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Abstract

A comprehensive framework is presented for the integration of electrified transporta-
tion and renewable energy through repurposing batteries of plug-in electric vehicles
towards a sustainable energy future. The framework considers future market pene-
tration scenarios of plug-in electric vehicles, availability of batteries at their vehicular
end of life, and the storage capacity required to generate base-load wind power in the
region of study. The objective is to develop a model that can be used as a policy tool
to investigate how different scenarios and pertinent parameters can effectively meet
the challenges of sustainability in the energy and transportation sectors when the ul-
timate goal is to simultaneously displace fossil fuels with new generation of low-cost
intermittent renewable energy. A sample case study is performed for Canada to inves-
tigate and verify the performance of the model. The analysis shows that the proposed
approach can further improve the energy sustainability performance of Canada in 2050
by 1.65–4.11%, depending on the confidence level and in addition to electrification of
transportation.

In the framework, a statistical algorithm is developed to calculate the capacity of an
energy storage system required for delivering base-load electricity for a wind farm in
the future electric grids. The algorithm contributes towards the goal of utilizing low-
cost intermittent wind energy to base-load power generation in the future electric grids.
The introduced algorithm presents three methods to perform the sizing calculations
each representing a scenario associated with the stages of the wind energy industry.
The results of the studied case are applied to estimate the cost of wind energy to
produce rated power at different confidence levels, which show cost-effectiveness and
less intermittency on the power systems allowing for larger penetrations of renewables.

Advanced statistical methods are used to more accurately characterize the operational
wind power output versus manufacturer’s power curve. This is essential for effective
integration of wind power into the power systems. Four parametric and nonparametric
models are applied to estimate the power curve of wind turbines based on the available
operational wind power data. The results of this study suggest that the penalized spline
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regression method presents a better performance over the other analyzed methods.

Finally, an experimental testing is performed in laboratory to show the proof of concept
of the capacity degradation of used batteries of plug-in electric vehicles in stationary
applications using a 25 kWh repurposed energy storage system obtained from a taxi
fleet in their “as-is” condition.

The proposed comprehensive framework herein presents an approach leading to a sus-
tainable transportation system by providing low-cost renewable energy, and can be
used as a gold standard to compare other policies like hydrogen energy technologies.



Contributions

This thesis focuses on the development of a framework for the integration of renewable
energy and electrified transportation through repurposing batteries of the emerging
plug-in electric vehicles towards a sustainable energy system. The presented work also
makes a significant contribution to the wind energy industry by developing a statistical
algorithm for electric energy storage sizing when the goal is to generate base-load wind
power for greater penetration of intermittent renewable energy in the future electric
grids. Advanced statistical methods are applied for more accurate estimation of power
curves based on operational power data.

Following is the list of particular contributions achieved.

• A comprehensive framework is proposed for the integration of energy and trans-
portation when the ultimate objective is to simultaneously displace fossil fuels
in transportation with new generation of renewable energy.

• A simulation model is developed that encompasses the pertinent components of
the proposed battery repurposing framework. The developed model can be used
to investigate how different scenarios and parameters can effectively meet the
challenges of sustainability in the energy and transportation sectors.

• A measure of energy sustainability is introduced and applied to investigate the
performance of the proposed framework to develop sustainable energy policy
based on addressing energy drivers in its totality.

• A new cost model is proposed to properly assess the cost of delivering base-load
power from renewables when they rely on intermittent sources.
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• A statistical algorithm is developed for sizing the capacity of energy storage
system required for delivering base-load electricity for a wind farm. The pre-
sented energy storage sizing algorithm contributes towards the goal of utilizing
intermittent wind to base-load generation for a sustainable energy future.

• Advanced statistical models are applied to estimate wind turbine manufacturer’s
power curves based on operational wind power data. The estimated power curve
can be used for the performance monitoring of turbine, power forecasting, and
for more realistically sizing the energy storage system.

• An experimental testing is performed in laboratory to show the proof of con-
cept and investigate the capacity degradation of repurposed batteries of plug-in
electric vehicles in stationary applications.



Acronyms

The following tables provide a summary of the commonly used acronyms presented in
this thesis in the areas of renewable energy, transportation, and the statistical methods
used in the analyses. These acronyms are tabulated in the order of their appearance
in the text.
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Acronym Description

GHG Greenhouse gas.

IEA International energy agency.

2DS 2 degrees (Celsius) scenario.

ICE Internal combustion engine.

LDV Light duty vehicle.

PHEV Plug-in hybrid electric vehicle.

BEV Battery electric vehicle.

PEV Plug-in electric vehicle.

GW Gigawatt.

PV Solar photovoltaic.

LCOE Levelized cost of electricity.

MWh Megawatt hour.

kWh Kilowatt hour.

EOL End-of-life.

RER Renewable energy ratio.

RED Renewable efficiency demand.

kW Kilowatt.

ESS Energy storage system.

EMS Energy management system.

DOD Depth of discharge.

MtCO2e Million tonnes of CO2 equivalent.

EDV Electric drive vehicle.

CARB California air resource board.

ZEV Zero emission vehicle.

HEV Hybrid electric vehicle.

FCV Fuel cell vehicle.

AER All-electric range.

EV Electric vehicle.

FEV Full electric vehicle.

AEV All electric vehicle.

EVSE Electric vehicle supply equipment.

AC Alternating current.

DC Direct current.

SAE Society of automotive engineers.
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Acronym Description

EPRI Electric and power research institute.

OEM Original equipment manufacturer.

GWh Gigawatt hour.

NiMH Nickel-metal hydride.

Mtoe Million tonnes of oil equivalent.

O&M Operation and maintenance.

DOE Department of energy.

NREL National renewable energy laboratory.

PDF Probability distribution function.

RSS Residual sum of squares.

MSPE Mean squared prediction error.

GCV Generalized cross-validation.

WPP Wind power plant.

MET Meteorological tower.

IEC International electrotechnical commission.

RMSE Root mean squared error.

NMAPE Normalized mean absolute percentage error.

sMAPE Symmetric mean absolute percentage error.

MAE Mean absolute error.

PR Polynomial regression.

LR Local regression.

CS Cubic spline.

PS Penalized spline .

ML Maximum likelihood.

MM Method of moments.

CDF Cumulative distribution function.

LS Least square.

CEF Clean energy fund.

BMS Battery management systems.

BBM Battery bank module.

GUI Graphical user interface.

Ah Ampere hour.

CanWEA Canadian wind energy association.
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Chapter 1

Introduction

This thesis develops an energy sustainability framework for the integration of intermit-

tent and low-cost renewable energy and electrified transportation. Batteries of plug-in

electric vehicles are repurposed to be integrated with intermittent wind power after

their vehicular end-of-life to obtain a higher share of renewable energy towards a sus-

tainable transportation system. An algorithm is presented for predicting the capacity

of energy storage system required to integrate wind energy for base-load power genera-

tion at different stages of the wind energy industry. Furthermore, advanced statistical

methods are used to model wind turbine power curves based on operational power

data. Herein, we first present the problem statement, and briefly review the challenges

in the energy and transport sectors. The proposed concept of battery repurposing is

then introduced, and the components of the framework are described. The objectives

as well as the research questions are presented followed by the the methodology de-

veloped to accomplish the proposed objectives. Finally, the outline of the thesis is

presented.
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1.1 Problem statement

Current trends in global energy supply, energy consumption and environmental emis-

sions are not sustainable, and require substantial investments to promote towards a

sustainable energy future [1, 2, 3]. Global energy drivers—peak oil, energy security,

climate change, growing demand, emissions—have resulted in adoption of strategic

policies that can mitigate risks from a business-as-usual approach. The finite resources

of conventional energy and the consequent greenhouse gas (GHG) emissions urge deci-

sive actions towards clean alternatives with less environmental impacts. Electrification

of transportation and renewable energy are the key solutions to put the globe on a

sustainable foundation.

Transportation is one of the major contributing sectors to the global energy consump-

tion, and has significant environmental impacts as it mostly relies on internal combus-

tion engines (ICEs) driven mainly by fossil fuels. In 2012, transportation accounted

for 20% of the global primary energy consumption, and was responsible for 25% of

the energy related GHG emissions [4]. The International Energy Agency (IEA) has

proposed the 2 degrees scenario (2DS) in which the increase of the earth’s average

temperature should be limited to 2 ◦C by 2050. In the 2DS, the transport sector ac-

counts for 21% of CO2 reductions in 2050 [5]. To achieve such targets and to develop

a sustainable approach for light duty vehicles (LDVs), electrification of transportation

is emerging as the promising solution [6, 7]. Automakers have started mass production

of new technologies like plug-in hybrid electric vehicles (PHEVs) and battery electric

vehicles (BEVs), collectively known as plug-in electric vehicles (PEVs), which provide

higher fuel efficiency and extended electric range [8, 9]. Also, many governments and

policymakers have set ambitious targets for these vehicles in the new sales of LDVs

that highlight the critical role of electric mobility in their transportation systems [8, 3].
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However, the high cost of propulsion batteries of PEVs and the public perception of

electric mobility are among the challenges that should be addressed [3].

The other strategic path towards clean energy alternatives with less environmental

impacts is to incorporate more renewable energy in the global energy mix. Expansion

of intermittent sources, like wind and solar energy, is the crucial component to the

growth of electricity generations from renewables. The global installed capacity of wind

power has approached 300 gigawatt (GW) in 2013, i.e., almost double the cumulative

capacity in 2008 [10, 11]. The global installed capacity of solar photovoltaic (PV) has

also drastically increased reaching more than 95 GW in 2012 [12]. Higher penetration

of intermittent wind and solar, however, has technical and economic implications, and

can be limited by their stochastic nature. Moreover, according to the IEA’s World

Energy Outlook 2013, the share of fossil fuels in the global energy mix has remained

constant at 82% for the last 25 years. The report also predicts that with significant

adoption of renewable energy this figure will only drop to around 75% in 2035 [13].

Besides, huge investments are required to minimize the environmental impacts of fossil

fuels and minimize the climate change effects. According to a study by Bloomberg New

Energy Finance, the annual world’s investment required to avoid more climate damages

should be increased from $300 billion in 2014 to $600 billion in 2019 [14].

These statistics highlight the necessity of effective sustainable initiatives which can

impact the current trend of the global energy and related emissions status. More

important, wind energy is now confirmed to have the lowest levelized cost of electric-

ity (LCOE) in most jurisdictions, where LCOE is an overall competitiveness measure

of electricity generation costs by different sources reported in dollar per megawatt

hour ($/MWh), or cent per kilowatt hour (¢/kWh) [15, 16]. Therefore, sustainable

transportation has to integrate low-cost intermittent renewable energy.
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Many studies have attempted to develop a sustainable approach for LDVs in the trans-

port sector while achieving relatively poor performance results, even acting contrary to

sustainable objectives. Scenarios that advocate low efficiency or high cost approaches

need to move to sustainability, e.g., discussions in [17, 18, 19, 20]. Therefore, real sus-

tainable approaches need to be formulated to impact global energy policy, and provide

economically affordable and environmentally sensible energy resources.

1.2 Sensible solution

To address energy challenges, the sensible approach is to simultaneously replace fossil

fuels with Renewable energy sources, increase energy Efficiency, and reduce energy

Demand, collectively referred to as the RED approach [21, 22]. In compliance with

the RED approach that can change the current unsustainable path is the electrifica-

tion of transportation while addressing the electric energy demand by incorporating

intermittent renewable energy sources.

This thesis proposes battery repurposing of PEVs as a sustainable energy framework

for the integration of energy and transportation. We investigate how electrified trans-

portation can support higher share of renewable energy to mitigate fossil fuels in the

transport sector. Batteries of PEVs can be repurposed for use in different stationary

applications when they reach their vehicular end-of-life (EOL), and before being re-

cycled. The goal is to accommodate greater amount of wind power while the energy

conversion efficiency of vehicles improves by electrification of the powertrain. The use

of existing renewable energy to address new PEV electric loads is not considered, as

this has no impact on the renewable energy ratio (RER), and is contrary to the RED

approach. More important, the LCOE for wind is the lowest, now reaching a record
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level of 3.7–8.1 ¢/kWh without subsidies [15]. To develop the repurposing model of

PEV batteries for their vehicular and stationary applications, the framework considers

plug-in electric vehicles market penetration, availability of batteries at their vehicu-

lar EOL, and the storage capacity required to generate base-load wind power in the

region of study. Statistical and mathematical models are applied to establish an as-

sembly of information through synthesizing a simulation that encompasses different

elements of battery repurposing. To assess the sustainability performance of the pro-

posed approach, RER is defined as the ratio of total renewable energy generated to

the total primary energy used for a jurisdiction in a given year [23]. RER can be used

as a critical indicator of sustainability and a policy tool that can govern technology

implementation.

The proposed framework more closely focuses on wind energy and the integration of

the intermittent source for base-load power generation to meet the energy requirements

of emerging electric vehicles. Adding adequate energy storage system (ESS) to inter-

mittent wind power can support greater penetration rates of wind energy. Higher share

of electricity generation from intermittent wind in the electric grid also motivates the

analysis of the performance of wind power generators as uncertainties in the generated

output power can cause serious challenges in the energy management systems (EMS),

and impact the reliability of the power grid [24]. Therefore, effective integration of

wind power into the power systems requires appropriately sized ESS and accurate es-

timation of the turbine power curve for operational management of wind energy, as

well as performance monitoring of turbines [25, 26, 27]. The major components of this

framework and the life cycle of these batteries are illustrated in Figure 1.1.
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Storage Sizing 

Figure 1.1: Components and the process steps of the proposed framework of plug-in
electric vehicles battery repurposing.

1.3 Research objectives

The objectives of this research work are listed below.

1. Synthesize a simulation model to establish a framework that encompasses the

components of battery repurposing to investigate how the proposed approach

can effectively meet the challenges of sustainability in the energy and trans-

portation sectors by simultaneously displacing fossil fuels in transportation with

new generation of low-cost intermittent renewable energy. The model also inves-

tigates the performance of the proposed framework as a critical factor to develop

sustainable energy policy based on addressing energy drivers in its totality.

2. Create a statistical algorithm for sizing the energy storage system required for

delivering base-load electricity for a wind farm. The presented energy storage

sizing algorithm contributes towards the goal of utilizing intermittent wind to

base-load generation for a sustainable energy future.

3. Introduce a new cost model to establish a proper baseline for economic assess-

ment of base-load power generation of intermittent renewable energy sources that



1.3 Research objectives 7

require storage.

4. Apply advanced statistical models to estimate wind turbine manufacturer power

curves based on available operational wind power to more realistically demon-

strate the performance of wind power generators.

5. Perform an experimental testing in laboratory using a 25 kWh repurposed en-

ergy storage system to monitor and show the proof of concept of the capacity

degradation of repurposed batteries of PEVs in stationary applications.

To achieve the objectives of this thesis, the following research questions need to be

addressed:

1. What are the market penetration scenarios for the future adoption of PEVs to

realistically represent the diffusion rates? What are the other identified parame-

ters to be included in the framework model? What is the annual electric energy

demand required for charging the emerging PEVs?

2. How to calculate the required energy storage capacity when the goal is to generate

base-load power from intermittent renewables? What is the cost of producing

continuous power when the source is intermittent and requires storage?

3. What statistical methods can be used to provide an efficient estimate of a wind

turbine power curve when the operational wind power data are available?

4. How to assess and verify the capacity degradation of PEVs used batteries repur-

posed for stationary applications in their post-vehicular life? What are the test

conditions and the facility requirements to achieve this?

5. How to evaluate the sustainability performance of the jurisdiction of study by

implementing the proposed concept as a policy tool?
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1.4 Methodology

To implement the battery repurposing framework, the components illustrated in Fig-

ure 1.1 need to be developed. A simulation code is built for the pertinent components

of proposed framework in MATLAB R©. To this end, the model first adopts a penetra-

tion scenario of the diffusion of PEVs in the market over the time horizon of the study.

Predicting a realistic adoption scenario of PEVs in the automotive market is complex

and influenced by various socio-economic parameters [28, 29]. Several studies have

attempted to forecast the future diffusion rates of the technology in many jurisdictions

worldwide. The PEVs future market forecasts are studied and a benchmark is adopted

as the input to the model. The consequent electric energy loads due to introduction of

PEVs to the market is also required to be studied within the framework. The frame-

work requires to calculate the available electric energy storage capacity available from

retiring batteries of PEVs at their EOL. To achieve this objective, the model considers

a life span of the vehicular period, battery life at the EOL, and partial damages and

losses. Next task is to develop a sizing model of the required storage capacity for wind

power integration to generate a more reliable output of the intermittent source. Based

on recent studies, e.g. in [30, 31], most robust grid systems today, no matter what the

supply mix is, can likely accommodate up to approximately 25% intermittent sources

such as wind power without any changes to the electric grid. Penetrations greater than

approximately 25% wind and solar renewables on an energy basis will require the use

of ESS to integrate these intermittent renewables. The future electric grid can be made

100% renewable with utilizing high penetration of intermittent renewables like wind

and solar, that are available just about anywhere in the world, if their intermittent

nature is addressed by the addition of an appropriate amount of ESS. These intermit-

tent renewables can be converted to base-load generation by using appropriately sized
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ESS to smooth out their intermittency, allowing penetration of up to 100% base-load

intermittent renewables for a more sustainable future due to CO2 and other harmful

emissions.

A statistical algorithm is therefore developed for sizing the energy storage system

required for delivering base-load electricity to a selected confidence level for a wind

farm. There is limited literature on ESS sizing to generate base-load power for a target

confidence level. Three methods are presented to perform the ESS sizing calculations

each representing a scenario associated with (i) wind farm project conception, or, (ii)

wind farm operation. In each method, statistical models are used to calculate the

required ESS energy capacity using wind resource assessment data, operational power

data and wind power generator’s specifications. Furthermore, effective integration of

wind power into the power systems requires accurate estimation of the wind turbine

power curve for operational management of wind energy and performance monitoring of

turbines. Moreover, accurate estimation of the wind turbine power curve is required to

more realistically size the storage capacity for wind energy integration [32]. Advanced

statistical models are also used for power curve modeling of a wind turbine for the

storage sizing algorithm. Four parametric and nonparametric statistical methods are

used to fit the empirical power curve of a wind turbine, and the associated modeling

codes are implemented in the R programming environment.

Degradation rates of repurposed batteries in their post-vehicular life is the other chal-

lenge that needs considering in the framework model. Many studies have attempted to

investigate capacity loss and degradation of Li-ion batteries utilized in electric vehicles,

for example in [33, 34, 35]. Various parameters may impact the life of batteries such as

depth of discharge (DOD), charging rate, temperature, and calendar age [36, 37, 38].

However, degradation of Li-ion batteries in their automotive life, and then in station-
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ary applications is still under study and needs validating experimental information.

To obtain an indication of how electric vehicles used batteries degrade with charg-

ing cycles, a short-duration experimental analysis is performed at the test facility at

Manitoba Hydro HVDC Center. Repurposed batteries were obtained from a taxi fleet

demonstration in Baltimore in the U.S. using Electrovaya batteries. For this purpose,

2 battery packs are used each consisting of 4 modules wherein 24 battery cells are

accommodated. The approximate voltage of each repurposed battery pack is 400 V.

Finally, the overall energy sustainability performance of the proposed framework for

the studied case is assessed by quantifying the fossil fuel displacement in transportation

with base-load wind energy accommodated by PEVs repurposed batteries.

1.5 Outline of the thesis

Chapter 2, presents the development and implementation of the comprehensive model

of the PEV battery repurposing framework. A review of the literature on the contribut-

ing elements of the proposed battery repurposing framework is provided in this chapter.

The review includes technology study, market status and future adoption scenarios of

PEVs; energy storage technologies and specifically, electric vehicles propulsion batter-

ies technology; overview of renewable energy technologies with the focus on wind power

and its integration in the electric grid; and overall status of studies and publications on

PEV repurposed batteries. Major blocks of the proposed repurposing framework are

described by identifying related parameters, and building and implementing contribut-

ing sub-systems. MATLAB R© is also used for programming the related algorithms and

calculations in the model.
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Chapter 3, presents advanced statistical methods for wind turbine power curve mod-

eling. Four parametric and nonparametric methods are applied to estimate the wind

turbine power curve. The results of the simulated methods are applied to an opera-

tional wind power data set of a wind farm in North America. The code of the simulation

is developed in R programming language. This development is used to determine the

required ESS for wind turbines.

Chapter 4 develops a general statistical algorithm for sizing the energy storage system

required for delivering base-load electricity to a selected confidence level for a wind farm

in the future electric grids. In this chapter, we develop three methods based on para-

metric and nonparametric statistical models using wind resource assessment data and

available wind turbine information representing different stages of a wind farm project-

–from site selection to operational status. The models associated with the presented

methods of sizing algorithm are developed and implemented using R programming

language.

Chapter 5 describes the experimental setup of the test facility and specifications of the

two battery packs used for the short-duration experimental analysis, and provides the

results of monitoring that how repurposed batteries degrade with charging cycles.

Chapter 6 provides the results of the framework simulation for a case study of Canada

followed by a discussion on the results and on the energy sustainability performance

of the proposed concept.

Finally, Chapter 7 concludes the thesis by providing a summary of accomplishments,

the outline of the suggested future work that can be followed upon this research.



Chapter 2

Battery Repurposing Framework

In Canada, transportation has been the major consumer of the total energy consump-

tion 2601.1 PJ in 2010 [39]. In the latest available report by Transport Canada [40],

road transportation accounts for approximately 80% of the transportation-related

GHG emissions, i.e., equal to 137.5 million tonnes of CO2 equivalent (MtCO2e) or

approximately 19.6% of the total GHG emitted in Canada in 2011. The proposed

framework of battery repurposing of PEVs for the integration of electrified transporta-

tion and renewable energy is presented in this chapter. The objective is to investigate

how electric mobility can support greater share of renewable energy to mitigate fossil

fuels in the transport sector. In this framework, repurposed batteries, obtained from

PEVs are used at their automotive EOL, as stationary electric storage systems to

integrate with intermittent wind power generation. The framework considers PEVs

market penetration, annual energy demand for vehicles charging, availability of bat-

teries at their vehicular EOL, and the storage capacity required to generate base-load

wind power in the region of study. The simulation model of the proposed framework
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is coded and a case study is performed to show the results. The developed model

of the framework can be extended to various applications and scenarios. A new cost

model is proposed to calculate and compare the cost of delivering base-load power

from renewables when they rely on intermittent sources. The renewable energy ratio

is used as a measure of the energy sustainability to evaluate the performance of the

proposed framework,. While this analysis identifies complexities and uncertainties in

predicting the outcome of the proposed approach, the results suggest a self-sufficiency

of the integrated system to address concerns regarding the impact of vehicular charg-

ing energy requirements with renewable energy. This study shows that the battery

repurposing framework is a sensible approach that addresses energy drivers simulta-

neously by displacing fossil fuels with new renewable energy generation, and solves

energy and environmental issues in transportation effectively rather than looking at

aspects in isolation. The proposed model can be used as a policy tool to investigate

the outcome of various scenarios in the energy and transport sectors.

Section 2.1 describes the components of the framework and explains the life cycle of

batteries in their vehicular and post-vehicular life. Section 2.2 presents a review of the

literature associated with various components of the battery repurposing framework.

Section 2.3 describes the MATLAB R© code developed to perform the simulation of the

proposed framework. Section 2.4 provides a summary of the chapter; and the results

of the simulation are presented in a case study in Chapter 6.

2.1 Description of the framework

Battery repurposing of PEVs is an approach in compliance with the RED approach

that can address energy and environmental issues simultaneously. The proposed con-
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Figure 2.1: Illustration of the battery repurposing concept where the battery life cycle
begins with the installation on vehicle where uses electricity for its propulsion. The sec-
ondary life begins when the used battery is repurposed for new stationary applications
before being recycled.

cept has the potential to increase the share of renewable energy sources in electric power

generation, and displace fossil fuels by clean electricity in transportation through elec-

tric mobility. Moreover, while the relatively high cost of batteries of PEVs may act

as a limiting factor for the wide market adoption of these vehicles [41, 42, 43], bat-

tery repurposing has the potential to reduce the initial cost of batteries by creating

new market for the used batteries. Several studies investigated the potential value for

the traction battery of PEVs at their vehicular EOL [44, 45, 46]. In the repurposing

framework, PEV batteries can be reused from electric vehicles after reaching the end

of their on-board useful performance, then will be tested, refurbished and employed

in different stationary storage applications. Figure 2.1 illustrates the concept with the

specific application of supporting intermittent renewables.
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The life cycle of batteries begins with the installation of manufactured batteries in

electric vehicles, then repurposing for stationary applications, and finally recycling.

The components associated with the proposed framework are developed, and the sim-

ulation code is built in MATLAB R©(see Section 2.3). By implementing the simulation

code, the proposed concept model is executed for Canada as a case study. The model

selects an annual market penetration rate representing the new sales of electric vehi-

cles in the region of study. Annual aggregate energy demand due to introduction of

PEVs to the grid is then calculated to determine the energy impact of the growing

market of electric cars. To calculate the storage capacity available from PEV bat-

teries in their post-vehicular life, a benchmark degradation rate is assumed based on

the available literature. A wind-storage sizing model is next required to estimate the

required capacity of the ESS to support wind farm to generate base-load wind power.

Therefore, the proposed framework more closely focuses on a storage sizing algorithm

towards the objective of wind power base-load generation for the future smart electric

grids. The theory and algorithm of this component of the framework are developed in

Chapters 3 and 4. The framework then investigates how the improved quality wind

energy addresses new PEVs charging load to increase the RER and address energy

drivers simultaneously. Also, a general expression is proposed for the capital cost of

renewable energy that includes the cost of storage when they are intermittent.

The results of the model of the proposed framework for the studied case of Canada in

2050 show that while electrification of transportation improves the energy efficiency in

the transport sector and increases the RER by 0.91%, repurposing batteries of PEVs to

support base-load wind power can further increase the RER by 1.65–4.11%, depending

on the confidence level selected for ESS sizing. The difference is that new charging

loads are exclusively addressed by renewable energy, that results in a more effective

energy policy.
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2.2 Relevant literature

In this section, a review of the literature associated with the various elements of the

battery repurposing framework is presented. The presented literature fills in the frame-

work blocks to describe the related field of technology depicted as a core in Figure 2.2.

The electric vehicles element includes the technology, market status, and market pen-

etration rates of PEVs. The electric storage elements include storage technologies and

applications, technologies of PEV traction batteries, and degradation rates in vehicular

and in stationary applications. The renewable energy element includes an overview of

renewable energy technologies with the emphasis on intermittent wind power. Power

curve modeling of wind turbines and storage sizing for base-load power generation are

more closely addressed in Chapters 3 and 4.

Figure 2.2: Illustration of the literature related to the components of the proposed
framework creating the core of this research.
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2.2.1 Electric vehicles

Electric drive vehicle (EDV) is a vehicle that uses at least one electric motor for

traction purposes [47]. After the first demonstration of an electric vehicle in the 1830s

using non-rechargeable batteries [48], the first road electric vehicle was made in 1881

in France by G. Trouve powered by a secondary Plante battery [49]. The second era

of electric vehicles happened in the period of 1951-2000 due to high oil prices and

environmental emissions [3]. In the 1990s, the California Air Resource Board (CARB)

mandated large automotive manufacturers to start producing zero emission vehicles

(ZEVs). The regulation sparked a new era in electric vehicle development when Toyota

successfully launched Prius as the first commercial hybrid electric vehicle (HEV) in

the world in 1997. By commercial introduction of PEVs in the late 2010, the new age

of electric transportation has begun. According to a report by [50], the global annual

sales of these vehicles will reach 3.8 million in 2020.

EDVs can have different technologies for their propulsion, and can be categorized as

HEV, PHEV, BEV, and fuel cell vehicle (FCV). This research aims to study reusing

traction batteries of electric vehicles and develop a sustainable approach for trans-

portation from an energy perspective; and therefore, this work does not include FCVs

(see Appendix A). Moreover, unlike fuel cells, the Lithium chemistry has a significant

potential to improve further and the Li-ion batteries have only reached a small per-

centage of their theoretical limit [51]. Also, due to the small size batteries of HEVs,

they are not of interest to this study, and only are briefly introduced and discussed

here. Hybrid electric is a type of electric vehicles that has both an engine and an

electric motor powered by a battery for its traction. Due to smaller battery capacity

compared to other electric powered vehicles, and the drivetrain architecture, HEVs are

not capable of driving the full range on electricity [8]. The batteries of HEVs typically
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have 1 kWh to 4 kWh of capacity. A PHEV is a hybrid electric car that uses an engine

and an electric motor with larger batteries which can be recharged through an external

electric power source [52, 53]. The key point about HEV and PHEV technologies is

that they rely on fossil-fuel combustion engines. BEVs—also known as electric vehicles

(EVs), full electric vehicles (FEVs), or all-electric vehicles (AEVs)—are pure electric

vehicles with no engine onboard. These vehicles need to be recharged at the end of

their driving range. These vehicles are equipped with batteries, and are propelled

solely by an electric machine that is controlled by a motor drive. In these vehicles, the

battery is the only source for propulsion [46, 52]. The battery capacity in BEVs can

vary from 20-35 kWh allowing them to have highest AER [52]. Appendix B provides

more details on different drivetrains of EDVs.

2.2.1.1 Market status

Mass commercial production of PEVs gained momentum by commercial launch of the

PHEV Chevrolet Volt and the BEV Nissan Leaf in the U.S. in 2011 [54]. The Volt

and Leaf were launched in December 2010 where the giant automakers, Chevrolet and

Nissan, had delivered 2,510 Volts and Nissan 2,186 Leafs by the spring 2011 [55]. The

Volt was the first PHEV available for purchase while other companies like Toyota

started to develop their PHEV line by mass producing the plug-in version of Prius

hybrid [54]. Battery capacity of the Volt is 16 kWh that enables an electric range of

about 60 km. The plug-in Prius has a battery capacity of 4.4 kWh that provides an

electric range of 18 km. The Leaf has a battery pack of 24 kWh providing an electric

range of 118 km. In February 2013, Nissan announced that the automaker has passed

50,000 sales units since its launch in 2010 [56]. Ford Focus and i-MiEV are the other

two popular BEVs in the current plug-in vehicles market. The battery electric i-MiEV
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was introduced by Mitsubishi in Japan late 2009 where the production of the vehicle

has jumped from 1,710 in 2009 to 14,795 units in 2011 [57]. The Mitsubishi i-MiEV

is benefiting from a 16 kWh Li-ion battery with an expected range of 100 km in the

U.S. The Ford Focus was launched in 2012 as the first plug-in vehicle by Ford Motor

Company. The Focus battery capacity is 23 kWh that enables an electric range of 122

km. The annual sale of the Focus in 2012 has been 685 units [58].

2.2.1.2 Market penetration forecasts

The future of electric transportation as a promising solution in addressing energy and

climate issues has been the subject of many research studies. Consumers, automakers,

governments and electric utilities are among the stakeholders in the market of PEVs.

Several studies have attempted to forecast market penetration rates for electric vehi-

cles under different scenarios [8, 52, 28, 59, 60]. Various models have been developed to

forecast the penetration rates of different technologies of PEVs. The main simulation

techniques for the penetration forecast models include diffusion and time-domain mod-

els, consumer choice models and agent-based models [61]. Many governments in the

world have implemented decisive policies and stimulating plans such as tax incentives

to consumers, and financial supports for auto manufacturers to favor higher market

adoptions of PEVs. Targets for the future of PEVs are set for different penetration

scenarios from low to high in the near-term future. Table 2.1 summarizes the PEV

sales targets for a number of countries and regions around the world. Although market

forecast of a new product is a mature subject of study, the outlook of PEVs future

market is highly diverse, complex and subject to numerous parameters. This can be

reasoned by different assumptions and simulation approaches these studies adopt [63].

Depending on the simulation technique, these parameters include vehicles sales price,
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Table 2.1: Governments announcements for PEVs future sales market in the near-term
future [8, 9, 62].

Country/Region Target Sales Report Date

World 3,000,000 in sales of PEVs in 2020 2012

Europe 3,000,000 total stock of PEVs in 2020 2012

USA 1,000,000 total stock of PEVs in 2015 2011

Canada 500,000 total stock of PEVs in 2018 2009

Germany 1,000,000 total stock of PEVs in 2020 2013

China 10,000,000 total stock of PEVs in 2020 2012

electric range of the vehicle, gasoline and electricity prices, and governmental subsidies

and tax policies resulting in a diverse outcome.

2.2.1.3 Charging characteristics

For widespread introduction of PEVs, charging infrastructure to provide electric charge

to these vehicles is a crucial aspect of their operation. Electric vehicle supply equipment

(EVSE) is the equipment that all PEVs need to have available at their residential or

workplace parking locations. These two locations are of the highest priority as vehicles

spend 66% and 14% at these spots, respectively [54]. There are different power levels

at which PEVs can be recharged while parked. The charging operation is categorized

as alternating current (AC) or direct current (DC) charging based on whether the

delivered electricity is AC or DC [54]. In DC charging, also named as fast charging,

the AC electricity is converted in a stationary converter to DC to directly charge the

vehicle. AC charging can be performed at different levels as level 1 or 2. The charging

power is primarily dictated by the rated power of the line that is the product of the line

voltage and the maximum rated current of the line. The time period of charging then

will be determined by the capacity of battery. According to the Society of Automotive
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Engineers (SAE) recommended standard [64], electrical rating for North America for

level 1 AC charging is 120 volts, 1 phase at maximum current of 12 or 16 Amps where

the circuit breaker ratings are 15 and 20 Amps, respectively. For level 2 AC charging

the nominal voltage is 208 or 240 volts, 1 phase at maximum current of 32 or 80 Amps

with the circuit breaker rating of 40 and 100 Amps, respectively.

2.2.1.4 Vehicle charging load

It is important to evaluate and estimate the profile of charging load imposed by the

fleet of PEVs. Many studies attempted to develop charging profile models to deter-

mine the growing electricity demand from PEV charging e.g. [65, 66, 67, 68, 69]. The

key factor for plug-in time of electric vehicles is when drivers recharge their vehicles.

When the optimum time for electricity providers is overnight charging, drivers pre-

fer recharging at their convenience [70]. By conducting different approaches, many

studies present that although different vehicles may charge at different times during

the day, the aggregate charging profiles follow similar distribution with most occur-

rence probability during night. The Electric and Power Research Institute (EPRI)

creates a scenario for charging profile of electric vehicles where 74% of charging load is

distributed from 10:00 p.m. to 6:00 a.m. [28]. PHEVs and BEVs are expected to be ca-

pable of charging at different levels. Level 2 charging is expected to be more desirable

due shorter charging time. Although BEVs with higher battery capacity may prefer

level 3 charging, costly equipment and installation can impede wide adoption of level

3 charging at residential locations [52]. Several stochastic analyses have attempted to

determine the likelihood of plug-in vehicles charging at a specific time and develop

charging profiles [69, 71]. The framework assumes a worst-case scenario to calculate

the energy demand of charging in which PHEVs and BEVs charge at the same time.
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The imposed load of electric vehicles is of interest to this study to investigate how

base-load wind power with repurposed batteries can contribute to the charging elec-

tricity of PEVs. The total daily energy requirement by PEVs depends on the vehicle’s

energy efficiency in kWh per driven distance per day. A daily energy demand of PEVs

is calculated based on an average daily commute for a typical average populated city.

2.2.2 Propulsion batteries of PEVs

There are different chemistries used for EDVs propulsion batteries such as Nickel-metal

hydride (NiMH) and Lithium-ion (Li-ion) and lead-acid [45, 72]. These batteries are

used for different levels of automotive applications. For example, stop-and-start electric

vehicles use lead-acid while HEVs and PEVs mostly use NiMH and Li-ion batteries.

Li-ion battery is widely accepted to be the leading technology for both PHEV and

BEV technologies, and shows advantages over other major chemistries [73, 74]. The

selection of electrode materials and electrolytes of a Li-ion battery has a significant

impact on its useful life of the battery [75, 76, 77]. The main advantages of Li-

ion batteries are the high energy density in kWh/kg, high power density in kW/kg,

long cycle life, and low weight and volume [72], achieving between 150 to 180 Wh/kg

energy density. The major issues of Li-ion technology are high cost, moderate calendar

life and poor performance in cold temperatures [8]. The manufacturing scale of Li-

ion batteries is anticipated to be approximately 35 GWh by 2015 [73]. A module

of a battery is composed of several cells containing electrodes and electrolytes in a

container. A battery pack is made by assembling several modules together. In electric

vehicles battery modules are typically 10-30 volts [45]. For PEVs, the battery pack

can typically be composed of 10-40 battery modules. The pack usually operates in the

range of 100-350 volts.
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2.2.2.1 Battery degradation

The capacity of Li-ion battery decreases by charge-discharge cycling [78, 34]. A shallow

discharge is when a small portion of stored energy is drawn while discharging most of

the stored energy is a deep discharge. It is essential to quantify the degradation of

PEV batteries over the time of their cycle life. Many studies have attempted to develop

technical and economic battery life prediction models using different approaches under

different aging factors such as cycle frequency, calendar life, ambient temperature,

DOD, and charge voltages [79, 33, 35, 36, 38]. For the repurposing framework, it is

important to (i) predict the life status of PEV battery at the vehicular EOL, and (ii)

predict a degradation rate for the stationary life of the repurposed battery.

2.2.3 Renewable energy

Supporting higher share of renewable energy in the energy sector and in the transport

is one of main objective of the battery repurposing concept presented herein. This

section provides an overview of current technology and market status emphasizing on

wind energy as the main technology of interest to the repurposing framework. In the

world’s current unsustainable energy context, renewable energy is the most promising

solution that is becoming a viable component of the global energy supply [80]. The

main benefits of renewables are mitigating environmental impacts by reducing GHG

emissions, and reducing the reliance on finite fossilbased energy sources. Accord-

ing to the IEA’s 2010 World Energy Outlook, the supply of main renewable energy

technologies—wind, solar, hydro, geothermal, biomass and marine energy—increases

from 840 million tonnes of oil equivalent (Mtoe) in 2008 to nearly 3,250 Mtoe in 2035.

Wind and solar photovoltaic power generation are key technologies to address global
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energy drivers and achieve the world’s objective of limiting the earth’s temperature

increase to 2 ◦C in 2050 [81]. The global installed capacity of wind power has almost

doubled since 2008 approaching 300 GW in 2013, i.e., 2.5% of the total electricity gen-

eration [11]. The world’s installed capacity of solar PV has also drastically increased

reaching more than 95 GW in 2012 [13]. In 2013, the electricity generation from wind

in Denmark, England, Spain and Germany has been 30-, 25-, 25- and 20%, respec-

tively [11]. On the other side, the cost of power generation from wind for onshore wind

turbines has significantly dropped from $3000 in 2005 to $1500–2000 in 2013 per unit

power (i.e., $/kW).

2.2.3.1 Wind energy

Wind turbine is a generator that converts the kinetic energy of the mass flow rate

of wind to electricity. Wind speed is the main parameter for the design of wind

turbines for a region of study. Depending on the design of a wind turbine, wind speeds

ranging from 4 m/s to 25 m/s are suitable for power generations [82, 83]. Wind farms

usually require an average wind speed of at least 7 m/s. Assessment of available

resources of wind is an important tool that allows to estimate the rated power and

the generated energy of a wind farm. Wind energy is an intermittent source of energy

which can have different time variations such as short-term, diurnal, annual, and even

inter-annual [84]. Effective utilization of wind energy into the power systems requires

accurate wind resource assessment as well as estimation of the turbine power curve for

operational management of wind farm and for performance monitoring of turbines.
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2.2.3.2 Cost of wind energy

To address global energy and environmental challenges, an “energy technology rev-

olution” is required including solutions such as higher energy efficiency and greater

share of renewable energy sources [85, 86]. The IEA’s technology roadmap on wind

energy targets that 12% of global electricity will be from wind power [86]. Availability

of wind power throughout the world will result in less reliance on imported energy.

In addition, reduction of CO2 and other emissions is a major benefit of wind power.

Also, wind power is highly attractive in areas where water sources are limited [86]. In

several studies investigating the economics of wind energy the cost of wind power is as-

sessed competitive with conventional power sources [86, 84]. However, the cost of wind

power can increase significantly when the intermittent source requires storage to be

comparable to constant power generation. In North America, the capital cost for wind

energy generation–the cost that may include turbine, grid connections, foundations,

and infrastructure–was estimated in 2008 to be between 1,400 and 1,900 $/kW [86].

The life cycle cost of wind energy can have large variances due to capital costs, wind

resource availability, operation and maintenance (O&M) costs, life duration of the

turbine, and etc. [86]. According to [87], the U.S. capacity weighted average of wind

life cycle cost has been 4.7 and 6.7 cents per kilowatt (¢/kW), with and without tax

credits, respectively. The O&M cost is calculated in [86] to range from 1.2 to 3.2

(¢/kW).

2.2.3.3 Integration of wind energy

The U.S. 2012 annual energy outlook projects more than 100% increase in non-hydro

renewable energy capacity from 2010 to 2035 [88]. Many experts believe that even
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a higher share of wind power will be economically viable [73]. However, due to vari-

able nature of wind, integration of wind power into the electric system is a more

challenging task. Use of utility scale ESS is viable solution in effective integration of

intermittent wind and solar energy. A comprehensive study by the U.S. Department of

Energy (DOE) [78], discusses 17 electric grid-related applications, and analyzes poten-

tial benefits of various ESS technologies. These applications in the electricity market

are categorized as grid system applications, ancillary services, as well as end-user and

utility customer applications, and applications for renewable energy integration. Many

studies have investigated the integration of ESS and intermittent wind power for higher

penetration rates in the grid e.g., in [73, 89, 90, 91]. The focus of this thesis is to inte-

grate more wind energy for transportation without impacting dispatchable generation.

Within the proposed framework, we specifically look at how repurposed batteries can

increase the RER through improving the quality and reliability of wind energy to ad-

dress the PEV charging energy load. Therefore, modeling of wind turbine power curve

and sizing of the ESS capacity required to be integrated with wind power to generate

base-load power based on wind farm operational data are discussed and developed in

this thesis.

2.2.3.4 100% renewable energy scenario

Towards a sustainable energy system, and to mitigate the environmental impacts and

climate change effects, a transition to 100% renewable energy is imperative. Several

studies have analyzed pathways and scenarios to develop roadmaps and strategies at

the local, national and global levels for fully displacing fossil fuels in the future energy

mix [92, 93, 94, 95]. To achieve the goal of 100% renewable energy, a comprehen-

sive conversion is required in all sectors of the energy system, i.e., transportation,
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electricity generation, industry, and heating and cooling [96]. Electrification of trans-

portation, replacing fossil fuel burning plants with the emerging wind and solar power,

reducing end-user’s energy demand, and improving energy efficiency are among the key

solutions, that are in compliance with RED approach. Moreover, to ensure successful

implementation of proposed solutions, proper policy orientations at the regional and

national levels, and decisive action plans are inevitable. According to a report by

Sustainable Canada Dialogues in 2015, Canada could achieve 100% reliance on low

carbon electricity in 2035, which requires the country to implement a long-term plan

to reduce at least 80% of the GHG emissions by 2050 [97]. This report presents 10

policy orientations for short-, middle-, and long-term targets as a possible pathway

to achieve 26-28% reduction in emission below the level of 2005 in 2025, and 80% by

2050. The roadmap necessitates eliminating subsidies on fossil fuels, applying carbon

tax programs, and electrification of transportation, among others,

2.2.4 Battery repurposing

Several studies in the literature have attempted to assess potential applications for the

used batteries of electric vehicles in the electricity market [41, 45, 46, 98, 99, 73, 100].

These studies investigate technical and economic viability of applying used batteries

in stationary applications in their post-vehicular life. The U.S. National Renewable

Energy Laboratory (NREL) in [99, 41] have identified potential applications for PEV

Li-ion propulsion batteries after their vehicular life to reduce cost and support further

adoption of electric cars. This effort has recognized major barriers in their study such as

battery degradation, application selection for used batteries, and cost and operational

considerations. As the main focus of this research, capacity firming of renewable energy

is accepted to have large market potential for secondary use of PEV batteries [45]. This
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thesis develops a simulation model for the integration of transportation and renewable

energy through utilizing repurposed batteries of PEVs. The repurposing model looks

at the framework at macro-level using certain parameters as described in the following

sections.

2.3 The proposed framework model

The blocks of the proposed framework model associated with vehicular and post-

vehicular life of the batteries are developed herein, and the parameters and assumptions

are explained.

2.3.1 Vehicular life

The life of batteries on vehicles starts with the installation of manufactured batter-

ies in electric vehicles. The vehicular lifetime of these batteries depends on various

parameters such as their chemistry, charging approach, driving patterns, and weather

conditions of where they serve [33]. The forecast of the market penetration of PEVs

determines the projected annual sales of these vehicles, and consequently, the number

of batteries that will be available on the market each year. Also, the annual charging

load of PEVs should be calculated to determine the yearly energy demand required

for charging these batteries. These two parts are discussed in the following sections.
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2.3.1.1 PEV market penetration forecasts

Time-series market penetration models of a new product present the life cycle of that

product over time. Many parameters can be included in the modeling that influence

the adoption of a new product, a(t), where t is the time horizon of the repurposing

model. Any diffusion function of adoption of PEVs can be applied as the input to the

battery repurposing model to investigate various scenarios in the future of electrified

transportation. A penetration scenario of PEVs is adopted for a case study of Canada,

and a time-series diffusion rate for PHEV and BEV technologies is applied where

t = 1, . . . , 41, corresponding to the calendar year from 2010 to 2050. The adopted a(t)

will be linked to the repurposing model predict when the batteries would be available

for repurposing. The proposed framework predicts when the batteries become available

on the market and how many hours of storage are available to support wind power in

the next 10–20 years to address the new load.

2.3.1.2 PEV charging energy requirements

By adopting a market penetration rate for PEVs the framework model calculates the

average annual energy required for PEVs in the location of study. To calculate the

annual energy demand, the maximum power limited by the electric line, or the vehicles

battery capacity can be used [101]. Alternatively, the electric energy required to meet

the charging load of PEVs per year can be estimated using daily mileage driven by a

passenger vehicle for a typical urban driving profile, electric vehicle fuel efficiency, and

the predicted number of PEVs in the location of study. The annual aggregate energy
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demand for PEVs, El, in kWh per year, is therefore expressed as follows

El = R× ηe ×N × 365, (2.1)

where R is the electric range driven daily in km per day, ηe is the electric range

efficiency in kWh per km, and N is the number of plug-in electric vehicles—either

PHEV or BEV—available per year.

To estimate R, Equation (2.1) uses the average daily driven distance for a LDV in

a typical North American from the duty cycle study developed for a typical North

American urban driving pattern for cities with the population of 1 million or less

in [102]. To more realistically present the average commute distance by LDVs, the

model also considers a coefficient to account for possible extra distance for rural driving.

In this model, this extra driving distance is assumed to be fuelled by electricity in BEVs

and by gasoline in PHEVs.

2.3.2 Post-vehicular life

In the life cycle of propulsion batteries of electric vehicles, after their automotive

EOL, they can be utilized in stationary applications. As inputs to the repurposing

framework, it is required to estimate the useful remaining life of repurposed batteries

at the beginning of their stationary life, i.e. as well as the vehicular EOL, and to

project the degradation rate of these batteries in the new application before being

recycled. Moreover, the framework calculates the energy storage capacity required for

integrating intermittent wind power to produce constant output power.
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2.3.2.1 EOL and degradation of PEV battery

Degradation of Li-ion batteries in the automotive life, and then in stationary applica-

tions is influenced by parameters such as charging rate, the DOD, temperature, and

calendar age, and needs validating experimental information. Important to the bat-

tery repurposing framework is to (i) estimate the remaining life of the battery at the

time of removal from vehicles, and (ii) adopt a degradation rate in their secondary life

before being recycled. These factors determine the hours of electric storage available

to be repurposed for a new application. While predicting a realistic scenario for the

capacity loss of Li-ion battery is complex and subject to several parameters, a base

scenario is assumed for the capacity loss per year to represent the available capacity

when the battery is removed from vehicles, and how it fades in the stationary life. In

this study, and to calculate the capacity loss of the batteries in the stationary appli-

cation, the results in [103] are used as a typical degradation pattern. Batteries service

life on vehicles is assumed to be 8 years with remaining capacity of 80% at their vehic-

ular EOL [99, 104, 105]. The framework model can apply degradation rates to study

different scenarios of available repurposed storage capacity from PEVs in their post-

vehicular life. In this work, we also perform a short-duration experimental testing to

obtain an indication and to monitor the aging pattern of used batteries presented in

Chapter 5.

2.3.2.2 Wind energy storage sizing

The proposed framework calculates the size of ESS required to integrate with wind

energy towards the goal of converting intermittent wind to base-load generation. The

goal is not to rely on available capacities for utilities to integrate intermittent renewable
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energy by using existing generators; but the goal is to use such capacity to increase

the RER. Chapter 4 develops a statistical algorithm for ESS sizing for delivering base-

load electricity to a user-selected confidence level. The algorithm proposes different

methods based on parametric and nonparametric statistical models using wind resource

assessment data and available wind turbine information representing different stages of

a wind farm project—from site selection to operational status. The proposed methods

can be used in the framework model to calculate the size of ESS for single or multiple

locations for the region of study. For the case study in this chapter, method M2

developed in Chapter 4 is used. To this end, the model needs to base the calculation on

an actual site in the location of study. We use time-domain wind speed data available

for the location of study. Next step is to calculate the time-domain power data using

a selected wind turbine manufacturer power curve. Having known the power curve

function, f(·), the time-domain wind power is obtained using pi = f(vi). To obtain

the size of ESS, the power rating imbalances between the generated wind power, Pw,

and the desired dispatchable power output, Pd, are calculated:

PESS(t) + Pw(t) = Pd(t), (2.2)

where PESS is the storage power ratings. For this analysis, where the objective is

to produce base-load wind power at a given confidence level, Pd(t) in Equation (2.2)

can be replaced by the firm capacity, p∗. The histogram of the wind power values

is constructed to obtain the relative frequency distribution of the fitted wind power

values, g(p). Therefore, p∗ is computed by

p∗ = E(P ) =
∑
p

p g(p), (2.3)
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where E(·) is the mean of the probability distribution function (pdf). Next step is to

calculate the energy charges and discharges experienced by ESS in delivering the firm

capacity of the turbine. To achieve this, the energy imbalances are calculated as the

net difference between the firm capacity and the generated wind power over the span

of individual time intervals given by

E
ESS

(ti) =
(
p∗ − Pw(ti)

)
·∆ti , (2.4)

where E
ESS

(ti) is the calculated state of energy of ESS at time ti, and ∆ti is the span

of the corresponding time interval. The sum of consecutive occurrences of individual

energy imbalances forms the energy charges and discharges of ESS over the time period

of study. To apply different confidence levels to the calculated ESS capacity, we use

the probability distribution of the energy ratings. The histogram of the calculated

ESS energy charges and discharges is created to test different statistical distributions.

Chapter 4 shows that the best fit to the observed energy values of ESS is obtained using

the Laplace distribution. By determining the parameters of the fitted distribution to

the calculated energy values, different confidence levels can be applied to the size of

ESS.

2.4 Chapter summary

We proposed the battery repurposing of PEVs that can effectively integrate electrified

transportation and intermittent renewable energy. A review of the literature associ-

ated with the battery repurposing framework was provided in this chapter. The com-

ponents of the framework and the development of the simulation model implemented

in MATLAB R© were explained. Chapter 6 provides the results of the framework simu-



2.4 Chapter summary 34

lation for a studied case of Canada followed by a discussion. The results will show that

PEV battery repurposing further increases the RER by 1.65–4.11% in 2050 through

addressing the new charging loads of PEVs by base-load wind power generation.



Chapter 3

Wind Power Curve Modeling

Wind turbine power curve modeling is an important tool in turbine performance mon-

itoring and power forecasting. There are several statistical techniques to fit the em-

pirical power curve of a wind turbine which can be classified into parametric and

nonparametric methods. In this chapter, we study four of these methods to estimate

the wind turbine power curve, which will be used in Chapter 4 to calculate the size

of ESS. Polynomial regression is studied as the benchmark parametric model, and is-

sues associated with this technique are discussed. The locally weighted polynomial

regression method is then introduced, and shows its advantages over the polynomial

regression. Also, the spline regression method is examined to achieve more flexibility

for fitting the power curve. Finally, we develop a penalized spline regression model to

address the issues of choosing the number and location of knots in the spline regression.

The performance of the presented methods is evaluated using two simulated data sets

as well as an actual operational power data of a wind farm in North America.
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3.1 Wind turbine power curve

The power curve of a wind turbine presents the electrical power output ratings of

the machine for different wind speeds [106]. A typical wind turbine power curve has

three main characteristic speeds: cut-in (vc), rated (vr) and cut-out (vs) speeds. The

turbine starts generating power when the wind speed reaches the cut-in value. The

rated speed is the wind speed at which the generator is producing the machine’s rated

power. When the wind speed reaches the cut-out speed, the power generation is shut

down to prevent damage [107]. Theoretical power curves are supplied by manufacturers

assuming ideal meteorological and topographical conditions. In practice, however,

wind turbines are never used under ideal conditions, and the empirical power curves

could be substantially different from the theoretical ones due to the location of the

turbine, air density, wind velocity distribution, wind direction, mechanical and control

issues as well as uncertainties in measurements. Figure 3.1 shows a typical wind turbine

power curve with three main characteristic speeds.

There are several statistical methods to fit the empirical power curve of a wind tur-

bine [108]. These methods can be classified into parametric and nonparametric tech-

niques [109, 110]. Parametric techniques are based on mathematical models which are

often built by a family of functions with a number of parameters to describe the turbine

power curve [111]. Examples of these models include segmented linear models [112],

polynomial regression [113, 114], and models based on probabilistic distributions such

as four- or five-parameter logistic distributions [110, 115]. Parametric methods are

usually restricted by their nature. Unlike parametric techniques, nonparametric meth-

ods do not impose any pre-specified model, and attempt to produce an estimate of the

power curve that is as close as possible to the observed data subject to the smoothness

of the fit. Such methods have major advantages over parametric methods as they can
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Figure 3.1: A typical wind turbine power curve with three main characteristic speeds.
The turbine starts generating power when the wind speed reaches the vc value, and
produces the machine’s rated power at vr. The turbine is shut down when the wind
speed reaches the vs speed.

accurately model a wide range of possible shapes of power curves. Examples of non-

parametric techniques include neural networks (e.g., generalized mapping regressor,

and feed–forward multi-layer perceptron [116]), fuzzy logic methods (e.g., fuzzy clus-

ter centre models [117]), and data mining methods (e.g., the multi-layer perception,

the random forest, and the k-nearest neighbour [118]). No one model fitting approach

dominates all others over all possible observations obtained from different wind tur-

bines. On a particular data set, a specific method might work best, but on other data

sets other methods might be more applicable. Therefore, it is important to investigate

the performance of different statistical procedures for power curve fitting, and decide

which method produces better results for a given data set.

This chapter focuses on wind turbine power curve modeling based on available op-

erational output power data using four parametric and nonparametric methods. We

present polynomial regression as a benchmark parametric method for power curve fit-
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ting. This method has been used extensively in the literature, however, suffers from

its global nature and sensitivity to anomalies within observations. In this method, one

usually needs a high degree polynomial regression model to provide a good fit to the

observed data set. Fitting a high degree polynomial regression model results in a good

fit to the observed data set but may overfit the data points [119], and the fitted power

curve will closely follow the noise of the power generating system. To avoid such prob-

lems, we propose using the locally weighted polynomial regression as a nonparametric

method, and study some of its properties on simulated as well as real data sets. Cubic

spline regression is another nonparametric method which has been introduced for wind

turbine power curve fitting [120, 121]. However, there are a number of practical issues

with this method such as choosing the number and the location of knots to fit the

cubic spline model. In addition, while these models perform well for wind turbines

with smooth power curves, their performance outside the boundary knots could be

undesirable. Natural cubic spline regression is proposed to improve the performance

of the cubic spline regression models outside the boundary knots. Finally, we develop a

penalized spline regression model which provides an enhanced performance compared

to the spline regression by addressing the challenge of choosing the number and the

location of knots. We note that the nonparametric methods developed in this work are

more flexible, less sensitive to anomalies within observations, easier to implement, and

computationally more feasible compared to other methods in the literature. While our

proposed methods show promising results for modeling the wind power generation, one

might also be able to use our results to obtain efficient and easy-to-implement methods

for characterizing wind turbine power curves which can be used in other applications

such as wind power forecasting and on-line monitoring of power curves for detecting

anomalies in a wind turbine power generation process.

Section 3.2, discusses different parametric and nonparametric power curve estimation
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methods by introducing two typical power curves and simulating two random data sets

with normal errors. We then present the theoretical foundation of each method, and

apply them to the simulated data sets. Section 3.3 presents actual operational data

sets of a wind farm in North America, and investigate the performance of each method.

The results of the proposed techniques and the evaluation metrics are also presented.

Section 3.4 provides a summary of the chapter and some concluding remarks.

3.2 Power curve estimation

A wind turbine produces electrical power by converting the instantaneous power of

wind to mechanical rotation of the turbine’s rotor, which drives an electrical generator

to produce electricity. The generated electrical power available from the mass flow

rate of air through the turbine blades is given by

Pe =
1

2
η Cp ρAV

3, (3.1)

where Pe is the electrical power produced by the wind turbine in W, η is the machine’s

overall efficiency, Cp is the dimensionless power coefficient representing the theoretical

amount of mechanical power that can be extracted by the turbine rotor, ρ is the air

density in kg/m3, A is the turbine rotor area in m2, and V is the wind speed in

m/s [82, 122]. The power coefficient is a function of turbine blade tip speed ratio, λ,

and the blade pitch angle, θ [123]. The maximum theoretical mechanical power that

can be extracted by wind turbines is 0.5926, and is known as the Betz limit [124].

In this section, we characterize the machine’s power curve based on actual gener-

ated power data using four parametric and nonparametric methods. Wind speed and
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power data sets, (vi, pi), are simulated from the additive model pi = f(vi) + εi with

contaminated noise, where f(·) represents the manufacturer power curve. In paramet-

ric regression models the function f(vi), which shows the expected value of power pi

at a given wind speed vi, is specified in advance by a mathematical model that can

be characterized by a number of parameters which should be estimated using the ob-

served data. In nonparametric regression models, the function f(·) is left unspecified,

other than being smooth and continuous. The objective of nonparametric regression

analysis is to estimate f(·), rather than estimating some parameters. These methods

are often called scatter plot smoothing in the statistical literature. Two wind turbines

are studied to represent two different typical shapes of the power curve: wind turbine

model V82 and model FL–255 with the rated capacity of 1650 kW and 250 kW, re-

spectively, manufactured by Vestas Wind Systems A/S and Furlander AG. Figure 3.2

shows theoretical power curves for these turbines with the scatter plots of simulated

observations from each power curve. For each case, the observed wind power at a

given wind speed is generated from a normal distribution with the mean equal to the

manufacturer power curve and a constant standard deviation σε, where σε = 100 for

turbine model V82 and σε = 20 for turbine model FL-255. Each data set consists of

a total number of 720 pairs of observations, denoted by (vi, pi), i = 1, . . . , n = 720.

The wind speed data is generated from a Weibull distribution representing the hourly

wind distribution of the wind farm studied in Section 3.3.

3.2.1 Polynomial regression

Polynomial regression has been extensively used in the literature to estimate the power

curve of wind turbines. This model can be considered as a standard extension of the
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Figure 3.2: The manufacturer wind turbine power curves for (a) turbine model V82
and (b) turbine model FL-255 with the scatter plots of 720 generated wind speed and
hourly produced power for 1 month, assuming normally distributed noises about the
manufacturer power curves with standard deviations σε = 100 and σε = 20, respec-
tively.
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linear regression pi = β0 + β1vi + εi, with a polynomial function

pi = β0 + β1vi + β2v
2
i + . . .+ βkv

k
i + εi, (3.2)

where εi is the error term. To estimate the parameters β0, . . . , βk, based on a sample

of size n, we can write the model in Equation (3.2) as

P = Vβ + ε, (3.3)

where Pn×1 = (p1, p2, . . . , pn)>, β(k+1)×1 = (β0, β1, . . . , βk)
>, εn×1 = (ε1, ε2, . . . , εn)>,

and

Vn×(k+1) =



1 v1 · · · vk1

1 v2 · · · vk2
...

...
. . .

...

1 vn · · · vkn


.

The least squares method is used to estimate the unknown parameters β by minimizing

the residual sum of squares (RSS):

RSS(β) =
n∑
i=1

(pi − β0 −
k∑
j=1

βjv
j
i )

2

= (P−Vβ)>(P−Vβ), (3.4)

which is a quadratic function of the unknown parameters β. Differentiating RSS(β)

with respect to β, we solve

∂RSS(β)

∂β
= −2V>(P−Vβ) = 0, (3.5)
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where V> stands for the transpose of V, and obtain the least squares estimator of β

by

β̂ = (V>V)−1V>P. (3.6)

The fitted power curve at a specific wind speed value vi is f̂(vi) = Viβ̂, where Vi =

(1, vi, v
2
i , . . . , v

k
i ) is the i-th row of the matrix V. To obtain the degree of the polynomial

regression, we use the cross-validation technique. The main idea of this technique is

to divide the available observations into two sets: a training set and a validation

set. First, observations in the training set are used to train the polynomial regression

model how to estimate the power curve. Then, the validation set is used to test the

model. Given the observed wind speed and power data, the use of a fitted polynomial

model is warranted if it results in a low test error rate. We apply a 10-folded cross-

validation by randomly dividing the observations into 10 folds of approximately equal

sizes. Each time, a group of observation is considered as a validation set, and the

remaining groups are used for the purpose of training a polynomial model of a specific

degree for estimating the power curve. The 10-fold cross-validation is then computed

by

CV(10) =
1

10

10∑
i=1

MSPEi, (3.7)

where MSPEi is the mean squared prediction error associated with the i-th test group.

Figure 3.3 shows the validation error rates for polynomials of degrees up to 10 for

each turbine. We observe that for turbine model V82 10-fold cross-validation curve

has a minimum at k = 8, while the CV(10) curve is rather flat beyond k = 5. The one

standard error rule is used in conjunction with cross-validation and choose a model with

an error no more than one standard error above the error of the best model [119]. Here,
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to prevent overfitting the scatter plots, polynomial regression models with k = 5 and

k = 6 are used for modeling the power curves of turbines V82 and FL-255, respectively.

Figure 3.4 shows the fitted polynomial regression models for turbine model V82 with

degrees 4 and 5, and turbine FL-255 with degrees 6 and 7.

3.2.2 Locally weighted polynomial regression

Polynomial regression is limited by its global nature where the fitted value of power at

a given speed v0 strongly depends on all data values even those vis that are far from v0.

Also, it is not easy to achieve a functional form in a specific wind speed region without

sacrificing the goodness of the fitted curve in other regions. In addition, polynomials

are more sensitive to anomalies within the data. One way to avoid such problems

is to fit a local regression model at a target point v0. Locally weighted k-th order

polynomial regression model solves a separate weighted least squares problem at each

target wind v0 by finding β̂(v0) as follows

β̂(v0) = arg min
β

n∑
i=1

Ks(v0, vi)(pi − β0 −
k∑
j=1

βjv
j
i )

2

= arg min
β

(P−Vβ)>Ws(v0)(P−Vβ) (3.8)

where Ws(v0) = diag(Ks(v0, v1), . . . ,Ks(v0, vn)) is a diagonal matrix, and Ks(v0, vi) is

the smoothing kernel function. Using Ks(v0, vi), data points nearest to v0 are given

the highest weights and those farther away are given lower weights. This method is

resistant against outliers by assigning low weights to observations which generate large
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Figure 3.3: Cross-validation technique is used on each wind power data set in order to
estimate the error rate that results in predicting the power using polynomial functions
of wind speed. (a) shows a 10-fold cross-validation mean squared test error estimate
for turbine V82, and (b) is that for turbine FL255.
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Figure 3.4: Fitted polynomial regression models for (a) turbine model V82 with degrees
4 and 5, and (b) for turbine model FL-255 with degrees 6 and 7. The black dashed
curves are theoretical power curves from the manufacturers.
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residuals [125]. For this analysis, we use the tri-cube smoothing kernel function

Ks(v0, vi) =


(

1−
∣∣vi−v0

s

∣∣3)3 , if |vi − v0| ≤ s,

0, otherwise.
(3.9)

However, one can also use other kernel functions such as the Gaussian kernel function.

β̂(v0) is computed for each v0 as follows

β̂(v0) = (V>Ws(v0)V)−1V>Ws(v0)P. (3.10)

Also, the corresponding estimated power at wind speed v0 is

f̂(v0) = V0(V
>Ws(v0)V)−1V>Ws(v0)P

=
n∑
i=1

li(v0; s) pi, (3.11)

where V0 = (1, v0, v
2
0, . . . , v

k
0) and the term li(v0; s) combines the local smoothing

kernel Ks(v0, ·) and the least squares operation for fitting the polynomial regression.

The most important component of this method is the choice of the span s which controls

the flexibility of the non-linear fit. One can interpret s as the fraction of observations

used in constructing the local fit at any point v0. Small values of s will produce more

local fits while large values results in more global fits using all the observations and

the resulting model will be similar to the polynomial regression.

The cross-validation technique is used to obtain the optimum value of s for each data

set, illustrated in Figure 3.5. In this figure, the optimum degree of the smoothness

(span) parameter for linear and quadratic locally weighted polynomial regression mod-

els are obtained as the points resulting the minimum of the graphs.
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Figure 3.5: Cross-validation technique is used to find the optimum degree of smooth-
ness (span) parameter for linear and quadratic locally weighted polynomial regression
models for (a) turbine model V82, and (b) turbine model FL-255.
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Figure 3.6 shows the locally weighted linear and quadratic regression models of power

on wind speed for observations generated by turbines V82 and FL-255. By comparing

Figure 3.4 with Figure 3.6, we observe that locally weighted polynomial regression

models reduce the bias of polynomial regression models, especially at the boundaries.

This is a well known property of locally weighted regression models over their corre-

sponding polynomial regression models [126, 125]. To be more specific, by using the

Taylor expansion of f̂(v0), one can show that the bias of f̂(v0) will only have compo-

nents of degree (k + 1) and higher. For example, local linear regression fits tend to be

biased in regions of curvature of true f(·), and locally weighted quadratic regression is

generally able to correct this bias [127]. However, the bias reduction is obtained at a

cost of variance increase. To see this, one can show that assuming V ar(εi) = σ2 and

that εi’s are independent with mean zero, then V ar(f̂(v0)) = σ2
∑n

i=1 l
2
i (v0; s), where

li(v0; s) is the vector of equivalent kernel weights at v0 and
∑n

i=1 l
2
i (v0; s) increases

with the degree of polynomial k. Therefore, for choosing k, one needs to pay careful

attention to the bias-variance tradeoff of the fitted models.

3.2.3 Spline regression

Locally weighted polynomial regression method could result in an appropriate approx-

imation to the manufacturer power curve. However, in practice, we might not have

enough control on the curvature of the fitted power curve to provide a desirable ap-

proximation to the nonlinear nature of the relationship between the generated power

and the wind speed. One way to achieve more flexibility and provide more control on

the curvature of the fitted power curve is to use piecewise polynomials. A piecewise

polynomial regression involves fitting separate low-degree polynomials over different

regions of the wind speeds. To this end, we need to specify K different breakpoints,
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Figure 3.6: Locally weighted linear and quadratic regression models for the power data
sets generated from the theoretical power curves of (a) turbine model V82, and (b)
turbine model FL-255. The black dashed curves are theoretical power curves from the
manufacturers.



3.2 Power curve estimation 51

known as knots, throughout the range of the wind speeds; and then fit K + 1 differ-

ent polynomial regression models. To fit a smooth and continuous piecewise degree-k

polynomial regression, we need to put the constraints that the first k−1 derivatives of

the fitted power curve to be continuous. This can be achieved by using the polynomial

spline regression function which is defined as:

pi = β0 +
k∑
r=1

βrv
r
i +

K∑
j=1

βk+j(vi − ζj)k+ + εi, (3.12)

where k ≥ 1 is the order of spline, ζ1, . . . , ζK are a set of pre-specified knots, and the

function (·)k+ denotes a truncated power function as follows

(vi − ζj)k+ =

 (vi − ζj)k, vi > ζj,

0, otherwise.
(3.13)

The most popular spline regression is the cubic spline corresponding to the choice of

k = 3 in Equation (3.12). Cubic spline regression models have been used for power

curve modeling by [128], and are reliable to predict wind turbine power with smooth

power curves. A cubic spline is a curve made up of sections of cubic polynomial joined

together so that they are continuous in value as well as the first and second derivatives.

As in Equation (3.12), the basic way to represent a cubic spline is to start off with power

function basis v, v2 and v3 for cubic polynomial, and then add one truncated power

series basis function per knot. Figure 3.7 shows truncated linear, cubic and quintic

power function basis for spline regression on [0, 1] with knots at {0.1, 0.3, 0.5, 0.7, 0.9}.

Note that for a sample of size n, the general spline regression model in Equation (3.12)

can be written as

P = Zβ + ε, (3.14)
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Figure 3.7: Truncated linear, cubic and quintic power function basis on [0,1] for a cubic
spline regression model with knots at 0.1, . . . , 0.9 with the step of 0.2.

with Zn×(K+k+1) = (Vn×(k+1),Un×K), where Un×K is a matrix with elements (vi−ζj)k+,

i = 1, . . . , n and j = 1, . . . , K, as follow

Un×K =



(v1 − ζ1)k+ (v1 − ζ2)k+ · · · (v1 − ζK)k+

(v2 − ζ1)k+ (v2 − ζ2)k+ · · · (v2 − ζK)k+
...

...
...

...

(vn − ζ1)k+ (vn − ζ2)k+ · · · (vn − ζK)k+


.

Hence, the model parameters can be estimated by the least squares method to obtain

β̂ = (Z>Z)−1Z>P, (3.15)

and the fitted power curve at speed vi is f̂(vi) = Ziβ̂, where Zi = (1, vi, , . . . , v
k
i , (vi −

ζ1)
k
+, . . . , (vi − ζK)k+) is the i-th row of the matrix Z.

The normal equations associated with the truncated power basis are highly ill-conditioned

resulting in inaccuracies in the calculation of β̂. For computational purposes, we use
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Figure 3.8: Linear, cubic and quintic B-splines on [0, 1] corresponding to knots 0.4,
0.8.

the B-spline basis and re-formulate Equation (3.12) as

pi =
k+K∑
j=0

βjB
k
j (vi) + εi, (3.16)

or equivalently, P = Bβ+ε, where B is a matrix with its (i, j)-th element being Bk
j (vi)

where

Bk
j (vi) =

(vi−ζj)
(ζj+k−ζj)

Bk−1
j (vi) +

(ζj+k+1−vi)
(ζj+k+1−ζj+1)

Bk−1
j+1 (vi),

for j = −k,−k + 1, . . . , K, ζ0 = ζ−1 = . . . = ζ−k = min{vi, i = 1, . . . , n} and ζK +

1 = max{vi, i = 1, . . . , n}. Also B0
j (vi) are the natural basis for piecewise constant

functions. Figure 3.8 shows samples of linear, cubic and quintic B-splines on [0,1] when

there are two knots at points 0.4 and 0.8.

The least squares estimates of β is then given by

β̂ = (B>B)−1B>P, (3.17)
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which is more feasible for computational purposes. For other formulations of the

spline regression see [129]. As depicted in Figure 3.9, spline regression often leads to

superior results over polynomial regression. This is because spline regression introduces

flexibility by increasing the number of knots but keeping the degree of polynomial

fixed. If the function f(·) changes rapidly in a region of v, one can add more knots

to capture the change. However, spline regression tends to behave erratically beyond

the boundary knots compared with the corresponding global polynomial regression

in those regions [127]. Natural spline regressions, which are constrained to be linear

beyond the boundary knots, provide a useful tool to overcome this problem. Figure 3.9

shows the natural cubic spline power curve models fitted to the power data for turbines

V82 and FL-255 when using 3, 10, and 20 equally spaced knots. One can observe that,

if the the number and location of knots are chosen badly, spline regression will result

in a poor fit. Several methods are proposed in the literature to obtain algorithms for

optimizing over the number and location of knots, as shown by [130].

3.2.4 Penalized spline regression

To address the challenge of choosing the number and the location of knots in the

spline regression, we propose to use a penalized spline regression model for fitting

wind turbine power curves. The idea is to use spline regression with a fixed basis

dimension at a size slightly larger than it is necessary (e.g., fixed quantiles of wind

variable), but to control the power curve smoothness by adding a penalty to the least

squares fitting objective. In other words, we fit a power curve to the data points by

minimizing

1

n

n∑
i=1

(pi − f(vi))
2 + λ

∫
{f ′′(t)}2 dt, (3.18)



3.2 Power curve estimation 55

Wind Speed (m/s)

 P
ow

er
  (

kW
)

0
40
0

80
0

12
00

16
00

0 2 4 6 8 10 12 14 16

Power Curve
Natural Spline-3 Knots
Natural Spline-10 Knots
Natural Spline-20 Knots

(a) Turbine V82

0 5 10 15 20 25

0
50

10
0
15
0
20
0
25
0
30
0

Wind Speed (m/s)

 P
ow

er
  (

kW
)

Power Curve
Natural Spline-3 Knots
Natural Spline-10 Knots
Natural Spline-20 Knots

(b) Turbine FL-255

Figure 3.9: Natural cubic spline fits the power curves with 3, 10, and 20 knots for the
power data generated from turbines V82 (a) and FL-255 (b). The black dashed curves
are theoretical power curves from the manufacturers.
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Figure 3.10: Fitted power curves (solid red curve) for (a) turbine V82 and (b) turbine
FL-255 using penalized smoothing spline with the theoretical power curves (black-
dashed curve).
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where λ is a fixed smoothing parameter and f
′′
(·) is the second derivative of f(·).

The first term in Equation (3.18) measures the goodness of fit of the curve while the

second term measures the roughness of f(·). The smoothing parameter λ balances

the trade-off between goodness of fit and roughness of the curve. If the penalty is

zero, we obtain a curve that interpolates the data points. If the penalty is infinite,

we obtain an ordinary least squares fit to the data. The common way of choosing λ

is by cross-validation. In many cases, the penalty term can be written as a quadratic

form of β, i.e.,
∫
{f ′′(t)}2 dt = β>Dβ, where D is a matrix of known coefficients. The

estimated model parameters under penalized spline regression are given by

β̂(λ) = (Z>Z + λD)−1Z>P, (3.19)

and, the fitted power curve is

P̂(λ) = Zβ̂(λ) = Z(Z>Z + λD)−1Z>P = H(λ)P, (3.20)

where H(λ) is the hat matrix. Here, we choose the penalty function to be
∑K

j=1 β
2
p+j,

which results in D = diag(0p+1,1K) [131]. To obtain a suitable value of λ, the gener-

alized cross-validation statistic is used:

GCV(λ) =
MSE(λ)

[1− λn−1trace{H(λ)}]2
, (3.21)

where

MSE(λ) =
1

n

n∑
i=1

(pi − p̂i(λ))2

and p̂i(λ) is the i-th element of P̂(λ) in Equation (3.20). Here, trace{H(λ)} is called

the effective degrees of freedom of the fit. We choose a suitable value of λ by com-

puting GCV(λ) for a grid of λ values and choosing the minimizer over the grid. Fig-
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ure 3.10 depicts the power curves fitted to the simulated observations from turbines

V82 and FL-255 using penalized smoothing spline when the smoothing parameter is

obtained using generalized cross-validation technique. As shown in this figure, penal-

ized smoothing spline provides the best fit, and the obtained power curves are similar

to the manufacturer’s. In the proposed method, the difficulty of choosing the number

and the location of knots in cubic spline regression is reduced to a simple problem,

and can be solved by cross-validation technique.

3.3 Real data application

In this section, we apply the methods in Section 3.2 to proprietary wind power data

of a wind farm in North America. The wind power plant (WPP) includes over five

dozen identical wind turbines with the rated capacity of 1.7 MW and the hub height

of 80 m spread over an area of over 90 km2. The cut-in, rated, and cut-out speeds

of the turbines are 3.5, 13, and 20 m/s, respectively. There are three meteorological

(MET) towers located in the WPP collecting wind speeds, wind directions, air density

and humidity at 10-minute average. We have selected four wind turbines (T1, . . . , T4)

of the WPP to analyze the performance of the presented methods. To more accurately

represent the wind data, turbines T1, T2, and T3 are chosen near the MET towers,

while the turbine T4 is away from the towers. Two raw data sets of 4320 pairs are

used representing 1 month 10-minute averaged data in June-July 2006, and 1 month in

December-January 2007. This offers a more realistic representation of the performance

of the turbines. To investigate the influence of the resolution of the available data, we

also perform the analysis based on the hourly averaged data for the associated time

spans.
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Table 3.1: Classification of the wind power and speed raw data at the location of study.

Type Data Description

1 Data points following the pattern of turbine’s power curve.
2 Data points with high wind speed and low power values.
3 Data points with low wind speed and high power values.
4 Data points with negative wind speed values.
5 Data points with negative wind power values.

Figure 3.11 shows that the measured data of wind power versus wind speed do not

exactly follow the power generation curve provided by the manufacturer. A wind tur-

bine power curve is created by manufacturer through test measurements and under a

standard procedure. The standard procedure is provided by the International Elec-

trotechnical Commission (IEC) for measuring the power performance characteristics of

turbines [132]. The deviation of actual measured wind power data from the turbine’s

power curve can be explained by the difference between the standard test conditions

and the conditions of the actual site. The standard atmospheric test conditions as

well as wind direction, vertical wind speed profile, horizontal uniformity of the wind

speed across the face of the turbine, and aging components are among the influencing

factors [133]. Another influencing parameter is the distance between the MET tower

and the wind turbine where the actual wind speed experienced by the generator may

not exactly match the measured data at the tower. Sensor and other data collection

equipments can also cause erroneous measurements resulting in misrepresentation of

the wind and power data.

Similar to [134], we observe different types of data points in our raw data set that can

be classified as per Table 3.1. Data processing is required to filter the invalid data

points. According to Table 3.1, data type 1 are the desired data points. Types 4 and

5 of data, where negative values for wind and for power observed, are filtered. To

filter out the data types 2 and 3, for each wind speed datapoint, only the power values
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Figure 3.11: Turbine T1 10-minute measured power data vs. measured wind speed.
The manufacturer power curve is shown in dashed line with characteristic speeds:
cut-in (vc = 3.5), rated (vr = 13) and cut-out (vs = 20).

which lie within three standard deviations of the average power value at that speed

are included.

Figure 3.12 shows the obtained scatter plot of 3663 data points from turbine T1 for

one month in winter after performing the filtering procedure. This figure also depicts

the marginal histograms associated with the wind speed distribution on the horizontal

axis and the generated power distribution on the vertical axis are. Figure 3.13 shows

the four models proposed in this thesis applied to the filtered wind speed and the

generated wind power data.

There are several statistical metrics which can be used as appropriate measures of

performance for the fitted power curves such as the root of the mean of squared error

(RMSE), normalized mean absolute percentage error (NMAPE), symmetric mean ab-

solute percentage error (sMAPE), the mean absolute error (MAE), and the coefficient
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Figure 3.12: The scatter plot of the wind speed and the generated power with the
marginal histograms associated with each variable by turbine T1 for one month in
winter.

of determination (R2) [116, 135]. In this work, we use three measures to investigate

the performance of the proposed models. The RMSE is the square root of the mean

of the squared difference between the estimated and the actual power values given by

RMSE =

√√√√ 1

n

n∑
i=1

(pi − p̂i)2 , (3.22)

where pi is the observed wind power and p̂i is the estimated value of the power using

the underlying method.

The NMAPE is the percentage of the mean of sum of the difference between the

estimated and the actual power values over the maximum value of the estimated wind
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Figure 3.13: The scatter plot of the wind speed and the generated power by turbine
T1 for one month in winter with the fitted power curves using proposed methods.

power data. The NMAPE is given by

NMAPE =
1

n

n∑
i=1

|pi − p̂i|
maxnj=1{p̂j}

× 100 , (3.23)

and, the MAE is the mean of the absolute of the difference between actual and esti-

mated values of power given by

MAE =
1

n

n∑
i=1

|pi − p̂i|. (3.24)

By performing the error analysis, the values of RMSE, NMAPE, and MAE for the

polynomial regression, locally weighted polynomial regression, cubic spline, and penal-

ized spline methods are presented here. Table 3.2 shows the results of the analysis for

two data sets representing 1 month 10-minute data in June-July 2006, and 1 month
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in December-January 2007. In this table, the values are obtained for the turbines T1,

T2, and T3 which are located near the three MET towers in the WPP. For the hourly

data, the same data sets are used, and are averaged hourly to investigate the influence

of data resolutions on the error measures. Table 3.2 ranks the performance of all four

methods based on the calculated measures, where the smaller values are desirable. The

ranking numbers are shown in the parenthesis next to the RMSE, NMAPE, and MAE

values. We also provide the overall performance ranking of each method. As shown in

the table, penalized spline regression method outperforms all other methods addressed

in this study. Table 3.2 also suggests that locally weighed polynomial regression is

dominating polynomial regression and cubic spline methods. Comparing the values

of RMSE, NMAPE, and MAE for summer and winter shows the error measures are

greater in the winter data for the same generator. This can be explained by the impact

of weather condition and cold temperature on the atmospheric parameters, and on the

mechanical and overall efficiency of the machine.

Similar to Table 3.2, the values of RMSE, NMAPE, and MAE are shown in Table 3.3

for the proposed methods of the same turbines. In this table, the same data sets are

used, but the 10-minute data are averaged hourly to investigate the influence of data

resolutions on the error measures. As shown in Table 3.3, the overall performance of

the presented models for the hourly data sets is similarly following the performance

ranking of the 10-minute data sets in Table 3.2.

Table 3.4 provides the values of of RMSE, NMAPE, and MAE for turbine T4, which is

the one located away from the MET towers. In this table, the 10-minute and hourly

averaged data sets are used to investigate the influence of data resolution on the error

measures for the proposed methods in the summer and winter periods. As shown in

Table 3.4, the overall performance of the error metrics for turbine T4, similarly follows
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the performance ranking of models for turbines T1, . . . , T3 in Table 3.2 and Table 3.3.

3.4 Chapter summary

Accurate modeling of the wind turbine power curves is an important tool in the wind

energy industry that can be used for assessment and monitoring of the turbine’s per-

formance, power forecasting as well as sizing the storage capacity for wind power

integration. We have presented parametric and nonparametric regression models for

estimating wind turbine power curves. Polynomial regression was used as the bench-

mark parametric method for power curve fitting. We have shown that polynomial

regression models are limited by their global nature, and are very sensitive to outliers.

Also, finding a good fit to the empirical data requires a high degree polynomial re-

gression model which can cause an overfitting to the observed data. Locally weighted

polynomial regression was introduced to address the issues of the global nature in

polynomial regression and its sensitivity to outliers within the observations. Spline re-

gression method, which is based on piecewise polynomial regression models, was then

examined to achieve more flexibility for fitting the power curve. In this method, an

important issue is finding the number and the location of knots to provide a good fit

to the empirical power curve. To this end, we proposed a penalized spline regression

model which reduces these problems to a simple problem of choosing a single param-

eter which can be determined using a cross-validation technique. The performance of

the proposed methods was evaluated based on two simulated random data sets with

normal errors as well as an operational wind power data for a wind farm in North

America. Four wind turbines were selected to analyze the performance of the pre-

sented methods, of which, three turbines are chosen near the MET towers while the

last one is located away from the towers. The accuracy of each method is evaluated
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using the RMSE, NMAPE and MAE metrics. The results of this study suggest that

penalized spline regression method utilized in this study presents a better performance

over the other analyzed methods. The outcome of this study can be used in various ap-

plications such as turbine performance monitoring, power forecasting as well as sizing

the storage capacity for wind power integration.



Chapter 4

Storage Sizing Algorithm

In this chapter, a statistical algorithm is proposed for predicting the size of the energy

storage system required for delivering base-load electricity to a selected confidence

level for a wind farm. The proposed algorithm can be utilized by utilities to assess

wind integration and to investigate better capacity credits for wind farms connected

to the grid, by wind farm operators to potentially increase their return on investment

by designing a base-load wind farm to a selected confidence level, and by financial

institutions to calculate the confidence level for base-load wind farm projects. Methods

introduced are based on parametric and nonparametric statistical models using wind

resource assessment data and available wind turbine information that reflect different

stages of a wind farm project—from site selection to operational status. The proposed

methods apply to isolated and grid connected wind farms. To study the performance

of each method, we apply these to a North America operational wind farm data set.

Averaged 10-minute data are used to calculate the firm capacity of the wind turbine

for each proposed method. The size of the storage system is obtained by calculating
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the energy imbalances in each time interval and integrating these over the study time

horizon. The probability distributions for the values of the occurred charges and

discharges are constructed to enable applying different desired confidence levels. The

results show that for different stages of the wind farm development, and depending on

the available information, the proposed algorithm can properly predict and estimate

size of the energy storage required to deliver constant output power to a user selected

confidence level. We also compare the results the hourly averaged data to investigate

the influence of time intervals on the model output. The comparison shows that while

the results follow a similar pattern, the size of storage varies for different confidence

levels. Similar to Chapter 3, the statistical methods are coded in R programming

software.

4.1 Wind energy and ESS integration

Utilities that have a significant portion of their generation from fossil fuel sources have

realized that a move away from these sources will be required for a more sustainable

future due to CO2 and other harmful emissions [24]. Several studies have investigated

high penetration of intermittent wind power into the electric grids, and have addressed

the main challenge of accommodating high penetration of the intermittent sources, i.e.,

the variability imposed on the power system [136, 137, 138, 139]. Most robust grid sys-

tems today, no matter what the supply mix is, can likely accommodate approximately

25–30% intermittent sources such as wind power without any major changes to the

grid [140, 141]. Larger penetrations of wind and solar renewables on an energy basis

may require the use of storage systems to integrate these intermittent renewables. The

future electric grid can be made 100% renewable with utilizing intermittent renewables,

if their intermittent nature is addressed by the addition of an appropriate amount of
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ESS [141, 142, 143]. As postulated in this chapter, these intermittent renewables can

be “converted” to base-load generation by using appropriately sized ESS to smooth

out their intermittency, allowing penetrations of more renewables. Recent studies show

that wind electricity generation is economically competitive, achieving the lowest lev-

elized cost [11, 15]. The declining costs of ESS can further support utilization of large

scale ESS in power systems. Accurate estimation of the required storage capacity also

provides a more reliable economic analysis for effective integration of wind energy.

This is also true for isolated remote communities who are looking at displacement of

diesel generators due to high costs. The cost formula presented in Chapter 6 shows

how the size and cost of storage system affects the total cost of wind power production

as a base-load generator unit.

In this chapter, methods are presented to perform the ESS sizing calculations each

representing a scenario associated with (i) wind farm project conception, or, (ii) wind

farm operation. In each method, we use statistical models to calculate the required

ESS energy capacity. A data set of wind speed and power values for a wind farm in

North America is used representing 10-minute and hourly averaged data for a duration

of 6 months in 2006 and 2007 to implement the methods and compare the influence of

data resolution on the size of ESS.

Section 4.2 describes the proposed ESS sizing algorithm. In Section 4.3, the first

method is introduced for the scenario where the theoretical power curve is derived

from available wind speed data. Within this method, three different approaches are

presented which require prior knowledge of wind turbine parameters. Section 4.4

presents the ESS sizing case when the turbine is selected and the manufacturer power

curve is known. Section 4.5 considers the case when the wind farm is operational and

the operational wind power data are available. In Section 4.6, we apply these methods
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Figure 4.1: Schematic of integration of wind power, Pw, and power of energy storage
system, PESS, to deliver a base-load or dispatchable power, Pd.

to wind resource and operation data of an actual wind farm. The summary of the

chapter including a discussion on the future of electric grid with renewable energy is

provided in Section 4.7 followed by some concluding remarks .

4.2 Storage sizing algorithm

This section presents the introduced general algorithm for calculating the size of ESS

when the goal is to produce the base-load power of a wind generator in a given location.

Figure 4.1 shows a schematic of integration of wind power, Pw, and power of energy

storage system, PESS, to deliver constant and dispatchable power, Pd. We propose

three different methods, denoted by M1, M2, and M3, and expand on them using

parametric and nonparametric statistical methods techniques that are introduced in

Chapter 3. Each method represents a stage of development of a wind farm, from

conception to operational.

The first method, M1, is performed before the operation of the wind farm and uses

only the wind resource assessment data of the location of study as well as some possible

general information about the characteristics of a generic wind turbine such as vc, vs,
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and vr wind speeds. In this method, M1A represents the case where no information

about the wind turbine is available. M1B assumes that in addition to the time-domain

wind data, vc and vs of a generic wind turbine are known. In M1C , the rated speed of

the generic turbine is also known.

The second method, M2, is similar to M1 except that we additionally have knowledge

of the selected wind turbine power curve for the wind farm, which can be written as

pi = f(vi) where f(·) is known [106].

Method M3 is performed when the actual operational data of the wind farm are avail-

able including the time series of the measured wind speeds and the corresponding

generated power. Thus, these methods cover all possible scenarios for estimating the

capacity of ESS to generate base-load wind power to a selected confidence level.

In the proposed algorithm, the storage sizing procedure is performed using the following

steps:

i. Wind turbine firm capacity calculation: The firm capacity of the wind turbine,

p∗, is determined as the reference value with respect to which, the size of ESS

is calculated. This is the average output power that the generator is producing

intermittently.

ii. Power imbalances calculation: The net difference between the firm capacity of the

turbine p∗, and the wind power, Pw, is calculated.

iii. Energy imbalances calculation: For each time interval, the individual energy im-

balances are calculated by integrating the net power rating over the span of time i.

iv. ESS sizing calculation: The size of each energy charges and discharges is obtained

by summing over consecutive occurrences of individual energy imbalances.
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v. Confidence levels : The histogram of ESS charges and discharges is created to fit

a suitable pdf, and apply different statistical methods to obtain the size of ESS

with different confidence levels. This represents a critical step in performing an

economic assessment to determine the size of ESS.

4.3 M1 based on wind resource assessment data

To obtain the firm capacity of the turbine, we first estimate the pdf of wind speeds by

constructing the histogram of the wind speed data and estimating the parameters of

the pdf of wind speeds. The Weibull distribution is often used to fit the wind speed

data [144, 145, 146] as a unimodal, two parameter family of distribution functions with

the following pdf

fV (v) =

(
k

c

)(v
c

)k−1
e−(v/c)

k

; v > 0, (4.1)

where c > 0 is the scale parameter with the same unit as wind speed, and k > 0

is the dimensionless shape parameter of the distribution [147]. The notation V ∼

Weibull(c, k) is used to denote that V has the Weibull distribution with parameters c

and k. The Weibull distribution with c = 2 reduces to the Rayleigh distribution which

is widely used for fitting the wind speed data [148, 149]. The mean and the variance

of a Weibull random variable are obtained in terms of gamma functions as follow

µ
V

= cΓ(1 +
1

k
) and σ2

V = c2
{

Γ(1 +
2

k
)− Γ2(1 +

1

k
)

}
, (4.2)
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where

Γ(t) =

∫ ∞
0

xt−1 e−x dx, t > 0.

There are several methods to estimate c and k in Equation (4.1), including the max-

imum likelihood (ML) method, the method of moments (MM), and the least square

(LS) method [150, 151]. In this work, we use the ML method to estimate c and k which

has several desirable theoretical properties such as asymptotic optimality and efficiency

for large sample sizes [152]. The ML estimates of c and k are uniquely determined as

follow [153]:

ĉ =

(
1

n

n∑
i=1

vi
k̂

) 1

k̂

, (4.3)

k̂ =

(∑n
i=1 vi

k̂ ln vi∑n
i=1 vi

k̂
−
∑n

i=1 ln vi
n

)−1
. (4.4)

Note that Equations (4.3) and (4.4) need to be computed numerically, or to be ap-

proximated using a Newton-Raphson algorithm [154].

By computing ĉ and k̂ of the fitted Weibull distribution, the pdf of the wind power is

calculated using the theoretical wind power equation for the underlying wind turbine in

the location of study. The wind power distribution can then be used to find the desired

firm power capacity p∗, i.e., the expected value (mean) of the power distribution. We

now use M1A, M1B and M1C to calculate the corresponding pdfs of the wind power.

The idea is to estimate the required ESS capacity in a location prior to the selection

or operation of the wind farm and study the sensitivity of ESS sizing with respect to

the choice of p∗.
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In M1A, we first need to estimate the pdf of the theoretical wind power using the wind

speed Weibull distribution [155, 156]. As shown in Section 3.2 of the previous chapter,

the theoretical wind power from the mass flow rate of air through the turbine blades

swept area is proportional to the cubic of the wind speed and is obtained by

Pw =
1

2
ρ(z, T ) A V 3, (4.5)

where Pw is the theoretical wind power in W, ρ is the air density in kg/m3 as a function

of the altitude z and the temperature T at the site, A is the turbine rotor’s blades

swept area in m2, and V is the wind speed in m/s [107, 123]. In reality, the air density

is stochastic but it is assumed to be known at the site of study, and it’s variability is

negligible. Hence, without loss of generality ρ = ρ(z, T ) is assumed constant. One can

easily rewrite Equation (4.5) as Pw = αV 3, and obtain

V =
3

√
Pw
α
, (4.6)

where α = 1
2
ρA is known. Having known the distribution of wind speeds, the pdf of

the wind power, g(p), can be obtained as follows

g(p) =
k

3
β p

k
3
−1 e−β p

k
3 , (4.7)

where β = (1
c

3

√
1
α

)k. Also, the cumulative density function (cdf), G(p), of generated

wind power is given by

G(p) =

∫ p

0

g(t) dt = 1− e−β p
k
3 . (4.8)
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Now, p∗ can be calculated as follows

p∗ = E(P ) =

∫ ∞
0

p g(p) dp =
1

β
k
3

Γ(
3

k
+ 1), (4.9)

where E(·) is the expected value of the wind power probability distribution. p∗ in

Equation (4.9) can also be computed from the wind speed or its corresponding wind

power frequency tables by replacing the integral with a summation over different values

of power weighted by their corresponding relative frequencies.

In M1B, in addition to the wind resource assessment data, we have knowledge of a

generic wind turbine’s vc and vs, and will apply the dimensionless power coefficient

Cp, representing the theoretical amount of the mechanical power that can be extracted

by the turbine rotor. The power coefficient is a function of turbine blade tip speed

ratio, λ, and the blade pitch angle, θ [123]. The maximum theoretical power that can

be extracted from wind is 0.5926 (the Betz limit [124]). Hence, in Equation (4.6) α

is replaced by 1
2
Cp ρA to account for mechanical power of a generic wind turbine. In

this method, the wind power pdf is modified with respect to the regions where the

power is usable, i.e., the regions before vc (V < vc), and beyond vs (V > vs) where a

wind turbine does not generate power. This results in a new wind power distribution

truncated at pc = 1
2
Cp ρA v

3
c and ps = 1

2
Cp ρA v

3
s as follows

g
T
(p) =


g(p)

G(ps)−G(pc)
for pc ≤ p ≤ ps,

0 for p < pc & p > ps,
(4.10)

where the mean of the usable power under the truncated power distribution in Equa-
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tion (4.10) can be obtained by

E
T
(P ) =

∫ ps

pc

p g
T
(p) dp =

1

G(ps)−G(pc)

∫ ps

pc

p g(p) dp. (4.11)

Numerical techniques must be used to calculate Equation (4.11).

Note that the modified power distribution can be achieved either by directly truncating

the wind speed pdf at vc and vs, or by truncating the power pdf at pc and ps. However,

truncating the power distribution results in a more accurate estimation compared to

first truncating the wind speed distribution [156]. As opposed to M1A, the average

usable power in Equation (4.11) should not be computed from the wind speed or its

corresponding wind power frequency table by replacing the integral with the summa-

tion. This is because the values of vc and vs (or, pc and ps) can fall within the available

frequency classes in the wind speed (or wind power) frequency table which result in

inaccurate calculation of p∗.

In M1C , as the rated speed of the generic wind turbine is available, we account for the

regions where the wind turbine generates its rated capacity by inflating the truncated

wind power distribution at pr = 1
2
Cp ρA v

3
r corresponding to the rated wind speed.

This results in the pr–inflated truncated power distribution as follows

g
IT

(p) =


0 for p < pc & p > ps,

g
T
(p) for pc ≤ p < pr,

G(ps)−G(pr)
G(ps)−G(pc)

for pr ≤ p ≤ ps.

(4.12)

Note that g
IT

(·) is a mixture of a continuous distribution and a mass point which can
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be rewritten as follows

g
IT

(p) = g
T
(p) I[pc,pr](p) +

G(ps)−G(pr)

G(ps)−G(pc)
I[pr,ps](p), (4.13)

where I
A

(p) is the indicator function given by

I
A

(p) =

 1 for p ∈ A,

0 for p /∈ A.
, for any A ⊂ R. (4.14)

Now, the mean of the wind power distribution is obtained by

E
IT

(P ) =

∫ pr

pc

g
T
(p) dp +

G(ps)−G(pr)

G(ps)−G(pc)
pr, (4.15)

where using Equation (4.10), the above equation can be rewritten as

E
IT

(P ) =
1

G(ps)−G(pc)

∫ pr

pc

p g(p) dp+
G(ps)−G(pr)

G(ps)−G(pc)
pr. (4.16)

Similarly, numerical integrations are needed to compute Equation (4.16).

By way of example, suppose V ∼ Weibull(5.95, 3.05) represents the wind speed dis-

tribution of a location of study and assume that α = 1, 350 and Cp = 0.45. Also,

suppose vc = 3.5, vr = 13.5 and vs = 24 m/s. Calculating the output power capacity

following M1A, M1B and M1C approaches returns p∗ = 840.73 kW for the wind power

distribution, p∗ = 520.94 kW for the truncated power distribution and p∗ = 517.59 kW

for the pr-inflated truncated power distribution. It is worth noting how changing vr

affects the value of the output capacity factor in the pr-inflated truncated power dis-

tribution. For example, if vr is changed to 11.5 or 15.5 m/s, p∗ will change to 507.99

or 520.24 kW, respectively, while the values of p∗ under the power distribution as well

as the truncated power distribution remain unchanged.
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The next step in the ESS sizing process, after calculating p∗, is to calculate the power

rating imbalances between the the wind power production Pw and the desired dis-

patchable power output Pd, assumed to be p∗ for a flat base-load power by

P
ESS

(t) = p∗ − Pw(t). (4.17)

where P
ESS

is the power rating of ESS at time t. To obtain the time-domain wind

power data in M1 since the power curve is not available, we use the theoretical formula

in Equation (4.5) for M1A, and apply Cp = 0.45 for M1B and M1C . Later, it is

explained how one can modify Equation (4.17) to calculate p∗ and accordingly, PESS(t)

for methods M2 and M3. Based on Equation (4.17), when the generated wind power

is less (greater) than the desired capacity, P
ESS

is positive (negative) and the storage

system is discharged (charged).

Next is to obtain the energy capacity of the storage system. To achieve this, the

size of the ESS energy charges and discharges over the time period of study should

be calculated. Therefore, we require to calculate energy imbalances over the span of

individual time intervals given by

E
ESS

(ti) =
(
p∗ − Pw(ti)

)
·∆ti, (4.18)

where E
ESS

(ti) is the energy of ESS at time ti, and ∆ti is the span of the corresponding

time interval. In other applications when the goal is to match a variable load, the term

p∗ will be replaced with the variable load PL(ti), which is the power demand at time ti.

Next is the calculation of the size of each occurrence of energy charges and discharges

experienced by ESS over the time horizon T as the sum of consecutive occurrences of
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Figure 4.2: Example of intermittent wind power with individual charge and discharge
occurrences realized by ESS each comprised of i and j energy imbalances in delivering
constant output, p∗, over a sample time horizon T (hours).

individual energy imbalances given by

E
ESS

(t) =


∑
i∈A

(
p∗ − Pw(ti)

)
·∆ti for A =

{
i : (p∗ − Pw(ti)) > 0

}
,∑

j∈B

(
Pw(tj)− p∗

)
·∆tj for B =

{
j : (p∗ − Pw(tj)) < 0

} (4.19)

Figure 4.2 illustrates an example of the individual charge and discharge occurrences

each comprised of i and j energy imbalances.

By the above process, we obtain the ESS energy capacity required to deliver the firm

capacity of the turbine or other grid integration requirements with a confidence of

100%. However, even when wind turbines are not utilized as base-load generators,

the grid operator may need a back-up system for unexpected scenarios. Moreover,

to be more economically competitive with other base-load power generation sources,

it is more reasonable to apply lower confidence levels when deciding on the size of

ESS. Section 4.6 explains how different confidence levels on the capacity of ESS can
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be obtained and then apply the methodology to a real data set.

Note that in method M1, if the original speed data set from the wind assessment is

proprietary or no longer available, one can directly calculate the total energy com-

pensated by the ESS over any time span, e.g., one year. This can be valuable for

economic analysis as well as investment return study of a wind farm especially when

the plant is combined with ESS for higher share of renewable into the electric grid.

To this end, by having knowledge of vc and vs of a generic turbine, and a hypothetical

wind speed, v∗, which corresponds to the turbine’s firm output power capacity or is

provided by an external source, the area under the obtained Weibull distribution is

divided into four regions by the three wind speed values. ESS charging occurs when

turbine is generating more power than v∗. ESS discharging occurs when the turbine is

generating no power or less than desired. On the Weibull distribution, these happen

at three regions: no power generation before vc, no power generation beyond vs, and

between vc and v∗. The size of ESS is calculated by multiplying the percentage of

time where the desired power is not produced. The total capacity of ESS shows the

economic value of the ESS in delivering base-load wind power.

4.4 M2 based on the manufacturer power curve

In method M2, the turbines are now selected for the wind farm, and we have access

to the manufacturer power curve. Similar to M1, this method follows the same steps

of sizing ESS requirements, however, it is different in the first step for calculating the

firm capacity of the turbine. M2 relies on more specific information of a wind turbine

and therefore, is expected to return a more realistic size for the ESS.
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In M2, we first calculate the time-domain power data by plugging in the values of

wind speeds in the manufacturer power curve pi = f(vi) where f(·) is known. The

histogram of the wind power is then constructed to obtain the corresponding wind

power probability distribution. By achieving the pdf of the wind power distribution,

p∗ is computed by

E∗(P ) =
∑
p

p g∗(p) (4.20)

where E∗(·) is the mean, and g∗(p) is the wind power relative frequency distribution

obtained from calculated power values. The next steps are the same as M1.

4.5 M3 based on the empirical power curve

In method M3, as the time-domain operational wind power data are available, we need

to obtain an empirical wind power curve of the generator. Several parametric and non-

parametric techniques can be used to fit the empirical power curve of a wind turbine.

In this chapter, we use the locally weighted polynomial regression and penalized spline

regression which are introduced in Sections 3.2.2 and 3.2.4 to be efficient methods for

modeling wind turbine power curves proposed in [157]. For the sake of completeness

of this chapter, the theories of these two regression models are briefly repeated for the

ESS sizing method M3. It is expected that M3 provides more realistic results as it uses

the actual power data of the operational wind farm.
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4.5.1 Locally weighted polynomial regression

In this model, to estimate the wind turbine power curve, we solve a separate weighted

least square polynomial regression problem at each target wind value v0 by finding

β̂(v0) as

β̂(v0) = arg min
β

(P−Vβ)>Ws(v0)(P−Vβ), (4.21)

where β = (β0, . . . , βk)
>, P = (p1, . . . , pn)>, V = (1, v1, . . . , vn)>, and Ws(v0) =

diag(Ks(v0, v1), . . . ,Ks(v0, vn)) is a diagonal matrix. Here, Ks(v0, vi) is the smoothing

kernel function that gives more weight to data points near v0 and less weight to those

farther from v0, and hence is resistant against outliers [125]. In our analysis, we use

the tri-cubic smoothing kernel function as in Equation 3.9, and compute β̂(v0) for each

v0 as β̂(v0) = (V>Ws(v0)V)−1V>Ws(v0)P. The estimated power at wind speed v0 is

then obtained by

f̂(v0) = V0(V
>Ws(v0)V)−1V>Ws(v0)P (4.22)

where V0 = (1, v0, v
2
0, . . . , v

k
0). Cross-validation technique is used to obtain s and

control the flexibility of the fit [157].
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4.5.2 Penalized spline regression

This method suggests fitting separate low-degree polynomials over different regions of

the wind speed using a polynomial spline regression model as pi = f(vi) + εi, where

f(vi) = β0 +
k∑
r=1

βrv
r
i +

K∑
j=1

βk+j(vi − ζj)k+, (4.23)

k ≥ 1 is the order of spline, ζ1, . . . , ζK are a set of pre-specified knots, and (vi− ζj)k+ =

(vi − ζj)k I[ζj ,∞)(vi).

Following [157], we use a fixed basis dimension at quantiles of the wind speeds, and

control smoothness of the curve by adding a penalty to the least squares fitting objec-

tive, which can be represented as β>Dβ =
∫
{f ′′(t)}2 dt, where D is a matrix of known

coefficients and f
′′
(·) is the second derivative of f(·). This is done by the following

minimization:

1

n

n∑
i=1

(pi − f(vi))
2 + λβ>Dβ, (4.24)

when λ is a fixed smoothing parameter. The estimated model parameters are obtained

by β̂(λ) = (Z>Z + λD)−1Z>P. which result in the estimated power curve

P̂(λ) = Zβ̂(λ) = Z(Z>Z + λD)−1Z>P = H(λ)P, (4.25)

where H(λ) is the hat matrix. To obtain λ, as shown in Section 3.2.4 of Chapter 3,

the generalized cross-validation technique is used [131].

Figure 4.3 illustrates the flowchart of the ESS sizing using methods M1, M2 and M3

proposed in this chapter.



4.6 Real data application 86

!Input!wind!!
speed!data


Operational!
power!data?


Estimate!Weibull!
distribution


Estimate!nominal!
wind!power!pdf


Calculate!the!:irm!
capacity,!p*


Calculate!nominal!
wind!power


Calculate!ESS!power!!!
&!energy!imbalances


Calculate!ESS!energy!
charge!&!discharges


Apply!con:idence!
levels


Obtain!the!ESS!size


Input!power!
curve!data


Model!empirical!!!!!
power!curve


No

No


Yes

Forecast!operational!

wind!power


Generic!vc!&!
vs!available?


Yes


Compute!theoretical!
wind!power!pdf


Calculate!theoretical!
wind!power


Generic!vr*
available?


Compute!truncated!
wind!power!pdf


Compute!truncated!
in:lated!wind!pdf


No
 M2
 M3


Wind!turbine!
selected?
 Yes


Estimate!empirical!
wind!power!pdf


M1


Yes


No


Figure 4.3: Flowchart of the procedures in the proposed methods of ESS sizing to cover
all possible scenarios for a wind project. These methods allow to predict the capacity
of ESS for base-load wind power generation for a given confidence level.

4.6 Real data application

We use a wind resource assessment data set as well as a proprietary operational wind

power data to investigate the performance of each proposed method. The data set

represents 10-minute averaged wind speed and wind power of 25920 points for a du-
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ration of 6 months in 2006 and 2007 of a wind farm in North America. We also use

hourly averaged data and repeat the numerical analysis to assess the influence of data

resolution on the size of ESS. Regarding the data set available for this analysis, it is

recognized that industry standards usually require one year hourly wind data be used

in an analysis of extreme wind variations over the life of a wind farm. Moreover, the

data set are correlated to some longer term, e.g., 20+ year wind data from a near-by

MET tower to determine these extremes and thus the size of ESS to smooth out the

power production. However, in this analysis and for the purpose of developing the

methodology of the proposed statistical algorithm a 6 month data set is deemed ac-

ceptable. To start the ESS sizing with M1, Equations (4.3) and (4.4) are numerically

solved and the estimated parameters of the Weibull distribution (ĉ and k̂) associated

with the histogram of the wind speed data are obtained as 2.55 m/s and 8.86 for the

10-minute data. We assume that the characteristic information of the generic turbine

in M1 are similar to those of the selected turbine’s in M2 and M3 to more accurately

account for the proposed methods’ influence on the outcome. For M1A, the turbine’s

blades swept area and the air density are input to Equation (4.5) which equal to

5, 281 m2 and 1.225 kg/m3. By setting vc = 3.5 m/s and vs = 20 m/s in M1B as well

as vr = 13 m/s in M1C , the theoretical pdfs of wind powers are obtained using Equa-

tions (4.7), (4.10) and (4.13). Using Equations (4.9), (4.11) and (4.16), the values of

p∗ are 2333, 1145, and 1107 kW for M1A, M1B, and M1C , respectively. The theoretical

time-domain wind power data are then computed using Equation (4.5) in M1A, and

where α is replaced by 1
2
Cp ρA in M1B and M1C .

In M2, the manufacturer power curve of the generator is available. The selected wind

turbine has the rated capacity of 1650 kW with the hub height of 80 m. The nom-

inal wind power data are computed using P (t) = f(V (t)) where f(·) represents the

manufacturer power curve which is known and V (t) refers to the wind speed at time
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Figure 4.4: Comparison of wind turbine power curves in the theoretical, theoretical
Betz limit power truncated at the generic vc and vs, and inflated at vr, the manufacturer
wind power, and the two empirical curves obtained by locally weighted polynomial and
penalized spline regression.

t. The distribution of wind power is estimated using the nominal time-domain power

data with the mean of the estimated distribution being 883 kW.

In M3, we use the actual operational wind power data which are recorded at MET

towers located in the wind farm. We select a wind turbine near one of the MET

towers to more accurately present the wind speed as well as the power data. The

empirical power curve is estimated using locally weighted polynomial and penalized

spline regression methods described in Section 4.5. The firm capacity values of the

turbine corresponding to each model are 716 kW and 715 kW, respectively.

Figure 4.4 shows the power curves for the theoretical power in wind (M1A), theoretical

Betz limit power truncated at the generic vc and vs (M1B), and the inflated at vr

(M1C), as well as the manufacturer wind power (M2), and the two empirical curves

obtained by LR and PS methods (M3). To perform the ESS sizing methods, we need
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to calculate the power rating imbalances using Equation (4.17). The energy capacity

of the ESS is obtained by Equation (4.19). Figure 4.5 shows the theoretical power

outputs in methods M1A, M1B and M1C versus the operational wind power 10-minute

data. The figure also shows the calculated energy charges and discharges of the ESS

for M1C . Figure 4.6 shows similar results for M2 and M3. In practice, it may not

be economically feasible to account for 100% of the capacity of ESS for integration

with intermittent wind power. Hence, one needs to use the probability distribution of

the energy ratings, and apply desired confidence levels. To this end, the histograms of

the calculated energy capacity of ESS charges and discharges are created. By testing

different statistical distributions, the best fits to the observed energy and power values

of ESS are achieved using a Laplace(µ, σ) distribution with pdf

fX(x;µ, σ) =
1

σ
e−
|x−µ|
σ ; x and µ ∈ R, σ > 0, (4.26)

where µ is the location parameter and σ is a scale parameter. The ML estimation

method is used to obtain the estimators of µ and σ as follow [158]

µ̂ = median(Xi) and σ̂ =
1

n

n∑
i=1

|Xi − µ̂|, (4.27)

where Xi represent EEES at time ti.

The pdf of the energy values of ESS, and estimated values µ̂ and σ̂ are then used

to obtain different tolerance intervals for the size of ESS given by [L,U ], where L =

L(X1, . . . , Xn) and U = U(X1, . . . , Xn) represent the lower and upper limits of the

interval, respectively, with L < U . In general, an interval [L,U ] is a (P, 1− α)-

tolerance interval if it is constructed so that the fraction P of the population values
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lies within the interval with 100(1− α)% confidence, i.e.,

P
(∫ U

L

f(x) dx ≥ P

)
= 1− α, (4.28)

where P is called the content of the interval, and [L,U ] is referred to as a P-content

tolerance interval with the confidence level 100(1− α)%.

By having µ̂ and σ̂, one can use the method proposed by [159] to obtain a 100(P, 1−α)%

tolerance interval for the distribution of X as

L = µ̂− Λ σ̂ and U = µ̂+ Λ σ̂ , (4.29)

where

Λ ≈ −n Λp +
z(1−α/2)

n− z2(1−α/2)
×
√
n
(
1 + Λ2

p

)
− z2(1−α/2),

such that n is the sample size, z2(1−α/2) is the (1 − α/2)-th quantile of a standard

normal distribution, and Λp = ln (1 − p). In our application, we use µ = µ̂ = 0 as

the Laplace distribution for ESS values should be centred around zero. Figure 4.7

shows the histogram of the calculated energy values fitted with a Laplace distribution,

and a Q-Q plot to assess the goodness of the fitted Laplace distribution to the ESS

energy values. Table 4.1 presents a summary of the calculated ESS energy capacities

using 10-minute data set for the presented methods for 70-, 80-, 90- and 95%-content

tolerance intervals. The confidence level (1 − α) is chosen to be 90% and 95% for

comparison.

To investigate the influence of the resolution of the available data on the calculated ESS

sizes, we have repeated the methods presented in this work on 20-minute, 30-minute
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Figure 4.7: (a) The histogram of the ESS energy values in kWh and the fitted Laplace
distribution, and (b) the Q-Q plot to investigate the goodness of the fit.
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and 60-minute averaged wind speed and wind power data. While the patterns of the

calculated ESS capacities in the all methods are similar to each other, the capacity

sizes vary significantly which can be justified by the impact of the data resolution.

Table 4.2 provides a summary of the calculated ESS energy capacities for the hourly

averaged data.

Confidence intervals are commonly used in the literature to apply user-selected con-

fidence levels for different applications. However, and in contrast to confidence inter-

vals that provide information concerning the unknowns parameters of the underlying

distribution, a tolerance interval provides information on the entire population. In

particular, a tolerance interval is an interval for a specific proportion of the sampled

population, not its mean, variance, and etc. In confidence intervals, the width of the

interval is entirely due to the sampling error where as the sample size goes to infinity,

the width of the interval approaches zero. But, the width of the tolerance interval is

due to both sampling error and the variance in the population. As the sample size

increases, the tolerance interval limits approach to the population percentiles.

Table 4.3 provides a summary of the ESS energy capacities for the presented methods

when the methods are repeated using confidence intervals of 90% and 95% instead of

the tolerance intervals for the purpose of comparison.

4.7 Chapter summary

We have presented a statistical algorithm for energy storage sizing required to integrate

intermittent wind power. The proposed mathematical framework contributes towards

generating base-load electricity to a selected confidence level for a wind farm. Three
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Table 4.3: ESS energy capacities in kWh for 10-minute and hourly data based on
1− α = 90% and 1− α = 95% confidence intervals.

Method 10-minute Hourly

90% 95% 90% 95%

M1A 15,556 20,252 49,371 64,233

M1B 7,204 9,373 22,578 29,375

M1C 6,548 8,519 20,717 26,953

M2 4,419 5,750 12,416 16,154

M3A 4,278 5,566 12,982 16,890

M3B 4,283 5,572 12,726 16,557

methods were proposed based on parametric and nonparametric statistical models

using wind resource assessment data and available wind turbine information as well as

operational wind power data of a wind farm in North America. Averaged 10-minute

and hourly data sets were used to calculate the firm capacity of the wind turbine for

each method in the location of study. The size of the storage system was estimated

by calculating the energy imbalances in each time interval and the integration over

the study time period. To enable applying different desired confidence levels, the

probability distributions for the values of the occurred charges and discharges were

constructed. The results show that for different stages of the wind farm development,

and depending on the available information, the method can properly size the energy

storage required to deliver constant power to a user selected confidence level. Moreover,

in Chapter 6 the results of this analysis are applied to estimate the cost of wind

energy to produce rated power at different confidence levels, which support the cost-

effectiveness of proposed approach in base-load generation of wind power.



Chapter 5

Experimental Analysis

This chapter presents a short-duration experimental testing to verify and monitor

the degradation of 25 kWh used batteries of PEVs supplied by Electrovaya obtained

from a previous electric taxi fleet demonstration in Baltimore in the U.S. For the

framework of PEV battery repurposing proposed in this thesis, we investigate the

viability of integrating repurposed batteries and wind energy to deliver rated power

to a given confidence level. As the model considers battery storage capacity available

for repurposing at their EOL, and over their stationary service life, we attempted

to add an experimental component that provides an indication of the degradation of

repurposed batteries in a stationary service. For the purpose of this testing, we used

2 battery packs of used batteries of electric vehicles with the total capacity of 25 kWh

and the approximate DC voltage of 400 V in their “as-is” condition, and performed the

profiling of these batteries by charging and discharging to and from the electric grid.

The test protocol was to record the charging and discharging of the battery over time

while the measurements are digitally stored in a database. The demonstrated project
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can have other applications such as providing storage to support renewable generation

and improve the efficiency of diesel generators. We were able to obtain useful data

and an indication of the battery’s degradation in spite of the relatively short testing

timeline possible at the facility.

5.1 Repurposed battery storage system

When propulsion batteries of PEVs reach their vehicular EOL, they can be repurposed

and utilized in stationary applications by providing utility-scale ESS before being re-

cycled. As the interest of this thesis, these batteries can be located at a wind farm to

smooth out their capacity and generate a dispatchable output. PEV batteries have a

typical 8–10 years of vehicular service with a remainder capacity of approximately 80%

at their automotive EOL, and before repurposing [104, 105]. To perform experimen-

tal tests of battery degradation in laboratory, we have access to a prototype energy

storage system of PEV repurposed batteries. The prototype system is demonstrated

at the Manitoba HVDC Research Centre, and is developed through a project by the

Clean Energy Fund (CEF) of Canada. The available repurposed batteries supplied by

Electrovaya obtained from a previous electric taxi fleet demonstration in the U.S. are

in the “as-is” state consisting of electric vehicles battery modules and their battery

management systems (BMS). Manitoba HVDC Research Centre has developed the

power interface system to operate multiple PEV battery packs. The stationary repur-

posed ESS consists of 5 bi-directional DC-DC converters individually connected to a

BMS forming a battery bank module. Battery bank modules are connected together

in parallel and comprise a battery bank collection bus which is by a DC-AC converter

system connected to the AC grid. The designed and developed system allows utilizing

PEV battery packs obtained from different vendors at different states—may have dif-
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Figure 5.1: Illustration of the overall system configuration of the repurposed battery
storage system designed and developed by Manitoba HVDC Research Centre. The
system allows different battery types to be interconnected, and provides the flexibility
for cogeneration with wind or solar energy, and grid connection [160].

ferent chemistries, capacities, and specifications— to be connected to a common bus

to provide flexibility for electric grid interconnection system, or for micro-grids using

intermittent renewable energies to smooth out their capacity or diesel generator to

increase efficiency. Figure 5.1 illustrates a general configuration of developed system

at the centre. The details of the system modules and specifications are presented by

the Manitoba Hydro HVDC Centre in [160].

5.2 Experimental system set-up

For the purpose of this experimental study, 2 battery packs are used to perform the

tests at different rates in the laboratory. Each battery pack consists of 4 battery

modules where 24 battery cells are accommodated in each module. The battery cell’s

voltage dictates the approximate voltage of each battery pack. Each battery pack is
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Figure 5.2: Two battery packs and the BMS interfaces connected to each module.
Each pack consists of 4 modules with the approximate DC voltage of 400 V at the
Manitoba Hydro HVDC Centre.

connected to a BMS that enables reading battery packs status data such as cell voltages

(minimum, maximum and average), battery capacity, values of current, temperature

of battery cells, and etc. Figure 5.2 shows two battery packs and the BMS inter-

faces, where each pack is comprised of 4 modules with the approximate DC voltage of

400 V. While batteries have liquid cooling system and frame in their vehicular service,

repurposed batteries in stationary applications shown in this setup are air-cooled.

In the demonstration system, bi-directional DC-DC converters with 5 kW or 10 kW

ratings were developed for each battery pack to accommodate battery voltages ranging

from 300 V to 700 V. In this design, the constant DC bus collection voltage is 900 V.

Each battery system and the associated DC-DC converter form a battery bank module

(BBM). Each DC-DC converter and the associated controller form a processing unit

accommodated in a cabinet for each battery pack. In each cabinet, the controller in

the processing unit protects the systems, and communicates to the BMS and to the

master control unit. Figure 5.3 shows two cabinets of the processing units containing

the bi-directional DC-DC converter and the controller unit.
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Figure 5.3: Two cabinets of the processing units containing the bi-directional DC-DC
converter and the controller unit at the Manitoba Hydro HVDC Centre.

In the designed system, a bi-directional DC-AC inverter is used to connect the parallel

modules to the AC system. In the developed system, the DC-AC inverter is rated at

100 kW which converts the 900 V DC to three-phase 600 V AC. The designed inverter

allows the connection of multiple parallel BBMs.

A master co-ordinator is developed to control the operation and status of the battery

systems. This control unit performs the primary supervisory of the system, and allows

to set the operation modes and set points , and to start, stop and monitor each DC-DC

module. The system is equipped with a Graphical User Interface (GUI) that provides

the operator with the ability to configure the system, select operating modes and set-

points. The GUI also allows to perform system and alarm monitoring. Figure 5.4

shows a sample screen of the GUI developed for the system.
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Figure 5.4: A sample screen shot of the multipage graphical user interface developed
by the Manitoba Hydro HVDC Centre, that allows for the operator to configure the
system, select operating modes and set-points, and to perform system and alarm mon-
itoring.

5.3 Test results

We operated two 388.8 V BBMs of the system for testing the battery capacity, and

investigating the degradation of these systems due to charge-discharge cycles. As

the battery packs obtained from PEVs are in their “as-is” state, it is important to

determine the available capacity in the used batteries. The capacity of a battery can

be defined as either the coulometric capacity or the energy capacity. The coulometric

capacity of a battery is the electrical charge that can be drawn and is given in ampere-

hours (Ah) when the battery is discharged at a certain rate, and is given by [161]

C =

∫ τ

0

I(t) dt, (5.1)

where C represents the battery charge/discharge capacity in Ah, I(t) is the instanta-
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neous current in A, and time τ is the test time.

Alternatively, the energy capacity of battery can be used which represents the amount

of energy the battery can store, and is given by

E =

∫ τ

0

U(t) I(t) dt, (5.2)

where E is the battery energy content, U(t) is the instantaneous voltage in V, I(t) is

the instantaneous current in A, and time τ is the test time.

The nominal energy capacity for each pack of the batteries supplied for this project

is 12.5 kWh. To perform the tests, it is required to determine the charge/discharge

rate that can be stored at or drawn from the battery. This rate is usually presented

in terms of C rate, where 1C is defined as the rate at which a battery is discharged

to its maximum capacity in 1 hour. It has been recommended for the battery re-

purposing demonstration project to follow a conservative approach for the rate of

charge/discharge. The battery packs available for this experiment, if were new, would

have a 1C rating of 31.25 A, i.e., the rate of charging
12.5 kWh

388.8 V
in 1 hour. For the

developed system, a maximum current of 0.5C and 1C is recommended for the 5 kW

and 10 kW DC-DC converters, respectively. Moreover, the battery temperature should

be actively monitored not to exceed the maximum allowable cell temperature which

is 45◦C. Also, the ambient temperature in the lab is frequently monitored by the

operator to maintain the test conditions of the battery systems.

To measure the capacity degradation of batteries due charge and discharge cycling,

we first determine the capacity of the battery packs in their “as-is” condition. Thus,

the initial point for each pack the amount of energy that can be drawn from them

when they are fully charged. For this analysis, either of Equations 5.1 or 5.2 can be
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Figure 5.5: The set up of battery repurposing project in laboratory where the operator
provides test parameters, and performs monitoring and supervisory control via the
master co-ordinator interface.

used. To this end, the values of instantaneous current and voltage are stored with the

time step of 0.1 sec. To obtain more accurate results and to eliminate one source of

measurement error, we use the measured values of the current data using Equation 5.1.

The initial capacities measured at the beginning of testing for BBM1 and BBM2 are

9.88 Ah and 14.32 Ah, respectively. We were able to perform the tests for more than

60 cycles. For discharging, each BBM can be operated in either power or current

control modes. The BBM can be charged by either current control or DC voltage

control of the battery side. To calculate the capacity of the battery system at the

end of each designated cycle number, BBM1 which has a 5 kW DC-DC converter was

discharged at 12.86 A. Similarly, BBM2 with a 10 kW DC-DC converter was discharged

at 19.29 A. These current rates are equivalent to 0.4C and 0.6C for BBM1 and BBM2,

respectively. As shown in Figure 5.5, the operator provides test parameters, and

performs monitoring and supervisory control via the master co-ordinator interface.

To investigate the degradation performance of PEV repurposed batteries, we repeated

measuring the capacity of the 2 battery systems for every 8–10 full charge and discharge
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Table 5.1: List of parameters of the system and those set by the operator during the
tests for investigation of degradation performance of repurposed batteries of PEVs.

# Parameters Values

1 Battery bank module ID number selection 1 or 2

2 Battery cell minimum voltage by the system in volts 3.30

3 Battery cell maximum voltage by the system in volts 3.90

4 Battery cell maximum temperature in ◦C 45

5 Status control mode Charge or discharge

6 Battery side voltage input in volts 388.8

7 Charge or discharge power ratings in kW 5 or 10

8 Corresponding charge or discharge current ratings in A 12.86 or 19.29

cycles at their designated C rates. To this end, it is also required to ensure the accuracy

of capacity calculation at each state point. Therefore, following the last charging half-

cycle, and before the full discharge for capacity measurements, we performd a step-

charging at lower C rates to top up the charge of each battery system. Table 5.1 lists

the input parameters set by the operator during the lab tests.

To obtain the results of the energy capacity at each state point, we also require to

perform some data filtering. This step is required due to stoppages during the tests.

These incidents may occur by various protection and monitoring operations of pa-

rameters such as voltage of the whole battery pack, temperature of the battery, the

maximum and minimum allowed voltages of the cells, and communication errors. Each

time that this interruption occurs, and as the system is collecting data, the filtering

was performed to obtain the correct values of the energy capacities. Table 5.2 presents

the results of the measured capacities for each battery system at each state point.

As shown in the table, as the capacities fade in the 2 systems, they are not following

similar values. This can be justified by the fact that the supplied battery packs are in

their “as-is” condition. Moreover, although 60 cycles only represent a small portion
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Figure 5.6: Results of measured capacity values for BBM1 and BBM2 repurposed Li-
ion battery systems at each state point. Although 60 cycles only represent a small
portion of the expected life of batteries in stationary applications, the results show a
notable change in their capacities. As the batteries are balanced by cycling, this is
expected to show less fluctuations and loss over a few thousand cycles.

of the expected life of batteries in stationary applications, the results show a notable

change in their capacities. However, and by comparing these results with some degra-

dation results provided by the supplier, fluctuation is expected especially at lower cycle

numbers. Within this experimental testing available, these are the results we achieved,

but it is expected to show less fluctuations and loss over a few thousand cycles. and

follow the expected pattern.

Figure 5.6 graphs the results of measured capacity values for BBM1 and BBM2 battery
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systems at each state point.

5.4 Chapter summary

We have attempted to add an experimental component that provides an indication

of the degradation of repurposed batteries. The test apparatus is the PEVs repur-

posed batteries demonstration system designed and developed by the Manitoba Hydro

HVDC Research Centre through the CEF project. The tests were performed in the

laboratory to monitor and obtain an indication of degradation of used batteries in

stationary applications. The conducted test protocol has been to record the charging

and discharging of the battery over time while comparing battery performance over

the entire testing. While the results of this experimental study show fluctuations in

their measured capacities, it can be justified based on their “as-is” condition and is

expected to show a more consistent trend over a few thousand cycles following the

expected pattern.

Further study and analysis of the performance of used batteries of PEVs repurposed

for stationary applications are required to support a new market for these batteries,

and to benefit the electrified transportation and energy sectors.



Chapter 6

Results and Discussion

This chapter provides the results of the model for the proposed framework for a studied

case of Canada using the results of ESS sizing algorithm developed and presented in

Chapters 3 and 4, followed by the discussion of results.

6.1 Case study

We perform the simulation of the PEV battery repurposing model to investigate the vi-

ability and feasibility of the proposed framework for Canada. The simulation considers

2010-2050 for the target study period as PHEVs and BEVs were first mass-produced in

the market starting in 2010 [162]. To perform the energy simulation, the repurposing

framework first adopts a PEV penetration rate in the Canadian market to calculate

the consequent electric energy requirement, and to forecast available storage for repur-

posing. The model then predicts when the batteries become available on the secondary
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market and how many hours of storage are available to support the intermittent renew-

able wind resource. The model finally calculates the annual continuous production of

wind power by support of repurposed batteries. The model presents how by addressing

the charging requirement of these electric vehicles, new wind power can translate to

increase the RER.

For the market penetration forecast, this study applies the results of a penetration

model performed at Laval University [163] to predict the number of electric cars as

the input to the repurposing model. The penetration model includes criteria such as

driven miles by the vehicles, urban or rural driving, gasoline price, electricity price, and

vehicles prices. Applying the passenger vehicles sales data [164] to this model projects

that PEVs can make about 80% of Canada LDVs new sales in 2050. The model starts

with new sales number 1,569,000 vehicles in 2010 and applies a 1% increase in this

number to account for the national trend through 2050. To determine the charging

load energy demand of PEVs, Equation (2.1) is used to calculate the annual average

energy required due to the introduction of PEVs in the Canadian market. The model

assumes the rural driving distance coefficient to be 30%, which is met by electricity in

BEVs. By inserting the values for the parameters in Equation (2.1), it is calculated

that PHEVs and BEVs need 6.5 kWh and 8.45 kWh of electricity per day. To cal-

culate the annual storage capacity available for repurposing, it is assumed that Li-ion

batteries retire from their vehicular application when they reach about 80% of their

life. The model assumes 20 kWh and 40 kWh as the base capacity of PHEV and BEV

batteries respectively, at their introduction in 2010. The model further considers a

yearly increase of 2% reflecting likely battery technology advances anticipated through

2050. Another assumption is that PEV batteries are available for a period of 10 years

in their stationary application with the initial state of 80% and an avergae yearly drop

of 7.5% in their available capacity. This latter assumption translates to 50% at the end



6.1 Case study 112

Year
2010 2015 2020 2025 2030 2035 2040 2045 2050

N
um

be
r o

f P
EV

s (
Th

ou
sa

nd
s)

0

400

800

1200

1600

2000

St
or

ag
e 

Ca
pa

ci
ty

 (G
W

h)

0

50

100

150

200

250
Number of PEVs in Canada
Available Storage Capacity 

Figure 6.1: Number of the PEVs in Canada through 2050 based on the scenario selected
in this study, and the consequent electric storage capacity available from repurposing
batteries of these vehicles under the assumptions in this model.

of the 10-year stationary life before being recycled. Table 6.1 presents the parameters

and the assigned values for the case study of the repurposing model in Canada.

Figure 6.1 shows the number of new sales of PEVs per year in Canada through 2050,

and the annual electric energy storage capacity available from repurposing batteries of

these electric vehicles for the described scenario. Table 6.2 presents the values of the

annual total calculated storage capacities available from repurposed batteries of PEVs

based on the parameters and assumptions described in this section for the period of

this study.

Next, the model calculates the storage ratio, Sr, as the required storage capacity in

kWh, to generate continuous unit output power in kW. According to the Canadian

Wind Energy Association (CanWEA), Canada is benefiting from one of the best wind

resources in the world having an average capacity factor of 30% or more [165]. There-
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Table 6.2: Total calculated storage capacities available per year from repurposed bat-
teries of PEVs based on the parameters and assumptions from 2030–2050.

Time Battery storage capacity Number of PEVs

(GWh)

2030 10.78 1,146,974

2035 52.40 1,469,315

2040 108.31 1,613,150

2045 163.32 1,771,837

2050 223.97 1,901,236

fore, a Canadian site is selected where the availability of wind energy is somewhat

representative of the country’s average capacity factor. The time-domain wind speed

data available for the location of study are used in the ESS sizing model. We also

use the power curve of a selected GE 1.5 MW turbine with a hub at 80 m height as

a typical wind turbine size. The characteristic cut-in, rated, and cut-out wind speeds

of the selected turbine are 3.5, 13.5, and 24 m/s, respectively. Based on the methods

presented in Chapter 4, and having access to the manufacturer power curve and wind

speed data, method M2 is followed to size of the ESS for this case study.

We use the time-domain wind speed data of this location available from the wind

resource assessment. The data set is for a selected year with a sampling rate of 60

sec at 10 m height obtained from the data collected by the station for baseline surface

radiation network (BSRN) in Regina, Canada. Figure 6.2 shows the hourly averaged

wind speed data for a selected month and the consequent wind power output using

the GE 1.5 MW power curve.

As explained earlier, to calculate the size of ESS for the purpose of base-load generation

of wind power, p∗ needs to be calculated. To this end, we obtain the wind power

probability distribution of the wind power values. The firm capacity of the turbine
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Figure 6.2: Variability in wind speed, and the output power of a selected 1.5 MW wind
turbine. (a) Shows wind speeds for a selected month at the location of study, and (b)
shows the corresponding wind power for the same period.
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Figure 6.3: The calculated capacities of the occurred energy charges and discharges of
the ESS over the study period.

is then computed as the mean value of wind power data using Equation (2.3). By

calculating individual energy imbalances using Equation (2.4), the energy charges and

discharges of ESS over the time period of study are calculated. Figure 6.3 shows the

calculated sizes of the occurred energy charges and discharges for the studied case.

Next, the histogram of the calculated energy occurrences of the storage system is next

created to enable applying different confidence levels to the calculated energy charges

and discharges of ESS. The Laplace distribution shows a better fit for the battery

energy values. Figure 6.4 shows the histogram of the ESS calculated energy values

fitted with a Laplace distribution, and the corresponding Q-Q plot supporting the

well-fitting pattern of the energy values and the Laplace distribution. The parameters

of the fitted Laplace distribution are estimated using equations in Chapter 4 and the

desired confidence level is applied to obtain the energy capacity of ESS.

Table 6.3 lists the values of the calculated storage ratios required to generate 1 kW

base-load power from the intermittent energy source using 70-, 80-, 90- and 95%-
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Figure 6.4: (a) The histogram of the storage system calculated energy values in kWh
and the fitted Laplace distribution; and (b) the respective Q-Q plot to assess the
goodness of the fitted distribution.
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Table 6.3: The values of the calculated storage ratios using 70-, 80-, 90- and 95%-
content tolerance intervals with 95% confidence interval.

Confidence level (P) Storage ratio (Sr)

% kWh/kW

95 37.08

90 29.83

80 19.79

70 15.17

content tolerance intervals with the confidence interval (1− α) is equal to 0.95%.

The framework now investigates how the available storage capacity due to battery

repurposing of PEVs can support base-load generations of wind generators, and how

the supplemental wind power may address the energy load of the electric vehicles. Fig-

ure 6.5 shows this calculated annual energy required for the selected adoption scenario

in Canada, and the average wind energy accommodated by support of repurposed

batteries per year through 2050.

6.2 Renewable energy sustainability measure

By performing the simulation model for the PEV battery repurposing framework for

Canada, we now investigate how the proposed framework can impact the renewable

energy performance of Canada. The RER is defined as the ratio of total renewable en-

ergy produced to the total primary energy consumed before secondary transformation

as follows

RER =
Renewable Energy

Primary Energy
=

ERE
ERE + EFF

, (6.1)
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Figure 6.5: Average charging energy demand per year for PEVs based on the selected
market adoption scenario for Canada in this study, and the accommodated base-load
wind energy per year through 2050.

where ERE is the renewable energy, and EFF is the fossil fuel energy. The proposed

ratio is an energy sustainability measure that can be used in a jurisdiction to evaluate

its performance in mitigating fossil fuels and address energy drivers simultaneously.

By focusing on energy inputs the RER acts as an optimizing tool for policy to achieve

a sustainable foundation. To investigate how battery repurposing will support higher

RER for Canada, this study compares the RER index with and without adding new

base-load wind generation to match the new load. The data for Canada’s energy mix

and the share of light duty vehicles in the transport sector was obtained from [166, 167].

The available data is extrapolated through 2050 assuming that the trend from 1990

to 2009 will continue in the share of renewable energy, fossil fuels and transportation.

Figure 6.6 illustrates the energy flow and the total energy use by major sectors in

Canada in 2010. As depicted in this figure, the focus of this analysis is on the LDVs

in the Canadian energy mix. To calculate the RER based on these data, it is assumed
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Figure 6.6: The energy flow and the total energy use by different sectors in Canada
in 2010. Light duty vehicles in the transport sector are the focus of this study. The
values in petajoules (PJ) are obtained from Canada’s energy statistics handbook [168].

that LDVs will maintain their current share in transportation’s total energy consump-

tion. Also, it is assumed that the increase in energy consumption of LDVs in the

transportation sector is solely due to new sales of vehicles. By inserting the values of

the energy mix, Equation (6.1) is used to calculate the renewable energy performance

of Canada for each year through 2050. Electrification of transportation is the sensible

approach that can address energy and environmental issues by replacing the fossil fuels

in the transport sector. Therefore, Equation (6.1) can be rewritten

RER1 =
ERE

ERE + EFF,1
=

ERE
ERE + (EFF − ELDV )

, (6.2)

where ELDV is the fossil fuel energy which would be displaced in the energy mix and is

proportional to the share of electric vehicles. ELDV can be written as ∆ETr×NLDV ×

NPEV where ∆ETr is the increase in total energy consumption assumed to be solely due

to new sales of LDVs, and NLDV and NPEV are the shares of LDVs in the transport

energy mix and the share of electric vehicles in LDVs per year, respectively. The
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displaced fossil fuel energy needs to be replaced by new electrical energy to drive the

vehicles. If the new demand of electricity is generated by conventional power plants,

the RER formula is rewritten as

RER2 =
ERE

ERE + EFF,2
=

ERE
ERE + (EFF − ELDV + EPP )

, (6.3)

where EPP is the fossil fuel energy that is required to be burnt in conventional power

plants to generate the electricity demand by electric vehicles. EPP is obtained by

calculating the amount of energy delivered to the wheels of the vehicles divided by the

efficiencies for the energy conversions from fossil fuel to electricity as follows

EPP =
ELDV × ηICE
ηEV × ηPP

, (6.4)

where η
ICE

is the ICE vehicles overall efficiency, ηEV is the electric vehicles overall effi-

ciency, and ηPP is the conventional power plant overall energy conversion efficiency. As

can be deduced from Equations (6.3) and (6.4), while electrification of transportation

increases the energy efficiency of passenger vehicles from ηICE to [ηICE/ηEV × ηPP ],

it alone may not solve the issues in transportation. To address this problem, we in-

vestigate how used batteries of PEVs can be repurposed to support intermittent wind

energy to generate base-load power to address the electric load of vehicles. Therefore,

with the proposed scenario, the RER can be rewritten as

RER3 =
ERE

ERE + EFF,3
=

ERE + EW
(ERE + EW ) + (EFF − ELDV + EPP − EWP )

, (6.5)

where EW is the base-load renewable energy accommodated by the intermittent wind

and repurposed batteries, EWP is the equivalent of fossil fuel energy that is displaced

from the fossil fuel energy mix by incorporating the accommodated base-load wind
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Figure 6.7: Illustration of the proposed sensible approach for the emerging electric
vehicles towards a sustainable transportation system. The scenarios to calculate the
RER: (i) when the required energy in transportation is from fossil fuels, (ii) when it
is the electricity generated from fossil fuels at conventional power plants, or (iii) the
required electricity is directly from renewable energy source.

power with repurposed batteries, and is obtained by EW × (ηEV /ηPP ). Figure 6.7

shows the concept of energy use in transportation for when it relies on fossil fuels,

electricity from fossil fuels, and electricity generated by renewable sources. Based on

the described approaches and by setting the parameters values listed in Table 6.4, the

energy sustainability performance for Canada is quantified through 2050. Figure 6.8

shows the RER performance in the Canadian energy mix for the three approaches:

(i) the business–as–usual where the current trends in the energy mix continue, (ii)

electrification of transportation without repurposing, and (iii) electric mobility with

implementation of battery repurposing of PEVs. The results of the proposed frame-

work for the approaches described above show that electrification of transportation

improves the energy efficiency in the transport sector by increasing the RER by 0.91%

for Canada in 2050.

The model then shows that implementation of the battery repurposing of PEVs to

support base-load wind power can further increase the RER by 1.65–4.11%, depend-

ing the confidence level selected for ESS sizing. Table 6.5 presents the values of the
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Table 6.4: Values of the parameters to calculate the RER for Canada in the battery
repurposing framework.

# Parameters Values

1 Overall efficiency of PEV in % 80

2 Overall efficiency of ICE in % 15

3 Overall efficiency of a typical power plant in % 40

4 Share of LDVs in the total energy consumption in transportation in % 45

5 Total energy consumption in all modes of transportation in 2010 in PJ 2607.7

6 Total energy consumption in passenger transportation in 2010 in PJ 1393.3

7 Total energy consumption in LDVs in 2010 in PJ 1109.8

8 Total renewable energy in 2010 in PJ 1723.28

8 Total fossil fuel energy in 2010 in PJ 8760.10

calculated storage ratios using 70-, 80-, 90- and 95%-content tolerance intervals with

the consequent changes of the RER.

Figure 6.9 illustrates the RER performance in the Canadian energy mix for the pre-

sented approaches with different confidence levels compared to the business–as–usual

and the electrified transportation without repurposing approaches.

6.3 Cost analysis for intermittent renewables

A proper baseline is required to compare capital costs of different renewable energy

technologies when they are intermittent sources and energy storage is imposed as part

of a sustainable solution. The capital cost can vary considerably if the system is grid

connected and intermittency is accommodated by the utility, or if the system operates

in isolation and requires storage. Therefore, a general expression for the capital cost of

renewable energy sources that includes the cost of storage is desirable. In this section,
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Figure 6.8: The calculated energy sustainability measure, RER, for Canada based to
investigate the energy performance in transportation for conventional vehicles, and for
electrified transportation with new base-load wind generation (with battery repurpos-
ing) and without adding new renewable (without battery repurposing).

we propose this expression to provide a true cost of renewable energy technologies with

storage systems, and to show how the cost of storage impacts the technology’s large-

scale adoption. An alternative approach is to have the utility manage the intermittency.

For the current relatively low intermittent generation penetration rates, utilities will

attribute interconnection costs for adding new intermittent generation to offset new

PEV loads. However, their ability to respond to load variations will decrease as this will

reduce dispatchable generation. The long-term sustainable solution is to address the

intermittency as part of a transportation policy as that cost needs to be addressed,

or impact other scenarios to increase the RER that relies on reducing dispatchable

generation.

For fossil fuel power plants, the fuel itself is the storage medium supplying base-loads

and often variable loads. Fossil fuel plants tend to operate at relatively high capacity
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Table 6.5: Values of the calculated storage ratios using 70-, 80-, 90- and 95%-content
tolerance intervals, which result in different values of the RER. The last two columns
list the changes of the RER values compared to (a) when the current trends of energy in
Canada continue without the electrification of transportation, and (b) when in addition
to current trends of energy, transportation is electrified and PEVs are adopted through
2050.

Time Confidence level Storage ratio (Sr) RER RER change (%)

(%) (kWh/kW) (%) (a) (b)

2050

95 37.08 20.48 2.56 1.65

90 29.83 20.89 2.97 2.06

80 19.79 21.96 4.04 3.13

70 15.17 22.94 5.02 4.11

2030

95 37.08 18.08 0.85 0.10

90 29.83 18.10 0.87 0.12

80 19.79 18.15 0.92 0.17

70 15.17 18.20 0.97 0.22

factors where a decrease in efficiency at partial system loading and shut downs are their

main issues in addressing the load. The capital cost per kW, Cp, captures the capital

cost of the system where ongoing fuel costs, operational costs, and maintenance costs

are in addition to this. Capital costs for renewable energy power stations, in contrast

to fossil fuel plants, cannot be calculated based on the rated power generation capacity

alone since power generation based on renewable sources is subject to intermittency.

The intermittency of the power output affects the reliability of the power generation.

The integral effect of intermittency of power generation can be taken into account

by defining the capacity factor, Cf , which is the ratio of the actual energy output of

a power system to the full rated energy output over a certain period. The capacity

factor is always less than one. It is convenient to calculate the cost of effective power
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Figure 6.9: Illustration of the energy sustainability performance for Canada, where the
electrified transportation is integrated with new base-load wind generation (through
battery repurposing using 4 confidence levels) compared to the scenario when the
current trends of energy in Canada continue without PEVs, and to the scenario with
the electrification of transportation (with PEVs).

generated of an intermittent source, by introducing the capacity factor as

Ceff =
Cp
Cf

, (6.6)

where Ceff is the cost of effective power generation in $/kW, and Cf is the capacity

factor. This effective cost is subject to variability of the local renewable resources,

for instance wind, solar or hydro, to obtain the capacity factor for power generation

applications. We now consider a continuous unit power output as the simplest load to

establish a costing method for comparison. From an energy balance, we propose that

the capital cost can be approximated as the following. Addition of a storage system

can improve the quality of power generated by removing the effect of intermittency.

The total capital cost for generating a continuous power output, Ccon, is the sum of
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three cost terms:

Ccon = Ceff + Closs + Cst , (6.7)

where Ceff is given by Equation (6.6), Closs is the capital cost of generation for the

power loss due to charging and discharging the storage system which is reflected on

the other two terms, and Cst is the storage cost required for every 1 kW of continu-

ous power generation. Rewriting Equation (6.7) by inserting the related terms yields

Equation (6.8) where the first term accounts for the cost of effective power generation

and the cost of generation for the power loss; and the second term accounts for the

storage cost required for continuous power generation:

Ccon =
Cp

Cf · ηc · ηd
+

Sr · Cs
DOD · ηd

, (6.8)

where, Ccon is the cost of continuous power generation in $/kW, Cs is the unit cost

of storage in $/kWh, ηc and ηd represent the charging and discharging efficiencies for

storage, Sr is the storage ratio or the required storage capacity per effective continuous

power generation unit in kWh/kW, and DOD is the depth of discharge of the storage

system that indicates the percentage of maximum availability of the storage capacity.

The first term considers generation cost subject to the inefficiencies during the storage

process. Figure 6.10 shows an example of the hourly output power of a wind generator

over the period of one week combined with ESS to generate continuous output. Equa-

tion (6.8) can also be used to compare expensive storage technologies like hydrogen

and fuel cells, and more cost competitive approaches like pumped hydro storage and

compressed air electric storage. The equation demonstrates that the capacity factor

and the storage efficiency are coupled into the cost so that significant cost increases

will occur if proper care is not taken to select an efficient storage technology when used
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Figure 6.10: An example of the hourly fluctuating output power of a wind turbine
combined with an energy storage system to generate constant output of the rated
capacity of the turbine.

to support renewables because of the lower Cf compared to fossil fuels. Furthermore,

the unit cost of storage, Cs, has a significant influence on the cost of continuous pro-

duction, Ccon, as it is multiplied by the storage ratio factor, Sr. These aspects make

comparison of intermittent renewables difficult. As this is continuous power delivered

to the grid, there are no line losses associated with efficiency of the storage technology

used. However, achieving full power 100% of the time is not realistic, as even fossil

fuel plants cannot achieve this. The cost of continuous power can be calculated for

different confidence levels based on statistical distributions of the calculated charge

and discharge occurrences.

By way of example, let the capital cost for the wind name-plate power generation

be $2,000 per kW; using Equation (6.6) the capital cost for generating effective wind

power is $5,715 per kW assuming a capacity factor of 35% in the location of study. To

calculate the capital cost of base-load power generation from the intermittent source,

a set of values for the parameters are applied in Equation (6.8). Many studies have
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attempted to forecast the future cost of new Li-ion batteries of PEVs [88, 169, 170].

We apply $600 per kWh for new batteries which is expected to reach below $300 per

kWh in the future. As presented in Equation (6.8), cost of electric energy storage can

significantly raise power generation capital costs from intermittent renewable sources

to produce more reliable and uniform power when delivered to the grid. Repurposed

PEV batteries at the end of their vehicular life can provide a source of lower cost

storage to address this issue. Table 6.6 summarizes the values of the parameters used

in Equation (6.8) to compare the capital costs of the base-load power production with

new, and with repurposed PEV batteries.

In this example, 10% of the new battery’s capital cost is dedicated to the testing

and refurbishing process of used batteries. By inserting the values of the parameters

associated with each approach, the costs of generating 1 kW of constant wind power

are estimated $29,150 and $11,750 at 90% confidence level for new and repurposed

batteries, respectively.

The comparison in this section shows the significant impact of the storage cost for more

base-load wind generation approach. To show the cost-effectiveness of the proposed

concept we estimate cost of base-load power generation for a scenario in 2050 using

70-, 80-, 90- and 95% confidence levels. Table 6.7 shows the estimated values when the

unit cost of storage system for new and repurposed batteries are assumed $300 and

$50, respectively, and the capital cost is assumed at $1000.

As shown in this table, applying a 70% confidence, the cost of base-load power using

repurposed batteries reduces to $5,649 per kW by 2050, as such the current resistance

to convert the interment wind energy to a base-load power unit can be overcome.

By way of comparison, and by repeating the cost analysis of base-load wind power
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Table 6.7: Estimated cost of wind power base-load generation for a scenario in 2050
using 70-, 80-, 90- and 95%-content tolerance intervals and 95% confidence interval.
For this calculation, the unit cost of storage system for new and repurposed batteries
are assumed $300 and $50, respectively, and the capital cost estimated at $1000.

Battery type Confidence level Storage ratio (Sr) Base-load cost

(%) (kWh/kW) ($/kW)

New

95 37.08 17,261

90 29.83 14,575

80 19.79 10,857

70 15.17 9,146

Repurposed

95 37.08 7,361

90 29.83 6,795

80 19.79 6,010

70 15.17 5,649

with fuel cell storage system, the results show a significant increase to produce 1 kW

base-load. Using the case of 95% confidence level which requires 37.08 kW of storage,

and assuming a fuel cell storage system with 50% charge and discharge efficiencies, full

depth of discharge (DOD = 1), and $800 for the cost of storage per kWh, the calculated

base-load cost is $70,757. This example is based on available data in the literature, and

highlights the cost effectiveness of the proposed concept of using Li-ion batteries versus

fuel cell storage systems. Moreover, Appendix A discusses why EVs and not fuel cells

derived from electrolysed hydrogen is mathematically a more suitable choice, in line

with the RED objectives. When bringing sustainability to transportation, FCVs don

not compete with EVs as their efficiency is approximately 4 times less than the EV’s.

This Appendix contains an analysis of the energy conversion efficiency and a primer

for various powertrains and energy losses during the secondary conversion processes

assemble from data found in the literature and presented to highlight the key points to

understand the root of electric mobility as a sustainable approach for transportation.
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6.4 Discussion

It is imperative to implement strategic policies towards a sustainable future of the

world’s energy, and mitigate risks from the current approach. These policies should

focus on inputs to the global energy system rather than looking at the system out-

puts like GHG’s. The sensible approach is addressing energy drivers simultaneously

by displacing fossil fuels with new renewable energy generation to solve energy and

environmental issues in transportation effectively rather than looking at aspects in

isolation. The battery repurposing concept is therefore proposed in this thesis, to

study the integration of base-load wind power and electrified transportation at low

cost without depletion of dispatchable power. The developed model can be used as a

policy tool to investigate how different scenarios and parameters can effectively meet

the challenges of sustainability in the energy and transportation sectors when the

ultimate objective is to simultaneously displace fossil fuels with new generation of re-

newable energy. However, the presented concept contains forward-looking statements,

scenarios, parameters and assumptions which involve uncertainties. Therefore, the

outcome of the proposed framework model is subject to a diverse array of factors and

circumstances in the future. For instance, the emerging market of PEVs is growing

rapidly, but projections remain uncertain. Technology advancements of electric vehi-

cles and their propulsion batteries are happening at a fast pace. The price of battery

systems for PEV is decreasing significantly. The process of acquiring, refurbishing,

and distributing of the repurposed batteries is complex, and its cost remains difficult

to estimate. The energy mix of the future lactic grids is uncertain and depends on

several scenarios that may or may not happen. These factors may make it difficult

to picture a more realistic future for the proposed concept. Nonetheless, this analysis

shows that the battery repurposing model can be used, and advanced, to investigate
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the influence of various future outcomes. Furthermore, the study shows that integra-

tion of electrified transpiration and renewable energy through battery repurposing of

PEVs is an effective approach to improve the energy performance towards a sustainable

transportation system.

As we strive to a more sustainable future, the ESS sizing algorithm presented in Chap-

ter 4 addresses circumstances to overcome society’s stringent inertia to replace fossil

fuel generation with intermittent renewable wind generation. While large utilities are

presently not planning for high penetration of wind energy, the presented methods in

this thesis can contribute towards the goal of converting intermittent renewable energy

to base-load generation in future electric grids. Most robust grid systems today, no

matter what the supply mix is, can likely accommodate 25% intermittent sources such

as wind power without major changes to the grid. Integrating beyond 25% and up to

50% wind may require some grid changes such as energy storage or demand response,

and added system inertia for stability purposes. Areas that may have access to base-

load renewable energy power generation like hydro, geothermal or biomass can look to

accommodate 100% renewables by adding wind or solar at lower penetration e.g., up

to 25% with no storage or other grid enhancements. The future electric grid can be

made 100% renewable with utilizing intermittent renewables like wind and solar, that

are available just about anywhere in the world, if the wind or solar are converted to

behave like base-load generation by the addition of an appropriate amount of energy

storage. Economics of wind power generation compared to today’s other base-load

generation, and its viability in the future with further storage system cost reductions

make this concept even more favorable. Thus, it is anticipated that a future grid in

2030+ will likely economically accommodate more wind and solar power. In summary,

following is the list of possible applications to build a wind farm at a known confidence

level for base-load power generation.
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• Building a wind farm at a known confidence level for base-load power generation

can also be used to remove diesel generation in remote locations.

• This can also be used by utilities that are not limited by generation or capacity

but have environmental constraints and are capped out in emissions. As such

they require analysis to use larger penetration rates of wind as a need to evaluate

alternatives.

• An independent power producer can also achieve a higher price for less intermit-

tent power generation. As this is dictated by market conditions, the independent

power producer has to be able to prove a confidence level of power delivery to

the financial institution and the utility.

• The proposed method can also be utilized in net-zero buildings that require to

be self-sufficient in their energy and have access to a good wind resource.

There are several parametric and nonparametric methods that can be used to model

wind turbine power curves. Examples of these models include segmented linear mod-

els, polynomial regression, four- or five-parameter logistic distributions; and neural

networks, fuzzy logic methods, and data mining methods approaches. In this thesis,

we made a contribution by presenting novel methods for wind power curve modeling.

The developed methods are easier to implement compared with the mentioned meth-

ods. These methods can be used for on-line monitoring of power curves for detecting

anomalies in a wind turbine power generation process. This feature will provide the

opportunity of enhanced wind turbine monitoring.



Chapter 7

Conclusions and Future Work

This chapter provides a summary of the accomplishments of the research work pre-

sented in thesis. Herein, the thesis is concluded by providing the outline of the sug-

gested future work that can be followed upon this research to achieve a low-cost sus-

tainable transportation.

7.1 Summary of accomplishments

We presented the battery repurposing of PEVs that can effectively integrate the emerg-

ing electric vehicles and intermittent renewable energy. The potential viability of the

proposed framework to increase the share of renewable energy by incorporating more

renewable sources and relinquishing the reliance on fossil fuels was investigated. We

introduced a new cost model for the comparison of the capital costs of base-load

power generation from intermittent energy sources. The proposed approach shows
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that adding used batteries of electric vehicles at their vehicular EOL to wind turbines

yields a potential cost-effective solution to produce base-load and dispatchable renew-

able power. The simulation also shows that the proposed approach for the studied case

of Canada can further improve the energy sustainability performance by increasing the

renewable energy ratio by 1.65–4.11% in 2050, in addition to electrifying transportation

and depending the confidence level selected for ESS sizing. Moreover, such a scenario

makes base-load power generation from intermittent wind energy an economic reality.

When using fossil fuels, one achieves 100% flexibility as fossil fuels store the energy in

the fuel, and are available on-demand. We have shown a cost-effective method to rely

on repurposed batteries and low-cost intermittent wind energy to replace fossil fuels,

and still accessing the advantages of fossil fuels to be able to store energy.

In the framework, we developed a statistical algorithm to calculate the capacity of

an energy storage system required for delivering base-load electricity for a wind farm

in the future electric grids. The developed algorithm contributes towards the goal of

utilizing low-cost intermittent wind energy to base-load power generation in the future

electric grids. The introduced algorithm presents three methods to perform the sizing

calculations each representing a scenario associated with the stages of the wind energy

industry.

While applications of the statistical models for obtaining probability distribution func-

tions, expected value, truncated and inflated distributions exist in the field of science,

the main contribution of the author is presenting a practical algorithm using these

models for predicting the storage capacity when the ultimate goal is generating con-

stant output power of the wind farm. This is an essential step in the integration of

wind power systems with energy storage in the future electric power systems with

higher penetration of renewable energy.
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The results show that for different stages of the wind farm development, and depending

on the available information, the method can properly size the energy storage required

to deliver constant power to a user selected confidence level. The results were applied

to estimate the cost of wind energy to produce rated power using different confidence

levels. Using the analysis in Section 6.3, the total cost of 70% confidence level with

ESS will be $5,649 per kW. As such, utilities can be interested in less intermittency

on their systems to allow more capacity credit—a measure to assess the reliability of

wind power plants in replacing conventional power plants [171]—for wind energy as

part of proper supply planning with larger penetrations of renewables.

Furthermore, advanced parametric and nonparametric models were applied to estimate

the power curve of wind turbines based on the available operational wind power data.

While the application of regression models for wind power curve modeling and estimat-

ing the output power of wind turbines is not new, advanced statistical methods utilized

in this thesis are applied for more accurate estimations of power curves based on oper-

ational power data. As no one fitting approach dominates all other techniques over all

possible observations obtained from different wind turbines, polynomial regression was

studied as a benchmark parametric method for power curve fitting. While this method

has been extensively used in the literature, the author makes a significant contribution

to the filed by applying advanced statistical techniques to improve the performance

of the power curve estimation. It is shown in this thesis that non-parametric meth-

ods are more flexible, less sensitive to anomalies within the set of observations, easier

to implement, and computationally more feasible compared to other methods in the

literature.

Finally, a short-duration experimental testing was performed in laboratory to inves-

tigate the capacity degradation of used batteries of PEVs in stationary applications
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using a 25 kWh repurposed energy storage system. Within this experimental testing

available, the obtained state points of the battery systems show fluctuations in their

measured capacities. This can be justified based on their “as-is” condition, and also

is expected to show less fluctuations and loss over a few thousand cycles following the

expected pattern.

The author has attempted to show the proof of concept and include an indication of

the degradation of used batteries. The main contribution has been using the set up

for the specific purpose of monitoring the degradation of repurposed batteries of PEVs

under a specific charging and discharging protocol. The author has been responsible for

operating the systems, collecting the data, and data processing to calculate the state

of energy after certain number of cycles described in Chapter 5. The battery packs

were the first demonstration of repurposed batteries available for testing designed at

the Manitoba Hydro HVDC Research Centre.

7.2 Future work

The suggested future work in this thesis are presented in the following directions:

7.2.1 Battery repurposing framework

A novel energy model was presented for the integration of PEVs and wind energy to

investigate how using repurposed batteries of electric vehicles can support greater pen-

etration of wind power and improve the RER performance. The presented concept,

however, contains future-looking statements, scenarios, assumptions and parameters
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which involve uncertainties. Therefore, the outcome of the proposed framework model

involves uncertainties over a diverse array of factors and circumstances in the future.

For instance, input parameters to the model may include technologies and designs of

PEVs, battery cost, cost of electricity, driving patterns, availability of charging infras-

tructures, cost of petroleum, PEV consumer acceptance, automakers investments, PEV

charging load, and electric energy generation mix. Therefore, effective implementation

of this model requires enhancing the comprehensive model through identifying realistic

aspects of the interaction between the energy and transport sectors, understanding the

technical and economic factors, and applying these parameters to the comprehensive

model. The proposed numerical method will predict optimum scenarios for the future

of the Canadian energy system by incorporating the pertinent parameters. This ap-

proach will provide the policymakers with a strategy tool that can govern technology

implementation with the target of maximizing fossil fuel displacement, clean energy

incorporation and emissions abatement.

Following is the list of suggested works in this direction:

• Enhancement of the simulation model by incorporating more realistic scenar-

ios and applicable parameters to the framework. This may require a more de-

tailed review of the state-of-the-art of electric vehicles technologies and market,

automakers investments, energy market status, renewable energy technologies,

GHG emissions, and government policies.

• Performing a classical sensitivity analysis to identify the impact of different input

parameters to the energy framework model. This analysis will help to develop

different “what-if” scenarios for the future of energy systems in a jurisdiction.

• Developing an optimization algorithm for the presented model to investigate eco-
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nomic and environmental sustainable scenarios which can govern energy related

policy implementations.

• Developing a more extensive experimental testing of battery degradation and

analysis of pertinent parameters on the overall performance of batteries; and,

using operational wind data to emulate the charging and discharging frequencies

of an intermittent renewable source for the system.

7.2.2 Wind energy and storage sizing algorithm

In the wind energy industry, wind turbine power curves are used to study the rela-

tionship between the electrical power generated by a wind turbine and the wind speed

at the machine over the period of power generation. These curves can also be used to

forecast wind power, to assess wind turbine performance and turbine condition mon-

itoring, and also to estimate the energy storage system capacity required to improve

the quality and reliability of the intermittent wind power. However, available methods

in the literature for wind turbine power curve modeling primarily focus on parametric

and nonparametric approaches using frequentist methods (e.g., maximum likelihood

method, least squares method, etc.), and usually consider wind speed as the only aux-

iliary information for the purpose of modeling. Therefore, it is suggested to extend the

results in Chapter 3 to multiple auxiliary information and improve wind turbine power

curve modeling by including some other environmental factors such as air density, hu-

midity, wind direction, and turbulence intensity in the estimation process to more

realistically capture the nonlinear relationships between these environmental factors

and the generated wind power.

The other suggested work in this research direction is to incorporate Bayesian and
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robust Bayesian ideas in power curve modeling, and use the results to develop more

robust algorithms for estimating wind resource potentials based on area specific data,

and a statistical algorithm for sizing the energy storage system required for delivering

base-load electricity to a selected confidence level for a wind farm. This allows to

incorporate expert opinion knowledge into the statistical inference process. The idea is

to extend the results in Chapter 4 where the methods introduced are based on specific

parametric assumptions about the statistical distribution of the wind speed in the

location of study (i.e., a Weibull(α, β) for the wind speed values). Using nonparametric

methods prevents imposing any pre-specified model assumption and provides more

realistic results over parametric models. However, these methods usually require a

large amount of data to deliver the desired outcome, need longer data collection time,

and are more costly. Therefore, it is usually more desirable, especially in industrial

applications, to use benchmark parametric methods. In many cases, there are valuable

extra information about the underlying problem that can be obtained from similar

studies or from expert-opinion knowledge. These extra information can be formulated

in terms of prior distributions on the parameters of the underlying parametric models.

For example, for the underlying location of study, after consulting with experts and

using historical wind speed data, one may conclude that wind speed data follow a

Weibull(α, β) distribution, while α and β are also random variables taking values in

specific ranges with some probability distributions. In such cases, we suggest to use

the Bayesian approach to incorporate the extra information about the parameters of

the wind speed distribution into the study.

Following is the list of suggested works in this direction which can be built upon this

research:

• Wind turbine performance monitoring and power curve modeling
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1. Applying the developed methods in this study to perform energy storage

sizing for solar power.

2. Performance monitoring of wind turbines to investigate the icing phenomenon

of the turbine blades based on operational power data.

3. Optimization analysis for the selection of wind turbines of a wind farm and

the site location when the objectives are the capacity and cost of base-load

power generation .

4. Optimal selection of a wind site location based on the objective of base-load

power generation

5. Developing algorithms for estimating wind resource potentials based on area

specific data.

• Energy storage sizing algorithm for intermittent renewable energy

1. The work will be extrapolated so that the approach can address a variable

load for net zero buildings and remote communities

2. Technical and economic study of replacing diesel generation in communi-

ties with wind and solar energy when their capacity is smoothed out by

integrating adequate battery storage.

3. Economic analysis of base-load wind generation and the comparison with

other base-load power generation sources.

4. Investigating how PEV battery repurposing can economically support base-

load power generation of intermittent wind.

5. Analysis of the influence of long-term wind data and operational power data

on the proposed algorithm.

6. Analysis of the land requirements for the large-scale integration of batteries

for base-load power generation.
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7. Comparing the the results of ESS capacity requirement for base-load gen-

eration with operational ESS capacity available to a wind farm/region to

investigate/obtain a practical coefficient of conversion from the worst-case

capacity requirement and a common cap used.



Appendix A

EVs vs. FCVs

With the emergence of various electric vehicles, many publications and even automak-

ers have discussed the viability of using hydrogen as the alternative and clean fuel

for the future transportation. Fuel cell electric vehicles consume electrolysis-derived

hydrogen to drive the vehicle. Hydrogen has a very high energy density compared

to many other energy carriers, which makes the technology very attractive to many

stakeholders. However, towards a sustainable transportation, and in line with RED

approach, the concept should be looked at as whole not in isolation.

We present an analysis of the energy conversion efficiency and a primer for various

powertrains and energy losses during the secondary conversion processes assemble from

data found in the literature and presented to highlight the key points to understand

the root of electric mobility as a sustainable and economic approach for transportation.

Table A.1 presents the results of the analysis, and highlights the key points to electrified

transportation as a sustainable approach for transportation.
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Table A.1: Comparison of energy density (Wh/kg) for various powertrains.

Attributes Powertrain type

ICE EV FCV

Energy density in Wh/kg 12000 200 35000

Drivetrain efficiency in % 0.2 0.9 0.3

Effective energy density in Wh/kg 2400 180 10500

Fuel capacity in kg 40 300 3

Total available energy in Wh 96000 54000 31500

Drivetrain total weight in kg 450 350 750

Drivetrain energy density in Wh/kg 213 154 42



Appendix B

Electric Vehicles Drivetrains

Hybrid electric vehicles

HEVs can have different hybridization configurations depicted in Figure B.1 which can

be categorized as parallel, series, and power-split configuration [46]. In the parallel

HEVs the electric motor and the engine can both drive the transmission system. In

the series HEV an electric motor propels the vehicle while using the engine to drive a

generator to power the electric motor and store energy in battery when required. The

power-split HEV has a combination of the series and parallel characteristics.

Plug-in hybrid electric vehicles

PHEVs can have two different hybridization configurations: parallel, and series con-

figurations. In the parallel PHEV the electric motor and the engine can both drive
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(a)

(b)

(c)

Figure B.1: HEVs can have different hybridization configurations which can be cat-
egorized as (a) parallel, (b) series, and (c) power-split configuration. In the parallel
HEVs the electric motor and the engine can both drive the transmission system. In
the series HEV an electric motor propels the vehicle while using the engine to drive a
generator to power the electric motor and store energy in battery when required. The
power-split HEV has a combination of the series and parallel characteristics.

the transmission system. In the series PHEV the electric motor propels the vehicle

and the engine is used to solely drive the generator. The larger battery capacity in

PHEVs, varying from 5 to 22 kWh [8], extends their all-electric range (AER) through

reducing the reliance on the ICE. In the series hybrid configuration, the engine is used

to solely power the generator [72]. Figure B.2 illustrates the configuration of parallel

and series PHEVs.
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(a)
(b)

Figure B.2: PHEVs can have two different hybridization configurations named as (a)
parallel, and (b) series configurations. In the parallel PHEV the electric motor and
the engine can both drive the transmission system. In the series PHEV the electric
motor propels the vehicle and the engine is used to solely drive the generator.

Battery electric vehicles

BEVs are pure electric vehicles with no engine onboard. Figure B.3 shows a simple

configuration of BEVs which exclusively are powered through electricity stored in their

battery.

Figure B.3: The configuration of BEVs where the vehicle is equipped with a larger
battery, and is propelled solely with an electric motor through the electricity stored in
their battery.
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