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Abstract 

Many modern applications solve multidimensional problems using linear algebra by vectorizing 

multidimensional signals (Tensor). However, the size of the vectorized signal increases in 

polynomial order with the number of dimensions of the signal (Order of the Tensor). Therefore 

solving large multidimensional problems using vectorized signals is computationally infeasible.  

This research aimed to develop novel methods that could efficiently solve large multidimensional 

problems using significantly less computational resources. We studied Sparsity, Tensors, and 

Multilinear Algebra during this research, and we developed several tensor-based algorithms using 

multilinear algebra to process large multidimensional signals efficiently. 

Sparse signal representations result in simpler and faster processing and lower memory storage 

requirements. However, obtaining a sparse signal representation of a large multidimensional signal 

by solving a sparse linear least-squares problem is computationally infeasible. Therefore, in this 

thesis, we develop the Tensor Least Angle Regression (T-LARS) algorithm, a generalization of 

Least Angle Regression (LARS) that could efficiently solve large L0  or large L1 constrained sparse 

multilinear least-squares problems (underdetermined or overdetermined) for all critical values of 

the regularization parameter λ. 

Sparse weighted multilinear least-squares is a generalization of the sparse multilinear least-squares 

problem, where prior information about, e.g., parameters and data is incorporated by multiplying both 

sides of the original problem by a typically diagonal weights matrix. If the diagonal weight matrix does 

not have a Kronecker structure similar to the dictionary matrix, we could not use T-LARS to solve this 

problem efficiently. Therefore, we introduced the Weighted Tensor Least Angle Regression (WT-

LARS) algorithm to efficiently solve the sparse weighted multilinear least-squares problem for a 

non-separable weight matrix. 

The T-LARS could not be initialized with a solution outside of the Pareto curve because it will 

violate the optimality conditions of T-LARS. Therefore, we developed the Tensor Dynamic Least 

Angle Regression (TD-LARS) algorithm, a multilinear generalization of the one-dimensional L1-

Homotopy algorithm to efficiently solve multilinear L1 minimization problems using nonzero 

initial solutions of close problems located on or off of the Pareto curve. 
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We also introduced the Multilinear Elastic Net problem by generalizing the one-dimensional 

Elastic Net problem, which solves a strictly convex 𝐿𝐿1 and 𝐿𝐿2 constrained multilinear least-squares 

problem, and it has the best properties of both 𝐿𝐿1 and 𝐿𝐿2 minimization problems. The dictionary 

of the Multilinear Elastic Net problem has a partitioned Kronecker structure, which could not be 

efficiently solved with T-LARS. Therefore, we introduced the Tensor Elastic Net (T-NET) 

algorithm to efficiently solve the Multilinear Elastic Net problem by utilizing the partitioned 

Kronecker structure of the dictionary matrix.  

Learned dictionaries could be used in classification or regression tasks. However, regression and 

classification performance could be improved significantly by supervised learning of task-specific 

dictionaries. Therefore, we extended the one-dimensional task-driven dictionary learning (TDDL) 

to develop the tensor task-driven dictionary learning (T-TDDL) that could work as an efficient 

online data-driven or task-driven dictionary learning algorithm for supervised and semi-supervised 

learning of mode-n dictionaries and mode-n model parameters. We also presented a compressed 

sensing extension to the T-TDDL formulation to efficiently solve large tensor task-driven 

dictionary learning problems. 

Experimental results show the validity and performance of T-LARS, WT-LARS, TD-LARS, and 

T-NET in obtaining sparse multilinear representations of multidimensional signals and the 

performance of T-TDDL in multidimensional regression and classification tasks.  
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1 
 

Chapter 1 

1. Introduction 

Many modern applications process multidimensional signals, where each dimension (mode) of the 

signal has a physical meaning such as space, time, or frequency. The 3D/4D images generated by 

Magnetic resonance imaging (MRI), Positron emission tomography (PET), or optical coherence 

tomography (OCT)  are such example applications in Biomedical Imaging. Typically, 

multidimensional signals in such applications are generated by sampling multivariate functions 

and stored as multidimensional arrays (Tensors).  

Processing and storing multidimensional signals quickly become computationally expensive as the 

number of dimensions (modes) increases. For example, a 3D signal, 𝒳𝒳 ∈ ℝ100×100×100, has one 

million (106) samples and a 4D signal, 𝒴𝒴 ∈ ℝ100×100×100×100 has hundred million (108) samples.  

The motivation behind this research came from exploring the possibility of solving full-wave 

simulation of light propagation inside a 5mm×5mm×5mm tissue sample when a light source with 

1𝜇𝜇𝜇𝜇 central wavelength is used, which requires solving the scalar scattering equation for a volume 

of 5000𝜆𝜆 × 5000𝜆𝜆 × 5000𝜆𝜆. We could use the Method of Moments (MoM) [1]–[3] to solve the 

scalar scattering equation by converting it to a linear system of the form 𝑨𝑨𝑨𝑨 = 𝒃𝒃, where the matrix 

𝑨𝑨 has 1.25 × 1011 rows and columns, or 1.5625 × 1022 elements. Therefore, to store the 

uncompressed matrix 𝑨𝑨 in double precision, 125 zettabytes of memory is required, which is more 

than the total data storage capacity available in the world as of 2021 [4].  

This research aimed to develop novel methodologies that could efficiently solve large 

multidimensional problems using much lower computational resources. To achieve this aim, we 

researched several topics such as Sparsity, Tensors, and Multilinear Algebra [5]–[7]. 

Sparse signal representation has gained much interest due to its ability to represent large signals 

using a few nonzero samples. A sparse signal representation usually results in simpler and faster 
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processing and lower memory storage requirements for fewer coefficients [8], [9]. Obtaining 

sparse signal representations typically involves solving L0 or L1 constrained least-squares problems 

[10], [11]. Many methods have been proposed to solve the sparse least-squares problem, including 

Matching Pursuit (MP) [12], Orthogonal Matching Pursuit (OMP) [13], Lasso also known as 

Basis Pursuit (BP) [14], [15], and Least Angle Regression (LARS) [15].  

Most of the multidimensional problems are currently solved using such methods based on linear 

algebra by vectorizing multidimensional signals. However, none of the above methods are suitable 

for obtaining sparse signal representations of large multidimensional signals because they require 

extensive computational power and memory. 

We explored the possibility of using tensors and multilinear algebra to obtain sparse signal 

representations of multidimensional signals efficiently. Even though the term tensor has a specific 

mathematical definition in physics, it has been widely accepted in many disciplines, e.g., 

mathematics, signal processing, and statistics, to mean a multidimensional array. Tensor of order 

one is a vector; tensor of order two is a matrix; tensors of order three or higher are called higher-

order tensors. 

A multilinear representation of a tensor 𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁 could be obtained by multiplying each 

mode of the tensor by a mode-n matrix 𝜱𝜱(𝑛𝑛)  ∈ ℝ𝐽𝐽n×𝐼𝐼𝑛𝑛;  𝑛𝑛 ∈ {1,2, … , 𝑁𝑁} [5]–[7]. The multilinear 

representation has an equivalent vectorized form, in which the vectorized tensor vec(𝒳𝒳) is 

multiplied by a separable Kronecker matrix 𝜱𝜱 = (𝜱𝜱(𝑁𝑁) ⊗ 𝜱𝜱(𝑁𝑁−1) ⊗ ⋯ ⊗ 𝜱𝜱(2) ⊗ 𝜱𝜱(1)) to 

obtain the vectorized representation of the tensor. A sparse multilinear representation of a tensor 

could be obtained by solving a sparse multilinear least-squares problem. See section 2.1 and 

section 3.2 for more details. 

An earlier generalization of OMP, known as Kronecker-OMP [16], was developed to solve the L0 

constrained multilinear least-squares problem for large multidimensional signals. However, its 

memory usage and computation time increase fast with the number of problem dimensions 

and iterations.  

Elrewainy and Sherif earlier developed the Kronecker Least Angle Regression (K-LARS) 

algorithm to solve either large L0 or large L1 constrained sparse least-squares problems 

(overdetermined) efficiently, with a particular Kronecker form 𝑨𝑨 ⊗ 𝑰𝑰, for all critical values of the 
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regularization parameter λ [17]. They used K-LARS to sparsely fit one-dimensional multi-channel 

hyperspectral imaging data to a Kronecker model 𝑨𝑨 ⊗ 𝑰𝑰. 

By using tensors and multilinear algebra, we develop the Tensor Least Angle Regression (T-

LARS) algorithm [18] in chapter 3, a generalization of K-LARS that could efficiently solve either 

large L0  or large L1 constrained sparse multilinear least-squares problems (underdetermined or 

overdetermined) for all critical values of the regularization parameter λ, and which has lower 

computational complexity and lower memory usage than Kronecker-OMP.  

Computing a sparse signal representation of a large dense signal requires many dense 

measurements and considerable computational resources. Compressed sensing solves this problem 

by projecting the dense signal to a sparse domain using a sensing matrix 𝒁𝒁, where a small number 

of nonzero measurements are obtained in the sparse domain [19], [20]. Kronecker compressed 

sensing [16], [21] generalizes the compressed sensing [19], [20] formulation to multidimensional 

signals, where a sparse representation is obtained using  Kronecker dictionaries. Kronecker 

compressed sensing problems, where the sensing matrix and the dictionary are separable [16], 

[21], could be efficiently solved using our T-LARS algorithm. 

Sparse weighted multilinear least-squares is a generalization of the sparse multilinear least-squares 

problem, where prior information about, e.g., parameters and data is incorporated by multiplying 

both sides of the original problem by a typically diagonal weights matrix [22]. We could use T-

LARS to solve this problem efficiently if the diagonal weight matrix has a Kronecker structure 

similar to the dictionary matrix. Typically, these arbitrary diagonal weights matrices are non-

Kronecker, leading to a linear least-squares problem that could be very large to store or solve 

practically. Therefore, we generalized T-LARS to develop the Weighted Tensor Least Angle 

Regression (WT-LARS) algorithm to efficiently solve either L0  or L1 constrained weighted sparse 

multilinear least-squares problems for a non-separable diagonal weights matrix. 

Efficiently solving either large L0  or large L1 constrained sparse multilinear least-squares problems 

is essential to obtain sparse multilinear representations of large multidimensional signals. We 

could initialize T-LARS with an  L1 solution located on the Pareto curve [23] and obtain an L1 

solution with a lower residual error, where the Pareto curve contains every solution to a 

linear/multilinear least-squares problem.  However, we could not initialize T-LARS with any 
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solution outside of the Pareto curve because it will violate the optimality conditions of T-LARS. 

Asif & Romberg [24] introduced the L1-Homotopy method to dynamically update the solutions of 

the one-dimensional L1 minimization problems, using the previous solution as the initial solution 

for a streaming set of measurements. Therefore, we extend T-LARS and the one-dimensional L1-

Homotopy method to develop the Tensor Dynamic Least Angle Regression (TD-LARS) algorithm, 

which could be used to obtain the solutions to L1 constrained multilinear least-squares problems 

efficiently by initializing with non-zero solutions of close L1 minimization problems located on or 

off of the Pareto curve. 

A sparse signal representation could be obtained by solving an 𝐿𝐿0 constrained sparse least-squares 

problem, which is a nonconvex problem [12], [13].  Lasso, also known as Basis Pursuit (BP) [14], 

[25], solves a relaxed 𝐿𝐿1 constrained least-squares problem, which is a convex problem, to obtains 

a sparse signal representation. Ridge Regression solves a strictly convex 𝐿𝐿2 constrained least-

squares problem, nevertheless it could not be used to obtain a sparse signal representation [26]. 

Zou and Hastie developed the Elastic Net to improve the performance of 𝐿𝐿1 constrained least-

squares problem by adding an additional 𝐿𝐿2 constraint [27], [28]. Elastic Net solves a strictly 

convex problem, to obtain a sparse solution when both regularization coefficients of 𝐿𝐿1 and 𝐿𝐿2 are 

nonzero. Elastic Net selects all the coefficients from a group of highly correlated coefficients, and 

it could also obtain more than 𝑛𝑛 nonzero coefficients for a 𝑛𝑛 dimensional signal. The one-

dimensional Elastic Net problem could be easily solved using the LARS algorithm.   

A sparse signal representation of a multidimensional signal with better statistical properties could 

be obtained by solving a multilinear Elastic Net problem with both L1 and L2 constraints. However, 

the dictionary in the multilinear Elastic Net problem has a partitioned Kronecker structure, which 

could not be efficiently solved using T-LARS. Therefore, we develop the Tensor Elastic Net (T-

NET) algorithm to solve the multilinear Elastic Net problem efficiently. 

We could use fixed or learned separable dictionaries in obtaining a sparse multilinear 

representation of multidimensional signals using our T-LARS, WT-LARS, TD-LARS, T-NET, 

algorithms, or Kronecker-OMP. However, the dictionaries learned from the data are much more 

efficient in obtaining sparse representations than fixed dictionaries [29].  
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Roemer et al. [30] introduced Tensor Method of Optimal Directions (T-MOD) and Kronecker 

Higher-Order SVD (K-HOSVD) algorithms to learn data-driven separable dictionaries to solve 

multilinear problems by generalizing one-dimensional data-driven dictionary learning algorithms, 

Method of Optimal Direction(MOD) [31], and K-SVD [32], respectively.  

Learned dictionaries could be used in classification or regression tasks [33]–[35]. However, 

regression and classification performance could be improved significantly by supervised learning 

of task-specific dictionaries [36], [37]. Mairal et al. introduced a generalized Task-Driven 

Dictionary Learning(TDDL) framework for supervised learning of dictionaries and model 

parameters to solve one-dimensional problems [38]. 

Many multidimensional classification and regression problems have been solved using the TDDL 

formulation after vectorizing multidimensional data [39]–[41]. However, using T-DDL 

formulation for large multidimensional tasks is computationally infeasible. Compared to 

vectorized tensors, sparse multi-linear representation of tensors requires significantly lower 

memory and computational resources.  

Therefore, we extend the T-DDL framework using multi-linear algebra to develop the Tensor 

Task-Driven Dictionary Learning (T-TDDL), an efficient multi-linear task-driven dictionary 

learning framework to learn task-specific mode-n dictionaries and mode-n model parameters 

jointly for classification or regression tasks. We used our T-NET algorithm developed in this thesis 

to obtain the sparse multi-linear representations of tensors in the sparse coding step of T-TDDL. 

We have also developed a compressed sensing extension for T-TDDL. 

1.1. Thesis Contributions 

1. Development of the Tensor Least Angle Regression (T-LARS) - A computationally efficient 

algorithm to solve both 𝐿𝐿0 and 𝐿𝐿1 sparse multilinear least-squares problems. 

a. Formulation of the sparse multilinear least-squares problem. 

b. Developed the Tensor Least Angle Regression (T-LARS) algorithm by extending Least 

angle Regression(LARS) [15] to solve both 𝐿𝐿0 and 𝐿𝐿1 constrained multilinear least-

squares problems and implemented it in Matlab. The Matlab implementation of T-

LARS is published on Github. 
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c. We presented experimental results to compare the performance of Kronecker-OMP and 

T-LARS in obtaining the sparse representation of 3D signals when solving both 𝐿𝐿0 and 

𝐿𝐿1 sparse multilinear least-squares problems. 

2. Development of the Weighted Tensor Least Angle Regression (WT-LARS) - A 

computationally efficient algorithm to obtain a sparse signal representation of 

multidimensional signals using weighted samples. 

a. Formulation of the sparse weighted tensor least-squares problem. 

b. Developed the Weighted Tensor Least Angle Regression (WT-LARS) algorithm by 

extending T-LARS and implemented it in Matlab. 

c. We successfully solved the inpainting problem using WT-LARS to remove foreground 

objects from color images and presented them in WT-LARS experimental results. 

3. Development of the Tensor Dynamic Least Angle Regression (TD-LARS) - A 

computationally efficient algorithm to solve the tensor 𝐿𝐿1 minimization problem by using 𝐿𝐿1 

solution of a close problem as the initial solution.   

a. Formulation of the Tensor Dynamic Least Angle Regression (TD-LARS) formulation 

by extending the vector-based 𝐿𝐿1-Homotopy formulation [24], [42] . 

b. Developed the Tensor Dynamic Least Angle Regression (TD-LARS) algorithm by 

extending T-LARS and 𝐿𝐿1-Homotopy algorithm and implemented it in Matlab. 

c. We presented experimental results to compare the performance of T-LARS and TD-

LARS in obtaining the sparse representation of 3D signals when the 𝐿𝐿1 solution of a 

close problem is available. 

4. Development of the Tensor Elastic Net (T-NET) - A computationally efficient algorithm to 

solve the multilinear Elastic Net problem. 

a. Formulated the multilinear Elastic Net problem by extending one-dimensional Elastic 

Net [28]. 

b. Developed the Tensor Elastic Net (T-NET) algorithm by extending T-LARS and 

implemented it in Matlab. 

c. We presented experimental results to compare T-LARS and the performance of T-NET 

in obtaining the sparse representation of 3D signals using overcomplete DCT 

dictionaries with different mutual coherences. 
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5. Development of the Tensor Task-Driven Dictionary Learning (T-TDDL) - A 

computationally efficient task-driven dictionary learning algorithm to learn mode-n 

dictionaries and mode-n model parameters to predict a tensor 𝒴𝒴 from a tensor 𝒳𝒳.  

a. Developed the Tensor Task-Driven Dictionary Learning (T-TDDL) formulation by 

extending the one-dimensional Task-Driven Dictionary Learning formulation[38]. 

b. Developed the Tensor Task-Driven Dictionary Learning (T-TDDL) algorithm and 

implemented it in Matlab. 

c. Multilinear generalization of the projected stochastic gradient descent algorithm to 

optimize Kronecker matrices efficiently while keeping the Kronecker structure intact. 

d. Developed the compressed sensing extension to the T-TDDL algorithm. 

e. Presented calculations for T-TDDL regression, binary classification, and multiclass 

classification applications. 

f. We presented experimental results for solving the tensor regression and tensor binary 

classification problems by learning mode-n dictionaries, mode-n model parameters, and 

mode-n sensing matrices using T-TDDL. 

1.1.1. Related publications 

1. I. Wickramasingha, M. Sobhy, A. Elrewainy, and S. S. Sherif, “Tensor least angle 

regression for sparse representations of multidimensional signals,” Neural Comput., vol. 

32, no. 9, pp. 1697–1732, Sep. 2020,https://doi.org/10.1162/neco_a_01304. 

 

2. I. Wickramasingha, M. Sobhy, and S. S. Sherif, “Sparsity in Bayesian Signal Estimation,” 

in Bayesian Inference, vol. 37, no. 2, J. P. Tejedor, Ed. InTech, 2017, 

https://doi.org/10.5772/intechopen.70529. 

 
3. I. Wickramasingha and S. S. Sherif, “Multilinear Compressed Sensing using Tensor Least 

Angle Regression (T-LARS),” Accepted to the International Conference on Digital Signal 

Processing, Chengdu, China, Feb. 2022. 

 
4. I. Wickramasingha, and S. S. Sherif, (2021). “Weighted Tensor Least Angle Regression 

for solving weighted sparse multilinear least-squares problems” (submitted to IEEE Signal 

Processing Letters, 2021). 

https://doi.org/10.1162/neco_a_01304
https://doi.org/10.5772/intechopen.70529
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5. I. Wickramasingha, and S. S. Sherif, “Tensor Elastic Net for Sparse Multilinear 

Regression With Elastic Net Constraint,” (submitted to Journal of Statistical Software, 

2021). 

 

1.1.2. Publications Plan 

1. I. Wickramasingha, and S. S. Sherif, “Tensor Dynamic Least Angle Regression for 

Efficiently Solving Tensor 𝐿𝐿1 Minimization Problems with Non-zero Initial Solutions,” 

(in preparation for submission to IEEE Transactions on Circuits and Systems for Video 

Technology). 

 

2. I. Wickramasingha, and S. S. Sherif, “Tensor Task-Driven Dictionary Learning,” 

(in preparation for submission to Pattern Recognition). 

 
3. B. Mezgebo, I. Wickramasingha, B. Kordi, and S. S. Sherif, “Gradient-Based 

Multidimensional Signal Recovery from Incomplete Samples in Arbitrary Separable 

Dictionaries,” (in preparation for submission to IEEE Transactions on Image Processing). 

1.2. Thesis Outline 

This thesis is structured as follows. 

Chapter 2 discusses background theory on Tensors, Multilinear Algebra, the one-dimensional 

Sparse Signal Representation problem, and the Sparse tensor signal representation problem.  

Chapter 3 presents our Tensor Least Angle Regression (T-LARS) algorithm, a computationally 

efficient algorithm to solve both 𝐿𝐿0 and 𝐿𝐿1 sparse multilinear least-squares problems. 

Chapter 4 presents our Weighted Tensor Least Angle Regression (WT-LARS) algorithm, which 

could be used to obtain a sparse signal representation of multidimensional signals using weighted 

samples. 
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Chapter 5 presents our Tensor Dynamic Least Angle Regression (TD-LARS) algorithm, which 

could be used to obtain the 𝐿𝐿1 solution of a multilinear sparse least-squares problem efficiently by 

using the 𝐿𝐿1 solution of a close problem. 

Chapter 6 presents our Tensor Elastic Net (T-NET) algorithm, a computationally efficient 

algorithm to solve the multilinear elastic net problem. 

Chapter 7 presents our Tensor Task-Driven Dictionary Learning (T-TDDL), a computationally 

efficient task-driven dictionary learning framework to learn mode-n dictionaries and mode-n model 

parameters to predict a tensor 𝒴𝒴 from a tensor 𝒳𝒳. 

Finally, Chapter 8 provides the conclusions and future directions. 
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Chapter 2 

2. Tensors and Sparse Signal Representation 

2.1. Tensors and Multilinear Algebra 

The term tensor has a specific mathematical definition in physics, but it has been widely accepted 

in many disciplines, e.g., signal processing and statistics, to mean a multidimensional array (Multi-

way Arrays, ND Array). A vector is a first-order tensor; a matrix is a second-order tensor; an N-

dimensional array is an 𝑁𝑁𝑡𝑡ℎ order tensor, whose N  dimensions are also known as modes [6], [43]. 

The 𝑁𝑁𝑡𝑡ℎ order tensor 𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼N has 𝑁𝑁 modes, with dimensions, 𝐼𝐼1,  𝐼𝐼2, … ,  𝐼𝐼𝑁𝑁, where 

vectors along a specific mode, n, are called mode-n fibers. For example, for the 3rd order tensor 

shown in Figure 2.1, vectors along mode-1 are called mode-1 fibers, and vectors along mode-2 and 

mode-3 are called mode-2 and mode-3 fibers, respectively. 

Vectorization and mode-n Matricization of Tensors [5]–[7] are two important tensor reshaping 

operations. As the names imply, vectorization generates a vector, and matricization generates a 

matrix. 

Mode-2 

M
od

e-
1 

Mode-1 Fibers Mode-2 Fibers Mode-3 Fibers 

Figure 2.1. A 3rd-order tensor and mode-n fibers 
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2.1.1. Vectorization of a tensor 

Tensors are vectorized by stacking mode-1 fibers in reverse lexicographical order, where this 

vectorization is denoted by vec(𝒳𝒳). 

𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁 ⟶ vec(𝒳𝒳) ∈ ℝ𝐼𝐼N𝐼𝐼𝑁𝑁−1…𝐼𝐼1 

In vec(𝒳𝒳), 𝐼𝐼1 varies the fastest and 𝐼𝐼N varies the slowest. The vector index 𝑙𝑙 corresponding to the 

tensor element 𝑥𝑥𝑖𝑖1…𝑖𝑖𝑛𝑛…𝑖𝑖𝑁𝑁 ∈  𝒳𝒳  is given by, 

𝑙𝑙 = 𝑖𝑖1 + ��𝑖𝑖𝑝𝑝 − 1�𝐼𝐼1𝐼𝐼2 … . 𝐼𝐼𝑝𝑝−1

N

𝑝𝑝=2

(2. 1) 

Proposition 2.1 shows how to obtain tensor indices {𝑖𝑖1 … 𝑖𝑖𝑁𝑁}, corresponds to the vector index 𝑙𝑙.  

Proposition 2.1: Let 𝑙𝑙 be the vector index of an element 𝑣𝑣𝑙𝑙 in 𝑣𝑣𝑣𝑣𝑣𝑣(𝒳𝒳) ∈ ℝ𝐼𝐼𝑁𝑁𝐼𝐼𝑁𝑁−1…𝐼𝐼1 and 𝐼𝐼𝑛𝑛 be the 

dimension of the mode-n of the tensor 𝒳𝒳 where, 𝑛𝑛 ∈ {1,2, … , 𝑁𝑁}. The tensor indices 𝑖𝑖𝑛𝑛; 𝑛𝑛 ∈

{1,2, … , 𝑁𝑁}, corresponding to the vector element 𝑣𝑣𝑙𝑙 ,  could be obtained by, 

𝑖𝑖𝑛𝑛 = �
𝑙𝑙

𝐼𝐼1 × … × 𝐼𝐼𝑛𝑛−1
− � �𝑖𝑖𝑝𝑝 − 1�  � 𝐼𝐼𝑞𝑞

𝑝𝑝−1

𝑞𝑞=𝑛𝑛;𝑞𝑞>0

𝑁𝑁

𝑝𝑝=𝑛𝑛+1;𝑝𝑝≤𝑁𝑁 

 � (2. 2) 

where ⌈∗⌉ indicate the ceiling function. For example, 

𝑖𝑖1 = ⌈𝑙𝑙 − (𝑖𝑖𝑁𝑁 − 1)𝐼𝐼𝑁𝑁−1 × … .× 𝐼𝐼1 − ⋯ − (𝑖𝑖2 − 1)𝐼𝐼1⌉ 

⋮ 

𝑖𝑖𝑁𝑁−1 =  �
𝑙𝑙

𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−2
− (𝑖𝑖𝑁𝑁 − 1)𝐼𝐼𝑁𝑁−1� 

𝑖𝑖𝑁𝑁 = �
𝑙𝑙

𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−1
� 

The proof is in Appendix A.1. 
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2.1.2. Mode-n Matricization of a tensor 

A tensor 𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁 has 𝑁𝑁 different modes (1,2, … , 𝑁𝑁). Consider splitting these modes 

into two different disjoint sets: {1, … , 𝑁𝑁} = 𝑃𝑃 ∪ 𝑄𝑄  with 𝑃𝑃 = {𝑝𝑝1, … ,  𝑝𝑝𝑘𝑘} and 𝑄𝑄 = {𝑞𝑞1, … , 𝑞𝑞𝑁𝑁−𝑘𝑘}. 

Tensor 𝒳𝒳 could be matricized by merging the group 𝑃𝑃 into row indices and the group 𝑄𝑄 into 

column indices [44]. The mode-n tensor matricization is a special case of tensor matricization, 

where the mode-n indices 𝑖𝑖𝑛𝑛 are the row indices, and all other tensor modes are merged to get 

column indices. Therefore, in tensor mode-n matricization, mode-n fibers become the columns of 

the resulting matrix. We note that ordering of these columns is not consistent across the literature 

[5], [45]. Therefore, we use the reverse lexicographical order (𝐼𝐼𝑁𝑁 … 𝐼𝐼𝑛𝑛+1𝐼𝐼𝑛𝑛−1 … 𝐼𝐼1), for the column 

ordering of the tensor mode-n matricization in this thesis. In the reverse lexicographical order, 𝐼𝐼1 

varies the fastest and 𝐼𝐼𝑁𝑁 varies the slowest. Let 𝑿𝑿(𝑛𝑛) denote mode-n matricization of a tensor 𝒳𝒳. 

𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁  ⟶ 𝑿𝑿(𝑛𝑛) ∈ ℝ𝐼𝐼𝑛𝑛×(𝐼𝐼𝑁𝑁…𝐼𝐼𝑛𝑛+1𝐼𝐼𝑛𝑛−1…𝐼𝐼1) 

Let 𝑥𝑥(𝑛𝑛)
𝑖𝑖𝑛𝑛𝑗𝑗 ∈  𝑿𝑿(𝑛𝑛) be the tensor element 𝑥𝑥𝑖𝑖1…𝑖𝑖𝑛𝑛…𝑖𝑖𝑁𝑁 ∈  𝒳𝒳, in the mode-n matrix. Therefore, the 

column index 𝑗𝑗 is given by [5], [6], [45], 

𝑗𝑗 = 1 + � �𝑖𝑖𝑝𝑝 − 1�𝐼𝐼1 … 𝐼𝐼𝑛𝑛−1𝐼𝐼𝑛𝑛+1 … 𝐼𝐼𝑝𝑝−1 
N

𝑝𝑝=1;𝑝𝑝 ≠ 𝑛𝑛

(2. 3) 

2.1.3. Tensor Mode-n Product 

Another important operation that could be performed on a tensor is its mode-n product, i.e., its 

multiplication by a matrix along one of its modes. Let the tensor 𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁 and a matrix 

𝜱𝜱(𝑛𝑛)  ∈ ℝ𝐽𝐽n×𝐼𝐼𝑛𝑛, then their mode-n product, 𝒴𝒴𝑛𝑛 ∈ ℝ𝐼𝐼1×…×𝐽𝐽n×…×𝐼𝐼𝑁𝑁 , is denoted as 

𝒴𝒴𝑛𝑛  =  𝒳𝒳 ×𝑛𝑛 𝜱𝜱(𝑛𝑛) (2. 4) 

In the mode-n product, all mode-n fibers of the tensor are multiplied by the matrix 𝜱𝜱(𝑛𝑛). Therefore 

(2.4) could be written as 

𝒀𝒀(𝑛𝑛)  =  𝜱𝜱(𝑛𝑛)𝑿𝑿(𝑛𝑛) (2. 5) 
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where 𝒀𝒀(𝑛𝑛) is the mode-n matricization of the tensor 𝒴𝒴𝑛𝑛 and 𝑿𝑿(𝑛𝑛) is the mode-n matricization of 

the tensor 𝒳𝒳. A mode-n product could be thought of as a linear transformation of the mode-n fibers 

of a tensor. 

2.1.4. Other Important Products 

This section presents some important products used throughout the thesis; Tensor outer product, 

Kronecker Product, Khatri-Rao product, and Hadamard Product [5]–[7].  

2.1.4.1. Tensor Outer Product - 𝒜𝒜 ∘ ℬ 

Let 𝒜𝒜 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑀𝑀 be a mode 𝑀𝑀 tensor and  ℬ ∈ ℝ𝐽𝐽1×…×𝐽𝐽𝑁𝑁 be a mode 𝑁𝑁 tensor. Therefore the 

tensor outer product 𝒞𝒞 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑀𝑀×𝐽𝐽1×…×𝐽𝐽𝑁𝑁 is a mode (𝑀𝑀 + 𝑁𝑁) tensor. 

𝒜𝒜 ∘ ℬ = 𝒞𝒞 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑀𝑀×𝐽𝐽1×…×𝐽𝐽𝑁𝑁 

with 

𝑐𝑐𝑖𝑖1…𝑖𝑖𝑀𝑀𝑗𝑗1…𝑗𝑗𝑁𝑁 = 𝑎𝑎𝑖𝑖1…𝑖𝑖𝑀𝑀𝑏𝑏𝑗𝑗1…𝑗𝑗𝑁𝑁 

Where 𝑎𝑎𝑖𝑖1…𝑖𝑖𝑀𝑀 ∈ 𝒜𝒜, 𝑏𝑏𝑗𝑗1…𝑗𝑗𝑁𝑁 ∈ ℬ and 𝑐𝑐𝑖𝑖1…𝑖𝑖𝑀𝑀𝑗𝑗1…𝑗𝑗𝑁𝑁 ∈ 𝒞𝒞. 

2.1.4.2. Kronecker Product - 𝑨𝑨 ⊗ 𝑩𝑩 

Let 𝑨𝑨 and 𝑩𝑩 be matrices. Therefore the Kronecker product denoted by 𝑨𝑨 ⊗ 𝑩𝑩 is given by 

𝑨𝑨𝑛𝑛1×𝑚𝑚1 ⊗ 𝑩𝑩𝑛𝑛2×𝑚𝑚2 =  

⎣
⎢
⎢
⎡ 𝑎𝑎11𝑩𝑩 𝑎𝑎12𝑩𝑩

𝑎𝑎21𝑩𝑩 𝑎𝑎22𝑩𝑩
… 𝑎𝑎1𝑚𝑚1𝑩𝑩
… 𝑎𝑎2𝑚𝑚1𝑩𝑩

⋮ ⋮
𝑎𝑎𝑛𝑛11𝑩𝑩 𝑎𝑎𝑛𝑛12𝑩𝑩

⋱ ⋮
… 𝑎𝑎𝑛𝑛1𝑚𝑚1𝑩𝑩⎦

⎥
⎥
⎤

 𝑛𝑛1𝑛𝑛2×𝑚𝑚1𝑚𝑚2

 

where 𝑎𝑎𝑖𝑖𝑖𝑖 are elements of the matrix 𝑨𝑨. 

2.1.4.3. Khatri-Rao Product - 𝑨𝑨 ⊙ 𝑩𝑩 

Let 𝑨𝑨 and 𝑩𝑩 be matrices with the same number of columns. Therefore the Khatri-Rao product 

denoted by 𝑨𝑨 ⊙ 𝑩𝑩 is defined as, 

𝑨𝑨𝑛𝑛1×𝑚𝑚 ⊙ 𝑩𝑩𝑛𝑛2×𝑚𝑚 =  [𝒂𝒂1 ⊗ 𝒃𝒃1    𝒂𝒂2 ⊗ 𝒃𝒃2  …    𝒂𝒂𝑚𝑚 ⊗ 𝒃𝒃𝑚𝑚]𝑛𝑛1𝑛𝑛2×𝑚𝑚 

where 𝒂𝒂1, … , 𝒂𝒂𝑚𝑚 are the column vectors of 𝑨𝑨 and 𝒃𝒃1, … , 𝒃𝒃𝑚𝑚 are the column vectors of 𝑩𝑩. 
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2.1.4.4. Hadamard Product - 𝑨𝑨 ⊛ 𝑩𝑩 

Let 𝑨𝑨 and 𝑩𝑩 be matrices with the same number of rows and columns. Therefore the Hadamard 

product denoted by 𝑨𝑨 ⊛ 𝑩𝑩 is defined as, 

𝑨𝑨𝑛𝑛×𝑚𝑚 ⊛ 𝑩𝑩𝑛𝑛×𝑚𝑚 =  �

𝑎𝑎11𝑏𝑏11 𝑎𝑎12𝑏𝑏12
𝑎𝑎21𝑏𝑏21 𝑎𝑎22𝑏𝑏22

… 𝑎𝑎1𝑚𝑚𝑏𝑏1𝑚𝑚
… 𝑎𝑎2𝑚𝑚𝑏𝑏2𝑚𝑚

⋮ ⋮
𝑎𝑎𝑛𝑛1𝑏𝑏𝑛𝑛1 𝑎𝑎𝑛𝑛2𝑏𝑏𝑛𝑛2

⋱ ⋮
… 𝑎𝑎𝑛𝑛𝑚𝑚𝑏𝑏𝑛𝑛𝑛𝑛

�

 𝑛𝑛×𝑚𝑚

 

where 𝑎𝑎𝑖𝑖𝑖𝑖 are elements of the matrix 𝑨𝑨 and 𝑏𝑏𝑖𝑖𝑖𝑖 are elements of the matrix 𝑩𝑩. 

2.1.5. Multilinear Transformation of Tensors 

The mode-n product could be thought of as a linear transformation of the mode-n fibers of a tensor. 

Therefore the multilinear transformation of a tensor 𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁 could be defined as 

𝒴𝒴 =  𝒳𝒳 ×1 𝜱𝜱(1) ×2 𝜱𝜱(2) ×3 ⋯ ×𝑁𝑁 𝜱𝜱(𝑁𝑁) (2. 6) 

where, 𝜱𝜱(𝑛𝑛);  𝑛𝑛 ∈ {1,2, … , 𝑁𝑁} are matrices with dimensions 𝜱𝜱(𝑛𝑛)  ∈ ℝ𝐽𝐽n×𝐼𝐼𝑛𝑛;  𝑛𝑛 ∈ {1,2, … , 𝑁𝑁} and 

𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽n×…×𝐽𝐽N [6], [43]. In the multilinear transformation, each mode 𝑛𝑛 ∈ {1,2, … , 𝑁𝑁} of the 

tensor is transformed by the respective mode-n matrix 𝜱𝜱(𝑛𝑛)  ∈ ℝ𝐽𝐽n×𝐼𝐼𝑛𝑛;  𝑛𝑛 ∈ {1,2, … , 𝑁𝑁} to get the 

transformed tensor 𝒴𝒴.  

In mathematics, the equation (2.6) is widely known as the Tucker decomposition [5], where a 

tensor 𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽n×…×𝐽𝐽N  is decomposed to obtain a core tensor 𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁 multiplied 

by a set of factor matrices 𝜱𝜱(𝑛𝑛)  ∈ ℝ𝐽𝐽n×𝐼𝐼𝑛𝑛;  𝑛𝑛 ∈ {1,2, … , 𝑁𝑁} along each mode. 

𝜱𝜱(1) 

𝜱𝜱(2) 

𝒴𝒴 
𝒳𝒳 

 𝜱𝜱(3) 

Figure 2.2 Multilinear transformation of a 3rd-order tensor 𝒳𝒳 ∈ ℝ𝐼𝐼1×𝐼𝐼2×𝐼𝐼3 
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Figure 2.2 shows the multilinear transformation 𝒴𝒴 ∈ ℝ𝐽𝐽1×𝐽𝐽2×𝐽𝐽3 of a 3rd-order core tensor 𝒳𝒳 ∈

ℝ𝐼𝐼1×𝐼𝐼2×𝐼𝐼3 obtained by multiplying each mode of the core tensor 𝒳𝒳 with a mode-n matrices 𝜱𝜱(𝑛𝑛)  ∈

ℝ𝐽𝐽n×𝐼𝐼𝑛𝑛;  𝑛𝑛 ∈ {1,2,3}. Therefore as shown in Figure 2.2, a large tensor 𝒴𝒴 could be represented using 

a smaller core tensor and a smaller set of factor matrices 𝜱𝜱(𝑛𝑛). 

The multilinear transformation could also be written as a product of vec(𝒳𝒳) and the Kronecker 

product of matrices 𝜱𝜱(𝑛𝑛);  𝑛𝑛 ∈ {1,2, … , 𝑁𝑁} [6], [43]. 

vec(𝒴𝒴)  =  (𝜱𝜱(𝑁𝑁) ⊗ 𝜱𝜱(𝑁𝑁−1) ⊗  ⋯  ⊗ 𝜱𝜱(1))vec(𝒳𝒳) (2. 7) 

Let

𝜱𝜱 =  (𝜱𝜱(𝑁𝑁) ⊗ 𝜱𝜱(𝑁𝑁−1) ⊗ ⋯ ⊗ 𝜱𝜱(2) ⊗ 𝜱𝜱(1)) (2. 8) 

Therefore,

vec(𝒴𝒴)  = 𝜱𝜱vec(𝒳𝒳) (2. 9) 

Equation (2.9) is a linear system of equations with a separable dictionary 𝜱𝜱, input vec(𝒳𝒳), and 

output vec(𝒴𝒴). 
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2.2. Sparse Signal Representation 

A sinusoid is a dense signal in the time domain, but it could be uniquely represented with its 

frequency and phase. Therefore a sinusoid signal has a sparse signal representation in the 

frequency domain. 

Consider a linear system, where a finite-dimensional signal 𝒚𝒚 is represented using a dictionary 𝜱𝜱, 

and a coefficient vector 𝒙𝒙. 

𝒚𝒚 =  𝜱𝜱𝜱𝜱 + 𝒆𝒆 (2. 10) 

where 𝒆𝒆 is the error term.  

In sparse signal representations, a signal 𝒚𝒚 is represented in a sparse domain using a dictionary 𝜱𝜱 

where most of its coefficients 𝒙𝒙 are zero. Sparse signal representations require less memory 

storage, simpler and faster processing, and fewer computational resources than their dense 

counterparts. 

The dictionary 𝜱𝜱 could be a basis, frame, or a tight frame(union of basis) [8], [9]. Common 

dictionaries include Fourier dictionary, Discrete Cosine Transform (DCT) dictionary, Wavelet 

dictionaries, Chirplet dictionaries, or a union of any of the above dictionaries. The dictionaries 

could also be learned from the data using dictionary learning algorithms [31], [32][32]. 

The least-squares problem provides a mathematical framework for solving the inverse problem of 

(2.10) to obtain coefficients 𝒙𝒙.  Let the vectors 𝒚𝒚 ∈  ℝ𝑚𝑚 ,  𝒙𝒙 ∈  ℝ𝑛𝑛  and the dictionary 𝜱𝜱 ∈  ℝ𝑚𝑚×𝑛𝑛 

in (2.10), where 𝑚𝑚 and 𝑛𝑛 are the row rank and column rank of the dictionary 𝜱𝜱 respectively. The 

least-squares method minimizes the 𝐿𝐿2 norm of the residual vector 𝒓𝒓 = 𝜱𝜱 𝒙𝒙 −  𝒚𝒚 [46]–[48]. 

𝒙𝒙�  =  arg min
𝑥𝑥

‖𝜱𝜱 𝒙𝒙 −  𝒚𝒚 ‖2
2 (2. 11) 

An inverse problem is well-posed if it satisfies the three Hadamard conditions; Existence, 

Uniqueness, and Continuity [9], [49], [50]. For example, if the dictionary 𝜱𝜱 ∈  ℝ𝑚𝑚×𝑛𝑛 is a square 

matrix, where 𝑚𝑚 = 𝑛𝑛, has a full rank and well-conditioned, the inverse problem of (2.10) is well 

posed [51]. Therefore, for a well-posed problem, 𝒚𝒚 ∈ ℛ(𝜱𝜱), the solution of the least-squares 

problem is also the solution of the linear system in (2.10).  
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The inverse problems for overdetermined and underdetermined linear systems are ill-posed. 

Because the overdetermined linear systems, where 𝑚𝑚 > 𝑛𝑛, violate the existence condition, and the 

underdetermined linear systems, where 𝑚𝑚 < 𝑛𝑛, violate the uniqueness condition [9], [50]–[54].  

However, the least-squares methods could obtain a desirable approximate solution to ill-posed 

problems. Generally, overdetermined problems could be solved with the least-squares methods 

without additional constraints. However, additional constraints are necessary to find a unique 

solution to underdetermined problems [52]. 

2.2.1. Sparse Least-Squares Problems 

The sparsity could be imposed by adding a sparsity constraint to the least-squares problem. We 

could formulate the sparse least-squares problem as an 𝐿𝐿𝑝𝑝 minimization problem [9], 

𝒙𝒙�  =  arg min
𝑥𝑥

‖𝜱𝜱 𝒙𝒙 −  𝒚𝒚 ‖2
2 + 𝜆𝜆‖𝒙𝒙‖𝑝𝑝 (2. 12) 

 

where the p-norm of a vector is defined as, 

‖𝒙𝒙‖𝑝𝑝 =  ��|𝑥𝑥𝑖𝑖|𝑝𝑝
𝑚𝑚

𝑖𝑖=1

�

1
𝑝𝑝

(2. 13) 

Norms with 𝑝𝑝 <  1 are called pseudo-norms since they do not satisfy the triangular inequality. We 

note that in (2.12), it is a nonconvex optimization problem for 0 ≤ 𝑝𝑝 < 1 and a convex 

optimization problem for 𝑝𝑝 ≥ 1. The sparsest solutions are given when 𝑝𝑝 = 0, and the sparsity 

reduces as 𝑝𝑝 increases. 

Let us consider a 2-dimensional sparse least-squares problem. Figure 2.3 a) shows that the contours 

of the least-squares error(in red) and the unit ball for the 𝐿𝐿0 constraint(in blue) always intersect at 

an axis to obtain a sparse solution 𝒙𝒙� (e.g. 𝑥𝑥1 = 0 at 𝒙𝒙�), where 𝒙𝒙�𝑂𝑂𝑂𝑂𝑂𝑂 is the solution for the 

unconstrained least-squares problem. 
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The 𝐿𝐿0 constrained least-squares problem is a non-convex optimization problem that can be solved 

using hard thresholding if 𝜱𝜱 is orthogonal [8]. Matching Pursuit (MP) [12], Orthogonal Matching 

Pursuit (OMP) [13], Group OMP [55], and Least Angle Regression(LARS) [15] are some other 

algorithms for solving the 𝐿𝐿0 constrained least-squares problem.  

We could slightly relax the sparsity constraint to obtain the convex 𝐿𝐿1 constrained least-squares 

problem. Figure 2.3 b) shows the contours of the least-squares error and the unit ball of 𝐿𝐿1 norm 

has a high chance of intersecting at an axis to obtain a sparse solution 𝒙𝒙�. If 𝜱𝜱 is orthogonal, the 𝐿𝐿1 

constrained least-squares problem could be solved using soft thresholding [8]. Basis Pursuit(BP) 

[14], Iterative Thresholding [56], Lasso [25], LARS [15], and Grouped LARS/Lasso [57] are a 

few other algorithms to solve the 𝐿𝐿1 constrained least-squares problem. 

The 𝐿𝐿2 constrained least-squares problem, also known as ridge regression [26], solves a strictly 

convex problem. However, as shown in Figure 2.3 c), the contours of the least-squares error and 

the unit ball of 𝐿𝐿2 norm has a less chance of intersecting at an axis. Therefore, the 𝐿𝐿2 constrained 

least-squares problem, could not be used to obtain a sparse signal representation. 

2.2.2. Obtaining Optimum Sparse Signal Representations 

An optimum sparse signal representation should be able to represent a given signal using a few 

elementary atoms from a dictionary. However, it is impossible to find an ideal dictionary to obtain 

optimum sparse signal representations for all signals [8]. 

Figure 2.3. Contours of the least-squares error and the unit ball for a) 𝐿𝐿0 norm and b) 𝐿𝐿1 norm c) 𝐿𝐿2 norm 

     (a)   

𝒙𝒙𝟏𝟏 

𝒙𝒙𝟐𝟐 

𝒙𝒙� 

𝒙𝒙�𝑂𝑂𝑂𝑂𝑂𝑂 

        (b)  

𝒙𝒙𝟏𝟏 

𝒙𝒙𝟐𝟐 

𝒙𝒙� 

𝒙𝒙�𝑂𝑂𝑂𝑂𝑂𝑂 

     (c) 

𝒙𝒙𝟏𝟏 
𝒙𝒙� 

𝒙𝒙�𝑶𝑶𝑶𝑶𝑶𝑶 

𝒙𝒙𝟐𝟐 
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Orthogonal bases (𝜱𝜱 ∈  ℝ𝑚𝑚×𝑛𝑛| 𝑚𝑚 = 𝑛𝑛 ), a dictionary of minimum size, could be designed to 

obtain sparse signal representations of signals efficiently by hard thresholding, which solves an 𝐿𝐿0 

minimization problem in (2.12), or by soft thresholding, which solves an 𝐿𝐿1 minimization problem 

in (2.12).  

However, a sparse signal representation obtained over a single basis or a smaller frame is not 

always optimum for an arbitrary signal [8], [53], [58]. For example, if a signal has time localized 

components, the Fourier basis fails to obtain an optimum sparse signal representation. Whereas, if 

the Fourier transform of the signal has components with narrow high-frequency support, wavelet 

bases fail to obtain an optimum sparse signal representation [12]. Therefore, a union of both 

Fourier and a wavelet basis could obtain a better sparse signal representation for a signal with both 

time localized and localized frequency components than either basis alone. 

Therefore, richer overcomplete dictionaries (𝜱𝜱 ∈  ℝ𝑚𝑚×𝑛𝑛| 𝑛𝑛 > 𝑚𝑚) could be used to obtain 

optimum sparse signal representations of complicated signals [8], [53]. Typically, sparse signal 

representations are obtained by solving an 𝐿𝐿𝑝𝑝 constrained least-squares problem in (2.12) using 

OMP, BP, or LARS. However, the computational requirement for solving the sparse signal 

representation problem increases significantly with the size of the dictionary. Therefore, 

overcomplete dictionaries are typically designed as a union of a few orthogonal bases(tight frames) 

or frames. 

Fixed dictionaries are designed for sparse representation of certain regularities of signals. The 

Fourier transform promotes a sparse representation of uniformly regular functions, and Discrete 

Cosine Transform (DCT) could be used to obtain real-valued representations of such signals, with 

applications in signal compression. Wavelet bases promote the sparse representation of piecewise 

continuous signals, including transients and singularities [8]. Therefore, wavelets could be used to 

represent edges in images efficiently. Wavelet packets [59], steerable wavelets [60], curvelets [61], 

contourlets [62], and bandelets [63] could be used to represent specific types of edges in images 

[8], [53]. Typically dictionaries learned for a specific type of signal obtain better sparse signal 

representations than fixed dictionaries [53]. 
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2.3. Sparse Tensor Signal Representation 

The size of tensors quickly grows with the number of modes and dimensions along each mode. 

Therefore, obtaining sparse tensor signal representations enables solving large tensor problems 

because sparse tensors have fewer non-zero coefficients and require significantly lower computer 

power and memory than their dense counterparts. 

As shown in (2.6), a finite dimensional tensor signal 𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽n×…×𝐽𝐽N  could be represented 

using a tensor 𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁 and a set of mode-n dictionary matrices 𝜱𝜱(𝑛𝑛)  ∈ ℝ𝐽𝐽n×𝐼𝐼𝑛𝑛;  𝑛𝑛 ∈

{1,2, … , 𝑁𝑁}. Each mode-n dictionary matrix 𝜱𝜱(𝑛𝑛) could be a basis, frame, or a tight frame. The 

mode-n dictionary matrices could be selected independently to obtain an optimum representation 

of each tensor mode.  

For example, consider 30 frames of an RGB video with the resolution 640 × 480. The 

corresponding tensor 𝒴𝒴 ∈ ℝ640×480×3×30, could be represented using four mode-n dictionary 

matrices {𝜱𝜱(1), ⋯ , 𝜱𝜱(4)}. Therefore, we could select 𝜱𝜱(1), and 𝜱𝜱(2) to be a union of DCT 

dictionary and a wavelet dictionary to represent each video frame, 𝜱𝜱(3) to be an identity matrix to 

represent three RGB channels, and 𝜱𝜱(4) to be a wavelet dictionary to obtain a time-frequency 

representation of temporal variations in video frames. 

Obtaining a sparse signal representation of a large tensor is a computationally challenging 

problem. 

2.3.1. Sparse Multilinear Least-squares Problem 

The equation (2.7) is an equivalent vector formulation of (2.6). Therefore, a sparse tensor 𝒳𝒳 could 

be obtained by rewriting (2.7) as an 𝐿𝐿𝑝𝑝 minimization problem [9], 

 
𝒙𝒙� = arg min

𝒙𝒙
‖𝜱𝜱vec(𝒳𝒳) − vec(𝒴𝒴) ‖2

2 +  λ‖vec(𝒳𝒳)‖𝑝𝑝 (2. 14) 

where 𝜱𝜱 = �𝜱𝜱(𝑁𝑁) ⊗ ⋯ ⊗ 𝜱𝜱(𝑛𝑛) ⊗ ⋯ ⊗ 𝜱𝜱(1)�, λ is a regularization parameter.  

Equation (2.14) is an 𝐿𝐿𝑝𝑝 constrained linear least-squares problem, where for a large tensors 𝒳𝒳, 

and 𝒴𝒴, solving the 𝐿𝐿𝑝𝑝 minimization problem by constructing the Kronecker dictionary 𝜱𝜱, might 

be computationally infeasible. 
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Therefore, we could reformulate (2.14) as a multilinear least-squares problem using (2.6) and 

(2.7), 

𝒳𝒳�  =  arg min
𝒳𝒳

�𝒳𝒳 ×1 𝜱𝜱(1) ×2 𝜱𝜱(2) ×3 ⋯ ×𝑁𝑁 𝜱𝜱(𝑁𝑁)  −  𝒴𝒴 �
2
2

+ λ‖𝒳𝒳‖𝑝𝑝 (2. 15) 

where 𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽𝑛𝑛×…×𝐽𝐽𝑁𝑁 and 𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁. 

The 𝐿𝐿𝑝𝑝 constrained least-square problems in (2.14) and (2.15) are equivalent. However, the 

results of (2.14) are in vector form, and the results of (2.15) are in tensor form.  

2.3.2. Thesis Problem Statement 

A large tensor problem could be solved efficiently by using a sparse tensor signal representation, 

which is typically obtained by solving an 𝐿𝐿𝑝𝑝 constrained linear least-squares problem in (2.14). 

However, obtaining a sparse signal representation of a tensor 𝒴𝒴, by solving (2.14) requires 

constructing and inverting a significantly large Kronecker dictionary matrix 𝜱𝜱.  

For example, a third-order tensor 𝒴𝒴 ∈ ℝ100×100×100, would require constructing a Kronecker 

dictionary, 𝜱𝜱 ∈ ℝ106×106, with at least 1 trillion (1012) elements, in solving (2.14) using method 

discussed in section 2.2.1, and a fourth-order tensor 𝒴𝒴 ∈ ℝ100×100×100×100 would require 

constructing a Kronecker dictionary 𝜱𝜱 ∈ ℝ108×108, with at least 10 quadrillion (1016) elements. 

Therefore, solving (2.14) for a tensor problem using OMP, BP, LARS, or any other one-

dimensional method discussed in section 2.2.1 quickly become computationally intractable as the 

number of modes and the dimensions of each tensor mode increases. 

The main objective of this research is to develop novel methods that could efficiently obtain sparse 

signal representations of tensors to solve large multidimensional problems efficiently. The novel 

methods developed in this research is primarily based on the relationship between (2.14) and 

(2.15). 

This thesis presents four novel methods, developed in chapters 3, 4, 5, and 6, by extending their 

one-dimensional counterparts using tensors and multilinear algebra. These methods obtain sparse 

signal representations of large tensors efficiently by solving variations of (2.15) without explicitly 

constructing or inverting large matrices such as the Kronecker dictionary matrix 𝜱𝜱. Instead our 

methods use much smaller mode-n dictionary matrices 𝜱𝜱(𝑛𝑛) in their calculations.  



Ishan Wickramasingha 
 

22 
 

These four methods use fixed or previously learned mode-n dictionaries 𝜱𝜱(𝑛𝑛) ∈ ℝ𝐽𝐽𝑛𝑛×𝐼𝐼𝑛𝑛 to obtain 

a sparse signal representation 𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁 of a large tensor 𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽𝑛𝑛×…×𝐽𝐽𝑁𝑁. Our fifth 

method developed in chapter 7, which is also an extension of its one-dimensional counterpart using 

tensors and multilinear algebra, could be used for online learning of mode-n dictionaries 𝜱𝜱(𝑛𝑛) ∈

ℝ𝐽𝐽𝑛𝑛×𝐼𝐼𝑛𝑛 in (2.15) using data tensors 𝒴𝒴. 

Also, the fifth method is a tensor task-driven dictionary learning framework that uses the sparse 

signal representations of tensors obtained using our novel methods to efficiently solve large 

multidimensional supervised or semi-supervised machine learning problems such as tensor 

regression or tensor classifications. This method predicts a tensor 𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽𝑛𝑛×…×𝐽𝐽𝑁𝑁 from a 

tensor 𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁, when 𝒳𝒳 is associated with 𝒴𝒴, by jointly learning mode-n dictionaries 

and mode-n model parameters online. 
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Chapter 3 

3. Tensor Least Angle Regression (T-LARS) 

Sparse signal representations have gained much interest recently in both signal processing and 

statistical communities. Compared to Orthogonal Matching Pursuit (OMP) [13], and Basis Pursuit 

(BP) [25], [27],  that solve the L0 and L1 constrained sparse least-squares problems respectively, 

for a specific value of the regularization parameter λ, Least Angle Regression (LARS) [15] is a 

computationally efficient method to solve both problems for all critical values of λ. However, these 

methods are not suitable for solving large multidimensional sparse least-squares problems, as they 

would require extensive computational power and memory. An earlier generalization of OMP, 

known as Kronecker-OMP [16], was developed to solve the L0 problem for large 

multidimensional sparse least-squares problems. However, its memory usage and computation 

time increase fast with the number of problem dimensions and iterations. In this chapter, we 

develop a generalization of LARS, Tensor Least Angle Regression (T-LARS) [18] that 

could efficiently solve either large L0  or large L1 constrained multidimensional sparse least-

squares problems (underdetermined or overdetermined) for all critical values of the regularization 

parameter λ, and which has lower computational complexity and lower memory usage than 

Kronecker-OMP.  To demonstrate the validity and performance of our T-LARS algorithm, we 

used it to successfully obtain different sparse representations of two relatively large 3-D brain 

images, using fixed and learned separable over-complete dictionaries, by solving both L0 and L1 

constrained sparse least-squares problems and compared with Kronecker-OMP. We also present 

the multilinear compressed sensing problem, and we compared Kronecker-OMP and T-LARS in 

reconstructing 3D brain images using compressed sensed samples. 
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3.1. Introduction 

Sparse signal representations have gained much interest recently in both Signal Processing and 

Statistics communities. A sparse signal representation usually results in simpler and faster 

processing, in addition to lower memory storage requirements for fewer coefficients [8], [9]. 

However, finding optimal sparse representations for different signals is not a trivial task [8]. 

Therefore, redundant signal representations using overcomplete dictionaries have been introduced 

to facilitate finding more sparse representations for different signals [8], [9], [12], [13]. Under 

complete dictionaries could also be used to obtain approximate signal representations [64]–[66]. 

We note that at their core, such signal representation problems typically involve solving a least-

squares problem [10], [11].  

A number of methods have been proposed to solve the sparse least-squares problem, including the 

Method of Frames (MOF) [67], Matching Pursuit (MP) [12], Orthogonal Matching Pursuit (OMP) 

[13], Best Orthogonal Basis (BOB) [68], Lasso also known as Basis Pursuit (BP) [25], [27], and 

Least Angle Regression (LARS) [15]. Matching Pursuit (MP) and Orthogonal Matching Pursuit 

(OMP) obtain sparse signal representations by solving a non-convex L0 constrained least-squares 

problem [69]. Matching Pursuits are heuristic methods that construct sparse signal representations 

by sequentially adding atoms from a given dictionary in a greedy, i.e., non-globally optimal 

manner. Basis Pursuit (BP) relaxes the non-convex L0 constrained optimization problem to solve 

a convex L1 constrained least-squares problem instead [14]. In both problem formulations, a 

regularization parameter λ determines the trade-off between the representation error of the signal 

and its sparsity, as shown in the Pareto curve in [23]. A common approach to obtaining a sparse 

signal representation using Basis Pursuit is to solve the optimization problem multiple times, for 

different values of λ, before choosing the most suitable solution for the application at hand [23]. 

Compared to the above methods, Least Angle Regression efficiently solves the L0, or with a slight 

modification, the L1 constrained least-squares problem for all critical values of the regularization 

parameter λ [15]. However, even LARS is not suitable for large-scale problems as it would require 

multiplication and inversion of very large matrices [70]. For example, for 𝑚𝑚 unknown variables 

and 𝑛𝑛 equations, the LARS algorithm has O(𝑚𝑚3  +  n𝑚𝑚2) computational complexity [15]. 
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LARS and other algorithms to solve sparse least-squares problems are directly applicable to one-

dimensional signals. Therefore, multidimensional signals that are represented by tensors, i.e., 

multidimensional arrays, would need to be vectorized first to enable the application of these 

methods [7], [45], [71]. For 𝐼𝐼𝑁𝑁 number of vectorized variables, a dictionary of the size 𝐼𝐼𝑁𝑁 × 𝐽𝐽𝑁𝑁, 

where 𝐽𝐽 > 𝐼𝐼 for an overcomplete dictionary, is required to solve the sparse linear least-squares 

problem, using LARS and other algorithms mentioned above. 𝑁𝑁 is the order of the tensor, also 

known as the number of modes, and 𝐼𝐼 is the dimension of each mode. Therefore, the number of 

vectorized unknown variables 𝐼𝐼𝑁𝑁 would increase exponentially with the order of the tensor N. 

Thus, such problems would quickly become increasingly large and computationally intractable. 

For example, a 3D tensor with 100 unknown variables in each mode has a total of 1 million 

unknowns, which requires a dictionary with at least 1 trillion (1012) elements, whereas a 4D tensor 

with 100 unknown variables in each mode has a total of 100 million unknowns, which requires a 

dictionary of at least ten quadrillion (1016) elements. 

Mathematically separable signal representations, i.e., using separable dictionaries, have been 

typically used for multidimensional signals, as they are simpler and easier to obtain than non-

separable representations [16], [72]. Caiafa et al. introduced Kronecker-OMP, a generalization of 

OMP that could represent multidimensional signals, represented by tensors,  using separable 

dictionaries [16]. They also developed the N-BOMP algorithm to exploit block-sparse structures 

in multidimensional signals. However, similar to OMP, Kronecker-OMP could only obtain an 

approximate nonglobally optimal solution of the nonconvex L0  constrained sparse least-squares 

problem [17], [23]. Also, there is currently no computationally efficient method to obtain a sparse 

representation of a multidimensional signal by solving the convex L1 constrained sparse least-

squares problem for all critical values of the regularization parameter λ. However, two of our co-

authors, Elrewainy and Sherif, earlier developed the Kronecker Least Angle Regression (K-LARS) 

algorithm to efficiently solve either large L0 or large L1 sparse least-squares problems 

(overdetermined) with a particular Kronecker form 𝑨𝑨 ⊗ 𝑰𝑰, for all critical values of the 

regularization parameter λ. They used K-LARS to sparsely fit one-dimensional multi-channel 

hyperspectral spectral imaging data to a Kronecker model 𝑨𝑨 ⊗ 𝑰𝑰 [17]. 

In this chapter, we develop a generalization of K-LARS, Tensor Least Angle Regression (T-LARS) 

[18] that could efficiently solve either large L0 or large L1 multidimensional sparse least-squares 
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problems (underdetermined or overdetermined) for all critical values of the regularization 

parameter λ. We also discuss the compressed sensing problem and use T-LARS to efficiently 

obtain a sparse representation of large tensors using compressed sensed samples. 

The applications of T-LARS include compression of large multidimensional signals, e.g., 

multidimensional biomedical images, videos, satellite imaging, communication. The T-LARS 

could also be used in the sparse coding methods of the tensor dictionary learning algorithms such 

as the Tensor Method of Optimal Directions(T-MOD) and Kronecker Higher-Order SVD (K-

HOSVD) [30] to learn mode-n dictionaries efficiently. Also, T-LARS with T-MOD or K-HOSVD 

could be used to efficiently solve tensor regression problems [72], [73]. In this chapter, we used 

T-LARS to represent 3D MRI brain images and 3D PET-CT brain images using significantly lower 

coefficients than the number of elements in the original signals. 

This chapter is organized as follows: Section 3.2 includes a brief introduction to tensors, tensor 

operations, multilinear sparse least-squares problems, and multilinear compressed sensing. In 

Section 3.3, we review Least Angle Regression (LARS) and describe our Tensor Least Angle 

Regression (T-LARS) algorithm in detail. Section 3.4 presents the computational complexity of 

our T-LARS algorithm and compares its computational complexity with that of Kronecker-OMP. 

Section 3.5 provides experiment results of applying both T-LARS and Kronecker-OMP. We 

present our conclusions in Section 3.6.  

3.2. Problem Formulation 

3.2.1. Tensors and multilinear transformations 

The term tensor has a specific mathematical definition in physics, but it has been widely accepted 

in many disciplines, e.g., signal processing and statistics, to mean a multidimensional array. 

Therefore, a vector is a first-order tensor, and a matrix is a second-order tensor. An N-dimensional 

array is an 𝑁𝑁𝑡𝑡ℎ order tensor, whose N  dimensions are also known as modes [6], [43]. The 𝑁𝑁𝑡𝑡ℎ 

order tensor 𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁  has 𝑁𝑁 modes, with dimensions, 𝐼𝐼1,  𝐼𝐼2, … ,  𝐼𝐼𝑁𝑁, where vectors along 

a specific mode, n, are called mode-n fibers. 

Vectorization and mode-n matricization of tensors [6], [43] are two important tensor reshaping 

operations. As the names imply, the vectorization of a tensor generates a vector, and the 
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matricization of a tensor generates a matrix. Tensors are vectorized by stacking mode-1 fibers in 

reverse lexicographical order, where this vectorization is denoted vec(𝒳𝒳). 

𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁 ⟶ vec(𝒳𝒳) ∈ ℝ𝐼𝐼N𝐼𝐼𝑁𝑁−1…𝐼𝐼1 

In mode-n tensor matricization, mode-n fibers become the columns of the resulting matrix. We 

note that such ordering of these columns is not consistent across the literature [5], [45]. In this 

chapter, we use reverse lexicographical order (𝐼𝐼𝑁𝑁 … 𝐼𝐼𝑛𝑛+1𝐼𝐼𝑛𝑛−1 … 𝐼𝐼1) for the column ordering in 

mode-n tensor matricization. In such reverse lexicographical order, 𝐼𝐼1 varies the fastest and 𝐼𝐼𝑁𝑁 

varies the slowest. Let 𝑿𝑿(𝑛𝑛) denote mode-n matricization of a tensor 𝒳𝒳 

𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁  ⟶ 𝑿𝑿(𝑛𝑛) ∈ ℝ𝐼𝐼𝑛𝑛×(𝐼𝐼𝑁𝑁…𝐼𝐼𝑛𝑛+1𝐼𝐼𝑛𝑛−1…𝐼𝐼1) 

Another important operation that could be performed on a tensor is its mode-n product, i.e., its 

multiplication by a matrix along one of its modes. Let the tensor 𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁 and a matrix 

𝜱𝜱(𝑛𝑛)  ∈ ℝ𝐽𝐽n×𝐼𝐼𝑛𝑛, then their mode-n product, 𝒴𝒴𝑛𝑛 ∈ ℝ𝐼𝐼1×…×𝐽𝐽n×…×𝐼𝐼𝑁𝑁 , is denoted as 

𝒴𝒴𝑛𝑛  =  𝒳𝒳 ×𝑛𝑛 𝜱𝜱(𝑛𝑛) (3. 1) 

where all mode-n fibers of the tensor are multiplied by the matrix 𝜱𝜱(𝑛𝑛). Equation (3.1) could also 

be written as 𝒀𝒀(𝑛𝑛)  =  𝜱𝜱(𝑛𝑛)𝑿𝑿(𝑛𝑛), where 𝒀𝒀(𝑛𝑛) and 𝑿𝑿(𝑛𝑛) are mode-n matricizations of tensors 𝒳𝒳 and 

𝒴𝒴, respectively. A mode-n product could be thought of as a linear transformation of the mode-n 

fibers of a tensor. Therefore, a multilinear transformation of a tensor 𝒳𝒳  could be defined as  

𝒴𝒴 =  𝒳𝒳 ×1 𝜱𝜱(1) ×2 𝜱𝜱(2) ×3 ⋯ ×𝑁𝑁 𝜱𝜱(𝑁𝑁) (3. 2) 

where, 𝜱𝜱(𝑛𝑛);  𝑛𝑛 ∈ {1,2, … , 𝑁𝑁} are matrices with dimensions 𝜱𝜱(𝑛𝑛)  ∈ ℝ𝐽𝐽n×𝐼𝐼𝑛𝑛;  𝑛𝑛 ∈ {1,2, … , 𝑁𝑁} and 

𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽n×…×𝐽𝐽N [6], [43]. This multilinear transformation could also be written as a product 

of vec(𝒳𝒳) and the Kronecker product of matrices 𝜱𝜱(𝑛𝑛);  𝑛𝑛 ∈ {1,2, … , 𝑁𝑁} [6], [43]. 

vec(𝒴𝒴) =  �𝜱𝜱(𝑁𝑁) ⊗ 𝜱𝜱(𝑁𝑁−1) ⊗  ⋯  ⊗ 𝜱𝜱(1)�vec(𝒳𝒳) (3. 3) 

We note that (3.3) is a linear system relating to 𝒙𝒙 =  vec(𝒳𝒳) and 𝒚𝒚 =  vec(𝒴𝒴). If matrix 𝜱𝜱 

represents a separable dictionary, i.e.,   

𝜱𝜱 =  (𝜱𝜱(𝑁𝑁) ⊗ 𝜱𝜱(𝑁𝑁−1) ⊗ ⋯ ⊗ 𝜱𝜱(2) ⊗ 𝜱𝜱(1)) (3. 4) 
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Then (3.3) describes a representation of 𝒚𝒚 = vec(𝒴𝒴)  using a dictionary 𝜱𝜱, where 𝒙𝒙 =

vec(𝒳𝒳) represents its coefficients (𝒚𝒚 =  𝜱𝜱𝒙𝒙 ). Similarly, we could think of (3.2) as a 

representation of tensor 𝒴𝒴 using dictionaries 𝜱𝜱(𝑛𝑛);  𝑛𝑛 ∈ {1,2, … , 𝑁𝑁}, where tensor 𝒳𝒳 represents its 

coefficients. 

3.2.2. Sparse Multilinear Least-squares Problem 

A sparse multilinear representation of (3.3) could be obtained by rewriting it as an 𝐿𝐿𝑝𝑝 

minimization problem [9], 
 

𝒙𝒙� = arg min
𝒙𝒙

��𝜱𝜱(𝑁𝑁) ⊗ ⋯ ⊗ 𝜱𝜱(𝑛𝑛) ⊗ ⋯ ⊗ 𝜱𝜱(1)� vec(𝒳𝒳) − vec(𝒴𝒴) �
2
2

+  λ‖vec(𝒳𝒳)‖𝑝𝑝 (3. 5) 

where λ is a regularization parameter.  

Alternatively, using  (3.2) and  (3.3), (3.5) could be written as 

𝒳𝒳�  =  arg min
𝒳𝒳

�𝒳𝒳 ×1 𝜱𝜱(1) ×2 𝜱𝜱(2) ×3 ⋯ ×𝑁𝑁 𝜱𝜱(𝑁𝑁)  −  𝒴𝒴 �
2
2

+ λ‖𝒳𝒳‖𝑝𝑝 (3. 6) 

where 𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽𝑛𝑛×…×𝐽𝐽𝑁𝑁 and 𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁. 

For the same values of 𝑝𝑝, the 𝐿𝐿𝑝𝑝 minimization problems in (3.5) and (3.6) are equivalent, even 

though their formulations are in vector and tensor forms, respectively. We note that for 0 ≤ 𝑝𝑝 <

1, (3.5) and (3.6) are nonconvex optimization problems, while for 𝑝𝑝 ≥ 1, they are convex 

optimization problems. The most sparse solution of (3.5) and (3.6) would be obtained when 𝑝𝑝 =

0,  i. e. , 𝐿𝐿0 constrained problem, but its sparsity would be reduced as 𝑝𝑝 increases. 

The 𝐿𝐿0 minimization problem (𝑝𝑝 = 0) is a nonconvex optimization problem, whose vector 

formulation, problem (3.5), could be solved approximately, i.e., non-globally, using Orthogonal 

Matching Pursuit (OMP) or Least Angle Regression (LARS) [23]. The 𝐿𝐿1 minimization problem 

(𝑝𝑝 = 1) is a convex optimization problem, whose vector formulation, problem (3.5), could be 

exactly, i.e., globally, solved using Basis Pursuit (BP) or LARS [73]. However, OMP, BP, and 

LARS share a serious drawback in that they are not suitable for solving very large sparse least-

squares problems as they involve multiplication and inverting of very large matrices.  
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As a way of overcoming this drawback, Caiafa et al. proposed Kronecker-OMP, a tensor-based 

generalization of OMP, for solving sparse multilinear least-squares problems. However, similar to 

OMP, Kronecker-OMP could only obtain a non-globally optimal solution of the nonconvex L0  

constrained sparse least-squares problem [73].  

3.2.3. Multilinear Compressed Sensing  

Consider a multilinear transformation of a tensor 𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁  by mode-n dictionary 

matrices 𝑫𝑫(𝑛𝑛) ∈ ℝ𝐿𝐿n×𝐼𝐼𝑛𝑛;  𝑛𝑛 ∈ {1,2, … , 𝑁𝑁} to obtain a large tensor 𝒜𝒜 ∈ ℝ𝐿𝐿1×…×𝐿𝐿𝑛𝑛×…×𝐿𝐿𝑛𝑛 . 

𝒜𝒜 =  𝒳𝒳 ×1 𝑫𝑫(1) ×2 𝑫𝑫(2) ×3 ⋯ ×𝑁𝑁 𝑫𝑫(𝑁𝑁) (3. 7) 

The main objective of the multilinear compressed sensing is to obtain a sparse coefficient tensor 

𝒳𝒳 by sampling the large tensor signal 𝒜𝒜 in a sparse domain, where a much smaller sample tensor 

𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽𝑛𝑛×…×𝐽𝐽𝑁𝑁; ∀𝑛𝑛 𝐽𝐽𝑛𝑛 ≤ 𝐿𝐿𝑛𝑛, is obtained. The smaller sample tensor 𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽𝑛𝑛×…×𝐽𝐽𝑁𝑁 is a 

projection of the tensor 𝒜𝒜 to a sparse domain using mode-n sensing matrices 𝒁𝒁(𝑛𝑛) ∈ ℝ𝐽𝐽n×𝐿𝐿𝑛𝑛;  𝑛𝑛 ∈

�1,2, … , 𝑁𝑁�, where 𝒴𝒴 =  𝒜𝒜 ×1 𝒁𝒁(1) ×2 ⋯ ×𝑁𝑁 𝒁𝒁(𝑁𝑁)  [16], [21], [74]. 

Therefore, the relationship between the sparse coefficient tensor  𝒳𝒳 and the compressed sensing 

samples tensor 𝒴𝒴 is given by, 

𝒴𝒴 =  𝒳𝒳 ×1 𝜱𝜱(1) ×2 𝜱𝜱(2) ×3 ⋯ ×𝑁𝑁 𝜱𝜱(𝑁𝑁) (3. 8) 

Where 𝜱𝜱(𝑛𝑛) ∈ ℝ𝐽𝐽n×𝐼𝐼𝑛𝑛 = 𝒁𝒁(𝑛𝑛)𝑫𝑫(𝑛𝑛); ∀ 𝑛𝑛 ∈ {1,2, … , 𝑁𝑁}.  

As shown in (3.7), the tensor 𝒜𝒜 could be reconstructed using the sparse coefficient tensor 𝒳𝒳, and 

mode-n dictionary matrices 𝑫𝑫(𝑛𝑛) ∈ ℝ𝐿𝐿n×𝐼𝐼𝑛𝑛;  𝑛𝑛 ∈ {1,2, … , 𝑁𝑁}, where the sparse coefficient tensor 𝒳𝒳, 

could be calculated using the much smaller sample tensor 𝒴𝒴 by solving a sparse multilinear least-

squares problem, 

𝒳𝒳� = arg min
𝒳𝒳

�𝒳𝒳 ×1 𝜱𝜱(1) ×2 ⋯ ×𝑁𝑁 𝜱𝜱(𝑁𝑁) − 𝒴𝒴�
2
2

+ λ‖𝒳𝒳‖𝑝𝑝 (3. 9) 

Equation (3.6) and (3.9) are 𝐿𝐿𝑝𝑝 constrained multilinear least-squares problems. A sparse tensor 

𝒳𝒳 could be obtained by solving either 𝐿𝐿0 or 𝐿𝐿1 constrained minimization problems. As we 

discussed in section 3.2.2, Kronecker-OMP could be used to obtain a non-globally optimal solution 

of the nonconvex L0  constrained multilinear least-squares problem. 
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In this chapter, we develop Tensor Least Angle Regression (T-LARS), a computationally efficient 

method to solve either large 𝐿𝐿0 or 𝐿𝐿1 constrained multilinear least-squares problem in (3.6) and 

(3.9) for all critical values of the regularization parameter λ. 

3.3. Tensor Least Angle Regression (T-LARS) 

Least angle regression (LARS) is a computationally efficient method to solve either 𝐿𝐿0 or 𝐿𝐿1 

constrained minimization problem in vector form, problem  (3.5), for all critical values of the 

regularization parameter λ [15]. In this chapter, we develop a generalization of LARS, Tensor 

Least Angle Regression (T-LARS), to solve large sparse tensor least-squares problems to, for 

example, obtain sparse representations of multidimensional signals using a separable dictionary as 

described by (3.3). As shown below, our T-LARS calculations are performed without explicitly 

generating or inverting large matrices, thereby keeping its computational complexity and memory 

requirement relatively low. Both T-LARS and Kronecker-OMP algorithms use the Schur 

complement inversion formula for inverting large matrices without explicitly inverting them [16]. 

3.3.1. Least Angle Regression (LARS) 

Least angle regression (LARS) solve the 𝐿𝐿0 or 𝐿𝐿1 constrained minimization problem in  (3.5) for 

all critical values of the regularization parameter λ. LARS starts with a very large value of λ that 

results in an empty active columns matrix, 𝜱𝜱𝐼𝐼, and a solution 𝒙𝒙�𝑡𝑡=0 = 𝟎𝟎. The set 𝐼𝐼 denotes an active 

set of the dictionary 𝜱𝜱, i.e., column indices where the optimal solution 𝒙𝒙�𝑡𝑡 at iteration 𝑡𝑡, is nonzero, 

and 𝐼𝐼𝑐𝑐 denotes its corresponding inactive set. Therefore, 𝜱𝜱𝐼𝐼 contains only the active columns of 

the dictionary 𝜱𝜱 and 𝜱𝜱𝐼𝐼𝑐𝑐 contains only its inactive columns. 

 At each iteration 𝑡𝑡, a new column is either added (𝐿𝐿0) to the active set 𝐼𝐼 or a new column is either 

added or removed (𝐿𝐿1) from the active set 𝐼𝐼, and λ is reduced by a calculated value 𝛿𝛿𝑡𝑡
∗. As a result 

of such iterations, new solutions with an increased number of coefficients that follow a piecewise 

linear path are obtained until a predetermined residual error 𝜀𝜀 is obtained. One important 

characteristic of LARS is that the current solution at each iteration is the optimum sparse solution 

for the selected active columns. 

Initialization of LARS includes setting the active set to an empty set, I= {}, the initial solution 

vector 𝒙𝒙�0 = 0, the initial residual vector 𝒓𝒓0 = 𝒚𝒚 and initial regularization coefficient 𝜆𝜆1 =
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 max(𝒄𝒄1) where, 𝒄𝒄1  =  𝜱𝜱𝑇𝑇𝒓𝒓0. The optimal solution 𝒙𝒙�𝑡𝑡 at any iteration, 𝑡𝑡 must satisfy the following 

two optimality conditions, 

�𝜱𝜱𝐼𝐼𝑐𝑐
𝑇𝑇 𝒓𝒓𝑡𝑡 �

∞
 ≤  𝜆𝜆𝑡𝑡 (3. 10) 

𝜱𝜱𝐼𝐼
𝑇𝑇 𝒓𝒓𝑡𝑡  =  −𝜆𝜆𝑡𝑡𝒛𝒛𝑡𝑡 (3. 11) 

where, 𝒓𝒓𝑡𝑡 is the residual vector at iteration 𝑡𝑡, 𝒓𝒓𝑡𝑡  =   𝒚𝒚 − 𝜱𝜱𝒙𝒙�𝑡𝑡, and 𝒛𝒛𝑡𝑡 is the sign sequence of 𝒄𝒄𝑡𝑡 

on the active set 𝐼𝐼.  

The condition in (3.11) ensures that the magnitude of the correlation between all active columns 

and the residual is equal to |𝜆𝜆𝑡𝑡| at each iteration, and the condition in (3.10) ensures that the 

magnitude of the correlation between the inactive columns and the residual is less than or equal to 

|𝜆𝜆𝑡𝑡|. 

For 𝐿𝐿1 constrained minimization problem, at each iteration, if an inactive column violates the 

condition (3.10), it is added to the active set, and if an active column violates the condition (3.11), 

it is removed from the active set. For 𝐿𝐿0 constrained minimization problem only the columns that 

violate the condition (3.10) are added to the active set at each iteration.  

For a given active set 𝐼𝐼, the optimal solution 𝒙𝒙�𝑡𝑡 could be written as 

𝒙𝒙�𝑡𝑡  =  � �𝜱𝜱𝐼𝐼𝑡𝑡
𝑇𝑇𝜱𝜱𝐼𝐼𝑡𝑡�

−1
�𝜱𝜱𝐼𝐼𝑡𝑡

𝑇𝑇𝒚𝒚 − 𝜆𝜆𝑡𝑡𝒛𝒛𝑡𝑡�,           on   𝐼𝐼
   0,                                                    Otherwise

(3. 12) 

where, 𝒛𝒛𝑡𝑡 is the sign sequence of 𝒄𝒄𝑡𝑡 on the active set 𝐼𝐼, and 𝒄𝒄𝑡𝑡  =  𝜱𝜱𝑇𝑇rt−1 is the correlation vector 

of all columns of the dictionary 𝜱𝜱 with the residual vector 𝒓𝒓𝑡𝑡−1 at iteration t. The Least Angle 

Regression (LARS) algorithm is summarized below. 
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3.3.2. Tensor Least Angle Regression (T-LARS) Algorithm 

Tensor Least Angle Regression (T-LARS) is a generalization of Least Angle Regression (LARS) 

to solve the sparse multilinear least-squares problem in (3.6) using tensors and multilinear algebra. 

Unlike LARS, T-LARS does not calculate large matrices such as the Kronecker dictionary, 𝜱𝜱 in 

(3.4), which is required in vectorized sparse multilinear least-squares problems. Instead, T-LARS 

uses much smaller mode-n dictionaries for calculations. A mapping between column indices of 

Algorithm 3.1: Least Angle Regression (LARS) 

Input:  LARS_mode = 𝐿𝐿1 or 𝐿𝐿0; stopping criterion: residual error: 𝜀𝜀, or number of non-zero 
coefficients: 𝐾𝐾; normalized 𝒚𝒚; dictionary 𝜱𝜱  
Initialization: Residual: 𝒓𝒓0 = 𝒚𝒚; 𝒙𝒙 =  𝟎𝟎; active set: 𝐼𝐼 =  {}; 
1. 𝒄𝒄1  =  𝜱𝜱𝑇𝑇𝒓𝒓0 
2. [𝜆𝜆1, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖] = 𝑚𝑚𝑚𝑚𝑚𝑚(𝒄𝒄1); 
3. 𝐼𝐼 =  {𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖}; 
4. while stopping criterion not reached 
5.  𝒛𝒛𝑡𝑡 = sign (𝒄𝒄𝑡𝑡(𝐼𝐼))  

6. 𝒅𝒅𝑡𝑡 = �𝜱𝜱𝐼𝐼𝑡𝑡
𝑇𝑇𝜱𝜱𝐼𝐼𝑡𝑡�

−1𝒛𝒛𝑡𝑡 
7. 𝒗𝒗𝑡𝑡 = 𝜱𝜱𝑇𝑇𝜱𝜱𝐼𝐼𝑡𝑡𝒅𝒅𝑡𝑡 
8. for 𝑖𝑖 =  1 to column length of  𝜱𝜱 do 
9.    if  𝑖𝑖 ∈  𝐼𝐼𝑐𝑐 

10.         𝛿𝛿𝑡𝑡
+ = min �𝜆𝜆𝑡𝑡−𝒄𝒄𝑡𝑡(𝑖𝑖)

1−𝒗𝒗𝑡𝑡(𝑖𝑖) , 𝜆𝜆𝑡𝑡+𝒄𝒄𝑡𝑡(𝑖𝑖)
1+𝒗𝒗𝑡𝑡(𝑖𝑖) � 

11.         if 𝛿𝛿𝑡𝑡
+ < 𝛿𝛿𝑡𝑡

∗ 
12.             𝛿𝛿𝑡𝑡

∗ =𝛿𝛿𝑡𝑡
+; 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑖𝑖; add_column = True; 

13.        end 
14.    elseif LARS_mode == 𝐿𝐿1 

15.        𝛿𝛿𝑡𝑡
− = − 𝒙𝒙𝑡𝑡−1(𝑖𝑖)

𝒅𝒅𝑡𝑡(𝑖𝑖)  

16.        if 𝛿𝛿𝑡𝑡
− < 𝛿𝛿𝑡𝑡

∗ 
17.            𝛿𝛿𝑡𝑡

∗ =𝛿𝛿𝑡𝑡
−; 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖 = i; add_column = False; 

18.        end 
19.    end 
20. end for 
21. 𝒙𝒙 =  𝒙𝒙 + 𝛿𝛿𝑡𝑡

∗𝒅𝒅𝑡𝑡 
22. 𝜆𝜆𝑡𝑡  =  𝜆𝜆𝑡𝑡  −  𝛿𝛿𝑡𝑡

∗ 
23. 𝒄𝒄𝑡𝑡  =  𝜱𝜱𝑇𝑇𝒓𝒓𝑡𝑡 
24. 𝒓𝒓𝑡𝑡  =  𝒓𝒓𝑡𝑡−1  −  𝛿𝛿𝑡𝑡

∗𝜱𝜱𝐼𝐼𝑡𝑡 𝒅𝒅𝑡𝑡 
25. if add_column == True 
26.    𝐼𝐼 =  𝐼𝐼 + {𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖}  
27. else 
28.    𝐼𝐼 =  𝐼𝐼 – {𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖} 
29. end 
30. end while 
31. return 𝐼𝐼, 𝒙𝒙 
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dictionary Φ and column indices of mode-n dictionaries 𝜱𝜱(𝑛𝑛); 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁} is essential in T-

LARS calculations (See Appendix 1).  

Required inputs to the T-LARS algorithm are the tensor 𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽𝑛𝑛×…×𝐽𝐽𝑁𝑁, mode-n dictionary 

matrices 𝜱𝜱(𝑛𝑛); 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁} and the stopping criterion as a residual tolerance 𝜀𝜀 or the maximum 

number of non-zero coefficients 𝐾𝐾 (K-sparse representation). The output is the solution tensor 𝒳𝒳 ∈

ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁. 

First, normalize the tensor 𝒴𝒴 and columns of each dictionary 𝜱𝜱(𝑛𝑛); 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁} to have a unit 

𝐿𝐿2 norm. Note that normalizing columns of each dictionary 𝜱𝜱(𝑛𝑛); 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁} ensure 

normalization of the separable dictionary 𝜱𝜱 in (3.4) (See Appendix 2). For notational simplicity 

in the following sections, we will use 𝒴𝒴 to represent the normalized tensor and 𝜱𝜱(𝑛𝑛) to represent 

normalized dictionary matrices. 

Gram matrices are used in several steps of T-LARS. For a large separable dictionary, 𝜱𝜱,  its Gram 

matrix 𝑮𝑮 = 𝜱𝜱𝑇𝑇𝜱𝜱 would be large as well. Therefore, explicitly building this Gram matrix and using 

it in computations could be very inefficient for large problems. Instead, T-LARS uses Gram 

matrices of mode-n dictionary matrices, 𝜱𝜱(1), 𝜱𝜱(2), … ,  𝜱𝜱(𝑁𝑁), defined as 𝑮𝑮(1), 𝑮𝑮(2), … ,  𝑮𝑮(𝑁𝑁). We 

could obtain a Gram matrix 𝑮𝑮(𝑛𝑛); 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁} for each mode-n dictionary 𝜱𝜱(𝑛𝑛); 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁} 

by,

𝑮𝑮(𝑛𝑛) =  𝜱𝜱(𝑛𝑛)𝑇𝑇
𝜱𝜱(𝑛𝑛) (3. 13) 

The tensor 𝒞𝒞1 is the correlation between the tensor 𝒴𝒴 and the mode-n dictionary matrices 𝜱𝜱(𝑛𝑛); 𝑛𝑛 ∈

{1, ⋯ , 𝑁𝑁}.

𝒞𝒞1  =  𝒴𝒴 ×1 𝜱𝜱(1)𝑇𝑇
×2. . .×𝑛𝑛 𝜱𝜱(𝑛𝑛)𝑇𝑇

×𝑛𝑛+1. . .×𝑁𝑁 𝜱𝜱(𝑁𝑁)𝑇𝑇 (3. 14) 

The tensor 𝒞𝒞1 could be calculated efficiently as 𝑁𝑁 mode-n products, and the initial correlation 

vector is obtained by vectorizing 𝒞𝒞1, where, 𝒄𝒄1 =  vec(𝒞𝒞1) (See Appendix 3). 

T-LARS requires several parameters to be initialized before starting the iterations. The 

regularization parameter 𝜆𝜆1 is initialized to the maximum value of the correlation vector 𝒄𝒄1 and 

the corresponding most correlated column 𝝓𝝓𝐼𝐼1 from the separable dictionary, 𝜱𝜱  is added to the 

initial active set I. The initial residual tensor ℛ0 is set to 𝒴𝒴 and the initial solution vector 𝒙𝒙0  and 
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the initial direction vector 𝒅𝒅0 is set to 𝟎𝟎. Initial step size 𝛿𝛿0
∗ is also set to 0. T-LARS starts the 

iterations at 𝑡𝑡 = 1 to run until a stopping criterion is reached. 

• Initial residual tensor: ℛ0 = 𝒴𝒴 

• Initial solution vector: 𝒙𝒙�0  =  𝟎𝟎 

• Initial direction vector: 𝒅𝒅0  =  𝟎𝟎 

• Initial step size: 𝛿𝛿0
∗ = 0 

• Initial regularization parameter: 𝜆𝜆1 =  max(𝒄𝒄1) 

• Active set: 𝐼𝐼 =  �𝝓𝝓𝐼𝐼1� 

• Start iterations at 𝑡𝑡 = 1 

The following calculations are performed at every iteration 𝑡𝑡 = 1, 2, … of the T-LARS algorithm 

until the stopping criterion is reached. 

3.3.2.1. Obtain the inverse of the Gram matrix of the active columns of the dictionary 

We obtain the Gram matrix of the active columns of the dictionary 𝑮𝑮𝑡𝑡 = 𝜱𝜱𝐼𝐼𝑡𝑡
𝑇𝑇𝜱𝜱𝐼𝐼𝑡𝑡 at each iteration 

𝑡𝑡. The size of this Gram matrix would either increase (dictionary column addition) or decrease 

(dictionary column removal) with each iteration 𝑡𝑡. Therefore, for computational efficiency, we use 

the Schur complement inversion formula to calculate 𝑮𝑮𝑡𝑡
−1 from 𝑮𝑮𝑡𝑡−1

−1  , thereby avoiding its full 

calculation [16], [75], [76]. 

a) Updating the Gram matrix after adding a new column 𝒌𝒌𝒂𝒂  to the active set 

Let the column 𝑘𝑘𝑎𝑎 ∈ 𝐼𝐼 be the new column added to the active matrix. Given 𝑮𝑮𝑡𝑡−1
−1  , the inverse of 

the Gram matrix 𝑮𝑮𝑡𝑡
−1  could be calculated using the Schur complement inversion formula for a 

symmetric block matrix [77]–[79], 

𝑮𝑮𝑡𝑡
−1  = �𝑭𝑭11

−1 𝛼𝛼𝒃𝒃
𝛼𝛼𝒃𝒃T 𝛼𝛼

� (3. 15) 

where, 𝑭𝑭11
−1 =  𝑮𝑮𝑡𝑡−1

−1 +  𝛼𝛼𝒃𝒃𝒃𝒃T,  𝒃𝒃 =  −𝑮𝑮𝑡𝑡−1
−1 𝐠𝐠a and 𝛼𝛼 = 1 / �g(𝑘𝑘𝑎𝑎,𝑘𝑘𝑎𝑎) +   𝐠𝐠a

𝑇𝑇𝒃𝒃�  and the column 

vector 𝐠𝐠a
𝑇𝑇 is given by, 

𝐠𝐠a
𝑇𝑇  =  [g(𝑘𝑘1,𝑘𝑘𝑎𝑎) ⋯  g(𝑘𝑘𝑛𝑛,𝑘𝑘𝑎𝑎) ⋯ g(𝑘𝑘𝑎𝑎−1,𝑘𝑘𝑎𝑎)]1×𝑎𝑎−1 
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The elements, g(𝑘𝑘𝑛𝑛,𝑘𝑘𝑎𝑎) of 𝐠𝐠a
𝑇𝑇 are elements of the gram matrix, 𝑮𝑮𝑡𝑡 that are obtained using mode-n 

gram matrices 𝑮𝑮(𝑛𝑛); 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁}. 

g(𝑘𝑘𝑛𝑛, 𝑘𝑘𝑎𝑎)  = g(𝑁𝑁)�𝑘𝑘𝑛𝑛𝑁𝑁 , 𝑘𝑘𝑎𝑎𝑁𝑁� ⊗ … ⊗ g(1)�𝑘𝑘𝑛𝑛1, 𝑘𝑘𝑎𝑎1� 

where, 𝑘𝑘𝑛𝑛𝑁𝑁 ⋯ 𝑘𝑘𝑛𝑛1 are the tensor indices corresponds to the column index 𝑘𝑘𝑛𝑛 and 𝑘𝑘𝑎𝑎𝑁𝑁 ⋯ 𝑘𝑘𝑎𝑎1are 

the tensor indices corresponds to the column index 𝑘𝑘𝑎𝑎 (See Appendix 1). 

b) Updating the Gram matrix after removing a column 𝒌𝒌𝒓𝒓  from the active set 

Let the column 𝑘𝑘𝑟𝑟 ∈ 𝐼𝐼 be the column removed from the active set. We move column 𝑘𝑘𝑟𝑟 and row 

𝑘𝑘𝑟𝑟 of 𝑮𝑮𝑡𝑡−1
−1  to become its last column and last row, respectively.  We denote this new matrix as 

𝑮𝑮�𝑡𝑡−1
−1 . By using the Schur complement inversion formula for a symmetric block matrix, the inverse 

𝑮𝑮�𝑡𝑡−1
−1  could be interpreted as 

𝑮𝑮�𝑡𝑡−1
−1  = �𝑭𝑭11

−1 𝛼𝛼𝒃𝒃
𝛼𝛼𝒃𝒃T 𝛼𝛼

�
N×N

(3. 16) 

where, 𝑭𝑭11
−1 =  𝑮𝑮𝑡𝑡

−1 +  𝛼𝛼𝒃𝒃𝒃𝒃T. Therefore, we could calculate the inverse of the Gram matrix at 

iteration 𝑡𝑡 as [75], [76], 

𝑮𝑮𝑡𝑡
−1  = 𝑭𝑭11

−1  −  𝛼𝛼𝒃𝒃𝒃𝒃T (3. 17) 

Both 𝑭𝑭11
−1 and 𝛼𝛼𝒃𝒃𝒃𝒃𝑇𝑇 could be easily obtained from (𝑮𝑮�𝑡𝑡−1

−1 ) as follows (MATLAB notation) 

𝑭𝑭11
−1  =  𝑮𝑮�𝑡𝑡−1

−1 (1: 𝑁𝑁 − 1, 1: 𝑁𝑁 − 1) (3. 18) 

𝛼𝛼𝒃𝒃𝒃𝒃T  =
𝑮𝑮�𝑡𝑡−1

−1 (1: 𝑁𝑁 − 1, 𝑁𝑁)𝑮𝑮�𝑡𝑡−1
−1 (𝑁𝑁, 1: 𝑁𝑁 − 1)

𝑮𝑮�𝑡𝑡−1
−1 (𝑁𝑁, 𝑁𝑁)

 (3. 19) 

3.3.2.2. Obtain direction vector 𝑑𝑑𝑡𝑡 

The direction vector, along which the solution 𝒙𝒙 follows in a piecewise linear fashion when an 

active column is added to or removed from the active set, is given by      

𝒅𝒅𝑡𝑡 = 𝑮𝑮𝑡𝑡
−1𝒛𝒛𝑡𝑡 (3. 20) 

where,  𝒛𝒛𝑡𝑡  =  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝒄𝒄𝑡𝑡(𝐼𝐼)�, i.e., the sign sequence of the correlation vector over the active set. 
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3.3.2.3. Obtain 𝑣𝑣𝑡𝑡 

A vector 𝒗𝒗𝑡𝑡 could be defined as  

 𝒗𝒗𝑡𝑡  =  𝜱𝜱𝑇𝑇𝜱𝜱𝐼𝐼𝑡𝑡𝒅𝒅𝑡𝑡 (3. 21) 

This vector 𝒗𝒗𝑡𝑡 could be efficiently obtained as a multilinear transformation of a direction tensor 

𝒟𝒟t by the Gram matrices 𝑮𝑮(𝑛𝑛);  𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁}  

 𝒱𝒱t  =  𝒟𝒟t ×1 𝑮𝑮(1) ×2. . .×𝑛𝑛 𝑮𝑮(2) ×𝑛𝑛+1. . .×𝑁𝑁 𝑮𝑮(𝑁𝑁) (3. 22) 

where vec�𝒟𝒟t(𝐼𝐼)� =  𝒅𝒅𝑡𝑡, and 𝒟𝒟t(𝐼𝐼𝑐𝑐) = 0. We note that vec(𝒱𝒱t) =  𝒗𝒗𝑡𝑡. 

3.3.2.4. Obtain the correlation vector 𝑐𝑐𝑡𝑡 

As 𝒄𝒄𝟏𝟏 would be obtained at initialization, the following calculations are needed only any iteration 

𝑡𝑡 ≥ 2.  The correlation vector 𝒄𝒄𝒕𝒕 is given by 

 𝒄𝒄𝒕𝒕 =  𝜱𝜱𝑇𝑇vec(ℛ𝑡𝑡−1) (3. 23) 

where ℛ𝑡𝑡−1  is the residual tensor from the previous iteration. 

Since 

 vec(ℛ𝑡𝑡−1)  =  vec(ℛ𝑡𝑡−2)  −  𝛿𝛿𝑡𝑡−1
∗ 𝜱𝜱𝐼𝐼𝑡𝑡−1𝒅𝒅𝑡𝑡−1 (3. 24) 

we could update the correlation vector 𝒄𝒄𝒕𝒕 by, 

 𝒄𝒄𝒕𝒕   =  𝜱𝜱𝑇𝑇vec(ℛ𝑡𝑡−2)  −  𝛿𝛿𝑡𝑡−1
∗ 𝜱𝜱𝑇𝑇𝜱𝜱𝐼𝐼𝑡𝑡−1𝒅𝒅𝑡𝑡−1 (3. 25) 

Substituting (3.21) and (3.23) into (3.25), we obtain an update for the correlation   

 𝒄𝒄𝒕𝒕  =  𝒄𝒄𝑡𝑡−1 −  𝛿𝛿𝑡𝑡−1
∗ 𝒗𝒗𝑡𝑡−1 (3. 26) 

3.3.2.5. Calculate step size 𝛿𝛿∗ 

The minimum step size for adding a new column to the active set is given by, 

𝛿𝛿𝑡𝑡
+ = min

𝑖𝑖∈𝐼𝐼𝑐𝑐
�

𝜆𝜆𝑡𝑡 − 𝒄𝒄𝑡𝑡(𝑖𝑖)
1 − 𝒗𝒗𝑡𝑡(𝑖𝑖) ,

𝜆𝜆𝑡𝑡 + 𝒄𝒄𝑡𝑡(𝑖𝑖)
1 + 𝒗𝒗𝑡𝑡(𝑖𝑖) � (3. 27) 

The minimum step size for removing a column from the active set is given by, 
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𝛿𝛿𝑡𝑡
− = min

𝑖𝑖∈𝐼𝐼
�−

𝒙𝒙𝑡𝑡−1(𝑖𝑖)
𝒅𝒅𝑡𝑡(𝑖𝑖) � (3. 28) 

Therefore, the minimum step size for 𝐿𝐿1 constrained sparse least-squares problem is  

𝛿𝛿𝑡𝑡
∗  =  min {𝛿𝛿𝑡𝑡

+, 𝛿𝛿𝑡𝑡
−}. (3. 29) 

For the 𝐿𝐿0 constrained sparse least-squares problem, only new columns are added to the active set 

at every iteration. Therefore, the minimum step size for 𝐿𝐿0 constrained sparse least-squares 

problem is 𝛿𝛿𝑡𝑡
∗ = 𝛿𝛿𝑡𝑡

+.  

3.3.2.6. Update the solution 𝑥𝑥�𝑡𝑡, regularization parameter, and residual 

The current solution 𝒙𝒙�t =  vec(𝒳𝒳�𝑡𝑡 ) is given by, 

𝒙𝒙�𝑡𝑡  =  𝒙𝒙�𝑡𝑡−1  +  𝛿𝛿𝑡𝑡
∗𝒅𝒅𝑡𝑡 (3. 30)

Update 𝜆𝜆𝑡𝑡+1  and ℛ𝑡𝑡  for the next iteration 

𝜆𝜆𝑡𝑡+1  =  𝜆𝜆𝑡𝑡  −  𝛿𝛿𝑡𝑡
∗ (3. 31) 

The residual tensor ℛ𝑡𝑡 could be calculated as, 

ℛ𝑡𝑡  =  ℛ𝑡𝑡−1  −  𝛿𝛿𝑡𝑡
∗𝒟𝒟t ×1 𝜱𝜱(1) ×2 𝜱𝜱(2) ×3 ⋯ ×𝑁𝑁 𝜱𝜱(𝑁𝑁) (3. 32) 

3.3.2.7. Check stopping criterion 

Check if either of the following stopping criteria has been reached  

‖ℛ𝑡𝑡‖2  < 𝜀𝜀 (3. 33) 

or 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(𝐼𝐼) ≥ 𝐾𝐾 (3. 34) 

where ‖ℛ𝑡𝑡‖2 = �𝒴𝒴 − 𝒳𝒳�𝑡𝑡 ×1 𝜱𝜱(1) ×2 ⋯ ×𝑁𝑁 𝜱𝜱(𝑁𝑁) �
2
 is the 𝐿𝐿2 norm of the residual error after the 

iteration t, where for a normalized 𝒴𝒴 and column normalized mode-n dictionaries 𝜱𝜱(𝑛𝑛), 

0 ≤ ‖ℛ𝑡𝑡‖2 ≤ 1 

T-LARS algorithm solves the sparse tensor least-squares problem in  (3.6) to obtain a sparse 

solution 𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁 for a tensor 𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽𝑛𝑛×…×𝐽𝐽𝑁𝑁 using N mode-n dictionaries 𝜱𝜱(𝑛𝑛) ∈
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ℝ𝐽𝐽n×𝐼𝐼𝑛𝑛; ∀  𝑛𝑛 ∈  {1, . . 𝑁𝑁}. Tensor 𝒴𝒴  and N mode-n dictionaries 𝜱𝜱(1), 𝜱𝜱(2), … ,  𝜱𝜱(𝑁𝑁),  are the inputs 

to the T-LARS algorithm, where 𝑁𝑁 ≥ 1. T-LARS algorithm could be used to solve 

underdetermined, square, or overdetermined sparse tensor least-squares problems, where the 

mode-n dictionaries 𝜱𝜱(𝑛𝑛) ∈ ℝ𝐽𝐽n×𝐼𝐼𝑛𝑛; ∀  𝑛𝑛 ∈  {1, . . 𝑁𝑁}, are over-complete dictionaries (𝐽𝐽n < 𝐼𝐼𝑛𝑛), 

complete dictionaries (𝐽𝐽n = 𝐼𝐼𝑛𝑛) or under-complete dictionaries (𝐽𝐽n > 𝐼𝐼𝑛𝑛), respectively. 

The complete T-LARS algorithm is summarized below (Matlab notation). T-LARS algorithm 

given in this section solves the 𝐿𝐿𝑝𝑝 sparse separable least-squares problem when T-LARS_mode is 

set to 𝐿𝐿𝑝𝑝.  

Algorithm 3.2: Tensor Least Angle Regression (T-LARS) 
Input: T-LARS_mode = 𝐿𝐿1 or 𝐿𝐿0, normalized tensor 𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽𝑛𝑛×…×𝐽𝐽𝑁𝑁 ; normalized dictionary 
matrices 𝜱𝜱(𝑛𝑛) ∈ ℝ𝐽𝐽𝑛𝑛×𝐼𝐼𝑛𝑛;  𝑛𝑛 ∈  {1, . . 𝑁𝑁}; stopping criterion: residual tolerance: 𝜀𝜀 or number of non-
zero coefficients: 𝐾𝐾   
Initialization: Residual: ℛ0  = 𝒴𝒴; 𝒙𝒙0  =  0; active set: 𝐼𝐼 =  {}; 
1. 𝒞𝒞1  =  ℛ0 ×1 𝜱𝜱(1)𝑇𝑇

×2. . .×𝑛𝑛 𝜱𝜱(𝑛𝑛)𝑇𝑇
×𝑛𝑛+1. . .×𝑁𝑁 𝜱𝜱(𝑁𝑁)𝑇𝑇

 
2. 𝒄𝒄1 = vec(𝒞𝒞1) 
3. [𝜆𝜆1, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖 ] =  𝑚𝑚𝑚𝑚𝑚𝑚(𝒄𝒄1) 
4. 𝐼𝐼 =  {𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖} 
5. for 𝑛𝑛 = 1 to N do 
6.      𝑮𝑮(𝑛𝑛) = 𝜱𝜱(𝑛𝑛)𝑇𝑇

𝜱𝜱(𝑛𝑛) 
7. end for 
8. while stopping criterion not reached (‖ℛ𝑡𝑡−1‖2  > 𝜀𝜀 or 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(𝐼𝐼) < 𝐾𝐾) 
9.   𝒛𝒛𝑡𝑡 = sign (𝒄𝒄𝑡𝑡(𝐼𝐼)) 
10.   𝑮𝑮𝑡𝑡

−1 =updateInverseGramMatrix(𝑮𝑮𝑡𝑡−1
−1 , { 𝑮𝑮(1), . . . , 𝑮𝑮(𝑁𝑁)}, I, add_column, column_idx) % 

See Section (3.3.2.1) 
11.   𝒅𝒅𝑡𝑡 = 𝑮𝑮𝑡𝑡

−1𝒛𝒛𝑡𝑡 
12.   vec(𝒟𝒟t(𝐼𝐼)) =  𝒅𝒅𝑡𝑡 
13.   𝒱𝒱t  =  𝒟𝒟t ×1 𝑮𝑮(1) ×2 … ×𝑛𝑛 𝑮𝑮(2) ×𝑛𝑛+1 … ×𝑁𝑁 𝑮𝑮(𝑁𝑁) 
14.  𝒗𝒗𝑡𝑡 = vec(𝒱𝒱t) 
15.   𝛿𝛿𝑡𝑡

+
1= (𝜆𝜆𝑡𝑡 − 𝒄𝒄𝑡𝑡(𝐼𝐼𝑐𝑐))./ (1 − 𝒗𝒗𝑡𝑡(𝐼𝐼𝑐𝑐))      % “./” -  Elementwise division  

16.   𝛿𝛿𝑡𝑡
+

2= (𝜆𝜆𝑡𝑡 + 𝒄𝒄𝑡𝑡(𝐼𝐼𝑐𝑐))./ (1 + 𝒗𝒗𝑡𝑡(𝐼𝐼𝑐𝑐)) 
17.   𝛿𝛿𝑡𝑡

− =  −𝒙𝒙𝑡𝑡−1./ 𝒅𝒅𝑡𝑡 
18.   [𝛿𝛿𝑡𝑡

∗, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖] = 𝑚𝑚𝑚𝑚𝑚𝑚  �𝛿𝛿𝑡𝑡
+

1, 𝛿𝛿𝑡𝑡
+

2� 
19.   add_column == True 
20.   if T-LARS_mode == 𝐿𝐿1 && min (𝛿𝛿𝑡𝑡

−) < 𝛿𝛿𝑡𝑡
∗ 

21.        [𝛿𝛿𝑡𝑡
∗, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖]= min (𝛿𝛿𝑡𝑡

−) 
22.        add_column = False 
23.   end 
24.  𝒙𝒙𝑡𝑡 = 𝒙𝒙𝑡𝑡−1 + 𝛿𝛿𝑡𝑡

∗𝒅𝒅𝑡𝑡 
25.   𝜆𝜆𝑡𝑡+1  =  𝜆𝜆𝑡𝑡  −  𝛿𝛿𝑡𝑡

∗ 
26.   𝒄𝒄𝑡𝑡+1  =  𝒄𝒄𝑡𝑡 −  𝛿𝛿𝑡𝑡

∗𝒗𝒗𝑡𝑡  
27.   ℛ𝑡𝑡  =  ℛ𝑡𝑡−1  −  𝛿𝛿𝑡𝑡

∗𝒟𝒟t ×1 𝜱𝜱(1) ×2 𝜱𝜱(2) ×3 ⋯ ×𝑁𝑁 𝜱𝜱(𝑁𝑁) 
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28.   if add_column == True 
29.         𝐼𝐼 =  𝐼𝐼 + {𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖}  
30.   else  
31.         𝐼𝐼 =  𝐼𝐼 – {𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖} 
32.   end 
33. end while 
34. return 𝐼𝐼, 𝒙𝒙 

 

3.4. Algorithm Computational Complexity 

In this section, we analyze the computational complexity of our T-LARS algorithm and compare 

it with the computational complexity of Kronecker-OMP. We show that the computational 

complexity of T-LARS is significantly lower than Kronecker-OMP when solving sparse tensor 

least-squares problems.  

3.4.1. The Computational complexity of T-LARS 

Let 𝐾𝐾 be the number of iterations used in T-LARS, 𝑃𝑃 =  𝐼𝐼1 × … × 𝐼𝐼𝑛𝑛 × … × 𝐼𝐼𝑁𝑁 is the number of 

atoms in the Kronecker dictionary 𝜱𝜱, and 𝑄𝑄 =  𝐽𝐽1 × … × 𝐽𝐽𝑛𝑛 × … × 𝐽𝐽𝑁𝑁  be the total number of 

elements in tensor 𝒴𝒴. In a typical sparse solution obtained by T-LARS 𝐾𝐾 ≪  𝑃𝑃. In the following 

analysis, we refer to Algorithm 3.2 above, which describes the T-LARS algorithm. 

Step 1 of the T-LARS algorithm runs only once and has a computational complexity of, 

�𝐼𝐼1𝑄𝑄 +
𝐼𝐼1𝐼𝐼2𝑄𝑄

 𝐽𝐽1
+ ⋯ +

P𝑄𝑄
 𝐽𝐽1 … 𝐽𝐽n−1 × 𝐼𝐼𝑛𝑛+1 … 𝐼𝐼𝑁𝑁

+ ⋯ + 𝑃𝑃JN� 

Step 10 of the T-LARS algorithm obtains the inverse Gram matrix, using Schur complement 

inversion, and has complexity 𝒪𝒪(𝑃𝑃𝑘𝑘 +  𝑘𝑘3) where 𝑘𝑘 is the iteration number whose maximum value 

is K. The computational complexity of step 10 for column addition is (𝑃𝑃𝐾𝐾 + 4 ∑ 𝑘𝑘2𝐾𝐾
𝑘𝑘=1 ) and the 

computational complexity of step 10 for column removal is (2 ∑ 𝑘𝑘2𝐾𝐾
𝑘𝑘=1 ). Therefore, the maximum 

computational complexity of step 10 is given by, 

𝑃𝑃𝐾𝐾 + 4 � 𝑘𝑘2
𝐾𝐾

𝑘𝑘=1
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Steps 13 and 27 of the T-LARS algorithm involve multilinear transformations. In both steps 𝒟𝒟t is 

a sparse tensor with at most k non-zero entries at any iteration k. Therefore, for K iterations, the 

computational complexities of step 13 and step 27 are, 

2 � � 𝑘𝑘𝐼𝐼𝑛𝑛

𝑁𝑁

𝑛𝑛=1

𝐾𝐾

𝑘𝑘=1

 

and 

2 � � 𝑘𝑘𝐽𝐽𝑛𝑛

𝑁𝑁

𝑛𝑛=1

𝐾𝐾

𝑘𝑘=1

+ 2𝐾𝐾𝐾𝐾 

respectively. 

3.4.1.1. Case of overcomplete mode-n dictionaries  

For over-complete mode-n dictionaries 𝜱𝜱(𝑛𝑛) ∈ ℝ𝐽𝐽n×𝐼𝐼𝑛𝑛;  𝐽𝐽n < 𝐼𝐼𝑛𝑛, 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁}, step13 of the T-

LARS algorithm would have higher computational complexity compared to step 27. Therefore, 

the computational complexity for most computationally intensive steps of the T-LARS algorithm 

would be less than, 

⎝

⎜
⎜
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𝐾𝐾
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𝐾𝐾
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⎠
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(3. 35) 

3.4.2. Comparison of computational complexities of Kronecker-OMP and T-LARS 

Caiafa et al. earlier analyzed the computational complexity of Kronecker-OMP to solve the 

problem (5) given 𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽𝑛𝑛×…×𝐽𝐽𝑁𝑁, 𝐽𝐽n = 𝐽𝐽; ∀ 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁}  and mode-n dictionaries  𝜱𝜱(𝑛𝑛) ∈

ℝ𝐽𝐽×𝐼𝐼. From [16], after 𝐾𝐾 iterations, the combined computational complexity of Kronecker-OMP 

was given by 
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⎝
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(3. 36) 

To obtain the computational complexity of T-LARS to solve the problem (3.6), given 𝒴𝒴 ∈

ℝ𝐽𝐽1×…×𝐽𝐽𝑛𝑛×…×𝐽𝐽𝑁𝑁, 𝐽𝐽n; ∀ 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁}  and mode-n dictionaries  𝜱𝜱(𝑛𝑛) ∈ ℝ𝐽𝐽×𝐼𝐼, we substitute 𝐼𝐼n =

𝐼𝐼 and 𝐽𝐽n = 𝐽𝐽;    ∀ 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁}, in (3.35) to obtain  

�2𝐼𝐼𝑁𝑁𝐽𝐽 �
1 − �𝐽𝐽

𝐼𝐼�
𝑁𝑁

1 − 𝐽𝐽
𝐼𝐼

� + �𝐼𝐼𝑁𝑁𝐾𝐾 + 4 � 𝑘𝑘2
𝐾𝐾

𝑘𝑘=1

� +  2𝑁𝑁𝑁𝑁 � 𝑘𝑘
𝐾𝐾

𝑘𝑘=1

+   2𝐾𝐾𝐽𝐽𝑁𝑁 � (3. 37) 

 

Table 3.1. Term by term comparison of the computational complexity of Kronecker-OMP and T-

LARS given in  (3.36) and (3.37) 

 Kronecker-OMP T-LARS 

1st Term 

2𝐼𝐼𝑁𝑁𝐽𝐽 �
1 − �𝐽𝐽

𝐼𝐼�
𝑁𝑁

1 − 𝐽𝐽
𝐼𝐼

� 𝐾𝐾 2𝐼𝐼𝑁𝑁𝐽𝐽 �
1 − �𝐽𝐽

𝐼𝐼�
𝑁𝑁

1 − 𝐽𝐽
𝐼𝐼

� 

2nd Term 
2𝐼𝐼𝑁𝑁𝐾𝐾 +  7 � 𝑘𝑘2𝑁𝑁

𝐾𝐾

𝑘𝑘=1

 𝐼𝐼𝑁𝑁𝐾𝐾 + 4 � 𝑘𝑘2
𝐾𝐾

𝑘𝑘=1

 

3rd Term 
(2𝑁𝑁𝑁𝑁 + 𝑁𝑁 +  4) � 𝑘𝑘𝑁𝑁

𝐾𝐾

𝑘𝑘=1

 2𝑁𝑁𝑁𝑁 � 𝑘𝑘
𝐾𝐾

𝑘𝑘=1

 

4th Term (𝑁𝑁(𝑁𝑁 − 1) + 3 ) 𝐾𝐾𝐽𝐽𝑁𝑁 2𝐾𝐾𝐽𝐽𝑁𝑁 

 

Table 1. shows a term by term comparison of the computational complexity of Kronecker-OMP 

and T-LARS given in (3.36) and (3.37), respectively. 
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On comparing (3.36) and (3.37), we note that the first term of the computational complexity of 

T-LARS is more than 𝐾𝐾 times lower than the first term of the computational complexity of 

Kronecker-OMP.  

2𝐼𝐼𝑁𝑁𝐽𝐽 �
1 − �𝐽𝐽

𝐼𝐼�
𝑁𝑁

1 − 𝐽𝐽
𝐼𝐼

� < 2𝐼𝐼𝑁𝑁𝐽𝐽 �
1 − �𝐽𝐽

𝐼𝐼�
𝑁𝑁

1 − 𝐽𝐽
𝐼𝐼

� 𝐾𝐾 (3. 38) 

On comparing (3.36) and (3.37), we note that the second term of the computational complexity 

of T-LARS is 𝑂𝑂(𝐼𝐼𝑁𝑁𝐾𝐾 + 𝐾𝐾3) while the second term of the computational complexity of Kronecker-

OMP is 𝑂𝑂(𝐼𝐼𝑁𝑁𝐾𝐾 + 𝐾𝐾2𝑁𝑁+1). Therefore, for 𝑁𝑁 ≥ 2 and the same number of iterations  

𝐼𝐼𝑁𝑁𝐾𝐾 + 4 � 𝑘𝑘2
𝐾𝐾

𝑘𝑘=1

<  2𝐼𝐼𝑁𝑁𝐾𝐾 +  7 � 𝑘𝑘2𝑁𝑁
𝐾𝐾

𝑘𝑘=1

.    (3. 39) 

On comparing (3.36) and (3.37), we note that the third term of the computational complexity of 

T-LARS is 𝑂𝑂(𝐾𝐾2) while the third term of the computational complexity of Kronecker-OMP is 

𝑂𝑂(𝐾𝐾𝑁𝑁+1). Therefore, for 𝑁𝑁 ≥ 2 and the same number of iterations  

2𝑁𝑁𝑁𝑁 � 𝑘𝑘
𝐾𝐾

𝑘𝑘=1

< (2𝑁𝑁𝑁𝑁 + 𝑁𝑁 +  4) � 𝑘𝑘𝑁𝑁
𝐾𝐾

𝑘𝑘=1

     (3. 40) 

On comparing (3.36) and (3.37), we note that both fourth terms of the computational complexity 

of T-LARS and the fourth term of the computational complexity of Kronecker-OMP are 𝑂𝑂(𝐽𝐽𝑁𝑁). 

Therefore,  

2𝐾𝐾𝐽𝐽𝑁𝑁 < (𝑁𝑁(𝑁𝑁 − 1) + 3 )𝐾𝐾𝐽𝐽𝑁𝑁 (3. 41) 

Therefore, from (3.38), (3.39), (3.40), and (3.41), we observe that the computational complexity 

of our T-LARS algorithm is significantly lower than Kronecker-OMP when solving sparse tensor 

least-squares problems with 𝑁𝑁 ≥ 2 with the same number of iterations. 

For multi-dimensional problems, 𝑁𝑁 ≥ 2, typically 𝐾𝐾 ≫  𝐼𝐼, therefore, the 2nd terms of the 

computational complexities of both T-LARS and Kronecker-OMP dominate over all other terms. 

Therefore, for K iterations, the asymptotic computational complexities of T-LARS and Kronecker-

OMP are 𝑂𝑂(𝐼𝐼𝑁𝑁𝐾𝐾 + 𝐾𝐾3) and 𝑂𝑂(𝐼𝐼𝑁𝑁𝐾𝐾 + 𝐾𝐾2𝑁𝑁+1), respectively. 
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3.5. Experimental Results 

In this section, we present experimental results to compare the performance of Kronecker-OMP 

and T-LARS when used to obtain sparse representations of 3-D brain images using both fixed and 

learned mode-n overcomplete dictionaries. 

3.5.1. Experimental Datasets  

For our computational experiments, we obtained a 3D MRI brain image, and a 3D PET-CT brain 

image, from publicly available datasets.   

Our used 3D MRI brain image consists of 175 × 150 × 10 voxels and was obtained from the 

OASIS-3: Longitudinal Neuroimaging, Clinical, and Cognitive Dataset for Normal Aging and 

Alzheimer’s Disease [80]. This 3D MRI image shows a region in the brain of a 38-year-old male 

patient with a tumor in his right frontal lobe.  

Our used 3D PET-CT brain image consisted of 180 × 160 × 10 voxels and was obtained from 

the Cancer Genome Atlas Lung Adenocarcinoma (TCGA-LUAD) data collection [81]. This 3D 

PET-CT image shows a region in the brain of a 38-year-old female patient. 

3.5.2. Experimental Setup 

We compared the performance of T-LARS and Kronecker-OMP when used to obtain different 

sparse representations for our 3-D MRI and PET-CT brain images by solving 𝐿𝐿0 and 𝐿𝐿1 constrained 

sparse multilinear least-squares problems, using both fixed and learned overcomplete dictionaries. 

We also compared the performance of T-LARS and Kronecker-OMP when used to obtain sparse 

representations of 3D PET-CT images using compressed sensed samples. 

Our fixed mode-n overcomplete dictionaries were unions of a Discrete Cosine Transform (DCT) 

dictionaries and a Symlet wavelet packet with four vanishing moments dictionaries. In this case of 

using fixed mode-n dictionaries, we obtained the required 3D sparse representations by solving 

either the 3-D 𝐿𝐿0 or 𝐿𝐿1 minimization problem. 

Our learned mode-n overcomplete dictionaries were learned using the Tensor-Method of Optimal 

Directions (T-MOD) [30] algorithm. We used T-MOD to learn, three overcomplete mode-n 

dictionaries, 𝜱𝜱(1) ∈ ℝ32×38, 𝜱𝜱(2) ∈ ℝ32×38and 𝜱𝜱(3) ∈ ℝ10×12, using random patches,  32 ×
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32 × 10 voxels, with a 10% overlap from either one of our used 3-D brain images (MRI or PET-

CT) [29], [82]. In this case of using learned dictionaries, we obtained the required 3D sparse 

representations by solving either a 4-D (due to the use of image patches) 𝐿𝐿0 or 𝐿𝐿1 minimization 

problem. For fair comparison of the performance of T-LARS and Kronecker-OMP, we generated 

our results using two learned dictionaries, 𝜱𝜱𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 and 𝜱𝜱𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, that were obtained using 

Kronecker-OMP and T-LARS as the sparse coding algorithm used by T-MOD, respectively. 

To compare the performance of T-LARS and Kronecker-OMP when used to solve 𝐿𝐿0 and 𝐿𝐿1 

constrained sparse multilinear least-squares problems, we designed the following experiments to 

obtain sparse representations of our used 3-D brain images under different conditions. 

1. Experiment 1: Fixed mode-n dictionaries - 3D 𝐿𝐿0 minimization problem 

2. Experiment 2: Learned mode-n dictionaries(𝜱𝜱𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾) - 4D 𝐿𝐿0 minimization problem 

3. Experiment 3: Learned mode-n dictionaries(𝜱𝜱𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) - 4D 𝐿𝐿0 minimization problem 

4. Experiment 4: Fixed mode-n dictionaries - 3D 𝐿𝐿1 minimization problem 

5. Experiment 5: Learned mode-n dictionaries(𝜱𝜱𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) - 4D 𝐿𝐿1 minimization problem 

All our experimental results were obtained using a MATLAB implementation of T-LARS and 

Kronecker-OMP on an MS-Windows machine: 2 Intel Xeon CPUs E5-2637 v4, 3.5GHz, 32GB 

RAM, and NVIDIA Tesla P100 GPU with 12GB memory.  

3.5.3. Experimental Results for 3D MRI Brain Images 

In this section, we compare the performance of T-LARS and Kronecker-OMP to obtain K-sparse 

representations of our 3D MRI brain image, 𝒴𝒴, 175 × 150 × 10  voxels. by solving the 𝐿𝐿0 

constrained sparse tensor least-squares problem. We also obtained similar K-sparse representations 

using T-LARS by solving the L1 optimization problem. Table 3.2 summarizes our results for the 

1-5 experiments described in Section 5.2. In all experiments, the algorithms were stopped when 

the number of non-zero coefficients 𝐾𝐾 reached 13,125, which is 5% of the number of elements in 

𝒴𝒴. We note that in Table 2, the number of iterations for L1 optimization problems is larger than K 

because, as shown in Algorithm 3.2, at each iteration, T-LARS could either add or remove non-

zero coefficients to or from the solution. 
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Table 3.2. Summary of experimental results for our 3D MRI brain image 

Experim

ent 
Image Size 

Optimization 

Problem 
Dictionary Type 

# of 

Iterations 

Computation 

Time (sec) 

K-OMP

Computation 

Time (sec) 

T-LARS

1 175×150×10 𝐿𝐿0 Fixed 13,125 20,144 434 

2 32×32×10×36 𝐿𝐿0 Learned

(𝜱𝜱𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾) 
13,125 25,002 394 

3 32×32×10×36 𝐿𝐿0 Learned

(𝜱𝜱𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) 
13,125 22,646 400 

4 175×150×10 𝐿𝐿1 Fixed 14,216 - 495 

5 32×32×10×36 𝐿𝐿1 Learned

(𝜱𝜱𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) 
14,856 - 490 

Experiment 1: Figure 3.1 and Figure 3.2 show obtained experimental results for representing our 

3D MRI brain image using three fixed mode-n overcomplete dictionaries, 𝜱𝜱(1) ∈ ℝ175×351, 

𝜱𝜱(2) ∈ ℝ150×302 and 𝜱𝜱(3) ∈ ℝ10×26, by solving the 𝐿𝐿0 minimization problem, using both T-LARS 

and Kronecker-OMP. The residual error of the reconstructed 3-D images obtained using T-LARS 

was ‖ℛ‖2 = 0.0839 (8.39 %) and Kronecker-OMP was ‖ℛ‖2 = 0.0624 (6.24 %). 

Figure 3.1. Original 3D MRI brain image (a), its reconstruction using 5% non-zero coefficients (𝐾𝐾 =
13,125 ) obtained by Kronecker-OMP (b) and T-LARS (c) using fixed mode-n overcomplete dictionaries 
(Experiment 1) 
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Figure 3.2. a) Number of non-zero coefficients vs. computation time; b) Residual error vs. computation 
time c) Residual error vs. number of non-zero coefficients, obtained by applying Kronecker-OMP and T-
LARS to our 3D MRI brain image and using fixed mode-n overcomplete dictionaries (Experiment 1) 

Experiment 2 & 3: Figure 3.3 and Figure 3.4 show obtained experimental results for representing 

our 3D MRI brain image using our learned overcomplete dictionaries, 𝜱𝜱𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 and 𝜱𝜱𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, by 

solving the 𝐿𝐿0 minimization problem, using both T-LARS and Kronecker-OMP. For the 𝜱𝜱𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 

dictionary, the residual error of the reconstructed 3-D images obtained using T-LARS was 

‖ℛ‖2 = 0.1368 (13.68 %) and Kronecker-OMP was ‖ℛ‖2 = 0.1143 (11.43 %). For the 𝜱𝜱𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 

dictionary, the residual error of the reconstructed 3-D images obtained using T-LARS was 

‖ℛ‖2 = 0.1127 (11.27 %) and Kronecker-OMP was ‖ℛ‖2 = 0.0955 (9.55 %). 

Figure 3.3. Original 3D MRI brain image (a), its reconstructions using 5% non-zero coefficients (𝐾𝐾 =
13,125), (b) - (e), the difference images, (f) - (i) obtained using Kronecker-OMP and T-LARS, using our 
learned overcomplete dictionaries (Experiment 2 & 3) 
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Figure 3.4. a) Number of non-zero coefficients vs. computation time; b) Residual error vs. computation 
time c) Residual error vs. number of non-zero coefficients, obtained by applying Kronecker-OMP and T-
LARS to our 3D MRI brain image and using our learned overcomplete dictionaries (Experiment 2 & 3)  

Experiment 4: Figure 3.5 and Figure 3.6 show obtained experimental results for representing our 

3D MRI brain image using three fixed mode-n overcomplete dictionaries, 𝜱𝜱(1) ∈ ℝ175×351, 

𝜱𝜱(2) ∈ ℝ150×302 and 𝜱𝜱(3) ∈ ℝ10×26, by solving the 𝐿𝐿1 minimization problem, using T-LARS. 

The residual error of the reconstructed 3D image obtained using T-LARS was ‖ℛ‖2 = 0.121 

(12.1 %). 

Figure 3.5. Original 3D MRI brain image (a), its reconstruction using 5% non-zero coefficients (𝐾𝐾 =
13,125 ) obtained by T-LARS using fixed mode-n overcomplete dictionaries (b), and the difference image 
(c) (Experiment 4)
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Figure 3.6. a) Number of non-zero coefficients vs. computation time; b) Residual error vs. computation 
time c) Residual error vs. number of non-zero coefficients, obtained by applying T-LARS to our 3D MRI 
brain image and using fixed mode-n overcomplete dictionaries (Experiment 4) 

Experiment 5: Figure 3.7 and Figure 3.8 show obtained experimental results for representing our 

3D MRI brain image using our learned over-complete dictionary, 𝜱𝜱𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, by solving the 𝐿𝐿1 

minimization problem, using T-LARS. The residual error of the reconstructed 3D image was 

‖ℛ‖2 = 0.138 (13.8 %). 

Figure 3.7. Original 3D MRI brain image (a), and its reconstruction using 5% non-zero coefficients (𝐾𝐾 =
13,125 ) obtained by T-LARS using our learned over-complete dictionary (b), and the difference image (c) 
(Experiment 5). 
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Figure 3.8. a) Number of non-zero coefficients vs. computation time; b) Residual error vs. computation 
time c) Residual error vs. the number of non-zero coefficients, obtained by applying T-LARS to our 3D 
MRI brain image and using our learned overcomplete dictionary (Experiment 5). 

3.5.4. Experimental Results for 3D PET-CT Brain Images 

In this section, we compare the performance of T-LARS and Kronecker-OMP to obtain K-sparse 

representations of our 3D PET-CT brain image, 𝒴𝒴, 180 × 160 × 10  voxels. by solving the 𝐿𝐿0 

constrained sparse tensor least-squares problem. We also obtained similar K-sparse representations 

using T-LARS by solving the L1 optimization problem. Table 3.2 summarizes our results for the 

1-5 experiments described in Section 5.2. In all experiments, the algorithms were stopped when

the number of non-zero coefficients 𝐾𝐾 reached 14,400, which is 5% of the number of elements in

𝒴𝒴. We note that in Table 2, the number of iterations for L1 optimization problems is larger than K

because, as shown in Algorithm 3.2, at each iteration, T-LARS could either add or remove non-

zero coefficients to or from the solution.

Table 3.3.  Summary of experimental results for our 3D PET-CT brain image 

Experiment Image Size 
Optimization 

Problem 

Dictionary 
Type 

# of 
Iterations 

Computation Time 
(sec) 

K-OMP

Computation Time 
(sec) 

T-LARS

1 180×160×10 𝐿𝐿0 Fixed 14,400 29,529 505 

2 32×32×10×42 𝐿𝐿0 Learned
(𝜱𝜱𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾) 14,400 33,453 476 

3 32×32×10×42 𝐿𝐿0 Learned
(𝜱𝜱𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) 14,400 31,083 490 
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Experiment 1: Figure 3.9 and Figure 3.10 show obtained experimental results for representing 

our 3D PET-CT brain image using three fixed mode-n overcomplete dictionaries, 𝜱𝜱(1) ∈

ℝ180×364, 𝜱𝜱(2) ∈ ℝ160×320 and 𝜱𝜱(3) ∈ ℝ10×26, by solving the 𝐿𝐿0 minimization problem, using 

both T-LARS and Kronecker-OMP. The residual error of the reconstructed 3D images obtained 

using T-LARS was ‖ℛ‖2 = 0.054 (5.4 %) and Kronecker-OMP was ‖ℛ‖2 = 0.0368 (3.68 %). 

Figure 3.9. Original PET-CT brain image (a), its reconstruction using 5% non-zero coefficients (𝐾𝐾 =
14,400 ) obtained by Kronecker-OMP (b) and T-LARS (c) using fixed mode-n overcomplete dictionaries 
(Experiment 1) 

Figure 3.10. a) Number of non-zero coefficients vs. computation time; b) Residual error vs. computation 
time c) Residual error vs. number of non-zero coefficients, obtained by applying Kronecker-OMP and T-
LARS to our 3D PET-CT brain image and using fixed mode-n overcomplete dictionaries (Experiment 1) 

Experiment 2 & 3: Figure 3.11 and Figure 3.12 show obtained experimental results for 

representing our 3D PET-CT brain image using our learned overcomplete dictionaries, 𝜱𝜱𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 and 

𝜱𝜱𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, by solving the 𝐿𝐿0 minimization problem, using both T-LARS and Kronecker-OMP. For 

4 180×160×10 𝐿𝐿1 Fixed 16,059 - 591 

5 32×32×10×42 𝐿𝐿1 Learned
(𝜱𝜱𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) 18,995 − 𝟕𝟕𝟕𝟕𝟕𝟕 
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the 𝜱𝜱𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 dictionary, the residual error of the reconstructed 3D images obtained using T-LARS 

was ‖ℛ‖2 = 0.096 (9.6 %) and Kronecker-OMP was ‖ℛ‖2 = 0.077 (7.7 %). For the 𝜱𝜱𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 

dictionaries, the normalized  residual error of the reconstructed 3D images obtained using T-LARS 

was ‖ℛ‖2 = 0.0877 (8.77 %) and Kronecker-OMP was ‖ℛ‖2 = 0.0722 (7.22 %). 

Figure 3.11. Original 3D PET-CT brain image (a), its reconstructions using 5% non-zero coefficients (𝐾𝐾 =
14,400), (b) - (e), the difference images, (f) - (i) obtained using Kronecker-OMP and T-LARS, using our 
learned overcomplete dictionaries (Experiment 2 & 3) 

Figure 3.12. a) Number of non-zero coefficients vs. computation time; b) Residual error vs. computation 
time c) Residual error vs. number of non-zero coefficients, obtained by applying Kronecker-OMP and T-
LARS to our 3D PET-CT brain image and using our learned overcomplete dictionaries (Experiment 2 &3) 

Experiment 4: Figure 3.13 and Figure 3.14 shows the experimental results for representing 3D 

PET-CT brain images using three fixed overcomplete mode-n dictionaries, 𝜱𝜱(1) ∈ ℝ180×364, 

𝜱𝜱(2) ∈ ℝ160×320and 𝜱𝜱(3) ∈ ℝ10×26, by solving the 𝐿𝐿1 minimization problem, using T-LARS. The 
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residual error of the reconstructed 3D PET-CT brain images obtained using T-LARS is ‖ℛ‖2 =

0.0838 (8.38 %). 

Figure 3.13. Original 3D PET-CT brain image (a), its reconstruction using 5% non-zero coefficients (𝐾𝐾 =
14,400) obtained by T-LARS using fixed mode-n overcomplete dictionaries (b), and the difference image 
(c) (Experiment 4)

Figure 3.14. a) Number of non-zero coefficients vs. computation time; b) Residual error vs. computation 
time c) Residual error vs. number of non-zero coefficients, obtained by applying T-LARS to our 3D PET-
CT brain image and using fixed mode-n overcomplete dictionaries (Experiment 4) 

Experiment 5: Figure 3.15 and Figure 3.16 shows the experimental results for representing the 

3D PET-CT brain images using our learned overcomplete dictionary, 𝜱𝜱𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, by solving the 𝐿𝐿1 

minimization problem, using T-LARS. The residual error of the reconstructed 3D PET-CT brain 

images obtained using T-LARS is ‖ℛ‖2 = 0.106 (10.6 %). 
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Figure 3.15. Original 3D PET-CT brain image (a), and its reconstruction using 5% non-zero coefficients 
(𝐾𝐾 = 14,400) obtained by T-LARS using our learned overcomplete dictionary (b), and the difference 
image (c) (Experiment 5) 

Figure 3.16. a) Number of non-zero coefficients vs. computation time; b) Residual error vs. computation 
time c) Residual error vs. number of non-zero coefficients, obtained by applying T-LARS to our 3D PET-
CT brain image and using our learned overcomplete dictionary (Experiment 5) 

3.5.5. Experimental Results for Reconstructing 3D PET-CT Brain Images Using 

Compressed Sensing Samples 

For our compressed sensing experiment, we obtained a tensor 𝒜𝒜 ∈ ℝ150×150×10 having 

150 × 150 × 10  voxels from the 3D PET-CT brain images dataset. Then, we generated the 

compressed sensing samples tensor 𝒴𝒴 ∈ ℝ113×113×10 from the 3D PET-CT brain images tensor, 

𝒜𝒜 ∈ ℝ150×150×10, by projecting the tensor 𝒜𝒜 using three mode-n Gaussian random sensing 

matrices, 𝒁𝒁(1) ∈ ℝ113×150, 𝒁𝒁�2� ∈ ℝ113×150 and 𝒁𝒁�3� ∈ ℝ10×10. The resulting sampling ratio is 
113×113×10
150×150×10 = 0.5675.
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The used overcomplete mode-n dictionaries 𝑫𝑫�1� ∈ ℝ150×302, 𝑫𝑫�2� ∈ ℝ150×302 and 𝑫𝑫�3� ∈ ℝ10×10 

were a union of a Symlet wavelet packet with four vanishing moments dictionary and a discrete 

cosine transform (DCT) dictionary. 

We solved an 𝐿𝐿0 minimization problem using Kronecker-OMP and T-LARS, and an 𝐿𝐿1 

minimization problem using T-LARS to recover the sparse tensor 𝒳𝒳 ∈ ℝ113×113×10 using the 

compressed sensing samples tensor 𝒴𝒴 ∈ ℝ113×113×10 for three mode-n dictionaries, 𝜱𝜱(1) ∈

ℝ113×302, 𝜱𝜱�2� ∈ ℝ113×302 and 𝜱𝜱�3� ∈ ℝ10×10, where 𝜱𝜱(𝑛𝑛) = 𝒁𝒁(𝑛𝑛)𝑫𝑫(𝑛𝑛); ∀ 𝑛𝑛 ∈ {1,2, … , 𝑁𝑁}. 

Table 3.4 summarizes experiment results for reconstructing the 3D PET-CT image, 𝒜𝒜 ∈

ℝ150×150×10, using compressed sensing samples tensor 𝒴𝒴 ∈ ℝ113×113×10 and three mode-n 

dictionaries, 𝜱𝜱(1), 𝜱𝜱�2� and 𝜱𝜱�3�. The number of compressed sensing samples in the tensor 𝒴𝒴 is 

only 56.75% of the tensor signal 𝒜𝒜.

In the experimental results shown in Table 3.4, we obtained a K-Sparse solution for the 3D PET-

CT images, using 𝐾𝐾 = 15,323 coefficients, which is only 12% of the elements in 𝒴𝒴. As shown in 

the Table 3.4, the 𝐿𝐿1  minimization problem took more iterations compared to the 𝐿𝐿0 minimization 

problems because T-LARS only adds columns to the active set 𝐼𝐼 when solving the 𝐿𝐿0 minimization 

problems, and T-LARS either adds or removes columns from the active set when solving the 𝐿𝐿1 

minimization problems. 

Table 3.4. Summary of compressed sensing experimental results 

Algorithm 
Optimization 

Problem 
#of Iterations Residual Error 

Computation Time 

(sec) 

K-OMP 𝐿𝐿0 15,323 0.1144 28,045 

T-LARS 𝐿𝐿0 15,323 0.1221 496 

T-LARS 𝐿𝐿1 17,229 0.1217 612 

Figure 3.17 and Figure 3.18 show experimental results for reconstructing the 3D PET-CT brain 

image 𝒜𝒜 from the compressed sensing samples using T-LARS and Kronecker-OMP.
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Figure 3.17. Original 3D PET-CT brain image (a), Reconstructed 3D PET-CT brain image using 12% non-
zero coefficients (𝐾𝐾 = 15,323 ) obtained by solving an 𝐿𝐿0 minimization problem using Kronecker-OMP 
(b) and T-LARS (c), and solving a 𝐿𝐿1 minimization problem using T-LARS (d), and respective differences
(e), (f), and (g) in our compressed sensing experiment.

Figure 3.18. a) Number of non-zero coefficients vs. computation time; b) Residual error vs. computation 
time c) Residual error vs. the number of non-zero coefficients, for both Kronecker-OMP and T-LARS for 
our compressed sensing experiment. 

3.6. Conclusions 

In this chapter, we developed Tensor Least Angle Regression (T-LARS), a generalization of Least 

Angle Regression, to efficiently solve either large L0  or L1  constrained multi-dimensional (tensor) 

sparse least-squares problems (underdetermined or overdetermined) for all critical values of the 

regularization parameter λ. An earlier generalization of OMP, known as Kronecker-OMP, has been 
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developed to solve the L0 problem for large multi-dimensional sparse least-squares problems. To 

demonstrate the validity and performance of our T-LARS algorithm, we used it to successfully 

obtain different K-sparse signal representations of two 3-D brain images, using fixed and learned 

separable over-complete dictionaries, by solving 3D and 4D, L0 and L1 constrained sparse least-

squares problems. Our different numerical experiments demonstrate that our T-LARS algorithm 

is significantly faster (46 - 70 times) than Kronecker-OMP in obtaining K-sparse solutions for 

multilinear least-squares problems. However, the K-sparse solutions obtained using Kronecker-

OMP always have a slightly lower residual error (1.55% - 2.25%) than ones obtained by T-LARS. 

These numerical results confirm our analysis in Section 3.4.2 that showed that the computational 

complexity of T-LARS is significantly lower than the computational complexity of Kronecker-

OMP.  

We also discussed the multilinear compressed sensing problem, and we compared Kronecker-

OMP and T-LARS in reconstructing 3D PET-CT brain images, using compressed sensing samples 

and fixed mode-n over-complete dictionaries by solving 3D, L0 and L1 constrained multilinear 

least-squares problems. Our experimental results demonstrate that the T-LARS is 56 times faster 

than Kronecker-OMP in reconstructing the 3D PET-CT brain images using compressed sensing 

samples. Therefore, as future work, we plan to exploit this significant computational efficiency of 

T-LARS to develop more computationally efficient Kronecker dictionary learning methods.  
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Chapter 4 

4. Weighted Tensor Least Angle Regression (WT-LARS) 

Sparse weighted multilinear least-squares is a generalization of the sparse multilinear least-squares 

problem, where prior information about, e.g., parameters and data is incorporated by multiplying 

both sides of the original problem by a typically diagonal weights matrix [22]. If the diagonal 

weight matrix has a similar Kronecker structure to the dictionary matrix, we could use the Tensor 

Least Angle Regression (T-LARS) [18] algorithm developed in chapter 3 to solve this problem 

efficiently. Typically, introducing arbitrary diagonal weights would result in a non-Kronecker 

least-squares problem that could be very large to store or solve practically. In this chapter, we 

generalize the Tensor Least Angle Regression (T-LARS) algorithm developed in chapter 3 to 

efficiently solve either L0 or L1 constrained multilinear least-squares problems with arbitrary 

diagonal weights for all critical values of their regularization parameter. To demonstrate the 

validity of our new Weighted Least Angle Regression (WT-LARS) algorithm, we used it to 

successfully solve three different image inpainting problems by obtaining sparse representations 

of binary-weighted images. 

4.1. Introduction 

Weighted least squares is a generalization of the least-squares (LS) problem, where prior 

information about parameters and data is incorporated by multiplying both sides of the original LS 

problem by a typically diagonal weights matrix. Applications of weighted least-squares in Signal 

Processing include signal restoration [83], [84], source localization in wireless networks [85]–[87], 

adaptive filters [86], [88], [89], and image smoothing [90]. In Statistics, weighted least-squares 

regression is often used to reduce bias from non-informative data samples [91], [92]. Also, a best 

linear unbiased estimator (BLUE) is obtained by using the inverse of the data covariance matrix 

as the weights matrix [93]. 
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Recently, sparsity has become a commonly desired characteristic of a least-squares solution [8], 

[9]. Because of its relatively small number of non-zero values, a sparse solution could result in 

faster processing with lower computer storage requirements [8], [9]. A sparse solution is usually 

obtained by solving a least-squares problem while minimizing either the L0 norm of the solution 

(non-convex optimization problem) or minimizing the L1 norm of the solution (convex 

optimization problem). Several methods have been proposed to solve sparse least-squares 

problems, including the Method of Frames [67], Matching Pursuit (MP) [12], Orthogonal 

Matching Pursuit (OMP) [13], Best Orthogonal Basis [68], Least Absolute Shrinkage and 

Selection Operator (LASSO) that is also known as Basis Pursuit [14], [15], and Least Angle 

Regression (LARS) [15]. Both MP and OMP solve the L0 constrained least-squares problem [69] 

using sequential heuristic steps that add solution coefficients in a greedy, i.e., non-globally 

optimal, way. LASSO relaxes the non-convex L0 constrained least-squares problem to solve the 

convex L1 constrained least-squares problem instead [14]. Among the above solution methods, 

only Least Angle Regression(LARS) could efficiently solve both the L0 and, with a slight 

modification, L1 constrained least-squares problem for all critical values of their regularization 

parameters. This parameter is required to balance the minimization of the LS residual with the 

minimization of the norm of the solution [15].  

In addition to incorporating a priori information, weights also could be introduced to sparse least-

squares problems to improve the  𝐿𝐿1 minimization problem results [94], [95]. Candès et al. also 

used a reweighted 𝐿𝐿1  minimization approach to enhance sparsity in compressed sensing [96]. 

Also, weighted L1 constrained least-squares regression has been used to extract information from 

large data sets for statistical applications [97], [98]. We note that sparse weighted least-squares 

problems could be solved using any of the above optimization methods. 

Multilinear least-squares is a multidimensional generalization of least-squares [5], [7], [18], where 

the least-squares matrix has a Kronecker structure [16], [72]. Sparse multilinear least-squares 

could be either an L0 constrained or an L1 constrained multilinear least-squares problem. Caiafa 

and Cichocki introduced a generalization of OMP, Kronecker-OMP, to solve the L0 constrained 

sparse multilinear least-squares problem [16]. Elrewainy and Sherif [17] developed Kronecker 

Least Angle Regression (K-LARS) to efficiently solve both L0 and L1 constrained sparse least-

squares having a specific Kronecker matrix form, 𝑨𝑨 ⊗ 𝑰𝑰, for all critical values of the regularization 
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parameter. To overcome this limitation, in chapter 3 we developed the Tensor Least angle 

Regression (T-LARS) [18], a generalization of K-LARS that does not require any special form of 

the LS matrix beyond being Kronecker. T-LARS solves either large L0 or large L1 constrained, 

sparse multilinear least-squares problems (underdetermined or overdetermined) for all critical 

values of the regularization parameter λ with significantly lower computational complexity and 

memory usage than Kronecker-OMP. 

Weighted multilinear least-squares is a generalization of multilinear least-squares that introduces 

a typically diagonal weight matrix to both sides of the original LS problem. Since an arbitrary 

diagonal weight matrix would not be Kronecker, the weighted LS matrix would lose its original 

Kronecker structure, resulting in a potentially very large non-Kronecker LS matrix. Thus, solving 

these weighted sparse multilinear least-squares problems could become highly impractical, as it 

would require significant memory and computational power.  

Therefore, in this chapter, we extend T-LARS to Weighted Tensor Least Angle Regression (WT-

LARS) that could solve both 𝐿𝐿0 and 𝐿𝐿1 constrained sparse weighted multilinear least-squares 

problems efficiently for all critical values of the regularization parameter.  

Weighted multilinear least-squares problems could be used to include prior information about 

parameters and tensor data to a multilinear least-squares problem. Therefore, WT-LARS could be 

used to solve multidimensional counterparts of applications of weighted least squares such as 

tensor signal restoration, video smoothing, and reduce bias in multilinear regression applications.  

In the experimental results, we used WT-LARS to solve image inpainting problems successfully 

using binary-weighted images.  

This chapter is organized as follows: Section 4.2 includes a brief introduction to the sparse 

weighted tensor least-squares problem. Section 4.3 describes our Weighted Tensor Least Angle 

Regression (WT-LARS) algorithm in detail. Section 4.4 provides results of applying WT-LARS 

to solve three different image inpainting problems by obtaining sparse representations of binary-

weighted RGB images. We present our conclusions in Section 4.5. 
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4.2. Problem Formulation 

4.2.1. Sparse weighted tensor least-squares problem 

A multilinear transformation of a tensor 𝒳𝒳 could be defined as, 𝒴𝒴 = 𝒳𝒳 ×1 𝜱𝜱(1) ×2 ⋯ ×𝑁𝑁 𝜱𝜱(𝑁𝑁), 

where 𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽𝑛𝑛×…×𝐽𝐽𝑁𝑁 and 𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁 are Nth order tensors, with the equivalent 

vectorized form  

𝜱𝜱vec(𝒳𝒳) =  vec(𝒴𝒴) (4. 1) 

Where 𝜱𝜱 ∈ ℝ𝐽𝐽×𝐼𝐼 , and 𝜱𝜱 = 𝜱𝜱(𝑁𝑁) ⊗ ⋯ ⊗ 𝜱𝜱(1). 

Let 𝑾𝑾 = 𝑺𝑺𝐻𝐻𝑺𝑺, be a diagonal weight matrix. We could obtain a weighted linear transformation [22] 

of (4.1) as 

𝑺𝑺𝜱𝜱vec(𝒳𝒳) =  𝑺𝑺vec(𝒴𝒴) (4. 2) 

A sparse solution of the weighted linear system in (4.2) could be obtained by solving an 𝐿𝐿𝑝𝑝 (p = 

0 or p = 1) minimization problem, 

𝒳𝒳�  =  arg min
𝒳𝒳

‖𝑺𝑺𝜱𝜱vec(𝒳𝒳)  −  𝑺𝑺vec(𝒴𝒴) ‖2
2 + λ‖vec(𝒳𝒳)‖𝑝𝑝 (4. 3) 

If 𝑺𝑺 is a Kronecker matrix, then 𝑺𝑺𝜱𝜱 = �𝑺𝑺(𝑁𝑁)𝜱𝜱(𝑁𝑁) ⊗ ⋯ ⊗ 𝑺𝑺(1)𝜱𝜱(1)� and we could use T-LARS 

[18] developed in chapter 3, to obtain a sparse solution for either 𝐿𝐿0 or 𝐿𝐿1 optimization problem in 

(4.3) efficiently. However, 𝑺𝑺 is not typically Kronecker, so 𝑺𝑺𝜱𝜱 would not have a Kronecker 

structure, and (4.3) should be solved as a potentially very large vectorized (one-dimensional) 

sparse least-squares problem which could be very challenging in terms of memory and 

computational power requirements. Therefore, in this chapter, we develop Weighted Tensor Least 

Angle Regression (WT-LARS), a computationally efficient method, to solve either 𝐿𝐿0 or 𝐿𝐿1 

constrained sparse weighted multilinear least-squares problems in (4.3) for an arbitrary diagonal 

weights matrix 𝑾𝑾 = 𝑺𝑺𝐻𝐻𝑺𝑺 ∈ ℝ𝐽𝐽×𝐽𝐽. 

4.2.2.  Calculating the mutual coherence of a large weighted Kronecker dictionary 

The mutual coherence 𝜇𝜇 [14], [99] is an important parameter for analyzing the uniqueness and the 

accuracy of a K-sparse solution. The mutual coherence for a weighted dictionary 𝑺𝑺𝜱𝜱 is given by, 
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𝜇𝜇 = max
𝑖𝑖≠𝑗𝑗

�(𝜱𝜱𝑯𝑯𝑾𝑾𝜱𝜱)𝑖𝑖𝑖𝑖�  (4. 4) 

Where 𝑾𝑾 = 𝑺𝑺𝐻𝐻𝑺𝑺. 

For an arbitrary diagonal weights matrix 𝑾𝑾, the matrix 𝜱𝜱𝑯𝑯𝑾𝑾𝜱𝜱 does not have a Kronecker 

structure. Therefore, calculating 𝜇𝜇 for a large dictionary matrix 𝑺𝑺𝜱𝜱 by constructing the matrix 

𝜱𝜱𝑯𝑯𝑾𝑾𝜱𝜱 is computationally infeasible. However, we could efficiently calculate the mutual 

coherence using, 

𝜇𝜇 = max
𝑖𝑖≠𝑗𝑗;1≤𝑗𝑗≤𝐽𝐽

��𝜱𝜱(𝑁𝑁) ⊗ ⋯ ⊗ 𝜱𝜱(1)�
𝑯𝑯

𝑾𝑾𝜱𝜱𝑗𝑗�  (4. 5) 

Where 𝜱𝜱𝑗𝑗  is the jth column of the Kronecker matrix 𝜱𝜱 and we could efficiently calculate each 

column vector �𝜱𝜱(𝑁𝑁) ⊗ ⋯ ⊗ 𝜱𝜱(1)�
𝑯𝑯

𝑾𝑾𝜱𝜱𝑗𝑗  using the full multilinear product between the mode-n 

matrices 𝜱𝜱(𝑛𝑛) and the column vector 𝑾𝑾𝜱𝜱𝑗𝑗 . 

4.3. Weighted Tensor Least Angle Regression (WT-LARS) 

In this section, we develop the Weighted Tensor Least Angle Regression (WT-LARS) by 

extending Tensor Least Angle Regression (T-LARS) to solve the sparse tensor least-squares 

problem in (4.2) for weights 𝑾𝑾 = 𝑺𝑺𝐻𝐻𝑺𝑺 and Kronecker dictionaries 𝜱𝜱. 

Inputs to WT-LARS are the data tensor 𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽𝑛𝑛×…×𝐽𝐽𝑁𝑁, mode-n dictionary matrices 

𝜱𝜱(𝑛𝑛); 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁}, where 𝜱𝜱 = 𝜱𝜱(𝑁𝑁) ⊗ ⋯ ⊗ 𝜱𝜱(1), the diagonal weight matrix 𝑾𝑾 = 𝑺𝑺𝐻𝐻𝑺𝑺, and 

the stopping criterion as a residual tolerance 𝜀𝜀 or the maximum number of non-zero coefficients 𝐾𝐾 

(K-sparse representation). The output is the solution tensor 𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁. 

WT-LARS requires weighted data 𝑺𝑺vec(𝒴𝒴),  and columns of the weighted dictionary 𝑺𝑺𝑺𝑺 to have 

a unit 𝐿𝐿2 norm. Normalized weighted data could be easily calculated by 𝒴𝒴𝑊𝑊 =

𝑺𝑺vec(𝒴𝒴) ‖𝑺𝑺vec(𝒴𝒴)‖2⁄ . However, the dictionary matrix 𝑺𝑺𝑺𝑺 does not have a Kronecker structure. 

Hence, normalizing mode-n dictionary matrices 𝜱𝜱(𝑛𝑛) does not ensure normalization of the columns 

of 𝑺𝑺𝑺𝑺. Therefore, in WT-LARS, we use the normalized weighted dictionary matrix 𝜱𝜱𝑊𝑊 = 𝑺𝑺𝑺𝑺𝑺𝑺  

instead of the normalized dictionary matrix 𝜱𝜱 in T-LARS, where 𝑸𝑸 is a diagonal matrix, 

𝑸𝑸𝑖𝑖,𝑖𝑖 =  
1

‖(𝑺𝑺𝑺𝑺)𝑖𝑖‖2
(4. 6) 
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Where  (𝑺𝑺𝑺𝑺)𝑖𝑖 is the 𝑖𝑖𝑡𝑡ℎ column of the weighted dictionary matrix 𝑺𝑺𝑺𝑺. We can efficiently calculate 

the diagonal matrix 𝑸𝑸 as, 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑸𝑸) = 𝟏𝟏./�(𝜱𝜱∗2)𝑻𝑻 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑾𝑾) (4. 7) 

Where, 𝜱𝜱∗2 [100] denotes the Hadamard square of 𝜱𝜱, such that 𝜱𝜱𝑖𝑖,𝑗𝑗
∗2 = �𝜱𝜱𝑖𝑖,𝑗𝑗�

2
, "./" denotes 

elementwise division, and  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑸𝑸) and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑾𝑾) are diagonal vectors of 𝑸𝑸 and 𝑾𝑾 respectively. 

We could efficiently calculate  (𝜱𝜱∗2)𝑻𝑻𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑾𝑾) using the full multilinear product. 

WT-LARS solves the 𝐿𝐿0 or 𝐿𝐿1 constrained minimization problems in (4.3) for all critical values 

of the regularization parameter λ. WT-LARS starts with a large value of λ that results in an empty 

active set 𝐼𝐼 = {}, and a solution 𝒳𝒳�𝑡𝑡=0 = 0. The set 𝐼𝐼 denotes an active set of columns of the 

dictionary 𝜱𝜱𝑊𝑊, i.e., column indices where the optimal solution 𝒳𝒳�𝑡𝑡 at iteration 𝑡𝑡, is nonzero, and 

𝐼𝐼𝑐𝑐 denotes its corresponding inactive set. Therefore, 𝜱𝜱𝑊𝑊𝐼𝐼 contains only the active columns of the 

dictionary 𝜱𝜱𝑊𝑊 and 𝜱𝜱𝑊𝑊𝐼𝐼𝑐𝑐 contains only its inactive columns. 

At each iteration 𝑡𝑡, a new column is either added (𝐿𝐿0) to the active set 𝐼𝐼 or a new column is either 

added or removed (𝐿𝐿1) from the active set 𝐼𝐼, and λ is reduced by a calculated value 𝛿𝛿𝑡𝑡
∗.  

As a result of such iterations, new solutions with an increased number of coefficients that follow 

a piecewise linear path are obtained until a predetermined residual error 𝜀𝜀 or a predetermined 

number of active columns 𝐾𝐾 is obtained.  

The regularization parameter λ is initialized to the maximum of the correlation 𝒄𝒄1, between the 

columns of 𝜱𝜱𝑊𝑊 and the initial residual 𝒓𝒓0 = vec(𝒴𝒴).  

𝒄𝒄1 =  𝜱𝜱𝑾𝑾
𝑇𝑇 𝒓𝒓0 (4. 8) 

Since 𝜱𝜱𝑾𝑾
𝑇𝑇 = 𝑸𝑸𝜱𝜱𝑻𝑻𝑺𝑺, we can easily calculate 𝜱𝜱𝑻𝑻𝑺𝑺𝒓𝒓0 using the full multilinear product as 

𝒞́𝒞1 =  ℛ𝑺𝑺0 ×1 𝜱𝜱(1)𝑇𝑇
×2 ⋯ ×𝑁𝑁 𝜱𝜱(𝑁𝑁)𝑇𝑇

 (4. 9) 

where vec�ℛ𝑺𝑺0� = 𝑺𝑺𝒓𝒓0 and 𝒄𝒄1 = 𝑸𝑸vec�𝒞́𝒞1�. The column index corresponding to the maximum 

correlation 𝒄𝒄1 is added to the active set. For a given active set 𝐼𝐼, the optimal solution 𝒳𝒳�𝑡𝑡 at any 

iteration 𝑡𝑡, could be written as 
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vec�𝒳𝒳�𝑡𝑡� = ��𝜱𝜱𝑊𝑊𝐼𝐼𝑡𝑡
𝑇𝑇 𝜱𝜱𝑊𝑊𝐼𝐼𝑡𝑡

�
−1

�𝜱𝜱𝑊𝑊𝐼𝐼𝑡𝑡
𝑇𝑇 vec(𝒴𝒴) − 𝜆𝜆𝑡𝑡𝒛𝒛𝑡𝑡� , 𝑜𝑜n 𝐼𝐼

   0,                                                    Otherwise
(4. 10) 

where, 𝒛𝒛𝑡𝑡 is the sign sequence of 𝒄𝒄𝑡𝑡 on the active set 𝐼𝐼, and 𝒄𝒄𝑡𝑡  =  𝜱𝜱𝑊𝑊
𝑇𝑇 𝒓𝒓𝑡𝑡−1 is the correlation vector 

of all columns of the dictionary 𝜱𝜱𝑊𝑊 with the residual 𝒓𝒓𝑡𝑡−1 at any iteration t. 

The optimal solution at any iteration, 𝑡𝑡 must satisfy the following two optimality conditions, 

𝜱𝜱𝑊𝑊𝐼𝐼𝑡𝑡
𝑇𝑇 𝒓𝒓𝑡𝑡  =  −𝜆𝜆𝑡𝑡𝒛𝒛𝑡𝑡 (4. 11) 

�𝜱𝜱𝑊𝑊𝐼𝐼𝑡𝑡
𝑐𝑐

𝑇𝑇 𝒓𝒓𝑡𝑡 �
∞

 ≤  𝜆𝜆𝑡𝑡 (4. 12) 

where, 𝒓𝒓𝑡𝑡 =   vec(𝒴𝒴)  − 𝜱𝜱𝑊𝑊vec�𝒳𝒳�𝑡𝑡� is the residual at iteration 𝑡𝑡, and 𝒛𝒛𝑡𝑡 is the sign sequence of 

the correlation 𝒄𝒄𝑡𝑡  at iteration 𝑡𝑡, on the active set 𝐼𝐼. The condition in (4.11) ensures that the 

magnitude of the correlation between all active columns of 𝜱𝜱𝑊𝑊 and the residual is equal to |𝜆𝜆𝑡𝑡| at 

each iteration, and the condition in (4.12) ensures that the magnitude of the correlation between 

the inactive columns of 𝜱𝜱𝑊𝑊 and the residual is less than or equal to |𝜆𝜆𝑡𝑡|. 

At each iteration 𝑡𝑡, 𝜆𝜆𝑡𝑡 is reduced by a small step size 𝛿𝛿𝑡𝑡
∗,  until a condition in either (4.11) or 

(4.12) violates. For 𝐿𝐿0, and 𝐿𝐿1 constrained minimization problems, if an inactive column violates 

the condition (4.12), it is added to the active set, and for 𝐿𝐿1 constrained minimization problems, 

if an active column violates the condition (4.11), it is removed from the active set. 

As λ is reduced by 𝛿𝛿𝑡𝑡
∗, the solution 𝒳𝒳�𝑡𝑡 change by 𝛿𝛿𝑡𝑡

∗𝒅𝒅𝑡𝑡 along a direction 𝒅𝒅𝑡𝑡, where 𝒅𝒅𝐼𝐼𝑡𝑡
𝑐𝑐 = 0 and 

𝒅𝒅𝐼𝐼𝑡𝑡 = 𝑮𝑮𝑡𝑡
−1𝒛𝒛𝑡𝑡, and 𝑮𝑮𝑡𝑡

−1 is the inverse of the Gram matrix of the active columns of the dictionary 

𝑮𝑮𝑡𝑡 = 𝜱𝜱𝑊𝑊𝐼𝐼𝑡𝑡
𝑇𝑇 𝜱𝜱𝑊𝑊𝐼𝐼𝑡𝑡

. 

The size of this Gram matrix would either increase (dictionary column addition) or decrease 

(dictionary column removal) with each iteration 𝑡𝑡. Therefore, for computational efficiency, we use 

the Schur complement inversion formula to calculate 𝑮𝑮𝑡𝑡
−1 from 𝑮𝑮𝑡𝑡−1

−1 , thereby avoiding its full 

calculation [18], [101]. See Appendix C.1 for updating the inverse of the Gram matrix using the 

Schur complement inversion formula. 
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The smallest step size for 𝐿𝐿1 constrained sparse least-squares problem 𝛿𝛿𝑡𝑡
∗  =  min {𝛿𝛿𝑡𝑡

+, 𝛿𝛿𝑡𝑡
−} is the 

minimum of 𝛿𝛿𝑡𝑡
+, minimum step size for adding a column, and 𝛿𝛿𝑡𝑡

−, minimum step size for removing 

a column. The minimum step size for removing a column from the active set is given by, 

𝛿𝛿𝑡𝑡
− = min

𝑖𝑖∈𝐼𝐼
�−

𝒙𝒙𝑡𝑡−1(𝑖𝑖)
𝒅𝒅𝑡𝑡(𝑖𝑖) � (4. 13) 

The minimum step size for adding a new column to the active set is given by, 

𝛿𝛿𝑡𝑡
+ = min

𝑖𝑖∈𝐼𝐼𝑐𝑐
�

𝜆𝜆𝑡𝑡 − 𝒄𝒄𝑡𝑡(𝑖𝑖)
1 − 𝒗𝒗𝑡𝑡(𝑖𝑖) ,

𝜆𝜆𝑡𝑡 + 𝒄𝒄𝑡𝑡(𝑖𝑖)
1 + 𝒗𝒗𝑡𝑡(𝑖𝑖) � (4. 14) 

where

𝒗𝒗𝑡𝑡 =  𝜱𝜱𝑊𝑊
𝑇𝑇 𝜱𝜱𝑊𝑊𝒅𝒅𝑡𝑡 (4. 15) 

Since 𝜱𝜱𝑊𝑊 = 𝑺𝑺𝑺𝑺𝑺𝑺 , We can efficiently calculate 𝒗𝒗𝑡𝑡 using two full multilinear products. 

Let 𝒗𝒗𝑡𝑡 = 𝑸𝑸vec�𝒱́𝒱𝑡𝑡�, where 

𝒱́𝒱𝑡𝑡 =  𝒰𝒰𝑤𝑤𝑡𝑡 ×1 𝜱𝜱(1)𝑇𝑇
×2 … ×𝑁𝑁 𝜱𝜱(𝑁𝑁)𝑇𝑇

 (4. 16) 

And vec�𝒰𝒰𝑤𝑤𝑡𝑡� = 𝑾𝑾vec�𝒟́𝒟𝑡𝑡 ×1 𝜱𝜱(1) ×2 … ×𝑁𝑁 𝜱𝜱(𝑁𝑁)�, and vec�𝒟́𝒟𝑡𝑡� =  𝑸𝑸𝒅𝒅𝑡𝑡. 

The residual 𝒓𝒓𝑡𝑡 is calculated at the end of each iteration using, 

𝒓𝒓𝑡𝑡 =  𝒓𝒓𝑡𝑡−1 −  𝛿𝛿𝑡𝑡
∗𝜱𝜱𝑊𝑊𝒅𝒅𝑡𝑡 (4. 17) 

We can efficiently calculate 𝜱𝜱𝑊𝑊𝒅𝒅𝑡𝑡 as  

𝜱𝜱𝑊𝑊𝒅𝒅𝑡𝑡 = 𝑺𝑺vec�𝒟́𝒟𝑡𝑡 ×1 𝜱𝜱(1) ×2 ⋯ ×𝑁𝑁 𝜱𝜱(𝑁𝑁)� (4. 18) 

WT-LARS stops at a predetermined residual error ‖𝒓𝒓𝑡𝑡‖2 ≤ 𝜀𝜀 or when a predetermined number of 

active columns 𝐾𝐾 is obtained. The residual error ‖𝒓𝒓𝑡𝑡‖2 = �vec(𝒴𝒴)  − 𝜱𝜱𝑊𝑊vec�𝒳𝒳�𝑡𝑡��
2

 is the 𝐿𝐿2 

norm of the residual error after the iteration t, where 0 ≤ ‖𝒓𝒓𝑡𝑡‖2 ≤ 1 for a normalized 𝒴𝒴 and column 

normalized weighted dictionary 𝜱𝜱𝑊𝑊𝐼𝐼𝑡𝑡
. 
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4.3.1. Weighted Tensor Least Angle Regression Algorithm 

Algorithm 4.1:  Weighted Tensor Least Angle Regression (WT-LARS) 

Input: WT-LARS_mode = 𝐿𝐿1 or 𝐿𝐿0, normalized tensor 𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽𝑛𝑛×…×𝐽𝐽𝑁𝑁 ; Mode-n dictionary 
matrices  𝜱𝜱(𝑛𝑛) ∈ ℝ𝐽𝐽𝑛𝑛×𝐼𝐼𝑛𝑛;  𝑛𝑛 ∈  {1, . . 𝑁𝑁}; Diagonal Weights Matrix 𝑾𝑾 ∈ ℝ(𝐽𝐽1×…×𝐽𝐽𝑁𝑁)×(𝐽𝐽1×…×𝐽𝐽𝑁𝑁); 
Stopping criterion: residual tolerance: 𝜀𝜀 or number of non-zero coefficients: 𝐾𝐾   
Initialization: 𝑺𝑺 = √𝑾𝑾, Residual: 𝒓𝒓0  = 𝑺𝑺𝑣𝑣𝑣𝑣𝑣𝑣(𝒴𝒴); 𝒙𝒙0  =  0; active set: 𝐼𝐼 =  {}; 
1. 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑸𝑸) = 𝟏𝟏./�(𝜱𝜱2)𝑻𝑻 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑾𝑾) 
2. vec�ℛ𝑺𝑺0� = 𝑺𝑺𝒓𝒓0 

3. 𝒞𝒞1  =  ℛ𝑺𝑺0 ×1 𝜱𝜱(1)𝑇𝑇
×2. . .×𝑁𝑁 𝜱𝜱(𝑁𝑁)𝑇𝑇 

4. 𝒄𝒄1 = 𝑸𝑸vec(𝒞𝒞1) 
5. [𝜆𝜆1, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖 ] =  𝑚𝑚𝑚𝑚𝑚𝑚(𝒄𝒄1) 
6. 𝐼𝐼 =  {𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖} 
7. while  (‖𝒓𝒓𝑡𝑡−1‖2 < 𝜀𝜀 𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(𝐼𝐼) < 𝐾𝐾) 
8.   𝒛𝒛𝑡𝑡 = sign (𝒄𝒄𝑡𝑡(𝐼𝐼)) 
9. 𝑮𝑮𝑡𝑡

−1 =updateWeightedInverseGramMatrix( 𝑮𝑮𝑡𝑡−1
−1 , 𝑾𝑾 , 𝑸𝑸 , { 𝜱𝜱(1), . . ., 𝜱𝜱(𝑁𝑁)}, I, add_column, 

column_idx) % See Appendix C.1 
10. 𝒅𝒅𝐼𝐼𝑡𝑡 = 𝑮𝑮𝑡𝑡

−1𝒛𝒛𝑡𝑡 
11. vec�𝒟́𝒟𝑡𝑡� =  𝑸𝑸𝒅𝒅𝑡𝑡 
12. 𝒰𝒰𝑡𝑡  =  𝒟́𝒟𝑡𝑡 ×1 𝜱𝜱(1) ×2 … ×𝑁𝑁 𝜱𝜱(𝑁𝑁) 
13. vec�𝒰𝒰𝑤𝑤𝑡𝑡� = 𝑾𝑾vec(𝒰𝒰𝑡𝑡) 

14.  𝒱𝒱𝑡𝑡  =  𝒰𝒰𝑤𝑤𝑡𝑡 ×1 𝜱𝜱(1)𝑇𝑇
×2 … ×𝑁𝑁 𝜱𝜱(𝑁𝑁)𝑇𝑇

 

15. 𝒗𝒗𝑡𝑡 = 𝑸𝑸𝑣𝑣𝑣𝑣𝑣𝑣(𝒱𝒱𝑡𝑡) 
16.  𝛿𝛿𝑡𝑡

+
1= (𝜆𝜆𝑡𝑡 − 𝒄𝒄𝑡𝑡(𝐼𝐼𝑐𝑐))./ (1 − 𝒗𝒗𝑡𝑡(𝐼𝐼𝑐𝑐))      % “./” -  Elementwise division  

17.  𝛿𝛿𝑡𝑡
+

2= (𝜆𝜆𝑡𝑡 + 𝒄𝒄𝑡𝑡(𝐼𝐼𝑐𝑐))./ (1 + 𝒗𝒗𝑡𝑡(𝐼𝐼𝑐𝑐)) 
18.  𝛿𝛿𝑡𝑡

− =  −𝒙𝒙𝑡𝑡−1./ 𝒅𝒅𝑡𝑡 
19.  [𝛿𝛿𝑡𝑡

∗, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖] = 𝑚𝑚𝑚𝑚𝑚𝑚  �𝛿𝛿𝑡𝑡
+

1, 𝛿𝛿𝑡𝑡
+

2� 
20.  add_column == True 
21.  If WT-LARS_mode == 𝐿𝐿1 && min (𝛿𝛿𝑡𝑡

−) < 𝛿𝛿𝑡𝑡
∗ 

22.        [𝛿𝛿𝑡𝑡
∗, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖]= min (𝛿𝛿𝑡𝑡

−) 
23.        add_column = False 
24.  end 
25.  𝒙𝒙𝑡𝑡 = 𝒙𝒙𝑡𝑡−1 + 𝛿𝛿𝑡𝑡

∗𝒅𝒅𝑡𝑡 
26.  𝜆𝜆𝑡𝑡+1  =  𝜆𝜆𝑡𝑡  −  𝛿𝛿𝑡𝑡

∗ 
27.  𝒄𝒄𝑡𝑡+1  =  𝒄𝒄𝑡𝑡 −  𝛿𝛿𝑡𝑡

∗𝒗𝒗𝑡𝑡  
28.  ℛ́𝑡𝑡 =  𝒟́𝒟𝑡𝑡 ×1 𝜱𝜱(1) ×2 ⋯ ×𝑁𝑁 𝜱𝜱(𝑁𝑁) 
29.   𝒓𝒓𝑡𝑡  =  𝒓𝒓𝑡𝑡−1  −  𝛿𝛿𝑡𝑡

∗𝑺𝑺vec�ℛ́𝑡𝑡� 
30.  if add_column == True 
31.       𝐼𝐼 =  𝐼𝐼 +  {𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖}  
32.  else  
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33.       𝐼𝐼 =  𝐼𝐼 – {𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖} 
34.  end 
35. end while 
36. return 𝐼𝐼, 𝒙𝒙 

4.4. Experimental Results 

In this section, we present experimental results for WT-LARS using inpainting as an example. For 

experiments shown in Figure 4.1 and Figure 4.2, we obtained fenced images from the Image 

datasets for MSBP deformable lattice detection Algorithm [102], and for the experiment shown in 

Figure 4.3, we obtained a landscape image from the DIV2K dataset [103].  

Our experimental results were obtained using a MATLAB implementation of T-LARS and 

Kronecker-OMP on an MS-Windows machine: 2 Intel Xeon CPUs E5-2637 v4, 3.5GHz, 32GB 

RAM, and NVIDIA Tesla P100 GPU with 12GB memory.  

4.4.1. Inpainting Experiment 

In this experiment, we use WT-LARS for inpainting. After applying zero weights to the missing 

data, we obtained a sparse representation of the inpainted image using WT-LARS.  

In our experimental results shown in  Figure 4.1 and Figure 4.2, we obtained a fenceless image by 

considering pixels behind the fences as missing data. Figure 4.1 a) and Figure 4.2 a) show the 

original images with fences, and Figure 4.1 b) and Figure 4.2 b) show the respective masks applied 

to each pixel of the original image, where black indicates zero and white indicate one. Figure 4.1 

c) and Figure 4.2 c) show the reconstructed fenceless images using the sparse representation of 

images behind fences obtained by WT-LARS. 

We obtained RGB image patches, 200 × 200 × 3 pixels, from the original images in Figure 4.1 

a) and Figure 4.2 a). For each patch, we obtained a weighted K-sparse representation using WT-

LARS, with 10% nonzero coefficients, for three fixed mode-n overcomplete dictionaries, 𝜱𝜱(1) ∈

ℝ200×400, 𝜱𝜱(2) ∈ ℝ200×400 and 𝜱𝜱(3) ∈ ℝ3×4, by solving a 𝐿𝐿1 constrained sparse weighted least-

squares problem. Weights consists of zeros for the pixels that belong to the fence in the original 

images and ones for everywhere else. Used fixed mode-n overcomplete dictionaries were a union 

of a Discrete Cosine Transform (DCT) dictionaries and a Symlet wavelet packet with four 

vanishing moments dictionaries. In the experimental results shown in Figure 4.1 and Figure 4.2, 
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the RGB patches with the minimum number of nonzero samples had 79,834 and 92,748 nonzero 

samples, respectively. 

Figure 4.1. a) Original image with a fence b) Weights image with zero weights for the fence c) WT-LARS 
reconstructed image (Fence Removed) 

Figure 4.2. a) Original image with a fence b) Weights image with zero weights for the fence c) WT-LARS 
reconstructed image (Fence Removed) 

In the experimental results shown in Figure 4.3, we used WT-LARS to obtain a landscape image 

occluded by a person in Figure 4.3 a). Figure 4.3 b) shows the weights, and Figure 4.3 c) shows 

the inpainting result after removing the person from the foreground of the landscape image. 

The RGB images in Figure 4.3 a) are a scaled version of the original image with 200 × 300 × 3 

pixels. We obtained a weighted K-sparse representation for the scaled image in Figure 4.3 a) using 

WT-LARS, with 20% non-zero coefficients, for three fixed mode-n overcomplete dictionaries, 
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𝜱𝜱(1) ∈ ℝ200×400, 𝜱𝜱(2) ∈ ℝ300×604 and 𝜱𝜱(3) ∈ ℝ3×4, by solving a weighted 𝐿𝐿1 constrained sparse 

least-squares problem. 

Figure 4.3. a) Original image with a person b) Weights image with zero weights for the person c) WT-
LARS reconstructed image (Person Removed) 

Weights consist of zeros for the pixels belonging to the person in the original image and ones for 

everywhere else. Used fixed mode-n overcomplete dictionaries were a union of a Discrete Cosine 

Transform (DCT) dictionaries and a Symlet wavelet packet with four vanishing moments 

dictionaries. In the experimental results shown in Figure 4.3, a total of 170,829 nonzero samples 

have been used to obtain a sparse signal representation of the landscape image. Therefore, the 

inpainting results in, Figure 4.1 c), Figure 4.2 c) and Figure 4.3 c) clearly show that WT-LARS 

could be successfully used to approximate missing/incomplete data.  

4.5. Conclusions 

Sparse weighted multilinear least-squares is a generalization of the sparse multilinear least-squares 

problem, where both sides of the Kronecker LS system are multiplied by an arbitrary diagonal 

weights matrix. These arbitrary weights would result in a potentially very large non-Kronecker 

least-squares problem that could be impractical to solve as it would require significant memory 

and computational power. 

This chapter extended the T-LARS algorithm, developed in chapter 3 [18], to become the 

Weighted Tensor Least Angle Regression (WT-LARS) algorithm that could efficiently solve either 

L0 or L1 constrained multilinear least-squares problems with arbitrary diagonal weights for all 

critical values of their regularization parameter 𝜆𝜆. To validate our new WT-LARS algorithm, we 

used it to solve three image inpainting problems. In our experimental results using WT-LARS 

shown in Figure 4.1 and Figure 4.2,  we obtained the exact sparse signal representation of RGB 
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images behind fences after applying zero weights to the pixels representing the fences. In the 

experimental result using WT-LARS shown in Figure 4.3, we successfully obtained an exact 

sparse signal representation of an RGB landscape image occluded by a person by applying zero 

weights to the pixels representing this person. These results demonstrate the validity and 

usefulness of our new Weighted Least Angle Regression (WT-LARS) algorithm. 
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Chapter 5 

5. Tensor Dynamic Least Angle Regression (TD-LARS)

The Tensor Least Angle Regression (T-LARS) [18] developed in chapter 3 is a computationally 

efficient method to solve large L0 or L1 constrained sparse multilinear least-squares problems for 

all critical values of the regularization parameter λ. We could initialize T-LARS with an  L1 

solution located on the Pareto curve [23] and obtain an L1 solution with a lower residual error, 

where the Pareto curve contains every solution to a linear/multilinear least-squares problem. 

However, we could not initialize T-LARS with a solution outside of the Pareto curve because it 

will violate the optimality conditions of T-LARS. Therefore, this chapter extends T-LARS and the 

one-dimensional L1-Homotopy method [24] to develop the Tensor Dynamic Least Angle 

Regression (TD-LARS) algorithm to obtain a solution to an L1 constrained multilinear least-squares 

problem when initialized with a non-zero initial solution located on or off of the Pareto curve. 

Therefore, with TD-LARS, we could efficiently obtain a solution to a multilinear L1 minimization 

problem by initializing with an L1 solution of a close problem. 

5.1. Introduction 

Efficiently solving either large L0 or large L1 constrained sparse multilinear least-squares problems 

is essential to obtain sparse multilinear representations of large multi-dimensional signals. Caiafa 

and Cichocki introduced Kronecker-OMP, a generalization of OMP, for solving nonconvex L0 

constrained sparse multilinear least-squares problems [16]. Elrewainy and Sherif [17] developed 

the Kronecker Least Angle Regression (K-LARS) algorithm to solve either L0 or L1 sparse least-

squares problems efficiently (overdetermined) with a Kronecker form 𝑨𝑨 ⊗ 𝑰𝑰, for all critical values 

of the regularization parameter λ. In chapter 3 we have developed the Tensor Least angle 

Regression (T-LARS) [18], a generalization of Least angle Regression (LARS) [15], to solve large 

L0 or large L1 constrained sparse multilinear least-squares problems efficiently for all critical values 
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of the regularization parameter λ, with lower computational complexity and memory usage than 

Kronecker-OMP [18]. 

T-LARS is a Homotopy algorithm that typically starts with an empty active set 𝐼𝐼 = {}, and the

solution 𝒳𝒳 = 0 for both L0 or L1 minimization problems, where the active set contains the column

indices corresponding to nonzero coefficients.

Each L1 constrained linear/multilinear least-squares problem has a unique Pareto curve [23], which 

contains all possible L1 solutions to a particular L1 constrained linear/multilinear least-squares 

problem, where the X-axis of the Pareto curve is the L1 norm of the solution, ‖𝒳𝒳‖1; Y-axis is the 

L2 norm of the residual error; The gradient is the regularization parameter λ.  

If we initialize an L1 constrained multilinear least-squares problem with a nonzero initial solution 

tensor, 𝒳𝒳� with the corresponding regularization parameter, 𝜆̂𝜆, located on the Pareto curve, we 

could use T-LARS to obtain an L1 solution with 𝜆𝜆 < 𝜆̂𝜆. However, T-LARS could not use an initial 

solution, which is not located on the Pareto curve, because it would violate the optimality 

conditions of T-LARS. 

Initializing an L1 constrained least-squares problem with an arbitrary initial solution on or off the 

Pareto curve would have applications in many disciplines, including Signal Processing, Statistics, 

and Machine Learning. 

Typically, in dynamic programming [104], image and video coding, and compression [105], [106], 

a large problem is broken down into overlapping small sub-problems, and the solutions of each 

sub-problem are combined to obtain the final solution. Since two close sub-problems with small 

condition numbers have close solutions, we could efficiently solve one sub-problem by initializing 

with the solution of the other sub-problem. 

Transfer Learning is used widely in the Statistics and machine learning community due to its 

ability to transfer knowledge acquired in previous tasks to learn a new task efficiently [107], [108]. 

The parameter transfer approach in transfer learning assumes the two models are close and share 

common parameters or prior distributions [107], [109]. Kumagai & Kanamori [109], Maurer et al. 

[110], and Raina et al. [34] worked on parameter transfer in sparse coding, where the parameters 

transferred were the dictionaries learned from data, but they did not transfer the coefficients. 

However, one could improve parameter transfer in sparse coding-based dictionary learning 
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methods and in regression by transferring the L1 solution of an L1 minimization problem to another 

L1 minimization problem. 

Asif & Romberg [24] introduced an L1-Homotopy method to dynamically update the solutions of 

one-dimensional L1 minimization problems, using the previous solution as the initial solution for 

a streaming set of measurements. The L1-Homotopy method successfully update the L1 solution, 

𝒙𝒙�, to obtain the L1 solution to the new L1 minimization problem when the signal or the dictionary 

change. 

Therefore, in this chapter, we extend the T-LARS and the one-dimensional L1-Homotopy 

algorithm to develop the Tensor Dynamic Least Angle Regression (TD-LARS) algorithm to obtain 

the solution to an L1 constrained multilinear least-squares problem efficiently by initializing with 

a nonzero initial solution tensor 𝒳𝒳� that is located on or off the Pareto curve. 

TD-LARS would allow using the solution of an L1 constrained multilinear least-squares problem 

to solve another problem efficiently when the data tensor or the dictionary changes slightly if the 

condition number of the multilinear least-squares problem is small [9], [111]. Therefore, TD-

LARS will have applications in multiple areas, including sparse representation of multi-

dimensional streaming signals, compressing multidimensional biomedical signals, video 

encoding, transfer learning in tensor regression, and parameter transfer in multilinear dictionary 

learning. 

This chapter is organized as follows: Section 5.2 provides the background theory into the sparse 

multilinear least-squares problem and Tensor Least Angle Regression (T-LARS). We describe the 

problem formulation and the Tensor Dynamic Least Angle Regression algorithm (TD-LARS) in 

Section 5.3. Section 5.4 provides experiment results of applying both TD-LARS and T-LARS to 

L1 constrained sparse multilinear least-squares problem. We present our conclusions in Section 

5.5. 
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5.2. Background  

5.2.1. Sparse Multilinear Least-squares Problem 

A multilinear transformation of a tensor 𝒳𝒳 could be defined as, 𝒴𝒴 = 𝒳𝒳 ×1 𝜱𝜱(1) ×2 ⋯ ×𝑁𝑁 𝜱𝜱(𝑁𝑁), 

where 𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽𝑛𝑛×…×𝐽𝐽𝑁𝑁 and 𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁 are Nth order tensors, with the equivalent 

vector form  

𝜱𝜱vec(𝒳𝒳) =  vec(𝒴𝒴) (5. 1) 

Where 𝜱𝜱 = 𝜱𝜱(𝑁𝑁) ⊗ ⋯ ⊗ 𝜱𝜱(1) and 𝜱𝜱(𝑛𝑛) ∈ ℝ𝐽𝐽𝑛𝑛×𝐼𝐼𝑛𝑛;  𝑛𝑛 ∈  {1, . . 𝑁𝑁}. 

A sparse solution of the linear system in (5.1) could be obtained by rewriting it as an 𝐿𝐿𝑝𝑝 

minimization problem, 

𝒳𝒳� = arg min
𝒳𝒳

‖𝜱𝜱vec(𝒳𝒳)  −  vec(𝒴𝒴) ‖2
2 + λ‖𝒳𝒳‖𝑝𝑝 (5. 2) 

5.2.2. Tensor Least Angle Regression (T-LARS) 

We could use T-LARS [18] developed in chapter 3 to obtain a sparse solution efficiently for 𝐿𝐿0 or 

𝐿𝐿1 constrained sparse multilinear least-squares problem in (5.2) for all critical values of the 

regularization parameter λ.  

T-LARS starts with a large value of λ, which results in an empty active set 𝐼𝐼 = {}, and a solution

𝒳𝒳�𝑡𝑡=0
∗ = 0. The set 𝐼𝐼 denotes an active set of columns of the dictionary 𝜱𝜱, i.e., column indices

where the optimal solution 𝒳𝒳�𝑡𝑡
∗ at iteration 𝑡𝑡, is nonzero, and 𝐼𝐼𝑐𝑐 denotes its corresponding inactive

set. Therefore, 𝜱𝜱𝐼𝐼 contains only the active columns of the dictionary 𝜱𝜱 and 𝜱𝜱𝐼𝐼𝑐𝑐  contains only its

inactive columns.

At each iteration 𝑡𝑡, a new column is either added or removed from the active set 𝐼𝐼, and λ is reduced 

by a calculated value 𝛿𝛿𝑡𝑡
∗ and the solution 𝒳𝒳�𝑡𝑡

∗ is moved in a direction 𝒅𝒅𝑡𝑡. 

The optimal solution at any iteration, 𝑡𝑡 must satisfy the following two optimality conditions, 

𝜱𝜱𝐼𝐼𝑡𝑡
𝑇𝑇 �𝜱𝜱vec�𝒳𝒳�𝑡𝑡�  −  vec(𝒴𝒴)�  =  −𝜆𝜆𝑡𝑡𝒛𝒛𝑡𝑡 (5. 3) 

�𝜱𝜱𝐼𝐼𝑡𝑡
𝑐𝑐

𝑇𝑇 �𝜱𝜱vec�𝒳𝒳�𝑡𝑡�  −  vec(𝒴𝒴)� �
∞

 ≤  𝜆𝜆𝑡𝑡 (5. 4) 
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where, 𝜆𝜆𝑡𝑡 is the regularization parameter at iteration 𝑡𝑡 and 𝒛𝒛𝑡𝑡 is the sign sequence of the nonzero 

coefficients of vec�𝒳𝒳�𝑡𝑡� on the active set 𝐼𝐼. 

T-LARS obtain a new solution at each iteration 𝑡𝑡, with an increasing number of coefficients, which

follows a piecewise linear path until obtaining a predetermined number of active columns 𝐾𝐾 or

reaching a predetermined residual error 𝜀𝜀.

5.3. Tensor Dynamic Least Angle Regression (TD-LARS) 

In this section, we develop the Tensor Dynamic Least Angle Regression (TD-LARS) algorithm by 

extending the one-dimensional 𝐿𝐿1-Homotopy algorithm [24], [42], and T-LARS [18] that we 

developed in chapter 3 to efficiently obtain the solution to an 𝐿𝐿1 constrained multilinear least-

squares problem using a solution of a slightly different problem. 

Let us assume we have a sparse coefficient tensor 𝒳𝒳�, with support 𝐼𝐼 and sign sequence 𝒛𝒛�, where 

𝒛𝒛� = sign �vec�𝒳𝒳���, which is close to the solution of (5.2). Our objective is to obtain the 𝐿𝐿1 

solution to (5.2) efficiently, by using 𝒳𝒳� as the initial solution.  

If 𝒳𝒳� is not the 𝐿𝐿1 solution of (5.2) for a certain λ, T-LARS could not use 𝒳𝒳� as the initial solution 

because 𝒳𝒳� would violate the optimality conditions in (5.3) and (5.4). Therefore, the Tensor 

Dynamic Least Angle Regression problem is formulated by adding an extra term to (5.2) to satisfy 

the optimality conditions for a given initial solution. 

5.3.1. Problem Formulation 

Asif & Romberg [24], [42] introduced an L1-Homotopy method to dynamically update the 

solutions of one-dimensional L1 minimization problems, using the previous solution as the initial 

solution. 

𝐹𝐹(𝒙𝒙) = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝒳𝒳

1
2

‖𝜱𝜱𝒙𝒙 − 𝒚𝒚 ‖2
2 + 𝜆𝜆‖𝒙𝒙‖1 + (1 − 𝜖𝜖)𝒖𝒖𝑇𝑇𝒙𝒙           (5. 5) 

Therefore, we could formulate the Tensor Dynamic Least Angle Regression problem by extending 

the vector-based 𝐿𝐿1-Homotopy formulation in (5.5) as [24], [42]. 

𝐹𝐹(𝒳𝒳) = arg min
𝒳𝒳

1
2

‖𝜱𝜱vec(𝒳𝒳) − vec(𝒴𝒴) ‖2
2 + λ‖𝒳𝒳‖1  + 𝜖𝜖𝒖𝒖𝑇𝑇vec(𝒳𝒳) (5. 6) 
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where 0 ≤ 𝜖𝜖 ≤ 1 and 𝒖𝒖 ∈ ℝ𝐼𝐼1…𝐼𝐼𝑁𝑁 is a vector. 

𝜕𝜕𝜕𝜕(𝒳𝒳)
𝜕𝜕vec(𝒳𝒳) = 𝜱𝜱𝑇𝑇�𝜱𝜱vec(𝒳𝒳) − vec(𝒴𝒴)�  + λvec(𝜕𝜕‖𝒳𝒳‖1) + 𝜖𝜖𝒖𝒖 = 0 (5. 7) 

Where, 𝜕𝜕‖𝒳𝒳‖1 denotes the sub-differential of the 𝐿𝐿1 norm that could be described as, 

vec(𝜕𝜕‖𝒳𝒳‖1) = �𝒈𝒈 ∈ ℝ𝐼𝐼1…𝐼𝐼𝑁𝑁 �
𝑔𝑔𝑖𝑖 =  +1,          where 𝑥𝑥𝑖𝑖 > 0 
𝑔𝑔𝑖𝑖 =  −1,          where 𝑥𝑥𝑖𝑖 < 0
𝑔𝑔𝑖𝑖 ∈ [−1, +1], where 𝑥𝑥𝑖𝑖 = 0

(5. 8) 

Where 𝑥𝑥𝑖𝑖 is the 𝑖𝑖𝑡𝑡ℎ element of vec(𝒳𝒳). 

Using the sub-differential 𝒈𝒈 = vec(𝜕𝜕‖𝒳𝒳‖1), we could describe the optimality condition 0 ∈

 𝜕𝜕𝑓𝑓(𝒳𝒳∗) for a tensor 𝒳𝒳∗ as, 

λ𝒈𝒈 + 𝜱𝜱𝑇𝑇(𝜱𝜱vec(𝒳𝒳∗) − vec(𝒴𝒴) ) + 𝜖𝜖𝒖𝒖 = 0 (5. 9) 

Where  ‖𝒈𝒈‖∞ ≤ 1 and 𝒈𝒈𝑇𝑇vec(𝒳𝒳∗) =  ‖𝒳𝒳∗‖1 

5.3.2. Tensor Dynamic Least Angle Regression (TD-LARS) Formulation 

The objective of TD-LARS is to start with a nonzero initial solution 𝒳𝒳�, with a support 𝐼𝐼  and 

efficiently obtain the solution to (5.2) for a given λ. Similar to T-LARS, we normalize the data 

tensor 𝒴𝒴,  and the columns of each dictionary 𝜱𝜱(𝑛𝑛); 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁} to have a unit 𝐿𝐿2 norm. Note 

that normalizing columns of each dictionary 𝜱𝜱(𝑛𝑛); 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁} ensure normalization of the 

separable dictionary 𝜱𝜱 [18]. For notational simplicity in the following sections, we will use 𝒴𝒴 to 

represent the normalized data tensor and 𝜱𝜱(𝑛𝑛) to represent normalized dictionary matrices. 

The TD-LARS algorithm starts at 𝑡𝑡 = 0 and 𝜖𝜖𝑡𝑡 = 1, where 𝜖𝜖𝑡𝑡 denotes the 𝜖𝜖 of (5.6) at any iteration 

𝑡𝑡. At each iteration 𝑡𝑡, 𝜖𝜖𝑡𝑡 is decreased by a small value 𝛿𝛿𝑡𝑡 until 𝜖𝜖𝑡𝑡 goes to zero. Note that when 

𝜖𝜖𝑡𝑡 = 0, both problems (5.2) and (5.7) are identical. Therefore the solution of (5.7) at 𝜖𝜖𝑡𝑡 = 0 is 

also the solution of (5.2) for a specific λ. 

From (5.8) and (5.9), we could define the optimality conditions for TD-LARS at any iteration 𝑡𝑡, 

and for any 0 ≤ 𝜖𝜖𝑡𝑡 ≤ 1 as, 

𝜱𝜱𝐼𝐼𝑡𝑡
𝑇𝑇 �𝜱𝜱vec�𝒳𝒳�𝑡𝑡�  −  vec(𝒴𝒴)� +  𝜖𝜖𝑡𝑡𝒖𝒖𝐼𝐼𝑡𝑡 = −λ𝒛𝒛𝑡𝑡 (5. 10) 
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�𝜱𝜱𝐼𝐼𝑡𝑡
𝑐𝑐

𝑇𝑇 �𝜱𝜱vec�𝒳𝒳�𝑡𝑡�  −  vec(𝒴𝒴)� + 𝜖𝜖𝑡𝑡𝒖𝒖𝐼𝐼𝑡𝑡
𝑐𝑐�  ≤ λ (5. 11) 

Where 𝒳𝒳�𝑡𝑡 is the optimal solution, 𝒛𝒛𝑡𝑡 = sign �vec�𝒳𝒳�𝑡𝑡��, 𝐼𝐼𝑡𝑡 denotes the active set, and 𝐼𝐼𝑡𝑡
𝑐𝑐 denotes 

the inactive set at any iteration 𝑡𝑡. 

TD-LARS starts at, 𝑡𝑡 = 0, 𝜖𝜖𝑡𝑡 = 1, 𝒳𝒳 =  𝒳𝒳� and the active set 𝐼𝐼. At 𝜖𝜖𝑡𝑡 = 1 the initial optimum 

solution 𝒳𝒳� should satisfy the optimality conditions in (5.10) and (5.11). Therefore, for 𝒳𝒳� to 

become the initial optimum solution of (5.6), we should define 𝒖𝒖 as, 

 𝒖𝒖 = −𝜱𝜱𝑇𝑇 �𝜱𝜱vec�𝒳𝒳��  −   vec(𝒴𝒴)� − λ𝒛𝒛� (5. 12) 

Where 𝒛𝒛� =  sign �vec�𝒳𝒳��� on the active set 𝐼𝐼 and zero everywhere else. 

At each iteration 𝑡𝑡, we decrease 𝜖𝜖𝑡𝑡 by a small value 𝛿𝛿𝑡𝑡, and the optimal solution vec�𝒳𝒳�𝑡𝑡� is updated 

by 𝛿𝛿𝑡𝑡𝒅𝒅𝑡𝑡 along a direction 𝒅𝒅𝑡𝑡, 

�𝜱𝜱𝐼𝐼𝑡𝑡
𝑇𝑇 �𝜱𝜱vec�𝒳𝒳�𝑡𝑡�  −  vec(𝒴𝒴)� + 𝜖𝜖𝑡𝑡𝒖𝒖𝐼𝐼𝑡𝑡 + 𝛿𝛿𝑡𝑡�𝜱𝜱𝐼𝐼𝑡𝑡

𝑇𝑇 𝜱𝜱𝒅𝒅𝑡𝑡 − 𝒖𝒖𝐼𝐼𝑡𝑡�� = −λ𝒛𝒛𝑡𝑡 (5. 13) 

�𝚽𝚽𝐼𝐼𝑡𝑡
𝑐𝑐

𝑇𝑇 �𝜱𝜱vec�𝒳𝒳�𝑡𝑡�  −  vec(𝒴𝒴)� + 𝜖𝜖𝑡𝑡𝒖𝒖𝐼𝐼𝑡𝑡
𝑐𝑐�����������������������

𝒑𝒑𝑡𝑡

+ 𝛿𝛿𝑡𝑡 �𝜱𝜱𝐼𝐼𝑡𝑡
𝑐𝑐

𝑇𝑇 𝜱𝜱𝒅𝒅𝑡𝑡 − 𝒖𝒖𝐼𝐼𝑡𝑡
𝑐𝑐������������

𝒗𝒗𝑡𝑡

� ≤ λ (5. 14) 

We obtain the update direction 𝒅𝒅𝑡𝑡, by setting 𝜱𝜱𝐼𝐼𝑡𝑡
𝑇𝑇 𝜱𝜱𝒅𝒅𝑡𝑡 − 𝒖𝒖𝐼𝐼𝑡𝑡 = 0. 

𝒅𝒅𝑡𝑡  =  � 𝑮𝑮𝑡𝑡
−1𝒖𝒖𝐼𝐼𝑡𝑡 , on  𝐼𝐼

0,  Otherwise
(5. 15) 

where 𝑮𝑮𝑡𝑡
−1 is the inverse of the Gram matrix 𝑮𝑮𝑡𝑡 = �𝜱𝜱𝐼𝐼𝑡𝑡

𝑇𝑇 𝜱𝜱𝐼𝐼𝑡𝑡�. The size of this Gram matrix would 

either increase (dictionary column addition) or decrease (dictionary column removal) with each 

iteration 𝑡𝑡. Therefore, for computational efficiency, we use the Schur complement inversion 

formula to calculate 𝑮𝑮𝑡𝑡
−1 from 𝑮𝑮𝑡𝑡−1

−1  , thereby avoiding its full calculation (See section 3.3.2.1). 

The optimal solution vec�𝒳𝒳�𝑡𝑡� is moved in the direction 𝒅𝒅𝑡𝑡 until a condition in (5.10) and (5.11) 

violates. If the condition in (5.11) is violated, an additional column of 𝜱𝜱𝐼𝐼𝑐𝑐 should be added to the 

active set 𝐼𝐼; If the condition in (5.10) is violated an active column of 𝜱𝜱𝐼𝐼 must be removed. 
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The smallest step size that would violate the condition in (5.11) is given by, 

𝛿𝛿𝑡𝑡
+ = 𝑚𝑚𝑚𝑚𝑚𝑚

𝑖𝑖∈𝐼𝐼𝑐𝑐
�

λ − 𝒑𝒑𝑡𝑡(𝑖𝑖)
𝒗𝒗𝑡𝑡(𝑖𝑖) ,

−λ − 𝒑𝒑𝑡𝑡(𝑖𝑖)
𝒗𝒗𝑡𝑡(𝑖𝑖) � (5. 16) 

The smallest step size that would violate condition in (5.10) is given by, 

𝛿𝛿𝑡𝑡
− = 𝑚𝑚𝑚𝑚𝑚𝑚

𝑖𝑖∈𝐼𝐼
�−

𝒙𝒙�𝑡𝑡−1(𝑖𝑖)
𝒅𝒅𝑡𝑡(𝑖𝑖) � (5. 17) 

Where 𝒙𝒙�𝑡𝑡−1 = vec�𝒳𝒳�𝑡𝑡−1�. 

Therefore, 𝛿𝛿𝑡𝑡
∗  =  min (𝛿𝛿𝑡𝑡

+, 𝛿𝛿𝑡𝑡
−), is the smallest step size that would violate one of the optimality 

conditions given in (5.10) or (5.11). If 𝛿𝛿𝑡𝑡
∗ = 𝛿𝛿𝑡𝑡

+ an additional column 𝑖𝑖 ∈ 𝐼𝐼𝑐𝑐 is going to be added 

to the active set 𝐼𝐼 and if 𝛿𝛿𝑡𝑡
∗  = 𝛿𝛿𝑡𝑡

− a column 𝑖𝑖 ∈ 𝐼𝐼 is removed from the active set 𝐼𝐼. 

The solution 𝒳𝒳�𝑡𝑡 is updated as 

vec�𝒳𝒳�𝑡𝑡�  =  vec�𝒳𝒳�𝑡𝑡−1�  +  𝛿𝛿𝑡𝑡
∗𝒅𝒅𝑡𝑡 (5. 18) 

𝜖𝜖𝑡𝑡+1 is updated as 

𝜖𝜖𝑡𝑡+1  = 𝜖𝜖𝑡𝑡 −  𝛿𝛿𝑡𝑡
∗ (5. 19) 

TD-LARS evaluate 𝒅𝒅𝑡𝑡 , and 𝛿𝛿𝑡𝑡
∗ for each iteration 𝑡𝑡 and update the solution 𝒳𝒳�𝑡𝑡 before continuing to 

the next iteration. The TD-LARS algorithm stops when (𝜖𝜖𝑡𝑡 −  𝛿𝛿𝑡𝑡
∗) ≤ 0. 

5.3.3. Tensor Dynamic Least Angle Regression Algorithm (TD-LARS) 

Inputs to TD-LARS are the data tensor 𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽𝑛𝑛×…×𝐽𝐽𝑁𝑁, initial solution tensor 𝒳𝒳� ∈

ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁, mode-n dictionary matrices 𝜱𝜱(𝑛𝑛) ∈ ℝ𝐽𝐽𝑛𝑛×𝐼𝐼𝑛𝑛; 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁} where 𝜱𝜱 = 𝜱𝜱(𝑁𝑁) ⊗

⋯ ⊗ 𝜱𝜱(1), and the regularization parameter 𝜆𝜆. The output is the solution tensor 𝒳𝒳 ∈

ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁.  
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Algorithm 5.1 shows the complete TD-LARS algorithm using MATLAB notation. 

Algorithm 5.1: Tensor Dynamic Least Angle Regression (TD-LARS) 
Input:  normalized Tensor 𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽𝑛𝑛×…×𝐽𝐽𝑁𝑁 ; initial solution 𝒳𝒳� ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁; 𝐿𝐿1 
regularization parameter𝜆𝜆; normalized dictionary matrices 𝜱𝜱(𝑛𝑛) ∈ ℝ𝐽𝐽𝑛𝑛×𝐼𝐼𝑛𝑛;  𝑛𝑛 ∈  {1, . . 𝑁𝑁}; 

Initialization: Initial Residual: ℛ0 = �𝒳𝒳� ×1 𝜱𝜱(1) ×2 ⋯ ×𝑁𝑁 𝜱𝜱(𝑁𝑁) − 𝒴𝒴�; ε=1; active set: I = 
{𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 �𝒳𝒳� ≠ 0�}; 
1. 𝒞𝒞1 =  ℛ0 ×1 𝜱𝜱(1)𝑇𝑇

×2. . .×𝑛𝑛 𝜱𝜱(𝑛𝑛)𝑇𝑇
×𝑛𝑛+1. . .×𝑁𝑁 𝜱𝜱(𝑁𝑁)𝑇𝑇

2. 𝒄𝒄𝟏𝟏 = vec(𝒞𝒞1)

3. 𝒛𝒛 =  �𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �vec�𝒳𝒳� �� ,      𝑜𝑜𝑜𝑜  𝐼𝐼
0,  𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 

4. 𝒖𝒖 = −𝒄𝒄𝟏𝟏 − 𝝀𝝀𝒛𝒛
5. 𝒙𝒙0 =  vec�𝒳𝒳� �
6.  for n=1 to N, do
7. 𝑮𝑮(𝑛𝑛) = 𝜱𝜱(𝑛𝑛)𝑇𝑇

𝜱𝜱(𝑛𝑛)

8.  end for
9. 𝑮𝑮0

−1 = �𝜱𝜱𝐼𝐼
𝑻𝑻𝜱𝜱𝐼𝐼�−1

10.  while 𝜀𝜀 > 0
11. 𝑮𝑮𝑡𝑡

−1 =updateInverseGramMatrix (𝑮𝑮𝑡𝑡−1
−1 , { 𝑮𝑮(𝟏𝟏), . . . , 𝑮𝑮(𝑁𝑁)}, I, add_column, column_idx) 

% See section 3.3.2.1 [18]
12. 𝒅𝒅𝐼𝐼𝑡𝑡 = 𝑮𝑮𝑡𝑡

−1𝒖𝒖𝐼𝐼𝑡𝑡
13. vec(𝒟𝒟𝑡𝑡) = 𝒅𝒅𝑡𝑡
14. 𝒑𝒑𝑡𝑡 = 𝒄𝒄𝑡𝑡 + ε𝒖𝒖
15. 𝒬𝒬𝑡𝑡 =  𝒟𝒟𝑡𝑡 ×𝟏𝟏 𝑮𝑮(𝟏𝟏) ×𝟐𝟐 … ×𝒏𝒏 𝑮𝑮(𝑛𝑛) ×𝒏𝒏+𝟏𝟏 … ×𝑵𝑵 𝑮𝑮(𝑁𝑁)

16. 𝒒𝒒𝑡𝑡 = vec( 𝒬𝒬𝑡𝑡)
17. 𝒗𝒗𝑡𝑡  = 𝒒𝒒𝑡𝑡 − 𝒖𝒖
18. 𝛿𝛿𝑡𝑡1

+ =  (−𝜆𝜆 − 𝒑𝒑𝐼𝐼𝑡𝑡
𝑐𝑐  )./𝒗𝒗𝐼𝐼𝑡𝑡

𝑐𝑐   % “./” -  Elementwise division  
19.  𝛿𝛿𝑡𝑡2

+ = (𝜆𝜆 − 𝒑𝒑𝐼𝐼𝑡𝑡
𝑐𝑐  )./𝒗𝒗𝐼𝐼𝑡𝑡

𝑐𝑐

20.  𝛿𝛿𝑡𝑡
− = −𝒙𝒙𝐼𝐼𝑡𝑡−1 ./𝒅𝒅𝐼𝐼𝑡𝑡

21. [𝛿𝛿𝑡𝑡
∗,  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖] = 𝑚𝑚𝑚𝑚𝑚𝑚  �𝛿𝛿𝑡𝑡1

+ , 𝛿𝛿𝑡𝑡2
+ �

22. add_column == True
23.  if min (𝛿𝛿𝑡𝑡

−) < 𝛿𝛿𝑡𝑡
∗

24.  [𝛿𝛿𝑡𝑡
∗, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖]= min (𝛿𝛿𝑡𝑡

−)
25.  add_column = False 
26.  end
27. 𝒙𝒙𝐼𝐼𝑡𝑡      = 𝒙𝒙𝐼𝐼𝑡𝑡−1 + 𝛿𝛿𝑡𝑡

∗𝒅𝒅𝐼𝐼𝑡𝑡
28. ε𝑡𝑡+1  = ε𝑡𝑡 − 𝛿𝛿𝑡𝑡

∗

29.  𝒄𝒄𝑡𝑡+1 =  𝒄𝒄𝑡𝑡 +  𝛿𝛿𝑡𝑡
∗𝒒𝒒𝑡𝑡

30.  ℛ𝑡𝑡 =  ℛ𝑡𝑡−1 +  𝛿𝛿𝑡𝑡
∗𝒟𝒟𝑡𝑡 ×1 𝜱𝜱(1) ×2 𝜱𝜱(2) ×3 ⋯ ×𝑁𝑁 𝜱𝜱(𝑁𝑁)

31.  if add_column == True 
32.  I = I + {𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖} 
33.  else
34.  I = I – {𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖} 
35.  end
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36. end while
37. vec( 𝒳𝒳) =  𝒙𝒙 
38.  return I, 𝒳𝒳

5.4. Experimental Results 

This section presents experimental results to compare the performance of the T-LARS and the TD-

LARS algorithms when used to obtain a sparse representation of 3D signals using overcomplete 

mode-n dictionaries. When comparing, T-LARS starts at a solution 𝒳𝒳 = 0 and TD-LARS starts at 

a nonzero initial solution 𝒳𝒳�. 

For our computational experiments, we obtained two successive RGB video frames of a color 

video with a frame rate of 30 frames/Sec. and two successive 3D MRI images from a sequence of 

3D MRI images from publicly available datasets. 

The two RGB video frames used in our experiments consist of 232 × 424 × 3 voxels, and they 

are the first two frames of a video of an Acorn Woodpecker obtained from the VB100 Video Bird 

Dataset [112]. 

The two 3D MRI images used in the experiments consist of 100 × 75 × 10 voxels, and they are 

the corresponding sub-tensors of two successive 3D MRI images obtained from a sequence of 3D 

MRI images (4DMRI dataset) of respiratory liver motion obtained from the computer vision 

laboratory of ETH Zurich [113], [114]. 

We obtained our experimental results using a MATLAB implementation of TD-LARS and T-

LARS on an MS-Windows machine: 2 Intel Xeon CPUs E5-2637 v4, 3.5GHz, 32GB RAM, and 

NVIDIA Tesla P100 GPU with 12GB memory.  

5.4.1. Obtaining Sparse Representations of Successive RGB Video Frames Using 

TD-LARS  

In this experiment, we used TD-LARS to obtain the sparse representation of the RGB video frame 

“Frame 2” by using the sparse representation of the previous RGB video frame “Frame 1,” and we 

compared the performance with T-LARS, where Frame 1 and Frame 2 each consisted of 

232 × 424 × 3 voxels.  
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For a given data tensor 𝒴𝒴, mode-n dictionaries 𝜱𝜱(𝑛𝑛) ∈ ℝ𝐽𝐽𝑛𝑛×𝐼𝐼𝑛𝑛;  𝑛𝑛 ∈  {1, . . 𝑁𝑁} and a regularization 

parameter 𝜆𝜆, both T-LARS and TD-LARS should obtain the same 𝐿𝐿1 solution to (2). Therefore, to 

compare the accuracy and speed of the 𝐿𝐿1 solutions obtained using TD-LARS and T-LARS, we 

obtained the 𝐿𝐿1 solution of RGB video Frame 2 using TD-LARS and T-LARS for three fixed 

mode-n overcomplete dictionaries, 𝜱𝜱(1) ∈ ℝ232×464, 𝜱𝜱(2) ∈ ℝ424×848 and 𝜱𝜱(3) ∈ ℝ3×4 and a 

fixed regularization parameter 𝜆̂𝜆. 

The mode-n dictionaries, 𝜱𝜱(1) and 𝜱𝜱(2) were a union of a Discrete Cosine Transform (DCT) 

dictionaries and a Symlet wavelet packet with four vanishing moments dictionaries, and the mode-

n dictionary 𝜱𝜱(3) was a union of an Identity matrix with a dc column where each element is 1. The 

regularization parameter 𝜆̂𝜆 was selected at the residual error ‖𝑅𝑅‖ = 0.02 of the 𝐿𝐿1 solution of 

Frame 2.  

Figure 5.1 a) and Figure 5.1 b) show the original RGB video Frame 1 and Frame 2, respectively. 

Figure 5.1 c) shows the exaggerated difference between the original Frame 1 and original Frame 

2, where 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 10 × (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 1 − 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 2). Figure 5.1 d) and Figure 5.1 e) show the 

reconstructed Frame 1 and Frame 2, respectively, at the residual error ‖𝑅𝑅‖ = 0.02, using the 𝐿𝐿1 

solutions obtained by T-LARS. Figure 5.1 e) shows the reconstructed Frame 2 obtained using TD-

LARS by using the 𝐿𝐿1 solution of Frame 1 as the initial solution. 

Figure 5.2 a) shows the change of the parameter ε with iterations. At 𝜀𝜀 = 1, the TD-LARS solution 

𝒳𝒳 is same as the 𝐿𝐿1 solution 𝒳𝒳� of Frame 1, and as ε goes to zero, the TD-LARS solution 𝒳𝒳 goes 

to the 𝐿𝐿1 solution of Frame 2.  

Figure 5.2 b) shows the residual error vs. ‖𝒳𝒳‖1, which is also called the Pareto curve [23]. As 

shown in the Pareto curve, both 𝐿𝐿1 solutions of Frame 1 and Frame 2 are close. The zoomed graph 

of Figure 5.2 b) shows the TD-LARS solution starts away from both Pareto curves of Frame 1 and 

Frame 2 and reach the 𝐿𝐿1 solution of Frame 2, when the residual error reaches ‖𝑅𝑅‖ = 0.02. Figure 

5.2 c) shows the number of iterations required to reach the residual error ‖𝑅𝑅‖ = 0.02, where T-

LARS took 8,385 iterations to obtain 8,166 active columns and 8,295 iterations to obtain 8,090 

active columns for Frame 1 and Frame 2, respectively. TD-LARS only took 764 iterations to obtain 

the 8090 active columns of the 𝐿𝐿1 solution of Frame 2 to reach the residual error ‖𝑅𝑅‖ = 0.02. As 

shown in Figure 5.2 d), T-LARS took 215s and 211s to obtain the 𝐿𝐿1 solutions of Frame 1 and 
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Frame 2, respectively, whereas TD-LARS obtained the 𝐿𝐿1 solution of Frame 2 in just 22s, which 

is just 10% of the time it took for T-LARS to obtain the 𝐿𝐿1 solution of Frame 2. 

Figure 5.1. a) Original RGB video Frame 1 b) Original RGB video Frame 2 c) The difference between the 
original RGB video Frame 1 and the original RGB video Frame 2 d) T-LARS reconstructed RGB video 
Frame 1 e) T-LARS reconstructed RGB video Frame 2 f) TD-LARS reconstructed RGB video Frame 2 

Figure 5.2. a) ε vs. the number of iterations b) Residual error vs. ‖𝒳𝒳‖1 c) Residual error vs. number of 
iterations d) Residual error vs. computation time (Sec.), obtained by applying T-LARS and TD-LARS to 
our RGB video Frame 1 and Frame 2 
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5.4.2. Obtaining Sparse Representations of Successive 3D MRI Images Using the 

TD-LARS  

In this experiment, we used TD-LARS to obtain the sparse representation of the 3D MRI Image 

“3D MRI Image 2” by using the 𝐿𝐿1 solution of the previous 3D MRI Image “3D MRI Image 1” as 

the initial solution and compared the performance with T-LARS, where 3D MRI Image 1 and 3D 

MRI Image 2 each consisted of 100 × 75 × 10 voxels.  

To compare the accuracy and speed of the 𝐿𝐿1 solutions obtained using TD-LARS and T-LARS, 

we obtained the 𝐿𝐿1 solution of the 3D MRI Image 2 using TD-LARS and T-LARS for three fixed 

mode-n overcomplete dictionaries, 𝜱𝜱(1) ∈ ℝ100×204, 𝜱𝜱(2) ∈ ℝ75×155 and 𝜱𝜱(3) ∈ ℝ10×26 and a 

fixed regularization parameter 𝜆̂𝜆. 

The mode-n dictionaries, 𝜱𝜱(1), 𝜱𝜱(2) and 𝜱𝜱(3) were a union of Discrete Cosine Transform (DCT) 

dictionaries and a Symlet wavelet packet with four vanishing moments dictionaries. The 

regularization parameter 𝜆̂𝜆 was selected at the residual error ‖𝑅𝑅‖ = 0.075 of the 𝐿𝐿1 solution of 

Frame 2.  

Figure 5.3 a) and Figure 5.3 b) show the original 3D MRI Image 1 and 3D MRI Image 2. Figure 

5.3 c) shows the difference between the original 3D MRI Image 1 and the original 3D MRI Image 

2. Figure 5.3 c) shows a significant difference between the original 3D MRI Image 1 and the

original 3D MRI Image 2. Figure 5.3 d) and Figure 5.3 e) show the reconstructed 3D MRI Image

1 and 3D MRI Image 2, respectively, at the residual error ‖𝑅𝑅‖ = 0.075, using 𝐿𝐿1 solutions

obtained by T-LARS. Figure 5.3 e) shows the reconstructed 3D MRI Image 2 obtained using TD-

LARS by using the 𝐿𝐿1 solution of the 3D MRI Image 1 as the initial solution.

Figure 5.4 a) shows the change of the parameter ε with iterations. At 𝜀𝜀 = 1, the TD-LARS solution 

𝒳𝒳 is same as the 𝐿𝐿1 solution 𝒳𝒳� of the 3D MRI Image 1, and as ε goes to zero, the TD-LARS 

solution 𝒳𝒳 goes to the 𝐿𝐿1 solution of the 3D MRI Image 2.  
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Figure 5.3. a) Original 3D MRI Image 1 b) Original 3D MRI Image 2 c) The difference between the original 
3D MRI Image 1  and the original 3D MRI Image 2 d) T-LARS reconstructed 3D MRI Image 1  e) T-LARS 
reconstructed 3D MRI Image 2 f) TD-LARS reconstructed 3D MRI Image 2 

Figure 5.4. a) ε vs. the number of iterations b) Residual error vs. ‖𝒳𝒳‖1 c) Residual error vs. number of 
iterations d) Residual error vs. computation time (Sec.), obtained by applying T-LARS and TD-LARS to 
our 3D MRI Image 1 and 2
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Figure 5.4 b) shows the residual error vs. ‖𝒳𝒳‖1, which is also called the Pareto curve [23]. The 

zoomed graph of Figure 5.4 b) shows the TD-LARS solution starts further away from the Pareto 

curves of the 3D MRI Images and reach the 𝐿𝐿1 solution of 3D MRI Image 2, when the residual 

error reaches ‖𝑅𝑅‖ = 0.075. Figure 5.4 c) shows the number of iterations required to reach the 

residual error ‖𝑅𝑅‖ = 0.075, where T-LARS took 18,246 iterations to obtain 16,381 active 

columns and 18,197 iterations to obtain 16,372 active columns for the 3D MRI Image 1, and 3D 

MRI Image 2, respectively. TD-LARS took 14,882 iterations to obtain the 16,372 active columns 

of the 𝐿𝐿1 solution of the 3D MRI Image 2 to reach the residual error ‖𝑅𝑅‖ = 0.075. As shown in 

Figure 5.4 d), T-LARS took 686s and 691s to obtain the 𝐿𝐿1 solution of the 3D MRI Image 1 and 

3D MRI Image 2, respectively, whereas TD-LARS took 990s to obtain the 𝐿𝐿1 solution of the 3D 

MRI Image 2. 

Even though TD-LARS required 18% fewer iterations than T-LARS to obtain the 𝐿𝐿1 solution of 

the 3D MRI Image 2, TD-LARS required an additional 299s, which is 43% more than the time 

required by T-LARS. T-LARS starts with an empty active set, and the size of the active set 

increases with iterations, whereas TD-LARS starts with a large active set. Therefore, TD-LARS 

required more time than T-LARS to obtain the 𝐿𝐿1 solution of the 3D MRI Image 2. 

Figure 5.3 c) shows a significant difference between the 3D MRI Image 1 and 3D MRI Image 2. 

Therefore, when the two 𝐿𝐿1 solutions are not close, TD-LARS requires a significant amount of 

computation time compared to T-LARS to obtain the 𝐿𝐿1 solution. 

5.5. Conclusions 

Our Tensor Dynamic Least Angle Regression (TD-LARS) algorithm is a multilinear 

generalization of the one-dimensional L1-Homotopy algorithm developed by Asif & Romberg to 

efficiently solve multilinear L1 minimization problems by using a nonzero initial solution. By 

initializing TD-LARS with a close solution, we could obtain the desired solution to an L1 

constrained multilinear least-squares problem more efficiently than solving it using T-LARS. 

For experimental results, we obtained a sparse multilinear representation of an RGB video frame 

and a 3D MRI Image using TD-LARS by initializing with the  L1 solution of the previous video 

frame and the previous 3D MRI Image in a sequence, respectively. Experimental results show that 
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the TD-LARS solution starts away from the Pareto curves of the respective L1 minimization 

problems and reaches the Pareto curve when the gradient is equal to the respective regularization 

parameter 𝜆̂𝜆. 

The normalized difference between the two original RGB video frames is much smaller, at 0.0047, 

compared to the normalized difference between the two 3D MRI Images, which is 0.0709. 

Therefore, TD-LARS obtains the  L1 solution of the video frame “Frame 2” much faster than T-

LARS, where TD-LARS just took 10% of the time taken for T-LARS. However, TD-LARS 

required 43% more time than T-LARS to obtain the L1 solution of the 3D MRI Image 2, even if it 

obtained the solution in 18% fewer iterations. Usually, TD-LARS starts with a large active set, 

and T-LARS starts with an empty active set and increases its size with iterations. Therefore, TD-

LARS requires significantly more time than T-LARS to run an equal number of iterations. 

Therefore, TD-LARS requires more iterations and computation time than T-LARS to obtain the 

L1 solution of a multilinear L1 minimization problem when the normalized difference between the 

images increases. 

However, when the two problems are close, like in the video frames example, TD-LARS could be 

used to obtain the solutions of  L1 constrained multilinear least-squares problems much more 

efficiently than any other available method. Therefore, TD-LARS will have applications in 

multiple areas, including sparse representation of multi-dimensional streaming signals, video 

encoding, transfer learning in regression, and parameter transfer in dictionary learning. 
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Chapter 6 

6. Tensor Elastic Net (T-NET)

A sparse representation of a multi-dimensional signal could be obtained efficiently by solving 

either L0 or L1 constrained sparse multilinear least-squares problem using the Tensor Least Angle 

Regression (T-LARS) [18] algorithm developed in chapter 3. The L0 minimization problem is 

nonconvex, and the slightly relaxed L1 minimization problem is convex. Even though the L2 

minimization problem is strictly convex, the L2 solution is not sparse. Zou and Hastie proposed 

the Elastic Net formulation [27], [28] to obtain sparse solutions to one-dimensional problems by 

solving strictly convex L1 and L2 constrained sparse linear least-squares problems. The one-

dimensional Elastic Net problems could be easily solved using Least Angle Regression(LARS) 

[15]. This chapter proposes a multilinear Elastic Net (multi-dimensional) formulation by extending 

the Elastic Net (one-dimensional) to solve the strictly convex L1, and L2 constrained sparse 

multilinear least-squares problems. However, the dictionary in the multilinear Elastic Net problem 

has a partitioned Kronecker structure, which could not be efficiently solved using T-LARS. 

Therefore, in this chapter, we develop the Tensor Elastic Net (T-NET) algorithm to efficiently 

solve the multilinear Elastic Net problem using the partitioned Kronecker structure of the 

dictionary matrix.  

6.1. Introduction 

A sparse signal representation could be obtained by solving a 𝐿𝐿0 constrained sparse least-squares 

problem, which is a nonconvex problem [12], [13].  Lasso, also known as Basis Pursuit (BP) [14], 

[25], solves a relaxed 𝐿𝐿1 constrained least-squares problem, which is a convex problem, to obtains 

a sparse signal representation. Efron et al. introduced Least Angle Regression (LARS) [15], a 

computationally efficient method to solve both  𝐿𝐿0 and with a slight modification 𝐿𝐿1 constrained 
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least-squares problems. Even though, Ridge Regression, solves a strictly convex 𝐿𝐿2 constrained 

least-squares problems, it could not be used to obtain a sparse signal representation [26]. 

Basis pursuit, which solves the  𝐿𝐿1 constrained least-squares problem selects a single nonzero 

coefficient from a group of highly correlated coefficients. For a 𝑛𝑛  dimensional signal, Basis 

pursuit could only select at most 𝑛𝑛 coefficients due to the nature of the convexity of 𝐿𝐿1 constrained 

least-squares problems. To obtain an accurate sparse signal representation, solutions of both 𝐿𝐿0 

and 𝐿𝐿1 constrained least-squares problems could select at most 𝑆𝑆 <  (1 + 𝜇𝜇−1) 2⁄  nonzero 

coefficients, where S is the sparsity and 𝜇𝜇 is the coherence of the dictionary [73]. Therefore, as the 

coherence of the dictionary increases, the number of nonzero coefficients that could be selected 

for a sparse signal representation decreases. 

Zou and Hastie developed the Elastic Net to improve the performance of 𝐿𝐿1 constrained least-

squares problems by adding an additional 𝐿𝐿2 constraint [27], [28]. Elastic Net solves a strictly 

convex problem to obtain a sparse solution when both regularization coefficients of 𝐿𝐿1 and 𝐿𝐿2 are 

nonzero. Elastic Net selects all the coefficients from a group of highly correlated coefficients, and 

it could also obtain more than 𝑛𝑛 nonzero coefficients for a 𝑛𝑛 dimensional signal. However, due to 

the group selection, for a given residual error, the Elastic Net usually includes more nonzero 

coefficients than 𝐿𝐿0 and 𝐿𝐿1 minimization problems. Therefore, the Elastic Net is an important tool 

to obtain a sparse representation of a signal when the number of atoms in the dictionary is much 

higher than the signal's dimension. Elastic Net problems could be easily solved using the LARS 

algorithm [28]. 

Sparse representations of multi-dimensional signals are simpler and easier to obtain using 

separable dictionaries than non-separable dictionaries [16], [72]. Caiafa and Cichocki introduced 

Kronecker-OMP, a generalization of OMP, to represent multi-dimensional signals, using separable 

dictionaries, by solving a nonconvex L0  constrained sparse tensor least-squares problem [16]. 

Elrewainy and Sherif developed the Kronecker Least Angle Regression (K-LARS) algorithm to 

efficiently solve either large L0 or large L1 sparse least-squares problems (overdetermined) with a 

Kronecker form 𝑨𝑨 ⊗ 𝑰𝑰, for all critical values of the regularization parameter λ. By extending K-

LARS, authors have previously developed Tensor Least angle Regression (T-LARS) [18] in 

chapter 3, a generalization of LARS, to solve large L0 or large L1 constrained, sparse tensor least-
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squares problems (underdetermined or overdetermined) for all critical values of the regularization 

parameter λ and with lower computational complexity and memory usage than Kronecker-OMP. 

Usually, a small dictionary has a higher coherence than a large dictionary for the same frame. 

Therefore, a Kronecker dictionary, a Kronecker product of smaller dictionaries, has a higher 

coherence than a non-Kronecker dictionary of the same size for the same frame [115]. Therefore, 

a sparse signal representation of a multi-dimensional signal would be obtained more efficiently 

and accurately by solving a multilinear Elastic Net problem with both L1 and L2 constraints.  

The dictionary matrix in a multilinear Elastic Net problem does not have a Kronecker structure. 

Therefore multilinear Elastic Net problems could not be efficiently solved with T-LARS. 

However, as shown in section 6.2, the dictionary matrix in the multilinear Elastic Net problem has 

a partitioned Kronecker structure. Therefore, in this chapter, we develop the Tensor Elastic Net 

(T-NET) algorithm by exploiting the partitioned Kronecker structure of the dictionary matrix to 

solve multilinear Elastic Net problems efficiently.  

T-LARS could be used to solve a multilinear generalization of a LASSO-based regression model

[25], [116], and similar to LASSO, it could be a poor variable selection(feature selection in

machine Learning) method for tensor regression models with highly coherent predictor variables.

Also, LASSO-based regression models could not select all the variables from a group of highly

correlated variables and more than 𝑁𝑁 predictor variables for a tensor with 𝑁𝑁 elements. Therefore,

T-NET allows obtaining robust solutions with better statistical properties to sparse tensor signal

representation problems and tensor regression problems than T-LARS. Therefore, T-NET could

be used to obtain optimum sparse signal representations of large multidimensional signals such as

3D/4D biomedical images, videos, satellite images, hyperspectral images using large over

complete mode-n dictionaries with high coherence. T-NET also allows better convergence when

used in the sparse coding step of the tensor dictionary learning algorithms such as the Tensor

Method of Optimal Directions(T-MOD) and Kronecker Higher-Order SVD(K-HOSVD) [30] than

T-LARS.

This chapter is organized as follows: In Section 6.2, we describe the problem formulation, Tensor 

Elastic Net Formulation, and the Tensor Elastic Net algorithm. Section 6.3 provides experiment 

results of applying both T-NET and T-LARS to a sparse multi-dimensional signal representation 

problem. We present our conclusions in Section 6.4. 
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6.2. Tensor Elastic Net  

6.2.1. Problem Formulation 

The Elastic Net [28] minimizes a linear least-squares problem with both 𝐿𝐿1 and 𝐿𝐿2 constraints. 

Similarly, we can define a multilinear Elastic Net to obtain a sparse tensor solution  𝒳𝒳� by 

minimizing a multilinear least-squares problem with both 𝐿𝐿1 and 𝐿𝐿2 constraints. 

𝒳𝒳� = argmin 
𝒳𝒳

�𝒴𝒴 − 𝒳𝒳 ×1 𝜱𝜱(1) ×2 ⋯ ×𝑁𝑁 𝜱𝜱(𝑁𝑁)�
2
2

+ 𝛾𝛾1‖𝒳𝒳‖1 +  𝛾𝛾2‖𝒳𝒳‖2
2 (6. 1) 

where 𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁 , 𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽𝑛𝑛×…×𝐽𝐽𝑁𝑁, mode-n dictionary matrices 𝜱𝜱(𝑛𝑛) ∈

ℝ𝐽𝐽𝑛𝑛 × 𝐼𝐼𝑛𝑛; 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁}. 𝛾𝛾1 and 𝛾𝛾2 are regularization parameters for 𝐿𝐿1 and 𝐿𝐿2 constraints, 

respectively. 

We could write the equivalent vector formulation of (6.1) as, 

𝒳𝒳� = argmin
𝒳𝒳�

 ‖vec(𝒴𝒴) − 𝜱𝜱vec(𝒳𝒳)  ‖2
2 +  𝛾𝛾1‖vec(𝒳𝒳)‖1 +  𝛾𝛾2‖vec(𝒳𝒳)‖2

2 (6. 2) 

where 𝜱𝜱 =  𝜱𝜱(𝑁𝑁) ⊗ ⋯ ⊗ 𝜱𝜱(1) is a separable dictionary. 

Let

 𝜳𝜳 =  1
�1+𝛾𝛾2

� 𝜱𝜱
√𝛾𝛾2 𝑰𝑰� (6. 3) 

And 

vec(𝒴𝒴∗) = �vec(𝒴𝒴)
𝟎𝟎

� (6. 4)

Where 𝜳𝜳 ∈ ℝ(𝐽𝐽1×…×𝐽𝐽𝑁𝑁+𝐼𝐼1×…×𝐼𝐼𝑁𝑁)×(𝐼𝐼1×…×𝐼𝐼𝑁𝑁) is a partitioned dictionary matrix,  𝑰𝑰 ∈

ℝ(𝐼𝐼1×…×𝐼𝐼𝑁𝑁)×(𝐼𝐼1×…×𝐼𝐼𝑁𝑁) is an identity matrix, vec(𝒴𝒴∗) ∈ ℝ(𝐽𝐽1…𝐽𝐽𝑁𝑁+𝐼𝐼1…𝐼𝐼𝑁𝑁) and 𝟎𝟎 ∈ ℝ𝐼𝐼1…𝐼𝐼𝑁𝑁 is a zero 

vector. 

Therefore, we can reformulate (6.2) as, 

𝒳𝒳�∗ = argmin
𝒳𝒳∗

‖vec(𝒴𝒴∗) − 𝜳𝜳vec(𝒳𝒳∗) ‖2
2 + 𝜆𝜆‖vec(𝒳𝒳∗)‖1 (6. 5) 

Where 𝜆𝜆 = 𝛾𝛾1

�1+𝛾𝛾2
. 
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The Elastic Net solution 𝒳𝒳� is given by 

 𝒳𝒳� =  �1 + 𝛾𝛾2  𝒳𝒳�∗ (6. 6) 

Equation (6.5) is a vector 𝐿𝐿1 minimization problem, which can be solved using LARS [15]. 

We introduced Tensor Least Angle Regression (T-LARS) [18] in chapter 3, which is a 

computationally efficient algorithm to solve multilinear 𝐿𝐿1 minimization problems with a 

separable dictionary 𝜱𝜱. However, the matrix 𝜳𝜳 in (6.5) is a nonseparable partitioned matrix, 

which does not have a Kronecker structure. Therefore, both T-LARS and LARS are 

computationally inefficient at solving the 𝐿𝐿1 minimization problem in (6.5) because they require 

to construct large matrices such as the dictionary matrix 𝜳𝜳.  

However, both the matrices 𝜱𝜱 and 𝑰𝑰 in the partitioned matrix 𝜳𝜳 are individually separable. 

Therefore, in this chapter, we extend T-LARS to develop the Tensor Elastic Net (T-NET) 

algorithm to solve the multilinear Elastic Net problem in (6.5) efficiently, by using the partitioned 

Kronecker structure of 𝜳𝜳, without constructing large matrices. 

6.2.2. Tensor Elastic Net Formulation 

Tensor Elastic Net (T-NET) is an extension of the Tensor Least Angle Regression (T-LARS) to 

solve the multilinear Elastic Net problem in (6.5) using tensors and multilinear algebra. T-NET 

does not construct large matrices such as the partitioned dictionary, 𝜳𝜳, which is required in solving 

(6.5) using LARS [15] or T-LARS [18] developed in chapter 3. Instead, T-NET uses much smaller 

mode-n dictionaries 𝜱𝜱(n); 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁} for calculations. 

Inputs to T-NET are the data tensor 𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽𝑛𝑛×…×𝐽𝐽𝑁𝑁, mode-n dictionary matrices 𝜱𝜱(𝑛𝑛); 𝑛𝑛 ∈

{1, ⋯ , 𝑁𝑁} where 𝜱𝜱 = 𝜱𝜱(𝑁𝑁) ⊗ ⋯ ⊗ 𝜱𝜱(1), 𝐿𝐿2 regularization parameter 𝛾𝛾2, and the stopping 

criterion as a residual tolerance 𝜀𝜀 or the maximum number of non-zero coefficients 𝐾𝐾 (K-sparse 

representation). The output is the Elastic Net solution tensor 𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁. 

T-NET requires data tensor 𝒴𝒴,  and columns of each dictionary 𝜱𝜱(𝑛𝑛); 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁} to have a unit

𝐿𝐿2 norm. Note that normalizing columns of each dictionary 𝜱𝜱(𝑛𝑛); 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁} ensure

normalization of the separable dictionary 𝜱𝜱. For notational simplicity in the following sections,
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we will use 𝒴𝒴 to represent the normalized tensor and 𝜱𝜱(𝑛𝑛) to represent normalized mode-n 

dictionary matrices. 

T-NET solves the 𝐿𝐿1 constrained minimization problems in (6.5) for all critical values of the

regularization parameter λ. T-NET starts with a large value of λ, which results in an empty active

set 𝐼𝐼 = {}, and a solution 𝒳𝒳�𝑡𝑡=0
∗ = 0. The set 𝐼𝐼 denotes an active set of columns of the dictionary

𝜳𝜳, i.e., column indices where the optimal solution 𝒳𝒳�𝑡𝑡
∗ at iteration 𝑡𝑡, is nonzero, and 𝐼𝐼𝑐𝑐 denotes its

corresponding inactive set. Therefore, 𝜳𝜳𝐼𝐼 contains only the active columns of the dictionary 𝜳𝜳

and 𝜳𝜳𝐼𝐼𝑐𝑐 contains only its inactive columns.

At each iteration 𝑡𝑡, a new column is either added or removed from the active set 𝐼𝐼, and λ is reduced 

by a calculated value 𝛿𝛿𝑡𝑡
∗. As a result of such iterations, new solutions with an increased number of 

coefficients that follow a piecewise linear path are obtained until a predetermined residual error 𝜀𝜀 

or a predetermined number of active columns 𝐾𝐾 is obtained.  

The regularization parameter λ is initialized to the maximum of the correlation 𝒄𝒄1, between the 

columns of 𝜳𝜳 and the initial residual ℛ0
∗ = 𝒴𝒴∗.  

𝒄𝒄1 = 𝜳𝜳𝑇𝑇vec(ℛ0
∗ ) =  

1

�1 + 𝛾𝛾2
�𝜱𝜱𝑇𝑇|�𝛾𝛾2 𝑰𝑰� �vec(𝒴𝒴)

𝟎𝟎
� (6. 7) 

Therefore, 

 𝒄𝒄1 =  
1

�1 + 𝛾𝛾2
𝜱𝜱𝑇𝑇vec(𝒴𝒴) (6. 8) 

Since 𝜱𝜱𝑇𝑇 is a Kronecker matrix, we could easily calculate the initial correlation  𝒄𝒄1 using the full 

multilinear product as 

𝒞𝒞1 =
1

�1 + 𝛾𝛾2
𝒴𝒴 ×1 𝜱𝜱(1)𝑇𝑇

×2 ⋯ ×𝑁𝑁 𝜱𝜱(𝑁𝑁)𝑇𝑇 (6. 9) 

Where 𝒄𝒄1 = vec(𝒞𝒞1). The column index corresponding to the maximum correlation 𝒄𝒄1 is added to 

the active set 𝐼𝐼. 

For a given active set 𝐼𝐼, the optimal solution 𝒳𝒳�𝑡𝑡
∗ at any iteration 𝑡𝑡, could be written as 
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vec�𝒳𝒳�𝑡𝑡
∗� = ��𝜳𝜳𝐼𝐼𝑡𝑡

𝑇𝑇 𝜳𝜳𝐼𝐼𝑡𝑡�
−1

�𝜳𝜳𝐼𝐼𝑡𝑡
𝑇𝑇 vec(𝒴𝒴∗) − 𝜆𝜆𝑡𝑡𝒛𝒛𝑡𝑡�, 𝑜𝑜n 𝐼𝐼

0,  Otherwise
(6. 10) 

where, 𝜆𝜆𝑡𝑡 is the regularization parameter 𝜆𝜆 at iteration 𝑡𝑡, 𝒛𝒛𝑡𝑡 is the sign sequence of 𝒄𝒄𝑡𝑡 on the active 

set 𝐼𝐼, and 𝒄𝒄𝑡𝑡  =  𝜳𝜳𝑇𝑇vec(ℛ𝑡𝑡−1
∗ ) is the correlation vector between the columns of the dictionary 𝜳𝜳 

and the residual vec(ℛ𝑡𝑡−1
∗ ) at any iteration t. 

The optimal solution at any iteration, 𝑡𝑡 must satisfy the following two optimality conditions, 

𝜳𝜳𝐼𝐼𝑡𝑡
𝑇𝑇 vec(ℛ𝑡𝑡

∗)  =  −𝜆𝜆𝑡𝑡𝒛𝒛𝑡𝑡 (6. 11) 

�𝜳𝜳𝐼𝐼𝑡𝑡
𝑐𝑐

𝑇𝑇 vec(ℛ𝑡𝑡
∗) �

∞
 ≤  𝜆𝜆𝑡𝑡 (6. 12) 

where, vec(ℛ𝑡𝑡
∗) =   vec(𝒴𝒴∗)  − 𝜳𝜳vec�𝒳𝒳�𝑡𝑡

∗� is the residual at iteration 𝑡𝑡, and 𝒛𝒛𝑡𝑡 is the sign sequence 

of the correlation 𝒄𝒄𝑡𝑡 at iteration 𝑡𝑡, on the active set 𝐼𝐼. 

The condition in (6.11) ensures that the magnitude of the correlation between all active columns 

of 𝜳𝜳 and the residual is equal to |𝜆𝜆𝑡𝑡| at each iteration 𝑡𝑡, and the condition in (6.12) ensures that 

the magnitude of the correlation between the inactive columns of 𝜳𝜳 and the residual is less than 

or equal to |𝜆𝜆𝑡𝑡|. 

At each iteration 𝑡𝑡, 𝜆𝜆𝑡𝑡 is reduced by a small step size 𝛿𝛿𝑡𝑡
∗,  until a condition in either (6.11) or 

(6.12) violates. If an active column violates the condition (6.11), it is removed from the active 

set, and if an inactive column violates the condition (6.12), it is added to the active set. 

As 𝜆𝜆𝑡𝑡 is reduced by 𝛿𝛿𝑡𝑡
∗, the solution 𝒳𝒳�𝑡𝑡

∗ change by 𝛿𝛿𝑡𝑡
∗𝒅𝒅𝑡𝑡 along a direction 𝒅𝒅𝑡𝑡, where 𝒅𝒅𝐼𝐼𝑡𝑡

𝑐𝑐 = 0 and 

𝒅𝒅𝐼𝐼𝑡𝑡 = 𝑮𝑮𝑡𝑡
−1𝒛𝒛𝑡𝑡. Matrix 𝑮𝑮𝑡𝑡

−1 is the inverse of the Gram matrix of the active columns of the dictionary 

𝑮𝑮𝑡𝑡 = 𝜳𝜳𝐼𝐼𝑡𝑡
𝑇𝑇 𝜳𝜳𝐼𝐼𝑡𝑡. 

The size of the Gram matrix would either increase (dictionary column addition) or decrease 

(dictionary column removal) with each iteration 𝑡𝑡. Therefore, for computational efficiency, we use 

the Schur complement inversion formula, similar to T-LARS, to calculate 𝑮𝑮𝑡𝑡
−1 from 𝑮𝑮𝑡𝑡−1

−1  thereby 

avoiding its full calculation [18], [101]. See Appendix E.1 for updating the inverse of the Gram 

matrix using the Schur complement inversion formula. 
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The smallest step size 𝛿𝛿𝑡𝑡
∗  =  min {𝛿𝛿𝑡𝑡

+, 𝛿𝛿𝑡𝑡
−} is the minimum of 𝛿𝛿𝑡𝑡

+, minimum step size for adding a 

column, and 𝛿𝛿𝑡𝑡
−, minimum step size for removing a column. The minimum step size for removing 

a column from the active set is given by, 

𝛿𝛿𝑡𝑡
− = min

𝑖𝑖∈𝐼𝐼
�−

𝒙𝒙𝑡𝑡−1(𝑖𝑖)
𝒅𝒅𝑡𝑡(𝑖𝑖) � (6. 13) 

Where 𝒙𝒙𝑡𝑡−1 = vec�𝒳𝒳�𝑡𝑡−1
∗ �. The minimum step size for adding a new column to the active set is 

given by, 

𝛿𝛿𝑡𝑡
+ = min

𝑖𝑖∈𝐼𝐼𝑐𝑐
�

𝜆𝜆𝑡𝑡 − 𝒄𝒄𝑡𝑡(𝑖𝑖)
1 − 𝒗𝒗𝑡𝑡(𝑖𝑖) ,

𝜆𝜆𝑡𝑡 + 𝒄𝒄𝑡𝑡(𝑖𝑖)
1 + 𝒗𝒗𝑡𝑡(𝑖𝑖) � (6. 14) 

where

𝒗𝒗𝑡𝑡 =  𝜳𝜳𝑇𝑇𝜳𝜳𝒅𝒅𝑡𝑡 = 1
1+𝛾𝛾2

(𝜱𝜱𝑇𝑇𝜱𝜱𝒅𝒅𝑡𝑡 + 𝛾𝛾2𝒅𝒅𝑡𝑡) (6. 15) 

This vector 𝒗𝒗𝑡𝑡 could be efficiently obtained as a multilinear transformation of the direction tensor 

𝒟𝒟t by mode-n Gram matrices 𝑮𝑮(𝑛𝑛) = 𝜱𝜱(𝑛𝑛)𝑇𝑇
𝜱𝜱(𝑛𝑛);  𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁}.

𝒱𝒱t  =  
1

1 + 𝛾𝛾2
�𝒟𝒟t ×1 𝑮𝑮(1) ×2 … ×𝑁𝑁 𝑮𝑮(𝑁𝑁) + 𝛾𝛾2𝒟𝒟t� (6. 16) 

Where 𝒗𝒗𝑡𝑡 = vec(𝒱𝒱t) and vec(𝒟𝒟t) = 𝒅𝒅𝑡𝑡. The correlation vector 𝒄𝒄𝒕𝒕 at iteration 𝑡𝑡, is 𝒄𝒄𝒕𝒕 =

𝜳𝜳𝑇𝑇vec(ℛ𝑡𝑡−1
∗ ), where (ℛ𝑡𝑡−1

∗ )  is the residual tensor from the previous iteration. Since vec(ℛ𝑡𝑡−1
∗ ) =

vec(ℛ𝑡𝑡−2
∗ ) −  𝛿𝛿𝑡𝑡−1

∗ 𝜳𝜳𝑡𝑡−1𝒅𝒅𝑡𝑡−1,  

 𝒄𝒄𝒕𝒕   =  𝜳𝜳𝑇𝑇vec(ℛ𝑡𝑡−2
∗ )  −  𝛿𝛿𝑡𝑡−1

∗ 𝜳𝜳𝑇𝑇𝜳𝜳𝒅𝒅𝑡𝑡−1 (6. 17) 

We could update the correlation vector 𝒄𝒄𝒕𝒕 by  

𝒄𝒄𝒕𝒕  =  𝒄𝒄𝑡𝑡−1 −  𝛿𝛿𝑡𝑡−1
∗ 𝒗𝒗𝑡𝑡−1 (6. 18) 

At the end of each iteration T-NET update 𝒳𝒳�𝑡𝑡
∗, 𝜆𝜆𝑡𝑡+1 using the following equations 

𝒳𝒳�𝑡𝑡
∗  =  𝒳𝒳�𝑡𝑡−1

∗  + 𝛿𝛿𝑡𝑡
∗𝒟𝒟t (6. 19) 

𝜆𝜆𝑡𝑡+1  =  𝜆𝜆𝑡𝑡  −  𝛿𝛿𝑡𝑡
∗ (6. 20) 
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T-NET stops at a predetermined residual error ‖ℛ𝑡𝑡‖2  < 𝜀𝜀 or when a predetermined number of

active columns 𝐾𝐾 is obtained, where the Elastic Net residual tensor ℛ𝑡𝑡 for the Elastic Net solution

𝒳𝒳�𝑡𝑡   is given by, ℛ𝑡𝑡 =   𝒴𝒴 − 𝒳𝒳�𝑡𝑡 ×1 𝜱𝜱(1) ×2 ⋯ ×𝑁𝑁 𝜱𝜱(𝑁𝑁). Therefore, the residual tensor ℛ𝑡𝑡 could be 

easily obtained using, 

ℛ𝑡𝑡  =  ℛ𝑡𝑡−1  −  𝛿𝛿𝑡𝑡
∗𝒟𝒟𝑡𝑡 ×1 𝜱𝜱(1) ×2 𝜱𝜱(2) ×3 ⋯ ×𝑁𝑁 𝜱𝜱(𝑁𝑁) (6. 21) 

For a normalized tensor 𝒴𝒴 and column normalized mode-n dictionaries 𝜱𝜱(𝑛𝑛), the 𝐿𝐿2 norm of the 

residual is 0 ≤ ‖ℛ𝑡𝑡‖2 ≤ 1. 

The Elastic Net solution is given by 

𝒳𝒳�𝑡𝑡  =  �1 + 𝛾𝛾2 𝒳𝒳�𝑡𝑡
∗ (6. 22) 

6.2.3. Tensor Elastic Net Algorithm 

The complete T-NET algorithm is summarized below (Matlab notation). 

Algorithm 6.1: Tensor Elastic Net (T-NET) 
Input: normalized tensor 𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽𝑛𝑛×…×𝐽𝐽𝑁𝑁 ; normalized dictionary matrices 𝜱𝜱(𝑛𝑛) ∈ ℝ𝐽𝐽𝑛𝑛×𝐼𝐼𝑛𝑛;  𝑛𝑛 ∈
 {1, . . 𝑁𝑁};𝐿𝐿2 regularization parameter 𝛾𝛾2; stopping criterion: residual tolerance: 𝜀𝜀 or number of non-
zero coefficients: 𝐾𝐾  
Initialization: Residual: ℛ0

∗  = 𝒴𝒴∗; 𝒙𝒙0
∗  =  0; active set: 𝐼𝐼 =  {}; 

1. 𝒞𝒞1  = 1
�1+𝛾𝛾2

ℛ0
∗ ×1 𝜱𝜱(1)𝑇𝑇

×2. . .×𝑁𝑁 𝜱𝜱(𝑁𝑁)𝑇𝑇

2. 𝒄𝒄1 = vec(𝒞𝒞1)
3. [𝜆𝜆1, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖 ] =  𝑚𝑚𝑚𝑚𝑚𝑚(𝒄𝒄1)
4. 𝐼𝐼 =  {𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖}
5. for 𝑛𝑛 = 1 to N do

6. 𝑮𝑮(𝑛𝑛) = 𝜱𝜱(𝑛𝑛)𝑇𝑇
𝜱𝜱(𝑛𝑛)

7. end for
8. while stopping criterion not reached(‖ℛ𝑡𝑡−1‖2 > 𝜀𝜀 or length(𝐼𝐼) < 𝐾𝐾)
9. 𝒛𝒛𝑡𝑡 = sign (𝒄𝒄𝑡𝑡(𝐼𝐼)) 
10. 𝑮𝑮𝑡𝑡

−1 =updateInverseGramMatrix(𝑮𝑮𝑡𝑡−1
−1 ,{ 𝑮𝑮(1), . . . , 𝑮𝑮(𝑁𝑁)}, I, 𝛾𝛾2, add_column, 

column_idx)%See Appendix E.1 
11. 𝒅𝒅𝐼𝐼𝑡𝑡 = 𝑮𝑮𝑡𝑡

−1𝒛𝒛𝑡𝑡
12. vec(𝒟𝒟𝑡𝑡) =  𝒅𝒅𝑡𝑡
13. 𝒱𝒱𝑡𝑡  = 1

1+𝛾𝛾2
�𝒟𝒟𝑡𝑡 ×1 𝑮𝑮(1) ×2 … ×𝑁𝑁 𝑮𝑮(𝑁𝑁) + 𝛾𝛾2𝒟𝒟𝑡𝑡�

14. 𝒗𝒗𝑡𝑡 = vec(𝒱𝒱𝑡𝑡)
15. 𝛿𝛿𝑡𝑡

+
1= (𝜆𝜆𝑡𝑡 − 𝒄𝒄𝑡𝑡(𝐼𝐼𝑐𝑐))./ (1 − 𝒗𝒗𝑡𝑡(𝐼𝐼𝑐𝑐))   % “./” -  Elementwise division 

16. 𝛿𝛿𝑡𝑡
+

2= (𝜆𝜆𝑡𝑡 + 𝒄𝒄𝑡𝑡(𝐼𝐼𝑐𝑐))./ (1 + 𝒗𝒗𝑡𝑡(𝐼𝐼𝑐𝑐))
17. 𝛿𝛿𝑡𝑡

− =  −𝒙𝒙𝑡𝑡−1./ 𝒅𝒅𝑡𝑡(𝐼𝐼)
18. [𝛿𝛿𝑡𝑡

∗, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖] = 𝑚𝑚𝑚𝑚𝑚𝑚  �𝛿𝛿𝑡𝑡
+

1, 𝛿𝛿𝑡𝑡
+

2�
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19.  add_column == True 
20. if min (𝛿𝛿𝑡𝑡

−) < 𝛿𝛿𝑡𝑡
∗

21. [𝛿𝛿𝑡𝑡
∗, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖]= min (𝛿𝛿𝑡𝑡

−)
22.  add_column = False 
23. end
24. 𝒙𝒙�𝑡𝑡

∗  =  𝒙𝒙�𝑡𝑡−1
∗  +  𝛿𝛿𝑡𝑡

∗ 𝒅𝒅𝐼𝐼𝑡𝑡
25. 𝜆𝜆𝑡𝑡+1  =  𝜆𝜆𝑡𝑡  −  𝛿𝛿𝑡𝑡

∗

26. 𝒄𝒄𝑡𝑡+1  =  𝒄𝒄𝑡𝑡 −  𝛿𝛿𝑡𝑡
∗𝒗𝒗𝑡𝑡

27. ℛ𝑡𝑡  =  ℛ𝑡𝑡−1  −  𝛿𝛿𝑡𝑡
∗𝒟𝒟𝑡𝑡 ×1 𝜱𝜱(1) ×2 ⋯ ×𝑁𝑁 𝜱𝜱(𝑁𝑁)

28. if add_column == True 
29. 𝐼𝐼 =  𝐼𝐼 +  {𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖}
30. else
31. 𝐼𝐼 =  𝐼𝐼 – {𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖}
32. end

33. end while
34. vec�𝒳𝒳�𝐼𝐼𝑡𝑡

∗ � = 𝒙𝒙�𝑡𝑡
∗

35. 𝒳𝒳 = �1 + 𝛾𝛾2 𝒳𝒳�𝑡𝑡
∗   %Elastic Net Solution 

36. return 𝐼𝐼, 𝒳𝒳

6.3. Experimental Results 

This section presents experimental results to compare T-LARS and T-NET's performance to obtain 

sparse representations of 3D images using overcomplete DCT dictionaries with different mutual 

coherence values. 

For our experiments shown in Figure 6.1 and Figure 6.2, we obtained 3D OCT mouse brain images 

from the Mendeley dataset [117], and for our experiments shown in Figure 6.3 and Figure 6.4, we 

obtained RGB video frames from the vid4 dataset [118]. Our experimental results were obtained 

using a MATLAB implementation of T-LARS and T-NET on an MS-Windows machine: 2 Intel 

Xeon CPUs E5-2637 v4, 3.5GHz, 32GB RAM, and NVIDIA Tesla P100 GPU with 12GB 

memory. 

6.3.1. Experimental Setup 

We compared the performance of T-LARS and T-NET when used to obtain sparse representations 

for our 3D OCT mouse brain images and RGB video frames by solving sparse multilinear least-

squares problems using overcomplete DCT dictionaries with different coherence (𝜇𝜇) values. 

We obtained overcomplete DCT dictionaries by oversampling the DCT basis to add non-

orthogonal atoms between orthogonal atoms [32], [119].  



Ishan Wickramasingha 

96 

𝑫𝑫𝑘𝑘 =  � 𝑥𝑥𝑛𝑛

𝑁𝑁−1

𝑛𝑛=0

cos �
𝜋𝜋
𝑁𝑁

�𝑛𝑛 +
1
2

� 𝑘𝑘�    𝑘𝑘 = 0,
𝑁𝑁
𝑀𝑀

, ⋯ , 𝑁𝑁 −
𝑁𝑁
𝑀𝑀

(6. 23) 

Where 𝑁𝑁 is the number of rows and 𝑀𝑀 is the number of atoms in the overcomplete DCT dictionary 

𝑫𝑫. For a fixed 𝑁𝑁, as 𝑀𝑀 increases, the coherence (𝜇𝜇) of the dictionary also increases.  

6.3.2. Experimental Results for 3D OCT Mouse Brain Images 

In this experiment, we compare the performance of T-LARS and T-NET, to obtain K-sparse 

representations of 3D OCT mouse brain images, 𝒴𝒴, 70 × 100 × 10 voxels, using five sets of mode-

n overcomplete DCT dictionaries 𝜱𝜱(1), 𝜱𝜱(2) and 𝜱𝜱(3) with different coherence values. 

Table 6.1 shows the overcomplete DCT mode-n dictionary sizes and coherence of the Kronecker 

Dictionary 𝜱𝜱 = 𝜱𝜱(3) ⊗ 𝜱𝜱(2) ⊗ 𝜱𝜱(1) for each experiment. 

Table 6.1. DCT mode-n dictionary sizes and coherence of the Kronecker Dictionary 𝜱𝜱 

Exp. Columns to rows 

ratio �𝑀𝑀
𝑁𝑁

� 

Size of 

𝜱𝜱(1) 

Size of 

𝜱𝜱(2) 

Size of 

𝜱𝜱(3) 

Coherence of 𝜱𝜱 

(𝜇𝜇) 

1 1.25 70 × 87 100 × 125 10 × 12 0.4173 

2 2 70 × 140 100 × 200 10 × 20 0.9012 

3 3 70 × 210 100 × 300 10 × 30 0.9839 

4 5 70 × 350 100 × 500 10 × 50 0.9985 

5 10 70 × 700 100 × 1000 10 × 100 0.9999 

We obtained 10% non-zero coefficients, K=7,000 nonzero coefficients, for each experiment using 

T-LARS and T-NET to represent 3D OCT mouse brain images, where we used 𝛾𝛾2 = 0.1 for the

regression coefficients of the 𝐿𝐿2 norm of the solution in T-NET. Figure 6.1 and Figure 6.2 show

the experimental results for representing our 3D OCT mouse brain images, using K=7,000 nonzero

coefficients, over overcomplete DCT dictionaries with different coherence values (𝜇𝜇) shown in

Table 6.1. As the columns to rows ratio (𝑀𝑀 𝑁𝑁⁄ ) in mode-n DCT dictionaries increases, coherence

of the Kronecker dictionary 𝜱𝜱 increases.
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Table 6.2 shows the number of iterations, computation time, and residual error for representing 3D 

OCT mouse brain images using T-LARS and T-NET for experiments 1-5. 

Table 6.2. Experimental results for T-LARS and T-NET to represent 3D OCT mouse brain images using 
overcomplete DCT dictionaries with different coherence values 

Figure 6.1. Original 3D OCT mouse brain image (a) and its reconstruction using 10% nonzero coefficients 
(K = 7,000) obtained by T-LARS (b)-(f) and T-NET (g)-(k) using our overcomplete DCT dictionaries with 
different coherence values (μ). 

In both Figure 6.2 and Table 6.2, as the Kronecker dictionary's coherence increases, the number of 

iterations and the computations time required to obtain 7,000 nonzero coefficients using T-LARS 

increases significantly compared to T-NET. However, the residual error slightly decreases in T-

LARS and increases in T-NET with the coherence for each experiment. 

T-LARS only keep one atom from a group of coherent atoms. Therefore, when the dictionary's

coherence is high, T-LARS adds and removes coherent atoms until it is left with one atom per

group, resulting in a significantly large number of iterations to obtain 7000 nonzero coefficients.

Exp. Coherence 

of 𝜱𝜱 

(𝜇𝜇) 

T-LARS T-NET

Number of 

Iterations 

Computation 

Time (Sec) 

Residual 

Error 

Number of 

Iterations 

Computation 

Time (Sec) 

Residual 

Error 

1 0.4173 7144 128.54 0.0467 7052 137.38 0.0532 

2 0.9012 7846 149.35 0.0419 7102 137.66 0.0619 

3 0.9839 9416 198.28 0.0410 7238 149.17 0.0728 

4 0.9985 12960 420.29 0.0408 7392 228.28 0.0891 

5 0.9999 21604 2979.73 0.0405 7916 944.74 0.1156 
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Due to the grouping effect of T-NET, coherent atoms are grouped in the active set. Therefore, T-

NET requires fewer iterations than T-LARS to obtain 7000 non-zero coefficients. Also, due to the 

grouping effect, T-NET requires more non-zero coefficients to obtain the same residual error as 

T-LARS in dictionaries with higher coherence.

Figure 6.2. (a) Number of nonzero coefficients versus computation time. (b) Residual error versus 
computation time. (c) Residual error versus the number of nonzero coefficients. (a) The number of nonzero 
coefficients versus the number of iterations, obtained by applying T-LARS and T-NET to our 3D OCT 
mouse brain image using overcomplete DCT dictionaries with different coherence values (𝜇𝜇). 
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6.3.3. Experimental Results for RGB video 

In this experiment, we compared the performance of T-LARS and T-NET, to obtain K-sparse 

representations of a 4D signal, 𝒴𝒴, five RGB video frames of a 144 × 176 video, with 144 × 176 × 

3× 5 voxels, using five sets of mode-n overcomplete dictionaries 𝜱𝜱(1), 𝜱𝜱(2), 𝜱𝜱(3) and 𝜱𝜱(4) with 

different coherence values. Our selected mode-n overcomplete  dictionaries 𝜱𝜱(1), 𝜱𝜱(2), and 𝜱𝜱(4) 

are overcomplete DCT dictionaries and  𝜱𝜱(3) is an Identity matrix with a dc column where each 

element is 1. Table 6.1 shows the overcomplete DCT mode-n dictionary sizes and coherence of 

the Kronecker Dictionary 𝜱𝜱 = 𝜱𝜱(4) ⊗ 𝜱𝜱(3) ⊗ 𝜱𝜱(2) ⊗ 𝜱𝜱(1) for each experiment.  

Table 6.3. DCT mode-n dictionary sizes and coherence of the Kronecker Dictionary 𝜱𝜱 

Exp. Columns to 

rows ratio 

�𝑀𝑀
𝑁𝑁

� 

Size of 

𝜱𝜱(1) 

Size of 

𝜱𝜱(2) 

Size of 

𝜱𝜱(3) 

Size of 

𝜱𝜱(4) 

Coherence of 

𝜱𝜱 

(𝜇𝜇) 

6 1.25 144 × 180 176 × 220 3 × 4 5 × 6 0.5773 

7 2 144 × 288 176 × 352 3 × 4 5 × 10 0.9040 

8 3 144 × 432 176 × 528 3 × 4 5 × 15 0.9848 

9 5 144 × 720 176 × 880 3 × 4 5 × 25 0.9986 

10 7 144 × 1008 176 × 1232 3 × 4 5 × 35 0.9996 

We obtained 4% non-zero coefficients, K=15,206 nonzero coefficients, for each experiment using 

T-LARS and T-NET to represent the RGB video, where we used 𝛾𝛾2 = 0.1 for the regression

coefficients of the 𝐿𝐿2 norm of the solution in T-NET. Figure 6.3 and Figure 6.4 show the

experimental results for representing our RGB video, using K=15,206 nonzero coefficients, over

overcomplete DCT dictionaries with different coherence values (𝜇𝜇) shown in Table 6.3. As the

columns to rows ratio (𝑀𝑀 𝑁𝑁⁄ ) in mode-n DCT dictionaries increases, coherence of the Kronecker

dictionary 𝜱𝜱 increases.

Table 6.4 shows the number of iterations, computation time, and residual error for representing

RGB video using T-LARS and T-NET for experiments 6-10.
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Table 6.4. Experimental results for T-LARS and T-NET to represent RGB video using overcomplete DCT 
dictionaries with different coherence values. 

Figure 6.3. Original RGB video (a) and its reconstruction using 4% nonzero coefficients (K = 15,206) 
obtained by T-LARS (b)-(f) and T-NET (g)-(k) using our overcomplete DCT dictionaries with different 
coherence values (μ). 

In both Figure 6.4 and Table 6.4, as the Kronecker dictionary's coherence increases, the number of 

iterations and the computations time required to obtain 15,206 nonzero coefficients using T-LARS 

increases significantly compared to T-NET. However, the residual error slightly decreases in T-

LARS and increases in T-NET with the coherence for each experiment. 

T-LARS only keep one atom from a group of coherent atoms. Therefore, when the dictionary's

coherence is high, T-LARS adds and removes coherent atoms until it is left with one atom per

group, resulting in a significantly large number of iterations to obtain 15,206 nonzero coefficients.

Due to the grouping effect of T-NET, coherent atoms are grouped in the active set. Therefore, T-

NET requires fewer iterations than T-LARS to obtain 15,206 non-zero coefficients. Also, due to 

Exp. Coherence 

of 𝜱𝜱 

(𝜇𝜇) 

T-LARS T-NET

Number of 

Iterations 

Computation 

Time (Sec) 

Residual 

Error 

Number of 

Iterations 

Computation 

Time (Sec) 

Residual 

Error 

6 0.5773 15380 539 0.0623 15232 480 0.3293 

7 0.9040 16767 705 0.0611 15454 592 0.3377 

8 0.9848 19697 1320 0.0611 15750 938 0.3671 

9 0.9986 26033 5792 0.0614 16401 2953 0.4189 

10 0.9996 32676 29680 0.0615 16939 9859 0.4576 
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the grouping effect, T-NET requires more non-zero coefficients to obtain the same residual error 

as T-LARS in dictionaries with higher coherence. 

Figure 6.4. (a) Number of nonzero coefficients versus computation time. (b) Residual error versus 
computation time. (c) Residual error versus the number of nonzero coefficients. (a) The number of nonzero 
coefficients versus the number of iterations, obtained by applying T-LARS and T-NET to our RGB video 
using overcomplete DCT dictionaries with different coherence values (𝜇𝜇). 

6.4. Conclusions 

Sparse signal representation of a multi-dimensional signal could be easily obtained using 

Kronecker dictionaries by solving a sparse multilinear least-squares problem, using T-LARS, 

which could be used to solve both 𝐿𝐿0 and 𝐿𝐿1 constrained multilinear least-squares problems 

efficiently. The 𝐿𝐿0 minimization problem is a non-convex problem, and the relaxed 𝐿𝐿1 

minimization problem is a convex problem. Even though, 𝐿𝐿2 minimization problem is strictly 
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convex; it does not provide a sparse solution. Also, both 𝐿𝐿0 and 𝐿𝐿1 minimization problems have 

an upper limit for selecting the number of coefficients for a unique and accurate solution based on 

the dictionary's coherence. The group selection ability is important in some applications; however, 

the 𝐿𝐿1 minimization problem does not have the group selection ability.  

Tensor Elastic Net solves a strictly convex 𝐿𝐿1 and 𝐿𝐿2 constrained multilinear least-squares 

problem, which has the best properties of both 𝐿𝐿1 and 𝐿𝐿2 minimization problems such as sparsity 

and group selection ability. In addition to the group selection ability, Tensor Elastic Net can obtain 

more than 𝑛𝑛 nonzero coefficients for a signal with 𝑛𝑛 elements. Therefore, Tensor Elastic Net is 

ideal for solving multilinear sparse least-squares problems with highly coherent dictionaries.  

The dictionary in tensor Elastic Net problem has a partitioned Kronecker structure, which could 

not be efficiently solved with T-LARS. Therefore, we introduced the Tensor Elastic Net (T-NET) 

algorithm in this chapter to efficiently solve the tensor Elastic Net problem using the partitioned 

Kronecker structure of the dictionary matrix. 

Experimental results show that both T-LARS and T-NET behave similarly in solving the 

multilinear sparse representation problem for dictionaries with lower coherence. As the 

dictionary's coherence increases, T-LARS requires a large number of iterations and a much longer 

time to obtain K-Sparse solutions, whereas, for T-NET, the required number of iterations or the 

required time does not change significantly. However, due to group selection ability, the T-NET 

solution always has a higher residual error than the T-LARS solution. 

Therefore, T-NET could be used to obtain a robust solution with better statistical properties to the 

sparse multilinear least-squares problem than T-LARS.  We will be using T-NET as the primary 

tool to solve the sparse least-squares problems in many applications, including the Tensor Task 

Driven Dictionary Learning (T-TDDL) in chapter 7. 
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Chapter 7 

7. Tensor Task-Driven Dictionary Learning (T-TDDL)

Sparse multilinear representations of multi-dimensional signals over fixed or learned separable 

dictionaries could be obtained efficiently using the four tensor-based algorithms developed in the 

previous chapters of this thesis (T-LARS [18], T-NET, TD-LARS, WT-LARS), or Kronecker-

OMP [16]. However, the dictionaries learned from the data are much more efficient in obtaining 

sparse representations than fixed dictionaries [29]. 

Learned dictionaries could be used in classification or regression tasks [33]–[35]. However, 

regression and classification performance could be improved significantly by supervised learning 

of task-specific dictionaries. Mairal et al. introduced a generalized task-driven dictionary learning 

(TDDL) framework for supervised learning of dictionaries and model parameters to solve one-

dimensional regression and classification problems [38]. 

The TDDL formulation solves multi-dimensional regression or classification tasks using 

vectorized data tensors. Therefore, using TDDL formulation for large multi-dimensional 

regression or classification tasks is computationally infeasible. Compared to vectorized tensors, 

sparse multi-linear representation of tensors requires significantly lower memory and 

computational resources. Therefore, this chapter extends the TDDL framework using tensor and 

multi-linear algebra to develop the Tensor Task-Driven Dictionary Learning (T-TDDL), an 

efficient multi-linear task-driven dictionary learning framework to learn task-specific mode-n 

dictionaries and mode-n model parameters jointly for classification or regression tasks. We use the 

T-NET algorithm developed in chapter 6 for the sparse coding step of the T-TDDL. This chapter

also presents a compressed sensing extension for T-TDDL and calculations for regression, binary

classification, and multiclass classification applications.
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7.1. Introduction 

Tensor-based algorithms for solving multi-dimensional problems are gaining much popularity 

among signal processing, machine learning, and statistics communities [5]–[7]. Tensors quickly 

grow in size with the number of modes and dimensions of each mode, and processing such large 

tensors requires significant computational resources. Instead, using a sparse representation of 

tensors results in fewer computations and lower memory storage requirements for fewer 

coefficients [8], [9]. Sparse multilinear representations of tensors are easier to obtain, using 

separable dictionaries, than linear representations, using non-separable dictionaries, and require 

significantly lower computational resources [6], [7], [16], [18], [72]. 

Caiafa and Cichocki introduced Kronecker-OMP, a generalization of OMP, to obtain sparse 

multilinear representations by solving a nonconvex L0  constrained sparse tensor least-squares 

problem [16]. Authors have developed the Tensor Least angle Regression (T-LARS) [18] in 

chapter 3 to obtain sparse multilinear representations by solving L0, or L1 constrained, sparse 

multilinear least-squares problems for all critical values of the regularization parameter λ and with 

lower computational complexity and memory usage than Kronecker-OMP. By extending T-LARS, 

authors have developed Tensor Elastic NET (T-NET) in chapter 6, a computationally efficient 

algorithm to solve the multilinear Elastic Net problem [28]. 

The dictionaries learned from the data are much more efficient in obtaining sparse representations 

than fixed dictionaries [29]. Roemer et al. [30] introduced T-MOD and K-HOSVD algorithms to 

learn data-driven mode-n dictionaries to solve multilinear problems by generalizing one-

dimensional data-driven dictionary learning algorithms,  Method of Optimal Direction(MOD) 

[31], and K-SVD [32], respectively. Roemer used one-dimensional sparse coding methods in the 

sparse coding step of the T-MOD and K-HOSVD, requiring a significant amount of computational 

resources for solving data-driven tensor dictionary learning problems. However, we could 

efficiently solve large data-driven tensor dictionary learning problems using T-LARS [18], T-

NET, or Kronecker-OMP [16] in the sparse coding step of T-MOD and K-HOSVD. 

Learned dictionaries could be used in classification or regression tasks [33]–[35]. However, 

regression and classification performance could be improved significantly by supervised learning 

of task-specific dictionaries [36], [37]. Mairal et al. introduced a generalized task-driven dictionary 
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learning(TDDL) framework for supervised learning of dictionaries and model parameters to solve 

one-dimensional problems [38]. Many multi-dimensional classification and regression problems 

have been solved using the TDDL formulation after vectorizing multi-dimensional data [39]–[41]. 

Recent extensions to Task-driven dictionary learning include Multi-modal task-driven dictionary 

learning [120] and Task-driven dictionary learning in a distributed online setting [121]. However, 

as far as we know, there is no method available for supervised learning of mode-n dictionaries and 

mode-n model parameters to solve a specific task. 

Therefore, we extend the one-dimensional TDDL formulation to develop the tensor task-driven 

dictionary learning(T-TDDL) framework, which could work as an online data-driven or task-

driven dictionary learning algorithm for supervised or semi-supervised learning of mode-n 

dictionaries and mode-n model parameters to solve specific tasks. We also present a multilinear 

compressed sensing extension to T-TDDL to learn mode-n task-driven dictionaries and model 

parameters efficiently for large data tensors. The T-TDDL framework could also be used for 

unsupervised learning of mode-n dictionaries in an online data-driven multilinear dictionary 

learning formulation similar to the online tensor dictionary learning algorithm (OTDL) [122]. 

The T-TDDL formulation could be used to solve multivariate multilinear regression [123], [124], 

and tensor classifications problems efficiently by learning mode-n dictionaries and mode-n model 

parameters to predict a tensor 𝒴𝒴 ∈ ℝ𝑄𝑄1×…×𝑄𝑄𝑁𝑁 from a tensor 𝒳𝒳 ∈ ℝ𝑃𝑃1×…×𝑃𝑃𝑁𝑁. We could use different 

loss functions with T-TDDL formulations to efficiently solve a wide range of supervised, semi-

supervised and unsupervised, tensor machine learning problems. Therefore, T-TDDL could solve 

a wide range of multidimensional machine learning problems, including problems in weather 

prediction, classifying multidimensional biomedical images such as 3D/4D MRI, 3D/4D CT, or 

3D/4D PET,  Chemometric analysis, Communications, augmented reality, and virtual reality. In 

the experimental results of this chapter, we used the T-TDDL multilinear formulation to solve a 

4𝑋𝑋 video super-resolution problem, binary classification of 3D MRI, and multiclass classification 

of 3D CAD models using square, logistic regression, and Softmax cross-entropy loss functions, 

respectively. 

This chapter is organized as follows: Section 7.2 includes a brief introduction of one-dimensional 

task-driven dictionary learning(TDDL) formulation. We describe our Tensor Task-Driven 

Dictionary Learning (T-TDDL) formulation for learning mode-n dictionaries and mode-n model 



Ishan Wickramasingha 

106 

parameters in detail in Section 7.3. Section 7.4 provides sample applications of T-TDDL, and 

Section 7.5 presents the compressed sensing extension to the T-TDDL. Section 7.6 presents 

experiment results of applying T-TDDL to multi-dimensional regression, binary classification, and 

multiclass classification tasks. We present our conclusions in Section 7.7. 

7.2. Task Driven Dictionary Learning 

In one-dimensional Task-driven dictionary learning (TDDL), we want to predict a vector 𝒚𝒚 ∈ ℝ𝑄𝑄 

from a vector  𝒙𝒙 ∈ ℝ𝑃𝑃, when 𝒙𝒙 is associated with the vector 𝒚𝒚, by supervised learning of dictionary 

𝑫𝑫 ∈ ℝ𝑃𝑃×𝑈𝑈 and model parameters 𝑾𝑾 ∈ ℝ𝑄𝑄×𝑈𝑈. Once we learn 𝑫𝑫 and 𝑾𝑾 using TDDL, 𝒚𝒚 can be 

predicted using model parameters 𝑾𝑾, and a sparse representation 𝜶𝜶∗(𝒙𝒙, 𝑫𝑫) ∈ ℝ𝑈𝑈 of 𝒙𝒙, obtained 

using the dictionary 𝑫𝑫. The vector 𝒚𝒚 could be a finite set of labels in a classification task or a 

subset of ℝ𝑄𝑄 in a regression task. 

Task-driven dictionary learning formulation [38] consists of jointly learning 𝑫𝑫 and 𝑾𝑾 by solving, 

 arg min
𝐃𝐃∈𝒟𝒟,𝐖𝐖∈𝒲𝒲

𝑓𝑓(𝑫𝑫, 𝑾𝑾) +
𝑣𝑣
2

‖𝑾𝑾‖2 (7. 1) 

Where 𝒟𝒟 and 𝒲𝒲 are convex sets. To prevent the 𝐿𝐿2 norm of 𝑫𝑫 being arbitrarily large, the convex 

set 𝒟𝒟 satisfy the constraint 𝒟𝒟 ≜ {𝑫𝑫 ∈ ℝ𝑃𝑃×𝑈𝑈 s. t. ∀𝑢𝑢 ∈ {1, ⋯ , 𝑈𝑈}, ‖𝒅𝒅𝑢𝑢‖2 ≤ 1 }. 

The convex function 𝑓𝑓(𝑫𝑫, 𝑾𝑾) is defined as 

𝑓𝑓(𝑫𝑫, 𝑾𝑾) ≜ (1 − 𝜇𝜇)𝔼𝔼𝒚𝒚,𝒙𝒙�𝑙𝑙𝑠𝑠�𝒚𝒚, 𝑾𝑾, 𝜶𝜶∗(𝒙𝒙, 𝑫𝑫)�� + 𝜇𝜇𝔼𝔼𝒙𝒙[𝑙𝑙𝑢𝑢(𝒙𝒙, 𝑫𝑫)] (7. 2) 

Where 𝑙𝑙𝑠𝑠�𝒚𝒚, 𝑾𝑾, 𝜶𝜶∗(𝒙𝒙, 𝑫𝑫)� is a supervised twice continuously differentiable loss function, 𝑙𝑙𝑢𝑢(𝒙𝒙, 𝑫𝑫) 

is an unsupervised twice continuously differentiable loss function, and 𝜶𝜶∗(𝒙𝒙, 𝑫𝑫) is the sparse 

solution of the following Elastic Net [27] problem, 

 𝜶𝜶∗(𝒙𝒙, 𝑫𝑫) ≜ arg min
𝜶𝜶∗∈ℝ𝑈𝑈

1
2

‖𝒙𝒙 − 𝑫𝑫𝑫𝑫‖2
2 + 𝜆𝜆1‖𝜶𝜶‖1 +

𝜆𝜆2

2
‖𝜶𝜶‖2 (7. 3) 

A supervised (𝜇𝜇 = 0), semi-supervised (1 > 𝜇𝜇 > 0), or unsupervised (𝜇𝜇 = 1), task-driven 

dictionary learning formulations are obtained depending on the value of 𝜇𝜇 in (7.2). The 

unsupervised dictionary learning formulation (𝜇𝜇 = 1) in (7.2), is also known as data-driven 

dictionary learning [38], [125]. 
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7.3. Tensor Task Driven Dictionary Learning(T-TDDL) 

In Tensor task-driven dictionary learning(T-TDDL), we want to predict a tensor 𝒴𝒴 ∈ ℝ𝑄𝑄1×…×𝑄𝑄𝑁𝑁 

from a tensor 𝒳𝒳 ∈ ℝ𝑃𝑃1×…×𝑃𝑃𝑁𝑁, when the tensor 𝒳𝒳 is associated with the tensor 𝒴𝒴 by supervised 

learning of Kronecker dictionary 𝑫𝑫 ∈ ℝ𝑃𝑃×𝑈𝑈 and Kronecker model parameters 𝑾𝑾 ∈ ℝ𝑄𝑄×𝑈𝑈, where 

𝑃𝑃 = ∏ 𝑃𝑃𝑛𝑛
𝑁𝑁
𝑛𝑛=1 , 𝑄𝑄 = ∏ 𝑄𝑄𝑛𝑛

𝑁𝑁
𝑛𝑛=1  and 𝑈𝑈 = ∏ 𝑈𝑈𝑛𝑛

𝑁𝑁
𝑛𝑛=1 . For example, the tensor 𝒴𝒴 could be a finite set of 

labels in a classification task or a subset of ℝ𝑄𝑄1×…×𝑄𝑄𝑁𝑁 in a regression task. 

When the tensors 𝒳𝒳 and 𝒴𝒴 are significantly smaller, we could vectorize them as 𝒙𝒙 = vec(𝒳𝒳) and 

𝒚𝒚 = vec(𝒴𝒴) respectively, and use the TDDL formulation in (7.1) to jointly learn the dictionary 𝑫𝑫 

and model parameters 𝑾𝑾. 

However, as the number of elements in tensors 𝒳𝒳 ∈ ℝ𝑃𝑃1×…×𝑃𝑃𝑁𝑁 and 𝒴𝒴 ∈ ℝ𝑄𝑄1×…×𝑄𝑄𝑁𝑁 increases, the 

TDDL formulation in (7.1) quickly becomes computationally infeasible. Note that a dictionary 

matrix 𝑫𝑫 ∈  ℝ𝑃𝑃×𝑈𝑈, has 𝑃𝑃𝑈𝑈 elements. Therefore a third-order cubical tensor 𝒳𝒳 ∈ ℝ100×100×100, 

has 106 elements, requires learning a dictionary matrix 𝑫𝑫 ∈ ℝ106×106, with 1012 elements, when 

𝑃𝑃 = 𝑈𝑈 = 106, and uncompressed double-precision storage of 𝑫𝑫, requires 8TB of memory. 

However, if 𝒳𝒳 ∈ ℝ100×100×100×100 is a fourth-order cubical tensor, has 108 elements, the square 

dictionary 𝑫𝑫 ∈ ℝ108×108, has 1016 elements, and the uncompressed double-precision storage of 

𝑫𝑫 ∈ ℝ108×108, requires 80PB of memory.  

Therefore, TDDL is not suitable for learning task-driven dictionaries for tensors 𝒳𝒳 and 𝒴𝒴, except 

when they are significantly smaller. 

In section 7.3.1, we formulate the Tensor task-driven dictionary learning (T-TDDL), a 

computationally efficient generalization of the task-driven dictionary learning(TDDL) framework 

[38] to efficiently learn mode-n dictionaries and mode-n model parameters to predict a tensor 𝒴𝒴

from a tensor 𝒳𝒳 when the tensor 𝒳𝒳 is associated with the tensor 𝒴𝒴.
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7.3.1. Proposed Formulation 

We could formulate our tensor task-driven dictionary learning (T-TDDL) to learn 𝑫𝑫 = 𝑫𝑫(𝑁𝑁) ⊗

⋯ ⊗ 𝑫𝑫(1) and 𝑾𝑾 =  𝑾𝑾(𝑁𝑁) ⊗ ⋯ ⊗ 𝑾𝑾(1) jointly by solving,  

arg min
�𝑫𝑫(1),⋯,𝑫𝑫(𝑁𝑁)�∈𝒟𝒟,

�𝑾𝑾(1),⋯,𝑾𝑾(𝑁𝑁)�∈𝒲𝒲

𝑓𝑓(𝑫𝑫, 𝑾𝑾) +
𝑣𝑣
2

‖𝑾𝑾‖2 (7. 4)

The convex function 𝑓𝑓(𝑫𝑫, 𝑾𝑾) is defined as 

𝑓𝑓(𝑫𝑫, 𝑾𝑾) ≜ (1 − 𝜇𝜇)𝔼𝔼𝒴𝒴,𝒳𝒳�𝑙𝑙𝑠𝑠�𝒴𝒴, 𝑾𝑾, 𝜶𝜶∗(𝒳𝒳, 𝑫𝑫)�� +  𝜇𝜇𝔼𝔼𝒳𝒳[𝑙𝑙𝑢𝑢(𝒳𝒳, 𝑫𝑫)] (7. 5) 

Where 𝒳𝒳 ∈ ℝ𝑃𝑃1×…×𝑃𝑃𝑁𝑁 , and 𝒴𝒴 ∈ ℝ𝑄𝑄1×…×𝑄𝑄𝑁𝑁 , are tensors of order 𝑁𝑁, 𝑫𝑫(𝑛𝑛) ∈ ℝ𝑃𝑃𝑛𝑛×𝑈𝑈𝑛𝑛 ; ∀𝑛𝑛 ∈

{1, ⋯ , 𝑁𝑁}, are mode-n dictionaries, 𝑾𝑾(𝑛𝑛) ∈ ℝ𝑄𝑄𝑛𝑛×𝑈𝑈𝑛𝑛; ∀𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁}, are mode-n model 

parameters, and 𝜶𝜶∗(𝒳𝒳, 𝑫𝑫) ∈ ℝ𝑈𝑈1…𝑈𝑈𝑛𝑛  is the Elastic net solution of, 

𝜶𝜶∗(𝒳𝒳, 𝑫𝑫) ≜ arg min
𝜶𝜶∗∈ℝ𝑈𝑈

1
2

‖vec(𝒳𝒳) − 𝑫𝑫𝑫𝑫‖2
2 + 𝜆𝜆1‖𝜶𝜶‖1 +

𝜆𝜆2

2
‖𝜶𝜶‖2 (7. 6) 

A supervised (𝜇𝜇 = 0), semi-supervised (1 > 𝜇𝜇 > 0), or unsupervised (𝜇𝜇 = 1), tensor task-driven 

dictionary learning formulations are obtained depending on the value of 𝜇𝜇 in (7.5). The 

unsupervised tensor dictionary learning formulation (𝜇𝜇 = 1) in (7.5), could be used for solving 

online tensor data-driven dictionary learning problems [30], [122]. 

Authors have developed the Tensor Elastic Net (T-NET) in chapter 6 by extending the Tensor 

Least Angle Regression (T-LARS) [18] developed in chapter 3, which is a robust, computationally 

efficient algorithm to solve the multilinear elastic net problem in (7.6) for Kronecker structured 

dictionaries, 𝑫𝑫 = 𝑫𝑫(𝑁𝑁) ⊗ ⋯ ⊗ 𝑫𝑫(1). 

7.3.2. Optimization 

As discussed before, the dictionary 𝑫𝑫 and the model parameters 𝑾𝑾 could be huge matrices for a 

large T-TDDL problem. Therefore, directly optimizing such 𝑫𝑫 and 𝑾𝑾 requires a massive amount 

of computational resources.  

Therefore, in T-TDDL, we jointly optimize the Kronecker dictionaries 𝑫𝑫 = 𝑫𝑫(𝑁𝑁) ⊗ ⋯ ⊗ 𝑫𝑫(1) 

and Kronecker parameters 𝑾𝑾 =  𝑾𝑾(𝑁𝑁) ⊗ ⋯ ⊗ 𝑾𝑾(1), without explicitly constructing them, by 
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jointly optimizing mode-n dictionaries 𝑫𝑫(𝑛𝑛) ∈ ℝ𝑃𝑃𝑛𝑛×𝑈𝑈𝑛𝑛; ∀𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁} and mode-n parameter 

matrices 𝑾𝑾(𝑛𝑛) ∈ ℝ𝑄𝑄𝑛𝑛×𝑈𝑈𝑛𝑛; ∀𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁} using the projected stochastic gradient descent 

algorithm [126], [127].  

Please refer to [38] for the proof of differentiability and gradients of 𝑓𝑓(𝑫𝑫, 𝑾𝑾), w.r.t 𝑾𝑾 and 𝑫𝑫. In 

the following sections, we extend gradient calculations in [38] to obtain the gradients of the 

objective function in (7.4) (denoted by g(𝑫𝑫, 𝑾𝑾)), w.r.t 𝑾𝑾(𝑛𝑛) and 𝑫𝑫(𝑛𝑛), where 

g(𝑫𝑫, 𝑾𝑾) = 𝑓𝑓(𝑫𝑫, 𝑾𝑾) +
𝑣𝑣
2

‖𝑾𝑾‖2 (7. 7) 

For notational simplicity, from here on, we denote the supervised loss function 𝑙𝑙𝑠𝑠�𝒴𝒴, 𝑾𝑾, 𝜶𝜶∗(𝒳𝒳, 𝑫𝑫)� 

in (7.5) as 𝑙𝑙𝑠𝑠, and the unsupervised loss function 𝑙𝑙𝑢𝑢(𝒳𝒳, 𝑫𝑫) as 𝑙𝑙𝑢𝑢, 𝜶𝜶∗(𝒳𝒳, 𝑫𝑫) as 𝜶𝜶∗. 

7.3.2.1. Gradient of 𝑔𝑔(𝑫𝑫, 𝑾𝑾) w.r.t. 𝑾𝑾(𝑛𝑛) 

We individually optimize each mode-n parameter matrix, 𝑾𝑾(𝑛𝑛) using the stochastic gradient 

descent algorithm to optimize the Kronecker parameter matrix 𝑾𝑾. Therefore we obtain the gradient 

of g(𝑫𝑫, 𝑾𝑾) w.r.t. 𝑾𝑾(𝑛𝑛) as 

𝛻𝛻𝑾𝑾(𝑛𝑛)g(𝑫𝑫, 𝑾𝑾) = (1 − 𝜇𝜇)𝔼𝔼𝒴𝒴,𝒳𝒳�𝛻𝛻𝑾𝑾(𝑛𝑛)𝑙𝑙𝑠𝑠� +
𝑣𝑣
2

𝛻𝛻𝑾𝑾(𝑛𝑛)‖𝑾𝑾‖2 (7. 8) 

Proposition 7.1: Let 𝑓𝑓(𝜱𝜱) be a continuously differentiable function and 𝜱𝜱 ∈ ℝ𝑃𝑃×𝑄𝑄 be a Kronecker 
matrix, where 𝜱𝜱 = 𝜱𝜱(𝑁𝑁) ⊗ ⋯ ⊗ 𝜱𝜱(1) and 𝜱𝜱(𝑛𝑛) ∈ ℝ𝐼𝐼𝑛𝑛×𝐽𝐽𝑛𝑛; ∀ 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁}. Therefore, the 
gradient 𝛻𝛻𝜱𝜱(𝑛𝑛)𝑓𝑓(𝜱𝜱) ; ∀𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁} is given by, 

�𝛻𝛻𝜱𝜱(𝑛𝑛)𝑓𝑓(𝜱𝜱)�
𝑖𝑖,𝑗𝑗

= 𝑇𝑇𝑇𝑇 ��𝛻𝛻𝜱𝜱𝑓𝑓(𝜱𝜱)�
𝑇𝑇 𝜕𝜕𝜱𝜱

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛)� (7. 9) 

The proof is Appendix F.1. 

By applying Proposition 7.1, we could obtain 𝛻𝛻𝑾𝑾(𝑛𝑛)𝑙𝑙𝑠𝑠 as a function of 𝛻𝛻𝑾𝑾𝑙𝑙𝑠𝑠. 

�𝛻𝛻𝑾𝑾(𝑛𝑛)𝑙𝑙𝑠𝑠�
𝑖𝑖,𝑗𝑗

= 𝑇𝑇𝑇𝑇 �(𝛻𝛻𝑾𝑾𝑙𝑙𝑠𝑠)𝑇𝑇 𝜕𝜕𝑾𝑾

𝜕𝜕𝑾𝑾𝑖𝑖,𝑗𝑗
(𝑛𝑛)�  (7. 10) 
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Calculating 𝛻𝛻𝑾𝑾(𝑛𝑛)𝑙𝑙𝑠𝑠 directly using (7.10) is not computationally efficient due to the multiplication 

of large matrices. However, as shown in section 7.4, we could further simplify the gradient 

calculation in (7.10), for a given supervised loss function 𝑙𝑙𝑠𝑠. 

Proposition 7.2: Let 𝜱𝜱 ∈ ℝ𝑃𝑃×𝑄𝑄 be a Kronecker matrix, where 𝜱𝜱 = 𝜱𝜱(𝑁𝑁) ⊗ ⋯ ⊗ 𝜱𝜱(1), 𝜱𝜱(𝑛𝑛) ∈

ℝ𝐼𝐼𝑛𝑛×𝐽𝐽𝑛𝑛 ; ∀  𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁}, and ‖𝜱𝜱‖2 is the 𝐿𝐿2 norm of 𝜱𝜱. Therefore, the gradient 𝛻𝛻𝜱𝜱(𝑛𝑛)‖𝜱𝜱‖2 is 

given by, 

𝛻𝛻𝜱𝜱(𝑛𝑛)‖𝜱𝜱‖2 = 2𝛾𝛾𝜱𝜱(𝑛𝑛)𝜱𝜱(𝑛𝑛) (7. 11) 

Where 

𝛾𝛾𝜱𝜱(𝑛𝑛) = � 𝑇𝑇𝑇𝑇 �𝜱𝜱(𝑚𝑚)𝑇𝑇
𝜱𝜱(𝑚𝑚)�

𝑁𝑁

𝑚𝑚=1,𝑚𝑚≠𝑛𝑛

The proof is in Appendix F.2. 

Applying Proposition 7.2 to 𝑣𝑣
2

∇𝐖𝐖(𝑛𝑛)‖𝑾𝑾‖2,

𝑣𝑣
2

∇𝐖𝐖(𝑛𝑛)‖𝑾𝑾‖2 =  𝑣𝑣𝛾𝛾𝑾𝑾(𝑛𝑛)𝑾𝑾(𝑛𝑛) (7. 12) 

Where, 

𝛾𝛾𝑾𝑾(𝑛𝑛) = � 𝑇𝑇𝑇𝑇 �𝑾𝑾(𝑚𝑚)𝑇𝑇
𝑾𝑾(𝑚𝑚)�

𝑁𝑁

𝑚𝑚=1,𝑚𝑚≠𝑛𝑛

Therefore, the gradient of g(𝑫𝑫, 𝑾𝑾) w.r.t.  𝑾𝑾(𝑛𝑛) is, 

∇𝐖𝐖(𝑛𝑛)g(𝑫𝑫, 𝑾𝑾) = (1 − 𝜇𝜇)𝛻𝛻𝑾𝑾(𝑛𝑛)𝑙𝑙𝑠𝑠 +  𝑣𝑣𝛾𝛾𝑾𝑾(𝑛𝑛)𝑾𝑾(𝑛𝑛) (7. 13) 

Where �𝛻𝛻𝑾𝑾(𝑛𝑛)𝑙𝑙𝑠𝑠�
𝑖𝑖,𝑗𝑗

= 𝑇𝑇𝑇𝑇 �(𝛻𝛻𝑾𝑾𝑙𝑙𝑠𝑠)𝑇𝑇 𝜕𝜕𝑾𝑾

𝜕𝜕𝑾𝑾𝑖𝑖,𝑗𝑗
(𝑛𝑛)� ;  ∀ 𝑖𝑖 ∈ {1, … , 𝑄𝑄𝑛𝑛}, 𝑗𝑗 ∈ {1, … , 𝑈𝑈𝑛𝑛} 

7.3.2.2. Gradient of 𝑔𝑔(𝑫𝑫, 𝑾𝑾) w.r.t. 𝑫𝑫(𝑛𝑛) 

We individually optimize each mode-n dictionary matrix, 𝑫𝑫(𝑛𝑛) using the stochastic gradient 

descent algorithm to optimize the Kronecker dictionary matrix 𝑫𝑫. Therefore we obtain the gradient 

of g(𝑫𝑫, 𝑾𝑾) w.r.t. 𝑫𝑫(𝑛𝑛) as 
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𝛻𝛻𝑫𝑫(𝑛𝑛)g(𝑫𝑫, 𝑾𝑾) = (1 − 𝜇𝜇)𝔼𝔼𝒴𝒴,𝒳𝒳�𝛻𝛻𝑫𝑫(𝑛𝑛)𝑙𝑙𝑠𝑠� + 𝜇𝜇𝔼𝔼𝒳𝒳�𝛻𝛻𝑫𝑫(𝑛𝑛)𝑙𝑙𝑢𝑢� (7. 14) 

Using Proposition 7.1, the gradient of the supervised loss function 𝛻𝛻𝑫𝑫(𝑛𝑛)𝑙𝑙𝑠𝑠 could be written as 

�𝛻𝛻𝑫𝑫(𝑛𝑛)𝑙𝑙𝑠𝑠�
𝑖𝑖,𝑗𝑗

= 𝑇𝑇𝑇𝑇 �(𝛻𝛻𝑫𝑫𝑙𝑙𝑠𝑠)𝑇𝑇 𝜕𝜕𝑫𝑫

𝜕𝜕𝑫𝑫𝑖𝑖,𝑗𝑗
(𝑛𝑛)� (7. 15) 

In [38], it shows that, 

𝛻𝛻𝑫𝑫𝑙𝑙𝑠𝑠 = �−𝑫𝑫𝜷𝜷∗𝜶𝜶∗𝑇𝑇 + (vec(𝒳𝒳) − 𝑫𝑫𝑫𝑫)𝜷𝜷∗𝑇𝑇� (7. 16) 

Where 𝜷𝜷𝐼𝐼𝑐𝑐
∗ = 0  and, 𝜷𝜷𝐼𝐼

∗ = (𝑫𝑫𝐼𝐼
𝑇𝑇𝑫𝑫𝐼𝐼 + 𝜆𝜆2𝑰𝑰)−1𝛻𝛻𝜶𝜶𝐼𝐼𝑙𝑙𝑠𝑠, where 𝐼𝐼 is the active set and 𝐼𝐼𝑐𝑐 is the inactive 

set of the Elastic net solution. 

Since 𝑇𝑇𝑇𝑇(𝐴𝐴 + 𝐵𝐵) =  𝑇𝑇𝑇𝑇(𝐴𝐴) + 𝑇𝑇𝑇𝑇(𝐵𝐵) and 𝑇𝑇𝑇𝑇(𝐴𝐴𝐴𝐴) =  𝑇𝑇𝑇𝑇(𝐵𝐵𝐵𝐵), from (7.15) and (7.16) we could 

write,

�𝛻𝛻𝑫𝑫(𝑛𝑛)𝑙𝑙𝑠𝑠�
𝑖𝑖,𝑗𝑗

= −𝑇𝑇𝑇𝑇 �(𝑫𝑫𝜷𝜷∗)𝑇𝑇 � 𝜕𝜕𝑫𝑫

𝜕𝜕𝑫𝑫𝑖𝑖,𝑗𝑗
(𝑛𝑛) 𝜶𝜶∗�� +  𝑇𝑇𝑇𝑇 �(vec(𝒳𝒳) − 𝑫𝑫𝑫𝑫)𝑇𝑇 � 𝜕𝜕𝑫𝑫

𝜕𝜕𝑫𝑫𝑖𝑖,𝑗𝑗
(𝑛𝑛) 𝜷𝜷∗��  (7. 17) 

Proposition 7.3: Let 𝑓𝑓 be a function of tensor 𝒳𝒳 ∈ ℝ𝐽𝐽1×…×𝐽𝐽𝑁𝑁, tensor 𝒴𝒴 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑁𝑁and a 

Kronecker matrix 𝜱𝜱 ∈ ℝ𝑃𝑃×𝑄𝑄, where 𝜱𝜱 = 𝜱𝜱(𝑁𝑁) ⊗ ⋯ ⊗ 𝜱𝜱(1) and 𝜱𝜱(𝑛𝑛) ∈ ℝ𝐼𝐼𝑛𝑛×𝐽𝐽𝑛𝑛;  ∀ 𝑛𝑛 ∈

{1, ⋯ , 𝑁𝑁}. If 

𝜕𝜕𝑓𝑓

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛) = 𝑇𝑇𝑇𝑇 �vec(𝒴𝒴)𝑇𝑇 �

𝜕𝜕𝜱𝜱

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛) vec(𝒳𝒳)�� 

Then 𝜕𝜕𝑓𝑓
𝜕𝜕𝜱𝜱(𝑛𝑛)  is given by, 

𝜕𝜕𝑓𝑓
𝜕𝜕𝜱𝜱(𝑛𝑛) = 𝒴𝒴(𝑛𝑛)�𝒳𝒳(𝑛𝑛)𝜳𝜳𝜱𝜱(𝑛𝑛)

𝑇𝑇 �
𝑇𝑇 (7. 18) 

Where, 𝜳𝜳𝜱𝜱(𝑛𝑛) = �𝜱𝜱(𝑁𝑁) ⊗ ⋯ ⊗ 𝜱𝜱(𝑛𝑛+1) ⊗ 𝜱𝜱(𝑛𝑛−1) ⊗ ⋯ ⊗ 𝜱𝜱(1)�, 𝒴𝒴(𝑛𝑛) is the mode-n 

matricization of the tensor 𝒴𝒴 and 𝒳𝒳(𝑛𝑛) is the mode-n matricization of the tensor 𝒳𝒳. 

The proof is in Appendix F.3. 

Using Proposition 7.3 on (7.17), we obtain 
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𝛻𝛻𝑫𝑫(𝑛𝑛)𝑙𝑙𝑠𝑠 = −(𝑫𝑫𝜷𝜷∗)(𝑛𝑛)�𝜶𝜶∗
(𝑛𝑛)𝜳𝜳𝑫𝑫(𝑛𝑛)

𝑇𝑇 �
𝑇𝑇

+ (vec(𝒳𝒳) − 𝑫𝑫𝜶𝜶∗)(𝑛𝑛) �𝜷𝜷∗
(𝑛𝑛)𝜳𝜳𝑫𝑫(𝑛𝑛)

𝑇𝑇 �
𝑇𝑇

(7. 19) 

Where 𝜳𝜳𝑫𝑫(𝑛𝑛) = 𝑫𝑫(𝑁𝑁) ⊗ ⋯ ⊗ 𝑫𝑫(𝑛𝑛+1) ⊗ 𝑫𝑫(𝑛𝑛−1) ⊗ ⋯ ⊗ 𝑫𝑫(1), 𝜷𝜷𝐼𝐼𝑐𝑐
∗ = 0 and 𝜷𝜷𝐼𝐼

∗ = (𝑫𝑫𝐼𝐼
𝑇𝑇𝑫𝑫𝐼𝐼 +

𝜆𝜆2𝑰𝑰)−1 𝛻𝛻𝜶𝜶𝐼𝐼𝑙𝑙𝑠𝑠. Matrices (𝑫𝑫𝜷𝜷∗)(𝑛𝑛), 𝜶𝜶∗
(𝑛𝑛), (vec(𝒳𝒳) − 𝑫𝑫𝜶𝜶∗)(𝑛𝑛), and 𝜷𝜷∗

(𝑛𝑛), are mode-n matricization 

of respective vectors. 

Using Proposition 7.1, the gradient of the unsupervised loss function 𝛻𝛻𝑫𝑫(𝑛𝑛)𝑙𝑙𝑢𝑢 could be written as 

�𝛻𝛻𝑫𝑫(𝑛𝑛)𝑙𝑙𝑢𝑢�
𝑖𝑖,𝑗𝑗

= 𝑇𝑇𝑇𝑇 �(𝛻𝛻𝑫𝑫𝑙𝑙𝑢𝑢)𝑇𝑇 𝜕𝜕𝑫𝑫

𝜕𝜕𝑫𝑫𝑖𝑖,𝑗𝑗
(𝑛𝑛)� (7. 20) 

Since ∇𝑫𝑫𝑙𝑙𝑢𝑢 =  (vec(𝒳𝒳′) − 𝑫𝑫𝜶𝜶∗′)𝜶𝜶∗′𝑇𝑇 and 𝑇𝑇𝑇𝑇(𝐴𝐴𝐴𝐴) =  𝑇𝑇𝑇𝑇(𝐵𝐵𝐵𝐵) 

�𝛻𝛻𝑫𝑫(𝑛𝑛)𝑙𝑙𝑢𝑢�
𝑖𝑖,𝑗𝑗

= 𝑇𝑇𝑇𝑇 �(vec(𝒳𝒳′) − 𝑫𝑫𝜶𝜶∗′)𝑇𝑇 𝜕𝜕𝑫𝑫

𝜕𝜕𝑫𝑫𝑖𝑖,𝑗𝑗
(𝑛𝑛) 𝜶𝜶∗′� (7. 21) 

By using Proposition 7.3 on (7.21) we could obtain ∇𝑫𝑫(𝑛𝑛)𝑙𝑙𝑢𝑢 as, 

∇𝑫𝑫(𝑛𝑛)𝑙𝑙𝑢𝑢 = �vec(𝒳𝒳′) − 𝑫𝑫𝜶𝜶∗′�(𝑛𝑛)�𝜶𝜶∗′
(𝑛𝑛)𝜳𝜳𝑫𝑫(𝑛𝑛)

𝑇𝑇 �
𝑇𝑇 (7. 22) 

Therefore, the gradient of g(𝑫𝑫, 𝑾𝑾) w.r.t.  𝑫𝑫(𝑛𝑛); 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁} is, 

𝛻𝛻𝑫𝑫(𝑛𝑛)g(𝑫𝑫, 𝑾𝑾) =

⎝

⎜
⎛(1 − 𝜇𝜇) �

− (𝑫𝑫𝜷𝜷∗)(𝑛𝑛)�𝜶𝜶∗
(𝑛𝑛)𝜳𝜳𝑫𝑫(𝑛𝑛)

𝑇𝑇 �
𝑇𝑇

+ (vec(𝒳𝒳) − 𝑫𝑫𝜶𝜶∗)(𝑛𝑛) �𝜷𝜷∗
(𝑛𝑛)𝜳𝜳𝑫𝑫(𝑛𝑛)

𝑇𝑇 �
𝑇𝑇�

−𝜇𝜇 ��vec(𝒳𝒳′) − 𝑫𝑫𝜶𝜶∗′�(𝑛𝑛)�𝜶𝜶∗′
(𝑛𝑛)𝜳𝜳𝑫𝑫(𝑛𝑛)

𝑇𝑇 �
𝑇𝑇

� ⎠

⎟
⎞

(7. 23) 

where (𝑫𝑫𝜷𝜷∗)(𝑛𝑛), �𝜶𝜶∗
(𝑛𝑛)𝜳𝜳𝑫𝑫(𝑛𝑛)

𝑇𝑇 �
𝑇𝑇
, �𝜶𝜶∗′

(𝑛𝑛)𝜳𝜳𝑫𝑫(𝑛𝑛)
𝑇𝑇 �

𝑇𝑇
, (vec(𝒳𝒳) − 𝑫𝑫𝜶𝜶∗)(𝑛𝑛), �vec(𝒳𝒳′) − 𝑫𝑫𝜶𝜶∗′�(𝑛𝑛), and

�𝜷𝜷∗
(𝑛𝑛)𝜳𝜳𝑫𝑫(𝑛𝑛)

𝑇𝑇 �
𝑇𝑇
 are mode-n matrices that are significantly smaller in size, compared to the separable

dictionary matrix 𝑫𝑫 = 𝑫𝑫(𝑁𝑁) ⊗ ⋯ ⊗ 𝑫𝑫(1). After tensorizing 𝜶𝜶∗ and 𝜷𝜷∗, we could efficiently 

calculate mode-n matrices in (7.23) as 𝑁𝑁 mode-n products (full multilinear product) with mode-n 

dictionary matrices 𝑫𝑫(1), ⋯ , 𝑫𝑫(𝑁𝑁) [5], [7]. 
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7.3.3. Tensor Task-Driven Dictionary Learning Algorithm 

In T-TDDL and T-NET large Kronecker matrices such as 𝑫𝑫 = 𝑫𝑫(𝑁𝑁) ⊗ ⋯ ⊗ 𝑫𝑫(1) and 𝑾𝑾 =

 𝑾𝑾(𝑁𝑁) ⊗ ⋯ ⊗ 𝑾𝑾(1) are not constructed explicitly. Instead, smaller mode-n dictionaries 

𝑫𝑫(1), ⋯ , 𝑫𝑫(𝑁𝑁) and 𝑾𝑾(1), ⋯ , 𝑾𝑾(𝑁𝑁) are used in computations, thereby significantly reducing 

memory usage and improving computational efficiency. 

Algorithm 7.1: Tensor Task-Driven Dictionary Learning (T-TDDL) 
Input:  𝑝𝑝(𝒴𝒴, 𝒳𝒳) (a way to draw i.i.d samples of 𝑝𝑝(𝒴𝒴, 𝒳𝒳));  𝜆𝜆1, 𝜆𝜆2, 𝜐𝜐 ∈ ℝ (regularization parameters); 
𝑫𝑫 = 𝑫𝑫(𝑁𝑁) ⊗ ⋯ ⊗ 𝑫𝑫(1) ∈ 𝒟𝒟 (initial mode-n dictionaries); 𝑾𝑾 =  𝑾𝑾(𝑁𝑁) ⊗ ⋯ ⊗ 𝑾𝑾(1) ∈ 𝒲𝒲 (initial 
mode-n parameters); 𝑇𝑇 (number of iterations); 𝜇𝜇, 𝑡𝑡0, 𝜌𝜌(learning rate parameter); 

Initialization: Initialize 𝑫𝑫(1) ⋯ 𝑫𝑫(𝑁𝑁) and  𝑾𝑾(1) ⋯ 𝑾𝑾(𝑁𝑁)randomly or using a previous solution for 
transfer learning 

1. for 𝑡𝑡 =  1 to 𝑇𝑇 do
2. Draw subtensors 𝒴𝒴𝑡𝑡, 𝒳𝒳𝑡𝑡 from 𝑝𝑝(𝒴𝒴, 𝒳𝒳). 
3. Sparse coding: compute 𝜶𝜶∗ using T-NET 

𝜶𝜶∗(𝒳𝒳, 𝑫𝑫) ≜ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝜶𝜶∗∈ℝ𝑈𝑈

1
2

‖𝑣𝑣𝑣𝑣𝑣𝑣(𝒳𝒳) − 𝑫𝑫𝑫𝑫‖2
2 + 𝜆𝜆1‖𝜶𝜶‖1 +

𝜆𝜆2

2
‖𝜶𝜶‖2

4. Compute the active set: 
𝐼𝐼 =  {𝑘𝑘 ∈ {1, ⋯ , 𝐾𝐾} ∶  𝜶𝜶∗(𝑘𝑘)  ≠ 0} 

5. Compute 𝜷𝜷∗: set 𝜷𝜷𝐼𝐼𝑐𝑐
∗  = 0 and 

𝜷𝜷𝐼𝐼
∗ = (𝑫𝑫𝐼𝐼

𝑇𝑇𝑫𝑫𝐼𝐼 + 𝜆𝜆2𝑰𝑰)−1𝛻𝛻𝜶𝜶𝐼𝐼𝑙𝑙𝑠𝑠�𝒴𝒴, 𝑾𝑾, 𝜶𝜶∗(𝒳𝒳, 𝑫𝑫)�
6. Choose the learning rate 𝜌𝜌𝑡𝑡 ← 𝑚𝑚𝑚𝑚𝑚𝑚 �𝜌𝜌, 𝜌𝜌 𝑡𝑡0

𝑡𝑡
�  

7. for 𝑛𝑛 =  1 to 𝑁𝑁 do
 Update the parameters by a projected gradient step 

𝑾𝑾(𝑛𝑛) ←  𝛱𝛱𝒲𝒲 �𝑾𝑾(𝑛𝑛) − 𝜌𝜌𝑡𝑡 �(1 − 𝜇𝜇)𝛻𝛻𝑾𝑾(𝑛𝑛)𝑙𝑙𝑠𝑠  + 
𝑣𝑣
2

 𝛻𝛻𝑾𝑾(𝑛𝑛)‖𝑾𝑾‖2� �

𝑫𝑫(𝑛𝑛)   ← 𝛱𝛱𝒟𝒟 �𝑫𝑫(𝑛𝑛) − 𝜌𝜌𝑡𝑡 �(1 − 𝜇𝜇)𝛻𝛻𝑫𝑫(𝑛𝑛)𝑙𝑙𝑠𝑠 − 𝜇𝜇𝛻𝛻𝑫𝑫(𝑛𝑛)𝑙𝑙𝑢𝑢� �
8. end for
9. end for
10. return 𝑫𝑫(1), ⋯ , 𝑫𝑫(𝑁𝑁) (learned dictionaries), 𝑾𝑾(1), ⋯ , 𝑾𝑾(𝑁𝑁) (learned parameters) 

In the T-TDDL algorithm, the learning rate parameter 𝜌𝜌𝑡𝑡 is calculated using the  𝜌𝜌𝑡𝑡 = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝜌𝜌, 𝜌𝜌 𝑡𝑡0
𝑡𝑡

� 

[38], where for the first 𝑡𝑡0 iterations the learning rate is 𝜌𝜌 and after 𝑡𝑡0 the learning rate is reduced 

at the rate of 𝑡𝑡0
𝑡𝑡

. The notation 𝛱𝛱𝒲𝒲 and 𝛱𝛱𝒟𝒟 denotes an orthogonal projection on the set 𝒲𝒲 and 𝒟𝒟 

respectively. 
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7.4. Applications 

This section presents three example applications of our T-TDDL algorithm in multi-dimensional 

regression, binary classifications, and multiclass classification. We select a twice differentiable 

supervised loss function for each multi-dimensional application and present gradient calculations 

of g(𝑫𝑫, 𝑾𝑾) w.r.t. mode-n dictionaries 𝑫𝑫(𝑛𝑛) and mode-n model parameter matrices 𝑾𝑾(𝑛𝑛). 

7.4.1. Regression 

In T-TDDL multi-dimensional regression applications, the tensor 𝒴𝒴 is a subset of ℝ𝑄𝑄1×…×𝑄𝑄𝑁𝑁  and 

the objective is to predict the tensor 𝒴𝒴 from a tensor 𝒳𝒳 ∈ ℝ𝑃𝑃1×…×𝑃𝑃𝑁𝑁 by supervised learning of the 

Kronecker dictionary 𝑫𝑫 ∈ ℝ𝑃𝑃×𝑈𝑈 and Kronecker model parameters 𝑾𝑾 ∈ ℝ𝑄𝑄×𝑈𝑈. We select the 

square loss as the supervised loss function for the multi-dimensional regression application. 

However, any other twice differentiable multi-dimensional regression loss function could be 

selected. 

We could define the supervised regression loss function as, 

𝑙𝑙𝑠𝑠�𝒴𝒴, 𝑾𝑾, 𝜶𝜶∗(𝒳𝒳, 𝑫𝑫)� =
1
2

‖vec(𝒴𝒴) − 𝑾𝑾𝑾𝑾‖2
2 (7. 24) 

The gradient ∇𝑾𝑾(𝑛𝑛)g(𝑫𝑫, 𝑾𝑾) given in (7.13) depends on the gradient of the supervised loss function 

𝛻𝛻𝑾𝑾(𝑛𝑛)𝑙𝑙𝑠𝑠. In (7.10) we obtained the gradient 𝛻𝛻𝑾𝑾(𝑛𝑛)𝑙𝑙𝑠𝑠 as a function of the gradient 𝛻𝛻𝑾𝑾𝑙𝑙𝑠𝑠. 

Since

𝛻𝛻𝑾𝑾𝑙𝑙𝑠𝑠 =  −(vec(𝒴𝒴) − 𝑾𝑾𝜶𝜶∗)𝜶𝜶∗𝑇𝑇 (7. 25) 

And 𝑇𝑇𝑇𝑇(𝐴𝐴𝐴𝐴) =  𝑇𝑇𝑇𝑇(𝐵𝐵𝐵𝐵), from (7.10) and (7.25) we obtain, 

�𝛻𝛻𝑾𝑾(𝑛𝑛)𝑙𝑙𝑠𝑠�
𝑖𝑖,𝑗𝑗

= −𝑇𝑇𝑇𝑇 �(vec(𝒴𝒴) − 𝑾𝑾𝜶𝜶∗)𝑇𝑇 �
𝜕𝜕𝑾𝑾

𝜕𝜕𝑾𝑾𝑖𝑖,𝑗𝑗
(𝑛𝑛)� 𝜶𝜶∗� (7. 26) 

Therefore, using Proposition 7.3, we could obtain 𝛻𝛻𝑾𝑾(𝑛𝑛)𝑙𝑙𝑠𝑠 as, 

𝛻𝛻𝑾𝑾(𝑛𝑛)𝑙𝑙𝑠𝑠 = −(vec(𝒴𝒴) − 𝑾𝑾𝜶𝜶∗)(𝑛𝑛)�𝜶𝜶∗
(𝑛𝑛)𝜳𝜳𝑾𝑾(𝑛𝑛)

𝑇𝑇 �
𝑇𝑇 (7. 27) 

where 
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𝜳𝜳𝑾𝑾(𝑛𝑛) = 𝑾𝑾(𝑁𝑁) ⊗ … ⊗ 𝑾𝑾(𝑛𝑛+1) ⊗ 𝑾𝑾(𝑛𝑛−1) ⊗ ⋯ ⊗ 𝑾𝑾(1) 

The gradient ∇𝑫𝑫(𝑛𝑛)g(𝑫𝑫, 𝑾𝑾) is given in (7.23), where 𝜷𝜷𝐼𝐼
∗ depends on ∇𝜶𝜶𝐼𝐼𝑙𝑙𝑠𝑠. Therefore, for the 

supervised regression loss function, 

𝛻𝛻𝜶𝜶𝐼𝐼𝑙𝑙𝑠𝑠 = −𝑾𝑾𝑇𝑇(vec(𝒴𝒴) − 𝑾𝑾𝜶𝜶∗) (7. 28) 

After learning the Kronecker dictionary 𝑫𝑫 and the Kronecker model parameters 𝑾𝑾, we could 

predict 𝒴𝒴 ∈ ℝ𝑄𝑄1×…×𝑄𝑄𝑁𝑁 for a new tensor 𝒳𝒳 ∈ ℝ𝑃𝑃1×…×𝑃𝑃𝑁𝑁 as vec(𝒴𝒴) = 𝑾𝑾𝜶𝜶∗(𝒳𝒳, 𝑫𝑫), where 

𝜶𝜶∗(𝒳𝒳, 𝑫𝑫) is the Elastic net solution of (7.3). 

7.4.2. Binary Classification 

In the T-TDDL binary classification applications, the objective is to predict a scalar 𝑦𝑦 = {−1, +1} 

from a tensor 𝒳𝒳 ∈ ℝ𝑃𝑃1×…×𝑃𝑃𝑁𝑁 by supervised learning of the Kronecker dictionary 𝑫𝑫 ∈ ℝ𝑃𝑃×𝑈𝑈 and 

Kronecker model parameters vector 𝒘𝒘 ∈ ℝ1×𝑈𝑈, where 𝑫𝑫 = 𝑫𝑫(𝑁𝑁) ⊗ ⋯ ⊗ 𝑫𝑫(1) and 𝒘𝒘 =  𝒘𝒘(𝑁𝑁) ⊗

⋯ ⊗ 𝒘𝒘(1). We select the logistic regression loss function as the supervised binary classification 

loss function [38]. 

𝑙𝑙𝑠𝑠�𝑦𝑦, 𝒘𝒘, 𝜶𝜶∗(𝒳𝒳, 𝑫𝑫)� = 𝑙𝑙𝑙𝑙�1 + 𝑒𝑒−𝑦𝑦𝒘𝒘𝜶𝜶∗(𝒳𝒳,𝑫𝑫)� (7. 29) 

The gradient ∇𝒘𝒘(𝑛𝑛)g(𝑫𝑫, 𝑾𝑾) in (7.13) depends on the gradient of the supervised loss function 

𝛻𝛻𝒘𝒘(𝑛𝑛)𝑙𝑙𝑠𝑠. From (7.10) we could obtain the gradient 𝛻𝛻𝒘𝒘(𝑛𝑛)𝑙𝑙𝑠𝑠 as a function of the gradient 𝛻𝛻𝒘𝒘𝑙𝑙𝑠𝑠. The 

gradient of the supervised binary classification loss function w.r.t 𝒘𝒘 is, 

𝛻𝛻𝒘𝒘𝑙𝑙𝑠𝑠 =
−𝑒𝑒−𝑦𝑦𝒘𝒘𝜶𝜶∗𝑦𝑦𝜶𝜶∗𝑇𝑇

1 + 𝑒𝑒−𝑦𝑦𝒘𝒘𝜶𝜶∗ (7. 30) 

Since 𝑇𝑇𝑇𝑇(𝐴𝐴𝐴𝐴) =  𝑇𝑇𝑇𝑇(𝐵𝐵𝐵𝐵), from (7.10) and (7.30) we obtain, 

�𝛻𝛻𝒘𝒘(𝑛𝑛)𝑙𝑙𝑠𝑠�
𝑗𝑗

= 𝑇𝑇𝑇𝑇 �
−𝑦𝑦

1 + 𝑒𝑒−𝑦𝑦𝒘𝒘𝜶𝜶∗
𝜕𝜕𝒘𝒘

𝜕𝜕𝒘𝒘𝑗𝑗
(𝑛𝑛) 𝜶𝜶∗� (7. 31) 

Therefore, using Proposition 7.3, we could obtain 𝛻𝛻𝒘𝒘(𝑛𝑛)𝑙𝑙𝑠𝑠 as, 

𝛻𝛻𝒘𝒘(𝑛𝑛)𝑙𝑙𝑠𝑠 =  �
−𝑦𝑦𝑒𝑒−𝑦𝑦𝒘𝒘𝜶𝜶∗

1 + 𝑒𝑒−𝑦𝑦𝒘𝒘𝜶𝜶∗� �𝜶𝜶∗
(𝑛𝑛)𝜳𝜳𝒘𝒘(𝑛𝑛)

𝑇𝑇 �
𝑇𝑇 (7. 32) 
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Where, 𝜳𝜳𝒘𝒘(𝑛𝑛) = 𝒘𝒘(𝑁𝑁) ⊗ ⋯ ⊗ 𝒘𝒘(𝑛𝑛+1) ⊗ 𝒘𝒘(𝑛𝑛−1) ⊗ ⋯ ⊗ 𝒘𝒘(1), 𝒘𝒘(𝑛𝑛) ∈ ℝ1×𝑈𝑈𝑛𝑛; ∀𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁} 

and 𝜶𝜶∗
(𝑛𝑛) is the mode-n matricization of the vector 𝜶𝜶∗. 

The gradient of g(𝑫𝑫, 𝑾𝑾) w.r.t. 𝑫𝑫(𝑛𝑛) is given in (7.23), where 𝜷𝜷𝐼𝐼
∗ depends on the gradient of the 

supervised binary classification loss function ∇𝜶𝜶𝐼𝐼𝑙𝑙𝑠𝑠. Therefore, for the supervised binary 

classification loss function, 

𝛻𝛻𝜶𝜶𝐼𝐼𝑙𝑙𝑠𝑠 =
−𝑦𝑦𝑒𝑒−𝑦𝑦𝒘𝒘𝜶𝜶∗𝒘𝒘𝑇𝑇

1 + 𝑒𝑒−𝑦𝑦𝒘𝒘𝜶𝜶∗ (7. 33) 

After learning the Kronecker dictionary 𝑫𝑫 and the Kronecker model parameters vector 𝒘𝒘, a new 

tensor 𝒳𝒳 could be classified according to the sign of 𝒘𝒘𝜶𝜶∗(𝒳𝒳, 𝑫𝑫). 

7.4.3. Multiclass Classification 

In the T-TDDL multiclass classification applications, the objective is to predict a finite set of labels 

𝒴𝒴 ∈ {1, ⋯ , 𝑄𝑄} with 𝑄𝑄 > 2  from a tensor 𝒳𝒳 ∈ ℝ𝑃𝑃1×…×𝑃𝑃𝑁𝑁 by supervised learning of the Kronecker 

dictionary 𝑫𝑫 ∈ ℝ𝑃𝑃×𝑈𝑈 and model parameters 𝑾𝑾 ∈ ℝ𝑄𝑄×𝑈𝑈. 

We could formulate a multiclass classifier using a binary classifier in a one-vs-all or one-vs-one 

configurations [38], [120]. However, binary classifiers in one-vs-all or one-vs-one configurations 

have scalability issues. It is also possible to formulate the multiclass classification problem as a 

regression problem using a binary vector for 𝒴𝒴, where the 𝑘𝑘𝑡𝑡ℎ element of the binary vector is one 

for a class  𝑘𝑘 and zero everywhere else [38]. 

A multiclass loss function could solve multiclass classification problems efficiently using an all-

vs-all configuration. Therefore, we use the Softmax cross-entropy loss function for solving multi-

dimensional multiclass classification problems. We could define the Softmax cross-entropy loss 

function for classifying 𝐾𝐾 classes as, 

 𝑙𝑙𝑠𝑠�𝒚𝒚, 𝑾𝑾, 𝜶𝜶∗(𝒳𝒳, 𝑫𝑫)� = − � 1{𝑦𝑦=𝑘𝑘}𝑙𝑙𝑙𝑙 �
𝑒𝑒𝑰𝑰𝑘𝑘

𝑇𝑇𝑾𝑾𝜶𝜶∗(𝒳𝒳,𝑫𝑫)

∑ 𝑒𝑒𝑰𝑰𝑐𝑐
𝑇𝑇𝑾𝑾𝜶𝜶∗(𝒳𝒳,𝑫𝑫)𝐾𝐾

𝑐𝑐=1
�

𝐾𝐾

𝑘𝑘=1

(7. 34) 

Where 𝑰𝑰1, … , 𝑰𝑰𝐾𝐾 are the columns of the identity matrix 𝑰𝑰 = [𝑰𝑰1 … 𝑰𝑰𝐾𝐾] ∈ ℝ𝐾𝐾×𝐾𝐾, and 1{.} is the 

indicator function. 
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The gradient ∇𝑾𝑾(𝑛𝑛)g(𝑫𝑫, 𝑾𝑾) given in (7.13) depends on the gradient of the supervised loss function 

𝛻𝛻𝑾𝑾(𝑛𝑛)𝑙𝑙𝑠𝑠. In (7.10) we obtained the gradient 𝛻𝛻𝑾𝑾(𝑛𝑛)𝑙𝑙𝑠𝑠 as a function of the gradient 𝛻𝛻𝑾𝑾𝑙𝑙𝑠𝑠. We could 

calculate the gradient 𝛻𝛻𝑾𝑾𝑙𝑙𝑠𝑠 for the Softmax cross-entropy loss function as, 

𝛻𝛻𝑾𝑾𝑙𝑙𝑠𝑠 = �
𝛾𝛾

∑ 𝑒𝑒𝑰𝑰𝑐𝑐
𝑇𝑇𝑾𝑾𝜶𝜶∗𝐾𝐾

𝑐𝑐=1
− 𝑰𝑰𝑦𝑦� 𝜶𝜶∗𝑇𝑇 (7. 35) 

Where 𝛾𝛾 ∈ ℝ𝐾𝐾 and 𝛾𝛾𝑘𝑘 = 𝑒𝑒𝑰𝑰𝑘𝑘
𝑇𝑇𝑾𝑾𝜶𝜶∗;  ∀ 𝑘𝑘 = {1, … , 𝐾𝐾}. 

Since 𝑇𝑇𝑇𝑇(𝐴𝐴𝐴𝐴) = 𝑇𝑇𝑇𝑇(𝐵𝐵𝐵𝐵), from (7.10) and (7.35) we obtain, 

�𝛻𝛻𝑾𝑾(𝑛𝑛)𝑙𝑙𝑠𝑠�
𝑖𝑖,𝑗𝑗

= 𝑇𝑇𝑇𝑇 ��
𝛾𝛾

∑ 𝑒𝑒𝑰𝑰𝑐𝑐
𝑇𝑇𝑾𝑾𝜶𝜶∗𝐾𝐾

𝑐𝑐=1
− 𝑰𝑰𝑦𝑦�

𝑇𝑇 𝜕𝜕𝑾𝑾

𝜕𝜕𝑾𝑾𝑖𝑖,𝑗𝑗
(𝑛𝑛) 𝜶𝜶∗� (7. 36) 

We could use Proposition 7.3 to calculate 𝛻𝛻𝑾𝑾(𝑛𝑛)𝑙𝑙𝑠𝑠 as, 

𝛻𝛻𝑾𝑾(𝑛𝑛)𝑙𝑙𝑠𝑠 = �
𝛾𝛾(𝑛𝑛)

∑ 𝑒𝑒𝑰𝑰𝑐𝑐
𝑇𝑇𝑾𝑾𝜶𝜶∗𝐾𝐾

𝑐𝑐=1
− 𝑰𝑰𝑦𝑦(𝑛𝑛)�  �𝜶𝜶∗

(𝑛𝑛)𝜳𝜳𝑾𝑾(𝑛𝑛)
𝑇𝑇 �

𝑇𝑇 (7. 37) 

Where 𝜶𝜶∗
(𝑛𝑛), 𝛾𝛾(𝑛𝑛) and 𝑰𝑰𝑦𝑦(𝑛𝑛) are mode-n matricization of 𝜶𝜶∗, 𝛾𝛾 and 𝑰𝑰𝑦𝑦, respectively.

The gradient of g(𝑫𝑫, 𝑾𝑾) w.r.t. 𝑫𝑫(𝑛𝑛) is given in (7.23), where 𝜷𝜷𝐼𝐼
∗ depends on the gradient of the 

supervised multiclass classification loss function ∇𝜶𝜶𝐼𝐼𝑙𝑙𝑠𝑠. Therefore, for the supervised Softmax 

cross-entropy loss function, ∇𝜶𝜶𝐼𝐼𝑙𝑙𝑠𝑠 is given by, 

𝛻𝛻𝜶𝜶𝐼𝐼𝑙𝑙𝑠𝑠 = 𝑾𝑾𝑇𝑇 �
𝛾𝛾

∑ 𝑒𝑒𝑰𝑰𝑐𝑐
𝑇𝑇𝑾𝑾𝜶𝜶∗𝐾𝐾

𝑐𝑐=1
− 𝑰𝑰𝒚𝒚� (7. 38) 

After learning 𝑫𝑫 and 𝑾𝑾, a new tensor 𝒳𝒳 is classified according to the class 𝑘𝑘 with the maximum 

probability 𝑝𝑝(𝒚𝒚|𝒳𝒳), where 

𝑝𝑝(𝒚𝒚|𝒳𝒳) = arg max
𝑘𝑘∈{1,…,𝑘𝑘}

𝑒𝑒𝑰𝑰𝑘𝑘
𝑇𝑇𝑾𝑾𝜶𝜶∗(𝒳𝒳,𝑫𝑫)

∑ 𝑒𝑒𝑰𝑰𝑐𝑐
𝑇𝑇𝑾𝑾𝜶𝜶∗(𝒳𝒳,𝑫𝑫)𝐾𝐾

𝑐𝑐=1
(7. 39) 
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7.5. Compressed Sensing Extension 

Computations involving large multi-dimensional signals require many dense samples and 

extensive computational resources. Compressed sensing solves this problem by projecting the 

dense signal to a sparse domain using a sensing matrix 𝒁𝒁, where a small number of nonzero 

samples are obtained in the sparse domain [19], [20]. Therefore, we could significantly improve 

the performance of T-TDDL by using compressed sensing to project large tensors 𝒳𝒳 ∈ ℝ𝑃𝑃1×…×𝑃𝑃𝑁𝑁  

to a sparse domain before learning dictionaries and model parameters for predicting a tensor 𝒴𝒴 

from a large tensor 𝒳𝒳. 

We could define the compressed sensing extension to the T-TDDL as, 

arg min
�𝑫𝑫(1),⋯,𝑫𝑫(𝑁𝑁)�∈𝒟𝒟,

�𝑾𝑾(1),⋯,𝑾𝑾(𝑁𝑁)�∈𝒲𝒲
�𝒁𝒁(1),⋯,𝒁𝒁(𝑁𝑁)�∈𝒵𝒵

𝑓𝑓(𝑫𝑫, 𝑾𝑾, 𝒁𝒁) +
𝑣𝑣1

2
‖𝑾𝑾‖2 +

𝑣𝑣2

2
‖𝒁𝒁‖2 (7. 40)

Where 𝒵𝒵 is a convex set, 𝒁𝒁 ∈ ℝ𝑀𝑀×𝑃𝑃 is a Kronecker sensing matrix with 𝒁𝒁 = 𝒁𝒁(𝑁𝑁) ⊗ ⋯ ⊗ 𝒁𝒁(1),  

𝒁𝒁(𝑛𝑛) ∈ ℝ𝑀𝑀𝑛𝑛×𝑃𝑃𝑛𝑛; ∀𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁}, 𝑫𝑫 ∈ ℝ𝑀𝑀×𝑈𝑈 and 𝑫𝑫(𝑛𝑛) ∈ ℝ𝑀𝑀𝑛𝑛×𝑈𝑈𝑛𝑛 ; ∀𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁}. 

The convex function 𝑓𝑓(𝑫𝑫, 𝑾𝑾, 𝒁𝒁) is defined as 

𝑓𝑓(𝑫𝑫, 𝑾𝑾, 𝒁𝒁) ≜ (1 − 𝜇𝜇)𝔼𝔼𝒴𝒴,𝒳𝒳�𝑙𝑙𝑐𝑐𝑐𝑐�𝒴𝒴, 𝑾𝑾, 𝜶𝜶∗(𝒳𝒳, 𝑫𝑫, 𝒁𝒁)�� +  𝜇𝜇𝔼𝔼𝒳𝒳[𝑙𝑙𝑐𝑐𝑐𝑐(𝒳𝒳, 𝑫𝑫, 𝒁𝒁)] (7. 41) 

For notational simplicity, we denote the compressed sensing-based supervised loss function 

𝑙𝑙𝑐𝑐𝑐𝑐�𝒴𝒴, 𝑾𝑾, 𝜶𝜶∗(𝒳𝒳, 𝑫𝑫, 𝒁𝒁)� as 𝑙𝑙𝑐𝑐𝑐𝑐 and the unsupervised loss function 𝑙𝑙𝑐𝑐𝑐𝑐(𝒳𝒳, 𝑫𝑫, 𝒁𝒁) as 𝑙𝑙𝑐𝑐𝑐𝑐.  

Let g(𝑫𝑫, 𝑾𝑾, 𝒁𝒁) be the objective function of the compressed sensing extension of the T-TDDL, 

where 

g(𝑫𝑫, 𝑾𝑾, 𝒁𝒁) = 𝑓𝑓(𝑫𝑫, 𝑾𝑾, 𝒁𝒁) +
𝑣𝑣1

2
‖𝑾𝑾‖2 +

𝑣𝑣2

2
‖𝒁𝒁‖2 (7. 42) 

Therefore we could obtain the 𝛻𝛻𝒁𝒁(𝑛𝑛)g(𝑫𝑫, 𝑾𝑾, 𝒁𝒁) as 

𝛻𝛻𝒁𝒁(𝑛𝑛)g(𝑫𝑫, 𝑾𝑾, 𝒁𝒁) = (1 − 𝜇𝜇)𝛻𝛻𝒁𝒁(𝑛𝑛)𝑙𝑙𝑐𝑐𝑐𝑐 + 𝜇𝜇𝛻𝛻𝒁𝒁(𝑛𝑛)𝑙𝑙𝑐𝑐𝑐𝑐 +
𝑣𝑣2

2
𝛻𝛻𝒁𝒁(𝑛𝑛)‖𝒁𝒁‖2 (7. 43) 

By applying Proposition 7.1, we could obtain 𝛻𝛻𝒁𝒁(𝑛𝑛)𝑙𝑙c𝑠𝑠 as a function of 𝛻𝛻𝒁𝒁𝑙𝑙c𝑠𝑠. 
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�𝛻𝛻𝒁𝒁(𝑛𝑛)𝑙𝑙c𝑠𝑠�
𝑖𝑖,𝑗𝑗

= 𝑇𝑇𝑇𝑇 �(𝛻𝛻𝒁𝒁𝑙𝑙𝑐𝑐𝑐𝑐)𝑇𝑇 𝜕𝜕𝒁𝒁

𝜕𝜕𝒁𝒁𝑖𝑖,𝑗𝑗
(𝑛𝑛)� (7. 44) 

In [38], it shows that, 𝛻𝛻𝒁𝒁𝑙𝑙c𝑠𝑠 = 𝑫𝑫𝜷𝜷∗vec(𝒳𝒳)𝑇𝑇, Where 𝜷𝜷𝐼𝐼𝑐𝑐
∗ = 0  and 𝜷𝜷𝐼𝐼

∗ = (𝑫𝑫𝐼𝐼
𝑇𝑇𝑫𝑫𝐼𝐼 + 𝜆𝜆2𝑰𝑰)−1𝛻𝛻𝜶𝜶𝐼𝐼𝑙𝑙c𝑠𝑠. 

Therefore, by applying 𝛻𝛻𝒁𝒁𝑙𝑙c𝑠𝑠 to (7.44),  

�𝛻𝛻𝒁𝒁(𝑛𝑛)𝑙𝑙c𝑠𝑠�
𝑖𝑖,𝑗𝑗

= 𝑇𝑇𝑇𝑇 �(𝑫𝑫𝜷𝜷∗)𝑇𝑇 �
𝜕𝜕𝒁𝒁

𝜕𝜕𝒁𝒁𝑖𝑖,𝑗𝑗
(𝑛𝑛) vec(𝒳𝒳)��  (7. 45) 

Where 𝑇𝑇𝑇𝑇(𝐴𝐴𝐴𝐴) =  𝑇𝑇𝑇𝑇(𝐵𝐵𝐵𝐵). 

Therefore, by using Proposition 7.3 on (7.45) we obtain the gradient of the supervised loss 

function 𝛻𝛻𝒁𝒁(𝑛𝑛)𝑙𝑙c𝑠𝑠 as, 

𝛻𝛻𝒁𝒁(𝑛𝑛)𝑙𝑙c𝑠𝑠 = (𝑫𝑫𝜷𝜷∗)(𝑛𝑛)�𝒳𝒳(𝑛𝑛)𝜳𝜳𝒁𝒁(𝑛𝑛)
𝑇𝑇 �

𝑇𝑇 (7. 46) 

Where 𝜳𝜳𝒁𝒁(𝑛𝑛) = 𝒁𝒁(𝑁𝑁) ⊗ ⋯ ⊗ 𝒁𝒁(𝑛𝑛+1) ⊗ 𝒁𝒁(𝑛𝑛−1) ⊗ ⋯ ⊗ 𝒁𝒁(1) 

By applying Proposition 7.1, we could obtain 𝛻𝛻𝒁𝒁(𝑛𝑛)𝑙𝑙𝑐𝑐𝑐𝑐 as a function of 𝛻𝛻𝒁𝒁𝑙𝑙𝑐𝑐𝑐𝑐. 

�𝛻𝛻𝒁𝒁(𝑛𝑛)𝑙𝑙𝑐𝑐𝑐𝑐�
𝑖𝑖,𝑗𝑗

= 𝑇𝑇𝑇𝑇 �(𝛻𝛻𝒁𝒁𝑙𝑙𝑐𝑐𝑐𝑐)𝑇𝑇 𝜕𝜕𝒁𝒁

𝜕𝜕𝒁𝒁𝑖𝑖,𝑗𝑗
(𝑛𝑛)� (7. 47) 

Since 𝛻𝛻𝒁𝒁𝑙𝑙𝑐𝑐𝑐𝑐 = �𝒁𝒁vec(𝒳𝒳′) − 𝑫𝑫𝜶𝜶∗′�vec(𝒳𝒳′)𝑇𝑇 and 𝑇𝑇𝑇𝑇(𝐴𝐴𝐴𝐴) =  𝑇𝑇𝑇𝑇(𝐵𝐵𝐵𝐵) 

�𝛻𝛻𝒁𝒁(𝑛𝑛)𝑙𝑙𝑐𝑐𝑐𝑐�
𝑖𝑖,𝑗𝑗

= 𝑇𝑇𝑇𝑇 ��𝒁𝒁vec(𝒳𝒳′) − 𝑫𝑫𝜶𝜶∗′�
𝑇𝑇 𝜕𝜕𝒁𝒁

𝜕𝜕𝒁𝒁𝑖𝑖,𝑗𝑗
(𝑛𝑛) �𝒁𝒁vec(𝒳𝒳′) − 𝑫𝑫𝜶𝜶∗′��  (7. 48) 

Therefore, by using Proposition 7.3 on (7.48) we obtain the gradient of the unsupervised loss 

function 𝛻𝛻𝒁𝒁(𝑛𝑛)𝑙𝑙𝑐𝑐𝑐𝑐 as, 

𝛻𝛻𝒁𝒁(𝑛𝑛)𝑙𝑙𝑐𝑐𝑢𝑢 = �𝒁𝒁vec(𝒳𝒳′) − 𝑫𝑫𝜶𝜶∗′�(𝑛𝑛)�𝒳𝒳′
(𝑛𝑛)𝜳𝜳𝒁𝒁(𝑛𝑛)�

𝑇𝑇 (7. 49) 

By applying Proposition 7.2 to 𝑣𝑣2
2

𝛻𝛻𝒁𝒁(𝑛𝑛)‖𝒁𝒁‖2 we obtain, 

𝑣𝑣2

2
𝛻𝛻𝒁𝒁(𝑛𝑛)‖𝒁𝒁‖2 =  𝑣𝑣2𝛾𝛾𝒁𝒁(𝑛𝑛)𝒁𝒁(𝑛𝑛) (7. 50) 
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where, 

𝛾𝛾𝒁𝒁(𝑛𝑛) = � 𝑇𝑇𝑇𝑇 �𝒁𝒁(𝑚𝑚)𝑇𝑇
𝒁𝒁(𝑚𝑚)�

𝑁𝑁

𝑚𝑚=1,𝑚𝑚≠𝑛𝑛

Therefore, the gradient of the objective function g(𝑫𝑫, 𝑾𝑾, 𝒁𝒁) w.r.t.  𝒁𝒁(𝑛𝑛); ∀𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁} is, 

𝛻𝛻𝒁𝒁(𝑛𝑛)g(𝑫𝑫, 𝑾𝑾, 𝒁𝒁) =

⎝

⎜
⎛

(1 − 𝜇𝜇) �(𝑫𝑫𝜷𝜷∗)(𝑛𝑛)�𝒳𝒳(𝑛𝑛)𝜳𝜳𝒁𝒁(𝑛𝑛)�
𝑇𝑇

�

+ 𝜇𝜇 ��𝒁𝒁vec(𝒳𝒳′) − 𝑫𝑫𝜶𝜶∗′�(𝑛𝑛)�𝒳𝒳′
(𝑛𝑛)𝜳𝜳𝒁𝒁(𝑛𝑛)�

𝑇𝑇
�

+ 𝑣𝑣2𝛾𝛾𝒁𝒁(𝑛𝑛)𝒁𝒁(𝑛𝑛)
⎠

⎟
⎞

(7. 51) 

Similarly, we could obtain the gradient of g(𝑫𝑫, 𝑾𝑾, 𝒁𝒁) w.r.t. 𝑾𝑾(𝑛𝑛); ∀𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁} and 𝑫𝑫(𝑛𝑛); ∀𝑛𝑛 ∈

{1, ⋯ , 𝑁𝑁} as, 

𝛻𝛻𝑾𝑾(𝑛𝑛)g(𝑫𝑫, 𝑾𝑾, 𝒁𝒁) = (1 − 𝜇𝜇)𝛻𝛻𝑾𝑾(𝑛𝑛)𝑙𝑙c𝑠𝑠 + 𝑣𝑣1𝛾𝛾𝑾𝑾(𝑛𝑛)𝑾𝑾(𝑛𝑛) (7. 52) 

and

𝛻𝛻𝑫𝑫(𝑛𝑛)g(𝑫𝑫, 𝑾𝑾, 𝒁𝒁) =

⎝

⎜
⎛(1 − 𝜇𝜇) �

− (𝑫𝑫𝜷𝜷∗)(𝑛𝑛)�𝜶𝜶∗
(𝑛𝑛)𝜳𝜳𝑛𝑛

𝑇𝑇�
𝑇𝑇

+ (𝒁𝒁vec(𝒳𝒳) − 𝑫𝑫𝜶𝜶∗)(𝑛𝑛) �𝜷𝜷∗
(𝑛𝑛)𝜳𝜳𝑛𝑛

𝑇𝑇�
𝑇𝑇�

−𝜇𝜇 ��𝒁𝒁vec(𝒳𝒳′) − 𝑫𝑫𝜶𝜶∗′�(𝑛𝑛)�𝜶𝜶∗′
(𝑛𝑛)𝜳𝜳𝑛𝑛

𝑇𝑇�
𝑇𝑇

� ⎠

⎟
⎞

(7. 53) 

At each iteration of the compressed sensing extension of the T-TDDL algorithm, we update the 

mode-n parameters 𝑾𝑾(𝑛𝑛), mode-n dictionaries 𝑫𝑫(𝑛𝑛)and mode-n sensing matrices 𝒁𝒁(𝑛𝑛) by a 

projected gradient step. 

𝑾𝑾(𝑛𝑛) ← 𝛱𝛱𝒲𝒲 �𝑾𝑾(𝑛𝑛) − 𝜌𝜌𝑡𝑡 �𝛻𝛻𝑾𝑾(𝑛𝑛)g(𝑫𝑫, 𝑾𝑾, 𝒁𝒁)� � (7. 54) 

𝑫𝑫(𝑛𝑛) ← 𝛱𝛱𝒟𝒟 �𝑫𝑫(𝑛𝑛) − 𝜌𝜌𝑡𝑡 �𝛻𝛻𝑫𝑫(𝑛𝑛)g(𝑫𝑫, 𝑾𝑾, 𝒁𝒁)� � (7. 55) 

𝒁𝒁(𝑛𝑛) ← 𝛱𝛱𝒵𝒵 �𝒁𝒁(𝑛𝑛) − 𝜌𝜌𝑡𝑡 �𝛻𝛻𝒁𝒁(𝑛𝑛)g(𝑫𝑫, 𝑾𝑾, 𝒁𝒁)� � (7. 56) 

Where 𝛱𝛱𝒲𝒲, 𝛱𝛱𝒟𝒟 and 𝛱𝛱𝒵𝒵 are respective orthogonal projections on the convex sets 𝒲𝒲, 𝒟𝒟, and 𝒵𝒵. 
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7.6. Experimental Results 

This section presents experimental results for the performance of the T-TDDL algorithm when 

used to solve supervised and semi-supervised multi-dimensional regression, binary classification, 

and multiclass classification problems.  

We solved a multi-dimensional super-resolution task for our supervised and semi-supervised 

multi-dimensional regression experiments to obtain 4X upscaled videos from low-resolution 

videos. We obtained training and test videos from the vid4 dataset [118], a publicly available 

super-resolution dataset. 

We obtained 3D-CT chest scan images from the MOSMEDDATA dataset [110], a 3D chest CT 

dataset with covid-19 related findings for our binary classification experiments. We used the 

compressed sensing extension of T-TDDL to learn task-driven mode-n dictionaries, mode-n 

sensing matrices, and mode-n model parameters to distinguish healthy people from patients with 

COVID-19 Pneumonia. 

We obtained labeled 3D-CAD models belonging to ten different classes, the ModelNet10 dataset, 

from the Princeton ModelNet dataset [128] for our multiclass classification experiments. We used 

the compressed sensing extension of T-TDDL to learn task-driven mode-n dictionaries, mode-n 

sensing matrices, and mode-n model parameters to classify 3D-CAD models into ten classes. 

We obtained our experimental results using a MATLAB implementation of T-TDDL on an MS-

Windows machine: 2 Intel Xeon CPUs E5-2637 v4, 3.5GHz, 32GB RAM, and NVIDIA Tesla 

P100 GPU with 12GB memory.  

7.6.1. Regression Experiment 

This experiment uses the T-TDDL to learn mode-n dictionaries and mode-n model parameters for 

a multi-dimensional super-resolution task. We divided the used vid4 [118] 4X super-resolution 

dataset for training and testing, where each set contains two low-resolution color videos of 

144 × 180 and 120 × 180 and two high-resolution ground-truth videos of 720 ×  480 and 

720 ×  576, respectively. The low-resolution color videos have sixteen times fewer pixels than 

the high-resolution ground-truth videos. 
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In this experiment, we used the multi-dimensional regression loss function in section 7.4.1 as the 

supervised loss function 𝑙𝑙𝑠𝑠�𝒴𝒴, 𝑾𝑾, 𝜶𝜶∗(𝒳𝒳, 𝑫𝑫)� in both supervised and semi-supervised T-TDDL 

formulations. In the supervised T-TDDL formulation, we set 𝜇𝜇 = 0 and in semi-supervised 

formulation we set 𝜇𝜇 = 0.1. 

We used T-TDDL to learn, three overcomplete task-driven mode-n dictionaries, 𝑫𝑫(1) ∈ ℝ8×10, 

𝑫𝑫(2) ∈ ℝ8×10and 𝑫𝑫(3) ∈ ℝ4×5, and three mode-n model parameter matrices, 𝑾𝑾(1) ∈ ℝ32×10, 

𝑾𝑾(2) ∈ ℝ32×10 and 𝑾𝑾(3) ∈ ℝ4×5, to predict a super-resolution tensor 𝒴𝒴 ∈ ℝ32×32×4 from a low-

resolution tensor 𝒳𝒳 ∈ ℝ8×8×4. 

We set the hyperparameters of T-TDDL as 𝑣𝑣 = 10−5, 𝜆𝜆2 = 0.001, learning rate 𝜌𝜌 = 0.1 and 𝑡𝑡0 to 

20% of the total iterations.    

At each iteration of the T-TDDL, the tensor 𝒳𝒳 ∈ ℝ8×8×4 was randomly sampled from the low-

resolution training videos to obtain 8 × 8 × 4 patches, and we set the tensor 𝒴𝒴 ∈ ℝ32×32×4 to the 

corresponding 32 × 32 × 4 patch from its high-resolution training video. 

Figure 7.1 and Figure 7.2 show our super-resolution experimental results for the two testing videos 

obtained using supervised T-TDDL formulation  (μ = 0) and semi-supervised T-TDDL formulation 

(μ = 0.1).  

Figure 7.1. a) Original low-resolution video, b) 4X super-resolution video obtained using supervised T-
TDDL (μ = 0), c) 4X super-resolution video obtained using semi-supervised T-TDDL (μ = 0.1), d) High-
resolution ground-truth video, and difference videos e) and f)  (Super Resolution Experiment 1) 
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Figure 7.2. a) Original low-resolution video, b) 4X super-resolution video obtained using supervised T-
TDDL (𝜇𝜇 = 0), c) 4X super-resolution video obtained using semi-supervised T-TDDL (𝜇𝜇 = 0.1), d) High-
resolution ground-truth video, and difference videos e) and f) (Super Resolution Experiment 2) 

Table 7.1 summarizes the performance comparison of Supervised T-TDDL, (𝜇𝜇 = 0), and Semi-

Supervised T-TDDL(𝜇𝜇 = 0.1) in obtaining 4X upscaled super-resolution videos for both super-

resolution experiments 1 and 2. Compared performance metrics in Table 7.1 are �𝒴𝒴 − 𝒴𝒴��
2
, the

norm of the difference between the ground truth video, 𝒴𝒴, and the super resolution video, 𝒴𝒴�, 

Measure of structural similarity (SSIM) [128], and Peak signal to noise ratio (PSNR). In 

�𝒴𝒴 − 𝒴𝒴��
2
, lower  numbers indicate better results and in SSIM and PSNR higher numbers indicate

better results. 

Table 7.1. Comparison of Super-resolution experimental results for T-TDDL (𝜇𝜇 = 0) and Semi-
Supervised T-TDDL (𝜇𝜇 = 0.1) 

Metric T-TDDL

(𝜇𝜇 = 0)

Semi-Supervised 

T-TDDL (𝜇𝜇 = 0.1)

Super-Resolution 

Experiment 1 
�𝒴𝒴 − 𝒴𝒴��2 0.1957 0.1950 

PSNR 18.38 18.42 

SSIM 0.6066 0.6083 

Super-Resolution 

Experiment 2 
�𝒴𝒴 − 𝒴𝒴��2 0.1396 0.1349 

PSNR 24.09 24.39 

SSIM 0.7993 0.8032 
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As shown in Table 7.1, the 4X video super-resolution experimental results obtained using the semi-

supervised T-TDDL formulation (𝜇𝜇 = 0.1) outperforms the supervised T-TDDL formulation in 

all three metrics. 

7.6.2. Binary Classification Experiment 

In the T-TDDL binary classification experiment, we used the compressed sensing extension of the 

T-TDDL to learn task-driven mode-n dictionaries, mode-n model parameters, and mode-n sensing

matrices to classify 3D-CT chest scans with COVID-19 Pneumonia and compared with the results

obtained using a 3D Convolutional Neural Network(3D-CNN) model.

We obtained 3D-CT chest scan images from the MOSMEDDATA dataset [129], a 3D chest CT 

dataset with covid-19 related findings. Figure 7.3 shows samples of 3D-CT chest scans of a healthy 

person and a patient with COVID-19 Pneumonia from our dataset. The hazy gray patches 

(Increased CT Attenuation) in the Axial, Sagittal, and Coronal view of the Covid-19 patient's lungs 

in Figure 7.3 b) are called ground-glass opacities (GGO) [130], which indicate abnormalities in 

the lungs. In this experiment, we train T-TDDL and 3D-CNN to distinguish COVID-19 patients 

with Pneumonia (Figure 7.3 b)) from healthy people (Figure 7.3 a)) using the presence of ground-

glass opacities (GGO) in 3D-CT chest scans. 

Figure 7.3. 3D, Axial, Sagittal, Coronal view of a) 3D-CT chest scan of a healthy person and b) a 3D-CT 
chest scan of a COVID-19 patient with Pneumonia 

Our dataset consisted of 100 labeled 3D-CT chest scans of patients with COVID-19 associated 

Pneumonia and 100 labeled 3D-CT chest scans of healthy people. We normalized the 3D-CT 
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images after applying a threshold between −1000 and 400 and rescaled 3D-CT images to have 

128 × 128 × 64 voxels. Then, we split the 3D-CT images dataset into train and test with a 70:30 

ratio. The training set consisted of 140 3D-CT images, and the testing set consisted of 60 3D-CT 

images. We augmented the training data during the training of both 3D-CNN and T-TDDL by 

rotating the 3D-CT images along the longitudinal axis by a random angle. 

We used T-TDDL to learn three mode-n sensing matrices 𝒁𝒁(1) ∈ ℝ16×128, 𝒁𝒁(2) ∈ ℝ16×128and 

𝒁𝒁(3) ∈ ℝ16×64, three overcomplete task-driven mode-n dictionaries, 𝑫𝑫(1) ∈ ℝ16×32, 𝑫𝑫(2) ∈

ℝ16×32and 𝑫𝑫(3) ∈ ℝ16×32 and three mode-n model parameter vectors, 𝒘𝒘(1) ∈ ℝ1×32, 𝒘𝒘(2) ∈

ℝ1×32 and 𝒘𝒘(3) ∈ ℝ1×32, to predict the class 𝑦𝑦 from 3D-CT image tensor 𝒳𝒳 ∈ ℝ128×128×64. We 

used the mode-n sensing matrices 𝒁𝒁(1), 𝒁𝒁(2) and 𝒁𝒁(3) to project the image tensor 𝒳𝒳 ∈ ℝ128×128×64 

to a much smaller tensor 𝒳𝒳𝑧𝑧 ∈ ℝ16×16×16 before using T-NET to obtain a sparse representation, 

which is much more computationally efficient than obtaining a sparse representation of 𝒳𝒳 ∈

ℝ128×128×64 directly using T-NET.  

We used the logistic regression loss function [38], as shown in section 7.4.2, as the supervised 

binary classification loss function 𝑙𝑙𝑠𝑠�𝑦𝑦, 𝒘𝒘, 𝜶𝜶∗(𝒳𝒳, 𝑫𝑫, 𝒁𝒁)� in a supervised T-TDDL formulation 

where 𝜇𝜇 = 0. We set the hyperparameters of T-TDDL as 𝑣𝑣 = 10−5, 𝜆𝜆2 = 0.001, learning rate 𝜌𝜌 =

0.1 and 𝑡𝑡0 to 20% of the total iterations in one epoch. Each epoch consisted of a maximum of 

100,000 iterations, and we stopped training at each epoch when all mode-n sensing matrices, 

mode-n dictionaries, and mode-n model parameters were converged or when the maximum number 

of iterations was reached. We ran six epochs to obtain the training results. 

We compared our T-TDDL binary classification results with the results obtained by training a 3D-

Convolutional Neural Network Model (3D-CNN). For the 3D-CNN model, we used the 17-layer 

3D-CNN architecture proposed by Zunair et al. [131] for classifying 3D-CT images. We trained 

the 3D-CNN for 100 epochs with early stopping to achieve the maximum classification accuracy. 
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Table 7.2 Binary Classification Report 

Precision Recall 𝐹𝐹1-score Support 

3D-CNN COVID-19 

Pneumonia 

0.69      0.90      0.78        30 

Normal 0.86            0.60 0.71 30 

accuracy 0.75 60 

T-TDDL COVID-19 

Pneumonia 

0.77 0.77 0.77 30 

Normal 0.77 0.77 0.77 30 

accuracy 0.77 60 

Table 7.2 shows the classification report for both 3D-CNN and T-TDDL. The precision of 

classification is given by 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)⁄ , and 

the recall is 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁)⁄ . The 𝐹𝐹1-score [132] 

is the harmonic mean of the precision and recall, which is given by, 

𝐹𝐹1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  
2 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

We measured the classification accuracy using the 𝐹𝐹1-score, which is given in Table 7.2, where T-

TDDL with compressed sensing extension achieved a classification accuracy of 0.77, whereas the 

3D-CNN model only achieved a classification accuracy of 0.75, classifying 3D-CT images with 

COVID-19 Associated Pneumonia.  

Figure 7.4 a) shows the normalized confusion matrix for the 3D-CNN binary classification 

experiment, and Figure 7.4 b) shows the normalized confusion matrix for the T-TDDL Binary 

Classification Experiment. The Confusion matrices in Figure 7.4 show that the 3D-CNN model is 

biased toward classifying 3D-CT images for the COVID-19 Pneumonia class, whereas the T-

TDDL shows no special bias toward any class. 
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Figure 7.4. Normalized confusion matrices for a) 3D-CNN and b) T-TDDL Binary Classification 
Experiment 

7.6.3. Multiclass Classification Experiment 

In the T-TDDL multiclass classification experiment, we used the compressed sensing extension of 

the T-TDDL to learn task-driven mode-n dictionaries, mode-n model parameters, and mode-n 

sensing matrices to classify 3D-CAD models and compared the results with a 3D Convolutional 

Neural Network(3D-CNN) model.  

We obtained 3D-CAD models, the ModelNet10 dataset, from the Princeton ModelNet dataset 

[133], consisting of 3D-CAD models belonging to ten different classes. Each 3D-CAD model had 

30 × 30 × 30 voxels. Our training dataset consisted of 47,892 labeled 3D-CAD models, and our 

testing dataset consisted of 10,896 labeled 3D-CAD models. Figure 7.5 shows sample 3D-CAD 

models for each class from the ModelNet10 dataset. 

We used T-TDDL to learn three mode-n sensing matrices 𝒁𝒁(1) ∈ ℝ15×30, 𝒁𝒁(2) ∈ ℝ15×30and 𝒁𝒁(3) ∈

ℝ15×30, three over-complete task-driven mode-n dictionaries, 𝑫𝑫(1) ∈ ℝ15×30, 𝑫𝑫(2) ∈ ℝ15×30and 

𝑫𝑫(3) ∈ ℝ115×30 and three mode-n model parameter matrices, 𝑾𝑾(1) ∈ ℝ10×30, 𝑾𝑾(2) ∈ ℝ1×30 and 

𝑾𝑾(3) ∈ ℝ1×30, to predict a class vector 𝒚𝒚 from 3D-CAD model tensor 𝒳𝒳 ∈ ℝ30×30×30. We used 

the mode-n sensing matrices 𝒁𝒁(1), 𝒁𝒁(2) and 𝒁𝒁(3) to project the tensor 𝒳𝒳 ∈ ℝ30×30×30 to a much 

smaller tensor 𝒳𝒳𝑧𝑧 ∈ ℝ15×15×15 before using T-NET to obtain a sparse representation, which is 

computationally efficient than obtaining a sparse representation of 𝒳𝒳 ∈ ℝ30×30×30 directly using 

T-NET.
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Figure 7.5 Sample 3D-CAD models from the ModelNet10 dataset 

We used the Softmax cross-entropy loss function, as shown in section 7.4.3, as the supervised 

multiclass classification loss function 𝑙𝑙𝑠𝑠�𝒚𝒚, 𝒘𝒘, 𝜶𝜶∗(𝒳𝒳, 𝑫𝑫, 𝒁𝒁)� in a supervised T-TDDL formulation 

where 𝜇𝜇 = 0. We set the hyperparameters of T-TDDL as 𝑣𝑣 = 10−5, 𝜆𝜆2 = 0.001, learning rate 𝜌𝜌 =

0.1 and 𝑡𝑡0 to 20% of the total iterations in one epoch. Each epoch consisted of a maximum of 

100,000 iterations, and we stopped training at each epoch when all mode-n sensing matrices, 

mode-n dictionaries, and mode-n model parameters were converged or when the maximum number 

of iterations was reached. We ran ten epochs to obtain the training results. 



Computationally Efficient Methods for Sparse Tensor Signal Processing 

129 

We compared our T-TDDL multiclass classification results with the results obtained by training a 

3D-Convolutional Neural Network Model (3D-CNN). For the 3D-CNN model, we used the 14-

layer 3D-CNN model for classifying 3D-CAD models. We trained the 3D-CNN for 100 epochs 

with early stopping to achieve the maximum classification accuracy. 

Table 7.3 Multiclass Classification Report 

Class Precision Recall 𝐹𝐹1-score Support 

3D-CNN Bathtub 0.72 0.92 0.8 600 

Bed 0.93 0.99 0.96 1200 

Chair 0.64 0.99 0.78 1200 

Desk 0.62 0.81 0.7 1032 

Dresser 0.76 0.84 0.8 1032 

Monitor 0.95 0.99 0.97 1200 

Night Stand 0.73 0.76 0.74 1032 

Sofa 0.92 0.97 0.95 1200 

Table 0.88 0.67 0.76 1200 

Toilet 0 0 0 1200 

Accuracy 0.7861 10896 

T-TDDL Bathtub 0.85 0.69 0.76 600 

Bed 0.76 0.94 0.84 1200 

Chair 0.85 0.9 0.87 1200 

Desk 0.68 0.65 0.66 1032 

Dresser 0.75 0.82 0.78 1032 

Monitor 0.92 0.91 0.91 1200 

Night Stand 0.72 0.7 0.71 1032 

Sofa 0.95 0.81 0.87 1200 

Table 0.9 0.76 0.83 1200 

Toilet 0.79 0.88 0.83 1200 

Accuracy 0.8149 10896 
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Table 7.3 shows the classification report for both 3D-CNN and T-TDDL. The precision of 

classification is 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)⁄ , and the 

recall is 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁)⁄ . The 𝐹𝐹1-score [132] is 

the harmonic mean of the precision and recall, which is given by, 

𝐹𝐹1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  
2 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

We measured the classification accuracy using the 𝐹𝐹1-score, which is given in Table 7.3, where T-

TDDL with compressed sensing extension achieved a classification accuracy of 0.8149, whereas 

the 3D-CNN model only achieved a classification accuracy of 0.7861, classifying 3D-CAD 

models.  

Figure 7.6 a) shows the normalized confusion matrix for the 3D-CNN multiclass classification 

experiment, and Figure 7.6 b) shows the normalized confusion matrix for the T-TDDL multiclass 

classification experiment. The Confusion matrices in Figure 7.6 show that the 3D-CNN model 

failed to predict the Toilet class and shows a bias toward some classes, whereas the T-TDDL shows 

no special bias toward any class. 

Figure 7.6. Normalized confusion matrices for a) 3D-CNN and b) T-TDDL Multiclass Classification 
Experiment 
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7.7. Conclusions 

This chapter extended the one-dimensional TDDL formulation to develop the tensor task-driven 

dictionary learning(T-TDDL) framework that could work as an efficient online data-driven or task-

driven dictionary learning algorithm for supervised and semi-supervised learning of mode-n 

dictionaries and mode-n model parameters. We have also presented a compressed sensing 

extension to the T-TDDL formulation for efficiently solving large tensor task-driven dictionary 

learning problems. Section IV presented three example applications in Regression, Binary 

Classification, Multiclass classification, and the gradient calculations of the respective loss 

functions. 

We solved a 4X video super-resolution task for the T-TDDL regression experiment, using both 

supervised T-TDDL formulation (𝜇𝜇 = 0) and the semi-supervised T-TDDL formulations 

(𝜇𝜇 = 0.1). Our supervised T-TDDL regression formulation achieved SSIM [128] of 0.6066 and 

0.7993 for the two example videos. The semi-supervised T-TDDL regression formulation achieved 

SSIM of 0.6083 and 0.8032, respectively, outperforming the experimental results of the supervised 

T-TDDL regression formulation. 

The compressed sensing extension of the T-TDDL binary classification formulation achieved a 

higher classification accuracy, 𝐹𝐹1-score of 0.77, compared to the 3D-CNN  model, which achieved 

the 𝐹𝐹1-score of 0.75 in classifying the 3D-CT chest scans images of COVID-19 patients with 

Pneumonia from a labeled 3D-CT chest scans images dataset. In our binary classification 

experiment,  the T-TDDL formulation showed no bias towards any class, whereas the 3D-CNN 

model showed a bias towards the 3D-CT images of patients with COVID-19 Pneumonia.  

Also, the compressed sensing extension of the T-TDDL multiclass classification formulation 

achieved a higher classification accuracy, 𝐹𝐹1-score of 0.8149, compared to the 3D-CNN  model, 

which achieved the 𝐹𝐹1-score of 0.7861 in classifying the 3D-CAD models of the ModelNet10 

dataset. Therefore the T-TDDL framework could be used for accurately solving multi-dimensional 

classification problems. 

Unlike CNN, the T-TDDL framework could be used for solving 𝑁𝑁 dimensional regression or 

classification problems without extra modification. Therefore, the T-TDDL framework could be 

used for solving tensor task-driven dictionary learning problems accurately and efficiently. 
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Multi-modal learning is gaining much popularity in machine learning communities. The T-TDDL 

formulation could easily extend to efficiently solve tensor multi-modal task-driven dictionary 

learning problems [120]. Furthermore, the T-TDDL formulation could also extend to solve tensor 

task-driven dictionary learning problems in an agent-based distributed online setting using the 

formulations given by Koppel et al. [121].  

Therefore, with various loss functions and formulations, the  T-TDDL framework could be used 

to efficiently solve a wide range of tensor task-driven dictionary learning problems and online 

data-driven dictionary learning problems. 
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Chapter 8 

8. Conclusions And Future Directions 

8.1. Conclusions  

This research's main objective was to develop novel methodologies that could efficiently solve 

large multi-dimensional problems using available limited computational resources. We researched 

several topics such as Sparsity, Tensors, and Multilinear Algebra to achieve this. 

Many signal processing, machine learning, and statistical applications solve multi-dimensional 

problems using linear algebra after vectorizing multi-dimensional signals. As the number of 

dimensions increases, multi-dimensional signals quickly grow in size, and solving such problems 

becomes computationally infeasible.  

Therefore, we looked into obtaining a sparse signal representation of large multi-dimensional 

signals, which results in simpler and faster processing and less memory storage requirements. 

However, obtaining a sparse signal representation of large multi-dimensional signals by solving a 

sparse linear least-square problem also requires a significantly large amount of computational 

resources. As the size of the multi-dimensional signal increases, it quickly becomes 

computationally infeasible.   

A multilinear representation of a tensor (multi-dimensional signal) is obtained by multiplying each 

mode of the tensor by a smaller mode-n matrix, which requires significantly less computational 

resources. An earlier generalization of OMP, known as Kronecker-OMP [16], was developed to 

solve the L0 constrained least-squares problem for large multi-dimensional signals. We developed 

the Tensor Least Angle Regression (T-LARS), a generalization of Least Angle Regression (LARS), 

to efficiently solve large L0 or L1 constrained multilinear least-squares problems (underdetermined 

or overdetermined) for all critical values of the regularization parameter λ.  

 To demonstrate the validity and performance of our T-LARS algorithm, we used it to successfully 

obtain different sparse representations of two relatively large 3D brain images, using fixed and 
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learned separable over-complete dictionaries, by solving both L0 and L1 constrained sparse least-

squares problems. Our numerical experiments demonstrate that our T-LARS algorithm is 

significantly faster (46 - 70 times) than Kronecker-OMP in obtaining K-sparse solutions for 

multilinear least-squares problems. However, the K-sparse solutions obtained using Kronecker-

OMP always have a slightly lower residual error (1.55% - 2.25%) than ones obtained by T-LARS. 

We also presented experimental results to compare Kronecker-OMP and T-LARS in obtaining a 

sparse representation of 3D brain images using compressed sensed samples by solving a Kronecker 

compressed sensing problem. Therefore, T-LARS could be an important tool for numerous multi-

dimensional signal processing and regression applications. 

Sparse weighted multilinear least-squares is a generalization of the sparse multilinear least-squares 

problem, where prior information about, e.g., parameters and data is incorporated by multiplying 

both sides of the original problem by a typically diagonal weights matrix [22]. If the diagonal 

weight matrix has a similar Kronecker structure to the dictionary matrix, we could use the T-LARS 

algorithm developed in chapter 3 to solve this problem efficiently. Typically, introducing arbitrary 

diagonal weights would result in a non-Kronecker least-squares problem that could be very large 

to store or solve practically. Therefore, we introduced the Weighted Tensor Least Angle Regression 

(WT-LARS) algorithm, which could efficiently solve the weighted tensor least-squares problem 

for an arbitrary diagonal weight matrix. In the experimental results, we solved the image inpainting 

problems using WT-LARS by obtaining sparse representations of RGB images using binary-

weighted samples to demonstrate the validity of WT-LARS. We successfully obtained sparse 

representations of RGB images behind fences, using 10% nonzero coefficients, and a sparse 

representation of a landscape image occluded by a person, using 20% nonzero coefficients.  

We could initialize T-LARS with an  L1 solution located on the Pareto curve [23] and obtain an L1 

solution with a lower residual error, where the Pareto curve contains every solution to a 

linear/multilinear least-squares problem.  However, we could not initialize T-LARS with any 

solution outside of the Pareto curve because it will violate the optimality conditions of T-LARS. 

Therefore, we developed the Tensor Dynamic Least Angle Regression (TD-LARS) algorithm, a 

multilinear generalization of the L1-Homotopy algorithm [24] to efficiently solve multilinear L1 

minimization problems using nonzero initial solutions located on or off of the Pareto curve. Our 

experimental results show that TD-LARS obtains the solution to an L1 minimization problem much 
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faster than solving it from the 𝒳𝒳 = 0 initial solution using T-LARS when a close initial solution 

is available. 

𝐿𝐿0 minimization problem is a non-convex problem, and the slightly relaxed 𝐿𝐿1 minimization 

problem is a convex problem. Even though, the 𝐿𝐿2 minimization problem is strictly convex; it does 

not provide a sparse solution. Also, both 𝐿𝐿0 and 𝐿𝐿1 minimization problems have an upper limit for 

selecting the maximum number of coefficients for a unique and accurate solution based on the 

dictionary's coherence. Also, the 𝐿𝐿0 or 𝐿𝐿1 minimization problem does not have the group selection 

ability, which is important in certain applications. 

Therefore in this thesis, we introduced the Multilinear Elastic Net problem by generalizing the 

one-dimensional Elastic Net problem [27], [28]. Multilinear Elastic Net solves a strictly convex 

𝐿𝐿1 and 𝐿𝐿2 constrained multilinear least-squares problem and it has, the best properties of both 𝐿𝐿1 

and 𝐿𝐿2 minimization problems. In addition to the group selection ability, Multilinear Elastic Net 

can obtain more than 𝑛𝑛 nonzero coefficients for a signal with 𝑛𝑛 elements. Therefore, Multilinear 

Elastic Net is ideal for solving multilinear sparse least-squares problems with highly coherent 

dictionaries.  

The dictionary in Multilinear Elastic Net problem has a partitioned Kronecker structure, which 

could not be efficiently solved with T-LARS. Therefore, we introduced the Tensor Elastic Net (T-

NET) algorithm to efficiently solve the Multilinear Elastic Net problem by utilizing the partitioned 

Kronecker structure of the dictionary matrix. Experimental results show T-NET has better 

statistical properties than T-LARS, such as the group selection ability and ability to solve problems 

with highly coherent dictionaries. 

We could use fixed or learned separable dictionaries in obtaining a sparse multilinear 

representation of multi-dimensional signals using T-LARS, WT-LARS, TD-LARS, T-NET, or 

Kronecker-OMP. However, the dictionaries learned from the data are much more efficient in 

obtaining sparse representations than fixed dictionaries [29].  

Roemer et al. [30] introduced Tensor Method of Optimal Directions (T-MOD) and Kronecker 

Higher-Order SVD (K-HOSVD) algorithms to learn data-driven separable dictionaries to solve 

multilinear problems by generalizing one-dimensional data-driven dictionary learning algorithms,  

Method of Optimal Direction(MOD) [31], and K-SVD [32], respectively. Roemer used one-



Ishan Wickramasingha 
 

136 
 

dimensional sparse coding methods in the sparse coding step of the T-MOD and K-HOSVD 

algorithms, requiring a significantly large amount of computational resources for solving data-

driven tensor dictionary learning problems. However, we could solve large data-driven tensor 

dictionary learning problems efficiently by using T-LARS [18], T-NET, or Kronecker-OMP [16] 

in the sparse coding step of the T-MOD and K-HOSVD algorithms. 

Learned dictionaries could be used in classification or regression tasks [33]–[35]. However, 

regression and classification performance could be improved significantly by supervised learning 

of task-specific dictionaries [36], [37]. 

This thesis extended the one-dimensional TDDL formulation [38] to develop the Tensor Task-

Driven Dictionary Learning (T-TDDL) that could work as an efficient online data-driven or task-

driven dictionary learning algorithm for supervised and semi-supervised learning of mode-n 

dictionaries and mode-n model parameters. We have also presented a compressed sensing 

extension to the T-TDDL formulation for efficiently solving large tensor task-driven dictionary 

learning problems. Section 7.4 presented example applications in Regression, Binary 

Classification, and Multiclass classification, and the gradient calculations of the respective loss 

functions. 

A supervised, semi-supervised, or unsupervised T-TDDL formulations could be obtained 

depending on the value of 𝜇𝜇. The unsupervised tensor dictionary learning formulation could be 

used to solve the online tensor data-driven dictionary learning problems [30], [122].  

To demonstrate the validity and performance of our T-TDDL framework, we used the T-TDDL 

framework to solve multi-dimensional regression, binary classification, and multiclass 

classification problems and presented experimental results. The experimental results show that the 

4X super-resolution videos (4D tensor), obtained using the semi-supervised T-TDDL regression 

formulation, outperform the supervised T-TDDL regression formulations. In the binary 

classification experiment, we used the compressed sensing extension of the T-TDDL to learn 

mode-n dictionaries, mode-n model parameters, and mode-n sensing matrices to classify 3D-CT 

chest scan images of patients with COVID-19 associated pneumonia from 3D-CT chest scan 

images of healthy people. We compared our T-TDDL results with the results obtained using a 17-

layer 3D-CNN model designed explicitly for classifying 3D-CT images. We used the 𝐹𝐹1-score to 

measure the classification accuracy. Our T-TDDL formulation achieved a binary classification 
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accuracy of 0.77, which is higher than the binary classification accuracy of 0.75 achieved by the 

3D-CNN model. Furthermore, the compressed sensing extension of the T-TDDL multiclass 

classification achieved a higher classification accuracy of 0.8149 than the 3D-CNN  model, which 

only achieved a classification accuracy of 0.7861 in classifying the 3D-CAD models of the 

ModelNet10 dataset. 

Unlike CNN, the T-TDDL formulation could be used for solving 𝑁𝑁 dimensional regression or 

classification problems without extra modification. Therefore, the T-TDDL framework could be 

efficiently used for a wide range of multi-dimensional machine learning applications with various 

task-specific loss functions. 

8.2. Future Directions 

This research introduced several tensor-based algorithms for efficiently obtaining a sparse 

multilinear representation of multi-dimensional signals under different conditions. To demonstrate 

the validity and performance of our algorithms, we presented a few example applications for each 

algorithm. 

Most state-of-the-art applications in Signal Processing, Machine Learning, and Statistics currently 

solve multi-dimensional problems using linear algebra after vectorizing multi-dimensional signals. 

The concepts and algorithms introduced in this research enable using tensors and multilinear 

algebra in future large multi-dimensional applications. 

T-LARS, TD-LARS, WT-LARS, and T-NET could be used to solve large multi-dimensional 

problems such as multi-dimensional regression, representation, and compression problems in 

various fields. Also, the TD-LARS algorithm could be used for transfer learning applications in 

multi-dimensional regression.  

The T-LARS and T-NET algorithms could be extended to solve multi-dimensional problems with 

grouped variables by extending group LARS [134] and group adaptive Elastic Net [135]. Also, T-

LARS and convex-LAR [136] could be extended to develop a generalized algorithm to obtain a 

sparse solution for any multilinear convex loss function.  

One of the limitations of T-LARS, TD-LARS, WT-LARS, and T-NET is that, as the number of 

selected active coefficients increases, the Gram matrix gets bigger and increases the usage of 
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computational resources resulting in longer execution time. Therefore, available computational 

resources limit the number of active coefficients that could be selected. Since the Gram matrix is 

symmetric, in our algorithms, we store the lower triangle part of the Gram matrix in memory and 

use it in computations for faster processing. As a future research direction, one could improve the 

above algorithms or develop novel algorithms to solve the sparse multilinear least-squares 

problems without explicitly building and storing large Gram matrices. 

The T-TDDL is a general multi-dimensional framework for learning online multi-dimensional 

data-driven or task-driven mode-n dictionaries, mode-n model parameters, and mode-n sensing 

matrices. T-TDDL could be used for many multi-dimensional machine learning and signal 

processing applications using different task-specific loss functions. The compressed sensing 

extension allows solving huge multi-dimensional problems using T-TDDL, where mode-n 

dictionaries and mode-n model parameters could be learned after projecting the input, using mode-

n sensing matrices, to a smaller manageable size.  

Multi-modal learning is gaining much popularity in machine learning communities. The T-TDDL 

formulation could easily extend to efficiently solve tensor multi-modal task-driven dictionary 

learning problems [120]. Furthermore, the T-TDDL formulation could also extend to solve tensor 

task-driven dictionary learning problems in an agent-based distributed online setting using the 

formulations given by Koppel et al. [121]. 

The initial motivation behind this research was to solve the full-wave simulation of light 

propagation inside a 5mm×5mm×5mm tissue sample, when a light source with 1𝜇𝜇𝜇𝜇 central 

wavelength is used, which requires solving the scalar scattering equation for a volume of 

5000𝜆𝜆 × 5000𝜆𝜆 × 5000𝜆𝜆. Solving the linear system, resulting from the scalar scattering 

equations when Method of Moments (MoM) is applied, was computationally infeasible even with 

the available supercomputers. This Ph.D. research has laid the foundation and developed tensor-

based methods for efficiently solving such large multidimensional problems. Therefore, as a future 

direction, one could use our tensor-based methods to solve the full-wave simulation of light 

propagation inside a tissue problem for a large tissue sample.  
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Appendix A   

A.1 Mapping of Tensor Indices to Corresponding Vector Indices of 

vec(𝒳𝒳) ∈ ℝ𝐼𝐼𝑁𝑁𝐼𝐼𝑁𝑁−1…𝐼𝐼1  

Proposition 2.1: Let 𝑙𝑙 be the vector index of an element 𝑣𝑣𝑙𝑙 in 𝑣𝑣𝑣𝑣𝑣𝑣(𝒳𝒳) ∈ ℝ𝐼𝐼𝑁𝑁𝐼𝐼𝑁𝑁−1…𝐼𝐼1 and 𝐼𝐼𝑛𝑛 be the 
dimension of the mode-n of the tensor 𝒳𝒳 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑛𝑛×…×𝐼𝐼𝑁𝑁 where, 𝑛𝑛 ∈ {1,2, … , 𝑁𝑁}. The tensor 
indices 𝑖𝑖𝑛𝑛; 𝑛𝑛 ∈ {1,2, … , 𝑁𝑁}, corresponding to the vector element 𝑣𝑣𝑙𝑙 ,  can be obtained by, 

𝑖𝑖𝑛𝑛 = �
𝑙𝑙

𝐼𝐼1 × … × 𝐼𝐼𝑛𝑛−1
− � �𝑖𝑖𝑝𝑝 − 1�  � 𝐼𝐼𝑞𝑞

𝑝𝑝−1

𝑞𝑞=𝑛𝑛;𝑞𝑞>0

𝑁𝑁

𝑝𝑝=𝑛𝑛+1;𝑝𝑝≤𝑁𝑁 

 � (A. 1) 

where ⌈∗⌉ indicate the ceiling function. For example, 

𝑖𝑖1 = ⌈𝑙𝑙 − (𝑖𝑖𝑁𝑁 − 1)𝐼𝐼𝑁𝑁−1 × … .× 𝐼𝐼1 − ⋯ − (𝑖𝑖2 − 1)𝐼𝐼1⌉ 

⋮ 

𝑖𝑖𝑁𝑁−1 =  �
𝑙𝑙

𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−2
− (𝑖𝑖𝑁𝑁 − 1)𝐼𝐼𝑁𝑁−1� 

𝑖𝑖𝑁𝑁 = �
𝑙𝑙

𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−1
� 

Proof: Note that 𝑖𝑖𝑛𝑛 for all 𝑛𝑛 ∈ {1,2, … , 𝑁𝑁} are integers and 1 ≤ 𝑖𝑖𝑛𝑛 ≤  𝐼𝐼n 

From (2.1), 

𝑙𝑙 = 𝑖𝑖1 + (𝑖𝑖2 − 1)𝐼𝐼1 + ⋯ + (𝑖𝑖𝑁𝑁 − 1)𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−1 (A. 2) 

⟹ 𝑖𝑖𝑁𝑁 − 1 =   
𝑙𝑙

𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−1���������
𝑆𝑆𝑁𝑁

−
𝑖𝑖1 + (𝑖𝑖2 − 1)𝐼𝐼1 + ⋯ + (𝑖𝑖𝑁𝑁−1 − 1)𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−2

𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−1�������������������������������
𝑓𝑓𝑁𝑁

 

𝑖𝑖𝑁𝑁  =  𝑆𝑆𝑁𝑁  +  (1 −  𝑓𝑓𝑁𝑁) (A. 3) 

Since 𝑖𝑖𝑛𝑛 ≤  𝐼𝐼n  ∀ 𝑛𝑛 ∈ {1,2, … , 𝑁𝑁}, 

𝑓𝑓𝑁𝑁 ≤
𝐼𝐼1 + (𝐼𝐼2 − 1)𝐼𝐼1+. . . +(𝐼𝐼𝑁𝑁−1 − 1)𝐼𝐼1 ×. . .× 𝐼𝐼𝑁𝑁−2

𝐼𝐼1 ×. . .× 𝐼𝐼𝑁𝑁−1
= 1 (A. 4) 
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Also 1 ≤ 𝑖𝑖𝑛𝑛  ∀ 𝑛𝑛 ∈ {1,2, … , 𝑁𝑁}  and,  

𝑓𝑓𝑁𝑁 =
1 + (1 − 1)𝐼𝐼1 + ⋯ + (1 − 1)𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−2

𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−1
> 0 (A. 5) 

Therefore, from (A. 4) and (A. 5), 

0 < 𝑓𝑓𝑁𝑁 ≤ 1 (A. 6) 

⟹ 0 ≤ 1 − 𝑓𝑓𝑁𝑁 < 1 (A. 7) 

Since 𝑖𝑖𝑁𝑁 ∈ ℤ, from (A. 3) and (A. 7), 

⇒ 𝑖𝑖𝑁𝑁 = ⌈𝑖𝑖𝑁𝑁 − (1 − 𝑓𝑓𝑁𝑁)⌉ = ⌈𝑆𝑆𝑁𝑁⌉ 

𝑖𝑖𝑁𝑁 = �
𝑙𝑙

𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−1
� (A. 8) 

⌈∗⌉ indicate the ceiling of the value.  

Similarly, 

𝑖𝑖𝑁𝑁−1 − 1 =
𝑙𝑙

𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−2
− (𝑖𝑖𝑁𝑁 − 1)𝐼𝐼𝑁𝑁−1�������������������

𝑆𝑆𝑁𝑁−1

−
𝑖𝑖1 + (𝑖𝑖2 − 1)𝐼𝐼1 + ⋯ + (𝑖𝑖𝑁𝑁−1 − 1)𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−2

𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−2�������������������������������
𝑓𝑓𝑁𝑁−1

 

𝑖𝑖𝑁𝑁−1 = 𝑆𝑆𝑁𝑁−1 + (1 − 𝑓𝑓𝑁𝑁−1) 

0 ≤ (1 − 𝑓𝑓𝑁𝑁−1) <  1 

Since 𝑖𝑖𝑁𝑁−1 ∈ ℤ and 0 ≤ (1 − 𝑓𝑓𝑁𝑁−1) < 1 , 

𝑖𝑖𝑁𝑁−1  =  ⌈𝑖𝑖𝑁𝑁−1 − (1 − 𝑓𝑓𝑁𝑁−1)⌉ = ⌈𝑆𝑆𝑁𝑁−1⌉ 

𝑖𝑖𝑁𝑁−1 = �
𝑙𝑙

𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−2
− (𝑖𝑖𝑁𝑁 − 1)𝐼𝐼𝑁𝑁−1� 

Similarly, for ∀ 𝑛𝑛 ∈ {1,2, … , 𝑁𝑁}, 0 ≤ (1 − 𝑓𝑓𝑛𝑛) <  1 

𝑖𝑖𝑛𝑛  =  ⌈𝑖𝑖𝑛𝑛 − (1 − 𝑓𝑓𝑛𝑛)⌉ = ⌈𝑆𝑆𝑛𝑛⌉ 

𝑖𝑖𝑛𝑛 = �
𝑙𝑙

𝐼𝐼1 × … × 𝐼𝐼𝑛𝑛−1
− � �𝑖𝑖𝑝𝑝 − 1�  � 𝐼𝐼𝑞𝑞

𝑝𝑝−1

𝑞𝑞=𝑛𝑛;𝑞𝑞>0

𝑁𝑁

𝑝𝑝=𝑛𝑛+1;𝑝𝑝≤𝑁𝑁 

 �  
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Appendix B   

B.1 Mapping of column indices of dictionary Φ to column indices of 

mode-n dictionaries 

T-LARS avoids the construction of large matrices such as the separable dictionary 𝜱𝜱 in (3.4). 

Instead, T-LARS uses mode-n dictionaries for calculations. The following mapping between 

column indices of dictionary Φ and column indices of mode-n dictionaries 𝜱𝜱(𝑛𝑛); 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁} is 

essential in T-LARS calculations. 

The arbitrary column 𝜱𝜱𝑘𝑘 is the 𝑘𝑘th column of the separable dictionary 𝜱𝜱 in (3.4), which is given 

by the Kronecker product of the columns of the dictionary matrices 𝜱𝜱(1), 𝜱𝜱(2), … ,  𝜱𝜱(𝑁𝑁), 𝑛𝑛 ∈

{1, ⋯ , 𝑁𝑁}. 

𝜱𝜱𝑘𝑘  =  𝜙𝜙𝑖𝑖𝑁𝑁

(𝑁𝑁) ⊗ 𝜙𝜙𝑖𝑖𝑁𝑁−1

(𝑁𝑁−1) ⊗ …  ⊗ 𝜙𝜙𝑖𝑖1

(1) (B. 1) 

The column indices (𝑖𝑖𝑁𝑁 , 𝑖𝑖𝑁𝑁−1, … , 𝑖𝑖1) are the indices of the columns of the dictionary matrices 

𝜱𝜱(1), 𝜱𝜱(2), … ,  𝜱𝜱(𝑁𝑁) . The column index 𝑘𝑘 of the separable dictionary 𝜱𝜱 is given by [45], 

𝑘𝑘 = 𝑖𝑖1 + �(𝑖𝑖𝑛𝑛 − 1)𝐼𝐼1𝐼𝐼2 … . 𝐼𝐼𝑛𝑛−1

𝑁𝑁

𝑛𝑛=2

(B. 2) 

where, 𝐼𝐼1,  𝐼𝐼2, … ,  𝐼𝐼𝑁𝑁 are the dimensions of the columns of the dictionary matrices 

𝜱𝜱(1), 𝜱𝜱(2), … ,  𝜱𝜱(𝑁𝑁) , respectively. The following proposition shows how to obtain the column 

indices of the dictionary matrices (𝑖𝑖𝑁𝑁 , 𝑖𝑖𝑁𝑁−1, … , 𝑖𝑖1) corresponds to the column index 𝑘𝑘 of the 

separable dictionary 𝜱𝜱. 

Proposition B.1: Let 𝑘𝑘 be the column index of the separable dictionary column vector 𝜱𝜱𝑘𝑘 and 𝐼𝐼𝑛𝑛 
be the dimension of the columns of each dictionary matrix 𝜱𝜱(𝑛𝑛);  𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁}. In (B. 1), the 
corresponding column indices  𝑖𝑖𝑛𝑛;  𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁} of each dictionary matrix 𝜙𝜙𝑖𝑖𝑛𝑛

(𝑛𝑛) is given by, 

𝑖𝑖𝑛𝑛 = �
𝑘𝑘

𝐼𝐼1 × … × 𝐼𝐼𝑛𝑛−1
− � �𝑖𝑖𝑝𝑝 − 1�  � 𝐼𝐼𝑞𝑞

𝑝𝑝−1

𝑞𝑞=𝑛𝑛;𝑞𝑞>0

𝑁𝑁

𝑝𝑝=𝑛𝑛+1;𝑝𝑝≤𝑁𝑁 

 � (B. 3) 

where ⌈∗⌉ indicate the ceiling function. For example, 
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𝑖𝑖1 = ⌈𝑘𝑘 − (𝑖𝑖𝑁𝑁 − 1)𝐼𝐼𝑁𝑁−1 × … .× 𝐼𝐼1 − ⋯ − (𝑖𝑖2 − 1)𝐼𝐼1⌉ 

⋮ 

𝑖𝑖𝑁𝑁−1 =  �
𝑘𝑘

𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−2
− (𝑖𝑖𝑁𝑁 − 1)𝐼𝐼𝑁𝑁−1� 

𝑖𝑖𝑁𝑁 = �
𝑘𝑘

𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−1
� 

Proof: We note that 𝑖𝑖𝑛𝑛 ; ∀ 𝑛𝑛 ∈ {1,2, … , 𝑁𝑁} are integers and 1 ≤ 𝑖𝑖𝑛𝑛 ≤  𝐼𝐼n  

From (B. 2), 

𝑘𝑘 = 𝑖𝑖1 + (𝑖𝑖2 − 1)𝐼𝐼1 + ⋯ + (𝑖𝑖𝑁𝑁 − 1)𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−1 (B. 4) 

Therefore,  

𝑖𝑖𝑁𝑁 − 1 =   
𝑘𝑘

𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−1���������
𝑆𝑆𝑁𝑁

−
𝑖𝑖1 + (𝑖𝑖2 − 1)𝐼𝐼1 + ⋯ + (𝑖𝑖𝑁𝑁−1 − 1)𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−2

𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−1�������������������������������
𝑓𝑓𝑁𝑁

 

𝑖𝑖𝑁𝑁  =  𝑆𝑆𝑁𝑁  +  (1 −  𝑓𝑓𝑁𝑁) (B. 5) 

Since 𝑖𝑖𝑛𝑛 ≤  𝐼𝐼n;   ∀ 𝑛𝑛 ∈ {1,2, … , 𝑁𝑁}, 

𝑓𝑓𝑁𝑁 ≤
𝐼𝐼1 + (𝐼𝐼2 − 1)𝐼𝐼1+. . . +(𝐼𝐼𝑁𝑁−1 − 1)𝐼𝐼1 ×. . .× 𝐼𝐼𝑁𝑁−2

𝐼𝐼1 ×. . .× 𝐼𝐼𝑁𝑁−1
= 1 (B. 6) 

Also since 1 ≤ 𝑖𝑖𝑛𝑛;   ∀ 𝑛𝑛 ∈ {1,2, … , 𝑁𝑁}, we have 

𝑓𝑓𝑁𝑁 =
1 + (1 − 1)𝐼𝐼1 + ⋯ + (1 − 1)𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−2

𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−1
> 0 (B. 7) 

Therefore, from (B. 6) and (B. 7), 

0 < 𝑓𝑓𝑁𝑁 ≤ 1 (B. 8) 

0 ≤ 1 − 𝑓𝑓𝑁𝑁 < 1 (B. 9) 

Since 𝑖𝑖𝑁𝑁 ∈ ℤ, then from  (B. 5) and (B. 9) we have 

𝑖𝑖𝑁𝑁 = ⌈𝑖𝑖𝑁𝑁 − (1 − 𝑓𝑓𝑁𝑁)⌉ = ⌈𝑆𝑆𝑁𝑁⌉ 
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𝑖𝑖𝑁𝑁 = �
𝑘𝑘

𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−1
� (B. 10) 

where ⌈∗⌉ indicate the ceiling function.  

Similarly, 

𝑖𝑖𝑁𝑁−1 − 1 =
𝑘𝑘

𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−2
− (𝑖𝑖𝑁𝑁 − 1)𝐼𝐼𝑁𝑁−1�������������������

𝑆𝑆𝑁𝑁−1

−
𝑖𝑖1 + (𝑖𝑖2 − 1)𝐼𝐼1 + ⋯ + (𝑖𝑖𝑁𝑁−1 − 1)𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−2

𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−2�������������������������������
𝑓𝑓𝑁𝑁−1

 

𝑖𝑖𝑁𝑁−1 = 𝑠𝑠𝑁𝑁−1 + (1 − 𝑓𝑓𝑁𝑁−1) 

0 ≤ (1 − 𝑓𝑓𝑁𝑁−1) <  1 

Since 𝑖𝑖𝑁𝑁−1 ∈ ℤ and 0 ≤ (1 − 𝑓𝑓𝑁𝑁−1) < 1 , 

𝑖𝑖𝑁𝑁−1  =  ⌈𝑖𝑖𝑁𝑁−1 − (1 − 𝑓𝑓𝑁𝑁−1)⌉ = ⌈𝑆𝑆𝑁𝑁−1⌉ 

𝑖𝑖𝑁𝑁−1 = �
𝑘𝑘

𝐼𝐼1 × … × 𝐼𝐼𝑁𝑁−2
− (𝑖𝑖𝑁𝑁 − 1)𝐼𝐼𝑁𝑁−1� 

Similarly, for ∀ 𝑛𝑛 ∈ {1,2, … , 𝑁𝑁}, 

0 ≤ (1 − 𝑓𝑓𝑛𝑛) <  1 

𝑖𝑖𝑛𝑛  =  ⌈𝑖𝑖𝑛𝑛 − (1 − 𝑓𝑓𝑛𝑛)⌉ = ⌈𝑆𝑆𝑛𝑛⌉ 

𝑖𝑖𝑛𝑛 = �
𝑘𝑘

𝐼𝐼1 × … × 𝐼𝐼𝑛𝑛−1
− � �𝑖𝑖𝑝𝑝 − 1�  � 𝐼𝐼𝑞𝑞

𝑝𝑝−1

𝑞𝑞=𝑛𝑛;𝑞𝑞>0

𝑁𝑁

𝑝𝑝=𝑛𝑛+1;𝑝𝑝≤𝑁𝑁 

 �  

 

B.2 Normalization of the tensor 𝒴𝒴 ∈ ℝ𝐽𝐽1×…×𝐽𝐽𝑛𝑛×…×𝐽𝐽𝑁𝑁 

 

Compute 

𝒴𝒴�  =  
𝒴𝒴

‖𝒴𝒴‖2
(𝐴𝐴. 11) 
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where, ‖𝒴𝒴‖2   =  �〈𝒴𝒴, 𝒴𝒴〉  =  �∑ . . .𝐽𝐽1
𝑗𝑗1

∑ 𝑦𝑦𝑗𝑗1𝑗𝑗2...𝑗𝑗𝑁𝑁
2𝐽𝐽𝑁𝑁

𝑗𝑗𝑁𝑁
�

1
2 

B.3 Normalization of columns of the separable dictionary 𝜱𝜱 to have a unit 

𝐿𝐿2 norm 

The column 𝜱𝜱𝑘𝑘 in (B. 1), is the 𝑘𝑘𝑡𝑡ℎ column of the separable dictionary 𝜱𝜱. Normalization of each 

column vector 𝜱𝜱𝑘𝑘 of the separable dictionary is given by, 

 𝜱𝜱� 𝑘𝑘 =  
𝜱𝜱𝑘𝑘

‖𝜱𝜱𝑘𝑘‖2
(B. 12) 

Proposition B.2: Normalization of the column 𝜱𝜱𝑘𝑘 in (B. 1) is given by the Kronecker product of 

the normalization of the dictionary columns  𝝓𝝓𝑖𝑖𝑁𝑁

(𝑁𝑁), 𝝓𝝓𝑖𝑖𝑁𝑁−1

(𝑁𝑁−1), … , 𝝓𝝓𝑖𝑖1

(1) 

𝜱𝜱� 𝑘𝑘 = 𝝓𝝓� 𝑖𝑖𝑁𝑁

(𝑁𝑁) ⊗ 𝝓𝝓� 𝑖𝑖𝑁𝑁−1

(𝑁𝑁−1) ⊗ … ⊗ 𝝓𝝓� 𝑖𝑖1

(1) (B. 13) 

Proof: The L2 norm of the Kronecker product of vectors is the product of L2 norms of these vectors 

[137], i.e.,  

‖𝜱𝜱𝑘𝑘‖2
2 = �𝝓𝝓𝑖𝑖𝑁𝑁

(𝑁𝑁) ⊗ 𝝓𝝓𝑖𝑖𝑁𝑁−1

(𝑁𝑁−1) ⊗. . .⊗ 𝝓𝝓𝑖𝑖1

(1)� =  �𝝓𝝓𝑖𝑖𝑁𝑁

(𝑁𝑁)�
2

2
× �𝝓𝝓𝑖𝑖𝑁𝑁−1

(𝑁𝑁−1)�
2

2
×. . .× �𝝓𝝓𝑖𝑖1

(1)�
2

2
(B. 14) 

From (B. 12) and (B. 13), 

𝜱𝜱� 𝑘𝑘 =  
𝜱𝜱𝑘𝑘

‖𝜱𝜱𝑘𝑘‖2
 =   

𝝓𝝓𝑖𝑖𝑁𝑁

(𝑁𝑁)

�𝝓𝝓𝑖𝑖𝑁𝑁

(𝑁𝑁)�
2

2 ⊗. . .⊗
𝝓𝝓𝑖𝑖1

(1)

�𝝓𝝓𝑖𝑖1

(1)�
2

2 (B. 15) 

Therefore, 

𝜱𝜱� 𝑘𝑘  =   𝝓𝝓� 𝑖𝑖𝑁𝑁

(𝑁𝑁) ⊗ 𝝓𝝓� 𝑖𝑖𝑁𝑁−1

(𝑁𝑁−1) ⊗. . .⊗ 𝝓𝝓� 𝑖𝑖1

(1) 

B.4 Obtaining the initial correlation tensor 𝒞𝒞1 

In T-LARS, the initial correlation vector 𝒄𝒄1 is obtained by taking the correlation between all 

columns of 𝜱𝜱 and the vectorization of the tensor 𝒴𝒴,  
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𝒄𝒄1 =  �𝜱𝜱(𝑁𝑁)𝑇𝑇
⊗ 𝜱𝜱(𝑁𝑁−1)𝑇𝑇

⊗ ⋯ ⊗ 𝜱𝜱(1)𝑇𝑇
�  vec(𝒴𝒴) (B. 16) 

We could also represent (B. 16) as a multilinear transformation of the tensor 𝒴𝒴 [45], 

𝒞𝒞1  =  𝒴𝒴 ×1 𝜱𝜱(1)𝑇𝑇
×2. . .×𝑛𝑛 𝜱𝜱(𝑛𝑛)𝑇𝑇

×𝑛𝑛+1. . .×𝑁𝑁 𝜱𝜱(𝑁𝑁)𝑇𝑇 (B. 17) 

The tensor 𝒞𝒞1 is the correlation between the tensor 𝒴𝒴 and the mode-n dictionary matrices 𝜱𝜱(𝑛𝑛); 𝑛𝑛 ∈

{1, ⋯ , 𝑁𝑁}. The tensor 𝒞𝒞1 could be calculated efficiently as 𝑁𝑁 mode-n products. 

B.5 Creating a Gram matrix for each mode-n dictionary 𝜱𝜱(𝑛𝑛) 

Gram matrices are used in several steps of T-LARS. For a large separable dictionary, 𝜱𝜱,  its Gram 

matrix would be large as well. Therefore, explicitly building this Gram matrix and using it in 

computations could be very inefficient for large problems. Therefore, we developed T-LARS to 

use Gram matrices of mode-n dictionary matrices, 𝜱𝜱(1), 𝜱𝜱(2), … ,  𝜱𝜱(𝑁𝑁), defined as 𝑮𝑮(𝑛𝑛);  𝑛𝑛 ∈

{1, ⋯ , 𝑁𝑁}, instead of the Gram matrix  𝜱𝜱𝑇𝑇𝜱𝜱,s 

𝜱𝜱𝑇𝑇𝜱𝜱 = 𝜱𝜱(𝑁𝑁)𝑇𝑇
𝜱𝜱(𝑁𝑁) ⊗ ⋯ ⊗ 𝜱𝜱(𝑛𝑛)𝑇𝑇

𝜱𝜱(𝑛𝑛) ⊗ ⋯ ⊗ 𝜱𝜱(1)𝑇𝑇
𝜱𝜱(1) (B. 18) 

We can obtain, Gram matrix 𝑮𝑮(𝑛𝑛) for each mode-n dictionary 𝜱𝜱(𝑛𝑛) by, 

𝑮𝑮(𝑛𝑛) =  𝜱𝜱(𝑛𝑛)𝑇𝑇
𝜱𝜱(𝑛𝑛) (B. 19) 

The total sizes of the Gram matrices 𝑮𝑮(𝑛𝑛);  𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁} would be much smaller than the Gram 

matrix 𝑮𝑮 = 𝜱𝜱𝑇𝑇𝜱𝜱, thereby allowing faster calculations and requiring less computer storage.  
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Appendix C  

C.1 Obtain the inverse of the Gram matrix of the active columns of the 

dictionary in WT-LARS 

Let the column 𝑘𝑘𝑎𝑎 ∈ 𝐼𝐼 be the new column added to the active matrix. Given 𝑮𝑮𝑡𝑡−1
−1  , the inverse of 

the Gram matrix 𝑮𝑮𝑡𝑡
−1  could be calculated using the Schur complement inversion formula for a 

symmetric block matrix [77]–[79], 

𝑮𝑮𝑡𝑡
−1  = �𝑭𝑭11

−1 𝛼𝛼𝒃𝒃
𝛼𝛼𝒃𝒃T 𝛼𝛼

� (B. 20) 

where, 𝑭𝑭11
−1 =  𝑮𝑮𝑡𝑡−1

−1 +  𝛼𝛼𝒃𝒃𝒃𝒃T,  𝒃𝒃 =  −𝑮𝑮𝑡𝑡−1
−1 𝐠𝐠a and 𝛼𝛼 = 1 / �g(𝑘𝑘𝑎𝑎,𝑘𝑘𝑎𝑎) +   𝐠𝐠a

𝑇𝑇𝒃𝒃�  and the column 

vector [𝐠𝐠a   g(𝑘𝑘𝑎𝑎,𝑘𝑘𝑎𝑎)]𝑇𝑇  is given by, 

[𝐠𝐠a   g(𝑘𝑘𝑎𝑎,𝑘𝑘𝑎𝑎)]𝑇𝑇  =  𝜱𝜱𝑊𝑊𝐼𝐼𝑡𝑡
𝑇𝑇 𝝓𝝓𝑘𝑘𝑎𝑎 

Where 𝝓𝝓𝑘𝑘𝑎𝑎 is the 𝑘𝑘th column of  𝜱𝜱𝑊𝑊 and g(𝑘𝑘𝑎𝑎,𝑘𝑘𝑎𝑎) is the last element of the vector 𝜱𝜱𝑊𝑊𝐼𝐼𝑡𝑡
𝑇𝑇 𝝓𝝓𝑘𝑘𝑎𝑎 .  

Since 𝜱𝜱𝑊𝑊 = 𝑺𝑺𝑺𝑺𝑺𝑺, we can easily calculate 𝐠𝐠a and g(𝑘𝑘𝑎𝑎,𝑘𝑘𝑎𝑎) as, [𝐠𝐠a   g(𝑘𝑘𝑎𝑎,𝑘𝑘𝑎𝑎)]𝑇𝑇 =

 𝑸𝑸𝑘𝑘𝑎𝑎,𝑘𝑘𝑎𝑎𝑸𝑸𝐼𝐼𝑡𝑡
𝑇𝑇 𝜱𝜱𝐼𝐼𝑡𝑡

𝑇𝑇 𝑾𝑾𝝓𝝓𝑘𝑘, where 𝝓𝝓𝑘𝑘 is the 𝑘𝑘th column of 𝜱𝜱. 

Please refer to T-LARS [18] in chapter 3 for updating the inverse of the Gram matrix 𝑮𝑮𝑡𝑡−1
−1  to 

obtain 𝑮𝑮𝑡𝑡
−1  after removing a column 𝑘𝑘𝑎𝑎 ∈ 𝐼𝐼, which is identical in both WT-LARS and T-LARS. 
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Appendix D  

D.1 Obtain the inverse of the Gram matrix of the active columns of the 

dictionary in TD-LARS 

Let the column 𝑘𝑘𝑎𝑎 ∈ 𝐼𝐼 be the new column added to the active matrix. Given 𝑮𝑮𝑡𝑡−1
−1  , the inverse of 

the Gram matrix 𝑮𝑮𝑡𝑡
−1  could be calculated using the Schur complement inversion formula for a 

symmetric block matrix [77]–[79], 

𝑮𝑮𝑡𝑡
−1  = �𝑭𝑭11

−1 𝛼𝛼𝒃𝒃
𝛼𝛼𝒃𝒃T 𝛼𝛼

� (B. 21) 

where, 𝑭𝑭11
−1 =  𝑮𝑮𝑡𝑡−1

−1 +  𝛼𝛼𝒃𝒃𝒃𝒃T,  𝒃𝒃 =  −𝑮𝑮𝑡𝑡−1
−1 𝐠𝐠a and 𝛼𝛼 = 1 / �g(𝑘𝑘𝑎𝑎,𝑘𝑘𝑎𝑎) +   𝐠𝐠a

𝑇𝑇𝒃𝒃�  and the column 

vector [𝐠𝐠a   g(𝑘𝑘𝑎𝑎,𝑘𝑘𝑎𝑎)]𝑇𝑇  is given by, 

[𝐠𝐠a   g(𝑘𝑘𝑎𝑎,𝑘𝑘𝑎𝑎)]𝑇𝑇  =  𝜱𝜱𝑊𝑊𝐼𝐼𝑡𝑡
𝑇𝑇 𝝓𝝓𝑘𝑘𝑎𝑎 

Where 𝝓𝝓𝑘𝑘𝑎𝑎 is the 𝑘𝑘th column of  𝜱𝜱𝑊𝑊 and g(𝑘𝑘𝑎𝑎,𝑘𝑘𝑎𝑎) is the last element of the vector 𝜱𝜱𝑊𝑊𝐼𝐼𝑡𝑡
𝑇𝑇 𝝓𝝓𝑘𝑘𝑎𝑎 .  

Since 𝜱𝜱𝑊𝑊 = 𝑺𝑺𝑺𝑺𝑺𝑺, we can easily calculate 𝐠𝐠a and g(𝑘𝑘𝑎𝑎,𝑘𝑘𝑎𝑎) as, [𝐠𝐠a   g(𝑘𝑘𝑎𝑎,𝑘𝑘𝑎𝑎)]𝑇𝑇 =

 𝑸𝑸𝑘𝑘𝑎𝑎,𝑘𝑘𝑎𝑎𝑸𝑸𝐼𝐼𝑡𝑡
𝑇𝑇 𝜱𝜱𝐼𝐼𝑡𝑡

𝑇𝑇 𝑾𝑾𝝓𝝓𝑘𝑘, where 𝝓𝝓𝑘𝑘 is the 𝑘𝑘th column of 𝜱𝜱. 

Please refer to T-LARS [18] in chapter 3 for updating the inverse of the Gram matrix 𝑮𝑮𝑡𝑡−1
−1  to 

obtain 𝑮𝑮𝑡𝑡
−1  after removing a column 𝑘𝑘𝑎𝑎 ∈ 𝐼𝐼, which is identical in both TD-LARS and T-LARS. 
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Appendix E  

E.1 Obtain The Inverse Of The Gram Matrix Of The Active Columns Of 

The Dictionary in T-NET 

Let the column 𝑘𝑘𝑎𝑎 ∈ 𝐼𝐼 be the new column added to the active matrix. Given 𝑮𝑮𝑡𝑡−1
−1  , the inverse of 

the Gram matrix 𝑮𝑮𝑡𝑡
−1  could be calculated using the Schur complement inversion formula for a 

symmetric block matrix [77]–[79], 

𝑮𝑮𝑡𝑡
−1  = �𝑭𝑭11

−1 𝛼𝛼𝒃𝒃
𝛼𝛼𝒃𝒃T 𝛼𝛼

� (B. 22) 

where, 𝑭𝑭11
−1 =  𝑮𝑮𝑡𝑡−1

−1 +  𝛼𝛼𝒃𝒃𝒃𝒃T,  𝒃𝒃 =  − 1
1+𝜈𝜈2

𝑮𝑮𝑡𝑡−1
−1 𝐠𝐠a and 𝛼𝛼 = (1 + 𝜈𝜈2) / �g(𝑘𝑘𝑎𝑎,𝑘𝑘𝑎𝑎) + 𝜈𝜈2 +  𝐠𝐠a

𝑇𝑇𝒃𝒃�  

and the column vector 𝐠𝐠a
𝑇𝑇 is given by, 

𝐠𝐠a
𝑇𝑇  =  [g(𝑘𝑘1,𝑘𝑘𝑎𝑎) ⋯  g(𝑘𝑘𝑛𝑛,𝑘𝑘𝑎𝑎) ⋯ g(𝑘𝑘𝑎𝑎−1,𝑘𝑘𝑎𝑎)]1×𝑎𝑎−1 

The elements, g(𝑘𝑘𝑛𝑛,𝑘𝑘𝑎𝑎) of 𝐠𝐠a
𝑇𝑇 are elements of the gram matrix, 𝑮𝑮𝑡𝑡, that are obtained using mode-n 

gram matrices 𝑮𝑮(𝑛𝑛) = 𝜱𝜱(𝑛𝑛)𝑇𝑇
𝜱𝜱(𝑛𝑛); 𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁}. 

g(𝑘𝑘𝑛𝑛, 𝑘𝑘𝑎𝑎)  = g(𝑁𝑁)�𝑘𝑘𝑛𝑛𝑁𝑁 , 𝑘𝑘𝑎𝑎𝑁𝑁� ⊗ … ⊗ g(1)�𝑘𝑘𝑛𝑛1, 𝑘𝑘𝑎𝑎1� 

where, 𝑘𝑘𝑛𝑛𝑁𝑁 ⋯ 𝑘𝑘𝑛𝑛1 are the tensor indices corresponds to the column index 𝑘𝑘𝑛𝑛 and 𝑘𝑘𝑎𝑎𝑁𝑁 ⋯ 𝑘𝑘𝑎𝑎1are 

the tensor indices corresponds to the column index 𝑘𝑘𝑎𝑎 [18]. 

Please refer to T-LARS [18] in chapter 3 for updating the inverse of the Gram matrix 𝑮𝑮𝑡𝑡−1
−1  to 

obtain 𝑮𝑮𝑡𝑡
−1  after removing a column 𝑘𝑘𝑎𝑎 ∈ 𝐼𝐼, which is identical in both T-NET and T-LARS. 
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Appendix F  

F.1 Proof of Proposition 7.1 

Proposition 7.1: Let 𝑓𝑓(𝜱𝜱) be a continuously differentiable function and 𝜱𝜱 ∈ ℝ𝑃𝑃×𝑄𝑄 be a 

Kronecker matrix, where 𝜱𝜱 = 𝜱𝜱(𝑁𝑁) ⊗ ⋯ ⊗ 𝜱𝜱(1) and each mode-n matrix 𝜱𝜱(𝑛𝑛) ∈ ℝ𝐼𝐼𝑛𝑛×𝐽𝐽𝑛𝑛; ∀ 𝑛𝑛 ∈

{1, ⋯ , 𝑁𝑁}. Therefore, the gradient 𝛻𝛻𝜱𝜱(𝑛𝑛)𝑓𝑓(𝜱𝜱) ; ∀𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁} is given by, 

 �𝛻𝛻𝜱𝜱(𝑛𝑛)𝑓𝑓(𝜱𝜱)�
𝑖𝑖,𝑗𝑗

= 𝑇𝑇𝑇𝑇 ��𝛻𝛻𝜱𝜱𝑓𝑓(𝜱𝜱)�
𝑇𝑇 𝜕𝜕𝜱𝜱

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛)� (B. 23) 

Proof: 

 �𝛻𝛻𝜱𝜱(𝑛𝑛)𝑓𝑓(𝜱𝜱)�
𝑖𝑖,𝑗𝑗

=  
𝜕𝜕𝑓𝑓(𝜱𝜱)

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛) (B. 24) 

Let us apply the chain rule [138]–[140] to (B. 24), 

𝜕𝜕𝑓𝑓(𝜱𝜱)

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛) = � �

𝜕𝜕𝑓𝑓(𝜱𝜱)
𝜕𝜕𝜱𝜱𝑝𝑝,𝑞𝑞

𝜕𝜕𝜱𝜱𝑝𝑝,𝑞𝑞

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛)

𝑄𝑄

𝑞𝑞=1

𝑃𝑃

𝑝𝑝=1

 (B. 25) 

Where 𝑃𝑃 = ∏ 𝐼𝐼n
𝑁𝑁
𝑛𝑛=1  and 𝑄𝑄 = ∏ 𝐽𝐽n

𝑁𝑁
𝑛𝑛=1 . 

Therefore, 

�𝛻𝛻𝜱𝜱(𝑛𝑛)𝑓𝑓(𝜱𝜱)�
𝑖𝑖,𝑗𝑗

= 𝑇𝑇𝑇𝑇 ��𝛻𝛻𝜱𝜱𝑓𝑓(𝜱𝜱)�
𝑇𝑇 𝜕𝜕𝜱𝜱

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛)�  (B. 26) 

F.2 Proof of Proposition 7.2 

Proposition 7.2: Let 𝜱𝜱 ∈ ℝ𝑃𝑃×𝑄𝑄 be a Kronecker matrix, where 𝜱𝜱 = 𝜱𝜱(𝑁𝑁) ⊗ ⋯ ⊗ 𝜱𝜱(1), 𝜱𝜱(𝑛𝑛) ∈

ℝ𝐼𝐼𝑛𝑛×𝐽𝐽𝑛𝑛 ; ∀  𝑛𝑛 ∈ {1, ⋯ , 𝑁𝑁}, and ‖𝜱𝜱‖2 is the 𝐿𝐿2 norm of 𝜱𝜱. Therefore, the gradient 𝛻𝛻𝜱𝜱(𝑛𝑛)‖𝜱𝜱‖2 is 

given by, 

 𝛻𝛻𝜱𝜱(𝑛𝑛)‖𝜱𝜱‖2 = 2𝛾𝛾𝜱𝜱(𝑛𝑛)𝜱𝜱(𝑛𝑛) (B. 27) 

Where 
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𝛾𝛾𝜱𝜱(𝑛𝑛) = � 𝑇𝑇𝑇𝑇 �𝜱𝜱(𝑚𝑚)𝑇𝑇
𝜱𝜱(𝑚𝑚)�

𝑁𝑁

𝑚𝑚=1,𝑚𝑚≠𝑛𝑛

 

Proof: 

Using Proposition 7.1, we could write, 

�𝛻𝛻𝜱𝜱(𝑛𝑛)‖𝜱𝜱‖2�
𝑖𝑖,𝑗𝑗

= 𝑇𝑇𝑇𝑇 ��
𝜕𝜕‖𝜱𝜱‖2

𝜕𝜕𝜱𝜱
�

𝑇𝑇 𝜕𝜕𝜱𝜱

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛)�  (B. 28) 

⟹  �𝛻𝛻𝜱𝜱(𝑛𝑛)‖𝜱𝜱‖2�
𝑖𝑖,𝑗𝑗

= 2𝑇𝑇𝑇𝑇 �𝜱𝜱𝑇𝑇 𝜕𝜕𝜱𝜱

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛)� (B. 29) 

However, 𝜱𝜱 = 𝜱𝜱(𝑁𝑁) ⊗ ⋯ ⊗ 𝜱𝜱(1) and, 

 

𝜕𝜕𝜱𝜱

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛) =  𝜱𝜱(𝑁𝑁) ⊗ ⋯ ⊗

𝜕𝜕𝜱𝜱(𝑛𝑛)

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛) ⊗ ⋯ ⊗ 𝜱𝜱(1) (B. 30) 

 

Since Tr(A ⊗ B) = Tr(A)Tr(B) 

 

 �𝛻𝛻𝜱𝜱(𝑛𝑛)‖𝜱𝜱‖2�
𝑖𝑖,𝑗𝑗

                                                                             

= 2 � � 𝑇𝑇𝑇𝑇 �𝜱𝜱(𝑚𝑚)𝑇𝑇
𝜱𝜱(𝑚𝑚)�

𝑁𝑁

𝑚𝑚=1,𝑚𝑚≠𝑛𝑛

� 𝑇𝑇𝑇𝑇 �𝜱𝜱(𝑛𝑛)𝑇𝑇 𝜕𝜕𝜱𝜱(𝑛𝑛)

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛)� (B. 31)

 

However, 

 𝑇𝑇𝑇𝑇 �𝜱𝜱(𝑛𝑛)𝑇𝑇 𝜕𝜕𝜱𝜱(𝑛𝑛)

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛)� = 𝜱𝜱𝑖𝑖,𝑗𝑗

(𝑛𝑛) (B. 32) 

Therefore, 

𝛻𝛻𝜱𝜱(𝑛𝑛)‖𝜱𝜱‖2 = 2𝛾𝛾𝜱𝜱(𝑛𝑛)𝜱𝜱(𝑛𝑛) (B. 33) 
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Where 

𝛾𝛾𝜱𝜱(𝑛𝑛) = � 𝑇𝑇𝑇𝑇 �𝜱𝜱(𝑚𝑚)𝑇𝑇
𝜱𝜱(𝑚𝑚)�

𝑁𝑁

𝑚𝑚=1,𝑚𝑚≠𝑛𝑛

 

F.3 Proof of Proposition 7.3 

Proposition 7.3: Let 𝑓𝑓(𝒳𝒳, 𝒴𝒴, 𝜱𝜱) be a function of tensor 𝒳𝒳 ∈ ℝ𝐽𝐽1×…×𝐽𝐽𝑁𝑁, tensor 𝒴𝒴 ∈ ℝ𝐼𝐼1×…×𝐼𝐼𝑁𝑁and 

a Kronecker matrix 𝜱𝜱 ∈ ℝ𝑃𝑃×𝑄𝑄, where 𝜱𝜱 = 𝜱𝜱(𝑁𝑁) ⊗ ⋯ ⊗ 𝜱𝜱(1) and 𝜱𝜱(𝑛𝑛) ∈ ℝ𝐼𝐼𝑛𝑛×𝐽𝐽𝑛𝑛;  ∀ 𝑛𝑛 ∈

{1, ⋯ , 𝑁𝑁}. If 

𝜕𝜕𝜕𝜕

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛) = 𝑇𝑇𝑇𝑇 �vec(𝒴𝒴)𝑇𝑇 �

𝜕𝜕𝜱𝜱

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛) vec(𝒳𝒳)��  (B. 34) 

Then 𝜕𝜕𝜕𝜕
𝜕𝜕𝜱𝜱(𝑛𝑛)  is given by, 

 
𝜕𝜕𝜕𝜕

𝜕𝜕𝜱𝜱(𝑛𝑛) = 𝒴𝒴(𝑛𝑛)�𝒳𝒳(𝑛𝑛)𝜳𝜳𝜱𝜱(𝑛𝑛)
𝑇𝑇 �

𝑇𝑇 (B. 35) 

Where, 𝜳𝜳𝜱𝜱(𝑛𝑛) = �𝜱𝜱(𝑁𝑁) ⊗ ⋯ ⊗ 𝜱𝜱(𝑛𝑛+1) ⊗ 𝜱𝜱(𝑛𝑛−1) ⊗ ⋯ ⊗ 𝜱𝜱(1)�,  𝒴𝒴(𝑛𝑛) is the mode-n 

matricization of the tensor 𝒴𝒴 and 𝒳𝒳(𝑛𝑛) is the mode-n matricization of the tensor 𝒳𝒳. 

 

Proof: 

We could rewrite (B. 34) as an inner product between the tensor 𝒴𝒴 and the multilinear 

transformation of the tensor 𝒳𝒳 as, 

 
𝜕𝜕𝜕𝜕

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛) = 〈𝒴𝒴, �𝒳𝒳 ×1 𝜱𝜱(1) ×2 ⋯ ×𝑛𝑛

𝜕𝜕𝜱𝜱(𝑛𝑛)

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛) ⋯ ×𝑁𝑁 𝜱𝜱(𝑁𝑁)�〉 (B. 36) 

Where 𝜕𝜕𝜱𝜱

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛) = 𝜱𝜱(𝑁𝑁) ⊗ ⋯ ⊗ 𝜕𝜕𝜱𝜱(𝑛𝑛)

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛) ⊗ ⋯ ⊗ 𝜱𝜱(1) 

Therefore, 
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𝜕𝜕𝜕𝜕

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛) = 〈𝒴𝒴(𝑛𝑛),

𝜕𝜕𝜱𝜱(𝑛𝑛)

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛) 𝒳𝒳(𝑛𝑛)𝜳𝜳𝜱𝜱(𝑛𝑛)

𝑇𝑇 〉  (B. 37) 

Where 𝒳𝒳(𝑛𝑛) and 𝒴𝒴(𝑛𝑛) are mode-n matricization of respective tensors and, 

 𝜳𝜳𝜱𝜱(𝑛𝑛) = �𝜱𝜱(𝑁𝑁) ⊗ ⋯ ⊗ 𝜱𝜱(𝑛𝑛+1) ⊗ 𝜱𝜱(𝑛𝑛−1) ⊗ ⋯ ⊗ 𝜱𝜱(1)� (𝐴𝐴. 38) 

The element �𝜕𝜕𝜱𝜱(𝑛𝑛)

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛)�

𝑖𝑖,𝑗𝑗

= 1 and 0 everywhere else in the gradient matrix �𝜕𝜕𝜱𝜱(𝑛𝑛)

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛)�. Therefore,   

 
𝜕𝜕𝜕𝜕

𝜕𝜕𝜱𝜱𝑖𝑖,𝑗𝑗
(𝑛𝑛) = 〈�𝒴𝒴(𝑛𝑛)�

𝑖𝑖,∗
, �𝒰𝒰(𝑛𝑛)

𝑇𝑇�
∗,𝑗𝑗

〉 (B. 39) 

Where �𝒴𝒴(𝑛𝑛)�
𝑖𝑖,∗

denote the 𝑖𝑖th row of the mode-n matrix 𝒴𝒴(𝑛𝑛), 𝒰𝒰(𝑛𝑛)  = 𝒳𝒳(𝑛𝑛)𝜳𝜳𝜱𝜱(𝑛𝑛)
𝑇𝑇 , and �𝒰𝒰(𝑛𝑛)

𝑇𝑇�
∗,𝑗𝑗

 

denotes the 𝑗𝑗th column of the transposed mode-n matrix 𝒰𝒰(𝑛𝑛)
𝑇𝑇.  

Therefore, 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜱𝜱(𝑛𝑛) =  𝒴𝒴(𝑛𝑛)𝒰𝒰(𝑛𝑛)

𝑇𝑇 = 𝒴𝒴(𝑛𝑛)�𝒳𝒳(𝑛𝑛)𝜳𝜳𝜱𝜱(𝑛𝑛)
𝑇𝑇 �

𝑇𝑇 (B. 40) 
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