven Dictionary Learning (T-TDDL)

Sparse multilinear representations of multi-dimensional signals over fixed or learned separable

dictionaries could be obtained efficiently using the four tensor-based algorithms developed in the

previous chapters of this thesis (T-LARS [18], T-NET, TD-LARS, WT-LARS), or Kronecker-

OMP [16]. However, the dictionaries learned from the data are much more efficient in obtaining

sparse representations than fixed dictionaries [29].

Learned dictionaries could be used in classification or regression tasks [33]–[35]. However,

regression and classification performance could be improved significantly by supervised learning

of task-specific dictionaries. Mairal et al. introduced a generalized task-driven dictionary learning

(TDDL) framework for supervised learning of dictionaries and model parameters to solve one-

dimensional regression and classification problems [38].

The TDDL formulation solves multi-dimensional regression or classification tasks using

vectorized data tensors. Therefore, using TDDL formulation for large multi-dimensional

regression or classification tasks is computationally infeasible. Compared to vectorized tensors,

sparse multi-linear representation of tensors requires significantly lower memory and

computational resources. Therefore, this chapter extends the TDDL framework using tensor and

multi-linear algebra to develop the Tensor Task-Driven Dictionary Learning (T-TDDL), an

efficient multi-linear task-driven dictionary learning framework to learn task-specific mode-n

dictionaries and mode-n model parameters jointly for classification or regression tasks. We use the

T-NET algorithm developed in chapter 6 for the sparse coding step of the T-TDDL. This chapter

also presents a compressed sensing extension for T-TDDL and calculations for regression, binary

classification, and multiclass classification applications.

Ishan Wickramasingha

104

7.1. Introduction

Tensor-based algorithms for solving multi-dimensional problems are gaining much popularity

among signal processing, machine learning, and statistics communities [5]–[7]. Tensors quickly

grow in size with the number of modes and dimensions of each mode, and processing such large

tensors requires significant computational resources. Instead, using a sparse representation of

tensors results in fewer computations and lower memory storage requirements for fewer

coefficients [8], [9]. Sparse multilinear representations of tensors are easier to obtain, using

separable dictionaries, than linear representations, using non-separable dictionaries, and require

significantly lower computational resources [6], [7], [16], [18], [72].

Caiafa and Cichocki introduced Kronecker-OMP, a generalization of OMP, to obtain sparse

multilinear representations by solving a nonconvex L0 constrained sparse tensor least-squares

problem [16]. Authors have developed the Tensor Least angle Regression (T-LARS) [18] in

chapter 3 to obtain sparse multilinear representations by solving L0, or L1 constrained, sparse

multilinear least-squares problems for all critical values of the regularization parameter λ and with

lower computational complexity and memory usage than Kronecker-OMP. By extending T-LARS,

authors have developed Tensor Elastic NET (T-NET) in chapter 6, a computationally efficient

algorithm to solve the multilinear Elastic Net problem [28].

The dictionaries learned from the data are much more efficient in obtaining sparse representations

than fixed dictionaries [29]. Roemer et al. [30] introduced T-MOD and K-HOSVD algorithms to

learn data-driven mode-n dictionaries to solve multilinear problems by generalizing one-

dimensional data-driven dictionary learning algorithms, Method of Optimal Direction(MOD)

[31], and K-SVD [32], respectively. Roemer used one-dimensional sparse coding methods in the

sparse coding step of the T-MOD and K-HOSVD, requiring a significant amount of computational

resources for solving data-driven tensor dictionary learning problems. However, we could

efficiently solve large data-driven tensor dictionary learning problems using T-LARS [18], T-

NET, or Kronecker-OMP [16] in the sparse coding step of T-MOD and K-HOSVD.

Learned dictionaries could be used in classification or regression tasks [33]–[35]. However,

regression and classification performance could be improved significantly by supervised learning

of task-specific dictionaries [36], [37]. Mairal et al. introduced a generalized task-driven dictionary

Computationally Efficient Methods for Sparse Tensor Signal Processing

105

learning(TDDL) framework for supervised learning of dictionaries and model parameters to solve

one-dimensional problems [38]. Many multi-dimensional classification and regression problems

have been solved using the TDDL formulation after vectorizing multi-dimensional data [39]–[41].

Recent extensions to Task-driven dictionary learning include Multi-modal task-driven dictionary

learning [120] and Task-driven dictionary learning in a distributed online setting [121]. However,

as far as we know, there is no method available for supervised learning of mode-n dictionaries and

mode-n model parameters to solve a specific task.

Therefore, we extend the one-dimensional TDDL formulation to develop the tensor task-driven

dictionary learning(T-TDDL) framework, which could work as an online data-driven or task-

driven dictionary learning algorithm for supervised or semi-supervised learning of mode-n

dictionaries and mode-n model parameters to solve specific tasks. We also present a multilinear

compressed sensing extension to T-TDDL to learn mode-n task-driven dictionaries and model

parameters efficiently for large data tensors. The T-TDDL framework could also be used for

unsupervised learning of mode-n dictionaries in an online data-driven multilinear dictionary

learning formulation similar to the online tensor dictionary learning algorithm (OTDL) [122].

The T-TDDL formulation could be used to solve multivariate multilinear regression [123], [124],

and tensor classifications problems efficiently by learning mode-n dictionaries and mode-n model

parameters to predict a tensor 𝒴𝒴 ∈ ℝ𝑄𝑄1×…×𝑄𝑄𝑁𝑁 from a tensor 𝒳𝒳 ∈ ℝ𝑃𝑃1×…×𝑃𝑃𝑁𝑁. We could use different

loss functions with T-TDDL formulations to efficiently solve a wide range of supervised, semi-

supervised and unsupervised, tensor machine learning problems. Therefore, T-TDDL could solve

a wide range of multidimensional machine learning problems, including problems in weather

prediction, classifying multidimensional biomedical images such as 3D/4D MRI, 3D/4D CT, or

3D/4D PET, Chemometric analysis, Communications, augmented reality, and virtual reality. In

the experimental results of this chapter, we used the T-TDDL multilinear formulation to solve a

4𝑋𝑋 video super-resolution problem, binary classification of 3D MRI, and multiclass classification

of 3D CAD models using square, logistic regression, and Softmax cross-entropy loss functions,

respectively.

This chapter is organized as follows: Section 7.2 includes a brief introduction of one-dimensional

task-driven dictionary learning(TDDL) formulation. We describe our Tensor Task-Driven

Dictionary Learning (T-TDDL) formulation for learning mode-n dictionaries and mode-n model

Ishan Wickramasingha

106

parameters in detail in Section 7.3. Section 7.4 provides sample applications of T-TDDL, and

Section 7.5 presents the compressed sensing extension to the T-TDDL. Section 7.6 presents

experiment results of applying T-TDDL to multi-dimensional regression, binary classification, and

multiclass classification tasks. We present our conclusions in Section 7.7.

7.2. Task Driven Dictionary Learning

In one-dimensional Task-driven dictionary learning (TDDL), we want to predict a vector 𝒚𝒚 ∈ ℝ𝑄𝑄

from a vector 𝒙𝒙 ∈ ℝ𝑃𝑃, when 𝒙𝒙 is associated with the vector 𝒚𝒚, by supervised learning of dictionary

𝑫𝑫 ∈ ℝ𝑃𝑃×𝑈𝑈 and model parameters 𝑾𝑾 ∈ ℝ𝑄𝑄×𝑈𝑈. Once we learn 𝑫𝑫 and 𝑾𝑾 using TDDL, 𝒚𝒚 can be

predicted using model parameters 𝑾𝑾, and a sparse representation 𝜶𝜶∗(𝒙𝒙, 𝑫𝑫) ∈ ℝ𝑈𝑈 of 𝒙𝒙, obtained

using the dictionary 𝑫𝑫. The vector 𝒚𝒚 could be a finite set of labels in a classification task or a

subset of ℝ𝑄𝑄 in a regression task.

Task-driven dictionary learning formulation [38] consists of jointly learning 𝑫𝑫 and 𝑾𝑾 by solving,

 arg min
𝐃𝐃∈𝒟𝒟,𝐖𝐖∈𝒲𝒲

𝑓𝑓(𝑫𝑫, 𝑾𝑾) +
𝑣𝑣
2

‖𝑾𝑾‖2 (7. 1)

Where 𝒟𝒟 and 𝒲𝒲 are convex sets. To prevent the 𝐿𝐿2 norm of 𝑫𝑫 being arbitrarily large, the convex

set 𝒟𝒟 satisfy the constraint 𝒟𝒟 ≜ {𝑫𝑫 ∈ ℝ𝑃𝑃×𝑈𝑈 s. t. ∀𝑢𝑢 ∈ {1, ⋯ , 𝑈𝑈}, ‖𝒅𝒅𝑢𝑢‖2 ≤ 1 }.

The convex function 𝑓𝑓(𝑫𝑫, 𝑾𝑾) is defined as

𝑓𝑓(𝑫𝑫, 𝑾𝑾) ≜ (1 − 𝜇𝜇)𝔼𝔼𝒚𝒚,𝒙𝒙�𝑙𝑙𝑠𝑠�𝒚𝒚, 𝑾𝑾, 𝜶𝜶∗(𝒙𝒙, 𝑫𝑫)�� + 𝜇𝜇𝔼𝔼𝒙𝒙[𝑙𝑙𝑢𝑢(𝒙𝒙, 𝑫𝑫)] (7. 2)

Where 𝑙𝑙𝑠𝑠�𝒚𝒚, 𝑾𝑾, 𝜶𝜶∗(𝒙𝒙, 𝑫𝑫)� is a supervised twice continuously differentiable loss function, 𝑙𝑙𝑢𝑢(𝒙𝒙, 𝑫𝑫)

is an unsupervised twice continuously differentiable loss function, and 𝜶𝜶∗(𝒙𝒙, 𝑫𝑫) is the sparse

solution of the following Elastic Net [27] problem,

 𝜶𝜶∗(𝒙𝒙, 𝑫𝑫) ≜ arg min
𝜶𝜶∗∈ℝ𝑈𝑈

1
2

‖𝒙𝒙 − 𝑫𝑫𝑫𝑫‖2
2 + 𝜆𝜆1‖𝜶𝜶‖1 +

𝜆𝜆2

2
‖𝜶𝜶‖2 (7. 3)

A supervised (𝜇𝜇 = 0), semi-supervised (1 > 𝜇𝜇 > 0), or unsupervised (𝜇𝜇 = 1), task-driven

dictionary learning formulations are obtained depending on the value of 𝜇𝜇 in (7.2). The

unsupervised dictionary learning formulation (𝜇𝜇 = 1) in (7.2), is also known as data-driven

dictionary learning [38], [125].

Computationally Efficient Methods for Sparse Tensor Signal Processing

107

7.3. Tensor Task Driven Dictionary Learning(T-TDDL)

In Tensor task-driven dictionary learning(T-TDDL), we want to predict a tensor 𝒴𝒴 ∈ ℝ𝑄𝑄1×…×𝑄𝑄𝑁𝑁

from a tensor 𝒳𝒳 ∈ ℝ𝑃𝑃1×…×𝑃𝑃𝑁𝑁, when the tensor 𝒳𝒳 is associated with the tensor 𝒴𝒴 by supervised

learning of Kronecker dictionary 𝑫𝑫 ∈ ℝ𝑃𝑃×𝑈𝑈 and Kronecker model parameters 𝑾𝑾 ∈ ℝ𝑄𝑄×𝑈𝑈, where

𝑃𝑃 = ∏ 𝑃𝑃𝑛𝑛
𝑁𝑁
𝑛𝑛=1 , 𝑄𝑄 = ∏ 𝑄𝑄𝑛𝑛

𝑁𝑁
𝑛𝑛=1 and 𝑈𝑈 = ∏ 𝑈𝑈𝑛𝑛

𝑁𝑁
𝑛𝑛=1 . For example, the tensor 𝒴𝒴 could be a finite set of

labels in a classification task or a subset of ℝ𝑄𝑄1×…×𝑄𝑄𝑁𝑁 in a regression task.

When the tensors 𝒳𝒳 and 𝒴𝒴 are significantly smaller, we could vectorize them as 𝒙𝒙 = vec(𝒳𝒳) and

𝒚𝒚 = vec(𝒴𝒴) respectively, and use the TDDL formulation in (7.1) to jointly learn the dictionary 𝑫𝑫

and model parameters 𝑾𝑾.

However, as the number of elements in tensors 𝒳𝒳 ∈ ℝ𝑃𝑃1×…×𝑃𝑃𝑁𝑁 and 𝒴𝒴 ∈ ℝ𝑄𝑄1×…×𝑄𝑄𝑁𝑁 increases, the

TDDL formulation in (7.1) quickly becomes computationally infeasible. Note that a dictionary

matrix 𝑫𝑫 ∈ ℝ𝑃𝑃×𝑈𝑈, has 𝑃𝑃𝑈𝑈 elements. Therefore a third-order cubical tensor 𝒳𝒳 ∈ ℝ100×100×100,

has 106 elements, requires learning a dictionary matrix 𝑫𝑫 ∈ ℝ106×106, with 1012 elements, when

𝑃𝑃 = 𝑈𝑈 = 106, and uncompressed double-precision storage of 𝑫𝑫, requires 8TB of memory.

However, if 𝒳𝒳 ∈ ℝ100×100×100×100 is a fourth-order cubical tensor, has 108 elements, the square

dictionary 𝑫𝑫 ∈ ℝ108×108, has 1016 elements, and the uncompressed double-precision storage of

𝑫𝑫 ∈ ℝ108×108, requires 80PB of memory.

Therefore, TDDL is not suitable for learning task-driven dictionaries for tensors 𝒳𝒳 and 𝒴𝒴, except

when they are significantly smaller.

In section 7.3.1, we formulate the Tensor task-driven dictionary learning (T-TDDL), a

computationally efficient generalization of the task-driven dictionary learning(TDDL) framework

[38] to efficiently learn mode-n dictionaries and mode-n model parameters to predict a tensor 𝒴𝒴

from a tensor 𝒳𝒳 when the tensor 𝒳𝒳 is associated with the tensor 𝒴𝒴.

Ishan Wickramasingha

108

7.3.1. Proposed Formulation

We could formulate our tensor task-driven dictionary learning (T-TDDL) to learn 𝑫𝑫 = 𝑫𝑫(𝑁𝑁) ⊗

⋯ ⊗ 𝑫𝑫(1) and 𝑾𝑾 = 𝑾𝑾(𝑁𝑁) ⊗ ⋯ ⊗ 𝑾𝑾(1) jointly by solving,

arg min
�𝑫𝑫(1),⋯,𝑫𝑫(𝑁𝑁)�∈𝒟𝒟,

�𝑾𝑾(1),⋯,𝑾𝑾(𝑁𝑁)�∈𝒲𝒲

𝑓𝑓(𝑫𝑫, 𝑾𝑾) +
𝑣𝑣
2

‖𝑾𝑾‖2 (7. 4)

The convex function 𝑓𝑓(𝑫𝑫, 𝑾𝑾) is defined as

𝑓𝑓(𝑫𝑫, 𝑾𝑾) ≜ (1 − 𝜇𝜇)𝔼𝔼𝒴𝒴,𝒳𝒳�𝑙𝑙𝑠𝑠�𝒴𝒴, 𝑾𝑾, 𝜶𝜶∗(𝒳𝒳, 𝑫𝑫)�� + 𝜇𝜇𝔼𝔼𝒳𝒳[𝑙𝑙𝑢𝑢(𝒳𝒳, 𝑫𝑫)] (7. 5)

Where 𝒳𝒳 ∈ ℝ𝑃𝑃1×…×𝑃𝑃𝑁𝑁 , and 𝒴𝒴 ∈ ℝ𝑄𝑄1×…×𝑄𝑄𝑁𝑁 , are tensors of order 𝑁𝑁, 𝑫𝑫(𝑛𝑛) ∈ ℝ𝑃𝑃𝑛𝑛×𝑈𝑈𝑛𝑛 ; ∀𝑛𝑛 ∈

{1, ⋯ , 𝑁𝑁}, are mode-n dictionaries, 𝑾𝑾(𝑛𝑛) ∈ ℝ𝑄𝑄𝑛𝑛×𝑈𝑈𝑛𝑛; ∀𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁}, are mode-n model

parameters, and 𝜶𝜶∗(𝒳𝒳, 𝑫𝑫) ∈ ℝ𝑈𝑈1…𝑈𝑈𝑛𝑛 is the Elastic net solution of,

𝜶𝜶∗(𝒳𝒳, 𝑫𝑫) ≜ arg min
𝜶𝜶∗∈ℝ𝑈𝑈

1
2

‖vec(𝒳𝒳) − 𝑫𝑫𝑫𝑫‖2
2 + 𝜆𝜆1‖𝜶𝜶‖1 +

𝜆𝜆2

2
‖𝜶𝜶‖2 (7. 6)

A supervised (𝜇𝜇 = 0), semi-supervised (1 > 𝜇𝜇 > 0), or unsupervised (𝜇𝜇 = 1), tensor task-driven

dictionary learning formulations are obtained depending on the value of 𝜇𝜇 in (7.5). The

unsupervised tensor dictionary learning formulation (𝜇𝜇 = 1) in (7.5), could be used for solving

online tensor data-driven dictionary learning problems [30], [122].

Authors have developed the Tensor Elastic Net (T-NET) in chapter 6 by extending the Tensor

Least Angle Regression (T-LARS) [18] developed in chapter 3, which is a robust, computationally

efficient algorithm to solve the multilinear elastic net problem in (7.6) for Kronecker structured

dictionaries, 𝑫𝑫 = 𝑫𝑫(𝑁𝑁) ⊗ ⋯ ⊗ 𝑫𝑫(1).

7.3.2. Optimization

As discussed before, the dictionary 𝑫𝑫 and the model parameters 𝑾𝑾 could be huge matrices for a

large T-TDDL problem. Therefore, directly optimizing such 𝑫𝑫 and 𝑾𝑾 requires a massive amount

of computational resources.

Therefore, in T-TDDL, we jointly optimize the Kronecker dictionaries 𝑫𝑫 = 𝑫𝑫(𝑁𝑁) ⊗ ⋯ ⊗ 𝑫𝑫(1)

and Kronecker parameters 𝑾𝑾 = 𝑾𝑾(𝑁𝑁) ⊗ ⋯ ⊗ 𝑾𝑾(1), without explicitly constructing them, by

Computationally Efficient Methods for Sparse Tensor Signal Processing

109

jointly optimizing mode-n dictionaries 𝑫𝑫(𝑛𝑛) ∈ ℝ𝑃𝑃𝑛𝑛×𝑈𝑈𝑛𝑛; ∀𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁} and mode-n parameter

matrices 𝑾𝑾(𝑛𝑛) ∈ ℝ𝑄𝑄𝑛𝑛×𝑈𝑈𝑛𝑛; ∀𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁} using the projected stochastic gradient descent

algorithm [126], [127].

Please refer to [38] for the proof of differentiability and gradients of 𝑓𝑓(𝑫𝑫, 𝑾𝑾), w.r.t 𝑾𝑾 and 𝑫𝑫. In

the following sections, we extend gradient calculations in [38] to obtain the gradients of the

objective function in (7.4) (denoted by g(𝑫𝑫, 𝑾𝑾)), w.r.t 𝑾𝑾(𝑛𝑛) and 𝑫𝑫(𝑛𝑛), where

g(𝑫𝑫, 𝑾𝑾) = 𝑓𝑓(𝑫𝑫, 𝑾𝑾) +
𝑣𝑣
2

‖𝑾𝑾‖2 (7. 7)

For notational simplicity, from here on, we denote the supervised loss function 𝑙𝑙𝑠𝑠�𝒴𝒴, 𝑾𝑾, 𝜶𝜶∗(𝒳𝒳, 𝑫𝑫)�

in (7.5) as 𝑙𝑙𝑠𝑠, and the unsupervised loss function 𝑙𝑙𝑢𝑢(𝒳𝒳, 𝑫𝑫) as 𝑙𝑙𝑢𝑢, 𝜶𝜶∗(𝒳𝒳, 𝑫𝑫) as 𝜶𝜶∗.

7.3.2.1. Gradient of 𝑔𝑔(𝑫𝑫, 𝑾𝑾) w.r.t. 𝑾𝑾(𝑛𝑛)

We individually optimize each mode-n parameter matrix, 𝑾𝑾(𝑛𝑛) using the stochastic gradient

descent algorithm to optimize the Kronecker parameter matrix 𝑾𝑾. Therefore we obtain the gradient

of g(𝑫𝑫, 𝑾𝑾) w.r.t. 𝑾𝑾(𝑛𝑛) as

𝛻𝛻𝑾𝑾(𝑛𝑛)g(𝑫𝑫, 𝑾𝑾) = (1 − 𝜇𝜇)𝔼𝔼𝒴𝒴,𝒳𝒳�𝛻𝛻𝑾𝑾(𝑛𝑛)𝑙𝑙𝑠𝑠� +
𝑣𝑣
2

𝛻𝛻𝑾𝑾(𝑛𝑛)‖𝑾𝑾‖2 (7. 8)

Proposition 7.1: Let 𝑓𝑓(𝜱𝜱) be a continuously differentiable function and 𝜱𝜱 ∈ ℝ𝑃𝑃×𝑄𝑄 be a Kronecker
matrix, where 𝜱𝜱 = 𝜱𝜱(𝑁𝑁) ⊗ ⋯ ⊗ 𝜱𝜱(1) and 𝜱𝜱(𝑛𝑛) ∈ ℝ𝐼𝐼𝑛𝑛×𝐽𝐽𝑛𝑛; ∀ 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁}. Therefore, the
gradient 𝛻𝛻𝜱𝜱(𝑛𝑛)𝑓𝑓(𝜱𝜱) ; ∀𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁} is given by,

�𝛻𝛻𝜱𝜱(𝑛𝑛)𝑓𝑓(𝜱𝜱)�
𝑖𝑖,𝑗𝑗

= 𝑇𝑇𝑇𝑇 ��𝛻𝛻𝜱𝜱𝑓𝑓(𝜱𝜱)�
𝑇𝑇 𝜕𝜕𝜱𝜱

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛)� (7. 9)

The proof is Appendix F.1.

By applying Proposition 7.1, we could obtain 𝛻𝛻𝑾𝑾(𝑛𝑛)𝑙𝑙𝑠𝑠 as a function of 𝛻𝛻𝑾𝑾𝑙𝑙𝑠𝑠.

�𝛻𝛻𝑾𝑾(𝑛𝑛)𝑙𝑙𝑠𝑠�
𝑖𝑖,𝑗𝑗

= 𝑇𝑇𝑇𝑇 �(𝛻𝛻𝑾𝑾𝑙𝑙𝑠𝑠)𝑇𝑇 𝜕𝜕𝑾𝑾

𝜕𝜕𝑾𝑾𝑖𝑖,𝑗𝑗
(𝑛𝑛)� (7. 10)

Ishan Wickramasingha

110

Calculating 𝛻𝛻𝑾𝑾(𝑛𝑛)𝑙𝑙𝑠𝑠 directly using (7.10) is not computationally efficient due to the multiplication

of large matrices. However, as shown in section 7.4, we could further simplify the gradient

calculation in (7.10), for a given supervised loss function 𝑙𝑙𝑠𝑠.

Proposition 7.2: Let 𝜱𝜱 ∈ ℝ𝑃𝑃×𝑄𝑄 be a Kronecker matrix, where 𝜱𝜱 = 𝜱𝜱(𝑁𝑁) ⊗ ⋯ ⊗ 𝜱𝜱(1), 𝜱𝜱(𝑛𝑛) ∈

ℝ𝐼𝐼𝑛𝑛×𝐽𝐽𝑛𝑛 ; ∀ 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁}, and ‖𝜱𝜱‖2 is the 𝐿𝐿2 norm of 𝜱𝜱. Therefore, the gradient 𝛻𝛻𝜱𝜱(𝑛𝑛)‖𝜱𝜱‖2 is

given by,

𝛻𝛻𝜱𝜱(𝑛𝑛)‖𝜱𝜱‖2 = 2𝛾𝛾𝜱𝜱(𝑛𝑛)𝜱𝜱(𝑛𝑛) (7. 11)

Where

𝛾𝛾𝜱𝜱(𝑛𝑛) = � 𝑇𝑇𝑇𝑇 �𝜱𝜱(𝑚𝑚)𝑇𝑇
𝜱𝜱(𝑚𝑚)�

𝑁𝑁

𝑚𝑚=1,𝑚𝑚≠𝑛𝑛

The proof is in Appendix F.2.

Applying Proposition 7.2 to 𝑣𝑣
2

∇𝐖𝐖(𝑛𝑛)‖𝑾𝑾‖2,

𝑣𝑣
2

∇𝐖𝐖(𝑛𝑛)‖𝑾𝑾‖2 = 𝑣𝑣𝛾𝛾𝑾𝑾(𝑛𝑛)𝑾𝑾(𝑛𝑛) (7. 12)

Where,

𝛾𝛾𝑾𝑾(𝑛𝑛) = � 𝑇𝑇𝑇𝑇 �𝑾𝑾(𝑚𝑚)𝑇𝑇
𝑾𝑾(𝑚𝑚)�

𝑁𝑁

𝑚𝑚=1,𝑚𝑚≠𝑛𝑛

Therefore, the gradient of g(𝑫𝑫, 𝑾𝑾) w.r.t. 𝑾𝑾(𝑛𝑛) is,

∇𝐖𝐖(𝑛𝑛)g(𝑫𝑫, 𝑾𝑾) = (1 − 𝜇𝜇)𝛻𝛻𝑾𝑾(𝑛𝑛)𝑙𝑙𝑠𝑠 + 𝑣𝑣𝛾𝛾𝑾𝑾(𝑛𝑛)𝑾𝑾(𝑛𝑛) (7. 13)

Where �𝛻𝛻𝑾𝑾(𝑛𝑛)𝑙𝑙𝑠𝑠�
𝑖𝑖,𝑗𝑗

= 𝑇𝑇𝑇𝑇 �(𝛻𝛻𝑾𝑾𝑙𝑙𝑠𝑠)𝑇𝑇 𝜕𝜕𝑾𝑾

𝜕𝜕𝑾𝑾𝑖𝑖,𝑗𝑗
(𝑛𝑛)� ; ∀ 𝑖𝑖 ∈ {1, … , 𝑄𝑄𝑛𝑛}, 𝑗𝑗 ∈ {1, … , 𝑈𝑈𝑛𝑛}

7.3.2.2. Gradient of 𝑔𝑔(𝑫𝑫, 𝑾𝑾) w.r.t. 𝑫𝑫(𝑛𝑛)

We individually optimize each mode-n dictionary matrix, 𝑫𝑫(𝑛𝑛) using the stochastic gradient

descent algorithm to optimize the Kronecker dictionary matrix 𝑫𝑫. Therefore we obtain the gradient

of g(𝑫𝑫, 𝑾𝑾) w.r.t. 𝑫𝑫(𝑛𝑛) as

Computationally Efficient Methods for Sparse Tensor Signal Processing

111

𝛻𝛻𝑫𝑫(𝑛𝑛)g(𝑫𝑫, 𝑾𝑾) = (1 − 𝜇𝜇)𝔼𝔼𝒴𝒴,𝒳𝒳�𝛻𝛻𝑫𝑫(𝑛𝑛)𝑙𝑙𝑠𝑠� + 𝜇𝜇𝔼𝔼𝒳𝒳�𝛻𝛻𝑫𝑫(𝑛𝑛)𝑙𝑙𝑢𝑢� (7. 14)

Using Proposition 7.1, the gradient of the supervised loss function 𝛻𝛻𝑫𝑫(𝑛𝑛)𝑙𝑙𝑠𝑠 could be written as

�𝛻𝛻𝑫𝑫(𝑛𝑛)𝑙𝑙𝑠𝑠�
𝑖𝑖,𝑗𝑗

= 𝑇𝑇𝑇𝑇 �(𝛻𝛻𝑫𝑫𝑙𝑙𝑠𝑠)𝑇𝑇 𝜕𝜕𝑫𝑫

𝜕𝜕𝑫𝑫𝑖𝑖,𝑗𝑗
(𝑛𝑛)� (7. 15)

In [38], it shows that,

𝛻𝛻𝑫𝑫𝑙𝑙𝑠𝑠 = �−𝑫𝑫𝜷𝜷∗𝜶𝜶∗𝑇𝑇 + (vec(𝒳𝒳) − 𝑫𝑫𝑫𝑫)𝜷𝜷∗𝑇𝑇� (7. 16)

Where 𝜷𝜷𝐼𝐼𝑐𝑐
∗ = 0 and, 𝜷𝜷𝐼𝐼

∗ = (𝑫𝑫𝐼𝐼
𝑇𝑇𝑫𝑫𝐼𝐼 + 𝜆𝜆2𝑰𝑰)−1𝛻𝛻𝜶𝜶𝐼𝐼𝑙𝑙𝑠𝑠, where 𝐼𝐼 is the active set and 𝐼𝐼𝑐𝑐 is the inactive

set of the Elastic net solution.

Since 𝑇𝑇𝑇𝑇(𝐴𝐴 + 𝐵𝐵) = 𝑇𝑇𝑇𝑇(𝐴𝐴) + 𝑇𝑇𝑇𝑇(𝐵𝐵) and 𝑇𝑇𝑇𝑇(𝐴𝐴𝐴𝐴) = 𝑇𝑇𝑇𝑇(𝐵𝐵𝐵𝐵), from (7.15) and (7.16) we could

write,

�𝛻𝛻𝑫𝑫(𝑛𝑛)𝑙𝑙𝑠𝑠�
𝑖𝑖,𝑗𝑗

= −𝑇𝑇𝑇𝑇 �(𝑫𝑫𝜷𝜷∗)𝑇𝑇 � 𝜕𝜕𝑫𝑫

𝜕𝜕𝑫𝑫𝑖𝑖,𝑗𝑗
(𝑛𝑛) 𝜶𝜶∗�� + 𝑇𝑇𝑇𝑇 �(vec(𝒳𝒳) − 𝑫𝑫𝑫𝑫)𝑇𝑇 � 𝜕𝜕𝑫𝑫

𝜕𝜕𝑫𝑫𝑖𝑖,𝑗𝑗
(𝑛𝑛) 𝜷𝜷∗�� (7. 17)

Proposition 7.3: Let 𝑓𝑓 be a function of tensor 𝒳𝒳 ∈ ℝ𝐽𝐽1×…×𝐽𝐽𝑁𝑁, tensor 𝒴𝒴 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑁𝑁and a

Kronecker matrix 𝜱𝜱 ∈ ℝ𝑃𝑃×𝑄𝑄, where 𝜱𝜱 = 𝜱𝜱(𝑁𝑁) ⊗ ⋯ ⊗ 𝜱𝜱(1) and 𝜱𝜱(𝑛𝑛) ∈ ℝ𝐼𝐼𝑛𝑛×𝐽𝐽𝑛𝑛; ∀ 𝑛𝑛 ∈

{1, ⋯ , 𝑁𝑁}. If

𝜕𝜕𝑓𝑓

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛) = 𝑇𝑇𝑇𝑇 �vec(𝒴𝒴)𝑇𝑇 �

𝜕𝜕𝜱𝜱

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛) vec(𝒳𝒳)��

Then 𝜕𝜕𝑓𝑓
𝜕𝜕𝜱𝜱(𝑛𝑛) is given by,

𝜕𝜕𝑓𝑓
𝜕𝜕𝜱𝜱(𝑛𝑛) = 𝒴𝒴(𝑛𝑛)�𝒳𝒳(𝑛𝑛)𝜳𝜳𝜱𝜱(𝑛𝑛)

𝑇𝑇 �
𝑇𝑇 (7. 18)

Where, 𝜳𝜳𝜱𝜱(𝑛𝑛) = �𝜱𝜱(𝑁𝑁) ⊗ ⋯ ⊗ 𝜱𝜱(𝑛𝑛+1) ⊗ 𝜱𝜱(𝑛𝑛−1) ⊗ ⋯ ⊗ 𝜱𝜱(1)�, 𝒴𝒴(𝑛𝑛) is the mode-n

matricization of the tensor 𝒴𝒴 and 𝒳𝒳(𝑛𝑛) is the mode-n matricization of the tensor 𝒳𝒳.

The proof is in Appendix F.3.

Using Proposition 7.3 on (7.17), we obtain

Ishan Wickramasingha

112

𝛻𝛻𝑫𝑫(𝑛𝑛)𝑙𝑙𝑠𝑠 = −(𝑫𝑫𝜷𝜷∗)(𝑛𝑛)�𝜶𝜶∗
(𝑛𝑛)𝜳𝜳𝑫𝑫(𝑛𝑛)

𝑇𝑇 �
𝑇𝑇

+ (vec(𝒳𝒳) − 𝑫𝑫𝜶𝜶∗)(𝑛𝑛) �𝜷𝜷∗
(𝑛𝑛)𝜳𝜳𝑫𝑫(𝑛𝑛)

𝑇𝑇 �
𝑇𝑇

(7. 19)

Where 𝜳𝜳𝑫𝑫(𝑛𝑛) = 𝑫𝑫(𝑁𝑁) ⊗ ⋯ ⊗ 𝑫𝑫(𝑛𝑛+1) ⊗ 𝑫𝑫(𝑛𝑛−1) ⊗ ⋯ ⊗ 𝑫𝑫(1), 𝜷𝜷𝐼𝐼𝑐𝑐
∗ = 0 and 𝜷𝜷𝐼𝐼

∗ = (𝑫𝑫𝐼𝐼
𝑇𝑇𝑫𝑫𝐼𝐼 +

𝜆𝜆2𝑰𝑰)−1 𝛻𝛻𝜶𝜶𝐼𝐼𝑙𝑙𝑠𝑠. Matrices (𝑫𝑫𝜷𝜷∗)(𝑛𝑛), 𝜶𝜶∗
(𝑛𝑛), (vec(𝒳𝒳) − 𝑫𝑫𝜶𝜶∗)(𝑛𝑛), and 𝜷𝜷∗

(𝑛𝑛), are mode-n matricization

of respective vectors.

Using Proposition 7.1, the gradient of the unsupervised loss function 𝛻𝛻𝑫𝑫(𝑛𝑛)𝑙𝑙𝑢𝑢 could be written as

�𝛻𝛻𝑫𝑫(𝑛𝑛)𝑙𝑙𝑢𝑢�
𝑖𝑖,𝑗𝑗

= 𝑇𝑇𝑇𝑇 �(𝛻𝛻𝑫𝑫𝑙𝑙𝑢𝑢)𝑇𝑇 𝜕𝜕𝑫𝑫

𝜕𝜕𝑫𝑫𝑖𝑖,𝑗𝑗
(𝑛𝑛)� (7. 20)

Since ∇𝑫𝑫𝑙𝑙𝑢𝑢 = (vec(𝒳𝒳′) − 𝑫𝑫𝜶𝜶∗′)𝜶𝜶∗′𝑇𝑇 and 𝑇𝑇𝑇𝑇(𝐴𝐴𝐴𝐴) = 𝑇𝑇𝑇𝑇(𝐵𝐵𝐵𝐵)

�𝛻𝛻𝑫𝑫(𝑛𝑛)𝑙𝑙𝑢𝑢�
𝑖𝑖,𝑗𝑗

= 𝑇𝑇𝑇𝑇 �(vec(𝒳𝒳′) − 𝑫𝑫𝜶𝜶∗′)𝑇𝑇 𝜕𝜕𝑫𝑫

𝜕𝜕𝑫𝑫𝑖𝑖,𝑗𝑗
(𝑛𝑛) 𝜶𝜶∗′� (7. 21)

By using Proposition 7.3 on (7.21) we could obtain ∇𝑫𝑫(𝑛𝑛)𝑙𝑙𝑢𝑢 as,

∇𝑫𝑫(𝑛𝑛)𝑙𝑙𝑢𝑢 = �vec(𝒳𝒳′) − 𝑫𝑫𝜶𝜶∗′�(𝑛𝑛)�𝜶𝜶∗′
(𝑛𝑛)𝜳𝜳𝑫𝑫(𝑛𝑛)

𝑇𝑇 �
𝑇𝑇 (7. 22)

Therefore, the gradient of g(𝑫𝑫, 𝑾𝑾) w.r.t. 𝑫𝑫(𝑛𝑛); 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁} is,

𝛻𝛻𝑫𝑫(𝑛𝑛)g(𝑫𝑫, 𝑾𝑾) =

⎝

⎜
⎛(1 − 𝜇𝜇) �

− (𝑫𝑫𝜷𝜷∗)(𝑛𝑛)�𝜶𝜶∗
(𝑛𝑛)𝜳𝜳𝑫𝑫(𝑛𝑛)

𝑇𝑇 �
𝑇𝑇

+ (vec(𝒳𝒳) − 𝑫𝑫𝜶𝜶∗)(𝑛𝑛) �𝜷𝜷∗
(𝑛𝑛)𝜳𝜳𝑫𝑫(𝑛𝑛)

𝑇𝑇 �
𝑇𝑇�

−𝜇𝜇 ��vec(𝒳𝒳′) − 𝑫𝑫𝜶𝜶∗′�(𝑛𝑛)�𝜶𝜶∗′
(𝑛𝑛)𝜳𝜳𝑫𝑫(𝑛𝑛)

𝑇𝑇 �
𝑇𝑇

� ⎠

⎟
⎞

(7. 23)

where (𝑫𝑫𝜷𝜷∗)(𝑛𝑛), �𝜶𝜶∗
(𝑛𝑛)𝜳𝜳𝑫𝑫(𝑛𝑛)

𝑇𝑇 �
𝑇𝑇
, �𝜶𝜶∗′

(𝑛𝑛)𝜳𝜳𝑫𝑫(𝑛𝑛)
𝑇𝑇 �

𝑇𝑇
, (vec(𝒳𝒳) − 𝑫𝑫𝜶𝜶∗)(𝑛𝑛), �vec(𝒳𝒳′) − 𝑫𝑫𝜶𝜶∗′�(𝑛𝑛), and

�𝜷𝜷∗
(𝑛𝑛)𝜳𝜳𝑫𝑫(𝑛𝑛)

𝑇𝑇 �
𝑇𝑇
 are mode-n matrices that are significantly smaller in size, compared to the separable

dictionary matrix 𝑫𝑫 = 𝑫𝑫(𝑁𝑁) ⊗ ⋯ ⊗ 𝑫𝑫(1). After tensorizing 𝜶𝜶∗ and 𝜷𝜷∗, we could efficiently

calculate mode-n matrices in (7.23) as 𝑁𝑁 mode-n products (full multilinear product) with mode-n

dictionary matrices 𝑫𝑫(1), ⋯ , 𝑫𝑫(𝑁𝑁) [5], [7].

Computationally Efficient Methods for Sparse Tensor Signal Processing

113

7.3.3. Tensor Task-Driven Dictionary Learning Algorithm

In T-TDDL and T-NET large Kronecker matrices such as 𝑫𝑫 = 𝑫𝑫(𝑁𝑁) ⊗ ⋯ ⊗ 𝑫𝑫(1) and 𝑾𝑾 =

 𝑾𝑾(𝑁𝑁) ⊗ ⋯ ⊗ 𝑾𝑾(1) are not constructed explicitly. Instead, smaller mode-n dictionaries

𝑫𝑫(1), ⋯ , 𝑫𝑫(𝑁𝑁) and 𝑾𝑾(1), ⋯ , 𝑾𝑾(𝑁𝑁) are used in computations, thereby significantly reducing

memory usage and improving computational efficiency.

Algorithm 7.1: Tensor Task-Driven Dictionary Learning (T-TDDL)
Input: 𝑝𝑝(𝒴𝒴, 𝒳𝒳) (a way to draw i.i.d samples of 𝑝𝑝(𝒴𝒴, 𝒳𝒳)); 𝜆𝜆1, 𝜆𝜆2, 𝜐𝜐 ∈ ℝ (regularization parameters);
𝑫𝑫 = 𝑫𝑫(𝑁𝑁) ⊗ ⋯ ⊗ 𝑫𝑫(1) ∈ 𝒟𝒟 (initial mode-n dictionaries); 𝑾𝑾 = 𝑾𝑾(𝑁𝑁) ⊗ ⋯ ⊗ 𝑾𝑾(1) ∈ 𝒲𝒲 (initial
mode-n parameters); 𝑇𝑇 (number of iterations); 𝜇𝜇, 𝑡𝑡0, 𝜌𝜌(learning rate parameter);

Initialization: Initialize 𝑫𝑫(1) ⋯ 𝑫𝑫(𝑁𝑁) and 𝑾𝑾(1) ⋯ 𝑾𝑾(𝑁𝑁)randomly or using a previous solution for
transfer learning

1. for 𝑡𝑡 = 1 to 𝑇𝑇 do
2. Draw subtensors 𝒴𝒴𝑡𝑡, 𝒳𝒳𝑡𝑡 from 𝑝𝑝(𝒴𝒴, 𝒳𝒳).
3. Sparse coding: compute 𝜶𝜶∗ using T-NET

𝜶𝜶∗(𝒳𝒳, 𝑫𝑫) ≜ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝜶𝜶∗∈ℝ𝑈𝑈

1
2

‖𝑣𝑣𝑣𝑣𝑣𝑣(𝒳𝒳) − 𝑫𝑫𝑫𝑫‖2
2 + 𝜆𝜆1‖𝜶𝜶‖1 +

𝜆𝜆2

2
‖𝜶𝜶‖2

4. Compute the active set:
𝐼𝐼 = {𝑘𝑘 ∈ {1, ⋯ , 𝐾𝐾} ∶ 𝜶𝜶∗(𝑘𝑘) ≠ 0}

5. Compute 𝜷𝜷∗: set 𝜷𝜷𝐼𝐼𝑐𝑐
∗ = 0 and

𝜷𝜷𝐼𝐼
∗ = (𝑫𝑫𝐼𝐼

𝑇𝑇𝑫𝑫𝐼𝐼 + 𝜆𝜆2𝑰𝑰)−1𝛻𝛻𝜶𝜶𝐼𝐼𝑙𝑙𝑠𝑠�𝒴𝒴, 𝑾𝑾, 𝜶𝜶∗(𝒳𝒳, 𝑫𝑫)�
6. Choose the learning rate 𝜌𝜌𝑡𝑡 ← 𝑚𝑚𝑚𝑚𝑚𝑚 �𝜌𝜌, 𝜌𝜌 𝑡𝑡0

𝑡𝑡
�

7. for 𝑛𝑛 = 1 to 𝑁𝑁 do
 Update the parameters by a projected gradient step

𝑾𝑾(𝑛𝑛) ← 𝛱𝛱𝒲𝒲 �𝑾𝑾(𝑛𝑛) − 𝜌𝜌𝑡𝑡 �(1 − 𝜇𝜇)𝛻𝛻𝑾𝑾(𝑛𝑛)𝑙𝑙𝑠𝑠 +
𝑣𝑣
2

 𝛻𝛻𝑾𝑾(𝑛𝑛)‖𝑾𝑾‖2� �

𝑫𝑫(𝑛𝑛) ← 𝛱𝛱𝒟𝒟 �𝑫𝑫(𝑛𝑛) − 𝜌𝜌𝑡𝑡 �(1 − 𝜇𝜇)𝛻𝛻𝑫𝑫(𝑛𝑛)𝑙𝑙𝑠𝑠 − 𝜇𝜇𝛻𝛻𝑫𝑫(𝑛𝑛)𝑙𝑙𝑢𝑢� �
8. end for
9. end for
10. return 𝑫𝑫(1), ⋯ , 𝑫𝑫(𝑁𝑁) (learned dictionaries), 𝑾𝑾(1), ⋯ , 𝑾𝑾(𝑁𝑁) (learned parameters)

In the T-TDDL algorithm, the learning rate parameter 𝜌𝜌𝑡𝑡 is calculated using the 𝜌𝜌𝑡𝑡 = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝜌𝜌, 𝜌𝜌 𝑡𝑡0
𝑡𝑡

�

[38], where for the first 𝑡𝑡0 iterations the learning rate is 𝜌𝜌 and after 𝑡𝑡0 the learning rate is reduced

at the rate of 𝑡𝑡0
𝑡𝑡

. The notation 𝛱𝛱𝒲𝒲 and 𝛱𝛱𝒟𝒟 denotes an orthogonal projection on the set 𝒲𝒲 and 𝒟𝒟

respectively.

Ishan Wickramasingha

114

7.4. Applications

This section presents three example applications of our T-TDDL algorithm in multi-dimensional

regression, binary classifications, and multiclass classification. We select a twice differentiable

supervised loss function for each multi-dimensional application and present gradient calculations

of g(𝑫𝑫, 𝑾𝑾) w.r.t. mode-n dictionaries 𝑫𝑫(𝑛𝑛) and mode-n model parameter matrices 𝑾𝑾(𝑛𝑛).

7.4.1. Regression

In T-TDDL multi-dimensional regression applications, the tensor 𝒴𝒴 is a subset of ℝ𝑄𝑄1×…×𝑄𝑄𝑁𝑁 and

the objective is to predict the tensor 𝒴𝒴 from a tensor 𝒳𝒳 ∈ ℝ𝑃𝑃1×…×𝑃𝑃𝑁𝑁 by supervised learning of the

Kronecker dictionary 𝑫𝑫 ∈ ℝ𝑃𝑃×𝑈𝑈 and Kronecker model parameters 𝑾𝑾 ∈ ℝ𝑄𝑄×𝑈𝑈. We select the

square loss as the supervised loss function for the multi-dimensional regression application.

However, any other twice differentiable multi-dimensional regression loss function could be

selected.

We could define the supervised regression loss function as,

𝑙𝑙𝑠𝑠�𝒴𝒴, 𝑾𝑾, 𝜶𝜶∗(𝒳𝒳, 𝑫𝑫)� =
1
2

‖vec(𝒴𝒴) − 𝑾𝑾𝑾𝑾‖2
2 (7. 24)

The gradient ∇𝑾𝑾(𝑛𝑛)g(𝑫𝑫, 𝑾𝑾) given in (7.13) depends on the gradient of the supervised loss function

𝛻𝛻𝑾𝑾(𝑛𝑛)𝑙𝑙𝑠𝑠. In (7.10) we obtained the gradient 𝛻𝛻𝑾𝑾(𝑛𝑛)𝑙𝑙𝑠𝑠 as a function of the gradient 𝛻𝛻𝑾𝑾𝑙𝑙𝑠𝑠.

Since

𝛻𝛻𝑾𝑾𝑙𝑙𝑠𝑠 = −(vec(𝒴𝒴) − 𝑾𝑾𝜶𝜶∗)𝜶𝜶∗𝑇𝑇 (7. 25)

And 𝑇𝑇𝑇𝑇(𝐴𝐴𝐴𝐴) = 𝑇𝑇𝑇𝑇(𝐵𝐵𝐵𝐵), from (7.10) and (7.25) we obtain,

�𝛻𝛻𝑾𝑾(𝑛𝑛)𝑙𝑙𝑠𝑠�
𝑖𝑖,𝑗𝑗

= −𝑇𝑇𝑇𝑇 �(vec(𝒴𝒴) − 𝑾𝑾𝜶𝜶∗)𝑇𝑇 �
𝜕𝜕𝑾𝑾

𝜕𝜕𝑾𝑾𝑖𝑖,𝑗𝑗
(𝑛𝑛)� 𝜶𝜶∗� (7. 26)

Therefore, using Proposition 7.3, we could obtain 𝛻𝛻𝑾𝑾(𝑛𝑛)𝑙𝑙𝑠𝑠 as,

𝛻𝛻𝑾𝑾(𝑛𝑛)𝑙𝑙𝑠𝑠 = −(vec(𝒴𝒴) − 𝑾𝑾𝜶𝜶∗)(𝑛𝑛)�𝜶𝜶∗
(𝑛𝑛)𝜳𝜳𝑾𝑾(𝑛𝑛)

𝑇𝑇 �
𝑇𝑇 (7. 27)

where

Computationally Efficient Methods for Sparse Tensor Signal Processing

115

𝜳𝜳𝑾𝑾(𝑛𝑛) = 𝑾𝑾(𝑁𝑁) ⊗ … ⊗ 𝑾𝑾(𝑛𝑛+1) ⊗ 𝑾𝑾(𝑛𝑛−1) ⊗ ⋯ ⊗ 𝑾𝑾(1)

The gradient ∇𝑫𝑫(𝑛𝑛)g(𝑫𝑫, 𝑾𝑾) is given in (7.23), where 𝜷𝜷𝐼𝐼
∗ depends on ∇𝜶𝜶𝐼𝐼𝑙𝑙𝑠𝑠. Therefore, for the

supervised regression loss function,

𝛻𝛻𝜶𝜶𝐼𝐼𝑙𝑙𝑠𝑠 = −𝑾𝑾𝑇𝑇(vec(𝒴𝒴) − 𝑾𝑾𝜶𝜶∗) (7. 28)

After learning the Kronecker dictionary 𝑫𝑫 and the Kronecker model parameters 𝑾𝑾, we could

predict 𝒴𝒴 ∈ ℝ𝑄𝑄1×…×𝑄𝑄𝑁𝑁 for a new tensor 𝒳𝒳 ∈ ℝ𝑃𝑃1×…×𝑃𝑃𝑁𝑁 as vec(𝒴𝒴) = 𝑾𝑾𝜶𝜶∗(𝒳𝒳, 𝑫𝑫), where

𝜶𝜶∗(𝒳𝒳, 𝑫𝑫) is the Elastic net solution of (7.3).

7.4.2. Binary Classification

In the T-TDDL binary classification applications, the objective is to predict a scalar 𝑦𝑦 = {−1, +1}

from a tensor 𝒳𝒳 ∈ ℝ𝑃𝑃1×…×𝑃𝑃𝑁𝑁 by supervised learning of the Kronecker dictionary 𝑫𝑫 ∈ ℝ𝑃𝑃×𝑈𝑈 and

Kronecker model parameters vector 𝒘𝒘 ∈ ℝ1×𝑈𝑈, where 𝑫𝑫 = 𝑫𝑫(𝑁𝑁) ⊗ ⋯ ⊗ 𝑫𝑫(1) and 𝒘𝒘 = 𝒘𝒘(𝑁𝑁) ⊗

⋯ ⊗ 𝒘𝒘(1). We select the logistic regression loss function as the supervised binary classification

loss function [38].

𝑙𝑙𝑠𝑠�𝑦𝑦, 𝒘𝒘, 𝜶𝜶∗(𝒳𝒳, 𝑫𝑫)� = 𝑙𝑙𝑙𝑙�1 + 𝑒𝑒−𝑦𝑦𝒘𝒘𝜶𝜶∗(𝒳𝒳,𝑫𝑫)� (7. 29)

The gradient ∇𝒘𝒘(𝑛𝑛)g(𝑫𝑫, 𝑾𝑾) in (7.13) depends on the gradient of the supervised loss function

𝛻𝛻𝒘𝒘(𝑛𝑛)𝑙𝑙𝑠𝑠. From (7.10) we could obtain the gradient 𝛻𝛻𝒘𝒘(𝑛𝑛)𝑙𝑙𝑠𝑠 as a function of the gradient 𝛻𝛻𝒘𝒘𝑙𝑙𝑠𝑠. The

gradient of the supervised binary classification loss function w.r.t 𝒘𝒘 is,

𝛻𝛻𝒘𝒘𝑙𝑙𝑠𝑠 =
−𝑒𝑒−𝑦𝑦𝒘𝒘𝜶𝜶∗𝑦𝑦𝜶𝜶∗𝑇𝑇

1 + 𝑒𝑒−𝑦𝑦𝒘𝒘𝜶𝜶∗ (7. 30)

Since 𝑇𝑇𝑇𝑇(𝐴𝐴𝐴𝐴) = 𝑇𝑇𝑇𝑇(𝐵𝐵𝐵𝐵), from (7.10) and (7.30) we obtain,

�𝛻𝛻𝒘𝒘(𝑛𝑛)𝑙𝑙𝑠𝑠�
𝑗𝑗

= 𝑇𝑇𝑇𝑇 �
−𝑦𝑦

1 + 𝑒𝑒−𝑦𝑦𝒘𝒘𝜶𝜶∗
𝜕𝜕𝒘𝒘

𝜕𝜕𝒘𝒘𝑗𝑗
(𝑛𝑛) 𝜶𝜶∗� (7. 31)

Therefore, using Proposition 7.3, we could obtain 𝛻𝛻𝒘𝒘(𝑛𝑛)𝑙𝑙𝑠𝑠 as,

𝛻𝛻𝒘𝒘(𝑛𝑛)𝑙𝑙𝑠𝑠 = �
−𝑦𝑦𝑒𝑒−𝑦𝑦𝒘𝒘𝜶𝜶∗

1 + 𝑒𝑒−𝑦𝑦𝒘𝒘𝜶𝜶∗� �𝜶𝜶∗
(𝑛𝑛)𝜳𝜳𝒘𝒘(𝑛𝑛)

𝑇𝑇 �
𝑇𝑇 (7. 32)

Ishan Wickramasingha

116

Where, 𝜳𝜳𝒘𝒘(𝑛𝑛) = 𝒘𝒘(𝑁𝑁) ⊗ ⋯ ⊗ 𝒘𝒘(𝑛𝑛+1) ⊗ 𝒘𝒘(𝑛𝑛−1) ⊗ ⋯ ⊗ 𝒘𝒘(1), 𝒘𝒘(𝑛𝑛) ∈ ℝ1×𝑈𝑈𝑛𝑛; ∀𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁}

and 𝜶𝜶∗
(𝑛𝑛) is the mode-n matricization of the vector 𝜶𝜶∗.

The gradient of g(𝑫𝑫, 𝑾𝑾) w.r.t. 𝑫𝑫(𝑛𝑛) is given in (7.23), where 𝜷𝜷𝐼𝐼
∗ depends on the gradient of the

supervised binary classification loss function ∇𝜶𝜶𝐼𝐼𝑙𝑙𝑠𝑠. Therefore, for the supervised binary

classification loss function,

𝛻𝛻𝜶𝜶𝐼𝐼𝑙𝑙𝑠𝑠 =
−𝑦𝑦𝑒𝑒−𝑦𝑦𝒘𝒘𝜶𝜶∗𝒘𝒘𝑇𝑇

1 + 𝑒𝑒−𝑦𝑦𝒘𝒘𝜶𝜶∗ (7. 33)

After learning the Kronecker dictionary 𝑫𝑫 and the Kronecker model parameters vector 𝒘𝒘, a new

tensor 𝒳𝒳 could be classified according to the sign of 𝒘𝒘𝜶𝜶∗(𝒳𝒳, 𝑫𝑫).

7.4.3. Multiclass Classification

In the T-TDDL multiclass classification applications, the objective is to predict a finite set of labels

𝒴𝒴 ∈ {1, ⋯ , 𝑄𝑄} with 𝑄𝑄 > 2 from a tensor 𝒳𝒳 ∈ ℝ𝑃𝑃1×…×𝑃𝑃𝑁𝑁 by supervised learning of the Kronecker

dictionary 𝑫𝑫 ∈ ℝ𝑃𝑃×𝑈𝑈 and model parameters 𝑾𝑾 ∈ ℝ𝑄𝑄×𝑈𝑈.

We could formulate a multiclass classifier using a binary classifier in a one-vs-all or one-vs-one

configurations [38], [120]. However, binary classifiers in one-vs-all or one-vs-one configurations

have scalability issues. It is also possible to formulate the multiclass classification problem as a

regression problem using a binary vector for 𝒴𝒴, where the 𝑘𝑘𝑡𝑡ℎ element of the binary vector is one

for a class 𝑘𝑘 and zero everywhere else [38].

A multiclass loss function could solve multiclass classification problems efficiently using an all-

vs-all configuration. Therefore, we use the Softmax cross-entropy loss function for solving multi-

dimensional multiclass classification problems. We could define the Softmax cross-entropy loss

function for classifying 𝐾𝐾 classes as,

 𝑙𝑙𝑠𝑠�𝒚𝒚, 𝑾𝑾, 𝜶𝜶∗(𝒳𝒳, 𝑫𝑫)� = − � 1{𝑦𝑦=𝑘𝑘}𝑙𝑙𝑙𝑙 �
𝑒𝑒𝑰𝑰𝑘𝑘

𝑇𝑇𝑾𝑾𝜶𝜶∗(𝒳𝒳,𝑫𝑫)

∑ 𝑒𝑒𝑰𝑰𝑐𝑐
𝑇𝑇𝑾𝑾𝜶𝜶∗(𝒳𝒳,𝑫𝑫)𝐾𝐾

𝑐𝑐=1
�

𝐾𝐾

𝑘𝑘=1

(7. 34)

Where 𝑰𝑰1, … , 𝑰𝑰𝐾𝐾 are the columns of the identity matrix 𝑰𝑰 = [𝑰𝑰1 … 𝑰𝑰𝐾𝐾] ∈ ℝ𝐾𝐾×𝐾𝐾, and 1{.} is the

indicator function.

Computationally Efficient Methods for Sparse Tensor Signal Processing

117

The gradient ∇𝑾𝑾(𝑛𝑛)g(𝑫𝑫, 𝑾𝑾) given in (7.13) depends on the gradient of the supervised loss function

𝛻𝛻𝑾𝑾(𝑛𝑛)𝑙𝑙𝑠𝑠. In (7.10) we obtained the gradient 𝛻𝛻𝑾𝑾(𝑛𝑛)𝑙𝑙𝑠𝑠 as a function of the gradient 𝛻𝛻𝑾𝑾𝑙𝑙𝑠𝑠. We could

calculate the gradient 𝛻𝛻𝑾𝑾𝑙𝑙𝑠𝑠 for the Softmax cross-entropy loss function as,

𝛻𝛻𝑾𝑾𝑙𝑙𝑠𝑠 = �
𝛾𝛾

∑ 𝑒𝑒𝑰𝑰𝑐𝑐
𝑇𝑇𝑾𝑾𝜶𝜶∗𝐾𝐾

𝑐𝑐=1
− 𝑰𝑰𝑦𝑦� 𝜶𝜶∗𝑇𝑇 (7. 35)

Where 𝛾𝛾 ∈ ℝ𝐾𝐾 and 𝛾𝛾𝑘𝑘 = 𝑒𝑒𝑰𝑰𝑘𝑘
𝑇𝑇𝑾𝑾𝜶𝜶∗; ∀ 𝑘𝑘 = {1, … , 𝐾𝐾}.

Since 𝑇𝑇𝑇𝑇(𝐴𝐴𝐴𝐴) = 𝑇𝑇𝑇𝑇(𝐵𝐵𝐵𝐵), from (7.10) and (7.35) we obtain,

�𝛻𝛻𝑾𝑾(𝑛𝑛)𝑙𝑙𝑠𝑠�
𝑖𝑖,𝑗𝑗

= 𝑇𝑇𝑇𝑇 ��
𝛾𝛾

∑ 𝑒𝑒𝑰𝑰𝑐𝑐
𝑇𝑇𝑾𝑾𝜶𝜶∗𝐾𝐾

𝑐𝑐=1
− 𝑰𝑰𝑦𝑦�

𝑇𝑇 𝜕𝜕𝑾𝑾

𝜕𝜕𝑾𝑾𝑖𝑖,𝑗𝑗
(𝑛𝑛) 𝜶𝜶∗� (7. 36)

We could use Proposition 7.3 to calculate 𝛻𝛻𝑾𝑾(𝑛𝑛)𝑙𝑙𝑠𝑠 as,

𝛻𝛻𝑾𝑾(𝑛𝑛)𝑙𝑙𝑠𝑠 = �
𝛾𝛾(𝑛𝑛)

∑ 𝑒𝑒𝑰𝑰𝑐𝑐
𝑇𝑇𝑾𝑾𝜶𝜶∗𝐾𝐾

𝑐𝑐=1
− 𝑰𝑰𝑦𝑦(𝑛𝑛)� �𝜶𝜶∗

(𝑛𝑛)𝜳𝜳𝑾𝑾(𝑛𝑛)
𝑇𝑇 �

𝑇𝑇 (7. 37)

Where 𝜶𝜶∗
(𝑛𝑛), 𝛾𝛾(𝑛𝑛) and 𝑰𝑰𝑦𝑦(𝑛𝑛) are mode-n matricization of 𝜶𝜶∗, 𝛾𝛾 and 𝑰𝑰𝑦𝑦, respectively.

The gradient of g(𝑫𝑫, 𝑾𝑾) w.r.t. 𝑫𝑫(𝑛𝑛) is given in (7.23), where 𝜷𝜷𝐼𝐼
∗ depends on the gradient of the

supervised multiclass classification loss function ∇𝜶𝜶𝐼𝐼𝑙𝑙𝑠𝑠. Therefore, for the supervised Softmax

cross-entropy loss function, ∇𝜶𝜶𝐼𝐼𝑙𝑙𝑠𝑠 is given by,

𝛻𝛻𝜶𝜶𝐼𝐼𝑙𝑙𝑠𝑠 = 𝑾𝑾𝑇𝑇 �
𝛾𝛾

∑ 𝑒𝑒𝑰𝑰𝑐𝑐
𝑇𝑇𝑾𝑾𝜶𝜶∗𝐾𝐾

𝑐𝑐=1
− 𝑰𝑰𝒚𝒚� (7. 38)

After learning 𝑫𝑫 and 𝑾𝑾, a new tensor 𝒳𝒳 is classified according to the class 𝑘𝑘 with the maximum

probability 𝑝𝑝(𝒚𝒚|𝒳𝒳), where

𝑝𝑝(𝒚𝒚|𝒳𝒳) = arg max
𝑘𝑘∈{1,…,𝑘𝑘}

𝑒𝑒𝑰𝑰𝑘𝑘
𝑇𝑇𝑾𝑾𝜶𝜶∗(𝒳𝒳,𝑫𝑫)

∑ 𝑒𝑒𝑰𝑰𝑐𝑐
𝑇𝑇𝑾𝑾𝜶𝜶∗(𝒳𝒳,𝑫𝑫)𝐾𝐾

𝑐𝑐=1
(7. 39)

Ishan Wickramasingha

118

7.5. Compressed Sensing Extension

Computations involving large multi-dimensional signals require many dense samples and

extensive computational resources. Compressed sensing solves this problem by projecting the

dense signal to a sparse domain using a sensing matrix 𝒁𝒁, where a small number of nonzero

samples are obtained in the sparse domain [19], [20]. Therefore, we could significantly improve

the performance of T-TDDL by using compressed sensing to project large tensors 𝒳𝒳 ∈ ℝ𝑃𝑃1×…×𝑃𝑃𝑁𝑁

to a sparse domain before learning dictionaries and model parameters for predicting a tensor 𝒴𝒴

from a large tensor 𝒳𝒳.

We could define the compressed sensing extension to the T-TDDL as,

arg min
�𝑫𝑫(1),⋯,𝑫𝑫(𝑁𝑁)�∈𝒟𝒟,

�𝑾𝑾(1),⋯,𝑾𝑾(𝑁𝑁)�∈𝒲𝒲
�𝒁𝒁(1),⋯,𝒁𝒁(𝑁𝑁)�∈𝒵𝒵

𝑓𝑓(𝑫𝑫, 𝑾𝑾, 𝒁𝒁) +
𝑣𝑣1

2
‖𝑾𝑾‖2 +

𝑣𝑣2

2
‖𝒁𝒁‖2 (7. 40)

Where 𝒵𝒵 is a convex set, 𝒁𝒁 ∈ ℝ𝑀𝑀×𝑃𝑃 is a Kronecker sensing matrix with 𝒁𝒁 = 𝒁𝒁(𝑁𝑁) ⊗ ⋯ ⊗ 𝒁𝒁(1),

𝒁𝒁(𝑛𝑛) ∈ ℝ𝑀𝑀𝑛𝑛×𝑃𝑃𝑛𝑛; ∀𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁}, 𝑫𝑫 ∈ ℝ𝑀𝑀×𝑈𝑈 and 𝑫𝑫(𝑛𝑛) ∈ ℝ𝑀𝑀𝑛𝑛×𝑈𝑈𝑛𝑛 ; ∀𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁}.

The convex function 𝑓𝑓(𝑫𝑫, 𝑾𝑾, 𝒁𝒁) is defined as

𝑓𝑓(𝑫𝑫, 𝑾𝑾, 𝒁𝒁) ≜ (1 − 𝜇𝜇)𝔼𝔼𝒴𝒴,𝒳𝒳�𝑙𝑙𝑐𝑐𝑐𝑐�𝒴𝒴, 𝑾𝑾, 𝜶𝜶∗(𝒳𝒳, 𝑫𝑫, 𝒁𝒁)�� + 𝜇𝜇𝔼𝔼𝒳𝒳[𝑙𝑙𝑐𝑐𝑐𝑐(𝒳𝒳, 𝑫𝑫, 𝒁𝒁)] (7. 41)

For notational simplicity, we denote the compressed sensing-based supervised loss function

𝑙𝑙𝑐𝑐𝑐𝑐�𝒴𝒴, 𝑾𝑾, 𝜶𝜶∗(𝒳𝒳, 𝑫𝑫, 𝒁𝒁)� as 𝑙𝑙𝑐𝑐𝑐𝑐 and the unsupervised loss function 𝑙𝑙𝑐𝑐𝑐𝑐(𝒳𝒳, 𝑫𝑫, 𝒁𝒁) as 𝑙𝑙𝑐𝑐𝑐𝑐.

Let g(𝑫𝑫, 𝑾𝑾, 𝒁𝒁) be the objective function of the compressed sensing extension of the T-TDDL,

where

g(𝑫𝑫, 𝑾𝑾, 𝒁𝒁) = 𝑓𝑓(𝑫𝑫, 𝑾𝑾, 𝒁𝒁) +
𝑣𝑣1

2
‖𝑾𝑾‖2 +

𝑣𝑣2

2
‖𝒁𝒁‖2 (7. 42)

Therefore we could obtain the 𝛻𝛻𝒁𝒁(𝑛𝑛)g(𝑫𝑫, 𝑾𝑾, 𝒁𝒁) as

𝛻𝛻𝒁𝒁(𝑛𝑛)g(𝑫𝑫, 𝑾𝑾, 𝒁𝒁) = (1 − 𝜇𝜇)𝛻𝛻𝒁𝒁(𝑛𝑛)𝑙𝑙𝑐𝑐𝑐𝑐 + 𝜇𝜇𝛻𝛻𝒁𝒁(𝑛𝑛)𝑙𝑙𝑐𝑐𝑐𝑐 +
𝑣𝑣2

2
𝛻𝛻𝒁𝒁(𝑛𝑛)‖𝒁𝒁‖2 (7. 43)

By applying Proposition 7.1, we could obtain 𝛻𝛻𝒁𝒁(𝑛𝑛)𝑙𝑙c𝑠𝑠 as a function of 𝛻𝛻𝒁𝒁𝑙𝑙c𝑠𝑠.

Computationally Efficient Methods for Sparse Tensor Signal Processing

119

�𝛻𝛻𝒁𝒁(𝑛𝑛)𝑙𝑙c𝑠𝑠�
𝑖𝑖,𝑗𝑗

= 𝑇𝑇𝑇𝑇 �(𝛻𝛻𝒁𝒁𝑙𝑙𝑐𝑐𝑐𝑐)𝑇𝑇 𝜕𝜕𝒁𝒁

𝜕𝜕𝒁𝒁𝑖𝑖,𝑗𝑗
(𝑛𝑛)� (7. 44)

In [38], it shows that, 𝛻𝛻𝒁𝒁𝑙𝑙c𝑠𝑠 = 𝑫𝑫𝜷𝜷∗vec(𝒳𝒳)𝑇𝑇, Where 𝜷𝜷𝐼𝐼𝑐𝑐
∗ = 0 and 𝜷𝜷𝐼𝐼

∗ = (𝑫𝑫𝐼𝐼
𝑇𝑇𝑫𝑫𝐼𝐼 + 𝜆𝜆2𝑰𝑰)−1𝛻𝛻𝜶𝜶𝐼𝐼𝑙𝑙c𝑠𝑠.

Therefore, by applying 𝛻𝛻𝒁𝒁𝑙𝑙c𝑠𝑠 to (7.44),

�𝛻𝛻𝒁𝒁(𝑛𝑛)𝑙𝑙c𝑠𝑠�
𝑖𝑖,𝑗𝑗

= 𝑇𝑇𝑇𝑇 �(𝑫𝑫𝜷𝜷∗)𝑇𝑇 �
𝜕𝜕𝒁𝒁

𝜕𝜕𝒁𝒁𝑖𝑖,𝑗𝑗
(𝑛𝑛) vec(𝒳𝒳)�� (7. 45)

Where 𝑇𝑇𝑇𝑇(𝐴𝐴𝐴𝐴) = 𝑇𝑇𝑇𝑇(𝐵𝐵𝐵𝐵).

Therefore, by using Proposition 7.3 on (7.45) we obtain the gradient of the supervised loss

function 𝛻𝛻𝒁𝒁(𝑛𝑛)𝑙𝑙c𝑠𝑠 as,

𝛻𝛻𝒁𝒁(𝑛𝑛)𝑙𝑙c𝑠𝑠 = (𝑫𝑫𝜷𝜷∗)(𝑛𝑛)�𝒳𝒳(𝑛𝑛)𝜳𝜳𝒁𝒁(𝑛𝑛)
𝑇𝑇 �

𝑇𝑇 (7. 46)

Where 𝜳𝜳𝒁𝒁(𝑛𝑛) = 𝒁𝒁(𝑁𝑁) ⊗ ⋯ ⊗ 𝒁𝒁(𝑛𝑛+1) ⊗ 𝒁𝒁(𝑛𝑛−1) ⊗ ⋯ ⊗ 𝒁𝒁(1)

By applying Proposition 7.1, we could obtain 𝛻𝛻𝒁𝒁(𝑛𝑛)𝑙𝑙𝑐𝑐𝑐𝑐 as a function of 𝛻𝛻𝒁𝒁𝑙𝑙𝑐𝑐𝑐𝑐.

�𝛻𝛻𝒁𝒁(𝑛𝑛)𝑙𝑙𝑐𝑐𝑐𝑐�
𝑖𝑖,𝑗𝑗

= 𝑇𝑇𝑇𝑇 �(𝛻𝛻𝒁𝒁𝑙𝑙𝑐𝑐𝑐𝑐)𝑇𝑇 𝜕𝜕𝒁𝒁

𝜕𝜕𝒁𝒁𝑖𝑖,𝑗𝑗
(𝑛𝑛)� (7. 47)

Since 𝛻𝛻𝒁𝒁𝑙𝑙𝑐𝑐𝑐𝑐 = �𝒁𝒁vec(𝒳𝒳′) − 𝑫𝑫𝜶𝜶∗′�vec(𝒳𝒳′)𝑇𝑇 and 𝑇𝑇𝑇𝑇(𝐴𝐴𝐴𝐴) = 𝑇𝑇𝑇𝑇(𝐵𝐵𝐵𝐵)

�𝛻𝛻𝒁𝒁(𝑛𝑛)𝑙𝑙𝑐𝑐𝑐𝑐�
𝑖𝑖,𝑗𝑗

= 𝑇𝑇𝑇𝑇 ��𝒁𝒁vec(𝒳𝒳′) − 𝑫𝑫𝜶𝜶∗′�
𝑇𝑇 𝜕𝜕𝒁𝒁

𝜕𝜕𝒁𝒁𝑖𝑖,𝑗𝑗
(𝑛𝑛) �𝒁𝒁vec(𝒳𝒳′) − 𝑫𝑫𝜶𝜶∗′�� (7. 48)

Therefore, by using Proposition 7.3 on (7.48) we obtain the gradient of the unsupervised loss

function 𝛻𝛻𝒁𝒁(𝑛𝑛)𝑙𝑙𝑐𝑐𝑐𝑐 as,

𝛻𝛻𝒁𝒁(𝑛𝑛)𝑙𝑙𝑐𝑐𝑢𝑢 = �𝒁𝒁vec(𝒳𝒳′) − 𝑫𝑫𝜶𝜶∗′�(𝑛𝑛)�𝒳𝒳′
(𝑛𝑛)𝜳𝜳𝒁𝒁(𝑛𝑛)�

𝑇𝑇 (7. 49)

By applying Proposition 7.2 to 𝑣𝑣2
2

𝛻𝛻𝒁𝒁(𝑛𝑛)‖𝒁𝒁‖2 we obtain,

𝑣𝑣2

2
𝛻𝛻𝒁𝒁(𝑛𝑛)‖𝒁𝒁‖2 = 𝑣𝑣2𝛾𝛾𝒁𝒁(𝑛𝑛)𝒁𝒁(𝑛𝑛) (7. 50)

Ishan Wickramasingha

120

where,

𝛾𝛾𝒁𝒁(𝑛𝑛) = � 𝑇𝑇𝑇𝑇 �𝒁𝒁(𝑚𝑚)𝑇𝑇
𝒁𝒁(𝑚𝑚)�

𝑁𝑁

𝑚𝑚=1,𝑚𝑚≠𝑛𝑛

Therefore, the gradient of the objective function g(𝑫𝑫, 𝑾𝑾, 𝒁𝒁) w.r.t. 𝒁𝒁(𝑛𝑛); ∀𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁} is,

𝛻𝛻𝒁𝒁(𝑛𝑛)g(𝑫𝑫, 𝑾𝑾, 𝒁𝒁) =

⎝

⎜
⎛

(1 − 𝜇𝜇) �(𝑫𝑫𝜷𝜷∗)(𝑛𝑛)�𝒳𝒳(𝑛𝑛)𝜳𝜳𝒁𝒁(𝑛𝑛)�
𝑇𝑇

�

+ 𝜇𝜇 ��𝒁𝒁vec(𝒳𝒳′) − 𝑫𝑫𝜶𝜶∗′�(𝑛𝑛)�𝒳𝒳′
(𝑛𝑛)𝜳𝜳𝒁𝒁(𝑛𝑛)�

𝑇𝑇
�

+ 𝑣𝑣2𝛾𝛾𝒁𝒁(𝑛𝑛)𝒁𝒁(𝑛𝑛)
⎠

⎟
⎞

(7. 51)

Similarly, we could obtain the gradient of g(𝑫𝑫, 𝑾𝑾, 𝒁𝒁) w.r.t. 𝑾𝑾(𝑛𝑛); ∀𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁} and 𝑫𝑫(𝑛𝑛); ∀𝑛𝑛 ∈

{1, ⋯ , 𝑁𝑁} as,

𝛻𝛻𝑾𝑾(𝑛𝑛)g(𝑫𝑫, 𝑾𝑾, 𝒁𝒁) = (1 − 𝜇𝜇)𝛻𝛻𝑾𝑾(𝑛𝑛)𝑙𝑙c𝑠𝑠 + 𝑣𝑣1𝛾𝛾𝑾𝑾(𝑛𝑛)𝑾𝑾(𝑛𝑛) (7. 52)

and

𝛻𝛻𝑫𝑫(𝑛𝑛)g(𝑫𝑫, 𝑾𝑾, 𝒁𝒁) =

⎝

⎜
⎛(1 − 𝜇𝜇) �

− (𝑫𝑫𝜷𝜷∗)(𝑛𝑛)�𝜶𝜶∗
(𝑛𝑛)𝜳𝜳𝑛𝑛

𝑇𝑇�
𝑇𝑇

+ (𝒁𝒁vec(𝒳𝒳) − 𝑫𝑫𝜶𝜶∗)(𝑛𝑛) �𝜷𝜷∗
(𝑛𝑛)𝜳𝜳𝑛𝑛

𝑇𝑇�
𝑇𝑇�

−𝜇𝜇 ��𝒁𝒁vec(𝒳𝒳′) − 𝑫𝑫𝜶𝜶∗′�(𝑛𝑛)�𝜶𝜶∗′
(𝑛𝑛)𝜳𝜳𝑛𝑛

𝑇𝑇�
𝑇𝑇

� ⎠

⎟
⎞

(7. 53)

At each iteration of the compressed sensing extension of the T-TDDL algorithm, we update the

mode-n parameters 𝑾𝑾(𝑛𝑛), mode-n dictionaries 𝑫𝑫(𝑛𝑛)and mode-n sensing matrices 𝒁𝒁(𝑛𝑛) by a

projected gradient step.

𝑾𝑾(𝑛𝑛) ← 𝛱𝛱𝒲𝒲 �𝑾𝑾(𝑛𝑛) − 𝜌𝜌𝑡𝑡 �𝛻𝛻𝑾𝑾(𝑛𝑛)g(𝑫𝑫, 𝑾𝑾, 𝒁𝒁)� � (7. 54)

𝑫𝑫(𝑛𝑛) ← 𝛱𝛱𝒟𝒟 �𝑫𝑫(𝑛𝑛) − 𝜌𝜌𝑡𝑡 �𝛻𝛻𝑫𝑫(𝑛𝑛)g(𝑫𝑫, 𝑾𝑾, 𝒁𝒁)� � (7. 55)

𝒁𝒁(𝑛𝑛) ← 𝛱𝛱𝒵𝒵 �𝒁𝒁(𝑛𝑛) − 𝜌𝜌𝑡𝑡 �𝛻𝛻𝒁𝒁(𝑛𝑛)g(𝑫𝑫, 𝑾𝑾, 𝒁𝒁)� � (7. 56)

Where 𝛱𝛱𝒲𝒲, 𝛱𝛱𝒟𝒟 and 𝛱𝛱𝒵𝒵 are respective orthogonal projections on the convex sets 𝒲𝒲, 𝒟𝒟, and 𝒵𝒵.

Computationally Efficient Methods for Sparse Tensor Signal Processing

121

7.6. Experimental Results

This section presents experimental results for the performance of the T-TDDL algorithm when

used to solve supervised and semi-supervised multi-dimensional regression, binary classification,

and multiclass classification problems.

We solved a multi-dimensional super-resolution task for our supervised and semi-supervised

multi-dimensional regression experiments to obtain 4X upscaled videos from low-resolution

videos. We obtained training and test videos from the vid4 dataset [118], a publicly available

super-resolution dataset.

We obtained 3D-CT chest scan images from the MOSMEDDATA dataset [110], a 3D chest CT

dataset with covid-19 related findings for our binary classification experiments. We used the

compressed sensing extension of T-TDDL to learn task-driven mode-n dictionaries, mode-n

sensing matrices, and mode-n model parameters to distinguish healthy people from patients with

COVID-19 Pneumonia.

We obtained labeled 3D-CAD models belonging to ten different classes, the ModelNet10 dataset,

from the Princeton ModelNet dataset [128] for our multiclass classification experiments. We used

the compressed sensing extension of T-TDDL to learn task-driven mode-n dictionaries, mode-n

sensing matrices, and mode-n model parameters to classify 3D-CAD models into ten classes.

We obtained our experimental results using a MATLAB implementation of T-TDDL on an MS-

Windows machine: 2 Intel Xeon CPUs E5-2637 v4, 3.5GHz, 32GB RAM, and NVIDIA Tesla

P100 GPU with 12GB memory.

7.6.1. Regression Experiment

This experiment uses the T-TDDL to learn mode-n dictionaries and mode-n model parameters for

a multi-dimensional super-resolution task. We divided the used vid4 [118] 4X super-resolution

dataset for training and testing, where each set contains two low-resolution color videos of

144 × 180 and 120 × 180 and two high-resolution ground-truth videos of 720 × 480 and

720 × 576, respectively. The low-resolution color videos have sixteen times fewer pixels than

the high-resolution ground-truth videos.

Ishan Wickramasingha

122

In this experiment, we used the multi-dimensional regression loss function in section 7.4.1 as the

supervised loss function 𝑙𝑙𝑠𝑠�𝒴𝒴, 𝑾𝑾, 𝜶𝜶∗(𝒳𝒳, 𝑫𝑫)� in both supervised and semi-supervised T-TDDL

formulations. In the supervised T-TDDL formulation, we set 𝜇𝜇 = 0 and in semi-supervised

formulation we set 𝜇𝜇 = 0.1.

We used T-TDDL to learn, three overcomplete task-driven mode-n dictionaries, 𝑫𝑫(1) ∈ ℝ8×10,

𝑫𝑫(2) ∈ ℝ8×10and 𝑫𝑫(3) ∈ ℝ4×5, and three mode-n model parameter matrices, 𝑾𝑾(1) ∈ ℝ32×10,

𝑾𝑾(2) ∈ ℝ32×10 and 𝑾𝑾(3) ∈ ℝ4×5, to predict a super-resolution tensor 𝒴𝒴 ∈ ℝ32×32×4 from a low-

resolution tensor 𝒳𝒳 ∈ ℝ8×8×4.

We set the hyperparameters of T-TDDL as 𝑣𝑣 = 10−5, 𝜆𝜆2 = 0.001, learning rate 𝜌𝜌 = 0.1 and 𝑡𝑡0 to

20% of the total iterations.

At each iteration of the T-TDDL, the tensor 𝒳𝒳 ∈ ℝ8×8×4 was randomly sampled from the low-

resolution training videos to obtain 8 × 8 × 4 patches, and we set the tensor 𝒴𝒴 ∈ ℝ32×32×4 to the

corresponding 32 × 32 × 4 patch from its high-resolution training video.

Figure 7.1 and Figure 7.2 show our super-resolution experimental results for the two testing videos

obtained using supervised T-TDDL formulation (μ = 0) and semi-supervised T-TDDL formulation

(μ = 0.1).

Figure 7.1. a) Original low-resolution video, b) 4X super-resolution video obtained using supervised T-
TDDL (μ = 0), c) 4X super-resolution video obtained using semi-supervised T-TDDL (μ = 0.1), d) High-
resolution ground-truth video, and difference videos e) and f) (Super Resolution Experiment 1)

Computationally Efficient Methods for Sparse Tensor Signal Processing

123

Figure 7.2. a) Original low-resolution video, b) 4X super-resolution video obtained using supervised T-
TDDL (𝜇𝜇 = 0), c) 4X super-resolution video obtained using semi-supervised T-TDDL (𝜇𝜇 = 0.1), d) High-
resolution ground-truth video, and difference videos e) and f) (Super Resolution Experiment 2)

Table 7.1 summarizes the performance comparison of Supervised T-TDDL, (𝜇𝜇 = 0), and Semi-

Supervised T-TDDL(𝜇𝜇 = 0.1) in obtaining 4X upscaled super-resolution videos for both super-

resolution experiments 1 and 2. Compared performance metrics in Table 7.1 are �𝒴𝒴 − 𝒴𝒴��
2
, the

norm of the difference between the ground truth video, 𝒴𝒴, and the super resolution video, 𝒴𝒴�,

Measure of structural similarity (SSIM) [128], and Peak signal to noise ratio (PSNR). In

�𝒴𝒴 − 𝒴𝒴��
2
, lower numbers indicate better results and in SSIM and PSNR higher numbers indicate

better results.

Table 7.1. Comparison of Super-resolution experimental results for T-TDDL (𝜇𝜇 = 0) and Semi-
Supervised T-TDDL (𝜇𝜇 = 0.1)

Metric T-TDDL

(𝜇𝜇 = 0)

Semi-Supervised

T-TDDL (𝜇𝜇 = 0.1)

Super-Resolution

Experiment 1
�𝒴𝒴 − 𝒴𝒴��2 0.1957 0.1950

PSNR 18.38 18.42

SSIM 0.6066 0.6083

Super-Resolution

Experiment 2
�𝒴𝒴 − 𝒴𝒴��2 0.1396 0.1349

PSNR 24.09 24.39

SSIM 0.7993 0.8032

Ishan Wickramasingha

124

As shown in Table 7.1, the 4X video super-resolution experimental results obtained using the semi-

supervised T-TDDL formulation (𝜇𝜇 = 0.1) outperforms the supervised T-TDDL formulation in

all three metrics.

7.6.2. Binary Classification Experiment

In the T-TDDL binary classification experiment, we used the compressed sensing extension of the

T-TDDL to learn task-driven mode-n dictionaries, mode-n model parameters, and mode-n sensing

matrices to classify 3D-CT chest scans with COVID-19 Pneumonia and compared with the results

obtained using a 3D Convolutional Neural Network(3D-CNN) model.

We obtained 3D-CT chest scan images from the MOSMEDDATA dataset [129], a 3D chest CT

dataset with covid-19 related findings. Figure 7.3 shows samples of 3D-CT chest scans of a healthy

person and a patient with COVID-19 Pneumonia from our dataset. The hazy gray patches

(Increased CT Attenuation) in the Axial, Sagittal, and Coronal view of the Covid-19 patient's lungs

in Figure 7.3 b) are called ground-glass opacities (GGO) [130], which indicate abnormalities in

the lungs. In this experiment, we train T-TDDL and 3D-CNN to distinguish COVID-19 patients

with Pneumonia (Figure 7.3 b)) from healthy people (Figure 7.3 a)) using the presence of ground-

glass opacities (GGO) in 3D-CT chest scans.

Figure 7.3. 3D, Axial, Sagittal, Coronal view of a) 3D-CT chest scan of a healthy person and b) a 3D-CT
chest scan of a COVID-19 patient with Pneumonia

Our dataset consisted of 100 labeled 3D-CT chest scans of patients with COVID-19 associated

Pneumonia and 100 labeled 3D-CT chest scans of healthy people. We normalized the 3D-CT

Computationally Efficient Methods for Sparse Tensor Signal Processing

125

images after applying a threshold between −1000 and 400 and rescaled 3D-CT images to have

128 × 128 × 64 voxels. Then, we split the 3D-CT images dataset into train and test with a 70:30

ratio. The training set consisted of 140 3D-CT images, and the testing set consisted of 60 3D-CT

images. We augmented the training data during the training of both 3D-CNN and T-TDDL by

rotating the 3D-CT images along the longitudinal axis by a random angle.

We used T-TDDL to learn three mode-n sensing matrices 𝒁𝒁(1) ∈ ℝ16×128, 𝒁𝒁(2) ∈ ℝ16×128and

𝒁𝒁(3) ∈ ℝ16×64, three overcomplete task-driven mode-n dictionaries, 𝑫𝑫(1) ∈ ℝ16×32, 𝑫𝑫(2) ∈

ℝ16×32and 𝑫𝑫(3) ∈ ℝ16×32 and three mode-n model parameter vectors, 𝒘𝒘(1) ∈ ℝ1×32, 𝒘𝒘(2) ∈

ℝ1×32 and 𝒘𝒘(3) ∈ ℝ1×32, to predict the class 𝑦𝑦 from 3D-CT image tensor 𝒳𝒳 ∈ ℝ128×128×64. We

used the mode-n sensing matrices 𝒁𝒁(1), 𝒁𝒁(2) and 𝒁𝒁(3) to project the image tensor 𝒳𝒳 ∈ ℝ128×128×64

to a much smaller tensor 𝒳𝒳𝑧𝑧 ∈ ℝ16×16×16 before using T-NET to obtain a sparse representation,

which is much more computationally efficient than obtaining a sparse representation of 𝒳𝒳 ∈

ℝ128×128×64 directly using T-NET.

We used the logistic regression loss function [38], as shown in section 7.4.2, as the supervised

binary classification loss function 𝑙𝑙𝑠𝑠�𝑦𝑦, 𝒘𝒘, 𝜶𝜶∗(𝒳𝒳, 𝑫𝑫, 𝒁𝒁)� in a supervised T-TDDL formulation

where 𝜇𝜇 = 0. We set the hyperparameters of T-TDDL as 𝑣𝑣 = 10−5, 𝜆𝜆2 = 0.001, learning rate 𝜌𝜌 =

0.1 and 𝑡𝑡0 to 20% of the total iterations in one epoch. Each epoch consisted of a maximum of

100,000 iterations, and we stopped training at each epoch when all mode-n sensing matrices,

mode-n dictionaries, and mode-n model parameters were converged or when the maximum number

of iterations was reached. We ran six epochs to obtain the training results.

We compared our T-TDDL binary classification results with the results obtained by training a 3D-

Convolutional Neural Network Model (3D-CNN). For the 3D-CNN model, we used the 17-layer

3D-CNN architecture proposed by Zunair et al. [131] for classifying 3D-CT images. We trained

the 3D-CNN for 100 epochs with early stopping to achieve the maximum classification accuracy.

Ishan Wickramasingha

126

Table 7.2 Binary Classification Report

Precision Recall 𝐹𝐹1-score Support

3D-CNN COVID-19

Pneumonia

0.69 0.90 0.78 30

Normal 0.86 0.60 0.71 30

accuracy 0.75 60

T-TDDL COVID-19

Pneumonia

0.77 0.77 0.77 30

Normal 0.77 0.77 0.77 30

accuracy 0.77 60

Table 7.2 shows the classification report for both 3D-CNN and T-TDDL. The precision of

classification is given by 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)⁄ , and

the recall is 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁)⁄ . The 𝐹𝐹1-score [132]

is the harmonic mean of the precision and recall, which is given by,

𝐹𝐹1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
2 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

We measured the classification accuracy using the 𝐹𝐹1-score, which is given in Table 7.2, where T-

TDDL with compressed sensing extension achieved a classification accuracy of 0.77, whereas the

3D-CNN model only achieved a classification accuracy of 0.75, classifying 3D-CT images with

COVID-19 Associated Pneumonia.

Figure 7.4 a) shows the normalized confusion matrix for the 3D-CNN binary classification

experiment, and Figure 7.4 b) shows the normalized confusion matrix for the T-TDDL Binary

Classification Experiment. The Confusion matrices in Figure 7.4 show that the 3D-CNN model is

biased toward classifying 3D-CT images for the COVID-19 Pneumonia class, whereas the T-

TDDL shows no special bias toward any class.

Computationally Efficient Methods for Sparse Tensor Signal Processing

127

Figure 7.4. Normalized confusion matrices for a) 3D-CNN and b) T-TDDL Binary Classification
Experiment

7.6.3. Multiclass Classification Experiment

In the T-TDDL multiclass classification experiment, we used the compressed sensing extension of

the T-TDDL to learn task-driven mode-n dictionaries, mode-n model parameters, and mode-n

sensing matrices to classify 3D-CAD models and compared the results with a 3D Convolutional

Neural Network(3D-CNN) model.

We obtained 3D-CAD models, the ModelNet10 dataset, from the Princeton ModelNet dataset

[133], consisting of 3D-CAD models belonging to ten different classes. Each 3D-CAD model had

30 × 30 × 30 voxels. Our training dataset consisted of 47,892 labeled 3D-CAD models, and our

testing dataset consisted of 10,896 labeled 3D-CAD models. Figure 7.5 shows sample 3D-CAD

models for each class from the ModelNet10 dataset.

We used T-TDDL to learn three mode-n sensing matrices 𝒁𝒁(1) ∈ ℝ15×30, 𝒁𝒁(2) ∈ ℝ15×30and 𝒁𝒁(3) ∈

ℝ15×30, three over-complete task-driven mode-n dictionaries, 𝑫𝑫(1) ∈ ℝ15×30, 𝑫𝑫(2) ∈ ℝ15×30and

𝑫𝑫(3) ∈ ℝ115×30 and three mode-n model parameter matrices, 𝑾𝑾(1) ∈ ℝ10×30, 𝑾𝑾(2) ∈ ℝ1×30 and

𝑾𝑾(3) ∈ ℝ1×30, to predict a class vector 𝒚𝒚 from 3D-CAD model tensor 𝒳𝒳 ∈ ℝ30×30×30. We used

the mode-n sensing matrices 𝒁𝒁(1), 𝒁𝒁(2) and 𝒁𝒁(3) to project the tensor 𝒳𝒳 ∈ ℝ30×30×30 to a much

smaller tensor 𝒳𝒳𝑧𝑧 ∈ ℝ15×15×15 before using T-NET to obtain a sparse representation, which is

computationally efficient than obtaining a sparse representation of 𝒳𝒳 ∈ ℝ30×30×30 directly using

T-NET.

Ishan Wickramasingha

128

Figure 7.5 Sample 3D-CAD models from the ModelNet10 dataset

We used the Softmax cross-entropy loss function, as shown in section 7.4.3, as the supervised

multiclass classification loss function 𝑙𝑙𝑠𝑠�𝒚𝒚, 𝒘𝒘, 𝜶𝜶∗(𝒳𝒳, 𝑫𝑫, 𝒁𝒁)� in a supervised T-TDDL formulation

where 𝜇𝜇 = 0. We set the hyperparameters of T-TDDL as 𝑣𝑣 = 10−5, 𝜆𝜆2 = 0.001, learning rate 𝜌𝜌 =

0.1 and 𝑡𝑡0 to 20% of the total iterations in one epoch. Each epoch consisted of a maximum of

100,000 iterations, and we stopped training at each epoch when all mode-n sensing matrices,

mode-n dictionaries, and mode-n model parameters were converged or when the maximum number

of iterations was reached. We ran ten epochs to obtain the training results.

Computationally Efficient Methods for Sparse Tensor Signal Processing

129

We compared our T-TDDL multiclass classification results with the results obtained by training a

3D-Convolutional Neural Network Model (3D-CNN). For the 3D-CNN model, we used the 14-

layer 3D-CNN model for classifying 3D-CAD models. We trained the 3D-CNN for 100 epochs

with early stopping to achieve the maximum classification accuracy.

Table 7.3 Multiclass Classification Report

Class Precision Recall 𝐹𝐹1-score Support

3D-CNN Bathtub 0.72 0.92 0.8 600

Bed 0.93 0.99 0.96 1200

Chair 0.64 0.99 0.78 1200

Desk 0.62 0.81 0.7 1032

Dresser 0.76 0.84 0.8 1032

Monitor 0.95 0.99 0.97 1200

Night Stand 0.73 0.76 0.74 1032

Sofa 0.92 0.97 0.95 1200

Table 0.88 0.67 0.76 1200

Toilet 0 0 0 1200

Accuracy 0.7861 10896

T-TDDL Bathtub 0.85 0.69 0.76 600

Bed 0.76 0.94 0.84 1200

Chair 0.85 0.9 0.87 1200

Desk 0.68 0.65 0.66 1032

Dresser 0.75 0.82 0.78 1032

Monitor 0.92 0.91 0.91 1200

Night Stand 0.72 0.7 0.71 1032

Sofa 0.95 0.81 0.87 1200

Table 0.9 0.76 0.83 1200

Toilet 0.79 0.88 0.83 1200

Accuracy 0.8149 10896

Ishan Wickramasingha

130

Table 7.3 shows the classification report for both 3D-CNN and T-TDDL. The precision of

classification is 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)⁄ , and the

recall is 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁)⁄ . The 𝐹𝐹1-score [132] is

the harmonic mean of the precision and recall, which is given by,

𝐹𝐹1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
2 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

We measured the classification accuracy using the 𝐹𝐹1-score, which is given in Table 7.3, where T-

TDDL with compressed sensing extension achieved a classification accuracy of 0.8149, whereas

the 3D-CNN model only achieved a classification accuracy of 0.7861, classifying 3D-CAD

models.

Figure 7.6 a) shows the normalized confusion matrix for the 3D-CNN multiclass classification

experiment, and Figure 7.6 b) shows the normalized confusion matrix for the T-TDDL multiclass

classification experiment. The Confusion matrices in Figure 7.6 show that the 3D-CNN model

failed to predict the Toilet class and shows a bias toward some classes, whereas the T-TDDL shows

no special bias toward any class.

Figure 7.6. Normalized confusion matrices for a) 3D-CNN and b) T-TDDL Multiclass Classification
Experiment

Computationally Efficient Methods for Sparse Tensor Signal Processing

131

7.7. Conclusions

This chapter extended the one-dimensional TDDL formulation to develop the tensor task-driven

dictionary learning(T-TDDL) framework that could work as an efficient online data-driven or task-

driven dictionary learning algorithm for supervised and semi-supervised learning of mode-n

dictionaries and mode-n model parameters. We have also presented a compressed sensing

extension to the T-TDDL formulation for efficiently solving large tensor task-driven dictionary

learning problems. Section IV presented three example applications in Regression, Binary

Classification, Multiclass classification, and the gradient calculations of the respective loss

functions.

We solved a 4X video super-resolution task for the T-TDDL regression experiment, using both

supervised T-TDDL formulation (𝜇𝜇 = 0) and the semi-supervised T-TDDL formulations

(𝜇𝜇 = 0.1). Our supervised T-TDDL regression formulation achieved SSIM [128] of 0.6066 and

0.7993 for the two example videos. The semi-supervised T-TDDL regression formulation achieved

SSIM of 0.6083 and 0.8032, respectively, outperforming the experimental results of the supervised

T-TDDL regression formulation.

The compressed sensing extension of the T-TDDL binary classification formulation achieved a

higher classification accuracy, 𝐹𝐹1-score of 0.77, compared to the 3D-CNN model, which achieved

the 𝐹𝐹1-score of 0.75 in classifying the 3D-CT chest scans images of COVID-19 patients with

Pneumonia from a labeled 3D-CT chest scans images dataset. In our binary classification

experiment, the T-TDDL formulation showed no bias towards any class, whereas the 3D-CNN

model showed a bias towards the 3D-CT images of patients with COVID-19 Pneumonia.

Also, the compressed sensing extension of the T-TDDL multiclass classification formulation

achieved a higher classification accuracy, 𝐹𝐹1-score of 0.8149, compared to the 3D-CNN model,

which achieved the 𝐹𝐹1-score of 0.7861 in classifying the 3D-CAD models of the ModelNet10

dataset. Therefore the T-TDDL framework could be used for accurately solving multi-dimensional

classification problems.

Unlike CNN, the T-TDDL framework could be used for solving 𝑁𝑁 dimensional regression or

classification problems without extra modification. Therefore, the T-TDDL framework could be

used for solving tensor task-driven dictionary learning problems accurately and efficiently.

Ishan Wickramasingha

132

Multi-modal learning is gaining much popularity in machine learning communities. The T-TDDL

formulation could easily extend to efficiently solve tensor multi-modal task-driven dictionary

learning problems [120]. Furthermore, the T-TDDL formulation could also extend to solve tensor

task-driven dictionary learning problems in an agent-based distributed online setting using the

formulations given by Koppel et al. [121].

Therefore, with various loss functions and formulations, the T-TDDL framework could be used

to efficiently solve a wide range of tensor task-driven dictionary learning problems and online

data-driven dictionary learning problems.

Computationally Efficient Methods for Sparse Tensor Signal Processing

133

Chapter 8

8. Conclusions And Future Directions

8.1. Conclusions

This research's main objective was to develop novel methodologies that could efficiently solve

large multi-dimensional problems using available limited computational resources. We researched

several topics such as Sparsity, Tensors, and Multilinear Algebra to achieve this.

Many signal processing, machine learning, and statistical applications solve multi-dimensional

problems using linear algebra after vectorizing multi-dimensional signals. As the number of

dimensions increases, multi-dimensional signals quickly grow in size, and solving such problems

becomes computationally infeasible.

Therefore, we looked into obtaining a sparse signal representation of large multi-dimensional

signals, which results in simpler and faster processing and less memory storage requirements.

However, obtaining a sparse signal representation of large multi-dimensional signals by solving a

sparse linear least-square problem also requires a significantly large amount of computational

resources. As the size of the multi-dimensional signal increases, it quickly becomes

computationally infeasible.

A multilinear representation of a tensor (multi-dimensional signal) is obtained by multiplying each

mode of the tensor by a smaller mode-n matrix, which requires significantly less computational

resources. An earlier generalization of OMP, known as Kronecker-OMP [16], was developed to

solve the L0 constrained least-squares problem for large multi-dimensional signals. We developed

the Tensor Least Angle Regression (T-LARS), a generalization of Least Angle Regression (LARS),

to efficiently solve large L0 or L1 constrained multilinear least-squares problems (underdetermined

or overdetermined) for all critical values of the regularization parameter λ.

 To demonstrate the validity and performance of our T-LARS algorithm, we used it to successfully

obtain different sparse representations of two relatively large 3D brain images, using fixed and

Ishan Wickramasingha

134

learned separable over-complete dictionaries, by solving both L0 and L1 constrained sparse least-

squares problems. Our numerical experiments demonstrate that our T-LARS algorithm is

significantly faster (46 - 70 times) than Kronecker-OMP in obtaining K-sparse solutions for

multilinear least-squares problems. However, the K-sparse solutions obtained using Kronecker-

OMP always have a slightly lower residual error (1.55% - 2.25%) than ones obtained by T-LARS.

We also presented experimental results to compare Kronecker-OMP and T-LARS in obtaining a

sparse representation of 3D brain images using compressed sensed samples by solving a Kronecker

compressed sensing problem. Therefore, T-LARS could be an important tool for numerous multi-

dimensional signal processing and regression applications.

Sparse weighted multilinear least-squares is a generalization of the sparse multilinear least-squares

problem, where prior information about, e.g., parameters and data is incorporated by multiplying

both sides of the original problem by a typically diagonal weights matrix [22]. If the diagonal

weight matrix has a similar Kronecker structure to the dictionary matrix, we could use the T-LARS

algorithm developed in chapter 3 to solve this problem efficiently. Typically, introducing arbitrary

diagonal weights would result in a non-Kronecker least-squares problem that could be very large

to store or solve practically. Therefore, we introduced the Weighted Tensor Least Angle Regression

(WT-LARS) algorithm, which could efficiently solve the weighted tensor least-squares problem

for an arbitrary diagonal weight matrix. In the experimental results, we solved the image inpainting

problems using WT-LARS by obtaining sparse representations of RGB images using binary-

weighted samples to demonstrate the validity of WT-LARS. We successfully obtained sparse

representations of RGB images behind fences, using 10% nonzero coefficients, and a sparse

representation of a landscape image occluded by a person, using 20% nonzero coefficients.

We could initialize T-LARS with an L1 solution located on the Pareto curve [23] and obtain an L1

solution with a lower residual error, where the Pareto curve contains every solution to a

linear/multilinear least-squares problem. However, we could not initialize T-LARS with any

solution outside of the Pareto curve because it will violate the optimality conditions of T-LARS.

Therefore, we developed the Tensor Dynamic Least Angle Regression (TD-LARS) algorithm, a

multilinear generalization of the L1-Homotopy algorithm [24] to efficiently solve multilinear L1

minimization problems using nonzero initial solutions located on or off of the Pareto curve. Our

experimental results show that TD-LARS obtains the solution to an L1 minimization problem much

Computationally Efficient Methods for Sparse Tensor Signal Processing

135

faster than solving it from the 𝒳𝒳 = 0 initial solution using T-LARS when a close initial solution

is available.

𝐿𝐿0 minimization problem is a non-convex problem, and the slightly relaxed 𝐿𝐿1 minimization

problem is a convex problem. Even though, the 𝐿𝐿2 minimization problem is strictly convex; it does

not provide a sparse solution. Also, both 𝐿𝐿0 and 𝐿𝐿1 minimization problems have an upper limit for

selecting the maximum number of coefficients for a unique and accurate solution based on the

dictionary's coherence. Also, the 𝐿𝐿0 or 𝐿𝐿1 minimization problem does not have the group selection

ability, which is important in certain applications.

Therefore in this thesis, we introduced the Multilinear Elastic Net problem by generalizing the

one-dimensional Elastic Net problem [27], [28]. Multilinear Elastic Net solves a strictly convex

𝐿𝐿1 and 𝐿𝐿2 constrained multilinear least-squares problem and it has, the best properties of both 𝐿𝐿1

and 𝐿𝐿2 minimization problems. In addition to the group selection ability, Multilinear Elastic Net

can obtain more than 𝑛𝑛 nonzero coefficients for a signal with 𝑛𝑛 elements. Therefore, Multilinear

Elastic Net is ideal for solving multilinear sparse least-squares problems with highly coherent

dictionaries.

The dictionary in Multilinear Elastic Net problem has a partitioned Kronecker structure, which

could not be efficiently solved with T-LARS. Therefore, we introduced the Tensor Elastic Net (T-

NET) algorithm to efficiently solve the Multilinear Elastic Net problem by utilizing the partitioned

Kronecker structure of the dictionary matrix. Experimental results show T-NET has better

statistical properties than T-LARS, such as the group selection ability and ability to solve problems

with highly coherent dictionaries.

We could use fixed or learned separable dictionaries in obtaining a sparse multilinear

representation of multi-dimensional signals using T-LARS, WT-LARS, TD-LARS, T-NET, or

Kronecker-OMP. However, the dictionaries learned from the data are much more efficient in

obtaining sparse representations than fixed dictionaries [29].

Roemer et al. [30] introduced Tensor Method of Optimal Directions (T-MOD) and Kronecker

Higher-Order SVD (K-HOSVD) algorithms to learn data-driven separable dictionaries to solve

multilinear problems by generalizing one-dimensional data-driven dictionary learning algorithms,

Method of Optimal Direction(MOD) [31], and K-SVD [32], respectively. Roemer used one-

Ishan Wickramasingha

136

dimensional sparse coding methods in the sparse coding step of the T-MOD and K-HOSVD

algorithms, requiring a significantly large amount of computational resources for solving data-

driven tensor dictionary learning problems. However, we could solve large data-driven tensor

dictionary learning problems efficiently by using T-LARS [18], T-NET, or Kronecker-OMP [16]

in the sparse coding step of the T-MOD and K-HOSVD algorithms.

Learned dictionaries could be used in classification or regression tasks [33]–[35]. However,

regression and classification performance could be improved significantly by supervised learning

of task-specific dictionaries [36], [37].

This thesis extended the one-dimensional TDDL formulation [38] to develop the Tensor Task-

Driven Dictionary Learning (T-TDDL) that could work as an efficient online data-driven or task-

driven dictionary learning algorithm for supervised and semi-supervised learning of mode-n

dictionaries and mode-n model parameters. We have also presented a compressed sensing

extension to the T-TDDL formulation for efficiently solving large tensor task-driven dictionary

learning problems. Section 7.4 presented example applications in Regression, Binary

Classification, and Multiclass classification, and the gradient calculations of the respective loss

functions.

A supervised, semi-supervised, or unsupervised T-TDDL formulations could be obtained

depending on the value of 𝜇𝜇. The unsupervised tensor dictionary learning formulation could be

used to solve the online tensor data-driven dictionary learning problems [30], [122].

To demonstrate the validity and performance of our T-TDDL framework, we used the T-TDDL

framework to solve multi-dimensional regression, binary classification, and multiclass

classification problems and presented experimental results. The experimental results show that the

4X super-resolution videos (4D tensor), obtained using the semi-supervised T-TDDL regression

formulation, outperform the supervised T-TDDL regression formulations. In the binary

classification experiment, we used the compressed sensing extension of the T-TDDL to learn

mode-n dictionaries, mode-n model parameters, and mode-n sensing matrices to classify 3D-CT

chest scan images of patients with COVID-19 associated pneumonia from 3D-CT chest scan

images of healthy people. We compared our T-TDDL results with the results obtained using a 17-

layer 3D-CNN model designed explicitly for classifying 3D-CT images. We used the 𝐹𝐹1-score to

measure the classification accuracy. Our T-TDDL formulation achieved a binary classification

Computationally Efficient Methods for Sparse Tensor Signal Processing

137

accuracy of 0.77, which is higher than the binary classification accuracy of 0.75 achieved by the

3D-CNN model. Furthermore, the compressed sensing extension of the T-TDDL multiclass

classification achieved a higher classification accuracy of 0.8149 than the 3D-CNN model, which

only achieved a classification accuracy of 0.7861 in classifying the 3D-CAD models of the

ModelNet10 dataset.

Unlike CNN, the T-TDDL formulation could be used for solving 𝑁𝑁 dimensional regression or

classification problems without extra modification. Therefore, the T-TDDL framework could be

efficiently used for a wide range of multi-dimensional machine learning applications with various

task-specific loss functions.

8.2. Future Directions

This research introduced several tensor-based algorithms for efficiently obtaining a sparse

multilinear representation of multi-dimensional signals under different conditions. To demonstrate

the validity and performance of our algorithms, we presented a few example applications for each

algorithm.

Most state-of-the-art applications in Signal Processing, Machine Learning, and Statistics currently

solve multi-dimensional problems using linear algebra after vectorizing multi-dimensional signals.

The concepts and algorithms introduced in this research enable using tensors and multilinear

algebra in future large multi-dimensional applications.

T-LARS, TD-LARS, WT-LARS, and T-NET could be used to solve large multi-dimensional

problems such as multi-dimensional regression, representation, and compression problems in

various fields. Also, the TD-LARS algorithm could be used for transfer learning applications in

multi-dimensional regression.

The T-LARS and T-NET algorithms could be extended to solve multi-dimensional problems with

grouped variables by extending group LARS [134] and group adaptive Elastic Net [135]. Also, T-

LARS and convex-LAR [136] could be extended to develop a generalized algorithm to obtain a

sparse solution for any multilinear convex loss function.

One of the limitations of T-LARS, TD-LARS, WT-LARS, and T-NET is that, as the number of

selected active coefficients increases, the Gram matrix gets bigger and increases the usage of

Ishan Wickramasingha

138

computational resources resulting in longer execution time. Therefore, available computational

resources limit the number of active coefficients that could be selected. Since the Gram matrix is

symmetric, in our algorithms, we store the lower triangle part of the Gram matrix in memory and

use it in computations for faster processing. As a future research direction, one could improve the

above algorithms or develop novel algorithms to solve the sparse multilinear least-squares

problems without explicitly building and storing large Gram matrices.

The T-TDDL is a general multi-dimensional framework for learning online multi-dimensional

data-driven or task-driven mode-n dictionaries, mode-n model parameters, and mode-n sensing

matrices. T-TDDL could be used for many multi-dimensional machine learning and signal

processing applications using different task-specific loss functions. The compressed sensing

extension allows solving huge multi-dimensional problems using T-TDDL, where mode-n

dictionaries and mode-n model parameters could be learned after projecting the input, using mode-

n sensing matrices, to a smaller manageable size.

Multi-modal learning is gaining much popularity in machine learning communities. The T-TDDL

formulation could easily extend to efficiently solve tensor multi-modal task-driven dictionary

learning problems [120]. Furthermore, the T-TDDL formulation could also extend to solve tensor

task-driven dictionary learning problems in an agent-based distributed online setting using the

formulations given by Koppel et al. [121].

The initial motivation behind this research was to solve the full-wave simulation of light

propagation inside a 5mm×5mm×5mm tissue sample, when a light source with 1𝜇𝜇𝜇𝜇 central

wavelength is used, which requires solving the scalar scattering equation for a volume of

5000𝜆𝜆 × 5000𝜆𝜆 × 5000𝜆𝜆. Solving the linear system, resulting from the scalar scattering

equations when Method of Moments (MoM) is applied, was computationally infeasible even with

the available supercomputers. This Ph.D. research has laid the foundation and developed tensor-

based methods for efficiently solving such large multidimensional problems. Therefore, as a future

direction, one could use our tensor-based methods to solve the full-wave simulation of light

propagation inside a tissue problem for a large tissue sample.

Computationally Efficient Methods for Sparse Tensor Signal Processing

139

References

[1] W. P. Elderton and N. L. Johnson, “Method of Moments,” Syst. Freq. Curves, vol. 82, pp.
12–34, 2010, doi: 10.1017/cbo9780511569654.004.

[2] M. M. Ney, “Method of Moments as Applied to Electromagnetic Problems,” IEEE Trans.
Microw. Theory Tech., vol. MTT-33, no. 10, pp. 972–980, 1985, doi:
10.1109/TMTT.1985.1133158.

[3] K. Maleknejad and M. Nosrati Sahlan, “The method of moments for solution of second kind
Fredholm integral equations based on B-spline wavelets,” Int. J. Comput. Math., vol. 87,
no. 7, pp. 1602–1616, 2010, doi: 10.1080/00207160802406523.

[4] D. Reinsel, J. Gantz, and J. Rydning, “Data Age 2025: The Digitization of the World From
Edge to Core,” Seagate, IDC, no. November, p. 28, 2018, Accessed: Mar. 15, 2021.
[Online]. Available: https://www.seagate.com/files/www-content/our-
story/trends/files/idc-seagate-dataage-whitepaper.pdf.

[5] T. G. Kolda and B. W. Bader, “Tensor Decompositions and Applications,” SIAM Rev., vol.
51, no. 3, pp. 455–500, 2009, doi: 10.1137/07070111X.

[6] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalexakis, and C. Faloutsos,
“Tensor Decomposition for Signal Processing and Machine Learning,” IEEE Trans. Signal
Process., vol. 65, no. 13, pp. 3551–3582, Jul. 2017, doi: 10.1109/TSP.2017.2690524.

[7] A. Cichocki et al., “Tensor decompositions for signal processing applications: From two-
way to multiway component analysis,” IEEE Signal Processing Magazine, vol. 32, no. 2.
pp. 145–163, 2015, doi: 10.1109/MSP.2013.2297439.

[8] S. Mallat, A Wavelet Tour of Signal Processing. Elsevier, 2009.

[9] I. Wickramasingha, M. Sobhy, and S. S. Sherif, “Sparsity in Bayesian Signal Estimation,”
in Bayesian Inference, vol. 37, no. 2, J. P. Tejedor, Ed. InTech, 2017.

[10] D. L. Donoho, “For most large underdetermined systems of linear equations the minimal ℓ
1-norm solution is also the sparsest solution,” Commun. Pure Appl. Math., vol. 59, no. 6,
pp. 797–829, Jun. 2006, doi: 10.1002/cpa.20132.

[11] D. L. Donoho and M. Elad, “Optimally sparse representation in general (nonorthogonal)
dictionaries via 1 minimization,” Proc. Natl. Acad. Sci., vol. 100, no. 5, pp. 2197–2202,
Mar. 2003, doi: 10.1073/pnas.0437847100.

[12] S. G. Mallat and Z. Zhang, “Matching Pursuits With Time-Frequency Dictionaries,” IEEE

Ishan Wickramasingha

140

Trans. Signal Process., vol. 41, no. 12, pp. 3397–3415, 1993, doi: 10.1109/78.258082.

[13] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal matching pursuit: recursive
function approximation with applications to wavelet decomposition,” in Conference Record
of the Asilomar Conference on Signals, Systems & Computers, 1993, vol. 1, pp. 40–44, doi:
10.1109/acssc.1993.342465.

[14] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,”
SIAM J. Sci. Comput., vol. 20, no. 1, pp. 33–61, Jan. 1998, doi:
10.1137/S1064827596304010.

[15] B. Efron et al., “Least angle regression,” Ann. Stat., vol. 32, no. 2, pp. 407–499, Apr. 2004,
doi: 10.1214/009053604000000067.

[16] C. F. Caiafa and A. Cichocki, “Computing Sparse Representations of Multidimensional
Signals Using Kronecker Bases,” Neural Comput., vol. 25, no. Ci, pp. 1–35, Jan. 2012, doi:
10.1162/NECO_a_00385.

[17] A. Elrewainy and S. S. Sherif, “Kronecker least angle regression for unsupervised unmixing
of hyperspectral imaging data,” Signal, Image Video Process., vol. 14, no. 2, pp. 359–367,
Mar. 2020, doi: 10.1007/s11760-019-01562-w.

[18] I. Wickramasingha, M. Sobhy, A. Elrewainy, and S. S. Sherif, “Tensor least angle
regression for sparse representations of multidimensional signals,” Neural Comput., vol. 32,
no. 9, pp. 1697–1732, Sep. 2020, doi: 10.1162/neco_a_01304.

[19] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1289–
1306, Apr. 2006, doi: 10.1109/TIT.2006.871582.

[20] E. J. Candès, “Compressive sampling,” in International Congress of Mathematicians, ICM
2006, 2006, vol. 3, pp. 1433–1452, doi: 10.4171/022-3/69.

[21] M. F. Duarte and R. G. Baraniuk, “Kronecker compressive sensing,” IEEE Trans. Image
Process., vol. 21, no. 2, pp. 494–504, Feb. 2012, doi: 10.1109/TIP.2011.2165289.

[22] T. K. Moon and W. C. Stirling, Mathematical Methods and Algorithms for Signal
Processing. 1999.

[23] E. van den Berg and M. P. Friedlander, “Probing the Pareto Frontier for Basis Pursuit
Solutions,” SIAM J. Sci. Comput., vol. 31, no. 2, pp. 890–912, Jan. 2009, doi:
10.1137/080714488.

[24] M. S. Asif and J. Romberg, “Sparse Recovery of Streaming Signals Using L1-Homotopy,”

Computationally Efficient Methods for Sparse Tensor Signal Processing

141

IEEE Trans. Signal Process., vol. 62, no. 16, pp. 4209–4223, Aug. 2014, doi:
10.1109/TSP.2014.2328981.

[25] R. Tibshirani, “Regression Selection and Shrinkage via the Lasso,” Journal of the Royal
Statistical Society B, vol. 58, no. 1. WileyRoyal Statistical Society, pp. 267–288, 1996, doi:
10.2307/2346178.

[26] N. R. Draper and H. Smith, “Ridge Regression,” vol. 87, no. 10, Wiley, 1998, pp. 387–400.

[27] H. Zou and T. Hastie, “Regularization and variable selection via the elastic net,” J. R. Stat.
Soc. Ser. B Stat. Methodol., vol. 67, no. 2, pp. 301–320, Nov. 2005, doi: 10.1111/j.1467-
9868.2005.00503.x.

[28] H. Zou and T. Hastie, “Regression Shrinkage and Selection via the Elastic Net, with
Applications to Microarrays,” J. R. Stat. Soc. Ser. B, vol. 67, no. 1, pp. 301–320, 2003,
[Online]. Available:
http://webdocs.cs.ualberta.ca/~mahdavif/ReadingGroup/Papers/10.1.1.9.6188.pdf.

[29] M. Elad and M. Aharon, “Image Denoising Via Sparse and Redundant Representations
Over Learned Dictionaries,” IEEE Trans. Image Process., vol. 15, no. 12, pp. 3736–3745,
Dec. 2006, doi: 10.1109/TIP.2006.881969.

[30] F. Roemer, G. Del Galdo, and M. Haardt, “Tensor-based algorithms for learning
multidimensional separable dictionaries,” in ICASSP, IEEE International Conference on
Acoustics, Speech and Signal Processing - Proceedings, May 2014, pp. 3963–3967, doi:
10.1109/ICASSP.2014.6854345.

[31] K. Engan, S. O. Aase, and J. H. Husøy, “Multi-frame compression: Theory and design,”
Signal Processing, vol. 80, no. 10, pp. 2121–2140, Oct. 2000, doi: 10.1016/S0165-
1684(00)00072-4.

[32] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for designing overcomplete
dictionaries for sparse representation,” IEEE Trans. Signal Process., vol. 54, no. 11, pp.
4311–4322, 2006, doi: 10.1109/TSP.2006.881199.

[33] R. Grosse, R. Raina, H. Kwong, and A. Y. Ng, “Shift-invariant sparse coding for audio
classification,” in Proceedings of the 23rd Conference on Uncertainty in Artificial
Intelligence, UAI 2007, Jun. 2007, pp. 149–158, Accessed: Apr. 28, 2020. [Online].
Available: http://arxiv.org/abs/1206.5241.

[34] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng, “Self-taught learning: Transfer
learning from unlabeled data,” in ACM International Conference Proceeding Series, 2007,
vol. 227, pp. 759–766, doi: 10.1145/1273496.1273592.

Ishan Wickramasingha

142

[35] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust face recognition via
sparse representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 2, pp. 210–227,
2009, doi: 10.1109/TPAMI.2008.79.

[36] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Discriminative learned
dictionaries for local image analysis,” 2008, doi: 10.1109/CVPR.2008.4587652.

[37] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Supervised dictionary learning,”
in Advances in Neural Information Processing Systems 21 - Proceedings of the 2008
Conference, 2009, pp. 1033–1040.

[38] J. Mairal, F. Bach, and J. Ponce, “Task-driven dictionary learning,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 34, no. 4, pp. 791–804, Apr. 2012, doi: 10.1109/TPAMI.2011.156.

[39] X. Sun, N. M. Nasrabadi, and T. D. Tran, “Task-driven dictionary learning for hyperspectral
image classification with structured sparsity constraints,” IEEE Trans. Geosci. Remote
Sens., vol. 53, no. 8, pp. 4457–4471, 2015, doi: 10.1109/TGRS.2015.2399978.

[40] H. Hu, B. Wohlberg, and R. Chartrand, “Task-driven dictionary learning for inpainting,” in
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing -
Proceedings, May 2014, no. 2, pp. 3543–3547, doi: 10.1109/ICASSP.2014.6854260.

[41] Y. Zhang, X. Mou, G. Wang, and H. Yu, “Tensor-Based Dictionary Learning for Spectral
CT Reconstruction,” IEEE Trans. Med. Imaging, vol. 36, no. 1, pp. 142–154, 2017, doi:
10.1109/TMI.2016.2600249.

[42] M. S. Asif, “Dynamic Compressive Sensing : Sparse Recovery Algorithms for Streaming
Signals and Video,” no. August, 2013, [Online]. Available:
http://users.ece.gatech.edu/~sasif/Research/asif-dissertation-2013.pdf.

[43] S. Hawe, M. Seibert, and M. Kleinsteuber, “Separable dictionary learning,” in Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
2013, pp. 438–445, doi: 10.1109/CVPR.2013.63.

[44] D. Kressner and C. Tobler, “htucker – A Matlab toolbox for tensors in hierarchical,” no. 4,
pp. 1–28, 2013.

[45] T. G. Kolda, “Multilinear operators for higher-order decompositions.,” Albuquerque, NM,
and Livermore, CA, Apr. 2006. doi: 10.2172/923081.

[46] H. W. Sorenson, “Least-squares estimation: from Gauss to Kalman: The Gaussian concept
of estimation by least squares, originally stimulated by astronomical studies, has provided
the basis for a number of estimation theories and techniques during the ensuing 170 years—

Computationally Efficient Methods for Sparse Tensor Signal Processing

143

prob,” IEEE Spectr., vol. 7, no. 7, pp. 63–68, Jul. 1970, doi:
10.1109/MSPEC.1970.5213471.

[47] J. Taylor, “The geometry of least squares in the 21st century,” Bernoulli, vol. 19, no. 4, pp.
1449–1464, 2013, doi: 10.3150/12-BEJSP15.

[48] P. Deuflhard and A. Hohmann, Numerical analysis in modern scientific computing: An
introduction, vol. 47, no. 8–9. Springer, 2004.

[49] J. Hadamard, “Sur les problems aux derivees patielles et leur signification physique,”
Princet. Uni. Bull., vol. 13, pp. 49–52, 1902.

[50] J. L. Fernández-Martínez, Z. Fernández-Muñiz, J. L. G. Pallero, and L. M. Pedruelo-
González, “From Bayes to Tarantola: New insights to understand uncertainty in inverse
problems,” J. Appl. Geophys., vol. 98, pp. 62–72, 2013, doi:
10.1016/j.jappgeo.2013.07.005.

[51] P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problem (Numerical Aspects of Linear
Inversion).pdf. SIAM, 1987.

[52] Å. Björk, Numerical Methods for Least Squares Problems. SIAM, 1996.

[53] M. Elad, Sparse and Redunant Representations, vol. 53, no. 9. New York, NY: Springer
New York, 2013.

[54] A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation, vol.
120. Society for Industrial and Applied Mathematics, 2005.

[55] A. Lozano, G. Swirszcz, and N. Abe, “Group orthogonal matching pursuit for logistic
regression,” J. Mach. Learn. Res., vol. 15, pp. 452–460, 2011, Accessed: May 22, 2018.
[Online]. Available: http://proceedings.mlr.press/v15/lozano11a/lozano11a.pdf.

[56] I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding algorithm for linear
inverse problems with a sparsity constraint,” Commun. Pure Appl. Math., vol. 57, no. 11,
pp. 1413–1457, Nov. 2004, doi: 10.1002/cpa.20042.

[57] M. Yuan and Y. Lin, “Model selection and estimation in regression with grouped variables,”
J. R. Stat. Soc. Ser. B Stat. Methodol., vol. 68, no. 1, pp. 49–67, 2006, doi: 10.1111/j.1467-
9868.2005.00532.x.

[58] D. L. Donoho and J. M. Johnstone, “Ideal spatial adaptation by wavelet shrinkage,”
Biometrika, vol. 81, no. 3, pp. 425–455, 1994, doi: 10.1093/biomet/81.3.425.

[59] R. R. Coifman, “Wavelet Analysis and Signal Processing,” in IN WAVELETS AND THEIR

Ishan Wickramasingha

144

APPLICATIONS, 1990, pp. 59–68.

[60] E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger, “Shiftable Multiscale
Transforms,” IEEE Trans. Inf. Theory, vol. 38, no. 2, pp. 587–607, 1992, doi:
10.1109/18.119725.

[61] J. L. Starck, E. J. Candès, and D. L. Donoho, “The curvelet transform for image denoising,”
IEEE Trans. Image Process., vol. 11, no. 6, pp. 670–684, Jun. 2002, doi:
10.1109/TIP.2002.1014998.

[62] M. N. Do and M. Vetterli, “The contourlet transform: An efficient directional
multiresolution image representation,” IEEE Trans. Image Process., vol. 14, no. 12, pp.
2091–2106, Dec. 2005, doi: 10.1109/TIP.2005.859376.

[63] E. Le Pennec and S. Mallat, “Bandelet image approximation and compression,” Multiscale
Model. Simul., vol. 4, no. 3, pp. 992–1039, Jul. 2005, doi: 10.1137/040619454.

[64] D. M. Malioutov, M. Çetin, and A. S. Willsky, “Homotopy continuation for sparse signal
representation,” in ICASSP, IEEE International Conference on Acoustics, Speech and
Signal Processing - Proceedings, 2005, vol. V, pp. 733–736, doi:
10.1109/ICASSP.2005.1416408.

[65] I. Tosic and P. Frossard, “Dictionary Learning,” IEEE Signal Process. Mag., vol. 28, no. 2,
pp. 27–38, Mar. 2011, doi: 10.1109/MSP.2010.939537.

[66] K. Kreutz-Delgado, J. F. Murray, B. D. Rao, K. Engan, T.-W. Lee, and T. J. Sejnowski,
“Dictionary learning algorithms for sparse representation.,” Neural Comput., vol. 15, no. 2,
pp. 349–396, Feb. 2003, doi: 10.1162/089976603762552951.

[67] I. Daubechies, “The Wavelet Transform, Time-Frequency Localization and Signal
Analysis,” IEEE Trans. Inf. Theory, vol. 36, no. 5, pp. 961–1005, 1990, doi:
10.1109/18.57199.

[68] R. R. Coifman and M. V. Wickerhauser, “Entropy-based algorithms for best basis
selection,” IEEE Trans. Inf. Theory, vol. 38, no. 2, pp. 713–718, Mar. 1992, doi:
10.1109/18.119732.

[69] J. A. Tropp, “Greed is good: Algorithmic results for sparse approximation,” IEEE Trans.
Inf. Theory, vol. 50, no. 10, pp. 2231–2242, Oct. 2004, doi: 10.1109/TIT.2004.834793.

[70] J. Yang, Y. Peng, W. Xu, and Q. Dai, “Ways to sparse representation: An overview,” Sci.
China, Ser. F Inf. Sci., vol. 52, no. 4, pp. 695–703, 2009, doi: 10.1007/s11432-009-0045-5.

Computationally Efficient Methods for Sparse Tensor Signal Processing

145

[71] E. Acar, D. M. Dunlavy, and T. G. Kolda, “A scalable optimization approach for fitting
canonical tensor decompositions,” J. Chemom., vol. 25, no. 2, pp. 67–86, 2011, doi:
10.1002/cem.1335.

[72] J. Sulam, B. Ophir, M. Zibulevsky, and M. Elad, “Trainlets: Dictionary Learning in High
Dimensions,” IEEE Trans. Signal Process., vol. 64, no. 12, pp. 3180–3193, 2016, doi:
10.1109/TSP.2016.2540599.

[73] D. L. Donoho and Y. Tsaig, “Fast solution of ℓ1-Norm minimization problems when the
solution may be sparse,” IEEE Trans. Inf. Theory, vol. 54, no. 11, pp. 4789–4812, Nov.
2008, doi: 10.1109/TIT.2008.929958.

[74] Y. Rivenson and A. Stern, “Compressed imaging with a separable sensing operator,” IEEE
Signal Process. Lett., vol. 16, no. 6, pp. 449–452, Jun. 2009, doi:
10.1109/LSP.2009.2017817.

[75] F. Rosário, F. A. Monteiro, and A. Rodrigues, “Fast matrix inversion updates for massive
MIMO detection and precoding,” IEEE Signal Process. Lett., vol. 23, no. 1, pp. 75–79, Jan.
2016, doi: 10.1109/LSP.2015.2500682.

[76] D. Goldfarb, “Modification Methods for Inverting Matrices and Solving Systems of Linear
Algebraic Equations,” Math. Comput., vol. 26, no. 120, pp. 829–829, 1972, doi:
10.1090/S0025-5718-1972-0317527-4.

[77] P. M. Pardalos, Convex optimization theory, vol. 25, no. 3. Cambridge University Press,
2010.

[78] W. W. Hager, “Updating the Inverse of a Matrix,” SIAM Rev., vol. 31, no. 2, pp. 221–239,
Jun. 1989, doi: 10.1137/1031049.

[79] Å. Björck, Numerical Methods in Matrix Computations, vol. 59. Cham: Springer
International Publishing, 2015.

[80] P. J. LaMontagne et al., “OASIS-3: LONGITUDINAL NEUROIMAGING, CLINICAL,
AND COGNITIVE DATASET FOR NORMAL AGING AND ALZHEIMER’S
DISEASE,” Alzheimer’s Dement., vol. 14, no. 7S_Part_2, pp. P138–P138, Jul. 2018, doi:
10.1016/j.jalz.2018.06.2231.

[81] K. Clark et al., “The cancer imaging archive (TCIA): Maintaining and operating a public
information repository,” J. Digit. Imaging, vol. 26, no. 6, pp. 1045–1057, Dec. 2013, doi:
10.1007/s10278-013-9622-7.

[82] L. Zhai, Y. Zhang, H. Lv, S. Fu, and H. Yu, “Multiscale Tensor Dictionary Learning

Ishan Wickramasingha

146

Approach for Multispectral Image Denoising,” IEEE Access, vol. 6, pp. 51898–51910,
2018, doi: 10.1109/ACCESS.2018.2868765.

[83] A. Repetti, E. Chouzenoux, and J. C. Pesquet, “A penalized weighted least squares approach
for restoring data corrupted with signal-dependent noise,” Eur. Signal Process. Conf., no.
Eusipco 2012, pp. 1553–1557, 2012.

[84] J. Wang, H. Lu, J. Wen, and Z. Liang, “Multiscale penalized weighted least-squares
sinogram restoration for low-dose X-ray computed tomography,” IEEE Trans. Biomed.
Eng., vol. 55, no. 3, pp. 1022–1031, 2008, doi: 10.1109/TBME.2007.909531.

[85] K. W. Cheung, H. C. So, W. K. Ma, and Y. T. Chan, “Least Squares Algorithms for Time-
of-Arrival-Based Mobile Location,” IEEE Trans. Signal Process., vol. 52, no. 4, pp. 1121–
1128, 2004, doi: 10.1109/TSP.2004.823465.

[86] Y. Zou, H. Liu, and Q. Wan, “An Iterative Method for Moving Target Localization Using
TDOA and FDOA Measurements,” IEEE Access, vol. 6, no. 15, pp. 2746–2754, 2017, doi:
10.1109/ACCESS.2017.2785182.

[87] P. Tarrío, A. M. Bernardos, J. A. Besada, and J. R. Casar, “A new positioning technique for
RSS-based localization based on a weighted least squares estimator,” ISWCS’08 - Proc.
2008 IEEE Int. Symp. Wirel. Commun. Syst., pp. 633–637, 2008, doi:
10.1109/ISWCS.2008.4726133.

[88] S. C. K. Chan, “Adaptive weighted least squares algorithm for Volterra signal modeling,”
IEEE Trans. Circuits Syst. I Fundam. Theory Appl., vol. 47, no. 4, pp. 545–554, 2000, doi:
10.1109/81.841856.

[89] M. De Courville and P. Duhamel, “Adaptive filtering in subbands using a weighted
criterion,” IEEE Trans. Signal Process., vol. 45, no. 6, p. 1675, 1997, doi:
10.1109/icassp.1995.480341.

[90] D. Min, S. Choi, J. Lu, B. Ham, K. Sohn, and M. N. Do, “Fast global image smoothing
based on weighted least squares,” IEEE Trans. Image Process., vol. 23, no. 12, pp. 5638–
5653, Dec. 2014, doi: 10.1109/TIP.2014.2366600.

[91] D. Ruppert and M. P. Wand, “Multivariate Locally Weighted Least Squares Regression,”
Ann. Stat., vol. 22, no. 3, pp. 1346–1370, 2007, doi: 10.1214/aos/1176325632.

[92] L. Magee, “Improving survey-weighted least squares regression,” J. R. Stat. Soc. Ser. B
Stat. Methodol., vol. 60, no. 1, pp. 115–126, Jan. 1998, doi: 10.1111/1467-9868.00112.

[93] J. P. Romano and M. Wolf, “Resurrecting weighted least squares,” J. Econom., vol. 197,

Computationally Efficient Methods for Sparse Tensor Signal Processing

147

no. 1, pp. 1–19, 2017, doi: 10.1016/j.jeconom.2016.10.003.

[94] M. P. Friedlander, H. Mansour, R. Saab, and Ö. Yilmaz, “Recovering compressively
sampled signals using partial support information,” IEEE Trans. Inf. Theory, vol. 58, no. 2,
pp. 1122–1134, 2012, doi: 10.1109/TIT.2011.2167214.

[95] M. A. Khajehnejad, W. Xu, A. S. Avestimehr, and B. Hassibi, “Weighted l1 minimization
for sparse recovery with prior information,” IEEE Int. Symp. Inf. Theory - Proc., pp. 483–
487, 2009, doi: 10.1109/ISIT.2009.5205716.

[96] E. J. Candès, M. B. Wakin, and S. P. Boyd, “Enhancing sparsity by reweightedℓ1
minimization,” J. Fourier Anal. Appl., vol. 14, no. 5–6, pp. 877–905, Dec. 2008, doi:
10.1007/s00041-008-9045-x.

[97] L. C. Bergersen, I. K. Glad, and H. Lyng, “Weighted lasso with data integration,” Stat. Appl.
Genet. Mol. Biol., vol. 10, no. 1, 2011, doi: 10.2202/1544-6115.1703.

[98] T. Shimamura, S. Imoto, R. Yamaguchi, and S. Miyano, “Weighted lasso in graphical
Gaussian modeling for large gene network estimation based on microarray data.,” Genome
Inform., vol. 19, pp. 142–153, Nov. 2007, doi: 10.1142/9781860949852_0013.

[99] D. L. Donoho and X. Huo, “Uncertainty principles and ideal atomic decomposition,” IEEE
Trans. Inf. Theory, vol. 47, no. 7, pp. 2845–2862, 2001, doi: 10.1109/18.959265.

[100] C. Bocci, E. Carlini, and J. Kileel, “Hadamard products of linear spaces,” J. Algebr., vol.
448, pp. 595–617, 2016, doi: 10.1016/j.jalgebra.2015.10.008.

[101] Q. Zhao et al., “Higher order partial least squares (HOPLS): A generalized multilinear
regression method,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 7, pp. 1660–1673,
2013, doi: 10.1109/TPAMI.2012.254.

[102] M. Park, K. Brocklehurst, R. T. Collins, and Y. Liu, “Deformed lattice detection in real-
world images using mean-shift belief propagation,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 31, no. 10, pp. 1804–1816, 2009, doi: 10.1109/TPAMI.2009.73.

[103] E. Agustsson and R. Timofte, “NTIRE 2017 Challenge on Single Image Super-Resolution:
Dataset and Study,” in IEEE Computer Society Conference on Computer Vision and Pattern
Recognition Workshops, 2017, vol. 2017-July, pp. 1122–1131, doi:
10.1109/CVPRW.2017.150.

[104] A. Lew and H. Mauch, “Introduction to dynamic programming,” Studies in Computational
Intelligence, vol. 38. Springer, Berlin, Heidelberg, pp. 3–43, 2007, doi: 10.1007/978-3-540-
37014-7_1.

Ishan Wickramasingha

148

[105] V. Bhaskaran and K. Konstantinides, Image and Video Compression Standards. Boston,
MA: Springer US, 1995.

[106] I. Bocharova and I. Bocharova, Video-coding standards. 2012.

[107] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans. Knowl. Data Eng., vol.
22, no. 10, pp. 1345–1359, 2010, doi: 10.1109/TKDE.2009.191.

[108] K. Weiss, T. M. Khoshgoftaar, and D. D. Wang, “A survey of transfer learning,” J. Big
Data, vol. 3, no. 1, p. 9, Dec. 2016, doi: 10.1186/s40537-016-0043-6.

[109] W. Kumagai and T. Kanamori, “Risk bound of transfer learning using parametric feature
mapping and its application to sparse coding,” Mach. Learn., vol. 108, no. 11, pp. 1975–
2008, Nov. 2019, doi: 10.1007/s10994-019-05805-2.

[110] A. Maurer, M. Pontil, and B. Romera-Paredes, “Sparse coding for multitask and transfer
learning,” in 30th International Conference on Machine Learning, ICML 2013, 2013, no.
PART 2, pp. 1002–1010.

[111] P. Fieguth, Statistical Image Processing and Multidimensional Modeling, vol. 58, no. 12.
New York, NY: Springer New York, 2011.

[112] Z. Ge et al., “Exploiting Temporal Information for DCNN-Based Fine-Grained Object
Classification,” 2016 Int. Conf. Digit. Image Comput. Tech. Appl. DICTA 2016, 2016, doi:
10.1109/DICTA.2016.7797039.

[113] A. Tovaglieri, “Research Collection,” Brisk Bin. Robust Invariant Scalable Keypoints, vol.
15, no. 3, pp. 12–19, 2011, doi: 10.3929/ethz-a-010782581.

[114] P. C. Martin von Siebenthal1, “Respiratory Organ Motion from 4DMRI.”
www.vision.ethz.ch/4dmri (accessed Jun. 26, 2018).

[115] H. Zanddizari, S. Rajan, and H. Zarrabi, “Increasing the quality of reconstructed signal in
compressive sensing utilizing Kronecker technique,” Biomed. Eng. Lett., vol. 8, no. 2, pp.
239–247, 2018, doi: 10.1007/s13534-018-0057-4.

[116] B. Mailhé, S. Lesage, R. Gribonval, F. Bimbot, and P. Vandergheynst, “Shift-invariant
dictionary learning for sparse representations: extending K-SVD,” 2008. Accessed: Aug.
29, 2018. [Online]. Available: https://hal.archives-ouvertes.fr/hal-00350165.

[117] J. Lefebvre, A. Castonguay, and F. Lesage, “OCT Mouse Brain Templates,” vol. 1.
Mendeley Data, 2017, doi: 10.17632/33wfgxpmp8.1.

[118] J. Caballero et al., “Real-time video super-resolution with spatio-temporal networks and

Computationally Efficient Methods for Sparse Tensor Signal Processing

149

motion compensation,” in Proceedings - 30th IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2017, 2017, vol. 2017-Janua, pp. 2848–2857, doi:
10.1109/CVPR.2017.304.

[119] S. Christen, C. Studer, and G. Pope, “Dictionary Learning for Super-Resolution,” 2010.

[120] S. Bahrampour, N. M. Nasrabadi, A. Ray, and W. K. Jenkins, “Multimodal Task-Driven
Dictionary Learning for Image Classification,” IEEE Trans. Image Process., vol. 25, no. 1,
pp. 24–38, Jan. 2016, doi: 10.1109/TIP.2015.2496275.

[121] A. Koppel, G. Warned, and E. Stump, “Task-driven dictionary learning in distributed online
settings,” Conf. Rec. - Asilomar Conf. Signals, Syst. Comput., vol. 2016-Febru, no. 2, pp.
1114–1118, 2016, doi: 10.1109/ACSSC.2015.7421313.

[122] R. Zhao and Q. Wang, “Learning Separable Dictionaries for Sparse Tensor Representation:
An Online Approach,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 66, no. 3, pp. 502–
506, Mar. 2019, doi: 10.1109/TCSII.2018.2862900.

[123] Y. Su, X. Gao, X. Li, and D. Tao, “Multivariate multilinear regression,” IEEE Trans. Syst.
Man, Cybern. Part B Cybern., vol. 42, no. 6, pp. 1560–1573, 2012, doi:
10.1109/TSMCB.2012.2195171.

[124] E. F. Lock, “Tensor-on-Tensor Regression,” J. Comput. Graph. Stat., vol. 27, no. 3, pp.
638–647, 2018, doi: 10.1080/10618600.2017.1401544.

[125] I. Rish and G. Grabarnik, Sparse Modeling: Theory, Algorithms, and Applications. 2015.

[126] L. Bottou, “Stochastic Gradient Descent Tricks,” vol. 1, no. 1, Springer, Berlin, Heidelberg,
2012, pp. 421–436.

[127] B. Rozovskii and M. Yor, Stochastic Approximation and Recursive Algorithms and
Applications, vol. 35. New York: Springer-Verlag, 2003.

[128] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From
error visibility to structural similarity,” IEEE Trans. Image Process., vol. 13, no. 4, pp. 600–
612, Apr. 2004, doi: 10.1109/TIP.2003.819861.

[129] S. P. Morozov et al., “MosMedData: Chest CT scans with COVID-19 related findings
dataset,” medRxiv. 2020, doi: 10.1101/2020.05.20.20100362.

[130] C. Bao, X. Liu, H. Zhang, Y. Li, and J. Liu, “Coronavirus Disease 2019 (COVID-19) CT
Findings: A Systematic Review and Meta-analysis,” J. Am. Coll. Radiol., vol. 17, no. 6, pp.
701–709, Jun. 2020, doi: 10.1016/j.jacr.2020.03.006.

Ishan Wickramasingha

150

[131] H. Zunair, A. Rahman, N. Mohammed, and J. P. Cohen, “Uniformizing Techniques to
Process CT Scans with 3D CNNs for Tuberculosis Prediction,” in Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), Oct. 2020, vol. 12329 LNCS, pp. 156–168, doi: 10.1007/978-3-
030-59354-4_15.

[132] Y. Sasaki, “The truth of the F-measure,” 2015. Accessed: Feb. 23, 2021. [Online].
Available: https://www.cs.odu.edu/~mukka/cs795sum09dm/Lecturenotes/Day3/F-
measure-YS-26Oct07.pdf.

[133] Z. Wu et al., “3D ShapeNets: A deep representation for volumetric shapes,” in Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
2015, vol. 07-12-June, pp. 1912–1920, doi: 10.1109/CVPR.2015.7298801.

[134] L. Meier, S. Van De Geer, and P. Bühlmann, “The group lasso for logistic regression,” J.
R. Stat. Soc. Ser. B Stat. Methodol., vol. 70, no. 1, pp. 53–71, 2008, doi: 10.1111/j.1467-
9868.2007.00627.x.

[135] J. Hu, J. Huang, and F. Qiu, “A group adaptive elastic-net approach for variable selection
in high-dimensional linear regression,” Sci. China Math., vol. 61, no. 1, pp. 173–188, Jan.
2018, doi: 10.1007/s11425-016-0071-x.

[136] W. Xiao, Y. Wu, and H. Zhou, “ConvexLAR: An Extension of Least Angle Regression,” J.
Comput. Graph. Stat., vol. 24, no. 3, pp. 603–626, Jul. 2015, doi:
10.1080/10618600.2014.962700.

[137] P. Lancaster and H. K. Farahat, “Norms on Direct Sums and Tensor Products,” vol. 26, no.
118, pp. 401–414, 1972.

[138] K. Brandt Petersen Michael Syskind Pedersen et al., “The Matrix Cookbook.” Accessed:
Nov. 15, 2018. [Online]. Available:
http://www.math.uwaterloo.ca/~hwolkowi//matrixcookbook.pdf.

[139] J. R. Magnus, “On the concept of matrix derivative,” J. Multivar. Anal., vol. 101, no. 9, pp.
2200–2206, 2010, doi: 10.1016/j.jmva.2010.05.005.

[140] J. R. Schott and D. A. Harville, “Matrix Algebra from a Statistician’s Perspective,” J. Am.
Stat. Assoc., vol. 93, no. 443, p. 1236, 1998, doi: 10.2307/2669871.

Computationally Efficient Methods for Sparse Tensor Signal Processing

151

Appendix A

A.1 Mapping of Tensor Indices to Corresponding Vector Indices of

vec(𝒳𝒳) ∈ ℝ𝐼𝐼𝑁𝑁𝐼𝐼𝑁𝑁−1…𝐼𝐼1

Proposition 2.1: Let 𝑙𝑙 be the vector index of an element 𝑣𝑣𝑙𝑙 in 𝑣𝑣𝑣𝑣𝑣𝑣(𝒳𝒳) ∈ ℝ𝐼𝐼𝑁𝑁𝐼𝐼𝑁𝑁−1…𝐼𝐼1 and 𝐼𝐼𝑛𝑛 be the
dimension of the mode-n of the tensor 𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁 where, 𝑛𝑛 ∈ {1,2, … , 𝑁𝑁}. The tensor
indices 𝑖𝑖𝑛𝑛; 𝑛𝑛 ∈ {1,2, … , 𝑁𝑁}, corresponding to the vector element 𝑣𝑣𝑙𝑙 , can be obtained by,

𝑖𝑖𝑛𝑛 = �
𝑙𝑙

𝐼𝐼1 × … × 𝐼𝐼𝑛𝑛−1
− � �𝑖𝑖𝑝𝑝 − 1� � 𝐼𝐼𝑞𝑞

𝑝𝑝−1

𝑞𝑞=𝑛𝑛;𝑞𝑞>0

𝑁𝑁

𝑝𝑝=𝑛𝑛+1;𝑝𝑝≤𝑁𝑁

 � (A. 1)

where ⌈∗⌉ indicate the ceiling function. For example,

𝑖𝑖1 = ⌈𝑙𝑙 − (𝑖𝑖𝑁𝑁 − 1)𝐼𝐼𝑁𝑁−1 × … .× 𝐼𝐼1 − ⋯ − (𝑖𝑖2 − 1)𝐼𝐼1⌉

⋮

𝑖𝑖𝑁𝑁−1 = �
𝑙𝑙

𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−2
− (𝑖𝑖𝑁𝑁 − 1)𝐼𝐼𝑁𝑁−1�

𝑖𝑖𝑁𝑁 = �
𝑙𝑙

𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−1
�

Proof: Note that 𝑖𝑖𝑛𝑛 for all 𝑛𝑛 ∈ {1,2, … , 𝑁𝑁} are integers and 1 ≤ 𝑖𝑖𝑛𝑛 ≤ 𝐼𝐼n

From (2.1),

𝑙𝑙 = 𝑖𝑖1 + (𝑖𝑖2 − 1)𝐼𝐼1 + ⋯ + (𝑖𝑖𝑁𝑁 − 1)𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−1 (A. 2)

⟹ 𝑖𝑖𝑁𝑁 − 1 =
𝑙𝑙

𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−1���������
𝑆𝑆𝑁𝑁

−
𝑖𝑖1 + (𝑖𝑖2 − 1)𝐼𝐼1 + ⋯ + (𝑖𝑖𝑁𝑁−1 − 1)𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−2

𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−1�������������������������������
𝑓𝑓𝑁𝑁

𝑖𝑖𝑁𝑁 = 𝑆𝑆𝑁𝑁 + (1 − 𝑓𝑓𝑁𝑁) (A. 3)

Since 𝑖𝑖𝑛𝑛 ≤ 𝐼𝐼n ∀ 𝑛𝑛 ∈ {1,2, … , 𝑁𝑁},

𝑓𝑓𝑁𝑁 ≤
𝐼𝐼1 + (𝐼𝐼2 − 1)𝐼𝐼1+. . . +(𝐼𝐼𝑁𝑁−1 − 1)𝐼𝐼1 ×. . .× 𝐼𝐼𝑁𝑁−2

𝐼𝐼1 ×. . .× 𝐼𝐼𝑁𝑁−1
= 1 (A. 4)

Ishan Wickramasingha

152

Also 1 ≤ 𝑖𝑖𝑛𝑛 ∀ 𝑛𝑛 ∈ {1,2, … , 𝑁𝑁} and,

𝑓𝑓𝑁𝑁 =
1 + (1 − 1)𝐼𝐼1 + ⋯ + (1 − 1)𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−2

𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−1
> 0 (A. 5)

Therefore, from (A. 4) and (A. 5),

0 < 𝑓𝑓𝑁𝑁 ≤ 1 (A. 6)

⟹ 0 ≤ 1 − 𝑓𝑓𝑁𝑁 < 1 (A. 7)

Since 𝑖𝑖𝑁𝑁 ∈ ℤ, from (A. 3) and (A. 7),

⇒ 𝑖𝑖𝑁𝑁 = ⌈𝑖𝑖𝑁𝑁 − (1 − 𝑓𝑓𝑁𝑁)⌉ = ⌈𝑆𝑆𝑁𝑁⌉

𝑖𝑖𝑁𝑁 = �
𝑙𝑙

𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−1
� (A. 8)

⌈∗⌉ indicate the ceiling of the value.

Similarly,

𝑖𝑖𝑁𝑁−1 − 1 =
𝑙𝑙

𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−2
− (𝑖𝑖𝑁𝑁 − 1)𝐼𝐼𝑁𝑁−1�������������������

𝑆𝑆𝑁𝑁−1

−
𝑖𝑖1 + (𝑖𝑖2 − 1)𝐼𝐼1 + ⋯ + (𝑖𝑖𝑁𝑁−1 − 1)𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−2

𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−2�������������������������������
𝑓𝑓𝑁𝑁−1

𝑖𝑖𝑁𝑁−1 = 𝑆𝑆𝑁𝑁−1 + (1 − 𝑓𝑓𝑁𝑁−1)

0 ≤ (1 − 𝑓𝑓𝑁𝑁−1) < 1

Since 𝑖𝑖𝑁𝑁−1 ∈ ℤ and 0 ≤ (1 − 𝑓𝑓𝑁𝑁−1) < 1 ,

𝑖𝑖𝑁𝑁−1 = ⌈𝑖𝑖𝑁𝑁−1 − (1 − 𝑓𝑓𝑁𝑁−1)⌉ = ⌈𝑆𝑆𝑁𝑁−1⌉

𝑖𝑖𝑁𝑁−1 = �
𝑙𝑙

𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−2
− (𝑖𝑖𝑁𝑁 − 1)𝐼𝐼𝑁𝑁−1�

Similarly, for ∀ 𝑛𝑛 ∈ {1,2, … , 𝑁𝑁}, 0 ≤ (1 − 𝑓𝑓𝑛𝑛) < 1

𝑖𝑖𝑛𝑛 = ⌈𝑖𝑖𝑛𝑛 − (1 − 𝑓𝑓𝑛𝑛)⌉ = ⌈𝑆𝑆𝑛𝑛⌉

𝑖𝑖𝑛𝑛 = �
𝑙𝑙

𝐼𝐼1 × … × 𝐼𝐼𝑛𝑛−1
− � �𝑖𝑖𝑝𝑝 − 1� � 𝐼𝐼𝑞𝑞

𝑝𝑝−1

𝑞𝑞=𝑛𝑛;𝑞𝑞>0

𝑁𝑁

𝑝𝑝=𝑛𝑛+1;𝑝𝑝≤𝑁𝑁

 �

Computationally Efficient Methods for Sparse Tensor Signal Processing

153

Appendix B

B.1 Mapping of column indices of dictionary Φ to column indices of

mode-n dictionaries

T-LARS avoids the construction of large matrices such as the separable dictionary 𝜱𝜱 in (3.4).

Instead, T-LARS uses mode-n dictionaries for calculations. The following mapping between

column indices of dictionary Φ and column indices of mode-n dictionaries 𝜱𝜱(𝑛𝑛); 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁} is

essential in T-LARS calculations.

The arbitrary column 𝜱𝜱𝑘𝑘 is the 𝑘𝑘th column of the separable dictionary 𝜱𝜱 in (3.4), which is given

by the Kronecker product of the columns of the dictionary matrices 𝜱𝜱(1), 𝜱𝜱(2), … , 𝜱𝜱(𝑁𝑁), 𝑛𝑛 ∈

{1, ⋯ , 𝑁𝑁}.

𝜱𝜱𝑘𝑘 = 𝜙𝜙𝑖𝑖𝑁𝑁

(𝑁𝑁) ⊗ 𝜙𝜙𝑖𝑖𝑁𝑁−1

(𝑁𝑁−1) ⊗ … ⊗ 𝜙𝜙𝑖𝑖1

(1) (B. 1)

The column indices (𝑖𝑖𝑁𝑁 , 𝑖𝑖𝑁𝑁−1, … , 𝑖𝑖1) are the indices of the columns of the dictionary matrices

𝜱𝜱(1), 𝜱𝜱(2), … , 𝜱𝜱(𝑁𝑁) . The column index 𝑘𝑘 of the separable dictionary 𝜱𝜱 is given by [45],

𝑘𝑘 = 𝑖𝑖1 + �(𝑖𝑖𝑛𝑛 − 1)𝐼𝐼1𝐼𝐼2 … . 𝐼𝐼𝑛𝑛−1

𝑁𝑁

𝑛𝑛=2

(B. 2)

where, 𝐼𝐼1, 𝐼𝐼2, … , 𝐼𝐼𝑁𝑁 are the dimensions of the columns of the dictionary matrices

𝜱𝜱(1), 𝜱𝜱(2), … , 𝜱𝜱(𝑁𝑁) , respectively. The following proposition shows how to obtain the column

indices of the dictionary matrices (𝑖𝑖𝑁𝑁 , 𝑖𝑖𝑁𝑁−1, … , 𝑖𝑖1) corresponds to the column index 𝑘𝑘 of the

separable dictionary 𝜱𝜱.

Proposition B.1: Let 𝑘𝑘 be the column index of the separable dictionary column vector 𝜱𝜱𝑘𝑘 and 𝐼𝐼𝑛𝑛
be the dimension of the columns of each dictionary matrix 𝜱𝜱(𝑛𝑛); 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁}. In (B. 1), the
corresponding column indices 𝑖𝑖𝑛𝑛; 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁} of each dictionary matrix 𝜙𝜙𝑖𝑖𝑛𝑛

(𝑛𝑛) is given by,

𝑖𝑖𝑛𝑛 = �
𝑘𝑘

𝐼𝐼1 × … × 𝐼𝐼𝑛𝑛−1
− � �𝑖𝑖𝑝𝑝 − 1� � 𝐼𝐼𝑞𝑞

𝑝𝑝−1

𝑞𝑞=𝑛𝑛;𝑞𝑞>0

𝑁𝑁

𝑝𝑝=𝑛𝑛+1;𝑝𝑝≤𝑁𝑁

 � (B. 3)

where ⌈∗⌉ indicate the ceiling function. For example,

Ishan Wickramasingha

154

𝑖𝑖1 = ⌈𝑘𝑘 − (𝑖𝑖𝑁𝑁 − 1)𝐼𝐼𝑁𝑁−1 × … .× 𝐼𝐼1 − ⋯ − (𝑖𝑖2 − 1)𝐼𝐼1⌉

⋮

𝑖𝑖𝑁𝑁−1 = �
𝑘𝑘

𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−2
− (𝑖𝑖𝑁𝑁 − 1)𝐼𝐼𝑁𝑁−1�

𝑖𝑖𝑁𝑁 = �
𝑘𝑘

𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−1
�

Proof: We note that 𝑖𝑖𝑛𝑛 ; ∀ 𝑛𝑛 ∈ {1,2, … , 𝑁𝑁} are integers and 1 ≤ 𝑖𝑖𝑛𝑛 ≤ 𝐼𝐼n

From (B. 2),

𝑘𝑘 = 𝑖𝑖1 + (𝑖𝑖2 − 1)𝐼𝐼1 + ⋯ + (𝑖𝑖𝑁𝑁 − 1)𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−1 (B. 4)

Therefore,

𝑖𝑖𝑁𝑁 − 1 =
𝑘𝑘

𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−1���������
𝑆𝑆𝑁𝑁

−
𝑖𝑖1 + (𝑖𝑖2 − 1)𝐼𝐼1 + ⋯ + (𝑖𝑖𝑁𝑁−1 − 1)𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−2

𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−1�������������������������������
𝑓𝑓𝑁𝑁

𝑖𝑖𝑁𝑁 = 𝑆𝑆𝑁𝑁 + (1 − 𝑓𝑓𝑁𝑁) (B. 5)

Since 𝑖𝑖𝑛𝑛 ≤ 𝐼𝐼n; ∀ 𝑛𝑛 ∈ {1,2, … , 𝑁𝑁},

𝑓𝑓𝑁𝑁 ≤
𝐼𝐼1 + (𝐼𝐼2 − 1)𝐼𝐼1+. . . +(𝐼𝐼𝑁𝑁−1 − 1)𝐼𝐼1 ×. . .× 𝐼𝐼𝑁𝑁−2

𝐼𝐼1 ×. . .× 𝐼𝐼𝑁𝑁−1
= 1 (B. 6)

Also since 1 ≤ 𝑖𝑖𝑛𝑛; ∀ 𝑛𝑛 ∈ {1,2, … , 𝑁𝑁}, we have

𝑓𝑓𝑁𝑁 =
1 + (1 − 1)𝐼𝐼1 + ⋯ + (1 − 1)𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−2

𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−1
> 0 (B. 7)

Therefore, from (B. 6) and (B. 7),

0 < 𝑓𝑓𝑁𝑁 ≤ 1 (B. 8)

0 ≤ 1 − 𝑓𝑓𝑁𝑁 < 1 (B. 9)

Since 𝑖𝑖𝑁𝑁 ∈ ℤ, then from (B. 5) and (B. 9) we have

𝑖𝑖𝑁𝑁 = ⌈𝑖𝑖𝑁𝑁 − (1 − 𝑓𝑓𝑁𝑁)⌉ = ⌈𝑆𝑆𝑁𝑁⌉

Computationally Efficient Methods for Sparse Tensor Signal Processing

155

𝑖𝑖𝑁𝑁 = �
𝑘𝑘

𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−1
� (B. 10)

where ⌈∗⌉ indicate the ceiling function.

Similarly,

𝑖𝑖𝑁𝑁−1 − 1 =
𝑘𝑘

𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−2
− (𝑖𝑖𝑁𝑁 − 1)𝐼𝐼𝑁𝑁−1�������������������

𝑆𝑆𝑁𝑁−1

−
𝑖𝑖1 + (𝑖𝑖2 − 1)𝐼𝐼1 + ⋯ + (𝑖𝑖𝑁𝑁−1 − 1)𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−2

𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−2�������������������������������
𝑓𝑓𝑁𝑁−1

𝑖𝑖𝑁𝑁−1 = 𝑠𝑠𝑁𝑁−1 + (1 − 𝑓𝑓𝑁𝑁−1)

0 ≤ (1 − 𝑓𝑓𝑁𝑁−1) < 1

Since 𝑖𝑖𝑁𝑁−1 ∈ ℤ and 0 ≤ (1 − 𝑓𝑓𝑁𝑁−1) < 1 ,

𝑖𝑖𝑁𝑁−1 = ⌈𝑖𝑖𝑁𝑁−1 − (1 − 𝑓𝑓𝑁𝑁−1)⌉ = ⌈𝑆𝑆𝑁𝑁−1⌉

𝑖𝑖𝑁𝑁−1 = �
𝑘𝑘

𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−2
− (𝑖𝑖𝑁𝑁 − 1)𝐼𝐼𝑁𝑁−1�

Similarly, for ∀ 𝑛𝑛 ∈ {1,2, … , 𝑁𝑁},

0 ≤ (1 − 𝑓𝑓𝑛𝑛) < 1

𝑖𝑖𝑛𝑛 = ⌈𝑖𝑖𝑛𝑛 − (1 − 𝑓𝑓𝑛𝑛)⌉ = ⌈𝑆𝑆𝑛𝑛⌉

𝑖𝑖𝑛𝑛 = �
𝑘𝑘

𝐼𝐼1 × … × 𝐼𝐼𝑛𝑛−1
− � �𝑖𝑖𝑝𝑝 − 1� � 𝐼𝐼𝑞𝑞

𝑝𝑝−1

𝑞𝑞=𝑛𝑛;𝑞𝑞>0

𝑁𝑁

𝑝𝑝=𝑛𝑛+1;𝑝𝑝≤𝑁𝑁

 �

B.2 Normalization of the tensor 𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽𝑛𝑛×…×𝐽𝐽𝑁𝑁

Compute

𝒴𝒴� =
𝒴𝒴

‖𝒴𝒴‖2
(𝐴𝐴. 11)

Ishan Wickramasingha

156

where, ‖𝒴𝒴‖2 = �〈𝒴𝒴, 𝒴𝒴〉 = �∑ . . .𝐽𝐽1
𝑗𝑗1

∑ 𝑦𝑦𝑗𝑗1𝑗𝑗2...𝑗𝑗𝑁𝑁
2𝐽𝐽𝑁𝑁

𝑗𝑗𝑁𝑁
�

1
2

B.3 Normalization of columns of the separable dictionary 𝜱𝜱 to have a unit

𝐿𝐿2 norm

The column 𝜱𝜱𝑘𝑘 in (B. 1), is the 𝑘𝑘𝑡𝑡ℎ column of the separable dictionary 𝜱𝜱. Normalization of each

column vector 𝜱𝜱𝑘𝑘 of the separable dictionary is given by,

 𝜱𝜱� 𝑘𝑘 =
𝜱𝜱𝑘𝑘

‖𝜱𝜱𝑘𝑘‖2
(B. 12)

Proposition B.2: Normalization of the column 𝜱𝜱𝑘𝑘 in (B. 1) is given by the Kronecker product of

the normalization of the dictionary columns 𝝓𝝓𝑖𝑖𝑁𝑁

(𝑁𝑁), 𝝓𝝓𝑖𝑖𝑁𝑁−1

(𝑁𝑁−1), … , 𝝓𝝓𝑖𝑖1

(1)

𝜱𝜱� 𝑘𝑘 = 𝝓𝝓� 𝑖𝑖𝑁𝑁

(𝑁𝑁) ⊗ 𝝓𝝓� 𝑖𝑖𝑁𝑁−1

(𝑁𝑁−1) ⊗ … ⊗ 𝝓𝝓� 𝑖𝑖1

(1) (B. 13)

Proof: The L2 norm of the Kronecker product of vectors is the product of L2 norms of these vectors

[137], i.e.,

‖𝜱𝜱𝑘𝑘‖2
2 = �𝝓𝝓𝑖𝑖𝑁𝑁

(𝑁𝑁) ⊗ 𝝓𝝓𝑖𝑖𝑁𝑁−1

(𝑁𝑁−1) ⊗. . .⊗ 𝝓𝝓𝑖𝑖1

(1)� = �𝝓𝝓𝑖𝑖𝑁𝑁

(𝑁𝑁)�
2

2
× �𝝓𝝓𝑖𝑖𝑁𝑁−1

(𝑁𝑁−1)�
2

2
×. . .× �𝝓𝝓𝑖𝑖1

(1)�
2

2
(B. 14)

From (B. 12) and (B. 13),

𝜱𝜱� 𝑘𝑘 =
𝜱𝜱𝑘𝑘

‖𝜱𝜱𝑘𝑘‖2
 =

𝝓𝝓𝑖𝑖𝑁𝑁

(𝑁𝑁)

�𝝓𝝓𝑖𝑖𝑁𝑁

(𝑁𝑁)�
2

2 ⊗. . .⊗
𝝓𝝓𝑖𝑖1

(1)

�𝝓𝝓𝑖𝑖1

(1)�
2

2 (B. 15)

Therefore,

𝜱𝜱� 𝑘𝑘 = 𝝓𝝓� 𝑖𝑖𝑁𝑁

(𝑁𝑁) ⊗ 𝝓𝝓� 𝑖𝑖𝑁𝑁−1

(𝑁𝑁−1) ⊗. . .⊗ 𝝓𝝓� 𝑖𝑖1

(1)

B.4 Obtaining the initial correlation tensor 𝒞𝒞1

In T-LARS, the initial correlation vector 𝒄𝒄1 is obtained by taking the correlation between all

columns of 𝜱𝜱 and the vectorization of the tensor 𝒴𝒴,

Computationally Efficient Methods for Sparse Tensor Signal Processing

157

𝒄𝒄1 = �𝜱𝜱(𝑁𝑁)𝑇𝑇
⊗ 𝜱𝜱(𝑁𝑁−1)𝑇𝑇

⊗ ⋯ ⊗ 𝜱𝜱(1)𝑇𝑇
� vec(𝒴𝒴) (B. 16)

We could also represent (B. 16) as a multilinear transformation of the tensor 𝒴𝒴 [45],

𝒞𝒞1 = 𝒴𝒴 ×1 𝜱𝜱(1)𝑇𝑇
×2. . .×𝑛𝑛 𝜱𝜱(𝑛𝑛)𝑇𝑇

×𝑛𝑛+1. . .×𝑁𝑁 𝜱𝜱(𝑁𝑁)𝑇𝑇 (B. 17)

The tensor 𝒞𝒞1 is the correlation between the tensor 𝒴𝒴 and the mode-n dictionary matrices 𝜱𝜱(𝑛𝑛); 𝑛𝑛 ∈

{1, ⋯ , 𝑁𝑁}. The tensor 𝒞𝒞1 could be calculated efficiently as 𝑁𝑁 mode-n products.

B.5 Creating a Gram matrix for each mode-n dictionary 𝜱𝜱(𝑛𝑛)

Gram matrices are used in several steps of T-LARS. For a large separable dictionary, 𝜱𝜱, its Gram

matrix would be large as well. Therefore, explicitly building this Gram matrix and using it in

computations could be very inefficient for large problems. Therefore, we developed T-LARS to

use Gram matrices of mode-n dictionary matrices, 𝜱𝜱(1), 𝜱𝜱(2), … , 𝜱𝜱(𝑁𝑁), defined as 𝑮𝑮(𝑛𝑛); 𝑛𝑛 ∈

{1, ⋯ , 𝑁𝑁}, instead of the Gram matrix 𝜱𝜱𝑇𝑇𝜱𝜱,s

𝜱𝜱𝑇𝑇𝜱𝜱 = 𝜱𝜱(𝑁𝑁)𝑇𝑇
𝜱𝜱(𝑁𝑁) ⊗ ⋯ ⊗ 𝜱𝜱(𝑛𝑛)𝑇𝑇

𝜱𝜱(𝑛𝑛) ⊗ ⋯ ⊗ 𝜱𝜱(1)𝑇𝑇
𝜱𝜱(1) (B. 18)

We can obtain, Gram matrix 𝑮𝑮(𝑛𝑛) for each mode-n dictionary 𝜱𝜱(𝑛𝑛) by,

𝑮𝑮(𝑛𝑛) = 𝜱𝜱(𝑛𝑛)𝑇𝑇
𝜱𝜱(𝑛𝑛) (B. 19)

The total sizes of the Gram matrices 𝑮𝑮(𝑛𝑛); 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁} would be much smaller than the Gram

matrix 𝑮𝑮 = 𝜱𝜱𝑇𝑇𝜱𝜱, thereby allowing faster calculations and requiring less computer storage.

Ishan Wickramasingha

158

Appendix C

C.1 Obtain the inverse of the Gram matrix of the active columns of the

dictionary in WT-LARS

Let the column 𝑘𝑘𝑎𝑎 ∈ 𝐼𝐼 be the new column added to the active matrix. Given 𝑮𝑮𝑡𝑡−1
−1 , the inverse of

the Gram matrix 𝑮𝑮𝑡𝑡
−1 could be calculated using the Schur complement inversion formula for a

symmetric block matrix [77]–[79],

𝑮𝑮𝑡𝑡
−1 = �𝑭𝑭11

−1 𝛼𝛼𝒃𝒃
𝛼𝛼𝒃𝒃T 𝛼𝛼

� (B. 20)

where, 𝑭𝑭11
−1 = 𝑮𝑮𝑡𝑡−1

−1 + 𝛼𝛼𝒃𝒃𝒃𝒃T, 𝒃𝒃 = −𝑮𝑮𝑡𝑡−1
−1 𝐠𝐠a and 𝛼𝛼 = 1 / �g(𝑘𝑘𝑎𝑎,𝑘𝑘𝑎𝑎) + 𝐠𝐠a

𝑇𝑇𝒃𝒃� and the column

vector [𝐠𝐠a g(𝑘𝑘𝑎𝑎,𝑘𝑘𝑎𝑎)]𝑇𝑇 is given by,

[𝐠𝐠a g(𝑘𝑘𝑎𝑎,𝑘𝑘𝑎𝑎)]𝑇𝑇 = 𝜱𝜱𝑊𝑊𝐼𝐼𝑡𝑡
𝑇𝑇 𝝓𝝓𝑘𝑘𝑎𝑎

Where 𝝓𝝓𝑘𝑘𝑎𝑎 is the 𝑘𝑘th column of 𝜱𝜱𝑊𝑊 and g(𝑘𝑘𝑎𝑎,𝑘𝑘𝑎𝑎) is the last element of the vector 𝜱𝜱𝑊𝑊𝐼𝐼𝑡𝑡
𝑇𝑇 𝝓𝝓𝑘𝑘𝑎𝑎 .

Since 𝜱𝜱𝑊𝑊 = 𝑺𝑺𝑺𝑺𝑺𝑺, we can easily calculate 𝐠𝐠a and g(𝑘𝑘𝑎𝑎,𝑘𝑘𝑎𝑎) as, [𝐠𝐠a g(𝑘𝑘𝑎𝑎,𝑘𝑘𝑎𝑎)]𝑇𝑇 =

 𝑸𝑸𝑘𝑘𝑎𝑎,𝑘𝑘𝑎𝑎𝑸𝑸𝐼𝐼𝑡𝑡
𝑇𝑇 𝜱𝜱𝐼𝐼𝑡𝑡

𝑇𝑇 𝑾𝑾𝝓𝝓𝑘𝑘, where 𝝓𝝓𝑘𝑘 is the 𝑘𝑘th column of 𝜱𝜱.

Please refer to T-LARS [18] in chapter 3 for updating the inverse of the Gram matrix 𝑮𝑮𝑡𝑡−1
−1 to

obtain 𝑮𝑮𝑡𝑡
−1 after removing a column 𝑘𝑘𝑎𝑎 ∈ 𝐼𝐼, which is identical in both WT-LARS and T-LARS.

Computationally Efficient Methods for Sparse Tensor Signal Processing

159

Appendix D

D.1 Obtain the inverse of the Gram matrix of the active columns of the

dictionary in TD-LARS

Let the column 𝑘𝑘𝑎𝑎 ∈ 𝐼𝐼 be the new column added to the active matrix. Given 𝑮𝑮𝑡𝑡−1
−1 , the inverse of

the Gram matrix 𝑮𝑮𝑡𝑡
−1 could be calculated using the Schur complement inversion formula for a

symmetric block matrix [77]–[79],

𝑮𝑮𝑡𝑡
−1 = �𝑭𝑭11

−1 𝛼𝛼𝒃𝒃
𝛼𝛼𝒃𝒃T 𝛼𝛼

� (B. 21)

where, 𝑭𝑭11
−1 = 𝑮𝑮𝑡𝑡−1

−1 + 𝛼𝛼𝒃𝒃𝒃𝒃T, 𝒃𝒃 = −𝑮𝑮𝑡𝑡−1
−1 𝐠𝐠a and 𝛼𝛼 = 1 / �g(𝑘𝑘𝑎𝑎,𝑘𝑘𝑎𝑎) + 𝐠𝐠a

𝑇𝑇𝒃𝒃� and the column

vector [𝐠𝐠a g(𝑘𝑘𝑎𝑎,𝑘𝑘𝑎𝑎)]𝑇𝑇 is given by,

[𝐠𝐠a g(𝑘𝑘𝑎𝑎,𝑘𝑘𝑎𝑎)]𝑇𝑇 = 𝜱𝜱𝑊𝑊𝐼𝐼𝑡𝑡
𝑇𝑇 𝝓𝝓𝑘𝑘𝑎𝑎

Where 𝝓𝝓𝑘𝑘𝑎𝑎 is the 𝑘𝑘th column of 𝜱𝜱𝑊𝑊 and g(𝑘𝑘𝑎𝑎,𝑘𝑘𝑎𝑎) is the last element of the vector 𝜱𝜱𝑊𝑊𝐼𝐼𝑡𝑡
𝑇𝑇 𝝓𝝓𝑘𝑘𝑎𝑎 .

Since 𝜱𝜱𝑊𝑊 = 𝑺𝑺𝑺𝑺𝑺𝑺, we can easily calculate 𝐠𝐠a and g(𝑘𝑘𝑎𝑎,𝑘𝑘𝑎𝑎) as, [𝐠𝐠a g(𝑘𝑘𝑎𝑎,𝑘𝑘𝑎𝑎)]𝑇𝑇 =

 𝑸𝑸𝑘𝑘𝑎𝑎,𝑘𝑘𝑎𝑎𝑸𝑸𝐼𝐼𝑡𝑡
𝑇𝑇 𝜱𝜱𝐼𝐼𝑡𝑡

𝑇𝑇 𝑾𝑾𝝓𝝓𝑘𝑘, where 𝝓𝝓𝑘𝑘 is the 𝑘𝑘th column of 𝜱𝜱.

Please refer to T-LARS [18] in chapter 3 for updating the inverse of the Gram matrix 𝑮𝑮𝑡𝑡−1
−1 to

obtain 𝑮𝑮𝑡𝑡
−1 after removing a column 𝑘𝑘𝑎𝑎 ∈ 𝐼𝐼, which is identical in both TD-LARS and T-LARS.

Ishan Wickramasingha

160

Appendix E

E.1 Obtain The Inverse Of The Gram Matrix Of The Active Columns Of

The Dictionary in T-NET

Let the column 𝑘𝑘𝑎𝑎 ∈ 𝐼𝐼 be the new column added to the active matrix. Given 𝑮𝑮𝑡𝑡−1
−1 , the inverse of

the Gram matrix 𝑮𝑮𝑡𝑡
−1 could be calculated using the Schur complement inversion formula for a

symmetric block matrix [77]–[79],

𝑮𝑮𝑡𝑡
−1 = �𝑭𝑭11

−1 𝛼𝛼𝒃𝒃
𝛼𝛼𝒃𝒃T 𝛼𝛼

� (B. 22)

where, 𝑭𝑭11
−1 = 𝑮𝑮𝑡𝑡−1

−1 + 𝛼𝛼𝒃𝒃𝒃𝒃T, 𝒃𝒃 = − 1
1+𝜈𝜈2

𝑮𝑮𝑡𝑡−1
−1 𝐠𝐠a and 𝛼𝛼 = (1 + 𝜈𝜈2) / �g(𝑘𝑘𝑎𝑎,𝑘𝑘𝑎𝑎) + 𝜈𝜈2 + 𝐠𝐠a

𝑇𝑇𝒃𝒃�

and the column vector 𝐠𝐠a
𝑇𝑇 is given by,

𝐠𝐠a
𝑇𝑇 = [g(𝑘𝑘1,𝑘𝑘𝑎𝑎) ⋯ g(𝑘𝑘𝑛𝑛,𝑘𝑘𝑎𝑎) ⋯ g(𝑘𝑘𝑎𝑎−1,𝑘𝑘𝑎𝑎)]1×𝑎𝑎−1

The elements, g(𝑘𝑘𝑛𝑛,𝑘𝑘𝑎𝑎) of 𝐠𝐠a
𝑇𝑇 are elements of the gram matrix, 𝑮𝑮𝑡𝑡, that are obtained using mode-n

gram matrices 𝑮𝑮(𝑛𝑛) = 𝜱𝜱(𝑛𝑛)𝑇𝑇
𝜱𝜱(𝑛𝑛); 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁}.

g(𝑘𝑘𝑛𝑛, 𝑘𝑘𝑎𝑎) = g(𝑁𝑁)�𝑘𝑘𝑛𝑛𝑁𝑁 , 𝑘𝑘𝑎𝑎𝑁𝑁� ⊗ … ⊗ g(1)�𝑘𝑘𝑛𝑛1, 𝑘𝑘𝑎𝑎1�

where, 𝑘𝑘𝑛𝑛𝑁𝑁 ⋯ 𝑘𝑘𝑛𝑛1 are the tensor indices corresponds to the column index 𝑘𝑘𝑛𝑛 and 𝑘𝑘𝑎𝑎𝑁𝑁 ⋯ 𝑘𝑘𝑎𝑎1are

the tensor indices corresponds to the column index 𝑘𝑘𝑎𝑎 [18].

Please refer to T-LARS [18] in chapter 3 for updating the inverse of the Gram matrix 𝑮𝑮𝑡𝑡−1
−1 to

obtain 𝑮𝑮𝑡𝑡
−1 after removing a column 𝑘𝑘𝑎𝑎 ∈ 𝐼𝐼, which is identical in both T-NET and T-LARS.

Computationally Efficient Methods for Sparse Tensor Signal Processing

161

Appendix F

F.1 Proof of Proposition 7.1

Proposition 7.1: Let 𝑓𝑓(𝜱𝜱) be a continuously differentiable function and 𝜱𝜱 ∈ ℝ𝑃𝑃×𝑄𝑄 be a

Kronecker matrix, where 𝜱𝜱 = 𝜱𝜱(𝑁𝑁) ⊗ ⋯ ⊗ 𝜱𝜱(1) and each mode-n matrix 𝜱𝜱(𝑛𝑛) ∈ ℝ𝐼𝐼𝑛𝑛×𝐽𝐽𝑛𝑛; ∀ 𝑛𝑛 ∈

{1, ⋯ , 𝑁𝑁}. Therefore, the gradient 𝛻𝛻𝜱𝜱(𝑛𝑛)𝑓𝑓(𝜱𝜱) ; ∀𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁} is given by,

 �𝛻𝛻𝜱𝜱(𝑛𝑛)𝑓𝑓(𝜱𝜱)�
𝑖𝑖,𝑗𝑗

= 𝑇𝑇𝑇𝑇 ��𝛻𝛻𝜱𝜱𝑓𝑓(𝜱𝜱)�
𝑇𝑇 𝜕𝜕𝜱𝜱

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛)� (B. 23)

Proof:

 �𝛻𝛻𝜱𝜱(𝑛𝑛)𝑓𝑓(𝜱𝜱)�
𝑖𝑖,𝑗𝑗

=
𝜕𝜕𝑓𝑓(𝜱𝜱)

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛) (B. 24)

Let us apply the chain rule [138]–[140] to (B. 24),

𝜕𝜕𝑓𝑓(𝜱𝜱)

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛) = � �

𝜕𝜕𝑓𝑓(𝜱𝜱)
𝜕𝜕𝜱𝜱𝑝𝑝,𝑞𝑞

𝜕𝜕𝜱𝜱𝑝𝑝,𝑞𝑞

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛)

𝑄𝑄

𝑞𝑞=1

𝑃𝑃

𝑝𝑝=1

 (B. 25)

Where 𝑃𝑃 = ∏ 𝐼𝐼n
𝑁𝑁
𝑛𝑛=1 and 𝑄𝑄 = ∏ 𝐽𝐽n

𝑁𝑁
𝑛𝑛=1 .

Therefore,

�𝛻𝛻𝜱𝜱(𝑛𝑛)𝑓𝑓(𝜱𝜱)�
𝑖𝑖,𝑗𝑗

= 𝑇𝑇𝑇𝑇 ��𝛻𝛻𝜱𝜱𝑓𝑓(𝜱𝜱)�
𝑇𝑇 𝜕𝜕𝜱𝜱

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛)� (B. 26)

F.2 Proof of Proposition 7.2

Proposition 7.2: Let 𝜱𝜱 ∈ ℝ𝑃𝑃×𝑄𝑄 be a Kronecker matrix, where 𝜱𝜱 = 𝜱𝜱(𝑁𝑁) ⊗ ⋯ ⊗ 𝜱𝜱(1), 𝜱𝜱(𝑛𝑛) ∈

ℝ𝐼𝐼𝑛𝑛×𝐽𝐽𝑛𝑛 ; ∀ 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁}, and ‖𝜱𝜱‖2 is the 𝐿𝐿2 norm of 𝜱𝜱. Therefore, the gradient 𝛻𝛻𝜱𝜱(𝑛𝑛)‖𝜱𝜱‖2 is

given by,

 𝛻𝛻𝜱𝜱(𝑛𝑛)‖𝜱𝜱‖2 = 2𝛾𝛾𝜱𝜱(𝑛𝑛)𝜱𝜱(𝑛𝑛) (B. 27)

Where

Ishan Wickramasingha

162

𝛾𝛾𝜱𝜱(𝑛𝑛) = � 𝑇𝑇𝑇𝑇 �𝜱𝜱(𝑚𝑚)𝑇𝑇
𝜱𝜱(𝑚𝑚)�

𝑁𝑁

𝑚𝑚=1,𝑚𝑚≠𝑛𝑛

Proof:

Using Proposition 7.1, we could write,

�𝛻𝛻𝜱𝜱(𝑛𝑛)‖𝜱𝜱‖2�
𝑖𝑖,𝑗𝑗

= 𝑇𝑇𝑇𝑇 ��
𝜕𝜕‖𝜱𝜱‖2

𝜕𝜕𝜱𝜱
�

𝑇𝑇 𝜕𝜕𝜱𝜱

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛)� (B. 28)

⟹ �𝛻𝛻𝜱𝜱(𝑛𝑛)‖𝜱𝜱‖2�
𝑖𝑖,𝑗𝑗

= 2𝑇𝑇𝑇𝑇 �𝜱𝜱𝑇𝑇 𝜕𝜕𝜱𝜱

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛)� (B. 29)

However, 𝜱𝜱 = 𝜱𝜱(𝑁𝑁) ⊗ ⋯ ⊗ 𝜱𝜱(1) and,

𝜕𝜕𝜱𝜱

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛) = 𝜱𝜱(𝑁𝑁) ⊗ ⋯ ⊗

𝜕𝜕𝜱𝜱(𝑛𝑛)

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛) ⊗ ⋯ ⊗ 𝜱𝜱(1) (B. 30)

Since Tr(A ⊗ B) = Tr(A)Tr(B)

 �𝛻𝛻𝜱𝜱(𝑛𝑛)‖𝜱𝜱‖2�
𝑖𝑖,𝑗𝑗

= 2 � � 𝑇𝑇𝑇𝑇 �𝜱𝜱(𝑚𝑚)𝑇𝑇
𝜱𝜱(𝑚𝑚)�

𝑁𝑁

𝑚𝑚=1,𝑚𝑚≠𝑛𝑛

� 𝑇𝑇𝑇𝑇 �𝜱𝜱(𝑛𝑛)𝑇𝑇 𝜕𝜕𝜱𝜱(𝑛𝑛)

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛)� (B. 31)

However,

 𝑇𝑇𝑇𝑇 �𝜱𝜱(𝑛𝑛)𝑇𝑇 𝜕𝜕𝜱𝜱(𝑛𝑛)

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛)� = 𝜱𝜱𝑖𝑖,𝑗𝑗

(𝑛𝑛) (B. 32)

Therefore,

𝛻𝛻𝜱𝜱(𝑛𝑛)‖𝜱𝜱‖2 = 2𝛾𝛾𝜱𝜱(𝑛𝑛)𝜱𝜱(𝑛𝑛) (B. 33)

Computationally Efficient Methods for Sparse Tensor Signal Processing

163

Where

𝛾𝛾𝜱𝜱(𝑛𝑛) = � 𝑇𝑇𝑇𝑇 �𝜱𝜱(𝑚𝑚)𝑇𝑇
𝜱𝜱(𝑚𝑚)�

𝑁𝑁

𝑚𝑚=1,𝑚𝑚≠𝑛𝑛

F.3 Proof of Proposition 7.3

Proposition 7.3: Let 𝑓𝑓(𝒳𝒳, 𝒴𝒴, 𝜱𝜱) be a function of tensor 𝒳𝒳 ∈ ℝ𝐽𝐽1×…×𝐽𝐽𝑁𝑁, tensor 𝒴𝒴 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑁𝑁and

a Kronecker matrix 𝜱𝜱 ∈ ℝ𝑃𝑃×𝑄𝑄, where 𝜱𝜱 = 𝜱𝜱(𝑁𝑁) ⊗ ⋯ ⊗ 𝜱𝜱(1) and 𝜱𝜱(𝑛𝑛) ∈ ℝ𝐼𝐼𝑛𝑛×𝐽𝐽𝑛𝑛; ∀ 𝑛𝑛 ∈

{1, ⋯ , 𝑁𝑁}. If

𝜕𝜕𝜕𝜕

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛) = 𝑇𝑇𝑇𝑇 �vec(𝒴𝒴)𝑇𝑇 �

𝜕𝜕𝜱𝜱

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛) vec(𝒳𝒳)�� (B. 34)

Then 𝜕𝜕𝜕𝜕
𝜕𝜕𝜱𝜱(𝑛𝑛) is given by,

𝜕𝜕𝜕𝜕

𝜕𝜕𝜱𝜱(𝑛𝑛) = 𝒴𝒴(𝑛𝑛)�𝒳𝒳(𝑛𝑛)𝜳𝜳𝜱𝜱(𝑛𝑛)
𝑇𝑇 �

𝑇𝑇 (B. 35)

Where, 𝜳𝜳𝜱𝜱(𝑛𝑛) = �𝜱𝜱(𝑁𝑁) ⊗ ⋯ ⊗ 𝜱𝜱(𝑛𝑛+1) ⊗ 𝜱𝜱(𝑛𝑛−1) ⊗ ⋯ ⊗ 𝜱𝜱(1)�, 𝒴𝒴(𝑛𝑛) is the mode-n

matricization of the tensor 𝒴𝒴 and 𝒳𝒳(𝑛𝑛) is the mode-n matricization of the tensor 𝒳𝒳.

Proof:

We could rewrite (B. 34) as an inner product between the tensor 𝒴𝒴 and the multilinear

transformation of the tensor 𝒳𝒳 as,

𝜕𝜕𝜕𝜕

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛) = 〈𝒴𝒴, �𝒳𝒳 ×1 𝜱𝜱(1) ×2 ⋯ ×𝑛𝑛

𝜕𝜕𝜱𝜱(𝑛𝑛)

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛) ⋯ ×𝑁𝑁 𝜱𝜱(𝑁𝑁)�〉 (B. 36)

Where 𝜕𝜕𝜱𝜱

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛) = 𝜱𝜱(𝑁𝑁) ⊗ ⋯ ⊗ 𝜕𝜕𝜱𝜱(𝑛𝑛)

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛) ⊗ ⋯ ⊗ 𝜱𝜱(1)

Therefore,

Ishan Wickramasingha

164

𝜕𝜕𝜕𝜕

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛) = 〈𝒴𝒴(𝑛𝑛),

𝜕𝜕𝜱𝜱(𝑛𝑛)

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛) 𝒳𝒳(𝑛𝑛)𝜳𝜳𝜱𝜱(𝑛𝑛)

𝑇𝑇 〉 (B. 37)

Where 𝒳𝒳(𝑛𝑛) and 𝒴𝒴(𝑛𝑛) are mode-n matricization of respective tensors and,

 𝜳𝜳𝜱𝜱(𝑛𝑛) = �𝜱𝜱(𝑁𝑁) ⊗ ⋯ ⊗ 𝜱𝜱(𝑛𝑛+1) ⊗ 𝜱𝜱(𝑛𝑛−1) ⊗ ⋯ ⊗ 𝜱𝜱(1)� (𝐴𝐴. 38)

The element �𝜕𝜕𝜱𝜱(𝑛𝑛)

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛)�

𝑖𝑖,𝑗𝑗

= 1 and 0 everywhere else in the gradient matrix �𝜕𝜕𝜱𝜱(𝑛𝑛)

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛)�. Therefore,

𝜕𝜕𝜕𝜕

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛) = 〈�𝒴𝒴(𝑛𝑛)�

𝑖𝑖,∗
, �𝒰𝒰(𝑛𝑛)

𝑇𝑇�
∗,𝑗𝑗

〉 (B. 39)

Where �𝒴𝒴(𝑛𝑛)�
𝑖𝑖,∗

denote the 𝑖𝑖th row of the mode-n matrix 𝒴𝒴(𝑛𝑛), 𝒰𝒰(𝑛𝑛) = 𝒳𝒳(𝑛𝑛)𝜳𝜳𝜱𝜱(𝑛𝑛)
𝑇𝑇 , and �𝒰𝒰(𝑛𝑛)

𝑇𝑇�
∗,𝑗𝑗

denotes the 𝑗𝑗th column of the transposed mode-n matrix 𝒰𝒰(𝑛𝑛)
𝑇𝑇.

Therefore,

𝜕𝜕𝜕𝜕
𝜕𝜕𝜱𝜱(𝑛𝑛) = 𝒴𝒴(𝑛𝑛)𝒰𝒰(𝑛𝑛)

𝑇𝑇 = 𝒴𝒴(𝑛𝑛)�𝒳𝒳(𝑛𝑛)𝜳𝜳𝜱𝜱(𝑛𝑛)
𝑇𝑇 �

𝑇𝑇 (B. 40)

	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Algorithms
	1. Introduction
	1.1. Thesis Contributions
	1.1.1. Related publications
	1.1.2. Publications Plan

	1.2. Thesis Outline

	2. Tensors and Sparse Signal Representation
	2.1. Tensors and Multilinear Algebra
	2.1.1. Vectorization of a tensor
	2.1.2. Mode-n Matricization of a tensor
	2.1.3. Tensor Mode-n Product
	2.1.4. Other Important Products
	2.1.4.1. Tensor Outer Product - 𝒜∘ℬ
	2.1.4.2. Kronecker Product - 𝑨⊗𝑩
	2.1.4.3. Khatri-Rao Product - 𝑨⊙𝑩
	2.1.4.4. Hadamard Product - 𝑨⊛𝑩

	2.1.5. Multilinear Transformation of Tensors

	2.2. Sparse Signal Representation
	2.2.1. Sparse Least-Squares Problems
	2.2.2. Obtaining Optimum Sparse Signal Representations

	2.3. Sparse Tensor Signal Representation
	2.3.1. Sparse Multilinear Least-squares Problem
	2.3.2. Thesis Problem Statement

	3. Tensor Least Angle Regression (T-LARS)
	3.1. Introduction
	3.2. Problem Formulation
	3.2.1. Tensors and multilinear transformations
	3.2.2. Sparse Multilinear Least-squares Problem
	3.2.3. Multilinear Compressed Sensing

	3.3. Tensor Least Angle Regression (T-LARS)
	3.3.1. Least Angle Regression (LARS)
	3.3.2. Tensor Least Angle Regression (T-LARS) Algorithm
	3.3.2.1. Obtain the inverse of the Gram matrix of the active columns of the dictionary
	a) Updating the Gram matrix after adding a new column ,𝒌-𝒂. to the active set
	b) Updating the Gram matrix after removing a column ,𝒌-𝒓. from the active set

	3.3.2.2. Obtain direction vector ,𝑑-𝑡.
	3.3.2.3. Obtain ,𝑣-𝑡.
	3.3.2.4. Obtain the correlation vector ,𝑐-𝑡.
	3.3.2.5. Calculate step size ,𝛿-∗.
	3.3.2.6. Update the solution ,,𝑥.-𝑡., regularization parameter, and residual
	3.3.2.7. Check stopping criterion

	3.4. Algorithm Computational Complexity
	3.4.1. The Computational complexity of T-LARS
	3.4.1.1. Case of overcomplete mode-n dictionaries

	3.4.2. Comparison of computational complexities of Kronecker-OMP and T-LARS

	3.5. Experimental Results
	3.5.1. Experimental Datasets
	3.5.2. Experimental Setup
	3.5.3. Experimental Results for 3D MRI Brain Images
	3.5.4. Experimental Results for 3D PET-CT Brain Images
	3.5.5. Experimental Results for Reconstructing 3D PET-CT Brain Images Using Compressed Sensing Samples

	3.6. Conclusions

	4. Weighted Tensor Least Angle Regression (WT-LARS)
	4.1. Introduction
	4.2. Problem Formulation
	4.2.1. Sparse weighted tensor least-squares problem
	4.2.2. Calculating the mutual coherence of a large weighted Kronecker dictionary

	4.3. Weighted Tensor Least Angle Regression (WT-LARS)
	4.3.1. Weighted Tensor Least Angle Regression Algorithm

	4.4. Experimental Results
	4.4.1. Inpainting Experiment

	4.5. Conclusions

	5. Tensor Dynamic Least Angle Regression (TD-LARS)
	5.1. Introduction
	5.2. Background
	5.2.1. Sparse Multilinear Least-squares Problem
	5.2.2. Tensor Least Angle Regression (T-LARS)

	5.3. Tensor Dynamic Least Angle Regression (TD-LARS)
	5.3.1. Problem Formulation
	5.3.2. Tensor Dynamic Least Angle Regression (TD-LARS) Formulation
	5.3.3. Tensor Dynamic Least Angle Regression Algorithm (TD-LARS)

	5.4. Experimental Results
	5.4.1. Obtaining Sparse Representations of Successive RGB Video Frames Using TD-LARS
	5.4.2. Obtaining Sparse Representations of Successive 3D MRI Images Using the TD-LARS

	5.5. Conclusions

	6. Tensor Elastic Net (T-NET)
	6.1. Introduction
	6.2. Tensor Elastic Net
	6.2.1. Problem Formulation
	6.2.2. Tensor Elastic Net Formulation
	6.2.3. Tensor Elastic Net Algorithm

	6.3. Experimental Results
	6.3.1. Experimental Setup
	6.3.2. Experimental Results for 3D OCT Mouse Brain Images
	6.3.3. Experimental Results for RGB video

	6.4. Conclusions

	7. Tensor Task-Driven Dictionary Learning (T-TDDL)
	7.1. Introduction
	7.2. Task Driven Dictionary Learning
	7.3. Tensor Task Driven Dictionary Learning(T-TDDL)
	7.3.1. Proposed Formulation
	7.3.2. Optimization
	7.3.2.1. Gradient of 𝑔,𝑫,𝑾. w.r.t. ,𝑾-,𝑛..
	7.3.2.2. Gradient of 𝑔,𝑫,𝑾. w.r.t. ,𝑫-,𝑛..

	7.3.3. Tensor Task-Driven Dictionary Learning Algorithm

	7.4. Applications
	7.4.1. Regression
	7.4.2. Binary Classification
	7.4.3. Multiclass Classification

	7.5. Compressed Sensing Extension
	7.6. Experimental Results
	7.6.1. Regression Experiment
	7.6.2. Binary Classification Experiment
	7.6.3. Multiclass Classification Experiment

	7.7. Conclusions

	8. Conclusions And Future Directions
	8.1. Conclusions
	8.2. Future Directions

	References
	Appendix A
	A.1 Mapping of Tensor Indices to Corresponding Vector Indices of vec(𝒳)∈,ℝ-,𝐼-𝑁.,𝐼-𝑁−1.…,𝐼-1..

	Appendix B
	B.1 Mapping of column indices of dictionary Φ to column indices of mode-n dictionaries
	B.2 Normalization of the tensor 𝒴∈,ℝ-,𝐽-1.×…×,𝐽-𝑛.×…×,𝐽-𝑁..
	B.3 Normalization of columns of the separable dictionary 𝜱 to have a unit ,𝐿-2. norm
	B.4 Obtaining the initial correlation tensor ,𝒞-1.
	B.5 Creating a Gram matrix for each mode-n dictionary ,𝜱-,𝑛..

	Appendix C
	C.1 Obtain the inverse of the Gram matrix of the active columns of the dictionary in WT-LARS

	Appendix D
	D.1 Obtain the inverse of the Gram matrix of the active columns of the dictionary in TD-LARS

	Appendix E
	E.1 Obtain The Inverse Of The Gram Matrix Of The Active Columns Of The Dictionary in T-NET

	Appendix F
	F.1 Proof of Proposition 7.1
	F.2 Proof of Proposition 7.2
	F.3 Proof of Proposition 7.3

