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ABSTRACT

The provincial government of Manitoba is responsible for approximately 750
timber bridges, 225 to 250 of which are located on RTAC routes. These bridges have
been in service for over 50 years. During this time weathering effects have degraded the
timber stringers as well as the allowable truck traffic loads have increased. The
combination of these two effects raises some questions as to the current capacity of the
timber stringers used in the bridges. Since the cost of replacing the timber bridges with
current methods of rehabilitation is too high, approximately $42,750,000, an economical
rehabilitation method is necessary.

The use of glass fibre reinforced polymer (GFRP) bars as reinforcement has been
studied as a possible rehabilitation scheme for timber stringers. The approximate cost to
rehabilitate the timber bridges with the GFRP bars is approximately 15% of the bridge
replacement cost.

Salvaged Douglas fir, timber stringers (100 x 400 x 3400 mm) with dapped ends
were tested using flexural reinforcement only and flexural and shear reinforcement.
Previous studies in this area did not use dapped timber stringers but rather rectangular
sections and thus were not susceptible to dap failures. It was determined that the use of
just flexural reinforcement did not obtain the required strength increase of 30%, detailed
by Eden (2002). This was a result of dap and shear modes of failure dominating and thus
the flexural bars could not inhibit these forms of failure. The use of both flexural and
shear reinforcement is required to obtain the desired strength increase. By using both the

flexural and shear reinforcement a strength increase of 30 to 66% can be obtained.

ix



A model using the material properties of the flexural reinforcement and the timber
stringer was also developed in this thesis and was determined to give very good

correlation between the predicted and measured tensile stress results.



CHAPTER 1 INTRODUCTION

1.1 General

Hundreds of timber bridges throughout North America are approaching or have
surpassed their service lives. Since the construction of these bridges the allowable truck
loads have been increased several times. Thus, the timber bridges must not only be
restored to their original capacities but must also have their capacities increased to ensure
safe handling of today’s truck traffic. With the continued depletion of trees, lumber and
timbers are becoming more scarce and costly; it would be impractical to replace current
timber bridges with another timber bridge. The current grading standards are not as
stringent as they were when the bridges were first constructed. Current select structural
grades would have been graded as No.1 at the time of the original construction of the
bridges. The costs of building bridges using current designs employing such materials as
concrete and steel would be much too costly considering the shear volume of bridges
which are in need of repair or rehabilitation. The provincial government of Manitoba is
responsible for approximately 750 timber bridges, 225 to 250 of which are located on the
Roads and Transportation Association of Canada (RTAC) routes (Eden 2002). To
replace a timer bridge with current bridge construction methods such as multi-plateé and
corrugated pipes or pre-cast pre-cut concrete, it would cost approximately $1500 per
square meter of road surface (Eden 2002). If the standard road surface area of a bridge is
120 m® the estimated cost of the bridge replacement is $180,000. It would thus be

impractical to replace all the bridges on the RTAC routes due to the prohibitive cost of



$42,750,000. Thus a rehabilitation scheme is required to increase the capacity of the
bridges and extend their service lives beyond their current limits.

Previous research in this area has included the strengthening of bridge stringers
for flexure by using glass fibre reinforced polymer (GFRP) bars embedded in grooves in
the tension zone (Gentile et al. 2002). A shear strengthening scheme using dowel bars
perpendicular to the beam axis has also been investigated (Svecova and Eden 2004).
These processes have been proven to be effective rehabilitation schemes and very cost
competitive with other more traditional methods of rehabilitation or construction (Eden

2002).

1.2  Problem Definition

All previous research for strengthening timber bridge stringers with GFRP bars
have been on strictly rectangular cross-sections. It is unknown how a dapped timber
stringer reinforced with GFRP bars will perform. Since the majority of the timber
stringers used in bridge construction in Manitoba have dapped ends, it is necessary to
determine the expected capacity increase when the GFRP bar rehabilitation method is

used.

1.3 Objectives and Scope

The main objective of this study is to assess the strength of dapped timber

stringers (400 x 100 x 3400 mm) reinforced with GFRP bars in order to provide a 30%



increase in flexural and shear capacity. The test data will be used to formulate a design
equation to quantify the flexural strength increases that can be achieved.

Svecova and Eden (2004) state a 30% increase in the flexural and shear capacity
is required in order to support the current maximum legal truck loads allowed by
Transportation Association of Canada (TAC). The same strength increase was targeted
in this experimental program.

The experimental program will test only Douglas fir timber stringers under

monotonic, three point loading, and will use GFRP bars only for reinforcement.



CHAPTER 2 PREVIOUS RESEARCH

2.1 General

This chapter will briefly discuss FRP materials and their properties, timber, and
timber strengthening systems including the use of FRP materials, and analysis of timber

beams.

2.2 Fibre-reinforced Polymer Reinforcement

FRP materials consist of two primary components, the fibres and matrix (or
resin). The fibres and the matrix have very different properties and as such the final FRP
material can be tailored to best fit the end use requirements. Figure 2.1 displays the
stress-strain relationships for the fibres, matrix and the final product of the two, FRP

material.

stress

[MPa] A
1800-4900  emfeme
fibres
60D-3000 T FRP e
/”
/”
,/’ matrix
'
" rd
84130 _ | .
’/
strain
0.4-4.8 % >10%

Figure 2.1~ Typical Stress-Strain Relationship for the Fibres, Matrix, and FRP (ISIS Canada 2001)



As seen in Figure 2.1 the fibres are of very high tensile strength but brittle and the matrix
is of low tensile strength but is capable of reaching very high strain values. The stress-
strain relationship of the final product lies between the relationship of the two
constituents, and the final stiffness depends on the amount and type of fibre used.

There are many different kinds of fibres available for use, such as, aramid,
carbon, and glass. The performance of the fibres is affected by length, cross-sectional
shape and chemical composition. Table 2.1 gives some of the typical mechanical

propetties of individual fibres.

Table 2.1 — Typical Mechanical Properties of Fibres (ISIS Canada 2001)

. Coefficient of
Tensile Modulus of . .
. .. Elongation Thermal Poisson’s
Fibre Type Strength Elasticity (%) Expansion Ratio
(MPa) (GPa) (x10°)
Carbon
High Strength 3500 200-240 1.3-1.8 (-1.2) to (-0.1)
P i -0.2
an High 2500-4000 350-650 0.4-0.8 (@) 7 t0 12
Modulus (%ip7)
Ordinary 780-1000 38-40 2.1-2.5 . :
Pitch ( 1'6(2;0 ()0‘9) N/A
i fi
High 30003500  400-800 0.4-1.5 P
Modulus
Aramid
Kevlar 29 3620 82.7 4.4 N/A
Kevlar 49 2800 130 2.3 2.0 (o), 59
(OLfmT)
Kevlar 129 4210 (est.) 110 (est.) - N/A 0.35
Kevlar 149 3450 172-179 1.9 N/A )
Twaron 2800 130 23 (-2.0) (o),
59 (cugpr)
Technora 3500 74 4.6 N/A
Glass
E-Glass 3500-3600 74-75 4.8 5.0 0.2
S-Glass 4900 87 5.6 2.9 0.22
Alkali Resistant Glass 1800-3500 70-76 2.0-3.0 N/A N/A




From Table 2.1, glass fibres that will be used in this investigation can obtain a tensile
strength of 1800-4900 MPa with a modulus of elasticity (MOE) ranging from 70 to 87
GPa. The glass fibres have small thermal expansion coefficients and thus changes in
temperature have little effect on the fibres, but may introduce residual stresses in the
matrix.

Another component of FRP is the matrix, or resin. The physical and thermal
properties of the matrix significantly affect the final product and must be chosen
carefully. The function of the matrix is to coat the fibres, protect the fibres from
mechanical abrasion, transfer stresses between the fibres, transfer inter-laminar and in-
plane shear in the composite, and laterally support the fibres against buckling when
subjected to compressive loads. There are two types of resins, thermosetting and
thermoplastic.

Thermosetting polymers are low molecular weight liquids with very low
viscosity, and their molecules are joined together by chemical cross-links. They form a
rigid three-dimensional structure that once set, cannot be reshaped by applying heat or
pressure. However these resins obtain relatively low strain to failure, resulting in low

impact strength. Table 2.2 displays typical properties of thermosetting resins.

Table 2.2 — Typical Properties of Thermosetting Resins (ISIS Canada 2001)

Resin Specific Tensile Tensile Cure Shrinkage
Gravity Strength (MPa) Modulus (Gpa) (%)
Epoxy 1.20-1.30 55.00-130.00 2.75-4.10 1.00-5.00
Polyester 1.10-1.40 34.50-103.50 2.10-3.45 5.00-12.00
Vinyl Ester 1.12-1.32 73.00-81.00 3.00-3.35 5.40-10.30




Thermoplastic matrix polymers are made from molecules, which are linear in
structural form. They are held in place by weak secondary bonds and as such can be
destroyed by heat or pressure. Therefore, thermoplastic resins can be reshaped with the
addition of heat or pressure but their mechanical properties degrade with each reshaping
event. Most of the FRP bars used in civil engineering applications are made from
thermosetting matrices.

FRP reinforcing bars are manufactured from continuous fibres (such as carbon,
glass, or aramid) embedded with in a resin (thermosetting or thermoplastic). FRP
reinforcing bars can be manufactured in various diameters and with various surface
finishes such as spiral, straight, sanded-straight, sanded-braided, and deformed. The

mechanical properties of some of the commercially available FRP reinforcing bars are

presented in Table 2.3,

Table 2.3 — Mechanical Properties of Commercially Available FRP Reinforcing Bars (ISIS Canada

2001)
Trade Name Tensile Strength Modulus of Ultimate Tensile
(MPa) Elasticity (Gpa) Strain
Carbon Fibre
Leadline 2250 147.0 0.015
ISOROD ' 1596 111.1 0.023
NEFMAC 1200 100.0 0.012
Glass Fibre
ISOROD 690 42.0 0.018
C-Bar 770 37.0 0.021
NEFMAC 600 30.0 0.020




2.3 Timber

Timber is a natural material and as such has many growth abnormalities not found
in other manufactured building materials. Forest Products Laboratory (1999) has a vast
amount of information on wood and timber, and is the source of much of the information
gathered about the timber material in this section.

Timber is an orthotropic material, and as such, it has unique and independent
mechanical properties in the directions of three mutually perpendicular axes:
longitudinal, radial, and tangential. The strength properties of timber are different in all
directions such that the compressive strength parallel and perpendicular to the grain are
different. Some of the natural characteristics affecting the mechanical properties of
timber are specific gravity, knots, slope of the grain, and annual ring orientation.

The specific gravity of timber is approximately 1.5, regardless of timber species,
but dry timber of most species floats on water. Thus, the volume of a piece of wood is
occupied by cell cavities and pores. The specific gravity is. én excellent index of the
amount of wood substance contained in the timber, as long as the sample is clear, straight
grained, and free from defects.

A knot is the portion of the branch, which becomes integrated with the trunk or
bole of the tree. A knot creates a location of discontinuity in the timber and thus affects
the mechanical properties. A knot effect depends on the size, location, shape, and
soundness of the timber.

The grain creates planes of weakness and as such depending on its orientation

could cause premature failure.



Depending on the angle of loading, the orientation of the growth ring could lower

the mechanical properties of the timber by 40 to 60%.

Size Effects of Timber Beams

The primary size effects are the load configuration effect and the depth effect.
The width does not appear to affect the strength of a timber beam. The size effects were
recognized and quantified by Madsen and Buchanan (1986).

The load configuration effect includes the length of the beam and type of loading
used during testing. By applying the load configuration effect an equivalent length is
determined, which is a reduction in the actual length and represents the highly stressed
portion of the beam. This is the portion of the beam carrying most of the load and is
affected by how the load is applied. The equivalent length for a four-point bending
scheme is given by
B 1+%k1

2.1 L =
21] C 14k

where L. is the equivalent length, a is the distance between two concentrated loads, L is
the simply supported span of the beam and k; is the length effect factor and was
determined by Barret and Lau (1994) in an extensive testing program for the Canadian
Wood Council (CWC).

The equivalent length for a three point bending scheme is given by

[2.2] L= L.L
1+ k

where all terms are the same as in equation 2.1 with a = 0.

The effect of the beam depth on the strength of the timber beam is given by



[2.3] 5 _[dy)e
Xy d,

where x; and x;, are failure stresses of members with depths d; and d, respectively. k; is
the depth effect factor and can be determined in the same fashion as k;, using data
published by the Barrett and Lau (1994)

Using the newly found stressed length L., and the depth of the tested beams, the

adjusted modulus of rupture (MOR) value can be determined according to

1

1 1
3 P
[2.4] MOR, .., = MOR(%WQJ (iié“;—cy

where the MOR is experimentally determined, Lcwe and deye are the span and
characteristic depth of the reference beam as per Barrett and Lau (1994). Further, in
Equation 2.4 the values for d and I, are the depth and equivalent length of the

experimental beam. The size effect factors for length and depth in Equation 2.4 are

1 1

: Lewe a deye | :
given by - and ) respectively.

e

2.4 Timber Strengthening

Lantos (1970) completed an experimental program on glulam beams reinforced
with steel bars. A substantial reduction in the coefficient of variation was reported as
well as an increase in strength directly proportional to the amount of reinforcement used
in the beams. Round steel reinforcement having a diameter greater than 12.7 mm
displayed a tendency for early bond failure. The modulus of elasticity (MOE) also

increased in direct proportion to the amount of steel reinforcement provided. Glulam
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beams with lower elastic modulus experienced a greater increase in strength and stiffness
than glulam beams of higher elastic modulus. While significant increases in strength and
stiffness can be achieved, problems encountered with using metallic reinforcement to
reinforce wood beams are generally related to incompatibilities between the wood and
metal (Dagher and Lindyberg 2000). Such incompatibilities are the differences between
the hygral-expansion and stiffness of the wood and metallic-reinforcing material. These
differences can lead to separation or tension failure at or near the glue-line.

Johns and Lacroix (2000) used carbon fibre reinforced polymer (CFRP) and
GFRP sheets to reinforce timber beams. The CFRP was applied on the tension face of
the beam in two layers and GFRP sheets were applied in a U-shaped manner in two
layers. Specimens used in this study had cross-sectional dimensions of 39 x 89 mm (two-
by-four) and a test span of 1500 mm. This testing program found the strength of the
timber specimens to be higher than that predicted by simple transformed section analysis.
The weakest beams had a 40% gain in strength, but the stiffness and deflection results
were as predicted. The U-shaped GFRP reinforcement eliminated weaker failures often
present, even in higher strength boards.

Tingely (1996) reports that a 25-30% net economical saving is gained when
FiRP™ Panels are used in the manufacturing process of glue laminated wood beams.
The added strength allows lower grades of wood to be used as laminations while still
maintaining conventional stress grades.

Dagher and Abdel-Magid (1994) reinforced 38 x 89 x 1219 mm Hemlock beams
with CFRP sheets and aramid fibre reinforced polymer (AFRP) sheets with the trade

name Kevlar. The CFRP reinforced specimens exhibited a 9% increase in the flexural
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modulus and 31.5% increase in the average ultimate load. The initial mode of failure was
vertical cracking in the compression zone, which propagated down causing horizontal
cracking, delamination of the wood near the neutral axis and eventually sudden failure of
the CFRP sheet. The AFRP reinforced specimens demonstrated negligible increases in
the flexural modulus however noticeably increased the ductility of the beams. An 18%
increase in the load capacity of the beams was obtained.

Gentile et al. (2002) tested twenty-two, 100 x 300 x 4300 mm long, creosote
treated Douglas Fir timber beams in four-point bending. The beams had reinforcement
ratios of 0, 0.27, 0.41, and 0.82 percent. A 20 to 50% increase in flexural strength was
obtained and depended primarily on the quality of the timber beams. The higher the
quality of the plain timber beams the lower the strength increase. The strengthened
beams failed in a ductile manner and the reinforcement reduced the variability of the
timber beam strength.

Svecova and Eden (2004) tested timber beams reinforced with GFRP dowel bars
as shear reinfbrcement as well as flexural bars to control the tension failures observed in
some of the specimens. The beams used in that study were cut from full size timber
bridge stringers (200 x 600 x 10000 mm) to a size of 100 x 300 x 2000 mm. The test
span for these specimens was 1.8 m. After cutting the specimens, they had creosote
treatment on the top and bottom surfaces only. Through testing, a shear dowel spacing
equal to the depth of the section was determined to be the most cost effective and a33%
increase in the MOR was observed. Beams reinforced with both flexural and shear

reinforcement experienced 47 to 52% increase in the MOR.
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2.5 Timber Strength Models

To date there are two timber strength models of interest, one for determining the
strength of plain timber beams (Buchanan 1984) and the other for determining the

strength of GFRP reinforced timber beams (Gentile 2000).

2.5.1 Plain Timber Strength Model

Based on the work of Buchanan (1984) the following strength model for plain
timber beams was developed.
ASSUMPTIONS
* Plane sections before bending remain plain after bending
¢ Timber stressed in tension behaves in a linear elastic manner
* Timber stressed in compression behaves in a non-linear fashion as shown in Figure
2.3
* Stress-strain relationships are independent of the rate of loading
e Axial tension and compression strengths decrease as the length of the member
increases
* The maximum tension or compression stress attainable at a given cross section is
proportional to the area of that section subjected to the given stress
* Failure occurs at the cross section subjected to maximum moment
* The modulus of elasticity is constant along each member

* Torsional or out-of-plane deformations are not considered
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The strength model fits tested beams into a previously determined strength
distribution. The strength distribution used was determined by Barrett and Lau (1994)
after many tests were completed on various species of timber. The mean and 5t
percentile MOE values, as determined by Barrett and Lau (1994) for each species, are
used to place the beam in question in the normal probability distribution of the MOE.
The MOE results for timber beams fit a normal probability distribution very well (Barrett
and Lau 1994). Using equation 2.5, the 5 percentile and the mean MOE values
determined from Barrett and Lau (1994) can be used to calculate the standard deviation in
order to fit the experimental data to a normal distribution.

[2.5] P; = Mean—1.645(SD)
where: Ps is the 5% percentile MOE value (from the CWC)
Mean is the mean value of the MOE (from the CWC)

SD is the standard deviation (unknown)

Using the MOE of the beam in question and the standard deviation from Equation 2.5 the

standard normal random variable will be calculated using equation 2.6.

[2.6] E, =Mean+z(SD)
where: E,, is the MOE of the beam in question

Mean is the mean value of the MOE for a given species (from the CWQC)

SD is the standard deviation (determined by using equation 2.5)

z is the standard normal random variable (to be determined using equation 2.6)
With the known standard normal random variable, z, the table of standard normal curve
areas (Montgomery et. al. 1998) can be entered to determine the corresponding

probability. This probability is then used to place the beam in a Weibull strength
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distribution from which the initial ultimate tensile and compressive strengths of the beam
are determined (Gentile 2000). Equation 2.7 gives the equation for the three-parameter

Weibull distribution.

where: F(x) is the cumulative Weibull probability

7] F(x)=1- e[(

X strength (MPa)

X0 location (minimum strength) parameter
m scale parameter
k shape parameter

To determine the ultimate tensile strength (UTS) and the ultimate compressive
strength (UCS) the Weibull parameters determined by Barrett and Lau (1994) for a
particular species and grade of timber were used. The strength x, which represents the

UTS or UCS, depending on which parameters are chosen can then be back calculated.

Equations 2.1 through 2.4 can be used to make the necessary size adjustments. In
equation 2.4 the terms MOR wgjusiea and MOR are to be substituted with either UTS or
UCS, depending on which term is to be calculated. Once all the size effects have been

considered equation 2.7 can be used to back calculate the adjusted UTS and UCS.

To calculate the bending strength, Jm, of the timber beam, the stress-distribution
effect must now be considered. The bending strength will become a ratio of the ultimate
tension stress for pure tension and the tension stress obtained through bending. Figure
2.2 displays the tension stress distributions. According to Buchanan (1984), the two

parameter Weibull distribution may be used and gives sufficiently accurate answers and
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Figure 2.2 — Tension Stress Distribution (Buchanan 1984)

simplifies the calculation process. The two-parameter Weibull distribution takes the form

presented in equation 2.8.

()

where: x is the failure stress

28] F(x)=1 —e(

y is the depth co-ordinate

d’ is the depth of a single element within the cross section of the beam

m is the scale parameter

k3 is the shape parameter
ks will be referred to as the stress-distribution parameter. The integration only applies to
the portion of the cross section stressed in tension.
For the case where the specimen is stressed in pure tension, as in Figure 2.2(b), equation
2.8 becomes

=)

[29] F(x)=1 -e[
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For the case where the stresses vary linearly over the cross section due to bending, as

shown in Figure 2.2(c) and (d), the following may be used

[210] x=-2f, or x=rf, where r=-2
cd cd

and
[2.11] dy =cd(dr)

combining equations 2.8, 2.10, and 2.11, the two-parameter Weibull distribution takes the

following form.

[2.12] F(f,)=1~ e{if("f”)]

For loading conditions shown in Figure 2.2 (c) or (d) the extreme fibre stress at failure,
Jm»> can be calculated as a ratio of the axial tensile strength, fz,. This strength corresponds

to the adjusted UTS determined earlier. Thus equating and rearranging equations 2.8 and

2.12 gives

23] fy=—T— s,

(c rjr"erks

For the case where the neutral axis is within the member as shown in F igure 2.2(c) f,, can
be calculated if the integral in equation 2.13 is evaluated over a range of » values from 0

to 1 which corresponds to a range of y values of 0 to cd.

2.14] £, =("3c”]zf,,,

Equation 2.14 represents the tensile bending strength of a timber beam.
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To determine the type of failure to be expected, and thus the true value of the
parameter c, a strain compatibility analysis must be completed. For this analysis Figure
2.3 and 2.4 may be used. Figure 2.3 is an idealized stress strain relationship proposed by
Buchanan (1990). This relationship is used to determine the slope of the descending
branch (m) of the stress strain curve. F igure 2.4 is a variation of F igure 2.3 and is used

during the strain compatibility analysis process.

Stress

4

A - - 45 o

me

Figure 2.3 — Bi-linear Stress versus Strain Curve (Buchanan 1990)
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Figure 2.4 — Stress and Strain Distributions (Buchanan 1984)

For plain timber the inputs for the strain compatibility analysis are the width (b),
the depth (d), the MOE of the timber (Ew), the ultimate tensile and compressive stresses
(fru and fy), the slope of the descending branch (m) of the idealized stress-strain
relationship seen in Figure 2.3, and the stress distribution parameter (k;). Follow the
steps outlined previously in section 2.5.1 to calculate Jm assuming ¢=0.5. The factor c is
determined by taking the ratio of the distance from the tension face to the neutral axis and
the overall depth of the beam. For plain timber the neutral axis depth is assumed to be
the same as the centroidal axis depth until the compressive strains exceed the yield strain,
at which time the stress distribution becomes bi-linear and the neutral axis shifts towards
the tension face.

To begin the analysis, a tension strain is assumed and the tension stress (fy) is
calculated by multiplying the MOE of the timber beam by the assumed tension strain.

The calculated tension stress is compared with f,.. For values of £; smaller than Jms the

compressive stress f; can be calculated. The value of the compressive stress is compared
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to feu, and the curvature of the member is calculated if Jeis less than f,,. If £, is larger than
Jeu the value of ¢ must be decreased. The process just described must be repeated with
the new value of ¢. In choosing a new ¢ value a new tension strain is effectively chosen.
The objective of this process is to obtain a f; value which is equal to £, such that £, is less
than f., and the total tension force (Ty) is equal to the total compressive force (Cio).
Once the objective has been completed the ultimate moment and curvature can be
determined.

Figure 2.5 displays a flowchart depicting the process of calculating the strength of

a plain timber stringer, used later in this thesis to calculate the strength of plain timber

stringers.
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Figure 2.5 — Process of Calculating the Strength of a Plain Timber Beam
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2.5.2 Reinforced Timber Strength Model

Gentile (2000) extended the use of the formulas developed by Buchanan (1984)
for plain timber beams for GFRP reinforced timber by using a parameter o.. The equation
developed by Gentile (2000) is as follows

1
2.15] f, =a(’—‘ﬂj“ £

c
After fitting equation 2.14 to the experimental data for the control specimen, Gentile
(2000) fit equation 2.15 to the experimental data for the reinforced specimen and arrived
at an o factor of 1.3. This implies, with the addition of GERP flexural reinforcement, an
increase in strength of 30% over plain timber beams. The initial depth of the neutral axis
is determined by completing a transformed section analysis. The distance from the

tension face to the neutral axis can be calculated using equation 2.16.

d
bd(EJ +(n-1)4,,y,
2.16] y, =
[2.16] 5, bd+(n-1)d,,

where: b is the width of the beam
d is the depth of the beam
n is the modular ratio, as in equation 2.17
Agyp 1s the area of FRP reinforcement

Yoirp 1S the distance from the tension face to the center of the FRP bars
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E,

E

w

[2.17] n=

where: Egy, is the MOE of the FRP bars
Eyis the MOE of the timber beam

Other than the modifications just discussed the process of calculating the bending
strength is the same as described in section 2.5.1. Figure 2.6 outlines, in a flowchart, the
process for determining the strength of a timber beam reinforced flexurally with FRP
bars. Failure of the FRP bar could, in theory, occur but is not considered a possible
failure mode due to the high tensile strength of the GFRP compared to the timber. A
computer program was developed to complete all the calculations for the plain and

reinforced timber strengths. Sample of these calculations is presented in the Appendix A.
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Figure 2.6 — Process of Calculating the Strength of a GFRP Reinforced Timber Beam '
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CHAPTER 3 EXPERIMENTAL PROGRAM

3.1 General

A total of 26 stringers were tested, 8 control, 12 reinforced for flexure only with
GFRP bars, and 6 reinforced for flexure and shear with GFRP bars. Test data was
collected using pi-gauges, strain gauges and LVDTs. The stringers were visually graded
before testing using the National Lumber Grades Authority (2002) guidelines. The
specimens were fabricated using a hand held router and drill and were tested statically
under a three point loading scheme by using a servo-hydraulic, stroke controlled testing
machine.

This chapter will discuss the material properties of all tested samples, the test set-

up and instrumentation. The strengthening process will also be discussed in detail.

3.2 Objectives of the Experimental Program

The experimental program was designed to test the performance of dapped timber
stringers reinforced with GFRP bars. Specific importance was placed on increasing the
strength of the timber stringers by at least 30%. The dapped ends create stress
concentrations and thus may cause premature failure of the beams, and will be addressed
during testing if necessary. This is the first time dapped beams have been tested when

strengthened with GFRP bars, and the objective of this research is to produce guidelines
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for future use of GFRP strengthening for these beams. A strength model for GFRP
reinforced timbers stringer was to be developed to be able to predict the strength of a
reinforced timber stringer. The model was to use the properties of the GFRP bars and
timber stringers to determine the strength increase as opposed to the current model
(Gentile 2000), which uses a universal factor to account for strength changes between the

reinforced and unreinforced timber stringers.

3.3 Materials

The materials used in this experimental program were timber stringers, GFRP

bars, and epoxy.

3.3.1 Timber Stringers

Douglas fir timber bridge stringers, pressure treated with creosote and salvaged
from dismantled bridges, were used in this experimental program. The stringers were
unaltered in any way before the reinforcement was installed and testing took place. The
estimated depth of creosote penetration was 19 mm. The stringers were visually graded
according to the recommendations of National Lumber Grades Authority (2002). The
grading scheme chosen for the specimens was applicable to beams and stringers
(rectangular timbers) 127 mm and thicker, with the depth more than 50.8 mm greater than
thickness. Although the stringers used in this study were only 101.6 mm thick, this
section best described the stringers. Based on the grading recommendations for holes,

skips, splits, wane, and knots the stringers were graded as No. 1, No.2 and reject. Further
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information on the grading regulations for timber beams and stringers see section 3.4.
None of the stringers retained the original select structural grade, since they have been
subjected to many years of environmental and traffic loads.

The timber stringers used in this study have dapped ends, as shown in Figure 3.1.
The dap is not considered in the design of the stringers but rather, is used to make the

construction process easier.

Figure 3.1 — Dapped End of Timber Stringer

The average moisture content for timber stringers was 15%. These readings were

taken before testing and after. There was very little change if any over this timber period.
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3.3.2 GFRP Bars and Epoxy

Pultruded 12 mm diameter Fulcrum GFRP bars were used as flexural
reinforcement for all the beams. The GFRP bars had a strength of 895 MPa, a modulus
of elasticity of 47.4 GPa, a glass volume of 56.3%, and a voids ratio of 0.95%. The
mechanical properties of the GFRP bars discussed above are as reported by the
manufacturer.

The shear reinforcement was pultruded #13 ISOROD GFRP bars. These bars had
a strength of 617 MPa and a modulus of elasticity of 42 GPa, as reported by the
manufacturer.

The epoxy used to bond the GFRP bars to timber was Tamms, Duralith, high

modulus, low temperature epoxy mortar binder.

3.4 Standard Grading Rules for Timber Beams and Stringers

In this section the standard grading rules for timber beams and stringers meeting
grade No. 1 is presented to demonstrate the process of visual grading. The following
grading characteristics and provisions shown in Table 3.1 and 3.2 are based on the
National Lumber Grades Authority (2002). The other grade levels have their own
provisions and can be located in the National Lumber Grades Authority (2002). All
tested beams were subjected to visual grading before testing. It was determined, from the
26 beams, 38% were No.1, 54% were No. 2 and 8% were reject. The difference between
No.1 and No.2 grade is primarily the presence of skips. Figure 3.2 shows some of the

split, skip and knot patterns for No.1 and No.2 graded beams.
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Beams are characterized as a reject primarily as a result of splits within the cross-

section as well as the occurrence of large, unnatural defects such as shown in F igure 3.2.

Table 3.1 — Grading Rules for all Species No. 1 Structural Beams and Stringers

Characteristic
Beam or Stringer Limiting Provisions
Imperfections
Check -in areas at ends, single or opposite, with a sum total equal to
cexs approximately 1 the thickness
-pin limited
Holes -grub and teredo, one for each 1° length
-in cedar, holes from any cause 1 the size of the allowable knots
Pitch Streaks -not limited
Rate of Growth -pitch or bark, not limited
Shake -medium, Douglas Fir and Western Larch only
Skips -occasional §7x 2” or equivalent
Slope of Grain -middle { - 1in 10; balance 1 in 8
Splits -short or equivalent end checks
Stain -stained sapwood, heart strain firm
Torn Grain -heavy
Wane - of any face or as equivalent 3 of any face for 1 length
-sound, tight and well spaced, may be present in the sizes presented
Knot .
in Table 3

Table 3.2 — Allowable Knot Sizes

Nom. Face Width On Narrow Face and Edge At Ends and along

of Wide Face in Middle i Centreline of Wide Face
of Length

5” 12~

6” 2L

8 217 3

10” 23 337

i 34 S

147 347 5”

16” 512

18” 51
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Figure 3.2 — Natural Defects within the Timber Stringers

30



3.5 Design and Fabrication of Specimens

All 26 timber stringers had nominal cross-section dimensions of 100 x 400 mm
and a test length of 3400 mm. The flexural GFRP bars were installed in rounded
grooves 19 mm wide and 19 mm deep created by a hand held router. The grooves were
first half-filled with epoxy, and then the bar was placed in the groove and the rest of the
groove was filled in with epoxy and levelled. The stringers were allowed to cure for at
least seven days prior to testing to ensure proper development of the bond between the
GFRP, epoxy, and timber system.

The fabrication of specimens with flexural and shear reinforcement were executed
by following the steps outlined for flexurally reinforced specimens and by drilling holes
through the tension face of the stringer for the dowel bars. The holes were drilled using a
19 mm diameter by 914 mm drill bit inclined at a 30 degree angle to the vertical plane, as
shown in Figure 3.3. The holes were partially filled with epoxy and the dowel bars were
then threaded into the hole, drawing the epoxy up the length of the hole and bar until the
bar reached the end of the hole. The excess epoxy was removed with the use of a trowel
and levelled with the bottom of the stringer. The dowel bars placed across the dap were
inserted into the drilled holes such that the bottom of the bar was flush with the tension
face of the stringer. This was done to ensure enough development length was available to
manage the stresses created at the daps. The specimens were allowed to cure for at least
seven days before testing. Figure 3.3 shows the details of the timber stringers and bar

placements.
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Figure 3.3 — Timber Stringer Reinforcement Details

Figures 3.4 and 3.5 demonstrate the process of creating the grooves and holes for the

flexural and dowel bars respectively.

Figure 3.4 — Machining of the Grooves for the Flexural Bars Using Hand Router
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Figure 3.5 — Drilling of Holes for Dowel Bars

3.6 Test Beams

A total of 26 full size (100 x 400 x 3400 mm) salvaged timber bridge stringers
were tested until failure in this program. Eight plain timber stringers were tested until
failure to establish a control set of data (Group C), twelve stringers were reinforced with
GFRP bars in the flexural region only (Group F), and six other stringers were tested with
GFRP
bars in the flexural region as well as GFRP dowel bars throughout the depth of the cross-

section for shear reinforcement (Group FD), as shown in Table 3.3.

33



Table 3.3 - Stringer Description

Beam Description Diagram # of beams
Control (C) 8
|
Flexural (F) 12
O = =N

Flexural and Shear (FD) : ; ; : 2 —/2 6

3.7 Test Setup and Parameters

The tests were completed at the University of Manitoba according to ASTM
D198-99 (1999). All stringers were simply supported on rollers and tested under three-
point bending with a span of 3.4 m, as shown in Figure 3.6.

A monotonic static load was applied by a servo-hydraulic testing machine with a
displacement rate of 4 mm/minute to ensure the stringers failed within six to twenty
minutes as per ASTM D198-99 (1999). Bearing plates were used at the point of load
application and at the supports to try to avoid any potential damage to the beam due to
bearing. The bearing plates were 19 mm thick by 406 mm or 203 mm long rectangular
steel plates at the point of load application and at the supports, respectively. Plaster was
used at the supports and loading point to ensure an even transfer of load to the beam and

then to the supports could be attained.
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Figure 3.6 — Test Setup

3.8 Instrumentation

The stringers were instrumented with six linear variable deflection transducers
(LVDTs) to measure the deflection along the length of the beams. A total of 6 Pi-gauges
with a gauge length of 200 mm were used at midspan to measure the strain profile of the
timber throughout testing. Figure 3.7 shows the locations of the LVDTSs and Pi-gauges.
The strains in the GFRP bars (flexural and dowel bars) were recorded using electric

resistance strain gauges.
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Figure 3.7 — Details of Stringer Instrumentation

The strains in the flexural bars were measured using strain gauges. One of the
two flexural bars had three strain gauges placed at either end at a spacing of 50 mm, 100
mm, and 150 mm from the ends, and one strain gauge at the midspan of the bar. The
other flexural bar had only one strain gauge at the midspan of the bar. The dowel bars
placed across the daps had one strain gauge located at mid-height of the bar with two
more equally spaced above and below. The next two dowel bars, closest to the dap, had
one strain gauge placed at the midpoint of the bars. The two dowel bars closest to the
midspan of the stringer were not gauged. A computerized data acquisition system was
used to record all the data from the instrumentation and machines listed above. The data

was continuously recorded until the ultimate failure of the stringer.
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CHAPTER 4 TEST DATA AND RESULTS

4.1 General

The test results will be presented in terms of the strength, failure modes, strain in
the timber and GFRP bars, modulus of elasticity (MOE), tensile, shear, and compressive
stresses.

Only experimental data is presented and discussed in this chapter. Further

discussions and analysis is presented in Chapter 5.

4.2 Load Deflection Behavior

The load deflection behaviour was recorded using a load cell within the testing
machine and two LVDTs placed at the midspan of the stringers. The LVDT data was

averaged and then used to plot the load-deflection curves.

4.2.1 Control Specimens

A conscious effort was made to ensure the stringers that were visually graded as
being in good condition as the control specimens. This ensured the reinforced specimens
were at a disadvantage before the GFRP bars were installed. A total of eight control
specimens were tested. Figures 4.1 and 4.2 display the load defection curves for all eight
control stringers. The average ultimate load of the control stringers is 121.3 kN with a

standard deviation of 22.6 kN.
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In Figure 4.1 a wide range of load-deflection behaviour is observed. Stringer C2
had lower stiffness compared to the rest of the group and failed at a load of 80 kN before
reaching a deflection of 30 mm. To demonstrate the large variability in this group of
stringers, stringer C1 failed at 160 kN and reached a deflection of nearly 80 mm.
Stringers C1 and C3 were able to undergo substantial deflections before failure but the
rest of the control stringers were only able to obtain low to moderate deflections (30 to 40
mm) before failing, as seen in Figures 4.1 and 4.2. Other than stringers C1 and C3 the
control stringers had fairly linear load-deflection curves right up to failure. Failure was
very sudden and catastrophic, meaning little or no deflection at all was attained after the
peak load was reached. The sudden drops in the load deflection curves are due to
cracking of the timber. The stresses are then redistributed throughout the remaining

timber until failure.
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4.2.2  Flexurally Reinforced Specimens

The ultimate failure loads of the flexurally reinforced specimens are very similar
to those of the control specimens. The average ultimate load of the flexurally reinforced
specimens is 125.3 kN with a standard deviation of 25.9. This is due to the similar failure
modes of the two groups of stringers and is discussed further in section 4.3. An increase
in ductility, on average, can be seen in Figures 4.3 and 4.4 when compared to the control
stringers, despite the fact the ultimate loads of the two groups of specimens are very
similar. The data files for stringers F11 and F12 were corrupted during the analysis
process thus, these stringers load-deflection curves are not shown but the ultimate load
data was recorded and used in all strength analyses completed for group F.

The majority of the flexurally reinforced stringers were able to obtain between 40
and 60 mm of deflection whereas the majority of the control stringers were able to obtain
deflections of 40 mm or less.

This group of samples exhibited very similar behaviour compared to the control
specimens, even though they were reinforced with GFRP bars. The flexural
reinforcement was found in an earlier study by Gentile et al. (2002) to increase the
strength of the stringers by up to 50% with a smaller increase for stronger timbers. There
are two main reasons the strength increases were not obtained when beams in this group
(Group F) were compared to the control group (Group C). The beams in the control
group were of a higher grade compared to the beams with flexural reinforcement, the
other reason is that the flexural reinforcement was not capable of preventing dap failures.

None of the previous studies were concentrating on the behaviour of dapped beams.
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It should be noted that the data used for the load deflection curves of Figure 4.3
were filtered to obtain the curves shown. The filtering was completed to eliminate the
extremely high peaks present for specimens F3 and F4 near the beginning of the tests.
The load versus deflection curves obtained through the use of the raw data is shown in
Figure 4.5.

As seen in Figure 4.5 the load deflection curves for stringers F4 and F5 have
extremely high peaks, which do not occur in any other load deflection curves. The peaks
are a result of severe stiffening of the test setup, and are believed to be a result of an
obstruction during the testing that was not immediately noted. Once the stringer cracked
initially, and was no longer held up by the testing apparatus, the load deflection curve
became more realistic. The beams had significantly warped before testing, and because
of their slenderness it was decided to have side supports to prevent the beam from tilting
during the test. These supports may have held the beam at the start of the test and caused

the stiffening of the initial response.
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Figure 4.5 — Raw Data Load Deflection Curves for Flexurally Reinforced Specimens 1 through 5

4.2.3 Flexural and Shear Reinforced Specimens

An increase in the average ultimate load and ductility of the specimens reinforced
for both flexure and shear can be seen in Figures 4.6 and 4.7, when compared to the
control specimens. All specimens reinforced for flexure and shear were able to obtain
deflections between 50 and 60 mm except for stringer FD3 which achieved a small
deflection before failure.

The average ultimate load of the specimens reinforced for flexure and shear is
149.1 kN with a standard deviation of 25.5 kKN. This is an increase of 23% and 19% over

the control and flexurally reinforced specimens respectively. The flexure and shear
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reinforced stringers were graded as much lower grade stringers compared to the control

beams therefore, the estimate of the strength increase is conservative.

200

180

FD2
160

. /e

60

Load (kN)

40

N4

0 10 20 30 40 50 60 70 80
Midspan Deflection (mm)

Figure 4.6 — Load Deflection Curves for Flexural and Shear Reinforced Specimens 1 through 3
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Figure 4.7 — Load Deflection Curves for Flexural and Shear Reinforced Specimens 4 through 6

4.3 Strain Measurements

The strain in the timber and GFRP bars were measured using pi-gauges and strain
gauges respectively.

The cross-sectional strain profiles were developed for a load of 40 kN to
determine if strain compatibility was satisfied in the reinforced timber. The 40 kN load
level was chosen to ensure the stringers were still in the linear region of their load
deflection curves thus, their cross-sectional strain profiles should not be affected by the

cracking of the timber.
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4.3.1 Control Specimens

The cross-sectional strain profiles are presented in Figures 4.8 and 4.9 together
with the location of the pi-gauges. Since the pi-gauges were mounted on the surface of
the timber stringers, some variability would be expected as some stringers had knots and
splits. The majority of the strain profiles did have an obvious linear trend thus, the results
confirm, plain sections do remain plain. The presence of knots and splits on the timber
stringers would explain the small deviations from the expected linear nature of the strain
profiles, but does not explain the large deviations obtained for specimens C2 and C6.
Figures 4.1 and 4.2 display the load deflection curves for stringers C2 and C6 show the
stringers cracked before reaching the 40 kN load. The cracking is seen as a drop in the
load with an increase in the deflection of the stringers load deflection curve. This
cracking affects the strain profile such that it would no long be linear in nature. The 40
kN load was chosen since the majority of the specimens remained linear until this point,
as well the load is large enough to close any existing cracks and defects and activate the
entire cross-section of the stringer.

Figure 4.10 displays the strain profile for specimen C8 for increasing load. As
seen in this figure the strain profile does indeed remain linear until sufficient cracking has
occurred causing the profile to become somewhat nonlinear. The neutral axis remains

approximately at the midpoint of the cross-section as expected from classical theory.
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4.3.2 Flexurally Reinforced Specimens

The flexurally reinforced specimen had the strains recorded over the cross-section

as well as along the GFRP flexural bars.

4.3.2.1 Cross-Sectional Strain

The cross-sectional strain profiles are presented in Figures 4.11 and 4.12.
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Figure 4.11 — Cross-Sectional Strain Profile for F1-5 at 40 kN Load Level

49



Location (mm)

Strain (ms)

[—F—F ——F— =55 - - Fio]

Figure 4.12 — Cross-Sectional Strain Profile for F6-10 at 40 kN Load Level and Pi and Strain Gauge
Locations

It should be noted in Figure 4.12 that a change in the pi gauge pattern occurred.
This change was a result of a lack of instruments to continue with the use of three pi-
gauges on either side of the stringer. Thus, two pi-gauges were used on either side of the
stringer to obtain the strain data within the timber.

The majority of the strain profiles, excluding the strain readings from the GFRP
bars are linear in nature except for stringers F1 and F2. The load deflection curves of
these stringers do not indicate the occurrence of cracking before the 40 kN load level as
with the control specimen. Thus, the nonlinear nature of the strain profile, considering
just the timber strains, is a result of surface defects in the stringer. Preexisting cracks,
knots, and checks have a large effect, if the imperfections are close to the placement of

the gauges.
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As seen in Figure 4.13 pre-existing knots and cracks could have affected the pi-
gauges results since they were located very close to the positioning of the pi gauge

closest to the compression face of the stringer
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Figure 4.13 ~ Pre-existing Crack and Knot Pattern for Stringers F1 and F2

Although the majority of the strain profiles for the readings obtained from just the
timber are linear in nature, a large discrepancy between the strain in the GFRP bars and
the strain in the timber exists. It appears the GFRP bars are bridging the small cracks and
imperfection within the timber stringers thus incurring larger strains than the timber area
directly around the GFRP bars. This phenomenon has been observed by other
researchers (Gentile 2000, Eden 2002) but has not been investigated in detail.

Figure 4.14a) displays the cross-sectional strain profile for stringer F5 for
increasing load. The strain profile remains fairly linear with small increases in strain as

the load is increased until the 100 kN load level is reached. Stringer F5 began to crack
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just after the 80 kN load level as seen in Figure 4.3. Despite the increase in the stiffness
of the stringer before the 80 kN load level, the strain profiles were unaffected confirming
the suspicion that the setup was causing the increase in stiffness. The cross-sectional
strain profile was indeed affected by the severe cracking of the specimen causing the
strain profile to become grossly nonlinear.

Figure 4.14a) displays the strain profile for stringer F5 for increasing load until
failure. Figure 4.14b) presents the strain profiles for load level 20 kN to 80 kN. The 100
kN and 120 kN load level strains are so much larger than the rest, and therefore the
details of the other strain profiles are lost due to the scaling of the curves. Until a large
amount of cracking occurs the strain profiles for just the timber are linear in nature. The

strains in the GFRP bars are much larger than the strains in the timber right from the 20

kN load level.
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4.3.2.2 GFRP Flexural Bar Strain Profile

The strains were measured at both ends and the midpoint of the flexural bars. The

strain profile over the flexural bars for specimen F5 is given in Figure 4.15.
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Figure 4.15 — GFRP Flexural Bar Strain Profile for F5

As seen in Figure 4.3 stringer F5 did not crack until just after the 80 kN load level
thus, a consistent increase in strain until this level is seen in Figure 4.15. After the 80 kN
load level was reached the stringer experienced a large amount of cracking and thus a
large increase in the strains in the flexural bars. As seen in Figure 4.15, the strain in the
timber and GFRP bars had small increases in strain with an increase in load until the
stringer began to crack. After cracking the strain profile has very large increases in the

strain values, which correspond to Figure 4.14a) which also depicts very large strain
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increases at the same load levels or there may be some discontinuity present between the

timber and GFRP bars which has not yet been determined at this time.

4.3.3 Flexure and Shear Reinforced Specimens

The strains for the flexural and shear reinforced specimens were recorded along

the depth of the cross-section, the GFRP flexural bar, and the dowel bars,

4.3.3.1 Cross-Sectional Strain

The cross-sectional strain profiles for group FD at 40kN load level are given in
Figures 4.16 and 4.17. Much like the cross-sectional strain profiles of group F, the
profiles of group FD are linear within the timber with the strains in the GFRP being much
larger. The cause of this is unclear but is suspected to be caused by the natural
irregularities found within the timber stringers.

The strain profile within the timber is linear, as in the control specimens, but a
large discrepancy between the strain in the GFRP bars and the timber exists. Similar to
the flexurally reinforced specimens, the strains in the GFRP bars are much larger than the
strain in the timber. As for the flexurally reinforced specimens the GFRP bars in the
flexural and shear reinforced specimens seem to bridge the small cracks and imperfection

within the timber stringer thus incurring larger strains the timber area directly around the

GFRP bars.
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Figure 4.18 displays the cross-sectional strain profile for FD3 for increasing load.
The strain profile remains very similar with the increase in load and is largely unaffected
by any cracking occurring during the test. It was observed during the test that cracking
took place primarily near the supports of the stringer (bearing failure), while the strain
was measured in the midspan, therefore it was not affected by cracking and shows

constant increase in strain with load.
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Figure 4.18 — Cross-Sectional Strain Profile for FD3 for Increasing Load
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4.3.3.2  Strain in the Flexural Bar for Group FD

As with the flexurally reinforced specimens the specimens reinforced for flexure
and shear had the strains in the flexural reinforcement recorded along the length of the
bars. Figure 4.19 displays the flexural bar strain profile for stringer FD3. The
differences in some of the strain readings at the midspan of the beam are due to the use of
two strain gauges, one at the midspan of each flexural bar. Thus as the test proceeded the

strain values did begin to vary most likely due to cracking of the timber stringer.
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Figure 4.19 — GFRP Flexural Bar Strain Profile for FD3

Although the strain gauges on the right end of the flexural bar did not work during the
test, the recorded data still displays the strain profile very well. As seen in Figure 4.19,
the strain gauges located between 200 and 350 mm along the flexural bar did not

demonstrate a constant increase in strain as the midspan was approached. This is
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probably a result of the shifting and cracking of the timber near these locations causing
an irregular strain distribution. Larger strains were recorded closest to the dapped end

and then increased again as the midspan of the bar was approached, as expected.

4.3.3.3 GFRP Dowel Bar Strain

Figure 4.20 displays the GFRP dowel bar strain profiles for stringer FD3.
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Figure 4.20 — GFRP Dowel Bar Strain Profiles for Stringer FD3

Although some of the gauges did not work during the test the general strain profile
can still be observed. If the left most portion of the dowel bar strain profile is ignored for

now, a very consistent strain increase is seen as the load increased until the 120kN load
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level, which is also true for the flexural bar strain profile seen in Figure 4.19. Very large
dowel bar strains were recorded at the dapped end of the stringer. These strains
correspond to the flexural bar strains near the dapped end recorded and discussed in the
previous section. Figures 4.19 and 4.20 demonstrate the dapped end was causing very
large strains in the flexural and dowel bars in this region. As mentioned previously the
stringer experienced cracking in between the 60 and 80 kN load levels which correspond
to a large increase in the strains in the dowel bar at the dapped end. The rest of the
stringer seemed to be relatively unaffected by this cracking since the strain profiles for
the dowel and flexural bars along the rest of the length of the stringer remained largely
unchanged. A large amount of cracking occurred at approximately the 110 kN load level
which is noted in Figure 4.19 as a larger jump in the strains through out the stringer and
as strain relief near the dapped end. The cracking at the 110 kN load level is noted in
Figure 4.20 as a large jump in most of the strains recorded. The cracking recorded was
due to a bearing failure occurring at the left support, which also corresponds to the large
strain recorded in the dowel bars. According to the measured strain, the force in the

dowel bar was 46 kN or 65% of the strength of the dowel, at that load level.

4.4 Failure Modes

Five distinctive failure modes were observed in the tested beams. These failure
modes include, dap, shear, tension, crushing, and bearing.

A typical dap failure originates at the corner of the dap causing the timber to split.
The crack then propagates along the grain towards the midspan of the stringer. An

observed dap failure is shown in Figure 4.21.
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A typical shear failure occurs along the grain of the timber and propagates
horizontally along the span of the stringer. Shear failures during testing were observed to
originate along pre-existing cracks. During testing the crack widened and propagated
along the span of the stringer until ultimate failure occurred. A typical shear failure is

displayed in Figure 4.22.

Figure 4.21 — Dap Failure
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Figure 4.22 — Shear Failure

A typical tension failure originated near the midspan of the stringer, at a pre-
existing crack, on the tension face and propagated along the grain toward the middle of
the cross-section. The tension failure did not rupture the GFRP bars, nor did it cause a
bond failure. The failure was solely in the timber and propagated around the GFRP
reinforcement along a plain of weakness within the timber. A typical tension failure is

displayed in Figure 4.23.

62



Figure 4.23 — Tension Failure

A typical bearing failure occurs at the supports where the timber crushes causing
horizontal cracks to occur. This failure is very localized and did not propagate away

from the area of bearing. An example of a bearing failure is shown in Figure 4.24.

Figure 4.24 — Bearing Failure

63




A typical crushing failure occurs under the loading point and causes horizontal
cracks as well as some vertical cracks originating from the horizontal cracks. This failure
is very localized and did not propagate away from the loaded area. A picture of this
failure mode is unavailable.

Both the crushing and bearing failure modes are compression failure modes and
will result in the highest strength possible.

The failure modes for all specimens are presented in Table 4.1.

Table 4.1 ~Failure Modes of Tested Beams

Beam Failure Modes
Type Dap Shear Tension Crushing Bearing
C 4 3 0 1 0
F 4 5 2 0 1
FD 0 0 0 2 4

Dap and shear failure modes accounted for 87.5% of the ultimate failures of the
control stringers. These modes of failure occur at lower load levels than the desired
compression mode of failure.

Since the flexural bars were installed in the tension face of the stringers in group
F, they could not prevent dap or shear failures. The beams in group I were graded as No.
1 to reject, and all had significant splits and checks, therefore the primary failure modes
for the specimens in this group were dap and shear, accounting for 75% of all the failures

in group F.
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The splits and checks were not able to propagate through the beams of group FD
because of the dowel bars. All dap failures were prevented thus, stronger failure modes,
such as compression and bearing were developed, causing an increase in the average
strength and ductility.

It is clearly shown that by introducing both flexural and shear reinforcement, the
shear and dap failures were eliminated.

A summary of the mode of failure for the individual stringers is presented in

Table 4.2.

Table 4.2 — Failure Modes of Individual Stringers

Specimen Failure Mode
C1 Crushing
C2 Dap
C3 Shear
C4 Shear
C5 Dap
Cé6 Dap
C7 Shear
C8 Dap
F1 Dap
F2 Dap
F3 Shear
F4 Shear
F5 Shear
Fé6 Bearing
F7 Shear
F8 Tension
F9 Tension
F10 Shear
F11 Dap
F12 Dap

FD1 Compression
FD2 Bearing
FD3 Compression
FD4 Compression
FD5 Compression
FD6 Bearing
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CHAPTER 5 ANALYSIS OF TEST RESULTS

5.1 General

The MOE, ultimate load, tensile stress, and MOR results were investigated using
a variety of methods such as Weibull distributions, normal distributions, strength models,
and size effects.

Weibull analysis and normal distributions of the flexural stresses and the MOE
results, respectively, were used to determine the strength and MOE distributions for each
of the reinforcement schemes. The strength and MOE distributions indicate the change
obtained through the addition of the reinforcement.

The test results of this study were combined with the results of two previous
studies completed by Gentile (2000) and Eden (2002). These studies were employed to
increase the number of specimens available for analysis, although the timber stringers
were not dapped, the results are still applicable and afford the opportunity to create more

accurate distributions and thus give more accurate analysis and conclusions.
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5.2 Analysis of the Results for the Current Study

5.2.1 Modulus of Elasticity

The MOE results were presented in Figure 5.1 and Table 5.1. The calculation
process used to determine the MOE is discussed in conjunction with the tensile stress
calculation and are presented in section 5.2.2. The dapped timber stringers of this study,
obtained approximately a 44% increase in the 10™ percentile MOE values for both the
specimens reinforced for flexure and those reinforced for flexure and shear when
compared to the control specimens, as seen in Figure 5.1. It had been concluded by
Barrett and Lau (1994) and confirmed by this study that the normal distribution fits MOE
data well.

Further testing is required to make an absolute conclusion as to the effect of
adding GFRP reinforcement on the MOE since the MOE did not increase when the shear
reinforcement was added. The MOE was expected to increase with the addition of each
type of reinforcement since the MOE of the GFRP bars is greater than the timber. This
did not occur, thus further testing of the effects GFRP reinforcing bars on the MOE must

be completed.
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Figure 5.1 - MOE Results of Current Study

5.2.2 Ultimate Load and Tensile Stress

The tensile stress values for the experimental results were calculated using

equation 5.1 along with geometric properties.

- M_PL . .
[5.11 £ 5, 25, for 3 point loading

where: fiis the tensile stress
M is the moment due to applied load
P is the load recorded during testing
L is the length of the stringer

Sy is the section modulus corresponding to the tension face of the stringer
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Once the section modulus is determined f; of the stringers can be calculated. To
determine the section modulus a transformed section analysis using the flexural stiffness
(ED) results is employed. The transformed section analysis is completed by taking the
stiffness results, estimating the modular ratio, calculating the transformed centroid, and
then the transformed moment of inertia (I;). Once I is known the modular ratio (n) is
determined by taking the MOE of the GFRP flexural bar times I, and dividing by EI
obtained from the test data. If the originally estimated modular ratio is the same as the
one calculated using the section modulus, the MOE can be determined. Ifit is not, a new
estimate of the modular ratio must be made until the estimated and calculated modular
ratios are the same. Once they are indeed the same the section modulus and MOE of the
stringer can be determined. A sample of the calculation process is presented in Appendix
C. MOE is found by dividing EI by I, giving the tranformed MOE which has been
adjusted for the addition of the flexural reinforcement.

The load and the tensile stress results for the current study are presented in Table

5.1
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Table 5.1 - Test Results for Load, MOE, and Tensile Stress

Tensile Stress

Specimen Ultimate Load (kN) MOE (MPa) (MPa)

Cl1 153 10507 48.8

C2 82 5968 25.8

C3 125 7840 39.8

C4 146 6657 46.9

C5 127 12955 40.5

Cé6 123 7920 39.2

C7 103 3659 32.5

C8 115 7840 36.7

Mean 121.8 7918.3 38.8

Standard Deviation 22.6 2818.8 7.4
Coefficient of

Variation (%) 18.6 35.6 19.1

F1 132 7664 40.1

F2 139 12745 43.1

F3 125 19327 38.9

F4 125 14976 39.1

F5 108 9595 33.2

F6 103 10721 31.2

F7 171 9596 52.4

F8 94 7008 28.6

F9 86 7720 26.3

F10 116 7439 35.8

Fi1 159 9108 48.7

F12 121 9525 37.3

Mean 123.3 10452 379

Standard Deviation 24.9 3629.1 7.7
Coefficient of

Variation (%) 20.2 34.7 20.3

FD1 136 7821 41.4

FD2 158 7341 48.1

FD3 127 7542 38.5

FD4 162 8656 49.5

FD5 189 9515 58.0

FD6 122 5673 36.6

Mean 149 7758 45.4

Standard Deviation 25.4 1301.2 8.0
Coefficient of

Variation (%) 17.1 16.8 17.7
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A normal distribution was used to compare the ultimate loads of the various
reinforcing schemes to determine the increase of adding each type of reinforcement and

is presented in Figure 5.2.
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Figure 5.2 — Cumulative Normal Distribution for the Ultimate Loads of the Current Study

The tenth percentile will be discussed in accordance with the findings of Johns
and Racine (2001) that given the variability of strength values for wood, it is perilous to
draw precise conclusions regarding, for example, fifth percentile of strength if the sample

size is not large enough. It may be justified to discuss the tenth percentile values based
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on a 3-parameter Weibull distribution fit to the experimental data. Thus, the tenth
percentile values are discussed since the number of tests completed was relatively small.
As seen in Figure 5.2 there was no increase in the ultimate load of the flexurally
reinforced specimens when compared to the control specimens. This was expected since
the majority of failure modes were dap and shear for beams in both groups C and F.
Using both flexural and shear reinforcement achieved a 30% increase the ultimate load.
As stated by Eden (2002) a 30% increase in strength is necessary to ensure the timber
bridges can withstand not only loads they were designed for but also the increased traffic
load since their construction.

The tensile stresses were determined for the stringers to compare the increase
obtained with the addition of each type of reinforcement as well as to compare the design
value of 19.5 MPa to the tensile stresses obtained from testing. To this end, a 3-
parameter Weibull distribution analysis was completed using the £ results. A three
parameter Weibull distribution was chosen since it represents the tensile stress
distribution of timber stringers more accurately. The two parameter Weibull distribution
assumes a minimum stress value of 0, which does not accurately represent timber beams
since all timber beams have a minimum stress greater than 0. The three parameter
Weibull distribution determines the minimum stress based on the data used in the
analysis. Figure 5.3 shows little increase in the J: between the control and flexurally
reinforced specimens.

A strength increase of approximately 30% in the tenth percentile tensile stress was
obtained for the specimens reinforced for both flexure and shear as compared to the

control specimens, as for the comparison of the ultimate loads.
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The stringers did not fail in tension and therefore were expected to obtain tensile

stresses higher than the 19.5 MPa design stress as they did.
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Figure 5.3 - 3 Parameter Weibull Probability Results for the Tensile Stress for the Current Study

The Weibull parameters obtained through the analysis of the tensile stress data

from Table 5.1 are presented in Table 5.2

Table 5.2 — Parameters of Weibull Analysis

Specimen Shape (k) Scale (m;) Location (x,)
C 3.10 39.70 0.00
F 2.46 22.00 18.25
FD 2.00 29.80 18.00
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As seen in Table 5.3 the control data set is best fit by a 2-parameter Weibull distribution.
This implies the control data set has a minimum strength value of 0. The 2-parameter

Weibull distribution is the basis for the strength models presented in Chapter 2.

5.2.3 Shear Stress

The shear stresses were computed using Equation 5.2.

(52] =LY
I

where 7is the shear stress
V is the shear force
A’ is the area from the top of the member to the location of at which the shear
stress is to be calculated
¥’ is the distance from the centroid of A’ to the location at which the shear stress
is to be calculated
I is the moment of inertia
b is the width of the cross-section

A’y’ is also commonly known as the shear coefficient Q.

The shear stress values for all specimens are presented in Figure 5.4. Since the
control and flexurally reinforced specimens failed in shear, the shear presented in F igure
5.4 is the shear strength for groups C and F only. A design strength of 0.9 MPa is given
in CSA (1994) which is larger than the shear strengths of 0.79 and 0.75 MPa obtained by

the control and flexurally reinforced specimens respectively. The design strengths given
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in the CSA (1994) design code are 5% percentile values thus for direct comparison with

the test results the 5% percentile will be discussed.
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Figure 5.4 — Shear Stress for the Current Study

The timber stringers used in this study were shear deficient. This could be a result of the
weathering effects the stringers were subjected to and a result of the presence of daps.
By adding shear reinforcement the stringers were able to obtain a shear stress of 1 MPa,
at the 5™ percentile level. Since the mode of failure of the flexural and shear reinforced
specimens was compressiqn the shear stress was not the limiting factor. The load and
shear stress calculations are presented in Table 5.3. The nominal values of the moment

of inertia and the neutral axis depth were considered since they made the calculations
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easier and gave results within 3% of the actual shear stress. The values of moment of
inertia (1), vneutral axis depth (Vuar), the beam width (b), the area above the location at
which the shear stress is to be calculated (A’), and the distance from the centroid of A’ to
the neutral axis (y’) are 533.3x10° mm*, 200 mm, 100 mm, 10x10° mm? 100 mm

respectively.
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Table 5.3 — Shear Stresses

. A" T
Specimen Load (kN) (kN) (MPa)

C1 153 76.5 1.43

C2 82 41 0.76

C3 125 62.5 1.17

C4 146 73.0 1.38

C5 127 63.5 1.19

Co6 123 61.5 1.15

C7 103 51.5 0.96

C8 115 57.5 1.08

Mean 121.8 60.9 1.14

Standard Deviation 22.6 11.3 0.2
Coefficient of

Variation (%) 18.6 18.6 18.9

F1 132 66.0 1.24

F2 139 69.5 1.30

F3 125 62.5 1.17

F4 125 62.5 1.17

F5 108 54.0 1.01

F6 103 51.5 0.97

F7 171 85.5 1.60

F8 94 47.0 0.88

F9 86 43.0 0.81

F10 116 58.0 1.09

F11 159 79.5 1.49

F12 121 60.5 1.13

Mean 123.3 61.7 1.16

Standard Deviation 24.9 12.5 0.2
Coefficient of

Variation (%) 20.2 20.2 20.1

FD1 136 68.0 1.28

FD2 158 79.0 1.48

FD3 127 63.5 1.19

FD4 162 81.0 1.52

FD5 189 94.5 1.77

FD6 122 61 1.15

Mean 149 74.5 1.40

Standard Deviation 25.4 12.7 0.2

Coefficient of 17.1 17.1 16.9

Variation (%)
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5.2.4 Compressive Stress

The compressive stress was calculated using Equation 5.3.

53] o =L
Ab

where o, is the compressive stress

P is the applied load

Ap is the bearing area

The compressive stresses are presented in Figure 5.5. CSA (1994) gives a design
compressive stress when the load is perpendicular to the grain of 7 MPa. Since the
control and flexurally reinforced specimen failed in shear they were not expected to
achieve a compressive stress of 7 MPa. The flexural and shear reinforced specimen did
fail in compression but as seen in Figure 5.5 the compressive stresses obtained from the
testing did not come close to the design value. The stringers were unable to achieve the
design compressive stress due to the weathering effects the beams had been exposed to.
The surface of the stringers has become somewhat soft and worn. Despite this the
flexural and shear reinforced specimens were able to obtain a 30% increase in the
ultimate load when compared to the control specimen. Thus the compressive strength of
the timber stringer remains sufficient to ‘achieve the desired ultimate load increase. The
calculation of the compressive stresses are presented in Table 5.4. The bearing area used

to calculate the compressive stress is 100x400 mm.
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Figure 5.5 — Compressive Stress Distribution for the Current Study

The bearing area at the supports is 100x200 mm, which is half the size of the bearing area
under the load point, but the load is also 50% of the load at the loading point, thus the

compressive stress at under the load point or at the supports is the same.

Table 5.4 — Compressive Stresses

Compressive Stress

Specimen Load (kN) Perpendicular to the Grain
(MPa)
FD1 136 3.40
FD2 158 3.96
FD3 127 3.17
FD4 162 4.05
FDS5 189 4.73
FD6 122 3.05
Mean 149 3.73
Standard Deviation 254 0.6

Coefficient of Variation

(%) 17.1 17.1
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The expected failure load due to the design stresses for tension, shear and
compression are 61.5, 96, and 280 kN respectively. Thus the expected failure mode
would be tensile. If the beam is strong enough in tension the next failure mode would be
shear, and if strong enough in shear the failure mode would be compression. Although
the loads vary from those obtained from the design stresses the progression from one
failure mode to another was achieved. The tension failures were avoided by adding the
flexural reinforcement along with the shear reinforcement and thus forcing the beam to
fail in compression. By failing in compression, the timber beam will obtain the largest

ultimate load it can achieve since timber is strongest in compression.

5.2.5 Reliability Analysis

The reliability analysis is based on the probability of failure. The probability
failure is determined from the overlapping portion of the loading distribution and the
resistance distributions, as seen in Figure 5.6. S represents the loads due to the traffic and
R represents the resistance of the bridge members. This probability of failure is
transformed into a safety factor.

To complete the reliability analysis a bridge configuration, shown in Figure 5.7,

was assumed.
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The only load considered on the bridge for this analysis was the live load produced by a
truck as it passes over the bridge. The CL-625 truck from the Canadian Highway Bridge
Design Code (CHBDC) (2000) was used to determine the loading on the bridge. Since
the span of the bridge is short, the largest moment occurs when the heaviest axle is at the
midspan of the bridge. The axle load is 175 kN giving a moment of 148.8 kNm. Using
this moment and the theory presented in section 5.7.1.2 Longitudinal Bending Moments
in Shallow Superstructures from the CHBDC (2000), as well as assuming two lanes of
traffic, and a dynamic load allowance factor of 0.4 the maximum factored moment per
girder was determined to be 46 kNm.

To determine the safety factor B equation 5.4 may be used, which was obtained

from Mufti et al. (1996).

[5.4] Bz_’;f?;%_

(G R -0 32)0'5

where piy is the mean of the resistance forces

Hs is the mean of the applied forces

oR is the standard deviation of the resistance forces

Gs is the standard deviation of the applied forces
The mean and standard deviations of the resistance forces can be determined from the test
data. The mean applied force is determined by multiplying the specified load, 46kNm in
this case, by a bias factor obtained from table CA.4.2.1.1 of the Canadian Highway
Bridge Design Code Commentary (2000). The bias values from Saskatchewan were used
with a span of 3.4 m. Thus a bias value of 0.84 was determined. Therefore, the mean of

the applied loads is 38.6 kNm. Using the coefficient of variation (COV) found in the
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same table as the bias factor, the standard deviation of the applied loads can be
determined by multiplying the COV by the mean. With the mean and standard deviation
known a normal probability plot can be produced. Table 5.5 displays the means and

standard deviations used in the reliability analysis.

Table 5.5 — Mean and Standard Deviation of the Moment Resistances and Applied Moments

Mean (kNm) Standard Deviation
C 103.4 19.7
F 104.8 21.0
FD 126.7 21.7
Loading 38.6 1.15

The safety factors determined for the CL-625 truck are displayed in Table 5.6.

Table 5.6 — Safety Factors for a CL-625 Truck Loading

Specimen B
C 33

F 3.1

FD 4.1

A minimum safety factor of 3.5 is usually desired. The control and flexurally reinforced
specimens did not obtain this safety factor, however the flexural and shear reinforced
stringers satisfies the requirements currently used for design. This means it is possible to
re-use timber stringers damaged by previous use if they are strengthened using both

flexural and shear reinforcement.
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Since a CL-700 truck is discussed within the CHBDC the safety factors for this
truck were determined following the same process as for the CL-625. The safety factors

for the CL-700 truck loading are presented in Table 5.7.

Table 5.7 — Safety Factors for a CL-700 Truck Loading

Specimen B
C 2.7
F 2.6
FD 3.5

The flexural and shear reinforced specimens maintained a safety factor of 3.5
while the other specimens obtained a safety factor significantly lower than 3.5. The
normal distributions for the moment resistances of the tested stringers and the loading

effects of the CL-625 and CL-700 trucks are presented in Figures 5.8 and 5.9

respectively.
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5.3  Analysis of the Results for the Combined Data

The test results for the combined data set were analyzed in terms of the MOE and

the modulus of rupture (MOR).

5.3.1 Modulus of Elasticity for the Combined Data

MOE was determined for all the stringers and presented in a normal distribution
plot. From Figure 5.10 there is an 81% increase in the 10™ percentile MOE value for

the flexurally reinforced specimens when compared to the control specimens.
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Figure 5.10 - MOE Results for the Combined Data Set
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A slight increase in the 10% percentile MOE value was obtained for the flexural and shear
reinforced specimens when compared to the control specimens. The discrepancy
between the results is due to a span difference between the specimens tested by Gentile et
al. (2002), Svecova and Eden (2004) and the current study. As stated earlier, Svecova
and Eden (2004) used a test span of 1800 mm as compared to 4000 and 3400 mm used by
Gentile et al. (2002) and the current study, respectively. Data obtained from testing of
four different beam sizes as well as different spans is presented in Figure 5.11.
According to Madsen (1992) the length of the specimen affects the MOE with shorter
beams exhibiting a smaller MOE compared to longer beams. This conclusion is clearly

supported by the test results presented in Figure 5.11.
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Figure 5.11 — Length Effect on MOE (Madsen 1992)

A comparison of the results obtained by Gentile et al. (2002), Svecova and Eden (2004)

and the current study, shown in Figure 5.12. Figure 5.12 demonstrates, as Madsen (1992)
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did, an increase in the MOE with an increase in length. Since 22 test results for the
specimens reinforced for flexure and shear were from Svecova and Eden (2004) as
compared to the 6 tested in this study, the MOE for these specimens appears low due to
the short length of the specimens tested by Svecova and Eden (2004). All beams tested

were used to create Figure 5.12, control, flexurally reinforced, and flexure and shear

reinforced.
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Figure 5.12 - MOE Trend for Timber Beams of Different Lengths

The flexurally reinforced specimen results were not affected since the spans used
were comparable in both studies. The MOE results of the contro] specimens may also
have been affected since 9 of the 26 test results used were obtained using the shorter

spans of 1.8 m. This could indicate a larger increase in the MOE when comparing the
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specimen reinforced for flexure only and the control specimens. Despite adjustments for
shear deflection the increase in MOE with an increase in length remains, and therefore,
there must be at least one other phenomenon that remains unknown (Madsen 1992).
Definite conclusions could not be reached as to the effect of GFRP reinforcing bars on
the MOE of timber stringers based on these test results.

Gentile et al. (2002) obtained no significant increase in the 10% percentile MOE
value as did Svecova and Eden (2004) when comparing just their own results.

The amount of GFRP bars needed to obtain the desired strength increase is small,
with a reinforcement ratio of 0.53% used in this study. Considering the low MOE of
GFRP (approximately 47 GPa), and the test results, it can be stated that GFRP reinforcing
bars have a negligible effect on the MOE of timber stringers. If an increase in the MOE
is required, use of carbon fibre reinforced polymer (CFRP) bars or external prestressing

strands may be suggested.

5.3.2  Strength Results of the Combined Data Set

To increase the sample size, results from Gentile (2000) and Eden (2002) were
incorporated giving a total of 78 beams (26 control, 24 flexurally reinforced, and 28
reinforced for flexure and shear) as shown in Table 5.8. The beams were tested in three-
point, or four-point bending with lengths ranging from 1800 mm to 4000 mm, the details

are presented in Table 5.9.
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Table 5.8 — Number of Stringer used for Statistical Analysis by Type and Author

Beam Type  Current Study  Gentile (2000) Eden (2002) Total
C 8 9 9 26
F 12 12 0 24
FD 6 0 22 28

Table 5.9 — Details of Beams used in Statistical Analysis

Beam Diagram Length Depth Width a # of

(mm) (mm) (mm) (mm) beams

c | 0
Gentile A
4000 300 100 600
FoL N 12
A [@]
C l 1 9
Eden A ©
1800 300 100 600
(2002) J—2]
o LT 2
A

The beams tested by Gentile (2000) and Eden (2002) did fail in tension and thus
the MOR is reported here. The beams tested in the current study did not fail in tension
and thus the tensile stress at failure is reported in this section. Despite this the results of
the current study were used thus increasing the number of results available and ensuring

the analysis is conservative since 26 out of the 78 test results of the combined data set
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would have achieved slightly higher tensile stresses if the mode of failure had been
tension. For the following analysis all the tensile stresses at failure for all the specimens
used in the combined data set will be considered the MOR of that particular specimen.

The experimental data had to be adjusted for depth and length effects, because
the beams had varying depth and load configuration schemes. The reference' beam
chosen was, a “2x10” beam in bending.

The tensile stress at failure for all 78 beams were compared using a histogram
shown in Figure 5.13. The peak MOR ranges were found to be 30-35 MPa for the
control specimens, 36-41 MPa for the flexurally reinforced specimens and 42-47 MPa for
the specimens reinforced for flexure and shear. The specimens reinforced for flexure and
shear have the highest peak MOR range of 42-47 MPa as anticipated. A smaller than
anticipated increase in the peak strength range between the flexurally reinforced and
control beams occurred, based on the results reported by Gentile (2000), which was
primarily due to the fact the beams tested by Gentile et al. (2002) did not have a dap and
were graded as No. 1 or No. 2, and therefore were able to withstand higher loads before
failure even without shear reinforcement. It is clear based on the present test results that
when beams with dapped ends are used, it is essential to incorporate the shear
reinforcement, at least in the vicinty of the dap, to prevent dap and horizontal shear
failures that may be initiated when the flexural capacity of the beam is incresed by the

addition of flexural reinforcement.
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Figure 5.13 - Combined Modulus of Rupture Histogram

A 3-parameter Weibull distribution analysis was completed on the combined data
set, and the cumulative probability graphs for the MOR values are given in F igure 5.14.
The analysis shows a 22% increase in the 10™ percentile MOR value of the flexurally
reinforced specimens compared to the control specimens. Note that the stringers used in
the current study were dapped and those used by Gentile et al. (2002) and Svecova and
Eden (2004) were not dapped. This may have effected the results slightly since the

stringers from the previous studies did not have any possibilty of a dap failure mode.
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A 70% increase in the 10™ percentile MOR value of the specimens reinforced for
both shear and flexure compared to the control specimens was obtained, as shown in
Figure 5.15. This increase is much larger than the required 30%, as stated previously.
The fact that some of the stringers had daps would have had very little if any effect on
these results since the dowel bars effectively eliminated dap failures. None of the beams
tested failed due to rupture of GFRP reinforcement thus, all stringers reinforced with

flexural and shear reinforcement had the possibility of similar failure modes.
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Figure 5.14 — Combined 3-parameter Weibull Probability Results for MOR Adjusted to a 38x256
mm size

The Weibull parameters obtained for the combined data set analysis are presented

in Table 5.10.
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Table 5.10 — Weibull Parameters from Combined Data Set Analysis

Specimen Shape (k) Scale (m;) Location (x,)
CWC (No.1) (1994) 1.34 19.58 13.04
C 1.08 15.00 17.83
F 2.01 23.00 17.37
FD 2.58 14.00 28.38

To compare the results of the CWC and the control specimens an arbitrary Weibull curve
was created with strength values ranging from 13 to 90 MPa and is presented in Figure
5.15. It demonstrates how close the results from the CWC and the control stringers
actually are, especially for higher values of MOR. Thus, the control stringers are
considered equivalent to No.1 grade timber, which does fit with the previously discussed
visual grading scheme. All other grades of CWC douglas fir 38 x 256 mm Weibull
parameters for the MOR were used and compared to the confrol results. From this
analysis the No.1 grade parameters were found to give the best fit to the experimental

results.
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Figure 5.16 displays the Weibull distribution results obtained for all the

specimens adjsuted to the size of the stringers of this current study, as opposed to the

previous analysis which adjusted all the stringers to a 38 x 256 mm size. This was done

since the CSA design value for timber stringers is only valid for stringer 101.6 mm (4™

wide or larger (CSA 1995). Since all the stringers tested are approximetly 100 mm wide,

the beams of this current study were chosen to be the reference beams and thus be able to

compare the results of this analysis directly to the CSA design value. The size effect

factor used to adjust the strength results so as to make direct comparisons with the results

of the current study are presented in Table 5.11.
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Table 5.11 — Size Effect Factors to Obtain Equivalent Sized Stringers to the Current Study

Size Effect Factors
Source
Stressed Length Depth Overall
Current Study 1.000 1.000 1.000
Eden (2002) 1.079 0.923 0.996
Gentile (2000) 1.145 0.923 1.056

The CSA design value for select structural timber stringers is 19.5 MPa. It can be
derived from Figure 5.16, there is a 26% increase of the 5% percentile strength of the
flexurally reinforced specimens and a 66% increase in strength of the flexural and shear

reinforced specimens as compared to the CSA design value. The control specimens are
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only a few percent higher than this value despite being graded from No.1 to reject. The
grading used was visual and may not always exactly represent the way in which a
particular stringer will react to the applied load. Thus, the control stringers tested do in
fact match very closely to the CSA design value for select structual timber beams. The
5t percentile is discussed here since the CSA design value is a 5% percentile value and a
direct comparison was to be made. If the 10" percentile value was used, as discussed
earlier, a comparison between the CSA value and those obtained from testing could not

be compared directly.

5.4 Strength Models

The applicability of the strength model developed by Buchanan (1984) and
modified by Gentile (2000) was investigated. A new strength model was developed
based on the work of Buchanan (1984) and using a modified stress distribution to account
for the addition of the flexural reinforcement. As discussed in Chapter 2, the equations
developed by Buchanan (1984) and Gentile (2000) are for plain stringers and for stringers
reinforced with GFRP flexural bars, respectively.

The parameters required to determine the predicted strength values using the
strength models presented in the following sections are presented in Tables 5.12 through

5.15.
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Table 5.12 - Weibull Distribution Parameters for Select Structural Douglas-Fir (Barrett and Lau
1994)

ucCs UTS

Shape (k) 2.79 1.86

Scale (m;) 24.13 20.62
Location (x¢) 14.9 10

Table 5.13 - Sizes of the Tension and Compression Specimens (Barrett and Lau 1994)

Specimen Type Length (mm) Depth (mm)
Tension 3683 235
Compression 4267 235

Table 5.14 - Length and Depth Factors for Tensile and Compression Strengths (Barrett and Lau
1994)

k1 k2
Tension 59 4.4
Compression 10 9.1

Table 5.15 - Modulus of Elasticity Results (Barrett and Lau 1994)

Modulus of Elasticity (MPa)

Mean 12914

5™ percentile 8860
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54.1 Plain and Flexurally Reinforced Strength Models

The theory presented in Chapter 2 for Buchanan’s (1984) plain timber strength
model was used to calculate the theoretical strength values of the tested control timber
stringers. The results of this analysis are presented in Figure 5.17. Buchanan’s (1984)
strength equation gave very good correlation between the tested strength of control
stringers and the theoretical strength. Only 3 stringer strengths, or 11.5%, were over

estimated, the rest were exactly predicted or underpredicted making the model somewhat

conservative.
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Figure 5.17 - Strength Results for the Analysis of the Control Specimens

Gentile (2000) modified Buchanan’s (1984) equation by using a parameter
a, as shown in Equation 5.5. The value of o was determined to be 1.3 for flexurally

reinforced specimens. o is an overall factor used to adjust the Buchanan’s (1984) plain
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timber strength equation to fit the strength results of the flexurally reinforced stringers.
To determine if this value fit the combined data sets for all beams reinfofced in flexure,
various values of o were used in the calculations of the theoretical strength values. The
theoretical strength values were then compared to the actual test data to determine the
best fit. The equation developed by Gentile (2000) was presented in Equation 2.15 and

again in Equation 5.5.

551 f, = o{"fl)"’ %,

Figure 5.14 displays the results of using an o factor equal to 1.3 as determined by
Gentile (2000). A ks value of 10 was used as for the plain timber model.

As seen in Figure 5.18, the o value of 1.3 over predicts the strengths of 42%
flexurally reinforced timber stringers. This is because Gentile (2000) had limited data to
base his conclusions on. With the addition of 12 more test results from this study a more

refined o factor can be decided upon.
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Figure 5.18 - Strength Results for the Analysis of the Flexurally Reinforced Specimens with a=1.3

Figure 5.19 displays the calculated strength values versus the experimental values
using an o value of 1.1 for the flexurally reinforced specimens. Except for the outlyer,
which will be ignored, the predicted and measured values fit well when using an o value
of 1.1.  The majority of the values were underpredicted, thus making the model
somewhat conservative. This model over estimated 6 strengths, or 25% of the beams.
This is not as conservative as Buchanan’s (1984) but still gives a fairly accurate
representation of the actual strength of a timber stringer reinforced with GFRP bars for
flexure if the original value of o is changed based on the larger number of the sample to
L1, It must.be expected to over predict some of the terms since timber gives such

varying results. A sample calculation of the predicted strength is presented in the

Appendix A.
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Figure 5.19 — Strength Results for the Analysis of the Flexurally Reinforced Specimens with o=1.1

Figure 520 displays the predicted versus measured strength values for the
specimens reinforced for flexure and shear using an o of 1.3. An o value of 1.6 was
determined the give the best fit between the measured and predicted strength values and
is presented in Figure 5.21. The flexural and shear reinforced specimen results have
much less spread and therefore are easier to fit the strength equation to. All the data
points in Figure 5.21 are underpredicted or predicted exactly thus making this model
conservative, yet not too conservative since the spread in the data is significantly less

than with the control and flexurally reinforced specimens.
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Figure 5.20 - Strength Values for Flexural and Shear Reinforced Specimens with a=1.3
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Figure 5.21- Strength Values for Flexural and Shear Reinforced Specimens with a=1.6
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5.4.2 Strength Model using Modified Stress Distributions

The modular ratio was used to increase the stress at the location of the FRP
reinforcement to depict a more accurate stress distribution with the addition of the FRP
bars. Figure 5.22 depicts the new stress distributions.

The same process used to derive the bending strength equation for a plain
timber beam will be used to derive a bending strength equation for a reinforced timber

beam.

(@) (b) ()
Figure 5.22 — a) Cross-section b) Axial Tension Stress Distribution of Reinforced Section

c)Bending Stress Distribution of Reinforced Section

Using equation 2.8 the Weibull probability function for the tension stresses is

561 F(f,)=1- e(“i{f(%]dy[wj dD

where: fi, is the tensile strength
n is the modular ratio
dp is the diameter of the reinforcing bar
all other terms are the same as in equation 2.8

By completing the integral in equation 5.6 and simplifying, equation 5.7 is obtained.
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-;,[(-{g-)"’ oo

The Weibull probability equation for the bending stresses is as follows
1 =\ x, (n=1))"3
‘ZU () o257 H

where, from Figure 5.15¢)

571 F(f,)= l—e(

[5.8] F(x)=1~e[

[5.9] x==

C

and at the level of FRP reinforcement

[5.10] =f,,,(1—~——y”f’f’]
cd

Substituting equations 5.9 and 5.10 into equation 5.7 gives

3
-1— I(_}ifl,,_)h_’_ fm[l od J(n l)

- d,
dy med m

/A
[5.11] F(—JJ—I

By completing the integral in equation 5.11 from 0 to cd and simplifying, equation 5.12 is

obtained.

o oA

c

As stated previously f, can be determined as a ratio of fy,. To this end, equations 5.7 and

5.12 are equated and simplified to give

[5.13] fm"’<d+(n—1)k’db>=fm"’[kcil+([1—%§’1J(”“1)] d,

Thus the bending strength of a timber beam reinforced for flexure is
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d+(n-1)°d,

ks
A 1-222 )] a,
k +1 cd

The results of using equation 5.14 are presented in Figures 5.23 to 5.25. Figure

-f;ll

5.22 displays the scatter plot of the measured versus predicted strength values for the
flexurally reinforced specimens using the modified stress distribution equation. The fit of
the results of equation 5.14 is much like the fit of the control specimens to the equation
developed by Buchanan (1984). Equation 5.14 is not too conservative, as there are 4 or
17% over estimated, but at the same time it is not unconservative as the majority of the
specimens are underpredicted. If the one outlyer is ignored, only 3 strengths were over
predicted or 12.5%. Equation 5.14 gives good correlation between the measured and
predicted strengths for the high strength specimens as well as the lower strength
specimens, as shown in Figure 23. The one outlier is an anomaly and was caused by
determining a very large stiffness from testing but measuring a low strength. The outlyer
is stringer F9 that failed in tension originating at a crack and in the general vicinity of a
knot. This failure was discussed at length in the section 4.4. The tension failure mode
caused an abnormally low strength result and thus could not be predicted by any of the
strength models. Norméllly a large stiffness would indicate a high strength specimen.
This erroneous result is ignored during discussions of the results of this equation and in

any conclusions made.
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Figure 5.23 — Strength Results for the Flexurally Reinforced Timbers Stringers using the Modified
Stress Distribution Equation

Equation 5.14 was also used to predict the results of the flexurally and shear
reinforced specimens. As seen in Figure 5.24, the results are conservative and linear in

nature with very little scatter as would be expected since the tension and shear failures

were eliminated.
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Figure 5.24 ~Strength Results for the Flexural and Shear Reinforced Timber Stringers using the
Modified Stress Distribution Equation

The conservative nature of this equation with the FD specimens would indicate an
additional adjustment must be made to account for the shear reinforcement. To
determine the magnitude of this adjustment, the results were multiplied by a factor until a
good fit could be found. Figure 5.25 displays the result of this analysis. It was
determined a factor of 1.5 gave exact correlation between the measured and predicted
value. Thus, it appears the addition of shear reinforcenient has increased the strength of

the stringers by 50% when using equation 5.14 to predict the strength values.
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Figure 5.25 - Strengths of Flexural and Shear Reinforced Timber Stringers using the Modidfied
Stress Distribution Equation and a Factor of 1.5

Further investigation is required to determine the exact effects of adding shear
reinforcement and to determine an appropriate alteration to equation 5.14. This alteration
should include the material properties of both the timber and shear reinforcement, much
like equation 5.14 does for flexural reinforcement. By including the properties of the
shear reinforcement the equation is not specific for a particular type of reinforcement and
suitable for use with a variety of reinforcing bars. Although conservative, Equation 5.14

can be safely used for predicting the strength of timber beams reinforced for both flexure

and shear.
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CHAPTER 6 SUMMARY AND CONCLUSIONS

Experimental program was carried out at the University of Manitoba to
investigate the behaviour of timber beams, pressure treated with creosote and
strengthened using GFRP bars. Two types of beams were tested — rectangular beams and
beams with dapped ends. It is the conclusion of this investigation that dapped ends
significantly decrease the strength of the beams and therefore are not recommended for
future use in practice unless the ends are strengthened. The existing dapped beams may
be sufficiently strengthened using the methods presented in this thesis.

It is feasible to use GFRP bars to reinforce dapped timber stringers. The use of
only flexural reinforcement is not recommended for dapped timber beams as dap failures
occur and reduce the ultimate strength of the beam significantly. The use of both flexural
and shear reinforcement for dapped timber beams was proved to increase the strength
significantly. If both forms of reinforcement are used an increase of 66% in the 5™
percentile MOR value could be achieved when compared to the CSA design value for
timber stringers, based on the 78 large to medium scale stringers tested to date. The
addition of both the flexural and shear reinforcement bridges the natural defects present
in the timber beams. This results in less dispersion of the test results and increased
strength.

The ductility of the stringers is increased with the addition of GFRP
reinforcement. With the addition of only flexural reinforcement the increase in ductility

is smaller compared to the stringers with both flexural and shear reinforcement.
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Th¢ bond between the timber, epoxy and GFRP was good throughout the test and
was not the cause of failure in any specimen.

A minimum safety factor (B) of 3.5 can be obtained if both flexural and shear
reinforcement are used. A safety factor (B) of 3.5 cannot be obtained by the addition of
just the flexural reinforcement.

The strength model developed by Gentile (2000) needed to be adjusted to fit the
test data obtained in this study. This is a result of the use of different GFRP bars used in
this study as well as increased number of test beams. Thus, if this model is to be used an
investigation to determine the proper o term to be applied to the theoretical strength
value must be completed. This is a result of the discrepancy between the results obtained
in this study and those obtained by Gentile (2000). Further testing would refine the o and
make it suitable for use.

The strength model developed in this thesis is using a modified stress distribution
to account for the addition of the flexural reinforcement fit the test data for the flexurally
reinforced stringers very well. This equation is recommended for use with flexurally
reinforced timber stringers, however this model must be adjusted to account for the
effects of adding shear reinforcement. Currently a factor of 1.5 is used for this purpose
based on the 28 timber stringers tested to date. Further refinement of the model is
needed.

The use of GFRP bars to reinforce dapped timber stringers is a viable
rehabilitation scheme, as long as both flexural and shear reinforcement is used. The shear
reinforcement is needed to control the dap failures as well as to prevent the propagation

of shear cracks.
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Sample Calculation of the Theoretical Strength usin

(2000).
Modulus of Elusticity
From CWC
Mean = 12914 MPa
st percentile 8860 MPa

Assume MOE follows u Normal Distribution

Ps=Mean-1.645(SD)

E,=Mean+z(SD)
z=

F(z) =

-0.78922669

g the Method Developed by Gentile

- Culculate standard normal random variable (x) of E,,

0.214989696 From Table of Standard Normal Curve Areas

From the Canadian Lumber Properties (Burrett und Lau, 1994)
which used a 3-point Weibull distribution to calculate UCS and UTS

SD=  2464.43769 Table 1.25 (UCS) Table 1.13 (UTS)
MOE of the beam in question 'Sthape, k 2.79 1.86
E,= 10969 MPa Scale, m; 24,13 20.62
‘ Location, x, 149 10
Location Parameter or Minimum Strength, x
Weibull Equation
x-x, i Calculation of Equivalent Stressed Length, L ,
{_[T] } ak,  (mm) k L (mm)
F(x)=1-e b [UCs 600 10 4000
L = L JuTs 600 59 4000
UCS= 2941  MPa ky+1 UCS (mm) UTS (mm)
UTS = 19.62 MPa L.= 909.09091 1092.7536

/ L., equation specific for four point loading

Calculution of Ultimate Compressive and Tensile Strengths
The length and depth effects must be considered and used

1o modify the CWC properties

k, ks From the Canadian Lumber Properties, Table 3.5
Tension 5.9 4.4 Lyes= 4267 mm
Compression 10 9.1 [From the Canadian Lumber Properties, Table 3.7
Lyrs = 3683 mm
dycs = 235 mm
dyps = 235 mm d= 300 mm
depth of beam in question
fou= 33.42 MPa
fu = 22,80 MPa

Calculation of Transformed Section Properties

d E
pu— —_— 7}
bd 51 (r-1)4,,v, . wo= 7
T T b (-1 L
+(n Ip
n= 5.105296745
Y= 146.0919465 Tensile Bending Strength, f,
yu/d or ¢ = 0.486973155 ’ i
ky + 14
fm = .flu
C
m= 18285323 £, = 31.14 MPa
a= 1.3

Yeild Strain, e,

56000 MPa
10969 MPa
246 mm?®

30 mm
100 mm

10 from calibration of model
was found to give good
agreement

g, = 0.0030469

116



L11

95766'961
LLBEEE0T
97956'60T
80798°91C
9SYLOPTT
LYEI9'1ET
S1005°6£T
91T8LYT
966E¥'95T
6YS66'8%C
8zol'0vT
1o1z'iee
IPLIETTT
LyTyele
102£5°v0T
TE6E9°S61
99vL'981
C6E58°LLL
€T196'891
£6890°091
¥8SLI'IST
432 a4
Fro6eeel
SLLev el
S0S09°STI
SECIL901
859618°L6
79697688
99TvE0°08
LSIYTIL
€L88VTT9
LLI9SE'ES
R34 444
S8LOLS'SE
6808L9°9T
T6ES8LLT
7969768'8
N3
m>—0

LGYEETI88SE
980SY6ZEL'T
EVIE1T000°T
[858v$98¢€°1
LLBBLBBRO

S868L6E0S0
T965SE6TTO
9EPY6¥190°0
8TYLSY000°0

EZOOOOOOOOOOOOOOOOOOOOOODOOOOO

~>d

¥8950°€TT
$0600°011
CEIEBE96
12L891°28
12015¢€°LY
95LS16'LS
S659¥8°SE
8ESELE'BI
89110291

ISITTT 1Y
T150L0°0F
L1¥yT6'8¢
P16€8L°LE
LEO6Y99E
T08615°SE
y0T96€'vE
SYT9LT €€
v6vo1°Ce
12815970t
191L§5°6T
89 74% 8 14
TWLL9E LT
TE0ELT 9T
TTEBLI'ST
£19¢€80'VC
£06886'TC
£61768°1C
y8Y66L°0T
YLLYOL 61
¥90019°81
SSESISLY
SY90Ty 9t
§E65TEST
9TTIET Y1
9159¢T et
9081¥0°C1
L60LY60T
L8ETS6
ELLILSL'8
9L96799°L
8578959
E8YSELY'S
LBESBLEY
6T1IV8T'E
£61v681°C
L60LY60'T
NA
_E.H

S6LESIVTST
LIYTOT0'9LT
916951¥'69T
SLEVEEITIT
TEE599°65T

L6GEETS 8T
16686L1°1¥T
9SEL6TLEET
TEL0S0079TT
PETIEPEBIT
69€95¥5°01T
£0S9LYL7T0T
8£996¥6' V61
CTLLIIST L8
LO69ESE6LT
[§272999% VA
9LILLSL'E9]
[EL6S6'SST

SYYLIOI8YT
6LSLEIL OV
PILLEISTEL
8Y8LLIL YT
£86L696'911
LIT8ILT 60T
TSTBELEIOT
198€85L5°€6
90TS8LLL'SS
1SS986L6'LL
968L3181°0L
[¥T68€8£°79
58506585'VS
£616L8L°9%

SLTE6686'8¢E
TOV6I61°1E

§9656£6£°€T
1EL656S°ST

155986L6L°L

N
L

91E€C66T00°0
61480670070
¥T5578700°0
SELTPLTO0O
¥SE099200°0
£8€8L5T00°0
12896¥200°0
£TESIYT00°0
€S8YEETO00
70STTTO00
SSSEPITO00
609907000
$79986100°0
91L06100°0
$69LTBI000
€78YL100°0
$9L899100°0
£685100°0
S€860S100°0
LEOEVI000
S060S£100°0
Yr1L2100°0
SLOI6T1T1000
1STIT100°0
SYOEE0100°0
85£56000°0
S11$L8000°0
§9%6L000°0
S8ISILO00O
TLSE9000°0
$ST9$S000°0
6L9L¥000°0
STEL6E0000
98L1£000°0
$6£8£7000°0
£6851000°0
S0-H59V6°L

diyy

S€0085°1€E
9696¢8°1€
¥8L680°TE
950£€°CE
1LTT95°TE
9PIs8LTE
¥666'CE
L6TS0T'EE
61870¥'¢E
96€95€£°TE
18007'1¢
STTSYO'0E
6£9688°8C
£SOVEL'LT
89¥8L5°9C
788TTY'ST
LOTLITVT
TILTIT'ET
9T1956°1T
¥5008°0C
SS6VP961
69£687'81
€8LEEE'LL
8618L191
T192T0's1
LT0LITET
IPPIILTT
958555711
LTO0Y'01
SY89VPT'6
6360680°8
PEISEES'S
8LTOLLL'S
TTheTeyy
LISLIIY'E
LILITIET
9S85SSTT
BIN
do %y

6Yv6°0
LTS6°0
10960
$L96°0
EVL60
01860
vL86°0
§€66°0
¥666°0
0000°1
00001
0000°I
0000'1
0000'1
00001
00001
00001
00001
00001
0000°1
0000°1
00001
00001
00001
00001
00001
0000'1
0000’1
0000t
0000°1
0000°1
0000'1
0000'1
00001
00001
00001
0000'1

68886T1°0
LE9ISTITO
L811001°0
ELTLYROO
65¥6890°0
8€8LTSO0
£6079€0°0
£9¥6810°0
L19100°0

OOOOOOOOOOOOOOOOOOOOOOOOOOOO

LEVOTOE 0
ST0950V°0
9708810
LLLSTEY'O
S¥969¥°0
$T00T9Y'0
IPELLLY O
TEEEY6Y0
TYesiiso
8970LIS0
89T0E1IS0
8970€15°0
89T0€150
8970€1S0
89CT0€IS0
89C0E1S0
89T0EIS0
8970CIS0
8970€1IS0
8970150
8970CIS0
8970C1S0
89C0EIS0
89T0€1S0
89T0€IS0
89C0E1S0
89Z0€1S0
8970EIS0
8970¢15°0
8970L1S0
89T0€IS0
89Z0€IS0
8920€15°0
89C0EIS0
8970€150
8920¢IS0
89Z0€1S0

q

160¥S0¥00°0
980716£00°0
9IESLLEQOO
6E9E¥9£00°0
T6915€00°0
T€056££00°0
6S8LLTEODO
LSTS91£00°0
SETLSOE000
¥086¥6200°0
ES¥¥P8T00°0
€016£LT00°0
£SLEEITO00
€0¥8TST00°0
£S0ETYT00°0
€0LLTET000
€SETITTO00
£00L01200°0
T$9100700°0
70£968100°0
TS606L100°0
2095891000
75T085100°0
T06VLYT100°0
TSS69£100°0
0TY9TI00°0
158851100°0
105£50100°0
1S18¥6000°0
108Z¥8000°0
ISPLELO00O
101Z£9000°0
15L9T5000°0
10v1Tv000'0
S091£000°0
LO12000°0
§€501000°0

°3

L69V6895°0Y
LLILYISS O
LTTYRSES O
SY9ITTS OF
6£655015°0F
1224288054
[£34 38714114
88L09884°0F
¥88SYL8Y 0¥
€5L0598°0%
£5L0598% 0
£5L0S98Y O
£5L0598%°0F
£5L0S98Y 0V
£5L05987°0%
£5L0598Y°0F
£5L0598Y°0V
£5L0598V°0F
€5L0598¢°0V
£5L0598Y 0
£5L0598Y°0V
£5L0S98Y°0F
£5L0S9870F
€5L0598V°0Y
£5L0598Y 0¥
£5L0598Y°0F
£5L0598%°0F
£5L0598Y 0
£5L0S98%°0F
£5L0598y°0F
£5L05987°0F
£5L0598Y 0O
£5L0S98Y 0P
£5L0598V°0F
€5L0598%°0F
£5L0598Y 0¥
£5L0598%°0b
BdN
EMNV

£585°0F
$88p°6¢
S16€°8¢
9veT'LE
LL61'9E
8001°SE
6£00°vE
LO6'TE
1018°1¢
eiLoe
£919°62
Y615°8C
STV LT
95TE°9T
L8TT'ST
8IEI'VT
6¥£0°€T
8£6'1T
[1¥8°0T
(4474
£LV9'81
RV WA
SESY'OL
995¢°S1
L6ST VI
8791°¢l
6590°T1
69601
I2L8°6
TSLL'S
£€8L9°L
¥i8s9
92149
9LEY
L06T°E
8£61°C
6960'1
edN
kJ

LEO00
9£00°0
$€00°0
¥£00°0
£€00°0
€000
1£00°0
£00°0
6700°0
87000
LT00°0
97000
§200°0
¥700°0
£200°0
77000
[200°0
T00°0
61000
8100°0
L1000
91000
§100°0
$100°0
£100°0
TLo00
11000
100°0
60000
80000
L0000
90000
§000°0
¥000°0
€000°0
20000
10000

67T8890C' 1€
86EPE6LIE
CILIVI8I'IE
LLSGBOLT'IE
9L896I9T IE
S6IYLYSI'IE
£9SEEGVIIE
86780SHI'IE
[A1184 40 £
EELIVEYT IE
CELOVEVT'IE
CELIVEVT IE
EELOVEVT IE
CELOPEVT'IE
EELOPEVT'IE
CELOVEVT'IE
EELIVEVT'IE
LELOVEVT IE
EELIVEPT'IE
EELIVEVT'IE
EELIVEYT IE
EELIVEVLIE
EELOVEVT'IE
EELOVEYT'IE
ECELOVEVT'IE
EELOVEVI'IE
CELIPEVT'IE
EELIVEVTIE
EELOVEVT IE
EELIVEPT'IE
EELOVEPT'IE
EELOVEVT IE
EELIVEVTIE
CELOVEVT'IE
CELOPEVT IE
EELOVEVT'IE
CELOVEVT'IE
BdN
3

Ly
T6LY0
LI8¥°0
LTBYO
v8y°0
[A%:144]
198¥°0
L98Y'0
69840
0L8Y0
0L87°0
0L8V'0
0L8V°0
0L8Y0
0L8Y'0
0L8%°0
0L8Y°0
0L8%°0
0L8Y°0
0L8%°0
0L8V°0
0L8Y'0
0L8YV0
0L8Y0
72140}
0L8V°0
0L8Y°0
0L8V0
0L8V°0
0L8Y°0
0L8v'0
0L8YV°0
0L8Y°0
0L8%°0
0L8%°0
0L8Y0
0L8Y°0



APPENDIX B

118



Location (mm)

Location (mm)

466
350
/ / S 7 ~
300 A~ - S
/ -
//’// -
7 -
250 L e
A o I
/4 /
s /
— 2.7 190
2 196
Tt s
e 7anL
L 10011
50
. . o . . .
-0.6 0.4 0.2 0 0.2 0.4 0.6 0.8
Strain (ms)
L 20kN 40 kN 60kN ~—— 80 kN == =100 kN === 20 kN ------ 140kN—]
Figure B1 ~ Cross-sectional Strain Profile for C1
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Figure B2 - Cross-sectional Strain Profile for C2
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Figure B4 - Cross-sectional Strain Profile for C4
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Figure B6 - Cross-sectional Strain Profile for C6
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Figure B8 - Cross-sectional Strain Profile for C8
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Figure B9 — Cross-sectional Strain Profile for F1
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Figure B10 — Cross-sectional Strain Profile for F2
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Figure B11 — Cross-sectional Strain Profile for F3
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Figure B12 — Cross-sectional Strain for F4
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Figure B13 — Cross-sectional Strain Profile for F5
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Figure B14 — Cross-sectional Strain Profile for F6
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Figure B15 — Cross-sectional Strain Profile for F7
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Figure B16 — Cross-sectional Strain Profile for F8
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Figure B17 — Cross-sectional Strain Profile F9
280
300
/ / 7 /
266
///
///
50— A
2y
PES ~
T
L FE T /
e s T n
R =Y
=22
e, -~ .
-3 2.5 2 -15 -1 -0.5 0 0.5 1 15 2
Strain (ms)
[——20kN 40 kN 60 KN — ~~ 80 kN == =100 kN === [20kN ------ 140 kN |

Figure B18 — Cross-sectional Strain Profile F10
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Figure B19 - Strain Profile of the Flexural Bars F1
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Figure B20 — Strain Profile for the Flexural Bars F2
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Figure B22 — Strain Profile of the Flexural Bars F4
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Figure B23 — Strain Profile for the Flexural Bars F5
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Figure B24 — Strain Profile for the Flexural Bars F6
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Figure B25 — Strain Profile for the Flexural Bars F7
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Figure B26 — Strain Profile for the Flexural Bars F8
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Figure B27 — Strain Profile for the Flexural Bars F9
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Figure B28 — Strain Profile for the Flexural Bars F10
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Figure B30 — Cross-sectional Strain Profile FD2
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Figure B32 — Cross-sectional Strain Profile FD4
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Figure B34 — Cross-sectional Strain Profile FD6
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Figure B37 — Strain Profile for the Flexural Bars FD3
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Figure B38 — Strain Profile for the Flexural Bars FD4
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Figure B40 — Strain Profile for the Flexural Bars FD6
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1 2 3 4 5 6 7 8 9 10 11 12 13

El n, Voar (M) A(Y-Yoar) I+4 2x4 I, Egrre Ny Sy E. Ultimate Tensile
(kNmm?) (mm®*) (mm*) (mm®*) 5+6 (MPa) 8x7 (mm®) 8 Load Stress
x10"? x10° x10° (mm®) 1 x10° 9 (kN) (MPa)
x10° (MPa)

3.93 2.00 199.9 400 533.3 8.182 541.5 47400 6.48 2.708 72574 94.33 29.6
3.93 6.48 199.8 400 533.3 26.478 559.8 47400 6.69 2.801 7020.2 94.33 28.6
3.93 6.69 199.8 400 5333 27.334 560.6 47400 6.71 2.805 7009.5 94.33 28.6
3.93 6.71 199.8 400 533.3 27.416 560.7 47400 6.71 2.806 7008.5 94.33 28.6

a - estimated

b - calculated

A - area of stringer = 40,000 mm?

I — moment of intertia of nominal section = 0.53 x10° mm*
y — centroid of nominal section = 200 mm

L- length of the sringer = 3400 mm

For column 13 see equation 5.1
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