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Abstract

My thesis proposed new types of correlation adjusted penalization methods to

address the issue of multicollinearity in regression analysis. The main purpose is

to achieve simultaneous shrinkage of parameter estimators and variable selection

for multiple linear regression and logistic regression when the predictor variables

are highly correlated. The motivation is that when there is serious issue of

multicollinearity, the variances of parameter estimators are significantly large. The

new correlation adjusted penalization methods shrink the parameter estimators

and their variances to alleviate the problem of multicollinearity.

Multicollinearity is an important issue in regression analysis. When the

predictor variables in a regression model are highly correlated, their overlapping

contributions to the response variable lead to undesirable results when making

statistical inference of the response. On one hand, the traditional methods of

automatic variable selection often do not work well to produce a satisfactory

model. On the other hand, introducing interaction terms into the model makes

the model more complex and difficult to apply.

The latest important trend is to apply penalization methods for simultaneous

shrinkage and variable selection. In the literature, the following penalization

methods are popular: ridge, bridge, LASSO, SCAD, and OSCAR. Few papers



have used correlation based penalization methods, and these correlation based

methods in the literature do not work when some correlations are either 1 or -1.

This means that these correlation based methods fail if at least two predictor

variables are perfectly correlated.

We proposed two new types of correlation adjusted penalization methods that

work whether or not the predictor variables are perfectly correlated. The types of

correlation adjusted penalization methods proposed in the thesis are intuitive and

innovative. We investigated important theoretical properties of these new types

of penalization methods, including bias, mean squared error, data argumentation

and asymptotic properties, and plan to apply them to real data sets in the near

future.
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Chapter 1

Introduction

1.1 Background and motivation

In linear regression analysis, when a large number of predictor variables are

introduced to reduce possible modeling biases or there is serious concern of

multicollinearity among the predictor variables, variable selection is an important

issue.

Conventional methods to select variables include subset selection procedures

and stepwise procedures. With a subset selection procedure, several alternative

subsets of variables are proposed and compared with each other by means of R2

criterion, Mallow’s Cp criterion, PRESS (Prediction Sum of Squares) criterion, or

other criteria.

Automatic variable selection procedures are more common and are offered

with most statistical software such as SAS. These include forward selection,

backward elimination and stepwise selection. However, there are major drawbacks

1



CHAPTER 1. INTRODUCTION 2

of automatic selection procedures. For example, the procedures heavily depend

on choices of inclusion and exclusion probabilities, and the backward and forward

procedures may end up with different best subsets.

On the other hand, suppose multicollinearity is detected and the predictor

variables that cause multicollinearity are identified. As discussed by Ryan (2009),

multicollinearity may not be a problem if the goal is to use the linear regression

model for prediction. However multicollinearity is a problem if we use the linear

regression model for description or control.

Multicollinearity implies that predictor variables form some groups. Within

each group, predictor variables are highly correlated. One solution to multi-

collinearity is to remove one or more of the predictor variables within the same

group, but deciding which ones to eliminate is a difficult technical issue. A

major consequence of multicollinearity is that the parameter estimators and their

variances tend to be large. Therefore the inference of the response is highly

variable.

The latest and most popular method to address multicollinearity is the use of

penalized regression. Essentially the idea is to put constraints on the parameter

estimators when estimating the parameters. This consequently put constraints on

the variances of the estimators.

The majority of penalization methods put constraints on the parameter

estimators only. For example, this includes the methods of ridge, bridge, LASSO,
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elastic net, SCAD and OSCAR. Few papers have also incorporated empirical

correlations in the penalty functions. Intuitively, including empirical correlations

should improve the effects of penalization.

Given that all variables are centered and standardized, we characterize the

relationship between two predictor variables by a linear equation. Let γij be the

sample correlation between two predictor variables Xi and Xj . If γij is high, then

there is multicollinearity involving Xi and Xj. Furthermore, by means of simple

linear regression, x̂j = γijxi is the predicted value of Xj based on Xi = xi. If we

replace Xj by x̂j in the multiple linear regression of Y on X1, · · · , Xn, then we

have the terms β̂ixi + γijβ̂jxi. Our motivation is that the difference βi − γijβj

should be small.

1.2 Objectives and scope of research

The objective of this thesis is to introduce new methods of penalized least squares

for multiple linear regression and penalized likelihood estimation for logistic

regression that attempts both regression shrinkage and variable selection.

We call these new regularization methods as CAR (Correlation Adjusted

Regression) and CAEN (Correlation Adjusted Elastic Net). My motivation is

that including empirical correlations in the penalty function may help improving

the shrinkage. Moreover including correlations helps to achieve the group effect.

By this, we mean that if one predictor variable of a group of highly correlated
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predictor variables is not statistically significant, then the other predictor variables

in the same group tend to be statistically insignificant as well. Hence we wish

to leave the whole group out of the model. However, if any predictor variable of

a group of highly correlated predictor variables is statistically significant, then

the other predictor variables in the same group tend to be statistically significant,

so all predictor variables in this group should be kept in the model. Because

correlations implicitly connect the predictor variables, including correlations help

to either select the whole group of highly correlated predictor variables or to

exclude the whole group.

The new types of penalization, CAR and CAEN, are applied to the ordinary

least squares regression, logistic regression and LAD (Least Absolute Deviation)

regression. We formulate the objectives and derive the estimators, and investigate

the properties of the penalized estimators, including bias, mean squared error,

data argumentation, and asymptotic properties.

1.3 Structure of the thesis

General backgrounds of regression analysis, including both the ordinary least

squares regression and logistic regression, are reviewed in Chapter 2.

In Chapter 3, we review different types of penalization in the literature,

including ridge, bridge, LASSO and its extensions, elastic net and correlation

based penalties.
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We introduce the first new type of penalized regression CAR and investigate

its theoretical properties in Chapter 4.

The second new type of penalized regression CAEN is introduced and its

theoretical properties are investigated in Chapter 5.

Chapter 6 concludes the thesis with a summary of the achievements and

discussion of future research questions and projects.



Chapter 2

Regression analysis

2.1 Introduction

The use of regression analysis has significant applications in medical research and

countless other areas, and is an important component of modern data analysis.

The central objective is to understand the relationship between a response (or

dependent) variable and a set of predictor variables (also known as explanatory

variables, regressors, covariates, or independent variables) and to apply the

relationship for the purpose of estimating and/or predicting future responses.

There are many important theoretical, practical and computational issues

related to regression modeling and inference, including specification of the link

function that relates the response variable and predictor variables, estimation

of regression parameters in the link function, measure of model performance,

diagnostic statistics to assess the modeling assumptions and goodness-of-fit, and

remedial methods in the cases of violation of assumptions.

6
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The response variable can be continuous or categorical. Although some philo-

sophical ideas may be similar for different types of response variables, methodolo-

gies are different, in particular on the choice of the link function and assessment

of goodness-of-fit of the model.

Effective model building is a significant issue. Essentially, we search for

the best fitting and most parsimonious model that is practically meaningful

and reasonable to describe the relationship between the response and the set of

predictor variables. The fit of the model to the data set is determined by measures

of goodness-of-fit, and being most parsimonious requires effective methods of

model selection.

Multicollinearity is another important issue in multiple regression. Collinearity

means a linear relationship exists between two or more predictor variables, while

multicollinearity refers to a situation in which two or more predictor variables

are highly linearly correlated. The most extreme case is perfect collinearity (or

multicollinearity) where the linear correlation between two predictor variables is

either 1 or −1. This happens, for example, when two predictor variables X1 and

X2 satisfy X2 = a+ bX1 for two real numbers a and b.

In the presence of perfect multicollinearity, parameter estimates of the pop-

ulation multiple linear regression model are not unique. In practice, perfect

collinearity occurs rarely. However quite often we face the issue of multicollinear-

ity when there are strong linear relationships among two or more predictor
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variables. This happens when two or more predictor variables contribute more

or less to a same characteristic of the subjects. For a matrix A, let AT be its

transpose and A−1 be its inverse matrix if it exists. When predictor variables

are highly linearly correlated, the most significant consequence is that entries of

(XTX)−1 are large, so the predictor variables contribute overlapping and redun-

dant information. Other consequences of multicollinearity are that some predictor

variables are not statistically significant but the model is overall significant, and

that the usual interpretation of coefficient estimates fails in the presence of mul-

ticollinearity and there is high variability of parameter estimators because the

estimated variance-covariance matrix has large diagonal entries.

Many methods are available to detect multicollinearity. These include checking

for significant change in the parameter estimate when its corresponding predictor

variable is added to or removed from the model, checking for insignificance of

individual estimators while the model is overall significant, calculating the Variance

Inflation Factor (VIF) and carrying out formal multicollinearity tests.

There are several remedies for dealing with multicollinearity. One method is

to select a collection of predictor variables that are minimally correlated with each

other. This avoids overfitting the regression model and can be normally done with

statistical software. However information from other predictor variables is often

wasted. Furthermore, there is no clear way of selecting a collection of predictor

variables that forms the best subset.
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Since omitting predictor variables may result in potential loss of information,

another method is to include interaction terms into the model to account for high

linear correlation among the predictor variables. There are several problems with

this approach. One is that the form of interaction is not unique and must be

carefully determined. The other is that the model is much more complex and

has too many terms which reduce the degrees of freedom of the inference of the

response, and hence reduces the power for predicting and estimating the response.

In recent years, alternative methods have been introduced to deal with

multicollinearity. In particular, the method of penalization has becoming popular

and useful. This is also known as simultaneous shrinkage and variable selection.

We review this area in Chapter 3. General discussion of regression can be found

in Ryan (2009) and Kutner et al. (2005).

2.2 Linear statistical models

The ordinary multiple linear regression model is frequently used and has parameters

that are easily interpreted. The response variable is continuous and denoted by

Y . Let X1, X2, · · · , Xp denote the predictor variables, where p is the number

of predictor variables. The relationship between Y and X1, X2, · · · , Xp can be

formulated as a linear regression model

Y = β0 + β1X1 + β2X2 + · · ·+ βpXp + ε. (2.1)
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or for each of the n sub-populations, as

Yi = β0 + β1Xi1 + β2Xi2 + · · ·+ βpXip + εi, i = 1, 2, · · · , n. (2.2)

where

• Yi is the response for the ith of the n sub-populations, i = 1, 2, · · · , n;

• Xi1, Xi2, · · · , Xip are the p predictor variables for observation i, i = 1, 2, · · · , n,

that determine the ith sub-population.

• β0, β1, β2, · · · , βp are p+ 1 unknown parameters to be estimated from the

data;

• εi is the random error for the ith sub-population specified by (Xi1, · · · , Xip).

In dealing with the regression equation, estimating the parameters, and

drawing inference of the responses, the statistical assumptions of the linear

regression model include LINE:

• Linearity: E(Yi) = β0 + β1Xi1 + β2Xi2 + · · ·+ βpXip is a linear function in

the parameters β0, β1, β2, · · · , βp;

• Independence: εi and εj are independent for i 6= j, so Yi and Yj are also

independent;

• Normality: the random errors ε1, · · · , εn are normally distributed so that

εi ∼ N(0, σ2
i ), implying that Yi, i = 1, · · · , n, are also normally distributed;
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• Equal Variance: the variance of the random error is the same for all sub-

populations, V ar(εi) = σi
2 = σ2, for all i = 1, · · · , n, implying that Yi,

i = 1, · · · , n, also have the same variance if we assume that X1, · · · , Xp are

pre-specified.

Under the assumptions LINE and the values of xi1, xi2, · · · , xip of the predictor

variables, the random response Yi follows a normal distribution with mean β0 +

β1xi1 + β2xi2 + · · ·+ βpxip and variance σ2.

The linear statistical model can be rewritten in matrix form as

Yi =
(

1 Xi1 Xi2 · · · Xip

)


β0
β1
β2
...
βp

+ εi = X(i)β + εi, i = 1, 2, · · · , n,

where X(i) =
(

1 Xi1 Xi2 · · · Xip

)
and β =


β0
β1
β2
...
βp

, or collectively


Y1
Y2
...
Yn

 =


1 X11 · · · X1p

1 X21 · · · X2p
...

...
. . .

...
1 Xn1 · · · Xnp




β0
β1
β2
...
βp

+


ε1
ε2
...
εn

 , (2.3)

or, Y = Xβ + ε,

where Y =


Y1
Y2
...
Yn

, ε =


ε1
ε2
...
εn

, and X =


1 X11 · · · X1p

1 X21 · · · X2p
...

...
. . .

...
1 Xn1 · · · Xnp

 is called the

design matrix of the linear model.
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The assumptions of Linearity, Independence, Normality, and Equal variance

can be collectively expressed as

ε ∼ N(0, σ2In)

where N(0, σ2In) denotes the multivariate normal distribution with mean vector

zero and variance-covariance matrix

σ2In =


σ2 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σ2

 .

Equivalently, the linear model in a matrix form can be rewritten as

Y ∼ N(Xβ, σ2In) (2.4)

The first objective of any regression analysis is to find the best fit of the

regression model to an observed data set. There are some technical issues. Firstly,

the corresponding sample equation that describes the sample data set is of the

form

ŷ = b0 + b1x1 + b2x2 + · · ·+ bpxp.

Secondly, there must be a criterion by which we can define the best fit. There are

two commonly used criteria: the principle of least squares and the principle of

maximum likelihood.

The principle of least squares states that the best fit of the linear model is

given by that
n∑
i=1

ei =
n∑
i=1

(yi − ŷi) = 0 and
n∑
i=1

e2i =
n∑
i=1

(yi − ŷi)2 is minimized,

where ei = yi − ŷi is called the residual.
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The principle of maximum likelihood states that the best fit of the linear

model is given by the estimators β̂0, β̂1, · · · , β̂p that attain the maximum of the

likelihood function `(β0, β1, · · · , βp).

2.2.1 Standardized regression

Assume p predictors X∗1 , X
∗
2 , · · · , X∗p and a response Y ∗ for a linear regression

model

E(Y ∗) = β∗0 + β∗1X
∗
1 + β∗2X

∗
2 + · · ·+ β∗pX

∗
p .

The observed dataset and summary statistics are displayed as follows:

Subject Sample Sample
V ariable 1 2 · · · n mean standard deviation

Y ∗ y∗1 y∗2 · · · y∗n y∗ Sy∗

X∗1 x∗11 x∗21 · · · x∗n1 x∗1 Sx∗1

X∗2 x∗12 x∗22 · · · x∗n2 x∗2 Sx∗2

...
...

... · · · ...
...

...

X∗p x∗1p x∗2p · · · x∗np x∗p Sx∗p

This means that the original dataset is given by

{
(y∗i , x

∗
i1, · · · , x∗ip)T , i = 1, 2, · · · , n

}
,

where T stands for transpose.

We now transform all observations by standardizing. The correlation trans-
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formed observations are,

yi =
1√
n− 1

y∗i − y∗
Sy∗

, i = 1, 2, · · · , n,

and

xik =
1√
n− 1

x∗ik − x∗k
Sx∗k

, i = 1, 2, · · · , n, k = 1, 2, · · · , p.

Then the standardized regression becomes

ŷ = β̂1x1 + β̂2x2 + · · ·+ β̂pxp.

There are two major reasons for standardizing. Firstly, the round-off error for

least squares estimation (as well as for MLE) is significantly reduced. Secondly,

the interpretation of estimated parameters is compatible because the new variables

X1, X2, · · · , Xp have no units.

Throughout the rest of the thesis for multiple linear regression with a contin-

uous response, we assume that all variables are standardized.

2.2.2 Method of least squares

With standardized response variable Y and predictor variables X1, X2, · · · , Xp,

the least squares equation is given as

ŷ = β̂1x1 + · · ·+ β̂pxp,

where the ordinary least squares (OLS) estimators β̂1, · · · , β̂p are derived by

minimizing

OLS =
n∑
i=1

(yi − xiβ)2 = (Y−Xβ)T (Y −Xβ),
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where Xi = (xi1, xi2, · · · , xip), β = (β1, · · · , βp)T and

X =


x11 x12 · · · x1p
x21 x22 · · · x2p
...

...
. . .

...
xn1 xn2 · · · xnp

 , Y =


Y1
Y2
...
Yn

 .

In matrix form, the OLS estimator β̂ = (β̂1, β̂2, · · · , β̂p)T is derived by setting

∂(OLS)

∂β
=

∂{(Y−Xβ)T (Y−Xβ)}
∂β

= 0

and obtaining

β̂(OLS) = (XTX)−1XTY.

Furthermore, the variance-covariance matrix of β̂(OLS) is given by

V ar(β̂) = V ar[(XTX)−1XTY)]

= {(XTX)−1XT}V ar(Y){(XTX)−1XT )]T}

= σ2(XTX)−1XTX(XTX)−1

= σ2(XTX)−1.

where σ2 is unknown and estimated by MSE = SSE
n−p = eT e

n−p , and e = y− ŷ =

(y1 − ŷ1, · · · , yn − ŷn)T is the vector of residuals.

The vector of predicted values of the response is given by

Ŷ = Xβ̂ = [X(XTX)−1XT ]Y = HY,

where H = X(XTX)−1XT is called the hat matrix. Clearly H is idempotent (i.e.,

H = H2) and symmetric (i.e., HT = H).
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2.2.3 Method of maximum likelihood

Maximum likelihood estimation is a general technique for estimating parameters

and drawing statistical inferences in a variety of situations. Based on the available

data, we wish to estimate the parameters β1, · · · , βp that make the probability of

observing the data as high as possible. This is called the principle of Maximum

Likelihood Estimation (MLE).

For fixed values of X that fall within the range of the data, the probability

model for the response Y is given by Y ∼ N(Xβ, σ2In), and the probability

density of a normal distribution is

L(βT , σ2) =
1

(2πσ2)n/2
exp

[
−(Y−Xβ)T (Y−Xβ)

2σ2

]
which is called the likelihood function of (βT , σ2), where exp(u) = eu is the natural

exponential function. The log-likelihood function, i.e. the natural logarithm of

the likelihood function, is

`(βT , σ2) = logL(βT , σ2) (2.5)

= −n
2
log(2π)− n

2
log(σ2)− 1

2σ2
(Y−Xβ)T (Y−Xβ).

Taking partial derivatives with respect to the parameters and setting them

equal to zero, we get the maximum likelihood estimators β̂1, · · · , β̂p. We note

that with respect to β, maximizing ` is equivalent to minimize the Ordinary Least

Squares (OLS). The partial derivatives are

∂`(βT , σ2)

∂βT
= − 1

2σ2
(2XTXβ − 2XTY),
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∂`(βT , σ2)

∂σ2
= −n

2

(
1

σ2

)
+

1

σ4
(Y−Xβ)T (Y−Xβ).

Setting these partial derivatives to zero and solving the equations, the maximum

likelihood estimator β̂ satisfies

(XTX)β̂ = XTY,

where β̂ =

 β̂1
...

β̂p

 . Provided that |XTX| 6= 0, the solution is

β̂n(MLE) = (XTX)−1XTY. (2.6)

σ̂2 =
(Y−Xβ̂)T (Y−Xβ̂)

n
=
eT e

n
, (2.7)

where e = Y − Xβ̂ is the residual vector. Clearly the MLE β̂n(MLE) =

(XTX)−1XTY is the same as the principle of least squares estimators of β1, · · · , βp.

The well known Gauss-Markov Theorem states that the MLE β̂ is BLUE, the

Best, Linear, Unbiased Estimator. First of all, β̂ is unbiased in that E(β̂) = β.

Secondly, β̂ is a linear estimator because β̂ = ((XTX)−1XT )Y is a linear function

of Y. Lastly, β̂ is the best among the class of all linear unbiased estimators of β

in the sense that the variances of β̂i, i = 1, 2, · · · , p, are the smallest.

2.3 Logistic regression

When the response is binary (i.e., dichotomous), it is no longer reasonable to

model the conditional expectation of the binary response as a linear function
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of the parameter. If this were the case, then we would have E(Y |x1, · · · , xp) =

β1x1 + · · · + βpxp. Clearly, E(Y |x1, · · · , xp) takes only values between 0 and

1, but the right hand side can take any real value. So we need to transform

β1x1 + · · ·+ βpxp to a value between 0 and 1. The most popular function is the

logistic function ex

1+ex
, and hence the name logistic regression. To be specific, the

logistic regression is given by the model

E(Y |x1, · · · , xp) =
eβ0+β1x1+···+βpxp

1 + eβ0+β1x1+···+βpxp
(2.8)

or

log
π(x1, · · · , xp)

1− π(x1, · · · , xp)
= β0 + β1x1 + · · · , βpxp (2.9)

where π(x1, · · · , xp) = E(Y |x1, · · · , xp) and g(z) = log
(

z
1−z

)
is called the logit

transformation.

Recall that for multiple linear regression, we have Yi = E(Yi|xi1, · · · , xip) + εi

or simply Y = E(Y |x1, · · · , xp) + ε, where ε is random and normally distributed

with mean 0 and common variance σ2.

However for logistic regression, if we have

Y = E(Y |x1, · · · , xp) + ε = π(x1, · · · , xp) + ε.

then ε takes value 1 − π(x1, · · · , xp) with probability π(x1, · · · , xp) and value

−π(x1, · · · , xp) with probability 1− π(x1, · · · , xp).

Let’s write xi = (xi1, xi2, · · · , xip) and π(xi1, xi2, · · · , xip) = π(xi). Then the



CHAPTER 2. REGRESSION ANALYSIS 19

likelihood function is

L(β0, β1, · · · , βp) =
n∏
i=1

{
[π(xi)]

yi [1− π(xi)]
1−yi
}
, (2.10)

and the log-likelihood function is

`(β0, β1, · · · , βp) =
n∑
i=1

{yilog[π(xi)] + (1− yi)log[1− π(xi)]}. (2.11)

Setting the partial derivatives with respect to β0, β1, · · · , βp to 0, we have the

likelihood equations

∂`(β)

∂β0
=

n∑
i=1

ei =
n∑
i=1

[yi − π(xi)] = 0,

∂`(β)

∂β1
=

n∑
i=1

xi1ei =
n∑
i=1

xi1[yi − π(xi)] = 0,

...

∂`(β)

∂βp
=

n∑
i=1

xipei =
n∑
i=1

xip[yi − π(xi)] = 0.

Note that these are similar to the likelihood equations for multiple linear models,

however, these likelihood equations are much more difficult to solve than the ones

for multiple linear regression. Thankfully, most statistical software could produce

estimates of logistic regression and calculate π̂(xi) = eβ̂0+β̂1x1+···+β̂pxp

1+eβ̂0+β̂1x1+···+β̂pxp
.



Chapter 3

Penalized regression

3.1 Introduction

When there is multicollinearity among the predictor variables X1, X2, · · · , Xp, the

determinant of the matrix XTX is small where

X =


X11 X12 · · · X1p

X21 X22 · · · X2p
...

...
. . .

...
Xn1 Xn2 · · · Xnp


is the design matrix. Consequently the entries of the inverse matrix (XTX)−1 are

fairly large. The least squares estimators (also the maximum likelihood estimators)

of parameters, given by β̂n(OLS) = (XTX)−1(XTY), are large. More significantly,

since the variance-covariance matrix of β̂n(OLS) is σ2(β̂n(OLS)) = σ2(XTX)−1,

the estimated parameters β̂n(OLS) are subject to large variability. Hence, the

prediction or estimation of the response, which is a linear function of the estimated

parameters, will have large variability. This will adversely affect the quality of

estimation or prediction of the response.

20
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Regression is one of the most useful statistical methods for data analysis.

However, there are many practical problems and computational issues, such as

multicollinearity and high dimensionality, that challenge the regression analysis.

To deal with these challenges, variable selection and shrinkage estimation are

becoming important and popular. The traditional approach of automatic selection

(such as forward selection, backward elimination and stepwise selection) and best

subset selection are often computationally expensive and may not necessarily

produce the best model.

The method of penalized least squares (PLS), which is equivalent to penalized

maximum likelihood, helps to deal with the issue of multicollinearity by putting

constraints on the values of the estimated parameters. A wonderful consequence

is that the entries of the variance-covariance matric is also significantly reduced.

In general, the PLS is to minimize OLS = (Y−Xβ)T (Y−Xβ) subject to

Pen(β) ≤ t, where Pen(β) is a specific penalty function of β = (β1, · · · , βp)T and

t is a tuning parameter. This constrained optimization problem is equivalent to

the Lagrangian optimization which minimizes

PLS = OLS + Penalty = (Y−Xβ)T (Y−Xβ) + λPen(β),

where λ is a tuning parameter and controls the strength of shrinkage. For

example, when λ = 0, no penalty is applied and we have the ordinary least

squares regression. When λ gets larger, more weight is given to the penalty term.

Desirable properties of penalization include variable selection and grouping effect.
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That is, by penalization it is hoped that the variables that are truly statistically

significant are selected into the model, and highly correlated predictor variables

should be selected all together or excluded all together.

Suppose that the data set consists of n observations: {(yi, xi)T , i = 1, 2, · · · , n},

where T stands for transpose, yi is the response and xi = (xi,1, xi,2, · · · , xi,p) is

the vector of predictors for the ith subject. We assume that all data are stan-

dardized so that
∑n

i=1 yi = 0,
∑n

i=1 xi,j = 0 and
∑n

i=1 x
2
i,j = 1 for j = 1, 2, · · · , p.

Both the multiple linear regression Y = Xβ + ε and the logistic regression

P (Yi = 1) = 1
1+e−Xiβ

are considered, where X = (X1, X2, · · · , Xp) is the design

matrix. The standard assumptions for the linear models are LINE: Linearity of

the model, Independence of εi, i = 1, 2, · · · , n, Normality of εi ∼ N(0, σ2
i ) and

Equal variance σ2
i = σ2 for all i = 1, 2, · · · , n.

Many different forms of the penalty functions have been introduced in the

literature, including ridge penalty, bridge penalty, LASSO (Least Absolute Shrink-

age and Selection Operator) and its generalizations, elastic net, SCAD (Smoothly

Clipped Absolute Deviation), and correlation based penalties.
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3.2 Ridge regression

The ridge regression, introduced by Hoerl and Kennard (1970), may be the earliest

idea of using penalized least squares. The objective is to minimize

RidgeLS = OLS + λ

p∑
j=1

β2
j = (Y−Xβ)T (Y−Xβ) + λβTβ.

This is also referred as L2 penalized least squares.

Instead of having β̂n(OLS) = (XTX)−1XTY for the ordinary least squares

regression, ridge regression estimators are derived as

β̂n(Ridge) = (XTX + λI)−1XTY

where I is the identity matrix of size p× p.

When λ = 0, this becomes the ordinary least squares estimation. When

λ > 0, ridge regression estimators are biased but tend to be less variable, therefore

have smaller mean squared errors for appropriately chosen values of λ.

Ridge regression estimators are robust and could provide good estimates

of the mean responses or individual responses. However, a major limitation is

that the usual inference procedures are not applicable and exact distributional

properties are unknown.

One straightforward extension is the generalized ridge estimator

β̂n(GenRidge) = (XTX + K)−1XTY
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where K is a diagonal matrix with possibly different diagonal elements ki ≥ 0, i =

1, 2, · · · , n. See for example Alheety and Ramanathan (2009). Ridge penalty is

also applied to logistic regression, see Le Cessie and Van Houwelingen (1992),

Barker and Brown (2001), and Mansson and Shukur (2011).

3.3 Bridge regression

Frank and Friedman (1993) extended ridge regression to bridge regression by

generalizing the penalty function to

Pen(β) = λ

p∑
j=1

|βj|γ,

where γ ≥ 0 is also a tuning parameter. The objective is to minimize

BridgeLS = (Y−Xβ)T (Y−Xβ) + λ

p∑
j=1

|βj|γ.

Bridge regression is also called Lγ penalized regression.

3.4 L1/2 regularization

Xu et al. (2010) examined a special bridge regression with the penalty

Pen(β) = λ

p∑
j=1

|βj|1/2.

The objective is to minimize

HalfLS =
1

n
(Y −Xβ)T (Y −Xβ) + λ

p∑
j=1

|βj|1/2.

This is also named L1/2 penalized regression.
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3.5 LASSO

LASSO (Least Absolute Shrinkage and Selection Operator) was introduced by

Tibshirani (1996), also known as L1 penalized regression. The penalty function is

Pen(β) = λ

p∑
j=1

|βj|.

The objective is to minimize

LASSOLS = (Y−Xβ)T (Y−Xβ) + λ

p∑
j=1

|βj|

= (Y−Xβ)T (Y−Xβ) + λVTβ,

where V is a column vector with ith element being 1 if the sign of the corresponding

parameter βi is positive and −1 if βi is negative. Although V depends on the

unknown parameters through their signs, in practice based on theory or empirical

evidence, we might be able to determine the signs of the unknown parameters in

advance and so V could be regarded as being pre-determined.

The estimators that minimize LASSOLS could be derived as

β̂n(LASSO) = (XTX)−1(XTY− λ

2
V).

LASSO generally results in simultaneous shrinkage and variable selection. This

means that some estimators become identically zero if their corresponding param-

eters are zero. This is called the oracle property. However, a major drawback of

LASSO is that if there is a group of highly correlated predictor variables in the
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regression model, LASSO tends to arbitrarily select only one predictor variable

from this group.

Although LASSO has demonstrated good performance in many cases, lim-

itations still exist, see for example Tibshirani (1996) and Kyung et al. (2010).

In fact, ridge regression dominates the LASSO in prediction performance when

there are severe multicollinearity presence among predictor variables. Asymptotic

properties of LASSO estimators are discussed in Knight and Fu (2000).

To deal with the limitation of LASSO, extensions and variants of LASSO

have been proposed. Tibshirani et al. (2005) introduced the fused LASSO, given

by

FLASSOPen(β) = (Y−Xβ)T (Y−Xβ) + λ1

p∑
j=1

|βj|+ λ2

p∑
j=2

|βj − βj−1|.

where λ1 and λ2 are tuning parameters. Zou (2006) developed the adaptive

LASSO and Park and Casella (2008) proposed the Bayesian LASSO.

3.6 Elastic net regression

Combining the L1 and L2 penalties, Zou and Hastie (2005) introduced the elastic

net by minimizing

ENLS = (Y−Xβ)T (Y−Xβ) + λ1

p∑
i=j

|βj|+ λ2

p∑
i=j

β2
j

= (Y−Xβ)T (Y−Xβ) + λ1V
Tβ + λ2β

Tβ
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with two tuning parameters λ1 and λ2. Later Zou and Zhang (2009) proposed the

adaptive elastic net. Li and Lin (2010) introduced the Bayesian elastic net. The

estimators that minimize ENLS are

β̂n(ENLS) = (XTX + λ2I)
−1(XTY− λ1

2
V)

where V is introduced in the section of LASSO.

3.7 SCAD regression

Fan and Li (2001) suggested a SCAD (Smoothly Clipped Absolute Deviation)

penalty given by

Pen(β) = λ

[
I(θ ≤ λ) +

(aλ− θ)+
(a− 1)λ

T (θ > λ)

]
for some a > 2 and θ > 0.

Large sample properties of SCAD estimators are studies in Kwon and Kim

(2012).

3.8 OSCAR regression

Bondell and Reich (2008) introduced the OSCAR (octagonal shrinkage and

clustering algorithm for regression) penalty

Pen(β) = λ

[
p∑
j=1

|βj|+ c
∑
j<k

max{|βj|, |βk|}

]
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where c ≥ 0 is a tuning parameter. The objective is to minimize

OSCARLS = (Y −Xβ)T (Y −Xβ) + λ

[
p∑
j=1

|βj|+ c
∑
j<k

max{|βj|, |βk|}

]

= (Y −Xβ)T (Y −Xβ) + λ
n∑
j=1

[c(j − 1) + 1]|β|(j)

where |β|(1) ≤ |β|(2) ≤ · · · ≤ |β|(p).

3.9 Correlation based penalization

Tutz and Ulbricht (2009) introduced a correlation based penalty, which minimizes

CPLS = (Y−Xβ)T (Y−Xβ) + λ

p−1∑
j=1

∑
k>j

[
(βj − βk)2

1− rj,k
+

(βj + βk)
2

1 + rj,k

]
,

where rj,k is the empirical correlation between the predictors Xj and Xk. This

penalty is also investigated in Ulbricht and Tutz (2008). Moreover, Anbari and

Mkhadri (2008) introduced the elastic corr-net by minimizing

ECNLS = (Y−Xβ)T (Y−Xβ) + λ1

n∑
j=1

|βj|

+λ2

p−1∑
j=1

∑
k>j

[
(βj − βk)2

1− rj,k
+

(βj + βk)
2

1 + rj,k

]
.

3.10 Summary

The motivation for using penalized regression is that in the presence of perfect

multicollinearity, the ordinary least squares estimates are not unique. However

with penalized least squares, the estimates are unique by choosing appropriate
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tuning parameters. Similarly, without penalization, the ordinary least squares

estimators are subject to high variabilities when multicollinearity exists. With

penalization, the variances of the estimators are controlled.

A disadvantage of the ridge regression is that the interpretation is not easy

since the final model includes all input variables. There are methods to do variable

selection and shrinkage estimation simultaneously, such as the LASSO and elastic

net methods. The ridge regression only shrinks the estimates to 0, but LASSO

also selects variable automatically. One very interesting and important property of

LASSO is that the predictive model is sparse (i.e., the estimators are exactly 0 if

the corresponding parameters are truly 0). The elastic net improves on both ridge

regression and LASSO and includes the groups of highly correlated predictors,

while LASSO selects only one of each group.

Fan and Li (2001) suggested three desirable properties for a good penalty

function: unbiasedness (i.e., the estimator is nearly unbiased when the true

unknown parameter is large), sparsity (i.e., the parameter is estimated to be

zero when the true unknown parameter is zero) and continuity (the estimator

is continuous in data). Various advantages and disadvantages of each of these

penalization methods and many theoretical as well as practical performances are

investigated in the literature. In summary, ridge regression performs well when

the predictors are highly correlated. Bridge regression includes both ridge and

LASSO as special cases and produces sparse models.
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The correlation based penalty has the group effect. That is, a group of

highly correlated predictors are either all selected together into the model or

left out altogether. However the above introduced penalty does not work when

the correlation rj,k is either 1 or −1. In the next two chapters, we extend the

correlation based penalty to two new forms to deal with this drawback. One

motivation for our new penalty is that if Xj and Xk are highly correlated, then

the prediction of Xj using Xk is given by x̂k = rj,kxj . We minimize βj − rj,kβk to

equalize the contributions by both Xj and Xk.



Chapter 4

Correlation adjusted regression
(CAR)

4.1 Introduction

In this chapter, we propose two new types of regularization method for simul-

taneous shrinkage and variable selection, we name them Correlation Adjusted

Regression (CAR). They could be regarded as a data-adjusted extension of ridge

regression. Some theoretical results for multiple linear regression, logistic re-

gression and LAD (Least Absolute Deviation) regression are derived. We would

show that the CAR least squares for multiple linear regression is reduced to the

OLS after applying argumentation to the data set, and the penalized estimators

for CAR logistic regression follow asymptotically a normal distribution. Similar

results are also derived for the LAD regression.

31
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4.2 CAR for linear models

We first discuss two types of CAR for multiple linear regression. Recall that we

assume centered and standardized observations and the ordinary least squares

regression that minimizes

OLS =
n∑
i=1

(yi − xiβ)2 = (Y−Xβ)T (Y−Xβ)

where

X =


x11 x12 · · · x1p
x21 x22 · · · x2p
...

...
. . .

...
xn1 xn2 · · · xnp

 , Y =


y1
y2
...
yn

 ,

β = (β1, β2, · · · , βp)T is the transpose of the vector of unknown regression pa-

rameters, and xi = (xi1, xi2, · · · , xip) is the ith row of the design matrix. Recall

also that the least squares estimator of β is β̂n(OLS) = (XTX)−1XTY and

its variance-covariance matrix is V ar(β̂n(OLS)) = σ2(XTX)−1 where σ2 is the

population variance of the regression model.

4.2.1 Formulation of the problem

We define two types of CAR by incorporating empirical correlation coefficients in

the penalty function. The first type is defined by the correlation adjusted least

squares

CARLS1 = (Y−Xβ)T (Y−Xβ) + λ

[
p−1∑
j=1

(βj − rj,j+1βj+1)
2 + β2

p

]
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where rj,k is the sample correlation between the predictor variables Xj and Xk.

The objective is to find β̂n(CAR1) that minimizes CARLS1.

For the first type, define the matrix

D1 =


1 −r1,2 0 · · · 0 0
0 1 −r2,3 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1 −rp−1,p
0 0 0 · · · 0 1

 ,

then
∑p−1

j=1(βj − rj,j+1βj+1)
2 + β2

p = βTDT
1D1β = βTW1β, where W1 = DT

1D1.

Clearly W1 is a real symmetric p× p matrix and positive semi-definite because

βTW1β ≥ 0 for any vector β. Therefore W1 admits a Cholesky’s decomposition

W1 = C1C
T
1 , where C1 is a triangular matrix.

Moreover if rj,j+1 = 0 for all j = 1, 2, · · · , p − 1, then the first type CAR

becomes ridge regression and hence ridge regression is a special case of CAR.

The second type is defined by the correlation adjusted least squares

CARLS2 = OLS + λ

[
p−1∑
j=1

∑
k>j

(βj − rj,kβk)2 + β2
p

]
.

The objective is to find β̂n(CAR2) that minimizes CARLS2.
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We similarly define the matrix of the second type

D2 =



1 −r1,2 0 0 · · · 0 0
1 0 −r1,3 0 · · · 0 0
1 0 0 −r1,4 · · · 0 0
...

...
...

...
...

...
...

1 0 0 0 · · · 0 −r1,p
0 1 −r2,3 0 · · · 0 0
0 1 0 −r2,4 · · · 0 0
...

...
...

...
...

...
...

0 1 0 0 · · · 0 −r2,p
...

...
...

...
...

...
...

0 0 0 0 · · · 1 −rp−1,p
0 0 0 0 · · · 0 1



,

then
∑p−1

j=1

∑
k>j(βj − rj,kβk)2 + β2

p = βTDT
2D2β = βTW2β, where W2 = DT

2D2.

Again W2 is a real symmetric p × p matrix and positive semi-definite because

βTW2β ≥ 0 for any vector β. Therefore again W2 admits a Cholesky’s decomposi-

tion W2 = C2C
T
2 , where C2 is a triangular matrix.

Putting both types together, we minimize CARLS = OLS + λβTWβ where

W can be either W1 or W2. The derivative of CARLS with respect to β is given

as the column vector

d(CARLS)

dβ
= −2[XTY− (XTX)β] + 2λWβ

= −2[XTY− (XTX + λW )β].

Therefore the penalized estimator of β is

β̂n(CAR) = (XTX + λW )−1(XTY).

This gives a linear estimator β̂n(CAR) = [(XTX + λW )−1XT ]Y of Y. The

predicted value of Y is given by ŷ = Xβ̂n(CAR) = HY where H = X(XTX +
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λW )−1XT is a symmetric hat matrix. This result shows that the penalized

estimator of the least squares regression with a correlation adjusted penalty exists.

Comparing with β̂n(Ridge) = (XTX + λI)−1(XTY), we see that CAR esti-

mator can be regarded as an extension of ridge by replacing the identity matrix I

with the matrix W .

4.2.2 Some properties

We derive the bias of the estimator β̂n(CAR). For this,

E(β̂n(CAR)) = (XTX + λW )−1(XTX)β

= (XTX + λW )−1(XTX + λW − λW )β

= β − λ(XTX + λW )−1Wβ.

Therefore the bias is

Bias = E(β̂n(CAR))− β = −λ(XTX + λW )−1Wβ

and β̂n(CAR) is a biased estimator of β.

The variance of the estimator is then

V ar(β̂n(CAR)) = V ar[(XTX + λW )−1XT )Y]

= [(XTX + λW )−1XT ]V ar(Y)[X(XTX + λW )−1]

= (XTX + λW )−1XTσ2X(XTX + λW )−1

and the mean squared error of the estimator is

MSE(β̂n(CAR)) = BiasTBias+ trace[V ar(β̂n(CAR))],



CHAPTER 4. CORRELATION ADJUSTED REGRESSION (CAR) 36

where trace is the trace of a matrix, that is the sum of the main diagonal elements

of a square matrix.

The following Theorem shows that when the tuning parameter λ gets large,

the variance-covariance matrix of the estimator approaches the 0 matrix.

Theorem 4.2.1. For the estimator β̂n(CAR), limλ→∞ V ar(β̂n(CAR)) = 0, the

0 matrix.

Proof.

V ar(β̂n(CAR))

= (XTX + λW )−1XTσ2X(XTX + λW )−1

=
σ2

λ

(
XTX

λ
+W

)−1
XTX

λ

(
XTX

λ
+W

)−1
=

σ2

λ

(
XTX

λ
+W

)−1(
XTX

λ
+W −W

)(
XTX

λ
+W

)−1
=

σ2

λ

[(
XTX

λ
+W

)−1
−
(
XTX

λ
+W

)−1 (
W−1)−1(XTX

λ
+W

)−1]

=
σ2

λ

[(
XTX

λ
+W

)−1
−
(
W−1X

TX

λ
+ I

)−1(
XTX

λ
+W

)−1]

=
σ2

λ

[(
XTX

λ
+W

)−1
−
((

XTX

λ
+W

)(
W−1X

TX

λ
+ I

))−1]

=
σ2

λ

[(
XTX

λ
+W

)−1
−
(
XTX

λ
W−1X

TX

λ
+ 2

XTX

λ
+W

)−1]
.

Since the elements of X and XTX are bounded,

lim
λ→∞

(
XTX

λ
+W

)
= W
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and

lim
λ→∞

(
XTX

λ
W−1X

TX

λ
+ 2

XTX

λ
+W

)
= W,

and

lim
λ→∞

σ2

λ
= 0.

Therefore

lim
λ→∞

V ar(β̂n(CAR)) = 0.

From the above,

MSE(β̂n(CAR)) = BiasTBias+ trace[V ar(β̂n(CAR))].

We have

BiasTBias = [λ(XTX + λW )−1Wβ]T [λ(XTX + λW )−1Wβ]

= λβTW
1

λ
(
XTX

λ
+W )−1λ

1

λ
(
XTX

λ
+W )−1Wβ

= βTW (
XTX

λ
+W )−1(

XTX

λ
+W )−1Wβ.

So

lim
λ→∞

BiasTBias = βTβ.

Recall that the ordinary least square estimator β̂n(OLS) is unbiased and has

a variance-covariance matrix V ar(β̂n(OLS)) = σ2(XTX)−1. Its mean squared

error is

MSE(β̂n(OLS)) = 0 + trace[V ar(β̂n(OLS))]

= trace[σ2(XTX)−1].
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For the OSL with serious issue of multicollinearity, entries of (XTX)−1 are large,

so trace[σ2(XTX)−1] is large. Although BiasTBias = βTβ > 0 for CAR, but

limλ→∞ trace[V ar(β̂n(CAR))] = 0. Therefore for large λ, the mean squared error

for CAR is likely smaller than the mean squared error for the OLS.

Next, we show that after suitable data argumentation, the CAR regression

is equivalent to an OLS regression. The idea is similar to that in Anbari and

Mkhadri (2008).

Theorem 4.2.2. Given the Cholesky’s decomposition W = CCT and λ > 0,

define

X∗ =
1√

1 + λ

(
X√
λCT

)
, Y∗ =

(
Y
0

)
, β∗ =

√
1 + λβ.

Then minimizing CARLS is equivalent to minimizing the OLS =
∑n+p

i=1 (y∗i −

x∗iβ
∗)2 = (Y∗ −X∗β∗)T (Y∗ −X∗β∗), where x∗i is the ith row of X∗.



CHAPTER 4. CORRELATION ADJUSTED REGRESSION (CAR) 39

Proof.

OLS =

n+p∑
i=1

(y∗i − x∗iβ∗)2

= (Y∗ −X∗β∗)T (Y∗ −X∗β∗)

= [(Y∗)T − (β∗)T (X∗)T ][Y∗ −X∗β∗]

= (Y∗)TY∗ − (Y∗)TX∗β∗ − (β∗)T (X∗)TY∗ + (X∗β∗)T (X∗β∗)

=
(
YT 0

)( Y
0

)
−
(
YT 0

) 1√
1 + λ

(
X√
λCT

)√
1 + λβ

−
√

1 + λβT
1√

1 + λ

(
XT
√
λC

)( Y
0

)
+
√

1 + λβT
1√

1 + λ

(
XT
√
λC

) 1√
1 + λ

(
X√
λCT

)√
1 + λβ

= YTY−YTXβ − βTXTY + βT (XTX + λCCT )β

= (Y−Xβ)T (Y−Xβ) + λβTWβ = CARLS.

It is important to select the best λ according to certain criterion. There are

several criteria available for this purpose, including the Bayesian Information

Criterion (BIC), Alkaike Information Criterion (AIC) and Leave-One-Out criterion.

We would discuss the Leave-One-Out method here.

If the observation (Yi, Xi1, Xi2, · · · , Xip) is removed from the dataset, i =

1, 2, · · · , n, let the X matrix after deleting the ith row be X(i) and the Y matrix

after deleting the ith element be Y(i). For each i = 1, 2, · · · , n, define

β̂(n−1)(CARi) =
(
XT

(i)X(i) + λW
)−1 (

XT
(i)Y(i)

)
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and the prediction error square for (Yi, Xi1, Xi2, · · · , Xip) is

CV(−i)(λ) =

(
yi −

p∑
j=1

xijβ̂(n−1)(CARi)j

)2

.

The CV of λ is

CV (λ) =
1

n

n∑
i=1

CV(−i)(λ).

We look for the value of λ that minimizes CV (λ).

4.3 CAR for logistic models

We extend the above two types of correlation adjusted penalties to logistic

regression. Recall that the log-likelihood function for logistic regression is

`(β) =
n∑
i=1

[yi log(πi) + (1− yi) log(1− πi)],

where πi = P (Yi = 1) = 1
1+e−xiβ

= exiβ

1+exiβ
= P (xi).

4.3.1 Formulation of the problem

Because minimizing the OLS for the multiple linear regression is equivalent to

maximizing the log-likelihood function, we focus on maximizing the log-likelihood

function for logistic regression. For the first type correlation adjusted penalty, we

maximize

CARLR1 = `(β)− λ

[
p−1∑
j=1

(βj − rj,j+1βj+1)
2 + β2

p

]
= `(β)− λβTW1β,
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and for the second type of penalty, we maximize

CARLR2 = `(β)− λ

[
p−1∑
j=1

∑
k>j

(βj − rj,kβk)2 + β2
p

]
= `(β)− λβTW2β.

That is, we maximize

CARLR = `(β)− λβTWβ

where W can be either W1 or W2.

4.3.2 Some properties

The ridge penalty for logistic regression has been investigated by several authors

including Le Cessie and Van Houwelingen (1992) and Barker and Brown (2001).

The ridge logistic regression estimator maximizes

`λ(β) = `(β)− λβTβ

and is β̂λ(MLE) = (XTKX+λI)−1XTKXβ̂n(MLE) where β̂n(MLE) is the MLE

for maximizing `(β) and K is the diagonal matrix of the MLE of probabilities

πi(1 − πi), i = 1, 2, · · · , n. As an extension of the ridge regression, a plug-in

estimator for correlation adjusted logistic regression may be defined as

β̂n(CARLR) = (XTKX + λW )−1XTKXβ̂n(MLE).

However the performance of this estimator is unknown.

We extend a key idea and result in Gao and Shen (2007). However the proof

in Gao and Shen (2007) contains a minor mistake.
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We denote the MLE for the correlation adjusted logistic regression as β̂n(CARLR)

and show that it follows asymptotically a normal distribution.

Theorem 4.3.1. Let β0 be the true unknown parameter of the logistic regression.

Under regularity conditions for the likelihood function, the correlation adjusted

MLE β̂n(CARLR) is asymptotically normally distributed. That is,

√
n(β̂n(CARLR)− β0)

d−→ N(0, I−1(β0))

where I(β0) is the Fisher information matrix for the logistic regression evaluated

at β0.

Proof. Consider the score function S(β) = ∂(CARLR)
∂β

= ∂[`(β)−λβTWβ]
∂β

. Then the

MLE β̂n(CARLR) satisfies S(β̂n(CARLR)) = 0. The first order Taylor expansion

of S(β) at β0 gives, approximately,

0 = S(β̂n(CARLR))

= S(β0) + S
′
(β0)

(
β̂n(CARLS)− β0

)
+ op

(
||β̂n(CARLS)− β0||

)
=

(
∂`(β)

∂β

∣∣∣
β0
− 2λWβ

∣∣∣
β0

)
+

(
∂2`(β)

∂β2

∣∣∣
β0
− 2λW

)(
β̂n(CARLS)− β0

)
+op

(
||β̂n(CARLS)− β0||

)
.

Rearranging the terms and removing the higher order terms, we have

0 ≈
(
∂`(β)

∂β

∣∣∣
β0
− 2λWβ

∣∣∣
β0

)
+

(
∂2`(β)

∂β2

∣∣∣
β0
− 2λW

)(
β̂n(CARLS)− β0

)
.
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This gives us

√
n
(
β̂n(CARLR)− β0

)
≈

[
− 1

n

(
∂2`(β)

∂β2

∣∣∣
β0
− 2λW

)]−1 [
1√
n

(
∂`(β)

∂β

∣∣∣
β0
− 2λWβ0

)]
.

Because both W and β0 have bounded elements, we have 1
n
(2λW )

P−→ 0 and

1√
n
(2λWβ0)

P−→ 0. Now

1√
n

(
∂`(β)

∂β

∣∣∣
β0

)
=
√
n

∑n
i=1

∂ ln f(xi,β)
∂β

n
.

Furthermore,

E

(∑n
i=1

∂ ln f(xi,β)
∂β

n

)
= E

(
∂ ln f(x, β)

∂β

)
= 0,

and

E

(
∂ ln f(x, β)

∂βi

∂ ln f(x, β)

∂βj

)
i,j

= I(β).

By Multivariate Central Limit Theorem, as n→∞,

1√
n

(
∂`(β)

∂β

∣∣∣
β0

)
d−→ N (0, I(β0)) .

Now,

− 1

n

(
∂2`(β)

∂β2

)
=

∑n
i=1−

∂2 ln f(xi,β)
∂β2

n
,

and

E

(∑n
i=1−

∂2 ln f(xi,β)
∂β2

n

)
= E

(
−∂

2 ln f(x, β)

∂β2

)
.

Since

E

(
−∂

2 ln f(x, β)

∂β2

)
= I(β),
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by multivariate Law of Large Numbers, as n→∞,

− 1

n

∂2`(β)

∂β2

∣∣∣
β0

P−→ I(β0).

Therefore by Slutsky’s Theorem,[
− 1

n

(
∂2`(β)

∂β2

∣∣∣
β0
− 2λW

)]−1
P−→ I−1(β0).

Apply Slutsky’s Theorem again, as n→∞,

√
n
(
β̂n(CARLR)− β0

)
d−→ I−1(β0)N(0, I(β0)) = N(0, I−1(β0)).

4.4 CAR for LAD regression

We now extend CAR to LAD (Least Absolute Deviation) regression. Essentially

we extend a result in Xu and Ying (2010) of LASSO-type penalty for LAD.

As indicated by Xu and Ying (2010), the LAD or L1 method is a good non-

linear alternative to the least squares method and has good robustness properties.

The linear regression model is generalized to

Yi = β1Xi1 + β2Xi2 + · · ·+ βpXip + εi, i = 1, 2, · · · , n,

where the design matrix is known and εi, i = 1, 2, · · · , n, are independent and

identically distributed random errors with a common distribution F .

The objective of the LAD method is to find the estimator β̂n(LAD) that

minimizes

LAD(β) =
n∑
i=1

|yi − (β1xi1 + β2xi2 + · · ·+ βpxip)|.
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However there is no explicit form solution for β̂n(LAD). Its derivation is normally

carried out by linear programming. Xu and Ying (2010) introduced the penalized

LAD

LASSOLAD =
LAD(β)

n
+

1

n

p∑
j=1

λnj|βj|

and studied the asymptotic behavior of the penalized estimator when n→∞ and

λnj√
n
→ λ0j ≥ 0.

In this section, we extend the result in Xu and Ying (2010) to a CAR-type

penalty for LAD, defined as

CARLAD(β) =
LAD(β)

n
+
λn
n
βTWβ,

where W , as in previous sections, can be either W1 or W2. The objective is to

find the estimator β̂n(CARLAD) that minimizes CARLAD (the CAR penalized

LAD).

As in Xu and Ying (2010), we make the following two assumptions:

(A.1) The random errors εi, i = 1, 2, · · · , n, are independent and

identically distributed with median 0 and a density function f which

is continuous and strictly positive in a neighborhood of 0;

(A.2) The design matrix X (depending on n) is deterministic

and there is a positive definite matrix Q (of size p × p) such that

limn→∞
1
n
XTX = Q2.

The following result based on Taylor expansion is from Xu and Ying (2010).
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Proposition 4.4.1. Under the above assumptions (A.1) and (A.2), for any

sequence dn > 0 such that dn → 0 in probability, we have

1

n
[LAD(β)− LAD(β0)]

= − 1

n

n∑
i=1

sgn(εi)xi(β − β0) +
1

2
f(0)(β − β0)TQ2(β − β0)

+op(||β − β0||2 + n−1),

uniformly in ||β − β0|| =
∑p

j=1 |βj − β0j| ≤ dn, where β0 is the true unknown

parameter, xi = (xi1 xi2 · · · xip), sgn(εi) is the sign of εi, and ||β − β0||2 =∑p
j=1 |βj − β0j|2.

Xu and Ying (2010) defined the function

C(u) =
1

2
uTDu− aTu+

s∑
j=1

λjuj +

p∑
j=s+1

λj|uj|

and showed that C(u)− C(û) ≥ 1
2
(u− û)TD(u− û) for any p× 1 vectors of real

numbers u and û, where D is a positive definite matrix, a is any p×1 vector of real

numbers, λ1, · · · , λs are constants, and λs+1, · · · , λp are nonnegative constants.

Taking λi = 0 for i = 1, 2, · · · , p, we have

Proposition 4.4.2. For any p× 1 vectors of real numbers u and û, we have

C(u)− C(û) ≥ 1

2
(u− û)TD(u− û),

where C(u) = 1
2
uTDu− aTu.

To extend the result in Xu and Ying (2010), we now discuss the asymptotic

distribution of β̂n(CARLAD).
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Theorem 4.4.1. Assume conditions (A.1) and (A.2) and limn→∞
λn√
n

= λ0 ≥ 0.

Then in distribution, as n→∞,

√
n(β̂n(CARLAD)− β0)

d−→ R

where R is the random variable that minimizes

R(u) = MTu+
1

2
f(0)uTQ2u+ 2λ0(Wβ0)

Tu,

and M follows the multivariate normal distribution N(0, Q2).

Proof. Write β̂n(CARLAD) = β̂n. Let f(β) = βTWβ, f
′
(β) = 2Wβ, f

′′
(β) =

2W . The Taylor expansion of βTWβ at β0 is

f(β) = f(β0) + f
′
(β0)(β − β0)

+
1

2
(β − β0)Tf

′′
(β)(β − β0) + op(||β − β0||2).

Then,

β̂TnWβ̂n = βT0 Wβ0 + 2(Wβ0)
T (β̂n − β0)

+
1

2
(β̂n − β0)T2W (β̂n − β0) + op(||β̂n − β0||2),

so,

β̂TnWβ̂n − βT0 Wβ0

= 2(Wβ0)
T (β̂n − β0)

+
1

2
(β̂n − β0)T2W (β̂n − β0) + op(||β̂n − β0||2)

= 2βT0 W (β̂n − β0)

+(β̂n − β0)TW (β̂n − β0) + op(||β̂n − β0||2).
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Using Proposition 4.4.1 and the Taylor expansion, we have

CARLAD(β̂n)− CARLAD(β0)

=

[
1

n
LAD(β̂n) +

λn
n
β̂TnWβ̂n

]
−
[

1

n
LAD(β̂0) +

λn
n
β̂T0 Wβ̂0

]
=

1

n

[
LAD(β̂n)− LAD(β0)

]
+
λn
n

[
β̂TnWβ̂n − βT0 Wβ0

]
= − 1

n

n∑
i=1

sgn(εi)xi(β̂n − β0) +
1

2
f(0)(β̂n − β0)TQ2(β̂n − β0)

+
λn
n

[
2(Wβ0)

T (β̂n − β0) + (β̂n − β0)TW (β̂n − β0)
]

+op(||β̂n − β0||2 + n−1) +
λn
n
op(||β̂n − β0||2)

=
1

n
{−

n∑
i=1

1√
n
sgn(εi)xi[

√
n(β̂n − β0)]

+
1

2
f(0)[

√
n(β̂n − β0)]TQ2[

√
n(β̂n − β0)]

+2
λn√
n

(Wβ0)
T [
√
n(β̂n − β0)] +

λn
n

[
√
n(β̂n − β0)]TW [

√
n(β̂n − β0)]}

+op(||β̂n − β0||2 + n−1) +
λn
n
op(||β̂n − β0||2).

Let ũn =
√
n(β̂n − β0), then

CARLAD(β̂n)− CARLAD(β0)

=
1

n
{−

n∑
i=1

1√
n
sgn(εi)xiũn +

1

2
f(0)ũTnQ

2ũn + 2
λn√
n

(Wβ0)
T ũn +

λn
n
ũTnWũn}

+op(||β̂n − β0||2 + n−1) +
λn
n
op(||β̂n − β0||2).

Set the function

Bn(u) = −
n∑
i=1

1√
n
sgn(εi)xiu+

1

2
f(0)uTQ2u+ 2

λn√
n

(Wβ0)
Tu
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and let ûn be the random vector which minimizes Bn(u). Then

Bn(u) =
√
n

(
−
∑n

i=1 sgn(εi)xi
n

)
u+

1

2
f(0)uTQ2u+ 2

λn√
n

(Wβ0)
Tu

Since limn→∞
λn√
n

= λ0 ≥ 0, and by Central Limit Theorem, as n→∞,

√
n

(
−
∑n

i=1 sgn(εi)xi
n

)
d−→MT

so,

Bn(u)
d−→ R(u) = MTu+

1

2
f(0)uTQ2u+ 2λ0(Wβ0)

Tu.

Since ûn minimizes Bn(u), and R minimizes R(u), then

ûn
d−→ R

and is bounded in probability. Therefore, 1
n
ûn

p−→ 0 in probability.

Because λn
n
W

p−→ 0, the 0 matrix, by Slutsky’s Theorem, ũnQ
2ũn+ λn

n
ũnWũn

is asymptotically equivalent to ũnQ
2ũn. Therefore

CARLAD(β̂n)− CARLAD(β0) ≈
1

n
Bn(ũn).

We apply the same arguments in Xu and Ying (2010) and conclude that

ũn and ûn have the same asymptotic distribution. So, ũn − ûn
p−→ 0, and by

Slutsky’s Theorem,

ũn =
√
n(β̂n − β0)

d−→ R
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4.5 Summary

In this chapter, we introduced a new type of penalization using the sample

correlations among the predictor variables. Our motivation was that highly

correlated predictor variables should have similar effects on the response variable

and so similar parameters. After defining the objective of our penalized regression,

we derived the parameter estimator and investigated its properties. For example,

we showed that the variance-covariance matrix of the penalized estimator gets

smaller when the tuning parameter gets larger, and its asymptotic distribution

exists for both the logistic regression and the LAD regression. We also showed

that after a suitable data argumentation, the penalized regression becomes the

ordinary least squares regression.



Chapter 5

Correlation adjusted elastic net
(CAEN)

5.1 Introduction

In this chapter, we extend the two new types of regularization method for simulta-

neous shrinkage and variable selection introduced in the previous chapter to elastic

net and call them Correlation Adjusted Elastic Net (CAEN). They can be regarded

as a data-adjusted extension of elastic net regression. Some theoretical results

for multiple linear regression, logistic regression and other types of regression are

derived. We show that CAEN for multiple linear regression is reduced to LASSO

after applying argumentation to the data set, and the parameter estimators for

CAEN logistic regression follow asymptotically a normal distribution. Similar

results are also derived for the LAD regression.

51
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5.2 CAEN for linear models

We first discuss the two types of CAEN for multiple linear regression. Recall

that we assume centered and standardized observations and the OLS regression

minimizes

OLS =
n∑
i=1

(yi − xiβ)2 = (Y−Xβ)T (Y−Xβ)

where

X =


x11 x12 · · · x1p
x21 x22 · · · x2p
...

...
. . .

...
xn1 xn2 · · · xnp

 , Y =


y1
y2
...
yn

 ,

β = (β1, β2, · · · , βp)T is the vector of unknown regression parameters, and xi is the

ith row of the design matrix X. Recall also that the least squares estimator of β is

β̂n(OLS) = (XTX)−1XTY and its variance-covariance matrix is σ2(β̂n(OLS)) =

σ2(XTX)−1 where σ2 is the population variance of the regression model.

5.2.1 Formulation of the problem

We define two types of CAEN by incorporating empirical correlation coefficients

in the penalty function. The first type is defined by CAEN least squares

CAEN1 = OLS + λ1

p∑
j=1

|βj|+ λ2

[
p−1∑
j=1

(βj − rj,j+1βj+1)
2 + β2

p

]

where rj,k is the sample correlation between the predictors Xj and Xk. The

objective is to find β̂n(CAEN1) that minimizes CAEN1.
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For the first type, define the matrix

D1 =


1 −r1,2 0 · · · 0 0
0 1 −r2,3 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1 −rp−1,p
0 0 0 · · · 0 1

 .

Then
∑p−1

j=1(βj − rj,j+1βj+1)
2 + β2

p = βTDT
1D1β = βTW1β, where W1 = DT

1D1.

Clearly W1 is a real symmetric p× p matrix and positive semi-definite because

βTW1β ≥ 0 for any vector β. Therefore W1 admits a Cholesky’s decomposition

W1 = C1C
T
1 , where C1 is an upper triangular matrix.

Moreover if rj,j+1 = 0 for all j = 1, 2, · · · , p−1, then our first type correlation

adjusted regression becomes elastic net and hence our definition includes elastic

net as a special case.

The second type is defined by the CAEN least squares

CAEN2 = OLS + λ1

p∑
j=1

|βj|+ λ2

[
p−1∑
j=1

∑
k>j

(βj − rj,kβk)2 + β2
p

]
.

The objective is to find β̂n(CAEN2) that minimizes CAEN2.
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For the second type,

D2 =



1 −r1,2 0 0 · · · 0 0
1 0 −r1,3 0 · · · 0 0
1 0 0 −r1,4 · · · 0 0
...

...
...

...
...

...
...

1 0 0 0 · · · 0 −r1,p
0 1 −r2,3 0 · · · 0 0
0 1 0 −r2,4 · · · 0 0
...

...
...

...
...

...
...

0 1 0 0 · · · 0 −r2,p
...

...
...

...
...

...
...

0 0 0 0 · · · 1 −rp−1,p
0 0 0 0 · · · 0 1



.

Then
∑p−1

j=1

∑
k>j(βj − rj,kβk)2 + β2

p = βTDT
2D2β = βTW2β, where W2 = DT

2D2.

Again W2 is a real symmetric p × p matrix and positive semi-definite because

βTW2β ≥ 0 for any vector β. Therefore again W2 admits a Cholesky’s decomposi-

tion W2 = C2C
T
2 , where C2 is an upper triangular matrix.

Putting both types together, we minimize

CAEN = OLS + λ1V
Tβ + λ2β

TWβ

where W is either W1 or W2 and V is a column vector with ith element being 1

if the sign of the corresponding parameter βi is positive and −1 if βi is negative.

Although V depends on the unknown parameters thorough their signs, in practice

based on theory or empirical evidence, we might be able to determine the signs

of the unknown parameters in advance and so V could be regarded as being

pre-determined.
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The derivative of CAEN with respect to β is given as the column vector

d(CAEN)

dβ
= −2[XTY− (XTX)β] + λ1V + 2λ2Wβ

= −2

[
XTY− λ1

2
V − (XTX + λ2W )β

]
.

Therefore the penalized estimator of β is

β̂n(CAEN) = (XTX + λ2W )−1
(
XTY− λ1

2
V

)
.

This result shows that the MLE of the least squares with a CAEN penalty exists.

5.2.2 Some properties

Comparing with β̂n(LASSO) = (XTX)−1
(
XTY− λ1

2
V
)

and β̂n(ENLS) = (XTX+

λ2I)−1
(
XTY− λ1

2
V
)
, we see that CAEN estimator is an extension of both LASSO

and elastic net estimators by adding the term λ2W to the matrix XTX. Moreover,

we can write

β̂n(CAEN) = (XTX + λ2W )−1XTY− λ1
2

(XTX + λ2W )−1V

= β̂n(CAR)− λ1
2

(XTX + λ2W )−1V.

Because the matrix λ1
2

(XTX + λ2W )−1V does not involve random variables, its

variance-covariance matrix is the 0 matrix.

Theorem 5.2.1. For the estimator β̂n(CAEN), we have lim
λ2→∞

V ar(β̂n(CAEN)) =

0, the 0 matrix.
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Proof. From Theorem 4.2.1,

lim
λ2→∞

V ar(β̂n(CAEN)) = lim
λ2→∞

V ar(β̂n(CAR)) = 0.

From the above,

MSE(β̂n(CAEN)) = BiasTBias+ trace[V ar(β̂n(CAEN))].

We have,

Bias = λ2(X
TX + λ2W )−1Wβ − λ1

2
(XTX + λ2W )−1V

= −(λ2 +
λ1
2

)(XTX + λ2W )−1(Wβ + V ).

Then,

BiasTBias

= (λ2 +
λ1
2

)2(Wβ + V )T (XTX + λ2W )−1(XTX + λ2W )−1(Wβ + V )

= λ22(1 +
λ1
λ2

)2(Wβ + V )T
1

λ2
(
XTX

λ2
+W )−1

1

λ2
(
XTX

λ2
+W )−1(Wβ + V )

= (1 +
λ1
λ2

)2(Wβ + V )T (
XTX

λ2
+W )−1(

XTX

λ2
+W )−1(Wβ + V ).

So,

lim
λ2→∞

BiasTBias = (Wβ + V )TW−1W−1(Wβ + V )

= (βTW + V T )W−1W−1(Wβ + V )

= (β +W−1V )T (β +W−1V ).

Although BiasTBias > 0 for CAEN, limλ2→∞ trace[V ar(β̂n(CAEN))] = 0.

Therefore for large λ2, the MSE of CAEN is likely smaller than that of OLS with

serious issue of multicollinearity.
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After suitable data argumentation, we show that the CAEN regression is

equivalent to a LASSO regression.

Theorem 5.2.2. Given the Cholesky’s decomposition W = CCT and λ1, λ2 > 0,

define

X∗ =
1√

1 + λ2

(
X√
λ2C

T

)
, Y∗ =

(
Y
0

)
, β∗ =

√
1 + λ2β, γ =

λ1√
1 + λ2

.

Then minimizing

CAEN = (Y−Xβ)T (Y−Xβ) + λ1V
Tβ + λ2β

TWβ

is equivalent to minimizing

LASSO = (Y∗ −X∗β∗)T (Y∗ −X∗β∗) + γ

p∑
j=1

|β∗j |.

Proof. We have

OLS = (Y∗ −X∗β∗)T (Y∗ −X∗β∗)

= (Y∗)TY∗ − (β∗)T (X∗)TY∗ − (Y∗)TX∗β∗ + (β∗)T (X∗)TX∗β∗.

Now,

(β∗)T (X∗)TY∗ = (βTXT
√
λ2β

TC)

(
Y
0

)
= βTXTY,

(Y∗)TX∗β∗ = (YT 0)
1√

1 + λ2

(
X√
λ2C

T

)√
1 + λ2β = YTXβ,

(β∗)T (X∗)TX∗β∗ = (βTXT
√
λ2β

TC)

(
Xβ√
λ2C

Tβ

)
= βTXTXβ + λ2β

TCCTβ

= βTXTXβ + λ2β
TWβ.
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Finally,

γ

p∑
j=1

|β∗j | =
λ1√

1 + λ2

p∑
j=1

|
√

1 + λ2βj| = λ1

p∑
j=1

|βj| = λ1V
Tβ.

Therefore,

OLS = YTY− βTXTY−YTXβ + βTXTXβ + λ2β
TWβ + λ1V

Tβ

= (Y−Xβ)T (Y−Xβ) + λ2β
TWβ + λ1V

Tβ = CAEN.

5.3 CAEN for logistic models

We extend the two types of correlation adjusted elastic net to logistic regression.

Recall that the log-likelihood function for logistic regression is

`(β) =
n∑
i=1

[yi log(πi) + (1− yi) log(1− πi)]

where πi = P (Yi = 1) = 1
1+e−xiβ

.

5.3.1 Formulation of the problem

Because minimizing the OLS for the multiple linear regression is equivalent to

maximizing the log-likelihood function, we focus on maximizing the log-likelihood

function for logistic regression. For the first type CAEN, we maximize

CAENLR1 = `(β)− λ1
p∑
j=1

|βj| − λ2

[
p−1∑
j=1

(βj − rj,j+1βj+1)
2 + β2

p

]
= `(β)− λ1V Tβ − λ2βTW1β,
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and for the second type of penalty, we maximize

CAENLR2 = `(β)− λ1
p∑
j=1

|βj| − λ2

[
p−1∑
j=1

∑
k>j

(βj − rj,kβk)2 + β2
p

]
= `(β)− λ1V Tβ − λ2βTW2β.

That is, we maximize

CAENLR = `(β)− λ1V Tβ − λ2βTWβ

where W can be either W1 or W2 and V is defined in Section 3.5.

5.3.2 Some properties

We denote the MLE for CAEN for logistic regression as β̂n(CAENLR) and show

that it follows asymptotically a normal distribution.

Theorem 5.3.1. Let β0 be the true unknown parameter for the logistic regres-

sion. Under regularity conditions for the likelihood function, the CAEN MLE

β̂n(CAENLR) is asymptotically normally distributed. That is, in distribution,

√
n(β̂n(CAENLR)− β0)

d−→ N(0, I−1(β0))

where I(β0) is the Fisher information matrix for the logistic regression evaluated

at β0.

Proof. Consider the score function S(β) = ∂(CAENLR)
∂β

. Then the MLE β̂n(CAENLR)

satisfies S(β̂n(CAENLR)) = 0. The first order Taylor expansion of S(β) at β0
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gives

0 = S(β̂n(CAENLR))

= S(β0) + S
′
(β0)

(
β̂n(CAENLS)− β0

)
+ op

(
||β̂n(CAENLS)− β0||

)
=

(
∂`(β)

∂β

∣∣∣
β0
− λ1V − 2λ2Wβ

∣∣∣
β0

)
+

(
∂2`(β)

∂β2

∣∣∣
β0
− 2λ2W

)(
β̂n(CAENLR)− β0

)
+op

(
||β̂n(CAENLS)− β0||

)
.

Rearranging the terms and removing the higher order terms, we have

√
n
(
β̂n(CAENLR)− β0

)
≈

[
− 1

n

(
∂2`(β)

∂β2

∣∣∣
β0
− 2λ2W

)]−1 [
1√
n

(
∂`(β)

∂β

∣∣∣
β0
− λ1V − 2λ2Wβ0

)]
.

Since V , W and β0 all have bounded elements, we have 1√
n
(λ1V )

P−→ 0,

1√
n
(2λ2W )

P−→ 0 and 1√
n
(2λ2Wβ0)

P−→ 0. Now

1√
n

(
∂`(β)

∂β

∣∣∣
β0

)
=
√
n

∑n
i=1

∂ ln f(xi,β)
∂β

n
.

Since

E

(∑n
i=1

∂ ln f(xi,β)
∂β

n

)
= E

(
∂ ln f(x, β)

∂β

)
= 0

and

E

(
∂ ln f(x, β)

∂βi

∂ ln f(x, β)

∂βj

)
i,j

= I(β),

by the Multivariate Central Limit Theorem, as n→∞,

1√
n

(
∂`(β)

∂β

∣∣∣
β0

)
d−→ N(0, I(β0)).
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Now

− 1

n

(
∂2`(β)

∂β2

)
=

∑n
i=1−

∂2 ln f(xi,β)
∂β2

n
.

Since

E

(∑n
i=1−

∂2 ln f(xi,β)
∂β2

n

)
= E

(
−∂

2 ln f(x, β)

∂β2

)
= I(β),

by the multivariate Law of Large Numbers, as n→∞,

− 1

n

∂2`(β)

∂β2

∣∣∣
β0

P−→ I(β0).

Therefore by Slutsky’s Theorem,[
− 1

n

(
∂2`(β)

∂β2

∣∣∣
β0
− 2λ2W

)]−1
P−→ I−1(β0).

Apply Slutsky’s Theorem again, as n→∞.

√
n
(
β̂n(CAENLR)− β0

)
d−→ I−1(β0)N(0, I(β0)) = N(0, I−1(β0)).

5.4 CAEN for LAD regression

Using similar ideas in Section 4.4, we extend CAEN to LAD (Least Absolute

Deviation) regression. In fact this is easier because some results in Xu and Ying

(2010) of LASSO-type penalty for LAD could be directly used.

As indicated by Xu and Ying (2010), the LAD or L1 method is a good non-

linear alternative to the least squares method and has good robustness properties.

The linear regression model is generalized to

Yi = β1Xi1 + β2Xi2 + · · ·+ βpXip + εi, i = 1, 2, · · · , n,
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where the design matrix is known and εi, i = 1, 2, · · · , n, are independent and

identically distributed random errors with a common distribution F .

The objective of the LAD method is to find the estimator β̂n(LAD) that

minimizes

LAD(β) =
n∑
i=1

|yi − (β1xi1 + β2xi2 + · · ·+ βpxip)|.

However there is no explicit form solution for β̂n(LAD). Its derivation is normally

carried out by linear programming. Xu and Ying (2010) introduced the penalized

LAD

LASSOLAD =
LAD(β)

n
+

1

n

p∑
j=1

λnj|βj|

and studied the asymptotic behavior of the penalized estimator when n→∞ and

λnj√
n
→ λ0j ≥ 0.

In this section, we extend the result in Xu and Ying (2010) to our CAEN-type

penalty for LAD regression, defined as

CAENLAD(β) =
LAD(β)

n
+

1

n

p∑
j=1

λnj|βj|+
λ∗n
n
βTWβ,

where W is as in previous sections and can be either W1 or W2. The objective is

to find the estimator β̂n(CAENLAD) that minimizes CAENLAD, the CAEN

penalized LAD.

As in Xu and Ying (2010), we make the following two assumptions:

(A.1) The random errors εi, i = 1, 2, · · · , n, are independent and

identically distributed with median 0 and a density function f which
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is continuous and strictly positive in a neighborhood of 0;

(A.2) The design matrix X (depending on n) is deterministic

and there is a positive definite matrix Q (of size p × p) such that

limn→∞
1
n
XTX = Q2.

The following result is from Xu and Ying (2010) and is based on Taylor

expansion.

Proposition 5.4.1. Under the above assumptions (A.1) and (A.2), for any

sequence dn > 0 such that dn → 0 in probability, we have

1

n
[LAD(β)− LAD(β0)]

= − 1

n

n∑
i=1

sgn(εi)xi(β − β0)

+
1

2
f(0)(β − β0)TQ2(β − β0) + op(||β − β0||2 + n−1),

uniformly in ||β − β0|| =
∑p

j=1 |βj − β0j| ≤ dn, where β0 is the true unknown

parameter, xi = (xi1 xi2 · · · xip), sgn(εi) is the sign of εi, and ||β − β0||2 =∑p
j=1 |βj − β0j|2.

Xu and Ying (2010) defined the function

C(u) =
1

2
uTDu− aTu+

s∑
j=1

λjuj +

p∑
j=s+1

λj|uj|,

where D is a positive definite matrix, a is any p × 1 vector of real numbers,

λ1, · · · , λs are constants, and λs+1, · · · , λp are nonnegative constants. Xu and

Ying (2010) showed that
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Proposition 5.4.2. For any p× 1 vectors of real numbers u and û, we have

C(u)− C(û) ≥ 1

2
(u− û)TD(u− û),

where C(u) = 1
2
uTDu− aTu+

∑s
j=1 λjuj +

∑p
j=s+1 λj|uj|.

To extend the result in Xu and Ying (2010), we now discuss the asymptotic

distribution of β̂n(CAENLAD).

Theorem 5.4.1. Assume conditions (A.1) and (A.2), limn→∞
λnj√
n

= λ0j ≥ 0 and

limn→∞
λ∗n√
n

= λ∗0 ≥ 0. Then in distribution, as n→∞,

√
n(β̂n(CAENLAD)− β0)

d−→ R

where R is the random variable that minimizes

R(u) = MTu+
f(0)

2
uTQ2u+

p∑
j=1

λ0jsgn(β0j)uj + 2λ∗0(Wβ0)
Tu,

and M follows the multivariate normal distribution N(0, Q2).

Proof. Write β̂n(CAENLAD) = β̂n. Let f(β) = βTWβ, f
′
(β) = 2Wβ, f

′′
(β) =

2W . The Taylor expansion of βTWβ at β0 is

f(β) = f(β0) + f
′
(β0)(β − β0)

+
1

2
(β − β0)Tf

′′
(β)(β − β0) + op(||β − β0||2).

Then,

β̂TnWβ̂n = βT0 Wβ0 + 2(Wβ0)
T (β̂n − β0)

+
1

2
(β̂n − β0)T2W (β̂n − β0) + op(||β̂n − β0||2)



CHAPTER 5. CORRELATION ADJUSTED ELASTIC NET (CAEN) 65

so,

β̂TnWβ̂n − βT0 Wβ0

= 2(Wβ0)
T (β̂n − β0)

+
1

2
(β̂n − β0)T2W (β̂n − β0) + op(||β̂n − β0||2)

= 2βT0 W (β̂n − β0)

+(β̂n − β0)TW (β̂n − β0) + op(||β̂n − β0||2).

Let β̂jn be the jth component of β̂n.

CAENLAD(β̂n)− CAENLAD(β0)

=

(
1

n
LAD(β̂n) +

1

n

p∑
j=1

λnj|β̂jn|+
λ∗n
n
β̂TnWβ̂n

)

−

(
1

n
LAD(β̂0) +

1

n

p∑
j=1

λnj|β̂j0|+
λ∗n
n
β̂T0 Wβ̂0

)

=
1

n

(
LAD(β̂n)− LAD(β̂0)

)
+

1

n

(
p∑
j=1

λnj|β̂jn| −
p∑
j=1

λnj|β̂j0|

)

+
λ∗n
n

(
β̂TnWβ̂n − β̂T0 Wβ̂0

)
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Using Proposition 5.4.1 and the above Taylor expansion,

CAENLAD(β̂n)− CAENLAD(β0)

= − 1

n

n∑
i=1

sgn(εi)xi(β̂n − β0) +
f(0)

2
(β̂n − β0)TQ2(β̂n − β0)

+
1

n

(
P∑
j=1

λnj√
n
sgn(β0j)(β̂

j
n − β0j)

)

+
λ∗n
n

(
2(Wβ0)

T (β̂n − β0) + (β̂n − β0)TW (β̂n − β0)
)

+op(||β̂n − β0||2 + n−1) +
λ∗n
n
op(||β̂n − β0||2)

=
1

n
{−

n∑
i=1

1√
n
sgn(εi)xi[

√
n(β̂n − β0)] +

f(0)

2
[
√
n(β̂n − β0)]TQ2[

√
n(β̂n − β0)]

+
P∑
j=1

λnj√
n
sgn(β0j)[

√
n(β̂jn − β0j)]

+2
λ∗n√
n

(Wβ0)
T [
√
n(β̂n − β0)] +

λ∗n
n

[
√
n(β̂n − β0)]TW [

√
n(β̂n − β0)]}

+op(||β̂n − β0||2 + n−1) +
λ∗n
n
op(||β̂n − β0||2).

Define ũn =
√
n(β̂n − β0) and ũjn =

√
n(β̂jn − β

j
0), then

CAENLAD(β̂n)− CAENLAD(β0)

=
1

n
{−

n∑
i=1

1√
n
sgn(εi)xiũn +

f(0)

2
ũTnQ

2ũn +
P∑
j=1

λnj√
n
sgn(β0j)ũ

j
n

+2
λ∗n√
n

(Wβ0)
T ũn +

λ∗n
n
ũTnWũn}

+op(||β̂n − β0||2 + n−1) +
λ∗n
n
op(||β̂n − β0||2).
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Set the function

Bn(u) = −
n∑
i=1

1√
n
sgn(εi)xiu+

f(0)

2
uTQ2u+

p∑
j=1

λnj√
n
sgn(β0j)uj

+2
λ∗n√
n

(Wβ0)
Tu

and let ûn be the random vector which minimizes Bn(u).

Bn(u) =
√
n

(
−
∑n

i=1 sgn(εi)xi
n

)
u+

f(0)

2
uTQ2u+

p∑
j=1

λnj√
n
sgn(β0j)uj

+2
λ∗n√
n

(Wβ0)
Tu

Since limn→∞
λnj√
n

= λ0j ≥ 0 and limn→∞
λ∗n√
n

= λ∗0 ≥ 0, by Central Limit Theorem,

as n→∞,

√
n

(
−
∑n

i=1 sgn(εi)xi
n

)
d−→MT

so,

Bn(u)
d−→ R(u) = MTu+

f(0)

2
uTQ2u+

p∑
j=1

λ0jsgn(β0j)uj + 2λ∗0(Wβ0)
Tu.

Since ûn minimizes Bn(u), and R minimizes R(u), then

ûn
d−→ R

and is bounded in probability. Therefore, 1
n
ûn

p−→ 0 in probability.

Because λ∗n
n
W

d−→ 0, the 0 matrix, by Slutsky’s Theorem, ũnQ
2ũn+ λ∗n

n
ũnWũn

is asymptotically equivalent to ũnQ
2ũn. Therefore

CAENLAD(β̂n)− CAENLAD(β0) ≈
1

n
Bn(ũn).
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We apply the same arguments in Xu and Ying (2010) and conclude that ũn

and ûn have the same asymptotic distribution. so, ũn − ûn
p−→ 0, by Slutsky’s

Theorem,

ũn =
√
n(β̂n − β0)

d−→ R

5.5 Summary

In this chapter, We proposed a new type of penalization using the sample cor-

relations among the predictor variables and incorporate them with elastic net.

Our motivation is that highly correlated predictor variables should have similar

effects on the response variable and so similar parameters. After defining the

objective of our penalized regression, we derive the parameter estimators and

investigate their properties. For example, we show that the variance-covariance

matrix of the penalized estimators gets smaller when the tuning parameter gets

larger, and the asymptotic distribution exists for both the logistic regression and

the LAD regression. We also showed that after a suitable data argumentation,

the penalized regression becomes the LASSO penalized regression.



Chapter 6

Conclusion

6.1 Summary of achievements

In this thesis, we introduced two new types of penalization for regression analysis.

We incorporate the sample correlation coefficients into the penalty function and

call them correlation adjusted penalty: CAR and CAEN.

We extend several existing results in the literature to our new penalty function.

Our main results are as follows:

(i) We proposed the new form of correlation adjusted regression (CAR) and

correlation adjusted elastic net (CAEN).

(ii) We derived the penalized least squares and the penalized MLE of the

regression parameters for both CAR and CAEN.

(iii) We showed that when the tuning parameter gets larger, the variance-

covariance matrix of the estimator gets smaller. Therefore the mean squared
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error of the estimator is likely smaller than the mean squared error of the or-

dinary least squares estimator. This improves the performance of parameter

estimation.

(iv) We showed that after using suitable data argumentation, the CAR regression

is equivalent to the ordinary least squares regression, and the CAEN regres-

sion is equivalent to the LASSO regression. Therefore many properties and

calculations of CAR and CAEN could be derived after data argumentation

from the ordinary least squares regression and LASSO regression. Both the

OLS regression and LASSO regression are well studied in the literature.

(v) We examined both CAR and CAEN for different types of regression analysis:

the least squares regression for continuous responses, the logistic regression

for binary responses, and the least absolute deviation (LAD) regression for

continuous responses. The LAD regression is thought to be more robust

than the OLS regression.

(vi) We derived the asymptotic properties of the penalized estimators for both

the logistic regression and the LAD regression.

6.2 Future research

Penalized regression is very important and many different forms of penalty func-

tions are being introduced. Penalized regression has widely spread applications in

many fields, including genetics and other medical studies.
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Theoretical results obtained in Chapter 4 and Chapter 5 have been submitted

for publication, see Tan and Wang (2012a) and Tan and Wang (2012b). We

believe there are many other approaches about penalized regression, so we would

try to continue our future research in this direction. One major project we plan to

work on is to compare our new penalization methods with other types of penalized

regression methods by means of simulation and real data sets.
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Appendix A

List of symbols

• X1, X2, · · · , Xp: predictor variables

• Y : response variable

• ε: random error

• γi,j: correlation coefficient between Xi and Xj

• AT : transpose matrix of matrix A

• A−1: inverse matrix of the matrix A

• X: design matrix

• Y: vector of random responses

• H: hat matrix

• L(β0, β1, · · · , βp): likelihood function

A-1
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• `(β0, β1, · · · , βp): log-likelihood function

• V : column vector, with ith element being 1 if βi > 0 and -1 if βi < 0

• I: identity matrix

• V ar(Y): variance-covariance matrix of the random vector Y

• I(β0): Fisher information evaluated at β0

• S(β): score function

• P−→: convergence in probability

• d−→: convergence in distribution



Appendix B

List of terms

• PRESS: Prediction Sum of Squares

• CAR: Correlation Adjusted Regression

• CAEN: Correlation Adjusted Elastic Net

• LAD: Least Absolute Deviation

• VIF: Variance Inflation Factor

• LINE: Linearity, Independence, Normality, Equal variance

• MLE: Maximum Likelihood Estimator

• OLS: Ordinary Least Squares

• MSE: Mean Squared Error

• BLUE: Best, Linear, Unbiased Estimator

B-1
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• PLS: Penalized Least Squares

• LASSO: Least Absolute Shrinkage and Selection Operator

• SCAD: Smoothly Clipped Absolute Deviation

• OSCAR: Octagonal Shrinkage and Clustering Algorithm for Regression

• bias: bias of an estimator (expected estimator minus its parameter)

• trace: trace of a matrix (sum of diagonal elements)

• BIC: Bayesian Information Criterion

• AIC: Alkaike Information Criterion

• CV: Cross Validation

• CJRR: Canadian Joint Replacement Registry
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