
Application of Machine Learning

to Computer Network Security

by

Jason Haydaman

A Thesis submitted to the Faculty of Graduate Studies of

The University of Manitoba

in partial fulfillment of the requirements of the degree of

MASTER OF SCIENCE

Department of Electrical and Computer Engineering

University of Manitoba

Winnipeg, Manitoba, Canada

Copyright c©2017 Jason Haydaman

iii

University of Manitoba

Abstract
Faculty of Engineering

Department of Electrical and Computer Engineering

Master of Science

Application of Machine Learning to Computer Network Security

by Jason Haydaman

Computer Security covers a wide array of topics, with much of the develop-

ment in the field happening outside academia. We look at intrusion detec-

tion, and evaluate the effectiveness of machine learning in the development

of a commercial intrusion detection system (IDS), and compare it with con-

ventional IDS design approaches. We attempt to create novel data sets, and

examine the difficulties of extracting new features from network traffic to

aid machine learning based systems. Finally, we propose a novel, near-zero

overhead method of associating network packets with the process identifier

(pid) of their source in real-time and demonstrate a significant performance

improvement over existing methods of pid labeling.

http://www.university.com
http://faculty.university.com
http://department.university.com

v

Acknowledgements
I would like to thank Prof. Bob McLeod for being my advisor for the past sev-

eral years and a never ending source of moral support, and Colin Gilmore,

who deserves a great deal of credit for both advice and for providing me with

so many industrial research opportunities. This work would not be what it

is without the both of them. Thank you.

vii

Contents

Abstract iii

Acknowledgements v

1 Overview of Research 1

1.1 Introduction and Scope of Research 1

1.1.1 Problem Statement . 2

1.1.2 Why Machine Learning? 2

1.2 Overview of Research . 2

1.2.1 Interface with Existing IDS 3

1.2.2 Replicate SVM Anomaly Detection 3

1.2.3 Attempt to Collect More Data 4

1.2.4 Attempt Classification of Encrypted Traffic 4

1.2.5 Traffic Labeling . 4

2 Literature Review 7

2.1 Intrusion Detection . 7

2.1.1 Network vs. Host . 7

2.1.2 Methodologies . 8

2.1.3 Signature Based . 8

2.1.4 Specification Based . 8

2.1.5 Anomaly Based . 9

2.2 Feature Selection . 10

2.3 Supervised vs. Unsupervised Learning 11

viii

2.4 Datasets . 12

2.5 Conclusions . 13

3 Data Collection 15

3.1 Introduction . 15

3.2 Novel Data Sources . 16

3.2.1 MERLIN Network . 16

3.3 Malware Sandbox . 16

4 Swarm Sensor Network 19

4.1 Introduction . 19

4.1.1 Design Overview . 20

4.1.2 Results . 22

5 Intrusion Detection 23

5.1 Introduction . 23

5.2 Machine Learning . 23

5.2.1 Choice of Algorithm . 23

5.2.2 Feature Selection . 24

5.2.3 Training . 24

5.2.4 Testing Methodology . 25

5.2.5 SVM Results . 25

5.3 Traditional IDS . 26

5.3.1 Reverse Geographic Communication Correlator 26

5.3.2 User-Agent Deprecation Detector 27

5.3.3 HTTP Connection without DNS Lookup 28

5.3.4 DNS Tunnel Detection 28

5.3.5 Correlation Results . 29

5.4 Overall IDS Results . 29

ix

6 Modeling 31

6.1 Introduction . 31

6.2 Problems with Feature Selection 31

6.3 Designing new Features . 32

6.4 Detecting Encrypted Traffic . 33

6.4.1 Entropy Estimation . 34

Approximate Entropy 35

Maurer’s Universal Test 36

6.4.2 Implementation and Results 37

Test 1 – Secure Copy . 37

Test 2 – Random Number Generator 39

Test 3 – 64KB Random Number Generator 40

Test 4 – Plain-text . 41

Test 5 – Large File Compression 41

6.5 Covert Channels . 42

6.6 Results . 44

7 Enhanced Data Collection Tools 47

7.1 Introduction . 47

7.2 Host Based Context Mining . 48

7.3 Design . 48

7.3.1 Linux Kernel Networking Hooks 49

7.4 Results . 54

8 Discussion 59

8.1 Conclusions . 59

8.2 Pid Labeling . 60

8.3 Future Work . 60

Bibliography 63

x

A Overview of the Linux Kernel Networking Subsystem 69

A.1 Socket System Call . 70

A.1.1 Socket Initialisation . 70

A.1.2 Network Layer . 74

A.2 Setsockopt System Call . 78

A.2.1 Implementation Details 78

A.2.2 Connect System Call . 80

A.2.3 Transport Layer . 82

A.3 Write System Call . 86

A.4 Read Syscall . 89

A.4.1 NAPI - New API . 90

B Expanded Literature Review 93

C Presentation Slides 105

xi

List of Tables

2.1 Network Traffic Features . 11

5.1 Network Traffic Features Used in SVM Classifier 24

5.2 SVM Confusion Matrix . 25

6.1 Test 1 – Approximate Entropy Results 38

6.2 Test 1 – Maurer’s Universal Test Results 38

6.3 Test 2 – Approximate Entropy Results 40

6.4 Test 2 – Maurer’s Universal Test Results 40

6.5 Test 3 – Approximate Entropy Results 41

6.6 Test 3 – Maurer’s Universal Test Results 41

6.7 Test 5 – Approximate Entropy Results 42

6.8 Test 5 – Maurer’s Universal Test Results 42

7.1 Packet Processing Times . 56

xiii

List of Figures

4.1 Swarm Sensor Network Overview 20

6.1 Packet-level view of sequence used for Test 1 39

7.1 Per-packet processing time using in-kernel pid resolution . . . 56

7.2 Per-packet processing time using userspace pid resolution . . 57

7.3 Per-packet processing time with no pid resolution 58

1

Chapter 1

Overview of Research

1.1 Introduction and Scope of Research

My research focuses on the application of machine learning to computer net-

work intrusion detection. Specifically, I focus on the detection of sophisti-

cated attackers which are labeled by industry and academia alike as Ad-

vanced Persistent Threats (APTs). My threat model assumes nation-state

level attackers with access to 0-day (unpatched and previously unknown)

vulnerabilities and other low-level backdoors. The assumption therefore is

that a security compromise is inevitable, and the focus turns from prevention

to detection of compromise. Intrusion Detection Systems (IDS) deployed in

industry rely on heuristics and signatures of known attacks [1] and there has

not been any use of machine learning in this area outside of academia. My

aim is to find an industrially applicable approach focused around machine

learning that can make advances towards the detection of APTs. Industrially

applicable in this context would mean that any alerts generated by the sys-

tem would need to be actionable, timely, and with a low false positive rate.

In addition, the system needs to be general in its ability to detect novel at-

tacks, as systems to detect known attacks already exist and see deployment

in industry.

2 Chapter 1. Overview of Research

1.1.1 Problem Statement

Does Machine Learning have anything to offer an IDS? Machine Learning

seems suitable for the detection of 0-day attacks in the form of anomalies,

but very little use of Machine Learning is found in industrially deployed IDS

products. Why?

1.1.2 Why Machine Learning?

I specifically focus on methods around machine learning due to the necessity

to adapt over time to changing attacks, and their resistance to analysis by

human attackers. A system that has to be manually tuned and updated over

time to detect known attack signatures (the current state of the art in indus-

try) is expensive, and will never be able to detect 0-day attacks by definition.

Machine learning, in contrast, is uniquely positioned to be able to learn of

commonalities in attacks carried out by APTs, if any exist, and detect them in

future attacks. Machine learning is also notorious, to the disdain of many, for

its inability to explain why it classifies the way it does. In other words, given

some trained model that classifies items into classes A or B, the classifier can-

not tell you what about a particular item makes it more A-like than B-like, or

vice versa. The trained model is opaque to analytic reductionist approaches

to understand it, which is a feature in this case. If we cannot determine why

our model classifies the way it does, then neither can an APT. This makes

it hard for the APT to tune their attacks to avoid detection because they are

unable to reason about the model.

1.2 Overview of Research

Recall our aim is to implement an industrially deployable Intrusion Detection

System (IDS) based on machine learning classification or anomaly detection

1.2. Overview of Research 3

algorithms. We take the following approaches:

1. Interface with existing IDS (Swarm network)

2. Replicate existing anomaly detection methods with SVM

3. Attempt to collect more data

4. Attempt classification of encrypted traffic

5. Propose a method of traffic labeling to potentially help solve the classi-

fication problem

1.2.1 Interface with Existing IDS

We first attempted to implement a system to improve the visibility of an ISP

IDS to systems behind customer NAT firewalls, and the results proved suc-

cessful. With this system in place, a new IDS could be used in place of the

existing commercial IDS, or in tandem with it. The motivation here was to

gain the ability to work with real network data, and have an existing IDS

system in place to compare results with.

1.2.2 Replicate SVM Anomaly Detection

We then proceeded to attempt to replicate previous studies of anomaly detec-

tion algorithms in IDS applications using a Support Vector Machine (SVM)

classifier trained with the ISCX 2012 data set [2]. We used features (Table

5.1) commonly found in the literature, but the results were mediocre. While

the classifier could identify some malicious traffic, it required a lot of inves-

tigative effort on the part of human analysts to determine what was mali-

cious about it. This was made worse when we implemented a competing

IDS based on correlators which had much better results, both with a lower

false-positive rate and able to provide context as to what was malicious about

the traffic.

4 Chapter 1. Overview of Research

1.2.3 Attempt to Collect More Data

As we have no reason to believe that SVM should not work, only that the in-

put data is insufficiently descriptive, we attempted to create our own labeled

training data set. For this, a malware sandbox was constructed and 2000

malware samples were run through it. However, our malware was mostly

inactive, and we were not able to obtain a sufficient data set from this ap-

proach.

1.2.4 Attempt Classification of Encrypted Traffic

Unable to improve our data sets, we decided to try to improve the features

we extract from them. Since encryption destroys any features beyond the

ones already considered, we decided to see if encrypted traffic identification

was possible. Additional motivation here is provided by the realization that

in many commercial networks there does not usually exist traffic that cannot

be decrypted. Most encryption takes the form of TLS, which many organiza-

tions are able to decrypt by using self-signed certificates that are added to the

root of trust of all corporate computers. While this is not true of all networks,

and is not true of all traffic, being able to know the volume of encrypted traf-

fic, and particularly encrypted traffic that does not match expected protocols

like TLS or SSH, seems useful. This proved successful, if allowing for the

existence of a filter that exhaustively removes all known compression algo-

rithms from consideration to avoid false-positives. However, this feature is

flawed in that an attacker can trivially avoid it using steganographic covert

channels, as we demonstrated.

1.2.5 Traffic Labeling

Having exhausted ideas for how to extract more data out of network traffic,

the scope of research was expanded to include obtaining information from

1.2. Overview of Research 5

the host machines involved in communication. Not wanting to abandon the

previous research entirely, we hypothesized that the defining reason why ex-

isting data sets do not work for anomaly detection is that traffic from different

sources "looks different", i.e., comes from different distributions. Therefore,

all traffic looks anomalous in some ways, and some literature supported this

hypothesis [1]. Therefore, it would be useful if we could label traffic with

its associated source in data sets. The answer to this is the proposed Linux

kernel hooks to associate traffic with its source in real-time.

7

Chapter 2

Literature Review

Included here is a brief literature review. For a more expanded review, see

Appendix B [3].

2.1 Intrusion Detection

2.1.1 Network vs. Host

Intrusion detection broadly falls into two categories (which may be used

together): network-based and host-based. The difference is the source of

available data, or features. A network approach can only provide data from

network traffic, or anything derived from network traffic. A host based

approach can provide (within technical constraints in implementation dif-

ficulty) any information that the operating system of the computer it is de-

ployed on could know. The advantage of a network based approach is that

it is much easier to deploy and develop than a host-based approach, because

it only requires the installation of a "sensor" on a network at a point where

it has visibility into all or the majority of the traffic on the network, such as

on a router. This also provides you with a wider context as to what is go-

ing on with the entire network, rather than only the activity of an individual

computer.

8 Chapter 2. Literature Review

A combined network and host based IDS would amalgamate packet data

from network taps with system logs or any other data that is being collected

from host machines. This is the most powerful approach generally, as it has

the most data available.

2.1.2 Methodologies

There are three common methodologies to intrusion detection: signature-

based, specification-based, and anomaly-based. [4]

2.1.3 Signature Based

Signature based detection techniques have the advantage of being simple

and effective at detecting known attacks, but are ineffective at detecting un-

known attacks. They also require signatures to be updated over time, which

requires a significant time investment. Therefore, a signature approach doesn’t

fit our threat model, because we assume that an APT will use previously un-

known attacks. Signature based approaches are also not as applicable to net-

work traffic as they are to traditional virus detection because of the common

use of encryption. While malware payloads are also often encrypted, the pay-

load must be decrypted at run-time before it can be executed. This is done

using a packer, which is itself subject to signature based detection. Addi-

tionally, packer-agnostic detection techniques exist to detect similar malware

samples that obfuscate themselves using different packers [5]. That said, the

most well known open source network based IDS (SNORT) uses a signature

based approach [6].

2.1.4 Specification Based

Specification approaches enhance signature approaches with stateful rules

that can match more complicated patterns. For example, if one unsuccessful

2.1. Intrusion Detection 9

login attempt isn’t considered worthy of an alert, a specification-based rule

could be written to alert on 10 failed login attempts in a short time period.

Rules can be chained together in arbitrary ways to come up with heuristics

that may be useful in intrusion detection. One rule alone may not prove suf-

ficiently suspicious, but several taken together can paint an enlightening pic-

ture. Specification engines often use signature and anomaly based systems

as event sources. This allows otherwise noisy rules to still be useful, because

rules can be written to only trigger alerts if many rules are triggering at the

same time.

Another large advantage of specification based approaches is that they

are easy to understand and justify. When an alert is triggered, there is no

mystery as to why. Noisy rules can be disabled, or filtered to only show up

along with other rules. This provides a lot of opportunity for experts to tune

the system, but still requires a lot of manual effort.

2.1.5 Anomaly Based

Anomaly detection methods revolve around trying to classify behavior as

normal or anomalous, with the idea being that anomalous is synonymous

with malicious. This is not true in general as it is easy to show examples of

anomalous behavior that are not considered malicious, but since a previously

unseen attack should be an anomaly, the set of all events flagged as anomalies

should contain APTs. It is then a matter of filtering out the known-good

portion of that set. This makes anomaly detection the method of interest for

APT detection.

Existing literature surrounding anomaly detection systems focuses on sta-

tistical and machine learning approaches. A survey of IDS techniques [7]

shows that there is literature on the use of artificial neural networks (ANN)

10 Chapter 2. Literature Review

[8], Fuzzy Logic [9], Support Vector Machine (SVM) [10], and Genetic Al-

gorithms [11]. The differences between the results of these approaches are

minor and varry across different data sets. There seems no general trend

towards any particular algorithm being "best" for any particular application.

Axelsson shows that anomaly based approaches are not yet viable: "The

cited studies of intrusion detector performance that were plotted and com-

pared indicate that anomaly-based methods may have a long way to go be-

fore they can reach these standards, since their false alarm rates are several

orders of magnitude larger than what we demand." [12]. He argues that the

base rate of malicious events is so low, that even with a false positive rate of

less than 1% (which would be considered good in the literature), the number

of actual false positives is high (by Bayes theorem).

2.2 Feature Selection

Without relevant features, no algorithm can ever produce useful results. There-

fore it seems prudent to focus on feature selection first, before turning to tun-

ing algorithms for performance improvements or incremental decreases in

false positive rate. Gonzalez [13] produced a systematic approach to deriv-

ing relevant features for use in machine learning classification. He defines

relevance as separability. In other words, features that tend not to cluster

together, and are not correlated.

The features listed in Table 2.1 are the basic features readily available from

network traffic data, without any protocol analysis applied beyond the TCP

level. This makes these features general and suitable for application to most

common data sets. There are many additional features that could be pos-

sible, both derived features (e.g. entropy, or features resulting from Princi-

pal Component Analysis (PCA)), and basic features from higher-level proto-

col analysis (e.g. DNS record response type, HTTP User-agent, TLS chosen

2.3. Supervised vs. Unsupervised Learning 11

Source IP
Destination IP
Protocol
Source Port
Destination Port
Bytes Transferredab

Packets Transferredab

Number of Packets Containing Dataa

Packet Inter-arrival Time (IAT)ab

Segment Sizeb

TCP Window Sizeb

Unique Byte Counta

RFC 1323c

TCP Flags Useda

Bulk Transmissions/Total Transmissions
Time Spent Idlea

Time Spent Transmittinga

aIncluding both directions.
bIncluding mean, standard deviation, and inter-quartile ranges
cWhether or not RFC 1323 TCP Extensions were being used.

TABLE 2.1: Network Traffic Features
[13][7][14][15]

cipher-suite/parameters, etc. . .). Based on a survey of the available litera-

ture, most research in this area seems to focus on the use of readily available,

basic features in common data sets.

2.3 Supervised vs. Unsupervised Learning

Laskov shows that supervised learning outperforms unsupervised learning

in the detection of known attacks, but both do poorly in the detection of

unknown attacks [16]. He also notes only marginal differences between the

results of different approaches to unsupervised or supervised learning. This

further supports the notion that feature selection is the most important con-

sideration in intrusion detection, not algorithm selection.

12 Chapter 2. Literature Review

2.4 Datasets

Network traffic inherently contains data sensitive to the privacy of its users,

and therefore there is a lack of available data sets in this field [1]. Further-

more, there is little evidence that a generic data set even makes sense given

how different networks can be. What classifies as normal traffic on a small

business network is going to be different from what classifies as normal on

a classified military network. Imagine the problem of trying to detect ma-

licious traffic in a military cyber offensive network, where malicious traffic

is the norm. How would you differentiate friendly-malicious traffic from

enemy-malicious traffic? Directionality will not work, because you would

miss all of the trojans that managed to slip by the detectors and are now

phoning home.

It is tempting to ignore that problem of poor data sets, as one can always

create their own (an exercise almost universally left to the reader. . .). How-

ever, further problems await, because network traffic has the peculiarity of

violating an important assumption of anomaly detection: outliers are not

always attacks. Actually, outliers are rarely attacks. Actually, almost every-

thing is an outlier on some time-scale as [1] points out in their measurements

of self-similarity of Ethernet traffic, or the lack thereof. They suggest limiting

the scope of machine learning algorithms to reduce misclassifications.

Nevertheless, there does exist a de facto standard data set, for lack of al-

ternatives: the KDD data set [17][18]. KDD is a widely-criticized [18][19][20]

synthetic data set originally generated in 1998 and refined in 1999. It is com-

monly used for comparative analysis of algorithms, and is mentioned here

only for completeness. It remains a useful data set for performance bench-

marking, but it cannot be used to train a classifier for use on real networks.

2.5. Conclusions 13

2.5 Conclusions

Many papers [21][22][8] compare false positive rates and training perfor-

mance of various algorithms, such as Multi-Layer Perceptron (MLP) vs Self

Organizing Map (SOM), but there seems to be less research focused on fea-

ture selection. This makes sense from an academic perspective, where the

interest is in repeatability and comparability to existing research, but there is

no justification for the features commonly used (protocol, source port, des-

tination port, source IP address, destination IP address, ICMP type, ICMP

code, raw data length, raw data) [7].

Furthermore, little consideration seems to be given for the base rate of

success when talking about false positives. A classifier trained to 99% accu-

racy, or a 1% false positive rate, would be considered good, but when the

base rate of a malicious event is low, Bayes theorem shows that the majority

of actual detection’s will be false positives. Axelsson provides an excellent

analysis of this problem [12] and concludes that an actual false positive rate

of 1/100,000 is required for an IDS to be useful.

15

Chapter 3

Data Collection

3.1 Introduction

A discussion of an application of machine learning is incomplete without a

discussion of data sources. We combined a mixture of novel data sets that

we collected, and static data sets publicly available. The primary source of

novel test network data for this project was MERLIN (Manitoba Education,

Research, and Learning Information Network). MERLIN has a large enough

traffic volume and a commercial network IDS system (TippingPoint) such

that we had plenty of data to test with, and the ability to correlate our results

with TippingPoint’s results. We also obtained a data set from University of

Twente [23] that contained 14.2 million malicious flows (IP, port, protocol).

The ISCX 2012 data set [2] was also used. We also attempted to generate a

set of known-bad traffic that didn’t rely on pre-labeled data or commercial

IDS-labeled data by setting up a malware sandbox environment that could

capture network traffic directly from malware.

16 Chapter 3. Data Collection

3.2 Novel Data Sources

3.2.1 MERLIN Network

We installed an instance of the BRO Network Security Monitor on MERLIN’s

network, which provided us the following data:

1. Flow data (IP, port, protocol, duration, and size of transfer)

2. HTTP data (HTTP headers, referrer, user-agent)

3. DNS data (query and response, query type, TTL)

4. SSH data (raw traffic, and a successful login heuristic)

5. TLS data (certificate information, including validity)

For training data, we were able to use MERLIN’s HP TippingPoint IDS

to label the data we collected from BRO. Specifically, we collected a sub-set

of the data that we knew represented one MERLIN customer with known-

malicious traffic contained within it. We then dumped IDS logs from Tip-

pingPoint and correlated alerts (filtering out benign alerts such as bittorrent

traffic) with flow data from our data set to label it.

3.3 Malware Sandbox

We setup a malware sandbox in a virtualised environment that automated

the deployment of malware samples to virtual machines. These virtual ma-

chines were monitored for traffic volume and prematurely killed if traffic

volume was large to prevent knowingly participating in a Distributed De-

nial of Service (DDoS) attack. Approximately 2000 samples of malware were

obtained from [24]. Of these samples, only 11 showed any level of traffic

above baseline. One started flooding traffic on port 53 UDP and was killed,

3.3. Malware Sandbox 17

presumably a DNS reflection DDoS attack. Two more downloaded payloads

from IP addresses in Russia and proceeded to install them, but the payloads

after installation remained inactive. The rest either tried to connect to IP ad-

dresses that were unresponsive, presumably old, inactive command and con-

trol networks, or showed a higher than normal volume of SMB and NetBIOS

(Windows file sharing protocols) traffic, presumably scanning the local net-

work for shares to infect. In the end, we were not able to obtain a significant

enough sample of data from this approach.

19

Chapter 4

Swarm Sensor Network

4.1 Introduction

The Swarm Sensor Network was the first step in the design of an industri-

ally deployable IDS system based around network anomaly detection. We

worked closely with MERLIN (Manitoba Education, Research and Learning

Information Networks), an ISP for the majority of Manitoba’s school divi-

sions, with the idea that our anomaly detection system would be deployed

on their networks. School networks are an excellent environment for an IDS

because of the large user base and high volume of traffic.

20 Chapter 4. Swarm Sensor Network

4.1.1 Design Overview

FIGURE 4.1: Swarm Sensor Network Overview

Figure 4.1 Shows a design overview of the Swarm Sensor Network. The two

main components are the sensor and the backend. Sensors sit behind cus-

tomer NAT firewalls or routers and have full layer-2 visibility into the cus-

tomers network, while the backend sits on the ISP network and connects to

the IDS to receive alerts. The sensors connect to the backend over the ISP’s

network, so the whole system is self-contained to the ISP-customer network

topology and is never exposed to the entire internet. Swarm sensors are invis-

ible on the network except for their phone-home connection to the backend.

This would typically happen on a different network segment than the main

customer network.

4.1. Introduction 21

Swarm sensors have 3 Ethernet interfaces. One management interface,

and two monitoring interfaces (in and out). The in side faces the customers

internal network and the out side faces their router. Ideally, all traffic exiting

and entering the network from the internet will go through these interfaces.

The monitoring interfaces are provided by a NIC with hardware failover to

passthrough. In other words, if the sensor stops responding, or loses power,

the NIC throws a hardware switch that causes the line to turn into a straight

passthrough wire, preventing disruption of customer traffic. The manage-

ment interface works out-of-band from the main customer traffic, ideally, and

connects to the backend over SSH.

Obviously, to obtain permission to install one of these sensors on a cus-

tomers network requires considerable security considerations. None of the

interfaces on the sensor respond to unsolicited traffic. There are no daemons

listening on any ports, and so there is no network attack surface. The sen-

sor connects to the backend over SSH, and refuses to connect if the backends

host-key has changed (which is set before the sensor is installed on-premise),

which prevents a Man-in-the-Middle (MitM) attack. The sensor passively

records all packets that pass through the monitoring interfaces. To prevent

sensitive information from leaking in the case of physical theft of the sensor,

packets are logged to an encrypted partition of the hard drive. The keys to

the partition are not stored on the device, and are randomly generated 64-

character strings, unique to each sensor. The keys are passed once the SSH

tunnel has been established, validating both ends, allowing the sensor to un-

lock its partition and begin logging packets. If the sensor attempts to connect

from an unrecognized IP block (since we know the valid range for each cus-

tomer), we refuse the connection and do not transmit keys.

The sensor serves two purposes. From MERLIN’s perspective, the need

was to help the network administrators of customers to pinpoint problem

systems on their network. MERLIN’s IDS was capable of detecting attacks

22 Chapter 4. Swarm Sensor Network

that were not being stopped, because the customer did not have the required

knowledge or monitoring tools to know which of their systems were respon-

sible. Because these systems were behind NAT routers, MERLIN couldn’t

help. With Swarm, we had the ability to associate net flows with MAC ad-

dresses and internal IP addresses of the systems responsible. Usually, this

was enough to track down the problem systems and remove them from the

network to be cleaned up. From our perspective, this could serve as a source

of data and a testing facility for our IDS system. Initially we deployed it

using MERLIN’s IDS, but the idea was that at some point it could use our

as-yet-undeveloped IDS as well to provide multiple alert sources.

4.1.2 Results

The system worked as advertised, and was deployed in many different school

divisions, as well as Brandon University. MERLIN was able to help IT admin-

istrators clean up their networks, and the utility and value of MERLIN’s IDS

was enhanced greatly.

23

Chapter 5

Intrusion Detection

5.1 Introduction

With the swarm sensor network in place (see Chapter 4), the goal now is

to replace the commercial IDS with our own, hopefully improved, IDS. We

considered two approaches here, machine learning and extending an exist-

ing commercial IDS (OneStone) with modules that we call correlators (which

can be thought of as a cognitive approach), that do not make use of machine

learning, for a comparison. Correlators implement algorithms thought up

by domain experts, which provide a nice contrast to machine learning al-

gorithms. The goal is to see if machine learning can detect intrusions that

we cannot come up with a simple heuristic to detect, as that would provide

value over the commercially available systems.

5.2 Machine Learning

5.2.1 Choice of Algorithm

The main algorithm used for machine learning was Support Vector Machine

(SVM). We chose SVM because of literature review indicating that SVM clas-

sifiers in this domain are able to achieve a low false positive rate, in one case

on the order of 10−5 [25] by using an ensemble of one-class SVM classifiers.

24 Chapter 5. Intrusion Detection

Duration of Flow
Protocol Number
Source Port
Destination Port
Number of packets per flow
Number of bytes per flow
TCP flags
Number of flows from source to destination IP in the past 300 seconds
Number of flows from source port to destination port in the past 300 seconds
Number of flows from destination to source IP in the past 300 seconds
Number of flows from destination to source port in the past 300 seconds

TABLE 5.1: Network Traffic Features Used in SVM Classifier

Some work [26] has also been done on using one-class SVM for unsuper-

vised anomaly detection. Ultimately, given our literature review showing

that feature selection is likely more important than choice of algorithm [16],

the decision on SVM vs Neural Networks is largely arbitrary and results with

one algorithm are likely generalisable to other algorithms. We used libsvm

[27] for our implementation.

5.2.2 Feature Selection

The features listed in Table 5.1 were used based on taking a cross section of

the features available to us in our data sources and features commonly used

in the literature [7].

5.2.3 Training

We focused most of our training on the ISCX 2012 data set [2] due to its

recency and similarity to our own sources of test data. Best results were

found using a Gaussian radial basis function as the kernel. For the SVM

soft-margin parameter C and kernel parameter γ we used a grid search with

cross-validation as the parameter selection method, and used F-score to find

5.2. Machine Learning 25

Classified non-malicious Classified malicious
Test flow non-malicious 165091 2595
Test flow malicious 2328 7732

TABLE 5.2: SVM Confusion Matrix

optimal parameters to obtain the confusion matrix shown in Table 5.2. This

results in an accuracy of 97% and a false positive rate of 1.46%.

5.2.4 Testing Methodology

The following process was used over several weeks to tune our IDS:

1. Raw data collected from MERLIN customer network via BRO network

sensors.

2. Feature extraction from raw data into the feature set in Table 5.1 .

3. SVM classifies the data set as malicious or non-malicious.

4. For flows labeled malicious by SVM, gather additional information (MER-

LIN IDS logs, additional BRO data, DNS logs, HTTP logs).

5. Human analysis of malicious flows and additional information pro-

vides ground-truthing.

6. Develop heuristics to filter out observed false-positives after ground-

truthing.

7. Repeat steps 3 – 6 until the false positive rate is acceptable.

5.2.5 SVM Results

Initial results were poor, with a false-positive rate of 80%. We found the ad-

dition of heuristics useful in culling common alerts that could be ignored

such as port scans (which while malicious, are so common that they are not

worth investigating, and therefore not an actionable alert), and white listing

26 Chapter 5. Intrusion Detection

domains such as NTP servers and content delivery networks. With the ad-

dition of these filters, the false positive rate dropped to 50%. This is actually

not bad, because this is the false positive rate after taking the base rate into

account, that is, 50% of flows flagged as malicious actually were malicious or

worth investigating.

5.3 Traditional IDS

To compare against the machine learning work, we also implemented an IDS

based on more traditional detection techniques that we refer to as correla-

tors. These correlators were implemented as Python modules for a commer-

cial IDS system developed by Seccuris Inc (bought by Above Security and

now owned by Hitachi) called OneStone. Correlators work based on a pat-

tern recognition system. Correlators are dormant until incoming events (e.g.

firewall log, packet capture, DNS lookup, etc. . .) match a correlators pattern.

On pattern match, the correlator activates, and all subsequent events of in-

terest (based on event type and optionally filtered by event parameters) are

passed to the correlator. The correlator is arbitrary Python code, and so it can

maintain state however it wishes, and emit additional events into the sys-

tem. After a set timeout of inactivity, or on demand, correlators deactivate

until activated again by the pattern matching system. This design allows for

flexible and extremely powerful alerts that target very specific behavior.

5.3.1 Reverse Geographic Communication Correlator

This proved to be one of our most useful correlators for detecting attacks.

It has no false positives by design. The correlator activates on unsolicited

inbound connection attempts from countries outside the ’5 Eyes’ (Canada,

United States, UK, Australia and New Zealand) that are rejected or dropped.

5.3. Traditional IDS 27

The remote IP address is kept in the correlators state, and the correlator be-

gins listening for all outbound connection attempts. If any outbound connec-

tion has a destination IP address contained within the correlators state, an

alert is thrown. The idea behind this correlator is that unsolicited inbound

traffic is indicative of port-scanning, and so these addresses are assumed to

be malicious. This is even more likely to be true with the addition of the

geographic filter. Triggering the alert on an outbound connection attempt

is what makes this correlator so useful, because it implies that the attacker

was successful in penetrating or otherwise influencing some target machine

in the network to connect back, and this is always something that should be

investigated.

5.3.2 User-Agent Deprecation Detector

The idea behind this correlator is to monitor a hosts HTTP traffic and throw

an alert when it is noticed that a User-Agent has gone backwards in time, or

deprecated itself. The most common behavior of malware after infecting a

system is to make an outbound HTTP request to obtain a second-stage pay-

load to install on the host machine. Since malware is usually self-contained

to maximize portability (that is, contains statically-compiled libraries and

doesn’t rely on system libraries being present), the HTTP client used by mal-

ware will be different from what is commonly used by the users of the sys-

tem. Sometimes malware User-Agent’s will contain typographical errors or

otherwise be obviously forged by human inspection. This correlator alerts on

any noted deprecation’s (decrease in version number of Browser), or strange

User-Agents that don’t fit common profiles.

This correlator becomes useless if looking at NAT-ted addresses because

of the variety of User-Agent’s coming out of an entire network. Windows

Update also likes to false-positive this correlator by using older versions of

28 Chapter 5. Intrusion Detection

Internet Explorer. Also, any web developers that commonly test the corpo-

rate website in older browser versions also get flagged incorrectly.

5.3.3 HTTP Connection without DNS Lookup

This is self-explanatory. Not necessarily indicative of malicious behavior, and

requires large grace-periods to account for DNS caching, but is an example

of cross-protocol correlations that are possible.

5.3.4 DNS Tunnel Detection

A DNS tunnel works by using DNS as a two-way communication channel.

Information can be encoded into the sub-domain of a DNS request, which

will be routed by the DNS system to the authoritative name server. By using a

TTL of 0, it is possible to ensure that intermediary name servers do not cache

results. The authoritative name server then replies, and in addition to a well-

formed reply to the request, information can be encoded in the response. This

creates a communication channel that almost no networks block, because it

is difficult to block DNS on most networks.

This correlator was based on work done by one of our team members in

his M.Sc. thesis [28]. It works by recording a Domain Length Weighted En-

tropy (DLWE) metric for each top-level domain observed over DNS. DLWE

is calculated by forming a probability distribution over 20 samples or 60 sec-

onds of DNS requests to the same top-level domain, whichever comes first,

calculating the entropy of the distribution, and then multiplying that by the

average length of the DNS request. This metric provides a measure of DNS

tunnel likelihood, with values below 50 indicating no likely DNS tunnel, and

values over 150 indicating an almost certain DNS tunnel.

That it was possible to implement such a correlator demonstrates the

power of the correlation engine of OneStone.

5.4. Overall IDS Results 29

5.3.5 Correlation Results

The main benefit to using correlators instead of machine learning is that

correlators provide descriptive alerts with no ambiguity as to their cause.

Machine learning only tells you that, for reasons unknown, something was

flagged as suspicious. Therefore, correlators by their nature have no false

positives (though whether a correlator correlates perfectly with malicious

behavior is not certain and in general not true). As mentioned, our Reverse

Geographic Communication Correlator was extremely useful in finding com-

promised machines on customer networks, and was by far more useful than

any other correlator or machine learning technique used.

5.4 Overall IDS Results

From the results of both the machine learning and correlator approach to

IDS, we are forced to conclude that the machine learning approach, with the

data sets we had available, was inferior to the correlation approach, for the

detection of known attacks. While the false positive rate was acceptable, the

amount of work required by human analysis to determine whether some-

thing was a false positive, and what exactly had taken place, was too great

compared to the simplicity of a correlator being able to tell the analyst ex-

actly what happened, with no ambiguity. For the detection of 0-day attacks,

we can draw no strong conclusion as we do not have any data sets with 0-day

attacks in them.

31

Chapter 6

Modeling

6.1 Introduction

Our previous efforts at anomaly detection with SVM were underwhelming

compared to the results obtained using correlators. One potential reason for

this is the feature set used for our classifier, which was based on available

data as opposed to what "makes sense", or, what an expert would expect to

be correlated with malicious behavior. In this Chapter we examine the diffi-

culties of crafting new features that might be used to build better classifiers.

6.2 Problems with Feature Selection

By limiting data sets to including network traffic only, there is a relatively

fixed amount of information available. If that information doesn’t contain

the features necessary to discriminate malicious traffic from normal traffic,

then no algorithm, feature selection method, or any amount of cleverness

can create that information out of nothing. Furthermore, most prior work in

this area only uses the same ten or so features, and even efforts to differenti-

ate all possible features (a few hundred) into a set of statistically meaningful

features yields only 37 [13]. This is not outside the range of what modern

machine learning can handle, and so the natural course of action would then

be to obtain data sets of every feature and blindly pass that over to machine

32 Chapter 6. Modeling

learning systems to train and classify. This approach doesn’t work in gen-

eral, though it can be made to work for more specific applications such as

classifying DNS tunnels [28]. We see then that the effort needs to be focused

not on feature selection, but on designing new features, keeping in mind that

we cannot create information where it does not exist.

6.3 Designing new Features

In [28] we saw that designing a metric DLWE (Domain Length Weighted

Entropy) allowed the design of a novel DNS tunnel detection technique. Can

we do something similar for intrusion detection? It is not clear how that

could be done for all possible attacks. If we reduce the scope of consideration

to only attacks that result in successful exfiltration of data from a network,

then detecting that exfiltration becomes something we can focus on.

Since we still wish to consider only applications that commercial IDS has

not already solved (unless we can do better), it seems sensible to not focus

on data-loss prevention techniques (DLP). DLP is available as commercial

products from a variety of vendors, and typically works by watermarking

sensitive documents with a digital signature that is monitored for in outgo-

ing email, HTTP traffic, printers, etc. DLP products tend to be invasive and

require both host and network components in order for them to work. They

also rely on a critical assumption that encryption isn’t being used, or can

be passively removed (by replacing authentic TLS certificates with manufac-

tured certificates and then adding the corporate public key to your root of

trust).

Encryption being a problem is a common theme. Any feature that you

might hope to be able to extract from network traffic other than high-level

flow data is destroyed by encryption. Maybe the presence of encryption itself

might be a useful metric? Attackers are not likely going to use unencrypted

6.4. Detecting Encrypted Traffic 33

connections, and they will also tend to prefer connections that cannot be de-

crypted by subverting TLS. Therefore, the presence of encrypted data leaving

the network that cannot be decrypted may be a useful metric. We then direct

our focus to determining whether some arbitrary data is encrypted.

6.4 Detecting Encrypted Traffic

A symmetric cipher e takes plain-text p and some key k and performs the op-

eration of encryption by some means transforming p into cipher-text c which

should only be able to be transformed back into p by some decryption func-

tion d, requiring the same key k. Note that this is not the only kind of cipher

that is possible, but symmetric ciphers are used to encrypt the bulk of data

on the internet. Specifically, AES is one of the most widely used symmetric

ciphers available today and is the cipher that we will be dealing with.

An interesting property of encrypted data is that cipher-text c should be

statistically independent of both key k and plain-text p. Furthermore, c is al-

ways statistically identical to uniformly distributed random noise, with each

byte of c being independent of every other byte. These properties are covered

in detail by Shannon as confusion and diffusion [29]. While this property is

hard to prove analytically, an empirical study of AES has shown it to be true

for this cipher [30]. Since this property holds for AES, and should hold for

every symmetric cipher that is used today, a good test for whether something

has been encrypted is to check if it is statistically indistinguishable from inde-

pendent and identically distributed uniform random noise. The assumption

we make here is that legitimate messages which are not encrypted will not

be random noise.

34 Chapter 6. Modeling

Symmetric ciphers operate in what are known as modes. A mode of en-

cryption defines how the plain-text gets converted into cipher-text. The sim-

plest method is directly in what is known as ECB mode (electronic code-

book). The problem with ECB is that identical plain-texts turn into identical

cipher-texts for the same key, which is easily detectable. The mode that we

use is known as counter mode, or CTR. CTR mode encrypts successive in-

tegers with AES, and then XORs the output with the plain-text to produce

cipher-text. If a 128-bit key is used, then this mode is abbreviated as AES-

128-CTR.

6.4.1 Entropy Estimation

Since our aim is to detect if our message is random, it is natural to employ

the use of entropy. The entropy of the bit-stream produced by some truly

random process is 1 bit per sample, i.e.

H(X) = −
∑

x∈X
p(x)log2p(x) (6.1)

H(X) = 1 bit when p(x) = (1/2, 1/2). The problem is that we cannot

use the definition of entropy to estimate the entropy of our bit-stream, be-

cause the probability distribution is unknown. Furthermore, any attempts to

estimate the distribution by averaging over a large number of packets will

fail because the distribution may not be stationary or ergodic, and packets

may not be independent or even identically distributed. Fortunately, there

is a large quantity of literature on testing the randomness of finite length

bit-streams for the purposes of testing the quality of pseudo-random num-

ber generators (PRNGs). The National Institute of Standards and Technology

(NIST) has published a large document containing numerous tests that can

be applied to a candidate bit-stream [31]. The output of these tests is formu-

lated in terms of a p-value. NIST recommends a p-value of 0.01, meaning

6.4. Detecting Encrypted Traffic 35

that we have 99% confidence that a sequence that is claimed to be random

is actually random. The two tests that we are considering here are Approxi-

mate Entropy and Maurer’s Universal Test. Both are known to identify AES

output as random [30]. If p-value > 0.01 then X is considered to be random.

Otherwise, X is considered to be the output of some Markov process of order

κ < d

Approximate Entropy

As the name suggests, Approximate Entropy is a test designed to estimate

the true entropy of a source that produced a given sample sequence. For an

m-bit sample X = (x0, x1, . . . , xm−1), xi ∈ {0, 1}, let 1 < n ≤ m be a sample

size and with 0 ≤ i < n− 1 let x̃di be the ith overlapping d-tuple.

x̃di = (xi, xi+1, . . . , xi+d−1) (6.2)

Then, if a = (a1, . . . , ad) ∈ {0, 1}d let π̃d
a be the relative frequency of x̃di = a.

π̃d
a =

1

n
|{0 ≤ i < n : x̃i = a}| (6.3)

For a sample X from a stationary ergodic source, an asymptotically unbi-

ased estimator for the entropy H can be found

Ĥd
f = −

∑

a∈Ad

π̃d
alog2π̃

d
a +

∑

a∈Ad−1

π̃d−1
a log2π̃

d−1
a (6.4)

Provided that the order of the source is less than d, Ĥd
f will converge to

H as n → ∞. A statistic for Ĥd
f is Îd, which has a chi-squared distribution of

order 2d − 2d−1.

Îd = 2n(1− Ĥd
f)

D−→ χ2
2d−2d−1 (6.5)

36 Chapter 6. Modeling

Ĥd
f is referred to as approximate entropy. The p-value for approximate

entropy can be shown [31] to be

Pentropy =
1

Γ(2d−2)

∫ ∞

Îd/2

t2
d−2

e−tdt (6.6)

Maurer’s Universal Test

Maurer’s Universal Test aims to measure the relative compressibility of a

sequence. A sequence which fails to be able to be significantly compressible

is deemed to be random. For an m-bit sample X = (x0, x1, . . . , xm−1), xi ∈

{0, 1}, let 1 < n ≤ m be a sample size and with 0 ≤ i < n− 1 let x̄di be the ith

non-overlapping d-tuple, and m ≥ d · n.

x̄di = (xi·d, xi·d+1, . . . , xi·d+d−1) (6.7)

Then, if a = (a1, . . . , ad) ∈ {0, 1}d, let π̄d
a be the relative frequency of x̄di = a.

π̄d
a =

1

n
|{0 ≤ i < n : x̄i = a}| (6.8)

Let T (i) be the return time to x̄di . In other words, if x̄di = a, then T (i) is the

smallest value for which x̄di−T (i) = a.

T (i) = min{1 ≤ j ≤ i+ 1 : x̄di−j = x̄di } (6.9)

Then, with Q = 10 · 2d being a “warm-up” time,

Ĥd
r =

1

d · n

Q+n−1∑

i=Q

log2T (i) (6.10)

This test needs Q+ n non-overlapping tuples. A statistic for Ĥd
r is

N̂d =
Ĥd

r − E{Ĥd
r }√

Var{Ĥd
r }

D−→ N [0, 1] (6.11)

6.4. Detecting Encrypted Traffic 37

In general, finding the expected value and variance here is difficult. Pre-

computed tables and approximations exist [32] for various values of d. It can

be shown that

Pmaurer = Erfc(
|Ĥd

r − E[d]|√
2 · (0.7− (0.8/d) + (1.6 + (12.8/d))(bn/dc −Q)−4/d) ·

√
V[d]/(bn/dc −Q)

)

(6.12)

6.4.2 Implementation and Results

The two entropy estimators described were implemented in C++. The Cephes

math library was used for numerical computation of p-values, and the pcap

library was used to read in packet data. The program also provides the abil-

ity to read in raw data from any source, allowing it to be used to compute the

randomness of arbitrary data, not only packet data. The input byte-stream

from either source is first converted into an input bit-stream in order to en-

sure faithful reproduction of the tests as described.

Test 1 – Secure Copy

The first test was copying a 32MB file over scp (secure copy, a common Unix

application that copies files over an encrypted connection), which in this case

was encrypting the connection with AES-128-CTR. We show the results for

various values of d, with n = 271, 335, 304 bits. The largest value of d in

both cases was selected based on NIST recommendations [31]. The results

are shown for Approximate entropy in Table 6.1 and Maurer’s test in Table

6.2.

Since this connection was encrypted, it’s worth investigating why the

tests disagree. The approximate entropy for smaller values of d is very close

38 Chapter 6. Modeling

d Ĥd
f 1− Ĥd

f p-value
3 0.999999966537 3.3 x 10−8 0.0011
4 0.999999960918 3.9 x 10−8 0.0066
5 0.999999939104 6.1 x 10−8 0.0073
6 0.99999981646 1.8 x 10−7 7.3 x 10−9

7 0.999999694224 3.1 x 10−7 5.4 x 10−11

8 0.999999322518 6.8 x 10−7 5.1 x 10−25

23 0.988490359896 0.012 0

TABLE 6.1: Test 1 – Approximate Entropy Results

d Ĥd
r E[·] σ p-value

3 2.40139590766 2.401607 0.000063 0.000789
4 3.31104289578 3.311225 0.000093 0.051136
5 4.25317755531 4.253427 0.000121 0.038842
6 5.21754085234 5.217705 0.000145 0.256502
7 6.19604145991 6.196251 0.000166 0.208490
8 7.18380291046 7.183666 0.000186 0.459370
14 13.1677329848 13.167693 0.000280 0.885252

TABLE 6.2: Test 1 – Maurer’s Universal Test Results

to 1, however, it’s not close enough given the very large sample size n. There-

fore, there should be something about this sequence that is lowering the en-

tropy. Maurer’s test indicates that this sequence is random for d > 3, indicat-

ing that, for d > 3, this sequence cannot be significantly compressed. Exam-

ining the sequence in detail, shown in Figure 6.1 reveals the likely source of

the problem:

The first several packets of an scp connection include an initial handshake

where both sides agree on a cipher to use to encrypt the payload. This infor-

mation is transmitted in a plain-text format which is clearly not random. The

inclusion of this in the test is likely why the Approximate Entropy results

indicate that the sequence is not random, because the first several thousand

bytes are not. This also explains why Maurer’s test is insensitive to this de-

viation. Since there are only on the order of 104 bits of non-random data, but

the entire sample size is on the order of 109 bits, the relative compressibility

of the sequence is very small.

6.4. Detecting Encrypted Traffic 39

FIGURE 6.1: Packet-level view of sequence used for Test 1

The remaining tests concentrate on files instead of network traffic. We

have already shown that the presence of non-random headers and protocol

negotiation preambles in network traffic skews our entropy estimates, but

that Maurer’s test resists them. Outside of protocol-specific headers, there is

little difference between a bit-stream in packet payloads and the bit-stream

in the files sent over a network.

Test 2 – Random Number Generator

Motivated by the results of Test 1 and noticing that Approximate Entropy is

sensitive to any deviations in randomness, we propose a second test where

we use the direct output of the high quality PRNG /dev/urandom on Linux.

Here, we keep the sample size as close as possible to Test 1 to eliminate any

deviations in results due to differences in the sample size. Here, we use n =

271, 335, 304 bits. Again, the largest value of d used here comes from NIST

recommendations. The results are shown for Approximate entropy in Table

6.3 and Maurer’s test in Table 6.4.

40 Chapter 6. Modeling

d Ĥd
f 1− Ĥd

f p-value
3 0.999999996353 3.6 x 10−9 0.74
4 0.999999983472 1.7 x 10−8 0.34
5 0.999999976466 2.4 x 10−8 0.69
6 0.999999944182 5.6 x 10−8 0.55
7 0.999999852098 1.5 x 10−7 0.082
8 0.999999695656 3.0 x 10−7 0.015
23 0.98876176956 0.011 0

TABLE 6.3: Test 2 – Approximate Entropy Results

d Ĥd
r E[·] σ p-value

3 2.40151779016 2.401607 0.000063 0.16
4 3.31127405977 3.311225 0.000093 0.60
5 4.25345058195 4.253427 0.000121 0.84
6 5.21760394486 5.217705 0.000145 0.48
7 6.19622467094 6.196251 0.000166 0.88
8 7.1836726432 7.183666 0.000186 0.97
14 13.1680352142 13.167693 0.000280 0.22

TABLE 6.4: Test 2 – Maurer’s Universal Test Results

As expected, Maurer’s test continues to perform well as this sequence is

completely incompressible. Approximate Entropy also works well until d

becomes large. While this may be an artifact of the test or perhaps a problem

due to lack of precision in the numbers, I was unable to find any large (n >

109) sequence which could satisfy the Approximate Entropy test at NIST-

recommended d.

Test 3 – 64KB Random Number Generator

So far, Maurer’s test has worked well for large sample sizes, and Approxi-

mate Entropy has worked well provided there are no non-random sub-sequences

present in the file. Now we test for smaller sample sizes. Here, we use a 64KB

file generated by /dev/urandom, leading to n = 524, 288. The results are shown

for Approximate entropy in Table 6.5 and Maurer’s test in Table 6.6.

Since Maurer’s test requires more samples than Approximate Entropy,

6.4. Detecting Encrypted Traffic 41

d Ĥd
f 1− Ĥd

f p-value
3 0.999997978564 2.0 x 10−6 0.71
4 0.999994838575 5.2 x 10−6 0.71
5 0.999970024324 3.0 x 10−5 0.012
6 0.999943425199 5.7 x 10−5 0.0023
7 0.999901136018 9.9 x 10−5 0.0013
8 0.999819549399 1.8 x 10−4 0.00036
14 0.988685273705 0.011 0

TABLE 6.5: Test 3 – Approximate Entropy Results

d Ĥd
r E[·] σ p-value

3 2.40101871682 2.401607 0.000063 0.68
4 3.31284285698 3.311225 0.000093 0.45
5 4.25427222556 4.253427 0.000121 0.76
6 5.22207645428 5.217705 0.000145 0.19

TABLE 6.6: Test 3 – Maurer’s Universal Test Results

NIST recommends using a maximum of d = 6 for this length sequence. De-

spite that, the test still performs well.

Test 4 – Plain-text

We have evaluated the performance of the tests against encrypted and ran-

dom data, and they have overall performed well. But in order for these tests

to be useful, they must correctly reject unencrypted, non-random data. Here,

we use a sample sequence of The Divine Comedy [33], giving n = 1, 940, 728

bits. The p-value for all Approximate Entropy tests was 0 regardless of d,

and Maurer’s Test only had p > 0.01 when d = 3, p = 0 otherwise. Therefore,

plain-text is correctly rejected.

Test 5 – Large File Compression

A potential problem for both tests is compressed files. Compressed files

should have high entropy, and since they have already been compressed,

Maurer’s test may fail to find any further compressibility in them. This

would falsely classify compressed files as encrypted or random, and would

42 Chapter 6. Modeling

limit the utility of these tests for this application. For this test, we use an xz-

compressed archive of the Linux kernel available from https://kernel.org.

This file contains the Linux kernel source code compressed with xz, which

internally uses LZMA/LZMA2 compression. For this test, n = 653, 609, 600

bits. The results are shown for Approximate entropy in Table 6.7 and Mau-

rer’s test in Table 6.8.

d Ĥd
f 1− Ĥd

f p-value
3 0.999999998802 1.2 x 10−9 0.81
4 0.999999995822 4.2 x 10−9 0.71
5 0.999999985961 1.4 x 10−8 0.30
6 0.999999963463 3.7 x 10−8 0.036
7 0.999999928765 7.1 x 10−8 0.010
8 0.999999837575 1.6 x 10−7 4.1 x 10−6

24 0.990672011756 0.0093 0

TABLE 6.7: Test 5 – Approximate Entropy Results

d Ĥd
r E[·] σ p-value

3 2.40162543192 2.401607 0.000063 0.65
4 3.31118660912 3.311225 0.000093 0.53
5 4.25337048717 4.253427 0.000121 0.47
6 5.21761450852 5.217705 0.000145 0.33
7 6.19624124132 6.196251 0.000107 0.93
8 7.18352704939 7.183666 0.000120 0.25
15 14.167318356 14.167488 0.000188 0.37

TABLE 6.8: Test 5 – Maurer’s Universal Test Results

Indeed, both tests completely fail to distinguish encryption from com-

pression. Approximate Entropy correctly rejects the sample for larger values

of d, but since that test seems to always reject for large values of d that should

not be considered a success here.

6.5 Covert Channels

We have shown that it is possible to determine, with some caveats, whether

arbitrary data is encrypted. Encryption is not generally distinguishable from

6.5. Covert Channels 43

compression, except that we can assume that it is possible to enumerate all

compression algorithms in common use and exclude them from considera-

tion. While both encrypted and compressed messages are indistinguishable

from a purely theoretical perspective, in practice compressed messages are

meant to be decompressed, which means that compressed messages contain

a structure to them that allows them to be identified. Therefore, in practice,

one could with some effort filter out all known compression algorithms, and

if the resulting data still has high entropy as determined by an unbiased es-

timator, then it is safe to conclude that the data is encrypted (if you make the

assumption that nobody intentionally sends actual random noise).

There is a related problem to consider from the perspective of data exfil-

tration in the form of covert channels. Even though it is theoretically possible

to detect encrypted traffic, it may be impossible to do so in the face of an ad-

versary that is attempting to fool the detector. For example, if encrypted

traffic is compressed, then it would be removed from consideration by the

compression detector, and not be flagged. So, we would need to perform

encryption detection on the decompressed data stream. This is where covert

channels come into play, because covert channels are able to hide messages

in otherwise benign data.

Steganography is the practice of embedding a secret message M inside

of an innocuous looking message C (cover-text) such that no one except the

intended recipient of M is able to determine what M is, or that it even ex-

ists. The combination of cover-text and secret message is called stegotext S.

Intuitively, this seems like it should always be possible. Such a scheme to

do so [34] could be taking an uncompressed digital video file as a cover-text,

and making the kth bit of M the least significant bit of the nth pixel of the

kth frame, with n being the kth integer on a shared one-time-pad (a one-

time-pad is a list of randomly generated numbers shared by the sender and

receiver of M , but nobody else). We expect that M would be completely lost

44 Chapter 6. Modeling

in the natural noise of the video frames.

Information Theory tells us that any information source can be arbitrarily

compressed as close as we wish to entropy, removing all redundancy. Real

compression schemes used in practice often fall short of this asymptotic limit.

Assuming that M is random (which it could easily be if we first encrypted

it), then entropy is additive.

H(S) = H(C) +H(M) (6.13)

Therefore, to detect the presence of M , we would have to detect the devi-

ation in H(C) of H(M) in S. Since a careful attacker will keep H(M)/H(C)

very small, any hope of detecting M requires extremely accurate knowledge

of H(C). The entropy estimators evaluated in the previous section have

asymptotic limits that converge to true entropy for infinite length messages,

but an accurate evaluation of their errors for finite lengths [32] is beyond the

scope of research here.

6.6 Results

We conclude that it is impossible to say with certainty that data exfiltration

has not occurred by observation of network traffic only. The best we can

do is provide an upper bound on the amount of data that may have been

exfiltrated, but since such a bound would grow with total traffic volume over

time, this is not a useful bound, as all someone can conclude from it is that

you should prevent all communication from occurring if you wish to prevent

data exfiltration from happening. This is not a useful result.

We have shown that it is possible to detect encrypted traffic that is not

being intentionally hidden in a covert channel, which does account for the

vast majority of encrypted traffic seen in practice. While it could be argued

6.6. Results 45

that DNS tunnels are a form of covert channel, they seem more often used

as a universal means of subverting firewalls as opposed to trying to hide the

fact that communication is taking place.

47

Chapter 7

Enhanced Data Collection Tools

7.1 Introduction

In the previous sections, we’ve explored the possibilities of network based

intrusion detection. In this section, we expand the scope of research to look

into what is possible with a combination of host and network based IDS.

One of the common problems with only examining network traffic is a lack

of context as to what host process is responsible for that traffic. It would be

extremely helpful if the network packets were labeled to identify which host

process was responsible for them, and, even better, if there was an additional

label that maps to some representation of the process state. As we saw in

Chapter 6, the presence of unencrypted handshakes in otherwise encrypted

connections shows that even for a single connection for a single process, traf-

fic output is not stationary. However, if some notion of state could be de-

veloped, such that we could identify SSH in the handshake state vs SSH in

the encrypted state, then perhaps the traffic distributions within those states

would be stationary. No operating system has this feature, unfortunately, so

the intent here is to determine how it may be possible to build such as system.

48 Chapter 7. Enhanced Data Collection Tools

7.2 Host Based Context Mining

Park et al. [35] published a study where they generated a system call graph

via introspection of running malware samples in a sandbox. This graph

could then be run though graph mining algorithms to extract subgraphs. By

comparing these subgraphs against other malware samples, it becomes pos-

sible to identify distinct malware samples that come from the same family of

malware by their common behavior graphs. Can this idea can be adapted to

a host+network based IDS to provide context to network traffic?

7.3 Design

Consider the behavior graph system [35] as a given. Can we map that into

a state label for machine learning applications? In general, the state of a

program can be thought of as a snapshot of its code and data in memory,

and CPU registers, but this is too granular and would yield far too many

states. What we want is some fuzzy/qualitative method of saying that the

program is currently exhibiting some kind of "behavior", and call that its

current state. Examples could be reading from the filesystem, waiting for

user input, running heavy computational work (e.g. a browser executing

Javascript), performing DNS resolution, or, in our example from Chapter 6,

undergoing cipher suite negotiation.

If we assume that [35] makes it possible to distinguish between those

states, then we hypothesize that machine learning would start being use-

ful. Example, if under normal circumstances DNS lookups happen with a

small amount of associated network IO, and no file IO, but in the future we

observe a program in the DNS lookup state exhibiting large network IO and

file IO at the same time, maybe that means it’s exfiltrating data over DNS?

From a pure network perspective, all we see is a large amount of traffic. We

7.3. Design 49

might see a large amount of traffic over DNS, but if the attacker decides to do

DNS over a SOCKS5 proxy over a SSH tunnel, then we would have no way

of knowing that this large outbound transfer is supposed to be DNS. With

the added context of a behavior graph state, it would immediately become

suspicious.

Assuming that has been solved already, we need only consider how to

map individual packets to processes in a system, since once we can associate

packets with a process, the process can be introspected to determine its cur-

rent behavior state. How can we achieve this?

7.3.1 Linux Kernel Networking Hooks

The background to design here is covered in Appendix A. We want to pro-

vide a relatively high performance way of associating packets with the pro-

cess that emitted it. Performance matters here, because if the method has too

much per-packet overhead then we will either drop packets or be unable to

identify the source of all of them. Since all processes in Linux have a unique

ID, their pid, we aim to map packets to their source pid. With existing tools,

the best we can currently do is to use conntrack as an event source for con-

nection state changes, and on state change re-scan /proc for sockets, and map

those socket fds to pids (again via /proc). The problem with this approach

is that scanning /proc is slow, particularly having to re-scan all sockets on

every connection change. Also, when dealing with malicious binaries, scan-

ning on connection change may not be sufficient as binaries can fork and

allow their children to assume control of the socket, or, we may miss very

short lived connections. Since tcpdump is the data source we used for most of

our experiments, it’s natural to want to augment tcpdump output with pids.

However, libpcap hooks into the kernel at too low of a level for pid infor-

mation to exist. libpcap uses the ETH_P_ALL protocol type, and thus hooks in

50 Chapter 7. Enhanced Data Collection Tools

at the __netif_receive_skb_core and dev_queue_xmit_nit levels (pretty much

right after/before the packet leaves or enters the driver). In the send case,

this is ok, as the skb carries sock information with it until it’s eventually deal-

located, but in the receive case this doesn’t work as we don’t yet even know if

this packet is destined for the system, or if netfilter is going to drop it before

it hits any applications. We would need to process the connection hash tables

early on in order to get the required information at this stage.

A better approach is to hook into netfilter. Netfilter provides hooks at very

granular points in the network stack. For outgoing packets, we can hook at

the postrouting stage, right before packets egress the NIC, and capture full

skb and sk information there. For ingress, we can hook right before pack-

ets are allowed for delivery to applications, at which point we know where

they’re going. Netfilter also already provides a kernel to userspace commu-

nication protocol called netlink. We can use that protocol to create a kernel

to userspace communication socket, similar to the socket that libpcap uses,

except with an additional structure containing pid information.

This sounds like a good approach, but it has a problem. The skbs that

netfilter deals with don’t have pid information in them. They do have socket

information, and that socket information does map to struct file, but the

struct file does not contain a pointer to pid. Also, there is no existing

lookup table in the kernel that holds such a map. This makes sense, be-

cause it is not information that the kernel needs to do its job, and Linux data

structures are optimized around the kernel’s functionality. When sending a

packet, the pid doesn’t matter because the packet is about to be sent to the

hardware and dropped from memory, so who cares who sent it. On receive,

the packets destination is to a receive buffer, not a process. A process reads

the receive buffer, and so there must exist a map from pid to fd (and there is,

via current->files->fdt), but there is no map in the other direction. There-

fore, we have two options. Implement such a map, or be forced to iterate

7.3. Design 51

over all processes, check their open file descriptors, and see if any match the

file descriptor we have for the socket from the skb. This is expensive and not

very elegant, but simple, easy to implement, and self-contained within a ker-

nel module. Adding the lookup table requires more work outside the scope

of a simple kernel module, but simplifies lookup and adds functionality to

the kernel.

Since we aim for industrial deployment of this system, requiring a cus-

tom kernel seems too demanding. A kernel module is more palatable as it

can be loaded and unloaded on demand. So, what is the best we can do with

a kernel module? Since we need pid information, hooking netfilter doesn’t

work without having a reverse map that would require kernel modifications

to introduce. But, we can hook the read and write system calls. We can

even do this from userspace, but since we must make the assumption that

userspace is compromised (otherwise we don’t need an IDS), we note that

hooking from userspace is easy to bypass for malware. The common way

of hooking from userspace would be to override LD_PRELOAD in the processes

environment before running it to inject our own hooks into its library path.

When the dynamic linker at run-time tries to load the shared object that al-

lows is to call libc’s read or write syscalls, our hook would come up first

and be used instead. Malware can trivially bypass this by asking for the libc

symbols explicitly, or clearing its LD_PRELOAD environment variable and then

forking itself. We also want this to be a global hook for the entire system,

preferably even the kernel, in the event of a kernel rootkit. Therefore, the

hook should happen in kernel space.

How do we hook from a kernel module without using netfilter? After

some experimentation, it was found that a netfilter hook is sufficient for out-

bound packets. While the skb doesn’t contain pid information, in testing we

find that evaluating current->pid in a netfilter NF_INET_POST_ROUTING hook al-

ways correctly returned the pid of the process that called send. So, we can

52 Chapter 7. Enhanced Data Collection Tools

use a netfilter hook in the outgoing direction.

Incoming is much harder. current->pid is 0 in this case because the kernel

is receiving the packet, not userspace directly. Furthermore, nowhere does

the kernel actually call userspace to tell it to come and get its packet. Instead,

all that happens is the scheduler, as it iterates over all processes deciding

which processes are to be scheduled to run, will notice that if a process is

blocked on a read operation on a file descriptor that now has data in it avail-

able to be read, that it should schedule that process to run. When the process

resumes, its read operation completes, and it has now read the data from

the socket. This is a very indirect process, because all the kernel sees when

the packet comes in is the receive buffer for this file descriptor. Multiple file

descriptors may be pointing to the same receive buffer, each of which may

belong to different processes, so the information of which processes are wait-

ing on this buffer to have data is only contained in the processes themselves,

not the buffer. This prevents, without modification of the kernel, us from

knowing who can read inbound packets from netfilter.

It’s actually worse than that though, because the process may fork itself

before reading the packet, and so even if we had a map of who could read the

packet when it came in, that map could be different by the time the packet

is actually read. In general, we don’t even know that it is ever read. So

it’s an ill-defined question to ask which process received a packet when the

packet arrives on the NIC. At best, that information would be delivered asyn-

chronously at some later point in time.

So how can we hook on read? All of the operations that are performed

on file descriptors are stored in function pointer tables. If we overwrite these

function pointer tables to point to our own hooked functions, then we can

hook whatever calls we wish. The problem with that is these tables are

marked as const which means the compiler puts them into a section of the

executable that is mapped into read-only memory at runtime, and so trying

7.3. Design 53

to override them causes the kernel to segfault. We find through experimen-

tation that the following allows disabling segfault checks on x86_64 CPUs.

/* returns true if write protection was enabled */
static bool disable_write_protect(void)
{

unsigned long eflags;

/* btr doesn’t work on control registers. */
asm volatile (

"mov %%cr0, %%rax\n"
"btr $16, %%rax\n"
"pushf\n"
"pop %0\n"
"mov %%rax, %%cr0\n"
: "=r" (eflags)
:
: "rax"

);

return (bool)(eflags & 1);
}

/* returns true if write protection was disabled */
static bool enable_write_protect(void)
{

unsigned long eflags;

/* bts doesn’t work on control registers. */
asm volatile (

"mov %%cr0, %%rax\n"
"bts $16, %%rax\n"
"pushf\n"
"pop %0\n"
"mov %%rax, %%cr0\n"
: "=r" (eflags)
:
: "rax"

);

return (bool)(~(eflags & 1));
}

This is extremely dangerous code and it must be used with pre-emption

disabled and write protection must be re-enabled before returning to userspace.

It works by flipping the write-protect bit in register cr0 (control register)

54 Chapter 7. Enhanced Data Collection Tools

that the memory management unit (MMU) of the CPU checks to determine

whether it should consult rwx permissions in the page table. Here is an ex-

ample of using it to overwrite inet_recvmsg:

preempt_disable();
enable_write_protection = disable_write_protect();

((struct proto_ops *)&inet_stream_ops)->recvmsg = inet_recvmsg_patched;

if (likely(enable_write_protection))
enable_write_protect();

preempt_enable();

The netfilter hook for outgoing packets is far more straightforward.

static struct nf_hook_ops ops = {
.hook = recv_from_netfilter,
.hooknum = NF_INET_POST_ROUTING,
.priority = NF_IP_PRI_FIRST,
.pf = PF_INET

};

unsigned int recv_from_netfilter(void *priv, struct sk_buff *skb,
const struct nf_hook_state *state)

{
send_skbuff(skb); /* handles userspace communication */
return NF_ACCEPT;

}

nf_register_hook(&ops);

7.4 Results

Using the netfilter hook discussed above, we are able to successfully map

pids to outgoing packets in real-time in the kernel. We have three imple-

mentations here for comparison, and a summary of the performance of each,

measured as processing time in userspace per packet, is tabulated in Table

7.1. Also included are graphs of the processing times per packet for the ker-

nel method (Figure 7.1), the userspace method (Figure 7.2), and the control

7.4. Results 55

method (no lookup) (Figure 7.3). The graphs are also labeled with whether

or not the correct pid was resolved by the method. The connection being

monitored is a file transfer over scp, and each experiment used the same file,

the same source, and the same destination. The kernel method is the netfilter

hook already explained, the userspace method is obtaining the pid mappings

in userspace using the /proc filesystem, and the control method provides no

mapping as a baseline comparison. The results greatly favor the in-kernel

netfilter hook over userspace. The three implementations here varry only

in their pid resolution technique and packet source. For the kernel mod-

ule approach, we used a netlink socket to communicate with userspace, us-

ing a new, unused netlink protocol definition: socket(AF_NETLINK, SOCK_RAW,

22). For the userspace and no resolution techniques (provided for baseline

timings), we used the same method that libpcap uses: socket(PF_PACKET,

SOCK_RAW, ETH_P_ALL). The userspace component of all methods was imple-

mented in python2.7, using the scapy library for packet parsing. All methods

used two threads, one that consumed data from the socket and wrote it into

a queue, and the main thread that read data from the queue and processed it.

This was in an attempt to not drop packets due to socket buffers filling up.

The userspace lookup was implemented using the following algorithm

(pseudocode)

inode_map = build_lookup_table() // from /proc/net/{tcp,udp}
// inode_map maps socket fd inodes to (src, sport, dst, dport)
sock_map = {}
for pid in /proc:

for fd in /proc/pid:
s = stat(/proc/pid/fd)
if s.st_mode & S_IFSOCK: # from include/uapi/linux/stat.h

sock = inode_map[s.st_ino] # st_ino is inode
if sock:

sock_map[sock] = pid

This algorithm was run on every incoming packet to associate the pid

with the observed four-tuple. It may seem inefficient to run this algorithm

56 Chapter 7. Enhanced Data Collection Tools

on every packet, and it is. However, it would be incorrect to make opti-

mizing assumptions about the nature of socket communication here when

dealing with potentially compromised systems. A process that begins com-

municating on a socket may not continue (if, for instance, it forks itself, and

a child assumes responsibility for the socket). Alternatively, malware may

reuse existing source ports when making new connections. Caching previ-

ously seen mappings may lead to errors in identification that malware could

take advantage of. Furthermore, as can be seen in Figure 7.2, a sufficiently

short-lived connection may evade being labeled entirely.

0 100 200 300 400
Sample

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Pr
oc

es
sin

g
tim

e
(m

s)

Kernel Lookup Method
Valid PID
Invalid PID

FIGURE 7.1: Per-packet processing time using in-kernel pid res-
olution

method min (ms) max (ms) mean (ms) stdev (ms)
Kernel 0.245 3.55 0.463 0.394
Userspace 8.54 33.2 9.59 1.74
Control 0.259 6.765 0.418 0.377

TABLE 7.1: Packet Processing Times

The main problem with the userspace mapping method, aside from being

slow, is that the mapping is built asynchronously with respect to the actual

7.4. Results 57

0 200 400 600 800
Sample

10

15

20

25

30
Pr

oc
es

sin
g

tim
e

(m
s)

Userspace Lookup Method
Valid PID
Invalid PID

FIGURE 7.2: Per-packet processing time using userspace pid
resolution

communication taking place. That is, while our socket is still receiving in-

coming packets, the connection that we are currently trying to lookup has

already disappeared. This is made worse by the lookup method being so

slow, which is unavoidable due to the number of syscalls involved. Even

with a more efficient implementation, there is no guarantee that we will see

the correct results using the userspace lookup method, if the connection is

sufficiently short in duration. This explains the presence of invalid pids in

Figure 7.2, by the time we got around to reading those packets from our

queue, the connection had already finished.

The noise in the graphs can be explained by our primitive collection method.

During the time the connection was active, a large burst of packets entered

the system. This overwhelmed our program causing it to spend most of its

time in the packet collection thread. Since this was implemented in python,

the Global Interpreter Lock (GIL) prevented the processing thread from run-

ning during this time. Time was measured as the time delta between reading

a packet from the queue, until just before outputting the mapping. If we got

58 Chapter 7. Enhanced Data Collection Tools

0 100 200 300 400 500 600 700
Sample

0

1

2

3

4

5

6

7

Pr
oc

es
sin

g
tim

e
(m

s)

No Lookup
Valid PID
Invalid PID

FIGURE 7.3: Per-packet processing time with no pid resolution

interrupted by the socket consumer thread in the middle of this (as would

happen often during the beginning of the run), that explains the spike in tim-

ing at the beginning. A better userspace implementation would smooth out

the timings, but the average timings during non-bursty periods would likely

remain unchanged.

As can be seen, our proposed method is not only faster (35 times faster

best case, 20 times faster average case, 9 times faster worst case), but ro-

bust against short lived connections as well. Since the netfilter hook lives in

the kernel, it sees everything. Our approach can also be observed to have

near-zero overhead compared to the baseline control experiment. There are

improvements to be made in the userspace implementation, as well as in the

netlink communication channel, as the buffer is prone to filling up during

periods of high packet load, but the technique is fundamentally sound. A

more robust implementation would solve those problems.

59

Chapter 8

Discussion

8.1 Conclusions

The main inference we can draw from this research is that correlators based

on simple rules work better than traditional SVM for IDS applications, given

the restrictions imposed by available data and the required false positive rate

for human consideration, which is reflected by the techniques used in indus-

trially deployed IDS systems. However, we must admit that there are still

some 0-day attacks that a correlator would not be able to detect, and a general

anomaly detection system would be preferable in these cases. In our exper-

imentation with SVM, the trained model had reasonable performance (false

positive rate) when tested with data from the same data set, but performed

poorly on data from a different network, i.e. the model did not generalize.

Likely, the main reason for this is that there is too much variance in network

traffic to define what "normal" means, and therefore, cannot identify anoma-

lies (or rather, that everything appears anomalous). As we saw in Chapter 6,

even when considering the output of a single connection of a single instance

of a single program, there was no fixed probability distribution for the traffic,

which made obtaining an estimate of its entropy, as an attempt to classify it

as encrypted or not (a potentially useful feature), somewhat ill-defined. This

is the main justification for the hypothesis that simply throwing more data at

60 Chapter 8. Discussion

the problem may not help traditional SVM perform better. However, if con-

siderably more data were available, it cannot be ruled out that methods such

as deep learning may perform better. In the absence of much larger data sets,

it seems necessary to improve the available features used for training, which

we suggest take the form of mapping process state to network traffic.

8.2 Pid Labeling

We developed a novel pid labeling technique, motivated by the need to as-

sociate process information with packets in data sets. We demonstrate our

method as between 9 and 35 times faster than existing methods, with near-

zero overhead compared to regular packet capturing, while being more ro-

bust against short-lived connections than the existing methods. We believe

this approach, in combination with some additional future work, could make

anomaly detection in network traffic a viable option in the future.

8.3 Future Work

We hypothesize that if the input data sets could be labeled based on their

source and the current "output distribution" of the source, then we could

attempt to define what is normal and anomalous both within distributions,

and perhaps the relative frequency of distributions. We define output dis-

tribution as the hypothetical probability distribution or Markov process that

models the packet output of a program at some point in time. Possibly [35]

could be a starting point for future research in this area, if the graph clusters

their method produces map to output distributions of traffic. It is likely this

approach will face problems in practice, both because the graph clustering

algorithms are too slow to run in real-time, and the program needs to have

already completed in order to obtain a complete system call graph, which

8.3. Future Work 61

makes point-in-time "state" labeling difficult. Nevertheless, if graph behav-

iors do map to stationary output distributions, that would be useful to know,

as we then have reduced the problem to something that we need to solve

faster, instead of not knowing how to solve at all. Alternatively, it may be

worth considering if a different notion of state could be developed. If either

case proved promising, then in combination with the pid labeling approach

we demonstrate, anomaly detection would be worth a revisit.

63

Bibliography

[1] R. Sommer and V. Paxson, “Outside the closed world: On using ma-

chine learning for network intrusion detection”, in Security and Privacy

(SP), 2010 IEEE Symposium on, IEEE, 2010, pp. 305–316.

[2] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward de-

veloping a systematic approach to generate benchmark datasets for in-

trusion detection”, computers & security, vol. 31, no. 3, pp. 357–374, 2012.

[3] C. Gilmore and J. Haydaman, “Anomaly detection and machine learn-

ing methods for network intrusion detection: An industrially focused

literature review”, in Proceedings of the International Conference on Se-

curity and Management (SAM), The Steering Committee of The World

Congress in Computer Science, Computer Engineering and Applied

Computing (WorldComp), 2016, p. 292.

[4] H.-J. Liao, C.-H. R. Lin, Y.-C. Lin, and K.-Y. Tung, “Intrusion detection

system: A comprehensive review”, Journal of Network and Computer Ap-

plications, vol. 36, no. 1, pp. 16–24, 2013.

[5] G. Jacob, P. M. Comparetti, M. Neugschwandtner, C. Kruegel, and G.

Vigna, “A static, packer-agnostic filter to detect similar malware sam-

ples”, in International Conference on Detection of Intrusions and Malware,

and Vulnerability Assessment, Springer, 2012, pp. 102–122.

[6] Snort, https://www.snort.org, Accessed: 2017-07-11.

https://www.snort.org

64 BIBLIOGRAPHY

[7] C. Modi, D. Patel, B. Borisaniya, H. Patel, A. Patel, and M. Rajarajan, “A

survey of intrusion detection techniques in cloud”, Journal of Network

and Computer Applications, vol. 36, no. 1, pp. 42–57, 2013.

[8] L. M. Ibrahim, “Anomaly network intrusion detection system based on

distributed time-delay neural network (dtdnn)”, Journal of Engineering

Science and Technology, vol. 5, no. 4, pp. 457–471, 2010.

[9] P. Tillapart, T. Thumthawatwor, P. Santiprabho, et al., “Fuzzy intrusion

detection system”, 2015.

[10] W.-H. Chen, S.-H. Hsu, and H.-P. Shen, “Application of svm and ann

for intrusion detection”, Computers & Operations Research, vol. 32, no. 10,

pp. 2617–2634, 2005.

[11] W. Li, “A genetic algorithm approach to network intrusion detection”,

SANS Institute, USA, vol. 15, pp. 209–216, 2004.

[12] S. Axelsson, “The base-rate fallacy and the difficulty of intrusion de-

tection”, ACM Transactions on Information and System Security (TISSEC),

vol. 3, no. 3, pp. 186–205, 2000.

[13] J. A. Gonzalez, “Numerical analysis for relevant features in intrusion

detection (narfid)”, AIR FORCE INST OF TECH WRIGHT-PATTERSON

AFB OH GRADUATE SCHOOL OF ENGINEERING and MANAGE-

MENT, 2009.

[14] S. Chebrolu, A. Abraham, and J. P. Thomas, “Feature deduction and

ensemble design of intrusion detection systems”, Computers & security,

vol. 24, no. 4, pp. 295–307, 2005.

[15] S. Mukkamala and A. Sung, “Feature selection for intrusion detection

with neural networks and support vector machines”, Transportation Re-

search Record: Journal of the Transportation Research Board, no. 1822, pp. 33–

39, 2003.

BIBLIOGRAPHY 65

[16] P. Laskov, P. Düssel, C. Schäfer, and K. Rieck, “Learning intrusion de-

tection: Supervised or unsupervised?”, Image Analysis and Processing–

ICIAP 2005, pp. 50–57, 2005.

[17] Kdd cup 1999 data, http : / / kdd . ics . uci . edu / databases /

kddcup99/kddcup99.html, Accessed: 2017-07-12.

[18] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed anal-

ysis of the kdd cup 99 data set”, in Computational Intelligence for Security

and Defense Applications, 2009. CISDA 2009. IEEE Symposium on, IEEE,

2009, pp. 1–6.

[19] M. Sabhnani and G. Serpen, “Why machine learning algorithms fail in

misuse detection on kdd intrusion detection data set”, Intelligent data

analysis, vol. 8, no. 4, pp. 403–415, 2004.

[20] J. McHugh, “Testing intrusion detection systems: A critique of the 1998

and 1999 darpa intrusion detection system evaluations as performed

by lincoln laboratory”, ACM Transactions on Information and System Se-

curity (TISSEC), vol. 3, no. 4, pp. 262–294, 2000.

[21] J. Cannady, “Artificial neural networks for misuse detection”, in Na-

tional information systems security conference, 1998, pp. 368–81.

[22] Á. Grediaga, F. Ibarra, F. García, B. Ledesma, and F. Brotóns, “Applica-

tion of neural networks in network control and information security”,

Advances in Neural Networks-ISNN 2006, pp. 208–213, 2006.

[23] R. R. R. Barbosa, R. Sadre, A. Pras, and R. Meent, “Simpleweb/university

of twente traffic traces data repository”, Centre for Telematics and In-

formation Technology, University of Twente, 2010.

[24] Virusshare, https://virusshare.com/, Accessed: 2017-07-31.

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://virusshare.com/

66 BIBLIOGRAPHY

[25] R. Perdisci, D. Ariu, P. Fogla, G. Giacinto, and W. Lee, “Mcpad: A mul-

tiple classifier system for accurate payload-based anomaly detection”,

Computer networks, vol. 53, no. 6, pp. 864–881, 2009.

[26] P. Laskov, C. Schäfer, I. Kotenko, and K.-R. Müller, “Intrusion detec-

tion in unlabeled data with quarter-sphere support vector machines”,

Praxis der Informationsverarbeitung und Kommunikation, vol. 27, no. 4,

pp. 228–236, 2004.

[27] C.-C. Chang and C.-J. Lin, “Libsvm: A library for support vector ma-

chines”, ACM transactions on intelligent systems and technology (TIST),

vol. 2, no. 3, p. 27, 2011.

[28] M. Himbeault, “A novel approach to detecting covert dns tunnels us-

ing throughput estimation”, Master’s thesis, University of Manitoba,

2014. [Online]. Available: https://mspace.lib.umanitoba.ca/

handle/1993/23550.

[29] C. E. Shannon, “Communication theory of secrecy systems*”, Bell sys-

tem technical journal, vol. 28, no. 4, pp. 656–715, 1949.

[30] P. Hellekalek and S. Wegenkittl, “Empirical evidence concerning aes”,

ACM Transactions on Modeling and Computer Simulation (TOMACS), vol. 13,

no. 4, pp. 322–333, 2003.

[31] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, and E. Barker, “A statistical

test suite for random and pseudorandom number generators for cryp-

tographic applications”, DTIC Document, Tech. Rep., 2001.

[32] J.-S. Coron and D. Naccache, “An accurate evaluation of maurer’s uni-

versal test”, in Selected Areas in Cryptography, Springer, 1999, pp. 57–

71.

https://mspace.lib.umanitoba.ca/handle/1993/23550
https://mspace.lib.umanitoba.ca/handle/1993/23550

BIBLIOGRAPHY 67

[33] D. Alighieri, Divine Comedy, Longfellow’s Translation, Hell, trans. by H. W.

Longfellow. Project Gutenberg, 1997. [Online]. Available: http : / /

www.gutenberg.org/ebooks/1001.txt.utf-8.

[34] R. J. Anderson and F. A. Petitcolas, “On the limits of steganography”,

Selected Areas in Communications, IEEE Journal on, vol. 16, no. 4, pp. 474–

481, 1998.

[35] Y. Park, D. S. Reeves, and M. Stamp, “Deriving common malware be-

havior through graph clustering”, computers & security, vol. 39, pp. 419–

430, 2013.

[36] The rcu api, 2010 edition, https://lwn.net/Articles/418853/,

Accessed: 2017-07-30.

[37] Napi, https://wiki.linuxfoundation.org/networking/

napi, Accessed: 2017-07-30.

http://www.gutenberg.org/ebooks/1001.txt.utf-8
http://www.gutenberg.org/ebooks/1001.txt.utf-8
https://lwn.net/Articles/418853/
https://wiki.linuxfoundation.org/networking/napi
https://wiki.linuxfoundation.org/networking/napi

69

Appendix A

Overview of the Linux Kernel

Networking Subsystem

This is an overview of the internals of the Linux networking subsystem. It’s

meant to be followed side-by-side with the kernel source code and aims to-

ward directing the reader to the relevent bits of code, pointing out where

things are defined and provides context to aid in understanding of the code

base. This was written against the 4.4.x series kernel, and follows the path

taken to setup a new UDP connection, send a packet, and close the connec-

tion. The motivation for this follows from Chapter 7 and the overall goal is

to hook into the kernel to enhance packet collection capabilities to include

process information with each packet, so in addition to an overview of the

kernel subsystems, it is also mentioned where various hooks into the kernel

are possible.

Here is the example we are considering:

$ echo helloworld | strace nc -u 10.0.0.50 1234 -c
socket(PF_INET, SOCK_DGRAM, IPPROTO_IP) = 3
setsockopt(3, SOL_SOCKET, SO_LINGER, {onoff=1, linger=0}, 8) = 0
setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0
connect(3, {sa_family=AF_INET, sin_port=htons(1234),

sin_addr=inet_addr("10.0.0.50")}, 16) = 0
read(0, "helloworld\n", 1024) = 11
write(3, "helloworld\n", 11) = 11
shutdown(3, SHUT_RDWR) = 0
close(3) = 0

70 Appendix A. Overview of the Linux Kernel Networking Subsystem

Here, we use netcat nc to do the work of creating the connection and send-

ing helloworld over the socket, and we use strace to show the system calls

that this uses. System calls are the API that the kernel exposes to userspace

programs. We will now follow the system calls above and trace through what

happens in the kernel.

A.1 Socket System Call

socket(PF_INET, SOCK_DGRAM, IPPROTO_IP) = 3

socket is defined in linux/net/socket.c via SYSCALL_DEFINE3 as

int socket(int family, int type, int protocol);

The PF_INET family specifies that this is an IPv4 connection. The type is

SOCK_DGRAM which means that this is a connectionless, datagram socket where

each datagram has a fixed maximum length. Protocol is more complicated.

man 2 socket specifies that if a particular (type, family) combination has only

one acceptable protocol choice, then you can specify 0 for protocol and the

socket will be defined with the only possible protocol for this type. If there

is more than one possible protocol, an unspecified default will be chosen. As

we will see later, the default for SOCK_DGRAM is UDP. IPROTO_IP is defined as 0

in linux/include/uapi/linux/in.h. A return value of 3 indicates that the file

descriptor associated with this socket is 3.

A.1.1 Socket Initialisation

In the system call, the first thing the kernel does after some checks is to allo-

cate a struct socket, by calling sock_create. struct socket is Linux’s imple-

mentation of classic BSD sockets. This allocation happens in sockfs which is

a virtual filesystem in kernel memory, acting as a translation layer between

files and sockets. With sockfs, a userspace application can operate on a socket

A.1. Socket System Call 71

file descriptor in the same way that it operates on any file descriptor, and

sockfs handles the translation into packets.

sock_create calls __sock_create which calls sock_alloc() to perform the ac-

tual allocation of the socket object in the vfs. sock_alloc() allocates the inode

with new_inode_pseudo(sock_mnt->mnt_sb) where sock_mnt is the struct vfsmount

that represents the virtual mountpoint of the sockfs, and mnt_sb points to

the superblock of the filesystem, from which the filesystem can be searched

or enumerated by the relevent filesystem kernel functions. new_inode_pseudo

calls alloc_inode(sock_mnt->mnt_sb) which performs the actual allocation by

way of the function pointer mnt_sb->s_op->alloc_inode. This function pointer

is set in sock_init() indirectly, by way of passing struct file_system_type

sock_fs_type to kern_mount(). An in-depth explanation of the kernel filesys-

tem internals is omitted for brevity, but sock_fs_type contains a function

pointer .mount = sockfs_mount, which in turn calls mount_pseudo passing it a

pointer to struct super_operations sockfs_ops, containing function pointers

to sock_alloc_inode and sock_destroy_inode. Therefore, mnt_sb->s_op->alloc_inode

= sock_alloc_inode. sock_alloc_inode initializes a socket_alloc and socket_wq

structure.

socket_alloc contains both the socket and inode structures, and is re-

trieved from kmem_cache_alloc, which is part of the Linux memory manage-

ment subsystem that is able to cache unused objects to be returned quickly

rather than having to perform kmalloc allocations on every new socket cre-

ation. The first such object is created in sock_init by calling init_inodecache().

socket_wq is a wait queue structure which contains a linked list of threads that

are waiting on I/O for this socket. It’s used by the scheduler and a detailed

coverage of the scheduler is omitted for brevity.

How does sock_init() get called? During kernel bootup in linux/init/main.c

the kernel calls do_initcalls() which in turn loops over an array of function

pointers to init routines. This array of function pointers is in turn stored in

72 Appendix A. Overview of the Linux Kernel Networking Subsystem

an array initcall_levels, and the kernel loops over the levels executing low-

level initcalls before higher level initcalls. Kernel modules and subsystems

can register themselves to be called in this manner via macros defined in

linux/include/init.h. In the case of the socket subsystem,

core_initcall(sock_init) is called. core_initcall is a macro which takes the

pointer to the passed function and stores it in the ELF binary .initdata sec-

tion with the help of the linker and compiler directives. In this case, the init-

call is defined as level 1, or "core" and hence core_initcall is the appropriate

macro name.

After the socket is allocated on sockfs via new_inode_pseudo, a macro

SOCKET_I(inode) gets a pointer to the socket structure. SOCKET_I is

#define &container_of(inode, struct socket_alloc, vfs->inode)->socket

container_of is another commonly used macro in the kernel, which "casts a

member of a structure out to the containing structure". In other words, given

some member of a structure, the name of the member, and the structure type,

return the actual structure it’s contained in. It’s defined in

linux/include/linux/kernel.h and works with the help of the offsetof com-

piler directive. The socket and inode are allocated together in a socket_alloc

structure, and new_inode_pseudo returns a pointer to the inode in that struc-

ture. container_of in that case returns a pointer to the sock_alloc structure,

which SOCKET_I then returns a pointer to the socket element of by using the

-> operator and taking the address of the result. sock_alloc() then sets some

inode fields and returns the socket.

It’s important to note that at this point in time, the socket is still not

fully created. sock_alloc() has merely ensured that the memory necessary

for the structures has been claimed, and taken care of the inode initializa-

tion in the vfs layer. sock_alloc_inode specifically sets socket.ops = NULL,

socket.sk = NULL, and socket.file = NULL, and the instantiation is not yet

complete.

A.1. Socket System Call 73

The next line of interest in __socket_create is

pf = rcu_dereference(net_families[family]).

RCU stands for Read-Copy-Update, which is a mechanism in the kernel that

allows lockless concurrency to work without race conditions. A detailed de-

scription of RCU is omitted here for brevity. pf is declared as const struct

net_proto_family *pf, where net_proto_family is a simple structure whose

main element of interest is a function pointer

int (*create)(struct net *net, struct socket *sock, int protocol, int kern)

net_families is populated by sock_register, which is called by each socket

family that registers itself in the kernel. In the case of IPv4, it’s called in

linux/net/ipv4/af_inet.c which sets the function pointer in inet_family_ops.create

= inet_create. pf->create is then called. If pf->create is successful, then

success is propogated back up the stack, and sock_create returns success.

sock_map_fd is then called on the socket, which calls sock_alloc_file, which

obtains an unused file descriptor for the socket in sockfs, sets sock.file to the

struct file (defined in linux/include/linux/fs.h) and calls fd_install(fd, newfile)

where struct file *newfile was obtained from sock_alloc_file. fd_install

calls __fd_install(current->files, fd, newfile) which is defined in linux/fs/file.c.

__fd_install takes the file descriptor table struct fdtable *fdt = current->files->fdt

and then assigns via RCU fdt->fd[fd] = newfile. current is a macro com-

monly used in the Linux kernel to return the struct task_struct of the cur-

rent active userspace process (the process that called the syscall). This struct

(defined in linux/include/linux/sched.h) contains a wealth of information

about the process such as the pid, open files, a pointer to its stack, and many

others. the file descriptor fd returned to userspace momentarily is simply an

index into a struct fdtable array which is unique to each process. Therefore,

fds are not globally unique but are rather per-process. Thus, when a process

gives a fd to a system call, the kernel only looks into that processes fdtable

74 Appendix A. Overview of the Linux Kernel Networking Subsystem

to determine whether or not it is a valid fd. After the file descriptor has been

installed in the fdtable for the current process, and is correctly mapped to

the actual struct file that was allocated for it, the file descriptor is returned to

userspace.

A.1.2 Network Layer

Sockets make little sense without talking about networking, and in order to

understand the final parts of socket creation in more detail it is necessary

to delve into the network layer. The implementation here will be different

depending on what network protocol is in use, but for this discussion we

will stick with IPv4 due to it’s popularity.

since pf->create = inet_create, __sock_create calls inet_create from

linux/net/ipv4/af_inet.c. But, how does af_inet.c mange to set that func-

tion pointer? inet_init() is called using the same initcall method as sock_init()

is called with, but registers itself using the fs_initcall macro instead of

core_initcall, which is a level 5 initcall and thus is called later in the boot

cycle.

inet_init() does many things, including registering TCP, UDP, RAW, and

ping protocols, which are part of the kernel transport layer and will be cov-

ered later. sock_register(&inet_family_ops) follows immediately, which reg-

isters IPv4 with the kernel socket interface and is where the inet_create func-

tion is assigned as the creation function for this protocol. inet_init also

populates a list inetsw from the inetsw_array. This contains operations that

inet_create will need depending on the protocol type specified. In our case,

type is SOCK_DGRAM and protocol is IPPROTO_UDP and so we end up with .prot =

&udp_prot and .ops = &inet_dgram_ops, whose purpose will become clear mo-

mentarily.

A.1. Socket System Call 75

inet_init() then calls arp_init(), ip_init(), tcp_v4_init(), tcp_init(),

udp_init(), udplite4_register(), ping_init(), icmp_init(), ipv4_proc_init(),

ipfrag_init(), dev_add_pack(&ip_packet_type), and ip_tunnel_core_init(). I

will cover many of these later, to avoid getting sidetracked from the main

topic of discussion at the moment which is finishing up the instantiation of a

socket structure.

inet_create loops over the inetsw list by using a macro

list_for_each_entry_rcu. This is a common construct in the Linux kernel, but

it can be confusing at first glance, and so I will cover it in detail here. The

exact call is:

static struct list_head inetsw[SOCK_MAX];
...
struct inet_protosw *answer;
list_for_each_entry_rcu(answer, &inetsw[socket->type], list) {

...
}

With inet_protosw defined in linux/include/net/protocol.h.

The way linked lists work in the Linux kernel (actually a doubly linked

list) is that instead of the list itself containing pointers to structures of interest,

the structures themselves hold pointers to the nodes of the list. Looping over

the linked list then does not involve looping over nodes pointing to list struc-

tures, but instead involves directly jumping to each structure in the list. This

is an optimization in two ways. First, it saves a pointers worth of memory

for each element in the list. Secondly, and more importantly, it only requires

following one pointer per node. This is a huge cache optimization, because

going to the next node in the list automatically loads the surrounding mem-

ory into CPU cache. With the Linux implementation of linked lists, the data

that was just loaded into the cache is the structure that we are interested in,

and all it takes is some pointer magic using the container_of macro covered

earlier to get a pointer to the parent struct of the element.

76 Appendix A. Overview of the Linux Kernel Networking Subsystem

In this case, each inet_protosw struct contains a struct list_head list.

struct list_head in turn contains a *next and *prev pointer to more struct

list_head objects. The pointers point to the next and previous list member

(hence the 3rd argument to list_for_each_entry_rcu being list, the member

name), and the address of the member is simply

offsetof(struct inet_protosw, list) bytes ahead of the address of the begin-

ning of the object. Pointer arithmetic computed in container_of returns the

base addresss, and list_for_each_entry_rcu returns that address to answer.

The rest of the macro is setup so that it can be used in the same manner as a

for loop.

The body of the loop is checking for protocol used with this socket type,

and assigns the first match. This is required because it is possible to specifiy

IPPROTO_IP (the wildcard protocol) and it is then up to kernel to pick a default

real protocol. Since IPPROTO_UDP comes before IPPROTO_ICMP in inetsw_array,

the default for SOCK_DGRAM will be UDP.

inet_create then sets the ops field of our socket to inet_dgram_ops (answer->ops)

and proceeds to allocate a sock structure. This is somewhat confusing, but

it’s a convention in the kernel networking code to refer to struct socket as

sock and struct sock as sk. The sock structure is allocated with sk_alloc,

which calls sk_prot_alloc to do the actual allocation. sk_prot_alloc uses

kmem_cache_alloc to fetch an unused sock from the slab created for this par-

ticular protocol. The slab cache is created when proto_register is called in

inet_init. Once sk_prot_alloc retrieves memory for the sock, either through

the slab or directly with kmalloc, sk_alloc sets the family, protocol, and other

fields not necessary to understand here.

When proto_register is called for the UDP case, the call is

proto_register(&udp_prot, 1). struct proto udp_prot is defined in

linux/net/ipv4/udp.c which contains mostly a collection of udp-specific func-

tion pointers to various socket operations. The important element of note

A.1. Socket System Call 77

here is that udp_prot.obj_size = sizeof(struct udp_sock). struct udp_sock is

defined in linux/include/linux/udp.h and contains a struct inet_sock and

some other fields that aren’t important right now. struct inet_sock is de-

fined in linux/include/net/inet_sock.h and contains a struct sock, and inet

information such as source and destination ports and addresses, tos, TTL,

etc. Therefore: sizeof(struct udp_sock) > sizeof(struct inet_sock) >

sizeof(struct sock) > sizeof(struct socket). This is important to remem-

ber for memory allocation purposes, and is helpful to illustrate which structs

contain which other structs as members. struct socket contains a pointer to

struct sock, which in this case is contained within an inet_sock, which in

this case is contained within a udp_sock. When the slab allocator is allocating

the struct sock in sk_prot_alloc, it requires prot->obj_size bytes of memory.

Therefore, even though we are allocating a struct sock here, we are actu-

ally allocating enough memory for the entire struct udp_sock. It is easiest to

think of this as object oriented programming. If the kernel had been written

in C++, class udp_sock would inherit from class inet_sock, which would in-

herit from class sock. When allocating a udp_sock object, enough memory

would be allocated for udp_sock and all of its parent classes. With that under-

standing, the next line of inet_create makes sense.

struct inet_sock *inet = inet_sk(sk)

This takes the struct sock *sk and casts it to struct inet_sock *, which as

we just explained is possible because sk points to enough memory for itself,

inet_sock, and udp_sock. Since the first element of inet_sock is struct sock,

this works as expected.

sock_init_data(sock, sk) is then called, which sets sock->sk = sk, and ini-

tializes many of the sk fields. Finally, inet_create will call sk->sk_prot->init(sk)

if it exists. In our case, struct proto udp_prot does not define a function

pointer for init, and so by the C standard it will be initialized to NULL.

78 Appendix A. Overview of the Linux Kernel Networking Subsystem

Our socket structure is now initialized. inet_create (pf->create) returns,

__sock_create returns, sock_create returns, and control returns to the socket

syscall which calls sock_map_fd as described above. If no errors are encoun-

tered, the systemcall returns the file descriptor from sock_map_fd to userspace

and program control reverts to the caller process.

A.2 Setsockopt System Call

Now that we have an established socket, before calling connect netcat sets

some parameters of our socket using setsockopt. The syscall is defined in

linux/net/socket.c as

int setsockopt(int fd, int level, int optname, char *optval, int optlen)

In our case, level = SOL_SOCKET, optname = SO_LINGER and SO_REUSERADDR,

and optval = [onoff=1, linger=0] and [1]. fd and optlen are set according to

the file desriptor returned from socket and the length of optval.

A.2.1 Implementation Details

setsockopt first needs to look up the struct socket that is associated with the fd

that was passed to it. To do this, it uses sockfd_lookup_light(fd, &err, &fput_needed)

where err and fput_needed are int. sockfd_lookup_light is defined in

linux/net/socket.c and calls fdget(fd) to get a struct fd from the integer file

descriptor. fdget returns __to_fd(__fdget(fd)) which is inlined as

return (struct fd){(struct file *)(fd & ~3), fd & 3}

Do not be alarmed at the bitwise operations, they will be explained shortly.

__fdget is defined in linux/fs/file.c as return __fget_light(fd, FMODE_PATH)

and __fget_light (also defined in file.c) performs the actual work. __fget_light

gets struct files_struct *files = current->files and then attempts to get

the struct file associated with the passed fd. This is done by calling

A.2. Setsockopt System Call 79

__fcheck_files(files, fd) which will attempt to get the struct file via RCU

files->fdt->fd[fd] if the mask (FMODE_PATH in this case) works

(file->f_mode & mask) and we’re able to obtain a lock on the file with

get_file_rcu. get_file_rcu is a macro defined as

atomic_long_inc_not_zero(&(x)->f_count) which detects atomically if the ref-

erence count for the file object is zero, or goes to zero during an attempt to

increment it. If it is able to obtain a reference count, then it returns the struc-

ture. Before returning however, __fget_light bitwise ORs the FDPUT_FPUT flag

onto the returned pointer. This flag is defined to be 1, and if needed, signals

to functions up the call chain that they will need to fput the file. fput is part

of the reference counting. When we grabbed the file structure, the reference

count gets incremented. Later, we decrement it when releasing it, and it can

be freed if we held the last reference to it. Since this flag is encoded into

the low bits of the pointer to the struct file, and those bits will always oth-

erwise be 0 because of memory alignment, the bitwise operations in __to_fd

seperate the flags from the pointer and return the pointer to its original state

before inserting it into struct fd. This is an optimization that saves a pointer

dereference.

Now that sockfd_lookup_light has a struct fd, it is able to call sock_from_file

with the file object. sock_from_file checks if file->f_op == &socket_file_ops.

This is set in socket.c by sock_alloc_file when calling alloc_file (which is

ultimately called by the socket syscall with sock_map_fd). If it is, it then re-

turns file->private_data which also gets set in sock_alloc_file as a pointer

to the socket structure passed to it.

With the socket structure available, the level passed to the syscall is checked.

SOL_SOCKET means that sock_setsockopt is called, otherwise sock->ops->setsockopt

is called. The difference is that sock->ops->setsockopt will call whichever

function .setsockopt points to in the struct proto_ops that was specified when

the socket was created. In our case, it’s specified as inet_dgram_ops in af_inet.c

80 Appendix A. Overview of the Linux Kernel Networking Subsystem

since this is an IPv4 socket, which sets .setsockopt = sock_common_setsockopt.

In this case however, setsockopt is called with level set to SOL_SOCKET, and so

we call sock_setsockopt.

sock_setsockopt is defined in linux/core/sock.c and is designed to be generic

and apply to all sockets, not just those with a particular family. It gets the

struct sock *sk = sock->sk reference, and then checks the option passed to

it in a switch statement. The first time we call this function, we’re passing it

SO_LINGER, with onoff=1 and linger=0. This corresponds to setting

sk->sk_lingertime to 0 * HZ where HZ is an internal kernel timer frequency de-

termined at compile time based on the configuration options set, and setting

the SOCK_LINGER flag in sk. This gets checked in inet_release which is called

by sock_release when close() gets called on a file descriptor belonging to

a socket. In the case of UDP, timeout is ignored, and the socket is closed

immediately. This is because UDP is connectionless, so there is no need to

wait for packets that may be in transit but not arrived yet, as UDP makes no

guarantees about the delivery of packets.

The next option is SO_REUSEADDR, which is set to 1. This correspons to

sk->sk_reuse = SK_CAN_REUSE which is a flag checked during socket binding,

which will be discussed later.

A.2.2 Connect System Call

Connect is defined in socket.c as

int connect(int fd, struct sockaddr *uservaddr, int addrlen)

Even though UDP is a connectionless protocol, it still uses the connect

syscall. The way TCP and UDP use the word connection is different from

what is meant by it in this context. In a socket model, a connection can be

thought of as a pipe between two sockets. It can also be thought of as a

globally unique five-tuple (protocol, source address, source port, destination

A.2. Setsockopt System Call 81

address, destination port). UDP refers to itself as connectionless on a higher

level. It does not have the TCP connection handshake and concept of connec-

tion state. When talking about connections here, we refer to the socket model

of a connection rather than the TCP model unless otherwise specified.

There is a new structure here that we haven’t talked about before, struct

sockaddr. It contains an address family sa_family_t sa_family and char sa_data[14].

sa_family_t is a typedef of __kernel_sa_family_t which in turn is a typedef of

unsigned short. These definitions can be found in linux/include/linux/socket.h

and linux/include/uapi/linux/socket.h. This is a generic socket address struc-

ture that’s used to store a protocol number and a single address. A his-

torical note: since sockets are a generic interface that can be used for more

than just internet communication, the potential address size is larger than it

would need to be if it were only storing an IPv4 address. The socket interface

also pre-dates the common IP internet, for example X.25 networks use a 14

character binary coded decimal addressing system, and the socket interface

would still support it today. struct sockaddr_storage is a struct large enough

to hold any kind of specialization of sockaddr. For example, sockaddr_in6 for

IPv6 inet sockets are 16 bytes and would not fit in a struct sockaddr. Thus,

struct sockaddr_storage was created. Currently, it is defined to contain 2

bytes of family and 126 bytes of data. This should be large enough for the

foresable future.

connect uses the familiar sockfd_lookup_light function to retrieve the socket

from the fd, and a move_addr_to_kernel function to copy the sockaddr from

userspace into a sockaddr_storage in kernel space. It then calls the sock->ops->connect

function pointer which was defined previously by inet_create during socket

creation. sock->ops points to inet_dgram_ops, and inet_dgram_ops.connect =

inet_dgram_connect, as defined in linux/net/ipv4/af_inet.c.

inet_dgram_connect grabs struct sock *sk = sock->sk and after some checks

calls sk->sk_prot->connect. sk_prot was defined previously by sk_alloc to be

82 Appendix A. Overview of the Linux Kernel Networking Subsystem

struct proto udp_prot. Remember, sk_alloc is called by inet_create which

determines the protocol type by inetsw[sock->type], which in this case was

SOCK_DGRAM. inetsw[SOCK_DGRAM].prot = &udp_prot as defined in af_inet.c, and

struct proto udp_prot is defined in linux/net/ipv4/udp.c. udp_prot defines

the connect function pointer to be ip4_datagram_connect which in turn is de-

fined in linux/net/ipv4/datagram.c. ip4_datagram_connect obtains a lock on

the struct sock *sk passed to it, then calls

__ip4_datagram_connect(sk, uaddr, addr_len). The call chain is thus:

net/socket.c: connect(): sock->ops->connect() ->
net/ipv4/af_inet.c: inet_dgram_connect(): sk->sk_prot->connect() ->
net/ipv4/datagram.c: ip4_datagram_connect() -> __ip4_datagram_connect()

__ip4_datagram_connect performs the actual work.

A.2.3 Transport Layer

We now enter the kernel network transport layer, which is responsible for

the concept of connections and routing of packets. inet_dgram_connect first

needs to bind the socket before proceeding to connect. In this context, bind-

ing means setting the source address for the socket since there may be many

interfaces, each with many IP addresses. It first checks to make sure that

inet_sk(sk)->inet_num is 0 and then calls inet_autobind(sk) to perform the

actual binding. inet_num will be 0 in the case of unbound UDP as it is set

in inet_create when SOCK_RAW is used, not SOCK_DGRAM. inet_autobind calls

sk->sk_prot->get_port which is the function pointer udp_prot.get_port which

maps to udp_v4_get_port. udp_v4_get_port computes two hashes, a nulladdr

hash and a partial hash. The hash is a function of the source address, source

port, and network namespace. For the purposes of our discussion here, we

can ignore the namespace parameter and assume it is a constant (as it is un-

less you have explicitly created namespaces). In this case, the two hashes

should be equal since we have not explicitly bound the socket to any source

A.2. Setsockopt System Call 83

address yet, and the passed port is 0 which will indicate that any available

port can be used. We then pass our sock, source port (0), the null address

hash, and a comparison function (ipv4_rcv_saddr_equal) to udp_lib_get_port.

udp_lib_get_port looks up an available port for us to use. To understand

how it accomplishes this, we have to detour into an explanation of udp

hashtables in the Linux kernel.

struct udp_table *udptable = sk->sk_prot->h.udp_table

sk_prot as explained earlier points to struct proto udp_prot, defined in

net/ipv4/udp.c, but declared in include/net/sock.h. In udp.c we see h.udp_table

= &udp_table, where udp_table is declared, defined and exported all within

udp.c. The struct element h is declared in sock.h as a union of hashtables of

different types, in this case we’re using the udp hash table. This is a global

table that all UDP connections will refer to. It is initialized in udp_table_init

which is called by udp_init which is called by inet_init, which finally is

called via the initcall system explained earlier.

udp_table_init calls alloc_large_system_hash, passing it several parame-

ters. One parameter that at first appears to have not been set is uhash_entries.

uhash_entries is set though, it is called during the kernel boot sequence by the

macro __setup("uhash_entries=", set_uhash_entries). This sets the function

set_uhash_entries to be called during bootup, optionally passed a pointer to a

string if uhash_entries= was set on the kernel boot command line. In absence

of this string, it defaults to 0.

alloc_large_system_hash is defined in mm/page_alloc.c, and from there we

can see that udp_table_init is defining a hash table that contains 2 udp_hslot

structs per bucket, 0 buckets (though this will be overridden by a lower limit

parameter), with a minimum of 256 buckets (unless overridden by a com-

pile option for lower memory usage, in which case it uses 128 buckets as a

minimum) and a maximum of 64*1024 buckets. Within each bucket, a list is

initialized using INIT_HLIST_NULLS_HEAD. hlist_nulls_head is a different kind

84 Appendix A. Overview of the Linux Kernel Networking Subsystem

of list than was used earlier for inet_create. hlist_nulls_head uses a non-null

terminating sentinel instead of a null. These lists make use of the fact that all

nodes of the list will be aligned to 4 or 8 byte boundaries, meaning that the

last bit of their address will always be 0. Therefore, the null node in these

lists has the last bit of its address set to 1. This frees up the other 31 or 63 bits

to be used by the programmer to store identifying information about the list.

Why would you want to store identifying information in a list sentinel? Since

these lists are updated using the lockless RCU mechanism in the kernel, there

is a potential race condition where one CPU could free and reallocate a node

while another CPU is travsering that list. In this case, the traversing CPU

would then begin traversing a different list without realizing it. An identifier

in the sentinel node allows that CPU to realize this has occured and search

the list again [36]. This should happen infrequently enough that it is a net

performance increase to use RCU intead of locks here.

Back to udp_lib_get_port, since we passed it 0 for snum, we are asking

the function to find any port for us to use. DECLARE_BITMAP is defined in

include/linux/types.h and declares an array of unsigned longs, the size of

which is sufficient to store as many bits as passed in the second parameter. In

this case, the second parameter PORTS_PER_CHAIN is 65536 / (CONFIG_BASE_SMALL

? 128 : 256). Normally, CONFIG_BASE_SMALL is false, and so in normal circum-

stances we need 256 bits, corresponding to 8 unsigned longs on x86_64 sys-

tems. udp_lib_get_port then picks a random port in the range allowed by

inet_get_local_port_range. This range is set in af_inet.c in the inet_init_net

function, defaulting to [32768, 60999).

last = first + udptable->mask + 1 sets last = first + 256 in the default

case. udptable->mask is set in alloc_large_system_hash as log2(numentries) - 1.

This is setting up a loop to loop over all of the buckets in the hashtable. The

hash function is constructed such that log2(numentries) consecutive integers

will hash to different values. For each hash bucket, udp_lib_get_port will

A.2. Setsockopt System Call 85

check every possible port number in that bucket for whether or not it is in

use.

udp_lib_lport_inuse sets all of the bits in bitmap that correspond to the

ports in use by that hash slot. Then, for each snum in the hash slot, it-

erating over the range in a random order (for security reasons, you want

ephemeral source ports to be unpredictable), the inner loop checks to see

if the bit is set. If the bit is not set, the port is within the allowed range,

and not reserved, we select this port for use. After finding an available port

we then set inet_sk(sk)->inet_num = snum, udp_sk(sk)->udp_port_hash = snum,

and add this port to udp_table so that nobody else can use it while we have it

bound.

Assuming a port was found, successs propogates up and the stack un-

winds back to inet_autobind, which then sets inet->inet_sport =

htons(inet->inet_num) and returns success in turn. inet_dgram_connect then

proceeds to call ip4_datagram_connect via the function pointer

sk->sk_prot->connect, which locks the sk before calling __ip4_datagram_connect,

which performs the actual work of establishing a connection.

__ip4_datagram_connect calls sk_dst_reset(sk) which clears sk’s transmit

queue buffer via sk_tx_queue_clear and then swaps the passed struct dst_entry

for the old dst_entry, freeing the old entry before returning. In this case, the

passed pointer is NULL. struct dst_entry is used as part of the kernel transport

layer to store the routing path of the socket and will be explained in detail

later.

ip_route_connect is called to get a struct rtable. rtable is used to deter-

mine which route a connection uses to send packets, with the majority of

the information being stored in a struct dst_entry within rtable. At this

point in time, oif is 0, so the first condition is skipped. dst is non-zero,

but src is 0, so __ip_route_output_key is called. __ip_route_output_key calls

86 Appendix A. Overview of the Linux Kernel Networking Subsystem

__ip_route_output_key_hash, which is defined in net/ipv4/route.c, which re-

solves a route for us to use. Since we don’t have a source address, and are

not bound to an interface yet at this point, and do have a destination, we end

up skipping over the first 3 conditions and call fib_lookup.

fib_lookup calls fib_get_table, asking for RT_TABLE_MAIN, which is the de-

fault routing table in Linux. The routing tables can be viewed from userspace

by using the ip utility: ip rule list shows all current routing tables and their

priority in the table lookup system. ip route show table main will show the

contents in RT_TABLE_MAIN. fib_get_table then calls fib_table_lookup, which

is defined in net/ipv4/fib_trie.c. This system is rather complicated, but the

end result is that the kernel figures out which device and IP address on that

device should be used as the source for this connection, and in turn sets oif

and saddr respectively.

Back to __ip4_datagram_connect, once ip_route_connect returns after figur-

ing out the source device and IP address to use for this connection,

__ip4_datagram_connect finishes assigning the source address to the relevent

locations in inet->inet_saddr, inet->inet_rcv_saddr, sets the destination ad-

dress and port in inet, and sets the sock state to established. No packets have

been sent in this connection yet, but since this is only a UDP connection, no

packets need to be sent in order to declare a connection as established since

there is no handshake. Success propogates back up the call stack and the

connect syscall returns.

A.3 Write System Call

The write syscall is defined in fs/read_write.c. As explained earlier, the

networking subsystem uses a VFS layer to expose network functionality to

plain file system call operations. write calls fdget_pos to obtain a struct fd

from the int fd that was passed, sets the write position to the seek position

A.3. Write System Call 87

set on the fd, and then calls vfs_write. vfs_write checks permissions and

that we have passed a valid user space buffer to write from. rw_verify_area

ensures that we are writing to something that makes sense, i.e. a positive

number of bytes to a valid, positive offset in the file. file_start_write then

waits to obtain a semaphore for this inode that allows us to actually per-

form the I/O. __vfs_write is then called to perform the actual write by call-

ing file->f_op->write, which was set earlier in sock_alloc_file (socket.c).

f_op points to struct file_operations socket_file_ops, and write in turn is

NULL. This in turn causes __vfs_write to instead use file->f_op->write_iter,

which points to sock_write_iter. fsnotify_modify notifies anyone who has

registered to be notified if this file has changed that it has now changed, and

some file accounting statistics are updated. file_end_write then releases the

semaphore, and vfs_write returns. The file position pointer is then updated

by write, and write returns.

Back to the networking subsystem, we now examine sock_write_iter which

is defined in net/socket.c. It obtains the socket from file->private_data,

which was set earlier in sock_alloc_file to point to the struct socket, and

then calls sock_sendmsg to write the buffer to the socket. sock_sendmsg in turn

calls sock_sendmsg_nosec, which in turn calls sock->ops->sendmsg. Recall that

inet_create sets sock->ops = inet_dgram_ops, and that struct sets sendmsg

to point to inet_sendmsg defined in net/ipv4/af_inet.c. inet_sendmsg ensures

that the socket is bound if it isn’t already, though in our case it is because

we called connect explicitly, and then calls sk->sk_prot->sendmsg. Recall that

sk_prot was defined by sk_alloc to be struct udp_prot, which in turn defines

sendmsg to be udp_sendmsg in net/ipv4/udp.c.

udp_sendmsg first checks to see if there are any pending ipv4 frames in this

socket. If there is, it appends the current data to the queued frames. This

happens because Linux has the option to cork data in socket buffers. To cork

means literally to stop from flowing, and in the context of sockets in Linux it

88 Appendix A. Overview of the Linux Kernel Networking Subsystem

means to queue data up into a buffer so that as much data as possible is sent

in one frame. This prevents an application that calls write very often with

small amounts of data from generating an unreasonable amount of packets.

Corking can be disabled or enabled depending on the flags passed to sockets,

and if disabled then there will be no pending frames. We assume the no

corking case in the discussion of the code here.

udp_sendmsg then adds sizeof(struct udphdr) to ulen, to account for the

size of the udp header in the packet, and checks to see if we have a msg->msg_name

set. Since sock_write_iter did not set it in the struct msghdr that we were

passed, we instead find our destination address and port from the inet_sock.

After several more branches that will be skipped over in our case, we come

across a call to sk_dst_check(sk, 0). This ends up calling ipv4_dst_check in

our case, as ipv4_dst_ops defines it in ipv4/route.c. For IPv4, this just checks

to see if the route has expired or has otherwise been invalidated, in which

case it returns NULL. Otherwise, and in our case, it returns a struct rtable

pointer and therefore we skip the next check that sets up the struct rtable if

it doesn’t exist.

The next notable code path for us is the check for if (!corkreq) and the

call to ip_make_skb, which is defined in net/ipv4/ip_output.c. This function

takes all outstanding IP fragments for this socket and combines them into

one struct sk_buff. struct sk_buff is the socket buffer structure defined in

include/linux/skbuff.h and is a linked list of buffers that contain actual udp

packets. This buffer is passed to udp_send_skb, defined in net/ipv4/udp.c.

udp_send_skb calculates the udp checksum and writes it into the header, and

then passes it on to ip_send_skb -> ip_local_out.

ip_local_out is for outgoing packets that originate from this machine (as

opposed to being forwarded from somewhere else). It first calls __ip_local_out

which sets the ethernet protocol type to IPv4, calculates the IP checksum and

A.4. Read Syscall 89

length, and then enters netfilter with the hook NF_INET_LOCAL_OUT. A discus-

sion of netfilter (the Linux ip filtering subsystem) is beyond the scope covered

here, but if netfilter allows this packet to pass, then nf_hook returns 1, and so

does __ip_local_out. In that case, err = 1 (which is not actually an error, de-

spite the unhelpful name), and the packet is then forwarded to dst_output,

which is a wrapper function that calls skb_dst(skb)->output. This is set for

IPv4 in net/ipv4/route.c in rt_dst_alloc as rt->dst.output = ip_output. ip_output

finds the physical device that this packet is set to egress from, sets the device

and protocol in the socket buffer, and enters netfilter again, this time with the

INET_POST_ROUTING hook. The macro NF_HOOK_COND will call ip_finish_output if

netfilter allows the packet to pass. If the length of the socket buffer is larger

than our MTU, we first detour to ip_fragment to fragment our packet at the IP

level. In our case, the length is within the MTU size and ip_finish_output2 is

called. ip_finish_output2 checks to see if we know the physical address (eth-

ernet MAC) of the next hop for this packet, and if not, calls __neigh_create to

populate the ARP table. After the MAC address is found, dst_neigh_output

is called, which calls dev_queue_xmit, in turn calling __dev_queue_xmit defined

in net/core/dev.c.

__dev_queue_xmit interfaces with the driver for your NIC to copy the socket

buffer into the appropriate hardware buffers, and from our point of view the

packet is now queued by the hardware and will be sent.

A.4 Read Syscall

Now that we’ve taken a deep dive into networking internals for what hap-

pens in the simplest of cases to open a UDP connection and send a packet, we

will take a more abbreviated look at how the other direction works: receiving

a packet.

90 Appendix A. Overview of the Linux Kernel Networking Subsystem

A.4.1 NAPI - New API

Unlike write, the logical place to begin examination of read is at the driver

level, since packets originate from the hardware instead of from userspace in

the read case. The simplest conceptual driver model for a network card is to

trigger an IRQ when a packet arrives on the PHY. This is, however, a terrible

design from a performance perspective because of the overhead generated by

each IRQ, and the fact that a busy network interface can easily be receiving

hundreds of thousands of packets per second. NAPI was devised as a way

for drivers to partially disable interrupts during periods of high network ac-

tivity [37], and instead use polling. The driver that I’m going to be using here

as an example is the intel e1000 driver found in drivers/net/ethernet/intel/e1000/.

The initialization function for e1000 is e1000_probe, and what we’re look-

ing for in here is

netdev = alloc_etherdev(sizeof(struct e1000_adapter))

This line allocates the struct net_device which is a generic network de-

vice struct used by all network device drivers. The function also registers the

device with the napi subsystem with netif_napi_add(), passing in the func-

tion e1000_clean as the polling function to use. The polling function cleans

the tx and rx buffers and if not enough work was done, reverts to using in-

terrupts. The functions that clean the buffers, in turn, re-enable polling if

they’re doing a lot of work.

The function of interest here is e1000_clean_rx_irq. It fetches data from the

hardware, and of particular interest constructs a skb using e1000_alloc_rx_skb.

e1000_alloc_rx_skb calls napi_alloc_skb which in turn calls __napi_alloc_skb.

This function largely just reserves memory for the skb, but it also sets skb->dev

= napi->dev, and sets up the linked list. No other skb fields are set here. Af-

ter filling in the skb with data from the hardware and adjusting any check-

sums if necessary (for e.g. hardware checksum offloading), the skb is passed

A.4. Read Syscall 91

to e1000_receive_skb, which sets the skb->protocol field, and passes it off to

napi_gro_receive. napi_gro_receive passes skb to napi_skb_finish, which in

turn in the normal case passes it to netif_receive_skb_internal.

netif_receive_skb_internal checks to see if RPS (receive packet steering) is

being used, and if it is then it enqueues the skb to a cpu-specific backlog for

processing. Here I will assume that RPS is disabled, in which case the skb is

sent to __netif_receive_skb and then to __netif_receive_skb_core. This func-

tion sets the interface field in skb, removes vlan tags if present, and delivers

the skb to any network taps present (&ptype_all).

ptype_all is a struct list_head contained in struct net_device and is used

as a list of struct packet_type that defines handlers for incoming packets of

a particular type. Any handlers that are registered in ptype_all are passed

all packets. Handlers are registered using dev_add_pack in core/dev.c, which

gets the list to put the packet_type into by calling ptype_head. If the type is set

to ETH_P_ALL then this packet_type gets put in the ptype_all list, otherwise it’s

put in a ptype_base hash table that’s indexed by the type.

If netfilter ingress filtering is enabled (which it typically is), then we pass

the skb to nf_ingress to see if we’re allowed to proceed, and if not, goto out.

Finally, deliver_ptype_list_skb is called to deliver the packet to a handler

specific to its type, using the ptype_base hash table. The struct packet_type

for IPv4 has its receive handler set as ip_rcv in net/ipv4/af_inet.c, which is

defined in net/ipv4/ip_input.c. ip_rcv validates the packet and passes it to

netfilter’s NF_INET_PRE_ROUTING hook, indicating to it to call ip_rcv_finish if

the packet is allowed to pass. ip_rcv_finish calls ipprot->early_demux, where

ipprot = inet_protos[protocol]. In the case of UDP, this is set as early_demux

= udp_v4_early_demux in struct net_protocol udp_protocol in net/ipv4/af_inet.c

with inet_add_protocol(&udp_protocol, IPPROTO_UDP). If the skb->pkt_type is

set to PACKET_HOST, then we call __udp4_lib_demux_lookup. Note that the pkt_type

is not explicitly set to PACKET_HOST yet, however since it is defined to be 0, and

92 Appendix A. Overview of the Linux Kernel Networking Subsystem

__build_skb (part of __napi_alloc_skb) explicitly memsets the skb to zero, by

default all incoming packets are marked as type PACKET_HOST, unless marked

otherwise. Early demuxing is a performance optimisation that can be dis-

abled, and may not always return a socket. I will assume here that a socket

was not found, in which case, the packet first has to pass through the routing

layer.

If early demux failed to return a valid destination for the packet, then

ip_route_input_noref is called, which in turn for non-multicast packets calls

ip_route_input_slow. ip_route_input_slow calls fib_lookup, and if it is de-

termined that the destination type is RTN_LOCAL, then rt_dst_alloc is called

which sets rt->dst.input = ip_local_deliver. This function then returns with

a valid dst_entry, and ip_rcv_finish calls ip_local_deliver with a call to

dst_input(skb).

ip_local_deliver calls netfilter with the hook NF_INET_LOCAL_IN, passing it

ip_local_deliver_finish to call if the packet is allowed in, which will lookup

the protocol in inet_protos, and call ipprot->handler(skb), which for UDP is

set to udp_rcv which calls __udp4_lib_rcv. The main function of interest here is

obtaining the socket for this packet, which is done through __udp4_lib_lookup_skb,

passing it the udp_table hash table where the sockets are kept. Once the

socket is found, the skb is enqueued into the sockets receive queue using

udp_queue_rcv_skb, and the function returns. The packet will sit in queue un-

til it is eventually returned to userspace with a call to read() on the socketfd,

through the same vfs layer as write().

93

Appendix B

Expanded Literature Review

This paper [3] has been included as an expanded literature review to provide

additional references to the main body of work. We originally published it in

the 2016 Conference on Security and Management.

Anomaly Detection and Machine Learning Methods

for Network Intrusion Detection: an Industrially

Focused Literature Review

Colin Gilmore and Jason Haydaman

TRTech

100-135 Innovation Drive, Winnipeg, Canada.

colin.gilmore@trtech.ca, jason.haydaman@trtech.ca

SAM Track: Security Algorithms

Abstract—This paper outlines a literature review undertaken

towards the goal of creating an industrial viable (real world)

anomaly detection/machine learning based network intrusion

detection system. We develop a taxonomy of available methods,

and outline the pros and cons of each. This review leads to several

important conclusions: (1) There are a large number of algorithms

in the literature with significant level of overlap; (2) given the state

of the literature today, it is not possible to objectively select the

best algorithm; (3) there is a lack of research on the feature

selection process needed for machine learning approaches; and (4)

the low base-rate of attacks on computer networks compared with

benign traffic means that effective detection systems will consist of

many detection algorithms working simultaneously.

Keywords— Network Intrusion Detection, Machine Learning,

Anomaly Detection

I. INTRODUCTION

The amount of data stored on personal, industrial, and

government computer networks is constantly growing. This

creates a large incentive for other actors to attempt to

illegitimately access these data. The economic cost of these

attacks is notoriously difficult to quantify, however in 2011 the

British Office of Cyber Security and Information Assurance

estimated that cyber-crime cost the United Kingdom £27 billion

per year, of which £21 billion was lost to espionage and

intellectual property theft. The Canadian Cyber Security

Strategy estimates identity theft losses (which, for the UK data

represent only 6.3% of the total) costs Canadians $1.9 billion

each year. In addition to the direct economic costs, an

undetected network attack can have affects that go beyond

economic, including the loss of confidence in a major

government department or program.

The goal of our research team is to use anomaly detection and

machine learning type approaches to improve the state-of-the-

art for network intrusion detection. Our approach is an

industrial one: we seek only to implement operationally viable

algorithms (i.e. in operation in the real world). Thus, our

approach to the problem is different than past reviews [3, 10,

16, 17, 18, 19, 20, and 21]. There has been significant effort in

the academic literature relating to anomaly detection and data

mining techniques for network intrusion detection (see [10,

17,26]). However, this has not resulted in widespread industrial

deployment. Two researchers note [26] “… despite extensive

academic research one finds a striking gap in terms of actual

deployments of such systems: compared with other intrusion

detection approaches, machine learning is rarely employed in

operational “real world” settings.”

Compared to other machine learning/data mining/anomaly

detection applications, such as detecting credit card fraud, or

recommending new purchases, these anomaly detection and

machine learning techniques have not seen industrial

deployment for detecting network intrusions – they have not

made it into the ‘open world’ of real-world deployment.

This work is the first part of taking up the challenge of

creating a real-world deployment for an anomaly-

detection/machine learning based network intrusion system.

The first step of such a process is to undertake a literature

review of the available algorithms, and this paper outlines that

process.

II. INTRUSION DETECTION OVERVIEW:

Network intrusion detection can be divided into three types:

signature based, specification based, and anomaly based [6].

We outline these types in Fig. 1.

1.1 Signature Based

Signature based techniques use a ‘signature’ – typically a

hash – associated with a particular malicious activity. The most

common signature based technique is an anti-virus program,

which checks the signature of all files traversing a network, or

being downloaded onto a computer. If the file being checked is

a known virus/Trojan/worm, etc. then an alert is triggered.

Signature based techniques have the advantage that there is

very rarely a false alarm, but the disadvantage that they can (by

definition) only detect known attacks. Significant effort must

be made for signature management and subscription. Advanced

attackers can readily avoid signature based detection because

they are often capable of writing their own software, or may

operate by taking over legitimate accounts.

94 Appendix B. Expanded Literature Review

1.2 Specification Based

Specification based techniques rely on the listing of network

behaviors which are considered to be malicious. An example

might be a clear brute-force attempt on a publically available

account (e.g. 100’s of unsuccessful login attempts). An

example program that (for the most part) runs a specification-

based detection engine is the program SNORT [7].

Specification based techniques offer a more generalized way of

detecting threats on a network, and may detect attacks not seen

before, but often take a large amount of expert effort to specify.

Unlike signature based detection, specification based detection

can have false alarms. They can also be bypassed as these

attackers will avoid obvious malicious behavior (like brute-

force attempts).

1.3 Anomaly/Machine Learning Based

Anomaly based techniques rely on detecting ‘abnormal’ or

anomalous behavior. We include in this definition the various

machine learning algorithms. These techniques take inputs

from numerous network features, and label these features as

‘anomalous’ or ‘normal’ output. These techniques are the

hardest for an attacker to avoid, as they are so general.

However, they have the disadvantage of having high-false

positive rates, which can make the detector useless in practical

areas (discussed in Section III).

1.4 Notes on Features and Classification

In any detection system, there exist two main issues which

need to be solved: feature selection and classification.

The features are the inputs which are selected as inputs to the

algorithm. Features can include things like the Internet Protocol

(IP) addresses, and much more. Classification is another word

for ‘which algorithm is used to determine which input data

comes from a malicious source’.

1.5 Network Based Vs. Host Based Intrusion Detection

Network based anomaly detection algorithms depend only on

data which is collected from network devices like firewalls,

routers, IPS’s, etc. Host based anomaly detection systems can

include programs running on individual computers, which

allows for more features to be added to the anomaly detection

system. It is also possible to have a combined network and host-

based system. Network based systems have the advantage of

simplicity – there does not need to be a program running on

every individuals computer (in some networks, it may be

impossible to install a host-based agent on every computer). We

consider only network-based systems in this review.

III. BASE RATES AND THE PROBLEM WITH FALSE POSITIVES

Axelsson [8] gives an excellent discussion about the problem

with false positives for network intrusion detection. This issue

is best illustrated with an example: Imagine that we have a

network intrusion detection method which is 99% accurate.

Thus, if the detection technique sends an alarm, it has a 99%

chance that it is a true network intrusion, and a 1% chance of a

false alarm (positive). Next, assume that on a particular

network, only 1 in 10,000 input features comes from a

malicious source (it could be even lower than this for many

networks). The exact input feature can vary from method to

method, but could be, for example, a Domain Name Service

(DNS) request to a command-and-control server.

Now, assume that the anomaly detection system signals that

it has detected an intrusion. What is the probability that the

system has actually detected a real network intrusion?

The answer comes from Bayes theorem, and is quite low:

0,98% (or about 1%). Thus, when this system triggers, 99 times

out of 100, it is a false alarm. This number is known as the

positive predictive value of the test. Axelsson claims that the

positive predictive value of the test must be above 50%, or most

human operators will completely disregard the detector [8].

This problem is due to the low rate of the base problem we are

trying to detect (1 in 10,000).

Due to this base rate problem, and the fact that the vast

majority of network traffic is not malicious [8], care must be

taken to keep false positives to a minimum. To obtain

reasonable positive predictive values, the test must have a false

positive rate on the order of the event we are trying to detect. In

practice, this will likely mean that we need to combine several

forms of detectors to reduce false positives.

IV. FEATURE SELECTION

The selection of features is perhaps the most important part of

any anomaly detection process. If the right features can be

found, then there is no need for further detection processes. For

example, the ideal ‘feature’ for network intrusion detection

would be a feature that was in one state when there was an

attack and another state when no attack was occurring. If this

ideal feature existed, there would be no ‘anomaly’ style

classification algorithm necessary.

To be at all useful, the selected features must vary when there

is an intrusion on a computer network. If the features we use as

inputs to the anomaly detection system do not vary, then the

best algorithm in the world will not be able to detect the

intrusion. We can imagine the worst feature in the world – in

this case, the feature would not change at all when an attack

occurs (it would have zero sensitivity to an attack).

In practice, of course, the features extracted from network

traffic will rest between these two extremes. The features used

for network intrusion will vary somewhat for both normal and

malicious traffic. The art of feature extraction to find features

that vary a small amount for normal traffic, and then vary more

significantly when an attack occurs. If there is a large enough

difference in these features, then we can detect the attack with

a suitable algorithm.

Ideally, we would like to select the minimal set of features

that allow us to appropriately classify network behavior into

normal and malicious categories. In practice, most features are

selected on an ad-hoc basis based on expert domain knowledge.

Automated feature selection procedures are available, but they

will rely on a large data set of labelled training data [9] which

is generally not available.

Appendix B. Expanded Literature Review 95

Based on [10], we have shown a taxonomy of features in Fig.

2. The features are split into network traffic based features, as

well as network taxonomy features. Network taxonomy refers

to the structure of a network (number of hosts, network

organization). Network traffic can be split into three sub-

groupings: flow data, protocol analysis, and derived features.

Flow data are data which capture which two computers are

talking to each other at what time. A flow datagram will have

source/destination IP and port numbers as well as protocol used

for the communication.

Derived Features: We use the term derived features to mean

features which are not readily available from the more basic

data. A good example is Principal Component Analysis [11,12]

– where a large number of (typically correlated) basic input

variables are processed into a (much) smaller number of

uncorrelated input variables. The outputs of this technique are

variables which have no easy-to-grasp relationship to the more

basic inputs. Other examples include syslog information,

authorization logs, etc. [13].

Protocol analysis: many of features we will use in this project

fall under the protocol analysis label. Any feature which is not

part of the flow data, or a ‘derived’ feature will be of the

protocol analysis type. Examples include the browser agent

used or the particulars of a DNS query.

Gonzalez [14] notes that “Identification of cyber attacks and

network services is a robust field of study in the machine

learning community. Less effort has been focused on

understanding the domain space of real network data in

identifying important features for cyber attack and network

service classification.” Gonzalez presents a systematic way of

making a set of derived features (13-27 input features) from a

much larger set of basic features (over 200). The top features

set include port numbers, packet length, number of truncated

packets etc. Other research in this area includes [13,57].

V. ANOMALY DETECTION AND MACHINE LEARNING METHODS

The use of anomaly detection algorithms to for network

intrusion detection has a long history. To the best of our

knowledge, the use of anomaly detection for network intrusion

detection began with Denning in 1987 [15].

There exists a large number of papers on anomaly detection:

a thorough review of the experimental methods used between

2000-2008 found 276 peer-reviewed papers [2]. The huge

number of papers in this research area means that we will

almost certainly miss many papers. However, our approach has

relied on both reading systematic reviews/taxonomies, and

finding examples of each class of anomaly detection method.

Given our goal of creating a practical anomaly detection

which is useful in the real world, we must be aware that many

academic papers may have been published simply for the sake

of being a novel approach. We are entering this process

expecting that many papers will have been written for this

‘novelty’ reason, not because they solve the network intrusion

detection problem in a better way.

In our literature search, we have come across 8 separate

survey papers that relate to anomaly detection [3, 10, 16, 17,

18, 19, 20, and 21]. Most are focused on anomaly detection for

network intrusion detection, and one more general, e.g. [3].

Much of this remaining section relies on the results of these

surveys. We have summarized the methods discussed in this

review (with their pros and cons) are outlined in Table 1.

Although we would like ideally quickly find the ‘best’

anomaly detection techniques for network intrusion detection,

it has been shown that this will be very difficult. A review of

evaluation techniques used for proposed anomaly detectors [2]

concludes that ‘[anomaly detection] studies from all categories

fail to follow basic principles of scientific experimentation.’

That is, the ‘tests’ used to prove the usefulness of a particular

anomaly detection technique for intrusion detection are not

useful for actually evaluating the technique in an objective way.

From our perspective this means it is impossible from to

objectively decide which anomaly detection algorithm

performs the best.

A. Anomaly Detection Categories

Garcia-Teodoro et. al. [17] split anomaly detection into

several categories. We have created our own taxonomy, based

on [10] and [17]. This is shown in Fig. 2. We note that these

categories can have significant overlap. For example, some

‘knowledge based’ systems are also machine learning, and

vice-versa. Further, almost all machine-learning and data

mining approaches can be called statistical. Thus, this

taxonomy is very loose at best.

Statistical Based: network traffic is captured and a profile

representing its stochastic behavior is created. Two datasets are

considered: current and trained (or previous, or whatever).

Histograms, single variable, multiple variables.

Knowledge Based: (e.g. an expert system). Classify the audit

data according to a set of rules: Finite state machine is an

example. It is likely that we are coming up with an ‘expert

system’.

Machine Learning Based: Based on establishing an explicit

or implicit model that enables the patters analyzed to be

categorized. Need for labelled data in all cases. Examples:

Bayesian Network, Markov Models, Neural Networks, Fuzzy

Logic Techniques

B. Statistical Based Examples

Statistical based models rely on creating some type of

underlying model about a particular variable such as traffic

volume, or number of connections per hour. One method would

be to assume a particular probability density function (e.g.

Gaussian) for a variable, then calculate parameters such as

mean and standard variation [15]. If these parameters are

outside of some threshold, then an anomaly is triggered. For

example, if the mean level of packet size goes high (or low) for

some reason, this is a reason for suspicion.

Statistical techniques may also be practiced on more

complicated derived features [22].

1) Single-variate, Multi-variate based

Single-variate and multi-variate models can be used for these

statistical models. In the multi-variate case, correlations

between multiple variables can be considered. [23, 24]

96 Appendix B. Expanded Literature Review

Despite all the research into mathematically more

complicated detection methods, some claim that these simple

techniques with thresholds often out-perform the more

complicated methods. [17,25].

2) Histogram based

In most cases, one cannot assume an underlying statistical

model for computer network traffic – e.g. variables do not fall

into a simple Gaussian pattern. Considerer, e.g. a probability

density function of the first 8 bits of an IP address (e.g.

196.xxx.yyy.zzz). [22] The probability density function will be

dominated by the internal private IP addresses of the network,

with large spikes located at ‘172’, 192’ and ‘10’ (depending on

how the internal network is configured).

In cases like these, a histogram-based approach is a viable

solution. One can create a statistical model through histograms

of the training data, and then compare the test data on the same

histogram. Various metrics can then be used to generate

‘normal’ and ‘anomalous’ labels [22, 27, 28].

Histograms may also be constructed over various time-scales

and for datasets with large differences in sizes. In this case,

there is a significant problem of comparing histograms with

different numbers of bins. This leads to a non-linear

optimization problem [27,28].

C. Knowledge Based Examples

Knowledge based intrusion techniques rely on the use of a
human expert to define a set of rules or process that are ‘normal’
or allowed. Deviations from these processes are flagged as
anomalies. To a certain degree, our use of feature selection could
be viewed as a knowledge- based approach to anomaly
detection. We are encoding the expert knowledge in the feature
selection process, rather than in the classification (anomaly
detection) algorithm.

1) Finite State Machine / Markov Chain

Finite state machines (which also can be viewed as Markov

Chain) are models are an abstract system that transitions from

one state to another with a certain probability [29,30]. Within

the concept of a knowledge-based intrusion detection system,

the model can be constructed by a human expert – who knows

the states which should exist. The probabilities of transitions

between states can then be determined from training data [15].

If the testing data exhibit low-probability state transitions, this

can be flagged as an anomaly. In the context of machine

learning, the same state-based can be used, but in the machine-

learning case, the states, and the probability of transitions, are

created via automated processes – not human experts.

2) Expert Systems

Expert systems are systems which attempt to emulate expert

human reasoning via machines [31]. While a strict application

of the term expert system involves the creation of a knowledge

base and an inference engine [31], we feel that the term expert

system could be applied to almost any anomaly detection

system, as the goal is to replace/assist a skilled human operator.

The Next Generation Intrusion Detection Expert System

(NIDES) is an example of an expert system used for network

intrusion detection [32], which has since evolved into a project

called Event Monitoring Enabling Responses to Anomalous

Live Disturbances (EMERALD) [33]. EMERALD offers a

suite of anomaly detection tools and a signature engine.

D. Machine-Learning and Data Mining Examples

1) Association Rules/inductive rules

Association rules are a data-mining approach to anomaly

detection. It takes a set of variables and discovers relations that

commonly exist between the values. For example, it may be

common in intrusion situations to have the events {virus

detected, ftp attempt} -> {data loss}. Almost everyone has had

experience with association rule algorithms via the product

recommendation algorithms (‘people who bought this book

also bought’) on websites like Amazon.

Examples of association rules for use in network intrusion

detection include [34, 35], where the authors use an association

rule algorithm to detect abnormal record activity via

unsupervised learning.

Association rules can work with both supervised and

unsupervised data, and have the pros of being able to find their

own rules. The cons of this type of method include the fact that

rare events which cannot be trained for will trigger an

‘anomalous’ reading. This is likely to lead to a large number of

false positives in a live computer network, which has much

larger diversity than most people intuitively expect [26].

2) Bayesian Networks
A Bayesian network is a graphical model of a set of random

variables, and the conditional decencies of those variables on
each other. Bayesian networks are directional – that is they
imply causality by the direction of the relationships between
variables. They are similar to Markov models, but Markov
models do not have directional links between the states.
Bayesian networks have been used for network intrusion
detection. Examples include [36, 37, and 38].

3) Markov Models

The Markov model-based intrusion detection systems try to

calculate the likelihood of system in an anomalous state based

on a sequence of observations. For example, a sequence of

alerts from an IDS system such as Snort can be used to calculate

the probability of system being under attack.

To understand this technique better, a brief description of

Markov model is presented. (from [39]) A Markov model is a

statistical model with N states S1, S2, ..., SN and discrete

timestamps. On a given timestamp, system is in exactly one of

N states and between timestamps states are chosen randomly.

An important property of a Markov model is that being at state

St on timestamp t only depends on the system’s state on

timestamp t-1 and all the earlier states do not have any effect in

selecting state St.

An extension to the Markov model is Hidden Markov Model

(HMM) in which a system’s states and state transitions are not

visible and only events from these states are observable.

Formally speaking, an HMM is a five-tuple (N,M,,A,B)

where N is the number of states, M is the number of possible

observations,  is the starting state probabilities, A is the state

transition probability matrix, and B is the observation

Appendix B. Expanded Literature Review 97

probability matrix. Since HMM is a statistical model, the initial

values of , A, and B are selected randomly and a training

process is required to make this model ready for actual data.

For example in [40], a computer network can be in one of

Normal, Attempt, Progress, or Compromise states. These states

are not known at a given time and only Snort events are

observed. Snort events can be categorized into different groups

based on their severity to limit the number of observable events.

Initially we can assume the system is in Normal state and

initialize state transition matrix and observation probability

matrix with random numbers. Once the HMM trained, an

intrusion detection system can find the probability of system

being in one of states based on sequence of observed Snort

events.

4) Neural Networks

In cases where a relationship between inputs and outputs is

expected, but the exact relationship between the inputs and

outputs is unknown, Artificial Neural Networks (ANN) (or just

Neural Networks) are useful. ANN’s are based on a simple

model of how neurons work in the human brain. There are many

nodes (or neurons) operating in parallel. Each node is connected

to other neurons in the next layer by a specific weight.

Changing the weights allow the network to model very

complex, multidimensional functions – in practice this means

that the differences between normal and anomalous behavior

can be quite complex . In order to set the weights of each node,

ANN’s require large sets of supervised learning.

An example of a valid use for an ANN is the prediction of the

real-estate value for houses given a large amount of pertinent

information: e.g. neighborhood location, size of house, age of

house, #of bedrooms, # of bathrooms, bungalow vs. two-story,

etc. Given that large amounts of historical data for the values of

houses are known, we could make a neural network that

attempts to predict the value of a house given all of the relevant

information – even though we don’t know the exact

relationships between the inputs and outputs.

Neural networks have been used in various ways for network

intrusion detection [41-44]. In some works, neural networks are

used to create self-organized maps, e.g. [45,46].

5) Fuzzy Logic

Some authors have used fuzzy logic approaches to network

intrusion detection e.g. [47,48]. In fuzzy logic, other categories

– rather than true or false – can be used for a set. The truth value

of a fuzzy set lies somewhere between 0 and 1 [49]. Fuzzy logic

has received some criticism as a tool [50], and some defense

[51]. Pros of fuzzy logic include the ability to have non-

conclusive outputs, but cons include high computational costs,

and a lack of clarity on the proper approach with fuzzy logic

(e.g. why not just use a percent output from the classification

algorithm, with a probability from 0 to 1?).

6) Genetic Algorithms
Genetic algorithms are an optimization technique which is

modelled on the process of biological evolution. Advantages of
this optimization technique include the fact that it is capable of
finding a global minimum in an optimization function with a
large number of local minima, and the lack of assumptions
required to use this algorithm. The largest disadvantage is that
the huge amount of computational resources required to find the

global minimum. These techniques have been used with respect
to intrusion detection [52]. Genetic algorithms could be used to
optimize the parameters for other detection algorithms. [53].

7) Clustering (K-means)
The k-means algorithm [54] is a centroid-based partitioning

technique that takes the input parameter k and partitions n
objects into k clusters so that an object is ‘similar’ to other
objects within a cluster and different than objects in the other
clusters. This algorithm thus groups like objects together
automatically, in an unsupervised learning environment. To find
the similarity between objects, a set of features are selected and
distance between these features are measured. Initially, the k-
means algorithm randomly selects k objects representing k
clusters. As an example, Munz et al. [55] used network flow as
the source for anomaly detection and selected total number of
packets sent from/to a given port, total number of bytes sent
from/to a given port, and number of source-destination pairs
matching the given port number as features to compute
similarity between different flows.

8) Support Vector Machines

Support Vector Machines operate as a group classifier by

constructing a hyperplane or set of hyperplanes in a high

dimensional space using training data to separate data into two

groups of normal and abnormal (or malicious) classes. They

generally require labelled training data.

One of the main advantages of SVM is its ability to

discriminate data sets which are not readily separable by

simpler techniques. If the ‘normal’ and ‘abnormal’ data sets to

discriminate are not linearly separable or variations of features

for two classes have overlaps, it maps the original data space

into much higher space to make the separation easier. The

function for mapping of features and the other parameters

would be optimized under optimization methods. In practice,

this means that input features which first appear to be poor

indicators of malicious or abnormal activity may be good

indicators with the SVM.

Another advantage of Support Vector Machines is that other

applications have seen a low false positive rate [63]. Perhaps

the biggest cost with SVM’s are their complexity – in order to

perform the non-linear mapping of the input feature space into

the higher dimensional space, a particular mapping function

must be selected and this often requires optimization

techniques. This leads to long training times for the SVM.

VI. CONCLUSIONS

Through this literature review, we have reached several

conclusions about anomaly detection and machine learning

algorithms for use in real-world network intrusion detection

systems.

 While many different anomaly detection approaches are

outlined in the literature, there is significant overlap

between many of them. For example, an ‘expert system’

could describe virtually any algorithm that has its initial

inputs generated by a human expert, and Finite State

Machines, Bayesian Networks, and Markov Networks are

all extremely similar (and in some cases are sub-classes of

each other)

98 Appendix B. Expanded Literature Review

 Due to the false positive problem when detecting rare

events, and the fact that anomaly detection systems

commonly have high false-positive rates, it is likely that a

functional detection system will be comprised of several

correlated detectors. This could include correlations with

signature and specification based intrusion detection

techniques.

 Given the lack of literature on feature selection, ad-hoc,

expert supervised feature selection based on previous

records of attacks will be the best method to generate

relevant features.

 We suspect that a significant number of publications

suggest algorithms which are not industrially viable.

 The evaluation of intrusion detection techniques is a

problem from a scientific perspective [2]. This makes it

very difficult to objectively determine which algorithm is

the ‘best’.

ACKNOWLEDGEMENTS

The authors would like to thank the Canadian Safety and

Security Program at Defence Research and Development

Canada for project funding.

REFERENCES

[1] "Data Mining”. Wikipedia, The Free Encyclopedia. Wikimedia
Foundation, Inc. Accessed March 2016.,
http://en.wikipedia.org/wiki/Data_mining,

[2] Tavallaee, Mahbod, Natalia Stakhanova, and Ali Akbar Ghorbani.
"Toward credible evaluation of anomaly-based intrusion-detection
methods." Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on 40.5 (2010): 516-524.

[3] Chandola, Varun, Arindam Banerjee, and Vipin Kumar. "Anomaly
detection: A survey." ACM Computing Surveys (CSUR) 41.3 (2009): 15.

[4] Eric M. Hutchins, Michael J. Clopperty, Rohan M. Amin,
Ph.D."Intelligence-Driven Computer Network Defense Informed by
Analysis of Adversary Campaigns and Intrusion Kill Chains". Lockheed
Martin Corporation Abstract. Retrieved March 13, 2013

[5] Advanced Persistent Threats: A Decade in Review Command Five Pty
Ltd June 2011.

[6] Liao, Hung-Jen, et al. "Intrusion detection system: A comprehensive
review."Journal of Network and Computer Applications (2012).

[7] www.snort.org, accessed March 2016.

[8] Axelsson, Stefan. "The base-rate fallacy and the difficulty of intrusion
detection." ACM Transactions on Information and System Security
(TISSEC)3.3 (2000): 186-205.

[9] Dash, Manoranjan, and Huan Liu. "Feature selection for
classification."Intelligent data analysis 1.3 (1997): 131-156.

[10] Estevez-Tapiador, Juan M., Pedro Garcia-Teodoro, and Jesus E. Diaz-
Verdejo. "Anomaly detection methods in wired networks: a survey and
taxonomy."Computer Communications 27.16 (2004): 1569-1584.

[11] [Lakhina, Anukool, Mark Crovella, and Christophe Diot. "Mining
anomalies using traffic feature distributions." ACM SIGCOMM Computer
Communication Review. Vol. 35. No. 4. ACM, 2005.

[12] Wang, Wei, and Roberto Battiti. "Identifying intrusions in computer
networks with principal component analysis." Availability, Reliability
and Security, 2006. ARES 2006. The First International Conference on.
IEEE, 2006.

[13] Chebrolu, Srilatha, Ajith Abraham, and Johnson P. Thomas. "Feature
deduction and ensemble design of intrusion detection
systems." Computers & Security24.4 (2005): 295-307.

[14] Jose Andres Gonzalez, Numerical Analysis for Relevant Features in
Intrusion Detection. MSc. Thesis, Department of the Air Force, Air

University, Air Force Institute of Technology, Write-Patterson Air Force
Base, Ohio, 2009.

[15] Denning, Dorothy E. "An intrusion-detection model." Software
Engineering, IEEE Transactions on 2 (1987): 222-232.

[16] Axelsson, Stefan. Intrusion detection systems: A survey and taxonomy.
Vol. 99. Technical report, 2000.

[17] Garcia-Teodoro, Pedro, et al. "Anomaly-based network intrusion
detection: Techniques, systems and challenges." computers &
security 28.1 (2009): 18-28.

[18] Lazarevic, Aleksandar, et al. "A comparative study of anomaly detection
schemes in network intrusion detection." Proc. SIAM (2003)

[19] Wegner, Ryan. Multi-Agent Malicious Behaviour Detection,. PhD
Thesis, Department of Computer Science, University of Manitoba, 2012.

[20] Patcha, Animesh, and Jung-Min Park. "An overview of anomaly detection
techniques: Existing solutions and latest technological trends." Computer
Networks 51.12 (2007): 3448-3470.

[21] Tsai, Chih-Fong, et al. "Intrusion detection by machine learning: A
review."Expert Systems with Applications 36.10 (2009): 11994-12000.

[22] Kind, Andreas, Marc Ph Stoecklin, and Xenofontas Dimitropoulos.
"Histogram-based traffic anomaly detection." Network and Service
Management, IEEE Transactions on 6.2 (2009): 110-121.

[23] Ye, Nong, et al. "Multivariate statistical analysis of audit trails for host-
based intrusion detection." Computers, IEEE Transactions on 51.7
(2002): 810-820.,

[24] Ye, Nong, et al. "Probabilistic techniques for intrusion detection based on
computer audit data." Systems, Man and Cybernetics, Part A: Systems
and Humans, IEEE Transactions on 31.4 (2001): 266-274.

[25] Kruegel, Christopher, et al. "Bayesian event classification for intrusion
detection." Computer Security Applications Conference, 2003.
Proceedings. 19th Annual. IEEE, 2003

[26] R. Sommer and V. Paxson, “Outside the Closed World: On Using
Machine Learning for Network Intrusion Detection,” in 2010 IEEE
Symposium on Security and Privacy, 2010.

[27] Beigi, Mandis S., et al. "Anomaly detection in information streams
without prior domain knowledge." IBM Journal of Research and
Development 55.5 (2011): 11-1.

[28] Beigi, Mandis, et al. "Muti-scale temporal segmentation and outlier
detection in sensor networks." Multimedia and Expo, 2009. ICME 2009.
IEEE International Conference on. IEEE, 2009.

[29] "Finite-state Machines." Wikipedia, The Free Encyclopedia. Wikimedia
Foundation, Inc. Accessed March 2016.,
http://en.wikipedia.org/wiki/Finite-state_machine

[30] "Markov Chain." Wikipedia, The Free Encyclopedia. Wikimedia
Foundation, Inc. Accessed March 2016.,
http://en.wikipedia.org/wiki/Markov_chain

[31] "Expert System." Wikipedia, The Free Encyclopedia. Wikimedia
Foundation, Inc. Accessed March 2016.,
http://en.wikipedia.org/wiki/Expert_system

[32] Anderson, Debra, Thane Frivold, and Alfonso Valdes. Next-generation
intrusion detection expert system (NIDES): A summary. SRI
International, Computer Science Laboratory, 1995.

[33] http://www.csl.sri.com/projects/emerald/, accessed March 2016

[34] Das, Kaustav, Jeff Schneider, and Daniel B. Neill. "Anomaly pattern
detection in categorical datasets." Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM,
2008.

[35] Das, Kaustav, and Jeff Schneider. "Detecting anomalous records in
categorical datasets." Proceedings of the 13th ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM,
2007.

[36] Bronstein, Alexandre, et al. "Self-aware services: Using bayesian
networks for detecting anomalies in internet-based services." Integrated
Network Management Proceedings, 2001 IEEE/IFIP International
Symposium on. IEEE, 2001

[37] Kruegel, Christopher, et al. "Bayesian event classification for intrusion
detection." Computer Security Applications Conference, 2003.
Proceedings. 19th Annual. IEEE, 2003.

Appendix B. Expanded Literature Review 99

[38] Barbara, Daniel, Ningning Wu, and Sushil Jajodia. "Detecting novel
network intrusions using bayes estimators." First SIAM Conference on
Data Mining. 2001.

[39] Moor, Andrew. “Statistical Data Mining Tutorials”,
http://www.autonlab.org/tutorials/, accessed March 2016.

[40] Shameli Sendi, Alireza, Michel Dagenais, Masoume Jabbarifar, and
Mario Couture. "Real Time Intrusion Prediction based on Optimized
Alerts with Hidden Markov Model." Journal of Networks 7, no. 2 (2012):
311-321.

[41] Ryan, Jake, Meng-Jang Lin, and Risto Miikkulainen. "Intrusion detection
with neural networks." Advances in neural information processing
systems. MORGAN KAUFMANN PUBLISHERS, 1998.,

[42] Mukkamala, Srinivas, Guadalupe Janoski, and Andrew Sung. "Intrusion
detection using neural networks and support vector machines." Neural
Networks, 2002. IJCNN'02. Proceedings of the 2002 International Joint
Conference on. Vol. 2. IEEE, 2002.,

[43] Zhang, Zheng, et al. "HIDE: a hierarchical network intrusion detection
system using statistical preprocessing and neural network classification."
Proc. IEEE Workshop on Information Assurance and Security. 2001.

[44] Cannady, James. "Artificial neural networks for misuse detection."
National information systems security conference. 1998.

[45] Depren, Ozgur, et al. "An intelligent intrusion detection system (IDS) for
anomaly and misuse detection in computer networks." Expert systems
with Applications 29.4 (2005): 713-722.

[46] Ramadas, Manikantan, Shawn Ostermann, and Brett Tjaden. "Detecting
anomalous network traffic with self-organizing maps." Recent Advances
in Intrusion Detection. Springer Berlin Heidelberg, 2003.

[47] Dickerson, John E., and Julie A. Dickerson. "Fuzzy network profiling for
intrusion detection." Fuzzy Information Processing Society, 2000.
NAFIPS. 19th International Conference of the North American. IEEE,
2000.

[48] Gomez, Jonatan, and Dipankar Dasgupta. "Evolving fuzzy classifiers for
intrusion detection." Proceedings of the 2002 IEEE Workshop on
Information Assurance. Vol. 6. No. 3. New York: IEEE Computer Press,
2002.

[49] "Fuzzy Logic." Wikipedia, The Free Encyclopedia. Wikimedia
Foundation, Inc. Accessed March 2016.,
http://en.wikipedia.org/wiki/Fuzzy_logic

[50] Haack, Susan. "Do we need “fuzzy logic”?." International Journal of
Man-Machine Studies 11.4 (1979): 437-445.

[51] Zadeh, Lotfi A. "Is there a need for fuzzy logic?." Information Sciences
178.13 (2008): 2751-2779

[52] Li, Wei. "Using genetic algorithm for network intrusion detection."
Proceedings of the United States Department of Energy Cyber Security
Group (2004): 1-8.

[53] Bridges, Susan M., and Rayford B. Vaughn. "Fuzzy data mining and
genetic algorithms applied to intrusion detection." Proceedings twenty
third National Information Security Conference. 2000.

[54] Hartigan, J. A.; Wong, M. A. (1979). "Algorithm AS 136: A K-Means
Clustering Algorithm". Journal of the Royal Statistical Society, Series C
28 (1): 100–108. JSTOR 2346830.

[55] Münz, Gerhard, Sa Li, and Georg Carle. "Traffic anomaly detection using
k-means clustering." Proc. of Leistungs-, Zuverlässigkeits-und
Verlässlichkeitsbewertung von Kommunikationsnetzen und Verteilten
Systemen 4 (2007).

[56] Horng, Shi-Jinn, Ming-Yang Su, Yuan-Hsin Chen, Tzong-Wann Kao,
Rong-Jian Chen, Jui-Lin Lai, and Citra Dwi Perkasa. "A novel intrusion
detection system based on hierarchical clustering and support vector
machines." Expert systems with Applications 38, no. 1 (2011): 306-313.

[57] Mukkamala, Srinivas, and Andrew H. Sung. "Feature selection for
intrusion detection with neural networks and support vector
machines." Transportation Research Record: Journal of the
Transportation Research Board 1822.1 (2003): 33-39.

[58] Kim, Dong Seong, and Jong Sou Park. "Network-based intrusion
detection with support vector machines." Information Networking.
Springer Berlin Heidelberg, 2003.

[59] R. Lippmann, R. K. Cunningham, D. J. Fried, I. Graf, K. R. Kendall, S.
E. Webster, and M. A. Zissman, “Results of the 1998 DARPA Offline
Intrusion Detection Evaluation,” in Proc. Recent Advances in Intrusion
Detection, 1999.

[60] “KDD Cup Data,”
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

[61] M. Tavallaee, E. Bagheri, W. Lu, and A. Ghorbani, “A Detailed Analysis
of the KDD CUP 99 Data Set,” Submitted to Second IEEE Symposium
on Computational Intelligence for Security and Defense Applications
(CISDA), 2009.

[62] McHugh, John. "Testing intrusion detection systems: a critique of the
1998 and 1999 DARPA intrusion detection system evaluations as
performed by Lincoln Laboratory." ACM transactions on Information and
system Security 3.4 (2000): 262-294.

[63] R. Perdisci, D. Ariu, P. Fogla, G. Giacinto, and W. Lee, “McPAD: A
Multiple Classifier System for Accurate Payload based Anomaly
Detection,” Computer Networks, vol. 53, no. 6, pp. 864—881, Apr. 2009.

100 Appendix B. Expanded Literature Review

Fig. 1: Taxonomy of Intrusion Detection on Computer Networks. We are considering network-based Anomaly Detection
based methods. Note that host based methods have the same sub-taxonomy (not shown).

Appendix B. Expanded Literature Review 101

Fig. 2. A Taxonomy of Anomaly Detection methods. Adapted from [10] and [17].

102 Appendix B. Expanded Literature Review

Table 1: Pros and Cons of Various Anomaly Detection Methods

Method Name PROS CONS

Univariate/Mult
ivariate

 Simple to use quick to implement,

 Can use on numerous parameters and

correlate

 Unsupervised learning possible

 High false positive rate,

 Unreasonable assumptions about underlying

probability density functions

 Likely to miss small changes in data

Histogram  Simple to use

 Can deal with multiple time-scales

quickly

 Makes no assumptions about

underlying statistics

 Unsupervised learning possible

 Due to averaging nature, likely to miss small

changes in data

 Need large amounts of data to work with

Finite State
Machine

 Contribution of human expert can

limit number of states

 Finite State Machines are a subset of Markov

models

 Need to define states, when states may be unclear

Expert System  Exact definition of this system

unclear: any type of human-influenced

detector could be called an ‘expert

system’

 Vagueness of definition makes this hard to decide

‘expert system’ represents a method or not.

Association
Rules/
Inductive Rules

 Useful for identifying new patterns in

data set

 Unsupervised learning

 Find patterns without human

intervention

 For rare events, high false positive rate

 Need significant amount of data to reliably

determine associations

Bayesian
Networks

 Good algorithms exist for training

 Can encode causal relationships

 Widely used

 Unsupervised learning

 Results sometimes outperformed by much

simpler methods

 States must be defined by user

 Similar to Markov Models



Markov Models  Can use Hidden Markov Models so

states do not need to be known (only

outputs)

 Unsupervised learning

 Similar to other state-based approaches

Neural
Networks

 Unsupervised learning possible, but

best results with

 No assumptions about statistical

model

 Supervised learning is desirable

 Lots of data is required

Fuzzy Logic  Uses linguistic variables  Other ways of expressing uncertainty

 Not widely used in literature

Genetic
Algorithms

 Capable of finding local minima in

optimization problems

 Possible to use to solve sub-problems

of the overall anomaly detection

algorithm

 Very slow

 Lots of computational resources

 More efficient methods available

Clustering  Simple algorithms exist to create

clusters

 Unsupervised learning

 False positives are likely for outlier events: as

network traffic more diverse than typically

thought

Support Vector
Machines

 Excellent method at finding separable

classes

 Low false positive rate

 No assumptions about statistical

model

 Must have labelled training data (supervised

learning)

 Difficulty in finding the function to map decision

space onto new dimensions

Appendix B. Expanded Literature Review 103

105

Appendix C

Presentation Slides

Application of Machine Learning to Computer
Network Security

Jason Haydaman
August 17, 2017

University of Manitoba

106 Appendix C. Presentation Slides

Introduction

Appendix C. Presentation Slides 107

Problem Statement

Does Machine Learning have anything to offer an Intrusion
Detection System (IDS)?

• Anomaly detection – Possible APT or 0-day attack?
• Classification – Security compromise or benign traffic?

Very little Machine Learning to be found in commercial IDS
products. Why?

1

108 Appendix C. Presentation Slides

Why Focus on Machine Learning?

• 0-days and APTs.
• Creating signatures is expensive and doesn’t scale.
• Machine Learning is theoretically harder to evade (no
model visibility).

2

Appendix C. Presentation Slides 109

Overview of Research

• Swarm Sensor Network
• Intrusion Detection
• Data Collection
• Modeling
• Traffic Labeling

3

110 Appendix C. Presentation Slides

Swarm Sensor Network

Appendix C. Presentation Slides 111

Design Overview

Figure 1: Swarm Sensor Network Overview

4

112 Appendix C. Presentation Slides

Intrusion Detection

Appendix C. Presentation Slides 113

Replication Study

With Swarm in place, we could now focus on Machine Learning.

• Obtained ISCX 2012 Data set.
• Trained an SVM classifier with ISCX 2012 as training data.
• 97% accuracy against ISCX 2012 test data.
• 80% false positive rate against our own test data.

5

114 Appendix C. Presentation Slides

Revision

Enormous discrepancy between real world accuracy and the
confusion matrix. How do we do better?

1. For flows labeled malicious by SVM, gather additional
information (IDS logs, DNS logs, HTTP logs).

2. Human analysis of malicious flows and additional
information provides ground-truthing.

3. Develop heuristics to filter out observed false-positives
after ground-truthing.

4. Repeat until the false positive rate is acceptable.

After many iterations of the above algorithm, new real world
false positive rate: 50%.

6

Appendix C. Presentation Slides 115

Comparison

How does this compare to existing IDS?

We developed a python module for the OneStone IDS that we
call the Reverse Geographic Communication Correlator. It
alerts when machines on the network connect back to IP space
that has unsuccessfully attempted to connect to our network
over some past time window (hours – days).

No false positives. Very useful for identifying malicious traffic.

7

116 Appendix C. Presentation Slides

Data Collection

Appendix C. Presentation Slides 117

Malware Sandbox

Clearly the ISCX data set was not working out for us. Can we
develop a better data set?

• Didn’t want to rely on IDS-labeled flow data, then we
would only be training an IDS as good as what we already
have

• Needed a source of data that was known malicious: A
malware sandbox.

• Ran 2000 samples of malware through a network of
Windows 7 VMs.

• Most were inactive on the network, not enough data
collected to be useful.

8

118 Appendix C. Presentation Slides

Modeling

Appendix C. Presentation Slides 119

A Detailed Look at Traffic

Without good data sets or the ability to create good data sets,
can we determine what about network traffic makes the
classification problem so hard?

Features we used:

• Duration of flow
• Protocol number
• Source port
• Destination port
• Number of packets per flow
• Number of bytes per flow
• TCP flags
• Number of flows from matching (src, dst) and (dst, src) IP
and port in past 300 seconds

9

120 Appendix C. Presentation Slides

Feature Selection

The features we selected were based on what we had available
rather than what we would like to have.

Can we do better?

Encryption destroys most higher-level features that we might
try to use. Can we detect encrypted traffic in a generic way?

10

Appendix C. Presentation Slides 121

Encrypted Traffic Detection

Encrypted data looks like uniform random noise

H(X) = −
∑

x∈X
p(x)log2p(x) ≈ 1 (1)

What is p(x)? In general, we don’t know. Network traffic
doesn’t exactly meet the criteria of independent and
identically distributed, and p(x) may not be well-defined.

Can we estimate the entropy of a data source based on a finite
length sample of its output?

11

122 Appendix C. Presentation Slides

PRNG Testing

There is a large body of literature on evaluating PRNGs for
randomness. Approximate Entropy is defined as:

Ĥd
f = −

∑

a∈Ad

π̃d
alog2π̃

d
a +

∑

a∈Ad−1

π̃d−1
a log2π̃

d−1
a (2)

π̃d
a =

1
n
|{0 ≤ i < n : x̃di = a}| (3)

x̃di = (xi, xi+1, . . . , xi+d−1) (4)

Where a ∈ Ad and we consider A = {0, 1}.

12

Appendix C. Presentation Slides 123

PRNG Testing

Then, approximate entropy converges to entropy as n → ∞.

H = lim
n→∞

Ĥd
f (5)

Assumptions:

• X is a markov process of order < d.
• X is a stationary ergodic process.

Do these assumptions hold?

13

124 Appendix C. Presentation Slides

Network Traffic

Figure 2: Packet-level view of scp transfer

14

Appendix C. Presentation Slides 125

Traffic Labeling

126 Appendix C. Presentation Slides

Stationary Distributions

Network traffic is not a stationary ergodic source, even for a
single connection from one program.

Machine Learning assumes that training data and testing data
belong to the same distribution.

There is research into dealing with Covariate Shift, i.e.
distributions that drift between train and test, but I found no
sound method of dealing with distributions that are not
stationary even during train.

15

Appendix C. Presentation Slides 127

Answers to the Problem Statement

Q2: Very little Machine Learning to be found in commercial IDS
products. Why?

A2: No self-similarity of traffic makes anomaly detection not
work, and no stationary datasets makes classification not work.

Q1: Does Machine Learning have anything to offer an Intrusion
Detection System (IDS)?

A1: Maybe. New Question:

Can we turn a data set of non-stationary distributions into n

data sets of stationary distributions, to then train n models?

16

128 Appendix C. Presentation Slides

Traffic Distributions

• Network traffic is the output of a program.
• A program can be in many states.
• Any state can influence the distribution of network traffic
arbitrarily.

• Conjecture: If we can label traffic by the state of the
program that produced it, maybe the set of all traffic with
the same state label would be stationary.

17

Appendix C. Presentation Slides 129

State Labeling

What is a program state?

• Most generally: Some member of the set of all
combinations of the memory and CPU registers, and all of
the inputs to a program. This is an astronomical set, not
helpful.

• No clear answer. What is clear is that whatever the answer
is, if to be used in a data set, requires we have the ability
to map packets to that program state, and so therefore, to
the program itself.

New Question: How do we map packets on a network to their
source process?

18

130 Appendix C. Presentation Slides

Packet Source Mapping

Requirements:

• Fast, little overhead.
• Visibility into all packets in a system.
• Visbility into all processes in a system.
• Hooked into the network stack such that it cannot be
bypassed by malware.

Sounds like it needs to be in the kernel.

19

Appendix C. Presentation Slides 131

Packet Source Mapping

• Introduced a netfilter hook that userspace can
communicate with via netlink.

• Netlink channel acts like a PF_PACKET raw socket with an
additional structure containing pid information.

• Userspace can be anything that speaks sockets.
• Test application was written in python.
• Performance benchmarks measured using packet capture
of 10MB scp transfer.

20

132 Appendix C. Presentation Slides

Performance – Baseline

0 100 200 300 400 500 600 700
Sample

0

1

2

3

4

5

6

7

Pr
oc

es
sin

g
tim

e
(m

s)

No Lookup
Valid PID
Invalid PID

Figure 3: Per-packet processing time with no pid resolution

21

Appendix C. Presentation Slides 133

Performance – Userspace Method

0 200 400 600 800
Sample

10

15

20

25

30

Pr
oc

es
sin

g
tim

e
(m

s)

Userspace Lookup Method
Valid PID
Invalid PID

Figure 4: Per-packet processing time with userspace pid resolution

22

134 Appendix C. Presentation Slides

Performance – Kernel Method

0 100 200 300 400
Sample

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Pr
oc

es
sin

g
tim

e
(m

s)

Kernel Lookup Method
Valid PID
Invalid PID

Figure 5: Per-packet processing time with kernel pid resolution

23

Appendix C. Presentation Slides 135

Performance – Summary

method min (ms) max (ms) mean (ms) stdev (ms)
Kernel 0.245 3.55 0.463 0.394
Userspace 8.54 33.2 9.59 1.74
Control 0.259 6.765 0.418 0.377

Table 1: Packet Processing Times

24

136 Appendix C. Presentation Slides

Conclusions and Future Work

Appendix C. Presentation Slides 137

Conclusions and Future Work

We are left with one unanswered question: Under what
conditions can it be said that the output of a program is
stationary?

I conjecture that the answer to that question yields the answer
to what Machine Learning has to offer IDS. Either there is no
answer, in which case I would look to Machine Learning
research for how to model such data sets, or there is such an
answer, in which case if it can yield real-time labels of process
state, then we could have data sets that don’t violate the
assumptions made by Machine Learning algorithms.

25

138 Appendix C. Presentation Slides

	Abstract
	Acknowledgements
	Overview of Research
	Introduction and Scope of Research
	Problem Statement
	Why Machine Learning?

	Overview of Research
	Interface with Existing IDS
	Replicate SVM Anomaly Detection
	Attempt to Collect More Data
	Attempt Classification of Encrypted Traffic
	Traffic Labeling

	Literature Review
	Intrusion Detection
	Network vs. Host
	Methodologies
	Signature Based
	Specification Based
	Anomaly Based

	Feature Selection
	Supervised vs. Unsupervised Learning
	Datasets
	Conclusions

	Data Collection
	Introduction
	Novel Data Sources
	MERLIN Network

	Malware Sandbox

	Swarm Sensor Network
	Introduction
	Design Overview
	Results

	Intrusion Detection
	Introduction
	Machine Learning
	Choice of Algorithm
	Feature Selection
	Training
	Testing Methodology
	SVM Results

	Traditional IDS
	Reverse Geographic Communication Correlator
	User-Agent Deprecation Detector
	HTTP Connection without DNS Lookup
	DNS Tunnel Detection
	Correlation Results

	Overall IDS Results

	Modeling
	Introduction
	Problems with Feature Selection
	Designing new Features
	Detecting Encrypted Traffic
	Entropy Estimation
	Approximate Entropy
	Maurer's Universal Test

	Implementation and Results
	Test 1 – Secure Copy
	Test 2 – Random Number Generator
	Test 3 – 64KB Random Number Generator
	Test 4 – Plain-text
	Test 5 – Large File Compression

	Covert Channels
	Results

	Enhanced Data Collection Tools
	Introduction
	Host Based Context Mining
	Design
	Linux Kernel Networking Hooks

	Results

	Discussion
	Conclusions
	Pid Labeling
	Future Work

	Bibliography
	Overview of the Linux Kernel Networking Subsystem
	Socket System Call
	Socket Initialisation
	Network Layer

	Setsockopt System Call
	Implementation Details
	Connect System Call
	Transport Layer

	Write System Call
	Read Syscall
	NAPI - New API

	Expanded Literature Review
	Presentation Slides

