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This thesis presents two techniques for analyzing DNA using a rnultibctd methodology. 

The DNA analysis presented in the thesis is motivated by the intriguing possibility of 

identi+g biological fbctionality using infionnation contained within the DNA 

sequence. In addition, the analysis rnay give insight into the nature of DNA complexity, 

and provide guidelines for the selection of operating parameters such as the minimum 

DNA sequence length which can be analyzed. The fkst technique breaks a DNA sequence 

into four subsequences based on the individual constituent bases, and treats each of these 

as strange attractors fkom which the multifiactal dimension may be estimated. Results 

show that the generated subsequences exhibit multifractd properîies which can be local- 

ized to different positions dong the sequaces. A minimum window size of 256 bases, 

and a scaling range fiom 64 to 256 bases is needed for estimation of the multifkactal mea- 

sureS.The second technique estimates the multifkactal spectnim of DNA based on n-block 

entropies. The minimum window size was selected to be 1024 bases dong with a scale 

range of one to three base pair sequence lengths. Experimental results show that DNA has 

a multifractal characteris tic using this measure, and that the multi fkctality changes 

depending upon the position in a sequence. The phylogeny of organisms based on th& 

rnultif?actaiity was demonstrated with only two misclassifications, which may have other 

unresolved issues. 



First of dl, 1 would like to îhank my advisor, Dr. W. Kinsner, for his guidance and support 

throughout this joumey. I have always appreciated his encouragement, and 1 am extremely 

grateful that 1 have been able to work on such an outstanding research topic. 

1 would like to thank Dr. McAlpine for her encouragement, and support in making this ini- 

tial collaboration possible. 

1 would like to thank Tina Ehtiati for al1 of her help and ideas in writing this thesis. 

Thanks also to Megan Tate for also reviewing the text of this document. 

1 would like to thank al1 of my wlleagues in the Delta Research Group, past and present, 

who inRuencd rny surroundings everyday and wntinually challenged me to become bet- 

ter: Tina Ehtiati, Richard Dansereau, Epiphany Vera, Eric Jang, Pradeepa Yahampath, 

Steve Miller, Jason Toonstra, Luotao Sun, Fan Mo, Sharnit Bal, Alexi Denis, Jonathan 

Greenberg, and Hongjin Chen. 

1 would also like to thank al1 of my Wends who have been there for me over the past two 

years. In particular, 1 would like to thank Andrew Dalgamo and John Tajima for their end- 

less fiiendship over the past two years. 

1 would U e  to thank my entire family, al1 of whom have supported me throughout this 

research. This thesis is dedicated to my mother, Laila Bassim. 

Partial financial support is acknowledged fiom the Natural Sciences and Engineering 

Research Corncil (NSERC) of Canada. 



. . 
Thesis Approval Form ......................................... il 

............................................ Table of Contents v 

... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  List of Figures wii 

Background and Motivation .............................. 1 
Thesis Statement and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Thesis ûrganization 2 

CHAPTER II 
BACKGROUND ON DNA AND MEASURES .................... 3 

DNA .............................................. 3 
Information Content of Symbolic Sequences . . . . . . . . . . . . . . . . . . .  6 
Multihctd Measures ................................... 7 

Power Law Relationship ............................ 8 
Euclidean and Fractal Dimensions .................... 10 
Rényi Generalized Entropy and Dimension .............. 12 
Mandelbrot Spectnim of Dimensions .................. 15 

Adysis  of DNA sequences using statistical and flacta1 measures .... 16 
.......................................... Summary 18 



CHAPTER III 
MULTIFRACTAL MEASURES OF DNA ...................... 19 

Calculation of Rényi's Generalized Entropy ...................  19 
............. Single Base Subsequence Attractors (SBSA) 20 
............. Multiple Base Sequence Attractors (MBSA) 21 

.................................. Selection of Vel Sizes 22 
.................. Selection of the Scale Range for Regession - 2 3  

........................... Dividing the Dimension Space -24  
............................. Selection of DNA Sequences 24 

. . . . . . . . . . . . . . . . . . . . . .  Calculation of MultifiactaI Measures -26  

CHAPTER IV 
EWEFUMENTAL RESULTS FOR SINGLE BASE SUBSEQUENCE 
ATTRACTORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29 

. . . . . . . . . . . . . . . . . . . .  Rényi 's Generalized Entropy Calculation 29 
. . . . . . . . . . . . . . . . . . . . . . . . . .  Synthetic Sequence Tests 29 

. . . . . . . . . . . . . . . . . . . . . .  Natural Whole Sequence Tests 31 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Selecting Vel Sizes - 3 3  

. . . . . . . . . . . . . . . . . . . . . . . . . . .  Selecting Scales for Regression 33 
. . . . . . . . . . . . . .  Global Calculations of the Generalized Dimension 37 

summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39 

CHAPTER V 
EXPERIMENTAL REsuLTS FOR MULTIPLE BASE SEQUENCE 
ATTRACTORS ......................................... 40 

.................... Rényi's Generalized Entropy Calculation 40 
.......................... Synthetic Sequence Tests 40 

...................... Nahiral Whole Sequence Tests 42 
.................................. Selection of Vel Sizes 45 

........................... Selecting Scales for Regression 47 
.............. Global Calculations of the Generalized Dimension 50 

.............................. Mitochondrial Phylogeny -52  
............................ Special Consideration 54 



Table of Contsnts 

........................................ Condusions 57 
....................................... Contributions 58 

Recommendations .................................... 58 

................................................ References 60 

Appendix ................................................ A-l 

..................................... Structure Chart A- 1 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Source Code A- 1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  genecaic.cc A- 1 



ThecoastlineofBritain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - - 8  
................ Mitochondrial DNA sequences accessed fiom GenBank -25 

......................................... List of source code files.. -26 
.......................... Panimeters input into the genecalc program. .27 

Generdized entropy of synthetic sequences containhg (a) dl A, and (b) repeated 
AWT . . . . . . . . . . . . . . . . . . . . - . . . . . . . . . . . . . . . . . . - . . . . . . . . . . . - . . . . . 3 0  
Generalized entropy of random sequences for the four bases of DNA (a) adenine, 

............................ (b) cytosine, (c) guanine and (d) thymine. .3 1 
Generalized entropy of adenine for the entire sequence of (a) E. coli and @) M. 
jannashii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - . . . 3 2  
Entropy of E.coli using different dyadic scalings. Circles are a scaling of two, 
crosses have scale three, diamonds have scale four, and plus signs have scale five. 
33 
SBSA calculation of Dq for E. coli (adenine) using Rmin = 64 and varying Rmax 
fiom128to1048576 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - - . . . 3 4  
SBSA calculation of for E. coli (adenine) using Rmin = 128 and varying Rmax 
from256tolO48576 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - . . . 3 5  
SBSA calculation of for E. coli (adenine) using Rmin = 256 and varying Rmax 
fiomSl2tolO48576 ................................................ 
Rényi Dimension of E. coli using varying window sizes. Solid Line for 256bp, 

.......... Dash for 5 12bp, Diamonds for 1 024bp, and Circles for 2048bp.. .36 
SBSA Rinyi dimensions of different regions of E. d i .  (a) The entire sequence is 
the dash-dotted line, and the max and min are given. (b) The first half is solid, and 
second half is dashed, and the rnax and min values appear. (c) The quarters are 
given by diamonds, circles, plus signs, and stars respectively, and the min and rnax 
arenotsho wn............................................-.......38 
SBSA Rényi dimensions of different regions of M. jannashii. (a) The entire 
sequence is the dash-dotted line, and the rnax and min are given. (b) The first half 
is solid, and second half is dashed, and the rnax and min values appear. (c) The 
quarters are given by diamonds, circles, plus signs, and stars respectively, and the 
minandmaxarenotshown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 9  
Entropies of Synthetic Sequences (a) with dl Adenine, and (b) with a repeating 
patternofAGCT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1  
Entropy of Random Sequence of DNA with each base having equal probability of 
occuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1  
MBSA Entropies o v a  the entire sequences of (a) E. coli, and (b) M. jannashii42 

...... Entropy vmus Wmdow size for q=O. Vel sizes increase nom 1 to 10. .43 
Entropy versus window sise for q=-38. Vel sizes increase f h n  1 to 10.. .... -44 
Entropy versus window size for q=38. Vel sues increase fiom 1 to 10. ..... .44 



List of Figures 

MBSA Entropies for increasing window sizes of E. coli and varying q. For q--30, 
the dashed lines show incfeasing window sizes. For q-1 ,Oy 1 the doaed lines 
indicate the log-log plot. For q=30, the filled lines show increasing window size. 
46 
MBSA Entropies as in Figure 5.7, but with logarithmic scaling dong the 

........................................... horizontal (scale) axis. -46 
MBSA ~alculation of Dq for E. coli using Rmin =1 and varjing Rrnax f?om 2 to 
10 . - . . . - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 8  
MBSA calculation of Dq for E. coli using Rmin =2 and varying Rmax fiom 3 to 
10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 9  
MBSA calculation of Dq for E. coli using Rmin =3 and varying Rmax fiom 3 to 
10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . . . . . . . 4 9  
MBSA Rényi dimensions of different regions of E.Coli. The dotted Iine is the 
whole sequence, the k t  half is solid, and the second half is dashed. ....... .50 
MBSA Rényi dimensions of different regions of E.Coli. The dotted line is the 
whole sequence, the first half is solid, the second half is dashed (as in Fig. 5.12), 

........... the first quarta is circles, and the second quarter is plus s i p . .  .5 1 
Shows cornparison of Dq curves with rmin=l ,xmax=3.insect (A), nernatode (+), 

urchin (O), m m d  (-), toad (-),carp (-.)¶fish (..). ...................... .53 
Dendogram classification using cluster analysis of Dq curves fiom mitochondrial 
DNA ...........................................................53 
Cornparison of Dman curves using a scale range 1 to 3 bp. Ail curves are shown 

by lines except huma- and seal which use triangles. .................... .54 
...................................... Zoomed view of Fig. 5.16.. -55 



1.1 Background and Motivation 

Deoxyribonucleic acid @NA) is one of the most examined moledes on the planet. Sci- 

entists around the world are ûying to discover its secrets for many purposes. Currentiy 

genetic information is used to raise better plants and animals, create enhanced pharmaceu- 

ticals for humans and in medicine for gene therapy. Science as a whole has benefited fiom 

the study of genetics because of increased understanding of the biological processes that 

d l  organisms share. 

In recent years, a significant amount of research has been directed towards sequencing and 

understanding the entire human genome in the form of the Human Genome Project 

(HGP). There are many conceivable applications which would be available once the entire 

human genome is understood. The majority of progress so far, howwer, has been ody to 

detamine the sequence, with only limited breakthroughs in understanding what it does. 

The approach £?om the lowest level has not been able to provide the answers to questions 

regarding higher level knowledge within the DNA sequence. 

Recently, the approach has been modified to search for the higher lwel of knowledge or 

"meta" Somation. Researchers have been examining DNA sequences for statisticd 

propaties which might explain a portion of the DNA's function [ABGW95] [BeR096] 

[PBGH92] [ScHe97]. In this thesis, we tum our eye to a technique developed in our 



Chapter 1: Introduction 

research group which has proved successful at fhding the meta knowledge in 0 t h  areas 

of study. 

Multihctai techniques m 9 4 ]  have proven successful in the examination of a wide 

range of signals such as computer images, radio signals, human fingerprints and speech 

[Lang961 [Chen971 [Shaw971 [Jang97] [Grie96]. By using thern to analyze DNA, the 

prospect of finding some higher Ievel information is very good. 

1.2 Thesis Statement and Objectives 

The objective of this thesis is to achieve estimations of multihctal measures for DNA 

sequences and to identiQ ranges of values for those measures. Through the use of estab- 

iished techniques, such as the multifkctal spectnun W W ] ,  we will show that DNA can 

be analyzed and characterized firom fractal methods. DNA firom various sources (bacteria, 

mitochondna) will be analyzed. We will also detemine how the multihctal spectrum 

changes over different parts of the DNA sequence. 

13 Thesis Organization 

This thesis is organized into six chapters. Chapter 2 provides a general introduction to 

DNA, hctals, mdtifrsictals and how they have been used together in previous research. 

Chapter 3 describes the theoretical basis for caicuiating the two definitions of estirnating 

the multifhctal dimension of DNA. Experimental r d t s  which show the multifractal sig- 

nature of DNA for single base subsequence attractors are given in Chapter 4, and experi- 

ments with multiple base sequence attractors are given in Chapter 5. Conclusions, 

recommendations, and contributions are presented in Chapter 6. 



In order to analyze the information content in DNA sequences, we must first understand 

how and what they are, and what their constituent parts are. Foiiowing that, we will 

describe how the amount of information in an object may be quantified using information 

theory techniques. Power-law relationships will be introduced as a method for understand- 

ing complex behavior which cannot nonnally be characterized.Multifiactal measures are 

then introduced to provide a h e w o r k  for discussions about the complexity of objects. 

Other research which has combined DNA and hctality is reviewed in order to understand 

what has already been accomplished. 

2.1 DNA 

Deoxyribonucleic acid @NA) and ribonucleic acid (RNA) is the information source for 

al1 organisms on Earth today. They serve to encode the entire genotype in each ce11 of an 

organism, and then allow for a sharing of the knowledge with offspring. The main DNA 

functions are transcription, translation, and replication. 

DNA is a complex molecule which can be represented compactly as a string of nucleotide 

bases. It is a double stranded linear molecule composed of four compounds: adenine (A), 

guanine (G), thymine (T), and cytosine (C). DNA sequencing consists of determinhg the 

particular order of nucleotides in a given organism's DNA strands. Due to the nature of 

the binding properties, DNA has a complementary strand structure where the information 

on one strand is encoded in a cornplementary form on the other strand. The complements 
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of A, G, C, and T are, respectively, T, C, G, and A. In RNA, thymine is replaced by the 

nucleic acid uracil which then complements adenine. The eEect of the complementary 

bases, is that only one of the sfrands in a DNA molecule needs to be sequenced in order 

for aIl of the knowledge to be captured. Adenine and guanine are grouped together in a 

class of nucleic acids known as purines. Cytosine, thymine, and uracil are hown  as pyri- 

midines. Because of the pairing of two strands, DNA sequences are said to have lengths 

consisting of base pairs (bp), even though only one of the complementary strands rnay be 

given. 

DNA is transcribed fiom nucleotides into RNA, specifically messager RNA (mRNA), 

which is then translated into a series of amino acids. The amino acids are strung together 

in a linear fashion in order to make up a protein. A series of three nucleotides, known as a 

codon, is used to specify a particular amino acid. There are 43 = 64 possible codons, but 

because some are redundant, they are used to specifi only 2 1 difkrent amino acids. Three 

codon combinations are used to stop a protein chain h m  extending, and one is always 

used to start a translation. Codons appear in a sequential non-overlapping manner within 

the DNA string. Some bases in the DNA sequence do not directly code for proteins, and 

may be used to regdate the transcription, translation and replication processes. 

There are three possible interpretations, known as  reading frsunes, of a DNA coding 

sequence depending on which nucleotide is selected as the start of the translation process. 

If eitha of the next nucleotides is selected instead, a completely different protein 

sequence will be translated. If a nucleotide three positions away is selected, an amino acid 

is deleted or added fiom the protein ch&. 



Chap!er Il: BadcgFound on DNA and Mensures 

From the discovery of DNA as the information carrier in biological systems, there has 

been an ongoing analysis of how DNA translates into a physical description of organisms, 

or phenotype. There have been great advances in understanding the nature of codons, and 

their translation into proteins. It has been shown that the DNA of any organism is suffi- 

cient to code al1 of the information needed to constmct and maintain it [Lewi97]. The 

organization of genetics is focused around the gene, which has many interpretations. In 

general, a gene is considered to be a continuous portion of DNA which codes for a certain 

polypeptide chah, one or more of which may form a functional protein. Genes are very 

wide ranging, and are generally very difficult to clessi@. Some genes are made up of both 

codhg (exon) and non-coding (intron) regions. The introns are spliced out of the mRNA 

before being translated to a protein, but the mechanism of their identification is currently 

poorly understood. 

Different organisms have different DNA characteristics. Bacterid DNA does not have any 

inaons, while eukaryotic DNA has introns and exons. As well, mitochondnal DNA does 

not have any introns, and even has regions whereby two different proteins are are coded in 

the same portion of DNA sequence (overlapping genes). It is also important to consider if 

the whole DNA sequence will be considered, or only parts of i t  Perhaps, DNA which has 

already had al1 of the iatrons sliced out might be used. In general, the target application 

wiIi detemiine what portion of the DNA will be used. If the search is for aIi DNA compo- 

nents, then the entire string might be used, while for gene fûnction only a portion of DNA 

might be used. 



One partidar feature is repeated sequences within a piece of DNA. For example, in 

human DNA, there are several locations which have 40-50 repeats of the sequence GC. 

There are many other repeats which abound. Some DNA hgerprinting makes use of this 

fàct, and uses the number of repeats as an identifier for a particuiar person. 

Research in genetics in the past has focused on the direct understanding of DNA and the 

transcription of DNA into RNA and then protein. New techniques to determine DNA 

sequences, such as "shotgun sequencing", dong with experimentally determine the gene 

funaion has been the primary emphasis. 

There has been a trend recently to examine DNA at a higher level and search for patterns 

or correlations which exist in the DNA string. If DNA were a completely random paneni, 

then these correlations shouldn't exist. Recent research bas shown that these correlations 

exist, and can be exploited. 

2.2 Information Content of Symbolic Sequenees 

The concept of measuring information was first introduced by Shannon, and has been 

used extensively in many different subject areas. Shannon's entropy is defined for a 

sequence S with symbols si (i = 1, . . . , A ) as 

whae pi is the probability that si occurs, and i extends over the alphabet of symbols. 

The most cornmon interpretation of (2.1) is that H represents the minimum number of bits 



which are required in order to code the sequence. An extension of (2.1) occurs by defining 

block-entropies as 

where are the probabiIit-y that an ordered combination of r elernentary symbols 

occurs. The nimiber of compound symbols is now )c' . 

The most difficult aspect of calculating entropy is estimating the probability density b c -  

tion of the different block sequences. The accepted practical algorithm is to estimate prob- 

ability using a relative frequency method where the probability of an event is the number 

of times the event occurs averaged over the total number of events examined. Unforni- 

nately, it is difficult to estimate the nurnber of samples which are needed before an accu- 

rate estimate of the probability density can be established. Some guidelines are to 

continue evaluathg events until the minimum sample count is ten (i.e. the smallest count 

for any event is ten). A method has been suggested which c m  extend the accuracy of the 

estimated entropies for DNA sequences and literary texts using short sequences [ScHe97]. 

In some cases, the above guideline is impractical, and can be reduced if there is evidence 

that some sequences are simply likely to never occur. 

23 Mdtifractal Measwes 

Fractals are now a wmrnon concept in physics and rnathematics. They embody the idea 

that patterns exist in detenninistic systems which appear chaotic. The fact that there is a 

relationsbip among different scales provides a powemil measuring tool with which to 



characterize "naturai" signals. In general, these natural signals are difficult to analyze 

using classical techniques such as Fourier malysis because of theu nonstationary behav- 

ior, 

2.3.1 Power Law Relationship 

Fractals are related to the two fundamental concepts of scale and mea~u~ement. Io a h c -  

tal, these two properties of an object are intertwined, and th& relationship can be 

exploited and characterized. 

Fig. 2.1 The coastline of Britain. 

One of the moa famous examples is a discussion of the length of the coast of England, 

shown in Fig. 2.1 [PeJS92] (Along with other coastlines -971 [Fede86]). The first 

approach would be to use a compass on a rnap by fixing the compass setting and walking 

the compass around the island. The number of steps multiplied by the compass sethg 

would give a .  approximation to the length of coastline. Howwer, if we choose a smailer 

compass setting, and repeat the meamment of length, there is an increase in the value. 

The increase is explained by the bays, bends, and general jaggedness of the coastline, 

which are counted toward the length when the compas setting is reduced. In fact, the 

compass settllig cuuld be reduced again, with enother measurement of length. In fact, as 
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the compass setting keeps becoming smaller and smaller, the length of the coastline 

approaches infinity. 

The lesson in the coastline experiment is that it may be impossible to messure something 

accurately because it depends on the scale of measurement. The relationship between the 

s a l e  and coastline length can be measured. By plotting the scale versus coastline length, 

there appears to be an exponentid relationship. Changing to a grid whereby the axis are 

plotted using log scales (log-log plots), a very clear linear relationship appears whereby 

the points fit to a straight Iine. The mathematical expression is given as 

where L is the measured length, s is the scale of the plot, and d and c are constants. It tums 

out that the value of d is characteristic of the complexity of the object being examined. ln 

the coastline example, an increase in d means that there are many bays, bends and jags 

which are being added to the measurement at each s a l e  reduction. A decrease in d shows 

that the shape of the coastline is relatively flat, and that decreasing the scale doesn't 

increase the measurement of length as much. 

For objects which are not "mrnplicated," d tends to go to zero since there is no variation 

when the scaie is changed. Objects like straight lines, squares, and circles exhibit a power- 

law relationship of zero, indicating the lowest possible complexity. 

The prinary value of d, is that it provides an estimate of the complexity of the length of an 

object. Other measues can be use- in the calculation, and for a single object, a different 

measure can provide a different level of complexity. 

- 9 -  
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2.3.2 Euclidean and Fmctal Dimensions 

In mathematics, there has been a significant amount of discussion regarding the concept of 

dimension. The most common is Euclidean dimension, DE, the smallest integer space 

that an object can be placed into. For instance, a point has a dimension zero, a line has 

dimension one, a square has dimension two, and a cube has three dimensions. No special 

method of calculation is needed for DE,  and it is sometimes referred to as topological 

dimension. Note that an object like the Coast of Britain is considered to have a Euclidean 

dimension of one since it cm be stretched out and represented by a single variable. 

Dimensionality can be fiirther generalized by considering non-integer dimensions, also 

known as hcta l  dimension. Fractal dimension is based on the power-law relationship, 

and constitutes a measure of complexity for an object. There are numerous eactal dimen- 

sions which have been used in research. 

The box-counting dimension is the most popular since it is extremely easy to calculate 

and understand, which leads to its common occurrence. Any object may be covered using 

a grid of boxes (volume elements or vels) which have homogeneous sizes. The number of 

vels which covers the object is taken as the measurement for the power-law relationship, 

while the size of the vels is the scale factor. Reworking (2.3), the box-counting dimension 

becomes 

where L(s) is the number of covering boxes for a given vel size. 
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The box-counting dimension is an example of a morphological dimension. Several classes 

of dimension have been identifiai, such as morphological, entropy, spectnxm, and vari- 

ance classes [Kins94]. A feature of the box-countuig dimension which is not very desir- 

able, is that it does not provide any information regarding the distribution of the object, 

merely an estimate of the complexity of its outline. 

The information dimension, D I ,  alleviates this problems somewhat by considering the 

information content of the object It is defined as 

where H is Shannon's Entropy (2. l), and r is the size of the vel. The probability is the rel- 

ative fiequency with which the object intersects the ith vel. 

The box-counting and information dimension are oniy two of many other fiactal dimen- 

sions which cyi be computed, and which can give different results for the same object. 

There has been an argument in recent yem that a single dimension does not provide 

enough infoxmation about the complexity of an object, and that it would be wise to use 

several of these measures to characterize the complexity. 

Since it is quite possible to appiy these measures to objects which do not exhibit complex 

behavior, f.urther clarification is needed. More specincally, an object is only considered to 

have Factal propdes when its hctal dimensions are non-integer. The application of 

h c t a l  dimension calcuiations to simple objects such as circles, lines, and cubes will result 

in an integer dimension which matches the Euclidean dimension. 



Cbpmr II: Bdqmmâ on DNA and Usaruma 

2.3.3 Rényi Generalized Enbvpy and Dimension 

As seen in (2.1) and (2.2), Shannon's entropy is d h e d  as a measure of the amount of 

information in a sequence of symbols. Rényi [Rhy70] [Km941 then extended the idea to 

a generalized entropy given by 

where q is called the moment-order. Shannon's Entropy is a speciai case of (2.6) with 

q = 1 , and is treated below. A proper interpretation of the generalized entropy mut be 

include consideration of the statistical technique used to estimate the probabilities. 

As with the previous definitions of hctal dimension, evaluating the genaalized entropy 

at different scales, r , a power law relationship may be discovered using 

which is called the multifkactal spectrum or the Rényi (multihctal) dimension. As with 

any power-law relationship, the estimate of Dq cornes h m  the linear fit of the denomina- 

tor to the numerator of (2.7). An effective multihctal spread exists if Dq is monotonic, 

nonincreasing within error, and insensitive to small changes in the scaling range with 

respect to the momentsrder. 



We cm also consider how Dq responds to extremely high and low moment orders. For 

q = 00 , (2.7) becomes 

logz C P: 
1 j =  I 

= lim l*gzpmax Dm = l h  l h  - 
q + r + O - 1 log,r r + 0  logZr 

wherep,, is the highest probability, because of the sifting property of the infinite (Che- 

byshw) n o m  F;ins94]. SimiIarly, for q = - , (2.7) becomes 

1 j =  1 
0, = lim Iirn - 

q + -0%. 4 04 - 1 log,r 

wherepmin is the lowest probability. There are several special cases which c m  be consid- 

ered in regards to Dg. If we consider q = 0 ,  (2.7) simplifies to the box counting dimen- 

sion (2.4), where the number of the covering vels is used instead of the probability of 

occurring within a vel. By setting q = 1 , Dq reduces to the infonnation dimension (2.5). 

More specifically, H( 1 ) cannot be evaluated directly, so the limit as q approaches one is 

applied 

Using L'Hopital's d e ,  we get 



d x In order to evduate the derivative in (2.1 1), we use -c = cXlnc and get 
dx 

J 

which is Shannon's Entropy (2.2). 

To clarib a window is a piece of DNA which is a continuous portion of another DNA 

sequence. Usually, the entire DNA sequence for an organisrn will be the reference 

sequence, and a window could consist of any section of the sequence, or the entire 

sequence itself. The value in approaching each sequence fiom a window perspective is 

that investigations into how the multihctality of difkent windows compares can be 

made. The result is to detamine whether there are complexity changes within a DNA 

sequence, or whether the DNA sequence has a homogeneous complexity. 

(2.6) and (2.7) describe the theoretical values of H ( q )  and Dq respectively, but for some 

practical applications, the window size should be incorporatecl into the definition. If the 

size of the window to be analyzed is too small, then estimates of the probabilities within 

the window wiU not be valid. 

As in the previous section, for simple objects the rnultifiactal spectnmi is a constant inte- 

ger. Single fkctal objects have a constant non-integer muhifiacd spectrum. Objects 

- 14- 
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which are multihc4tal in nature wiil have a non-increasing spectmm, while single hctal 

objects will have a single uniform dimension for dl values of q. 

2.3.4 Mandelbrvt Specîrum of Dimensions 

Another rnethod of analyzing multihctals is presented with the Mandelbrot dimension. 

In single hctaI dimension calculations, such as the information and box-counting dimen- 

sions, a single region size is considered, and as a result only a single-valued power-law 

relationship (2.3) was measured. We can improve that by considering a nonuniform set of 

regions, r with varying probabilities, p j .  The local power-law relationship then 
J' 

becomes 

where ai is a noninteger which depends on the selected region of the measure. The local 

scaling exponent, aj , is called the H6lder exponent [KUls94]. Additionally, it is possible 

to cover the regions with a set of vels, and determine the nurnber of vels with a specific a, 

N,(r)  . A power law relationship ship now exists in the form of 

where f (a) is the hctal Mandelbrot dimension, DMm. The Mandelbrot dimension is 

related directly h m  the Rényi dimension by a Legendre transformation with the follow- 

ing explicit result -941 
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(2.1 5 )  

and f(a) - fq with 

f, = 4aq-(q- l m q  (2.16) 

The Mandeibrot dimension provides an alternative viewpoint to the mdtihctality of a 

given object, and provides different visual features than the Rényi dimension. 

2.4 Anaiysis of DNA sequences using statistical and fractal measures 

Most of the cwent research in the deciphering the meanhg of DNA sequences is 

approached fiom the lowest level. Analysis of codons, amino acids, and proteins are the 

main subjects of research. In this thesis, the perspective is changed, and a higher level of 

information is sought. Searching for the higher level, or "meta," knowledge can take vari- 

ous foms. 

In recent yean, there has been an interest in the properties of DNA fiom a statisticd 

standpoint. There have been several investigations into the statistical distribution of bases 

over the DNA string. Attempts have been made to link the statistics of a piece of DNA to 

whether or not it codes for protein (exons vs. introns). 

Voss brougbt to the forefiont the idea that there were self-similar characteristics in DNA 

sequences which could be measured [Voss92]. He outlines a particular method of translat- 

h g  DNA into a random walk which is then rneaswed. As weU, he examines the power 

spectmm of the bases of DNA and fin& that they exhibit I/f (pink) noise which is a strong 



indication of f?actality. Also noted is a very strong periodicity at a fiquency of three, 

which is beiieved to be related to the codon size. 

Several published results show that the calculations using a random walk mode1 c m  be 

used to characterize diEerent DNA sequences [BeGS92] peGw[GBSR95] .  in particu- 

lar, they use the multihctal spectm to reconstxuct the phylogeny of mitochondrial 

DNA. They apply the technique to entire mitochondrial genomes and classi@ the results 

using a hierarchical clustering technique. The random walk methods maps the DNA 

sequence into a two-dimensional image, which provides a useful visualization tool. 

Other researchers have recognized the importance of the higher level knowledge which is 

present in DNA pBGH92]pGHP93][BeR096]. There have been several views on what 

the implications of "long-range correlations" are. As of now, there is no widely accepted 

opinion as to the source of the correlations, or what they mean in a biological sense. 

A multifiactal spe- trajectory may be considered for DNA whereby the multihctal 

spectmn is calculated for adjacent windows and a curve showing how the spectrurn 

changes over the DNA sequence is generated. We have not included results for the multi- 

fkactal trajectory due to lirnited tirne, but it has been considered. 

In this snidy of higher level knowledge in DNA, we expect to show that there is a possibil- 

ity that the multihctal estimates c m  be used to characterize a given DNA sequence. As 

well, it is important to detamine whether there is local complexity within a DNA 

sequence, or if the multifiactal dimensions are constant throughout a sequence. Guide- 

lines for selecting the proper operathg parameters should also be established. 
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2.5 Summary 

Background information on DNA and measures which are used throughout this thesis are 

discussed. A simplifiecl explanation of DNA and its attributes is presented in order to 

understand the properties of the sets which will be experimented on. The information and 

fracal meastres present possible measuring tools which we will apply to DNA sequences 

in the following chapters. A review of some related research shows that long-range corne- 

lations are present, but not completely understood. 



CHAPTER III 
M m m m  MEASURES OF DNA 

The objective of this thesis is to analyze DNA at a higher level than has previously been 

accomplished. The multihctal measurements which have been described will sewe to 

provide a basis with which characterization of the DNA sequence may follow. Two defini- 

tions of the probability distribution will be given dong with guidelines which describe 

how to fmd the correct window sizes and scales for regression. The sequences which will 

be analyzed will also be presented. 

3.1 Caicuiation of Rényi's Generalized Entropy 

Previous attempts at calculating the fractal dimension of DNA have used a random walk 

mode1 introduced by Voss poss92] and used in several different papers PBGH921 

[BeGS92]. Instead of this approach, we consider that the DNA sequence is itself a strange 

attractor, and as such can be measured directly. Two interpretations of the Rhyi  dimen- 

sion are outiined and discussed in this thesis. 

In fkactal dimension calculations, the most important quantities to detennine are the nec- 

essary probabilities. Since the nature of DNA sequences is signîficantly different fiom a 

discrete tirne sampled signal such as audio or video [Cheng71 [Shaw971 [Jang97] 

[Grie96], the selection of a probability measure needs to be explore& 
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3.1.1 Single Base Subsequence Amoctom (SBSA) 

Unlike discrete tune signals which have real values at each sample, DNA sequences con- 

sist of symbols which can take one of four values at any given position withui a sequence. 

As well, there is no relative importance between the symbols which makes it difficult to 

comert them to a discrete time series. The first approach implemented is to consider that 

each base makes up a strange ateaaor within the DNA, and to calculate the probabilitia 

for each individual base separately. The result is a Rényi dimension description for each of 

the four bases. One technique to visualize this is to convert a DNA sequence to a portion 

of the real line, where a point exists if the target base exists in the sequence. The result is a 

set whose multihctal spectm may be estirnated. Four such sets are inherent for any 

DNA sequence. Alternatively, a single subsequence could be created if we considered 

whether or not each base is a purine or pyrimidine. The probability (relative frequency) 

that an attractor for a given base exists in a chosen vel is 

where nbj is the count of base b in vel j, and No is the total count of base 6 in the 

sequence. This definition satisfies the requirements that the surn of dl the probabilities 

must equal one. 

From the above probability definition (3.1), Rényi's generdized entmpy given in (2.6) can 

be calculateci for various vel sizes. In this particular instance, the vels are non-overlapping 

and cover the sequence wmpletely. The eritropy, when plotted against vel size, provides a 
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means of calcuiating the power law relationship aven by (2.7), which exists for this 

strange attractor. 

3.1.2 Multiple Base Sequence Atîractors (MBSA) 

Another view of the spectnim of h c t a l  dimensions can be detennined h m  an infonna- 

tion theoretic point of view. We c a .  consider Rényi's generalized entropy (2.6) tu be a 

measure of block information which c m  be applied to DNA symbols directly. As in Sec- 

tion 2.2, we define a set of disjoint ordered sequences of length r which make up the 

event space. The sequences are made up of dl of the possible combinations of the four 

bases of DNA (A,G,C,T). For a fixed scale, r, the nimiber of elements in the event space 

is 

N ,  = 4' 

because of the alphabet size of DNA. The definition of probability then becomes 

where n is the nimiber of times the j th element occurs, and N is the total number of ele- 

ments exâmined. This definition is also consistent with that of n-block entropies. 

A pitfail of this technique is that in order to calculate the probabilities for large vel sizes, 

r , an impractical amount of bases is necessary. For example, consider r = 8 , which gives 

N8 = 65536. In order to get a vaiid probability distribution function for such a large 

event space, sequemes which are at least ten times as long need to be evaiuated. As well, 
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the structure of n a d  DNA includes a significant amount of repeat strings which concen- 

trates the probability distribution h c t i o n  at certain symbols [ScHe97]. The obvious 

advantage over the SBSA is that only a single entropy and dimension set need to be calcu- 

lated, while for the subsequences a set of four dimensions is needed for a complete repre- 

sentation. 

3.2 Selection of Vei Sizes 

In most fractal meaSuTements, a dyadic vel size of 2" is used because computer systems 

operate efficiently for powers of two. This stems fiom the nature of current computer 

architectures which favor binary nurnbers and representations. As well, using a dyadic siz- 

ing provides some efficiencies for dculating logarithms of base 2. 

Using a dyadic sizing, an estimate of the entropy can be obtained. However, due to the 

codon nature of DNA, a triadic vel size of 3" may be more appropriate. This size would 

likely have less interference from codon boundaries than others. It might also prove useful 

in the identification of open reading fiames. 

In practical applications, a dyadic or triadic vel scaiing may not be feasible. In considering 

the MBSA calculations, as the vel size increases, the number of elements increases expo- 

nentially. In this case, the vel size is selected to be a range of small integers such as 

1,2, 3, . . . , r in order to accurately estimate the probability distr i ion.  
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33  SeIection of the Scale Range for Regression 

In order to calculate the rnuliifhctal spectrum, the dope of the log-log plot must be deter- 

mined. The standard technique is to use least squares regression to fit the data to a line 

thereby determining the slopepeJS92]. in many cases the entropy values at certain scales 

cannot be used due to outliers and behavior which clearly do not follow the power law 

relationship. In practice, a continuous range of scales is selected over which the power law 

relationship holds, and the dimension is estimated using only these scales. 

In determining which bases to use for the slope calculation, it is important to have a gen- 

eral idea of the structure of the generalized entropy vs. vel size plot. This figure will 

clearly show any regions which do not adhere to the power law relationship necessary for 

the hc t a l  dimension calculation. The outliers might take one of many fonns. For 

instance, many log-log plots are erratic or c w e d  over a particular range of scales. 

The detennination of scales will greatly affect the final applicability of the multibctal 

spec tm.  By determinhg the range of scales to be used, maximum and minimum win- 

dow sizes will be determined. The minimum window size will determine the srnallest res- 

olution within the DNA sequence which can be identified. The maximum size will 

pinpoint the necessary sequence lengths which are required for the calculations. 

A distinct possibility may also be that no maximum window size exists, and that one may 

be established which, for practical purposes, is sufficient to calculate the multihctal spec- 

trum accurately. A minimum window size should exist due to the discrete nature of the 



DNA sequence. In this thesis, the minimum and maximum scaies used for any given 

regressions will be denoted as R,,, and R,, . 

3.4 Dmding the Dimension Space 

Part of the novelty in the proposed technique is that the entire sequence is not required in 

order to get an estimate of the hctal dimension, and that small windows cm be used. In 

fact, large windows will tend to average out changes in the different parts of the sequence. 

An experiment will be to examine the global multihctal dimension in cornparison to its 

parts. This example shouIG show what the relationship is between the overall and constitu- 

ent parts. It would also help determine what a reasonable window size is. If it tums out 

that the global and constituent parts are the same, then, there is no variation of the multi- 

h c t a l  dimension dong the DNA sequence, and the whole sequence could be used for 

characterization. This is highly unlikely, since the various genes are already hown to 

have different statistical properties[Lewi96]. It would be useful to determine whether or 

not a single gene has a given characteristic which couid be used to isolate that gene. 

3.5 Selection of DNA Seqaences 

Due to the ever increasing volume of sequenced DNA data, there is no shortage of 

sequences to experiment on. As a result, two main sequences were selected as the main 

benchmarks for these experiments. The Escherichia coli genome is fuIly sequenced and 

annotated. Methanococ~uî jannashii is an archaeabacteria which is also M y  sequenced 

and annotated. These two sequences were chosen because of the wealth of "extra" infor- 

mation in addition to the full sequence, such as gene identification and annotation. These 
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sequaices also represent some of the longest contiguous sequences available with 4.6 and 

1.5 million base pairs respectively. The long sequences allow for experimentation over a 

very large range of vel and window sizes. 

In [GBSRgS], the mdtihctal dimensions of DNA sequences were calculated using a ran- 

dom walk mode1 of DNA. It was shown that the multihctal curves could be used to 

reconsbnict the phylogeny of the various DNA sequences without any additional informa- 

tion. In order to provide a cornparison to the random walk multifhctai spectnmi, the 

MBSA mdtiiiactal spectrums of the same sequences will be cornputed in Section 5.5. 

The sequences used are shown in Fig. 3.1. 

Sequence GenBank Code Length 

Home sapiens (human) 

Bos t u u m  (cow) 

Rattus norvegregrcus (rat) 

Phoca vihtlina (harbor seal) 

Balaenoptera physalus (fin wtale) 

Xenopuî I o a i r  (toad) 

Cypnhw c a ~ i o  (carp) 

Cmssotoma lacustre ( fish) 

Dmsophilia yakuba ( h i t  fly) 

Apk meIIfera @oney bee) 

Shongylocentmtus pupratus (sea urchin) 

Paracentrotus lividus (sea wchin) 

Cuenorhabdiris elegam (nematode) 

Ascaris suum (nematode) 

HUMMTCG 

MIBTXX 

MIRNXX 

MIPVDNA 

MIBPCG 

XELMTCG 

MICCCG 

CRQMTGENOM 

MID= 

W G E N O M  

MISPXX 

PALMTCG 

MTCE 

MTAS 

Fig. 3.1 Mitochondrial DNA sequences accessed h m  GenBank. 
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In addition to naturd biological sequences, several synthetic sequences were used as a 

control group to test the calculations. Synthetic sequences were created with the following 

patterns: random uniforni base distri'bution, single base, short periodic repeats. 

3.6 Calculation of Multifractal Measures 

All of the calculetions presented were implemented in C/C* on a Sun Ultrasparc 1 using 

Sun Microsystems C/C* compiler. The struchne charts and code are presented in the 

Appendix. The code which implements liriear regression is taken verbatim fiom 

pTVF921. 

in the design of the software, thae were several objectives. First of dl, the code was 

designed so that as much of it as possible wuld be reused for a different data set Sec- 

ondly, the code was designed to be portable. The software is split up into three main mod- 

ules as described in Fig. 3.2. The h a 1  implementation is a command line program which 

takes as arguments the parameters in Fig. 3.3. 

1. MultihctalCalc. (hlcc) 
This file contains the classes which implement the Multifhctal calculations for 
DNA used in this thesis, dong with a couple of support classes. 

2. genecalc-cc 
This file contains the source for the driver which reads all of the parameters, sets up 
the calculation objects, and then writes al1 of the results to the appropnately named 
files. 

3. Patt emI0. {hlcc} 
The object which is used to input DNA sequences is given in these files. As well, 
the generation of synthetic sepuences is handled here. 

4. fit {hlc) 
This code h m  [PTVF92] perfonns a linear regression given x and y data 

Fig. 3.2 List of source code files. 
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The directory and file name of the flat file containing the DNA sequence for pro- 
cessing. The file should be pre-processed to remove and other symbols or nota- 
tion. The only characters allowed in the file are A,G,C, or T. 

2. Start and End base 

These two parameters defme how big the window to be used should be. The end 
base parameter may be substituted for by O, which uses the minimum number of 
bases necessary for the SBSA calculation according to the scaling, or 1, which 
uses all of the DNA until the end of the file. 

3. Scaling scheme 

For the SBSA calculation, this parameter indicates the base of the vel scaling. For 
example, 2 indicates a dyadic scale, while 3 indicates a triadic scaling. 

4. Maximum scales 
Two parametas are needed, the f5st indicating the maximum scale for the SBSA 
technique, and the second indicating the maximum scale for the MBSA tech- 
nique. 

5. type of dimension calculation 

This parameter is a single letter which indicates which dimensions to calculate. 
An 'r' indicates the full Rényi spectrum, while a 'v' calculates only the Variance 
dimension, and an 'i' calculates only the Information dimension. 

6. StarttEnd Regression scales 

These two parameters indicate which scales to start and stop the regression 
parameter. If a one is entered for both, then the dimensions are calculated for al1 
possible combinations of scales which are continuous. 

7. Output file prefix 
This parameter specifies what the prefk of al1 output files are. The output files are 
names with the prefix, and then various &es are added indicating the calcula- 
tions within that file, and for SBSA calculations, which base was used. 

Fig. 3.3 Parameters input into the genecalc prognun. 

The software was tested continuously as new modula were added. Intermediate results of 

calculatiom were stored and displayed to confinu that there were no mathematical errors. 

As well, once code was running wrrectly, an effort was made to re-use it verbatim. Both 

the SBSA and MBSA approaches use the same piece of code to perform linear regression 



and calculate the Rényi spectrums. Through the use of C*, data hiding and encapsdation 

was accomplished resdting in simplified interfaces. 

3.7 Summary 

The sequenca which will be analyzed in this thesis are desmïed along with two multi- 

fractai approaches, SBSA and MBSA, for measuring the sequences. A fhmework of how 

the entropies and scale ranges should be detennined was discussed. Experhents are 

desmiecl which can highlight the differences in characteristics betwem sequences, and 

within sequences. 

The calculation of the multihctal measures using a specific implementation was pre- 

sented, along with an outline of the software designed for this thesis. Software validation 

was perfonned at each step to ensure that dl calculations performed are correct. 



CHAPTER IV 
E~PERIMENTAL RESULTS FOR SINGLE BASE SUBSEQUENCE 

A m c r o R S  

The fmt technique which we will examine is the single base subsequence attractor 

method for calculating the hctality of DNA. This method presents an interesting view- 

point because it treats each of the constituent parts of DNA as its own entity within the 

entire sequence. The entropy calcdations will show if there is any connection between 

scales for this mesure. As well, we will discuss the minimum window size using this 

technique. The relationship between a sequence of DNA and its pieces are also explored. 

4.1 Rényi's Generalized Entropy Calculation 

The generalized entropy values were detennined for several DNA sequences, as it is a fun- 

damental calculation necessary for calculating the multihctal spectnim. Several exam- 

ples of various calculations are presented in three dimensional form. The horizontal axis 

are q and logZr. The vertical axis shows the Rényi entropy as defbed in (2.6). Al1 of the 

figures depict similar behavior. Al1 of the plots in this section used a dyadic scale for cal- 

culation unless stated otherwise. 

4.1.1 S'ynthetic Sequence Tms 

The entropy calculation was first tested using synthetic sequences. For sequences which 

consist of a single base, the calculations show the expected entropy for the selected base. 

For the 0 t h  bases, since the probabilities are all zero, taking the logarithm results in 

undefined values. Synthetic short repeats (Figure 4.1 b uses the repeating sequence of 
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AGCI') also exhibit flat simple behavior and showed the same results in structure as a sin- 

gle base. 

Fig. 4.1 Generalized entropy of synthetic sequences containhg (a) al1 A, and (b) 
repeated AGCT 

The behavior of random sequences gives the same structures as those found in nawal 

sequences, discussed in the next section. The random sequences were generated using a 

unifom random nimiber generator which had an equal probability of generating any of 

the four bases for a given position. 



Fig. 4.2 Generalized entropy of random sequences for the four bases of DNA (a) 
adenine, (b) cytosine, (c) guanine and (d) thymine. 

4.1.2 Natural mole  Sequence Tests 

The generalized entropy, calculated using the entire sequences of E. coli and jannashii, 

is shown in Figure 4.3. Several features become wident in viewing the results of natural 

sequences: 



Fig. 4.3 Genefalized entropy of adenine for the entire sequence of (a) E. coli and (b) 
M. jannashii. 

There is a flattened portion for srnall scales (r < 50 ) and negative moment orders 

(q < O). This region appears for al1 SBSA generalized entropy calculations in natural 

and random DNA sequences. Because of the sifting property of negative noms, the 

results tend toward the smallest probability which for sequences smaller than 50 base 

pairs, is usually zero. The reason for a minimum probability of zero is that it seems for 

vel sues up to fifty base pairs, it is likely that at least one vel will not have any 

instances of the targeted base. As a result, for srnall vel sizes, outlias occur for negative 

moment orders. 

As the scales increase, there is a tendency for the entropies to become equal across the 

values of q . That is, the value of q seems to have no effect for scales larger than 

r > 212 = 4096. This feature appears for al1 generalized entropy calculations for natu- 

r d  DNA sequences. 

AU of the bases exhibit similar behavior. When looking at the four entropies generated 

by a single sequence, aii have a cornmon shape, and range over the same entropy val- 

ues. 



4 3  Selecting Vel Sizes 

A direct cornparison of the generalized entropies calculated using différent dyadic bases 

shows that they follow the same slopes. The use of a different dyadic base does not affect 

the slope entropy for the same region, but has a slight modification to the entropy itself. 

log r 

Fig. 4.4 Entropy of E-coli using diffêrent dyadic scalings. Circles are a scaling of 
two, crosses have scde t h ~ e ,  diamonds have scale four, and plus signs have 
scale five. 

4 3  Selecting Seales for Regression 

In order to effectively detemine the effects of the range of scales on the multihctal 

dimension calculaîion, a full range of possibilities is calculated. Figures 4.5,4.6, and 4.7 

show that by selecting digerent starhg and stopping ranges (Rmi,,  R,,), the dimen- 

sionality has a wide variation. 



It can be seen that as  the vel sues used inaeases, there is a converging eEéct, and the 

dimensions start to approach a fixed value for all q . As a result, for the SBSA, the scale 

range between 64 and 256 base pairs is chosen. By keeping the range away h m  the con- 

vergent area, the calculated dimensions should provide the maximum signature for any 

given DNA sequence. 

31-- - - -  - - R = 128 
\ 

max 
\ 

Fig. 4.5 SBSA calculation of Dg for E. coli (adenine) using R,, = 64 and varying 
R,, fkom 128 to 1048576. 



- R =1048576 
rnax 

Fig. 4.6 SBSA calculation of Dp for E. culi (adenine) using Rkn = 1 28 and varying 

- R = 1048576 
rnax 

Fig. 4.7 SBSA calculation of Dq for E. coli (adenine) using R,, = 256 and varying 
R,, ffom 5 12 to 1048576. 



Because of this choice of scales, the smallest window of DNA which can be examined 

using the single base dust technique is 256 bp. In orda to veri@ this, Figure 4.8 shows 

how the multihctal spectnmi varies with window size and constant scale ranges. The cal- 

culated dimensions using 256 bp vary significantly, while the larger window sizes are rel- 

atively similar. The practical impact of this is that for scale ranges of 64 to 256 bp, the 

minimum window size needed for estimation is 5 12 bp. The slight differences between the 

larger window sizes can be atûibuted to differences in each part of the sequence, and 

might be useful in characteriang each of the sequences. 

Fig. 4.8 Rényi Dimension of E. coli using varying window sizes. Solid Line for 
256bp, Dash for 5 12bp, Diamonds for 1024bp, and Circles for 2048bp. 

Of particular interest is that obsemation that for q = 0, the morphologicsl dimension Do 

is dways one. If we re-examine (2.7) for q = O ,  we get 
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log C PY 
f = l h  - i =  1 = lim 

log N, 
Do r + 0 4 - 1  log(r) r+O logr 

Further examination shows that the number of vels, N,, is proportional to the scale, r . As 

a result, the limit in (4.1) approaches unity for any sequence in which at least one target 

syrnbol appears in every vel. This observation relates very weil established theory, since 

the DNA sequence is an object which exists rigidly within one dimension. Since the mor- 

phological dimension does not take into account the distribution of an object over the cov- 

ering vels, it will always be one since the nimiber of covering vels changes with scale. 

4.4 Global Calculations of the Generalized Dimension 

Several experiments were perfomed which give comparative results of the multifiactal 

dimension. Figure 4.9 shows how the hctal dimension of various partitions of E. coli dif- 

fer fiom each other. As is visible, there is significant variety at higher and lower moment 

orders. Figure 4.10 shows how the h c t a l  dimension of various partitions of M. jannashii 

are related. There is much more similarity between the regions of M. jannmhii than E. 

coli. Breaking the sequence even M e r ,  however, might show some variety which is hid- 

den for these particular regions. Choosing smaller windows would provide a much better 

view of the b'locality "of multihctal complexity, which might give an indication of the 

biological fiuiction. 



Fig. 4.9 SBSA Rényi dimensions of different regions of E. coli. (a) The entire 
sequence is the dash-dotted line, and the max and min are given. (b) The first 
half is solid, and second half is dashed, and the max and min values appear. 
(c) The quarters are given by diamonds, circles, plus sip, and stars 
respectively, and the min and max are not shown. 



Fig. 4.10 SBSA Rényi dimensions of diffkrent regions of M. jannoshii. (a) The entire 
sequence is the dash-dotted line, and the max and min are given. (b) The first 
half is solid, and second hdf is dashed, and the max and min values appear. 
(c) The quarters are given by diamonds, circles, plus signs, and stars 
respectively, and the min and max are not shown. 

The SBSA multihctal rneasurement techniques show that there are indeed relationships 

betw een various scales, indicating that an isolatecl single base possesses fractal properties. 

As well, guidelines for the scales which should be used for regression and the minimum 

window size were established. There does not appear to be an explicit relationship 

between a sequence and its parts in the Rényi spectnnn domain, although there is a large 

variation which indicates that the multihctal properties of DNA vary between its differ- 

ent segments. 



CHAPTER V 
EXPE~UMEN~L RESULE3 FOR MULTIPLE BASE S E Q ~ C E  

ATIRACTORS 

The multiple base sequence attractor technique of analyzing DNA is explored in this 

chapter. Synthetic and naîurai sequences are andyzed, looking for a powa-law relation- 

ship between the various scaies. In order to properly apply the Rényi spectrum, certain 

adjustments are made within the power-law h e w o r k  to provide a consistent approach. 

As with the SBSA analysis, the scales for regression and window sizes are selected. Along 

with the E. coZi and M. jannashii sequences, an experiment in rnitochondrial phylogeny is 

performed, which duplicates the results obtained in a different multifkactal analysis tech- 

nique. 

5.1 Rényi's Generalized Entropy Caiculation 

5.1.1 Sjmthetic Sequence T i s  

Experiments were performed which show what the calculated MBSA entropies of syn- 

thetic sequences are. In Fig. 5.1, we can see that for non-random sequences, the size of the 

blocks do not affect the calculation of entropy. For a sequence which consists of only one 

base, the number of bits of information is zero since there is essentially no infornation 

being transmitted. A sequence which has a repeated structure has an entropy of two, since 

only two bits are requind to send the entire sequence. 



Fig. 5.1 Entropies of Synthetic Sequences (a) with all Adenine, and (b) with a 
repeating pattern of AGCT. 

Fig. 5.2 Entropy of Random Sequence of DNA with each base having qua1 
probability of occuning 

The entropy of a random DNA sequence is shown in Fig. 5.2. A flat portion exists for 

scales past six. The random sequence used was of length 2*' bases. For vels greater than 

six, the probability estimates were not accurate enough for a sequence of this length. A 

longer sequence would be needed. From the vels which were estimatd properly, a linear 

relationship exist between the entropy and the vel size. This is unexpected, since for cal- 

culations of h c t a l  dimension, we require a relationship between entropy and the loga- 

rithm of vel size, i.e. a power-law relationship. 
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5.12 NaturaI mole Sequence Tests 

Figure 5.3 shows the entropies calculated for the entire sequences of E. coli and M. jan- 

m h i i .  There clearly is a power-law relationship, but the larger vels clearly diverge due to 

inaccurate probability estimation. 

Fig. 5.3 MBSA Entropies over the entire sequences of (a) E. coli, and (b) M. 
janmhii  

An important item which needs to be determineci is the minimum window size which can 

be used to accurately estimate the probability density hct ions  for the calculations of 

generalized entropy. We expect that as the window size increases, the estimate of the prob- 

abilities used in calculating mtropy shodd converge to a particular value. it shodd be 

possible to estimate the minimum window size needed for any given choice of vel size, r. 

From Fig. 5.4, a logarithmic relationship exists between the minimum window needed 

and the vel size. The plot shows how when the window size in increased, the entropies 

eventuaUy stabilize. The relationship takes the fom of 



where cl and c2 can be estimated nom the data. A f i d e r  complication is revealed by 

examining Figs. 5.5 and 5.6. The minimum window size needed clearly depends on the 

moment order, q. For smdler values of q, c and c2 increase, while for larger values of q, 

cl and c2 decrease. Re-examining (2.6), we can see that for negative moment-orders, 

smaller probabilities are emphasized, while for positive momentaders, the larger proba- 

bilities are emphasized. This effect is related to the sifting property of infinite noms dis- 

cussed in Section 2.3.3. The overall effect is that in order to estimate the minimum 

window size, the mallest value of q to be calculated must be considered. 

log w 

Fig. 5.4 Entropy vasus Wmdow size for @. Vel sizes increase fiom 1 to 1 0. 



Fig. 5.5 Entropy versus window size for q--38. Vel sizes increase fkom 1 to 10. 

Fig. 5.6 Entropy versus window size for q=38. Vel sizes increase fiom 1 to 10. 



In Fig. 5.6, it can be seen that the estimates of entropy vary widely as the window size in 

increased, and that as the window size increases pst a critical value, the values converge. 

An idea which will be explored is that the changing estimates of entropy are very signifi- 

cant of the structure of the underlying DNA sequence, and that using the smaller vel sizes 

will give localized Somation about the sequence, depending upon the position of the 

window. It can be argued, that when the window size inmeases too much, any local detail 

is averaged out with detail nom other local sections which have been included in the 

larger window size. This hypothesis provides an explanation of why the entropy values 

converge so convincingly at higher window sizes. The averaged entropy does not differ 

dong the sequence, while the local values have significant flucîuations. It is the use of the 

local fluctuations which will give the best results in tenns of localiting the multifîactal 

characteristic, and relating it to known underlying biological information. 

5.2 Selection of Vel Sizes 

Figures 5.7 and 5.8 illustrate what appears to be a problem facing the calculation of Dq . 

The graphs show that as the vel size increases, for a constant window size, there is some 

point where the entropy is no longer estimated correctly. More information is added with 

each larger window until the b a l  value is reached for any particular vel size. 



Fig. 5.7 MBSA Entropies for increasing window sizes of E. coii and varying q. For 
q=-30, the dashed lines show increasing window sizes. For q=- 1 ,O, 1 the 
dotted lines indicate the log-log plot For q=30, the filleci lines show 
increasing window size. 

1 
-0.5 O 0.5 1 1 -5 2 log r 

Fig. 5.8 MBSA Entropies as in Figure 5.7, but with logarithmic scaling dong the 
horizontal (scale) axis. 

There seerns to exist a linear relationship between the vel size and the entropies, while the 

idea presented for fiactal dimensions uidicate that a power-law relationship is expected. 

While this fact was not predicted, it can be explained. Mead of considering the scale to 



be r, we can consider it to be N,. The relationship between these two values is given in 

(3.2). Our definition of the Rényi dimensions becornes 

From this relationship, al1 of the experimental behavior fi& proper1y. The value of Do, the 

box-counting dimension, becomes one which is consistent with the idea of morphological 

dimensions (it is always 1). As a result, a previous disadvantage (Section 3.1.2) regarding 

the range of vel sizes has been resolved. 

5 3  Selecting Sceles for Regression 

Unlike the SBSA entropies, there are no outliers at srnall scales. At the larger vel sizes, the 

probability distribution is not estimated accurately, resulting in entropies with mors. The 

maximum vel size is then chosen such that the probability at that scale is estimated prop 

erly. For a vel size of 4, the minimum window size is around 8096 bases, while for a vel 

size of 3, the minimum window size is around 1024 bases. In order to maximize the possi- 

ble locality, we will choose that Rmi, = 1 and R,, = 3 for al1 of the multihctal cal- 

culations performed using MBSA analysis for the remainder of the thesis. 

Figures 5.9 to 5.1 1 show how the R h y i  dimension changes for various scale ranges. The 

choice of vel sizes is validated by these plots which show that by using only the first three 

scales, the r d t s  are still comparable to including larger vel sizes for which the probabil- 

ities are still accurate. in particular, in Fig. 5.9, the first four estimations of D g ,  are so 



closely packed, that we rnight consider only using the first two scales to estimate the h c -  

td dimensions. 

Fig. 5.9 MBSA calculation of Dq for E. coli using R,, =1 and varying R,, fiom 2 
to 10. 
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Fig. 5.10 MBSA calcdation of D, for E. coli using R,, =2 and varyïng R,, fiom 3 

R =5,6,7 

0' 
rnax 

Fig. 5.1 1 MBSA calculation of Dq for E. coli using R,, =3 and varying R,, fiom 3 
to 10. 



5.4 Global Calculations of the Generslized Dimension 

As in the previous chapter, we can examine what happens when we analyze the hctal 

dimensions of parts of the DNA sequence as compared to the whole. Figures 5.12 and 

5.13 show how the halves and quarters of E. coli are related. It appears that when examin- 

h g  a sequence and its halves, the h c t a l  dimension of the sequence lies exaaly halfway 

between the dimensions of the halves. The same relationship is observed for dl of the 

quarters and can be examined mathematically. 

Fig. 5.12 MBSA Rhyi dimensions of different regions of E.Coli. The dotted line is 
the whole sequence, the first half is solid, and the second half is dashed. 
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Fig. 5.13 MBSA Renyi dimensions of different regions of E-Coli. The dotted line is 
the whole sequence, the fkst half is solid, the second half is dashed (as in 
Fig. 5.12), the first quarter is circles, and the second quarter is plus signs. 

The definition of probability, (3.3), can be modified such that for the first, second, and 

whole sequences, we have 

n(h2) ,  and n(W) are the counts in the first half, second half, and whole where n , 

sequence. From (5.5) it seems that every MBSA Rényi dimension c w e  should appear 

exactly averaged between its first and second halves. The moment-order, q, plays a part in 

determinhg the effect of the averaging. For moment orders close to zero, the averaging 



disappears, and the thae is no difference between the three curves. For larger (or srnaller) 

orders, the s i fbg  property (Section 2.3.3) tends to pull out the averaging feature, which is 

evident in the results. 

This averaging property shows the significant drawbacks which can be associated with 

computing only global dimensions. Pieces of the DNA where the hctality might be 

extremely varied are absorbed into the global cdcdations, and are ultimately ignored. 

5.5 Mitochoadrial Phylogeny 

The MBSA multihctal spectmm was calculated for a group of mitochondrial DNA 

sequences (fiom [GBRS95]). As outlined in Section 3.5, a cornparison of the results is 

desirable. Figure Fig. 5.14 shows the multifkactal curves of the various mtDNA 

sequences. It is particularly striking how there appear to be groupings of similar organ- 

isms. There are very clear distinctions between insects, sea urchins, and the rest of the 

organisms. This provides a link between the evolution of organisms and complexity of 

their DNA sequences. It should be noted that there appear to be several organisrns which 

are not of the same taxonomy which have closely related multihctal spectrums. 



Fig. 5.14 Shows cornparison of Da cuves with miin= 1 ,rmax=3 .insect (A), nematode 

Fig. 5.15 Dendogram classification using cluster analysis of Dq cwes  from 
mitochondrial DNA. 



Figure 5.15 shows a classification of the multifkctal spectrums fiom the rnitochondrid 

DNA sequences. The majority of classifications relate to known evolutionary pattern, but 

two glaring misclassifications occur with himians and seals. These two mammals are 

group with the fish. As well, the toad should be related to the mammals at a higher level. 

5.5.3 SpeciaZ Corasideration 

The Mandelbrot spectrum of dimensions, shown in Fig. 5.16, provides an alternative r e g  

resentation of the complexity of DNA sequences. There are several anomalies which are 

clearly visible h m  this diagram. FVst of all, there are anomalies near the edges of the 

Mandelbrot spectra. These anomalies have been encountered in previous research, and are 

based on the numerical properties of the underlying implementation. 

Effects I 

Fig. 5.16 Cornparison of D,, curves using a s a l e  range 1 to 3 bp. Al1 curves are 
shown by lines e x q t  human and seal which use triangles. 



Secondly, there is a folding behavior which appean only for the human and seal spectra- 

Figure 5.17 shows a close-up of the multifkactal spectra behavior. There appears to be a 

folding back in the c w e ,  then a continuation of the nomal behavior. Note that only two 

out of the fourteen curves exhiiit this characteristic. By changing the s a l e  range, differ- 

ait m e s  produce the same folding property. This property is not related to the numerical 

edge effects because q ranges fiom -10 tc O over the folded intemal. This curve is being 

presented with resemations, because we are unsure of the nature of the folding property. It 

is interesting to note that the behavior occurred for the two organisms which had been 

misclassified as to taxonomie class. 

01 

Fig. 5.1 7 Zoomed view of Fig. 5.16. 



If not for the folding properties which have been obsemed, we would recommend classi- 

fying using the Mandelbrot spectnmi. From Fig. 5.16, the various classes are still visible 

and are somewhat highlighted. 

5.6 Snmmary 

The multiple base sequence attractors are shown to be a very powerful analysis technique 

for DNA, which exhibits a power-law relationship. It is important to consider a slight 

change in the concept of scale which provides us with consistent behavior and accurate 

results. As well, the minimum window size, and scales for regression were outlined. 

Of particular importance is the relationship of a sequence to its constituent parts, which 

was shown to be an average of high and low moment orders. This analysis also highlights 

the fact that DNA seems to have difkent characteristics at different parts of the sequence. 

The r e d t s  using mitochondrial DNA show that while the Rényi dimension has some cor- 

rect features, the Mandelbrot dimension can also highlight the diEerences between differ- 

ent phylogenetic classes very well. Unfomuiately, due to a folding property whose source 

is unknown, the Mandelbrot spectra cannot be used for classification. 



6.1 Concirisions 

In this thesis, a h e w o r k  for the analysis of DNA sequences using mdtifractd tech- 

niques was developed. Two definitions of multifr-actal dimension, single base subsequence 

attractors (SBSA) and multiple base sequence attractors (MBSA) of DNA sequences were 

presented and explored, both of which show that natural DNA sequences exhibit multi- 

hc ta l  behavior in the form of non-intega dimensionality, and non-uniforni multihctal 

spectra. 

The SBSA approach showed that the components of DNA, when treated separately 

exhibit power-law relationships and multi fkactality. The multi fiactality was shown to be 

related to the position of the window within a DNA sequence for E. coli and M. jannashii. 

A scaie range of 64 to 256 base pairs, a dyadic scaling of hvo, and a minimum window 

size of 512 base pairs was shown to be sufficient for accurately estimating the multifiacta- 

lity of E. coli and M. jannashii. 

The MBSA approach showed that the infornation content of DNA sequences exhibits a 

power-law relationship and multifhctaI behavior. The multihctality of a larger sequence 

was shown to wnsist of an average of the constituent parts of sequence. As well, the mul- 

tifhctality was shown to be varied for different windows of E. coli and M. jannashii. A 

s a l e  range of one to three, and a minimum window size of 1024 was shown to be suffi- 

tient for estimating the multihctal s p e c m  of E. di, M. jannashii, and mitochondrial 



DNA sequences. Mitochondrial DNA sequences fiom different organisms were classified 

accordkg to taxa using the MBSA method with two misclassifications. 

6.2 Contributions 

This thesis has made the following contributions: 

A technique for the estimation of the multifiactality of the individual separate bases of 

DNA including study of the minimum window sizes and s a l e  ranges necasary for 

accutate estimations; 

A technique for the estimation of the multiFactality of composite DNA including study 

of the minimum window sizes and scde ranges necessary for accurate estimations; 

A study of how portions of a DNA sequence are related to the whole sequence using 

multihctaIity; 

A vdcat ion of the results that mitochondnal DNA can be used to clsssify organisms 

amrding to evolutionary and taxonomie groups; 

A software systern which estimates the two multihctal measures (SBSA and MBSA) 

sirnul taneousl y. 

6 3  Recommendations 

Based on the research conducted in this thesis, recommendations are as follows: 

Bath of the multihctal techniques should be applied to a larger group of DNA 

sequences to detamuie if there are DNA sequaices for which the results of this thesis 

do not apply. 

A multifkactal spec- trajectory using adjacent windows should be analyzed to deter- 

mine if local complexiîy can be used as a feahue for DNA classification. 

The Mandelbrot spectnrm of human and seal mitochondrial DNA should be re-exam- 

ined to determine the source of the folding behavior observed. 



The single-base subsequence atûactor analysis should be examjned for redundancy, 

and if possible compresseci. 

The software developed in d i s  thesis is flexible enough to be applied to other sipals 

such as text which have a discrete syrnbol structure. 

An automated system for detennining the minimum window size, and valid ranges for 

the scales in linea. regression could be developed. 
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A.l Structure Chart 

PaîtedO - genecalc - output files 

This chart shows the relationship between the modules of this program. genecalc acts a s  a 

sheU to parse the command lke,  and pass data between the separate modules. DNAFracta- 

lCalc acts as a holder for the different fiactal calculations so that the data passing can 

occur simultaneously and transparently. 

A.2 Source Code 

A.2. I genecu Ic-cc 
/ *  Geneca1c.c~ 

T h i s  program does ml t i f rac ta l  dimension calculations on DNA sequence 
data - 



#define NUMARGUMENTS Il 
#def ine PROGRAMNAME O 
#define INPUTFILEPARM (PROGRAMNAME+l) 
#define STARTBASEFILEPARM (INPbTFILEPARM+l) 
#define ENDBASEFILEPARM (STARTBASEFILEPARM+l) 
#define SCALEEXPFILEPARM (ENDBASEFILEPARM+l) 
#def ine SCAtEMAXlFILEPARM ( SCAZ;EEXPFILEPARM+lI 
#define SCALEMAX2FILEPAR.M (SC.ALEMAXlFILEPARM+l) 
#define FTYPEFILEPARM (SCALEMAXSFILEPARM+l) 
#define STARTREGRESSPARM (FTYPEFILEPARM+l) 
#def ine ENDREGRESSPARM ( STARTREGRESSPARM+ 1 ) 
#define PREFIXFILEPARM (ENDREGR.SSPARM+I) 

#define NO-DIMENSION O 
#def ine RENYII-DIMENSION 1 
#define INFORMATION~DIMENSION 2 
#define VARIANCE-DIMENSION 3 

#de£ ine EXTRANAMELENGTH 10 
#define MINTHEOQ -50 
#def ine MAXTHEOQ 50 

void displayusage0 

COUt << 
scaleMaxl 
COUt << 

"Usage: genecalc <<filename>> startbase endbase scaleExp 
scaleMax2 ftype startregress endregress <<prefix="<< endl; 
"where <<filename>> is the input flat filea << endl; 

cout << m startbase is the base number to start atm << endl; 
tout << u endbase is the ending base number. There are two special 

cases:* << endl; 
cout << endbase = O calculates endbase = dyadAscaleMax + 

startbase* << endl; 
cout cc a endbase = 1 calculates endbase = total number of 

bases: cc endl; 



tout << * scaleExp is the scale exponent to 
end1 ; 
cout <e ' scaleMaxl is the unibase number 

track of," << endl; 
cout CC ' scaleMax2 is the multibase number 

track of: << endl; 

use, Normally 2. '  <c 

of scales to keep 

of scales to keep 

cout << - ftype is the type of fractal characateritati~n.~<<endl; 
cout << ' r,s - Renyii Dimension with q spacing of 1 and 

0.2S.'c<endl; 
cout << - i - Information Dimen~ion.~c~endl; 
cout <c - v - Variance Dimensi~n,~<<endl; 
cout << * startregress - scale to start regression at."c<endl; 
cout ce - endregress - scale to end regression at."tcendl; 
cout << * Note: O indicates to use =/min ~cale.~c<endl; 
cout << a Note: 1 for both indicates to fit for al1 possible 

lines. 'ceendl; 
cout << - ccprefix>> is a filename prefix. Four outputm<cendl; 
cout << " files are written with <cprefix>>.a.asc 

wherem<cendl; 
cout << " a signifies data based on adenine. The 

otherm<<endl; 
cout << - files will have g , c ,  and t respectively. As 

well,'<cendl; 
cout << - a base of e indicates the multiple base 

calculation~.~c<endl; 
cout << ' Output file for each ba~e:~c<endl; 
cout " <prefix><base>r.asc - dimension calculated with 

regression."<<endl; 
cout " <prefix><base>f.asc - generalized entropy.D<cendl; 
cout " cprefix><base>h.asc - holder exponents.'<<endl; 
cout << " <prefix><base>m.asc - Mandelbrot dimensi~ns.~<~endl; 
cout " <prefix><base>p.asc - Legend of scales used in regression 

for r.asc.*c<endl; 
cout -cc " <prefix>d.asc - Lists the values of q. With min and 

max being the first and la~t.~ccendl; 
cout << rn cprefix>s.asc - Lists the scales and there 

logs."<<endl; 
1 

int main(unsigned int argc, char* argvI]) 
{ 
long starting~ase,scaleMax1~scaleMaxS,eridingBase,dyadicBase,ft~eSel; 
long qqMin, qqMax, numBases, offsetBase, f itStart, fitEnd, f it1nde.x; 
int baseMax, dyadicIndex, dirnindex, baseIndex; 
char aString; 
Pattern10 pattern; 
int outFd; 
FILE *fs; 
DNAFractalCalc calc; 
DimensionIterator d i m ;  



/ /  Check for the number of arguments, and print out error if they 
arentt met. 
if (argc != NUEiIARGüMENTS) { 
cout << argv[PROGRAMNAME] ccn: Incorrect Parameters:<<endi; 
displayusage(); 
exit (-1) ; 

1 

if (!pattem.set~ile~ame(argv[INPOTFILEPARM])) { / /  Open File Failed. 
cout ce argv[PROGRAMNAME] cc : Error opening input file.'<<endl; 
displayusage(); 
exit (-1) ; 

1 

if (startingBase < 0) C 
cour ce argv[PROGRAMNAME] : Error selecting starting base pair. 

Value = " cc ~~~~[STARTBASEFILEPARM] endl; 
displayusage(); 
exit (-1) ; 

1 

if (endingBase < 0) { 
 out  PROGRAMN GRAM NA^^] <cm:  Error selecting ending base pair. 

Value = cc argv(ENDBASEFILEPARM1 endl; 
displayUsage0; 
exit(-1); 

if (dyadicBase < 0) { 
=out <C  PROGRAMN GRAM NA ME] <cm:  Error selecting dyad. Value = " <c 

argv[SCALEEXPFILEPARM] << endl; 
displayusage ( 1 ; 
exit (-1) ; 

1 

if (scaleMaxl < O )  C 
tout << argv[p~~-] ccn: Error selecting scaleMaxl. Value = " 

argv [SCALEMAXlFILEPARMI endi ; 
displayUsage0; 
exit (-1) ; 

1 

if (scaleMax2 < 01 { 
tout ~ ~ ~ ~ [ P R O G R R M N A M E ]  <cm: Error selecting scaleMax2. Value = " 

<< argv [SCALEMAX2FILEPARM] end1 ; 
displayusage(); 



if (eneingBase == 0) { 

endingBas e= 1 ; 
for (int s=0 ; scscaleMax1; s++) endingBase *= dyadicBase; 
endingBase+=startingBase; 

) else if (endingBase == 1) { 
endingBase = pattern.fileSize0; 

1 

ftypesel = NO-DIMENSION; 
switch (argv[FTYPEFILEPARMI (01 { 

case 'r': 
case 'R': 

ftypeSel = RENYIIDIMENSION; 
qqMin=-40 ; qqMax=40 ; 
dims.copy(~imensionIterator(qqMin,qqMax,l) 1 ;  
break; 

case 's': 
case ' S ' :  

ftypeSel = RENYIIDIMENSION; 
qqMin=-4 0 ; qqMax=4 0 ; 
d~.copy(~imensionIterator((double)qqMin,~do~le)qqM~,O.25~ 1; 
break ; 

case 'i': 
case '1': 

ftypeSel = INFOFWATION,DIMENSION; 
qqMin=l;qqMax=l; 
d i m s . c o p y ( ~ i m e n s i o n I t e r a t o r ( q q ~ , l ) ) ;  
break ; 

case 'v ' :  
case 'V' : 
ftypesel = VARIANCE-DIMENSION; 
qqMin=2;qqMax=2; 
dimç.copy(DirnensionIterat~r~qqMin,qqMax,l~ 1 ;  
break; 

1 

if (ftypesel == NO-DIMENSION) { 
cout <<  PROGRAMN GRAM NA ME] <cm: Error selecting calculating 

dimension. Value = " c<argv[FTYPEFILEPARM] endl; 
displayUsage ( ; 
exit(-1) ; 

1 

fitStart = fitmd = -1; 
sscanf (orgv[STARTREGRESSPARM], "%dm, &fitStart); 
sscanf (argv [ENDREGRESSPARM] , "%dm, &f itEnd) ; 

if (fitstart < 0) { 
cout << argv[PROGRAMNAME] cc": Error selecting startRegress. Value = 

<c argv[STARTREGRESSPARM] endl; 
displayusage ( ) ; 



exit (-1) ; 
1 

if (fitnid < 0) { 

cout << argv[PRûGFUMNABE] ccœ: Error selecting endRegress. Value = " 
argv[ENDREGRESSPARM] cc endl; 
displayusage(); 
exit (-1) ; 

1 

/ /  Find the largest scale h a x  
calc.setTotalBasesAndDims(endingBase - startingBase, dims, dyadicBase, 

scaleMax1, scaleMax2, fitstart, f itEnd, 12) ; 

/ /  Allocate maories 

numBases = endingBase - startingBase; 
/ /  ûver al1 of the scales calculate the probabilities. 
for (offsetBase = 0; offsetBase < numBases; offsetBase++)( 
aString = pattern.getBase(startingBase+offsetBase); 
calc.addBase(aString1; 
if (offsetBase%1000==0) cout ce "Progress Base = " offsetBasecc 

end1 ; 
1 

/ /  Output the values of each scale tc a file. 

for (baseIndex = O; base1nde.x < calc.numBases(); baseIndex++) { 

int prefixLen = strlen(argv[PREFIXFILEPARW); 
char* outName = new char [prefixLen + EXTRANAMELENGTHI ; 
strcpy (outName, argv [PREFIXFILEPARM)) ; 
strcat(outName, calc.basesString(base~ndex) ) ;  

strcat (outName, "f , ascu ) ; 
outFd = open(outNme,0dWRONLY+OOCREAT+OREATRUNC1511~; 
if (outFd < 0) { 

cout << argv[PROGRAMNAME] cc": Error creating output file " 
<<outName c< endl; 

exit(-1) ; 

cout << "Starting Base " -cc baseIndex+l<< endl; 

fs = fdopen(outFd, "W.); 



/ /  This loop s e n e  al1 of the data needed in order to reconstnxct the 
log-log plots. 

for (dyadicIndex = O; dyadicIndex < calc.dyadicMax(baseIndex); 
dyadicIndex++) { 

fprintf(fs,'%#1E\t',log(calc.min~imFinalTottbaseIndex,dyadicIndex)) 1 ;  
fox (dims,start() ;dims.condO ;dims.nextO { 

fprintf(fs,'%#lE\t',calc.finalTot(baseInd, dyadicIndex, 
dims.count0 1 ) ;  

1 

fprintf(fs,'%#1E~,log(calc.max~iniFinalTot(baseInd~,dyadicInd~~ 1 ) ;  
fprintf (fs18\n') ; 

delete [IoutName; 
fclose(fs); 
close (outFd) ; 

/ /  Now we output the values to the file which have been analyzed 
izsing 

/ /  linear regression, 

prefixlen = strlen(argv[PREFIXFILEPARMl); 
outName = new char[prefhLen + ExTRAWUELENGTHI; 
strcpy(outName, ~~~~[PREFIXFILEPARM] 1 ;  
strcat(outName, calc.basesString(base~ndex) ) ;  

strcat(outName, "r,ascu); 
outFd = open(ou~ame,O-~ONLY+O-CREAT+O-TRUNC,511); 
if (outFd < 0) ( 

cout << argv[PROGRAMNAME] <cm: Error creating output file " 
<<outName << endl; 

exit(-11; 
1 

f s = fdopen (outFd, "wu) ; 
for (fitIndex = O; fitIndex < calc.fitSize(baseIndex); fitIndex++) { 

fprintf(fs,~$#1~\t~,cal~.min~imFina~Fit(baseInd~,fitInd~) 1 ;  
for (dimç.start();dims.cond();dimç.nextO) { 

fprintf(f~,~%#1E\t',cal~.finalFit(baseIn~ fitIndex, dimç.count0) ) ;  

1 
fprintf(f~,~%#1E\n~,cal~.maxDimFinalFit(baseInd~,fitInd~) 1 ;  

1 
delete [ ] outName; 
fclose(fs); 
close (outFd) ; 

/ /  Now we output the values to the file which has the Holder 
exponent . 

prefixLen = strlen(argv[PREFIXFILEPARM]); 
outName = new char [pref ixlen + EXTRANAMELENGTHI ; 
stxcpy(outName, argvCPREFIXFILEPARM1); 
strcat(outName, calc.basesString(base1ndex)); 



strcat (outName, "h. asca ) ; 
outFd = ~ ~ ~ ~ ( ~ ~ ~ N ~ ~ ~ , o , w R o N L Y + O ~ C R E A T + O ~ T R U N C , S ~ ~ ~  ; 

if (outFd < 0) { 
tout <<  PROGRAMN GRAM NA ME] <<": Error creating output file " 

fs = fdopen(outFd, "wa); 
for (fitlndex = O; fitIndex < calc.fitSize(baseIndex); fitIndex++) { 
for (dïms.start() ;dimç.condO ;dimç.nextO) { 

fprintf(f~.~%#l~\t',calc.manAlpha(baseIndex, fitIndex. dims.count0 1 ) ;  
1 
fprintf(fs,'\nm); 

1 
delete [ ]  outName; 
fclose(fs) ; 
close (outFd) ; 

// Now we output the values to the file which has the Mandelbrot 
spectrum . 

prefixlen = strlen(argv[PREFIXFILEPARM]); 
outName = new char IprefixLen + EXTRANAMELENGTHI ; 
strcpy(outName, argv[PREFIXFILEPARM]); 
strcat(outNme, calc.basesString(base1ndex)); 
strcat(ouWame, "rn.ascm); 
outFd = open(outName,O-WRONLY+OOCREAT+OREATRUNC,S1~); 
if (outFd < 0) { 
tout argv[PROGRAMNAME] -=cm: Error creating output file " 

fs = fdopen(outFd, "wn); 
for (fitlndex = O; fitIndex < calc.fitSize(baselndex); fitIndex++) ( 

f o r  (dimç.start();dims.condO;dims.nextO) { 

fprintf(fs~'$#lE\t'~calc.manSpectrum(baseIndex, fitIndex. 
dims.count0) 1; 

1 
fprintf(fs,'\na); 

1 
delete [ ] outName; 
fclose(fs); 
close (outFd) ; 

cout << "Output fit size file.'c<endl; 
/ /  Output a file with the list of start and end scales for fitting. 
prefixLen = strlen(argv[PREFIXFILEPARM] ) ;  

outName = new char [pref ixLen + EX-ENGTH] ; 
strcpy ( outName, argv [PREFIXFILEPARM] ) ; 
strcat(outName, calc.basesString(baseIndex)); 
strcat ( outName, "p. asca ) ; 
outFd = open(outName, O_WRONLY+O-CREAT+O-TRUNC,SIl) ; 



if (outFd < 0) { 

cout cc argv[PR-] ccn: Error creating output f i ï e  " 
<<outName endl; 

exit (-1) ; 

fs = fdopen (outFd, "w" ) ; 
for (fitlndex = O; fitIndex c calc.fitSize(baseIndex); fitlndex++) ( 

1 
delete [ 1 outName; 
fclose(fs) ; 
close (outFd) ; 

1 

cout << "Output scales file. " << endl; 
/ /  Output a file with list of dyadic scales used 
int prefixLen = strlen(argv[PREFIXFILEPARM]); 
char* outName = new char[prefixLen + EXTRANAMELENGTH] ; 
strcpy (outName, argv [PREFIXFILEPARM] 1 ; 
strcat(outName, "s.asca); 
outFd = ~ ~ ~ ~ ( o ~ ~ N ~ ~ ~ , O , W R O N L Y + O ~ C R E A T + O ~ T R U N C , ~ ~ ~ ~ ;  
if (outFd c 0) { 
tout cc argv[PROGRAMNAME] c<": Error creating output fiïe ' <<outName 

cc endl; 
exit(-1) ; 

1 

fs = fdopen (outFd, "wu)  ; 
for (dyadicIndex = 0; dyadicIndex < calc.dyadicMax(0); dyadicIndex++) { 

fprintf(fs,u$ld\t$ld\n*,dyadic~ndex,calc.dyadicStore(0, 
dyadicIndex) ; 

1 
delete []outName; 
fclose(fs); 
close (outfd) ; 

cout cc "Output dimensions file: << endl; 
/ /  Output a file with a list of dimensions used. 
prefixLen = strlen(argv[PREFIXFILEPARM] 1 ;  
outName = new char [prefixlen + EXTRANAMELENGTH] ; 
strcpy(outName, argv[PEWFIXFILEPARMI 1 ;  
strcat (outName, "d. ascm ) ; 
outFd = open(outName,0amWRONLY+OOCREAT+OamTRUNC,511~; 
if (outFd < 0) { 

tout c c  argvlPR-1 
cc endl; 

exit(-1) ; 
1 

c<-: Error creating output file " <<outName 

fs = fdopen(outFd, *wu) ; 
fprintf (fs, a%d\nm,qqMin-l) 



for (dixns.start() ;dims.cond() ;dimç.nextO 1 { 
fprintf(fs,*%f\nm,dims.c~rerit~)); 

fprintf(fs,"%d\n',qqrn+l); 
delete [ 1 outName; 
fclose(fs); 
close (outFd) ; 

pattern. closeFile ( ; 
cout << "Finished.' <<=dl; 

return O; 
1 

#define PROBTYPE long 

/ /  Notes: 
/ /  qMin and qMax will be the start and end dimensions to calculate. They 
/ /  may be the same dimension. 

class Dimensionfterator { 

protected: 
int usage; / /  Should really be a boolean value; 
long -iqMin, -iqMax, -istep, ,iCurrent ; 

double -dqMin, dqMax, -dstep, _dCurrent; 
double* -arrayVals; 
long ,totalNum, -count; 
enum {USEINTS , USEFLOATS , USEARRAY 1 ; 

public : 
DimensionIteratorO; 
Dimension~texator(long qMin, long qMax, long step); 
DimensionIterator(double qMin, double qMax, double step); 
DimençionIterator(doub1e qMin, double qMax, double stepshort, double 

inqMin, double inqMax, double stepLong); 
Dirnensionfterator(DimensionIterator&); 
virtual -DimensionIterator() {if (_arrayVals) delete [I-arrayvals;} 

void copy(~imensionIterator&); 
void start ( ) ; 
int cond0 ; 
void next ( ) ; 

double current ( ) ( return dCiirrent ; 1 
long count() {return -count;l 



long totalNum0 {return -totalNum;1 
1; 

#define BUFFERTYPE long 

class ~oundBuffer { 

private: 
long -size, -start, ,count; 
BUFFERTYPE *-items; 

public : 
~oundBuf fer ( ; 
-RoundBuffer ( ) ; 

void setSize(int asize); / /  After this, buffer contents are 
scrambled- 

void append(BUFFERTYPE anItem) ; 
BUFFERTYPE item ( int index) ; 
BWFERTYPE revItem(int index) {return item(gize-index-1);) 
long size() {return -size; 1 
void printit ( 1  ; 
int filledo (return -count>=-size;) 

1; 

class BasicFractalCalc { 

private : 
void relMemory ( ) ; 

protected: 
double -tolermce; 
static double power(doub1e base, long mant); 
static long factorial(1ong expr); 
double evalProbRunning(doub1e prob, double dimNum); 
double evalProbFinal(doub1e sumProb. double dimhlum, long nTot); 
double logbS(doub1e val) {return log(val)/,log2;) 
double flog(doub1e val) {returri logb2(val);} / /  Just used to switch 

between logb2 and log 

double **-finalTotal, *-minFinal, *-maxFinal; 
double **-finalFit, *-dn~inalFit, *-maxFinalFit; 
long *-fit~ableMin, *-fitTableMax; 
double *,scaleStore; 
double **-modelFit; 
double **,reconFit; 
double **-manspectrum, * * , d p h a ;  

DimensionIterator -9; 
long gcaleMax. -fitStart. -f ithd. f i m .  -fitParmNum; 
double -1og2; 

void setSizes(1ong scaleMax, ~imensionIterator& q, long fitstart, 
long fitEnd, long fitParmNum); 



void doRegressFit0; 

public: 
~asicFractalCalc ( ) ; 
virtual -BasicFractalCalc ( ; 

virtual void doFinalCalc ( ) { )  ; 

/ / Access Functions . 
long scaleMax() Creturn -scaleMax;1 
double finalTot ( int scalefndex, int dimIndex) 

{return -finalTotal [scaleIndex] [dimIndex 1 ; 1 
double minDimFinalTot(int scaleIndex) 

{return -minFinal [scaleIndexl ; 1 
double maxDimFinalTot(int scaleIndex) 

{return -mdxFinal [scaleIndexl ; 1 

double finalFit(int fitIndex, int dimIndex) 
{ return -f inalFi t [ fi tIndex] Edixnindexl ; 1 

double minDimFinalFit(int fitIndex) 
{ return -finFinalFit[fitIndex];} 

double maxDimFinalFit(int fitIndex) 
{ xeturn -maxFinalFit[fitIndexl;) 

long fitSize0 
{ return ,fitNum;) 

double modelFit(int fitIndex, int parmIndex) 
{ return -modelFit[fitIndex][parmlndexl;1 

double reconFit(int fitIndex, int diflndex) 
{ return ,reconFit[fitIndex] [diflndex];) 

long f itParmNum() 
{ return -fitParmNum;) 

long fitTableMin(int fitIndex) 
{ return -fitTableMin[fitIndex];) 

long fitTableMax(int fitfndex) 
{ return -fitTableMaxE£itIndex];} 

double manSpectrum(int fitIndex, int dimIndex) 
{ return -manSpectrum[ f itIndex] (dimIndex1; 1 

double manÀlpha ( int fi tIndex, int dimIndex) 
{ return -manAlpha [ fi tIndex] [dhIndexl; 1 

1; 

class MultiFractalCalc : public BasicFractalCalc { 

private: 
1 ong -dyadicBase ; 
PROBTYPE * ~ r o b ,  *-minProb, *-maxPxob, *-totalprobs , 

* - runTotalProbs; / /  These could be doubles. 
double **-runningTota1; 

protected: 
void releaseMemory ( ) ; 



public : 
~ulti~ractalCalc ( ) ; 

virtual -~uïtiFractaïCaïc ( ) ; 

void setTolerance(double tol) (,tolerance = tol;} 
void setDya&icMaxAndDUnç ( long dyadicBase, long dyadicMax , 

Dimension1 terator& q, 
long fitstart, long fitEnd, long fitParmNm); 

void addProbabilityûne0; 
void updateRunningTotals(1ong uptoindex); 
virtual void doFinalCalc0; 

class EntropyStringCalc : public BasicFractalCalc { 

private: 
long DOS, -windowSize, -alphabetSize; 
char* alphabet; 
long *-counted, **jrobs, *-indexsizes; 
DimensionIterator q ;  
RoundBuffer -buffer; 

protected: 
void releaseMemory ( ; 

public: 
EritropyStringCalcO; 
virtual -EntropyStringCalcO; 

void setAlphabet(char 'alphabet, long windowSize. long maxVelSize. 
DimensionIterator q, 

long fitstart, long fitEnd, long fitParmNum); 
void nextLetter(char letter); 
virtual void doFinalCalc0; 

1; 

ciass DNAFractalCalc { 

private : 
enum {-NUMBASES=S 1 ; 
enum {-NUMMULTIFRACS=QI; 
enum {-ENTROPYFRAC=4 1 ; 
char bases [,NUMBASES 1 ; 
char* basesstring[--ASES]; 

long numBases, -dyadicMax, -dyadicBase; 
long -totalBases, -current.NNumBases; 
long *-dyadicstore; / /  Previously n. Holds the different scales. 
BasicFractalCalc* -mfCalcs[~NUMBASES]; / /  Array of calculations. 

One for each base, 



protected: 

public : 
DNAFractalCalc ( 1 ; 
virtual -~NAFractalCalc(); 

void setTotalBasesAndDims(long nBases. DimensionIteratorh q. long 
dyadicBase, long scaleMaxU, long scaleMaxM, 

long fitstart, long fitmd. long fitParmNum); 
void addBase(char instring); 
void doFinalCalc(); 

/ /  Access Functions. 
long nimiBases ( ) { return -numBases ; 1 
long dyadicStore(int baseIndex, int index) { 

if (baseIndu < -ENTROPYFRAC) return 
(-dyadicstore)?-dyadic~tore[indexl:-1; 

else returri index+l; 
1 

char* basesString(int baseIndex) {return 4basesString[baseIndex] ; }  

char bases(int baseInd-1 {return -bases[baseIndexJ;l 

long dyadicMax(int baseIndex) 
{return -mf~alcs[baseIndex]->scaleMax();l 

/ /  Access to -mfCalc values; 
double finalTot(int baseIndex, int dyadicIndw. int diniIndex) 

{return -mfCalcs[baseIndexl->finalTot(dyadicIndex. dimindex 
double minDimFinalTot(int baseIndex, int dyadicIndex) 

{return ~m£Calcs[base~nd~]->minDimFinalTot(dyadicIndex);} 
double maxDimFinalTot(int baserndex. int dyadicIndex) 

{return ~mfCalcs[base~ndex]->maxDimFinalTot(dyadicIndex);} 

double finallit(int baserndex, int fitIndex, int dim~ndex) 

( return -mf~alcs[baseIndew]->finalFit(fitIndex,dimndex 
double minDimFinalFit(int baseindex. int fitIndex) 

{ r e t u r n  -ut£~alcs [base~ndex] -zmin.DimFinalFit ( f itIndex) ; ) 
double maxDimFinalFit(int baseIndex. int fitIndex) 

{ return _mf~alcs[base~ndex]-~maxDimFinalFit(fitIndu);} 
long fitSize(int baseIndex) 

{ return -mfCalcs [baseIndex] ->f itSize ( ) ; 1 

double modelFit(int 
{ return mfCalcs 

double reconfit ( int 
C r e t u r n  mfCalcs 

int fitIndex, int parmIndex) 
->model~it(£itIndex.parmIndex 
int fitInda~, int diandex) 
->recon~it(fitIndex.dirnIndex) 

loig fi tp&um ( int baseIndex) 
{ return -mf~alcs [baseindex] ->f itParmNw( ; 1 

long fitTableHin(int baselndex, int fitindex) 
{ return gif~alcs[baseIndexl->fitTableMin(fitIndex);) 

long fitTableMax(int baseIndex, int fitIndex) 



{ return sifcalcs [base~ndex] ->f it~ableMax ( fit~ndew) ; 1 

double manSpectnun(int baseIndex. int fitIndex, int dirnlndex) 
{ return -mfCalcs[base~ndex]-~manSpectrum(fit~ndex.dimIndex);l 

double manAlpha(int baseIndex, int fitfndex, int dimIndex) 
{ return m f  Calcs [baseIndex] ->manAlpha ( fitIndex. diflndex) ; 1 

DimensionIterator::DimençionIterator~) 
{ 
-usage = USEINTS; 
-iqMin = 0; 
-iqMax = 0 ; 
-istep = 1; 
- totalNum = 1; 
-arrayVals = NULL; 
start0 ; 

1 

DimensionIterator::Dimension~texator(DimsionIterator& src) 

-arrayVals = NULL; 
copy(src) ; 

1 

void DirnensionIterator::copy(DimensionIterato src) 
{ 
-usage = src.-usage; 
switch (usage) { 
case USEINTS: 
,iqMin = src .-iqMin; 
,iqMax = src.-iqMax; 
-istep = src.-istep; 



-iCurrent = src.-iCurrent; 
break; 

case USEF'LOATS: 
-dqMin = src.dqMin; 
-dqMax = src.dqMax; 
-&tep = sxc.dstep; 
-dCurrent = src.-dcurrent; 
break ; 

case USEARRAY: 
if (-arrayvals) delete Il-arrayvals; 
- arrayvals = new double[src.-totalNum]; 
for (int i=O; icsrc.-totalNu; i++) 
-arrayVals [ i 1 =src . -arrayVals [i 1 ; 

break ; 
1 
-totalNum = src.-totalNum; 
-count = src.-count; 

1 

DimensionIterator::~imensionIterator(long qMin, long qMax, long step) 
{ 
-usage = USEINTS; 
- i q H n  = qMin; 
-iqMax = qMax; 
-istep = step; 

DimensionIterator: :DimensionIterator(do~ble qMin, double qMax, double 
step) 
t 
-usage = USEFLOATS; 
-dqMin = qMin; 
-dqMax = qMax; 
-dstep = step; 

- totalNum = (long) (floor((-dqMax - -dqMin) / -dstep)) + 1; 
start ( 1  ; 

DimensionIterator: :DimensionIterator(do&e qMin, double qMax, double 
steplong, double inqMin, double inqMax, double stepshort) 
C 
long i; 

-usage = USEARRAY; 
-dqMin = qMin; 
-dqMax = qMax; 

long firstPart = (long) (floor((dqMax - inqMax) / stepLong) 1 ;  
long secondpart = (long) (floor((inqMax - inqMin) / stepshort)) + 1; 
long thirdPaxt = (long) (floor((inqMin - ,dqMin) / steplong)) + 1; 



-totalNum = firstPart + secondpart + thirdPart; 
-arrayVals = new double[-totalNuml ; 

for (i=O; i < thirdpart; i++) 
-arrayVals [ i] = -dqMin + ( (double) i 1 *stepLong ; 

for (i=O; i < secondpart; i++) 
-arrayVals[i+thirdPart] = inqMin + ((double)i)*stepShort; 

for (i=O; i < f irstPart; i++) 
-arrayVals[i+thirdPart+secondPart] = inqMax + 

((double)i+l)*stepLong; 
1 

void DimensionIterator::start() 
i 
switch(usage) { 
case USEINTS: 
-iCurrent = -iqMin; 
-dCurrent = -iCurrent; 
break; 

case USEFLOATS : 
-dCurrent = -dqMin; 
break ; 

case USEARRAY: 
-dCurrent = _arrayVals [ O 1 ; 
break; / /  The array uses the count variable 

1 
-count = 0; 

1 

int DimensionIterator::cond~) 
C 
int returnval; 
switch (usage) { 
case USEINTS: 
returnval = -iCurrent <= _iqMax; 
break ; 

case USEFLOATS : 
returnval = -dCurrent <= -dqMax; 
break; 

case USEARRAY: 
returnval = -count c -totalNum; 
break ; 

1 
return returnval; 

1 

void DimensionIterator: :next ( ) 
{ 
switch(usage) { 

case USEINTS: 
-iCurrent += ,istep; 
,dCurrent = -iCurrent; 
break ; 



case USEFLOATS: 
-dCurrent += dstep; 
break; 

case USEARRAY: 
-dCurrent = -arrayVals[count+l]; 
break; 

> 
-count++ ; 

1 

i 
- size = 0; 
- items = NCTI,IL; 
_Sta.rt = 0; 
-count = 0; 

1 

RoundBuf fer : : -RoundBuf f er ( 

void RoundBuffer::setSize(int aSize) 

-size = aSize; 
_start = 0; 
-count = 0; 
delete []-items; 
- items = new BUFFERTYPE[,S~Z~]; 

void RoundBuffer::apperid(BUFFERTYPE anItem) 
{ 
-items [,start] = anItem; 
- start++ ; 
if (-startw=-size) -start=O; 
_COUnt++ ; 

1 

BUFFERTYPE RoundBuffer::item(int index) 
{ 

i n t  tmp=index+,start; 
return ,items[((tmpw=-size)?(tmp--size):tmp)l; 

1 



void RoundBuf fer: :printit ( 
{ 
COUt "S:"<c,~tartc<~ 1:'; 
for (int i=O;i<-size;i++) cout << -items[i] << " "; 

BasicFractalCalc::BasicFractalCalcO 
{ 
-tolerance = PRESET-TOLERANCE; 
-minFinal = NULL; 
maxFinal = NULL; - 

-finalTotal = NULL; 

- f inalFit = NULL; 
-minFinalFi t = NULL; 
maxFinalFit = NUU; - 

-fi tTableMin = NULL; 
- fitTableMax = NULL; 
-scaleStore = NLJLL; 
modelFit = NUfiL; - 
- reconFit = N[TLL; 
-manspectrum = NULL; 

manAlpha = NULL; - 
-log2 = log (2.0 ) ; 

1 

void BasicFractalCalc::reIMemoryO 
C 
if (,finalTotal ) { 

for (int scaleIndex=O; scaleindex < -scaleMax; scaleIndex++) { 
delete []-finalTotal[scaleIndexl; 

1 
1 

delete f 1 -minFinal; 
delete [ 1 ,maxFinal; 
f ree (-f inalTotal ) ; 



for (int fitIndex=O; fitIndex < -fitNm; fitIndex++) { 
delete [] LfinalFit [f itfndexl 1 ; 
delete [ I  (-reconFit[fitIndexl); 
delete [I (-rnanSpectrum[f itIndex1) ; 
delete [] (-manAlpha [fitIndexl 1 ; 

1 
1 
if (-modelFit C 
for (int fitItem=O; fitItem < -fitParmNum; fitItem++) C 
delete [ IgodelFit [f itItem1 ; 

1 
1 
f ree (-finalFit 1 ; 
f ree (-modelFi t 1 ; 
f ree (-reconFit 1 ; 
f ree (_manSpectrum) ; 
f ree (-manAlphal ; 

-minFinal = NULL; 
-maxFinal = NULL; 
- finalTotal = NULL; 

-finalFit = NULL; 
minFinalFit = W L L ;  - 
maxFinalFit = NULL; - 
- fi tTableMin = NüLL ; 
-f itTableMax = NULL; 
-scaleStore = NULL; 
-manSpectrum = N[TLL; 

-manAlpha = NULL; 

_modelFit = NULL; 
- reconFit = NULL; 

1 
void BasicFractalCalc::setSizes(long scaleMax, ~imensionIterator& q, 
long fitstart, long fitEnd, long fitParmNum1 
{ 
relMemory ( ) ; 
- scaleMax = scaleMax; 
,q.copy(q) ; 



,minFinal = new double [-scaleMax1 ; 
,maxFinal = new double[-scal-1; 
-minFinalFi t = new double [-f itNum] ; 
-maxFinalFit = new double[-fitNum1; 
-fitTableMin = new long[-fitNum]; 
-fi tTableMax = new long [-fi tNum J ; 
-scaleStore = new double [-scaleMax1; 

for (int fitindex = O; fitfndex < -fitNum; fitfndex++) { 
- finalFit [ f itIndex] = new double [-q. totalNurn( ) 1 ; 
-reconFit[fitIndex] = new 6ouble[-q.totalNum()]; 
manSpectrum[fitIndex] = new do~le[,q.totalNumO]; - 

-manAlpha [ fi tIndex] = new double [_q . totalNum ( 1 ; 
1 

-modelFit = (double**)malloc(-fitParmNm sizeof(doublef)); 
for (int p m n d e x  = O ; parmIndex < -f itParmNum; parmïndex++ I 
-rnodelFit [parmIndex] = new double Lq.  totalNum( 1 ; 

1 

int count = 0; 
if (-fitstart == -1) { 

for (int upToIndex = scaleMax; upToIndex > O; upToIndex--) { 
for (int minFitIndex=upToInda-1; minFitIndex>=O;rninFitIndex--) { 

-fitTableMin[count] = minFitIndex; 
-fitTableMax[count] = upToIndex; 
count++ ; 

1 
1 

1 else { 

-fitTableMin(O] = ,fitStart; 
- fitTableMax [O] = -f itEnd; 

1 

for (int sca1eInde.x = O; scaleIndex < -scaleMax; scaleIndex++) { 

-scale~tore[scaleIndex) = scaleIndex+l; 
-final~otal[scaleIndexl = new double[-q.totalNum()]; 
for (q.start0; -q.condO; -q-nextO) C 
-f inal~otal [scaleIndex] [q. count ( ) 3 = 0.0 ; 



/ / do~egressFi t 
/ /  This function performs the necessary regression for fitting, 
/ /  and modelling, and reconstruction. It requires that the sub 
/ /  class initialize -scaleStore properly. 
//---------------------------------------------------- 

void BasicFractalCalc::doRegressFitO 
C: 
long scaleIndex, fitIndex; 
double *dimçUsed = new double [ q .  totalNum ( 1 1 ; 
double pl, p2, p3 ; 

for (fitIndex = O; fitIndex < ,fitNum; fitIndex++) ( 
/ /  Need to create temporary for scale array. 
int fitStart = -fitTableMin[fitfndex], fitLength = 

-f itTableMax[f itIndex] - f itStart; 

double *dyadicStore = -scaleStore+fitStart-1 , *probStore = new 
double [f itLength] ; 

double * x  = dyadicstore - 1, * y  = probstore - 1; 
double answer, throwl, throw2, throw3, throw4, throw5; 

for (-q.start0; q.cond0; -q.nextO 1 { 

for (scaleIndex = fitstart; scaleIndex < fitStart+fitLength; 
scaleIndex++ ) 
probStore[scaleIndex-fitstart] = ~finalTotal[~caleIndexI(~q.count~)l; 

fit(x, y, fitlength, NULL, O, &throwl, &answer, &throw2, &throw3, 
&throwQ, &throwS ) ; 

- finalFit[fitIndex] [-q.count01 = answer; 

/ /  Do fitting for min 
for (scaleIndex = fitstart; scaleIndex < fitStart+fitLength; 

scaleIndex++) 
probStore[scaleIndex-fitSt~ = -minFinal[scaleIndex]; 

fit(x,y, fitlength, MILL, O, &throwl, &answer, &throw2, &throw3, 
&throw4, &throw5); 

-minFinolFit [ fit1 ndex] = answer; 



for (scalexndex = fitstart; scaleIndex < fitStart+fitLength; 
scaleIndex++ ) 

probStore[scaleIndex-fitStartl = -maxFinal[scaleIndexI; 
fit(x,y, fitlength, NUU, O, &throwl, &answer, &throw2, &throw3, 

&throw4, LthrowS); 
maxFinalFit[fitIndex] = answer; - 

/ /  Here we calculate the appropriate value of the Mandelbrot spectra. 
for (-q.start(); -q.cond(); -q.next()) { 

if (-q,count() == 0 )  { 
pl = (dimsUsed[-q.count0 1-l)*-finalFit[fitIndex][-q.count0 1; 
p2 = (dimsUsed[-q.countO+l]-l)*-finalfit[fitIndex] [-q.countO+ll; 
- d p h a [ f i t I n d e x ] [ - q . c o u n t ( ) ]  = (pl-p2)/(dimsUsed[-q.count01- 
dimsWsed[,q.count ( ) +Il) ; 

)else if (q.count0 == -q.totalNum() -1) { 

pl = (dimsUsed[-q. count ( 1-1) *-finalFit [f itIndex] [-q.count ( 1 ; 
p2 = (dimsUsed[~q.count()-1]-1)*~finalFit[£itIndex][~q.count()-1]; 
manAlpha[fitIndex] [-q.countO1 = (pl-p2)/(dimsUsed[-q.countOl- 

4 

dimsUsed[,q.courit ( 1  -11 ) ; 
) else { 

pl = (dimsUsed[-q. count ( ) -11 -1) *-finalFit [f itlndex] [-q-count ( ) -11 ; 
p2 = (dimsUsed[-q.count() 1-1)'-finalFit[fitIndex][-q.count0 1; 
p3 = (dimsUsed[-q-count ( j +1] -1) *-final~it [fitIndex] [-q.count ( 1  +ll ; 
-manAlpha[fit~ndex] [-q-count ( 1 1 = (p3-pl) l (dimsUsed[-q.count ( +Il - 
dimsUsed[,q.count ( 1  -11 ) ; 

1 
manSpectrum[f itIndex] [,q. count ( 1 = ,q. current ( ) - 

manAlpha[fitIndexl [,q.countO 1 - - 
(-q.current() -1) *-finalFit [fîtInda] [-q-count 0 1 ; 

delete [ 1 dimsUsed; 

/ /  power 
/ /  This function performs an double base to an integer power 
calculation. 
//--------------------------"-"-------------------------- 

double BasicFractalCalc::power(double base, long mant) 
{ 
double returnval = 1.0; 
int i; 

if (mant e 0) { 

for (i = O; i > m t ;  i--1 
returnval = returnVal / base; 



else if (mant w 0 )  { 
for (i = O; i < mant; i++) 
returnval = returnval base; 

else 
returnVal = 1.0; 

return returnval; 

long BasicFractalCalc : : factorial (long expr ) ( 

long i; 
long returnVal=l; 

for (i=2;i<=expr;i++) { 
returnVal*=i; 

1 
return returnval; 

1 

//---------------------------------------------------- 

/ /  evalProbRuming 
/ /  This function takes a probability and dimension, and returns the 
/ /  correct power function. It's main importance is filtering the 
/ /  information dimension, and not completing the computation if the 
/ /  probability is extremely small. 
//---------------------------------------------------- 

double BasicFractalCalc::evalProbRunning(double prob, double dimNum) 
{ 
double returnval ; 
int i; 

if (prob < ,tolerance) ( 

returnval = 0.0; 
) else if (fabs(dimNum-l.O)<,tolerance) ( 
returnval = prob * f log (prob) ; 

) else { 
returnval = pow (prob, dimNum) ; 

1 

return returnval ; 

//---------------------------------------------------- 

/ /  evalProbFina1 
/ /  This function takes the total probability sum, dimension and total 
/ /  number of probabilities used, and calculates the top logarithm. It 
/ /  is mainly used to handle the special case of Information Dimension. 



double BasicFractalCalc::evalProbFinal(double sumProb, double dimNum, 
long nTot) 
{ 
double returnVa1; 
double m o t  = (doub1e)nTot; 

if (fabs(dunNum-l.O)c,tolerance) { / /  Information Dimension 
returnval = sumProb / m o t  - f log (&?Tot) ; 

} else I 
returnVal = flog(sumProb/pow(dNTot,dimNum))/(dimNum-1.0); 

1 

return returnval; 

~ultiFractalCalc::MultiFractalCak~) 
I 
~ r o b  = NULL; 
-minProb = MJLL; 
maxProb = NULL; - 
- totalprobs = NULL; 
- runTotalProbs = NULL; 
-runningTotal = NULL; 

1 

if ( ~ r o b )  delete [j-prob; 
if (,minProb) delete 1)-minProb; 
if ( m P r o b )  delete []-maxProb; 
if (-totalprobs) deiete [I-totalProbs; 



if (-runTotalProbs) delete [ J-runTotal~robs; 
if (-runningTota1) { 
for (int dyadicIndex=O; dyadicIndex < ,scaleMax; dyadicIndex++; { 
delete []-runningTotal[dyadic~ndex] ; 

1 
1 

f ree (-runningTota1) ; 
_prob=NüLL ; 
-minProb = NULL; 
maxProb = NüLL; - 
-totalProbs = NüLL; 
- runTotalProbs = MILL; 
-runningTotal = NULL; 

1 

void MultiFractalCalc::setDyadicMaxAndD~(long dyadicBase, long 
dyadicMax, DirnensionIterator& q, 

long fitstart, long fitEnd, long fitParmNum) 
{ / /  Should check that dyadicMax > O 

j r o b  = new PROBTYPE [-scaleMax1; 
minProb = n e w  PROBTYPE[,scaïeMaxl; - 
maxProb = new PROBTYPE[-SC~~~M~X~; - 
- totalProbs = new PROBTYPEE-scaleMax1; 
- runTotalProbs = new PROBTYPE[-scalehfax]; 

for (int dyadicIndex = O; dyadicIndex < ,scaleMax; dyadicIndex++) ( 
s r o b  [dyadicIndex] = O ; 
minProb [dyadicIndex] = - 1 ; - 

-maxProb [dyadicindex 1 = - I ; 
- totalProbs[dyadicIndexl = 0; 
- runTotalProbs [dyadicIndexl = 0 ; 

- running~otal [dyadicIndex] = new double [-q totalNum ( 1 ; 
- finalTotal[dyadicInde~] = new double[-q.total~um0 3 ;  
for (q.start0; q.cond0; q.next0 { 

- runningTotal[dyadicIndex] [q.countO 1 = 0.0; 
1 

1 
1 



void MultiFractalCa1c::addProbabilit~e~) 
{ 
int dyadicIndex; 

/ /  -totalProbs++; 
for (dyadicIndex = O; dyadicfndex < -scaleMax; dyadicIndex++) { 
j r o b  [dyadicIndex] ++ ; 
-ru.nTotalProbs [dyadicfndex] ++ ; 

1 
1 

void MultiFractalCalc: :updateRunningTotals(long uptolndex) 
C 
int dyadicIndex, dimIndex; 

for (dyadicIndex = O; dyadicIndex <= uptoIndex; dyadicIndex++) { 
double pTemp = (double ) s r o b  [dyadicIndexl ; 
for (-q.start(); -q.cond(); -q.next()) { 

- runningTotal[dyadicIndexj [,q.countO] += eval~robRunning(pTemp, 
,q. current ( ; 

1 

void MultiFractalCalc::doFinalCalc() 
{ 
long dyadicIndex; 
double PT-; 
for (dyadicIndex = O; dyadicIndex < -scaleMax; dyadicIndex++) { 
for (-q,start(); -q.condO; -q.nextO) { 



pTemp = -runningTotal [dyadicIndex] [-q count ( ) 1 ; 
- f inalTotal [dyadicIndex] 1-q. count ( ) 1 = 

evalProbFinal(pT~,,q.currentO,~totalProbs[dyadicIndex:l); 
1 
niinFinal[dyadicIndex] = flog((double),min~rob[dyadicIndexl / - 

(double),total~robs[dyadicIndex]); 
-maxFinal EdyadicIndex 1 = flog ( (double) -maxProb [dyadicIndexl / 

(double)~total~robs[dyadicIndexl); 
3 

for (dyadicsndex = O; dyadicIndex < -scaleMax; dyadiclndex++) { 
-scaleStore[dyadicIndex] = flog(power(-dyadic~ase,dyadicInde~) 1; 

1 

EntropyStringCalc : : EntropyStringCalc ( 
{ 
-alphabet = MILL; 
-counted = NULL; 
j r o b s  = NULL; 

1 

void EritropyStringCalc : : releaseMemory ( ) 
{ 
int i; 

delete LI-counted; 
delete [ 1-indexSizes; 

for ( i = O ;  i<-scaleMax; i++) { 
delete 1)  ~ r o b s  [ i 1 ; 

1 
f ree ( a r o b s  ) ; 

void EntropyStringCalc::setAlphabet(char *alphabet, long windowsize, 
long maxVelSize, DimensionIterator q, 



long fitstart, long fitEnd, long fitParmNum) 

long i , a , j ;  

-q* copy (q) ; 
windowsize = windowsize; - 

-alphabet = alphabet; 

/ /  The size of the alphabet will determine how many values to store. 
-alphabetSize = strlen(a1phabet); 
- buffer.setSize(-sca1eMa.x); 

g o s  = 0;  / /  This is the number of letters which have passed us. 

-counted = new long[-sealeMax]; 
-indexSizes = new long [-scaleMaxl ; 
grobs = (long~)malloc(~scale~kx*sizeof(long*) 1;  
for (i=O,a=l; i<-scaleMax; i++) { 

-indexSizes[i] = a; 
-counted [il = 0; 
a*=-alphabetsize; 
_probs[i] = new longla] ; 
for (j=O; j<a; j++) -probs[i] [jl=O; 

1 

/ /  This function assumes that lookfor is guaranteed 
/ /  string. 

int strposi(charf str, char lookfor) 
{ 
int i=O; 
while (str [i 1 !=lookfor) i++; 
return i; 

1 

void EntropyStringCalc::nextletter(char letter) 
{ 
long index, vel, -0s; 

/ /  Update History List 
long aPos = strposi(plphabet,letter); 
-buffer.append(aPos); 
S O S + +  ; 

to be in the 

if (30s < 40) { 
tout << letter " "; 
cout << aPos " -- "; 
for (int j=O; jc,scaleMax;j++) 



cout << -bu£ fer, revItem( j ) << " " ; 
tout << - -- "; 
for (int k=O; k c-scaleMax;k++) 
cout << -buffer.item(k) " "; 

 COU^ << - == "; 
-buffer,printitO; 
cout endl; 

1 

/ /  Add Entry to each new new item, 
/ /  Convert from RoundBuffer to index for each vel size. 

for (vel=O;vel~,scaleMax;vel++) { 

if (qos>vel) { / /  This checks to make sure we donft try and do any 
sequences at the beginning. 

for (vpos=Ofindex=O;vpos~=vel;vpos++) { 

index+=~buffer.rev~tem(vpos)+,indexSizes[~osl; 
1 
srobs [vel] [index] ++; 
-counted [vel ] ++; 

1 
1 

1 

void EntropyStringCalc::doFina1CalcO 
{ 
int vel, index; 
double prob; 
long minProbRnp, maxProbTmp, nSymbols; 

/ /  Calculate Entropies £rom stored probabilities. 
for (vel = O; vel < -scaleMax; vel++) { 

nSymbols = -indexSizes[vel]*,alphabetSize; 
double count = (double)-counted[vell; 
long tmpCount = 0; 
for (index=O; index<nSymbols; index++) { 
prob = ( (double) ~ r o b s  [vel] [ index] ) ; 
tmpCount += ~robs[vel] [index]; 
for (-q.start() ; -q.cond() ; -q.next 0 ) { 

- f inalTotal [vel] [-q. count ( ) ] += evalProbRunning (prob, ,q. current ( ) 1 ; 
1 
if (index==O) { 

minProbRnp = maxProbRnp = prob; 
) else { 

if (rninProbTxrtp > prob) minProbTmp = prob; 
else if (maxProbTmp < prob) maxProbRrtp = prob; 

1 
1 
 COU^ << "Count = *tcco~nt<<~ Total='c<tmpCount; 
cout << endl; 
for (,q.start(); -q.cond(); -q.nextO ) { 

double *tmp = &(-finalTotal[vel] [q.countO 1) ; 
*tmp = -evalProbFinal(*tmp, ,q.currentO, -counted[vel])/S.O; 

1 



~nFinal[vell = flog( ((double)minProbRnp)/count); 
--inal [vell = f log ( ( (double) maxProbTmp) /count ) ; 

1 

/ /  Fit Entropies using linear regression. 
for (long scaleIndex = 0.0; scaleIndex < -scaleMax; scaleIndex++) { 
,scaleStore [scaleIndexl = ( (double) (scaleIndex+l. O 1 1 ; 

1 
doRegressFit0; 

1 

/ /  DNAFractalCalc 
/ / ----------------------------------------------------------------------- ----------------------------------------------------------------------- 

/ /  Constructor 

DNAFractalCalc::DNAFractalCalc() 
I: 
,numBases = ,NUMBASES; 
-bases[Oj = 'a'; 
-bases [l] = ' g r ;  
-bases[2] = 'cf; 
-bases[3$ = ' t f ;  

-bases[4] = 'et; 
,basesString[O] = "aa; 
-basesString[l] = "g8; 
-basesstring [ 2 ]  = "ca ; 
-basesString[3] = "ta ; 
,basesString[4] = "e'; 

for (int baseInda = O; basefndex c ,numBases; baseIndex++){ 
if (baseIndex < -ENTROPYFRAC ) 

-rnfCalcs[baseIndexl = new MultiFractalCalcO; 
else 

,mf Calcs [ baseIndex 1 = new EntropyStringCalc ( ) ; 
1 
,currentNumBases = 0; 
,totalBases = 0; 
,dyadicStore = NULL; 

1 

DNAFractalCalc : : -DNAFractalCalc ( ) 
C 
for (int baseIndex = 0; baseIndex < ,numBases; baseIndex++) 
delete mf Calcs [baseIndexl ; 



if (dyadicstore) delete [JdyadicStore; 
1 

for (int baseIndex=O; baseIndex < -numBases; baseIndex++) { 

if (baseIndex < ,ENTROPYFRAC ) 

((MultiFractalCalc*)_mfCalcs[baseIndex])- 
>setDyadiCMaxAndDims(-dyadic~ase, -dyadicMax, q. fitstart. fitmd, 
fitParmNum) ; 

else 
((~ntropyStringCalc*)~mf~alcs[base~ndex])-~se~phabet(~agct', 

nBases, scaleMaxM, q, fitstart, fitEnd, fitParmNum); 
1 

if (-dyadicstore) delete [J-dyadicstore; 
- dyadicstore = new long[-dyadicMax1; 
for (int dyadicIndex = O; dyadicIndex < -dyadicMax; dyadicIndex++) 
if (dyadiclndex == 0) 

dyadicStore[dyadicIndex] = 1; - 
else 
-dyadicStore[dyadicIndex] = -dyadicStore[dyadicIndex-11 * 

- dyadicBas e ; 
1 

1 

void DNAFractalCalc::addBaçe(char instring) 
C 
long baseInda, dyadicIndex; 
long upToIndex = -1; 

for (dyadicrndex = O; dyadic~ndex c -dyadicMax; dyadicIndex++) { 

if (~currentNumBases%~dyadicStore[dyadicIndex] == 0 )  { 
upTo1nde.x = dyadicIndex; 

1 
1 

if ((inString>='A')&&(inString<='Zr)) instring = instring - 'A' + 'a'; 

int catchFlag = 0; 



for (baseIndex = 0; baseIndex < -ENTROPYFRAC; baseIndex++) { 
if (instring == _bases[baseIndex]) ( 
catchFlag++; 
((Multi~ractalCalc*)~mfCaI~s[baçeIndex])-~addProb~ilit~eO; 

1 
if (upToIndex >= 0) { 

( (Mult iFracta lCalc*) ,mfCalcs[~seInd~]  1 -  
>updateRunningTotals (upToIndex 1 ; 

1 
1 
if (catchFlag > 0) 
((~tropyStringCalc*)~mfCalcs[~ENTROPYFRAC])-~nextLetter(inString); 

void DNAFractalCa1c::doFinalCalc~) 
{ 
long baseInda; 

for (baseInda = O; baseIndex < -numBases; baseIndex++) { 
,mfCalcs [base~ndex] ->doFinalCalc ( 1 ; 

This class provides flat file IO. It also allows for test sequences 
be created 

by passing in the appropriate file name: 
xxSEQ will simulate a virtual file which contains SEQ repeated. 
xxx will simulate a virtual file which returns a uniform random 

base. 
* / 
#define SString char* 

class Pattern10 { 
protected: 
SString ,fileName; 
SString -repSeq; 
char bases [ 4  1 ; 
int -fileId, jenerateseq, -repLength; 

/ / SString Juffer; 
long ,offset; 
long -size; 

public: 
Pattern10 ( ) ; 
virtual -Pattern100 ; 

int setFileName(SString& fileName); 
int opexSile(); / /  Returns positive for success, negative for fail 

- A-33 - 



void closeFile0; 
long fileSize0 (return ,size;) 

/ /  void getBase(1ong position, SString& aElase) (aBase = 
getBase(position);} 

char getBase(l0ng position); 
1; 

#include "PatternIO.ha 
# include <sys / types. h> 
#include <sys/stat.h> 
#include <fcntl.h> 
#include cunistd.h> 
#inchde <strings,h> 
#include ciostream.h> 
#include cstdlib.h> 

#define GENERATE-NONE O 
#define GENERATE-FILE I 
#define GENERATE-UNIFORM 2 
#define GENERATE-STRING 3 

i 
-fileId = -1; 
-offset = 0; 
-fileName = "'; 
_generateSeq = GENERATE-NONE; 

/ /  -buffer = ""; 
- baseslO1 ='a'; 
-basesIll ='gr ; 
-bases[2l='c'; 
-bases[3]='tr; 

1 

int PattemIOt:setFileName(SString& fileName) 
{ 
closeFile ( ; 
-fileName = fileName; 
return openFile( ; 

1 

int PatternI0::opeileO 
C 
mode-t mode; 
struct stat buf; 



int returnVa1 = 0; 

/ /  Check to see if it's a special sequence. 
if ( (-fileName [O] == ' x ' )  && 

(-fileName[l] == ' x '  ) ) { 

if (-fileName[2] == ' x n )  { 
aenerateseq = GENERATE-mFORM; 
srandom(time(0) ) ; 

1 else { 
~enerateseq = GENERATE-STRING; 
-repLength = strlen(-fileNamel-2; 
-repSeq = new char[-replength + 51; 
strcpy(,repSeq, -fileName+2); 
cout "Selected: Generate String:' endl; 

1 
returnval = 1; 

1 
else if (-file~d < 0) { 

-f ileId = open (-f ilmame, O-RDONLY, &mode) ; 
if (-fileId > 0) { 

fstat (-f ileId, &bu£) ; 
- size = buf.st-size; 
- offset = 0; 

J 
-generateSeq = GENERATE-FILE; 
returnval = (-fileId > O ? 1:O); 

1 
return returnllal; 

1 

void PatternI0::closeFileO 
{ 
if (-generateseq == GENERATE-FILE) { 

if (-filerd > 0) 
close(,fileId); 

-fileId = -1; 
else if ( ~ e ~ e r a t e s e q  == GENERATE-STRING) { 
cout CC "Selected: Generate String:' << =dl; 

delete [ ] -repSeq; 
cout << "Selected: Generate String:' cc endl; 

,repSeq = NULL; 

-generateSeq = GENERATE-NONE; 

1 

char PatternIO::getBase(long position) 

char returnval; 
switch (-generateseq) { 
case GENERATE-FILE: 

/ /  Not going to use a buffer right now. Just do an lseek and grab it. 
if (-f ileid > 0) { 



lseek(-fileId, position, SEEK-SET); 
read(,fileId, &returnVal, 1); 

1 
break; 

case GENERATE-UNIFORM : 
/ /  Don't know yet- 
retumal = -bases [random ( ) $41 ; 
break; 

case GENERATE-STRING: 
returnval = -repSeq[position % -repLength]; 
break; 

1 

return returnval ; 
1 

#if ndef FIT-H 
#define FIT-H 

void fit(double* x, double* y, int ndata, double* sig, int mwt, 
double *a, double *b, double *siga, double +sigb, 
double *chi2, double *q); 

static float sqrarg; 
tdefine SQR(a) ((swarg=(a)) == 0.0 ? 0.0 : sqrarg*sqrarg) 

float gammq(f1oat a, float x)  
i 
printf(-Error: gammq not implemented:); 
return 0.0; 

1 

void fit(doub1e *x, double +y, int ndata, double *sig, int mwt, 
double *a, double +b, 
double *siga, double *sigb, double *chi2, double *q) 

/ *  
Given a set of data points x[l..ndata], y[l..ndata] with individual 

standard 



deviations sig[l..ndatal, fit them to a straight line y=a +bx by 
minimizing 

chi square. Returned are a,b and their respective probable 
uncertainties siga 

and sigb, the chi-square chil2, and the goodness-of-fit probability q 
( that 

the fit would have chi2 this large or larger) . If mwt-0 on input, then 
the 

standard deviations are assumed unavailble: q is returned as 1.0 and 
the 

normalization of chil2 is to unit standard deviation on al1 points. 

Taken frorn Numerical Recipes in C. 
* /  

{ 
int i; 
double wt,t,sxoss,sx=0.0,sy=0.0,st2=O.O,ss,sigdat; 

*b=O . O ;  
if (mt) C 
ss=0.0; 
for (i=l; i<=ndata; i++) { 

wt=1 .O/SQR(sig[i] ) ; 
SS += wt; 
sx += x[i]*wt; 
sy += y[i]*wt; 

1 
3 else { 
for (i=l; i<=ndata; i++) { 

sx += x[i] ; 
sy += y[il; 

ss = ndata; 
1 
SXOSS=SX/SS; 
if (mwt) { 

for (i=l;i<=ndata;i++) { 
t= (x[i] -sxoss) /sig[il; 
st2 += t*t; 
*b += t*y [il /sig [il ; 

1 
1 else { 
for (i=l; ic=ndata; i++) { 
t=x[i] -sxoss; 
st2 += t*t; 
*b += t*y[i] ; 

1 
1 
*b /= st2; 
+a =(sy-sx*(*b))/ss; 
+siga=sqrt( (l.O+sx*sx/(ss*st2))/ss); 
*sigb=sqrt(l.O/stS); 
*chi2=0,0 ; 



if (rnwt==O) { 
for ( i=l ; i<=ndata; i++) 
*chi2+=SQR(y [il -(*a) - (*b) *x[ i ]  ) ; 

*q=l. 0; 
sigdat=sqzt( (*chi2)/(ndata-2)); 
*siga *=sigdat ; 
*sigb *=sigdat; 

1 else ( 
for (i=l; i<=ndata; i++) 
*chi2 += SQR( (y [ i ]  -(*a)-(*b)*x[i] ) s g [ ]  ) ; 

*q=garmnq(0.5*(ndata-2) ,0.5*(*chi2) 1 ; 
1 
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