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Abstract

An examination of the guided waves supported by cylindrical structures embed-
ded in a plane layered media is presented. A theory for general cylindrical structures,
both open and closed, is developed using a hybrid Green’s function-integral equation
approach. A spectral-domain analysis is utilized in the infinite axial dimension of the
structure, with an integral equation formulated over the remaining transverse dimen-
sions, Appropriate Green’s functions are developed to account for the infinite stratified
supporting medium and a method of moments technique is then used to solve the
resulting set of spectral-domain integral equations. Once the guided wave geometry
has been formulated, the wave properties characteristic to these structures are exam-
ined. This leads to the identification of various commonly used approximation
methods, with specific attention being paid to the use of only the discrete mode contri-
butions to represent the electromagnetic quantities. To this extent, a method of solving
for the propagation constants and a new definition of the characteristic impedances of
the discrete modes for open guided wave structures is presented.

The remainder of the work is devoted to the discussion of various problems
which can be modeled using the geometry under consideration. Excitation of and pro-
pagation along infinite thin-wire transmission lines located above a lossy half-space is
examined, with numerical results presented for the discrete mode propagation constants
and the currents excited by external dipole and delta function voltage sources. The
validity of using the transmission line approximation in the near field and the saddle
point method in the far field are discussed. Analytical expressions for the propagation
constants and characteristic impedances of a single thin-wire conductor are formulated
using the proposed techniques. These results are compared to the expressions gen-
erated using the definitions currently available in the literature. Finally, the case of an
arbitrary shaped conductor, which can be located near or at the lossy planar interface
is examined.

The appendices provide formulations and evaluation techniques for the Green’s
functions of planar sources embedded in a stratified medium. Special emphasis is
placed on formulating the homogeneous half-space geometry. The resulting Green’s
functions present themselves in single or double infinite integral form, with analytical
expressions usually not available making them difficult to evaluate. To this extent,
existing approximation methods and some new closed form expressions are presented
for their evaluation. As well, a technique for their numerical integration is proposed,
which has the advantage that it accounts for a possible highly oscillatory nature in the
integrand.
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" “Let’s consider your age to begin with - how old are you?’

'I'm seven and a half, exactly.’

1y

"You needn’t say "exactually,
believe it without that.” "

the Queen remarked. ’I can

Lewis Carroll, Through the Looking-Glass
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Chapter 1
Introduction

1.1. OBJECTIVES AND MOTIVATION

This thesis presents a theory of guided waves for cylindrical structures which are
embedded in a plane layered media. In this context, the term cylindrical describes a
geometry which is infinite in one spacial dimension and bounded in the remaining two
other dimensions, this also including the problem of multiple unconnected cylindrical
bodies. The guiding structure may be comprised of a conducting, dielectric, or in the
most general case an inhomogeneous material. A solution is developed to handle any
of these cases to the extent that appropriate Green’s functions can be derived for each
region of the geometry, however, specific applications in this thesis will be for homo-
geneous conducting structures. The geometry under consideration is first formulated as
a general three-dimensional scattering problem. The formulation is then specialized to
the case of a cylindrical (two-dimensional bounded) guided wave structure, where the
material properties of the cylindrical structure as well as the infinite medium in which
it is embedded are arbitrary. The characterization of and wave properties related to
this geometry are then discussed. Building upon this basis, the problem of a cylindri-
cal structure which is embedded in a layered supporting medium is then formulated.
The layered media may consist of any finite number of isotropic homogeneous planar
regions, with the electrical properties of each region being arbitrary. Even though the
formulation of the problem is general to any number of layered regions, most of the
applications studied in the thesis are for a single planar interface. The combination of
the two types of geometries, cylindrical and planar, has been chosen since it can be
used to represent a large number of practical problems. Each type of geometry alone
is capable of supporting its own class of wave phenomena, while the solution of their
combination will exhibit the properties of both as well as some new phenomena; these
including radiation, surface wave, and discrete modal contributions. The discussion of
a large number of examples will be presented in order to study some of the basic pro-
perties associated with this chosen problem. To this extent, a detailed examination of
thin-wire guided wave structures located over a lossy half-space will be made, various
approximation methods will be deduced, and their validity will be studied by com-
parison with the exact solution. The commonly utilized transmission line approxima-
tion requires the determination of the propagation constants and characteristic
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impedances of the discrete guided modes supported by the structure. A new definition
for the characteristic impedance of open guided wave structures will be presented, and
the justification for its use will be discussed. As well, arbitrary shaped guided wave
structures which are located near or touching an interface will be studied.

The motivation behind this work is mainly in the understanding of the guided
wave properties of open cylindrical structures. The incorporation of a layered support-
ing media adds new wave phenomena and lends itself to many practical applications
since open guiding structures are not usually located in free space, but must be sup-
ported by some means; and in many cases the supporting medium is a planar structure.
The geometry can be used to describe transmission lines over an earth for purposes of
studying wave propagation, electromagnetic interference, and remote sensing problems.
As well, modern antenna and computer design utilize microstrip, MMIC, and printed
circuit board technologies, which can all be analyzed by this geometry.

1.2. THESIS OUTLINE AND CONTRIBUTIONS

Chapter two of the thesis is devoted to the presentation of a theory of guided
waves supported by cylindrical structures, as developed from a general scattering
approach. The properties of these structures are discussed and then the formulation is
specialized to the case of a stratified supporting medium. One of the oldest methods
of solving scattering problems is through a Green’s function approach, where the fields
due to specified sources in the presence of the chosen geometry are determined by
directly solving the wave equation and satisfying the boundary conditions. Results of
many different source configurations, for the excitation of cylindrical structures as well
as stratified media, can be found in the literature using this approach [Stratton, Har-
ringtonl, Waitl3, Felsen]. On the other hand, the integral equation formulation of
cylindrical structure geometries, whose solution is usually obtained using a method of
moments technique, are newer but also abundant in the literature [Harrington2, Har-
rington3, Mittral, Mittra2]. The solution of the geometry being studied in this thesis
combines the integral equation approach for modeling the cylindrical scattering
geometry with the Green’s function approach for modeling the effects of the stratified
supporting media in which it is embedded. An overview of this hybrid Green’s
function-integral equation approach for the solution of many scattering problems has
been discussed by Newman [Newman2]. Once the guided wave problem has been for-
mulated, and solved using the method of moments, chapter two then examines the
wave properties characteristic to these structures. The development of the properties
of guided wave structures is based on the work of Collin, Schelkunoff and Marcuvitz
[Collin, Schelkunoff2, Marcuvitz], who presented a general modal theory for the
analysis of closed cylindrical geometries. A discussion of the wave properties of open
structures is discussed to some extent in [Collin] with a detailed analysis of layered
geometries given by Felsen and Marcuvitz [Felsen], and the use of the method of
steepest descent for a far field evaluation and subsequent identification of the various
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wave components is presented thoroughly by [Collin, Felsen] and others [Tamirl,
Tamir2, Hessel]. Chapter two next examines the use of only the discrete mode contri-
butions to represent the structure currents and fields. The use of the discrete modes
allows a much simplified transmission line approach to the formulation of many
antenna and scattering problems, and the application of many useful network and
modal solution techniques. Special emphasis is paid to the characterization of open
guided wave structures, and to this extent, a method of solving for the propagation
constants and a new definition of the characteristic impedance of the discrete modes
are presented. An attempt has been made to make the formulations and discussions up
to this point as general as possible so that the presented theory is applicable to arbi-
trary guided wave structures (both open and closed, and independent of material pro-
perties to the extent that appropriate Green’s functions can be derived). The last part
of chapter two is devoted to specializing the geometry so that the guided wave struc-
ture is embedded in a stratified supporting media. This requires the modification of
the integral equation formulation and the specification of the required wave equations
that must be solved for in each of the planar layers. The corresponding Green’s func-
tions for sources embedded in a layered geometry are derived in appendix A. The last
section in chapter two discusses the wave properties supported by the combination of
the cylindrical and planar geometries.

The remaining parts of the thesis are devoted to the discussion of various prob-
lems which can be modeled using the cylindrical/planar geometry chosen. Chapter
three addresses one of the earliest applications of this geometry type, that of excitation
of and wave propagation along infinite thin-wire transmission lines located over a lossy
earth. Early solutions of this problem were based on a circuit approach, where the
currents behaved according to the telegrapher’s equations [Carson, Pollaczek, Wise],
these being valid only at lower frequencies. Formulation of single conductor [Wait5,
dosSantos, Chang3, Kuester2, Chiba, Wedepohl] and multiple conductor [Wait9, Kues-
terd] systems, based on an exact solution of Maxwell’s equations, have since extended
the validity to a much higher frequency range. Many studies of the wave properties of
this geometry have been undertaken [Chang3, Kuester4, Olsen5], of specific interest
being the extraction of the discrete guided wave modes. As the exact solution
involves the evaluation of difficult integrals, these similar to that developed by Som-
merfeld [Sommerfeld2] for dipole sources over a lossy interface, many approximation
techniques have been examined [Kaidanov, Kikuchi, Carpentierl, Shen3], the most
utilized being the low frequency quasi-TEM approximation [Carson, Kingl, Olsen7].
Finally, the excitation of the infinite transmission line by various source types has also
been of interest, of specific importance being the excitation by a dipole source
[Chang3, Kuester2, Kingd, Hill] for application in antenna problems, and the excitation
by an incident plane wave source [Olsenl, Scharfman, Fontaine, Bridges6] for applica-
tion in electromagnetic interference and electromagnetic pulse problems. In chapter
three, the solution of the multiple thin-wire over lossy earth case is extracted directly
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from the general integral equation formulation presented in chapter two. The resulting
formulation is valid for an arbitrary source excitation, and thus can handle a wide
variety of applications. Next, the wave properties associated with this specific
geometry are delineated and are then used to deduce various approximate evaluation
techniques to simplify the infinite integrals involved in the exact solution. A numeri-
cal study of various transmission line geometries for typical earth electrical properties
is presented at the end of the chapter. Specific attention is paid to the characterization
of the discrete modal properties of the structure, since additional guided wave modes
exist in addition to the traditional quasi-TEM modes. Also, of specific importance is
the validity of the various approximation techniques often used in practice, which can
only be fully understood by referring back to the exact solution from which they were
obtained. This task is thus also examined at the end of chapter three. Even though
many of the specific applications discussed in this chapter have been previously
addressed throughout the literature, the purpose of this work is to present a detailed
and coherent theory of the transmission line above earth problem. Indeed, this topic
can be considered as one of the most widely published areas in the electromagnetic
and power engineering fields over the last century.

Chapter four examines the problem of defining an appropriate characteristic
impedance for the discrete modes of propagation supported by open guided wave
structures. A discussion of the properties of guided wave structures is initially
developed from the theory presented for closed waveguides [Collin, Marcuvitz, Schel-
kunoff2, Kerns2]. For the analysis of these structures using a transmission line
approach, the two required parameters are the propagation constants and the charac-
teristic impedances of the discrete guided modes. The definition and solution of the
propagation constants is straight forward as there is a direct physical relationship with
the electromagnetic quantities. The definition of the characteristic impedances, how-
ever, is somewhat arbitrary since there is no direct relationship between the elec-
tromagnetic quantities and the circuit quantities modeling the structure except in the
TEM limit. Various definitions for closed waveguide structures have been used in the
literature [Marcuvitz, Schelkunoff3, Kerns1], and the harder problem of a definition for
open structures has also been addressed [Getsinger, Brews2, Fache2, Jansen2]. In
chapter four, an alternative definition of the characteristic impedance of guided wave
structures is proposed. The definition follows directly from the hybrid Green’s
function-integral equation solution of the structure and collapses to the TEM result in
the quasi-static limit. As an example, the specific case of a thin-wire conductor
located over a lossy half-space is then addressed, where the results of the proposed
definition are compared to the results generated using the other definitions currently
available in the literature. As a by-product of this study, a closed form solution for the
axially directed power of the discrete modes supported by a conducting strip embedded
in a stratified media is formulated, as presented in appendix C.
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Even though the formulations developed in chapters three and four apply to gen-
eral guided wave structures, the numerical results presented have mainly been for cir-
cular thin-wire systems, where a uniform and axially directed current distribution on
the conductors has been assumed. Chapter five examines the case of an arbitrary
shaped conductor which can be located near or ar a lossy planar interface. In the past
almost all theories have treated the conductor over earth problem assuming a thin-wire
approximation to model the conductor. When the conductor is either located well
above or buried well below the interface, the propagation constants of the discrete
guided modes will be close to the wavenumber of the medium in which it is embedded
and the approximation is valid. This is not the case, however, when the conductor is
located near or at the interface, where a more accurate model must then be used to
take into account a non-uniform current distribution. Various techniques have been
proposed in the literature to examine this problem, but either a thin-wire or uniform
current assumption is still made {Coleman, Waitd4, Changl, Olsen7] or the formulation
is not valid when the conductor becomes very near (touching) the interface [Pogorzel-
ski]. Chapter five presents an exact formulation of the problem, which is valid even
when the conductor is in contact with the interface. Results for the case of a circular
conductor located over an earth having typical electrical properties are given and a
comparison is made to the various other approximation methods which have been util-
ized throughout the literature.

The derivation of the Green’s functions for sources which are embedded in a
stratified media geometry are presented in appendix A. These are primarily based on
the formulations in the literature for sources over a layered earth [Kuesterd, Wait3,
Waitll] and for microstrip geometries [Jansen2, Ttoh, Das, Fukuoka]. The derivation
of specialized formulations for the case of a single homogeneous half-space is
emphasised. These Green’s functions are usually in integral form, requiring either a
single or double infinite integration for their evaluation. Appendix B presents various
techniques for the evaluation of these infinite integrals, commonly known as Sommer-
feld integrals. Exact analytical solution of the integrals is usually difficult due to the
presence of singularities and branch cuts in their integrands. The appendix discusses
some of the approximate techniques commonly used for their evaluation, and some
new closed form expressions are developed for the integrals arising in the special case
of a lossy haif-space. In general however, for an accurate evaluation of the integrals,
and to extract the proper behaviour of all the wave components (surface waves etc.),
numerical techniques must be employed. To this extent, a technique for the numerical
integration of the infinite integrals is also presented in the appendix. The proposed
method has the advantage that it accounts for the possible highly oscillatory nature of
the integrand when evaluated in the far field region.



Chapter 2
Guided Wave Structures

This chapter provides the general framework for the analysis of cylindrical guided
wave structures. The formulation of the guided wave geometry will be in terms of a
hybrid Green’s function-integral equation approach, which is general to the extent that
appropriate Green’s functions can be developed for each region of the structure. The
characterization of the wave properties of open and closed guiding structures is
presented, with emphasis on the accurate definition of the propagation constants and
characteristic impedances of the discrete modes. The formulation of structures which
are embedded in a stratified supporting medium is then addressed, and the guided
wave properties of this geometry are then examined. The method of presenting the
results of this chapter may appear in non-standard form at many times, however, this is
mainly due to the attempt to keep the theory as concise and general as possible. Vari-
ous applications, which can be modeled using special cases of the geometry con-
sidered, will be presented in the remaining chapters of the thesis.

2.1. SOLUTION METHODOLOGY

Any scattering problem can be formulated from Maxwell’s equations, in terms of
a wave equation, along with appropriate boundary conditions, which must be satisfied
at all points in the region under study. For the most general case, where the region is
comprised of a complex inhomogeneous media, the solution of the wave equation must
be performed directly in its differential form. A discretization of the region into a
finite number of spacial cells, in which the material can be considered constant, is the
most common solution methodology. Fortunately however, in most scattering prob-
lems, the material inhomogeneities occur at discrete boundaries inside the problem
region. These bounding surfaces define the geometry of the scattering structure to be
studied. Structures may be of various types; bounded in three dimensions defining a
finite scatterer, bounded in two dimensions defining an infinite guiding wave structure,
or bounded in only one dimension defining a stratified media, with each structure type
having its own particular characteristics and wave properties associated with it. As
defined by the discrete boundaries, the region under study can be partitioned into
subregions, where internal to each subregion the media is homogeneous. The problem
then requires the solution of the wave equation in each homogeneous subregion along
with the satisfaction of the boundary conditions at all their interfaces.
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For geometries where the media discontinuities conform to a known coordinate
system, the solution of the wave equation and satisfaction of the boundary conditions
at their interfaces can be performed using a transformation approach for the entire
problem region. Here, a solution to the differential equations are usually found by
expanding the fields in-terms of a set of orthogonal eigenfunctions particular to the
chosen coordinate system, with the unknown expansion coefficients then determined
from the application of the boundary conditions. For open (infinite) structures, the
eigenfunctions are continuous and the transform is in integral form; for closed (finite)
structures, the eigenfunctions are discrete (periodic) and the transform is a summation.
This solution methodology can be referred to as a Green’s function approach and is an
exact solution to the extent that the eigenfunction basis used in the transform is com-
plete. However, this method works well, and is the most appropriate, only when the
geometry of the scattering structure coincides with a known orthogonal coordinate sys-
tem. For solutions of complex scattering geometries, this approach becomes impracti-
cal or impossible.

For complex scattering geometries, the solution of the wave equation in each indi-
vidual homogeneous subregion can easily be found using a transformation approach,
usually in terms of an integral over the subregion volume. Then, the Green’s theorem
can be used to transform the volume integral into a set of surface integrals over the
boundaries defining the subregions. The kernel of the integral operator for each subre-
gion will contain the appropriate homogeneous space Green’s function, with the field
discontinuities at the subregion boundaries usually being identified with equivalent
sources. This approach is referred to as an integral equation method, where a solution
requires the determination of the unknown equivalent sources in the integrand by util-
izing the boundary conditions at the subregion interfaces. Once the currents are deter-
mined, a second step is then required to yield the resulting fields in each subregion.
Using this method, the solution of arbitrary shaped scattering structures is easily facili-
tated by expanding the equivalent surface currents in terms of a suitable basis set, usu-
ally spacially discrete for irregular geometries. Solution of the integral equation in this
manner is termed a method of moments solution (boundary element method). Even
though this method is general and applicable to complex geometries, the results are
approximate and sensitive to the choice of basis functions. Further, if one or more of
the structure surfaces is infinite in extent, as in the case of a planar layered media, the
unknown sources must be determined over an infinite interval, making this solution
technique impracticable.

A compromise between these two solution techniques is to solve part of the prob-
lem using a Green’s function approach and part using an integral equation formulation.
This means incorporating the effects of as many media discontinuities as possible into
the Green’s function, and then expanding only the boundaries that do not coincide with
a specific orthogonal coordinate system in terms of unknown equivalent sources.
Thus, the surface integral equation will be over only the irregular geometrical surfaces,
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regular material discontinuities being incorporated into an appropriate Green’s func-
tion. This approach is referred to as a hybrid Green’s function-integral equation
method and combines the flexibility of the integral equation formulation for modeling
scatterers of complex geometry with the exactness of the Green’s function solution.
This approach is used in this thesis to solve the problem of cylindrical guided wave
structures embedded in a stratified media.

The purpose of this section is to formulate the general surface integral equation
solution to the wave equation for a bounded region having arbitrarily defined material
properties. To this extent, the standard problem in electromagnetics of determining the
fields at any point in a bounded region V due to specified electric and magnetic
sources, :f; and AZ,, is discussed. The electric E and magnetic H fields must be solu-
tions of Maxwell’s equations in the region as well as satisfy any boundary conditions
at the region boundary §, where § defines the surface bounding the region V. Assum-
ing an e time dependence, the time-harmonic solution of the fields can be
described in terms of the set of partial differential equations in the region as
[Stratton,p.464]

[VZ+k2 P E(F) = —jmg(ﬁ(?pfivv-ﬁ(?)) + VXM, (F) ,FeV (2.1a)
[VZ4+kX(F)H(F) = —jme'(ﬁs(?)ﬁtévv-ﬁs(?)) - VxJ(F) ,FeV (2.1b)

K(Fy=o0%ue , € =g+ jolo

where 7 defines a point in the region V, k(7)) is the wavenumber at this point, and K,
€, © define the electrical properties of the medium which can in general also be func-
tions of position 7.

For further discussion, (2.1) will be described in the form of an operator equation,
where the inverse operator determines the fields in the region due to the specified
sources. Thus, defining f (F)=(E(F)H(F)) and g,(F)=(T,(F).M,(F)) where
denotes the transpose,

[VZ + k21 f (F) = F{g, (7)) ,FeV (2.2)
77 =Yg, = [[[Tme.)a 2.3)
vV

where F is a function of the source terms as defined in (2.1). Here =-I"—(F',F’) is an
appropriate Green’s function which satisfies the set of p.d.e.’s of the form (2.2) when
the source is considered a delta function located at 7. f(?,?’) also takes into
account the region external to V (this including sources external to V). The derivation
of F(F,F’) satisfying all these requirements can pose a formidable task. To simplify
this problem, the Green’s Theorem [Harrington1, Stratton] is used, so that (2.3) can be
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determined as a sum of a volume integral representing the field f"”c(F) due to the
sources g,(7), plus a surface integral term f°%(7) accounting for the effect of the

region external to the boundary S as

FE)Y=FTF) + F5%(F) (2.4)
em =[llcFme e Frev 2.5)
S O
ey = [[GrFmeE)de FeV |, Fes (2.6)
S

where g(7¥) is an equivalent surface current modeling the fields and sources exterior to
the region V (g (r ) are additional sources to g,(7)). The Green’s function G (r,r")
is now required to satisfy only the set of delta source p.d.e.’s of the form (2.2) in the
region V only, and is thus much simpler to formulate in general than the Green’s
function T (7,7").

The specific geometry under study in this thesis consists of an arbitrary shaped
cylindrical guiding structure, bounded in two spacial dimensions and infinite in one
dimension. The cylindrical structure is allowed to be embedded in a stratified support-
ing medium, infinite in two spacial dimensions, with planar material discontinuities
specified in the remaining dimension. Following the hybrid solution methodology, the
boundary surface defining the cylindrical guiding structure is modeled by equivalent
sources, with an integral equation developed over this surface. The Green’s function
kernel of the integral is then formulated to incorporate the effect of the stratified sup-
porting media. The integral equation formulation part of this problem is similar to that
found in the literature for arbitrary cylindrical structures in free space, except the
Green’s function in this case is not the simple free space Green’s function, but con-
tains the added complexity of a plane layered media. Felsen and Marcuvitz [Felsen]
derive Green’s functions as well as discuss the wave properties for many material
configurations. The Green’s functions utilized throughout this thesis are derived and
discussed in detail in appendix A.

2.2. GUIDED WAVES FOR TWO-DIMENSIONAL BOUNDED
(CYLINDRICAL) STRUCTURES

In this section, the solution of two-dimensional bounded (cylindrical) guided wave
structures will be presented. The formulation is developed using a hybrid integral
equation-Green’s function approach where an integral equation is developed over the
surface of the cylindrical structure. The solution is general to arbitrarily shaped
cylindrical structures with internal media and a supporting medium that may be inho-
mogeneous to the extent that appropriate Green’s functions can be derived. A descrip-
tion of the geometry for a general scattering structure is given in figure 2.1a. The
region V=V+XZV; contains N distinct subregions V; which define the scatterer, these



Chapter 2 Guided Wave Structures

subregions being embedded in the remaining infinite supporting region V. The boun-
daries of the subregions are defined by the surface S=XS;. For cylindrical guided
wave structures, the N subregions are chosen to be of infinite extent in the z-
dimension, their surfaces being defined by the generating curves C; in the x-y plane;
(p=p(x,y),~oo<z<}e §;, peC; ,i=12,.,N as shown in figure 2.1b. When a
planar layered supporting medium V; is considered, the stratification is chosen to be
symmetric in the x-z dimensions, the interface planes at specified values along the y-
axis. Appropriate Green’s functions are required to represent the fields in each of the
defined subregions V;. For the specific case of cylindrical structures embedded in a
layered media, the effect of the stratification is incorporated into the Green’s function
for the region V.

=it

Figure 2.1a: General scattering geometry.

Z

Figure 2.1b: Cylindrical guided wave structure.

10
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Using the Green’s theorem, the volume integral (2.3) developed in section 2.1,
giving the fields in the region V in terms of specified internal sources, had been
transformed into a surface integral (2.6). Using this formulation, the fields in a defined
subregion V; can be determined as

fi(F) = [y +LiYg(r) s FeV, Q.7
LYz = [[ GFREFE ) = F°%F) 2.8)
S;

where j?;-i”c(?) are the fields due to sources interior to only the region V;. The integral
term over the surface S; yields the scattered fields due to coupling through the aper-
ture, which are modeled as equivalent surface currents g(7) on the boundary. The
appropriate tensor Green’s function C_F—,-(?,'F’) for the region V; is determined so that
the wave equation

(V2 + kX (ONFF) = FEDNTT)) sFeV; , Fes, 2.9)
is satisfied along with all required boundary conditions at material discontinuities inter-
nal to the region V;. F is a function of the source terms as given in (2.1). Thus, the
operator L1 gives the scattered field due to the equivalent sources g(7 ) on the sur-
face §;. The determination of the unknown equivalent currents g(7) at the surfaces
S=LS; bounding all the subregions is facilitated by satisfying the continuity of tangen-
tial fields at their interfaces. Thus, utilizing these boundary conditions on all surfaces

ﬁ\lj(?) Xﬁ(?) + h\ﬂ (F) Xf_‘;(?) =0 : res..

ij
ﬁi' =_h\ﬁ ’ Si' =Sﬁ =S,-r'\Sj

(2.10)

where ﬁ\,-j is the inward unit normal vector to the region V; at the interface surface
S;;=8;MS; between the two regions V; and V;. Satisfying (2.10) for every subregion,
a set of integral equations over all the surfaces can then be developed as [Harrington2,
Mittral]

R (7)) x [ FI(F) + LINE (D)) = £)9F) - L E () } =0 @l
sreS;  , i=0,LLN , j=01..N

The solution of this set of integral equations will yield the unknown equivalent surface
currents g (r ), after which the fields interior to each region can be determined from
(2.6). The currents and fields formulated by the preceding integral equation solution
are general to arbitrary scattering objects; three-dimensional bounded finite structures,
as well as two-dimensional bounded cylindrical structures. The geometries of interest
in this thesis, are cylindrical guiding structures, where the surfaces §; defining the
scatterer are infinite in one dimension and bounded in the remaining two dimensions.

11



Chapter 2 Guided Wave Structures

Since the physical geometry of the problem is symmetric in one dimension, a solution
will be obtained utilizing the infinite Fourier transform pair

[z, ™ dz (2.122)

—ca

X(P) = X(Pk) = I {x(F)

— —— S P~ ]_ °°: — )

T(F) = ¥(p.2) = TFUEP)) EJ (P, et gk, (2.12b)
where the cylindrical structure has been chosen to be invariant in the z-dimension.
Using (2.12), the integral equation over the surface S in (2.11) can be reduced to one
over the generating curve C as

A3 x | Fiem + L Ee) - Fm -LEen | = 0 e
; EG CU = C,ﬁCJ ,i=0,1,.. N s j'—' 0,1,..N . "'°°<kz<°°

LYE®) = | GEPIT(F)dP = F &4F) @.14)

The solution of the integral equation, as well as the determination of the Green’s func-
tions for each region has been simplified to a two-dimensional problem. Note that the
transformed two-dimensional quantities now contain only a subset of the wave proper-
ties characteristic to the region they describe, the complete set being recovered upon
the inverse transformation. The final solution of the fields then requires the inverse
transformation since the sources ﬁ”"(?) are not in general invariant in the z-
dimension.

For simplicity, the set of integral equations (2.13) will be written in the general
form

APYXTHZ(FE) = AB)XF™(F)  PeC , —oock, <o 2.15)

where A(p) is the unit normal to the contour C with f " (p) and L™! dependent on
which part of the contour p falls. Since the generating contour C of the guiding wave
structure is bounded in two dimensions, any infinite discrete (periodic) set of complete
basis functions can be chosen to represent the unknown currents g (p) [Harrington2].
In terms of the chosen basis, the currents will be expanded as

N _ -
g§(Pk) = Tx, (P, k) = [x(PN'[IK,)] (2.16)

n=1
where x,(p) is one basis function of the set and I—n is a scalar constant. The basis
{x,(p);n=12,.,N} is usnally chosen to be linearly independent over the contour C
and is then complete if N —oo. Note that all vector components of the equivalent
current g(P) are expanded using the same basis set in (2.16). By chosing a suitable

12



Chapter 2 Guided Wave Structures

inner product <,>, and an arbitrary set of weighting functions w,, (P ), which also
form a complete basis, the integral equation (2.15) can be discretized as

- N —
<w,(P), ﬁ(ﬁ)xL*{}:x@)Iﬂ(@)} >
n=1

= <w, (P), APIXF™(P)Y> m=12,.M 2.17)

where the inner product is defined as

<a(P),b(P)> = [a(PIb(P) dp 2.18)
C

The general form (2.17) is referred to as a method of moments solution (boundary ele-
ment), with the particular choice of the weighting set w, (p)=x,(P) being defined as
Galerkin’s method [Harrington2]. A unique solution of (2.17) can be obtained for a
finite number of basis functions M=N, with the resulting set of linear equations then
solved in matrix form as

[ZU)ITR,,)T = [F™®,)] 5 o<k, <oo (2.19)
where
F ) = <wu(P), A(PIXF ™ (p) > (2.20)
Zym k) = <wp(P), AP LN, (F)) >
= <wu(P), AP G(FF)x,(P) P > (2.21)
C
since

N —_
< (), A(P)x L"{zxn<5>1,,(kz)} >
n=1

N = —
= Y <wa(P), AP GO dp >Tk)  (2.22)
n=1 C

The interaction (impedance) matrix z (k,) will be diagonal for the special case where
the expansion functions x,(P) are chosen as the eigenfunctions of Ll When the
boundary C of the cylindrical structure coincides with some orthogonal coordinate sys-
tem, the determination of a basis in terms of known functions which diagonalize Z (k)
is usually possible and should be utilized. However, in the general case of an arbitrary
generating contour C, or if the Green’s function in the kernel of L.7! describes a com-
plicated medium, Z- (k;) will not be diagonal. For the general case, a transform can be
found to diagonalize Z (k,) which is determined from the eigenvalue problem

[Z(,) - MEDPGED] = 0 :i=12,..N (2.23)

13
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where A;(k,) are the resulting eigenvalues and p; (k,) are the corresponding eigenvec-
tors. By utilizing all eigenvectors, a transform P (k,) can be determined which can be
used to diagonalize Z(k,) and solve for the scalar quantities / (k,) as

(k)] = [ZU)TUF™ (k)] o [1] = [ZpT [ ] (2.24)
where

k)] = [PUNITT  ,  [F™®k)] = [Pk,)IF"] (2.25)

[Zp] = [PU) T MZ )P K,)] (2.26)

P ] = | [ [pw)] - [v] ] @.27)

and zp is diagonal. The vectors i and f " are the resulting eigencurrents and
eigenfields, respectively, for the specified guiding structure. The elements of Zp are
the impedance values relating the equivalent eigencurrents to the excitation at the
boundary surface C. In general P (k,) as well as 1, f ", and Z;, are functions of the
transform variable k,. Special cases do arise, however, where P (k,) is constant and
independent of k, %1

The general solution of the integral equation (2.15), for an arbitrary source excita-
tion is found using the inverse transform (2.12) as

g(r) = I7HE(P.kL,)) (2.28)
g(Pk) = (P &,)]

= PFIZETF™ W) = (PP U] (2.29)

The scattered fields f;°*(¥) and thus the total field at any point in the region V; can
be determined using (2.14) as

"';sca:( 7 )

LYg()) = r;‘{n"l[?( mn}

r;! {‘Ilrl (x (PN T &)1 }

2.1 The transform P (k, } will be independent of &, for the special condition that the structure geometry is symmetri-
cal (and a corresponding set of symmetric basis functions is chosen). An example may be a symmetric two conductor
thin-wire Lransmission line, where py=[ 12 , ll_\{i Lpa=I[ N2, -2 ] independent of k;. Under these physical
conditiens, Z will be symmeiric and all clements Z; will be equal.

14
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r;! {11-‘1 {Lx (PO HZ ()T U F ™ (k)] }

]

= r;‘{ L o (PO < wu (), AP x T, (5)) >

<w,(p), ﬁ(ﬁ)x?"”c(f)‘) >] } (2.30)

The solution of the guided wave problem has been formulated using a Fourier
transform for the axially invariant structure dimension and a discrete (periodic)
transformation for the remaining two transverse dimensions. The axial transform was
in terms of the infinite set of eigenfunctions {exp(+jk,z)}, with the discrete transform
developed using an arbitrary set of basis functions and an appropriate inner product.
The diagonalization of the transverse dimension transform yielded a solution in terms
of the eigenfunctions for that particular structure. Unlike the axial eigenfunctions
however, the eigenfunctions for the transverse dimensions do not necessarily
correspond to known analytical functions since the structure boundary does not coin-
cide with a known orthogonal coordinate system in the general case. The diagonaliza-
tion of the problem in terms of its eigenfunctions, is useful since simplified solutions
in terms of only the dominant modes can be developed. Thus, the inverse transform of
only these dominant ones are required.

2.3. DISCRETE MODE ANALYSIS

The formulation of the induced currents and scattered fields for a cylindrical
guided wave structure was formulated in the last section. The solution to the problem
was developed in terms of a one-dimensional transform as

(P = F{l{i—l{?(ﬁ,kz)] } 2.31)

g(pz) = T 1{ [ (P [Z G THF ™ (&, )] } (2.32)

The solution to (2.31,2.32) is exact to the extent that a complete basis x(p) is used.
The formulation of the problem using a complete set of transform functions will
include contributions from all the wave properties of the structure, the individual con-
tributions being identified by examination of the poles and branch cuts that may be
present in the complex £, plane [Felsen]. Each type of material discontinuity (one,
two, or three dimensional) in the region V will contribute to the possible variety of
wave phenomena present. For cylindrical structures (bounded in two dimensions)
there will be a double set of poles in the complex &, plane, these corresponding to the
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homogeneous solutions of the integral equation (2.11,2.15) ie: (F”C (r)=0). The
location of the poles are determined from the zeros of the impedance matrix zZ (k,) and
their contribution to the integral transforms (2.31,2.32) represents a set of discrete pro-
pagating modes guided along the cylindrical structure. As well as the wave properties
due to the two-dimensional bounded structure, there will be phenomena due to any
other types of material discontinuities present in the individual subregions
V; ,i=0,1,2,..,N. These are incorporated into the Green’s functions G, (¥ 7") for each
medium, and are represented by branch cuts and singularities of various orders in the
complex £, plane. Instead of discrete propagating modes, the branch cuts represent a
continuous spectrum of modes. For open (infinite) region problems, there is at least
one second order branch cut present in the &, plane representing radiated fields. For a
stratified exterior region, their will be two second order branch cuts representing radi-
ated fields into the most upper and lower media, as well as first order branch cuts
representing surface waves trapped by the layered media. The wave properties for the
specific case of cylindrical guiding structures embedded in a stratified media will be
discussed in section 2.6.

In this section we will examine the discrete guided wave contributions to the
fields and currents for a general cylindrical structure [Collin,ch.5]. The discrete mode
solutions are determined from the eigenvalues of the homogeneous case of (2.15), with
the corresponding eigenvectors giving the current distribution on the surface boundary
S for each mode. The properties of the modes are characterized by the resulting
eigenvalues (propagation constants) & ,p=12,..,P and by the magnitude of their
associated residue contributions in (2.31) and (2.32), which indicates their relative
excitation by a given source. For closed structures (the supporting medium V is sur-
rounded by perfect conductor), the discrete mode contributions of the inverse transform
in (2.32) form an infinite discrete set of eigenfunctions which are a complete basis, and
no branch cut contributions are present. For open structures (the supporting medium
Vg extends to infinity), the set of discrete eigenfunctions is finite and does not form a
complete basis. If open structures are considered, the complete set of basis functions
requires the inclusion of a continuous spectra of modes, these represented as the
branch cuts in the complex k, plane. However, for many problems of interest, the
major contribution is due to the discrete mode subset, and even though it does not
form a complete basis, the approximate results are very acceptable. The use of only
the discrete mode contributions to represent the structure currents in (2.32) allows a
much simplified transmission line approach to the formulation of many antenna and
scattering problems. Also, the many useful network properties and modal solution
techniques developed for transmission line and closed waveguide problems can then be
applied [Marcuvitz, Kerns2, Schwinger, Tripathil]. The use of this approximation in
the solution of a large class of problems will be the topic of section 2.4,
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To this extent, consider the contribution to the current in (2.32) due to the finite
set of discrete modes only

P — . .
g(2) = +j3 lim {(kz—kf)[x(ﬁ)}‘[Z(kz)rl[F‘”C(kzne““'“‘ }(2.33>
p=1 koK

where for discussion purposes, the source is considered finite and located at z=0. The
propagation constants & are determined from the solution of the homogeneous integral
equation (2.19). For this purpose, a mode equation can be developed from the general
eigenvalue problem (2.23) with A(k,)=0 as

|[2_'(kz)] | =0 > &

[ZGD[V]=0 s p=l2,...P (2.34)

giving rise to P eigenvalues (propagation constants) and their corresponding eigenvec-
tors V. Using the determined eigenvectors, the pth term in the mode expansion (2.33)
can be diagonalized into the form

25,(P2) = RPNV 1—— (T F™ ()] (2.35)
ZCp

= _ j 1 ) =

Zep = =5 W o, {IZ(kz)I }k,zk,” (2.36)

where ZCP is defined here to be the characteristic impedance of the pth mode for the
- guiding wave structure. This definition is valid for all general guided wave structures,
both open and closed. The transform vectors ¥, g” and the normalization constants
N?, ZV{; are given by

VP = cof  {ZWDYNE 5 j=12,.N

cof, {Z(kP)} ,—

@ = ——=——/N? i=12,.N (2.37)
cofy 1 {Z (kP)}
N€ = V‘P , qu = ZCEP
i=1 i=1

Note that if Z (k?) is symmetric, then [g7]=[V"] and accordingly I_\e'—qp =N’ . The func-
tion cofy; {Z} gives the cofactor of the ijth element of the matrix Z. Using the expres-
sion (2.35) for each of the P modes, a transformation can be developed to solve (2.33)
in matrix form as
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g(p2) = WPIITI2Z: 7D @) Q TUF™ *kP))

= x(PIT i) (2.38)
which can more easily be defined using

[z)] = [2Zc 17D ()][F"] (2.39)

i N — =inc

fire = ,ZIQJP F kP  5p=12,..P (2.40)
pa

_ e+jkffz | , i=j=p

Dijz) = {0 % - @

where D (z) and Z_C are diagonal matrices describing the propagation and impedance
characteristics, respectively, of the structure. The vectors i and T are the strengths
of the corresponding current and incident field eigenfunctions for the structure. The
transformations are determined from the eigenvectors ¥ and g% as

7] - [[#])[#] - [¥]]
o] - [[#][#] - [#]] Q.42)

Note that (_2—_1=I_"’ for the case of 2 k) ,p=12,..,P being symmetric. Once the
currents g,(p,z) due to each of the discrete modes are determined, the corresponding
fields can be deduced as

Fa( ) = I‘;l{ LY, (FAD) }

g

i

Q

(FPUDIE, (FAp ap e 249

2.4, TRANSMISSION LINE APPROACH AND QUASI-TEM
APPROXIMATION

As discussed in section 2.3, the use of only the discrete mode contributions to
represent the currents and scattered fields for a cylindrical guiding structure allows the
utilization of many transmission line and network theory techniques, greatly expanding
the number of practical problems that can be solved. In utilizing the transmission line
approach, the currents induced on the cylindrical structure can be formulated in terms
of an infinite set of localized delta function sources along the length of the structure,
the magnitude of the sources being proportional to the incident fields at the surface of
the structure [King3]. A formulation in this manner can be developed directly from
the exact solution (2.28) by utilizing the convolution theorem to represent the incident
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fields as
7(Pa) = rgl{ [x (B)VIZ (e, '™ ()] } (2.44)
F"(,) = < wu(P), A(P)xF ™ (Pk,) > (2.45)
7Bk = L@} = | [ dz 77 (527 dz” (2.46)
Thus,
Z(p.2) = [P Kz N E™ @)1 dz” @.47)
K.(z,2) = r';l{ [Z (k)T e } (2.48)
Ez7) = <w,(P), R(PIXF™(Pz7) > (2.49)

For an infinite structure, the convolution operator _Izm(z ,27) determines the current at
the observation point z due to a delta function source of strength j-"—i”c(ﬁ,z') at the
location z”. The formulation of the problem using the convolution integral is still exact
as long as the representation of the delta source kernel K_(z,z°) includes the complete
mode properties of the structure, these being the discrete mode contributions as well as
the continuous mode spectra. However, the transmission line theory assumes that all
currents on the cylindrical structure can be represented in terms of forward and reverse
exponential traveling waves only, the continuous mode spectra required for a complete
solution being neglected. Thus, using the theory developed in section 2.3, the convo-
lution operator K_(z,z") will be approximated as

K@z = [TU2Zc 7D (2,2") O T (2.50)

where the transforms T and 5 were given in (2.37,2.42), and the characteristic
impedances of the guided wave structure Zo were given by (2.36). The diagonal
matrix D (z,z”) is given as

kPl z—2 | S
= . € » 1=]=p
Dij(z 4 ) = {0 , l?‘-’j (251)

where kf ,p=1,2,..,P are the possible characteristic propagating modes of the two-
dimensional structure. The solution of the equivalent currents using (2.47) is more
complete than the form (2.38) of the previous section. In (2.38), only the discrete
mode contributions of the source fiw is considered, whereas (2.47) allows the full
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spectral representation of the source, with only the resulting induced currents assumed
to have an exponential behaviour. The scattered fields can be determined using (2.30),
or as in the previous section for only the discrete mode contribution using (2.43).

The formulation presented in (2.47-2.51) can be generalized to a transmission line
configuration of finite length and with arbitrary boundary conditions at its terminals. If
the propagation constants kf and the characteristic impedances Z—C of the structure are
known, this is accomplished by modifying the the convolution operator K_(z,z°) to the
specific finite transmission line considered and formulating the convolution integral as

TP = @WK GO UEF®@) 1d” szel (2.52)
L

where the path L is along the axial length of the structure and KL(z ,27) is the
modified convolution operator. Using (2.6) and (2.52), the fields can also be deter-
mined for the structure. Once the currents are formulated for all guiding structures in
a larger problem, they can be embedded into a network of interconnected transmission
lines and the whole problem solved simultaneously [Legro, King4, Kami]. As men-
tioned in section 2.3, the presented transmission line theory, which assumes only the
discrete mode contributions, will be an exact formulation for closed guiding structures,
and also a very accurate approximation in many cases of open guiding structures.

2.4.1. Quasi-TEM Approximation

The formulation of the transmission line approach presented by (2.47-2.52) deter-
mined the currents and fields in terms of the full set of discrete exponential modes for
the structure. The propagation constants kf were solutions of the exact two-
dimensional wave equations which were satisfied in each region V; of the problem
geometry and were determined from the eigenvalues of the homogeneous mode equa-
tion (2.34). The solution of the mode equation yielded the full set of all possible
discrete modes, which may consist of TEM, TM, TE, and hybrid forms. In general
however, solution of the exact mode equation (2.34) may be difficult to evaluate, and
for many problems, the use of a smaller subset of the full set of discrete modes may
be adequate to represent the problem. This chosen smaller subset will usually consist
of only the dominant modes of the structure, for many cases of guided wave structures
these being the TEM transmission line modes.

In the quasi-TEM approximation, the propagation constants 47 and the charac-
teristic impedances Zcp are determined from the equivalent circuit parameters of the
transmission line. These per unit length circuit parameters are then derived by assum-
ing the axial variation of the fields in the solution of the wave equations (2.9) is equal
to the wavenumber of the medium in which the guiding structure is embedded tk, =k)
[Coleman, Olsen7]. In this manner, the fields in the supporting medium will be a
solution of the two-dimensional Laplace equation. The quasi-TEM approximation is
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applicable where the dimensions of the guiding structure are much less than the
wavelength of the medium in which it is embedded.

2.5. INTEGRAL EQUATION FORMULATION FOR CYLINDRICAL
GUIDING STRUCTURES EMBEDDED IN A LAYERED MEDIA

In this section, an integral equation will be developed to determine the currents
induced on and the fields scattered by an infinite cylindrical guiding structure embed-
ded in a stratified media. The integral equation is developed from the formulation
presented in section 2.2 for general cylindrical guided wave structures. The geometry
of the problem under consideration, as shown in figure 2.2, consists of a two-
dimensional bounded scatterer representing the infinite cylindrical guiding structure.

4
:
Put Cat O Ry
P € O K
S|| . ﬁo '
M€ o K,
FE S’ L
S o
Mo &, “ $-F Ro
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. Y,
P &G Rov

Figure 2.2: Scattering structure embedded in a stratified media.

The problem is divided into N+1 regions, the exterior infinite region Vy and N distinct
unconnected subregions V;. The surface S defining the scattering structure then
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consists of N surfaces S; for each subregion. For cylindrical guiding structures, the N
scattering subregions are infinite in extent and chosen to be invariant in the z-
dimension. The surfaces S; of the structure are then defined by the generating curves
C; in the x-y plane as (p=p(x,y),—e<z<ee)eS;, peC; ;i=1,2,.,N. The external
region V is defined as a layered supporting medium, the stratification being chosen as
x-z planes so that the cylindrical guiding structure is parallel to the planar interfaces.
The layered media is made up of M*+M~+1 planar regions R; ,-M™<j<M™, where
the upper most region Ry is a half-space and the lower most region R,,- is a half-
space. Each layer R; is characterized by the material electrical constants Hj, &, O;.
The defining surface S is divided into distinct subsurfaces, each unique to both a
scattering region V; and a layered region R ; as

N N MY
i=1 i=] j=—M"
Using the formulation developed in section 2.2, the fields in each subregion
V;,i=0,1,2,...,N can be determined using the surface integral equation (2.11) for the
region reV; as

E(F) = E"(F) + [[GEFFIT(F) + GCEFFIM(F) dF 2.542)
S;

H(F) = H™F)+ [[GrFr T (F) + GI™(FF) M (F’) & (2.54b)
Si

where in (2.54) the fields and currents are defined as

FF) = (EMHFE)Y , gF) = (JF)MF)Y (2.55)
At the surfaces reS;
J(F) = R(FIXH(F) , M(F) = —h(FIXE,(F) (2.56)

are the equivalent electric and magnetic surface currents representing the tangential
components of the fields at the boundary of the region V;, with h‘i(?l being the
inward uvnit normal vector at the boundary. The tensor Green’s functions 5,-( r.r) for
each region V; are appropriately chosen so that the wave equation is satisfied and all
fields are continuous across internal media discontinuities. Formulating the fields in
terms of the electric I1# and magnetic T1/* Hertz vector potentials, The Green’s func-
tions can be deduced by solving the set of differential equations

—J Ol

k?

(V2 + EAPOITINF) = J(F(F-F) ;FeV; , FeS; (2.57a)

2 D1 T My = —jweil'—— — — — —
Vet bk (MITIATr) = —?———M(r)ﬁ(r—r) s reV; , ¥'el; (2.57b)

i
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_ _ _ k2 _

E;(7) = VVIIAF) + kAIHT) + 'E,Vx (7)) (2.582)
- i

_ _ _ k2 _

Hi(7) = VVIINF) + kAP + ﬂ(; Vx ITE(F) (2.58D)

i

as discussed in appendix A. The wavenumber k; =0)\/;_L:£¥ in each region V; is
defined by the permeability ; and a complex permittivity & = €;+j0;/®w In general,
each region V; may be inhomogeneous, but if the material discontinuities are regular
and coincide with a known orthogonal coordinate system, the solution of (2.57) can be
found in a closed or integral form. Such is the case with a planar layered media as the
supporting region V. Since the geometry of the cylindrical guiding structure is invari-
ant in the z-dimension and the layered supporting media is invariant in the x-z dimen-
sions, the two-dimensional cartesian integral transform will be utilized for the the solu-
tion of (2.57) as

x(FF) = IRy v k) 1) (2.59)

Details are discussed in appendix A, with the solution for various geometry tjrpes
described in appendix B.

Matching the boundary conditions at the interfaces between the external region
Vi and the N cylindrical scatterers yields a set of integral equations in terms of the
unknown equivalent currents. Using the general form (2.11), a set of integral equa-
tions determining the currents ( J (F),A? (r))" are given as

ﬁo(r)x{(Eﬁm(r)H Y+ Y S [ GEFERTEIEY &
k=1 j=—M~ Sy

= h‘omx[(E"‘C(r),H””(r))WH GUFFWT(FWMFW dF | (2.60)

iresSy -M7<isM* | g=12,..N

The set of integral equations is enough to uniquely define the unknown surface
currents. As well, since the incident field quantities E "(¥) and H '"C(r) are not
independent, chosing different linear combinations of the sets of equations is possible,
and useful near resonant conditions. For bodies Sy which are perfectly conducting, the
tangential electric field and equivalent magnetic surface currents are zero;
—ﬁOXE(F)=+ﬂ7(F)=O ;¥eS,, yielding two separate sets of equations that can be
solved.

In the integral equation (2.60), the Green’s functions C=? (rr"),q=1.2,..N
satisfy the differential equations (2.57) for the internal regions V,. For homogeneous
scatterers, G (r,r") can be deduced from the primary fields denved in appendix A,
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this being the free space dyadic Green’s function [Harringtonl,p.120]. For complex
inhomogeneous media, an alternative solution is required. In the external plane lay-
ered media V, the appropriate Green’s function GO (r,ri);reR; ,r "eR;, represents
the fields in the region R; due to a source located in the region R;. In the integral
equation (2.60), this corresponds specifically to res, and r'eSy;. The tensor Green’s
function is derived by solving the wave equations (2.57) in each layered region in
terms of the electric and magnetic Hertz potential vectors as

~ijleey, — —.  Hij(em), = — _ _
77y = [Gu(me)((:';)) g,,(mm)((r—f—,ﬂ = i{Hf(?),H{"(F)}(Zﬁl)

2

Q

where 7€ R; and r'e R; for -M~<i,j <M™. The individual elements of the tensor
(2.61) are given as

Gife) (FF) = [vv-ﬁf(?)+k,-2ﬁf(?) ] +f,

y [+
G (Fry = jk aXpy H”‘(r)} ‘e, (2.62)
L J ’
. [ —joe —
GY (Fr) = "kz’VXHf(’ﬂ}-ﬁa
i

Il

GYf™ (Fr) [VV-ﬁ;"(F) + kATI(F) ] Ay,
for all v e (x,y,z) and B e (x,y,2). ﬁf(?) and ﬁ{"(?) are solutions of the set of

wave equations for 7" R;

— —J OW;
[V +,ATIE(F) = Ly

3(r-r")lig
! ‘L FER, , -MTSisM*  (2.63)
[V2+ kATI(F) =

"j(l)Sj’ _
P O(r-r )ﬁﬁ
J

subject to the appropriate boundary conditions at the interfaces between the regions.
Note that the source terms in (2.63) are zero if i#j. A solution to the set of partial
differential equations (2.63) is given in appendix A, along with the resulting Green’s
functions for a layered supporting medium. The formulations presented are valid for
both finite and two-dimensional bounded scattering objects embedded in a layered
medium. For cylindrical guiding structures, the geometry of both the external stratified
medium and the guiding structure are invariant in one dimension. Utilizing the Fourier
transform pair defined in section 2.2 (2.12), the set of surface integral equations (2.60)
can be transformed into a set of contour integral equations as done in (2.13). Thus,
the set of integral equations for cylindrical guiding structures can be solved in the
transformed domain as
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b Py | ek ) By

N M =..
+ 3 % JGIEF )T (5 k) M(F k)Y dF
k=1 j=—M~Cy;

= B Py | EErIT L)

v JGUEE k)T (5 I )M k) dB’J (2.64)
C‘F

i PpeCy ,-M"SisM* |, g=12,.,N , —cock,<oo

where the contour of integration is defined by the generating curve Cep and Ay is the
unit inward normal to the region V, along C and transverse to the z-axis. All fields
and currents have an exp{+/jk,z } dependence in the axial dimension, with the resulting
set of wave equations (2.63) now being defined in two-dimensional form for p’eR ; as

-~

[VZ - (k2D TIE(Pk,) =

550

. [ ; PeR; , ~M <isM* (2.65)
)ﬁﬁ

J
"'j(l)

[VZ - (k2-kD1TIM(Bk,) =

J
where Vp is the transverse differential operator. Solutions to the set of wave equa-
tions in (2.65) are given in appendix A.

2.6. WAVE PROPERTIES OF CYLINDRICAL GUIDED WAVE
STRUCTURES EMBEDDED IN A STRATIFIED MEDIUM

The specific geometries considered in this thesis consist of a planar layered media
(symmetric in two dimensions) in which a guiding wave structure (symmetric in one
dimension) is embedded. One of the symmetry dimensions of the planar media is
chosen to coincide with that of the guiding structure, so that the entire problem
geometry is invariant in one dimension. Chosing the invariant dimension to be along
the z-axis, the fields f (r) and currents g(r ) were determined using the Fourier
transformation as

g(r) = F;l{ g (P.k,) } = F;‘{ [X(P)FIZ ) TUF™ (k)] } (2.66)

Fi(F) = L,-"l{g‘m } = r;l{ LTHZ(PA,)) } (2.67)
where the transform pair I, 1, ~1 was defined in (2.12). Thus, the equivalent currents

induced on the guiding structure surface depends on the excitation by a specified
source F'™ (k,) and the effect of the geometry of the structure, which is represented
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through Z (k;). Both the incident fields due to the source g.(7) as well as the scat-
tered fields due to the surface currents g(7) are determined from the form (2.67).
Each of the problem geometry types is capable of supporting its own class of wave
properties, their combination exhibiting the properties of both as well as some new
ones. These wave properties will present themselves in the transforms (2.66,2.67)
through branch cuts and poles in the complex spectral domain. A detailed discussion
is given in chapter three with regards to thin-wire structures over a single lossy inter-
face [Chang3, Kuester4], as well as in appendix B, which concentrates on the evalua-
tion techniques of these transforms. Also, Examination of the far field behaviour of
the fields will give insight into their wave properties [Collin, Felsen].

The specific wave properties present in the structures studied can be discussed by
examining the spectral domain for each geometry type. In cartesian coordinates, the
field or current quantities can be described as a weighted sum of plane waves having a
dependence exp[+jl;g ‘R]= expl+jk,x +jk,y +jk,z] where | .-’C;g | = ka2+ky2+k22 =k; is
the wavenumber in the medium /. The inverse transformations (2.66), with respect to
k,, will contain several sets of branch cuts as well as a set of poles in the complex k,
plane as shown in figure 2.3. The contributions from the branch cuts arise from two
sources. The first is due to the enforcement of the radiation condition, where the fields
must decay as |R | —»oce. Fora planar layered geometry, this specifies that the fields
must decay in the upper most half-space k. for y — oo, | x | =0, and in the
lower most half-space k_,;- for y — —os, | x | — o, thus defining the irrationals

Im{Vk 2+k = Re{\/kZ-—ijH- 120. This results in the branch cuts in the k, plane
emanating from k, =1k ps+tk_y,- Tepresenting the spectrum of radiated fields.

The remaining branch cuts arise from the TM and TE surface waves which can
be supported by the layered geometry. Representing the fields and currents in terms of
radial waves along the interface as exp[?R R 1= exp{x'ﬁ}cxp[ﬂky y] where
X =Vk2+k?, the surface waves are found for specific values of the radial
wavenumber Ag; ;5=1,2,....§. For each surface wave, the propagation constant in the
direction perpendicular to the layered media is fixed kyps=+j Vg, ~k;2. Since the sur-
face waves must decay in the radial direction | x | —> o0, a set of branch cuts, due to
the irrationals Im[k,p,] = Re[Vk,>-A%, 120, in the k, plane emanating from &, =4Ap,
represents the spectrum of surface waves.

Finally, a set of poles is present in the k, plane, indicated as k? ;p=1,2,..P.
The poles represent the characteristic propagating modes supported by the guiding
wave structure and are found from the homogeneous solutions (fi"" —0) of the two-
dimensional integral equation (2.15), these also being the zeros of zZ (k,) in (2.34)
( ! Z(kp) [ =0). As well as the presence of the surface wave branch cuts and poles on
the proper Riemann surfaces defined for fields decaying as | R | = o0, there may also
be surface wave branch cuts and poles on any of the improper Riemann surfaces.

26



Chapter 2 Guided Wave Structures

Their contributions give rise to leaky wave fields which can be extracted in the far

field analysis of the geometry as discussed in appendix B [Felsen, Tamirl].

Im[k, ] N\

i

» Re[k, ]

Figure 2.3: Branch cuts and poles in the complex &, domain.
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Chapter 3
Excitation of Multiple Conductor
Structures Above a Lossy Half-Space

In this chapter, problems associated with thin-wire multiple conductor systems
(transmission lines) located over a homogeneous lossy earth are studied. This is a spe-
cial case of the general problem of an arbitrary shaped cylindrical structure embedded
in a stratified media, as presented in section 2.5. The study of this special case has
many applications in power transmission, electromagnetic compatibility and remote
sensing studies, and antenna design. To this extent, circular conductors which adhere
to the thin-wire condition, as well as being assumed to be good conductors at all the
frequencies considered will be concentrated on in this chapter. The problem will be
formulated directly from the general solution presented in chapter 2, which was based
on a spectral domain approach. The final solution will thus be in terms of an integral
transform. The excitation of the structure by arbitrarily oriented electric or magnetic
dipole sources located in the upper half-space as well as by delta function voltage
sources located along the conductor axis are considered. This makes the formulation
applicable to many desired excitations. Next, the wave properties supported by this
geometry will be presented, and from this discussion, various methods of approximat-
ing the integral transform will be deduced.

A numerical study of various transmission line geometries for typical earth electr-
ical properties is then presented. Special attention is paid to the characterization of the
discrete mode properties of the structure and to the validity of various far field and
near field approximation methods. Some interesting features regarding additional
discrete modes of propagation, in addition to the traditional quasi-TEM type modes,
are identified, and the use of an improved small-argument approximation for the mode
equation is discussed. As well, conditions are specified under which the discrete mode
and saddle point approximation methods are valid. The latter is especially important
in electromagnetic pulse studies, where the incident field due to the Compton electron
source region is usually modeled as a plane wave,

Since the geometry tackled in this chapter has been under investigation for
decades, many of the specific applications presented have previously been addressed
throughout the literature. The purpose of this work is to present a unified approach to
the solution of all possible cases encountered in wire over half-space problems. To
this extent, all formulations, both exact and approximate, can be traced directly back to
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Maxwell’s equations, allowing their physical significance to be examined. As well, the
approximate methods are compared to the results of the exact solution in all cases.
The properties and techniques developed in this chapter for evaluating the single inter-
face case can then be applied to more general situations, such as multiple layered
media, and arbitrary shaped conductors which do not adhere to the thin-wire condi-
tions.

3.1. INTEGRAL EQUATION FORMULATION

Consider a set of N infinite conductors of arbitrary shape located above and
parallel to a lossy homogeneous interface as shown in figure 3.1. The region y>0 is
considered to be free space, characterized by a permittivity €, and a permeability y,.
The region y<0 is designated as the lossy earth, characterized by a permittivity €, 2
permeability [i,, and a conductivity G,. The N conductor geometries are defined by
the generating contours C, (p); n=1,2,..N which are chosen to be invariant in the z-
dimension, this then creating the surface § = £S,,. The electrical properties of each of
the conductors are characterized by a permittivity €,, a permeability u,,, and a conduc-
tivity ¢,. It is required to determine the induced currents on the transmission line
structure due to a specified excitation, which can be located exterior to the conductors
in the upper medium, or internal to the conductors.

\

Figure 3.1: Transmission line structure above a lossy half-space.
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The solution of the problem is facilitated by solving the wave equation in each
media region (the conductors and upper and lower half-spaces) and satisfying the
boundary conditions at their interfaces. The problem considered is a special case of
the general multiple stratified media geometry formulated in section 2.5, where the
number of layers is given as M7=0 and M =1, with the region i=0 corresponding to
the air medium (e) and the region i=-1 corresponding to the earth medium (g). A
solution can thus be determined from the integral equation form (2.64). If the conduc-
tors of the transmission line structure are all considered to be good conductors
(0,,>we, ), the electric current J on the surface S will dominate the contribution to the
fields. Further, since all the conductors of the structure are located in the upper half-
space, only the Green’s function G,=G2°) is required. A solution can then be deter-
mined in terms of the integral equation (2.60) by matching the tangential fields at the
N conductor surfaces as

. N —
A (Fyx |E(ry + Z |G, (Frrar (3.1)
n=1 5§,

= K% |E=F) + [[G.(FrF)ar| Fes, m=12.N
S
where £, (7) is the unit normal to the surface S at 7. This is simply the electric field
integral equation which must be satisfied over the infinite length of the conductor3!.
?(F) is the induced electric current on the surface of the structure which is to be deter-
mined by solving the integral equation. The Green’s function 62(7,?) is formulated
to take into account the effect of the lossy planar interface and is defined in appendix
A from the fields of an arbitrarily oriented current element (A.86-A.88). The Green’s
function am(F,F’) is simply the homogeneous space Green’s function incorporating
the appropriate electrical characteristics of the mth conductor medium. E;”C(F) is the
incident field defined at the conductor surfaces S due to external sources located in the
upper half-space and E,;"C(F) is the incident field at the conductor surface §,, due to
sources internal to the conductor m. The incident fields are determined from the given
volume source distributions V,, V,,, as

EP(F) = [ GENFFIF (7) + GE(FFMS (F)F  FeS,F eV, (3.2a)

V,
Er(F) = [ GEFFIF (7) + GEFAM (F)F  ;Fes, 7 eV, (3.2b)
Vo

Thus, the incident field is determined through a sum of elementary delta function

3.1 For a general guiding structure consisting of conductors having arbitrary material properties, both electric and
magnetic equivalent surface currents are required to satisfy the continuity of fields at the conductor-supponting media in-
terface. This requirement will partially be fulfilled by satisfying the continuity of the primary fields of the thin-wire
conductor in the half-space problem as discussed in section 3.2.1.
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sources weighted by the current distribution.

As In section 2.5, when the physical geometry of the conductor-half-space prob-
lem is invariant with respect to the z-dimension, a solution to the integral equation can
be obtained in the spectral domain by utilizing the spacial Fourier transform pair

fl) = [f@e ™ ar | f@z)= EIJEJ f ket dk, (3.3)

The integral equation (3.1) can then be solved as a two-dimensional problem as

—_ N = —
R (D) [Eém(ﬁ,kz) + 3 [ G.(5pik,)T (ﬁ:kz)dﬁl}
n=1C,

m

= A (P)x {E‘,:':“(ﬁ,k» + f f?m(ﬁ,b‘:kz)f(ﬁ:kz)dﬁ'} (3.4)
C

s PpeCp 3 m=12,.N | o<k, <oo

where all fields and currents are now assumed to have an axial dependence of the form
e*%27I®  The path of integration in the integral equation (3.4) is now over the gen-

erating curve C.

3.2. THIN-WIRE APPROXIMATION

A solution to the integral equation (3.4) determining the induced surface current
J( P.k;) can be obtained using a standard method of moments approach as described in
section 2.2. In this manner, the current on the structure is expanded in terms of some
chosen basis as

— N —
J(pky) = 22, (P (k,) 3.5)
n=1

where x, (p) is the nth basis function and f;, is a scalar constant to be determined. An
approximate solution is then obtained by defining a suitable inner product and some
testing basis as developed in (2.17-2.22). For the general case of arbitrary shaped con-
ductors, the solution can become complicated considering the evaluation of the Green’s
functions for the half-space. To simplify the solution, the thin-wire approximation is
usually assumed in the majority of engineering problems dealing with wire structures.
In the thin-wire approximation, the azimuthal current distribution around the circumfer-
ence of the conductors is assumed to be uniform and only an axial current component
is considered (azimuthal components are assumed negligible). This approximation is
valid when the transverse dimensions of the conductors are small compared to the
wavelength in the medium in which they are embedded and if the distance from all
other discontinuities (such as the air-earth interface or other conductors) is large com-
pared to each of the conductor dimensions. This approximation has been the basis of
almost all the previous works in solving conductor above half-space problems. Its
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Chapter 3 Excitation of Multiple Conductor Structures

validity has been examined in [Changl, Pogorzelski, Bridges7] and will be the subject
of Chapter 5 of this thesis.

The thin-wire approximation will be applied to the general integral equation by
specifying the expansion functions in (3.5) to be equivalent to the conductor generating
contours x,, (p)o.C,, such that the scalar constants I, =/,% will represent the total axi-
ally directed current in each conductor. Since only an axially directed current is
assumed J (pr=J, (5)?, continuity of only the tangential iy component of the electric
field on the surface S is required and thus only the Green’s function component
Gz (Psp7) 1s used. Using this chosen basis, the integral equation (3.4) can be solved
for the E, component as

. N
<w,u(P), [Eé'zw(ﬁ,kz) + 2 JGezz(b—’ﬁ:kz)xn(El)dﬁ’]n(kz)jl > (3.6)

n=1C,

=<wu(p), [E,i'?(ﬁkz) + | G (B, (57 1, (kz):| > sm=12,..N
C

m

where the basis and testing functions are defined as

Cn Cr
X (P) =w,(P) = = (3.7)
_[db" 2na,,
o

and where the last term in (3.7) has been normalized for the special case of a circular
conductor of radius a,,. Since the basis and weighting function magnitudes are
independent of P, the inner product <w,,, f> will now define the average value of the
quantity f over the transverse dimensions of the conductor m as

< (B> = < (P)of (Biky)> = —— [ 7 (5" &, )dF" 3.8)
ap’c,
Cﬂ‘l

The set of linear equations resulting from (3.6) can be solved in matrix from as

[Z()IK,)] = [KES(R,)>] (3.9)
[Z()] = [Z¥%,) - Z°(k,)] (3.10)
[<E§(kz)>} = [<E;’x’(kz)>} - [<Ezf”‘(kz)>] (3.11)

where [/ (k,)] is the column vector giving the induced current on the conductors. The
impedance matrix (3.10) consists of two terms, an external impedance term [Z¢€ (k, )]
representing the mutual coupling between the conductors (the integral over C, in
(3.6)), and a self impedance term [ZY(k,)] representing the conductors surface
impedance (the integral over C,, in (3.6)). The incident field [<Ezs(kz)>] gives the
contributions from the sources in the external region (upper half-space) and from the
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sources internal to each conductor.

The current induced on the transmission line can now be determined by solving
(3.9) and performing the inverse transform (3.3). Once the currents are determined,
the scattered fields can also be calculated as described in section 2.2 (2.30). Thus, the
induced currents and scattered fields in the upper half-space are given as

[1(z)] = %_Z[zwz)rik Eftk,)>1e™" dk, (3.12)
E,(F) = EJ(¥) + E*(F) (3.13)
ESC%(7 Y = —ZLT zfi;cj G, (P, 11 (P, ()8 dF” €52 i,
= % L (<G, (Pk)SNZ ) TH<ES(h,)>) 5% (3.14)
<G, (Pk,)>, = fclza' J G,(Ppk)8dp (3.15)
Cn

where the elements of the Green’s function G,,,; o {x,y,z} can be deduced from the
fields derived in appendix A (A.82-A.84).

3.2.1. Solution for Multiple Conductor Structures

The specific case of a system of N thin circular conductors will be derived as
shown in figure 3.2, where g, is the radius of the conductors, p,,, is the vector from
the center of the nth conductor to the mth conductor, and ﬁ,:n is the vector from the
nth conductor image to the mth conductor. The derivation of the impedance matrix
elements Z;, (k,) and Z (k,), is accomplished by determining the fields external and
internal to the nth conductor, which carries a current 7, (k,). Assuming an axial depen-
dence of the form e¢*/%?  the fields can be deduced by solving the two-dimensional
wave equation in each of the air and earth half-spaces and inside the conductor region.
These can be determined in terms of potential vectors [Stratton] as

— ~JoU, 1,(k) —
[V2 - (k2-k2)) T = P S(p-pHE ;y>0 , |pl>a,
€
[V2 - (k2-k D) TI8 =0 ;¥ <0 (3.16)
_ —jou, I, k%, ) _
V2~ (k2] TI" = 7 2na P8 5y>0 I5l<a,

(]
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where I1¢, I1€ and IT" are the two-dimensional Hertz vector potentials in the air,
earth and conductor regions, respectively. Here &, = \}mzu,_,ee is the propagation
constant in the air medium, £, = \/G)Zug €,/ WL, O, is the propagation constant in the
ground medium, and &, = \/wzunenﬂ' Wi, T, 1is the propagation constant internal to

the nth conductor. The associated fields, and thus the Green’s functions required for
the integral equation (3.6), are determined from

k2 =
T Vx 11 (3.17)

E=VVII+I , H-=

-
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Figure 3.2: Circular thin-wire N-conductor geometry.
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Chapter 3 Excitation of Multiple Conductor Structures

A solution to (3.16) is obtained using the usual transform techniques and then
satisfying the boundary conditions at the air-earth interface as discussed in appendix A
[Wait3, Wait5, Kuester4], as well as at the air-conductor interface [Stratton]. The
fields for an electric current source over a half-space are derived in appendix A
(A.80-A.85). In the formulation given below, an exact solution of the boundary condi-
tions at the air-conductor interface for the primary fields is derived. Thus, instead of
matching only E, at the conductor surface as done in (3.6), all primary fields of the
general TM case are considered. For the secondary fields (reflected off the air-earth
interface), only coupling from the E, component is assumed important. Thus, many
different conductor types, not just perfect conductors, can be handled with the formula-
tion by specifying an appropriate surface impedance as detailed latter. In the case of
equal air and ground permeabilities (Hg=H,), the external impedance matrix elements
Zz, are determined as

A, [’EZKO(‘Ce a,) —Iy(t,a, )Bm} , m=n

Zonk,) = ) _ (3.18)
A dot,a,) | t2K o(t, | Bpn 1) = B, , M#EH

A = "'jﬂ)ilg 1

" Zﬂikez (Te an )K I(Te an)
B, = [»czfcﬂme | B 1) + £ 2I(x, Pa) = G (1, ,5,;",,1)}
I, Pon) = T—J—e‘y' D+ ym | 4700 = 30) 1 (3.19a)
et LU, + U,

G, Fr) = | S e A LR S PTY (3.19b)

“n?U, + U,

U, =A2+12 | Uy = VA2+12 | RelU, U120

where | P | =V, =2, )2 + 0=y, and | Py | =V, 1,02 + (0, 49, )2 Here
T, = Vk,>~k? and T, = \chz--kg2 are the transverse propagation constants in the air and
earth media, respectively. The real parts of the irrationals RelU,,Ug120 and
Re[z, ,'i:g]EO have been chosen to retain a positive value on the correct Riemann sheet.
These branch cuts have been defined to ensure that the currents and fields decay at
infinity. Iy(z), Ko(z), K(z) are modified Bessel functions of complex argument and
n is the refractive index of the air-earth interface. In the derivation of (3.18), the
terms involving K y(t,, | Pmn | ) are due to the primary field of the current source, and
the terms involving K y(t, |'§:m | ) are due to its image as if the earth were perfectly
conducting. The remaining terms in integral form, (3.19a) and (3.19b), are the correc-
tions due to the imperfectly conducting earth,
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The internal impedance matrix elements Z*, can easily be determined for various
conductor types such as solid conductors, Goubau lines, wrapped conductors, etc., by
specifying the surface impedance for the desired geometry [Wait7, Vance]. For thin
solid conductors the internal impedance matrix is defined as [Stratton]

2 k)= 8 | o, 2 o(t,a,) _ {1 , m=n
ma\vz /S mn 2TEkn2 (t;;an)ll('tnan) 3 mn 0 , MER

(3.20)

where T, = k242 with &, = Voo, e, +jou,c, and [ .¢,,0, are the electrical
parameters characterizing the nth conductor. [4(z), /,(z) are the modified Bessel func-
tions. If a perfect conductor is assumed, so that the integral equation (3.6) is exact,
then the 1/(z,a)X(t,a) term in (3.18) is replaced by /,(t,a) and consequently
Z"=0.

The modified Bessel function terms /y(t,a,,) in (3.18) account for the average
circumferential value of the fields over the conductor surfaces as employed in accor-
dance with the thin-wire approximation. Thus, the quantities in brackets <> in (3.11),
which denoted the average value of the fields over the transverse dimensions of the
conductors, is determined analytically for circular conductors from (3.8) as
[Abramowitz, Harrington1]

L [ 7 Ba)dp = 1qNk2=,2a,)f (B, k) 3.21)

2na,, &

<SPk, =

where a,, is the radius of the mth conductor and p,, is the position at its center. %,
was defined as the wavenumber in the upper half-space. The induced currents are now
given using (3.12) as

[1(z)] = % J (2 0 TP T, NIES Gk, e i, (3.22)
_ Io(Nk2~k2a,) ; m=n
T ;) = 0 L m#En

As defined by (3.2), the incident field [EJ(k,)] is determined from the integration of
the specified volume source distributions V,, V,,. The source region Vs =V, (V,,,
combining the external and internal source regions, produce a current

[1z)] = | EI;E—I [Z (k) I T R I ES(Bg k) 10 aF, (3.23)
Vs —oo

Ef(Booky) = [EJ“ (B By )T (B 7) + G LB s ke, M (5 ,zs>]-é‘

GNP BT (Bo) + G B Bk M (Bt G2
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The Green’s function Ee(f)'m \Ps.k, ) defines the electric field at the center of the mth
conductor p,, due to the sources 7, M® located at (Ps.zg) in V,. The Green’s func-
tions G, (P,,,Ps.k;) perform the same task for sources internal to the mth conductor

V,,. For the system of thin circular conductors considered in this section, the source
terms internal to the conductors represent elementary delta function sources given as
1 ==(ce), — —
Vinlzs) = Ty [G,,E“)( P D5 kIS 2 )2‘} 4 (3.252)
1 =(m) = = s }
Us =——[G Peok MR £ 3.25b
n(Zs) Totay LOm (PrmPeke )M (2) (3.25b)

where V5 (z,) represents a delta function voltage source exciting the mth conductor at
z=z,, and U;fl(zs) represents a delta function current loop source around the periphery
of the mth conductor at z=z,.

3.2.2. VED, VMD and Voltage Source Excitation

In this section the special cases of excitation of the transmission line system by a
vertical electric dipole (VED), vertical magnetic dipole (VMD), and a delta function
voltage source will be considered. All problems can be formulated in terms of these
three cases, as a combination of these source types can be used to represent any
desired excitation. As discussed in appendix A, the VED and VMD sources are the
conventional TM and TE components for which the fields of an arbitrarily oriented
electric or magnetic dipole located exterior to the conductors can be represented.
Sources located interior to the conductors can be modeled as a sum of delta function
voltage sources or current loop sources along the conductor axis as given by (3.25). A
general study of the excitation of a single conductor above a lossy earth was presented
by Kuester et. al. [Kuester2]. They considered these three source types and formulated
the problem in an integral form. The current induced on a transmission line due to a
vertical electric dipole in the presence of a lossy half-space has been previously formu-
lated by Wait and others [Wait8, Wait9, Olsend], also in an integral form. Calculated
results for the special case of a perfectly conducting earth have been given for pur-
poses of determining the depolarizing effects of transmission lines [Hill], and results
for a two conductor system above a perfectly conducting earth were presented by
Olsen [Olsen6]. The exact solution of the latter case was compared to two limiting
techniques; the steepest descent approximation and the transmission line approxima-
tion. For the case of a single wire over a lossy half-space, Olsen and Usta also used
the steepest descent approximation [Olsend]. The excitation of an infinite thin-wire
transmission line located in free space by a delta function voltage source has been stu-
died by numerous researchers [Schelkunoffl, Shen2], with the excitation of the
transmission line when located over a lossy half-space being examined by Chang and
Olsen [Chang3]. In the latter case, an examination of the contributions of the modal
components to the induced currents and to the input impedance was made. The use of
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the leaky wave modes to represent the radiated fields of a transmission line excited by
a delta function source has also been considered [Carpentierl, Carpentier3, Leviatan].

VED J,§ |
y Vo My (s ys 25)
A .
B |
Rm " - !
2 Tm/ F
|
/5/
Ein( O
/--/ {(%na)
m© s l

Figure 3.3: VED/VMD excitation of a transmission line.

Consider the current induced on a transmission line due to a VED or VMD as
shown in figure 3.3. The dipole is located in the upper half-space at (x,,y,,z;), with a
moment Jyﬁ for the VED, and Myj’\ for the VMD. The axial component of the
imposed electric field [Ezs(kz)] at the conductors is given in the spectral domain, as
formulated in appendix A (A.86,A.89), as

—J ou o) TeOm=s)
ES. (k) = T;Jy(ﬂkz){_e_lgz_ls

e

Ky, 17, )

T m+ s X % —jk.z
- ___e@ Y )K1(‘Ce |7 [) = n? aa—yG('te,r ):l eht (3.26)

| F; | Y=V

T, (X, —x;) _
Epky) = %My {*‘WKl(’te 7. )
T (X, =X, ) . 5 3 P itz
Y X=X,
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for the VED and VMD, respectively. The distances | on | =\/(xm ~x )2+ (¥, =, )? and

i?,i ] =\./():,,,--xs)2+(y,,j,1+ys)2 are defined for the mth conductor of the transmission
line which is located at (x,,,y,,). Ki(z) and /(z) are modified Bessel functions and
the functions G(z, 7 ) and J(t, 7 ) were previously defined by (3.19). The axial
component of the electric field due to an arbitrarily oriented electric or magnetic dipole
source can then be determined as a combination of (3.26,3.27) by specifying Jy and
M, using the transformations defined in appendix A (A.32).

The evaluation of the fields of a dipole source over a lossy half-space has
received much attention in the literature [Stratton, Felsen, Kuester3, Rahmat-Samii,
Parhami2], with the work of Sommerfeld [Sommerfeld2, Sommerfeld3] and Banos
[Banos] probably being the most referred to. The exact solution requires the evalua-
tion of infinite integrals, these being described to some degree in appendix B. To sim-
plify these integrals, many adequate approximation techniques have also been formu-
lated for the near field and the far field regions [Bannister4, Wait3, King5, Felsen].

Figure 3.4: Delta function voltage source excitation.

Next, the excitation of the transmission line by a delta function voltage source
[vs (z;)] will be considered as shown in figure 3.4. The axial components of the
imposed electric field [ES (k,)] in this case is given from (3.3) as

VS(z,) = — [ <EjM(z)>, 8(z~2,)dz

. 1 .
Enth) = ~Eppllle) = 7 Voe)e (3.28)
er'm

where [V5 (z;)] defines the magnitudes of the voltage sources on the N conductors at
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the axial location z,. Note that the input impedance for the structure can also be
determined from the current at the source point [I(z=z)], as calculated using (3.22),
such that

[z=z;)] = 1Y, 11V (z0)]
¥l =(2p 1" = 5= [ 1201 (329)

where the diagonal terms in [Z;,] give the self impedance for each conductor, and the
off diagonal terms give the mutual impedances between conductors.

The scattered fields for the thin-wire structure can be determined from (3.14) as
— _ 1 7 — _ = . _
ES%(7) = 5 [ (<G, (B SUZ ) U T ) W ES K, ) Je 20, (3.30)

where the components of [<G_ﬂez(5,kz )>] can be determined from the fields (3.17) and
the Green’s functions derived in appendix A, in a similar manner as [Z(k,)] was
derived. Thus, the components of the scattered fields ES°¥(7) are given from

. T, (x—x") _
<Gexz(p=kz)>m = Am(+jkz) {'—T—___Kl('te ’ Pp [ )
Pp I
T, (x—x") _x o o
~ =K. | pp 1)~ =G, 1pp ) (3.31)
I Pp ] ox
_ .-y _ T, +y") _
<Geyz(p’kz)>m = Am(+jkz) Ii—T_.—mKl(’te I Pp I ) = —(ZT_KI(Te I Pp l )
Pp I | b |

- —%Gme, 155 1)+ k43¢5, 155 1) =G, |95 | >dy} (3.32)

<Gezz (5’k2)>m = Am [Tez[KO(Te ’ED | )"—KO(Te IE; | )]

e N PR R TOR T4 DY kS
—j W,
omk?
IED I = \/(X"‘ m)2+(y_ym)2 s Lb—D = tarrI {(y_ym )/(x—xm)]

1
(te i )K l(Te A )

A =

m

155 | = N5, 4007 . 155 = [ or4,0000,) |

where the functions J(t,,p) and G(t,,p) were defined in (3.19) as infinite integrals.
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3.3. WAVE PROPERTIES AND LIMITING CASES

As discussed in section 2.6, the inverse transformation (3.22) determining the
conductor currents on the structure will contain several sets of branch cuts as well as a
set of poles located in the &, plane as shown in figure 3.5 (even though only the upper
half of the complex &, plane is shown, the poles and branch cuts appear as complex
pairs, with the corresponding counterparts symmetrically located about the origin).
The poles, indicated as kf; p=1,2,..., P, arise from the singularities of the impedance
matrix [Z(k,)], which can be determined from the solution of the mode equation
det[Z (k,)] = | [z (k,)] | =0. Their contribution to the integral transform represents a
set of discrete propagating modes for the structure. These currents have fields which
decay exponentially in the axial direction from the source as exp(+jk? | z—zg 1), where
Im[%,]20 is defined when the contour of integration is deformed from the real axis to
encompass the poles. The associated fields in the upper half-space for the discrete
modes decay asymptotically in the radial direction away from the conductor axis as

e TP ikl 1=, | N PR 2

€ » pr = VX=X )Y+ -y") (3.34)
N

where pr is the transverse direction to the conductor axis, located at (x”,y"), and
PNk -k F Re[tf]20 is the respective transverse propagation constant. For lossy
structures, energy propagates into the conductors if they are finitely conducting and
into the lossy half-space. The location of the poles is highly dependent on the
geometry of the transmission line structure.

Im[k, ]

+k

kf . p=N+1,.P

|
|
|
|
: /—[:; p=12,.N

Figure 3.5: Location of the P poles and the three branch cuts
in the upper half of the complex &, plane.
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The contribution due to the branch cuts appearing in the &, plane arise from two
sources. The first is due to the requirement on the irrationals Re{Ue,Ug]ZO defined so
that the fields decay as | y | —see in the upper and lower half-spaces. These branch
cuts, emanating from the points k, =%k, +k, , represent a spectrum of modes radiating
into the air and earth half-spaces, respectively. These fields decay asymptotically as

—Tay pT .
[ 1g)eaetitleal g (3.35)

Coe pr

RAD

where Re['tg,g]=Re[‘\ik22—-kf,g]20 defines the branch cut I'p,pnes. Note that if the
lower half-space is a good conductor, then the corresponding branch point
*k, = Wi, G, is located far off the real axis and the contribution to the current from
this radiation mode is negligible. Secondly, an additional branch cut emanating from
the branch point kz=ik23=_?u3=ikg/ Vn2+1, arises from the singularity in the denomi-
nator of the integral G(t, ,5*) in (3.19b). This branch cut represents a spectrum of
TM surface waves supported by the interface and results from the requirement that the
fields must decay as | x | —eo. They can be related to the Zenneck surface wave
resulting from a dipole source over a half-space®? [Zenneck]. The respective fields
for the surface wave behaves asymptotically as

j I(kz)e_ s Ly ey | 4k | x—x | e-t-jkz [z-z, ldkz (3.36)
FSUR

where U,p=NAg—k2=+jk,/Nn2+1 is the propagation constant of the surface wave in
the direction perpendicular to the interface. Az (and thus U,z ) are strictly functions of
only the electrical properties of the two half-spaces. The surface wave pole has no
cut-off frequency and is thus always present. Imlk,p ]=Re[’\!k22—7£§]20 defines the
branch cut I'gyz and the branch point +k,3 in the complex &, plane. The continuous
mode spectra associated with the surface wave and radiation branch cuts are not
affected strongly by the conductor geometry, and may have a large contribution to the
currents under certain conditions.

Further examination of the discrete modes, shows that the number of poles for the
structure may be greater than the number of conductors (P2N). N of the discrete
modes arise from the solutions of | [Z (k)] | =0 in the region where typically all the
terms of the matrix are slowly varying functions of the argument k,. These can be
considered as the dominant modes of the structure and are usually the major

3.2 The Zenneck surface wave is the pole contribution extracted from the transform (3.22) [Sommerfeld3, Stratton],
and is a solution of the wave equation. This should not be confused with Norton's far field surface wave term which is
distinct from the Zenneck surface wave [Norton, Wait3]. What Norton identified as the surface wave part is the addi-
tional correction terms to the standard geometrical optics approximation arising when the steepest descent path crosses
the k, branch cut and from the contrbution of the TM surface wave pole which is in close proximity to the saddle
point at low frequencies. The recent results presented by King [King$, Xing6] for the fields of dipole sources near an
interface are based on Norton's work,
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contribution to the current. As shown in figure 3.5, the remaining P-N solutions occur
near the singularity in the impedance matrix due to the TM surface wave pole sup-
ported by the lossy half-space, which was identified by the branch point +£,p in the &,
plane. Excitation of these modes is usually very small for typical sources, and thus
only the first N modes are usually important. Since the poles are located near +k,p, a
close approximation of the asymptotic behavior of the fields for these modes is given
as

e—TfPr

Vpr

where t72Vk3~k2=U,5. At low frequencies, k,p is found near %k, and thus, the
modes are similar to plane waves propagating in the axial direction with a magnitude
decaying as \/?)? in the transverse direction, the transverse exponential decay being
very small. Excitation of modes of this type are difficult to realize for typical sources,
and thus usually only the first N discrete propagating modes are important. However,
as will be seen in latter sections, the contribution of these modes becomes important at
higher frequencies and in other special cases.

ebelezl N P (3.37)

The path of integration in the complex £, plane can be deformed to separate the
contributions due to each of the poles and branch cuts giving some insight to the
behavior of the structure currents. The integral transform (3.22) can thus be con-
structed as a sum of discrete propagating modes as well as a spectrum of continuous
modes as

[Kz)] =p>§1[1p(z>} + [gap+(2) + Iggpe(2)] + [Igpp (2)] (3.38)
[, ()] = +) lim {(kz ~P)Z GV T R ES (kY 125 ] } (3.39)
[Trape(@)] = ﬁr | Lz, T Rk ES R, e 272 g, (3.40)
(Tspp(z)] = Z—;FI R [Z e 1T e IS (ke 122 g, (3.41)

where I'p,p.s are the branch cuts emanating from +k, 1g @nd Isyp are the branch cuts
emanating from +k,5. The contribution from some of the integral terms in (3.38) is
negligible in many problems. When the earth behaves as a good conductor, the contri-
bution to the current due to the integral along the I'p,ps branch cut can be neglected
[Chang3]. The dominance of the poles or remaining branch cuts then depends on the
electrical distance of the source from the transmission line as well as the electrical
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distance from the source to the observation point along the axis of the structure. Two
limiting cases which are often used in practical applications will be examined in the
next sections. In one extreme, when the source is electrically near the structure, the
commonly utilized transmission line approximation can be used. In the other extreme,
when the source is electrically far from the structure, the geometrical optics approxi-
mation will predominate (the source can be modeled as an incident plane wave).

3.3.1. Transmission Line Approximation

In this section, the formulation of the structure currents using a transmission line
theory will be presented. The theory assumes that the currents on the transmission line
structure can be completely represented by only the discrete mode contributions of
(3.38). These modes take the form of exponential traveling waves Lexp(tjkfz },
where k7 is one of the possible characteristic propagating modes of the structure. The
representation of the current in this manner neglects the radiation and surface wave
contributions, as given by the branch cuts present in the complete solution. The
separate contributions to the structure currents due to the branch cuts and the discrete
modes has been studied by Chang and Olsen [Chang3] and the properties of the
discrete modes has also been extensively examined [Kuester4, Efthymiadis, Olsens,
Courbet, Bridges3]. It is expected that the discrete modes will be the dominant contri-
bution to the current when the source is electrically near the transmission line. How-
ever, in the immediate neighborhood of the source as well as at extremely large dis-
tances, the radiation and surface wave spectra are expected to be significant and should
not in general be neglected, since the continuous mode spectra decays algebraically
whereas the discrete modes decay as exp(+jk? | z—z, ), and Imfk?] can be substan-
tially small. The use of only the discrete modes to represent the structure currents also
allows a much simplified transmission line approach to the solution of (3.22) and the
formulation of many antenna and scattering problems.

In this section the transmission line approximation is derived from the exact form
given by (3.22). This approach is different from that usually taken in the literature
where a two-dimensional form to the geometry and thus the wave equation (3.16) is
assumed from the start. In utilizing the transmission line approach, the current on the
structure is generated by an infinite set of delta function voltage sources distributed
along the length of the conductors, with the magnitude of the sources proportional to
the axial component of the imposed electric field. The current due to each localized
source is then assumed to be of exponential form only, the branch cut contributions
being neglected. The formulation of the problem in this manner, directly from (3.22),
can be developed by utilizing the convolution theorem to represent the source as

ES)1= [ IES(z)1 ) 8z=2,)e 7 dz az, (3.42)
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Thus, using the expression (3.22) for the current and replacing the source term using
(3.42),

o

(1)1 = [ [Kz, 2) ILES(z,)] dz, (3.43)

—c0

[1(z, 2] = —21— J1Z G Tl 15 g, (3.44)
Here [I(z, z;)] is the current at the observation point z due to a delta function voltage
source of strength [E S(z )] located at z;. This is now equivalent to the form
developed for a delta function voltage source excitation, where now the sources are
weighted by the axial component of the imposed electric field. The current formulated
as in (3.43,3.44) is still an exact solution even though its evaluation in this form would
be inappropriate.

In utilizing the transmission line approximation, we are only concerned with the
contribution to the structure currents due to the discrete modes as defined in (3.39).
The properties of these modes are characterized by the propagation constants kP,
p=L2,., P and by the magnitude of their associated residue contribution, which deter-
mines their relative excitation by a given source. Considering the contribution to the
currents due to the discrete modes only, the total induced current on the structure is
derived as

[Iz)] = JJZ, lm}g {(k ~kP)Z (e, 17U (K, e & o=z, | }[ Ej(z,)] dz, (3.45)
— p=1fa?

This form for the induced currents is quite different from the discrete mode con-
tribution considered in (3.39). In (3.45), the imposed source [Ef(zs )] does nor have to
behave as the discrete modes, but can give an exact representation of the source fields.
Only the resulting current excited by the distributed source functions along the conduc-
tor axis are assumed to be dominated by the discrete mode contribution. Thus, in this
form there are no restrictions placed on the source function. In the form (3.39), the
source must be in the near field region for the discrete mode contribution to be dom-
inant.

3.3.2. Modal Formulation of the Induced Currents

As discussed in section 3.3, the currents on the transmission line can be
represented in terms of the characteristic modal current quantities for the structure.
Unlike the representation in terms of the total conductor currents, the modal currents
are orthogonal, with the relative distribution of currents and resulting field
configuration being scale invariant with respect to the amplitude of a particular mode.
A transformation, allowing the description of the currents in terms of modal quantities,
is determined from the eigenvectors of the impedance matrix as
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kzli_r)rllczp{[Z(kz)}[vP]} =0 , p=12,.,P (3.46)
e T R e R =B B I P R P
vP=cof (ZUDYND  ,  qP= C—Ofﬂ—@@/zvg P =12, N

T cof {Z (kP))
N 2
NP = [Z%"J
i=1

Here [v?]iy is the eigenvector corresponding to the pth eigenvalue kf of the
impedance matrix [Z(k,)]. The transformation matrix [Tly,p is formed from the
resulting P eigenvectors. The function cofj; {Z } gives the cofactor of the ijth element
of Z, and Nf, Nf are normalization constants. Also note that if Z (k) is symmetric
(as in the case when all conductors are the same, or if the quasi-TEM assumption is
used), then [Q1'=[TT and accordingly N§=N§. Note that the number of discrete
modes is not necessarily equal to the number of conductors P=N and thus, [Q] and
[T] are not diagonal in general, with rank[Z,]>rank[Z (k?)]. Using the developed
transformations, the transmission line currents (3.44) can be formulated in terms of
modal quantities as

(Mz,2,)} = [T 12Zc 17D .z Q 1T (D) IESz)]

Z
I
e
M=
L)
At
| IS |
oy
[ %)

={TJi(z)] (3.48)
[1z)] = [2Z¢ 17D (z,2,) l[<e, (%) >] (3.49)
N —
<e,(2,)>, = X0, 1 (kDES(z) ; p=12,..,P (3.50)
j=1
RCAEE i=j=p
Dij(z’ ZS) = {0 . I¢j (351)
j 1 9
2 Vg 9%, {IZ(kz)l } »
Zij =ZCp = { j N N 0 : L
=5 X Tp) Y Tip) 2 &kf) s i=j=p (3.52)
2q=1 k=1 akz
0  L#]

where the second equality in (3.52) for Zc, is valid only if Z(k,) is symmetric
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Q1 '=[T1"). Here [D(z, zg)] and [Z¢] are diagonal matrices describing the propa-
gation and impedance characteristics, respectively, of the structure. The vectors [i(z)]
and [<e,>] are the strengths of the modal currents and exciting fields, respectively.
The eigenvector v# gives the distribution of current between the N conductors for the
pth mode, and ¢ gives the corresponding field distribution. Finally, the resulting
impedance matrix for the individual conductors can be formed in terms of the discrete
modes as

[Wz=z,)]=2[Y e NVS(z,)2]

Wehar 1= Zgpee TH = (TN ZeTHQ T (3.53)

where [I(z=z;)] is the current at the source location driven by the set of delta function
voltage sources [VS (z;)] as described in section 3.2.2. When the discrete modes dom-
Inate the currents, the characteristic impedance matrix (3.53) is a good approximation
to the input impedance [Z;,]= 2[Z,,, ], where [Z;,] was defined using the complete
spectral transform (3.29).

3.3.3. Quasi-TEM Approximation

Most studies determining the induced currents on transmission lines when the
dimensions of the structure are much less than the free space wavelength rely mainly
on the use of a quasi-TEM transmission line theory. The theory is an approximation
to the exact discrete mode theory presented in sections 3.3.1 and 3.3.2, and still
assumes that the currents on the transmission line structure take the form of exponen-
tial traveling waves I exp{xjkfz }. In the quasi-TEM theory, however, the propagation
constants are determined from the transmission line circuit parameters [Kingl, Shen3,
King4, Sunde, Chen], the approach being basically the same as that obtained by Car-
son and Pollaczek in 1926 [Carson, Pollaczek]. The per unit length circuit parameters
are derived by applying the TEM assumption directly to the wave equation (setting
7,=0in (3.16)). The validity of this approximation has been studied [Kingl, Sorbello,
Bridges3, Carpentier2, Degauquel], and the basic observations for reliable application
of the quasi-TEM transmission line approach is that the dimensions of the transmission
line structure should be much less than the wavelength of the medium in which it is
embedded ( | Prn N ﬁ,:m [ <, ) as well as the refractive index at the air-earth inter-
face should be large ( | n | >1).

The formulation presented in the last two sections can appropriately be denoted as
a transmission line solution since only the discrete exponential current modes are used
to represent the current on the structure. The values used for the propagation constants
k? are solutions of | (Z (k)] | =0 as determined using the exact expressions (3.18-3.20)
and thus, the resulting fields are solutions of the wave equation (3.16). The solution of
the mode equation in this form can be considered a generalized eigenvalue problem
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where an explicit expression can not be derived since the elements are complicated
functions of the unknown eigenvalues and as such is difficult to evaluate. A useful
approach in viewing the problem is to cast the mode equation into the form of a gen-
eralized transmission line equation

- 2116 = [(FMIVE)] (3.542)

- 21V = [Z](16)] (3.540)

[z = [z ] = Gy 1] =0 (3.55)
1 1

YS}!)—I — .
( o —joe,2n (T,a,)K(T,a,)

' [K o | B 1) =To(T,0,)K oz, | B [)- G, ,ﬁ;’mn] (3.56)

J oL, 1
2n (t.a,)K(t.a,)

Kot 1B Do Koz, | T D=3 G57)

ser 7w _
Zmn - Zmn

where Z,¢ are the series impedance and Y are the shunt admittance terms for the
structure and [(jk, )4 is diagonal. A common approach to simplifying the eigenvalue
problem is to assume that the axial variation of the fields is equal to the free space
value (k,=k,) when evaluating the mode equation. In this manner, the fields in the
upper half-space will be solutions of the two-dimensional Laplace equation. This
approach is denoted as the quasi-TEM transmission line approximation and is reason-
able if the terms J, G, and K involved in the calculation of the matrix elements in
(3.55) are slowly varying functions of their argument (t, ='\Jk22—k32) and the axial pro-
pagation constant for the structure is near £,. This approximation is the one utilized
by Carson [Carson] and is valid at low frequencies and high earth conductivities, but
has been even used for studies in the higher frequency regions. Applying this
approach by assuming 1, —0 in the arguments of 7, Ky and J in (3.56,3.57), an expli-
cit expression for the transmission line parameters will then be given as

1 | B |
¥yl = — In | — (3.58)
o —jwe,2m [ D, |
Jjou | B | .
AMENANE _“2; In To |+ %P (3.59)
mn
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+.j (OLJ. JO(kn an)
AR [Zm:z k" le(k 5 (3.60)
non nn
G, =00m) =0 , J@,=05m) = J.(Pron)
Je (P = II[u—“M2—(ﬂ2—1)]e_”k'(y”+y")cos(uke x,-x, |)du (3.61)
h™—l

The solution of (3.55) under the quasi-TEM assumption is now a standard eigenvalue
problem which yields the values of the propagation constants. The logarithmic terms
in (3.58) and (3.59) represent the field due to the conductor and its image under the
conditions of a perfectly conducting earth. The integral term JC(E,;H) represents the
conduction losses in the earth and the contribution of the integral G(z, ,E;n ), represent-
ing displacement current losses in the earth, has been neglected completely. A good
approximation to the terms of the shunt admittance matrix is thus obtained using image
theory under static conditions. Many expressions for evaluating the integral Jc(b‘;n)
are found in the literature as discussed in appendix B. Once the transmission line
parameters are determined using the quasi-TEM approximation, the induced currents
on the structure can be found through (3.43,3.48). Note that the quasi-TEM approxi-
mation yields only N solutions to the mode equation (3.55).

3.3.4. Steepest Descent Evaluation

When the source region is located electrically far from the transmission line, a
geometrical optics approximation can be used to model the source. The approximation
is applied by considering the steepest descent contribution from the source terms in the
integral (3.22) derived in section 3.2.1. In this section, elementary vertical electric
dipole (VED) and vertical magnetic dipole (VMD) sources will only be considered
since, as discussed in appendix A, a combination of these two source types can be
used to represent any possible source. It will also be shown that the saddle point con-
tribution of the integral transform yields the plane wave incident model for the source.
This result is of importance in many engineering applications for the modeling of
source interactions with transmission lines. Usta and Olsen used the steepest descent
approximation to determine the current induced on a single wire above a lossy inter-
face at non-grazing angles of incidence [Olsen4]. The validity of the approximation in
the grazing angle region was examined by studying the case of a two wire system over
a perfectly conducting earth [Olsen6], and by a single wire system over a lossy earth
[Bridges6]. The validity of modeling an incident electromagnetic pulse as an incident
plane wave was specifically considered in the latter case. The radiated fields in the
VHE/UHF region from corona discharge sources (modeled as VED sources at the con-
ductor surfaces) was also recently determined using a steepest descent approach
[Olsen8].
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Consider the current induced on a transmission line due to a VED or VMD as
shown in figure 3.6. Similar to the case discussed in section 3.2.2, the dipole is
located in the upper half-space at (x;,y;,z,), with a moment Jy 9, Myj}, respectively.
The distance r,=Vx2+y.2 is the transverse distance from the dipole to the z-axis and
R, =\/xs2+y32+(z —z,)? is the distance from the dipole to some observation point along
the z-axis. The angles 0,y; 0<6 <+x/2, —n< Y<+r define the incident angle the
source makes with the conductor axis and the earth. The angles ¢p=tan"!(y,/x,) and
Y= tan“f(rs {(z—z,)) are used for defining the steepest descent paths (cosBcosy=cosy).

VED Jy§
VMO My§ 4 (Xs\jszs)

P-4
—
—— —
T

Figure 3.6: Steepest descent coordinates for VED/VMD excitation.

The exact expression for the induced current is derived using the general transform
(3.22), where the axial component of the imposed electric field [ES(k,)] is given in the
spectral domain as formulated in appendix A and from (3.26,3.27) as

+j oL 32 7| o Ye o] e Ueomty) | .
S hd € +jkx(xm x.!) jk,z,
= + 1, dk
Ezm(kz) zﬂ:kez y azay—-[ol: 2Ue reg 2Ue e xe
—j (Dp'e Te (ym _ys) .
= —J, (k)  ———K(z, | 7, )
2’3?/622 b z ] 7 l INve | im
T + . _ .
- ————"’@ﬂ yS)Kl(Te 7 |~ nZiG(ee,r*)] e MB(3.62)
| T | oy Y=¥m
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for a VED and VMD, respectively. The distances |?m | =\/(xm—-xs)2+(y,,,—ys)2 and
l?:, | =\f(xm—xs)2+(ym+ys)2 are defined for the mth conductor of the transmission
line which is located at (x,,,y,). K(z) and Iy(z) are modified Bessel functions and
the functions G(x, ,7'“*) and J(t, ,F*) were previously defined by (3.19).

If the dipole is located electrically far from the transmission line, and far from the
air-earth interface, the imposed electric field due to the VED or VMD can be deter-
mined through the method of steepest descent [Olsen4, Bridges6]. Unlike the usual
steepest descent evaluation of these integrals [Felsen, Collin], however, the evaluation
of (3.22) requires a two step approach, one for the k, spectral domain and one for the
k, spectral domain. Also, the contribution of any branch cuts and surface wave poles
must be considered. The two spectral domains considered are shown in figure 3.7,
with the steepest descent paths given for various angles of incidence ¢,y. The associ-
ated saddle points are defined from the formulation developed in appendix B as

k,s = +k,cosy (3.64a)
kys = +jT,co80 = +k, sinycosd (3.64b)

The radiation branch cuts in the two spectral domains are defined from the branch
points *k,, tk, in the k, plane and *j7,, %jt, in the k. plane. The surface wave
branch cut in the &, plane is defined by the branch point k,p=+Ag=+k,/Nn2+1. The

position of the associated surface wave pole kg =VAZ—k,? is shown in the k, plane as
evaluated for various values of the saddle point k,s, where

2 2 . HZ*COIZY

ky }kx"kzj‘ = VAf —k5 = +k, siny | ————L

12

(3.65)

n+1

The guided wave poles k7 are present only in the k, plane. Note these poles are due
to the singularities in the impedance matrix [Z (k,)] and not the source {EZS(IcZ )
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Figure 3.7a: Steepest descent paths in the complex &, plane for various
incident angles 7.
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Figure 3.7b: Steepest descent paths in the complex &, plane for y=45° and
various angles ¢. The possible locations of the pole &,p are
also given.
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Examination of the steepest descent paths in the two complex spectral domains,
as given in figure 3.7, shows that either of the lower half-space radiation branch cuts
tk, or £jt, may be crossed for grazing angles of incidence with respect to the earth
$,Yy—=0 (or 80 since sinB=sindsiny). The contribution from their inclusion is in the
form of a lateral wave and can be determined from an evaluation at the branch point
[Felsen]. The surface wave branch point k,p is never crossed in the complex &, plane
for all angles of incidence 7y (since Re[k,]>Rel[k,5] for all possible earth electrical pro-
perties), whereas the associated surface wave pole k5 in the complex %, plane moves
to a location that can be crossed as yv—0,0—0. Even though this branch cut is never
crossed in the k, plane, its effect on the saddle point contribution is considerable due
to its close proximity, especially at low frequencies. Its contribution is in the form of
a surface wave that can be extracted by adding the effect of the pole contribution to
the saddle point {Felsen]. Finally, it is also possible to excite the guided wave modes
kP for grazing angles of incidence with respect to the conductor axis y—0, as also

shown in figure 3.7 33

The first step in the steepest descent solution of (3.22) requires the steepest des-
cent evaluation of the integrals (3.62) and (3.63) in the &, plane. Under the far field
conditions | Telm |, | ‘re'F,: | > 1, where t,=Vk,>~k2 is the transverse wave number,
the modified Bessel function terms K(z) can be evaluated using their asymptotic
expressions [Abramowitz]. There are no surface wave poles or branch cuts present for
these terms. The remaining integral terms can be evaluated using their steepest des-
cent contributions as outlined in appendix B, these containing the surface wave and

branch cut contributions. In the far field it will be assumed that |7, |=| ?,: ! =r,
and Oy =) | 7on | = G493 | 7 | = =sing, Gt W17 | = (=, | 7, | = —c050.

This assumption is valid at non-grazing angles ¢#0 and approaches the plane wave
incidence case as lrs | —eo. Thus, the saddle point confribution to the remaining
terms in (3.62) and (3.63) can be calculated so that the asymptotic evaluation of the
incident fields is given by

_j WL, . l: —y._si
s — T (=¥ Sin—x,, cosd)
ES,(k,) = Eiy J (k) e

: A , T
- RE e_‘T. (+Ym SiNG—x, 005¢):| 2re sin¢e Tl (366)

£

3.3 A set of poles, located on the improper Riemann sheet Re[7, J<0, also exist in the complex k, plane [Carpen-
tier3]. Since the steepest descent path crosses over onto the improper Riemann sheet, for grazing angles of incidence
with respect to the conductor axis Y—0, these poles may also be crossed leading to leaky wave mode contributions to
the current. The use of the leaky wave pole contributions to represent the radiation branch cut spectra has been exam-
ined by Leviatan for the case of a wire located in free space {Leviatan]. Poles may also exist on the impreper Riemann
surface with respect to the surface wave branch cut as will be demonstrated in the results presented in section 3.4.1.
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for a VED and VMD, respectively. Note that the term [17 (k;)] and all the terms in the
impedance matrix [Z(k,)] in (3.22) can not be evaluated in the same manner since
their arguments are not in the asymptotic region. The surface wave poles and radia-
tion branch cut contributions when ¢—0 are not included in (3.66,3.67).

The next step in the solution requires the steepest descent evaluation of (3.22) in
the k, plane, with the excitation {Ef(kz )] replaced by its asymptotic form (3.66,3.67).
Under the far field condition | £,R, | > 1, the induced current can then be determined
using the method of steepest descent as

[Iz)] = [Z(k,cosy) 171 [1 (k. cosy) ] [E/@B,y)] (3.68)
E/e@,y) = {[E gSinBcosy+E wsinw]e“ij‘ (=Y sin&-, cosBsiny]

~ [E T sinBcosy—E Ty simy] e ke [Fmsind=xn cosbsiny] } (3.69)

n2sin8—Vn 2—cos20 S sinf~Vrn2—cos?
n2sin8+Vn2—cos?® "
where I'z and I'yy are the plane wave TM and TE Fresnel reflection coefficients at the
air-earth interface. Note that (3.68) is the same expression as that which would have
been derived for an assumed incident plane wave, except the incident field £ o £
now modified by the far field factor of the VED,VMD dipoles in free space

FE =
sin8+\/n 2_cos?0

wlS

+jZ ok, cosO | kR,
8= [ i J y | _ji:— e (3703)
+ik, cosB | +jkR
E - M kR, 3.70b
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3.4. A STUDY OF THIN-WIRE STRUCTURES

The following sections present and discuss numerical results for the excitation of
and wave propagation along a system of conductors located over a lossy half-space.
As explained in section 3.3, the total current induced on the system of conductors due
to a finite source will consist of a sum of discrete propagating modes as well as contri-
butions from a continuous spectrum of radiating modes and a spectrum of surface
wave modes. Under limiting conditions, many useful approximations to the exact
inverse transform solution (3.22), which incorporates all these contributions, can be
utilized. The dominance of the poles or branch cuts depends on the electrical distance
of the source from the transmission line as well as the electrical distance from the
source to the observation point along the axis of the structure. In one extreme, when
the source is electrically near the structure, a transmission line approach can be used,
where the pole contributions are dominant. In the other extreme, when the source is
electrically far from the structure, a geometrical optics approximation can be used (the
source can be modeled as an incident plane wave), where the upper half-space radia-
tion branch cut will provide the dominant contribution. The next section will briefly
characterize the discrete modes of propagation which a multiple thin-wire transmission
line can support. This will then be followed by an examination of the validity of the
transmission line and plane wave incidence models. For all the cases discussed, partic-
ular attention is paid to the validity of the quasi-TEM approximation.

3.4.1. Properties of Discrete Modes

This section is concerned with accurately characterizing the discrete propagating
modes supported by a thin-wire transmission line structure. They are considered to be
the dominant contributions to the current when the source is electrically near the
transmission line and when the structure dimensions are small compared to the free
space wavelength. The use of only the discrete modes to represent the currents allows
a much simplified transmission line approach to the formulation of many antenna and
scattering problems, and thus the determination and characterization of the modes as
well as conditions for which approximating formulas are valid is important. The solu-
tion of the discrete modes of propagation along a multiple conductor transmission line
over a lossy earth, based on the telegrapher’s equations, has been successfully applied
in power engineering problems for many decades. In 1926, Carson [Carson] took the
finite conductivity of the earth into account by applying Maxwell’s equations as well
as some circuit concepts. This quasi-static theory, however, is valid only at low fre-
quencies where distances are small compared to the free space wavelength and the
earth conductivity is high enough so that displacement currents can be neglected. An
exact formulation of the boundary value problem is obtained by using Maxwell’s equa-
tions and satisfying the boundary condition at the air-earth interface, as presented in
section 3.2.1 [Wait5, dosSantos]. The resulting formulation however, requires the
solution of the Sommerfeld type Fourier integrals (3.19), whose accurate evaluation is
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difficult. Recent investigations [Chang3, Olsen5] have given various solutions using
numerical or analytical techniques, however, most of these studies have been aimed at
single conductor systems only. Wait [Wait9] formulated the problem of a multiple
conductor system over a layered earth and gave a solution in terms of integral expres-
sions, and Kuester and Chang [Kuester4] gave numerical results for a symmetric two
conductor system over a homogeneous earth.

The discrete modes of propagation are determined from the solutions of the
homogeneous integral equation (3.4). For thin-wire structures, the exact solutions can
be obtained from the eigenvalues of the impedance matrix (3.46), which is defined as
the mode equation. The evaluation of the impedance matrix elements (3.18-3.20), is
discussed in appendix B. It will be shown that the accurate evaluation of the Sommer-
feld integrals (3.19) becomes imperative at higher frequencies. As well, since the
integrand of one of these integrals (3.19b) contains a pole k.5 in its integrand, due to
the TM surface wave supported by the half-space geometry, additional discrete modal
solutions become mathematically feasible in the neighbourhood of this pole. An
extensive parametric study of the discrete propagating modes supported by various
conductor configurations and for typical earth properties is addressed in [Bridges3],
where a comparison to the quasi-TEM and an alternative small argument approxima-
tion is also made. Only two specific conductor configurations will be discussed in this
section, with comparisons to the quasi-TEM results in some cases. The quasi-TEM
approximation was discussed in section 3.3.3, where the discrete modes were found
from the solution of the standard eigenvalue equation (3.55). The evaluation of the
matrix elements (3.58,3.59) in the quasi-TEM case is much simpler than those of the
exact solution (3.56,3.57), with the only remaining integral (3.61) fully discussed in
appendix B,

The solution of the mode equation (3.46) for the case of a single conductor above
a lossy earth is considered first. Referring to figure 3.2, a copper wire of radius
a,=2.5mm is situated at a height 4= 51*1/2 | =1.0m above an earth having electrical
properties €,,=15, 6,=0.01. Figure 3.8 shows the result of evaluating the magnitude
of the mode equation abs{ | Zk,) | } over the normalized T./k, plane, where T, was
defined as the radial wavenumber. Note that the desired propagation constant
kP = k,N1 = (tP/k,)? is defined such that the proper solutions of the mode equation
occur in the quadrant Reftf/k,], Im[tf/k,120. A frequency of f=30MH:z has been
chosen making the refractive index of the interface n=3.95+;0.76. Figure 3.8 indi-
cates two possible solutions of the mode equation in the normalized t,/k, plane. One
solution occurs in the region where the quasi-TEM solution is found (T, —tEM) The
other occurs in the region near the TM surface wave pole Ay (t,—U,p). As derived
in section 3.3, the surface wave pole presents itself as a singularity in the integral
G(,,2h), its position in the complex T,/k, plane being strictly a function of the
half-space electrical properties U,z /k, =+j/m. Figure 3.9 gives the normalized
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solutions of the mode equation tf/k, over the entire frequency spectrum. The results
of the quasi-TEM approximation (A<),) in one extreme as well as the solution of the
corresponding Sommerfeld line in free space (A>A,) in the other extreme [Sommer-
feldl] are shown for comparison. The solution which most closely adheres to the
quasi-TEM result will be designated as the structure attached or "transmission line"
mode (k). The solution found near the pole U, will be designated the surface
attached or "fast-wave” mode (kZFW) since the phase velocity for this mode is usually
less than the free space value Re[k[/W]<k,. Figure 3.10 gives the corresponding
values of the normalized propagation constants kf/k, as a function of frequency. The
results are compared to those of Olsen [OlsenS], as well as to the quasi-TEM approxi-
mation. The quasi-TEM result is a good approximation to the exact solution at low
frequencies ( | n | »>1, h/A,<1) where the dominant terms of the mode equation (3.46)
are Z¥, Ko(t,a)-Ko(t,2h), and J(t,,2k$). In the high frequency range the solution
converges to that of a conductor in free space [Stratton] where the dominant terms in
the mode equation are Z* and Ky(t,a). Note that the attenuation of the fast wave
mode Im[kzF "1 is considerably less than that of the transmission line mode Im[kzn]
over most of the frequency spectrum. However, the excitation of this mode, as deter-
mined by its residue contribution to the current in (3.39), is usually small. Only at
very large distances from the source would the decay of the transmission line mode be
enough for the fast wave mode to become important. In this range, however, the
branch cut contributions (3.40,3.41) would alsq be important.

\ | !_TezveB

abs{ | Z(k,)| }

Figure 3.8: Evaluation of the mode equation | Z ke, =Nt2k2 | over
the complex t,/k, plane for a single conductor system.
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Figure 3.9a: Discrete mode solutions t2/k, as a function of frequency.
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In Figure 3.11, the normalized values of t/k, as a function of frequency are cal-
culated for different conductor heights; £=1.0m —10.0m. Earth electrical parameters
are the same as in Figure 3.9. Again, there are two possible solutions to the mode
equation for each case. At small conductor heights, the fast-wave solution remains
near the pole U, and the transmission line solution remains near the quasi-TEM
result over the whole frequency range. However, for large conductor heights, the
fast-wave solution moves into the region near the quasi-TEM result and similarly the
transmission line solution moves into the region near the pole as frequency increases.
Figure 3.11 shows that it is possible to find a specific height and frequency such that
the fast-wave and transmission line solutions coincide t/% = ©/". For the case being
studied, this situation occurs at A=1.6m and f=22MHz. The discrete modal fields for
each solution become identical in this situation, the double root to the mode equation
known as modal degeneration [Olsen5].
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Figure 3.11: tf/k, as a function of frequency for different conductor heights.
The solid curve at f=22MH?z indicates the double root.
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Figure 3.12 shows the result of evaluating the magnitude of the mode equation
abs{ | Zk,) | } over the normalized T./k, plane when a two conductor system is con-
sidered. Two copper conductors, both of radius a,=a,=2.5mm, are located at a dis-
tance d=2.0m apart and a height #=5.0m above an earth with electrical properties
€,=15, 6,=0.01. There are four possible solutions to the mode equation for this
case. Two of the solutions correspond to the normal transmission line modes, one
symmetric (or ground mode), and one antisymmetric (or metallic mode). The remain-
ing two solutions are found in the region of the pole singularity U,p. Figure 3.13
gives the normalized solutions of the mode equation t2/k, as a function of frequency,
with figure 3.14 giving the corresponding results for kP/k,. One of the modes in the

region of the pole is a proper solution over only a small portion of the frequency spec-
trum, and otherwise crosses onto an improper Riemann sheet as a result of the branch
cut |Re[s]]>1 as defined in the evaluation of the integral G(t, ,ﬁ*) in appendix B
(B.20). The residue of this pole in (3.39) does not make a significant contribution to

the current.
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complex T,/k, plane for a two conductor system. Shown are
the two transmission line and two fast-wave mode solutions.
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Figure 3.14a: Solutions of the mode equation kf/k, as a function of frequency.
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Figure 3.14c: Extremely high frequency region indicated in figures 3.14a,b.

3.4.2. Examination of Limiting Cases

In this section, the dominance of the pole and branch cut contributions in the
determination of the induced currents on a thin-wire transmission line due to a finite
source will be examined. As discussed in section 3.3, the contributions to the induced
currents could be distinguished as a sum of the discrete modes excited by the source
plus a set of branch cut contributions (3.38-3.41). These contributions were separated
by deforming the path of integration in the inverse transformation (3.22) from the real
axis to encompass the poles and branch cuts. In one extreme, when the source is
electrically near the transmission line, the discrete modes contributions are expected to
dominate. The formulation of the currents in terms of only the discrete modes was the
topic of sections 3.3.1-3.3.3, with their properties characterized in the last section. In
the other extreme, when the source is electrically far from the transmission line, or
when the observation point is very far from the source, the branch cut contributions to
the currents is expected to dominate. Further, in the far field, an asymptotic evaluation
at the saddle point along the radiation branch cut I'y,p. for the upper half-space
should provide adequate results (plane wave incidence is assumed). This assumption
was examined in section 3.3.4, where results were obtained for specific sources
through the method of steepest descent. The use of only the saddle point evaluation,
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neglects the contributions from the poles as well as the two other branch cuts Upapes
Isyr. As pointed out in section 3.3.4, however, the surface wave branch cut gy
may become important at grazing angles of incidence with respect to the interface.

The case of a single conductor transmission line, excited by a vertical electric
dipole source (VED) will be used to examine these limiting cases. The exact solution
to the induced currents due to a VED is obtained by using the complete spectral
transformation (3.22), where the elements of the impedance matrix {Z (k,)] are given in
(3.18), and the axial components of the imposed electric field [E} (k,)] due to the VED
are given from (3.26). The resulting currents due to the discrete mode contributions
are determined using (3.39), where the values of the propagation constants kP are
found from the solution of the mode equation (3.46). It is important to note that the
discrete mode results are not the same as the transmission line approximation formula-
tion (3.45). Finally, the saddle point contribution to the induced currents is formulated
using (3.68-3.70). For the cases studied in this section, the transmission line dimen-
sions will be chosen for the quasi-TEM region (h/A,< 1), and only the distance from
the VED source to the transmission line will be varied to extremes.

Referring to figure 3.6, a single copper conductor of radius a=1.0cm situated at a
height 2=10.0m (x=0,y=h) will be considered. A frequency of 100KHz (A,=3km) is
chosen along with an earth characterized by a relative permittivity €,=5 and a con-
ductivity 0,=0.01. The first case will examine the validity of the steepest descent
approximation (modeling the incident field as an incident plane wave). The exciting
VED will be located directly over the transmission line (x,=0m,z,=0m), at three
different heights above the interface; y;=3km,9km,15km, these corresponding to
(»s=1A,,3%,,5),). Figure 3.15 gives the magnitude of the induced current |7(z)| as
calculated by numerically integrating the exact expression (solid curves), and using the
saddle point evaluation (dashed curves). Since for these cases ¢=90°( ¥=0?), the
angle of incidence y=6 indicates the position along the conductor axis
Iz—zs |=yscory; ie. for y,=1A, and y=30° then | z—z |=1.7327ue. By examining
figure 3.15, the saddle point contribution is accurate when the dipole is electrically far
from the interface and not in the grazing angle region. These observations correspond
to the condition | 1,7, | =|—jk, 1-cos*yr, | > 1 (or 2nsinbr /A, > 1 when ¢=90°)
imposed when (3.22) was evaluated using its asymptotic expressions.

For the results of figure 3.15, the VED was positioned so that the incident angle
$=90° in all cases. As discussed in section 3.3.4, the contribution from the surface
wave branch cut [gyp becomes important for grazing angles of incidence with respect
to the interface 6—0° (when y—=0° or $—0° since sind = sinysing). Thus, only when
y—0° in figure 3.15 could the effect of the branch cut influence the induced currents.
Note the contribution from the branch cut I'p,ps, in the form of a lateral wave, is
negligible since the conductivity of the interface is fairly high at the chosen operating
frequency (the associated branch point #=30.03+;29.94). To examine the influence of
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Figure 3.15: Comparison of the exact and saddle point contribution to the
current induced on a conductor as a function of incident angle
and VED height.

the surface wave branch cut, the transverse distance r, from the transmission line to
the VED will be fixed ry=3km=1A, and the angle ¢ will be varied; ¢$=5%, 30°, 90°,
these corresponding to dipole positions (x;=2988m,y,=261m), (x,=2598m ,y,=1500m),
and (x;=0.0m ,y;=3000m ), respectively. The results for the induced current at various
observation points along the conductor axis is shown in figure 3.16, where
¥ = sin"Yry/ | z—z; | ). The results show that even though the condition | T,rs | >1 s
met for all angles ¢, there is a large error in the induced current for grazing angles
with respect to the interface as expected due to the effect of the surface wave branch
cut,

Finally, the dominance of the discrete mode and saddle point (plane wave
incidence) contributions to the current in the two extreme cases will be examined. The
results of varying the VED distance from the transmission line is examined in figure
3.17. For this case the dipole will be located directly above the transmission line at a
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Figure 3.16: Comparison of the exact and saddle point contribution to the
current induced on a conductor as a function of incident angle
and grazing angle with respect to the interface.

height y; (x;=0,z,=0), with the observation point along the conductor axis fixed at
|z—zs l=3km=1?ug. As discussed in the results of section 3.4.1, there are two
discrete modes of propagation for the single conductor structure. Since the structure
dimensions are much less than the free space wavelength at the frequency considered,
h/h,=1/300< 1, the dominant mode will be the transmission line mode (defined as /-
in the last section). The normalized propagation constant for the structure has been
calculated as ka/ke=1.0440+j0.(}266 for this case (the corresponding quasi-TEM
result is &7FMik,=1.0440+0.0263). At these frequencies, the contribution from the
other discrete mode (defined as &%), which is found near the surface wave pole
Ag l,=n/Nn21=1,0+j2.8x1074, is negligible and will not be examined. Figure 3.17
shows that when the VED is electrically far from the transmission line (y,>2,), the
main contribution to the current is due to the branch cut and can be accurately
modeled by the plane wave incidence model. When the VED is electrically near the

67



Chapter 3 Excitation of Multiple Conductor Structures

transmission line (y,<A,/20), the discrete mode contribution to the current dominates.
Note that the dominance of either of the limiting approximations will depend also on
the observation distance | z-Z |, and the accuracy of the plane wave incidence model
will depend on the angle 0 as discussed in the last paragraph. An examination of the
contributions to the current (as well as the input impedance) due to a delta function
voltage source has also been examined by Chang [Chang3].
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Figure 3.17: Comparison of the exact, saddle point and discrete mode
contributions to the current induced on a conductor as a
function of the VED height.

3.4.3. Discussion

In general there are more modes than conductors supported by an N-conductor
thin-wire system (P=N). N of the modes are of the traditional quasi-TEM type (these
have been denoted as transmission line modes). The remaining P—N modes occur
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due to solutions of the mode equation in the region of the surface wave pole singular-
ity (these have been denoted as fast-wave modes). Not all of the additional fast-wave
modes necessarily fall on the proper Riemann sheet, and at extremely low or high fre-
quencies, they do not make a large contribution to the structure currents or radiated
fields. By examining the results presented in section 3.4 and in [Bridges3], the quasi-
TEM approximation was shown to be valid under the conditions that all structure
dimensions are small compared to the free space wavelength ( | p/A, | <1/10) and that
the refractive index of the interface is large ( | n | >10). As well, an improved small
argument approximation for evaluating the mode equation was presented in [Bridges3],
and was shown to relax the restriction on | n |, thus substantially increasing the vali-
dity of the results.

The use of either the discrete mode contributions in the near field (transmission
line approximation), or the saddle point contribution in the far field (geometrical optics
approximation), was examined for determining the induced currents due to a vertical
electric dipole source. The currents induced on the structure were found to be dom-
inated by the discrete mode contributions under the condition that the transverse dis-
tance from the source to the transmission line is much less than the free space
wavelength (| Fi /A, | <1/20). In order for the saddle point evaluation to yield accurate
results, it was required that the transverse distance from the source to the transmission
line is much greater than the transverse component of the free space propagation con-
stant (| 7. V1—cos?y /A, | >3). It must be noted that near grazing angles of incidence
with respect to the interface 8—0°, contributions from the TM surface wave and pos-
sibly from leaky wave poles may also become important. In the numerical cases
examined, the dimensions of the transmission line structure were always much less
than the free space wavelength, which led to two limiting approximations for the deter-
mination of the induced currents. At extremely high frequencies, when the dimensions
of the transmission line are greater than the free space wavelength, the steepest descent
method can also be applied to the calculation of the transmission line parameters. The
range of validity of the steepest descent approximation is especially important in elec-
tromagnetic pulse studies, where the source is almost always modeled as an incident
plane wave. To this extent, an analysis of the transient plane wave coupling to multi-
ple conductor structures has been examined and is available in the literature [Bridges4,
Bridges6].

69



Chapter 4
Characteristic Impedance of Guided
Wave Structures

An exact solution can be obtained for only a small fraction of the many problems
encountered in electromagnetic modeling, and usually approximate techniques must be
utilized to enable the theories to be useful for practical applications. One method of
simplifying problems involving guiding wave structures is the transmission line
approach, where only the discrete modes supported by the structure are considered.
Using this approach, problems are treated as simple transmission lines with properties
that have an exponential axial dependence. This enables the structure under considera-
tion to be modeled as a network component and then used in complex systems with
other guided wave structures or even lumped element devices. To use the transmission
line approach, the accurate characterization of each of the discrete mode properties,
represented in terms of a propagation constant and a characteristic impedance, is
required. The determination of the propagation constants is a straightforward task
since there is a direct physical relationship to the axial dependence of the electromag-
netic quantities. The determination of the characteristic impedances on the other hand,
is not straight forward, since there is no direct relationship between the electromag-
netic quantities (these being solutions of Maxwell’s equations) and the circuit quanti-
ties modeling the structure (modal voltage, modal current, and characteristic
impedance).

In keeping with the traditional work of Schelkunoff [Schelkunoff2, Schelkunoff3,
Marcuvitz] for the description of waveguides, the present methods of specifying the
characteristic impedance of guided wave structures are categorized as either a voltage-
current, power-voltage, or power-current definition. The modal circuit quantities, vol-
tage and current, can be related in some manner to the strengths of the transverse elec-
tric and magnetic fields, respectively, in terms of specified path integrals. These
integrals, however, will only be path independent in the TEM case, and only for this
special situation will there then be a unique definition of the circuit quantities {Gets-
inger]. In the TEM limit there is a direct relationship to the electromagnetic quantities
and all three of the above definitions of characteristic impedance will be equivalent.
As there is no direct relationship to the electromagnetic quantities for general non-
TEM structures, the three definitions will not be equivalent and the choice of which is
most appropriate for a given structure geometry has been a topic of much debate.
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When the transmission line approach is used to solve closed waveguide problems
[Kems!, Kerns2, Schwinger], the set of discrete modes supported by the structure
(infinite in the case of closed structures) forms a complete spectral basis for the
representation of the fields. Instead of retaining the modal field quantities for solving
problems, each of the discrete modes is characterized by a propagation constant and a
characteristic impedance. Then using these circuit quantities, a network solution can
be obtained which is exact to the extent that all modes of the infinite set are con-
sidered. For closed structures, the circuit quantities will be scalable with respect to the
field quantities, and thus any chosen definition for the characteristic impedance will
suffice as long as it remains consistent throughout the analysis. Unlike closed struc-
tures, the set of discrete modes supported by open structures forms only a part of the
spectral basis for the expansion of the field quantities. A complete basis also requires
the contributions from continuous spectral components, as discussed in section 2.3.
For the modeling of many practical problems, however, an adequate approximation to
the behaviour of the structure can be obtained in terms of the discrete modal quantities
alone, thus still allowing the use of the transmission line approach for a solution.
Unlike the closed waveguide case however, the definition used to determine the
characteristic impedance will no longer be arbitrary, but must be chosen to accurately
represent the circuit requirements of the transmission line model. For the coupling of
open guided wave structures to TEM components (lumped element devices), this
means the use of a definition which best matches the TEM circuit behaviour of the
structure. With the recent advances in high speed digital devices and microwave cir-
cuit applications, there has been much controversy over the choice of an accurate
definition for the determination of the characteristic impedance [Jansen3, Jansend,
Getsinger]. The various definitions currently under use and their comparisons have
been reviewed in detail by Brews and Fache [Brewsl, Brews2, Fache2]. For micros-
trip structures all three definitions have been defended, the power-current definition
usually being adopted as the most appropriate [Jansen2, Jansend, Fukuoka, Tripathi2).
The determination of the power in these cases, is calculated by integrating the axially
directed power density over the infinite transverse dimensions of the structure, which
can become a complicated task for complex geometries. Further, the axially directed
power will yield the total propagated power for the discrete mode only in the lossless
case.

In this chapter, an alternative approach to determining the characteristic
impedances of guided wave structures is presented (including lossy open structures).
Like the propagation constants, the characteristic impedances will be extracted directly
from the integral equation formulation of the problem under consideration. The spe-
cial case of a single thin-wire transmission line located over a lossy earth will be used
as an example. The characteristic impedances for this case will be determined using
the proposed definition and then compared to the results determined using the
definitions currently available in the literature.

71



Chapter 4 Characteristic Impedance of Guided Wave Structures

4.1. DEFINITION OF CHARACTERISTIC IMPEDANCE

The concept of characteristic impedance is a modal property of the guiding wave
structure. For each of the possible discrete modes that the structure supports, there
will be a distinct transverse field configuration and a corresponding current distribution
on the surface defining-the structure. In order to define a characteristic impedance for
the mode, these electromagnetic quantities must be related in some manner to the
modal circuit quantities. In the most general case, the concept of a modal current
can be defined simply as a quantity which is proportional to the strength of the
transverse magnetic field. Similarly, the concept of a modal voltage can be defined as
a quantity which is proportional to the strength of the transverse electric field. Follow-
ing these definitions, the characteristic impedance then relates the strengths of the
transverse electric and magnetic fields for a particular discrete mode. However, since
the relationship between the transverse electric field and a voltage and the transverse
magnetic field and a current are dependent on some proportionality constants, this
leaves the characteristic impedance of the structure to be arbitrarily assigned. A line
integral is usually used to evaluate the proportionality constants, with the path of
integration for voltage or current chosen to best suit the specific geometry being stu-
died (a voltage can best be defined for a gap and a current can best be defined for a
thin conductor). Only in the quasi-TEM limit, will there be an exact meaning to these
definitions. This chapter presents a new definition of characteristic impedance, which
relates the equivalent currents on the surface of the guiding wave structure to the
modal contribution of the fields exciting the structure. The definition does not depend
on a choice of line integral paths, but follows directly from the integral equation for-
mulation of the problem. As well, the definition collapses to the TEM result in the
quasi-static limit, as will be shown by some examples later in the chapter.

As discussed in section 2.3, for general unbounded region problems, the discrete
modes are only a part of the complete spectral content of the fields. The use of the
discrete modes alone to represent the structure properties, however, allows a much
simplified transmission line approach to the solution of many problems [Tripathil, Tri-
pathi2, Farr, Djordjevicl, Djordjevic2, Legro]. In order to use the transmission line
approach, the propagation constants and characteristic impedances of the discrete
modes are required (these are needed to couple the transmission line into a network of
TEM or lumped elements). As formulated in section 2.2, and with reference to figure
2.1, the current induced on a guiding wave structure due to some exciting source is
given from the solution of the spectral domain integral equation (2.15)

AP < THE(PA)) = AP XF™ (k)  ;PeC , —ock,<es  (4.1)

TUE(Pk)) = [ GOPFk)T (B dF = F < (Bik,) @.2)
C

where C is the generating contour defining the structure, and A(p) is the unit normal
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vector to the surface. F"”C(ﬁ) is the field due to the source and f*°*(p) is the field
scattered from the structure due to the induced currents. As defined in chapter 2, the
Green’s function G( p.p:k,) is formulated for the specific geometry under considera-
tion, with a layered external region specifically addressed in section 2.5. As outlined
in section 2.3, the discrete modes supported by the guided wave structure can be deter-
mined from (4.1) by considering only the homogeneous solutions of the integral equa-
tion as

APYXLHE,(PAD} = 0 ;PeC  — kP ;p=12,.P (4.3)

FrBan = TUT, (FAD)

where kf are the resulting eigenvalues (propagation constants) and g p(p) ;pe C and
f ;Ca’(p) are the modal currents and corresponding modal fields for the pth mode sup-
ported by the structure, respectively. All modal quantities have an axial dependence of
the form exp{£jkfz}. The excitation of a particular mode by a given source depends
on the extent to which the modal and exciting fields are matched, which can be deter-
mined as < f f (B kPy, f f (P k,=kP)>, where <,>is an appropriate inner product for
the geometry considered. If the modal field f 7 sca due to the induced current g » 18
normalized by dividing by the modal current I,, and the incident field is made pro-
portional to a modal voltage V,, then a characteristic impedance can be realized as

=~ v
—_ ol = —
<V, f (A, L {g,,(p,kﬂ/f,, } >=N=1 =Z7g,=-C @4
p
where N is some normalization constant, chosen here to be unity. This definition is
still arbitrary since the reference points for which f ™ and g p are normalized remains
to be chosen. To rectify this problem, a definition for the characteristic impedance
will be extracted directly from the complete spectral domain integral equation (4.1).

The determination of the current induced on a guided wave structure due to some
exciting source can be determined from the integral equation (4.1). The solution of
this integral equation for arbitrary geometries usually requires a numerical technique.
As developed in section 2.2, a moment method solution can be obtained by expanding
the current in terms of an appropriate basis to represent the unknown currents g ( Pk, )
as

N
Z )LL) = (PN T k)] (4.5)

°°lz

where x,(p) is one of a set of basis functions and I':l is a scalar constant. The deter-
mination of the currents g( P.k,) induced on the structure due to the exciting source is
obtained by applying the moment method to the complete integral equation (4.1).
Once the currents are determined in the spectral domain, the inverse Fourier transform
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(2.12) can be used to determine the resulting currents in their spacial domain form
g(p.2)=I;1g(P.k,))}. When considering the discrete mode contributions to the
current, only the residue contributions to the complete solution are evaluated. The
excitation of the pth modal current by the source is thus determined using (2.33) as

& (Pz) = [x(P)] 2nj ]g:egp{[l_(kz)l}

=+ “”}cp{ (ke = D)X (B [Z 06 T F ™ e ™o 1 } 4.6)

2 z

Zy k) = <wp(P), A(PYx Tl (x, (P)) >
= <w,(F), A(PI)x [ G(PP k), (7)) dF > @.7)
C

Fr,) = <wyu(P), R(B)XF ™ (k) >

where <,> is an appropriate inner product and w, (P) is one of a set of chosen testing
functions as described in section 2.2. f’m is the imposed field at the structure surface
due to the exciting source. To obtain the discrete modes k7 supported by the structure,
the moment method can be applied to the homogeneous form of the integral equation
(4.3). The discrete modes are then the solutions of the set of resulting linear equations

26| =0 >

[ZUp) [ ] =0 p=L2eP @9

The solutions &/ are the propagation constants of the pth mode, with the eigenvectors
V¥, corresponding to k7, giving the current distribution on the guiding wave structure,
The surface current 8p can now be written in terms of a modal quantities as

g8 (p2) = K(PIV]Ii, (4.9)
—_ 1 _
i, = ——f (4.10)
1 27
f, = [Z°VIF™ kD) @.11)

wherei_P is the strength of the pth modal current and If.p is the strength of the excit-
ing field referenced at the conductor surface. f p can be thought of as the modal vol-
tage. Similar to V' giving the current distribution, g¥ gives the field distribution at
the structure surface for the pth mode. Thus, in (4.11), the modal voliage fp has
been defined as the strength with which the incident field matches the modal field at
the structure surface. A characteristic impedance can now be defined which is a
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function of only the structure geometry as

Ze, = -+ [ Z k) | 4.12
where Z=Cp is the characteristic impedance of the pth mode for the guiding wave struc-
ture. This definition is valid for all general guided wave structures, both open and
closed. The transform vectors ¥, g? and the normalization constants N?, Np are
given from the impedance matrix Z (k,) as

VP = cofy (ZWDYNE 5 j=12,..N 3
= 4.1

_, cofy {ZUD) - “.13)
gl = ——=——/[Nf  ;i=12,.N

cof | {Z (kP))}

N2 _ N 2

[-’%V‘P} M {Zf"’_‘?}

iI= 1=

where the function cofi;{Z} gives the cofactor of the ijth element of the matrix Z.
Note that if Z(k}) is symmetric, then [g”]=[V"] and accordingly N5=N€. As
developed further in chapter 2 (2.35-3.42), a matrix equation solution can be developed
to solve for the currents due to the complete set of discrete modes.

4.2. CHARACTERISTIC IMPEDANCE OF A SINGLE THIN-WIRE OVER
A LOSSY INTERFACE

The excitation of thin-wire structures located over a lossy interface was discussed
in detail in chapter 3. The geometry considered, as was shown in figure 3.2, consisted
of a system of N thin-wire circular conductors located above a lossy half-space. The
formulation utilized the thin-wire approximation, where only the axially directed elec-
tric current g(p)=J L(P)E was assumed to be significant and thus continuity of only
the £ component of the electric field f (P)=E,(P)? ;peC on the structure surface
needed to be enforced. The integral equation (4.1) then required only the Green's
function component G,,(9,pk,). In chapter 3, the elements of the impedance matrix
[Z (k,)] for a system of thin-wire conductors over a single lossy interface were formu-
lated (3.18-3.20). As well, the modal representation of the currents and fields were
also developed (3.46-3.52). These results will be used to evaluate the characteristic
impedance of a single thin-wire transmission line.

In this section, the characteristic impedance of a single thin-wire conductor Sys-
tem above a lossy half-space will be examined in detail, as shown in figure 4.1. The
conductor is located at a height 4 (x=0,y=h) above the interface and has a radius q.
The region y>0 is considered to be free space, characterized by a permittivity €, and a
permeability p,. The region y<O is designated as the lossy earth, characterized by a
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permittivity €,, a permeability Mg, and a conductivity O, . The electrical properties of
the conductor are characterized by a permittivity €,,, a permeability |, , and a conduc-
tivity &,,. The characteristic impedance of the system will be determined by examin-
ing the excitation of the conductor by a delta function voltage source V* 3z —z,),
located at z=z; along the conductor axis. The case of a delta function source is
specifically chosen, since for this excitation, an exact evaluation of the modal voltage
and current can be made, and thus a precise definition for the characteristic impedance
can be found.

X

Pg €4 Oy

Figure 4.1: Single thin-wire conductor located over a lossy half-space.

Using the theory developed in chapter 3 for thin-wire structures, the induced
current on the single conductor transmission line due to a delta function source can be
determined through an integral transform as

Iz) = 2_11{ [ 2,y < EStk,) >e 2 ar, (4.14)
<ES(k,)> = VSgIkn  (@4.15)
Zk,) = Z¥(k,) - Z°(k,) (4.16)

where I(z) is the induced current on the conductor. The impedance matrix (4.16) con-
sists of two terms, an external impedance term Z°(k,) representing the mutual cou-
pling between the conductors, and a self impedance term Z¥ (k,) representing the con-
ductors surface impedance. The derivation of the impedance matrix elements for the
single conductor system, is accomplished by determining the fields external and inter-
nal to the conductor, which carries a current of the form / (k,)e *h? - As determined in
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section 3.2.1, the fields can be deduced by solving the two-dimensional wave equation

in each of the material regions such that

"j OLL, 1
21tk62 (’tg a )K i(te a )

Z8 (k) = ( [TeZKO(Tea)

— Io(t,a)[T2K o(t, 2h) + K2z, 208) — k2G(t, 2k )]] (4.17)

oo

—* 1 ~U, (y +h)+ik,x
Jeo,p )= —1 ¢ dk (4.18a)
£ LU+ U, x
G, p') = [ Ao U0k g (4.18b)
— 1 U, +U,

U, =Nk2+2 U, = Vk2?

where | 5* | = Nx2+(y+h )2 Here k, = \lcozug €, is the propagation constant in the air
medium, £ =\/m2ugeg+jcou C,
T, =Nk ~k? and Ty =‘\Jk22-k32 are the transverse propagation constants in the air and
earth media, respectively. The real parts of the irrationals Re[U,.,U, 120 and
Re[r, Tg J20 have been chosen to retain a positive value. [ o(z), Koz), Ky(z) are
modified Bessel functions of complex argument and n=k,/k, is the refractive index of
the air-earth interface. For thin solid conductors the internal impedance matrix was
defined in section 3.2.1 as

+j O,
k2

where T, =Vk>-k2? and k. =\/m2uw €,H/OW, 0, . Iyz), I(z) are the modified
Bessel functions.

is the propagation constant in the ground medium.

T\%IO(TW a )

27 k) = @, ), a)

4.19)

Using the inverse transform (4.14) determines the complete spectral contribution
to the current. The discrete mode contributions to the current are given from the resi-
due contributions only as

i P . —1 S +'k,”]z—z |
Iz)= X 1,(z) =+jY, lim {(k,—kD)Z (k) (vSe™ ‘ (4.20)
=1 p:]_kz_)kf

where the propagation constants k? are determined from the solution of the mode
equation (the single thin-wire case of (3.46)) as

lzg)l =0

; p=1,2,.. 421
ZEWV = 0 p P (4.21)
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A detailed discussion of the possible solutions of the discrete modes was given in
chapter 3. Note that there can be more than one solution for a single conductor (P 2N
for the general N conductor system). In terms of modal quantities, the induced current
is then determined from the single thin-wire case of (3.48) as

P _
Iz) = ¥ Wi, (z) = [T1[2Z¢ Dz, 2) )T I'VS (4.22)
p=l
e+jkf|z—z,|  i=j=p
Dy, 2 = {o , i)
[T]= [1,1, ’I}IXP

Since for a single thin-wire system the normalized eigenvector is unity V7 =1 for all
modes, the modal current will be equivalent to the conductor current i,=1,. Similarly,
the modal fields will be equal to the conductor fields. [Zo]pyp is a diagonal matrix
with diagonal elements representing the characteristic impedance Z¢p of the pth mode.
Considering only the pth modal current at the source location z=z,, the characteristic
impedance can be formulated as

A e

i,(z=z5) = 27, Vv (4.23)
A

Zep = =3 5 {|Z(kz)| }k,zkf (4.24)

This definition of characteristic impedance can be physically rationalized by consider-
ing the equivalent circuit of figure 4.2. For the single conductor, a zero voltage refer-
ence can be specified at the center of the delta function source, with this chosen refer-
ence being independent of any integration path. Thus, the modal current that the
source excites, defines the characteristic impedance of the structure for that particular
mode. This definition can then be extended to multiple conductor systems as done in
3.3.1, or even to general guided wave structures as used in 2.3 or 4.1.

s, '8 s s
V/ZI-:_qV /2 I(Z=Z'5\ V I/Z V /2. I(Z‘ZS)
f ] ;—] [ ;l ! {il \
see (T ) I' a DILT l
V=0 = =
! ZCP ZCP
S . -
'Z"Es

Figure 4.2: Equivalent circuit model for the delta function source
excited transmission line,
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For the single conductor case, an analytical expression can be derived for the
characteristic impedance (this can also be done for the multiple conductor case but the
result becomes complicated and a numerical evaluation is more appropriate). Evaluat-
ing' the expression (4.24) yields

Zep = ZV, + (DY R + epg (kD) (4.25)

1¢(z,a)
Ii(r,a)

Z, kf Iyt a
0 ZY 0Py = K ot a)
2n k, | (v, a) (z,a)

W

J
Z = L
Cp 2 ok,

1
+ 5 (4.26)

Y.S‘h (kf)_l —

+iZg 1 J

2nk, (v,a)K (t,a) _Ko(’tea)—Io('rea)[Ko('ce2h)—G(te,2h9)]}(4.27)

Zo K 1 1 K ] 20K (1. 2h
EE—(’Cea)Kl(’tea) 2 (e @)K 1(Te @)~ of% )T 210K 1 (7. 20)]

Ens (k7) = ~

b U, 2041y - — i W, 2k N P dk
L +1) — +
Ue+Ug 8 H Ue-i-Ug £ n2Ue+Ug UeUg *

~Ig(t,a) |

+ [Ti }I 1(T.a) [’CEK o(Te 2h) + k2I(t, 2hP) - kP2G(x, ,2;;5})” (4.28)

e

where Zy and Z,, are the intrinsic impedances of the upper half-space and the conduc-
tor media, respectively. The characteristic impedance Zcp, has been realized in the
form of three contributing terms. The term Z&"’p gives the contribution due to the
imperfectly conducting wire (this due to the self impedance term Z* (k,) given by
(4.19)). This term is usually negligible for good conductors. The remaining two terms
in (4.25) are due to the mutual impedance term Z¢ (k,) given by (4.17), which involves
the modified Bessel functions K and the infinite integrals J and G. Noting that in the
quasi-TEM limit, the terms Ky, J, G vary slowly as a function of k,, the second term
in (4.25) gives the contribution to the impedance with K, J, G assumed stationary
when evaluated at the point k,=k. This term will usually be the dominant contribu-
tion to the characteristic impedance and is related to the equivalent circuit representa-
tion of the transmission system as will be shown in the next section. The remaining
term €yg gives the contribution due to the non-stationary nature of K, J, G about the
wavenumber k,=kf. This term becomes important in the non-quasi-TEM evaluation
region. Note that the last term in eyg is negligible for very thin conductors since
I1(t,a)—0 for t,a—0. Thus, under the limit 1,2 —0, (4.28) can be simplified as
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= 0K L ke [ Yy
ens (kf) = YA [ 1~ (t,2h)K (T, 2h)] - U.+U, (Ug2h+1)
kP n*Ug+U, | g Ve2h
- (U 2h+—2 2y | L (4.29)

)
n?U,+U, n?U,+U, " | U U,
The formulations presented in this section defining the propagation constants (4.21)
and the characteristic impedances (4.24) of the discrete modes come directly from the
integral equation solution and are dependent on only the geometry of the structure.

4.3. CIRCUIT EQUIVALENT METHOD

As previously discussed, the propagation constants and characteristic impedances
of each of the discrete modes are required in order to use the transmission line
approach. In this section, the derivation of these properties from the equivalent circuit
representation of the single conductor transmission line will be discussed, and com-
pared to the new method that was presented in the last section. As discussed in sec-
tion 3.3.3, the impedance matrix (4.16) can be formulated in terms of the transmission
line equivalent circuit parameters as

Zk,) = Z%(k,) + KA,y (4.30)
shep W=l - 1 1
THED™ = —jwe,2r (1,a)K (t,a)
. [Ko(tea) ~Iy(t,a)K (1, 2h) - G(z, ,2;:9)}} (4.31)
sor R 1
270k = 2% 2t (t,a)K,(t,a)
. [Kg(tea) = I, a)[K o(1,2h) - J(x, ,2h§‘)]} (4.32)

where Z%" is the series impedance and Y** is the shunt admittance equivalent circuit
parameters for the structure. The solutions of the mode equation k? and the charac-
teristic impedances Zcp can then be formulated using (4.21) and (4.24) in terms of the
structure equivalent circuit parameters as

[Zap)] =0 = k2 =N-z% Pyt @) 4.33)
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= ___.L d ser (k k?.ysh k -1
“cr 2 ok, {Z MR T
= V-Zr (kp)Y*h (kp)! - % ai {Zse’(kz)+(kZP)ZY"'(kZ)“‘} (4.34)

The first term in (4.34) is the sarne as the stationary part of (4.25), with the remaining
term in (4.34) being equivalent to Z&, +&ys in (4.25). The lossless cases of (4.33) and
(4.34) can be shown to be equivalent to the results of Hashimoto [Hashimoto], who
derived a rigorous full-wave solution for the characteristic impedance of microstrip
structures based on a circuit equivalent approach.

If the characteristic impedance is obtained directly from the two-dimensional
transmission line equations, only the stationary part of (4.34) will result as

J sh VP : sh -1

“arle VTRV, = Zgp = 3E = CROYH D) 435)
where /, is the modal current and V, is the modal voltage. The evaluation of k?
using (4.33) gives the same result as the mode equation (4.21) for all conditions.
However, the definition of ZCp using (4.35) is not equivalent to the definition (4.24)
under all conditions, and is only valid if Z**" (k?) and ysh (k?) (and thus Ky, J, G) are
assumed stationary about k,=k7. The transmission line representation for Vo, I, in
(4.35) is thus only accurate in the quasi-TEM region. Further, it is useful to note that
in using the quasi-TEM approximation, the equivalent circuit parameters (4.31,4.32)
are evaluated under the condition k,=k, (t,=0), and thus are functions of only the
transmission line geometry.

The two-dimensional circuit approach is often used in the analysis of microstrip
structures [Kobayashil, Bhartia, Whitaker], where the propagation constants kP are
determined accurately by solving an integral equation similar to the form (4.21),
These propagation constants are usually presented in terms of an effective dielectric
constant kf =k, €frs. In many studies, the characteristic impedance Zc, is then

determined using eg’ff and a geometry dependent factor Z¢gp =F(gcometry)20/@.
This is equivalent to the circuit based form (4.35), except that F is not only considered
stationary about k,=kf, but is also assumed independent of k7. This assumption that F
and thus Y** is dependent only on geometry is only valid in the TEM case. Alterna-
tive approaches to determining the characteristic impedance use path integrals to define
a voltage or through a power definition, as will be discussed in the next sections.

4.4. LINE INTEGRAL METHOD

Another alternate method for obtaining the characteristic impedance that is often
used in many applications, is based on a voltage-current definition Z=V /7. When
considering thin-wire structures, a modal current can be precisely specified as the total
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axial current flowing in the conductor. However, in order to specify a modal voltage,
a zero voltage reference point must be chosen as well as a path of integration
(transverse to the transmission line) such that

vV,

1 _— —
Zg = —[;‘1 = - —[E@ut)-d (4.36)

pL

where the chosen path L is from the zero reference voltage point (usually specified as
| ‘pT| =oo) to the center of the conductor p=(0,4), as shown in figure 4.3. The field
E (p.kP) is the modal field resulting from the pth modal current I,. In general, for the
non-TEM case, the evaluation of the modal voltage will be dependent on the chosen
path of integration L. In the low frequency limit, when the earth behaves as a good
conductor and the distance from the earth to the conductor is much less than the free
space wavelength, the y=0 interface can be considered as the zero reference and
almost any direct path from the earth to the conductor will be adequate. When the
earth becomes lossy, the voltage at the interface can nor be assumed as the zero refer-
ence (the voltage at points along the interface will no longer be constant as well).
Extending the integration path to a point below the interface has been one attempt at
rectifying this problem [Wedepohl, Efthymiadis].

The line integral method has also been used to evaluate the characteristic
impedance of microstrip structures [Das, Zhang]. For this case the metallic ground
plane of the microstrip is chosen as the zero reference and since the distance to the
strip conductor is usually less than the wavelength in the supporting dielectric, the
quasi-TEM assumption is usually valid. An extension to the line integral approach is
to evaluate the voltage as an average over many possible paths from the zero reference
ground plane to the strip conductor. As an example, the average value of the electric
field under the entire strip can be used in (4.36) in the microstrip case. As in the con-
ductor above lossy earth situation, however, the line integral method breaks down for
the general non-TEM case.

Concentrating on the single thin-wire system above a lossy interface, as shown in
figure 4.3, the characteristic impedance will be evaluated by chosing a path of integra-
tion along the y-axis as

1 -
Ze, = —;’;{ E, (P.kP)dy @.37)

Ey(pAf) = [VVII + 4] = —%(—V-I_I)+k21'1y

= -V, 0(p) + joA, (P) (4.38)

where IT is the appropriate Hertz potential vector. Since the path of integration is
along the y-axis, only the E, field component is required in (4.36), which is deter-
mined from the potential vectors I1¢, IT1¢, or II*, the choice being dependent on the
medium in which E, is evaluated (air, earth or conductor, respectively). The
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appropriate potential functions for each air or earth medium were derived in appendix
A or as described in chapter 3 for thin-wire structures over a single interface. For dis-
cussion purposes, the field in (4.38) has been written in terms of the scalar potential @
and the vector potential component A;. Two possible paths of integration L will be
examined. They are determined by chosing the zero reference point at either p=(0,+o0)
or p=(0,—e) such that L is defined as

{L 1: P=(04w) — B=(0,)

L2: p=(0,—0) — p=(0,h) (4.39)
+co
L1
¥
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Figure 4.3: Line integral paths in the evaluation of the conductor voltage.

Using (4.37), the characteristic impedance can be evaluated by integrating along each
of the chosen paths to yield

<@ (P=0.1))>  *(pl=0-o*(Ipl=a) _jo[, -
Zep = 1, ’ I Iy iAy(p)dy
(
_ D (F=(0s)) -
7 ;path L1
. ) B ~ (4.40)

_ P (B=00)) + & (p=(0.0) = B (B=0) . .75
1 bl
P

where @° and @®¢ are the scalar potentials in the air and ground media, respectively.
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@* is the scalar potential internal to the conductor, which can be neglected for good
conductors. The term <®°(p=(0,4))> is the average value of the scalar potential ®¢
around the circumference of the conductor, which can be determined form the potential
functions derived in appendix A (A.76,A.77) as

+j WK, I,

2nk? (t.a)K(t.a)

D (B kD) = (—jkf) [Kocce %o ) - Kote. 1 5p 1) + Gr. 5 )]

1Pp | =Vx2y-n)2 , 155 | =Vx2ey+h)? (4.41)
@ (F=(0,h),kF |
<®*(p ; W (YR ey (4.42)
P

where Y54 (k?) was defined in (4.31) as the shunt admittance of the transmission line
equivalent circuit. The remaining terms in (4.40) can be evaluated to give the final
result

(kDY H kPY ™ + Z8, + <1, (y=h)> ; Path L 1
Zep = (DYDY + 28, + <L, (y=h)> (4.43)
_ ¥ (';:(0’0)) -1,(=0) + L,(y=0) ; Path L2
P
@ (p=(0,0)) | JZg 1 _
AP kP G(z,, 4.44
7, i 2){2% } K (pa) e PP) @
oY
L) = -22]asmie
p oo
Zy T 1 1 1 _U,(y+h)
= ——kPk - ‘ .
1 @4 (p=(0y)) _ jo T
L(y) =~ | Ef(piay = B2 - I8 [ ag5)ay
p = P p o
Zy kY T 1 U, ~U,h +U
~ 0%z e Ve Y g (4.46)
2n ke_LI:nZUe+Ug U, *

The first term in (4.43) can be identified as the same result obtained in the circuit
equivalent method (4.35). This term is the dominant term in the quasi-TEM limit.
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4.5. POWER-CURRENT METHOD

In the previous section, a voltage-current definition was used to define the charac-
teristic impedance. This approach is inaccurate in the general non-TEM case since the
definition of a modal voltage relies on a line integration which depends on the path of
integration chosen. For many applications, a power-current definition of characteristic
impedance Z=P /(I I*) is more suitable. This definition is the one usually employed
in advanced microstrip or MMIC structure analysis [Jansenl, Jansen2, Jansen$, Itoh,
Fukuoka, Tripathi2]. The method is most appropriate when the concept of a modal
current can be precisely defined, this being when the conductor dimensions are much
less than a wavelength (this is appropriate for the thin-wire transmission line case).
Once a modal current [, is specified, the axially directed power P, for that mode can
be determined so that the characteristic impedance, for the pth mode, will be

P

Zop = P__ = E H (P)14dp
Cp IIP|2 I[ lzjj [ (P)X (P)] p ky=k?
M Pl
=yt = z H ()" Forfdp| - @4

where the axial power has been calculated as a sum of the powers in each of the M
separate material regions. A; denotes the cross sectional area of the ith region, E “ and
H' are the fields in this region, and * denotes complex conjugate. For the case of a
thin-wire conductor over a lossy half-space as shown in figure 4.4, there are three
material regions; the air (i=¢), the lossy ground (i=g), and region internal to the con-
ductor (i=w).

Evaluation of the power integrals for all the three regions directly in the form
(4.47) becomes complicated for the region i=e, since the area A, is defined by both
cylindrical and cartesian coordinate boundaries. To simplify this, the power integral
P; over the surface A, will be calculated in two parts, as shown in figure 4.4b), as

oo oo 2na
= [ JIE)xH® Bt ardy - [ [IES(P)xH ()14 pdpdo
0 —oo 00 =
= Pel - pe (4.48)

where the first integral is over the entire upper half-space y>0, and the second integral
subtracts the contribution in the region occupied by the conductor. Note that this pro-
cedure causes both integrands in (4.48) to be divergent. However, the singular por-
tions of each are equal and can be extracted as will be shown later in this section.
This problem of different boundary geometry types does not occur for microstrip struc-
tures, where an infinitely thin strip with a specified current distribution is usually
chosen to model the conductor.
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Figure 4.4: Transverse regions of the transmission line for power integration.

Using the simplification (4.48), the contributions to the characteristic impedance
due integral over the upper half-space P;l (y>0), and due the integral over the lower
half-space P§ (y<0) can be evaluated in the form

i S T{E;H;'* — EyH{"dxdy vi=el, g (4.49)

where {Y,;:0—ec} and {Yg:-oe—->0}. This general form can be used to solve a
geometry involving any number of planar regions, simply by specifying the paths Y;
for each region. Thus, analysis of a microstrip structure for example can be formu-
lated using the form of (4.49) by properly specifying the layers. The required field
components in (4.49) for the special case of a line current above a lossy earth can be
found from the derivations in appendix A.

The calculation of the axially directed power in each region (e1,g), involves the
evaluation of double infinite integrals. Noting that the fields in each region can be
described in terms of infinite integrals, a much simpler form for (4.49) can be
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determined by substituting for the fields with their spectral domain transforms (an
equivalent form has been used for microstrip [Hashimoto]) as

j JE H‘*dxdy —J f-z—fe (u)e“""du L fh‘ (~=v)e* " dv dxdy
Y; —o ¥; —

et () Ih‘ (V)2R8(u—v ) dvdu dy

]
e

IH
é"'—mg

= —l-—j f L) B (u) dydu (4.50}
Y;

Using the above substitution, the power integrals in (4.49) can then be evaluated as

P} _ ]
1,12~ j

1 o] ledton o - gaonenay ar, | @.51)
In this from, the integration with respect to y can then be evaluated analytically,
reducing the double infinite integral to a smgle integration. As well, the expressions
for the transformed fields e(k,) and P (k) will be of a simple algebraic from.
Finally, the evaluation of the power integrals for the upper half-space P"’1 and the
lower half-space Pg can now be deduced from the axially directed power of a conduct-
ing strip over a lossy half-space as derived in appendix C. Thus, considering a delta
function line source, carrying a current 1,, the desired integrals (4.51) can be deter-
mined from (C.9,C.12) with the strip current distribution JP(k,) replaced by

1
L (t.a)K (t,a)

Jitky) = (4.52)

The factor (t,a)K(t,a) has been included to account for the finite size of the thin-
wire circular conductor.

The remaining power integrals Py and P; 2 represent the axial power internal to
the conductor medium in (4.47), and the portion of the power in the medium e occu-
pied by the conductor in (4.48), respectively. The first can be determined using (4.48)
and the fields internal to the circular conductor [Stratton] as

2na
Py = [[IEE"(P)xH” (504 pdpdé
00

o

O e

T

!

E¥(P)HY (p)pdpa‘¢ ) (4.53)
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— wu'wkf [l(Twp) Zw k; [l(Twp)
w — - _Z_
Bolp) = b ahya) - P Imak, T, (439
_ 1 fltp)
Y(P) = [ —-—— (4.55)

P 2ra I,(t,a)

where Z,, is the intrinsic impedance of the conductor. The power integral P; 2, giving
the contribution of the fields in the region e occupied by the conductor, can be
evaluated by decomposing the fields into a primary component (the conductor is in a
homogeneous medium) plus a secondary component due to the reflected fields off the
interface as

el
PP

i
Sy
IS

[EL@+ES BN x @ (F)+HS (F) 14 pdpd¢ .

)

O —— B

T

-

Since the secondary fields behave as a constant value over the small area of the thin-
wire conductor, their cross product with the primary fields will be negligible and have
appropriately been ignored in (4.56). The remaining integration of the primary fields
results in a divergent integrand, behaving as 1/p for p—0, which can be evaluated in
two parts as

[E" (B)xH"" (5)1£ pdpdo - (4.56)

Z |1, ]2 riN k2
P;Z = _9— £ J - 2 * z ® +l dkx
| (e ta) |2 ke U+UL || aU Ul T 4

27 oo

- e ®ug Broapas) 4.57)
0 a

Zy kf K,(t,p)

el =y _ —— B T irer’
Ep (_p) = Ip 2 k, 2K, (v.a) (4.58)
Zy kP K
ng (p) = 0% 1(%p) 4.59)

P?Tc”i;: akK(t,a)

The second integral in (4.57) is convergent an can be evaluated numerically. The first
integral on the_other hand, is divergent, but is also identical to the divergent part of
(4.51) in the expression for P;l. Thus, since P;=P;I——P;2, these divergent terms
cancel in the final result,
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4.6. CHARACTERISTIC IMPEDANCE RESULTS FOR THIN-WIRE
STRUCTURES

In this section, the characteristic impedances of thin-wire structures located above
a lossy interface are calculated. Results obtained using the new definition proposed in
section 4.2 will be compared to those determined using the equivalent circuit method
(section 4.3), the voltage-current method (section 4.4), and the power-current definition
(section 4.5). A discussion of the discrete modes of propagation k? supported by
thin-wire structures was presented in detail in chapter 3. For single conductor systems,
there are normally two discrete mode solutions. One of the modes is found near the
quasi-TEM solution for the structure (this mode was denoted as the transmission line
mode /" in section 3.4.1). The other discrete mode is located near the branch point
k,p in the complex &, plane which represents the TM surface wave supported by the
half-space geometry (this mode was denoted as the fast wave solution k¥ in section
3.4.1). Figure 3.11 demonstrated that there was two types of behaviour of the mode
solutions in the complex %, plane as a function of frequency, depending on the half-
space electrical properties and the height of the conductor above the interface. In
order to examine both types of behaviour, two structure geometries will be studied in
this section. As well, a comparison of the modal characteristic impedance with the
exact input impedance, as calculated using the complete spectral domain transform,
will be made.

Two different single conductor systems located above a lossy earth will be exam-
ined. In both systems, the conductor radius is a=0.0025m and the earth electrical pro-
perties are specified as H.s=1.0, g,=15, and 6,=0.01. The normalized propagation
constants k./L/k,, kY, /k, as a function of frequency for two different conductor heights
is shown in figure 4.5. In one case the conductor height is chosen as h=1.0m, so that
the fast wave solution is always near the surface wave branch point and the transmis-
sion line solution remains the dominant contribution to the current throughout the
entire frequency spectrum. In the second case the conductor height is chosen as
h=5.0m, so that the roles of the two mode solutions interchange as the operating fre-
quency is increased (the szL mode becomes the k7" mode and visa versa). The real
and imaginary parts of the characteristic impedances Zep » p =TL,FW for the two
cases are given in figure 4.6, as calculated using the proposed definition (4.24). Exa-
mining the A=1.0m case, the magnitude of the characteristic impedance of the fast
wave mode Zery is extremely large except for a small portion of the frequency spec-
trum near 30MHz, this being where /F and kW are in close proximity to each other.
Examining the 2=5.0m case shows that, as with the propagation constants, the roles of
the characteristic impedances of the two modes interchange for large conductor heights
as the frequency is increased. Since the characteristic impedance of the fast-wave
mode is extremely large except at a small portion of the frequency spectrum, it is
expected that energy will not be efficiently coupled to this mode in most situations.
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Figure 4.5: Discrete mode solutions &%k, and k/W/k, for two conductor heights.
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Figures 4.7 and 4.8 compare the results of the new definition for the characteristic
impedance (4.25) to four other commonly used definitions. These specifically are; the
circuit equivalent method (4.35), where the transmission line circuit parameters
Z° (kf) and Y*"(kP) are assumed to be stationary about the root k,=kP; the voltage-
current method (4.43), where two different line integral paths are used to define the
voltage; and the power-current method (4.47), where an integration of the axially
directed power density over the structure cross-section is used to obtain the power pro-
pagated by the mode. For both cases, as the frequency becomes very small, all
methods converge to the circuit equivalent result. For extremely large frequencies, the
structure behaves as an infinite conductor located in free space. For this situation, the
circuit equivalent and voltage-current methods converge to the same result, with the
power-current and the proposed definition becoming the same except for a small con-
stant difference in the imaginary parts of the characteristic impedances. The voltage-
current definition results, calculated using the path L1, began to deviate from the
results of all the other definitions at a much lower frequency. This is due to the fields
at large heights above the conductor giving a major contribution to the line integral,
thus being more affected by the TEM assumption. The results calculated using the
path L2 did not show this behaviour since the major contribution to the line integral is
from the small region between the earth and the conductor. Examining figures 4.6 and
4.7 for the h=1.0m case, shows that near a frequency of 3x10’Hz the characteristic
impedance Zor; becomes very small. At this point the excitation efficiency of the TL
mode is very good. This result may have applications in surface wave antenna design.

To complete the results, the characteristic impedance Z.; of the dominant
discrete mode will be compared to the input impedance Z;, seen by a delta function
voltage source VS located at some point along the infinite transmission line. If the
discrete modal contribution dominates the current, then the two impedances should be
equivalent Z;, = 2Zcpy , as discussed in section 3.3.2. The input impedance Z;, is cal-
culated by determining the complete spectral domain contribution to the current at the
source location, as given by the transform (3.29) in chapter 3. The real and imaginary
parts of the input impedances as a function of frequency for the two cases considered
in this section are given in figures 4.9 and 4.10. The results show that the discrete
mode assumpfion is valid as long as the height of the conductor is less than the free
space wavelength. For heights comparable to the free space wavelength, the branch
cut contributions to the current present in the complete spectral domain transform
become important.
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Chapter 5
Wave Propagation Along a Conductor
Near Or At a Lossy Interface

The study of wave propagation along conductors located near or at a lossy planar
interface is of interest in low frequency radio transmission, geoelectromagnetics for
remote sensing applications, as well as in the power engineering field for transmission
line analysis. It is important to determine the effect of the interface on the propagation
and radiation characteristics of the geometry, especially if it is highly lossy as in the
case of the earth. In the past, and as extensively examined in chapter 3, almost all
theories have treated the problem assuming a thin-wire approximation to model the
conductor [Carson, Sunde, Wait5, Kuester2]. This means only axially directed currents
having a uniform azimuthal distribution are assumed to propagate. Even the solution
to this simplified model has proven difficult; beginning with Carson in 1926 [Carson]
who took an approximate circuit approach, to Wait [Wait5] who presented an exact
solution in integral form. All this work, based on the thin-wire approximation, has
been successfully applied to many practical problems. However, if the conductor is
not thin or is located near the interface, the azimuthal current distribution will not be
uniform and azimuthal current components will also be present.

For a conductor located well above the lossy interface, the propagation constant
of the guided waves along the structure will be close to the wavenumber of the upper
medium (free space in the case of transmission lines above an earth). For a conductor
buried deep in the lossy medium, the propagation constant will be close to that of the
medium in which it is embedded. However, the evaluation of the propagation constant
for the structure becomes difficult when the conductor is located near or at the media
interface. For the case of an infinitely thin conductor located at the interface between
two media, Coleman [Coleman] showed that the propagation constant will be equal to
the mean-square average of the wavenumbers of the two media. Wait and Spies
[Waitd] determined the resulting fields for an axially uniform line current on an
infinitely thin conductor located at the interface. Wait [Wait5] then presented exact
expressions in integral form for the current on a single circular conductor located
above a lossy interface, under the assumption of the thin-wire approximation. Chang
and Wait [Changl] determined the propagation constants for both above ground and
buried conductors near a lossy interface at ELF frequencies. At these low frequencies,
it is assumed that the height of the conductor is much less than the skin depth of the
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earth and closed form expressions for approximating the infinite integrals representing
both conduction and displacement current effects were derived. They also used the
assumption of a uniform axially directed current distribution around the conductor in
deriving the propagation constant for the limiting case of a vanishing height when the
conductor radius to height ratio was fixed. Olsen and Pankaskie [Olsen7] give results
of the propagation constant calculated for a finite radius conductor with a uniform
current distribution located at the interface between two media. The results are com-
pared to those calculated using Carson’s quasi-TEM approximation [Carson], which
are shown to be invalid in this case. Pogorzelski and Chang [Pogorzelski] formulated
the problem of a circular conductor located near a lossy planar interface by taking into
account a non-uniform azimuthal current distribution. The formulation examined the
effect of only the zero and first order azimuthal and axial Fourier current components
on the propagation constant. In a series of papers by Butler et al. [Butlerl, Butler2,
Butler3, Xu], a scattering approach was taken to determine the current induced on a
perfectly conducting cylinder located near the interface between two media by a
known excitation. These studies are made for various conductor shapes; circular,
square, strips, etc. The formulation in these papers and others [Newmanl], however,
is a two-dimensional one considering either a TE or TM axially invariant excitation.
Further, their work was oriented towards scattering from conductors laying on or near
a dielectric interface (the media considered had small losses), whereas this work is
concerned mainly with a highly lossy interface, with the effect on the current distribu-
tion being much more pronounced in the latter case.

In this chapter, the propagation constants and associated current distributions for
the discrete characteristic modes supported by cylindrical conductors located near or at
a lossy planar interface are determined. An axially directed current is still assumed,
but an arbitrary azimuthal distribution is taken into account in the formulation.
Although the formulation is general for any size, numerical results for cases where the
dimensions of the conductor are much less than the free space wavelength will be con-
sidered here. Some of the important questions that are examined are:

1. Is the use of the thin-wire approximation valid for small conductor heights and if
not, what must the height to radius ratio be for it to be acceptable?

2. How does a non-uniform current distribution effect the propagation constant and
radiated fields for the structure?

3. Can the quasi-TEM approximation (Carson’s circuit based formulas) be used to
determine the fields of a conductor near the earth or are more exact expressions
for the conduction and displacement currents required?

4. A dramatic change in the propagation constant occurs "just" as the conductor
comes in contact with the interface (h—0) if the lower medium is highly con-
ducting (as in the case of a typical earth at frequencies below 1MHz). Before
contacting the interface, the propagation constant is near the free space value, and
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once it is buried, it is near that of the lower medium. Is the propagation constant
equal to the average value of these two limits when at the interface (h=0) and
what is the current distribution on the conductor for this case?

5.1. INTEGRAL EQUATION FORMULATION AND NUMERICAL
SOLUTION

The problem considered consists of a single arbitrary shaped cylindrical conductor
located above and parallel to a lossy homogeneous interface as shown in figure 5.1.
The region y>0 is considered to be free space, characterized by a permittivity €, and a
permeability [i,. The region y<0 is designated as the lossy earth, characterized by a
permittivity €,, a permeability {1, , and a conductivity G,. The conductor is defined by
the surface S, which is invariant in the z-dimension and defined by the generating
curve Cep(x,y). It is required to determine the characteristic propagating modes and
associated current distributions ?(F); red§ on the surface of the conductor for a given

geometry.
J p=(x.y)

A, (P)

€M,
T T X

€golg 1Oy

88 ] ug * cg B x
Figure 5.1: Conductor over lossy interface geometry.

The solution of the problem is facilitated by solving the wave equation in each
media region (the conductor and upper and lower half-spaces) and satisfying the boun-
dary conditions at their interfaces. As developed in chapter 2, this results in an
integral equation (2.10), whose solution yields the unknown current distribution on the
surface S. For a perfect electric conductor located in the upper half-space, only the
total electric field tangential to the conductor surface is required to be zero, and thus,
only the Green's function components G, =G in the integral equation are
required. An integral equation for the solution of the problem considered in figure 5.1
can then be formulated as

B, (F) x [H G, (FF)F)dr + E;"“(F)J =0 :Fe$ (5.1)
S
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where A, (7) is the unit vector normal to the surface S at 7. This is simply an electric
field integral equation which must be satisfied over the infinite length of the conductor.
Ee('r_,?’) is the Green’s function giving the electric field due to a delta function line
source, which is formulated to take into account the effect of the lossy planar interface,
and can be deduced from appendix A. Eé”c(?) is the field incident on the conductor
due to some external source and T(F) is the current induced on the surface of the
structure. The formulation as presented in (5.1) is the general case, where the current
induced by any desired source can be determined by properly specifying the incident
electric field. The allowance for a non-perfect conducting cylinder can also easily be
incorporated into (5.1) using the impedance boundary condition at the surface or the
complete integral equation form (2.10) developed in chapter 2. As in section 2.2,
when the physical geometry of the conductor-half-space problem is invariant with
respect to the z-dimension, a solution to the integral equation can be obtained in the
spectral domain by utilizing the spacial Fourier transform pair

Fl) = [t@e™™ ar | f@) = % [ £ ye™™ ax, 5.2)

The integral equation (5.1) can then be solved as a two-dimensional problem as

A, (P) x | G, (ppk, T (Pik,)dp + EF(Bk,)|=0 ;PeC,—o<k < (53)
C

where all fields and currents are now assumed to have an axial dependence of the form
e*/%?J®  The path of integration in the integral equation (5.3) is now over the gen-
erating curve C. In the cases studied in this chapter only an axially directed current
component will be assumed to propagate on the conductor, J 1 (P, )=J,(D.k,)E. Thus,
continuity of only the tangential £ components of the electric field on the conductor
surface is required and only the component G,,(P.pk,) is used. The resulting
integral equation is valid for an arbitrary source excitation, and can be solved using a
moment method approach as derived in chapter 2. However, interest is in the homo-
geneous solutions of (5.3) for determining the characteristic modes that can propagate
on the structure and in the resulting current distributions for these modes. Taking
;ET;'”C( p.k;)=0 in the homogeneous case, these results are then determined by solving
the scalar integral equation

[G oy BBk, (P )P =0 i FecC (5.4)
C

Here the eigenvalues &, =k# ;p=1,2,...,P satisfying (5.4) are the characteristic propa-
gation constants for the structure, which are in general complex. Solutions of this
mode equation define currents and fields which have an axial dependence of the form
exp{£jkfz—jwr}. The current distribution on the conductor for each mode is given
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from the eigenvectors of (5.4) as
L) = (P TY p=1, P (5.5)

The solution of the mode equation (5.4) will be determined numerically using the
- method of moments following the procedure discussed in chapter 2 (2.16-2.22) and as
shown in figure 5.2. In this section, the unknown current distribution around the con-
tour C will be expanded using a pulse function basis IT, (P) as

N l/Ac, ,pe Ac,
sz(f_j) = Zlgnn(a) ) Hn(ﬁ) = 0

n=1

, otherwise (5.6)
where the contour C has been approximated by N discrete line segments Ac,, with the
value of the total current on each segment given by the constant IZ. Note that the
expansion of the current using this basis is approximate for finite N. Solution of the
N constants [f is facilitated by computing an appropriate inner product <,> of (5.4)
with some testing function basis. Choosing a delta function testing basis consisting of
N matching points located at the centers of the segments Ac, will yield the set of
linear equations

N
<L{JZ(P)},8(Pm)>= I <L{IL,(P)}.8(P)>I1E=0 ,

n=1

{m=1,2,...,N
(5.8)

p=12,..P
LUf (P)) = [Goro (B k=) (5"
c
<a(P),b(p)> = [a(FIB(F )P’
c
where P, is the center of the segment Ac,,. The resulting set of linear equations (5.8)

1
J —
&(Pm)

0N
o]

&= X
Figure 5.2: Pulse function expansion-delta function testing MOM solution.
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can then be solved in matrix form as

[Z(k,=kD1017] = 0 [ p=12,.,P (5.9

Zpn(ky) = =Zgn(k,) = —<L{IL,(P)},8(P,)>

1 J‘ - — —
= — Gz (PP ok ap 5.10)
Acy o & z

The possible solutions of these sets of linear equations yields P characteristic eigen-
values k£ representing the propagation constants, and their corresponding eigenvectors
[77 ] giving the current distribution.

The scalar Green’s function G,,, (P,pik,) which determines the £ component of
the electric field at the observation point P due to a delta function line source located
at p° can be deduced in the same manner as the Green’s functions formulated in
appendix A. Assuming an axial dependence of the form e+jk’z, the fields of a delta
function line source located at (x”,y”) can be deduced by solving the two-dimensional
wave equation in each air and earth half-space, these being written in terms of poten-
tial vectors as

[V2 - (624 D) T = —’k"ijf'f—a(x—x')&y—y')é‘ ,¥>0

(4

(V2 - (2-4D] T18 = 0  y<0 1D
where I1¢ and I1¢ are the two-dimensional Hertz vector potentials in the air and earth
regions, respectively. Here &, = \/cozueeg is the propagation constant in the air
medium, and &, =\/m2ugeg+jwugcg is the propagation constant in the ground
medium. The associated fields in the upper half-space, and thus G, (P.pk,), are
determined from

k2
JOou,
A solution to (5.11) is obtained using the transform techniques (A.6-A.12) and then

satisfying the boundary conditions at the air-earth interface. In the case of equal air
and ground permeabilities (Mg =L, ), the Green’s function is determined as

E, = VVIIe+k I |, H, VxII® |, G, (Ppk)=E,(P)% (512

—_— "'_)'(l)jJ. — . ok
Gezz(p=p’kz) = ; {Tez I:KO(Te l Po | )_Ko(te [ Pp l ):|
2nk,

— k2, Pp) + k2G(x, ,55)} (5.13)

P=(xy) , P=(y) , Pp=@—=x"y-y) , Pp=(x—x’y+y")
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o0

— 1 4k lx-2" | -U, 4y
= | ——¢ k 14
Yoebs) = | = dk, (5.142)
GGt pp) = | el lx 10000 4 (5.14b)
~ B U, +U,
Uy =Nk2+12 , U, =Vk2+12 Re[U,,U,12 0

where t, = Vk &} and T, = ‘\/kzz—kgz are the transverse propagation constants in the
air and earth media, respectively. The real parts of the irrationals Re{U, .U, 120 and
Re[7,,7, 120 have been chosen to retain a positive value on the correct Riemann sheet,
these branch cuts being defined to ensure that the currents and fields decay at infinity.
Ko(z) is the modified Bessel function of complex argument and » =k, /k, is the refrac-
tive index of the air-earth interface. In the derivation of (5.13), the term involving
Kyt, | Pp |) is due to the primary field of the current source, and the term involving
K, !'55 |) is due to its image as if the earth were perfectly conducting. The
remaining terms in integral form, (5.14) are the corrections due to the imperfectly con-
ducting earth. Extension of the theory to account for a multiple layered earth model
can be facilitated by modifying (5.14) [Wait9].

Using the Green’s function G,,,(p.p".k,), the impedance matrix elements in
(5.10) are given as [Bridges6]

Zmn (kz) = _erm(kz) =- [Zlfln(kl) = ang;(kz)] (5.15)

[ —jon,
e 2 — —_ .
J k> Ac, A{‘TeKO(Te | Pp l)dp . m#n
S =
Zmn kz) —jop, T 12 sin(AAc,/2) (5.16)
ym=n
2nk? . \/12%3 AAc, /2

-JOHJ' 1 — —_ —t —_—

ZM k) = 2‘ f [tﬁKo(te |55 1) + k23, ,Bp) - k2G(x, ,pD):ldp (5.17)
27k, Ac, Ac,

ED E(xm—x”ym“y’) ’ 5[: E(Xm—x’,ym+y’)

The solutions of (5.9) giving the propagation constants kf is a generalized eigen-
value problem facilitated by solving the determinant | Z(&?)|=0,p=1,2,..P. For
each of the characteristic modes found, there corresponds an eigenvector [[?] for
which the current distribution of each mode J?(P) can be determined using (5.5,5.6).
In general, there will be P2N distinct eigenvalues for each of which there corresponds
an appropriate eigencurrent. The evaluation of the Fourier integrals J(t,,p) and
G(t,.p) in (5.14) are difficult and usually numerical integration techniques must be

103



Chapter 5 Conductor Near Or At a Lossy Interface

employed in the general case, with the analytical approximations and numerical
evaluation methods for these integrals being discussed in appendix B.

3.2, THIN-WIRE AND QUASI-TEM APPROXIMATIONS

The solution of the set of linear equations (5.9) for the general case of an arbi-
trary shaped conductor involves the evaluation of a large number of infinite integrals.
To simplify the problem, two common approximations which are often used in practice
will be examined. The first is the thin-wire approximation, where the azimuthal
current distribution around the conductor is assumed to be uniform. This approxima-
tion was derived and extensively discussed in chapter 3 for multiple conductor struc-
tures. The approximation is valid when the mean radius of the conductor is small
compared to the wavelength in the medium in which it is embedded and if the distance
from all other discontinuities (such as the air-earth interface or other conductors) is
large compared to the conductor radius. It has been the basis of almost all the previ-
ous works in solving conductor-half-space problems. The thin-wire approximation for
circular conductors can be derived directly from the integral equation solution (5.4)
under the uniform current assumption
)24

— —_. TikP—; kP~
T (P2) =JP(p)e T < 7o e =jo (5.18)
where a is the radius of the conductor and /2 is the total current flowing in the con-
ductor for the pth mode. Replacing the current distribution with (5.18), the integral in
(5.4) will yield the average value of the fields around the conductor circumference,
which can be evaluated analytically (as done in chapter 3 (3.21) except a perfect con-

ductor is assumed here) as

Z(k,=kP)IP = 0, p=12,..P (5.19)

1 N _—
Z(kz) = “EjGezz(p’p’kz)dp
C

+j U
= —;—IO(tea){*cho(‘tea) (5.20)
2nk,

~Iy(z,a) [t}Ko(te 2h) + k2)(x, 2h$) - k2G(x, ,2h§‘)] }

where A is the height of the conductor above the interface (to the conductor center).
The modified Bessel function /(z) takes into account the average value of the fields
and enforces the boundary condition at the conductor-air interface. The functions
J(z,.p) and G(t,,p) are the same Fourier integrals as defined in (5.14). Determining
the eigenvalues of this single term linear equation (5.19) is much faster than solving
the matrix equation (5.9).
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As previously discussed, the propagation constant of an infinitely thin conductor
located at the interface of the two media will be equal to the mean-square average
value of their wavenumbers [Coleman]. This result can be derived from (5.20), in a
similar manner as in [Changl], by assuming the height to radius ratio to be constant
(h/a=const) and considering the limiting case #—0, ¢ —0. Under these conditions,
the dominant terms in (5.20) can be identified to yield

, 2

O/, | o | 2h 2 { ] Ky [ ]
Zk,) = In| = | + kS In|t,2h]| - Injt,2h 21
) 2mk}? Ten[a} et % e 21
Iy(t.a) > 1

a—0
Ko(t.a) - Ko(t,2h) > In [Zh/a]

ah—{
-2

J(t, 2h$) > ~In(t,2h) , G(t,.2h9) > In(t,2h)

ah—-0 a,h—0 n2+1

Since the height to radius ratio is fixed, the solution of (5.19) with Z (k,) replaced by

(5.21), gives the mean-square average result k7 =kaE=V(kg2+kf)/2. The limiting
approximations for J(t,,p) and G(t,,p) were discussed in appendix B.

A second method of simplifying the evaluation of the mode equation (5.9) is by
employing the quasi-TEM approximation. As discussed in section 2.4.1 and 3.3.3, the
quasi-TEM approximation assumes that the axial variation of the fields is equal to that
of the upper medium (k,=k,) when solving the wave equation in each half-space (ie.
setting T, =0 in (5.11)). In this manner, the fields in the upper half-space will be a
solution of the two-dimensional Laplace equation. This low frequency approximation
has been successfully applied to many engineering problems and is generally accept-
able under the conditions that the dimensions of the transmission line should be much
less than the wavelength in the upper medium (a,h «<A,) as well as the refractive
index of the air-earth interface should be large (| n | »1) [Kingl, Bridges3]. How-
ever, even if these conditions hold the quasi-TEM approximation will not be valid as
the conductor approaches the interface [Olsen7], a more detailed examination of this
limitation being discussed latter in this chapter. Applying the quasi-TEM approxima-
tion by assuming 'ce=‘\/k22—k82 —0 in the wave equation (5.11), the Green’s function
and thus the impedance matrix elements (5.15-5.17) can be rederived in the simplified
form

[Z(k,)] = [Z%7 1+ kA[Yh ]! (5.22)
ser ~ —fﬁ)ue __}_ — — .
Zn 5 [Mm,, v A{,JC(QD)dP (5.23)
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3= ke e
T mn o, on Mo (5.24)
1 Iln[lﬁBl/lﬁDl]dB’  m#n
Ac, ‘Ac,
My = 1 Ac . (5.25)
l1-In 5 J+ Ac, A{ﬂln[lﬁo f ]a’ﬁ' ,m=n
G(T,=0Pp)=0 , J(t,=05p) = J.(Pp)
J.(Pp) = nzz " J [u—“uz—(nz—l)]e_“k‘(y"‘*yl)cos(uke | x=x" 1) du (5.26)
—10

Here the series impedance Z ¢ and the shunt admittance Y% terms are the equivalent
per unit length circuit parameters for the structure. The solution to (5.9) can now be
found as a standard eigenvalue problem. The logarithmic terms in (5.25) represent the
primary field and 1ts image under the conditions of a perfectly conducting earth. The
integral term J, (pD) represents the conduction losses in the earth and the contribution
of the integral G(‘te,pD ), representing displacement current losses in the earth, has
been neglected completely. Expressions for evaluating the integral Jc(ﬁ,;) are dis-
cussed in appendix B.

8.3. SOME NUMERICAL RESULTS

In general, there will be many possible solutions to the mode equation (5.9), each
representing a discrete guided mode (&7, JP(p);p=0,1,2,...P) on the transmission
structure. The modes can be categorized as consisting of a zero-order common mode
(p=0) plus a sum of higher-order differential modes (p> 0). For the zero-order mode,
the current distribution around the circumference of the conductor is primarily in
phase, with the return current path through the lossy interface. On the other hand, the
higher-order modes have a current distribution where both the forward and return
current paths are along the conductor. Thus, the fields for the differential modes are
confined mainly to the region around the conductor and the effect of the interface will
not be as pronounced as for the common mode. The results presented in this section
concentrate on the characterization of the zero-order mode propagation constant and
current distribution since it is the dominant mode excited when the overall dimensions
of the conductor are small compared to the free space wavelength, and is the mode
most affected by the presence of the lossy interface.

The first geometry considered will be a circular conductor located over a lossy
interface as shown in figure 5.3. The conductor has a fixed radius of @=0.08m with
the height /2 above the interface allowed to vary. The ground is characterized by the
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electrical properties ,,=1.0, &,,=5.0, 6,=0.01 and an operating frequency of 100KHz
is chosen. Under these conditions, the ground can be considered conducting
(n = 30.02+729.94). The parameter A =k —a in figure 5.3 indicates the distance from
the interface to the bottom of the conductor. Figure 5.4 gives the normalized propaga-
_ tion constants kf/k, and the corresponding relative current distributions JE(p) for the

first five modes (p=0,1,2,3,4) supported by the conductor for a height 4 =0.24m
(Ala=2.0). The influence of the interface causes the current distribution to be more
concentrated near ¢=0° (the bottom of the conductor) due to the proximity effect, the
influence being greatest for the zero-order mode. Since the current will be symmetric
about ¢ =0, only the range 0 <¢ <180 is plotted, with ¢$=0 the bottom and ¢ =180 the
top of the conductor as indicated in figure 5.3. Figure 5.5 gives the normalized zero-
order mode propagation constant kf/k, for various conductor heights (using eqns.
(5.9-5.17)). For heights A/a > 1 the propagation constant is found near that of the
upper half-space (k;/k, = 1), and only when the conductor becomes very close to the
interface A/a <« 1 does the deviation become significant. As the conductor comes in
contact with the interface A/a — 0, the propagation constant converges to a value near
the mean-square average kY%, Figure 5.6 gives the corresponding normalized current
distribution J7(¢) around the circumference of the conductor for various heights. The
effect of the earth on the current distribution is much more pronounced than observed
for the propagation constant. At a height of A/a = 1.5 the deviation in the maximum
current from a uniform distribution is 75%, whereas the error in k2 is only 2.4%.
Even at the large height of A/a = 12.5, the current deviation is still 18% and with only
a 0.06% error in k7. For heights A/a > 1, the deviation in the current behaves as the
first-order Fourier component cos¢, however, for smaller heights higher order terms are
required for an accurate representation.

180°
a = 0.08m
I 90°
A
h
] A ___/ Ee g]vle
/r,'ff'/'/v'/frf AR AV O AV A
00 88 ng ’Gg

Figure 5.3: Circular conductor geometry.
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Figure 5.4: Propagation constants and current distributions for the first
five modes supported by a circular conductor.

Figure 5.7 compares the zero order propagation constant k7 presented in figure
5.5 with the results calculated using the quasi-TEM approximation (eqns. (5.23-5.26)).
For the case considered, the classical TEM conditions Ih,a [<?L =3000m and
|n|=42.4%1 are all satisfied. The quasi-TEM approximation gives good results
even when the conductor is very close to the interface A/a > 1/10, however, beyond
this point the approximation is unacceptable The error is mainly due to the neglection
of the displacement current term Gz, ,pD) contributing to the shunt admittance in
(5.24). Figure 5.8 compares the propagation constant k7 presented in figure 5.5 with
the results calculated using the thin-wire approximation (eqns. (5.18-5.20)) under the
uniform current assumption. For the case shown, the thin-wire approximation is valid
only if A/a > 1. Note that as the conductor approaches the interface A — 0, the thin-
wire result rapidly converges to the incorrect result determined by (5.20) with
h =A+a —a. The dashed curve in figure 5.8 shows the variation of the propagation
constant when the height to radius ratio is held constant A/a = 1.5. The variation is
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Figure 5.5: Zero-order mode propagation constant £2/k, for various
conductor heights A,
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Figure 5.6: Azimuthal current distribution J2(¢) for various
conductor heights A.

109



Chapter 5 Conductor Near Or At a Lossy Interface

1.20
— e X ACT
——g—— quasi-TEM
0.86 -
0.0002
~0.72 (1/400)
® A
-~ T TR
™~ €p=5 0,=0.01 /
X
W0.48 1
0.002
0.24 4 0.005 (1/16)
0.00 = 5 0 (62I 5) T T 1
1.00 3.00 5.00 7.00 9.00 11.00

Ret k,/k, }

Figure 5.7: Comparison of the exact and quasi-TEM solutions for various
conductor heights A.
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Figure 5.8: Comparison of the exact and thin-wire solutions for various
conductor heights A,
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very small for a wide range of conductor heights. This can be explained by examina-
tion of (5.23-5.25) where the dominant term M,,, (representing the static coupling)
remains constant, with the conduction losses in (5.23) J. causing a small perturbation.
This result also indicates that the limiting process 2 —0, a =0 in (5.21), used to obtain
the mean-square average value k2%, is achieved only when 2 and a are extremely
small.

Figure 5.9 examines the effect of the conductor radius a in the limiting case
when the conductor is lying on the interface A = 0. A large range of radii are exam-
ined 0 <a < 10m, and even though the convergence is extremely slow, the propaga-
tion constant converges to the mean-square average value k.f——)k;WE as the radius
approaches the infinitesimal case @ — 0. Figure 5.9 indicates that once the conductor
comes in contact with the interface, the effect of the radius is small and thus a good
approximation for any geometry that touches the interface is the mean-square average
value. The results from figure 5.5, for the specific radius @ =0.08m as A — 0, is also
included as the dashed curve.

23.00
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22.60 A a
~—22.20 -
N &,=5 6,=0.01
™~ A=00
X
- 21.80
21.40
AVE _ 2,.2 ——a=0.0
k; _'\/(kg +k, )2 a
21.00

20,00  20.40  20.80 2120 2160  22.00
Re{ k /k, }

Figure 5.9: Zero-order mode propagation constant k2, for a conductor

lying on the interface A=0 for various radii a. The dashed

curve indicates the results for the varying height case of

figure 5.5.
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Figure 5.10 gives the zero-order mode fields for a circular conductor of radius
a=0.08m driven by a current of unit strength (/2=1). The magnitude of the % com-
ponent of the electric field along the interface | E,, (y=0) | is determined for various
conductor heights. The fields are calculated using the Green’s function (5.13). Results
. are given when an arbitrary current distribution is allowed (solid curves), as well as for
the thin-wire approximation (dashed curves). It is observed that the thin-wire approxi-
mation is acceptable for calculating the fields even when A/a < 1 as long as the obser-
vation point is not near the conductor (the exact value for the propagation constant
must be used).

1.00
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—~~ T T T T X
a — ~ = -
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\0.60 1 T
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Figure 5.10: Electric field | E,(y=0) | at the interface for various
conductor heights.

Lastly, Figures 5.11 and 5.12 examine the propagation constant and current distri-
bution as a function of frequency for a conductor of radius ¢=0.08m and height
A=0.12m (A/a = 1.5). The results determined using the thin-wire and quasi-TEM
approximations are also given in figure 5.11. Over the portion of the frequency spec-
trum f =10°—10%4z, the ground medium changes from behaving as a good conductor
(f=10% | n | =13.7 =\0,/0ey=12.8) to behaving as a dielectric (f=108;|n | =2.3
~VE,, =2.24). Thus, even though the condition | ha |<§:7Le holds, the quasi-TEM
approximation is no longer valid past about 1MHz due to the condition | 7 | » 1 fail-
ing. The error in the thin-wire approximation remains relatively constant throughout
the whole frequency range since A/a > 1 is satisfied. Figure 5.12 shows there is not a
large variation in the calculated current distribution as a function of frequency.
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Figure 5.11: Propagation constant k2/k, as a function of frequency

using the exact, quasi-TEM and thin-wire formulations.
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Figure 5.12: Azimuthal current distribution as a function of frequency.
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S.4. FOURIER EXPANSION OF THE CURRENT DISTRIBUTION

In the previous sections, the unknown current distribution around the conductor
was expanded in terms of a pulse function basis (5.6). In this section, a cylindrical
Fourier expansion cosn¢ will be used as an alternative basis to represent the current
distribution on circular conductors. The zero-order axial and first-order axial and
azimuthal Fourier components were formulated by Pogorzelski [PogoF2] to investigate
the effect of the interface on the propagation constant and current distribution of a cir-
cular wire above a lossy half-space. Note that the zero-order component n=0 is the
thin-wire approximation derived in 5.2 and thoroughly examined in chapter 3. The
choice of a Fourier basis is more appropriate than a pulse function basis for circular
conductors since the primary fields will be orthogonal in the Fourier case. Thus, the
only coupling between the expansion modes will be due to the presence of the inter-
face (if the interface were not present, the interaction matrix (5.9) would be diagonal).
As well, an analytical solution for the interaction matrix elements can be derived using
addition theorems for cylindrical functions, whereas an integration was required for the
pulse function basis (5.10). These advantages are lost however, when general (non-
circular) conductor geometries are considered, and a pulse function or some other
discrete basis is more suitable.

A solution to the mode equation (5.4) can be determined numerically by expand-
ing the unknown current distribution for the pth mode, as shown in figure 5.13, using a
Fourier basis defined as
cosn - = | _
N _ _ 2na ' 75, | =a
@ =20 » %@ =] § herwise (5.27)

n=1

where P,,= (0,k) is the location of the conductor center, a is its radius, and I? is the
total current for the nth Fourier component, for the pth mode. Note that the position
vector p can be defined as a function p=(r,4). The procedure for solving for the unk-
nown expansion coefficients is the same as that used in the previous section (5.8). In
the solution used here, the testing basis is chosen to be the same as the expansion
basis w,, (p)="¥,,(P) such that the resulting set of linear equations is formed as

[Z(k,=D)1[1P] = 0 ;p=1,2,.,P (5.28)
Zmn(kz) =—fom(kz) =—<L{an(—p—)}!le(5)>

L oo (G (55 cosnd 45 A

= -5 icosmq) - &[‘Gezzn( Pk, )cosnd” dp’ dp (5.29)

where the contour C is the generating curve for the circular conductor and
Gorzn ( PsP3k,) is the Green's function for the nth-order two-dimensional electric mul-
tipole over a lossy half-space. As in the previous section, a perfectly conducting circu-
lar conductor will be assumed.
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Figure 5.13: Circular conductor geometry for a Fourier expansion-Fourier
testing MOM solution.

The Green’s function for the nth-order electric multipole can be derived by deter-
mining the fields due to the delta function line source /Pcosnd. Assuming an axial
dependence of the form gthh? , the fields are deduced in the same manner as in section
5.1, by solving the two-dimensional wave equation in each of the air and earth half-
spaces. These can be determined in terms of potential vectors for each of the nth-
order multipoles as
—j WL,

k2

[V2 - k>, D] I =0 ; y<0

(V2 = (k2] TIf = Ifcosn¢°8( p-p)2 5 y>0

(5.30)

where I1¢ and T1¢ are the two-dimensional Hertz vector potentials in the air and earth
regions, respectively. Here k, = \szﬁe €, is the propagation constant in the air
medium and kg =‘\/c02p.g g +jWl, 0, is the propagation constant in the ground
medium. p” is the location of the delta function line source. The associated fields,
and thus the Green’s functions required for the matrix elements (5.29), are determined
from

_ _ _ _ k2 _ L -

E,, =VVIIS+2IE |, H,, = jcoit VXTI, Gu(Ppik,)=E, (P) 8 (531)
(4

where the fields will have the same nth-order ¢ dependence as the potential functions.

Only the cosn¢ electric multipoles are considered since they are even functions with

respect to the interface (x=x" plane). There will not be a perturbation in the azimuthal

current distribution due to the sinn¢ multipoles since they are odd functions with

respect to the interface.
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In the rest of the derivation, only the n=0,1-order multipole potentials will be
considered since they are easily derived. Noting that the solution to the homogeneous
part of the upper half-space wave equation in (5.30) has the integral form

s NE IR 2k 2 |y —y” TN
Foy k) = Fy(r0dy) = | Follydeye KRy L vibtexng, 5500
then it is seen that functions of the type aF, /dy will also be homogeneous solutions of

(5.30). Specifying rz\/(x —x’)2+(y -~y ’)2, (y =y Yr=-cosd, the zero-order multipole
potential can then be related to the first-order multipole potential as [PogoF2]

n¢ = -——_1I¢ (5.33)

Since the zero- and first-order fields (5.31) will also be related in the same manner, the
boundary conditions at the interface will be satisfied for I1¢, TI§ if they are satisfied
for 1§, T1§. The Green’s function Gep o PsP ok, ) for the zero-order multipole was
derived in appendix A and also in section 5.2. Thus, the n=0,1 Green’s functions are
given from (5.31,5.33) as

Canol Pke) = St | 1Ko, | B 1) = Kot 155 1)

€

- K215, 5) + K26, B) | (5.34)
R _j Wy, —1 0 _— —x
Ger1(PPk,) = 2 T, 3y I:Tez[KO(Te 1Bp 1) -Kotx. 19p 1]
- kezJ(T'e ’51;) + kzzG(Te !55)} (5 -35)
150 | = Vo2 + 2 , 15| =Va—=x)2+g+y)?

with J(t,,p) and G(t,,p) being defined in (5.14).

The first intcgrati'on over C in (5.29) determines the average value of the nth-
order Green’s functions and can be solved using the addition theorem for cylindrical
functions [AbroC19] as

1 —— P
-h_agGezzn(p’p’kz)cosn(b dp

"o 1 - e ’ —
= Gggn( PPy ’kz)z f IO(Tea) + ZZIk(Tea)COSk¢:lCOSn¢ ap
Ta ¢ k=1

= Goppn (BB ) (2, 2) (5.36)

where 7, (z) is the modified Bessel function of order n. The remaining integration in
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(5.29) can be evaluated in two parts, one for the primary components F »(Pp), and one
for the secondary reflected components F (pD), as shown in figure 5.14. The primary

components are easily evaluated since they have a simple cosn ¢ variation such that
{

Ky(t,a) , m=n=0
—2—1—1&,(1,_, |5y | Yecosndcosmé dF = *%Kl(‘tea) , m=n=I (5.37)
Ttac
0 , m#n

where the primary fields have been represented in their modified Bessel function form.
The integration of the secondary components, can be evaluated in their integral form
as

2na > IF (Pp)cosm o dp

= —1—_[ ffn(k Yo Uelhtyivikx cosm o dp

2na A¢ -
.{fn(k Ye ~U,2h 1 J' +U, acost +jk, asm¢cosm¢ ad ¢ dk, (5.38)

Y

VN S Sl e

! image center

Figure 5.14: Integration coordinates for inner-product calculation.
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Using the transform k, =—j1,sindy, U, =1,cosdy and again the addition theorem for
cyhndncal functions

2na fF (pD)cosmq) dp

o

’ 2
U2k 1 3 -
= .[fn (k. e %_ Oe+'1’ acos(® %)COS?‘H@) ad ¢ dk,

—oe

I, (kx)e‘U'”‘ 2 J' [Fo(t,a) +2 51, (%, a )eosk (— dg)lcosm 6 ad dk,
—o0 k=1

I4(t,a)F, (2h5>) m =0
- (5.39)

_ U,
Ifn(k e U L1k = 15 0) - F, 1) m =
’te T, ay
where cos(¢—¢g)=U,/t,cosd since the sing term is orthogonal. Thus, the interaction
matrix elements of (5.29) can be deduced for the n=0,1 Fourier components as

botk,) Z8i (k) | |18

ZEHIIP] = - = .
L] fole) 2810 | [18] T 7 >4

Zgo (k) = ke — 5 1o(T.a) fKo(’Cea)—Io(tea)B(’ce,Zhﬁ)]
2mk

Z8 () = L Me 1 (e gy Ig(tea)—1—~a—B(*ce,2h9):'

ZJ'Cke i Te a}’
. r (5.41)
=] wue 1 8
A = I I —_— ,
o (k) ok o(T.a) - l(Tea)Te 5 B(t, Zhj?)]
—j O, [ e 1 o
e = - —
21, (k) - Iy(t,a) B olt.a) 11(TeG)Te2 32 B(Te,2hﬁ):,

Bz, p) =12, |7 1)+ I, 5) - G, p")
where the following relations can be used to simplify (5.41)
%Ko(te 15" =20 | ) = 1, K ((t,2h)
. (5.42)
2 Kﬂ(ﬂc |p"=2np 1) = fh—Kl('t:BZh) + 12K (T, 2h)

The solutions of the mode equation | Z Py | =0 yield the propagation constants
kf ;p=0,12,...P. The current distribution for each mode can be determined from the
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eigenvectors of (5.40) and using (5.27) as

I e (kP Z%o (kP

B _ 2D Z¢D (5.43)
8 Zh (k) 11 (kD)

JAP) = JP(r=a,$) = o, ﬁ—cosd} (5.44)
:\P) = Jrr=a0) = 2na  2rma )

where the total axial current flowing in the conductor is given by the / § component.
The first term of the Fourier expansion is simply the thin-wire approximation derived
in section 5.2.

In the previous section, a study of the normalized common-mode propagation
constant k;/k, was made for a circular conductor above a lossy interface. Figure 5.9
compared the exact results to those obtained using the thin-wire approximation. For
this case, the conductor had a fixed radius of @=0.08m with the height 4 above the
interface varied (A =h-a) as referred to figure 5.3. The ground was characterized by
Hy,=1.0, &,,=5.0, 5,=0.01 and an operating frequency of 100KHz was chosen. Again

0.40
a=0.08m
0.32 - < A=
- \
Yy
~0.24
L H]
-
~
X
e .16 -
0.08 4
: e €X2CE J, ()
1.0 (12.5 ——&—— thin-wire /;¢
50 62; ) m*’m 20+ 1, c080
0.00 0 (62 .) T T :
1.00 1.80 2.60 3.40 4.20 5.00

Ret k,/k, }
Figure 5.15: Comparison of k2/k, using the exact, thin-wire and first-order
Fourier formulations for various conductor heights A,
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using this case, figure 5.15 compares these results with the propagation constant k2/k,
obtained when the zero- and first-order Fourier components are used 7§ +/9 cos¢ (eqns.
(5.40-5.44)). The use of the additional Fourier component increases the range of vali-
dity of the thin-wire result to approximately A/a > 1/4. Figure 5.16 gives a com-
parison of the corresponding normalized current distribution J2(¢) around the cir-
cumference of the conductor. For heights A/a > 1, the deviation in the current
behaves as cos(, however, for smaller heights higher order Fourier terms are required
for an accurate representation.

4.00 4.00
3.0 - -3.00 -
< s
e o
Q ™ Qo N
] -2
3 2:001 F2.00 3
N N
© ©
£ E
S 5
S 1004 —— . - 1.00 O
0.00 0.00

T .
0.00  30.00 60.00 9000 12000 15000 18000
azimuthal position ¢

Figure 5.16: Comparison of J2(¢) using the exact, thin-wire and first-order
Fourier formulations for various conductor heights A.

5.5. DISCUSSION

In this chapter, the discrete modal properties, propagation constant and current
distribution, supported by arbitrary shaped conductors located near or at a lossy inter-
face were studied. The formulation presented allowed for a non-uniform azimuthal,
but axially directed, current distribution. Although the formulation is applicable to any
sized conductor and to arbitrary earth electrical properties, numerical results were
determined for cases where the overall dimensions of the conductor were smaller than
the free space wavelength and when the earth behaved as a good conductor. As well,
most of the results presented concentrated on the characterization of the zero-order
mode propagation constant &, since this mode is the one most effected by the presence
of the interface. The results indicated that the effect of the lossy earth was much
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more pronounced on the current distribution than on the propagation constant (a 20%
deviation in the current distribution was observed for A/a=12.5, a similar error in &2
occurring only when A/a<1). The thin-wire approximation was found to be valid only
under the condition A/a>1, and the inclusion of the first-order as well as zero-order

Fourier components only improves the validity to A/a>1/4. In general, the Fourier
' expansion basis requires many terms to adequately represent the current distribution
when the conductor is near the interface, a pulse function or other discrete sectional
basis being more appropriate. The quasi-TEM approximation was found to be ade-
quate for even small heights. A significant error in the quasi-TEM results occur only
when the conductor becomes very close to the interface A/a<1/10 (as long as the TEM
conditions that all dimensions are much less than the free space wavelength and the
earth behaves as a conductor still apply). A good approximation to the propagation
constant when the conductor is in contact with the interface is the mean-square aver-
age value k2=k2VE. The conductor radius has little effect in this situation, and was
shown to approach the average value kY% in the limit of a diminishing radius @ — 0
(even though the convergence to this limit is extremely slow). The resulting fields for
the zero-order mode are accurately predicted by the thin-wire approximation for all
conductor heights as long as the observation point is not near the conductor | §| >2a.
This observation is only valid if the correct value for the propagation constant k? is
used, as calculated by the complete expansion basis for the current distribution. Even
though the exact calculation of the propagation constant may be time consuming, the
use of the thin-wire approximation for calculating the fields external to the region of
the conductor is very efficient.

Even though the presented moment method solution, using a pulse function basis,
can be used to model arbitrary shaped conductors, the previous sections considered
only circular structures. The circular configuration was used since it has previously
been the most extensively studied geometry, and can be applied to many practical
applications. As well, an analytical solution to the thin-wire assumption (and first-
order Fourier mode) can be obtained for the circular geometry. To briefly examine
situations when the conductor is not of a circular configuration, the case of a perfectly
conducting rectangular strip located over the lossy half-space will be considered.
Strips of various width to height ratios (w/k) will be examined, but all geometries will
maintain the same total circumference (2442w =0.32m) and the same distance from
the interface to the bottom of the strip (A = 0.08m). As in previous cases studied, the
earth will be characterized by the electrical properties Hrg=1.0, &,=5.0, 6,=0.01, and
an operating frequency of 100KHz is chosen. Figure 5.17 gives the normalized zero-
order mode propagation constants &7 and figure 5.18 gives the corresponding normal-
ized current distributions J/(P) for four width to height ratios w/kh =1,3,7,15
(Iw.2]1=[0.08,0.08],[0.12,0.04],[0.14,0.02],[0.15,0.01]). Figure 5.17 indicates that
the shape of the conductor has only a small effect on the propagation constant as long
as the distance between the bottom of the conductor and the interface remains
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constant. This is reasonable since the conductor size is much less than the free space
wavelength. Also as expected, due to the skin effect, the current distribution is max-
imum near the corners of the strip. As observed for circular conductors, the presence

of the interface causes the current to be concentrated near the bottom of the strip.
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Figure 5.17: Zero-order mode propagation constant kZ/k, for a strip

with various width/height ratios.

122



Chapter 5

_ Conductor Near Or At a Lossy Interface

1.00 z 1.00
B
\\
0.80 - D& A L 0.80
— | =9 =
3 s e <
S
—"0.60 4 EFS = 3.0 0'3 = 0.0} -0.60 -
Q QO
N N
B 0.40 A -0.40 O
£ £
| .
Q Q
< C
0.20 -0.20
A B C D
0.00 | ) | v | T } 0.00
0.00 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32
circumferential position p
Figure 5.18a: Current distribution /2 on a strip with w/h=1.
1.00 & 1.00
c N B
0.80 A = -0.80
P
a Ers = 5,0 Cy+ 0.0 Q
'y
- - ™~
—'0.60 w/h=3 0.60 —
=) e
Q Q
M N
0 0.40 4 -0.40 ©
£ £
;' | -
jo] [o]
o <
0.20 -0.20
A B c D
0.00 ———— , — 0.00
0.00 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32

circumferential position p

Figure 5.18b: Current distribution J£ on a strip with w/h=3.
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Chapter 6

Conclusions and Suggestions
for Further Study

In this thesis a general framework for the analysis of guided wave structures has
been presented. A theory was developed for both open and closed cylindrical struc-
tures through a hybrid Green’s function-integral equation approach, which was subse-
quently solved using a spectral domain technique in the infinite axial dimension and a
moment method in the bounded transverse dimension. Specific attention was paid to
the use of only the discrete mode contributions as an approximation to the complete
field solution. In order to characterize the properties of the discrete modes, a method
of solving for the propagation constants and a new definition for the characteristic
impedances of a general cylindrical structure were presented. The formulation of the
case when the guided wave structure is embedded in a stratified supporting medium
was then considered, and the wave properties characteristic to this geometry were
examined. It was shown that the cylindrical/planar geometry supported a continuous
spectrum of radiation modes propagating into the uppermost and lowermost half-
spaces, a continuous spectrum of surface waves trapped by the layered media, and a
set of discrete modes which were guided by the cylindrical structure.

Examples of various special cases which could be modeled using the
cylindrical/planar geometry were examined in chapters three, four and five of the
thesis. The thin-wire approximation was used to examine the excitation of and wave
propagation along multiple conductor transmission lines located over a lossy earth.
Numerical results were presented for the discrete mode propagation constants and for
the currents excited by external dipole and delta function voltage sources. It was
shown that an N-conductor system can support more than N discrete modes, these
being in addition to the traditional quasi-TEM type modes. The additional guided
modes were identified as fast-wave modes with attenuation constants that are usually
less than the quasi-TEM type modes. The numerical results demonstrated that the
quasi-TEM approximation is valid under the conditions that all structural dimensions
are much less than the free space wavelength (<,/10), and that the refractive index at
the interface is large (| n | >10). The validity of using the transmission line approxi-
mation in the near field and the saddle point contribution on the far field was examined
by considering the induced currents due to a vertical electric dipole source located in
the upper half-space. As expected, the discrete mode contributions dominated the
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currents when the transverse distance from the source to the transmission line was
much less than the free space wavelength (<A,/20), and the saddle point contribution
dominated when the transverse distance was greater than the transverse component of
the  propagation constant (> 37\.pe). The formulation of the multiple conductor
geometry and the validity of the various approximation techniques is important for
application in many electromagnetic coupling and interference problems.

For a transmission line analysis of guided wave structures, methods for character-
izing the discrete mode properties, propagation constants and characteristic
impedances, must be defined. The solution of the propagation constants is straight for-
ward as there is a direct physical relationship with the electromagnetic quantities. The
definition of the characteristic impedances, however, is arbitrary since there is no direct
relationship between the electromagnetic quantities and the circuit quantities modeling
the structure except in the TEM limit. In light of this, an alternative definition for the
characteristic impedance of guided wave structures was proposed in chapter four. The
definition followed directly from the hybrid Green’s function-integral equation solution
of the structure and collapsed to the TEM result in the quasi-static limit. As an exam-
ple to study the proposed definition, the case of a thin-wire conductor located over a
lossy half-space was addressed.

In the past almost all theories have treated the problem of a conductor over a
lossy earth assuming a thin-wire approximation to model the conductor. In chapter
five, the discrete modal properties, propagation constants and current distributions, sup-
ported by arbitrary shaped conductors located near or at a lossy interface were studied.
An exact formulation of the problem, which is valid even when the conductor is in
contact with the interface, was presented. Results for the case of a circular conductor
located over an earth having typical electrical properties were given and a comparison
was made to the various other approximation methods which have been utilized
throughout the literature. The results indicated that the thin-wire approximation is
valid only when the distance from the interface to the conductor is greater than the
dimensions of the conductor. As long as the traditional TEM conditions that all
dimensions are much less than the free space wavelength and the earth behaves as a
good conductor hold, the quasi-TEM approximation can be used for small heights,
with a significant error occurring only when the conductor becomes very close to the
interface. The use of a Fourier expansion basis was shown to require many terms to
adequately represent the current distribution when the conductor is near the interface, a
pulse function or other discrete sectional basis being more appropriate. The use of the
thin-wire approximation for calculating the fields external to the region of the conduc-
tor was shown to be very efficient as long as the observation point is not near the con-
ductor. Lastly, under most conditions a good approximation to the propagation con-
stant when the conductor is in contact with the interface is the mean-square average
value k2= kAVE;

126



Chapter 6 Conclusions

The derivation of the Green’s functions for sources which are embedded in a
stratified media geometry was presented in appendix A, with the case of a single
homogeneous half-space being emphasised. Appendix B presented various techniques
for the evaluation of these Green's functions, commonly known as Sommerfeld
integrals, these including some new closed form expressions for the lossy half-space
case. A technique for the numerical integration of certain Sommerfeld type integrals
was also presented, the proposed method having the advantage that it is capable of
integrating these integrals in the far field region.

6.1. SUGGESTIONS FOR FURTHER STUDY

Even though the numerical results presented in the thesis concentrated almost
solely on structures over a lossy half-space, the formulations presented in chapter two
attempted to encompass the problem of guided wave structures in general. Thus, there
remains many opportunities to apply these formulations to more complex geometries.
As well, the studies involving structures over a lossy half-space have shown some
interesting properties which may be exploited with further effort. They also have lead
to many additional problems which should be investigated.

1. The study of thin-wire structures over a lossy half-space showed that it was possi-
ble to find discrete propagating modes which had attenuations much less than the
traditional quasi-TEM type modes. It has been suggested that the utilization of
these modes for leaky wave antennas or low loss transmission lines may be
promising [Olsen2]. As discussed in chapter four, however, the excitation
efficiency of these additional modes is extremely low for typical sources (the
characteristic/input impedances are very large). An examination of possible
sources which can adequately excite these modes may be fruitful.

2. In chapter three, the discrete mode and saddle point contributions to the current
induced on a transmission line due to a dipole source were determined. In the far
field, it was shown that the surface wave contributions to the currents were not
negligible near grazing angles of incidence with respect to the interface. The sur-
face wave component can be extracted by considering the pole/branch cut contri-
butions in the steepest descent evaluation as discussed in section 3.3.4. The
inclusion of this extra term is important in radio transmission and interference
problems, where both the source and the transmission line are usually located
near the surface of the earth.

3. In the results presented in chapter four, it was shown that the characteristic
impedance of one of the discrete modes was very small over a certain band of
frequencies, for a given transmission line geometry. Coupling devices may be
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designed to take advantage of this, since the excitation efficiency of the mode in
this frequency band is very high.

4. Chapter four proposed an alternative definition for the characteristic impedances
of the discrete modes supported by a guided wave structure. The special case of
a thin-wire transmission line located over a lossy earth was considered as an
example. Since much of the present controversy is in the proper definition of the
characteristic impedance of microstrip structures, numerical results should be
extended to examine this problem.

5. The study of arbitrary shaped conductors which could be located near or at an
interface between two media in chapter five, considered only axially directed elec-
tric currents J, () on the structure. This assumption will only be valid for struc-
tures that are much smaller than the wavelength of the medium in which they are
embedded. If large structures or excitation by TE sources are to be considered,
the inclusion of a transverse current component J p{P) must also be incorporated.
This additional complexity was addressed in the general formulation presented in
chapter two. Both axial and transverse current components have been previously
considered in the analysis of microstrip problems [Itoh, Fache].

6. The results of chapter five only considered the case of a conductor which could
be located near or at the interface of two media, but must totally reside in only
one of them. This work should be extended to examine the case of partially
buried conductor geometries, which can be deduced from the formulation
presented in chapter two. The results may be useful in the modeling of MMIC
and optical waveguide structures.

7. Appendix B presented a numerical technique for the integration of some of the
Sommerfeld type integrals occurring in layered media problems. Simpon’s
method with an exponential weighting function was used to evaluate the resulting
kernel. The use of a more advanced integration method, such as a Gaussian qua-
drature technique again with an exponential weighting, would greatly improve the
performance of the numerical evaluation.
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Appendix A
- Green’s Functions for Planar Current Sources
Embedded in a Stratified Medium

In this appendix, the potential functions and resulting fields due to an arbitrary
two-dimensional planar current source embedded in a stratified medium are developed.
This problem has received much attention in both recent and past literature with its
applications towards structures above lossy media [Wait3, Felsen, Kuesterd, Waitl2]
and in the analysis of microstrip and semi-conductor devices [Jansen2, Itoh, Das,
Bagby]. The problem is initially formulated for an arbitrary source distribution in the
plane parallel to the media stratification. A source with a distribution perpendicular to
the media stratification can be handled through an integration of the planar sources dis-
cussed in this appendix. Special cases, where the planar source is reduced to a line
source or to a simple delta function source will also be studied along with some of
their applications. The problem presented in this appendix is solved using the usual
transform techniques. Thus, the resulting solutions will be in the form of single or
double infinite integrals, these sometimes being referred to as Sommerfeld-type
integrals due to his solution of the half-space problem in 1909 [Sommerfeld2]. The
analytical solution of these infinite integrals, in terms of series expansions or tabulated
functions, is available for only some special geometries, with many approximations
also having been developed over the past decades. The accurate solution of these
integrals, however, usually requires a numerical integration approach. This appendix
concentrates on the derivation of the Green’s functions in integral form, with an
analytical form given for only a few special cases. A discussion of the evaluation
techniques for these integrals is left for Appendix B. Further, this appendix concen-
trates on the formulation of the potential functions and resulting fields for electric
sources types ._I;, with the formulation for magnetic sources ATI-S easily derived in a
similar manner. The desired Green's functions, required throughout the thesis, can
then be developed from these results.

A.l. GREEN’S FUNCTION FORMULATIONS

Consider a planar current source fs (or AZ) embedded in a stratified media as
shown in figure A.1. In this configuration, there are M* regions located above the
source medium and M~ regions located below the source medium. Each of the
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Green’s Functions for Sources Embedded in a Stratified Medium

regions, denoted by ~M~<i<M™, has a thickness /; and electrical properties defined
by a permeability yi;, permittivity €;, and conductivity 6;. The planar source is chosen
to be located in the medium i=0 at a distance y~ above the y=0 plane (0<y’< ho).

The source is allowed to vary in the x-:z Pplane

and is specified as either

J -J (x,2)8(y—y") for an electric source or as M —M (x,2)d(y~y") for a magnetic
source. The source has been chosen to be in the region i=0 for convenience, with a
simple transformation of the § coordinate (changing the subscript i) allowing the prob-
lem to be formulated for the source in any desired region.

J
: A h
L°= +M+ P+M+ E+M+ O:M+ T ®
e
(=+1 Pa & oy hy

Planar Source _
=0 OM

)

hy

{ 2= X
[:“1 P“ E"l O:‘ h."

y

k

2” (=2 Po &2 0 the

[=-3 P3 C3 O3 fhog

f
(.z_M“"i'l P—-M'}-i E~M'+l G'-'M-‘H \rh'M—H

A
[==M~ P Cow O Ny =00

Figure A.1: Planar source embedded in a stratified media.

144



Appendix A Green’s Functions for Sources Embedded in a Stratified Medium

The goal is to derive the fields in every region i due to the source. Assuming an
e/ time dependence, the fields must be solutions of Maxwell’s equations in each
region { as [Stratton, Harringtonl]

VxE' = +jcnp.,-1£1—i - A?s
Vx H' = (Gi—}me,-)f“ + fs (A.1)
V-B' =m; = (1/jw)V-M,
VD' =pg = (1jw)V],

where the source terms J; and p, (A—Zs and m;) are zero except in the region i=0. The

electric and magnetic Hertz vector potentials [T and II* are chosen to represent the
fields as

.2 — .
E'=VVIi+ (41 + —— Vx 11"
—J WE;
| 2 (A.2)
H' = —— VxTl' + VV-II% + 27"

Jop;

k; = \/wzuf € + jOU; T;

where the Lorentz gauge ¢ = —=V-I1/ and y = ~V-II "™ has been used. &; is the propa-
gation constant in each medium, with €/=g;+jG;/w. Thus, the fields in each region
can be described by the corresponding vector potential which are a solution of the
Helmholtz wave equations

_‘m .o
B s By O
{VZ + kizlﬂl = kiz
0 yi=E1, 22, +MY (A3)
—-jwel —
. —M, ,i=0
(V24+ kA% =4 k2 °
0 Ji=E1, 22, tM Y A

To uniquely define (A.3,A.4), continuity of the fields at each interface must be satisfied
which are specified as

i) Ef = Ei* iv) Hi=Hi*
iy E=E}*! v) H} = Hit  ~M<i<MT-1 (A.5)
itl) e/Ey =ej Byt vi) wH] =y, Hit!

The potentials in (A.3,A.4) can be defined in terms of general functions which satisfy
the set of differential equations
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2 f(x 2)80-y") i=0
V2 + kg oy 2) = i 0 (A.6)

These differential equations can be solved by utilizing the two-dimensional Fourier
transform pair defined as

Fle k) =T (f (x,2)} = I [ f2re e g ar,

0o o (A7)
P60 =R kokd) = 7 | [ ledeye e aga
Transforming (A.6) with respect to z-x, then y
R {f(kx,k D807 ,i=0
5,7 ) |g (ke y k) = 020 (A.8)
- f( ke 5 i=0
12 - UR g ek ) = k0 (A9)

Uy = VE2Hk2k2 = V22, 1 = 2k

The function g’ (k, Ky ,k,) has poles located in the k, plane at k, = £jU;. Extracting
the residues at these poles, the general solution to (A.6) can thus be determined in
terms of

g (kx’y k )" g (kxsky k )}
— ke ky) Uiy Di(kx k2) -Uiy 8; =U; ly=y"1
==f (kxskz) ['—T T@ + '2—[']:6 (A.10)

where C'(k, k,) and D' (k, k,) are arbitrary constants to be determined by the boun-
dary conditions at each interface. For proper decay of the fields as | ¥ | = oo the irra-
tionals U_y,- and U 4+ in the two outer regions are chosen to retain a positive real
value on the correct Riemann sheet, Re[U_,,-,U ,,,+]20. Thus, the constants DM =0
and C*M'=0 are required. Note that the forcing function term in (A.10) is zero if i #0.
The Green’s function for the given source function f (x,z){,; ae {x,y,z} can now be
determined from the solution of

[V2+ kG (xy .y s2) =

{f(x ¥y W,  ,i=0
(A.11)

iz 0

G'xyyz)= r;l {Ei kery oy ’,kz)} (A.12)
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A.1.1, Vertical and Horizontal Potential Functions

In this section, the potential functions for a vertically polarized electric source
(VES) J,(x,z)80 -y~ )$ and for a horizontally polarized electric source (HES)
Jo(x z)ﬁ(y -y )[‘\a ; o€ {x,z} will be derived. The fields due to any electric source J
can then be represented in terms of a linear combination of these components. Simi-
larly, any magnetic source A/_Is can be solved in terms of VMS and HMS components.
The fields due to the electric sources will be determined from the solution of the wave
equation for the Hertz vector potential IT as defined in (A.2,A.3). Similarly, the fields
due to the magnetic sources can be determined through the magnetic Hertz vector
potential I1*. The vector potentials can be written in terms of their scalar components
as IT = (V, ,V,,V,) and m* =(U,,U,,U,). For the most general solution, involving
both J and M all six scalar components are required to represent the source. How-
ever, for the case of a HES or HMS, there is one degree of symmetry and only two
scalar components are needed for each. For a VES or VMS, there is two degrees of
symmetry and only one scalar component is needed for each. Thus, the solution to
any source distribution fs, A?S can be derived in terms of only the scalar potential
function components V, $ and U, §. These two components are the conventional TM
and TE Debeye potential functions [Wait3, Wait13], respectively, and are specifically
chosen since their vertical electric and magnetic fields are uncoupled for a planar
geometry, allowing an easier solution of the wave equation. Alternatively, the choice
of other scalar components to represent the source can be found through a simple
transformation. Thus, the scalar potential functions for the TM and TE cases will be
derived next, the potential functions for other source types then being derived in terms
of these components.

i) TM case:

For a vertically polarized electric source Jy (x,2)8(y—y")$ located at y=y’, the
fields are determined from the scalar potential V)f $ as

_f p‘:
. —J,x 20y =y ") , i=0
[VAAV,9 =1 k2 0
' 0 Li% 0 (A.13)
E' = VV-VI) + k2V]$ (A.14)
H K Vx Vi A.15
o Y (A19

The solution to (A.13) is obtained in terms of functions of the type (A.10), where
Gk, y k)= V‘(kx,y k,)$ and  f (k k)= (~j 0py/k§), (ky k). The  arbitrary
coefficients C*(k,,k,) and D* (kx k,) of (A.10) for the geometry shown in figure A.2
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are determined by satisfying the boundary conditions (A.5) at the media interfaces
[Kuester4, Wait9, Itoh, Das]. Using the transformed expressions of (A.S), there are
2(M*+M~) boundary conditions to determine the unknown coefficients (note that the
two tangential boundary conditions, x and z, are the same due to symmetry in these
dimensions). The transformed potential function Vyi (k. .y .k,) has a solution

+J Wiy PRIM REF .
—-—k—g—Jy(kx,kZ)[Vy Uy ) + V, “(kx,y,kz)] L i=0

Vit y k) =1 (A.16)
yrTER +J Wy TRAN.
———J, (k k) [Vy gy ey )] L i%0
kg
where in the source region i=0 (O<y <h)
PRIM _ 1 —Ugly—y|
Vy o(kx 2y skz) = [me ° (A17)
REF, - 1 1 —e,~Usly+y")
Y k) = 2Uq 1-R§eR §oe ™Yot {RO ’

+ Rgee—Uo(zho“)’—Y') + Rd—eRgee“Uozho [e"'Uo(y—)")_*_e‘Uﬁ(Y"y')] }} (A.18)

and in the remaining regions i#0,

TRAN, ~U. |yt —U. | by +H. T?
V}, ‘(kx,y,kz) _ [e U; l)’ H,l +R‘ige U; |2h, }"E'Hlf}__ii_ (A.lg)
I+R*®
iTl | 4+ R
Te= | I ——L_¢ Uit ¢ A20
YT s+ R + (820
1 1+Rg® [ ~Uqhgy” - ]
€ - alha=y”) e, ~Uslhiaty”)

N = 2 TRy L +R5% (A21)
re = L L+Ro" [Q—Uom N R+ee'Un(21!o‘)")} (A22)
- 2U, l—RﬁeR[')"ee_U"th 0 )

i—-1 i+1
H,v={Zhj pi>0 —Zhj ;i<0} (A.23)
j=0 j=1

where the * signs are designated by i>0 or i<0. The functions R;** and R;™®
represent the net reflection from the upper and lower interfaces of medium i, respec-
tively, and are defined recursively as
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e te —2hn Uiy
iy + Ri35e
Rfe = Ll T il CMT<i <+M* (A.24)
1 + r# Ri:ee"zhiﬂufil
R EALYES|
Ri. =0
2 . p
_ wanlUi = Uy Lo _&n
Fiisl = 3 PR =T (A.25)
niiUp + Uiy i

Here rf;.; is the reflection coefficient at the interface between the i and i£1 media.

ii) TE case:

Similarly, the fields for a vertically polarized magnetic source M, (x,z)d(y—y 034
located at y=y~ are determined from the scalar potential U)f 9 as

—j wef
. —_—M, (x,2)8(y-y") ,i=0

[V2+ki2}U;§\ = ki2 ¥y (y Y 9

0 iz 0 (A.26)
H' = VV-U{$ + k2US$ . (A27)
B il Vx Ui (A.28)

— X .
__.jwei’ y

The transformed potential U)‘,' (k. .y .k,) has a solution

+j Wey PRIM REF )
= My(k,,kz)[Uy Uy y y) + U, °(kx,y,kz):| L i=0
. )
Ultk, y . k,) = [ :os (A.29)
yRENTE +j 0€g TRAN. )
= My(kx,kz)[Uy ’(kx,y,kz)] Li% 0
)

and is equivalent to (A.16) except that all the superscripts e are replaced by m and the
reflection coefficients r{7;1, at the media interfaces are given by
mEnU; = Uiy 5 Hixg

DS L = —— {(A.30)
mEaU; + Uy MET

i ) J—
rix1 =

Thus, any source fs , A?S, can be decomposed into orthogonal components, and
the wave equation solved for each component. An appropriate Green’s function can
then be derived from the resulting expressions. The Hertz vector potentials TT (k,,y .k,)
defined in (A.3) and I17 (k,,y k,) defined in (A.4) for each of the electric J,f, and
magnetic M £, components o€ {x,y,z} can be deduced in terms of the scalar poten-
tial functions V,§ and U,$. The two source types considered next are that of a
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planar vertically polarized electric source (VES) and that of a planar horizontally
polarized electric source (HES). The planar source fs (A_/I—S) could alternatively be
expanded in any other orthogonal coordinate system depending on the problem being
studied. A polar coordinate system could alternately be utilized for a loop oriented
parallel to the stratification or other circularly symmetric source for example.

A.1.2. Vertically Polarized Electric Source (ot =y)

The Hertz vector potential I1¢ for a planar vertically polarized electric source
Jy (x,z)§ can be determined in terms of the potential function V;&\ alone which was
derived in the previous section by defining in (A.13-A.15)

I (ky oy k) = Tk, ) = Vidk, .y k)9 (A.31)

The solution of V;ﬁ‘ was previously determined in (A.16), with the corresponding
fields found using (A.2).

A.1.3. Horizontally Polarized Electric Source (o =x,z)

The Hertz vector potential IT¢ for a planar horizontally polarized electric source
requires two scalar components for its representation and thus can be determined in
terms of a combination of both the scalar potentials V; and__U)‘;. The horizontal source
can be decomposed into the two orthogonal components J, (x,z)=/, (x,z )£+, (x,2)%.
Since the analysis is symmetric in the x- and z-dimensions, the fields due to the com-
ponent J, only will be determined in detail, with the remaining component J, found
by interchanging the x and z variables.

Considering the source component J,(x,z)?, the electric potential vector
I°=I12+T1%0 will be chosen for the region containing the source (i=0), with the
remaining regions {#0 using a combination of the scalar potentials V),‘ﬁ and U;ﬁ}
The choice of the components I, and II, (or IT, and IT, for J,£) for the vector
potential used to represent the fields in the source region is made since the primary
contribution of the source is directly identified in the component IT, (or I1,) alore.
The scattering effect of the layered media is also easily identified and is the only con-
tribution to the component I1,. Representation of the fields in terms of an alternate
choice of vector components, such as directly by V, and U,, would have caused the
primary fields to be coupled into both components. The choice of scalar components
outside the source region {0 is again arbitrary, and is left in terms of the TM and TE
potentials here.

By matching the fields for the various choices of potentials, IT‘=IT;2+I1}$ in
each medium can be represented in terms of the known potentials V,§' and U} using
the transforms
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U, « ALI} : I, « U
"
* . . - . . i a
Vy « I+ AL, I « V- Af U; (A.32)
; d ; 1 3
Ay =jogf———s— |, Az ————
m O e o ® T K24k 070y

Transforming the primary potential of the source IT1%=IT"% to the corresponding TM
and TE scalar functions with (A.32), then using the solutions (A.13-A.30), the desired
potential functions in each region can be determined. Note that care must be taken in
performing the differentiation with respect to y since the sign will depend on y>y* or
y<y’ for the primary fields. Thus, for the source J,(x,z)#, the vector potential
1%k, ,y ,k,) in the source region i=0 is given as

0%,y k) = Tk, &,)8 + IOk, Ly &, )F (A.33)
0 _ +joug [ Ul REF, 4
Pk, v k,) = TJZ (&, k,) e U, (A34)
IO v £ = +jwuoj ok WAL [:VREFO UREF‘,] A35
y(x:ysz)""?oz———z(x’z)- W y + y (A.35)

with the corresponding fields found using (A.2). The scalar potential functions V, and
U, can be used to find the fields in the remaining regions i #0 as

: +j Wy TRAN,
Ve ;) = 7—Jz (ky ke, )AL [Vy oy K, )] (A.36)
0
: +j 0Ly TRAN,
Uk, k) = —-;C—z——Jz (ky sk, )AD [Uy (kg y ,kz):] (A37)
0

with the corresponding fields found using (A.14,A.15,A.27,A.28). The functions
vy oo, vy AN UREFo and UTPY were defined in (A.19-A.23).

By interchanging the £ and £ coordinates, the potential functions for the source
component J, (x,z)£ are given for the source region i=0 as

%G,y k,) =TIk, y k)8 + T10k, Y ik, )F (A.38)
00y ) = 20 gy | €000 rer, A39
x(x$yskz)‘“~—;;)i—'—x(kaz) ——“ZTJ—(;—_.*‘ y ( . )
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[VREF i °] } (A.40)

+j Witp Jk Uy
0 —
Hy(kxayskz)" k2 JZ( k)[ [kzk ¥ ¥

0

and in a similar fashion as (A.36,A.37), the potentials in the remaining regions {0
will be found by interchanging the £ and £ coordinates.

A.1.4. Horizontal Line Source and Dipole Source

If the planar source distribution is specified in either one or both dimensions, the
inverse transform (A.7) defining the potential functions can be performed and even
solved in a closed form for some special situations. Two specific cases will be
presented.

i) Horizontal Line Source (HLS):

The first case considered is that of an infinite horizontal line source located in the
region i=0 at a point (x",y"). The source is chosen to vary in the z-dimension and is
defined as };(x 2)=/,(2)8(x~x)8(y—-y)2. The vector potential can then be deter-
mined by replacing the source term in (A.34,A.35) and performing the inverse
transform with respect to the x-dimension as

+j =Uply~y"| . .
Hzo(x,y,kz) = Py k J (k )J [—T[JB—-— + UfEFO:,e'Hkx(X—x)dkx (A41)
0
0 A _f Jk, Uy [ REF, REFO:I ik ")
M k) = = gy L) [T 190 e dk,  (A42)
Z X

Note that the primary contribution of the source can be identified in the IT, component
as [Abramowitz]

— +j Ol T 1 Uy ki (et
P — ¥y=y 7
T (x,y k) = 5 ng( )JZ 0e 0 dk, 2
+j @l
J (k, K o(top)? (A.43)

where p=\/(x -x ’)2-{—0» -y 2,

ii) Horizontal Electric Dipole (HED):

The second case considered is that of a horizontal electric dipole, polarized in the
# direction, and located in the region i=0 at the point (x”,y",z"), where the source
function is defined as fs(x 2)=1,8(x—x)8(y~y)8(z~z")¢. The two-dimensional
inverse transform (A.7) defining the potental functions can be evaluated as a single
integration using the Bessel function transform [Felsen, Sommerfeld3]. By choosing
the appropriate substitutions A2=k2+k2? and r=V(x~x )2+(z=z")?, the integrals can be
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simplified using
! {f (kP 2y Yoo eI }

= 5 [ lr o2y Lo W R bbb g gy

A }kz2_x2
= L 27 02y) Ko(=jrr) Ci0ar (A44)

where the function f (A%y) is symmetric about k. and k,. Thus, the vector potential
functions in the region i{=0 can be determined as

e~ Voly—yl
MOy 2) = Lok 2k2 ,f[ 7 + Uy JKO(—jlr) NdA (A45)
(x.y 2) = 2"2;5 (=) IUO[ KEFo +UREF] Ki(=jAr)dh  (A46)

U; = N2k k2 = W—kﬁ

Note that the primary contribution of the source can be identified from the IT, com-
ponent as [Sommerfeld3]

w < “Uol)")’i
+j l-loJTz J' e

1P —
I (xy,z)= 222

Ko(=jAr) (~jA)dAS

—a

+j OlLy g H/koR
4nkd R

I8 (A.47)

where R—'J(x -X )2+(y =y V4 (z—2")2, Similarly, for a wvertical electric dipole
J (x,z)=/, 8(x—x)8(y—y " )8(z—z")P, the vector potential function in the region i=0 is
detenmned as

OO-_U _
e ol y=y° |

+] Ol REF | +jk.(x~x")
20y k) = ——J +V, / dk A.48
y k) 2nkd y:[,_ 2U, } * (449

+_] +Hopy °jfr6~Uo|y~y’|

0 -

+ VER }KG(—J‘M) (=i M)A (A.49)

Rl
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A.2, SPECIAL CASES

A.2.1, Scattering From a Layered Earth

For remote sensing problems, such as in geological sounding, the scattered fields
from dipole and line sources over a stratified earth are desired [Wait3, Wait12, Felsen,
Moghram]. Usually, deep penetration into the layered media is desired to adequately
characterize the structure’s properties. Thus, since the media in remote sensing appli-
cations are usually very lossy, low frequency analysis is performed. The potential
functions and resulting fields can be determined from the general case of the previous
section under the specifications

M*=0, hy— oo (A.50)
R(-)!»e/m =

Here the medium i=0 containing the source (usually air) is the upper half-space y>0
with the layered earth in the half-space y<0. Under the assumption that all the media
in the earth are moderately lossy and low frequency probing is desired
(g;<0;/m;i<0)

WVHgE , =0
ki = Vj o, 6; ,i<0 (A.51)

mk_, = (A.52)
where the condition on m; ;_; can be used if the permeabilities of all the media are

assumed to be equal W;=p,. Thus, the potential functions V;Q s and U;Q EFo required
for the determination of the fields in the medium i=0 due to a source located at
(x=x",y=y") can be derived as

—e
REF, _ Ry e—Uo(Yﬂ")

A (A.53)
y 2U,
REFy _ Ro™ _yiyayy
Uy o= o (A.54)
y 20,
e ~2h Uy
. _ T +Re Ui . nEaU = Uiy
R = T v il T3 (A.55)
L+ rfy (RZGe 7 nii Ui + Uiy
=21 U;
r-’"—_l +R'_T6 mia U,' - Ui-l
Ry = : R At Bt (A.56)
: 1 + r{n’i_lRi:rize‘%i-:Um fat Ui + Ui—l
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{jc_lfmsﬂ , i=0

2~
Rii-1 G,-_I/G‘i , <0

Vi 2k 20?08, ,i=0

F Nk = oy o, ,i<0

The vector potential I_:Ie(kx 7y k,) for various source types can then be easily
obtained using (A.31),(A.33), or (A.38). The specific case examined here are the fields
produced by a horizontal line source located above the stratified earth. As discussed
above, for most remote sensing applications, very low frequency excitation is required
to penetrate the layered structure and thus, a uniform current distribution along the line
will be assumed. This is reasonable for situations where:

1. The length of the line is much greater than the depth of all the layers in the struc-
ture.

End effects on the line can be neglected.

Line length is much less than the free space wavelength.

All transverse dimensions are much less than the free space wavelength.

“oA W

All the media are assumed to be good conductors at the frequencies of excitation.

The vector potential for a line source carrying a current /, can be derived from
(A.41,A.42) under the axially invariant condition 9/dz=0 (k,=0) with

k) —> I
_ +i® 2 =Ugly-y-| ~Uoy+y") o
Moy, = - k‘;‘);zj [e TP +R6‘m£—2—bT ey o (A.57)
0 —ca

The component II, in the vector potential is zero since k,=0. The fields in the region
above the stratified earth are given using (A.2) as

E'y.2) = VOil%,y,2) + k3110 y .2)

= k¢ TI0(x y,2)8 (A.58)
L, @,
H (x,y,z)=— Vx IT%x,y,2)
k¢ |3 3 o
- Jmuo [gy-nz (x WYl )’? - —a_;:—ﬁz (x WYz )5'\ (Asg)
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For remote sensing applications, if the source as well as observation points are
located on the surface of the upper half space (y=y“= 0) and the position of the line is
arbitrarily chosen as x°= 0, then the £ and # components of the magnetic field are
given utilizing the Fourier transform as

0 | 12 T . 1+R6m +jky X
HP0xy=02) = == J Uke Y57 —e 7 d, (A.60)
I, TR;™ .
HOxy=02) = - | %e“k"xdkx (A.61)

For the single layer earth model series expressions for the fields are available in the
literature [Aboul-Atta]. The primary contribution of the source can be found from
(A.60) as

HP (xy=02) = +'[z—jk0K (kox)f = L 9 (A.62)
v o 1 2mx '

Since the primary field has a magnitude which is very large compared to the scattered
field from the layered media, the secondary response of the § component is masked
making accurate analysis difficult. On the other hand, the £ component of the field is
due to only the scattered field and is thus much more applicable to remote sensing
analysis [Aboul-Atta].

A.2.2. Two Layered Geometries

For microstrip, MMIC, or printed circuit board applications, a two layered ground
structure is usually modeled [Itoh, Jansen2, Rana, Jacksonl]. The potential functions
and fields for this case can be determined by specifying

M*Y=0,h,g—> oo ;R =0

M =2 ,h_y o0 s RFEM =0

vREFs _ RO —vsay) (A.63)
¥ 22U, )

UREFO - Ee—Uo(y+y') (A 64)
y 2U, |

elm eim —Zh_U_,
R —eim _ r-O,—I + r_1|_2e
0 =

elm _elm (A'65)
1+ r_o’_lr__l,_ze

=2h_ U,

For microstrip applications it is usually assumed that the upper region is free space,
the permeability of all the substrates is equal to that of the upper half space
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Hp=H_;=Hg, and that the conductivity of the grounding substrate i=-2 can be
assumed to be a perfect conductor 6_,—eo. This configuration is shown in figure A.2.

9
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Figure A.2: Two layer microstrip structure.

Under these assumptions

region O Ho=Hvacuum s €0=Cyaeuum
rcgion -1: u—1=uvacuum H 8—’1=Erd Eyacuum
region =2: W o=Wypepum » Op — (A.66)

mioy =m2 5 =1

rill__z =+1 s rTl'_z =-1
where the relative dielectric constant €,; of the supporting substrate can in general be
complex. The reflection functions R3¢ and R;™ can also be determined in the more
familiar form in terms of hyperbolic functions as
e,d UO - U_ltaﬂh(h_lU_l)
E,d UO + U__ltanh(h_lU_l)
UO - U_icoth(h_lU_l)

-m A.
ko Uy + U_jcoth(h_ U _,) . (A.68)

Rgy¢ =

(A.67)

Ug = Vh2+k2+kd = VA2+kE
U_y = Nk2+k e, k¢ = Nte, k8

Usually the potential functions due to a horizontally polarized source situated on the
surface of the substrate are required (y'=0). They can be determined for a ¢ directed
source J, (x,z)£ from (A.34,A.35) as
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+j Wiy [ 1 - _y
Hzo(kx,y,kz)=——;g——fz(kx,kz) —2—5—0-(1+R0”‘)Je oy
+/ @l [ ] . |
= sz (kx ;kz) B};;'j,e Uoy (A69)
- K9 L
+j Ol I Jk Uy 1 U
1%k, .y k,) = J, (ky ke, ——(R5%¢ +R5™) |e™ VY
y \x z k& z z ] k22+kx2 2UO 0 0
r
+j ©Hg Gk, (Erg=1) J U
= J,k k)| ———— |7V (A.70)
k¢ 77" DDy

DTM =E,q Ug + U_ltanh(h_lU_l)
Dy = Ug + U_jcoth(h_yU_)

where Dy is related to the transverse electric modes (Ey=0) produced in the substrate
and Dryy is related to the transverse magnetic modes (H,=0) produced in the sub-
strate. This form, given in term of hyperbolic functions, is the form most often found
in the literature.

A.2.3. Homogeneous Half-Space

In this section, the potential functions and fields due to sources located over a
homogeneous lossy half-space are considered. The presented results are utilized
throughout the thesis. The case has many applications; the propagation of currents
along a system of conductors above the earth and associated coupling to external
sources [Wait5, Chang3, Kuester2, Wait8, King3], antennas and scattering from finite
conducting geometries for problems of radio [King2, King4, Hill], scattering and
detection of buried objects and other remote sensing applications [Wait3, Wait12]. For
simplicity, the subscripts describing the two media will be denoted as region e for the
upper (i=0) half-space, and as region g for the lower (i=-1) half-space as

,

region e: U, = Hyaepum > € = Eyacuum
region g1 Mg = Wogcuum > € = ErgEvacuum — S OK, Gy (A.71)
k, =Vole, |, k, =\/m2ugsg + joLl, O,

The two specific cases arising in most half-space problems are that of a horizontal line

source and that of a vertically or horizontally polarized electric dipole located above a
lossy earth.

i) Horizontal Line Source:

The vector potentials I1¢ and TI¢ and resulting fields for an infinite horizontal
line source, J; (x,z)=/,(z)8(x —x ")8(y -y )£, located at the point (x",y”) above earth as

*
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shown in figure A.3 are given using (A.41,A.42) as

+_]0.);j, o ’—e_U- |)’—Y'| ~U, 5+y7) , -
TGy k) = — ==, ) | T Rt e, Ay
e —0a e £
+jop, % [ Jk 1 _ , N
My k) = — =1k | | | St rge O ’Je”“"" Dk, (AT3)
2 e 4L Z X
+j op T el
TIEGey k) = ———d, () | — |1 e [0 (A74)
21k 2 n2 20,
e i L
+J W, N 1 [ Jk,
Hg(xyy ak ) = ——_‘I (k ) y
4 oom2 T i, n? | | k22
e—U‘y‘+U3y . )
n2U,te, - U, ™ e T gy (A.75)
g §°€g 20U X
g
2 P
n<U,-U [3
Teg = 2 — nt=—%
n Ue-f-Ug e
m sze—Ug 2 K
Teg = = mc=—
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Figure A.3: Line source over homogeneous half-space.

where the fields in each of the regions are found using (A.2). The integrands of
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(A.72) and (A.73), for the potential functions in the upper half-space, can be simplified
into known forms along with two standard integrals as

e +.] (Dp'e — —% 2 —
TIE(x,y k,) = ”ETEJETJZ k) [ Kot 1P D) =Koz, 1 1)+ m2¥x, p7) (A.76)
27
+j O, , 2 2-—], & —
5y k) = —-J, (k,) {(—ﬂcz) 2P 36, B)-Gle, 5y (AT7)
2nk, n“—m
J(‘te ,5‘) = I —“—;,_1—6—U‘U+y’) +jkx(x—x’)dkx (A.78)
—m U +U,
G, 5y = | _2.1____ ¢ U0 ) 4k Gx ) (A79)
—o U, +U,
U, = Vk2+k2—k2 = Vi 2412 , Re[U,]20
Uy =Vk2k2k2 = k212 | RelU,]20

D =-\J —x")? —y )2 A= -1 )’—)"
15l =Vax"0-57 , [p=tn [ = ]

15" | = Vo a4y 2, 1 =tan”1[ i:{

where the parameters t, =Vk,2~k,2 and T, =V kzz—kg2 are the transverse wave numbers in
the air and earth media, respectively, and n=k,/k, is the refractive index of the inter-
face. The real parts of the irrationals Re[U,,U, 120 and Re[t,,t,]20 have been chosen
to retain a positive value on the correct Riemann sheet, these branch cuts being defined
to ensure that the currents and fields decay at infinity. K (z) is the modified Bessel
function of complex argument. In the derivation of (A.76), the term involving
Koz, | Pp |) is due to the primary field of the current source, and the term involving
Koz, |'p'5 l) is due to its image as if the earth were perfectly conducting. The
remaining terms in integral form, (A.78) and (A.79), are the corrections due to the
imperfectly conducting earth. The evaluation of the infinite integrals J and G are
specifically addressed in appendix B. The fields can be determined using (A.2) for the
case when the permeabilities of the earth and air half-spaces are equal Ho=H, (m3=1)
as

E' =VV-II! + ¢ (A.80)

. k2 .

H' = ja;u VxII! (A.81)
i
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—‘m e _ X
Ef0cyd) = = ";JA!«»[@[KGGEIph—Ko('cefp Bl
2k,
- k2)(x, 5 ) + kG, B )] (A.82)
—j ) — e(x x)
Ei(x.y.k,) = / HJ(k)(+k){ — | ly- 2=~ K (z, |p B
2mk 2 |5l 15" |
-2 6@, 59 (A.83)
ox ¢ '
-J -y _ T+ ") o
Ef(x.y k) = LL‘BJ(k )(+ﬂc>[i———~ 1@ ol - ==k, 15" )
2k 2 |5l [p° |
- -a%-(;(:e P+ k}fJ(’te P -G, 7 )dy } (A.84)
~j OUL, T 1 _'kgzkx2 nzkzte U,
Ef(xy k) = ———J, (k, + :

LU U O (A.85)

Note that when the line source is located at the interface of the two half-spaces
(y "= 0), the expressions for the £ components of the fields in the two mediums as
given by (A.82) and (A.85), are equivalent when the subscripts e <->g are inter-
changed.

ii) Dipole Source:

Similarly, the fields from a dipole source can be determined from the potential
functions (A.33-A.40) for a horizontally polarized dipole and from (A.31) for a verti-
cally polarized dipole. Thus, the £ component of the electric field for the general
dipole source J,=(J, £+/ I+ )8 —x)8(y -y )8(z~z") is given from

Ef(x.y.k,) = —— —J ue Jy (+jk )l:__e_(_y_y___)_ Ky(t, IEI)—Z—%Z—)—K ")
|5l 17" |
- n2-a‘?y—G(re ,5*)]e'f"'z' (A.86)
—-jo e — _
B2y k) = ey, [k, |51y - Kote, |57 1)
nk,
- k2, 7)) + k2G¢, 5 )}e'f"'z' (A.87)
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-j 0, . T (x-x") _ T (x=x") .
Ef(ry k) = —onl ] (4k,) [—-———_———chre 15D - ==k 15" )
21k, (ol 5" |
- OG5y ek
=G5 )}e (A.88)

As discussed in section A.1.1, any arbitrarily oriented dipole source J; or M, can
be formulated in terms of a combination of vertical electric (VED) and vertical mag-
netic (VMD) dipoles, these representing the TM and TE fields, respectively. The £
component of the electric field for a VED, J,8(x—x")8(y =y ")8(z—z")f was given by
(A.86), with the corresponding value for a VMD, M, S(x-x)(y—y)8(z-z") given
as :

1 [ T, (x—x")

Efxy.k,)=+—M, | ——K,(z |-|)“M
z XY K I ¥ I.p-l e I p |b.*|

- —%J(ze ol )}e"f"'" (A.89)
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Appendix B
Solution of Sommerfeld Type Integrals

In this appendix, the evaluation of the Fourier integrals arising in the solution of ,
the potential functions and fields due to the guiding wave structures studied in this
thesis will be discussed. The infinite integrals arise from the transform solution of the
Green’s functions, satisfying the wave equation for a stratified media, as developed in
appendix A. These integrals are often referred to as Sommerfeld type integrals due to
his solution of the half-space problem in 1909 [Sommerfeld2]. The integrals requiring
evaluation can all be described as a two-dimensional transform of the type

F(x’y’z)=F;1F;1{f(kx,kz)e‘f’=‘”'}

oa

_ 1

1| Uiy |+ 4
n_@ﬁ'[f (e eyye ™0 7R T gy i (B.1)

—a

U; = Vi 24k k2 = i 24n?
T = Vk2k?

where i denotes the medium in which the observation point is located, this being one
of the possible layers in the stratified geometry as was shown in figure A.1. Here k; is
the propagation constant in each region, with t; the transverse wave number dependent
on the axial spectral component k,. The order of integration in (B.1) is chosen for a
geometry where the stratified media is layered in the y-dimension and the guiding
wave structure extends in the z-dimension. As described in section A.l, the general
problem consists of ~M~<i<+M™ planar regions in total with i=-M" denoting the
lower most layer and i=+M"* denoting the upper most layer. The kernel f (kyok,) is
dependent on the geometry and is a function of the irrationals U; which are defined for
each of the layers in the stratified structure. As discussed in section 2.6, there will be
two branch cuts Re[U U _y-120 due to the requirement that the fields decay at
|y | = oo, These branch cuts are present in both the &, and k, spectral domains as
shown in figure B.1, and given the order of integration in (B.1), emanate from the
branch points *k,y., tk_,- and %jt,,., *jt_,,, respectively. These branch cuts
represent the radiated fields into the uppermost and lowermost media. As well as con-
taining the radiation branch cuts, the kernel may also contain a set of poles which
occur for a specific combination of the spectral components k, and k.. These are
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denoted as Agy=Vk2+k?;5=1,2,..S, and represent the radial wavenumbers of the
possible surface waves which are supported by the layered geometry. They arise from
the zeros of the denominators of the TM and TE potential functions VfEF and UyREF
defined in appendix A. Thus, given the order of integration in (B.1), the surface
waves result in a set of poles in the £, domain located at k.g,=+jVk2~A%, and a
corresponding set of branch cuts in the k¥, domain emanating from the branch points
k.ps=%Aps. The branch cuts arise from the irrationals Im{k,5,]20 defined so that the
surface wave fields decay at | x | = e Finally, a set of poles is also present in the k,
domain only, denoted as *kf;p=1,2,...,P. These poles represent the contributions of
the guided waves supported by the cylindrical structure. Note that if all the media are
assumed lossless, the poles and branch cuts would fall on the real axis of integration
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i MRe[kx]
+jD’+M+

Figure B.1: Radiation and surface wave branch cuts, and guided wave
poles in the complex &, and &, planes.
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(as in cases encountered in the evaluation of lossless dielectric and perfectly conduct-
ing structures for example). Also, for the special case of a geometry which is sym-
metric in both the x- and z-dimensions, as in the case of a dipole source, the double
infinite integral can be evaluated as a single integral using the Hankel transform [Som-
merfeld3] as described in A.1.4.

Exact analytical solution of integrals of the type (B.1) is difficult due to the pres-
ence of the irrationals and singularities. Asymptotic expressions can be developed for
the small argument cases and techniques such as the method of steepest descent can be
used for the large argument cases. For accurate evaluation of the integrals, and to
extract the proper behavior of all the field components (surface waves etc.), numerical
techniques must usually be employed. Numerical evaluation is not straightforward,
however, due to the possible highly oscillatory nature of the integrals as well as the
presence of the singularities. In this appendix, a review of some of the approximation
techniques for these integrals is made, and based on these, various expressions com-
monly available in the literature are derived for the special case of a lossy half-space.
Some new closed form expressions are also presented for two of the integrals arising
in the half-space problem, and which are consistently utilized throughout the thesis.
As well, a technique for the numerical integration of the layered media double infinite
integrals is presented. The proposed method has the advantage that it accounts for the
possible highly oscillatory nature of the integrand when evaluated in the far field
region,

B.1. ANALYTICAL EVALUATION OF THE INTEGRALS J AND G

The evaluation of two of the integrals arising in the study of half-space
geometries will be discussed in detail. This special case occurs in many engineering
problems involving transmission line structures located above or embedded in a homo-
geneous lossy media (usually the upper medium is air and the lower medium earth or
water). Analytical expressions in terms of series expansions will be developed in the
following sections as well as approximate solutions for both the small argument and
large argument regions. A discussion of the numerical evaluation of these integrals by
referring to the general form (B.1) will be given in the last section. The integrals
Jt,.p) and G(t,,p) used throughout the thesis are given as a function of the
transform variable %, by defining the kemel in (B.1) as

_ 1
Jr,=VE2k2,P): f k) =~ T (B.2)
\/kx +k, -k, + v ki tk—k,

Vi232 = 1
Gl =Nk425):  flhok) = — - — @33
RNk 24k k2 + kI k 2k,

where k, and k, are the propagation constants in each of the the upper and lower

165



Appendix B Solution of Sommerfeld Type Integrals

mediums, respectively, and n=k,/k, is the refractive index at their interface. For a
two layer structure there corresponds only the two irrationals, U, and U,. The two
integrals arise in the formulation of the Green’s functions for sources located over a
lossy half-space as derived in appendix A (A.78,A.79). Their solution is imperative
for the study of transmission line problems above an earth and their evaluation has
been studied for decades.

B.1.1. J Function Evaluation

This section presents various methods of evaluating the Fourier integral J(z,.p)
arising in problems of a lossy earth as defined by

-

= 1 U, |y | +jkx

, = —_— ¢ dk B.4
Yooy = [ e . (B.4)
U, = Vk2k2k2 = Vi 242 . Re[U,]20
U, = VikZ+k2k2 = Vi2+t2  ; Re[U,]20

15l =Vx2y?2 | P=tan i) , [x,y]20

where k, and k, are the propagation constants in the upper and lower media. The
parameters T, and T,, Re[T,,T,]20, represent the transverse wave numbers in the air
and earth media, respectively, and are in general complex. The irrationals U,, U, are
defined so that the integral decays as |y | =0, thus giving the two branch pomts
*jt., £jT, and associated branch cuts in the complex %, plane as shown in figure
B.2. It is evident that the integrand of (B.4) contains no singularities since
Re[U, U, ]20.
Im[k, ]
)

Re[Ug 120

Re[U, [0
+]‘3'3

+)Te

-»=Relk, ]
Figure B.2: Branch cuts in the complex &, plane for J(z,.,p).

The integral J(t,,p) results from the TE potential function U;REF , and as it is
mainly responsible for conduction losses in the earth, has an appreciable value over
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most of the frequency spectrum for typical earth parameters. Various analytical
expressions for its evaluation are well documented in the literature. Carson evaluated
the integral in the quasi-static region under the assumption 7,=0 (the axial propagation
constant is equal to the free space value k,=k,) and gave a solution in terms of a
series expansion [Carson]. This formulation has been widely applied at power
transmission frequencies, with an improvement found using an effective expression in
terms of Struve functions which is valid in the small argument range (t,— 0) [Waitl,
Perelman]. Methods utilizing the complex image theory technique of vanderPol are
also available in the quasi-static region [vanderPol, Wait2]. For the large argument
range (far field), expressions for the integral have also been developed using an
asymptotic technique or method of steepest descent [Chiba, Carpentierl]. In the inter-
mediate argument range, expressions which are valid under various restrictions are also
available in the literature [Chang3, Olsen5, Kuesterd, Aboul-Atta).

A general expression for evaluating J(t,,p) can be developed for small T, by
factoring the integrand of (B.4) and evaluating the resulting integral in two parts as

J,p) = i [U,-Ute Vs ge = g 45, (B.5)

(n?--l)k2

The solution of the first integral J; is straight forward by recognizing the relationship

o0

_ 1 U, |y | +jkx
-1 _ju dk,
h (n2-1)k,}_{, ¢
2 0*
(n—l)kzaz K (7, |P|)
2 {(me |5 DK, 15 1) - (,9)K (3, Ib‘l)] 6
(n2-1)k 2 lpl? '

The solution of the second integral J, is more difficult since the irrationals in the
numerator and exponent differ. For 1, <1, the irrational U, can be represented using
the binomial expansion Vk2+t2=|k, | (14(t,/k,)%2+ - - - ), and each of the result-
ing exponential terms can then be written in a power series. An integratable form for
J; can then be found by collecting powers of k., to yield

-]

—U, |y | +jk x
J, = dk
27 2 -1)k2_£ *
- 1 —n - l k,y I +_,rk,x
= - ZA JU | &, | dk, (B.7)

(n “l)ke n=0 —c0

where
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)

A0=+1 A1=—

2
(tiy?) xS (1)
2=+ ds=——m "+t 3 (B.8)
PO __ w6
47 7 384 16 5773840 64

Using appropriate transformations, integrals of the type (B.7) can be identified in terms
of recursive integrals of Struve functions T, (z) as

2
B g S 2 | Taep) + Ty )| ®.9)
2y =T, (y+jx) 22=‘tg(y—jx)
T,) = [N1+w2 w™e™aw = [T, ()dz (B.10)
i) z
= H,G@)-Y
To@) = [N14w2 e aw = -% [.._1_(22_1_(2} (B.11)
0

where H;(z) is the first order Struve function and ¥ 1(z) is the first order Bessel func-
tion of the second kind [Abramowitz]. Series expansions for the recursive integral
T,(z) can then be developed using the relation (B.10) and expressions for the first
order Struve and Bessel functions in (B.11). A first order approximation for J(t..p) is
given by the =0 term in (B.9) as

- { [(re 1P K, |5 1) = ()&, lb‘“}

J(t,.p) = Y 512
131 [:Hl(zl)_yl(zl) N Hl(zﬂ"}’z(h)J } (B.12)
4 zy : Zg

This is the form developed by Perel’man [Perelman] and in a similar manner when
T,=0 by Wait [Waitl] and Shen [Shen3].

B.1.2. Other Approximations for J

Under the quasi-static assumption, where the axial variation of the fields is
assumed to be equal to the free space value k,=k, (t,=0), the integral J(t,=0,p) can
be evaluated as

Je(P) =)@ =0p) = 1)k2 —=—] [ x/x2—(n2—1)ke2]e-“y lcos(u)dn  (B.13)
ne- 0
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This is the integral form formulated by Carson in 1926 [Carson] in his quasi-static
evaluation of the conductor over lossy half-space problem. Assuming kg =y jou, o, ,
Carson gave a solution to (B.13) through two terms J.=P+jQ, which were evaluated
by an infinite series (known as Carson’s series). The convergence of the series has
been examined in a number of references [Dommel]. Wise latter improved the series
by including the effect of polarization currents (Carson’s kg =\j WU, 6, was replaced
by kg =\jcu2ug Bg+j Ol O, ) [Wise]. The evaluation of (B.13) can easily be realized
by letting 7, — 0 in (B.12) giving

-2 {xz_yz } . [Hl(zi)—}’l(zl) , HiG)-Y4y)
=Dk 2 | Ipld] 2 z z9

2 = =jk, Vn =10y +jx) = ~jk, (y+jx)

25 = =jk, Vn2=1(y~jx) = jk, (y~jx)

This form was developed by Wait [Wait1] and latter by King, Shen and others [Kingl,
King3, Shen3, Chen], with series expressions also given in [Shen3].

J.(p)= (B.14)

The evaluation of the reflected fields using complex image theory was first intro-
duced by vanderPol in 1935 [vanderPol, Stratton] in connection with the evaluation of
the Sommerfeld integrals for a dipole source over a lossy half-space. The theory was
latter extensively applied to line source problems for geophysical remote sensing appli-
cations [Wait4, Bannisterl, bannister2, Bannister3]. Its more recent utilization in the
power engineering field was made by Deri and Semlyen [Deri]. As well, an exact
image theory for electric and magnetic dipole sources over a lossy half-space has
recently been developed by Lindel [Lindelll, Lindell2, Lindell3]. The quasi-static
image theory of vanderPol is implemented by subtracting the field due to the source’s
image as if it was over a perfectly conducting earth from the correction term J,, which
accounts for the finite conductivity. Thus, (B.13) can be formulated [Wait4] by con-
sidering

= = T 2 L alyl
J.®+n(lpl) = | - L le My TeosOur)d
o o | MVA=(n2-1k2 A
TA-U, rlyl
= 12U, % cos(Ax)d A
°°e—?\.(fy1+a)
= —j—-—l-————cos(lx)dl (B.15)
]

where Ug=‘\I7L2—(nz—I)ke2 and o = +j2/k,Vn?-1. In (B.15), the singular part of the
integral J. has been removed by adding the logarithmic term. The modified integrand
has then been approximated by the first term of its Taylor series expansion. The
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remaining integral in (B.15) can then be recognized as

J@+In¢pl)y = m(lp|) (B.16)
151 =Va2a (ly l+0)? ja=—H2Z = _H2Z ___ (11

ke \lnz—l \‘jmugo-g

where 8 =/ 2/wp, O, is the skin depth in the earth medium. Higher order terms in the
expansion of (B.15) can also be included to give a more accurate result [Olsen?7].

Chang and Wait [Changl] have formulated the special case when the source and
the observation points are much less than the skin depth in the lossy medium
| 9| «8. Noting that both J(t,,5) and Koz, | Pl) possess an order O( In(z, 1 p1))
singularity as lﬁ] —0, the evaluation of (B.4) can be approximated using their
integral representations as [Abramowitz]

5 5 T 1 1 -0 1y | +ikx
) - K = -
I, p) - Kot |3 1) i [erg S }e dk,
72 T 1
> __In|-%|+— (B.17)
xy=0  (n2-DEE | T 2
2
J(z..p) > =In [1:,_, |7l ] s 1 (B.18)
Fl-0 (n2-Dk2 2

B.1.3. G Function Evaluation '

This section presents methods of evaluating the Fourier integral G(t,,p) arising
in problems of a lossy earth as defined by

(-]

G, p)= | _2_1__e'U- by leikx gy (B.19)
e 1°U,+U,

U, = Vk2+k2-k2 = Vi 2412 ; Re[U,]20

Up = V222 = Nk2412  ; Re[U,]20

5] =Vx2y2 |, /P=tan'ix) ,[xy]20

where k, and k, are the propagation constants in the upper and lower media. The
parameters T, and T,, Relz, ,’Cg]?.O, are the transverse wave numbers in the air and
earth media, respectively, and n=k,/k, is the refractive index at the interface. The
irrationals U, and U, represent two sets of branch cuts with branch points at +jt, and
*j1, as defined for the function J(t,,p) in the last section. However, a pair of simple
poles located at £k, in the complex &, plane are also present as shown in figure B.3.
The pole locations are defined by setting the denominator of (B.19) to zero yielding
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U +jk
kg =+jt1,V1-s2 | 5 =—2 = i : (B.20)
Te ‘ce\/nz-l-I

The location of the poles in the complex &, plane is dependent on the refractive index
n of the interface and on the value of the spectral component &,. The poles represent
a surface wave contribution to the field, a result of the TM potential function VfEF .
The pole £.p is present at all frequencies (has no cut-off) and is defined for a specific
radial wavenumber

ViZ k2 =2, = s (B.21)
an-{-l

by the electrical properties of the interface alone. Figure B.3 gives possible movement
of the pole in the complex &, plane as a function of frequency for fixed earth parame-
ters. At low frequencies, the pole is located near the branch point +jt,. In the high
frequency limit, the pole location approaches the imaginary &, axis &5 — +jk, f\le,g+1.
Note that the pole can cross the real k, axis for specific values of <,, this occurring
under the condition Re[k,z1=0 (Im[t2]=Im[k(n%+1)]). This situation arises in the
very high frequency region for typical earth parameters. The contribution of the pole
to the function G(t,,p) can be extracted from (B.19) as

2n? s ~NTUG x| ~Ug |y |
G, = TE “ B.22
P pde [\/1—32 :’e ( )
Im(k, ]
|
Re[Ug]ZO
Re[U, ]20
A,
\\ +}g
+}Je }\\
[N A \w
\ \ﬁw/ &
+k,5~——@ \
A A =Re[k, ]

Figure B.3: Branch cuts and surface wave pole in the complex k, plane for G(z,,p).

Examination of (B.22) shows it is possible to find a value of 1, (and thus k,) which
allows the pole contribution to approach infinity. This is given by

T, = Uy = ke or alternatively &, — Ap = e (B.23)
e eB m Y z B m .
n
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such that k,=Ap is defined to be the branch point k5, with U,; being the correspond-
ing propagation constant of the surface wave in the § direction (perpendicular to the
planar media). The location of the pole U, in the complex T, plane as well as possi-
ble paths of the irrational U, are shown in figure B.4. For given earth parameters, the
pole U,z —0 for w—0.and U, —ajke/\/e,gﬂ for w—ee. It is also possible for the
branch cut of U, to cross the real k£, axis in figure B.3, this occurring under the condi-
tion Im['tg2]=0.

Im(t, ]

Te=—jP

Figure B.4: Complex T, plane giving the pole U,z and possible
paths of U, as a finction of 1,.

The integral G(z,,p), resulting from the TM potential function , is mainly
responsible for displacement current losses in the earth. Due to the factor n in the
denominator of the integrand, the contribution of the function is small for low frequen-
cies and high earth conductivities, and thus, it is usually completely neglected in
quasi-static approximations. However, at higher frequencies, the contribution of
G(t,,p) can not be ignored and in fact may take on an appreciable value if evaluated
near the pole 1, —U,p (the fields then being mainly due to their surface wave contri-
butions).

REF
V)’

Various analytical as well as numerical methods can be used to evaluate the
G{t,,p) function. Unlike the function J{t,,p), it can not be reduced to easily
identified integral forms. Instead, an analytical formulation will be developed by fac-
toring the integrand around the pole and then evaluating it in two parts as [Bridges3]
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1 n? 1 1 1
= o L — (B.24)
ane +Ug nt-1|U, - Uep n? Ug + UgB jj

where U,p = -n2U,5. The integral can now be evaluated as

G(t.p) = Go(te £+ Gi(T,..p) (B.25)
Gy(t,.p) = f U e Uy I ikx g (B.26)
- —c eB
= T o~ Ue [y | +jkex
Gy(te ) = —— i T U dk, . (B.27)

The integral Gy can usually be neglected when compared to G for large values of
refractive index n. For moderate values of n, G; can be approximated using the
integral form for K ;(z) [Abramowitz] as

|y |
15|

1 1

K, 17 . (B.28)
-1 nZs

GI(TE ’—p—) = 4

n

To evaluate the remaining integral, note that Gy is a solution of the homogeneous
two-dimensional wave equation as well as a first order differential equation as [Grin-
berg]

[ 2 2

§;+%—12]G0(te,p) , 1Pl =0,

% (B.29)
0 — 2n? 9 _

35+ Uen [GoweP) = n;_z_ls;Ko(telp[) , U, 2 U, .

Accordingly, a general solution can be constructed in terms of an exact particular solu-
tion plus a homogeneous part. Now, by rearranging the integrand of (B.26) and by
utilizing an appropriate transformation

Go(r, ) = —21 - |KoCr, 15+ zele vl [ gUsig (2 \x20e2) ar
n’ - Iy |

+C { L) (B.30)

‘]1—32

where the arbitrary constant C defines the residue contribution due to the singularity of
the integrand near the pole U, = U, and is yet to be determined. This solution, for
any value of C, is validated by direct substitution into (B.29). The incomplete integral
term present in (B.30) can be evaluated in the uniformly convergent region
Re[U,p/T,]<1 by invoking the addition theorem of cylindrical functions [Stratton] to

L NTTTE x| U m}
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obtain

n - m=1

2 oo
Go(r, ) = —2 1 [Kg(re 15 1) + 1ot x)Vo(2,8) + 2 3 (<1 0 (1, %)V 3, (2.8

w5 | NI s —usly
+ | B |V-UA z B.31
r-———1 —sz] ( )
where
V. (zs)=se K, (t)dt ,z=1,1y] . (B.32)

2

Here V, (z,s) is an incomplete integral of the modified Bessel function K,,(¢). The
choice of expanding the series with X, (¢) in the integrand in (B.30) was made since
the series convergence is more rapid under the condition |y | >x. This situation is
the one most often encountered in transmission line above earth problems. A recipro-
cal form of (B.30) can alternatively be developed in terms of incomplete integrals of
the modified Bessel function [,,(r) for situations where x> [y 1. Val(z,s) can be
solved in terms of a recursion relation for m>0 as

Vizs) = s[Kg(z) + Vy(z,8)]
Vialz,s) = 25[K,, 1)+ V,_1z.s5)] -V, 2z,s) . (B.33)

Thus, only the term V(z,s) requires evaluation. V(z,s) is of similar form to the
incomplete Lipschitz-Hankel integral [Agrest, Kuester3] and can be solved analytically
by expanding the exponential function within the integrand. Then, the integration of
every term of the resulting series is executable analytically as

Volz,s) = TRAG | = —ZK(z) — —[ Lo(z)K(z) + Ly(2)Ky(2) ]
z 2 |
2% (k1)2 ‘

A°°
@en? |F

+B¢ I:zKl(z)] + i[zKl(z) + k—~1)K o(z) 12 %1
k=1

+ é [2K((2) + (2K)K o(z) |22 [m]gf } (B.34)

where

2r , Bkoo =

- i[ @2r

2% (r1)?

2r 2
Zorlea e

with Ko(z), K,(z) being modified Bessel functions of complex argument and Ly(z),
L(z) being modified Struve functions of complex argument. When s falls in the uni-
formly convergent region | Re[s]] <1 the two series (B.35) converge to the values
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w 1 - sin"ls
Ag m , By W . (B.36)
Note that sin™!s is a multivalued function differing from the principle value by
multiplicity 2an and having branch cuts defined by | Re(s]|=1. This multiplicity
then defines the value of the residue contribution given in (B.30) and (B.31). Thus,
depending on which region of the complex plane 1, (and thus s) lies, the arbitrary
constant C determining this contribution will be Ce(0,2). The regions in the normal-
ized complex t,/k, plane indicating the appropriate value of C are shown in figure
B.5 and are defined by the conditions

{2, Im[t2] < Im[U3]; /T, > (U.p
C —

0, otherwise (B8.37)

The condition that /t, > /U, defines the branch cut | Re[s]|>1 when U, > 1, and
the condition Im{t2] < Im[U/,}] defines the branch cut where the pole k.p crosses the
negative real axis in the complex k, plane. Other formulations have been presented in
the literature for the evaluation of G(t,,p) [Chang3, Olsen5, Kuesterd], but have not

directly identified the pole contribution as done in (B.31).
Im(t,/k,]

2

—

I -Q 450

\_Je,g+1 //\ )
/

T~ o Im{r}l=Im(U 3]
C=0 -

=Re[t,/k,]
Figure B.5: Value of the constant C as a function of t,/k, for
determining the surface wave pole contribution.

For the special case x=0, as is only required when matching the fields for single
conductor systems, the solution to the integral G, becomes

2 (=3
Gyl ) = — 2 | Ko, 20) + se "2 [ etk o) at +CG, | (B38)

n*—-1 1,2k
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where P=2hf and h is the height of the conductor above the earth, and G, is the pole
contribution given in (B.22). For the small argument range of | t,p |, the first term
of (B.31) is adequate for the evaluation of G(t,.,p) as long as t, does not fall near the
pole singularity U,p. The validity and convergence of the series solution (B.31) has
been examined by comparison to the results generated by numerical integration
[Bridges2]. Only in the very large argument range, where the function decays
exponentially, is the given expression not adequate due to slow convergence of the
series in (B.34). However, accurate asymptotic techniques can alternatively be used in
this range.

B.1.4. Small Argument Evaluation of G

The small argument behavior of the integral G(t,,p) will be determined since it
allows a much simpler formulation and is adequate at low frequencies. The integrand
of (B.19) can be written in the form

1 1 { 1+R } _U,-U, n-1

nU+U,

2
n+1

- = B.39
0, | T+ xR 40, X" B

If |R|<l and | % | <1, the denominator of (B.39) can be expressed in a binomial
expansion and then formed in terms of powers of R as

1
n2U8+Ug

2
n2+1

2{1]e {1‘ [X‘I}R + [x(x-l)}Rz— E } (B.40)

The first order approximation, which was employed by Perel’'man [Perelman], can be
recognized in terms of the modified Bessel function Ky(z ) as

G, p)= Koz, lph (B.41)

n+1

The second order approximétion can be identified as containing the integral function
J(t..p) as

2 n

2
-1 — 2
Kot 1) +
n2+1 | n2+1 olte 19

) B.42
—Jp) (B.42)

G(t,.p) =

The higher order approximations to G(t,,p) are not recognized with available func-
tions and involve evaluating integrals containing the kernels 1/U,, U,, Ug3,... etc. A
study of the validity of the small argument approximations (B.41,B.42) is available in
the literature [Bridgesl].
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B.2. FAR FIELD APPROXIMATIONS

In the far field region, The Fourier integrals presented in (B.1,B.4,B.19) can be
evaluated using the method of steepest descent. These integrals are of the form

oa os

F e deye Uty okxvibz gy p (B.43)

—c0

1. 1
Fixy.z)= I o

U = Vk2+k2-k2 = V212 5 Re[U;120

1 = Vk2k2 ; Relr;]20
I ﬁ] = \dx2+},2 , ¢=/p= tan‘l(y/x)

IR =\lp2+22=\{x2+}’2+22 , y=tan"l(|pl/2)

Each of the integrals in (B.43) can be evaluated individually under the far field condi-
tion | t;pl=>1or | kR |1, in terms of integrals of the general form

Hey)= [ h()e®™dn (B.44)

d(A) =-VA2+i2 |y | +jdx = a2+, psing + jApcosd

where p= | 5' is assumed. In order to evaluate (B.44) by the saddle point method
[Collin], it is convenient to use a transformation of the variable of integration such that

A=+jksin? <> ¥ =-jsinhi(AMk)=0+/n
&(F) = ~xpsin( ¥ +¢) (B.45)

= +/ (jkp) [cos(cﬁq}—%)coshﬂ - jsin(c+¢——§—)sinhn]

The transformation allows both Riemann sheets in the complex A plane to be mapped
onto adjoining strips in _the complex ¥ plane as shown in figure B.6. The proper
Riemann sheet Re[VA%+x?]>0 is shaded, with the improper Riemann sheet
Re[VA%+Kx%]<0 left unshaded. The four quadrants in the complex A plane are appropri-
ately labeled in the ¥ plane (the quadrant axes are rotated by the angle ; (k) from the
A coordinates, this angle approaching zero for lossless media). Noting that the integra-
tion contour C can be deformed to any alternate path, as long as poles or branch cuts
are not crossed, the most desirable path would be one where the imaginary part of &
remains constant, and the real part increases as rapidly as possible. The path of
steepest descent is thus chosen by specifying

Im{ ®) ] = Im{ ®(Ag)] = Im[ D(W¥s)] = constant
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5 Ag = +jTcosd

d _ 0 _
a—kd)(l)}x:% P (D(\P)Leys =0 = po =8 (B.46)
$T 2

where Ag, W define the stationary points (saddle points) in the respective complex
planes. The steepest descent paths can be found from (B.45,B.46) by satisfying
sin(o+¢)coshn =+1. Im[A]

x
=]
=

.-LT \- \+TT
2\ _x | JE—
k P/\:’ )
|
L 18 i
!/ i
H Cy [
i
—_ — L/__/ i1
i M | W I I
U
i

>

VA ¥
Re[VAZ+2]<0 Re[VAZ+12]>0
Figure B.6: Steepest descent paths in the complex A and ¥ planes.
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In the far field, the major contribution to the integration along the steepest descent
path comes from the neighbourhoud of the saddle point, since at this point the real part
of ®(Ag) is at a minimum. To determine the contribution from the saddle point
region, both the exponent and the kernel A(A) in (B.44) are expanded in a Taylor
series about the saddle point, noting that ®"(Ag)=0 from (B.46), as

D) = B(hg) + D (A )A-Ag)22 + -

“h(A) = 3, ' h(A) (B.47)
o m! Y Y

A first order approximation to the integral (B.44) can then be derived by using the first

two terms in (B.47). for the exponent. After bringing the summation outside the

integral as

H(x,y)—e(b{mz — axm (x)} [ dgyme® 0042 4 (5 4g)

—oa

and utilizing an appropriate substitution, the integral term can be transformed into a
recognizable form as

[

(=)
[ gy ¥ PIOAI2 4 [—@"(xs)] Izm 24 (B.49)

—

The kernel of (B.49) is an odd function and thus only the even terms contribute to
(B.48), which can then be evaluated in terms of error functions [Abramowitz]. After
substitution of Ag the saddle point contribution is given as

Ko | 22" VL -
psm ¢} v h(A )Lﬁs} 5 singe (B.50)

with the first term approximation to (B.50) given as

H(x,y) ={

Ml

H(x,y) = h(ks) T“ singe <P (B.51)

Using the method of steepest descent, integrals of the type (B.43) can now be
evaluated in two steps, under the conditions | 1:,-;‘5] >1, | kR | »1, using the form
(B.51) as

oo . 2
1 T-Sln¢ T3 ,
g Ol o

+jk; sindsiny
= f los dos)— e IR (B.52)
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k,s = +k;cosy

ke = +Jj 't,-cos@jl = +k; sinycos¢

For the special case of considering only the primary contribution to the Green’s func-
tion (a solution of the homogeneous space wave equation (V>+k,2)F =+8(F)) the ker-
nel in (B.43) is defined as

oyl _ el VR |y |
fley k) = flkeky)e = - - (B.53)

2U; 2 f ke 2+ kzz_ k2
The homogeneous space Green’s function can then be derived through (B.52) as
+iki | R |
anlR ]

Fxyz)=- (B.54)

In the steepest descent evaluation of integrals of the type (B.43), only the saddle
point contribution has been considered. In the general case of more complex media,
such as layered or cylindrical geometries, the integrand may contain branch cuts as
well as poles in the complex plane of integration. In deforming the integration contour
to the steepest descent path, these branch cuts or poles (including the poles on any
improper Riemann sheet) may be crossed, and their contribution to the integral must
also be included. These situations and their method of solution are discussed in many
sources for various geometry types [Felsen, Collin, Tamirl].

B.2.1. Steepest Descent Evaluation of J and G

When studying high frequency interaction with transmission lines, the steepest
descent technique can be employed to determine the coupling between conductors as
well as the radiated fields. The technique is appropriate when the electrical distances
considered are large and interaction at grazing angles of incidence is not required.
This technique has been used to determine the discrete modes supported by a wire
above a lossy earth [Chiba], the radiated fields of a transmission line excited by a delta
function source [Olsend4, Carpentier3], and the fields of corona discharge sources along
conductors [Olsen8]. The integrals J{(z.,p) and G(t,,p) in (B.4) and (B.19) can be
evaluated in the far field |,p| > 1, by appropriately specifying the kernel A(X) in
(B.44). Expressions based on the first two terms of (B.50) are given as

_ Te ., 02 2mr, | g
J(t,.p) = Y (Rg) + sin“g ——=h; (A) - —Fp:i— sinpe " 'P'  (B.55)

217l 2

1/2
_ Te . .. 9% 2nt, . 15
G(t,.p) = yhg(hg) + 20— he (M }[ ] sinde ™ P! (B.56)
(Fe:P) {G(S’ 2151 e ’L% 51
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1
T, sind + \j‘;ezsinzqw (kez—kgz)
1
n2t, sing + ViZsin?o + (k2-k2)

hy(As) =

hg(hg) =

& |
-a—iz—hj(x)}ms = —h;(A)7%, [1 + 'Efcos%xza}

2
%EhG(m]H = —h(%(ls)x[b + t2c0s20 X[ 2b%hg (M) + % ]]

1
T, singVt2sin20 + (k 2~k )

a = 2t2sin®0+ (k2-k2)

x:

172
b =1,sin¢+n? [f:,_?sin% + (k2 kD) J

312
¢ = tlsin’0+n? [zﬁsm% +(k -k D) ]

The first term approximations, also found in the literature [Chiba], are given as

-1 | 2nt, 12 i3
Jt, p) = [te sing + Vt2sin%o + (k}-ks?)] 5T sinpe " 'P (B.57)
P

172

G(1,p) = [nz'tesinq}-i- \/’t}sinzq)-l-(kez—kgz):' 1 [%} sinpe™ 1Pl (B.58)

Referring to figures B.3 and B.4 and as discussed in detail in sections 3.3.4 and
3.4.2, the steepest descent paths for the functions J and G may cross the branch cut
Re{U, 120 near grazing angles $—0°. This branch cut gives the lateral wave contribu-
tion to the fields in the region near the interface. At low frequencies the branch point
occurs near k, and thus the contribution is very small when the interface acts as a
good conductor (G, /we,»1). As well, the integral G possesses a pole at kg which
may also be crossed near grazing angles ¢—0?, this yielding the TM surface wave
contribution to the fields. The contributions from both these sources must be incor-
porated for accurate results in the general case.

B.3. NUMERICAL EVALUATION OF THE FOURIER INTEGRALS

In this section, the numerical evaluation of the Fourier type integrals (B.1)
encountered in layered media problems are discussed. Several different techniques
have been proposed in the literature. The solution of the integrals required for the
solution of dipole sources embedded in microstrip and related geometries has been
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solved by direct real-axis integration of the double infinite integrals [Pozar, Burke,
Jacksonl] as well as through the real-axis integration of the associated Bessel function
transform of these [Mosig, Rana, Jackson2]. Various difficulties are encountered in
their evaluation, however, one problem being that when the geometry is assumed loss-
less, the surface wave poles fall on the paths of integration. In the latter case, the
problem has been handled by extracting the pole singularities through a folding around
the pole technique [Gardiol, Jackson3]. By using a direct integration along the real-
axis problems can also arise in the large argument (far field) evaluation of the integrals
since the integrands become highly oscillatory. For the case of a dipole source over a
lossy half-space, a solution to this has been obtained by deforming the real-axis con-
tour to the steepest descent path [RahmatSamii, Parhamil]. However, even though this
produces a very fast converging integral, the possible inclusion of any pole or branch
cut contributions, which are crossed during the path deformation, must be constantly
monitored. A review of these techniques is given by Michalski [Michalski] along with
an alternative integration scheme, also based on a steepest descent path approach.

The method of integration presented in this section is based on a real-axis numer-
ical integration, where the integrand is weighted by an analytically integratable func-
tion which damps the oscillation of the integrand. In the non-oscillatory region of the
integrand, a segmented Gaussian-quadrature technique is employed where the segmen-
tation is based on a logarithmic scale. In the oscillatory region of the integrand a
second order integration is performed, where an exponential weighting proportional to
the steepest descent phase variation is directly incorporated. The technique used for
the oscillatory region reduces the phase variation of the integrand and thus allows the
integrals to be easily evaluated numerically, even in the far field region.

Consider the evaluation of integrals of the general form presented in (B.1), which
can be formulated as

1 T 17 N e ) .

Fya)= oo [ oo [ 7t b)e Ry Lk ite g gy

1 T 1 T ,{ Tl |y |+ ,

Z__J;T J’ k2t |y +jk,xdkx e+jk,z dkz

El—f [f(x,y ke "} kD ik g (B.59)
1, = Vk2-k?
p=Vx2ty? | ¢=tani(ly i)
R =Vx2y%4e? | Y= tan‘l(p/z)

where the integrands become highly oscillatory for | &y |, lkx |, or 1kz | > 1.
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In section B.2, it was shown that both the infinite integrals in (B.59), one with respect
to k, and one with respect to k,, can be evaluated in the form

Hiy) = Jre ™=y l+ign = [ hge®ga (B.60)
Examination of the exponential term in (B.60) shows that their are four possible
regions of behaviour of the integrand. These are shown in figure B.7 by plotting the
terms VAZ+12|y | and j| Ax | in the complex plane as a function of A. The path of
integration —ee<A < +eo will be segmented into these four regions, with a different
integral form used for each region.

Im[®]
A
jlax
A T
oscillatory region
. x=l2l =2y 5
non-oscillatory region
— ‘!' = > Re{®]
VaZie2 | y
non—oscillatory region
— x=Im[~‘lz-}421y1]—)lA,B
oscillatory region
]
T

Figure B.7: Four possible oscillatory/non-oscillatory regions of ®(A).
The four possible regions depend on the magnitude of the arguments |ty | and
| 2x | and are defined by the conditions:

1. For | Im{\flz-wzy] | <% | Ax | < X, the integrand is in the near field region and
is evaluated directly in its present form using a gaussian-quadrature technique
Ag

As
[hye= W21y L vie gy I[g(x)]dx (B.61)
A A

g(l) = h(l)e—ulzﬂziy | +jAx

where A4 <A < Ap is the region along the real-axis integration path where the
above conditions are satisfied. Both exponential terms are incorporated into the
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function g (A) since they do not cause a large phase variation, with the dominant
contribution to the integral in this region being the behaviour of the kernel A (A).
Also, when Re[VAZ+t2yl»1, the integrand decays rapidly, this portion of the
integrand contributing to the reactive part of the integral. The parameter y is
chosen usually in the range 2<yx <10. Further segmentation of this region, based
on a logarithmic scale, is employed for numerical evaluation.

2. For | Im[VA%+a2y]l <y, |Ax |> % the integrand oscillates rapidly with respect
to the x-dimension. In this region the integral is evaluated in the form

Ag L
[hoe Wty L site gy I[g(l):]e“j“dl (B.62)
Aa » Aa

g () = h(We e ly |

3. For | Im[VA212y]|>%, | Ax | <y the integrand oscillates rapidly with respect
to the y-dimension. In this region the integral is evaluated in the form

A.g A'B
'[h(l)e-\‘lzwziy] +jlxd7" - j I:g(l):le'ﬂzﬂzl}"dl
hn x,.

AT .
- _f g {+jtsin(cos‘1s)] _;”Tsl—— etiys ly i)“'ds (B.63)
4 sin(cos™'s)

) A
g\ = kAt | Sq.p = COS {sin‘l—j;—‘B—J
4. For | Im[VAZ+? ¥] | >%s [ Ax | > %; the integrand oscillates rapidly with respect

to both the x- and y-dimensions. In this region the integral is evaluated in the
form

¥ s As
Ih(l)e‘ e ly [ +ikgy .[ [g(l)}e‘wblﬁhdl
As A

Sg . | .
- J {g [-}-j’rsin(sin'ls —¢)] a] ?Cos(s.m s =) }ﬂ'(np)s ds (B.64)
5a cos(sin”ls)

A
gM)=h@A) , s4p =sin {sin‘1 :%B +¢
p="Vx2y? | o=tanly/x)

The transforms used in regions 2-4 are obtained by multiplying the kernel 4 (L) by the
phase variation of the steepest descent contribution, so that in the new kernels g (A),
the phase variation will be minimal. The integral forms given for regions 2,3 are
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special cases of the more general form given for region 4. They can be obtained from
the transform for region 4 under the limits $—0 and ¢—n/2, respectively. Note that
the integration does not necessarily pass through all four possible regions.

Each of the integrals (B.61,B.62,B.63,B.64) in the four regions require the evalua-
tion of integrals of the form

tsp N N Sn+l ~=5n
I=[2()et®ds = SI, =3 [26)e¥™ds + | 2(s)e¥®ds  (B.65)
+s5, n=] n=1 s, =Sns1

where each region s, —sp (or A4 —Apg) has been divided into N appropriate subre-
gions ¥(s,—s,,1). Since the conditions defining each region are symmetric for #A,
there are two contributions to the integrals in (B.65), one for —s, ;<5 <-—s,, and one
for s,<s <s,,;. For the case of region 1, the exponential weighting is ignored with
o=0.

B.3.1. Analytical Evaluation of the Subregion I,

Each subregion of the integral (B.65) requires the evaluation of integrals of the
form

S+A
I, = f [z(s)e™ ™ + z(-s)e™/% ]ds (B.66)
5-A
7= Spe1t Sy _ Spe1 ~ 5y
2 ’ 2

For the special case o=0, the integral will be evaluated using a gaussian-quadrature
formula [Press]. For the case a0, the kernel z(s) will be approximated by a second
order polynomial and integrated with the required exponential weighting function. A
gaussian-quadrature formula, also weighted by an exponential function could alterna-
tively be used as a more advanced technique. Thus, the kernel in (B.66) will be
approximated as

2()=af(sFTV+bEHsFT) + ¢t (B.67)

where the * signs indicate the range z(+s) and z(—s), respectively. Performing the
integration of (B.66) with the approximation (B.67) then yields

I, = [A (o, A) [a*e*f“:‘— + a‘e’fﬁ]
+ jB (0,A) [b*’e*j‘ﬁ - b“e‘f"‘f} (B.68)

+ C(a,A) [c*e*f“‘? + c"e'f“‘?]]
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s+ 2(HST+A))=2z(E5)+2(HT-A))

a-= 5
bt = Z(H(5+A))—2(Fs-4A))
2
cE=z(3)
2 .
A (0,A) = —singA
o
B(o,A) = 2z ———1——sinOLA — cosaA
’ o | oA
C{a,A) = 2 ’sinaA + icosom. - sinotA
’ o oA CLZAZ

For the special case that z(s) is an even function z(+s)=+z(-s), then a =a*=a",
b=b*t=b", c=c*=¢", and

I, =2 [A (o,A)acosos — B (o,A)bsinos + C(o,A)e cosa&"] (B.69)

Similarly, for the special case that z(s) is an odd function z(+s)=-z(-s), then
a=a"=-a",b=bt=-b", c =ct=—¢", and

I, =2j I:A (a,A)asinas + B (o,A)bcosas + C{a,A)c sina."s':t (B.70)
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Appendix C
Axial Power Flow Calculation for Guided
Wave Structures

In this appendix, the axially directed power for the discrete modes supported by a
conducting strip located above a lossy half-space is derived. As shown in figure C.1,
the guiding structure consists of an infinitely thin, perfectly conducting strip of width
w oriented horizontally above a single planar interface and located at (x=0,y=y").
The upper half-space y>0 is considered to be free space, characterized by a permit-
tivity €, and a permeability [t,. The lower half-space y<0 is designated as the lossy
medium, characterized by a permittivity €,, a permeability j1,, and a conductivity G,.
The current on the strip is assumed to have a specified axially directed current distribu-
tion of the form

— {Jép(x)s()’-)”)€+jk’pz 2 L —wil<x <+w/2
72 _
Py =g Cx<—wi2 , x >+w/2 (C.1)

where k7 is the axial propagation constant of one of the possible guided wave modes,
and JP(x) is the corresponding current distribution for that mode. The current and the
resulting fields for all the discrete modes have an exponential axial variation of this
form. The formulation presented here is similar to the method used to determine the
axially directed power for microstrip structures, where Jansen [Jansen2] presented
closed form resulted for the shielded case and Hashimoto [Hashimoto} developed for-
mulations for the unbounded case.

y
Fe e |
Fd 7 LA A SN A 4 r CANC AN AR AN A A 4 i_’i' ,i L4 L4 I";'_X
Py Ego W

Figure C.1: Infinitely thin conducting strip located over a lossy half-space.
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As discussed in section 4.5, the axially directed power for the pth mode can be
evaluated as an integration of the £ component of the Poynting vector in the upper and
lower half-spaces as

o0 00 _ 0 e .
= [JE(pyxH® (PN 4 dxdy + | [ (EE(P)xHE ()14 dudy (C2)

O—oa e e -

where E¢, H® and E*®, H® are the fields in the air and ground media, respectively,
due to the strip current. As also discussed in 4.5 (4.49), this formulation can be easily
modified to handle an arbitrary number of planar layers, such as in microstrip for
example. The required field components in each region can be derived as a weighted
integration of the fields from an elementary delta function line source as

+w /2
EiHL ey k)= [ 7Pe Yo ! IG‘e(f’m(k Yy kDm0 gy
-wi2

= “21“ [ PG EE™ Rk, y y kPYe ™ dk,

= 2i [ e ihi (e, y hP) e die, L Exy,z (C.3)
+wi2

iP(k,) = IJP(x e o dx = [ Jpeye T dx (C.4)
-w/i2

where e /! is the & component of the spectral domain electric/magnetic field in the
region i and jP(k,) is the spectral domain current. Here G2¢'™)Xk .y.y" kP) is the
transformed Green’s function giving the & component of the electric (¢) or magnetic
(m) field in the region i due to the £ directed line source in the region e. Finally,
using (4.50), the double infinite integrals determining the power can be evaluated using
the transformed field quantities given above as

Py = o [ Jletns () - et ne oy ak,
—oa{)

w 0
+ 5 [ o868 ®) - e ey (C.5)

—O0 =0

The Green’s functions GE€™Xk ,y,y"k,) ;0ex,y required for the fields in
(C.5) can be deduced from the fields of a line source located above a lossy half-space
as formulated in Appendix A. Using the vertical electric and magnetic scalar potential
forms from appendix A (A.13-A.30), the transformed field quantities in each region
due to the strip current , located at y=y~, are given from
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T (kyoy k) = VY-V + k2VE + jop Vx Ul

Axial Power Flow Calculation for Guided Wave Structures

— _ . : C.6
h'(kyy k) = VV-Uy + k,-ZU; - JogiVx Vy €6
+j 0W, [ +jk, U, o~ Ue byy’| o~ U0+
Vitk,.y.k,) = ik F R .
)’(kx Y.k, ) ke2 Ji(ky) \ kx2+k22 + 2Ue T R, ZUE (C.7a)
+op, (+jk, joe; o~V ly=y] AR
; = Pk + e _
U)’ (kx Y ’kz) kez fz( x) k kx2+kz2 ’: 2Ue + Rm 2Ue (C 7b)
+OU, ’+jkz U, ~U,y” +U,
Vikey k) = Plky) T,e 0 ™ (C.7¢)
y Vv y z kez -] Z2\x \ kx2+ kzz e
oy, [ +jk, j o, [ _ ‘y,+Uy:|
Ufkyy k) = 2 JE k) e Tpe : (C.7d)
_ n?U, - U, B m2U, - U,
e = T 5. .. m T
n?U, + U, m?*U, + U, , & LM
n-=— N m-= —
Te -_— 2—1— Tm = ___2—;__.____ e ue
n‘U, + U, m<U, + U,

where €] = g; +j0;/®. Considering the upper half-space first (i=e), the integration
with respect to y in (C.5) can be evaluated analytically as

el .y k) = (kP+kDVSE
N
exe(kx N4 ;kz) = (+}kx )——-V;

hitkyy k) = (kDU

-] Wi, (+jkz )U;

N e
h:(kx’y ’kz) =(+ka)'a—y—Uye+Jmee(+sz)V;
of e1 e* er, et 4 kxzkz e T a e™ 2v1eyTe®
et - ey = (AA° | ()" ]| U, WIS + IUTUS |y
X 4
9

+ AA" K (ooe')*T U, Vek2
kx2+k22* e 0 e ytx

oy

. s k, |
AA k,(we))" = zo-k—z— | j2ky |2
£

Uy + Ueszf*U:;Y;“]dy (C8)

where V,, U, are the portions of (C.7a-C.7d) in square brackets only. The axially
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directed power in the upper half-space is then given as

og

0
k, 1
B, (keoy ' k,) =
= [k AU, U}
k? U2 2 Ree'U'zy'—R;e*UJZy’ Ree—U.2y‘+R;e—U:2y’
- +
k12+k22 e Ue+U: U€+U: Ue"U:
2 2 Rme”U'z” +R* -Uc2y’ Rme‘U'Z"_R; e—U,‘zy’
+ kg -+ _ "
Ue+Ue U€+Ue Ue"‘Ue
%* % ]
2 -1 R.+R,, R,R,, U AUDy”
+ U, _ -  _ e
Ue+Ue Ue"Ue Ue+Ue
* #
k2 -1 + R R + RaRm | ~w,+uly
+ e * * ¥ €
Ue+Ue Ue—-Ue Ue+Ue
Ue U: P ) ) Ree—ngy’_R;e-U:Zy’ Ree‘U'zy’.'.R;e—U:z)"
¥ X - _ <
ke 2+ 2 U,+U; U,+U; U,-U;
|2 ReIIARITIY R e g
z
Ue+U: Ue+U: Ue—U:
R,+R,  R,R,
+ ka -1 e m ety e"'(Un‘*'U:))"

] + & - ]
U4Ur  U-UF UUL

_ R -R} R.R} .
+ k2 L R (C.10)
U,+U, U,-U. U,+U,;

Examination of the function F,(k,,y".k,), shows that the four terms having no
exponential factors represent the primary fields of the strip in an unbounded homo-
geneous medium. The eight terms with the exp[-U,2y” or U:2y‘] factors represent
the power due to the reflected fields in the upper half-space due to the interface. The
remaining terms with the exp[—(U,+U,)y"] factors represent the power in the lower
half-space region which is subtracted.
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Similarly, the axially directed power in the lower half-space (i=g), can be
evaluated using

ef(ky .y k,) = (k2+kDHVE

NN , :
ef(ke .y ky) = (+ka)-§;V§” - j o, (+jk, YU
he(ky oy ;) = (kF+k 2)U8

h8k, .y k) = (+jk, ) Ug + jwe, (+/k,)V§

[leghg® - esng1ay = 144 we,)’ J[U ———vgug* Zkfg;gys*}dy
0

X+Z

* k J’ g, 2 8 g* 8(w 2l 2N Ty R*

+ AA ey (we))" | | U Vi, P —U§" + U, V(2D UVE |yt (C11)
P} = —OT | jPUee) | 2 B, (ke y * KP)GE (C.12)
P 27 z \"x g\x S %z p .

k, o~WitUDy’ k2 \ ,
E, iy k) = |~ . [v.v,7.7% + m¥21,7;)]
g \Vx ¥ z ke Ug'i-Ug kxz+k22 eYgrelm e dmim
2 %
kx U U 5, 2
PNy U U T, T, + 2 ——Z %A T, T, (C.13)
x+ r4 X

Using the power method, the characteristic impedance of the strip-half-space
guided wave structure for the pth mode can be determined as

pPeé + pé§ +w /2 ! .
=2 2 2= | |spe)|%de = — | | jP(k) | 2dk, (C.14)
P IIP|2 P _le H 2112_'[0 Jz Ky X
I, ; for a & line source
FEY =1 Gnwi2) ‘ . (C.15)
»— 5  for a constant current strip of width w
kewi2

where jP(k,) has been defined in (C.15) for two common choices of current distribu-
tion. In general, the current distribution is a property of the specific mode.
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C.1. SPECIAL CASES

For the special case where the lower half-space has the same material properties
as the upper half space (the strip is located in a homogeneous space), the total axially
directed power is given as

- (R, =R, = 0
nt=m?=1:
©o\T, =T, =120,

k 2 e (U, +U)y’ kx2 1
F,(k,y k) = e — ~ - — 4= (C.16)
Ue+Ue U,+U, au,u; 4
k, | o~ WUy’ k2
F, (k.Y k)—— e ' © * 41 (C.17)
ke | U,+U, au,ur 4
-ﬁafolﬂ’(!c)l2E 2 b + L e (C.18)
2 L TF ke U+Ul || 4U U 4T '

When a delta function line source carrying a current [, is considered, JE ke )=1,, the
power integral will not converge since the integrand behaves as 1/k, as k,—eo. This
divergent part of the integrand, representing the axial power in an unbounded homo-
geneous space, can be identified in the general half-space power integral (C.9) and can
be extracted in this form.

Next, for the special case when the lower half-space is assumed perfectly con-
ducting (G, —e<), the total axially directed power will be due to the power flow only
in the region y >0 as

R, =+1,R,, =~1
k ,n2—>o°:

8 Te = Tm =0
ky |2 - g U _ Uy k2 1
F (k ,)”,k ) = o + — (Clg)
A 4 U,+U;} 4U,U; 4
F, (key k) =0 (C.20)
T kP g pUety Uity k2 1
PE+P§ = Pk | 2| = — 1dk, (C21)
_{, e k, U,+U; su,us AT

Again considering the case of a perfectly conducting lower half-space, when there are
no losses in the conducting strip the modal propagation constant will be equal to the
free space value kf=k,. For a delta function line source carrying a current [,
JE(k,}=1,, the axially directed power is then given as
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|k !2y

Zy 1-e
€ £ =
A D
) | 1 |2[ln(2y’) ~ lim ln(a):] (C.22)
27 _ P a—0
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