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Single univariate and multivariate control charts capable of quickly detecting

small and large changes in the process location and/or spread are proposed. We

develop these charts under the normality assumption for both independent and

autocorrelated processes. These charts are compared among themselves and to

other single charts in the literature using their out-of-control average run length

by first adjusting their control limits so that the compared charts have the same

in-control average run length.

We propose two univariate cumulative sum (CUSUM) charts and two multi-

variate charts; one CUSUM chart and one Shewhart-type chart. These four charts

are designed based on the assumption that a process being monitored will produce

measurements that are independent and identically distributed over time when only

the inherent sources of variability are present in the system. Two more charts are

developed for autocorrelated processes by first fitting a times series model and then

monitoring the residuals. The observations are represented by a first-order autore-

gressive process plus a random error model.

Abstract

We also assess the performance of an attributes chart for high yield processes.

The chart based on Poisson approximation is recommended based on its compara-

bility to the binomial chart for these processes.
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1.1 Overall View

In business, the main objective of the producer or service provider is to produce

goods and services that satisfy the customers' increasing demand for high quality

goods and services. However, it is not possible to produce goods that are always ex-

actly identical, even if they are produced under the same environmental conditions.

Variability is inevitable. Variability can only be described in statistical terms and

thus statistical methods play an integral part in quality improvement efforts. Con-

trol charts are basic and most powerful tools in statistical process control (SPC) and

are widely used for monitoring quality characteristics of a process. A process can be

defined as a set of causes and cond,iti,ons thøt repeatedly come together to transforrn

i,nputs i,nto outcomes. These inputs include such things as raw materials, machinery,

people and information while outcomes include, among others, products, services

and behavior. There are two types of data used for quality assessment, namely,

attributes data and variables data. Variables data follow a continuous scale which

measures the numerical magnitude of a characteristic such as weight and length,

while attributes data denote the presence or absence of a property related to a

characteristic or characteristics. Such a property may address the existence of the

characteristic (for example, cracks) or its magnitude relative to a specification (for

example, high resistance). In this thesis we investigate the quality improvement

techniques for both variables data and attributes data.

Chapter 1

Introduction
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The variability experienced in a process can be classified into two classes, the

assignable (special) cause and the natural (common) cause of variation. The com-

mon cause of variation is the variation in the process that is due to chance or cannot

be attributed to any one specific cause. This variation is present in every process.

The assignable cause of variation is the variation in the process that is caused by

changes in the factors involved in the production process such as machine lvear,

controller fatigue and other factors that can be controlled. The process is said to

be in statistical control if only common cause variation is present and out of control

if an assignable cause of variation is also present. The main objective of quality

control is to quickly detect the presence of assignable causes of variation so that

corrective action can be taken to remove them. Control charts have an outstanding

history of being credited with a good ability to carry out this task by discriminating

between situations where only common causes of variation are affecting the process

outcome and situations where assignable causes are also present.

Before the introduction of control charts, mechanisms like division of labor and

job specialization were used to try to improve quality of goods and services. In

that era, large industries employed full-time inspectors whose main job was to keep

defective items from reaching the consumers. Quality control was merely quality

inspection rather than quality improvement. The use of statistical methods for

quality improvement started in the 1920's through the introduction of statistical

control charts. Besides control charts, several other statistical techniques such as

design of experiments and acceptance sampling have been used to improve process

quality.

The statistical point of view of improving quality is different from that of man-

agement. While production managers understand improving quality as producing

goods that are identical, statisticians accept that variability is inevitable, and that
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quality improvement entails reduction of variability by monitoring the process it-

self. Several statistical methods including among others designed experiments, ac-

ceptance sampling and control charts have been used in an effort to improve the

performance of production processes.

The first control charts were developed by Walter Shewhart ([88]), and ever

since, several new charts have been developed in an effort to improve these Shewhart

control charts' ability to detect a shift of the process from a target value. The

statistical control chart, generally with 3o action limits and 2o warning limits,

is the longest established statistical form of graphical control. The control chart

statistics are plotted by simply plotting time on the horizontal axis and a quality

characteristic on the vertical axis. A quality characteristic is said to be in an in-

control state if nearly all points falls within the acceptance region of the chart and

out of control if ihe statistic plots outside the acceptance region. Shewhart ([88]),

suggested that control charts can be used: (i) to define the goal or standard for

a process that the management might strive to attain; (ii) as an instrument for

attaining that goal, and (iii) to serve as means of judging whether the goal has been

met.

Sir Ronald Fisher introduced the technique of design of experiments in the

1920's. There has been an increasing trend in the application of design of exper-

iments for quality improvement especially in the US chemical industry. In fact,

Montgomery ([70]) attributes the growth and quality of this industry to design of

experiments. Design of experiment methods are statistical techniques used to set up

efficient experiments designed to evaluate the effect of a change of one or more pro-

cess factors on the performance of the product. Taguchi and Wu ([9a]) developed a

simple design of experiments tool that attracted the attention of many manufactur-

ing engineers. This consists of setting up a robust design of the process that makes
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the process robust to environmental factors and other factors that are difficult to

control.

It is very difficult to define or measure quality, Montgomery ([70]), summarized

the components of quality as follows:

¡ Performance (whether the product can do the job it is designed to perform?)

o Reliability (how often does the product fail?)

o Durability (how long does the product last?)

o Serviceabiliiy (how easy is it to repair the product?)

o Aesthetics (what does the product look like?)

o Features (what does the product do?)

o Perceived quality (what is the reputation of the company or its product?)

r Conformance to standards (is the product made exactly as the designer in-

tended?)

As technology improved, the customer's demand for better quality increased,

and most of the processes experienced small shifts from their nominal values which

the Shewhart charts failed to detect quickly. Therefore a search for new charts

that could quickly detect these small shifts with lower false alarm rates than the

Shewhart charts with runs rules was undertaken. One of the charts developed as

a result of that search was the cumulative sum (CUSUM) control chart developed

by Page [80]. This technique plots the cumulative sums of deviations of the sample

values from a target value against time. Another chart developed as an effort to

improve the control charting procedure is the exponentially weighted moving average
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(EWMA) control chart introduced by Roberts [85]. An EWMA chart takes previous

observations into consideration when plotting the statistics. These two charts are

more effective when monitoring processes experiencing small persistent shifis in the

process than the Shewhart charts.

The above mentioned control charts are leading charts for process monitoring'

even though there are several other charts in the literature. The Shewhart charts

have proved to be particularly effective when the quality characteristics are inde-

pendent and identically distributed and follow a normal distribution. Control chart

theory is based on the realization that, no two items are identical. Control charts

are credited with the ability to tell the operator when to leave a process alone and

when to take action to correct an unwanted situation. When using control charts,

substantial improvements in qualiiy of products and services are often observed as

well as reduction in spoilage, rework and unnecessary work stoppage and process

adjustments.

However, these commonly used control charts have some limitations. Firstly,

they perform very well if the underlying distribution of the quality characteristic is

normal and the observations are independent and identically distributed over time.

In some situations, this might not be true and the control charts in particular the

Shewhart chart will not be appropriate. Secondly, the Shewhart chart is not effective

in detecting small shifts in the process while the CUSUM and EWMA charts are not

effective in detecting some types of large shifts. Finally, in some situations, shifts

may occur in both process mean and standard deviation and most of the charting

procedure require running two charts concurrently which may be cumbersome and

time-consuming.



L.2 Scope and Objective

The scope of this thesis includes SPC methods that can be applied to cases

where the process measurement follows a normal disiribution when the process is

in control. We develop control charts for cases where process measurements are

independently distributed over time and for process measurements that are serially

correlated. We restrict ourselves to stationary data which is assumed to be generated

by a first order autoregressive plus random error model. This model is frequently

encountered in practice. We also discuss control charts for attributes data for cases

where the number of nonconforming items are in the order of parts-per-million.

The major objective of this thesis is to develop single control charts that simul-

taneously monitor both the process location and the variability by using a single

plotting variable. These charts are capable of quickly detecting both small and large

shifts in the process location and spread and are also capable of handling cases of

varying sample sizes and efficiently monitoring autocorrelation processes.

1.3 Thesis Outline

Chapter 2 introduces the reader to the principles of SPC through discussion

of some literature on SPC. It introduces three main control charts, the Shewhart

chart, the CUSUM chart and the EWMA chart. These charts are used in quality

control for independent processes and autocorrelated processes for both univariate

and multivariate processes. The chapter concludes by discussing some limitations

of these charts particularly in monitoring serially correlated observations, monitor-

ing process where assignable causes of variation cause simultaneous shifts in both

location and spread as well as interpretation of an out-of-control signal when using

multivariate charts.

In Chapters 3 and 4 two single CUSUM charts are developed and their perfor-
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mance studied. It turns out that these charts are sensitive to both small and large

shifts in the process mean and/or standard deviation. These charts are applicable in

cases where the process measurements follow a univariate normal distribution and

measurements are not serially correlated.

Chapters 5 and 6 present new control charts for the mean vector and covariance

matrix. A multivariate single CUSUM chart is presented in Chapter 5. This chart

quickly detects both small and large shifts in the mean vector and covariance matrix.

A Shewhart-type single multivariate chart is presented in Chapter 6. This chart is

particularly effective in detecting large shifts in the process parameters.

Chapters 7 and 8 present control charts for monitoring processes that are seri-

ally correlated. Chapter 7 presents a single CUSUM chart while Chapter 8 presents

a single Shewhart-type chart. These charts are developed by fitting a time series

model to the data and calculating the residuals which will be monitored for detect-

ing shifts in the process mean andf or standard deviation. We assess the effect of

autocorrelation on the performance of control charts for models that are assumed

to follow a first order autoregressive model plus random error.

In Chapter 9, we present control charts for attributes data for the case where

the number of nonconforming items are measured in the order of parts-per-million.

We show that the chart based on the normal approximation does not perform well in

this case due to the asymmetric nature of the binomial distribution when the fraction

of nonconforming items p is very small. A chart based on a Poisson approximation

does not significantly differ from a chart based on the original binomial random

variables.

In Chapter 10, we present the conclusions of our research findings as well as

suggestions for future research.



L.4 Notations

The notations below are used throughout the thesis.

CUSUM

EWMA

SPC

CL

UCL

LCL

ARL

TL¿

n

m

p

p

02

o

Ð

lÐl

p

ARLo

o(.)

o-'(.)

H,o
H",¿(-)

Cumulative sum

Exponentially weighted moving average

Statistical process control

Center line

Upper control limit

Lower control limit

Average run length

'i¿l' sample size

Equal sample size

Number of samples taken from a process

Process mean

Process mean vector

Process variance

Process standard deviation

Process covariance matrix

Determinant of the process covariance matrix

Correlation coefficient between two quality characteristics

In control average run length

Standard normal cumulative distribution function

Inverse of standard normal cumulative distribution function

Chi-square distribution function with u degrees of freedom

Noncentral chi-square cumulative distribution function with

u degrees of freedom and noncentrality parameter ô

X - N(Lt,o2)A random variable X follows the normal



X -X?

X - x?,,0

,
/tdra

X¿j

distribution with mean ¡,r, and variance o2

A random variable X follows the chi-square
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2.L Statistical Quality Control

Quality has always been an integral part of all products and services. Engineers

and producers have a common goal, which is to design and produce goods that are

not expensive to produce and at the same time very durable and attractive to the

consumer.

In the early production era, that is before the 1920's, quality of goods was

judged through the eye of the producer. As production industry expanded, the

work of quality assessment was delegated to top company management who had

the task of assessing quality by physically comparing all products to see if they

are identical. During the industrial revolution and industrial boom, high volume

of goods were produced and the visual inspection of individual items became an

expensive and time consuming task. This necessitated investigations on ways of

improving quality and finding effective methods of quality assessment. In an effort

to improve quality, Frederick Taylor suggested the principle of division of labor and

work specialization (Montgomery [70]). This resulted in an increase in production

as well as an improvement in the quality of goods.

The growth in industrial production overburdened inspectors and called for

some standard quality control mechanisms to be developed. During that era, in-

spection was done on all products; and items not meeting the manufactuler's re-

quirement were excluded from the shipment, while only those meeting requirements

12
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were shipped. Quality monitoring was concentrated on the final product, this made

it difficult or impossible to notice faults in the production process itself. This re-

sulted in many items being rejected as not conforming to some set standards. One of

the major disadvantages of the physical examination was that no form of variability

in the products was measured.

In the 1920's, an active search for alternative and effective methods of process

monitoring was mounted. Several quality practitioners realized that there always

exist some forms of variability in the process. They acknowledged that variabil-

ity can only be described in statistical terms and thus statistical methods would

play an integral part in quality improvement efforts. Dr. Walter Shewhari ([88])

proposed the use of statistical control charts for quality monitoring. These charts

are the present day Shewhart control charts, namely the X-bar, R and S charts for

variables data and p, frp, c and u charts for attributes data. The quality control

chart procedure emphasizes the improvement of quality by monitoring the process

rather than correcting defects in the final product. Control charts that are used to

define what is meant by an in control state are referred to as Phase 1 charts. The

charts that are then used in the second phase to monitor the process are referred to

as Phase 11 charts. The introduction of these control charts promoted the concept

of sampling inspection as an alternative to 100 percent inspection. Control charts

did not gain popularity immediately due to their complexity and the failure by en-

gineers to recognize their importance in quality improvement. They were mainly

used at the Bell Telephone Laboratories where Shewhart first introduced them.

During and after the World War II, demand for goods was very high. This

resulted in formation of new and large industries and employment of semiskilled

and unskilled workers. Emphasis was on meeting the customer's demand and not

on quality, this resulted in a high volume of products not meeting the customer's
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expectations and thus a lot of goods being returned for rework or replacement. The

experience learned in the manufacturing industry necessitated the use of statisti-

cal techniques for quality control and quality improvement. These included control

charts, acceptance sampling and design of experiments. Several organizations such

as the American Society for Quality Control, formed in 1946, engaged in promo-

tion of statistical quality control techniques through different forms of training and

publications.

Statistical quality control gained popularity in Japanese industry during the

1950's through Dr. Edward E. Deming's training programs and emphasis on Total

Quality Management (TQM). TQM applies the quality concept not only on the

production floor but to all departments involved in the production process. These

include among others, management, planning, purchasing, sales and even accounting

departrnents. He emphasizes the concept of "do it right the first time" in order to

reduce rework costs.

The control charting procedure recognizes as a fact that, in any production

process, a certain amount of variability will always be present. This variability can

be classified into two classes, the variability due to chance and variability due to

some causes. The variability due to chance is caused by a combination of small

amount of noise from several uncontrollable factors in the process. This variability

cannot be removed without a major revision of the whole process. When a process

is operating in the presence of this form of variability on1y, the process is said to be

in statistical control. It is usually not within the power of the operator to influence

the effect of these unassignable causes (as Shewhart called them) of variation on

the process. The reduction of this form of variability is the responsibility of the top

management as it may require a total overhaul of the process.

The form of variability that is of more interest in control charting procedures is
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the variability caused by either internal or external factors such as machine setting,

operator error, raw material and other factors that can be controlled. The presence

of this type of variability represents an unacceptable level of process performance

and results in an out-of-control state. When this is signaled, the cause should be

identified and eliminated from the process. Since the removal of these causes does

not require revision of the process, the operator is usually instructed to identify

and remove them. The control chart procedure is used to discriminate between

situations where only unassignable causes are affecting the process outcome and

situations where there are also assignable causes of variation present.

It is therefore important for both managers and operators to understand the

process behavior so that they can know when to take action and when to leave the

process alone. Failure to take relevant action can result in losses for the company. It

is usually very expensive to reduce unassignable causes of variation and management

is often reluctant to take such actions. Snee ([a0]) pointed out that,

"Deming and his colleagues poi,nt out that rnz,nz,gers typically treat all

problems as due to assi,gnable cause uariati'on, when i,n fact, more than

85Yo of problerns are due to defects i,n a system (unassi,gnable cause uari-

ati,on), whi,ch only management can change. The result i's that rnz,n'

agement spends too much ti,me 'f,re-fi,ghti,ng', solui,ng the same problem

agai,n and, agai,n because the system was not changed"

As Montgomery ([70]) stated, the statistical theory employed in control charts

is the theory of hypothesis testing. The null hypothesis being that the process is in

a state of statistical control, while the alternative is that the process is operating out

of control. If the sample mean plots outside the control limits, we say the process

is out of control. The difference is that in hypothesis testing, we first check the
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validity of assumptions, while control charts are used to detect departures from an

assumed state of statistical control. Another difference is that in hypothesis testing,

once a decision to accept the null hypothesis is reached, no further testing is carried

out, while in process monitoring, when the hypothesis of in control is accepted, the

process is continually monitored throughout the production process.

Like any other testing procedures, control chart decisions are subject to type

I and iype II errors. Type I error occurs when the control chart issues an out-of-

control signal when the process is in control. This, in control charting language,

is called the false alarm or the producer's risk. Type II error occurs when the

control chart plots all values within the control limits when in fact the process is

out of control. This is called the consumer's risk. When charting, we usually fix the

probability of type I error and want to minimize the probability of type II error.

2.2 Shewhart Control Chart

The control chart is based on the idea that if the process is in a state of

statistical control, the outcomes are predictable. Based on previous observations, it

is possible to determine the probability that future observations will fall within some

given sets of limits. The basic Shewhart control chart plots quality characteristics

on the vertical axis and the sample number on the horizontal axis. It assumes

that quality characteristics are independent and identically distributed and follow

a normal distribution. Included in the chart are, the center line which represents

the nominal value, the upper control limit which is a line at a distance of three

standard deviations above the target value and a lower control limit which is at a

distance of three standard deviations below the process target value. If a point fails

beyond these three-sigma limits, the chart has produced a signal that the process

is out of control, otherwise the process is deemed to be in control. These limits are
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associated with the magnitude of the variability of the process when only common

causes are present. When the process is in control, we expect the plotted points

to show a random pattern within the limits and if points behave in a nonrandom

manner, even though ploiting within the limits, we should be suspicious that the

process is operating in an out-of-control state. Shewhart chose the 3-sigma limits

so that the false alarm rate may be as low as one in every 370 samples so as to

avoid unnecessary process stoppage. Basically, the Shewhart charts are used for

determining whether a process has achieved a state of statistical control and for

maintaining current control of a process.

The X-bar control chart is used for monitoring and assessing the process mean

while R and S control charts are used to monitor and assess the process variability.

Montgomery ([20]) suggested that, when dealing with quality characteristics for

variables data, we should always monitor the process mean and process variability.

The (X, R) charts have historically been used on the manufacturing floor due to

their simplicity while the (X, S) charts are used by the data analysts in the quality

assurance department due to their statistical appeal.

Shewhart control charts only use information about the process contained in

the last plotted point and thus ignore any information given by the entire sequence of

points. This makes the chart insensitive to small shifts in the process. As production

technology improved over time, most of the changes in the process parameters tend

to be small and the Shewhart chart proved to be not good enough to detect these

changes effectively.

To overcome the weakness of the original Shewhart charts, several authors such

as Moore [72], Page [77] and Weindling, Littauer and Tiago [tOO] and Nelson [76],

suggested certain supplementary runs rules which were also suggested by the Bell

company and used at Western Electric. They suggested running the Shewhart charts
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with the usual 3-sigma limits called the action limits together with the l-sigma and

2-sigma limits called the warning limits. Some of these sensitizing rules are listed

below. The process is deemed to be out of control if:

(i) One or more points plots outside the action limits.

(ii) Two of three successive points fall outside the 2-sigma limits on the same side

of the center line.

(iii) Four of five successive points fall outside the l-sigma limits on the same side

of the center line.

(iv) Eight successive points fall on the same side of the center line.

(v) Six points in a row steadily increasing or decreasing.

(vi) FifTeen points in a row plots within 1o limits.

(vii) Fourteen points in a row alternating up or down.

(viii) Eight points in a row in both sides of the center line with none within 1o

limits.

(ix) An unusual or nonrandom pattern in the data.

(x) One or more points near the warning or action limits.

The idea behind the use of these runs rules is to increase the sensitivity of

the Shewhart charts by combining the evidence of the current sample with that of

previous samples (Barnard [a]). These rules substantially improve the performance

of the Shewhart charts in the sense that it could detect smaller shifts in the mean.

However, these rules made the Shewhart charts produce a high level of false alarm

signals (Champ and Woodall [1a]).



19

Several control charts were íntroduced in an effort to improve or supplement

the Shewhart chart. Among these are the CUSUM control charts and the EWMA

control charts. Another chart proposed to take into consideration information from

several successlve results is the Arithmetic Running Means chart (Ewan [33]). In

this chart, the mean of the last fr results is calculated and plotted against time.

When a netv result is obtained, the mean of the most recent fr result is re-calculated

and thus removing the earliest result in the computation. Lack of control will be

indicated by a running mean falling outside a single control limit.

2.3 Exponentially Weighted Moving Average Control Chart

The EWMA chart was first developed by Roberts ([85]), in an effort to produce

a chart that could quickly detect small shifts in the process mean with a low false

alarm rate. An EWMA chart is constructed by attaching weights to the observations

in the sample. The EWMA chart gives the greatest weight to the most recent

observation and then decreasing weights to all previous observations in geometric

progression from the most recent to the first. It is sometimes called a Geometric

Moving Average (GMA) control chart. The EWMA chart is used extensively in

time series modelling and forecasting for processes with gradual drift (Box, Jenkins

and Reinsel [7]) For processes which are essentially white noise (random variation)

with periodic shifts in mean level, the EWMA scheme is useful for monitoring the

process and alerting the user that a shift has occurred (Crowder [28]).

The design parameters of the EWMA charts are a multiple of sigma (L) used

in determining the control limits and a smoothing operator (À). The constant À,

determines the rate of decay of ihe weights and hence the amount of information

obtained from the historical data. A combination of these parameters is determined

by an in-control average run length desired in the process. This chart can be viewed
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as a \¡¡eighted average of all past and current observations making it insensitive to

the normality assumption which is an important assumption for the application of

the Shewhart chart.

For a random variable Øi at sample number or time z with variance o2, the

EWMA control chart statistic is defined as

z¿: Àr¿ + (1 - À)ro-,

The EWMA chart is constructed by plotting these zi values on the vertical axis

against the sample numbers or time on the horizontal axis. Included in the chart

are the center line which represent the target value, two lines at a distance of L-

sigma below and above the center line, where sigma is the standard deviation of the

zi's. When the process is in control, the EWMA, Shewhart and CUSUM control

charts are roughly equivalent in their ability to monitor departures from the target.

However, the EWMA chart provides a forecast of where the process will be in the

next instance of time. It thus provide a mechanism for dynamic process control

(Hunter [43]).

The EWMA chart suffers from the disadvantage of being unable to quickly

detect large and temporary shifts in the process parameters as compared to the

Shewhart chart. Several authors have conducted research on this chart in an effort

to try to make it more sensitive to both small and large shifts in the process pa-

rameters and also easy to use in industry. These include among others, Crowder

[27], Chantraine [18] and Hunter [43]. Lucas and Saccucci ([62]) introduced some

enhancements to the EWMA chart. These included the fast initial response to

make the chart more responsive to initial out-of-control conditions and a combined

Shewhart-EWMA control chart that is more sensitive to both small and large shifts

in the process mean. They also introduced a robust EWMA chart to provide extra

protection against outliers in the process.
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Wortham and Ringer ([107]) and Sweet ([93]), proposed EWMA charts for mon-

itoring the process variance and for simultaneously monitoring both process mean

and variability respectively. Crowder and Hamilton ([29]) used the log transforma-

tion to develop an EWMA chart for monitoring increases in the process variance.

They showed that the EWMA chart performs better than the Shewhart chart for

detecting small increases in the process standard deviation.

2.4 Cumulative Sum Control Chart

One of the charts developed in an effort to supplement the Shewhart chart is

the CUSUM control chart which was first developed by Page ([80]) This chart

has been widely used to monitor the quality of continuous manufacturing processes.

This technique plots the cumulative sums of deviations of the sample values from

a target value against time. An important feature of the CUSUM chart is that,

it incorporates all the information in the sequence of sample values . This makes

the CUSUM chart more sensitive to even smaller shifts in the process mean. The

CUSUM charts are highly recommended by Marquardt ([65]) for use in industry.

This is because they can detect small changes in the distribution of a quality char-

acteristic and thus maintain tight control over a process. Bissell ([5]) reviewed the

use of CUSUM charts for both variables data and attributes data. They provided

tables and nomograms that can be used facilitate the application of CUSUM charts.

There are two types of the CUSUM procedures, the tabular CUSUM procedure

and the V-mask CUSUM procedure. The V-mask procedure operates by using a

mobile V-shaped mask to decide whether a shift has occurred. The mask is in the

shape of aV placed sidewise (>) with its vertex placed a fixed distance from the last

plotted CUSUM point. If all previous values lie within the two arms of the V-mask,

the process is in control, otherwise, the process is said to be out of control. The other
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type of ihe CUSUM procedure is the tabular CUSUM. The chart using the tabular

CUSUM procedure is constructed by to plotting CUSUM values against time, while

adding two lines a distance of h above and below the target value. The å value is

called the decision interval. The tabular form makes use of two cumulative sums, the

upper CUSUM accumulates positive deviations of the sample values from a target

value while the lower CUSUM accumulates negative deviations of the sample values

from a target value.

Montgomery ([70]) strongly discourages the use of V-mask procedure because

of the following reasons:

(i) being a two-sided scheme, the V-mask is not very useful in one-sided process

monitoring problems;

(ii) the useful fast initial response (FIR) feature proposed by Lucas and Crosier

([60] and [61]) cannot be applied to the V-mask;

(iii) it is not clear how far backwards the arms of the V-mask should extend, this

complicates interpretation of the V-mask.

We agree with Montgomery's assertion and we only propose ne\M schemes for the

tabular CUSUM chart in this thesis.

If there is no assignable cause variation, the two-sided CUSUM chart is a ran-

dom walk with mean zero. If the process shifts, a trend will develop either upwards

or downwards depending on the direction of the shift and in this situation a search

for the assignable cause of variation should be undertaken. The magnitude of a

change can be determined from the slope of ihe CUSUM chart and a point at which

a change first occurred is the point where a trend first developed. The abiliiy to

detect a point at which changes in the process parameters began makes the CUSUM
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chart a valuable tool for use where high volumes of goods are produced within a

short period of time.

The design parameters of the tabular CUSUM chart are the decision interval,

fr, and the reference value k. The reference value k is usually chosen to be one-half

ô, where ô is the smallest shift, measured in units of the standard error that is

considered large enough to be quickly detected by the chart. The decision interval

is the action timit of the CUSUM chart, it is normally set by choosing an in control

average run length together with the minimum allowable shift of the process. A

combination of h and fr can be determined to give the desired average run length.

More research has been carried out investigating the performance of the CUSUM

chart. Gibra ([35]) and Woodall ([105]) gave a brief review of literature on CUSUM

charts. Lucas and Crosier ([Ot]) recommended using the headstart to make the

CUSUM chart quick to detect an initial out-of-control condition. Page ([78] and

[79]), Ewan ([33]) and Duncan ([SZ]) stated that ihe CUSUM chart may be too sen-

sitive to small shifts in the process mean in some applications. Gibra ([35]) states

that the CUSUM chart should not be used or should be used with greater thought

when some slack in the process is permissible because the chart will falsely issue

an out-of-control signal. Ewan ([33]) suggested that two or more V-masks should

be used simultaneously to improve the sensitivity of the V-mask CUSUM chart to

large shifts in the mean. Lucas ([59]) and Bissell ([6]) have also proposed changes

in the shape of the V-mask near its vertex. Lucas ([58]) recommended combining

the Shewhart and CUSUM charts so that the combined chart can be more sensitive

to both small and large shifts in the process mean.

Shewhart pointed out that it is not enough to monitor only the process mean;

the process variability is just as important in quality control and must be monitored.

This point of view is perhaps even more appropriate today in lighi of the Taguchi
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CUSUM charts for monitoring process variability have been suggested. Hawkins

([39]), suggested a CUSUM chart based on flxJfl, which is approximately nor-

mally distributed if measurements of a quality characteristic X¿ follows a normal

distribution with mean 0 and variance o2. Box and Ramirez ([8], [9] and [10]) pro-

posed CUSUM charts for process variability based on (X¿ - p)', where ¡; is the

process mean. Chang and Gan ([17]) proposed using the CUSUM chart based on

the logarithmic transformation (to base e) of the sample variance, to monitor the

process variance.

2.5 Autocorrelated Process Control Charts

The control charts discussed above are designed under the assumption that a

process being monitored will produce measurements that are independent and iden-

tically distributed over time when only the inherent sources of variability are present

in the system. However, in some applications, the assumption of independent ob-

servations is not realistic. For instance, measured variables from tanks, reactors and

recycle streams in chemical processes show significant serial correlation (Harris and

Ross [37]). In some instances, the dynamics of the process will induce correlations

in observations which are closely spaced in time. If the sampling interval used for

process monitoring in these applications is short enough for the process dynamics

to produce significant correlation, then this correlation can have very serious effects

on the properties of standard control charts developed under the independence as-

sumption, (see Maragah and Woodall [64], VanBrackle and Reynolds [96], Lu and

Reynolds [55] and [56] and Runger, Willemain and Prabhu [80]). If there is correla-

tion among observations, the process mean is not constant. It may be more realistic

to assume that the process mean is continually wandering even when the process is
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Positive autocorrelation in observations can result in severe negative bias in

traditional estimators of the standard deviation. This bias produces control limits

that are much tighter than desired. Lu and Reynolds ([55]), observed that tight

control limits, combined with autocorrelation in the observations plotted, can result

in an average false alarm rate much higher than expected. This will result in effort

being wasted searching for unavailable special causes of variation in the process.

This can also result in loss of confidence in the control charts and practitioners

may abandon their use. Corrective action taken after the false alarms can also

introduce variability into the process and make the control chart less effective and

very expensive to use. Negative autocorrelation can lead to wider control limits

which makes the chart insensitive to shifts in the process mean. It is therefore

very important to take autocorrelation among observations into consideration when

designing a process monitoring scheme, in particular control charts, in order to

maximize full benefit from their use.

Maragah and Woodall ([6a]), observed that autocorrelation is a source of vari-

abitity. They proposed that if a process is being controlled to a target value and

the cause of the autocorrelation can be found and removed from the process, then it

should be. The effect of autocorrelation has been studied for several types of control

charts. Vasilopoulos and Stamboulis ([OA]) have studied the modification of X con-

trol chart limits in the presence of data correlation within samples. Maragah and

Woodall ([64]), studied the effect of autocorrelation on the retrospective X-chart.

Johnson and Bagshaw ([a8]), Atienza; Tang and Ang ([3]), Lu and Reynolds ([55]),

and others studied the effect of autocorrelation on the CUSUM charts. Lu and

Reynolds ([56]), studied the effect of autocorrelation on the EWMA control charts.

The studies mentioned above used several methods, such as simulation, asymp-
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totic approximation and, direct calculation, to evaluate properties of the control

charts. A conclusion that can be drawn from these studies is that correlation be-

tween observations has a significant effect on the properties of the control charts.

Recently, new control charts have been proposed for dealing with autocorre-

lated data. Two approaches have been advocated for dealing with this phenomenon.

The first approach uses standard control charts on original observations, but adjust

the control limits arrd methods of estimating parameters to account for the autocor-

relation in the observations (see, VanBrackle and Reynolds [96], Lu and Reynolds

[56]). This approach is particularly applicable when the level of autocorrelation is

not high.

A second approach for dealing with autocorrelation fits time series model to

the process observations. The procedure forecasts observations from previous val-

ues and then computes the forecast errors or residuals. These residuals are then

plotted on standard control charts, because the residuals are independent and iden-

tically distributed normal random variables when the process is in control, when

the fitted time series model is the same as the true process model and the param-

eters are estimated without error. (see, Alwan and Roberts [2]; Montgomery and

Mastrangelo [71]; Wardell, Moskowitz, and Plante [99]; Lu and Reynolds [57]; and

Runger, Willemain and Prabhu [40]). Control charts based on residuals seem to

work well when the level of autocorrelation is high. When the level of autocorrela-

tion is low, forecasting is more difficult and residual charts are not very effective at

detecting process changes.

The second approach is more appealing due to the following reasons:

(i) it takes advantage of the fact that the process is correlated and allow forecasts

of future quality;
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(ii) ii is based on the assumption that the residuals are random so the traditional

statistical process control tools can be used;

(iii) the chart can be used to detect any assignable cause including change in the

time series structure;

(iv) the chart is easy to construct;

(v) unlike other methods for dealing with correlated data that have been limited

to AR(l) or MA(1) time series models, the method can be applied to any type

of time series model;

(vi) the method is often more effective in detecting shifts in the process mean than

more traditional control charts when the underlying process is ARMA(l,1)

(Wadell, Moskowitz, and Plante [99]).

The control charts discussed above were developed for monitoring the process

mean. However in the production process many special causes of variation can affect

both process mean and process variability. This problem also arises in the case of

monitoring autocorrelated processes even though there has been little work pub-

lished in the control chart literature on this problem. MacGregor and Harris ([63])

developed the exponentially weighted moving variance control charts for monitoring

variability for autocorrelated processes. These charts are useful when only indi-

vidual observations are collected. One of their charts is based on an exponentially

weighted mean square deviation from the target and another one is based on an

exponentially weighted moving variance.

Lu and Reynolds ([57]) developed EWMA control charts for monitoring the

variance of an autocorrelated process. They used the logarithms of the squared

residuals to develop the EWMA chart. They also showed some results for the

Shewhart chart for residuals.



2.6 Multivariate Control Charts

There are many situations in which the overall quality of an item is determined

by several (r"y p) correlated quality characteristics and we wish to test whether the

process is in statistical control. For example, a chemical process may be a func-

tion of temperature and pressure both of which need to be monitored carefully, the

performance of a machine used in the process may depend on its age and the time

since the last maintenance check. In fact, multivariate situations where process per-

formance is determined by many correlated variables are common in industry. The

produci/item is considered to be in statistical control if all critical product char-

acteristics are simultaneously in control. To monitor the quality of such products,

several control charts have been suggested. One such suggestion is to run p univari-

ate control charts one for each component of the product. Since in most cases these

components of the product are correlated, individual control charts disregard this

correlation structure and may give misleading results.

Hotelling ([a2]) proposed a new control chart for multivariate data based on his

statistic known as the Hotelling's ?2 statistic. This statistic is a scalar that com-

bines information from the dispersion and mean of several variables. The underlying

probability distribution of these p quality characteristics is assumed to be multivari-

ate normal wiih mean vector ¡r and covariance matrix Ð. Healy ([41]) proposed a

multivariate CUSUM chart for the mean vector when the mean shifts from a known

target value to a known out-of-control vaiue. Crosier ([26]) proposed two multi-

variate CUSUM charts. One chart makes use of the Hotelling's T statistic to form

a CUSUM of T statistics. The other procedure forms a CUSUM vector directly

from the observations. Lowry and Woodall ([Sa]) and Prabhu and Runger ([81])

proposed some multivariate EWMA control charts. Woodall and Ncube ([tO0])

suggested operating p one-sided or two-sided univariate CUSUM schemes simul-
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taneously to detect a shift in the mean vector of a p-variate normal distribution.

Recently, Khoo and Quah ([50]) proposed a multivariate control charts for short

runs based on individual measurements and subgroup data.

The multivariate control chart initially did not receive much attention due to

their complexity. However, due to the increasing use of computers in many industries

application of these charts is receiving more attention and some practitioners now

refer to them as Shewhart charts even though Shewhart had nothing to do with

them.

Most of the research on multivariate charts is focused on monitoring the process

mean vector. However some recent work has proposed control charts for monitoring

changes in the process variability. Alt and Smith ([1]) suggested the Shewhart-

type control chart for the covariance. Healy ([41]) proposed a CUSUM chart for

detecting changes in covariance from Ð¡ to CÐ6 where C > 0. Chan and Zhang

([15]) proposed multivariate CUSUM charts for the covariance. These charts are

based on the projection pursuit technique and are also effective in a low volume

or short-run environment. Chan and Zhang ([15]) proposed a CUSUM chart based

on the likelihood ratio which is only applicable when the subgroup size is larger

tlran the number of the quality characteristics measured per item. Yeh, Lin, Zhou

and Venkataaramani ([110]) using the idea of probability integral transformation,

proposed a multivariate EWMA chart for detecting changes in lÐ¡1, the determinant

of the variance-covariance matrix. Wierda ([101]) proposed a multivariate control

chart hierarchically using the likelihood ratio test. Prins and Mader ([82]) suggested

that for grouped data, the T2 chart can be paired with a chart that displays a

measure of variability within the subgroups for all the analyzed characteristics.

This is analogous to the (X, S) or (X, B) charts for univariate processes.



2.6.1 fnterpretation of an Out-of-Control Signal

There are some difficulties associated with the use of multivariate control charts.

These difficulties include among others: that the value displayed on the chart is

unitless and hence is not related to the units of measurement of the monitored

variables. The other difficulty is that the user does not know which particular quality

characteristic(s) caused the out-of-control signal when the T2 statistic exceeds the

upper control limit. F\:rthermore, a multivariate control chart can issue an out-

of-control signal when either or both of the individual variables are out of control

and or when the relationship between the two variables changes relative to the

historical structure. It is therefore important to eliminate the collinearity between

observations in the historical data before constructing a control chart.

One method for investigating which quality characterisiic(s) have shifted is a

method that uses the principal component analysis (see Jackson and Morris [46],

Jackson [  ] and [a5]). The 72 statistic is decomposed into a sum of independent

squared principal components which are linear combinations of the original variables.

The principal components are examined to see why the process is out of control.

However, the principal component approach is not very effective due to their lack

of ease of interpretation. Kourti and MacGregor ([52]) proposed an approach based

on normalized principal components scores. The 72 is expressed in terms of those

normalized scores of the multinormal variables. When an out-of-control signal is

issued the normalized score(s) with high values are detected and contribution plots

are used to find the variable(s) responsible for the signal. A contribution plot

indicates Ìrow each variable involved in the calculation of that score contributes to

it. Mason, Tracy, and Young ([67]), Mason, Champ, Tracy, Wierda and Young

([68]) decompose the T2 statistic into p independent components each of which

provide information on the variables that significantly contribute to an out-of-control
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signal. Using univariate charts to supplement the multivariate chart for monitoring

the variance based on the generalized sample variance is suggested by Lowry and

Montgomery ([53]).

Woodall and Ncube ([tO6]) proposed running p charts each at level a and

conclude that the process is out of control if any of these charts signals. However, the

overall probability of producing a false alarm for these p charts combined is not the

same as the that of a chart that plots all the characteristics together. Wierda ([101])

stated that it is not satisfactory to use the joint distribution to obtain probability

of false alarm for p control charts in such a way that the overall probability is equal

to o since the quality characteristics depend on each other. Therefore when quality

characteristics are correlated, the information of one characteristic should be used to

evaluate the value of the other. Prins and Mader ([82]) recommended that individual

univariate charts could be run at the same time with a multivariate control chart

even though the individual charts will not detect shifts due to correlation structure.

2.7 Simultaneous Control Charts

Most of the Shewhart, CUSUM and EWMA control charts discussed in the

literature monitor the process location and spread separately. Two control charts,

one for the mean and the other for the process variability, are run concurrently.

This practice requires more resources such as quality control practitioners, time

and other resources. Recently, more effort has been committed to designing control

charts that can simultaneously monitor both process mean and variability. Such

charts are called single control charts. Some of the main difficulties encountered

in this endeavor include designing a single chart that is effective for both small

and large shifts in both parameters, designing a chart that is simple to use and

interpret, and designing a chart that can immediately indicate whether the mean is
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out of control, the variability is out of control or both, as well as the direction of

the shift when an out-of-control signal is issued.

White and Schroeder ([103]) firsi introduced the use of one control chart to

monitor both process mean and variability. This chart was developed using resistant

measures and a modified box plot display. Domangue and Patch ([3t]) developed

some omnibus EWMA schemes based on the exponentiation of the absolute value of

the standardized sample mean of observations, capable of simultaneously detecting

shifts in the process mean and process standard deviation. These charts are sensitive

to shifts in the process mean and/or variability. However, it is not possible to identify

the parameter that has shifted. Hawkins (138]) suggested plotting the two statistics

on the same plot using different plotting symbols. This produces a chart that is

somewhat complicated to interpret and is congested with many plotting points on

the same chart. For multivariate processes, Spiring and Cheng ([91]) developed a

single chart that plots both process mean and standard deviation on the same chart.

This chart also plots two variables in the same chart.

In recent years, attention has been devoted to developing single control charts

that use only one plotiing character for both process mean and standard deviation

on a single chart. Such charts should be able to issue an out-of-control signal and

identify the parameter(s) that has shifted. Cheng and Li ([24]) proposed a single

variable T control chart that measures the proximity of the observations to the

target value (center) and the variability of the process. The T chart suffers from

the weakness of not being able to tell which parameter has shifted.

Chao and Cheng ([i9]) developed a single control chart called the semicircle

control chart. This is actually an improvement to Van Nuland's ([97]) circle tech-

nique. This chart uses a semicircle to plot a single plotting character to indicate the

position of the mean and standard deviation by plotting the two parameters against



ttùù

each other. This chart is able to show which parameter has shifted from its target

value. The disadvantage of this chart is ihat ii loses track of the time sequence of

the plotted points.

Chen and Cheng ([21]) developed a single Shewhart-type control chart called

the Max chart. This chart plots the maximum absolute values of the standardized

mean and standard deviation. It is capable of simultaneously monitoring the process

mean and variability, it further shows which parameter has shifted as well as the

direction of the shift. This chart performs like the combined Shewhart charts for

the mean and standard deviation (i,.e. the combined X) and,9 charts. Chen, Cheng

and Xie ([22] and [23]) and Xie ([108]) proposed several EWMA control charts that

simultaneously monitor the process mean and standard deviation. These charts

have, in addition to the advantages enjoyed by the Max chart, the capability of

quickly detecting small shifts in the process.

There has been no attempt to the best of our knowledge to develop single

CUSUM charts. We are proposing some single univariate and multivariate CUSUM

chart for monitoring both process location and spread for the cases of independent

and autocorrelated processes.

2.8 Average Run Length

The average run length (ARL) of a control chart is often used as a measure of

performance of the chart. The ARL of the chart is the average number of points

that must be plotted before a point plots above or below the control limits. If

this happens, the chart issues an out-of-control signal indicating the presence of

assignable cause(s) of variation in the process. When there is a significant change

in the process, it is desirable to have a low ARL so that the change can be detected

quickly. When the process is in control, it is desirable to have a large ARL so that



the false alarm rate produced by the chart is low.

A chart that has low out-of-control ARL with the same or higher in control

ARL as its competitors is said to be more efficient in monitoring the process. For

comparison of charts in this thesis, we adjust the chart's control limits so that the

compared charts will have the same in control ARL and then compare their out

of control ARL's for changes in the mean alone, standard deviation alone and for

changes in both mean and standard deviation. We are aware of the objection to

using the ARL as a way to compare charts since only a fraction of the behavior

of the control chart is reflected by the size of the ARL. We believe that it would

be better to investigate the distribution of the run length, however, the ARL is

widely used in the literature to compare different control charts since the amount

of production is proportional to the ARL.

When there is a change in the process, ihe ARL is usually computed under the

assumption that this change is present at the time the chart is started. However,

in practice, a change in the process may occur after the chart has been running

for some time. In this case, it would be appropriate to look at the time from the

change in the process to the time of the first signal by the chart. This time has been

frequently measured using the steady-state run length distribution. The steady-

state run length distribution is the distribution of the number of samples from the

change to the process until the occurrence of the signal, computed for the case in

which there are no false alarms before the change and the change occurs after the

process has been running long enough for the control statistic to be in steady-state

at the sarnple immediately before the change occurs. The mean of the steady-state

run length distribution is called the steady-state average run length. This steady-

state ARL has been used as a measure of detection time for process changes which

occur after the control chart has been in operation for some time.
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The theory of Markov chains has been used successfully to compute the ARL of

the CUSUM charts. Brooks and Evans([ll]) give a Markov chain representation of

the one-sided CUSUM procedure based on an integer-valued CUSUM. This approach

is used to obtain approximations in the continuous case, but a more accurate method

using the recursive numerical integration is given by Woodall ([105]). Champ and

Rigdon ([13]) showed that if the midpoint rule is used to approximate the integral

in the integral equation, the integral equation and Markov chain approaches yield

the same approximations for the ARL.



3.1 Introduction

Max-CIJSIIM Chart

The CUSUM control chart has been developed in an effort to provide an al-

ternative to the Shewhart chart. As discussed in Chapter 2, this chart is more

sensitive to sma1l but persistent shifts in the process mean andf or standard devi-

ation. It is however very sensitive to large and instantaneous or temporary shifts

in these parameter(s). Most of the CUSUM schemes for variables data discussed in

the literature require running two CUSUM charts concurrently, one for monitoring

the process location and another for monitoring the process spread. However recent

studies propose simultaneous CUSUM charts which plot the two parameters on the

same chart using different quantities.

This chapter proposes an alternative CUSUM chart that simultaneously mon-

itor process mean and process standard deviation using one quality characteris-

iic. This control chart is called the maximum cumulative sum control chart (Max-

CUSUM chart). It is assumed that a special cause of variation may simultaneously

cause a shift in either one or the process location and the spread. The proposed

chart is based on the well-known standardization procedures of the normal distri-

bution. Some important properties of this proposed procedure are (i) the chart is

capable of quickly detecting both small and large shifts in the process mean and/or

standard deviation, (ii) ii is also capable of handling cases of varying sample sizes,

and (iii) it shows the parameter that has shifted and the direction of the shift.

Chapter 3
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3.2 The New Control Chart

Let X¿ : Xil, ,,., X¿nn, i : L,2, ..., denote a Sequence of samples of size n¿ taken

on a quality characteristic X. It is assumed that, for each'i, X¿t,...,Xànn are in-

dependent and identically distribuied observations following a normal distribution

with means and standard deviations possibly depending on i, where'i indicates the

i¿ä group. Let ¡.ts and øs be the nominal process mean and standard deviation pre-

viously established. Assume that the process parameters p and o can be expressed

as p - l-Lo I aoo and o - boofor ó > 0, where a : 0 and á : 1 when the process is

in control, otherwise, the process has changed due to some assignable causes. The

constants ø and å represent shifts in the mean and standard deviation respectively.

Let X¿: (Xn +... + X¿n)lru and S¿2 : Ði1ré¿¡-X¿)'l(ru- 1) be the

mean and variance for the i,th sample respectively. The sample mean X¿ and sample

variance S¿2 are the uniformly minimum variance unbiased estimators for the corre-

sponding population parameters. These statistics are also independently distributed

as are the sample values. These two statistics follow different distributions. The

CUSUM charts for the mean and standard deviation are based on { and ,9¿ respec-

tively. To develop a single chart, we define the following transformed statistics:

,lt

and

where

for Z - N(0, i), the standard normal distribution. The function O-t (.) is the inverse

of the standard normal cumulative distribution function, and H(r;p) : P(W <

wlp) for W - X?, the chi-square distribution wiih p degrees of freedom.

(3.1)

(3.2)
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These new variables, Z¿ and Y¿ are independent and when a : 0 and á : 1,

they both follow the standard normal distribution and do not depend on the sample

size. The CUSUM statistics based on Z¿ and \ are given by

and

cl
ct

respectively, where C6 and 56 are starting points and mørla, ô] denotes the maximum

of ø and ó.

If either C{ or C; becomes greater than the decision interval, the process is

said to be out of control due to changes in the process mean from the target value.

In the same manner, if So+ or ,9¡ becomes greater than the decision interval, the

process is deemed out of control due to changes in the process standard deviation

from its target value. To detect shifts in the process mean and standard deviation,

we usually run two control charts concurrently or combine the two charts by plotting

two different quantities on the same chart, one for the process mean and another

for the process standard deviation. If an out-of-control signal is issued, the process

is stopped and a search for assignable cause(s) of variation is undertaken. If both

statistics fall below the decision interval, it is assumed that the process is operating

on target. If the process is operating on target, we do not stop monitoring the

process, the monitoring is continued throughout the production process so that if

the process goes out of control, the control chart can issue an out-of-control signal.

Because Z¿ and )j follow the same distribution, a new statistic for a single

control chart that can simultaneously monitor both process mean and standard

: max[0, Z¿-k*Co*-r],

: max[O, -k - Z¿ -f C;],

s¿+ : max[o,V-k+slr],

st : max[0,-k-Y+s;r1,

(3 3)

(3.4)

(3.5)

(3 6)



deviation using a single variable is defined as:

The statistic M¿ will be large when the process mean has drifted away from ¡;¡

and/or when the process standard deviation has drifted away from os. Small values

of M¿ indicate that the process is in control. Since M¿'s are non-negative, they are

compared with the upper decision interval only.

The ARL of a control chart is often used as a measure of the performance of

the chart. The ARL of the chart is the average number of points that must be

plotted before a point plots above or below the control limits. If this happens, an

out-of-control signal is issued indicating the possible presence of assignable cause(s)

of variation and a search for the assignable cause(s) of variation must be taken. A

chart is considered to be more efficient if its ARL is smaller than those of all other

competing charts when the process is out of control and the largest when the process

is in control.

The out-of-control signal is issued when either the mean or standard deviation

or both have shifted from their target values. Therefore the plan (the sample size

and control limits) is chosen so that the ARL is large, when the process is in control

and small when the process is out of control. Cox ([25]) suggested that the criteria

for a good chart are: (i) acceptable risks of incorrect actions, (ii) expected average

quality levels reaching the customer and (iii) expected average inspection loads.

Therefore the in control ARL should be chosen so as to minimize the frequency of

false alarm and to ensure adequate response times to genuine shifts.

Recall that h is the decision interval and k is the reference value of the chart.

For a predetermined in control ARL, for quickly detecting shifts in the mean and

variability, an optimal combination of h, and k is determined which will minimize

M¿: max[C¿+, Ci,Sl,Si]

39
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the out-of-control ARL for a specified change in the mean and standard deviation.

The proposed Max-CUSUM chart is sensitive to changes in both mean and standard

deviation when there is an increase in the standard deviation and is less sensitive

when the standard deviation shifts downwards. This phenomenon has been observed

in other charts based on the standardized values (Domangue and Patch [31]).

3.3 Design of a Max-CUSUM Chart

We use the statistic M¿ to construct a new control chart. Because M¿ is the

maximum of four statistics, we call this new chart the Max-CUSUM chart. We use

theoretical results by Hawkins and Olwell ([a0]) and the Markov chain approach de-

veloped by Brook and Evans ([11]) and successfully applied by Champ and Woodall

([14]) for the Shewhart chart, Lucus and Saccucci ([62]) for the EWMA chart and

Lucus and Crosier ([60]) for the CUSUM chart, to compute the ARL for our Max-

CUSUM chart.

The ARL's of the Max-CUSUM procedure is approximated using a discrete

Markov chain. The possible values of M¿ are represented by f * 1 states. One state

is an absorbing state representing M¿ ) h. The remaining f transient states are

numbered 0,7,2,..., (t-1) and represent values of M¿ between 0 and ft,.

For a given in control ARL, and a shift for the mean and/or standard deviation

intended to be detected by the chart, the reference value (fr) is computed as half the

shift we want to detect. For a given (ARL, k) combination, the value of the decision

interval (å,) is fixed. When the mean and standard deviation shifi simultaneously,

\,ve can use the standard CUSUM chart procedures for standardized variables with

decision interval h+ - hlb and reference value lçr - (k - a)lb to calculate the

out-of-control ARL. This is equivalent to using the CUSUM chart with standard

in control (fr,, fr) values for a normal distribution with new mean þ: þo * øøs and
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standard deviation o : boo. We use the latter to calculate the ARL's in this thesis.

Table 3.1 gives the optimal combinations of fr, and fr for an in control ARL fixed

at 250. The smallest value of an out-of-control ARL is calculated with respect to

specified shifts in the process mean alone, standard deviation alone and shifts in

both mean and standard deviation using the optimal in control ARL CUSUM chart

parameters. We assurìe that the process starts in an in control state and thus the

initial value of the CUSUM statistic is set al zero. For example if one wants to

have in control ARL of 250 and to guard against 3o increase in the mean and 7.25o

increase in the standard deviation, i.e., a:3 and b: L25, the optimal parameter

values are h:1.025 and k:1.500. These shifts can on average be detected with

the first sample i.e., the ARL is approximately one. The good feature about the

Max-CUSUM chart is that smaller shifts in the mean and/or standard deviation

are detected much faster than in single Shewhart chart (Max chart) and the single

EWMA chart (Max-EWMA chart). The comparison of these charts is done in the

next section.

Table 3.1 shows that small values of fr with large values of h, result in quick

detectiorr of small shifts in mean and/or standard deviations. To keep the in control

ARL at 250, a decrease in h results in an increase in the value of fr for a given value

of the standard deviation at different values of the mean. If one wants to guard

against a 3o increase in the mean and a 3o increase in the standard deviation, the

value of h :1.025 and the value of.lc :1.500. But for a 1o increase in mean and 3ø

increase in standard deviation , h : 2.476 and the value of k decreases to À : 0.500.

The Max-CUSUM scheme is sensitive to both small and large shifts in both

process mean and standard deviation . Ã 0.25o increase in the process mean reduces

the ARL from 250 to 19 and a t.25o increase in the process standard deviation with

a 0.25o increase in the process mean reduces the ARL from 250 to 15 runs. If both
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parameters increased by large values, the ARL is reduced to 1. Thus the increase

will on average be detected with the very first sample. For example, a 3ø increase

in both parameters will be expected to be detected with the first sample.

Table 3.1: (k,h) combinations and the corresponding ARL for the Max-CUSUM
chart.
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Another alternative method of assessing the performance of the CUSUM chart

is to fix the values of fr. and Æ and calculate the ARL's for various shifts in the mean

and/or standard deviation. This is displayed in Table 3.2. The value of lc :0.5 and

thus we want to detect a 1ø shift in the mean and å, :2.476. This combination gives

an in control ARL : 250. füom the table it can be concluded that, even though

the chart is designed to detect a 1o shift in the process, it is sensitive to both sma1l

and large shifts in the mean and/or standard deviation.

Table 3.2: ARL's for the Max-CUSUM chart with å, :2.476 and k : 0.500.
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In this section, we compare the Max-CUSUM chart with other recently pro-

posed single charts used for quality monitoring. Most of the CUSUM charts devel-

oped are designed to monitor the mean and standard deviation separately, even the

combined CUSUM charts monitor these parameters separately in the same plots.

This is done by plotting the charts using different plotting variables for the means

and standard deviations, and then calculating ARLs separately for each parameter.
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Patch ([31]), the Max chart by Chen and Cheng ([21]), the Max-EWMA chart by

Chen, Cheng and Xie ([23]) and the Combined Shewhart-CUSUM chart by Lucus

([58])

Table 3.4 shows the ARL's for the Max-CUSUM chart and the omnibus CUSUM

chart developed by Domangue and Patch ([31]) for shifts shown in Table 3.3. For

various changes in the mean and/or standard deviation, we have calculated the

ARL's for the Max-CUSUM chart and compared them with those given by Do-

mangue and Patch ([St]) in Table 4. The Max-CUSUM chart performs better than

the omnibus CUSUM chart for all shifts since its ARL's are smaller than those of

the omnibus chart. The Max-CUSUM chart is also easy to plot and read as com-

pared to the omnibus CUSUM chart since it uses only one plotiing variable for each

sample.

Table 3.3: Level of shifts in mean and standard deviation considered.

Table 3.4: ARL's for the Max-CUSUM and the omnibus CUSUM charts.

Label
,9r

Sz

^93

Sq

.95

^90

I,L

0.75
1.5

0

0

0.75
1.0

In Table 3.5 we compare the Max-CUSUM chart with the Max chart (Chen

and Cheng [21]). The Max chart is less sensitive to small shifts in the mean and/or

o

k :7 h: 7.279 o : 0.5 n: L

1.0

1.0

T,2

L.4

1.3

1.2

Omnibus
Max-CUSUM

Scheme ,91

37.0

2.5

Sz

7.0
1.5

^93

50.4
30.7

Sa

27.5

16.9

s5

15.7
2.4

^90

13.0

2.7
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standard deviation as compared to the Max-CUSUM chart. For large shifts in these

parameters, there is no significant difference in the performance of these two charts.

However, the Max chart performs better than the Max-CUSUM chart when the

standard deviation shifts by large amount at low shifts in the mean.

Table 3.5: ARL's for Max-CUSUM chart and the Max chart.

b

1.00
7.25
1.50
2.00

3.00

a,

0.00 0.25 0.50 1.00 2.00 3.00

250.0 18.5 7.7 3.2 1.6 1.3

72.6 14.4 6.2 2.7 7.4 1.1

9.6 7t.7 5.2 2.4 7.4 1.1

6.6 8.5 4.7 2.0 r.2 1.1

4.5 5.5 3.0 L.7 1.2 1.1

Max-CUSUM

Lucas ([58]) developed a combined Shewhart-CUSUM chart. Table 3.6 gives

the ARLs for this chart in comparison with those of our Max-CUSUM chart. The

Max-CUSUM chart is superior to the combined Shewhart-CUSUM chart for small

shifts in the mean while the two charts' performance is comparable for larger shifts

in the process mean. The advantage of the Max-CUSUM chart over the combined

Shewhart-CUSUM chart is the fact that, Max-CUSUM is capable of simultaneously

detecting shifts in mean and standard deviation of the process.

Table 3.6: ARL's for the combined Shewhart-CUSUM and Max-CUSUM schemes,

wilh ARLo:303.

ARL,:250

0.00

250 143.8 49.3 7.2 L.2 1.0

34.3 27.2 15.9 4.9 1.3 1.0

9.8 8.9 6.9 3.5 1.3 1.0

2.9 2.8 2.6 2.7 1.3 1.1

7.4 1.4 L.4 1.3 I.2 1.1

Max chart n:4

0.25 0.50

o,

Shifts in mean

1.00

Combined
Shewhart-CUSUM

2.00

Max-CUSUM

3.00

Table 3.7 shows the performance of the Max-CUSUM chart and Max-EWMA

0.00

303.2

0.25

303.2

65.6

0.50

38.8

20.2

i.00

15.3

5.3

1.50

5.0

2.9

2.00

3.2

2.0

2.50

2.4

1.6

3.00

1.8

1.3

4.00

1.5

1.1

5.00

1.2

1.0

1.0
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chart for in control ARL : 250. Both charts are sensitive to small and large shifts in

the mean and/or standard deviation with the Max-CUSUM chart performing better

than the Max-EWMA chart f'or smal1 shifts in the process mean and/or standard

deviation while the Max-EWMA chart performs better than the Max-CUSUM chart

for large shifts, particularly for large shifts in the standard deviation. These two

charts use only one plotting variable for each sample and have good procedures of

indicating the source as well as the direction of shifts in the process parameters.

Table 3.7: ARL's for Max-CUSUM chart and the Max-EWMA chart.

b

1.00

I.25
1.50

2.00

3.00

0.00

250.0 18.5 7.7 3.2 1.6 1.3

t2.6 r4.4 6.2 2.7 1.4 1.1

9.6 rt.7 5.3 2.4 L.4 1.1

6.6 8.5 4.7 2.0 1.2 1.1

4.5 5.5 3.0 r.7 1.2 1.1

Max-CUSUM

0.25 0.50
a

3.5 Charting Procedures

1.00

ARLy: 250

The charting procedure of a Max-CUSUM chart is similar to that of the stan-

dard upper CUSUM chart. The successive CUSUM values, M¿'s are plotted against

the sample numbers. If a point plots below the decision interval, the process is

said to be in control and the point is plotted using a symbol such as a dot. An

out-of-control signal is given if any point plots above the decision interval and is

plotted using one of the characters defined below. The following procedure is used

in building the CUSUM chart:

1. Specify the following parameters: the in control or target value of the mean

¡-l¡ and the in control or target value of the standard deviation o¡.

2.00 3.00

a

0.00 0.25 0.50 1.00 2.00 3.00

250.0 24.6 8.6 2.9 1.1 1.0

17.8 72.3 7.t 2.9 L.2 1.0

6.3 5.7 4.5 2.5 L.2 1.0

2.5 2.5 2.3 1.8 L.2 1.0

r.7 1.6 1.6 1.5 1.2 1.1

Max-EWMA
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2. If ¡i,s is not known, use the sample grand average X of the data to estimate

it, where R : (Xr+...+ X*)l*. If øs is unknown, use Rf d,2 or Sf ca to

estimate it, where fi: (ftt +... + nàl* is the average of the sample ranges

and S: (St +... + S*)l* is the average of the sample standard deviations,

and d,2: dr(ñ) and ca : cq(n) are statistically determined constants with n

: (nt +... + n^)lm.When the sample sizes vary, we use a weighted average

approach to calculate -Í atrd S.If n¿ is the number of observations in thei,th

sample, then use

sr¿
x : +#Ê1

L¿=ttui

õ [ÐL, @¿ - t)S¿2lrt2

L Ðf,n¡-ff; I

3. For each sample compute Z¿ and Y.

4. To detect specified changes in the process mean and standard deviation for a

specified in control ARL, choose an optimal (h, k) combination and calculate

CJ, Cu ,,90+ and ^9;.

Compute lhe Mis and compare them with h, the decision interval.5.

6. Denote the sample points with a dot and plot them against the sample number

ifM¿<h.

If any of the Mis is greater than the decision interval, h, lhe following plotting

characters should be used to show the direction a,s well as the statistic that is

plotting above the decision interval.

(i) If CJ > fr,, plot C+. This shows an increase in the process mean.

t.
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(ii) If C; > h, plot C-. This indicates a decrease in the process mean.

(iii) If S/ > h, plot ^9+. This shows an increase in the process standard

deviation.

(iv) If St > fr,, plot,9-. This shows a decrease in the process standard

deviation.

(v) If both C,+ ) ñ,, and S¿+ > ft,, plot B + +. This indicates an increase in

both the mean and the standard deviation of the process.

(vi) If Cl > h and, St > h,, plot B + -. This indicates an increase in the

mean and a decrease in the standard deviation of the process.

(vii) If Ci > fr, and S/ > h, plo| B - +. This indicates a decrease in the

mean and an increase in the standard deviation of the process.

(viii) If C; > h, and ,9; > fr., plot B - -. This shows a decrease in both the

mean and the standard deviation of the process.

8. Investigate the cause(s) of shift for each out-of-control point in the chart and

carry out the remedial measures needed to bring the process back into an in

control state.

3.6 An Example

We show the application of the Max-CUSUM chart to real data. The data is

used to set up a control chart for bolh phase L A, Max-CUSUM chart is applied

to real data obtained from DeVor, Chang and Sutherland (t30]). The data are

measurements of the inside diameter of the cylinder bores in an engine block. The

measurements are made to 7f 10,000 of an inch. Samples of size n : 5 are taken

roughly every half hour, and the first 35 samples are given in Table 3.8. The actual
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measurements are of the form 3.5205, 3.5202, 3.5204 and so on. The entries given

in Table 7 provide the last three digits in the measurements.

Table 3.8: Cylinder diameter data

Sample i Xn X¿z X¿s X¿¿, X¿s

1

2
DJ

4

5

6

7

8

I
10

11

72

13

74

15

16

77

18

205 202 204 207 205
202 196 20r 198 202
207 202 199 L97 196

205 203 196 207 L97
199 196 207 200 195

203 198 L92 277 196

202 202 198 203 202
t97 196 196 200 204
199 200 204 196 202

202 196 204 195 797

205 204 202 208 205

200 207 199 200 20t
205 196 207 797 198

202 199 200 198 200
200 200 201 205 20r
207 L87 209 202 200

202 202 204 198 203
207 198 204 207 201

Sample i X¿t

19

20

27

22

23

24
25

26

27
28

29

30

31

32
D'JÙ

34

35

207 206 r94 797 20t
200 204 198 199 199

203 200 204 199 200

196 203 r97 20L L94
r97 199 203 200 196

20r L97 196 199 207

204 196 20t 199 797

206 206 199 200 203
204 203 199 199 197

199 20t 20r r94 200
20L 196 t97 204 200
203 206 20L 196 201
203 L97 199 197 207
\97 194 199 200 199

200 20L 200 797 200
199 199 207 207 201
200 204 L97 r97 199

Suppose, based on past experience, an operator wants to detect a shift in the

mean of Io,that is a : I and a shift in the standard deviation of 2o; that is b : 2

with an in control ARL : 250, the corresponding decision interval from Table 3.1

is h : 2.475 and the reference value is fr : 0.500. The chart is developed as follows:

The nominal mean p6 is estimaied by ,i, the average of sample averages and øs is

estimated by S lcq. The sample produced the following estimat., X : 200.25 and

Sfcn:3.31

The Max-CUSUM chart in Figure 3.1 which plots all the 35 observations shows

that several points plot above the decision interval. Sample number 6 shows an

X¿z X¿e X¿a, X¿s
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increase in the standard deviation as the plotting symbol is ^9*. After this sam-

ple, CUSUM values corresponding to samples 7 and 8 also plot above the decision

interval. However these points shows that the standard deviation is decreasing to-

wards the in control values. Due to very high value of the CUSUM statistic for

the standard deviation in sample 6, the successive cumulative values of samples 7

and 8 plot above the decision interval even though ihe standard deviation values

corresponding to these samples are in control. We therefore investigate the cause of

higher variability at sample number 6. According to DeVor, Chang and Sutherland

([30]), this sample was taken when the regular operator was absent, and a relief,

inexperienced operator was in charge of the production line and the operator effect

could have affected the process.

The CUSUM statistic corresponding to sample number 11 also plots above the

decision interval. Because now the plotting symbols is C*, this point corresponds

to an increase in the process mean. This corresponds to a sample taken at 1:00

P.M. when production had just resumed after lunch break. The machines were shut

down at lunch time for tool changing and thus these items were produced when the

machines were still cold. Once the machines warmed up, the process settled to an

in control state. This shows that the shift in the mean was caused by the machine

tune-up problem.

The statistic for sample 16 also plots above the decision interval, and with

the symbol S+ this indicates an increase in the standard deviation. According to

DeVor, Chang and Sutherland ([30]), this sample corresponds to a time when an

inexperienced operator was in control of the process and could have affected the

process operation. In addition to the above mentioned points which also plotted

above the control limit in the Shewhart chart, Max chart and EWMA chart, the

statistic for sample 34 plots above the decision interval. This point corresponds
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to a decrease in the standard deviation. The Shewhart S-chart plotted this value

close to the lower control limit but within the acceptable area. Table 3.1 shows

that the Max-CUSUM chart is very sensitive to small shift and thus signals for this

small decrease in the standard deviation. A decrease in the standard deviation is

associated with an improvement in the process since it produces products that are

closer to the targeted value.

l
O

I

Figure 3.1: The first Max-CUSUM control chart for the cylinder diameter data

When these four samples are removed from the data, new estimates for the

mean and standard deviation were computed, giving the following values t X :

200.08 and Sf ca:3.02. The revised chart is shown in Figure 3.2. The chart plots

only one point above the decision interval. This point corresponding to sample 1,

shows an increase in the mean. This point corresponds to a sample that was taken

at 8:00 A.M. This corresponds roughly to the start up of the production line in the

morning, when the machine was cold. Once the machine warmed up, the production

returns to an in control state.

Samplo numbor



Figure 3.2: The second Max-CUSUM control chart for the cylinder diameter data

When sample 1 is removed from the data, we re-calculate the process mean and

the process standard deviation estimates and obtain -* : 199.g3 and Sf ca: g.96.

The Max-CUSUM chart for this new data is shown in Figure 3.3. All the points

plot within the decision interval showing that the process is in control. This chart

can now be used to monitor the current process.
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Figure 3.3: The third Max-CUSUM control chart for the cylinder diameter data

ts 20
Sômp¡e nurbs



3.7 Conclusions and Recommendations

One disadvantage of the standard CUSUM chart is that it does not quickly

detect a large and temporary increase in the process mean and/or standard deviation

and thus is not recommended for monitoring processes experiencing large increases

in both mean and variability.

A good feature of the Max-CUSUM chart is its ability to quickly detect both

small and large changes in the mean and/or standard deviation. Another advantage

of the Max-CUSUM is that we are able to monitor both the process center and

spread using one chart. The performance of the proposed Max-CUSUM is very

competitive in comparison with the Max chart and the Max-EWMA chart. The

Max-CUSUM chart is easy to chart and also performs better than its competitors

for detecting small shifis in the process parameters.
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4.L Introduction

In this chapter, we propose a new CUSUM chart capable of simultaneously

monitoring the process mean and process standard deviation. This chart is an

extension of the Shewhart based semicircle chart proposed by Chao and Cheng

([t9]) and the SS-EWMA chart proposed by Xie ([108]).

To simplify the CUSUM chart, v¡e propose a ne\¡/ single CUSUM chart and

call it the Sum of Square Cumulative Sum (SS-CUSUM) control chart. This chart

is based on the sum of squares of the maximum standard CUSUM values. The

properties of this chart are similar to those of the Max-CUSUM chart proposed in

chapter 3. However, the SS-CUSUM chart has an added advantage of being easy to

implement, and if a trend develops in either the mean andf or standard deviation, it

can be quickly detected by examining whether the points plot far from the axes. An

out-of-control signal also immediately identifies the parameter that has shifted, the

direction of the shift as well as the time at which the process went out of control.

We investigate the sampling behavior of the proposed statistic and procedures for

constructing a new single chart, the SS-CUSUM chart, which to a large extent,

satisfies the criteria discussed for the development of the Max-CUSUM chart.

SS-CUSIIM Chart

Chapter 4
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4.2 The New Control Chart

This new chart is developed under the same normality and independence as-

sumptions used for the development of the Max-CUSUM chart. We also consider

the case of a step change in the process mean and/or standard deviation. The

design procedures are summarized as follows: Let X¿: Xil,...,Xinr,'i:7,2,...,

denote a sequence of samples of size n¿ taken on a quality characteristic X. It is
assumed that, for each i,, Xil,...,X¿nn ã,rê, independent and identically distributed

observations following a normal distribution with means and standard deviations

possibly depending on i, where z indicates the 'i¿h group. Let p,s and øs be the nom-

inal process mean and standard deviation previously established. Assume that the

process parameters ¡z and o can be expressed as þ : þo I aos and o : boy, where

ø:0 and ö : 1 when the process is in control, otherwise, the process has changed

due to some assignable causes. Then ø represents a shift in the process mean and å

a shift in the process standard deviation and b > 0.

Let X¿ and S¿2 be the mean and variance for lhe i,th sample respectively as

before. The CUSUM charts for the mean and standard deviation are based on X¿

and ^9, respectively. In developing the SS-CUSUM chart, we carry out the same

transformation as for the Max-CUSUM chart. Formulae for Z¿ and \ are given in

equations (3.1) and (3.2) of chapter 3.

In the same manner, the CUSUM statistics based on Z¿ and Y¿ are given by

55

Cf : max[0, Z¿ - lc + Cl-,,],

C¿ : max[0, -k - z¿ * C¡-1,

Sl : maxfo,Y-k+SL],

S; : max[0,-k-Y+S;-t1.

(4.1)

(4.2)

(4 3)

(4 4)



We define the following new statistics to construct the new chart:

M¿ : maxlC{,C;),

U : max[Sn+, S;]

and

The statistic in equation (4.7) defines a circle. But since both M¿ ànd I\ are

nonnegative, and we plot (V, M¿) for each sample, the first quadrant of a circle

centered at (0, 0) is sufrcient for plotting the SS-CUSUM chart. The statistic for

the process mean (M¿) wlll be plotted on the ordinate (Y-axis) and the statistic for

the standard deviation (%) on the abscissa (X-axis). A point falling outside the

circle indicates an out-of-control situation, the process is said to be in control if all

points, (v, M¿) fall within the circle.

4.3 Design of the SS-CUSUM Chart

The performance of a control chart can be assessed by looking at its ARL. We

have studied the ARL with respect to shifts in the process mean a1one, shift in

the process standard deviation alone and shifts in both process mean and standard

deviation. For the SS-CUSUM chart, there is no direct way to compute the ARL,

so each ARL value is obtained using 10,000 simulations. In Table 4.7, we find the

optimal combination of h and fr for a given in-control ARL, where h and ft are known

as the decision interval and reference value respectively. The shift in the standard

deviation is denoted by å and the shift in the mean is denoted by ø as stated before.

Table 4.1 gives the optimal combinations of h and fr for an in-control ARL fixed

at 250. The smallest value of an out-of-control ARL is calculated with respect to

a pair of specified shifts in both mean and standard deviation using the optimal

SSi: M? +4'
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(4 5)

(4.6)

(47)
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in-control ARL parameters. We assume that the process starts in an in-control

state and thus the initial value of the CUSUM statistic is set at zero. The results

suggest that the chart is sensitive to both small and large shifts in the mean and/or

standard deviation.

An out-of-control ARL is calculated for each pair of means and standard devi-

ation using a transformed noncentral chi-square distribution and the optimal values

of h and lc. The SS-CUSUM chart is developed by drawing a circle with radius

r : h, and plotting the (V¿, M¿) points in the chart.

We study the ARL with respect to mean shift (i.e. þL : I,ro* ao,) and/or

standard deviation shift (i.e. o : boo). The SS-CUSUM chart detects the shift in

mean andf or standard deviation very well. It quickly detects both small and large

shifis in both parameters for given in-control ARL. For example a0.25o shifts in the

mean can be detected on average on the 1l¿h sample and a 2ø shift in the mean with

any level of shift in the process standard deviation can be expected to be detected

on the second sample.

In Table 4.2, we show the performance of the SS-CUSUM chart when a chart is

designed to detect a 1o shift in the mean and/or standard deviation of the process.

Tlris is accomplished by fixing the reference value and decision interval to lc :0.500

and h: 3.841 respectively. The ARL values in the table shows that this scheme

is sensitive to both small and large shifts in the process mean and/or standard

deviation. The CUSUM charts discussed in the literature that are designed to

detect a 1o shift in the mean are only sensitive to small shift and less sensitive to

large shifts.
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Table 4.1: (k,h) combinations and the corresponding ARL for the SS-CUSUM chart
with ARLo :250

b

r.00

Parameter
h
k
ARL

1.25

h

k
ARL

0.00

3.841

0.500
250.00

1.50

h
k
ART

ARLy:250
o,

0.25

3.625

0.500
9.72

5.247
0.125

11.37

2.00
h
k
ART

0.50
4.035

0.250
6.93

3.625
0.500
7.0t

8.800

0.125
9.00

2.50

1.00

h
t^

ARI

3.841

0.500
3.t2

6.087
0.250
5.23

3.625
0.500
5.25

8.800

0.t25
6.49

3.00

1.50

h
k
ARL

2.535
0.750
2.47

3.625

0.500
2.86

6.087

0.250
4.48

3.625

0.500
3.74

8.800
0.125
5.00

4.00

2.00

h
k
ARL

2.0r7
1.000

1.88

2.630
0.750
2.34

3.625

0.500
2.23

6.087
0.250
3.18

3.625

0.500
2.98

8.800

0.L25
3.49

2.50

Table 4.2: ARL's for the SS-CUSUM chart with å,: 3.841 and fr : 0.500.

t.745
1.250

L.42

1.986

1.000
t.44

2.630

0.750
2.00

3.625
0.500
2.05

6.087
0.250
2.78

3.625

0.500
2.46

8.800

0.r25
2.94

3.00

1.514

1.500

1.31

L.547

7.250
r.22

1.986

1.000

1.36

2.630
0.750
1.86

3.625

0.500
1.91

6.087

0.250
2.43

8.800
0.L25
2.09

L.215

1.500

1.18

L.547

1.250

1.11

1.986

1.000
1.31

2.630

0.750
L.62

b

3.625

0.500
1.68

1.00

1.25

1.50

2.00
2.50
3.00
4.00

6.087
0.250
1.99

0.00 0.25 0.50 1.00 1.50 2.00 2.50 3.00

L.2I5
1.500

1.10

r.547
1.250

1.10

1.986

1.000

1.22

250.00 9.05 6.21 3.r2 2.52 7.92 r.47 1.34

9.72 8.88 5.02 2.86 2.4r L.49 L.26 L.zL

7.0t 6.38 4.23 2.23 2.ll l.4l f .i8 1.I4
5.25 4.81 2.97 2.05 1.93 1.35 L.L2 1.10

3.74 3.21 2.63 1.91 1.65 t.27 1.10 1.06

2.98 2.87 2.38 1.68 r.52 L.2t 1.00 1.00

2.46 2.00 L.87 1.59 1.34 f .i0 1.00 1.00

2.630

0.750
t.47

3.625

0.500
1.59

1.2t5
1.500

1.08

L.547

L.250
1.04

1.986

1.000

1.18

2.630

0.750
1.33

T.2I5
1.500

1.00

L.547

1.250

1.00

1.986

1.000

1.10

o,

1.2t5
r.500
t.00

r.547
t.250
1.00

I.2t5
1.500

1.00



4.4 Comparison with Other Procedures

We compare the SS-CUSUM chart with other proposed single charts namely,

Semicircle chart developed by Chao and Cheng ([19]), the SS-EWMA chart proposed

by and Xie ([t08]), the Max-CUSUM chart proposed in chapter 3 and the Max

chart proposed by Chen and Cheng ([21]) It can be concluded by examining Tables

4.3 through 4.6 that, the proposed SS-CUSUM chart performs better than the SS-

EWMA chart for shifts of order 0.5ø and smaller in the mean and L.25o and smaller

in the standard deviation. It outperforms the Max-CUSUM chart, Semicircle chart

and the Max chart for shifts of order up to 1 . 5ø. For large shifts in the mean and/or

standard deviation, these charts are the same with the max chart performing slightly

better for shifts of order 3o and above. Therefore the SS-CUSUM chart is the best

chart for detecting small shifts in the mean andf or standard deviation among its

competitors.
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Table 4.3: Comparison of SS-CUSUM chart with the Semicircle chart with ARL,
: 185.

SS-CUSM
Semicircle

t.010.75 t.510.75 r.510.5
4.83

88.86

Table 4.4: Comparison of SS-CUSUM chart with the Max-CUSUM chart.

3.54

IT.4I

b

1.00
L.25
1.50
2.00
2.50

3.00
4.00

5.85

62.08

alb

0.25 0.50 1.00 1.50 2.00 2.50

L5lt.0 0.51r.5

7L4 6.9 3.1 2.5 1.9 7.4
9.0 5.2 2.9 2.3 7.4 t.2
6.5 4.5 2.2 2.0 7.4 1.1

5.0 3.2 2.I 1.9 1.3 1.1

3.5 2.8 1.9 1.6 7.2 i.0
2.9 2.4 7.7 1.5 7.2 1.0
2.7 2.0 1.6 1.3 1.1 1.0

2.67
5.69

SS-CUSUM

3.18
8.26

a

ARL,:250

60

t.5/1.5 1.012.0 1.512.0

r.94
3.01

Table 4.5: comparison of SS-CuSUM chart with the ss-EWMA chart.
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2.78

18.5 7.7 3.2 2.0 1.6 7.4
74.4 6.2 2.7 1.9 7.4 1.1
77.7 5.3 2.4 7.7 1.4 1.1

8.5 4.7 2.0 1.5 7.2 1.1
6.7 3.5 1.8 7.4 r.2 1.1

5.5 3.0 7.7 1.3 7.2 1.1

4.3 2.5 1.5 7.2 1.1 1.1

1.00
7.25

1.50
2.00
2.50

3.00

Max-CUSUM

0.25 0.50 1.00 1.50 2.00 2.50
Ir.4 6.9 3.1 2.5 1.9 7.4
9.0 5.2 2.9 2.3 1.4 7.2
6.5 4.5 2.2 2.0 1.4 1.1

5.0 3.2 2.7 1.9 1.3 1.1
3.5 2.8 1.9 1.6 7.2 1.0
2.9 2.4 7.7 1.5 L.2 1.0

SS-CUSUM

0,

a

ARL,:250

0.25 0.50 1.00 1.50 2.00 2.50
24.4 8.8 3.1 1.6 1.1 1.0
L7.7 6.6 2.8 1.6 r.2 1.0
5.3 4.1 2.3 1.5 t.2 1.0
2.1 2.0 1.6 1.3 7.2 1.1
7.4 7.4 1.3 1.2 1.1 1.1
7.2 7.2 7.2 1.1 1.1 1.1

SS-EWMA
a,



Table 4.6: Comparison of SS-CUSUM chart with the Max chart.

b

1.00
t.25
1.50

2.00

3.00

0.00

250.0 77.4 6.9 3.1 1.9 1.3

9.7 9.0 5.2 2.9 7.4 L.2

7.0 6.5 4.5 2.2 1.4 1.1

5.3 5.0 3.2 2.0 1.3 1.1

3.0 2.9 2.4 L.7 7.2 1.0

SS-CUSUM

0.25

4.5 Charting Procedures

0.50
o,

The charting procedure of the SS-CUSUM chart is different from those of other

CUSUM charts. Instead of plotting the CUSUM statistics against the sample num-

bers, successive pairs of (U,Mr)', are plotted on the chart. The position of a point

on the plane directly indicates the source of an assignable cause of variation. When

a point shows deviation from the M (Mean) axis, this shows a shift in the process

standard deviation and a point that shifts away from the V (Standard deviation)

axis shows a shift in the process mean. An increase in either of these parameters is

indicated by positive signs and a decrease by negative signs. A shift in both mean

and standard deviation is shown by a point plotting along or near the line M¿ : V.

The following procedures are followed in drawing the chart:

1.00

ARL| -

2.00

85

3.00
0,

0.00 0.25 0.50 1.00 2.00 3.00

250 143.8 49.3 7.2 1.2 1.0

34.3 27.2 15.9 4.9 1.3 1.0

9.8 8.9 6.9 3.5 1.3 1.0

2.9 2.8 2.6 2.7 1.3 1.1

7.4 I.4 7.4 1.3 7.2 1.1

Max Chart
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1. Specify the following parameters: the in-control or target value of the mean

Fo as well as the in-control or target value of the standard deviation øs.

2. If ¡;6 is unknown, use the grand average -f of the data to estimate it. If ø¡ is

unknown, we Rf d2 or Sf ca to estimate it.

For each sample compute Z¿ and Y¿.Iù.
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To detect specified changes in the process mean and standard deviation, choose

an optimal (h, k) combination and calculate Cl, Co, S¿+ and S¿ .

Compute the Mis and I{'s.

Find the radius r : h.

4.

5.

6.

7.

L

9.

Draw a first quadrant of a circle centered at (0, 0) with radius r.

Plot the data points (V, M¿).

If any point is greater than the decision interval r, the sample number at which

the shift occurred is indicated.

If any pair of the (I\,M¿) points is greater than the decision interval r, the

following plotting characters should be used to show the direction as well as

the statistic that is plotting above the interval.

10.

If M¿ > r, then

(i) If Cf > r, plot C+. This shows an increase in the process mean.

(ii) If C; > r, plot C-. This indicates a decrease in the process mean.

IfU> r, then

(iii) If S¿+ > r, plot ,9*. This shows an increase in the process standard

deviation.

(iv) If S; > r, plot ,9-. This shows a decrease in the process standard

deviation.

IfMi>randfi>r,then

(v) If both Co+ ) r, and Sl > r, plot B + +. This indicates an increase in

both the mean and standard deviation of the process.



63

(vi) If Cl > r and ,S; > r, plot B + -. This indicates an increase in the

mean and a decrease in the standard deviation of the process.

(vii) If C; > r and Sf > r, plot B - +. This indicates a decrease in the mean

and an increase in the standard deviation of the process.

(viii) If C¿ > r and S; > r, plot B --. This shows adecrease in both mean

and standard deviation of the process.

11. Investigate the cause(s) of shift for each out-of-control point in the chart and

carry out the remedial measures needed to bring the process back into an

in-control state.

4.6 An Example

To demonstrate the implementation of the proposed SS-CUSUM chart, we will

as before use DeVor, Chang and Sutherland ([30]) data from their example on the

measurements of the inside diameter of the cylinder bores in an engine block. These

data are dispiayed in Table 3.8. Suppose based on past experience, an operator

wanted to guard against a 1o shift in the mean and various shifts in the standard

deviation with an in-control ARL : 250. The corresponding chart parameters from

Table 4.1 are k : 0.5 and å :3.625. Therefore the chart will be drawn as a circle

withradiusr:3.625.

The chart is developed as follows: The nominal mean ¡rs is estimated by X,

and the nominal standard deviation os is estimated by Slrn. The sample produced

the following estimate, *: 200.25 and Sf ca:3.31

The SS-CUSUM chart in Figure 4.1 which includes all 35 observations shows

that one point plots above the decision interval indicating the possible presence of

an assignable cause of variation. This point corresponds to the CUSUM statistic
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for sample number 6. The symbol ,S+ shows an increase in the process standard

deviation. As discussed in chapter 3, this sample was taken when the regular ex-

perienced operator was not present, and a relief operator, who was inexperienced

was in charge of the production line and thus the operator inexperience could have

resulted in a change in the process performance.

1.5

Figure 4.1: The first SS-CUSUM chart for the cylinder diameter data

Since we have knowledge of the reason for this change, this sample can be

removed from the data set and new estimates computed as X : 200.2L and, S f ca:

3.06. The revised chart is shown in Figure 4.2. The chart shows that one point

plots above the decision interval. This point corresponds to the sample number 15,

this is number 16 in the original data. The plotiing symbol shows an increase in

the process standard deviation. According to DeVor, Chang and Sutherland ([30]),

this corresponds to the time when an inexperienced operator was again in charge of

the production line and this could have had an impact on the production process.

0.5 1.5 2 2.5
Standard deviation

S+

6



Figure 4.2: The second SS-CUSUM chart for the cylinder diameter data

When this sample is removed from the data set, new estimates are obtained as

X :200.22 and Sf cn:2.9. The revised chart is shown in Figure 4.3. The chart

shows that two samples, sample 10 and 11 in the new data set which correspond

to samples 11 and 12 in the original data, show a shift in the production process.

Sample 10 shows an increase in the process mean. According to DeVor, Chang

and Sutherland ([30]), this sample was taken at 1:00 P.M. This is the first batch of

production after the lunch break. The machines were shut down at lunch time for

tool change and thus had not yet warmed up when these items were produced.

The next sample, sample 11 shows a shift in both the process mean and standard

deviation because it is close to the line M¿ : Vo. The chart shows that the mean had

increased while the standard deviation had decreased below the nominal value. As

can be seen these shifts follow immediately after a shift in the mean implying that

the machine had not yet warmed up and possibly an interference by the operator in

an effort to bring the process back to an in-control state resulted in an increase in

65



the mean and a decrease in the standard deviation.

Figure 4.3: The third SS-CUSUM chart for the cylinder diameter data

When these two points are removed, the two estimates are recalculated as

X : 200.09 and S f cn:3.02. The new chart is shown Figure 4.4. 
^]l_points 

plotted

within the decision interval indicating that the process is in control.

This chart gives results that are different from ihe Max-CUSUM for samples

1 and 12 only. Max-CUSUM showed that sample 1 was above the decision interval

thus out of control while for SS-CUSUM it shows an in-control state. Sample 12 for

the SS-CUSUM plots outside the decision interval indicating that both mean and

standard deviation shifted while Max-CUSUM did not pick up this shifi but showed

that it was close to the decision interval.

o5
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Figure 4.4: The fourth Max-CUSUM chart for the cylinder diameter data

4.7 Conclusions and Recommendations

We have proposed and studied a new control charting scheme, the SS-CUSUM

chart, to provide a new alternative to the commonly used control charts for simulta-

neously monitoring and detecting possible changes in the process mean and standard

deviation. This chart is very easy to use and it quickly detects both small and large

shifts in the process mean and standard deviation. This new control chart has an

added advantage over other charts because it is also sensitive to decreases in the

process standard deviation. Most of the charts proposed in the literature that are

based on standardized values do not quickly detect shifts in the process standard

deviation (Domangue and Patch [31]).

We strongly recommend the use of the SS-CUSUM scheme in particular in the

production plant where quality control is mostly the responsibility of workforce not

well trained in statistical tools. This is due to the fact that this chart is easy to

construct and interpret when an out of control signal is issued.

o5 r.5 2 2.5
Slândârd dev¡âlion
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Multivariate Max-CUSUM Chart

5.1 Introduction

In chapters 3 and 4, we discussed control charts for the case where the quality of

an item is determined by a single quality characteristic. There are many situations

in which the overall quality of an item is determined by several (tuy p) correlated

quality characteristics. Examples of such processes include the following: in a lum-

ber manufacturing plant the quality of lumber may be monitored by measuring the

stiffness and bending strength of the lumber, in a chemical industry, the process

may be a function of temperature, pressure as well as viscosity and in an automo-

bile plant, the usefulness of an automobile part may depend on an inner diameter

and an outer diameter. The product is considered to be in statistical control if all

critical product quality characteristics are simultaneously in control. Therefore it is

necessary to use a scheme that can simultaneously monitor these correlated quality

characteristics. We propose new control charts for monitoring such processes in

chapters 5 and 6.

In this chapter, we propose a multivariate CUSUM control chart that can si-

multaneously monitor both process location and variability using a single plotting

variable. We show that procedures used for univariate variables control charts can

be applied to monitor the multivariate processes. We consider only the upper con-

trol limits for monitoring the multivariate processes. This is because in multivariate

procedures, we are monitoring the significance of the magnitude of the shift for the

Chapter 5
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mean vector andf or covariance matrix from their target or nominal values and thus

the direction of the shift does not play an important role.

At each sample period i,, apxl vector of observations denoted as X¿, is obtained

from the process and the information in these vectors is used to judge the quality of

the process. The underlying probability distribution of these p qualiiy characteristics

is assumed to be multivariate normal with mean vector ¡.c and covariance matrix Ð.

The unknown mean vector and unknown covariance matrix are respectively written

AS:

þt

;,

IT:

and

F-

ott otz
ozt ozz

where p¿ is the mean of the i,th ( novi : r,2,...,p) characteristic and ø¿¿ is the

variance of the 'ith characteristic. The covariance between the i,th and, jth character-

istics is denoted by the off-diagonal element oàj, (i, j:L,2,...,p,i,+ j).

We use the Markov chain approach to compute the chart's ARL. The multi-

variate control chart proposed in this chapter is called the Maximum Multivariate

Cumulative Sum (Max-MCUSUM) control chart as it is developed using maximum

values of the computed CUSUM values. If the process mean vector and/or covari-

ance matrix have substantially shifted from their target values, the points will plot

above the upper control limit and when the magnitude of the shift is small all points

will plot below the upper control limit.

apI ap2 opp

otp
o2p
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We show that when testing for shifts in ihe process mean vector and/or covari-

ance matrix, of a multivariate normal process, the multivariate CUSUM procedure,

which is related to the sequential probability ratio test, reduces to a univariate

normal CUSUM chart procedure. This scheme is based on the derivations and as-

sumptions discussed by Healy ([41]). The procedure is straightforward and can be

carried out by employees with little training in the use of control charts and ele-

mentary knowledge of statistics. The performance of the proposed control chart is

determined by the distance of the off-target parameter (known) from the on-target

value and not by the direction of the off-target parameter.

5.2 The New Control Chart
5.2.L Control Chart for the Mean Vector

Assume that we have a sequence of independent and identically distributed

multivariate normal random variables Xt , Xz, ..., where Xt : (Xtt,..., Xrr)', a

p x 7 vector of observations. The first Xt , Xz, ... , X*-r vectors, have a good

distribution function .lîç when the process is in control, but the next X*, Xm+r¡ ...

have a different distribution, Fn indicating a shift in the mean vector. We assume

that the production process shifts at an unknown time m. The objective is to detect

that the shift has happened and when the shift in the process mean vector occurs.

Ii will be shown later that the CUSUM procedure signals that the shift in the

mean vector has occurred as soon as:

,n:fbnm-mlnf,"nffir r,

where f 6 and f B are densities corresponding to -F6 and F¿, respectively and tr is

a constant that determines the operating characteristics of the procedures (Healy

[41]).



The statistic S¿ can be calculated recursively in the following way:

s¿: mar (o,U-, + rcnffi) t ,
As witt be shown, rescaling equation (5.f) by dividing the toOffi and ,L by ihe

same constant results in an easy to use equation (5.5). The initial value of our

CUSUM chart is set to .90 : 3. At every time period, the CUSUM statistic is

compared with a fixed decision interval -L and if it is more than this ,L, a shift is

signalled. After detection of the shift, and corrective action taken, the CUSUM

statistic is reset to the initial value 
^90.

We assume that X¿ com€s from a multivariate normal distribution with either

a mean ¡^c5r, when the process is in control, or mean fc6, when the process is out

of control where pB : ltc t ô, and a known common covariance matrix Ð. If for

each independent normal random variable X¿, wê measure p quality characteristics,

a vector of size p x 1 is formed and a covariance matrix of order p x p is also formed.

For the multivariate normal distribution, the CUSUM chart is developed through

the likelihood ratio given as:

7L

f n(r¿) _ (zn)-ol'lÐl-tl' 
"*p(-O.s(x n - t"u)' >-' (x u - t, u))

fc("¿) (zr¡-ntz12l-r/2erp(-0.5(Xi - pc)'Ð-t(X¿ - pc))

erp(-}.5(X ¿ - p, B)'Ð-r (X ¡ - p, n))
erp(-}.5(X ¿ - pc)'Ð-t (X n - p"))

Taking natural logarithms, we obtain

(5.1)

, Ís@¿\lry'ffi : Q.rn - t"c)'Ð-t Xi - 0.5(tr" + Itc)'Ð-t0"u - pò (5.4)

The CUSUM for the multivariate process is computed by substituting equation (5.4)

into equation (5.1) and the rescaling to obtain an easy to use equation (5.5) as:

S¿ : mar(S¿-r i a' X¿ - lr,0) > h,

(5.2)

(5.3)

(5 5)



where

and

t- - ^, 0"" + pc)'Ð-t1ru - t"c)
^-"," .

Now the random variable a'X¿ has a univariate normal distribution.

Define the noncentrality parameter as:

t-
n : 1f @a - pc)'Ð-t}"n - t"c)

and

0,' :
10"" - t-rc)'Ð-t Qt " - t"ò]t l'

0"" - t"c)'Ð-t

z¿ : a'(x¿ - Fc). (5.7)

The CUSUM chart for detecting a shift in the mean vector of a multivariate normal

may be written as:

The function Z¿ therefore has a standard univariate normal distribution when X¿

has mean equal to p.. If the mean shift to ¡tB,lhen a'(X¿- ttc) has a univariate

normal distribution with mean D and variance 1. Therefore, for detecting a shift in

the mean of a multivariate normal random variable, the CUSUM procedure reduces

to a univariate normal CUSUM procedure.

5.2.2 Control Chart for the Covariance Matrix

Like the process mean, the process variability, usually summarized by a covari-

ance matrix in the multivariate case, is important for assessing whether the process

is in control or not. Several CUSUM control schemes for detecting shifts in the

process variability for multivariate processes have been studied including charts by

Healy ([a1]) and Chan and Zhang ([15]) These schemes use a chart that only shows
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C¿: mar(O,C¡-r l Z¿ - 0.5D) > h.

(5 6)

(5 8)
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changes in the process covariance matrix assuming that the process mean vector

remains constant throughout the production process.

Using the likelihood ratio test technique as above and assuming the two states

of production, that is steady state and non-steady state, Healy ([a1]) developed a

CUSUM chart for the process standard deviation. When the process is in a good

state, it is distributed as multivariate normal with mean ¡l and covariance matrix

Ð. If the process variability has shifted, the mean remains at p but the covariance

matrix shift to bÐ, for å > 0. This assumes that when a shift occurs, all variances

shift proportionally and the correlations between the variables remain the same.

This type of shift could occur when something happens in a manufacturing process

that affects all of the variables in the process. For example, if one were taking

measurements on a transmission system at several frequencies, an increase in the

variability at one frequency would often be accompanied by a proportional increase

in the variability at another frequency. The likelihood ratio is given as:

fs@¿) -lc(r¿) -
(2r)-e t 2 (lbÐl)-t t' 

"rp( - 
0. 5 (Xi - t")' (bÐ) -' (X u - tù)

: b-t/2erp[-o.s1x, - p),Ð-r(xo -rX] - r¡1

Taking the natural logarithms of the likelihood, we get

(ztr¡-rtz12l-r t2 erp(-0.5 (¡¡i - tò'Ð-t 6 ¿ - tò)

bnf# : |rosu+o.b(x, - t")'Ð-'(xo- rlf, -I) (b.11)

The CUSUM statistic for detecting a shift in the covariance matrix of a multi-

variate process is obtained by substituting equation (5.11) into equation (5.1) and

the rescaling. This gives the ,S¿ as:

(5.e)

(5. 10)



where

^9¿ 
: max(S¿-r * (Xo - p)'Ð-t(X¿ - Iù - k,0) > h,

k-tos(b) (*)

When the process experiences a shift in the mean vector and covariance matrix,

the noncentrality parameter is defined as:

It has been shown by Muirhead ([23]) that (x¿ - p),Ð-t(xo-p) follows a chi_

square distribution with p degrees of freedom. If the population covariance matrix
is unknown, it is estimated with the sample covariance matrix s. Then

(xo- p)'s-'(x¿- p) will follow an F-distribution; Fo,n-r, with p and, n-p degrees

of freedom.

To develop a single multivariate cusuM chart that is capable

ously monitoring the process mean vector and covariance matrix, we

following transformation;

Y: Q-r {u(xn - p)'Ð-'(x n - rt);p} ,

where

A(z):P(Z<z),
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(5.12)

for Z - ¡/(0, 1), the standard normal distribution. The function Õ-t(.) is the inverse

of the standard normal cumulative distribution function, and H(r;p) : p(w <
wlfl ror w - x3, the chi-square distribution with p degrees of freedom.

(5. 13)

of simultane-

carry out the

(5.14)
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In equations (5.7) and (5.f4) , Z¿ and).¿ are independent and when both process

location and variability are in control, that is ð':0 and å: 1, they both follow

the standard univariate normal distribution and their distributions do not depend

on the sample size. Since Z¿ and I have the same distribution, we can construct

a single CUSUM control chart that will simultaneously monitor both the process

location and the process variability.

The CUSUM statistics based on these independent and identically distributed

standard univariate normal random variables, Z¿ and Y¿ are given as:

Ci : maxfO, Zi - 0.5D + Cl-t],

ci : max[O, -0.5D - z¿ -f c;r),

(5. 15)

for monitoring the process location and

sc+ : max[o,Y-k+slr],

st : maxfO, -k -Y + s;r1,

(5.16)

for monitoring the process variability, with Ce and ,9s as starting points. Because

in multivariate quality control procedures, we are monitoring the significance of

the magnitude of the shift and not the direction, the CUSUM statistics above are

transformed to the following statistics

C¿ : maxlC{,C;l

S¿ : max[Sr+, S;]

Because Z¿ and Y¿ follows the same distribution, a new statistic for the multivariate

control chart can be developed by defining the following:

M¿ : maxlC¿, S¿) (5.17)
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Since we use the maximum of the CUSUM statistics to develop our chart, it is called

the Maximum Multivariate Cumulative Sum (Max-MCUSUM) control chart.

The statistic M¿ will be large when the process mean vector is drifted away

from the nominal value p,6 andf or when the process covariance matrix has drifted

away from the nominal value Ð. Small values of M¿ show that the process is in

statistical control. Since M¿2 0, it is only compared with the upper control limit.

5.3 Design of a Max-MCUSUM Chart

This multivariate control chart is constructed by transforming the multivari-

ate normal random variables to univariate normal random variables. The design

procedure developed for the Max-CUSUM chart in chapter 3 can then be used to

find the decision interval, the reference value and the ARL for this multivariate

CUSUM chart. The Max-MCUSUM chart procedure is represented by a Markov

chain and the results of Brook and Evans ([11]) are extended to obtain the ARL for

this multivariate CUSUM chart.

The ARL depends on the standard univariate CUSUM chart parameters; the

reference value fr and decision interval ft, together with the multivariate noncentrality

parameter D* defined in equation (5.13). At a given value of h, the decision interval,

we calculate the value of fr for the given level of the shift in the mean vector and/or

covariance matrix intended to be quickly detected and use the (h, k) combination

to calculate the ARL. To guard against a particular shift in the mean vector and/or

covariance matrix, the reference value is computed as k :0.5D*. The shift in the

covariance matrix is denoted by b as specified earlier and the shift in the mean vector

is deiroted by ô. Here we assume the mean vector shifts by the same amount for

all components in a unit and that all variances shift proportionally, therefore the

correlations between variables remain the same.
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Table 5.1 and Table 5.2 give the optimal combinations of fr and å used to detect

various changes in the mean vector andf or covariance matrix with an in-control

ARL set at 250 and the correlation coefficient p : 0.I, for values of p set at 2 and 5.

The smallest value of an out-of-control ARL is determined for a pair of changes in

process mean and process variability using the optimal in-control ARL parameters.

We assume that the process starts in an in-control state and then determine the

ARL for a specified change in the process parameters. The CUSUM statistic is set

to zero at the start of the process assuming the process starts in an in-control state.

When the process shifts from an in-control state, we expect the CUSUM statistic to

increase until crossing the decision interval. When this happens, the process issues

the out-of-control signal, and a search for the assignable cause(s) of variation should

be undertaken.

Flom Table 5.1 and Table 5.2, we can see that the Max-MCUSUM quickly

detects both small and large changes in the process mean vector andf or covariance

matrix. For example to detect a change in the mean vector from 0 to 0.5 when

the covariance matrix has shifted by a multiple of 1.5, the ARL reduces from 250

to about 5 samples when we monitor two quality characteristics per item produced.

This is detected on average by the 4th sample when 1ve are monitoring five quality

characteristics per item produced. To detect a large change in boih parameters, we

only need about 2 samples. For example if the mean vector shift to 2.5 and the

covariance matrix also shifts by a multiple of 4, the ARL : 1.5. Note that these

results are for the case where p:0.1.



Table 5.L: (k,h)
Chart with p :
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combinations and the corresponding ARL's for the Max-MCUSUM
,

b

1.00

Parameter
h
k
ARL

L.25

h
k
ARL

0.00

2.024
0.674
250.13

1.50

P:0-7
ô

h
k
ARI

0.25

2.024
0.674
9.43

4.561

0.168
15.33

2.00

h
k
ARL

0.50

3.157
0.337
6.33

2.024
0.674
7.48

4.561

0.168
t2.02

2.50

h
k
ARL

1.00

2.024
0.674
2.73

3.157
0.337
5.24

2.024
0.674
5.46

4.567
0.168
9.87

3.00

1.50

h
k
ARI

L.497

1.011

1.86

2.024
0.674
2.38

3.i57
0.337
4.5L

2.024
0.674
4.47

4.561
0.168
7.27

4.00

2.00

h
k
ARL

1.155

1.348

1.53

t.497
1.011

1.66

2.024
0.674
2.13

3.r57
0.337
3.59

2.024
0.674
3.90

4.561

0.168

5.79

2.50

0.868

1.685

1.36

1.155

1.348

1.30

t.497
1.011

L.54

2.024
0.674
L.82

3.157
0.337
3.05

2.024
0.674
3.28

4.56I
0.168
4.87

0.868
1.685

t.26
1.155

r.348
1.30

L.497
1.011

r.38
2.024
0.674
1.66

3.157
0.337
2.71

4.561

0.168
3.81

0.868
1.685

1.18

1.155

1.348

1.19

r.497
1.011

1.30

2.024
0.674
1.56

3.157
0.337
2.32

0.868
1.685

1.11

1.155

1.348

7.r4
t.497
1.011

1.24

2.024
0.674
L.44

0.868
1.685

L.07

1.155

1.348

1.10

1.497

1.011

1.18

0.868

1.685

1.05

1.155

1.348

1.08

0.868
1.685

1.03



Table 5.2: (k,h) combinations and the corresponding ARL's for the Max-MCUSUM
chartwithp:5.

b

1.00

Parameter
h
k
ARL

1.25

h
k
ART

0.00
1.580

0.945
250.10

1.50

h
k
AR.L

P:0-t
ô

0.25

1.580

0.945

7.17

3.848

0.236
TI.97

2.00
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h
k
ARI

0.50
2.567
0.472
4.96

1.580

0.945
6.00

2.50

3.848

0.236
9.54

h
k
ARI

1.00

1.580

0.945
2.33

2.567

0.472
4.2r

1.580

0.945
4.66

3.00

3.848

0.236
7.93

t.50

h
k
ARL

1.094

t.4r7
r.72

1.580

0.945
2.09

2.567

0.472
3.69

1.580

0.945
3.94

3.848

0.236
5.97

4.00

2.00

h
k
ARL

0.696
1.890

1.48

1.094

L.4L7

1.58

1.580

0.945
L.92

2.567
0.472
3.04

1.580

0.945
3.51

3.848

0.236
4.85

2.50

0.276
2.362
L.34

0.696

1.890

1.36

1.094

L.4L7

1.48

1.580

0.945
L.7L

2.567

0.472
2.65

1.580

0.945
3.03

3.848

0.236
4.r5

0.276

2.362
7.25

0.696
1.890

t.29
L.094
I.4L7
1.35

1.580

0.945
i.58

2.567

0.472
2.40

3.848

0.236
3.34

0.276
2.362
1.18

0.696

1.890

1.19

1.094

L.4L7

r.27
1.580

0.945
1.50

2.567
0.472
2.TI

0.276
2.362
1.11

0.696

1.890

L.T4

1.094

1,.4L7

L.23

1.580

0.945
7.4t

0.276
2.362
7.07

0.696
1.890

1.11

1.094

I.4L7
7.17

0.276
2.362
1.05

0.696
1.890

L.07

0.276
2.362
1.03
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The Max-MCUSUM scheme is slightly more sensitive in detecting shifts in

the mean and/or standard deviation when there are more quality characteristics

being monitored in each product. This makes it more applicable in monitoring

many chemical processes where a large number of attributes of a process are being

monitored. Most of the CUSUM charts discussed in the literature are only effective

in detecting small shifis in the process. Tables 5.3 and 5.4 show the performance of

the Max-MCUSUM chart that is designed to detect a 1o shift in the process mean

vector and/or covariance matrix. These tables show that the Max-MCUSUM chart

is sensitive to both small and large shifts in the process location and spread.

Table 5.3: ARL's for the Max-MCUSUM chart with h : 2.554 and fr : 0.500 when

P:2

b

1.00

L.25

0.00

1.50

250.35

2.00

13.28

2.50

0.25

9.95

3.00

6.84

4.64

P:0-I
6

4.00

4.13

5.4t

0.50

4.6t

3.74

3.74

3.75

3.21

3.35

1.00

2.87

3.02

2.73

2.65

2.59

2.38

1.50

2.37

2.33

2.r4

2.r2

2.16

r.85

1.85

2.00

1.95

1.68

7.67

L.74

1.58

t.46

1.53

2.50

L.46

1.35

1.39

t.49

1.28

1.25

r.32

3.00

r.2t

L.t7

1.22

L.32

1.13

t.t2

1.19

1.09

1.08

T.L2

1.05

1.06

1.03

1.03

L.02

1.00
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Table 5.4: ARL's for the Max-MCUSUM chari with h:2.0JT and k : 0.500 when
P:ó

b

1.00

1.25

0.00

1.50

250.47

2.00

5.4 The Power of a Max-MCUSUM Chart

9.52

2.50

0.25

7.60

3.00

The power function of a statistical test describes the probability of rejecting the

null hypothesis at various values of the underlying parameters. In this section, we

present the power function of the Max-MCUSUM chart for monitoring the process

mean vector and/or covariance matrix of a multivariate process. We present the

power curve for increases in the mean vector and /or covariance matrix. This power

is computed as the reciprocal of the ARL of the scheme. We investigate the power

of the chart as a function of the correlation coefficient between two variables.

FTom Figure 5.1, we can see that the power of the Max-MCUSUM chart, de-

pends not on the magnitude of the correlation coefficient, but on the direction.

When there is a negative relationship between variates, an increase in the process

mean andf or standard deviation results in an increase in the power as the relation-

ship becomes stronger. When there is a positive relationship, as the correlation

increases, an increase in the parameters will not be quickly detected. Therefore like

Lhe T2 control chart, investigated by Wierda ([101]), the power of Max-MCUSUM

chart is low if the shift structure is in accordance with the correlation structure and

high if the shift structure is opposite to the correlation structure.

3.48

5.64

P:0-7
ô

4.00

4.65

3.24

0.50

4.08

3.04

3.00

3.44

2.73

2.75

1.00

2.52

2.56

2.33

2.38

2.28

2.09

1.50

2.L9

2.r0

1.93

1.89

1.98

r.7t

1.69

2.00

1.83

l.58

1.56

1.69

1.50

1.39

r.44

2.50

L.4T

1.30

1.33

T.4L

1.25

T.2L

t.27

3.00

1.19

1.15

1.19

t.27

t.I2

1.11

t.I7

1.08

r.07

1.11

1.05

1.05

1.03

1.03

L.02

1.01
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À

0.55
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Figure 5.1: Plot of the power for the Max-MCUSUM chart against correlation
coeffi cients between variables

5.5 Comparison with Other Procedures

The multivariate CUSUM control charts developed in the literature are de-

signed to monitor the process mean and variability using separate charts or different

plotting variables in case of simultaneous charts. Therefore it is impossible to com-

pare the Max-MCUSUM chart with those existing charts on an equal footing. This

chart will be compared with a single multivariate Max-MEWMA chart developed

by Xie ( [1 08]) . These two charts are compared at an in-control ARL : 200 and the

correlation between observations fixed at p : 9.6. Comparison of these charts is

displayed in Table 5.5. The Max-MCUSUM chart performs better than the Max-

MEWMA chart when detecting shifts in the process mean vector alone, and when

both process mean vector and covariance matrix experience smaller shifts. However,

when only the covariance matrix shifts, the Max-MEWMA chart out performs the

Max-MCUSUM chart. These charts are sensitive to large shifts in the process mean

and/or standard deviation. The standard CUSUM chart is specifically designed to

0.4
-1 4.4 4.2 0 0.2 0.4 0.6 0.8

Corrêlalion Coêtlicienl

82
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detect small shifts in the process and it is not effective in detecting large shifts.

However our proposed chart has, in addition to being easy to chart than the tra-

ditional multivariate CUSUM charts, a good abiliiy to simultaneously detect both

small and large shifts in the mean vector and covariance matrix.

Table 5.5: ARL's for Max-MCUSUM chart and the Max-MEWMA chart.

b

1.00

1.50

2.00

2.50

3.00

ARLy: 200 with p : Q.6

o,

0.00 0.50 1.00 1.50 2.00 2.50 3.00

200.4 4.3 2.9 2.2 1.8 1.5 r.4
8.4 3.3 2.3 1.7 1.4 1.2 1.1

5.9 2.8 1.9 1.5 1.3 1.1 1.1

4.8 2.5 r.7 L.4 L.2 1.1 1.0

4.t 2.3 1.6 1.3 1.1 1.1 1.0

Max-MCUSUM

b

1.00

1.50

2.00

2.50

3.00

a
0.00 0.50 1.00 1.50 2.00 2.50 3.00

200.1 r8.2 5.3 3.2 2.3 2.0 r.7
7.5 6.1 4.r 3.0 2.3 t.7 1.5

3.4 3.2 2.9 2.4 2.r t.7 1.5

2.4 2.4 2.2 2.1 1.9 r.7 1.3

2.0 2.0 1.9 1.8 t.7 1.1 1.0

Max-MEWMA



5.6 Charting Procedures

The charting procedure of a Max-MCUSUM chart is similar to that of the

Max-CUSUM chart. The successive CUSUM values, Mi's are plotted against the

sample numbers. If a point plots below the decision interval, the process is said to

be in statistical control and the point is plotted as a dot point. An out-of-control

signal is issued if any point plots above the decision interval and is plotted as one

of the characters defined below. The following procedure is followed in building the

Max-MCUSUM chart:

1. Specify the following parameters; p and the in-control or target value of the

mean vector F c, F B and the in-control or target value of the covariance matrix

Ð.

2. If p,B is not known, use the sample mean vector X which is a p-dimensional

vector of sample means. In the same manner, if the population covariance

matrix is unknown, \4/e use the sample covariance matrix ,5 to estimate the

population covariance matrix.

3. For each sample compute Z¿ and \.

84

4. To detect specified changes in the process mean vector and covariance matrix,

choose an optimal (h, k) combination and calculate the cumulative sums,

Cf ,Cn ,,Sr+ and .9; and transform them to C¿ and S¡.

5. Compute the M¿'s and compare them with h,; the decision interval.

6. Denote the sample points with a dot and plot them against the sample number

ifM¿<h.
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7. If any of the M¿'s are greater than the decision interval; h, the following

plotting characters should be used to show the statistic that is plotting above

the interval.

(i) If C¿) h, ptot Cf. This shows ashift in the process mean vector.

(ii) If S¿ ) h, plot l/*. This shows a shift in the process covariance matrix.

(iii) If bothC¿ ) å and S¿) h, plot B-l-f. This indicates a shift in both the

mean vector and covariance matrix of the process.

8. Investigate the cause(s) of the shift for each out-of-control point in the chart

and carry out the remedial mea,sures needed to bring the process back into an

in-control state.

5.7 Illustrative Example

Max-MCUSUM chart is applied to real data obtained from Sultan ([92]) which

was also used by Spiring and Cheng ([91]) for their simultaneous multivariate con-

trol chart. The data are from a steel manufacturing process that measured the

Brinnel hardness (z) and the tensile strength (g) for 30 samples. To illustrate the

multivariate control chart procedure the samples of the form (ø, y)' were aligned in

subgroups of five using the sequential sample numbers as shown in Table 5.6.



Table 5.6: Brinnel hardness and tensile strength data

samples
1

1

2

t43
34.2

3

200

57.0

6

2

4

160

47.5

778
51.5

,7
I

The Max-MCUSUM chart requires knowledge of the in-control or target value

of the mean vector, Spiring and Cheng ([91]) gave this as:

S

5

ubgro

181

53.4

t62
45.9

8

11

.)

148

47.8

2r5
59.1

t75
57.3

up

I

t2

hzsl
tLG : Lr,I,
the covariance matrix Ð is not given and is thus estimated by g : ÐÍ=r s¡, 

where

s¡ : n-rÐi=r(xn - N")(xo - X,")'' Flom the subgroup information,

161

48.4

t87
58.5

10

l3

l6
4

1.4L

47.3

t87
58.2

L82
57.2

L4

L7

186

57.0

t77
50.6

15

t8

27

5

172
49.4

86

204
55.1

160

45.5

19

22

s-

L7B

50.9

lszz.tz 6s.261

f oo.zo zs.sT)

183

53.6

20

23

26

6

196

57.9

t79
5r.2

195

58.0

The sample grand mean is

24

27

L94
57.7

134
45.7

25

28

v_A-

181

55.6

L87

42.0

29

lfi ,.azl

lsr ozl

135

40.5

30

To construct the Max-MCUSUM chart for detecting a shift in the process mean

vector and covariance matrix, \ve estimate p,B with X and Ð wiih ,S and substitute

these estimators into equation (5.13). This gives D* :0.827. The reference value

159

58.0
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lc : D* 12 : 0.414. If we want an in-control ARL to be equal to 250, the decision

interval is determined using the procedure used to derive Tables 5.1 and 5.2. This

gives a decision interval h:3.97.

füom Figure 5.2, the Max-MCUSUM chart shows that none of the subgroup

means are different from the target values. The chart however shows that there was

a shift in variability for subgroup 6. Thus the covariance matrix for this subgroup

should be investigated to identify the cause(s) of variation. Spiring and Cheng

([9t])'s simultaneous chart gave the same results but their chart is complicated since

they plotted two plotting quantities in the same chart. One quantity for detecting

shifts in the mean vector and another for detecting shifts in the covariance matrix.

l
Øl
O rÃ

I

t.5

Figure 5.2: The Max-MCUSUM chart for the Brinnel hardness and tensile strength
data.

0.5
4

Sub Group



5.8 Conclusions and Recommendations

We have proposed the Max-MCUSUM chart for monitoring changes in the

process mean vector and/or covariance matrix of a multivariate normal process.

The Max-MCUSUM chart is a natural extension of the univariate Max-CUSUM

chart proposed in chapter 3.

The main advantage of using this proposed chart over other existing multivari-

ate control charts is that one can monitor both the process location and the process

spread simultaneously using one chart. This chart is also easy to construct as it

is based on transforming the multivariate normal random variables into standard

univariate normal random variables.

If an out of control signal is issued we recommend using individual CUSUM

charts suggested by Woodall and Ncube ([106]), to identify the component(s) that

has shifted for the mean vector, covariance matrix or both if any of the charts

indicates that both parameters have shifted.
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6.1 Introduction

Multivariate Max-Chart

In this chapter, we investigate a Shewhart-type multivariate chart. By Shewhari-

type chart, we mean that the statistics that are plotted on the control chart are

not smoothed as in the EWMA chart, or summed as in the CUSUM chart. The

Shewhart-type chart has no memory. That is, previous observations do not influ-

ence the probability of future out-of-control signals. Hotelling (1421), introduced

a statistic which can be used to assess the quality characteristics of multivariate

processes by plotting this statistic (?2) against time. Several charts based on this

statistic have been proposed to monitor boih the process mean and the variability.

These include charts proposed by Tracy, Young and Mason ([95]), Mason, Tracy

and Young ([67]), Spiring and Cheng ([91]) and many more.

A single Shewhart-type multivariate scheme is proposed in this chapter in an

effort to develop a simple scheme that monitors both mean and variability of the

process simultaneously. We show that when testing for shifts in the mean and/or

standard deviation, of a multivariate normal random variable, the T2 chart, re-

duces to a univariate normal Shewhart chart. The T2 statistic is transformed into

a standard normal variable under the assumption that the process is in-control.

The procedure is straightforward and can be carried out by employees with little

training in the use of control chart and an elementary knowledge of statistics. The

performance of the proposed chart is assessed by the ARL of the chart at different

Chapter 6
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levels of shifts in both mean vector and/or covariance matrix.

6.2 The New Control Chart

Assume we have a sequence of independent and identically distributed multi-

variate normal random variables X, , Xr, ..., where Xr : (Xrr,..., Xto)'. When

the process is in-control, the variables have mean p,s and covariance matrix Ð6.

Assume that the process parameters ¡z and Ð can be expressed as F : tt'o I õ

and Ð - b2Ðo, when boih the mean vector and the covariance matrix have shifted.

The constants ô and b2 represents shifts in the mean vector and covariance matrix

respectively, where ô' : 0 and ó : 1 when the process is in-control, otherwise, the

process has changed due to some assignable causes.

The estimate of mean vector from a sample of n multivariate random variables

is denoted by X*: (Xr,Xr,...,Xr)', where X, : (tl")ÐT:rX¿¡ is the estimate of

the mean for quality characteristic j made on the first rz observations. The estimate

of the covariance matrix is defined as

1'"s,: i;Ir+ - x,)(X - x")'.
n_ L_¡=l

The sample mean vector X' and sample covariance matrix Sn are the uniformly

minimum variance unbiased estimators for the corresponding population param-

eters. These statistics are also independently distributed as are the sample val-

ues. These two statistics however follow different probability distributions. The

Shewhart-type multivariate charts for the mean and standard deviation are based

on the following statistics:

90

r: : r(N,- ¡ro)'Ðo 
t (X" - po) (6.1)
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for monitoring the mean and the sample generalized variance, denoted by lS"l, is

used to monitor the process dispersion. The statistic lS"l is the determinant of a

p x p sample variance-covariance matrix. For two quality characteristics, the sample

generalized variance is given as:

Where s12 is the sample covariance between

2(n - 1)lS"l1/2

To monitor the process standard deviation, rve use the lS,l1l2 statistic.

The results discussed in this thesis are for bivariate normal random variables

which can however be extended to other cases where we are monitoring more than

two quality characteristics per item. Without loss of generality, \rye are going to

consider the case where the in control mean vector is

l-ollr,: 
lOl

and the in control covariance matrix is

Ir onfoo:lo" 1l

lS"l : s2ts2z-s2rz'

lÐolt/'

two quality characteristics. F\rrthermore

- X3,-+'

The performance of this multivariate chart is determined by the distance of the

off-target mean vector or covariance matrix from the on-target values and not by

the particular direction of the off-target mean vector or covariance matrix. There-

fore only the upper control limits are considered for monitoring the significance of

the magnitude of shifts for the mean vector and covariance matrix. The distance

between the on-target value and the off-target value is defined as the square root of

the noncentrality parameter. When the mean vector and the covariance matrix shift

(6 2)
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from their target values to tt - tto I ô and Ð : å2Ðo respectively, the distance is

given as:

To develop our new chart, \Me carry out the following transformations:

and

where

z¿: Q-r {n ln$"" - t"o)'Ðl'(x" - pù;p)}

for Z - ¡/(0,1), the standard normal distribution. The function Õ-r(') is the

inverse function of (Þ(.), and H(w;p): P(W < wlù forW - X?o, the chi-square

distribution with p degrees of freedom. The variables Z¿ andY¿ are independent and

when ó' : 0 and ó: 1, they follow the univariate standard normal distribution and

their distributions do not depend on the sample size or on p, the number of factors

per variable. We can construct a single chart monitoring both the process location

and the process dispersion as follows.

Define

Y: e-r {" I

2(n- 1) lS"l1/2
I Ðol't'

Õ(z) :P(Z<z),

;2n --l ) ,

(6 3)

When the process mean and variability remain at their target values, M¡ wLlL

be small, a large value of M¿ suggest that the mean vector andf or the covariance

matrix have shifted from their respective target values, and thus assignable cause(s)

of variation should be identified and eliminated. Since the new chart is developed

using the maximum values of the two statistics, we call it the Maximum multivariate

control chart (Max-Mchart).

(6.4)

(6.5)

M¿ - mar {l Z,l,lYl} (6.6)
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Since Z¿ and Y¿ are independent and identically distributed standard normal

random variables when the process is in control, the in control cumulative distribu-

tion function of M¿ is found to be

Therefore, for F(y) - 1 - o to hold, we must have y : {*ur-,r}''" (Chen

and Cheng [Zt]). The upper control limit (UCL) of the Max-Mchart is then easily

determined for various values of Type I error probabiiity a; using equation (6.7),

the results are given in Table 6.1.

Table 6.1: Upper control limits (UCL) of the Max-Mchart for various values of type
I error probability a

r(a) : P(M¿Sa),

: P(l znl 3 a,l Yl S a),

: P(l z,l < a)P(lYl < a),

: P(x?la\', v>0

For various changes in the mean vector and/or covariance matrix, where the

mean vector shifts to l-t - lto * ô while the covariance matrix shifts to Ð : bzÐo,

the out-of-control cumulative distribution function of M¿ is found to be

F(y; p,;Ð;6) : P(M¿ < a),

d I 0.0054 0.004 0.0027 0.00135

ucl, I 2.9995 3.0899 3.2049 3.3975

(6.7)

P(l z,l < a,lYl < a),

P(l zol < a)P(lYl < a),

{'(ry,o,u) -'eæ,r} (68)

,{" (try=;2n-,) - r(*#-;2n--) } y>o
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where 6 :þ(p - t"o)'Eot1" - t"o) is the noncentrality parameter. The ability of

this chart to detect changes in the mean vector depends on p- p,s and Ð¡ through

the noncentrality parameter ô. The out-of-control ARL's for shifts in the mean

vector and/or covariance mat¡ix are computed using equation (6.8) and are shown

in Tables 6.2 and 6.3.

6.3 Design of a Max-Mchart

lVe assess the performance of the Max-Mchart using the in control ARL of 250

runs with a corresponding 3.0899ø limit for different sample sizes at a fixed level of

the correlation structure. This control limit corresponds to a probability of Type I

error of 0.004. For various changes in the mean vector alone, in covariance matrix

alone, and in both mean vector and covariance matrix, we calculate the ARL's which

are displayed in Table 6.2 and Table 6.3. We used p : 2, the bivariate case and

consider low and high levels of correlation.

The chart is effective in detecting both small and large shifts in both process

mean vector and covariance matrix. Similar to the Max chart (Chen and Cheng

[2t]), as the process mean vector and covariance matrix shift , the ARL decreases

and approaches one for large shifts. The Max-Mchart becomes more effective as the

sample size increases a,s seen in Table 6.2 and Table 6.3 where the ARL decreases as

sample size increases. The scheme is also more effective in detecting smaller shifts

at low levels of correlation than at higher levels. However, when there is a large

shift in the process, the performance of the Max-Mchart is not significantly affected

by the level of correlation between observations. We have also calculated the ARLs

for this chart for different values of p. We found that, the sensitivity of this scheme

is not significantly affected by number of quality characteristics monitored per item

(p)



Table 6.2: ARL's for the Max-Mchart with in control ARL¡ - 250, P : 0.1 and

n:4

n b

1.00

I.25
1.50

2.00
2.50

3.00
4.00

4

0.00 0.25 0.50 r.00 1.50 2.00 2.50 3.00

250.05 171.58 54.79 5.09 1.48 1.04 1.00 1.00

31.64 23.80 11,76 2.72 I.26 L.02 1.00 1.00

7.85 6.76 4.61 1.91 r.L7 L.02 1.00 1.00

2.23 2.t2 1.86 1.33 1.08 1.01 1.00 1.00

t.4r 1.38 1.31 L.t4 L.04 1.01 1.00 1.00

r.t7 1.16 t.t4 1.07 L.02 1.00 1.00 1.00

1.04 r.04 1.03 7.02 1.00 1.00 1.00 1.00

95

P:0.L
o,

n

4

1.00

t.25
1.50

2.00
2.50

3.00
4.00

250.05 200.11 96.18 12.73 2.9r 1.36 1.05 1.00

31.64 26.51 16.50 4.82 1.91 r.20 1.03 1.00

7.85 7.t6 5.56 2.74 1.53 1.13 1.02 1.00

2.23 2.t6 1.98 1.53 L.2t 1.06 1.01 1.00

L.4L i.39 1.35 t.zL 1.10 1.03 1.00 1.00

L.L7 1.17 1.15 1.10 1.05 L.02 1.00 1.00

t.04 r.04 r.04 1.03 1.01 1.01 1.00 1.00

P: 0.8



Table 6.3: ARL's for the Max-Mchart with in control ARL¡ : 250, P : 0.1 and

n:6

n b

1.00

7.25

1.50

2.00

2.50

3.00

4.00

6

0.00 0.25 0.50 1.00 1.50 2.00 2.50 3.00

250.05 140.14 29.96 2.53 1.10 1.00 1.00 1.00

2t.92 16.19 7.40 L.74 1.06 1.00 1.00 1.00

4.80 4.22 2.98 1.39 1.04 1.00 1.00 1.00

i.51 r.46 1.35 1.11 1.01 1.00 1.00 1.00

L.L2 1.11 1.08 1.03 1.00 1.00 1.00 1.00

1.03 1.03 L.02 1.01 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

P:0.L
o,

n

6

1.00

L.25

1.50

2.00

2.50

3.00

4.00

250.05 L77.4L 61.37 5.97 1.63 1.06 1.00 1.00

2t.92 18.20 10.78 2.92 1.33 1.04 1.00 1.00

4.80 4.44 3.54 1.86 1.19 L.02 1.00 1.00

1.51 1.48 1.40 1.20 1.06 1.01 1.00 1.00

L.Lz 1.11 1.10 1.05 1.02 1.00 1.00 1.00

1.03 1.03 1.03 1.01 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

6.4 The Power of a Max-Mchart

Figure 6.1 shows the power of the Max-Mchart in relation to changes in the level

of correlations. The figure shows the power of this scheme for upward shifts in the

mean vector and/or covariance matrix. Like the Max-MCUSUM chart discussed in

chapter 5 and LheT2 chart (Wierda [101]), the performance of the Max-Mchart is not

affected by the strength of the relationship, but by the direction of the correlation

in relation to the shift in the parameters. If there is a strong negative correlation

between the variables, increases in mean vectors and f or covariance matrices are

detected quickly as opposed to decreases in these parameters. Positive correlation

reduces the ability of this scheme to detect upward shifts.

P: 0.8



Figure 6.1: Plot of power for the Max-Mchart chart against correlation coefficients
between variables.

6.5 Comparison with Other Procedures

0.8
-1

In this section we compare the Max-Mchart with the Max-MCUSUM and Max-

MEWMA (Xie [tOS]) charts. These charts are compared by first adjusting their

respective control limits so that the in control ARL is fixed at 200. We compare the

three charts by examining their ARLs for different shifts in the mean vector andf or

covariance matrix. The Max-Mchart performs better than the Max-MCUSUM chart

and the Max-MEWMA chart for shifts in mean that are at least 1.5ø and at least a

2o shtft in the process variability. Compared to ihe traditional charts, we see that

these recently developed single charts are good in detecting small and large shifts

in the mean vector and/or covariance matrix. F\rrthermore, these single charts are

easy to interpret as the statistic plotting outside the control limit is indicated by a

corresponding symbol defined in the design procedures.

-0.6 -o.4 4.2 0 0.2
Correletion Coeff icienl
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Table 6.4: ARL's for the
Max-Mchart.

Max-MCUSUM chart, the Max-MEWMA chart and the

b

1.00

1.50

2.00

2.50

3.00

ARLy: 200 with p : Q.6

a
0.00 0.50 1.00 1.50 2.00 2.50 3.00

200.4 4.3 2.9 2.2 1.8 1.5 1.4

8.4 3.3 2.3 t.7 1.4 1.2 1.1

5.9 2.8 1.9 1.5 1.3 1.1 1.1

4.8 2.5 t.7 r.4 1.2 1.1 1.0

4.t 2.3 1.6 1.3 1.1 1.1 1.0

Max-MCUSUM
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b

1.00

1.50

2.00

2.50

3.00

a
0.00 0.50 1.00 1.50 2.00 2.50 3.00

200.1 18.2 5.3 3.2 2.3 2.0 1.7

7.5 6.1 4.L 3.0 2.3 t.7 L.2

3.4 3.2 2.9 2.4 2.t 1.8 1.6

2.4 2.4 2.2 2.1 1.9 1.7 1.5

2.0 2.0 1.9 1.8 7.7 1.1 1.0

Max-MEWMA

b

1.00

1.50

2.00

2.50

3.00

o,

0.00 0.50 1.00 1.50 2.00 2.50 3.00

200.1 71.4 9.2 2.3 t.2 1.0 1.0

7.2 4.9 2.4 r.4 1.1 1.0 1.0

2.t 1.9 r.4 1..2 1.0 1.0 1.0

t.4 1.3 L.2 1.1 1.0 1.0 1.0

L.2 1.1 1.1 1.0 1.0 1.0 1.0

Max-Mchart



6.6 Charting Procedures

The charting procedure of a Max-Mchart is carried out as follows:

1. For each sample compute Z¿, Y and M¿.

Find the upper control limit UCL from Table 6.1 for the desired a.2.

3. If ¡t is not known, use the sample mean vector X, which is a p-dimensional

vector of sample means. In the same manner, if the population covariance

matrix is unknown, we use the sample covariance matrix Sn to estimate it.

4. When M¿ 1UCL, plot the data point using a dot.

5. When M¿ )_ UCL, the following plotting procedures should be used to show

the statistic that is plotting above the control limit.

(i) If I Zil >UCL, plot rn*. This shows a shift in the process mean.

(ii) If I ycl >UCL, plot V*. This shows a shift in the process standard

deviation.

(iii) If both I Zl >UCL and I l'¿l >UCL, plot B * *. This indicates shifts in

both the mean and standard deviation of the process.
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6. Investigate the cause(s) of the shift for each out-of-control point in the chart

and carry out the remedial measures needed to bring the process back into an

in control state.

If the Max-Mchart signals an out-of control state, we recommend the methods

proposed by Mason, Tracy and Young ([00]) be applied to the points plotting outside

the limits. This method works by decomposing Lhe T2 statistic into orthogonal

components in order to identify the variable or set of variables causing the signal.



6.7 An Example

To demonstrate the implementation of the proposed Max-Mchart, we wiil use

the data used by Sultan ([92]) The data is from a steel manufacturing process

that measured the Brinnel hardness (z) and the tensile strength (g) for 30 samples.

This daia is displayed in Table 5.7. The chart is developed as follows: the sample

covariance matrix is

" 
: 

lttlrtf

and the sample grand mean is

6e.261
2s.s7)

ç _ ltz+.azl
51.67 )'

This control chart was constructed using the Type I error probability of 0.004. This

results in an in control ARL : 250 and the upper control limit of 3.0899. The control

chart shows no significant shift in the mean. Like the simultaneous chart proposed

by Spiring and Cheng ([91]) and the Max-MCUSUM chart, the Max-Mchart shows

a significant shift in the covariance structure for subgroup 6 as depicted in Figure

6.2.
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Figure 6.2: The Max-Mchart for the brinnel hardness and tensile strength data.

6.8 Conclusions and Recommendations

We have proposed a new Shewhart-type single control chart that is capable of

monitoring process mean and standard deviation for multivariate normal processes.

This chart is easy to use as it involves transforming the complex multivariate process

to a univariate process. Then easy-to-use standard univariate procedures are used

to derive the new chart. This chart also quickly detects large shifts in the process

parameters.

We recommend this new chart because we can use one chart to simultaneously

monitor the process location and spread unlike the traditional scheme that requires

running two charts concurrently to monitor the process.
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Max-CtlstlM Chart for
Autocorrelated Processes

7.L Introduction

In the previous 4 chapters, we proposed single univariate and multivariate con-

trol charts under the assumption that, a process being monitored will produce mea-

surements that are independent and identically distributed over time when only the

inherent sources of variability are present in the system. However, in some appli-

cations the dynamics of the process will induce correlations in observations which

are closely spaced in time. If the sampling interval used for process monitoring in

these applications is short enough for the process dynamics to produce significant

correlation, then this correlation can have very serious effects on the properties of

standard control charts, (see VanBrackle and Reynolds [00], Lu and Reynolds ([55],

[56]) and Runger, Willemain and Prabhu [40]). Examples of situations where a pro-

cess produces measurements that are correlated include, measured variables from

tanks, reactors and recycle streams in chemical processes.

In the next two chapters, we investigate how the performance of control charts

is affected by serial correlation in the observations. We will restrict our discussion to

serial correlation that can be modelled using the first order autoregressive moving

average ARMA(I,1) models. We propose control charts for simultaneously moni-

toring the process mean and variability using a single control chart in the presence

of autocorrelation.

r02

Chapter 7
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In this chapter, we propose a CUSUM control chart for autocorrelated data

that can simultaneously monitor shifts in the process location and/or spread using

a single plotting variable. This investigation is done for the case of processes that

can be modelled as a first order autoregressive AR(l) process plus an additional

random error which can correspond to sampling or measurement error. This model

has been used in several charts dealing with autocorrelated data. It allows relatively

accurate numerical techniques to be used to evaluate properties of the control charts

and the model is frequently encountered in practice. F\rrthermore, it may serve as

an approximation to other time series models. First order autoregressive models are

also useful when a disturbance affects not only the current outcome of the process,

but also (have an exponentially declining effect on) future outcomes. Such situations

occur for example when a tank containing raw material is refilled from time to time

with raw material of varying quality (Wieringa [102]).

7.2 Effect of Ignoring Serial Correlation

Positive autocorrelation in the process can result in severe negative bias in

traditional estimators of the standard deviation. This bias produces control limits

that are much tighter than desired. Lu and Reynolds ([55]) observed that tight

control limits, combined with autocorrelation in the observations plotted, can result

in an average false alarm rate much higher than expected. This will result in wasted

effort searching for nonexisting special causes of variation in the process. This can

also result in loss of confidence in the control charts and practitioners may abandon

their use. Furthermore, when we use residual charts in situations when observations

are positively autocorrelated, when there is a shift in the process mean only a fraction

of the shift will be transferred to the residual means, this reduces the chart's ability

to quickly detect such shifts. This is an undesirable situation in process monitoring
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particularly in the chemical industries where small shifts are commonly experienced.

When the observations are negatively correlated, the standard deviation will

be overestimated and this will result in wider control limits of traditional control

charts. Wide control limit makes the scheme insensitive to changes in the process

mean and standard deviation. It is therefore very important to take autocorrelation

among observations into consideration when designing a process monitoring scheme.

Recently, new control charts have been proposed for dealing with autocorre-

lated data. Two approaches have been advocated for dealing with this phenomenon.

The first approach uses standard control charts on original observations, but adjust

the control limits and methods of estimating parameters to account for the auto-

correlation in the observations (see VanBrackle and Reynolds [00], t u and Reynolds

[56]). This approach is particularly applicable when the level of autocorrelation is

low but less effective at high levels of autocorrelation.

A second approach for dealing with autocorrelated processes, fits time series

model to the process observations. The procedure forecasts observations from pre-

vious values and then computes the forecast errors or residuals. These residuals

are then plotted on standard control charts for process monitoring. This is because

when the fitted time series model is the same as the true process model and the pa-

rameters are estimated without error, the residuals are independent and identically

distributed normal random variables when the process is in control. (see Alwan and

Roberts [2]; Montgomery and Mastrangelo [71]; Wadel1, Moskowitz, and Plante [99];

Lu and Reynolds [57]; and Runger, Willemain and Prabhu [a0]).

Yashchin ([109]) recommends charting raw data directly when the level of au-

tocorrelation is low while for high levels of autocorrelation, they recommend trans-

formation procedures that creates residuals. They allow for autocorrelation in the

residuals due to model misspecification. The residual charts are used in process
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quality monitoring because a shift in the process mean and/or standard deviation

results in a shift in the residual mean and/or standard deviation. Residual control

charts seem to work best when the level of correlation is high. When the level

of correlation is low, forecasting is more difficult and residual charts are not very

effective at detecting process changes.

Most of the charts discussed in the literature monitor the process location and

variability using two sets of charts. Lu and Reynolds ([57]) proposed a simultaneous

EWMA control chart which uses one chart to monitor the process mean and vari-

ability by plotting two variables on the same chart. The process is deemed out of

control when either of the two variables plots outside the control region. A general

conclusion that can be drawn from these studies on autocorrelated processes is that

correlation between observations has a significant effect on the properties of the

control charts. In particular, when the observations are negatively correlated, the

control chart will not quickly detect shifts in the processes while in the presence of

positive correlation, the control limit will be ioo tight and the chart will produce a

high rate of false alarm.

We acknowledge that the biased estimator of variation in serially correlated

process is a serious problem when constructing control charts. We monitor the pro-

cess changes by monitoring the residuals from a time series model. This is because

a shift in the process mean and/or standard deviation causes a shift in the mean

and/or standard deviation of the residuals. Modified Markov chain methods are

used to evaluate the ARL of ihis chart at different levels of correlations. Our pro-

posed chart monitors the process by simultaneously monitoring the residual means

and variation. The results show that by adjusting the reference value of the stan-

dard CUSUM chart to take the autocorrelation structure into consideration, the

CUSUM chart can effectively detect small shifts in the process mean and/or spread.
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We assume that the underlying process model is correctly identified, and that its

parameters are known. This is not a serious limitation in practice since applica-

tions where serial correlation is an issue typically arise in situations where there is

a high frequency of sampling. Therefore the data are usually available to ideniify

the model and estimate the model parameters with a high degree of accuracy.

7.3 The AR(1) Process \ /ith an Additional Random Error

Suppose that observations are taken from a process at regularly spaced time,

and let X¿ represent the observation taken at sampling time f. The properties of

control charts are usually calculated under the assumption that the observations

are independent normal random variables with constant mean and variance. When

observations are independently identically distributed normal random variables, X¿

can be represented as

where p is the process mean and the â's are independent normal random variables

with mean 0 and variance o!. lt is assumed that the process mean ¡l is constant at

a target value when the process is in control and can change to some other values

when a special cause occurs.

To model observations from an autocorrelated process, we use a model that has

been discussed previously in quality control by authors such as Lu and Reynolds

Xt : þ*€t,

([55] and [57]) and VanBrackle and Reynolds ([96]) For this model, X¿ can be

represented as

t :7r2,...,

where p¿ is the random process mean at sampling time ú and 6¿'s are independent

normal random errors with mean 0 and variance ø"2. This model accounts for corre-

Xt : ¡,ttl€tt t:7,2,..., (7 1)



707

lation between samples that are close together in time, for variability in the process

mean over time and for additional variability due to sampling or measurement er-

rors. It is assumed that p¿ can be described as a first order autoregressive AR(1)

process defined as

where { is the overall process mean, a¿'s ane normally distributed random shocks

with a mean 0 and variance ol. These random shocks are independent of all the

random errors and of the random shocks associated with individual observations at

any other time. The autoregressive parameter / represents the correlation between

p,¿ and p,¿-1. The process will be stationary if I dl < 1 For most processes of

interest in control chart application, d will be nonnegative (Reynolds, Arnold and

Baik [8a]).

The distribution of ¡,r,¿ for ú ) 1 depends on a starting value ¡;¡ for the series at

time f : 0. If we a,ssume that the starting value p6 follows a normal distribution

with mean { and variance o'ro : 
"'"/(1 - ó'), lhen ¡,r,¿ will also follow a normal

distribution with mean { and variance 
"', 

: 
"?l 

(L - ó'). The random variable X¿

has mean { and variance given as Var(X¿) : Var(/-¿¿) * Var(e¿). This variance is

given as

þt: (1 -d)€*ó[rt¡*ar t:I,2,...,

o2, is the true standard deviation of X since the effect of / in the AR(l) process

is incorporated; ¡,t¿ is the mean at time ú and { is the overall process mean. The

covariance between two observations that are z units apart is given as óio'r and the

correlation between two adjacent observations is

(7.2)

_2

oI : o" + o! : i+ -r o?, t : 7,2, ...,

p: Ó1þ,

(7 3)

(7 4)
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where ,r/ is the proportion of the process variance due to variation in pr. We can

interpret o2, as the long-term variability and o! as a combination of short-term

variability and the variability associated with measurement error. In situations

where materialis processed in batchES, lrt might represent the mean of.balcht, o2,

might represent the batch-to-batch variability, and ø"2 might be the within-batch

variability (Lu and Reynolds [57]). When assessing processes that can be assumed

to follow the model in equation (7.t) and equation (7.2), it is often convenient to

consider the proportion of total process variability that is due to variation in p¿ and

the proportion due to error variability. The proportion of the process variance due

to p¿ is defined as

The proportion of the total process variation that is due to e¿ is then 1- 1þ.

Autocorrelation in the process may at times be caused by assignable causes

that can be eliminated, this will reduce variability in the process. In other processes,

the autocorrelations are inherent characteristics of the process and thus cannot be

removed in the short-run. In these situations, the process is said to be in control

when the process mean continuously wanders around the target value but within

the acceptable region. Thus the process mean is not constant as in the case of

independent observations.

The AR(1) process with an additional independent random error is equivalent

to a first order autoregressive moving average (ARMA(1,1)) process (Box, Jenkins

and Reinsel [7]), which can be written as

tt,o"o;
olt 

- 
'

'f t t , a'ok oi+ o;
(7.5)

(I-óB)&: (1 -d)€+(1 -08)"y,, (7 6)
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where 7¿'s are the random shock components of the ARMA(I,1) process and are

independent and identically distributed normal random variables with mean 0 and

variance ol, 0 1s the moving average parameter, d is the autoregtessive parameter

of the AR(1) process, and B is a backshift operator such thaï BX¿: Xt-r. If S : g

then the observations are independent and the parameters of the model in equation

(7.6) are 0 :0 and ol: o2o+ o!. tt Ó > 0, Koons and Foutz ([51]) derived I and

o', *

and

0-

The standard time series estimation techniques can be used to estimate the param-

eters in the ARMA(l,1) model.

In some production processes, a large volume of items are produced in a single

lot. In such situations more than one observation are sampled each time. Let X¿¿

be the 'iúh observation at sampling time ú. We assume that X¿¿ can be represented

AS

o2" + (1+ ó')o?
2óo3

t [,,o,,+(t+ø,þ2.ile'øc:)'-+

" óo?
"'t 0

where the elo's are independent and identically distributed normal random variables

with mean 0 and variance o!,. H ri, sampled observations are averaged, then their

average, X¡can be written as X¿: þtt+e], where E'r:Ð!=retrln. In this case, the

sample means will follow the model in equation (7.1) and equation (7.2) with mean

0 and variance o?,|n.

In this chapter, we monitor the process mean and process variability by moni-

toring the residuals from a forecast. To do this, we first determine the distribution

(7.7)

Xu : Ftleto

(7.8)

(7.e)
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of the residuals when the process is in control. When the process is in control, the

residual at observation t from the minimum mean square error forecast made at

observation ú- l is

where þ and á are parameters in the ARMA(1,1) model given in equation (7.6) and

{s is the overall mean when the process is in control.

If the fitted time series model is ihe same as the true process model and the

parameters are estimated without error, then the residuals are independent and

identically distributed normal random variables when the process is in control. We

can then monitor the process by using standard control charts for independent

observations by monitoring these residuals. If there is a step change in the process

mean from the in-control value {o to (r between time ú : T - 1 and t : r, the

expectations of the residuals for various times are (see Lu and Reynolds [56])

e¿ : Xt- €o- ó(Xt-t - to) +9er-t

and

E("r) :

E("') :

7-0

The asymptotic mean of the residual

E("') :

(7.10)

0,

ë(1

þ'*r' -ó)Ð
L-ó+0t(ó-o)

t
- (0r

t<r

These residuals are independent and follow a normal distribution with variance

The expectation of the residuals after the shift occurs is a decreasing functionol.

0L-

({,

'l ,o

- €o)

t:r

- €o)

I - ó r, ¿ \
1_Btsr-ço/.

after the shift is

t : T +l,l : I,2,... (7.11)

(7.72)
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of time. Also, as / increases, a small fraction of the shift in the process mean will

be transferred to the mean of the residuals. It is evident that when the process

mean shifts, only a fraction of the shift is transferred to the mean of the residuals

and this fraction decreases as / increases, as can be seen in equation (7.12), Since

only a fraction of the process mean shifi is transferred to the residual means, the

chart for residuals will not quickly detect the shifts as compared to the chart for

independent observations where the entire process mean shift will be monitored. On

the other hand, the residuals chart is theoretically appealing because it takes the

serial correlation into account, and reduces the problem to a well known, easy to use

case of a shift in the process mean and/or variability of independent observations.

A change in the process variability can be attributed to a change in the au-

toregressive parametêr, ó, a change in variability for the random shocks associated

with individual observations o!, and a change in variability of the random shocks

associated with the autocorrelated means, o2o. If between observations ú - 1 and ú,

øl increases from its nominal value o2.o to o2o, and ør2 increases from its nominal

value olo to o!r, with / remaining unchanged, the model in equation (7.1) becomes

where oi, €i+t,... is a sequence of independent normal random variables with a mean

0 and variance o?r-o30, independent of the €t_.r's.The model in equation (7.2) for

¡.1¿ becomes

Xr*t : ltt+t * e¿¡¿ Í €l¡¿,

where aT,ai+t,... is a sequence of independent normal random variables with mean

0 and variance o'., - ølo, independent of the dt+r's. We can write þt+r, Xt+t, ir*,
and e¿a1 in terms of their corresponding in-control quantities, say por+r, Xl*r, il*,

I'Lt+t : (i - d)€ I ÓPr+t-t i a+t * oi*,,

I :0,7,..., (7.13)

I : 0,1,..., (7.L4)
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and e!*, respectively. Therefore using the model in equation (7.1) and equations

(7.8), (7.11) and (7.12), it can be shown by induction that
T

F+t : þ?+t i\ó'-ooî*¿, I :0,r,...
i=0

I

xr+¿ : xro+, * {i+¿ + ló'-nri*u, I :0,7, ".
i=0

î. ûo 
I L-r

,^t+t : 
^i+t I (ó - 0ùÐ0,0-ori*o +Ð(ó,-o - g,o-o)oi*u, I : 0, 1, ...

i,=0 i=0

e¿ : e! + ei + ai (7.15)

and
I-1

€t+t : el+t * €î+t - @ - f.ùÐo'o-n-t rî*n
i,=0

¿

+ Ð 0'looî*0, I : 0, 1, ... (7.16)
i,=0

where d¡ is the in-control value of á. This shows Lhat e¿,,¿ is a function of ef*, and

cri*¿ for i < L Therefore the effect of a shift in the variance is to induce correlation

in the residuals (Lu and Reynolds [57]).

Assuming lhat olo is the in-control value of ol , then V ør ("1*,) : ø!s . Therefore

the variance of the residuals after the shift is

V ar(e¡) : otro + @?, - o?r) + (""*, - o'*o)

and

lÞir
var(e¿¡¡) : o3o + l t * (ø - go)'f ofrrt-t-tl 

I'L.-i-oI
T

x(o?r- 
"?ò 

+Ð e2o{t-tt@'*r- oZò, t:L,2,...
à=0

The asymptotic variance of these residuals after the shift will increase to the limit

var(e¿): olo+ry@?,-o3o)+# g.LT)
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The residuals after the shifts in the process mean and variance are correlated

with the asymptotic mean given in equation (7.12) and asymptotic variance given

in equation (7.17). Flom equation (7 .17), we can see that changes in øl and o! have

different impact on the variability of the residual. We are therefore monitoring the

effects of different shifts in these variance components separately.

In process monitoring procedures such as control charts, it is often necessary

to estimate the parameters of the model given in equation (7.1) and equation (7.2)

using available data. Standard time series modelling techniques can be used to

estimate the parameters in the ARMA(I,1) model. Given the parameters in the

ARMA(l,l) model, for þ > 0, o'o and o! can be obtained from (see Reynolds,

Arnold and Baik [8a])

and

We can then fit the AR(1) plus random eüor model in equation (7.1) and

equation (7.2), which is the model considered in this thesis. We consider the case

of positive autocorrelation which is more prevalent than negative autocorrelation in

control chart applications. The objective of monitoringthe process is to detect those

situations in which one or more process parameters have changed from their target

values by the occurrence of a special cause. To this end, we propose a new CUSUM

chart that can simultaneously monitor the effect of special causes of variation in the

mean and standard deviation.

o2. :
o"(ó - o)(1- óo)

ó

o! :oÉ
ó

(7.18)

(7.1e)



7.4 The New Control Chart

We propose a new CUSUM chart for residuals in this section. Lel X¿ :

Xil,...,X¿nn, i:7,2,..., denote a sequence of samples of size ri¿ taken on a quality

characteristic X. It is assumed that, for each 'i, Xn,...,Xino are autocorrelated and

can be expressed as in the model shown in equation (7.9). We monitor the process

by first fitting a time series model to the process observations and then computing

the residuals. Let €o and op be the nominal process mean and standard deviation

of the residuals for this fitted model. Assume that the process residual parameters

{ and o^t ca,n be expressed as {: €o *aoro and o" :boro for ó > 0, where a:0
and ó : 1 when the process is in-control, otherwise, the process has changed due

to some assignable cause. Then ø represents the shift in mean and ó represents the

shift in standard deviation.

Let f : ({¿r +... + €m)f n¿ and MSE¿:Ði":r(Ën¡ - €n)'lro be the mean and

the mean square error for Lhe i,th sample residuals respectively. These statistics are

independently distributed as are the sample residual values when the process is in-

control. These two statistics however follow different distributions. The CUSUM

charts for the mean and standard deviation are based on {¿ and MSEi respectively.

To develop a single CUSUM chart for simultaneously monitoring the process

mean and standard deviation using residuals, we carry out the following transfor-

mations:

L74

and

where

,-({, - 6o)zn: 
^/n¿ oro

y:e-,{rlffi,",l 
},

Õ(z) :P(Z<z),

(7.20)

(7.21)
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for Z - l/(0,1), the standard normal distribution, Õ-1(.) is the inverse function of

Q(.), the cumulative distribution function of N(0,1), and H(w;p) : P(W 3 wlp)

for W - X?o, the chi-square distribution with p degrees of freedom.

These variables, Z¿ and Y¿ are independent and when a : 0 and ó : 1, they

follow the standard normal distribution. The CUSUM statistics based on Z¿ andY¿

are defined as

and

cl
ci

respectively, where C¡ and ,Ss ar€ starting values. Because Z¿ and )j fo1low the same

distribution, a new statistic for the single control chart can be defined as

max[0, Z¿ - k -l Co*_r],

max[O, -k - Zi + C;],

C.l- :
"1,

st:

If the process has gone out of control, the Mis will plot outside the control

limits, otherwise the M¿ values will be within the limits. Due to nonnegative values

of M¿, we plot only the upper control limit for this chart, and consider the process

to be out of control if. an M¿ value is plotted above this upper control limit.

In SPC, we use ihe ARL or the average time to signal (ATS) of the chart to

assess the performance of the scheme. This is the expected number of samples (or

observations if we take a single observation each time) required by the chart to signal

an out-of-control situation.

maxfO,V-k+S|],

maxfO, -k -Y+ S;r1,

M¿: maxfOf , C;, Sf , S;l

(7.22)

(7.23)

(7.24)

(7.25)

(7.26)
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We investigate the AR(l) process plus a random error with four parameters

namely: the autoregressive parameter, the overall mean and two variance param-

eters. In this case the special cause may affect any one or a combination of these

four parameters. For example in a batch process, a special cause might produce

an increase in within-batch variability, between-batch variability, or both (Lu and

Reynolds [57]).

For a change in variability, we consider the effects of changes in o" and oo

separately to calculate the ARL. This is because the two parameters have different

impacts on the level of variability of the process as shown in equation (7.17). The

shifts in these parameters are considered for different values of /, the correlation

between p,¿ and p¿-r. We assume the moving average parameter, d is fixed.

As shown previously, when the process is in-control, the residuals are indepen-

dent and identically distributed normal random variables with mean {o : 0 and

standard deviation o$. If there is a change in the mean and the standard devia-

tion, the residuals are correlated normal random variables with an asymptotic mean

given in equation (7.t2) and asymptotic variance given in equation (7.77). \Me will

consider a situation where the occurrence of a special cause of variation results in

arr increase in the process mean alone, increase in the process standard deviation

alone or an increase in both mean and standard deviation of the process.

7.5 Design of a Max-CUSUM Chart for Autocorrelated Pro-
cess (MCAP Chart)

We use the statistic M¿to construct a new control chart. Because M¿ is the max-

imum of four statistics, we call this new chart the Maximum Cumulative Sum chart

for Autocorrelated Process (MCAP chart). Lucas ([58]) showed that a CUSUM

chart for independent normal data is tuned to be most sensitive to a shift of mag-
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nitude ô by choosing the reference value, k:612. Runger, Willemain and Prabhu

([86]) proposed a modified procedure that takes into consideration the autocorrela-

tion structure of the data. They proposed the reference value to be computed as

,k : d(1 - ó)12 for the AR(1) process.

To calculate the ARL of the new chart we use the modified Markov chain

procedure proposed by Runger, Willemain and Prabhu ([86]) For the AR(1) plus

random error model when investigating shifts in mean andf or standard deviation,

\ve use the asymptotic mean given in equation (7 .L2). For a given in-control ARL

and a shift of the mean and/or standard deviation intended to be detected by the

chart, the reference value (,t) is computed as (l!)O lz. This guideline takes into

consideration the autocorrelation structure between the variables. For these values

(ARL, k), the value of the decision interval (h) is chosen to achieve the specified

in-control ARL. Then we use the procedure for CUSUM chart with standard (h,k)

values for a normal distribution with new mean in equation (7.L2) and variance

given in equation (7.I7) to calculate the ARL's.

Table 7.1 and Table 7.2 give the optimal combinations of ft, and fr for an in-

control ARL fixed at 250 and the autoregressive parameter S : 0.25 with 80%

of process variability due to variation in pr, using equation (7 .4), we obtain the

correlation between adjacent observations p - 0.2. Without loss of generality, we

assume oIo: olo:1. We calculate the moving average parameter d using equation

(7.7) and obtain 0 : 0.052. We calculate the out-of-control ARL for the effect of

changes in the standard deviation that are due to changes in o" and oo respectively.

The smallest value of an out-of-control ARL is calculated with respect Lo a pair of

specified shifts in both mean and standard deviation using the optimal in-control

ARL CUSUM chart parameters. For example if one wants to have in-control ARL

of 250 and to guard against 3oro increase in process mean and 2oro increase in
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the process standard deviation due to an increase in ør, i.e., ø: 3 and b:2, the

optimal in-control chart parameter values are h: I.234 and lç: 1.187. These shifts

can on average be detected on the second sample, i.e., the ARL is approximately

two. We assume that the process starts in an in-control state and thus the initial

value of the CUSUM statistic is set at zero.

Table 7.1: (k,h) combinations and the corresponding ARL for the MCAP chart,
with / : 0.25 and þ: 0.8 for shifts in the process standard deviation due to shift
in ø*.

b

1.00

Parameter
h
k

ARL

I.25

0.00

h
k

AR,L

3.720
0.396

250.76

1.50

ARL, :250
a

0.25

h
k

ARL

8.510

0.099

29.38

2.00

3.720
0.396
22.78

0.50

h
k

ARL

5.990
0.198
tt.78

8.510
0.099

26.50

2.50

3.720
0.396

16.49

1.00

3.720
0.396
4.2r

h
k

ARL

5.990
0.198

11.07

8.510

0.099

23.66

3.720
0.396

10.57

3.00

1.50

2.630

0.593
2.13

3.720
0.396
4.01

h
k

ARL

5.990
0.198
10.31

8.510
0.099
18.79

4.00

3.720
0.396
7.88

2.00

1.986

0.791
1.36

2.630
0.593
2.03

h
k

ARL

3.720
0.396
3.80

5.990
0.198
8.83

8.510

0.099

L5.20

3.720
0.396

6.39

2.50

1.561

0.989
1.11

1.986

0.79r
1.33

2.630

0.593
1.95

3.720
0.396
3.40

5.990
0.198

7.58

8.510
0.099
L2.61

3.720
0.396

4.85

3.00

1.234
1.187

1.03

1.561

0.989
1.10

1.986

0.791
1.31

2.630

0.593
1.82

3.720
0.396
3.07

5.990
0.198
6.58

8.510

0.099

9.26

L.234
1.187

1.03

1.561

0.989
1.10

1.986

0.791
L.28

2.630
0.593
7.73

3.720
0.396
2.82

5.990
0.198
5.17

r.234
f.i87
1.03

1.561

0.989
1.09

i.986
0.79r
1.25

2.630
0.593
1.66

3.720
0.396
2.46

L.234
1.187

1.02

1.561

0.989
1.08

1.986

0.791
t.23

2.630

0.593
1.56

t.234
1.187

t.02
1.561

0.989
1.08

1.986

0.79L
t.2t

I.234
1.187

L.02

1.561

0.989
r.07

t.234
1.187

r.02
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Table 7.2: (k,h) combinations and the corresponding ARL for the MCAP chart,
wiih / : 0.25 and tþ : 0.8 for shifts in the process standard deviation due to shift
in or.

b

i.00

Parameter
h
k

ARL

L.25

0.00

h
k

ARL

3.720
0.396
250.76

r.50

ARLo :250
a

0.25

h
k

ARL

8.510

0.099

29.38

3.720
0.396

22.00

2.00

0.50

h
k

ARL

5.990
0.198
11.78

8.510

0.099

26.23

3.720
0.396
15.73

2.50

1.00

3.720
0.396
4.2L

h
k

ARL

5.990

0.198

11.00

8.510

0.099

23.18

3.00

3.720
0.396

10.03

1.50

2.630

0.593
2.L3

3.720
0.396
3.99

h
k

ARL

5.990

0.198

10.17

3.720
0.396
7.49

8.510

0.099

18.16

4.00

2.00

1.986

0.791
1.36

Tabies 7.3 and 7.4 give the optimal combinations of å and fr for an in-control

ARL fixed at 250 and the autoregressive parameter þ: 0.75 with 80% of process

variability due to variation in þt, again using equation (7.4), we get the correlation

between adjacent observations as 0.6. We use the same procedure to calculate the

ARL for these tables as for Tables 7.1 and 7.2. Tables 7.1 and 7.3 show the chart's

performance for different shifts in the process mean andfor standard deviation,

with shifts in the overall process standard deviation due to shift in øo and Tables

7.2 and 7.4 correspond to shifts in these parameters with shifts in the overall process

2.630

0.593
2.03

3.720
0.396
3.76

h

k
ARL

5.990

0.198

8.62

8.510

0.099
t4.57

3.720
0.396
6.10

2.50

1.561

0.989
1.11

1.986

0.791

1.33

2.630

0.593
r.94

3.720
0.396
3.35

5.990
0.198
7.34

8.510
0.099

L2.02

3.720
0.396

4.66

3.00

1.234
1.187

1.03

1.561

0.989
1.10

1.986

0.791
1.31

2.630

0.593
1.81

3.720
0.396
3.01

5.990

0. i98
6.34

8.510

0.099

8.79

1.234
1.187

1.03

1.561

0.989
1.09

1.986

0.791,
L.27

2.630

0.593
t.7l

3.720
0.396
2.76

5.990

0.198
4.97

t.234
1.187

1.03

1.561

0.989
1.09

1.986

0.791
t.25

2.630

0.593
L.64

3.720
0.396
2.4r

L.234
1.187

r.02
1.561

0.989
1.08

1.986

0.79L
1.23

2.630

0.593
r.54

L.234
1.187

L.02

1.561

0.989
1.08

1.986

0.791

r.20

L.234
1.L87

L.02

1.561

0.989
r.07

L.234
1.187

1.02



standard deviation due to shifts in o".

Comparing these tables, it can be seen that at low level of autocorrelation, the

chart quickly detects small to moderate shifts in the mean and/or standard deviation

than at high level of autocorrelation. For example, as can be seen in Table 7.2, when

the level of autocorrelation is 0.25, a0.5o shift in the mean with a 1.5o shift in the

process standard deviation, with a standard deviation shift due to shifi in øo, will

on average be detected on the 10úå. sample. When the level of autocorrelation is

0.75, the same shifts will on average be detected on the 11úft, sample as can be seen

in Table 7.4.

The scheme is slightly more sensitive to shifts in the standard deviation due

to shifts in o, than it is to shifts in the standard deviation resulting from shifts in

oo. This is due to the fact that an increase in oo, increases the level of correlation

between observations while an increase in o", decreases the level of correlation be-

tween observations. This is because the variance of p,¿ increases with an increase in

øo and thus the proportion of total process variability due to variation in the auto-

correlated means, ¡r¿ increases. For example if Ó : 0.25, olo : 0.2 and o2os: 0.75.

This gives o'r: 0.9. Using equation (7.5), we 3et 1þ: 0.8. This gives P :0.2 from

equation (7.4).I1ø,2 increases to 0.5 while ol remains at its in-control value, using

equation (7.3) we get o2": 1.3 and substituting into equations (7.4) and (7.5) we

ge| p: 0.16 and tþ :0.62 respectively. If øl increases to 1.00 while ø"2 remains

at its in-control value, using the same equations, we get oI: I.27 and o',:7.07.

This gives tþ:0.84 and p :0.2t. Therefore an increasein ou decreases the level

of correlation (p) between adjacent observations while the opposite is true for an

increase in oo.

120



Table 7.3: (k,h) combinations and the
with / : 0.75 and tþ: 0.8 for shifts in
inoo.

b

1.00

Parameter
h
k

ARL

r.25

corresponding ARL
the process standard

0.00

h
k

ARL

3.720
0.164
250.L4

1.50

ARLo:250
a

0.25

h
k

ARL

2.00

3.720
0.r64
27.32

8.510
0.041

29.47

127

0.50

h
k

ARL

6.000
0.082
11.96

8.510
0.041

27.99

2.50

3.720
0.L64
21.80

for the MCAP chart,
deviation due to shift

r.00

h
k

ARL

3.720
0.L64
4.5I

6.000

0.082
11.61

8.510
0.041

26.34

3.720
0.L64
L4.99

3.00

1.50

2.633
0.246
2.56

3.720
0.164
4.44

h
k

ARL

6.000

0.082
IL.2L

8.510
0.041

22.95

4.00

3.720
0.164
LL.25

2.00

1.995

0.329
1.78

2.633

0.246
2.53

h
k

AR.L

3.720
0. r64
4.35

6.000

0.082
10.31

8.510
0.041

19.82

3.720
0.764
8.99

2.50

1.570

0.4tt
L.42

1.995

0.329
t.77

2.633
0.246
2.50

3.720
0.164
4.t5

6.000

0.082
9.38

8.510
0.041
L7.T6

3.720
0.164
6.53

3.00

1.246
0.493

1.23

L.570

0.41r
r.42

1.995

0.329
t.76

2.633
0.246
2.43

3.720
0.164
3.93

6.000
0.082
8.51

8.510
0.041
13.20

L.246

0.493

t.23
L.570
0.411

1.42

1.995

0.329
7.75

2.633
0.246
2.37

3.720
0.164
3.72

6.000
0.082
7.05

1.246
0.493

L.23

1.570
0.4rt
1.42

1.995

0.329
L.73

2.633

0.246
2.31

3.720
0.L64
3.36

I.246
0.493

t.23
L.570

0. tt
L.42

1.995

0.329
L.72

2.633
0.246
2.20

L.246

0.493

r.23
r.570
0.411

7.4L

1.995

0.329
1.69

I.246
0.493

I.23
L.570
0.4tL
t.4L

L.246
0.493

I.23



Table 7.4: (k,h) combinations and the
with / : 0.75 and tþ : 0.8 for shifts in
in o".

b

i.00

Parameter
h
k

AR,L

t.25

corresponding ARL for the MCAP chart,
the process standard deviation due to shift

0.00

h
k

ARL

3.720
0.164
250.t4

1.50

ARLy:250
a

0.25

h
k

ARL

8.510
0.041

29.47

2.00

3.720
0.164
22.13

L22

0.50

h
k

ARL

6.000

0.082
11.96

8.510
0.041

26.69

2.50

3.720
0.164
L7.02

1.00

h
k

ARL

3.720
0.164
4.5L

6.000

0.082
11.05

3.00

8.510
0.041

23.65

3.720
0.164
11.85

1.50

2.633

0.246
2.56

h
k

ARL

3.720
0.164
4.32

6.000
0.082
10.51

8.510
0.041

18.96

4.00

3.720
0.i64
9.65

2.00

1.995

0.329
r.78

2.633
0.246
2.49

h
k

ARL

3.720
0.164
4.70

6.000
0.082

8.74

8.510
0.041

15.43

3.720
0.164
7.47

2.50

L.570
0.411

L.42

1.995

0.329
1.76

2.633

0.246
2.42

3.720
0.164
3.7t

6.000

0.082
8.14

8.510
0.041

14.03

3.720
0.164
6.26

3.00

1,.246

0.493

1.23

r.570
0.411

t.42
1.995

0.329
1.74

2.633

0.246
2.30

3.720
0.164
3.38

6.000

0.082
7.77

8.510
0.041

LL.O7

I.246
0.493

7.24

r.570
0.411

r.42
1.995

0.329
t.7L

2.633
0.246
2.2t

3.720
0.164
3.13

6.000

0.082
6.90

I.246
0.493

1.24

r.570
0.411

1.42

1.995

0.329
1.69

2.633

0.246
2.73

3.720
0.164
2.79

L246
0.493

7.23

r.570
O.4TI

t.4t
1.995

0.329
r.67

2.633

0.246
2.03

r.246
0.493

t.23
L.570

0.411

t.4r
1.995

0.329
1.61

1.246

0.493

L.23

r.570
0.411

t.4L

L.246
0.493

1.23
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CUSUM charts discussed in the literature are designed to detect small shifts in

the mean. The performance of these charts is then assessed for various shifts in the

mean and variability separately. In Tables 7.5 and 7.6, we assess the performance

of an MCAP chart which is designed to detect a 1ø shift in the residual means.

This is accomplished by fixing k and fr, and then calculating the ARL's at various

values of residual means and standard deviations. The tables shows that this chart

is sensitive to small shifts in the mean andf or standard deviation particularly at

1ow levels of autocorrelations.

Table 7.5: ARL's for the MCAP chart with / - 0.25, tþ : 0.8, fr : 0.396 and

h:3.720.

b

1.00

1.25

1.50

2.00
2.50

3.00

4.00

a
0.00 0.25 0.50 1.00 1.50 2.00 2.50 3.00

250.76 1r.24 6.52 4.2L 3.t2 2.52 2.14 1.88

22.00 7.65 5.95 3.99 2.96 2.36 r.97 L.70

15.73 6.76 5.44 3.76 2.81 2.22 1.83 1.56

10.03 5.50 4.62 3.35 2.52 1.98 L.62 1.38

7.49 4.69 4.03 3.01 2.30 1.81 1.48 L.27

6.10 4.74 3.61 2.76 2.L2 1.68 1.39 r.2r
4.66 3.47 3.08 2.4L 1.89 L.52 r.28 r.L4

Changes in ø,

1.00

L.25

1.50

2.00

2.50

3.00

4.00

250.76 11.24 6.52 4.27 3.r2 2.52 2.L4 1.88

27.16 7.74 6.00 4.01 2.98 2.38 1.99 L.72

22.78 6.89 5.51 3.80 2.83 2.24 1.85 1.58

10.57 5.65 4.72 3.40 2.56 2.0r t.64 1.39

7.BB 4.83 4.13 3.07 2.34 L.84 1.50 t.29
6.39 4.27 3.71 2.82 2.t7 L.7r L.4I L.22

4.85 3.57 3.16 2.46 r.92 1.54 1.29 1.15

Changes in oo



Table 7.6: ARL's for
h:3.720.

the MCAP chart with / - 0.75, tþ : 0.8, lc :

b

1.00

I.25
1.50

2.00
2.50

3.00

4.00

0.00

250.t4 17.95 7.79 4.61 3.59 3.03 2.69 2.45
22.L3 7.63 6.14 4.40 3.50 2.96 2.62 2.39

77.02 7.06 5.75 4.t9 3.39 2.88 2.55 2.32

11.85 6.36 5.t2 3.78 3.15 2.72 2.47 2.18

9.65 5.58 4.45 3.46 2.94 2.57 2.29 2.07

7.47 5.06 4.00 3.29 2.77 2.44 2.18 t.97
6.26 4.1,4 3.56 3.01 2.5L 2.24 2.02 1.84

0.25

Changes in au

0.50

1.00

L.25

1.50

2.00

2.50

3.00

4.00

o,

1.00 1.50

250.74 17.95 7.79 4.6t 3.59 3.03 2.69 2.45
27.32 8.38 6.53 4.53 3.56 3.01 2.66 2.43
21.80 7.83 6.24 4.44 3.51 2.98 2.63 2.40
14.99 6.84 5.69 4.23 3.4L 2.90 2.56 2.33
L1.25 6.04 5.18 4.01 3.29 2.82 2.49 2.26

8.99 5.4L 4.75 3.79 3.16 2.73 2.42 2.L9

6.53 4.53 4.09 3.42 2.93 2.56 2.28 2.06

7.6 Comparison with Other Charts

724

0.164 and

In this section, we compare this scheme with simultaneous charts for autocor-

related processes discussed in the literature. As stated before, the performance of

control charts for monitoring a process is usually assessed using the ARL. The chart

that has low ARL when the process has shifted and high ARL when the process is

running at the target value is considered better than the one that has high out-of-

control ARL and low in-control ARL. Most of the charts discussed in the literature

are for monitoring shifts in the process mean and variability for autocorrelated ob-

servations using separate charts. We compare the MCAP chart with the combined

Shewhart-EWMA chart for autocorrelated data proposed by Lu and Reynolds (i54).

The combined Shewhart-EWMA chart's ARL's were obtained from Table 3 and Ta-

ble 4 of Lu and Reynolds ([57]). The combined Shewhart-EWMA charts were run by

2.00

Changes in øo

2.50 3.00
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simultaneously running two control charts: one chart designed primarily to detect

shifts in the mean, and the other chart designed primarily to detect shifts in the

process variability. The decision rule is that a signal is given if either chart signals.

The value of the correlation between þr,¡ and F¿-r considered were 0.4 and 0.8 and

the proportion of variation in the process attributed to variation in ¡-t¿, ry', were are

0.1 and 0.9.

Comparison of ARL's of these charts are provided in Tables 7.7, 7.8,7.9 and

7.10. The two charts are comparable, with the MCAP chart performing better than

the combined Shewhart-EWMA chart for small to moderate shifts in the process

mean and/or standard deviation. This is particularly more evident at high levels of

autocorrelation as can be seen in Tables 7.8 and 7.10. For example when d : 0.8

and tþ:0.1 as shown in Table 7.8, a 1o shift in the mean with a 2ø shift in the

process variability, with an increase in the process variability due to increase in o"2

will on average be detected on the 5¿à sample by the MCAP chart while a combined

Shewhart-EWMA chart will on average detect these shifts on the 10úh sample. At

high levels of correlations, the combined Shewhart-EWMA chart is highly affected by

the level of autocorrelation while the effect of autocorrelation is not very strong for

the MCAP chart. In fact when a high proportion of process variation is attributed

to variability in the autocorrelated means, the combined Shewhart-EWMA chart is

not good for detecting small shift for both low and high levels of autocorrelation.

For example when 90% of process variability is due to variationin p,¿ with the level

of autocorrelation; d : 0.8, a 1o shift in the mean is on average detected on the 83rd

sample by the combined Shewhart-EWMA chart while the MCAP chart on average

detects this shift on the 8úå sample. For very large shifts in the process mean and/or

standard deviation, the combined Shewhart-EWMA chart performs slightly better

than the MCAP chart particularly at high level of correlations and when a high

percentage of process variability is due to variations in the autocorrelated means.
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This is because the Shewhart chart is specifically designed for monitoring large

shifts in the process parameters. We therefore recommend the use of our MCAP

charts for detecting small to moderate shifts in the process mean and/or variability.

For detecting large shifts, we can use a combined Shewhart-MCAP chart as the

Shewhart chart is very effective in detecting large shifts in the process parameters

even in the presence of autocorrelation.

Table 7.7: Comparison of the MCAP chart with a combined Shewhart-EWMA chart
with / :0.4 and tþ: 0.1.

b

1

Changes

2

o!
o2"

.)

MCAP

o!
o2.

367.0
367.0

0

10

o!
oZ

Sh-EW

12.0

12.3

MCAP: MaI-CUSUM chart for autocorrelated process.

Sï-EW: Combi,ned Shewhart-EWMA charts of residuals.

o!
o?

367.9
365.8

7.0
7.1

MCAP

30.1

25.8

2.9
to

1

5.0
5.0

12.6

12.0

Sh-EW

4.3
4.4

a

3.1
ÐÐ
r).r)

12.0
12.7

3.8

3.8

MCAP

8.7
9.3

2.5
2.5

2

2.8
2.8

6.6
7.4

Sh-EW

2.5
2.6

2.8

3.1

3.7
3.8

2.3
2.4

MCAP

3.4
3.8

2.3
2.3

D
tJ

2.0
2.2

ÐDù.ù
3.7

Sh-EW

2.0
2.L

2.4
2.6

2.0
2.0

2.0
2.0

2.0
2.7

2.0
2.0

2.0
2.2

2.0

2.2



Table 7.8: Comparison of the MCAP chart with a combined Shewhart-EWMA chart
with /: 0.8 and tþ: 0.1.

b

1

Changes

2

o1
_2uo

D
tJ

MCAP

-¿U.e
oz

367.6
367.6

0

10

oi
o!

Sh-EW

t2.9
15.3

MCAP: Mat-CUSUM chart for autocorrelated process.

S6-EW: Combi,ned Shewhart-EWMA char-ts of resi,duals.

o"-

o?

364.4
367.0

7.2
8.3

MCAP

30.7
24.9

2.9
3.1

1

5.6
5.6

72.3

13.9

Sh.EW

Tabie 7.9: Comparison of the MCAP chart with a combined Shewhart-EWMA chart
with / :0.4 and tþ: 0.9.

4.7
4.9

ø

3.0
5.0

16.8

16.9

4.0
4.2

MCAP

r27

10.2
1Ð t
Id.tJ

2.6
2.7

2

3.1

3.1

7.2
r0.4

b

Sh-EW

3.1

3.1

1

Changes

2.8
4.6

4.4
4.7

3.0
3.0

2

MCAP

o!
o2"

t t-7ù.,
4.9

2.4
2.4

.)

2.4
2.4

ÐJ

MCAP

o"-
_2u^

3.4
5.0

370.8
370.8

Sh-EW

0

10

2.4
2.4

o!
o?

2.4
.). /

2.2
2.2

Sh-E\M

L2.6

t5.2

2.3
2.3

MCAP: MaI-CUSUM chart for autocorcelated prlcess.
S6-EW: Combi,ned Shewhart-EWMA charts of residuals.

ot^

o?

368.9
370.9

2.0
2.2

6.9

8.1

2.2
2.2

MCAP

26.0

31.2

2.0
2.5

2.9

3.0

1

6.0
6.0

10.6

72.9

1.9

2.7

Sh-EW

4.9
5.1

0,

2.9

3.2

/.,),,)

22.8

4.7

4.3

MCAP

IL.2
L2.5

2.6

2.7

2

Ðoù.L

3.2

7.0

8.3

Sh-EW

3.2
3.2

2.6

3.0

5.4
5.4

3.1

3.1

MCAP

4.2
4.8

2.4

2.5

Iù

2.5
2.5

3.6
4.2

Sh-EIM

2.5
¿.í')

2.3

2.6

2.3
oÐ4.ò

2.4
2.4

2.1

2.3

2.2

2.3

2.7
oÐ.¿.¿

1.9

2.1
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Table 7.10: Comparison of the MCAP chart with a combined Shewhart-EWMA
chart with / : 0.8 and þ: 0.9.

b

I
Changes

2

-z

ol

t
tJ

MCAP

o!
ol

374.5
374.5

0

i0

oi
oZ

Sh-EW

12.5

37.2

MCAP: MaI-CUSUM chart for autocorrelated process.

S6-EW: Combi,ned Shewhart-EWMA charts of resi,duals.

7.7 Charting Procedures

U^

o2^

374.4
375.5

6.5
16.5

MCAP

10.1

38.5

2.8
3.8

1

7.7
7.7

5.0
16.1

Since the residuals are independent normal random variables when the process

is in control, the charting procedure for the Max-CUSUM chart for Autocorrelated

Process is similar to that of the Max-CUSUM for uncorrelated data. The successive

CUSUM values, M¿'s are plotted against the sample numbers. If a point plots below

the decision interval, the process is said to be in-control and the point is plotted

as a dot. An out-of-control signal is given if any point plots above the decision

interval and is plotted as one of the characters defined below. The MCAP chart is a

combination of two two-sided standard CUSUM charts. Use the following procedure

to construct this chart:

1. Fit the time series model to the data.

Sh-EW

5.6
6.9

a

2.1
tÈ7
,). f

82.7

83.4

4.3

6.0

MCAP

7.6
22.4

2.6
Ðo¿.L

2

3.8

3.8

4.2
12.t

sh-E\ /

tÈ7ù.r
3.8

2.0

3.4

12.1

12.7

'Dù.L)

tt7J.¡

MCAP

tì7J.'

7.6

2.4
2.8

tJ

2.8

2.8

2.7
5.8

Sh-EW

2.8
2.8

1.8
2.7

1.8

1.8

2.7
2.7

7.7
2.t

o9L,ù

2.6

2. Specify the following parameters: the in-control or target value of the mean

{s and the in-control or target value of the standard deviation ø"0.

L.7
2.3

1.5

2.r



129

3. If f0 is not known, use the grand average f of the data to estimate it, where

€ : (€r +... + tàl*. If op is unknown, use Rf d,2 or Sf ca to estimate it,

where R: (Rr+...+ nòl^ is the average of the sample ranges and,S:

(Sr + ... * S^)lm is the average of the sample standard errors, S¿: JMSf,
and d,2 : dz(n) and ca : cz(ñ) are statistically determined constants with n

: (nt +... + n*)lm.

4. For each sample, compute Z¿ andY¿.

5. To detect specified changes in the process mean and standard deviation, choose

an optimal (h, k) combination and calculate Cf , Cn, S¿+ and S¿ .

6. Compute the Mis and compare them with fr.; the decision interval.

7. Denote the sample points with a dot and plot them against the sample number

lfMi<h.

If any of the M¿'s are greater than the decision interval, h, the following

plotting characters should be used to show the direction as well as the statistic

that is plotting above the interval.

(i) If Cl > h, plol C+. this shows an increase in the process mean.

(ii) If Ci > h, plot C-. This indicates a decrease in the process mean.

(iii) If .9/ > h, plot ^9*. This shows an increase in the process standard

deviation.

(iv) If S; > h, piot S-. This shows a decrease in the process standard

deviation.

(v) If both Co+ > å,, and Sf > h, plot B + +. This indicates an increase in

both the mean and standard deviation of the process.

8.
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(vi) If Cl > h and,9; > å,, plot B+-.This indicates an increase in the

mean and a decrease in the standard deviation of the process.

(vii) If Ci > h and Sc+ > å,, plot B - +. This indicates a decrease in the

mean and an increase in the standard deviation of the process.

(viii) If C; > å, and S; > h, plot B - -. This shows a decrease in both mean

and standard deviation of the process.

9. Investigate the cause(s) of shift for each out-of-control point in the chart and

carry out the remedial measure needed to bring the process back into an in-

control state.

7.8 An Example

To provide a visual picture of how ihe MCAP chart responds to various kinds

of process changes, a set of simulated data is used. Specific process changes are

introduced into the data, and the chart is plotted to monitor these changes in the

parameters. The data set was generated using the first order autoregressive plus

random error models given in equation (7.1) and equation (7.2). The data are

simulated by simulating sequences of a¿'s and 6¿'s.

For a fixed sequence of a¿'s and 6¿'s, a shift in oa can be simulated by mul-

tiplying a¿ in equation (7.2) by a constant. A change in o" can be simulated by

multiplying 6¿ in equation (7.t) by a constant, and a change in the mean is simulated

by adding a constant to the generated observations. This approach is discussed by

Lu and Reynolds ([57]). This procedure allows different types of process changes

to be investigated on the same basic sequence of a¿'s and e¿'s. In this example, we

assume the autoregressive parameter / remain constant.

We simulated 100 observations for a process following models in equation (7.1)
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and equation (7.2), with the following parameters: { - 0, ó:0.75, oo: 0.59, and

oe:0.5. These give o¡ :7.02 and tþ :0.76. This implies that 76% of variability

in the process is due to variation in p¿ and that the correlation between the adjacent

observations is p : Órþ: 0.57. Using equations (7.7) and (7.8), the corresponding

parameters in the ARMA(l,l) model in equation (7.6) are 0 :0.27 and o., : 0.83.

The MCAP chart for these simulated observations is drawn in Figure 7.1. Ali

points fall within the acceptable region, thus the process simulated is in control. The

chart's parameters are for an in control ARL of 370 runs. The chart parameters

are for detecting a 1ø increase in the parameters. They are calculated using the

procedure used to derive Tables 7.I to 7.4, this procedure takes the correlation

between adjacent observations into consideration.

Figure 7.1: The MCAP chart for in control simulated values.

50 60

Sample Number
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Figure 7.2 shows the performance of this chart for a shift in the process standard

deviation that is due to an increase in øo. Suppose that, due to a special cause

imnrediately after observation 60, oo increases from 0.59 to 0.97 and stays at this

value for the next 40 observations. We assume that other parameters in the model

remain at their in control values. This increase in oo results in an increase in

the process standard deviation, ø7¡ from 1.02 to 1.56. This corresponds to a 52%

increase in the process standard deviation. This also leads to an increase inTy' from

0.76 to 0.90 and an increase in the correlation between adjacent observations from

0.57 to 0.68. Therefore g0% of variation in the process is due to variation in ¡;¿. The

increase in øo for the last 40 observations was accomplished by multiplying the last

40 values of a¿ by the factor 0.9710.59 : 7.644.

When applying this to the simulated data the shift in the standard deviation is

signalled at the 86¿¿ observation. The delay in detecting this increase is caused by

an increase in the correlation between observations which was caused by an increase

in oo as discussed above.

Figure 7.2: The MCAP chart for shift in the variabilitydue to shift øo.
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Figure 7.3 shows the performance of ihe MCAP chart for an increase in the

process variability due to an increase in or. Due to some assignable causes, oe

increases from its in control value of 0.5 to 1.00 immediately after observation 60

and remains there for the rest of the process, and the rest of the process parameters

remain at their in control values. This increase will result in an increase in the

process standard deviation from 1.02 to 1.34 (a30% increase). Unlike the increase

in oo, the increase in o" results in a decrease in the correlation between adjacent

observations from 0.57 io 0.33, the value of the proportion of total process variability

that is due to the variability in ¡r¿ also decreases from 76Yo to 44%.

The increase in ou for the last 40 observations was accomplished by multiplying

ihe last 40 observations of the simulated e¿ values by 710.5 : 2.00. This increase

in the process standard deviation due to an increase in o" is detected on the 64¿h

observation. Though this shift corresponds to only 30% increase in the process

standard deviation, it is more quickly detected than for an increase ino.., where the

process standard deviation was increased by 52%. This is due to the fact that an

increase in o, results in a decrease in the correlation between adjacent observations

while an increase in oo increases this correlation. In fact, some values plotted as

an increase in both mean and standard deviation, this phenomenon is discussed

by Shewhart as the basic reason for always having to run an X chart with either

an ,S or -B chart as the signal of an X chart may be due to change in the process

variability rather than changes in the process mean.



Figure 7.3: The MCAP chart for shift the variability due to shift in o,.

A shift in the mean of the last 40 observations is shown in Figure7.4. This

is accomplished by adding 1 to the lasi 40 observations of the simulated values in

Figure 7.I, f.or shift in the process mean from 0 to 1. We assume the variance of the

process remains at its in control value. This increase in the mean is signalled for

the first time at the 68'ä observation.

ao50æ
Samplo NumbÞr

t34

Figure 7.4: The MCAP chart for shift in the process mean.

4050æ
Samde Numbs
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Next we consider a simultaneous increase in the process mean and standard

deviation. In Figure 7.5, we apply the MCAP chart to investigate an increase in

the mean from 0 to 1 and an increase in øo from 0.59 to 0.97. This is accomplished

by multiplying the last 40 simulated values of c"¿by 7.644 as in Figure 7.2, and

then adding 1 to ihe last 40 observations of the new process observation X¿. This

is for an increase in the mean and oo of the last 40 observations. These shifts are

signalled on the 73'd observation which signals an increase in the mean only and the

76¿à observation which signals an increase in both mean and standard deviation.

Figure 7.5: The MCAP chart for shift the mean and variability due to shifi in oo.

An increase in both mean and o" is shown in Figure 7.6. We consider an

increase in mean from 0 to 1 and an increase in o" from 0.5 to 1. Assume that due

to some special causes, these shifts occur immediately after the 60¿ä observation

and remain in effect for the rest of the process. We simulate these shifts by first

multiplying the last 40 values of e¿ by 2.00 as in Figure 7.3, then we add 1 to the

last 40 observations of the new process value X¿.

50 60

Samplê Number
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The chart signals a shift for the first time on the 63ú¿ observation for an increase

in the mean and on the 64th observation for an increase in the standard deviation.

It signals an increase in both parameters for the first time on the 67¿h observation.

Therefore a combination of shifts in the mean and ou is more quickly detected than

a combination of shifts in the mean and oo. This is due to variance components'

effect on the level of autocorrelation.

Figure 7.6: The MCAP chart for shift the mean and variability due to shift in o".

7.9 Conclusions and Recommendations

Although it is very difficult to draw general conclusions based on a single set of

data corresponding to one set of process parameters, the ARL results given in this

chapter together with charts plotted in Figures 7.L to 7.6, allow some conclusions

to be drawn.

The results reported here have shown that correlation among observations from

a process can have significant effect on the performance of control charts. Computer

50 60
Sample Number
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simulation of individual data from a first order autoregressive plus a random error

model was used to show a pictorial display of the MCAP chart. The monitoring

problem in this model is very complicated as it requires more parameters than for

the case when the observations are independent. We have shown how a change in

any one of the two components of residual variances and the process mean impact

on the overall process performance.

However, in many applications, a change in the process may be because of a

combination of changes of these parameters. Therefore it becomes very difficult to

diagnose the variance component that has caused the process variability to change.

It might be necessary to estimate the residual variance at the point of the shift

to see which component has shifted. In a process in which material is processed

in batches, the process variability can be monitored by monitoring within-batch

variability represented by o, and between batch variability associated with øo. An

example of such processes is a chemical process where yields are recorded in batches

over time. Then ¿16 measures variability between observations in a given batch while

øo measures variability between batches.

The MCAP chart which simultaneously monitors the process mean and stan-

dard deviation performs better than its competitors at low to moderate shifis in

the process parameters and this makes it more appropriate in today's industrial

application as goods are produced in large quantities within a short period of time.

Furthermore, due to improvement in the production technology, low rates of defec-

tive items are observed and the MCAP chart which quickly detects small process

shifts becomes more valuable in such situations. The MCAP chart for residuals

is simple to construct as it uses the standard CUSUM chart parameters because

residuals are independent when the process is in control, therefore, we recommend

this chart for autocorrelated data. The only adjustment required is to modify the
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reference value to take autocorrelation among observations into consideration when

calculating the ARL. Standard time series procedure discussed in Box, Jenkins, and

Reinsel ([7]) can be used to fit the model and calculate the residuals.



Max-Chart for Autocorrelated

8.1 Introduction

In this chapter, we propose a Max-chart for autocorrelated processes. The Max

chart (Chen and Cheng [21]) was proposed under the assumption that a process

being monitored will produce measurements that are independent and identically

distributed over time when only inherent sources of variability are present in the

system. However, the independence assumption is often not reasonable for some

process operations such as mining, as autocorrelation amongst the observations

becomes an inherent characteristic in mineral deposit where ore grades are spatially

Chapter 8

Processes

distributed (Samanta and Bhattacherjee [87]). Autocorrelation can have very serious

effects on the properties of the Shewhart control charts.

As in chapter 7, we assume that the measurements of a quality characteristic

are generated by a first order autoregressive plus a random error model. Under

this assumption, we propose a Shewhart-type single control chart for autocorrelated

process by monitoring the residuals from the fitted time series model. We will

use the design procedure developed for the Max chart by Chen and Cheng ([21])

and assume a change in the process variability is due to changes in variability of

normal random errors associated with the autocorrelated observations X¿'s, and

changes in variability due to changes in variability of the normal random eilors

associated with the autocorrelated means p¿'s. We show that when the process

139
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is in control and the time series model fitted is the true model, the residuals are

independently and identically distributed normal random variables. When there is

a shifi in the process location and spread however, the residuals are autocorrelated

normal random variables.

8.2 The New Control Chart

We propose a nery single Shewhart-type control chart for residuals in this sec-

tion. Again we will a,ssume ihat the control chart is used to detect a shift in the

process mean and/or variability of a sequence of observations generated by an AR(1)

plus a random error term given in model in equations (7.1) and (7.2). Under the

same assumptions as for the Max-CUSUM chart, the formulas for Z¿ and Y¿ in this

chapter are defined as in equations (7.18) and (7.19). (see sections 7.3 and 7.4 for

deiails). To construct a single Shewhart-type control chart, we define a new statistic

M¿ as

When the process is in control, Z¿ and Y¿ follow a standard normal distribu-

tion. If the process has gone out-of-control, i.e, either the process mean andfor

standard deviation have shifted due to the presence of some special causes, Lhe Mis

will be plotted outside the control limits, otherwise the process is in control. Due

to nonnegative values of. M¿, we plot only the upper control limit for this chart,

and consider the process to be out-of-control if an M¿ value is plotted above the

upper control limit. Because we use the maximum of the two statistics, we call this

proposed single chart a Max-chart for Autocorrelated data.

M¿ - maxllZ,l,l\ll (8 1)



8.3 Design of a Max-chart for Autocorrelated Data

To compute the control limits for this chart, we need to find the distribution

of M¿. Because Z¿ andY¿ are independent when the process is in control,

F(r;n¿,a,b) : P(Mn( z) : P(lZ,l < r,lY¿l < r)

: P(lzol 3 r)P(lYl S r)

When the process is in-control, ø: 0 and b: I, the distribution of. M¿ becomes

As shown in the Max-chart (Chen and Cheng [21]), for F(r;n¿,0, 1) : 1 - a to

ho1d, we must have , : (*?rr-,r)''' .The center line and the upper control limits

for the proposed chart are them determined for different probabilities of type I error.

The center line and upper control limits for the Max-chart for autocorrelated data

are shown in Table 8.1.

F(r;n¿,0, 1) : {O(r) - O(-t)}' : PQ? < r')'

Table 8.1: Center line (CL) and upper control limits (UCL) of the Max-chart for
autocorrelated data for various values of type I error probabiliiy a

t41

We assess the performance of the Max-chart for autocorrelated data using the

in-control ARL of 250 with a corresponding 3.09ø upper control limit for different

sample sizes and autocorrelation structures. For various changes in the process mean

alone, in the process standard deviation alone, and in both mean and standard

deviation, we calculated the ARL for various sample sizes in Tables 8.2 to 8.5.

Since there is no direct way to compute the ARL, each ARL value is obtained using

10,000 simulated values. We consider the case, where 80% of process variation is

a 0.5000 I a 0.0054 0.004 0.0027 0.00135
cL 1.05176 I UCL 2.9995 3.0899 3.2049 3.3975

(8 2)
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due to variability in the mean at time t, ¡-t¿ at different levels of autocorrelation.

This scheme becomes more sensitive as the sample size increases as can be seen for

sample sizes of 4 and 6 observations. Comparison of Tables 8.2 and 8.3 shows that,

at low levels of autocorrelation, the chart is more sensitive to both smal1 and large

shifts in boih process mean and standard deviation. It is however, more sensitive

to changes in process variability that is due to changes in o" than it is to changes

due to changes in oo. In Tables 8.4 and 8.5, we investigate the performance of this

chart at high level of autocorrelation. It can be seen that, autocorrelation in the

process has a negative effect on the performance of this control chart. Shifts in both

process means and standard deviations are not quickly detected when compared to

the case of independent observations. This is particularly evident for small shifts in

the process parameters.

A change in the process variance ozy can occur as a result of changes in /,
o! and o2*. tt can be seen in equations Q.Q and (7.5) that an increase in process

variability due to increase in o!, decreases the level of autocorrelations between ad-

jacent observations, while an increase in variability due to increase in øl results in

an increase in the level of autocorrelation. Therefore, when the level of autocorre-

lation is high as in Tables 8.4 and 8.5, an increase in oo results in an increase in

the level of correlation between adjacent values. This makes the chart less effective

in detecting shifts in the process as only a small fraction of the shift in the process

mean is transferred to the residual mean as can be deduced from equation (7.L2).

However even at high level of correlation if both mean and standard deviaiion

shift with shifts in the process standard deviation resulting from shifts in o", the

Max-chart quickly detects these shifts as compared to the case when the process

standard deviation shifis are due to shifts in oo because, as stated earlier, an increase

in o" results in a decrease in the correlation between observations. For example if we
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take a sample of n:4 observations with ó:0.75, a 1o increase in the process mean

with a 1.5o increase in the process standard deviation with variability increasing due

to increase in ø, is detected on average on the 8#' sample while the same shifts will

be expected to be detected on the 23'd sample if the process variability increased

due to increase in ø*.

Table 8.2: ARL's for the Max-chart for autocorrelated data for shifts in ø* with
in-control ARLy :250 with r/ : 0.8 and þ:0.25

n b

1.00

1.25

1.50

2.00
2.50
3.00

4

0.00 0.25 0.50 1.00 1.50 2.00 2.50 3.00

250.05 142.86 78.13 13.77 4.19 1.88 7.26 1.05

39.22 32.05 20.49 8.19 3.4r 1.87 1.26 1.05

10.84 10.07 8.37 4.95 2.89 1.83 t.25 7.04

3.16 3.07 2.89 2.46 1.94 1.59 L.23 L.04

1.85 1.80 1.80 r.69 1.51 1.39 t.23 1.04

t.44 L.44 t.43 1.39 1.33 L.26 1.19 1.01

Ó:0-25
a

1.00

1.25

1.50

2.00

2.50
3.00

6

250.05 111.11 49.26 8.19 2.32 L.32 1.08 1.03

28.74 23.64 15.60 5.22 2.18 1.31 1.05 1.01

7.86 7.32 6.24 3.47 1.99 L.28 1.04 1.01

2.29 2.25 2.t7 7.82 1.50 L.28 1.03 1.01

L.45 1.43 1.40 1.34 L.24 t.rT 1.03 1.01

L.25 1.25 L.24 1.20 1.16 r.l2 1.03 1.01



Table 8.3: ARL's for the Max-chart for autocorrelated data for shifts in o, with
in-control ARLy :250 with tþ : 0.8 and S: 0.25

()

1.00

1.25

1.50

2.00
2.50

3.00

4

0.00 0.25 0.50 1.00 1.50 2.00 2.50 3.00

250.05 140.85 77.52 t3.46 4.L7 1.89 L.25 1.05

29.94 29.07 20.24 7.72 3.35 r.87 L.zt 1.04

9.49 8.89 6.84 4.55 2.73 1.81 r.20 L.04

2.78 2.75 2.63 2.30 1.87 1.56 r.L7 1.03

L.7L 7.70 1.68 1.58 1.48 1.35 1.77 1.03

1.38 1.39 i.38 1.35 r.29 r.23 r.r4 t.02

Ó:0.25
a

1.00

L.25

1.50

2.00
2.50
3.00

6

250.05 111.03 49.00 8.01 2.20 L.29 t.2t r.04
24.10 23.26 L4.66 5.19 2.t6 r.25 1.18 r.04
5.04 4.99 4.44 2.89 1.85 L.23 1.13 1.03

2.00 1.97 1.93 t.70 1..44 t.22 L.L2 1.03

1.33 1.33 1.33 1.28 r.20 r.t4 1.10 1.01

1.23 t.23 1.23 1.20 1.16 1.13 1.09 1.01

Table 8.4: ARL's for the Max-chart for autocorrelated data for shifts in øo with
in-control ARLy :250 with tþ : 0.8 and / :0.75

L44

n b

1.00

1.25

i.50
2.00
2.50
3.00

4

0.00 0.25

250.05 202.03 196.08 112.36

89.29 76.92 66.67 45.54

33.33 28.82 26.77 22.67

7.98 7.94 7.84 7.41

3.7L 3.65 3.63 3.46

2.29 2.29 2.27 2.27

1.00

r.25
1.50

2.00
2.50
3.00

6

Ó:0-75
a

0.50

250.05 188.68

7r.94 69.44

26.74 25.25

5.89 5.83

2.68 2.64
r.77 t.7L

1.00 1.50

L75.44 90.91

59.88 38.46

22.99 17.76

5.75 4.98
2.62 2.59

t.7t 1.68

5L.02 23.75

25.57 15.86

16.00 ß.L2
6.16 5.05

3.29 2.94
2.I4 2.08

2.00 2.50

13.40 7.32

9.96 6.46

7.07 4.9L

4.47 3.39

2.7L 2.43

L.97 1.86

30.30 13.00

19.57 9.61

tr.25 7.03
4.40 3.63

2.36 2.t7
1.65 1.59

3.00

7.06 4.05

5.73 3.56

4.7L 3.2L

2.95 2.3L

1.99 L.79

t.52 1.45
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Table 8.5: ARL's for the Max-chart for autocorrelated data for shifts in o" with
in-control ARLI :250 with T/ : 0.8 and S: 0.75

n b

1.00

t.25
1.50

2.00
2.50
3.00

4

0.00

250.05 204.04

30.49 30.13

8.68 8.71

2.77 2.72

L.70 1.69

1.39 1.39

0.25

1.00

r.25
1.50

2.00
2.50
3.00

6

Ó:0.75
a

0.50

250.05 186.23

25.13 24.39

6.36 6.31

2.02 2.00

1.33 t.32
1.24 L.23

196.00 Lt2.2t
28.65 20.92

8.24 7.66

2.72 2.63

1.68 1.66

1.38 1.38

8.4 Comparison with Other Procedures

1.00

In this section, we compare the Max-chart for autocorrelated data with the

simultaneous residual Shewhart chart proposed by Lu and Reynolds ([S7]). These

Shewhart residual charts were designed to detect simultaneous shifts in the process

mean and variance. Comparisons are based on the out-of-control ARL in Tables 8.6

to 8.9. Lu and Reynolds ([57]) proposed a procedure whereby, two residual Shewhart

control charts, one for monitoring the process mean and another for monitoring the

process variability are run concurrently. The decision rule is that, a signal is given

if either chart signals an out-of-control state. For comparison purposes, the control

limits for these charts were adjusted so that the in-control ARL is fixed at 370.

The Max-chart for autocorrelated processes and simultaneous residual She-

whart chart are more effective in detecting shifts in the process mean and variabil-

ity when the shifts in the process variability are due to shifts in o"2 than they are

for shifts in the process variability due to shifts in o2,. When the proportion of

1.50

175.00 90.03
21.93 16.05

6.15 5.54
1.98 1.96

r.32 1.32

I.23 r.23

51.4 23.63

15.08 10.62

6.68 5.27
2.48 2.33

1.63 1.58

1.36 1.36

2.00 2.50

13.11 7.22

7.L7 4.9r
4.3L 3.46

2.20 2.04
1.56 1.53

r.34 1.31

30.45 12.9t
11.36 6.89

4.39 3.74

t.87 L.77

1.30 r.29
t.2t t.zL

3.00

6.93 3.90
4.68 3.10
2.99 2.49

1.66 1.59

L.25 r.23
r.20 r.t7
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total variation attributed to variability in the autocorrelated means is high, the two

charts are less effective in detecting shifts in the process parameters as compared

to the case when the proportion of process variabiliiy due to variation in the auto-

correlated means is small. The Max-chart is more effective than the simultaneous

Shewhart chart in detecting shifts in the mean alone, standard deviation alone and

simultaneous shifts in both mean and standard deviation at both low and high levels

of autocorrelation.

In addition to detecting the shifts in the process parameters more quickly than

the Shewhart chart, the Max-chart has an added advantage of using a single variable

to monitor both process mean and standard deviation in the same chart while the

simultaneous Shewhart chart requires plotting two variables in the same chart.

Table 8.6: Comparison of the Max-chart ARL against a simultaneous Shewhart
chart ARL with Ó:0.4 and þ: 0.1.

b
1

Changes

2

o!
_2uù

3

Max

oi
o?

370.4

370.4

0

10

ol
o2"

She

3.1
ttù.ù

Mar: Mar-chart for autocorreløted process.

She: Si,multaneous residual Shewhart chart.

377.7

370.0

oi
o2

Max

1.5

1.5

29.r
32.2

I

18.5

18.5

0,

1.3

1.3

She

12.0

13.0

49.6

50.1

2.4

2.5

Max

2.9

3.1

2

1.4

1.5

13.3

14.4

2.0
2.0

She

1.3

1.3

7.6

8.9

1.6

1.6

7.2
L')

Max

.)
r)

2.7

3.0

1.3

1.3

4.5

5.1

f.i
1.1

She

1.3

1.3

3.7
4.3

t.2
1.2

2.2

2.7

2.4
2.5

1.1

7.2

2.7

2.3

7.2

1.3

2.1

2.3

1.9

2.7



Table 8.7: Comparison
chart ARL with Ó:0.4

b

I
Changes

of the Max-chart ARL
and tþ: 0.9.

2

o"^

o2"

.l

Max

o!
o?

370.0
370.0

0

10

o"^

o!

She

2.8

3.9

Mar: Mar-chart for autocorrelated process.

She: Simultaneous resi,d,ual Shewhart cho,rt.

370.3
369.9

o7
t

ud

Max

7.4
1.6

2L.9
30.6

1

against a simultaneous Shewhart

40.r
40.1

a

1.3

1.3

She

9.2
12.4

96.5
96.6

2.5
DDJ.J

Table 8.8: Comparison of the Max-chart ARL against a simultaneous Shewhart

chart ARL with d : 0.8 and tþ: 0.1.

Max

2.6

3.0

2

1.4

1.5

t3.7
18.0

3.8
3.9

t47

She

1.3

1.3

7.2

9.4

1.8

2.1

L7.2

17.2

Max
.)

2.5
2.8

1.3

t.4

5.7
7.2

7.4
7.4

b

She

1

Changes

1.3

1.3

4.t
4.9

1.4
r.4

3.4

3.4

2

o!
_2ua

2.2
2.5

7.2
r.2

2.4
2.8

tù

Max

-¿U^
t

1.3

I.2

2.2

2.6

0

370.0
370.0

10

o!
o2"

1.8

2.L

She

3.1
4.4

Mar: Mar-chart for autocorrelated process.

She: Si,multaneous resi,dual Shewhart chart.

370.2
369.5

o7

o?

Max

1.5
t.7

28.t
44.6

1

23.6
23.6

0,

1.3

1.3

She

11.3
20.r

2.5
ttt).r)

78.5
78.3

Max

2.8

5.2

2

15.1

25.1

1.4

1.6

2.4
2.5

She

1.3

1.3

8.1

t5.2

T,7

1.9

11.6

11.8

Max

2.7
4.9

DJ

1.3

1.4

5.2

8.6

1.1

1.1

She

1.3

1.3

3.9
7.2

1.3

1.3

2.8
2.8

2.3

3.9

L,2

r.2

2.2

2.9

L.2

1.3

2.r
3.0

1.9

2.8
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Table 8.9: Comparison of the Max-chart ARL against a simultaneous Shewhart

chart ARL with d : 0.8 and tþ: 0.9.

b
1

Changes

2

o!
o2"

,
tJ

Max

o:
o?

0

370.0
370.3

10

o"^

o2*

She

2.2
r4.3

369.9
370.4

Mar: Mar-chart for autocorrelated process.

She: Si,multaneous resi,d,ual Shewhart chart.

8.5 Charting Procedures

o!
oZ

Max

1.3

3.1

8.3
40.6

1

L77.6
172.4

0,

1.2

1.3

4.5

16.6

She

2.2
12.6

277.0
207.7

Because the residuals are independent normal random variables when the pro-

cess is in-control, the charting procedure for the Max-chart for autocorrelated pro-

cess is similar to that of the Max-chart for uncorrelated data. Successive M¿'s are

plotted against the sample numbers. If a point plot below the upper control limit,

the process is said to be in statistical control and the plotting symbol or the point

is a dot. An out-of-control signal is given if any point is plotted above the upper

control limit and is plotted as one of the characters defined below. Use the following

procedure to construct the Max-chart for autocorrelated data:

1. Fit the time series model to the data.

2.0
3.5

Max

1.3

3.1

7.r
30.3

2

69.3
70.4

t.2
1.3

She

4.0
t3.7

2.0

9.6

51.1

50.5

Max

1.9

ó..)

3

1.3

2.9

3.9
t2.6

24.6
24.9

She

7.2

1.3

2.7

7.r

2.0

6.4

4.5
4.5

7.7
2.6

1.3
2.6

1.8
3.0

t.2
1.3

1.7
2.7
1.5
2.0

2. Find the center line (CL) and the upper control iimit (UCL) from Table 8.1

for the desired o, and set up a chart with the center line and upper control

limit marked.
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3. If €0 is not known, use the grand average {= of the data to estimate it, where

g: (et+...+ €òl* If. oro is unknown, use Rf d2 or Sf cato estimate it,

where E : (fir +... + A.*)l^ is the average of the sample ranges and ,9 :

(,9t + ... + S*) lm is the average of the sample standard errors. S¿ : 1/ MS E¿,

dz : dz(ñ) and ca : cz(n) are statistically determined constants with n :
(nr+...-fn*)lm.

4. For each sample, compute Z¿ andY¿.

5. Compute the M¿'s and compare them with the UCL.

6. Denote the sample points with a dot and plot them against the sample number

if Mi < ucL.

If any of the M¿'s are greater than the UCL, the following plotting characters

should be used to show the direction as well as the statistic that is plotting

above the UCL.

(i) If only lZ¿l > UCL, and Z¿> 0, plot C+. This shows an increase in the

process mean.

(ii) If only lz¿l > UC L, and Z¿ ( 0, plot C-. This indicates a decrease in

the process mean.

(iii) If only lf¿l > UCL, and\ ) 0, plot S+. This shows an increase in the

process standard deviation.

(iv) If only lf;l > UCL,, and Y¿ ( 0, plot,9-. This shows a decrease in the

process standard deviation.

(v) If lz,l > UC L and lYl > UC L, and both Z¿ andY¿ are greater than zero,

plot B * *. This indicates an increase in both the mean and standard

deviation of the process.

7.
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(vi) If lz,l > UCL and lYl > UCL, and both Z¿ andY¿ are less than zero,

plot B - -. This shows a decrease in both mean and standard deviation

of the process.

(vii) If lz,l > UCL and lYl >

This indicates an increase

deviation of the process.

(viii) If lz,l > UCL and lYnl >

This indicates a decrease

deviation of the process.

8. Investigate the cause(s) of the shift for each out-of-control point in the chart

and carry out the remedial measures needed to bring the process back into an

in-control state.

UCL, wiLh Z¿ > 0 and Y < 0, plot B* -.
in the mean and a decrease in the standard

8.6 An Example

UCL, with Z¿ ( 0 and Y > 0, plot B - *.
in the mean and an increase in the standard

To provide a visual picture of how the Max-chart for autocorrelated data re-

sponds to various kinds of process changes, a set of simulated data is used. Specific

process changes are introduced into the data, and the chart is plotted to monitor

these changes in the parameters. The data set \.vas generated using the first order

autoregressive plus a random error term model given in equations (7.1) and (7.2).

The data are simulated by simulating sequences of a¿'s and 6¿'s, using Matlab.

For a fixed sequence of a¿'s and 6¿'s, a shifi in oa can be simulated by mul-

tiplying a¿ in equation (7.2) by a constant. A change in ø" can be simulated by

multiplying e¿ in equation (7.1) by a constant, and a change in the mean is simulated

by adding a constant to the generated observations. This approach was also used

to simulate the data in chapter 7. This procedure allows different types of process
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changes to be investigated on the same basic sequence of o¿'s and e¿'s. In this ex-

ample, we assume the autoregressive parameter, / remains constant, and thus shifts

in the process standard deviation are attributed to shifts in either oa or o€.

We use the data generated in chapter 7 to show how the Max-chart for auto-

correlated processes responds to different shifts in the process location and spread.

Figure 8.1 shows the Max-chart for autocorrelated data of the 100 simulated ob-

servations. The control limit of the chart was set to achieve an in-control ARL of

approximately 250.

First, we investigate the performance of the Max-chart for shift in the process

standard deviation attributed to shifts in oo. We use the data that were described

in Figure 7.2. The data are displayed in Figure 8.2. The first 60 observations are

the same as those in Figure 8.1 and the last 40 are for the observations after the

shift. The shift in the standard deviation is signalled for the first time at the 64th

observation. Figure 8.3 shows the performance of the Max-chart for an increase

Figure 8.1: The Max-chart for in-control simulated values.
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in the process variability due to an increase in o". This data was used in Figure

7.3 and we use it here to assess the performance of the Max-chart. The Max-chart

detects this shift for the first time on the 62"d observation. From Figure 8.2 and

Figure 8.3, we can conclude that the shift in process variability due to shifts in o"

is easier to detect than the shift in the process variability due to shift in oo. Even

though ou increased the process standard deviation by 30T0, while the increase in

øo resulted inaS2To increase in the process standard deviation, the scheme quickly

signalled a shift in the process standard deviation when o, shifted. F\rrthermore

many points plot out-of-control for this small shift as compared to a large shift in

øo shown in Figure 8.2. This is due to the fact that an increasein o" decreases the

level of autocorrelation, while the effect of an increase in oo is to increase in the

level of autocorrelation.

Figure 8.2: The Max-chart for shift in the process standard deviation due to shift
in oo.



Figure 8.3: The Max-chart for shift in the process standard deviation due to shift
in o,.

The Max-chart's performance for the process mean shift of the last 40 obser-

vations is monitored in Figure 8.4. Assume that due to some special causes, the

process mean increases from its target value of 0 to 3 for the last 40 observations.

This is accomplished by adding 3 to the last 40 observations in Figure 8.1. This

shift is detected on the 63"d observation. Even though the mean increased by a large

value, most of the points plot within the action limit. This is due to the fact, when

the process observations are autocorrelated, only a fraction of shifts in the process

means is transferred to the residual means a,s can be seen from equation (7.12).
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Sometimes special causes may simultaneously cause shifts in both process mean

and standard deviation. The performance of the Max-chart for detecting these shifts

is investigated in Figures 8.5 and 8.6 below. In Figure 8.5, we investigate the chart

for shift in the process mean and standard deviation, where the shift in the standard

deviation is due to shift in oo. The data were used in Figure 7.5. These data are

shown in Figure 8.5. The Max-chart detects the mean shift on the 64th observation,

standard deviation shift on the 65¿å; and a shift in both parameters on the 68¿h

observation.

In Figure 8.6, we investigate the performance of the Max-chart for cases where

the special cause of variation results in an increase in both process mean and stan-

dard deviation. The shift in standard deviation, is due to shift in ø" only. We use

the data used in Figure 7.6. The Max-chart detects the shifts in both parameters

for the first time on the 61'¿ observation.

Figure 8.4: The Max-chart for shift in the process mean.
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Figure 8.5: The Max-chart for shift in the process mean and standard deviation due

to shift in oo.
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Figure 8.6: The Max-chart for shift in the process mean and standard deviation due
to shift in o".
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8.7 Conclusions and Recommendations

We propose a new Shewhart-type control chart for autocorrelated data that is

capable of monitoring both process mean and standard deviation by plotting a single

variable in a chart. This scheme clearly indicates the parameter as well as the direc-

tion of the shift. When the observations are autocorrelated, the monitoring process

is very complicated because, the process has many parameters. We considered a

process that can be modelled as a first order autoregressive process plus a random

error with four parameters: the overall mean, {; two standard deviation parameters,

øo and ør; and the autoregressive parameter, /. An out of control situation may

occur as a result of a shift in any one of these parameters or a combination of them.

Shifts in these parameters have different effects on the level of correlation between

adjacent observations and thus affect the performance of the chart differently.

We have investigated the effects of shifts in the mean alone, shift in variability

due to a shift in either oa or ø" and a combination of shifts in the process mean and

either of the two standard deviation components. These investigations were carried

out at a fixed level of the autoregressive parameter, S. The conclusion that can be

drawn is that this chart is more sensitive when the shift in the process standard

deviation is due to shift in o", than it is io shift in oo. This is due to the fact

that an increase in øo increases the level of autocorrelation while an increase in o"

decreases the level of autocorrelation as well as the proportion of process variation

attributed to variations in the correlated mêâns p¿'s.

The proposed chart uses the residual of the fitted time series model to monitor

the process since when the process is in control the residuals are independent normal

random variables. Thus procedure for the Max-chart for independent observations

proposed by Chen and Cheng ([21]) can be used to calculate the control limits for

our proposed chart. The proposed chart performs better than the simultaneous

156
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residual Shewhart chart proposed by Lu and Reynolds (t57]). In addition to the

advantage of quickly detecting shifts in the parameters, unlike the combined residual

Shewhart chart, the Max-chart for autocorrelated data uses a single variable to

monitor the process. We recommend this chart for use in quality monitoring for

autocorrelated processes a,s the effect of process autocorrelation in control charts is

greatly reduced by fitting a time series model and monitoring the residuals. However,

if autocorrelation is due to some special causes that can be found and eliminated,

we recommend that after these special causes are removed, traditional Max chart

should be used for process monitoring. The traditional Max chart uses the process

observations and thus is more effective than our chart which uses residuals.



Control Charts for High Yield

9.1 Introduction

In this chapter, we investigate the application of control charts for monitoring

processes that produce very small number of nonconforming items. Advancement

in production technology particularly in the electronics industry and manufacturing

automation has resulted in most of the processes experiencing low levels of noncon-

forming items. Modern quality assurance philosophy emphasizes the importance of

building quality into the product. The fraction of nonconforming items for most

processes is measured in the order of parts-per-million (pp-). These processes are

referred lo as high yi,eld processes. To monitor a process with this very low fraction

of nonconforming items, control chart procedures usually require taking very large

samples or inspecting all items produced by the process.

Several procedures for monitoring high yield processes have been proposed in

the past. Nelson ([7a]) suggested using 3ø control charts based on a power transfor-

mation of the X (where X is the number of items sampled until a nonconforming

item is found) chosen so that the transformed variable l'is approximately normal.

Several authors including Quesenberry ([83]), McCool and Joyner-Motley ([69]) and

Johnson and Kotz ([a9]) proposed other methods based on transforming the data to

normal distribution. Chang and Gan ([16]) proposed CUSUM charts for monitor-

ing a high yield process based on nontransformed geometric and bernoulli counts.
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Calvin ([12]) suggested using a control chart that plots the number of good items

between defects. Hahn ([36]) proposed a method which estimate the percentage of

nonconforming products in accepted lots using a zero defect acceptance sampling

plan. Chen ([20]) proposed a procedure that involves adjusting the control limits

for the p chart to monitor the process with very small number of nonconforming

items.

Process monitoring in the case of attributes data usually uses charts for the

binomial parameter p. Nelson ([75]) discussed the use of standardized p chart. This

standardized p chart involves a linear transformation of the binomial distribution

to the normal distribution. This transformation relies on the well known normal

approximation to the binomial. Quesenberry ([83]) proposed a nonlinear transfor-

mation of the binomial distribution to normal which performs better than the linear

transformation of Nelson ([75]) for cases where p is small.

In this chapter, we show that at high levels of fraction of nonconforming items,

there is no significant difference between control charts based on the Poisson and

normal approximation to the binornial distribution, however at very low levels of

fraction nonconforming, the Poisson approximation to the binomial performs better

than the normal approximations discussed by Quesenberry ([83]). This is due to

the fact that when p is very small and n not very large, the binomial distribution is

highly asymmetric. Improved technology in the manufacturing industry has resulted

in high yields and as a result most of the control charts used in quality control are for

small values of p and thus a good approximation of the distribution results in high

performance of these control charts. The Poisson approximation to the binomial

distribution has proven to perform well as will be shown later.



9.2 Control Charts for a Binomial Process

The Shewhart chart used for monitoring the number of nonconforming items

in a sample is the np chart with control limits given as follows: we need to find the

lower control limit (LCL), the center line (CL) and an upper control limii (UCL).

Suppose an in control process has a target value of p - p¡. The 3-sigma limits for

the chart for the number of nonconforming items in a sample of size n are given as

If p is unknown, the control chart for the number of nonconforming items is con-

structed by first estimating p with þ : ry, where z¿ is the number of noncon-

forming items in the i¿h sample of size n and nz is the number of samples taken.

The np chart is constructed with control limits given as

LCL : ,p-lJnpQ-fl,
CL : nþ,

UCL : "p+JJ"pí-p).

LCL

CL

UCL

npo - 3\/npoQ, -'pr),

TLPo',

npo t 3Jnefi: eõ.
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The number of nonconforming items will be ploiied on an np chart with these

control limits.

9.3 Binomial Approximations for p Known

When p is very smal1 and n very large, it is often difficult to compute the prob-

abilities based on the binomial distribution. To overcome this difficulty, we usually

use some transformation techniques to transform the binomial distribution to other

distributions whose probabilities can easily be computed. In particular, we usually
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transform the binomial random variables to either Poisson or normal random vari-

ables. However, when p is very small and n not very large, the binomial distribution

is very asymmetric and using the normal approximation to binomial is not a good

approach. We show here that the Poisson approximation to binomial in case of very

low values of p is the best option. We present the nonlinear transformation of the

binomial random variables to Poisson random variables and nonlinear transforma-

tion of the binomial random variables to normal random variables. Lel r¿ denote

the'ith observation on a binomial random variable with parameters z¿ and p. The

binomial distribution function is denoted by

The Quesenberry procedure transforms this binomial distribution function

q¿ statistics as follows:

u¿: B(r¿;n,p)

where Q-l is the inverse of the standard normal cumulative distribution function.

The Shewhart chart for Quesenberry's statistics is developed by plotting the q¿

values on a Q chart with control limits at

q¿ : Q-r (u¿)

'i :7,2,...

Next we transform these binomial random variables to Poisson random variables

as follows:

'i : I,2,...,

c¿: F-r(u¿) 'i : I,2,...,

where F-r is the inverse of the Poisson cumulative distribution function.

LCL

CL

UCL

(e 1)

-3,

0,

3.

(e 2)

(e 3)



For a Poisson distribution, the

the c¿ values are plotted on a c chart

control limits at
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mean and variance are the same. Therefore,

(a chart for number of nonconformities) with

We give some tables as well as graphs to compare the binomial approximations

by the Poisson and normal distributions below. The normal approximation is based

on the nonlinear transformation procedure proposed by Quesenberry ([S3]). To

study the accuracy of these approximations we considered several values of n and

p. In Tables 9.1 through 9.4 we give a few of these results. The tables show

the probability functions of the binomial, Poisson and normal approximations, the

difference between the binomial and the Poisson approximation and the difference

between the binomial and the normal approximation. We can see that the difference

between the binomial probabiliiies and the Poisson probabilities is very small. We

give tables for p - 0.001, 0.0003, 0.0007 and 0.00003 with r¿ : 1,000, 5,000, 10,000

and 20,000. The probability functions for these distributions are also displayed in

Figures 9.1 to 9.4.

FYom Figures 9.1 through 9.4 we can see that when the fraction of nonconform-

ing items is very low the Poisson approximation nicely fits the binomial while the

normal approximation is not a good fit. Because the difference between the bino-

mial and Poisson probabilities is negligible, the curve for the binomial distribution

is indistinguishable from that of the Poisson distribution.

LCL

CL

UCL

nPo - 3\M,
rùPo,

npo * 3\M.



Table 9.1: The probability functions for the three distributions with n: 1,000, p
: 0.001

x
0

1

2

ö

4

5

6

Binomial (A)
0.36770
0.36806

0.18403
0.06128
0.01529
0.00305
0.00051

Poisson

0.36788
0.36788

0.18394
0.06131
0.01533
0.00307
0.00051

(B) Normal (C)
0.24197
0.39914
0.24t97
0.05391
0.00441
0.00013

1.469E-06

IA_BI
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0.00018
0.00018

9.2028-05
3.0738-05
3.835805
1.685E-05
4.8448-06

A_CI
0.L2572
0.03108

0.05794
0.00737
0.01088
0.00292
0.00050

Figure 9.1: The probability functions for the three distributions with n:1,000, p
: 0.001



Table 9.2: The probability functions for the three distributions with n : 5,000, p
: 0.0003

x
U

1

2

Ò

4

5

6

Binomial (A)
0.22308

0.33472
0.25t07
0.t2552
0.04706
0.0r4r2
0.00352

Poisson (B)
0.223t3
0.33470
0.25L02
0.12551
0.04707

0.01412
0.00353

Normal (C)
0.15385
0.29973
0.29973
0.15385
0.04054
0.00548
0.00038
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I A_ BI
5.021E-05
2.510E-05
4.39E-05

9.4t2E-06
1.060E-05
1.024E-05

5.0308-06

IA_C
0.06923
0.03499
0.04866
0.02833
0.00652

0.00863
0.00314

Figure 9.2:
: 0.0003

The probability

f
X

functions for the three distributions with n : 5,000, p



Table 9.3: The probability functions for the three distributions with n : 10,000, p
: 0.0007

X

0

1

2

.l

4

5

6

Binomial (A)
0.00090

0.00637
0.02232
0.05210
0.09120
0.t2772
0.14904

Poisson (B)
0.00091
0.00638
0.02234
0.05213
0.09r23
0.t2772
0.14901

Normal (C)
0.00454
0.01151
0.02526

0.04806
0.07927
0.11333
0.14043
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A_ BI
2.2328-07
0.00001
0.00003
0.00003
0.00002

6.377F-06
0.00004

IA_CI
0.00363
0.00513
0.00294
0.00403
0.01193

0.01439
0.00861

8 o.oe

0.06

0

Figure 9.3: The probability functions for the three distributions with n : 10,000, p
: 0.0007



Table 9.4: The probability functions for the three distributions with n : 20,000, p
: 0.00005

X

0

1

2

3

4

5

6

Binomial (A)
0.36787
0.36789
0.18394
0.06131
0.01533
0.00306
0.00051

Poisson (B)
0.36788

0.36788
0.18394

0.06131

0.01533
0.00306
0.00051

Normal (C)
0.24t97
0.39895
0.24197
0.05399
0.00443
0.00013

1.486E-06
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I A_ BI
9.1978-06
9.197806
4.599E-06
1.533806
1.916E-06

8.430E-07
2.427E-07

IA_CI
0.12590
0.03106
0.05803
0.00732
0.01089

0.00293
0.00051

Figure 9.4: The probability functions for the three distributions with n : 20,000, p
: 0.00005



9.4 Binomial Approximations for p Unknown

In this section, we consider transforming the observations from the binomial

distribution to the Poisson and normal distributions for the case where p is unknown.

Let r¡ denote the number of nonconforming products in a sample of size n¿ for

'i : L,2, .... For the case when p is not known, Chen ([20]) showed that ihe Ç chart

by Quesenberry ([83]) can be constructed using the hypergeometric distribution

function as follows:

Let Ä4 :Ðl¡:rn¡ and, tn:Ði:rz¡, where r¿ is an observation of a binomial

random variable with parameters n¿ and p. Then we define

where h¿: marl\,t¿ - ¡/i-r]. This transformation uses the hypergeometric distri-

bution function which is the uniform minimum variance unbiased estimating distri-

bution function of ihe binomial distribution function used in equation (9.1). The

Q chart is constructed by plotting the q2,q3,... values against the sample number

on achart withLCL --3, CL:0 andUCL:3. Thechart isconstructedby

plotting Nhe q¿ values from the second sample onward because u¿ is derived using

l[-1 values.

The chart using the Poisson approximation with p unknown is constructed by

transforming the u, values in equation (9.a) as follows:

Ði,!=n, (;:)ß;i)u¿: --(t+y;,
Q¿ : a-t(r,).

767

'i :2,3,...

The c¿ values in equation (9.6) are plotted on a c chart with control limits given

ñ-1 / \c¿ : r -\u¿)

(e.4)

(e.5)

'i :2,3,... (e.6)



as

where Ê : W is the estimate of the proportion of nonconforming products.

9.5 Comparison of Charts

In this section, we compare the attributes charts using lhe np chart, the c chart

and the Q chart. We show that for small values of p, the binomial distribution is

highly asymmetric and thus using a symmetric control chart to monitor the fraction

nonconforming such as the Q chart is subject to more false alarms in detecting

changes in p. We compared these charts for several values of n and p. We only

present the results for the following values of p: 0.001, 0.0001 and 0.00001 with

various sample sizes. We present in Table 9.5 the false alarm probabilities P(X¿ <

LCL) and P(X, > UCL) for these schemes, where X¿ is used to represent the

plotting statistic associated with each of the three charts. We see from Table 9.5

that fbr small values of p, the c chart gives false alarm probabilities that are closer

to those of the exact np chart than the Q chart. In particular, a chart based on

Quesenberry's transformation gives high false alarm rates when p is very small. The

Q chart has the same false alarm rate as Lhe np chart for very large samples.

Under the normal distribution, the false alarm probabilities for each of the limits

(UCL or LCL) are expected to be around 0.00135. Therefore a good approximation

should give false alarm probabilities close to that value, however the Q chart gives

values that are not close. Therefore it shows that, for small values of p a chart using

normal approximation to the binomial will give misleading conclusions.

LCL

CL

UCL

r-np - ôv np,

nþ,

np + 3Jnþ,

168
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We give the in control ARL for lhe np chart, Q chart and the c chart in Table

9.6. It can be seen from this table that the Q chart gives in control ARL's that are

different from those of the np chaú while the c chart gives in control ARL's that are

similar to those of the np chart most of the time. The Q chart performs very poorly

when p is very small as its in control ARL's are very small for small sample sizes.

Its use will result in more resources being wasted looking for assignable causes of

variation when in fact the process is in control.

Table 9.5: The false alarm probabiliiies

p

0.001

10,000

12,500

17,500

25,000

n

0.0001

Q chart np chart Poisson
0.00050 0.00050 0.00050
0.00034 0.00155 0.00155

0.00047 0.00146 0.00146
0.00058 0.00141 0.00141

17,500

20,000

30,000

40,000

LCL

0.00001

0.00000 0.00000 0.00000

0.00000 0.00000 0.00000
0.00000 0.00000 0.00000

0.00000 0.00000 0.00000
20,000
30,000
40,000

0.00000 0.00000 0.00000
0.00000 0.00000 0.00000
0.00000 0.00000 0.00000

Q chart np chart Poisson

0.00158 0.00158 0.00159
0.00245 0.00119 0.00119
0.0022L 0.00117 0.00118

0.00202 0.00117 0.00117

UCL

0.00913 0.00220 0.00220

0.00453 0.00110 0.00110
0.00380 0.00110 0.00110
0.00284 0.00091 0.00092

0.0t752 0.00115 0.00115
0.0360 0.00027 0.00027
0.00793 0.00078 0.00078



Table 9.6: A comparison of in control ARL's for three procedures

p

0.001

10,000

12,500

17,500
25,000

n

9.6 Example 1

Q chart

0.0001

To provide a visual picture of the np chart, Q chart and the c chart when p is

known, we simulate the data for 100 samples from a b(X;10,000,0.0001) distribution

(where b(X;n,p) is the probability distribution of a binomial random variable X

with parameters n and p) and then 30 more samples from a b(r;I0,000,0.00015).

The Quesenberry random variables and the Poisson random variables are computed

by transforming these binomial random variables using equations (9.2) and (9.3)

respectively. In Table9.7, we show the first ten values of the simulated data from

a binomial random variable (u¿) wlth n: L0,000 and ? : 0.0001 together with the

correspondirg qo and c¿ statistics. The q¿ and c¿ values are computed by substituting

the u¿ values into equations (9.2) and (9.3) respectively.

Table 9.7: Some data values for Examples 1

481

358

373
385

17,500

20,000

30,000
40,000

ARLo
np chart

0.00001

481

365

380

388

110

22t
263

352
20,000
30,000
40,000

Poisson

479

365

379
388

455

909

909

1,099

170

57

278

57L

455

909

909

1,087

870

3,704
5,882

870

3,704
5,882

ez

qi
2

q
1.40

.)

2

1.40

3

I
0.63

2

2

1.40

3

I
0.63

2

0
-0.34

0

0

-0.34

0

I
0.63

2

0

-0.34

0

1

0.63

2
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A chart based on the binomial count is shown in Figure 9.5, a chart based on

the Poisson approximation is shown in Figure 9.6 and a chart based on Quesen-

berry's normal approximation is shown in Figure 9.7. By examining these figures,

we conclude that the np chart and the c chart give almost identical results while the

Q chart performs differently from these other charts. The np chart and the c chart

plot two values above their upper control limits after the shift while Q chart shows

only one value out-of-control.

9.7 Example 2

To provide a visual picture of the np charL, the Q chart and the c chart when

p is unknown, we use the data used in example 1. Flom the data we estimated pby

þ : W: 0.00009 using the first 100 samples that were taken when the process

was in control and used this value to compute the new control limits for the np

and c charts. The Quesenberry random variables and the Poisson random variables

Figure 9.5: The np chart.

60 80
Sample Number



172

Figure 9.6: The c chart.

60 80
Sample Number

are computed by transforming the data into hypergeometric random variables using

equations (9.4) and then using equations (9.5) and (0.0) to obtain the q¿'s and c¿'s

respectively. We show the first ten values of the simulated data in Table 9.8 below.

Figure 9.7: The Q chart.

60
Sample Number
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Table 9.8: Some data values for Examples 2

qi

2

The np chart, c chart and Q chart are displayed in Figures 9.8, 9.9 and 9.10

respectively. Comparing these charts to the corresponding charts for known value

of p, we can conclude that the point patterns for these charts are very similar. This

is because we have used the best (UMVU) estimator of the binomial probability

density function, namely the hypergeometric distribution.

ci

2

0.49

1

1

-0.10
1

2

0.69

1

1

0.01

1

0

-0.73

0

0

-0.55
0

1

0.49
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1

0

-0.40
0

I
0.63

1

Figure 9.8: The np chart.

60
Sample Number
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4.5

4
UCL

J.3

'o 2.5

2

I

0.5

0

L74

Figure 9.9: The c chart.

bU öU

Sample Number



Figure 9.10: The Q chart.

9.8 Conclusion and Recommendations

We have shown that when the number of nonconforming items is measured

in the order of parts-per-million, control charts based on Poisson approximation to

binomial perform better than those based on the normal approximation to binomial.

The in control ARL's for the Poisson chart are closer to those of the binomial rzp

chart. Due to the asymmetric nature of the binomial distribution for low fraction

nonconforming, the chart based on normal approximation to binomial gives high

false alarm rates. Since the c chart is simple to construct and easier to interpret

than the np chart and the Q chart, we recommend that for small values of p,

practitioners should use the c chart.

175
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10.1 Summary

In any production process, there are always some forms of variability in prod-

ucts. If the process produces items that are independent and identically distributed

over time, we expect the mean of the process output to be constant over time even

though individual observations are not exactly identical. However when the obser-

vations are autocorrelated, the mean will vary with time even when the process is

in-control. The usual process monitoring procedure for variables data requires run-

ning two control charts concurrently, one chart for monitoring the process location

and another one for monitoring the process spread.

The major objective of this thesis is to develop single control charts that can

simultaneously monitor both process location and spread. Under the normality

assumption, we propose six new single control charts for univariate and multivariate

processes with variables data. Four of the charts are developed under the assumption

that individual observations are independent over time while the other two are

developed for the case where the observations are serially correlated. When an

out-of-control signal is issued, plotting characters are used to indicate the source as

well as the direction of the detected shift. We further proposed the use of Poisson

based control chart for the case when the process produces very low number of

nonconforming units. These processes are referred to as high yield processes. We

show that charts based on the normal approximation are not effective due io the

Chapter 10

Conclusrons

176
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asymmetric nature of the binomial distribuiion when the sample size is not very

large and the proportion of nonconforming products is very small.

The single charts proposed in chapters 3 to 8 are compared with the recently

developed single charts by adjusiing their control limits so that both charts have the

same in control ARL. Comparison of the new single CUSUM charts with the single

EWMA charts shows that the single CUSUM charts performs better than the single

EWMA charts for very small shifts in the mean and/or standard deviation while the

EWMA charts performs better than our CUSUM charts for moderate to large shifts.

These charts are compared in Chapters 3 to 5. In Chapter 6 we proposed a single

Shewhart-type multivariate chart. This chart more quickly detects large shifts in the

process mean vector and/or covariance matrix than the single multivariate CUSUM

and EWMA charts. Our proposed multivariate charts are developed by transforming

the multivariate observations into univariate observations so that simple univariate

charts procedure could be used to monitor these multivariate observations.

In Chapters 7 and 8, we develop new single CUSUM and Shewhart-type charts

for autocorrelated processes. These charts are developed by fitting a time series

model to the data and then monitoring the estimated residuals. These charts are

deveioped by taking the process autocorrelation into consideration when computing

their control limits. This procedure significantly reduces the effect of autocorrelation

in control charts. These charts are compared with the simultaneous charts developed

by Lu and Reynolds ([S7]). Our new charts performs better than their competitors

for both smal1 and large shifts in the process mean and/or standard deviation. In

addition to this advantage of quickly detecting shifts, our ne\ry charts use a single

variable to asses both mean and standard deviation.
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LO.z F\rture Research

There are some extensions of the work done in this thesis that can be investi-

gated. These include the following:

1. Developing single multivariate charts for autocorrelated processes.

Developing single CUSUM charts for processes following other distributions.

Developing single EWMA charts for autocorrelated processes.

2.

tù.
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Computer Programs for the New Charts

4.1 Markov Chain Approach

Appendix A

The CUSUM statistic has the Markov chain property because when given the

nth valir'e of the CUSUM statistic, the previous values have no effect on the (n+L)th

value of the CUSUM statistic. The ARL's of the CUSUM procedures presented in

this thesis are approximated by using a discrete Markov chain proposed by Brook

and Evans ([11]) for processes that produce independent observations over time. For

autocorrelated processes we use the Markov chain approach of Runger, \Millemain

and Prabhu ([S0]). The possible values of the CUSUM statistic M¿ arê represented

by f * 1 states. One state is an absorbing state representin E M¿ ) ft,. The remaining

ú transient states are numbered 0, L,2, ..., (t-1) and represent values of M¿ between 0

and fr.. We used a transition matrix of size 100 in our computation but due to space

limitation, we provide programs for transition matrix of size 5 below, we assume the

mean shift by ø and the standard deviation shifts by å. We use matlab Version 6.1

and JMP IN 4 to compute the ARL for the charts proposed in this thesis.

4.1.1 Matlab Program for Computing ARL for CUSUM Charts for
Independent Observations

This program computes the ARL of the Max-CUSUM chart with in-control

ARL : 250.
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h : 3.813;

t:5;
a:0;
d:1;
b:1;
m: a*d;

s : b*d;

k: a*dl2;

w : 2*hl(z*t-l);

f0 : norm cdf(w I z+k,m,s) i

fl : normcdf(-w+w/2-l-k,m,s) ;

f2 : normcdf(-2*w*w f 2+k,m,s) ;

f3 : normcdf(-3*w*w/2+k,m,s) ;

f4 : normcdf(-4*w*w/2+k,m,s) ;

p0 : norm cdf(w I 2+k m,s)-norm cdf(-w I 2 +k,m,s) ;

p1 : normcdf(w*w/2fk,m,s)-normcdf(w-w/2+k,m,s) ;

p2 : normcdf(2*w*w f 2+k,m,s)-normcdf(2*w-wf 2+k,m,s)i

p3 : normcdf(3 *w*w/2+k,m,s)-normcdf (3 * w-w f 2 +k,m,s) i

p4 : normcdf(4*w*w/2+k,m,s)-normcdf(4*w-w f 2+k,m,s) i

pm1 : normcdf(-w +w f 2+k,m,s)-normcdf(-w-w l2+k,m,s);

pm2 - normcdf (-2 * w +w f 2 +k, m,s) -normcdf f 2 *w -w f 2 +k,m,s) ;

pm3 : normcdf(-3 * w +w f Z*k,m,s)-normcdf(-3 *w-w/2+k,m,s) 
;
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A : eye(5, 5);

B: [1;1;1;1;1];

*:[1 0000];

ARL : x*inv(A-P)*B

A.1.2 JMPIN Simulation Program for Computing the ARL for the SS-
CUSUM chart

The following program computes the ARL for the SS-CUSUM chart. For a

given in-control ARL of 250, each ARL value is obtained using 10,000 simulations

of sample size 4.

h : 3.841

k:0.5
a:0
L_1U-I

C:0
mu : a*l

^_1ù-I

S:b*l
Add 10,000 rows

rrn- [t Rand,omSeed,(I254237)
II tf.ow : <

lelse RandomNormal)S I mu
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Do this for columns L) 2,3 and 4

xbar : Mean( 1,2,3,4)

std : Std Dev(1 ,2,3,4)
/ t I rÙar-clZi : ! 4---;-

U ¿ : N or m al Q u anti,l e (C hi, S qu ar e D i, s tr ib utl on (ry{, n))

cl : Mari,mum(O, z¿ - lc + Lag(cf ,1))



c¿ : Mari,mum(O, Lag(cu ,r) - z¿ - k)

sl : M øri,mum(0,a¿ - k + Lag(s{,t))

s¡ : Mari,mum(0, Lag(si, 1) - a¿ - k)

TtL¿: Marimum(rl,rn)
./L

ai : lvlarzmumls¡' , s¿ )

SS¿: rTùiz + A? (,
If ss¿ > h';, : lr

lelse 0

rl : Col Sum(r)

ARL : toiïoo

4.1.3 Matlab Program for Computing the ARL for Max-MCUSUM
Chart

This program computes the ARL of our single multivariate CUSUM chart where

the quality of a product is determined by 5 correlated quality characteristics. The

mean vector is assumed to change from good value (Mg) to bad value (Mb). The

in-control ARL : 250.

h:2.037;

L-ù:

L _ 1,u - f r

d - ut
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l- r 0.1 0.1 0.1 o.1l
lo.r 1 0.1 0.1 o.1l
lo.r 0.1 1 0.1 orl;
lo.r 0.1 0.1 1 o.1l

Lo.t 0.1 0.1 0.1 1l

S-

Mg : [0; 0; 0; 0; 0];

tr : [1;1;1;1;1];



Mb : a*A;

m : ((Mb-Mg)'*inv(b*S)* (Mb-Ms))o t;

k: ml2;

S:b;

w : 2*hf (2*t-7);

f0 : normcdf(w/2+k,m,s);

fl : normcdf(-w*w/2*k,m,s);

f2 : normcdf(-2*wfw/2+k,m,s) ;

f3 : normcdf(-3*w-l-w/2+k,m,s) ;

f4 : normcdf(-4*w-l-w/2+k,m,s) ;

p 0 : norm cdf (w I 2 +k,m,s) -norm cdf (-w I 2 +k, m,s) ;

p 1 : norm cdf (w +w I 2*k,m,s) -normcdf (w-w f 2 +k,m,s) ;

p2 : normcdf(2*w*w f 2+k,m,s)-normcdf(2*w-w f 2+k,m,s)i

p3 : normcdf(3*w+w f 2+k,m,s)-normcdf(3*w-wf 2+k,m,s)i

p4 : normcdf(4*w*w/2+k,m,s)-normcdf(4*w-w f Z+k,m,s) i

pml : normcdff w +w f 2+k,m,s)-normcdf(-w-w l2+k,m,s);

pm2 : normcdf(-2*w+w f 2+k,m,s)-normcdf(-2*w-w f 2+k,m,s);

pm3 : normcdf(-3 * w +w f 2+k,m,s)-normcdf(-3 *w-w/2+k,m,s) 
;
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A : eye(5, 5)i

B : [1;1;1;1;1];

*: [1 0 0 0 0];

ARL : x*inv(A-P)*B
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A.L.4 Matlab Program for Computing the ARL for Max-CUSUM Chart
for Autocorrelated Observations

This program computes the ARL for a single Max-CUSUM chart for autocor-

related processes when the autocorrelation among observations is equal to 0.4 and

90% of process variation is due to variations in the autocorrelated means. The

in-control ARL : 250.

h : 3.813;

L-úl

ô _ 1,v 
- 

r)

L-1.u-r r

sx : b2*e;

a:0;
c:0.4;
psi : 0.9;

s2 : l-psi;

s4: (e-s2)*(t-.');

s1 : sx-s410-c');

s3: (sx-s2)*(1-c2);

¿ : ( (s4+ ( 1 +c2) *s2) 
) I Q* c* s2)-0. 5* ( ( ( (sa+ ( 1 +c2) *s 2) I þ* s2))2-a) o's¡'

¡ : (1-c)/(t-d)lz;

þ¿ : (a*e) 12;

ma : ((t-c)/(t-d))*u*.;

m: a*e;

5 : (e+ ( ( c2 -2* c* d+1 ) / ( l-c'?) ) 
* (s1-s2) + (s3-s4) / ( 1-c2) )0'5 ;

s : b*e;

w : Z*hl(2xr-7);

f0 : norm cdf(w I 2+k,m,s) i



f1 : normcdffw+w/2ak,m,s);

f2 : normcdf(-2*wtw/2+k,m,s) ;

f3 : normcdf(-3*w*w/2+k,m,s) ;

f4 : normcdf(-4*w*w/2+k,m,s) ;

p0 : normcdf(w/2+k,m,s)-norm cdf(-w I 2+k,m,s);

p1 : normcdf(w*w/2*k,m,s)-normcdf(w-w/2+k,m,s) ;

p2 : normcdf(2*w*w f 2+k,m,s)-normcdf(2xw-w/2+k,m,s)i

p3 : normcdf(3*w*w/2+k,m,s)-normcdf(3*w-w f 2+k,m,s) i

p4 : normcdf (4*w*w f 2+k,m,s)-normcdf (4 * w -w f 2 ¡k, m,s) i

pml : normcdf(-w +w f 2+k,m,s)-normcdf(-w-w lz+k,m,s);

pm2 - normcdf (-2 * w +w f 2+k,m,s)-normcdf(-2 *w-w/2 +k,m,s) ;

pm3 - normcdf(-3*w+w f 2+k,m,s)-normcdf(-3*w-w f 2+k,rn,s);

[/0
lrr
l¡z

lr
D-
l-

pL p2 p3
p0 pI p2

prnl p0 pI
prnz prnl p0
prnS prnz pm7
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F0 : normcdf(w/2+ka,ma,S) ;

F1 : normcdf(-w *w f 2+ka,ma,S) ;

F2 : normcdf(-2*w+w f 2+ka,ma,S) ;

F3 : normcdf(-3*w+w f 2*ka,ma,S) ;

F4 : normcdf(-4*w+w f 2¡ka,ma,S) ;

P 0 : normcdf (w f 2 +ka,ma S ) -normcd f (-w I 2 +ka,ma, S ) ;

P 1 : normcdf(w +w f 2 +ka,ma,S)-norm cdf (w-w I 2*ka,ma,S) ;

P 2 : normcdf(2 + w +w f 2+ka,ma,S)-normcdf(2 * w-w f 2 +ka,ma,S) ;

P3 : normcdf(3 * w +w f 2¡ka,ma,S)-normcdf(3* w-w f 2+ka,ma,S) ;

P 4 : normcdf (4 x w +w f 2 +ka,ma, S )-normcdf (4* w-w f 2 +ka ma, S ) ;

p41

ñl
p2l;

;ål



Pm1 : normcdf(-w tw f 2¡ka,ma,S)-norm cdf(-w-w lz*ka,ma,S);

Pm2 : normcdf(-2*w+w f 2+ka,ma,S)-normcdf(-2xw-w f 2+ka,ma,S);

Pm3 : normcdf(-3*w+w f 2+ka,ma,S)-normcdf(-3*w-w f 2+ka,ma,S) ;

Pa:

FO

FL
F2
J¡3
F4

PI P2 P3
PO PL P2

PmL P0 PI
Pm2 PmI P0
Pm3 PmZ PmL

A : eye(5, 5);

þ : [1;1;1;1;1];

*: [1 0 0 0 0];

ARL : 1*x*P*inv(A-Pa)*B

P4
P3
P2
PL
PO

A.2 AR,L for Shewhart-type maximum Charts

The following programs computes the ARL's for the Shewhart-type maximum

control charts developed in this thesis.

A.2.L Matlab Program for Computing the ARL for Max-Mchart

This program computes the ARL for Max-Mchart for bivariate normal pro-

cesses. Changes in the mean vector and covariance matrix are ø and b respectively.

For a given in-control ARL of 250, each ARL vaiue is obtained using the distribution

of. M¿.

*:[1 06.1.

Lo.6 11',

trrt : [1 t] ;

n: 4;
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b:1;
a:0;
m : axM;

ucl : 3.023;

I : n*(m*inv(b*s)*m');

c : ncx2cdf (chi2inv (normcdf (ucl),2) I b2,2,1)

-ncx2cdf(chi2inv (normcdf(-ucl),2) I b2,2,1) ;

d : chi2cdf((chi2inv(normcdf(ucl),2*n-4)) fb2,2*n-4)

-chi2cdf( (chi2inv (normcdf (-ucl), 2 
* n- 4)) I b2,2*n-*)'

e : c*d;

ARL : ti (t-e)

A.2.2 JMPIN Simulation Program for Computing the ARL for Max-
chart for Autocorrelated Data

The following program computes the ARL for the Max-chart for autocorre-

lated processes. For a given in-control ARL of 250, each ARL value is obtained

using 10,000 simulations of sample size 4. This program is for the case when auto-

correlation among observations is equal to 0.4 and 90% of process variation is due

to variations in the autocorrelated means.

UCL : 3.2049

^_'lv- r

b:1

sx : b2*e

A:0
c: 0.4

psi : 0.9

s2 : l-psi
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s4: (e-s2)*(1-.')

s1 : sx-s410-"')

s3: (sx-s2)*(L-c2)

¿ : ( (s4* ( 1 +c2) *s2) 
) I Q* c* s2)-0. 5* ( ( ( (sa+ ( 1 +c2) *s 2) I þ* s2))2-a) o's¡

mu : ((t-c)/(t-d))*u*.

5 : (e+ ( (c2-2*c*d+ 1 ) / (1-c'?) ) 
* (s1-s2) + (s3-sa) / (1-c2) ) 

0'5

Add 10,000 rows

It Rand,omseed(1254237)If R.ow : {
lelse RandomNormal)S I mu

Do this for columns !,2,3 and 4

xbar : Mean( L,2,3,4)

std : Std Dev(l ,2,3,4)

Zu: ,/a@s/@

Y : N or m al Q u anti,l e (C hi, S qu ør e D i, s tr i,but I on (u{, n))

m : Maximum(l ,l,l al)

IfmlUCL;r:It
Ielse 0

rl : Col Sum(r)

ARL: -lo;oT
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A.2.3 Matlab Program for Computing the In-control ARL's for At-
tributes Charts

This program computes the in-control ARL by first computing the false alarm

rates and then computing the in-control ARL as the reciprocal of the false alarm

rates.

n

p

: 40000;

:0.00001;



x : n*p-3*sqrt(nxp*(t-p));

xb : n*p*3*sqrt(n*p* (1-p)) ;

xp : n*p-3*sqrt("*p);

xup : n*p*3*sqrt("*p);

xn : n*p-3*sqrt("*p*(1-p));

norl : norminv(binocdf(xn,n,p)) ;

lclnor : normcdf(norl,0,1) ;

xun : n*p*3*sqrt(n*p* (1-p));

noru : norminv(binocdf(xun,n,p)) ;

uclnor : l-normcdf(noru,0,1) ;

ARl,(normal) : 1/(lclnor*uclnor);

lclbino : binocdf(*,t,p);

uclbino : 1-binocdf(xb,n,p) ;

ARl(binomial) : 1/(1clbino*uclbino);

lclpois : poisscdf(*p,t*p) ;

uclpois : l-poisscdf(xup,n*p) ;

ARL(poisson) : 1/(lclpoisfuclpois) ;
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