
A Spnncu SpLrcrNc Svsrnu Fon
Voc¿.t Snlprnc

by

Kenneth Ferens

A Thesis

presented to the University of Manitoba

in partial fulfillment of

the requirements of the degree of

Master of Science

in

the Deparrnent of Elecrical and Computer Engineering

Winnipeg, Manitoba

May, 1991

ã*E i¡åä:'.:"*
Canad¡ao Theses Serv?ce

O(a,.ra, Can¿dâ
KIA ON4

8¡bliolhèqu€ nationate
dú Canada

Serv?oe oes rt¡ësès canarferines

The. agthor has granted.an inevocable non.
:IÎ!rsiv9 ficence aflowiqg theNationat Ubnary
ot Çanada to reproduce, loan, d¡stËüte or s€il
copl.es of h¡Vtler thesis by an¡¡ mea¡¡s and h
any toûn or formaÇ maldng ttr¡s thes¡s ar¡a¡lable
to interested personb,

Ihe.g_ujhor rgtajns ownership of the copyrighr
rn

.
his/her thesis. Neither the nesii ör

substantial extracts from it may be printe¿ ãiotnerwise reproduced without hivher per-
mission.

L auteur a accordé une ficence inévocable. et
non €xdusîve pemethnt à h Biblioúrfuue
natirnale du Canada ¿e repro¿uire. preier.
o(smDüer ou vendre des coples de sd mesd
de quetque manlère et sous quelque forme
que ce soit pour mettre des exempfakes àecette thèse å la disposition ¿es dersonnes
íntéressées.

Uauteur consewe la propriété du dro¡t d auteur
qur protège sa thèse. Ni la thèse ni des exhaits
substantiefs de celle-ci ne doivent être
imprimés ou autrement reproduits ."", iàñ
autorisation.

ISBN Ø-3r5-76816-9

l\ ìr+¡\-anada

A SPEECH SPLICING SYSTEM
FOR VOCAL SHAP ING

BY

KNNNETH FERENS

A thesis subnt¡ned to thc Faculty of Gr¡duate Studies of
the Univcrsity of Marritoba in partial fulfìllment of the requirenrents

of the degrec of

MASTER OF SC IENCE

o 1991

Permission has bccn granted to the LIBRARY OF THE UNIVER.

SITY OF MANITOBA. to lend or s¿ll copies of this rhesis. to

IhC NATIONAL LIBRARY OF CANADA IO INiCTOfiIM this

thcsis and lo lcnd o¡ scll copies oí thc tilm, and UNIVERSITy

MICROFILMS lo publish en absrracr of rhis thesis.

Th€ authol rcservcs othc¡ publ¡c¡tion rights, ând neither thc

thcsis no¡ cxtcnsive extracls from it may be pnntcC or other.

wise reproduccd without the author's writtln pcrmission.

Ansrnecr

A speech splicing system is developed for automated vocal shaping. A joint study of

vocal shaping and speech synthesis leads to a determination of optimal synthesis

techniques, tools, and units, as well as a development of a speech processing system based

on a PC AT for automated vocal shaping. Subjective tests are conducted in order to

determine the effectiveness of the synthesis techniques, tools, and units. The adaptive

differential pulse code modulation (ADJCM) technique of data compression is used in

order to ¡educe the transmission rate of speech by one-hatf, while maintaining good toll

quality. Coarse speech splicing is done with the copy, cut, and paste synthesis tools, while

amplitude interpolation and linear predictive extrapolation (LPE) are used for fine

adjustment of boundary properties. Isolated phoneme and extracted sub-word synthesis

units are chosen in order to faciliøte investigation of both small and large vocabulary needs.

An external board (consisting of an Oki MSM6258VJS ADPCM speech processor, a dual-

pointer FIFO buffer, and a 6802 pP) and a host computer (PC AT) are connecred via an

RS-232C compatible serial communications channel. The 6802 ¡rP utilizes the FIFO buffer

for controlling the asynchronous communication of speech data between the speech

procossor and host computer. Performed on the host computer, the speech processing

softwa¡e includes real-time disk recording and playing of speech, serial port initialization,

time domain plot of PCM data, and selection of any portion of speech data for playing,

copying, cutting, pasting, exrapolating, and averaging. Since the hard disk is used as virtual

RAM, any size file can be processed (real-time recording duration limited by available hard

disk space). Speech splicing experiments include library expansion by extraction, sub-word

concatenation, and isolated phoneme concatenation. Preliminary results show that word

synthesis by sub-word concatenation achieves up to 807o natuml quality.

AcxNow-,EDcEMENTs

It is a pleasure to acknowledge the people who helped me throughout the course of

this thesis. First and foremost, I would like to express my appreciation and admiration for

my advisor, Dr. W. Kinsner. Your gift of dispensing motivation and inspiration in times of

need tums trees into fo¡ests, night into day, and indifference into fiery purpose. Thank you

also for the thesis topic.

I would also like to thank Ch¡is Love, Janice Miller, Armein Langi, and Adi

Indrayanto for their careful reading of the manuscript, support, and friendship. Fo¡ their

technical expertise, I would like to thank the Electrical Engineering technicians, in particular,

Ken Biegun, who helped me with the design of the FIFO buffer.

TesI,n On CoNrnurs

ABSTRACT
AcKNowLEDcEMENTS
LIST OF FIGURES
LIST oF TABLES
LIST OFABBREVIATIoNS AND ACRoNYMS

I INTRODUCTION

Purpose I
Problem 1

Scope 4

tr BACKGROUNDONSPEECHSYNTHESIS/VOCALSHAPING 6

Review of Speech Synthesis 6
Building Blocks ofSpeech 6

Phones, Phonemes, and Allophones . 7
Distinguishing Features I

Coarticulation 10

Page
ü
üi

vüi
x

xi

Speech Synthesis Methods
Synthesis by Rule
Synthesis by Analysis

Linear Predictive Coding (I-PC)
Digital Recording .

Adaptive Differential Pulse Code Modulation (ADPCM)
Waveform Synthesis

Cut, Copy, and Paste
Amplitude Interpolation
Linea¡ Predictive Extrapolation (LPE) . . .

Review of Vocal Shaping
Speech Shaping Definition
Automated System Archite¡ru¡e

Acquisition of Target and Training Data
Configuration and Training of Recognition System .

Phoneme Shaping
Word Shaping

Summary

Itr SYSTEM REQUIREMENTS AND ARCHITECTURE

System Objectives
System Structure

Speech Processor
Memory Manager

t2
t2
14
15

l6
18

18

20
23
24
27
27
29
29
29
29
30
32

34

34
35
36
39

-lV-

Serial Communications Channel lnterface
Host Computer

Choosing a Host
Requirements
IBM Software System Hierarchy ,

User lnterface
Summary

IV DETAtr,EDSYSTEMDESCRIPTION

Page
4t
42
42
43
43
44
45

46

Speech Processor: the MSM6258 MPU Inærface Version . 47
Functional Pin Description 48

Voice InpulOuþut (VO) . 48
MPU Interface 51
Miscellaneous 54

Operation 55
Data Bus Control 56
Command Input 56
Status Output 57
Record 59
Playback 60

Memory Manager: the First In Fi¡st Out (FIFO) Buffer . 62
InpulOuçut (I/O) Ports 62

Parallel VO: the PIA 63
General Description
Implementation
Testing

Serial VO: the ACIA
General Description
Implementation
Testing .

DuaI Pointer FIFO Buffer
Concept
Implementation and Testing

Memory Map
Memory Decoding

Conroller: the 6802 ¡-rP
Hardware Implementation

6802 Emulator: EM-186
Software Implementation

Initialization
Command Reception
Playback
Record
Stop

Serial Interface: RS-232C
Electrical Sigral Cha¡acte¡istics

63
65
69
69
70
74
76
77
77
79
80
82
85
86
86
88
88
89
89
96
99

100
100

page

Me¿hanical Connection Cha¡acteristics 101

Functional Pin Description 102
Sundard System C.onfigurations 104

Host Computer: the IBM or C.ompatible ; 106
Sofnrare Description 107

t*'*fåliffffti,rì"*ion' : : : : : : : . : : . l3;
Reco¡d .

Playback;... 111

.Library Functions ; . . . 111

Compression 1.12

Graphics Mode Intorface ll2

i"trä : : : : :i' ii*'l*1**:
: : ' : : : : :. iii

V ALTERNATIVEBUFFERDESIGN 118

System Design And Description ll9
Speech Daø Buffer Board Lzl

Interface C-ontrolle¡ 122
Circuit Description 124

Read/Write Timing Controller 125
Timing Description 125
Circuit Description 128
Command De¿oder 13 1

Memory Manager 134
Swinging Buffer Timing 135
Swinging Buffer Circuit 137

Buffer Schematic 139
Summary L39

VI SPEECHSPLICINGEXPERIMENTS I4I

Appararus
Hardware F4uipment
Software Tools

Method .

Macintosh tolfrom IBM Speech Data File Transfer
Verification of Linear P¡edictive Exuapolation (LPE) Sofnrare
Expansion by Extraction
Expansion by Subword Splicing .

Expansion by Phoneme Splicing
Presentation and Analysis of Results

Extracted Suþword Splicing
Isolated Phoneme Splicing

142
142
143
143
t44
146
147

151

154

t57
157

r59

Page
Similaxity 159
Preferenc¿ 160

Summary 162

VII CONCLUSIONSANDRECoMMENDATI0NS

REFERENCES

APPENDIX A: SOFTWARE LISTING A1

Memory Marager Sof¡va¡e A1
Main. A1
Record ,i. . A3
Playback A8
Sub,routines Al2

FillQueue Al2
PlayBacklnit ,A'13

Re¡o¡dlnit 414
ACIAInit 415
PIAInit . 416
Miscellaneous A'17
Stop 419

Host Softwa¡e M0
Main . A2n
Record A44
Playback A47
TimePlot 451
File VO . 460
Graphics A74
Mouse 1.79

Memory 483
Data Conversion 486
Miscellaneous A97
Linea¡ Predictive Extrapolation 499
Function Prototypes Al04

APPENDIX B: PIN DIÄGRAM 81

APPENDXC: TESTtr\GRESPONSESHEETS cl

164

t70

Lrsr OnFrcuRBs

Figure Pa ge

2.1 Frequency distinction ofvowels g
2.2 Sonograms of 'feet' 112.3 Speech coding specûum 132.4 Digital speech analysis and synthesis lj
2.5a Procedure for cutting waveform of word ,ten'

21
2.5b Procedure for copying the waveform of the word ,twelve'

22
2,5c Procedure for pasting the waveform of the word ,twelve,

222.6 'f spliced with 'e' using amplitude interpoiation . 232.7 Model of phoneme concatenation using linear predictive exnapolarion (LpE) Zs2.8 Linear prediction and postdiction of the phoneme [y/ 26

3. 1 Extemal view of a CASS system. 353.2 Speech splicing system in a vocal shaping environment 3.7

4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.rl
4.12
4.13
4.t4
4.15
4.16
4.r7
4.18
4.r9
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30
4.31

MSM6258 block diagram 4j
he-processing circuit
DAOUT voltage vs. time
Filtered DAOUI voløge vs. time
Command write timing
Status read timinC .

Record timing
Playback timing
Memory manager block diagram
PIA control register

49
51

51

57
58
59
60
62
65
66
68
69
70
72
74
75
78
83

90
92
94
95
97
99

PIA implementation and intemal addressing
CRA programming during record and playback
PIA testing
Serial communications system
ACIA programmable control register
ACIA implementation in serial communication system
ACLA, schematic diagram (top) and intemal addressing (bottom)
Dual pointer FIFO architecrure
Memory manager memory decoder
Command reception flow cha¡t

Playback background processing flow chart
Record foreground processing flow chart
Record background processing flow chart
RS-232C electrical signal characteristics
RS-232C functional pin assignmenr .

Null modem configuration
Wiring diagram of host computer-memory manager interface

101

103
105
106

v111

Figure Page

4.32 Host's main rnenu (text mode) 107
4.33 Send command flow chart 109
4.34 Host receive data flow cha¡t 110
4.35 Time plot window of Host's graphical inærface 1 13

5.1 Speech processing system ll9
5,2 Sysæm block diagram 120
5.3 Iayout of the speech daa logger board 122
5.4 lnterface conuoller 124
5.5 Speech processor read and status oulput timing diagram . 126
5.6 Read signal timing and presentation . 128
5,7 Schematic diagrarn of the read/wriæ timing conroller circuit 128
5.8 Timing of CS and RD or WR signals 130
5.9 Command decoder ci¡cuit 131

5.10 Swinging buffer block diagram I34
5.11 Timing diagram of the swing conroller 136
5.I2 Swinging buffer schematic 138
5.13 Schematic diagram of altemative speech data buffer 140

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8a
6.8b
6.9
6.10
6.11

142
r45

158

159

160

N9
481
A'59

B1

c1
c1
C2

C3
c3
c4

AI
A2
A3

B3

Block diagram of experimental equipment setup
AIFF header format ,

ResEdit window for changing file flag information
LPE softwa¡e verification
Waveform of 'feet'
Amplitude hterpolation of /V
Postdiction of phoneme l/
Prediction of phoneme /w/ (left) and postdiction of 'eet' (right)
Averaging of prediction of/Ø and postdiction of 'eet'
Subjective response to word synthesis by extracted phoneme concatenation
Subjective response to word synthesis by isolated phoneme concatenation
Subjective response to 25 msec phoneme prediction and postdiction

r46
147
149
r50
151

154
r54

Send command flow cha¡t
Mouse hot box coo¡dinate specification
Plot ma¡ker calculation

Pin diagram of MSM6258VJS

C1a Response sheet for word synthesis by exracted phoneme splicing
C1b Response sheet for natual words
Clc Response sheet for word preference
C?À Response sheets for similarity of original and prediction (top) and postdiction

(bottom)
C2b Response sheet for word synthesis by phoneme splicing .

C2c Response sheet for word preference .

Lrsr Op TesI,ns

Table

2,1 Phonetic tanscription of some General American English phonemes . .

4,1 Sampling frequency selection
4.2 ADPCM bus composition
4,3 Speech chip operation codes
4.4 Command codes
4.5 Søtus codes
4.6 Memory map of the memory manager .

5.1 Command codes

6.1 Preference test for words formed from exEacted word subunits
6.2 Preference test for words formed from isolated phonemes .

Page

8

50
53
56
57
58
81

t23

161

162

Lrsr on AsnREvHTroNs.rlt AcnoNyMs

ACIA AsynchronousCommunicationslnterfaceAdapær
ADC Analog to Dgital Converter
ADPCM AriâFtive Differential Pulse Code Modulation
Æ Amplitude Lrterpolation
B Byte
BIOS Basic Input Output System
bps Bits Per Se¡ond
Byte Eight Binary Bis
CASS Computer Auomated Speerh Splicing
CPU Cenral Processing Unit
CGA IBM's Color Graphics AdaFter
DAC Digitat to Analog Converter
DOS Disk Operating System
DRAM Dynamic Access Memory
EGA Enha-nced Graphics Adapter
EPROM Erasable Programmable Read Only Memory
FIFO FirsçIn-First-Out
CUI Graphical User Interface
HGC Hercules Graphics Adapter
IC Integrated Circuit
IFEF The Institute of Elecrical and Elecuonics Engineers, Inc
VO Inpuloutput
IPA Inæmational Phonetic Alphabet
Hz Cycles per second
k 1000
K zto =7024
LPC Linear Predictive Coding
LPE LinearPredictiveBxrapolation
MCGA Multicolor Graphics Array
M 220 =210210 =210K= 104957 6 (Binary context)
M 1 000 m @ecimal context)
MPU Mic¡oProcessor Unit
tßec MicroSecond
pP MicroProcessor
Nibble Four Binary Bits
nsec NanoSecond
PCM Pulse Code Modulation
PIA Peripheral Interface Adapter
ROM Read Only Memory
RS-232 Recommended Standard #232
SIMM Single Inline Memory Module
SRAM Static Random Access Memory
UART UniversalAsynch¡onousReceiverTransmitter
VDU Video Display Unit
VGA Video Graphics Adapter

-xi-

Cn¿,prnR I
InrRonucr¡on

1.1 Purpose

The purpose of this thesis is to present a computer aided speech splicing (CASS)

system for vocal shaping, CASS is a tool intended to assist speech therapists in the vocal

shaping process.

I.2 Problem

Speech is the most widely used fo¡m of communication. We take for granted our

ability to express ourselves through language of the spoken word. To some individuals, in

particular, retarded and autistic persons, intelligible speech does not come easily and may

not even be possible. This must be very frustrating, discouraging, and disheartening.

Much resea¡ch has been done on methods of teaching speech to voice-handicapped

individuals. One method involves the use of psychological shaping. "Shaping is a

behavioral procedure that has been used to develop or train a wide variety of new behavio¡s

in both animals and humans" tCair90l. Conventionally, vocal shaping involves a direct

interaction between speech therapist and student. The speech therapist provides the

example, typical model, or prototype target response, and the student attempts to reproduce

it. After each trial, the therapist assesses the quality and determines the "errors in

a¡ticulation such as omissions, substitutions, additions, or distortions of speech sounds"

[Desr9O]. Based on certain criteria, the response is judged as either progressive or

regressive. Following an improved response, reinforcement is administered, e.g., by saying

'very good' or by giving the student a food rewa¡d.

In order to avoid the subjectivity involved in assessing effors in articulation, much

research has been done in automated vocal shaping systems tCairgOl, [PeKR87], [Desr9O],

[FlHa83], tKWMR87l, and [Perk7u. In these systems, errors in articulation were

measured in tenns of a distance (e.g., Euclidean) between the student's response and the

target sound. The system decided whether the response was close enough "...within a

criterion region..." [PeKR8?] to wa¡rant dispensing of reinforcement or to prompt another

trial.

Most of this past research was limited to shaping fundamental units of speech,

called phonemes, such as lN, lAEl, and the phone 'ah'. Some success was reported:

"Human ratings indicated that all three children showed some improvement in their ability

to imitate the trained phonemes" [Cair90]. Also, it was reported that "The cor¡elation of

the judgements made by the apparatus (automated vocal shaping system) with each speech

professional was high, although not as high as the cor¡elation between the professionals

themselves" [PeI(R87].

Given the success of shaping phonemes, a natural extension to this work is to shape

new words or phrases formed by integrating two or more shaped phonemes. There are two

methods in which this may be accomplished. One method, which is similar to phoneme

target acquisition, requires that dre therapist supplies the pronunciation of the new words or

phrases. A possible problem associated with this method is the introduction of an

uncontrolled experimental variable. Vocal shaping requires continuity, perseverance and

years for its full and complete implementation. The same therapist may not be available for

prolonged or even short periods of time. Furthermore, throughout the process of shaping,

the student may become accustomed to the voice of an individual therapist. The

introduction of a different voice, a different pronunciation of the same target sound, may set

back past accomplishments and delay future advancement while the student becomes

comfortable with the new teacher. It is difficult to control a scientif,rc experiment while

allowing the inroduction of new variables whose effects are not fully understood.

Anothe¡ method of vocabulary expansion involves using, as a set of target words,

those words formed by an electonic concatenation of a set ofpreviously stored and smaller

units of speech spoken by a therapist. The sored æt of smaller units of speech would form

a basis upon which longer words or phrases may be formed, In this way, the new set of

words would be inherently characteristic of the original therapist's voice. The new words

may resemble the pronunciation of the original therapist even though their production would

not be entirely vocalized.

Another possible benefit of employing electronic concatenation for vocal shaping is

realized by taking the idea of voice familiarization one step further. While using a

therapist's voice as the target word may have some success, a different approach involves

using a target word formed by a concatenation of modified versions of the student's leamed

phonemes themselves. Rather than trying to emulate a teacher's voice, the student would be

raining hiVher voice as it would sound were the pronunciation or vocalization conect.

In order to accomplish electronic concatenation for vocal shaping, a system is

needed which is capable of splicing isolated phonemes or extracted sub-wo¡d units to form

naturally sounding new words, utterances, or phrases. This is one of the problems

considered in this thesis, However, there are other induced issues.

An analog method of splicing electronic information, such as editing audio and

visual tape, would not be possible nor practical for speech splicing. On the one hand,

serious speech splicing entails modification of the speech waveform itself, and this is not

possible by simply cutting and pasting tape. However, if vocal shaping is limited to training

entire words or combinations thereof, then simple cuning and pasting may be sufficient. On

the other hand, locating specific speech information on tape, cutting a portion of it, and then

pasting this information at a carefully selecæd location is an a¡duous and tedious task, and,

therefore, it is not practical.

A digital method of speech processing is a valid alæmative. However, sound quality

issues arise. For example, the presentation of poor reproductions of speech would probably

be unrepresentative and lead to indifference. On the other hand, very good quality speech

has a cost associated with transmission raûe, bandwidth, and computer memory. Past work

done by KlKiSTl (see Fig. 2.3) clearly shows the trade-off between speech quality and the

above mentioned costs. The middle ground must be chosen such that speech quality is

acceptable, \,vhile the cost of t¡ansmission rate, bandwidth, and computer memory is low

1.3 Scope

This thesis consist of seven chapters. Chapter I states the purpose of the thesis,

discusses the major problems to be solved by the thesis, and provides some motivation for

the thesis. Chapter II gives background information on rhe thesis. In this chapter a review

of speech synthesis is followed by a review of vocal shaping, and it is shown how certain

speech synthesis concepts may be applied to vocal shaping systems. As such, this chapter

lays out the theo¡etical and psychological aspects of this thesis. This provides motivation

for the technical aspect, which is discussed in Chapter III. Chapter III provides a block

diagram description of the speech splicing system, In this chapter, it is shown where and

how speech splicing fits into the vocal shaping environment. This chapter is also intended

as an introduction to Chapter IV, which is a detailed description of the speech splicing

system. This chapter and Chapter V may be skipped without any significant loss of

continuity. However, while these chapters are geared for digital ha¡dware and software

designers, i.e., Elecrical and Computer Engineers, the main ideas a¡e still undersøndable by

people from other disciplines. Chapter V offers an alternative paper design of a buffer for a

speech splicing system. This design uses a different technology rhan that used by the

buffer described in Chapter IV. Chapter V is intended for comparison purposes, and it

illusrates the fact that there is more than one way to design a buffer. Chapter VI discusses

the speech splicing experiments. These experiments utilize the speech synthesis methods

discussed in Chapter II and the speech splicing system of Chapter [V in o¡der to show how

speech splicing can be used as a tool for automated vocal shaping systems. Finally, Chapter

VII gives the conclusions and recommendations.

CrnprBn Itr
Blcxcnouun Oru SpBBcn SyxrsnsrslVocel Sn¡prn¡c

This thesis deals with applying speech synthesis techniques to automated vocal

shaping systems. In panicular, certain corpression, analysis, and waveform concatenation

techniques a¡e used in order to aid vocal shaping systems. As such, this chapter briefly

reviews the pertinent areas of speech synthesis and vocal shaping. Furthermore, this chapter

inûoduces the theory and methods of three waveform concatenation techniques capable of

synthesizing new words by concatenating isolated phonemes or sequences of phonemes

extracted from previously recorded words. These th¡ee waveform concatenation techniques

are used in Chapter VI Speeæh Splicing Experiments.

2.1 Review of Speech Synthesis

This section provides a brief review of speech synthesis. While the area of speech

synthesis is vast, this review is not meant to cover all the a¡eas, but it is intended to define

the scope and to focus on the compression, analysis, and waveform concatenation

techniques used in this thesis. In particular, the compression technique of adaptive

differential pulse code modulation (ADPCM), the analysis and synthesis technique of linear

predictive coding (LPC), and three waveform concatenation techniques are described in

mo¡e deøil.

2,Ll Building Blocks of Speech

A study of speech synthesis usually begins with analyzing the consuuction of

human speech. One way of understanding how a system is constructed is to break it down

and study its component parts, ideally the smallest building blocks. By analysing the

building blocks of speech and uncovering how these blocks are put together and integrated

in o¡der to form the whole, we may be able to synthesize speech. In order to study these

building blocks, a language for unambiguously and exactly describing them is required.

2.I1,l Phones, Phonemes, and Allophones

The established science of describing the building blocks of speech through

language has a well developed theoretical background- The Intemational Phonetic Alphabet

(IPA) is a system that describes speech sounds. The two branches of this science are (i)

phonetics and (ii) phonemics. Phonetics deals with providing a one-to-one mapping from

every known human speech sound to a written text representation. On the other hand,

phonemics deals with providing a wdtten text representation of the fundamental or smallest

units of speech of a panicular language. ln phonetics an individual sound is called a phone,

whereas, in phonemics the smallest unit is called a phoneme. Phones a¡e transcribed by

placing the text description between square brackets (e.g., [æ]), while phonemes are placed

within slants (e.g., ÄYl).

Phonemes

Phonemes are actually a subset of phones. However, a phone is a phoneme in a

particular language if it changes the meaning of a word upon replacing another phoneme in

that word. For example, in English the words 'top' and 'cop' differ in the first phoneme,

i.e., lTl and lKl, respectively. The phonemes /T/ and lW are said to be phonemic in English.

Table 2.1 shows some of the 47 phonemes in the English language [Pa¡s8O.

Allophones

As a counter example, consider the vowels in words 'coat' and 'coal'. While the

substitution of one vowel for the other may result in a strange pronunciation, the vowels a¡e

-7 -

not considered as two different phonemes because the meaning of the wo¡ds do not change

if the vowel sounds are interchanged. These two vowels arc referred to as allophones of the

phoneme /OlV/.

Table 2.1 Phonetic transcription of some General American English
Phonemes (adapæd from [Pars86, p. 85]).

Vowels
IPA Typewrithl
iff
IIH
eEY
ÊEH
æAE

Consonants
IPA Typewritten
pP
tf cn
bB
d3 JH

IPA Typewritten Example

o OW hoed
U UH hood
u UW who'd

^
AH bu.d

a AA hod

IPA Tlpe*T¡tlen Example

t T rell
k K cool
d D door
g G Cirl
e TTI thick
j sII rl¡ock
v V l€at
z Z zeal

mMnøt
î NX banr
r R ride
wWvnt

f
s

h
a

3

n
I
j

F
S

HH
DH
m
N
L
Y

Example

heed

h¡d
hayed
head
had

Example
pop

chæ,k
bat

just

fcht
sick
h^t
thar.

meaJufe
nose

call
yet

2,1.1.2 DistinguishingFeatures

In order to better understand how speech may be constructed, it is beneficial to

identify features of phonemes that may be used to distinguish them from others. Phonemes

may be distinguished on the basis of psychological perceprion, on the basis of objective

properties of speech, o¡ on a combination thereof.

-8

We are all familiar with vowel and consonant classifications of phonemes. An

objective feature of vowels is that their production is characterized by an unconstricted flow

of air through the vocal racl This results in vowels generally exhibiting a pseudo-periodic

sound. On the other hand, consonants are characterized by a constriction in the vocal uact,

and this results in a noise:like sound. While most vowels and consonants may be

distinguished by the consricdon c¡iterion, there are examples where the distinction is fuzty,

That is, there are some consonants that exhibit a degree of periodic sounds and a degree of

constriction in the vocal tract, for example, N in 'call'. For systems relying on

distinguishing vowels and consonants based on the constriction criterion, it may be

beneficial to employ the theory of fuzzy log¡c fFeKi9 I I .

From an objective viewpoint, phonemes may be differentiated with respect to their

frequency content. Fig. 2.1 shows a plot of frequency Fl vs. F2 for phonemes spoken by

various people. The frequencies Fl and F2 a¡e called formant frequencies, and they

IY:
IH:
EH:
AE:
ER:
AH:
UH:
AA:
UW:
AO:

N

c.¡

trr

4000

3000

2000

1500

1000

he€d
hid
head
had
heard
bud
hood
hod
who'd
hawed

400 800
F, [Hzl

Fig. 2.1 Frequency distinction of vowels (after [Pars86, p. 105]).

9-

represent those frequencies having the largest power of the panicular phoneme. The

orthogonal information in this figure may be used in a limited phoneme recognition system.

In particular, phonemes IYI and Nlðl/may be distinguished directly by examining the

relative contribution of frequency bands from 500 to 1200 Hz and from 2000 to 3700 Hz.

However, as shown in the figure, there are overlapping regions where this method may not

work

2,1.1.2.f Coarticulation

One misconception and unfortunate fact of speech production is that when we form

a word, we do not simply generate phonemes in isolation and put them together. If it were

that simple, speech synthesis would not be a problem as it is today. When we utter a word,

each phoneme in that word is influenced to some extent by its neighbors. We can think of

each phone in a word "as a target at which the vocal organs aim but which they never

reach. As soon as the target has been approached nearly enough to be intelligible to the

listener, the organs change their destinations and start to head for a new tårgeL This is done

to minimize the effort expended in speaking and makes for greater fluency" [Pars86, p.

921. Not only are phonemes influenced by their predecessors, but the predecessors,

themselves, are influenced by the following phonemes. Figure 2.2 shows an example of the

coarticulation phenomenon. The top figure shows a plot of frequency vs. time (called a

sonogram) of naturally spoken word 'feet', whiìe the bouom figure shows the sonogram of

synthetically formed'feef. Note the continuous, smooth, and gliding change in frequency

between the adjacent 'f' and 'e' sounds in naturally spoken 'feet', and contrast this to the

disc¡ete and abrupt change between that for synthetically formed 'feet'. The influence and

overlapping of propenies of individual phonemes is called coarticulation.

10-

Natr:¡al lr#= -

:::.:k-.::ejã -'tê=;;ti.fr.

- -
-'rlllllÏlvlF¡Jrf lltwrr '

- -
ee

4K

2K

OK

SynÌÌIetic
,.:Ë

ff+¡îËe+-
¿ r _fj_!,_'¡=.-i€._r¡:*lE+. a -.-.-_
'-. -=-:i_--j,:î .:3zj_+- i :.i1 ",- - _

-ï '?4-Ë:l- .Í?rÈ+ :;í. 'î .ï¡-::-:-r.-* a' .-'

.'t"r clèr.t j. =¡

=
' _-:r-:i! a- '-aÌ,"-

í:-i - tuLf; rí.r*1".f i,r:
-- -,:.t ; L- 5-,J¡,

i*--*¡¡.¡illiiilltilmu,r,r.n,rr-.-
flllllllr rrI

ee

Fig.2,2 Sonograms of 'feet'.
naturally spoken 'feet', while
synthetically produced'feet'.

The top plot shows the sonogram for
the bottom shows the sonogram for

It is evident that if a speech synthesis system based on phoneme consÍuction is to

be successful and synthesize naturally sounding speech, rules or methods are required in

order to take coarticulation into account. There are different methods which can be used to

deal with coarticulation, and they all work with varying degrees. These methods are

incorporated in the general speech synthesis methods, namely, synthesis by rule, synthesize

by analysis, digital recording, and waveform synthesis. This thesis specifically deals with

waveform synthesis, but the others are briefly reviewed in order to develop scope,

2,2 Speech Synthesis Methods

Speech synthesis deals with reproducing human voice from an electrical and/or

mechanical repres€ntation, One of the earliest speech synthesizers was developed in 1947

at Haskins Laboratory tBris84l, where speech was frst captured and represented in the

form of a specuograph and then later played back, Today, there are many different speech

synthesizers, but they all may be classifïed, as shown in the middle of Fig. 2.3, as either

synthesis by rule, synthesis by analysis, or digial recording.

As shown in Fig. 2.3, each synthesis method is associated with a cost rade-off

benveen quality and transmission rate: the higher the quality, the higher is the transmission

rate. The designer of a speech synthesizer must consider what quality of speech is required

and whether the bandwidth of the system is capable of accommodating the associated

üansmission rate. For example, in many telephone systems, the existing communications

channel, i.e., the wires, cables, and repeaters connecting one telephone customer to the next,

has a capacity of allowing transmission of electrical signals of frequency up to about 4 000

Hz (32 000 bits/sec if each sample of data is represented by eight bits). This is why toll

quality is the best possible in telephone systems. In this thesis toll quality is chosen in the

vocal shaping system, since toll quality is sufficiently intelligible for the general public and

because the bandwidth of computer systems generally allow the associated transmission

fate.

2,2.1 Synthesis by Rule

One of the primary objectives and well known purposes of speech synthesis is to

convert printed text into understandable sound messages. Much like written text conveys

meaning by stringing together discrete symbolics units, text to speech synthesizers

1,2

O SPEECn QUALITY
+-SYNTHETIC

0 ptrn BIT RATE [bivs]
ASCII

on)tetzl 256 512 lK 2K ar.i eK iox 32K 64K i2BK

BK 4K 2K tK 512 256 12Bi 64 '3'2 l'o s a
Memory Storage Number of wordè srored ¡n a 256Kbit eÈnOu assuming speech rate of 2 words/second.

+TsxttoSpeechà
(Phoneme Synthesis)

(Allophone Synthesis>

SOME ANALYSIS/SY
{-phonaic

6K 32K

Fig. 2.3 C-omparison of speech coding æchniques, bit rates and associated speech quality. (after tKlK¡84).

BROADCAST
(coMMENTARY)

256K 14Y

2 stereo
Audio

concatenate sequences of sounds to form words and sequences of words to form phrases

and sentences. Furthermore, úe assembly of words, phrases, and sentences is controlled by

a set of rules, which, not unlike written text, is language speciñc.

Much research goes into studying the n¡les that control how sounds are put together

to form words, phrases, and sentences [Sagi90]. Synthesizing speech from arbitrary text

input involves highly advanced information processing, including text analysis, syntactic

analysis, pronouncing dictionary, ¿ccent assignment, prosody control, segment duration,

rhythm, tone, and loudness.

2,2.2 Synthesis by Analysis

Speech can be reproduced from an analytical representation. The frequency domain

and time domain of actual speech may be analyzed in order to determine characteristic

features and redundancy. These characteristics are used to form a compressed

representation. The function of the synthesizer is to decode the compressed representation

and put back together the speech. During the course of compression, some information will

be lost and, consequently, the quality will suffer. The compression ratio and the resulting

quality are criæria used to judge the goodness of a panicular technique.

The frequency domain analysis/synthesis technique is based on a model of the

human vocal system. This model generally consists of excitation sources (modelling the

vocal co¡d oscillationi, turbulent air, and the lung) and a variety of filters (modelling the

acoustic filter of the vocal tract). Data compression is achieved by storing and ransmitting

parameters of the model instead of the original waveform. The number and frequency of

parameters is smaller than the amount of information in the waveform because speech is

pseudo periodic and redundant. The synthesizer uses the pammeters in order to reconstruct

t4

the speech waveform. The output waveform may not bear any detailed resemblance to the

original waveform, and yet the quality may still be quite intelligible and resemble the sound

of the original speech.

While frequency-domain techniques achieve compression through representations

of characteristic features of the speech waveform, time-domain techniques, in contrast,

achieve compression through compressed representations of the time-domain waveform

itself, However, 5imilar ts fr€qusncy-domain techniques, time-domain techniques achieve

compression by exploiting the pseudo-periodic and redundant nature of speech. The

synthesizer's job is to de-compress the representation and reproduce the time domain

waveform. Similar to the frequency-domain synthesizer, the reproduced time-domain

waveform need not be an identical match of the original waveform.

2.2.2.1 Linear Predictive Coding (LPC)

One of the more important analysis/synthesis methods is called linear predictive

coding (LPC). LPC provides a mathematical model of a linear, discrete-time system.

Human speech production may be modelled as an all-pole linear, discrete-time system.

Eq.2.1 shows the mathematical expression used by LPC to model the speech waveform.

Îtnl = - a[i]y[n-i] (2.r)

As this equation indicates, LPC predicts the forthcoming time domain sample of the speech

waveform by calculating a linear combination of past samples [Pars86]. The hat over the y

indicates an estimate and p represents the number of past samples. The quantities, a[i], are

called predictor coefficiens and are determined by minimizing the mean-squared enor given

by Eq, 2,2. Eq, 2.2 yields p equations, which can be solved for a[i]. The

p

T
i=1

15

min(Enor) = min (1y¡n1*9¡n1¡2) (2.2)

computation of a[i] usually involves either the autocorelation or the covariance method. It

has been found that the autocomelation method is more suitable for stationary segments of

speech, while the covariance is better suited for non-stationary segments [parsg6]. Note

that Eq. 2.1 can also be viewed as a digital filter, where a[i] is the impulse response ofthe

filter. In this respect, Eq. 2.1 is a convolution operation.

LPC is also useful for estimating a preceding sample of stationary speech. For

example, given p samples, y[1] rhrough y[p], the preceding sample, y[0], can be estimated

or postdicted by Eq. 2.3. Note that the only difference between Eq. 2.i and Eq. 2,3 is the

di¡ection of the data in the convolution. This is a result of the assumption of stationary

speech, which implies the statistics do not take the dtection of time into consideration.

p

îtnl =- ì, uto * 1 -ily[n + i] (2.3)

Finally, LPC achieves compression by storing and t¡ansmitting the predictor

coefficients, whose number is a fi.action of the p data samples.

2,2,3 Digital Recording

Among the three synthesis techniques mentioned, digital recording offers the best

quality. Like synthesis by analysis, synthesis by digital rccording strives to achieve data

compression. However, most of the compression techniques are implemented at the lowef

end of the digital recording specffum, as shown in Fig. 2.3. At the high end, the quality is

excellent, but the cost of the associated transmission rate can be quite high. For example,

about 10 MBytes ([1.4 Mbits/sec][60 sec]/[8 bits/Byte]) of computer memor.y is required

t6

in order to store one minute of compact disk quality sound. Like the analytical synthesizer,

the function of the digital synthesizer is to decode the digital representation and reconstruct

the speech signal. One difference is that the reproduced waveform resembles the original.

In fact, the pulse code modulation (PCM) technique (no compression) is guaranteed to

faithfully reproduce the waveform exactly (if we neglect quantization enor) [Fel,o89].

The digital recording method of speech synthesis actually requires two phases, (i)

analysis and (ü) synthesis, for is complete implementâtion. The anâlog speech waveform is

first represented in the digital domain by a process called digitization. As shown nFig.2.4,

the waveform is quantized in both time and amplitude. That is to say, a continuous,

electrical analog representation of speech is sampled at regularly spaced intervals (time

quantization), and then the samples a¡e rounded off to the nearest digital number (amplitude

quantization), The resulting digital representafion is stored in computer memory for further

processing and eventual transmission for the synthesis phase. The digital synthesizer

reconstructs the analog waveform from the digital representation. Synthesis is the reverse

process of digital analysis. This exact reproduction capability implies that digital recording

preserves all info¡mation in speech, such as pirch, intonation, inflection, and sEess.

Time
Quantization:

Sampler

Amplin:de
Quantization:

Digitizer

Continuous -Time and
Continuous-Amplitude

Representation
of speech

Analysis
'+

Digital Representation:
.Memory Storage

.Further Processing
.Transmission

Svnthesis+
Fig.2.4 Digital speech analysis and synthesis.

L7

2.2,3,1 Adaptive Differential Putse Code Modulation (ADPCM)

Adaptive differenti4l pulse code modulation (ADPCM) is a data compression

technique that is implemented at the lgyer end of the digital rrcording spectrum of speech

(i.e., from about 12 kbps to 32 kbpÐ. ADPCM is an adaptive and diffe¡ential derivative of

PCM. Rather than storing an$ ranspi4ing ttre absoluæ value of each digitiz€d sample, as is

done in PCM, the diffe¡ence between sucçessive samples is taken, and then this difference

signal is quantized. The difJerential quantizatign step size is adaptively derived from the

relative size of the previous sample. The logic of operating on the difference signal rather

than the absolute value of each sample is motivated by the fact that speech is inherently

redundant [Fet¡89]. That is to say, there is a high probability that successive amplitudes of

speech samples are approximately the same. As a result, the size of data needed to encode

the difference signal can be reduced. The srategy of the adaptive quantization step size is

based on the fact that the amplitude of speech can be described by a Laplacian distribution

UaNo84l. Small amplitudes of speech have a ¡elatively high probability, while the

probability decreases significantly with higher amplitudes. Based on these statistical facts,

the sEategy is to use a large step size when the amplitude of the previous sample is large

and small step size when the previous amplitude is relatively small. As a result, better

resolution is provided when the amplitude is more probable. This srategy enables ADPCM

to better track or match the variance of the input speech waveform.

2,2,4 Waveform Synthesis

Perhaps, the most straightforward way of synthesizing speech is to have digital

recordings of individual speech units and to design a system for retrieving and stringing

together those units at the correct time and the proper order. These units may be the actual

digitally recorded waveform of large speech uttetances, such as whole words or phrases or

smaller utterances, such as phonemes, allophones, or phones. The type of synthesis unit

18

used by the synthesizef depends on the application. Small vocabulary systems may find it

more suitable to use word waveforms, while wavefonns of phonemes would be required for

larger vocabulary systems. For example, a city bus schedule information system delivered

over telephone lines would require only a limiæd vocabulary. A typical response is "Route

60, Pembina. Next bus at 2:10", The only words that may vary in this message are the

number of the route (@), the na¡ne of the rouæ @embina), and the time (2:10).

Iarger vocabulary systems are inqeæingly more complicated. At the very exEeme,

we can imagine an unlimited, speaker independent system. In this huge system, the sound

units would ideally consist of fundamental building blocks of speech, i.e., phonemes,

allophones, and,/or phones.

Large vocabulary systems must consider the coarticulation problem (refer to

Chapter II, Section 2,1.1.2.1). Human speech (e.g., the formation of an individual word)

does not merely consist of concatenating isolated phonemes. Each phoneme is influenced

by its neighbors. Thus, if we were to string together phonemes uttered in isolation in order

to form a new word, that word would most likely sound unnatural. A phoneme based

system would have to either modify the boundary conditions of adjacent phonemes or,

perhaps, increase the library size by including allophones or specific phones.

Indeed, the latter has been attempted by Harris tHarri53l, However, Harris realized

that an immediate problem is the exponentially increasing size of memory required to store

waveforms of different allophones for each phoneme. To solve the memory size problem,

Harris investigated a minimal set of allophones.

Another way of decreasing the size of memory required by allophone based systems

is to store larger units of speech that include the ransition regions. These larger units of

19

speech are called dyads, diphones, or demisyllabes [PeWa58] and [Holm88], and they

consist of phonemes and thei¡ ransition regions. These Eansition regions are generally

characterized as steady state regions, and drey are not gready influenced by adjacent sounds.

Synthesis by diphones has been acempted by Petenon and Wang [PeV/a58], but a problem

they encountered was the discontinuity between diphones themselves.

It appears that if phoneme based synthesis for large or even small vocabularies is to

succeed, then it must deal with the coarticulation problern, directly. The boundary properties

ofphonemes spoken in isolation must be modified before they can be put together to form

larger utterances. This thesis investigates three methods of dealing with the boundary

modification of isolated phonemes and exEacted suþword synthesis units. The process of

forming new utterances by putting together smaller units and modifying their boundary

properties is defined in this thesis as speech splicing. The following sections give the

ttreory, requirements, and motivation of the proposed boundary property modifrcations.

2.2.4.L Cut, Copy, and Paste

Perhaps, the simplest way of constructing speech from individual components is

cutting, copying, and pasting digitally recorded waveforms. This method requires an

interactive editing system capable of allowing the user to display, select, and playback any

portion of a previously digitally recorded waveform. The displaying part of the system

requires a visual association of a waveform with its sound. This capability provides great

flexibility in selecting the right segment of speech for the job.

This method may also be suitable for modifying the items of small vocabulary

systems, such as a bus schedule info¡mation service, as mentioned above. Figure 2.5 shows

an example of a three step procedure for replacing the wo¡d 'ten' from the message "Route

60, Pembina. Next bus at 2:10," with the word 'twelve'. Both words have been previously

20

digitally recorded, and all that is seemingly required is to cut, copy, and paste the words at

appropriate times or locations in the message.

However, this method is somewhat ædious, labour intensive, and time demanding,

because the user must continually select and play portions of the time domain representation

of the speech wavefo¡m, until the sound of interest has been located, isolated, and copied.

This problem a¡ises because the boundaries of phonemes located in an uttetance are not

clearly defined. Words spoken by humans involve a continuous flow or glide between

adjacent phonemes. As such, specifications of the bounda¡ies may well be fuzzy concepts

and betær treated by fuzzy theory [FeKi9U.

5.0

ô

'8 z.s
É
Þ.
E

0.0

Display Scroll Bar

@@ @@@

Time (seconds)

Fig. 2.5a Procedure for cutting waveform of word 'ten'. The waveform of
the word 'ten' may be isolated by selecting a portion of it through pointers
Pl and P2. Also, the visual representation of the waveform may be
associated with the sound of the word 'ren' by playing back the selection.
Finally, the selected waveform is cut by selecting cut function through the
icon, Cut,

Time (seconds)

cÐ@ @@@ @
Fig 2.5b Procedure for copying the waveform of the wo¡d 'twelve'.
Verification of the waveform by playing back the speech selected through
pointers Pl and P2 is followed by using the icon, Copy, to æmporarily retain
a copy of the selected waveform.

Time (seconds)

@@ @cÐ@ (Ð
Fig 2.5c Procedure for pasting the waveform of the word 'twelve'. The
waveform is pasted near the end of the waveform 'two' (more precisely, at
location pointed to by Pl) by selecting the paste function of icon, Paste.

-22-

The cut, copy, and paste method does not take into consideration the differences in

boundary properties that may exist between adjacent words of a phrase and between

adjacent phonemes of individual words. However, because human speech perception plays

a significant role in undersunding speech, the boundary conditions may not adversely affect

intelligibiliry. Whether or not the bounda¡y conditions affect intelligibility depends on how

'bad' amplitude or frequency is mismatched.

2,2.4.2 Amplitudelnterpolation

Proper speech splicing entails some consideration of the boundary conditions. One

way of matching the boundary amplitudes of the phonemes to be spliced is by amplitude

interpolation. This method compares the amplitude envelopes of the phonemes to be

spliced. Starting at some point in the phoneme (near the beginning, middle, or end), the

Fig.2.6 'f' spliced with 'e' using amplitude interpolation.,e

23-

amplitude envelope of one or both phonemes is increasingly scaled towards the boundary

until the envelope amplitudes måtch. Scaling may be done linearly or non-linearly. Figure

2.6 shows an example. The selected 'f' sound in 'fit'is put together with the selected 'ee'

sound in 'beet'. As can be seen in the top waveform, the amplitude envelopes are

mismatched. The interpolator matches the amplitude envelopes at the boundary by scaling

the envelope of the 'ee' sound.

As with the copy, cut, and paste metho{ a disadvantage is the amplitude interpolator

entails some repetition. The user must repeat the procedure until the right combination of

parameters, i.e., linear or non linear scaling, scaling factor, and boundary depth, is chosen.

Furthermore, the judgment is subjective and may vary from one person to the next. Another

disadvantage is the amplitude interpolator does not take into consideration differences in

duration of one or both phonemes to be spliced. The discontinuity at the boundary may be

because one phoneme does not continue long enough in order to meet the adjoining

phoneme, Another disadvantage is the amplitude interpolator directly modifies the

waveform. There a¡e some instances where the integrity of the original waveform is to be

left intact, while some other method achieves boundary march and continuity.

2.2.4.3 Linear Predictive Extrapolation (LPE)

The waveform extrapolator can achieve continuity and match at the bounda¡y, while

preserving the cha¡acte¡ of the original phonemes. The waveform extrapolator may achieve

a match b€tween two phonemes by inroducing an inherently characteristic binding segment

at the boundary. As its name suggests, the waveform exEapolator p¡edicts future samples

of the wavefo¡m based on past samples. This is appropriate for the left hand side phoneme

to be spliced. However, for the right hand side phoneme, the extrapolator postdicts or

estimates preceding samples based on present samples. Figure 2.7 shows a model for

24

concatenating phonemes using linear predictive exfapolation. The waveform extrapolator

consists of the following three steps: i) linear prediction, 2) linear postdicrion, and 3)

averaging.

Fig.2.7 Model of phoneme concatenation using linear predictive
exrapolation (LPE).

The motivation for the predictive exnapolator is based on the fact that when humans

vocalize words, the adjacent phonemes interact and influence their neighbors. It is proposed

that linear prediction may model this interaction, because linear prediction has already been

shown to provide a sub-model of speech production [Pars86]. In order to take into

conside¡ation both adjacent phonemes, however, postdiction and averaging is included.

Averaging gives equal weight to both phonemes for the binding segment contribution.

However, it may be that one phoneme should have more influence on the other. ln this case,

a generalized fuse function may be employed [FeKi9 U.

Figure 2.8 shows an example of postdiction and prediction of an actual waveform

for the phoneme [Y/, as in 'feet'. The objective is to make the phoneme ÆYl, spoken in

isolation, sound longer and prepare it for eventual splicing using the binding segment

25

method. The f,rst step consists of linear prediction. From Eq. 2.1 , one hund¡ed samples þ
= 100) of the p¡eviously recorded phoneme /IY/ a¡e used o predict the next twenty samples.

These twenty samples are pasted to the end of the original phoneme using the Pasre

function of the system described above. The next step consists of linear postdiction.

Fig. 2.8 Linear prediction and posrdiction of the phonene IIY/,

From Eq. 2.3, one hund¡ed samples (p = 100) of the previously recorded phoneme /TY/ are

used to estimate the previous twenty samples. These twenty samples are pasted at the

beginning of the original phoneme using, once again, the P¿s¡¿ function of the system

described above.

Having described theory of speech synthesis, in particular, the compression

technique of adaptive differential pulse code modulation (ADPCM) and three waveform

concatenation techniques, namely, copy, cut, and paste; amplitude interpolation; and linear

predictive exuapolation (LPE), this chapter no'rv tums to discussing how these conceprs can

be applied to automated vocal shaping systems.

Amplitude vs. time of postdicæd + t!

2,3 Review of Vocal Shaping

This section provides some background information on vocal shaping and

automated vocal shaping systems. This review is not comprehensive, but it does cover the

pertinent aspects, and it is inænded to provide motivation for this thesis and to show how

speech splicing may be used in a vocal shaping environment A definition of shaping and,

in particular, vocal shaping is discussed Following this is a description of the structure of

automated vocal shaping systems. This description shows the part played by the speech

splicing system of this thesis. Finally, the procedure and method of an automated vocal

shaping system is discussed.

2.3,1 Vocal Shaping Definition

Shaping is a behavioral modif,rcation procedure of a branch of Psychology dedicated

to the study and practice of modifying, developing, and training new behaviors in animals

and humans. The shaping procedure is modelled after operant conditioning, i.e., the

frequency of occurrence of a behavior is inc¡eased by making the presentation of

reinforcement contingent on the occúrence of that behavior. Shaping involves a series of

applications of operânt conditioning for smaller changes in behavior because the probability

of exhibiting a complex behavior without prior and similar experience is low. Furthermore,

shaping is based on the realization that complex acts are piece-wise continuous in nature

[Skin53]. Most complex acts consist of a sequence of smaller actions, which, when serially

enacted, form the behavior. An example of this is the method by which circus animals are

trained to perform 'tricks'. For instance, in order to get a lion to sit up on its hind legs on

top of a table, the trainer would break down this complex behavior into component parts.

The lion is Eained to perform each part individually and sequentially, starring with the first

small act, which may be to get the lion to just look at a table. Each occurrence of the

component part is reinforced, most probably in this case by dispensing food to the lion.

After a component part is mastored, reinforcement of that behavior is halæd (extinguished),

and the next behavior is auempæd. This process of rehforcement followed by extinction is

continued until the lion exhibits the tot¿l complex act. Shaping can be defined as a

behavio¡al modification process consisting of the successive reinforcement of closer

approximations and the extinction of previous approximations until the target b€havior is

achieved [MaPe88].

Vocal shaping is dedicated to the study and practice of modifying vocal behavior of

speech disabled individuals [PeKR87]. The process of vocal shaping involves four

parameters: (i) ørget behavior, i.e., conect or desired pronunciation of an utterance; (ii)

starting behavior, i.e., a student's initial vocalization of an attempted utterance; (iii)

advancement and regression criteria; and (iv) step size [Desr90]. Flexibility in the sysæm

is allowed in that the advancement and regression criteria and dre step size are derived from

a given target response and starting behavior. In this way, the system can adapt itself to

individual differences.

The conventional method of adminisæring vocal modification is a long, tedious, and

subjective process, because it involves direct interaction between speech therapist and

student. After each incremental response, the teacher must assess the behavior, decide

whether it is advancing or regressing, and alter the step size (if required). This assessment

can be very subjective in nature, and the decisions made by the same therapist can vary from

one time to another as well as between different therapists. "Automated systems may aid in

this process by increasing the precision by which assessment and training procedures may

be admini stered" [Desr9O].

2.3.2 Automated System Architecture

C\rrent resea¡ch [,ove9l] proposes a phonemic recognition system for automated

vocal shaping, This systcp consisrs gf three phases, i) acquisition of training data, ii)

confîguration and raining 9f ¡gcggpi$pn sysçm, and üi) phoneme shaping. The system is

run on a Macintosh IIsi computer an{ prqvides a very nice user interface to facilitate easy

acquisition, configuration, and shaping.

2,3.2,L Acquisition of Target and Training Data

The acquisition phase consists of building a library of rest patterns. Target

phonemes spoken by a speech therapist a¡e recorded and features are extracted and loaded

into the lib'rary. Each target phoneme consists of numerous versions, which are associated

with labels as follows: excellent, good, fair, poor, and unsatisfactory. The purpose of this

lib,rary is to provide the student with model pronunciations, to provide distance comparisons,

and to configure the recogrizer.

2,3.2.2 Configuration and Training of Recognition System

The configuration phase configures and trains the recognition system with the test

pattems acquired in the acquisition phase. The recognition system is implemented using an

artificial neural network. The purpose of the neural network is to recognize the version of

the test pattem the student is attemptirg to imitate and, also, to provide distance measures.

Phoneme Shaping

Once target and Eaining data have been acquired and the recognition system has

29

been tained, fte process of shaping can begin. To start the process, the therapist chooses a

phoneme from the library. The compuær synthesizes this phoneme and plays it back for

the student. The student attempts to imiraæ the sound, and the computer records the

response. The recognition system determines the quality of the response by generalizing

and mapping the response to one of its known identities. Distance measures a¡e sto¡ed in

anticipation of the next rcsponse. Based on advancement and regression criteria, the system

determines whether reinforcement should be administered, Once a particular version has

been achieved, reinforcement for that version stops, and the next best version is atæmpted.

In this way, the system attempts to shape the response of the student through successive

versions of the target until the conect pronunciation of the phoneme is vocalized.

2,3.2.4 Word Shaping

Once a set of phonemes has been shaped, the next logical step is to try larger

content speech, such as words or phrases. If these words already exist in a library, then

speech splicing may be used in the process of shaping these words. The objective is to

extract phonemes and or syllables and process them using waveform concatenation

techniques in order that they, themselves, may be used for vocal shaping. The idea is that if
a student is to leam to vocalize an entire word, it would be easier to proceed in steps by

individually shaping the component parts of the word. Once the component parts are

leamed, then they may be put together more eæily in order to form the word.

There are two advantages to this method. The variability inuoduced by having a

therapist utter the phoneme or syllable many rimes in succession is eliminated by the

automated system which is capable of synthesizing the component part exactly the same

way every time. Also a therapist may not vocalizÊ the phoneme or syllable exactly as it is

vocalized in the context of the word. This is not a problem for a system that extracts and

plays back the actual waveform of the phoneme or syllable from the waveform which has

30

embedded in it the contex[.nl info¡mation.

However, if these larger words do not exist in the library, then they would have to be

added. There are at least three methods of vocabulary expansion. The first method requires

a target acquisition phase, which would ¡ecord the additional words or phrases spoken by a

therapist. A second method, which does not involve a tffget acquisition phase, involves

adding previously recorded phonemes to previously recorded words, removing phonemes or

other smâll units of speech from previously recorded ÌvoÍds, or replacing phonemes of

previously recorded wo¡ds. This may be done using the waveform concatenation methods

described in Section 2.2. For example, if the words 'dog' and 'add' were previously

recorded utterances ofthe therapist, then the new word 'dad' may be formed by copying the

phoneme /D/ from 'dog' and pasting it to the starting of the word 'add' to form the new

word 'dad'. A third method of vocabulary expansion is similar to the second method.

However, a significant difference is that the source of phonemes to be spliced is the

student's vocalizations, raúer than the therapist's. The idea is to first shape a specific set of

phonemes. From this set new words may be formed by the waveform concatenation

methods. Because these new words are formed from the student's own pronunciation of

the component parts, the resulting pronunciation of the new words would characteristically

and inherently sound as the student's own voice. This may lead to intuitive, natural, and

easier shaping.

The second and third methods of vocabulary expansion have the additional

advantage of providing experimental continuity. During the long course of shaping the

vocal responses of a certain student, that student may become dependent on the specific

pronunciation of a particular therapist. If for any reason that therapist is no longer able to

continue shaping the student, past accomplishments may be set back and the rate of leaming

may be decreased. Because these concatenation methods may produce familiar sounding

31

words that may sound inherently characteristic of the therapist's or the student's

pronunciation, the experimental variability of changing teachers during the course of

training is eliminated

2.4 Summary

This chapær provides a review of speech synthesis and vocal shaping. The frst part

of this review focuses on the techniques of ADPCM, LPC, and waveform concatenation.

ADPCM is a data compression technique that is used for speech data transmission, and it

achieves a compression ratio of 2:1, while maintaining toll quality. LPC is a speech analysis

and synthesis method that is used in this thesis in conjunction with waveform concatenation.

Waveform concatenation is a method of synthesizing speech from waveform

rep¡esentations. In particular, new wo¡ds or phrases a¡e formed by joining waveforms of

smaller units of speech. More specifically, new words may be formed by concatenating

phonemes or by replacing phonemes of existing words. There are three methods of

waveform concatenation: (i) copy, cut, and paste, (ii) amplitude interpolation, (iii) and

linear predictive extrapolation. These three methods a¡e used in Chapter VI Speech

Splicing Experiments.

The second part of this review shows where and how speech synthesis fits in with

vocal shaping. Vocal shaping is a psychological procedure for modifying vocal behavior.

Vocal shaping involves the administration of reinforcement for closer approximations and

extinction of previous approximations until the trtget response is achieved. The idea is to

shape vocal responses of students by getting them to emulate a succession of target

responses spoken by a therapist. Speech synthesis, in particular, speech splicing, may be

used to form new target responses. New wo¡ds or phrases may be formed by adding,

removing, or replacing phonemes within existing words. This method is called vocabulary

expansion and is useful for providing long term continuity and reducing experimental

variability. In the case of concatenating phonemes spoken by students, this may lead to

intuitive and easier shaping, because the new words would inherently sound like the

student's own pronunciation.

This chapter deals with the psychological and theoretical aspects of this thesis. The

next step is the technical aspect which provides the technical means by which the

psychological and theoretical aspects ate implemented. The technical description begins

with defining the requkements and a¡chitecture of a speech processing system, which

incorporates the tools of speech splicing. This is followed by the organization, i.e., the

technology used in order to implement the architectue.

33

Crnprnn IItr
Svsreu RnqumnunNTs AND AncHrrncruRE

Chapter II provides. a ¡eview of speech synthesis and vocal shaping, and it describes

how speech synthasis, in partieul4 wayoform concaænæion, may be used in a vocal shaping

envi¡onmenl Chapær II can be !þought of as describing the theoretical and psychological

aspects of this thesis. The neöt step is the æchnical aspect, which concems the physical

realization of the speech splicing system. This step involves an architectural description

(described in this chapter) and an organizational realization (Chapter IV).

This chapter discusses requirements and describes the a¡chitecture of a system

capable of splicing speech using the waveform concatenation method. In a vocal shaping

environment, the entire system would consist of three phases: (i) utterance acquisition for

vocabulary expansion, (ii) synthesis by isolated phoneme and,/or extracted sub-wo¡d

concatenation, and (üi) synthesized wo¡d shaping. However, this thesis concentrates on the

speech splicing part of the system, which consisrs of phases (i) and (ii). As described in

Chapter II, Section 2.3,2.1, the utterance acquisition phase consists of acquinng model

phonemes and/or model words spoken by a therapist or shaped phonemes spoken by a

student. Once the utterances have been acquired, the next phase consists of splicing or

synthesizing new words using the waveform methods described in Section 2.2.4, namely,

cut, copy and paste; amplitude interpolation; and linear predictive exrapolation.

3.1 System Objectives

In order to satisfy the above two major goals of the speech splicing system, certain

objectives can be stated as follows:

34

ReaI time recording and playing of speech.

Recording and playing time limited only by the available space on the PC's

hard disk.

Good quality speech reproduction cha¡acterized by at least telephone (toll)

quality, while naintaining relatively low transmission rate, bandwidth, and

computermemory,

Isolation of computer from other peripheral speech processing hardware.

Portability and compatibility of peripheral spe€ch processing hardware and

host computer.

Intuitive and easy to use interface of host computer,

Main host software including library formulation; data compression and

decompression; and amplitude versus time plot of speech waveform allowing

the useÍ to display, select, and playback any portion of a digitally recorded

speech waveform.

Additional waveform synthesis software including intuitive copy, cut, and

pæte; amplitude interpolation; and linear predictive exuapolation;

St u dent's
Pronuncialion
Of Dog'

)))

Fig. 3.1 Extemal view of CASS system.

3.2 System Structure

Figure 3.1 shows an external view of the entire vocal shaping system. This figure

(a)

(b)

(c)

(d)

(e)

(Ð

(e)

(h)

SDeech
Therapist:
Syrem
Operabr

35

shows the ',vord shaping mode of operation. It is assumed that the targets of three

previously shaped phonemes UDl, lAN, and lGl) have been stored in a library and

subsequently spliced to form the word 'dog'. To get a better idea of how this system may

work , let us consider an internal view, as shoì,vn in Fig. 3.2. As shown in this figure, the

system consists of a speech processor, memory manager, serial communications channel,

and host computer.

3,2.1 Speech Processor

The speech processor is responsible for recording and playing speech. The

sequence of events transpiring during record and playback mode can be described as

follows: During recording, the speech processor is responsible for inputting the analog

representation of the speech waveform, converting the waveform's a.nalog representation to

a digital representation, compressing the digital representation, and transmitting the

compressed speech to the next unit, the memory manager. During playback, the speech

processor is responsible for capturing the compressed representation of the synthesized

word from the memory mímager, decompressing it to a linear digital form, convening from a

linear digital form to an analog representation, and oulputting the analog representation of

the synthesized word to an amplifier and eventual speaker for the beneflit of the listener,

The inpuning and ouçutting functions involve adhering to certain aspects of signal

theory. Inputting must pre-process the speech signal. Pre-processing involves filtering the

speech signal. Filtering is required in o¡der to remove every other signal present in the

source emanating from the microphone, except the speech of interest. This includes

ambient and power source (60 Hz) noise. Electrical signal filtering can be thought of as

attenuating (ideally to zero) the component frequencies of the noise to be removed, while

passing (usually with unity gain) the signal of interest. Removal of noise present in a

speech signal is usually done by inputting the microphone signal through a bandpass filter

36

Fig. 3.I Speech splicin3 fiJstem in ¡r r¡ocal shaping en,,rironment

{r'"{!Trp.rq-h;q-
Pclf '+.r¡tclt
LûIut ÐutI'ut

of bandwidth of approximately 3@0 Hz, wirh cutoff frequencies located at 300 Hz and

3300 Hz. Signals consisting of frequencies outside the band 300 to 3300 Hz are attenuated,

while signals within the band a¡e passed unmodified. This bandwidth is suff,rcient for

speech because the essence of speech is contained within 300 to 3300 Hz [Klim87].

Outputting must post-process the speech signal. Post-processing also involves

filtering. In this case filtering must be done in order to remove high frequency components

introduced by the digitization process, Mo¡e detail on post-processing is given in

Chapter IV.

Another function of the speech processor is to provide transformations or

conve¡sions from the analog to the digital domain and vice versa, ADC and DAC,

¡espectively. There are certain advantages of using digital technology. The digiøl domain

facilitates further processing of speech. Speech is much easier to modify in the digital

domain. Once in the digital domain, any portion of the speech waveform can be visually

associated with its sound. This facilitates copying, curting, and pasting functions.

Furthermore, the accuracy with which speech may be modified is determined by the

sampling rate. For example, if speech is sampled at I kHz, then the resolution of any copy,

cut, or paste is 125 psec. Another advantage of recording a¡d sto¡ing speech in digital form

is that it may never degrade.

One of the disadvantages of using digital technology is the cost of the resulting

transmission rate, bandwidth, and computer memory. As discussed in Chapær tr, a methd

of reducing these costs is data compression. A suitable compression technique for the

application of interest is adaptive differential pulse code modulation (ADPCM). ADPCM

compression is used mainly because of its ability to ¡educe the above costs by one half,

while maintaining toll quality.

38

3,2,2 Memory Manager

The memory manager is a buffe¡ that conEols the communication of speech data

between the speech processor and host computer. The memory manager provides a

continuous flow of data between these two systerni¡ which have different data transmission

requirements. This buffer is included in the system design in order to realize real-time

recording and playing of sperch, with recording or playing rìme limiæd only by the available

space on the hard disk.

If the buffer is omitted from the design, there are two reasons preventing real-time

recording and playing of speech. Even though ADPCM is capable of reducing costs by

one half, the resulting transmission rate is still quite high and demanding. For example, if
speech is sampled at 8 kHz, then the ADPCM fransmission rate is 4 kHz. If a 4-bit

quantizer is used, this mea¡s that a byte of ADPCM speech data is transmitted every

250 ¡rsec. If speech is to be recorded in real time, then each byte must be transferred to a

storage medium, and this transfer must not take longer than 250 ¡rsec, else data will be lost.

If a host computer is to be solely responsible for reading and saving speech data, this time

restriction would be too demanding. For example, an average access time of a hard disk

storage medium is about 18 msec. This access time includes powering up the device and

positioning the write or read head.

Computers are much more efficient at processing large blocks of data, rather than

one byte at a time. Radrer than writing each byte to disk as it is received, the host computer

is more efficient at reading a block of data, say 8K bytes, and saving this block to disk. The

host computer may do this faster than the next block becomes ready to be read and saved.

For example, the host computer would have extra time, ts, given by Eq. 3.1.

te = BlockFormT - BlockRecT - BlockSaveT - FPI

= (8K bytes)(250 psec/byte) - (18 msec + block write rime) - FPaI

= 2.03 se¡ - block write time - FPT (3.1)

BlockFormT is the time required by an external device to form an 8K block of data.

During this time, the host computer is allowed to spend BlockRecT time receiving the

previously formed,block, BlockSøteT time saving the cu¡rent block to disk, and foreground

processing time (FPI) doing system fasks, BlockSavel time includes disk access (about

18 msec) and the time required to write 8K bytes to disk. Foreground processing time is

the time required by the host computer to perform system tasks, such as maintaining

communication at the user interface and refreshing Dynamic Random Access Memory

(DRAM). These tasks are considered high priority, particularly the DRAM refresh cycle.

Reading speech data and storing same to hard disk is considered a lower priority

background task.

However, because of the variability in the time required to w¡ite to disk and to

perform foreground processing, whether o¡ not the host can complete these øsks before the

next block is ready for transmission is determined experimentally. For example, the time to

write 8K bytes to disk varies because ofdisk segmentation. Because files are constantly

being written, modified, and deleted, and because the operaring system is forced to make

efficient use of the disk, there is a good chance that an 8K block of data will not b€ written

contiguously on disk. As a result, the time taken to write to disk is much longer than

expected, where the expected time is the time required by a direct memory access @MA)

controller to write a block of RAM to disk.

Because of the demanding Eansmission rate and high priority foreground tasks, the

system may have problems recording or playing speech in real time. In order to allow the

host computer the time it requires to do system tasks in the foreground and speech

p¡ocessor requests in the background, some sort of buffer is required. This buffer must be

able to take over the task of communicating speech daa with the speech processor, while

communicating blocks of speech data with the host comput€r.

There are several buffer concepts which satisfy the requirements of real time

recording and playing of speech. This thesis presents designs of two buffers. The buffer

implemented in the system is called a dual pointer First In First Out (FIFO) buffer,

implemented in software. This buffer is described in Chapter IV, Section 4.2. An

alternative buffer, called a swinging buffer, implemented in hardware is discussed in

Chapter V,

3.2,3 SerialCommunicationsChannel

The serial communications channel is the medium through which speech data is

transmitted between the host computer and memory manager. It is included in the system

design in order to achieve isolation and portability objectives.

Directly connecting the speech processor to the host computer may not be a good

idea" Some kind of Eouble, say an electrical problem, happening with the memory manager

or speech processor may damage host circuitry if there were a direct connection. The serial

communication channel isolates the two systems fairly well.

Most host computers have serial pon interfaces which are compatible with the RS-

232C sta¡dard. Therefore, by using a RS-232C compatible serial communications channel,

this system may work on other compatible host computers. The ponabiliry objective also

depends on the sofware and operating system used by the host computer.

41

3.2.4 Host Computer

The host computer must play a cenral and foremost role in the speech splicing

system. For the pprpose ol speech splicing ¡esearch, it really does not matter what brand of

host computer is used, so long as it is capable of the objectives. However, because of

technological and physical availability, a decision as to which which type of host computer

to use must bo made.

3.2.4.L Choosing a Host

There are at least two computers, Macintosh and IBM, capable of performing the

task of a host. The Macintosh is probably the best choice because sound VO technology is

much more advanced. In particular, a Macintosh [Isi has built in sound input and ouçut,

capable of monaural 8-bit voice input, via an included elecret microphone, and stereo ouçut

via a minijack output located in the back. The new ROM based sound manager of System

7.0 offers very easy and flexible voice recording and playing, with selectable sampling

frequencies of I 1 and 22kflz and selectable compression techniques. However, recording

speech to disk is not yet possible with the sound manager. Record and playback time is

limited to allocated RAM. With exra software, such as MacRecorder and SoundEdit, it is

very easy to edit speech. In particular, the task of cutting, copying, and pasting is very easy

and graphically oriented fMacU90l. This facilitates speech splicing.

The Macintosh trsi, together with available speech editing software, achieves most of

the objectives of the speech splicing system. Perhaps the only additions to the system

would be a speech splicing system application program, which interfaces the user to

phoneme acquisition, splicing, and word or phrase reproduction. This amounts to saying a

speech splicing system is available on the Macintosh.

Unlike the Macintosh, voice input and output is not directly possible with an IBM or

compatible. The IBM has a built in amplifier and speaker, but its sound reproduction is

limited to simple beeps or tones. If the IBM is to be used as host computer, rhen external

circuitry, such as the speech processor, memory manager, and serial communications

channel as described above, would be required, This thesis uses the IBM as host because

currently there are more IBMs in the ma¡ket, designing with the IBM is more challenging,

and a simila¡ qpeech splicing system on the IBM is not currently available.

3.2,4.2 Requirements

The host computer must provide a user interface to the system. Most of the other

system components, i,e., serial communications chânnel, memory manager, and speech

processor, should be vinually hidden from the user. When the user Íequests to record or

playback speech, a command should be entered through the interface, and the host computer

should take care of the rest of the details. Fo¡ example, if the user wishes to stan recording,

the command should be issued through a visual button icon on the video display unit

(VDU), analogous to depressing a record button on a tape cassette recorder. Similarly, in

order to perform some simple speech editing tasks, the user should be able to access any

portion of speech anywhere in the speech data file. This access should be done through a

display of an amplitude versus time plot of the speech data file, as indicated in Fig. 3.2.

3.2,4.3 IBM Software System Hierarchy

All operations of the host computer in the speech splicing system are implemented

in software. Softwa¡e on the IBM computer consists of four levels, high level language,

DOS calls, BIOS calls, and assembly language. The IBM recommended design philosophy

lNoWiS5l is as follows: Write the application program using only high level language. If

43

the application calls for some functions not provided by high level language, use either

ROM BIOS or DOS. BIOS is a basic input output sysrem located in ROM. DOS is

located on the start up disk and is partially loaded into RAM on sysæm boot-up. BIOS and

DOS provide screen, disk, serial communications VO, and many other low level functions.

All BIOS and DOS functions are invoked by softwæe intemrpts. Each interrupr is

associaæd with a location in an interrupt vector table. Each location contains an address of

the selected routine. As long as the PC is controlled tlnough high level language, DOS, or

BIOS the designer is safe from compatibility problems, i.e., there is a good chance that the

application program will work on other PCs. If the application calls for some manipulation

of hardwa¡e or peripheral devices not provided by ROM or BIOS o¡ direct control of the

CPU is required, then the last alternative is to use assembly language. However, use of

assembly language to manipulate hardware and peripheral devices is not recommended

because hardwa¡e and peripheral devices vary from one PC model to the next.

User Interface

The user interface is superficially the most important part of the system. The

'goodness' of most software is judged by the user interface. Questions such as 'Is the

system intuitive and easy to operate?' and 'Is the appearance of the software inviting and

eye catching?' are predominantly the ones that must be answered by the software. When

designing a user interface, the programmer has two altematives, which are (i) design the

interface from scratch using a high level language, DOS, BIOS, and assembly language or

(ii) purchase a graphical user interface (CUf [CoLa9O], which typically conrains source

code and libraries for creating pop up menus! windows, dialogue boxes, buttons, and

switches. This thesis shows how to design a simple interface using the former method.

This is described in Chapter IV, Section 4.4.1.

3.2.4.4

44

3.3 Summary

This chapter discusses requirements and describes the architecture of the speech

splicing system. The system is required to be capable of two major goals: (i) utterance

acquisition for vocabulary expansion and (ü) synthesis by isolated phoneme concatenarion

and synthesis by exracted sub-word concatenation. In order to satisfy these requirements,

the architectue of the system must consist of a spe€ch processor, memory manager, a serial

communications channel, and a host computer. Unde¡ this architecture, the system is

capable of real-time recording and playing of speech, disk capture, ADPCM compression

and decompression, amplitude versus time plot of speech waveform allowing the user to

display, select, and playback any po¡tion of a digitally recorded speech waveform, and

additional waveform synthesis software including intuitive copy, cut, and paste; amplitude

interpolation; and linearpredictive extrapolation.

Having described the architectural requirements, the next chapter shows what

technology is used in order to implement the a¡chitecture. Chapter V provides every detail

of the implementation required in order the system be reproduced.

45

CsaprpnIV
Dpuu,no Sysrpu Dnscnrprroru

This chapter describes the organization of the speech splicing system, i.e., the

technological implementation. The sysæm's main functions include recording and playing

speech using the adaptive differential pulse code modulation (ADPCM) compression

scheme [OkiS9O], acquiring and fansmiaing digital speech samples to and from target and

host computer subsystems using serial transmission, storing digital speech samples in a

host computer, and, finally, processing of the stored digital speech. The system center, an

IBM compatible host computer, is menu driven with a graphical user interface. The system

is capable of real-time recording and playing of speech, for lengths of time limited only by

available space on the hard disk. The system includes code conversion routines for

compressing and decompressing pulse code modulation (PCM) and ADPCM formatted

speech, respectively. The system is designed specifically to facilitaæ easy and user friendly

speech editing tasks, such as cutting, copying, pasting, and splicing. To this end, the time

domain ploning feature, with frame by frame or sample by sample scrolling, allows the user

to view and manipulate any portion of the speech waveform at any point in the file. Finally,

the system software also includes toutines for implementing the linear predictive

extrapolation method of waveform synthesis.

Due to the modular architectu¡al design of the system, experienced software

developers may easily add features, such as frequency and specual plots. Other more

advanced features may include special effects, such as echo, reverb, flange, and pitch control.

Furthermore, experienced hardware designers may easily incorporate into the design other

speech processor integrated circuits (ICs) using different compression schemes, opening

the door to a wide variety of digital speech processing.

4.1 Speech Processor: the MSM6258 MPU Interface Version tOkiSg0I

The speech processor uæd in this thesis is the MSM6258VJS microprocessor unit

(MPU) interface version, manufactured by Oki Semiconducto¡. It is a complex and highly

integrated speech digitizer and synthesizer featuring the ADPCM method of data

compression. It is designed to be interfaced wittr an 8-bit microprocessor (pP), such as the

Moorola 6802 ¡tP. The speech chip includes internal analog to digitat and digital to analog

circuits, timing and control synchronization signals, and selecable sampling frequencies and

ADPCM bit numbers. The chip is implemented in CMOS technology for low power

consumption,

As shown in Fig. 4.3, the chip internally consists of a command and a status

register, an 8-bit analog to Digital Converter (ADC), an ADPCM analysis and synthesis

unit, a data VO buffer, and a lGbit Digital to Analog C-onverter @AC).

Vin

IAD/EAD

DAOUT

DASO

socK

DO

DI
D2
Diì
D+

o5
D6
D7

RECM

PLAYM

ovF
[{cK

AC
cs
RD

WR

D,C
PAUSE

4BAB
sÀM1

SAM2
MPU

XT

rtB

During the record mode, the ADC periodically samples and converrs the input

analog speech waveform to an 8-bit digital representation. These digital samples æe passed

Fig. 4.3 MSM6258 block diagram.

to the ADPCM analysis stage, where each 8-bit digital representation is compressed to

either a 3-bit or 4-bit ADPCM representation. Two successive ADPCM representations a¡e

concatenated to form an 8-bit data byte, which is loaded into the VO buffer and, thus, output

at pins D0 through D7, Output confiol signals generated by the Timing and Conrol unit

i¡dicate when an extemal device may read each 8-bit data b¡e, During the ptayback mode,

conrol signals generated by the Timing and Control unit indicate when an extemal device

may write 8-bit data bytes o the VO buffer via pins D0 through D7. These data byres must

consist of two ADPCM nibbles formatæd exactly as that done by the analysis stage. These

data bytes are fed into the ADPCM synthesis stage, where each nibble is extracted and

decompressed into a 10-bit representation (without introducing any new information). Each

10-bit digital representation is fed into the 10-bit DAC, and the resulting analog signal is

output at pin DAOUT.

4,1.1 Functional Pin Description

The MSM6258VJS comes in a 44-pin Plastic læadless Chip Carrier (PLCC)

package. Fig. 81 shows the top view and the pin diagram of the chip. The 44 pins can be

grouped into three categories, voice Inpulouþut (VO), MPU interface, and miscellaneous.

4.1.1.1 Voice InputiOutput (VO)

The pins associated with voice VO include VI, VR, SAM1 and SAM2, and DAOUT.

VI: The analog Voltage Input (VI) of the speech waveform is input through pin 38.

This signal must be pre-amplified and low pass filtered. The circuit used to perform the

pre-amplification and the filtering is shown in Fig. 4.4.

48

jrzv*"*lvo.l
+

v"* = j{zvmc*Íuo" I

5ko

Fig. 4.4 Pre-processing circuit.

The input voltage at pin VI (Vou, in Fig. 4.4) must be greater than 0V and less than

5V, since the reference voltage used by the intemal ADC is 5V. If VI exceeds 5V or falls

below 0V, clipping will occur and the ADC section of the chip may be permanently

damaged.

The signal-to-noise ratio (SNR) is dependent on the input dc bias. In order to

determine the dc bias required for optimal SNR, testing of the pre-processing circuit with an

input sine wave of frequency 1 kIIz is done. It is found that a dc bias of 2.5 to 3V gives the

best reproduction, while decreasing rhe bias from 2 to 0V yields decreasingly poorer

quality. Testing is done by observing the reproduction on an oscilloscope to get a rough

estimate of the optimal dc bias and then by using SNR measurements to fine tune the bias.

Assuming a sampling frequency of 8 kHz, the frequency conrent of the input speech

signal should be in the bandwidth of 300 to 4000 Hz in order to eliminate the low frequency

(e.g., 60 Hz) noise and to prevent aliasing. However, the bottleneck is the frequency

response of the speech chip. The frequency response of the chip is considered for two

cases. When the input waveform varies between 0 and 2.5V, the bandwidth of the speech

chip is about 3200 Hz and about 2@0 Hz when the input varies berween 0 and 5V.

Assuming the best response, the input waveform may be filtered o pæs the frequency band

of 300 to 32W Hz, This is accomplished through rhe use of a 5ú order Chebyshev filter

IOkiS90, pp. 378-380].

VR: The Voltage Reference (VR) of the intemat ADC is input through pin 37. The

reference voltage is nominally the supply vollage, VDD.

SAMI and SAM2.' The SAMpling frequency is determined by the logic levels input

to pins 12 and 13, respectively. Table 4.1 shows the possible sampling frequencies as

determined by SAM1 and SAM2. For an oscillation frequency of 4.096 MHz, any of the

frequencies shown in the table may be selected as the sampling frequency.

Table 4.1 Sampling frequency selection.

SAMl L H L H

SAM2 L L H H

Sampling Frequency(kHz) 4.0 5.3 8.0 Inhibited

DAOUT: During playback, the synthesized speech waveform is output at pin 28, the

Digiøl to Analog OUTput. The DAOUT pin provides a staircase type signal varying

between 0 and 5V and centered at25V, as shown in Fig. 4.5. Also, during recording,

DAOUT monitors the input waveform at pin VIN, with a slight delay. This monitoring is

useful for debugging and is an indication that the ADC and the DAC sections of the speech

chip are in working order.

50

5.0
Þô
a
ô

lrt
ao

Fig. 4.4 DAOUT voltage vs. time. DAOUT is the ourput of the DAC and,
therefore, it is a sæpwise function containing high frequèncy components.

The stepwise function provided by DAOUT must be filtered in order to remove the

high frequency components inroduced by the DAC. Although there are many active filter

designs, such as the Butterworth, Bessel, and Chebyshev filters, a suitable filter is the 5th

order Chebyshev. The Chebyshev filter is capable of achieving sharp atrenuation

characteristics with a relatively small number of component parts.

After passing the signal from pin DAOUT through the 5th order Chebyshev filter,

the stepwise function takes on a smoother look, as shown in Fig. 4.6.

Time

Fig. 4.6 Filtered DAOUT voløge vs. rime.

4.1.1,2 MPU Interface

The pins associated with the MPU interface include MPU, CS, VCK, MCK, RD, WR,

D/CB, D0-D7, 4Bl38, and test pins. These pin are intended to be used by a microprocessor

F
o

Ë
c
E
IL

51

or misocontoller for the purpose of control and synchronization.

MPU The MicroProcessor Unit input pin 17 selects the MPU interface mode of the

speech chip. (Note: there are two modes of the speech chip, stand-alone and MPU).

When a logic 1 is input o MPU, the intemal circuitry is set to communicate with an external

Cenral Processing Unit (CPU) of a micmprocessor or microcontroller.

CSB A logic 0 placed on,input pin 30 Selects and enables the speech Chip to

communicate with an external CPU. When this pin is logic l, the chip is disabled and the

daø bus is placed on high impedance. ln order to prevent bus contention, the extemal MpU

should enable the chip only during the data data access mode, i.e., when writing commands

and data or ¡eading status and data to and from the speech chip, respectively.

VCK The Voice sampling ClocK at pin 3 is an output signal indicating the sampling

frequency selected by SAM1 and SAM2. When AC is logic 0, the duty cycle of VCK is

507o, and when AC is logic 1, VCK is logic 0.

MCK The Microprocessor ClocK is an output intended to be used by a MpU for

synchronization. During record or playback, pin 14 oulputs a square wave of frequency

one-half the sampling frequency and of, approximately,20Vo duty cycle. During record,

MCK indicates when data can be read from the speech chip. During playback, MCK

indicates when data can be writren to the speech chip.

D0-D7 The bi-directional data bus lines locared at pins 10, g , 8,7 , 2, l, 43, and 42,

respectively, communicate ADPCM coded data and commands and status. During record

or playback, the data bus transmits a pair of ADPCM nibbles every MCK. Also, the dara

bus is intended to be used by an extemal MPU in order to write commands to the speech

chip or to read status information being output by the speech chip.

52

4BßB The input pin 22 selects different ADPCM nibble lengths. When 4Bl38 is logic

I, the 4-bit ADPCM nibble is chosen, and, when 4Bl38 is logic 0, the 3-bit ADPCM nibble

is chosen. Table 4.2 shows the ADPCM composition on the data bus. Note that each byte

of data contains two different nibbles. When two 3-bit ADPCM nibbles are concatenated to

form an 8-bit byte, the l,east Significant Bit (LSB) of each nibble is automatically set to

logic 0.

Table 4.2 ADPCM bus composirion.

Bus Lines DO D1 D2 D3 DI D5 D6 D7

4-BitADPCM B0n B1n B2n B3n B0n+l Bln+1 B2n+l B3n+1

3-Bit ADPCM 00 B0n Bln B2n 00 B0n+1 B1n+l B2n+1

4-Bit ADPCM: 3-Bir ADPCM:
83 = Sign Bit 83 = 00
82 = MSB sZ = ði* Sir Sign Bit = I means waveform is descending.

Bl = 2SB B i = úö"" Sign Bit = 0 means waveform is ascending.

B0=LSB B0 = LSB

RDB At the low to high ransition of this active low input, pin 31, an external MpU can

ReaD data or status information from the speech chip.

WRB At the low to high uansition of this active low output, pin 29, an extemal MpU

can lvRite data or command information to the speech chip.

DlCB Input pin 32 selects the speech Data mode or the Command/status mode. When

D/CB is logic 1, the data bus provides speech data- When D/CB is logic 0, commands may

be written to the speech chip or status information may be read.

The pins, TDS,TRS I,TRS2,TSP, TRP, AND TVD a¡e intended for factory testing.

These input pins must b€ set to logic 0 for normal operation.

-53-

4,1.I.3 Miscellaneous

The remaining 19 pins are general in nature and include VDD, VSSl, VSS2, XT,

XTB, IADÆADB, PLAYM, RECM, DASO, SOCK, OVF, NC, RECIPLAYB, ST.SP,

PAUSE, and VDS.

VDD Pin 35 is the 5V power supply ærminal.

ySSl Pin I I is the digital ground terminal. All components associated with digital

signals and requiring ground signals should use VSS 1.

ySS2 Pin 36 is the analog ground terminal. All components associated with analog

signals and requiring ground signals should use VSS2.

The input signals RECÆI,AYB, ST.SP, PAUSE, a¡rd VDS at pins 5, 33,34 and 40,

respectively, a¡e intended for the stand alone version of the MSM6258. For the MPU

version their functions are not applicable, and they should all be set to ground level.

XT & XTB The clock circuit can be connected to XT and XTB terminals of the

speech chip. XT, pin 15, is an input, and XTB, pin 16, is an oulput. If an external clock is

used, it should be connected to XT, and XIB should be open. In this thesis, rhe latter

method of connecting a clock is used. In parricular, the clock of the 6802 pP is connected

to XT of the speech processor.

IADIEADB Pin 41 selects the Intemal Analog to Digital converter or an Extemal

ADC. A logic 1 on IADÆADB selects the built in ADC, and a logic 0 on IADÆADB

enables the use of an extemal ADC. In this thesis, the IAD is used.

-54-

PI^AYM

RECM

DASO

Pin 26 is the PLAY Monitor. During playback mode this ouput is logic 1.

Pin 4 is the RECord Monitor. During rerord mode this ouçut is logic 1.

Pin 24 is used to ouçut serial PCM d¿ta to an external DAC. This pin is

not applicable when the internal ADC is uæd

SOCK Pin 25 is used to clock the serial PCM data being ouçut by DASO. This

pin is not applicable when the intemal ADC is used

OVF The OVerFlow output signal at pin 2l gives an indication when the input

voice signal exceeds 807o of the dynamic range of the speech chip. It can be used as an

input to an Automatic Gain Control (AGC) circuit in order to conFol the amplitude of the

input voice sigrral.

NC Pins 6, 23, 39, and 44 have No Connection. They may be left open.

4.1,2 Operation

This section describes how an MPU may opetate the speech chip. The operarion

essentially consists of writing speech chip commands, reading speech chip status

information, reading speech data during record mode, and writing speech data during

playback mode. The MPU must know the structure of the command and status info¡mation

and the fo¡mat of the ADPCM data on the data bus. Also, the MpU must know the correct

timing at which these data are accessed.

55

4.1.2.1 Data Bus Control

In order to operate the speech chip effectively, the MPU must control the data bus.

The MPU is the master and the speech chip is the slave. The master informs the slave of

the operation to be carried out by placing the appropriate logic levels on the input conrol

signals D/CB, CS, RD, and WR. lngic combinations of these conrol signals have specific

meaning to the speech chip. Table 4.3 shows ttre required logic levels for each of the

available operations, which a¡e recording, playing, status oulput, and command input Noæ

that the data bus can generally be used in wo ways, speech data VO or command/status VO.

Table 4.3 Speech chip operation codes.

CS D/CB RD WR Operation

0 0 Speech chip ouÞuts ADPCM data (RecÐrdins)

0 0 Speech chip inouts ADPCM data @lavins)
0 0 0 Status outDul
o 0 ô Command innut
I x x x High impedânce

4,1.2,2 Command Input

The writing of a command ro rhe speech chip is typically the fLsr operation

performed. Table 4.4 shows the available commands and the mapping of the codes to the

data bus. For example, the number 000001009 ¡n¿¡, = 04He* = 4Ten is the code for the

record command, and 00000010Binary = 02H"* = 2'¡"n is the code for the playback

command. A command is written to the speech chip by placing the command on the data

bus and ttren setting the appropriate logic levels on the input control signals D/CB, CS, RD,

and \ryR.

Table 4.4 Command codes.

Data Bus D7 D6 D5 D4 D3 m DI DO

Command 0 0 0 0 0 Recdd Play ST.SP

Stût or Slop: ST.SP Code = 00000001
Playback: Play Code = 0000001C
Record: Rec¡rd Code = 00000100

The MPU must also know the cor¡ect timing in order to successfully write

commands to the speech chip. Figure 4.7 shows the timing of the control signals D/CB,

CS, and WR required in order to write a command to the speech chip. As shown in the

figure, a command may be written to the speech chip while the chip is selected or enabled.

The assertion of D/CB chooses the command input mode. The assertion of WR follows

shortly thereafter. Note thar ar time labelled A, the logic levels of D/CB, CS, and WR a¡e as

those shown in Table 4.3 fo¡ the command input operation. Also, note that the command

code must be on the data bus at the moment in time when D/CB, CS, and WR are all

asserted. Finally, it is the low to high transition of WR, while D/CB and CS are logic 0, that

actually writes the command to the intemal VO buffer of the spe€ch chip.

WR

Valid Command Code

4.t.2.3 Status Output

Fig. 4.7 Command write timing.

The MPU can read status of the speech chip in order to determine what operation is

currently being performed. The status of the speech chip may be read by setting the

appropriate logic levels on the input conrol signals D/CB, CS, RD, and WR and then

reading the status code off the data bus. The interpretation of the status codes on the data

bus is as shown in Table 4.5,

Table 4,5 Status codes.

Dalâ Bùs D7 D6 D5 u D3 u2 DI DO

Ståûrs R€c/Play x x x x x x x

Plavback: Plâv Stâhrs = lxxxxxxx
Recbrd: Recoíd St¡tus = Oxxxxxxx

The MPU must also know the correct timing in which to read status information off

the data bus. Figure 4.8 shows the timing of the conrol signals D/CB, CS, and RD

required in order to successfully read the status of the speech chip. As shown in the figure,

status may be read while the chip is selected or enabled. The assertion of D/CB chooses the

status output mode. The assertion of RD follows shortly thereafter. Note that at time

labelled B, the logic levels of D/CB, CS, and RD are as those shown in Table 4.3 for the

status oulput operation. When D/CB, CS, and RD are logic 0, the speech chip begins

placing the code for irs status on the data bus. Finally, it is the low to high ransition of RD,

while D/CB and CS are logic 0, that the MPU actually reads the status offthe data bus.

Fig. 4.8 Status read timing.

58

4.1,2.4 Record

As mentioned ea¡lier, the record mode of operation begins when the MPU writes the

record command to the speech chip by using conrol signals D/CB, CS, and WR along with

placing the code on the data bus. ln more detail, during recording the ADC digitizes speech

samples at the rate of 8 kHz and the ADPCM synthesis unit forms ADPCM bytes at the

rate of 4 kHz. In o¡der to inform an external device when each ADPCM byte is available

for reading, the speech chip supplies a data ready signal, called MCK. This means that

recording of speech data is synchronized with MCK, Therefore, in order to read speech

data, the MPU synchronizes its read timing signals, D/C, CS, and RD, with MCK. The

speech data read timing is shown in Fig. 4.9. The timing is simila¡ to that for reading status,

the only temporal difference b€ing that reading status can be done at any time, whereas,

reading speech data must occur immediately following the negative edge of MCK. Arows

in the figure show the required causality. In other words, the negative edge of MCK causes

the MPU to assert D/CB, followed by CS, and subsequently RD. Nore ttrat at time labelled

B the states of the control signals D/CB, CS, and RD are as that shown in Table 4.3 for the

record operation. A mo¡e detailed description of the read timing can be found in Section

5.2.2.1,.

Fig, 4.9 Record timing.

MPU reads Weech data

59

MPU ¡eads speech data

4,1,2,5 Playback

The method for playing speech data is similar to recording, To start the playback

mode of operation, the MPU writes the playback command to the speech chip by using

connol signals D/CB, CS, and WR along with placing the code on rhe data bus. Once the

speech chip latches the command into its command register, playback begins. In more

detail, during playback the ADPCM synthesis unit reads ADPCM b¡es ar the rate of 4 kHz

and the DAC outputs an analog sample at the rate of 8 kHz. ln o¡der to inform an extemal

device when each ADPCM byte can be wrinen, the speech chip supplies a ready for døta

signal, called MCK. As for recording, playing of speech data is synchronized with MCK.

The major difference is that the ready for data signal is indicated by the positive edge of

MCK. Therefore, in order to play speech data, the MPU synchronizes its play timing

signals, D/C, CS, and WR, with the positive edge of MCK, as shown in Fig. 4,10.

MPU writes speech dâla MPU writes spe€ch data

Fig. 4.10 Playback timing.

To stop recording or playing of speech data, the MPU w¡ites a stop command. The

method for writing a stop command is similar to writing a record or playback command.

B

s1...
Bfl

MPU writes speech daø

60

What has been discussed so far in this section is how speech is recorded and

played. However, what has not been mentioned is how or where speech data is saved and

retrieved in and out of memory during recording and playing, respectively. The MPU

version of the MSM6258 does not generate addresses for external Random Access

Memory (RAM). It is the responsibility of an external MPU not only to control the data

bus, as described above, but also to save speech data during recording and to retrieve same

during playing. Ultimately, speech data must be saved in the host computer's private RAM

in order to do processing orjust to be played back at a later time. The question is the

following: How is speech data communicated to and from the host computer?

6t

4,2 Memory Manager: the First In First Out (FIFO) Buffer

This section describes the memory manager. The purpose of the memory manager

is to manage the communication of data between the host computer and the speech

processor. The memory manager is a memory mapped system, with each device having a

distinct address and being controlled by a Cennal Processing Unit (CPU). As shown in

Fig. 4.11, the memory manager consists of two VO interface ports with one configured in

parallel and the other in serial, private and expandable SRAMs, and a microprocessor

controller.

Parallel
Communic¿tions:
ADPCM Speech
Dafa & Control

Control

Data Rate:
4 kllz or

(4 kByùe,sx8 Bits)

= 32 kbps

\

RS-232 Serial
Communic¿lions:
ADPCM Speech
Data & Control

/,

Pa¡aIIel Interface [,i:iii :ìl:iii:il;Ì:ii:iiiii;ì!i|i!¡Mérnor.y]: tsú.dl¡ili:i:ii:¡ti:i::ìii:iii:¡:ìÍi¡i:¡il Serial lnærface

Fig. 4.11 Memory manager block diagram. The memory manager acts as
an intermediary device and provides a speech data buffer between -the

speech
processor and the host computer. This provides isolation and allows a
continuous and asynchronous flow of data.-

Input/Output (VO) Ports

The memory manager utilizes a dual port confîguration for speech data VO and

communication of control signals. The VO ports are the doorways through which data

enters and leaves the buffer device. The physical ports are realized using two interface

62

adapters: the Peripheral Inærface Adapter (PlA) and the Asynchronous Communications

Interface Adapter (ACIA). The PIA is used to communicate in pæallel with the speech

digitizer and synthesizer, while the ACIA is used to communicate serially with the host

computer. Both of these devices function as input and output ports. For example, during

record mode, speech dafa is input to the PIA and output to the host via the ACIA. On the

other hand, during playback mode, speech data is input to the ACIA and output to the

synttresizer via the PlA, Both the PIA and the ACIA a¡e add¡essable devices, meaning that

they are 'turned on' or enabled yþen their add¡ess is selected. The following describes

how the PIA and ACIA are used in the memory manager.

4,2,1J Parallel VO: the PIA

This section begins with a brief and general description of the Peripheral Interface

Adapter (PIA). A description of the specific implementation of the PIA in the memory

manager follows. Finally, the PIA testing procedure and results are given.

4.2.L1,1 GeneralDescription

The Peripheral Interface Adapter (PlA) is a device used for interfacing parallel

oriented peripheral devices to the 6800 family of microprocessors (¡.rPs) [Moto83]. The

PIA interfaces peripheral devices to the 6800 ¡rP by providing two bidirectional 8-bit data

buses for connecting the devices and one 8-bit bidi¡ectional data bus for connecting the pp.

Four control lines are provided, two of which ¿re oulputs and may be used to control

peripheral devices. However, all four control lines a¡e inputs and may be used by

peripherals in order to interrupt the pP. In this way, the PIA adapts the elecrical

characteristics and the number of the signals required by peripheral devices to that required

by the 6800 family ofpPs,

63

Intemally, the PIA consists of two identical sets of three registers, six registers in

toøl' The A side and the B side both contain one 8-bit data holding register, called port A

and Pon B; one 8-bit data direction regisær, called Data Direction Register of port A

(DDRA) and DDRB; and one control regisrer, called Conrol Register of port A (CRA)

and CRB, respectively. Port A and Port B data registers are the physical links between rhe

two data buses connecting the peripheral devices and the data bus connecting the ¡rp.

Each of the six registers are individually addressable. However, only four distinct

addresses are required, two for the conrol registers, CRA and CRB, and two for the data

direction registers and the data holding registers, DDRA and Port A and DDRB and port B.

This is because the direction registe¡ shares the same address with the holding register. The

programming of the confol register distinguishes the direction register from the holding

register.

The functionality of the PIA is programmable. Programming is achieved by writing

coded information into the data direction registers and the control registen. The logic levels

ofthe bits in the data direction register and the control register have specific and functional

meaning, as shown in Fig. 4.12 (A more detailed description can be found in [Moto83]).

Typically, the direction of the data holding registers are configured frst. Then, the

functions of the control lines are specified, if required.

Port A and Port B data registers can be configured for either input or output by

programming the corresponding data direction register, i.e., DDRA or DDRB. The data

direction register is accessed by programming a logic 1 in bit-2 of the control register, as

shown in Fig. 4.12. Each bit in the data di¡ection register has a one-to-one conespondence

with the associated bit of the data holding register. writing a logic I to any bit of the data

direction register configures the conesponding bit in the data holding register for ouþut,

whereas, writing a logic 0 configures the bit for input. ln general, the data holding register

can be configured for input, output, or not used.

Control Regisfßr

B7 B6 B5 84 B3 B2 B1 BO

ÈP Intempt Flags
ConEol Line 2 (CA2ICB2)

Configuration(Input & OuÞut)
DDR
Access

Control Line (CA l/CB I)
Con ñgurarion(Input)

Data Direction Regisler
Output Input Ouput Not Us€dffi ffi

Fig. 4.12 PIA contol regisrer (rop) and data direction regisrers (bottom).

After programming the data direction register, the function of the control lines may

be specified by programming the control register. There are two control lines for each side

of the PIA, CAl and CA2 and CBl and CB2. The output control lines are normally used

for conrolling a peripheral device, while rhe input conrol lines are used for intemrpt

operation. Typically, for the interrupt type of operation, a peripheral device requests service

of the pP by intemrpting the pP via the PIA. The peripheral device asserrs its intemrpt

request line, which is connected to one of the input conrol lines of the PIA. If the PIA is

programmed for intemrpt operation, that control line of the PIA is connected to the Inæmrpt

ReQuest (IRQ) pin of the pP, and, thus, the intemrpt signal is passed to the pP [Bacon86].

Details of exactly how to program the PIA for intemrpt operation are given in the

discussion of how the PIA is implemented in the memory manager, which is discussed next.

4.2.1,L.2 Implementation

Having briefly discussed the PIA in general, let me no\{ tum to discussing how the

PIA is used specifically in the memory manager. The ¡rP controls the speech processor

through the PIA. Conrol signals and commands are issued to the speech processor

65

thtough the PIA. Finally, the speech processor intemrpts the ¡rP tlrough the PIA.

The schem¿tic diagram of ttre PIA implementation in the memory manager is shown

in Fig. 4,13. The top pa$ of this figure shows the connectivity of the PIA between the

PIA Internal Addressing:

Physical
Address

pP Add¡ess Line PIA Control Resister Bit PIA
Register SelertedAO A¡ CRA Bit 2 CRB Bit 2

lFm 0 Il x Pon A
lE00 0 n n X DDRA
lEO1 0 x x CRA

1EO2 n x Port B
IFTD, n x 0 DDRB
I E03 I x X CRB

Fig. 4.13 PIA Implementation and intemal addressing.

speech processor and the 6802 pP. The right hand side of the PIA shows the signals that

are connected to the 6802 pP, while the left hand side shows the signals that are connected

to the peripheral devices, in particular, the speech processo¡ and the Bit Rate Generator

(BRc).

Éq

ô
A.

a
Éq

ô

o
O
:1

Speech
Digitizer È&*

Syntheiszer

oki
MSM6258JSK

66

There are two groups of signals connecting the PIA to the pP, the control bus and

the data bus, The conEol bus is used to enable, disable, or reset the PIA; to intem-rpt the

!rP; to select an intemal register; and to perform read or write operations. The bottom

portion ofFig. 4.12 shows a øble indicating the signals required to address and select one

of the six registers within the PIA. The numbers, 1E00, 1801, 1E02, and 1E03 are the hex

representations of the logic levels of úe 16-bit pP address bus. The address lines A0 and

A1 are the Least Significant Bits (LSBs) of the least significant hex digit of the address

lines. In order to addres any regisær, the logic levels of 40, Al, CRA, and CRB musr be as

that shown in the table. For example, in order to access the DDRA register, the pP must

frst write a logic 0 to bit-2 of CRA. This distinguishes the direction register from the

holding register. Having done this, the pP may then access DDRA by placing ttre add¡ess

1E00 on the address bus. (Note: address lines Al l and 412 are included in the PIA enable

logic for added protection).

The data bus is used to read speech data or speech processor status and to write

speech data or speech processor commands. The data path connecting the speech processor

and the ¡rP is discussed nexl

There are three groups of signals connecting the speech processor to the PIA, the

control bus, the speech data and command bus, and the interrupt request line. The control

bus is connected to Pon B of the PIA and is used by two devices, the Bit Rate Generator

(BRG) and the speech processor. Bit-6 and bit-7 of Port B are used ro select the bit rate of

the BRG, whose output is being used by the ACIA (refer to Section 4.2.1.2.2). Bit-0

through bit-3 of Port B are used to control the speech data bus, as described in Section

4.1.2.1. Thus, whenever the ¡rP requires to conuol the speech data bus, the conrol code is

writæn to the appropriate bits of Port B.

67

The speech data and command bus is connected to Port A of the PIA. Thus,

whenever the ¡rP requires to read speech data or speech status or to write speech data or

speech commands, the data is accessed through Port A.

In Section 4.1.1 it is mentioned that the speech chip provides a data ready or a

reaþ for data signal, namely, MCK. This signal is intended for use by the pP in order to

synchronize its speech data VO with the speech processor. To this end, MCK is connected

to the input control pin, CAl, of the PlA. CAl is configured in the programming of CRA

as an input intemrpt signal, and therefore, CAI is connected to IRQ of the ¡rP. Thus, each

time the speech processor forms an ADPCM byte during recording or each time it is ready

to process the next ADPCM byte during playing, it informs the ¡rp of the event by

intemrpting the ¡tP. Subsequently, the pP responds by either reading or writing speech data

from or to the speech processor, respe¿tively.

The programming of the CRA for enabling intemrpts via CAI during recording is

different than that during playing. The reason for this is because MCK is signalled

differently for record than it is for playback (refer to Section 4.1.1.2). Fig.4.l4 explains

the programming of the CRA during record and playback.

CRA Programming During Record

B7 B6 B5 B4 B3 92 BI BO

pP Intenupt Flags x x x 0

B0 = 1 means enable the relaying of interrupt signals to the UP at the occurance of an active edge on CAl.
Bl = 0 means the interupt flag 87 is set each time CAI undergoes a high o low transition. Ahighto
low ransition of CA I corresponds to a datø ready signa! issued by the speech processor during record.
82 = 1 means the ac¡ess of Port A, data holding regisær, is enabled.
83 - 85 = x means don't care.

B0 = I means enable the relaying of interrupt signals tro the UP ât úe o{4uranc€ of an active edge on CAI,
B I = 0 means the interrupt flâg 87 is set each time CAl undergoes a low to high transition. A low tro high
transition on cAl conesponds to a ready for datasignal issued by the speæch processor during playback,

Fig. 4.14 CRA programming during record and playback.

-68-

CRA Programming During Playback

B7 B6 B5 B4 B3 B2 BI BO

uP InterruDt Flass x x x I I 1

4,2.1.1,3 Tæting

The general testing of the PIA involves writing a 6802 program that alternately

writes logic 0 then logic I to both dau holding regisrers. The port pins of the pIA are

monitored on an oscilloscope. Fig. 4.15 shows the source code of the 6802 pIA resr

program and the oscilloscope view of Port A. The oscilloscope shows one period of a 5V

square wave with period 18 ¡rsec, as expected

The PIA is also æsted in the intenupt mode of operation. The Bit Raæ Generator is

used to signal a periodic intemrpt through the CAl control line of the PlA. The intemrpt

routine is simila¡ to the general test program shown in Fig. 4.15, except for two

modifications: BRA is replaced by RTI, and RTI is preceded by dummy reads of the port

registers (which is necessary to clear the interrupt status bit in the connol register).

ó802 Pia Test
Program

Machine
Cyclæ

Sourc¿

Code

2
5
.,

5

4

Lnop LDAA #$00
STAA Port A
LDAA #$FF
STAA Pon A
BRA I¡op

total MC=18 x I MIIz = 18 usec

Oscillocope Yiew of
Port A and Port B

I \l /; li
10 Usec/division

o

I

N

Fig.4.15 PIA testing.

4,2.1.2 Serial I/O: the ACIA

This section begins with a brief and general discussion of the Asynchronous

communications lnterface Adapter (ACIA). A description of the specific implementation of

the ACIA in the memory manager follows, Finally, the ACIA testing procedure and results

are glven.

4,2.1,2,1 GeneralDescription

The ACIA is an offspring of the parent, Universal Asynchronous Receiver and

Transmitter (UART), pronounced 'you art'. Motorola's version of the UART is the

MC6850 ACIA, The basic purpose of an UART o¡ an ACIA is ro interface serial

asynchronous d¿ta communications to parallel bus organized systems, such as the 6800

family of ¡tPs. These serial asynchronous communications typically originate from another

microcomputer system comprising its own UART and ¡rP, as shown in Fig. 4.16.

Serial Communication Channel

Fig. 4.16 Serial communications system.

The ACIA has two sides, a serial interface and a parallel interface. On the serial

side, the ACIA provides for simultaneous bidirectional serial data transfer, called full

duplex. This is opposed to half duplex, in which only non-simultaneous directional

t¡a¡sfers are possible, such as in CB radio communications. While the end of transmission

signalling is possible with full duplex data lines, the ACIA nevertheless includes three

control lines for hardware handshaking, On the parallel side, the ACIA includes read/write,

enable, and inæmrpt control lines; register select and chip select add¡ess lines; and an 8-bit

bidirectional data bus connecting the parallel organized ¡rP. In this way, the ACIA adapts

serial formatted data to and from parallel data,

System A System B

70

Internally, the ACIA consists of a Eansmitter, a receiver, a data bus buffer, and a

control and status unit, The ransmitter section is double buffered, and it consists of a

uansmit data register, called TxDR, and a Eansmit parallel-to-s€rial shift register. Data

\pritten to the TxDR register is ransferred to the shift register, where it is serialized and,

thus, ransmitted. This double buffering scheme allows the p,P to write the next parallel data

to the TXDR register, even though the previous byte may not yet have been totally

transmitæd.

The receive¡ section is also double buffered, and it consists of a receive data register,

called RxDR, and a receive serial-to-parallel shift register. The double buffering scheme in

the receiver section allows the ¡rP to read the RxDR, as the next data byte is being received

in the shift register.

The data bus buffer provides the physical link between rhe pP data bus and the

ACIA registers, TxDR and RXDR.

The control and status unit consists of a control register, called CR, and a status

register, called SR. The control register is used to progam the functionality of the ACIA.

The status register is used to obtain status information on a peripheral device, the

ransmining and receiving sections, and some enor detection conEol.

The above registers, TxDR, RXDR, CR, SR are individually addressable. However

only two distinct addresses are required, one for the transmit and receive registers and one

for the control and status registers. What distinguishes the registers is rhat the TxDR and

the CR a¡e write only registers, while the RxDR and the SR are read only registers. In other

words, a pP read of the add¡ess associated with TxDR and RxDR reads the contents of the

RxDR, since RxDR is read only and TxDR is write only.

7l

The functionality of the ACIA is programmable, Programming is achieved by

writing coded i¡formation into the cont¡ol register. As shown in Fig. 4.17, the control

register controls the hansmitter, receiver, intemrpt enable logic, and ha¡dware handshaking

signals.

87

0
I

Interpretation

Disable Receiver Intenupt
Enâble Receiver Interrupt

Fig. 4.17 ACIA programmable control register (after Kins8Sl).

Bits B0 and B1 conrol the clocking of the transmiued and received data and, also,

reset the ACIA. The ACIA is master reset if both bits are logic 1. The other three logic

combinations of these bits are used to generate the clock with which serial data is

Control Register

BllBo Baud Râte

0 l0 | + I (synctuonous)

o l1 I cLK + 16

ll0lCLK+64
I I I I Masrer Rese.r

7
7

7

7

8

8

8

8

Even
odd
Even

odd
None
None

Even

odd

2
2

1

I
2
I
1

1

B5

0
I
0
I

B6

0
0

I
I

Intßrprelation

Set RTSB I¡w and Disable Transmitling Intenupt
Set RTSB Lovr and Enable Transmitting Int€rrupt
Ser RTSB High and Disable Transmiu.ing Interrupt
Transmit a Break and Disable Transmitting Int€nupt

_'71 _

transmitted or received. If these bits are both logic 0, the baud rate for the transmitter and

the receiver is equal to the clock input at pins TxCLK and RxCLK, respectively. Implicit in

this logic is that the other system ransmitting or receiving the serial data uses rhe same

clock being input at TxCLK and RxCLK, respectively. Thus, both systems know the start

and end of each bit cell being ransmiüed or received. In this case, the two systems are said

to be synchronized In Figure 4.15, the co¡nmunication channel would include an additional

wire in order to Eansmit the clock. Because this requires the transmission of rhe clock

between systems, an altemative merhod for detecting the bit cell is provided. If bits B0 and

81 are logic 1 and 0 or logic 0 and 1, the baud rate of the rransmirter and the receiver is

equal to the clock input at pins TxCLK and RxCLK divided by 16 and 64, respecrively.

The receiver section uses the positive transition of RxCLK in order to detect the start and

end of each bit cell. What this means is rhat rhe receiver takes (RxClk + (16 or 64))/2

samples of the incoming serial data and determines by majority logic the start and end of

each bit cell.

Bits 82, 83, and 84 determine the number of bits and the format of each transmitted

character. The bit length of each character is the sum of the number of data bits, parity bit

(if selected), and stop bit(s). Bits B5 and 86 conuol rhe transminer intenupt logic and, also,

define the state of one of the handshaking signals, Request To Send (RTS). Finally, B7

controls the receiver intemrpt logic.

The status of the ACIA is available to the pP by reading the status register. This

register contains info¡mation indicating the status of the peripheral system, transmitter and

receiver, and enor detection circuits. ln panicular, the Data Ca¡rier Detect (DCD) and Clea¡

To Send (CTS) inputs indicate whether the receiver is detecting a carrier and indicating a

ready to receive (i,e., clear to send), respectively. Also available to the pP are flags, TDRE

and RDRF, indicating whedrer the Transmit Data Register is Empty or whether the Receive

73

Data Register is Full. Finally, having received data, the pP may check the status of the

ACIA intemal error detection circuits, \,/hich include fi:¿udng error, ovemrn error, and parity

eITOr.

4,2.1.2,2 Implementation

Having briefly discussed the ACIA in general, let me now tum to describing how the

ACIA is used specifically in the memory rnanager. The purpose of the ACIA in the

memory manager is to provide the interface for communicating serial data between the host

computer and the 6802 pP. Fig. 4.16 is repeated in Fig. 4.18 ro show the specific part

played by the ACIA in the overall system. The ACIA receives serial commands from the

host computer, such as start record, start playback, and stop. These commands are

parallelized and made available to rhe 6802 pP. The ACIA also serializes and parallelizes

speech data to be communicated b€tween the host computer and 6802 pP and, eventually,

the speech processor. Finally, the ACIA provides handshaking wires, RTS and CTS, in

order that the serial communication of data between the host computer and the memory

manager proceeds in a controlled manner.

Memory Manager Serial Communication Channel Host Computer

Fig. 4.18 ACLA implementation in serial communication system.

Focussing on the ACIA, Fig. 4.19 shows the schematic diagram and the internal

addressing of the ACIA implementation in rhe memory manager. The top part of this figure

shows the connectivity of the ACIA between the 6802 ¡rP and the serial channel connecting

74

the host computer. There are th¡ee sets of signals connecting the pP to the ACIA, the

add¡ess bus, the cont¡ol bus, and the dat¿ bus. The control bus is used to enable, reset, and

select the ACIA. The R/W signal is used in addition to the address bus in o¡der to selecr

internal registers of the ACIA. The bottom part of Fig.4.18 shows the logic levels required

to select one of the four registers, SR, CR, TxDR, and RxDR. Note that the addresses of

SR (lD00) and RxDR (1D01) are distinguished from the addresses of CR and TxDR by

whether the pP is doing a read or a write, R/W, operation. Finally, the data bus is used by

the pP to access data within the ACIA intemal registers.

To Host
Vø

RS-232
25-Pin
D-Shel

Connector

Physical
Add¡ess AO RYlv

ACIA
Register Selected

IDff} 0 o Sratus ReEister (SR)
tDm o Control Resister lCRl

lDol 0 Transmit Data Resiser fTxDR)
lD0l 1 Receive Data Resiser lRxDRl

Fig 4.19 ACIA schematic diagram (top) and internal addressing (bottom).

There are five signals connecting the host computer to the ACIA, via the serial

communications channel, Before entering the channel, the signals TxD, RxD, RTSB, and

-75-

ACIA 68t)

Datâ
Resisærs- TxD

RxD
Register
Select RTSB

CTSB
unlp

Control

TxCLK
RxCLK

CTSB are passed through a driver (1489) and a re¿eiver (1488) [NaSe89]. The purpose of

the driver and receiver is to provide the electrical voltage transformation as required by the

inærface between the ACIA and cornrnunications channel, as discussed in Section 4.3.1.

The format of the data ransmitted at pin TxD and received at RxD is specified as

follows: 115.2, N, 8, I, IRQ disabled. This means data is to be rransmitred ar I 15.2 kbps;

that a character is of length 10 bits and consists of one start bit, eight data bits, no parity bit,

and one stop bit. This information is programmed by writing 0101 0101 inro the control

register. The baud rate is determined by dividing the rate supplied by the BRG by 16, i.e.,

16(115.2) + 16 = 115.2 kbps. The transmitter and receiver intemrpt capabilities are not

required in this applicarion. Therefore, they are disabled.

4.2.L2.3 Testing

There are different ways to test the ACIA. Perhaps, the simplest merhod is known

as loop back. The idea is to transmit data to the receiver section of rhe same ACIA. This

requires connecting TxD with ItxD and RTSB with CTSB. Refening to Fig.4.19, this can

be done by connecting pins 2 and,3 in a loop and pins 4 and 5 in a loop. Testing proceeds

with alternatively writing and reading the ACLA and testing whether the received data is

exactly the same as that fansmitted.

Note that the transmission of serial data can be viewed on an oscilloscope by

viewing pin TxD. If the same character is repeatedly sent, then the scope indicates a pseudo

square waveform indicative of the group of bit cells being transmitted. If different

characters are being sent, flashes of light a¡e viewed on the scope, because the scope cannot

trigger onto a non-periodic waveform.

If the loop back tests prove positive, then the next test is to set up a system as that

shown in Fig, 4.18. Given that the two systems a¡e identical with respect to the

programming of the UART, and, if a similar read tesr fails, rhe problem is isolated in the

serial communication channel. Perhaps, the wi¡es ¿ue not connected properly. Note that

TxD from system A must be connected o RxD of system B. Likewise, connect RTSB of

system A to CTSB of system B.

The ransmission rate of the ACIA can be calculated. The idea is to uansmit any

arbitrary data. After each character is sent, the pP invens one of the output lines of a PIA

port, say bit 0 of Port A. Viewing the oscilloscope should show a SOVo duty cycle periodic

square wave of frequency ten times slower than úe transmission rate of the ACIA.

4.2.2 Dual Pointer FIFO Buffer

As discussed in Chapter III Section 3.3.2, one of the reasons motivating the memory

manager is to allow the host computer the time to process system tasks in the foreground,

while communicating speech data with the speech processor in the background. Because

the speech processor is a synchronous device, always requiring data or providing data at a

constant and periodic rate (i.e.,4ffi2 ot 32 kbps), some sort of temporary storage or buffer

for speech data is required in the event that the host computer is busy doing system tasks

when the speech processor provides or requires data. A buffer suffîcient for this cause is

the dual-pointer First In First Out @IFO) buffer implemented in softwa¡e. This secrion

describes both the concept of the dual pointer FIFO and its softwa¡e implementation in the

memory manager.

4.2.2.I Concept

The dual pointer FIFO buffer implemented in softwa¡e is a simple concept. It can

-77 _

be imagined as a circular area in memory, as shown in Fig. 4.20. Initially, the write

Write Data Direction

-.+>

Buffer
Dimension:
N I-ocations

by 8-bit

Read Data Direction

--

Fig. 4.20 DuaI pointer FIFO a¡chirecrure (after [Kins88]).

pointer points to the same location as the read pointer. Each time data is written into or read

from the buffer, the respective software pointer is incremented. Note that this is unlike the

hardware FIFO, where, once a data word has been written, that word bubbles do\ryn to the

next available location [Mono85]. Unread dat¿ a¡e never overwritten, so long as the write

pointer is always behind the read pointer, or equivalently, the write pointer does not become

equal to the read pointer. This implies that writing to and reading from the FIFO are

independent and asynchronous events. Furthermore, the rate of reading data from the

buffer may be different from that of writing. Fo¡ instance, given that the rate of writing

(f*¡¡r) is four times as fast as reading (fr.u¿) and given the size of buffer, N, then the

writing device's waiting time (T*¡) between writes is given as follows:

.n - N - N -N
fr"rite - fr"ud 4f¡e¿¿ - fr""¿ 3L."a

78

(4.1)

4.2,2,2 ImplemenüationandTesting

ln the memory manager the FIFO buffer is implemented using expandable Staric

Random Access Memories (SRAMs). Currently, two 8K by 8-bir CDM6264 SRAMs are

used [RCA84]. These SRAMs physically form the circular type of FIFO buffer, as

referred to above. Poinæ¡s to the data within the FIFO are implemented using software.

Each time data is written to or read f¡om the FIFO, the respective pointer is incremenred.

When data fills one of the SRAMs, say SSg{ A, ttre wriæ poinær is incremented and then

points to the starting location of the other SRAM, SRAM B (note that the SRAMs are

placed in contiguous memory locations). When SRAM B becomes full, the write pointer is

reset to point at the starring location of SRAM A, and so on. The read pointer is treated

similarly.

For the testing procedure given below, the variables in Eq. 4.1 are defined as

follows. The time (r*¡,) corresponds to the time the host computer requires in orde¡ to

p¡ocess the received block of speech data and to perform foreground system tasks. The

frequency (f,,u¡,") conesponds to the rate at which the speech processor fills the buffer

during recording (e.g., block formation), while (fr."¿) conesponds to the rate at which the

pP reads the buffer and sends the speech data to the host computer (e.g., block

transmission).

Experiments were conducted in order to determine the size of buffer required to allot

the host computer T*¡,. The objective of the experiment was to test whether the host

computer was able to do its background and foreground tasks (the background task is

reading speech data and saving speech data to disk, while the foreground task includes

refreshing DRAM) before the write pointer became equal to the read pointer. An

oscilloscope was set up in order to view the time taken by the host to read speech data and

save same to hard disk. The speech processor frequency was fr"u¿ = 4 kÍlz = 32 kbps,

79

while the host computÊr ûequency was I15,2 kbps = 3.6f¡Eåd. A softwa¡e check was set up

to assert a hardwired flag if the two poinærs became equal. Tests concluded that the size of

buffer N = 16K or two 8K SRAMs is sufficient for allotting the host computer T,"6,.

4,2.3 Memory Map

Section 4.2 mentions that the rnemory manager is a memory mapped system and

that each device is assigned distinct add¡esses. The descriptions of the PIA (in Section

4.1,.1,2) nd ACIA (in Section 4.1.2.2) further elaborated on the map by explicitly søting

the addresses of each internal register of these two devices. This section describes the

m€mory rnap of all the devices in the sysæm.

Table 4.1 shows the memory map of the memory manager. The dimension of the

available memory space is given by the number of address lines, 16, and data lines, 8, used

by the 6802 pP. Therefore, the dimension is 64K by 8-bit. The memory map consisrs of

memory devices and peripheral devices. The memory devices include one 2K by 8-bit

Erasable Programmable Read Only Memory @PROM), six 8K byte Static Random Access

Memories (SRAMs), and 256 bytes of inremal Random Access Memory (RAM). The

peripheral devices include one Peripheral Interface Adapter (PIA) and one Asynchronous

Communication Interface Adapter (ACLA). Note that each of these devices have distinct

memory locations.

The EPROM is located at the top of the map, and it is used to srore the 6802

program and any other system tables, variables, or parameters. The contents of this memory

chip are referred to as system fìrmware. This chip requires 2K bytes of memory, and it is

assigned locations F800to through FFFFTO.

It is interesting to note why the EPROM is located at the top of the memory map.

The main reason is that the 6802 uses the locations FFFSto to FFFF16 as intemrpt vectors

[Moto83]. The add¡esses of the conesponding inæmrpt sewice routines must be bumt into

Table 4.6 Memory map of the memory manager.

the EPROM by the designer at their respective locations. For example, The memory

manager's main program resides in memory starting at F800le. This is the program that is

run when the memory manager circuit is powered up. Therefore, the designer must load the

address F800lo in the reset vector location, which is FFFE lo to FFEF16. Fu¡thermore, if

81

/ Mernorv Add¡ess
(fIex)

Device Add¡ess bit \
415 414 413 412 All 410 A9 A8 A7.AO

FFPP

FRlYì

2K
EPROM I I x X X x

E000
Not

tlse{t
DFFF

.fYYì
8K

SRAMI I 0 x x X x x X

BF¡T 8K
SRAM2 I 0 I X x x x x X

9f,¡¡

RIYX)

8K
SRAM3 I 0 0 X x x x X X

TFFF 8K
SRAM4 0 I I x x x X x x

5F¡T 8K
SRAM5 0 0 X x x x X X

3FFF

ttvvì
8K

SRAM6 0 0 x X X X X X

I FfXl

NOT
USED 0 0 0 I I I I X

tF.m PIA 0 0 0 I I t 0 X

I Dftô ACIA 0 0 0 I 0 I x

fnRo
NOT

USED

00?F INTERNAL
RAM 0 0 0 0 0 0 0 0 x

the system is inænupt driven, as is the memory ûunager, the designer must load the starting

location of the intem:pt routine in the intem:pt vector location, which is FFFSte FFFgls.

Allocated directly below the EPROM is space for six SRAM chips. Each SRAM

requires 8K bytes of memory, and they are assigned contiguous addresses, ranging from

200010 to DFFF16, In the memory manger, only two 8K SRAMs a¡e connected. However,

if more are required, they may be easily installed, since space has been allocated.

The peripheral devices @IA and ACIA) arc also memory mapped devices with base

addresses 1E0016 and 1D00t6, respectively. They are discussed in Secti on 4.2.1,

A special feature of the 6802 pP is the 128 bytes of internal RAM addressable at

locations 0000t6 to 007F16. Data access is more efficient because only eight bits are

required to address these locations. This memory may be used automatically by the pP as

the stack for saving the context of the machine upon an intemtpt, or it may be used by the

prograÍrmer as an intemal scratch pad. The memory manager uses this area of memory for

stack operations, and, during the initialization section of the main code, the stack pointer is

loaded with the starting address of the srack, 007Fto.

4.2,3,1 MemoryDecoding

The memory manager contains a memory decoder. The purpose of the memory

decoder is to decode the add¡ess bus. The memory decoder inputs address lines and

outputs chip select signals, which are fed to enabling pins of peripheral devices. All devices

described in the above memory map are connected to the same data bus and sha¡e this bus

with the pP. If more than one of these devices were enabled and attempted to assert

different voltage levels on the daø lines at any one instant, data on the bus would be invalid.

It is important to ensure that only one device is driving the data bus at any one time, in order

82

to prevent bus contention. The memory decoder acts as an intermedia¡y device benreen the

pP and the devices connected to the pP. When the ¡rP requires access of a certain device,

then the address of that device is placed on the address bus. The decoder intercepts the

address bus, determines which device the address refers, and enables that device while

disabling other devices. If all devices connecred ro the pP had 16 input chip select lines,

then a decoder would not be required, because only one device's address would be on the

address bus at a time. However, most devices do not have 16 chip select lines, because it is

impractical.

Figure 4.21 shows the schematic diagram of the memory decoder in the memory

Fig 4.21 Memory manager memory decoder.

manager. The circuit is implemented using rwo 1-of-8 74LS138 [Texa84] decoders. Note

that the circuit inputs the add¡ess lines 48,49, Al0, 413, 414, and 415, while ouçutting

6Æ02

Al3 -
Al4 -
,a.t 5 -

To

SRAMJ¿ CSB

SRAM4 CSB
SRAM3 CSB

EIB vct
E3

f; ul'' :r',
cY5

y4

74rJl38 !rt,
YO YI

E2B Gh'I)

EIB GND

E?B
Y1
Y6

A U4,1 y5

BY4
cY3

74rJl38 !r?E3 vo
vcc

chip select signals for the EPROM, each of the SRAMs, the PIA, and the ACIA. Nore also

that the enable of both decoders depends on the logical NAND of Valid Memory Address

(VMA) and Enable @). E is phase 2 or Õ2 of the 6802 clock. The designers of the 6800

family of microprocessoni intended O2 to be used as a data valid signal, i.e., (02 is asserted

when data on the data bus is valid, However, in order to distinguish between memory

referenced and non-memory referenced instructions, the VMA signal is used. During non-

memory referenced instructions of the 6800 family of microprocessors, the add¡ess lines

are unstable and, therefore, ¡nay cause eroneous chip selects. Thus, a memory device is

being accessed only when VMA and (D2 are logic 0. This is assumed in the following

discussion of EPROM, SRAM, PlA, and ACIA chip selection.

When each of the lines 413,414, and 415 are logic 1, the EpROM is selected. In

fact, all that is required to decode the EPROM is A13, AL4, and A15 being logic 1, because,

as shown in Table 4.6, no other device is being addressed when 413,414, and 415 a¡e

logic 1.

The allocation of the EPROM at the rop of the memory map places a constraint on

the allocation of the six SRAMs. Since the SRAMs are 8K in size, 13 add¡ess lines (,A0 to

412) are required to specify the 8192 distinct memory cells. This leaves three address bits

for decoding, namely, 415, 414, and 413. Since the combinarion 413 = l, A,14 = 1, and

,A.15 = I has been used for the EPROM, rhe firsr SRAM must be placed ar the address

leading with 413 = 0, 414 = 1, a¡d 415 = 1. Once again, all that is required to decode the

SRAMs is the three address lines A,13 , 414 , and 415, because no other device is being

add¡essed when 413, 414, and 415 have the logic values conesponding to the addresses of

the six SRAMs.

The PIA and the ACIA a¡e selecred when A.13,414, and Al5 are logic 0. Note that

this is the only remaining combinarion of 413, 414, and 415. As shown in Fig.4.2l,when

84

413, Al4, and 415 arc loglc 0, Y0 is active, and it enables the second decoder. The pIA and

ACIA are distinguished in the second decoder by the logic levels on add¡ess lines ,{8, 49,

and 410.

The othe¡ chip select signals available in the decoder circuit may be used for

expansion.

4,2,4 Controllcr: the ó802 pP

The conaoller of the memory mzurager is implemented using the Motorola 6802 pp

[Moto83]. The 6802's main purpose is to conEol communications between its external

devices, the host computer, and speech processor. This communication includes the

transmission of commands, acknowledgements, and speech data. Because the

communication of these data is asynchronous and occurs at different rates, the 6802 acts as

a data t¡affic controller. While allowing the speech processor to communicate its

synchronous data at a constant rate, the 6802 allows the host computer to communicate its

asynchronous data at a different and much faster rate.

The 6802 conroller achieves its purpose by conuolling and making effective use of

its peripheral devices, the ACIA, PIA, and FIFO buffer. The ACIA is used to communicate

serial data with the host compurer. The PIA is used to communicate parallel data with the

speech processor. And the FIFO buffer is used to implement a simple form of pipelining.

This buffer provides temporary srorage of speech daø when the host computer is busy

doing other system and foreground tasks.

85

4.2.4.1 Hardware lmplementation

The 6802 pP comês in a 40 pin Dual In line Package (DIP). In order to rest a

circuit in which the ¡rP is applied, the chip must be physically wired into the ci¡cuit and the

code for the software program must b,e bumt into a Read Only Memory (ROM) chip each

time a new program is written.

4.2.4.1.1 6802 Emulator: EM.186

However, for developing and debugging pu{poses, it is convenient to use an

emulator. One such device is the EM-186 68@/6802 diagnostic emulator [ApMi85]. The

emulator allows the progranìmer to develop and debug a target system without having to

physically insen the pP into the circuit or to bum code into a ROM chip. All of the internal

registers, accumulators, functions, instructions, addressing modes, and special features

offered by the pP are emulated by the emulator. Furthermore, the EM-186 has 64K of

Random Access Memory (RAM) built in. This enables the prograÍìmer to download code

for a program into emulator RAM, rather than having to burn the code into a ROM chip. In

other words, the built in RAM acts as ROM. Once the debugging phase is completed and

the target system verified to be working properly, then the physical insertion of the ¡rp and

code buming proceeds naturally.

The EM-186 is simple to use. Some of its features include a serial port to download

code, breaþoint and instruction tracing, memory and diagnostic tests, and display of

intemal registers, accumulators, and flags.

In orde¡ to download code, a communications package, such as P¡oComm, running

on a host computer Eansmits the code to the emulator via the RS-232C compatible serial

port. ln order to invoke the download mode of the emulator. the codes El followed C3 a¡e

86

typed into the emulaor keyboard- The code, E I , is an acronym for Enable serial port I . C3

is tïe code that places the EM-186 into the serial input mode. The baud raæ is selected viaa

bmk of switches located at the back of the emulator. The program is placed in emularor

RAM at the location specified by the ORG directive in the source listing. If errors occur

during transmission, the emulaûor gives (beep$ a waming message,

In order to run and test the program, the starting address of the program must be

loaded ino the prcgram counter. This is done by using the appropriare emulator commands

typed into the emulator keyboard. Furthermore, this can be done by either loading the

program counter or by loading the starting address of the program into the reset vector

location. The latter method is more practical, since, when the power of the target system is

nrmed on, a global reset occurs and, in particular, the 6802 program counter is automatically

loaded with the add¡ess contained within the reset vector.

When the target system is powered up, the program may be tested by using either of

the emulator commands, run, run until breakpoint, or step. Breakpoint and stepping are two

very powerful debugging tools. Each time a breakpoint occurs o¡ each time an instruction is

stepped through, the EM-186 transmits the conrents of intemal ¡rP registers, accumulators,

and flags through the serial port to the host compute¡, where they can be viewed on the

scfeen.

The EM-186 also provides memory and some diagnostic tests. For example, in the

FIFO buffer of interest, the SRAMs are tested. In particular, invoking the emulator

command 41, along with specifying a stafting and ending address, the emulator writes

zeroes and ones to the starting location, attempts to read same, then continues with every

location up to the ending address, If an error occurs during reading, the emulator beeps and

displays the location and problematic dam. This is convenient for testing whether the wiring

87

of devices in the target syst€m is cor¡ect

4.2.4,2 Software Implementation

The code of the memory manager controller is written using the 6802 instruction

sel The code is given in Appendix A. The code consists of system initialization, command

reception, record, playback, and stop routines, These routines are sequentially executed.

After system initialization, the 6802 executes command reception, where it waits for a valid

command. Having received a valid command, that command is executed until a stop

command is sensed, upon which, the controller executes the stop routine. The stop routine

vectors the controller back to initialization, and the whole procedure is repeåted.

4.2,4.2.1 Initialization

The initialization routines initialize variables, the PIA, and the ACIA. Variable

initialization includes seuing the read and write FIFO buffer pointers, Reart_ptr and

Write_Pr, respectively to an arbitrary starting location, 200016, which happens to be the

starting address of the fi¡st SRAM.

The PIA is initialized as menrioned in Section 4.2,1.1.2. Port B is configured for

oulput in orde¡ to facilitate supplying control signals to the speech processor and BRG.

More specifically, 83¡6 = 1000 00112 is written to Port B. 87 and 86 are inpur to the

BRG. B3 and 82 reset to logic 0 enables and selects the command input mode of the

speech processor, respecrively. 81 and B0 sets RD and WR to logic high, respectively.

Port A is configured for speech chip command,/starus and speech data VO. Whether pon A

is input or output depends on the forthcoming command issued by the host computer. The

intemrpt logic is set to enable active Eansitions on CAl. Thus, the controller services the

speech processor by responding to speech processor generated interrupts. Refer to page

A I 6 for PIA initialization code and comments.

The ACIA is initializæd as mentioned in Secton 4,2.1,2.2, It is maste¡ reset and the

initia-l state of RTSB is high (inactive), The serial side is set up to communicate data \,vith

the following attributes: 115,2,N,8, 1. The ACIA is not intemrpt driven. The conroller

polls the ACIA during command reception, record, and playback routines. Refer to page

415 for ACLA initialization code and comments.

4.2.4.2.2 Command Reception

Figute 4.22 shows the flow chart for the command reception routine. This routine

is executed following system initialization. Afær the ACIA has been reset and RTSB set to

the inactive state (logic high), the controller determines whether the host is requesting to

send by looking at 83 of the ACIA status register. If the host is requesting to send, the

controller acknowledges the request by giving the host clea¡ance to send, i.e., by resetting

RTSB to logic 0 (active). The controller then reads a byte of data from the ACIA receive

data register and compares the byte to command codes in order to determine whether the

byte of data is a valid command. If the command is valid, the conrroller executes the

appropriate routine. If an error occlrs, the controller vectors back to the start of the

program, executes the initialization routine, and attempts the command reception routine

once again.

4,2.4,2,3 Playback

The playback routine consists of subroutines and groups of code that can be

described as command acknowledge, speech chip playback initialization, buffer pre-load,

foreground speech data fetch, and background speech data play.

89

ACIA Inì tializat.ion

Command Rece?tion

Execut€ Command

Fig. 4.22 Command reception flow charl

Having received a valid playback command, the conuoller jumps to its playback

routine, where the frst subroutine executed is command acknowledge. In this subroutine,

the controller sets RTSB to logic I (inactive) in order to inform the host that a valid

command has been received. The conEoller then waits for an acknowledge signal by

monitoring 83 of the ACIA status register.

Reset (Host, do not send.)
RTSB = I (nacrive)

Requesting

Get Byte of Datâ
From ACIA Receive

Register RxD

'Is'
ita

Valid
rrnma

2

Aclnowledge
Reception of

Valid Command.
RTSB = I (Inactive)

Code Interpretal.ion

02 Record 2 sec

M Reco¡d 4 sec

t0 Record 16 sec

20 Re¡o¡d 32 sec

Playback

-90-

When the host signals an acknowledge, the controller initializes the speech chip for

playback. In this subroutine, the conroller wriæs the playback command to the speech

chip. Playback command is written to the sperch chip by placing the command code on the

data bus and then providing the sequence of appropriate logic levels on the input control

signals WR, RD, D/CB, and CS. T _ e. playback comma¡d code, 02ru, is writæn to Po¡t A of

the PIA. This places ús commald code on the speech data bus. Following this, 82ru =

1000 0010, is wrinen n Pon B, of which, birs B0 to B3 arc connected to WR, RD, D/CB,

and CS, respectively. This places pR to log¡c 0, About 12 psec thereafrer, 82ru = 1000

00112 is written to Port B. This places lilR to logic 1 and, thereby, writes the playback

command to the speech chip.

Also in the playback initialization routine, the PIA is enabled to relay interrupts to

the 6802 via CAl low+o-high transitions. This is done by writing 07ru = 966¡ 0111, to

CRA of the PIA.

After the speech chip is initialized for playback, the controller executes a buffer pre-

load subroutine called FillQueue. The purpose of this subroutine is to fill the start-up

queue of the FIFO buffer. This is necessary in the event the speech processor intemrpts the

confroller, asking for a byte of speech datâ, b€fore the controller has yet received the frst

byte from the host computer. A size of 256 bytes for the queue is sufficient for staÍing the

process ofplayback, and the duration of this size is perceptually unnoticed.

As shown in Fig. 4.23, this routine begins with handshaking. The controller

determines whether the host is requesting to send. Ifso, the controller acknowledges the

request by placing RTSB to logic 0 (acrive). Hencefonh, rhe transmission of each byte is

controlled by RTSB. lVhenever RTSB is logic 0, the host knows it can transmit speech

data, and whenever RTSB is logic 1, the host knows it must not transmiL In this routine, the

conroller resets RTSB to logic 0 when it is ready to receive a byte and sets RTSB to logic I

9l

after receiving each byæ, Afær receiving each byæ, the contoller, checks whether the queue

is full. If the queue is not full, the conEoller continues receiving data, whereas, if the queue

is full, the conroller concludes this routine and begins execution of the next routine, main

playback.

Fill Quzuo

Fig. 4.23 Fill queue flow chan.

The main playback routine consists of foreground and background processing. In

the foreground, the controller continually receives data from the host and writes these data to

the FIFO buffer. The FIFO write pointer (Write_Ptr) points to the next available location

Requesting

Okåy Host,
Send Speech Data:
RTSB = 0 (Active).

Get Byt€ of Datå
From ACIA Receive

Register RxD.

Host
Do Not Send:

RTSB = I (Inactive).

/ls\
the

Queue
Full

. ?,

in the buffer. In the background, the contoller reads speech data from the FIFO and writes

these data to the speæch chip. The FIFO read pointer @ead_Pr) points to the nexr byre of

speech data in the buffer.

Without intemrptions, foreground processing is capable of receiving a byte of

speech data and writing it to the buffer approximately every 86 ¡rsec. However, background

processing intenupts the foreground every 250 psec. Therefore, during foreground

processing, the controller receives almost two bytes for every one byte requested by the

speech chip during background processing, Noæ that the ¡emaining time (250 - 2[86] = 7g

psec) conesponds to CPU time. As a consequence, in order to detect the buffer full

condition, the controller monitors Write_Prr and Read_Pr for equality.

As shown onFig. 4.24, playback foreground processing begins with determining

whether the host is requesting to send. If so, Write_Pr is compared with Read_pr. If they

are equal, úis means the buffer is full, and the host is informed temporarily not to send data.

If the buffer is not full, the host is informed to send. Note that the cunent state of RTSB is

saved whenever it is changed. After receiving each byte, the controller increments

Write_Pr. The controller executes rhe above steps continually until it is intemrpted by the

speech processor.

Background processing is caused by speech chip initiated intemrpts. Each 250

¡rsec, when the speech chip is ready to convert the next digital ADPCM byte to the analog

domain, the speech chip interrupts the 6802 contoller via CA1 of the PlA. During each

interrupt routine, the controller writes one ADPCM byte to the speech chip. Like

foreground processing, the coneoller checks whether the FIFO read poinær @ead_ptr) is

pointing to the sâme location as Write_Ptr. Unlike foreground processing, the

interpretation of the event when the two pointers point to the same location is that the buffer

is empty. Furthermore, the empty condition can only have occuned because the host quit

93

Playback Foreground

Fig. 4,24 Playback foreground processing flow chart.

sending data. This condition is interpreted as a stop command issued by the hosr computer.

As shown in Fig. 4.25, background processing begins with informing the host not

to send, In other words, the controller cannot temporarily receive data from the host

because the speech chip requires service. Recall that the state of RTSB prior to each

interrupt is saved in foreground processing. After setting RTSB to logic 1, the controller

writes one b¡e to the speech chip. In more detail, the ADPCM byte poiflted to by the FIFO

read pointer (Read_Ptr) is written to Port A of the PlA. This places the byte on the speech

Requesting

Read Ptr

Host,
Do Not Send:

RTSB = I @active).
Ssve Cunent State of

RTSB.

Okay Host,
Send Sp€ech Dara:
RTSB = 0 (Aclive).

Save Curent SLate of
RTSB.

Get Byte of Data
From ACIA Receive

Regisær RxD.

94

data bus. Following this, 8616 = 1000 01102 is written to Porr B, of which, birs B0 to 83

¿ue connected to tilR, RD, D/CB, and CS, respectively. This enables the chip, selects the

dat¿ mode, and places WR to logic 0. About 12 psec thereafær,87rc= 1000 01112 is

written to Port B. This places WR to logic I and, thereby, writes the ADPCM byte to the

speech chip. After data is wriüen to úe speech chip, the conuoller checks whether Read_ptr

is equal to Write_Ptr. If rue, the controller interprets this as an implied stop command and

jumps to the stop routine. If false, Read_Pr is incremented to point to the next ADpCM

byte in FIFO buffer, the sute of RTSB prior to the intemrpt routine is restored, and the

controller retums to the foreground routine @TI).

Speech Chip
Service Routine

Fig. 4,25 Playback background processing flow chan,

Host,
Do Not Send:

RTSB = I (Inactive).

lVrite Pr

95

4.2.4,2.4 Record

The record routine consists of subroutines and groups of code that can be described

as command acknowledge, speech chip record initialization, foreground speech daø write,

and background speech data record.

Having received a valid record command, the conrollerjumps to its record ncutine,

where the fust subroutine executed is command acknowledge, In this subroutine, the

conroller sets RTSB to logic 1 (inactive) in order to inform the host that a valid command

has been received. The controller then r,vaits for an acknowledge signal by monitoring 83

of the ACIA status register.

When the host signals an acknowledge, the controller initializes the speech chip for

record. In this subroutine, the controller writes the record command to the speech chip.

Record command is wrinen to the speech chip by placing the command code on the data

bus and then providing the sequence of appropriate logic levels on the input conrol signals

WR, RD, D/CB, and CS. The ¡ecord command code, 0416, is w¡inen to poÍ A of the pIA.

This places the code on the speech data bus. Following this, 8216 = 1000 00102 is written

to Port B, of which, bits B0 to B3 are connected to WR, RD, D/CB, and CS, respectively.

This places WR to logic 0. About 12 psec rhereafter, 83ru = 1000 6gt l, is writæn to port

B. This places WR to logic 1 and, thereby, writes the record command to the speech chip.

After initializing the speech chip for record, the controller begins the main record

routine. The main record routine consists of foreground and background processing. In

the foreground, the conFoller continually reads data from the FIFO buffer and transmits

these data to the host. The FIFO read pointer (Read_Pr) points to the next byte of speech

data in the buffer. ln the background, the contoller reads speech data from the speech chip

and writes these data to the FIFO buffer. The FIFO write pointer (write_ptr) points to the

96

next avâilâble location in the buffer.

Record Foreground

Fig. 4.26 Record foreground processing flow chart.

As shown in Fig. 4.26, the foreground of ¡ecord processing begins with the

controller informing the host of a request to send. After this, the controller waits for an

acknowledge, indicating the host is ready to receive data. After the acknowledge is sensed,

Read_Ptr is compa¡ed with Write_Ptr in order to determine whether the buffer contains any

speech data. The condition when Read_Ptr points to the same location as Write_Pn

indicates the buffer is empty. This is so because the host is capable of reading serial speech

data about twice as fast as the speech processor produces parallel speech samples. If the

condition is false, the conroller sends a byte of speech data to the host, increments the read

Host, Slave is
requesting o send:
RTSB = 0 (Active).

Ready to
rec¿ive

Read_Ptr

Wrire_Pf

\Vrite Byte of Data
to ACIA Receive

Register TxD.

97

pointer, and branches back to determining whether the host is ready for the next byte. The

controller executes the above stÉps continually until it is intemrpted by the speech

processor.

Background processing is caused by speech chip initiated intemrpts. Each 250

¡rsec, when the speech chip indicates that a digital ADPCM byte is ready for reading, the

speech chip intemrpts the 6802 controller via CAI of the PIA. During each interrupt

routine, the controller reads one ADPCM byte from the speech chip. Like foreground

processing, the controller checks whether the FIFO read pointer (Read_pr) is pointing to

the same location as write-Ptr. unlike foreground processing, the interpretation of the

event when the two pointers point to the same location is that the buffer is full.

Furthermore, this full condition can only have occur¡ed because the host quit recording data.

This condition is inteÌ?reted as a stop command issued by the host computer.

As shown in Fig. 4.27 , the background of record processing immediately begins

with reading one byte of speech data from the speech chip. In more detail, 85rU = 1000

01012 is written to Port B, of which, bits B0 ro 83 are connected ro WR, RD, D/CB, and

CS, respectively. This enables the chip, selects the data mode, and places RD to logic 0.

"Setting (RD to logic 0) enables the CPU to read ADPCM data..."[OkiS90]. The conroller

then reads Port A of the PIA, which is connected to the speech chip data bus, and writes the

data to the FIFO buffer at rhe location pointed to by lVrite_ptr. Following this, gTru =

1000 01112 is writren to Port B, of which, bits B0 to 83 are connecred to WR, RD, D/CB,

and CS, respectively. This places RD to logic I and, thereby, completes reading of the

speech chip. Afrer data is read from the speech chip, the conroller checks whether

Write_Pr is equal to Read_Ptr. If true, the conroller interprets this as an implied stop

command and jumps to the srop routine. If false, Write_ptr is incremented to point to the

next available location in the FIFO buffer, and the controller retums to the foreground

98

routine (RTI).

Speech Chip
Service Rouf.ine

Fi5.4.27 Record background processing flow chart.

4.2.4.2.5 Stop

Upon detection of an implied stop command from either the playback or record

¡outine, the controller branches to the playback stop code. The stop command is written to

the speech chip by placing the command code on the dara bus and then providing the

sequence of appropriate logic levels on the input control signals WR, RD, D/CB, and CS.

The stop command code, 0116, is wrinen to Port A of the PIA. This places the command

code on the speech data bus. Following this, 82ru = 1000 00102 is written to Port B, of

which, bits B0 to B3 are connecred ro WR, RD, D/CB, and CS, respecrively. This places

IVR to logic 0. About 12 psec thereafter, 8216 = 1000 00112 is written to Port B. This

places WR to logic I and, thereby, writes the stop command to the speech chip. Also, the

PIA intemrpt relaying capability is disabled by writing 04ru = ¡66ç 01002 to CRA.

Receive
Stop

bmm¿s

99

4,3 Serial Interface: RS-232C

This section describes the serial communications channel through which the

memory rnanager and the host computer communicate (recall Fig. 4.18). In particular, the

elecrical, mechanical, and logical aspects of this channel a¡e described. These aspects of the

serial communications channel are compatible widr the well known Recommended sønda¡d

232 (RS-232C). In 1969 the Elecronic lndusries Associarion @IA) issued the RS-232

interface. Since then revisions have been made, in particular, the RS-232C and RS-232D.

While initially intended for the "Interface Between Data Terminal Equipment @TE) and

Data communications Equipment (DCE) "[CAMP 84], i.e., communications between

terminals and modems, respectively, the RS-232C can also be used to interface computer

and microcomputer serial communications, such as the application of inte¡est. In order to

fully specify the RS-232, four aspecrs æe described:

" Electrical Signal Characteristics The voltage and logic levels of the

serial data are defined.

Mechanic¿l Connection Characteristic The type, gender, and length of

connectors and cables that form the physical link bemeen systems are specified.

Functional Signal Description Each wire that forms the physical link

between systems is given a function, name, and corresponding pin number.

Standard System Configuration Some system configurations are given

to demonstrate the use of the RS-232 interface.

4.3.1 Electrical Signal Characteristics

The RS-232c interface specifies the binary logic levels and their associated voltage

levels as shown in Fig. 4.28. The ¡elationship is of the inveræd logic type. That is, a logic

100

1 is represented as -15V, whereas, +15V is the representation of logic 0. Associated with

the voltage range is the transition region. The Eansition region is the "dead band" area

where the signal is undefined. Note that the threshold for ouçut signals is 2V greater on

either side of signal ground than the th¡eshold for input signals. This difference is to allow

noise margins and voltage drops along the length of cable. Thus, the dead band region for

signals output into the channel is wider than that for input sigrals.

Fig. 4.28 RS-232C ele¿trical signal characterisrics.

4,3.2 Mechanical Connection Characteristics

The physical realization of the serial communications channel consists of a cable

-101 -

Bit cell

Binary
L.ogic
I-evel

r1r213lal5161718l

RS-232C
Voltage
[¿vel

+15

0

-15

OuÞut
Signals

+15 V

w

-''-,-15çÑ-
3v

-15 V

Input
Signals

Transition
Region

terminated by connectors. The 25-pin D-shell connector is specified by the RS-232

interface. Thus, the physical medium has a capacity of carrying 25 wires, each of which has

specific meaning and function, as described in Section 4.3.3. The maximum cable length is

determined by the limi¡ pþçç{ s¡ the capacitance of the cable. This limit is 2500 pF, which

means that, for an avemge value of 40-50 pF per foot, the maximum cable length is 50 ft.

The type of cable is not specified, but telephone cable is usually used since modems

transmit over telephone lines. f|¡i5 limi¡ sn s¿þle length applies to transmission rates up to

20 kbps. However, by using shorter dist¿nces and beuer grade of cable, higher rates can be

achieved In particular, the serial communication channel of interest uses a cable length of 6

ft and ransmits at 115.2 kbps.

4,3.3 Functional Pin Description

Figure 4.29 shows the functional pin assignment of the 25-Pin D-shell connector.

A description of some relevant pins follows:

Chossis ground (CG) This signal is the proæctive system ground that links the ground

signal of the DCE and DTE systems, i.e., the memory manager and the host computer. This

signal is not the same as pin #7, the signal ground. The signal ground may be at a different

potenrial than earth ground.

Transmit Data (TXD) Serially formaned data is gansmirted on this pin. When no data

is being transmined, this pin is maintained at logical 1 or -15V.

Receive Dan (RXD) Serial formatted data is received on this pin. This pin is also

mainøined at logical 1 when no data is being received.

102

Pin Name and Function Pin Name and Function

_ _ _ _ _ _ ÇLæsis_c¡og¡td_

TrensnrlÞg

Rec€ive Datâ

______&Sug"!To_sgtd_
Clea¡ To Send

-----Ðsq-s-elBseqy-
______S_ier4_cfo![d_

_ _ _ _ _ _çE{er_qg!€gr_

_ _ _ _ $e.SeÍ_ed_ lol !qst_
Reserved For Test

ulqsfe'$

_S qcQLdêr¿ ç4¡riSLqpFcJ _

$ç9n1þr¿ Çlear_ lo_Spryd_

Fig. 4.29 RS-232C functional pin assignment [After JoCh87].

Requcst To Send @7lS) This is a control signal which, when acrive, sends a signal ro

the receiver requesting to send data. RTS is used in conjunction with Clear To Send (CTS)

as a method of hardwa¡e handshaking to control data flow. The transmitter does not send

data until it receives a clear to send by the receiver.

Clear To Send (CTS) In conjuncrion with RTS, this signal is used by rhe receiver and,

when active, it tells the sender to start tansmining.

Data Set Reaþ (DSR) lVhen this signal is asserted, a pC interprets that a modem is

properly connected to the telephone line and in the data transmission mode.

-103-

Signal ground (SG) This is a mandatory signal ground. It defines the reference voltage

for the data tlut is being ransmitæd or received

Data Carrier detect (DCD)

sþal is being received

Data Terminal Ready (DTR)

up and ready to Communicate.

A modem sends a PC an ON signal when a proper carrier

Used as an output signal, DTR informs that it is powered

The eight pins described above are the most important signals in the RS-232C

interface, and they are appropriately catled the BIC EIGHT. The remaining pins of the RS-

232C inte¡face ue used for fwher ha¡dware handshaking, backup, secondary duplicates of

those already mentioned, or for test pu{poses. In the serial communication channel of

interest, only 5 of the BIG EIGHT a¡e used, since the remaining three are used mostly by

modem communications. The host computer-memory nunager system configuration which

uses these five signals to form the serial channel is discussed next.

4.3.4 Standard System Configurations

Of the 25 signals offered by the RS-232C, the number and nature of signals used in

the channel depends on the application. When inærfacing a terminal to a modem, some or

all of the BIG EIGHT a¡e necessâry, and this depends on the manufacturer of the modem or

terminal [Camp89]. What is important is to determine what signals are required by the

modem or terminal at both ends of the communication link. This can be done by referring

to the manufacturer's data sheet specifications.

Interfacing computer to computer systems is relatively simpler. The simplest

104

method is refer¡ed to as a null modem. It is referrei to as a null modem because the

inærrnediaæ device, the modem, is eliminaæd As shown in Fig. 4.30, only three signals are

connected, TxD, RxD, and signal GND. Data is ransmitæd through wire TxD, and data is

received through wire RxD. \ilhen, why, or how to t¡ansmit data is controlled through

softwæe handshaking.

Compuær
A

Computer
B

Tra¡umit Data

Rec¡ive Data

Signal Ground

Receive Dafa

Trânsrnit Dâfâ

Sisnål Ground

RxI) TYI)

GND

Fig. 4.30 Null modem configuration.

Softwa¡e handshaking uses control characters to control the ransfer of data between

systems. One disadvantage of this system is that the conúol characters generally cannot be

used as data. Most prevalent in software handshaking is the XON/XOFF protocol. XON

and XOFF have several othe¡ names. XOFF is sometimes referred to as Device Control 3

(DC3), CEI-S, or 1316, while the XON cha¡acter is ¡efened ro as DC1, Crl-Q or 11r0. The

receiver sends an XON when it is ready to receive data. Having received an XON, the

transmitter begins sending data. If the receiver requires a break for any reason, then it

Eansmits an XOFF. The transmitter ceases to transmit and waits for the next XON.

A more interesting system configuration - the interface used in the application of

interest - is shown in Fig. 4.31. In this application six signals are used, TxD, RxD, RTS,

CTS, DCD, and signal GND. This configuration enables hardwa¡e and software

handshaking.

105

Memory Manager

Pin Signal

Host Computer

Signal Pin

Fig. 4.31 Wiring diagram of host computer-memory manager inærface.

The hardware method uses RTS and CTS to control data flow. This method is

fastest of all handshaking protocols. If the transmitter wishes to transmit, it asserts ouçut

RTS. Because RTS of the transmitter is connected to the receiver's CTS, the receiver

monitors its input CTS in order to determine when the transmitter requests to send. When

CTS goes active, the receiver asserts its outpur RTS, which is connected to CTS of the

Fansmitter. When the transmitter senses an active CTS, it begins ransmitting through the

TxD wire. The transmitter's TxD wi¡e is connected to the receiver's RxD wi¡e, and the

receiver thus receives daø through RxD.

4.4 Host Computer: the IBM or Compatible

The host computer used in this thesis is a Mind porøble IBM compatible. This

computer uses a 286 pP, 640 KB of RAM, a 40 MB Seagate hard disk, and a Microsoft

mouse, version 7.0. It has a built in 7" by 5" screen driven by a Color Graphics Adapter

(CGA) video ca¡d. It also has a RS-232C compatible serial pon. All of the functions of rhe

host computer, as discussed in Section 3.2.4, are implemented in software.

4.4.1 Software Description

Host computer software is written using 8086 assembly language, BIOS and DOS

(version 3.0) intemrpt calls [RaDu86], and Microsoft Quick C 2.0 [MSQC88] high level

language, High level language is used primarily for the user interface. This includes sening

up text and graphics user interfaces and main processing of user selected functions.

Assembly language is used for basic processing of speech daø. This includes configuring

the serial port, receiving and ran5mil¡l¡g çsmmands and speech data, and converting data

from one form to anothe¡. Whenever possible assembly language routines use BIOS and

DOS system calls to communicate with PC hardware, such as keyboard and hard disk

controller.

4.4,1,1 Text Mode Interface

The text mode of operation is used mainly to initialize the system, to record and

playback speech, and to perform some library functions. Figure 4.32 shows the window

which appears in text mode. The horizontal menu bar located at the top of the figure offers

pull down menus and pop up dialogue boxes. Pressing the ALT key gives access to the

main menu. Moving through the menu system is done by manipulating the arrow keys,

while selecting an item is done by pressing Retum. Typically, the fust function performed

is serial port initialization.

Fig,4.32 Host's Main menu (text mode).

4.4,1,1.1 SerialPortlnitialization

The serial port of the host computer uses the National Semiconductor 8250 UART

[NaSe89]. The operation, function, and programming of this UART is very similar to rhat

discussed in Section 4,2.1.2 for the ACIA. The UART's purpose is to provide the serial

interface befween the host compuær and the RS-232C serial communications channel, as

shown on the right hand side of Fig. 4.18. Initializarion menu offers different data

formatting, but the one used for speech data communications is as follows: I 15.2 kbps, 8,

N, 1. Data fransmission rate is I15.2 kbps, cha¡acters a¡e 8 bits in length, there is no parity

bit, and one stop bit is appended to each character. Since Quick C, BIOS and DOS do not

allow programming the serial port for transmission rates greater than 57.6 kbps, assembly

language is used. The source code for initializing the serial port is shown in Appendix A.

4.4.r.1.2 Record

Once the serial port is initialized as (115.2 kbps, 8, N, 1) recording can begin.

Selecting reco¡d from the main menu, the user is prompted for the number of seconds to

record. Currently, 2, 4, 16 a-nd 32 seconds are offered, but this may be easily changed so

long as the hard disk can accommodate the space. Since the recording rate is 4 kHz, i.e.,

4000 bytes per serond, the amount of space for recording f seconds is given as follows:

Dsk Space = 4000 bytes/sec x t sec = 40@t bytes (4.2)

After selecting the number of seconds, the main program passes the recording time

to a record function, where two functions are executed, the first of which is

SendRecordCommand. This function Eansmits the command code for "reco¡d t seconds,'

to the memory manager. Figure 4.33 shows the flow chart for transmitting a command, and

this chart should be compared with Fig. 4.21, which represents the memory manager's

108

command reception flow cha¡t. Note the mirror imaging of RTS and CTS, providing

simple, yet effective, ha¡dware handshaking.

Main Program Call

Command Transmission

Start Recording/Receiving

Fig.4.33 Send command flow chart.

When a valid record command is sent and received, the host executes the other

function, record. Figure 4.33 shows a flow chart for the host's receive speech data routine.

This figure is the mirror image of Hg. 4,25, and they should also be æmpared. As shown

109 -

Slave, Host rcqwsts
to Send a Command"

RTSB = 1 (Acrive)

/Is\
Slave

Reådy tÐ

receive

T¡ansmit Code of
Command via UART

and RS-232C.

Slave:
Vatid

Comma¡rd

Aclcrowledge
Reception of

Valid Command.
RTS = 0 (Inactive)

Code lnærpretation

02 Record 2 sec

04 Record 4 se¡

l0 Record 16 sec

20 Record 32 sec

AA Playback

Record Sp€ech Dat¿ tro Disk,
Seconds = number of seconds
to r€cord"

Yes, Twosecondcount = 0.

ñ"t'rã ¡o-r"ruiîprãetñ
and Wait for Users Next
Comm¿nd.

Fig. 4.34 Host receive speech data flow chart.

in Fig.4.34, the record function begins by opening a file and allocating memory for a

speech data buffer. This buffer holds 8192 bytes or approximately two seconds of speech

110 -

Requesting

Okay Slave,
Send Speech Daø:
RTS = l(Active).

/2\
Seconds

Rec¡rded
?

No, TwoSec¡ndcount + 0.Recording
Complete
\?

data. The Seconds variable is passed to the record function by the main program.

TwoSecondCount counts each two seconds of speech. Before the host even attempts to

start receiving dala, it checks whether the slave is requesting to send, i.e., started the record

process. Ilaving deærmined slave's request to s€nd, the host acknowledges the request by

sening its RTS o logic l, and waits for the incoming byæ. Having received a byæ, the host

res€ts its RTS to logic zero in order to inforrn the slave not send. By mmipulating RTS in

this way, all 8192 bytes are ¡eceived. Following the transmission of 8192 bytes,

TwoSecCount is decremented. Note each decrement of TwoSecCount represents two

seconds of recorded sperch. If TwoSecCount decrements ûo zero, recording is over and the

file is closed and the allocated RAM is freed. when finished, rhe host returns to its main

program, whe¡e it waits for the user to select another command.

4.4.L.1.3 Playback

The process of transmitting, i.e., playing speech, is similar to thatjust described for

recording. First, the playback command is transmirted. To start playback, the host begins

by opening a file and dumping a portion of that file to RAM. The contents of this RAM are

subsequently transmitted to the memory manager, using the same type of hardware

handshaking æ that described for the ¡ecord mode.

4.4,1,t,4 Library Functions

Also available in text mode, speech recordings may be loaded into a lib'rary in order

to form a template. Each entry in the library is stored in files. Furthermore, specific entries

from the speech data library may be played back. The use¡ can also remove selecæd speech

files from the library. The purpose of forming a library is to facilitare speech editing øsks,

which are possible in the graphics mode interface, as discussed in Section 4.4.1.2.

111

4.4,1.15 Compression

Also available in text mode is daø compression and decompression routines. In

order to plot speech data or directly modify dre waveform, ADPCM formatted data must be

converted to PCM. gimil¿¡ly, in order to playback modified speech dâtâ, PCM formatted

data must be converted to ADPCM. These conve¡sion routines are based on the discussion

of ADPCM presented in Chapter II, Section 2.2.3.1. The source code fo¡ these routines

can be found in Appendix A, Section 4,2.9.

Note that these routines implement a different algorithm than the one that is

implemented by the manufacturer of the ADPCM speech processing chip, Oki (please see

Section 4.5). In particular, the M values that are used as step size multipliers are not the

same as those used by Oki þroprietary information). As a result, some information is lost

in the conversion.

Graphics Mode Interface

In addition to having a text user interface, the host software also has a graphical

interface. The graphical interface consists of initialization and time domain plot functions.

The initialization function configures tho other graphics software according to the type and

capabilities of the current computer's video card. ln so doing, the graphics suppot for this

softwa¡e should work with computers using CGA, EGA, HGC, MCGA, AND VGA, video

adapter cards. However, when setting pixels in the time plot function, some minor

modifications may be required for systems using cards other than CCA. In these cases, the

incompatibility is partly due to screen resolution.

Normally a Graphical User Interface (GUI) product can produce a single interface

4.4,1,2

112

satisfying both text and graphics. However, text and graphics interfaces were written in

order to limit the size of the program, ps¡ ç¡emple, using a development toolkit such as

Menuet v. 1.7d [CoLa90] to form the graphical interface requires a minimum of 200K of

memory for just the overhead. The entire host program, including user interfaces and

speech processing code, requires about 150K of memory.

4.4.1.2,1 Time Plot ånd Speech Editing

The graphical interface is used mainly as a speech processing tool. The main

functions described in this section are time plot and speech editing. The graphical mode of

operation is run when the user selects Tíme Plot from the main menu. Selecting TÍme

P/of, causes a dialogue box to pop up, whereupon the user is prompted for the name and

type of file to be plotted. Upon selecting a file, the file is plotæd in a window similar to that

shown in Fig. 4.35. Both ADPCM and PCM fo¡marred files may be plotted, but pCM files

are usually plotted, because they convey amplitude versus time information.

Fig. 4.35 Time plot window of host's graphical interface.

-113-

ã
¿
o.E,

ë
Ê.
E

@@ @@@ @

Time (seconds)

Bytes Selected = 600 = 0.075 sec.

The horizont¿l ba¡ near the bottom of the figure allows two ways of selecting a

portion of a file to be plo$ed. The rectangular bar is scaled to the size of the file. Clicking

the mouse inside the rectangle, causes 600 points to be plotted staning from the position of

the mouse click. Finer movements within the file is provided by the arrows at both ends of

the recøngle. Clicking on these ¿urows moves the file pointer 60 points (or 7.5 msec) in

either direction.

There are two ways to select a poÍion of speech data Clicking the AJI icon causes

the entire file to be selected. Clicking anywhere within the plotting window causes up to

two pointers to be displayed (see Pl and P2 in Fig. 4.35). Ir is possible to position the

pointers anywhere within the file. One o¡ both pointers may be removed by clicking on top

of the respective pointer. Once the two pointers have been positioned, text underneath the

plotting window indicates the number of bytes and conesponding time selected.

Playback is possible once a portion of speech is selected using the method

described above. This allows the user to playback any portion of speech anywhere within

the file. Also possible once speech is selected is Cut and Copy commands. C¡¡t removes

a portion of speech from the file, while Copy copies the selected speech to a clipboard file.

The Pa¡te command inserts speech data contained in the file clipboard into the current file

starting at the location pointed to by one of the two pointers, Pl or P2. Note that only one

pointer should be positioned for the Parre function.

Any size file may be viewed, selected, played, copied, cut, and pasted since the

software uses the hard disk space as virtual RAM. In other \ryords, rather than using RAM,

the hard disk is used as a workspace. The disadvantage of this method is slower speed, that

is because disk aeeess time is eonsiderably slower than RAM access. Horvever, an

immediate advantage is much more memory, a¡rd it is this that makes virtually unlimiæd size

t14

of files for speech recordings possible.

4.5 Problems

Because of the unwillingness of the manufacture¡ (Oki) to disclose proprietary

information about their AD.PCM algorithm, some of the speech processing capabilities of

the PC AT workstation could not be used. ln order to plot speech data or directly modify

the waveform, ADPCM formatted d¿t¿ must be converæd to PCM. Similarly, in order to

playback modified speech daø, PCM formatæd data must be converted to ADpCM.

Because this cannot not be done exactly as performed by the speech processing chip, certain

required speech processing functions cannot not be implemented on the pC AT

workstation. In particular, any function dealing with modifying the amplitude of speech

cannot be fully implemented, i.e., modifying the amplirude and playing back the result.

These functions include amplitude inærpolation and linear predictive extrapolation.

This problem is resolved quite simply by using an available Macintosh IIsi

workstation for the functions not achievable on the IBM workstation. In fact, these two

workstations are used in conjunction to conduct experiments, as discussed in Chapter VII

Speech Splicing Experiments.

4.6 Summary

This chapter provides a detailed description of the PC AT speech processing

system. No ¡ock is left unturned. Everything you've always wanted to know about

interfacing a 6802 ¡tP, an MPU version of a speech processor, and a FIFO buffer to a host

computer but were afraid to ask is not only discussed but explained in great detail.

The system consists of three main components, a speech processor chip, dual-

-115-

pointer FIFO buffer, and PC AT host computer. During record mode, the 6258 speech

processor is responsible for digitizing the analog speech waveform and compressing the

digital representation to an ADPCM format, During playback mode, the 6258 is

responsible for decompressing from ADPCM to PCM and convening speech data from a

digital representation to analog. For both modes, the speech chip p rovides data realy and

ready for data signals in order that it be conrolled by a microprocessor.

The dual-pointer FIFO buffe¡ consists of a 6802 pP conroller and SRAMs. The

6802 ¡rP controls the speech chip and the communications b€t\üeen the speech processor

and the host computer. During the record mode, the 6802 pP reads parallel speech data zurd

writes these data to the SRAMS. ln between reads, the 6802 pP transmits speech data from

the SRAMs to the host computer via the serial communications channel. During the

playback mode, the 6802 ¡rP receives serially ransmitted data from the host computer and

writes these data to the SRAMs. In between receives, the 6802 ¡rP reads parallel speech

data from the SRAMs and writes these data to the speech chip. In this way, the FIFO

buffer behaves æ a data pipeline.

The FIFO buffer provides portability, isolation, and real-time disk capture and

playing of speech data. However, because of the modular design of this buffer, it can be

applied to other systems, not specifically for speech processing. This buffer essentially

consists of an 8-bit parallel pon and a serial port. As such, any parallel organized system

requiring asynchronous communications with a serial organized system may use this

buffer. The cunent limitations ffe that the serial organized system can transmit not greater

than 1 15.2 kbps, and the parallel system musr transmit less than one-half of 1 15.2 kbps, i.e.,

approximately, 5.5 kFIz.

Most of the speech processing is done on the host computer. The host computer

performs real-time disk capture, thus recording and playing time is Iimited only by the space

lt6

available on ha¡d disk. A serial port initialization routine is included. ADPCM formatted

data is converted to PCM format and vice, versa (noæ that this function is currently

unavailable due to reasons as discussed in Sertion 4,5). ln the time domain plot function,

the time domain plot of PCM formatæd data is displayed. ln this window, any porrion of

speech data located anywhere within a file may be selected for processing. This processing

includes, playback, copy, cut, pasæ, linear predictive exEapolæion, and averaging. Any size

file prefxed by 'PCM' may be processed since this software uses the hard disk as virtual

RAM.

The dual-pointer FIFO buffer is not the only buffer capable of performing the job

for a speech processing system. The next chapter provides a paper design of an alternative

buffer, a swinging buffer implemented in ha¡dware.

CsaprBn V
Ar,rpRNnrrvp Bunnpn Dnsrcn

The previous chapter discusses a microprocessor based design of a controller for a

speech data buffering system. The microprocessor or microcontroller approach is,

generally, preferred because softwæe provides flexibility. By using a microprocessor

insruodon set and an evaluation board to do the debugging, the designer acquires tolerance

for the logical, technical, or wiring errors that are bound to occur (by Murphy's Law).

Many of the problems encountered in the design of a softwa¡e based controller are solved

by modifications to the software; no ha¡dware changes are required.

However, the microprocessor based controller may not yield the most efficient

design in terms of optimizing the chip's capability and speed. For example, in the design of

the speech data buffer of interest, the full potential of the microprocessor is not realized.

The controller ¡equires a small subset of the instruction set, such as 'move data from the

PIA to Buffer A' and 'compare memory addresses'. Also, the microprocessor requires

time to execute instructions and to respond to intemrpts. Rather than responding to an

event as soon as it occurs, the microprocessor response is delayed (¡rsec delay). In this

way, the microprocessor response time is quantized. Consequently, accessing data at a

particular instant may not be possible with a microprocessor. Nevertheless, the knowledge

gained by the microprocessor based design approach, gives the designer insight into an

equivalent hardware based design of a controller.

This chapter presents an altemative solution to the design of a confroller for a

speech data buffering system. Rather than using a microprocessor, the controller is

designed using a digital circuit consisting of primitive logic gates (the AND, OR, and

118

II.MRTER) rrhose combinatorial logic is capable of conrolling the communication of

control signals and sp€ech data. The ha¡dware circuit design approach is a refinement of

the microprocessor based design, This paper design is intended to be implemented using

the Xlinx lægic Cell Array (LCA) technology.

5.1 System Design And Description

The apparatus of the speech processing system for the ha¡dware conroller design

approach is shown in Fig. 5.1. Notice that, unlike the previously presented system (as

shown in Fig. 3.1), the only exremal ha¡dware is the microphone. All other necessary

circuits are contained within the host computer, which is the Macintosh II. While this

design has its disadvantages (such as the isolation problem mentioned in Chapter III,

Section 3.3.3), there a¡e obvious advantages, such as, simplicity and compactness. For this

system all that is necessary for operation is connecting the microphone to the back of the

Macintosh and then starting the Macintosh speech processing system menu driven

softwa¡e.

Fig. 5.1 Speech processing system.

The previous figure shows an extemal view of the system. To get an idea of how

such a system may work, let us take a look at an internal view as shown in Fig. 5.2.

Intemally, the Macintosh II mainly consists of the 68030 microprocessor, four ROM chips,

up to 8 MB of SIMM RAM memory, a serial communications contoller for the modem

119

and the printer, an SCSI parallel port typically used for a hard disk, built in speaker and

amplifier, and as well as many other nic€ feaûres. As can be seen in the figure, the speech

data buffer board is added to an available expansion slot within the Macintosh. What this

connection imnediately implies is that the buffer board sha¡es the external data, address,

and conrol buses with the host CPU, the ó8030.

Fig. 5.2 System block diagram. The speech processor and several
conroller circuits are connected together on one PC board which is added to
one of the available expansion slots of the Macintosh.

With this connection in mind, we can se€ how the speech processing system works.

For example, to get the buffer to perform a certain function, such as record or playback, the

host computer fust writes the command to the buffer. The code of this command is placed

on the 68030 extemal data bus, and the address of the buffer's command register, that will

accept and process this command, is placed on the add¡ess bus. Proper address decoding

ensures that the buffer and only the buffer receives this command. The part played by

certain conEol signals on the control bus is to latch the command, which is on the external

data bus, into ttre buffer's intemal command register. Once the command register is loaded,

processing of the command begins.

During the record mode, the host processor, the 68030, recieves data from the buffer

board as follows. The host computer must f,ust address and read the buffer's internai st¿tus

register, which indicates whether data is ready. If data is ready, the host addresses the

120

buffer's internal data register, which contains fresh data. The data is placed on the external

data bus and eventually makes its way to the host's private RAM memory or to the hard

disk for non-volatile storage, to be processed at a later time. The host computer continues

this way until it is decided to terminate the record mode, in which case, the host merely

addresses the command register and writes the record stop code.

The procedure for playback is simila¡. The code for the playback mode is written to

the command register and this is followed by the commence playback command. The host

compuler then reads a status bit in the status register that indicaæs whether the speech chip

is ready to playback a byte of speech data. If so, the host writes a byte of speech data to the

data register. The host computer continues this way until it is decided to terminate the

playback mode, in which case, the host merely writes the playback stop code to the

command register.

E' Speech Data Buffer Board

To better understand how the buffer board performs the above functions, let us take

a closer and more detailed look at the block diagram of the speech data buffer as shown in

Fig. 5.3. The boa¡d consists of the speech processor and the data buffer conroller, which,

in turn, consists of the interface controller, the read and write timing controller, and the

swinging buffer conroller. The interface controller is responsible for intermediating

between the physical and logical aspects of the communication between the host computer

and the buffer board. The memory manager controller is also an intermediary device, which

arbirates between the different data rates of the speech processing chip and the host CPU.

The read,/write conroller is responsible for supplying the speech chip and the memory

manager controller with data access timing signals. The most inmediate circuit facing the

host CPU is the interface conrrolle¡.

121

Conrol

ToÆrom
Host

Computer

Fig, 5.3 Layout of the speech data buffer board.

5,2.1 Interface Controller

Therc a¡e two conceptual functions of the interface contoller. The memory circuits

placed at the physical boundary and the protocol prescribed at the logical boundary between

the host's external bus and the buffer's VO pon constitute what is called the interface

controller. Conversely, the command register, the status tegister, and the data register of the

interface controller act as the physical interface, separating the external bus of the Mac II

and the internal bus of the buffer. On the other hand, the logic of the codes used for

commands and status and the method by which these codes are nansmitted, received, and

decoded serve æ the logical interface.

The IEEE standard NuBus interface is rhe protocol adopted and used by the Mac tr.

tApplSTl is a good reference for designing ca¡ds for the Macintosh. The NuBus protocol

is a sophisticated extension of the familiar memory mapped concept of the 68000 family

microcomputers. What this means is that cards designed for the Macintosh should follow

the NuBus o¡ at least the memory mapped protocol.

The buffer device is a memory mapped system and is accessed broadly similar to

122

memory Eansfers, and the buffer is said to occupy part of the 68030's address space. In

particular, the board is assigned tlree unique addresses, one for data, one for command, and

the other for status information. Only eight bits of these locations are used by the buffer

because the speech processor is an eight bit machine, i.e., the 6258 speech processor has an

eight bit extemal multiplexed data/cornrnand,/status bus.

The buffer interface monitors the Macintosh's address lines and detects when the

buffer board is being addressed. When properly add¡essed, the controller latches

command, status, or data onto the 68030 external bus or into the appropriate intemal

registers. The controller also enables other buffer controllers according to the specific

command in the command register. The interface controller holds the buffer board in a

disabled state when not addressed.

In order to communicate properly, the codes of the commands issued by the host

and the status supplied by the buffer are defined. Table 5.1 shows the meaning of each

code.

Table 5.1. Command codes.

Command Register Inærpreøtion

c7 c6 c5 c4 c3 c2 C1 C0

x l0l 110 lx I 1 l0l I

xlxlxlxlxl0lll0
x I 0 I 0 t I tx I I t0 I 1

xlxlxlxlxl0l0l0

Record C.ommand : Initialize

Start Record

Playback Command: Initialize

Stârt Playback

30 is Commanü
Jøtus Trieeer

C1 =1RD0wr
C2= | Data

0 Command
14 C5 C6 = Commanc

word

123

5.2,L.1 Circuit Description

As shown in Fig. 5.4, the interface controller circuit consists of an address decoder,

an 8 bit command regisær, a.n 8 bit status regisær, and an 8 bit daø regisær.

68030
Extemal

Buses

cRcs I sRcs 8

Address Bus

Fig. 5.4 Interface Controller.

The add¡ess decoder monitors the 32 bit address bus and asserts either the Ðata

Register Chip Select (DRSC), the Command Register Chip Select (CRCS), or rhe Sratus

Register Chip Select (SRCS) if and only if their corresponding address is on the bus.

Afterwards, and if the corresponding register hæ been enabled, the interface conEoller uses

the 68030 issued read/write signal to latch the data, command, or status byte either onto the

extemal bus or into the respective register. Furthermore, upon a valid add¡ess, an enable

control signal is sent to other controllers and associated circuits of the buffer boa¡d.

Otherwise, when the buffer is not being addressed, all registers and the other circuits of the

buffer are disabled.

When a command is latched into the command register, the control bits of this

register are used as inputs by other circuis of the buffer in order to execute the command.

One of these circuis is the read/write timing controller.

5.2.2 Read/Write Timing Controller

The read/wriæ timing controller circuit consists of two major parts, the read,/write

timing signal generator circuit and the command decoder and status encoder. The read and

write signal circuit is responsible for generaring Chip Select (CS), ReaD (RD), and WRite

(WR) timing sþals as required by the speech processor and in part by the swinging buffer

of the memory ûumager controller. The command decode¡ is used to decode commands

issued by the host computer and to present the commands to the speech processor. The

status encoder is used to encode the status information read f¡om the speech processor and

to present the status to the host computer. The read/write signal generator is discussed fi¡st.

This is followed by a description of the command decoder and status encoder.

Because the signals of the read/write ci¡cuit are used fo¡ data access, their timing is

critical, and a thorough understanding of their purpose and their relative timing is imporrant.

Furthermore, the design of the circuit must conform to the prespecified timing diagrams.

Accordingly, the description of the circuit design is preceeded by a description of the timing

diagram, which is supplied by the manufacturer, Oki, ofthe speech processing chip. The

write timing is similar to the read timing, and, therefore, a detailed write timing description is

not given, although some of the differences are discussed.

5,2.2.L TimingDescription

Fig. 5.5 shows typical waveforms and the timing of signals required for reading of

speech data and status information from the speech chip during the record mode.

In order to communicate with peripheral devices, ihe spe€ch chip offers some ouput

control signals. The Voltage sampling ClocK (VCK), the sampling frequency, and the

125

Miffoprocessor ClocK (MCK), the data ready flag, are output confol signals intended so

that a peripheral device may synchronize itself with certain events taking place within the

speech processor. The falling edge of VCK indicates that the speech processor is

beginning to convert an analog speech sample to digital form. Subsequent samples are

converted every 125 psec (i.e., 8 kIIz). The falling edge of MCK which occurs every 250

psec (i.e., 4 kHz), indicaæs that a pair of ADPCM nibbles are 'ready' for reading. Nore

that MCK does not occur at a flrxed time in respect with VCK. It is for this reason that the

read/wriæ timing conroller derives its timing with respect to MCK, rather than VCK.

Fig. 5.5 Speech processor read and status output timing diagram.

In order to complete the communication link, the speech chip expects some input

control signals. The CS, RD, and D/C are input signals required by the speech chip for the

record mode. CS is used to enable the chip, D/C is used to select the speech data mode or

the command/status mode, and RD is used to read speech data or status information from

the speech chip.

t26

The timing diagram specifies a valid data access window. The time IRMS + tRMH

= 70 þec is the time during which inæmal data is valid. However, before valid data can be

accessed at the external pins of the chip, the chip requires a setup time, IRMS = 15 psec.

The chip indicates when this time, IRMS, has elapæd by pulling MCK low. Following the

negative edge of MCK, the chip allots a tRMH = 55 psec window (hold time) for an

extemal device to present the CS, D/C, and RD signals and thereby access data or starus.

Note that the presentation of RD m¡st b€ within rhe chip enable window created by CS, i.e.,

data is actually latched at the positive edge of RD.

Following the data ready signal given by MCK, the D/C, CS, and RD signals are

presented within the IRMH window. Upon the negative edge of MCK, the speech chip is

selected and the data mode is chosen through the assertion of CS and D/C, respectively.

Note that CS and D/C may occur at the same time. At least tCR = 50 nsec thereafter, the

RD signal is asserted causing internal circuits to begin latching speech data onto the

external pins. However, befo¡e an external device can read valid data, the chip requires

tDRE = 200 nsec in order to stabilize the data onto the pins of the chip.

After asserting the read data signals, the extemal device must withd¡aw them. After

the assertion of the RD signal, a delay of at least tRR = 250 nsec is recommended before

RD is disassened. The positive edge of RD at this moment is actually when data is latched

and read by the external device. After at least tCR = 50 nsec from the raised edge of RD,

the CS signal is disasæned and D/C may also be withd¡awn. The extemal device then waits

for the next negative edge of MCK, whereupon the same sequence of evenß continues. Fig.

5.6 shows a flow diagram of the sequence of events desc¡ibed above.

127

Delay of
(at leasÐ

tRR = 250 nsec

Delay of
(at leåsÐ

tCR = 50 næc

Fig. 5.6 Read signal timing and presentation. Sequence of events required
for the correct timing and generation of CS, D/C, and RD signals.

The timing for writing commands or data to the speech chip is similar, one

difference is that the data ready signal is signified by the positive edge of MCK, rather than

the negative edge.

5.2.2.2 CircuitDesoiption

A circuit implementation of the timing specifîcarions described above is shown in

Fig. 5.7. As shown in this figure, the ci¡cuit consists of a Flip Flop (FF), a 3-bit binary

Fig. 5.7 Schematic diagram of the read/write timing controller circuil

-128-

counter, and some primitive logic gates. The inputs to the circuit include the MCK data

ready signal and the C{), Cl, and C2 command bits, while the ourputs are CS, D/C, RD, and

WR signals.

The circuit can be in one of five modes: active and generating signals for command

write; active and generating signals for status read active and generating signals for record

mode; active and generating signals for playback mode; and inactive. The circuir is

activaæd by either active edge of MCK or C0 and is inactive by their absence. Typically, O
activates the circuit first in o¡der to write a record or playback command to the speech chip.

When activated by C0 for a command write, the appropriate timing signals, i.e., CS, D/C,

and WR, for one write to the speech processor are generated. MCK is used to activate the

circuit during the record or playback modes. For every active edge of MCK, the appropriate

timing signals are generated for one read or for one write of speech data-

The purpose of the FF is relay active edges of MCK or C0 to other pans of the

circuit The active edge is selecæd by rhe command bit Cl, which is connecæd to the Active

Edge Select (AES) pin of the FF. The FF is positive edge triggered for writing commands

or data to the speech chip and negative edge triggered for reading status or data from the

speech chip. The FF also holds the counter in its ¡eset state when the ci¡cuit is inactive.

The purpose of the counter is to provide the CS duty cycle and the RD or WR duty

cycle within the CS window as specified by the timing diagram described above. When the

circuit is idle, the counter is held at a reset state, since the reset input of the counter is

connected to the invened Q output of the FF (QB is high on reset). When the FF riggers,

Q goes high (the FF is self toggling) and, rhus, the counter begins counting. The raising of

Q provides the first edge of CS, since Q is tied the CS input of the speech proccessor. The

Oki clock is used to provide the ¡ate at which the counter counts and to synchronize the

129

counter wif¡ the speech pfocessor.

A combination of the outputs of the counter provide the RD or WR signal. As

shown in Fig. 5.8, the logical combination, (NOTQO AND NOTQI AND Q2), is chosen so

that the du¡ation of the asserted RD or WR signal exists within the assenion of CS. When

thg counter reaches its maximum count (i.e., seven), the FF is ¡eset and, consequently, Q

goes low. The lowering of Q provides the falling edge of CS, and thus the CS window is

manifested. As a result of QB = l, the counter is once again held at a reset state. The

counter then waits for the next stimulation of the FF.

Ql l-l l-]
Q2 l-]

RD = NOTQI AND NOrQI AND Q2

Fig.5.8 Timing of CS and RD or WR signals. CS is asserted throughour
the duration of the count (0, l, 2, 3, 4, 5, 6, 7). The RD (or WR) signal is
actually the fourth count of the counter. Thus, RD (or WR) exists in its
asserted state r,vithin the CS window.

Section 5.1 mentions that in order to start recording or playback, the host computer

must first write a command to the buffer boa¡d. Section 5.2.1 went on further to explain

that the interface controller actually stores the command in the command register. The

purpose of storing the command is so that other circuis of the buffer can use the comma¡rd

to initialize properly, and hence, to begin rhe process indicated by the command.

Furthermore, section 5.2.2.2 discusses how the control bits C0, Cl, and C2, of the

command register, a¡e used for initialization and process control.

a0

Discussed next is the purpose of the other control bits of the command register. In

particular, it is shown how the control bits C4, C5, and C6 are used to decode the command,

and" hence, initialize the process indicated.

5,2,2.3 Command Decoder

The purpose of the command decoder is to interpret the command sent by the host

computer and to inform the speech processor of what process is to be taken. The ci¡cuit

responsible for interpreting and relaying comnxmds is shown in Fig. 5.9. The ci¡cuit

simply consists of a 3 by 8 decoder and a bank of th¡ee state buffers. Bits C4, C5, and C6

represent the binary code of the command. The decoder decodes the binary code to an 8-bit

representation recognizable by the speech chip. The reason for using three state buffers is

that the command bus must be in the high impedance state when the speech processsor is in

the record or playback mode, otherwise there will be bus contention. Note that C2 is used

fo¡ two related purposes. If C2 is high, the data mode of the speech processor is chosen

and the buffers are placed in high impedance. If C2 is low, the command mode is selected

and buffers are enabled.

]inarv In¡u Decoded Command ipeech Processor Function

îÃ e< î¿. (.mdl

UUU UUUU('('0T' Not Defined
0 000 0000 tnn

0 000 000r0
01 000 00100 Record

F¡om

Fig. 5.9 Command decoder ci¡cuit. This ci¡cuit decodes the binary code of
the command to a format ¡ecognizable by the speech processor. The high
impedance staæ ofthe buffers (i.e., if C2 = 1) ensu¡es no bus contention. -

Considø an exarnple of how to start recording speech. The reset code and the initial

smæ of the command regisær of the interface conEoller is 00000000. Before recording can

start, the host computer must rnrite two coÍìrnands to the command register. Referring to

Table 5.1, the flust code is for record initializarion, X010X101. Bits C4, C5, and C6 a¡e

input to the decoder as shown above, The decoder's interpretation is 00000010. Since C2

is high, the three state buffers are enabled and the record command 00000010 is placed on

the speech processor's data bus. Referring to Fig. 5.7, because Cú went from low to high,

the FF is triggered and subsequent CS and WR signals are generared (note WR is

generated instead of RD because Cl is low). The presentation of CS and WR causes the

data appearing on the data bus, 00000010, to be latched into intemal registers ofthe speech

chip. The speech chip now begins recording. Every 250 psec fresh speech data will be

available on the data bus. However, in order to prevent bus contention, the previous

command must be taken off the bus. This is achieved indirectly through requiring that the

host issue another command. The next code that the host computer writes is XXXXX010,

which, from the host's point of view, means start. From the buffer's point of view, this

code is required in order to take the command code off the speech data bus and reinitialize

the control signals for the record mode. Because C2 is low, the three state buffers are

placed in high impedance, and, therefore, the command is taken off the bus. Cl is set high

because the read/write controller is required to periodically generate the RD pulse for the

record mode. C0 is reset to low in o¡der to allow MCK to take over the job of riggering the

FF. Also C0 is reset low in anticipation for the next command issued by the host computer,

such as, stop.

Once the reco¡d command is decoded and written to the speech processor, recording

of speech starts automatically. Thereafter, as indicated by MCK, new data is ready every

250 psec, and it is expected that the host computer reads each byie of daia on time so that

no data is lost. This imposes an inconvenient and synchronous constraint on the host

132

computor. While perfectly able to communicate data transfers with the speæch processor at

its relatively slow rate of 4 kHz (i.e., every 250 psec), the host computer prefers a much

higher rate. The host, in fact, requìres a higher rate of transmission because, in order to

record and playback speech in real time, a certain amount of time is required to save speech

data to non volatile disk, without stopping the recording or playing process. Because rhe

host requires more than 250 ¡rsec to save a block of data to disk, the host requires to

cornmunicate data transfers in bursts rather than one byte at a time. This necessitates some

sort of buffering technique to be employed between dåta Eansfers of the speech processor

and the host computer.

5.2.3 Memory Manager

The purpose of the memory manager is to alleviate the synchronous nature of data

transfers between the speech processor and the host computer. To fulf,rll its purpose, the

memory manager employs the concept of the swinging buffer. The swinging buffer is a

two port device which allows relatively slow data Eansfers at one port, while allowing much

faster Íansfers at its other port. The swinging buffer technique of memory management is

particularly suited for the speech processing system of interest since the speech processor

communicates data at 4000 bytes per second (Hz), or 32 000 bits per second (32 kbps),

while the host computer is capable of megabytes per second, which is the speed of the host

CPU, the 68030.

Fig. 5.10 Swinging buffer block diagram (after KinsSSl).

As shown in Fig. 5.10, the memory manager consists of an input and output swing

controller ard two buffers, which, in this application, are implemented as First-ln-First-Out

(FIFOs) memories.

The swing controller, as its name implies, conrols the path switching mechanism

and determines which buffer is connected to which device at any given time. In order to

preveni instances when two devices try to access the same buffer at the same time, only one

buffer is permined to be connected to a device at a particular moment. For example, while

t34

buffer A is connected to the speech processor, buffer B is connected to the host computer,

and vice versa. Note that the host computer is effectively isolated from the speech

proæssor' and this is what enables the host computer to asynchronously read speech data at

a much higher rate than that Eansmiued by the speech processor. When the host computer

"us¡¡'ally
empties buffer B (and it will empty buffer B at a fraction of the time required by

the speech processor to fill buffer A), the host stops its receiving routine and starts saving

speech data to disk. when the host compuær f,rnishes saving data, it returns to its receive

routine and waits for the next buffer full signal. In the mean time, the speech processor

continues fïlling buffer A. lvhen buffer A becomes full, a buffer full signal occurs and the

speech processor is connected to buffer B (swing to buffer B) and the host computer to

buffer A (swing to buffer A).

The swing controller not only controls the path switching mechanism but also

derives data access signals, i,e., the chip select signals that are actually responsible for

reading from and wÌiting to the buffers. The buffer chip select signals are derived from RD

and WR signals and CS signals associated with speech processor and host computer reads

and writes, respectively. For example, during playback, CS signals generated by host

computer writes to the spe€{h data buffer a¡e directed to one buffer, say buffer A, while WR

signals generated by the read/write conFoller for buffer reads and speech processor writes

are direcæd to the other buffer, buffer B.

5.2,3.1 Swinging Buffer Timing

In order to give a clearer picture of how the swing conEoller determines which

buffer should be connected to which device at any given time and to which buffer the RD,

WR, and CS signals should be directed, a timing diagram is given. Fig. 5.11 shows rhe

timing diagram of the swing controller.

135

Buffer
Selecúor
Signals

Fig. 5.1 I Timing diagram of the swing controller.

In orde¡ to determine the device-buffer connection, the swing controller uses buffer

full signals. A change in connection, i.e., swing, occurs each time one of the buffers

becomes full. 'BufferAFull' and 'BufferBFull' are output signals provided by the FIFO

memories, and they indicate when the respective buffer is full of data. Positive edges of

these signals cause a swing from one buffer to the odrer. Causality is indicated in the figure

by arrows. 'BufferA' and 'BufferB' are buffer selector signals, and they are used to

indicate to which device the respective buffer is conne-cred. A high sigaal on either Buffer A

or Buffer B indicates a connection to the speech processor, whereas, a low signal on either

Buffer A or Buffer B indicates a connection to the host computer.

As mentioned previously, the swing conuoller also derives the buffer chip select

signals from RD and WR signals and CS signals associated with speech processor and

host computer reads and writes, respectively. The swing controller must always separate the

RD and WR signals from the CS signals. This is required to ensure that the two devices do

not access the same buffer at the same time.

Speech
Processo¡

Access
Signals

Host
Computer

Access
Signals

l-"un tot-
fnurern

[-o-t_I spcs¡,t_
lsrcsn
l-oncst-I pncset_
foncsn

136 -

Figure 5.11 shows how the swing cont¡oller derives buffer select signals and

achieves separation between speech processor-buffer access and host computer-buffer

access. As shown in the figure, the SPCSA and SPCSB signals are used for speech

processor access of úe buffers. The swing conüoller derives SPCSA and SPCSB from the

logical AND of a buffer seiector signal wirh the Read and Write (R'W) signal. Recall from

Fig. 5.7 that RW is the logical OR of RD and WR. Thus, RW is active whenever rhe

speech chip is reading from or writing to the buffer. Noæ that, whenever one of the buffer

selector signals is high, the speech processor is accessing data tkough the assertion of

SPCSA or SPCSB.

Similarly, the DRCSA and DRCSB signals are used for hosr computer access of the

buffers. The swing controller derives the DRCSA and DRCSB signals from the logical

AND of a logically inverted buffer selector signal with a data register chip select (DRCS)

signa-I. The DRCS signal is generated by the address decoder of the buffer board. Note

that, whenever one of the buffer selector signals is low, the host computer is accessing data

through the assertion of DRCSA or DRCSB. In this way, the speech processor and the

host computer are never accessing the same buffer at the same time.

Swinging Buffer Circuit

A circuit that implements the timing diagram described above is shown in Fig. 5.12.

As shown in the figure, the swinging buffer consists of two FIFO memories, a self toggling

füp flop (FF), and primitive logic gates.

The FIFO used in this design is the WD1510, which is organized as a 9-bit by l2B

or 132 rvord stack. The chip has two bidirectional data ports and may be read from or

written into either port. The direction input pin is used to specify the data flow direction.

137

When it is low, Dir specifies that Port L may be read from and Port R may be written into.

Fig. 5,12 Swinging buffer schematic.

When it is high, Dir specifies that Port L may be writæn into and Port R may be read from.

Reading or writing is performed by setting the appropriate chip select (CSL or CSR) line to

logic 0. After the specified hold time (1 50 nsec) has expired, data may be entered or read ar

the rising edge of CSL or CSR. Both ports retum to high impedance state when CS is

retumed to logic 1. Reading or wdting to the two ports can be done asynchronously. The

full output pin is used to indicate when all 128 or 132 words of memory are loaded with

data. The empty output pin is used to indicate when there is no data in the buffer

lWeDi83l.

The purpose of the flip flop is to direct the SPRW and DRCS signals to rhe chip

select input of the appropriate buffer. The FF is triggered by either assertion of

BufferAFull or BufferBFull. Note rhat BufferAFull and BufferBFull cannot be asserted ar

the same time, since that while the speech chip is frlling one buffer, the other buffer is either

being read by the host computer or is empty, since the host is much faster than the speech

chip.

The operation of the swinging buffer during the record mode is as follows. Because

138

Cl is logic 1, Port L of Buffer A is selected for write mode, while Port R of Buffer B is

selected for read mode. The CSL input signal is active since the SPRW signal is fîltered

through the logical AND of SPRW with Q. Note that the DRSC signal tending towards

Buffer A is blocked since it is paired widr QB. On the other hand, the DRSC signal tending

towards Buffer B is enabled since it is paired with Q. Therefore, when Q is high, the speech

processor may write data to Buffer A, and, if Buffer B contains data (i.e., if Empty is logic

0), then the host computer may read Buffer B. ìVhen Buffer A becomes full, the FF

triggen, Q goes low and QB goes high, and a swing occurs. That is, the speech processor

may now continue writing data to Buffer B, while the host computer may begin reading

Buffer A, When the speech processor stops writing data, the host continues reading the

buffers, flushing the buffers, until both buffer empty signals are logic 1.

The operation during the playback mode is similar, one difference is the direction

logic is reversed by Cl, which is logic 0 during playback.

Buffer Schematic

The enti¡e schematic diagram ofthe speech data buffer board is shown in Fig. 5.13.

Summary

This chapter presents an alternative paper design of a buffe¡ for intermediating the

communication of speech data and control signals between a speech processor and host

computer. Rather than using a miøoprocessor, the speech processor is controlled through a

digital circuit consisting of primitive logic gates, address decoder, and exrernal hardwa¡e

FIFO memory. This design is intended to be implemented using XILINX l,ogic Cell Anay

(LCA) technology.

5.3

139

CneprnnVI
Sppecg Spr.,rcnqc ExppRrupNrs

Speech splicing is a technique of synthesizing new words or utterances by a process

of concatenating the wavefonns of component parts. The components form a basis, and the

span of their concatenation forms a set of synthesized words. These component parts vary

in size, ranging from phonemes to enti¡e syllables (sequences of phonemes). Much like the

meaning of words can be changed by changing their phonetic spelling, the sound of new

words may be produced by adding, deleting, or substituring component parrs. For example,

the word'beet'can be changed to'feet'by substituting /F/ for lBl. Similarly, we can

produce the sound of the new word 'feet' by putting together the sounds /F/ wirh a

combination of /IY/ and Æ/ (see Table 2.1 fol phoneric Eanscriptions).

Speech synthesis by waveform concatenation can be utilized in automated vocal

shaping systems. Speech splicing techniques can be used to expand the existing library of

target sounds. This chapter is designed to show how to use the tools of speech splicing for

library expansion in automated vocal shaping systems. Also, preliminary subjective tests

are conducted in o¡der to determine the validity of the synthesis methods of interest

To this end three experiments are performed. The first experiment deals with

extracting parts of words of an existing library consisting of naturally spoken words. These

extracted parts are processed so that they, alone, may be used for vocal shaping. The

second experiment deals \rith synthesizing new words using an existing library of natura y

spoken words as the basis, i.e., the synthesis units that make up the new words a¡e extracted

from naturally spcken words. These extracted units include individual phonemes o¡ groups

of adjacent phonemes, such as those comprising entire syllables of a word. The thi¡d

t41,

experiment deals with synthesizing new words using natural phonemes uttered in isolation

as the basis, i.e., the synthesis units that make up the new wo¡ds are naturally spoken

phonemes. These experiments use the wavefo¡m synthesis tools, as described in Chapter tr,

Section 2.2.4, namely, copy, cut and paste; amplitude interpolation; and linear predictive

extrapolation (LPE).

6.1 Apparatus

The equipment used in these experiments consists mainly of computer and sound

production equipment. As such, the apparatus can be classified as either hardware o¡

softwa¡e.

6.1.1 HardwareEquipment

Figure 6.1 shows a block diagram of the equipment used in the experiments. Note

that there are two workstations. The workstation on the IBM computer is the one designed

in this thesis, as described in Chapter [V. Not all the capabilities of this system are utilized

Macintosh
Speech Splicing
Work Station

. Speech Record and Playback. Speech Waveform Processing
. Time Domain Plot

' Cl¡t, Copy, and Paste
. Amplitude Interpolation

IBM
Speech Splicing
Work Station

. Speech Waveform Processing
. Time Domain Plot
. Linear Predictive

Exrapolation

File Transfer

I
f-

@
+t,

w-
Fig. 6.1 Block diagram of experimental equipment setup.

t42

in these experiments, only the speech waveform processing features are used. This is

because the other required functions, such as speech recording and playing and further

waveform processing, are easier to perform on the Macintosh computer workstation and,

also, recording and playing back PCM data is not possible with the system designed on the

IBM, for reasons explained in Chapter IV, Section 4.5. The Macintosh workstation

consists of a Macintosh trsi computer. The IIsi has built in sound VO, including an electret

microphone, speaker, and a minijack oulpul Rather than the built in speaker, a set of AKG

K240 headphones is used for speech playback, The use of headphones decreases the

ambient noise (although the ambient noise was low) and facilitates a better enviÍonment for

subjective testing.

6.L,2 Software Tools

The software used on the IIsi workstation consists of the Macintosh Sound

Manager, Audio stack of HyperCard 2.0, SoundEditru 2.0, Apple File Exchange, and

ResEdit 2.1. The software responsible for executing the linea¡ predictive extrapolarion

method is located on the IBM workstation, and the source code for this softwa¡e can be

found in Appendix 42.1 1.

The IIsi is used to record speech and store its waveform on hard disk. The Sound

Manager or the Audio Stack of HyperCard 2.0 are used for recording speech. A limited

recording time (sufficient for recording medium length sentences) is allowed, and speech

data can be saved as a resource file in either the System or in one of HyperCard's stacks,

depending on the software used. Speech is recorded at a sampling frequency oî 22 kJIz

and coded in PCM format (no compression). Once speech data is saved on hard disk, then

6.2

t43

the data file may be opened by the apptication SoundEdit. A wide variety of speech

processing tools and features are made available by SoundEdit, such as the copy, cut, and

paste and amplitude inærpolation synthesis methods and a visual association between the

waveform and sound of speech, SoundEdit also allows saving f es in various formats,

including resource, SoundEdit, and, particula¡ly, AIFF, the purpose of which is discussed in

Section 6.2.1.

6.2,1 Macintosh tolfrom IBM Speech Daúa Fite Transfer

Apple File Exchange and ResEdit are used to facilitate file transfer berween

Macintosh files to and from IBM files. An IBM formatted floppy disk (3.5", 1.44 MB¡e)

is used for the transfer. Note that the disk is required to be of 1.44 MByte capacity because

the Macintosh IIsi uses a 1.214 MByte SuperDrive. In order to prepare fo¡ disk ransfer, the

Macintosh file is first saved in Audio Interchange File Format 1.33 (AIf) by SoundEdit.

The use of AIFF is important because the LPE software of the IBM workstation changes

the size of the speech data file, and this information must be included in the header

information of the AIFF formatted file in o¡der that SoundEdit be able to read the resulting

modified file. Having saved the file in AIFF format, the file is then transferred to an IBM

fo¡matted disk u sng the Default Translation of Ãpple File Exchange.

Because the LPE software changes the size of the file, associated software, also

written on the IBM workstation, is used to update the size information in the file header,

which is shown in Fig. 6.2. The header information is updated in three places,

ckSizeFORM, numSampleFrames, and ckSizeSSND, and these locations are changed

according to equations as shown at the bottom of the figure. Prediction Length is the

amount of b¡es added to the file by the LPE program.

After running the LPE program and updating the header information to ¡eflect the

-144-

change in size of the file, the file is transferred back to the Macintosh IIsi workstation.

Once again, Apple File Exchange is used for the transfer, However, after the transfer is

Address ldentlfler Memory Chunk Typ€

.r _ q|q

n + 4 ckSizeFORM

| 'r't, 'o'

m

| 'n' | 'r¡'

lælae Form Chunk

'A' I tF-l-"
ddD 'o' 'M',l 'M'

cksiz6COMM æ m oTt Common Chunk

nun'ìChannels m Ûl
-------r-------l
6140 I

10 Bvt6 Floalino Point Samol¡no Rate

n+22 numsampleFrames m m

SampleSize m ß
Æ 0Ð ADI P ælmlmlmlmlm

d{D I'r'l'ru'l's'lr I

.e.k9iretN9_r-. I m | æ | m I r I

:

lnstrument Chunk

.N' I D'

6148
mlm
3rd I 4üì

Sound Chunk

|--T_-l-o64orh
Frer les

SSND

ckSizeFORM=
i=COMM

numsamPleFramet = ckSizeSSND - 8
' lulmChannels

ckSizeSSND = ckSizeS SND + Predicrion længth

Fig. 6.2 AIFF header fo¡mat.

complete, ResEdit is used in order to change the type and creator information of the hle.

The default translation of Apple File Exchange creates a file that is of type binary and

t45

created by MDOS. In order that SoundEdit be able to reop€n the LPE modif,red file, the

type must be changed to AIFF and the creator must be changed to SFXI. ResEdit can be

used to do this. The ResEdit window in which this is done is shown in Fig. 6.3.

File

TgPe

flSgstem ! lnuisible
[0n Desk I lnited
n Shared ! No lnits
! flluags suritch launch

! Besource map is read onlg ! Fite protect

fl Printer driuer ¡s Mult¡F¡nder compatibte E F¡le BusU

Created

Mod¡f¡ed

Size

3/4/91 l:55:51 PM

3/5/91 6:15:14 PM

! File Locked

286 bgtes in resource fork
20026 bgtes ¡n data fork

Fig. 6.3 ResEdit window for changing frle flag information. In o¡der that
SoundEdit be able to open the modified file, thelype BINA must be changed
to AIFF and rhe creator mdos must be changed to SFX!.

6,2,2 Verific¿tion of Linear Predictive Extrapolation (LPE) Software

A method for verifying the LPE software is as shown in Fig. 6.4. In addition to

predicting a number of futu¡e samples, the algorithm also 'predicts' the sample frame from

which the predictions a¡e made. The prediction of the sample frame is compared to the real

sample frame in two respects, visually and in the mean square enor (MSE) sense. The

visual comparison provides a rough subjective confirmation, and the MSE provides an

objective verification that the sof¡¡are is working.

146

Fig. 6.4 LPE software verification. Mean square error (MSE) of .87o is an
objective verification úat the LPE software is working.

Expansion by Extraction

The purpose of the first experiment is to show how to use speech splicing

techniques in order to expand an existing library of words spoken by a therapist. The

objective is to exFact phonemes or syllables in order that they, themselves, may be used for

vocal shaping. The idea is that if a student is to leam to vocalize an entire word, it would be

147 -

easier to proceed in steps by individually shaping the component parts of the word. Once

thg component parts are leamed, then they may be put together more easily in order to form

the wo¡d.

For this experiment, it is assumed that a librrary of words exists, and that this library

contains the words, feet, fit, Ben, and well (randomly chosen). From these words the

following phonemes and syllables a¡e extracted: ß/, ßl,lWl,lTl,.fee', ,eet,, ,it,, ,en', and

'ell'. From these component parts all of the existing words may be formed, in addition to

other words, such as, bit, bell, beet, fell, and wheat

Figure 6.5 shows an example of the procedure involved in extracting the phonemes

ß1, tIYl, and Æ/ and the syllable 'eet' from the word 'feet'. SoundEdit is used to open and

display the time domain plot of dre previously recorded file containing the word ,feet'. The

sound of each individual phoneme and syllable is associated with its waveform by selecting

a portion of the waveform, i.e., dragging over the waveform using the mouse. The selection

is then played. This associafion can be done by trial and error, but more educated guesses

can be made by realizing the properties of the component pa¡ts. The phoneme lFl is called

an unvoiced fricative mainly because it sounds like noise, as it is produced by forcing air

through the spacings of one's teeth. This is in conrast to the vowel phoneme /IY/, which is

a periodic sound, as it is produced by vibrating one's vocal cords. Indeed, as shown in Fig.

6.5, this contast is also exhibited in the waveform. Furthermore, because the pho neme [1/

requires that all sound production stop before it can be produced, we expeÆt that the

waveform preceding lTl to be relatively flat and have constant amplitude near zero volts.

Note in the figure that the periodic sound of [Y/ tapers off to zero volts and stays there for

some time before the waveform for Æ/ is produced.

t48

í:l

li;:;:ii¡

A.rr ¡ À¡,^n iriiiïiii;iillil,¡
"'iÏ¡*¡l¡iiiii,'" .vr.Y,,.,,ifi !ff 5g',iW;'iiiY

Unvoiced Æ/ | Voiced /fYl I Silence I Unvoiced Æ/
¡t t(

@re L.l.''j f'-ll I l-;ßr'E\l-'T¡T-"ßl
l\ | lxxl-l rrrf-o.e4]<9l-TõT-m]

Fig._ 6.5, _Waveform of 'feet'. This figure is a snapshot of a window
produced by SoundEdit.

Once the waveforms of the component parts have been identifîed, then they may be

played back for vocal shaping purposes. However, more processing may be needed in

order to smooth the boundary conditions so that there is no coarse beginning or ending

sound. This processing may merely involve selecting an appropriate segment. As shown in

Fig. 6.5, the selection of Æ/ includes silence on both sides of the actual waveform. The

wavefo¡m of this selection is referred to as the diphone of Æ/, since the bounda¡y conditions

on either side of Æl ue characterized by steady søte regions, i.e., relative silence. Extracting

diphones in this way can be done with all unvoiced stops (Æ/, lPl, and /K/) urtered in rhe

context of words.

More involved processing may be needed for other types of boundary conditions.

For example, exracting /IY/ from Fig. 6.5 may require processing at the beginning of the

sound in order to eliminate the abrupt beginning. This can be done in at le¿st two ways.

The first method involves using amplitude interpolation. More specifically,

soundEdit offers an amplitude envelope function which can be used to scale down the

envelope at the beginning of the ÂYl sound, as shown in Fig. 6.6.

Fig. 6.6 Amplitude Interpolation of Æyl.

The second method involves using LpE to postdict a number of samples. As

mentioned above, LPE synthesis software is located on the IBM workstation, and, therefore,

the SoundEdit file of 'feer' must be saved in AIFF format, transferred to the IBM

workstation using Apple File Exchange, operated on by LpE software on the IBM

workstation, updated to ¡eflect its file size changes, t¡ansferred back to the Macintosh IIsi

workstation, updated to refleæt is new fi.le flag information, and, finally, opened, once again,

by SoundEdit. The time required for the entire process depends largely on the numbe¡ of

samples to be predicted or postdicted by the LPE sofrware, e.g., for a 500 point postdiction,

this requires about 30 min. Fig. 6.7 shows the result of postdicting 500 samples of the

phoneme ÂYl of Fig. 6.6.

@re[rïrEEE.-Ì.ffi3ffi

150

¡t

@re[rTil-it E@'1.æ3ffi
BèföièI Eìi

Amplitude interpolation and linear predictive extrapolation, as used in the above two

examples, maintain continuity of the waveform. This is an objective validation of the

medrods. Furthermore, they improve the overall sound of the extracted components, while

not altering intelligibility. That the above synthesis methods are subjectively valid is

examined in úe following two experiments.

, *r,,it:i:l

Fig. 6.7 Postdiction of phoneme [Y/,

ÆeiLPE

Expansion by Sub.word Splicing

The purpose of the second experiment was to conduct subjective tests on new words

formed by splicing together phonemes and/or syllables extracted from a library of existing

words. The tests consisted of quality assessment and preference. Ten people from the

University of Manitoba, including three electrical technicians and seven students were

chosen to participate. Two of the student participants were cunently doing speech related

research, four were from the faculty ofElecrical and Computer Engineering, and one was

from the faculty of Business and Adminisuation. Two of the participants were women.

-151 -

The existing library consisted of the wo¡ds, 'beet', 'be[', 'fit', and 'when', which

were vocalized and recorded by the author. The synthesis units were phonemes and/or

sequences ofphonemes extracted from these wo¡ds, and they were put together using the

above mentioned synthesis techniques, namely, copy, cut, and paste; amplitude

interpolation; and linear predictive exrapolation. The new words formed along with their

synthesis units were as follows:

ßl +'eet'='feet',

lB/ +'en' ='Ben',

Äill + 'ell' = 'well', and

The participants were seated nea¡by the Macintosh IIsi workstation, and they were

supplied with headphones and response sheets, as shown in Fig. Cl, Appendix C. There

r,vere two tests, quality assessment and preference.

In the quality assessment test, the participants listened to two sets ofwords, one set

was the spliced r ords, as mentioned above, and the other set consisted of the same words,

the only difference was that these words were naturally formed and also recorded by the

author. The purpose of this second set was to obtain a normalized scale, so that the

responses made by the panicipants would be judged relative to what they thought r,vas

natural. In both of these tests, the panicipants were asked to indicate the quality by placing

a mark in the adjoining rectangle, as shown in Fig. C1a and Fig. Clb.

In the preference test, three versions of four words, 'feet', 'fell', 'wheat', a¡d 'well'

we¡e used. The fust version of each word was spliced together using only the copy, cut, and

paste method of synthesis. The second version of each word was a boundary modifîcation

of the first version using amplitude interpolation.

-152-

Æ/+'ell'='fell',

[Wl +'eet'='wheat',

/B/+'it'='bit'.

The thi¡d version of each wo¡d was a boundary modifications of the first version

using the LPE binding segnent method, as described in Chapter tr, Section 2.2.4.3. For the

words 'feet' and 'fell', the binding segment was produced in two steps as follows: 500

points (23 ms) were postdicted from the beginning sounds of the exfacted components

'eet' and 'ell'. The postdicted frame was then averaged point by point with 500 samples of

the ending of the phoneme Æ/. The resulting segments were inserted between the phoneme

Æ/ and the components 'eet' and 'ell', thus forming the words 'feet' and 'fell'.

For the words 'wheat' and 'well', the binding segment was produced in three steps

as follows: 500 points (23 ms) were predicted from the ending sound of the semivowel

phoneme /lV/. Also, 500 points (23 ms) were postdicted from the beginning sounds of the

extracted components 'eet' and 'ell'. The postdicted frame was then averaged point by

point with the predicted frame. The resulting segments were inserted between the phoneme

Aill and the components 'eet' and 'ell', thus forming ttre words 'wheat' and 'well'.

For example, Fig. 6.8a shows the waveforms after prediction and postdiction of Aill

and 'eet', respectively. Figure 6.8b shows the resulting waveform after averaging the

predicted and postdicted frames. Note that after averaging, the waveform of the binding

segment was amplified in order to bring the amplitude to a level comparable to the

waveforms on either side of it.

For the above three versions of ttre four words, 'feet', 'fell', 'wheat', and 'well', the

participants were asked to indicate their preference on response sheets, as shown in Fig.

Clc. The purpose of the preference test was to determine whether amplitude interpolation

or LPE improved the quality of the splice.

153

Fig. 6.8a Prediction of phoneme /1il/ (left) and postdiction of 'eet' (right).

@cÐ@@@@@
Fig. 6.8b Averaging of prediction ofÆV/ and postdiction of 'eet'.

Expansion by Phoneme Splicing

The purpose of the third experiment was to conduct subjective tests on new wo¡ds

formed by splicing together isolated phonemes from an existing library. The tests consisted

of quality assessment, similarity, and preference. The same ten people participated.

- 1,54 -

Time (seconds)

The existing library consisæd of ttre phonemes, /BÅ Æ/, N, /S/, tW/, /Kl, tN/, /tJW/,

lEN, tftIl, nd tEW, These phonemes were reco¡ded in isolation by the author. These

synthesis units were put together using the above mentioned synthesis techniques, namely,

copy, cut, and paste; amplinrde interpolation; and linear predictive extrapolation. The new

words formed along with their synthesis units were as follows:

lB/ +lEN+lNl='Ben',

El + ltJ\Nl + fil= 'boot',

ßl + [Y/ + [r/ ='feet',

lS/ + IrU + lt/ ='sir',

ß/ + IHI + til ='rrt'.

lBl + IEW + lTl ='bet',

lKl + lAEl + lTl ='cat' ,

ItN/ + lEHl + lU ='wet'.

lBl + lfYl + fU ='beet', and

The participants were seated nearby the Macintosh IIsi workstation, and they were

supplied with headphones and response sheets, as shown in Fig. C2, Appendix C. There

we¡e three tests, the first of which was quality assessment, followed by preference, and

flrnally, similarity.

In the quality assessment test, the participants listened to the set of spliced words, as

mentioned above. From a given list of words, they were asked to indicate the quality on the

sheet ofFig. C2b.

In the preference test, two versions of the four wo¡ds, 'Ben', 'boot', 'cat', and 'wet'

were used. The first version of each word was spliced together using the copy, cut, and

paste and amplitude interpolation methods of synthesis. The second ve¡sion of each word

was a boundary modifications of the frst version using the LPE binding segment method,

as implemented in the p¡evious experimenl

155

For the wo¡ds 'Ben', 'boot', 'cat' and 'wet', two binding segments were formed

and placed at the boundary between the fust and second and second and thfud phonemes.

The type of binding seg lent formed depended on the type of phonemes to be joined with

the center vowel phoneme. If the boundary propenies of the abutting phonemes were

similar, then a three step rnethod was used.

For the synthesis involving the joinin g of lBl, lNl, lKl or Æ/ with a vowel phoneme, a

two step procedure was used as follows: 50O points (23 ms) were postdicæd and predicted

from the phonemes lEl, lOOl, and lAEl (e,g., vowel sounds in 'Ben' , booT' , and 'cøt',

respectively). The postdicted and predicted frames were then averaged point by point with

500 samples of either the ending or beginning sounds of lB/, /N/, Kl or lTl,

conespondingly.

For the synthesis involving the joining of the semivowel /TV/ with the vowel

phoneme /E/, a tl¡ree step procedure was used as follows: 500 points (23 ms) were

predicted from the ending sound of AVl. Also, 500 points (23 ms) were postdicted from

/E/. The postdicted frame was then averaged point by point with the predicted frame. The

resulting segment was insened between the phonemes AVl and Æ/, thus forming the word

'wet'.

For the above two versions of the four wo¡ds, 'Ben', 'boot', 'cat', and 'wet', the

participants were asked to indicate their preference on response sheets, as shown in Fig.

Clc. The purpose of this p¡eference test r,vas to determine whether LPE improved the

quality of the splice.

In the similarity resr, for each of rhe vowel phonemes,llYl, N/, /AE/, /El, /A, IOOI,

and /OW, the panicipants were asked to judge the similarity beween a 25 ms sample frame

of a phoneme followed by its 25 ms prediction. They were also asked to judge the

156 -

similarity between the same 25 ms sample frame and its 25 ms postdiction. Panicipants

were asked to indicate the similarity on sheets as shown in Fig. Cla. The purpose of this

test was !o determine the subjective validity of the linear predictive exrapolation method.

6.3 Presentation and Analysis of Results

After the tests were compleæd, all response sheeß were gathered for observation and

analysis. For the quality assessment and the similarity tests, the response rectangles were

quantized into 8 uniform levels, one being the lowest and eight being the highest. The

quantized values were tabulated and averaged over the ten participants. The average values

were then plotted in bæ graphs.

6.3.1 Extracted Sub-word Splicing

Figure 6.9 shows the assessment of words formed by concatenâting phonemes

and,/or se4uences of phonemes extracted from an existing library of natural words. The

copy, cut, and paste synthesis method was used. As can b€ seen in the figure, the spliced

words show a high degree of naturalness, except for, perhaps, the words 'well' and 'wheat'.

The high degree of naturalness is attributed to the type of units employed in the synthesis.

For each of the words, 'bit', 'Ben', 'fell' and 'feet', two synthesis units were used, and

they consisted of a consonant phoneme spliced together \rith a sequence of two phonemes,

the first of which was a vowel phoneme. As such, there existed a great degree of

discontinuity ât the boundary of the splice, because of the very different nature of the

abutting phonemes. Recall the natural recording of'feet' in Fig. 6.5, where the

discontinuous boundary also exists between the phonemes Æ/ and /[Y/.

t57

o20
Synthetic

40 60

Quality

80 100
Natural

Fig. 6.9 Subjective response to word synthesis by extracted phoneme
concatenation.

While the words 'well' and 'wheat' can be regarded as showing a certain degree of

naturalness, they are singled out, because their naturalness is about 157o lower than the

others. This lower quality is also attributed to the types of units used in the splice. In

particular, the semivowel phoneme 7'\ / was put together with a sequence of two phonemes,

the first of which was a vowel phoneme. Be,cause the boundary properties of the abutting

phonemes were similar (e.g., compare the waveforms of Aill with ÄYl in Fig. 6.8b),

achieving a natural sound was more difficult. This problem may be the manifestation of

coarticulation. For example, in the natural vocalization of the word 'wheat', the ending of

the phoneme /IV/ is influenced by and influences the following beginning of the phoneme

[Y/. Furthe¡more, that AVl was taken from the naturally recorded word 'when',

complicates the problem further for the spliced word 'wheat'. This is because lW/had

been influenced by [E/. As a result, if this type of splice is to sound natural, the i¡fluence of

ß/ on NII will have to be removed and the interaction between AVl and /[Y/ will have to be

inn'oduced. Oi', alternatively, a

^V/
utterëd in isolation can be used. This reduces the

problem to introducing the interaction.

158

6.3,2 Isolated Phoneme Splicing

Figure 6.10 shows the assessment of words formed by concatenating isolated

phonemes using the copy, cut, and paste method. As can be seen in the figure, the

participants indicated that the words sounded more synthetic than natural. In addition to the

coarriculation problem as discussed above, this is attributed to the lack of correct timing,

stress, pitch adjustment, and intonation that is characteristic of phonemes uttered in

isolation. For example, the phoneme lV uttered in isolation is typically lower in pitch and

lacks the stress required by the vowel in 'fit'. Splicing phonemes uttered in isolation is

more diff,tcult than splicing extracted units, as described above, simply because the units are

smaller and more processing, that the vocal tract would otherwise have done, must now be

considered by the synthesizer.

9

8

7

6

bs
È

4

3

2

I

Fit

Beet

Wet

Feet

Cat

Boot

Bet

! Quality Measure

0 10 20 30 40 50 60 70 80 90 100

Synthetic euality Natural

Fig. 6.10 Subjective response to word synthesis by isolated phoneme
concatenation,

6.3.3 Similarity

Figure 6.11 shows results of the similarity test. These results show the degree of

159

similarity between 25 ms of an original vowel phoneme and 25 ms of the predicted and

postdicted versions. As can be seen, the participants indicated both predictions and

postdictions sounded fairly similar to the originals. It can be argued that the lack of exact

similarity may be because the rime, 25 ms, is too short for making a judgement and that the

subjects were fo¡ced to make a random decision. If so, this may be a source of

experimental error. Also, it can also be argued that the lack of exact similarity is due to the

assumptions and estimations made by the linear predictive sub-model of speech. In

particular, the aìl-pole model ignores nasals. Furthermore, the covariance method has been

shown to model periodic speech sounds better than the autocorrelation method. These

ârguments are supported by the fact that linear predictive coding, when used as a

compression technique, achieves relatively low quality, as shown in Fig. 2.3. However,

these results, in addition to the results shown in Fig. 6.4, suggest at least that the LPE

software is working.

E Postdiction

I P¡ediction

o20406080
None Somewbat

Similarity

100
Exactly

Fig. 6.1 1 Subjective response to 25 ms phoneme prediction and postdiction.

6.3.4 Preference

Table 6.1 shows the results of the preference test for words formed by

-160-

/OWhoed

/ABSat

concatenating extracted subunits of existing words, as described in Section 6.3.1. The

purpose of this test was to determine the effectiveness of the boundary modification

methods, namely, amplitude interpolation (version 2) and linear predictive extrapolation

(version 3). Version 1 is formed by the straight forward copy, cut, and paste method. As

can be seen in the table, version 2 (amplitude interpolation) was the preferred choice for

every word. This suggests an inc¡emental improvement over the corresponding words and

their quality ratings ofFig. 6.9, because those obse¡vations were made with version 1.

Table 6.1 Prefercnce test for words formed from extracted word subunits.

Word

Feet

Fell

Wheat

Well

Version 1

3

a

)

4

Preference

Version 2

5

7

7

5

Version 3

2

1

1

1

While version 2 showed the greatest percentage of preference fo¡ words formed

from extracted sub-word units, the results shown in Table 6.2 suggest that LPE is better

than amplitude interpolation for boundary modifications of words formed by concatenating

isolated phonemes. In this table version A is formed by using copy, cut, and paste and

amplitude interpolation methods of synthesis. Ve¡sion B is an LPE modification of

version A.

These results appear to suggest that, for the wo¡ds that were tested, LPE is mo¡e

effective in creating a natural sounding binding segment when the boundary problem is

poor initially.

t6r

Table 6,2 Preference test for words formed from isolated phonemes.

Word

Ben

Boot

Cat

Wet

Summary

heferencæ

Version A Versionl

37
37
46
64

6.4

This chapter describes the apparatus and method, as well as presents and analyzes

the results of three preliminary speech splicing experiments. Two speech splicing

workstations are used. The Macintosh IIsi workstation is used for main processing and

splicing, including speech recording and playback and implementation of the copy, cut, and

paste and amplitude interpolation methods of synthesis. The IBM workstation, the speech

splicing system designed in this thesis, is used for performing the linear predictive

extrapolation synthesis method. File transfe¡ between the Macintosh and the IBM is

explained.

The first experiment shows how to expand an existing library for vocal shaping.

Phonemes and/or sequences of phonemes (comprising syllables) are oxtracted in order that

they, themselves, may be used for vocal shaping. It is shown how the three methods of

synthesis, namely, copy, cut, and paste; amplitude interpolation; and linear predictive

exnapolation, may be used for this purpose.

The second experiment formed new words by concatenating the wavefo¡ms of sub.

word units extracted from existing words. Subjective tests were conducted, and the

162

preliminary results indicate up to 807o natural quality. Further tests done on the same new

words with boundary modifications seem to indicate an incremental improvement when

amplitude interpolation is usd at leåst for the synthesized words of interest.

The third experiment fomed new words by concatenating the waveforms of isolated

phonemes. Results of subjective testing indicate poor quality, and tlris may be artributed fo

coarticulation, the lack of conect timing, sress, pirch adjustrnent, and intonation.

The experiments performed in this chapter are preliminary tests and no significant

expuapolation of the results is intended. However, for the specific words tested, the

preliminary results appear reasonable and may be good indicators for other similar words.

More formal testing procedures of speech synthesis can be found in [Klim87] and

lWei¡821.

163

Cuaprnn VII
Co¡rclusroNs AND RncouunNDATroNs

(A sururary ofwhat ee t on beÍore,

A d¿termination or ju¿gement anived at by reasoning and investigating)

The work described in this thesis was motivated by the need for a computer aided

speech splicing system for vocal shaping. A study of the psychological, theoretical, and

technical aspects of the problem has led to the development of a PC based system for

speech processing (i.e., recording, compressing, editing, splicing, synthesizing, and

playing) and a methodolog¡r of splicing speech for vocal shaping.

A study of the psychological aspect has revealed p otential advantages of employing

speech synthesis tools in automated vocal shaping systems. Speech synthesis may provide

experimental continuity by target expansibility. The introduction of a new teacher, which

includes a different pronunciation, coarticulation, and intonation, introduces experimental

variables, whose effect may not be fully understood. A desirable synthesis tool is one that

is capable of continuing the experiment in the absence of the original therapist and

expanding the target word library while maintaining similarly sounding features.

However, the familiarity provided by similarly sounding features in new words may

be an important psychological influence in itself. New words or utterances may be leamed

more easily if they bear similar and individualistic properties of previously leamed targes,

which include targets previously spoken by a therapist and, perhaps, previously leamed

utterances of the student. Furthermore, words may be leamed more easily by individually

shaping the component parts. But the component parts must be exemplified as they are

pronounced in the context of the wo¡d, And they must be pronounced identically many

times in succession. A desirable synthesis tool is one that is capable of extracting

component parts consistently and identically as they sound in the context of a previously

recorded word and concatenating a sequence of component parts in order to form new

wotds or utterances.

t64

A study of the theoretical aspect has determined optimal speech synthesis

techniques, tools, and units for vocal shaping. Because digital waveform techniques

provide the best quality in the speech codiag spectrum, and because waveform recordings

preserve all of the individualistic properties of a person's speech, such as pitch, stress,

intonation, and inflecuon, this suppoß thei¡ use in a vocal shaping environmenL Moreover,

the storing of a di¡ect wareforp ¡e?¡esentatien of speech facilitates the extraction of

component parts, along with contex¡ral i¡fonnation, which is embedded in the wavefom.

The optimal synthesis unit depends on the application. For small vocabulary

systems, such as vocal shaping, the synthesis units a¡e component parts extracted from

digitally recorded wo¡ds or utterances. These component patts include phonemes,

diphones, and,/or sequences thereoi such as those comprising entire syllables. New words

a¡e formed by concatenating the waveforms of these units. For large vocabulary systems,

which also include vocal shaping, the synthesis units are isolated phonemes. Forming new

words by concatenating the waveforms of isolated phonemes is diffïcult because of

coarticulation and the lack of correct timing, stress, pitch adjustment, and intonation that is

characteristic of phonemes uttered in isolation.

Three synthesis tools supportive of wavefo¡m concatenation are copy, cut, and

paste; amplitude interpolation; and linear predictive extrapolation. Copy, cut, and paste

facilitates electronic editing of digitally recorded speech, while amplitude interpolation and

linear predictive exuapolation are used to modify the boundary properties between synthesis

units.

A study of the technical aspect has led to the development of a speech processing

system built around a PC AT. The system consists of a dedicated ADPCM speech

processor chip (MPU interface version), dual-pointer FIFO buffer, and PC AT host

165

computer. The use of ADPCM for encoding and decoding sp€ech data is supported by the

fact that ADPCM is a wavefo¡m technique and that it reduces the cost of ransmission by a

ratio of 2: 1, while maintaining good toll quality. The FIFO buffer is included in order to

provide potability, isolation, and realization of real-time disk capture and playing of

ADPCM speech data. A 6802 pP conuols the speech processor and FIFO buffer, and each

of theses three devices are located on an extemal board which, in nrn, is serially interfaced

to the host computer, Most of the required speech processing for vocal shaping is

implemented on the host com. puter through menu driven software. This sofware is capable

of visually associating the waveform of speech with its sound, so that individual components

may be isolated, played, duplicated, extracted, i¡serted, and modified (LPE).

Preliminary subjective tests were conducted in order to determine dre effectiveness

of the synthesis techniques, tools, and methodology for vocal shaping. Because of the

unwillingness of the manufacturer (Oki) to disclose proprietary information about their

ADPCM algorithm, some of the speech processing capabilities of the PC AT workstation

could not be used. Instead a Macintosh IIsi speech processing workstation was used in

these experiments. Nevenheless, these experiments consisted of expansion by extraction,

expansion by sub-word splicing, and expansion by isolaæd phoneme concatenation.

Preliminary results show that new words formed by sub-word splicing (up to 807o

natural quality) sounded much better than words formed by phoneme concatenation (high

30Vo qualrty). These results support the knowledge that a limited number of mono-syllabic

natural sounding words can be formed by putting together extracted syllables (characterized

by steady state conditions existing at both boundaries) with extracted stop consonant

diphones. This result is not surprising, because the concatenation of these two types of

synthesis units requires no significant conside¡ation of coarticulation. The probable reason

why these words did not achieve higher ratings is because of the ' allophonic' natu¡e of the

syllables and diphones. Much in the same way as a word sounds strange when a certain

1,66

phoneme is replaced by one of its other allophones (refer to Chapter II, Section 2.l.l.l),

these words may have sounded strange because the stress, intonation, and inflection of the

synthesis units were intended for the words from which they were extracted and not

necessarily for the newly spliced word which generally require different prosody.

Other preliminary results show that amplitude envelope interpolation improved the

quality of the resulting word when the bounda¡y properties of two sub-wo¡d units were

modified. These preliminary results suppon the use of amplitude interpolation for finely

adjusting the boundary properties and supplementing the coarse splicing of copy, cut, and

paste for the specific words used in the test. Furthermore, this method supports sub-word

exEaction, so that the exEacted sub-word, alone, can be used for vocal shaping.

The tests conducted on LPE of vowels show preliminarily promising results. The

predicted and postdicted frames exhibited a 607o averagehkeness with their original sample

frame.

1,67

This thesis has contributed to the general and technical knowledge through the

following advances:

(l) Motivational grounds for using speech synthesis tools for automated vocal

shaping systems,

(2) Optimal speech synthesis æchniques, units, and tools for vocal shaping.

(3) A model of wavefo¡m concatenation using linear predictive extrapolation.

(4) Hardware and software design and implementation of a speech processing

system on a PC AT.

0 Implementation of a dual-pointer FIFO buffer consisting of a 6802 pP,

expandable SRAMs, and dual-port VO (serial and parallel).

0 Paper design of a swinging buffer (hardware implementation).

0 Implementation of serial communications at 115.2 kbps between an 80286

t"ùP (within PC AT) and a 6802 pP (FIFO controller) through RS-232C

interface.

0 Menu driven software on host computer (PC AT) including disk capture

and playing of ADPCM speech data, serial pon initialization, time domain plot

of PCM data, selection (through mouse) of any portion of speech data \¡/irhin a

file for playing, cutting, copying, pasting, extrapolating, and averaging. Any

size file may be processed since this software uses the hard disk as vi¡tual

RAM,

(5) Speech splicing methodology for vocal shaping including the use of the tools

copy, cut, and paste; amplitude interpolation; and linear predictive extrapolation.

-168-

Recommendations fo¡ futüe r ork are as follows:

(1) Other fuse functions for the LPE binding segment model of coarticulation can

be investigated (suggestion: use fuzzy logic to determine the contributions of

abuning phonemes to the binding segment).

(2) Software for modifying pitch, sress, intonation, and inflection of isolated

phonemes can be developed (suggestion: use digital filtering and equalization).

(3) Instead of using a dedicated ADPCM chip (along with the unavailable

proprietary information), a straight forward PCM chip should be used for speech

digitization. This can be done by multiplexing different speech digitizing chips on

the existing boa¡d and writing the conroller software (6802 pP instruction set) for

each chip. The controller would select a certain speech digitizer and execute the

corresponding program. Note that this is possible due to the modular design of the

existing board. In particular, the current speech chip (MSM6258 ADPCM) is

viewed as an external device and, as such, it is interfaced to the controller through a

PIA on an extemal data bus. Because the 6258 can be placed in high impedance,

this makes it possible to connect other three state speech digitizers to the external

bus. \Yith this configuration any compatible speech compression technique can be

implemented through software.

169

Rnnnnn¡vcBs

[Appl87] Apple Compuær, Designing Cards and Drivers for Macíntosh II and
Macintos h S E. Reading MA: Addison-Wesley, 1987.

[ApMi85] Applied Microsystems Corp., EMl86 Diagnostic Emulator 6800/6802
Series Microprocessors User's Manual. Kjl*land" WA: Applied
Microsystems Corp, 1985, 100 pp.

tcairg0l S. Cairns, "Computer aided speech shaping," MA.Thesis, Winnipeg,
Manitoba, Canada: University of Manitobq April 1990, 77 pp.

lCampS9l I.Campbell, TheRS-232 Solu¡ion. SanFranciscoCA: SYBEXInc,
1989, 196 pp,

[Cate83] J. Cater, Electronically speaking: Computer speech generation.
Indianapolis IN: Howard W. Sams&co. Inc, 1983,230pp.

[CoLa9O] M. Davidson, "Get a GUI on itl," Computer Langunge, vol. T, no.8, pp.
81-94, 1990.

[Desr90] M. Desrochers, "Computer-based versus human assessment of vocal
responses with developmentally handicapped individuals," P h. D. Thesis.
Winnipeg, MB, Canada: University of Manitoba, 19%, 267 pp.

Fef¡891 K. Ferens and C. l,ove, "A speech recorder and synthesizer using
ADPCM," B. Sc. Thesis., Winnipeg, MB, Canada: University of
Manitoba, 1989, l14pp.

[FeKi9 U K. Ferens and W. Kinsner, "Speech synthesis using fuzzy splicing,"
IEEE Western Canadian Conf. Computers, Power and Corwnunication
Systens, WESCANEX '91, Regina, SK, May 29-30,1991 (in press).

[FlHa83] S. Flercher and A. Hasegawa, "Speech modification by a deaf child through
dynamic oromeric modelling and feedback," Journal of Speech and
Hearing Dísorders, vol.48, pp 178-85, 1983.

UaNoS4j N. Jayant and P. Noll, Digital coding of waveforms - principles and
applicartons to speech and vid¿o. Englewood Cliffs, NJ: Prentice-Flall,
1984, 688 pp.

[JoCh 87] L. Jordan and B, Chuchill, "Communications and Networking for the IBM
PC & Compatibles, Revised and Exparrded", New York, NY: Brady,
1987, 511pp.

170

lKwMRSTl

lKinsSSl

lKlimSTl

lKlKisTl

tLoFKS9l

[-oKig0]

lMacU90l

lMonoS5l

tMsQc8sl

lNaSeS9l

[NoWiSs]

tokis90l

lPars8Tl

D. Kewley-Port, C. lVatson, D. Maki, and D. Reed, "Speaker-dependent
speech recognition as the basis for a speech raining aid", Proc.ofIEEE
Neural Neworks, Cat. no. 87 CH239G0, pp ,372-375,1987 ,

W. Kinsner, "Microprocessor and Microcomputer Interfacing for Real-
Tim€ Systems," l¿ctwe Notes, Winnipeg, MB, Canada: Department of
Electrical and Computer Engineering, University of Manitoba: Winnipeg,
MB, Canadå, 1988.

G, Klimenko, "A study of ADPCM, CVSD, and phoneme speech
coding techniques," M.,9c. Tåesrs. Winnipeg, MB, Canada: University of
Manitoba, 1987,

G. Klimenko and W. Kinsner, "A study of ADPCM, CVSD, and PSS
speech coding techniques," Proc, IEEE Engíneering in Medicine and
Bio lo gy S o c., IEEE Cat. no. 87 CFI25 I 3-0, pp,ll 97 -98, 1987 .

C. l,ove, K. Ferens, and W. Kinsner, "A speech recorder and synthesizer
using ADPCM," Proc. IEEE Engineering in Medicine and Biology Soc.,
IEEE Cat. no.89 Clf2770-6, pp. 659-60, 1989.

C. l¡ve and W. Kinsner, "A phonemic recognizer for speech therapy using
a neu¡al network múel," Proc. Canadían Medical and Biological
Engíneering Soc., CMBS Cat, no.90 CMBC-16-CCGB, pp. 93-4, 1990.

R. Myslewski, "Three Cheers for Th¡ee New Macs," MacUser Labs,pp.
90-11 1, , 1990.

ISI Databook. Santa Clara, CA: Monolithic Memo¡ies inc, 1985.

Microsoft, C For Yourself. Redmond, WA: Microsoft Corp, 1988,
376 pp.

National Semicondictor, Advanced Peripherals Data Communications
Local Area Networks UARTs Handboafr. Santa Clara, CA : National
Semiconductor Corp , 1988.

P. Norton and R. Wilton, The New Peter Norton Programmer's Guid¿ to
the IBM PC & PSl2. Redmond, WA: Microsoft Press, 1985 500 pp.

Oki Semiconductor, OkiVoice Synth¿sß LSI 1990. Sunnyvale, CA: Oki
Semiconductor, 1990, 338 pp.

T. Parsons, Voice and Speech Processing. New York, NY: McGmw Hill,
1987,402pp.

171

[Perk71] W. H. Perkins, Vocal function: Assessment and therapy, Hanlbook of
speech pathology and au.diology, Prentice-Hall: Englewood Cliffs, NJ,
pp.505-34, 1971.

[Pete88] D. Peters, "A speech recognizer using LPC and DTW," B.Sc.Thesis.
Winnipeg, MB, Cana¡l¡: University of Manitob4 1988.

[PeKR87] J.J. Pea¡, W. Kinsner, and D. Roy, "Vocal shaping of reta¡ded and autistic
individuals using speech synthesis and recognition," Proc. IEEE
Engineering in Medicine and Biology Soc,,IEEE Cat. no. 87 CH2513-0,
pp. 1787-88, 1987.

[RaDu86] R. Duncan, Advanced MSDOS Programming. Redmond,]YA: Microsoft
Press, 1986, 669 pp.

[RaSc78] L. Rabiner and R. Schafer, Dígital processing of speech signals.
Englewood Cliffs, NJ: Prentice Hall, 1978, 512 pp.

tRCAS4l RCA, CMOS Microprocessors, Memories and Periphcrals Databook.
USA: RCA Corp, 1984.

[MaPe88] G. Martin and J. Pear, Behavior modifícation: What it is and how to do it
ßrd Edition). Englwood Cliffs, NJ: Prentice-Hall, 1988.

[Skin53] B. Skinner, Science and Hwnan Befuwiour. New York, NY: Macmillan,
1953.

[SkSh78] P. Skinner and R. Shelton, Speech, lønguage, ønd hearing: Normal
processes and dísorakrs. Reading, Mass: Addison-Wesley, 1978.

[Sagi90] Y. Sagisaka, "Speech Synthesis from Text," IEEE Comunnicatíons
Magazine0163-6804, vol. 1, pp 35-41, 1990.

[Swan87] C. Swanson, "A study ard implementation of real-time linear predictive
coding of speech," M.Sc. Tåøsrs. Winnipeg, MB, Canada: University of
Manitoba, 1987 , 228 pp.

[Texa84] Texas lnstrumenrs, The TTL Data Book 1984. Dallas, Texas: Texas
Instruments inc, 1984.

[WeDi83] Western Digital, Western Digital 1983 Components Handbook. Irwne,
CA: Western Digital corp, 1983.

[Wier82] A. Wierach, "A study of English stop consonant synthesis and porception,"
M.Sc.Thesis. Winnipeg, MB, Canada: University of Manitob4 1982,
126 pp.

-172-

A'.0

4.1

Appnulx A: SorrwlRp Lrsrnvc

Introduction

This appendix describes and lists t¡e sou¡ce code of the Mernory Manager and Host computer.

Memory Mânager Software

This section describes and lists the Memory Manager software. It is written in 6802 assembly

language. The following soùce code is augrnented with det¿iled comments. Only the comments appeâring

inline witi the code or prefixed with a "*" a¡e assembable. I¡ othe¡ words, to assemble the following code,

remove the comments app€åÌing in paragraph form.

.À.1.1 Main

ACIA_IO_Reg

ACIA_CR_Stat

PIA_PortA_Reg

PIA_DDRA

PIA-CRA

PIA_PortB_Reg

PTA-DDRB

PIA-CRB

CR

LF

BuffC_Addr

BufiB_Addr

BuffA-Add

Reåd_PE

lvrite_Ptr

fß_sraûs

Seconds

S ørtPgm

€qn

eqr

eqr

eql

€qn

eq¡

eq¡

eq¡

eqt

equ

€ql

eq.t

eq¡

org

rmb

rmb

rmb

rmb

$1D01

$iD00

$1E00

$1E00

$1E01

$1E02

$r802

$1E03

$oD

$oA

$6000

$4000

$2000

$F800

2

2

I
I

sel

lds

*Interupt mask bit is set to temporarily
*disable all interrupts.
iThe stack pointer is loaded with the
*starting add¡ess of the stack. Stack
*grows downward
*Initialize several system variables.
rlnitialize the parallel port PIA.

JSr

jsr

#127

Va¡iablelnit

PIAInit

-A.1 -

jsr ACIAInit *Initialize the serial port ACIA.
ju Getcommand *Get a command from Host,
cmpa #$02 *Getcommand returned a Host issued

*command in accumulator A.
beq DoRecord *0216 = record 2 seconds.

cmpa #$04

beq DoRec¡d *0416 = record 4 seconds.

cmpa #$ l0
h€q DoRecod *1016 = record 16 seconds.

cmpa #$20

b€q DoRec¡¡d *20t6 = record 32 seconds.

cmpa #$AA

beq DoPlayback *AA16 = code for playback command.

bra StârtPgm

DoReco¡d lsra

staa Seconcls

jmp Record

DoPlayback jmp Playback

-42-

4.1,2 Record

The following group of code is the ¡ecord routine, and it consist of five segments, command

acknowledge, initialization subroutines, transmit spe€ch data in the foregmund, rerord speech data in the

backgou¡d, and sfop record and empty bufler.

Segm€nt One: Command Acknowledge

I aitForAck ldaa ACIA_CR_StaI

anda #$08

b€q lVaitForAck

Segment Twot Intitializat¡on Subroutines

InstâlRecAddr

Recordlnit

*86=l sets RTSB=1, and this informs
*the Host that the Slave received a vâlid
*command

*\ry'ait for Host acknowledge
*83=0 means Host is still trying to send

*a command.

*83=1 means acknowledge.

*Install reco¡d interrupt routine address.
+Initialize the speech chip for record.

klal

staa

#$55

ACIA_CR_Srar

#$15

ACIA-CR-Stât

JSr

js

Segment Three: Transmit Foreground

The following segment of code is the transmit foreground routine. In this routine the controller

continually tansmits spe€ch data tro the Host via the serial interface. Spe€ch data Eansmitæd in this way is

read from the buffer at location pointed to by Read_Ptr. lVhile executing this routine, the c¡nÍoller is

inæmrpted every 250 psec by the speech chip. This causes the controller to exeÆute a background routine,

during which speech dâtâ is read from the spe¿ch chip and written tro the buffer. Since the process of
transmiring the buffer is about twice as fast as writing the buffer, at some time the buffer becomes empty.

The controller checks for equality of the pointers, i.e., Read_Ptr = Write_Ptr. If Eue, the buffer is empty

and transmitling is temporarily suspended, until the pointers are no longer e4ual, which becomes true after

the speech chip intemrpts the foreground, and a byte is reåd from the speech chip and written to the buffer.

SendDala *Enable the 6802 to respond to an

*interrupt. Inte¡rupts are requested by
*the speech chip.

É86=0 resets RTSB=I, and this informs
tthe Host that the Slave is rgquesting to
*send.

cli

ld¿g

stââ

ReqToSend

-43-

lYairFo¡cTS0

TxDNotEmpty

ÌVait0

ResetReâdPrRec

ldaa ACIA_CR_StaI

arda #$08

bne ÌVaitFoCTSO

Ue
¡ofa

roIa

bcc

ACIA_CR_Stat

TxDNotEmpty

Re¿d_h

Write_Ptr

Vr'ait0

O,X

ACIA-IO-Reg

Reâd_fu

#BufiC-Addr

ReseiReadPfRe{

WaitFo¡CTSO

#BuffA_Addr

Re€d_Ptr

WaiIFolCTSO

*Determine whethsr Host is ready to
*receive speech data. Wait until ready.
*B3=l indicates negative, i.e., No.
rB3=0 indicates positive, i.e., Yes.

*Check the T¡ansmit Data Register

'f Empty (TDRE) bir. Ror.are TDRE inlo
*carry bit of condition code register.
*C=0 indicates TxD is not empty.

*Read-Ptr points to next byte in buffer.

*Check whether the buffer is empty.
*Buffe¡ is empty if there ale no datâ to
*read, i.e., if Read_Ptr = Write_Ptr.

*Read byte at location pointed to by
*Read_Ptr and fransmit to Host.

*Read-Ptr points to the next data byte.
*Store Read_Ptr in anticipation for next
*t¡ansmission.

* Determine whether Write_Pfr is
*pointing to the last location + 1.

*If true, initialize Write_Ptr to point to
*the firsr location of the FIFO buffer.

*Continue receiving data from the Host.

*Wri[e_Plr now point to location
*200016, which is the starting address
*of SRAMI, and the virrual start. of the
+circular FIFO buffer.
+Save cu¡rent write location.

*Continue receiving datâ from the Host.

cpx

beq

Haa

stâå

tnx

stx

cpx

bE

Jmp

ldx

Jmp

-A4-

Segment Four: Record Background

The fotlowing segnent of code is the record intemrpr routine, which is processed in the background.

This routine is execuæd each time úe speech processor indicates that the next byte of ADPCM data is reådy

for reading. The intrnupt signal is generaæd every 250 psec on control line CAl, which is input to the

PIA. The PIA relays this intenupt signal to the ¡rP via the IRQ line. The starting address, i.e.,

IRQRecStart, is loaded inúo emulator RAM at location fff816 to ff916 during reco¡d initialization

subroutines. IRQRecSfal reåds a byte of spe€ch data from the speech chip and writes lhe byte to the FIFO

buffer at location pointed to by \Vrite_Ptr . This routine also checks for the stop condition by decrementing

the seÆonds count by one each time an 8K buffer becomes full of speech data.

IRQRecStâ¡t ldx WritÊ_PE

#$85ldâb

lÅ¿g #$10

jsr Delay

sfab

Uaâ

staÂ

ldæ

slâa

PIA_PortB_Reg

PIA_PortA_Reg

0,x

#$87

PIA_PortB_Reg

#BrfIB_Addr

DecSemnds

#Bulrc-Addr

Resetvy'ritePtrRec

lvrite_Ptr

PIA_PortA_Reg

Seconds

StopReco¡d

tl-oad the Write_Ptr with the next
*available and empty I oc a tion,
+This delay is incorporated in order to
*find the subjectively optimum time to
*read from the speech chip.

*B7=l and 86=0 used by BRG.
*83=0 enables the speech chip.
*82=l selects the data mode.
*B1=0 puts the read line (RD) tow.
*80=l disables wrif.e operation.

*Read a byte from the speech chip.
*Store byte in buffer at location pointed
*to by Write_Ptr.
*Bl=1 puts the read line (RD) high.

rPoint to the next empty location.
* Dete¡mine whether Write_Ptr is
*pointing to starting add¡ess of BufferB.
*If so, decrement seconds countef.

* Determine whether Write_Ptr is
*pointing to the last location + l.

*Store poinler for next interrupt.
*Clear the interrupt flag of the PIA.
*Return to foreground processing.

*8K of SRAM = 2 sec of speech.

bq

lnx

cpx

cpx

beq

stx

ldaa

rti

CheckRoltOver

&
beq

DecSecsds

-45-

StopRe€ord

r¡r'âitForCTs I

TxDNotEmpryl

CheckRollOver

#BúTA-Adù

writÊ_Ptr

Seconds

StopRerord

PIA_PortA_Reg

Stop

ACIA_CR_Stat

#$08

}VAiIFOCTS 1

ACIA_CR_Stât

TxDNotEmpty 1

Reåd_PE

0,x
ACI.A-IO-REG

#BuffB_Addr

Finished

#Bulrc_Addr

lVaitForCTS 1

#$55

br¿

*lvrite-Ptr now point fo the virtual stârt
*of the circular FIFO buffer, i.e,,
*2000¡6, fhe slarting address of
f SRAMI.

*Determine whether Host is ready to
*receive speech data, Wait until ready.
*83=1 indicates negative, i.e., No.
*B3=0 indicates positive, i.e., Yes.

+Check the T¡ansmit Data Register
*Empty (TDRE) bit. Rorare TDRE into
*carry bit of condition code register.
*C=0 indicates TxD is not empty.

*Read byte from buffer pointed to by
*Reâd_Pb and transmit to Host.

*Is tïe Buffer empty yet?

*If yes, goto Finished routine.
*Is the Buffer empty yet?
*If not continue transmitting buffer.

fRTSB=1 info¡ms the Host that the

ResetwritePf¡Rec ldx

tClear the interrupt flag of the PIA.
*Retum to foreground processing.

Segment Five: Stop Record and Empty Buffer

The following segment ofcode stops the record mode of úre speech chip and transmits the remaining

spe€ch data f¡om the buffer to the Host The empty part of this code is required because, after the record

time has elapsed, there may be some speech dafa in the buffer not yet transmitted to the HosL

&c

beq

ldåa

rti

Jsr

ldaa

anda

bne

ldaa

f0ñl

rcnl

bc¡

ldx

ldaa

staa

inx

cpx

bE

cpx

bne

Finished ldaa

-A'6-

slaa ACIA_CR_STAT *slave is fnished recording.

jmp StaltPgn *Jump to th6 start of the program.

Note lhat because this branch is pa$ of the interrupt routine, the context of the machine prior to

exe¡ution of the intérrupt routine is still located on the stack and the sfâck pointer is pointing to the next

available locæion. Howeve.r, lhis does not present a problem, since the controller jumps to the stfft of the

program where the sysrsm is initialized. In particular, the stack pointer is reset to the stårting of ¡he stack,

i.e., location 127. Therefore, the cu¡rent contents of l¡e stack are discåded"

47

4.f .3 Playback Rout¡ne

The following group of code is the playback routine, and it consist of four segments, command

acknowledge, initialization subroutines, receive speech data in the foreground, and playback speech data in

the background.

Segmetrt Onei Command Acknowledge

Playback

WaitForAckl Hâa ACIA_CR_SIar

anda #$08

beq WaitForAckl

Segment Two: Intitial¡zation Subroutines

*86=l sets RTSB=1, and this informs
*the Host that the Slave received a valid
*command.

twait for Ho st acknowledge
*83=0 means Host is snill trying to send

*a command.

*83=1 means acknowledge.

*Get 256 bytes of speech data,
+lnstall play interrupt routine address.
*Initialize the speech chip for playback.

#$55

ACIA_CR_Srar

FillQueue

InsøllPlayAddr

PIayBacklnit

ACIA_CR-SIat

#$08

ld¿a

sfâzt

jsr

jsr

jsr

Segment Three: Receive Foreground

The following segment of code is the foreground routine, In this routine the conEoller continually

receives speech data f¡om the Host via the serial interface. Speech daø received in this way is sored in the

buffer at location poinæd to by Write-Ptr. ÌVhile executing this routine, the controller is intemrpted every

250 psec by the speech chip. This causes the conúoller !o execute a bâckground routine, during which one

bytÞ of sp€€ch dâtr is read from the buffer and written to the spe.ech chip. Since the process of loading the

buffer is about twice as fast as reading the buffer, af some time the buffer becomes full. The cont¡oller

checks for equality of the pointers, i.e., Write_Ptr = Read_Ptr. If true, the buffer is full and loading is

æmporarily suspended, until the pointers are no longer equal, which becomes true after the speech chip

subsequently inæm:pts the foreground and a byæ is read from the buffer.

FetchData cli *Enable the 6802 to respond to an
*inte¡rupt. Interrupts are requested by
*the speech chip.

*Determine whether Host is
*requesting to send speech data.

Idaa

arìdâ

rüaitForHostl

-A8-

lvairl

LdBuffer

RxDEmpty0

rüaitFo¡Hostl

Writ€_Ptr

Reåd_Ptr

I¡adBuffe¡

#$55

ACIA_CR_Stât

rß_s tatus

Wâirl

#$ ls
ACIA_CR_Stat

rfs_Status

ACIA_CR_Stat

RxDEmpty0

ACLA_lO_Reg

0,x

lvrire_PE

#BuflC_Addr

ResetrüritePtrPlay

Vr'aitl

#BuffA_Addr

bne

ldx

*83= I indicates negative, i.e., No.
*83=0 indicates positive, i.e., Yes.

*Load x with the next available location
*in tie buffer,
*Determine whether the buffer is full. If
*tfue, temporarily suspend receiving
*data from HosL

*86=1 sets RTSB=1 and this informs
*the Host not to send data.
*Preserve the current state of RTSB
*The cu¡rent state is used by the
*interrupt routine.
*Temporarily suspend loading buffer
*until \Vrite_Ptr + Read_Ptr,

*Host is requesting to send and the
*buffer is not full. Therefore, give the
*Host clearance to send. 86=0 resets
*RTSB=0.

*Preserve the current state of RTSB.

*Dete¡mine whether the ACIA receive
*dara register (RxD) is full,
*C=0 indicates RxD is currenrly empty.
*Receive data from the Host.
+Store data at the location pointed to by
*r rite_Ptr.

rPoint to the next available location.
rSave curfent write location.

* Determine whether ÌVrite_Ptr is
*pointing to the lâst location + 1.

*If t¡ue, initialize Write_Pt¡ to point to
*the first location of the FIFO buffer.

*Continue receiving data f¡om the Host.

*\Vrite_Ptr now points to location
*200016, which is the starting address

cpx

bne

ldâb

stab

slab

jmp

ßa

ståâ

Haâ

torit

bcc

ldâa

staa

lnx

stx

cpx

beq

Jmp

Reset\YrirePrrPlay ldx

-49-

Jmp

Segment Four: Playbâck

ReadBuffs ldx

ldaa

staa

tdab

stab

Haa

stââ

Finish cu¡¡en! insEuction time:

Intem:pt entrance time:

Read and write time:

Toøl time required before spe€¿h data is actually writlen to speech chip:

*Point

-410-

*of SRAMI, and the virtual stff[of lhe
*circular FIFO buffer.
*Save current write localion.

*Continue receiving data from the Host.

'*(2)86=l sets RTSB=1 in order to
iinform the Host not fo send because the
*Slave is busy servicing the speech
*(5þhip.

*(5)Load the Reâd_Ptr with the location
*containing the next ADPCM byte.
*(5)Read byte pointed to by Read_Ptr.
*(5)Place byte on speech chip data bus.

*Q)

*(5)B0=0 write line (lVR) low.

'*(2)80=1 w¡ite line (WR) high, and this
*(5)writes speech data to speech chip.

5 psec.

i3 Usec,

2+5+5+5+5+2+5+2+5=36 psec.

54 psec.

next ADPCM byte,

Writ€_Ptr

wâirl

Background

The following group of code is the ptayback interrupt routine, which is processed in the background.

This routine is executed each time the speech procosor is ready for the nex¿ byte of ADPCM data. The

interrupt signal is generaled øvary 250 pse€ on cont¡ol line CAl, which is input to rhe PIA, The PIA

relays this intenupt signal to the ¡rP via the IRQ line. The staíing ad&ess, i.e., IRQPlayStart, is loaded

into emulaúor RAM at locaf.ion ff816 to fff916 during playback initialization subroutine. This routine

reads a byte of spe€ch dat¡ f¡om the FIFO buffer pointed to by Read_Ptr and wrires rhis byre to rhe speech

chip. This routine also cheÆks for the buffer empty condition, which is implied by the condition when the

Read_Ptr points to the same location as the r rit€_Pr. If empty condition is true, the conEoller branches

to the stop routine and playback is stopped.

IRQPIayStffl Haa #$55

ACIA_CR_Stat

Read_PE

0,x

PIA_PortA_Reg

#$86

PLA_PortB_Reg

#$87

PIA_PortB_Reg

tnx

ReætReadPrPlay ldx

S topPlayback

#BufiA_Addr

Rmd_Pr

taa x rts_Status

stâa ACIA_CR_SraI

ldaa PIA_PortA_Reg

ßi

*Dete¡mine whether buffer is empty.
*If lrue, terminate playback routine.

rDetermine whether Read_Ptr is
*pointing to lhe last location + l.
*If ûue, initialize Read_PF to point to
*the first location of the FIFO buffer.

*Store Read_Ptr in anticipa[ion of the
*next interrupt routine
*Return to foreground with the state of
*RTSB prior to execution of the
rintemrp! routine.

*The data register (Port A) of the PIA
*side that is used to interrupt lhe pP
*must be ¡ead in order to rese¿ the
+interrupt ftag of the PIA.

+Read_Ptr now points to the virfual start
*of the circular FIFO buffer, i.e.,
*200016, the starting address of
*SRAM1,

+This is the same return code as above.
*I! is repeated in this way in order to
+save time.
*ReTum from Interrupt ßTD.

*Jump to the start of the p'rogram.

cpx

b€q

Vr'rite-Ptr

S lopPlayback

#ButrC-Addr

ResetReadPrPlay

Read_Pfr

ß_s tatus

ACIA_CR_SIât

PIA_PortA_Reg

Stop

StartPgm

beq

cpx

lda^

sta^

ldåa

jsr

jmp

Note that because this branch is part of the interrupt routine, the context of the machine prior to

exe¿ution of the interupt routine is sl.ill located on the stack and the stack pointer is pointing to the next

available location. However, this does not present a problem, since the controller jumps úo the staÍ of the

program where the system is initialized. In pa icular, the stack pointer is reset to the stafìng of the stack,

i,e., location 127. The¡efo¡e, the cunent contents of the sack a¡e discarded.

-411 -

.{.1.4 Subroutines

A.1.4.1 FillQueue

This subroutine fills tie playback buffer with 256 bytes of speech dâta. The Host transmits these

data via the RS-232C interface, and the conÍoller ¡eads these data through the ACIA. This subroutine is

called by the playback routine, Filling the queue with 256 byæs requires about 25 msec, and this is

percepuully unnoticed

FillQueue

WaitForHost

Rec¿iveMore

RxDRegEmpty

Re¿dByt€

QueueFull

ACIA_CR_Srat

#$08

WaitForHost

#$15

ACIA_CR_Stat

ACIA_CR_Srat

RxDRegEmpty

#$55

ACIA_CR_Stat

ACIA_IO_Reg

\ rite_Pt

0,x

lvrite_PE

#$2100

RecpiveMore

rts_Status

nop

ldû
arú
bne

*Check if Host is requesting to send.
*83=l means Host is not requesting to
*send, 83 = 0 means Host is rts.

*Given that the Host is requesting to send, the

*Slave now gives the Host clearance to send.

*Determine the state of the Receive Data
*Register @xD). Rotate B0 into carry.
*80=1 means RxD is full.

*Having received a byte, the Slave
*acknowledges ahis by setting RTSB=1,
*informing the Host not to send.

*Read the byte from ACIA register.
*Load x with the address of the next
*available location within the FIF0.
*Sto¡e the byte at this location.
rlncrement the write pointer, and store
*it in anticipation of the next byte.

*Check if done receiving 256 byres.
*If not, get some more

*The stat¡s of RTSB is saved in anticipation of
*lhe next ¡outine, \.vhich may be interrupted
*before it can iself define and save the srae of
*RTSB.The queue is full and contains 256 bytes

*of speech daa.
*Execute retum from sub¡outine.

I¡leq

staa

Haa

¡on

bcc

ldab

stab

baa

ldx

slaâ

inx

slx

cpx

bne

stab

-At2-

4,1.4,2 PlayBacklnit

This sub¡outine initializes the speech chip for playback, The PIA is first sst up to write the

playback command !o the spee€h chip. Next the plâyback command is written. And finally, the PIA is

confïgured to enable interrupts via positive edge CAL

PlayBacklnit cba

staa

staa

l¡teq

staa

báa

staa

staâ

haa

staa

ldaa

stâa

PIA CRA

PIA-CRB

#$¡¡
PIA,DDRB

PI,A-DDRA

#$M

PIA-CRA

PIA-CRB

#$02

PIA_PortA_Reg

#$82

PLA_PortB_Reg

#$87

PIA_PortB_Reg

#$07

PIA CRA

*Rsset Control Register A (CRA)
*Reset Control Register B (CRB)
*Configure all 8 bits of both Port A and

*Port B as output datâ registers. B0 to
*83 of Port B a¡e used supply the
*control signals (WR, RD, D/C, and
*CS, respectively) to the speech chip.
*Port A is used to write commands and
+speech data to the speech chip.
*82=l Selects Por! A data register
*Disable inter¡upts via CAI and CA2.
*82=l Selects Port B datâ register,
*Disable interrupts via CBI and CB2.

*0216 = code for Playback command.
*Place playback command on data bus.

*87=1 and 86=0 used by BRG.
*CS=83=0 Enables speech ch ip.
*D/C=82=0 specifies command input.
*RD=Bl=l disables ¡ead operation.
*WR=B0=0 enables write operation.
+D/C=B 3 = I specifies data IlO.
tWR=BO=l toggles Vr'R, and command
*is tatched into the speech chip.

*82=1 Selects Port A data register.
*B1=l Bl=0 defines CAI active
*transition as lo',v to high. B0=t
*enables interrupts via active t¡ansilions
*of CA1. Return to calling program.

ldaa

sfâa

Uaa

staa

-413-

^,1,4,4
ACIAInit

This subroutine initializes the ACIA. The daø format is selected as follows: l15.2kbps, 8, N, 1.

The rereiver and transmitfer intenupts are disabled. RTSB is set !o logis 1.

ACIAInit ttl.s

s¡aa

haa

jsr

Ae

#43

ACIA_CR_Stât

#$10

Delay

#$80

PIA_Po B_Reg

#$55

ACIA_CR_Srat

*Master reset the ACIA and define the
* state of RTSB=1, inactive.
*Delay in order to allow ACIA reset.
*Not really required, but good idea.
*87 and 86 a¡e connected to the inputs
rof the Bit Rate Generator
r'(BRG). 87=1 and 86=0 select the
*multiply by 16 function. The ACIA
*RxCLK and TxCLK are fed by pin 17

*of the BRG. A, L8432 MHz clock is

toutput fiom this pin, since the BRG is
*selected to multiply by 16 and pin 17

*selects the 115,2 kHz clock,
*i.e., (16)¡ 15.2 = L8432 MHz.
*Data format configuration: 115.2 kbps,
+8 bits, no parity, and I stop bit.
tDi sable interrrupts and RTSB=1.
*ReTurn from Subroutine (RTS).

staa

ldæ

su¡Ít

rls

-415-

.{.1,4.5 PIAInit

This sub¡outine initializes the PIA. Port A is used to supply the speech chip with the control

signals, CS, D/C, RD, and I R. Po¡t B is uæd tro communicate commands, status, and spe¿ch data with

the speech chip. The PIA conFol line CAI is used by the spe€ch chip in order ro interrupr. the pP.

Howeve¡, intrrruprs a¡e disabled until the acûral record or playback routine is executed, where the active edge

of CAI is known.

PIAInit clra

slaa

slaa

Uâa

slaa

staa

ldâa

ståa

staa

ldaa

ståâ

PIA-CRA

PIA-CRB

#$tr

PI.A-DDRA

PIA_DDRB

#$04

PIA-CRA

PIA-CRB

#$8f

PLA_PortB_Reg

*Access PIA A dâta direction register.
rAccess PIA B datâ direction register.

*Port A configured for output.
*Port B configured for output.
rAccess data register of Port B.
*Disable interrupts via CA1 and CA2.
*Disable interrupts via CBI and CB2.
*87=l & 86=0 used by BRc.
*80=\ryR=l disables Write operation.
*Bl=RD=1 disables Read ope¡ation.
*B2=D/C= 1 selects data mode.
r'83-CS=1 disables speech data bus.
*ReTurn from Sub¡outine (RTS),

-416-

4,.1.4.6 Miscllaneaous

Subroutine VåÌiable¡nit

This subroutine initializes several system va¡iables.

Variablelnit

rts_Status

#BuffA-Add

Read_Ptr

Write_Pr

*Stores the status of RTSB.
*Initialize the read and write pointers to
*point at the same location, i.e.,200016,
*which is the starting lcoation of
'fsRAMl.
+ReTurn from Subroutine (RTS),

*IRQRecStart is a l6 bit address.
*High order 8 bits loaded at fff816.
+Low o¡der 8 bits loaded at fff916.
*ReTurn from Subroutine (RTS),

cha

st¿a

ldx

Subroutine InstâllPlayAddr

This subroutine insølls the addæss of the inænupt routine for playback. The address IRQPlayStart

is loaded into emulaor RAM at location fff816 to fff916. Normally, when the sofrware has been debugged

and developed, lhe system firmware, including the inremrpt addresses, is bùrnt into EPROM and cannot be

changed by softwa¡e. However, while debugging and developing the code, the intemrpt address is loaded

into emulator RAM, which is the emulator's version of system ROM. In this way, all system softwâre,

including r€Jet address, nonmaskable interupt addrcss, intemtpt address, etc. cån be øsily modihed.

IruøllPlayAddr

slx

slx

rts

ldx

stx

rts

Subroutine InstallRecAddr

*IRQPlayStart is a 16 bit address,
*High order 8 bits loaded at fff816.
*Low o¡der 8 bits loaded at fff916.
*ReTurn from Subroutine (RTS).

This subroutine instÂlls the address of the interupt routine for record. The add¡ess IRQRecSt¿rt is

loaded into emulator RAM at location fff816 to fff916.

InstâüRecAddr

#IRQPIâySrffr

$FFF8

#IRQRecSlaIt

sr¡F8
ld¡

stx

-1.17-

Subroutine Delay

This subroutine provides a time delay. The routine expects the number of times to loop to be

contained i¡ ac¡umulato¡ A. One pass through the loop requi¡es 6 Usec.

Delay

Delay

*Accumulator A - 1.
*Loop until accumulator A is zero.
*ReTurn from Subroutine (RTS).

Subroutine G€tComma¡d

This subroutine receives a command that is sent by the Host computer. Getcommand returns tro the

calling program with the command code in accumulaf¡¡ A.

GetCommand

t aiTFo¡RTS0

deca

bne

rl5

RxDNotFull

ACIA_CR_Stât

#$08

WaiTFo¡RTS0

#$15

ACIA_CR_Stat

ACIA-CR_SIat

RxDNo¡Full

ACIA-IO-Reg

nop

þe
ar¡da

bne

lde

staa

ldaa

foÉ

bct

Haa

¿s

*Wait until Host indicates a request to
*send.

*83=0 indicates request to send (RTS).
*83=l índicates no request.

*Give the Host clearance to send.
*86=0 resets RTSB=0.

*Test the received data register full
*(RDRF) bir, Rotare RDRF into carry
tC=0 indicates RxD not full.
*Read byte received form Host.
*ReTurn from Subroutine (RTS).

-418-

A.1.4,7 Stop

This routine slops the current process of tJre specch chip. The PIA is conhgured in order tÍat a stop

command be writæn to the spe€ch chip. Either record or playback is snpped, and the sp€€¡h chip dâtå bus

is placed on high impedance.

Stop cl¡a

slaa

staa

ldæ

staa

PIA-CRA

PIA_CRB

#$pp

PIA-DDR3

PIA_DDRA

#$04

PIA-CRA

PIA-CRB

#$01

PIA_PortA_Reg

#$82

PIA_PortB_Reg

#$83

PIA_PortB_Reg

#$8f

PIA_PortB_Reg

PIA_PonA_Reg

PIA_PonB_Reg

*Reset Control Register A (CRA)
tReset Control Register B (CRB)
*Configure all 8 bits of both Por[A and

*Port B as output data registers. B0 to
*83 of Port B are used to supply the
*control signals (WR, RD, D/C, and
*CS, respectively) to the speech chip
*Port A is used to w¡ite commands and
*speech data to the speech chip.
*82=l Selects Port A data register,
*80=0 disables interrupts via active
*transifion of CAI and CA2.
*80=0 disables interrupts via active
* lransition of CB I and CB2,

*0116 is the code for stop command.
*Place stop command on data bus,
*87=1 and 86=0 used by BRG.
*CS=83=0 enables speech c hip,
rD/C=B2=0 specifies command input.
*RD=Bl=l disables read operation.
*\ryR=80=0 enables write operation.

i\ryR=B0=1 toggles lVR, and command
*is latched into the speech chip.
*CS=83=1 disables speech ch ip.

*Dummy reads of Port A and Port B.

*Assembler directive indicating the end
*ofcode.

Haa

staa

Haa

slaa

ldaa

sfaa

ldaa

slaa

ldaa

stââ

baa

ld¿e.

rls

erd

-419-

4,2 Host Software

This section describe,s and lisrs the Host comput€¡ softwale. It is , ritten in 8086 assembly language

and Mic¡osoft Quick C high level language. The following sou¡ce code is augmenred with derailed

comments, Compileable code is contained within horizontal line separators. Compileable comments are

contained within delimiters as follows: /* Comment *1,

A.2.1 Main

#inslude <conio.h>

#include <string.h>

#include <graph.h>

#include <stdio.h>

#include <stddef.h>

#include <ctype.Þ

#include <bios.h>

#include <menu,h>

#include <fp¡otype.h>

#include <stdlib.h>

/* Default menu attribute. The default wo¡ks fo¡ color o¡ B&!V. You can override the default value by

defining your own MENU va¡iable and assigning it to mnuAtrib, or you cân modify specific fields at run

time. For example, you could use a different attribute fo¡ color úan for black and ìvhitÊ. ,.1

struct MENU mnuAtrib =

{

-TBLACK, -TBLACK, -TWHITE, -TBRIG}ITWHITE, -TBRIGHTWHITE, _T}YHITE,

-T}VHITE, -TBLACK, _TIVHITE, -TBLACK, FALSE,

'/,'ø','i','¿','>','.f'
t:

struct ITEM altem[] =

t

2, " Fite",

0, "Display",

0, "Splice",

0, "Library",

0, "Assemble",

Highlight Char

a
C

R

T

s

Pos

2

0

0

0

0

0, NTILL

-¡.20-

I* MAINPROCRAM

void ma¡n0

t
unsigned uKey; Ê Unsigned key cnde

int Flag = l;
while{ Flag l= 0) /* Flag = g ¡*l, gser selecæd Quit fiom menu */

{
ShowMainMenuQ;

uKey = GetconûolKey(WAIT); Ê Wait until uKey is pressed.

switch(uKey) Ê Evaluate uKey

t
cåseALT: Flag = ChooseF¡omMenu0i

breåk

)

)
end3rogramQ;

)

int Mainmenu0

{
int retl,Flag¡l ¡2,c1,c2,lns,att;

struct ITEM ml[=
{

/* Highlight Char Pos *l
0, "Initialize", l+ I 0 *l
0, "Record", /* R O *l
0, "PlaYback", l* P O *l
0, "Quit", /* Q 0 *l
O, NULL

Ì;
ClearBox(2,2,8,15,6, 1);

retl = Menu(2, 1, ml,0);
switch(ret 1)

{
case ESC: retrtm ESC;

case U_RT: ClearTextWindow(2,0,12,17-TBLUE); return U_RT;

cass U_LT: ClearTextwindow(2,0,12,17 :fBLIJE); retum U_LT;

case 0 : submenuinitO; retum ESC;

câse l: submenu.record0; rctum ESCi

casezi Flag = s¡b¡¡enupluyback0; retum ESC;

/* End of main program.

FUNgTIONS

-1.21 -

case 3 :

]
)

int Displaymenu(void)

{
int retl¡lag¡1 ¡2,cl,c2,lns,atti
struct ITEM ml[=
{

0, "Time Plot",

0, ''Frequency Plot",

0, "Convert File",

0, "Quit",

O, NULL

];
ClearBox(2,1 6,8,33,6, 1);

retl = Menu(2, 15, ml, 0);

switch(ret1)

{
case ESC: retum ESCi

)

]

int Assemblemenu(void)

t
int ret1,fl agf 1 J2,c1,c2,lns,att;

struct ITEM m1[]=

{

0, "Concatenate ",

0, "Smooth",

0, "Time Warp",

Flag = 0; ¡stìmt Flat' tteak'

/* Hightight Char

l*a
14c
l+R
l*R

/* Highlight Char

/*Q
l*c
l*c

/* End of function MainMenu,

case U-RT: ClearTextWindow(2,15,12,3S.TBLUE); retum U_RT;

case U_LT: CleaiTextWindow(2,15,12,35-TBLUE); rehrn U_LT;

case 0 : Flag = $gbMenuTimePlot0; return FIag;

case 1: Flag = SubMenuFreqPlotQ; break

case 2 : FIag = SubMenuCodeData0;break;

case3: Flag = 0; b¡e¿k;

Pos

0

0

0

0

/* End of function DisplayMenu,

Pos

0

0

0

-422-

0, "Mainmenu", l* R 0 *l
0, "Quit", /* R 0 *l
O, NULL

)i
CIearBox(2,60,9,75,7, 1);

retl = Menu(2, 59, ml, 0);

switch(retl)

{
case ESC: retum ESC;

case U_RT: CleåiText\ indow(2J9,12,80,_TBLUE); retum U_RT;

case U_LT: CleaiTextWindow(2,59,12,80-TBLUE); retum U_LT;

cas€ 0 : bre¿k;

case I : breaLi

case 2 : bre3lq

case3:flag=0;b¡eak;

case4:flâg=0;bre¿k;

Ê End of function AssembleMenu. t6l

int Librarymenu(void)

t
int ret1,fl ag¡l ¡2,cl,c2,lns,aü;

struct ITEM ml []=

{
/* Highlight Char Pos *l

0, "OPen ", l* O 0 *l
0, "Close", l* C 0 */

0, "Save", l* S 0 *l
0, "Mainmenu ", 7* M 0 */

0, "Quit", /* Q 0 *l
O, NULL

);
ClearBox(2,47,9,59,7, 1);

retl = Menu(2, 46, ml, 0);

switch(retl)

{
case ESC: retr¡¡n ESC;

case U_RT: ClealTextWindow(2,46,12,62,_T8LUE); retum U_RT;

case U_LT: Clea¡TextWindow(2,46,12,62,_TBLUE); reürn U_LT;

case 0 : bre¿k;

case I i break;

-423-

case 2 : break;

case3:flâg=0ibre¿k;

case4: flag = 0; break;

Ê End offunction Libra¡yMenu.

int Splicemenu(void)

{
int retl,flag¡1 lz,c 1,c2,lns,atq

struct ITEM m1[=

{

/* Highlighr Char Pos *l
0, "Time Plot", l+ T 0 *l
0' "Freq Plot"' l* F 0 'tl
0, "Mainmenu", l* M 0 *l
0, "Quit", l* Q 0 *l
O, NULL

];
Clea¡Box(2,3 1,813,6,1);

retl = Menu(2, 30, ml, 0);

switch(ret l)
{

case U_RT: ClearTextlVindow(230,12A5,:|BLIJE); retum U_RT;

case U_LT: ClearText\Yindow(230,1245,:fBLI.JE); retum U_LT;

case 0 : SubMenuTimePlot0; break;

case 1: SubMenuFreqPlotO; break;

case 2 : breåk;

case3: flag = 0l b¡e¿k;

)

Ì

int SubMenuFreqPlot(void)

t
retum 0;

)

voíd submenuinit(void)

{
int retl¡et2,Seconds¡1,c1,¡2,c2,lns,attdivisori

struct MENU mnuAl¡ib =

/* End of function SpliceMenu.

/* End of function SubMenuFreqPlot, i6l

-424-

-TBLACK, -TBLACK, -TWHITE, -TBRICHTWHITE, -TBRIGHTWHITE,

-TWHITE, -T}VHITE, -TBLACK, -TIVHITE, -TBLACK,
TRUE,

v,'ø" ''Ì"'¿"'>"'l'
);
struct mEM m2[4]=

t 1, " 115.2k,8N,1",

2, " 57.6k,8N,1"

3, " MainMenu ",

ONI,JLL

);
rl = 0; cl =0;12= 5:, c2=30; lns = 5; att = 0;

ClearBox(2,16,7,3 1,5,1);

re2. = Menu2.l4 , m2, 0);

s\.vitch(ret2)

{
case 0 : initl1520; _clearscreen(_GCLEARSCREEN); b¡eak;

case I : init11520; ClearBox(rl,c1¡2,c2,1¡s¡tt); brcak;

case 2 : ClearBox(r1,c 1 ¡2,c2,lns,atr); break;

/* End of function SubMenulnit,

void submenurecord(void)

{
int retl,reO,Seconds¡l,c1f2,c2,lns,att;

struct ITEM m2[6]=

{ l, " 2 Seconds ",

2," 4 Seconds ",

3, " 16 Seconds ",

4, " 32 Seconds ",

5, " Main Menu ",

O,I.{IJLL

];
rl = 0; cl =Q;fl=l{;ç)= 80; lns = 0; att= 0;

ClearBox(3,16,10,32,7,1);

rel2 = Menu(3, 14,m2,0);

switch(rer2)

{
case0:Seconds=2i

SendRe¡ordCommand(Seconds) ;

-¡'25-

re€ord(Seconds);ClærB ox(r l ,c 1 f2,c2,lns
"att);

brcak;

case l: Seconds = 4;

SendRecordCommand(Seconds);

ræord(Seconds);ClearBox(r1,c I f2,c2Jns,att);

b¡ea.k;

case2: Seconds = 16;

SendRecordCommand(Semnds);

record(Seconds);ClearBox(r1,c 1 12,c2,l¡s,att);

bnak;

case3: Seconds =32;
SendRecordCommand(Sæonds);

re¡o¡d(Se¿oncls);CleårBox(r I,c I ¡2,c2 Jns,att);

break;

case 4 : ClearBox(r1,c1¡2,c2,lns,at¡);

b¡e¿k;

)

¡nt submenuplayback(void)
{
int re¿, s€conds, Flag, AccessCode = Read_W¡ite;

int FileHandle, Blocks = 0x80;

unsigned long int

unsþed int

unsigned int

unsigned int

unsigned int

unsigned int

ctw

ctur

st¡uct ITEM m2[6]=

{
l,"2Seconds ",
l,"4Se¡onds ",

2," 8 Seconds ",

3, "16 Seconds ",

4, "32 Seconds ",

ONIjLL

];
ClearBox(4,16,1 1,32,7,1);

reQ = Menu(4, 14, m2,0);

Ê End offunction SubMenuRecord, /6/

PlâyBytes;

PlayBytesl¡w;

PlayBytesHigh;

FileOffsetlow = 0;

FileOffsetHigh = 0;

Time = 0;

FileName[50];
*Adcl¡_FileName

= &FileName[0] ;

-426-

Flag = 64g5st¡.tríFileName(AdrlrrFiteName);
swirch(Flag)
{

CASE ESC:

case u_LT:

case U_RT: retum ESC;

default b¡eåk

)
Time = 2*(intX Power((double)2, (double)re2));

PlayByæs = (unsigned long int)(409Q * (unsigned long int)Crime);

LongToShort(&PlayBytes, &PlayByteslow, &PlayBytesHigh);
Filellandle = OpenFile(Addr_FileName, (unsigned char)AccessCode);

Playback(Filet{andle,Fileoffsetl-ow,FileOffsetHigh,PlayBytesl¡w,PIayByúe,sHigh,Blocks);

closeflrle(Filellandle);

ClearBox(00,2,80,0,0);

I /* End of function SubMenuPlayBack. :61

int GetFileSelection(struct ITEM FileNamesll, int r€tl)

{
extem unsigned long int FiIeSizefl0];

extem unsigned int SizeOfFile[20];

inti=0,flag=1,j;
cha¡ Filelnfo[43], FileName[50];

cha¡ *Add¡_FileName
= &FileName[Oi;

switch(retl)

t
case ESC: retum ESC|

case 0: strcpy(Addr_FileName,''c\c2\\ken\\fìles*.pcm");

b¡eak;

case 1: strcpy(Addr_FileName, "c\þ2\\ken\bfiles*.adm");
break;

]
-asm {
FilelnfoAddc mov ah,lah /*Function number

mov dx,WORD PTR Add¡_Filelnfo fFile Info Buffe¡

int 21h

FindFirstFile: mov ah,4eh

mov cx,O

/*transfôr to MS - DOS

/*Function number

/*Normal attribute

mov dx,WORD IrIR Adclr_FileName f Adrl¡ess of file name

int 21h

jnc okay

-427-

/*Transfer to MS - DOS

nomatch:

okay:

mov flag,O

nop

mov cxl
xor drdi

mov si,26

xor axúx

mov alFilelnfolsil

mov BYTE PIR Filesizeldil,al

mov atSYTE I'fR Filesizetdil

mov BYTE PIR SizeolFileldil,al

inc si

inc di

loop gethlesize

)

getfrlesize:

while(ftag != 0)

{
FileNameslil.iHilite = 0;

stscpy(FileNameslil.achltem, &FileInfo[30]);

i=i+ l;

-asm t
FilelnfoBuff: mov ah,lah

mov dx,lVORD t/IR Adcl¡_Filelnfo

int 2lh
FindNextFile: mov ah,4fh

mov cx,O

mov dx,WORD PTR Add¡_FileName

int 21h

jnc ok

nomorematch: mov flag,O

ok: nop

mov si,26

mov cx,4

getfilesizel: mov al,Filelnfolsil

mov BYTE PTR FileSizeldil,al

mov BYTE IrIR SizeOtrileldil,al

inc si

inc di

loop getfúesizel

)

)

/*Function number

f File Info Buffer

/*ransfer to MS - DoS

/*Function number

/*Normal att¡ibute

ÊAdclress of hle name

/*T¡ansferoMS-DOS

-A28-

FileNamesl i].iHitite = 0;

FileNamesl i].achltem[0] = NULL;

) /* End of function GetFileSelcction. *l

11' GetuserlnputFileName writes the file nâme of the user selected file to location sEingpt¡. :t' /
int GetuserlnputFileName(char *str¡ngptr)

t
extem unsigned long int filesize;

exæm unsþed long int FilesizeflO];

extern unsigned int FileS izel,ow;

extem unsigned int FileSizeHigh;

êxtem unsigned int SizeofFile[20];

unsigned int Low;

int retl, Flag, FileType;

sFuct rIEM m1[l0];

struct ITEM FileÐpeSelection[]=

{

/* Highlight Châr Pos 4/

0, "PCM Format", llt P 0 *l
0, "ADPCM Format", l* A 0 *l
0, "Oúer", l* O 0 t/
O, NULL

);
char Header[30] ;

srcpy(Header, "Choose a file:");

strcpy(sringpr, "c\c2\\ken\\cfilcs\');

Box(10,10,10,60);

_settextposition(11,32);

_seüextcolor(_TBLACK);

_outlex(He¿der);

FileType = Menu(l2,15,FileTypeselection,0);

switch(FileType)

t
case ESC:

cass U_LT:

case U_RT: retum ESC;

defaull.: breåk;

)
Flag = 6stFil.5.1ection(ml, FileType);

switch(Flag)

{
CASE ESC:

1.29

case u_LT:

case u_RT: fetüm ESC;

defadt: b¡e¿k

)
real = Menu(l2, 15, m1,0);

switchGetl)

{
CASE ESC:

case u_RT:

case U_LT: retum ESC;

default: strcpy((stringpt¡ +18), m1lretl].achltem);
frlesize = FileSizelretll;

FileSizelow = SizeOfFile[2*retl];

FileSizeHigh = SizeOfFile[2*retl + l];
break;

Ê End of function GetUscrlnputFilcName, *l

void ShowMainMenu(void)

t
inti,r= 1,c=2;

_displaycursor(_GCURSOROFF);

_setbkcolor((long)_TRED) ;

_clearscreen(_GCLEARSCREEN):

for(i=0;i<5; i++)
(

Itemizel(r, c, FALSE, alæmlil, l0);

c=c+ 15;

)

/*End of function ShowMainMenu. *l

l* Choose f¡om main menu function. 't'
t

int ChooseFromMenu(void)

{
int i, r = 1, c = 2, CuCol = 2, PrevCol, Flag = 1;

int cltem, cchltem = 2l l* Counts of items and chârs per it€m */

int iP¡ev, iCur = 0; Ê Indexes - temporary and previous. *l
int acchltem[MAXITEM; /* Aray of counts of cha¡acær in iæms, */

char *pchT; f Temporary character pointer. *l

-430-

châ achHititÊ[36]; f Anay for highlìght chaÎact€rs,

unsigned uKey; f Unsigned key code.

long bgColor; /* Screen color, position, and cursor.

short fgColo¡;

struct fccoofd fc;

unsigned fCursor;

_setbkcolo¡((long)_TBLUE);

_clearscreen(_GCLEARSCREEN)i
fCu¡sor = displaycu¡sod -GCURSOROFF);
fo(i=Q;i<5; i++)

{
Iæmize(r,cFALSE,aItem [i],10);

c=c+15i
)
Itemize{ r, CuCol,TRUE, altemliCu¡1, 4);

/* Count items, find longest, and put count of eåch in anay. Also,
* put the highlighæd characte¡ from each in a string,*/

for(cltem = 0; âItemlcltcml.achltßm[0]; cltem++)

{
acchltemlclteml = strlôn(altemlclteml.achltem);

cclùtem=(acchltemlclteml>æhltÉm) ? acctiltemlcltem] :cchltem;

i = allemlclteml.iHilite;

achHilitelclteml = altemlcltem].achlt€m[i];

)
cchlæm += 2;

achHilitelcltem] = 0: F Null-ærminate and lowercase string */

sElwr(achHilite);

while(Flag = !0 && Flag != ESC)

{

/i Wait until a uKey is pressed, then evaluate it. *l

uKeY = Ca¡ç.t1 Y^t r'
switch(uKey)

{
cæe ESC: reürn ESC;

caseU_RI /* Right key tÉl

Flag = -1'
iP¡ev = iCur;

if(iCur<4)
iCu¡=iCu¡+1;

iCu¡ = 0;

-431 -

else

hevCol = CurCol;

if(CurCol < 48)

CurCol = Cu¡Col + 15;

else

Cu¡Col = 2;

breâtg

c¿se u_LT: /* left key "l
Flag = -1;
iP¡ev = iCu¡;

if(iCur>0)
iCu¡=iCu¡-1;

else

iCur = 4;

P¡evCol = Cu¡Col;

if(CurCol>2)
CurCol=CurCol-15;

else

Cu¡Col = 62;

breålç

deåult

if(uKey > 256) /* Ignore unlnown key +l

continue;

/* Ifin highlight string, evaluate and fâll through */

pchT = strchr(achHilite, (char)tolower(uKey));

if(pchT != NULL) f If in highlight string, */

{
iPrev = iCu¡;

icu'= pchT - achHilifoi

PrevCol = Cu¡Col;

Cu¡Col=2+icu¡*15;

)
else

continue; /* Ignore unknown ASCII key */

Itemize(r, CurCol,TRUE, altem[iCù],

c¿hltem - ac¿hltemlicül);
Itemize(r,P¡evCol,FALSE,aItemliPrevl,

cchltem - acctùtemliPrevl);

c¿se ENTER:

_setbkcolor(bgColor);

_settextcolor(fgColor);

_seüextposition(fc.row, rc.col);

-displaycursor(
fCu¡sor);

-A32-

/* Flag=g 6*rr Ouit, Flag=ESC means go to Mâin menu*/

while(Flag!=0 && Flag!=-l && Flag!=ESC)

{
switch(iCur)

{
case 0: Flag = Mainmenu0;

switch(Flag)

{
case ESC: retllrn EsC;

case U-RT:

iP¡ev = iCur;

icur = l;
PrevCol = Cu¡Col;

Cu¡Col = 17;

breåk;

case U-LT:

iPrev = iCur;

iCu¡ = 4;

hevCol = Cu¡Col;

Cu¡Col = 62;

bre¿k;

case 0: retum 0; Ê Quit */

l
break;

case 1: Flag = DisplaymenuQ;

switch(Flag)
(

case QUTT: retum QUTT;

case ESC: retum ESC;

case U_RT: iPrev = iCur;

iCur = 2;

PrevCol = CurCol;

Cu¡Col = 32;

b¡eak;

case U_LT: iPrev = icur;

iCu¡ = 0;

PrevCol = CurCol;

Cu¡Col = 2;

bre¿k;

]
bre¿k;

-433-

case 2: Flag = Splicemenuo'

switch(Flâg)
t
case ESC: reûrrn ESC;

case U-LT: iP¡ev = iCu¡;

iCu¡ = l;
hevCol = Cu¡Col;

CuCol = 17;

bre¿k

case U_RT: iP¡ev = iCur;

icur = 3;

PrevCol = CurCol;

CuCol = 47:

b¡eåk;

case 3: Flag = Liþr¿¡y¡¡e¡uO;

switch(Flag)

{
caseESC: renm ESC;

case U-LT: iPrev = iCu¡;

iCu¡ = 2;

P¡evCol = Cu¡Col;

Cu¡Col = 32;

break;

case U-RT: iPrev = iCu¡;

iCur = 4;

PrevCol = CurCol;

CurCol = 62;

b¡eak;

)
break;

case 4: Flag = Assemblemenu0;

switch(Flag)

t
case ESC: fetum ESC;

case U_LT: iP¡ev = iCu¡;

iCu¡ = 3;

P¡evCol = Cu¡Col;

CuCol = 47;

b¡eak;

-¡.34-

b¡eak;

)

case U-RT: iPrev = iCu¡;

iCu¡ = 0;

ÈevCol = Cu¡Col;

Cu¡Col = 2;

bßåk

]
break

)

f Redisplay cunent and previous. */

Iæmize(r,Cu¡Col,TRUE,altem [iC ù],
cchltem - acchltemlicurl);

Iæmize(r,P¡evCol,FALSE,altem liPrev],

cchltem-€cchlt6mliÈevl);

]
f Redisplay current and previous. */

Itemize(r,CurCol,TRUE, altem[iCu¡], cchltem - acchltemliCurl);

Itemize(r,hevCol FAIJE,aItem IiP¡ev],cchltôm-acclütem IiPrev]) ;

/* End of function ChooseF¡omMainMenu, *l

/+Function Menu - Puts menu on screen and reads menu input from keyboard. \Vhen a highlighted hot key

or ENTER is pressed, retums the index of the selected menu item.

Params: row and col - If "fCentered" attdbute of "mnuAtrib" is t¡ue,center row and column of menu;

otherwise top left of menu

altem - aray of sEucûùe containing the text ofeåch item and the index of the highlighted hot key

iCu¡ - index of the current selection-pass 0 for first item, o¡ maintain a static value

Reûrm: The index of the selecæd item

Uses: mnuAtrib */

int Menu(int row, int col, stÌuct ITEM altem[], int iCur)

{
int cltem, cchltem = 2: /* Counts of items and chars per item *l
int i, iPrev; Ê Indexes - æmporary and previous *l
int acchltemMA;KITEM; Ê AÍay of counts of character in items *l
char *pchT; f Temporary character pointer rrl

chã achHilite[36]: /* Array for highlight cha¡acters *l
unsigned uKey; /* Unsigned key code *l
long bgColor; /* Screen c¡lo¡, position, and cursor /f/

sho¡t fgColo¡;

stuct rccoord rc;

unsigned fCursor;

-A'35-

cåseU_UP: f Upkey *l
iPrev = iCu¡;

iCu¡ = (iCu¡ > 0) ? (-iCur 7o clæm) : clfem - l;
break

caseU_DN: I Downkey *l
iPrev = iCu¡;

icu¡ = (icur < cltem) ? (++iCur 7o cltem) : 0;

brealg

dehulf

if(uKey > 256) f Ignore unknown function kcy */

continue;

pchT = strcfr(achHilitÊ, (châr)rotowe(uKey));

if(pchT l= NIILL) fr If in highlight string, */

iç¡¡ = pçhT - achHilite;Ê evaluate and fall tfuough */

else

continue; /* Ignore unknown ASCII key *l
CASE ENTER:

_setbkcolor(bgColor);

_settextcolor(fgcolor);

-settextposition(
rc.row, rc.col);

_displaycursor(fCursor);

retum iCu¡;

)

f Redisplay current and previous. */

Itemize(row + iCu¡, col,

TRUE, alæmliCu¡], cchltem - acchltemlicur]);

Itemize(row + iPrev, col,

FALSE, altem[iPrev], cclùtem - acchltemliP¡ev]);

)

)

/* ClearTextlVindow- Draw menu box, filling interior with blanks of the border color.

Params: row and col - upper left of box rowl¿st and collast - height and width

Retum: None

Uses: mnuAt¡ib

void ClearTextWindow(int row, int col, int rowl,ast, int collast, int color)
{

int i;

unsigned char far *pt¡_blanks;

unsigned char blankstring[80];

-437-

ptr_blanks = &blânkst¡ing[0];

fo¡(i = 0; i <= (collast - col - 1); i++)

{
blanksring[i]=";

)
blank¡tringl i + I] = NULL;

Ê Set color and posifjon. */

_settextposi tion(row, col);

_settextcolo¡((short) color);

_s€lbkcolor((long) colo¡);
fo(i = 0; i <= (rowl ast - row); ++i)

{

-settextposition(
row + i, col);

_outtex(ptr_blanks);

]
)

/* Box - Draw menu box, hlling inærio¡ with blanks of the border color.

Pa¡ams: row and col - upper left of box

rowl.ast and coll-ast - height and widúì

Retùm: None

Uses: mnuAt¡ib

void Box(int row, int col, int rowlast, int coll-ast)

{
int i;

char achTIMAXITEM + 2l ; Ê Temporary aray of chûacters */

f Set color and position. */

_setæxtposition(row, col);

_settex tcolor(m nuArrib. fgB order);

-ætbkcolor(
mnuAt¡ib.bgBo¡der)l

Ê Draw box top. */

achT[O] = mnuAtrib.ch]Iw'

memsôt(achT + 1, mnuAtrib.chElv, collåst);

achT[colLæt + 1] = mnuAt¡ib.chNE;

achTlcollast + 21 =0;
_outlext(achT);

f Draw box sides and center. */

achT[0] = mnuAtrib.chNS'

memset(achT + 1, ' ', collâst);

achTlcolt ast + 1l = mnuAuib.chNS;

achTlcollast + 21 =0:

-438-

for(i = l; i <= rowlasq +r')

t
_settextposition(row + i, col);

_ounex(achT);

)

/* D¡aw box bottom. */

-sett€xtposition(row + rowlast + 1, col);

achT[O] = m¡pq¡'¡5.ç16Y'

memset(achT + I, mnuAtrib.chErM, collåst);
achTlcollåsl + 1] = mnuAt¡ib.chSE;

achTlcollast + 2l = 0;

-outþxt(achT);

]

l* Itemize - Display one selection (item) of a menu. This function is normally only used intemally by

Menu,

Pa¡ams: row and col - top left of menu

fCur - flag set if item is cu¡¡ent sele¿tion

irn - structure conl^aining item text and index of highlight

cBlank - count of blanks to fill
Retum: none

Uses; mnuAt¡ib +/

void Itemize(int row, int col, int fcur, struct ITEM itm, int cBlank)

t
int i;

char achTMA)OTElvIli f Temporary anay of characters */

/* Set text position and color. */

_settextposition(row, col);

if(fCu¡)

{

_settextcolor(mnuAtrib.fgselect)i

-setbkcolor(
mnuAtrib.bgselecl);

]
else

t
_settextcolor(mnuAtrib.fgNormal);

_setbkcolor(mnuAtrib.bgNormal);

)

/* Display item and fill blanks. */

strcât(strcpy(achT, " "), itrn.achltem);

-outlext(achT);

-439-

memset(achT, ' ', cBtank-)i
achT[cBlank] = Q;

-outtext(achT);

Ê Set position and color of highlight characær, then display it. */

i = it¡n.iHilite;

-settÊxtposition(
row, col + i + I);

if(fCur)

{
_seuextcolor(mnuAtdb.fgselHilite);

_setbkcolor(mnuAl¡ib.bgSelHilite);

)
elæ

{
_setf extcolor(mnuAtrib.fgNormHilite);

-setbkcolor(mnuAt¡ib.bgNormHilite);

)

_outchar(itrn.achltemlil);

)

void Itemizel(¡nt row, int col, int fcur, struct ITEM itm, int cBlank)

t
char achT[MA) TEM; f Temporary aray ofcharacters */

/* Set t€xt position and color. */

-setæxtpositon(
row, col);

_setfextcolor(mnuAtrib.fgNormal);

_setbkcolor(mnuAEib.bgNormal);

/* Display item a¡d fill blanls. */

strcat(sEcpy(achT, " "), itm.achltem);

-outtext(achT);
memset(achT,' ', cBlank-);

achTlcBlankl = 0;

_outlext(achT);

]

/+ GetKey - Gets a key from the keyboa¡d. This ¡outine distinguishes betwe€n ASCII keys and function or

control keys with different shift states. It also accepts a flag to retum immediately if no key i avâilable.

Params: ftVait - Code to indicåte how to handle keyboard buffer:

NO-WAIT Retum 0 if no key in buffer, else return key

\VAIT Retum frirst key if available, else wait for key

CLEAR_WAIT Throw away any key in buffer and wait for new key

Retum: One of the following:

-440-

Keytype High Byte IÁw BytÊ

No key available (only wirh NO_IVA-IT) 0 0

ASCtrvalue 0 ASCII code

Unshifæd function or keypad 1 scan code

Shifæd function or keypad 2 sca¡ code

CTRL function or keypad 3 scan code

ALT function or keypad 4 scan code

Note: gelkey cannol reulm codes for keys not recognized by BIOS

int 16, such as tìe CTRI-UP or the 5 key on the numeric ke¡pad.

unsigned GetKey(¡nt fwait)

t
unsigned uKey, uShift;

Ê If CLEAR_WAIT, drain the keyboard buffer. */

if(nVait : CLEAR_\VAIT)

while(_biosJeybrd(_KEYBRD_READY))

_bios_keyb¡d(_KEYBRD_READ);

/+ If NO_r AIT, retum 0 if there is no key ¡e¿dy. */

if(lfWait && !_bios_keybrd(_KEYBRD_READY))
retum FALSE;

Ê Get key code. */

uKey = -5io.-¡"tbtd(-KEYBRD-READ);

f If low byte is not zero, it's an ASCII key. Check scan code o see

* if it's on úre numeric keypad. If not, ctear high byte ând return.

if(uKey & 0x00ff)

if((uKey >> 8) < 69)

retum(uKey & 0x00ff);

/* For function keys and numeric keypad, put scan code in low byte
+ ând shift stâte codes in high byæ.

uKeY >>= $;

uShift = _bios_keybrd(_KEYBRD_SHIFTSTATUS) & 0x000f;

switch(uShift)

{
case 0:

return(0x01001 uKey); ËNone(1, *l
case 1:

case 2:

case 3:

-A'41 -

case 4:

case 8:

)

)
unsign€d GetcontrolK€y(int fWait)
{

unsigned uKey, uShift;

/* Get key Flag. */

uKey = Gstl(.tboâraControlFlagQ;

switch(uKey)

{
case 0:

case 1:

case 2:

case 3:

cæe 4:

case 8:

feh]m(0x02¡0 I uKey); /* shifr (2) */

retum(0x0300 I uKey); /* Control (3) */

reum(0x0400 I uKey); Ê Nt (4) *l

retum(0x0100 luKey); f None(1) +/

retum(0x0200 I uKey); /* Shift (2) */

return(0x0300 I uKey); /* Control (3) */

retum(0x0400 luKey)i l* N¡ (4) +l

)

unsigned int GetKeyboardControlFlag(void)
{

unsigned uKey;

asm {
re¿dÍìag: mov ah,02h

int 16h

test â1,08h

jz te¿dnâg

mov uKey,400h

)
rstum uKey;

)

/* -outcha¡ - Display a character. This is the character equivalent of _outtext. It is âffecred by

_settextposition, _settextcolor, and _setbkcolor. It should not be used in loops. Build srings and then

A42

_outtext to show mulüple characters.

Para.rns: out - chåracter to be displayed

Return: none

void _outchar(char out)

t
slatic char achT[2] = " "; /* Temporary al¡ay of chatact€rs */

achT[O] = out;

-outtex(achT);

)

void endSrogråm(void)
t

-displaycursor(_GCURSORON);

_clearscreen(_GCLEARSCREEN);

_setvideomode(_DEFALILTMODE);

l

-¡'43-

4,2.2 Record

#include <string.h>

#include <fprotypT,h>

#define NULL 0

void record(int Seconds)

{
int

char

FileHandle, bufseg, TwoSecCount;

FileName[50];

strcpy(FileName, "c\þ2ñen\bflrles\\est,adrn"); /*Name of file o be reco¡ded.

FileHandle = CreateAndopenFile(FileName, 2); /*Cræte file.

bufseg = AllocateMemory(512); FAllocate RAM for speech datâ.

TwoSe¡Count = Secondsz:

notrdy:

{
push es

mov ax,bufseg

mov es,ax

mov dx,O3feh

in aldx

ard al,10h

je noEdy

didi

mov cx,8l92

agam; xof

morc: mov al,03h

mov dx,03fch

out dx,al

notrdy: mov dx,03fdh

in aldx

sh¡ al,l
jnc nofdy

xor al,al

mov dx,O3fch

out dx,al

/*Remember C's extra segment value.

fes conøins the sørting adclress of the segment

Ê where spe€¿h dara will be buffered.

/*Tesr whether Slave is rcquesting to send.

/*Slave is req. to send if CTS=1, since Slave's

/*RTS=O when Slave is requesting to send.

/*M=0 means not ¡ts: M=1 means request to send.

ÊTwo seconds of speech.

/*Slave: it is cleår to ssnd.

fTest for ræeption of complete characær,

fHaving received a character, Host now informs

/*lhe Slave not to send.

/+RTS=o means not clea¡ to send.

-1'44-

wri¡efl:

Enor pop

rt¡:

ReleaseMemory(bufseg);

closefile (Filellandle);

]

mov dx,03f8h

in aldx

mov es:[di],al

inc di

loop mo¡e

mov ahl0H
mov bx"Filellandle

push ó
mov dx,bufæg

mov dsdx

mov dx,O

mov cx,8l92

int 2lh
jc Enor

pop ß
&c Twose{Count

jz tn
jmp again

ó
nop

pop es

Ì

^Read

lhe data byte frorn the serial port.

/*\vrite the byte to RAM.

/*Increment RAM poinl6r.

Êt¡op if 8192 bftes have not been recordsd.

/*Wriæ function numbe¡.

/*Filellandle is a number æsociated witi a file

/*Remember C's data segmenl

fds conøins the segment where sp€€ch datâ

/*is buffered in RAM.

/*dx conlains the offset of lst RAM byte.

/*r rit€ 8K bytes to disk.

/*DOS write RAM to file intenupt routine.

Êc=1meânseror

/*Restorc C's data segmenl

f Check ifdone recording.

/*Restore C's data segmenL

ÊPlace enor c¡de here.

/*Restore C's extra segment.

/*End asm routine.

ÊEnd Reco¡d function.

-445-

void SendRecordCommand(¡nt Seconds)

{

_asm {

notrdy:

T¡anS hfrFull:

fransmit

Notvalid:

Valid: mov

mov al,02h f Slave: Host is requesting to send.

mov dx,O3fch /*RTS = 1 means request to send.

out dx,al

mov dx,O3feh ÊTest \rhe¡lìer Slâve is reådy to receive.

in aldx ÊSlave is ready ro receive if CTS=I, since Slave's

ard al,10h /*RTS{ when Slave is requesting to send.

je notrdy /*M=0 means not rts: M=l means request to send.

mov dx,03fdh /*Check whether ransmit shift reg is empty.

in aldx

ard al,40h

je TranShfiFull /*b6=l means transmit shift reg is empty,

mov dx,03f8h /*Now transmi!.

mov al,BYTE PtR Seconds /+Type cast Seconds to byte.

out dx,al Êal conøins the ¡ecord command code.

mov cx,0l000h /*Wait timer.

mov dx,O3feh fvr'ait for Slave's indication of a valid command

in aldx l*
ard al,10h

je Valid ÊM=0 means valid command.

loop Notvalid
jmp notrdy /*If time out" try sending command again.

al,00h f host sends acknowledge.

mov dx,03fch f i.e., host not requesting to send.

out dx,al

j l4End asm routine.

ÊEnd send rerord command function,

-1.46-

4,.2,3 Playback

#inctude <þrotyp6.Þ

void Playback(

{
unsigned int

unsigned char

unsigned char

int
unsigned int
unsigned ¡nt

unsigned int
unsigned int
int

Smalllnnerlnop, Innerloop, Outerloop;

Dar¿I81921;

*S tartofData = &Data[O];

FileHand¡e,
FileOffsetLow,
FileOffsetHigh,
LSWSelected B ytes,

MSWSelectedB ytes,

Blocks)

Ouærl,oop = MSWselect€dByres*8 + LSWSelectedBytes/8192;

Innerl.oop = 8192;

Smalllnnerl-oop = LSWselectedBytesToSl92;

SendPlaybackCommand(170);

_asm {
c¿ll SetFilePointer

cmp Outert¡op,Oh

jz fn

c¿ll ReådFile

/*Set file pointer to starting location of the*/

/*portion of file selected by the user.*/

/*What is the size of the playback file?*/

i*Q. 0 (Size of playback < 8192?4/

/*Read 8192 bytes from file referred to by*/

/*FileHandle, and dump these bytes tox/

/*RAM starting at the location pointed to by*/

/*S tartofData. */

/*Slave: Host is now requesting to send.*/

/*This enables the slave to begin its*/
/*playback routine.*/

/*Test if Slave is ready to receive.*/

/*Slave is ready to receive if its RTS is 1.*/

/*84=0 indicates not ready to receive.*/

/*M=1 means Slave is ready to receive.*/

-447-

mov

mov

cx,Innerloop /icx = number of bytes to transmit*/
si,t ORD PTR StãtofData /*si point to start of data.*/

he¡e: mov al,02h

mov dx,O3fch

out dx,al

mov dx,O3feh

in aldx

ard a1,10h

je notsdl0

notrdyO:

td¡full:

nordy l:

contloop:

fin: cmp

hnished:

mov dx,O3fdh

in ald¡
ard al¡Oh
jz td¡full

mov dx,O3feh

in aldx

ard al,lOh

je notrdyl

mov dx,03f8h

mov al,tsil

out dx,al

inc si

loop noEd$

&c Outerl¡op

/*Check if úansmit shift register is empty,*/

/*b6=1 means shift register is empty.*/

/*Test if Slave is ready to receive.*/

/*Slave is ready to reÆeive if its RTS is 1.*/

/{'84=0 indicates not ready to ¡eceive.*/

/*b4=1 means Slave is ready to rcceive,*/

/*Now the Host transmits.*/
/*lVrite byte pointed to by si to the UART.*/

/*lncrement the source pointer.*/

/*Finished transmitting InnerLoop bytes?.*/

/*If finished transmitting Innerloop bytes,*/

/*decremen t Outerl-oop counter.*/
/*Any more 8192 blocks fo transmit?*/

/*Slave: Host is not requesting to send,*/

/+This ends the playback routine, since*/

/*Slave stops playback when it senses that*/

/*Hos¡ has reset its RTS to logic 0*/

Jz

Jmp

fin

Stfft

Smalllnnerl-oop,0h

jz finished

mov dx,S malllnnerl-oop

mov Innerloopdx

mov Outerl,oop, I h

xor dxdx

mov Smalllnnerloop,dx

jmp slart

mov al,00h

mov dx,O3fch

out dx"al

Jmp

-448-

^Stfft
of procedures. */

/+This sub¡outine þrocedure) increments the fiIe pointer. Note, for as long as a file is open, the operating

system, DOS, updates the file pointer each time the file is reåd from or writt€n to. Therefore, this function,

Playback, does not need to increment the file pointer. This proceedure is included here to sholv holv

incrementing the ñle point¡r may be done.*/

IncFilePointer: mov axJnngrloop /*Increment the fite pointer by Innerloop.*/

d Fileoffætlow,ax

ú FileOffætHigh,0

rct

/*This proceedure sets the fìle pointer to the sørting location in the ponion of the file the user had selecred.

FiteOffsetlligh and FileOffsetlow a¡e the file pointers sele{ted by the user.*/

SetFilePointer: mov ax,4200h l*ah = 42h is the function number.*/
mov bx,F eHandle /*Filepointer referenced f¡om sta¡t of file.*/
mov cx,FileOffsetHigh /*Most significant half of offset * /
mov dx,FileOffseiLow /*Least significant half of offset*/
int 21h /+Set file pointer interrupt routine.*/
jc error l+carty = I means error*/
re¡ fRetum from proceedure.*/

n0p

fet

/*Place error code here.+/
/*Return from proceedure.*/

/*This proce€dure reads Innerl¡op number of bytes f¡om file referenced by FileHandle and dumps these

byt€s to RAM starting at locåtion pointed by StârtofDatâ.*/

ReadFile: mov ah,3fh /*Read function number.*/
mov bx,FileHandle /*FiteHandle references C:\qc2\ken*.adm.*/

mov dx,\VORD I'IR StartofData /*dx=offset of 1st RAM byte.r/
mov cx,Innerloop l*read Innerloop bytes from file.*/
int 2lh
jc Readenor /*Carry = I means ettor,* |
ret ÊRetum from proceedue.*/

nop /*Place error code here.*/
fe¡ frReturn from proceedure,*/

nop

/*End ofasm ¡outine.+/

/*End of function Playback,*/

-¡'49-

ReadEr¡or:

fEnd of procedures. */

Yoid SendPlaybackCommand(

{

_asm {
mov al,02h

mov dx,O3fch

out dx,al

noEdy: mov dxo3feh

in aldx

ard al,l0h
je noEdy

TranShftFul.l: mov

in

ard

je

int Blocks)

ÊSlave: Host is requesting úo send.

FRTS = 1 means requsst to send,

transmil

NotValid:

Valid: mov al,00h

mov dx,O3fch

out dx¿l

Ì
)

ÊTest whether Slave is ready to receive.

ÊSlave is ready to rec-eive if CTS=1, since Slave's

/*RTS=0 when Slave is re4uæting to send.

/*M=0 means not rts: M=1 means request. to sond,

fCheck whether t¡ansmit shift reg is empty.

/*M=l means transmit shift reg is empty.

Êhost sends acknowledge.

/* i.e., host not requesting to send.

/*End asm routne.

ÊEnd send playback command function,

úq03fdh

aldx

al,40h

TranS h fiFull

mov dx03fSh ñNow ransmit.

mov al,BYTE PTR Blocks /*Type câst Seconds to byte.

out dx,al Êal conøins the ¡ecord command code.

mov cx,01000h /*lVait timer.

mov dx,03feh
^Wait

for Stave's indication of a valid command

in aldx l*
ard al,10h

je Valid ÊM=0 means valid command,

loop Notvalid

jmp noEdy /*lf time out, try sending command again.

-450-

^,2,4
T¡me Plot

#include<defl .Þ
#include<fprotypl.h>

#include<string.Þ

#include<stdio. h>

unsþed long int GetSizeofFile(int FiletlandleClipboard);
void Insert(int Filellândlel, unsigned int FilelOffsetlow, unsigned int FitelOffseiHigh, unsigned long int

InsertSize, int FileHandle2, unsigned int File2Offsetlow, unsigned int File2offsetHigh ,int
FilellandleADPCMBak);

int SubMenuTimePlot(void)

{

extem unsigned long int flesize;

êxtem unsigned int FileSizelow;

extem unsigned int FileSizeHigh;

unsigned long int FileOffsetPCM = 0;

unsigned long int FileOffsetADPCM = 0;

unsigned long int FileOffsetPoinærl = 0;

unsigned long int FileOffsetPointer2 = 0;

unsignedlongint SelecædBytesADPCM;

unsigned long int Size;

unsignedchar Data[600];

uruigned char *Su¡tofData
= &Dat¡[O];

unsigned int FileOffætPCMHigh = 0;

unsigned int FileoffsetPCMl¡w = 0;

unsigned int FileOffsetADPCMHigh = 0;

unsigned int FileOffsetADPCMLow = 0;

unsþed int SelectedBytesADrcMHigh = 0;

unsigned int SelecædBytesADPCMLow = 0;

unsigned int Innerloop = fffi;
unsigned int Ouærloop = 1;

floât x;

cha¡

ctur

char

char

char

char

ctur

cha¡

FileNâmePCM [100];

FileNamePCMB ak [100];
FileNameADPCM n00 l;
FileNameADPCMBak[100] ;

FileNameClipboard[3 1] I

CopyMessage2[20];
*Add¡FileNamePCM

= &FileNamePCM[0];
*AddrFileNamePCMBak

= &FileNamePCMBak[0];

-451 -

ct'ff *AddrFileNameADPCM
= &FileNameADPCMt 0l;

chff nAdd¡FileNameADPCMBak = &FileNameADPCMBat[0];

char *Add¡_FileNameClipboard = &FileNameclipboard[0];
clnr *Addr-CopyMesege2

= &CopyMessage2[0];
int File[IandlePCMl

int FileHandleADPCM;

inr FileHandleADPCMBak;

int FileHandlePCMBalç

int Byæ_Size = 600;

int i;
inl 3 = 15;

int Flag;

int Pointe¡Flag = 0;

int Blocks = 0x80;

int *OuterloopPtr = &Outerl¡op;

int FileHandleClipboa¡d;

int MouseCoordinaæs[2];

int Poinæ¡l = -1;
int Pointet2 = -1;
int NumberHotBoxes = l0;

int HotBoxes[] = [570,174,630,184, 10,174,70,184, 10,158,39,168,

601,158,630,168, 40,158,600,168, 20,0,620,129,

200,174,250,184, 260,r74,3t0,18/., 320,174,380,184,

100,1?4,130,184 l;

Flag = 6s¡gserlntrtFileName(AddrFileNamePcM);

switch(Flag)

{
case ESC:

case u_RT:

caseU_LT: return ESC;

defaulr Flag = 33'

break;

)

/*srcpy auomatically terminates a sEing with a NULL châracter.*/

srcpy(Adclr_FileNameClipboard,"c\þ2Nen\\cfiles\\Clipbord.dat");

stscpy(Adrlr_CopyMessage2,"Bytesselected:");

stscpy(Add¡FileNamePCMBak, Add¡FileNamePCM);

sEcpy((AddrFileNamePCMBak + srlen(AddrFileNamePCMBakÞ3),"PBK");

súcpy(Add¡FileNameADPCM, Add¡FileNamePCM);

srcpy((AdclrFileNameADPCM + strlen(AddrFileNameADPCM)-3),"adm");

-¡.52-

strcpy(Ad&FileNameADPCMBalq Add¡FileNameADPCM);

súcpy((AddrFileNameADPCMBak+sElen(AdùFileNameADPCMl3),"ADB");

FilellandleClipboard = Ge¿teAndOpenFile(Adclr_FileNameClipboard, (unsigned char)2);

FileHandlePCM = OpenFile(AddrFileNamePcM, Reåd_\Vrite);
FileHandleADPCM = OpenF.ile(Add¡FileNameADPCM, Read_Write);
FiIeHandleADPCMBak = CreateA¡dOpenFile(AddrFileNameADPCMBak, Resd_Writs);

FileIIandlePCMBak = CreateAndOpenFile(AddrFileNamePCMBak, Reâd_Write);
graphics_modeQ;

DrawOscilliscopeQ;

DrawPlotrnenulconQ;

ResetMouseQ;

PlorDah(FilellandlePCM, FileoffsetPCMl¡w, FileOffsetPCMHigh,

Byre_Size, ShrtofData, &Data[O],

FileOffsetPCM

ShowMouseo;

while(Flag != QUrT)

{
Flag = GetMouseSelection(&HotBoxes[0], NumberHotBoxes, &MouseCoordinâtqs[0]);

switch(Flag)

{

case l: Flag = QIIIT; fUser selecæd quil

breåk;

case 2: fUser selecæd playback.

if(PoínterFlag:2)

{
if(FileOffsetPointerl < FileOffsetPointer2)

{
FileOffsetADPCM = FileOffsetPointerl2;

LongToShort(&FileOffsetADPCM, &FileOffserADPCMLow,

&FileOffsetADPCMHigh);

SelectedBytesADPCM = (FileOffsetPoiner2-FileOffsetPointerl)/2;

]
else

t
FileOffsetADPCM = FileoffsetPointe¿z;

LongToshort(&FileOffsetADPCM, &FileOffsetADPCMLow,

&FileOffsetADPCMHieh);

-453-

)
else

{

SelectedByresADPCM = (FileoffsetPointerl-FileoffsetPointeo) ni
)
LongToShon(&SelecædBytesADPClvf, &SetecædBytesADPcMl¡w,

&S electedB ytesADPCMHigh

Playback(FileIIandleADPCM, FileOffsetADPCMLow,

FileOffsetADPCMHigh, SelertedBytesADPCMl¡w,

SelerædByresADPCMHigh, Blocks

Playback(FiIeHandleADPCM, FileOffsetADPCMLow,

FileOffsetADPCMHigh, Innalnop*Outerloop,

0, Blocks

bßak;

/*User selected move plotling window left by 60 bytes,

if(FileOffsetPCM > (unsigned long int)60)

t
FileOffsetPCM = File0ffsetPCM - (unsigned long int)60;

LongToShon(&FileOffseiPCM, &FileOffsetPCMlow,

&FileOffsetPCMHigh

]
else

{
FileOffselPCM = (unsigned long ínr)0;

FileOffsetPCMl,ow = (unsigned int)o;

]
ClearGraphicsScreen(1,20,1,62O,128);

PlotData(FileHandlePCM, FileOffsetPCMl¡w,

FileOffsetPCMHigh, Byte_Size, StârtofData,

&Dalâ[0],

case 3:

FileoffsetPCM);

RememberMa¡keß(Pointerl, Pointer2,

FileoffsetPointer I ,

b¡eak;

FileoffsetPCM,

Fi leOffsetPointer2

case4: /*User sele¡ted move plotting window right by 60 points.

if(FileOffsetPCM < (filesize - (unsigned long int)ó60))

{
FiteOffsetPCM = FileOffsetPCM + (unsigned long int)60;

LongToshort(&FiteOffsetPcM, &FileOffsetPCMlow,

-1.54-

]
else

t

&FileOffsetPCMHigh

FileOffselPCM = (filesize - (unsigned long int)600);

IongToShort(&FileOffætPCM, &FileOffsetPCMlow,

&FiIeOffsetPCMHigh

)
ClearGraphicsS creen (1,2ß,1,62n,128)l
PlotData(FileIIandlePCM, FileOffsetPCMlow,

FileOffsetPCMHigh, BytÊ_Size, StrrtofDara,

&Dala[O], FileoffsetPCM);

RemanberMarken(Pointerl, Pointer2, FileOffsetPCM,

FileoffsetPointerl, FileOffsetPoin æ¡2);

b¡eâk:

/*Mouse click in scroll bar rectrngle: course movement. */

HideMouseO;

ClearGraphicsScreen(1,41, 159,599, 1ó7);

DrawRectangle(3, 40, 159, MouseCoordinate.sl0], 16Ð;

FileOffsetPCM = (long)(((MouseCoordinates[0]-40.0)/560)*(filesize-600));

LongToShort(&FileOffsetPCM, &FileoffsetPCMlow,

&FileOffsetPCMHigh);

FileOffsetADPCM = FileOffsetPCM2;

I¡ngToshort(&FileOffsetADPCM, &FileOffsetADPCMLow,

&FileOffsetADPCMHigh);

ClearGraphicsScreen (1,n,1,6n,n8);
PlotData(FilellandlePCM, FileOffætPCMLow,

FileOffsetPCMHigh, Byte_Size, StrltofDara,

&Datâ[0], FileOffsetPCM);

RememberMarkers(Pointerl, Pointer2, FileOffsetPCM,

FileOffsetPoinærl, FileoffsetPoinrer2);

ShowMouse0:

b¡eak;

case 5:

case 6; AUser selecæd position pointers in file window.

HideMouæQ;

if(MouseCoordinates[O] : (PointeÌl + 20) ll

MouseCoordinateslO] == @ointer2 + 20))

{ ÊUse¡ sele4ted erase pointer in file window.

-A,55-

if(PointerFlag:2)
{ l*Enable to copy only if both pointers are positioned. * /

if(FileoffserPoinrql > FileoffsePoinre¿)

{
SelecædByæSADPCM=(File0ffsefPointerl-FileoffsetPointe¿)r2':

LongToshof(&FileoffsetPointe¿, &FileOffsetADPCMI-ow,

&FileOfIsetADPCMHigh);

)
else

{
Sele4tedBylesADPCM=(FileOffseiPointe¿-Fileoffs€tPointerl)2;
LongToShort(&FileOffselPointerl, &FileOffsetADPCMLow,

&FileOffsetADPCMHieh);

)
S elecredBy æsADPCM-AbsI¡ng(FileOffserPoinrer 1, FileOffserPoinre¿)/2;

LongToShon(&SelecædByæsADPCM, &Sele¿tedB).tesADPCMI-ow,

&SelectedByæsADPCMHigh);

Copy(FileHandleADPCM, FileOffsetADPCMLow,

FileOffsetADPCMHigh, FileHandleClipboard, 0, 0,

SelectedBytesADPcMl-olv, SelectedBytesADPCMHigh);

ClearTextlino(19, 1, 45);

]
b¡e¿k;

case 8: /*Cut selection f¡om file

Flag = QLIIT;

breaki

cæe 9: fPaste selected speech from clipboard file inlo cu¡rent file. *l
if(PoinlerFlag == I) /*Paste if one pointer is positioned. tk/

t
if(Pointorl != -1)

{
FileOffsetADPCM = FileoffsetPointerl2i

)
else

{
FileOffsetADPCM = FileoffsetPointe¿Z:

)
Size = GetSizeOtrit{ FileHandleClipboard);

InngToShort(&FileOffsetADPCM, &Fileoffset{DPCMI-ow,

&FileOffsetADPCMHigh);

¡.57

Insa(FileHandleClipboard, (unsigned int)O, (unsigned int)0,

Size, Fi.leHandleADPCM,

FileOffset{DPCMLow, FileOffsetADPCMHigh,

FileFIanrlleADPCMBak):

break

case l0: fUser selected all speech data t'/

Fileoffs€tPointer l = 0;

FileoffsetPointer2 = frlesize;

Pointerl = 0;

Poinær2 = 600;

Reme.mberMa¡ke¡s(Pointer I , Poinw2, FileOffsetPcM,

FileoffsetPointerl, FileoffsetPointe¿);

PoinærFlag = 2;

ClealTextl-ine(19, 1, 45);

PrintcrahicsText(19, 2, Addr_CopyMessage2);

printf("%1u", Abslong(FileOffsetPoinær1, FileoffsetPoinæÉ));
break;

default: Flag = QUTT;

)

)
closefile(FileHandleClipboard);
closefile(FileHandlePCM);
closefìle(FileHanclleADPCM);

closefile(FileHandlePCMBak);

closefil{ FileHandleADPCMBak);

end¡rogramQ;

retum ESC;

)

/*Funclion RememberMarkers draws a previously sele4ted marker if that marker is pointing to a file
position that is in the cu¡rent view window. Figure 4.3 explains the main idea of this function.

-A58-

Example: Plot pointerl (ma¡ker) if:
FileOffsetPointerl) FileOffsetPCM AND FileOffsetPointe¡l I FileOffsetPCM + 600

Fig, 4.3 Plot marker calculation.

void RememberMarkers(int Pointerl, int Pointer2,

unsigned long int FileOffsetPCM,
unsigned long int FileO ffse tPoin ter I,
unsigned long int FileoffsetPoínter2)

{
if(Pointerl != -1 &
FileoffsetPoinærl > FileOffsetPCM & FileOffsetPointerl < (FiteOffsetPCM + 600))

{
Poinlerl = (shon)((File0ffsetPointer1 - FileOffserPclv0);
Drawline(Pointerl + 20, 1, Pointerl +20, 128,,)t

)
if(Poinær2 != -1 &
FileoffsetPointer2) FileOffsetPCM & FileOffsetPointer2 < (FileOffsetPCM + 600))

t
Pointe¿ = (short)((FileOffsetPointer2 - FileoffsetPclvÐ)i

-459-

Ì

4.2.5

/*Function Prototypesr/

int

int

int

int

int

void

OpenFile(

CreaæAndOpenFile(

SetFilePointer(

DurnpFiteloRAM(

SaveRAMtoFile(

closefile(

Inse¡(

Drawline(Pointe¿ + 20, I, Pointer2 +20, 128, 7

File I/O

châr +addr_firamel
, cha¡ AæessCode

char *Add¡FNamg ctur AccessCode

int FileHandle, int l¡woffsot, int Highoffset

int FileH.andle, int HighBytes, int LowBytes,

int RAMAdúess

int FileHandle, int by[es,

inr FileHandle

int FilellandleClipboødunsigned long int GetS izeOfFile(

void

);

);

int

unsigned int

unsigned int

unsigned long int

int

unsigned int

unsigned int

int

int

unsigned int

unsigned int

int

unsigned int

unsigned int

unsigned int

unsigned int

int RAMAdüess

FileHandlel,

FilelOffsetlow,

FilelOffsetHigh,

Insertsize,

FileHandle2,

File2Offsetl-ow,

File2offsetHigh,

FileHandle2

Filellandle 1 ,

FitelOffsetl¡w,

Fi le l Offsetlligh,

FileHandle2,

File2Offsetlow,

File2offsetHigh,

Byte,st¡w,

BytesHigh

);

):

):

void copv(

-460-

/*Function Open File

OpenFile function opens a file tlut hâs been previously created It accepts two parameters:

1) tfie address of the ASCIZ file name (ASCIZ is the ASCII name of the file followed by a 0).

2) rhe Acc€ss Code.

A FileHandle is reürmed which can be used for subsequent access tro the file. The function calls BIOS int

2lh with registers initialized as follows:

Access Code:

3dr frnction code

AccessCode fde access attributes

AddrFNanF offset of ASCUZ path name

B its (0-2) type of ac¡€ss

000 r€ad

ah

al

&

BIOS retufis sfâtus as follows:

001

010

if function suc¡essful

CF

ax

if function unsuccessful

CF

zx

Bil(3) rese¡ved

B its (4-6) sharing mode

000

001

010

011

100

Bir(7)
0

I

write

¡€ad and wdte

compatibility

deny all

deny write

&ny re:d

deny none

inheritance flag

child plocess inherits handle

child does not inherits handle

clea¡

flrlehandle

set

er¡or c¡de

fïle not found

palh not found

-A61 -

ax

ax

02h

03h

Error Codes:

ax 04h no hândles available

Ð(05h acc€ss denied

ax Och invalid access code

Notes: . After opening the fTe, the file poinær is reset to rhe beginning of the file.

int OpenFile(char *AddrFName, char AccessCode)

t
int FileHandle;

_asm {
mov ah3dh

mov al$ccêssCode

mov dxl'dd¡FNane

int zlh
jc Eror

mov FileHandlesx

jmp Retum

Eron nop fPlace er¡or code here

Retum; nop

) l4End asm routine

retum FileHandle;

)

-462-

/*Function C reateA nd Op enFile

CreateAndopenFile function eiúer creates a new file or opens and truncåtes an existing fìle to zero

lengri. The function acc€pls two p¿uameters:

1) ttre address of the ASCIIZ file name (ASCIZ is the ASCII name of rhe file followed by a 0) and

2) rlìe Access Code,

A FileHandle is retumed which can be used for subsequent access to the file. The function calls BIOS int

21h function 3ch (creåte file) with regisærs initialized æ follows:

ah 3ch function code

cx Bit(s) flde attribute

0 normal

I hidde¡r

2 system

3 volume label

4 reserved(0)

5 archive

6-15 æse¡ved(O)

dx offset of ASCIIZ path name

BIOS retums status as follows:

if function sucressful

CF clear

ax hlehanclle

if fu nction unsuccessft¡I

CF set

âx e¡ror code

Error Codes:

ax 03h path not found

a(04h no handles available

ax 05h æ.€ss &nied

Notes: Access denied may indicâte úat there is no room for a directory enrry or an existing file

-A63-

is read only and can'! bc opened for ouÞul

The function then calls BIOS int 2lh function 3dh (open file) æ discussed above,*/

int Cr€ateAndopenFile(char rAddrFName, char AccessCode)

t
int f ehandlei

_asm t
mov ah,3ch füeate file with normal attdbute *'l

xor cx,cx

mov dx.Add¡FName

int zlh
jc Enor

mov ah3dh /*now open the file 4l

mov al"A,c¡essCode

mov dx"Add¡FName

int 2lh
jc Enor

mov filehanclle,ax

jmp Rerum

Enon nop ÊPlace eÍor code here */

Return: nop

't l+End asm routine */

fetum filehandle;

I fEnd tunction *l

-¡.64-

/*Function Close File

Function closefile, BIOS int 2lh function 3eh, flushes all intemâl buffers âssociated wit-h the file to

disk, closes the fde, and ¡eleases the handle for reuse. If the file was modified the time ând date ståmp a¡e

updaæd, The function accepts one parameter, FilelLandle.

The function calls BIOS int 2lh wifh registe¡s initialized as follows:

ah 3eh function code

bx FileHandle file handle

.BIOS retums sta¡¡s as follows:

if function successful

CF cle¡r

if funct ion unsuccpssft¡l

CF set

ax erro¡ code

Error Code:

ax 06h invalid handle

void closefile(int FileHandle)

t
_asm {

Enon nop

)

mov ah,3eh

mov bx,Filellandle

int 21h

jc Enor

)

ÊPlace eÍor code here

/*End asm routine

ÊEnd function

/*Function Set FII€ Po¡nter

Function SetFilePoinær, BIOS int 21h funcrion 42h, sets the file pointer relative to either the starr

of file, the end of file, or the curent position. The function calls BIOS int 2lh with registers initialized as

-465-

follows:

ah 42h function code

aI method c¡de: ¡elative method

00h absolute from slfft of file

01h signed offset from cunent file position

02h signed offset from end of hle

bx FileHandle file handle

cx Lowoffset most signilic¿nt 16 bit offset

& Highoffset leåst signifìc¿nt 16 bit offser

BIOS retums status as follows:

if function successful

CF cle¿r

& most significant 16 bit offset from stå¡t offile
ax least signifìcant 16 bit offset from start of fìle

if function unsuccessful

CF ser

ax e¡ro¡ c¡de

Error codes:

¿lx Olh invalid relative method

06h invalid handle

Notes; This function uses a long integer (Highoffset concatenated with the Lowoffset) to sel

the file pointer, The next byts read or wrilten to the file will be at the new f¡le pointer dx:ax relative f¡om

the start of rhe file. *l

int SetFilePointer(int FileHandle, int LowOffset, ¡nt HighOffset)

{

_asm {
mov Ðt,42nh /*ah = 42h is the function number +l

mov bx,Filellandle /*al = 0 pt¡ offæt sta¡t of file *l

mov cx,HighofÏset /*Most significånt half of offset */

mov dxJ.owOffser /*Leåst significant half ofoffset *l
int zlh
jnc Return fca¡ry = I means e¡ror */
jmp Enor

Enor: nop Êplace enor code here +/

Return:

\ l*End asm ¡outine +/

I l*End Function t*l

-466-

/*Function Dump A File to RAM

Function DumpFilet¡RAM, BIOS int 21h funcrion 3fh, uansfers dara from a file to RAM, The

function accepts 3 pa¡ametgrs:

1) fhe FiteHa¡dle of the file of inærest,

2) the number of bytes to fansfer, and

3) lhe first addFss ßA}4{dd¡esÐ of RAM whe¡e the data will be dumped.

The data from Ihe file is retrieved st¿rting ftom the current file pointe.r position. The function calls BIOS

int 21h with registers initialized as follows:

ah 3lh function code

bx FileHandlo fiIe handle

cx bytes number of b)'tes to read

dx RAMAddress Add¡ess of fr¡st RAM location

BIOS retums ståtus æ follows:

if function successful

CF clea¡

¿tx number of bytes Eansfer¡ed

if function unsuccessful

CF set

ax enor code

Error Codes¡

ax 05h ac¡ess denied

06h invalid handle

Notes: If tie CF = 0 but ax = 0, then the f-rle pointer wæ at the end of file. *l

int DumpFiletoRAM(int FileHandl€, ¡nt HighBytes, int LowBytes,

int RAMAddress)

asm {
{

mov ah,3fh

mov bxFileHandle

Êread function number

mov dx,RAMAddress /*offset of the frirst RAM location * /
mov cxJ-owBytes f rcad bytas from flrle FileHandle * I
int 21h

jnc Retum

]

fl means enor: ax has e¡ror code *l
Enor: nop

Retum:

)

Êplace enor code here

/*End asm routine

/*End Function

-467-

/*Funclion Save RAM Area to Disk

Fu¡ction SaveRAMtoFile, BIOS int 21h function 40h, transfers data from RAM to disk(file). The

function accepts 3 pafameters:

1) the FileHandle of the fde of int¡rest,

2) the number of bytes to Iransfer, and

3) the first address ßAMAdd¡ess) of RAM where the dala is locared.

The data f¡om RAM is written to the file st¿rting from the current fde pointer position. The function calls

BIOS int 2lh wit¡ registers initialized as follows:

ah 40h function code

bx Filetlandle fiIe hândle

cx byæs number of bytes !o read

ü RAMA.dd¡ess Address of fìrst RAM locarion

BIOS ¡etums status as follows:

if function successful

CF clear

ax number of bytes üansfened

if function unsuccessful

CF set

ax e¡ror code

Error Codes:

ax 05h æ¡ess denied

06h invalid handle

Notes: If CF = 0 but ax < cx, then the remaining data, ax - cx, could not written because of
insuffìcient space on disk,

int SaveRAMtoFile(int FileHandle, iût byt€s, ¡nt RAMAddress)

{

_asm {
mov ah,40h Êwrite function numbe¡

mov bxfileHandle

mov dx,RAMAddress Êdx is the lst RAM address

mov cx,bytes Êwrite bytes of data to disk

int zlh
jnc Return

^C=1

means eÍor
Enon nop Êplace enor code here

Retum: nop

j l*End asm routine

I t*End Function

-468-

/*Function Copy copies BytesHigh:Byt€st¡w byles stating at loc¿tion FilelOffsetHigh:FIlelOffsetlow

from file FileHandlel and writes these bytes to FileHandle2 starting at location

File2OffsetHigh:Flle2Offserlow. *l

BytesHigh:Byteslow 32 bit unsigned size of bytes io copy.

Filetlandlel }landle which ¡eferences tie source file.

FileloffætHigh:FllelOffsetlow 32 bit offset of sou¡ce file.

Filellandle2 llandle which ¡eferences fie destination file.

File2OffsetHigh:Flle2Offsetlow 32 bit offset of destination hle.

Outerloop Number of8192 (8K) blocks to be copied.

Innerloop 8K bytes tro be copied.

SmalllnnerLoop Remainder upon division of8K.

void Copy(int FileHandlel,
unsigned int File lOffsetlow,
unsigned int File l OffsetH igh,
int FileHândle2,
unsigned int File2Offsetlow,
unsigned ¡nt Fil e2Of fsetHig h,

unsigned int Byteslow,
unsigned int BytesHigh)

t
unsigned int Smalllnnerloop;

unsigned int Innerloop;

unsigned int Outerloop;

unsignedchar Data[8192];

unsigned char +StartofDalå
= &Data[0];

Ouærl,oop = By¡e5High*8 + BylqslowÆ 192;

Smalllnne¡Loop = B ytesl-ow Vo8l92i

Irmerl,oop = 819;

_asm {
call SetPointer

cmp Outert¡op,O

jz fin

Stat: call ReadFile

call W¡iteFile

& Outerl¡op
jn Start

fin: cmp Smalllnnerloop,O

jz rtn

mov dx,Smalllnnerlnop

-A69-

mov Innut oopdx

mov outeft¡op,lh
mov Smalllnnerloop,O

jmp slart

/*P¡oceedure SetPointer sets úre file pointer tro location FilelOffserlligh;FilelOffsetlow with respect to he
starl of f-¡le referenced by FileHandlel, which is the sou¡ce file. + |
SetPointer: mov ax,4200h Fah = 42h is the function number *l

mov bx¡ileHandlel Êal = 0 pt¡ offæt staf of file

mov cx,FilelOffsetlligh /*Most signific¿nt half of offset

mov dxFilelOffseü.ow ÊLeåst significant half of offset

int 2lh
jnc Retxm

ret

rel

fcarry=lmeansenor
f place enor code hereEron

Return:

/*Proceedure \{riteFile writes Inne¡Loop bytes located at RAM ad&ess StafofDâta to disk refened to by

Filellandle2, which is the destination file.*/

ÌVriteFile: mov ah,40h

mov bx,FileHandle2

mov cxJnnerloop

int zlh
jc \YriteEÍor

fet

\ryriþ.Enon rel

fWrite function number */

mov dx,WORD PTR StârtofDâtâ Êdx is the lst RAM adúess

ÊProceedure ReadFile reads Innerloop bytes from file refe¡enced by FileHandlel to RAM stffdng at

location St¡rtofData, *l

ReådFile:

^\ryriæ
Innerloop bytes of datâ !o disk

ÊC=l means enor.

/*Retum to calling progam.

ÊPlace eÍor code herc.

ah,3fh ÊRead function numbe¡

bx, FileHandlel ÊFile[Iandlel ¡eferenc¡s source file.

dx,WORD IrIR StartofData /*Offset of frsr RAM location.

cx,lnnerLoop fRead Inne¡t¡op bytes from file.

zth
ReadEno¡ f1 means error: ax hæ enor c¡de,

/*Return tro calling program,

FPlac€ enor code here.

ÊEnd asm ¡outine

/*End Function Copy,

-470-

mov

mov

mov

mov

int
jc

ret

ret

)

ReadEnor:

/*Function LongToShon conve¡ts a 32 bit unsigned long integer to two 16 bit short inægers. FileOffset =

FileOffsetHigh;FileOffse¡Low. + |

void LongToShort(

t

eÍorcode:

rtn:

unsigned int long

unsigned ¡nt

unsigned int

sl,sl

didi

si,WORD PTR FileOffset

di,Vr'ORD PTR FileOffætlow

ax,[si]

ldil,ax

di,\YORD PTR FileoffsetHigh

ax,[si+2]

ldil,ax

iFileOffset,
*FileOffsetLow,
ûFileOffsetHigh

{
xor

xor

mov

mov

mov

mov

mov

mov

mov

)

]

/*Function GetSizeOfFile returns a 32 bit size of file Fllehandle. This function calls DOS interrupt 2l
function 42h. This DOS routine moves the fite pointer by cx:dx times relative to (specified by register al)

fhe start of the file, the cu¡rent file pointer posidon, or the end of the file. If the ¡outine is successful, the

new file pointer position is retumed in registers dx:ax relative to the staning of the file. By specifying

moving the fìle pointer relative to the end of the fìle by 0 times, then dx:ax achially returns úe size of the

file.

uDsigned long

{
unsigned long int

unsigned long int

asm {
mov

mov

mov

mov

mov

int
jnc

jmp

nop

mov

di,WORD PTR SizeFile

int GetSizeOfFile(int FileHandle)

SizeofFile = 0;

*SizeFile = &SizeofFile;

axA2A2h

bx,FileHandle

cx,0

dx,o

2th
rfn

e¡¡orc¡de

ldil,ax

/*ah = 42h is the function number */

/*al=02 speci{ies moving ¡eLal.ive to EOF, *l

/*Most significant half of offset=0. '*l

/fl-east significant half of offset=0. *l

l*Cany = l me¿ns enor. +l

ÊPlace eno¡ code here. *l

/*Load least significant 16 bit size firsL +l

-¡^71 -

inc di

inc di

mov tdildx /*Most. significant 16 bit size. +l

\ l*End æm routine. *l

retum Size¡fFile;

I l*End function GuSizeofFile. *l
/*Funcfion Insert copies 32 bit Insertsize bytes from file FileHandlel starting from

FilelOffsetHigh:FllelOffsetlow from file FileHandlel and inserfs these bytes o FileHandle2Bak at

location File2OffsetHigh:Flle2Offsetlow. The size of hle FileHandle2Bak increases by Insertsize bytes.

BytÊsHigh:Byteslow 32 bit unsigned size ofbytes !o copy.

Filellandlel Handle which refe¡ences the souc€ file.

FilelOffsetHigh:FllelOffsetlow 32 bit offset of souÎc€ fl¡le.

FileHanclle2 Handle which ¡eferences the de¡tination file.

Filellanclle2Bak Backup of file refened to by FlleHandle2.

File2OffseiHigh:Flle2OffæiLow 32 bit offset of desrination hle. t'l

void Insert(int Fil€Handlel,
unsigned int Fileloffsetl-ow,
unsigned int File lOffsetHigh,
unsigned long int InsertSize,
int FileHandle2,
unsigned int File2Offsetlow,
unsigned int File2O ffsetH igh,

int FileHandle2Bak)

{
extern unsigned long inl. filesize;

unsigned long int File2offseq

unsigned long int File3offseq

unsignedint InsertSizelow,Inse¡tSizeHigh,;

unsignedint File3Offsetl-ow,File3Offsetlligh;

Copy(FileHandle2, (unsigned int)0, (unsigned int)O, FileHandle2Bak, (unsigned int)0, (unsigned int)0,

File2Offsetlow, File2Offsetlligh);

LongToShort(&InsertSize, &InsertSizelow, &InsertSizeHigh);

Copy(FileHandlel, (unsigned int)O, (unsigned int)0, FileHandle2Bak, File2offsetl-ow+ 1,

File2OffsetHigh, Insert Sizel¡w, InsetsizeHigh);

File2offset= (unsigned long int)Fite2Offsetlow + (unsigned long int)File2OffseiHigh*65535;

-472-

File3Offset = File2offset + InsenSize;

LongToshof(&File3offset, &File3Offsetlow, &File3Offsetlligh);

InærtSize = filesize/((unsigned long int)2) - InsenSize;

InngToShon(&lnsertSize, &lnsertSizetnw, &InsertSizeHigh);

Copy(FileHardle2, File2OfÏsetl-ow, Fite2Offsetlligh, FileHandle3, File3Offsetlow, File3OffseiHigh,

InsenSizel¡w, InsenSizeHigh);

l fEnd function Inserl 'xl

-473-

A,2,6 Graphics

#include <graph.Þ

#include <stdio.h>

#include <process.Þ

struct videoconfig myscreen;

void PlotData(int FileH.andle, unsigned int Fileoffset_Low, unsigned int Fileoffset_High,

int Byte-Size, unsigned char *StartofData ù¡signed châr *Dara, unsigned long int FileOffset);

void PrintGrahicsTex(int Row, int Col,char *Add¡_Text);

void DrawRectangle(int FillFlag, int xl, int yl, int x2, int y2);
void CleaiTextline(int Row, int Col, int Spacas);
void SetFilePointer(int Filellandle, int Lowoffset, int HighOffset);
void FiletoRAM(int FileHandle, int HighByte^s, int LowBytes, int RAMAddress):

void DrawOscilliscope(void;

void DrawPlotmenulcon(void);

void PrintNumberPlayPages(unsigned int Outerloop);

void Drawline(int xl, int yl, int x2, int y2, int Color);

void grapbics_mode(void)
{
_getvideoconlìg(&myscreen);

swiæh(myscreen.adapær)

{
case _CGA:

_setYideomode(_HRESBW);

break;

c¿se _ocGA:

-setvideomode(_ORESCOLOR);

brcak;

c¿se _EGA:

case -OEGA:
if(myscreen.monit-rcr: _MONO)

_setvideom ode(ERESNOCOLOR);

_setvideomode(_ERESCOLOR);

b¡e¿k;

c¿se _VGA:

case _OVGA:

case_MCCA:

_sewideomode(_VRES2COLOR);

break;

-474-

case _HGC:

_se¿videomode(_HERCMONO);

b¡eåk

defaulr

printf("This program requires a CGA, EGA, VGA, or Hercules cardrn");

exi(0);

]
_getvideoconfi g(&mysc¡e€n);

)

void Drawline(int xl, int yl, int x2, int y2, int Color)

t
int Prevcolor = _getcoloroi

_setcolor(Color):

_moveto(xl, y1);

_lineo(x2, y2);

-sercolor(
PrevColor);

)

vo¡d Pr¡ntNumberPlayPages(unsigned ¡nt Outerloop)

{

_settextposition(23,14);

-outtext(" ");

_settextposition(23,14);
printf("Vod", Outerloop);

]

void DrawPlotmenulcon(void)

t
unsigned char RightArow[= (ûxla, 0];
unsigned char LeftAnow[= { Oxlb, 0);

_rectangle(_GBORDER, I 0, 1 60,620, 170);

_rertangleLGBORDER,T0, 174, 100, 1 84);

_seuexÞosition(23,1 I);

-outt6xt(
LeftAÍow);

_rectr¡gleLcBORDER,130,174,160,184);

_settex tpos ition (23,19);

_out!ex(RightAÍow);

-r'.75-

_reÆta¡gle(_GBORDER,l00, I 74, I 30,184);

_setfÊxÞosiLion(23,14);

-outtext("l");

-rectrngle(-GBORDER, 10,1 74,70, I 84);

-settexÞosition(23,4)i

-outtext("Play");

_rectangle(_GBORDER200, 174250,184);

-settextposition(
23,27);

_outtex("copy");

_rectangleLGBORDER,260, 174,3 10,1 84);

_seÍexrposirion(23,35);

_outtext("Cuf');

_rectångleLGBORDER, 320, l?4,380, 1 84);

_settexÞosition(23,42);

_outrex("Paste");

_rectangleLcBORDER, 560, 174,620,184);

-settexÞosition(
23,73)i

-outtext("Main");

)

Yoid Draw Os c ill iscope (void)

{
int i, j;

_rertangle(_GBORDER, 15,0,630,129)i
fo(j =2; j <= 122; j = j + 20)

{
for (i=12; i <=18; i++)

t
_setpixel(ij);

_setpixel(i+615j);
)

)
_settexÞosition(18,33)t

_outtext("Time (se€onds)");

-senexÞosition(
1,0);

-476-

printf('s\n h \nA\¡m\nphlntut\ru\ñreh \n \r \r0");

)

void PlotData(int FileHandle, unsigned int F¡leOffset_Low,

unsigned int FileOffset_High, ¡nt Byt€_Size,

unsigned char *StartofData, unsigned char *Data,

unsigned long int FileOffset

t
intj=20,i'
SetFilePoinæ(FileHandle, Fileoffset_Low, FileOffset_High);
DumpFiletoRAM(FileHandle, 0, Byre_Size, (int)SrârtofData);

_setviewport(0,0,620,1 99);
for(i = 0; i <= 599; i+r)
{

j= j+ t;
setpixel(j, ((unsigned int)(*(Data + i)))P);

)

-settextposition(
18,2);

_out¡exf.(" ");

_settextposition(18,2);
printf("7o.31', (double)(Fileoffseffi 192.0);

-settextposition(l8J3);

-outlext(" ");

_settextposilion(18,73);
printf("70.3f', (double)@ileOffset)/8192.0 + .073);

)

void ClearT€xtline(int Row, int Col ,int Spaces)

t
int i;

for(i = 0; i < Spaces; i++)

{

_settextposition(Row, Col + i);

-outtex(
" ");

l
]

void ClearGraphicsScreen(int ViewPortFlag,int xl,int yl,int x2,int y2)

t
_setviewport(xl,y 1,x2,y2);

_clearscreen(ViewPortFlag); ÊViewPortFlag=1=_GvIEwPORT*/

-477_

)

Yoid

{

DråwRectangle(int FiuFlag,int xl,int yl,int xz,iÛt yZJ

_setviewpo(0,0,620,199);

-rectângle(FillFlag tl,y I,x2,y2); l* filFlag=3=fdl interior*/

]
void PrintGrahicsText(¡nt Row, int Col, char *Addr_Text)
t

_set¡extposi tion(Row, Col);

_ouftex(Addr_Text);

)

-é.78-

L,2.7 Mouse

This se¿tion lists fhe functions associated with the mouse. Figure Ml shows a typical sequence of
events in a mouse polling routine.

Figure A.l: Mouse polling routine. 1) Reset the Mouse,2) Show the Mouse, 3) Vy'ait for left mouse

button down, ttren check whether mouse is in hot position,4) If in hot position, wait. for mouse bul.ton

up, then check again whefher mouse is in same hot position, and 4) If in same hot position, then process

mouse seleÆtion, else staÍ the polling rourine at 1).

Hot Position

ln Hot
Position?

Left Mouse
Button Up?

Process The Mouse Selection

-479-

int ResetMouse(Yoid)

{

_asm {
xor ax,ax

int 33h

) /*end asm routile.

/*end fu nction ReseMouse.

int ShowMouse(void)

t
_asm {

mov ax,l

int 33h

]
)

/+end asm routine.

Êend function Show mouse.

/*Function Get Mouse Position And Button Status

The GeMousePositionAndButtonstatus function retums the address of an aray containing the

mouse position in x,y coordinates,

Mouselnfo: a poinær to fhe mouse information array,

Mouselnfo[O-l] contains the x and y coordinat€s of the Mouse.

Mouselnfo[2] contains the Button Slatus:

Mouselnfol2] = I t€ft button is down

=2 Right butlon is down

= 3 Centre buüon is down

WaitFlag: a flag instructing the function o wait for a specific Mouse event and flìen retum.

WaitFlag = 0 Wait until a Mouse button is releås€d.

= I Wait until the left button is pressed.

= 2 Wait until the right button is pressed.

= -l Do not r ait, retum with position and status. '.1

-A80-

void GetMousePosit¡onAndB uttonStatus(int *Mouselnfo, int WaitFlag)
{

_asm {
PollMouse: mov di,Mouselnfo

mov ax,3

int 33h

mov [di],cx

inc di

inc di

mov tdildx
inc di

inc di

mov tdilÞx

f x coordinatp

Ê y coordinate

/* Mouse press stâtus

cmp WailFlag,bx Ê\Yait for spe¡ified Mouse event

je Reum

jmp PollMouse

) /*end asm ¡outine.

Êend fu¡ction

Retum:

)

/*GetMouseSele¡tion polls the mouse for a selection (t eft Mous€ Click) of a pre-specified (Hotboxes

array) Item. The caller specifies the 'hot' rec tangle,s and tie numbsr of hot rertangles. Hotboxes poins to

an aray containing NumbcrHotBoxes of xl,y1,x2,y2 coordinates of tle hot rectangles.

The coordinates must be in the format shown in Figure A.l:

xl, yl

Hot Box

'x2,y2

Fig 4.2 Mouse hot box coordinate specification.

int GetMouseSelection(int *HotBoxes, int NumberHotBoxes)

{
int Mouselnfo[3], Temp[3], i, j;

-481 -

while(I) /*infinitÞ loop. The¡e is an exit.

t
GetMousePositionA¡dButtrcnStatus(&Mouselnfo[0], 1);

for(i = 0; i <= NumberHotSoxes - l; i++)

t

if((Mouselnfol0] >= *(HotBoxes + 4*i)) &
(Mouselnfo[O] <= '*(HotBoxæ + 2 + 4*i))&
(Mouselnfoll] >= 'i(HotBoxes + I + 4*i))&
(Mouselnfo[] <= *(HstBoxes + 3 + 4*i)))

{
CeMousePositionA¡dButtonstatus(&Mouselnfo[0], 0);

if((Mouselnfo[O] >= *(HotBoxes + 4*i)) &
(Mouselnfol0] <= *(HotBoxes + 2 + 4*D)&
(Mouselnfo[l] >= '*(HorBoxes + I + 4*i))&
(Mouselnfo[l] <= *(HotBoxes + 3 + 4*i)))

{
retum i + 1; l*retur to caller with solection. t*l

) Êend if' *l

Êend if.

Êend for.

Êend while.

ñend function.

-482-

4,2,8 Memory

Function Prototypes

int Allocat€Memory(int Paragraphs);

int Releas€Memory(int Buffer)i

Allocate Memory Function

The Allocaæ Memory function provides a method of dynamically reserving memory in the RAM

system. The main motivation for using dynamic memory allocation is t,o inc¡ease the capacity of the

crmpiler and o improve memory usâge eff¡ciency,

Dynamic memory allocation improves the effìciency of local va¡iables. Inside a C function, an

object (for example, single variables, arrays, or sEuctures) may only be needed for a short time or

intemitfently through the course of the function execution. Moreover, the size of va¡iables required by a

function may be larger than the maximum size set by the compiler, The Miuosoft Quick C compile¡

allows for a maximum 32K storage of variables per function. To overcome bot¡ of the above problems,

the idea is to bypass the high level language and request memory f¡om the operating system itself. After

the va¡iable's usefulness, the allocated memory ca¡ be released for use by other variables. Thus, the RAM

system is used more efficiently and the size limitation of the compiler is virtually exceeded.

For assembly language programmers, the memory allocation concept is perhaps more import¿nl A

well behaved program should never assume that some areå in RAM is not being used. There may be other

resident programs working in the background and using that memory. Therefore, it is a wise choice to

request memory from the operating system whenever system RAM is uæd.

While C has a library of memory allocation routines, I found that by using BIOS to write my own

allocation functions, I had more control of the memory system, To allocate memory call the function

AllocateMemory with the amount of memory specified through the parameter Paragraphs. A Paragraph is

16 bytes of memory. For example, to allocâre 8192 (8K) byles of memory, pass the integer 512 to the

function, AllocateMemory. If the function is successful, it. retums the segment add¡ess of the requested

block of memory. The block of re4uested memory is contiguous.

Call BIOS int 2Ih rüitb the follow¡ng registers:

ah 48h

bx number of requested paragraphs

BIOS returns with the follorving

If the call is successful,

Carry Flag

r€gisters:

cle¿¡

483

ax segment address of tle alloc¿æd block

and the add¡ess of t¡e allocated block is ax:0000, or as shown in the code below, BufSeg:0000.

If lhe call is unsuccessful,

Carry Flag set

ax Error Code

bx size in paragraphs of the lârgest availåble block

Error Codes: Ð(07h memory conEol blocks destroyed

08h insufficient memory

Notes: If the BIOS call fails, the program can try allocating a number of blocks of size specified by

register bx and still, perhaps, get the same size of memory originally requested. However, ¡he allocated

memory would not be contiguous.

The default allocation slrategy of DOS is o choose the 'fi¡st fif. This stmtegy may be changed

using BIOS int 21h function 58h[].

The allocated block may be released using BIOS int 2lh function 49h.

int Al¡ocat€Memory(int Paragraphs)

t
int BufSeg;

_asm {
allocatemem: mov ah,48h /*allocate memory block function number +/

mov bxlaragraphs fPa¡ag¡aphs*16 = Bylas re4uested */

int 21h

jc EnorAllocare l*If Carry Flag set, go to er¡or code '*l

mov Bußeg,ax /*save segment ofnew block *l
j mp Reu¡rn

EnorAllocate: mov ErrorFlag,-l ÊPlace e¡ror code here * |
Return: EnorFlag

] l*End asm stâtement +l

retumBufseg; fRetum eitier segment or error code */

I fEnd function AllocareMemory 4.1

-A84-

Release Memory Function

The Release Memory function is the companion of the above allocate memory function. This

function f¡ees a memory block for subsequent reùse by other programs. The funcl.ion expects through irs

inæger type parameter the segment address of the memory block tro be rele¿sed, The function returns an

integer indicating tie success or faitu¡e of the call. Internally, lie function calls BIOS in[21h function

49hl

Call BIOS int 21h with
ah

es segrnent address of block to be releas€d

registers¡BIOS returns with the following

If the call is successful,

CarryFlag clear

If the call is unsuccesful,

Carry Flag set

ax Enor Code

ax 07h memory conEol blocks desEoyed

09h invalid memory block address

This function assumes the segment address passed to it is a valid memory block

previously allocaæd. Care should be exercised as not all invalid block addresses are delected.

the following registersi

49h

Error Codes:

No te s:

int ReleaseMemory(

t
int Code;

_asm {
freememory: mov

push

mov

int
jc

mov

pop

jmp

Fre€MemError:mov

pop

Retum:

)
retum Codei

]

int Buffer)

ah,49h

es

es,Buffe¡

2th
FreeMemEnor

Code,ax

es

Return

Code,ax

es

nop

Êfree memory block function number

ÊRemember the current es

fsegment of block !o be ¡eleased

/*Enor if Carry Flag is set

ÊSuccess code

/*Recall the previous es

ÊFailu¡e code

/*Recall the previous es

/*End asm stâtement

ÊRetum either suc¡qss or enor code

ÊEnd function Alloc¡teMemory

-485-

4,2.10 Data Conversion

#include<menu.h>

#include<graph. h>

#include<string.h>

#include<malloc.h>

#include<s tdlib. h>

#include<þrotyp3,Þ

int SubMenuCodeData(void)

t
int retl, Flagi

struct ITEM ml[=
{

/* Highlight Char Pos ìk /
5, "From ADPCM to PCM", l* A 0 tkl

5, "From PCM to ADPCM', lì* P 0 *l
0, "Other", l* O 0 +/

0,0

);
ClearBox(4,35,9,54,5, l);
retl = Menu(4, 33, ml, 0);

switch(retl)

{
case ESC: return ESC;

case U_RT: Cle¿¡Textwindow(2,10,10,4?,_TBLUE); ¡erum U_RT;

case U_LT: ClearTextWindow(2,10,10,47-TBLUE); rerum U_LT;

case 0 : Flag = Convert-ADPCM-FCM(); retum ESC;

case I : Flag = Convert-PCM-ADPCM(); ¡etl]ITt ESC;

case 2 : break;

)

]

¡nt ConveÌt_ADPCM_PCM(void)

{
extem unsigned long int filesize;

extem unsigned long int FileSize[10];

extem unsigned int SizeOfFile[20];

extem unsigned int FileSizelow;

extem unsigned int FileSizeHigh;

struct ITEM m1[10];

-A86-

int FHandleRead, FH.andlelvrite, Flag, rerl;

cha¡ FNameRead[100], FNamewrirel 100];
cha¡ *Addr_FNameRead

= &FNameRead[0];

char *Add¡_FNamewrire
= &FNamelvritel 0];

cha¡ Heade¡[35];

unsigned char Accesscode = Read_Write;

strcpy(Headø, "Choose a fiIe fo¡ conversion:"); fstrings derlared as "stríng"*/

srcpy(Addr_FNameRead, "c\þ2\\ken\\chles\\'); Êare automaticaly NULL * I
srcpy(Addr_FNameWriæ, "c\c2\\en\kfïæ\\')f terminated + I
Box(10,10,10,60);

_settextposition(I128);
_setlextcolor(_TBLACK);

_out¡ex(Heåder);

Flag = 6stFiles.¡ection(ml, I);
switch(Flag)

{
case ESC: retun ESC;

defaulc breåk;

)
retl = Menu(12, 15, m1,0);

switch(retl)

{
case ESC: retum ESC;

case U_RT: CleårTextWindow(2,10,10,47,_TBLUE); ¡eturn U_RT;

case U_LT: ClearTextWindow(2,10,10,47-TBLUE); retum U_LT;

default:

strcpy((Addr_FNameRead +18), m 1[retl].achlæm);

sFspy((Addr_FNamewrite +18), ml lretl].achltem);

s rcpy((Addr_FNameWrite + strlen(Addr_FNamelVriæ)-3),"pcm");

filesize = FileSize[retl] ;

FileSizelow = SizeOfFilel2tret1];

FileSizeHigh = SizeOfFile[2*retl + 1];

breålç

)

FHandleRead = OpenFile(Addr_FNameReåd, AccessCode);

FHandleWrite = C¡eateAndopenFile(Addr_FNamelvritÊ, Accesfode);
ADPCMToPCM(FHandleRead, FTlandlewrire);

closefl e(FHandleRead);
closefr { FHande\ryrite)i

]

-A.87-

int Convert_PCM_ADPCM(void)

{
exte¡n unsigned long int filesize;

exte.rn unsigned long int Filesize[];

extern unsigned int SizeOfFile[i

extern unsigned int FileSizelow;

extem unsigned int FileSizeHigh;

st¡uct ITEM ml[10];

int FHandleReåd, FHandlelvrite, Flag, retl;

char FNameRead[100], FNamewrirel 100]i
char *Addr_FNameRead

= &FNameRead[0];

cha¡ *Add¡_FNameWrite
= &FName\Y¡iæ[0];

cha¡ Heade¡[30];

ursigned char AccessCode = Re¿d_Write;

sEcpy(Heåder, "Choose a fïle fo¡ conversion:");

strcpy(Addr_FNameRead, "c:\þ2\\ken\bf iles\\');

strcpy(Addr_FNam ettrrite, "c\c2rven\\cf iles\\');

Box(10,10,10,60);

_settextposition(11,28);

_set¡extcolor(_TBLACK);

_outtext(Heåder);
Flag = 6stl¡i1es.¡ection(m1, 0);

swirch(Flag)

{
case ESC: reÍÌrn ESC;

defaull b¡eak;

)
retl = Menu(\2, 15, m1, 0);

swirch(retl)

{
case ESC: retum ESC;

case U_RT: ClearTextWindow(2,10,10,47,_TBLUE); retum U_RT;

case U_LT: ClearTexrwindow(2,10,10,47-TBLUE); retum U_LT;

defaulu strcpy((Addr_FNameRead + 1 8), m I Fe[l].achltem);

srcpy((Addr_FNameWrite +18), m1lretl].acliltem);

strcpy(Addr_FNamewrilÊ + sElen(Addr_FNamewrite)-3),"âdm");

fdesize = FileSize[rerl];

FileSizeLow = SizeOfFile[2*ret1ii

FileSizeHigh = Size0fFile[2*¡etl + l];
b¡eak;

)

-488-

FFIandleRead = OpenFile(Add¡_FNameRead, Ac{€ssCodo);

FHandlewrite = Cr€leAndOpenFile(Addr_FName\ryrib, Accescodo);

PCMToADPCM(FHandleReâd, FHandlelvrite);

closefirle(FHandleRead);
closef e(FHandleWri t€);

)

/*PCMIoADPCM function converts ADPCM formatted data to PCM formarkd dârâ. The file pointed ro

by FHandle¡e¿d is converted to PCM format and saved in the file pointed to by FHandlewrite.*/

void PCMToADPCM(int FHandleRead, int FHandleWrite)

{
extem unsigned in! FileSizelow;

extem ì.¡nsigned int FileSizeHigh;

unsigned int bytes = 8192;

unsigned int bytesdiv2i

unsigned int BlockCount;

unsigned char PCMDara[8 I 92] , ADPCMData[4096] ;

unsigned char *Addr_ADPCM
= &ADPCMData[0]:

unsigned char tAdd¡_PCM
= &PCMData[Oì;

unsigned châr Xl;
unsigned char X2;

unsigned char Poslookup[256] ;

unsigned char NeglnokUp[256] ;

unsigned char Multiplier;

bytesdiv2 = bytesp;

BlockCount = FileSizet ow/bytqs + (short)((longxFileSizeHigh*65536)/bytes);

_asm {
call t¡okupTablelnit

rcåd_PCM: c¿ll reåd_PCM_f ile

IniliâIization: mov cx,bytes /*cx counts number of ADPCM bytas */

mov Multiplier,lh

mov di,lVORD PIR Addr_ADPCM Êdi=address of ADPCM 4 /
mov si,WORD PTR Add¡_PCM Êsource index = add¡ess of PCM +<l

xor ax,ax

xor bx,bx

convert: mov bl,tsil

mov Xl,bl
inc si

mov al,tsil

/*bl = Xl

l+al = X2

-489-

push si

mov Xz,al

cmp al,bl

jb dæcendingl

sub al,bl

f remember si

Êal - bl: X2 -Xl

/*al=al-bl=X2-Xl

ascendingl: mov si,ax

mov dl,Posl-ookUpþil ÊGet new multiplier,

mul Multiplier fax = Multiplie(al)

mov Multiplier,dl

cmp al,1h l*al - 7
jb Notctippingl

mov al,7h

NotClippingl: mov tdil,al /*Store firsl nibble.

jmp nextnibble

descendingl: sub bl,al /*bl = bl - al

mov al,bl ÊSwap accumulators.

mov si,ax

mov dlNeel,ookUplsil /*Get new multiplier.

mul Multiplier /*ax = Multiplier(al)

mov Multiplierdl

cmp al,7h /*a1-7
jb NotClipping2

mov al,07h

NotClipping2: or al,8h ÊShow descending characte¡.

mov ldil,al /*Store fúst nibble.

nextnibble: pop si

mov bl,[si]

mov Xl,bl
inc si

mov al,[si]

push si

mov X2,al

cmp al,bl

jb descending2

sub al,bl

fbl = Xl

/*al = X2

f remember si

/*al - bl: X2 -Xl

/*al=al-bl=x2-xl

ascending2: mov si,ax

mov dl,PoslookUpþil /*Get new multiplie¡,

-490-

mul

mov

cmp

jb

mov

NotClipping3: shl

shl

shl

shl

or

j,np

convertl: jmp

descending2: sub

mov

mov

mov

mul

m0v

cmp

jb

mov

NotClipping4: shl

shl

shl

shl

or

ol

looper: inc

pop

loop

Multiplier

Multiplierdl

al,7h

NotClipping3

al,7h

al,1

al,I

aI,I

al,l

tdilsl
looper

convert

bl,al

al,bl

si,ax

dl,NeglookUpþil

Multiplier

Multiplier,dl

al,7h

Notclipping4

al,07h

al,I

al,1

al,1

al,I

al,80h

tdil¡l
di

si

convertl

Write_PCM_file

Blockcount

rtn

read_PCM

fax = Multiplier(al)

Ì*al -7

/*S¡ore second nibble.

/*bl=bl-al
f Swap accumulators.

ÊGet new multiplier.

/*ax = Multiplie(al)

l*al -7

ÊShow descending characær.

/*S¡ore se¡ond nibble.

/*re¡¿ll si

Wrire_PcM: call

&c
je

jmp

/¡** * 'i(**'l** *****ir* * + * * * ******'*:¡.* * 'r** *** * * **** * * * * *{¡* * ¡* r' **** * * *:r ¡r¡i*** ** * **+*** * ***+***tr*/

IookUpTablelnit:mov PoslookUp[0],0

mov PoslookUp[],0

mov PoslookUp[2],1

mov Poslookup[3],1

-491 -

mov PoslookUp[4],1

mov Poslookup[5],2

mov Poslookup[6],2

mov PoslookUp[7],3

mov Neel¡okUp[O] ,8

mov Negl-ookUp[1],8

mov NeglookUp[2],9

mov Neglookup[3],9

mov NeglookUp[4],9

mov NegLookup[Sj,Oatt

mov NeglnokUp[6],0ah

mov Neglookupl7],0bh

ret

/l¡i f'i't*x(**¡+** ***d.1.:¡:i(:i:i(*¡*¡i'1.**t<r<*t<****t<* * ** * r¡*****r(r¡*:*******:*:i(:¡¡¡***¡* **¡**{<¡k***r(*** * **** *.r(/

/:i(li
* * l(*'t***** * +.r** * * * * ** * * +****i. + + **** * * * * ** * * * * * ¡r:r+***ri*:* ¡i ¡* ¡i:r¡it* * * * *+ ** + * ** + * ** r' ** **r¡/

read_PCM_hle: mov ah,3fh Êread function number

mov bxfHandleRead /*handle to fúe C\c2\ken*.pcm */

mov dx,WORD PTR Add¡_PCM Êadd¡ess of RAM for file dump

mov cx,bytes freåd bytes from file *.pcm

int 21h

jc readenor /*C = I eÍor
ret freturn to câller

rca&¡roc r€t Êplace read file eno¡ c¡de here

/***** **** ***rt****t't(** +*** * **** *:*:ir ¡* ¡t ¡¡(t<*r(iri(*{r ¡** * * * ** ** ****** * *:t,*,i* * * *:Í:i(*¡* ¡* ¡t*,r *

/****¡*:¡ * t,** * * **** * ********** * *** *** * *{. *** * r,****:¡*** * ** * * *****r! ¡} ¡i**¡f** * **** * ****** * * * ** /

lVrite_PCM_file:mov ah,40h /*write function numbe¡

mov bx,F'HandleWriæ

mov dx,WORD PIR Addr_ADPCM

mov cx,bytesdiv2

int 21h

jc wriæeror

r€¿

writeenon ret

/*+*****{¡*******¡*******t * * ***** ** ¡* ¡i*r(d(¡* ¡*:*
'*t<*

* * * {. * ********* * * {. *+ ** * * * **** **** * ** * * *** **/

Êend asm

free(Adrlr_PcM);

free(Addr_ADPCM)i

] fend function

-¡.92-

/*offset of lst RAM location *'l

fwriæ b¡esdiv2 daø to disk *l

f c =c I means errot */

Êplace wriæ file enor code here +/

/*ADItMtoPCM function conve¡ts ADPCM formatted data to PCM formatted datâ. The file pointed !c

by FHandleread is converted to PCM format and saved in the fúe point€d to by FHandlewrite. * /
void ADPCMToPCM(int FHandleRead, int FHândle\ryr¡te)

t
extern unsigned int FileSizelow;

extern unsigned int FileSizeHigh;

unsigned int Xn = 0x0200;

unsigned int Temp = 0x0200;

unsignedcharM=0x00;

unsigned char PCM[8 192], ADPCM[4096];

unsigned char *Addr_ADPCM = &ADPCM[O];

unsigned char *Addr_PCM
= &PCM[O];

unsþed cha: PosQuantstepsizeTablel8l = { '0',0,1,1,12,2,3 J;

unsigned char NegQuantsrepsizeTable[8] = ('0',0,1,1,1,2,2,3];
int BlockCount = FileSizeLow/4096 + FileSizeHigh* 16;

-asm t
mov PosQuantStepSizeTablel0],0

mov NegQuantStepSizeTable[0],0

reåd-ADPCM' mov

mov

mov

mov

int
jnc

jmp

Initializalion: mov

continue:

ah,3fh

cx,4096

zlh
Initialization

Ín

Êread function number 'tl
bx¡HândleRead

dx,WORD PIR Addr_ADPCM /*offset of lst RAM locarion

fregd bytes ftom file FHandleRe¿d

/*C=1 ERROR

cxA096 /*cx counts number of ADPCM bytes

mov di,lVORD PfR Addr_PCM f di = address of PCM

mov si,WORD PTR Addr_ADPCM f si = address of ADPCM

push si

mov bx,WORD PTR Xn Ê lst PCM byte is assumed to be 0x80

pop si

mov al,[si]

mov dl,al

inc si

push si

ard al,Ofh

test al,08h

jz add-nib-l

/*al is working register

fdl is æmporary storage

/*point. to next adpcm byte

/*al=Dm and test sign bit

/+test sign bit

¡'93

Jmp sub_nib-l

sub-nib-l: a¡d al,07h /*remove tïe sign bit
xo¡ ah,ah

mov si,ax

mul M
mov bx,Temp

sub bx,ax /*Xn+l = Xn - Dm

mov alNeeQuåntstepsizeTable[si]

mov M,al
jnc notclippingl

mov bx,0080h

notclippingl: mov Temp,bx

sh¡ bx,1

shr bx,l
mov ldil,bl /*bl contains Xn = Xn+l
inc dt l*inc¡ement the destinâtion pointer

jmp nxt_nibble

acü_nib_l: and a1,07

xo¡ ah,ah

mov si,ax

mul M

mov bx,Temp

dd bx,ax /*Xn+l = Xn - Dm

mov al,PosQuantSæpSizeTablelsil

mov M,al

jnc notclipping3

mov bt,80h

notclipping3: mov Temp,bx

shr bx,l
sh¡ bx,l

mov tdil,bl /*bl contains Xn = Xn+l

inc dt /*increment the destination pointer

jmp nxt_nibble

/*al gets the next nibble

/*shift the next nibble into al

/*test the sign of th nibble

-¡.94-

mov al,dl

shr al,l
sh¡ al,l

shr al,l
sh¡ al,l
test al,08h

nxt nibble:

jz add_nib_2

jmp sub_nib_2

cont: jmp continue

sub_nib_2: and al,07h

xor ah,ah

mov si,ax

mul M

mov bx,Temp

sub bx,ax /*Xn+l = Xn - Dm

mov alJ,,legQuantSæpSizeTablelsil

mov M,al

jnc notclipping2

mov bl,80h

notclipping2: mov

sh¡

shr

mov

inc

Temp,bx

bx,1

bx,1

tdil,bl

di

cont

Xn,bl

W¡ire_PCM

/*bl contains Xn = Xn+1

/*increment the destination pointer

loop

mov

jmp

add_nib_2: and a1,07

xor ah,ah

mov si,ax

mul M

mov bx,Temp

d bx,ax fXn+l = Xn - Dm

mov al,PosQuantSæpSizeTablefsi]

mov M,al

jnc notclipping4

mov bl,80h

notclipping4: mov Temp,bx

sh¡ bx,l
sfu bx,l

mov tdil,bl /*bl conøins Xn = Xn+l
inc di l*increment the destination poinær

loop

-Ags-

mov Xn,bl

Wrire_PCM: mov ah,40h Êwrite function number *l

mov bx"F'HandleWriæ Êc\c2rkenbdcm.dat */

mov dx,WORD t/tR Add¡_PCM Êdx=offset of lst ram byte *l
mov cx,8l92 /*writ€ 8k byt€s !o disk *l
int zLh
jc rtn Êc=l enor +/

& lBlockCount]
je rln

jmp rcad_ADPCM

rt¡: nop

)

)

-1.96-

4.2.10 Miscellaneous

Serial Port Initialization Function

void initl152(void);

void ¡nit11520

{

_asm {
mov al,80h ;dlab=l gives access

mov dx,03fbh ;to divisor latch r.

out dx"al

mov al,0lh ;set baud for 115.2k

mov dx,03f8h ;lsb=l
out dx,al

& al ;msb=0

inc &
out dx,al

mov a1,0000001lb ;config lcr for 1

mov dx,O3fbh ;stop,no paÌity, and

out dx,al ;datâ reg access

)

)

Math Functions

unsigned long int Abslong(long int Numberl, long int Numbe¿);

doublePower(double NurnbeiToBeRaised, double power);

#include <math.h>

#include <float.h>

#include <stdlib.h>

unsígned long int Abslong(long int Numberl, long int Number2)

{
retum lâbs(Numb€rl - Number2);

]

double Power(double NumberToBeRaised, doulrle power)
{

retum pow(NumberToBeRaised, power);

-497-

)

Screen Functions

/* Clea¡Box - Clears portion of screen with specified fill afiibute.

;*

;* Shows: BIOS Inter¡upt - 10h, Function 7 (Scroll down)

;*

;* Parans; atfr - Fill attribute

;* rowl - Top screen row of clea¡ed section

;* coll - Iæft column of cleared section

;* row2 - Botùcm scre€n ¡ow of cleared section

;* col2 - Right column of clea¡ed section

;*

;* Retun: None

void Cleå-rBox(int rowl, int coll, int row2, int col2, int lns, int attr);

void ClearBox(int rowl, int coll, int row2, ¡nt col2, ¡nt lns, int attr)
{

_asm {
mov ah,07h ; Sc¡oll service

mov al, BYTE PTR I¡s ;Scroll service

mov bh, BYTE ltTR attr ; BH = fill attribute

mov ch, BYTE PTR rowl ; CH = top row of clear a¡eå

mov cl, BYTE PTR coll ; CL = left column

mov dh, BYTE PTR row2 : DH = bottom row of clear aleå

mov dl, BYTE PTR col2 ; DL = right column

ínt lOh ; Clear scre€n by scrolling down

]
)

-498-

A,2,ll Linear Predictive Extrapolation

double AbsFloa(double Numbe¡1, double Number2);
unsigned long int GetSizeOfFile(int FilellandleClipboard);
void Scale(float *FD, int NOB, float SF)i
void UnsignedFloatTosignedFloat(floar *FD, int NOB);
void Charã6ToFloat(char +CD, int NOB, float *FD);
void Char256To5VSignedFloa(char *CD, int NOB, float *FD, float SF);
void Signed5VFloatToChar256(char *CD, int NOB, float *FD, float SF);
void Predict(float *FD, float *4, int Sl-ength, int Filellandle, int Plength);
void AuloCon(float *FD, int SLengú, float *RD);
void Extrapolator(int FileHandlePCM, unsigned int FileOffsetHigh, unsigned int Fileoffserlow, inr

Slength, int Plength, int Diction);
void FlipHorizonøl(int Length, float *FD);
void GetForwardcoeff(float *4, float *RD, int Sl-engr.h);
void GetBakwa¡dCoeff(float *8, float *4, inr SLengrh);
void Copy(int FileFlandlel, unsigned inr Fileloffsetlow,

unsigned int Fite l OffsetlIigh,
int FileHandle2, unsigned int File2Offserlow,

unsigned int Fi le2Offsetl{igh,
unsigned int Bytesl¡w, unsigned int ByæsHigh);

void Inært(int FileHandlel, unsigned int FilelOffseilow, unsigned int FilelOffsetHigh,
unsigned long int Insertsize,

int Filellandle2, unsigned int File2offsetlow, unsigned int File2OffseiHigh,
int FileHandleADPCMBak)l

#define FRAME 1000

#dehne PredlængthMax 1000

void Extrapolator(int FileHandlePcM, unsigned int FileOffserlligh, unsigned inr Fileoffserlow, inr
Slength, int Plength, inl Diclion)

{
unsigned long int Fileoffset;

unsigned long int Size;

unsigned int Fi Ie l OffsetJ{igh;

unsigned int File l Offsetl-ow;

unsigned int File2OffsetHigh;

unsigned int File2Offsetlow;

unsigned int SizeHigh;

unsigned int Sizelow;
unsigned int Inse Poinq

int FileHandle, FHhedicrion, FHPCMBak, n = 0;

float SF = 5.97127.9'

cha¡ CDIFRAME + Pre¡r engthMax];

float FDIFRAMF + Preril engt¡Max + 1];

float AIFRAME +1];
floât BIFRAME +l];
float RDIFRAME +l];
clu¡ FileNamePredicr.ion[50];

-¡i99-

clur *Add¡*FileNamehediction
= &FileNamePrediction[0];

char FileNarnePcMBak[50];
cha¡ *Adcl¡_FileNamePCMBak = &FileNamePCMBak[0];

srcpy(Add¡_FileNamePrediction, "c\c2Nen\\cfilesVestl.pcm");
FHP¡ediction = Creat€AndOpenFile(Addr_FileNamePredicrion, (unsigned char)2);
strcpy(Add¡_FileNamePCMBak, "cÀ\c2\\ken\þfiIes\\PCMBak.pcm")t
FHPCMBak = Creat€AndOpenFile(Addr_FileNamePCMBat, (ursigned char)2);
SetFilePointer(FileHandtePCM, FileOffsetlow, FileOffsetHigh);
FilebRAM(FiteHandlePCM, 0, Slength, (int) &CD[O]);
Char256To5VSignedFloa(&CD[0], Slænglh, &FD[1], SF);
AutoCon(&FD[l], Sl.ength, &RD[O]);
GetForwardCoeff(&AI0l, &RDt0l, Sl¿neth);
GetBakwardCoeff(&B[0], &A[0], Slængth);
if(Diclion:0)

FlipHorizontal(St ength, &FDlll);
kedict(&FDlll, &A[0], Slængth, FHP¡ediction, Pl-ength);
if(Diction==0)

FlipHorizontal(St€ngth + Pl.ength, &FDtll);
SignedsvFloatTocha¿s6(&CDtOl, Stængth + Pl,engrh, &FD[1], SF):
SaveRAMtoFile(FHPredicrion, 0, Slength + Pl-ength, (int)&CD[O]);
if(Diction:0)

Fi.leOffset= (unsignedlong)FileOffsetHigh*(unsignedlong)65535+
(unsigned long)FileOffsetlow;

else

FileOffset= (unsignedlong)FileOffsetHigh*(unsignedtong)65535+
(unsigned long)FileOffsetLow + (unsigned long)Sl.engtl;

LongToShor(&FileOffset, &FilelOffsetlnw, &FilelOffsetHigh);
if(Diction:0)

Inse¡tPoint = 0;

else

InsertPoint = Sl-engtht

Inse¡(FHPrediction, (unsigned int)InsertPoint, (unsigned int)O, (unsigned long intxPkngth),
FileHandlePCM, FilelOffsetlow, FilelOffsetHigh,
FHPCMBak);

Size = GetSizeofFile(FHPCMBak);
LongToShon(&Size, &Sizet¡w, &SizeHigh);
Copy(FHPCMBak, (unsigned int)0, (unsigned int)O,

FileHandlePCM, (unsigned int)0, (unsigned int)O,

SizeLow, SizeHigh);
closehle(FHPrediction);
closefile(FHPCMBak);
)

void AunCon(float *FD, int Sl-ength, float *RD)
{
float sum;

- 4100 -

inr i, k;
for (i = 0¡ i <= Slength; i++)
{

sum = 0;

for (k = 0; k + i <= Slength - 1¡ k++)
{

sum = sum + *(FD + k) * (*(FD + k + i));

)
*(RD+i)=su¡n;

)
if {*gO -- O,

{
printf('\n CoÍelation enor ");

)
)
yoid Predict(float *FD, ftoat tA, int Slength, int FileHandle, int Plength)

{
int i,j;
floât sum = 0;

double Enor = 0;

float hedictionsfFRAME+PredlengthMaxl;
for(i = 1; i < Slength + Plength; i++)

t
sum = 0;

for(j = 1; j < Slengtb + l¡ j++)

{
if(¡-j>=0)

sum = sum - (*(A +i) * (*(FD + i -i)));
)
PredicLions[i] = sum;

if(i >= Slength)
t(FD+i)= 5¡¡¡;

else
EÍor = Enor + ((double)Predictions[i] - (double)(*(FD + i)))*((double)Predictions[i] -

(double)(*(FD+i)));

)
Enor = Er¡o¡/(double)Slæng th;

for(i = l; i <= Slength'i++)

t
'tçFD+i- l) = Predictionslil;

]
]
vo¡d SignedsvFloatTochar256(châr *CD, int Plength, float *FD, float SF)
t
int i;
for(i = 0¡ i < Plengtht i++)
{

- A101 -

*(CD + i) = (unsigned char) (*6D + i) / SÐ;
)
)

void Char256To5VSignedFloat(char +CD, int NOB, float +FD, ftoat SF)
{
int i;
Cha¿56ToFloat(CD, NOB, FD);
Scale(FD, NOB, SF)i
)

void Cbar256ToF¡oat(char +CD, int NOB, float *FD)
{
int i;
for(i = [; i< NOB; i++)
t

'i¡¡P + i) = (floarx*(CD + i));

)
Ì

void UnsignedFloatTosignedF¡oat(float +FD, int NOB)
t
int i;
for(i = [; i< NOB; i++)

{
*(IÐ + i) = *(FD + i) _ 128.0;

)
Ì

void Scal€(float *FD, int NOB, float SF)
t
int i;
for(i = ¡; i< NOB; i++)

{
(FD+i)=(FD+i)*SF;

)
)
void GetBakwardCoeff(float *8, float *4, int Slength)

{
int i;
for(i = l¡ i <= SLength + l; i++)

{
t(B + i) = +(A + Sl-engrh + 1-i);

)
)
void GetFor\rardCoeff(float ,rA, ftoat *RD, int Slengtb)
{

- At02 -

float sum;

int i, k, pre_en;

float rc[FRAME + 1]; /'ireflection coefficienfs */
float pe;

floa¡ akk, ai, aj, ra;

pe = *RD;
*A= 1;

for (k = 1; k <= $Lsngth; k++)

{
sum = 0;

for (i = l; i <= k' i++)

{
sum = sum - {'(A +k - i) r (*@D + i));

)
akk = sun/pe;

rcßl = akk;
*(A+k)=ald(;
for (i = 1; i <= k/2¡ i++)

{
ai=*(A+i);
aj=*(A+k-i);
*(A+i)= ai+akk*aj;
*(A+k-i)=¿j+akk*ai;

]
pç = ps't (1.0 - akk * akk);

if (pe <= 0)

{
ple-eÍ = l;

)
)
if (pre_err == l)
{

printf('\ predictor enor ...");

)
)
void FlipHorizontâl(int Length, float *FD)

{
int i;
float Tempi

for(i = 0; i < Length/2¡ i++)
{

Temp = *(FD + længth - I - i);
+(FD + tængth - 1-i)=*(FD+i);
*(FD+i)=Te¡¡P;

)
)

- 4103 -

^.2,12
Function Prototypes

fprotyp 1.h

unsigned long int Abslong(long int Numberl, long int Number2);

void RememberMarkers(int Pointerl, in! Pointef2, unsigned long int FileOffsetPCM,

unsigned long int FileoffsetPointerl, unsigned long int FileoffserPointe¿);

void PrintclahicsText(inr Row, int Col, ch.ar *Add¡_Text);
void DrawRectangle(inr Fi[Flâg,int xl,int yl,int x2,inr y2);

void ClearcraphicsScreen(int ViewPortFlag,int xljnt yl,int x2,int y2);
void ClearTextline(int Row, int Col ,int Spaces);
void PrintNumberPlayPages(unsigned int Outerloop);
void DrawOscilliscope(void);

void DrawPlotmenulcon(void);
void end prog¡an(void);

void closefile(int lhandle);
void Drawline(int xl, int yl, int x2, int y2, int Color);
void Copy(int FileHandlel, unsigned int FilelOffsetlow,

unsigned int FilelOffsetlligh, int FileHandle2, unsigned int Fite2Offsetl-ow, unsigned inl

File2OffsetHigh,unsigned int Bytesl,ow, unsigned int BytesHigh);

void closefile(int fhandle);
void graphics-mode(void);

void PlotData(int FileHandle, unsigned int Fileoffset_t ow,

unsigned int FileOffset_High, int Byte_Size, unsigned char *SraÍofDatâ, unsigned

char *Data, unsigned long int Fileoffset);

int HideMouse(void);

int FiletoRAM(int FileHandle, int HighBytes, int LowByres, int RAMAddress);
int SetFilePoinær(int FileHandle, int LowOffset, int Highoffset);
int Playback(intFileHandle,unsignedint.FilcOffserl-ow,

unsigned int FileOffsetHigh, unsigned int Innertoop, unsigned int Outerl¡op,
int Blocks);

int OpenFite(char *addr_ftamel, unsigned char AccessCode);

int ReseMouse(void);

int ShowMouse(void);
int GeMouseSelection(int+HotBoxes,intNumberHotBoxes,

int * MouseCoordi nates);

int GetuserlnputFileName(châr *stringptr);

int SubMenuTimePlot(void);

int LongToshon(int long *FileOffset, int *Fileoffset_Low, int +Fileoffset_High);

int CreâteAndopenFile(cha¡ *add¡_fname2, unsigned char AccessCode);

fp r otyp 2.h

- 4104 -

int OpenFile(char *adclr_fnamel, unsigned châr AccessCode);

int Creat€AndopenFile(cha¡ *adcir_fname2, unsigned char Accesscode);

void SeiFitePointer(int Filellandle, int l,owOffset, int Highoffset);

void DumpFiletoRAM(int FileHandle, unsigned int *aBußeg);

void FiletoRAM(int FileHandle, int HighBytr.s, int LowBytes, int RAMAd&ess);

void Dump(int FileHandle, int RAMsegment, int RAMOffset, int Bytes);

void SaveRAMtoFile(int FileHandle,int BytesHigh jnt Byteslow, int RAMAdd¡ess);

void closefile(int ftandle);
void Copy(int FileHanrllel, unsigned int FilelOffsetlow,

unsigned int Filel0ffsetHigh,int FileHandle2, unsigned int File2Offseilow, unsigned int

File2OffsaHigh,unsigned int Bytesl-ow, unsigned i¡t BytesHigh);

void LongToshof(unsigned int long *FileOffset, unsigned int *FileOffset_I¡w,

unsigned int *FileOffset_High);

fprotyp3.h

void closefile(int lhandle);

void ClearTextlVindow(int row, int col, int rowl.ast" int coll,ast, int color);
void CtearBox(int rowl, int coll, int row2, int col2, int lns, int atl¡);
void ADPCMToPCM(int FllândleRead, int FHandlelvrite);

void PCMToADPCM(int FHandleRead, int FHandleWrite);

int Cre¿teAndopenFile(char *addr_fname2, unsigned char AccessCode);

int OpenFile(char *addr_finmel, unsigned cha¡ AccessCode);

int GetFileSelection(struct ITEM FileNamesl], int retl);
int Convef_ADPCM_PCM(void);
int SubMenuCodeData(void);

int Convert_PCM_ADPCM(void);

fprotyp4.h

int AllocateMemoryForFile(int FileHandle, unsigned int *aBußeg);

int AllocateMemory(int Paragraphs);

void Rele¿seMemory(int Buffer);

fpr oty p 5. h

int GeMouseSelection(int*HotBoxes,intNumberHotBoxes,

int *MouseCoordinates);
void ShowMouse(void);

void ReseMouse(void);

- 4105 -

void HideMouse(void);

fp ro typ 6.h

int AllocateMemory(intPa¡agmphs)i

int ReleaseMemory(int Buffer);

void Playback(intFileHandle,unsignedintFileOffsetlow,

unsigned int FileoffsetHigh, unsigned int Innerloop, unsigned int Outert¡op,

int Blocks);

void SendPlaybackCommand(int Blocks);

fprotypT.h

void record(int eightKblocks);

void closef¡le(int lhandle);

void SendRe¿ordCommand(int eightKblocks);

int Cre¿teA¡dopenFile(cha¡ *addr_fuame2, unsigned char AccessCode);

int AllocateMemory(int Paragrâphs);

int ReleaseMemory(in[Buffer);

fprotype.h

unsigned int GetKeyboardControlFlag(void);
unsigned int GetKey(int fwait);
unsigned int CetcontsolKey(int fwait);
unsignedint GetKeyboudConrrolFlagQ;

double Power(double NumbeiToBeRaised, double power);

void LongToShort(unsigned int long tFileOffset, unsigned int *FileOffset-Low, unsigned inl
*Fileoffset_High);
void initl152(void);
void submenurecord(void);

void submenuinit(void)i
void ClearBox(int rowl, int coll, int row2, int col2, int lns, int attr);

void ShowMainMenu(void);
void ltemize(int row, int col, int fCù, st¡uct ITEM itm, int cBlank);

void Itemizel(int row, int col, int fcur, struct ITEM itm, int cBlank);

void Clearbox(int, int, int, inr, int, int)t
void ShowMainMenuQ;

void closefile(int fhandle);
void ClearTextlVindow(int row, int col, int rowl-ast, int coll-asr, int color);
void ADPCMToPCM(int FHandleRead, int FHandle\ryriþ);

void DrawOscilliscope(void);

- A106 -

void AmplitudeScale(unsigned char *ptr, int Byte_Size);
void closefile(int fhandle);

void graphics_mode(void);
void end¡rogram(void);

void SendReco¡dCommand(int eightKblocks);

voìd submenuinitQ;

void ændplaycommand(int eightKblocks);

void inirll52o;
void sendcommand(int eightKblocks);

void submenurecordQ;

void Box(int row, int col, int rowlast, int collast);

void CleatTexMindow(int row, int col, int rowl,ast, int collast, int color);
void _outchã(cha¡ out);

void DrawOscilliscope(void);

void GetMousePositionAndsf.atus(int *Mouselnfo, int WaiFlag):

void PCMToADPCM(int FHandleRead, int FHandlewrite);

void AmplitudeScale(unsigned char *ptr, int Byte_Size);

int DrawPlotrnenulcon(void);

int SubMenuTimePlot(void);
int DisableMouselnterrupt(void);

int MouselnteÍuptRouLine(void);

int EnableMouselnterrup(void (*fncptr)Q);

int MouselnterruptRoutine(void);
int AllocatcMemoryForFile(int FileHandle, unsigned int *aBufSeg);

int SaveRAMtoFile(int Filegandle, int bytes, int RAMAddress);
int DumpFileloRAM(int FileHandle, unsigned int *BufSeg);

int SetFilePointer(int FileHandle, int l¡woffsel int Highoffser);

int ConvertJCM_ADPCM(void);
int Convert_ADPCM_PCM(void);
int createfile-for_read_write(char*addr_fname2);

int SubMenuCodeDau(void);

int OpenFile(char *addr_frnmel, unsigned char AccessCode);

int CetFileselection(struct ITEM FileNamesfl, int retl);
int GelMouseSelection(int*HotBoxes,intNumberHotBoxes,

int *MouseCoordinates);
int DrâwPlotmenulcon0i

int ReseMouse(void);

int ShowMouse(void);
int creåtef e_for_re¿d_write(char *add¡_fnâme2);

int maxx, maxy;

int GetuserlnpuFileName(chår +súingprr);

int Menu(int rorv, int col, st¡uct ITEM altem[], int iCu¡);

- 4107 -

int

int

int

int

int

int

int

Mainmenu(void);
DisplaymenuQ;

Librarymenu0i

Assemblemenu0;

ChmseF¡omMenu0;

GetFileSelection(sEuct ITEM FileNamesll, int retl);
Playback(int Filellandle, int FileOffsetlow, int FileOffsetHigh, int Innerl-oop,

Oulert oop, int Blocks);

int

int

int

int

int

int

int

int

int

int

int

int

int

int

Dump(int FileHandle, int bytes, int RAMAddress);

playback(int seconds);

record(int eightKblocks);

submenuplaybackQ;

SubMenucodeDara(void);

SubMenuTimePlot0;

SubMenuFreqPlotQ;

submenuplayback(void);

Assemblemenu(void);

Displaymenu(void);

SubMenuFreqPlot(void);

ChooseFromMenu(void);
Librarymenu(void);

Splicemenu(void);

- 4108 -

Appprurrx B: Pn¡ Dracnavr

D3

D2

D1

DO

vssl

SAMl

SAM2

MCK

XT

XT

MPU

NC

VI(SICK)

VR(ADSI)

vss2

VDD

PAUSE

ST.SP

DlC

RD

CS

WR

-81 -

10

11

t2

t3

r4

15

l6

17

Appnruorx B: TBsrrNc Rnspor,lsr SnBBrs

1.1 Assessmenf
Word

Feet

Fell

Ben

Wheat

Well

Bir

Synthetic Natural

I¡structions: Identify the word and in the

Fig. Cla Response sheet for word synthesis by exEaced phoneme splicing.

Word

Fe€t

Fell

Ben

Wheat

Well

Bit

lnstructions: the word and in the

Fig, Clb Response sheet fo¡ natüral words.

C1

l-2

lst

n
tr
n
n

version

Version

2nd

n
n
n
n

word vr

Word
Fe€t

FelI

Wheat

Vr'eü

Indicate which

3rd

n
n
n
n

Instructions: of the

Fig. Clc Response sheet for word preference.

-c2-

Experiment 2.1a Prediction Similaritv

Similarity
Somewhat the Exactly the

sâme same

Vowel

Transcription Example

Bea

Foot

S¿t

Bet

Flr

/OO/ Boot

lOWl Bought

I¡structions: Identify the sound and in the adjoining rectangle indicate the degree to
which you are sure that it is that sound.

Totally
different

tN/

N/

/AEl

/F]

N

Experiment 2.1b

Vowel

Transcription Example
Jfi:?tjil,

lffl Beet

Postdiction Similaritv

Similarity
Somewhat the Exactly the

sâme sâme

N/

/AEI

IEJ

N

Foot

Sdt

Bet

Fir

læ/ Boot

/OW/ Boughr

Instructions: Identify the sound and in the adjoining rectangle indicate the degree to
which you are sure that it is that sound.

Fig. C2a Response sheets for similarity of original and prediction (op) and postdiction@ottom).

-c3-

2.1 Quality Assessment

QualityWord

Ben

Bet

Boot

Cat

Feet

Wet

Sir

Beet

Fir

Natural

Instructions: Identify the word and in the adjoining rectangle indicate the quality.

Fig. C2b Response sheets for word synthesis by isolaæd phoneme splicing.

Preference

Version

Word

Ben

Boot

Ca,t

'Wet

1st

T
n
T
T

Znd

T
n
tr
T

preferInstructions: Indicate which version of the word you

Fig. C2b Response sheets for word preference

-c4-

