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Abstract

An examination of the guided waves supported by cylindrical stn¡ctu¡es embed-
ded in a plane layered media is presented. A theory for general cylindrical structures,
both open and closed, is developed using a hybrid Green's function-inte$al equation
approach. A spectral-domain analysis is utilized in the infinite axial dimension of the
structure, with an integral equation formulated over the remaining transverse dimen-
sions. Appropriate Green's functions are developed to account for the infinite stratified
supporting medium and a method of moments technique is then used to solve the
resulting set of spectral-domain integral equations. Once the guided wave geometry
has been formulated, the wave properties characteristic to these structtres are exâm-
ined. This leads to the identification of various commonly used approximation
methods, with specific âttention being paid to the use of only the discrete mode contri-
butions to represent the electromagnetic quantities. To this extent, a method of solving
for the propagation constants and a new definition of the cha¡acteristic impedances of
the discrete modes for open guided wave structures is presented.

The remainde¡ of the work is devoted to the discussion of various problems
which can be modeled using the geometry under consideration. Excitation of and pro-
pagâtion along infinite thin-wi¡e tansmission lines located above a lossy half-space is
examined, with numerical results presented for the disc¡ete mode propagation constants
and the cur¡ents excited by external dipole and delta function voltage sources. The
validity of using the Eansmission line approximation in the near field and the saddle
point method in the far field are discussed. Analytical expressions for the propagation
constants and cha¡acteristic impedances of a single thin-wi¡e conductor are fo¡mulated
using lhe proposed techniques. These results are compared to the expressions gen-
erated using the definitions currently available in the literatu¡e. Finally, the case of an
arbitrary shaped conductor, which can be located near or at the lossy planar interface
is examined.

The appendices provide formulations and evaluation techniques for the Green's
functions of planar sources embedded in a stratified medium. Special emphasis is
placed on formulating the homogeneous half-space geometry. The resulting Green's
functions present themselves in single or double infinite integral form, with analytical
expressions usually not available making them diffrcult to evaluate. To this extent,
existing approximation methods and some new closed form expressions are presented
for thei¡ evaluation. As well, a technique for thei¡ numerical integration is proposed,
which has the advantage rhat it accounrs for a possible highly oscillatory nature in the
integrand.
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" 'Let's consider your age to begin with - how old are you?'

'I'm seven and a half, exactly.'

'You needn't say "exactually," ' the Queen remarked. 'I can

believe it without that.'

Lewis Car¡oll, Through the Looking-Glass
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Chapter 1

Introduction

1.1. OBJECTWES AND MOTWÀTION
This thesis presents a theory of guided waves for cylindrical structures which a¡e

embedded in a plane layered media. In this context, the term cylindrical describes a

geometry which is infinite in one spacial dimension and bounded in the remaining two
other dimensions, this also including the problem of multiple unconnected cylindrical
bodies. The guiding structure may be comprised of a conducting, dielectric, or in the
most general case an inhomogeneous material. A solution is developed to handle any
of these cases to the extent that appropriate Green's functions can be derived for each
region of the geometry, however, specific applications in this thesis will be for homo-
geneous conducting structues. The geometry under consideration is first formulated as

a general th¡ee-dimensional scattering problem. The formulation is then specialized to
the case of a cylindrical (two-dimensional bounded) guided wave surcture, where the
mate¡ial properties of the cylindrical structure as well as the infinite medium in which
it is embedded are arbitrary. The characterization of and wave properties related to
this geometry are then discussed. Building upon this basis, the problem of a cylindri-
cal structure which is embedded in a layered supporting medium is then formulated.
The layered media may consist of any finite number of isoropic homogeneous planar
regions, with the electcical properties of each region being arbirary. Even though the
formulation of the problem is general to any number of layered regions, most of the
applications studied in the thesis are for a single planar interface. The combination of
the two types of geometries, cylindrical and planar, has been chosen since it can be
used to represent a large number of practical problems. Each type of geometry alone
is capable of supporting its own class of wave phenomena, while the solution of their
combination will exhibit the properties of both as well as some new phenomena; these
inciuding radiation, surface wave, and discrete modal contributions. The discussion of
a large number of examples will be presented in order to study some of the basic pro-
perties associated with this chosen problem. To this extent, a detailed examination of
thin-wi¡e guided wave structures located over a lossy half-space will be made, various
approximation methods will be deduced, and their validity will be studied by com-
parison with the exact solution. The commonly utilized Fansmission line approxima-
tion requires the determination of the propagation constants and characteristic
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impedances of the discrete guided modes supported by the sfucture. A new definition
for the characteristic impedance of open guided wave structures will be presented, and
the justification for its use will be discussed. As well, arbirary shaped guided wave
structures which a¡e located near or touching an interface will be studied.

The motivation behind this work is mainly in the undentanding of the guided
wave properties of open cylindrical structures. The incorporation of a layered support-
ing media adds new wave phenomena and lends itself to many practical applications
since open guiding structures are not usually located in free space, but must be sup-
ported by some means; and in many cases the supponing medium is a planar structure.
The geometry can be used to describe transmission lines over an earth for purposes of
studying wave propagation, electromagnetic interference, and remote sensing problems.
As well, modem antenna and computer design utilize rnicrosrip, MMIC, and printed
ci¡cuit boa¡d technologies, which can all be analyzed by this geometry.

1.2. THESIS OUTLINE AND CONTRIBUTIONS

Chapter two of the thesis is devored ro the presenration of a theory of guided
waves supported by cylindrical smtctures, as developed from a general scattering
approach. The properties of these structures are discussed and then rhe formulation is
specialized to the case of a seatified supporting medium. One of the oldest methods
of solving scattering problems is through a Green's function approach, where the fields
due to specified sources in the presence of the chosen geometry are deþrmined by
directly solving the wave equation and satisfying the boundary conditions. Results of
many different source configurations, for the excitation of cylindrical structures as well
as stratified media, can be found in the literatu¡e using this approach lstratton, Har-
ringtonl, Wait13, Felsenl. On rhe other hand, the integral equation formulation of
cylindrical structure geometries, whose solution is usually obtained using a method of
moments æchnique, ¿ue newer but also abundant in the literature [Harrington2, Har-
rington3, Mittral, Mitrr¿1. The soiution of the geometry being srudied in this thesis
combines the integral equation approach for modeling the cylindrical scattering
geometry with the Green's function approach for modeling the effects of the seatified
supponing media in which it is embedded. An overview of this hybrid Green's
function-integral equation approach for the solurion of many scattering problems has
been discussed by Newman [Newman2]. Once rhe guided wave problem has been for-
mulated, and solved using the method of moments, chapter two then examines the
wave properties cha¡acte¡istic to these structures. The development of the properties
of guided wave structures is based on the work of Collin, Schelkunoff and Ma¡cuvitz
lCollin, Schelkunoff2, Marcuvitz], who presented a general modal theory for the
analysis of ciosed cylindrical geometries. A discussion of the wave properties of open
structures is discussed to some extent in [Collin] with a detailed analysis of layered
geometries given by Felsen and Marcuvitz [Felsen], and the use of the method of
steepest descent for a fa¡ field evaluation and subsequent identification of the various
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\ryave components is presented thoroughly by [Collin, Felsen] and others [Tamirl,
Tamir2, Hessell. Chapter two next examines the use of onty the discrete mode contri-
butions to represent the structue currents and flelds. The use of the disc¡ete modes
allows a much simplified Eansmission line approach to the formulation of many
antenna and scattering problems, and the application of many useful network and
modal solution techniques. Special emphasis is paid to the cha¡acteri zaton of. open
guided wave structures, and to this extent, a method of solving for the propagation
constants and a new definition of the characteristic impedance of the discrete modes
are presented. An attempt has been made to make the fo¡mulations and discussions up
to this point as general as possible so that the presented theory is applicable to arbi-
trary guided wave structues (both open and closed, and independent of material pro-
perties to the extent that appropdâte Green's functions can be derived). The last part
of chapter two is devoted to specializing the geometry so that the guided wave struc-
ture is embedded in a stratified supporting media. This requires the modification of
the integral equation formulation and the specification of the required wave equations
that must be solved for in each of the planar layers. The corresponding Green's func-
tions for sources emb€dded in a layered geometry are derived in appendix A. The last
section in chapter two discusses the wave properties supported by the combination of
the cylindrical and planar geometries.

The remaining parts of the thesis are devoted to the discussion of various prob-
lems which ca¡r be modeled using the cylindricaVplanar geometry chosen. Chapter
three add¡esses one of the earliest applications of this geometry type, that of excitation
of and wave propagation along infinite thin-wire transmission lines located over a lossy
earth. Early solutions of this problem were based on a ci¡cuit approach, whe¡e the
curents behaved according to the tele$apher's equations [Carson, Pollaczek, Wise],
these being valid only at lower frequencies. Formulation of single conductor [Wai6,
dosSantos, Chang3, Kuester2, Chiba, Wedepohll and multiple conducror [Wait9, Kues-
ter4l systems, based on an exact solution of Maxwell's equations, have since extended
the validity to a much higher frequency range. Many studies of the wave properties of
this geometry have been undenaken [Chang3, Kuesrer4, Olsen5], of specific interest
being the extraction of the discrete guided wave modes. As the exact solution
involves the evaluation of difficult integrals, these simila¡ to that developed by Som-
merfeld [Sommerfeld2] for dipole sources over a lossy interface, many approximation
techniques have been examined [Kaidanov, Kikuchi, Carpentierl, Shen3], the most
utilized beíng the low frequency quasi-TEM approximation [Carson, Kingl, OlsenT].
Finally, the excitation of the infinite transmission line by various source types has also
been of interest, of specific importance being the excitation by a dipole source

[Chang3, Kuester2, King4, Hill] for application in antenna problems, and the excitarion
by an incident plane wave source [Olsenl, Scha¡fman, Fontaine, Bridges6] for appiica-
tion in electromagnetic interference and elecEomagnetic pulse problems. In chapter
tkee, the solution of the multiple thin-wi¡e over lossy ea¡th case is exracted directly
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from the general integral equation formulation presented in chapter two. The resulting
formulation is valid for an arbirary source excitation, and thus can handle a wide
variety of applications. Next, the wave properties associated with this specific
geometry are delineated and are then used to deduce various approximate evaluation
techniques to simplify the infinite integrals involved in the exact solution. A numeri-
cal study of va¡ious hansmission line geometries for typical ea¡th electrical properties
is presented at the end of the chapter. Specific attention is paid to the characterization
of the discrete modal properties of the structure, since addirional guided wave modes
exist in addition to the traditional quasiTEM modes. Also, of specific importance is
the validity of the various approximarion techniques often used in practice, which can
only be fully unde¡stood by referring back to the exact solution from which they were
obtained. This task is thus also examined at the end of chapter three. Even though
many of the specific applications discussed in this chapter have been previously
add¡essed throughout the literature, the purpose of this work is to present a detailed
and coherent theory of the transmission line above earth problem. lndeed, this topic
can be consideted as one of the most widely published areas in the electromagnetic
and power engineering frelds over the last century.

Chapter four examines the problem of defrning an appropriate cha¡acteristic
impedance for the discrete modes of propagation supported by open guided wave
structures. A discussion of the properties of guided wave structures is initially
developed from the theory presented for closed waveguides [Coliin, Marcuvitz, Schel-
kunoff2, Kerns2l. For the analysis of these structures using a uansmission line
approach, the two required parameters are the propagafion consta¡ts and the cha¡ac-
teristic impedances of the discrete guided modes. The definition and solution of the
propagation constants is straight forwa¡d as there is a direct physical reiationship with
the electromagnetic quantities. The definition of the characteristic impedances, how-
ever, is somewhat arbirary since the¡e is no direct relationship between the elec-
tromagnetic quantities and the ci¡cuit quantities modeling the structure except in the
TEM limit. Various deñnitions for closed waveguide structrrres have been used in the
literature [Marcuvitz, Schelkunoff3, Kemsl], and the harder problem of a definition for
open structur€s has also been add¡essed [Getsinger, Brews2, Fache2, Jansen2]. In
chapter four, an alternative definition of the châracteristic impedance of guided wave
structures is proposed. The deflnition follows directly from the hybrid Green's
function-integral equation solution of the structure and collapses to the TEM result in
the quasi-static limit. As an example, the specific case of a thin-wi¡e conducror
located over a lossy half-space is then add¡essed, where the results of the proposed
definition are compared to the results generated using the other definitions currently
available in the literature. As a by-product of this study, a closed form solution for the
axially directed power of the discrete modes supported by a conducring snip embedded
in a stratified media is formulated, as presented in appendix C.
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Even though the formulations developed in chapters three and four apply to gen-
eral guided wave structures, the numerical results presented have mainly been fo¡ ci¡-
cular thin-wi¡e systems, where a unifo¡m and axially directed current distribution on
the conductors has been assumed. Chapter five examines the case of an arbitrary
shaped conductor which can be located near ot at a lossy planar interface. In the past
almost all theories have treated the conductor over earth problem assuming a thin-wi¡e
approximation to model the conductor. When the conductor is either located well
above or buried well below the interface, the propagation constants of the discrete
guided modes will be close to the wavenumber of the medium in which it is embedded
and the approximation is valid. This is not the case, however, when the conductor is
located near or at the interface, where a more accurate model must then be used to
take into account a non-uniform cur¡ent distribution. Various techniques have been
proposed in the literature to examine this problem, but either a thin-wi¡e or uniform
curent assumption is still made [Coleman, Wair4, Changl, Olsen7] or the formulation
is not valid when the conductor becomes very nea¡ (touching) the interface [Pogorzel-
skil. Chapter flve presents an exact fo¡mulation of the problem, which is valid even
when the conductor is in contact with the interface, Results for the case of a circula¡
conductor located over an earth having typical electrical properties are given and a
comparison is made to the various other approximation methods which have been util-
ized throughout the literatue.

The derivation of the Green's functions for sou¡ces which a¡e embedded in a

stratified media geometry are presented in appendix A. These are primarily based on
the formulations in the literature for sources over a layered ea¡th lKuester4, Wait3,
Waitl ll and for microstrip geometries [Jansen2, Itoh, Das, Fukuoka]. The derivation
of specialized formulations for the case of a single homogeneous haJf-space is
emphasised. These G¡een's functions are usually in integral form, requiring either a

single or double infinite integration for thei¡ evaluarion. Appendix B presents various
techniques for the evaluation of these infinite integrals, commonly known as Somme¡-
feld integrals. Exact analytical solution of the integrals is usually difficult due to the
presence of singularities and b¡anch cuts in their integrands. The appendix discusses
some of the approximate techniques commonly used for their evaluation, and some
new closed form expressions are developed for the integrals arising in the special case

of a lossy half-space. ln general however, for an accurate evaluation of the integrals,
and to exEact the proper behaviour of all the wave components (surface waves etc.),
numerical techniques must be employed. To this extent, a technique for the numerical
integration of the infinite integrals is also presented in the appendix. The proposed
method has the advantage that it accounts for the possible highly oscillatory natrrre of
the integrand when evaluated in the far freld region.



Chapter 2
Guided Wave Structures

This chapter provides the general framework for the analysis of cylindrical guided
wave structures. The formulation of the guided wave geometry will be in terms of a
hybrid Green's function-integral equation approach, which is general to the extent that
appropriate Green's functions can be developed for each region of the structu¡e. The
characterization of the wave properties of open and closed guiding srucnres is
presented, with emphasis on the accurate definition of the propagation constants and
characteristic impedances of the discrete modes. The formulation of structures which
are embedded in a seatified supporting medium is then addressed, and the guided
wave properties of this geometry are then examined. The method of presenting the
results of this chapter may appear in non-standard form at many times, however, this is
mainly due to the attempt to keep the theory as concise and general as possible. Vari-
ous applications, which ca¡ be modeled using special cases of the geometry con-
sidered, will be presented in the remaining chapters of the thesis.

2,I. SOLUTION METHODOLOGY

Any scattering problem can be formulated from Maxwell's equations, in terms of
a wave equation, along with appropriate boundary conditions, which must be satisfied
at all points in the region under study. For the most general case, whe¡e the region is
comprised of a complex inhomogeneous media, the solution of the wave equation must
be performed directly in its differential form. A discretization of the region into a
finite number of spacial cells, in which the material can be considered constant, is the
most common solution methodology. Fortunately however, in most scattering prob-
lems, the material inhomogeneities occur at discrete bounda¡ies inside the problem
region. These bounding surfaces define the geometry of the scattering structure to b€
studied. Sfuctu¡es may be of various types; bounded in three dimensions defining a
finite scatterer, bounded in two dimensions defining an infinite guiding wave strucnrre,
or bounded in only one dimension defining a stratifred media, with each structure type
having its own particular characteristics and wave properties associated with it. As
defined by the discrete boundaries, rhe region under study can be partitioned into
subregions, where intemal to each subregion the media is homogeneous. The problem
then requires the solution of the wave equation in each homogeneous subregion along
with the satisfacdon of the boundary conditions at all thei¡ interfaces,
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For geometries whe¡e the media discontinuities conform to a known coordinate
system, the solution of the wave equation and satisfaction of the boundary conditions
at their interfaces can be performed using a transformation approach for the entire
problem region. Here, a solution to the differential equations are usually found by
expanding the frelds in terms of a set of orthogonal eigenfunctions particular to the
chosen coordinate system, with the unknown exparsion coefficients then determined
from the application of the boundary conditions. For open (infinite) structures, the
eigenfunctions are continuous and the transform is in integral form; for closed (finite)
structues, the eigenfunctions are discrete (periodic) and the transform is a summation.
This solution methodology can be referred to as a Green's function approach a¡d is an
exact solution to the extent that the eigenfunction basis used in the transform is com-
plete. However, this method works well, and is the most appropriate, only when the
geometry of the scattering structure coincides with a known orthogonal coordinate sys-
tem. For solutions of complex scattering geometries, this approach becomes impracti-
cal or impossibie.

For complex scattering geometries, the solution of the wave equation in each indi-
vidual homogeneous subregion can easily be found using a transformation approach,
usually in terms of an integral over the subregion volume. Then, the Green's theorem
can be used to transform the volume integral into a set of surface integrals over the
boundaries defining the subregions. The kemel of the integrai operator for each subre-
gion will contåin the appropriate homogeneous space Green's function, with the field
discontinuities at the subregion bounda¡ies usually being identified with equivalent
sou¡ces. This approach is referred to as an integral equation method, where a solution
requires the determination of the un-known equivalent sources in the integrand by util-
izing the boundary conditions at the subregion interfaces. Once the cürents are deter-
mined, a second step is then required to yield the resulting flelds in each subtegion.
Using this method, the solution of a¡bitrary shaped scattering structues is easily facili-
tated by expanding the equivalent surface currents in terms of a suitable basis set, usu-
ally spacially discrete for irregular geometries. Solution of the integral equation in this
manner is tenned a method of moments soiution (boundary element method). Even
though this method is general and applicable to complex geometries, the results are
approximate and sensitive to the choice of basis functions. Further, if one or more of
the structure surfaces is infinite in extent, as in the case of a planar layered media, the
unknown souces must be determined over an infinite interval, making this solution
techníque impracticable.

A compromise between these two solution techniques is to solve par:t of the prob-
lem using a Green's function approach and pârt using an integral equation formulation.
This means incorporating the effects of as many media discontinuities as possible into
the Green's function, and then expanding only the boundaries that do not coincide with
a specific orthogonal coordinate system in terrns of unknown equivalent sources.
Thus, the surface integral equation will be ove¡ only the irregular geometrical surfaces,
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regular material discontinuities being incorporated into an appropriate Green's func-
tion. This approach is referred to as a hybrid Green's function-integral equation
method and combines the flexibility of the integral equarion formulation for modeling
scatterers of complex geometry with the exactness of the Green's function solution,
This approach is used in this thesis to solve the problem of cylindrical guided wave
structues embedded in a sratifed media.

The pu¡pose of this section is to formulate the general surface integral equâtion
solution to the wave equation for a bounded region having arbitrarily defined material
propenies. To this extent, the standard problem in electromagnetics of determining the
fields at any point in a bounded region V due to specifled electric and magnetic
sources, J, and M* is discussed. The electric F and magnetic ¡l fields must be solu-
tions of Maxwell's equations in the region as well as satisfy any boundary conditions
at the region boundary S, where S defi¡es the surface bounding the region V. Assum-
ing an e-iot time dependence, the time-harmonic solution of the frelds can be
described in terms of the set of partial differential equations in the region as

IStratton,p.464]

tv2+t<2(¡)tí(F) = -jop(/s(tVþvv.+<r)) + Vx¡z:(r ) , r eV (2.1a)

lv2+k2(r)la(7) = -j¡oe'(M,(f)++VV.¿4"(¡)) - Vx,r"(F), r eV (2.lb)-kz

k21r ¡ = ç¡zp¿' , e'= e+ jo/@

where F defines a point in the region V, ¿(F) is the wavenumber at this point, and p,
e, o define the electrical properties of the medium which can in general also be func-
tions of position ¡-.

For fu¡ther discussion, (2.1) will be described in the form of an operator equation,
where the inverse operator determines the fields in the region due to the specified
sources. Thus, defining ¡<¡l=fí<f>,n(F))r and g,(a=aJ,O),tt4,(F))t where r
denotes the transpose,

lvz + k2(1)jÍ (F) = F{s"(r )) ,7e V (2.2)

l<¡>=L-1{&(')} =lllf rr:r'¡e"(7')dr' (2.3)
v

where F is a function of the source terms as defined in (2.1). Here F(r,-r') is an
appropriate G¡een's funcfion which satisfles the set of p.d.e.'s of the form (2.2) when
the source is considered a delta function located at 7 . Í F,r-) ¿iso takes into
account the region external to I/ (this including sources external to v). The derivation
of F(¿f ) satisfying all these requirements can pose a formidable rask. To simplify
this problem, the Green's Theorem [Harrington 1, Srratron] is used, so that (2.3) can be
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determined as a sum of a volume integral representing the field /'-(-) due to the
sources gr(F), plus a surface integral term f '"*(T) accounting for the effect of the
region extemal to the boundary S as

¡ 6¡ = ¡í* 1') + f "o,(v)

l'* e) = IIIõ<¡,rlg"(r')¿¡' ,7,r. e v
v

t-scatlF) =llT<¡,r>s(7)dr' ,7ev , T es
s

(2.4)

(2.s)

(2.6)

where g'(F) is an equivalent surface current modeling the fields and sources exterior to
the region V (gG) are additional sources ro gl(f )). The Green's function G:(F,-r')
is now required to satisfy only the set of delta source p.d.e.'s of the form (2.2) in the
region V only, and is thus much simpler to formulate in general than the Green's
function Ft¡¡1.

The specific geometry under study in this thesis consists of an arbitrary shaped
cylindrical guiding structure, bounded in two spacial dimensions and infinite in one
dimension. The cylindrical structure is allowed to be embedded in a stratified support-
ing medium, infinite in two spacial dimensions, with planar material discontinuities
specified in the remaining dimension. Following the hybrid solution methodology, the
boundary surface defining the cylindrical guiding strucnre is modeled by equivalent
sources, with an integral equation developed over this surface. The Green's function
kemel of the integral is then formulated to incorpo¡ate the effect of the saatified sup-
porting media. The integral equâtion formulation part of this problem is similar to that
found in the literature for arbitrary cylindrical structures in free space, except the
Green's function in this case is not the simple free space G¡een's function, but con-
tains the added complexity of a plane layered media. Felsen and Marcuvitz Belsenl
de¡ive Green's functions as well as discuss the wave properties for many material
configurations. The G¡een's functions utilized throughout this thesis a¡e derived and
discussed in detail in appendix A.

2.2. GUIDED WÄVES FOR TTryO-DIMENSIONÄ.L BOUNDED
(CYLINDRICAL) STRUCTURES

In this section, the solution of two-dimensional bounded (cylindrical) guided wave
structures will be presented. The formulation is developed using a hybrid integral
equâtion-Green's function approach where an integral equation is developed over the
surface of the cylindrical structure. The solution is general to arbitrarily shaped
cylindrical structures with intemal media and a supporting medium that may be inho-
mogeneous to the extent that appropriate Green's functions can be derived. A descrip-
tion of the geometry for a general scattering structure is given in figure 2.1a. The
region V=Vo+lV¡ contains N distinct subregions 7¡ which define the scatterer, these
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subregions being embedded in the remaining infinite supporting region I/s. The boun-
da¡ies of the subregions are defined by the surface S=ES¡. For cylindrical guided
wave structrrEs, the N subregions are chosen to be of infinite extent in the z-
dimension, thei¡ surfaces being defrned by the generating curves C¡ in the x-y plane;
(p-=p(¡,y ) , -""<¿ a..) e ,S¡, pe C¡ ,i=1,2,...,1V as shown in figure 2.1b. When a

planar layered suppo¡ting medium Vg is considered, the stratification is chosen to be
syÍìmetric in the x-z dimensions, the interface planes at specified values along the y-
axis. Appropriate Green's functions are required ro represent the fields in each of the
defined subregions V¡. For the speciflc case of cylindrical structures embedded in a

layered media, the effect of the stratification is incorporated into the Green's function
for the region V6.

Figure 2.1a: General scattering geometry.

Figure 2.lb: Cylindrical guided wave struøue.

10
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Using the Green's theorem, the volume integral (2.3) developed in section 2.1,
giving the fields in the region y in terms of specified internal sou¡ces, had been
transformed into a surface integral (2.6). Using this formulation, the fields in a defi¡ed
subregion V¡ can be determined as

f ¡(r) = ¡Ït¡¡ + Ltl{8(F)) ;îev¡ (2;t)

L¡l{s(r)) = I|d,<¡,-r>g(1')dt' = fi""'(¡) (2.8)
.tr

where f t*6¡ are the fields due to sources interior to only the region V¡. The integral
tern over the suÌface S¡ yields the scattered frelds due to coupling through the aper-
ture, which are modeled as equivalent surface currents g(r) on the boundary. The
appropriate tensor Green's function G¡(r l') for the region V¡ is determined so that
the wave equation

lv2 + t<,2(¡)llf"o'(7) = F{g(F)ô(r--r')} ;|ev¡ , r'es¡ (2.9)

is satisfied along with all required boundary conditions at material discontinuities inter-
nal to the region V¡. F is a function of the source tenns as given in (2.1). Thus, the
operator L¡-1 gives the scattered fleld due to the equivalent soüces g-(-) on the sur-
face S¡. The determination of the unknown equivalent cturents g(F) at the su¡faces

S =lt¡ bounding all the subregions is facilitated by satisfying the continuity of tangen-
tial flelds at thek interfaces. Thus, utilizing these boundary conditions on all surfaces

hijø)xfiO) + hji?)xfj(1) = o ; res,,.;

h¡¡ = -h¡i , S,; = Sri = Sr n'S;

where â;; is the inwa¡d unit normal vector to the region V¡ at the interface surface
Sü=S¡ nSj between the two regions V¡ andV¡. Satisfying (2.10) for every subregion,
a set of integral equations over all the surfaces can then be developed as [Harrington2,
Mittrall

f _. 'l
A'r1r¡x lti*<r¡+L¡tts(-)) -Íj*e)-L¡'{s(¡)} J = 0 (2.11)

; reS¡j , t=0,1,..."¡V , ,r= 0,1,...JV

The solution of this set of integral equations will yield the unknown equivalent surface
currents g-(F), after which the frelds interior to each region can be determined from
(2.6). The cuÍents and fields formulated by the þreceding integral equarion solution
are general to arbirary scattering objects; three-dimensional bounded finire structures,

as well as two-dimensional bounded cylindrical structues. The geometries of interest
in this thesis, are cylindrical guiding structures, where the surfaces ,S¡ defining the

scatterer are infinite in one dimension and bounded in the remaining two dimensions.

(2.10)

1l
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Since the physical geometry of the problem is symmetric in one dimension, a solution
will be obtained utilizing the infinite Fourier transform pair

-r-(p) = l(F,*,) = t, {¡(r)} = J1ç,r¡"-ia" a,

r(-) = x(p,z) = r;r{.ï:(Þ)} = *lrr1,k,)e'ih,dk,
where the cylindricai structure has been chosen to be inva¡iant in the z-dimension.
Using (2.12), the integral equation ove¡ the surface S in (2.11) ca¡ be reduced ro one
over the generating curve C as

. r-. lâ¡{Þ) x l7'ï<0> +rf'{ã(Þ)} -l;<ot -Ç'tãrolt J = o (2.13)

i Pec¡t = ç,¡¿t , ,=0,1,...,¡/ , ¡= 0,1,...,¡V , -*1k21-

(2.r2a)

(2.rzb)

(2.r4)

(2.r6)

t¡'tãrÞ'll = f ãrpo'lãr Í) ¿t = î ":*<ø>
cì

The solution of the integral equation, as well as the determination of the Green's func-
tions for each region has been simplified to a two-dimensional problem. Note that the
transformed two-dimensional quantities now contain only a subset of the wave proper-
ties characteristic to the region they describe, the complete set being recovered upon
the inverse Eansformation. The final solution of the fields then requires the inverse
transfonnation since the soutces ¿lblF) are not in general invariant in the z-

dimension.

For simplicity, the set of integral equations (2.13) will be written in the general
form

Ê'tÞl x Lt{ã',rÞ)} = A(Þ) "7í* G) ; pec ,...æ<kz<æ (2.1s)

where â1p¡ is the unit normal ro the conrou¡ C witn fi*(p-¡ and fl dependent on
which pan of the contour p- falls. Since the generadng contour C of the guid.ing wave
structure is bounded in two dimensions, any infinite discrete þeriodic) set of complete
basis functions can be chosen to represent the unknown curents g:(p) lHarrington2].
In terms of the chosen basis, the cunents will be expanded as

l(F,k") = $.r"f Þ'lr,( kz) = lx(p)ltÍtg)l
n=l

where.r,r(p) is one basis function of the set and l" is a scalar constant. The basis

{¡, (Þ) ; n=1,2,...N j is usually chosen to be linearly independent over the contour C
and is then complete if N -+".. Note that all vector components of the equivalent
cunent g:1þ¡ are expanded using the same basis set in (2.16). By chosing a suitable
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inner product <,>, and an arbitrary set of weighting functions wr(p), which also
form a complete basis, the integral equation (2.15) can be discretized as

< w^(p), n,o,,.t-'{Ë *,<p¡hg,¡} ,
t"=l :!

= < w^(p) , h(p)rf "" (p) > ; m=1,2,...M Q.t't)
where the inner product is defined as

< d(B), å(Þ) > = Ia(p')ø(p--) ¿p
C

The general form (2.17) is referred to as a method of momenß solution (boundary ele-
ment), with the particular choice of the weighting set lr¿ ( p ) =r¿ (Þ) being defined as

Galerkin's method lHarington2]. A unique solution of (2,17) can be obtained for a

finite number of basis functions M=N, with the resulting set of linear equations then
solved in matrix form as

l7&)llt (k")l = lF¡n" (k")l i -*<k"<*
where

P:tr(*,> = < w^(p), â(Þ)",r-'-(Þ) t
2.,(k") = < w^(p), â(Þ')r. t-r{¡"(Þ)) >

= < w-(Q), ¿'(Þ) x ic=( p,l)x^(p') dp- >
c

since

/V ":

¿=1 C

The interaction (impedance) 
^anx Z(kr) will be d.iagonal fo¡ the special case where

the expansion functions .r,, ( p ) are chosen as the eigenfunctions of F1. When the
boundary C of the cylindrical structure coincides with some o¡thogonal cootdinate sys-
tem, the detennination of a basis in terms of known functions which diagonali ze Z 1kr¡
is usually possible and should be utilized. However, in the general case of an arbirary
generating contour C, or if the Green's function in the kemel of t-l describes a com-
plicated medium, Z(k) will not be diagonal. For the general case, a transform ca¡ be
found to diagonalize Z(k") which is determined from the eigenvalue problem

(2.23)

(2.18)

(2.1e)

(2.20)

(2.21)

< w^(p), A (Þl * rt{ Ër" tO I r, ø,1} '

13

lz(k,) - t"í(k,)llli&)l = o ;i=1,2,...,p
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where l,¡(kr) are the resulting eigenvalues and p¡(k") are the conesponding eigenvec-
tors. By utilizing all eigenvectors, a rransform F 1k"¡ 

"an 
be determined which can be

used to diagonalize Z(k,) and solve fo¡ the scalar quanrities T1k"¡ as

¡Tçt,¡1 = ¡21*"¡11¡Fí*1t<,¡1 or ¡T1 = ¡Zr1-1¡Ftu1 (2.24)

where

lt(tc,)l = tFf¿lttTl lr'* (k")l = tF &)ltri* I (2.2s)

îZù = tF &)fti (k")jt p (k")l

[",n,,] = | þ-,r*,r]þ=,<o,tf þ;ro,r] ]
and 

:z¡ is diagonal. The vectors T and f,h a¡e the resulting eigencurrents and
eigenflelds, respectively, for the specifled guiding structure. The elements ofàp arc
the impedance values relating the equivalent eigencurrents to the exciration at the
boundary surface C. In general F1k"¡ as well asl F,b, and:z¿ are functions of the
Eansform variable kr. Special cases do arise, however, where F1k, ¡ is constant and
independent of k" 2'r 

.

The general solution of the integrai equation (2.15), for an arbitra¡y source excita-
tion is found using the inverse Eansform (2.1,2) as

g(F) = f;|tî(F,k")l

F (F,¡r") = tr (Þ)lr t/(ez)l

= tx(F)lttz(kz)l-ttFr*(¿,)l = tr(Þ)rtF(¿z)ltTl e.zs)

The scattered fields /,Ic"¡( F ) and thus the total field at any point in the region V¡ can
be determined using (2.14) as

fi"^e) =

(2.26)

(2.27)

(2.28)

Lrr(s(F)) = .;'{r¡'rr:r Þ,e")l}

.;, 
{t¡' 

r r' rB lr, rr rr, lr t i
2.1 The k¡nsfonn P(&, ) will be i¡depcndent of *, for the special condirim ûr¡r ùe srn¡cÞre geornerry is syrûnetri-

€l (å¡d s consponding se! of syrnmetric bssis func.tions is chosen), A¡ ex¡rñple msy be s syrnfielric two conductor
tl¡in-wi¡e r¡¡nsmission line, where p 1 = [ 1/V2 , lN2 ], p 2=l |t,l2 , - I /V2 I independent of*,. Under rhese phyrical
condirions, Z will b€ str¡ûeuic ar¡d all elunal.s Z¡ will be equal.
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. [< w^(p), ø1p¡*f'-1p¡ t] ] e3o\
)

The solution of the guided wave probiem has been formulated using a Fourier
transform for the axially inva¡iant structue dimension and a discrete (periodic)
transformation for the remaining two trânsverse dimensions. The axial transform was
in terms of the infinité set of eigenfunctions {exp(+jftrz)}, with the discrete transform
developed using an a¡bitra¡y set of basis functions and an appropriate inner product.
The diagonalization of the transverse dimension transform yielded a solution in terms
of the eigenfunctions for that panicular sructure. unlike the axial eigenfunctions
however, the eigenfunctions for the transverse dimensions do not necessarily
correspond to known analytical functions since the structure boundary does not coin-
cide with a known orthogonal coordinate system in the general case. The diagonaliza-
tion of the problem in terms of its eigenfunctions, is useful since simplified solutions
in terms of only the dominant modes can be developed. Thus, the inve¡se transform of
only these dominant ones ate required.

2,3. DISCRETE MODE ANÀLYSIS

The formulation of the induced currents and scattered fields for a cylindrical
guided wave structure was formulated in the last section. The solution to the problem
was developed in terms of a one-dimensional transfon¡ as

= .;' {r¡' t r' r p )l' JJz (k")r,îF'* n"r}

- r,-,{ttir{r"(Þ)}l,t< w^,(p) ,â1p¡x t-l1;r,1Þ')l >l-r

rì- .,-'tr,-'tã<F,¿,)) 
I

ílf,-'{ tx(þ)l'tz (k)l-ttq'* (k)l 
I

1""* (F,r)

s(F'z) =

(2.31)

(2.32)

The solution to (2.31,2.32) is exact ro the exrenr that a complete basis x ( p ) is used.
The formulation of the problem using a complete set of transform functions will
include contributions from all the wave properties of the structu¡e, the individual con-
tributions being identified by examination of the poles and branch curs that may be
present in the complex k" plane [Felsen]. Each type of material discontinuity (one,
two, or three dimensional) in the region v will contribute to the possible variety of
wave phenomena present. For cylindrical structures (bounded in two dimensions)
there will be a double set of poles in the complex k" plne, these corresponding to the

15
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homogeneous solutions of the integral equation (2.L1,2.15) ie: (/ 'æ ( ¡) = 0 ). The
location of the poles a¡e determined f¡om the zeros of the impedance mamx Zgr¡ anó.

thei¡ contibution to the integral transforms (2.31,2.32) represents a set of discrete pro-
pagating modes guided along the cylindrical structure. As well as rhe wave properties
due to the two-dimensional bounded sructure, there will be phenomena due to any
other types of material discontinuities present in the individual subregions
Vi ,i4,1,2,...N. These are incorporated into the Green's functions Crç,t,¡ for each
medium, and are represented by branch cuts and singularities of various orders in the
complex k, plme. Instead of discrete propagating modes, the branch cuts represent a

continuous spectrum of modes. For open (infinite) region problems, there is at least
one second order branch cut present in the &, plane represenring radiated fields. For a
stratified exterior region, their will be two second order branch cuts representing radi-
ated flelds into the most upper and lower media, as well as fust order branch cuts
representing surface waves uapped by the layered media. The wave properties for the
specific case of cylindrical guiding structures embedded in a stratified media will be
discussed in section 2.6.

ln this section we will examine the discrete guided wave contributions to the
fields and cu¡rents for a general cylindrical srructure [Collin,ch.5]. The disc¡ete mode
solutions are determined from the eigenvalues of the homogeneous case of (2.15), with
the corresponding eigenvectors giving the current distribution on the surface boundary
S for each mode. The propenies of the modes are cha¡acterized by the resulting
eigenvalues (propagation constants) kl ,p =t,2,...,p and by the magnitude of thei¡
associated ¡esidue contributions in (2.31) and (2,32), which indicates thei¡ relative
excitarion by a given source. For closed structures (the supponing medium V9 is sur-
rounded by perfect conductor), the discrete mode contributions of the inverse transform
in (2,32) form an infinire discrete set of eigenfunctions which are a complete basis, and
no branch cut contributions a¡e present. For open structu¡es (the supporting medium
V6 extends to infinity), the set of discrete eigenfunctions is finite and does not form a

complete basis. If open structues are considered, the complete set of basis functions
requires the inclusion of a continuous spectra of modes, these represented as the
branch cuts in the complex k" plane. However, for many problems of interest, the
major conribution is due to the discrete mode subset, and even though it does not
form a complete basis, the approximate results are very acceptable. The use of only
the discrete mode contributions to represent the structure curents in (2.32) allows a
much simplified transmission line approach to the formulation of many antenna and
scattering problems. Also, the many useful network propenies and modal solution
techniques developed for transmission iine and closed waveguide problems can then be
applied [Marcuvitz, Kerns2, Schwinger, Tripathil]. The use of this approximarion in
the solution of a large class of problems will be the topic of section 2.4.
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To this extent, consider the contribution to the cunent in (2.32) due to the finite
set of discrete modes only

,l :ì
s(p,z) = +ji liq-j G,-k!)tx(p))t¡21r,¡-1¡F¡*çtc,)lr*jhl'I f 1z.sÐ

P=l tç-+k! t J

where for discussion purposes, the source is considered finite and located at z=0. The
propagation constants ,t/ are determined from the solution of the homogeneous integral
equation (2.19). For this purpose, a mode equarion can be developed from the general
eigenvalue problem (2.23) with À(¿, ) = 0 as

lt
ldrr)l=o -+ r,y

lz(kl)ltÉl = 0
; P=1,2,...,P

giving rise to P eigenvalues (propagation constants) and their corresponding eigenvec-
tors É. Using the determined eigenvectors, the pth term in the mode expansion (2.33)

(2.34)

(2.3s)

(2.36)

(2.3',1)

where Z¿o is defined here to be the characteristic impedance of the pth mode for the
guiding wave structtlre. This definition is valid fo¡ all general guided wave structures,
both open and closed. The transfo¡m vectors ü, Q7 and the nomlalization constants
Ñ( , Ñl are given by

ca:r be diagonalized into the form

s p (F,z ) = tr (Þ)l' t vp I +- td ), tF'* 1k y¡1r*ia | " I

22cp

7^ =-j I " r I

-LP 2 ñiñËarll,rnrl lr=o

vl = "o\¡tZ(kÐ]lñl ; j=r,2,...N

* _ cot¡J7_(kÐl 
¡ñr ; j=1,2,...JV' cof¡(Z(kf)l

l¡v 1rn fv 1n

'r = L,lwl ñPq = 
Lå*l

Note that tf Z (kl) is symmetric, then t 1l = tVe I and accordingly Ñr, =*r" . The func-
tion cof¡ (Z ) gives the cofactor of the ijth element of the matrix Z. Using the expres-
sion (2.35) for each of the P modes, a transformation can be deveioped to solve (2.33)
in matrix form as

t7
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s (Þ,2) = lx(p)lt u \2zc :-lrÊ <¡ua rrt.r,* QrÐl

= tr(p)l'tr lt(z)l
which can more easily be defined using

tît,ll = ¡zZ" yt¡Eç¡¡l i*1

- _.rii" = \an Fj*(kl) i p=7,2,...,P
j=r

D,,(z\ =

where D(z) and Z¿ arc diagonai matrices describing the propagation and impedance
characteristics, respectively, of the structure. The vectors T and ft- are the strengths
of the conesponding current and incident field eigenfunctions for the structure. The
transformations a¡e determined from the eigenvectors lP and I as

td = t ["] [*] ["] l
tr-l =t[u'][u'] lu"l I Q'42)

Note that Q-r=f' for the case ot Zf*!¡,p=1,2,...,p being symmetric. Once the
curents gp@a) due to each of the discrete modes are determined, the conesponding
fields can be deduced as

_ll
f","'(î,t) = l,-r j i;ttF,@,kÐl I't)

= ! ã<o,B *nî, (Fik!) ¿Þ' r+j*! t' t

c

2.4. TRANSMISSTON LINE APPROACH AND QUASr-TEM
APPROXIMATION

As discussed in section 2.3, the use of only the discrete mode contributions to
represent the cunents and scattered fields for a cylindrical guiding structure allows the
utilization of many uansmission line and network theory techniques, greatly expanding
the number of practical problems that can be solved. In utilizing the transmission line
approach, the cur¡ents induced on the cylindrical structure can be formulated in terms
of an infinite set of localized delta function sources along the length of the stru*ure,
the magnitude of the sources being proportional to the incident fields at the surface of
the structure [King3]. A formulation in this manner can be developed directly from
the exact solution (2.28) by utilizing the convolurion theorem to represent the incident

( +¡ktl z I

¿e " , t=J=P

[o , i*j

(2.38)

(2.3e)

(2.40)

(2.4r)

(2.43)

l8
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cha¡acteristic

The diagonal

(2.s 1)

sF,z) = (2.44)

pr(t"l = <w^(Q),A(o)x7i*(ø,k")> (2.4s)

7'*(î,t") = r"U¡*(p,r)l = Ï T¡tr-'¡r-itc, d, f ,*@,r') dz. (2.46)

Thus,

i .-
sþ,z) = J þr(Þ)l't K_(z ,z') llF* (z') | dz' (2.47)

K-(z,z') = (2.48)

ril'12'¡ = <w^(p), h(F¡x¡¡*1ç,2'¡> (2.4g)

For an infrnite structure, the convolution operator E-e,r') determines the current at
the observation point z due to a delta function source of strength ¡'b 1 p,z') at the
location z'. The formulation of the problem using the convolution integral is still exact
as long as the representation of the delta sou¡ce kernei K*(z,z') includes the complete
mode properties of the structure, these being the discrete mode contributions as well as

the continuous mode spectra. However, the transmission line theory assumes that all
curents on the cylindrical structue can be represented in terms of forwa¡d and reverse
exponential traveling waves only, the continuous mode spectra requhed for a complete
solution being lgglected. Thus, using the theory developed in secrion 2.3, the convo-
lution operator K*(z ,z') will be approximated as

:x-(','') 
= ¡ryzZç)-11õç,2'y1¡gyt (2.s0)

where the Eansforms I nd Q were given in (2.37 ,2,42), and the
impedances of the guided \,vave structure Z¿ were given by (2.36).

matrtx D (z ,z') is given as

{ +¡*t L-.r' IJe'' , t=J=P
o,,12,2.) = ls ,i+j

where kl ,p=1,2,,,.,P are the possible characteristic propagating modes of the two-
dimensional structure. The solution of the equivalent curents using (2.47) is more
complete than the form (2.38) of the previous section. In (2.38), only the disc¡ete
mode contributions of the source /'- is considered, whereas (2.47) allows the full

(_ì
r;1 

t tx (Þ)l¡ tZ(k,)l-t tr ¡* (k)l 
I
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Chapter 2 Guided Wave Structu¡es

spectral representation of the source, with only the resulting induced currents assumed
to have an exponential behaviour. The scattered fields can be determined using (2.30),
or as in the previous section for only the discrete mode conrribution using (2.43).

The formulation presented in (2.47 -2.51) can be generalized to a transmission line
configuration of finite length and with arbitrary boundary conditions ar its terminals. If
the propagation constants k! and rhe cha¡acteristic impedances Z¿ of tE structure are
known, this is accomplished by modifying the the convolution operator K*iz,z,) to the
specifrc finite transmission line considered and formulating the convolution integral as

SG3) = Jtr(Þll'tx¿(r,z')[pi*(z)laz. ;z eL
L

(2.s2)

where the path I is along the axial length of the strucrure and 
:Ç(2,2,) 

is the
modified convolution operator. Using (2.6) and (2.52), rhe fields can also be deter-
mined for the structuIe. once the cunenrs are formulated for all guiding structu¡es in
a larger problem, they can be embedded into â network of inte¡connected transmission
lines and the whole problem solved simultaneously [Legro, King4, Kami]. As men-
tioned in section 2.3, the presented transmission line theory, which assumes only the
discrete mode contributions, will be an exact formulation for closed guiding structurcs,
and also a very accurate approximation in many cases of open guiding sructures.

2,4.1. Quasi.TEM Approximation

The formulation of the Íansmission line approach presented by (2.47 -2,52) deter-
mined the curents and fields in terms of the full set of discrete exponential modes for
the structure. The propagation constants kl were solutions of the exact two-
dimensional wave equations which were satisfied in each region v¡ of the problem
geometry and were dete¡mined from the eigenvalues of the homogeneous mode equa-
tion (2.34). The solution of the mode equation yielded the full set of all possible
discrete modes, which may consist of TEM, TM, TE, and hybrid forms. ln general
however, solution of the exact mode equation (2.34) may be difficult to evaluate, and
for many problers, the use of a smaller subset of the full set of discrete modes may
be adequate to represent the problem. This chosen smaller subset will usually consist
of only the dciminant modes of the structue, for many cases of guided wave structures
these being the TEM transmission line modes.

In the quasi-TEll approximation, the propagation constants ,t/ and the charac-
teristic impedances zç, ue determined from the equivalent circuit parameters of the
transmission line. These per unit length circuit parameters are then derived by assum-
ing the axial variation of the flelds in the solution of the wave equations (2.9) is equal
to the wavenumber of the medium in which the guiding srructure is embedded (k" = k¡)
[Coleman, Olsen7]. In this manner, the flelds in the supporting medium will be a
solution of the two-dimensional Laplace equation. The quaslTEM approximation is
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applicable where the dimensions of the guiding sfucttue are muoh less than the
wavelength of the medium in which it is embedded.

2.5. INTEGRAL EQUATION FORMULATION FOR CYLINDRICAL
GUIDING STRUCTURES EMBEDDED IN A LAYERED MEDIA
ln this section, an integral equation will be developed to determine the cu-rrents

induced on and the fields scattered by an infinite cylindrical guiding strucruæ embed-
ded in a stratifled media. The integral equation is developed from the formulation
presented in section 2.2 for general cylindrical guided wave structures. The geometry
of the problem under consideration, as shown in frgwe 2.2, consists of a two-
dimensional bounded scatterer representing the infinite cylindrical guiding structure.

Figure 2.2: Scattering srructure embedded in a stratified media.

The problem is divided into N+l regions, the exterior infinite region V6 and N distinct
unconnected subregions V¡. The surface ,t defining the scattering structure then

.,1



Chapter 2 Guided Wave Structures

consists of N surfaces ,S¡ for each subregion. For cylindrical guiding structures, the N
scattering subregions a¡e infi¡ite in extent and chosen to be invariant in the z-
dimension. The surfaces S¡ of the structure are then defined by the generating curves
C¡ in the x-y plane as ( p = p(x,y ), --ç2 <.")e S¡, peC¡ ;i=1,2,...,?ù. The external
region I/s is defined as a layered supporting medium, the stratification being chosen as

x-z planes so that the cylindrical guiding strucrure is paraJlel to the planar interfaces.
The layered media is made up of M++M-+I planar regions R¡ ,-M-3j 3M+, where
the upper most region R". is a half-space and the lower most region rRy- is a half-
space. Each layer R¡ is cha¡acterized by the material electrical constants V¡, e¡, o¡.
The defining su¡face ,S is divided into distinct subsurfaces, each unique to both a

scattering region 7¡ and a layered region R; as

NNM*s=I,s¡=Ð Esu Qs3)
i=l í=I j-M-

Using the formulation developed in section 2.2, the fields in each subregion
V¡ ,i4,1,2,...N can be determined using the surface integral equation (2.11) for the
region -e V¡ as

E,1'¡ = E!*(¡l + IIdf"<,,r'>7<r¡ + df^1r;r¡u (v) t-r (2.s4a)
si

n,1r¡ = ni*<¡> + IJdirr:rvt7) + G:í*(r,r')M(r') F (2.s4b)
si

where in (2.54\ ¡he fields and crurents are defined as

f<¡t = (Eo)nFD,
At the surfaces re S¡

71r¡ = h,167xa¡r¡

, s (r) = (lo ),M (1))t

, u<¡> = -híe)xd/.F)

(2.ss)

(2,s6)

are the equivalent electric and magnetic surface currents representing the tangential
components of the fields at the boundary of the region V¡, with â,1r I Uelng ttre

inward unit normal vector at the boundary. The tensor Green's functions G¡(r,F ) for
each region V¡ are appropriately chosen so that the wave equation is satisfied and all
fields are continuous across intemal media discontinuities. Formulating the fields in
tenns of the elecric flf and magnetic ll,t" Herø vecto¡ potentials, The Green's func-
tions can be deduced by soiving the set of differentia-l equations

[v2 + kí2(T)]ilí(r ) = -',tu' ,t-l¡r--') ;1evi , Íes¡ (2.57a)
K¡'

tvz+ki2(t)lni¡) = 1Ïi ¡6¡617-7'¡ ;rev¡ , t'es¡ (2.s7b)
¡ai
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(2.58a)

(2.s8b)

(2.60)

r2
E,(¡) = vv.nf(¡) + k¡2nf(r ) + -5vx n,øtr I

-/ oei

r2
n,6¡ = vv.n,"'(r ) + t<,2n¡ 1r¡ * -ji-vr Rft¡l

t/ (oll;

. t-. N M-,,:..
Êo(¡)x l(E'í'(r),H'f (F))'+ Ð > JJ c'd<¡,r¡<tr¡'lut¡'¡, ¿r.

I t =t j-M' s,.
T

= âo(F) x lt4li"trtn;1¡l / + i.[ dN<,,r¡<t <rltt (¡')), ¿-r
Ls'

as discussed in appendix A. The wavenumber 4 = r{fr, rr, in each region V¡ is
defined by the permeability p¡ and a complex permitrivity eí = e¡+j o¡.:t¡ ln general,
each region 7¡ may be inhomogeneous, but if the material discontinuities are regular
and coincide with a known orthogonal coordinate system, the solution of (2.57) can be
found in a closed or integral form. such is the case with a planar layered media as the
supporting region Vs. Since the geometry of the cylindrical guiding structure is invari-
ant in the z-dimension and the layered supporring media is invariant in the x-z dimen-
sions, the two-dimensional ca¡tesian integral transform wilt be utilized for the the solu-
tion of (2.57) as

x(r,-;-) = t;tt;tuv(k,) J"k")l| (2.59)

Details are discussed in appendix A, with the solution for va¡ious geometry types
described in appendix B.

Matching the boundary conditions at the interfaces berween the extemal region
Vq and the N cylindrical scatrerers yields a set of integral equadons in terrns of the
unknown equivalent crurents. Using the general form (2.11), a set of integral equa-
tions determining the currents (7F)Jl4 (1)), are given as

; Fe Sat , -M-<i44+ , q=1,2,...N

The set of inte$al equations is enough to uniquely define the unknown surface
cunents. As well, since the incident field quantities Eït¡l *¿ n¡r*1f¡ arc not
independent, chosing different linea¡ combinations of the sets of equations is possible,
and useful near resonant conditions. For bodies Sn which are perfectly conducting, the
tangential electric field and equivalent magnetic su¡face cu¡¡ents are zero;

-hoxÐe)=+u(F)=0;reSc, yielding two separare sets of equarions that can be
solved.

ln the integral equation (2.60), the Green's functio nt dn{f ,r') ,q=1,2,...N
satisfy the differential equations (2.57) for the internal regions Vo. For homogeneous
scatterers, Gq(l,r') can b€ deduced from the primary fields derived in append.ix A,

)a
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this being the free space dyadic Green's function [Harringtonl,p.l20]. For complex
inhomogeneous media, an altemative solution is required. In the external plane lay-
ered media V6, the appropriare Green's function Ct¿(1,-t);TeR¡ ,V'eR¡, ¡epresents
the fields in the region R, due to a source located in the region Rr. In the integral
equation (2.60), this conesponds specifrcally to reSni and -r'e,1¿;. The tenso¡ Green,s
function is derived by solving the wave equations (2.57) in each layered region in
terms of the electric and magnetic Hertz potential vectors as

T:,.,--, -r r ì

dit <¡,¡' ¡ = 
L8;::": {P;), E'l':,-,: l\:;),J =', 

{nrr 
r ¡,n¡1 r ¡ 

} 
az e r ¡

where Fe R; and -r e R¡ for -M- 3i,j <M+. The individual elemenrs of the tensor
(2.61) arc given as

for all cr, e (x ,y ,z) and p e (x ,y ,ù. fr,íF) and R,t"(F) a¡e solurions of the set of
wave equations for F'e R¡

c¡t")Ø,-t) = [ vv.n¡1o¡+*,2n¡1,¡ ] . û"

G,Já"^)(¡,,') = 
| #""nrr¡r ] 

. o"

G,¿y)F,-r.) = l#r"nf(F) ].r"
cg{*t1r,r¡ = | vv.n¡1r)+¿r2nf(F) ] . û"

tv2 + kftnfll = fot,--rlto
¡vz + r,21nY1rl = $o1,--r'¡Ouki

(2.62)

; reR¡ , -M-<i<ì[+ Q.63)

subject to the appropriate boundary conditions at the interfaces between the regions.
Note that the source terms in (2.63) are zero if i+j. A solution to the set of partial
differential equations (2.63) is given in appendix A, along with the resulting Green,s
functions for a layered supporting medium. The formulations presented a¡e valid for
both finite and two-dimensional bounded scattering objects emb€dded in a layered
medium. For cylindrical guiding structures, the geometry of both the external sradfied
medium and the guiding structue are invariant in one dimension. utilizing the Fourier
transform pair defined in section 2.2 (2.12), the set of surface integral equations (2.60)
can be transformed into a set of contour integral equations as done in (2.13). Thus,
the set of integral equations for cylindrical guiding sfuctures can be solved in the
transformed domain as
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t¡e Cqi , -M-<i <M+ , q=1,2,...N , -æqþ"qæ

where the contour of integration is defined by the generating cuwe Ceþ and â¡ is the
unit inwa¡d normal to the region 7¡ along c and transverse to the z-axis. All fields
and cu¡rents have an exp{+7þ z } dependence in the axial dimension, with the resulting
set of wave equations (2.63) now being defined in two-dimensional fo¡m for p'eR; as

tv - (k"2-ki2)lñi<O,t"l = -',tl ur p--p'lOu lkj' 
I

rv? - Gz2-k¡)lfrr<F,"¡ = 1îir'u, Þ-_n )tp | 
; Þenr ' -M-<isM+ (2'65)

Kj)

where V1 is the transverse differential operator. Solutions to the set of wave equa-
tions in (2.65) are given in appendix A.

2.6, WAVE PROPERTIES OF CYLINDRICAL GUIDED TryAVE
STRUCTURES EMBEDDED IN A STRATIFIED MEDIUM

The specific geometries considered in this thesis consist of a planar layered media
(symmetric in two dimensions) in which a guiding wave sffucture (symmeeic in one
dimension) is embedded. one of the symmerry dimensions of the planar media is
chosen to coincide with that of the guiding sructure, so that the entire problem
geomeÈry is invariant in one dimension. chosing the inva¡iant dimension to be along
the z-axis, the fields l(¡l *¿ currents [(F) were determined using the Fourie¡
tran sformation as

_'t
),M(p--,k"))' dp' 

)

,k")), dp_f ,r.*,

s-{rl = .,-r 
{:( Þ,¿, ) 

} 
= .;,{ r'rBr I 

,¡Zs,¡f¡ri* ç,"¡11 (2.66)

(2.67)î¡(7) = r¡'{e<-r } = .t'{ t¡'{ã(Þ,¿,)) 
}

where the fansform pù l, , Fr-l was defined in (2.12). Thus, the equivalent curents
induced_on the guiding structure surface depends on the excitation by a specified
source F'-(Èr) and the effect of the geometry of the structu¡e, which is represented
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rhro,gh z&). Both the incident fields due ro the source [" (i) as well as the scar-
tered fields due to the surface cur¡enrs g(F) are determined from the îorm (2.67).
Each of the problem geometry types is capable of supporting its own class of wave
properties, their combination exhibiting the propenies of both as well as some new
ones. These wave properties will present themselves in the transform s (2.66,2.67)
through branch cuts and poles in the complex spectral domain. A detailed discussion
is given in chapter three with regards to thin-wi¡e structures over a single lossy inter-
face [chang3, Kuester4], as well as in appendix B, which concentrates on the evalua-
tion techniques of these transforms. AIso, Examination of the fa¡ field behaviour of
the fields will give insight into their wave properties [Collin, Felsen].

The specific wave properties present in the structures studied can be discussed by
examining the spectral domain for each geometry type. In cartesian coordinates, the
fleld or cunent quantities can be described as a weighted sum of plane waves having a

dependence expt+7&¡ .R I = expf+jk,x +jtqy +jk,zl where I kR | =t[k:+kl+k: = k ',
the wavenumber in the medium i. The inverse transformations (2.66), with respect to
Èr, will contain several sets of branch cuts as well as a set of poles in the complex &"

plane as shown in figure 2.3. The contributions from the branch cuts arise from two
sources. The fust is due to the enforcement of the radiation condition, where the fields
must decay as In l-+oo. Fo¡ a planar layered geometry, this specifes that the fietds
must decay in the upper most half-space k*y. for y -+ +.o., Ir I -+ "", and in the
lower most half-space k_y- for ) -+...co, Ir I -.., thus defining the irrationals
Iml,lk,2+kll= xe¡[Ç-¡rç,,]>0. This results in the branch cuts in the *, ptane
emanating from k" =!k*y¡ tt_y- representing the specrrum of radiated frelds.

The remaining branch cuts a¡ise from the TM and TE surface waves which can
be supported by the layered geometry. Representing the fields and cu¡rents in terms of
radial waves glong the interface as exptÇ.R1 = expt I.þ-lexpt+7ery I where

I T I =tltcþ¡rz, the surface waves are found fo¡ specific values of the radial
wavenumber I¡" ;s=1,2,...*S. For each surface wave, the propagation constant in the
direction perpend"icular to the layered media is n*"a krur=+i^,[L*4. Since the sur-
face waves must decay in the radial di¡ection l, I -+.., a set of b¡anch cuts, due to
the irrationals Im[k¡"] = R.t[¿"t-\t"] >0, in the k, plane emanating from þ =t¡r"
Íepresents the spectrum of su¡face waves.

Finally, a set of poles is present in the k" plane, indicated as kl ;p=1,2,...p.
The poles represent the cha¡acteristic propagating modes supported by the guiding
wave structure and are found from the homogeneous solutions (Í'* -__0) of the two-
dimensional integral equation (2.15), these also being the zeros of Zç*"¡ n p.l+¡
<l Z Orn I =0). As well as the presence of the su¡face wave b¡anch cuts and poles on
the proper Riemann su¡faces defined for fields decaying as ln l-+.", there may also
be su¡face wave branch cuts and poles on any of the improper Riemann surfaces.
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Their contributions give rise to leaky wave fields which can be extracted in the fa¡
field analysis of the geometry as discussed in appendix B [Felsen, Tamirl].
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Figure 2.3: Branch cuts and poles in the complex Ç domain.
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Chapter 3

Excitation of Multiple Conductor
Structures Above a Lossy Half-Space

In this chapter, problems associated with thin-wire multiple conductor systems
(transmission lines) located over a homogeneous lossy earth are studied. This is a spe-
cial case of the general problem of an arbitrary shaped cylindrical structure embedded
in a stratified media, as presented in section 2.5. The study of this special case has

many applications in power transmission, electromagnetic compatibility and remote
sensing studies, and antenna design. To this extent, circular conductors which adhere
to the thin-wire condition, as well as being assumed to be good conducrors at all the
frequencies considered will be concentrated on in this chapter. The problem will be
formulated directly from the general solution presented in chapter 2, which was based
on a spectral domain approach. The final solution will thus be in terms of an integral
transform. The excitation of the stnrctu¡e by arbitrarily oriented electric or magnetic
dipole sources located in the uppe¡ half-space as well as by delta function voltage
sources located along the conductor axis a¡e considered. This makes the formulation
applicable to many desired excitations. Next, the wave properties supported by this
geometry will be presented, and from this discussion, va¡ious methods of approximat-
ing the integral transform wili be deduced.

A numerical study of va¡ious t¡ansmission line geometries for typical ea¡th electr-
ical properties is then presented. Special attention is paid to the cha¡acterization of the
discrete mode properties of the structu¡e and to the validity of various fa¡ freld and
near field approximation methods. Some interesting features regarding additional
discrete modes of propagation, in addition to the traditionat quasi-TEM type modes,
are identified, and the use of an improved small-argument approximation for the mode
equation is discussed. As well, conditions are specified under which the discrete mode
and saddle point approximation methods a¡e valid. The latter is especially important
in electromagnetic pulse studies, where the incident field due to the Compton electron
source region is usually modeled as a plane wave.

Since the geometry tackled in this chapter has been under investigation for
decades, many of the specific applications presented have previously been add¡essed
throughout the literâtue. The purpose of this work is to present a unified approach to
the solution of all possible cases encountered in wire over half-space problems. To
this extent, all formulations, both exact and approximate, can be traced directly back to
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Chapter 3 Excitation of Multiple Conductor Structures

Maxwell's equations, allowing their physical significance to be examined. As well, the
approximate methods are compared to the results of the exact solution in a1l cases,

The properties and techniques developed in this chapter for evaluaring the single inter-
face case can then be applied to more general situations, such as multiple layered
media, and a¡biÍary shaped conductors which do not adhere to the thin-wire condi-
tions.

3.1, INTEGRAL EQUATION FORMULATION

Consider a set of N infinite conductors of arbitrary shape located above and
parallel to a lossy homogeneous interface as shown in figure 3.i. The region y>0 is

considered to be free space, characterized by a permittivity e, and a permeability pr.
The region y<0 is designated as the lossy eanh, cha¡acterized by a permittivity e' a

permeability !r' and a conductivity or. The N conducto¡ geometries are defined by
the generating contours C 

"(p); 
n=1,2,...N which a¡e chosen to be inva¡iant in the z-

dimension, this then creating the surface S = LSo. The electrical p¡operties of each of
the conductors a¡e cha¡acterized by a permittivíty en, a permeability p,1, and a conduc-
tivity o¡¡. It is required to determine the induced cunents on the Eansmission line
structure due to a specified excitation, which can be located exterior to the conductors
in the upper medium, or internal to the conductors.

641) l:t,r9

Figure 3.1: Transmission line structure above a lossy half-space.
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The solution of the problem is facilitated by solving the wave equation in each
media region (the conductors and upper and lower half-spaces) and satisfying the
boundary condilions at thei¡ interfaces. The problem considered is a special case of
the general multiple stratified media geomerry formulated in section 2.5, where the
number of layers is given as M+=0 and M-=1, with the region l=0 conesponding to
the air medium (e) and the region l=-l corresponding to the earth medium (g). A
solution can thus be determined from the integral equarion form (2.64). If the conduc-
tors of the transmission line structure a¡e all considered to be good conductors

1o, >>oe,, ), the electric cuûent J on the surface S will dominate the contribution to the
fields. Further, since all rhe conductors of the structure a¡e located in the upper half-
space, only the Green's function G"=çee\ee) is required. A solution can then be deter-
mined in terms of the integral equation (2.60) by matching the tangential fields at the
N conductor surfaces as

(3.1)
f ru -- l

h"çt¡x 
lË¿*r",-r å J] 

c"<r,r'f6'ta-t]

T_.
= h"(7)x 

L"#",", 
*

1

J) C^(r,r')I(l')ct¡'l ;Íe S. ; m=1,2,...Ns^J
where É', 1F) is the unit normai to the surface ,! at F. This is simply the electric field
ìntegral equation which must be satisfred orrer the infinite length of rhe conductor3l.
J(F) is the induced electric current on the surface of the structure which is to be deter-
mined by solving the integral equation. The G¡een's function õ"6,r-¡ is formulated
to take into account the effect of the lossy planar interface and is deflned in appendix
A from the fields of an arbirrarily o¡iented current elemenr (4.86-4.88). The Green's
function õ^e,¡') is simply the homogeneous space G¡een's function incorporating
the appropriate electrical cha¡acteristics of the mth conductor medium. ej-1f ¡ is tne
incident field defined at the conductor surfaces ,S due to external sources located in the
upper half-space anA ø'f6¡ is the incident freld at the conductor surface S,n due to
sources inte¡nal to the conductor m. The incident fields are determined from the given
volume source distributions V", V^ as

e:*f¡) = jd!*)<¡,-r¡T 1r¡ +d!"ù1t,r)NLs (7.)¿¡. ;te s ,7. ev" (3.2a)
v.

eitr<¡¡ = f õ,f")f ¡¡lFf r'¡ +õSùç,r')tvrs ('')(F' ;re s^ , r- ev^ (3.2b)
v^

Thus, the incident field is determined through a sum of elementary delta function

,, a* 
" t""*" ,uiding strucrure consisli¡g of conducbrs havi¡g åòilrâry malenål propeties, both eleclric ånd

magnetic equivalent surface cunEnts are.equirÊd to salisfy the continuily of ñelds a! úe conducrorsupponi¡g rnedi¡ i¡-
terface This requirement wi[ pårtiåuy be fulÂlled by sarisfyi¡g ùe conrinuiry of the p nary fields of rhe ùin-wire
condùctor in r¡e half-space probÌem ås discussed in secrion 3,2.1.
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Chapter 3 Excitation of Multiple Conductor Strucrures

sources weighted by the current distribution.

As in section 2.5, when the physical geometry of the conductor-half-space prob-
lem is inva¡iant with respect to the z-dimension, a solution to the integral equation can
be obtained in the spectral domain by utilizing the spacial Fourier transform pair

f &,) = ) f(z)e-r''" dz

The integral equation (3.1) can then be solved as a two-dimensional problem as

lì"(p )x E:* (F,t,) * l, I 
^d"ro,o;rr,lt 

<ç:t 
"¡a 

p]

= 4 <ÞI * 
løy"<O,n"l 

* ! 
^d*<Þ,p:t 

"11rO:r,"laOf

(3.3)

(3.4)

;PeC^ ; m=1,2,...N , -*1k"<*
where all fields and currents are now assumed to have an axial dependence of lhe form
e+ik'z-icùt . The path of integration in the integral equation (3.4) is now over the gen-
erating curve C .

3.2, THIN.WIRE APPROXIMATION

_ A solution to the integral equation (3.4) determining the induced surface current
J (p,k") can be obtained using a standard method of moments approach as described in
section 2.2. In this manner, the current on the structure is expanded in terms of some
chosen basis as

-NJ (F,kz) = \x"(B)I"(k")
n=l

(3.5)

where x,, ( p ) is the nth basis function and In is a scalar constant to be determi¡ed. An
approximate solution is then obtained by defining a suitable inner product and some
testing basis as deveioped in (2.17 -2.22). For the general case of arbitrary shaped con-
ductors, the solution can become complicated considering the evaluation of the Green's
functions for the half-space. To simplify the solution, the thin-wire approximation is
usually assumed in the majority of engineering problems dealing with wire structures.
In the thin-wi¡e approximation, the azimuthal current distribution around the ci¡cumfer-
ence of the conductors is assumed to be uniform and only an axial current component
is considered (azimuthal components are assumed negligible). This approximation is
valid when the transverse dimensions of the conductors a¡e small compared to the
wavelength in the medium in which they are embedded and if the distance from all
other discontinuities (such as the ai-r-earth interface or other conductors) is large com-
pared to each of the conductor dimensions. This approximation has been the basis of
almost all the previous works in solving conducto¡ above half-space problems. Its
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Chapter 3 Excitation of Multiple Conductor Structures

validity has been examined in [Chang1, Pogorzelski, BridgesT] and will be the subject
of Chapter 5 of this thesis.

The thin-wire approximation will be applied to the general integral equation by
specifying the expansion functions in (3.5) to be equivalent to the conductor generating
contours x^(p)rxc,, such that the scalar consrants l=I^î wilt represent the total axi-
ally directed cu¡rent in each conductor. since only an axially directed current is
assumed lf ù=l"fpÊ, continuity of only the tangential â componenr of the electric
freld on the surface ,S is required and thus only the Green's function component
G*"(p,p') is used. Using this chosen basis, the integral equation (3.4) can be solved
for the E, component as

f--,--- N r I<1r,,(Þ),14y<p,t,¡* i 1c","(p,pik,)x,(y')dp't,(k")l> (3.6)
I n=tc^ I

= < w^( p ), l r#rr,n,, + [ G 
","1 

p,p',k,)x,,(p' )dy' r ^(k)] > ; m =1,2,...Nlc^J
where the basis and testing functions a¡e defi¡ed as

(3.'t)

(3.9)

(3.10)

(3.11)

c^

and where the last term i¡ (3.7) has been normalized for the special case of a circular
conductor of radius ø.. Since the basis and weighting function magnitudes are
independent of p, the inner product <*^,f > will now define the average value of the
quantity / over the transverse dimensions of the conductor rn as

<f (p,k,)>* = <w^(p),f (p,k,)> = ,t I Í tî',t "1¿-p (3.8)
J dp'c^

c^

The set of linear equations resulting from (3.6) can be solved in matrix from as

lz(k)lU(k)l = t<E:&)>l

tz(kz)l = lz'(k") - Z" (k,)l

Í<E:G)>l = [<E:'t&)>] - f< E"¡nr(k")>f

where [1(kr)] is the column vector giving the induced current on the conductors. The
impedance matrix (3.10) consists of two teûns, an external impedance term lZe (k")l
representing the mutual coupling between the conductors (the integral over Cn in
(3.6)), and a self impedance term lZ* (k")l representing the conductors surface
impedance (the integral over C^ in (3.6)). The incident field [<Ezs(¿z )>] gives the
contributions from the sources in the external region (upper half-space) and from the
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Chapter 3 Excitation of Multiple Conductor Structures

sources internal to each conductor.

The current induced on the transmission line can now be determined by solving
(3.9) and performing the inverse transform (3.3). Once the cuffents a¡e determined,
the scattered fields can also be calculated as described in section 2.2 (2.30). Thus, the
induced cur¡ents and scattered fields in the upper half-space are given as

where the elements of the Green's function G 
" 
o,; u,e {x ¡ ,z J can be deduced f¡om the

fields derived in appendix A (4.82-4.84).

3.2.1, Solution for Multiple Conductor Structures

The specific case of a system of N thin circula¡ cond.uctors will be derived as

shown in figure 3.2, where an is the radius of the conductors, p_, is the vector from
the center of the nth conductor to the mth conducror, and ffi is the vector from the
nth conductor image to the mth conductor. The derivation of the impedance matrix
elements Zfu(k") and Z#"(k"), is accomplished by determining the flelds external and
internal to the nth conductor, which ca¡ries a current In(kr). Assuming an axial depen-
dence of the form e+jhz , the flelds can be deduced by solving the two-dimensional
wave equation in each of the ai¡ and earth half-spaces and inside the conductor region.
These can be determined in terms of potential vectors [Stratton] as

Ir(z)l = i )rz{r;l¡<E)çk"¡>1e*ik,, dk,
zll __

E, t¡¡ = e:,*r¡) + ø;"*çt¡

- 1i N.:
E":^(,)= +J 2 J C"<p,p:t ,)x,,(p-y,(k)îdve*ik'"dk,¿L * n=l C^

= {i _v 
e 

"" 
6,k) >ltz (k) l-t k E : &z) >l e+ik, " dkz

= .-. - 1 r =< G",(p,k,)>^ = -r- ) G"(p,p:k"), d p'
J d-l c^

C^

tv2 - &?-k:)tn" = 12Y #*ô( p--p')â ;y>o

; y<0

lpl>a"

l-rlQl<a"

(3.r2)

(3.13)

(3. i4)

(3.15)

(3.16)¡v2-çt]-tc!¡1ne =o

rv2 - &,2-k.)) -n, = Ïi#Ìô( Þ--p')â ; )>o
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Chapter 3 Excitation of Mulriple Conducror Structures

where ñ' , lI g and fr," a¡e the two-dimensional Hertz vector potentials in the ai¡,

earth and conductor regions, respectively. Here k" = ^[o]W% is the propagation

constant in the ai¡ medium, n*:^'tæUrrr*¡ *rt, is the propagation consrant in the

ground medium, and kn =.6f,e/1.1t,", is tÃe propagation constanr internal to
the nth conductor. The associated fields, and thus the G¡een's functions required for
the integral equation (3.6), are determined from

E =vv.n+l<2n n = ,k' v*n
J COIL

F = 
(t,*)

Fe €e

Ps €s os

v

(3.17)

Figure 3.2: Circula¡ thin-wi¡e N-conductor geometry.
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Chapter 3 Excitation of Multiple Conductor Structures

A solution to (3.16) is obtained using the usual transform techniques and then
satisfying the boundary conditions at the air-eafih interface as discussed in appendix A
[Wait3, Wait5, Kuester4], as well as at the air-conductor interface [Stratton]. The
fields for an electric cturent source over a half-space are derived in appendix A
(4.80-4.85). In the formulation given below, an exact solution of the boundary condi-
tions at the ai¡-conductor interface for the primary fields is derived. Thus, instead of
matching only E" at the conductor surface as done in (3.6), all primary fields of the
general rM case are considered. For the secondary fields (reflected off the air-ea¡th
interface), only coupling from the E, component is assumed important. Thus, many
different conductor types, not just perfect conducto¡s, can be handled with the formula-
tion by specifying an appropriate surface impedance as detailed latter. In the case of
equal air and ground permeabilities (Vr=V"), the extemal impedance matrix elements
Zfi are determined as

I e^1""'xo1""o^) - Is(r"a^)n,*,)
zÊ^(k)=1 ' T^ -r

lA"I s(t.a^) lrlK s(r" I p,," I ) - B^" )

, m=n

, m*n
(3.18)

(3.19a)

(3.1eb)

^ _l-iar." I t
^" - l r"n"t ) G"""rKr(r""")

a,- = lrlr oç" I oi*, | ) + k:JG",a:à - rlc6",pi¡f

Jß"Þå) = -u, I y^ + y^ I +j^lx^ - x^) 
d?t

G(.c.Þià= i ---l-- "-u,lv, 
+v^l +irx, -x^) û\

- n"Ue + Us

u" =^[x, * "? , ue = .,[;l;4 , Re[u,,urJ > o

where I po. l=.{G"-xS+ ofl} an¿ lp-,]* l="{@;#; o^+y} Here

"" = ''llFîï ^d 
r, = t[4-4n a¡e the transverse propagation constants in the ai¡ and

eanh media, respectively. The ¡eal pans of the irrationals Re[U",Ur]>O and
Re[t, ,t, ]à0 have been chosen to retain a positive value on the co¡rect Riemann sheet.

These branch cuts have been defined to ensure that the cur¡ents and fields decay at
infinity. I¡(z), Ks(z), K1k) a¡e modified Bessel functions of complex argument and
n is the refractive index of rhe afu-earth interface. In the derivation of (3.18), the
terms involving K o&" l\r- | ) are due to the primary field of the curent source, and
the terms involving f oG" I ph | ) are due to its image as if the earth were perfectly
conducting. The remaining terms in integral form, (3.19a) and (3.19b), are the correc-
tions due to the imperfectly conducting earth.

f1t-u* O'



Chapter 3 Excitation of Multiple Conductor Structures

The internal impedance matrix elements Zfi can easily be determined for various
conductor types such as solid conductors, Goubau lines, wrapped conductors, etc., by
specifying the surface impedance for the desired geometry [Wait7, Vance]. For thin
solid conductors the internal impedance marrix is defined as [Stratton]

( +j ov, ) rlt o1r^a^¡ ^ Jt , ^=nzx"(kz)= u^"1ffi)ffi , õ,,- = \o',^.,^ (3.20)

,---;---;,---;-
where f,, =\kl-k^t with t, = !c,lrp, er+j opn o, and ¡l,,,e,,,o¡ ale the electrical
parameters characterizing the nth conductor. Is(z), I{z) are the modified Bessel func-
tions. If a perfect conductor is assumed, so that the integral equation (3.6) is exact,
then the ll(r"a)K{r,"a) term in (3.18) is replaced by I{.c"a) and consequently
Z* =0.

The modified Bessel function terms I ¡(tra^) in (3.18) account for the average

circumferential value of the fields over the conducto¡ surfaces as employed in accor-
dance with the thin-wire approximation. Thus, the quantities in brackets <> in (3.11),
which denoted the average value of the fields over the transverse dimensions of the
conducto¡s, is determined analytically for circular conducrors from (3.8) as

[Abramowitz, Harrington 1]

F..--
<f ( p,k,)>^ = ;; J f <p:*,¡¿F' = t oîl'rc?-k? a^)f (p^,k,) (3.21)

tm C^

where ø^ is the radius of the mth conductor and p,, is the position at its center. ¿e

was defined as the wavenumber in the upper half-space. The induced currents are now
given using (3.12) as

t r(z ) I = * I fz <t,ll.V <k,)l[E:@)]e+ik'" dkz e.22)218

- J¡o<! k?-kla) i m=n
Ltr,l=lo" ;m*n

As defined by (3.2), the incident freld lEzs(¿z )] is determined from the integration of
the specified volume source distributions V", V^. The source region Vs --V"¡_1V^,
combining the external and intemal source regions, produce a curent

tr(z) I = I * I Vfo;l-tt¡(¿,)lt¿,s(p,,k"¡¡e+ik,("-ùdk, [¡.
,' LlLYS..ã

T:. 'l
E :^G s,k ) = Lc !"" 

) ( p 

^,p,,¿. 
F ( p",2" ) + G: :" ) 

@ ^,p,,t, ¡tras 1 ¿,2" ¡ J.â
f 

- 
'1

- Lcl,""r(p^,î,,¿,F(p",r,) * dÁ"^)(p.,p,,,t,1-røttp",r"lj. î ç.2+7

(3.23)
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Chapter 3 Excitation of Multiple Conductor Structures

The Green's function G"(p^,ps,k") defines the electric field at the center of the mth
conductor p. due to rhe sources F , -Ms located at ( ps ,zs ) in V, . The Green's func-
tions G,, ( p. ,-p" ,k, ) perform the same task for sources internal to the mth conductor
V,n. For the system of thin ci¡cular conductors considered in this section, the source

terms internal to the conductors represent elementary delta function sources given as

(3.zsa)

(3.2sb)

where 7j(2") represents a delta function voltage source exciting the mth conductor at

z=2", and. Uj(2") represents a delta function current loop source around the periphery
of the mth conductor at z=zs,

3,2.2, VED, VMD and Voltage Source Excitation

In this section the special cases of excitation of the nansmission line system by a
vertical electric dipole (VED), verrical magneric dipole (VMD), and a delta function
voltage source will be considered. AII problems can be formulated in terms of these

three cases, as a combination of these source types can be used to represent any
desired excitation. As discussed in appendix A, the VED and VMD sources are the
conventional TM and TE componenrs for which the fields of an arbiearily oriented
electric or magnetic dipole located exterior to the conductors can be represented.
Sources located interio¡ to the conductors can be modeled as a sum of delta function
voltage sources or cuûent loop sources along the conducto¡ axis as given by (3.25). A
general study of the excitation of a single conductor above a lossy earth was presented

by Kuester et. al. [Kuester2], They considered rhese three source types and formulated
the problem in an integral form. The current induced on a transmission line due to a

vertical electric dipole in the presence of a lossy half-space has been previously formu-
lated by Wait and others [Wait8, Wait9, Olsen4], also in an integral form. Calculated
results for the special case of a perfectly conducting earth have been given for pur-
poses of determining the depolarizing effects of transmission lines [Hill], and results
for a two conductor system above a perfectly conducting earth were presented by
Olsen [Olsen6]. The exact solution of the latter case was compared to two limiting
techniques; the steepest descent approximation and the transmission line approxima-
tion. Fo¡ the case of a single wire over a lossy half-space, Olsen and Usta also used

the steepest descent approximation [Olsen4]. The excitation of an infinite thin-wire
transmission line located in free space by a delta function voltage source has been stu-
died by numerous ¡esea¡chers [Schelkunoffl, Shen2], with the excitation of the

t¡ansmission line when located over a lossy half-space being examined by Chang and

Olsen [Chang3]. In the latter case, an examination of the contributions of the modal
components to the induced cunents and to the input impedance was made. The use of

v ) ç,¡ = å 
^- 

ld ::"' ru * u,,n"¡t f 1, ";1 
. î

u'^e) = #r; ld#'rru ̂ ,r,,t"¡wf 12,¡t] . î
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Chapter 3 Excitation of Mulriple Conductor Structu¡es

the leaky wave modes to represent the radiated fields of a Eansmission line excited by
a delta function source has also been considered [carpentieri, carpentier3, Leviatan].

vED Je î
vt4o r.1Jg (t. g. =r)

Figure 3.3: VEDiVMD excitation of a transmission line.

Consider the current induced on a transmission line due to a VED or VMD as

shown in figure 3.3. The dipole is located in the upper half-space at (x'y",2" ), with a

moment Jrï for the VED, and Mrï for the VMD. The axial component of the
imposed electric field LE:(k")l at the conductors is given in the spectral domain, as

formulated in appendix A (4.86,4.89), as

r!^6,¡ = ffir,n,n,r{#",, t" t,^ I )

f"0^Ð") -- r -* r---l=i r K{lelrnl)-n'
I r^ |

o!^1tc"¡ = +",{+#K ß," I r^ t)

-',.l4cr.,,,-rJ,. 
^lu'r",

t"(x^-xr) -- r -* , '' I I
- ----'=-t-K t\re I rm 1 ¡ - ,' 

^9-J{"",t' 
)l l r-i¿" e.27)

I rm I or 
"--r^ l

(3.26)
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Chapter 3 Excitation of Multiple Conductor Structures

for the VED and VMD, respectively. The distances I ,* I =^[<r^ +f*O*Xf u"¿

lñl=\t@;ã'z+O^+y,f a¡e defined for the mth .ondrcto, of the transmission
line which is located at (xn,y^). K{z) and I s(z) are modified Bessel functions and
the functions G(t,,1¡ an¿ J(t",1) were previously defined by (3.19). The axial
component of the electric field due to an arbitrarily oriented electric or magnetic dipole
source can then be determined as a combination of (3.26,3.27) by specifying J, and
M, using the t¡ansformations defined in appendix A (4.32).

The evaluation of the fields of a dipole source over a lossy half-space has
received much attention in the literature [Stratton, Felsen, Kuester3, Rahmat-Samii,
Parhami2l, with the work of Sommerfeld [Sommerfeld2, Sommerfeld3] and Banos

[Banos] probably being the most ¡eferred to. The exact solution requires the evalua-
tion of infinite inte$als, these being described ro some degree in appendix B. To sim-
plify these integrals, many adequate approximation techniques have also been formu-
lated for the nea¡ field and the far field regions [Bannister4, Wait3, King5, Felsen].

--¿ |

és>

Figure 3.4: Delta function voltage source excitation.

Next, the excitation of the t¡ansmission line by a delta function voltage source

[ys(Z")] will be considered as shown in figure 3.4. The axial components of the
imposed electric field l4s (k")l in this case is given from (3.3) as

v)ç,1 = - I <ej^ ç¡ >.õ(z -2,)dz

U

E !,^G, ) = - E,i# (k 
") = ffi, *rz,)e- ik,,,

where [I/s(2")] defines rhe magnitudes of the voltage sources on the N conductors at

(3.28)
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Chapter 3 Excitation of Multiple Conducro¡ Structures

the axial location 2". Note that the input impedance for the structure can also be

determined from the cuûent at the sou¡ce point [l(z=2")], as calculated using (3.22),
such that

[I(z=2,)] = [Yi,, ]tYs(zs)l

[Y* t = [Z¡ r' = ]j:z <k)t-l dk, ß.29)

where the diagonal terms in [Z¡rl give the self impedance for each conductor, and the
off diagonal terms give the mutual impedances between conductors.

The scattered fields for the thin-wi¡e structure can be determined from (3.14) as

1.
E:'dF)=f;J-r.c",ro,k)>l[z(k))-1ll&,)]tq:&)le+ihþ-z')dkz (3.30)

where the components of [<G"r(p,kr¡>] can be determined from the fields (3.17) and
the Green's functions derived in appendix A, in a similar manne¡ as IZ (kr)) was
derived. Thus, the components of the scattered fields Ej""(¡) are given from

< G 
",,(p,k,)>^ = A-(+jk,)l tg-'2* rn" I Þo I IL lP¡l

¡"(x -x') r I- ffi*,r¡"lpi'l)- fctt,,l-p; l)l (3.31)

<G"r"(p,k,)>* = A*(+jk")l*yz¡rrn, lp, ll -|."o+v'),., r-* r.L rP¿r l-pil n1(1'lP¿l)

- *"(.,, I -pj I I * k?lt<"")Þó I l-c<r,, l-ø | l¿y'l (3.32)òv '""" ")
T

<G",,(î,k,)>^ = A^ Lt?lKoG, I ø I I -r01", I -pj I )t

+ k?I&",| -pj I I - k"zc(r",f -oJ f l] (3.33)

^ _l-i.u,v"l ,
^^ - I 2"t ", ) ßlt^rK rGJ^)

lø I =.{@;J+w;F Lpo =tanafo-t^lr(x-x^))

| -p; | = ^[@;J+oi], LF; =tan-l [o+r.rr{x-x.)]
where the functions J(t,,þ) and G(t,,þ) were defined in (3.19) as infinite integrals.
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3.3. WAVE PROPERTIBS AND LIMITING CASES

As discussed in section 2.6, the inverse transform ation (3.22) determining the
conductor currents on the structure will contain several sets of branch cuts as well as a
set of poles located in rhe ,tz plane as shown in figure 3.5 (even though only the upper
half of the complex k, plane is shown, the poles and branch cuts appe as complex
pairs, with the corresponding counterparts symmetrically located about the origin).
The poles, indicated as kf; p=!,),..., P, arise from the singularities of the impedance
matstx lZ (kr)], which can be determined from the solution of the mode equation
der\Z (kr)l = | fZ (kr)l | = 0. Their contribution ro rhe inte$al rransform represents a

set of discrete propagating modes for the strucrure. These currents have fields which
decay exponentially in the axial di¡ection from the source as exp(+jk! I r -r" I ¡, *here
Im[¿z]>O is defined when the contour of integration is deformed f¡om the real axis to
encompass the poles. The associated fields in the upper half-space for the discrete
modes decay asymptotically in the ¡adial direction away from the conductor axis as

(3.34)

where pr is the transverse direction to the conductor axis, located at (x',y'), and

É={@'z-aL Rettfl>0 is the respective r¡ansverse propagation constant. For lossy
structures, energy propagates into the conducto¡s if they are frnitely conducting and
into the lossy half-space. The location of the poles is highly dependent on the
geometry of the transmission line structure.

krB

In qo,

Figure 3.5: l,ocation of the P poles and the th¡ee branch cuts
in the upper half of the complex k, plane.

\ffe*ial"-"'t , pr =^G-i)2+0,-Ðz
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Chapter 3 Excitation of Multiple Conductor Srructures

The contribution due to the branch cuts appearing in the k" plane arise from two
sources. The fi¡st is due to the requirement on the irrationals RetU,Ur J>0 defined so
that the flelds decay as ly I -"" in the upper and lower half-spaces. These branch
cuts, emanating from the points k"=!k",!,t3, represent a spectrum of modes radiating
into the air and earth half-spaces, respectively. These fields decay asymptotically as

I rg,¡{!l-"+ik'tz-z't on,
f r^o,,e wPr

(3.3s)

where Re[tr,,I =B"d-t "1, ]r0 defines the branch cut l¡¡¿.,¡. Note that if the
lower half-space is a good conductor, then the corresponding branch point
tt, =t û orp, os is located fa¡ off the real axis and the contribution to the currenr from
this radiation mode is negligible. Secondly, an additional branch cut emanating from
the branch point kz=lkz. = f),r=X¡çr l^{ n\1, arises from the singularity in the denomi-
nator of the integral G(r,,Þ') in (3.19b). This b¡anch cur represenrs a spectum of
TM surface waves supported by the interface and results from the requirement that the
fields must decay as I r | -.". They can be related to the Zenneck surface wave
resulting from a dipole source over a half-space3 2 [Zenneck]. The respective fields
for the surface wave behaves asymptotically as

J t çr,¡r-'" l t+v' l +ikø l '-'' l r+¡rql'-", I 
¿¡r,

fsun

wherc rJ 
"o 

=t[]"þ¡2 =+jkel\[n2+1 is the propagation constant of the surface wave in
the direction perpendicular to the interface. À¡ (and thus ur¡ ) are strictly functions of
only the electrical properties of the two half-spaces. The surface wave pole has no
cut-off frequency and is thus always present. Im[¿,8l=n"t{¿,Lfrtl>0 defines the
b¡anch cut l5y¡ and the branch point !k6 in the complex k" plane. The continuous
mode spectra associated with the surface wave and radiation branch cuts are not
affected strongly by the conductor geometry, and may have a large contribution to the
cunents under cenain conditions.

Further examination of the discrete modes, shows that the number of poles for the
sructure may be greater than the number of conductors (p>N). N of the discrete
modes a¡ise from the solutions of I ¡Z 1tc"¡11 =0 in the region where typically all the
terms of the matrix are slowly varying functions of the argument k, . These can be
considered as the dominant modes of the structure and are usually the major

3 2 'nþ Z'€.tñe& surfåce wave is rhe pole conlribution extracled from the transform (3.22) Isomrnerfeld3, St¡ålrcnl,
a¡d is a solution of the wåve equalitr. This sho{rld nor be cmfused wirh Noton's far Reld surface wave þrm which ig
distinct from úe zennect surface wave [Noron, wåit3]. whar Nofon idenrified as rhe sDlåce wåve pån is ùe addi-
lional conection terms to lhe s!åndå¡d Seometricål oprics app¡oxiÍr6¡ion arising when rhe st€€pest desc¿nr path crossel
tåe l, bmnch cut and from lhe contribu¡ion of lhe TM surfåce wave pole which is in ctose proximity tÀ úre saddle

Point at low frequencies. The rece¡r! resulls prEsented by King tKing5, King6l for rhe fields of dipole sourc€s ne¿r an
in(erface are bâsed on Norton's work,

(3.36)
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Chapter 3 Excitation of Mulfiple Conductor Structures

contribution to the current. As shown in figure 3.5, the remaining p-N solutions occur
near fhe singularity in the impedance matdx due to the TM su¡face wave pole sup-
ported by the lossy half-space, which was identifled by the branch point +,tr¡ in the k"
plane. Excitation of these modes is usually very small for typical sources, and thus
only the fust N modes.are usually important. Since the poles are located near +k,p, a
close approximarion of the asymptotic behavior of the fields for these modes is given
as

(3.37)

*herc rg=tft ]u¡rz =U"a . At low frequencies , k"s is found near È, and thus, the
modes are similar to plane waves propagating in the axial direction with a magnirude
decaying as fi i¡ the transverse direction, the Eansverse exponential decay being
very small. Excitation of modes of this type are difficult to realize for typical sources,
and thus usually only the fust N discrete propagating modes are important. However,
as will be seen in latter sections, the contribution of these modes becomes important at
higher frequencies and in other special cases.

The path of integration in the complex k, plane can be deformed to separate the
contributions due to each of the poles and branch cuts giving some insight to the
behavior of the structure cunents. The inte$al transform (3.22) can thus be con-
structed as a sum of discrete propagating modes as well as a spectrum of continuous
modes as

9_!"-/lt"l,-', 1 
i p=N+1,..., p

lPr

P
tI(z)l = ItIek)l + fr+^o"Q) + r*¡s(z)] + [I5u¡(z)]

P=l

Lrr(z)) = +¡ ,t'n,{g,-ry)V(kz\'tt (kz))lt}1t<,¡1¿*ik, t "-',l\
^,-q ( 

\tu2)) LI \fr2)Jloz\nz))e 
I

lrq,.r¿.,,(z)ì = *, I,,,rtn));vG)ill (k")le*jhl"-",1 ¿¡r, (3.40)

I rsu¡ (z ) ] = * f,,n 
u,r1-t¡t 1*"¡¡ef ç<"¡1"*ih 

| 
" 
-", I dk"

(3.38)

(3.3e)

ß.4r)

where l¿4¡,,r are the branch cuts emanating from +k",, and l5y¡ a¡e the b¡anch cuts
emanating from +k"¡. The contriburion from some of the integral terms in (3.38) is
negligible in many problems. When the ea¡th behaves as a good conducror, the contri-
bution to the cunent due to the integral along the l¡¡¿e branch cut can be neglected

[Chang3]. The dominance of the poles or remaining branch cuts then depends on the
electrical distance of the source from the transmission line as well as the electrical
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Chapter 3 Excitation of Multiple Conductor Structures

distance from the source to the observation point along the axis of the structure. Two
limiting cases which are often used in practical applications will be examined in the
next sections. In one extreme, when the source is electrically near the structure, the
coñrmonly utilized transmission line approximation can be used. In the other extreme,
when the source is electrically far from the structure, the geometrical optics approxi-
mation will predominate (the source can be modeled as an incident plane wave).

3.3,1. Transmission Line Approximation

In this section, the formulation of the structure currents using a transmission line
theory will be presented. The theory assumes that the cuûents on the transmission line
structure can be completely represented by only the discrete mode contributions of
(3.38). These modes take the form of exponential traveling waves lrexp{!.jkfz },
where kl is one of the possible cha¡acteristic propagating modes of the structure. The
representation of the current in this ma¡ner neglects the ¡adiation and surface wave
contributions, as given by the branch cuts presenr in the complete solution. The
sepatate contributions to the structure currents due to the branch cuts and the discrete
modes has been studied by Chang and Olsen [Chang3] and the properties of the
disc¡ete modes has also been extensively examined [Kuester4, Efthymiadis, Olsen5,
Courbet, Bridges3l. It is expected that the discrete modes will be the dominant contri-
bution to the current when the source is electrically near the t¡ansmission line. How-
ever, in the immediate neighborhood of the source as well as at extremely large dis-
tances, the radiation and surface wave spectra are expected to be significant and should
not in general be neglected, since the continuous mode spectra decays algebraically
whereas the discrete modes decay as exp(+jÇ I ,-r" I ), and Imfk!) can be substan-
tially small. The use of oniy the discrete modes to represent the structüe currents also
allows a much simplified transmission line approach to the solution of (3.22) and the
formulation of many antenna and scattering problems.

In this section the transmission line approximation is derived from the exact form
given by (3.22). This approach is different from that usually taken in the literature
whe¡e a two-dimensional form to rhe geometry and thus rhe wave equation (3.16) is
assumed f¡om the start. In utilizing the transmission line approach, the current on the
structure is generated by an infinite set of delta function voltage sources distributed
along the length of the conducto¡s, with the magnitude of the sources proportional to
the axial component of the imposed electric field. The current due to each localized
source is then assumed to be of exponential form only, the b¡anch cut contributions
being neglected. The formulation of the problem in this manner, directly from (3.22),
can be developed by utilizing the convolution theorem to represent the source as

t E:&)l= itr,to",,i õ12-2"¡e-ih" dz dz" (3.42)
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Thus, using the expression (3.22) for the cunent and replacing the source term using
(3.42),

1^
Ir(z)] = J II(2, z")l[E,r(2,)1 dz,

1.
II(2, z")] = + J tz(k)lll¡k)le-ik'(z-z') dkz

zlt 
-

Here [I(2, z")] is the current at the observation point z due to a delta function voltage
source of strength [Ers(2" )] located at 2". This is now equivalent to the form
developed for a delta function voltage source excitation, where now the sources a¡e
weighted by the axial component of the imposed electric field. The current formulated
as ín (3.43,3.44) is still an exact solution even rhough its evaluation in this form would
be inappropriate.

In utilizing the transmission line approximation, we are only concerned with the
contribution to the structure currents due to the disc¡ete modes as defined in (3.39).
The properties of these modes a¡e characterized by the propagation constants kf;
p=I,2,..., P and by the magnítude of their associated residue contribution, which deter_
mines thei¡ relative excitation by a given source. considering the contribution to the
currents due to the discrete modes only, the total induced current on the srructure is
derived as

(3.43)

(3.44)

I r(z ) I = j ¡ i,n* "{<t,-k!)tz 
(k")]-t [(k")]e*iu t 

" 
-", I

a p=lß' -4 | |t ",'{r")r 
rr" (3.4s)

This form for the induced currents is quite different from the discrete mode con-
tribution considered in (3.39). In (3.45), the imposed source [E,s(2" )l does nor have to
behave as the discrete modes, but can give an exact representation of the source fields.
only the resulting current excited by the distributed source functions along the conduc-
tor axis are assumed to be dominated by the discrete mode contribution. Thus, in this
form there a¡e no ¡estrictions placed on the source function. In the form (3.39), the
source must be in the near freld region for the disc¡ete mode contribution to be dom-
inant.

3,3.2. Modal Formulation of the Induced Currents
As discussed in section 3.3, the currents on the transmission line can be

represented in terms of the characteústic modal cunent quantities for the sructure.
unlike the rep¡esentation in terms of the total conductor cuûents, the modal cunents
are orthogonal, with the ¡elative distribution of curents and resulting field
configuration being scale inva¡iant with respect to the amplitude of a parricular mode.
A t¡ansformation, allowing the description of the currents in terms of modal quantities,
is determined from the eigenvectors of the impedance matrix as
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n=1 ) P (3.46)

(3.48)

(3.4e)

(3.s0)

(3.51)

v! = co\¡íz(kÐ\lNl

[ ¡v ]u2
wl = l'',ll

fi=r I

, tet=[['']["] ln"]f <t*t

^o _ cof¡tlZ(kl)) ¡^,' sl = ,.rr|ñlNl ; j=1'2""N

f ¡¿ 1t/2

' Nl = lÐ,qf ILl=r I

Here [vr]1¡y is the eigenvector corresponding to rhe pth eigenvalue kl of the
impedance matrix [Z(kr)]. The transformation matrix [7]¡¡*p is formed from the
resulting P eigenvectors. The function col¡¡{Z} gives the cofactor of the ijth element
of Z, and Nl, Nl are normalization consranrs. Also note that if Z (kþ is symmetric
(as in the case when all conductors are the same, or if the quasi-TEM assumption is
used), then lQl-t =tTl' and accordingly Nl =¡,¡l Note that the number of discrete
modes is not necessarily equal to the number of conductors PàN and thus, [Q] and

[7] are not diagonal in general, with rank[26,] 2 rankfz(kf)1. Using the developed
transformations, the transmission line currents (3.44) can be formulated in terms of
modal quantities as

lr(2,2")l = lT ll2zcl-llD (2,2")llg l-tt/(¿t)ltE,s(z")l

= t7.lti(z)l

t i(z ) I = l2zc l-t[D þ,2,)ll< e"(2,) >l

¡r'_
<e"(2")>p = lQ¡oI¡¡(kÐEf¡Q) ; p=r,Z,...,P

j=t

(,
. )r+l*!t"-",t , i=j=p

D¡¡(2, 2,) = lg , Ì+j

lt 1 rr I

lz *¡*6L ,n, ¡l 
z<rsl jt =c

2 
-.7 - 

ILcii -LCe - 
1 =-tË,",¡i.,(rkì#zqk&!) ,i=¡=, (3.s2)
, 'o=' k=l

lo , i+i

where the second equality in (3.52) for Zço is valid only if Z(kz) is symmetric
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Chapter 3 Excitation of Multiple Conducto¡ Structures

(tQl-t=lIl'). Here [D (2, z")] and lZçl are diagonal marrices describing the propa-
gation a¡d impedance characteristics, respectively, of the structure. The vectors [i(z)l
and [<e">l are the strengths of the modal currents and exciting fields, respectively.
The eigenvector vP gives the distribution of current between the N conductors for the
pth mode, and 4e gives the corresponding field distribution. Finally, the resulting
impedance man-ix for the individual conductors can be formed in terms of the discrete
modes as

II(z=2,)l = 2[Y"¡* l[Vs (z)/21

lY"¡o, f = lZ"¡o, l-t = v )lzc l-rLQ )-r (3.s3)

where [I(z=2")] is the current at the source location d¡iven by the set of delta function
voltage sources lys(r")] as described in section 3.2.2. When the discrete modes dom-
inate the currents, the cha¡acteristic impedance matrix (3.53) is a good approximation
to the input impedance fZ¡)= 2lZ"¡orl, where lZ¡nf was defined using the complete
spectral transform (3.29).

3,3.3, Quasi-TEM Approximation

Most studies determining the induced cunents on transmission lines when the
dimensions of the structu¡e a¡e much less than the free space wavelength rely mainly
on the use of a quasi-TEM transmission line theory. The theory is an approximation
to the exact discrete mode theory presented in sections 3.3.1 and 3.3.2, and still
assumes that the currents on the transmission Iine structure take the form of exponen-
tial traveling waves Irexp{+7&lz}.Inthe quasi-TEM theory, however, the propagation
constants are determined f¡om the transmission line circuit parameters [King1, Shen3,
King4, Sunde, Chenl, the approach being basicalty the same as rhat obrained by Car-
son and Pollaczek in 1926 [Carson, Pollaczek]. The per unit length circuit parameters
are derived by applying the TEM assumption dtecrly to the wave equation (setting
T 
¿=0 in (3.16)). The validity of this approximation hâs been studied [Kingl, Sorbello,

Bridges3, Carpentier2, Degauquell, and the basic observations for reliable application
of the quasi-TEM transmission line approach is that the dimensions of the transmission
line structure should be much less than the wavelength of the medium in which it is
embedded ( lÞ,* I , l-på I *¡,rl as well as the ¡efractive index ar the air-ea¡th inter-
face should be large ( ln I >t).

The formulation presented in the last two secrions can appropriately be denoted as

a transmission line solution since only the discrete exponential curent modes a¡e used
to represent the current on the structure. The values used for the propagation constants
,t/ are solutions of I lZ (k")l I =0 as determined using the exacr expressions (3.18-3.20)
and thus, the resulting fields are solutions of the wave equadon (3.16). The solution of
the mode equation in this form can be considered a generalized eigenvalue problem
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where an explicit expression can not be derived since the elements are complicated
functions of the unknown eigenvalues and as such is diffrcult to evaluate. A useful
approach in viewing the problem is to cast the mode equation into the form of a gen-
eralized rransmission line equatíon

â
- *l t(z)) = [ Irñ l[ V(z ) |

^- Azt 
VQ)l = [Zset llI(z)l

Itz(t ")l| = |[2""'I-[Ut,)2[v'h]-t| =o

twsh¡-l - 
1 1\' )t*t - -l ,re 2" W)Krß"%)

T1. 
Lto(., I p, l)-to{r"o*)fKs(t" l-p," I l-ctt,,-pålll (3.s6)

lou" I-7sef _.7\l
-ìnn -mn 2n (r"a)K 1(t"an)

t-- r- r i - I. 
Lto(t, I p^,1)-toG"o^)tKoG" l-p| ll-rf",,Oåltl e.s:.)

where Zffi a¡e the series impedance nd Yff a¡e the shunt admittance terms for the
structure and lQk")21 is diagonai. A common approach to simplifying the eigenvalue
problem is to assume that the axial variation of the fie1ds is equal to the free space
value (k"=k") when evaluating the mode equation. In this manner, the fields in the
upper half-space will be solutions of the rwo-dimensional Laplace equation. This
approach is denoted as the quasi-TEM Eansmission line approximation and is reason-
able if the terms J, G, and K¡ involved in the calculation of the matrix elements in
(3.55) are slowly varying functions of their argume nt 1r,"=",1t¿ 

zt¿ z-ç¡ and the axial pro-
pagation constant for the structu¡e is near Èr. This approximation is the one utilized
by Carson [Carson] and is valid at low frequencies and high earth conductiviries, but
has been even used for studies in the higher frequency regions. Applying this
approach by assuming t, -r0 in the arguments of 16, K¡ and J in (3.56,3.57), an expli-
cit expression fo¡ the transmission line parameters will then be given as

(3.54a)

(3.54b)

(3.ss)

(3.s8)

(3.5e)

r,_-
(Y'h)-,,]= =j*fr'"[j#+

,(l)u-.7 sef - 
.>r9

Lmn - Lmn "t+ J" ( p,-)_l
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(3.60)

* ) =f .-l
J"(F;) = -îJ lu-^lu2-1n2-t¡Jr-,*.o.+r')cos1 uk" I x^-xn | ) ¿u ß.et)n'-1 o -

The solution of (3.55) under the quasi-TEM assumption is now a standard eigenvalue
problem which yields the values of the propagation constants. The logarithmic terms
in (3.58) and (3.59) represenr the field due to rhe conducror and its image under rhe
conditions of a perfectly conducting eanh. The integral term J"(-p;) represents the
conduction losses in the earth and the contribution of the integral G(r,p|), represent-
ing displacement cunent losses in rhe earth, has been neglected completely. A good
approximation to the terms of the shunt admittance matrix is thus obtained using image
theory under static condirions. Many expressions for evaluating the integral J" (-p;)
a¡e found in the literature as discussed in appendix B. once the transmission line
parameters a¡e determined using the quasirEM approximation, the induced currents
on the structure can be found through (3.43,3.48). Note that the quasi-TEM approx!
mation yields only N solutions to the mode equation (3.55).

3.3.4. Steepest Descent Evaluation

when the source region is located electrically fa¡ from rhe transmission line, â
geometrical optics approximation can be used to model the source. The approximation
is applied by considering the steepest descent contribution from the source terms in the
integral (3.22) derived in section 3.2.1. In this section, elementary vertical electric
dipole (vED) and verrical magnetic dipole (vMD) sources will oniy be considered
since, as discussed in appendix A, a combination of these two source types can be
used to represent any possible source. It will also be shown that the saddle point con-
tribution of the integral transform yields the plane wave incident model for the source.
This result is of imponance in many engineering applications for the modeling of
sou¡ce interactions with transmission lines. usta and olsen used the steepest descent
approximation to determine the cunent induced on a single wire above a lossy inter-
face at non-grazing angles of incidence [olsen4]. The validity of the approximation in
the grazing angle region was examined by studying the case of a two wire system over
a perfectly conducting ea¡h [olsen6], and by a single wire system over a lossy earth
[Bridges6]. The validity of modeling an incident electromagnetic pulse as an incident
plane wave was specifically conside¡ed in the latter case. The radiated fields in the
VHF/IJHF region from corona discharge sources (modeled as vED sources at the con-
ductor surfaces) was also recently determined using a steepest descent approach
[Oisen8].
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Chapter 3 Excitation of Multiple Conductor Structu¡es

Consider the cu¡rent induced on a transmission line due to a VED or VMD as
shown in figure 3.6. Simila¡ to the case discussed in section 3.2.2, the dipole is
located in the upper half-space at (t" ,y" ,2" ), with a moment 4î , Myï , respectively.
*" Ojlglgg_t=.æ is the transverse distance from rhe dipole ro the z-axis and
n"=t[4¡y3a1t -ay is the distance from the dipole to some observation point along
the z-axis. The angles 0,y; 0<0 <+Lt2, -n< ry<+n define the incident angle the
source makes with the conductor axis and the earth. The angles O=tan-1(y"ft") and
y = tarf'r(rr l(z -2" )) are used for defining the steepest descent paths (cos0cosy=s65y¡.

( xr gr=.)

(x- g.)

J"(rF-

Figure 3.6: Steepest descent coordinates for VEDÆMD excitation.

The exact expression for the induced cu¡¡ent is derived using the general tra¡sform
(3.22), where the axial componenr of the imposed electric field ÍE:&)) is given in the
spectral domain as formulated in appendix A and from (3.26,3.27) as

E !. 1k, ¡ = #,, #11+- *, :, +:),* i,n r. ̂ -o> at.,- i,o,,

-l<lu- lt /v -v I
= -!J!!t, {+ir"> I 3ï!4L x r1r" I r^ I )¿rEke' L lr^I

r"$t^+Yr) -- r-*r .â- 
I

- -fl*,6" t ')t ¡ - n" *ca"f ,1.,-., I u''"' (3'62)
lr=,- j

vED Je q
yuo Myg

Ê
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(3.64a)

(3.64b)

n !^ çrc 
" 
¡ = - + ", *Il+! ., e 

t#:1,e* i a @^ * ) a rc, e - i h,,

= ^_u"{'"\:!:,, r,rr" I çlt2n rI lr^l

(3.63)

. n2u"-un _ u "-u,' "" = --=-' et n2u"+u, II ¿+{J s

for a VEDgI!À4Pr_re9¡gctivety. The distances I r,' I ={<r.-r"f*ty,-yJ .n¿¡-------------;-lf)I ="1(x^-x")2+(y^+y")2 are defined fo¡ the mth conductor of the transmission
line which is located at (x^,y^). K1(z) and 16(z) are modified Bessel functions and
the functions G(t,,/¡ and J(t,,y') were previously defined by (3.19).

If the dipole is located electrically fa¡ f¡om the transmission line, and fa¡ from the
air-ea¡th interface, the imposed electric freld due to the vED or vMD can be deter-
mined ttrough the method of steepest descent [olsen4, Bridges6]. unlike the usual
steepest descent evaluation of these integrals [Felsen, collin], however, the evaluation
oî (3.22) requires a two step approach, one for the å, spectral domain and one for the
fr, spectral domain. Also, the contribution of any branch cuts and surface wave poles
must be considered. The two spectral domains considered a¡e shown in figure 3.7,
with the steepest descent paths given fo¡ va¡ious angles of incidence $,1. The associ-
ated saddle points are defined from the formulation developed in appendix B as

Èr5 = +&" cosl

t¡S = +jtecosO = +&¿ sin'posO

- ""î+i' * J'c" lr)l ¡ - ,'{to"l rl,=,^1"

The radiation branch cuts in the two spectral domains are defined from the branch
points t&r, tt, in the k" plane and tjtr, +7t, in the &, plane. The surface wave
branch cut in the &, plane is defrned by the branch point k"n=+),n-.,+keltrn\. T1¡"
position of the associated su¡face wave note **=t[Ç¡z is shown ln ine f" plane as
evaluated for various values of the saddle point &r5, where

( n n \lt2
k,ul. . =^lx3-r3 =+,r¿siny¡n':olt I t¡.aslJtç--&s I n.+l )

The guided wave poles fr/ are present only in the ,t, plane. Note these poles are due
to the singularities in the impedance manx IZ (k,)] and not rhe source [Es(Ç )1.
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Figure 3.7a: Steepest descent paths in the complex k, plane for various
incident angles y.

Im[t, ]

Figure 3.7b: Steepest descent paths in the complex È, plane for ¡-45o and

various angles Q. The possible locations of the pole ftr¡ are

also given.
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Chapter 3 Excitation of Multiple Conductor Structures

Examination of the steepest descent paths in the two complex specEal domains,
as given in figure 3.7, shows that either of the lower half-space radiation b¡anch cuts
!k, or !jr, may be crossed for grazing angles of incidence with respect to the eanh

S,y-+0 (or 0-+0 since sin0=sinQsinT). The contribution from thei¡ inclusion is in the
form of a lateral wave and can be determined from an evaluation at the brânch point
[Felsen]. The surface wave branch point k6 is neve¡ crossed in the complex k" plane
for all angles of incidence r (since Re[k, ]>Re[Ç¡ ] for all possible earth electrical pro-
penies), whereas the associated surface wave pole È¿ in the complex /c, plane moves
to a location that can be crossed as y-+0,Q-+0. Even though this branch cut is never
crossed in the &, plane, its effect on the saddle point contribution is considerable due
to its close proximity, especially at low frequencies. Its contribution is in the form of
a surface wave that can be extracted by adding the effect of the pole contribution to
the saddle point [Felsen]. Finally, it is also possible to excite the guided wave modes
kl lor grazing angles of incidence with respect to the conductor axis y-+0, as also
shown in figure 3.7 3'3.

The fust step in the steepest descent solution of (3.22) requires the steepest des-
cent evaluation of the integrals (3.62) and (3.63) in the &, plane. Under the far freld
conditions I Ur^ I , I Uñ I o 1, where ""-tlk?-* is the rransverse wave number,
the modifled Bessel function terms K 1(z ) can be evaluated using their asymptotic
expressions [Abramowiø]. There a¡e no surface wave poles or branch cuts present for
these terms. The remaining integral terms can be evaluated using their steepest des-
cent contributions as outlined in appendix B, these containing the surface wave and
branch cut contributions. In the far field it wiil be assumed tnat lÇl=lð^l=r"
and þ.-y")/1 "^l= Qt,+y")t|fl, l= -sinq, (x^-x)tlr^l= @^-x,)/l d l= -cosq.
This assumption is valid at non-grazing angles Q*0 and approaches the plane wave
incidence case as lr" I -+oo. Thus, the saddle point contribution to the remaining
terms in (3.62) and (3.63) can be calculated so rhat the asymptotic evaluation of the
incident fields is given by

E!^1k,¡ = 
-4Ïit"(*it 

,) fn*.(-r.'ino-'.'$)'¿Tke.

Rr¿a,(+!^sinÞ-x^-'a)l\/!3-sir.q¿n,," (3.66)" )X2rs

- 
S3 A .", rf p"l"u locsted cn rhe imprçer Riemarur shee¡ Re[f. ]<0, a.bo exist in rhe c{rnplex & pls*e tcåçen-

lie¡31. Sinc€ ùe sleePes¡ desc€nt påth crossei over onto úe improper Riemånn sh€ar, fo¡ grazing s¡gles of inciderce
wilì ¡esPec! to lìe conductor axis T-Jo, rhese poles may slso be c¡ossed le¡di¡t ro lesky wåve mode contriburions !o
rhe cunenl The use of the leal<y wave pole conFib{¡tions to rEpresen! the radiaúon b¡¡nch cu! spectrs has b€en e¡âm-
ined by Leviats¡ for ¡ie c¿se of a wi¡e loca¡ed in fr€e space llæviatân]. Poles ñay also exi!! on t¡e imprcper Ri€ûs¡¡
surfåce wil¡ respeal lo lhe surface wÂve branch cut å! will be demonsúâted in úe resulB prEseîted i¡ section 3.4.1.
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for a VED and VMD, respectively. Note that rhe term ¡f 1tr;1 ana all the terms in the
impedance matrtx lZ (k")l in (3.22) can not be evaluated in the same manner since
their arguments are not in the asymptotic region. The surface wave poles and radia-
tion branch cut contributions when Q-+0 are not included in (3.66,3.61).

The next step in the solution requires the steepest descent evaluati on of (3.22) in
the þ plane, with the excitation ¡E!(k,)l replaced by its asymptotic form (3.66,3.67).
Under the fa¡ field condition I t"n" I > 1, the induced cunenr can then be determined
using the method of steepest descent as

tI(z)l = lZ(k"cosy) 1-1 ¡l(k,cosy) I tEj-(o,V)l

n)tr(s,v) = [E 6sin0cosry+E rsiny]¿ 
+j¿' [-l- sin0-x' cos0simv]

where f¡ and f¡1 are the plane wave TM and TE Fresnel reflection coefficients at the
ai¡-ea¡th interface. Note rhat (3.68) is the same expression as that which would have
been derived for an assumed incident plane wave, except the incident field 86, E* is
now modifled by the far field factor of the VED,VMD dipoles in free space
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3.4, Ä STUDY OF THIN.WIRE STRUCTURES

The following sections present and discuss numerical results for the excitation of
and wave propagation along a system of conductors located over a lossy half-space.
As explained in section 3.3, the total current induced on the system of conductors due
to a finite source will consist of a sum of discrete propagating modes as well as contri-
butions from a continuous spect¡um of radiating modes and a spectrum of surface
wave modes. Under limiting conditions, many useful approximations to the exact
inverse transform solution (3.22), which incorporates all these contributions, can be
utilized. The dominance of the poles or branch cuts depends on the electrical distance
of the source from the transmission line as well as the electdcal distance f¡om the
source to the observation point along the axis of the structure. In one extreme, when
the source is electrically near the structure, a transmission line approach can be used,
whe¡e the pole contributions a¡e dominant. In the other exreme, when the source is
electrically fa¡ from the structure, a geomeffical optics approximation can be used (the

source can be modeled as an incident plane wave), where the upper half-space radia-
tion branch cut will provide the dominant contribution. The next section will briefly
characterize the discrete modes of propagation which a multiple thin-wire transmission
line can support. This will then be followed by an examination of the validity of the
transmission line and plane wave incidence models. For all the cases discussed, partic-
ula¡ attention is paid to the validity of the quasi-TEM approximation.

3.4.1. Properties of Discrete Modes

This section is concerned with accurately characterizing the discrete propagating
modes supported by a thin-wire transmission line stn¡cture. They are considered to be

the dominant contributions to the current when the source is electrically nea¡ the
transmission line and when the structure dimensions a¡e small compared to the free
space wavelength. The use of only the disc¡ete modes to represent the currents allows
a much simplified transmission line approach to the formulation of many antenna and
scattering problems, and thus the determination and cha¡acterization of the modes as

well as conditions for which approximating formulas a¡e valid is important. The solu-
tion of the discrete modes of propagation along a multiple conductor transmission line
over a lossy ea¡th, based on the telegrapher's equations, has been successfully applied
in power engineering problems for many decades. in 1926, Carson [Carson] took the
frnite conductivity of the earth inro account by appiying Maxwell's equarions as well
as some circuit concepts. This quaslstatic theory, however, is valid only at low fre-
quencies where distances a¡e small compared to the free space wavelength and the
earth conductivity is high enough so that displacement cunents can be neglected. An
exact formulation of the boundary value problem is obtained by using Maxwell's equa-
tions and satisfying the boundary condition at the air-earth interface, as presented in
section 3.2.1 [Wai6, dosSantos]. The resulting formulation however, requires the
solution of the Sommerfeld type Fourier integrals (3.19), whose accurâte evaluation is

55



Chapter 3 Excitation of Multiple Conductor Structues

diffrcult. Recent investigations [chang3, olsenS] have given various solutions using
numerical or analytical techniques, however, most of these studies have been aimed at
single conductor systems only. wait lwaitg] formulâted the problem of a multiple
conductor system over a layered earth and gave a solution in terms of integral expres-
sions, and Kuester and chang fKuester4] gave numerical ¡esults for a symmetric two
conductor system over a homogeneous earth.

The disc¡ete modes of propagation a¡e determined from the solutions of the
homogeneous integral equation (3.4). For thin-wire structures, the exact solutions can
be obtained f¡om the eigenvalues of the impedance matrix (3.46), which is defined as
the mode equation. The eva-luation of the impedance marrix elements (3.1g-3.20), is
discussed in appendix B. It will be shown that the accu¡ate evaluation of the Sommer-
feld integrals (3.19) becomes imperative at higher frequencies. As well, since the
integrand of one of these integrals (3.19b) contains a pole ,t¿ in its integrand, due to
the TM surface wave supported by the half-space geome!ry, additional discrete modal
solutions become mathematicaliy feasible in the neighbourhood of this pole. An
extensive parametric study of the discrete propagating modes supported by various
conductor configurations and for rypical eanh propenies is add¡essed in [Bridges3],
where a comparison to the quasi-TEM and an altemative small argument approxima-
tion is also made. only two specific conductor configurations will be discussed in this
section, with comparisons to the quasi-TEM results in some cases. The quasi-TEM
approximation was discussed in section 3.3.3, whe¡e the discrete modes were found
from the solution of the standa¡d eigenvalue e4uation (3.55). The evaluation of the
matrix elements (3.58,3.59) in the quasi-TEM case is much simpler than those of the
exact solution (3.56,3.57), with rhe only remaining integral (3.61) fully discussed in
appendix B.

The solution of the mode equation (3.46) for the case of a single conductor above
a lossy earth is considered fust. Referring to figure 3.2, a copper wi¡e of radius
a F2.Snun is situated at a height n=lîittz I = 1.02 above an ea¡rh having electrical
properties e,, = 15, oc=0.01. Figure 3.8 shows the result of evaluating the magnitude
of the mode equation aAs{ | Z(f) I J over rhe normalized r"/k" plane, where r, was
defined as the radial wavenumber. Note that the desi¡ed propagation constant-.-.-.--.-:kl = k"',lt - (tllk")z is defined such that the proper solutions of the mode equation
occur in the quadrant Retîl/kel, lm[rltk"]>o. A frequency of f=3\MHz has been
chosen making the refractive index of the interface n=3.95+j 0.76. Figure 3.g ind"i-
cates two possible solutions of the mode equation in the normalized r"/k" plane. one
solution occurs in the region where the quasi-TEM solution is found (t" --rtrEM ). The
other occurs in the region near the TM surface wave pole '}4 (r"-+U¿). As derived
in section 3.3, the surface wave pole presents itself as a singularity in the integral
G(te,2hh, its position in the complex g/k" plane being strictly a function of the

half-space elecrical properties U"s tk" =+¡ l^,[;2a1. Figure 3.9 gives the normalized
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solutions of the mode equation rflk" over rhe entire frequency spectrum. The results
of the quasi-TEM approximation (h<.x") in one extreme as well as the solution of the
corresponding Sommerfeld line in free space (ft >À" ) in the other extreme [Sommer-
feldll are shown for comparison. The solution which most closely adheres to the
quasi-TEM result will be designated as the structure anached or "transmission line"
mode (k[\. The solution found near the pole U 4 will be designated the surface
attached or "fast-wave" mode @f;\ since the phase velocity for this mode is usually
less than the f¡ee space value Ue¡tcf;v|< k". Figure 3.10 gives the corresponding
values of the normalized propagation constants kllk" as a function of frequency. The
¡esults a¡e compared to those of Olsen [Olsen5], as well as to the quasi-TEM approx!
mation. The quasi-TEM result is a good approximation to the exact solution at low
frequencies ( I , I >t, h lì,"e<.\) where rhe dominant terms of the mode equation (3.46)
are Z*, K sG,.a)-K 6&.2h), and J(r",2hî). In the high frequency range the solurion
converges to that of a conductor in free space [stratton] where the dominant terms in
the mode equation ate Zw and K o!"a). Note that rhe attenuation of the fast wave
mode Im[tjw] is considerably less than that of the rransmission line mode Im[Èrz]
over most of the frequency spectrum. However, the excitation of this mode, as deter-
mined by its residue contribution to the curent in (3.39), is usually small. Only at
very large distances from the source would the decay of the transmission line mode be
enough for the fast wave mode to become important. In this range, however, the
b¡anch cut contributions (3.40,3.41) would also be important.
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In Figure 3.11, the normalized values of.cl/k" as a function of frequency are cal-
culated for different conductor heights; å=1.02n -+10.0m. Ea¡th electrical parameters
are the same as in Figure 3.9. Again, there are two possible soludons to the mode
equation fo¡ each case. At small conductor heights, the fast-wave solution remains
nea¡ the pole U4 and the transmission line solution remains near the quasi-TEM
result over the whole frequency range. However, for large conductor heights, the
fast-wave solution moves into the region near the quasi-TEM ¡esult and similarly the
t¡ansmission line solution moves into the region near the pole as frequency increases.
Figure 3.11 shows that it is possible to fi¡d a specific height and frequency such that
the fast-wave and transmission line solutions coincide r[L = €w. For the case being
studied, this situation occurs at h=1.6m and f=22MHz . The disc¡ete modal fields for
each solution become identical in this situation, the double root to the mode equation
known as modal degeneratlon [Olsen5].
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Figure 3.12 shows the result of evaluating the magnitude of the mode equation
abs{lZ&r) I ) ouer the normalized r"/k" plane when a two conductor system is con-
sidered. Two copper conductors, both of radius a F{¿2=2.Smrn, a¡e located at a dis-
tance d4.0m apart and a height h=5.0m above an earth with electrical properties
€,r= 15, oe=0.01. The¡e are four possible solutions to the mode equation for this
case. Two of the solutions correspond to the normal Ea:rsmission line modes, one
symmetric (or ground mode), and one antisymmetric (or metailic mode). The remain-
ing two solutions a¡e found in the region of the pole singulariry Ur¡. Figure 3.13
gives the normalized solutions of the mode equation rllk" as a function of frequency,
with figure 3.14 giving the corresponding results for kflk". One of the modes in the
region of the pole is a proper solution over only a small portion of the frequency spec-
trum, and otherwise crosses onto an improper Riemarn sheet as a result of the branch
cur lRelrl l>1 as defined in the evaluation of the integral G(t'p*) in appendix B
(8.20). The residue of this pole in (3.39) does not make a significant contribution to
the cunent.
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3.4.2. Examination of Limiting Cases

In this section, the dominance of the pole and branch cut contributions in the
determination of the induced cuûents on a thin-wte transmission line due to a finite
source will be examined. As discussed in section 3.3, the contributions to the induced
cur¡ents could be distinguished as a sum of the discrete modes excited by the source
plus a set of branch cut contributions (3.38-3.41). These contributions were separated

by deforming the path of integration in the inverse transformation (3.22) ftom the real
axis to encompass the poles and branch cuts. In one extreme, when the source is
electrically nea¡ the transmission line, the discrete modes contributions are expected to
dominate. The formulation of the cunents in terms of only the discrete modes was the

topic of sections 3.3.1-3.3.3, with theh properties characterized in the last secrion. In
the other extreme, when the sou¡ce is electrically far from the transmission line, or
when the observation point is uery far from the source, the branch cut contributions to
the cur¡ents is expected to dominate. Further, in the fa¡ field, an asymptotic evaluation
ât the saddle point along the ¡adiation branch cut l*o' for the upper half-space

should provide adequate results (plane wave incidence is assumed). This assumption
was examined in section 3.3.4, where ¡esults were obtained for specific sources

through the method of steepest descent. The use of only the saddle point evaluation,
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neglects the contributions from the poles as well as the two other branch cuts f¡¡¡r,
l5y¡. As pointed out in section 3.3.4, however, the surface wave branch cut l5u¡
may become important at Erazing angles of incidence with respect to the interface.

The case of a single conductor transmission line, excited by a vertical electric
dipole source (VED) will be used to examine these limiting cases. The exact solution
to the induced currents due to a VED is obtained by using the complete specrral
transformation (3.22), whue the elements of the impedance matrix IZ (k")l ue given in
(3.18), and the axial components of the imposed electric field IE:G)l due to the VED
are given from (3.26). The resulting currents due to the discrere mode contributions
are determined using (3.39), where the values of the propagation constants ¿l are

found from the solution of the mode equation (3.46). It is important to note rhat the
disc¡ete mode results a¡e not the same as the transmission line approximation formula-
tion (3.45). Finally, the saddle point contribution to the induced currents is formulated
using (3.68-3.70). For the cases studied in this section, the rransmission line dimen-
sions will be chosen for the quasi-TEM region (h l)r"< l), and only the distance from
the VED source to the transmission line will be va¡ied to extremes.

Referring to figure 3.6, a single copper conductor of radius a=l.\cm situated at a
height å=10.02 (x=0¡=þ) will be considered. A frequency of l\\KHz (ì'"=3km) is
chosen along with an ea¡th characterized by a relative permittivity rrg=5 and a con-
ductivity og=0.01. The fust case will examine the validity of the steepest descent
approximation (modeling rhe incident field as an incident plane wave). The exciting
VED will be located directly over the transmission line (xr=0m,2r=0rn ), at three
different heights above the interface; js=3km,9km,15km, these corresponding to
(y,=LX",3)'",5),., ). Figure 3.15 gives the magnirude of the induced cur¡ent l1(r) I as

calculated by numericaily integrating rhe exact expression (solid curves), and using the
saddle point evaluation (dashed curves). Since for these cases 0=90¿( Y=0,), the
angle of incidence 1= 0 indicates the position along the conductor axis
| , -r" | =y"cory ; ie. for )"=1X, and p30¿ then I z-2" I =1.732ì'". By examining

figure 3.15, the saddle point contribution is accurate when the dipole is electrically far
from the interface and not in the g¡3¿þg angle region. These observations correspond

. .. . I I I ¡ ^to the condition lr"r, l= I-7&"'V l-çoretr" l>1(or 2rsin9r"/Ìv" > 1 when @=ÇQ¿)

imposed when (3.22) was evaluated using its asymptoric expressions.

For the results of figure 3.15, the VED was positioned so that the incident angle

Q=90" in all cases. As discussed in section 3.3.4, the contribution from the surface
wave b¡anch cut 15¿,¡¡ becomes important for grazing angles of incidence with respect
to the interface 0-->0¿ (when T-à0o or Q+Oo since sin0 = sinysinQ). Thus, only when

Y-+Oo in frgure 3.15 could the effect of the b¡anch cut influence the induced cunents.
Note the cont¡ibution from the branch cut l¿a¿r, in the fo¡m of a lateral wave, is

negligible since the conductivity of the interface is fairly high at the chosen operating
frequency (the associated branch point n=30.03+j29.94). To examine the influence of
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Figure 3.15: Comparison of the exact and saddle point contribution to the
current induced on a conductor as a function of incident angle
and VED height.

the surface wave branch cut, the transverse distance r" from the transmission line to
the VED will be fixed rr=!þa=fi¡" and the angle Q will be varied; Q=Jo , 3Oo , 90o ,
these conesponding to dipole positions (x"=2988a,yr=26|m), (x"=2598n ,y" =1569r ¡,
and (x" =0.Q¿ ,ys =3000rn ), respectively. The results for the induced curent at various
observation points along the conductor axis is shown in figure 3.16, where

T= sin-1(r"/ l r-r, l). The results show that even though the condition lt,r" l>1i,
met for all angles Q, the¡e is a large error in the induced current for grazing angles
with respect to the interface as expected due to the effect of the surface wave b¡anch
cut.

Finally, the dominance of the discrete mode and saddle point (plane wave
incidence) contributions to the cuûent in the rwo extreme cases will be examined. The
results of varying the VED distance from the transmission line is examined in frgure
3.17. For this case the dipole will be located directly above the transmission line at a
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Figure 3.16: Comparison of the exact and saddle point contribution to the
curIent induced on a conductor as a function of incident angle
and grazing angle with respect to the interfâce.

height y, (x"=0,2"=0), with the observation point along rhe conducto¡ axis fixed at

I z-2, I =3km=lì'". As discussed in the results of section 3.4.1, there are two
discrete modes of propagation for the single conductor structure. Since the structure
dimensions a¡e much less than the free space wavelength at the frequency considered,
h l),"=11399 a 1, the dominant mode will be the transmission line mode (defrned as È,z
in the last section). The normalized propagation constant for the structure has been
calculated as kTLtk"=7.0440+j 0.0266 for this case (the correspond.ing quasi-TEM
result is LTEMtt 

"=t.OqqO+j 
0.0263). At these frequencies, the contribution from the

other discrete mode (defined as k!\, which is found near the surface wave pole

\ tk"= n1^[n41=1.Grj2.8x10+, is negligible and will not be examined. Figure 3.1?
shows that when the VED is electrically far from the transmission line (y" > 1,, ), the
main contribution to the current is due to the branch cut and can be accurately
modeled by úe plane wave incidence model. When the VED is electrically near rhe
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Chapter 3 Excitation of Multiple Conductor Smrctures

transmission line (y"<Àrl20), the discrete mode contribution to the curent dominates.
Note that the dominance of either of the limiting approximations will depend also on
the observation distance I t -t, I , and the accuracy of the plane wave incidence model
will depend on the angle 0 as discussed in the last paragraph. An examination of the
contributions to the current (as well as the input impedance) due to a delta function
voltage source has also been examined by Chang [Chang3].
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Figure 3.17: Comparison of the exact, saddle point and discrete mode
contributions to the curent i¡duced on a conductor as a

function of the VED height.

3.4.3. Discussion

In general there are mo¡e modes than conducto¡s supported by an N-conductor
thin-wire system (PàN). N of the modes are of the traditional quasi-TEM type (these

have been denoted as fransmission line modes). The remaining P -N modes occur
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Chapter 3 Excitation of Multiple Conductor Structures

due to solutions of the mode equation in the region of the surface wave pole singular-
ity (these have been denoted as fast-wave modes). Not all of the additionat fast-wave
modes necessa¡ily falt on the proper Riemann sheet, and at extremely low or high fre-
quéncies, they do not make a large contribution to the structure curents or radiated
fields. By examining the results presented in section 3.4 and in [Bridges3], the quasi-
TEM approximation was shown to be valid unde¡ the conditions that all structu¡e
dimensions are small compared ro the free space wavelengrh ( l-øI" l<1110) and that
the refracrive index of the interface is large ( l, l>to). As well, an improved smalr
argument approximation for evaluating the mode equation was presented in [Bridges3],
and was shown to relax the restriction on I , I , thus substantially increasing the vali-
dity of the results.

The use of either lhe discrete mode contributions in the near field (transmission
line approximation), or the Saddle point contribution in the far field (geometrical optics
approximation), was examined for determining the induced cuÌïents due to a vertical
electric dipole source. The crurents induced on the structu¡e were found to be dom-
inated by the disc¡ete mode contributions under the condition that the transvene dis-
tance from the source to the transmission line is much less than the free space
wavelength (l +tx" I <1/20). In order for the saddle point evaluation to yield accurate
results, it was required that the tansverse distance from the source to the transmission
line is muclggâlgl than the transverse component of the free space propagation con-
stant 11r"11-çosfuÂ" I>3). It must be noted that near grazing angles of incidence
with respect ro the interface 0-+0o, contributions from the TM surface wave and pos-
sibly from leaky wave poles may also become important. In the numerical cases
examined, the dimensions of the transmission line structrue were always much less
than the free space wavelength, which led to two limiting approximations for the deter-
mination of the induced curents. At extremely high frequencies, when the dimensions
of the transmission line are greater than the free space wavelength, the steepest descent
method can also be applied to the calculation of the transmission line parameters. The
range of validity of the steepest descent approximation is especially important in elec-
tromagnetic pulse studies, where the source is almost always modeled as an incident
plane wave. To this extent, an anâlysis of the transient plane wave coupling to multi-
ple conductor sructures has been examined and is available in the lite¡ature [Bridges4,
Bridges6l.
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Chapter 4
Characteristic Impedance of Guided

Wave Structures

An exact solution can be obtained for only a small fraction of the many problems
encountered in electromagnetic modeling, and usually approximate techniques must be
utilized to enable the theories to be useful for practical applications. one method of
simplifying problems involving guiding wave structures is the transmission line
approach, where only the discrete modes supported by the structure a¡e considered.
using this approach, problems a¡e treated as simple transmission lines with properties
that have an exponential axial dependence. This enables the structure under considera-
tion to be modeled as a network component and then used in complex systems with
other guided wave structures or even lumped element devices. To use the t¡ansmission
line approach, the accurate characterization of each of the discrete mode properties,
represented in terms of a propagation constant and a characteristic impedance, is
required. The determination of the propagation constants is a straightforward task
since there is a di¡ect physical relationship to the axial dependence of the electromag-
netic quantities. The determination of the cha¡acteristic impedances on the other hand,
is not straight forward, since there is no di¡ecr relationship between the electromag-
netic quantities (these being solutions of Maxwell's equations) and the circuit quanti-
ties modeling the structure (modal voltage, modal cuûent, and. cha¡acteristic
impedance).

In keeping with the traditional work of Schelkunoff [Schelkunoff2, Schelkunoff3,
Marcuvitzl for the description of waveguides, the present methods of specifying the
cha¡acteristic impedance of guided wave structures are categorized as either a voltage-
cuFent, power-voltage, or power-curent definition. The modal circuit quantities, vol-
tage and current, can be related in some manner to the strengths of the transverse elec-
tric and magnetic fields, respectively, in terms of specified path integrals. These
integrals, however, will only be path independent in the TEM case, and only for this
special situation will there then be a unique definition of the circuit quantities [Gets-
ingerl. In rhe TEM limit there is a direct relationship to rhe electromagnetic quantities
and all th¡ee of the above definitions of characteristic impedance will be equivalent.
As there is no di¡ect relationship to the elecromagnetic quantities for general non-
TEM structures, the three deflnitions will not be equivalent and the choice of which is
most appropriate for a given sftucture geometry has been a topic of much debate,
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Chapter 4 Cha¡acteristic Impedance of Guided Wave Structures

When the Eansmission line approach is used to solve closed waveguide problems

[Kems 1, Kerns2, Schwinger], the set of discrete modes supported by the structure
(infinite in the case of closed structures) forms a complete spectraÌ basis for the
representation of the fields. Instead of retaining the modal field quantities for solving
problems, each of the discrete modes is characterized by a propagation constant and a
characteristic impedance. Then using these circuit quantities, a network solution can
be obtained which is exact to the extent that all modes of the infinite set are con-
sidered. For closed st¡uctures, the ctcuit quantities will be scalable with respect to the
field quantities, and thus any chosen definition for the cha¡acteristic impedance will
sufflce as long as it ¡emains consistent throughout the analysis. unlike c/¿s¿d srruc-
tures, the set of discrete modes supported by open structures forms only a pan of the
spectral basis for the expansion of the field quantities. A complete basis also requires
the contributions from continuous spectral components, as discussed in section 2.3.
For the modeling of many practical problems, however, an adequate approximation to
the behaviour of the smrcure can be obtained in terms of the discrete modal quantities
alone, thus still allowing the use of the transmission line approach for a solution.
Unlike the closed waveguide case however, the definition used to determine the
cha¡acteristic impedance will no longer be arbitrary, but must be chosen to accurately
represent the ci¡cuit requirements of the transmission line model. For the coupling of
open guided wave structures to TEM components (lumped element devices), this
means the use of a definition which best matches the TEM ci¡cuit behaviour of the
structure. with the ¡ecent advances in high speed digital devices and microwave ci¡-
cuit applications, there has been much controversy over the choice of an accurate
definition for the determination of the characteristic impedance [Jansen3, Jansen4,
Getsinger]. The various definitions currently under use and thei¡ comparisons have
been reviewed in detail by Brews and Fache [Brewsl, Brews2, Fache2]. For micros-
trip structures all th¡ee definitions have been defended, the power-current definition
usually being adopted as the mosr appropriate [Jansen2, Jansen4, Fukuoka, Tripathi2].
The determination of the power in these câses, is calculated by integrating the axially
directed power density over the infinite transverse dimensions of the sEucture, which
can become a complicated task for complex geometries. Further, the axially directed
power will yield the total propagated power for the discrete mode only in the /oss/e,rs
case.

In this chapter, an altemative approach to determining the cha¡acteristic
impedances of guided wave strucrures is presented (including lossy open structures).
Like the propagation constants, the characteristic impedances will be extracted directly
ftom the integral equation formulation of the problem under consideration. The spe-
cial case of a single thin-wi¡e transmission line located over a lossy ea¡th will be used
as an example. The characteristic impedances for this case will be determined using
the proposed definition and then compared to the results determined using the
definitions cuûently available in the lite¡ature.
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Chapter 4 Cha¡acteristic Impedance of Guided Wave Structures

4,1. DEFINITION OF CHARACTERISTIC IMPEDANCE

The concept of cha-racteristic impedance is a modal property of the guiding wave
structure. For each of the possible discrete modes that the structure supports, there
will be a distinct transverse field configuration and a corresponding current distribution
on the surface defining.the structure. In order to define a characteristic impedance for
the mode, these electromagnetic quantities must be related in some manner to the
modøl ctrcuit quantities. In the most general case, the concept of a modal current
can be defrned simply as a quantity which is proportional to the srength of the
transve¡se magnetic field. Similarly, the concept of a modal voltage can be defined as

a quantity which is proportionai to the strength of the transverse electric field. Follow-
ing these definitions, the characteristic impedance then relates the strengths of the
transverse elecric and magnetic fields for a particul discrete mode. However, since
the relationship between the transverse electric field and a vohage and the transverse
magnetic fleld and a current are dependent on some proportionality constânts, this
leaves the cha¡acteristic impedance of the structure to be arbitrarily assigned. A line
integral is usually used ro evaluate the proportionality constants, with the path of
integration for voltage or cunent chosen to best suit the specific geometry being stu-
died (a voltage can best be defined for a gap and a current can best be defined for a
thin conductor). Only in the quasi-TEM limit, witl there be an exact meaning to these
definitions. This chapter presenrs a new definition of cha¡acteristic impedance, which
relates the equivalent currents on the surface of the guiding wave structure to the
modal contribution of the fields exciting the strucrure. The definition does not depend
on a choice of line integral paths, bur follows directly from the integral equation for-
mulation of the problem. As well, the definition collapses to the TEM result in the
quasi-static limit, as will be shown by some examples later in the chapter.

As discussed in section 2.3, for general unbounded region problems, the discrete
modes are only a part of the complete spectral content of the fields. The use of the
discrete modes alone to represent the structure prope¡ties, howeve¡, allows a much
simplified uansmission line approach to the solution of many problems lTripathil, Tri-
pathi2, Fârr, Djordjevicl, Djordjevic2, Legrol. In order to use rhe transmission line
approach, the propagation constants and cha¡acteristic impedances of the disctete
modes a¡e required (these are needed to couple the t¡ansmission line into a netwo¡k of
TEM or lumped elements). As formulated in section 2.2, and with reference to flgure
2.1, the current induced on a guiding wave structure due to some exciting source is
given from the solution of the spectral domain integral equation (2.15)

É'(Þ-) x t-1{ã( p,k")l = h(Þ)x|k"(F,k,) ;Þ€c ,-<k,<* (4.1)

L'tl( p,t 
")t = Iã<ø,ø:t ,¡î( p:k,)dp' = l"* ( p,k,)

c
(4.2)

whe¡e C is the generating contour defining rhe structure, and â(Þ) is the unit normal
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Chapter 4 Characteristic Impedance of Guided Wave Stn¡ctures

vector to the surface. Í'* (p) is the fie1d due to the sou¡ce and. f ""o'(p) is the field
scattered from the structure due to the induced cunents. As defined in chapter 2, the
Green's function G(p,p',kr) is formulated for the specific geometry under considera-
tion, with a layered external region specifically addressed in section 2,5. As outlined
in section 2.3, the discrete modes supported by the guided wave strucfure can be deter-
mined from (a.1) by considering only the homogeneous solutions of the integral equa-
tion as

Ê(Þ)xt-t{ãp(p,tcÐ) = 0 ;peC èk!;p=r,2,...J, (4.3)

7 ;"^<0,*!l = T;' lî,<î,t ll]
yhere kl are the resulting eigenvalues (propagation constants) and io(þ);þeC and

f ;"'t(p) a-re the modal currents and. corresponding modal fields for the pth mode sup-
ported by the structure, respectively. All modal quantities have an axial dependence of
the form exp{ljkf z l. The excitation of a particular mode by a given source depends
on the extent to which the modal and exciting frelds a¡e matched, which can be deter-
mined as .7 ì"'(p,t Ð ,7t* (p,k,=kÐr, where < , > is an appropriate inner producr for
the geometry considered. If the modal fre\d f 'r"t due to the induced current g:o is
normalized by dividing by the modal current Io, and the incident fle1d is made pro-
portional to a modal voltage Vo, then a châracteristic impedance can be realized as

(4.4)

where N is some normalization constant, chosen here to be unity. This defi¡ition is
still a¡bitrary since the reference points for which /'- and Ç are normalized remains
to be chosen. To rectify this problem, a definition for the cha¡acteristic impedance
will be ext¡acted directly from the complete spectrai domain integral equation (4.1).

The determination of the cunent induced on a guided wave structure due to some
exciting source can be determined from the integral equation (4.1). The solution of
this integral equation for arbitrary geometries usually requires a numerical technique.
As developed in section 2.2, a moment method solution can be obtained by expanding
the cuûent in terms of an appropriate basis to represent the unknown cunents g:1 p,k, ¡
as

N

l<-p,t") = >¡"(Þ)1,(k; = lx(p)l¡lt(k))
¿=1

where .r, (þ) is one of a set of basis functions and In is a scalar constant. The deter-
mination of the currents lG,kr) induced on the structure due to the exciting source is
obtained by applying the moment method ro rhe complere integral equation (4.1).
Once the currents are determined in the spectral domain, the inverse Fourier transform

|. .-.,-l -vo<vofi*{6,ry¡ ,tulio<0,tÐlroJt = r.r = r -+ zcp - L

(4.s)
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Chapter 4 Characteristic Impedance of Guided Wave Strucrures

(4.7)

(2.12) can be used to determine the resulting cuûents in their spacial domain form
S G,ù=î;rtî( p,kr)). When considering the discrete mode contriburions to rhe
current, only the residue contributions to the complete solution a¡e evaluated. The
exðitation of the pth modal current by the source is thus determined using (2.33) as

(_ I
sp(F,z) = t¡(Þ)l'2r7 g.es jU&)11

k,=kt I )

(k, -k!)lx(p)lt¡Zg,¡14¡F¡* 1tc,)l¿*i& 
l' | Ì Ø.6)

)

Z^n(k") = < w^(p), âtÞ) * r;1{;"(Þ)} >

= <w^(p), â(Þ)xJ G(p,p:k;x,(p') dl >
c

F'f Ur"l = < w^(p) , hç¡xf¡* 1p,tc,¡ >

where < , > is an appropriate inner pro{rct and wn (þ) is one of a set of chosen testing
functions as described in section 2.2. f'* is the imposed field at the structure surface
due to the exciting source. To obtain the discrete modes,t/ supported by the structure,
the moment method can be applied to the homogeneous form of the integral equation
(4.3). The disc¡ete modes are then the solutions of the set of resulting linear equations

t_t
lèr*,ttl=o - t!
lz(kl)lÍÎPl = o

The solutions kl arc the propagation constarts of the pth mode, with the eigenvectors
É, conesponding to kf, giving the cunent distribution on the guiding wave structure.
The surface cunent & can now be written in terms of a modal quantities as

= +j lim
k,)k!

; P=I,Z,...,P (4.8)

(4.e)

(4.10)

(4.11)

where î, is the strength of the pth mod.al current and Ç is the suength of the excit-
ing fleld ¡eferenced at the conductor su¡face. Ç can be thought of as the modal vol-
rage. Similar to É giving rhe currenr distribution, qp gives the field distribution at
the st¡ucture surface for the pth mode. Thus, in (4.11), the modal voltage îo has
been defined as the stength with which the incident field marches the modal field at
the structure surface. A cha¡acteristic impedance can now be defined which is a

sp9l) = ¡x1þ)l'tÉlio

.D :' 2Z-,vP

r o = ¡v 1,¡F¡* ltcy¡1
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function of only the structure geometry as

z. = -r --! 3{lrfn.,l }-cP 2 ñp, ñp, ðk, l' - "'z' ' )¡q=rt

wherc 7ço is the cha¡acteristic impedance of the pth mode for the guiding wave struc-
ture. This definition is vaLid for all general guided wave sEuctures, both open and
closed. The transform vectors V, }? and the no¡malization constants ñ(, ñl are
given from the impedance matix Z(k") as

(4.12)

(4.r3)
nT = corr¡lZ(kÐJlñ(, ; j=1,2,...N

ue _ *t,rtZ(kÐ) ¡¡, ; i=1,2,...N
cor¡[z (k!)]

[ ru fv2 [ ¡¿ 11t2Nt = lIvtl Nl = l>dlli=r J L,r I
where the function cof¡¡{Zl gives the cofacto¡ of the ijth element of the matrix Z.
Note that if Z(kl) is symmerric, then tQ?l=tVPl and accordingly wf =¡¿ç. a,
developed further in chapter 2 (2.35-3.42), a matrix equation solution can be developed
to solve for the cur¡ents due to the complete set of discrete modes.

4.2. CHARACTERISTIC IMPEDANCE OF A SINGLE THIN-WIRE OVER
A LOSSY INTERFACE

The excitation of thin-wire structures located over a lossy interface was discussed
in detail in chapter 3. The geometry considered, as was shown in figure 3.2, consisted
of a system of N thin-wire circula¡ conductors located above a lossy half-space. The
formulation utilized the thin-wire approximation, where only the axially di¡ected elec-
tric current lG¡= ¡"<p¡î was assumed. to be significant and thus continuity of only
the â componenr of the electric field ¡ 1p¡=f ,6¡î ;pe C on the srucrure surface
needed to be enforced. The integral equation (4.1) then required only the Green,s
function component G"r(p,p:k"). In chapter 3, the elements of the impedance matrix
lZ (kr)l for a system of thin-wire conductors over a single lossy interface were formu-
lated (3.18-3.20). As well, the modal representation of rhe cur¡ents and flelds were
also developed (3.46-3.52). These results will be used to evaluate the cha¡acteristic
impedance of a single thin-wire transmission line.

ln this section, the cha¡acteristic impedance of a single thin-wire conductor sys-
tem above a lossy half-space will be examined in detail, as shown in flgure 4.1. The
conductor is located at a height h (x=O,y=þ) above the inlerface and has a radius ¿.
The region y>0 is considered to be free space, characterized by a permittivity e" and a
permeability ¡rr. The region y<0 is designated as the lossy earth, cha_racteri zed by a
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Chapter 4 Cha¡acteristic Impedance of Guided Wave Structures

permittivity ep a permeability p,, and a conductivity os. The electrical properries of
the conductor a¡e cha¡acterized by a permittivity ç , a permeability ¡r", , and a conduc-
tivity o,u . The characteristic impedance of the system will be determined by examin-
ing the excitation of the conductor by a delta function voltage source Vsõ(z-2"¡,
located at z=2" along.the conductor axis. The case of a delta function source is
specifically chosen, since for this excitation, an exact evaluation of the modal voltage
and current can be made, and thus a precise definition for the characteristic impedance
can be found.

fs cs o:
Figure 4.1: Single thin-wire conductor located over a lossy half-space.

Using the theory developed in chapter 3 for thin-wi¡e strucrures, the induced
cuûent on the single conductor transrnission line due to a delta function source can be
determined through an integral Eansform as

,e) = * y&)-t<Ef&)>e*ih, dk"

<E:(k")> = Ysr-it+z'

Z(kz) = Z* (kz) - Ze (k,)

where I(z) is the induced cunent on the conductor. The impedance matrix (4.16) con-
sists of two terms, an extemal impedance term z" (k") representing the mutual cou-
pling between the conductors, and a self impedance ter', Z. (kr) reptesenting the con-
ductors surface impedance. The derivation of the impedance matrix elements for the
single conductor system, is accomplished by determining the frelds external and inter-
nal to the conductor, which ca¡¡ies a current of the form I(k")e+iÇ". As determined in

(4.r4)

(4.15)

(4.16)

fs €s
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(4.18a)

(4. 18b)

(4.20)

section 3.2.1, the fields can be deduced by solving the two-dimensional wave equation
in each of the material regions such that

|. -¡ou- I ' r
ze (kz) = lffi lc"E ßÃ lrlx o1r"a¡

- rs(r,"a)[r!Ks1e2h) + k?J6",2hÐ - k"2GG,,2hg)]l q+.rzl

J(r,,p*) = I r*J % 
r-u.o+h)+ik x 

dkx

G(r,,Þ*) = Ï-*-l -' e-u.(r+h)+ik,x dkx* n'U" + U,

u"=l[k]n? , ue=rfjQ
where I p. I =^[rza¡t a¡y. ttere k" =.,[sfp,E is the propagation constant in the air
*"alurn, ¿, = r/co[Ç g cog.6, is the propagation .onr,*, in the ground medium.
r" ="1t ?-lr? nd q =tl f /-¡a! a¡e the transverse propagation constants in the ai¡ and
earth media, respectively. The real parts of the i¡rationals Re[U,,Ue]à0 and
Re[t,,t, Jà0 have been chosen to retain a positive value. I s(z), K s(z), K{z) arc
modified Bessel functions of complex argument and n=ke/k" is the refractive index of
the air-eanh interface. For thin solid conductors the internal impedance matrix was
defined in section 3.2.1 as

|' *¡rt - ) ¡3t n1,-a)L"\k,)= l-- " | - 
(4.19)

I 2".*'- ) (rna)I 1(tna)

where t, =^te-tu-;A and *, = r/co2¡ç s,+J otl, o IoG), I r(z) ue the modified
Bessel functions.

using the inverse Eansform (4.14) determines the complete specEal contribution
to the current. The discrete mode contributions to the crurent are given from the resi-
due contributions only as

PPfì
r(z)= ilp(z) =+ji lim_ l{t"-ty)z{t ,). lvs¿+i*tIz-"'Ip=l p=L k'-Jk! t J

where the propagation constants ftf are determined from the solution of the mode
equation (the single thin-wire case of (3.46)) as

ì
lz(t"¡l = ol
z(kþvt = ol ; P=r'2""? (4'21)
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Chapter 4 Cha¡acteristic Impedance of Guided Wave Structures

A detailed discussion of the possible solutions of the discrete modes was given in
chapter 3. Note that there can be more than one solution for a single conductor (p )N
for the general N conductor system). In terms of modal quantities, the induced cur¡ent
is then determined from the single thin-wire case of (3.48) as

P
I(z) = lvp ir(z) = tr ll2zc lltD (2, z")l[T lt Vs

{ -*pl" - l

)e"' ' , t=l=p
D¡;(2, z,) = lo , i+j

(4.22)

rlt?l=1i,1,,..,11r"r
since for a single thin-wi¡e system the normalized eigenvector is unity vr=l for all
modes, the modal cur¡ent will be equivalent to the conducror cuûenr t=Ip. Similarly,
the modal fields will be equal to rhe conductor fre\ds. lZçlpr¡, is a diagonal matrix
with diagonal elements rep¡esenting the cha¡acteristic impedance zç, of the pth mode.
considering only the pth modal current at the source location z=zs, the cha¡acteristic
impedance can be fo¡mulated as

ioQ=2,) = J-rtz¿.cP

',, = -++{tr<o"tt}r=n

(4.23)

(4.24)

This definition of cha¡acteristic impedance can be physically rationalized by consider-
ing the equivalent ci¡cuit of figure 4.2. For the single conductor, a zero voltage refer-
ence can be specified at the center of the delta function source, with this chosen refer-
ence being independent of any integration path. Thus, the modal current thar the
source excites, defines the cha¡acteristic impedance of the structu¡e for that particular
mode. This defrnition cân then be extended to multiple conductor systems as done in
3.3.1, or even to general guided wave structures as used in 2.3 or 4.1.

clt'/7zt Y'/z

rFih
... f--------------l ' tf--------------- ...

Iv=0 :
i

-7

Z. Zs

Figure 4.2: Equivalent ci¡cuit model for the delta function source
excited fransmission line.
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For the single conductor case, an analytical expression can be derived for the
characteristic impedance (this can also be done for the multiple conductor case but the
result becomes complicated and a numerical evaluation is more appropriate). Evaluat-
ing the expression (4.24) yields

Zcp = Zäp + (-jkÐysh Gl)-1 + e¡y5(k/) (4.2s)

,ë, = -+#zv,(k!) = +#frffi . +

ysh¡¡rn¡-I -l*¡to , lr 'l

| 2nk " 
(r 

" 
a )K r(t 

" 
a ) ) LK oG 

" 
a ) - t oG 

" 
a )lK s(r'2h ) - G (1 e'2 h9 )l )Ø'27 )

lz^*r , l,l
eNS&l) = - lñ jt -*rfu*, I 2lx""otx '1r"a)-I 

s(r,.a)(r,.2h)K (rezh)l
(

- I o'"o)j""16',"-) - #h(u**##r]t *
. 

lt),,n".l4xoq""zn¡ 
+ tlllr",2hg) - wrca",rolt)\ (4.28)

where zs and zn ate the intrinsic impedances of the upper half-space a¡rd the conduc-
tor media, respectively. The characteristic impedance Zço has been realized in the
form of th¡ee contributing terns. The term zfo gives the contribution due to the
imperfectly conducting wire (this due to the self impedance term Zv (k") given by
(4.i9)). This term is usually negligible for good conductors. The remaining two terms
in (4.25) are due to the mutual impedance term Z" (kr) given by (4.17), which involves
the modified Bessel functions Ks and the infinite integrals J and G. Noting that in the
quasi-TEM limit, the terms Ks, J, G vary slowly as a function of k, the second rerm
in (4.25) gives the contribution to the impedance with Ke, J, G assumed stationa¡y
when evaluated at the point kr=kl. T\is term will usualty be the dominant contribu-
tion to the cha¡acteristic impedance and is related to the equivalent circuit ¡epresenta-
tion of the transmission system as will be shown in the next section. The remaining
term E^/j' gives the contribution due to the non-stationary nature of K0, J, G about the
wavenumbe¡ kr=kl. flris term becomes important in the non-quasi-TEM evaluation
region. Note thât the last term in e¡¿g is negligible for very thin conductors since
I {r"a)-+O for r"a-+0. Thus, under the limit r,"a-+0, (4.28) can be simplified as
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îl k:| - (r"2h)K r(r"2h)l - ll uj¡;<u rro *r¡

-ffir,,,.ffi,)æ-l (4.29)

The fo¡mulations presented in this section defining the propagation constants (4.21)
a¡d the cha¡acteristic impedanc es (4.24) of the d.iscrete modes come directly from the
integral equation solution and are dependent on only the geometry of the strucrure.

4,3. CIRCUIT EQUWALENT METHOD

As previously discussed, the propagation constants and characreristic impedances
of each of the discrete modes are required in order to use the tra¡rsmission line
approach. In this section, the derivation of these p¡operties from the equivalent circuit
representation of the single conductor tra¡smission line will be discussed, and com-
pared to the new method that was presented in the last section. As d.iscussed in sec-
tion 3.3.3, the impedance matrix (4.16) can be formulated in terms of the transmission
line equivalent circuit parameters as

z(kz) = zu'(k,) + k?Ysh(k)-r

(Y"h(k-\\-r = 1 1

-j øe"2n (r"a)K {r,"a)

'þr{""o) - IsG,a)[Ks(1.2h) - c(1",2hÐ1]

zser (k-\ = Z* (k-\ - i @LL" I
2n (r"a)K{r"a)
fr, 
lK s(r.a) - I s(r,.a)lK ¡(r,.2h) _ Xr",2h9)l )

where Z'u is the series impedance and y"å is the shunt admittance equivalent circuit
parameters for the structure. The solutions of the mode equation t/ and the charac-
teristic impedan ces zço can then be formulated using (4.21) and (4.24) in terms of the
structue equivalent circuit parameters as

(4.33)

(4.30)

(4.31)

(4.32)

I z 1*9 I = 0 -+ kf = ,[-z'* (kf¡v'o <t n
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rrf, Izr, = -* * lzu, {k,) + t}v'h ç,¡-t I' ¿ oKz | )h=a

+z'-Af>v¡<*fl' - **{r*,1t,¡ + lry¡2v,hç<;-tl (4.34)¿ dkz | )tc=k!

The first term in (4.34) is the sarhe as the stationary part of (4.25), wirh the remaining
term in (4.34) being equivalent to Z[r+eys in (4.25). The lossress cases of (4.33) and
(4.34) can be shown to be equivalent to the results of Hashimoto [Hashimoto], who
de¡ived a rigorous full-wave solution for the cha¡acteristic impedance of microstrip
structures based on a ci¡cuit equivalent approach.

If the cha¡acteristic impedance is obtained directly from the two-dimensional
transmission line equations, only the stationary part of (4.34) will result as

(4.35)

where 1o is the modal current and 7o is the modal voltage. The evaluation of t/
using (4.33) gives the same resulr as the mode equation (4.21) for all conditions.
However, the definition of Z¿, using (4.35) is not e4uiva.lent to the definition (4.24)
unde¡ ail conditions, and is only valtd if Zset (k!) Md ysh &Ð (and thus K6, J, G) are
assumed stationary about kr=kf. The transmission line representation for Vo, Io in
(4.35) is thus only accurate in the quasi-TEM region. Furthe¡, it is useful to note'that
in using the quasi-TEM approximation, the equivalent circuit parameters (4.31,4.32)
are evaluated under the condition kr=k" (t"=0), and thus a¡e functions of only the
transmission line geomery.

The two-dimensional circuit approach is often used in the anaiysis of microstrip
structures [Kobayashil, Bha:ria, whitaker], where the propagation constants È/ are
determined accurately by sotving an integral equation simila¡ to the form (4.21).
These propagation constants are usually presented in terms of an effective dielectric
constant W=\^[eíX. In many studies, the cha¡acreristic impedance Z¿, is lhen
determined using ef¡¡ and a geometry dependent factor Zç, =F(geomeEy)ZJ"Je!¡¡.
This is equivalent to the circuit based form (4.35), except that F is not only consideiåd
stationary about kr=kf, but is also assumed independent of Èf. This assumption that F
and thus Irå is dependent only on geometry is only valid in the TEM case. Altema-
tive approaches to determining the characteristic impedance use path integrals to define
a voltage or through a power definition, as will be discussed in the next sections.

4,4. LINE INTEGRAL METHOD

Anorher altemate method for obtaining the cha¡acteristic impedance that is often
used in many applications, is based on a voltage-current definition Z=V ll . When
considering thin-wi¡e structues, a modal current can be precisely specified as the total

-*,, =Ysh&Ðve è zcp = + = eik!)y"h&Ð-l
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Chapter 4 Cha¡acteristic Impedance of Guided Wave Structu¡es

axial current flowing in the conductor. However, in order to specify a modal voltage,
a zero voltage ¡eference point must be chosen as well as a path of integration
(transverse to the transmission line) such that

(4.36)

where the chosen path z is from rhe zero ¡eference voltage point (usually specified as

l0 | = ".1 to the center of the conductor p=(O,/r ), as shown in figure 4.3. The field
E(p,kÐ is the modal field resulting from the pth modal crurent Ip. ln general, for the
non-TEM case, the evaluation of the modal voltage will be dependent on the chosen
path of integration Z. In the low frequency limit, when the ea¡th behaves as a good
conductoÍ and the d.istance from the eanh to the conductor is much less than the free
space wavelength, the y=Q interface can be considered as the zero reference and
almost any direct path from the earth to the conductor will be adequate. When the
ea¡th becomes lossy, the voltage at the interface can not be assumed as the zero refer-
ence (the voltage at points along the interface will no longer be constant as well).
Extending the integration path to a point below the interface has been one attempt at
rectifying this problem [Wedepohl, Efthymiadis].

The line integral method has also been used to evaluate the cha¡acteristic
impedance of microstrip structures [Das, Zhang]. For this case the metaÌlic ground
plane of the microstrip is chosen as the zero reference and since the distance to the
strip conductor is usually less than the wavelength in the supponing dielectric, the
quasi-TEM assumption is usually valid. An extension ro the line integral approach is
to evaluate the voltage as an average over many possible paths from the zero reference
ground plane to the strip conductor. As an example, the average value of the electric
freld under the enti¡e strip can be used in (4.36) in the microstrip case. As in the con-
ducto¡ above lossy earth siruation, however, the line integral method breaks down for
the general non-TEM case.

Concentrating on the single thin-wire system above a lossy interface, as shown in
figure 4.3, the cha¡acteristic impedance will be evaluated by chosing a path of integra-
tion along the y-axis as

tl..
zr, = ? = -+JE1ç,t<g.aT

'p tp L

zcp = -llø,<o,rnø

Ey(F,kÐ = tvv.R +Êntî = -$t-v'ñl+r2n,
= _VyÕ(Þ) + jcoAr(Þ)

(4.37)

(4.38)

where fI is the appropriate Hertz potential vector. Since the path of integration is
along the y-axis, only the E', field component is required in (4.36), which is deter-
mined from the potendal vecrors fl", äs, or fi', the choice being dependent on the
medium in which E, is evaluated (air, earth or conductor, respectively). The
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Chapter 4 Characteristic Impedance of Guided Wave Structures

appropriate potential functions for each air or eanh medium were derived in append.ix
A or as describ€d in chapter 3 for thin-wi¡e sfuctl,¡es over a single interface. For dis-
cussion purposes, the freld in (4.38) has been written in terms of the scala¡ potential Õ
and the vector potential component Ar. Two possible paths of integration z will be
examined. They are determined by chosing the zero reference point at either Þ'=(0,+*)
or p=(0,-".) such rhar L is defined as

, . [tt, p=(0,+"") -+ þ'=(0,å)
"' ltz: Þ=(0,*) -+ -p=(0,å) (4.3e)

-å
Figure 4.3: Linc integral paths in the evaluation of rhe conductor voltage.

Using (4.37), the characteristic impedance can be evaluated by integrating along each
of the chosen paths to yield

zce = <É(p=Q,Ð)> + Ö'(lÞl=0):o"(lÞl=a) -49in"fOl¿,tP Ip I, 1L"'-'

I

.l
t

and Õ8

Õe ( p=(0,+-") )
Ip

Oe(Þ=(0,0) ) + Õ8 (Þ=(0,0) ) - Õ8 ( p=(0,--"") )
Ip

; path¿1

I path L2
(4.40)

are the scaiar potentials in the ai¡ and ground media, respectively.where QÉ
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Õ' is the scalar potential intemal to the conductor, which can be neglected for good
conductors. The term <ÕÉ(p=(0,å))> is the average value of the scalar potential ö¿
a¡ound the circumference of the conductor, which can be determined form the potential
functions derived in appendix A (4.76,4.77) as

ø" (F,k!) = çit<nffi a"#Gõ ["0,r, | Þ, I ) - x o1r" I p] | I * crt",p-ó )]

;PathZl

i Path L2

(4.41)

(4.42ì,

(4.43)

(4.44)

where Ysh (k!) was defi¡ed in (4.31) as rhe shunt admittance of the transmission line
equivalent ci¡cuit. The remaining terms in (4.40) can be evaluated to give the flnal
result

fr-ingr'^ <oÐ-t + Z[o + <r"0 =h)>

I

zce = 
leikÐYsh 

1¡r¡-t a Z[, + <1"1y=h¡>

| 
-'iry.*aÐ 

- I"(Y=o) + I'(r=o)

s$aÐ = *c!)l#)G# 
16" o)G(r" F;)

r"(y) = -fl otrur*

= -z-o,or.Ì I -r - -=_L-l+ ,-u,a'h)dk* (4.4s)_ -Enin" J 
LU¡% 

- ,ru¡U, )r;

L(vr = -fl rt<otø - ll ot,r,*

_ zo k! i l-__13]r-r,o *r,, dk, (4.46)- z" k" LLTur% % f
The fust term in (4.43) can be identifled as the same result obtaíned in the ckcuit
equivalent method (4.35). This term is the domi¡ant term in the quasi-TEM limit.
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4.5. POIryER.CURRENT METHOD

In the previous section, a voltage-current definition was used to defi¡e the charac-
teristic impedance. This approach is inaccurate in the general non-TEM case since the
definition of a modal voltage relies on a line integration which depends on the parh of
integration chosen. For many applicationst a power-cu[ent definition of cha¡acteristic
impedance Z=P /(l I* ) is mo¡e suitable. This defi¡ition is the one usually employed
in advanced microstrip or MMIC structure analysis [Jansen1, Jansen2, Jansen5, Itoh,
Fukuoka, Tripathi2l. The method is most appropriare when the concepr of a modal
curent can be precisely deñned, this being when the conductor dimensions are much
less than a wavelength (this is appropriate for the thin-wire transmission line case).

Once a moda-l cturent Ip is specified, the axially di¡ected powet Pp for that mode can
be determined so that the characteristic impedance, for the pth mode, will be

P^'7-r--Lp 
I to 12

+- jT r¡rp r' a- ror.l ¿olttpl" * ],r=r!
u Pi t M ,, -. 

'l

=> ,_!G = _+. > JJ ¡r,1p-¡xa,.G)1,îdîl G.47)
i=r llpl' llpl'i=t A, )tç.=kl

where the axial power has been calculated as a sum of the powers in each of the M
sepâ¡ate material regions. A¡ denotes the cross sectional a¡ea of the ith region, Ë-¡ and
ll-¡ are the flelds in this region, and * denotes complex conjugate. Fo¡ the case of a

thin-wi¡e conductor over a lossy half-space as shown in figure 4.4, there a¡e three
material regions; the air (j=¿ ), the lossy gound (i=g ), and region internai to rhe con-
ductor (i =w ).

Evaluation of the power inte$als for all the three regions directly in the form
(4.47) becomes complicated for the region l=e, since the a¡ea A" is defined by both
cylindrical and cartesian coordinate boundaries. To simplify this, the power integral
Pf over the surface A, will be calculated in two parts, as shown in ñgure 4.4b), as

î: 2ra I
p; = I I tE" (î)*F"'(Ð1.î ¿xay - [ IfE" <î¡*n"' 5¡1.î papaçl

o+ oo )4=a
- pel - pe2'p 'p (4.48)

where the fust integral is over the entte upper half-space y>0, and the second integral
subtracts the contribution in the region occupied by the conductor, Note that this pro-
cedure causes both integrands in (4.48) to be divergent. However, the singular por-
tions of each are equal and can be extracted as will be shown later in this section.
This problem of different boundary geometry types does not occur for microstrip struc-
tures, where an infinitely thin strip with a specified current distribution is usually
chosen to model the conducto¡.
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Figure 4.4: Transverse regions of the transmission line for power integration.

using the simplification (4.48), the contributions to the cha¡acteristic impedance
due integral over the upper half-space P;r O>0), and due the inægral over lhe lower
half-space PÊ O<0) can be evaluated in the form

-:i-- - -+lî-rr¡r¡r - ø;nïv'dy1"-n ; i =et, g Ø.ae)
I t, 12 I Io 12 i,'-'-'"' -'"x t**/ 

fi
where {fr¡:0--+.o} and {Yr:-""-rOJ. This general form ca¡ be used to solve a
geometry involving any number of planar regions, simply by specifying the paths f¡
for each region, Thus, analysis of a microstrip structure for example can be formu-
Iated using the form of (4.49) by properly specifying the layers. The required fleld
components in (4.49) for the special case of a line current above a lossy earth can be
found from the derivations in appendix A.

The calculation of the axially di¡ected power in each region (ø1,g), involves ttre
evaluation of double infinite integrals. Noting that the fields in each region can be
described in terms of infinite integrals, a much simpler forrn for (4.49) can be

Cha¡acteristic Impedance of Guided Wave Structu¡es

Ø,ïP PJ
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(4.s0)

determined by substituting for the fields with thei¡ spectal domain transforms (an
equivalent form has been used for microstrip [Hashimoto]) as

. -ï

!, 
J:' uT drdy = 

l, L* I_,'rre.i'* du + Í_hir 1..v¡e*tu, dv dxdy

= j +f ,t1u¡ j n,. 1u¡2trõ(u-v)dvdu dyy 4n' -

= *î I ,' ,, hi* 1u¡ dydu.tt *y¡

using the above substitution, the power integrals in (4.49) can then be evaluated as

P; 
- 1 i , 1r",,,tLirr,t-^ìtt ¡t^ia¡t..- I

W = T;tr ! n JÍe)(k'tn;.1k) 
- ei(k')h:r (t;l at d4 

)r,=a

(4.51)

(4.s2)

The factor (r"a)K 1@"a) has been included to account for the finite size of the thin-
wi¡e ci¡cular conductor.

The remaining power integrals Pi and pfz represent the axiar power intemal to
the conductor medium tn (4.47), and the portion of the power in the medium ¿ occu-
pied by the conductor in (4.48), respectively. The fi¡st can be determined using (4.4g)
and the fields intemal to the ci¡cula¡ conductor [Stratton] as

2xa Ipi = I I tE (F)rn*. G)1.î p¿p aþl
o o ]4=r!

(4.s3)

In this from, the integration with respect to y can then be evaluated analytically,
reducing the doubie infinite integral to a.single integration. As well, the expressions
for the transformed fields e (k,) ..d, å- 1k, ¡ will be of a simple algebraic from.
Finally, the evaluation of the power integrals for the upper half-space por l and the
lower half-space Po3 can now be deduced from the axially directed po*er of a conduct-
ing strip over a lossy half-space as derived in appendix c. Thus, considering a delø
function line source, carrying a current 1r, the desired integrals (4.51) can be deter-
mined from (C.9,C.12) with the srrip current disribution j!(k,) replaced, by

jl(k*)=,, nAhA

2ßa I
= [lqrotn{-(Þ)naoao l.

o o l,o=r,
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(4.s4)

(4.ss)

(4.s7)

(4.58)

(4.59)

Ei'=,,+#m=,,*#m
niG)=,r*m

where zn is the intrinsic impedance of the conductor. The power integral pj2, giving
the contribution of the fields in the region e occupied by the conductor, ca¡ be
evaluated by decomposing the fields into a primary component (the conductor is in a
homogeneous medium) plus a secondary component due to the ¡eflected fietds off the
interface as

øe2 -
2tc a I
j.f t ts-"ttÞ'l*r-d(Þ)),. 6"P (F)+nd (p))- l.âpdpdg I
0 0 

],r=rt
2ta I

= I I tE"P O)xn¿'1p¡1,î p¿p¿þj|. _ (4.56)
o o 

lÇ=rt

since the secondary fields behave as a constant value over the small a¡ea of the thin-
wire conductor, thei¡ cross product with the primary fields will be negligible and have
appropriately been ignored in (4.56). The remaining integration of the primary fields
results in a divergent integrand, behaving as l/p for p+0, which can be evaluated in
two parts as

,""=zo ltol2 -,lw , lI k: r.l,,
' p - ,"1GÐK,aõp- Llr" u;4 )lir4 

* , 
)on

2ß- I
-'Í T rr,, ro ¡, ",1' <o ¡ oo, o øl

o 4 
),o=o

E{@=,,+lm
H6PG)=,,+lm

The second integral in (4.57) is convergent an can be evaluated numerically. The fint
integral on the other hand, is divergent, but is also identical ro the divergent pan of
(4.51) in the expression for pft. Thus, since pí=pir-p;2, these divergent terms
cancel in the final ¡esult.
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4.6. CHARACTERISTIC IMPEDANCE RESULTS FOR THIN.IryIRE
STRUCTURES

ln this section, the characteristic impedances of thin-wi¡e structures located above
a lossy interface a¡e calculated. Results obtained using the new definition proposed in
section 4.2 will be compared to those determined using the equivalent circuit method
(section 4.3), the voltage-curent method (section 4.4), and the power-cunent definition
(section 4.5). A discussion of the discrete modes of propagation ,t/ supponed by
thin-wi¡e structures was presented in detail in chapter 3. For single conductor systems,
there a¡e normally two discrete mode solutions. one of the modes is found near the
quasi-TEM solution for the structu¡e (this mode was denoted as the tra¡smission line
mode k[L in section 3.4.1). The other discrete mode is located nea¡ the branch point
k"¡ in the complex Ç plane which represents the TM surface wave supported by the
half-space geomery (this mode was denoted as the fast wave solution &fw in section
3.4.1). Figure 3.11 demonstrated that there was rwo types of behaviou¡ of the mode
solutions in the complex ,t, plane as a function of frequency, depending on the half-
space electrical properties and the height of the conductor above the interface. In
order to examine both types of behaviou¡, two structue geometries will be stud.ied in
this section. As well, a comparison of the modal characteristic impedance with the
exact input impedance, as calculated using the complete specral domain transform,
will be made.

Two different single conductor systems located above a lossy eanh will be exam-
ined. In both sysrems, the conductor radius is a =0.0025m and the eanh electrical pre.
penies are specified.as prs=1.0, erg=15, and og=0.01. The normalized propagation
constants k;t'lke, k[wlke as a function of frequency for two different conductor heights
is shown in figure 4,5. In one case the conductor height is chosen as å=1.0¡¿, so that
the fast wave solution is always near the su¡face wave b¡anch point and the transmis-
sion line bolution remains the dominant contribution to the current throughout the
enti¡e frequency spectrum. In the second case the conductor height is chosen as
h= 5,0m, so that the roles of the two mode solutions interchange as the operating fre-
quency is inc¡eased (rhe k[L mode becomes the k:v mode and visa versa). The real
and imaginary parts of the cha¡acteristic impedances Zcp , p =TL ,FW for the two
cases a¡€ given in figure 4.6, as calculated using the proposed definition (4.24). Exa_
mining the å =1.02 case, the magnitude of the characteristic impedance of the fast
wave mode Z6p,,y is extremely large except for a small ponion of the frequency spec-
trum near 30MHz , this being wherc klL nd klw a¡e in close proximity to each other.
Examining the h=5.0m case shows that, as with the propagation constants, the roles of
the characteristic impedances of the two modes inte¡change for large conductor heights
as the frequency is increased. since the characteristic impedance of the fast-wave
mode is extremely large except at a small ponion of the frequency spectrum, it is
expected that energy will not be effrciently coupled to this mode in most situations.
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Figures 4.7 and 4.8 compare the results of the new definition for the cha¡acteristic
impedance (4.25) to fou¡ other commonly used deflnitions. These specifically are; the
circuit equivalent method (4.35), where the transmission line circuit pa¡ameters
Z'"' (kl) aÃd Y'h (kÐ a¡e assumed to be starionary about the rcot kz=kll the voltage-
cunenr method (4.43), where two different line integral paths are used to define the
voløge; and the power-current method (4.4?), where an integration of the axially
di¡ected power density ove¡ the structu.fe cross-section is used to obtain the power pro-
pagated by the mode. For both cases, as the frequency becomes very small, all
methods converge to the circuit equivalent result. For extremely large frequencies, the
structure behaves as an infinite conductor located in free space. For this situation, the
circuit equivalent and voltage-current methods converge to the same result, with the
power-cuffent and the proposed deñnition becoming the same except for a small con-
stant difference in the imaginary pans of the cha¡acteristic impedances. The voltage-
curent definition results, calculated using the path ¿1, began to deviate from the
results of all the other definitions at a much lower frequency. This is due to the fields
at large heights above the conductor giving a major contribution to the line integral,
thus being more affected by the TEM assumption. The results calculated using the
path Lz did not show this behaviour since the major contribution to the line integral is
f¡om the small region between the eanh and the conductor. Examining figures 4.6 and
4.7 for the å=1.0m case, shows that near a frequenc y of 3xL07 Hz the characteristic
impedance zçv¿ becomes very small. At this point the excitation efficiency of the rZ
mode is very good. This result may have applications in surface wave antenna design.

To complete the resuits, the characteristic impedance Zçy¿ of the dominant
disc¡ete mode will be compared to the input inpedance z¡, seen by a delta function
voltage source ys located at some point along the in-finite transmission line. If the
discrete modal contribution dominates the cuûent, then the two impedances should be
equivalent Z¡r= Eç7y, as discussed in section 3.3.2. Tlne input impedance Z¡, is cal-
culated by determining the complete spectral domain contribution to the cu¡rent at the
source location, as given by the tansform (3.29) in chapter 3. The ¡eal and imaginary
parts of the input impedances as a function of frequency fo¡ the rwo cases considered
in this section are given in figures 4.9 and 4.10. The results show that the discrete
mode assumption is valid as long as the height of the conductor is less than the free
space wavelength. For heights comparable to the fiee space wavelength, the branch
cut contributions to the curent present in the complete spectral domain transform
become imponant,
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Chapter 5
'Wave Propagation Along a Conductor

Near Or At a Lossy Interface

The study of wave propagation along conductors located nea¡ or at a lossy planar
interface is of interest in low frequency radio transmission, geoelectromagnetics for
remote sensing applications, as well as in the power engineering field for transmission
line analysis. It is imponant to determine the effect of the interface on the propagation
and ¡adiation cha¡ac¡eristics of the geometry, especially if it is highly lossy as in the
case of the ea¡h. In the past, and as extensively examined in chapter 3, almost a.ll
theories have treated the problem assuming a thin-wi¡e approximation to model the
conductor [carson, sunde, wait5, Kuester2]. This means only axia.lly di¡ected crurents
having a uniform azimuthal distribution a¡e assumed to propagate. Even the solution
to this simplified model has proven difñcult; beginning with ca¡son in 1926 [carson]
who took an approximate circuit approach, to Wait [Wait5] who presented an exacr
solution in integral form. All this work, based on the thin-wi¡e approximation, has
been successfully applied to many practicat problems. However, if the conductor is
not thin or is located near the interface, the azimuthal curent distribution will not be
uniform and azimuthal current components will also be present.

For a conductor located well above the lossy interface, the propagation constant
of the guided waves along the structu¡e will be close to the wavenumber of the upper
medium (free space in the case of transmission lines above an ea¡th). For a conductor
buried deep in the lossy medium, the propagation constant will be close to that of the
medium in which it is embedded. However, the evaluation of the propagation constant
for the structu¡e becomes difficult when the conductor is located near or at the med.ia
interface. For the case of an infinitely thin conductor located at the interface between
two media, Coleman [Coleman] showed that the propagation constant will be equal to
the mean-squar€ average of the wavenumbers of the two media. Wait and Spies

fWait4l determined the resulting fields for an axially uniform line current on an
infuitely thin conductor located at the interface. wait [wait5] then presented exact
expressions in integral form for the current on a single ci¡cula¡ conductor located
above a lossy interface, under the assumprion of the thin-wi¡e approximation. Chang
and Wait lChangl] determined the propagation constants for both above ground and
buried conductors near a lossy interface at ELF frequencies. At these low frequencies,
it is assumed that the height of the conductor is much less than ttre skin depth of the
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Chapter 5 Conductor Nea¡ Or At a L,ossy Interface

eafih and closed form expressions for approximating the infinite integrals represendng
both conduction and displacement cürent effects were derived. They also used the
assumption of a uniform axially directed cur¡ent distribution a¡ound the conductor in
deriving the propagarion consrant for the limiting case of a vanishing height when the
conductor radius to height ratio was fixed. olsen and pankaskie [olsenT] give results
of the propagation constant calculated for a finite radius conducto¡ with a uniform
cur¡ent distribution located at the interface between two media. The results are com-
pared to those calculated using Carson's quasi-TEM approximation [Carson], which
a¡e shown to be invalid in this case. Pogorzelski a-nd chang [pogorzelski] formulated
the problem of a ci¡cular conductor located nea¡ a lossy planar interface by øking into
account a non-uniform azimuthal cufrent distribution. The formulation examined the
effect of only the zero and fust order azimuthal and axial Fourier cur¡ent components
on the propagation constant. In a series of papers by Butler et al. [Butlerl, Butler2,
Butler3, Xul, a scattering approach was taken to determine the curent induced on a
perfectly conducting cylinder located near the interface between two med.ia by a
known excitation. These studies are made for various conductor shapes; circular,
square, strips, etc. The formulation in these papers and others [Newmanl], however,
is a two-dimensional one considering either a TE or TM axially invariant excitation.
Funher, their work was oriented towa¡ds scattering from conductors laying on or near
a dielectric interface (the media considered had small losses), whereas this work is
concerned mainly with a highly lossy interface, with the effect on the cur¡ent distribu-
tion being much more pronounced in the latter case,

In this chapter, the p¡opagation constanrs and associated current distributions for
the discrete cha¡acteristic modes supported by cylindrical conductors located near or at
a lossy planar interface a¡e determined. An axially di¡ected current is still assumed,
but an arbieary azimuthal distribution is taken into account in the formulation.
Although the formulation is general for aly size, numerical results for cases where the
dimensions of the conductor a¡e much less than the free space wavelength will be con-
side¡ed here. Some of d¡s important questions that a¡e examined a¡e:

1. Is the use of the thin-wi¡e approximation valid for small conductor heights and if
not, what must the height to radius ratio be for it to be acceptable?

2. How does a non-uniform curent disrribution effect the propagation constant and
radiated frelds for the structu¡e?

3. Can the quasi-TEM approximation (Carson's ci¡cuit based formulas) be used to
determine the âelds of a conductor near the ea¡th or are mo¡e exact expressions
for the conduction and displacement curents required?

4, A dramatic change in the propagation constant occurs "jusr " as the conductor
comes in contact with the interface (/¡ -+0) if the lowe¡ medium is highly con-
ducting (as in the case of a typical earth at frequencies below lMHz). Before
contacling the interface, the propagation constant is nea¡ the free space value, and
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once it is buried, it is nea¡ that of the lower medium. Is the propagation constant
equal to the average value of these two limits when at the interface (å =0) and
what is the current distribution on the conductor for this case?

5,1. INTEGRAL EQUATION FORMULATION AND NUMERICAL
SOLUTION

The problem considered consists of a single arbitrary shaped cylindrical conductor
located above and parallel to a lossy homogeneous interface as shown in figure 5.1.
The region y>0 is considered to be free space, cha¡acterized by a permittivity e, and a
permeability p, . fre region y <0 is designated as the lossy eanh, cha¡acteri zed by a
perminivity es, a permeability p' and a conductivity os. The conductor is defined by
the surface S, which is inva¡iant in the z-dimension and defined by the generating
curve Cep(x,y). It is required to determine the characteristic propagating modes and
associated curent distributions ¡F¡; Fe,S on the su¡face of the conductor for a given
geometry.

98 
' l.t, v8

Figure 5.1: Conductor over lossy interface geomctry.

The solution of the problem is facilitated by solving the wave equation in each
media region (the conductor and upper and lower half-spaces) and satisfying the boun-
dary conditions at thei¡ interfaces. As developed in chapter 2, this results in an
integral equation (2.10), whose solution yields the unknown curent disrribution on the
surface 5. For a perfect electric conductor located in the upper half-space, only the
total electric field tangential to the conductor su¡face is required to be zero, and thus,
only the Green's function components ê" =6""<""¡ in the integral equation are
required. An integral equation for the solution of the problem considered in figure 5.1
can then be formulated as

. t,,: l
h"1r¡ x l)) a"6,-t¡t6')d-r + elf <¡¡l = o ; Fe S

lsJ

7= (z,î)
€e ,!rs ,og

(s.1)
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where â, (F) is the unit vector normal ro the surface S at F. This is simply an electric

&ld integral equation which must be satisfred over rhe inñnite length of the conductor.
ce? ,7') is the Green's function giving the electric field due to a delta function line
source, which is formulated to take into account the effect of the lossy planar interface,
and can be deduced from appendix A. E¿*(r ) is rhe field incident on the conductor
due to some extemaÌ sou¡ce an¿ (¡) is the cu¡rent induced on the surface of the
structure. The formulation as presented in (5.1) is the general case, where the cuÍenr
induced by any desired souÍce can be determined by properly specifying the incident
electric field. The allowa¡ce for a non-perfect conducting cylinder can also easily be
incorporated into (5.1) using the impedance boundary condition at the surface or the
complete integral equation form (2.10) developed in chapter 2. As in section 2.2,
when the physical geometry of the conductor-half-space problem is invariant with
respect to the z-dimension, a solution to the integral equation can be obtained in the
spectral domain by utilizing the spacial Fourier transfonn pair

f (k") = lqr¡r-i|' ¿, , r(z) = j Í f &,)r*ja" at, 6.2)

The integral 
"Ou.rJn 

(5.1) can then be solved as a two-dimensional problem as

f.- 'j

4tÞ'1" lJc"<Fo:t,v<î;k,)dF +E)*6,r,¡l=o ; p€c,<q|,4oê (s.3)LcJ
where all fields and curents are now assumed to have an axial dependence of the form
e+itqz-i@t. The path of integration in the integral equation (5.3) is now over the gen-
erating cuwe c. In the cases studied in this chapter oniy -an axially di¡ected current
component will be assumed to propagate on the conductor, J(p,kr)=Jr(p,&r¡â. Thus,
continuity of only the tangential â components of the electric field on the conductor
surface is required and only the componenr G"r"@F:kr) is used. The resulting
integral equation is valid for an arbirary source excitation, and can be solved using a
moment method approach as derived in chapter 2. However, interest is in the homo-
geneous solutions of (5.3) for determining the cha¡acteristic modes that can propagate
on the structu¡e and in the resulting current distributions for these modes. Taking
E)*çp,t"¡=O in the homogeneous case, these results a¡e then determined by solving
the scaiar integral equation

ÍG",,(p,F:k,)t,(îik,)d-p = o i p e c
c

(5.4)

Here the eigenvalues kz =kl ip=1,2,...,P satisfying (5.4) are the characteristic propa-
gation constants for the structure, which are in general complex. solurions of this
mode equation define cu¡rents and fields which have an axial dependence of the form
exp(ljkfz-j ot ). The current distribution on rhe conductor for each mode is given
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from the eigenvectors of (5.4) as

I"(p,z) = $(p¡¿xiklz-iøt i p=1,2,...,P

Conductor Nea¡ Or At a l,ossy Interface

(5.s)

The solution of the mode equation (5.4) will be determined numerica.lly using the
method of moments following the procedue discussed in chapter 2 (2.16-2.22) and as

shown in figure 5.2. I¡ this section, the unknown cunent distribution a¡ound the con-
tou¡ C will be expanded using a pulse function basis lln ( p ) as

(5.6)

where the contour C has been approximated by N discrete line segments Áco with the
value of the total cturent on each segment given by the constant fi. Note that the
expansion of the current using this basis is approximate for finite N. Solution of the
N constants ff is facilitated by computing an appropriate inner product <,> of (5.4)
with some testing function basis. choosing a delta function testing basis consisting of
N matching points located at the centeß of the segments Âcn will yield the set of
linear equations

r l\/ac^ ,pe a.c^
¡!(î) = >tîn^Gl n,(Þ) = l0 , otherwise¿=l

(s.8)

L{/ (Þ)} = !C*,1p,p"r,"=k!)f G.)dF.
c

< d (Þ.), å (Þ) > = I a Cp')ø (F )al
c

where -p. is the center of the segment Âcr. The resulting set of linea¡ equations (5.9)

Figure 5.2: Pulse function expansion-delta function tesdng MOM solution.
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The possible solutions of these sets of linear equarions yields p characteristic eigen-
values ,tf representing the propagation consrants, and their conesponding eigenvectors
[1e ] giving the current distribution.

The scalar Greenis function G 
"r, 

(Q,pik") which determines the â comþonent of
the electric field at the observation point þ due to a delta function line source located
at Þ' can be deduced in the same manner as the Green's functions formulated in
appendix A. Assuming an axia.l dependence of the form ,*ih" , th" fields of a delta
function line source located at (x'¡') can be deduced by solving the two-d.imensional
wave equation in each ai¡ and ea¡th half-space, these being written in terms of poten-
tial vectors as

Chapter 5

can then be solved in matrix form as

Conductor Nea¡ Or At a tossy Interface

(s.e)

(5.10)

(s.1 1)

(5.13)

,v +y')

where fI¿ and fI8 a¡e the two-dimensional Hertz vector potentials in the ai¡ and ea¡th
regions, respectively. Here t" = r[rt]t "E is the propagation constant in the ai¡
medium, and t, = ^/ælr, a, -J % % is the propagarion .onr,.rr, in the ground
medium. The associated flelds in the upper half-space, and thus G"rr(p,Çikr), ue
determined from

E" =vs'¡"*¡z¡" , F" = --!!v*n" , Gezz(p,p:kz)=E"G)., (s.12)
I @þ"

A solution to (5.11) is obtained using the rransform techniques (A.6-A.12) and then
satisfying the boundary conditions at the air-ea¡th interface. In the case of equal air
and ground pemreabilities (p, =[" ), the Green's function is determined as

G","(F,p:k") = 
-#{"t[*.,r, 

I p¿ I )-ro(t" f -oå f l]

lz(kz=k!)l?P) = 0 ;p=1,2,..!

zn,n(kz) = -zñ"(k,) = -<L{n,(Þ)},ô( -p.)>
1 r^

= -;; J Gezz(p,",p',kz)dl
""n Ãc,

tv2 - &?-k:)l fr" = 
-'t+" õ@-x1õ(y-y)t , y>0

lvz - &?-kþt n¿ = o , y<0

- rltlr 
" 
çi,1 + tlo<r",ç|,tl

pD=G-x',y-y'¡ , pj=@-xÞ= (¡,y ) , p' = (x' ,y')
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Jç",pi,l = i -: -,-'r+ 
I'-'' l -u'o+t) oo,

-ue+ug
c(r,,-pj ) = j ---l- r+itc I x-x' | -u,tt +t) 

oo,

- n'u e+u s

u" =.'[t ,\ "? us = ^fæ;e , Retu,,us ] > o

where t, = rt\1$ and t, = ^fFæ a¡e rhe transverse propagarion constanrs in the
ai¡ and earth media, respectively. The real parts of the i¡rationals Re[U",Ur]20 and
Re[t,,tr l20 have been chosen to retain a posirive value on the correct Riemann sheet,
these branch cuts being defined to ensu¡e that the cu¡rents and fields decay at infi-nity.
Kg(z) is the modiñed Bessel function of complex argument and n=kslk" is the ¡efrac-
tive index of the ai¡-ea¡th interface. In the derivation of (5.13), the te¡m involving
XoG" LFq I ) is due to the primary field of the crurent sou¡ce, and the term involving
X oG" I FÅ | ) is due to its image as if the ea¡th were perfectly conducting. The
remaining te¡ms in integral form, (5.14) are the cor¡ections due to the imperfectly con-
ducting earth. Extension of ttre theory to account for a multiple layered eanh model
can be facilitated by modifþg (5.1a) fwaitgl.

Using ttre Green's function G"u(pd,kr), the impedance matrix elements i¡

(5.14a)

(s.14b)

(5.1s)

(s.16)

(5.10) a¡e given as [Bridges6]

zñn(kz) = -z;-(k") = - þt^,<r,l - zH&))

[ -jrv" 1 r
I #f I úrcol"lEol¡a-p im*n

" I zrclte ^"6 b.
zi-@") = I -r*, i "? sin(l'Âcnl2) .^

læ Lñw--|,*;¿-dì'l im=n

-,'... -j (,,iþ" I r["-- ,-ù, -]zr-k"\= '=' ^ t túKoß' l-pj ll + k?Jo",Fþ - *]c1r"çi,¡)dp- (s.r:.)2tk: Lco i,L
po=(x^-x'¡^-y'), Ç|=@^-x'¡^+y')

The solutions of (5.9) giving the propagation consranrs &f is a generalized eigen-
value problem facilitared by solving the determinant lZ<*Ðl =0,p=1,2,...,p. For
each of the characteristic modes found, there corresponds an eigenvector [1p] for
which the cu¡rent disribution of each mode 4(Þ) can be determined using (5.5,5.6).
ln general, the¡e will be P>N distinct eigenva_lues for each of which there corresponds
an appropriate eigencurrent. The evaluation of rhe Fourier integrals J(tr,Þ) and
G(t, ,Þ') in (5.14) a¡e difûcult and usually numerical i-ntegration techniques must be
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employed in the general case, with the analytical approximations and numerical
eva-luation methods for these integrals being discussed in appendix B.

5.2. THIN.WIRE AND QUASI.TEM APPROXIMATIONS
The solution of the set of rinear equations (5.9) for the general case of an arbi-

trary shaped conductor involves the evaluation of a large number of infinite integrals.
To simplify the problem, two coÌnmon approximations which are often used in practice
will be examined. The fust is the thin-wi¡e approximation, where the azimuthal
cu¡rent distribution a¡ound the conductor is assumed to be uniform. This approxima-
tion was derived and extensively discussed in chapter 3 for multiple conductor struc-
tues. The approximation is valid when the mean radius of the conductor is sma
compared to the wavelength in the medium in which it is embedded and if the d.istance
from all other discontinuities (such as the air-eanh interface or other conductors) is
large compared to the conductor radius. It has been the basis of almost all the previ-
ous works in solving conductor-half-space problems. The thin-wi¡e approximation for
circular conductors can be derived directly from the integral equation solution (5.4)
under the uniform current assumption

I,(p,z) - rf(¡e+i*r -i'N = J!-rtirr-i^,

where a is the radius of the conductor ønd, Il is the total current flowing in the con-
ductor for the pth mode. Replacing the currenr distribution with (5.1g), the integral in
(5.4) will yield the average vaiue of the flelds a¡ound the conductor circumference,
which can be evaluated analytically (as done in chapter 3 (3.21) except a perfect con-
ductor is assumed here) as

Z(k,=k!)$ = A , P=l'2'...f (s.19)

(5.18)

(s.20)

z (k,) = - * lo ",, 
r1,p-:k )dF'

= #'o'""o>{4r¡'"ot
- r s(r.a) lrlx rf""znl + k:Jß",zhg) - r,rc<"",2n9¡fl

")
where å is the height of the conductor above the interface (to the conductor center).
The modified Bessel function 1¿(z) takes into account the average value of the fields
and enforces the boundary condition at the conductor-air interface. The functions
J(t" þ) and G(t,,Þ) a¡e the same Fourier integrals as defined in (5.14). Determining
the eigenvalues of this single term linear equation (5.19) is much faster than solving
the matrix equation (5.9).
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As previously discussed, the propagation constant of an inñnitely thin conductor
located at the interface of the two media will be equal to the mean-square average
value of their wavenumbers [Coleman]. This result ca¡ be derived from (5.20), in a
simila¡ manner as in [changl], by assuming the heighr to ¡adius ¡atio to be constant
(h la=const) and considering the limiting case l, -+0, ¿ -+0. Under these conditions,
the dominant terms in (5.20) can be identified to yield

*i",'.'' I 

^"e)+ 
tlrn(r"zn) - +^["*r)] (5.21)z(k")= -j--r+^1'¿- 

^-t-¿ 
|.L&e 
L

I ¡(r,"a) 

-> 
|

Ks(r.a) - K¡(r"2h) 

-, 
¡12¡¡of' a,h--sl t J

Jß,,zhÐ ;_7 -tn(r"2h) , G(1",2h9) 

-, 
4-nG"Zn)

a ,h -¿O a,h --t0 nzll
Since the height to radius rario is fixed, the solution of (5.19) with Z(k") replaced by
(5.21), gives the mean-square average resulr kl =k!,t =r[QÇ*lÇrn. The limiting
approximations for J(¡",Þ) and G(t,,p ) were discussed in appendix B.

A second method of simplifying the evaluarion of the mode equarion (5.9) is by
employing the quasi-TEM approximation. As discussed in section 2.4.7 and 3.3.3, the
quasi-TEM approximation assumes thar the axial va¡iation of the fields is equal to that
of the upper medium (k" =,t, ) when solving the wave equadon in each half-space (ie.
setting f¿ =0 in (5.11)). In this manner, the fields in the upper half-space will be a
solution of the two-dimensional Laplace equation. This low frequency approximation
has been successfully applied to many engineering problems and is generally accept-
able under the condidons that the dimensions of the transmission line should be much
less than the wavelength in the upper medium (a ,h <L") as well as the refractive
index of the ai¡-ea¡th interface should be la¡ge ( I , I >t¡ ¡fingt, Bridges3l. How-
ever, even if these conditions hold the quasi-TEM approximation will not be valid as
the conductor approaches the interface lolsenT], a mo¡e detailed examinarion of this
limitation being discussed latter in this chapter. Applying the quasi-TEM approxima-
tion by assumin g ,"=',[k]1 -0 in the wave equation (5.11), the Green's function
a¡d thus the impedance matrix elemenrs (5.15-5.17) can be ¡ederived in the simplified
form

lz(kz)l = LZ'", l+k]¡y'nyr

z#= -+l*,*. fi j1"<ø;toø.f

(s.22)

(s.23)

105



Chapter 5 Conductor Nea¡ O¡ At a Lossy Interface

(s.24)(Y'h)-Å= -þnl"-,1

f+ ^t* 
[ rø t / to, t) ¿-p

u,-=1( ì

[ [' 
-'"+ 

I 
. #J"'"Ir-* r ] op'

,m*n

,m=n

(5.2s)

G(t"=0,-pj; = 6, Xv"=O,F;)--+.1"(-pj)

^ if _]
J" ( -pJ I = -i7 J l, -^l rrlnz-¡ )r-ú, 

rt^*v') cos(uk" l r^-x. | ¡ du (5.26)n'-l o'
Here the series impedance Zffi and the shunt admitta¡ce rS terms are the equivalent
per unit length circuit parameters for the structu¡e. The solution to (5.9) can now be
found as a sta¡rda¡d eigenvalue problem. The logarithmic terms in (5.25) represent the
primary field and its image under the conditions of a perfectly conducting eanh. The
integral term J"(Þð) represents the conduction losses in the ea¡th and the contribution
of the integral G(tr,-pJ ), representing displacement cur¡ent losses in the eanh, has
been neglected completely. Expressions for evaluating the integral J"(-pi) a¡e As_
cussed in appendix B.

5.3. SOME NUMERICAL RESI.JLTS

In general, the¡e will be many possible solutions to the mode equation (5.9), each
representing a discrete guided mode (k!, $(F)tp=0,1,2,.,.,p ) on the Eansmission
structtue. The modes can be categorized as consisting of a zero-orde¡ common mode
þ= 0) plus a sum of higher-order differential modes þ> 0). For the zero-order mode,
the current disribution around the ci¡cumfe¡ence of the conductor is primarily in
phase' with the retum current path through the lossy interface. on the other hand, the
higher'order modes have a cuÌent disribution whe¡e both the forward and return
current paths are along the conductor. Thus, the fields for the differential modes are
confined mainly to the region a¡ound the conductor and the effect of the interface will
not be as pronounced as for the coÍrmon mode. The results presented in this section
concentrate on the cha¡acterization of the zero-order mode propagation constant and
cu¡rent distribution since it is the dominant mode excited when the ove¡all dimensions
of the conductor are small compared to the free space wavelength, and is the mode
most affected by the presence of the lossy interface.

The û¡st geomeEry considered will be a circura¡ conductor located over a lossy
interface as shown in figure 5.3. The conductor has a fixed rad.ius of ¿ =0.0g2 with
the height h above the interface allowed to vary. The ground is characterized by the
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electrical propenies É,3=1.0' ê"=5.0, os=0.01 and an operating frequency of l\oKqz
is chosen. under these conditions, the ground can be considered conducting
(n = 30.02+j29.94). The paramerer L, =h-a in figure 5.3 indicates the distance from
the interface to the bonom ôf the conductor. Figure 5.4 gives the normalized propaga-
tion consta¡ts kflk" and, the corresponding relative current distributions ,r/(þ) for the
fust five modes (p=0,1,2,3,4) supponed by the conductor for a heíght h =0.24m
(Lla=2.0). The influence of the interface causes rhe current distribution to be more
concentrated near 0=0o (the bottom of the conductor) due to the proximity effect, the
influence being greatest for the zero-order mode. since the cu¡rent will be symmetric
about O=0, only the range 0<S< 180 is ploued, with O=0 the bonom and O= 1g0 the
top of the conductor as indicated in figure 5.3. Figure 5.5 gives the normalized zero-
order mode propagation constant kflk" for various conductor heights (using eqns.
(5'9-5.17)). For heights Â/a > I the propagation constant is found near that of the
upper half-space (kitk"= 1¡, and only when the conductor becomes very close to the
interface Lla < | does the deviation become significa¡t. As the conducto¡ comes in
contact with the interface Na -+ 0, the propagation constant converges to a value nea¡
the meân-squa¡e avenge kfvE. Figure 5.6 gives the conesponding normalized cunent
distribution "I"o(Q) around the ci¡cumference of the conductor for various heights. The
effect of the eanh on the cu¡rent disribution is much more pronounced than observed
for the propagation consta¡t. At a heighr of Na = 1.5 the deviation in the maximum
cunent from a uniform distribution is 75Vo, whercas the enor in k! is only 2.4Vo.
Even at the large height of Na = 12.5, the cu¡¡ent deviarion is still lgvo and with only
a 0.06vo error in tr¿. For heights Na > l, the deviation in the current behaves as the
fust-order Fourier component cos0, however, for smaller heights higher order terms are
required for an accurate representation.

180p

Figure 5.3: Ci¡cula¡ conductor geomebry.
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Figure 5.4: Propagation constanrs and current distributions for the fi¡st
five modes supported by a circular conductor.

Figure 5.7 compa¡es tl¡e zero order propagation constanr ,to presented in figure
5'5 with the results calculated using the quasi-TEM approximation (eqns. (5.23-5.26)).
For the case considered, the classical TEM condition s ln,a l<I, =3O00rn and
I n I =42,4> 1 a¡e all satisfied. The quasi-TEM approximation gives good results

even when the conducto¡ is very close to the interface Na > lll0, however, beyond
this point the approximation is unacceptable. The er¡o¡ is mainly due to the neglection
of the displacemenr current term G(t" ,-pj ) contributing to the shunt admittance in
(5.24). Figure 5.8 compares the propagation consranr ko presented in figure 5.5 with
the results calculated using the thin-wi¡e approximation (e4ns. (5.19-5.20)) under rhe
uniform cturent assumption. For rhe case shown, the thin-wi¡e approximation is valid
only if Á,/ø > 1. Note that as the conductor approaches the interface Â -+ 0, the thin-
wi¡e ¡esult rapidly converges to the inconect result determined by (5.20) with
h = L+a -rø. The dashed cu¡ve in figure 5.8 shows the variation of the propagation
constant when the height to radius ratio is held constant Na = 1.5. The variation is

%'o,ol
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very small for a wide ralge of conductor heights. This can be explained by examina-
tion of (5.23-5.25) where the dominant term Mnø (representing the static coupling)
remai¡s constant, with the conduction losses in (5.23) Jc causing a small pemubation.
This result also indicates that the limiting process å -+0, ¿ -+0 in (5.21), used to obtain
the mean-square average value kfvE, is achieved only when h and. a are extremely
small.

Figure 5.9 examines the effect of rhe conductor ¡adius ¿ in the limiting case
when the conductor is lying on the interface Â = 0. A large range of radii a¡e exam-
ined 0 <¿ S 102, and even though the convergence is extremely slow, the propaga_
tion constant converges to the mean-square average value k! -+kfvg as the ¡ad.ius
approaches the infinitesimal case ¿ -+0. Figure 5.9 indicates that once rhe conductor
comes in contact with the interface, the effect of rhe ¡adius is smail and thus a good
approximation for any geometry that touches the inærface is the mean-squ¿ì.re average
value. The results from figure 5.5, for the specific radius c =0.08m as Â -+ 0, is also
included as the dashed curve.
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Figure 5.9: Zero-order mode propagation constant kflk" fot a conductor
lying on the interface Â=0 for various radii a . The dashed
curve indicates the results for the varying height case of
figure 5.5.
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Figure 5.10 gives the zero-o¡der mode fields for a circular conductor of radius
a =4.08m driven by a cürent of unit strength (1j=1). The magnitude of the â com_
ponent of the electric field along the interface I t"rçy=O¡ I is determined for various
conducro¡ heights. The frelds a¡e calculated using the Green's function (5.13). Results
are given when a¡ arbitrary cunent distribution is allowed (solid curves), as well as for
the thin-wire approximation (dashed curves). It is observed that the thin-wi¡e approxi-
mation is acceptable for calculating the frelds even when Â,¡¿ < 1 as long as the obser-
vation point is not near the conductor (the exact value for the propagation constant
must be used).

x (m)

Figure 5.10: Ele¡ric ñeld I SrOa) I at the interface for va¡ious
conductor heights.

Lastly, Figures 5.11 and 5.12 examine the propagation constant and cu:rent distri-
bution as a function of frequency for a conductor of radius a4.0gm and height
L=0.12m (Á/a = 1.5). The results determined using the thin-wi¡e and quasi-TEM
approximations are also given in figure 5.11. over the ponion of the frequency spec-
trum /--16ó-t168rlz, the ground med.ium changes from behaving as a good conducto¡
(/=106: ¡, l=13.7=r@trrrÇ=12.8) to behaving as a dielectc (,f IrO8, lnl=2.3
=,le,s =2.24). Thus, even though the condition I h ,o I <)," holds, the quasi-TEM
approximation is no longer valid past abo,¡t lMHz due to the cond.ition I n I > i f"il-
ing. The enor in the thin-wire approximation remai¡s relatively constant throughout
the whole frequency range since Â,/¿ > 1 is satisfied. Figure 5.12 shows there is not a
large variation in the calculated current distribution as a function of frequency,

€,s=5 os-o.ol

e Â=1.0 (Na=12.5)
_-+__a=0.08 (ó/a=1.00)
+Â=0.005 (A/a=t/16)

thi¡-wire
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Figurc 5.11: Propagation constant kflk" as a function of frequency
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5.4. FOURIER EXPANSION OF THE CURRENT DISTRIBUTION

ln the previous sections, the unïnown current distribution a¡ound the conductor
was expanded in terms of a pulse function basis (5.6). ln this section, a cylindrical
Fourier expansion cosnQ will be used as an altemative basis to represent the curent
distribution on ci¡cula¡ conductors. The zero-order axial and fust-order axial and
azimuthal Fourier componenrs were formulated by pogorzelski [pogoF2] to investigate
the effect of the interface on the propagation constanr a¡d cu¡rent d.istribution of a ci¡-
cular wire above a lossy half-space. Note that the zero-order component n=0 is the
thin-wi¡e approximarion derived in 5.2 and thoroughly examined in chapter 3. The
choice of a Fourie¡ basis is more appropriate than a pulse function basis for circular
conducto¡s since the primary fields will be orthogonal in the Fourier case. Thus, the
only coupling between the expansion modes will be due to the presence of the inter-
face (if the interface were not present, the interaction matrix (5.9) would tre diagonal).
As weil, an analytical solution for the interaction matrix elements can be derived using
addition theorems for cylindrical functions, whereas an integration was required for rhe
pulse function basis (5.10). These advantages a¡e lost however, when general (non-
circular) conductor geometries are considered, and a pulse function or some other
discrete basis is more suitable.

A solution to the mode equation (5.4) can be determined numerically by expand-
ing the unknown crurent distribution for the pth mode, as shown in figure 5.13, using a
Fourie¡ basis defined as

l"o.nô r--,
t J-'?"; 't?-Pwt =a

4(p)= ÐIîY^(F) v"(Þ)= I õ,otherwise
t¡ =l t

(s.27)

where þ,u= (0,å) is the location of the conductor center, d is its radius, and /f, is the
total curent for the nth Fourier component, for the pth mode. Note that the position
vector p can be defined æ a function Þ=(r,Q). The prccedure for solving for rhe unk-
nown expansion coefficients is the same as that used in the previous section (5.9). In
the solution used here, the testing basis is chosen to be the same as the expansion
basis w,'(þ)-Yr(p-) such that the resulting set of linea¡ equarions is formed as

lz(kz+!)l[/P] = 0 ;p=t,2,.'f
z*"(k') = - zi^G") = - < L{Y, (Þ)}, Y, (Þ) >

= - -f-Jcos.o );\c",,,{ pgik,)cosnQ' dp' dp
¿tts C ¿lCU C

(s.28)

(s.2e)

where the contour C is üre generating curve for the ci¡cula¡ conductor and
Gezz"( p,p:kz) is the Green's function for rhe nth-order two-dimensional electric mul-
tipole over a lossy half-space. As in the previous section, a perfectly conducting circu-
la¡ conduclor will be assumed.
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fs €5 o'
Figure 5.13: Ci¡cular conducto¡ geometry for a Fouiier éxpansion-Fourier

testing MOM solution.

The Green's function for the nth-order electric multipole can be derived by deter-
mining the fields due to the delta function line sou¡ce ^lf,cosn Q. Assuming an axial
dependence of the form e+jtçz , the fields are deduced in the same manner as in section
5.1, by solving the two-dimensional wave equation in each of the ai¡ and eanh half-
spaces. These can be determined in terms of potential vectors for each of the nth-
order multipoles as

Ív2 - G,z-k?)t n: = 
-i 

T!" ,lcosn Q.ô( ¡p.)â ; ) >0

lv2 - (k,2-kl)l Hi = o ; y<0
(s,30)

where rlf and rIf, are the two-dimensional Hertz vector potentials in the air and ea¡th
regions, respectively. tlgre lN= ,{æp"% is the propagarion constant in the ai¡
medium ana f, ={ffir6r..;@Ç is the propaga,ion .onrr*, in the ground
medium. þ' is the location of the delta function line sou¡ce. The associated fields,
and thus the Green's functions required for the matrix elements (5.29), a¡e determined
from

t2
8", =vv.n¡+k?fri , a", = ,"årrvxfr" , G",,,(p,p:k,) =8,,(F),î (5.31)

where the fields will have the same nrh-orde¡ Q dependence as the potential functions.
only the cosnþ electric multipoles a¡e considered since they are even functions with
respect to the interface (x=:' plane). There will not be a perturbation in the azimuthal
cunent distribution due to the sinnQ multipoles since they a¡e odd functions with
respect to the interface.
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ln the rest of the derivation, only the n =0,l-order multipole potentials will be
considered since they are easily derived. Noting that the solution to the homogeneous
part of the upper ha.lf-space wave equadon in (5.30) has the integral form

F n @ ¡,k,) = F, (r,þ,k") = j ¡,g,,n")"-^t4+Ft',= I t t' I +ik"(x -x') OO, (5.32)

then it is seen that functions of ttre tie âF^ lðy will also be homogeneous solutions of
(5.30). Specifying ,=^[Ç-r'f*Ç1'f , i-y-;tr=-cosQ, the zero-order multipole
potential can then be related ro rhe fusr-order multipole potentia_l as [pogoF2]

(s.33)

since the zero- and fust-orde¡ fields (5.31) will also be related in the same manner, the
boundary conditions at the interface will be satisfied ror lIf, nç ir tney a¡e satisfied
for nfl, n5. fne Green's function Gurs(p$ik,) for the zero-order multipole was
derived in appendix A and also in section 5.2. Thus, the r=O,1 Green's functions a¡e
given from (5.31,5.33) as

G",,0(peik") = 
-+1"!¡x 

oçr"l ø I I - ro¡t, I -pj I )ì1al'z L -
-ttNe

- tcltl'c" Fì,1 + rlcç",p|,¡]

Ge,zt(p,F:k; = #-+*1"!¡xo1r"l ø I I - ro1t, I pj I lt

- k?Io",F;) + rlc6",p|,¡)

(s.34)

(s.3s)

lÞ, I = ^f@-Ð,+Wy"ir, lBj | =^[@-Ðz+G+y)2
with J(t,,p) and G(t,,p) being defined in (5.14).

'l-he first integration over C in (5.29) determines the average value of the nth-
order Gre¿n's functions and can be solved using the addition theorem for cylindrical
functions [AbroCl9] as

] - | c *,,1 P,Pik,)cosn þ' a p'
LILU C

= G,,,n ( F,î *,k,) + ! | t 01" 
" 

o ¡ + 2 i r ¡ 6" a ¡cos¿ O.lcos¿ 0. d-p,LttucL r=l J

= G"rrn(p,po,kr)lng,ra) (5.36)

where 1,,(z) is the modiñed Bessel function of o¡der n. The ¡emaining integration in
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\ unage cenær

\
Figure 5. 14: Integration coordinates for inner-product calculation.

(5.29) can be evaluated in two parts, one for the primary components d (p¿ ), and one
for the secondary reflected components F.Gb, as shown in figure 5.14. The primary
components are easily evaluated since they have a simple cosn $ variation such that

(

lKs('c.a) , m=n=O

{lr^A" I p¿ | ¡cosnqcosmö dp = ]!x,O"ol ,m=n=r (5.37)-"" c l"
I o ,m*n

where the primary flelds have been represented in their modified Bessel function form.
The integration of the secondary componenß, can be evaluated in thei¡ integral form
as

*["'u;'"'smQdp

= -1- i I f -k-lr-r.(o*r),ih, dk,cosmq dp2Ía t" " n t*' '"
*2n

= [ ¡ ^6,¡"-u,2^ ]- ¡ ,,u,o*so +.¡.t,¿ sinocosm 
O adþ dk, (5.3E)¿Ía o
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Using the Eansform k, =-ltrsinSg, (J" =1"cosþ6 and again the add.ition theorem for
cylindrical functions

*fr"t-øl.osmQ dp
¿ttØ C

*2fi

= I ¡n1k,¡r-u," fi Irn,""'s(Q-êo).or.q adþ dk,

= 
*¡ 

^ 
g,¡r-'''o 

*Tor, *" " "¡ 
+ z irt r 1,c 

" 
a ¡cos/c (Q - Q.)lcosrn þ ad þ dk,

lto@"a¡r,eh!) ,m=o=l- ¡ (5.39)

I!,n,rr-u''o f, r{""o)oo, = r r(r"ù!+F,eh ),m =t 
\J'J'

where cos(Q-$6) = u 
" 
lt"cosQ since the sinQ term is orthogonal. Thus, the interaction

matrix elements of (5.29) can be deduced for the ¿ =O,1 Fourier components as

lr"*u,, zaru,sllt1'f
Íz(kz)tÍtpt=-Lttoru", zî,&))Lrtl =o (5'40)

z ¿æ (k ) = #, or" 
" 
o, 

l"? * oA 
" 

o ¡ - r s(r 
" 

a )B (r 
",2 

n! ¡f

zeot &) = ffi ,.,<r"orlrrn" ",*å, n",rolr)

zl¡(k") = #,orr"or[r,c,,lf $, n",rolr) (s'41)

z it & z) = ffi ,,<, 
" 

o tl* ¡ r rr" 
" " 

t - r t<r, 
" 

a t 
uJ- fi ø<r 

",2 
ng t)

B(t",p-*) = rlK oqr" I Þ'- | ) + J(t,,Þ* ) - G(t",p*)

where the following relations can be used to simptify (5.41)

â ,.
#* or"" I î' =znf | ) = -r"K (t"2h)
-\, , (5.42)

#* *"" I p. =zn| | > = L*x ¡""2Ð + r?K o1,"zh)

The solutions of the mode equation I zlt y¡l =0 yield the propagation constants
kl;p=0,L,2,...P. The current disribution for each mode can be determined from the
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eigenvecton of (5.40) and using (5.27) as

Conductor Nea¡ Or At a Lossy Interface

z"N&!) zîo?l)
z"otk!) zï(kl)

IR I4
= JIQ=a,þ) ¡ ---Ì-.e 

=-l-cosôzna ¿Ía

where the total axial current florring in the conductor is given by the Ifl component.
The fust term of the Fourier expansion is simply the thin-wi¡e approximation derived
in section 5.2.

In the previous section, a study of the normalized common-mod.e propagation
constant k!/k" was made for a circula¡ conductor above a lossy interface. Figure 5.9
compared the exact results to those obtained using the thin-wire approximation. For
this case, the conductor had a fixed radius of a=0.08m with rhe height å above the
interface varied (Â =h-a) as referred to flgure 5.3. The ground was characterized by
!rr, =1.0, er, =5.0, os =0.01 and an operating frequency of ICf,KHz was chosen. Again

,l=
r6
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Figure 5.15: Comparison of kf /k" using the exac, thin-wi¡e and fust-order
Fourier formulations fo¡ various conductor heights Â.
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using this case, figure 5.15 compares rhese results with the propagation constant kllke
obtained when the zero- and fusçorder Fourier components a¡e used Iff +lfcosQ (eqns.
(5.40-5.44)). The use of the additional Fourier component increases the range of vali-
dity of the thin-wi¡e result ro approximately A,la > Il4. Figure 5.16 gives a com-
parison of the conesponding normalized current distribution Jro(Q) a¡ound the ci¡-
cumference of the conductor. For heights Na > r, the deviation in the cu¡¡ent
behaves as cosQ, however, for smaller heights higher order Fourier terms are required
for an accurate representation.
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Figure 5.16: Comparison of .Iro(0) using the exact, rhin-wire and fi¡st-order
Fourier formulations for various conductor heights Â.

s.5. DrscussloN
In this chapter, the discrete modal propenies, propagation constant and current

distribution, supported by arbitrary shaped conductors located neaÌ or at a lossy inter-
face were studied. The formulation presented allowed for a non-uniform azimuthal,
but axially directed, cu¡rent distribution. Although the fo¡mulation is applicable to any
sized conductor and to a¡bitrary earth electrical propenies, numerical results were
determined for cases where the overall dimensions of the conductor were smaller than
the free space wavelength and when the earth behaved as a good conductor. As well,
most of the results presented concentrated on the characterization of the zero-order
mode propagarion constant kl since this mode is the one most effected by the presence
of the interface. The results indicated that the effect of the lossy erÍth was much

+0.00
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more pronounced on the current distribution than on the propagation constant (a 20Ea

deviation in the cu¡¡ent distribution was observed for Na=12.5, a simila¡ enor in kf
occurring only when Á/a<1). The thin-wi¡e approximation was found to be valid only
undêr the condition Na>\, and the inclusion of the fusçorder as well as zero-order
Fourier components only improves the vaJidity to Na>U . In general, the Fourier
expansion basis requires many terms to ade4uately represent the current distribution
when the conductor is near the interface, a pulse function or other discrete sectional
basis being more appropriate. The quasi-TEM approximation was found to be ade-
quate for even small heights. A signiñcant erro¡ in the quasi-TEM results occur only
when the conductor becomes very close to the interface Na<lll} (as long as the TEM
conditions that all dimensions a¡e much less than the free space wavelength and the
earth behaves as a conductor still appty). A good approximation to the propagation
constant when the conductor is in contact with the interface is the mean-square aver-
age value kl=klvg. The conductor radius has little effect in this situation, and was
shown !o approach the average vùue klvE in the limit of a diminishing rad.ius a -r 0
(even though the convergence to this limit is extremely slow). The resulting fields for
the zero-order mode are accurately predicted by the thin-wire approximation for all
conductor heights as iong as the observation point is not nea¡ the conductor I p I >u.
This observation is only valid if the correct value for the propagadon constant ,to is
used' as calculated by the complete expansion basis fo¡ the current distribution. Even
though the exact calculation of the propagation constant may be time consuming, the
use of the thin-wire approximation for caiculating the fields external to the region of
the conductor is very efficient.

Even though the presented moment method solution, using a pulse function basis,
can be used to model arbitrary shaped conductors, the previous sections considered
only circular structures. The circula¡ configuration was used since it has previously
been the most extensively studied geomery, and can be applied to many practical
applicadons. As well, an analytical solurion to the thin-wire assumption (and fust-
order Fou¡ier mode) can be obtained for the circula¡ geometry. To briefly examine
situations when the conductor is ¡¡o¡ of a ci¡cular configuration, the case of a perfectly
conducting rectangular strip located over the lossy half-space will be considered.
strips of various width to height ratios (w/å) will be examined, but all geometries will
maintain the same total circuûfere nce (2h +2w =0.32m) and the same distance from
the interface to rhe bottom of the su'ip (a = 0.082). As in previous cases studied, the
ea¡th will be cha¡acterized by the electrical properties prs=1.0, ê,r=5.0, os=0.01, and
an operating frequency of l0OKHz is chosen. Figure 5.17 gives the normalized zero-
order mode propagation constants ,to and figure 5.18 gives the conesponding normal-
ized current distributions Jf(Ç) for four width to height ntíos wlh = 1,3,7, 15
(t'',ål=t0.08,0.081,t0.12,0.041,[0.14,0.02],i0.15,0.011). Figure 5.17 indicates that
the shape of the conductor has only a small effect on the propâgation constant as long
as the distance between the bonom of the conductor and the interface ¡emains
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Chapter 5 Conductor Nea¡ Or At a Lossy Interface

consta¡t. This is reasonable since the conductor size is much less than the free space
wavelength. Also as expected, due to the skin effect, the cur¡ent distribution is max-
imum near the corners of the strip. As observed for circula¡ conductors, the presence
of the interface causes the cturent to be concentrated near the bottom of the strip.
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Chapter 6
Conclusions and Suggestions

for Further Study

ln this thesis a general framework for the analysis of guided wave structures has
been presented. A theory was developed for both open and closed cyündrical sruc-
tures through a hybrid Green's function-integral equation approach, which was subse-
quently solved using a spectral domain technique in the infinite axial dimension and a
moment method in the bounded Eansverse dimension. specific attention was paid to
the use of only the disc¡ete mode contributions as an approximation to the complete
field solution. In order to cha¡acterize the properties of the discrete modes, a method
of solving for the propagation constants and a new definirion for the characteristic
impedances of a general cylindrical sructure were presented. The formulation of the
case when the guided wave structure is embedded in a sratified supporting med.ium
was then considered, and the wave propenies characteristic to this geometry were
examined. It was shown that the cylindrical,/planar geometry supponed a continuous
spectrum of radiation modes propagating into the uppermost and lowermost ha.lf-
spaces' a continuous spectrum of surface waves trapped by the layered med.ia, and a
set of discrete modes which were guided by the cylindrical structu¡e.

Examples of various special cases which could be modeled using the
cylindricavplanar geome!ry we¡e examined in chapten three, four and flve of the
thesis. The thin-wi¡e approximation was used to examine the excitation of and wave
propagation along multiple conductor transmission lines located over a lossy earth.
Numerical results we¡e presented for the discrete mode propagation constants and for
the currents excited by extemal dipole and delta function voltage sources. It was
shown that an N-conductor system can support more than N disc¡ete modes, these
being in addition to the tradidonal quasi-TEM type modes. The add"itional guided
modes were identified as fast-wave modes with attenuation constants that are usually
less than the quasi-TEM type modes. The numerical results demonsrated that the
quasi-TEM approximation is valid under the conditions that all st¡uctu¡al dimensions
a¡e much less than the free space wavelength (<À¿l10), and that the refractive index at
the interface is large ( I n I > tO). The validity of using the ransmission line approxi-
mation in the nea¡ freld and the saddle point conrribution on the fa¡ field was examined
by considering the induced currents due to a vertical electric dipole source located in
the upper half-space. As expected, the discrete mode contributions dominated the
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currents when the transverse distance from the soufce to the tra¡smission line was
much less than the free space wavelength (<Le/20), and the saddle point contribution
dominated when the transverse distance was gÌeater than the transverse component of
the propagation constant (>3Àpr). The formulation of the multiple conductor
geomerry and the validity of the va¡ious approximation techniques is imponant for
application in many electromagnetic coupling and interference problems.

For a rânsmission line analysis of guided wave structües, methods for cha¡acter-
izing the discrete mode properties, propagadon constants and cha¡acteristic
impedances, must be defined. The solution of the propagation constants is straight for-
wa¡d as there is a di¡ect physical relationship with the electromagnetic quandties. The
definition of the characteristic impedances, however, is arbitrary since there is no di¡ect
relationship between the electromagnetic quantities and the circuit quantities modeling
the structure except in the TEM limit. In light of this, an altemative defi¡ition for the
cha¡acteristic impedance of guided wave strucrures was proposed in chapter fou¡. The
definition followed directly from the hybrid Green's function-integral equation solution
of the structu¡e and collapsed to the TEM ¡esult in the quasi-static limit. As an exam-
ple to study the proposed definition, the case of a thin-wi¡e conductor located ove¡ a
lossy half-space was add¡essed.

ln the past almost all theories have treated the problem of a conductor over a
lossy eanh assuming a thin-wire approximation to model the conducto¡. In chapter
five, the discrete modal properties, propagadon consrants and cu¡rent distributions, sup-
ported by arbitrary shaped conductors located near o¡ at a lossy interface were studied.
An exact formulation of the problem, which is valid even when the conductor is in
contact with the interface, was presented. Results for the case of a ci¡cula¡ conducto¡
located over an earth having typical electrical properties were given and a comparison
was made to the various other approximation methods which have been utilized
throughout the literatu¡e. The ¡esults indicated that the thin-wi¡e approximation is
valid only when the distance from the interface to the conductor is greater than the
dimensions of the conductor. As long as the traditional rEM cond.itions that all
dimensions a¡e much less than the free space wavelength and the earth behaves as a
good conductor hold, the quasi-TEM approximation can be used for small heights,
with a significant enor occurring only when the conductor becomes very close to rhe
interface. The use of a Fourier expansion basis was shown to require many terms to
adequately represent the curænt distribution when the conductor is near the interface, a
pulse funcrion or other discrete sectional basis being more appropriate. The use of the
thin-wi¡e approximation for calculating the fields extemal to the region of the conduc-
tor was shown to be very effrcient as long as the observation point is not near the con-
ductor. Lastly, under most conditions a good approximation to the propagation con-
stant when the conductor is in contact with the interface is the mean-square average
value k! = ¡çavE
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The derivation of the Green's functions fo¡ sou¡ces which are embedded in a

sEatifred media geomeory was presented in appendix A, with the case of a single
homogeneous half-space being emphasised. Appendix B presented various techniques
for the evaluation of these Green's functions, commonly known as sommerfeld
integrals, these including some new closed form expressions for the lossy half-space
case. A technique for the nume¡ical integration of cenain sommerfeld type integrals
was also presented, the proposed method having rhe advantage thar it is capable of
integrating these inreg¡als in the far field region.

6.I. SUGGESTIONS FOR FURTHER STUDY

Even though the numerical results presented in the thesis concentrated almost
solely on structures over a lossy half-space, the formulations presented in chapter two
attempted to encompass the problem of guided wave structures in general. Thus, there
remains many opportunities to apply these formulations to more complex geometries.
As well, the studies involving strucru-res over a lossy half-space have shown some
interesting properties which may be exploited with funher effon. They also have lead
to many additional problems which should be investigated,

1. The study of thin-wi¡e structures over a lossy half-space showed that it was possi-
ble to find discrete propagating modes which had attenuations much less than the
traditional quasi-TEM type modes. It has been suggested that the utilization of
these modes for leaky wave antennas or low loss transmission lines may be
promising [Olsen2]. As discussed in chapter four, however, the excitation
efficiency of these additional modes is extremely low for typical sources (the
cha¡acteristic/input impedances are very large). An examination of possible
sources which can adequately excite these modes may be fruitful.
ln chapter th¡ee, the discrete mode and saddle point contributions to the current
induced on a transmission line due to a dipoie source were determined. In the far
6eld, it was shown that the su¡face wave contributions to the curents were not
negligible near grazing angles of incidence with respect to the interface. The sur-
face wave component can be extracted by considering the pole/branch cut contri-
butions in the steepest descent evaluation as discussed in section 3.3.4. The
inclusion of this extra term is imponant in radio transmission and interference
problems, where both the source and the transmission line are usually located
nea¡ the su¡face of the earth.

In the results presented in chapter four, it was shown úat the cha¡acteristic
impedance of one of the discrete modes was very small over a certain band of
frequencies, for a given nansmission line geometry. Coupling devices may be
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'7.

designed to rake advanlage of this, since the excitation effrciency of the mode in
this frequency band is very high.

Chapter four proposed an a-lternative deflnition for the cha¡acteristic impedances
of the discrete modes supported by a guided wave structure. The special case of
a thin-wire uansmission line located over a lossy eâfih was considered as an
example. Since much of the present controversy is in the proper definition of the
cha¡acteristic impedance of microstrip srructures, numerical results should be
extended to examine this problem.

The study of arbitrary shaped conductors which could be located nea¡ or at an
interface between two media in chapter five, considered only axially directed elec-
tric cu¡rents ,¡r(Þ) on the structu¡e. This assumption will only be valid for struc-
tu¡es that a¡e much smaller than the wavelength of the medium in which they a¡e
embedded. If large structures or excitation by TE sources a¡e to be considered,
the inclusion of a transverse current component "¡p(Þ) must also be incorporated.
This additional complexity was addressed in the general formulation presented in
chapter two. Both axial and transverse cturent components have been previously
considered in the analysis of microstrip problems [Itoh, Fache].

The results of chapter five only considered the case of a conductor which could
be located near or at the interface of two media, but must totally reside in only
one of them. This wo¡k should be extended to examine the case of partially
buried conductor geometries, which can be deduced ftom the formulation
presented in chapter two. The results may be useful in the modeling of MMIC
and optical waveguide structues.

Appendix B presented a numerical technique for the integration of some of the
Sommerfeld type integrals occurring in layered media problems. Simpon's
method with an exponential weighting function was used to evaluate the resulting
kemel. The use of a more advanced integration method, such as a Gaussian qua-
drature technique again with an exponential weighting, would greatly improve the
performance of the numerical evaluation.

5.
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Appendix A
Green's Functions for Planar Current Sources

Embedded in a Stratified Medium

In this appendix, the potential functions and resulting fields due to an arbiuary
two'dimensional planar current sou¡ce embedded in a stratified medium are developed.
This problem has received much attention in both recent and past literature with its
applications towa¡ds structu¡es above lossy media [Wait3, Felsen, Kuesær4, Waitl2]
and in the analysis of microstrip and semi-conductor devices [Jansen2, Itoh, Das,
Bagbyl. The problem is initially formulated for an a¡bitrary source distribution in the
plane parallel to the media stratification. A source with a distribution perpendicular to
the media stratification can be handled through an integration of the planar sources dis-
cussed in this appendix. special cases, where the planar source is ¡educed to a line
source or to a simple delta function source will also be studied aiong with some of
their applications. The problem presented in this appendix is solved using the usual
transform techniques. Thus, the resulting solutions will be in the form of single or
double infinite integrals, these sometimes being ¡eferred to as Sommerfeld-type
integrals due to his solution of the half-space problem in 1909 [Sommerfeld2]. The
analytical solution of these infinite integrals, in terms of series expansions or tabulated
functions, is available for only some special geometries, with many approximations
also having been developed over the past decades. The accu¡ate solurion of these
integrals, however, usually requires a numerical integration approach. This append.ix
concentrates on the derivation of the Creen's functions in integrai form, with an
analytical form given for only a few special cases. A discussion of the evaluation
techniques for these integrals is left for Appendix B. Furthe¡, this appendix concen-
trates on the formulation of the potential functions and resulting fields for elecric
sources typ€s .I] , with the formulation for magnetic sources À1" easily derived in a
simila¡ man¡er. The desi¡ed Green's functions, required throughout the thesis, can
then be developed from these results.

4.1. GREEN'S FUNCTION FORMULATIONS

Consider a planar crurent source 7, 1o, M r¡ embedded in a seatified med.ia as

shown in figure 4.1. ln this configuration, there are M+ regions located above the
sou¡ce medium and M- regions located below the sou¡ce medium. Each of the

143



Appendix A Green's Functions for Sou¡ces Embedded in a Suatifred Medium

regions, denoted by -M-<icM+, has a thickness å¡ and electrical properties defined
by a permeabiliry ¡r¡, permittivity Ê¡ , and conductivity o¡ . The planar source is chosen
to be located in the medium i=0 at a distance y' above the y=0 plane (O<y,<åo).
The sou¡ce is allowed to vary in the .r-z plane and is speci-fied as either
/"=¡rtr,zlôfyf ') for,an electric source or as Mr=úr1y,z)ôOf ') for a magnetic
source. The sou¡ce has been chosen to be in the region i=0 fo¡ convenience, with a
simple transformation of the f coordinate (changing the subscript J ) allowing the prob-
Iem to be formulated for the source in any desired region.

Planar

x

i =+1 P+t år cr*r h+r

Ð po €ooo
Source

l=o
f, F1

;-_r¿- r
-/

zl i --z

t=-S

l-r t-r o-r -l

-3

F-¿ €-¿ o-¿

È-s ð-r 6-g

a

Figure 4.1: Plana¡ source embedded in a stratified media.
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The goal is to derive the fields in every region I due to the source. Assuming an

¿-id dme dependence, the fields must be solutions of Maxwell's equations in each
region i as [Stratton, Harrington 1]

Yx Eì = +¡lo¡t¡Hi - M,

Vx nì = (o¡-70æ¡¡Fi + "1,

v.Ei =m"=(ttj!))v.Ms
VDi = p" = (1f o)V."fr

where the source te¡ïns "/" and p, (À1, and ms) arc zero except in the region j=0. The
eiectric and magnetic Hertz vector potentials lI and lI * are chosen to represent the
fields as

r2
F¡=vv.fl¡ +k¡2fr.i + -+- vxfi*,_/ ú)€í

, ) (4.2)
aí = ," Vx flt + Vv.fi*t + ¿-2fir¡j o¡lr¡

¿, = t/.tU,q + i'rtto,
where the Lorentz gauge 0 = -V.fr¡ and ry = -V.ä*t has been used. *¡ is the propa-
gation constant in each medium, with ei= s,al s¡ /ol. Thus, the ûelds in each region
can be described by the conesponcling vector potential which a¡e a solution of the
Helmholtz wave equations

f.-¡ru, -r-=-/" , i=o
LV2+tc,21fri=l k¡'

lo , i= +r, l:2,'.,!.M+, (A'3)

| -¡ø¿: -t_-:_Ms , i=0
lV2 + k,21fr'¡ = l, Ki

[o , i= +r, !2,...,!M+t- (A'4)

To uniquely define (4.3,4.4), continuiry of the ñelds ar each interface musr be satisfied
which are specified as

i) Ei = Ej+t

ü) E:= E:+l

iÐ eíEj = eî¡Ej*t ví) ¡t"¡Hj = tt,¡H j*r
The potentials in (A.3,4.4) can be defined in te¡ms of general funcrions which satisfy
the set of differentiai equations

il Hj = n;+t

Ð H; = H:+l

(4.1)

; -M-<i<M*-l (4.5)



¡y2 + k,z1gi 1x ¡ ,r, = {r 
G 

"ño 
-t'l-to

These differential equations can be solved by
transform pair defrned as

f (k,,k") = t . [,f (¡,2 )] = I | ¡ 1x,t¡;ik x 

"-l4z 
¿¡r,¿¡r,

Í(x,z) =t;LU&x,k)) = * I !¡ 1k,,k,¡r*tÇ,e*ih, dk,dk,

Transforrning (A.6) with respecr ro z-x, then y

,i=0
, i+ 0 (A'8)

I ^ ^l
L-Ç - u;'12'<r,,\,k,) =[ro"o'v-t+'' : ;:: (A.e)

u¡=,'[t]+¡¡7-ç=^[k:n? , r¡ =.,t84
The function g¡ (k,,\,k") has poles located i¡ the l, plane 

^t 
kr = lju. . Extracring

the ¡esidues at these poles, the general solution to (4.6) can thus be determined in
te¡ms of

g¡ &,J,k,) = ryr(.ei (k,,b,k")]

=-f (kx,kz)l''yi:' ,-r,, * D'!&ùr-u,t * -õ:-.r-u,rrr'r] te.rolLz'
where Ci (k,kr) and, Di(k,k) are arbitrary consrants to be deærmined by the boun-
dary conditions at each interface. For proper decay of the fields as ly I -r "" the irra-
tionals U_rr- and U *y, in the two outer regions a¡e chosen to retain a positive real
value on the correct Riemann sheet, Re[U_y-,U +M.]>0. Thus, the constants D-M-{
and C*M*{ are required. Nore that the forcing function term in (A.10) is ze¡o if i*0.
The Green's function for the given sou¡ce funcrion Í (x,ùûo: ae {x ¡ ,z J can now be
determined from the solurion of

Appendix A Green's Functions for Sou¡ces Embedded in a Snadfied Medium

,j=0
' i+ o (A'6)

utilizing the two-dimensional Fourie¡

(4.7)

')ûo , ,= 0

,i*0 (,{.11)

(A.12)

t* a,!+*t-r¡¡]st (k,¡,k,)- {tto''t'ut-'''



Appendix A Green's Functions for Sources Embedded in a Sr¡atified Medium

4.1.1. Vertic¡l and Horizontal Potential Functions

ln this section, the potential functions for a venically polarized electric source

ffES) "rr(x,z)ô(y-y'$ and for a horizontally polarized electric source (FIES)

lo(x,z)E(y-y')bo; ae {¡,2 } will be derived. The fields due to any electric source ,I]
can then be represented in terms of a linea¡ combination of these components. Simi-
larly, any magnetic source À4" ca¡ be solved in terms of VMS and HMS components.
The fields due to the electric sources will be determined from the solution of the wave
equation for the He¡tz vector potentiaì lI as defi¡ed in (4.2,4.3). Similarly, the fields
due to the magnetic sources can be determined through the magnetic Hertz vector
potentiâl ä*. The vector potentia-ls can be w¡itten in terms of thei¡ scalar components
as ñ_= ryr,!,Vr) and n* =(U¡,U,,UZ). For the most general solurion, involving
both J" and M", all six sca.lar components are required to represent the sou¡ce. How-
ever, for the case of a HES or HMS, there is one degree of symmetry and only two
scalar components a¡e needed for each. For a VES or VMS, there is two degrees of
syrnmetry and only one scala¡ component is needed for each. Thus, the solution to
any source distribution J, M, can be derived in terms of only the scalar potential
function components Vrl and Urf. These two components a¡e the conventional TM
and TE Debeye potential functions [Wait3, Wairl3], respectively, and are specifically
chosen since thei¡ vertical electric and magnetic fields a¡e uncoupled for a planar
geometry, allowing an easier solution of the wave equation. Altematively, the choice
of other scalar components to represent the source can be found through a simple
transformation. Thus, the scalar potential functions for the TM and TE cases will be
derived next, the potential functions for other source types then being derived in terms
of these components.

i) TM case:

For a vertically polarized elecrric sou¡ce Jr(x,z)õQ -l)î located ar y=y', úrc
fields a¡e deterrnined from the scalar potential Vjf as

, j=0

, ir 0
(4.13)

(A'.14)

(4.1s)

l-¡^u, -

¡v2+*,21v ¡! = l-f t' o',z )ô(-v -v'D

Io

Et =vv.Y j9 + tc¡zvjg

¡r.2
H'= ' VxV.10

+jo!¿,

The solution to (4.13) is obtained in terms of functions of the type (4.10), where
C¡(t,s',t,)=Yj&,,y,k,)9 and f (k,,k,)=(-jiopdk¿.)Jr(k,,k,). The arbitrary
coeffrcients Ct (k,,kz) and Dt (k,k") of (4.10) for the geometry shown in figure ,{.2
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are determined by satisfying the boundary conditions (4.5) at the media interfaces

fKuester4, Wai9, Itoh, Das]. Using the rransformed expressions of (4.5), there a¡e
z(M++M-) boundary conditions to determine the unk¡own coeffrcients (note that the
two tangential boundary conditions, x and. z, are the same due to symmetry in these
dimensions). The transformed potential funcrion V j&, J ,kr) has a solution

l+ ry(k,,k,)lvl*'*"{t,,t,r,¡ + vlEF"t*,t,r,,t] , i= 0

Y j(k,,1 ,k,) = 1 *.r.t o [_ _ rn¡rv 1 (4. r 6)

l------;-rrtk,,k,llvl*'<r,t,t ,>] , i+ o

l. "0

where in the sou¡ce region i=0 (0<y <å o)

v IRIM 
o{k,,t,k") = làur;, 

-, t1

and in the remaining regions í+ 0,

vfw'{t,l k) = lr-o, 
lv-H, I + p.xe"-ttil2h'-v+H, 

f ,þ

f ,*,r*n.o I
rf = I Yi ' "'t e-ut\ lr¿+l' 

[i=+r1+Rrr¿ ]-'
,"" = + ;#rñ lr-' "<o 

nr't + R 0 
¿¿-uo(åq+)')]

' 
\ = + r#=., ^ l'-' "o'' + n I 

e e- 
u 

"<u 
a+>]

l¡¡ ¡+l I
Hr = 

{ !å¡ ;Í>o - j?,hi ; ico 
}

l. (

vf'Fo{k, t,k,) = 
l1o-._åÇ-r {n;",-uotr*,'¡

+ Rfe-aÁ2ho-tt) * p-ep+er-uo2ho le+udë-v')+,-r*-r', 
Ì] 

(A.18)

(4.17)

(4.19)

(A'.20)

(4.21)

(A.22)

(4.23)

where the + signs are designated by i >0 or i<0. The functions R¡k and R¡-,
represent the net reflection from the upper and lower interfaces of med.ium i, respec-
tively, and a¡e deâned recursively as
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R¡* =

Rli,,

rf ,,r, + R,tfre-2h'"u'"

1 + r ¡,, rrR,!re-2h' "u'"
; -M- <i <+Mt (4.24)

(4.27)

(4.28)

(A.30)

" n,l,rru, - u,r, n ê¡irrí,¡tt = _3___1_ .. n:-.,, =_ (4.25)
n¡z¡¡IJ¡ * IJ¡¡¡ eí

Here rfitr is the reflection coefficient at the interface between the i and i+l med.ia.

ii) TE case:

Similarty, the fields for a venically polarized magnetic source Mu(x,z)ô(y-y')f
located at y=y' ale determined from the scalar potential Ujf as

l-¡ue;l#M"(¡,2)ô(y-y')1, j=0
¡v2+t<,21u;! = I k¡2 '' '' '

[o ,i+o (A'26)

nt =vv'u;9 + *,¿ujî

øt = lLvx u;9

The transformed potential U jG,,y,kr) has a solution

l+Mr(k,,kz)lufo'"{rr,,t,r,,¡ 
+ ulEF"tt,t,t ")] , r= 0

ui(k''t'k) = 

i#*,r,*,tlulw,1t,,y,t,t) ,,* o(o''n)

and is equivalent to (4.16) except that all the superscripts ¿ are replaced by rn and the
reflection coefñcients r,1+r at the media interfaces are given by

- m¡2.i+ruì - rJ ir.rri'iil=;l;ui+uitl , F¡+t
; mi,¡xt=-*

Thus, any so*"e 7" , úr, can be decomposed into onhogonal components, and
the wave equation solved for each component, An appropriate Green's function can
then be derived from the resulting expressions. The Hertz vector potentials fr,1kr¡,kr¡
defined in (4.3) and ÍI* 1k,¡,kr1 defined in (4.4) for each of the elecric ,Ioûo and
magnetic Moûo components ce {.r,y ,z } can be deduced in te¡ms of the scalar poten-

tiai functions Vrl and Ur}. fne two source types considered next are that of a
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planar vertically polarized electric source (VES) and thar of a planar horizonølly
polarized electric sou¡ce (HES). The planar source 7, M) could alternatively be

expanded in any other orthogonal coordinate system depending on the problem being
studied. A polar coordinate system could alternately be utitized for a loop o¡iented
parallel to the stratification or other circularly symmetric source for example.

4.1,2. Vertically Polarized Electric Source (ø =y )

The Henz vector potential ä' for a planar venically polarized electric sou¡ce
Jr(x ,ù9 can be determined in terms of the potential function Vjl atone which was

derived in the previous section by defining in (A..13-4.15)

ní 1k,,y,k,¡ = n;(r, t,lù9 = v ;{t<,,t,k,)9 (4.31)

The solution of Vjf was previously determined in (4.16), with the conesponding
fields found using (4.2).

4,1.3. Horizontally Polarized Electric Source (ø =-r,z )

The Henz vector potentiai lI¡ for a planar horizontally polarized electic sou¡ce
requires two scala¡ components for its representation and thus can be determined in
terms of a combination of both the scalar potentials Vj *{Uj The horizontal source
can be decomposed into the two orthogonal components J"(x ,z)-J *(x ,z)î+J,(x ,z)î.
Since the analysis is syrrnetric in the x- and z-dimensions, the frelds due to the com-
ponent "Iz only will be determined in deøil, with the remaining component "I, found
by interchanging the x and z variables.

Considering the source component Jr(x,z)t, the electric potential vector
n 0=n9+nr9î will be chosen for the region conraining the sou¡ce (d = 0), with the
remaining regions d * 0 using a combination of rhe scalar potentials Vjf ana Ujf .

The choice of the components fI, and lI, (or lI, and fI, for .I*f ) for the vector
potential used to represent the fields in the source region is made since the primary
contribution of the sou¡ce is directly idenrified in the componenr [Iz (or Fl) alone.
The scattering effect of the layered media is also easily identified and is the only con-
tribution to the component ny . Representation of the fields in terms of an altemate
choice of vector components, such as directly by Y, and U, , would have caused the

primary frelds to be coupled into both components. The choice of scala¡ components
outside the source region i*0 is again arbitrary, and is left in terms of the TM and TE
potentials here.

By matching the flelds for the various choices of potentials, ñ t=nlâ+njÎ in
each medium can be represented in terms of the known potentials Vjf and Ujf using
the transforms
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.i 1 ð ¡i_ I ð2

^; =Joei *_' k]+rl ðx ' ée 
k]+k] ðzòy

Transforming the primary potenrial of rhe source ú0P =il:Pî to the conesponding TM
and TE scalar functions with (4.32), then using the solutions (4.i3-4.30), the desired
potential functions in each region can be determined. Note that care must be uken in
performing the differentiation with respect to ) since the sign will depend on y>y' or
y<y' for the primary flelds. Thus, for the source Jr(x,z)Þ, the vector potential
n01k, ¡ ,kr¡ in the source region i = 0 is given as

no1k, ¡,k,¡ = n!&,,y,t")î + nl{r, t,k,)î (.{.33)

Uj e- a,|,rlj n: * !u;" 
^:" 

'

vj <- n;+t)n) , nj * v;-$u;
L\Dr

fioçk,¡,k"¡ = n9?c,,y ,k,\t + n1&,J ,k)9

n!çc,,y,k,¡ = ff ,,n,*,r14#- ui*,]

(4.32)

Í::G,,y,k,)= ffr,n,,r,rl4;#. ui*.] (A.34)

nl{*,,y,r"¡ =#,"u,,r,,11ffi) [uÍ",*"í"i ] (A.3s)

with the corresponding fields found using (4.2). The scalar potential functions V, and
U, can be used to find the fields in the remaining regions i*0 as

Yi(k,r,k") = fft,n,,*,la,o [vfRd'1 t,,y *)f

u;(k,r,k,) = #t"n,,r,ni [ufqr t,¡ k))

with the corresponding fields found using (4.14,4.15,A.27,A.29). The functions

nitt', ul*', uf'"', uoa Ulq were defined in (4.19-A.23).

By inærchanging the f and â coordinates, the potential functions for the sou¡ce
component J*(x,z)I are given fo¡ the sou¡ce region !=0 as

(4.36)

(4.37)

(4.38)

(4.3e)
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nl&,,y,k,)=!!,J4.r,&,¡,¡ l'::Y.\l luf*.*uf",l I,o.oo,K6 llkz-+kx-)- -J
and in a simila¡ fashion as (4.36,4.37), the potentials in the remaining regions i * 0
will be found by interchanging the .f and â coordinates.

4,1.4, Horizontal Line Source and Dipole Source

If the planar source distribution is specified in either one o¡ both dimensions, the
inve¡se transform (4.7) defining the potenúal functions can be performed and even
solved in a closed form for some special situations. Two specifrc cases will be
presented.

i) Horizontal Line Source (HLS):

The fi¡st case considered is that of an infinite horizontal line sou¡ce located in the
region l=0 at a point (¡',y'). The sou¡ce is chosen to vary in the z-dimension and is
defined as J,(x,z)4,(z)E(x-x')ô0f ')â. The vector porential can then be deter-
mined by replacing the source terrn in (4.34,4.35) and performing the inverse
transform with respect to the x-dimension as

tr!@ ¡ ,k,) = #,"n,,I1*# * ul*F,f"*i+<'*'t a** (4.41)

(.A.43)

n,o*,t,k,) = ffi,,n,rlllffilvf"+uf,',])re*it'<,-t> at, ( .42)

Note that the primary contribution of the sou¡ce can be identified in the fI" component
as [Abramowitz]

HP çx ,y ,k,) = ffit"ç ,lî ;r-'", 
r-r' I +ik (x-x') ¿¡,g

= 
*j'lh , (þ \t( ^h^¡\4

2fi1¿& 
" z \*z )" o\'oP "

-----
where p={1x -r' )2+(y -y' )2,

ii) Horizontal Electric Dipole (HED):

The second case considered is that of a horizonral electric dipole, polarized in the
â di¡ection, and located in the region i=0 at the point (x',y',z'), where the source
function is defined as ,/" (.r ,z )J, ô(¡ -¡ ')ô0 -y ')ô (z -z)t . The rwo-dimensional
inverse transform (4.7) defining the potential functions can be evaluated as a single
integration using the Bessel function transform lFelsen, Sommerfeld3]. By choosing
the appropriate subsútutions ?'L=kl+k? an¿ ¡=tÇ-y'y4r-¡y, O" in,"grrt, ..n UI
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simplified using

í _u,, n_,r,.\rJI¡ <t:+k/ge- 
)

= # L! tu tlffi ;w t x -x' t +itç(z-z') dkzl¿?t

1.

= fi J_zt <x',y) Ks(-iì.r) (-iì,)d), (A.44)

where the function Í (?t2,y) is symmetric about k, and kr. Thus, the vector potendal
functions in the region i= 0 can be determined as

Ír!@¡,2) = #t"Il"#* uf¿F.]ror-rx,r) (-rl.)dÀ (A.as)

nf @ r,z ) = Ht, Itir'[ui"' * uf" "fx,ç¡ x, ¡ ax (A.46)

ur =rlk?+k,¿-kz = ^'tF+
Note that the primary contribution of the source can be identified from the fI, com-
ponent as [Sommerfeld3]

nP @,y,2) = #t,i rÐlK oeit.r) (-it )dt î

_ +i @V{ e+ik& | 4
+*,{- n r'z' (4"47)

w¡¿¡¿ p=^[Ç]'ya6,-y/aqr-¡y. Simitarly, for a vertical electric dipole

"I" 
(.r,2)=/, ô(x-r')õ(y-y')õ(z-z'f , the vector potential function in the region l=0 is

determined as

nfo,t,k") = #t,Ilc#: + v!",],*i'r'*'> ar, (A.48)

n!@,t,2) = #t,Ilt#* vf"']r¡-; 
^.r) 

(-it\)dL (^.4s)
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A.2. SPECIAL CASES

4,2.1, Scattering From a Layered Earth

For remote sensing problems, such as in geological soundíng, the scattered fields
from dipole and line sources over a stratified ea¡h a¡e desired [Wait3, Waitl2, Felsen,
Moghraml. Usually, deep penetration into the layered media is desi¡ed to adequately
cha¡acterize the structure's properties. Thus, since the media in remote sensing appli-
cations are usually very lossy, low frequency analysis is performed. The potendat
functions and resultilg fields can be determined from the general case of the previous
section under the specifications

M+=0 , hr4-+ * (4.50)

Rletñ - 0

Here the medium i=0 containing the source (usually air) is the upper half-space y>0
with the layered eanh in the half-space y<0. Under the assumpúon that ajl rhe media
in the earth are moderately lossy and low frequency probing is desired
(e¡<oilo;i<0)

(4.s1)

(.A.s2)

where the condition on mi,¡_1 can be used if the permeabilities of all the media a¡e

assumed to be equal pi-th. Thus, the potential funcrions uit". .oo UfEFo required
for the detennination of the fields in the medium i=0 due to a source located at
(x=x' ¡ =y') can be derived as

t_
I olp¡eo , i=0

1¿.=1'"' l{jr¡[ioi ,i<0
t

mi?¡t = |

vREFo = 
Rf 

o-u o1y+y.¡., 
2U o-

U.lEFo _ lot 
"-, 

or, *r',
' 2Uo

o _" _ rf ,i-t t R¡21¿-2huu,-,¿\i - T;;i_ßæ;t;
o _^ _ rl,r_t I R¡-!¿-ù,.u,-',\i 

, - rI"ßtA7^7;

" n,l,-ru, - u¡-,rl'i-r = 
ú..*ru.J uA

- u¡ - U¡-t

",t-r - U, + U,_,

(A'.s3)

(4.s4)

(4.55)

(4.56)
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^ [,, o-,toæo ,i=o
n,¿, - = 1"¡'¡-r [o¡_1/o¡ , i<0

(_
)"lr!*]-lr.2¡:,60 , i=o

I/.=l 

-

l^'lt<]+t<]-¡ri;¡t,ai, i<o
t

The vecto¡ potential n01k,y,k") for various source types can then be easily
obtained using (4.31),(4.33), or (4.38). The specific case examined he¡e are the fields
produced by a horizontal line source located above the statifred eanh. As discussed
above, for most remote sensing applications, very iow frequency excitation is required
to penetrate the layered srructure and thus, a uniform current distribution a-long the line
will be assumed. This is reasonable for situations whe¡e:

1. The length of the line is rnuch greater than the depth of all the layers in the struc-
tl¡Ie.

2. End effects on the line can be neglected.

3. Li¡e length is much less than the free space wavelength.

4. All transve¡se dimensions a¡e much less than the free space wavelength.

5. All the media are assumed to be good conductors at the frequencies of excitation.

The vector potential for a line source carrying a current I, cøn &, derived f¡om
(4.41,4.42) under the axially invariant condition ð/ðz =0 (k, = Q) r¡¿1¡¡

J"(k") -+ I,

tro(x ¡,2¡ = #,,I14# * a,^e'!! )le+ir.e-,ar,t 
(A.s7)

The component fI, in the vector potential is zero since &r=0. The fields in the region
above the stratifed eanh a¡e given using (4.2) as

Eo@t,z) = vv.ilo(¡y,z) + kfrÍro1x ¡,2¡
= k&n"o@J ,ùt (A.58)

t2
fl@,y,2) = -'!- Vx fIo(.¡,),2)j copo

t2 f -, - I=^h l$n"r'''''r - *nle'Y't9) (A'se)
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For remote sensing applications, if the soruce as well as observation points a¡e

located on the su¡face of the upper half space (y=y'= 0) and the position of the line is
arbitrarily chosen as ¡'= 0, then the .f and f components of the magnetic field a¡e

given utilizing the Fourier tra¡rsform as

For the single layer earth model series expressions for the ûelds a¡e available in the
literature lAboul-Atta]. The primary contribution of the source can be found from
(4.60) as

" I, i l+R õ'ø +,L,..H l (x,t =0,2 ) = - ; ) 
_(i 

k 
") 

------:- enr 4' dk,

I-Ç *r^
H,o(x,y=o,z) = -+ I ; e*it+' ar,

vlt'" = ffir-'"or",
ui"'= R:í,,-u'o*"

Þ -e/m - r"fr, + r1(-r¿-h 'u -'/\o - | + r"tt" ,/," *:rLru-,

(4.60)

(4.61)

(4.62)

Since the primary field has a magnitude which is very large compared to the scattered
field from the layered media, the secondary response of the f component is masked
making accurate analysis difficult. On the other hand, the.0 component of the field is
due to only the scatte¡ed field and is thus much more applicable to remote sensing
analysis [Aboul-Atta].

4,2.2, Two Layered Geometries

For microstrip, MMIC, or printed circuit board applications, a rwo layered ground
structure is usually modeled [Itoh, Jansen2, Rana, Jacksonl]. The potential functions
and frelds for this case can be determined by specifying

M+=0,hr4+* ; Ror"/t =0
M-=2,h_2)oo i Rft^ =0

(A.63)

(4.e.)

(4.6s)

For microsrip applications it is usually assumed that the upper region is free space,

the permeability of all the substrates is equal ro thar of the upper half space
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Ir_z = Þ_r = l.Lo, and that the conductivity of the grounding substrate i=-Z can be

assumed to b€ a perfect conductor G_2-+co. This conflguration is shown in frgure A.2.

Unde¡ these assumptions

region 0: I!o=Vr** , Eó= è,*uo

region -1: Il_t=Vua¿uw¡ , t!1=Er¿Er*u*n

region -2: þ-z=Ilvacuum r o_2 -+ oo

m1o,-t=m1r.-r=1

r"-t,-Z =+l , r!t,-Z =-!
where the relative dielectric constånt êr¿ of the supporting substrate can in general b€
complex. The reflection functions Rg-e and Ri-ø can also be determined in the more
familiar form in terms of hyperbolic functions as

Ro* =
ê,¿Uo- U-rtanh(h¡U-ì
E,¿U ¡ 4 U-1tanh(ft-1U-1)

(A.67)

(4.68)

(A.66)

o_^ _ Uo - U_1coth(ft_1U_1)
¡\0

u o = r[kz+k]+k 02 = l[¡¡1.8

u-t= ^[N?+e,ß - rt;f-r"Æ
usually the potential functions due to a horizontally polarized sou¡ce situated on the
su¡face of the substrate are required (y'= 0). They can be determined for a â di¡ected
source Jr(x,z)î from (4.34,4.35) as

Figure 4.2: Two layer microstrip strucrure.
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n!g,,y,t,¡ = ffr,<n,,n,tlfio* o;^¡ 
]r-"

=ïf,,,r,r,,1+), (A6e)

nr&,,y,k") = #r,n,,r",llffi)är^* * *o^¡lr,-u*

= Ïf ', 
u.'o,tl gLEt) 1t"-"

(4.70)

D7y = e,¿U s + U_rtmh(å_1U_1)

Drc = U o + U-tcoth(å-,U-1)

where Dr¿ is related to the transverse elecric modes (Et=O) produced in the substrate
and D7y is related to the transverse magnetic modes (H,=0) produced in the sub-
strate. This form, given in te¡m of hyperbolic functions, is the form most often found
in the literature.

4.2.3, Homogeneous Half-Space

ln this section, the potential functions and fields due to sources located ove¡ a
homogeneous lossy haif-space a¡e considered. The presented results a¡e utilized
throughout the thesis. The case has many applications; the propagation of currents
along a system of conductors above the eanh and associated coupling to extemal
sources [Wait5, Chang3, Kueste¡2, Wait8, King3], antennas and scattering from finite
conducting geometries for problems of radio [King2, King4, Hiil], scattering and
detection of buried objects and orher remote sensing applications [Wait3, Waitl2]. For
simplicity, the subscripts describing the two media will be denoted as region ¿ for the
upper (l=0) half-space, and as region g for the lower (l=-l) half-space as

region e: ILe = l)na¿uu , EJ = Êu.,'u

region g: Vg = $.tacuum , Eí = èrs1*ur - jc¡ttsos

k" =',[^ttt"E ke =.6U% - J'rtr%
The two specific cases arising in most half-space problems a¡e that of a horizontal line
source and that of a venically or horizontally polarized electric dipole located above a

lossy earth.

i) Horizontal Line Source:

The vector potentials n" and llc a¡d resulting fields for an infinite horÞontal
line sou¡ce, Jr(x,z)4"(z)õ(x, -x')õ0 -y')î,located ar the point (x',y') above earth as

(4.71)
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shown in ûgure 4.3 are given using (4.41,4.42) as

Í7f(x y,k,) = Sr,<o,ti I "';):' 
t 

¡ ,* e-?a+v'>lr*ir'{'-')ar, 
@.i2)¿Îlk; *L LUe ' zue I

'n 
f (x,t, k, ) = ffi ,, n ",Illh)i, :, * u, -,, o t >)e * h e * ) a t, (A 73)

fif e,t,k,) = !$r,<o,lj \l,r;''-'=,-*u" l"*it'ø-,'ton,¿'Í[ke- - n' L'"t 2U, J"

nr*.t,k,) = !*r"&,tj + I t-+- I' ¿rke- - r2l_lÇ*l )

' ln'u",g, - rr,rr]uuïr,u" 
)e*it*<'-'>ar, 

(A.75)

-" _ n2u"-u, ,.2 ei
';t=7u"ú ' n-=ë

,y=*\u"-ue . ^2=!s-'" mzu"+u, þ"

2U^.¿ -1 -e _ a,"9 - t - r"s - ,zU"+Ug

2U-,!å=t-,!;= 
^rffi

(4.74)

Figure 4.3: Line source over homogeneous half-spacc.

the fields in each of the regions a¡e found using (4.2). The integrands of
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(4.72) and (4.73), for the potential functions in the upper half-space, can be simplified
into known fonns along with two standard integrals as

tr,e(x,y,k,) = #4n;[ro,r", p I ) -ro1t, lÞ- | ) + ^rl<""ç'l) (A.76)

rri(x,t,k") = ffi,,,0,,1",r,[ *üil irn,,u-,*n ",0.,ø) 617)

J(t,,Þ*) = j --=+ - e-u'(v+v')+ik (x-x')dkx

* m'U"+U s

G(t",Þt ) = i ,hr-+o+rr 
+ihç-x.,dkx

u" =^,[t,r*r?-t ? =^{eæ , Ret4]Ð

u, = ^[k]*k"?+rr' - {ææ , Re[u, ]>o

lPl =Ç-r1z+g-)')'z ß=,*-'i,Y-Y;, I
I tf-Ì I J

rÞ*=tan-lt*t]

(4.78)

(4.79)

lÞ- I = ^f6;')r+O+y'),

where the parameters t¡t[Ç4 ana rr=tfÇ-ll a¡e rhe rransvene wave numbers in
the air and earth media, respectively, and n=krlk" is the refractive index of the inter-
face. The real parts of the i¡rationals Re[U'Ur ]>0 and Re[t'tr]2O have been chosen
to retain a positive value on the conect Riemann sheet, these branch cuts being defined
to ensu¡e that the currents and fields decay at infinity. Ks(z) is the modifred Bessel
function of complex a¡gument. ln the derivation of (4.76), the tenn involving
X o1r" I pp | ) is due to the primary field of the cur¡ent soutce, and the term involving
X oß" I FÅ | ) is due to its image as if the ea¡rh were perfectly conducting. The
remaining ærms in integral form, (4.78) and (4.79), are the corrections due to the
imperfectly conducting ea¡th. The evaluation of the infinite integrals J and G a¡e
specifically addressed in appendix B. The fields can be detennined using (4.2) for the
case when the permeabilities of the ea¡th and air half-spaces are equal pr=¡t" (m2=l)
as

Ei=yV'n¡+k.2n¡
k,2¡¡'= ==l Vx lI¡

(4.80)

(,{.81)
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-ir¡u- T
Ef(x,y,k,) = Ërït,U,, lr!¡xoçr, I Þ I ) - ro(t, I Þ.- | )l

- k:JG",p" ) + t,2G1t, ,p- )]

Ef(x,y,k,) = 1*r"s,¡eik,)l+#K,(r, I p I ) - ffiK,{r, I p- I )

- $"n,,0-,]

(4.82)

(A.83)

(4.87)

Ef(x,t,k,)= -#r,n"r"*,rl!l2x,6,"lpt) 
- ffiK,1t" tp* t)

- ,T",.,,U-, + r?Jl4",pr )-G(¡",p*)dy] ,o.r"

_i(Ùu- _T ( "" "..,_-__ ìl
Ef(x,y,k")=-l--!4ç,¡+ f l-f - l-kík; +n'kz'ueus llznk] " " 12Lln?*n: lu,+ur' n2u"+u, )l

, e-U,r'+Uù e+jk,(x-z')dkx (A.g5)

Note that when the line sou¡ce is located at the interface of the two half-spaces
(y'= 0), the expressions fo¡ the â componenrs of the fields in the two mediums as

given by (4.82) and (4.85), are equivalent when the subscripts e <->g are inter-
changed.

ii) Dipole Source:

Similarly, the fields from a dipole soruce can be determined from the potential
functions (4.33-4.40). for a horizontally polarized dipole and from (4.31) for a veni-
cally polarized dipole. Thus, the â component of the electric field for the general
dipole source l, 4,t +t r9 +J 

"â)ôft 
-¡')ö0 r' )õ(z -z' ) is given from

Ef(x,t,k,) = ffir,<*io,r [:ffi",rt" I Þ I ) - ffir,rt, I p- I )

- n,þc{"",p't),-'r''

Ef(x,y,k,) = #t"lr!¡x olr"l Þ' | ) - ro(r" I Þ'- I ll

- k:JG",p. ) + t lc6" çr ¡)e-ih"
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Er (x,v,k,) = 
-# 

r, n,r,tl!{2 *,{t" I p- I t - "" 
r\;-r) 

r, 1t, I p- | )

-, 'l

As discussed in section -ît:::rll:,i"r""*. dipore source* ",;::be formulated in terms of a combination of venical electric (VED) and vertical mag-
netic (VMD) dipoles, these representing the TM and TE frelds, respectively. The â
component of the electric field for a VED, "r, ô(x-r')õ(y'y')õ(z-z' )f was given by
(4.86), with the conesponding value for a VMD, Mrõ(x -x')õ(y -y ')ô(z -z')f given
as

, I t^u.
Er(x,y,k,) = **r,Lï#r,,'" I Þt r - ffir,,., I Þ- t,

- {t<"",i>),-''" (,{.89)
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Appendix B
Solution of Sommerfeld Type Integrals

In this appendix, the evaluation of the Fourier integrals arising in the solution of
the potential functions and fields due to the guiding wave structures stud.ied in this
thesis will be discussed. The infinite integrals arise from the transform solution of the
Green's functions, satisfying the wave equation for a stratified media, as deveioped in
appendix A. These integrals are often refer¡ed to as sommerfeld type integrals due to
his solution of the half-space problem in i909 [Sommerfeld2]. The integrals requiring
evaluation ca¡ all be described as a two-dimensional transform of the typerì

F (x ,Y ,z) = f,-t ryl l,f (,t, ,k,)e-u' I t I IIJ
= +i+ ! (k,,k,)e-u'tv t +it"x *ih'dk,dk,

q =^[t¡+¡,71=^'84
t, = t[¡¡-¡z

where i denotes the medium in which the observation point is located, this being one
of the possible layen in the stratifred geometry as was shown in ñgure A.1. Here,t¡ is
the propagation constant in each region, with t¡ the trânsverse wave number dependent
on the axial spectral component /cr. The order of integration in (8.1) is chosen for a
geometry whe¡e the sratined media is layered in the y-dimension and the guiding
wave structure extends in the z-dimension. As desc¡ibed in section A.1, the general
problem consists of -M-<í <+M+ planar regions in total with i = -M- denoring the
lower most layer and i=+M+ denoting the upper most layer. The kernel f (k,kr) is
dependent on the geometry and is a function of the i:rationals u¡ which a¡e defined fo¡
each of the layen in the stratified structure. As discussed in section 2.6, there will be
two branch cuts Re[U*"r,U_¡alà0 due to the requiremenr thar the fields decay at

ly l-.". These b¡anch curs are present in both the k" and, k, spectral domains as
shown in ñgure B.1, and given the order of integration in (8.1), emanate from the
branch points *ru., *_u- and tjrr¡r,, tlt_"_, respectively. These b,¡anch cuts
represent the radiated fields into the uppermost and lowermost media. As well as con-
taining the radiadon branch cuts, the kernel may also contain a set of poles which
occu¡ for a specific combination of the spectal components k" and k, These a¡e

(8.1)
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denoted as )'rr=.[E*t?; s =1,2,...J, and represent the rad.ial wavenumbers of rhe
possible surface waves which a¡e supported by the layered geometry. They arise from
the zeros of the denominators of the TM and TE potential functions VfEF and UfEF
defined in appendix A. Thus, given the order of integration in (8.1), the surface
waves result in a set of poles in the È, domain located at k*,=t¡l.[ç .¡4 

^¿ ^conesponding set of branch cuts in the t, domain emanating from the branch points
k6r=1)'r". The bra¡ch cuts arise from the i¡¡ationals Im[,t ¡, ]à0 defined so that the
surface wave fields decay ar I ¡ I -r.". Finaily, a set of poles is also present in the þ
domain only, denoted as !kl;p=1,2,...,P. These poles represenr the contributions of
the guided waves supported by the cylindrical structure. Note that if all the media a¡e
assumed lossless, the poles and branch cuts would fall on the real axis of integration

Re[,t,]

Figure 8.1: Radiation and surface wave b¡anch cuts, ând guided wavc
poles in the complex /c, and È, planes.

Imt,t, l

+jlrr+

tu
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(as in cases encountered in the evaluation of lossless dielectric and perfectly conduct-
ing structures for example). Also, for the special case of a geometry which is sym-
metric in both the x- and z-dimensions, as in the case of a dipole sou¡ce, the double
infinite integra-l can be evaluated as a single integral using the Hankel transform [Som-
merfeld3l as described in 4.1.4.

Exact analytical solution of integrals of the type (B.1) is difficult due to the pres-
ence of the i¡rationals ald singularities. Asymptotic expressions can be developed for
the small argument cases and techniques such as the method of steepest descent can b€
used for the large aÌgument cases. For accurate evaluation of the integrals, and to
extract the proper behavior of all the field components (surface waves etc.), numerical
techniques must usually be employed. Numerical evaluation is not sraightforward,
however, due to rhe possible highly oscillatory natue of the integrals as well as the
presence of the singularities. In this appendix, a review of some of the approximation
techniques for these integrals is made, and based on these, various expressions com-
monly available in the lite¡ature a¡e derived for the special case of a lossy half-space.
Some new closed form expressions a¡e also presented for two of the integrals arising
in the ha.lf-space problem, and which are consistently utilized th_roughout the thesis.
As well, a technique for the numerical integration of rhe layered media double infinite
integrals is presented. The proposed method has the advantage that ir accounts for the
possible highly oscillatory nature of the integrand when evaluated in the far field
region.

8,1. ANALYTICAL EVALUATION OF THE INTEGRALS J AND G
The evaluation of two of the inte$als arising in the study of half-space

geometries will be discussed in deøil. This special case occurs in many engineering
probiems involving transmission line structu¡es located above or embedded in a homo-
geneous lossy media (usually the upper medium is ai¡ and the iower medium earth or
water). Analytical expressions in terms of series expansions will be developed in the
following sections as well as approximate solutions fo¡ both the small argument and
large argument regions. A discussion of the numerical evaluation of these integrals by
referring to the general form (B.1) will be given in the last section. The integrals
J(tr"o) and G(r,,Þ) used throughour rhe thesis are given as a function of the

ransform variable k" by defining rhe kemel in (B.1) as

l(t"=^,[t ,?-t"2,F), Í (k,,k") = ,[k]+kFk: +rl4.kF*
(8.2)

c<r"=Ç?l ?'Pl, f &x,k")

where k" and /c, are the propagation constants in each of the the upper and iower
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mediums, respectively, and n=kr/k" is the refractive index at thei¡ interface. For a

two layer structue there corresponds only the two irrationals, U, and U, The two
integrals a¡ise in the formulation of the Green's functions for sources located over a

lossy half-space as derived in appendix A (4.78,A.79). Thei¡ solution is imperative
for the study of transmission line problems above an earth and their evaluation has
been studied for decades.

8.1.1. J Function Evaluation

This section presents various methods of evaluating the Fourier integ¡al J(tr,Þ)
arising in problems of a lossy earth as defined by

J(t,,Þ) = I,lnru,ttl +jExoo,

4ve 'v8

u" ={¡4a¡ç-¡r3 =^tk:+%z':' ; Re[u,]>o

u, = ^[t ,t*k:+? - "{E;A ; Re[ur]>o
, r-;-;lpl = ''lxz+yz , !-lp = tan-t1lx) , t¡yl>0

where ,t, and &, are the propagation constants in the upper and lower media. The
parameters r," and r* Re[t'tr l>0, represent the transverse wave numbers in the ai¡
and eanh media, respectively, and are in general complex. The i¡rationals U", lI, are
defined so that the inregral decays as ly I -.r.", thus giving the two branch p-oints

lite, ljrs and associated branch cuts in the complex È, plane as shown in figure
8.2. It is evident that the integrand of @.4) contains no singularities since
Re[U" ,U, ì>0.

Im[t,]

(8.4)

Re[&,]

Figure 8.2: Branch cuts in the complex ,t* plane for J(t,p ).

The integral J(t",p) results from the TE potential function UfEF, and as it is

mainly responsible for conduction losses in the earth, has an appreciable value over
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most of the frequency spectrum for typical earth parameters. Va¡ious analytical
expressions for its evaluaúon a¡e well documented in the literature. Ca¡son evaluated
the integral in the quasi-static region under the assumption r"=0 (the axial propagation
constant is equal to the f¡ee space value k"=k") and gave a solution in terms of a

series expansion [Carson]. This formulation has been widely applied at power
transmission frequencies, with an improvement found using an effective expression in
terms of Struve functions which is valid in the small argument range (t, -r 0) [Waitl,
Perelmanl. Methods utilizing the complex image theory technique of van der pol a¡e

also available in the quasi-static region [vanderPol, Wait2]. For the large a¡gument
range (far field), expressions for the integral have also been developed using an
asymptotic technique or method of steepest descent [Chiba, Carpentierl]. In the inter-
mediate argument range, expressions which are valid under various restrictions a¡e also
available in the literatu¡e [Chang3, Oisen5, Kuester4, Aboul-Atta].

A general expression for evaluating J(t" uo ) can be developed for small t, by
factoring the integrand of @.4) and evaluating the resulting integral in rwo parts âs

(B.s)J(t",p) = ffi!r"-trr)e-u,ltl+ir+'oo, = Jr +Jz

The solution of the ûrst integral J1 is straight forward by recognizing the relationship

Jr = =+.. " Í u""-u' lt I +i4' or,
\n'-r)ke'-

= --2-=+ro1t, lp'l)
1n2-t7tc! ðyt

-2 [rr, lÞl)r,(t, lpl)-G"Ðzxz(t, lÞl)l _=æ-ÐELf.1 ti:'or

The solution of the second integral J2 is more difficult since the i¡rationals in the
numerator and exponent differ. For tr<l, the i¡rational U, can be represented using

the binomial expansion ^tEQ - I k* I 11 + {r"tk,)zt2 + . . , ), and each of rhe ¡esult-
ing exponential te¡nìs can then be written in a power series. An integratable form for
J2 can then be found by collecting powers of ,tf¿ to yield

J, = ---:1- I U ='' lY I +itt'x'''
"z - 1r2-t¡¡4 !," t" 

utx

= & X^ !u, , k, I -o ,-t tç, t +ik", dk, (B.7)
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^ _ , GÍv\ Gfu\ (t,ro)s) (tjy3)
- 384 16 '-) 3840 64

using appropriate transformations, integrals of the type (8.7) can be identified in terms
of recursive integrals of S truve functions T, (z ) as

"2.t, = & F:^ fr lr,u,r+ r, (22¡]

z, = rr(t+ix) zz = l'.'3-ix)

T"(z) = I^f!+*'z w-n e-nz dw = t^fn-r1r1d,
0z

i- f 'l

Tse) = !"[t+wz e-nz dw =* ¡ | 
Hr(z)-rttzl 

¡o 2l z J

Áo = +1

ß!y2)

r(r",p) = e{f r', r Þ | rr,r'"

Gh)
'2

. G:y\ ß!y)4,,=--+-"488 (8.8)

(8.9)

(8.10)

(8.11)

where H1(z) is the fust o¡der Struve function and Y ye) is the fi¡st order Bessel func-
tion of the second kind [Abramowitz]. series expansions for the recursive integral
T,,(z) can then be developed using the relation (8.10) and expressions for the fi¡st
order Struve and Bessel functions in @.1 1). A fust o¡der approximation for J(t, p ) is
given by the ¿=0 term in @.9) as

!r]lFl)-G"Ð2rcz?"lÞ
lÞ12

.,î+l!'dì:l-'dl+ Hr(z'--v'(zt'l Ì (8.12)4L 21 22 l) 
\D't')

This is the form developed by Perel'man [Perelman] and in a similar manne¡ when
re=O by Wtit [WaitU and Shen [Shen3].

8.1.2. Other Approximations for J
Under the quasi-static assumption, where the axial variadon of the fields is

assumed to be equal to the free space value k"=k" (r"=0), the integral J(t,=Q,Þ) can
be evaluated as

J"(Þ) = J(t,=0,p) = .ri-rjlx-^tø@-¡az.']r-^,, tcos(À-r)dî. (8.13)
\n-- L)kP: o -
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This is the integral fonn formulated by Carson in 1926 [Carson] in his quasi-static
evaluaiion of the conductor over lossy half-space problem. Assuming trr=^[joVfi,
Carson gave a solution to (8.13) through two rerfls Jc=P+lO, which were evaluated
by an infnite series (known as Ca¡son's series). The convergence of the series has
been examined in a number of references [Dommel]. wise latter improved the series
by including the effect of polarization currents (Carson's ¿" =^/,l colr" o" was reÞlaced

l.-=-
by ,t, =r/ olz¡¡r 6, +j ops os ) [Wise]. The evaluation of (8.13) can easily be realized
by letting t"-+0 in @.i2) giving

r ,-\ - -2 I ,"a'f , æ [H1(2,;-r ¡Q1) . H¡(22)-Y{22)rc\P)-@fELlÞ-Trl-rL \ -- ,, (B.14)

z 1 = - ¡ k 
",,[-¡1L1 

1 I + jx ) = - j k, ( y +,i x )

z 2 = -jt¡"{ nz-11y -jx) = -jk, (y -,ix)

This form was developed by Wait lWaitl] and latter by King, Shen and othen [Kingl,
King3, Shen3, Chenl, with series expressions also given in [Shen3].

The evaluation of the reflected fields using complex image theory was fi¡st intro-
duced by van der Pol in 1935 [vanderPol, Stratton] in connection with the evaluation of
the Sommerfeld integrals for a dipole source over a lossy half-space. The theory was
latter extensively applied to line sou¡ce problems for geophysicat remote sensing appli-
cations [Wait4, Bannisterl, bannister2, Bannister3]. Its more recent utilization in the
power engineering field was made by Deri and Semlyen [Deri]. As well, an exact
image theory for electric and magnedc dipole sources over a lossy half-space has

recently been developed by Lindel llindelll, Lindell2, Lindetl3]. The quasi-static
image theory of vanderPol is implemented by subtracting the ñeld due to the source,s
image as if it was over a perfectly conducting earth from the correction term J", which
accounts for the finite conductivity. Thus, (B.13) can be formulated [trVait4] by con-
sidering

J"(Þ)+l',(|Þl ) = il---- - I'lr-rr, lcos(t¡)dr
'olx+"t;o-1*-¡¡r"z r l" 

wvÞ\'*'/ø'!

iL-u" "-tlvl= J ;__:*: 
^_cos(À¡ 

)d À
or'"+Us

i "-M 
lr l ta)

= -J: À cos(Lx)dX, (8.15)
0

*here Ur=',[ì3--@-1¡pz and o= +j2/k"''{-nLt. In (8.15), the singular part of the

integra.l J" has been removed by adding the logarithmic term. The modified integrand
has then been approximated by the fust term of its Taylor series expansion. The
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remaining integral in (8.15) can then be recognized as

J"(Þ)+ntlPll = tn(lÞ'l) (8.16)

l¡l=Ça1¡r,¡"¡ t"=;þ
k"\ n'-l 1J (')ps os

where ô = ^ElaLf s is the skin depth in the ea¡h med.ium. Higher order terms in the
exparsion of (B.15) can also be included to give a more accurare result [Olsen?].

Chang and Wait [Changl] have formulated the special case when the source and
the observation points are much less than the skin depth in the lossy medium
I Þ' I * ¡. Noting that ¡oth J(t,,Þ) and Ks(t, I Þ I ) porær. an order O( lnit, I F I ) )

singularity ur I p- I + 0, the evaluarion of (8.4) can be approximated using their
integral representations as IAbramowitz]

JG"F) - KoG" t p I r = i l;o - ù1"''t': 
t +i,x on,

.,-o> oj;e4+] . +

rtt,,Þ) ,-f -rn[t" I îl). 
,,.-3rE

1+-)

(8.17)

(8.18)

(8.le)

8.1.3. G Function Evaluation

This section presents methods of evaluating the Fou¡ier integral G(t",p) arising
in problems of a lossy earth as defined by

G(t,,Þ) = !rr* r-a, I t | +i4x 
dkx

U" =r[t,'*k,4 =',tk:+r"1':' ; ReiU,]>0

u, ='[tq'**-k? - "[eæ ; Re[ur]>o

lPl ={z+ , !-F=tan-l¡tx) ,t¡,yl>o
where &, and t* are the propagation constants in the upper and lowe¡ media. The
pammeters '8" and t, Re[t't, Jà0, a¡e the transvene wave numb€rs in the ai¡ and
earth media, respectively, and n=ke/k" is the refractive index at the interface. The
irrationals U, and U, represent two sets of branch cuts with branch points at tjt, and
tj t, as defi¡ed for the function J(r,,Þ) in the last section. However, a pair of simple
poles located at lkrg in the complex ,t, plane are also present as shown in figure 8.3.
The pole locations a¡e defined by setting rhe denominator of (B.19) to zero yielding
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k¿ =tjl)[ç{
U,B +jk"

r¿ L"'l n2+1

The locadon of the poles in the complex .t, plane is dependent on the refractive index
¿ of the interface a¡d on the value of the spectra.l component kr. T"he poles represent
a surface wave contribution to the field, a result of the TM potentiat ¡una,lon- y,eEF.

The pole Èr¡ is present at all frequencies (has no cut-offl and is defined for a specific
radial wavenumber

(8.20)

(8.23)

t7l

(B.21)

by the electrical propenies of the interface alone. Figure 8.3 gives possible movement
of the pole in the complex k, plane as a function of frequency for fixed eanh pa¡ame-

ters. At low frequencies, rhe pole is located near the branch point +jre. In the high
frequency limit, the pole location approaches the imaginary k, axis k¿ -+ +jk"l^l;;+\.
Note that the pole can cross the real ,t, axis for specific values of f¿, this occurring
under the condition RetÈs l{ (Imft!1=¡¡¡1¡¡rz¡ç¿ 2+1)l). This situation a¡ises in the
very high frequency region for typical earth parameters. The contribution of the pole
to the function G(t,,Þ) can be extracred from (B.19) as

^{kÃ+k"-=^, =#

^. f 'l 

-
Go = nj-tL L#lrtous 

t x t -u¿ | v I

+ik" +k^Í" + U4 = :* or altematively kr-+ ),,s = :+\n¿+l \ nz+I

(8.22\

kn[¿, j

+j5.

!\
L - *--+k¿-Q

Re[t, ]
Figure 8.3: Branch cuts and su¡face wave pole in the complex ,t, plane for G(t",p-).

Examination of @.22) shows it is possible to find a value of re (and thus,tr) which
allows the pole contribution to approach infinity. This is given by

¡\

\
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such that È, =Ia is deûned to be the branch point ,tr¡ , with U"¿ being the coÍespond-
ing propagadon constant of the su¡face wave in the f direction (perpendicular to the
planar media). The location of the pole U¿s in the complex te plane as well as possi-

ble paths of the irrational U, are shown in figure B.4. For given eanh parameters, the

pole U"¡ -+0 for o¡-r0. and U"s --+¡k"h'[14 for ol-+oo. It is also possible for the
branch cut of U, to cross the real k, axis in figure 8.3, this occurring under the condi-
rion Im[1s2]=0.

t¿=-iþ

Figure B.4: Complex t" plane giving the pole U¿ and possible

paths of U, as a finction of tr.
The integrai G(t'p), æsulting from the TM potential function VfEF, is mainly

responsible for displacement crurent losses in the ea¡th. Due to the factor ¿ in the

denominato¡ of the integrand, the contribution of the function is small for low frequen-
cies and high earth conductivities, and thus, it is usually completely neglected in
quasi-static approximations. However, at higher frequencies, the contribution of
G(t,,p ) can not be ignored and in fact may take on an appreciabie value if evaluated

near the pole t"--+U¿ (the fields then being mainly due to thei¡ su¡face wave contri-
butions).

Various analytical as well as numerícal methods can be used to evaluate the

G(t'p ) function. Unlike the function J(t, ,Þ ), it can not be reduced to easily

identified integral forms. Instead, an analytical formulation will be developed by fac-
toring the integrand around the pole and then evaluating it in two pans as [Bridges3]

Im[rr]
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(8.24)

(8.25)

(B.26)

(8.2'7\

(B.28)

I n2 I r 1 1 I
-:--nzu" +u, - na-l LU" -rl"t rz U, +usa l

wherc IJ,B = -n2u¿. The integral can now be evaluated as

G(t"'Þ) = Go(t"'Þ) + G1(t,þ)

Go(t",Þ) = *iq:r;{u' 
I t | *jhx 

dkx

G,(t, .o ) = ++ i --l ,, "u, 
I t t +it+x 

on,
,l__l*ug+ugg

integral form for K1(z ) [Abramowitz] as

Gr(t,,Þ) =-: ,+[-1¿l].,c, lptrn--L n's I lpl J

l-L. I- t"2lc61t,,p¡ = 6
ldx' dy" )

The integral G1 can usually be neglected when compared to Gs for large values of
refractive index n. For moderate values of n, G1 can be approximated using the

To evaluate the remaining integral, note that Gs is a solurion of the homogeneous

two-dimensional wave equation as well as a fi¡st order differential equation as [Grin-
bergl

r^ ì -. ^ (8.29)

Accordingly, a general solution can be constructed in terms of an exact panicular solu-
tion plus a homogeneous pan. Now, by rearanging the integrand of (8.26) and by
utilizing an appropriate Eansformadon

co(r,,Þ) = #[**r", pl )+r]*e-uu t, t,i,"u,"' K.G"^F*?) ¿,

I tr t

rìt
+ c | -Æ- lr-'h? - uÀl' I -u¿ lY I 

I

[!r-'z ) ]

, lÞl +0,

(8.30)

where the arbitrary constant C defines the residue conribution due to the singularity of
the integrand nea¡ the pole 4 = UeB and is yet to be determined. This solution, for
any value of C, is validated by direct substitution into @.29). The incomplete integral
tenn present in (B.30) can be evaluated in the uniformly convergent region
Re[U"s he]<l by invoking the addiúon rheo¡em of cylindrical functions lsrratron] to
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(8.31)

(8.32)

obtain

^t
Go(t,,Þ) = +1- lro1r" I pl) + I¡(r"x)v6(z,s) + zi{-t) tz^{r"x)v6^e,s),'- 1 L m=r

tìl
+ c | -å ln-^h?-uàl' I -u¿ lv I 

Il.!r-r'j j

V^(z,s)=se-"ie"K^(t) dt ,, =r"ly I

z

Here V^(z ,s) is an incomplete integrai of the modified Bessel function K- (, ). The

choice of expanding the series with K.(¡) in the integrand in (8.30) was made since

the series convergence is more rapid under the condition ly ltr. This situation is

the one most often encountered in transmission line above earth problems. A recipro-
cal form of (8.30) can altematively be developed in terms of incomplete integrals of
the modified Bessel function InG) for situations where ¡> ly l. V.(z¡) can be

solved in terms of a ¡ecu¡sion ¡elation for rn>O as

(8.33)

Thus, only the term V6(z ¡ ) requires evaluation. Zo(z,s ) is of similar form to the

incomplete Lipschitz-Hankel integral [A$est, Kuester3] and can be solved analytically
by expanding the exponential function within the integrand. Then, the integration of
every term of the resulting series is executable analytically as

lt I
v s(z s ) = se-' 

{afi li -'* rr', - lt tot lx r(z ) + Lr(z )iKo(z ) I j

+ a; þr,tzl] * Ëtrr,t,l + ek-r)Ks(z)t "-'ltSÍ)^f
* iÍ,rr{,) + (2k)Ks(z)tz* l*]rt }

(8.34)

¿r = |rlm)" , Bi = |rW#)*.' (B3s)

with K6(z ), K t(z ) being modified Bessel functions of complex argument and L¡(z ),
L1(z) being modified Struve functions of complex argument. When s falls in the uni-
formly convergent region I nelsl | <1 rhe two series (8.35) converge to the values
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(8.36)

-_etr.2j=¡mtuål

Note that sin-1s is a multivalued function differing from the principle value by
multiplicity 2nn and having branch cuts defined Uy I nets I I > l. t¡is multiplicity
then defrnes the value òf the residue contribution given in (8.30) and (8.31). Thus,
depending on which region of the complex plane t" (and thus s) lies, the arbitrary
constant C determining this contribution will be Ce (0,2). The regions in the normal-
ized complex t"lk" plane indícating the appropriate value of C are shown in figure
8.5 and a¡e defined by the conditions

1 ^ - sin-ls.r0 = --- , DO = _-
'Vl-s' "Vl -sz

lz , n"t ?l < tmlulpl i Lie > Lu"Bt = lo. orherwise
(8.37)

The condition that ¿r¿ > ¿U,¡ defines the branch cur I Re[s] I >1 roh"n (J¿ > t" and
the condition Imtr,"2l < ImlU:Bl defines the branch cut where the pole krp crosses the

negative real axis in the complex,t, plane. Other formulations have been presented in
the [terature fo¡ the evaluation of G(t"þ) [Chang3, Olsen5, Kuester4], but have not
direcdy identifled the pole contribution as done in (8.31).

C=0

Figure B.5:
Re[t,/,t.1

Valuc of the constant C as a function of r"/k" for
determining the su¡face wave pole contribution

For the special case ¡=0, as is only required when matching the frelds for single
conductor systems, the solution to the inte$al G¡ becomes

(8.38)

lmlt,lk,l

t75



Appendix B Solution of Sommerfeld Type Integrals

where p=2h9 and å is the height of the conductor above the eanh, and G, is the pole

contribution given in @.22). For the small argument range of I t,Þ | , tite fust term

of G.31) is adequate for the evaluation of G(t,,p ) as long as f¿ does not fall nea¡ the

pole singularity Us. the validity and convergence of the series solution (8.31) has

been examined by comparison to the results generated by numerical integration

[Bridges2]. Only in the very large argument range, where the function decays

exponentially, is the given expression not adequate due to slow convergence of the

series in @.34). However, accurate asymptotic techniques can altematively be used in
this range.

B.1.4. Small Argument Evaluation of G

The small argument behavior of the integral G(t",p ) will be determined since it
allows a much simpler formulation and is adequate at low frequencies. The integrand

of (8.19) can be wrinen in the form

-=-r-- =l-:=l=:[+++] ,* = *:+,*=(! p.zvt
n2u"+u, [n2+rJ2ueLl+xRI 

" IJe+us'* nz+l

If ln l<t an¿ lXl.1, thr denominator of (B.39) can be expressed in a binomial
expansion and then formed in terms of powers of R as

1 - f ,-l=J_{,- l"-rln + lxrx-rrln2- . },".00,Ãuru, = l;4i )rr" t 
I - LX-rl¡( + L" '- 'r )

The fust order approximation, which was employed by Perel'man fPerelman], can be

recognized in terms of the modified Bessel function Ks(z ) as

G(t,,p) = ft¡Ko<""1çl¡
The second order approximation can be identifled as containing the integral function

J(t" uo ) as

n f -z I . l
G(t,,Þ) - -+ . l*!xo<""IÞll*-3=¡t.,,p'll (B.42)

n'+ L I n'+I n'+I .j

The higher order approximadons to G(t,,p) are not recognized with available func-
tions and involve evaluating integrais containing the kernels llus, Us, Ur3,... etc. A
study of the validity of the small argument approximations (8.4L,8.42) is available in
the lite¡arure [Bridgesl].

(8.41)
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8,2. F.A,R FIELD APPROXIMATIONS

In the fa¡ field region, The Fourier integrals presented in (8.1,8.4,8.19) can be

evaluated using the method of steepest descent. These integrals a¡e of the form

F(x¡,2) = + I + l¡ç,,t"¡r-u'lt I +ik '+ihz¿¡r,¿¡, (B.43)

, =uerFT=r* ;Reru¡l>o

t¡ =t[¡r7-¡oz ; Re[t¡]>0

,t-;--lpl =\xz+yz , 0=¿Þ=tan-lgh)
lnl ="çç=,[?+yi/ , ï=tan-r(lÞl/z)

Each of the integrals in (B.43) can be evaluated individually under the far fietd condi-
tion I t¡p I >t or I *,n I >t, in tenns of integrals of the general fomr

H (x,y) = I nlÂ¡rørta¡ (8.44)

o(1. ) = -;, y I + jtt- -{î.r+*prinQ+lrpcosQ

where p = I p- I is assumed. ln order to evaluare (8.44) by the saddle point method

[Collin], it is convenient to use a Eansformation of the variable of integration such that

À =+lrsinY <--> Y =-;sinh-l(Vr ) = o+lI
o(V) = -Kpsin(Y+0) @.45)l__r

= +iUxp) lcos{o+q-f)cosh¡ - jsin(o+þf,lrinnn 
IL2¿)

The transformation allows åolå Riemann sheets in the complex l, plane to be mapped
onto adjoining strips i4 lbe complex Y plane as shown in figr:re 8.6. The proper

Riemann sheet Re¡{Xz1p1tO is shaded, with the improper Riemann sheer

Re¡{¡za*zr.O left unshaded. The fou¡ quadrants in the complex }. plane are appropú-
ately labeled in the Y plane (the quadrant axes are rotated by the angle ¿Qr) from rhe

À coo¡dinates, this angle approaching zero for lossless media). Noting that the integra-
tion contou¡ C can be defo¡med to any altemate path, as long as poles or branch cuts
a¡e not crossed, the most desirable path wouid be one where the imaginary pan of Õ
remains constant, and the real part inc¡eases as rapidly as possible. The path of
steepest descent is thus chosen by specifying

I¡nt O(À) I = Im[ Õ(Is)] = ImtO(Ys)l = consranr
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(

lI.ç = +ltcoso
= o -+ .{ _ (B.46)

lv'=*-ol"

/

^'l ^'1
-rlorr)Jur, - -r' ocv)l*=*,

where X5, Y5 define the stationary points (saddle points) in the respective complex
planes. The steepest descent paths can be found from (8.45,8.46) by satisfying
sin(o+Q)coshq = +1. Im[À]

T

\s(ø)

''l¿1

nefl-¡,2+*l.o ne¡{¡za*z¡¡
Figure 8.6: Steepest descent paths in the complex L and Y planes.
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ln the fa¡ freld, the major contribution to the integration a.long the steepest descent

path comes f¡om the neighbourhoud of the saddle point, since at this point the real part

of Õ(À5 ) is at a rninimum. To determine the contribution f¡om the saddie point

region, both the exponent and the kernel l¿ (1,) in (8.44) are expanded in a Taylor
series about the saddle point, noting that Õ'(ì,5 ){ from (8.46), as

o(?,) = 61¡r¡ + Õ"(l.sXì.-¡'s)2t2+ "

(8.47)

A fust order approximation to the integral (8.44) can then be derived by using the first
two terms in (B.47) . for the exponent. Afte¡ bringing the summation outside the

integral as

H(x,y) =¿o(L) i -l- {-1,ô)l I t},-}""¡^rø'<x,xx-À'f¿ d}, (8.48)

^^ ^l AN" "t"/lr=rs 1"' "'
and utilizing an appropriate substitution, the integral tenn can be transformed into a
recognizable form as

f_*rl_
J 1¡-ì.r¡.eø1r')()\-t's)zn dL = l-o..firl] 

I ' ) I tñea2n dt (B.49)

fn. tr-J of (8.49) is an odd function and thus onty the Jrn ,"rro, contribute to
(B.48), which can then be evaluated in terms of error functions [Abramowitz]. After
substitution of À5 the saddle point contribution is given as

H(x,y)={r,r,,*p=,;^[Ë'"a]"Ê,*,fou]^¡*',,"r,-Kp(B50)

with the fi¡st term approximation to (8.50) given as

(8.51)

(8.s2)

H (x ¡) =o 1^r¡1@r¡qr-*o

Using the method of steepest descent, integrals of the type (8.43) can now be

evaluated in two steps, under the conditions I t, p I >t, I t,n I >t, using the form
(B.51) as

rî t '
F (x,y,z) = fi k <u*,r,,1 #;I, '{FFtp t +¡rçz or,

=¡t0,,,**)*HË e+ihtnt
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&z¡ = *,t¡ cosT
'l

,t,s = +itrcosO )r=*= +¿isinl€osO

For the special case of considering only the primary contribution to the Green's func-
tion (a solution of the homogeneous space wave equation (Yz+k,\f = +õ11) ) the ker-
nel ín (B.43) is defined as

Í(k,,y,k,) = ¡çk,,k,)e-u¡lrl - -'-!'-l-'l - -7tI.
-" I

^-^1., 
z+-"ñ:"¡ 

I y I: _ t8.53)
z"lt!+t<|-tc,2

The homogeneous space Green's function can then be de¡ived through (8.52) as

"+jhlnlF (x,y,z') (8.54)

In the steepest descent evaluation of integrals of the type (8.43), only the s¿ddle

point contribution has been considered. In the general case of more complex media,
such as layered or cylindrical geometries, the integrand may contain branch cuts as

well as poles in the complex plane of integration. In deforming the integration contour
to the steepest descent path, these branch cuts or poles (including the poles on any

improper Riemann sheet) may be crossed, and thei¡ contribution to the integral must
also be included. These situations and their method of solution a¡e discussed in many
sou¡ces for various geomery ryp€s lFelsen, Collin, Tamirl].

8.2.1. Steepest Dercent Evaluation of J and G

When studying high frequency interaction with transmission lines, the steepest

descent technique can be employed to determine the coupling between conductors as

well as the radiated fields. The technique is appropriate when the electrical distances

considered are large and interaction at grazing angles of incidence is not required.
This æchnique has be¿n used to determine the discrete rrodes supported by a wire
above a lossy ea¡th [Chiba], the radiated ñelds of a transmission line excited by a delta
function source [Olsen4, Carpentier3], and the fields of corona discharge sources along
conductors [OlsenS]. The integrals J(t" ,Þ) and G(r, ,p ) in @.4) and (8.19) can be

evaluated in the far fieH ltrpltnt, Uy appropriately specifying the kemel å(1,) in

@.uf4). Expressions bæed on the fi¡st trvo tenns of (8.50) are given as

I(,",p)={",^,, * fi*'o#r,rr)]o^, } tffi] sinq¿-r. rÞr (B.ss)

G(.c",F)= 
{ro,^,, 

+ --sin2o ¡1r"rir]o,,, 
} tffi ]"','nq,*, 

rFr (s.56)
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t" sing + tk"2sinzq+ 1r]-t]¡

åc(Às) =
1

n2 r 
" 

s\nþ +'J t 
"2 

sin2 q + ç ! - t< ])
ð2. ^.1 T l

*rår(I) l. . = -fu(),)Xlt + ç2cos2q"¡2a)
d lt' I ^=rt

à2 ^l T ^ l
*;åc (r) l. . = -håQàxla + Qcos2qv¡zu2noQ,",¡+ac 1)dl\' I ¡=rt

1

'" t,sinq{t,2sn2q+1r}-t!¡

a = 21?sir?þ+&?-k;)

^( ^ ^ ì 1i2
å = t, sinO + n' lt,!sn"þ + (k""-kr") 

)

c = t"3sin3o + n2 lr"2snzq 
+ grz-¡zr)3t2

The fust term approximations, also found in the lite¡ature [Chiba], are given as

r 

-t-, 

( ¡',, l1/2
J(r",p) = lt, sinQ + .'lq2sin2q+1t!--rt,l 

[ÍUi J sinoe{' rF t (B.s7)

r ---------------- -, l t*. ì v2

G(t,,Þ) = fn2t,sinq .rt:r:'tæO.e+il' l# | sinqe*'lFl (8.s8)
l. lpl j

Referring to figures B.3 and 8.4 and as discussed in detail in sections 3.3.4 and

3.4.2, the steepest descent paths for the functions J and G may cross the branch cut
Re[U, ì>0 near grazing angles Q-rO'. This branch cut gives the lateral wave contribu-

tion to the frelds in the region nea¡ the interface. At low frequencies the branch point

occurs near t, and thus the contribution is very small when the interface acts as a
good conductor (oslo€¿>l). As well, the integral G possesses a pole at &r¡ which
may also be c¡ossed near grazing angles Q-r0o, this yielding the TM su¡face wave

contribution to the fields. The contributions from both these sources must be incor-
porated for accu¡ate ¡esults in the general case.

8.3. NUMERICAL EVALUATION OF THE FOURIER INTEGRALS

In this section, the numerical evaluation of the Fourier type integrals (8.1)
encountered in layered media problems a¡e discussed. Several diffe¡ent techniques

have been proposed in the literature. The solution of the integrals required for the

solution of dipole sources embedded in microstrip and related geometries has been
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solved by di¡e¡t real-axis integradon of the double infrnite integrals [Pozar, Burke,

Jacksonll as well as tkough the real-axis integration of the associated Bessel function
transform of these [Mosig, Rana, Jackson2]. Various difficulties a¡e encountered in
thei¡ evaluation, however, one problem being that when the geometry is assumed loss-
Iess, the su¡face wave poles fall on the paths of integration. In the latter case, the
problem has been handled by extacting the pole singulariries through a folding around
the pole technique lGa¡diol, Jackson3]. By using a direct integration along the real-
axis problems can also arise in the large argument (far freld) eva.luation of the integrals
since the integrands become highly oscillatory. For the case of a dipole source over a

lossy half-space, a solution to this has been obtained by deforming the ¡eal-axis con-

tour to the steepest descent path [RahmatSamii, Parhamil]. However, even though this
produces a very fast converging inte$al, the possible inclusion of any pole or branch

cut contributions, which a¡e c¡ossed during the path deformation, must b€ constantly

monitored. A review of these techniques is given by Michalski lMichalski] along with
an altemative integration scheme, also based on a steepest descent path approach.

The method of integration presented in this section is based on a reai-axis numer-
ical integration, where the integrand is weighted by an analytically integratable func-
tion which damps the oscillation of the integrand. In the non-oscillatory region of the

integrand, a segmented Gaussian-quadrature technique is employed whe¡e the segmen-

tation is based on a logarithmic scale. In the oscillatory region of the integrand a

second order integration is performed, where an exponential weighting proportional to

the steepest descent phase variation is directly incorporated. The technique used for
the oscillatory region reduces the phase variation of the integrand and thus allows the

integrals to be easily evaluated numerically, even in the far field region.

Consider the evaluation of inægrals of the general form presented in (B.1), which
can be formulated as

F (x t,z )= + Ï + i f &,,t ")r-@ 
| v I +itsx +itçz 

dk, dk,
alL a alt¿ 4

= +i+ y çk,,k,¡e-@t, | +it"x 
d.kx e*i,' dk"

= +1þ <''Yl',t'*' efe.'rFZ P *itç' 
dk,

", = ^[k?-k?

p =^{x'z+f , O = tan-r( ly ll¡)
R =^tr'*y'** , I=tan-|(ptz)

where the integrands become highly oscillatory for lk¡y l, lt¡, l, or I4r l>t.

(8.5e)
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ln section 8.2, it was shown that both the infinite integrals in (8.59), one with respect

to ¿¡ and one with respect to k, can be evaluated in the form

H(x,y)= Jn6¡r-ffiltl+iÞ¿¡ = !nç,¡rd¡.x>ax (8.60)
*,

Examination of the exponential term in (8.60) shows that their a¡e four possible

regions of behaviou¡ of the integrand. These a¡e shown in figure 8.7 by ptotdng the

terms !î,2+r2 ly I an¿ llf¡ I in the complex plane as a funcrion of ì". The path of
integration ---"" < I < +"" will be segmented into these four regions, with a different
integral form used for each region.

ilÀr I

oscillatory rcgion

--+ r= I r,. | -+ t¡¡
I

non-oscillatory region

/*
non--oscillatory regiont_

--+ r=l¡nt{r2+? lv I l-+r¡¡
I

oscillatory region

+

Figure 8.7: Four possiblc oscillatory/non-oscillatory regions of ö(À).

The four possible regions depend on the magnitude of the atguments lcy I an¿

I t¡ I an¿ a¡e def¡ed by the conditions:

1. For I n"flf+rzr, I <X, I ¡"r I < X; the integrand is in the nea¡ field region and

is evaluated directly in its present form using a gaussian-quadrature technique

S(X) = h(L)e-ffi lY | +ir¡

where À¿<À < î,p is the region along the ¡eal-axis integration path where the

above conditions are sadsfied. Both exponential tenns are incorporated into the

(B.61)

Imlol
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function g (î,) since they do not cause a la¡ge phase variation, with the dominant
contribution to the inregrai in this region being the behaviou¡ of the kernel l¡ (1,).

Also, when nedÀ2+r2yl>t, the integrand decays rapidly, this ponion of the
integrand conu'ibuting to the reacrive pârt of the integral. The parameter 1 is
chosen usually in the range 2<X510. Funher segmentation of this region, based
on a logarithmic scale, is employed for numerical evaluation.

2. For I Im¡{plazrJ l<1, l¡.¡ l> X; the integrand oscitlates rapidly with respect
to the x-dimension. In this region the integral is evaluated in the form

1\B À4 . .r

In(Dn'{Fættl+¡x¿¡ - Iletrlle,iþal, (8.62)
LA Ä¡

g (¡,¡ = ¿ 1¡¡¿-rrælr I

3. por llmd¡,2*zlJ l>1, l¡,¡ l< X; the integrand oscillates rapidly with respect

to the y-dimension. In this region the integral is evaluated in the form

Às lr-
I n(xlr-'tPæt, t +iu ¿¡ + J I côl lr-"têãt t I ax
l',r À^ ' )

s¡ l- r ì '1

- J lsl+jtsin(cos-1s)l , ,/tl, , lr+i<i"ltl>'ds (8.63)
s¡ L sln(cos 'J) I

g()')=h(?ùe+i7' | 'Xo'l, s¿ *a = cos 
[s,n 

. 
/.f -J

4. For I Im¡{¡zlaz tJl >7, I ¡,r I > X; the integrand osciltates rapidly with respect

to both the x- and y-dimensions. ln this region the integral is evaluated in rhe

fonn

f, fr.
I n <X)r-"tFæ l, I +i t't ¿¡ - f I g trl le-.Fæ I y I +¡tz ¿¡
À^ l,^ '

- i L [+Ttsinlsin-ls -q¡l +ltcos(sin-]'.-t''le*r<.,"cxar (8.64)
s^L' ' cos(sin-'s ) I

(^ì
sô) = l¡(À) , s¡,a = rin 

[ri"-t34+OJ
p =^tx'z+y'z, O = tan-lo/r)

The transforms used in regions 2-4 are obtained by multiplying the kernel l¡ (),) by the
phase variation of the steepest descent contribution, so that in the new kemels g(1.),
the phase variation will be minimal. The integral forms given for regions 2,3 are
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special cases of the more general form given for region 4. They can be obtained from

the transform for region 4 under the limits Q-+0 and þ-+n12, respectively. Note that

the integtation does not necessarily pass through all four possible regions.

Each of the integrals (8.61,8.62,8.63,8.64) in the four regions require the evalua-
tion of integrals of the form

1s¡ ù N s"¡r -sl
r= [26¡eûü¿t=L\=2 [r6¡r*i*as+ J zg)e+ißds (8.65)

ls¡ n=l r=1 s, -J¡+l

where each region s¿ -+s¿ (or 1,¡ -+1,¡ ) has been divided into N appropriate subre-

gions t(,ru -+s¿+r). Since the conditions defining each region are symmetric for lÀ,
there are two contributions to the integrals in @,65), one for -sn*1< s <-s,, and one

for socs (so*1. For the case of region 1, the exponential weighting is ignored with
c¿=O.

8,3,1. Analytical Evaluation of the Subregion In

Each subregion of the integral (8.65) requires the evaluation of integrals of the

form

s+A
Il"= ) lz(s)e+rcrs 4 7(-s)¿-Jas lds (B.66)

F-A

- 
Jr,+l *J¿ ^ J¡+l -S¿

"22
For the special case cu{, the integral will be evaluated using a gaussian-quadranre

formula [Press]. For the case ctÉO, the kemel z(s) will be approximated by a second

order polynomial and integrated with the required exponential weighting function. A
gaussian-quadrarure formula, also weighted by an exponential function could alterna-

tively be used as a more advanced technique. Thus, the kemel in (8.66) will be

approximated as

z(s) = arlr Tl)2 + åt(s + s ) + cr (8.67)

where the I signs indicate the range z(+s) and z(-s), respectively. Performing the

integration of (8.66) with the approximation @.67) then yields

l(ì
I, = fA (a,À) [a+e+/6 + ø-e-i* )

( ._ ._ì
+ jB (o,^) lb*e*t* - b-e-r* ) (8.68)

+ C(ct,^) fc*¿'i*- * r=-i*-]]
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+ z(!( s+^ ) ) -22(+¡¡ + z(t( s-Â ) )
2

,,+ z(+(s+^ ) ) - z( l(s-^ ) )-)

c'= z( s )
a

A (s,^) = lsincÂ
cÍ,

B (q,Â) = 2 l-Lrt* - .oro¡l
cr [û^ )

21 2 2 I
C (cr.Á) = 3 lsinaÂ .''r- --:- ç65¡¡¿\ - --i - sinaÁ Io [-- 

-- q^ ----'- o2t2--'--- )

For the special case that z(s) is an even function z(+s)=+21-5¡, then a=a+=a-,
D=b'=D,C=C =C.ano

l^ = zle <o,t)ocosccr- - B (d,^)ð sincrr- + c 1o¿¡c cosas-l (8.69)

Similarly, for the special case that z(s) is an odd function z(+s)=-¿1-5¡, ¡t"n
a.=a'=-a, Þ =o'=-Þ, c =c'=-c, and

ç = z¡ln 9,6¿ sino¡- + I (o,a)å cosan- + c (g,¿lc sincr-] @.70)
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Appendix C
Axial Power Flow Calculation for Guided

Wave Structures

In this appendix, the axially directed power for the discrete modes supponed by a

conducting strip located above a lossy half-space is derived. As shown in figure C.1,

the guiding structue consists of an infuitely thin, perfectly conducting strip of width
w oriented horizontally above a single planar lnterface and located at (r={,y=y').
The upper half-space y>0 is considered to be free space, cha¡acterized by a permit-

tivity e, and a permeability p". The lower half-space y<0 is designated as the lossy

medium, cha¡acterized by a permittivity e, , a penneabiliry ps , and a conductivity o, .

The cur¡ent on the strip is assumed to have a specified axially directed cu¡rent disribu-
tion of the form

'¡¿+lkl' ¡ i -w /Z<x <+tr 12

ix<-wtL,x>+wlz (c'1)

where kl is the axial propagation constart of one of the possible guided wave modes,

and Jl@) is the corresponding current distribution for that mode. The current and the

resulting frelds for all the discrete modes have an exponential axial variation of this
form. The formulation presented here is simila¡ to the method used to deærrnine the

axiaily direcæd power for microsrip structtues, where Jansen Uansen2l presented

closed form resulted for the shielded case and Hashimoto [Hashimoto] developed for-
mulations for the unbounded casc.

lfiuñtn-njPG,y,z)=1, --

Figure C,1: Infnitely thin conducting strip iocated over a losy half-space.
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As discussed in section 4.5, the axially directed power for the pth mode can be

evaluated as an integration of the â component of the Poynting vector in the upper and

lower half-spaces as

(c.2)
*,=*l

where E", He and Es , He arc the fields in the air and ground media, respectively,
due to the strip current. As also discussed in 4.5 (4.49), this formulation can be easily
modified to handle an arbitrary number of planar layers, such as in microstrip for
example. The required field components in each region can be derived as a weighted
integration of the fields from an elementary delta function line sou¡ce as

+w /2r I I nb(emùt ,,,,' t'p\^+itÇ(x-x'\ ,,ELTHL@¡,k!)= ) Jf(x')^_ Je(tz \tuxrr,J ,Éz)e '\- 'dkx&'
-w f2 zT *

= fi-l trn,rogletn)ç**¡ ¡"k!¡r+it+* dk,

= [i_r',,oLrk,J ,kl) e*ih'dk, i d. e x,y ,z (c.3)

jl(k,) = [ ryç'¡e-it+{ ¿¿' = 
_f ,4<r'>;iÇ/ 

ar. (c.4)

wherc e'oth'o is the ô' component of the specral domain electric/magneric fleld in the

region i nd jf(kr) is the spectral domain currenr. Here G'f!"t^)1k*,y¡',kl) is the
Eansformed Green's function giving the ô, component of the electric (e) or magnetic
(¡¡ ) field in the region i due to the â directed li¡e sou¡ce in the region e. Finally,
using (4.50), the double infiniæ integrals determining the power can be evaluated using
the transformed field quantities given above as

,, = +Iire Í(k) Ì1;' (k,) - eí (k,) h:r (k,)tdy dk,

_0
* j 

llVl<t,)h!.(k,)-ef(k,)hÍ.(k,)ldy 
dkx (c.s)

The Green's functions Gg!"t^)1k,,y ,r' ,k") ;aex,y required for the flelds in
(C.5) can be deduced from the fields of a line source located above a lossy half-space
as formulated in Appendix A. Using the vertical electric and magnetic scalar potential
forms from appendix A (4.13-4.30), the transformed field quantities in each region
due to the strip current,located aty=y', are given from
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(C.7c)

(c.7d)

d 1k, ¡,k,¡ = vv'vj + k¡zv j + 7ro¡r¡v x uj
F 1k,¡,k"¡ = vv uj + t¡zuj -Tcoejvx vj (c'6)

+ict)tl" l+jkrU")l- "-u,lt-t'l "-u,0*v')1yi(k,,t,k) = -f,rn,rl;Frr )l= 
t * * *"T) (c.7a)

+iott. |+¡k,¡ae!)| e-u, lv-v'I _ n-u,tt*t'>luf(k,,t,k) = filro,rl'tr )L. = rq * n^t zu" I tc.zur

y !(k,,t,k,) = ff ,,u,,tw)|," u,, * *)

u ! (k,,t,k,) = ff , r u.,lw)|, 
^ 

uu "' 
*,, 

f

n2(,1. - u" mzu" - u,Ð = ------:-------J- Ð =-"e n2u" + u, ' "m 
m2u" + u,

..1_1
nzu" + u, ' 'm 

m2u" + u,
"t=Z ^'=#

where ei = e¡ +jo¡lo. Considering the upper half-space fi¡st (t=€), the integration

with respect to y in (C.5) can be evaluated analytically as

ej(k,,t,k,) = g!+t"\vf

ei&,,y k") = 1+¡*,>$v; - j,Jjlle(+jk)u;

h f (k, t,k ) = 1* !+t< 
"2)u 

j
hi&,,yk)= {+*,1$u; + j@e;(+jk)Yí

_f
iv:r+' - 

e;r€vt = 
1*' lffi),*r. 

jiø$r,ru;' * r?u,,lí')ú

. *' [åFl t*"- I lu"vn:Sa;' 
+ u"v;r'];u!';-]t] (c'8)

")

AA* k"ç'n;¡' = trf, I jltt ,¡1,
where Y' Uo are the portions of (C.7a-C.7d) in square brackets only. The axially
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directed power in the upper half-space is then given as

Z^¡,; = ; Ll ¡!<tc,¡lz F"çk,¡',ky¡dk,

f lr- t I
F"(k,,y',k,)= 

lÇ *dl
I r: )1,,,1 ,
lr]+r,2 )1"" lu"*u!

R""-u,2t'-pr ,-u!zt' R"e-u'2)' pp* ,-uì2t'
U"+U! U"-U:

(c.e)

(c.10)

.t 2
+ k; 

lu/'u: 
+

R^e-u'2r' +R)r-u!2v' _ R^e-u,2v' -R;,r-ui2v'
U"+U| U"-U:

R"e-u,2!'¡p' 
"-ui2t'

U"-U!

, ,,rl -1 R"+R) n,nå I ^-(u,+u)y."" ¡rU - uÆ ,id f
.r,l;.ï.#.m],'**']

I u"u: )l , ,l 2 R"e-u'2'' -R' e-u:2'- 
la.ç )1.'luÆ - ryu:-

, ,-r.l 2 R"e-u'zt +R!¿-uizt' R"e-u'2t' -p'r-ui2t'Í ñz 
luÆ - uru:- - ---n;ur-

* *f 4,* *,*^i 
- !¿t-]"<u,*u:>.

^ lu"+ul u"-u; u"+ui 
)

. rrli.ï . # . #)"-**" ] Ì
Examination of the function F"(kr¡',kr), shows that the fou¡ terms having no

exponential factors represent the primary fields of the strip in an unbounded homo-
geneous medium. The eight terms with the expl-IJ 

"2y' 
or UlZy'1 factors represent

the power due to the ¡effected fields in the upper half-space due to the interface. The

remaining terms with the exp[-(U"+U!)y'] facton represent the power in the lower
half-space region which is subtracted.
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gimil¿¡ly, the axially di¡ected power in the lower half-space (l=g), can be

evaluated using

ef(k,,t,k,) = &:+khvf

ef(k, y,k,)= t+*,1$Vre - i ol¡t, (+jk,)U f
h 

¡8 
(k,,t,k r) = & x2 + k hv f

h!(k,,y,k") = (+jÐ+l'uf + i oe;(+ik)Y I

iwo¡' -,rhi'tdv = {*- l*1.,,,- T [ø$vw' * ^'t lsçaí')øol
ì

. *.l#æ1,*,,-Ílu"v;n:Sut. + u"glnzk|,'u;vr-]of (c 11)

Za t
,Ê = ; Ll ¡lt*,>12 rr{k,.t',kÐak, (c.12)

í o- --ru,.rrr'lll * l,.
F,(k,,r',k,) = 17';':;, lllhllu"u,,"r: + ^2r,tr^r)fL* us-us 

J Il^,-", j

í ^ ìr- - ll* I lll ^rllu"u:r"r: 
*'ru^" 1n'r3¡'r.r:ll (c.13)

lkx'+kz-Jl " k,' lj
Using the power method, the characteristic impedance of the strip-half-space

guided wave structure for the pth mode can be determined as

^, 
= Tff , I ç I 

2 =**f',t r!ø> t, * = +it i!<t,¡ | 2 dk, 1c.r+¡

14 ;foraôlinesource
il&) = .l sinlÈ_wr2) (c.15)rz*tx' 

VrryP 
; for a constant currenr strip of width w

where jl(k*) has been deûned in (C.i5) for two common choices of cunent disribu-

tion. ln general, the cur¡ent distribution is a property of the specifrc mode.
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C,1. SPECIAL CASES

For the special case where the lower half-space has the same material properties

as the upp€r half space (the strip is located in a homogeneous space), the total axially
di¡ected power is given as

fn"=n.= g

n2 = m2 = I : l-'
lT"=T^=ll2ue

When a delta function line source carrying a curent 1o is considered, jP(kr)=Ip, ¡he
power integral will not converge since the integrand behaves as 1/Ç as tr-+.". This
divergent part of the integrand, representing the axial power in an unbounded homo-
geneous space, can be identifred in the general half-space power integral (C.9) and can

be extracted in this fo¡m.

Next, for the special case when the lower half-space is assumed perfectly con-
ducting (o, -r."), the total axialiy directed power will be due to the power flow only
in the region y >0 as

,t
F"(k,,y',k,)=?l# +#t-

F"(kr¡',*r¡= f,
Fr(k,l',kr) = 0

t
P ;*P Ê = 

t*Î 
l,fu,', | 2lY 2-e-u'2'' -e-u:z''P Y 2r L' "' [¿e U"+U!

to! , ì[ k: rlp;+pt = fi I*r ir<*;eltåtll*. il*.

2_e-U,zy'_e-Ul2y'
U"+U)

Io: 1

lou"r; 
. z

k:1
---------------- * - IJ.U: 4

(c.16)

(c.17)

(c.18)

(c.1e)

^ Ín" =+1 ,R¿¡ =-1k,n" -)oo: lrr =r,,, =o

(c.20)

I * ,l
l*t * i)*' (c'21)

Again considering the case of a perfectly conducting lower haif-space, when there are

no losses in the conducting srip the modal propagarion constant will be equal to the
free space value kl=k", For a delta funcrion line source carrying a current Io,
jl(kr)=Ip, the axially directed power is then given as
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p;+pÊ=fftçr\t;åL*

= 
tÅ 

t ,, | 2lrntzy'¡ - 
"t'jà 

l"øl] (c.22)
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