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ABSTRACT

A speech splicing system is developed for automated vocal shaping. A joint study of
vocal shaping and speech synthesis leads to a determination of optimal synthesis
techniques, tools, and units, as well as a development of a speech processing system based
on a PC AT for automated vocal shaping. Subjective tests are conducted in order to
determine the effectiveness of the synthesis techniques, tools, and units. The adaptive
differential pulse code modulation (ADPCM) technique of data compression is used in
order to reduce the transmission rate of speech by one-half, while maintaining good toll
quality. Coarse speech splicing is done with the copy, cut, and paste synthesis tools, while
amplitude interpolation and linear predictive extrapolation (LPE) are used for fine
adjustment of boundary properties. Isolated phoneme and extracted sub-word synthesis
units are chosen in order to facilitate investigation of both small and large vocabulary needs.
An external board (consisting of an Oki MSM6258VJS ADPCM speech processor, a dual-
pointer FIFO buffer, and a 6802 uP) and a host computer (PC AT) are connected via an
RS-232C compatible serial communications channel. The 6802 pP utilizes the FIFO buffer
for controlling the asynchronous communication of speech data between the speech
processor and host computer. Performed on the host computer, the speech processing
software includes real-time disk recording and playing of speech, serial port initialization,
time domain plot of PCM data, and selection of any portion of speech data for playing,
copying, cutting, pasting, extrapolating, and averaging. Since the hard disk is used as virtual
RAM, any size file can be processed (real-time recording duration limited by available hard
disk space). Speech splicing experiments include library expansion by extraction, sub-word
concatenation, and isolated phoneme concatenation. Preliminary results show that word

synthesis by sub-word concatenation achieves up to 80% natural quality.
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CHAPTER I
INTRODUCTION

1.1 Purpose

The purpose of this thesis is to present a computer aided speech splicing (CASS)
system for vocal shaping. CASS is a tool intended to assist speech therapists in the vocal

shaping process.

1.2 Problem

Speech is the most widely used form of communication. We take for granted our
ability to express ourselves through language of the spoken word. To some individuals, in
particular, retarded and autistic persons, intelligible speech does not come easily and may

not even be possible. This must be very frustrating, discouraging, and disheartening.

Much research has been done on methods of teaching speech to voice-handicapped
individuals. One method involves the use of psychological shaping. “Shaping is a
behavioral procedure that has been used to develop or train a wide variety of new behaviors
in both animals and humans” [Cair90]. Conventionally, vocal shaping involves a direct
interaction between speech therapist and student. The speech therapist provides the
example, typical model, or prototype target response, and the student attempts to reproduce
it. After each trial, the therapist assesses the quality and determines the “errors in
articulation such as omissions, substitutions, additions, or distortions of speech sounds”
[Desr90]. Based on certain criteria, the response is judged as either progressive or

regressive. Following an improved response, reinforcement is administered, e.g., by saying
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‘very good’ or by giving the student a food reward.

In order to avoid the subjectivity involved in assessing errors in articulation, much
research has been done in automated vocal shaping systems [Cair90], [PeKR87], [Desr90],
[FIHa83], [KWMRB87], and [Perk71]. In these systems, errors in articulation were
measured in terms of a distance (e.g., Euclidean) between the student’s response and the
target sound. The system decided whether the response was close enough “...within a
criterion region...” [PeKR87] to warrant dispensing of reinforcement or to prompt another

trial.

Most of this past research was limited to shaping fundamental units of speech,
called phonemes, such as /A/, /AE/, and the phone ‘ah’. Some success was reported:
“Human ratings indicated that all three children showed some improvement in their ability
to imitate the trained phonemes” [Cair90]. Also, it was reported that “The correlation of
the judgements made by the apparatus (automated vocal shaping system) with each speech
professional was high, although not as high as the correlation between the professionals

themselves” [PeKR87].

Given the success of shaping phonemes, a natural extension to this work is to shape
new words or phrases formed by integrating two or more shaped phonemes. There are two
methods in which this may be accomplished. One method, which is similar to phoneme
target acquisition, requires that the therapist supplies the pronunciation of the new words or
phrases. A possible problem associated with this method is the introduction of an
uncontrolled experimental variable. Vocal shaping requires continuity, perseverance and
years for its full and complete implementation. The same therapist may not be available for
prolonged or even short periods of time. Furthermore, throughout the process of shaping,
the student may become accustomed to the voice of an individual therapist. The
introduction of a different voice, a different pronunciation of the same target sound, may set

-2 .-



back past accomplishments and delay future advancement while the student becomes
comfortable with the new teacher. It is difficult to control a scientific experiment while

allowing the introduction of new variables whose effects are not fully understood.

Another method of vocabulary expansion involves using, as a set of target words,
those words formed by an electronic concatenation of a set of previously stored and smaller
units of speech spoken by a therapist. The stored set of smaller units of speech would form
a basis upon which longer words or phrases may be formed. In this way, the new set of
words would be inherently characteristic of the original therapist’s voice. The new words
may resemble the pronunciation of the original therapist even though their production would

not be entirely vocalized.

Another possible benefit of employing electronic concatenation for vocal shaping is
realized by taking the idea of voice familiarization one step further. While using a
therapist’s voice as the target word may have some success, a different approach involves
using a target word formed by a concatenation of modified versions of the student’s learned
phonemes themselves. Rather than trying to emulate a teacher’s voice, the student would be

training his/her voice as it would sound were the pronunciation or vocalization correct.

In order to accomplish electronic concatenation for vocal shaping, a system is
needed which is capable of splicing isolated phonemes or extracted sub-word units to form
naturally sounding new words, utterances, or phrases. This is one of the problems

considered in this thesis. However, there are other induced issues.

An analog method of splicing electronic information, such as editing audio and
visual tape, would not be possible nor practical for speech splicing. On the one hand,

serious speech splicing entails modification of the speech waveform itself, and this is not
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possible by simply cutting and pasting tape. However, if vocal shaping is limited to training
entire words or combinations thereof, then simple cutting and pasting may be sufficient. On
the other hand, locating specific speech information on tape, cutting a portion of it, and then
pasting this information at a carefully selected location is an arduous and tedious task, and,

therefore, it is not practical.

A digital method of speech processing is a valid alternative. However, sound quality
issues arise. For example, the presentation of poor reproductions of speech would probably
be unrepresentative and lead to indifference. On the other hand, very good quality speech
has a cost associated with transmission rate, bandwidth, and computer memory. Past work
done by [KIKi87] (see Fig. 2.3) clearly shows the trade-off between speech quality and the
above mentioned costs. The middle ground must be chosen such that speech quality is

acceptable, while the cost of transmission rate, bandwidth, and computer memory is low.

1.3  Scope

This thesis consist of seven chapters. Chapter I states the purpose of the thesis,
discusses the major problems to be solved by the thesis, and provides some motivation for
the thesis. Chapter II gives background information on the thesis. In this chapter a review
of speech synthesis is followed by a review of vocal shaping, and it is shown how certain
speech synthesis concepts may be applied to vocal shaping systems. As such, this chapter
lays out the theoretical and psychological aspects of this thesis. This provides motivation
for the technical aspect, which is discussed in Chapter ITI. Chapter III provides a block
diagram description of the speech splicing system. In this chapter, it is shown where and
how speech splicing fits into the vocal shaping environment, This chapter is also intended
as an introduction to Chapter IV, which is a detailed description of the speech splicing
system. This chapter and Chapter V may be skipped without any significant loss of
continuity. However, while these chapters are geared for digital hardware and software
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designers, i.e., Electrical and Computer Engineers, the main ideas are still understandable by
people from other disciplines. Chapter V offers an alternative paper design of a buffer for a
speech splicing system. This design uses a different technology than that used by the
buffer described in Chapter IV. Chapter V is intended for comparison purposes, and it
illustrates the fact that there is more than one way to design a buffer. Chapter VI discusses
the speech splicing experiments. These experiments utilize the speech synthesis methods
discussed in Chapter II and the speech splicing system of Chapter IV in order to show how
speech splicing can be used as a tool for automated vocal shaping systems. Finally, Chapter

VII gives the conclusions and recommendations.



CHAPTER II
BACKGROUND ON SPEECH SYNTHESIS/VOCAL SHAPING

This thesis deals with applying speech synthesis techniques to automated vocal
shaping systems. In particular, certain compression, analysis, and waveform concatenation
techniques are used in order to aid vocal shaping systems. As such, this chapter briefly
reviews the pertinent areas of speech synthesis and vocal shaping. Furthermore, this chapter
introduces the theory and methods of three waveform concatenation techniques capable of
synthesizing new words by concatenating isolated phonemes or sequences of phonemes
extracted from previously recorded words. These three waveform concatenation techniques

are used in Chapter VI Speech Splicing Experiments.

2.1 Review of Speech Synthesis

This section provides a brief review of speech synthesis. While the area of speech
synthesis is vast, this review is not meant to cover all the areas, but it is intended to define
the scope and to focus on the compression, analysis, and waveform concatenation
techniques used in this thesis. In particular, the compression technique of adaptive
differential pulse code modulation (ADPCM), the analysis and synthesis technique of linear
predictive coding (LPC), and three waveform concatenation techniques are described in

more detail.

2.1.1 Building Blocks of Speech

A study of speech synthesis usually begins with analyzing the construction of

human speech. One way of understanding how a system is constructed is to break it down
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and study its component parts, ideally the smallest building blocks. By analysing the
building blocks of speech and uncovering how these blocks are put together and integrated
in order to form the whole, we may be able to synthesize speech. In order to study these

building blocks, a language for unambiguously and exactly describing them is required.

2,1.1.1  Phones, Phonemes, and Allophones

The established science of describing the building blocks of speech through
language has a well developed theoretical background. The International Phonetic Alphabet
(IPA) is a system that describes speech sounds. The two branches of this science are (i)
phonetics and (ii) phonemics. Phonetics deals with providing a one-to-one mapping from
every known human speech sound to a written text representation. On the other hand,
phonemics deals with providing a written text representation of the fundamental or smallest
units of speech of a particular language. In phonetics an individual sound is called a phone,
whereas, in phonemics the smallest unit is called a phoneme. Phones are transcribed by
placing the text description between square brackets (e.g., [®]), while phonemes are placed

within slants (e.g., /TY/).

Phonemes

Phonemes are actually a subset of phones. However, a phone is a phoneme in a
particular language if it changes the meaning of a word upon replacing another phoneme in
that word. For example, in English the words ‘top” and ‘cop’ differ in the first phoneme,
i.e., /T/ and /K/, respectively. The phonemes /T/ and /K/ are said to be phonemic in English.
Table 2.1 shows some of the 47 phonemes in the English language [Pars86].

Allophones
As a counter example, consider the vowels in words ‘coat’ and ‘coal’. While the

substitution of one vowel for the other may result in a strange pronunciation, the vowels are

-7 -



not considered as two different phonemes because the meaning of the words do not change

if the vowel sounds are interchanged. These two vowels are referred to as allophones of the

phoneme /OW/.

Table 2.1 Phonetic transcription of some General American English
Phonemes (adapted from [Pars86, p. 85]).

Vowels
IPA  Typewritten Example IPA  Typewriiten Example
i IY heed 0 ow hoed
1 IH hid U UH hood
e EY hayed u UwW who’d
€ EH head A AH bud
& AE had a AA hod
Consonants
IPA  Typewritten Example IPA  Typewritten Example
p P pop t T tell
i CH cheek k K cool
b B bat d D door
d3 JH Just g G girl
f F fight 6 TH thick
s S sick | SH shock
h HH hat v v veal
d DH that z Z zeal
3 ZH measure m M mat
n N nose n NX bang
1 L call r R ride
j Y yet w w wet
2.1.1.2  Distinguishing Features

In order to better understand how speech may be constructed, it is beneficial to

identify features of phonemes that may be used to distinguish them from others. Phonemes

may be distinguished on the basis of psychological perception, on the basis of objective

properties of speech, or on a combination thereof.



We are all familiar with vowel and consonant classifications of phonemes. An
objective feature of vowels is that their production is characterized by an unconstricted flow
of air through the vocal tract. This results in vowels generally exhibiting a pseudo-periodic
sound. On the other hand, consonants are characterized by a constriction in the vocal tract,
and this results in a noise-like sound. While most vowels and consonants may be
distinguished by the constriction criterion, there are examples where the distinction is fuzzy.
That is, there are some consonants that exhibit a degree of periodic sounds and a degree of
constriction in the vocal tract, for example, /l/ in ‘call’. For systems relying on
distinguishing vowels and consonants based on the constriction criterion, it may be

beneficial to employ the theory of fuzzy logic [FeKi91].

From an objective viewpoint, phonemes may be differentiated with respect to their
frequency content. Fig. 2.1 shows a plot of frequency F1 vs. F2 for phonemes spoken by

various people. The frequencies F1 and F2 are called formant frequencies, and they

4000 -
3000 IV:  heed
B IH: hid
EH: head
- 2000 AE: had
o ER: heard
=, 1500 AH: bud
B UH: hood
AA: hod
UW: who'd
1000 AQO: hawed
500 |
0 400 800 1200

F, [Hz]

Fig. 2.1 Frequency distinction of vowels (after [Pars86, p. 105]).
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represent those frequencies having the largest power of the particular phoneme. The
orthogonal information in this figure may be used in a limited phoneme recognition system.
In particular, phonemes /IY/ and /UW/ may be distinguished directly by examining the
relative contribution of frequency bands from 500 to 1200 Hz and from 2000 to 3700 Hz.
However, as shown in the figure, there are overlapping regions where this method may not

work.

2.1.1.2.1 Coarticulation

One misconception and unfortunate fact of speech production is that when we form
a word, we do not simply generate phonemes in isolation and put them together. If it were
that simple, speech synthesis would not be a problem as it is today. When we utter a word,
each phoneme in that word is influenced to some extent by its neighbors. We can think of
each phone in a word “as a farget at which the vocal organs aim but which they never
reach. As soon as the target has been approached nearly enough to be intelligible to the
listener, the organs change their destinations and start to head for a new target. This is done
to minimize the effort expended in speaking and makes for greater fluency” [Pars86, p.
92]. Not only are phonemes influenced by their predecessors, but the predecessors,
themselves, are influenced by the following phonemes. Figure 2.2 shows an example of the
coarticulation phenomenon. The top figure shows a plot of frequency vs. time (called a
sonogram) of naturally spoken word ‘feet’, while the bottom figure shows the sonogram of
synthetically formed ‘feet’. Note the continuous, smooth, and gliding change in frequency
between the adjacent ‘f” and ‘e’ sounds in naturally spoken ‘feet’, and contrast this to the
discrete and abrupt change between that for synthetically formed ‘feet’. The influence and

overlapping of properties of individual phonemes is called coarticulation.
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Sonograms of ‘feet’. The top plot shows the sonogram for

Fig. 2.2
naturally spoken ‘feet’, while the bottom shows the sonogram for

synthetically produced ‘feet’.

It is evident that if a speech synthesis system based on phoneme construction is to
be successful and synthesize naturally sounding speech, rules or methods are required in
order to take coarticulation into account. There are different methods which can be used to
deal with coarticulation, and they all work with varying degrees. These methods are
incorporated in the general speech synthesis methods, namely, synthesis by rule, synthesize
by analysis, digital recording, and waveform synthesis. This thesis specifically deals with

waveform synthesis, but the others are briefly reviewed in order to develop scope.
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2.2 Speech Synthesis Methods

Speech synthesis deals with reproducing human voice from an electrical and/or
mechanical representation. One of the earliest speech synthesizers was developed in 1947
at Haskins Laboratory [Bris84], where speech was first captured and represented in the
form of a spectrograph and then later played back. Today, there are many different speech
synthesizers, but they all may be classified, as shown in the middle of Fig. 2.3, as either

synthesis by rule, synthesis by analysis, or digital recording.

As shown in Fig. 2.3, each synthesis method is associated with a cost trade-off
between quality and transmission rate: the higher the quality, the higher is the transmission
rate. The designer of a speech synthesizer must consider what quality of speech is required
and whether the bandwidth of the system is capable of accommodating the associated
transmission rate. For example, in many telephone systems, the existing communications
channel, i.e., the wires, cables, and repeaters connecting one telephone customer to the next,
has a capacity of allowing transmission of electrical signals of frequency up to about 4 000
Hz (32 000 bits/sec if each sample of data is represented by eight bits). This is why toll
quality is the best possible in telephone systems. In this thesis toll quality is chosen in the
vocal shaping system, since toll quality is sufficiently intelligible for the general public and
because the bandwidth of computer systems generally allow the associated transmission

rate.

2.2.1 Synthesis by Rule

One of the primary objectives and well known purposes of speech synthesis is to
convert printed text into understandable sound messages. Much like written text conveys

meaning by stringing together discrete symbolics units, text to speech synthesizers

- 12 -



-g'[..

i COMMUNI- i TOLL BROADCAST
0 SPEECH QUALITY ! CATIONS { (TELEPHONE) (COMMENTARY)

- SYNTHETIC
¢ DATA BIT RATE  [bits] : : :
64 Rate28 256 512 1K 2K 4K i 8K 16K 32K 64K 128K 256K 1.4
1wl a | | | L o | i L voood
a | ! | | | s | T | | n | ﬁ
8K 4K 2K 1K 51:2 256 ]28; 64 32 16 8 4 2 Stereo
Memory Storage  Number of words stored in a 256Kbit EPROM assuming speech rate of 2 words/second. CA”d’° g
(Ex. 27256 @32K x 8 = $7.50 US; 6.1987 ---> 3 ¢/Kbit) : °§?§j

¢ CODING METHODS
<<——PARAMETRIC/SOURCE CODING —>>=<¢ \?\IAVEFORM CCZ)DHNG >

{ SYNTHESIS METHODS AND TECHNIQUES » '
——SYNTHESIS BY RULE——-—)(— SYNTHESIS by ANALYSIS Mm-—DIGITAL RECORDING——>

~€&—Text to Speech—3> <€ Si‘::t’;‘:gg —> %ADPCM% .
- Phoneme Synthesis 3= %——LPC——» @—CVSD/ADM-—M%
& Allophone Synthesis = < T?HZMI;; ma n> : <€—DM >
1 |
<@——— Phonetic Codmg"‘"""—> < Synthesis % '( PCM >
O SOME ANALYSIS/SYNTHESIS INTEGRATED CIRCUITS
GISP-250 | Toshiba T6831 |
e l_n o280l | GISP-256 | Toshiba Tee68
SC-01 ‘T amizs20] ai sp- 1000 Oki 5518RS
Votrax $C-02/ 851263 | TI 5220 Oki 5205RS
%lgnalker Harris HC-55564
Signetics MEASO0O & PCF8200 | i MC3417] | Mc341s

Fig. 2.3 Comparison of speech coding tcchnlques, bit rates and associated speech quality. (after [KIKi87]).



concatenate sequences of sounds to form words and sequences of words to form phrases
and sentences. Furthermore, the assembly of words, phrases, and sentences is controlled by

a set of rules, which, not unlike written text, is language specific.

Much research goes into studying the rules that control how sounds are put together
to form words, phrases, and sentences [Sagi90]. Synthesizing speech from arbitrary text
input involves highly advanced information processing, including text analysis, syntactic
analysis, pronouncing dictionary, accent assignment, prosody control, segment duration,

rhythm, tone, and loudness.

2,2,2 Synthesis by Analysis

Speech can be reproduced from an analytical representation. The frequency domain
and time domain of actual speech may be analyzed in order to determine characteristic
features and redundancy. These characteristics are used to form a compressed
representation. The function of the synthesizer is to decode the compressed representation
and put back together the speech. During the course of compression, some information will
be lost and, consequently, the quality will suffer. The compression ratio and the resulting

quality are criteria used to judge the goodness of a particular technique.

The frequency domain analysis/synthesis technique is based on a model of the
human vocal system. This model generally consists of excitation sources (modelling the
vocal cord oscillations, turbulent air, and the lung) and a variety of filters (modelling the
acoustic filter of the vocal tract). Data compression is achieved by storing and transmitting
parameters of the model instead of the original waveform. The number and frequency of
parameters is smaller than the amount of information in the waveform because speech is

pseudo periodic and redundant. The synthesizer uses the parameters in order to reconstruct
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the speech waveform. The output waveform may not bear any detailed resemblance to the
original waveform, and yet the quality may still be quite intelligible and resemble the sound

of the original speech.

While frequency-domain techniques achieve compression through representations
of characteristic features of the speech waveform, time-domain techniques, in contrast,
achieve compression through compressed representations of the time-domain waveform
itself. However, similar to frequency-domain techniques, time-domain techniques achieve
compression by exploiting the pseudo-periodic and redundant nature of speech. The
synthesizer’s job is to de-compress the representation and reproduce the time domain
waveform. Similar to the frequency-domain synthesizer, the reproduced time-domain

waveform need not be an identical match of the original waveform.
2.22.1 Linear Predictive Coding (LPC)

One of the more important analysis/synthesis methods is called linear predictive
coding (LPC). LPC provides a mathematical model of a linear, discrete-time system.
Human speech production may be modelled as an all-pole linear, discrete-time system.

Eq. 2.1 shows the mathematical expression used by LPC to model the speech waveform.

$in) =— 51.2. alily[n-i] 2.1

i=1
As this equation indicates, LPC predicts the forthcoming time domain sample of the speech
waveform by calculating a linear combination of past samples [Pars86]. The hat over the y
indicates an estimate and p represents the number of past samples. The quantities, a[i], are
called predictor coefficients and are determined by minimizing the mean-squared error given

by Eq. 2.2. Eq. 2.2 yields p equations, which can be solved for a[i]. The
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min{Error) = min ( (y{n]—~§[n])2> (2.2)

computation of afi] usually involves either the autocorrelation or the covariance method. It
has been found that the autocorrelation method is more suitable for stationary segments of
speech, while the covariance is better suited for non-stationary segments [Pars86]. Note
that Eq. 2.1 can also be viewed as a digital filter, where a[i] is the impulse response of the

filter. In this respect, Eq. 2.1 is a convolution operation.

LPC is also useful for estimating a preceding sample of stationary speech. For
example, given p samples, y[1] through y{p], the preceding sample, y[0], can be estimated
or postdicted by Eq. 2.3. Note that the only difference between Eq. 2.1 and Eq. 2.3 is the
direction of the data in the convolution. This is a result of the assumption of stationary

speech, which implies the statistics do not take the direction of time into consideration.

p
yln] =— EI alp + 1 —1ily[n +1i] (2.3)
i=
Finally, LPC achieves compression by storing and transmitting the predictor

coefficients, whose number is a fraction of the p data samples.
2.2.3 Digital Recording

Among the three synthesis techniques mentioned, digital recording offers the best
quality. Like synthesis by analysis, synthesis by digital recording strives to achieve data
compression. However, most of the compression techniques are implemented at the lower
end of the digital recording spectrum, as shown in Fig. 2.3. At the high end, the quality is
excellent, but the cost of the associated transmission rate can be quite high. For example,

about 10 MBytes ( [1.4 Mbits/sec][60 sec]/[8 bits/Byte] ) of computer memory is required
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in order to store one minute of compact disk quality sound. Like the analytical synthesizer,
the function of the digital synthesizer is to decode the digital representation and reconstruct
the speech signal. One difference is that the reproduced waveform resembles the original.
In fact, the pulse code modulation (PCM) technique (no compression) is guaranteed to

faithfully reproduce the waveform exactly (if we neglect quantization error) [FeLo89].

The digital recording method of speech synthesis actually requires two phases, (i)
analysis and (ii) synthesis, for its complete implementation. The analog speech waveform is
first represented in the digital domain by a process called digitization. As shown in Fig. 2.4,
the waveform is quantized in both time and amplitude. That is to say, a continuous,
electrical analog representation of speech is sampled at regularly spaced intervals (time
quantization), and then the samples are rounded off to the nearest digital number (amplitude
quantization). The resulting digital representation is stored in computer memory for further
processing and eventual transmission for the synthesis phase. The digital synthesizer
reconstructs the analog waveform from the digital representation. Synthesis is the reverse
process of digital analysis. This exact reproduction capability implies that digital recording

preserves all information in speech, such as pitch, intonation, inflection, and stress.

Time Amplitude
Quantization: Quantization:
Sampler Digitizer
Continuous -Time and Digital Representation:
Continuous-Amplitude *Memory Storage
Representation *Further Processing
of speech *Transmission
Analysis .
y Szmhcsm

Fig. 2.4 Digital speech analysis and synthesis.
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2.2.3.1  Adaptive Differential Pulse Code Modulation (ADPCM)

Adaptive differential pulse code modulation (ADPCM) is a data compression
technique that is implemented at the lower end of the digital recording spectrum of speech
(i.e., from about 12 kbps to 32 kbps). ADPCM is an adaptive and differential derivative of
PCM. Rather than storing and transmitting the absolute value of each digitized sample, as is
done in PCM, the difference between successive samples is taken, and then this difference
signal is quantized. The differential quantization step size is adaptively derived from the
relative size of the previous sample. ,Th_e logic of operating on the difference signal rather
than the absolute value of each sample is motivated by the fact that speech is inherently
redundant [FeL.o89]. That is to say, there is a high probability that successive amplitudes of
speech samples are approximately the same. As a result, the size of data needed to encode
the difference signal can be reduced. The strategy of the adaptive quantization step size is
based on the fact that the amplitude of speech can be described by a Laplacian distribution
[JaNo84]. Small amplitudes of speech have a relatively high probability, while the
probability decreases significantly with higher amplitudes. Based on these statistical facts,
the strategy is to use a large step size when the amplitude of the previous sample is large
and small step size when the previous amplitude is relatively small. As a result, better
resolution is provided when the amplitude is more probable. This strategy enables ADPCM

to better track or match the variance of the input speech waveform.

2.2.4 Waveform Synthesis

Perhaps, the most straightforward way of synthesizing speech is to have digital
recordings of individual speech units and to design a system for retrieving and stringing
together those units at the correct time and the proper order. These units may be the actual
digitally recorded waveform of large speech utterances, such as whole words or phrases or

smaller utterances, such as phonemes, allophones, or phones. The type of synthesis unit
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used by the synthesizer depends on the application. Small vocabulary systems may find it
more suitable to use word waveforms, while waveforms of phonemes would be required for
larger vocabulary systems. For example, a city bus schedule information system delivered
over telephone lines would require only a limited vocabulary. A typical response is “Route
60, Pembina. Next bus at 2:10”. The only words that may vary in this message are the

number of the route (60), the name of the route (Pembina), and the time (2:10).

Larger vocabulary systems are increasingly more complicated. At the very extreme,
we can imagine an unlimited, speaker independent system. In this huge system, the sound
units would ideally consist of fundamental building blocks of speech, i.e., phonemes,

allophones, and/or phones.

Large vocabulary systems must consider the coarticulation problem (refer to
Chapter II, Section 2.1.1.2.1). Human speech (e.g., the formation of an individual word)
does not merely consist of concatenating isolated phonemes. Each phoneme is influenced
by its neighbors. Thus, if we were to string together phonemes uttered in isolation in order
to form a new word, that word would most likely sound unnatural. A phoneme based
system would have to either modify the boundary conditions of adjacent phonemes or,

perhaps, increase the library size by including allophones or specific phones.

Indeed, the latter has been attempted by Harris [Harri53]. However, Harris realized
that an immediate problem is the exponentially increasing size of memory required to store
waveforms of different allophones for each phoneme. To solve the memory size problem,

Harris investigated a minimal set of allophones.

Another way of decreasing the size of memory required by allophone based systems

is to store larger units of speech that include the transition regions. These larger units of
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speech are called dyads, diphones, or demisyllabes [PeWa58] and [Holm88], and they
consist of phonemes and their transition regions. These transition regions are generally
characterized as steady state regions, and they are not greatly influenced by adjacent sounds.
Synthesis by diphones has been attempted by Peterson and Wang [PeWa58], but a problem

they encountered was the discontinuity between diphones themselves.

It appears that if phoneme based synthesis for large or even small vocabularies is to
succeed, then it must deal with the coarticulation problem, directly. The boundary properties
of phonemes spoken in isolation must be modified before they can be put together to form
larger utterances. This thesis investigates three methods of dealing with the boundary
modification of isolated phonemes and extracted sub-word synthesis units. The process of
forming new utterances by putting together smaller units and modifying their boundary
properties is defined in this thesis as speech splicing. The following sections give the

theory, requirements, and motivation of the proposed boundary property modifications.

2.24.1  Cut, Copy, and Paste

Perhaps, the simplest way of constructing speech from individual components is
cutting, copying, and pasting digitally recorded waveforms. This method requires an
interactive editing system capable of allowing the user to display, select, and playback any
portion of a previously digitally recorded waveform. The displaying part of the system
requires a visual association of a waveform with its sound. This capability provides great

flexibility in selecting the right segment of speech for the job.

This method may also be suitable for modifying the items of small vocabulary
systems, such as a bus schedule information service, as mentioned above. Figure 2.5 shows
an example of a three step procedure for replacing the word ‘ten’ from the message “Route

60, Pembina. Next bus at 2:10.” with the word ‘twelve’. Both words have been previously
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digitally recorded, and all that is seemingly required is to cut, copy, and paste the words at

appropriate times or locations in the message.

However, this method is somewhat tedious, labour intensive, and time demanding,
because the user must continually select and play portions of the time domain representation
of the speech waveform, until the sound of interest has been located, isolated, and copied.
This problem arises because the boundaries of phonemes located in an utterance are not
clearly defined. Words spoken by humans involve a continuous flow or glide between
adjacent phonemes. As such, specifications of the boundaries may well be fuzzy concepts

and better treated by fuzzy theory [FeKio1].

(50 )

% Mouse Pointer

Amplitude (Volts)

Time (seconds)

= Display Scroll Bar %=

Fig. 2.5a Procedure for cutting waveform of word ‘ten’. The waveform of
the word ‘ten’ may be isolated by selecting a portion of it through pointers
P1 and P2. Also, the visual representation of the waveform may be
associated with the sound of the word ‘ten’ by playing back the selection.
Finally, the selected waveform is cut by selecting cut function through the
icon, Cut.
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Fig 2.5b Procedure for copying the waveform of the word ‘twelve’.
Verification of the waveform by playing back the speech selected through
pointers P1 and P2 is followed by using the icon, Copy, to temporarily retain
a copy of the selected waveform.
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Fig 2.5¢ Procedure for pasting the waveform of the word ‘twelve’. The
waveform is pasted near the end of the waveform ‘two’ (more precisely, at
location pointed to by P1) by selecting the paste function of icon, Paste.
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The cut, copy, and paste method does not take into consideration the differences in
boundary properties that may exist between adjacent words of a phrase and between
adjacent phonemes of individual words. However, because human speech perception plays
a significant role in understanding speech, the boundary conditions may not adversely affect
intelligibility. Whether or not the boundary conditions affect intelligibility depends on how

‘bad’ amplitude or frequency is mismatched.

2.24.2  Amplitude Interpolation

Proper speech splicing entails some consideration of the boundary conditions. One
way of matching the boundary amplitudes of the phonemes to be spliced is by amplitude
interpolation. This method compares the amplitude envelopes of the phonemes to be

spliced. Starting at some point in the phoneme (near the beginning, middle, or end), the

Amplitude vs. time of Fee' before amplitude interpolation
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Fig. 2.6 ‘f” spliced with ‘e’ using amplitude interpolation.
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amplitude envelope of one or both phonemes is increasingly scaled towards the boundary
until the envelope amplitudes match. Scaling may be done linearly or non-linearly. Figure
2.6 shows an example. The selected ‘f” sound in ‘fit’ is put together with the selected ‘ee’
sound in ‘beet’. As can be seen in the top waveform, the amplitude envelopes are
mismatched. The interpolator matches the amplitude envelopes at the boundary by scaling

the envelope of the ‘ee’ sound.

As with the copy, cut, and paste method, a disadvantage is the amplitude interpolator
entails some repetition. The user must repeat the procedure until the right combination of
parameters, i.e., linear or non linear scaling, scaling factor, and boundary depth, is chosen.
Furthermore, the judgment is subjective and may vary from one person to the next. Another
disadvantage is the amplitude interpolator does not take into consideration differences in
duration of one or both phonemes to be spliced. The discontinuity at the boundary may be
because one phoneme does not continue long enough in order to meet the adjoining
phoneme. Another disadvantage is the amplitude interpolator directly modifies the
waveform. There are some instances where the integrity of the original waveform is to be

left intact, while some other method achieves boundary match and continuity.

2.24.3  Linear Predictive Extrapolation (LPE)

The waveform extrapolator can achieve continuity and match at the boundary, while
preserving the character of the original phonemes. The waveform extrapolator may achieve
a match between two phonemes by introducing an inherently characteristic binding segment
at the boundary. As its name suggests, the waveform extrapolator predicts future samples
of the waveform based on past samples. This is appropriate for the left hand side phoneme
to be spliced. However, for the right hand side phoneme, the extrapolator postdicts or

estimates preceding samples based on present samples. Figure 2.7 shows a model for
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concatenating phonemes using linear predictive extrapolation. The waveform extrapolator

consists of the following three steps: i) linear prediction, 2) linear postdiction, and 3)

averaging.
NN NN
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Fig. 2.7 Model of phoneme concatenation using linear predictive
extrapolation (LPE).

The motivation for the predictive extrapolator is based on the fact that when humans
vocalize words, the adjacent phonemes interact and influence their neighbors. It is proposed
that linear prediction may model this interaction, because linear prediction has already been
shown to provide a sub-model of speech production [Pars86]. In order to take into
consideration both adjacent phonemes, however, postdiction and averaging is included.
Averaging gives equal weight to both phonemes for the binding segment contribution.
However, it may be that one phoneme should have more influence on the other. In this case,

a generalized fuse function may be employed [FeKi91].

Figure 2.8 shows an example of postdiction and prediction of an actual waveform
for the phoneme /IY/, as in ‘feet’. The objective is to make the phoneme /TY/, spoken in

isolation, sound longer and prepare it for eventual splicing using the binding segment
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method. The first step consists of linear prediction. From Eq. 2.1, one hundred samples (p
= 100) of the previously recorded phoneme /IY/ are used to predict the next twenty samples.
These twenty samples are pasted to the end of the original phoneme using the Paste

function of the system described above. The next step consists of linear postdiction.
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Fig. 2.8 Linear prediction and postdiction of the phoneme /TY/.

From Egq. 2.3, one hundred samples (p = 100) of the previously recorded phoneme /TY/ are
used to estimate the previous twenty samples. These twenty samples are pasted at the

beginning of the original phoneme using, once again, the Paste function of the system

described above.

Having described theory of speech synthesis, in particular, the compression
technique of adaptive differential pulse code modulation (ADPCM) and three waveform
concatenation techniques, namely, copy, cut, and paste; amplitude interpolation; and linear
predictive extrapolation (LPE), this chapter now turns to discussing how these concepts can

be applied to automated vocal shaping systems.
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2.3  Review of Vocal Shaping

This section provides some background information on vocal shaping and
automated vocal shaping systems. This review is not comprehensive, but it does cover the
pertinent aspects, and it is intended to provide motivation for this thesis and to show how
speech splicing may be used in a vocal shaping environment. A definition of shaping and,
in particular, vocal shaping is discussed. Following this is a description of the structure of
automated vocal shaping systems. This description shows the part played by the speech
splicing system of this thesis. Finally, the procedure and method of an automated vocal

shaping system is discussed.

2.3.1  Vocal Shaping Definition

Shaping is a behavioral modification procedure of a branch of Psychology dedicated
to the study and practice of modifying, developing, and training new behaviors in animals
and humans. The shaping procedure is modelled after operant conditioning, i.e., the
frequency of occurrence of a behavior is increased by making the presentation of
reinforcement contingent on the occurrence of that behavior. Shaping involves a series of
applications of operant conditioning for smaller changes in behavior because the probability
of exhibiting a complex behavior without prior and similar experience is low. Furthermore,
shaping is based on the realization that complex acts are piece-wise continuous in nature
[Skin33]. Most complex acts consist of a sequence of smaller actions, which, when serially
enacted, form the behavior. An example of this is the method by which circus animals are
trained to perform ‘tricks’. For instance, in order to get a lion to sit up on its hind legs on
top of a table, the trainer would break down this complex behavior into component parts.
The lion is trained to perform each part individually and sequentially, starting with the first

small act, which may be to get the lion to just look at a table. Each occurrence of the
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component part is reinforced, most probably in this case by dispensing food to the lion.
After a component part is mastered, reinforcement of that behavior is halted (extinguished),
and the next behavior is attempted. This process of reinforcement followed by extinction is
continued until the lion exhibits the total complex act. Shaping can be defined as a
behavioral modification process consisting of the successive reinforcement of closer
approximations and the extinction of previous approximations until the target behavior is

achieved [MaPe88].

Vocal shaping is dedicated to the study and practice of modifying vocal behavior of
speech disabled individuals [PeKR87]. The process of vocal shaping involves four
parameters: (i) target behavior, i.e., correct or desired pronunciation of an utterance; (ii)
starting behavior, i.e., a student’s initial vocalization of an attempted utterance; (iii)
advancement and regression criteria; and (iv) step size [Desr90]. Flexibility in the system
is allowed in that the advancement and regression criteria and the step size are derived from
a given target response and starting behavior. In this way, the system can adapt itself to

individual differences.

The conventional method of administering vocal modification is a long, tedious, and
subjective process, because it involves direct interaction between speech therapist and
student. After each incremental response, the teacher must assess the behavior, decide
whether it is advancing or regressing, and alter the step size (if required). This assessment
can be very subjective in nature, and the decisions made by the same therapist can vary from
one time to another as well as between different therapists. "Automated systems may aid in
this process by increasing the precision by which assessment and training procedures may

be administered" [Desr90].
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2.3.2  Automated System Architecture

Current research [Love91] proposes a phonemic recognition system for automated
vocal shaping. This system consists of three phases, i) acquisition of training data, ii)
configuration and training of recognition system, and iii) phoneme shaping. The system is
run on a Macintosh Ilsi computer and provides a very nice user interface to facilitate easy

acquisition, configuration, and shaping.

2.3.2.1  Acquisition of Target and Training Data

The acquisition phase consists of building a library of test patterns. Target
phonemes spoken by a speech therapist are recorded and features are extracted and loaded
into the library. Each target phoneme consists of numerous versions, which are associated
with labels as follows: excellent, good, fair, poor, and unsatisfactory. The purpose of this
library is to provide the student with model pronunciations, to provide distance comparisons,

and to configure the recognizer.

2.3.2.2  Configuration and Training of Recognition System

The configuration phase configures and trains the recognition system with the test
patterns acquired in the acquisition phase. The recognition system is implemented using an
artificial neural network. The purpose of the neural network is to recognize the version of

the test pattern the student is attempting to imitate and, also, to provide distance measures.

2.3.2.3 Phoneme Shaping

Once target and training data have been acquired and the recognition system has
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been trained, the process of shaping can begin. To start the process, the therapist chooses a
phoneme from the library. The computer synthesizes this phoneme and plays it back for
the student. The student attempts to imitate the sound, and the computer records the
response. The recognition system determines the quality of the response by generalizing
and mapping the response to one of its known identities. Distance measures are stored in
anticipation of the next response. Based on advancement and regression criteria, the system
determines whether reinforcement should be administered. Once a particular version has
been achieved, reinforcement for that version stops, and the next best version is attempted.
In this way, the system attempts to shape the response of the student through successive

versions of the target until the correct pronunciation of the phoneme is vocalized.

2.3.24  Word Shaping

Once a set of phonemes has been shaped, the next logical step is to try larger
content speech, such as words or phrases. If these words already exist in a library, then
speech splicing may be used in the process of shaping these words. The objective is to
extract phonemes and or syllables and process them using waveform concatenation
techniques in order that they, themselves, may be used for vocal shaping. The idea is that if
a student is to learn to vocalize an entire word, it would be easier to proceed in steps by
individually shaping the component parts of the word. Once the component parts are

learned, then they may be put together more easily in order to form the word.

There are two advantages to this method. The variability introduced by having a
therapist utter the phoneme or syllable many times in succession is eliminated by the
automated system which is capable of synthesizing the component part exactly the same
way every time. Also a therapist may not vocalize the phoneme or syllable exactly as it is
vocalized in the context of the word. This is not a problem for a system that extracts and

plays back the actual waveform of the phoneme or syllable from the waveform which has
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embedded in it the contextual information.

However, if these larger words do not exist in the library, then they would have to be
added. There are at least three methods of vocabulary expansion. The first method requires
a target acquisition phase, which would record the additional words or phrases spoken by a
therapist. A second method, which does not involve a target acquisition phase, involves
adding previously recorded phonemes to previously recorded words, removing phonemes or
other small units of speech from previously recorded words, or replacing phonemes of
previously recorded words. This may be done using the waveform concatenation methods
described in Section 2.2. For example, if the words ‘dog’ and ‘add’ were previously
recorded utterances of the therapist, then the new word ‘dad’ may be formed by copying the
phoneme /D/ from ‘dog’ and pasting it to the starting of the word ‘add’ to form the new
word ‘dad’. A third method of vocabulary expansion is similar to the second method.
However, a significant difference is that the source of phonemes to be spliced is the
student’s vocalizations, rather than the therapist’s. The idea is to first shape a specific set of
phonemes. From this set new words may be formed by the waveform concatenation
methods. Because these new words are formed from the student’s own pronunciation of
the component parts, the resulting pronunciation of the new words would characteristically
and inherently sound as the student’s own voice. This may lead to intuitive, natural, and

easier shaping.

The second and third methods of vocabulary expansion have the additional
advantage of providing experimental continuity. During the long course of shaping the
vocal responses of a certain student, that student may become dependent on the specific
pronunciation of a particular therapist. If for any reason that therapist is no longer able to
continue shaping the student, past accomplishments may be set back and the rate of learning

may be decreased. Because these concatenation methods may produce familiar sounding
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words that may sound inherently characteristic of the therapist’s or the student’s
pronunciation, the experimental variability of changing teachers during the course of

training is eliminated.

2.4 Summary

This chapter provides a review of speech synthesis and vocal shaping. The first part
of this review focuses on the techniques of ADPCM, LPC, and waveform concatenation,
ADPCM is a data compression technique that is used for speech data transmission, and it
achieves a compression ratio of 2:1, while maintaining toll quality. LPC is a speech analysis
and synthesis method that is used in this thesis in conjunction with waveform concatenation.
Waveform concatenation is a method of synthesizing speech from waveform
representations. In particular, new words or phrases are formed by joining waveforms of
smaller units of speech. More specifically, new words may be formed by concatenating
phonemes or by replacing phonemes of existing words. There are three methods of
waveform concatenation: (i) copy, cut, and paste, (ii) amplitude interpolation, (iii) and
linear predictive extrapolation. These three methods are used in Chapter VI Speech

Splicing Experiments.

The second part of this review shows where and how speech synthesis fits in with
vocal shaping. Vocal shaping is a psychological procedure for modifying vocal behavior.
Vocal shaping involves the administration of reinforcement for closer approximations and
extinction of previous approximations until the target response is achieved. The idea is to
shape vocal responses of students by getting them to emulate a succession of target
responses spoken by a therapist. Speech synthesis, in particular, speech splicing, may be
used to form new target responses. New words or phrases may be formed by adding,
removing, or replacing phonemes within existing words. This method is called vocabulary

expansion and is useful for providing long term continuity and reducing experimental
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variability. In the case of concatenating phonemes spoken by students, this may lead to
intuitive and easier shaping, because the new words would inherently sound like the

student’s own pronunciation.

This chapter deals with the psychological and theoretical aspects of this thesis. The
next step is the technical aspect which provides the technical means by which the
psychological and theoretical aspects are implemented. The technical description begins
with defining the requirements and architecture of a speech processing system, which
incorporates the tools of speech splicing. This is followed by the organization, i.e., the

technology used in order to implement the architecture.
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CHAPTER III
SYSTEM REQUIREMENTS AND ARCHITECTURE

Chapter II provides a ‘rcvi'c:w of speech synthesis and vocal shaping, and it describes
how speech synthesis, in particular, waveform concatenation, may be used in a vocal shaping
environment. Chapter I can be thought of as describing the theoretical and psychological
aspects of this thesis. The next step is the technical aspect, which concerns the physical
realization of the speech splicing system. This step involves an architectural description

(described in this chapter) and an organizational realization (Chapter IV).

This chapter discusses requirements and describes the architecture of a system
capable of splicing speech using the waveform concatenation method. In a vocal shaping
environment, the entire system would consist of three phases: (i) utterance acquisition for
vocabulary expansion, (ii) synthesis by isolated phoneme and/or extracted sub-word
concatenation, and (iii) synthesized word shaping. However, this thesis concentrates on the
speech splicing part of the system, which consists of phases (i) and (ii). As described in
Chapter II, Section 2.3.2.1, the utterance acquisition phase consists of acquiring model
phonemes' and/or model words spoken by a therapist or shaped phonemes spoken by a
student. Once the utterances have been acquired, the next phase consists of splicing or
synthesizing new words using the waveform methods described in Section 2.2.4, namely,

cut, copy and paste; amplitude interpolation; and linear predictive extrapolation.

3.1 System Objectives

In order to satisfy the above two major goals of the speech splicing system, certain

objectives can be stated as follows:
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Real time recording and playing of speech.

Recording and playing time limited only by the available space on the PC’s
hard disk.

Good quality speech reproduction characterized by at least telephone (toll)
quality, while maintaining relatively low transmission rate, bandwidth, and
computer memory.

Isolation of computer from other peripheral speech processing hardware.
Portability and compatibility of peripheral speech processing hardware and
host computer.

Intuitive and easy to use interface of host computer.

Main host software including library formulation; data compression and
decompression; and amplitude versus time plot of speech waveform allowing
the user to display, select, and playback any portion of a digitally recorded
speech waveform.

Additional waveform synthesis software including intuitive copy, cut, and

paste; amplitude interpolation; and linear predictive extrapolation;
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Fig. 3.1 External view of CASS system.

3.2 System Structure

Figure 3.1 shows an external view of the entire vocal shaping system. This figure
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shows the word shaping mode of operation. It is assumed that the targets of three
previously shaped phonemes (/D/, /AA/, and /G/) have been stored in a library and
subsequently spliced to form the word ‘dog’. To get a better idea of how this system may
work , let us consider an internal view, as shown in Fig. 3.2. As shown in this figure, the
system consists of a speech processor, memory manager, serial communications channel,

and host computer.

3.2.1 Speech Processor

The speech processor is responsible for recording and playing speech. The
sequence of events transpiring during record and playback mode can be described as
follows: During recording, the speech processor is responsible for inputting the analog
representation of the speech waveform, converting the waveform’s analog representation to
a digital representation, compressing the digital representation, and transmitting the
compressed speech to the next unit, the memory manager. During playback, the speech
processor is responsible for capturing the compressed representation of the synthesized
word from the memory manager, decompressing it to a linear digital form, converting from a
linear digital form to an analog representation, and outputting the analog representation of

the synthesized word to an amplifier and eventual speaker for the benefit of the listener,

The inputting and outputting functions involve adhering to certain aspects of signal
theory. Inputting must pre-process the speech signal. Pre-processing involves filtering the
speech signal. Filtering is required in order to remove every other signal present in the
source emanating from the microphone, except the speech of interest. This includes
ambient and power source (60 Hz) noise. Electrical signal filtering can be thought of as
attenuating (ideally to zero) the component frequencies of the noise to be removed, while
passing (usually with unity gain) the signal of interest. Removal of noise present in a

speech signal is usually done by inputting the microphone signal through a bandpass filter
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of bandwidth of approximately 3000 Hz, with cutoff frequencies located at 300 Hz and
3300 Hz. Signals consisting of frequencies outside the band 300 to 3300 Hz are attenuated,
while signals within the band are passed unmodified. This bandwidth is sufficient for

speech because the essence of speech is contained within 300 to 3300 Hz [K1im87].

Outputting must post-process the speech signal. Post-processing also involves
filtering. In this case filtering must be done in order to remove high frequency components
introduced by the digitization process. More detail on post-processing is given in

Chapter IV.

Another function of the speech processor is to provide transformations or
conversions from the analog to the digital domain and vice versa, ADC and DAC,
respectively. There are certain advantages of using digital technology. The digital domain
facilitates further processing of speech. Speech is much easier to modify in the digital
domain. Once in the digital domain, any portion of the speech waveform can be visually
associated with its sound. This facilitates copying, cutting, and pasting functions.
Furthermore, the accuracy with which speech may be modified is determined by the
sampling rate. For example, if speech is sampled at 8 kHz, then the resolution of any copy,
cut, or paste is 125 pusec. Another advantage of recording and storing speech in digital form

is that it may never degrade.

One of the disadvantages of using digital technology is the cost of the resulting
transmission rate, bandwidth, and computer memory. As discussed in Chapter II, a method
of reducing these costs is data compression. A suitable compression technique for the
application of interest is adaptive differential pulse code modulation (ADPCM). ADPCM
compression is used mainly because of its ability to reduce the above costs by one half,

while maintaining toll quality.
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3.2.2 Memory Manager

The memory manager is a buffer that controls the communication of speech data
between the speech processor and host computer. The memory manager provides a
continuous flow of data between these two systems which have different data transmission
requirements. This buffer is included in the system design in order to realize real-time
recording and playing of speech, with recording or playing time limited only by the available
space on the hard disk.

If the buffer is omitted from the design, there are two reasons preventing real-time
recording and playing of speech. Even though ADPCM is capable of reducing costs by
one half, the resulting transmission rate is still quite high and demanding. For example, if
speech is sampled at 8 kHz, then the ADPCM transmission rate is 4 kHz. If a 4-bit
quantizer is used, this means that a byte of ADPCM speech data is transmitted every
250 psec. If speech is to be recorded in real time, then each byte must be transferred to a
storage medium, and this transfer must not take longer than 250 pisec, else data will be lost.
If a host computer is to be solely responsible for reading and saving speech data, this time
restriction would be too demanding. For example, an average access time of a hard disk
storage medium is about 18 msec. This access time includes powering up the device and

positioning the write or read head.

Computers are much more efficient at processing large blocks of data, rather than
one byte at a time. Rather than writing each byte to disk as it is received, the host computer
is more efficient at reading a block of data, say 8K bytes, and saving this block to disk. The
host computer may do this faster than the next block becomes ready to be read and saved.

For example, the host computer would have extra time, ts, given by Eq. 3.1.
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te = BlockFormT — BlockRecT — BlockSaveT — FPT
= (8K bytes)(250 psec/byte) — (18 msec + block write time) — FPT
= 2.03 sec — block write time — FPT (3.1

BlockFormT is the time required by an external device to form an 8K block of data.
During this time, the host computer is allowed to spend BlockRecT time receiving the
previously formed block, BlockSaveT time saving the current block to disk, and foreground
processing time (FPT) doi_n_g system tasks. BlockSaveT time includes disk access (about
18 msec) and the time required to write 8K bytes to disk. Foreground processing time is
the time required by the host computer to perform system tasks, such as maintaining
communication at the user interface and refreshing Dynamic Random Access Memory
(DRAM). These tasks are considered high priority, particularly the DRAM refresh cycle.
Reading speech data and storing same to hard disk is considered a lower priority

background task.

However, because of the variability in the time required to write to disk and to
perform foreground processing, whether or not the host can complete these tasks before the
next block is ready for transmission is determined experimentally. For example, the time to
write 8K bytes to disk varies because of disk segmentation. Because files are constantly
being written, modified, and deleted, and because the operating system is forced to make
efficient use of the disk, there is a good chance that an 8K block of data will not be written
contiguously on disk. As a result, the time taken to write to disk is much longer than
expected, where the expected time is the time required by a direct memory access (DMA)

controller to write a block of RAM to disk.

Because of the demanding transmission rate and high priority foreground tasks, the

system may have problems recording or playing speech in real time. In order to allow the
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host computer the time it requires to do system tasks in the foreground and speech
processor requests in the background, some sort of buffer is required. This buffer must be
able to take over the task of communicating speech data with the speech processor, while

communicating blocks of speech data with the host computer,

There are several buffer concepts which satisfy the requirements of real time
recording and playing of speech. This thesis presents designs of two buffers. The buffer
implemented in the system is called a dual pointer First In First Out (FIFO) buffer,
implemented in software. This buffer is described in Chapter IV, Section 4.2. An
alternative buffer, called a swinging buffer, implemented in hardware is discussed in

Chapter V.

3.2.3 Serial Communications Channel

The serial communications channel is the medium through which speech data is
transmitted between the host computer and memory manager. It is included in the system

design in order to achieve isolation and portability objectives.

Directly connecting the speech processor to the host computer may not be a good
idea. Some kind of trouble, say an electrical problem, happening with the memory manager
or speech processor may damage host circuitry if there were a direct connection. The serial

communication channel isolates the two systems fairly well.

Most host computers have serial port interfaces which are compatible with the RS-
232C standard. Therefore, by using a RS-232C compatible serial communications channel,
this system may work on other compatible host computers. The portability objective also

depends on the software and operating system used by the host computer.
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3.24 Host Computer

The host computer must play a central and foremost role in the speech splicing
system. For the purpose of speech splicing research, it really does not matter what brand of
host computer is used, so long as it is capable of the objectives. However, because of
technological and physical availability, a decision as to which which type of host computer

to use must be made.

3.24.1 Choosing a Host

There are at least two computers, Macintosh and IBM, capable of performing the
task of a host. The Macintosh is probably the best choice because sound I/O technology is
much more advanced. In particular, a Macintosh IIsi has built in sound input and output,
capable of monaural 8-bit voice input, via an included electret microphone, and stereo output
via a minijack output located in the back. The new ROM based sound manager of System
7.0 offers very easy and flexible voice recording and playing, with selectable sampling
frequencies of 11 and 22 kHz and selectable compression techniques. However, recording
speech to disk is not yet possible with the sound manager. Record and playback time is
limited to allocated RAM. With extra software, such as MacRecorder and SoundEdit, it is
very easy to edit speech. In particular, the task of cutting, copying, and pasting is very easy

and graphically oriented [MacU90]. This facilitates speech splicing.

The Macintosh IIsi, together with available speech editing software, achieves most of
the objectives of the speech splicing system. Perhaps the only additions to the system
would be a speech splicing system application program, which interfaces the user to
phoneme acquisition, splicing, and word or phrase reproduction. This amounts to saying a

speech splicing system is available on the Macintosh.
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Unlike the Macintosh, voice input and output is not directly possible with an IBM or
compatible. The IBM has a built in amplifier and speaker, but its sound reproduction is
limited to simple beeps or tones. If the IBM is to be used as host computer, then external
circuitry, such as the speech processor, memory manager, and serial communications
channel as described above, would be required. This thesis uses the IBM as host because
currently there are more IBMs in the market, designing with the IBM is more challenging,

and a similar speech splicing system on the IBM is not currently available,

3.24.2 Requirements

The host computer must provide a user interface to the system. Most of the other
system components, i.e., serial communications channel, memory manager, and speech
processor, should be virtually hidden from the user. When the user requests to record or
playback speech, a command should be entered through the interface, and the host computer
should take care of the rest of the details. For example, if the user wishes to start recording,
the command should be issued through a visual button icon on the video display unit
(VDU), analogous to depressing a record button on a tape cassette recorder. Similarly, in
order to perform some simple speech editing tasks, the user should be able to access any
portion of speech anywhere in the speech data file. This access should be done through a

display of an amplitude versus time plot of the speech data file, as indicated in Fig. 3.2.

3.24.3 IBM Software System Hierarchy

All operations of the host computer in the speech splicing system are implemented
in software. Software on the IBM computer consists of four levels, high level language,
DOS calls, BIOS calls, and assembly language. The IBM recommended design philosophy
[NoWi85] is as follows: Write the application program using only high level language. If
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the application calls for some functions not provided by high level language, use either
ROM BIOS or DOS. BIOS is a basic input output system located in ROM. DOS is
located on the start up disk and is partially loaded into RAM on system boot-up. BIOS and
DOS provide screen, disk, serial communications I/O, and many other low level functions.
All BIOS and DOS functions are invoked by software interrupts. Each interrupt is
associated with a location in an interrupt vector table. Each location contains an address of
the selected routine. As long as the PC is controlled through high level language, DOS, or
BIOS the designer is safe from compatibility problems, i.e., there is a good chance that the
application program will work on other PCs. If the application calls for some manipulation
of hardware or peripheral devices not provided by ROM or BIOS or direct control of the
CPU is required, then the last alternative is to use assembly language. However, use of
assembly language to manipulate hardware and peripheral devices is not recommended

because hardware and peripheral devices vary from one PC model to the next.

3.244 User Interface

The user interface is superficially the most important part of the system. The
‘goodness’ of most software is judged by the user interface. Questions such as ‘Is the
system intuitive and easy to operate?’ and ‘Is the appearance of the software inviting and
eye catching?” are predominantly the ones that must be answered by the software. When
designing a user interface, the programmer has two alternatives, which are (i) design the
interface from scratch using a high level language, DOS, BIOS, and assembly language or
(ii) purchase a graphical user interface (GUI) [CoLa90], which typically contains source
code and libraries for creating pop up menus, windows, dialogue boxes, buttons, and
switches. This thesis shows how to design a simple interface using the former method.

This is described in Chapter IV, Section 4.4.1.



3.3 Summary

This chapter discusses requirements and describes the architecture of the speech
splicing system. The system is required to be capable of two major goals: (i) utterance
acquisition for vocabulary expansion and (ii) synthesis by isolated phoneme concatenation
and synthesis by extracted sub-word concatenation. In order to satisfy these requirements,
the architecture of the system must consist of a speech processor, memory manager, a serial
communications channel, and a host computer. Under this architecture, the system is
capable of real-time recording and playing of speech, disk capture, ADPCM compression
and decompression, amplitude versus time plot of speech waveform allowing the user to
display, select, and playback any portion of a digitally recorded speech waveform, and
additional waveform synthesis software including intuitive copy, cut, and paste; amplitude

interpolation; and linear predictive extrapolation.
Having described the architectural requirements, the next chapter shows what

technology is used in order to implement the architecture. Chapter V provides every detail

of the implementation required in order the system be reproduced.
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CHAPTER IV
DETAILED SYSTEM DESCRIPTION

This chapter describes the organization of the speech splicing system, i.e., the
technological implementation. The system’s main functions include recording and playing
speech using the adaptive differential pulse code modulation (ADPCM) compression
scheme [OkiS90], acquiring and transmitting digital speech samples to and from target and
host computer subsystems using serial transmission, storing digital speech samples in a
host computer, and, finally, processing of the stored digital speech. The system center, an
IBM compatible host computer, is menu driven with a graphical user interface. The system
is capable of real-time recording and playing of speech, for lengths of time limited only by
available space on the hard disk. The system includes code conversion routines for
compressing and decompressing pulse code modulation (PCM) and ADPCM formatted
speech, respectively. The system is designed specifically to facilitate easy and user friendly
speech editing tasks, such as cutting, copying, pasting, and splicing. To this end, the time
domain plotting feature, with frame by frame or sample by sample scrolling, allows the user
to view and manipulate any portion of the speech waveform at any point in the file. Finally,
the system software also includes routines for implementing the linear predictive

extrapolation method of waveform synthesis.

Due to the modular architectural design of the system, experienced software
developers may easily add features, such as frequency and spectral plots. Other more
advanced features may include special effects, such as echo, reverb, flange, and pitch control.
Furthermore, experienced hardware designers may easily incorporate into the design other
speech processor integrated circuits (ICs) using different compression schemes, opening

the door to a wide variety of digital speech processing.
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4.1  Speech Processor: the MSM6258 MPU Interface Version [OkiS90]

The speech processor used in this thesis is the MSM6258VJS microprocessor unit
(MPU) interface version, manufactured by Oki Semiconductor. It is a complex and highly
integrated speech digitizer and synthesizer featuring the ADPCM method of data
compression. It is designed to be interfaced with an 8-bit microprocessor (4P), such as the
Motorola 6802 pP. The speech chip includes internal analog to digital and digital to analog
circuits, timing and control synchronization signals, and selectable sampling frequencies and
ADPCM bit numbers, The chip is implemented in CMOS technology for low power

consumption.

As shown in Fig. 4.3, the chip internally consists of a command and a status
register, an 8-bit analog to Digital Converter (ADC), an ADPCM analysis and synthesis
unit, a data I/O buffer, and a 10-bit Digital to Analog Converter (DAC).

. o 8
V\’I': Switch 3| 8BIADC |3l  ADPCM 1 10-bit DAC {>>ma DAOUT
Analysis
IAD/EAD Synthesis e DASC
A L ,,
cs s DO
RD > Command Register fegifermmmmmmmmd 2 A Di
WR ' 5 g D2
DiC ;‘3 3 = D3
PAUSE 8 = : g';
i
;iﬁ? ;, Status Register o 3 D6
SAM2 E 2 D7
=
MPU
T Ea AECM
XTB wa PLAYM
da OVF
g MCK
/ /
SESt RIP Vek Tds Trst Trs2 Vds Vdo Vss1 Vss2

Fig. 4.3 MSM6258 block diagram.

During the record mode, the ADC periodically samples and converts the input

analog speech waveform to an 8-bit digital representation. These digital samples are passed
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to the ADPCM analysis stage, where each 8-bit digital representation is compressed to
either a 3-bit or 4-bit ADPCM representation. Two successive ADPCM representations are
concatenated to form an 8-bit data byte, which is loaded into the I/O buffer and, thus, output
at pins DO through D7. Output control signals generated by the Timing and Control unit
indicate when an external device may read each 8-bit data byte. During the playback mode,
control signals generated by the Timing and Control unit indicate when an external device
may write 8-bit data bytes to the I/O buffer via pins DO through D7. These data bytes must
consist of two ADPCM nibbles formatted exactly as that done by the analysis stage. These
data bytes are fed into the ADPCM synthesis stage, where each nibble is extracted and
decompressed into a 10-bit representation (without introducing any new information). Each
10-bit digital representation is fed into the 10-bit DAC, and the resulting analog signal is

output at pin DAQUT.

4.1.1 Functional Pin Description

The MSM6258VJS comes in a 44-pin Plastic Leadless Chip Carrier (PLCC)
package. Fig. Bl shows the top view and the pin diagram of the chip. The 44 pins can be

grouped into three categories, voice Input/Output (I/0), MPU interface, and miscellaneous.

4.1.1.1  Voice Input/Output (I/0)

The pins associated with voice I/O include VI, VR, SAM1 and SAM2, and DAQUT.
VI:  The analog Voltage Input (VI) of the speech waveform is input through pin 38.

This signal must be pre-amplified and low pass filtered. The circuit used to perform the

pre-amplification and the filtering is shown in Fig. 4.4.
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Fig. 4.4 Pre-processing circuit.

The input voltage at pin VI (V_, in Fig. 4.4) must be greater than OV and less than
5V, since the reference voltage used by the internal ADC is 5V. If VI exceeds 5V or falls
below 0V, clipping will occur and the ADC section of the chip may be permanently

damaged.

The signal-to-noise ratio (SNR) is dependent on the input dc bias. In order to
determine the dc bias required for optimal SNR, testing of the pre-processing circuit with an
input sine wave of frequency 1 kHz is done. It is found that a dc bias of 2.5 to 3V gives the
best reproduction, while decreasing the bias from 2 to 0V yields decreasingly poorer
quality. Testing is done by observing the reproduction on an oscilloscope to get a rough

estimate of the optimal dc bias and then by using SNR measurements to fine tune the bias.

Assuming a sampling frequency of 8 kHz, the frequency content of the input speech
signal should be in the bandwidth of 300 to 4000 Hz in order to eliminate the low frequency
(e.g., 60 Hz) noise and to prevent aliasing. However, the bottleneck is the frequency
response of the speech chip. The frequency response of the chip is considered for two

cases. When the input waveform varies between 0 and 2.5V, the bandwidth of the speech
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chip is about 3200 Hz and about 2000 Hz when the input varies between 0 and 5V.
Assuming the best response, the input waveform may be filtered to pass the frequency band
of 300 to 3200 Hz. This is accomplished through the use of a 5th order Chebyshev filter
[OkiS90, pp. 378-380].

VR: The Voltage Reference (VR) of the internal ADC is input through pin 37. The

reference voltage is nominally the supply voltage, VDD.

SAMI and SAM2: The SAMpling frequency is determined by the logic levels input
to pins 12 and 13, respectively. Table 4.1 shows the possible sampling frequencies as
determined by SAM1 and SAM2. For an oscillation frequency of 4.096 MHz, any of the

frequencies shown in the table may be selected as the sampling frequency.

Table 4.1 Sampling frequency selection.

SAM1 L H L H
SAM2 L L H H
Sampling Frequency( kHz ) 4.0 53 8.0 Inhibited
DAOUT: During playback, the synthesized speech waveform is output at pin 28, the

Digital to Analog OUTput. The DAOUT pin provides a staircase type signal varying
between 0 and 5V and centered at 2.5V, as shown in Fig. 4.5. Also, during recording,
DAOQOUT monitors the input waveform at pin VIN, with a slight delay. This monitoring is
useful for debugging and is an indication that the ADC and the DAC sections of the speech

chip are in working order.
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Fig. 44 DAOQOUT voltage vs. time. DAQUT is the output of the DAC and,
therefore, it is a stepwise function containing high frequency components.

The stepwise function provided by DAQUT must be filtered in order to remove the
high frequency components introduced by the DAC. Although there are many active filter
designs, such as the Butterworth, Bessel, and Chebyshev filters, a suitable filter is the 5t
order Chebyshev. The Chebyshev filter is capable of achieving sharp attenuation

characteristics with a relatively small number of component parts.

After passing the signal from pin DAOUT through the 5th order Chebyshev filter,

the stepwise function takes on a smoother look, as shown in Fig. 4.6.

50 —[ )
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P
3
2 0
s \_ J
Time

Fig. 4.6 Filtered DAOUT voltage vs. time.

4.1.1.2 MPU Interface

The pins associated with the MPU interface include MPU, CS, VCK, MCK, RD, WR,
D/CB, D0-D7, 4B/3B, and test pins. These pin are intended to be used by a microprocessor
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or microcontroller for the purpose of control and synchronization.

MPU  The MicroProcessor Unit input pin 17 selects the MPU interface mode of the
speech chip. (Note: there are two modes of the speech chip, stand-alone and MPU).
When a logic 1 is input to MPU, the internal circuitry is set to communicate with an external

Central Processing Unit (CPU) of a microprocessor or microcontroller.

CSB A logic 0 placed on input pin 30 Selects and enables the speech Chip to
communicate with an external CPU. When this pin is logic 1, the chip is disabled and the
data bus is placed on high impedance. In order to prevent bus contention, the external MPU
should enable the chip only during the data data access mode, i.e., when writing commands

and data or reading status and data to and from the speech chip, respectively.

VCK The Voice sampling ClocK at pin 3 is an output signal indicating the sampling
frequency selected by SAM1 and SAM2. When AC is logic 0, the duty cycle of VCK is
50%, and when AC is logic 1, VCK is logic 0.

MCK  The Microprocessor ClocK is an output intended to be used by a MPU for
synchronization. During record or playback, pin 14 outputs a square wave of frequency
one-half the sampling frequency and of, approximately, 20% duty cycle. During record,
MCK indicates when data can be read from the speech chip. During playback, MCK

indicates when data can be written to the speech chip.

D@-D7 The bi-directional data bus lines located at pins 10, 9, 8, 7, 2, 1, 43, and 42,
respectively, communicate ADPCM coded data and commands and status. During record
or playback, the data bus transmits a pair of ADPCM nibbles every MCK. Also, the data
bus is intended to be used by an external MPU in order to write commands to the speech

chip or to read status information being output by the speech chip.
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4B/3B  The input pin 22 selects different ADPCM nibble lengths. When 4B/3B is logic
1, the 4-bit ADPCM nibble is chosen, and, when 4B/3B is logic 0, the 3-bit ADPCM nibble
is chosen. Table 4.2 shows the ADPCM composition on the data bus. Note that each byte
of data contains two different nibbles. When two 3-bit ADPCM nibbles are concatenated to
form an 8-bit byte, the Least Significant Bit (LSB) of each nibble is automatically set to

logic 0.

Table 4.2 ADPCM bus composition.

Bus Lines B0 D1 D2 D3 D4 DS D6 D7

4-Bit ADPCM | BOan Bln B2n Bin BOn+1 | Bin+l | B2n+l B3n+l

3-Bit ADPCM G0 BOn Bln B2n 00 BOn+1 Bln+l B2n+1

4-Bit ADPCM: 3-Bit ADPCM:

}Bsg = ISVEIIIBBH gg - (S)(i}gn Bit Sign Bit = 1 means waveform is descending.
= = . o form i ing.

Bl=2SB Bl=MSB Sign Bit = 0 means waveform is ascending,

B0 =LSB BG=LSB

RDB At the low to high transition of this active low input, pin 31, an external MPU can

ReaD data or status information from the speech chip.

WRB At the low to high transition of this active low output, pin 29, an external MPU

can WRite data or command information to the speech chip.

D/CB  Input pin 32 selects the speech Data mode or the Command/status mode. When
D/CB is logic 1, the data bus provides speech data. When D/CB is logic 0, commands may

be written to the speech chip or status information may be read.

The pins, TDS,TRS1,TRS2,TSP, TRP, AND TVD are intended for factory testing.

These input pins must be set to logic 0 for normal operation.
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41.1.3 Miscellaneous

The remaining 19 pins are general in nature and include VDD, VSS1, V§S2, XT,
XTB, IAD/EADB, PLAYM, RECM, DASO, SOCK, OVF, NC, REC/PLAYB, ST-SP,
PAUSE, and VDS.

VDD  Pin 35 is the 5V power supply terminal.

VSS1  Pin 11 is the digital ground terminal. All components associated with digital
signals and requiring ground signals should use VSS1.

VSS52  Pin 36 is the analog ground terminal. All components associated with analog

signals and requiring ground signals should use VSS2.

The input signals REC/PLAYB, ST-SP, PAUSE, and VDS at pins 3, 33, 34 and 40,
respectively, are intended for the stand alone version of the MSM6258. For the MPU

version their functions are not applicable, and they should all be set to ground level.

XT & XTB The clock circuit can be connected to XT and XTB terminals of the
speech chip. XT, pin 15, is an input, and XTB, pin 16, is an output. If an external clock is
used, it should be connected to XT, and XTB should be open. In this thesis, the latter
method of connecting a clock is used. In particular, the clock of the 6802 WP is connected

to XT of the speech processor.

IAD/EADB Pin 41 selects the Internal Analog to Digital converter or an External
ADC. Alogic 1 on IAD/EADB selects the built in ADC, and a logic 0 on IAD/EADB
enables the use of an external ADC. In this thesis, the IAD is used.

- 54 -



PLAYM Pin 26 is the PLAY Monitor. During playback mode this output is logic 1.

RECM Pin 4 is the RECord Monitor. During record mode this output is logic 1.

DASO Pin 24 is used to output serial PCM data to an external DAC. This pin is

not applicable when the internal ADC is used.

SOCK Pin 25 is used to clock the serial PCM data being output by DASO. This

pin is not applicable when the internal ADC is used.

OVF The OVerFlow output signal at pin 21 gives an indication when the input
voice signal exceeds 80% of the dynamic range of the speech chip. It can be used as an
input to an Automatic Gain Control (AGC) circuit in order to control the amplitude of the

input voice signal.

NC  Pins 6, 23, 39, and 44 have No Connection. They may be left open.

4.1.2 Operation

This section describes how an MPU may operate the speech chip. The operation
essentially consists of writing speech chip commands, reading speech chip status
information, reading speech data during record mode, and writing speech data during
playback mode. The MPU must know the structure of the command and status information
and the format of the ADPCM data on the data bus. Also, the MPU must know the correct

timing at which these data are accessed.
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4,1.2.1 Data Bus Control

In order to operate the speech chip effectively, the MPU must control the data bus.
The MPU is the master and the speech chip is the slave. The master informs the slave of
the operation to be carried out by placing the appropriate logic levels on the input control
signals D/CB, CS, RD, and WR. Logic combinations of these control signals have specific
meaning to the speech chip. Table 4.3 shows the required logic levels for each of the
available operations, which are recording, playing, status output, and command input. Note

that the data bus can generally be used in two ways, speech data I/O or command/status I/O.

Table 4.3 Speech chip operation codes.

CS | D/CB RD WR Operation
0 1 0 1 Speech chip outputs ADPCM data (Recording)
0 1 1 0 Speech chip inputs ADPCM data (Playing)
0 0 0 1 Status output
0 0 1 0 Command input
1 X X X High impedance

4.1.2.2 Command Input

The writing of a command to the speech chip is typically the first operation
performed. Table 4.4 shows the available commands and the mapping of the codes to the
data bus. For example, the number 00000 100Binary = 04gex = 4Ten is the code for the
record command, and OOOOGOIOBinary = 02gex = 2Tep is the code for the playback
command. A command is written to the speech chip by placing the command on the data
bus and then setting the appropriate logic levels on the input control signals D/CB, CS, RD,
and WR.

- 56 -



Table 4.4 Command codes.

Data Bus D7 | D6 | D5 | D4 | D3 D2 D1 Do

Command 0 0 0 0 0 | Record | Play | STeSP

Start or Stop: ST-SP Code = 00000001
Playback: Play Code = (0000001C
Record: Record Code = 00000100

The MPU must also know the correct timing in order to successfully write
commands to the speech chip. Figure 4.7 shows the timing of the control signals D/CB,
CS, and WR required in order to write a command to the speech chip. As shown in the
figure, a command may be written to the speech chip while the chip is selected or enabled.
The assertion of D/CB chooses the command input mode. The assertion of WR follows
shortly thereafter. Note that at time labelled A, the logic levels of D/CB, CS, and WR are as
those shown in Table 4.3 for the command input operation. Also, note that the command
code must be on the data bus at the moment in time when D/CB, CS, and WR are all
asserted. Finally, it is the low to high transition of WR, while D/CB and CS are logic 0, that

actually writes the command to the internal I/O buffer of the speech chip.

A

D/CB H l

CS
I

WR
Data Bus /N
Valid Command Code

Fig. 4.7 Command write timing.

4.12.3 Status Output
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The MPU can read status of the speech chip in order to determine what operation is
currently being performed. The status of the speech chip may be read by setting the
appropriate logic levels on the input control signals D/CB, CS, RD, and WR and then
reading the status code off the data bus. The interpretation of the status codes on the data

bus is as shown in Table 4.5.
Table 4.5 Status codes.

Data Bus D7 D6 |DS (D4 |D3 | D2 | Dl | DO

Status  } Rec/Play | x X X X X X X

Playback: Play Status = IXxxxxxxx
Record: Record Status = Oxxxxxxx

The MPU must also know the correct timing in which to read status information off
the data bus. Figure 4.8 shows the timing of the control signals D/CB, CS, and RD
required in order to successfully read the status of the speech chip. As shown in the figure,
status may be read while the chip is selected or enabled. The assertion of D/CB chooses the
status output mode. The assertion of RD follows shortly thereafter. Note that at time
labelled B, the logic levels of D/CB, CS, and RD are as those shown in Table 4.3 for the
status output operation. When D/CB, CS, and RD are logic 0, the speech chip begins
placing the code for its status on the data bus. Finally, it is the low to high transition of RD,

while D/CB and CS are logic 0, that the MPU actually reads the status off the data bus.

BN
[
L]

Data Bus TN

: MPU reads status code

Fig. 4.8 Status read timing.

RD
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4,124 Record

As mentioned earlier, the record mode of operation begins when the MPU writes the
record command to the speech chip by using control signals D/CB, CS, and WR along with
placing the code on the data bus. In more detail, during recording the ADC digitizes speech
samples at the rate of 8 kHz and the ADPCM synthesis unit forms ADPCM bytes at the
rate of 4 kHz. In order to inform an external device when each ADPCM byte is available
for reading, the speech chip supplies a data ready signal, called MCK. This means that
recording of speech data is synchronized with MCK. Therefore, in order to read speech
data, the MPU synchronizes its read timing signals, D/C, CS, and RD, with MCK. The
speech data read timing is shown in Fig. 4.9. The timing is similar to that for reading status,
the only temporal difference being that reading status can be done at any time, whereas,
reading speech data must occur immediately following the negative edge of MCK. Arrows
in the figure show the required causality. In other words, the negative edge of MCK causes
the MPU to assert D/CB, followed by CS, and subsequently RD. Note that at time labelled
B the states of the control signals D/CB, CS, and RD are as that shown in Table 4.3 for the

record operation. A more detailed description of the read timing can be found in Section

5.2.2.1.
B . B.
MCK i l ‘\) g 1 I I""\\ ? ? 00
D/CB I _ :f}"*’ ’ I
cs (
RS . ——
RD 3

Data Bus SN
S C—

MPU reads speech data MPU reads speech data

Fig. 4.9 Record timing.
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4.1.2.5 Playback

The method for playing speech data is similar to recording. To start the playback
mode of operation, the MPU writes the playback command to the speech chip by using
control signals D/CB, CS, and WR along with placing the code on the data bus. Once the
speech chip latches the command into its command register, playback begins. In more
detail, during playback the ADPCM synthesis unit reads ADPCM bytes at the rate of 4 kHz
and the DAC outputs an analog sample at the rate of 8 kHz. In order to inform an external
device when each ADPCM byte can be written, the speech chip supplies a ready for data
signal, called MCK. As for recording, playing of speech data is synchronized with MCK.
The major difference is that the ready for data signal is indicated by the positive edge of
MCK. Therefore, in order to play speech data, the MPU synchronizes its play timing
signals, D/C, CS, and WR, with the positive edge of MCK, as shown in Fig. 4.10.

Data Bus q_

MPU writcs speech data MPU writes speech data

Fig. 4.10 Playback timing.

To stop recording or playing of speech data, the MPU writes a stop command. The

method for writing a stop command is similar to writing a record or playback command.
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What has been discussed so far in this section is how speech is recorded and
played. However, what has not been mentioned is how or where speech data is saved and
retrieved in and out of memory during recording and playing, respectively. The MPU
version of the MSM6258 does not generate addresses for external Random Access
Memory (RAM). It is the responsibility of an external MPU not only to control the data
bus, as described above, but also to save speech data during recording and to retrieve same
during playing. Ultimately, speech data must be saved in the host computer’s private RAM
in order to do processing or just to be played back at a later time. The question is the

following: How is speech data communicated to and from the host computer?
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4.2 Memeory Manager: the First In First Qut (FIFQ) Buffer

This section describes the memory manager. The purpose of the memory manager
is to manage the communication of data between the host computer and the speech
processor. The memory manager is a memory mapped system, with each device having a
distinct address and being controlled by a Central Processing Unit (CPU). As shown in
Fig. 4.11, the memory manager consists of two I/O interface ports with one configured in

parallel and the other in serial, private and expandable SRAMs, and a microprocessor

controller.
Parallel ( T RS-232 Serial
Communications: (] Parallel Communications:
ADPCM Speech Interface; ADPCM Speech
Data& Conrol || p1A Data & Control
1 6821 /
Speech : Port A: Host
Digitizer : Speech Data Computer:
& Port B: () Main Speech
Synthesizer: Speech 1 SRAM Processing
Control | Unit
Data Rate: Data Rate:
4 kHz or 115.2 kbps
{4 kBytes)(8 Bits)
=32 kbps
C Parallel Interface Serial Interface )

Fig. 4.11 Memory manager block diagram. The memory manager acts as
an intermediary device and provides a speech data buffer between the speech
processor and the host computer. This provides isolation and allows a
continuous and asynchronous flow of data.

4.2.1 Input/Output (I/O) Ports

The memory manager utilizes a dual port configuration for speech data I/O and
communication of control signals. The I/O ports are the doorways through which data

enters and leaves the buffer device. The physical ports are realized using two interface
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adapters: the Peripheral Interface Adapter (PIA) and the Asynchronous Communications
Interface Adapter (ACIA). The PIA is used to communicate in parallel with the speech
digitizer and synthesizer, while the ACIA is used to communicate serially with the host
computer. Both of these devices function as input and output ports. For example, during
record mode, speech data is input to the PIA and output to the host via the ACIA. On the
other hand, during playback mode, speech data is input to the ACIA and output to the
synthesizer via the PIA. Both the PIA and the ACIA are addressable devices, meaning that
they are ‘turned on’ or enabled when their address is selected. The following describes

how the PIA and ACIA are used in the memory manager.

4.2.1.1 Parallel YO: the PIA

This section begins with a brief and general description of the Peripheral Interface
Adapter (PIA). A description of the specific implementation of the PIA in the memory

manager follows. Finally, the PIA testing procedure and results are given.

4.2.1.1.1  General Description

The Peripheral Interface Adapter (PIA) is a device used for interfacing parallel
oriented peripheral devices to the 6800 family of microprocessors (LPs) [Moto83]. The
PIA interfaces peripheral devices to the 6800 UP by providing two bidirectional 8-bit data
buses for connecting the devices and one 8-bit bidirectional data bus for connecting the [P,
Four control lines are provided, two of which are outputs and may be used to control
peripheral devices. However, all four control lines are inputs and may be used by
peripherals in order to interrupt the uP. In this way, the PIA adapts the electrical
characteristics and the number of the signals required by peripheral devices to that required
by the 6800 family of uPs.
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Internally, the PIA consists of two identical sets of three registers, six registers in
total. The A side and the B side both contain one 8-bit data holding register, called Port A
and Port B; one 8-bit data direction register, called Data Direction Register of port A
(DDRA) and DDRB; and one control register, called Control Register of port A (CRA)
and CRB, respectively. Port A and Port B data registers are the physical links between the

two data buses connecting the peripheral devices and the data bus connecting the pP.

Each of the six registers are individually addressable. However, only four distinct
addresses are required, two for the control registers, CRA and CRB, and two for the data
direction registers and the data holding registers, DDRA and Port A and DDRB and Port B.
This is because the direction register shares the same address with the holding register. The
programming of the control register distinguishes the direction register from the holding

register.

The functionality of the PIA is programmable. Programming is achieved by writing
coded information into the data direction registers and the control registers. The logic levels
of the bits in the data direction register and the control register have specific and functional
meaning, as shown in Fig. 4.12 (A more detailed description can be found in [Moto83]).
Typically, the direction of the data holding registers are configured first. Then, the

functions of the control lines are specified, if required.

Port A and Port B data registers can be configured for either input or output by
programming the corresponding data direction register, i.e., DDRA or DDRB. The data
direction register is accessed by programming a logic 1 in bit-2 of the control register, as
shown in Fig. 4.12. Each bit in the data direction register has a one-to-one correspondence
with the associated bit of the data holding register. Writing a logic 1 to any bit of the data
direction register configures the corresponding bit in the data holding register for output,

whereas, writing a logic 0 configures the bit for input. In general, the data holding register
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can be configured for input, output, or not used.

Control Register

B7 | Bs BS | B | B3 B2 Bl | BO
Control Line 2 (CA2/CB2) DDR Control Line (CA1/CB1)
WP Interrupt Flags Configuration( Input & Output ) Access Configuration( Input )
Pata Direction Register
Output Input Cutput Not Used

EEERAEE 1444

Fig. 4.12 PIA control register (top) and data direction registers (bottom).

After programming the data direction register, the function of the control lines may
be specified by programming the control register. There are two control lines for each side
of the PIA, CA1 and CA2 and CB1 and CB2. The output control lines are normally used
for controlling a peripheral device, while the input control lines are used for interrupt
operation. Typically, for the interrupt type of operation, a peripheral device requests service
of the [P by interrupting the uP via the PIA. The peripheral device asserts its interrupt
request line, which is connected to one of the input control lines of the PIA. If the PIA is
programmed for interrupt operation, that control line of the PIA is connected to the Interrupt
ReQuest (IRQ) pin of the UP, and, thus, the interrupt signal is passed to the PP [Bacon86].
Details of exactly how to program the PIA for interrupt operation are given in the

discussion of how the PIA is implemented in the memory manager, which is discussed next.

4.2.1.1.2  Implementation

Having briefly discussed the PIA in general, let me now turn to discussing how the
PIA is used specifically in the memory manager. The WP controls the speech processor

through the PIA. Control signals and commands are issued to the speech processor
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through the PIA. Finally, the speech processor interrupts the PP through the PIA,

The schematic diagram of the PIA implementation in the memory manager is shown

in Fig. 4.13. The top part of this figure shows the connectivity of the PIA between the

| Speech Dala & Commands s 2
Speech ~ | - d— -
Digitizer O = o B g = O
& = | E > —rg ]
Syntheiszer 3 E P T
< - PIA . A
MSM6258ISK MCK R0 e={CAl § Al é’
821 All A2
To BRG ——]
) vi D/CB|<a . Q_—/pﬁx%s g
5B = 5 : RESET /| &
DAOUT o a RIW e
WRB Control Signals @_—_/[E /1
PIA Internal Addressing:
Physical UP Address Line PIA Control Register Bit PIA
Address AQ | Al CRABIit2| CRBBIit2 | Register Selected
1EQ0 0 0 1 X Port A
1E00 0 0 X DDRA
1E01 0 1 X X CRA
1E02 0 X 1 Port B
1E02 1 0 X 0 DDRB
1E03 1 1 X X CRB

Fig. 4.13 PIA Implementation and internal addressing.

speech processor and the 6802 puP. The right hand side of the PIA shows the signals that
are connected to the 6802 pP, while the left hand side shows the signals that are connected
to the peripheral devices, in particular, the speech processor and the Bit Rate Generator

(BRG).
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There are two groups of signals connecting the PIA to the uP, the control bus and
the data bus. The control bus is used to enable, disable, or reset the PIA; to interrupt the
WP; to select an internal register; and to perform read or write operations. The bottom
portion of Fig. 4.12 shows a table indicating the signals required to address and select one
of the six registers within the PIA. The numbers, 1E00, 1E01, 1E02, and 1EQ3 are the hex
representations of the logic levels of the 16-bit PP address bus. The address lines A0 and
Al are the Least Significant Bits (LSBs) of the least significant hex digit of the address
lines. In order to address any register, the logic levels of A0, A1, CRA, and CRB must be as
that shown in the table. For example, in order to access the DDRA register, the PP must
first write a logic 0 to bit-2 of CRA. This distinguishes the direction register from the
holding register. Having done this, the pP may then access DDRA by placing the address
1EGO on the address bus. (Note: address lines A11 and A12 are included in the PIA enable

logic for added protection).

The data bus is used to read speech data or speech processor status and to write
speech data or speech processor commands. The data path connecting the speech processor

and the PP is discussed next.

There are three groups of signals connecting the speech processor to the PIA, the
control bus, the speech data and command bus, and the interrupt request line. The control
bus is connected to Port B of the PIA and is used by two devices, the Bit Rate Generator
(BRG) and the speech processor. Bit-6 and bit-7 of Port B are used to select the bit rate of
the BRG, whose output is being used by the ACIA (refer to Section 4.2.1.2.2). Bit-0
through bit-3 of Port B are used to control the speech data bus, as described in Section
4.1.2.1. Thus, whenever the [P requires to control the speech data bus, the control code is

written to the appropriate bits of Port B.
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The speech data and command bus is connected to Port A of the PIA. Thus,
whenever the LP requires to read speech data or speech status or to write speech data or

speech commands, the data is accessed through Port A.

In Section 4.1.1 it is mentioned that the speech chip provides a data ready or a
ready for data signal, namely, MCK. This signal is intended for use by the uP in order to
synchronize its speech data I/O with the speech processor. To this end, MCK is connected
to the input control pin, CA1, of the PIA. CALl is configured in the programming of CRA
as an input interrupt signal, and, therefore, CA1 is connected to IRQ of the uP. Thus, each
time the speech processor forms an ADPCM byte during recording or each time it is ready
to process the next ADPCM byte during playing, it informs the LP of the event by
interrupting the UP. Subsequently, the UP responds by either reading or writing speech data

from or to the speech processor, respectively.

The programming of the CRA for enabling interrupts via CA1 during recording is
different than that during playing. The reason for this is because MCK is signalled
differently for record than it is for playback (refer to Section 4.1.1.2). Fig. 4.14 explains

the programming of the CRA during record and playback.

CRA Programming During Record
B7 | B6 BS B4 B3 B2 Bl B0
WP Interrupt Flags X X X 1 0 1
BO = 1 means enable the relaying of interrupt signals to the pP at the occurance of an active edge on CAl.
B1 = 0 means the interrupt flag B7 is set each time CA1 undergoes a high to low transition. A high to
low transition of CA1 corresponds to a data ready signal issued by the speech processor during record.

B2 = 1 means the access of Port A, data holding register, is enabled.
B3 - BS = x means don't care.

CRA Programming During Playback

B7 | B6 BS B4 B3 B2 Bl BO
MP Interrupt Flags X X X 1 1 1

B0 =1 means enable the relaying of interrupt signals to the PP at the occurance of an active edge on CAl.
B1 =0 means the interrupt flag B7 is set each time CA1 undergoes a low to high transition. A low to high
transition on CA1 corresponds to a ready for datasignal issued by the speech processor during playback.

Fig. 4.14 CRA programming during record and playback.
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4.2,1.1.3

Testing

The general testing of the PIA involves writing a 6802 program that alternately

writes logic 0 then logic 1 to both data holding registers. The port pins of the PIA are

monitored on an oscilloscope. Fig. 4.15 shows the source code of the 6802 PIA test

program and the oscilloscope view of Port A. The oscilloscope shows one period of a 5V

square wave with period 18 psec, as expected.

The PIA is also tested in the interrupt mode of operation. The Bit Rate Generator is

used to signal a periodic interrupt through the CA1 control line of the PIA, The interrupt

routine is similar to the general test program shown in Fig. 4.15, except for two

modifications: BRA is replaced by RTI, and RTI is preceded by dummy reads of the port

registers (which is necessary to clear the interrupt status bit in the control register).

Oscillocope View of
Port A and Port B

2 Volts/division

6802 Pia Test
Program
Machine Source
Cycles Code
2 Loop LDAA #3500
5 STAA Port A
2 LDAA #3FF
5 STAA Port A
4 BRA Loop
total MC=18 x 1 MHz = 18 psec

10 psec/division

4.2.1.2 Serial I/O: the ACIA

Fig. 4.15 PIA testing.

This section begins with a brief and general discussion of the Asynchronous

Communications Interface Adapter (ACIA). A description of the specific implementation of

the ACIA in the memory manager follows. Finally, the ACIA testing procedure and results
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are given.
4.2.1.2.1  General Description

The ACIA is an offspring of the parent, Universal Asynchronous Receiver and
Transmitter (UART), pronounced ‘you art’. Motorola’s version of the UART is the
MC6850 ACIA. The basic purpose of an UART or an ACIA is to interface serial
asynchronous data communications to parallel bus organized systems, such as the 6800
family of pPs. These serial asynchronous communications typically originate from another

microcomputer system comprising its own UART and WP, as shown in Fig. 4.16.

System A System B

pP A Serial Communication Channel
U ART A A e Y N A T o Tt N P NP P AP AP NP R UART B
j - 4 N T
— Data Data

Control_/ N Conirol | N\
Address Address

Fig. 4.16 Serial communications system.

The ACIA has two sides, a serial interface and a parallel interface. On the serial
side, the ACIA provides for simultaneous bidirectional serial data transfer, called full
duplex. This is opposed to half duplex, in which only non-simultaneous directional
transfers are possible, such as in CB radio communications. While the end of transmission
signalling is possible with full duplex data lines, the ACIA nevertheless includes three
control lines for hardware handshaking. On the parallel side, the ACIA includes read/write,
enable, and interrupt control lines; register select and chip select address lines; and an 8-bit
bidirectional data bus connecting the parallel organized uP. In this way, the ACIA adapts

serial formatted data to and from parallel data.
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Internally, the ACIA consists of a transmitter, a receiver, a data bus buffer, and a
control and status unit. The transmitter section is double buffered, and it consists of a
transmit data register, called TxDR, and a transmit parallel-to-serial shift register. Data
written to the TxDR register is transferred to the shift register, where it is serialized and,
thus, transmitted. This double buffering scheme allows the [P to write the next parallel data
to the TxDR register, even though the previous byte may not yet have been totally

transmitted.

The receiver section is also double buffered, and it consists of a receive data register,
called RxDR, and a receive serial-to-parallel shift register. The double buffering scheme in
the receiver section allows the PP to read the RxDR, as the next data byte is being received

in the shift register.

The data bus buffer provides the physical link between the UP data bus and the
ACIA registers, TxDR and RxDR.

The control and status unit consists of a control register, called CR, and a status
register, called SR. The control register is used to program the functionality of the ACIA.
The status register is used to obtain status information on a peripheral device, the

transmitting and receiving sections, and some error detection control.

The above registers, TXxDR, RxDR, CR, SR are individually addressable. However
only two distinct addresses are required, one for the transmit and receive registers and one
for the control and status registers. What distinguishes the registers is that the TxDR and
the CR are write only registers, while the RxDR and the SR are read only registers. In other
words, a {P read of the address associated with TXDR and RxDR reads the contents of the
RxDR, since RxDR is read only and TxDR is write only.
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The functionality of the ACIA is programmable. Programming is achieved by
writing coded information into the control register. As shown in Fig. 4.17, the control

register controls the transmitter, receiver, interrupt enable logic, and hardware handshaking

signals.
Confrol Register
B7 Bé B5 B4 B3 B2 B1 B0
| ] | | | | | I
I I | I I I I |
I I | | ! | Bl BO Baud Rate
| I ! I | | 0 0 + 1 (synchronous)
1 0 CLK +64
I I I I I I 1 1 Master Reset
I I I I I i
I I I B4 B3 B2 Data Bits Parity Stop Bit(s)
I I I 0 0 0 7 Even 2
[ | | 0 0 1 7 Odd 2
0 1 0 7 Even 1
| I Ll oo 1 1 7 odd 1
I I | 1 0 0 8 None 2
I I I 1 0 1 8 None 1
1 1 0 8 Even 1
| I bl 1 1 8 0dd 1
I | I
I B6 BS Interpretation
| 0 0 Set RTSB Low and Disable Transmitting Interrupt
| 0 I Set RTSB Low and Enable Transmitting Interrupt
1 0 Set RTSB High and Disable Transmitting Interrupt
I 1 1 Transmit a Break and Disable Transmitting Interrupt
I
B7 Interpretation
0 Disable Receiver Interrupt
1 Enable Receiver Interrupt

Fig. 4.17 ACIA programmable control register (after [Kins88]).

Bits BO and B1 control the clocking of the transmitted and received data and, also,
reset the ACIA. The ACIA is master reset if both bits are logic 1. The other three logic

combinations of these bits are used to generate the clock with which serial data is
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transmitted or received. If these bits are both logic 0, the baud rate for the transmitter and
the receiver is equal to the clock input at pins TxCLK and RxCLK, respectively. Implicit in
this logic is that the other system transmitting or receiving the serial data uses the same
clock being input at TxCLK and RxCLK, respectively. Thus, both systems know the start
and end of each bit cell being transmitted or received. In this case, the two systems are said
to be synchronized. In Figure 4.15, the communication channel would include an additional
wire in order to transmit the clock. Because this requires the transmission of the clock
between systems, an alternative method for detecting the bit cell is provided. If bits BO and
B1 are logic 1 and 0 or logic 0 and 1, the baud rate of the transmitter and the receiver is
equal to the clock input at pins TxCLK and RxCLK divided by 16 and 64, respectively.
The receiver section uses the positive transition of RxCLK in order to detect the start and
end of each bit cell. What this means is that the receiver takes (RxClk + (16 or 64))/2
samples of the incoming serial data and determines by majority logic the start and end of

each bit cell.

Bits B2, B3, and B4 determine the number of bits and the format of each transmitted
character. The bit length of each character is the sum of the number of data bits, parity bit
(if selected), and stop bit(s). Bits BS and B6 control the transmitter interrupt logic and, also,
define the state of one of the handshaking signals, Request To Send (RTS). Finally, B7

controls the receiver interrupt logic.

The status of the ACIA is available to the P by reading the status register. This
register contains information indicating the status of the peripheral system, transmitter and
receiver, and error detection circuits. In particular, the Data Carrier Detect (DCD) and Clear
To Send (CTS) inputs indicate whether the receiver is detecting a carrier and indicating a
ready to receive (i.e., clear to send), respectively. Also available to the uP are flags, TDRE

and RDREF, indicating whether the Transmit Data Register is Empty or whether the Receive

- 73 -



Data Register is Full. Finally, having received data, the uP may check the status of the
ACITA internal error detection circuits, which include framing error, overrun error, and parity

error.
4.2,1.2.2 Implementation

Having briefly discussed the ACIA in general, let me now turn to describing how the
ACIA is used specifically in the memory manager. The purpose of the ACIA in the
memory manager is to provide the interface for communicating serial data between the host
computer and the 6802 pP. Fig. 4.16 is repeated in Fig. 4.18 to show the specific part
played by the ACIA in the overall system. The ACIA receives serial commands from the
host computer, such as start record, start playback, and stop. These commands are
parallelized and made available to the 6802 pP. The ACIA also serializes and parallelizes
speech data to be communicated between the host computer and 6802 [P and, eventually,
the speech processor. Finally, the ACIA provides handshaking wires, RTS and CTS, in
order that the serial communication of data between the host computer and the memory

manager proceeds in a controlled manner.

Memory Manager Serial Communication Channel Host Computer

= Acknowledge Commands

Jowrovowovor e voevovovarov oo ook Host UARTL R
s
Speech Data N
Data
Z 1 Conwol / N _Control | N
Address Address

Fig. 4.18 ACIA implementation in serial communication system,

Focussing on the ACIA, Fig. 4.19 shows the schematic diagram and the internal
addressing of the ACIA implementation in the memory manager. The top part of this figure

shows the connectivity of the ACIA between the 6802 P and the serial channel connecting
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the host computer. There are three sets of signals connecting the [P to the ACIA, the

address bus, the control bus, and the data bus. The control bus is used to enable, reset, and

select the ACIA. The R/W signal is used in addition to the address bus in order to select

internal registers of the ACIA. The bottom part of Fig. 4.18 shows the logic levels required

to select one of the four registers, SR, CR, TxDR, and RxDR. Note that the addresses of

SR (1D00) and RxDR (1D01) are distinguished from the addresses of CR and TxDR by

whether the [P is doing a read or a write, R/W, operation. Finally, the data bus is used by

the {4P to access data within the ACIA internal registers.

ACIA 6850 1489: Driver
> Daia 1488: Receiver ~
= Registers
= TxD f=! 1489 o)
é To Host
RxD ==t 1488 03 Vi
7] . B
] ! Register
3 Select  prsp oo ;| Rs232
< O 4! 25Pin
2k aciacs D-Shel
& . 1488 Connector
= RESET | Chip  CToB[™] o5
a RW Control
LS) B = DCDB O 7
£l IRQ "l max J;- ./
RxCLK
From BRG
ACIA Internal Addressing:
Physical ACIA
Address A0 | R/W Register Selected
1D0G0 0 0 Status Register (SR)
1D00 0 1 Control Register (CR)
1D01 1 0 Transmit Data Regiser (TxDR)
1D01 1 1 Receive Data Regiser (RxDR)

Fig 4.19 ACIA schematic diagram (top) and internal addressing (bottom).

There are five signals connecting the host computer to the ACIA, via the serial

communications channel. Before entering the channel, the signals TxD, RxD, RTSB, and
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CTSB are passed through a driver (1489) and a receiver (1488) [NaSe89]. The purpose of
the driver and receiver is to provide the electrical voltage transformation as required by the

interface between the ACIA and communications channel, as discussed in Section 4.3.1.

The format of the data transmitted at pin TxD and received at RxD is specified as
follows: 115.2, N, 8, 1, IRQ disabled. This means data is to be transmitted at 115.2 kbps;
that a character is of length 10 bits and consists of one start bit, eight data bits, no parity bit,
and one stop bit. This information is programmed by writing 0101 0101 into the control
register. The baud rate is determined by dividing the rate supplied by the BRG by 16, i.e.,
16(115.2) + 16 = 115.2 kbps. The transmitter and receiver interrupt capabilities are not

required in this application. Therefore, they are disabled.

4.2.1.2.3  Testing

There are different ways to test the ACIA. Perhaps, the simplest method is known
as loop back. The idea is to transmit data to the receiver section of the same ACIA. This
requires connecting TxD with RxD and RTSB with CTSB. Referring to Fig. 4.19, this can
be done by connecting pins 2 and 3 in a loop and pins 4 and 5 in a loop. Testing proceeds
with alternatively writing and reading the ACIA and testing whether the received data is

exactly the same as that transmitted.

Note that the transmission of serial data can be viewed on an oscilloscope by
viewing pin TxD. If the same character is repeatedly sent, then the scope indicates a pseudo
square waveform indicative of the group of bit cells being transmitted. If different
characters are being sent, flashes of light are viewed on the scope, because the scope cannot

trigger onto a non-periodic waveform,
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If the loop back tests prove positive, then the next test is to set up a system as that
shown in Fig. 4.18. Given that the two systems are identical with respect to the
programming of the UART, and, if a similar read test fails, the problem is isolated in the
serial communication channel. Perhaps, the wires are not connected properly. Note that
TxD from system A must be connected to RxD of system B. Likewise, connect RTSB of

system A to CTSB of system B.

The transmission rate of the ACIA can be calculated. The idea is to transmit any
arbitrary data. After each character is sent, the PP inverts one of the output lines of a PIA
port, say bit 0 of Port A. Viewing the oscilloscope should show a 50% duty cycle periodic

square wave of frequency ten times slower than the transmission rate of the ACIA,

4,22 Dual Pointer FIFQ Buffer

As discussed in Chapter III Section 3.3.2, one of the reasons motivating the memory
manager is to allow the host computer the time to process system tasks in the foreground,
while communicating speech data with the speech processor in the background. Because
the speech processor is a synchronous device, always requiring data or providing data at a
constant and periodic rate (i.e., 4 kHz or 32 kbps), some sort of temporary storage or buffer
for speech data is required in the event that the host computer is busy doing system tasks
when the speech processor provides or requires data. A buffer sufficient for this cause is
the dual-pointer First In First Out (FIFO) buffer implemented in software. This section
describes both the concept of the dual pointer FIFO and its software implementation in the

Memory manager.

4.2.2.1 Concept

The dual pointer FIFO buffer implemented in software is a simple concept. It can
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be imagined as a circular area in memory, as shown in Fig. 4.20. Initially, the write

Write Data Direction ~ [Write Pointer | Buffer
Dimension:
N Locations
by 8-bit
(-2-2:3 L33
N_1t 0 W_1 Wy Wy
Ry Rg Ry

| Read Pointer | Eead Data Direction

Fig. 4.20 Dual pointer FIFO architecture (after [Kins88]).

pointer points to the same location as the read pointer, Each time data is written into or read
from the buffer, the respective software pointer is incremented. Note that this is unlike the
hardware FIFO, where, once a data word has been written, that word bubbles down to the
next available location [Mono85]. Unread data are never overwritten, so long as the write
pointer is always behind the read pointer, or equivalently, the write pointer does not become
equal to the read pointer. This implies that writing to and reading from the FIFQ are
independent and asynchronous events. Furthermore, the rate of reading data from the
buffer may be different from that of writing. For instance, given that the rate of writing
(fwrite) is four times as fast as reading (freqq) and given the size of buffer, N, then the

writing device’s waiting time (T,,;,) between writes is given as follows:

Tty = N = N =N 4.1
it fwrite" read 4fread_fread 3fread
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4.2.2.2 Implementation and Testing

In the memory manager the FIFO buffer is implemented using expandable Static
Random Access Memories (SRAMs). Currently, two 8K by 8-bit CDM6264 SRAMs are
used [RCA84]. These SRAMs physically form the circular type of FIFO buffer, as
referred to above. Pointers to the data within the FIFO are implemented using software.
Each time data is written to or read from the FIFQ, the respective pointer is incremented.
When data fills one of the SRAMs, say SRAM A, the write pointer is incremented and then
points to the starting location of the other SRAM, SRAM B (note that the SRAMs are
placed in contiguous memory locations). When SRAM B becomes full, the write pointer is
reset to point at the starting location of SRAM A, and so on. The read pointer is treated

similarly.,

For the testing procedure given below, the variables in Eq. 4.1 are defined as
follows. The time (T,,,;) corresponds to the time the host computer requires in order to
process the received block of speech data and to perform foreground system tasks. The
frequency (£, ;,.) corresponds to the rate at which the speech processor fills the buffer
during recording (e.g., block formation), while (f;e4q) cOtTEsponds to the rate at which the
WP reads the buffer and sends the speech data to the host computer (e.g., block

transmission),

Experiments were conducted in order to determine the size of buffer required to allot
the host computer T ... The objective of the experiment was to test whether the host
computer was able to do its background and foreground tasks (the background task is
reading speech data and saving speech data to disk, while the foreground task includes
refreshing DRAM) before the write pointer became equal to the read pointer. An
oscilloscope was set up in order to view the time taken by the host to read speech data and

save same to hard disk. The speech processor frequency was feaq = 4 kHz = 32 kbps,
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while the host computer frequency was 115.2 kbps ~ 3.6f,,;. A software check was set up
to assert a hardwired flag if the two pointers became equal. Tests concluded that the size of

buffer N = 16K or two 8K SRAMs is sufficient for allotting the host computer Tyait:
423 Memory Map

Section 4.2 mentions that the memory manager is a memory mapped system and
that each device is assigned distinct addresses. The descriptions of the PIA (in Section
4.1.1.2) and ACIA (in Section 4.1.2.2) further elaborated on the map by explicitly stating
the addresses of each internal register of these two devices. This section describes the

memory map of all the devices in the system.

Table 4.1 shows the memory map of the memory manager. The dimension of the
available memory space is given by the number of address lines, 16, and data lines, 8, used
by the 6802 uP. Therefore, the dimension is 64K by 8-bit. The memory map consists of
memory devices and peripheral devices. The memory devices include one 2K by 8-bit
Erasable Programmable Read Only Memory (EPROM), six 8K byte Static Random Access
Memories (SRAMs), and 256 bytes of internal Random Access Memory (RAM). The
peripheral devices include one Peripheral Interface Adapter (PIA) and one Asynchronous
Communication Interface Adapter (ACIA). Note that each of these devices have distinct

memory locations.

The EPROM is located at the top of the map, and it is used to store the 6802
program and any other system tables, variables, or parameters. The contents of this memory
chip are referred to as system firmware. This chip requires 2K bytes of memory, and it is

assigned locations F80016 through FFFFie.
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It is interesting to note why the EPROM is located at the top of the memory map.

The main reason is that the 6802 uses the locations FFF816 to FFFF16 as interrupt vectors

[Moto83]. The addresses of the corresponding interrupt service routines must be burnt into

Table 4.6 Memory map of the memory manager.

Memory Address Device Address bit
f &ex) ‘\
Al5 | A14] A13| A12 | A11 | A10]| A9 | A8 | A7-A0
x 1 1 1 1 1 X| x| x X
F800 EPROM
Not
E000 Used
DFFF 8K
1 1 0 X| x| x| x1I| x X
C000 SRAMI
BFEF 8K
1 0 1 X! x| x| x| x X
AGOO SRAM?2
OFFF 8K
8000 SRAM3 | 1| 0} 0| X| X| x| x| x| x
TFFF 8K
0 1 1 X| x| x| x| x X
6000 SRAMY4
SFFE 8K
4000 SRAM5S | O | 1t ] ol x| x| x| x| x| x
3FEF 8K
0 0 1 X| x| x| x| x X
2000 SRAM6
NOT
1 1 1 1 1
1F00 USED 0 0 0 X
1E00 PIA 0 0 0 1 1 1 1 0
1D00 ACIA 0f 0] of 1 1 11011
NOT
0080 USED
007F INTERNAL
o] ol ol ol o] of o o y
\\ 0000 RAM

the EPROM by the designer at their respective locations. For example, The memory

manager’s main program resides in memory starting at F80016. This is the program that is

run when the memory manager circuit is powered up. Therefore, the designer must load the

address F8001¢6 in the reset vector location, which is FFFE16 to FFFF16. Furthermore, if
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the system is interrupt driven, as is the memory manager, the designer must load the starting

location of the interrupt routine in the interrupt vector location, which is FFF816 FFF91s6.

Allocated directly below the EPROM is space for six SRAM chips. Each SRAM
requires 8K bytes of memory, and they are assigned contiguous addresses, ranging from
200016 to DFFF16. In the memory manger, only two 8K SRAMs are connected. However,
if more are required, they may be easily installed, since space has been allocated.

The peripheral devices (PIA and ACIA) are also memory mapped devices with base
addresses 1E0016 and 1D0016, respectively. They are discussed in Section 4.2.1.

A special feature of the 6802 P is the 128 bytes of internal RAM addressable at
locations 000016 to 007F16. Data access is more efficient because only eight bits are
required to address these locations. This memory may be used automatically by the P as
the stack for saving the context of the machine upon an interrupt, or it may be used by the
programmer as an internal scratch pad. The memory manager uses this area of memory for
stack operations, and, during the initialization section of the main code, the stack pointer is

loaded with the starting address of the stack, 007F16.

4.2.3.1 Memory Decoding

The memory manager contains a memory decoder. The purpose of the memory
decoder is to decode the address bus. The memory decoder inputs address lines and
outputs chip select signals, which are fed to enabling pins of peripheral devices. All devices
described in the above memory map are connected to the same data bus and share this bus
with the pP. If more than one of these devices were enabled and attempted to assert
different voltage levels on the data lines at any one instant, data on the bus would be invalid.

It is important to ensure that only one device is driving the data bus at any one time, in order
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to prevent bus contention. The memory decoder acts as an intermediary device between the
WP and the devices connected to the pP. When the pP requires access of a certain device,
then the address of that device is placed on the address bus. The decoder intercepts the
address bus, determines which device the address refers, and enables that device while
disabling other devices. If all devices connected to the PUP had 16 input chip select lines,
then a decoder would not be required, because only one device’s address would be on the
address bus at a time. However, most devices do not have 16 chip select lines, because it is

impractical.

Figure 4.21 shows the schematic diagram of the memory decoder in the memory

VMAB ——|
) —
From To
6802 ElB vee +5V Memory
B3 i Devices
AlB— p] A Y7 |— EPROMCSB
Ald —e——pd B U4l Y6 |——————— SRAMICSB
AlS ————pd ¢ Ys 2 SRAM2CSB
Y4 B SRAM3 CSB
Y3 B SRAM4 CSB
SRy b b SRAMSCSB
Y0 Y1 (=B SRAMS6 CSB
E2B  GND
<L' To
EIB GND Peripheral
Devices
#] E2B Y7 b+ 1FXX
Y6 e PIACS
A e ] A U4t YS £ ACIA CS
AY ——eee 51 B Y4 > 1CXX
Al ] C :g - & |BXX
>
o 7415138 ¥i - 19XX
M —"‘T___ E3 Yo |—& 18XX
veoe

Fig 4.21 Memory manager memory decoder.

manager. The circuit is implemented using two 1-of-8 7415138 [Texa84] decoders. Note

that the circuit inputs the address lines A8, A9, A10, A13, A14, and A15, while outputting
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chip select signals for the EPROM, each of the SRAMs, the PIA, and the ACIA. Note also
that the enable of both decoders depends on the logical NAND of Valid Memory Address
(VMA) and Enable (E). E is phase 2 or ®2 of the 6802 clock. The designers of the 6800
family of microprocessors intended ®2 to be used as a data valid signal, i.e., ®2 is asserted
when data on the data bus is valid. However, in order to distinguish between memory
referenced and non-memory referenced instructions, the VMA signal is used. During non-
memory referenced instructions of the 6800 family of microprocessors, the address lines
are unstable and, therefore, may cause erroneous chip selects. Thus, a memory device is
being accessed only when VMA and @2 are logic 0. This is assumed in the following
discussion of EPROM, SRAM, PIA, and ACIA chip selection.

When each of the lines A13, A14, and A13 are logic 1, the EPROM is selected. In
fact, all that is required to decode the EPROM is A13, A14, and A15 being logic 1, because,
as shown in Table 4.6, no other device is being addressed when A13, A14, and A15 are

logic 1.

The allocation of the EPROM at the top of the memory map places a constraint on
the allocation of the six SRAMs. Since the SRAMs are 8K in size, 13 address lines (AQ to
A12) are required to specify the 8192 distinct memory cells. This leaves three address bits
for decoding, namely, A15, A14, and A13. Since the combination A13 =1, Al14 =1, and
Al5 =1 has been used for the EPROM, the first SRAM must be placed at the address
leading with A13=0, A14 =1, and A15 = 1. Once again, all that is required to decode the
SRAMs is the three address lines A13, A14, and A15, because no other device is being
addressed when A13, Al4, and A15 have the logic values corresponding to the addresses of
the six SRAMs.

The PIA and the ACIA are selected when A13, A14, and A15 are logic 0. Note that

this is the only remaining combination of A13, A14, and A15. As shown in Fig. 4.21, when
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A1l3, A4, and A15 are logic 0, YO is active, and it enables the second decoder. The PIA and
ACIA are distinguished in the second decoder by the logic levels on address lines A8, A9,
and A10.

The other chip select signals available in the decoder circuit may be used for

expansion.

4.24 Controller: the 6802 upP

The controller of the memory manager is implemented using the Motorola 6802 PP
[Moto83]. The 6802’s main purpose is to control communications between its external
devices, the host computer, and speech processor. This communication includes the
transmission of commands, acknowledgements, and speech data. Because the
communication of these data is asynchronous and occurs at different rates, the 6802 acts as
a data traffic controller. While allowing the speech processor to communicate its
synchronous data at a constant rate, the 6802 allows the host computer to communicate its

asynchronous data at a different and much faster rate.

The 6802 controller achieves its purpose by controlling and making effective use of
its peripheral devices, the ACIA, PIA, and FIFO buffer. The ACIA is used to communicate
serial data with the host computer. The PIA is used to communicate parallel data with the
speech processor. And the FIFO buffer is used to implement a simple form of pipelining.
This buffer provides temporary storage of speech data when the host computer is busy

doing other system and foreground tasks.

- 85 -



4.24.1 Hardware Implementation

The 6802 UP comes in a 40 pin Dual In line Package (DIP). In order to test a
circuit in which the P is applied, the chip must be physically wired into the circuit and the
code for the software program must be burnt into a Read Only Memory (ROM) chip each

time a new program is writien.

4.24.1.1 6802 Emulator: EM-186

However, for developing and debugging purposes, it is convenient to use an
emulator. One such device is the EM-186 6800/6802 diagnostic emulator [ApMi85]. The
emulator allows the programmer to develop and debug a target system without having to
physically insert the P into the circuit or to burn code into a ROM chip. All of the internal
registers, accumulators, functions, instructions, addressing modes, and special features
offered by the pUP are emulated by the emulator. Furthermore, the EM-186 has 64K of
Random Access Memory (RAM) built in. This enables the programmer to download code
for a program into emulator RAM, rather than having to burn the code into a ROM chip. In
other words, the built in RAM acts as ROM. Once the debugging phase is completed and
the target system verified to be working properly, then the physical insertion of the P and

code burning proceeds naturally.

The EM-186 is simple to use. Some of its features include a serial port to download
code, breakpoint and instruction tracing, memory and diagnostic tests, and display of

internal registers, accumulators, and flags.

In order to download code, a communications package, such as ProComm, running
on a host computer transmits the code to the emulator via the RS-232C compatible serial

port. In order to invoke the download mode of the emulator, the codes E1 followed C3 are
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typed into the emulator keyboard. The code, El, is an acronym for Enable serial port 1. C3
is the code that places the EM-186 into the serial input mode. The baud rate is selected via a
bank of switches located at the back of the emulator. The program is placed in emulator
RAM at the location specified by the ORG directive in the source listing. If errors occur

during transmission, the emulator gives (beeps) a waming message.

In order to run and test the program, the starting address of the program must be
loaded into the program counter. This is done by using the appropriate emulator commands
typed into the emulator keyboard. Furthermore, this can be done by either loading the
program counter or by loading the starting address of the program into the reset vector
location. The latter method is more practical, since, when the power of the target system is
turned on, a global reset occurs and, in particular, the 6802 program counter is automatically

loaded with the address contained within the reset vector.

When the target system is powered up, the program may be tested by using either of
the emulator commands, run, run until breakpoint, or step. Breakpoint and stepping are two
very powerful debugging tools. Each time a breakpoint occurs or each time an instruction is
stepped through, the EM-186 transmits the contents of internal UP registers, accumulators,
and flags through the serial port to the host computer, where they can be viewed on the

screen.

The EM-186 also provides memory and some diagnostic tests. For example, in the
FIFO buffer of interest, the SRAMs are tested. In particular, invoking the emulator
command Al, along with specifying a starting and ending address, the emulator writes
zeroes and ones to the starting location, attempts to read same, then continues with every
location up to the ending address. If an error occurs during reading, the emulator beeps and

displays the location and problematic data. This is convenient for testing whether the wiring
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of devices in the target system is correct.

4.2.4.2 Software Implementation

The code of the memory manager controller is written using the 6802 instruction
set. The code is given in Appendix A. The code consists of system initialization, command
reception, record, playback, and stop routines. These routines are sequentially executed.
After system initialization, the 6802 executes command reception, where it waits for a valid
command. Having received a valid command, that command is executed until a stop
command is sensed, upon which, the controller executes the stop routine. The stop routine

vectors the controller back to initialization, and the whole procedure is repeated.

4.24.2.1 Initialization

The initialization routines initialize variables, the PIA, and the ACIA. Variable
initialization includes setting the read and write FIFO buffer pointers, Read_Ptr and
Write_Ptr, respectively to an arbitrary starting location, 20004, which happens to be the

starting address of the first SRAM,

The PIA is initialized as mentioned in Section 4.2.1.1.2. Port B is configured for
output in order to facilitate supplying control signals to the speech processor and BRG.
More specifically, 83,4, = 1000 0011, is written to Port B. B7 and B6 are input to the
BRG. B3 and B2 reset to logic 0 enables and selects the command input mode of the
speech processor, respectively. B1 and B0 sets RD and WR to logic high, respectively.
Port A is configured for speech chip command/status and speech data I/O. Whether Port A
is input or output depends on the forthcoming command issued by the host computer. The
interrupt logic is set to enable active transitions on CA1. Thus, the controller services the

speech processor by responding to speech processor generated interrupts. Refer to page
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A16 for PIA initialization code and comments.

The ACIA is initialized as mentioned in Section 4.2.1.2.2, It is master reset and the
initial state of RTSB is high (inactive). The serial side is set up to communicate data with
the following attributes: 115.2, N, 8, 1. The ACIA is not interrupt driven. The controller
polls the ACIA during command reception, record, and playback routines. Refer to page

A1S5 for ACIA initialization code and comments.

4.2.4.2.2 Command Reception

Figure 4.22 shows the flow chart for the command reception routine. This routine
is executed following system initialization. After the ACIA has been reset and RTSB set to
the inactive state (logic high), the controller determines whether the host is requesting to
send by looking at B3 of the ACIA status register. If the host is requesting to send, the
controller acknowledges the request by giving the host clearance to send, i.e., by resetting
RTSB to logic 0 (active). The controller then reads a byte of data from the ACIA receive
data register and compares the byte to command codes in order to determine whether the
byte of data is a valid command. If the command is valid, the controller executes the
appropriate routine. If an error occurs, the controller vectors back to the start of the
program, executes the initialization routine, and attempts the command reception routine

once again.

4.24.2.3 Playback

The playback routine consists of subroutines and groups of code that can be

described as command acknowledge, speech chip playback initialization, buffer pre-load,

foreground speech data fetch, and background speech data play.
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Fig. 4.22 Command reception flow chart.

Having received a valid playback command, the controller jumps to its playback
routine, where the first subroutine executed is command acknowledge. In this subroutine,
the controller sets RTSB to logic 1 (inactive) in order to inform the host that a valid
command has been received. The controller then waits for an acknowledge signal by

monitoring B3 of the ACIA status register.
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When the host signals an acknowledge, the controller initializes the speech chip for
playback. In this subroutine, the controller writes the playback command to the speech
chip. Playback command is written to the speech chip by placing the command code on the
data bus and then providing the sequence of appropriate logic levels on the input control
signals WR, RD, D/CB, and CS. The playback command code, 02, is written to Port A of
the PIA. This places the command code on the speech data bus. Following this, 82,4 =
1000 0010, is written to Port B, of which, bits B0 to B3 are connected to WR, RD, D/CB,
and CS, respectively. This places WR to logic 0. About 12 psec thereafter, 82, = 1000
0011, is written to Port B. This places WR to logic 1 and, thereby, writes the playback

command to the speech chip.

Also in the playback initialization routine, the PIA is enabled to relay interrupts to
the 6802 via CAl low-to-high transitions. This is done by writing 07, = 0000 0111, to
CRA of the PIA.

After the speech chip is initialized for playback, the controller executes a buffer pre-
load subroutine called FillQueue. The purpose of this subroutine is to fill the start-up
queue of the FIFO buffer. This is necessary in the event the speech processor interrupts the
controller, asking for a byte of speech data, before the controller has yet received the first
byte from the host computer. A size of 256 bytes for the queue is sufficient for starting the

process of playback, and the duration of this size is perceptually unnoticed.

As shown in Fig. 4.23, this routine begins with handshaking. The controller
determines whether the host is requesting to send. If so, the controller acknowledges the
request by placing RTSB to logic 0 (active). Henceforth, the transmission of each byte is
controlled by RTSB. Whenever RTSB is logic 0, the host knows it can transmit speech
data, and whenever RTSB is logic 1, the host knows it must not transmit. In this routine, the

controller resets RTSB to logic 0 when it is ready to receive a byte and sets RTSB to logic 1
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after receiving each byte. After receiving each byte, the controller, checks whether the queue
is full. If the queue is not full, the controller continues receiving data, whereas, if the queue
is full, the controller concludes this routine and begins execution of the next routine, main

playback.

Initialize Speech Chip

en e owow com e s

Fill Queue

Yes(B3=1) ¥
: Okay Host,
Send Speech Data:

RTSB = 0 (Active). |

f

GetByte of Data |
From ACIA Receive |
Register RxD. |

08
Do Not Send:
RTSB = 1 (Inactive).

Playback Foreground E

Fig. 4.23 Fill queue flow chart.

The main playback routine consists of foreground and background processing. In
the foreground, the controller continually receives data from the host and writes these data to

the FIFO buffer. The FIFO write pointer (Write_Ptr) points to the next available location
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in the buffer. In the background, the controller reads speech data from the FIFO and writes
these data to the speech chip. The FIFO read pointer (Read_Ptr) points to the next byte of
speech data in the buffer.

Without interruptions, foreground processing is capable of receiving a byte of
speech data and writing it to the buffer approximately every 86 psec. However, background
processing interrupts the foreground every 250 psec. Therefore, during foreground
processing, the controller receives almost two bytes for every one byte requested by the
speech chip during background processing. Note that the remaining time (250 — 2[86] = 78
psec) corresponds to CPU time. As a consequence, in order to detect the buffer full

condition, the controller monitors Write_Ptr and Read_Pir for equality.

As shown on Fig. 4.24, playback foreground processing begins with determining
whether the host is requesting to send. If so, Write_Ptr is compared with Read_Ptr. If they
are equal, this means the buffer is full, and the host is informed temporarily not to send data.
If the buffer is not full, the host is informed to send. Note that the current state of RTSB is
saved whenever it is changed. Afier receiving each byte, the controller increments
Write_Ptr. The controller executes the above steps continually until it is interrupted by the

speech processor.

Background processing is caused by speech chip initiated interrupts. Each 250
Msec, when the speech chip is ready to convert the next digital ADPCM byte to the analog
domain, the speech chip interrupts the 6802 controller via CA1 of the PIA. During each
interrupt routine, the controller writes one ADPCM byte to the speech chip. Like
foreground processing, the controller checks whether the FIFO read pointer (Read_Ptr) is
pointing to the same location as Write_Ptr. Unlike foreground processing, the
interpretation of the event when the two pointers point to the same location is that the buffer

is empty. Furthermore, the empty condition can only have occurred because the host quit
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Fig. 4.24 Playback foreground processing flow chart.

As shown in Fig. 4.25, background processing begins with informing the host not

sending data. This condition is interpreted as a stop command issued by the host computer.

to send. In other words, the controller cannot temporarily receive data from the host
because the speech chip requires service. Recall that the state of RTSB prior to each
interrupt is saved in foreground processing. After setting RTSB to logic 1, the controller
writes one byte to the speech chip. In more detail, the ADPCM byte pointed to by the FIFO

read pointer (Read_Ptr) is written to Port A of the PIA. This places the byte on the speech
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data bus. Following this, 86,¢ = 1000 0110, is written to Port B, of which, bits B0 to B3
are connected to WR, RD, D/CB, and CS, respectively. This enables the chip, selects the
data mode, and places WR to logic 0. About 12 [sec thereafter, 8716 = 1000 0111, is
written to Port B. This places WR to logic 1 and, thereby, writes the ADPCM byte to the
speech chip. After data is written to the speech chip, the controller checks whether Read_Ptr
is equal to Write_Ptr. If true, the controller interprets this as an implied stop command and
Jjumps to the stop routine. If false, Read_Ptr is incremented to point to the next ADPCM
byte in FIFO buffer, the state of RTSB prior to the interrupt routine is restored, and the

controller returns to the foreground routine (RTI).

Speech Chip
Service Routine

Host,
Do Not Send: '
| RTSB = 1 (Inactive). }

| Write a Byte of Speech
{ Data to the Speech |
Chip.

=1 Execute Stop Routine.

! Increment Read Ptr. E

) /
ERestore Previous State of RTSBg

¥

ReTum from Interrupt

Fig. 4.25 Playback background processing flow chart.

- 95 .



4.2.4.24 Record

The record routine consists of subroutines and groups of code that can be described
as command acknowledge, speech chip record initialization, foreground speech data write,

and background speech data record.

Having received a valid record command, the controller jumps to its record routine,
where the first subroutine executed is command acknowledge. In this subroutine, the
controller sets RTSB to logic 1 (inactive) in order to inform the host that a valid command
has been received. The controller then waits for an acknowledge signal by monitoring B3

of the ACIA status register.

When the host signals an acknowledge, the controller initializes the speech chip for
record. In this subroutine, the controller writes the record command to the speech chip.
Record command is written to the speech chip by placing the command code on the data
bus and then providing the sequence of appropriate logic levels on the input control signals
WR, RD, D/CB, and CS. The record command code, 04, is written to Port A of the PIA.
This places the code on the speech data bus. Following this, 82, = 1000 0010, is written
to Port B, of which, bits BO to B3 are connected to WR, RD, D/CB, and CS, respectively.
This places WR to logic 0. About 12 usec thereafter, 83,6 = 1000 0011, is written to Port

B. This places WR to logic 1 and, thereby, writes the record command to the speech chip.

After initializing the speech chip for record, the controller begins the main record
routine. The main record routine consists of foreground and background processing. In
the foreground, the controller continually reads data from the FIFO buffer and transmits
these data to the host. The FIFO read pointer (Read_Ptr) points to the next byte of speech
data in the buffer. In the background, the controller reads speech data from the speech chip

and writes these data to the FIFO buffer. The FIFO write pointer (Write_Ptr) points to the
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Fig. 4.26 Record foreground processing flow chart.

As shown in Fig. 4.26, the foreground of record processing begins with the
controller informing the host of a request to send. After this, the controller waits for an
acknowledge, indicating the host is ready to receive data. After the acknowledge is sensed,
Read_Ptr is compared with Write_Ptr in order to determine whether the buffer contains any
speech data. The condition when Read_Ptr points to the same location as Write_Ptr
indicates the buffer is empty. This is so because the host is capable of reading serial speech
data about twice as fast as the speech processor produces parallel speech samples. If the

condition is false, the controller sends a byte of speech data to the host, increments the read
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pointer, and branches back to determining whether the host is ready for the next byte. The
controller executes the above steps continually until it is interrupted by the speech

Processor.

Background processing is caused by speech chip initiated interrupts. Each 250
usec, when the speech chip indicates that a digital ADPCM byte is ready for reading, the
speech chip interrupts the 6802 controller via CA1 of the PIA. During each interrupt
routine, the controller reads one ADPCM byte from the speech chip. Like foreground
processing, the controller checks whether the FIFO read pointer (Read_Ptr) is pointing to
the same location as Write_Ptr. Unlike foreground processing, the interpretation of the
event when the two pointers point to the same location is that the buffer is full.
Furthermore, this full condition can only have occurred because the host quit recording data.

This condition is interpreted as a stop command issued by the host computer.

As shown in Fig. 4.27, the background of record processing immediately begins
with reading one byte of speech data from the speech chip. In more detail, 85,6 = 1000
0101, is written to Port B, of which, bits BO to B3 are connected to WR, RD, D/CB, and
CS, respectively. This enables the chip, selects the data mode, and places RD to logic 0.
"Setting (RD to logic 0) enables the CPU to read ADPCM data..."[OkiS90]. The controller
then reads Port A of the PIA, which is connected to the speech chip data bus, and writes the
data to the FIFO buffer at the location pointed to by Write_Ptr. Following this, 8716 =
1000 011 1, is written to Port B, of which, bits B0 to B3 are connected to WR, RD, D/CB,
and CS, respectively. This places RD to logic 1 and, thereby, completes reading of the
speech chip. After data is read from the speech chip, the controller checks whether
Write_Ptr is equal to Read_Ptr. If true, the controller interprets this as an implied stop
command and jumps to the stop routine. If false, Write_Ptr is incremented to point to the

next available location in the FIFO buffer, and the controller returns to the foreground
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routine (RTT).

Spefech Chip Background Routine
Service Routine i
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‘5 Chip.

Execute Stop Routine
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Fig. 4.27 Record background processing flow chart.

42425 Stop

Upon detection of an implied stop command from either the playback or record
routine, the controller branches to the playback stop code. The stop command is written to
the speech chip by placing the command code on the data bus and then providing the
sequence of appropriate logic levels on the input control signals WR, RD, D/CB, and CS.
The stop command code, 01, is written to Port A of the PIA. This places the command
code on the speech data bus. Following this, 82, = 1000 0010, is written to Port B, of
which, bits BO to B3 are connected to WR, RD, D/CB, and CS, respectively. This places
WR to logic 0. About 12 pisec thereafter, 82, = 1000 0011, is written to Port B. This
places WR to logic 1 and, thereby, writes the stop command to the speech chip. Also, the

PIA interrupt relaying capability is disabled by writing 04, = 0000 0100, to CRA.
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4.3 Serial Interface: RS=232C

This section describes the serial communications channel through which the
memory manager and the host computer communicate (recall Fig. 4.18). In particular, the
electrical, mechanical, and logical aspects of this channel are described. These aspects of the
serial communications channel are compatible with the well known Recommended Standard
232 (RS-232C). In 1969 the Electronic Industries Association (EIA) issued the RS-232
interface. Since then revisions have been made, in particular, the RS-232C and RS-232D.
While initially intended for the "Interface Between Data Terminal Equipment (DTE) and
Data communications Equipment (DCE) "[CAMP 84], i.e., communications between
terminals and modems, respectively, the RS-232C can also be used to interface computer
and microcomputer serial communications, such as the application of interest. In order to

fully specify the RS-232, four aspects are described:

* Electrical Signal Characteristics The voltage and logic levels of the
serial data are defined.
* Mechanical Connection Characteristic The type, gender, and length of

connectors and cables that form the physical link between systems are specified.

» Functional Signal Description Each wire that forms the physical link
between systems is given a function, name, and corresponding pin number.

» Standard System Configuration Some system configurations are given

to demonstrate the use of the RS-232 interface.

4.3.1 Electrical Signal Characteristics

The RS-232C interface specifies the binary logic levels and their associated voltage

levels as shown in Fig. 4.28. The relationship is of the inverted logic type. Thatis,a logic
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1 is represented as —15V, whereas, +15V is the representation of logic 0. Associated with
the voltage range is the transition region. The transition region is the "dead band" area
where the signal is undefined. Note that the threshold for output signals is 2V greater on
either side of signal ground than the threshold for input signals. This difference is to allow
noise margins and voltage drops along the length of cable. Thus, the dead band region for

signals output into the channel is wider than that for input signals.

1
/Buc:eu | 12I3I4|5|6|7|81\
I | | | I | | I I
Binary
Do T N T I
Lo I I N e e O |
I I i | I I I I |
+15 |-
RS-232C
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Level
-15
Output Input
Signals Signals
+15V &
Logic 0 .
Nox LogicO
+3V
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—WW
Logic 1
Logic 1

N — y

Fig. 4.28 RS-232C elecirical signal characteristics.

4.3.2 Mechanical Connection Characteristics

The physical realization of the serial communications channel consists of a cable
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terminated by connectors. The 25-pin D-shell connector is specified by the RS-232
interface. Thus, the physical medium has a capacity of carrying 25 wires, each of which has
specific meaning and function, as described in Section 4.3.3. The maximum cable length is
determined by the limit placed on the capacitance of the cable. This limit is 2500 pF, which
means that, for an average value of 40-50 pF per foot, the maximum cable length is 50 ft.
The type of cable is not specified, but telephone cable is usually used since modems
transmit over telephone lines. This limit on cable length applies to transmission rates up to
20 kbps. However, by using shorter distances and better grade of cable, higher rates can be
achieved. In particular, the serial communication channel of interest uses a cable length of 6

ft and transmits at 115.2 kbps.

4.3.3 Functional Pin Description

Figure 4.29 shows the functional pin assignment of the 25-Pin D-shell connector.

A description of some relevant pins follows:

Chassis ground (CG)  This signal is the protective system ground that links the ground
signal of the DCE and DTE systems, i.e., the memory manager and the host computer. This
signal is not the same as pin #7, the signal ground. The signal ground may be at a different

potential than earth ground.

Transmit Data (TXD)  Serially formatted data is transmitted on this pin. When no data

is being transmitted, this pin is maintained at logical 1 or -15V.

Receive Data (RXD) Serial formatted data is received on this pin. This pin is also

maintained at logical 1 when no data is being received.
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Fig. 429 RS-232C functional pin assignment [After JoCh87].

Request To Send (RTS) This is a control signal which, when active, sends a signal to
the receiver requesting to send data. RTS is used in conjunction with Clear To Send (CTS)
as a method of hardware handshaking to control data flow. The transmitter does not send

data until it receives a clear to send by the receiver.

Clear To Send (CTS) In conjunction with RTS, this signal is used by the receiver and,

when active, it tells the sender to start transmitting,

Data Set Ready (DSR) When this signal is asserted, a PC interprets that a modem is

properly connected to the telephone line and in the data transmission mode.
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Signal ground (SG)  This is a mandatory signal ground. It defines the reference voltage

for the data that is being transmitted or received.

Data Carrier detect (DCD) A modem sends a PC an ON signal when a proper carrier

signal is being received.

Data Terminal Ready (DIR)  Used as an output signal, DTR informs that it is powered

up and ready to communicate.

The eight pins described above are the most important signals in the RS-232C
interface, and they are appropriately called the BIG EIGHT. The remaining pins of the RS-
232C interface are used for further hardware handshaking, backup, secondary duplicates of
those already mentioned, or for test purposes. In the serial communication channel of
interest, only 5 of the BIG EIGHT are used, since the remaining three are used mostly by
modem communications. The host computer-memory manager system configuration which

uses these five signals to form the serial channel is discussed next.

4.3.4 Standard System Configurations

Of the 25 signals offered by the RS-232C, the number and nature of signals used in
the channel depends on the application. When interfacing a terminal to a modem, some or
all of the BIG EIGHT are necessary, and this depends on the manufacturer of the modem or
terminal [Camp89]. What is important is to determine what signals are required by the
modem or terminal at both ends of the communication link. This can be done by referring

to the manufacturer’s data sheet specifications.

Interfacing computer to computer systems is relatively simpler. The simplest
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method is referred to as a null modem. It is referred to as a null modem because the
intermediate device, the modem, is eliminated. As shown in Fig. 4.30, only three signals are
connected, TxD, RxD, and signal GND. Data is transmiited through wire TxD, and data is

received through wire RxD. When, why, or how to transmit data is controlled through

software handshaking.
Computer Computer
A B
Transmit Data | TxD RxD_I Receive Data
Receive Data | RxD TxD | Transmit Data
Signal Ground GND Signal Ground

Fig. 4.30 Null modem configuration.

Software handshaking uses control characters to control the transfer of data between
systems. One disadvantage of this system is that the control characters generally cannot be
used as data. Most prevalent in software handshaking is the XON/XOFF protocol. XON
and XOFF have several other names. XOFF is sometimes referred to as Device Control 3
(DC3), Cul-S, or 1316, while the XON character is referred to as DC1, Cal-Q or 1116. The
receiver sends an XON when it is ready to receive data. Having received an XON, the
transmitter begins sending data. If the receiver requires a break for any reason, then it

transmits an XOFF. The transmitter ceases to transmit and waits for the next XON.

A more interesting system configuration — the interface used in the application of
interest — is shown in Fig. 4.31. In this application six signals are used, TxD, RxD, RTS,
CTS, DCD, and signal GND. This configuration enables hardware and software

handshaking.
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Fig. 4.31 Wiring diagram of host computer-memory manager interface.

The hardware method uses RTS and CTS to control data flow. This method is
fastest of all handshaking protocols. If the transmitter wishes to transmit, it asserts output
RTS. Because RTS of the transmitter is connected to the receiver’s CTS, the receiver
monitors its input CTS in order to determine when the transmitter requests to send. When
CTS goes active, the receiver asserts its output RTS, which is connected to CTS of the
transmitter. When the transmitter senses an active CTS, it begins transmitting through the
TxD wire. The transmitter’s TxD wire is connected to the receiver’s RxD wire, and the

receiver thus receives data through RxD.

44  Host Computer: the IBM or Compatible

The host computer used in this thesis is a Mind portable IBM compatible. This
computer uses a 286 P, 640 KB of RAM, a 40 MB Seagate hard disk, and a Microsoft
mouse, version 7.0. It has a built in 7" by 5" screen driven by a Color Graphics Adapter
(CGA) video card. It also has a RS-232C compatible serial port. All of the functions of the

host computer, as discussed in Section 3.2.4, are implemented in software.
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4.4.1  Software Description

Host computer software is written using 8086 assembly language, BIOS and DOS
(version 3.0) interrupt calls [RaDu86], and Microsoft Quick C 2.0 [MSQC88] high level
language. High level language is used primarily for the user interface. This includes setting
up text and graphics user interfaces and main processing of user selected functions.
Assembly language is used for basic processing of speech data. This includes configuring
the serial port, receiving and transmitting commands and speech data, and converting data
from one form to another. Whenever possible assembly language routines use BIOS and
DOS system calls to communicate with PC hardware, such as keyboard and hard disk

controller,

44.1.1 Text Mode Interface

The text mode of operation is used mainly to initialize the system, to record and
playback speech, and to perform some library functions. Figure 4.32 shows the window
which appears in text mode. The horizontal menu bar located at the top of the figure offers
pull down menus and pop up dialogue boxes. Pressing the ALT key gives access to the
main menu. Moving through the menu system is done by manipulating the arrow keys,
while selecting an item is done by pressing Return. Typically, the first function performed

is serial port initialization.

Fig. 4.32 Host’s Main menu (text mode).
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44.1.1.1 Serial Port Initialization

The serial port of the host computer uses the National Semiconductor 8250 UART
[NaSe89]. The operation, function, and programming of this UART is very similar to that
discussed in Section 4.2.1.2 for the ACIA. The UART’s purpose is to provide the serial
interface between the host computer and the RS-232C serial communications channel, as
shown on the right hand side of Fig. 4.18. Initialization menu offers different data
formatting, but the one used for speech data communications is as follows: 115.2 kbps, 8,
N, 1. Data transmission rate is 115.2 kbps, characters are 8 bits in length, there is no parity
bit, and one stop bit is appended to each character. Since Quick C, BIOS and DOS do not
allow programming the serial port for transmission rates greater than 57.6 kbps, assembly

language is used. The source code for initializing the serial port is shown in Appendix A.

44.1.1.2 Record

Once the serial port is initialized as (115.2 kbps, 8, N, 1) recording can begin.
Selecting record from the main menu, the user is prompted for the number of seconds to
record. Currently, 2, 4, 16 and 32 seconds are offered, but this may be easily changed so
long as the hard disk can accommodate the space. Since the recording rate is 4 kHz, i.e.,

4000 bytes per second, the amount of space for recording ¢ seconds is given as follows:

Disk Space = 4000 bytes/sec x t sec = 4000t bytes 4.2)

After selecting the number of seconds, the main program passes the recording time
to a record function, where two functions are executed, the first of which is
SendRecordCommand. This function transmits the command code for “record t seconds”
to the memory manager. Figure 4.33 shows the flow chart for transmitting a command, and

this chart should be compared with Fig. 4.21, which represents the memory manager’s
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command reception flow chart. Note the mirror imaging of RTS and CTS, providing

simple, yet effective, hardware handshaking,

Function:
Record (Seconds)

Command Transmission

i Slave, Host requests |
| to Send a Command. |
| RTSB=1(Active) |

Code | Interpretation

Yes (B4 =1)

02 | Record 2 sec
Transmit Code of
04
Record 4 sec Command via UART
10 | Record 16 sec and RS§-232C,
20 | Record 32 sec =
AA Playback
I Yes (B4=0)
Start Recording/Receiving Acknowledge
Reception of
Valid Command,
RTS =0 (Inactive)

Fig. 4.33 Send command flow chart.

When a valid record command is sent and received, the host executes the other
function, record. Figure 4.33 shows a flow chart for the host’s receive speech data routine.

This figure is the mirror image of Fig. 4.25, and they should also be compared. As shown
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"+ Open File

|+ Allocatc RAM Buffer |
|  Seconds Parameter

Record Speech Data to Disk,
Seconds = number of seconds N\
to record. /BN

#  Slave '\

/ % No (B4=
Requesting 0(B4=0)
tosend
N?/
Yes (B4=1)

Okay Slave,
| Send Speech Data:

| GetByteofData |
| From ACIA Receive §
| RegisterRxD. |
v
Siave,
Do Not Send: :
| RTS =0(InActive). |

| Decrement TwoSecondsCount

% No, TwoSecondCount # 0,

1 Yes, TwoSecondCount = 0.

+ Close File -
» Free RAM Buffer |

Retumn to Main Preogram
and Wait for Users Next
Command.

Fig. 4.34 Host receive speech data flow chart.

in Fig. 4.34, the record function begins by opening a file and allocating memory for a

speech data buffer. This buffer holds 8192 bytes or approximately two seconds of speech
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data. The Seconds variable is passed to the record function by the main program.
TwoSecondCount counts each two seconds of speech. Before the host even attempts to
start receiving data, it checks whether the slave is requesting to send, i.e., started the record
process. Having determined slave’s request to send, the host acknowledges the request by
setting its RTS to logic 1, and waits for the incoming byte. Having received a byte, the host
resets its RTS to logic zero in order to inform the slave not send. By manipulating RTS in
this way, all 8192 bytes are received. Following the transmission of 8192 bytes,
TwoSecCount is decremented. Note each decrement of TwoSecCount represents two
seconds of recorded speech. If TwoSecCount decrements to zero, recording is over and the
file is closed and the allocated RAM is freed. When finished, the host returns to its main

program, where it waits for the user to select another command.

44.1.13 Playback

The process of transmitting, i.e., playing speech, is similar to that just described for
recording. First, the playback command is transmitted. To start playback, the host begins
by opening a file and dumping a portion of that file to RAM. The contents of this RAM are
subsequently transmitted to the memory manager, using the same type of hardware

handshaking as that described for the record mode.

44.1.14 Library Functions

Also available in text mode, speech recordings may be loaded into a library in order
to form a template. Each entry in the library is stored in files. Furthermore, specific entries
from the speech data library may be played back. The user can also remove selected speech
files from the library. The purpose of forming a library is to facilitate speech editing tasks,

which are possible in the graphics mode interface, as discussed in Section 4.4.1.2.
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4.4.1.1.5 Compression

Also available in text mode is data compression and decompression routines. In
order to plot speech data or directly modify the waveform, ADPCM formatted data must be
converted to PCM. Similarly, in order to playback modified speech data, PCM formatted
data must be converted to ADPCM. These conversion routines are based on the discussion
of ADPCM presented in Chapter II, Section 2.2.3.1. The source code for these routines
can be found in Appendix A, Section A.2.9.

Note that these routines implement a different algorithm than the one that is
implemented by the manufacturer of the ADPCM speech processing chip, Oki (please see
Section 4.5). In particular, the M values that are used as step size multipliers are not the
same as those used by Oki (proprietary information). As a result, some information is lost

in the conversion.

4.4.1.2  Graphics Mode Interface

In addition to having a text user interface, the host software also has a graphical
interface. The graphical interface consists of initialization and time domain plot functions.
The initialization function configures the other graphics software according to the type and
capabilities of the current computer’s video card. In so doing, the graphics support for this
software should work with computers using CGA, EGA, HGC, MCGA, AND VGA, video
adapter cards. However, when setting pixels in the time plot function, some minor
modifications may be required for systems using cards other than CGA. In these cases, the

incompatibility is partly due to screen resolution.

Normally a Graphical User Interface (GUI) product can produce a single interface
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satisfying both text and graphics. However, text and graphics interfaces were written in
order to limit the size of the program. For example, using a development toolkit such as
Menuet v. 1.7d [CoLa90] to form the graphical interface requires a minimum of 200K of
memory for just the overhead. The entire host program, including user interfaces and

speech processing code, requires about 150K of memory.

4.4.1.2.1 Time Plot and Speech Editing

The graphical interface is used mainly as a speech processing tool. The main
functions described in this section are time plot and speech editing. The graphical mode of
operation is run when the user selects Time Plot from the main menu. Selecting Time
Plot, causes a dialogue box to pop up, whereupon the user is prompted for the name and
type of file to be plotted. Upon selecting a file, the file is plotted in a window similar to that
shown in Fig. 4.35. Both ADPCM and PCM formatted files may be plotted, but PCM files

are usually plotted, because they convey amplitude versus time information.

( 5.0 )
_| Pl P2 -
—_ ®
g ;I -
o
e - -
Q
g 2.5+ _
g _]
E‘ L
0.0 -
2.000 Time (seconds) 2.075
Bytes Selected = 600 = 0.075 sec.
4=
( Pay ) (Al ) (( Copy ) (( Cut ) ( Paste ) ( Exit )

\_ J

Fig. 4.35 Time plot window of host’s graphical interface.
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The horizontal bar near the bottom of the figure allows two ways of selecting a
portion of a file to be plotted. The rectangular bar is scaled to the size of the file. Clicking
the mouse inside the rectangle, causes 600 points to be plotted starting from the position of
the mouse click. Finer movements within the file is provided by the arrows at both ends of
the rectangle. Clicking on these arrows moves the file pointer 60 points (or 7.5 msec) in

either direction.

There are two ways to select a portion of speech data. Clicking the All icon causes
the entire file to be selected. Clicking anywhere within the plotting window causes up to
two pointers to be displayed (see P1 and P2 in Fig. 4.35). It is possible to position the
pointers anywhere within the file. One or both pointers may be removed by clicking on top
of the respective pointer. Once the two pointers have been positioned, text underneath the

plotting window indicates the number of bytes and corresponding time selected.

Playback is possible once a portion of speech is selected using the method
described above. This allows the user to playback any portion of speech anywhere within
the file. Also possible once speech is selected is Cur and Copy commands. Cut removes
a portion of speech from the file, while Copy copies the selected speech to a clipboard file.
The Paste command inserts speech data contained in the file clipboard into the current file
starting at the location pointed to by one of the two pointers, P1 or P2. Note that only one

pointer should be positioned for the Paste functon.

Any size file may be viewed, selected, played, copied, cut, and pasted since the
software uses the hard disk space as virtual RAM. In other words, rather than using RAM,
the hard disk is used as a workspace. The disadvantage of this method is slower speed, that
is because disk access time is considerably slower than RAM access. However, an

immediate advantage is much more memory, and it is this that makes virtually unlimited size
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of files for speech recordings possible.

4.5 Problems

Because of the unwillingness of the manufacturer (Oki) to disclose proprietary
information about their ADPCM algorithm, some of the speech processing capabilities of
the PC AT workstation could not be used. In order to plot speech data or directly modify
the waveform, ADPCM formatted data must be converted to PCM. Similarly, in order to
playback modified speech data, PCM formatted data must be converted to ADPCM.
Because this cannot not be done exactly as performed by the speech processing chip, certain
required speech processing functions cannot not be implemented on the PC AT
workstation. In particular, any function dealing with modifying the amplitude of speech
cannot be fully implemented, i.e., modifying the amplitude and playing back the result.

These functions include amplitude interpolation and linear predictive extrapolation.

This problem is resolved quite simply by using an available Macintosh IIsi
workstation for the functions not achievable on the IBM workstation. In fact, these two
workstations are used in conjunction to conduct experiments, as discussed in Chapter VII

Speech Splicing Experiments.

4.6 Summary

This chapter provides a detailed description of the PC AT speech processing
system. No rock is left unturned. Everything you’ve always wanted to know about
interfacing a 6802 pP, an MPU version of a speech processor, and a FIFO buffer to a host

computer but were afraid to ask is not only discussed but explained in great detail.

The system consists of three main components, a speech processor chip, dual-
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pointer FIFO buffer, and PC AT host computer. During record mode, the 6258 speech
processor is responsible for digitizing the analog speech waveform and compressing the
digital representation to an ADPCM format. During playback mode, the 6258 is
responsible for decompressing from ADPCM to PCM and converting speech data from a
digital representation to analog. For both modes, the speech chip provides data ready and

ready for data signals in order that it be controlled by a microprocessor.

The dual-pointer FIFO buffer consists of a 6802 P controller and SRAMs. The
6802 UP controls the speech chip and the communications between the speech processor
and the host computer. During the record mode, the 6802 WP reads parallel speech data and
writes these data to the SRAMs. In between reads, the 6802 UP transmits speech data from
the SRAMs to the host computer via the serial communications channel. During the
playback mode, the 6802 UP receives serially transmitted data from the host computer and
writes these data to the SRAMs. In between receives, the 6802 UP reads parallel speech
data from the SRAMs and writes these data to the speech chip. In this way, the FIFO

buffer behaves as a data pipeline.

The FIFO buffer provides portability, isolation, and real-time disk capture and
playing of speech data. However, because of the modular design of this buffer, it can be
applied to other systems, not specifically for speech processing. This buffer essentially
consists of an 8-bit parallel port and a serial port. As such, any parallel organized system
requiring asynchronous communications with a serial organized system may use this
buffer. The current limitations are that the serial organized system can transmit not greater
than 115.2 kbps, and the parallel system must transmit less than one-half of 115.2 kbps, i.e.,
approximately, 5.5 kHz.

Most of the speech processing is done on the host computer. The host computer

performs real-time disk capture, thus recording and playing time is limited only by the space
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available on hard disk. A serial port initialization routine is included. ADPCM formatted
data is converted to PCM format and vice, versa (note that this function is currently
unavailable due to reasons as discussed in Section 4.5). In the time domain plot function,
the time domain plot of PCM formatted data is displayed. In this window, any portion of
speech data located anywhere within a file may be selected for processing. This processing
includes, playback, copy, cut, paste, linear predictive extrapolation, and averaging. Any size
file prefixed by ‘PCM’ may be processed since this software uses the hard disk as virtual
RAM.

The dual-pointer FIFO buffer is not the only buffer capable of performing the job

for a speech processing system. The next chapter provides a paper design of an alternative

buffer, a swinging buffer implemented in hardware.
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CHAPTER V
ALTERNATIVE BUFFER DESIGN

The previous chapter discusses a microprocessor based design of a controller for a
speech data buffering system. The microprocessor or microcontroller approach is,
generally, preferred because software provides flexibility. By using a microprocessor
instruction set and an evaluation board to do the debugging, the designer acquires tolerance
for the logical, technical, or wiring errors that are bound to occur (by Murphy’s Law).
Many of the problems encountered in the design of a software based controller are solved

by modifications to the software; no hardware changes are required.

However, the microprocessor based controller may not yield the most efficient
design in terms of optimizing the chip’s capability and speed. For example, in the design of
the speech data buffer of interest, the full potential of the microprocessor is not realized.
The controller requires a small subset of the instruction set, such as ‘move data from the
PIA to Buffer A’ and ‘compare memory addresses’. Also, the microprocessor requires
time to execute instructions and to respond to interrupts. Rather than responding to an
event as soon as it occurs, the microprocessor response is delayed (usec delay). In this
way, the microprocessor response time is quantized. Consequently, accessing data at a
particular instant may not be possible with a microprocessor. Nevertheless, the knowledge
gained by the microprocessor based design approach, gives the designer insight into an

equivalent hardware based design of a controller.

This chapter presents an alternative solution to the design of a controller for a
speech data buffering system. Rather than using a microprocessor, the controller is

designed using a digital circuit consisting of primitive logic gates (the AND, OR, and
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INVERTER) whose combinatorial logic is capable of controlling the communication of
control signals and speech data. The hardware circuit design approach is a refinement of
the microprocessor based design. This paper design is intended to be implemented using

the Xilinx Logic Cell Array (LCA) technology.

5.1  System Design And Description

The apparatus of the speech processing system for the hardware controller design
approach is shown in Fig. 5.1. Notice that, unlike the previously presented system ( as
shown in Fig. 3.1), the only external hardware is the microphone. All other necessary
circuits are contained within the host computer, which is the Macintosh II. While this
design has its disadvantages (such as the isolation problem mentioned in Chapter III,
Section 3.3.3), there are obvious advantages, such as, simplicity and compactness. For this
system all that is necessary for operation is connecting the microphone to the back of the
Macintosh and then starting the Macintosh speech processing system menu driven

software.

Speech
Processing

Fig. 5.1 Speech processing system.

The previous figure shows an external view of the system. To get an idea of how
such a system may work, let us take a look at an internal view as shown in Fig. 5.2.
Internally, the Macintosh II mainly consists of the 68030 microprocessor, four ROM chips,

up to 8 MB of SIMM RAM memory, a serial communications controller for the modem
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and the printer, an SCSI parallel port typically used for a hard disk, built in speaker and
amplifier, and as well as many other nice features. As can be seen in the figure, the speech
data buffer board is added to an available expansion slot within the Macintosh. What this
connection immcdiateiy implies is that the buffer board shares the external data, address,

and control buses with the host CPU, the 68030.

. Host's SCSI Speech Data Buffer
Host CPU: Memory: ePSri%(t:er oHard System Board:
«68030 °ROM «Modem Disk eee | oSpeech Processor
*RAM ot Controller «Controllers

NFRNEEy )

\Control Bus \ \, N, N\

Fig. 5.2 System block diagram. The speech processor and several
controller circuits are connected together on one PC board which is added to
one of the available expansion slots of the Macintosh.

With this connection in mind, we can see how the speech processing system works.
For example, to get the buffer to perform a certain function, such as record or playback, the
host computer first writes the command to the buffer. The code of this command is placed
on the 68030 external data bus, and the address of the buffer’s command register, that will
accept and process this command, is placed on the address bus. Proper address decoding
ensures that the buffer and only the buffer receives this command. The part played by
certain control signals on the control bus is to latch the command, which is on the external
data bus, into the buffer’s internal command register. Once the command register is loaded,

processing of the command begins.

During the record mode, the host processor, the 68030, recieves data from the buffer
board as follows. The host computer must first address and read the buffer’s internal status

register, which indicates whether data is ready. If data is ready, the host addresses the
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buffer’s internal data register, which contains fresh data. The data is placed on the external
data bus and eventually makes its way to the host’s private RAM memory or to the hard
disk for non-volatile storage, to be processed at a later time. The host computer continues
this way until it is decided to terminate the record mode, in which case, the host merely

addresses the command register and writes the record stop code.

The procedure for playback is similar. The code for the playback mode is written to
the command register and this is followed by the commence playback command. The host
computer then reads a status bit in the status register that indicates whether the speech chip
is ready to playback a byte of speech data. If so, the host writes a byte of speech data to the
data register. The host computer continues this way until it is decided to terminate the
playback mode, in which case, the host merely writes the playback stop code to the

command register.

5.2 Speech Data Buffer Board

To better understand how the buffer board performs the above functions, let us take
a closer and more detailed look at the block diagram of the speech data buffer as shown in
Fig. 5.3. The board consists of the speech processor and the data buffer controller, which,
in turn, consists of the interface controller, the read and write timing controller, and the
swinging buffer controller. The interface controller is responsible for intermediating
between the physical and logical aspects of the communication between the host computer
and the buffer board. The memory manager controller is also an intermediary device, which
arbitrates between the different data rates of the speech processing chip and the host CPU.
The read/write controller is responsible for supplying the speech chip and the memory
manager controller with data access timing signals. The most immediate circuit facing the

host CPU is the interface controller.
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Fig. 5.3 Layout of the speech data buffer board.

5.2.1 Interface Controller

There are two conceptual functions of the interface controller. The memory circuits
placed at the physical boundary and the protocol prescribed at the logical boundary between
the host’s external bus and the buffer’s I/O port constitute what is called the interface
controller. Conversely, the command register, the status register, and the data register of the
interface controller act as the physical interface, separating the external bus of the Mac II
and the internal bus of the buffer. On the other hand, the logic of the codes used for
commands and status and the method by which these codes are transmitted, received, and

decoded serve as the logical interface.

The IEEE standard NuBus interface is the protocol adopted and used by the Mac I1.
[Appl87] is a good reference for designing cards for the Macintosh. The NuBus protocol
is a sophisticated extension of the familiar memory mapped concept of the 68000 family
microcomputers. What this means is that cards designed for the Macintosh should follow

the NuBus or at least the memory mapped protocol.

The buffer device is a memory mapped system and is accessed broadly similar to
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memory transfers, and the buffer is said to occupy part of the 68030’s address space. In
particular, the board is assigned three unique addresses, one for data, one for command, and
the other for status information. Only eight bits of these locations are used by the buffer
because the speech processor is an eight bit machine, i.e., the 6258 speech processor has an

eight bit external multiplexed data/command/status bus.

The buffer interface monitors the Macintosh’s address lines and detects when the
buffer board is being addressed. When properly addressed, the controller latches
command, status, or data onto the 68030 external bus or into the appropriate internal
registers. The controller also enables other buffer controllers according to the specific
command in the command register. The interface controller holds the buffer board in a

disabled state when not addressed.

In order to communicate properly, the codes of the commands issued by the host
and the status supplied by the buffer are defined. Table 5.1 shows the meaning of each

code.

Table 5.1. Command codes.

Command Register Interpretation

CTC6C5C4C3C2C1CO

X10]11]0[X]1{0](1 Record Command: Initialize
XIX[IX|X|X[|0}f1]0 Start Record
X001 |X11]0]1 Playback Command: Initialize
XIXIX[|X|[X]0]01}i0 Start Playback
COis Command/|Cl=1 RD|C2=1 Data C4 C5 C6 = Command
Status Trigger 0 WR 0 Command word
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5.2.1.1 Circuit Description

As shown in Fig. 5.4, the interface controller circuit consists of an address decoder,

an 8 bit command register, an 8 bit status register, and an 8 bit data register,

32 Bit ' Command Status Data
to Register Register Register
3 Line
Address
68030 84 CRCS 84 SRCS 8 DRCS
External Decoder | t ) t [ t
Buses 3nd A Chip Select Bus
Data Bus ¥ X X ™
Address Bus x R/W
Control Bus \

Fig. 5.4 Interface Controller.

The address decoder monitors the 32 bit address bus and asserts either the Data
Register Chip Select (DRSC), the Command Register Chip Select (CRCS), or the Status
Register Chip Select (SRCS) if and only if their corresponding address is on the bus.
Afterwards, and if the corresponding register has been enabled, the interface controller uses
the 68030 issued read/write signal to latch the data, command, or status byte either onto the
external bus or into the respective register. Furthermore, upon a valid address, an enable
control signal is sent to other controllers and associated circuits of the buffer board.
Otherwise, when the buffer is not being addressed, all registers and the other circuits of the

buffer are disabled.
When a command is latched into the command register, the control bits of this

register are used as inputs by other circuits of the buffer in order to execute the command.

One of these circuits is the read/write timing controller.
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522  Read/Write Timing Controller

The read/write timing controller circuit consists of two major parts, the read/write
timing signal generator circuit and the command decoder and status encoder. The read and
write signal circuit is responsible for generating Chip Select (CS), ReaD (RD), and WRite
(WR) timing signals as required by the speech processor and in part by the swinging buffer
of the memory manager controller. The command decoder is used to decode commands
issued by the host computer and to present the commands to the speech processor. The
status encoder is used to encode the status information read from the speech processor and
to present the status to the host computer. The read/write signal generator is discussed first.

This is followed by a description of the command decoder and status encoder.

Because the signals of the read/write circuit are used for data access, their timing is
critical, and a thorough understanding of their purpose and their relative timing is important.
Furthermore, the design of the circuit must conform to the prespecified timing diagrams.
Accordingly, the description of the circuit design is preceeded by a description of the timing
diagram, which is supplied by the manufacturer, Oki, of the speech processing chip. The
write timing is similar to the read timing, and, therefore, a detailed write timing description is

not given, although some of the differences are discussed.

5.2.2.1 Timing Description

Fig. 5.5 shows typical waveforms and the timing of signals required for reading of

speech data and status information from the speech chip during the record mode.

In order to communicate with peripheral devices, the speech chip offers some output

control signals. The Voltage sampling ClocK (VCK), the sampling frequency, and the
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Microprocessor ClocK (MCK), the data ready flag, are output control signals intended so
that a peripheral device may synchronize itself with certain events taking place within the
speech processor. The falling edge of VCK indicates that the speech processor is
beginning to convert an analog speech sample to digital form. Subsequent samples are
converted every 125 psec (i.e., 8 kHz). The falling edge of MCK, which occurs every 250
usec (i.e., 4 kHz), indicates that a pair of ADPCM nibbles are ‘ready’ for reading. Note
that MCK does not occur at a fixed time in respect with VCK. It is for this reason that the

read/write timing controller derives its timing with respect to MCK, rather than VCK.

MCK | l

RD 1CR 1R
<% lR.R:_
DR CIRDC
ORE fe»] > RE
D0-D7 < N
\d

Fig. 5.5 Speech processor read and status output timing diagram.

In order to complete the communication link, the speech chip expects some input
control signals. The CS, RD, and D/C are input signals required by the speech chip for the
record mode. CS is used to enable the chip, D/C is used to select the speech data mode or
the command/status mode, and RD is used to read speech data or status information from

the speech chip.
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The timing diagram specifies a valid data access window. The time tRMS + (RMH
=70 Usec is the time during which internal data is valid. However, before valid data can be
accessed at the external pins of the chip, the chip requires a setup time, tRMS = 15 psec.
The chip indicates when this time, tRMS, has elapsed by pulling MCK low. Following the
negative edge of MCK, the chip allots a tRMH = 55 pusec window (hold time) for an
external device to present the CS, D/C, and RD signals and thereby access data or status.
Note that the presentation of RD must be within the chip enable window created by CS, i.e.,

data is actually latched at the positive edge of RD.

Following the data ready signal given by MCK, the D/C, CS, and RD signals are
presented within the tRMH window. Upon the negative edge of MCK, the speech chip is
selected and the data mode is chosen through the assertion of CS and D/C, respectively.
Note that CS and D/C may occur at the same time. At least tCR = 50 nsec thereafter, the
RD signal is asserted causing internal circuits to begin latching speech data onto the
external pins. However, before an external device can read valid data, the chip requires

tDRE = 200 nsec in order to stabilize the data onto the pins of the chip.

After asserting the read data signals, the external device must withdraw them. After
the assertion of the RD signal, a delay of at least tRR = 250 nsec is recommended before
RD is disasserted. The positive edge of RD at this moment is actually when data is latched
and read by the external device. After at least tCR = 50 nsec from the raised edge of RD,
the CS signal is disasserted and D/C may also be withdrawn. The external device then waits
for the next negative edge of MCK, whereupon the same sequence of events continues. Fig.

3.6 shows a flow diagram of the sequence of events described above.
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Fig. 5.6 Read signal timing and presentation. Sequence of events required
for the correct timing and generation of CS, D/C, and RD signals.

The timing for writing commands or data to the speech chip is similar, one

difference is that the data ready signal is signified by the positive edge of MCK, rather than
the negative edge.

5.22.2 Circuit Description

A circuit implementation of the timing specifications described above is shown in

Fig. 5.7. As shown in this figure, the circuit consists of a Flip Flop (FF), a 3-bit binary

onD[

Counter

Flip Flop

DC1 Select ReaD or WRite
C2 Select Data or Command DC
> - S

Fig. 5.7 Schematic diagram of the read/write timing controller circuit.
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counter, and some primitive logic gates. The inputs to the circuit include the MCK data
ready signal and the C0, C1, and C2 command bits, while the outputs are CS, D/C, RD, and
WR signals.

The circuit can be in one of five modes: active and generating signals for command
write; active and generating signals for status read; active and generating signals for record
mode; active and generating signals for playback mode; and inactive. The circuit is
activated by either active edge of MCK or C0 and is inactive by their absence. Typically, CO
activates the circuit first in order to write a record or playback command to the speech chip.
When activated by CO for a command write, the appropriate timing signals, i.e., CS, D/C,
and WR, for one write to the speech processor are generated. MCK is used to activate the
circuit during the record or playback modes. For every active edge of MCK, the appropriate

timing signals are generated for one read or for one write of speech data.

The purpose of the FF is relay active edges of MCK or C0 to other parts of the
circuit. The active edge is selected by the command bit C1, which is connected to the Active
Edge Select (AES) pin of the FF. The FF is positive edge triggered for writing commands
or data to the speech chip and negative edge triggered for reading status or data from the

speech chip. The FF also holds the counter in its reset state when the circuit is inactive.

The purpose of the counter is to provide the CS duty cycle and the RD or WR duty
cycle within the CS window as specified by the timing diagram described above. When the
circuit is idle, the counter is held at a reset state, since the reset input of the counter is
connected to the inverted Q output of the FF (QB is high on reset). When the FF triggers,
Q goes high (the FF is self toggling) and, thus, the counter begins counting. The raising of
Q provides the first edge of CS, since Q is tied the CS input of the speech proccessor. The

Oki clock is used to provide the rate at which the counter counts and to synchronize the
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counter with the speech processor.

A combination of the outputs of the counter provide the RD or WR signal. As
shown in Fig. 5.8, the logical combination, (NOTQ0 AND NOTQ1 AND Q2), is chosen so
that the duration of the asserted RD or WR signal exists within the assertion of CS. When
the counter reaches its maximum count (i.e., seven), the FF is reset and, consequently, Q
goes low. The lowering of Q provides the falling edge of CS, and thus the CS window is
manifested. As a result of QB = 1, the counter is once again held at a reset state. The

counter then waits for the next stimulation of the FF.

CS

RD = NOTQ1 AND NOTQ! AND Q2

Fig. 5.8 Timing of CS and RD or WR signals. CS is asserted throughout
the duration of the count (0, 1, 2, 3, 4, 5, 6, 7). The RD (or WR) signal is
actually the fourth count of the counter. Thus, RD (or WR) exists in its
asserted state within the CS window.

Section 5.1 mentions that in order to start recording or playback, the host computer
must first write 2 command to the buffer board. Section 5.2.1 went on further to explain
that the interface controller actually stores the command in the command register. The
purpose of storing the command is so that other circuits of the buffer can use the command
to initialize properly, and hence, to begin the process indicated by the command.
Furthermore, section 5.2.2.2 discusses how the control bits C0, C1, and C2, of the

commeand register, are used for initialization and process control.
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Discussed next is the purpose of the other control bits of the command register. In
particular, it is shown how the control bits C4, C5, and C6 are used to decode the command,

and, hence, initialize the process indicated.

5.2.2.3% Command Decoder

The purpose of the command decoder is to interpret the command sent by the host
computer and to inform the speech processor of what process is to be taken. The circuit
responsible for interpreting and relaying commands is shown in Fig. 5.9. The circuit
simply consists of a 3 by 8 decoder and a bank of three state buffers. Bits C4, C5, and C6
represent the binary code of the command. The decoder decodes the binary code to an 8-bit
representation recognizable by the speech chip. The reason for using three state buffers is
that the command bus must be in the high impedance state when the speech processsor is in
the record or playback mode, otherwise there will be bus contention. Note that C2 is used
for two related purposes. If C2 is high, the data mode of the speech processor is chosen

and the buffers are placed in high impedance. If C2 is low, the command mode is selected

and buffers are enabled.
From Command To OKI Data Bus
Register | Cmd0 g,

3input §_Cmd2 o
by Cmd3 g1 Three

D——Q+ 8 ouput | Cmd4 o] State

Decoder | CmdS g Buffers

> Cmd6 g,
- | Cmd7_ged Enable
[> '

Binary Input Decoded Command Speech Processor Function
C6C5C4 tCmdy Cmd(¥

000 000 000G O0O0 Not Defined

0 01 0 006 000 01 Stop

010 0 00 00O 10 Play

011 000 00100 Record

Fig. 5.9 Command decoder circuit. This circuit decodes the binary code of
the command to a format recognizable by the speech processor. The high
impedance state of the buffers (i.e., if C2 = 1) ensures no bus contention.

- 131 -



Consider an example of how to start recording speech. The reset code and the initial
state of the command register of the interface controller is 00000000. Before recording can
start, the host computer must write two commands to the command register. Referring to
Table 5.1, the first code is for record initialization, X010X101. Bits C4, C5, and C6 are
input to the decoder as shown above. The decoder’s interpretation is 00000010. Since C2
is high, the three state buffers are enabled and the record command 00000010 is placed on
the speech processor’s data bus. Referring to Fig. 5.7, because CO went from low to high,
the FF is triggered and subsequent CS and WR signals are generated (note WR is
generated instead of RD because C1 is low). The presentation of CS and WR causes the
data appearing on the data bus, 00000010, to be latched into internal registers of the speech
chip. The speech chip now begins recording. Every 250 usec fresh speech data will be
available on the data bus. However, in order to prevent bus contention, the previous
command must be taken off the bus. This is achieved indirectly through requiring that the
host issue another command. The next code that the host computer writes is XXXXX010,
which, from the host’s point of view, means start. From the buffer’s point of view, this
code is required in order to take the command code off the speech data bus and reinitialize
the control signals for the record mode. Because C2 is low, the three state buffers are
placed in high impedance, and, therefore, the command is taken off the bus. C1 is set high
because the read/write controller is required to periodically generate the RD pulse for the
record mode. CO is reset to low in order to allow MCK to take over the job of riggering the
FF. Also CO is reset low in anticipation for the next command issued by the host computer,

such as, stop.

Once the record command is decoded and written to the speech processor, recording
of speech starts automatically. Thereafter, as indicated by MCK, new data is ready every
250 psec, and it is expected that the host computer reads each byte of data on time so that

no data is lost. This imposes an inconvenient and synchronous constraint on the host
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computer. While perfectly able to communicate data transfers with the speech processor at
its relatively slow rate of 4 kHz (i.e., every 250 pusec), the host computer prefers a much
higher rate. The host, in fact, requires a higher rate of transmission because, in order to
record and playback speech in real time, a certain amount of time is required to save speech
data to non volatile disk, without stopping the recording or playing process. Because the
host requires more than 250 psec to save a block of data to disk, the host requires to
communicate data transfers in bursts rather than one byte at a time. This necessitates some
sort of buffering technique to be employed between data transfers of the speech processor

and the host computer.
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5.2.3 Memory Manager

The purpose of the memory manager is to alleviate the synchronous nature of data
transfers between the speech processor and the host computer. To fulfill its purpose, the
memory manager employs the concept of the swinging buffer. The swinging buffer is a
two port device which allows relatively slow data transfers at one port, while allowing much
faster transfers at its other port. The swinging buffer technique of memory management is
particularly suited for the speech processing system of interest since the speech processor
communicates data at 4000 bytes per second (Hz), or 32 000 bits per second (32 kbps),
while the host computer is capable of megabytes per second, which is the speed of the host

CPU, the 68030.

9& coe (113

Slow Fast
Data In Input Output Data Out
Swing Swing
Controller Controller
€06 000 o&

Fig. 5.10 Swinging buffer block diagram (after [Kins88]).

As shown in Fig. 5.10, the memory manager consists of an input and output swing
controller and two buffers, which, in this application, are implemented as First-In-First-Out

(FIFOs) memories.

The swing controller, as its name implies, controls the path switching mechanism
and determines which buffer is connected to which device at any given time. In order to
prevent instances when iwo devices try to access the same buffer at the same time, only one

buffer is permitted to be connected to a device at a particular moment. For example, while
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buffer A is connected to the speech processor, buffer B is connected to the host computer,
and vice versa. Note that the host computer is effectively isolated from the speech
processor, and this is what enables the host computer to asynchronously read speech data at
a much higher rate than that transmitted by the speech processor. When the host computer
eventually empties buffer B (and it will empty buffer B at a fraction of the time required by
the speech processor to fill buffer A), the host stops its receiving routine and starts saving
speech data to disk. When the host computer finishes saving data, it returns to its receive
routine and waits for the next buffer full signal. In the mean time, the speech processor
continues filling buffer A. When buffer A becomes full, a buffer full signal occurs and the
speech processor is connected to buffer B (swing to buffer B) and the host computer to

buffer A (swing to buffer A).

The swing controller not only controls the path switching mechanism but also
derives data access signals, i.e., the chip select signals that are actually responsible for
reading from and writing to the buffers. The buffer chip select signals are derived from RD
and WR signals and CS signals associated with speech processor and host computer reads
and writes, respectively. For example, during playback, CS signals generated by host
computer writes to the speech data buffer are directed to one buffer, say buffer A, while WR
signals generated by the read/write controller for buffer reads and speech processor writes

are directed to the other buffer, buffer B.
5.2.3.1 Swinging Buffer Timing

In order to give a clearer picture of how the swing controller determines which
buffer should be connected to which device at any given time and to which buffer the RD,

WR, and CS signals should be directed, a timing diagram is given. Fig. 5.11 shows the

timing diagram of the swing controller.
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Selector
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Processor | Spcsa
Access
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Host
Computer| Srcsa
Access

Signals DRCSB

Fig. 5.11 Timing diagram of the swing controller.

In order to determine the device-buffer connection, the swing controller uses buffer
full signals. A change in connection, i.e., swing, occurs each time one of the buffers
becomes full. ‘BufferAFull’ and ‘BufferBFull’ are output signals provided by the FIFO
memories, and they indicate when the respective buffer is full of data. Positive edges of
these signals cause a swing from one buffer to the other. Causality is indicated in the figure
by arrows. ‘BufferA’ and ‘BufferB’ are buffer selector signals, and they are used to
indicate to which device the respective buffer is connected. A high signal on either Buffer A
or Buffer B indicates a connection to the speech processor, whereas, a low signal on either

Buffer A or Buffer B indicates a connection to the host computer.

As mentioned previously, the swing controller also derives the buffer chip select
signals from RD and WR signals and CS signals associated with speech processor and
host computer reads and writes, respectively. The swing controller must always separate the
RD and WR signals from the CS signals. This is required to ensure that the two devices do

not access the same buffer at the same time.
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Figure 5.11 shows how the swing controller derives buffer select signals and
achieves separation between speech processor-buffer access and host computer-buffer
access. As shown in the figure, the SPCSA and SPCSB signals are used for speech
processor access of the buffers. The swing controller derives SPCSA and SPCSB from the
logical AND of a buffer selector signal with the Read and Write (RW) signal. Recall from
Fig. 5.7 that RW is the logical OR of RD and WR. Thus, RW is active whenever the
speech chip is reading from or writing to the buffer. Note that, whenever one of the buffer
selector signals is high, the speech processor is accessing data through the assertion of

SPCSA or SPCSB.

Similarly, the DRCSA and DRCSB signals are used for host computer access of the
buffers. The swing controller derives the DRCSA and DRCSB signals from the logical
AND of a logically inverted buffer selector signal with a data register chip select (DRCS)
signal. The DRCS signal is generated by the address decoder of the buffer board. Note
that, whenever one of the buffer selector signals is low, the host computer is accessing data
through the assertion of DRCSA or DRCSB. In this way, the speech processor and the

host computer are never accessing the same buffer at the same time.

5.2.3.2 Swinging Buffer Circuit

A circuit that implements the timing diagram described above is shown in Fig, 5.12.
As shown in the figure, the swinging buffer consists of two FIFO memories, a self toggling

flip flop (FF), and primitive logic gates.

The FIFO used in this design is the WD1510, which is organized as a 9-bit by 128
or 132 word stack. The chip has two bidirectional data ports and may be read from or

written into either port. The direction input pin is used to specify the data flow direction.
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When it is low, Dir specifies that Port L may be read from and Port R may be written into.

Buffer A

e F_CSL ir CSRE
5 T = DRCS | §
|~
2 ? g
4 | BufferAFull Speech Chip RW a
E >CLK g
A« [BuiferBFul - QH ¥ Srcech Chip RW O
3 g
& FIFQ cr— DRG] s
F CSL Lir CSR
F PortL Data *** ***  Data Port R 1
ort Buffer B ort

Fig. 5.12 Swinging buffer schematic.

When it is high, Dir specifies that Port L may be written into and Port R may be read from.
Reading or writing is performed by setting the appropriate chip select (CSL or CSR) line to
logic 0. After the specified hold time (150 nsec) has expired, data may be entered or read at
the rising edge of CSL or CSR. Both ports return to high impedance state when CS is
returned to logic 1. Reading or writing to the two ports can be done asynchronously. The
full output pin is used to indicate when all 128 or 132 words of memory are loaded with
data. The empty output pin is used to indicate when there is no data in the buffer

[WeDi83].

The purpose of the flip flop is to direct the SPRW and DRCS signals to the chip
select input of the appropriate buffer. The FF is triggered by either assertion of
BufferAFull or BufferBFull. Note that BufferAFull and BufferBFull cannot be asserted at
the same time, since that while the speech chip is filling one buffer, the other buffer is either
being read by the host computer or is empty, since the host is much faster than the speech

chip.

The operation of the swinging buffer during the record mode is as follows. Because
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C1 is logic 1, Port L of Buffer A is selected for write mode, while Port R of Buffer B is
selected for read mode. The CSL input signal is active since the SPRW signal is filtered
through the logical AND of SPRW with Q. Note that the DRSC signal tending towards
Buffer A is blocked since it is paired with QB. On the other hand, the DRSC signal tending
towards Buffer B is enabled since it is paired with Q. Therefore, when Q is high, the speech
processor may write data to Buffer A, and, if Buffer B contains data (i.e., if Empty is logic
0), then the host computer may read Buffer B. When Buffer A becomes full, the FF
triggers, Q goes low and QB goes high, and a swing occurs. That is, the speech processor
may now continue writing data to Buffer B, while the host computer may begin reading
Buffer A. When the speech processor stops writing data, the host continues reading the

buffers, flushing the buffers, until both buffer empty signals are logic 1.

The operation during the playback mode is similar, one difference is the direction

logic is reversed by C1, which is logic 0 during playback.

524 Buffer Schematic

The entire schematic diagram of the speech data buffer board is shown in Fig. 5.13.

5.3 Summary

This chapter presents an alternative paper design of a buffer for intermediating the
communication of speech data and control signals between a speech processor and host
computer. Rather than using a microprocessor, the speech processor is controlled through a
digital circuit consisting of primitive logic gates, address decoder, and external hardware
FIFO memory. This design is intended to be implemented using XILINX Logic Cell Array
(LCA) technology.
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CHAPTER VI
SPEECH SPLICING EXPERIMENTS

Speech splicing is a technique of synthesizing new words or utterances by a process
of concatenating the waveforms of component parts. The components form a basis, and the
span of their concatenation forms a set of synthesized words. These component parts vary
in size, ranging from phonemes to entire syllables (sequences of phonemes). Much like the
meaning of words can be changed by changing their phonetic spelling, the sound of new
words may be produced by adding, deleting, or substituting component parts. For example,
the word ‘beet’ can be changed to ‘feet’ by substituting /F/ for /B/. Similarly, we can
produce the sound of the new word ‘feet’ by putting together the sounds /F/ with a

combination of /IY/ and /T/ (see Table 2.1 for phonetic transcriptions),

Speech synthesis by waveform concatenation can be utilized in automated vocal
shaping systems. Speech splicing techniques can be used to expand the existing library of
target sounds. This chapter is designed to show how to use the tools of speech splicing for
library expansion in automated vocal shaping systems. Also, preliminary subjective tests

are conducted in order to determine the validity of the synthesis methods of interest.

To this end three experiments are performed. The first experiment deals with
extracting parts of words of an existing library consisting of naturally spoken words. These
extracted parts are processed so that they, alone, may be used for vocal shaping. The
second experiment deals with synthesizing new words using an existing library of naturally
spoken words as the basis, i.e., the synthesis units that make up the new words are extracted
from naturally spoken words. These extracted units include individual phonemes or groups

of adjacent phonemes, such as those comprising entire syllables of a word. The third
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experiment deals with synthesizing new words using natural phonemes uttered in isolation
as the basis, i.e., the synthesis units that make up the new words are naturally spoken
phonemes. These experiments use the waveform synthesis tools, as described in Chapter II,
Section 2.2.4, namely, copy, cut and paste; amplitude interpolation; and linear predictive

extrapolation (LPE).

6.1  Apparatus

The equipment used in these experiments consists mainly of computer and sound

production equipment. As such, the apparatus can be classified as either hardware or

software.

6.1.1 Hardware Equipment

Figure 6.1 shows a block diagram of the equipment used in the experiments. Note

that there are two workstations. The workstation on the IBM computer is the one designed

in this thesis, as described in Chapter IV. Not all the capabilities of this system are utilized

4 Macintosh ) File Transf 4 IBM )
Speech Splicing lie lranster Speech Splicing
Work Station @ Work Station
* Speech Record and Playback [@1 * Speech Waveform Processing
» Speech Waveform Processing e Time Domain Plot
* Time Domain Plot Q o Linear Predictive
o Cut, Copy, and Paste Extrapolation
\_ » Amplitude Interpolation ) \ )

8 3

Fig. 6.1 Block diagram of experimental equipment setup.
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in these experiments, only the speech waveform processing features are used. This is
because the other required functions, such as speech recording and playing and further
waveform processing, are easier to perform on the Macintosh computer workstation and,
also, recording and playing back PCM data is not possible with the system designed on the
IBM, for reasons explained in Chapter IV, Section 4.5. The Macintosh workstation
consists of a Macintosh IIsi computer. The Ilsi has built in sound /O, including an electret
microphone, speaker, and a minijack output. Rather than the built in speaker, a set of AKG
K240 headphones is used for speech playback. The use of headphones decreases the
ambient noise (although the ambient noise was low) and facilitates a better environment for

subjective testing.

6.1.2 Software Tools

The software used on the IIsi workstation consists of the Macintosh Sound
Manager, Audio stack of HyperCard 2.0, SoundEdit™ 2.0, Apple File Exchange, and
ResEdit 2.1. The software responsible for executing the linear predictive extrapolation
method is located on the IBM workstation, and the source code for this software can be

found in Appendix A2.11.

6.2 Method

The Ilsi is used to record speech and store its waveform on hard disk. The Sound
Manager or the Audio Stack of HyperCard 2.0 are used for recording speech. A limited
recording time (sufficient for recording medium length sentences) is allowed, and speech
data can be saved as a resource file in either the System or in one of HyperCard's stacks,
depending on the software used. Speech is recorded at a sampling frequency of 22 kHz

and coded in PCM format ( no compression). Once speech data is saved on hard disk, then
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the data file may be opened by the application SoundEdit. A wide variety of speech
processing tools and features are made available by SoundEdit, such as the copy, cut, and
paste and amplitude interpolation synthesis methods and a visual association between the
waveform and sound of speech. SoundEdit also allows saving files in various formats,
including resource, SoundEdit, and, particularly, AIFF, the purpose of which is discussed in

Section 6.2.1.

6.2.1  Macintosh to/from IBM Speech Data File Transfer

Apple File Exchange and ResEdit are used to facilitate file transfer between
Macintosh files to and from IBM files. An IBM formatted floppy disk (3.5", 1.44 MByte)
is used for the transfer. Note that the disk is required to be of 1.44 MByte capacity because
the Macintosh IIsi uses a 1.44 MByte SuperDrive. In order to prepare for disk transfer, the
Macintosh file is first saved in Audio Interchange File Format 1.33 (AIFF) by SoundEdit.
The use of AIFF is important because the LPE software of the IBM workstation changes
the size of the speech data file, and this information must be included in the header
information of the AIFF formatted file in order that SoundEdit be able to read the resulting
modified file. Having saved the file in ATFF format, the file is then transferred to an IBM

formatted disk using the Default Translation of Apple File Exchange.

Because the LPE software changes the size of the file, associated software, also
written on the IBM workstation, is used to update the size information in the file header,
which is shown in Fig. 6.2. The header information is updated in three places,
ckSizeFORM, numSampleFrames, and ckSizeSSND, and these locations are changed
according to equations as shown at the bottom of the figure. Prediction Length is the

amount of bytes added to the file by the LPE program.

After running the LPE program and updating the header information to reflect the
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change in size of the file, the file is transferred back to the Macintosh IIsi workstation.

Once again, Apple File Exchange is used for the transfer. However, after the transfer is

(Address Identifier Riemory Chunk Type )
n Md{ID IF! !OI IR! fMI
n+4  okSizeFORM |0 | 00 [ 06| 8A Form Ghunk
o dormiype LA F |FIF
.....ddD reearnarer 'C' IM' .M'
Common Chunk

..CkS1ZeCOMM

numChannels

o
001 00
0] o

Nh+22  numSampleFrames| 00 | 00 | 06 | 40
0| 8
404 0D

SampfeSme 10 Byte Floating Point Sampling Rate

SampleRate AD| E2| 00| OO 00 ] OO | OO | 00
KD T N|S | T Instrument Chunk
................................. CkSizeINST 0f 00/ 00| 14
KD S| SIN|D Sound Chunk
.n+70 .CkSizeSSND W /[0|06|48
BlockSize C0) 00| 0O ) 00
.SoundData | 1st]| 2nd] 3rd] 4th] eee 0640th
Frames
SSND
ckSizeFORM = Z sizeof(ckID[i]) + sizeof(ckSize[i]) + ckSize(i)
i =COMM
numSampleFrames = <kSizeSSND - 8
numChannels

ckSizeSSND = ckSizeSSND + Prediction Length

Fig. 6.2 AIFF header format.

complete, ResEdit is used in order to change the type and creator information of the file.

The default translation of Apple File Exchange creates a file that is of type binary and
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created by MDOS. In order that SoundEdit be able to reopen the LPE modified file, the
type must be changed to AIFF and the creator must be changed to SFX!. ResEdit can be

used to do this. The ResEdit window in which this is done is shown in Fig. 6.3,

JICRMIBENPCM -
Type |BINAR k Creator |mdos

[]System [1Invisible Color: Black A4
[]0n Desk Inited [[] Bundle

[]Shared [ No Inits

[ ] Rlways switch launch

[C] Resource map is read only [C] File Protect
[] Printer driver is MultiFinder compatible PJFile Busy
Created [3/4/91 1:55:31 PM [IFile Locked

Modified [3/5/91 6:13:14 PM

Size 286 bytes in resource fork
20026 bytes in data fork

Fig. 6.3 ResEdit window for changing file flag information. In order that
SoundEdit be able to open the modified file, the type BINA must be changed
to AIFF and the creator mdos must be changed to SFX!.

6.2.2  Verification of Linear Predictive Extrapolation (LPE) Software

A method for verifying the LPE software is as shown in Fig. 6.4. In addition to
predicting a number of future samples, the algorithm also ‘predicts’ the sample frame from
which the predictions are made. The prediction of the sample frame is compared to the real
sample frame in two respects, visually and in the mean square error (MSE) sense. The
visual comparison provides a rough subjective confirmation, and the MSE provides an

objective verification that the software is working.
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Fig. 6.4 LPE software verification. Mean square error (MSE) of .8% is an
objective verification that the LPE software is working.

6.2.3  Expansion by Extraction

The purpose of the first experiment is to show how to use speech splicing
techniques in order to expand an existing library of words spoken by a therapist. The
objective is to extract phonemes or syllables in order that they, themselves, may be used for

vocal shaping. The idea is that if a student is to learn to vocalize an entire word, it would be
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easier to proceed in steps by individually shaping the component parts of the word. Once
the component parts are learned, then they may be put together more easily in order to form

the word.

For this experiment, it is assumed that a library of words exists, and that this library
contains the words, feet, fit, Ben, and well (randomly chosen). From these words the
following phonemes and syllables are extracted:; /F/, /B/, /W/, /T/, ‘fee’, ‘eet’, ‘it’, ‘en’, and
‘ell’. From these component parts all of the existing words may be formed, in addition to

other words, such as, bit, bell, beet, fell, and wheat.

Figure 6.5 shows an example of the procedure involved in extracting the phonemes
/¥/, Y/, and [T/ and the syllable ‘eet’ from the word ‘feet’. SoundEdit is used to open and
display the time domain plot of the previously recorded file containing the word ‘feet’. The
sound of each individual phoneme and syllable is associated with its waveform by selecting
a portion of the waveform, i.e., dragging over the waveform using the mouse. The selection
is then played. This association can be done by trial and error, but more educated guesses
can be made by realizing the properties of the component parts. The phoneme /F/ is called
an unvoiced fricative mainly because it sounds like noise, as it is produced by forcing air
through the spacings of one’s teeth. This is in contrast to the vowel phoneme /TY/, which is
a periodic sound, as it is produced by vibrating one’s vocal cords. Indeed, as shown in Fig.
6.5, this contrast is also exhibited in the waveform. Furthermore, because the phoneme /T/
requires that all sound production stop before it can be produced, we expect that the
waveform preceding /T/ to be relatively flat and have constant amplitude near zero volts.
Note in the figure that the periodic sound of /IY/ tapers off to zero volts and stays there for

some time before the waveform for /T/ is produced.
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Fig. 6.5 Waveform of ‘feet’. This figure is a snapshot of a window
produced by SoundEdit.

Once the waveforms of the component parts have been identified, then they may be
played back for vocal shaping purposes. However, more processing may be needed in
order to smooth the boundary conditions so that there is no coarse beginning or ending
sound. This processing may merely involve selecting an appropriate segment. As shown in
Fig. 6.5, the selection of /T/ includes silence on both sides of the actual waveform. The
waveform of this selection is referred to as the diphone of /T/, since the boundary conditions
on either side of /T/ are characterized by steady state regions, i.e., relative silence, Extracting
diphones in this way can be done with all unvoiced stops (/T/, /P/, and /K/) uttered in the

context of words.

More involved processing may be needed for other types of boundary conditions.
For example, extracting /IY/ from Fig. 6.5 may require processing at the beginning of the

sound in order to eliminate the abrupt beginning. This can be done in at least two ways.

The first method involves using amplitude interpolation. More specifically,
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SoundEdit offers an amplitude envelope function which can be used to scale down the

envelope at the beginning of the /IY/ sound, as shown in Fig. 6.6.

After Amplitude Interpolation

<A |
Z] | L R [ ois] @[ o673 0i3]
c(]? Lle“ I 1] i bxd [ 024] «<» [ 0060] 0.00]

Fig. 6.6 Amplitude Interpolation of /IY/.

The second method involves using LPE to postdict a number of samples. As
mentioned above, LPE synthesis software is located on the IBM workstation, and, therefore,
the SoundEdit file of ‘feet’” must be saved in AIFF format, transferred to the IBM
workstation using Apple File Exchange, operated on by LPE software on the IBM
workstation, updated to reflect its file size changes, transferred back to the Macintosh ITsi
workstation, updated to reflect its new file flag information, and, finally, opened, once again,
by SoundEdit. The time required for the entire process depends largely on the number of
samples to be predicted or postdicted by the LPE software, e.g., for a 500 point postdiction,
this requires about 30 min. Fig. 6.7 shows the result of postdicting 500 samples of the

phoneme /IY/ of Fig. 6.6.

- 150 -



— ¢ ———
can gt mm Ty -
W v
" e Ao
L e
Ar=
"By

e Ty I

L)
Z X R o] [_oi3T _0.13]
<I? f_l;éil I 1] baed [ 064] ¢ [ B0 0.00]

Fig. 6.7 Postdiction of phoneme /TY/.

Amplitude interpolation and linear predictive extrapolation, as used in the above two
examples, maintain continuity of the waveform. This is an objective validation of the
methods. Furthermore, they improve the overall sound of the extracted components, while
not altering intelligibility. That the above synthesis methods are subjectively valid is

examined in the following two experiments.

6.2.4  Expansion by Sub-word Splicing

The purpose of the second experiment was to conduct subjective tests on new words
formed by splicing together phonemes and/or syllables extracted from a library of existing
words. The tests consisted of quality assessment and preference. Ten people from the
University of Manitoba, including three electrical technicians and seven students were
chosen to participate. Two of the student participants were currently doing speech related
research, four were from the faculty of Electrical and Computer Engineering, and one was

from the faculty of Business and Administration. Two of the participants were women,
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The existing library consisted of the words, ‘beet’, ‘bell’, ‘fit’, and ‘when’, which
were vocalized and recorded by the author. The synthesis units were phonemes and/or
sequences of phonemes extracted from these words, and they were put together using the
above mentioned synthesis techniques, namely, copy, cut, and paste; amplitude
interpolation; and linear predictive extrapolation. The new words formed along with their

synthesis units were as follows:

JE/ + ‘eet’ = ‘feet’, [F/ + ‘ell’ = “fell’,
/B/ + ‘en’ = ‘Ben’, /W/ + ‘eet’ = ‘wheat’,
TW/ + ‘ell’ = ‘well’, and /B/ + ‘it’ = ‘bit’.

The participants were seated nearby the Macintosh IIsi workstation, and they were
supplied with headphones and response sheets, as shown in Fig. C1, Appendix C. There

were two tests, quality assessment and preference.

In the quality assessment test, the participants listened to two sets of words, one set
was the spliced words, as mentioned above, and the other set consisted of the same words,
the only difference was that these words were naturally formed and also recorded by the
author. The purpose of this second set was to obtain a normalized scale, so that the
responses made by the participants would be judged relative to what they thought was
natural. In both of these tests, the participants were asked to indicate the quality by placing

a mark in the adjoining rectangle, as shown in Fig. Cla and Fig. Clb.

In the preference test, three versions of four words, ‘feet’, ‘fell’, ‘wheat’, and ‘well’
were used. The first version of each word was spliced together using only the copy, cut, and
paste method of synthesis. The second version of each word was a boundary modification

of the first version using amplitude interpolation.
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The third version of each word was a boundary modifications of the first version
using the LPE binding segment method, as described in Chapter II, Section 2.2.4.3. For the
words ‘feet’ and ‘fell’, the binding segment was produced in two steps as follows: 500
points (23 ms) were postdicted from the beginning sounds of the extracted components
‘eet’ and ‘ell’. The postdicted frame was then averaged point by point with 500 samples of
the ending of the phoneme /F/. The resulting segments were inserted between the phoneme

/F/ and the components ‘eet’ and ‘ell’, thus forming the words ‘feet’ and ‘fell’.

For the words ‘wheat’ and ‘well’, the binding segment was produced in three steps
as follows: 500 points (23 ms) were predicted from the ending sound of the semivowel
phoneme /W/. Also, 500 points (23 ms) were postdicted from the beginning sounds of the
extracted components ‘eet’ and ‘ell’. The postdicted frame was then averaged point by
point with the predicted frame. The resulting segments were inserted between the phoneme

/W/ and the components ‘eet’ and ‘ell’, thus forming the words ‘wheat’ and ‘well’.

For example, Fig. 6.8a shows the waveforms after prediction and postdiction of /W/
and ‘eet’, respectively. Figure 6.8b shows the resulting waveform after averaging the
predicted and postdicted frames. Note that after averaging, the waveform of the binding
segment was amplified in order to bring the amplitude to a level comparable to the

waveforms on either side of it.

For the above three versions of the four words, ‘feet’, ‘fell’, ‘wheat’, and ‘well’, the
participants were asked to indicate their preference on response sheets, as shown in Fig.
Clc. The purpose of the preference test was to determine whether amplitude interpolation

or LPE improved the quality of the splice.
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Fig. 6.8b Averaging of prediction of /W/ and postdiction of ‘cet’.

6.2.5  Expansion by Phoneme Splicing

The purpose of the third experiment was to conduct subjective tests on new words
formed by splicing together isolated phonemes from an existing library. The tests consisted

of quality assessment, similarity, and preference. The same ten people participated.
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The existing library consisted of the phonemes, /B/, /F/, /T/, /S/, IW/, K/, 1Y/, [UW/,
/EA/, /IH/, and /EH/. These phonemes were recorded in isolation by the author. These
synthesis units were put together using the above mentioned synthesis techniques, namely,
copy, cut, and paste; amplitude interpolation; and linear predictive extrapolation. The new

words formed along with their synthesis units were as follows:

/Bf + [EA/ + /N/ = ‘Ben’, /B/ + [EH/ + [T/ = ‘bet’,
/B/ + f[UW/ + [T/ = ‘boot’, /K/ + [AE/ + [T/ = ‘cat’,

/H + [TY] + [T/ = ‘feet’, /W/ + [EH/ + [T/ = ‘wet’.
/S/ + TH/ + [T/ = ‘sit’, /B/ + [IY/ + [T/ = ‘beet’, and

{F/ + TH/ + [T/ = *fit’.

The participants were seated nearby the Macintosh 1Isi workstation, and they were
supplied with headphones and response sheets, as shown in Fig. C2, Appendix C. There
were three tests, the first of which was quality assessment, followed by preference, and

finally, similarity.

In the quality assessment test, the participants listened to the set of spliced words, as
mentioned above. From a given list of words, they were asked to indicate the quality on the

sheet of Fig. C2b.

In the preference test, two versions of the four words, ‘Ben’, ‘boot’, ‘cat’, and ‘wet’
were used. The first version of each word was spliced together using the copy, cut, and
paste and amplitude interpolation methods of synthesis. The second version of each word
was a boundary modifications of the first version using the LPE binding segment method,

as implemented in the previous experiment.
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For the words ‘Ben’, ‘boot’, ‘cat’ and ‘wet’, two binding segments were formed
and placed at the boundary between the first and second and second and third phonemes.
The type of binding segment formed depended on the type of phonemes to be joined with
the center vowel phoneme. If the boundary properties of the abutting phonemes were

similar, then a three step method was used.

For the synthesis involving the joining of /B/, /N/, /K/ or /T/ with a vowel phoneme, a
two step procedure was used as follows: 500 points (23 ms) were postdicted and predicted
from the phonemes /E/, /OQ/, and /AE/ (e.g., vowel sounds in ‘Ben’, boot’, and ‘cat’,
respectively). The postdicted and predicted frames were then averaged point by point with
500 samples of either the ending or beginning sounds of /B/, /N/, /K/ or [T/,
correspondingly.

For the synthesis involving the joining of the semivowel /W/ with the vowel
phoneme /E/, a three step procedure was used as follows: 500 points (23 ms) were
predicted from the ending sound of /W/. Also, 500 points (23 ms) were postdicted from
/E/. The postdicted frame was then averaged point by point with the predicted frame. The

resulting segment was inserted between the phonemes /W/ and /E/, thus forming the word

3 b

wet',

For the above two versions of the four words, ‘Ben’, ‘boot’, ‘cat’, and ‘wet’, the
participants were asked to indicate their preference on response sheets, as shown in Fig.
Clc. The purpose of this preference test was to determine whether LPE improved the

quality of the splice.

In the similarity test, for each of the vowel phonemes, /IY/, /U/, /AE/, /E/, [/, /00/,
and /OW, the participants were asked to judge the similarity between a 25 ms sample frame

of a phoneme followed by its 25 ms prediction. They were also asked to judge the
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similarity between the same 25 ms sample frame and its 25 ms postdiction. Participants
were asked to indicate the similarity on sheets as shown in Fig. Cla. The purpose of this

test was to determine the subjective validity of the linear predictive extrapolation method.

6.3 Presentation and Analysis of Results

After the tests were completed, all response sheets were gathered for observation and
analysis. For the quality assessment and the similarity tests, the response rectangles were
quantized into 8 uniform levels, one being the lowest and eight being the highest. The
quantized values were tabulated and averaged over the ten participants. The average values

were then plotted in bar graphs.

6.3.1  Extracted Sub-word Splicing

Figure 6.9 shows the assessment of words formed by concatenating phonemes
and/or sequences of phonemes extracted from an existing library of natural words. The
copy, cut, and paste synthesis method was used. As can be seen in the figure, the spliced
words show a high degree of naturalness, except for, perhaps, the words ‘well’ and ‘wheat’.
The high degree of naturalness is attributed to the type of units employed in the synthesis.
For each of the words, ‘bit’, ‘Ben’, ‘fell’ and ‘feet’, two synthesis units were used, and
they consisted of a consonant phoneme spliced together with a sequence of two phonemes,
the first of which was a vowel phoneme. As such, there existed a great degree of
discontinuity at the boundary of the splice, because of the very different nature of the
abutting phonemes. Recall the natural recording of ‘feet’ in Fig. 6.5, where the

discontinuous boundary also exists between the phonemes /F/ and /TY/.
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Fig. 6.9 Subjective response to word synthesis by extracted phoneme
concatenation.

While the words ‘well’ and ‘wheat’ can be regarded as showing a certain degree of
naturalness, they are singled out, because their naturalness is about 15% lower than the
others. This lower quality is also attributed to the types of units used in the splice. In
particular, the semivowel phoneme /W/ was put together with a sequence of two phonemes,
the first of which was a vowel phoneme. Because the boundary properties of the abutting
phonemes were similar (e.g., compare the waveforms of /W/ with /TY/ in Fig. 6.8b),
achieving a natural sound was more difficult. This problem may be the manifestation of
coarticulation. For example, in the natural vocalization of the word ‘wheat’, the ending of
the phoneme /W/ is influenced by and influences the following beginning of the phoneme
/IY/. Furthermore, that /W/ was taken from the naturally recorded word ‘when’,
complicates the problem further for the spliced word ‘wheat’. This is because /W/ had
been influenced by /E/. As a result, if this type of splice is to sound natural, the influence of
/E/ on /W/ will have to be removed and the interaction between /W/ and /TY/ will have to be
introduced. Or, alternatively, a /W/ uitered in isolation can be used. This reduces the

problem to introducing the interaction.
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6.3.2  Isolated Phoneme Splicing

Figure 6.10 shows the assessment of words formed by concatenating isolated
phonemes using the copy, cut, and paste method. As can be seen in the figure, the
participants indicated that the words sounded more synthetic than natural. In addition to the
coarticulation problem as discussed above, this is attributed to the lack of correct timing,
stress, pitch adjustment, and intonation that is characteristic of phonemes uttered in
isolation. For example, the phoneme /I/ uttered in isolation is typically lower in pitch and
lacks the stress required by the vowel in ‘fit’. Splicing phonemes uttered in isolation is
more difficult than splicing extracted units, as described above, simply because the units are
smaller and more processing, that the vocal tract would otherwise have done, must now be

considered by the synthesizer.

Word

B Quality Measure
| S BN L LA B B B S S

0 10 20 30 40 S50 60 70 80 90 100
Synthetic Quality Natural

Fig. 6.10 Subjective response to word synthesis by isolated phoneme
concatenation.

6.3.3  Similarity

Figure 6.11 shows results of the similarity test. These results show the degree of
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similarity between 25 ms of an original vowel phoneme and 25 ms of the predicted and
postdicted versions. As can be seen, the participants indicated both predictions and
postdictions sounded fairly similar to the originals. It can be argued that the lack of exact
similarity may be because the time, 25 ms, is too short for making a judgement and that the
subjects were forced to make a random decision. If so, this may be a source of
experimental error. Also, it can also be argued that the lack of exact similarity is due to the
assumptions and estimations made by the linear predictive sub-model of speech. In
particular, the all-pole model ignores nasals. Furthermore, the covariance method has been
shown to model periodic speech sounds better than the autocorrelation method. These
arguments are supported by the fact that linear predictive coding, when used as a
compression technique, achieves relatively low quality, as shown in Fig. 2.3. However,
these results, in addition to the results shown in Fig. 6.4, suggest at least that the LPE

software is working.
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Fig. 6.11 Subjective response to 25 ms phoneme prediction and postdiction.

6.3.4 Preference

Table 6.1 shows the results of the preference test for words formed by
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concatenating extracted subunits of existing words, as described in Section 6.3.1. The
purpose of this test was to determine the effectiveness of the boundary modification
methods, namely, amplitude interpolation (version 2) and linear predictive extrapolation
(version 3). Version 1 is formed by the straight forward copy, cut, and paste method. As
can be seen in the table, version 2 (amplitude interpolation) was the preferred choice for
every word. This suggests an incremental improvement over the corresponding words and

their quality ratings of Fig. 6.9, because those observations were made with version 1.

Table 6.1 Preference test for words formed from extracted word subunits.

Word Preference

Version 1 Yersion 2 Version 3
Feet 3 5 2
Fell 2 7 |
Wheat 2 7 1
Well 4 5 1

While version 2 showed the greatest percentage of preference for words formed
from extracted sub-word units, the results shown in Table 6.2 suggest that LPE is better
than amplitude interpolation for boundary modifications of words formed by concatenating
isolated phonemes. In this table version A is formed by using copy, cut, and paste and
amplitude interpolation methods of synthesis. Version B is an LPE modification of

version A,

These results appear to suggest that, for the words that were tested, LPE is more
effective in creating a natural sounding binding segment when the boundary problem is

poor initially.
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Table 6.2 Preference test for words formed from isolated phonemes.

Word

Ben 3 7

Boot 3 7

Cat 4 6

Wet 6 4
6.4 Summary

This chapter describes the apparatus and method, as well as presents and analyzes
the results of three preliminary speech splicing experiments. Two speech splicing
workstations are used. The Macintosh IIsi workstation is used for main processing and
splicing, including speech recording and playback and implementation of the copy, cut, and
paste and amplitude interpolation methods of synthesis. The IBM workstation, the speech
splicing system designed in this thesis, is used for performing the linear predictive
extrapolation synthesis method. File transfer between the Macintosh and the IBM is

explained.

The first experiment shows how to expand an existing library for vocal shaping.
Phonemes and/or sequences of phonemes (comprising syllables) are extracted in order that
they, themselves, may be used for vocal shaping. It is shown how the three methods of
synthesis, namely, copy, cut, and paste; amplitude interpolation; and linear predictive

extrapolation, may be used for this purpose.

The second experiment formed new words by concatenating the waveforms of sub-

word units extracted from existing words. Subjective tests were conducted, and the
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preliminary results indicate up to 80% natural quality. Further tests done on the same new
words with boundary modifications seem to indicate an incremental improvement when

amplitude interpolation is used, at least for the synthesized words of interest.

The third experiment formed new words by concatenating the waveforms of isolated
phonemes. Results of subjective testing indicate poor quality, and this may be attributed to

coarticulation, the lack of correct timing, stress, pitch adjustment, and intonation.

The experiments performed in this chapter are preliminary tests and no significant
exptrapolation of the results is intended. However, for the specific words tested, the
preliminary results appear reasonable and may be good indicators for other similar words.
More formal testing procedures of speech synthesis can be found in [K1lim87] and

[Weir82].
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CHAPTER VII
CONCLUSIONS AND RECOMMENDATIONS

(A summary of what went on before,

A determination or judgement arrived at by reasoning and investigating)

The work described in this thesis was motivated by the need for a computer aided
speech splicing system for vocal shaping. A study of the psychological, theoretical, and
technical aspects of the problem has led to the development of a PC based system for
speech processing (i.e., recording, compressing, editing, splicing, synthesizing, and

playing) and a methodology of splicing speech for vocal shaping.

A study of the psychological aspect has revealed porential advantages of employing
speech synthesis tools in automated vocal shaping systems. Speech synthesis may provide
experimental continuity by target expansibility. The introduction of a new teacher, which
includes a different pronunciation, coarticulation, and intonation, introduces experimental
variables, whose effect may not be fully understood. A desirable synthesis tool is one that
is capable of continuing the experiment in the absence of the original therapist and

expanding the target word library while maintaining similarly sounding features.

However, the familiarity provided by similarly sounding features in new words may
be an important psychological influence in itself. New words or utterances may be learned
more easily if they bear similar and individualistic properties of previously learned targets,
which include targets previously spoken by a therapist and, perhaps, previously learned
utterances of the student. Furthermore, words may be learned more easily by individually
shaping the component parts. But the component parts must be exemplified as they are
pronounced in the context of the word. And they must be pronounced identically many
times in succession. A desirable synthesis tool is one that is capable of extracting
component parts consistently and identically as they sound in the context of a previously
recorded word and concatenating a sequence of component parts in order to form new

words or utterances.
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A study of the theoretical aspect has determined optimal speech synthesis
techniques, tools, and units for vocal shaping. Because digital waveform techniques
provide the best quality in the speech coding spectrum, and because waveform recordings
preserve all of the individualistic properties of a person's speech, such as pitch, stress,
intonation, and inflection, this supports their use in a vocal shaping environment. Moreover,
the storing of a direct waveform representation of speech facilitates the extraction of

component parts, along with contextual information, which is embedded in the waveform.

The optimal synthesis unit depends on the application. For small vocabulary
systems, such as vocal shaping, the synthesis units are component parts extracted from
digitally recorded words or utterances. These component parts include phonemes,
diphones, and/or sequences thereof, such as those comprising entire syllables. New words
are formed by concatenating the waveforms of these units. For large vocabulary systems,
which also include vocal shaping, the synthesis units are isolated phonemes. Forming new
words by concatenating the waveforms of isolated phonemes is difficult because of
coarticulation and the lack of correct timing, stress, pitch adjustment, and intonation that is

characteristic of phonemes uttered in isolation,

Three synthesis tools supportive of waveform concatenation are copy, cut, and
paste; amplitude interpolation; and linear predictive extrapolation. Copy, cut, and paste
facilitates electronic editing of digitally recorded speech, while amplitude interpolation and
linear predictive extrapolation are used to modify the boundary properties between synthesis

units.

A study of the technical aspect has led to the development of a speech processing
system built around a PC AT. The system consists of a dedicated ADPCM speech

processor chip (MPU interface version), dual-pointer FIFO buffer, and PC AT host
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computer. The use of ADPCM for encoding and decoding speech data is supported by the
fact that ADPCM is a waveform technique and that it reduces the cost of transmission by a
ratio of 2:1, while maintaining good toll quality. The FIFQ buffer is included in order to
provide portability, isolation, and realization of real-time disk capture and playing of
ADPCM speech data. A 6802 [UP controls the speech processor and FIFO buffer, and each
of theses three devices are located on an external board which, in turn, is serially interfaced
to the host computer. Most of the required speech processing for vocal shaping is
implemented on the host computer through menu driven software. This software is capable
of visually associating the waveform of speech with its sound, so that individual components

may be isolated, played, duplicated, extracted, inserted, and modified (LPE).

Preliminary subjective tests were conducted in order to determine the effectiveness
of the synthesis techniques, tools, and methodology for vocal shaping. Because of the
unwillingness of the manufacturer (Oki) to disclose proprietary information about their
ADPCM algorithm, some of the speech processing capabilities of the PC AT workstation
could not be used. Instead a Macintosh IIsi speech processing workstation was used in
these experiments. Nevertheless, these experiments consisted of expansion by extraction,

expansion by sub-word splicing, and expansion by isolated phoneme concatenation.

Preliminary results show that new words formed by sub-word splicing (up to 80%
natural quality) sounded much better than words formed by phoneme concatenation (high
30% quality). These results support the knowledge that a limited number of mono-syllabic
natural sounding words can be formed by putting together extracted syllables (characterized
by steady state conditions existing at both boundaries) with extracted stop consonant
diphones. This result is not surprising, because the concatenation of these two types of
synthesis units requires no significant consideration of coarticulation. The probable reason
why these words did not achieve higher ratings is because of the ‘allophonic’ nature of the
syllables and diphones. Much in the same way as a word sounds strange when a certain
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phoneme is replaced by one of its other allophones (refer to Chapter II, Section 2.1.1.1),
these words may have sounded strange because the stress, intonation, and inflection of the
synthesis units were intended for the words from which they were extracted and not

necessarily for the newly spliced word, which generally require different prosody.

Other preliminary results show that amplitude envelope interpolation improved the
quality of the resulting word when the boundary properties of two sub-word units were
modified. These preliminary results support the use of amplitude interpolation for finely
adjusting the boundary properties and supplementing the coarse splicing of copy, cut, and
paste for the specific words used in the test. Furthermore, this method supports sub-word

extraction, so that the extracted sub-word, alone, can be used for vocal shaping.
The tests conducted on LPE of vowels show preliminarily promising resuits. The

predicted and postdicted frames exhibited a 60% average likeness with their original sample

frame.
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This thesis has contributed to the general and technical knowledge through the

following advances:

(1) Motivational grounds for using speech synthesis tools for automated vocal

shaping systems.

(2) Optimal speech synthesis techniques, units, and tools for vocal shaping.

(3) A model of waveform concatenation using linear predictive extrapolation.

(4) Hardware and software design and implementation of a speech processing

systemon a PC AT.

¢ Implementation of a dual-pointer FIFO buffer consisting of a 6802 yP,
expandable SRAMs, and dual-port I/O (serial and parallel).

¢ Paper design of a swinging buffer (hardware implementation).

¢ Implementation of serial communications at 115.2 kbps between an 80286
uP (within PC AT) and a 6802 pP (FIFO controller) through RS-232C
interface.

¢ Menu driven software on host computer (PC AT) including disk capture
and playing of ADPCM speech data, serial port initialization, time domain plot
of PCM data, selection (through mouse) of any portion of speech data within a
file for playing, cutting, copying, pasting, extrapolating, and averaging. Any
size file may be processed since this software uses the hard disk as virtual

RAM.

(5) Speech splicing methodology for vocal shaping including the use of the tools
copy, cut, and paste; amplitude interpolation; and linear predictive extrapolation,
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Recommendations for future work are as follows:

(1)  Other fuse functions for the LPE binding segment model of coarticulation can
be investigated (suggestion: use fuzzy logic to determine the contributions of

abutting phonemes to the binding segment).

(2) Software for modifying pitch, stress, intonation, and inflection of isolated

phonemes can be developed (suggestion: use digital filtering and equalization).

(3) Instead of using a dedicated ADPCM chip (along with the unavailable
proprietary information), a straight forward PCM chip should be used for speech
digitization. This can be done by multiplexing different speech digitizing chips on
the existing board and writing the controller software (6802 WP instruction set) for
each chip. The controller would select a certain speech digitizer and execute the
corresponding program. Note that this is possible due to the modular design of the
existing board. In particular, the current speech chip (MSM6258 ADPCM) is
viewed as an external device and, as such, it is interfaced to the controller through a
PIA on an external data bus. Because the 6258 can be placed in high impedance,
this makes it possible to connect other three state speech digitizers to the external
bus. With this configuration any compatible speech compression technique can be

implemented through software.
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APPENDIX A: SOFTWARE LISTING

A.0 Introduction

This appendix describes and lists the source code of the Memory Manager and Host computer.
A1 Memory Manager Software

This section describes and lists the Memory Manager software. It is written in 6802 assembly
language. The following source code is augmented with detailed comments. Only the comments appearing

inline with the code or prefixed with a "*" are assembable. In other words, to assemble the following code,
remove the comments appearing in paragraph form.

A.1.L1  Main
ACIA_IO_Reg equ $1D01
ACIA_CR_Stat equ $1D00
PIA_PortA_Reg equ $1E00
PIA_DDRA equ S1E0O
PIA_CRA equ $1E01
PIA_PoriB_Reg equ $1E02
PIA_DDRB equ $1E02
PIA_CRB equ $1E03
CR equ 50D
LF equ $0A
BuffC_Addr equ $6000
BuffB_Addr equ $4000
BuffA_Addr equ $2000
org $ER00
Read Pir rmb 2
Write_Pir rmb 2
ris_Status rmb 1
Seconds rmb 1
StartPgm sei *Interrupt mask bit is set to temporarily
*disable all interrupts.
Ids #127 *The stack pointer is loaded with the
*starting address of the stack. Stack
*Erows downward.
jsr Variablclnit *Initialize several system variables.
jsr PIAInit *Initialize the parallel port PIA,
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DoRecord

DoPlayback

jsr
jsr
cmpa
cmpa
cmpa
cmpa

cmpa

Isra
siaa
jmp
jmp

ACIAInit
GetCommand
#302

DoRecord
#304
DoRecord
#3510
DoRecord
#$20
DoRecord
#3AA
DoPlayback
StartPgm

Seconds
Record
Playback

— A2 -

*Initialize the serial port ACIA.
*Get a command from  Host.
*GetCommand returned a Host issued
*command in accumulator A.

0216 = record 2 seconds.
*0416 = record 4 seconds.
1016 = record 16 seconds.
*201 = record 32 seconds.

*AA1g = code for playback command.




A.1.2 Record
The following group of code is the record routine, and it consist of five segments, command
acknowledge, initialization subroutines, transmit speech data in the foreground, record speech data in the

background, and stop record and empty buffer.

Segment One: Command Acknowledge

Record Idaa #$55 *B6=1 sets RTSB=1, and this informs
staa ACIA_CR_Stat *the Host that the Slave received a wvalid
*command.
WaitForAck Idaa ACIA_CR_Stat *Wait for Host acknowledge
anda #308 *B3=0 means Host is still trying to send
*3 command,
beq WaitForAck *B3=1 means acknowledge.

Segment Two: Intitialization Subroutines

jsr InstaliRecAddr *Install record interrupt routine address.
jsr RecordlInit *Initialize the speech chip for record.

Segment Three: Transmit Foreground

The following segment of code is the transmit foreground routine. In this routine the controller
continually transmits speech data to the Host via the serial interface. Speech data transmitted in this way is
read from the buffer at location pointed to by Read_Ptr. While executing this routine, the controller is
interrupted every 250 sec by the speech chip. This causes the controller to execute a background routine,
during which speech data is read from the speech chip and written to the buffer. Since the process of
transmiting the buffer is about twice as fast as writing the buffer, at some time the buffer becomes empty.
The controller checks for equality of the pointers, i.e., Read_Pir = Write_Ptr. If true, the buffer is empty
and transmitting is temporarily suspended, until the pointers are no longer equal, which becomes true after
the speech chip interrupts the foreground, and a byte is read from the speech chip and written to the buffer,

SendData chi *Enable the 6802 to respond to an
*interrupt.  Interrupts are requested by
*the speech chip.
ReqToSend Idaa #315 *B6=0 reseis RTSB=1, and this informs
staa ACIA_CR_Stat *the Host that the Slave is requesting to
*send.

— A3 —



WaitForCTS0

TxDNotEmpty

Wait0

ResetReadPirRec

Idaa

bne

rora
o

Idx

cpx

staa

inx
Stx

cpx

jmp

ldx

SIx

jmp

ACIA_CR_Stat
#$08
WaitForCTS0

ACIA_CR_Stat

TxDNotEmpty
Read_Pir
Write_Ptr

Wail0

0,X
ACIA_IO Reg

Read_Pir

#BuflC_Addr

ResetReadPirRec

WaitForCTS0

#BuffA_Addr

Read Pir

WaitForCTS0

- Ad —

*Determine whether Host is ready to
*receive speech data. Wait until ready.
*B3=1 indicates negative, i.c., No,

*B3=0 indicates positive, i.e., Yes.

*Check the Transmit Data Register
*Empty (TDRE) bit. Rotate TDRE inio
*carry bit of condition code register.
*C=0 indicates TxD is not ecmpty.

*Read_Pir points to next byte in buffer.

*Check whether the buffer is empty.
*Buffer is empty if there arc no data to
*read, i.c., if Read_Ptr = Write_Ptr.

*Read byte at location pointed to by
*Read_Ptr and transmit to Host.

*Read_Ptr points to the next data byte.
*Store Read_Ptr in anticipation for next

*transmission.

Write_Ptr s
*pointing to the last location + 1.

*Determine whether
*If true, initialize Write_Ptr to point to
*the first location of the FIFO buffer.

*Continue receiving data from the Host.

*Write_Ptr now point to location
%2000, 4, which is the starting address
*of SRAMI1, and the virtual start of the
FIFO buffer.
current  write  location.

*circular
*Save

*Continue receiving data from the Host.



Segment Four: Record Background

The following segment of code is the record interrupt routine, which is processed in the background.
This routine is executed each time the speech processor indicates that the next byte of ADPCM data is ready
for reading. The interrupt signal is generated every 250 psec on control line CAl, which is input to the
PIA. The PIA relays this interrupt signal to the uP via the IRQ line., The starting address, i.e.,
IRQRecS1art, is loaded into emulator RAM at location fif8;¢ to fif91¢ during record initialization
subroutines. IRQRecStart reads a byte of speech data from the speech chip and writes the byte to the FIFO
buffer at location pointed to by Write Ptr. This routine also checks for the stop condition by decrementing
the seconds count by one each time an 8K buffer becomes full of speech data.

IRQRecStart Idx
Ilaa

jsr

Idab

stab

staa

staa

inx
cpx

CheckRollOver cpx

stx

DecSeconds

g8

Write_Pir
#$10

Delay

#$85

PIA_PortB_Reg

PIA_PortA_Reg
0,X

#3587

PIA_PortB_Reg

#BullB_Addr

DecSeconds

#BuffC_Addr
ResetWritePirRec

Write_Pir

PIA_PortA_Reg

Seconds
StopRecord

— A5 —

*Load the Write_Pir with the next
*available and empty location.
*This delay is incorporated in order to
*find the subjectively optimum time to
*read from the speech chip.
*B7=1 and B6=0 wused by BRG.
¥B3=0 enables the speech chip.
*B2=1 selects the data mode.
*B1=0 puts the read line (RD) low.
*B0=1 disables write operation.
*Read a byte from the speech chip.
*Store byte in buffer at location pointed
*to by Write_Ptr,

*Bl=1 puts the read line (RD) high.

*Point to the next empty location.
*Determine whether Write_Ptr is
*pointing to starting address of BufferB.
*If so, decrement seconds counter.

*Determine  whether Write_Ptr  is
*pointing to the last location + 1.

*Store pointer for next interrupt.
*Clear the interrupt flag of the PIA,
*Return to foreground processing.

*8K of SRAM = 2 sec of speech.
%



ResctWritcPurRec

Segment Five:

ldx

stx

ke
beg
Idaa

rii

CheckRollOver

#BuffA_Addr

Wrile_Pir

Seconds
StopRecord
PIA_PortA_Reg

Stop Record and Empty Buffer

*Write_Ptr now point to the virtual start

*of the circular FIFO buffer, i.e.,
*2000 ¢, the starting address of
*SRAMI.

*Clear the interrupt flag of the PIA.
*Return to foreground processing.

The following segment of code stops the record mode of the speech chip and transmits the remaining
speech data from the buffer to the Host. The empty part of this code is required because, after the record
time has elapsed, there may be some speech data in the buffer not yet transmitted to the Host.

StopRecord

WaitForCTS1

TxDNotEmpty1

Finished

jst

Idaa
anda
bne

rora
ora

ldx

staa
inx

cpx

cpx
bne

Stop

ACIA_CR_Stat
#3808
WaitForCTS1

ACIA_CR_Stat

TxDNotEmptyl

Read_Pir
0,X
ACIA_IO_REG

#BuffB_Addr
Finished
#BullC_Addr
WaitForCTS1

#3855

— A6 —

*Determine whether Host is ready to

*receive speech data. Wait until ready.

*B3=1 indicates negative, i.e., No.
*B3=0 indicates positive, i.e., Yes.
*Check the Transmit Data Register

*Empty (TDRE) bit. Rotate TDRE into
*carry bit of condition code register.
*C=0 TxD is not

indicates empty.

*Read byte from buffer pointed to by

*Read_Ptr and transmit to Host.
L

*Is the Buffer empty yet?

*If yes, goto Finished
*1s the Buffer
*If not transmitting buffer,

routine.

empty yet?

continue

*RTSB=1 informs the Host that the



staa ACIA_CR_STAT *slave is finished recording.
jmp StartPgm *Jump to the start of the program.

Note that because this branch is part of the interrupt routine, the context of the machine prior to
execution of the interrupt routine is still located on the stack and the stack pointer is pointing to the next
available location. However, this does not present a problem, since the controller jumps to the start of the
program where the system is initialized. In particular, the stack pointer is reset to the starting of the stack,
i.e., location 127. Therefore, the current contents of the stack are discarded.
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A.1.3 Playback Routine
The following group of code is the playback routine, and it consist of four segments, command
acknowledge, initialization subroutines, receive speech data in the foreground, and playback speech data in

the background.

Segment One: Command Acknowledge

Playback idaa #3$55 *B6=1 sects RTSB=1, and this informs
staa ACIA_CR_Stat *the Host that the Slave received a valid
*command.
WaitForAckl Idaa ACIA_CR_Stat *Wait for Host acknowledge
anda #308 *B3=0 means Host is still trying to send
*a command.
beq WailForAckl *B3=1 ‘means acknowledge.

Segment Two: Intitialization Subroutines

st FillQueue *Get 256 bytes of speech data.
jsr InstallPlayAddr *Install play interrupt routine address.
jsr PlayBackInit *Initialize the speech chip for playback.

Segment Three: Receive Foreground

The following segment of code is the foreground routine. In this routine the controller continually
receives speech data from the Host via the serial interface. Speech data received in this way is stored in the
buffer at location pointed to by Write_Ptr. While executing this routine, the controller is interrupted every
250 psec by the speech chip. This causes the controller to execute a background routine, during which one
byte of speech data is read from the buffer and written to the speech chip. Since the process of loading the
buffer is about twice as fast as reading the buffer, at some time the buffer becomes full. The controiler
checks for equality of the pointers, i.e., Write_Ptr = Read_Ptr. If true, the buffer is full and lcading is
temporarily suspended, until the pointers are no longer equal, which becomes true after the speech chip
subsequently interrupts the foreground and a byte is read from the buffer.

FetchData cli *Enable the 6802 to respond to an
*interrupt.  Interrupts are requested by

*the speech chip.
WaitForHost1 Idaa ACIA_CR_Stat *Determine whether Host is
anda #$08 *requesting to send speech data.
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Waitl

LoadBuffer

RxDEmpty0

ResetWritePtrPlay

bne

ldx

cpx

bne

I1dab
stab
stab

jmp

Staa

staa

TO1a

EEE

inx
six

cpx

jmp

WaitForHost1

Write_Pir
Read_Pir

LoadBuffer

#$55
ACIA_CR_Stat
rts_Status

Waitl

#3815

ACIA_CR_Stat

rts_Status

ACIA_CR_Stat

RxDEmpty0

ACIA_IO_Reg

0,x

Write_Pir

#BuffC_Addr

ResetWritePurPlay

Waitl

#BuffA_Addr

*B3=1 indicates negative, i.e., No.
*B3=0 indicates positive, i.e., Yes.

*Load x with the next available location
*in the buffer.

“Determine whether the buffer is full. If
*irue, temporarily suspend receiving
*data from Host.

*B6=1 sets RTSB=1 and this informs
*the Host not to send data.
*Preserve the current state of RTSB
*The current state is used by the
*interrupt routine.

*Temporarily suspend loading buffer
*until Write_Ptr # Read_Pir.

*Host is requesting to send and the
*buffer is not full.
*Host clearance to send.
*RTSB=0),

*Preserve the current state of RTSB.

Therefore, give the
B6=0 rescis

*Determine whether the ACIA receive
{(RxD) is full.
*C=0 indicates RxD is currently empty.

*data register

*Receive data from the Host.
*Store data at the location pointed to by
*Write_Ptr.

*Point to the next available location.
location,

*Save current write

*Determine whether Write_Ptr is
*pointing to the last location + 1,
*If true, initialize Write Ptr to point to

*the first location of the FIFO buffer.
*Continue receiving data from the Host.

*Write_Ptr now points to location
*20001¢, which is the starting address



*of SRAMI1, and the virtual start of the

#*circular FIFO buffer.
stx Write_Pir *Save current write location.
jmp Waitl *Continue receiving data from the Host.

Segment Four: Playback Background

The following group of codg is the playback interrupt routine, which is processed in the background.
This routine is executed each time the speech processor is ready for the next byte of ADPCM data. The
interrupt signal is generated every 250 psec on control line CA1, which is input to the PIA. The PIA
relays this interrupt signal to the pP via the IRQ line. The starting address, i.e., IRQPlayStart, is loaded
into emulator RAM at location fff8,¢ to fff91¢ during playback initialization subroutine. This routine
reads a byte of speech data from the FIFO buffer pointed to by Read_Ptr and writes this byle to the speech
chip. This routine also checks for the buffer empty condition, which is implied by the condition when the
Read_Ptr points to the same location as the Write_Ptr. If empty condition is true, the controller branches
to the stop routine and playback is stopped.

IRQPlayStart Idaa #355 *(2)B6=1 sets RTSB=1 in order to
*inform the Host not to send because the
*Slave is busy servicing the speech

staa ACIA_CR_Stat *(S)chip.

ReadBuffer Idx Read_Pu *(5)Load the Read_Pir with the location

*containing the next ADPCM  byte.

Idaa 0,X *{5)Read byte pointed to by Read_Ptr.
staa PIA_PortA_Reg *(5)Place byte on speech chip data bus.
idab #$86 *(2)
stab PIA_Por{B_Reg *(5)B0=0 write line (WR} Ilow.
Idaa #387 *(2)B0=1 write line (WR) high, and this
staa PIA_PortB_Reg *(5)writes speech data to speech chip.

Finish current instruction time: 5 psec.

Interrupt enirance time: 13 psec.

Read and write time: 2+5+5+5+5+2+5+2+5=36 psec.

Total time required before speech data is actually written to speech chip: 54 ysec.
inx *Point to next ADPCM  byte.
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ResetReadPuPlay

StopPlayback

cpx

cpx

stx

staa

Six

ldaa x
staa

Write_Ptr
StopPlayback

#BuffC_Addr

ResetReadPurPlay

Read_Pir

rts_Status

ACIA_CR_ Stat
PIA_PortA_Reg

#BuffA_Addr

Read_Pir

1ts_Status
ACIA_CR_Stat
PIA_PortA_Reg

Stop
StartPgm

*Determine whether buffer is empty.
*I1f true, terminate playback routine,

Read_Pir is

*pointing to the last location + 1.

*PDetermine whether
*If true, initialize Read_Pir to point to
*the first location of the FIFQO buffer.

*Store Read_Ptr in anticipation of the

*next interrupt routine
*Return to foreground with the state of
*RTSB prior
*interrupt routine,
*The data register (Port A) of the PIA

*side that is used to interrupt the pP

to execution of the

*must be read in order to reset the
*interrupt flag of the PIA,

*Read_Pir now points to the virtual start

*of the circular FIFO buffer, i.e.,
*2000;¢, the starting address of
*SRAML.

*This is the same return code as above.
*[t is repeated in this way in order to
*save time.

*ReTum from Interrupt (RTI).

*Jump to the start of the program.

Note that because this branch is part of the interrupt routine, the coniext of the maching prior to
execation of the interrupt routine is still located on the stack and the stack pointer is pointing to the next
available location. However, this does not present a problem, since the controller jumps to the start of the
program where the system is initialized. In particular, the stack pointer is reset to the starting of the stack,
i.e., location 127. Thercfore, the current contents of the stack are discarded.
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A.1.4 Subroutines

A.l.4.1

FillQueue

This subroutine fills the playback buffer with 256 bytes of speech data. The Host transmits these
data via the RS-232C interface, and the controller reads these data through the ACIA. This subroutine is
called by the playback routine. Filling the qucue with 256 bytes requires about 25 msec, and this is

perceptually unnoticed.

FillQueue
WaitForHost

ReceiveMore

RxDRegEmpty

ReadByte

QueueFull

nep
ldaa
anda
bne

staa

rora

Idab
stab

ldx
staa
inx

SEX

cpx
bne

stab

ACIA_CR_Stat
#3508
WaitForHost

#3515
ACIA_CR_Stat

ACIA_CR_Stat

RxDRegEmpty

#$55

ACIA_CR_Stat

ACIA 10 Reg

Write_Par

0.X

Write_Pur

#$2100
ReceiveMore

rts_Status

*Check if Host is requesting to send.
*B3=1 means Host is not requesting to
*send, B3 = 0 means Host is rts.

*QGiven that the Host is requesting to send, the
*Slave now gives the Host clearance to send.

*Determine the state of the Receive Data
*Register (RxD). Rotate B0 inio carry,
*B0=1 means RxD is full.

*Having received a byte, the Slave
*acknowledges this by setting RTSB=1,
*informing the Host not to send.

*Read the byte from ACIA register.
*Load x with the address of the next
*available location within the FIF(.
*Store the byte at this location.
*Increment the write pointer, and store
*it in anticipation of the next byte.

*Check if done receiving 256 bytes.
*If not, get some more

*The status of RTSB is saved in anticipation of
*the next routine, which may be interrupted
*pefore it can itself define and save the state of
*RTSB.The queue is full and contains 256 bytes
*of speech data.

*Execute return from subroutine,
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A.1.4.2  PlayBacklnit

This subroutine initializes the speech chip for playback, The PIA is first set up to write the
playback command to the speech chip. Next the playback command is written. And finally, the PIA is

configured to enable interrupts via positive edge CAl.

PlayBackInit clra
staa
staa
Maa
Staa

siaa

staa
Staa

staa

staa

Idaa
siaa

staa

ris

PIA_CRA
PIA_CRB
#3FF
PIA_DDRB

PIA_DDRA

#$04
PIA_CRA
PIA_CRB

#3502

PIA_PortA_Reg

#382
PIA_PortB_Reg

#$87
PIA_PortB_Reg

#307
PIA_CRA

*Reset Control Register A (CRA)
*Reset  Control Register B (CRB)
*Configure all 8 bits of both Port A and
*Port B as output data registers. B0 to
*B3 of Port B are used supply the
*control signals (WR, RD, D/C, and
*CS, respectively) to the speech chip.
*Port A is used to write commands and
*speech data to the speech chip.
*B2=1 Selects Port A data register
*Disable interrupts via CAl and CA2.
*B2=1 Selects Port B data register.
*Disable interrupts via CB1 and CB2.

*02,6 = code for playback command.
*Place playback command on data bus.

*B7=1 and B6=0 used by BRG.
*CS=B3=0 Enables speech chip.
*D/C=B2=0 spccifies command input.
*RD=B1=1 disables read operation.
*WR=B0=0 enables write operation.
*D/C=B3=1 specifies data I/O.
*WR=B0=1 toggles WR, and command
*is latched into the speech chip.

*B2=1 Selects Port A data register.
*Bi=1 Bl=0 defines CAl active
*iransition as low to high, B0=1
*enables interrupts via active transitions

*of CAl. Return to calling program.
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A.1.4.3 RecordInit

This subroutine initializes the speech chip for record. The PIA is configured to communicate with

the speech chip in the record mode, and the record command is written to the speech chip. The PIA is first

set up to write the record command to the speech chip. Next the record command is written. And finally,

the PIA is configured to enable interrupts via negative edge CAl.

RecordInit cira
staa
staa
Idaa
staa

staa

staa
staa

staa

staa

Idaa
staa

clra
staa
staa

staa

Its

PIA_CRA
PIA_CRB
#$FF
PIA_DDRB

PIA_DDRA

#3504
PIA_CRA
PIA_CRB

#3504
PIA_PortA_Reg

#3$82
PIA_PortB_Reg

#3$87
PIA_PortB_Reg

PIA_CRA
PIA_DDRA
#8505
PIA_CRA

*Reset Control Register A (CRA)
*Reset Control Register B (CRB)
*Configure all 8 bits of both Port A and
*Port B as output data registers. BO to
*B3 of Port B are used to supply the
*control signals (WR, RD, D/C, and
*CS, respectively) to the speech chip.
*Port A is used to write commands and
*speech data to the speech chip.
*B2=1 Selects Port A data register.
*Disable interrupts via CAl and CAZ2.
*Disable interrupts via CB1 and CB2.

*0416 = code for record command.
*Place record command on data bus.

*B7=1 and B6=0 used by BRG.
*CS=B3=0 Enables speech chip.
*D/C=B2=0 specifies command input.
*RD=B1=1 disables read operation.
*WR=B0=0 enables write operation.
*D/C=B3=1 specifies data I/O.
*WR=B0=1 toggles WR, and command
*js latched into the speech chip.

*Configure all 8 bits of Port A as input.

*

*

*B2=1 selects Port A data register.
*B1=0 defines CAl active edge as
*high to low or negative edge.
*ReTurn form Subroutine (RTS).

~ Al4 -



A.1.4.4

ACIAInit

This subroutine initializes the ACIA. The data format is selected as follows: 115.2kbps, 8, N, 1.
The receiver and transmitter interrupts are disabled. RTSB is set to logic 1.

ACIAInit

ldaa
staa
ldaa
jsr

Idaa

siaa
1daa

staa

#43
ACIA_CR_Stat
#$10

Delay

#$80

PIA_PortB_Reg
#$55

ACIA_CR_Stat

¥Master reset the ACIA and define the
*state of RTSB=1, inactive,
*Delay in order to allow ACIA reset,
*Not really required, but good idea.
*B7 and B6 are connected to the inputs
*of the Bit Rate  Generator
*(BRG). B7=1 and B6=0 select the
*multiply by 16 function. The ACIA
*RxCLK and TxCLK are fed by pin 17
*of the BRG. A 1.8432 MHz clock is
*output from this pin, since the BRG is
*selected to multiply by 16 and pin 17
*selects the 115.2 kHz clock,
*i.e., (16)115.2 = 1.8432 MHz.
*Data format configuration: 115.2 kbps,
*8 bits, no parity, and 1 stop bit.
*Disable interrrupts and RTSB=1,
¥ReTurn from Subroutine (RTS).
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A.1.4.5 PIAlInit

This subroutine initializes the PIA. Port A is used to supply the speech chip with the control
signals, CS, D/C, RD, and WR. Port B is used to communicate commands, status, and speech data with
the speech chip. The PIA control line CAl is used by the speech chip in order to interrupt the uP.
However, interrupts are disabled until the actval record or playback routine is executed, where the active edge

of CAl is known,

PiAlnit

clra
staa

staa

staa
staa

staa

ris

PIA_CRA
PIA_CRB

#3fF

PIA_DDRA
PIA_DDRB
#304

PIA CRA
PIA_CRB

#38f
PIA_PortB_Reg

*Access PIA A data direction register.
*Access PIA B data direction register,

*Port A configured for output.
*Port B configured for output.
*Access data register of Port B.
*Disable interrupts via CAl and CAZ,
*Disable interrupts via CB1 and CB2.
*B7=1 & B6=0 used by BRG.
*B0=WR=1 disables Write operation.
*B1=RD=1 disables Read operation.
*B2=D/C=1 selects data mode.
*B3=CS=1 disables speech data bus.
*ReTurn from  Subroutine (RTS).
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A.14.6 Miscllaneaous

Subroutine VariableInit

This subroutine initializes several system variables.

VariableInit clra
staa rts_Status *Stores the status of RTSB.
Idx #BuffA_Addr *Initialize the read and write pointers to
*point at the same location, i.e., 200044,
stx Read Pir *which is the starting Icoation of
stx Write_Pir *SRAMI.
1ts *ReTurn from Subroutine (RTS).

Subroutine InstallPlayAddr

This subroutine installs the address of the interrupt routine for playback. The address IRQPlayStart
is loaded into emulator RAM at location fff8 4 to fff94. Normally, when the software has been debugged
and developed, the system firmware, including the interrupt addresses, is burnt into EPROM and cannat be
changed by software. However, while debugging and developing the code, the interrupt address is loaded
into emulator RAM, which is the emulator's version of system ROM, In this way, all system software,
including reset address, nonmaskable interrupt address, interrupt address, etc. can be easily modified.

InstallPlayAddr ldx #IRQPlayStart *IRQPlayStart is a 16 bit address.
stx $FFF8 *High order 8 bits loaded at fff8;¢.

*Low order 8 bits loaded at fff9;¢.

ris *ReTurn from Subroutine (RTS).

Subroutine InstaliRecAddr

This subroutine installs the address of the interrupt routine for record. The address IRQRecStart is
loaded into emulator RAM at location fff814 to fff91¢.

InstaliRecAddr Idx #IRQRecStart *IRQRecStart is a 16 bit address.
six SFFF8 *High order 8 bits loaded at fff8;¢.

*Low order 8 bits loaded at fff9;¢.

Tis *ReTurn from Subroutine (RTS).
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Subroutine Delay

This subroutine provides a time delay. The routine expects the number of times to loop to be
contained in accumulator A. One pass through the loop requires 6 psec.

Delay deca *Accumulator A - 1.
bne Delay *Loop until accumulator A is zero.
1is *ReTurn  from  Subroutine (RTS).

Subroutine GetCommand

This subroutine reccives a command that is sent by the Host computer. GetCommand returns to the
calling program with the command code in accumulator A,

GetCommand nop
WaiTForRTS0O Idaa ACIA_CR_Stat *Wait until Host indicates a request to
anda #3508 *send.

*B3=0 indicates request to scnd (RTS).
bne WaiTForRTS0 *B3i=1 indicates no request,
ldaa #$15 *Give the Host clearance to send.
staa ACIA_CR_Stat *Bo=0 resets RTSB=0.

RxDNotFull Idaa ACIA_CR_Stat *Test the received data register full
rora *(RDRF) bit. Rotate RDRF into carry
bee RxDNotFull *C=0 indicates RxD not full.
Idaa ACIA_IO_Reg *Read byte received form Host.
TS *ReTurn  from  Subroutine (RTS).
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A.14.7 Stop

This routine stops the current process of the speech chip. The PIA is configured in order that a stop
command be writien to the speech chip. Either record or playback is stopped, and the speech chip data bus

is placed on high impedance.

Stop clra
staa
staa
idaa
staa

staa

staa

staa

staa
ldaa
saa

g

PIA_CRA
PIA_CRB
#$FF
PIA_DDRB

PIA_DDRA

#$04
PIA_CRA

PIA_CRB

#301
PIA_PortA_Reg
#$82
PIA_PoriB_Reg

#383
PIA PortB_Reg

#38f
PIA_PortB_Reg

PIA_PortA_Reg
PIA_PortB_Reg

*Reset Control Register A (CRA)
*Reset Control Register B (CRB)
*Configure all 8 bits of both Port A and
*Port B as output data registers. BO to
*B3 of Port B are used to supply the
*control signals (WR, RD, D/C, and
*CS, respectively) to the speech chip
*Port A is used to write commands and
*speech data to the speech chip.
*B2=1 Selects Port A data register.
*B0=0 disables interrupts via active
*transition of CAI and CA2.
*B0=0 disables interrupts via active
*transition of CB1 and CB2.

*O0lq1g is the code for stop command.
*Place stop command on data bus.
*B7=1 and B6=0 used by BRG.
*CS=B3=(0 enables speech chip.
*D/C=B2=0 specifies command input.
*RD=Bi=1 disables read operation.
*WR=B0=0 enables write operation.
*

*WR=B0=1 toggles WR, and command
*ijs latched into the speech chip.
*C8=B3=1 disables speech chip.

%

*Dummy reads of Port A and Port B.

*Assembler dircctive indicating the end
*of code.
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A.2 Host Software

This section describes and lists the Host computer software. It is written in 8086 assembly language
and Microsoft Quick C high level language. The following source code is augmented with detailed
comments. Compileable code is contained within horizontal line separators. Compileable comments are
contained within delimiters as follows: /* Comment *f,

A.2.1 Main

#include <conio.h>

#include <string.h>

#include <graph.h>

#include <stdio.h>

#include <stddef.h>

#include <ctype.h>

#include <bios.h>

#include <menu,h>

#include <fprotype.h>

#include <stdlib.h>

/* Default menu attribute. The default works for color or B&W. You can override the default value by
defining your own MENU variable and assigning it to mnuAtrib, or you can modify specific fields at run
time. For example, you could use a different attribute for color than for black and white. */

struct MENU mnuAtrib =

{
_TBLACK, _-TBLACK, TWHITE, TBRIGHTWHITE, TBRIGHTWHITE, _TWHITE,
_TWHITE, _TBLACK, _TWHITE, _TBLACK, FALSE,
2, YL R

struct ITEM aliem}] =
{
f* Highlight Char Pos *f

2," File", /* Q 2 *
0, "Display", /* C 0 *f
0, "Splice", /* R 0 */
0, "Library", /% T 0 *f
0, "Assemble", f* S 0 */
0, NULL

IH
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/* MAIN PROGRAM
void main()
{
unsigned uKey; /* Unsigned key code
int Flag = 1;
while( Flag !1=0) /* Flag = 0 means User selected Quit from menu */
{
ShowMainMenu();
uKey = GetControlKey({ WAIT); /* Wait until uKey is pressed.
switch( uKey ) /* Evaluate uKey
{
case ALT: Flag = ChooseFromMenu();
break;
}
}
end_program();
} /* End of main program.
/* FUNCTIONS
int Mainmenu()
{

int retl,Flag,r1,12,c1,c2,Ins,att;
struct ITEM m1[]=

{
f* Highlight Char Pos *f
0, "Initialize", f* I 0 *f
0, "Record", f* R 0 */
0, "Playback", * P 0 *f
0, "Quit", /* Q 0 */
0, NULL
IH
ClearBox(2,2,8,15,6,1);
retl = Menu(2, 1, m1, 0);
switch(retl)
{
case ESC: return ESC;
case U_RT: ClearTextWindow( 2,0,12,17,_TBLUE ); return U_RT;
case U_LT: ClearTextWindow( 2,0,12,17, TBLUE ); return U_LT;
case 0 submenuinit();  return ESC;
case 1: submenurecord(); retum ESC;
case 2 : Flag = submenuplayback(); return ESC;
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case3: Flag = 0; return Flag; break;

} /* End of function MainMenu. *f

int Displaymenu( void )
{

int ret1,Flagr1,12,cl,c2,Ins,att;
struct ITEM ml[]=

{
/* Highlight Char Pos */

0, "Time Plot", 1* Q 0 *f
0, "Frequency Plot", f* C 0 *f
0, "Convert File", J* R 0 *f
0, "Quit", f* R 0 */
0, NULL

h

ClearBox(2,16,8,33,6,1);

retl = Menu(2, 15, m1, 0);

switch(ret1)

{
case ESC: return ESC;
case U_RT: ClearTextWindow( 2,15,12,35,_TBLUE ); return U_RT;
case U_LT: ClearTextWindow( 2,15,12,35, TBLUE ); rcturn U_LT;
case 0: Flag = SubMenuTimePlot(); return Flag;
case 1 : Flag = SubMenuFregPlot(); break
case 2 : Flag = SubMenuCodeData();break;
case 3: Flag = 0; break;

} /* End of function DisplayMenu. */

int Assemblemenu( void )
{

int retl,flag,r1,r2,c1,c2 Ins,ait;
struct ITEM ml[]=

{
f* Highlight Char Pos */
0, "Concatenate *, * Q 0 *
0, "Smooth", /* C 0 */
0, "Time Warp", /* C 0 *f
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0, "Mainmenu", /* *f
0, "Quit", i R 0 )
0, NULL

~
o

IH
ClearBox(2,60,9,75,7,1);
retl = Menu(2, 59, m1, O);
switch{retl)
{
case ESC: return ESC;
case U_RT: ClearTextWindow{ 2,59,12,80,_TBLUE ); return U_RT;
case U_LT: ClearTextWindow( 2,59,12,80,_TBLUE ); return U_LT;
case 0 : break;
case 1 : break;
case 2 : break;
case 3 : flag = 0; break;
casc 4 : flag = 0; break;

} /* End of function AssembleMenu.

int Librarymenu{ void )

{

int retl,flag,r1,12,c1,c2,Ins,att;

struct ITEM ml[]=

{

/* Highlight Char Pos *f

0, "Open ", i* 0 0 *f
0, "Close", /* C 0 */
0, "Save", /* S 0 *f
0, "Mainmenu “, /* M 0 *f
0, "Quit", /* Q 0 ¥/
0, NULL

5

ClearBox(2,47,9,59,7,1);

retl = Menu(2, 46, m1, 0);

switch(ret])

{
case ESC: return ESC;
case U_RT: ClearTextWindow( 2,46,12,62,_TBLUE ); return U_RT;
case U_LT: ClearTextWindow( 2,46,12,62, TBLUE }; return U_LT;
case 0 : break;
case 1: break;
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case 2 : break;
casc 3 : flag = 0; break;
case 4 : flag = 0; break;

int Splicemenu( void )

{

int retl,flagr1,12,c1,c2,ins,att;
struct ITEM ml[}=

{
/* Highlight Char
0, "Time Plot", /* T
0, "Freq Plot", /* F
0, "Mainmemu", /* M
0, "Quit", f* Q
0, NULL
Y

ClearBox(2,31,8,43,6,1);
retl = Menu(2, 30, m1, 0);
switch(ret1)

{

/* End of function LibraryMenu.

Pos */
0 */
0 */
0 */
0 */

case U_RT: ClearTextWindow( 2,30,12,45,_TBLUE ); return U_RT;
case U_LT: ClearTextWindow( 2,30,12,45,_TBLUE ); return U_LT;

case 0 : SubMenuTimePlot(); break;
case 1 : SubMenuFregPlot(); break;
case 2 : break;

case 3 : flag = 0; break;

int SubMenuFreqPlot{ void )
{

return Q;
}

void submenuinit{ void )

{
int retl,ret2,Seconds,rl,cl,r2,c2,Ins,att,divisor
struct MENU mnuAtrib =

/* End of function SpliceMenu.

/* End of function SubMenuFreqPlot,
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_TBLACK, _TBLACK, _TWHITE, _TBRIGHTWHITE, TBRIGHTWHITE,
_TWHITE, _"TWHITE, _TBLACK, _TWHITE, _TBLACK,

TRUE,

I ST

h

struct ITEM m2[4]=

{ 1, " 115.2k,8 N,1",
2," 57.6k,8N,1",
3," MainMeny ",
0NULL

IH

11=0;¢1=0;12=5;¢c2=30; Ins = 5; att = 0;

ClearBox(2,16,7,31,5,1);

ret2 = Menu(2,14, m2, 0);

switch(ret2)

{

case 0 : init1152Q); _clearscreen( _GCLEARSCREEN ); break;
case 1:init1152(); ClearBox(rl,c1,r2,c2,Ins,att); break;
case 2 : ClearBox(rl,c1,r2,¢2 Ins atf); break;

/* End of function SubMenulnit.

void submenurecord( void )

{

int retl,ret2,Seconds,rl,cl,:2,c2,Ins,att;
struct ITEM m2{6]=
{ 1," 2 Seconds ",
2," 4 Seconds ",
3," 16 Seconds ",
4," 32 Seconds ",
5, " Main Menu ",
ONULL
IH
t1=0;¢cl1=0;12=24;c2=80; lns=0; att = 0,
ClearBox(3,16,10,32,7,1);
rei2 = Menu(3, 14, m2, 0);
switch(re12)
{
case 0: Seconds = 2;
SendRecordCommand(Seconds);
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record(Scconds);ClearBox(r1,¢c1,12,¢2,Ins,att);
break;

casc 1: Seconds = 4;
SendRecordCommand(Seconds);
record(Seconds);ClearBox(rl,c1,r2,c2,Ins,att);
break;

case 2 : Seconds = 16;
SendRecordCommand(Seconds);
record(Seconds); ClearBox(rl,c1,r2,c2,Ins,att);
break;

case 3 : Seconds = 32;
SendRecordCommand({Seconds);
record(Seconds);ClearBox(rl,c1,02,c2,Ins,att};

break;
case 4 : ClearBox(rl,c1,r2,¢2 Ins,att);
break;
}
} /* End of function SubMcnuRecord.

int submenuplayback( void )

{

int ret2, seconds, Flag, AccessCode = Read_Write;
int FileHandle, Blocks = 0x80;

unsigned long int PlayBytes;
unsigned int PlayBytesLow;
unsigned int PlayBytesHigh;
unsigned int FileOffsetLow = 0
unsigned int FileOffsetHigh = 0;
unsigned int Time = 0;
char FileName{50];
char *Addr_FileName = &FileName[(];
struct ITEM m2{6]=
{

1, " 2 Seconds ",

1," 4 Seconds ",

2," 8 Seconds ",

3, "16 Seconds ",

4, 32 Seconds ",

ONULL
h

ClearBox(4,16,11,32,7,1);
ret2 = Menu(4, 14, m2, 0);
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Flag = GetUserInputFileName({ Addr_FiieName );

switch( Flag )
{
case ESC:
case U_LT:
case U_RT: return ESC;
default: break;
}

Time = 2*(int)( Power( (double)2, (double)ret2 ) );

PlayBytes = (unsigned long int)(4096) * (unsigned long int)(Time);

LongToShort( &PlayBytes, &PlayBytesLow, &PlayBytesHigh };

FileHandle = OpenFile{ Addr_FileName, (unsigned char)AccessCode );

Playback(FileHandle, FileOffsetLow,FileOffsetHigh PlayBytesLow PlayBytesHigh,Blocks );
closefile( FileHandle );

ClearBox(0,0,24,80,0,0);

} /* End of function SubMenuPlayBack.

int GetFileSelection{ struct ITEM FileNames[], int retl )
{

extern unsigned long int FileSize[10];

extern unsigned int SizeOfFile[20];

inti=0,flag=1,j

char FileInfo[43], FileName[50];

char *Addr_FileName = &FileName[0];

switch(retl )

{
case ESC: return ESC;
case 0: strepy( Addr_FileName, "c:N\qe2WkenVcfiles\W.pcm"” );
break;
case 1: strepy( Addr_FileName, "cN\gc2%kenN\cfiles*.adm" );
break;
}
.asm {
FileInfoAddr: mov  ah,lah /*Function number
mov dx,WORD PTR Addr_Filelnfo [fFFile Info Buffer
int 21h [*transfer to MS - DOS
FindFirstFile: mov  ahdeh /¥Function number
mov  cx0 [¥Normal atiribute
mov  dx,WORD PTR Addr_FileName  /*Address of file name
int 21h f*Transfer to MS - DOS
jnc okay
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nomatch: mov  flag,0

ckay: nop

mov  ¢x4

Xor didi

mov  s5i,26

Xor ax,ax
getfilesize: mov  alFileInfo[si]

mov  BYTE PTR FileSize[di],al
mov  al,BYTE PTR FileSize[di]
mov BYTE PTR SizeOfFile[di],al

inc si
inc di
loop  getfilesize
}
while( flag 1=0)

{
FileNames[i].iHilite = 0;
strepy( FileNames[il.achItem, &FileInfo[30] };
i=i+ 1;
_asm {
FileInfoBuff: mov  ah,lah
mov  dx,WORD PTR Addr_FileInfo

int 21h
FindNex(File: mov ah,4fh
mov cx,0
mov dx,WORD PTR Addr_FileName
int 21h
jnc ok

nomerematch: mov  flag,0
ok: nop
mov  si,26
mov  cx4
getfilesizel: mov  alFileInfolsi]
mov  BYTE PTR FileSize[di],al
mov  BYTE PTR SizeOfFilefdi],al
inc si
inc di
loop  getfilesizel
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FileNames[ i ].iHilite = 0;
FileNames[ i Lachltem{ 0 ] = NULL;

} /* End of function GetFileSelection.

f* GetUserInputFileName writes the file name of the user selected file to location stringpir,

int GetUserInputFileName( char *stringptr )
{

extern unsigned long int filesize;
extern unsigned fong int FileSize[10];
extern unsigned int FileSizeLow;
extern unsigned int FileSizeHigh;
extern unsigned int SizeOfFile[20];
unsigned ing Low;

int retl, Flag, FileType;

struct ITEM m1[10];

struct ITEM FileTypeSelection[]=

{
f* Highlight Char
0, "PCM Format", I* P
0, "ADPCM Format", f* A
0, "Other", * 0
0, NULL
b
char Header{30];

strepy( Header, "Choose a file:");
strepy( stringptr, "e:N\ge2WkenNcfiles\' );
Box(10,10,10,60);
_settextposition( 11,32 );
_settextcolor( _TBLACK };
_outtext( Header );
FileType = Menu(12,15 FileTypeSelection,0);
switch( FileType )
{
case ESC;
case U_LT:
case U_RT: return ESC;
default; break;
}
Flag = GetFileSclection( m1, FileType );
switch( Flag )
{
case ESC:
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case U_LT:
case U_RT: return ESC;

default: break;
}
retl = Menu(12, 15, m1, 0);
swilch(retl)
{
case ESC:
case U_RT:
case U_LT: retumn ESC;
default: strepy( (stringpte +18), m1[ret1].achltem );
filesize = FileSize[ret1];
FileSizeLow = SizeOfFile[2*retl];
FileSizeHigh = SizeOfFile[2*retl + 1];
break;
}
} /* End of function GetUserInputFileName.

void ShowMainMenu( void )

{
inti,r=1,c=2;
_displaycursor{ _GCURSOROFF );
_setbkcolor( (long)_TRED);
_Clearscreen( _GCLEARSCREEN );
for(i=0;i<5; i++)
{
Itemizel{ 1, ¢, FALSE, altem[il, 10);
c=c+15;
}
} /*End of function ShowMainMenu.
* Choose from main menu function.

int ChooseFromMenu( void )

{
inti,r=1, ¢ =2, CurCol = 2, PrevCol, Flag = 1;
int cItem, cchltem = 2; /* Counts of items and chars per item
int iPrev, iCur = (; /* Indexes — temporary and previous.
int acchltem[MAXITEM]; /* Array of counts of character in items.
char *pchT; f* Temporary character pointer.
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char achHilite[36]; /* Array for highlight characters.
unsigned uKey; /* Unsigned key code.

fong bgColor; /* Screen color, position, and cursor.
short fgColor;

struct recoord rc;

unsigned fCursor;

setbkcolor( (long)_TBLUE );
_clearscreen{ _GCLEARSCREEN );
fCursor = _displaycursor{ _GCURSOROFF);
for(i=0;i<5;it+)
{
Itemize(r,c,FALSE alteml[i],10);
c=c+15;
}
Itemize( r, CurCol,TRUE, altem[iCur], 4 );
f* Count items, find Iongest, and put count of each in array, Also,
* put the highlighted character from each in a string.*/
for( cltem = 0; altem[cItem).achltem[0]; cltem++ )

{
acchltem{cltem] = strlen( altem[cItem].achltem };
cchltem=(acchItem[cltem]>cchltem) 7 acchltem{cltem] :cchltem;
i = altem[cltem].iHilite;
achHilite[cItem] = altem[cItem].achItem/i];
}
cchltem += 2;
achHilite[cltem] = 0; £* Null-terminate and lowercase string  */
strlwr{ achHilite ),
while( Flag = 10 && Flag != ESC)
{
/¥ Wait until a uKey is pressed, then evaluate it. */
uKey = GetKey( WAIT);
switch( uKey )
{
case ESC: return ESC;
case U_RT: /¥ Right key */
Flag = -1;
iPrev = iCur;
if (iCur<4)

iCur = iCur + 1;
else
iCur=0;
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PrevCol = CurCol,
if( CurCol < 48)
CurCol = CurCol + 15;

else
CurCol = 2;
break;
case U_LT: /¥ left key *f
Flag = -1;
iPrev = iCur;
H{(iCur>0)
iCur = iCur - 1;
else
iCur=4;
PrevCol = CurCol;
if( CurCol > 2)
CurCol = CurCol - 15;
else
CurCol = 62;
break;
default:
if{ uKey > 256 ) /* Ignore unknown key *f
continue;

f* If in highlight string, evaluate and fall through *f
pehT = sirchr( achHilite, (char)tolower{ uKey ) );
if( pchT != NULL ) /* If in highlight string, *f
{

iPrev = iCur;
iCur = pchT - achHilite;
PrevCol = CurCol;
CurCol = 2 + iCur*15;
}
¢clse

continue; f* Ignore unknown ASCII key */
Ttemize( r, CurCol, TRUE, altem[iCur],
cchltem — acchltem[iCur] );
Itemize(r,PrevCol FALSE, altem{iPrev],
cchltem — acchltem[iPrev]);
casc ENTER:

_setbkcolor( bgColor );

_settextcolor( fgColor };

_settextposition( rc.row, rc.col );

_displaycarsor( fCursor );
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/* Flag=0 means Quit, Flag=ESC mcans go to Main menu*/

while{ Flagl=0 && Flagl=-1 && Flag!=ESC)

{

switch( iCur)

{

case 0: Fiag = Mainmenu();

switch( Flag)
{
case ESC: return ESC;
case U_RT:
iPrev = iCur;
iCur=1;
PrevCol = CurCol,;
CurCol = 17,
break;
case U_LT:
iPrev = iCur;
iCur = 4;
PrevCol = CurCol;
CurCol = 62;
break;

}
break;

case 0: return 0; /* Quit */

case 1; Flag = Displaymenu();

break;

switch( Flag )

{

case QUIT: return QUIT;
case ESC: return ESC;
case U_RT: iPrev = iCur;

iCur=2;
PrevCol = CurCol;
CurCol = 32;
break;
case U_LT: iPrev = iCur;
iCur=0;
PrevCol = CurCol;
CurCol = 2;
break;
}
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case 2: Flag = Splicemenu();
switch( Flag )
{
casc ESC: return ESC;
case U_LT: iPrev = iCur;
iCur=1;
PrevCol = CurCol;
CurCol = 17,
break;
case U_RT: iPrev = iCur;
iCur = 3;
PrevCol = CurCol;
CurCol = 47,
break;
}
break;
case 3: Flag = Librarymenu(J;
switch( Flag )
{
case ESC; return ESC;
case U_LT: iPrev=iCur;
iCar = 2;
PrevCol = CurCol;
CurCol = 32;
break;
case U_RT: iPrev = iCur;
iCur = 4;
PrevCol = CurCol;
CurCol = 62;
break;
}
break;
case 4: Flag = Assemblemenu();
switch( Flag )
{
case ESC: return ESC;
case U_LT: iPrev = iCur;
iCur = 3;
PrevCol = CurCol;
CurCol = 47;
break;
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case U_RT: iPrev = iCur;

iCur=0;
PrevCol = CurCol;
CurCol = 2;
break;
}
break;
}

/* Redisplay current and previous. */
Itemize(r,CurCol, TRUE altem[iCur],
¢chltem — acchltem[iCur]);
Iiemize(r,PrevCol FALSE altem[iPrev],
cchitem-acchItem[iPrev]);

}

/* Redisplay current and previous. */
Ttemize(r,CurCol, TRUE, altem[iCur], cchltem — acchltem[iCurl);
Ttemize(r,PrevCol FALSE altem[iPrev},cchltem—acchitem[iPrev]);

} /* End of function ChooseFromMainMenu. *f

/*Function Mcnu — Puts menu on screen and reads menu input from keyboard. When a highlighted hot key
or ENTER is pressed, returns the index of the selected menu item.

Params: row and col - If "fCentered"” attribute of "mnuAtrib" is true,center row and column of menu;
otherwise top left of menu

altem - array of structure containing the text of each item and the index of the highlighted hot key

iCur — index of the current selection—pass 0 for first item, or maintain a static value

Retum: The index of the selected item

Uses: mnuAtrib */

int Menu( int row, int col, struct ITEM altem[], int iCur )

{
int citem, cchltem = 2; /* Counts of items and chars per item  */
int i, iPrev; /* Indexes — iemporary and previous */
int acchltem{MAXITEM]; /* Array of counts of character in items */
char *pchT; f* Temporary character pointer *f
char achHilite[36); /* Array for highlight characters *f
unsigned uKey; /* Unsigned key code *f
long bgColor; /* Screen color, position, and cursor *f
short fgColor;
struct recoord 1c;
unsigned fCursor;
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/* Save screen information. */
fCursor = _displaycursor( _GCURSOROFF );
bgColor = _getbkcolor();
fgColor = _gettextcolor();
rc = _gettextposition();
/* Count items, find longest, and put count of each in array. Also, put the highlighted character from each
in a string. */
for( cltem = 0; altem[cItem].achItem[0]; cItem++ )
{
acchltem[cItem] = strlen( altem][cItem].achltem );
cchltem = (acchItem[cItem] > cchltem) ? acchltem[cItem] : cchltem;
i = altem[cItem].iHilite;
achHilite[cItem] = altem[cItem].achItem[il;
}
cchltem +=2;
achHilite[cItem] = 0; /* Null-terminate and lowercase string */
striwr( achHilite );
/¥ Adjust if centered, and draw menu box. */
if( mnuAtrib.fCentered )
{
row —= cltem / 2;
col —= cchltem / 2;
}
Box{ row++, col++, cltem, cchltem );
/* Put items on menu. */
for(i=0;1i < cltem; i++)

{
if(i==iCur)
Itemize( row + i, col, TRUE, altem[i], cchItem — acchltem[i] );
else
Itemize( row + i, col, FALSE, altem[i], cchltem — acchltem[i] );
}
while( TRUE )
{ /* Wait until a uKey is pressed, then evaluate it. */
uKey = GetKey( WAIT );
switch( uKey )
{
case ESC: return ESC;
case U_RT:
case U_LT:
return uKey;
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case U_UP: / Up key *f

iPrev = iCur;

iCur = (iCur > 0) 7 (~iCur % cltem) : cltem — 1;

break;

case U_DN: /* Downkey %/
iPrev = iCur;

iCur = (iCur < citem) 7 (++iCur % cliem) : ;

break;

default;

if( uKey > 256) f* Ignore unknown function key */
continue;

pchT = strchr( achHilite, {char)tolower{ uKey )} );

if{ pchT I=NULL) /* If in highlight string, */
iCur = pchT — achHilite;* evaluate and fall through */
else

continue; /* Ignore unknown ASCII key */
case ENTER:

_setbkcolor{ bgColor };

_settextcolor( fgColor );

_settextposition( rc.row, rc.col );

_displaycursor{ fCursor ¥

return iCur;

}
/* Redisplay current and previous. */
Itemize{ row + iCur, col,
TRUE, altem[iCur], cchltem — acchItem[iCur] );
Itemize( row + iPrev, col,
FALSE, altem[iPrev], cchltem - acchltem[iPrev] );

}

/* ClearTextWindow-- Draw menu box, filling interior with blanks of the border color.

Params: row and col — upper left of box rowLast and colLast — height and width

Return: None

Uses: mnuAtrib *f

void ClearTextWindow(int row, int col, int rowlLast, int colLast, int color )
{

int i;

unsigned char far *ptr_blanks;

unsigned char blankstring[80];
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pir_blanks = &blankstring{0];
for( i=0; i <= (colLast — col - 1); i++)
{
blankstring[i}=""

}
blankstring[ i + 1 ] = NULL;
f* Set color and position, */
_settextposition{ row, col );
_settextcolor{ (short) color );
_setbkcolor( (long) color );
for(i=0;i <= (rowLast —row); ++i)
{

_settextposition{ row + i, col );

_outtext( ptr_blanks );

}

/* Box — Draw menu box, filling interior with blanks of the border color.

Params: row and col — upper left of box
rowLast and colLast - height and width
Return: None

Uses: mnuAfrib

void Box( int row, int col, int rowLast, int colLast }
{

ing i;

char achTIMAXITEM + 2]; /* Temporary array of characters ¥/

/* Set color and position. */

_settextposition( row, col );

_settextcolor( mnuAtrib.fgBorder };

_setbkecolor( mnuAtrib.bgBorder };

/¥ Draw box top. */

achT[0] = mnuAtrib.chNW;

memset( achT + 1, mnuAtrib.chEW, colLast );

achT[colLast + 1] = mnuAtrib.chNE,

achT[collLast+2]=0;

_outtext( achT );

/¥ Draw box sides and center, */

achT[0] = mnuAtrib.chNS;

memset{ achT + 1,"', colLast );

achT[colLast + 1] = mnuAtrib.chNS;

achT[colLast + 2] = (;

— A38 —

*



/* Ttemize — Display onc selection (item) of a menu, This function is normally only used internally by

Menu.

for( i=1;1i<=rowLast, ++i)
{
_settextposition( row + i, col };
_outtext( achT );
}
f* Draw box bottom, */
_settextposition( row + rowLast + 1, col );
achT[0] = mnuAtrib.chSW;
memset{ achT + 1, mnuAtrib,chEW, colLast );
achT[colLast + 1] = mnuAtrib.chSE;
achT{collLast + 2] = 0;
_outtext({ achT );

Params: row and col — top left of menu

fCur -
itm — structure containing item text and index of highlight

flag set if item is current selection

cBlank ~ count of blanks to fill
Return: none

Uses:

void Itemize( int row, int col, int fCur, struct ITEM itm, int cBlank )

{

mnuAtrib

nt i;

char achTIMAXITEM];

/* Set text position and color. */
_settextposition( row, col );

if( fCur)
{

_settextcolor( mnuAtrib.fgSelect );
_setbkcolor{ mnuAtrib.bgSelect );

}

clse

{
_settextcolor{ mnuAtrib.fgNormal );
_setbkcolor( mnuAtrib.bgNormal );

}

/* Display item and fill blanks. */
strcat( sircpy( achT, " " ), itm.achltem );
_outtext( achT );
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memset( achT, ', cBlank— );
achT[cBlank] = 0;
_outtext( achT };
/* Set position and color of highlight character, then display it. ¥/
i = itm.iHilite;
_settextposition( row, col +i+ 1);
if( fCur)
{
_settextcolor( mnuAtrib.fgSelHilite );
_setbkcolor( mnuAtrib.bgSelHilite );

¢lse

_settextcolor( mnuAtrib.fgNormHilite );
_setbkcolor{ mnuAtrib.bgNormHilite );
}
_outchar{ itm.achltem[i] );

void Itemizel( int row, int col, int fCur, struct ITEM itm, int cBlank )
{

char achT[MAXITEM]; f* Temporary array of characters */

f* Set text position and color. */

_settextposition( row, col );

_seitextcolor( mnuAdtrib.fgNormal );

_setbkcolor( mnuAtrib.bgNormal );

/* Display item and fill blanks. */

streat( strepy( achT, " " ), itm.achltem );

_outtext{ achT );

memset{ achT, ' ', cBlank— );

achT{cBlank] = 0;

_outtext{ achTY;

/* GetKey — Gets a key from the keyboard. This rontine distinguishes between ASCII keys and function or
control keys with different shift states. It also accepts a flag to return immediately if no key i available.
Params: fWait — Code to indicate how to handie keyboard buffer:

NO_WAIT Return 0 if no key in buffer, else return key

WAIT Return first key if available, elsc wait for key

CLEAR_WAIT Throw away any key in buffer and wait for new key

Return: One of the following:
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Keytype High Byte Low Byte

No key available (only with NO_WAIT) 0 0

ASCII value 0 ASCII code

Unshifted function or keypad 1 scan code

Shifted function or keypad 2 scan code

CTRL function or keypad 3 scan code

ALT function or keypad 4 scan code

Note: getkey cannot return codes for keys not recognized by BIOS

int 16, such as the CTRL~UP or the 5 key on the numeric keypad.

unsigned GetKey( int fWait )
{
unsigned uKey, uShift;
f*1If CLEAR_WAIT, drain the keyboard buffer, */
if( fWait == CLEAR_WAIT)
while( _bios_keybrd( _KEYBRD_READY ))
_bios_keybrd( _KEYBRD_READ);
/% If NO_WAIT, return 0 if there is no key ready. */
if( 1fWait && !_bios_keybrd( _KEYBRD_READY })
return FALSE;
/* Get key code. */
uKey = _bios_keybrd( KEYBRD_READ };
f* If low byte is not zero, it's an ASCII key. Check scan code to see
* if it's on the numecric keypad. If not, clear high byte and return.
*f
if( uKey & 0x00ff)
if( (uKey >> 8} < 69 )
return{ uKey & 0x00ff };
/* For function keys and numeric keypad, put scan code in low byte
* and shift state codes in high byte.

*/
uKey >>=§;
uShift = _bios_keybrd( _KEYBRD_SHIFTSTATUS ) & 0x000f;
switch{ uShift )
{
case 0
return( 0x0100 | uKey ); /* None (1) *f
case 1:
case 2:
case 3:
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return{ 0x0200 [ uKey ); /* Shift (2) */

case 4:
return{ 0x0300 | uKey ); /* Control (3) */
case §:
return{ 0x0400 luKey ); /* Alt (4) */
}
}
unsigned GetControlKey( int fWait )
{
unsigned uKey, uShift;
/* Get key Flag. */
uKey = GetKeyboardControlFlag();
switch( uKey )
{
case 0:
return{ 0x0100 | uKey ); /* None (1) */
case I
case 2:
case 3:
return{ 0x0200 | uKey ); /* Shift (2) */
casc 4:
return{ 0x0300 | uKey ); /* Control (3) */
case 8:
return( 0x0400 1 uKey ); /* Alt (4) */
}
}

unsigned int GetKeyboardControlFlag( void )

{
unsigned uKey;
_asm {
readflag: mov  ah,02h
int 16h
test al,08h
jz readflag
mov  uKey400h
}
return uKey;
}

f* _outchar — Display a character. This is the character equivalent of _outtext. It is affected by
_settextposition, _settextcolor, and _setbkcolor. It should not be used in loops. Build strings and then
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_outiext to show multiple characters.
Params: out — character to be displayed
Return: none

void _outchar( char eut )

{

static char achT[2] =" ";  /* Temporary array of characters */
achT[0] = ouy;

_outtext( achT);

}

void end_program( void )

{
_displaycursor{ _GCURSORON );
_clearscreen{ _GCLEARSCREEN );
_setvideomode( _DEFAULTMODE );
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A.2,2 Record
#include <string.h>
#include <fprotyp7.h>
#definge NULL 0

void record( int Seconds )

{
int FileHandle, bufseg, TwoSecCount;
char FileName[50];

strepy( FileName, "c:\gc2WkenNcfiles\Nest.adm” };  #Name of file to be recorded.
FileHandie = CreateAndOpenFile( FileName, 2 ); [¥Create file,

bufseg = AllocateMemory( 512 ); *Allocate RAM for speech data.
TwoSecCount = Seconds/2;

_asm {
push  es ARemember C's extra segment value.
mov  ax,bufseg /*es contains the starting address of the segment
mov  €s,ax S¥where speech data will be buffered.
notrdy: mov  dx,03feh [#Test whether Slave is requesting to send.
in al,dx f*Slave is req. to send if CTS=1, since Slave's
and al,10h /*RTS=0 when Slave is requesting to send.
je noirdy /*b4=0 means not 1ts: b4=1 means request to send.
again: xor didi
mov  ¢x,8192 f*Two seconds of speech.
more; mov al,03h f*Slave: it is clear to send.
mov  dx,03fch
out dx,al
notrdy: mov  dx,03fdh f*Test for reception of complete character.
in aldx *
shr al,1
jnc notrdy
Xor al,al FHaving received a character, Host now informs
mov  dx,03fch f*the Slave not to send.
out dx,al /*RTS=0 means not clear to send.
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mov

in

mov
inc
loop

writefl: mov
mov
push
mov
mov
mov
mov
int
jc
pop
dec
jz
jmp

Error: pop ds
nop

tn; pop
}

ReleaseMemory( bufseg );

closefile (FileHandle );
}

dx,03£8h
aldx

es:[di],al
di
more

ah40H

bx, FileHandle
ds

dx,bufseg
ds,dx

dx,0

cx,8192

21h

Error

d
TwoSecCount
rn

again

/*Read the data byte from the serial port.

[¥Write the byte to RAM.
*Increment RAM pointer.
[¥Loop if 8192 bytes have not been recorded.

J/*Write function number.

[¥FileHandle is a number associated with a file.

*Remember C's data segment.

f*ds contains the segment where speech data
/¥is buffered in RAM,

/¥dx contains the offset of 1st RAM byte.
/¥Write 8K bytes to disk.

/FDOS write RAM 1o file interrupt routine.
/*¢ =1 means error

[*Restore C's data segment,

Check if done recording.

*Restore C's data segment.
f*Place error code here.
[*Restore C's extra segment.
/*End asm routine.

F¥End Record function.
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void SendRecordCommand( int Seconds )

{

_asm{

notrdy:

TranShftFull:

transmit:

NotValid:

Valid: mov

mov
mov
out

mov

in

je

mov
in

je

mov
mov
out

mov
mov

in

je
loop
jmp

al,00h
mov
out

al,02h
dx,03fch
dx,al

dx,03feh
aldx
al,10h
notrdy

dx,03fdh
al,dx
al,40h

TranShftFull

dx,03t8h

f*Slave: Host is requesting {o send.
*RTS = 1 means request to send.

f*Test whether Slave is ready to receive.
/*8lave is ready to receive if CTS=1, since Slave's
*RTS=0 when Slave is requesting to send.

/¥b4=0 means not ris; b4=1 means request to send.

#*Check whether transmit shift reg is empty.

/*b6=1 means transmit shift reg is empty.

f¥Now transmit,

al BYTE PTR Seconds  /*Type cast Seconds to byte.

dx,al

cx,01000h
dx,03feh
al,dx
al,10h
Valid
NotValid
nordy

dx,03fch
dx,al

f*al contains the record command code.

[FWait timer.

F¥Wait for Slave's indication of a valid command
I*

J¥b4=0 means valid command.

f¥If time out, try sending command again.

[*host sends acknowledge.
/* i.e., host not requesting to send.

/¥End asm routine,
F*End send record command function,
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A.2.3 Playback

#include <fprotyp6.h>

void Playback( int FileHandle,
unsigned int FileOffsetLow,
unsigned int FileOffsetHigh,
unsigned int LSWSelectedBytes,
unsigned int MSWSelectedBytes,
int Blocks )

{

unsigned int SmaliInnerLoop, InnerLoop, CuterLoop;

unsigned char Data[8192];

unsigned char *StartofData = &Data[0];

OuterLoop = MSWSelectedBytes*8 + LSWSelectedBytes/8192;
InnerLoop = 8192;

SmaliInnerLoop = LSWSeclectedBytes%8192;
SendPlaybackCommand( 170 );

asm {
call SetFilePointer /*Set file pointer to starting location of the¥/
[*portion of file selected by the user.*/
cmp OuterLoop,Oh /¥What is the size of the playback file?*/
jz fin Q. 0 < 8Size of playback < 81927%/
start: call ReadFile /*Read 8192 bytes from file referred to by*/
/*FileHandle, and dump these bytes to*/
/*RAM starting at the location pointed to by*/
*StartofData*/
mov  cx,InnerLoop /¥¢x = number of bytes to transmit*/
mov  si, WORD PTR StartofData /*si  point to start of data.*/
here: mov  al,02h /*Slave: Host is now requesting to send.*/
mov  dx,03fch /*This enables the slave to begin its*/
out dx,al f*playback routine, */
notrdy0: mov  dx,03fch [*Test if Slave is ready to receive.*/
in al,dx /*Slave is ready to receive if its RTS is 1.%/
and al,10h /*B4=0 indicates not ready to receive.¥/
je notrdy0 /*b4=1 means Slave is rcady to rcceive.*/
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tdrfull:

notrdyi:

contloop:

fin: cmp

finished:

mov  dx,03fdh

in aldx

and al,40h

jz tdrfull

mov dx,03feh

in aldx

and al,10h

je notrdy1

mov  dx,038h

mov  al,fsi]

out dx,al

inc si

loop  notrdy0

dec OuterLoop

jz fin

jmp Start
SmalllnnerLoop,Ch

jz finished

mov  dx,SmalllnnerLoop
mov  InnerLoop,dx
mov  QuterLoop,1h
xor dxdx

mov  SmalllnnerLoop,dx
jmp start

mov al,00h

mov  dx,03fch

out dx,al

jmp rn

[*Check if transmit shift register is empty.¥/

/¥b6=1 means shift register is empty.*/

[*Test if Slave is ready to receive.*/
[*Slave is ready to receive if its RTS is 1.*/
/*B4=0 indicates not ready to receive.*/
/*b4=1 means Slave is recady to receive.*/

[*Now the Host transmits.*/
/*Write byte pointed to by si to the UART.*/

/¥Increment the  source  pointer.*/

/*Finished transmitting InnerLoop bytes?.*/
J*If finished transmitting InnerLoop bytes,*/
/*decrement OuterLoop counter.¥/
/*Any more 8192 blocks to transmit?*/

/*Slave: Host is not requesting to send.*/
/¥This ends the playback routine, since*/
/*Slave stops playback when it senses that*/
[*Host has reset its RTS to logic 0%/
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f*Start of procedures.*/

/*This subroutine (procedure) increments the file pointer. Note, for as long as a file is open, the operating
system, DOS, updates the file pointer each time the file is read from or written to. Therefore, this function,
Playback, does not nced to increment the file pointer. This proceedure is included here to show how
incrementing the file pointer may be done.*/
IncFilePointer: mov ax,InnerLoop [*Increment the file pointer by Innerloop.*/
ald FileOffsetl.ow,ax
ak FileOffsetHigh,0
ret

f*This proceedure sets the file pointer to the starting location in the portion of the file the user had selected.
FileOffsetHigh and FileOffsetLow are the file pointers selected by the user.*/

SetFilePointer: mov ax,4200h f*ah = 42h is the function number.*/
mov  bx,FilcHandle f¥Filepointer referenced from start of file.¥/
mov  cx,FileOffsetHigh f*Most significant half of offset */
mov  dxFileOffsetLow f*Least significant half of offset*/
int 21h /*Set  file pointer interrupt routine.*/
ic eITor f¥carry = 1 means error*/
et *Return from proceedure.*/

€ITOT; nop /*Place error code here.*/
ret /*Return from proceedure.*/

f*This proceedure reads InnerLoop number of bytes from file referenced by FileHandle and dumps these
bytes to RAM starting at location pointed by StariofData.*/

ReadFile: mov  ah,3fh [*Read function number.*/
mov  bx,FileHandle /*FileHandle references C:\gc2\ken\*.adm.*/
mov  dx,WORD PTR StartofDaia [*dx=offset of 1St RAM Dbyte.*/
mov  cx,InnerLoop [*read InnerLoop Dbytes from file.*/
int 21h
ic Readerror /*Carry = 1 means error.*/
ret fReturn from proceedure.*/

ReadEmor; nop /*Place error code here.*/
et FReturn from proceedure.*/

gtk nop

F*End of procedures.*/

} /*End of asm routine.*/
} J¥End of function Playback.*/
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void SendPlaybackCommand( in¢ Blocks )

{

_asm{

notrdy:

TranShftFull;

transmit:

NotValid:

Valid: mov

mov
mov

out

mov

in

je

mov

in

je

mov
mov
out

mov
mov

in

je
loop
jmp

al,00h
mov

out

al,02h f*Slave: Host is requesting to send.,

dx,03fch F*RTS = 1 means request to send.

dx.al

dx,03fch f*Test whether Slave is ready to receive.

aldx /*Slave is ready to receive if CTS=1, since Slave's

al,10h /*RTS=0 when Slave is requesting to send.

notrdy /*b4=0 means not rts: b4=1 means request to send.

dx,03fdh /#Check whether transmit shift reg is empty.

al,dx

al,4Ch

TranShitFull /*b6=1 means transmit shift reg is empty.

dx,03f8h f*Now transmit.

al,BYTE PTR Blocks f*Type cast Seconds to byte.

dx,al f*al contains the record command code.

¢x,01000h [¥Wait timer.

dx,03fch /Wait for Slave's indication of a valid command

aldx /*

al,10h

Valid f#b4=0 means valid command.

NotValid

notrdy /*If time out, try sending command again.
f¥host sends acknowledge.

dx,03fch f* i.e., host not requesting to send.

dx,al

f*End asm routine. .
/*End send playback command function.
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A.2.4 Time Plot

#include<defl.h>
#include<fprotypl.h>
#include<string.h>
#include<stdio.h>

unsigned long int GetSizeOfFile( int FileHandleClipboard );

void Insert( int FileHandle1, unsigned int File1OffsetlLow, unsigned int File10ffsetHigh, unsigned long int
InsertSize, int FileHandle2, unsigned int File20ffsetLow, unsigned int File20ffsetHigh ,int

FileHandleADPCMBak);

int SubMenuTimePlot( void )

{

extern unsigned long int
extern unsigned int
extern unsigned int
unsigned long int
unsigned long int
unsigned long int
unsigned long int
unsigned long int
unsigned long int
unsigned char
unsigned char
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int

float

char

char

char

char

char

char

char

char

filesize;

FileSizeLow;

FileSizeHigh;

FileOffsetPCM = (;

FileOffsetADPCM = (;

FileOffsetPointer] = 0;

FileOffsetPointer2 = 0;
SelectedBytesADPCM,;

Size;

Data[600];

*StartofData = &Data[0];
FileOffsetPCMHigh = 0;

FileOffsetPCMLow = 0;

FileOffsetADPCMHigh = 0,
FileOffsetADPCMLow = 0;
SelectedBytesADPCMHigh = 0;
SelectedBytesADPCMLow = 0;
InnerLoop = 600;

OuterLoop = 1;

X,

FileNamePCM [100 ];
FileNamePCMBak [100 J;

FileName ADPCM [100 ];
FileNameADPCMBak[ 100 J;
FileNameClipboard[ 31 ];
CopyMessage2[ 20 ];
*AddrFileNamePCM = &FileNamePCM[ 0 1;
* AddiFileNamePCMBak = &FileNamePCMBak[ 0 ;
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char
char
char
char
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int HotBoxes[] = {

*AddrFileName ADPCM = &FileNameADPCM[ 0 ];

* AddrFileName ADPCMBak = &FileNameADPCMBak{ 0 T;
*Addr_FileNameClipboard = &FileNameClipboard[ 0 1;

*Addr_CopyMessage2 = &CopyMessage2[ 0 ];

FileHandlcPCM;

FileHandleADPCM;
FileHandleADPCMBak;
FileHandlcPCMBak;

Byic_Size = 600;

i;

i=15

Flag;

PointerFlag = 0;

Blocks = 0x80;

*QOuterLoopPir = &OuterLoop;
FileHandleClipboard;
MouseCoordinates[2];

Pointerl = -1;

Pointer2 = -1;

NumberHotBoxes = 10;

570,174,630,184, 10,174,70,184,
601,158,630,168, 40,158,600,168,
200,174,250,184, 260,174,310,184,
100,174,130,184

Flag = GetUserInpuiFileName({ AddrFileNamePCM );

10,158,39,168,
20,0,620,129,
320,174,380,184,

switch{ Flag)
{
case ESC:
case U_RT:
case U_LT: return ESC;
default:  Flag = 33;
break;
}
[*strepy automatically terminates a string with a NULL character.®/
strepy( Addr_FileNameClipboard, "c:N\qc2WkenWcfiles\Clipbord.dat" );
strepy( Addr_CopyMessage2,"Bytes selected: " );
strepy( AddrFileNamePCMBak, AddrFileNamePCM )
strepy( (AddrFileNamePCMBak + strlen(AddrFileNamePCMBak)-3),"PBK™);
strepy( AddrFileNameADPCM,  AddrFileNamePCM )
strepy( (AddrFileNameADPCM + strlen(AddrFileName ADPCM)-3),"adm");
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strepy( AddrFileName ADPCMBak, AddrFileNameADPCM );
strepy( {AddrFileNameADPCMBak + strlen{AddrFileNameADPCM)-3),"ADB");

FileHandleClipboard = Create AndOpenFile{ Addr_FileNameClipboard, (unsigned char)2 );

FileHandlePCM = OpenFile( AddrFileNamePCM, Read_Write );

FileHandlcADPCM = OpenFile( AddrFileNameADPCM, Read_Write );

FileHandleADPCMBak = Create AndOpenFile{ AddrFileName ADPCMBak, Read_Write ),

FileHandlePCMBak = Create AndOpenFile( AddrFileNamePCMBak, Read_Write );

graphics_mode(};

DrawOscilliscope();

DrawPlotmenulcon();

ResctMouse();

PlotData( FileHandlePCM, FileOffsetPCMLow, FileOffsetPCMHigh,
Byte_Size, StartofData, &Data[0],
FileOffsetPCM %

ShowMouse();

while( Flag 1= QUIT )

{

Flag = GetMouseSelection{ & HotBoxes[0], NumberHotBoxes, & MouseCoordinates[0] );

switch( Flag )

{

case 1: Flag = QUIT: [¥User selected quit. */
break;

case 2: F*User selected playback. *f

if( PointerFlag == 2)
{
if( FileOffsetPointer < FileOffsetPointer2 )
{
FileOffsetADPCM = FileOffsetPointerl/2;
LongToShort{  &FileOffsetADPCM, &FileOffset ADPCMLow,
&FileOffsctADPCMHigh %
SelectedBytesADPCM = (FileOffsetPointer2—FileOffsetPointer] )/2;

else
FileOffsetADPCM = FileQOffsetPointer2/2;

LongToShort{  &FileOffsetADPCM, &FileOffsetADPCMLow,
&FileOffsetADPCMHigh );
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else

case 3:

case 4:

SclectedBytesADPCM = ( FileOffsetPointerl-FileOffsetPointer2 )/2;

}
LongToShort{  &SelectedBytesADPCM, &SelectedBytesADPCMLow,
&SelectedBytesADPCMHigh %

Playback( FileHandlcADPCM, FileOffsetADPCMLow,
FileOffsctADPCMHigh, SeclectedBytesADPCMLow,
SelectedBytes ADPCMHigh, Blocks

Playback( FileHandie ADPCM, FileOffsetADPCMLow,
FileOffsetADPCMHigh, InnerLoop*Outerloop,
0, Blocks

break;

[*User selected move plotting window left by 60 bytes.
if( FileOffsetPCM > (unsigned long int)60 )

{
FileOffsetPCM = FileOffsetPCM — (unsigned long int)60;
LongToShort(  &FileOffsetPCM, &FileOffsetPCMLow,
&FileOffsetPCMHigh ¥
}
else
{
FileOffsetPCM = (unsigned long int)0;
FileOffsetPCMLow = (unsigned int)0;
}
ClearGraphicsScreen( 1,20,1,620,128 );
PlotData( FileHandlePCM, FileOffsetPCMLow,
FilcOffsetPCMHigh, Byte_Size, StartofData,
&Data[0], FileOffsetPCM I
RememberMarkers( Pointerl, Pointer2, FileOffsetPCM,
FileOffsetPointer1, FileOffsetPointer2
break;

FUser selected move plotting window right by 60 points.
if( FileOffsetPCM < (filesize — (unsigned long int)660) )
{
FileOffsetPCM = FileOffsetPCM + (unsigned long int)60;
LongToShort(  &FileOffsetPCM, &FileOffsetPCMLow,
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case 5:

case 6:

&FileOffsetPCMHigh

else

FileOffsetPCM = (filesize — (unsigned long int)600);
LongToShort{ &FileOffsetPCM, &FileOffsetPCMLow,
&FileOffsetPCMHigh
}
ClearGraphicsScreen( 1,20,1,620,128 };
PlotData( FileHandlePCM, FileOifsctPCMLow,
FileOffsetPCMHigh, Byte_Size, StartofData,
&Datal0], FileOffsetPCM %
RememberMarkers( Pointerl, Pointer?2, FileOffsetPCM,
FileOffsetPointerl, FileOffsetPointer2
break;

/*Mouse click in scroll bar rectangle: course movement,
HideMouse();
ClearGraphicsScreen( 1, 41, 159, 599, 167 );
DrawRectangle( 3, 40, 159, MouseCoordinates[0], 167);
FileOffsetPCM = (long)({(MouseCoordinates[0]-40.0)/560)*(filesize—600));
LongToShort{  &FileOifsetPCM, &FileOffsetPCMLow,
&FileOffsetPCMHigh
FileOffsetADPCM = FileOffsetPCM/2;
LongToShort(  &FileOffsetADPCM, &FileOffsetADPCMLow,
&FileOffsetADPCMHigh )5
ClearGraphicsScreen( 1,20,1,620,128 );
PlotData( FileHandicPCM, FileOffsetPCMLow,
FileOffsetPCMHigh, Byte_Size, StartofData,
&Datal0], FileOffsetPCM %
RememberMarkers( Pointer1, Pointer2, FileOffsetPCM,
FileOffselPointerl, FileOffsetPointer2
ShowMouse();
break;

f¥User selected position pointers in file window.,

HideMouse();

if(

MouseCoordinates[0] == (Pointerl +20) |l
MouseCoordinates[0] == (Pointer2 + 20) )
[¥User selected erase pointer in file window.
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if( MouseCoordinates[0] = Pointerl + 20 )

Pointerl = ~1;
else
Pointer2 = -1;
DrawLine( MouseCoordinates[0], 1, MouseCoordinates[0],
128, 0 )i
PlotData( FileHandlePCM, FileOffsetPCMLow,
FileOffsetPCMHigh, Byte_Size, StartofData,
&Dara[0], FileOffsetPCM );
PointerFlag—;
ClearTextLine( 19, 1,45 );
}
else
{ /¥User selected to position pointer in file window. */
if( PointerFlag < 2)
{
if( Pointer] ==-1)
{
Pointerl = MouseCoordinates[0] — 20;
FileOffsetPointerl = (long)(Pointerl) + FileOffsetPCM;
}
else
{
Pointer2 = MouseCoordinates[0] — 20;
FileOffsetPointer2 = (long)(Pointer2) + FileOffsetPCM;
}
DrawLine( MouseCoordinates[0], 1, MouseCoordinates[0],
128, 7 );
PointerFlag++;
}
}
if( PointerFlag == 2)
{ /*User attempting to position more than two pointers. */

ClearTextLine( 19, 1,45);
PrintGrahicsText( 19, 2, Addr_CopyMessage2 );
printf("%1u", AbsLong( FileOffsetPointerl, FileOffsetPointer2 ));

}
ShowMouse();

break;

case 7: [*User selects copy speech to clipboard file. */
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if( PointerFlag == 2)

{

break;

case 8:

break;

casc 9:

f*Enable to copy only if both pointers are positioned. */
if( FileOffsetPointer? > FileOffsetPointer?2 )
{
SelectedBytesADPCM=( FileOffsetPointer1-FileOffsetPointer2 )/2;
LongToShort({  &FileOffsetPointer2, &FileOffsetADPCMLow,
&FileOffsetADPCMHigh )
}
else
{
SelectedBytes ADPCM=( FileOffsetPointer2-FileOffsetPointerl )/2;
LongToShort{  &FileOffsetPointerl, &FileOffset ADPCMLow,
&FileOffset ADPCMHigh %
3

SelectedBytesADPCM=AbsLong(FileOffsetPointer1, FileOffsetPointer2)/2;
LongToShort(  &SelectedBytesADPCM, &SclectedByicsADPCMLow,

&SelectedBytesADPCMHigh %
Copy( FileHandleADPCM, FileOffsetADPCMLow,

FileOffsetADPCMHigh, FileHandleClipboard, 0, 0,

SelectedBytesADPCMLow, SelectedBytesADPCMHigh

ClearTextLine( 19, 1,45 );

/*Cut selection from file
Flag = QUIT;

[*Paste selected speech from clipboard file into current file,

if( PointerFlag == 1) [*Paste if one pointer is positioned.
{
if( Pointerl 1= -1)
{
FileOffsetADPCM = FileOffsetPointer/2;
}
clse
{
FileOffsetADPCM = FileOffsetPointer2/2;
}

Size = GetSizeOfFile( FileHandleClipboard );
LongToShori(  &FileOffsetADPCM, &FileOffset ADPCMLow,
&FileOffsetADPCMHigh )
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Insert{ FileHandleClipboard, (unsigned int)0, {unsigned int}0,

Size, FileHandle ADPCM,
FileOffsctADPCMLow, FileOffsetADPCMHigh,
FileHandleADPCMBak %
}
break;
case 10: {¥User selected all speech data */
FileOffsetPointer] = (;
FileOffsetPointer2 = filesize;
Pointerl = 0;
Pointer2 = 600;
RememberMarkers( Pointer1, Pointer?2, FileOffsctPCM,
FileOffsetPointerl, FileOffse(Pointer2);
PointerFlag = 2;
ClearTextLine( 19, 1,45 );
PrintGrahicsText( 19, 2, Addr_CopyMessage2 );
printf("%I1u", AbsLong( FileOffsetPointerl, FileOffsetPointer2 ));
break;
default; Flag = QUIT;
}
}
closefile( FileHandleClipboard );
closefile( FileHandlePCM };
closefile( FileHandle ADPCM );
closefile( FileHandlePCMBak );
closefile{ FileHandleADPCMBak };
end_program();
return ESC;
}

HFuanction RememberMarkers draws a previously selected marker if that marker is pointing to a file
position that is in the current view window. Figure A.3 explains the main idea of this function.
*/
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FileOffsetPCM H

s

Start of File

FileOffsetPointerl

600 -
FileOffsetPCM + 600 B

Example: Plot pointer! (marker) if:

o5

End of File

FileOffsetPointerl = FileOffsetPCM AND FileOffsetPointer] < FileOffsetPCM + 600

\ /)
Fig. A.3 Plot marker calculation.
void RememberMarkers( int Pointerl, int Pointer2,
unsigned long int FileOffsetPCM,
unsigned long int FileOffsetPointerl,
unsigned long int FileOffsetPointer2 )
{
i Pointerl 1=-1 &
FileOffsctPointer] 2 FileOffsetPCM & FileOffsetPointer]l < {FileOffsetPCM + 600) 3
{
Pointer1 = (short)( (FileOffsetPointer] — FileOffsetPCM) );
DrawLine( Pointert + 20, 1, Pointerl + 20, 128, 7 )R
}
i( Pointer2 1=-1 &
FileOffsetPointer2 > FileOffsetPCM & FileOffsetPointer2 < (FileOffsetPCM + 600) )
{

Pointer2 = (short)( (FileOffsetPointer2 — FileOffsetPCM) );

- AS59 —



DrawLine( Pointer2 + 20, 1, Pointer2 + 20, 128, 7 )R

A.2.8 File 1/O

f*Function Prototypes*/

int OpenFile( char *addr_fnamel,char AccessCode

int Create AndOpenFile( char *AddrFName, char AccessCode

int SetFilePointer( int FileHandle, int LowOffset, int HighOffset

int DumpFiletoRAM( int FileHandle, int HighBytes, int LowBytes,

int RAMAddress

int SaveRAMtoFile( int FileHandle, int bytes, int RAMAddress

void closefila( int FileHandle

unsigned long int GetSizeOfFile( int FileHandleClipboard

void Insert( int FileHandle1,
unsigned int File1OffsetLow,
unsigned int File1OffsetHigh,
unsigned long int InsertSize,
int FileHandle2,
unsigned int File2OffsctLow,
unsigned int File2OffsctHigh,
int FileHandle2

void Copy( int FileHandle1,
unsigned int Filel1Offsctlow,
unsigned int File10ffsetHigh,
int FileHandle2,
unsigned int File20ffsetlow,
unsigned int File20OffsetHigh,
unsigned int BytesLow,
unsigned int BytesHigh
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f*Function Open File

OpenFile function opens a file that has been previously created. It accepts two parameters:

1) the address of the ASCIIZ file name (ASCIIZ is the ASCII name of the file followed by a 0).

2) the Access Code,
A FileHandle is returned which can be used for subsequent access to the file. The function calls BIOS int
21h with registers initialized as follows:

ah 3dh function code
al AccessCodefile access attributes
dx AddrFName offset of ASCIIZ path name
Access Code:
al Bits(0-2) type of access
000 rcad
001 write
010 read and write
Bit(3) reserved
Bits(4-6) sharing mode
000 compatibility
001 deny all
610 deny write
011 deny read
100 deny none
Bit(7) inheritance flag
0 child process inherits handle
1 child does not inherits handle
BIOS returns status as follows:
if function successful
CF clear
ax filehandle
if function unsuccessful
CF set
ax crror code
Error Codes:
ax 02h file not found
ax 03h path not found
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Notes: » After opening the file, the file pointer is reset to the beginning of the file,

&

ax 04h no handles available

05h access denied
ax Och invalid access code

int OpenFile( char *AddrFName, char AccessCode )

{

int FileHandle;

_asm {
mov
mov
mov
int
jc
mov
jmp

Error: nop

Return: nop
}

return FilcHandle;

}

ah,3dh
al,AccessCode

dx,AddrFName
2th

FileHandle,ax
Return

[¥Place error code here

/¥End asm routine

*/

/*
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f*Function CreateAndOpenFile

CreateAndOpenFile function either creates a new file or opens and truncates an existing file to zero
length. The function accepts two parameters;

1) the address of the ASCIIZ file name (ASCIIZ is the ASCII name of the file followed by a 0) and
2) the Access Code.

A FileHandle is returned which can be used for subsequent access to the file. The function calls BIOS int
21h function 3ch (create file) with registers initialized as follows:

ah 3ch function code
cx Bit(s) file attribute
0 normal
1 hidden
2 system
3 volume label
4 reserved(0)
5 archive

6-15 reserved(0)
dx offset of ASCIIZ path name
BIOS returns status as follows:
if function successful
CF clear

ax filehandie

if function unsuccessful

CE set
ax error code
Error Codes:
ax 03h path not found
ax 04h no handles available
ax 05h access denied
Notes: Access denied may indicate that there is no room for a directory entry or an existing file
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is read only and can't be opened for output.

The function then calls BIOS int 21h function 3dh (open file) as discussed above.*/

int CreateAndOpenFile( char *AddrFName, char AccessCode )

{
int filehandle;
_asm

Error: nop

Return:

return filehandle;
}

mov
Xor
mov
int
jc
mov
mov
mov
int
jc
mov

jmp

nop

ah,3ch

cX,Cx
dx,AddrFName
21h

Error

ah,3dh
al,AccessCode
dx, AddrEName
21h

Error
filehandle,ax
Return

[*create file with normal attribute

/*now open the file

f*Place error code here

/¥End asm routine

Jf¥End function

*/

*/

*f

*/

*/
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[*Function Close File

Function closefile, BIOS int 21h function 3eh, flushes all internal buffers associated with the file to
disk, closes the file, and releases the handle for reuse. If the file was modified the time and date stamp are

updated. The function accepts one parameter, FileHandle.
The function calls BIOS int 21h with registers initialized as follows:

ah 3ch function code
bx FileHandle file handle

*BIOS returns status as follows:

if function successful

CF clear
if function unsuccessful
CF set
ax error code
Error Code:
ax 06h invalid handle

*f

void closefile( int FileHandle )

{
_asm {
mov ah,3¢h
mov bx FileHandle
int 21h
ic Error
Error: nop f¥Place error code here
} /*End asm routine
} /*End function

*
*/
*/

[*Function Set Flle Pointer

Function SetFilePointer, BIOS int 21h function 42h, sets the file pointer relative to either the starg
of file, the end of file, or the current position. The function calls BIOS int 21h with registers initialized as
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follows:

£,

bx
cx
dx

BIOS returns status as follows:

42h
method code:
00h
01h
02h

function code

relative method

absolute from start of file

signed offset from current file position
signed offset from end of file

FileHandle file handle
LowOffset most significant 16 bit offset
HighOffset least significant 16 bit offset

if function successful

CF clear
& most significant 16 bit offset from start of file
ax least significant 16 bit offset from start of file
if function unsuccessful
CF set
ax error code
Error codes:
ax 01lh invalid refative method
06h invalid handle
Notes: This function uses a long integer (HighOffset concatenated with the LowOffset) to set
the file pointer, The next byte read or written to the file will be at the new file pointer dx:ax relative from
the start of the file. */
int SetFilePointer( int FileHandle, int LowOffset, int HighOffset )
{
_asm {
mov ax,4200h f*ah = 42h is the function number *f
mov bx,FileHandle [*al = 0 ptr offsct start of file *f
mov cx, HighOffset [*Most significant half of offset */
mov dx,LowOffset [*Least significant half of offset */
int 21h
joc Return f*carry = 1 means crror *f
jmp Error
Error: nop f*place error code here */
Return:
} /*End asm routine */
} /*End Function */
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/*Function Dump A File to RAM

Function DumpFiletoRAM, BIOS int 21h function 3fh, transfers data from a file to RAM. The
function accepts 3 parameters:

1) the FileHandle of the file of interest,

2) the number of bytes to transfer, and

3} the first address (RAMAddress) of RAM where the data will be dumped.
The data from the file is retrieved starting from the current file pointer position. The function calls BIOS
int 21h with registers initialized as follows:

ah 3fth function code

bx FileHandle file handle

cx bytes number of bytes to read

dx RAMAddress Address of first RAM location

BIOS returns status as follows:
if function successful

CF clear
ax number of bytes transferred
if function unsuccessful

CF set

ax error code
Error Codes:

ax 0sh access denied

06h invalid handle

Notes: If the CF = 0 but ax = 0, then the file pointer was at the end of file. *f

int DumpFiletoRAM( int FileHandle, int HighBytes, int LowBytes,
int RAMAddress )

{
_asm {
mov ah,3fh fread function number */
mov bx, FileHandle
mov dx,RAMAddress f*offset of the first RAM location *f
mov cx,LowByles f*read bytes from file FileHandle *f
ing 21h
jnc Return /*1 means error: ax has error code *f
Eror: nop f*place emror code here *f
Return;
} /*End asm routine */
} /¥End Function */
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[FFunction Save RAM Area to Disk

Function SaveRAMtoFile, BIOS int 21h function 40h, transfers data from RAM to disk(file). The

function accepts 3 parameters:

1} the FileHandle of the file of interest,

2) the number of bytes to transfer, and

3) the first address (RAMAddress) of RAM where the data is located.
The data from RAM is written to the file starting from the current file pointer position. The function calls
BIOS int 21h with registers initialized as follows:

ah 40h function code
bx FilecHandle file handle
cx bytes number of bytes to read
dx RAMAddress Address of first RAM location
BIOS returns status as follows:
if function successful
CF clear
ax number of bytes transferred
if function unsuccessful
CF set
ax error code
Error Codes:
ax 05h access denied
06h invalid handle
Notes: If CF = 0 but ax < cx, then the remaining data, ax - ¢x, could not written because of

insufficient space on disk.

int SaveRAMt¢toFile( int FileHandle, int bytes, int RAMAddress )

{

_asm {
mov
mov
mov
mov
int
jnc

Emror: nop

Return: nop
}

}

ah,40h

bx FileHandle
dx , RAMAddress
cx,bytes

21h

Return

[write function number

f¥dx is the 1st RAM address
fwrite bytes of data to disk

f4C=1 means error
f¥place error code here

/¥End asm routine
/*End Function

*f

*
*

*/
*/

*/
*f
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[¥Function Copy copies BytesHigh:BytesLow bytes starting at location Filel1OffsetHigh:Flle10OffsetLow
from file FileHandlel and writes these bytes to FileHandle2 starting at location

File20ffsetHigh:Flle2OffsetLow. */
BytesHigh:BytesLow 32 bit unsigned size of bytes to copy.
FileHandlel Handle which references the source file.
FilelOffsetHigh:Flle10ffsetLow 32 bit offset of source file.
FileHandle2 Handle which references the destination file.
File20ffsetHigh:Flle2OffsetLow 32 bit offset of destination file.
OuterLoop Number of 8192 (8K) blocks to be copied.
InnerLoop 8K bytes to be copied.
SmaliInnerLoop Remainder upon division of 8K.
void Copy( int FileHandlel,

unsigned int FilelOffsetLow,

unsigned int File1OffsetHigh,

int FileHandle2,

unsigned int File2OffsetLow,

unsigned int File2OffsetHigh,

unsigned int BytesLow,

unsigned int BytesHigh }
{
unsigned int SmallinnerLoop;
unsigned int InnerLoop;
unsigned int QOuterLoop;

unsigned char Data[8192];

unsigned char *StartofData = &Data[0];
OuterLoop = BytesHigh*8 + BytesLow/8192;
SmalllnnerLoop = BytesLow%8192;

InnerLoop = §192;

asm {
call
cmp
jz
Start: call
call

jnz
fin: cmp
jz

mov

SetPointer
OuterLoop,0

fin
ReadFile

WriteFile
OuterLoop

Start
SmalllnnerLoop,0
rin
dx,SmalllnnerLoop
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mov
mov

mov

jmp

InnerLoop,dx
QuterLoop,lh
SmalllnnerLoop,0
start

f*Proceedure SetPointer sets the file pointer to location File10ffsetHigh:File10ffsetl.ow with respect to the
start of file referenced by FileHandlel, which is the source file.

SetPointer: mov
mov
mov
mov
int
jnc

Error: ret

Return: ret

ax,4200h f*ah = 42h is the function number
bx, FileHandlel f*al = 0 ptr offset start of file
cx,FilelOffsetHigh  /*Most significant half of offset
dx FilelOffsetLow [¥Least significant half of offset
21h
Return f¥carry = 1 means error

f*place error code here

*/
*/
*/
*/
*/

*f
*/

f*Proceedure WriteFile writes InnerLoop bytes located at RAM address StartofData to disk referred to by
FileHandle2, which is the destination file.*/

WriteFile: mov
mov
mov
mov
int

jc

et
WriteError: et

ah,40h fWrite function number

bx FileHandle2

dx,WORD PTR StartofData f¥dx is the 1st RAM address
cx,Innerl.oop MWrite InnerLoop bytes of daia to disk
2th

WriteError f*C=1 means error,

/#Return to calling program.
¥Place error code here.

*/

*/
*/

*
*
*f

[*Proceedure ReadFile reads Innerloop bytes from file referenced by FileHandlel to RAM starting at

location StartofData.

ReadFile: mov
mov
mov
mov
int
jc
ret

ReadError: ret
}

}

ah,3fh f*Read function number

bx, FileHandlel fFileHandlel references source file.
dx,WORD PTR StartofData *Offset of first RAM location,
¢x, InnerLoop *Read InnerLoop bytes from file.

21h

ReadErmror  *1 means error: ax has error code.
/*Return to calling program.
f*Place error code here.
/*End asm routine
/*End Function Copy.
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/*Function LongToShorti converts a 32 bit unsigned long integer to two 16 bit short integers. FileOffset =

FileOffsetHigh:FileOffsetLow. */
void LongToShort( unsigned int long *FileOffset,
unsigned int *FileOffsetLow,
unsigned int *FileOffsetHigh )
{
_asm {
Xxor si,si
Xor di,di
mov 81, WORD PTR FileOffset
mov di,WORD PTR FileOffsetLow
mov ax,[si]
mov [di].ax
mov di,WORD PTR FileOffsetHigh
mov ax,[si+2]
mov [dil,ax
}
}

MFunction GetSizeOfFile returns a 32 bit size of file Flichandle. This function calls DOS interrupt 21
function 42h. This DOS routine moves the file pointer by cx:dx times relative to (specified by register al)
the start of the file, the current file pointer position, or the end of the file. If the routine is successful, the
new file pointer position is returned in registers dx:ax relative to the starting of the file. By specifying
moving the file pointer relative to the end of the file by 0 times, then dx:ax actually returns the size of the
file. *f
unsigned long int GetSizeOfFile( int FileHandle )

{

unsigned long int SizcofFile = 0;

unsigned long int  *SizeFile = &SizeofFile;

_asm {
mov di,WORD PTR SizeFile
mov ax,4202h f*ah = 42h is the function number */
mov bx,FileHandle f*al=02 specifies moving relative to EOF. */
mov cx,0 f*Most significant half of offsct=0. */
mov dx,0 [*Least significant half of offset=0. *f
int 21h
jnc rin f*Carry = 1 means error. */
jmp crrorcode
erorcode: nop f*Place error code here, *f
rn; mov [di],ax f¥Load least significant 16 bit size first. *f
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inc di

inc di
mov [dil.dx /*Most significant 16 bit size. *f
} /¥End asm routine. *f

return SizeofFile;

} /*End function GetSizeofFile. *f
/*Function Insert copies 32 bit InsertSize bytes from file FileHandlel starting from
File1OffsetHigh:Flle1OffsetLow from file FileHandlel and inserts these bytes to FileHandle2Bak at
location File20ffsetHigh: Flle2OffsetLow. The size of file FileHandle2Bak increases by Insertsize bytes.

BytesHigh:BytesLow 32 bit unsigned size of bytes to copy.
FileHandlel Handle which references the source file.
File1OffsetHigh:Flle10ffsetLow 32 bit offset of source file,
FilcHandlc2 Handle which references the destination file.
FilcHandle2Bak Backup of file referred to by FlleHandle2.
File2OffsetHigh:File2OffsetlLow 32 bit offset of destination file. *f
void Insert( int FileHandlel,
unsigned int FilelOffsetLow,
unsigned int Filel1OffsetHigh,
unsigned long int InsertSize,
int FileHandle2,
unsigned int File2OffsetLow,
unsigned int File20ffsetHigh,
int FileHandle2Bak )
{
extern unsigned long int filesize;

unsigned long int File20ffset;

unsigned long int File3Offset;

unsigned int InsertSizeLow, InsertSizeHigh,;
unsigned int File30ffsctLow, File3OffsctHigh;

Copy( FileHandle2, (unsigned int)0, (unsigned int)0, FileHandle2Bak, (unsigned int)0, (unsigned int)0,
File20ffsetLow, File20{fsctHigh );

LongToShort{ &InsertSize, &InseriSizelow, &InsertSizeHigh );

Copy( FileHandlel, (unsigned int)0, (unsigned int)(, FileHandle2Bak, File20ffsetLow+1,
File20ffsetHigh, InsertSizelow, InsertSizeHigh );

File20ffset= ( unsigned long int JFile20{fsetLow + ( unsigned long int )File20ffsetHigh*65535;
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File3Offset = File2Of{set + InsertSize;

LongToShor( &File3O{fset, &File30ffsetLow, &File30ffsetHigh ),
InsertSize = filesize/{(unsigned long int)2) — InseriSize;

LongToShort( &InsertSize, &InsertSizeLow, &InsertSizeHigh );

Copy( FileHandle2, File20ffsctLow, File20ffsetHigh, FileHandle3, File3OffsetLow, File30ffsctHigh,
InsertSizeLow, InsertSizeHigh );

} /*End function Insert. */
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A.2.6 Graphics

#include <graph.h>

#include <stdio.h>

#include <process.h>

struct videoconfig myscreen,;

void  PlotData( int FileHandle, unsigned int FileOffset_Low, unsigned int FileOffset_High,
int Byte_Size, unsigned char *StartofData, unsigned char *Data, unsigned long int FileOffset };
void  PrintGrahicsText(int Row, int Col,char *Addr_Text);

void DrawRectangle( int FillFiag, int x1, int y1, int x2, int y2 );

void  ClearTextLine( int Row, int Col, int Spaces );

void SetFilcPointer( int FileHandle, int LowOffset, int HighOffset );

void  FiletoRAM( int FileHandle, int HighBytes, int LowBytes, int RAMAddress );

void  DrawOscilliscope( void ;

void DrawPlotmenulcon( void );

void PrintNumberPlayPages( unsigned int OuterLoop };

void  DrawLine( int x1, int y1, int X2, int y2, int Color };

void graphics_mode( void )
{
_getvideoconfig( &myscreen ),
switch( myscreen.adapter )
{
case _CGA:
_setvideomede( _HRESBW );
break;
case _OCGA:
_setvideomode{ _ORESCOLOR };
break;
casec _EGA:
case _OEGA:
if( myscreen.monitor == _MONO )
_setvideomode( _ERESNOCOLOR );
else
_setvideomode( _ERESCOLOR );
break;
case _VGA:
case _OVGA:
case _MCGA:
_setvideomode( _VRES2COLOR );
break;
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case _HGC;
_sctvideomode( _HERCMONO );
break;
default:
printf( "This program requires a CGA, EGA, VGA, or Hercules cardw" );
exit(0);
}

_getvideoconfig( &myscreen );

void DrawLine{ int xI, int y1, int x2, int y2, int Color )

{

int PrevColor = _getcolor();
_setcolor{ Color );
_moveto{ x1, y1 );
ineto( x2,y2 ),
_setcolor( PrevColor );

}

void PrintNumberPlayPages( unsigned int OuterLoop )

{
_Settextposition( 23,14 );
_outtext(" "),
_settextposition{ 23,14 );
printf( "%d", CuterLoop ),
}

void DrawPlotmenulcon( void )

{
unsigned char RightArrow][] = { Ox1a,0 };
unsigned char LeftArrow[] = { 0x1b,0 };

_rectangle{_GBORDER,10,160,620,170);
_rectangle(_GBORDER,70,174,100,184);
_settextposition{ 23,11 };

_outtext( LeftArrow );

_rectangle( GBORDER,130,174,160,184);
_settextposition( 23,19 );

_onttext( RightArrow );
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_rectangle(_ GBORDER,100,174,130,184);
_settextposition{ 23,14 };
_outtext{ "1" );

_rectangle(_GBORDER, 10,174,70,184);
_settextposition( 23,4 );
_outtext( "Play" );

_rectangle{_GBORDER,200,174,250,184);
_seitextposition( 23,27 );
_outtext( "Copy" );

_rectangle(_ GBORDER,260,174,310,184);
_settextposition{ 23,35 );
_outtext( "Cut" );

_rectangle{_GBORDER, 320,174,380,184);
_settextposition( 23,42 ;
_outtext( "Paste” );

_rectangle(_GBORDER, 560,174,620,184);
_settextposition( 23,73 );
_outtext( "Main" );

void DrawOscilliscope(void)

{

int i, j;

_rectangle{ _GBORDER, 15,0,630,129 );
for(j=2;j<=122;j=j+20)

{
for (i=12;1 <=18; i++)
{
_setpixel( i,j );
_setpixel( i + 615,j);
}
}

_scttexiposition( 18,33 );
_outtext( "Time (seconds)" );
_scttexiposition( 1,0 );

- A76 —



printf("5\n \n \nA\nm\np\ninisnt\nundnehn \n \n \n0");

}
void PlotData( int FileHandle, unsigned int FileOffset_Low,
unsigned int FileOffset_High,
unsigned char *StartofData,
unsigned long int FileOffset
{
int j =20, i;
SetFilePointer( FileHandle, FileOffset_Low, FileOffset_High );
DumpFiletoRAM( FileHandle, 0, Byte_Size, (int)StartofData );
_setviewport( 0,0,620,199 );
for(i=0;i<=599% i++)
{
i=j+§
_setpixel( j, (( unsigned int Y(*( Data + i }))/2);
}
_settextposition{ 18,2 );
_outtext( " "%
_settextposition( 18,2 );
printf( "%.3f", (double){FileOffset)/8192.0 ),
_settextposition( 18,73 );
_outtext( " i
_settextposition( 18,73 );
printf( "%.31", (double)(FileOffset)/8192.0 + .073 );
}

void ClearTextLine( int Row, int Col ,int Spaces )
{
int i;
for{ i = 0; i < Spaces; i++)
{
_settextposition( Row, Col + i );
_outtext( " " );

int Byte_Size,
unsigned char *Data,

void ClearGraphicsScreen( int ViewPortFlag,int xI,int yl,int x2,int y2 )

{
_setviewport{ x1,y1,x2,y2 );

_clearscreen( ViewPortFlag ); /*ViewPortFlag=1=_GVIEWPORT*/
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void DrawRectangle( int FillFlag,int x1,int yl,int x2,int y2)
{

_setviewport( 0,0,620,199 );

_rectangle(FillFlag,x1,y1,x2,y2); /*fillFlag=3=fill intcrior*/
}
void PrintGrahicsText( int Row, int Col, char *Addr_Text )
{

_settextposition( Row, Col );

_outtext{ Addr_Text );
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A.2.7 Mouse

This section lists the functions associated with the mouse. Figure M1 shows a typical sequence of
gvents in a mouse polling routine.

Reset Mouse

J Get Mouse . RS
Show Mouse Position And Lef‘tN &guzlfgéxig E)%rwn
Status
V. N No
/ Mouse In\ Get Mouse . ;
¢ Hot Position Position And Wait Flag: Wait For
And Status Left Mouse ButtonUp

/ Left Mouse

No \
N\ Button Up? 4

(Process The Mouse Selection)

Figure A.1: Mouse polling routine. 1) Reset the Mouse, 2) Show the Mouse, 3) Wait for left mouse
button down, then check whether mouse is in hot position, 4) If in hot position, wait for mouse button
up, then check again whether mouse is in same hot position, and 4) If in same hot position, then process
mouse selection, else start the polling routine at 1),
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int ResetMouse( void )

{
_asm{

xor ax,ax

int 33h

} f¥end asm routine. */
} f*end function ResetMouse. *f

int ShowMouse( void }

{
_asm{

mov ax,l

int 33h

} /*end asm routine. *f
1 fFend function  Show mouse. *f

J¥Function Get Mouse Position And Button Status

The GetMousePositionAndButtonStatus function returns the address of an array containing the
mouse position in x,y coordinates.
MouseInfo: a pointer to the mouse information array.
Mouselnfo[0-1] contains the x and y coordinates of the Mouse,
Mouselnfo[2] contains the Button Status:

Mouselnfo{2] =1 Left button is down
=2 Right button is down
=3 Centre button is down

WaitFlag: a flag instructing the function to wait for a specific Mouse event and then return,
WaitFlag = Wait until a Mouse button is released.
=1 Wait until the left button is pressed.

=2 Wait until the right button is pressed.
= ~1 Do not Wait, return with position and status. */
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void GetMousePositionAndButtonStatus( int *MouseInfo, int WaitFlag )

{
_asm{
PollMouse: mov  di,Mouselnfo
mov  ax,3
int 33h
mov  [dil,cx /* x coordinate *f
inc di
inc di
mov  [dildx /* y coordinate *f
inc di
inc di
mov  [di]bx /* Mouse press status */
cmp  WaitFlag,bx M*Wait for specified Mouse event */
je Retarn
jmp PollMouse
Return:
} f¥end asm routine. */
} fFend function . */

/*GetMouseSelection polls the mouse for a selection (Left Mouse Click) of a pre—specified (Hotboxes
array) Item. The caller specifies the 'hot' rec tangles and the number of hot rectangles, Hotboxes points to
an array containing NumberHotBoxes of x1,y1,x2,y2 coordinates of the hot rectangles.

The coordinates must be in the format shown in Figure A.1:

xl, y1

Hot Box

x2,y2

Fig A.2 Mouse hot box coordinate specification.

int GetMouseSelection( in{ *HotBoxes, int NumberHotBoxes )

{
int MouseInfo[3], Temp{3], i, j;
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while( 1) f*infinite loop. There is an exit.

{
GetMouscPositionAndButtonStatus{ &Mouselnfo[0], 1 );

for(i=0; i <= NumberHotBoxes — 1; i++ )

{

if{ { MouseInfo[0] >= *( HotBoxes + 4% )} &
( MouseInfo[0] <= *( HotBoxes + 2 + 4*i) )&
{ Mouselnfof1] >= *( HotBoxes + 1 + 4*1) )&
{ Mouselnfo[1] <= *{ HotBoxes + 3 + 4*i) })

{
GetMousePositionAndButtonStatus( &Mouselnfo[0], 0);

if( ( Mouselnfo[(] >= *( HotBoxes + 4*i )) &
{ MouseInfo[0] <= *{ HotBoxes + 2 + 4*i) )&
{ MouseInfo[1] >= *( HotBoxes + 1 + 4*i) )&
( MouseInfo[1] <= *{ HotBoxes + 3 + 4*i}))

{
return i + 1; f¥return 1o caller with sclection.
} fend if.
} fend if,
} f*end for,
} f¥end while.
} f*end function,
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A28 Memory
Function Prototypes

int AllocateMemory( int Paragraphs );
int ReleaseMemory( int Buffer );

Allocate Memory Function

The Allocate Memory function provides a method of dynamically reserving memory in the RAM
system. The main motivation for using dynamic memory allocation is to increase the capacity of the
compiler and to improve memory usage efficiency.

Dynamic memory allocation improves the efficiency of local variables. Inside a C function, an
object (for example, single variables, arrays, or structures) may only be needed for a short time or
intermittently through the course of the function execution. Moreover, the size of variables required by a
function may be larger than the maximum size set by the compiler. The Microsoft Quick C compiler
allows for a maximum 32K storage of variables per function. To overcome both of the above problems,
the idea is to bypass the high level language and request memory from the operating system itself, After
the variable's usefulness, the allocated memory can be released for use by other variables, Thus, the RAM
system is used more efficiently and the size limitation of the compiler is virtually exceeded.

For assembly language programmers, the memory allocation concept is perhaps more imporiant. A
well behaved program should never assume that some area in RAM is not being used. There may be other
resident programs working in the background and using that memory. Therefore, it is a wise choice to
request memory from the operating system whenever system RAM is used.

While C has a library of memory allocation routines, I found that by using BIOS to write my own
allocation functions, 1 had more control of the memory system. To allocate memory call the function
AllocateMemory with the amount of memory specified through the parameter Paragraphs. A Paragraph is
16 bytes of memory. For ¢xample, to allocate 8192 (8K) bytes of memory, pass the integer 512 to the
function, AllocateMemory. If the function is successful, it returns the segment address of the requested
block of memory. The block of requested memory is contiguous.

Call BIOS int 21h with the following registers:
ah 48h
bx number of requested paragraphs

BIOS returns with the following registers:
If the call is successful,
Carry Flag clear
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ax

segment address of the allocated block

and the address of the allocated block is ax:0000, or as shown in the code below, BufSeg:0000.
If the call is unsuccessful,

Error Codes:

Notes:

Carry Flag
ax

bx

ax 07h

set
Error Code
size in paragraphs of the largest available block

memory control blocks destroyed

08h insufficient memory

If the BIOS call fails, the program can try allocating a number of blocks of size specificd by

register bx and still, perhaps, get the same size of memory originally requested. However, the allocated

memory would not be contiguous.
The default allocation strategy of DOS is to choose the 'first fit". This strategy may be changed
using BIOS int 21h function 58h[].
The allocated block may be released using BIOS int 21h function 49h,

int AllocateMemory( int Paragraphs )

{

int BufSeg;
_asm{
allocatemem:

ErrorAllocate;

- Return:

return BufSeg;

}

mov
mov
int
jc
mov
jmp
mov

ah,48h
bx,Paragraphs
21h
ErrorAllocate
BufSeg,ax
Return
ErrorFlag,-1
ErrorFlag

f*allocate memory block function number
*Paragraphs*16 = Bytes requested

#*If Carry Flag set, go to error code
f*save segment of new block

f*Place error code here
/*End asm statement

FReturn either segment or error code
f¥End function AllocatleMemory

*/

*
*

*
*/

*
*f
*f
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Release Memory Function

The Release Memory function is the companion of the above allocate memory function. This
function frees a memory block for subscquent reuse by other programs. The function expects through its
integer type parameier the segment address of the memory block to be released. The function returns an
integer indicating the success or failure of the call. Internally, the function calls BIOS int 21h function
45h:
Call BIOS int 21h with the following registers:

ah 4%h
€8 segment address of block to be released
BIOS returns with the following registers:
If the call is successful,
Carry Flag clear

If the call is unsuccessful,
Carry Flag set
ax Error Code
Error Codes: ax 07h memory control blocks destroyed
0%h invalid memory block address
Notes: This function assumes the segment address passed to it is a valid memory block
previously allecated. Care should be exercised as not all invalid block addresses are detected.

int ReleaseMemory( int Buffer }

{

int Code;

_asm{

freememory: mov  ah,49h f¥free memory block function number */
push  e¢s [Remember the carrent es */
mov  es,Buffer fsegment of block to be released *f
int 21h
jc FreeMemError f*Error if Carry Flag is set *f
mov  Code,ax /¥Success code *f
pop es /¥Recall the previous es */
jmp Return

FreeMemError:mov Code,ax f*Failure code */
pop es /*Recall the previous s */

Return: nop
} f*End asm statement *f

return Code; f*Return either success or error code */

1 /*End function AllocateMemory */
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A.2.10 Data Conversion

#include<menu.h>
#include<graph.h>
#include<string.h>
#include<matloc.h>
#include<stdlib.h>
#include<fprotyp3.h>

int SubMenuCodeData( void )
{

int retl, Flag;

struct ITEM ml[]=

{
/* Highlight Char Pos

5, "From ADPCM to PCM", I A 0
5, "From PCM to ADPCM", f* P 0
0, "Other", f* 0 0
0,0

IH

ClearBox(4,35,9,54,5,1);

retl = Menu(4, 33, mi, 0);

switch(ret1)
{
case ESC: return ESC;
case U_RT: ClearTextWindow( 2,10,10,47,_TBLUE ); return U_RT;
case U_LT: ClearTextWindow( 2,10,10,47,_TBLUE ); reumn U_LT;
case 0 : Flag = Convert_ ADPCM_PCMY( ); return ESC;
case 1 : Flag = Convert_PCM_ADPCMY( }; retumn ESC;
casc 2 : break;
}

}

int Convert_ ADPCM_PCM( void )
{

extern unsigned long int filesize;

extern unsigned long int FileSize[10];
extern unsigned int SizeOfFile[20];

extern unsigned int FileSizeLow;

extern unsigned int FileSizeHigh;

struct ITEM m1[10];
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int FHandleRead, FHandleWrite, Flag, retl;
char FNameRead[ 100 ], FNameWritef 100 ];
char *Addr_FNamcRe¢ad = &FNameRead[ 0 ];
char *Addr_FNameWrite = &FNameWrite[ 0 1;
char Header([35];
unsigned char AccessCode = Read_Write;
strepy( Header, "Choose a file for conversion:"); f*strings declared as "string"*/
strepy( Addr_FNameRead, "c:\gc2%enVNcfilesW' ); fare automatically NULL  */
strepy{ Addr_FNameWrite, "c:\qc2\WkenWN\cfiles\' ), terminated */
Box(10,10,10,60);
_settextposition( 11,28 );
_settextcolor( _TBLACK );
_ouitext( Header };
Flag = GetFileSelection{ m1, 1 );
switch({ Flag )
{
case ESC: return ESC;
default: break;
}
retl = Menu(12, 15, m1, 0);
switch(retl)
{
case ESC: return ESC;
case U_RT: ClearTextWindow( 2,10,10,47,_TBLUE ); return U_RT;
case U_LT: ClearTextWindow( 2,10,10,47,_TBLUE ); return U_LT;
default:
strepy( (Addr_FNameRead +18), m1[ret1).achltem );
strepy( (Addr_FNameWrite +18), m1[ret1]).achliem );
strepy((Addr_FNameWrite + strlen{Addr_FNameWrite)-3),"pcm™);
filesize = FileSize[ret1];
FileSizeLow = SizeOfFile[2*retl]:
FileSizeHigh = SizeOfFile[2*retl + 1];
break;

FHandleRead = OpenFile( Addr_FNameRead, AccessCode );
FHandleWrite = Create AndCOpenFile( Addr_FNameWrite, AccessCode );
ADPCMioPCM( FHandleRead, FHandleWrite )

closefile( FHandlcRead );

closefile{ FHandleWrite );
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int Convert_ PCM_ADPCM( veid )

{

extern unsigned long int filesize;

extern unsigned long int FileSize[];

extern unsigned int SizeOfFile[];

extern unsigned int FileSizeLow;

extern unsigned int FileSizeHigh;

struct ITEM m1[10];

int FHandleRead, FHandleWrite, Flag, retl;

char FNameRead[ 100 ], FNameWrite[ 100 J;

char *Addr_FNameRead = &FNameRead[ 0 J;

char *Addr_FNameWrite = &FNameWrite[ 0 ];
char Header[30];

unsigned char AccessCode = Read_Write;

strepy( Header, "Choose a file for conversion:" );
strepy( Addr_FNameRead, "c:N\gc2%kenWcfiles\' };
strepy( Addr_FNameWrite, "c\N\qc2WkenNcfiles\" );
Box(10,10,10,60);

_settexiposition{ 11,28 );

_settexicolor( _TBLACK );

_outtext{ Header );
Flag = GetFileSelection( m1, 0 );
switch( Flag)
{
case ESC: return ESC;
default: break;
}
retl = Menu(12, 15, m1, 0);
switch(ret1)
{
case ESC: rcturn ESC;
case U_RT: ClearTextWindow( 2,10,10,47,_TBLUE }; return U_RT;
case U_LT: ClearTextWindow( 2,10,10,47,_TBLUE ); return U_LT;
default: strepy{ (Addr_FNameRead +18), m1{ret1].achltem );
strepy( (Addr_FNameWrite +18), m1[ret1].achltem );
strepy((Addr_FNameWrile + strlen{Addr_FNameWrite)-3),"adm" );
filesize = FileSize[retl];
FileSizeLow = SizeOfFile{2%ret1];
FileSizeHigh = SizeOfFile[2*retl + 1];
break;
}
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FHandleRead = OpenFile{ Addr_FNameRead, AccessCode );
FHandleWrite = Creatc AndOpenFile{ Addr FNameWrite, AccessCode );
PCMioADPCM( FHandleRead, FHandleWrite ),

closefile( FHandleRead );

closefile( FHandleWrite );

}

APCMioADPCM function converts ADPCM formatied data to PCM formatted data. The file pointed to

by FHandleread is converted to PCM format and saved in the file pointed to by FHandleWrite.*/

void PCMtoADPCM( int FHandleRead, int FHandleWrite )

{

extern unsigned int FileSizeLow;

extern unsigned int FileSizeHigh;

unsigned int bytes = 8192;
unsigned int bytesdiv2;
unsigned int BlockCount;

unsigned char PCMData[8192], ADPCMData[4096];
unsigned char *Addr_ ADPCM = & ADPCMData[0];
unsigned char *Addr_PCM = &PCMData[0];

unsigned char X1;
unsigned char X2;

unsigned char PosLookUp[256];
unsigned char NegLookUp[256];

unsigned char Multiplier;

bytesdiv2 = bytes/2;

BlockCount = FileSizeLow/bytes + {short){((long)(FileSizeHigh*65536)/bytes);

_asm {
call
read_PCM: call

Initialization:  mov
mov
mov
mov
Xor
xor

convert: mov
maov
inc

mov

LookUpTablelnit
read_PCM_file

cx,bytes f*cx counts number of ADPCM bytes
Multiplier, lh
di,WORD PIR Addr_ADPCM  f*di=address of ADPCM

si, WORD PTR Addr PCM [Esource index = address of PCM
ax,ax

bx,bx

bl,[si] fFbl=X1

X1,bl

si

al,[si] fFal=X2
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ascendingl:

NotClipping1:

descendingl:

push
mov
cmp
jb
sub

mov
mov
mul
mov
cmp
jb
mov

mov
Jjmp

sub
mov
mov
mov
mul
mov
cmp
jb
mov

NotClipping2: or

nextnibble:

ascending?;

mov

pop
mov
mov
inc
mov
push
mov
cmp
jb
sub

mov
movy

si
X2,al
al,bl
descendingl
al,bl

si,ax

dl,PosLookUplsi]
Multiplier

Multiplier,di

al,7h
NotClipping1

al,7h

[dil,al

nexinibble

bl,al
al,bl
si,ax
dl,NegLookUpl[si]
Multiplier
Multiplier,dl
al,7h
NotClipping2
al,07h
al,8h
[di].al

si

bl,[si]
X1,bl

si

al,[si]

si

X2,al

al,bl
descending2
al,bl

si,ax
dl,PosLookUplsi}

[eremember si

f*al-bl: X2-X1

fFal=al - bl=X2 - X1

/*Get new multiplier.

fFax = Multiplier(al)

f*al -7

/*Store first nibble.

f¥bl = bl - al

*Swap accumulators,

f*Get new multiplier,
[*ax = Multiplier{al)

f*al -7

f=Show descending character.
f*Store first nibble.

Fol=X1

fal=X2

S¥remember si

f¥al - bl: X2 -X1

fral=al-bl=X2-X1

*Get new multiplier.
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mul
mov
cmp
jb
mov
NotClipping3: shl
shi
shi
shl
or
jmp
convertl: jmp
descending?: sub
mov
mov
mov
mul
mov
cmp
jb
mov
NotClippingd: shl
shl
shi
shi
or
or
looper: inc
Pop
loop

Write_PCM: call
dec

je
jmp

Multiplier
Multiplier,dt
al,7h
NotClipping3
al,7h
al,1
al,1
al,l
al,l
(di),al
looper
convert
bl,al
al,bl
si,ax
dl,NegLookUp/si]
Multiplier
Multplier,dl
al,7h
NotClipping4
al,07h
al,1
al,1
al,1
al,1
al,80h
[di].al
di
si
convertl

Write PCM_file
BlockCount

rin
read PCM

fFax = Multiplier(al)

[eal -7

/*Store second nibble.

f*bl = bl - al

/*Swap accumulators.

[*Get new multiplier.
f*ax = Multiplier(al)

f*al -7

*Show descending character,
/*Store second nibble,

fFrecall si

*/

*/

*

*

*f

*/
*/

*

*/
*/

*/

JERF Rk ok olokiok dolooklokokokdokkdokokok sk sk ook sk siolok sk ok sokskok ok sk dofoR sk ko s ok ko o

LookUpTableInit:mov
mov
mov

mov

PosL.ookUp{0],0
PosLookUp[11,0
PosLookUp|[2],1
PosLookUp({3],1
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mov PosLookUp[4],1
mov PosLookUp[5],2
mov PosLookUp[6],2
mov PosLookUp[7],3
mov NegLookUp{0],8
mov NegLookUp{1],8
mov NegLookUp[2],9
mov NegLookUp[31,9
mov NegLookUp[4],9
mov NegLookUp[5],0ah
mov NeglookUpl6],0ah
mov NegLookUp([7],0bh
ret

/*************************************************************************************/

/*************************************************************************************/

read PCM_file: mov ah,3fh f*read function number *f
mov bx,FHandleRead /¥handle to file C\gc2\ken\*.pcm  */
mov dx,WORD PTR Addr_ PCM f*address of RAM for file dump */
mov cx,bytes f*read bytes from file *.pcm */
int 21h
jc readerror [*C =1 error *f
ret Freturn to caller */
readerron: ret {*place read file error code here */

/*************************************************************************************/

/*************************************************************************************/

Write_PCM_file: mov ah,40h Jf*write function number *f
mov bx FHandleWrite
mov dx,WORD PTR Addr_ADPCM  /*offset of 1st RAM location *f
mov cx,bytesdiv2 Fwrite bytesdiv2 data to disk *f
int 21h
jc writeerror f*c =c 1 means error */
et

writeerror; ret f*place write file error code here *f

/*************************************************************************************/

rin; } f¥end asm #f
free(Addr_PCM);

free(Addr_ADPCM);

} f*end function *f
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/*ADPCMtoPCM function converis ADPCM formatted data to PCM formatted data. The file pointed to

by FHandleread is converted to PCM format and saved in the file pointed to by FHandleWrile,

void ADPCMtoPCM({ int FHandleRead, int FHandleWrite )

{

extern unsigned int FileSizeLow;

extern unsigned int FileSizeHigh;

unsigned int Xn = 0x0200;

unsigned int Temp = 0x0200;

unsigned char M = 0x00;

unsigned char PCM[8192], ADPCM[4096];

unsigned char *Addr ADPCM = &ADPCMI[0];

unsigned char *Addr PCM = &PCMI0];

unsigned char PosQuantStepSizeTable[8] = { '0°,0,1,1,1,2,2,3 };
unsigned char NegQuantStepSizeTable[8] = { '0,0,1,1,1,2,2,3 };
int BlockCount = FileSizeLow/4096 + FileSizeHigh*16;

_asm {

mov
mov

recad ADPCM: mov
mov
mov
mov
int
jnc

jmp

Initialization: mov
nov
mov
push
mov

continue: pop
mov
mov
inc
push
and
test

jz

PosQuantStepSizeTable[0],0
NegQuantStepSizeTable[0],0

ah,3fh f*read function number
bx,FHandleRead

dx,WORD PIR Addr ADPCM  /*offset of 1st RAM location
cx,4096 Mread bytes from file FHandleRead
21h

Initialization /*C=1 ERROR

rin

¢x, 4096 f*cx counts number of ADPCM bytes
di,WORD PTR Addr_PCM f*di = address of PCM

si, WORD PTR Addr ADPCM  f*si = address of ADPCM
si
bx,WORD PTR Xn /*1st PCM byte is assumed to be 0x80

si

al,[si] /*al is working register
di,al f#dl is temporary storage
si [*point to next adpcm byte
si

al,0fh f*al=Dm and test sign bit
al,08h [*test sign bit

add_nib_1
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sub_nib_1:

noiclippingl:

add_nib_1:

jmp

and
xor
mov
mul
mov
sub
mov
mov
jnc
mov

mov

shr
shr
mov
inc
jmp

and
xor
mov
mul
mov
aid
mov
mov
jue

mov

noiclipping3: mov

nxt_nibble:

shr
shr
mov
inc
jmp

mov
shr
shr
shr
shr
test

sub_nib_1

al,07h
ah,ah
si,ax

M
bx,Temp
bx,ax

fFremove the sign bit

fEXn+l1 =Xn - Dm

al,NegQuantStepSizeTable(si]

M,al
notclippingl
bx,0080h
Temp,bx
bx,1

bx,1

[di],bl

di
nxt_nibble

al,07
ah,ah
si,ax

M
bx,Temp
bx,ax

/¥bl contains Xn = Xn+1
[¥increment the destination pointer

Xn+l =Xn-Dm

al,PosQuantStepSizeTable[si]

M.al
notclipping3
b1,80h
Temp,bx
bx,1

bx,1

[di].bl

di
nxt_nibble

al,dl
al,1
al,l
al,1
al,1
al,08h

/*bl contains Xn = Xn+1
[¥increment the destination pointer

f*al gets the next nibble
f*shift the next nibble into al

[*test the sign of th nibble
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jz add_nib_2
jmp sub_nib_2
cont: jmp continue
sub_nib_2; and al,07h
xor ah,ah
mov si,ax
mul M
mov bx,Temp
sub bx,ax /#Xn+1 =Xn - Dm
mov al,NegQuantStepSizeTablefsi]
mov M.al
jnc notclipping2
mov bl,80h
notclipping2: mov Temp,bx
shr bx,1
shr bx,1
mov [di],bl /*bl contains Xn = Xn+1
inc di f¥increment the destination pointer
loop  cont
mov Xn,bl
jmp Write_ PCM
add_nib_2: and al,07
xor ah,ah
mov si,ax
mul M
mov bx,Temp
ald bx,ax #Xn+l =Xn - Dm
mov al,PosQuantStepSizeTable[si]
mov Mal
jnc notclipping4
mov bl,80h
notclippingd: mov Temp,bx
shr bx,1
shr bx,1
mov [di],bl /%bl contains Xn = Xn+1
inc di JFincrement the destination pointer
loop  cont
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Write_ PCM:

mov

mov
mov
mov
mov
int
ic

je

jmp
nop

Xn,bl

ah,40h
bx,FHandleWrite
dx,WORD PTR Addr_PCM
cx,8192
21h
1in
[BlockCount]
rin
read_ADPCM
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S¥write function number
FeNge2kenadem.dat
fFdx=offset of 1st ram byte
Mwrite 8k bytes to disk

f¥c=1 error

*
*/
*f
*

*f



A.2, 10 Miscellaneous

Serial Port Initialization Function

void init1152( void );

void init1152()

{

_asm{
mov al,80h ;dlab=1 gives access
mov dx,03fbh sto divisor latch 1.
out dx,al
mov al,01h ;set baud for 115.2k
mov dx,03f8h ;1sb=1
out dx,al
dec al ;msb=0
inc dx
out dx,al
mov al,00000011b  ;config lcr for 1
mov dx,03fbh ;stop,no parity, and
out dx,al ;data reg access
}

}

Math Functions

unsigned long int AbsLong( long int Numberl, long in{ Number2 );
double Power(  double NumberToBeRaised, double power  );

#include <math.h>
#inclode <float.h>
#include <sidlib.h>

unsigned long int AbsLong( long int Numberl, long int Number2 )

{
return labs{ Numberl - Number2 );

double Power(double NumberToBeRaised, double power )

{
return pow( NumberToBeRaised, power );
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Screen Funciions

/* ClearBox - Clears portion of screen with specified fill attribute.

v
’

;¥ Shows: BIOS Interrupt - 10h, Function 7 (Scroll down)
o3

;* Params; attr - Fill attribute

o row] - Top screen row of cleared section

He coll - Left column of cleared section

;¥ row2 - Boltom screen row of cleared section

¥ col2 - Right column of cleared section

;*

7* Return: None

*/

void ClearBox( int rowl, int coll, int row2, int col2, int Ins, int attr);

void ClearBox( int rowl, int coll, int row2, int col2, int Ilns, int attr)

{
_asm {
mov ah, 07h ; Scroll service
mov al, BYTE PTR Ins ; Scroll service
mov bh, BYTE PTR attr ; BH = fill attribute
mov ch, BYTE PTR rowl ; CH = top row of clear area
mov cl, BYTE PTR coll ; CL = left column
mov dh, BYTE PTR row?2 ; DH = bottom row of clear area
mov dl, BYTE PTR col2 ; DL = right column
ing 10h ; Clear screen by scrolling down
}
}
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A.2.11 Linear Predictive Extrapolation

double AbsFloat{
unsigned long int

double Numberl, double Number2 );
GetSizeOfFile( int FileHandleClipboard );

void Scale( float *FD, int NOB, float SF);

void UnsignedFloatToSignedFloat( float *FD, int NOB );

void Char256ToFoat( char *CD, int NOB, float *FD );

void Char256To5VSignedFloat( char *CD, int NOB, float *FD, float SF );
void Signed5VFloatToChar256( char *CD, int NOB, float *FD, float SF);
void Predict( float *FD, float *A, int SLength, int FileHandle, int PLength );
void AutoCorr( float *ED, int SLength, float *RD );

void Extrapolator( int FileHandlePCM, unsigned int FileOffsetHigh, unsigned int FileOffseilow, int

SLength, int PLength, int Diction );

void FlipHorizontal( int Length, float *FD ),
void GetForwardCoeff( float *A, float *RD, int SLength );
void GetBakwardCoeff( float *B, float *A, int SLength );

void Copy( int FilcHandlel, unsigned int FilelOffsetlLow,
unsigned int File10OffsctHigh,
int FilcHandle2, unsigned int File2OffsetLow,
unsigned int File20ffsetHigh,
unsigned int ByicsLow, unsigned int BytesHigh %
void Insert( int FileHandlel, unsigned int FilelOffsetLow, unsigned int File1OffsetHigh,
unsigned long int InsertSize,
int FileHandle2, unsigned int File20{fsetLow, unsigned int File2OffsetHigh,
int FileHandleADPCMBak )3
#define FRAME 1000
#define PredLengthMax 1000

void Extrapolator( int FileHandlePCM, unsigned int FileOffsetHigh, unsigned int FileOffsetLow, int

{

unsigned long int
unsigned long int
unsigned int
unsigned int
unsigned in¢
unsigned int
unsigned int
unsigned int
unsigned int

int

float

char

float

float

float

float

char

SLength, int PLength, int Diction )

FileOffset;

Size;

File1OffsetHigh;

File1OffsetLow;

File20ffsetHigh;

File20ffsetLow;

SizeHigh;

SizeLow;

InsertPoint;

FilcHandle, FHPrediction, FHPCMBak, n = 0;
SE = 5.0/127.0;

CD{FRAME + PredLengthMax];
FD[FRAME + PredLengthMax + 1];
A[FRAME +1];

B[FRAME +1];

RD[FRAME +1};
FileNamePrediction[ 50 1;
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char *Addr_FileNamePrediction = &FileNamePrediction[ 0 1;
char FileNamePCMBak[ 50 ];
char *Addr_FileNamePCMBak = &FileNamePCMBak{ 0 1;

strepy( Addr_FileNamePrediction, "e:N\qc2WkenVcfiles\Testl.pcm” );
FHPrediction = CreateAndOpenFile( Addr_FileNamePrediction, (unsigned char)2 );
strepy( Addr_FileNamePCMBak, "¢:N\qc2VWkerNcfilesWPCMBak.pem" );
FHPCMBak = CreatcAndOpenFile( Addr_FileNamePCMBak, (unsigned char)2 );
SetFilePointer( FileHandlePCM, FileOffsetlow, FileOffsetHigh );
FiletoRAM( FileHandlePCM, 0, SLength, (int) &CD[0] );
Char256To5VSignedFloat{ &CD[0], SLength, &FD{1], SF);
AutoCorr{ &FD[1], SLength, &RDI[0] };
GetForwardCoeff( &A[0], &RD[0], SLength );
GetBakwardCoeff( &B[0], & A[0], SLength );
if ( Diction==0)

FlipHorizontal( SLength, &FD[1] );
Predict{ &FD[1), &A[0], SLength, FHPrediction, PLength );
if ( Diction==10)

FlipHorizontal( SLength + PLength, &FD[1] );
Signed5VFloatToChar256( &CD{0], SLength + PLength, &FD[1], SF );
SaveRAMtoFile( FHPrediction, 0, SLength + PLength, (int)&CD{0] );
if ( Diction==0)

FileOffset = (unsigned long)FileOlfsetHigh*(unsigned long)65535 +

{(unsigned long)FileOffsctLow;
clse
FileOffset = (unsigned long)FileOffsetHigh*(unsigned long)65535 +
(unsigned long)FileOffsetLow + (unsigned long)SLength;
LongToShort( &FileOffset, &FilelOffsetLow, &Filel1OffsetHigh );
if ( Diction == 0)

InsertPeint = 0;
else

InsertPoint = SLength;

Insert{ FHPrediction, (unsigned int)InsertPoint, (unsigned int)0, (unsigned long int)(PLength),

FileHandlePCM, FilelOffsetLow, FilelOffsetHigh,
FHPCMBak %

Size = GetSizeOfFile( FHPCMBak );

LongToShort( &Size, &SizeLow, &SizeHigh );

Copy( FHPCMBak, (unsigned int)0, (unsigned int)0,
FileHandlePCM, (unsigned int)0, (unsigned in)0,
SizeLow, SizeHigh )5

closefile{ FHPrediction );

closefile{ FHPCMBak };

}

void AutoCorr( float *FD, int SLength, float *RD )
{

float sum;
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int i, k;
for (i = 0;1 <= SLength; i++ )

{
sum = 0;
for { k = 0; k + i <= SLength - 1; k++ )
{
sum = sum + *(FD + k) * (*(FD + k + i));
}
*RD + 1) = sum;
}
if (*RD == 0)
{
printf("™\n Correlation error ");
}
}

void Predict( float *FD, float *A, int SLength, int FileHandle, int PLength )
{

int i, js

float sum=0;

double Error=0;

float  Predictions[FRAME + PredLengthMax];

for( i = 1; i < SLength + PLength; i++ )

{
sum = 0;
for( j = 1; j < SLength + 1; j++ )
{
if(i-j>=0)
sum = sum - (*(A + j) * (*(FD +1 - })));
}
Predictions[i} = sum,;
if( i >= SLength )
*FED + 1) = sum;
else
Error = Error + ({(double)Predictions[i] - (double)(*( FD + i ))Y*({double)Predictionsfi] -
{double)(*( FD + 1 }));
}

Error = Error/(double)SLength;
for( i = 1; i <= SLength; i++ )
{

*(FD + i - 1) = Predictions[i];
}
}
void Signed5VFloatToChar256( char *CD, int PLength, float *FD, float SF )
{
int i;
for( i = 0; i < PLength; i++ )
{
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*(CD + i) = (unsigned char) (*(FD + i) / SF);

void Char256To5VSignedFloat( char *CD, int NOB, float *FD, float SF )
{

int i

Char256ToFlecat{ CD, NOB, FD );

Scale( FD, NOB, SF);

}

void Char256ToFloat( char *CD, int NOB, float *FD )
{
int i;
for( i = 0; i< NOB; i++ )
{
*(FD + i) = (float)(*(CD + i));

void UnsignedFloatToSignedFloat( float *FD, int NOB )
{
int i
for( i = 0; i< NOB; i++ )
{
*(FD + i) = *(FD + i) - 128.0;

void Scale( float *FD, int NOB, float SF )
{
int i
for( i = 0; ic NOB; i++ )
{
*(FD + i) = *¥(FD + i)*SF;
3
}
void GetBakwardCoeff( float *B, float *A, int SLength )
{
int I;
for( i = 1; 1 <= SLength + 1; i++ )
{
*B +1)=*(A+ SLength+ 1-1i);
1
H
void GetForwardCoeff( float *A, float *RD, int SLength )
{
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float sum;

int i, k, pre_erm;
float rc[FRAME +1]; /*reflection coefficients ¥/
float  pe;
float  akk, ai, aj, ra;
pe=*RD;
*A=1;
for (k = 1; k <= SLength; k++)
{
sum =0;
for(i=1;i<=k;it+d)
{
sum =sum - *(A +k - i) * (¥(RD +i));
}
akk = sum/pe;
rc[k] = akk;
*(A + k) = akk;
for (i = 1; i <= k/2; i++)
{
ai = *(A + i);
aj=*A+k-i)
*(A + i} = ai+ akk * aj;
*(A +k-i)=3aj+akk * ai;
}
pe = pe * (1.0 - akk * akk);
if (pe <= )
{
pre_err= [;
}
}
if (pre_err == 1)
{
printf("\n predictor error ...");
H
}
void FlipHorizontal( int Length, float *FD )
{
int i
float  Temp;
for( 1 = 0; i < Length/2; i++ )
{
Temp = *(FD + Length - 1 -i);
*(FD + Length - 1 - 1) = *(FD + i);
*(FD + i) = Temp;
}
}
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A.2,12  Function Prototypes
fprotypl.h

unsigned long int AbsLong( long int Numberl, long int Number2 );

void RememberMarkers( int Pointer1, int Pointer2, unsigned long int FileOffsetPCM,
unsigned long int FileOffsetPointerl, unsigned long int FileOffsetPointer2);

void PrintGrahicsText( int Row, int Col, char *Addr_Text);

void DrawRectangle( int FillFlag,int x1,int y1,int x2,int y2);

void ClearGraphicsScreen( int ViewPor(Flag,int x1,in{ y1,int x2,int y2 );

void ClearTextLine{ int Row, int Col ,int Spaces );

void PrintNumberPlayPages( unsigned int OuterLoop );

void DrawOscilliscope{void};

void DrawPlotmenulcon( void );

void end_program( void );

void closefile( int fhandle );

void DrawLine( int x1, int y1, int x2, int y2, int Color );

void Copy(int FileHandlel, unsigned int File10ffsetLow,

unsigned int File1OffsetHigh, int FileHandle2, unsigned int File2OffsetLow,
File2OffsetHigh,unsigned int BytesLow, unsigned int BytesHigh );

void closefile( int fhandle );
void graphics_mode( void };
void PlotData( int FileHandle, unsigned int FileOffset_Low,

unsigned int FileOffset_High, int Byte_Size, unsigned char *StartofData,
char *Data, unsigned long int FileOffset );

unsigned int

unsigned

int HideMouse( void );
int FiletoRAM( int FileHandle, int HighBytes, int LowBytes, int RAMAddress );
int SetFilePointer( int FileHandle, int LowOffset, int HighOffset );
int Playback(int FileHandle, unsigned int FileOffsetLow,
unsigned int FileOffsetHigh, unsigned int InnerLoop, unsigned int OuterLoop,
int Blocks );
int OpenFile( char *addr_fnamel, unsigned char AccessCode );
int RescetMouse( void );
int ShowMouse( void );
int GetMouseSelection(int *HotBoxes,int NumberHotBoxes,
int *MouseCoordinates );
int GetUserInputFileName( char *stringptr );
int SubMenuTimePlot{ void );
int LongToShort( int long *FileOffset, int *FileOffset_Low, int *FileOffset_High );
int CreateAndOpenFile( char *addr_fname?2, unsigned char AccessCode );
fprotyp2.h
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int OpenFile( char *addr_fnamel, unsigned char AccessCode );

int CreateAndOpenFile( char *addr_fname?2, unsigned char AccessCode );
void SetFilePointer( int FileHandle, int LowOffset, int HighOffset );
void DumpFiletoRAMY( int FileHandle, unsigned int *aBufSeg );
void FiletoRAM( int FileHandle, int HighBytes, int LowBytes, int RAMAddress );
void Dump( int FileHandle, int RAMSegment, int RAMOffset, int Bytes );
void SaveRAMtoFile(int FileHandle,int BytesHigh,int BytesLow, int RAMAddress );
void closefile( int fhandle );
void Copy( int FileHandle1, unsigned int File10ffsetLow,
unsigned int File10ffsettHigh,int FileHandle2, unsigned int File20ffsetLow, unsigned int
File2OffsetHigh,unsigned int BytesLow, unsigned int BytesHigh );
void LongToShort({ unsigned int long *FileOffsct, unsigned int *FileOffset_Low,

unsigned int *FileOffset_High );

fprotyp3.h
void closefile( int thandle );
void ClearTextWindow( int row, int col, int rowLast, int colLast, int color };
void ClearBox( int rowl, int coll, int row2, int col2, int Ins, int attr };
void ADPCMItoPCM( int FHandleRead, int FHandleWrite );
void PCMtoADPCM( int FHandleRead, int FHandleWrite );
int CreateAndOpenFile( char *addr_fname2, unsigned char AccessCode };
int OpenFile( char *addr_fnamel, unsigned char AccessCode );
int GetFileSelection( struct ITEM FileNames]], int retl );
int Convert ADPCM_PCM( void )
int SubMenuCodeData( void );
int Convert_PCM_ADPCM( void );
fprotyp4.h
int AllecateMemoryForFile( int FileHandle, unsigned int *aBufSeg );
int AllocateMemory( int Paragraphs };
void ReleaseMemory( int Buffer );
fprotyp5.h
int GetMouseSelection(int *HotBoxes,int NumberHotBoxes,
int *MouseCoordinates );
void ShowMouse( void );
void ResctMouse( void );
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void HideMouse{ void );

fprotypé.h

int AllocateMemory( int Paragraphs ),

int ReleaseMemory( int Buffer );

void Playback(int FileHandle, unsigned int FileOffsetLow,
unsigned int FileOffsetHigh, unsigned int InnerLoop, unsigned int Outerloop,
int Blocks );

void SendPlaybackCommand(int Blocks);

fprotyp7.h

void record(int eightKblocks);

void closefile( int fhandle );

void SendRecordCommand(int eightKblocks);

int CreateAndOpenFile( char *addr_fname2, unsigned char AccessCode );

int AllocateMemory( int Paragraphs );

int ReleaseMemory( int Buffer );

fprotype.h

unsigned int GetKeyboardControlFlag( void );

unsigned int GetKey{ int fWait );

unsigned int GetControlKey( int fWait );

unsigned int GetKeyboardControlFlag(};

double Power( double NumberToBeRaised, double power );

void LongToShort( unsigned int long *FileOffset, unsigned int *FileOffset_Low, unsigned int
*FileOffset_High );

void init1152( void };

void submenurecord( void );

void submenuinit( void );

void ClearBox( int row1, int coll, int row2, int col2, int Ins, int atfr);

void ShowMainMenu( void );

void Itemize( int row, int col, int fCur, struct ITEM itm, int cBlank );

void Itemize1( int row, int col, int fCur, struct ITEM itm, int cBlank );

void Clearbox( int, int, int, int, int, int );

void ShowMainMenu(),

void closefile( int fhandle );

void ClearTextWindow( int row, int col, int rowLast, int colLast, int color );
void ADPCMtoPCM( int FHandleRead, int FHandleWrite);

void DrawOscilliscope(void);
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void AmplitdeScale( unsigned char *ptr, int Byte_Size );

void closefile{ int fhandle );
void graphics_mode( void );
void end_program( void };
void SendRecordCommand(int eightKblocks);
void submenuinit();
void sendplaycommand(int eightKblocks);
void init11520;
void sendcommand(int eightKblocks);
void submenurecord();
void Box{ int row, int col, int rowLast, int colLast );
void ClearTextWindow( int row, int col, int rowLast, int colLast, int color );
void _outchar( char out );
void DrawOscilliscope(void),
void GetMousePositionAndStatus( int *Mouselnfo, int WaitFlag );
void PCMtoADPCM( int FHandleRead, int FHandleWrite );
void AmplitudeScale( unsigned char *ptr, int Byte_Size);
int DrawPlotmenulcon{ void };
int SubMenuTimePlot( void );
int DisableMouseInterrupt( void };
int MouselnterruptRoutine( void );
int EnableMouseInterrupt{ void (*fncptr)() );
int MouselInterruptRoutine( void );
int AllocateMemoryForFile( int FileHandle, unsigned int *aBufSeg );
int SaveRAMioFile( int FileHandle, int bytes, int RAMAddress );
int DumpFiletoRAM( int FileHandle, unsigned int *BufSeg );
int SetFilePointer( int FileHandle, int LowOf{fset, int HighOffset );
int Convert_PCM_ADPCM( void );
int Convert_ ADPCM_PCM( void );
int createfile_for read_write( char *addr_fname2 ),
int SubMenuCodeData( void );
int OpenFile( char *addr_fnamel, unsigned char AccessCode );
int GelFileSelection( struct ITEM FileNames[], int ret1 );
int GetMouseSelection( int *HotBoxes, int NumberHotBoxes,
int *MouseCoordinates );
int DrawPlotmenulcon();
int ResetMouse( void );
int ShowMouse( void );
int createfile_for_read_write( char *addr_fname?2 ),
int maxx, maxy;
int GetUserInputFileName( char *stringpir );
int Menu( int row, int col, struct ITEM altem[], int iCur );

- Al07 -



GefFileSelection{ struct ITEM FileNames[], int retl );
Playback(int FileHandle, int FileOffsctLow, int FileOffsetHigh, int InnerLoop,

Dump{ int FileHandle, int bytes, int RAMAddress );

int Mainmenu( void );

int Displaymenu();

int Librarymenu();

int Assemblemenu();

int ChooseFromMenu();

int

int

OuterLoop, int Blocks );

int

int playback(int seconds);

int record(int eightKblocks);
int submenuplayback();

int SubMenuCodeData{ void );
int SubMenuTimePlot();

int SubMenuFreqPlot();

int submenuplayback( void );
int Assemblemenu( void );
int Displaymenu( void );

int SubMenuFreqPlot( void );
int ChooseFromMenu( void );
int Librarymenu( void ),

int Splicemenu( void );
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APPENDIX B: PIN DIAGRAM
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Fig. B1 Pin diagram of MSM6258VJS
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APPENDIX B: TESTING RESPONSE SHEETS

1.1 Quality Assessment )
Quality

Word

Synthetic Natural

Feet

Fell

Ben

Wheat

Well

Bit

\_ Instructions: Identify the word and in the adjoining rectangle indicate the quality.
Fig. Cla Response sheet for word synthesis by extraced phoneme splicing.

J

1.1 Quality Assessment )
Quality

Word

Synthetic Natural

Feet

Fell

Ben

Wheat

Well

Bit

\__Instructions: Identify the word and in the adjoining rectangle indicate the quality.
Fig. C1b Response sheet for natural words.

J
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4 1.2 Preference

Version
Word 1st 2nd 3rd
Feet
Fell
Wheat
Well

\_Instructions: Indicate which version of the word you prefer.

Fig. Cic Response sheet for word preference.
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Experiment 2.1a Prediction Similarity
Vowel Similarity
Transcription Example  Totally Somewhat the Exactly the
different same same
Y/ Beet
U/ Foot
/AE/ Sat
/E/ Bet
ny Fit
100/ Boot
fOW/ Bought
Instructions: Identify the sound and in the adjoining rectangle indicate the degree to
\_Which you are sure that it is that sound. Y,
4 . . . e e )
Experiment 2.1b Postdiction Similarity
Vowel Similarity
Transcription Example  Totally Somewhat the Exactly the
different same same
Y/ Beet
U/ Foot
/AE/ Sat
/E/ Bet
A Fit
JOO/ Boot
JOW/ Bought
Instructions: Identify the sound and in the adjoining rectangle indicate the degree to
\which you are sure that it is that sound. V.

Fig. C2a Response sheets for similarity of original and prediction (top) and postdiction(bottom),
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2.1 Quality Assessment

ualit
Word Synthetic Q Y Natural

Ben

Bet

Boot

Cat

Feet

Wet

Sit

Beet

Fit

\Instructions: Identify the word and in the adjoining rectangle indicate the quality.

Fig. C2b Response sheets for word synthesis by isolated phoneme splicing.

( Preference
Version
Word 1st 2nd
Ben
Boot
Cat
Wet

Instructions: Indicate which version of the word you prefer.

.

Fig. C2b Response sheets for word preference.
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