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ABSTRACT

A study conducted by the Ford Motor Company in late i983 found only 507o of

Ford suppliers' processes capable of meeting requirements. Common sense suggests that

a process incapable of meeting requirements should not be used in the long run. Processes

incapable of meeting requirements result in resources being allocated to the identification

and repair/replacement of non-conforming ouput. Some aspects of process capability and

its measure a¡e examined.

Various properties of the process capability index are examined. The stochastic

nafure of the taditional estimator is sftessed and analytical fools that promote stochastic

interpretations and warnings are p¡esented and discussed. The robusbress of the traditional

estimato¡ with respect to departures from normality and a general procedure designed to

detect departures from distributional assumptions are presented. As well, a Bayesian

technique that alleviates some of the problems encountered in drawing stochastic inferences

from the sampling results is suggested.

A measure of process capability is proposed that incolporates some of the new

philosophies arising in quality control methodology. The new measure takes into

consideration proximity to the target value. Some properties associated with a proposed

estimator are presented and comparisons drawn among other competing measures. A

multiva¡iate analogue is presented and discussed as well.

Finally a graphical procedure for monitoring a process is presented. The procedure

provides an altemative to the boxplot style of simultaneous confol charting now being

suggested i¡ the literature and the naditional f and s cont¡ol chart. It provides information

regarding the process' proxirnity to the target value as well as the variability for both the

univariate and multiva¡iate cases.



Chapter L

Introduction

1.1. OvERvrEw

Many early Qualiry Control (QC) procedures were developed for specific

applications. These procedures often relied heavily on the intuition of the originator and the

consfaints associated with the problem being dealt with. Most of the early techniques have

evolved, some th-rough necessity others through general interest. statístical theory and

methods have had an impact on many techniques, however, there is still much that can be

done.

In QC, the practicality of a method is as important as its mathematical elegance.

Many methods are not the most statistically appeating, however a loss in efficiency is ofæn

sacrificed for administrative appeal. This is not to say advanced techniques should be

disregarded. As practitioners become more sophisticaæd in their statistical and computing

backgrounds, techniques once shunned as impractical will gain popularity. This is

particularly true for those systems which are adaptable to a computer, where much of the

more difficult material can be written into the operating system. Administrative ease and

intuitive appeal must however be considered when proposing changes to existing

procedures. QC procedures must be user friendly, fo¡ without co-operation and

comrnitment, the most sophisticated technique wi-il not be used. Most procedures will be

admi¡istered by engineers and technicians not statisticians, hence discussions should be

directed to them

With this in mind two fundamental areas of statistical process conEol (SpC) are

discussed. current methods are examined and modifications suggested. The modifications

are generally motivated from a statistical point of view but with attention paid to intuitive



and practical appeal. Emphasis has been placed on the study of process capabiüty and

simultaneous conuol charting.

1.2. PROCESS CAPABILITY

Process capability has recentiy received a gowing amount of attention. This new

focus is due partly to the changing philosophy occurring in QC. Slogans such as "doing

things right the fi¡st time" and "building a quality product" are good motivato¡s but if a

process is not capable of meeting requirements resources will be wasted. For example, if a

mechanical process is not capable, the operators, regardless of thei¡ dedication and effort,

wil-l be unable to produce a quality product. Similarly if the operators are not capable of

meeting the demands of the machinery a quality product will not result. Processes that are

not capable regardless of their incapacity, waste resources.

'Waste results from i) resources used to produce a non-conformi¡g product, ii) the

cost of identifying non-conforming product (either through inspection or customer

dissatisfaction) and üi) repair/replacement of any non-conforming producl Some of these

costs are tangible (such as repair/replacement) others (such as loss of business due to

customer dissatisfaction) may be more diffìcult to quantify, but certainly exist

Although it seems like common sense to use a process that is capable of meeting

engineering requirements, it is not always the practice. In November 1983, Ford Motor

Company reported that only 507o of those processes surveyed from suppliers with some

sort of Quality Assuranceprogram were capable! Regardless ofhow one defines process

capability there is evidence that a problem exists.

In the past many companies have tried to inspect qualiry into the product. That is

inspection teams were created whose role was to ilspect the output for non-conforming

producl This is both costly and in certain cases ineffective. By designing a process that is



capable and robust to input fluctuations, inspection becomes unnecessary. Once a process

has been deemed capable, sampling is used only to monitor the procedure or to assess

modifications made to the process. The ideal process would produce "identical" units

under conditions which may include heterogeneous raw materials, different operators and a

variety of operating conditions.

Process capability has become synonymous with process variability or process

spread, while process capability indices relaúe process varíability to the specification limits.

The¡e is however a growing demand to include proximity to the target value when

considering process capability. Proximity to the target is part of the philosophy fostered by

D¡. Genichi Taguchi.

Taguchi defines quality as the "the loss a product causes to society"l and promotes

the use of a squared error loss function in assessing quality. Taguchi suggests such a loss

function because it has zero loss onìy when the product is produced at the target value. As

the product moves away from the target there is a loss in quaiity (Figure 1.2.1). Note that

even smail deviations f¡om the target result in a loss of quality when using Taguchi's

definition of quality. This approach to quality is substantially different from the ciassical

approach where no loss in quality is assumed until the product is outside specifications

@igure 1.2.2).

llntroduction fo Oùaliry Engineering. by Genichi Taguchi (1986).
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Taguchi's loss function highlights the need to have sma1l variability around the

target. The best process in terms of Taguchi's definition of quality would be one that

produced all its product at the target. When this is not the case the loss function suggests

that both process variation and proxi-rnity to the target should be considered when assessing

product quality. A process with all its product just inside the upper (or lower) specfication

may not be as desirable as a process with larger variation but centered on the taïget.

Clearly the best process will be one that produces all of its product at the target, with the

next best being the process with the smallest variabiJity æound the target. Figure 1.2.3

relates three populations with different levels of variation to the loss function.

Target

Figure 123 Loss Function with Three Nomul populations,



Changes in the definition of a quality product have forced changes in the procedures

used to assess process capability. The abilty of a process must now be measured in te¡ms

of process variability and proximity to the targel Small variability but not on targe! is just

as undesirabie as on tffget but with large variation.

Process capability has been defined in many ways and as a result several measures

of process capability exisr The most common definition describes process capability as the

range over which the output of a process varies. This quantity is also refer¡ed to as the

actual process spread. Measures in this group depend upon the measuring units (i.e.,

meters, kilograms, ...) and hence do not encourage comparisons among processes with

different quality characteristics.

The process capability index however relates the allowable process spread (usually

al engineering requirement) to the actual process spread in the form of a ratio

allowable p¡ocess spread
actual process spread

The index will be unitless, thereby inviting comparisons among processes with different

quality variables and promoting similar inferences regardless of the product or quality

characteristic measured ( i.e., widgets, televisions, ... ). For example, an index value of

one indicates that the allowable process spread is equivalent to the actual process spread.

While a process capability index of two indicates that the allowable process spread is twice

that of the actual process spread suggesting that the process is quite capable of producing

within specifications (Figúre 1.2.4).
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Figure 124.An Example of aProcess with aCapabilþ hdex of 2.

lndex values less than one indicate that the actual process spread is larger than the allowable

process spread, suggesting that non-conforming product results (Figure 1.2.5).
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The actual process spread is generally taken to be 6o which replesents, in normal

theory, tlre width of the interval that con tatns 99.i3vo of the population. The difference in

the specification li¡nits is used to indicate allowable process spread. The allowable process

spread is considered fixed while the actual process spread in general must be estimated,

hence the resultant measure ofprocess capabilty will be stochastic.

It has become *re t'ractise among practitionen to ignore the stochastic nature of the

estimated process capability index and to simply judge a process capable if the estimated

process capability index is greater than one, and incapable if less tha¡ one. This is

equivalent to drawing an infe¡ence from a point estimator without an accompanying

confidence level.



There have been some recent attempts to rectify this unfortunate practise, most have

met with limited success. The techniques suggested are statistically sound but lack

adminisrative appeal. A Bayesian procedure is promoted here that has both administrative

and intuitive appeal while providing sound statistical i¡fe¡ences.

A second practise whose abuse is not unique to ec practitioners is the failure to

conside¡ effects of non-normality on inferences drawn. The process capability index ¡elies

heavily on the assumption of normality. clearly 6o may not represent an interval that will

contatn 99.73vo of the measurements outside of the normal family. Howeve¡ littie or no

warning is made regarding non-normal population characteristics.

For example Taguchi in the now famous example where a quality characteristic of

televisions manufactured in rapan and the united states are compared, fosters the concept

of comparing a normal distribution and an uniform distribution €igure 1.2.6).

Japen

Figure 1 2,6 Taguchi's Television Emnple.



Although the example is useful in illustating the problem associated with proximity to the

target, it does not invite good søtistical comparisons.

lf 6o is used to measure actual process spread it is not at ail clea¡ what 6o

represents outside the normal family of distributions. Hence the process capabiliry index is

not consistent in its interpretation when non-normal populations a¡e encountered. Five

populations (Figure 1.2.8), all such rhat Pr(l-SL < x < USL) =0.9973, have process

capabilities that range from 0.577 to 1.4030. clearly a caution should be issued if
disributional assumptions æe not verified,

CÞ

1 . 403

---------- 1.22r

t (r<_,

------- o.795

-. l
X

Fígure I 28. Fit e Populøtions v'ith various Process Capabilities,



The non-robustness of the traditional process capability index estimator to

departures from normality is also established and corrective procedures suggested fo¡ some

identifiably non-normal populations. The non-robustness of the taditional estimator is not

unexpected as it is, up to a constant, simply the inverse of the sample standard deviation,

which is known to be non-robust with respect of departures from normality.

The process capability index can also be considered as a measure of non-

conforming product. A value of one for the index represents 2700 parts per million (ppm)

non-conforming, while 1.33 represents 63 ppm; 1.66 corresponds to.6 ppm; and 2

i¡dicates <.1 ppm. These values are correct if the process measulement arise from a

normal distribution cente¡ed on the midpoint of the specification limits. If this is not true

the process capability index will underestimate the percent non-conforming. p¡ocesses 1

and 2 of Figure 1.2.9 have the same index values, but process 2 has roughly 30Vo ¡on-

conforming, where process I has near zero percent non-conforming.

Capable Process Incapable Processlll
LSL

kocess 1 P¡ocess 2

Figure I 2 9, Processes with Equívalent Cøpability Inilex but dffirent Non-confonnùry,

USL USLLSL



The process capability index's failure to consider proximity to the target vatue

makes it incompatible with Taguchi's loss function concept of assessíng quality. However

a measure that is similar to the process capability index but with the abiliry to assess

proximity to the target in addition to p¡ocess variation is proposed. The changes are subtle

but powerful, leaving the original measure largely unchanged but with superior statistical

properties and more intuitive appeal than competing measures. This modified process

capability index reflects the current feeling in QC and relates well with raguchi's definition

of quality. The modified process capabirty index behaves in much the same manner as the

squared error loss function (inverseiy in terms of magnitude). At the target, for a given

variability, the modified i¡dex is a maximum while the loss function is at is minimum. As

the process d¡ifts from the target the loss function inc¡eases, the modified index decreases.

Similarly æ the variability increases the modified index gets smaller while the loss function

increases as the observations tend to move away from the target.

The modified index falls into a group of second generation measures of process

capability that considff both process variation and proxirnity to the target when assessing

the abiïty of a process. The shift from the original index to the modified index in terms of

calculation is subtle but the i¡ferences and interpretations are vastly different.

L3. Control Charting

control charts provide a graphical technique for monitoring the behaviour of some

characteristic(s) of a process. There are many different categories of conhol charts whose

use depends upon the nature of the quality characteristic(s) under investigation. However

within a paficular category of cha¡ts the¡e a¡e often several ways of displaying the sample

results. For example when measuring a continuous quality variable practitionen often use

i and R charts to monitor a process, while a statistician may use i and s charts. The fi¡st



pair of chafis are more likely to be used on the manufacturing floor while the second group

are more Likely to be used by the data analyst in the Quality Assurance deparÍnent.

Both the x and R procedure and the x and s procedure provide similar information

regarding the behaviour of the quality cha¡acteristic unde¡ surveillance. The i chart

monitors the central tendency of the process with respect to the grand mean i, while an R

or s cha¡t monito¡s the behaviour of the variability. Either set of cha¡ts monitor two

characteristics of the process and involve plotting sunlmary statistics for small groups of

observations drawn periodically from the output of the process. Boundaries are created

that aid in the identification of unusually large or small results. As well any trends or

cycles that may occur can also be detecæd from these charts.

In either case (i.e., i and R o¡ i and s) the plotting procedure requires two charts

to illustrate the results. The latest t¡ends in cont¡ol charting procedures have focussed on

fitting these charts on a single plot. simultaneous control charts refer to the family of

control charts that use a single piot to monitor a process. A plotting procedure is suggested

that provides much of the information attainable f¡om the Eaditional charts but with the

added feature of requiring a single plot. The proposed plotting procedure brings control

charts in step with the changing philosophy in ec. The univariate and multivariate

procedures both provide good inferences, while being reasonably easy to use. Additional

features include boundaries that are developed in a mo¡e statistically astute manner than the

boundaries associated with the traditional charts. In terms of calculations the univariate

procedure is easily perforíned using a hand calculator, while the multivariate case requires

more computing power, For technicians working on the floor the procedure requires much

the same ievel of sophistication as that of the i and s charts in the univariate case, but for

the multiva¡iate case a suitrble soft,,¿are package is required.



1.4. Ässessin g Distributionat Assumptions

The concept of distributional properties a¡d assumptions is of general impofance in

the field of statistics and this ca.nies over to the area of Quality control. A test procedure is

proposed that can be used in identifying the distribution from which a set of obsen'ations

arise. The test procedure is motivated from probability plot results and is analogous to the

shapiro-wilk test for normality. It suffers from some statistical drawbacks for small

sample sizes but as sample sizes increase it behaves quite we1l. It has the advantage of

being easy to calculate and its inference can be enhanced with an accompanying probability

plot.

All too often an assumption regæding the underlying distribution of a population is

made without verification. In most procedures distributional assumptions a¡e made fo¡

theoretical reasons. However some procedures provide reasonable inferences when the

dist¡ibutional assumptions are not valid. The t and F statistics are good examples of

lobustness to moderate non-normal populations. on the other hand both Bartlett,s and

Hartley's tests for homogeneity of variance are extremely sensitive to departures from

normaliry.

It has become the practise in many applications to ignore the distributional aspects

of the underlying distribution. seldom does one see the ¡esults of a test for normality

included i¡ a procedure that uses a t or F statistic. This can be quite dangerous even though

both statistics have some propensity to operate in the face of non-normal distributions. Inr'
control charting and process capability procedures the assumption of normality plays a

major role in ascertaining limits and disnibutional properties of estimato¡s. certain aspects

ofthese procedu¡es do not behave well when the assumption of normality is violated.

one major drawback in assessing distributional assumptions in ec procedures is

the small sample sizes. In control chart procedures subgroup sizes are generally around



size five. There simply is not enough information in a sample of size five to provide an

assessment of the underlying distribution. Hence the assumption is made but no waming

is mentioned regarding non-normality and its consequences. Process capability studies

suffer from the same practise but for different reasons. In many studies there is sufficient

information to assess normality but this is seldom done. A graphical technique for

assessing process capability, that is a modified normal probability p1ot, may help to

alleviate this practise.

The infe¡ences drawn from the graphical æchnique are subjective in that the linearity

of the resultant plot provides information regarding the aptness of the distributional

function in describing the population. In those cases where the linearity is borderline the

graphical procedure becomes quite subjectíve. A procedure that can províde additional

information in assessing the linearity of the plot is proposed.

The procedure is analogous to existing procedures fo¡ the Normat and exponential

distributions, but is designed for use with the uniform distribution. For small sample sizes

the procedure is not very powerful, however in conjunction with a uniform probability plot

it can provide reasonably good inferences. The test procedure is quite easy to use and has

the added features that i) a uniform probability plot does not require special probability

paper and ii) the probability integral transformation results in u[0, 1] variates. A test

statistic is proposed and several properties examined.



Chapter 2

Examining Goodness-of -fit

2.1. INTRODUCTToN

Probabilty plots are an old and useful tool for examining the goodness-of-fit of a

particular probability model to a data set. However probability plots provide no

objective method for aralyzing or testing goodness-of-fit. In fact, interpretation of

probability plots is left to the judgement of the observer. In those cases where the

resultant probability plot is quite obviously linear or definitely non-linear the probabirty

plot procedure is very useful in assessing goodness-of-fit, however, in those cases

where the linearity of the probability plot is borderline, subjectivity enters into the

judgement regarding the apmess of a particular hypothesized distribution.

Shapiro and Wilk (t11, t2l) presented rechniques fo¡ rhe normal and

exponential distributions which examine the results of the probability plot procedure and

quantify goodness-of-fit. The Shapiro-Wilk technique in conjunction with the

probability integral tansformation (PIT) and the uniform distribution allows investigation

of distributionai assumptions regarding almost every distribution imaginable.

With this thought an analogous test to the Shapiro-Wilk Analysis of Variance tes!

for goodness-of-fit has been developed for the uniform distribution.

2.2. PRoBAB[.nyPI,oTS

Probabilty plots are used in several ways to aid in examining the nature of a set of

observations arising from some population. Probability plots can be used to examine

the data for outliers, goodness-of-fit, and systematic deviations from certain

disributional assumptions. The probability plot procedure is quite straight forward in

that it simply plots the order statistics of a data set versus the expected value of the order



statistics. If the resultant plot appears linear with no dramatic deviations, the data are

said to have no outlien a¡d arise from a population with probability density function (up to

a consta¡t) f(x).

Fo¡ some probability distributions the expected value of the associated order

statistics can be quiæ difhcult to calcuiate, however, the uniform disaibution lends itself

quite nicely to the probability plot procedure by having a concise and uncomplicated

algorithm for deterrnining the expected vaiue of its o¡de¡ statistics.

A-ll distributions f¡om the (continuous) uniform family can be expressed in the form

t+ o<x<a
(Ð =l

Lo eisewhere.

(2.2.t)

with cdf

(2.2.2)

size n will be

(2.2.3)

for i = 1, 2,3,... ,n.

substituting the results of (2.2.2) for F(x¡¡) n (2.2.3) and integrating, the expecred

value of the order sratisrics from any uniform distribution ríitn paf (2.2.1) is

[' 
x<0'

I

rf.l=l * ocx<a,

I

Lt x> a.

The expected value of the iú order statistic xtil , from a sample of

E(xril; n) =,"fu i¡¡ nr*¡¡ltt-t t t-n(x¡¡)Jo-idF(x¡¡)



E(xrir; n) = GÐh J*r,r [bu J'-t I r - lur. 1*' 
iy:t 

= fïï
0

for i= 1, 2,3, ... ,n ,

A probability plot (for any distribution) simply plots the order srarisrics (xtil)

versus the expected value of the order statistics @(x¡¡;n)). Any inference regarding the

aptness of the distribution function used to calculate the expected value of the o¡der

statistics is formulated from the shape of the plot.

If the probabilty plot does not readily avail itself to an inference (i.e., the plot is

bo¡derline linear) then an additional úest can be performed which will allow quantification

of the ¡esults. A natural inclination is to conduct a regression type analysis of the points

lxt¡,E[x¡¡;nJ) and to analyze them for Iinearity using taditionai regression techniques.

Consider the following model

xtit = A + BIE(x¡¡;n)J + e¡

where i=1, 2,3, ... n, and e¡ is a suitable error term.

(2.2.4)

Equation (2.2.4) denotes a linear regression of the o¡der statistics on their

respective hypothesized expected values. Because the explanatory variable is the expected

values of the orde¡ statistics, ordinary least squares (oLS) regression techniques will

not geneÉte the best linear unbiased estimates GLrrE) of A and B [3]. However using

the general least squares (GLS) technique the resultant estimates for A a¡d B will be

BLUE (Sea¡le [4]).

The GLS estimators of A and B, where the hypothesized distribution is uniform, are



l_xfnl+xrrt
2

Ê =${"¡"¡-*¡,¡1.

Lloyd [5], as well as Kendall and Stuart [6], indicate that when regressing the order

statistics on their respective standardized expected values the parameter A represents the

population mean (¡r) and B the population standard deviation (o). Hence, Â an¿ É wilt

provide estimates for p and o, respectively. shapiro and wilk use the result fiom [5] and

[6] in conjunction with the sample variance, to examine distributional assumptions for

data thought to have come from a normally distributed population and laterly for an

exponentially distributed population.

2.3. THE Wu TEsr pRocEDURE

The general form of the W+est æ proposed by Shapiro and Wilk is

^âD¿w=+
s"

whe¡e B is (up to a constånt) the GLS estimate of B, when regressing the orde¡ statistics on

th_eir standa¡dized expected values, and 52 is the conected sums of squares (i.e.,
D^

)(x, - ff ¡ for rhe sample resulrs.
i=1

In the case whe¡e the hypothesized distribution is from the uniform family, the

proposed test statistic becomes
j

rl



Computationaily the Wu stadstic is quile sraíght for*'ard, however the exact

distribution of the Wu statistic is difficult to determine.

2.4. T.A,BtrLÄTroN oF Tr{EWu STATrsrrc

For each of the sample sizes n = 3(1)25, 30, 40, 50, 10,000 samples (of size

n) were generated using a uniform(O,l) random number generator, and the Wu statistic

calculated. Using these results the cumuiative relative frequency distribution of the Wu

statistic has been sketched fo¡ several sample sizes ranging (some have been left out for

clarity) from 5 to 50 (Figure 2.4.1).

(,0

l

Figure 2 .4 J , Cdfs of ¡il , for varíous satnple sì.zes* ,

In addition, certain c¡itical quantiles (as calculated from the simulations) have

been tabulated and i¡cluded in Table 2.4.1. These quantiles pror.ide approximate \Vu

acceptance-rejection regions for the Yarious sample sizes i¡cluded in the simulations.

1.67.C¡.00.D



Lower

!L Bound

3 6.0000

4 2.7778

5 1.8750

6 1.3067

7 1.0370

8 0.8265

I 0.7031

10 0.s975

11 0.5280

12 0.4656

i3 0.4213

14 0.3804

15 0.3499

16 0.3211

17 0.2988

i8 0.2776

i9 0.2605

20 0.2M3

2t 0.2310

22 0.2181

23 0.2074

24 0.1969

25 0.1881

30 0.1,524

40 0.1105

50 0.0867

0.0000

Table 2.4J

Quantiles and Bounds for the Wu distribution

QUANTILES

Upper
W¡1----JV.os-----lV.ro----lV.ço--lV.qr-\Y.ee Bound

6.0300 6.1s00 6.3000 7s700 7.9900 8.0000 8.0000

3.0800 3.4400 3.7400 5.3100 5.4300 5.5300 5.55s6
2.3966 2.4256 2.5758 4.0199 4.1802 4.3884 4.5000

1.7t33 1.8801 2.0004 3.2287 3.4072 3.6698 3.9200

1.3909 1.5456 r.6422 2.6763 2.8528 3.1341 3.55s6
1.1840 1.3168 1.4003 2.3176 2.4679 2.7716 3.3061

1.0366 1.1525 1.2235 2.0403 2.1877 2.4592 3.1250
0.9182 1.0161 t.0824 1.7929 1.92s6 2.1799 2.9877

0.8268 0.9177 0.9747 1.6046 1.7331 1.9909 2.8800

0.7s60 0.8386 0.8898 1.4530 r.5678 1.'7882 2.7934
0.6918 0.7656 0.8113 1.3186 1.4227 1.63s8 2.7222

0.6430 0.7101 0.7541 1.2164 1.3090 1.5181 2.6627

0.6035 0.6639 0.7023 t.1r57 1.2073 1.3901 2.6122
0.5611 0.6184 0.6537 1.0345 1.1118 1.3062 2.5689
0.5331 0.s803 0.6i36 0.9663 1.0426 1.2047 2.s3r3
0.5026 0.5498 0.5809 0.9054 0.9774 1.1244 2.4983
0.4745 05223 0,5516 0.8534 0.9210 1.0461 2.469r
0.4ss 1 0.4978 0.s235 0.8036 0.8644 0.9849 2.4432
0.4332 0.4733 0.4967 0.7603 0.813s 0.92s0 2.4200

0.4156 0.4s10 0.4740 0.7206 0.7179 0.8917 2.3991
0.3971 0.4313 0.4538 0.6809 0.7321 0.8362 2.3802
03798 j 0.4169 0.4365 0.6524 0.6982 0.7998 2.3629
0.3656 0.3979 0.4176 0.6238 0.6666 0.7632 2.3472
0.3092 0.3348 0.3498 0.5091 0.5415 0.6121 2.28s4
0.2355 0.2535 0.2633 0.3689 0.3894 0.4359 2.2104
0.1915 0.2048 0.2132 0.2878 0.3016 0.3310 2.1666

2.0000



2.5. THEoREncAL I{ESIJLTS oF Tr{EWu STÄTrsrrc

Theorem 2.5.1: The central value of Wu with the assumption that the variable under

investigation is from a uniform distribution will be

P¡oof: Assume that x is a random variable with a standard uniform density function. Then

the order statistics should be spread uniformly across the interval (0,1). If this is the case

the squared deviations from the mean depend only on sample size. If n is odd the mean of

the order statistics will be the (n+t)/2th o¡dered observation. Ifn is even the mean of the

order statistic will be the mean of the n/2ft and the (n/2 +l)th ordered observations. In

either case the squa¡ed deviation from the mean for the jft order statistic will be

lor j=7,2,3, ..., n

Hence Wo will then be

(n+1)2

[, jl'
L*1 l

I

'l
i+.¡'- i+r.*rt¡ + iln+j=r j=l j=lt

,

l- ¿(n+r)2 I
I f,t"" 'f ILj=r _i

4(n+1)2



| 12(n+1)l
=L;o=tt I

Theorem 2.5.2: The \ statistic is locatíon and scale inva¡iant under the null hypothesis

that the sampled population has al uniform distribution.

P¡oof: Let x be a random variable with a standa¡d uniform distribution, and let y=¿¡a6

where a, b are i) constants and ü) elements of the interval (-oô,""). Then the w¡(y) statistic

for the ¡andom variable y will be

l- (v¡o1 - v¡,1)2 1n+r¡2 I
-l--"_i_-."1-L(n-1r>(yr-tr 

l

f {n+r)2 (?x¡o¡ + b - *r,t - b)tl
=Lr;8,"{.r"-F 

J

l- 
(n*t)2 (*r"t - *,,.,)21

t =fr"-tltËt1-rl'l

= wu(x)



P¡oof: Fo¡ n=2, by definition Wu =

Theorem 2.5.3: For samples of size two, the pdf of the Wu statistic is degenerate.

. -.2. .2(n+r) (xt¡l - xlll)
atr

(n-1)')(x, - 1)'
i_r

9(x,r,- x,,.,)2

r*,r- fu$Itu)2 + (x¡11- h-r|fur,2

(*r,l

=18.

Theorem 2.5.4: For samples of size 3 the probabirty density function of the w' statistic is

l- 4ß

'*'{5_
6<Wu<9,

elsewhe¡e.

/, .Ë. r,

elsewhere,

P¡oof: From Bol'shev [7]

| 4J3
l-J l -J

,(.oJ=l [Ë]V, ['J

L,

where w = *rer - *r,r and s2 = iq/ rhen since *,, = 9-.$ = z$, tn,
?=tzr(n_i),s.s¿'

theo¡em holds.



Theorem 2.5.5: For samples of size 4 the probability density function of the Wu statistic is

zsn? t- ]a,csin {tt+z($- -zl5l t:t*$ -
3wu #:- tltl-'ll ?.*".å9u 27ewl '^ zr

W'- frarcsrn {t2(é- - +l 
tlr¡t# - rll-'ll #=*,.7

50
9

P¡oof: From Khakhubiya [8] the distributis¡ 61 ¡=1s27w2) is

225 , ..
==- : w54u

aa
Then since W.. = 

(l*t1uÏ 
and n=4,u (n-1)'s'

-3*..'ntp**-¡t
2 . -1+2JÑ--arcstn[+-ll
" 3J6x-1

W,= fr, the theorem holds.

s(x) =

J,æ

.,Ært

.'.Ær'

12
6 

<x <õ-

21
õ''x <a

11
a'* <ã



Theorem 2.5.6: Fo¡ all values ofn, Wu is bounded above by

and below by

iÐwu=

4h+l\2 .^
ü n ls even. or

n(n- 1)"

ffit irnisodd'

Proof: Unde¡ the assumption that Wu will be a minimum when half the data points reside

at one end point (e.g. a) of the distribution and the othe¡ half of the points at the opposite

end point (e.g. b) (if the sample size is odd then one end point will have one additional

point) with d=lb-al, it follows

i) w" =-it4)%1 = y# where n is even, and

("-1)'Ilfl n(n-1

, I n+ 1-ll
(n-1)- | -r ¡L -JL

.lill.'g*" ]'

whe¡e n is odd.



Assuming that Wu will be a maximum when all but two of the data points reside at the

mean (e.g. (a+b)/n) of the data, while one point resides at one endpoint (a) of the data and

the second point at the opposite end point (b) with d=lb-al, Wu becomes

w=
u

Theorem 2.5.7: For a non-specific alternative hypothesis the Wu test will be two sided,

P¡oof: Assuming a fixed range, if the data follow a distribution with lighter taiis than the

unìform distribution, then in general

(xi-x) Vi.Þ

"c,-;)'= "Þ

s2<s2
n

w>w¡

-27-



Thus if the data follow distributions with lighter t¡ils than the uniform distribution, the

rejection region will be in the upper tail of the Wu distribution.

Simitarly for disfibutions with heavier râils

(*f;)2 ,Þ

,(,.,-;)'=tÞ

s2> s2
n

\M <W

and hence the rejection region will be in the lower râil of the Wo distribution.

2.6. THE Sm,¡SrTrvrry oFTHEwu TFST

The srength of any statistical test lies in its ability to provide correct i¡ferences

based on sample results, In order to assess the ability of the Wu statistic in

discrirninating against sample results f¡om non-uniform distributions, random samples

from various distributions were generated and analyzed using the wu statistic. Samples

from the normal, chi-square, exponential, and Weibull families of distributions we¡e

generated and the wu ståtistic was used to test the hypothesis tlo: (Sample ¡esults arise



from a population with a uniform distribution). As a quality control measure, samples

from the uniform family of distributions were generated and subjecæd to the Wu tesl

Table 2.6.1
Percentage of Sønplcs wilhW u ontside acceptøtce bounds for vøious dßtribwíons

Distribution

Exponential(0=1)

Normal(0,1)

Chi-Square(2)

Chi-Square(5)

Chi-Square(10)

Chi-Square(20)

Weibull(a=1,b=2)

Weibull(a=1,b=5)

Weibull(a=1,b=10)

Cauchy (standard)

Logisric (standard)

Uniform

10

12.2Vo

22.7Vo

72.2Vo

78.2Vo

2l.4Vo

22.jVo

78.6Vo

22.3Vo

22.6Vo

50.9Vo

30.SVo

10.1Vo

Table 2.6.2

Sample size

æ

47.6Vo

57.5Vo

48.jVo

5l.1Vo

53.8Vo

56.5Vo

46.ZVo

56.5Vo

58.9Vo

97.2Vo

72.7Vo

9.8Vo

40

84.2Vo

93.\Vo

84.3Vo

88.3Vo

90.9Vo

92.2Vo

84.\Vo

9I.\Vo

93.7Vo

l00.jVo

97.9Vo

70.7Vo

Compøßon of Shqim-WilkWestúistic ØtdthclYustaísticfottestirtg the hypothesß

H s: X -exporcnt'tal( È 1) for vøious simulded ilßtributiotts

we
j

Samole size l0 20 40

Normal(4,l) 65.llVo 96.14Vo 99.98Vo

Weibull(a=1,b=2) 38.02Vo 76.80Vo 98.49Vo

'Weibull(a=l,b=5) 72.76Vo 98.73Vo 100.00Vo

Chi-Square(2) 70.16Vo 70.02Vo 9.74Vo

wu

10 -e
tZ.t1vo 62.76Vo

15.04Vo 35.00Vo

2r.38Vo 56.39Vo

12.I8Vo 17.l5Vo

40

94.29Vo

74.I7Vo

92.00Vo

20.25Vo



Samole size 10

Normal(4,i) 38.88Vo

Exponential(0=1) 52.7lVo

Chi-Squæe(2) 53.39Vo

Weibull(a=1,b=5) 50.30Vo

Table 2.63

Comparison of perfoÌmance by Shapiro-WilklV, ønd YY, for the lrypothesß

H6: X-Weibull(a=1,b=2) for various simulated ilistributions

'we

20Ð
76.99Vo 98.22Vo

82.08Vo 9"1.68Vo

82.02Vo 9'7.33Vo

88.65Vo 99.79Vo

wu

10 20 40

02.24Vo 87.47Vo 99.87Vo

35.57Vo 73.22Vo 96.26Vo

46.34Vo 77.48Vo 94.74Vo

17.llVo 43.62Vo 83.93Vo

Plotting the cumulative distribution curves of the simuiated results Gigure

2.4.1) iliustrates the relationship that exists between the tesr statistic and the sample

size. For small sample sizes the 100(l-u)Vo intervals are much wider than those simila¡

100(1-u)Vo for iarge sampie sizes, this result affects the discrirninating power of the

'Wu test for small samples. For example, in samples of size 20, the percentage of

identified samples from other disaibutions ranges from 46.2Vo (for the Weibullll, 2])

to 97.2Vo (for the Cauchy distribution), while for samples ofsize 40, the percentages

range from 84.2Vo (for the exponential) fo l00Vo (for the Cauchy) (fable 2.6.1).

From the comparisons between the Shapiro-Wilk test statistic for the exponential

distribution ftVJ and our proposed test statistic Wu for testing the exponential (Table

2.6.2) and Weibuli distributions (Table 2.6.3), it is evident rhat rhe Wu srarisric (ar least

for small sample sizes) does not do as well as other results currently available. Fo¡ this

reason Wu should not be used fo¡ small sample size cases. However it does have the

advantage that it is easy to calculate. It (heoreticaüy) can be used to test any continuous

distribution, and for larger sample sizes it performs almost as well as the more widely

known tests.



The¡e a¡e many situations whe¡e the distribution function is compietely specified

under H^, however there are equally many situations where the parameter vector is not
U'

completely specified and./or the functional form of the distribution function is unknown. If

the distribution function is not completely specified the PIT can not be used to produce

uniform variates. A solution is presented for the case where the functional form of the

distribution function is assumed but where the parameter vector has at least one unknown

value.

2.7. THE GENERAL WU PRoCEDTJRE

The Wu statistic can be used to examine goodness-of-fit for any disnibution

function, provided the parameter values and the functional form of the distribution function

are completeiy specified. The ability of the Wu statistic to test every continuous

completely specified disribution function results directly from properties of the pIT . The

general form of the PIT is

Yi=FCXi, e ),

where under the hypothesis

IIo'x-f(-,9),

the Yfs will be independent identically distributed (üd) U(0, 1) variates. Hence if the

functional form (i.e., f(,.)) and the values of the parameter vector (i.e., €=(01,02,...,e'r))
)

are known, a uniform probability plot of the transformed observations can be created and

the Wu statistic calculated. In many cases the functional form of the distribution function is

more important than the actual value of the parameters. For example most commercially

produced probability paper assumes only the functional form of the observations, while



actually ploviding estimates for unknown parameters. Normal, Weibull a¡d uniform

probabiliry paper are examples of such. In the normal and uniform cases, with pdfs

(x-p)

X*,e_l=ffi" 'ê , -oo4¡<oo,o>o

and fG, 0) = å

for (p - 
$) . * . tU * 9) respectively, estimares for rhe location (p) and scale (o)

parameters a¡ise from the intercept and slope of the resultant probability plot. For the

Weibull distribution with cdf

F(x;o, q) - , -..0{- ltJ'} osx<.o and o, n > 0

estimates fo¡ the scale (o) and shape (q) parameærs can be deterrnined using the slope and

intercept of the probability plot. In all cases only the functional form of the distribution

function need be assumed.

The form of the Wo procedure is the same for all distribution functions. Under the

null hypothesis the Prr results ir a set of u(0, 1) observations regardless of the original

distribution function. Hence the test procedure and critical vaiues are those of the wu

procedure for all distribution functions. Thus the wu procedure has the advantage of being

unchanged regardless of the distribution function under investigation.

In many cases the null hypothesis does not completely specify the distibution

function. when this occurs the PIT can not be used as it requires all parameter values as

well as the functional form of the distribution function to be specified before it can be



performed. However in those cases where the functional form of the distribution function

is known o¡ assumed but where one or more of the parameter values are unspecified, a

transformation analogous to the PIT exists that results in iid u(0, 1) variates. This

Eansformation makes it possible to extend the wu procedure to the case whe¡e only the

functionai form of the distribution function is specified.

The Éa¡sformed variates obtained by substituting moment estimates for the missing

parameter value(s) and performing the PIT are not üd u(0, l)'s t9l. As a result the wu test

for

Ho: ftansformed observations are uniform

will not be a similar test for

Ho: non-transformed values are F(x, 6 )

where B is the parameter vector with at least one untt o*r, ualie.

o'Reilly and Quesenberry [10] discuss this problem and provide a solution derived

from a result first obtained by Rosenblatt [11]. Rosenblatt shows that íf (x1, x2, ... , x.)

is a vector of m random variables with absolutely continuous multivariate cdf F, then the

U¡'s, where

ur = F(xr)

Uz = F(xzlxr)

U3 = F(x3lx1, x2)

U- = F(x.lxl, x2, ... , x¡¡-1)



are a set of m iid U(0, 1)'s. O'Reilly and Quesenberry [10] use rhis result and a result

from [9] to establish that if rn, a p-component vector, is a complete and sufficient statistic

for the parameter vector of missing values 0o =(01, 02, ..., 0p), the Ufs

Ur = Fo (xr)

Uz = Fo (xzlxl)

:

Un-p = Êo ("n-pl xt,xz, ..., x¡-o-i) will be iid U(0,1).

Fo(x1), Fo(x2lxr), ... , Fo (xn-plxt,xz, ..., xn_p_i) are the marginal and conditional cdfs

of ñ"1x1,x2,..., xn), where Êo1x1, x2,..., xn) is the cdfof (xt,x2,..., xnl Tn).

This general resuit provides the basis for extending the wu procedure to the case

where the distribution function is not completely specified. o'Reilly and euesenberry refer

to the resultant transformation as the conditional probabirty inægral transformation (cpIT).

By conditioning on the complete and sufficient statistic (TD) for the missing paramerer

values, a subset of the origina-l observations can be tansformed into üd u(0, 1). once the

Eansformation is complete a probability ptot can be created and the wu statistic calculated

for the Eansformed variates. Both may be of aid in assessing the hypotheses

Ho: Ui's - U(0, 1)

veßus

U1's are not U(0, 1)H:
a

which is a similar test for the hypotheses



Ho: X-F(X,0)

versus

Ha: X-F(X,r)

where 0 *t.

The CPIT can be mathematically intractable for many distribution functions.

Quesenberry [12] has examined the CPIT for some of the more cornmon distibution

functions with the following results

1) Exponential Distri bution

functional form f(x, 0) = å 
*r 

[- + ] , .'u

xl, xz, ...,xn denote the observed sampie values

y1,y2,... yn-1 denote the observed sample values with xtll deleted

Case 1: 0 = (tr, 0 ), p=¡rs, 0=0s known @IT)

¡ x, _ tr"l
ui=1-expL- % j rori=7,2,...,n

Case2: 0 = (p, e ), p unknown, 0=00 known (CpIT)

I v,-*rtl
ui=t-exnf- % I rori=r,2,...,n-r



Case 3: 0 = (p, e ), !r=po known, 0 unknown

iio, u",1"
ui-r = 1_l ,;' 

I

là* *'J

Case4: 0 = (p, e ), p,0 unknown (CPIT)

for i=2,3,...,n

lor i = 2,3, ... , n-l

2) Pareto Distribution

functional form f(x, 
? = {* for x>õ, ø,ô>0

x

xl, xZ, ... , xn denote the observed sample values

yI,yz, ..., yn-l denote the observed sample values with x¡¡ deleted

Case 1: 0 = (a, õ ), a,=so, ö=ôo known CpIT)

",=,[tJ" rori=r,2,.,n

Case 2: 0 = (a, ô ), d=co k¡own, ô unknown (CpIT)

-36.



Case 3: 0 = (4, ô ), d unknown, õ=ôo known (CPIÐ

Case 4: 0 = (s, õ ), a, ô unknown (CPIT)

l-'-' 
-li-l

I lh(v,-t,,) I

ui-r=r- lÌt--l ro, i=1,2,...,n-l

Là"'*"')-l

3) Normal Distribution

functionalform (*, 
:) = +"-o -ry-, -oo4¡çoo, o>0

1t 2n{ Lv

xL, x2, -.,xn denote the observed sample values

;, = i i,,l= >t+.r,,i = à++
@(z) denote the cdf of the N(0, 1) distribution

ru(z) denotes the cclf of the t disribution with o degrees of freedom

Case 1: 0 = (t¡, o ), p=1r0, o=o0 known @fI)

l'..-u I
ut= *tïj rori = 1, 2,.'. , n

i-ls1
)(ln(x,) - 1n(ô"))
j=1

is'r
)0n(x,) - ln(ðo))
j=r



Case 2: 0 = (p, o ), p unkrown, o=oo known (CPIT)

f61.,-;,,1'l
U¡-1= o\ l- I

\ V'oo l
fori = 2,...,n

Case 3: 0 = (p, o ), p=¡ro known, o unknown (CPII)

['.-u 
'ì

ur-r=i_,l-r,_, j for i=2,3,...,n

Case 4: 0 = (tr, o), F, o unknown (CPIT) 
\

I /¡rr,..-,. rl
uí-2=tiz 

t"*-J 
ror i=r,4,.-.,n

4) Lognormal Distribution

. I [o(*)-p]2\
functional form f(x, a) = 

Jm 
*e\- ,", /, 

-ooçxqoo, o>0

xl, x2, ... ,xn denote the observed sample values

Yi = in(xÐ

i=à+''?=ålril'','=Ð++

Õ(z) denotes the cdf of the N(0, i) distribution

rr(z) denoæs the cdf of the t disfibution with o degrees of freedom



Case 1: 0 = (p, o ), il=po, o=o0 Lnown @IT)

l'"-uI
ut = .t-ãT ror i = 1, 2, ... , n

Case 2: 0 = (tr, o ), p unknown, o=oo known (CPIT)

l/i t rr, - t, ,lì
ui-l= o1 

-T-i 
ror i.= 2,...,nI V'"; )

Case 3: 0 = (ir, o ), p=¡ro lmown, o unknown (CpIT)

ln.- u 
'l

ut-, = L,tï-, j ror i = 2, 3,..., n

Case 4: 0 = (p, o), ¡r, o unknown (CPIT)

(n¡ -l
rJi-z=t¡_z ] Vï gt-v' tl I ror i =3,4,...,¡

[$ã )

5) Weibuil Dishibution

functional form f(x, 0) = + xr-r *r l +]
.r-

xl, xz, ... ,xn denote the observed sample values

Case 1: 0 = (o, n ), o=oo, Irlo known (pIT)

I ,.l"l
ui= 1- exeL--d;J foti=1,2,,..,n



Case 2: 0 = (o, n ), o unknown, t'¡=r16 known (CPIT)

u;l=t- fo¡i=2,3,...,n

For each of the above distribution functions the proposed transformations result in

iid U(0, i) variates, allowing a uniform probability plot and the Wu statistic to be used to

assess goodness-of-fit. The CPIT tansformations allow the Wu statistic to perform exact

tests for those cases where some or all of the parameter values associated with the

distribution funcfion are not specified.

Care must be exercised when performing the CPIT. For distribution functions

othe¡ than the general exponential and uniform, different permutations of the data may lead

to different values for the transformed variable. Quesenberry [12] discusses this topic and

wams against ordering the data (in any fashion) prior to performing the CPIT.

2,8, ASSESSÛ.IG MTJLTTVARIÄTE NoRMALITY

The univariate results for the PIT and CPIT can be extended to multivariate (MV)

distribution functions. However, as is the case with many multivariate procedu¡es that a¡e

adaptations of univariate results, both the PIT and CPIT ca¡ be difficult to administer.

For any completely specified multivariate distribution the PII will continue to ¡esult

in iid U(0, 1) variates. Hence the Wu procedure in conjunction with a uniform probabitity

plot of the tra¡sformed results can be used to assess MV goodness-of-fit. Similar to the

univa¡iate case, if the functional form and/or the parameter vector of the multivariate

[*J



distribution function is unknown the PIT can not be made. Assuming the functional form

to be specified and substituting estimates for the missing parameter values into the pIT,

provides only asymptotically iid U(0, 1) variates. For large sample sizes and where (n-p)

(p being the number of missing parameter values) is large this technique is a reasonable

approximate test, however if an exact test is required this procedure can not be used-

O'Reüly and Quesenberry [10] and Rincon-Ga1lardo, Quesenberry and O'ReiIly

[i3] have extended the CPIT to the M'\n{ case. The resultant transfo¡mations in

conjunction with the wu procedure (or any test for uniformity) will result in an exact test

procedure for assessing M\¡1.{ goodness-of-fit. However like other MV test procedures,

the CPIT can be difficult to administer. In addition, Ri¡con-Gallardo, euesenberry and

o'Reilly [13] suggest that sample sizes of between 100 and 200 are required in o¡der to

obtain good results, while again cautioning that different orderings of the observations will

produce different transformed values. Although the PIT and cpir are theoretically

appealing, practical appiications in the MV case are few.

There is a widely used graphical technique that is relativeiy easy to use while also

being intuitively appealing. The procedure howeve¡ depends on the subjective

interpretation of a probability plot, while also belonging to the group of MVN procedures

that rely on asymptotic theory. The general procedure proposed by Healy [14] uses a

probability plot of the ordered Mahala¡obis distances ro assess MVN. However by usirg

the PIT associated with the chi-square distribution function and the Wu procedure, a

method for statistically assessing multivariate normality is presented that, in conjunction

with the multivariate probability plot, is easy to use a¡d eliminates the subjectivity involved

in assessing borderline probability plots. The wu procedure, in conjunction with the MVN

plot, provides quantitative interpretation of the aptness of the MVI{ distribution function.

Rather tha¡ subjective interpretation of the linearity of the MV¡l plot for those cases where



the linearity is suspect, a procedure that provides analytical results is possible, resulting ir a

general test for MVN.

btYr, Yz, ... , YD denote a sample of n independent o dimensional vecro¡s

thought to come from a M\¡1.{ distribution with dimension r¡. The hypothesis of interest is

Ho: Y -MVN1¡

vefsus

H:YisnotMVNrr.

That is, we want to detennine the aptness of the MVlrIp pdf in describing the underlying

distribution of the sampled vectors.

The first step in the procedure will be to deterrnine the ordered Mahalanobis

distances [i5] associated with each observed vector,

ni2 =(yi -Il's-t (yi -Ð i=r,2,...,n

where!-n-t{yr * yz * . . . * Io) *a s =),A,-Ðq,-:),. under the nuu
i=l

hypothesis the D¡2's will follow u { disttibution.

Healy's procedure piots the ordered Di2's versus the expected value of the o¡dered

D¡2's assuming a 12 distriåution. The infe¡ence drawn regarding the MV normality of the

data will depend upon the linearity of the plot. A reasonably linear piot indicates that the

data do arise f¡om a MVI'{ distribution. A non-linear plot suggests that the MVN pdf is not

appropriate in describing the population from which the observations were drawn.



Rather than plotting the ordered Df', u"rru, the quantiles ofthe expected values of
the o¡dered statistics as determined from the T,l distribution, the PIT performed on the

D¡2's will result in iid U(0, 1) variates under the null hypothesis. A uniform probability

plot of the transformed distances will then provide the same information as the X2

probability plot of the original disønces. This result in tum permits an easy and general

procedure for assessing M\t{ for any dimensionality under investigation.

The Eansformed procedure piots Hrr@i2) w¡ere

I

Hù(r)=Jf0(x)dx
0

.l¿

1 l1l' ï-'f (x)=-l ;l x eu -rù, L"l'5)

x

2 0<x<-

versus the expected value of the order søtistics now assumed to arise from a uniform (0,i)
diseibution. If the ¡esultant plot is linear, the assumption that the D¡2's arise from a 7"2

distribution is not unjustified, suggesting that the M\ôI distribution is not inapp¡opriate for

representing the distributions of the sampled vectors. on the other hand if the plot is
definitely non-linear the x2 distibution will not be representative of the Mahalanobis

distances and hence the underlying disribution of the sampled vectors will not be M\t{.

For those borde¡line linear plots, the Wu procedure can be used. Once the

probability integral tansfcírmation has been made on the D¡2's,

U¡=II¡(Di2) i= 1,2,...,n

the resulting ui's will follow a unit'orm (0, 1) distribution under the null hypothesis.

Using the Wu procedure fo¡ testing the hypothesis



Ho: U - Uniform (0, 1)

versus

H": U is not Uniform (0, 1)

results in the following æst statistic

--2
l(U1", -U,,,Xn+l) 

|

* =L-*r I
un

Fr 
-aLQ,-u¡'

i=1

¡

Þ,
where û = i=l

n

Failing to reject Ho suggests that the uniform distribution is adequate in describing

the ransformed distances, which in tum suggests that the original distances do arise f¡om a

Xl and hence that the original sample vectors are in fact from the M\ô{ family.

2.9. EXAMPLFS

Three examples of the appiicability of the Wu statistic have been included. The first

example illustates the use of the Wu statistic when investigating results thought to arise

from a Weibull disribution. Example 2.9.2 illustrates the use of the Wu statistic for

investigating a set of dará thought to arise from a population possessing an exponential

distribution. Example 2.9.3 illustrates the Wo procedure when used in conjunction with

Healy's multivariate normal plot.



Example 2.9.1: The data we¡e taken from Example 2.2, page 46 of Si¡ha [16] and

were said to have been generated from a two parameær Weibull distribution with pdf of

the form

f(x; a, b) = Þ *t-t a 0 < x < "" wifh a=4, b=2.

A probability plot (Figure 2.9.1) casts sufficient doubt as to whether the data arises

from a population with an underlying Weibull (a=4,b=2) distribution to waranr furrher

ínvestigation.

The above Weibull distribution has a cdf of the form

"ba

-x2
4

F(x) = 1- O

from which the following were found

Rank
1

2
J
4
5
6
7
8
9

10
11
12
i3
14
15
16
17
18
i9
20
21
22
23
24
25

0<xcoo.

x
0.3761
0.5903
0.6288
0.6461
0.7500
0.170s
1.0509
r.3162
1.3545
1.3592
1.5319
1.5700
r.6173
1.6560
t.7172
1.7708
r.7961
1.8487
1.8802
1.8889
1.8889
1.9310
3.0349
3.3546
3.9ss8

45-

E(Ð
.0341
.0834
.0950
.0991
.t312
.1379
.24t3
.3515
.3679
.3699
.4438
.4600
.4800
.4962
.52r5
.5434
.5s36
.574s
.s868
.5902
.5902
.6063
.9018
.9027
.9865



Y

t.0

0.9

0.8

0.1

u.b

0.5

0.4

0.3

0.1

0.0

0.2 0.3 0.4 0.5

E(Y;n)

F igure 2 9.1 . Probability PIot for Exanrple 2 9.L



Treating F(xi), i=1,2, ...,25 as the variable of interesr (F(xÐ=yi) resulrs in

Y¡o1- Y¡r¡ = 0'9865 - 0'0347 = 0'9518

" 3E- -.2(n-1)s"= ¿gi-y) = 1.6436j

andw.. _ (.9s18)2(26)1 
= 0.6468s .v 1.64367(24)'

Then from 'f able 2.4.1, the approximate acceptance region for n=25, c=.1 is (.39g,

.667). Therefore, sinceWuis an element of the acceptance region, one could conclude

that there is not enough evidence to suggest that the data do not arise from a weibull

(a=4, b=2) distribution.

Example 2.9.2; Suppose that fifty-one observations (actual1y generated f¡om a normal

distribution with p=4 and o=1) wete thought to arise f¡om a population with an exponential

disnibution function (p=0 and o unknown), i.e.,

x)0.

IÈ|

<-, er=å*d-å]

Because o is unknown in this case, the CPIT

ui-r = for i=2,3,...,n

was used with the following results



¡
1

2
I
4
5
6
7
I
9

10
11

t2
13
t4
15
16
t7
18
19
20
2l
22
23
24
25
26
27
28
29
30
31
32
JJ
34
35
36
5t
38
39
40
4t
42
43
44
45
46
47
48
49
50
51

Åi
3.46699
4.56077
3.71026
2.67077
2.86051
4.61174
4.42081
3.198t2
2.518t4
4.86938
3.90443
2.6899s
2.9s66s
4.3493r
2.67675
2.16189
4.69168
3.0671s
4.25339
4.62955
3.23884
3.03853
4.r4997
4.10856
4.11.375
4.27908
3.88213
3.61455
2.8320s
3.80442
2.96548
2.16314
4.90936
2.63017
3.9156s
4.76996
2.86131
4.7719'1
4.24827
3.45063
3.20351
3.24542
4.47897
4.22079
3.45160
3.06617
4.12335
4.09604
5.12tr9
4.24984
5.69706

48-

Ui

0.568125
0.532266
0.459368
0.51s369
0.693780
0.66849s
0.552129
0.480713
0.'720328
0.634364
0.504636
0.545893
0.687720
0.5r2798
0.4482r4
0.726261
0.s6966i
0.689343
0.7r5746
0.s83901
0.563303
0.677840
0.6'72t59
0.6708s6
0.68329s
0.646273
0.619952
0.533137
0.641958
0.5s 1964
0.446488
0.739180
0.512873
0.658401
0.727849
0.54r46r
0.127208
0.683226
0.606s 13
0.580247
0.586113
0.703604
0.680s48
0.606384
0.564rs4
0.672893
0.66957'7
0.747794
0.679241
0.780041
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A probability plot @gure 2.9.2) of the resultant Ui's casts doubt as to whether the

data arise from a population with an exponential distribution function.

Using the Wu procedure,

f ^ -'t \ 2

i # <,rr, -uul) l
,, 

-3õ-It,-o,'
i=1

(st ì 2

¿ - (0.780041 - 0.446488) Il¿a' 't\'- l
0.3700s3 = 0.3257

A linea¡ interpolation from Table 2.4.1 suggests a p-value of 0.0344 for Wu = 0.3257

indicating that the data are in fact not exponentially distributed. The value of the Shapiro-

Wilk test for the exponential distribution with k¡own origin is W"=0.2849 (p-value <

0.01), which is in agreement with the Wu procedure.

Example 2 .9.3 : Fifty pairs of observations (X = (x1, x2)) (generated independently from

two U(0,1) populations) are thought to arise from a population possessing a Bivariate

Normal disaibution function, i.e.,

-J t /o,-t¡- -2r*t-þtxz-t\.øì,l
zntt - p2 'l z<r-pJ I of 01 oz oi ) l

To examine this claim, Healy's procedure fi¡st calculates the sample Mahalanobis distances

fo¡ each set of observations. The distances æe then plotted on chisquare (o=2) probability

paper and the linearity of the plot used to assess goodness-of-fit. By employing the PIT
t

associated with tfre Xi distribution function an uniform probabiüty plot of the transformed

values will provide the same information. The obse¡ved values (X = (xl, x2)), the

Mahalanobis distances (Dfs) and the results of the PIT (U) for rhe fifry pairs of

observations a¡e



I
1

2
J
4
5
6
7
8
ô

i0
11
72
i3
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
to
30
31
32
JJ
J+
35
36
5t
38
39
40
4l
42
43
44
45
46
47
48
49
50

ÄI
0.t87892
0.158867
0.5386s7
0.365064
0.886303
0.635174
0.313890
0.66s011
0.417821
0.992919
0.0s8372
0.3J.2426
0.867790
0.612469
0.92217r
0.099271
0.913334
0.618213
0.82069s
0.575't15
0.083141
0.361104
0.270909
0.268493
0.257458
0.9186s6
0.891344
0.180900
0.168098
0.s94946
0.902094
0.292795
0.898434
0.420613
0.624813
0.060s99
0.383403
0.652861
0.982719
0.911294
0.909504
0.275453
0.000s93
0.772428
0.614798
0.498718
0.304777
0.s 12108
0.988910
0.259543

X.
0.602599
0.884684
0.39022r
0.245086
0.093749
0.362487
0.543742
0.833904
0.3t39't6
0.9910'79
0.0s08s0
0.946027
0.945357
0.7692s8
0.935806
0.442906
0.411353
0.313841
0.414921
0.046831
0.34636s
0.077603
0.165602
0.s66029
0.095729
0.849223
0.826155
0.39466',1
0.21s719
0.2s334r
0.49s823
0.012846
0.973548
0.250528
0.234787
0.486606
0.847364
0.637293
0.564165
0.96792s
0.0262ss
0.546082
0.966013
0.t94717
0.910246
o.94s279
0.383323
0.990836
0.610297
0.13920s

D:

1.47i48
3.53558
0.1s089
0.736'70
3.89823
0.43070
0.53013
0.99304
0.38766
3.44292
3.28287
2.82103
2.33278
0.61615
2.s8s68
1.85734
1.93169
0.566s0
1. 18847
2.2393s
1.99596
r.13644
r.39253
0.81760
1.86134
2.09958
1.82044
r.20319
t.66996
0.78990
r.57761
2.38026
2.69182
0.63051
0.99133
2.28513
1.57 i59
0.24977
2.r7665
2.76407
4.86434
0.7334s
6.256'73
2.04s3s
1.4535 i
1.90590
0.5342s
2.27802
2.t9323
1.58265

Ur
0.s21286
0.829290
0.0726'72
0.30812s
0.857600
0.193742
0.232845
0.391354
0.176203
0.821i95
0.806298
0.75s983
0.6885 11

0.265r40
0.7255t0
0.604922
0.620480
0.2466'70
0.448015
0.673614
0.63r377
0.s80302
0.501557
0.335s54
0.605710
0.649989
0.597563
0.452063
0.s66116
0.326287
0.545614
0.695818
0.739697
0.270396
0.390833
0.681000
0.s44242
0.117401
0.663220
0.748933
0.912t54
0.307000
0.95 621 1

0.640368
0.516525
0.6t4397
0.234424
0.679865
0.666000
0.546757
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An uniform probability plot (Figure 2.9.3) of the Ufs does not appear sEongly linear.

The W' statistic in this case is

f ff ,o.nrur,, -o.oi267ß)f
w=-=0_3626_<'' u 2.33194

which for sample size 50 is not ari element of the acceptance region ([0.1915, 0.3310])

resulting in a p-value < 0.02, suggesting that the observations do not arise from a

population possessing a bivariate normal distribution function.

2.10. COMÀ/IENTS

A limiting requirement of the Wu test is that the cumulative distribution function

@(x)) must possess the ability to be evaluated at all points observed in the data set. For

many distributions (e.g., exponential, logistic, exfreme-value, Rayleigh, uniform,

Weibull) computations are quite straight forward and F(xrU) is quite easily found,

while for some distributions the calculations can be quite difficult. However, many of

these disnibutions have been extensively studied and their cumulative distibution

functions a¡e well documented (e.g., normal, Student's t, chi-square, gamma) which

again makes application of the Wu test quiúe easy.

In theory every co¡tinuous distribution can be represented, and a test, designed

to determine whether a set of observations does in fact arise from a population possessing

the dísribution of interest, can also be conducted. The values assocíated wifh

acceptance-rejection regions for these tests will depend on sample size as will the abiLity

ofthe test to discriminate against "odd" distributions.



The performance of the Wu statistic can be enhanced by expressing a specific

altemative hypothesis. However, when investigating distributional assumptions it is

generally unrealistic to be able to assume a specific altemative.

D'Agostino and Stephens [17] point out that the Shapiro-Wilk test statistic

(where they defrne W=(n-i)(Xo-Xl)2S2) (sic) is not consistent, which they go on to say

(page224 of l17l) is the case formost tests based on ratios of two variance estimators.

In conjunction with the . probabiüty-inægral fransformation the Wu test can be

used to investigate the natu¡e of any completely specified continuous disribution, which

makes the distribution of the wu statistic invariant with respect to hypothesized

distribution. Hence, the wu test may provide an altemative to the taditional chi-

squarc test procedure, alleviating the need to subjectively create class boundaries

necessary in the chi-square analysis.

The general wu procedure is presented as a tool that is used in conjunction with an

associated probabirty plot. Together the two procedures can provide good insighrs into the

behavior of the data. In those cases where the sample sizes are small (i.e., n<20) the

procedure is cautioned against. Both the wu procedure and the probability plot procedure

are not very powerfui for small sample sizes.

The tÊchdques used to extend the wu procedure allow other infe¡ences to be d¡awn

from the probability plot as well. outliers are more easily identified and alternative

distributions may be suggested in those cases where the probability plot and the wu

procedure suggest that the assumed distribution function does not adequately describe the

observed data.

The multivariate normal procedure is only an approximate procedure. The pir is

performed on the Mahalanobis distances which have been determined f¡om sample results.



As a result the D.'s may not be üd. The PIT is performed on these transformed variables

which Heaiy states are üd under the null hypothesis. Asymptotically the D.'s will be üd.

Healy's procedure is suitable for any MVN distribution function requiring only that

Xl probabiltf faper be availabie. Chi-square probabilìty paper is unique for each value of

o hence comme¡cially produced paper is not always available. However by performing the

PIT associated wittr the Xl distribution function, uniform probability paper can be used to

examine goodness-of-fit. Uniform probability paper is easily created from ordinary

arithmetic graph paper and can be used to investigate all MVN distribution functions.

The PIT (for the completeiy specified disrribution function) and the CpIT (for the

case where the functional form is known) permit the wo procedure to provide an exact test

for goodness-of-fit. Approximate tests that involve substituting sample based estimates

into the PIT fo¡ those missing parameter values are reasonabiy good for large samples.

Results indicate that as sample size increases the ransformation produces variates that are

very nearly uniform. ln addition as (n-p) (n being sample size, p being the number of

missing parameter values) increases the dependence becomes negligible.

To examine the "abiÏty" of the random number generator used in the simulations, the

Wu statistic was calculated for 10,000 samples of size 10, 20 and 40 f¡om the uniform

distribution and the percentage of observations lyiag outside the Wu bounds (a=0.1)

found in Table 2.4.1, calculated. The ¡esults werc 10.IVo,9.\Vo, znd l0.lZo respectively.

As a second check on the generator 10,000 samples of size 3 we¡e gene¡ated and

the Wu values associated with certain quantiles of cumulative relative frequency

calculated. The theoretical p-value (denoted p(disribution)) associated with the wu result

(determined f¡om the simulations) has been determined using the theoretical results of



Theorem 2.5.4. The numerical difference that exists between the simulated and theoretical

results is denoted by lp(s)-p(d)1. The resulrs were as follows

Wu p(simulations)p(distribution) lp$)-p(d)l

1.73649 .01 .0103 .0003

t.7s396 .05 .0509 .0009

t.774s4 .10 .0996 .0004

1.99671 .90 .900s .0005

1.99913 .9s .9489 .0011

t.99996 .99 .9890 .0010



Chapter 3

Bayesian Analysis of Process Capability

3.1. INTRoDUcTIoN

The goal of a process capability study is to determine whether the production
.

, Otocess is capable of reaching the required tolerance levels. If the actual process spread is

gfeater than the aliowable process spread the process is generally deemed incapabie of

reaching the required tolerances.

The process capability index, Cp, has been introduced as a tool to aid in the

. assessment ofprocess performance. It is defrned as

r_-_usl--LsL
6o

: whe¡e the allowable process spread is defined to be the difference between the maximum

' allowable upper limit (JSL) and the rninimum allowable lower limit (I-SL) of the process,

: and 6o, the actual process spread, is a function of the variance qo2¡ of the process.

' A process will be judged capable if Cp is greater than some ¡eal valued constant c,
:

: and incapabie if Cp is less than c. In many process studies, c is taken to be one (see Figure

I :.r.r¡.

Capable Process Incapable Process,4
actual process spread actuaæead

allowablê process spread allowablê procêss sprêad

Figure 3,L1 Examples of a capable and incapable Process.



The general form of the Cp estimator is

^ 
USL - LSLcp =__ 

6â 
_

*h"r" å is an estimate of o. The most frequently used estimator of Cp is

A USL - LSL
Lp =-6_ (3. i.1)

DSr -./(x,- x';'
,2i=twhe¡e s- = ; : i is the sample va¡iance of n process measurements X1, X2, ... , x¡.

(n- I)

There are many estimators for the population standard deviation, with the most

appropriate estimato¡ for any particular application depending upon such things as the

distribution associated with the process measurements, the desired qualities of the

estimator, and the number of sampling units examined. Due to its extensive use in process

capability studies some of the statistical properties associated with the estimator in (3.1.1)

are examined.

P¡actitione¡s often ove¡look the fact that êp will be stochastic. A bayesian

technique for analyzing the outcome of a process capability study is presented as an

altemative to the practise ofjudging a process capable based solely on the vaiue of a point

estimato¡.

:
In most process capability studies, the process measurements are assumed to

come from a normal distribution with mean p and variance d. tt tttis assumption is co¡¡ect

Cp can be used to examine some of the characteristics of the production process. However

when the assumption of normality can not be made, or is made inconectly, the statistical

properties and procedures formulated under the assumption of normality may be invalid.



The effect departures from normality have on the outcome of a process capabiÏty study are

also inves tigated-

^3.2. PRoPERTTES oFCp

Unde¡ the assumption that the process measurements come f¡om a normal

distribution, the following have been found

^Theorem 3.2. 1: The pdf of Co is

p-l -cP2(!-1)

rrôor=-l- 1 9di11ll' 
"'óo'n-I E-1 ' 1¡r(-)-;.,(-p'2' 2-

O<Cp<."

Proof: X - N(p,o2) :+
(n- 1)s2 - xz*t =å - X2,.i-

(n-1)Cp2

Cp-o2

Let êp = cn 1fl, *n"r" v - *r

^ r 1 [cp2(n-l)]+#rhen c(cp)=+ ;:i : -' r;'- .
f(-) T-' up'2' 2'

^'lheorcm 3.2.2: Cp is a biased estimator of Cp.

Proof: By definition e(êp) = j êo r,êo,oôo
0

Irtr= cp2Ín;1) 
*,rn

Zcp-

0<CP<"o



e(ôp)=.rÆ# i #5' e.'d,= cp ÆHf(ï)õI-(ï) Y -fG':)

Theorem 3.2.4: Cp is mean square consistent.

Proof: Simila¡ to the Roof of Theorcm 3.2.2 one can show

^Theorem 3.2.3: Cp is asymptotically unbiased for Cp,

"r9'' - 
.rn-2t

proor:orimuônr='.cprÇ 

# ""iT J+ õ 
=a

from [18] (page251).

Hence e(êp).cp 

{c#,]

..^,f .,T, n,*,
rr¡serêp) = ryl:--=T-' L.ç, f'(?

Then ttre li m MSE(Cp) becomes the diffe¡ence between two ürnits we have shown to be one,
tr-å æ

í.e., IimMSE(Cp) = 0



The relative biæ of Cp (i.e., Bias/Cp) is quite small Qess than 37o) for moderately

sized samples (i.e., n>30) which in conjunction with its MSE consistency, -u1,., ôp

a reasonable estimator of Cp. Note that the above properties all depend upon the

assumption of normality and may be invalid when the nonnal assumption is not true.

Several authors (t191, t20l) point out that departures from normalify may

have a serious effect on the ability of the sample variance (s2) to accurately depict the

population variance (o2). These results cast doubt on the ability of êp to estimate Cp in

the presence of non-normal process distributions.

3.3. A TEST PRoCEDURE ÄND ITs RoBUSTNESS

^Because Cp is stochastic, the decision rule associated with judging a process

^^capable using Cp will depend upon the distribution of Cp and the ievel of confidence that

will be associated with the resulting decision. The hypotheses of interest is of the form

II¡: The process is capable

which can be rewritten in the foliowing form

H": The process is incapable

FIs: Cp à c H": Cp<c

whe¡e c is some ¡eal valued constant. Then by considering the conditional probability

Pr(ôp>blCp=c)
j

for some hypothesized value qf c and for p = 1- ct, where cr is the probabitity of making a

Type-I error, b will become the critical value associated with judging a process capable.

The decision rule associated with the hypothesis will be to reject He:Cp > c and

conclude that the process is not capable at the cr ievel of significance if êp < b and fail to



reject H¡:Cp > c, and conclude that the process is capable at the c, level of significance if

cp>b.

Unde¡ the assumption that the process measurements follow a normal

distribution,

^fp = P¡( Cp> b I Cp= c) =l f(y I Cp = c)dy
J
b

^^.r2= Pr( Cp > b I Cp=c) = Pr((n-1)s'< (n-l)+-;-l Cp=c)

= Pr((n-l)s2. s' .o*,

,¡¡s¡s y=(n-1)s2 wil-l have the following pdf

E-1

,",=[-tl't#lu#'" -2¿a
0<v<oo . (3.3.1)

Fo¡ fixed values of o, c, n and p it is simply a matter of evaluating an incomplete gamma

function to determine the c¡itical value b .

'when the distribution of the process measurements is not normal, the distribution

of ôp *iu change, which may cause the criticat value b to change as well. If the critical

values change incorrect inferences may result. To avoid this, the robustness of the cp

procedure was exami¡red. one general method that can be used involves finding the

disribution of cp for various distributions of the process measurements and then

determining the appropriaæ critical value b' where



p=P¡(Cp>b'lCp=c) ,

for these various distributions.

An altemate procedure derived from a technique fi¡st discussed in [21] for the t-

distribution can be considered. In order to examine the robustness of the t-distribution

with respect to departures from normality, Gayen found the joint distribution of nland

(n-1)s2 for the population distribution specified by the truncated Edgeworth series. Using

only those teÍns up to and including the fourth population cumulant, Gayen found an

approximation of the t-distribution that allowed him to emulate changes in the population

distribution by varying the numerical values of the thi¡d and fourth cumulants.

Consider a population with mean 0 and va¡iance 1, integrating the joint distibution

of nx and (n-1)s2 for ni over the range (-.", ""), the marginal Edgeworth series for v=(n-

1¡s2 is

e(.,v)=h(v)r1+I¿+,# - # *,,

^.(n-1)(n-2) u' 3v2 3v+'z5-'ifltfrffiffi$ - jffift5 + ;:i - i i]

where h(v) is equivalent to (3.3.1) with o2=1, À3 is the third cumulant and ¡,4 the fou¡th

cumulant.

Using the relationship

p=er1 ôp>b lCp=c)=pr((n-l)s2s('-1)+ lCp= c)
ói)



the effect non-normality has on the conditionai probability statement fo¡ vaiues of

n=5(5)100, 200, 300 and c/b = l, 1.5,2 has been examined. Tables 3.3.1, 3.3.2 and

3'3.3 include the value of p associated with the normal theory result, the maximum and

minimum values of p associated with varying }9 (0.0 (0.1) 0.4) and 2,4 (0.0 (0.5) 4.0)

(chosen to ensure g(,v) is a proper pdf (see t22l)), the maximum change in p due to

va¡iations in \ onJy, and ttre maximum change in p due to variations in La only.

Table 33J

The values of p with clb=I ,0 for various sanple sizes,

(n-r)* (o-r)I
6'b' tt"

=J e(., 'lau = J e(., ulau

mln. D

.5940

.5627

.5503

.5432

.5384

.5349

.5323

.5301

.s284

.5269

.5i89

.5133

.5109

maxÂp maxÁp

varying varying
max. p ÀarlJ !a only
.7384 .0000 .1444

.70i8 .0031 .1359

.6762 .0042 .1217

.6s80 .0045 .1103

.6444 .0046 .1013

.6337 .0046 .0920

.6251 .0045 .0883

.6180 .0044 .0834

.6119 .0043 .0'792

.6067 .0042 .07s6

.5772 .0033 .0549

.ss52 .002s .0394

.s453 .0021 .0323

n
{

10

15

20

25

30

35

40

45

50

100

200

300

Normal n
.5940

.5627

.5503

.5432

.5384

.5349

.5323

.5301 /

.5284

.5269

.5189

.5 133

.5109



Table 332

The values of p with clb=I5 for various satnple sizes,

n

5

10

15

20

25

30

35

40

45

50

100

200

300

Normal p min. p
.9389 .8489

.9836 .8953

.9953 .9502

.9986 .9793

.9996 .9919

.9999 .9969

.99996 .9989

.99999 .9996

1.0000 .9999

1.0000 .9999

1.0000 1.0000

1.0000 1.0000

1.0000 1.0000

maxÁp maxÁp

varying varying

max. p Àedy Xronly
.9417 .0028 .0900

.9836 .0011 .0872

.99s3 .0014 .0436

.9986 .0008 .018s

.9996 .0004 .0073

.9999 .0002 .0028

1.0000 .0001 .0010

1.0000 .0000 .0004

1.0000 .0000 .0001

1.0000 .0000 .0000

1.0000 .0000 .0000

1.0000 .0000 .0000

1.0000 .0000 .0000



Table 333

The values of p with clb=2,0for various sanple sizes.

IL
5

10

15

20

25

30

35

40

45

50

100

200

300

Normal p min. p
.9970 .9675

.9999 .9987

1.0000 1.0000

1.0000 1.0000

1.0000 i.0000

1.0000 1.0000

1.0000 1.0000

1.0000 1.0000

1.0000 1.0000

i.0000 1.0000

1.0000 1.0000

1.0000 1.0000

1.0000 1.0000

maxÂp maxÁp

varying varying

max. p ÀgIlJ Àr only
.9970 .0009 .0286

1.0000 .0001 .0012

1.0000 .0000 .0000

1.0000 .0000 .0000

1.0000 .0000 .0000

1.0000 .0000 .0000

1.0000 .0000 .0000

1.0000 .0000 .0000

1.0000 .0000 .0000

1.0000 .0000 .0000

1.0000 .0000 .0000

1.0000 .0000 .0000

1.0000 .0000 .0000



The results suggest that the value of p, particularly for smailer sample sizes, is

sufficiently unstable to jeopardize inferences that may be drawn from a study. For example

f¡om Table 3.3.1 the value ofp for a sample of size l0 ranges from 0.5627 to 0.701g for

various combinations of À3 and À0, with the normal theory value being0.5627. The range

of values that p can take on is quite substantial even for large sample sizes, as witnessed by

the fact that for samples of size 100 the value of p ranges f¡om 0.5189 to 0.5'7i2 with the

normal theory value being 0.5i89. These results suggest that ôp is non-robust with

respect to departures from normality.

A further example of the non-robustness of ôp ,o d"purrur.s from normality is

illustrated by the results summarized in Table 3.3.4. In this case the value of c/b

that would ensure p=.95 for the normal distribution was fixed, and the

probabilties associared with the various values ofÀ3 (0.0 (0.1)0.4) andÀa(0.0(i.0)4.0)

calculated. This allows examination of the robustness or ôp in the tail areas of the

distribution. For example it was found for a sample of size 40 that the minimum value of p

that arose fo¡ the va¡ious combinations of À.3 and Àa was 0.7g44, while the normal

distribution value of p is 0.95. This represents a diffe¡ence of 0.1656. similar to the

results observed above, the skewness of the distribution appears to have little effect on the

value ofp, while the kurtosis appears to affect the value ofp significantly. Again using

sample size 40 as an example, 0.1647 of the overall difference of 0.1656 in the normal

distribution value and the rninimum value of p is attributable to the ku¡tosis of the
)

distribution, while only 0.0010 is attributable to the skewness.



Table 3 3.4.

Ranges of p by varying values of )e and 2uawhere p=095 in the normal distt'ibution,

-¡L

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

clb

1.5401

1.3711

1.3001

1.2s96

1.2318

1.21t4

1.1956

1.1829

1.1124

1. 1636

i.1559

1.t493

t.1434

r.1382

1.1335

1.t293

1.1254

t.1219

1.1t87

1. 1 157

mln. D

.8s89

.8186

.8037

.7960

.7912

.788 i

.7860

.7844

.7833

.7823

.7816

.781 1

.7805

.7802

.7800

.7796

.7794

.7792

.7789

.7788

maxÂp

varying
L onlv

.0023

.0011

.0007

.0002

.0005

.0007

.0008

.0009

.0009

.0010

.0010

.0010

.0010

.0010

.0010

.0010

.0010

.0010

.0010

.0010

maxAp

varying
À, onlv

.091 1

.LJ]4

.1463

.1538

.1583

.t743

.1632

.1647

.16s I

.1667

.1674

.1679

.1684

.168 8

. 1691

.1694

. 1696

. 1698

. 1700

.1702
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Figure 3 3 2 , Pdfs associated wilh ê p for n=10 and wrious wlues of )"d.



Fígure 3 3 3 . PdJs associated with ô p for n=30 and various values of )"0.





To further illustrate the effect that the standardized fourth moment has on the

^distribution ofCp , the pdfs associated with six values ofÀa (-0.5, 0.0, 1.0, 2.0, 3.0 and

4.0) have been sketched, first for the distribution of the process measurements figure

3.3.1) and then fo¡ the distribution of êp for the samples sizes i0, 30 and 50 @igures

3.3.2, 3.3.3 and 3.3.4). Several interesting results are apparent from these sketches.

Relatively small changes in the shape of the pdf associated with the process

measurements result in substantial changes in the shape of the pdf associated with êp.

Although the peakedness of the six distributions associated with the process measurements

is markedly different, for moderately sized samples one would have difficulty in

discerning between these distributions. The same is not true for the pdfs associated with

Cp. In each of the Figures 3.3.2,3.3.3 and 3.3.4 the shape of the pdfs range from a

slightly skewed unimodal curve to a skewed bimodal curve.

The bimodal natu¡e of ttre pclfs associaæd with ôp is Aso of interest, as the cenfal

tendencies of those pdfs with À¿=-0.5, 0.0 and 1.0 are reversed from ürose pdfs with

Lc=2.0,3.0 and 4.0. The pdfs of óp associated with t,4=2.0,3.0 and 4.0 indicare rhat

one should expect clustering of sample results away from êp =1, while for those pdfs

associated with },a = -0.5, 0.0 and 1.0 one would expect ciustering of sample

results in the vicinity of Cp =1. Thus for those cases where À4 = 2.0, 3.0 and 4.0

estimated values ofCp in the neighborhood ofone will be "relatively rare',.

3,4. CORRECTIoN FAcToRs FoR THE OC CT]RVE

Correction factors for ttre Cp procedure that take into account the degree with which

the disaibution of the process measurements departs from the assumed normal distribution

can be determined. These cor¡ection facto¡s allow one to use the ôpprocedure for

analyzing a capability study when the p¡ocess measurements are identifiably non-normal.



Formulating the correction factors involved finding the value of c/b that would ensure

p=0,95 for various values of n, where the process measurements were assumed to come

from a family of populations with non-zero values ofthe fourth cumulant. The effect of

the third cumulant on the value ofp was ignored as over the range considered the skewness

of the distribution had little effect on fhe value of p. The corrected values fo¡ c/b of the

conditional probabilities were found for À, = (-0.5, 1, 2,3 nd 4) and included in Table

3.4.t.

Table 3.4J

Corrected values of clb forftve values of ),a and the nomøI distribution Q,¿0), p=0g5.

ìt4

n
5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

i00

1.643

i.458

1.374

t.323

r.289

1.263

1 7la

t.227

1.2r4

t.203

1.194

1. 185

1.178

1.171

1.165

1.160

1.155

f. i51

t.147

1.143

1.749

1.530

1.430

r.370

1.330

1.300

t.27'l

1.258

1.243

1.230

1.220

1.210

1.201

1.193

1.187

i. 181

1.t75

1.170

1.165

1.161

-0.s 0 401.0

1.500 1.540

1.333 1.371

1.267 1.300

1.229 1.260

1.204 1.232

1.185 7.211

1.171 1.196

f.i60 f.i83
1.151 1.172

1.142 1.163

1.136 1.156

1.130 1.149

1.125 1.t43
1.121 1.138

t.1t6 J 1.t34
1.113 1.129

1.109 r.125

1.105 1.122

1.103 1.119

1.101 1.116

1.832 1.895

1.580 1.6t7

1.469 1.496

1.402 r.426

1.3s8 1.378

r.325 1.343

1.300 1.317

1.280 1.29s

1.263 1.277

1.249 t.262

1.237 1.250

1.226 t.239

1.217 t.229

t.209 1.220

1.201 t.2r3
1.195 1.206

1. i 89 r.t99
1.183 1.192

1.178 1.188

1.174 1.183



Corrections were also made to the analyrical procedure Kane presented in 1231,I24l

that uses the Operating Characteristic (OC) curve approach to judge the capability of a

process. In the OC curve approach the hypothesis of interest remains the same as the

hypothesis discussed eælier. However rather tha¡ conditioning on a single value of Cp,

the OC curve approach uses two values of Cp, Cp(A) and Cp(R) such ttrat

and

p = P¡(Cp > b I Cp = Cp(A)) = l-a

p = Pr(Cp > b I Cp = cp(R)) = 0

where ø is the probability of a Type-I error, B is the probability of a Type-II enor

and Cp(A) > Cp(R). The acceprable qualiry level (AQL) is often used for Cp(A) anit the

rejectable quaiity level @QL) for Cp(R) but rhis is nor absolutely necessary as any

reasonable values may be used.

Fixing the values of o, B and one of either Cp(A) or Cp(R) allows the critical value

b to be determined. However, rather than fixing an explicit value for either Cp(A) or

Cp(R) the results can be summarized using the ¡atios

b

cp-Rl =

where 12-rdenotes the chi-squared distribution withn-1 degrees of freedom. The value of

these ratios have been cor¡ected (for l,o = -¡.5, 7,2,3 and 4 with g=F=.05) and included

in Table 3.4.2.

and
n-l

--

x;_,( 1 - p)



Table 3.42

Conection Ratios for Kane's OC cune approach for ê p.

-0.5 1.0

)r"

40302.On

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

3.39 .442 4.21 .390

2.10 .634 2.57 .568

1.78 .7r1 2.r3 .646

t.63 .754 i.91 .693

1.54 .783 1.18 .725

1.48 .803 r.69 .748

1.43 .819 1.63 .766

r.39 .832 r.s1 .781

1.37 .842 1.53 .794

1.34 .850 1.50 .804

1.32 .858 1.47 .813

1.31 .864 1.44.82r

t.29 .870 1.42 .828

1.28 .875 1.40 .834

1.21 .879 1.39 .839

i.26.883 r.37.844

1.2s .887 1.36 .849

1.24 .ïsO 1.i5 .853

1.24 .893 1.34 .8s7

r.23 .896 1.33 .86i

4.78 .366

2.83 .54t

2.31 .620

2.05 .668

1.90.701

1.79 .726

1.71 .745

1.65 .76r

1.61 .774

1.57 .785

1.s3 .795

1.51 .803

1.48 .811

1.46 .818

r.44 .824

t.42 .829

1.4t.834

1.39 .839

1.38 .843

1.37 .847

s.28 .347

3.04 .520

2.44 .60r

2.15.6s1

1.98 .685

t.87 .710

1.78 .731

t.71 ."t4'7

1.66 .761

t.62 .773

1.58 .783

1.55 .791

r.s2 .799

1.50 .806

1.48 .813

1.46 .818

1.44 .824

r.43 .828

1.41 .833

1.40 .837

5.71 .332

3.20 .505

2.ss .586

2.24 .637

2.05 .672

1.92 .699

1.83 .'720

r.7 6 .737

1.70 .7 5r

1.65 .763

1.62 .773

1.58 .783

1.55 .79r

1.53 .798

1 .51 .804

1.49 .810

1.4'7 .816

r.45 .821

1.44 .825

1.43 .830



3.5. EKArdPr.Es

Example 35.1.' The data were taken from question 5.1 page 113 of t251, where it was

stated that a sample of size 54 was taken from a process. Assuming that the upper and

lowe¡ allowable limits of the process are 87 and 1 15 , a capability analysis was conducted.

The following sample values were found:

mjnimum ------------ 90

maximum -------------- 1 15

mean --------------------- 101

stand¿rd deviation ---- 5.40

kurtosis ------ ----- 0.957 7

A normal probability plot was constructed (Figure 3.5.i) which along with an

estimated kurtosis of 1, suggested that the critical value b should be adjusted to reflect the

apparent departure of the process measurements from normality. For illusEation pulposes

the moment estimator of ¡"4 is used to adjust for non-normaLity.

The estimated value of Cp was found to be

¿r=ffi=0.8641

under the assumption that the data comes from a population with a normal distribution, for

the hypotheses

FIo' Cp > 1 versus H": Cp < 1



Figure 3 5 J. Probability Plot for Exanryle 3 5 J.

.'7 8-



with n=54 ard cr = .05, the critical value b is 0.8643. Then si¡ce the estimated value of Cp

is less than the critical value, the process would be judged incapable of meeting the

imposed limits. However, adjusting the critical value to reflect Íhe fact that the data appeaf

to adse from a moderately non-normal distribution, the critical value for Ào = 1, cr = 0.05

and n=54 is 0.8368. on the basis of this result the process would bejudged capable at the

.05 level of significance.

Example 3.5.2: A second example arising from a generated dataset of 30 observations

illustrates the same concept. Assuming that the following observations come from a

process where the upper and lower specification limits are 2.80 and -2.80 respectively

-2.8227 -0.4670 0.5606 -0.3823 0.1 166 0.5807

0.7059 0.9571 0.2129 -0.3924 _2.7676 _1.1087

0.1631 2.0094 -2.4940 0.0809 0.5543 0.97.75

0.1323 -0.36i 1 0.2311 _0.2496 0.3560 -0.2607
-0.5868 0.3911 -0.0115 2.5092 _0.1194 _0.0349

the following estimates were found

minimum ----- ---------- -2.8227

maximum ------------ 2.5092

mean---------------------- -0.0507

i standaÌd deviation ------- f.i484

kurtosis -------------------- 1.8953

1 t-2.80 - l-2,801r'lhen Cr, = :---:- = 0.813 , assurning that the measurements arise from a Normal' 6(1.1484)

distribution, the critical value (from Table 3.3.1) for the hyporhesis



FIs: Cp > 1 H,:Cp<1

is 0.826, Hq is rejected at the 0.05 level of significance. Howeve¡ adjusting for an

estimated kurtosis of approximately 2 the critical value for the above hypotheses (from

Table 3.4.1) will be 0.769 suggesring rhat the process is capable.

A probability plot @gure 3.5.2) of the daø suggests that the observations in the rail

regions of the plot do not behave as though arising from a normal distribution . Hence the

probability plot was again useful in indicating that the measurements were substantially

non-normal, suggesting that the critical value for the hypothesis should be modified.
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Figure 352. Probabilþ Plotfor Example 3 5 2.



3.6. ASSESStr\¡G KocESs CAPABILITy: A BAYESIAN APPRoACH

A second important concept, often overlooked by quaLity controi practitioners, is

that, regardless of form, Cp will be stochastic. Consider a process that will be deemed

capable if Cp21 and incapable if Cp<l, but where the actual value of Cp is unknown. The

cunent practice is to estimate cp from the sampling results using an appropriate estimator

and to judge the process capable if ôp>t or incapable if êp<t. The use of point

estimaûors as ttre sole criæria for judging a process capable can be misleading.

Kane [23] presents a pù of techniques that consider the stochastic nature of ôp ,

while wies and Burr [26] have developed a sequential technique based on the sample range

that provides confidence levels for the estimated process capability. Both techniques

circumvent the problem of having to know the explicit value of Cp, while neither

compleæly eliminates the need to know, or at least condition on, the actual value of Cp.

An altemative to the approaches presented in [23] and [26] has been derived using

Bayesian statistical techniques. The general Bayesian approach assumes that the paÌameter

of interest (in this case a function of the process standard deviation, o) is stochastic with an

associated statistical distribution. The sampling results a¡e used to adjust the assumed

(prior) distribution to reflect the behaviour of the data. The end result is a posterior

distribution for the parameter of interest, which is based on an assumed prior distribution

and the likelihood function associated with the observed measurements.

In choosing a prior distribution that reflects a general "lack" of knowledge or

information (i.e., a non-informative or diffuse prior), the posterio¡ distribution is said to be

data domjnated [27]. This result ¡educes the subjectivity inherent in the general Bayesian

approach (i.e., the choice of prior) from that encounte¡ed and criticized when an



informative prior distribution is used. Some informative priors require fairly targe sample

sizes befo¡e the posterior distribution becomes data dominated. For this reason

conservatively choosing a non-informative prior distribution for the general Bayesian

approach to analyzing Cp, will be the approach taken here. In those cases where good

prior information exists a¡ appropriate informative prior should enhance the inference

drawn.

under the assumption that the process measurements follow a normal distribution

(i.e., x-N(p,/)), the likelihood funcrion for rhe sample X ={x1, x2, x3, ... , xo} wili

be

¡ 1 o (*,-[)2L(tL,o')=p 
"*p-,ì ã ,

assuming a non-informative prior for p and o of the form

h(P,o2¡ = l- ,
o

the marginal posterior distribution of o is

r(olT )=

Now

n-l

T ^.1 
2 -(¡-1)s'2 ltn-tls'I t 2c2

lEl-l--l-j o" "tt IL2)

-ooap4oo, 0<6<oo

(3.6.1)

consider the foilowi¡g st¿tement

Pr@rocess is capable I sample) = h(Cp > c I x)

=nrff'ctx



=r<o.ff ¡x ¡

Therefore evaluating Pr(process is capable I X ) is equivalent to determining a one-sided

credible interval fo¡ o. That is

2

ln-ll
'L;l

Pr(process is capable lX )=

USLIsL

-;-
J
0

Ir"-tl"l
L--rl

n-1

Z - 
(¡-1)s2

t"2c2do
no

6c

=b J o-'
0 " 

ddo (3.6.2)

where a and b are consranrs such tirata= 
(n 

il)s uno b =fr r(n-!)s2o<o- 
rlz. In order- rrîl

to evaluate the Pr(process is capable I sample) the sample size, n, the sample variance, s2,

the specification limits, usI- and IJL, and the critical value, c, must be known. If this is

the case then the Prþrocess is capable I sample) can be determi¡ed simply by evaluating the

incomplete gamma function. The minimum vatues of ôp that will ensure probabilities of

0.90, 0.95, and 0.99 for c = 1, 4t3,5t3 and n = 5(1)20, 25(5)50, 60(10)100 have been

determined and included in Tables 3.6.1,3.6.2 a¡d 3.6.3.

Equation (3.6.2) in conjuncrion with the wilson-Hilferry [2g] transformation
)

provides an approximation that is easy to evaluate and good for most values ofn. The

resuiting algorithm requires evaluation of a standard normal function rather than an

incomplete gamma function. using the posærior distribution of o (i.e., equation (3.6.1))

and letting y=(n -1)s2lo2, results in



!-1

lrl' , $-r +
c(YlÐ=L-2J #t' "' o<Y'""

'lz
which is the pdf of a x,o2, random variable. The wilson-Hilferty [28] transformation stâtes

that in the case of a normal disEibution (s2lo2)(1/3) follows an approximate normal. ) 2 .. _-distribution (i.e., N(1- 
Oi-i"_r¡ ffill. Hence

2 22
Pr(cp>ct x)=pr(5 'rþ )

2

=r,(( þ),'o, , (Ëo),', )

=1-o{

(ËJ""'-('-#,)

where (Þ denotes the cdf of the standa¡d normal distribution.

\ryith the knowledge of the sample results, an approximate probability statement

regarding the capability of a process can be determined. In addition, by fixing the

probability of judging a process capable given rhe sample (e.g., p=0.95) ir is easy to

^_determine the approximate cp (i.e., cp ) that wili be required to attain this probability.

For example suppose that one wishes to ensure that the pr(Cp > 1l X )=0.95 for a process

under study, then using the Bayesian approach, pr(Cp > 1l X ) = 0.95



; -2t3 9n- 1 1

*r-o{L#}=o.ss
Y 9n-9

; -213 9n- 1 1

. . ,*f -Y Qn-Q I
- s,1 ¡ =0.05L r--- J

^t:_Y 9n-9

- cp=(fffi[orlo.os¡] * e+l!_e 
)-",

The value õp required to ensure that Pr(Cp > 1l X ) = 0.95 can then be determined-

Values of Cp associated with n = 5(1)20, 25(5)50, 60(10)100, p = 0.90, 0.95,

0.99 and fo¡ c = 1, 413, 513 have been i¡cluded i¡ Tables 3.6.1,3.6.2 a¡d 3.6.3.



Table i.6J
A-

Minimt¡n Values of C p øtd C p required to ensure P(Cp>IlX þp.

p=0J9 p=ft95 p=0.90

cp cpcp cpncpCp
5

6

7

8

9

10

11

t2
13

t4

15

16

1.7

18

19

20

25

30

35

40

45

50

60

70

80

90

100

3.6692 4.0242

3.0034 3.1603

2.6230 2.7093

2.3769 2.4310

2.2043 2.2413

2.0762 2.1032

r.977t 1.9977

i.8980 t.9143

1.8333 1.8465

1.7792 1.7902

1.7332 r.7425

r.6936 1.7017

1.6592 1.6662

1.6288 1.6350

1.6019 1.6074

1.5778 t.s827
1.4868 1.4900

1,4262 t.4286
r.382s 1.3843

1.3492 1.3506

r.3227 r.3240

1.3012 1.3023

1.2680 1.2688

r.2433 1.2440

1.2241 1.2247

1.2086 1.2092

1.1958 f.i963

2.3724 2.4074

2.0893 2.1054

t.9r54 1.9243

1.7972 1.8026

i.7110 1.7 t46
1.6452 1.6477

1.5931 t.5949

1.5506 1.5520

1.5153 r.5164

1.4854 1.4863

r.4597 r.4604

1.4373 1,.4379

1.4t7 6 1.4181

1.4001 1.4006

1.384s 1.3849

1.3704 1.3707

1.3165 1.3166

1.2797 1.2798

r.2528 r.2528

1.2320 1.2320

1.2154 r.2154

1.2017 1.2018

1.r805 1.1805

r.1645 1.1646

1.152t 1.1521

r.1420 1.1420

1.1336 1.1336

1.9393 1.9406

1.7 62t r.7 611

t.6499 1.6484

1.s719 1.5703

1.5141 1.5126

1.4694 1.4681

1.4337 1.4324

r.4043 1.4032

1.3797 1.3786

i.3588 1.3578

1.3406 r.3397

1.3248 t.3239
1.3 i08 1.3100

1.2983 r.2976
r.2871, 1.2864

1.2770 1.2763

1.2380 1.2375

r.2tr2 1.2108

1.1914 1.1910

r.1761 1.1758

1.1638 f.i635
1.1536 1.1534

f.i378 r.r375
1.12s8 1.1256

1.1165 1.1163

1.1088 1.1087

1.1025 r.1023



¿p õp

Table 3.62
^_Minimum Values of C p and C p requiredto ensureP(Cp4l3lX)=p.

p=0-99 p=0.9s p=O90
A-^_
Cp Cp Cp Cp

3.1631 3.2100 2.5857 2.5875

2.7857 2.8012 2.3495 2.3482
2.ss39 2.s6s7 2.2000 2.1979

2.3962 2.4034 2.09s8 2.0937

2.2814 2.2861 2.0188 2.0168

2.1936 2.1970 r.9592 1.9574

2.1241 2.t266 1.9116 1..9099

2.0675 2.0694 1.8724 1.8709

2.0204 2.0219 1.8396 1.8382

i.9805 1.9817 1.8117 1.8103

1.9463 r.9472 r.7875 1.7863

1.9164 1.9172 r.1664 1.7652

1.8902 1.8908 1.7477 1.7467

1.8669 r.8674 1.7311 1.7301

1.8460 1.8465 1.7t62 r.7r52
1.8272 1.8276 1.7027 1.7018

1.7553 1.7555 1.6507 1.6500

1.7063 t.1064 1.6150 r.6144
1.6703 1.6705 i.5886 1.5881

1.6426 1.6427 1.5681 1.5677

1.6205 r.6206 1.5517 1.5513

r.6023 r.6023 1.5382 1.5378

1.5740 1.5740 1.5170 1.5167

r.5527 t.5s28 1.5011 1.5008

1.5361 1.5361 1.4886 1.4884

1.5226 1.5226 r.4784 1.4782

1.5114 1.5114 1.4700 1.4698

n

5

6

7

8

9

10

11

12

13

14

15

16

t7
18

19

20

25

30

35

40

45

50

60

70

80

90

100

4.8923 5.3656

4.0045 4.2138

3.4973 3.6t24
3.1692 3.2413

2.9390 2.9884

2.7682 2.8042

2.6362 2.6636

2.5307 2.5524

2.4443 2.4620

2.3722 2.3869

2.3109 2.3234

2.2582 2.2689

2.2122 2.2216

2.1718 1.1800

2.1358 2.t432
2.1037 2.1103

1.9824 1.9867

1.9017 i.9048

1.8433 t.8457

t.7989 1.8008

r.7637 1.7653

1.7349 1.7364

1.6906 1.6917
)

r.6s7't 1.6586

1.632r r.6329

1.6115 1.6122

1.5944 1.5951



Table 3.63
M inimnn V alues of ô p and õ p required to en sure P (Cp á I 3 | X ) = p.

p=099 p=0.9s p=0.90

cp cpcp cpncpCp
5

6

7

8

9

10

11

12

13

14

15

16

t7
18

19

20

25

30

35

40

45

50

60

70

80

90

100

6.1153 6.7070

5.00s7 5.2672

4.3716 4.5155

3.9615 4.0517

3.6738 3.7355

3.4603 3.5053

3.2952 3.3295

3.1634 3.1905

3.0554 3.0775

2.9653 2.9836

2.8887 2.9042

2.8227 2.8361

2.7653 2.7770

2.7147 2.7250

2.6698 2.6790

2.6296 2.6378

2.4781 2.4834

2.3',171 2.3809

2.3041 2.3072

2.2486 2.2st0

2.2046 2.2066

2.1687 2.1705

2.1t33 2.1147/
2.0721 2.0733

2.0401 2.04rr
2.0144 2.0153

1.9931 1.9939

3.9539 4.0124

3.4821 3.5090

3.1924 3.2071

2.9953 3.0043

2.8517 2.8577

2.7420 2.7462

2.6551 2.6582

2.5844 25867

2.5255 2.5274

2.4757 2.4771

2.4328 2.4340

2.3955 2.396s

2.3627 2.3635

2.3336 2.3343

2.3075 2.3081

2.2840 2.2845

2.1941, 2.1944

2.t328 2.1330

2.0879 2.0881

2.0533 2.0534

2.02s6 2.0257

2.0029 2.0029

t.9675 1.9675

1.9409 1.9409

r.9201 1.9201

1.9033 1.9033

1.8893 1.8893

3.2321 3.2344

2.9368 2.93s2

2.7498 2.7473

2.6198 2.6172

2.5235 2.5211

2.4491 2.4468

2.389s 2.3873

2.3405 2.3386

2.2995 2.2977

2.2646 2.2629

2.2344 2.2328

2.2080 2.2065

2.1847 2.1833

2.1639 2.1626

2.1452 2JM0
2.1284 2.1272

2.0634 2.0625

2.0187 2.0180

1.9857 1.9851

1.9602 1.9596

1.9396 1.9391

t.9227 1.9223

1.8963 1.89s9

r.8764 1.8760

1.8607 1.8604

1.8481 1.8478

1.8375 1.8372



3.7. CoTæARIsoN BETWEEN TTß BAyESIAN AND OC CURVE APPRoACH

The Bayesian approach to analyzing process capabilities is philosophically different

from that of the oc curve approach to analyzing process capabilities. However both

techniques promote the use of a probabilistic statement or region in addition to a simple

point estimator.

ln the case where a non-informative prior is chosen fo¡ o, the resultant posterior

distribution is proportional to the ükelihood function. Hence a credible interval for cp is

si¡nilar to a confidence interval for ôp as derived from the oc curve approach. Boundary

values associated (o=0.05) with sample sizes 10(10)100 have been determjned fo¡ both

procedures and a¡e identical hence inferences regarding the capability of a process will be

similar regardless of the approach taken. However the Bayesian approach with or without

the wilson-Hilferty tansformation is more flexible and easier to administer than the oc
curve approach. It should be pointed out that the B ayesian approach requires that a prior

distribution be assurned for o which is not the case fo¡ the oc curve approach. However

the oc curve approach requires that maximum and minimum acceptable values of cp be

set, which may also inüoduce subjectivity into the analysis. As well when wishing to

evaluate the probabiiity that the estimated cp index is greater than some value, the oc
curve approach does not lend itself weli to this type of analysis.

3.8. EX,A.MPLES

Example 3 .8.I: consider án exampie rhat deals with the parallelism and radial length of a

machined hole in a tansmission diffe¡ential case [23]. The process is a new undertaking

and capability study was performed. The sampling results were as follows



Stage Parallelism

xsCp

8.8 8.3 .80

8.3 7.8 .85

5.5 4.3 1.55

Par¿llelism

^^x s Cp Pr(Cp>l1 Cp)

8.8 8.3 .80 .0000

8.3 7.8 .85 .0139

5.5 4.3 1.55 i.0000

Radial længth

nxsCp

201 4.7 8.7 .7',1

96 10.4 2r.r .32

316 5.0 5.4 t.23

1 268

)10

3 300

Now without some accompanying probabilistic statement the¡e is little that ca¡ be said

regarding the capability of the process at the different stages of the production. Using the

Bayesian approach in conjunction with the wilson-Hilferty tansformation these results can

be reported as follows assuming a non-informative (uniform) prior for unknown o

Stage Radial Length

^^s Cp Pr(Cp>11 Cp)

8.1 .77 .0000

21.r .32 .0000

5.4 1.23 1.0000

x

201 4.7

96 10.4

316 s.0

I 268

279
3 300

Example 3.8.2: Consider example 5.3 from page 107 of [25] where a quality contol

depa¡Ínent wanted to assess ttre capability of a process that involved the manufacturing of a

shaft. The product manager set the upper and lower allowable limits as 2.15 and,2.0l

respectively (with a target value of 2.08). A random sample (n=50) of shafts was taken

and measurements reco¡ded. The results were summa¡ized as i = 2.08 and s = 0.022,

hence the estimated Cp index tumed out to be

A rusL-LSL) 2.15-2.01
' 6å 6(0.022)



Using the Bayesian approach with the Wilson-Hiiferty transformation results in the

foilowing
. ^ --uz 439¡ LUO

Pr(Cp>1lCp=1.06)=1-o i
v 441

= 1_o(_0.50)

= 0.6915

Hence although the estimated process capability is greater than l, the probability that the

actual Cp value is greater than I is only about 0.7. From Table 3.6.1, the value of ôp

required tojudge the process capable at the 0.05 level of significance will be 1.20.

The oc curve approach requires that both the type-I and type-Il error probabitities

be fixed. Assuming cl=F=0.05, the ratios for n=50 are Cp(A)/Cpfi.)=1.40 and

b/Cp(R)=1.20. Iætting the minimum requirement of Cp be 1 (i.e., Cpß)=l), Cp(A)=1.a0

anct b=1.20. That is the mi¡imum acceptable value of êp *rat witt ensure the actual cp

between 1.00 and 1.40 (with c=P=0.05) will be 1.20. Hence in this case since

cp =1.06, the process is not capable at the 0.05 level of significance. This is the same

conclusion arrived at using the Bayesian procedure. Note howeve¡ that this technique

provides no method for attaching an actual probability statement to the outcome of the

sampling results, that is, no interpretation of how ,,poor,, ôp=f.06 can be made.

Secondly the technique forces one to consider a finite interval for cp (in this case (1.00,
)

1.40)) which may not be appropriate in some applìcations.

3.9. COMMENTS

some of the statistical properties of the estimated process capability index cp

have been examined. As was assumed, the t¡aditional estimator of cp is non-robust to



departures from normality. Some general correction factors have been included that may

aid practitioners in assessing process capabilities when the p¡ocess measurements do not

arise from a normal distribution.

The Bayesian approach to analyzing process capability has also been presented as

an alternative to techniques currentiy available. Under the assumption of a non-

informative prior, criticai regions have been created for the sample results, that allow a

probabiristic statement to accompany estimates determined f¡om the sample results. In

addition to giving equivalent results to the oc curve, the Bayesian approach permits an

easy rnethod for deüermining how exteme the ¡esults of one's study are.

-93-



Chapter 4

A Nerv Measure of Process Capability

4.1. INTRoDUcTIoN

The process capabiiity index cp has been criticized for its inability to reflect

departures from the target value while assessing process capability. Due to this inherent

ilability, several indices have been proposed that take the target value into account when

assessing the capability of a process. The indices considered to date perform quite well in

assessing the ability of a process to meet the required specification limits and be close to the

target value. However the statistical disributions associated with the estimators of these

indices can be quite complicaæd, which makes study of ttreir statistical properties difficult.

A new index, Cpm, is proposed that takes i¡to account departures from the tårget

value as well as process variation when assessing process capability. The new index and

its proposed estimator are presented and some of the associated properties investigated.

Two analytical procedures that can be used to investigate process sampling results are

examined and an example illusEating use of the new index is provided.

A graphical procedure that provides insights into process capability is presented.

The procedure uses modified probability plots to examine the assumption of normaiity,

proximity to target value and process va¡iation. The general procedure is discussed and an

example given which focuses on some of the highiights of the p¡ocedure.

4.2, SOME PRoCESS CAPABILITY INDICES AND THEIR ESTIMAToRS

As several aurhors have pointed out (Í231, Í291, t3ol), rhe Cp index does nor take

into conside¡ation proxirniry of the measurements to the target value. For example in
Figure 4.2.7, samples arising from any of the five populations 1N(p1, o2) for

populations i=r,2,3,4 and 5) would yield similæ estimaæs for the cp index. Because the



actual process spreads of the five populations are smaller than the allowable process

spread, the conesponding estimates ofcp should all indicate that the processes are capable.

However processes from populations 2, 3,4 and 5 all deviate from the target value.

It can be argued that processes with characteristics similar to populations 2 and 3 are

still within the specification limits and hence should be judged capable even though they are

not centercd at the target value. Howeve¡ additionat work o¡ costs may be incuned due to

adjustments made necessary by these departures from the target value. processes with

population cha¡acteristics similar to 4 and 5 will be incapable of meeting the specifications

required as they both have non-conforming oulput. Hence it is important to find an index

that will reflect departures from the target value æ well as changes in the process variation.

P¡ocesses with small variabitity, but poor proximity to the target value T, have

sparked the derivation of several indices which are similar in nature to the cp index. These

indices attempt to take into account process variation as well as departures from the target

value. Some of these indices include

,-orr_usl--p
3o

çp1 _l¿-LSL
3o

(4.2.1)

tÁ, ) 1\

(4.2.3)

(4.2.4)

Cpk = ¡6¡¡t¡u-(CPL, CPU)

and Cpk = (I-k)Cp

*tt... t = Uffi, with ¡r represenring the process mea¡ and LSL < p < USL,



Figure 4 2J,Five N onnal Populotiotts witlt identical,¡,alues of Cp,



The two definitions of Cpk are presented interchangeably. They are algebraically

equivalent for 0*11 and where the target value is the midpoint of the specification limits.

Each of the indices involve the unknown parameters p a¡¿ o2 which generally

must be estimated. The usual estimators are

USL - -x

3s
CPU

where

^û 
_ i-LSL

''"---

^^^Cpk = minimum(CPu, CPL)

^ ^^Cpk=(1-k)Cp

¿_ 2tr-;t.- 
USL - LSL

These are the maximum likelihood estimators and provide reasonable point estimates

for their respective indices. However the statistical disributions associated with these

estimators are quite complicated, making inferences from the sampling results difficult.

Assuming that the process measurements follow a normal distribution, ôpU *¿ ôpI- *ilt

have a probability density function proponional to that of the non-cental t distribution.

The pdf of Cpk is a function of two dependent non-cental t distributions a¡d is difficult to
j

derive.

4.3. Tne Cpm InuEx, ITs pRopERTTES AND EsrIl\{AToR

The proposed Cpm index is defined as



where

o'=

and r is the target value of the process. sim ff to #, o'2 is a population parameter

that is usually unknown a¡d w l have to be estimated. The general form of the estimator

will be

^ USL - LSL
' 6o'

A USL - LSLLpm =-F-,

Since o'2=E(X-p)2+ (p-Ð2 = ê+ @-T)2

Corn=€
e{ot+(r¡-T)2

where

(4.3.1)

It is easy to verify that cpm w r possess the necessary properties required for assessing

process capabirity. If the frocess variance increases (decreases) the denominato¡ of (4.3.1)

i¡c¡eases (decreases) and cpm w l decrease (increase). If the process drifts from its target

value (i'e', if ¡r moves away from T), the denominator of (4.3.i) will again increase

causing cprn to decline. In the case where the process variance changes and the process

E(X - T)2



mean drifts from T concunently, the Cpm index possesses the abitity to ¡eflect these

changes as well.

As an illustration (Figure 4.3.1) of how Cpm reacts to departures from the target

value, consider al example from [23] with a target value of 14 rather than 16. As the

process mean moves away from the target value, the value of Cpm decreases and although

the comparison of absolute magnitudes will be subjective, it becomes obvious that the cpm

reacts to changes in the process in much the same manner as Cpk, while Cp remains

constant regardless of the proximity to tlre target value. There is a one-to-one relationship

between Cpk and Cpm for fixed values of Cp.

Theorem 4.3.1: Forafixed valueof Cp.nar= USLåLSL, 
Cpk and Cpm have a one-ro-

one relationship.

Proof: By definition cpk=Cp(1-k) -u "o=aontü-%[

therefore Cpk = (l-k)Cpm Hence the relationship is one-to-one.

The indices Cpm and Cp will be identical when the process mean p, and the target

value T coincide (see Theorem 4.3.2). This implies that ôpm and êp are esrimares for the

same measure when T=F. In this case, the magnitude of the bias associated wi*r êpm is

^^always less than that for cþ given a fixed sample size (see Theorem 4.3.3) with öpm also

having a smaller mean squa¡e eÍor (lnfsE), Hence, in those cases where the trrget value is

assumed to coincide with the process mean, ôp- has better statistical pfoperties than that

of Cp.

(p-r)"



USL

10 11 12
LSL

14 15
T

16 17 18
USL

p

1J

l.l

r4

Cp CPL CPU Cpk Cpn

2 L.5 2.5 1.5 1.11

Cp CPL CPU Cpk Cpm

2 2.0 2.0 2.0 2.00

cÐ cPL cPU Cpk Cpm

2 2.5 1.5 1.5 1.L1

10 11 12
LSL

13 p 15
T

16 17 18
USL

p

'10 11 12
LSL

13 14
T

17 18
USL

17 18

USL

tb

10 1'1 12

LSL

13 14

T

15 p

I,l Cp CPL CPU Cpk Cûm

16 2 3.0 1.0 l-.0 0.63

Cp CPL CPU Cpk CÐm

2 3.5 0.5 0.5 0.43

10 11 12 13 14 '15 16 p 18

Figure 4 3 J Compartsons of Cp, CPL, CPIJ , Cpk and Cpnt.



Theorem 4.3.2: For u=T. Com = Co.

aa
P¡oof : When !r=T, o'' = ECX-T)" = E(X-U)" = o' .

Therefore Cp = Cpm.

Theorem 4.3.3: When p=a, ôpm fræ smaller bias tt an ôp.

Proof: F¡om rheorem4.5.2, rfôpm¡=1$I-$a*
t \r)

whjre rrom rheo rem 3.2.2etênl=1ffr(ä, I 
)- 

.0.
L\Z_)

.'. E(ôp¡e(êpm>agcolr(ä 
r) Ë*

'r1L!, ) r(Ð

,-rtþrtrl-i¡ - r21þ.,=tffi]rF'o
,1r(þtrrl -tI 

--t'r+l-,1iÉ, 
cn=o' rtþr1rl¡ J

because MSE(ôp*,=1tÖ? 
-J'ëtlf 

cp, 
= 

o

+ {r1þrq1-r¡-*rtl¡} >o

Hence E(ôp)-Cp > f(êpm)-Cp = qôpm¡-Cpm since T=Þ and Cp = Çp¡¡.



Assuming that the plocess measurements arise from a normal distribution, the

probabilty density funcrion of êpm is

0.y.""

whe¡e a = cprn2(t *þ fn-rl and î. = 
# 

(see Theorem 4.3.4). From the pdf of

öpm, the expected value (see Theorem 4.3.5) and the MSE (see Theorem a.3.6) of ôpm

can be shown to be functions of the inverse moments of a non-central chi-square

distribution. The probabilty Prqôpm > c¡ (see Theorem 4.3.7) is

l- . ',i

".o l+ltl]ä-' ' i=o 
þr 

rtrl*:l

Theorem 4.3.4: If the process measurements are N1¡r,o2), then the pclf of ôpm is
j

*,".{ Ë.,]l.tt'[-JåH

al

'i t-'-, I

J *' exp(w) dw 
I'J



Proof: When the process measurements a¡e from a N(p,o2), ¡ = (n-1) {rorro*, u non-
o-

central chi-square distribution with n df and non-centrality parameter I = @o, . ,n.

pdf of x is

The result follows from noting rhar x = (n-1) q 
= ¡3;an¿ ôpmrO.o" CPm"

Theorem 4.3.5: E(êpm) = {ã E(x-1/2).

cpm21n-r;1r+ |¡
Proof: l¡tx=-+=#.

Cp-" Cpm'

x - X2o' and E(êpm)= {ã 
J*-t'2r{^)a"
0

= {ã E(x-1/1. 

i

Theorem 4.3.6: MSE(êpm) = a[e(x-r) -E2G'1'\]

P¡oof: l,et x be as defîned in Proof 4.3.5.

ôprn'= *-t + n1êpm2; = a¡(x-l)

(Ð ".,[ +][i;#,lr;]'



Hence MSE(êpm) = p(êpm2)-E(êpm)12

=E(x-r)a-[E(x-12) "/ã ]2

=a[E(x-1)-[E(x-13]21.

,--,-[l-"'l' ñLo I
rheorem 4.3.7: pr(ôpm>w) = *r-L"rl ¿ I L'l -! 

*î. 
t-'.*p1_*¡ 

a* 
|. , j=o 

lrr 
rÇ.:l d - 

I
p¡oof: p¡(êpm>w)=prf å 

= 
u'?;"' 

)=pr(rro,¡" . 
cp*2t:] lt r 3n l,

From [31] page 732,

l- rri a II ILI *'o I

pr(ôpm>w¡= -'f-+]t l"+- j,t.'-'*"ltl * 
|" j=o 

þ,r;", 
r(å*¡l r - - 

J
I-ettingx=|resultsin

l-.',i z -'l

Pr(ôpm>w) =*,.[+]å 
L# T'i."*,u, *_J



4.4. TIü OC CUR\E APPRoACH FoR Á,NALYUNG cpm

Suppose that the sample size and the critical value b a¡e to be determined for the case

where the probability of a Type I er¡or is to be no more than s if the true value of Cpm is

greate¡ than the Acceptable Quality lævel Cpm(A), and the probability of a Type II enor is

to be no more than p if the rrue value of cpm is less than the Rejectable euality Level

Cpm(R). Unde¡ the assumption that the p¡ocess measurements are from a ¡¡(p,d)

Prlôpm >b)=Pr( å'2.(u sI=:L' 
-sL)2,

ÒD

- . (n-1)o 'z (n-1)íLSL-LSL)2.
t ---T tú 6n"ú

=pr(x-2, <(n.1)I]u41'**'l""D,^ b'

Then the probabiltias of making a Type I and Type II er¡or a¡e

s=P¡(x? , @ruffidlcpm(A))

B=p¡(x"2¡ .rytcpmß)).
The¡efore x-2,e-..)-ln- 

I lcpm(A)2r1*À'n 
''D,À' ' bz

r"r,^G)=.*cfffu@

where 1ot(ô) is the 100ôth percentile of a non-cenhal 12 dirt ibution with n df

a¡d non-centrality parameter À, The above results can be summa¡ized fo¡ various values

of a, B, I, and n using the following ratios



cpm(A) fxTi-ct)-
eñ",Gi=\ j"JB)-

As derived, the Cpm index possesses the property of reflecting changes in a

process that affect the ability of the process to meet some preset specifrcation limits. For

the general case where the target value is not assumed to be the same as the process mean,

an estimate for cpm, along with some of its statistical properties have been found that

allow stochastic analyses of the sampling results. The calculations associated with

obtaining either a measure of variability or a probability statement for the estimate of cpm

can be quite difficulÇ however the ability to do so exists.

A special case of the Cpm where the ta¡get value and the process mean are

identical (i.e., p=T) has some additional properties.

4.5. SoNß PRopnnrres oF êpm WHB,¡ p= |

Assuming F=T, where T is known, the pdf of êpm fo¡ the case where the process

measurements a¡ise from a normal distribution is (see Theorem 4.5.1)

0<y.."

^while the expected value ofCpm is (see Theorem 4.5.2)

,", = l;]ï' [.au]t ",,.;-lå [+]".' ".{ #]

ÆlP*]*E(Cpm)=



and the MSE of Cpm is (see Theorem 4.5.3)

cpm is a biased estimator of cpm (see Theorem 4.5.2) however ôp is also a

biased estimator of cp (see Theorem 3.2.2). See Figure 4.5.1 for a comparison of rhe

biases of both estimators. Asymptotically the bias associated with ôpm is zero (see

Theorem 4.5.3) implying that ôpm is an asymptorically unbiased estimator of Cpm.

Theorem 4.5.1 : If p=1 ¡¡sr the pdfofêpm is

p¡oof: 1y¡.n j,z=¡$1.

(n- 1) å'2
y= :-a- has a chi-square distribution with n df. Its pdf is6-

zrvl = (l)"2 *: v"z 
-t expc þ 0.y.."_ r(Ð

so ôpm - usl ;LsL - (usl- -?rLlL)'Vn-l 
= 6o- 

^ 
/E-6o' 6o./t ' Y Y

cpm2ln-1)::+ y = JÈ..-.-
Lpm



= ay = 
-2cR*'(¡'-t) u¿ot

cpm"

+e(ôpm, = t.tt'[ti=, i [i*g, ]"., ffi* ], 
0.ôp-.."

.r!:!.,
Theorem4.5.2: tr p=1, E1ôpm¡=Cpm1frfõ

^ 2, .,
Proof: LetQ=LPT tn;r¿

2Cpm'

CPm'/n-t F(+) -
rhen E(ôpm) l-+ e(nr)/2-l exp(-e) der(ù.,t2 d F(ï)

.rn:!',
^ Iî-T^\2)=upm\T 

6

Theorem 4.5.3: If p=T, MSElêpm¡=Cp-zrn:rl [f(å-i) It' "-rëz) r'aêù

Proof: Let Q be as in P¡oof 4.5.2.

^ ^ ^ rrl-rl:
men e1ôpm2¡ = cpm2 (n-1)'" ;' |. - 1 q"z-r exp(-e) de

2f(i)¿o fç-1)



So MsE(ôpm)=¡(ôpm2)- E(ôpm)l2

- 1 rGl- r) Érn-l'=cp-'t#l{#-'f3'1.,rù f6)

From Figure 4.5.1 it becomes evident that the magnitude of the reiative bias

dec¡eases quiæ rapidly as the sample size increases. For example, the relative bias for êpm

associated with samples of size 10 is about 37o. While for sample sizes greater than 25, the

reiative bias will be less tha;;. lVo. Note as well that the magnitude of the bias is sample size

dependent while also being dependent upon the magnitude of the Cpm index.

^^Cpm has been shown to be less biased tha¡ Cp for all values of n. As a comparison,

^the relative bias for cp has been included in Figure 4.5.1. Again fo¡ small samples the bias

^associated with cp is quite signifìcant while for larger samples the bias becomes ir¡elevant.

^^^l¡ addition to having a smalle¡ bias, Cpm has a smaller MSE than Cp, making öpm a more

^eff,icient estimator than Cp (see Figure 4.5.2).
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The mea¡ square error associated with Cpm is a function of the value of the Cpm

i¡dex and the sample size (see Theorem 4.5.3) and is asymptotically 0, implying that ôpm

converges in probability to Cpm (see Theorem 4.5.4).

Theorem 4.5.4: cpm is MSE consistent.

^2LD ..
=-- lrm

Proof: FromProof4.5.3 as n tends to infinity

rim MsE(ôpm) =r- 1t(ÞFtå-tl.t'r*1.l Vrt

rri-rrrrþ r2fa., ¡-" j(n-t)
r¿Ö

=cp'{ri-,+ 5ÐB.)æ - - F(i'
-[m

n-)ð

-.n- 1.
fï-T:' \ 2 /t2-t

1i t7- -2r;;-l ,t
, rT)

From [18], both limits are 1. Hence

AA
MSE(Cpm)=O and this implies that Cpm converges in probabilty to Cpm.

4.6. THE OC Cr.rR\æ APPROÄ.CH To ANALyzNc Cpm wffi,{ p=T

i^
When p=f, a result analogous to the OC curve procedure for Cp can be derived

for Cpm. Suppose that the sample size and critical vaiue b are to be determined for those

cases where the probability of a Type I error is to be no mo¡e than cI' if the true value of

Cpm is greater than the Acceptable Quatity Iævel Cpm(A), and rhe probability of a Type tr

lim



enor is to be no more than B if the true value of Cpm is less than the Rejectable euatity

lævel Cpm@). Consider the following

Pr(êpm > b) =P¡(xl . cenl2fn-1),
b¿

where 12o is a chi-square random variable with n degrees of freedom. The probabirties of

making Type I and Type II errors become

a=Pr(7¿2, Wlcpm(A))

B=Pdx:. ry@tcpmß))

xSror=S

xl rr-al - cPm(å)1n-1) 
.

and as a result

Values fo¡ the ratios

Cpm(A) _
Cpm(R) -

øR]=1-5
have been found for va¡ious values of o, p, and n (Table 4.6.1).

This approach for evaluating the stochastic properties of the estimated cpm index is

¡ather cumbenome although it does allow a probabilistic statement to accompany the point



Table 4.6J

Values of tlte ratìot ffi * dæf ¡* a= þ 0.0 5, a= þ 0.1 0.

ComlA)* Cpm(R)

10 2.1555

20 r.7014

30 1.53 85

40 1.4503

50 1.393s

60 1.3532

70 1.3228

80 1.2988

90 r.2794

100 r.2632

110 1.2494

120 1.2375

130 r.2272

140 1.2180

i50 t.2098

160 1,2025

170 1.1959

180 1.1898

190 1.1843

200 1.1792

a=ß=0.10
Cpm(A) b
cpm-Gt cpm-O
1.8127 1.360i

1.5111 1.2357

1.3979 1.1865

r.3354 1.1587

r.2946 1.1402

1.2655 1.1259

1.2433 t.1167

1.2258 1.1086

l.2rr5 1.1020

1.1995 1.0964

1.1893 1.0916

f.i805 1.0875

t.t728 1.0839

1.1660 1.0806

1.1599 r.0778

r.r544 1.0752

1.1495 1.0728

1.1450 r.0707

1.1408 1.0687

1.1370 1.0669

c¿=Ê=0-05
b

cpm-@)

1.51 13

1.3233

r.2523

1.2129

1.1872

1.1688

1.1548

t.t437

1.t347

1.1271

1.1207

1.1 151

1.1102

1.1059

1.1020

1.0985

1.09s4

1.092s

1.0899

1.0875



estimate. The cumbenomeness arises f¡om the requirement that the Type I and Type II

enor probabilities must be fixed and co-ordination with the sample size done prior to

sampling in order to establish a critical value that can be used to judge the capability of a

process. The numbe¡ of tables required to document all possible results for the OC curve

approach will be large.

4.7. A. BayFsrAN AppRoacH FoR ANALYZTNG cpm WmN p-T

An approach sirnilar to that proposed for the Cp index can be used to find exact and

approximate credible i¡tervals for the Cpm index. These intervals are in tum used in a

procedure that is more general, easier to interpret, and less restrictive than those associated

with the OC cuwe approach.

Assuming the measurements follow a N1T, o2), the likelihood function for the

sample X={xr, x2, ... , xD} is

For the non- informative prior

Q464oo, -ooapaco

the posærior distribution of ois

r1o'¡=qzno2¡i,.rl #]

h(p,o)=L,
o

I r"-'É''l
"-1- --1 

o<o<o" (4.7.1)



^ Ã;r,,
where o' = 

V à+;. 
The posteriorprobability becomes

p=Pr(Cpm>c ¡x¡=erlusl 
- 6L>c 

¡x¡-6o

=e4".ft.Lsl. r5l

æD,
-- I

=l t y' e-Y dyJ -.n. 'b t\r)

. USL - LsL (n- 1)å'2 tn- I lc2 
^where a y =- and b = Ër Given an observed value of Cpm6w Zo" 2Cpm"

the probability that Cpm is greater than c can be found. The minimum values of ôpm

required to ensure p=0.90, 0.95, 0.99 fot c=7,413,5/3 and n=3(i)100 have been tabulated

and included in Tables 4.7.1,4.7 .2 and, 4.7.3. In order to judge the capability of a process

using this procedure, one need onJy calculate êpm and compare it with the minimum value

required as deærmined from the tables.

The Wilson-Hilferty Eansformation [28] provides a very good approximation to the

posterior probability (equation (4.7.1)). It is easy to evaluate, good for large and small

values of n, and uses the standa¡d normal distribution instead of the incomplete gamma

function. The approximation is

a

J f(olxl do
0



Table 4.7J
AA

Mùùmtanvaluc of C pmfor p=P(Cpm^>I I C pnù,

T
non ôo5 fì oo osn ô0< no0a

J
4
5
6
1
8
9
10
11
ta
13
14
15
16
t7
18
19
20
2L
22
23
24
25
26
27
28
29
30
31
'2,4

33
34
JJ
36
5t
38
39
40
4t
42
43
44
45
46
47
48
49
50
5l

1.8500 2.3842
1.6195 2.0545
1.5'161 1.8687
1.5061 1.7485
1.4553 1.6638
1.4163 1.6005
1.3854 1.5s11
i.3601 r.5ir3
1.3390 1.4785
1.3210 1.4508
1.3054 1.4nt
1 .2919 t .4066
r.2799 1.3886
1 .2692 1 .3726
1.2596 1.3583
r.2509 1.3455
1.2430 1.3339
1.2351 1.3233
r.2291 1.3136
1.2229 1.3M6
1.2173 1.2964
1.2120 1.2887
r.2070 1.2806
1.2024 1.2150
1.1981 1.2688
1.1940 1.2629
r.r902 1.2575
1.1865 1.2523
1.1831 1.2474
1.1798 t.2A28
1,1?68 1.2384
1.1738 1.2342
1.1710 1.2302
1.1683 1.2265
1.1657 1.2228
1.1633 1.2194
1.1609 r.2161
1.1587 1.2129
1.1565 1.2099
1.1s44 1.2070
1.1524 1.242
1.1505 1,2015
1.1486 1.1989
i.1468 1.1964
1.1451 1.1940
r.1434 1.1917
1.1418 1.1894
1.1402 1.1872
1.1387 1.1851

4.1733
3.r77 6
2.6863
2.3944
2.2006
2.0619
1.957 5
1.8?57
1.8097
1.7 552
t.7094
t.6102
1.6362
1.6065
1.5802
1.5567
1.5357
1.5166
1.4993
1.4835
r.4689
1.4555
1.4431
1.4316
1.4209
1.4108
1.4014
t.3926
1.3843
1.3765
1.3690
1.3620
1.3553
13490
1.3430
r.3372
t.33t7
1.3265
1.3215
1.3161
1.3120
r.3076
1.3034
1.2993
1.2953
1.2915
t.2879
1.2843
1.2809

-111

1.1831 r.2776
1.1811 t.n44
1.t192 r.27r3
r.1773 1.2683
1.1755 1.2654
1.1738 1.2626
1.1721 t.2598
1.t704 1.25'12
1.1ó88 1.2546
1.1673 1.2521
t.1657 t.2496
1.1642 r.2473
1.1ó28 1.2449
1.1614 1.2427
1.1600 t.2405
1.1587 1.2384
1.1574 1.2363
1.1561 1.2342
1.1548 1.2323
1.1536 r.2303
1.1524 1.2284
r.15LZ r.2266
1.1501 1.2248
1.1490 1.2230
1.14'79 1.2213
1.1468 r.2196
1.1458 1.2179
1 .1447 1 .2163
L .1431 1 .2147
1.t428 1.2132
1.1418 t.2116
1.1408 r.2r02
1.1399 1.2087
1.1390 1.2013
1.1381 1.2059
1.t372 1.2c!'5
1.1364 1.2031
1.1355 1.2018
1.1341 1.2005
1.1339 1.1992
1.1331 1.1980
1.1323 1.1967
1.1315 1.1955
1.1307 1.1943
1.1300 1.1932
1.1293 1.1920
1.1285 1.1909
r.1278 1.1898
1.1271 1.1887

:t
52
53
54
55
5ö
57
58
59
60
61
o¿
63
u
65
66
67
68
69
70

1t
t5
'74

75
76
11

tó
't9
80
81
82
83
84
85
86
87
88
89
90
9l
92
93
94
95
96
97
98
99
100

1.1372
1.135 8
1.1344
1.1331
1.1318
1.1305
r.1293
1.1281
1.1269
1.1258
1.1247
1.1236
1.1225
L.LZr5
1.1205
1.1195
1.1186
L.tr? 6
1.1167
r.1158
1.1150
1.1141
1.1133
1.t125
1.1117
1.1109
1.1101
1.1094
1.1086
1.1079
t.1072
I.1065
1.1058
1.105 r
1.1045
1.1038
1.1032
1.1026
1.1020
1.1014
1.1008
1.1002
1.0996
1.0991
1.0985
1.0980
r.09'14
1.0969
1.0964



Table 4.72
A'^

Mùimunvalue of C pntforp=Py'CpmfTlC W).

!p
g
J
4
5
6
7
I
9
10
11

12
13
14
15
16
L7
18
19
20
ZL
tt
.)?,

24
25
26

28
29
30
JI

33
34
35
36
5t
Jð
39
40
4L
42
43
44
45
46
47
48
49
50
5r

o0n ôq5 o0q s 0.90 0.9s 0.99
52 i.5163 1.5'1'7 4 1.7035
53 r.5144 1.5748 t.6992
54 r.5126 r.5723 1.6951
55 1.5108 1.5698 1.6911
s6 1.5091 L.5614 1.6872
57 1.507 4 1.5650 1.6834
58 i.5057 1.5628 t.6798
59 1.5041 r.5606 r.6762
60 1.5026 1.5584 1.6728
61 1.5010 1.5563 1.6694
62 1.4996 1.5543 1.6662
63 1.4981 1.5523 1.6630
il 1.4961 1.5504 1.6599
ó5 1.4954 1.5485 1.6569
66 1.4940 1.5467 i.6540
67 t.4921 1.5449 1.6511
68 r.49t4 1.5431 1.6484
69 1.4902 1.5414 t.6456
70 1.4890 i.5398 1.6430
7L 1.4878 1.5381 t.6404
12 1.4866 1.5365 1.6319
73 1.4855 1.5350 1.6354
74 t.4844 1.5335 1.6330
75 1.4833 1.5320 1.6307
76 t.4822 1.5305 1.6284
77 1.48t2 r.5291 t.6261
78 1.4802 r.52't7 L.6239
19 1.4',t91 r.5263 1.6211
80 1.4782 1.5250 1.6196
81 t.4172 t.5231 1.617 6
82 1.4163 1.5224 1.6155
83 1.4753 t.5211 1.6135
84 t.4744 1.5199 1.61i6
85 1.4735 1.5187 1.6097
86 1.4726 1.5175 1.6078
87 r.4718 1.5163 1.6060
88 1.4709 1.5152 r.6cø2
89 1.4701 1.5140 1.6024
90 1.4693 r.5r29 1.6007
91 1.4685 1.5118 1.5990
92 r.4677 1.5108 t.5973
93 1.4669 1.5097 1.595?
94 1.4662 1.5087 1.5940
95 t.4654 1.5071 1.5925
96 t.497 1.5067 1.5909
97 1.4640 1.5057 1.5894
98 1.4632 r.5c/.7 1.s879
99 1.4625 1.5038 1.5864
100 1.4619 1.5028 1.5849

2.4667
2.2393
2.t014
2.0082
1.9404
1.8884
1.8472
1.8135
1.7853
1.7 6t3
r.7406
1.?225
1;1065
r.6922
r.6794
1.6678
1.6573
1.647 6
1.6388
1.6306
r.6230
1.6159
1.6094
t.6032
1.5914
1.s920
r.5869
1.5820
1.5714
r.5731
1.5690
1.5650
1.5613
1.5577
1.5543
1.5510
1.547 9
rsug
t.5420
1.s392
1.5365
1.5340
1.5315
1.5291
t.5278
1.5246
1.5224
1.5203
1.5183

3.1189 5.5645
2.7394 4.2368
2.4916 3.5818
2.3314 3 .1926
2.2185 2.934t
2.t340 2.7 492
2.0681 2.6099
2.0151 2.5009
| .97 13 2.4129
L .9344 2.3403
1.9028 2.2191
1.8755 2.2269
1.8514 2.1816
1.8301 2.1420
1.8111 2.t069
1.1940 2.0756
1.7785 2.c/.76
L .7 644 2.0222
t.7 5t4 1.9991
1.7395 1.9780
t.7285 1.9586
1.7183 1.9401
1.7088 1.9242
i.?000 1.9088
1.6917 1.8945
1.6839 1.8811
1.6766 1.8686
1.6697 1.8568
1.6632 r.8457
1.6570 1.8353
1.6512 1.8254
7.6456 1.8160
1.6403 1.8071
1.6353 t.'1987
1.6305 r.7906
t.6259 r.7830
r.6215 1.7751
1.6172 1.1687
tr6t32 1.762.0
1.6093 1.7556
1.6056 1.7494
1.6020 1.1435
1.5985 t.7378
1.5952 r.7324
1 .5920 1 .721 1

1.5889 1.1220
1.5859 t.7r7 |
1.5830 r.7124
1.5802 1.7079



Table 4.73
^ÊAMínimunt value of C pm for p=P(Cpm>þl C fn) .

!
¿ 0.90 0.95 0.99
3 3.0833 3.9736 6.9s56
4 2.7991 3.4U2 5.2960
5 2.6268 3.1145 4.4712
6 2.5102 2.9142 3 .9901
7 2.42s5 2.7731 3.6676
8 23606 2.667 5 3.4365
9 23090 2.s8s2 3.2624
10 2.2668 2.5189 3.\261
11 2.2316 2.4U1 3.0161
t2 2.2016 2.4t80 2.9253
13 2.1757 2.3786 2.8489
14 2.153t 2.3443 2.7836
1s 2.ß3t 2.3143 2.7270
16 2.1153 2.28't7 2.67'15
L7 2.0993 2.2639 2.6336
18 2.0848 2.2425 2.5946
L9 2.0716 2.223L 2.5594
20 2.0595 2.2054 2.s277
21 2.0485 2.1893 2.4988
22 2.0382 2.1144 2.4724
23 2.0287 2.1606 2.4482
24 2.0199 2.1479 2.4259
25 2.0tt7 2.1360 2.4052
26 2.0M0 2.12s0 2.3860
27 1.9968 2.1146 2.3681
28 1.9900 2.1M9 2.3514
29 r.9836 2.09s8 2.33s7
30 r.977 s 2.087 t 2.3210
31 1.9718 2.0790 2.3072
32 1.9664 2.0713 2.2941
33 1.9612 2.0640 2.2817
34 1.9563 2.0510 2.2100
35 1.9516 2.0504 2.2589
36 1.947t 2.c441 2.2483
37 1.9429 2.0381 2.2383
38 1.9388 2.0323 2.2287
39 1.9349 2.0268 2.2196
40 1.931 1 2.0215 2.2108
41 r.9275 2.0165 2.202s
42 1.9240 2:0116 2.1944
43 t.9207 2.0010 2.1868
44 1.91?5 2.0025 2.1794
45 1.9144 ts982 2.1723
46 1.9114 1.9940 2.1654
47 1.9085 1.9900 2.158948 1.9057 1.9861 2.1525
49 1.9030 1.9823 2.7464
50 1.9004 1.9787 2.140s
51 1.8979 19752 2.1348

¿ 0.90 0.95 0.99
52 1.8954 1.9718 2.1293
53 1.8930 r.9685 2.1240
s4 1.8907 1.9653 2.1188
55 1.8885 1.9622 2.1138
56 1.8863 r.9592 2.1090
57 1.8842 1.9563 2.1c43
58 1.8821 1.9535 2.0991
59 1.8801 1.9507 2.0953
60 1.8782 1.9480 2.0910
61 t.8'763 1.9454 2.0868
62 1.8745 1.9429 2.0821
63 1.8727 r.9404 2.0788
64 1.8709 1.9380 2.0149
65 t.8692 1.9356 2.0'11r
66 1.867s 1.9333 2.067s
67 1.8659 1.9311 2.0639
68 1.8643 1.9289 2.0604
69 r.8627 r.9268 2.0571
70 1.8612 1.9247 2.0s3'1
71 1.8597 1s2?7 2.0505
72 1.8583 1.9207 2.0474
13 1.8569 1.9187 2.0443
74 1.8555 1.9i68 2.0413
15 i.8541 1.9150 2.0383
76 1.8528 1.913 i 2.0354
77 1.8515 r.9114 2.0326
78 1.8502 1.9096 2.0299
79 1.8489 1.9079 2.0272
80 1.8477 1.9062 2.0245
81 1.8465 t.9A6 2.0219
82 1.84s3 1.9030 2.0194
83 r.8442 r.9014 2.0169
84 1.8430 1.8998 2.014s
85 1.8419 1.8983 2.012r
86 1.8408 1.8968 2.0098
87 r.8397 i.8954 2.0075
88 1.838? 1.8939 2.00s2
89 1.8376 1.8925 2.0030
90 1.8366 1.8911 2,0008
91 1.8356 1.8898 r.998'1
92 1.8346 1.8884 1.9966
93 1.833? 1.88?1 1.9946
94 t.8327 1.8858 1.9925
95 1.8318 1.8846 1.9906
96 1.8309 1.8833 1.9886
97 1.8300 1.8821 r.9867
98 1.8291 1.8809 1.9848
99 1.8282 1.8797 1.9830
100 1.8273 1.8785 1.9811



Irt'";1å '' ' ìp=Pr(Cpm >c lI)= r - o{ lnÔp.2 J -L'-e'J 
>r--G-j

where (Þ denotes the cdf of the standard normal distribution. This approximation provides

a reasonably easy method for attaining critical values for those sample sizes or values of c

not included in the tables.

4.8. A GhERÀLrzarroN oFCpm

To ttris point T has been assumed to be the midpoint of the specfication limits (i.e.,

(IJSL-Ð=(T-LSL)). However the Cpm index can be generaLized to the case where T is

not the midpoint of ttre specífication límits. Rather tha¡ considering tJre allowable process

spread to be the di-fference between the USL and LSL, and the actual process spread to be

6o', consider the following definition of Cpm

Lpm =
minimum[USl-T, T-LSL]

3o'

Clearly Cpm* will continue to take the proximity to the target value into consideration while

now also taking into acco,unt the non-symmetric specification limits. To illustrate how

Cpm* reacts to depaÍures from the target value and non-cenEal ta¡get vaiues, an example

(from [23]) has been appended to include Cpm* (see Figure 4.8.1).
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Figure 43J, Comparisons of Cp, CPL, CPLI,Cpk and Cpm*,



The proposed estimate of Cpm* is

where o'=

A x minimumfUSl-T, T-LSLI
LPm =----- ^ -3o'

The pdf of ôp.* will depend upon the values T, USL, LSL and Cpm*.

Assuming the process measurements follow a normal distribution and the parameters T,

USL and LSL are fixed for any particular process, the ptlf of ôpm* is

+J

^J

0<x<""

, ^ n(p-T)2
wne¡e ^=.T.o

Knowing the pctf of ôpm* allows funcrionat forms for E(êprn*¡, MSElôp-*¡ *a
er1ôpm* > b I Cpm*¡ to be determi¡ed, which in tum permits statistical analysis of the

estimate. The OC curve procedure results in the foilowing ratios

cpm*(A) ffi-a-l
o*"rß)=\ L,,JÐ-

¡ Fvorn¡l
cprnF-=\ x,r,Jp)

*(*. - T)2\'¡

D

t* 12
(n- l)Cp-m( 1+À/n) |

-rl
ÀJ

!--rlJ
xt(l+ )2'



where the probabiTty of a Type I error is to be no more than q, if the tue value of Cpm*

is greater than Cpm*(e), the probabitity of a Type II er¡or is to be no more than p if the

true value of Cpm* is less than Cp**(R) and 1l^ denotes the non-central chi-square

distribution with n degrees of freedom a¡d non-centrality parurnro, À= 
n(p?

o

Cpm* permits analysis of one-sided specification limits as well. Fo¡ example

consider the situation where the LsL=10, T=12 and where tlere is no need to conside¡

USL. For computational purposes let USL=.", resulting in

Cpm* = min[USL-T' T-LSL] -
3o'

minli2-10, ""-121

3o' 3o'

It is then simply a matter of estimating o' in order to find an estimate for process capabiLity

in the one-sided specification limit case. For the case where only the USL is of interest set

LSL=-.".

cpm* has the ability to assess process capabirty for a wide variety of situations. It can

be used in the one-sided and non-symmetric target cases, while it is easy to show that

Cpmx reduces to Cpm in the case where r =S.

4. 9, TÌ,oCESS CAPABtr.ffY PÄPR,

The proposed graphical technique uses modified normal probability plots to first

assess the assumption of normality and then to graphically attain estimates of process

capability. The resultant probabitity plot also provides indications of proximiry to the

target value as well as an indication of the magnitude of the process capability (6o). The

graphical results allow visual comparisons of process capability and proximity to target



value for various stâges or periods of time in order to get an indication of how the

capability of the process is changing.

If for example we want to examine the capability of a process after some

modification has been made we would simply examine the before and after modified

probability plots to (a) assess the underlying distribution of the process measurements, (b)

proxirnity to the target value, (c) process variability and (d) process capability.

The proposed procedure involves creating a series of modified normal probabiiity

plots from which inferences regarding the assumption of normality, the proximity to the

target value, and the magnitude of the process variation can be made. customized normal

probability paper has been used to create process capability paper @C paper) (Figure

4.9.1).

The horizontal axis of the proposed PC paper has been scaled identical to normal

probability paper while the vertical axis has an arithmetic scale with the upper (JSL)

specification and lower (LSL) specif,rcation limits included. In addition three vertical lines

labeled L, M and u have been included that are used to attain numerical esrimates fo¡ the

mean, standard deviation and the process capability indices Cp, Cpk or Cpm for any

process under investigation.

The procedure requires a sample to be d¡awn from the process. The sample results

a¡e orde¡ed and plotted versus thek associated percentiles, simila¡ to coÍrmon probability

plot procedures. Immedíate insight into the nature of the disÍibution from which the

process measurements a¡ise becomes available. If the ¡esultant pc plot (process capability

plot) is iinear the assumption of normality is not unjustified, which then allows one to draw

further infe¡ences regarding the capability of the process.
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A measure of proximity to the target value is anained by examining the intersection

of the PC plot with M (i.e., the 50ft percentile) and its iocation with respect to T. The

point of intersection with M, i¡ the case of the normal family, results in an estimate of the

^population mean (i.e., p), hence as the intercept moves closer to T the estimated process

mean moves closet to the target value. A numerical measure of proximity to the target

value is obtained by taking the difference between the point of intersection ft and T.

A visual, as well as numerical, measure of the process standard deviation can be

deærmi¡ed from the plot. The siope of any probability piot which has been deemed linea¡

represents a measure of the standaÌd deviation associated with the population under

investigation. Hence probability plots can be used to indicate those distributions which

have iarger or smalier standard deviations. Assuming equivalent scaling, those probability

plots with "steeper" slopes will have larger standard deviations while those plots with

"flatter" slopes will possess smaller standard deviations. Hence a-11 other things being equal

those probability plots with "steeper" slopes will have smaller va-lues of cp, while those

with "flatter" slopes will have larger values of Cp. Therefore by keeping (i) the

specification limits and (ii) the scaling of the vertical axis of the process capability paper

constant, the slope of the PC plots at different stages in the process's history can be used to

assess changes in the process standa¡d deviation a¡d hence changes in the value of Cp. A

numerical estimate for the standard deviation associated with the process measurements

can be determined by taking the difference between two values determined from the

intenection of the PC plotlith u and L. These lines are located such that the difference in

theü intercepts results directly in an estimate of the standard deviation. using the results

attained f¡om the plot numerical estimates for Cp, Cpk or Cpm can be dete¡mined.

Repeating this procedure at va¡ious stages or periods in the history of the process

then provides the practitioner with a series of process capability plots that can be used to



examine any changes that have occurred in the ability of the process to meet target values

and fall withi¡ the specification limits.

4.10. EXAtvpLES

Example 4.10.1: consider those measurements taken on the radial length of machined

holes in Example 3.8.1 and where the upper and rower specification limits were set at 20

and -20 units ¡espectively with a target value of T=0. The estimate of Cpm is

A 20 - (-20\
Lpm =- .-

oo

whe¡e

The results can now be summarized as follows

Radial Length (x103 inches)

Stage

1

)

J

n

201

96

316

is
4.7 8.7

10.4 21.1

s.0 5.4

ôp Pr(cp>tlôp) ôpt

0.77 0.0000 0.s9

0.32 0.0139 0.15

r.23 1.0000 0.93

êpm Pr(Cpm>tlôpm)

0.67 0.0000

0.28 0.0000

0.91 0.0067

The estimates associated with cpm for the three stages are somewhat diffe¡ent from those

estimates of cpk and cp. The pr(cp>11ôp) and pr(cpm>11ôprn) have been calculared

using the Bayesian approach and the Wilson-Hilferty approximation.



To illust¡ate the Bayesian procedure, consider the resuits obtai¡ed in Stage 1,

whe¡e USL=20, LSL=-20, T=0, î =43, s=8.7 and n=201. From these resulrs rhe

following were found

^ usl--LsL 20-G20\ 40LF= ---6;-= q*v = 5rr=;'';;

ê.__ us -LsL _ 20-(_20) _^._'u^æu\ær
I if -.{-" 2oo

The p-r'alue associated with the Bayesian approach (using the wilson-Hilferty

approximation) is

(tì

^ llEltil' r,-¿rl
p= h(cpm > c | ôpm) = t -.1 L"ôprn, l_-L'- e"J 

¡IJå-)
whe¡e (Þ denotes the cumulative distribution function of the st¿ndard normal distribution.

substituting the obsen'ed values from stage I and assuming that the process will bejudged

capable if Cpm>1 (i.e., c=1),

P=1- ./t,-""rr'-r'-*]Ì
l.Æl



1-.3039 - 0.9989
.{ 0.0333

=1-@{9.1s92}.

From any standard normal table O{9.1592}=1.00, resulting in p=(1-1.00)=0.00,

indicating that the probabitity of Cpm > 1 given the sampie results is 0.00, i.e., the

process is not capable.

The OC cuwe approach for Cpm results in the same inference but in a slightly

different manner. Again usirg the information USL=20, LSL=-20, T=0, I=4.7, s=g.7,

n=201 ¡esults in the estimates êp=0.77 and êpm=0.07. Letting s=p¡(Type I
enor)=B=P¡11'tpe tr error)=0.05,

IM
- ... t 4J--- \ x,fr,ro'osl

b_tT
cpm(R) - \ xrfl,to.osl

solutions for the above equations invoive finding the associated percentiles for the chi-

squæe distribution with 201 df, which *"4f,r{O.Ss)=235.076 and Xrf,r{O.os)=rce.zo.

Substituting these values into the equations, finds

b
cp-m6=

a¡d



Setting the rejectable quality level Cpm(R)=1 (i.e., the point where the probabiiity of

findirg a process capable is no more than 0.05 if the actual value of Cpm<l), the

acceptable quality level is Cpm(A)=i.i787 (i.e., the point where the probabiliry of finding

a process incapable is no more than 0.05 if the actual CprÈ1.1787) and a critical value of

^b=\.0872. Thus since Cpm=0.67<1.0872=b, o¡e can conclude that the process is not

capable.

ln order to deærmine the values of Cpm(A) and b in the above example, the 5ú and

95ft percentiles of the Xrf,rdistribution were required. To avoid determining the

percentiles of the Çordistribution, an approximation using the results from Table 4.6.1

fo¡ n=200, could have been used

ffii = r'17s2 and ffi =r'087s'

In this case, these ratios differ from the exact values only in the thi¡d decimal point,

resulting in the same inference formulated above.

The nature of the estimates that consider both the process variance and the

proximity to the target value (i.e., Cpk and Cpm) is highlighted in Stage 3, where a

Cp=1.23 becomes misleading if proximity to the target value is important. Suppose that a

process is considered to be capable if Cp>1, the value of ôp=1.23 indicates that with

probabüity one the proce¡s is capable. On the other hand, if the proximiry to the target

value is important a¡d the process is considered capable if Cpm>1, the value of ôpm=0.91

indicates that it is very unlikely (with probability 0.0067) rhe process is capable. This is

essentially the finding of Kane [23] whose inference is based on the subjective



inúerpretations of the magnitudes of ôp and ôpt. NotÊ that in order to attach a probabilistic

^statement to Cpk its distribution must be known (which is cur¡ently not the case).

Examole 4.10.2: An example lustrating use of the proposed pc paper has been

inciuded. In this example the ability of a hypothetical process for three simulaæd stages in

its history is examined. The data were generated independently fo¡ each stage using the

normal random number generator resident in SAS, version 5. For stage one, thirty

observations were generated from a N(2, 2) distribution, twenty-five from a N(0, 2)

distribution i¡ stage twol and in stage th¡ee, 35 observations from a N(0, 0.5) distribution.

Assurning the target value of the process to be 0, and with USL=3.0 and

LsL= -3.0 the vertical axis of the PC paper can now be scaled to reflect the magnitude of

the us]- and LSL with the target value suitably indicated. In order to compare the

graphical resuls for the tkee stages the pc paper shouid be scaled identically at each stage.

The mechanics of the graphical procedure a¡e identical for the three stages and

involve plotting the orde¡ statistics at each stage versus their associated percentiles. In this

example the plotting positions [(i - .5)/n]l00zo for the percentile where i denotes the rank

of the ith orde¡ statistic have been used. The choice of plotting positions is arbitrary as

many possible plotting conventions exist. For a discussion of plotting positions see [32].

At each stage the order statistics (scaied arithmetically along the vertical axis) versus the

percentiles (scaled to reflect starìdard normal probability paper along the horizontai axis) are

plotted. This has been done fo¡ the three hypothetical stages denoted above (Figure

4.10.1).
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once the ordered statistics have been plotted a judgement as to the validity of the

normal assumption can be ascertained from the linearity (non-linearity) of the plot. If the

plot appean linea¡ then further inferences can be drawn, while in those cases where the plot

is non-linear any further infe¡ences regarding the capability of the process are cautioned

against' The plots for the tkee stages in the example arl appear linear thereby supporting

the assumption of normality and permining additional inferences.

Prior to making any numerical estimates some general conclusions can be drawn

from the plots. First, by noting the distance between the M intercept and r it appears that

the mean of the process measurements moves close¡ to the target value. At stage one the

mean of the process measuÍements appears substantially different f¡om the target value

where in stage two the process mean appears to move closer to the target value while in

stage three the process mean and the target value appear to coincide.

A simila¡ type of inference can be d¡awn from the sropes of the plots associated

with the three stages. The slope of a pc plot provides insight into the relative magnitude of
both o and cp. Disregarding rocation, the sæeper the srope the greater the magnitude of o

and hence the smaller the value of cp. It appears that the slopes at srage one and stage two

are similar suggesting that the cp does not appear to change over this period. However the

slope of the line in stage tkee appean smalle¡ than that of stage one and two indicating that

the process variability has been ¡educed in stage three. Thus stage three appears to have

smaller variability as well,as attaining its tâ¡get vatue suggesting that the process would be

deemed most capable at stage three.

Numerical estimates of Cp, Cpk, and Cpm can be obtained f¡om the plots by

substituting the estimates of p and o, deærmined from the plot for each of the three stages.

These values have been determined and a¡e incruded in Figure 4.i0.1. Note that these

values ¡eflect ûre visuai results discussed above.



4.U. CoMr{EN"rs

The Cpm index and the Cpk index are two æchniques which can be used to evaluate

the ability of a process to attain a preset target value and to fall within required specification

limits concurrently. The Cpm index can be estimated usilg êp- for those cases where

þ=T as well for those cases where p*f. ép- has a distribution simila¡ to that of ôp

when p.=T. This result in conjunction with additional statistical techniques allows a

probabilistic statement to be made regarding the likelihood of inconectþ judging the ability

of a process. In addition, it has been shown that when the process attains its target value,

ttre cpm index is identical to ttre cp index while êpm is less biased and more efficient than

Cp.

The estimate for the cpk index also possesses some of the properties associated with

the cpm index. The cpk index is identical to the cpm index when the process mean equals

its target value a¡d the target value is the midpoint of the upper and lowe¡ specification

limits. Howeve¡, the statistical distribution of ôpk is difficult to detennine. unde¡ the

assumption that the process measurements arise from a N(T, o2¡, the distributions

associated with cPU and cPL are proportional to non-cental t distributions which can be

^^computed. Howeve¡ cpk is defined as the rninimum(cpu, cpl-) and as a result irs

distribution is further complicated. simulations indicate that ôpm is less biased and more

^efficient than Cpk.

A generalization ofcpm has been developed that permits assessment of the process

capability fo¡ those cases whe¡e a) T is not the midpoint of the specification limits or b)

one-sided specification limits are required. The distribution of the associated estimate

(based on the assumption that the measurements of interest possess a normal distribution)



has been determined which in tum perrnits a stochætic statement to accompany the estimat¡

determined f¡om the sampled units.

A graphical result is examined that permits insights into the process capability. Cpk

ald Cpm are used as single measures ofprocess capability that consider proximity to T and

process variation when assessing process capability. The graphical result allows

verification of normality while indicating whether the magnitude of cpm is due strictly to

process variation, proximity to T or some combination of the two.



Chapter 5

A Multivariate Measure of process Capability

5.1. INTRODUCTION

For those cases where the process must be capable of attaining specification limits

for more than one variable, the practice has been to examine each variable independently.

A process is then considered capable if all components of interest are found capable. This

procedure can be misleading in those situations whe¡e the va¡iables being considered do not

behave independently.

An index is proposed, Cpm, that provides a general measule of process capability

for those cases whe¡e any number of va¡iables are used to assess capability. The new

measure is analogous to the univariate measure cpm in that cpm consideß both proximity

to the target value and process variation while quanti$ring process capability.

In the multivariate case the specification limits and the actual process spread will be

more difficult to define tha¡ their univariate counterpafs. The specification limits will not

simply be points on the numbe¡ iine and the actual process spread w l no ronger be a

sEaighforwatd function of the process standard deviation.

some of the Íoubles associated with assessing multivariate process capability are

considered. These include problems associated with creating specification limits as well asj

some of the computational difficulties inherent in the procedure. Several propeÍies

associated with the proposed measure are examined and two examples illustrating use of
the measure are given.



Discussions will focus on the bivariafe case as explanations can be enhanced with

the use of gaphical aids. However all results, unless otherwise stated, hold for the general

multivariate case.

5.2. MULTIVARHTESPECfiICATION LANTS

One of the major problems in assessing multivariate process capability is in

establishing specification limits. In the univariate case the specification limits are

boundaries representing the range. of acceptable results arising from a process. These

boundaries are generally a reflection of some engineering o¡ manufacturing requirement

often representing ttre maximurn and minimum acceptable values (see Figure 5.2.1). In the

multivariate case the specification boundaries will continue to represent the region of

acceptable results, however these boundaries will be more complex than simply two points

on a number line.

I

USL

I

allorxable process sp¡ead

Figure 5 2J.Typical Unívariote Specificatìon Limits.

In the case where two or more variables a¡e used in assessing process capability,

the most common practice is to examine the univariate capabilities on an individual basis,

with the process being deemed capable if ail variables are judged capable. This is

equivalent to considering all variables furdependen! resulting in specification bounda¡ies for

the bivariate case similar to those illustated in Figure 5.2.2.
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Figure 522.AnExømple of Bivariate Speci.ftcatiow for the IndependentVariables Case.

In Figure 5.2.2 USLI, LSL, and T, denote the univariate upper, lower and target

values fo¡ variable 1 and USL,, LSI, and T, the univariate upper, lower and target values

fo¡ variable 2. An appropriate measure of multivariate process capability in this situation

wouid be Cpmrx Cpm, where Cpm, is the value of Cpm for va¡iable 1 and Cpm, the

value of Cpm for variable 2. This measure of process capability, and the above

boundaries, assume that the magnitude of variable 1 is not influenced by the magnitude of

variable 2, and vice vena. 
..

Where the specification limits of the variables do not behave independently, the

product of individual process capability measurements will not provide an accurate

indication of process capability. As an example conside¡ the case whete there is no

physical relationship between the two variables, but wherc combinations of thei¡ ext¡eme

va-lues a¡e not acceptable in the manufacturing process. Specification bounda¡ies reflecting

this situation a¡e shown in Figure 5.2.3.



Tt
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The specification limits are denoted by the inscribed ellipse with the interior of the

ellipse indicating the region of acceptable combinations of the n¡¿o variables. Although the

specification limits do not behave independently, the variables of interest are depicted as

being uncorrelated. In such cases, the individual specification limits for either variable

depend upon the level of the other variable used i¡ assessing process capability.

The specification limits denoted by the ellipse in Figure 5.2.4 represent the

acceptable combi¡ations of variables 1 and 2 when the va¡iabtes are assumed to have a

positive linear relationship. Again the individual specification limits for any one variable

will depend upon the value o¡ level of the second variable. The product of the individual

measr¡res of process capability will not reflect the multivariate capabilities of the process in

cases such as this. Hence the need for a multivariate measure of process capability when

two or more related variables are to be used to assess the capabiÏty of a process.

5.3. CREATT.{G MULTWARIATE SPECIFICATION LIMITS

Other than the case where the capabilty variables are considered uncorrelated with

independent boundaries, ellipsoidal specification limits are assumed. This assumption is

made necessa¡y by the assumption of multiva¡iate normality (lr4vN) which will be made

when examining some of the statistical properties associated with the proposed measure.

In the univa¡iate case unilateral specification limits arise from time to time.

unilaæral specification limits occur when only the upper or lowe¡ limit is of interest (e.g.,

specification regions of thè form G-, usl-) or (I-sL, "")). Multivariate anaiogues of such

regions cannot be represented using ellipsoids. In those cases where one o¡ more of the

capabiïty variables have unilateral limits, fitting an eliipsoidal region within the required

specification region will be equivalent to imposing more stringent engineering

requirements than required (Figure 5.3.i).
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A second univariate case for which no multivariate analogue cunently exists, occurs

when the target vaiue is not the cente¡ of the specification ellipsoid. Because symmetric

covariance structures will be assumed for the specification iimits, when such cases occur,

smaJler symmetric ellipsoidal regions will again provide more stringent requtements than

required (Figure 5.3.2).

The altematives presented for these two cases are made in the presence of the

assumption of MVN.

Given that the specification region is etlipsoidal all points lying on or within the

sperification boundary satis$ the inequality

q-T)'A-t({-Ð<c2

with those points lying precisely on the boundary represented by the strict equality

q-P'A-'(I-Ð=.' (s.3.1)

where T is the o-dimensional target vector, A a oxo matrix denoting the covariance

structure of the capability variables and c a numerical constant. T and A completely

determine the shape and center of the eltipsoid, while c determines the coverage of the

eliipsoid. The coverage is the percentage of observations expected to be within the

bounda¡ies. If the engineering requirements are specified in terms of r and A, the

specification lirnits are then fixed for some minimum level of coverage. Analogous to the

univariate case, coverage will generally be taken to be 99.73Vo.

As an exampre, consider a hypothericar process with r = 
[13r] 

being rhe vector

represenring rhe oprimum values of the capabilirv variabres .rd A= 
11914 Zlrl^"

cova¡iance structure representing the univariate variance of both variables (i.e., or2=144



and or2=225¡ and the covariance between the two variables (i.e., 012=90). Substituting

these values into equation (5.3.1) ¡esults in the equation

l+g]tr*,r'
,#J#]l*,, ].l',1"]']=t

In general 
"' = x'Jù will resulf in an ellipsoid with r}}avo coverage. In the bivariate case

letting c2=-21n11-a) also ¡esults in an ellipse wifh 100aVo coverage [33], which for

a=0.9973 results in the following equation

I x'ts12 qn I x-75.ll.v-1001 I v-t0012

[zJ rffi-."]l:{. l-" J = 8 8717s

and specification boundaries as illustrated in Figure 5.3.3.

when the covariance structure is completely specified the specification bounda¡ies

are relatively easy to determine. Regardless of the number of capabitity variables

considered, knowledge of r, A and c completely determine the specification boundaries.

In the bivariate case, the form and equation of the specification limits are of inte¡est

as graphical illusEations are often used. However in the general multivariate case no

anaiogous graphical procedures cunently exist, hence the actuai form of the equation is of

little consequence once T,,A and c are such that the equation

g-P'A-'(ð-Ð="'

reprcsents a 99.13vo coverage region. The numerical values of r and A are necessary for

computation of the proposed measure ofprocess capability.
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5.4. A MULTTVARIATE PRocEsS CAPABILITY MEASIJRE

The proposed measure of multivariate process capabiJìty is

(s.4.1)

where X. denotes the ith vector of dimension o, o the number of variables used inryl

assessing capability, n the sample size, T the tâ¡get vector, and A a tlxo matrix representing

the covariance structu¡e as determined from the specification lirnits.

The numerator of (5.4.1) is the product of the sample size and the number of

variables used in assessing capabüity. This value represents the degrees of freedom

associated with the denominator. The denominator is the sum of the observed Mahalanobis

distances @2) measured from the targel For any given process the numerator is a constant

while the denominator reflects the "cluste¡" of the observations around the target.

The Mahalanobis distances are standardized measures of distance that possess the

ability to account for any correlations that may exist among the variables. Iætting A-l

denote the inverse of the i'ovariance matrix of the capability variables, these distances a¡e

standardized to reflect the variabirty inherent in the various dimensions. These individual

distances are analogous to the univariate distance measure

!l::r= r:

\ Ð 
(ði- T)'n-' (ð,- T)

{+}'
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For processes with observations crustered around the target (e.g., B of Figure

5.4.1), the denominato¡ of equation (5.4.2) w i be smaller in magnitude than that of the

same plocess with observations more scattered and/or with a center of mass not at the tafget

value (e.g', A andc of Figure 5.4.1). As the denominato¡ grows, the value of Çpm, for a

fixed nu, will diminish. smalle¡ values of cpm suggest that the process is unable to meet

the specification limits, casting doubt on the capabitity of the process, while larger values

of cpm suggest that the process is indeed capable of meeting its specifications. Thus

cpm behaves in much the same fashion as the univariafe measures ofprocess capabiJity.

AB

Fig ure 5 .4. L Thne h ønple s of B ir, øide C q ability S tudÞ s.

The following statistical properties are derived unde¡ the assumptíon that the

process measurements arise fro¡n a MVNrr[T, A] population.

Theorem 5.4. 1 : tr Y,, Yr, ..., yo are üd MVN'[! A] the pdf of Cpm is

nÐ
ND.-2--(nD) 2x"

4-r
,, ftl 2

r(.) = Itl
r(+) L r

+e
¡u+ 1x

0<xcoo



tr

Prool Ler w =I ,X, - T)' A-t (I, - T) . try,, Ir, ... , yo are üdM\Nu[T, AJ
i=l

then w - 12 . Therefore since Cpm = \Æ

r,1l-t. î +
it follows that f(x) =-ll+l W" z"

"rlt., 
L 'J 

xDD 
+ 1.,2,

Theorem 5.4.2: tr Yr, Yz, ... , Yo are üd MVN¡[!, A] then

E(Cpm) = 1""
- t-v2 ',i å

r(i)
Proof: If Y1, Yr, ... , Y" are üdMVNulT, AJ rhen

E(x)= lx f(x)dx where f(x) is as defined in Theorem 5.4.i, henceJ
0

' u,*r=.Æ
.,i'å,
.rir



f ¡s!L3: fr Yu Y_2, ... , Yo are iid MVN¡IT, AJ then

var(cpm) = +[tt+'t+- 
t' - -+- ll

'l Érre' I l
Proof: If Y1, Y_2, ... , Y" are üd MVNulT, Al , then

: l: l'
t*f.l = J.'tt.l- 

LJ. 

tf.l*l , where f(x) is as defined in rheorem 5.4.1.

rhererore var(x) = 
* 

|- 

ttî^î- t' - ntî å'l

t r(sr 
J

Theorem 5.4.4: tr Yr, 12, ..., Yo are üd MVNutf, el, the asymptotic mean of Cpm is l.

Proof: If Y,, Yz, ... , T" are üd M\ôtrulT, Al, from Theorem 5.4.2

- "rnu 
-Ä

E(x) = - l19-'' '' Then as nt approaches oov 2 
rrar. '2'

- 
-.n1) 1 .,

| "u '\T'?
f¡om[18] 5Vf-f =t

| \Z-)



fhg¡emlll: f Y,, Yz, ..., Yoare üd MVNrrlT, Al, the asymptotic variance of Cpm is 0.

Proof: If Y1, Yr, ... , Y"are üd MVN,r[T, A], from Theorem 5.4.3

"r,,.,-*l
',Ð',i ir-Éri-]r

frir
then the limit as no-+oo is

*ÞË,].þ -,]

From [18] bottr limits are 1, thus the asymptotic variance of Cpm is 0.

5.5. HYPoTTTESIS TESTING

Knowledge of the pdf of Cpm permits statistically based inferences to be made

regarding ttre capabilty of the process. The hypotheses

Ho: Process is capable

versus

H": Process is not capable

can be tested to determine whether or not a process is capable of meeting the specification

limits for a particulæ process.

The specification limits compleæly determine the covaria¡ce matrix (i.e., A) used in

the computations of Cprn If this matrix is an accwate reflection of the variations inherent

in the process then the sample resuits shouid have a similar covariance structure. If this is

the case, then the sum of the Mahalanobis distances will be close to nu and hence Cpm

should be in the vicinity of 1. If the sample covariance sÍuctu¡e is not similar to that of A,



the value of Cpm should reflect lhese departures. If for example the variations in the

sample results are larger than the variation specified in A, Cpm should be smalle¡ than 1.

Sirnilarly if the covariance structure found in the sample results is diffe¡ent from that of A,

Cpm should again be smaller than 1. On the other hand if the variation found in the sample

is smalle¡ than tlat specified in A the value of Cpm should be larger than 1.

Because only small values of Çpm are of interest, one-sided critical regions are

appropriate for testing the hypotheses stated above. Using the value of Cpm determined

from the sample results as a test statistic, the rejection region for the hypothesis will be [0,

Wl, where Pr( Cpm<W)=ct, given A to be an accurate measuÍe of the inherent process

variation. The value of W for vaiues of nr¡ = 40(5)250 and a'=0.05 are included in Tabte

5.5. 1 .

5.6. BAræms

Example 5.6.1: suitan [34] discusses an example in the context of control charts where the

brinell hardness (lÐ and the tensile súength (s) of the ouþut of a process are of interest.

Assuming that the process is in control, consider the following hypothetical capability

study of the process using the observed data.

Suppose that an engineering study suggests that the variance associated with H

should be no more than 324, the variance of S no more than 25 with H and S having a

covariance of 65, and with the target values of 177 for H and 53 for S. 'With this

information specification trirnits for this capability study can be created @gure 5.6.1).

The region created by the specification li¡nits in Figure 5.6.1 being long and thin

reflects the fact that there is greater variability inherent in H than in S. The positive

covariance between H and s is depicted by the argle between the principal axis and the co-

ordinate axis. The specif,rcation bounda¡ies are completely specified by a=0.9973,



Table 55J
Values of 'W for dF0,0l,0,025,0.05 anil0 J0 where Pr( C-pm . W o) = o,

df
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115
120
t25
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
20s
210
215
220
J)<
230
235
240
245
250

0.7925
0.8020
0.8103
0.8175
0.8239
o.8297
0.8349
0.8396
0.8439
0.8479
0.8515
0.8549
0.8581
0.8611
0.8638
0.8664
0.8689
0.8712
0.8734
0.875s
0.8774
0.8793
0.8811
0.8828
0.8845
0.8860
0.887s
0.8890
0.8904
0.8917
0.8930
0.8942
0.8954
0.8966
0.8977
0.8988
0.8998
0.9008
0.9018
0.9028
0.9037
0.9046
0.9054

wo.ozs
0.8210
0.8294
0.8367
0.8431
0.8487
0.8537
0.8s83
0.8624
0.8662
0.8696
0.8728
0.87s8
0.8785
0.8811
0.8835
0.88s8
0.8879
0.8899
0.8918
0.8936
0.8953
0.8970
0.8985
0.9000
0.9014
0.9028
0.9041
0.90s3
0.906s
0.9076
0.9088
0.9098
0.9 i09
0.9119
0.9128
0.9138
0.9141
0.91s5
0.9164
0.9172
0.9180
0.9188
0.9195

wo.os
0.8470
0.8543
0.8606
0.8662
0.8710
0.8754
0.8793
0.8829
0.8861
0.8891
0.8919
0.8944
0.8968
0.8990
0.9011
0.9030
0.9048
0.9066
0.9082
0.9097
0.9112
0.9126
0.9 i39
0.9t52
0.9164
0.9176
0.9187
0.9198
0.9208
0.9218
0.9227
0.9236
0.9245
0.9254
0.9262
0.9270
0.9277
0.9285
0.9292
0.9299
0.9306
0.9312
0.9319

w.l.lo
0.8797
0.8846
0.8897
0.894i
0.8980
0.90i5
0.904'l
0.9075
0.9101
0.912s
0.9147
0.9167
0.9186
0.9204
0.9220
0.9236
0.9251
0.9264
0.9277
0.9290
0.930i
0.9312
0.9323
0.9333
0.9343
0.9352
0.9361
0.9369
0.9377
0.9385
0.9393
0.9400
0.9408
0.9414
0.9420
0.9426
0.9432
0.9438
0.9444
0.9450
0.9455
0.9460
0.9465



70

60

30
100 120 140 160 180 200

H

Figure 5.6J B oundarics for Example 5.6J,

o rrf aÒr
O¡,
¡,i

þ
aa rt

aa

100 120 f40 160 180 200 220
H

Figure 5 .6 2 B oundaries values and obserttations for Example 5 .6 J ,

10

60

50

40



!!] a"a are or û,e ørn'
'=l?J] ',oo=[¿30

flqi 1';;l ¡'z: s!'l{¡1 {';C= t'zs

Figure 5.6.2 contains both the specification limits and the plotæd observations.

From the piot it becomes clear that i) all but one observation falls withil the specification

boundaries and ii) the points tend to be clustered in the vicinity of the tæget. This

graphical result appears to suggest that the process is capable of meeting the engineering

requirements. In some situations the graphical result may be all that is required. However

in order to draw comparisons with other processes, or to make judgements regarding

changes il the capability of the process over time, a numerical measure of process

capability is required.

Using the proposed numerical measure

Çp-=F
\/ I ({i - I)'r-' rð,- Tr

I i=r

- f 
-_111771 I zz¿ tallfl I = I -^ l- A=l I 1l=/anl-lfl=/\ I nê ñnCêrl'Pô l'â lìlec r\l lll'1rlêll ht!-alrlêc._ 

L rrl. 
__ 

L 65 ;;j,"randn=25. Theobservedvaluesof bri¡ellha¡dness

and tensile strength along with thei¡ Mahalanobis dist¿nces çD2¡ have been included

./



H
143
200
160
181
148
178
r62
215
161
141
115
i87
1,87
186
172
182
177
204
178
196
160
183
179
194
181

s
34.2
51.0
47.5
s3.4
47.8
51.5
4s.9
59.1
48.4
47.3
57.3
58.s
58.2
57.0
49.4
57.2
50.6
55.1
50.9
57.9
45.5
53.9
51.2
57.5
55.6

Ð2
15.5661
r.6643
r.2570
0.0629
2.6276
0.2449
2.0936
4.6508
0.9517
4.1937
1.8603
r.3293
1. 1615
0.6526
0.6410
0.9317
0.4816
3.1698
0.44s6
1.2132
2.2903
0.1 188
0.4175
0.9912
0.319s

resulting in a Cpm of 1.0067. From Table 5.5.1 the critical value for no=50 and cx,=0.05

is 0.8606. Then because 1.0067>0.8606 we fail to reject IIo and conciude rhat rhe process

is capable.

Example 5 .6.2: The same process is again considered, but with more stringent

engineering specifications. Assume that in this case an engineering study suggested that

the variance associated with H should be no mo¡e than 196, the varia¡ce of S no more tha¡l

9 with H and S having a cova¡iance of 25, and with the target values of 175 for H and 55

ror S. with a=0.ee73,r = [f] ""d A=[ i?, drhe 
equarion specirying the

specific ation bounda¡ies is

hse
Lzs 3l "[{l} {'3:}]= 

,1szs[{rt t'¡;l



From Figure 5.6.3 it is clear that i) one of the 25 observations falls outside the

specification bounds and ü) the points are now much closer to the specifications and do not

appear to be clustered around the target . These graphical results suggest that the process

is incapable of meeting the more stringent engineering requirements.

The Mahalanobis distances (D2) have been caicutated using T = 
[Tr1

o = [ f;u ';f ,^=rtand o=2 and arong with H and S a¡e

60

sso

120 140 160 180 200 220 240
H

Figwe 5,6,3 Boundøíes md obsendíons for B;ønple 5,6.2.



II_
143
200
160
181
148
i78
162
2t5
161
141
175
187
187
186
172
182
177
204
178
196
160
183
179
194
181

S
.a,a 7

57.0
47.5
53.4
47.8
51.5
45.9
59.1
48.4
47.3
57.3
58.5
s8.2
57.0
49.4
57.2
50.6
55.I
50.9
57.9
45.5
53.9
51.2
57.5
5J. O

D2
53.3217
3.4320
6.s 189
r.1464
6.1472
2.6400

r0.3922
8.3360
4.9884
7.8445
0.9103
1.4021
1.2143
0.6787
4.7301
0.5440
3.7494
6.5t97
3.5037
2.2584

1r.0527
i.1002
3.2185
t.8428
0.1884

resulting in a Cpmof 0.5818. The criticai value for the hypotheses

Ho: Process is capable

versus

Hu: Process is not capable

is 0.8606 (q=0.05). Then because 0.5818<0.8606, one would reject Ho concluding that

the process is not capable-of meeting the more stringent engineering requirements (again

agreeing with the graphical result).

5.7. COÙß,IENTS

A multivariate measure of process capability is proposed that considers proximity to

the target and dispersion around the tårget while having some reasonably good statistical



properties. The index provides a unitless measure that will perrnit comparisons within a

process as well as among competing processes.

A benchmark of 1 forjudging a process capable is suggested, as this represents the

case where the sample covariance structure (cenred on the tårget) is similar to the

covariance structure (around the target) specified by the specification lirnits. As the

engineering requi¡ements change or the process changes, modifications to the specification

boundaries can be made to maintain the benchmark of 1.

Because the degrees of freedom associated with the sum of the Mahalanobis

distances are the product of the sample size and the number of capability variables used,

this value will generally be reasonably large. As a result the asymptotic properties of Cpm

will be of importance.

It has been assumed that the engineering specifications are given in terms of the

required target and covariance structure. Situations may arise where these specifications

are not given in ærms of T, A and c. If only the physical region is given, the engineering

i¡Jormation must be convefted to an ellipsoid with known T and A, as both must be known

before Cpm can be determined. Shakun [35] and Jackson and Bradley [36] discuss two

possible techniques.



Chapter 6

An Alternate Variables Control Chart

ó.1, INTRODUCTION

Much attention has been focussed on the concept of simultaneous control charts.

Boxplots (t371, t38l) are the latest in a series of improvements made to the traditional

conrol chart originally developed by Shewhart 1391. In general boxplots can be very

i¡formative but tend to be quite overpowering. Uniess users are familiar with the plots, the

vast amount of information contained in a single plot can be confusing. Proposed additions

to the charts regarding robust and resistant measures only sewe to furthe¡ clutter the

inferences d¡awn. In the hands of an experienced daø analyst boxplots and the proposed

resistant and ¡obust measures can be enlightening. However they may only serve to

detact from the general inferences required on the manufacturing floor. Because of thei¡

complexity, boxplots are rarely performed by hand. In fact they are rather difficult and

time consuming to construct, however most common statistical packages provide some

form of the boxplot. ln those cases where a computer is available or where the data are

entered directly to a computer, boxplos may be quite convenient.

There is an abundance of newly developed control chart procedures desígned to

enhance the analysis of a process. However as poilted out by Woodall [40], none reflect

the cur¡ent change of philosophy in Quality Control. The proposed technique attempts to

reflect the change of philosophy currently taking place in Quality Control on the North

American continent. Both proximity to target and the variability a¡e of concem in today's

quality assurance programs. No longer is "conforming to specifications", without a

nominal value, sufficient. The proposed procedure attempts to adopt this philosophy in a

simuitaneous control chart.



The technique proposed here is similar to the t¡aditional contol charts outlined by

Shewhart. The ¡esultant charts are clear and uncluttered (similar to the traditionai charts)

with the added advantage of appearing on a single plot. Contol limits for the proposed

measures æe also included. The new control chart is highly visible with inferences easily

drawn. The procedure is straightforward and can easily be carried out by employees

whose major task is to monitor and adjust the process. The plots can be produced by hand

with the univariate case requiring only the aid of a hand-held calculator while the

multivariate case generally requires a computer capable of performing accurate mafiix

operations. In either case the procedure is adaptable to the computer and computer

graphics.

6. 2. TTü PR0PCÐ K,oCÐURE AND RESTjLTANT CONTRoL CHART

Traditional North American Quality Contol techniques are being challenged by

innovative philosophies imported from Japan. One particular philosophy which has been

discussed by many sEesses the need of a nominal (target) value when assessing the quality

levels of a process. In the past, attention has focussed on bringing a process within

specification while placing iittle or no emphasis on attaining target values. Sullivan [29]

among others gives examples that sEess the importalce of contolling target vaiues as weII

as variability. Conúol charts that do not employ a target value are very much a part of the

old guard. Good information can be drawn from the naditional contol chart, however by

inægrating targets into the plotting procedure additional information is made available.

Traditional control charts plot the mean and either the sample range or standard

deviation of each subgroup. If both of these measures reside within the control limits the

process is deemed "in-control". The boundaries used to aid in drawing inferences

regarding the process (i.e., the control lirnits) are also created from the sample results. The

control limits for the subgroup means (i.e., the x 's) are of the form



XtA2R or XtA.S

L- k- k
= Ëx, - SÃi - Ssi

where X=àt' *themeanof theksubgroupmeans,*=åt ands= 
þ¡ 

*,

the mean of the k subgroup ranges and standard deviations respectively and A.2, A3 æe

statistically determined constants. The connol li¡nits associated with the subgroup rarge,

R, and the subgroup standa¡d deviation, s, are of the form

D,R

B^s

and

and

DoR,

BoS

respectively. D3, Da and 83, Ba are again statistically deternined constants.

The technique proposed here incorporates proximity to the target value into the

plotting procedure while conti¡uing to examine the inherent variabiÏty of the process. The

procedure maintains the ability to &aw similar inferences to those of the Eaditional contol

cha¡ts whiie being ideally suited to the new philosophies being inco¡porated into North

American Quality circles.

The suggested measures of process performance are derived from the Mean Square

Error (MSE). The MSE is a meæure of the squared distances from some nominal value, in

this case taken to be the target value. The MSE is then

*(*,-Ðt. MSE = L-;-
l=I

where x. denotes the ith measure of a pafücular subgroup, n the subgroup sample size andI

T the target or nomi¡al value.

The MSE associated with the target value measures both the variability and

proximity 1o the target value simultaneously, actually confounding the two measures.
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However the MSE is easily partitioned into components which provide individual measures

for the inherent variabüity and proximity to the target Consider that the MSE

r'asn{ Lr.¡ rl'= f ),r.,- x1l - r¡2= iÐor x )2 + ( x - r¡2= $s2+ ( x - r)2

breaks down into two terms, the first being a function of the sample variance and the other

the squared difference between the subgroup mean and the target value. The proposed

technique uses the numerical value of the MSE as a measure of overail variability and the

squared difference between the subgroup mean and the target as a measure of proximity to

the target value. Occasionally the subgroup variance will be of inærest and can be added to

the plot on an individual basis as required. Assuming the measures arise from a normal

distribution, procedures for determining the confol limits for the new measures wili be

illusfrated and the associated constants determined.

The proposed monitoring measures æe

(x _ T)-

a

¡3 (x. - T)'
a¡d MSE= ) '4n

l=1

-.2
G'?= i. 

(-t - Ð- 
will also receive occasional attention) where T denotes the general target'4n-7

value of the enti¡e process_, n the sample size associated with each subgroup sample taken,

x1 the ith measure of a subgroup, i the subgroup mean and s2 the sample variance of the

subgroup.

The statistical distributions associated with these measures can be found for the case

where the process measurements are assumed to be iid u(ii,o2). Knowledge of the



distributions permits calculation of the control limits for various sample sizes. The control

limits associated with the measures will be shown to be of the form

Ð A o2 fo¡ (i - t)2,

ü) C o2 for MSE

and üi) B o2 for s2

where A, B and C are constants derived from the statistical distributions associated with

each of the measures.

6.3. DERIVATIoN oF TIIE CONTROLLIMITS AND CoNSTANTS

In each of the following cases the p¡ocess measurements are assumed to be

independently disributed normal variates with mean p and variance oz 1i.e., üd N1p, J¡¡.

For reasons discussed later only upper control limits (UCL) will be developed.

UCL for (;.T)2

Assuming X-N(p, o2¡ it follows that (T - ,r" - *X'r,^ (see Theorem 6.7.1),

where Xl,À denotes the non-cental chi-square distribution with one degree of freedom (df)

and non-cenfratity paramerer 

^="[*" ]' 
Defining the UCL ro be rhe (1-u)100vo

percentile of the distribution function associated with (i - T)2 results in

! IIt\r - ^ 6 ^,¿- v\-r<x - Ð' = î À1, 1,, (r-o)

=o2A



Table 6.3.1 contains the values of A, denoted A3 for (l-ct) 100Vo=99.73Vo, n=2(1)10 a¡d

",r*, "r I 

P:r]'=o.oo,o.olo.nr.

;P
In oder to determine A for a particular process, I 

p-tl 
-ur, be known. This isL"l

k:
seldom the case as ¡r and o are process population parameters. In practice i = )i."¿'l:í *

k-2
S" = L+, where k denotes the number of subgroups antt I, ,s? the sample mean andjJo I r

variance of the jth subgroup, are substituted for p and d respectively, resulting in a

reasonable estimate (see Theorem 6.7.4 for discussion) for the value of A and hence for the

UCL. As a result the contol limit for (i - f)2 will generally be of the form

ucq;-¡z=aF.

Other values of (1-a)100Vo may be used when creating the UCL. If, for example,

the practitioner wishes to use boundaries equivalent to È2o then (l-a)l\OVo is set to

95.44Vo a¡d the values of A redetermined using X1, ,, o.rroo.

Note that a lowe¡ conEol limit will not be required for this measure as the mi¡imum

value (i - T¡2can assume will be zero which arises when the subgroup mean is the same as

the target (i.e., the optimal situation).



UCLfoTMSE

.qk. -Tt2 )
The MSE = )'f:¡--1 will follow 

^ *X?^ distribution (see Theorem 6.7.2),?,n
2f^12

where Xj,tr denotes the non-cental chi-square distribution with n dfand 1= I t'-Tl.
Lol

Similar to tfre UCL for 11 - t¡2 ttre (7-a)100Vo percentile associated *itfr $ Xl, ¡ wiil be

used as the UCL for MSE, resulting in

ucLMsE= $xf, 
^, 

1,*¡

=o2 C

Table 6.3.2 contains values associated with C, denoted C3 when (l-a)l00Vo=99.73Vo, for

:P
n=2(1)10 *.lfl = 0.00(0.0s)0.95. Anatogous to the UCL for (I - r)2, the

statistical distribution associated with MSE has a non-centrality paramete¡ that is a function

of the population parameters ¡r and o2. Since p and o2 are rareiy known the practice is to

again substituæ ;{ un¿ F respectively and to use the resulr as a measure of ldlt. 
"L"j

practice the form of the UCL for MSE will be

UCL for s2

Again assuming

Theorem 6.7.3) where

, 
U"t*sr=C 52.

the process measurements to be iid N(p, o2), s2- Xl-1, s isee
a

Xi-1, ¡ denotes the central chi-square (i.e., À=0) distribution.



Defrning the UCL to represent the (i-cr)100Vo percentile of the distribution associated with

UCLrz we 8et

ucl-. = o' t'r (n-1) '"(n-1),0, (1-a)

= o2B

The value of B for n=2(1)20, (i-o)=0.9973 and 0.9544 (denoted 83 and 82 respecrively)

have been determined and included in Table 6.3.3. The coefficients in Table 6.3.3 result in

more stringent UCL tha¡ those associated with the Eaditional o charts. The reason is that it

is our philosophy not to consider (at least physically) a tower confol limit for s2. In this

way the contol cha¡t becomes a single-tailed problem. Identification a¡d investigation of

"sharp" declines il subgroup variation is encouraged, but not seen as an "enor". For this

reason only the UCL for both s2 and MSE is considered.

The UCLrz depends upon the value of the population parameter o2 and B. B is

easily determined for a fixed n and (1-a), however o2 is rarely known. The practice is

-again to replace o2 with S', resulting in

UCL.2 = B 52.

6.4. CoræI-rrarroNs, PL{rrrINc STRATmIES AND INFmE\CES

The procedure for creating the proposed plots is very similar to the procedure

followed for t¡aditional x and s charts. The subgroup means and variances, I and s2, as

Þ- k 2
- \ix. -; srbi

well as X = LÌ ^a 
S' = L k musr be determined. In addirion the pracririoner musr

l]o j=t "

find (; - T )2for each subgroup, noting the cases whe¡e I < T. The MSE for each

subgroup can then be determined using
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use=$s2+(;-T)2.

Finally the UCL for each of the measures must be found using the appropriate algorithms

presented ea ier.

The suggesæd plotting straægy is to first plot the values of (i - t )2 fo¡ each of the

subgroups, along with the UCL,; _ T,2. Use of the plotting characters "-" if i < T and

"+" if i > T when plotting (i - T )2 is suggested. In this way any trends which may have

been obscured through examining squared differences from the target can be identified.

The practitioner may now proceed to plot MSE for each of the subgroups along

with the UCL for both s" and MSE. The plotting characters used here are of little

consequence and any useful cha¡acte¡ can be used. Any trends that may occur here should

be obvious regardless of the units used. Piotting the MSE rather than s2is suggested, as

the MSE must always be greater than or equal to (i - T )2 for each subgroup. This results

in no overlapping of plots, which is not necessarily the case with s2. On, ,.uron for I and

s requiring two plots is because a single plot can become exEemely difficult to d¡aw

inferences f¡om when crossovers are common (see Figure 6.4.1). The boxplot technology

eiimi¡ates the s chart and the associated UCL by using boxes proportional in size to the

subgroup ståndard deviation. If the standard deviation of a subgroup exceeds the UCL the

proportional box representing the subgroup standa¡d deviation is then drawn in a slightly

different man¡rer. The boxplot æchnique does use a visible UCL for s.
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Once the plot is complete inferences regarding the process are possible. Simila¡ to

the standard contol charts those subgroups with either (or both) of the proposed measures

above the appropriate UCL should be highlighted and investigated. As well if any sharp

declines, unusual tends or actions appear they too should be investigated. Any decisions

and actions made at this stage will be simila¡ to those taken for the traditional control chalts.

If for exampie the subgroup means appear to be drifting away from the target or if the

overall variability is changing in a systematic fashion, adjustments should be made.

As part of the plotting procedure it was suggested that the UCL fo¡ both s2 and

MSE be included on the chart howeve¡ ,2 *u, not included in the procedur". ,2.rn

disturb the clarity of the plot to the extent that visual inferences become quite diffícult.

Howeve¡ MSE may not in appeaÌance provide all necessary information. In some

subgroups it may occur that both MSE and (I - t )2 are within the acceptable boundaries

but s2 exceeds its UCL. This may occur when the (I - f )2is small. In cases such as this

the difference between plotted points (-x - T )2 and MSE will be large indicating th"t ,2 i,
large. Although the plot will in fact indicate this, the ¡esult is similar to boxplot

representations of the standard deviation, in that the result does not immediaúely 'lump off,

the plot. Users familiar with the procedure will look for this phenomenon but others may

miss it. To ensure detection, the value of s2 for all cases where MSE exceeds the UCL5z

should be included in the plot. In this way good visual inferences will result without the

excess clutter associated with the entire set of values for s2. An example has been selected

that illusfates this particular situation (see Exampte 6.8.1).
j

6.5. MULTTVARHTECASE

Similarly styled control charts can be c¡eated for those situations where mo¡e than

one variable (i.e., multivariaæ case) is used to monitor a process. Target values conti¡ue to

be important in the multivariate case, whiie Alt [41] states that "development of one control



chart for simultåneous monitoring of both location and dispersion is needed". Hence the

motivation fo¡ a simultaneous control chart that reflects the changing nature of Quaiity

Contol for the multivariate case is identicai to that fo¡ the univariate case.

Notation for the multívariate case will be slightly diffe¡ent f¡om that of the

univariate case. Vectors of measuiements rather than a single value will result f¡om the

sampling schemes used to monitor the process. As the number of variables used to

monito¡ a process increases, calculations become more complex. While it is possible to

perform the required calculations by hand (using a ha¡d-held calculator) for the case where

two variables are used (i.e., bivariate case), the calculations can be tedious and time

consuming. A computer capable of performing accurate matrix operations wil1 be required

for cases where more than two variables æe used.

The methods and sampling schemes used to gather tìe measurements are assumed

to be identical to the univariate case (i.e., k subgroups consisting of n samples are drawn

from a process). However in the multivariate case a set of p measurements are made on

each sampling unit resulting in a p-dimensional vector of the form

for each sampling unit ASubgroup mean will now be a vector of means

.lll



T +Ë, l-"-]
L*""-l

,å*[:Ï

Lå¿*
The subgroup mean vector X and the grand mean vector f are completely analogous to the

subgroup mean (l) and the grand mean 1i¡ in the univariate model. For p=1 ¡1s

multivariate resr¡lts ate exactly those of the univariate case.

The target must also be st¿æd i¡ the form of a vector (denoted T)

. [;l
L"l

with the grand mean , denoted * , ,Jro . u".to, of the form



where T1, T2, .. , Tp represent the univariate target values associated with each of the p

variables used in monitoring ttre process.

The measures used to monitor a multivariate process will be simila¡ to those used in

the univariate models. They are derived in much the same fashion as thei¡ univariate

counterparts and have associated distribution functions that will be used to cteate control

limits. The proposed measures, although determined from multivariate data, will be

scala¡s.

The measure

where E is the variance-covariance matrix, will be used to assess proximity to the target

value. For each of the k subgroups (X - T)'>-l(X - T) provides a scalar measure of

proximity to the target. The multivariate analogue of (; - T )2 uses standardized squared

distances, which on the surface appear different from the univariate case. However the

univariate standaÌdization is reflected in the control limits whe¡e o2 is used to modify the

UCL. Hence the multivariate measure (X - f)'¡-l(X - T) provides much the same

information as its counte¡part (I - T )2 in ; ,r;*.r" .^r.-

The measure proposed for assessing the variability within a subgroup for the

multivariate case is analogous to the univariate measure MSE. In appearance the
,/

multivariate measure differs from its univariate counterpart as it again uses standardized

distance measures. However the inferences drawn will be identical to those of the

univariate case. The proposed measure is

rn=(I-Ð'E-',(T-T)

Il

MsEp= *Ð,0,-l,t'rT,-1l



and is completely consistent with the univariate measure MSE. The algorithm results in a

scala¡ measure that inco{porates both proximity to the talget and the inherent variability

associated with a paficular subgroup into a single measure. Similar to the univadate case,

MSE' can be partitioned into the following components

JL , __!_

r)txr- Ð'>'(x,-r)= + )ø'-x)'>-'(x,-x)* (x-Ð'>-'(x -Ð
" i=1 - - " i=l - -

with the first component being a measure of va¡iation within a subgroup and the second

measuring proximity to the target. Simila¡ to the univariate case each of the terms in the

above equation will be used to monitor the process. The proposed measures in the

multivariate case are then

and occasionally
,* - -r

*à<{'-tl'" (xi-x).
i=l

iii) s ='p

The above algorithms result i¡ scalar measures of proximity to the tatget, variabilìty

around the target and variability a¡ound the subgroup mean. Once these have been found

they can be plotted using similar strategies to those in the univariate case. It is again

suggested that only'io and MSE' be plotted for each subgroup u, S .* cause the plot to

be ciutte¡ed.

Inferences d¡awn here will be slightly different f¡om the univa¡iate case but identicat

to those i¡ferences drawn from the multivariate control charts based on Hotelling's T2

results [42]. See Alt [41] for more discussion.



6,6. DERTVATTON OF THE CONTROL LNIIS AND CONSTANTS

The UCL for the muitivariate measurements will be based on the assumption thal

the process measurements (i.e., p-dimensional vectors) are independent with a MVNp(g,

E) distribution.

IJCLJc.io

Assuming X-NrvNp(U, E) it follows tnat (* - ?' ,-t (T ? - { tl, , tr..
Theorem 6.7.5) with f=rfry--?'>-'ft-Ð and p rì.,. nu-t", of variables used to

monitor the process. Defining the UCL to be the (1-d.)l00Vo percentile of the distribution

function associated with io, the UCL will be of the form

UcL* =lv2lp n "p, À, (1-a)

. =D

: Table 6.6.1 contains the values of D, denoted D3 when (1-cr,)100 Vo=99.73Vo, for n=2(i)6,

, p=2, 3, 4 and vatues of (!r - Ð'>-1 (p - Ð = 0.00(0.05)0.90.:-

i ucl-forMsEe

Assuming the process measuremenrs follow a MVNO(p, Ð), the frASEo- f, X]0, I
(see Theorem 6.7.6) where À=n(p - Ð'>-t (p - Ð . the UCL, being the (t-u)IOTVo

J

I percentile of the distribution flrnction, will be

, u6l-¡useo *r30, r,.,-o,

-t



Table 6.6.2 contains the value of E, denoted E3 when (l-o.)l00Vo=99.73Vo, for n=2(I)6,

p=2,3,4 an¿ (F - T)' >-1 (p - Ð = 0.00(0.05)0.90.

IJCL for si

Assuming MVNp(p, > ) for the process measurements,

'.\ - -1

* )fT,- T)' > 
-' 

(xi - x) will fotiow u *rä-,lo,o (see Theorem 6.7.7). As a result
¡-r -

the UCL associated wittr the (l-u)700Vo prcentile of the disfibution function will be

1.,
UCLs2 = ;Iio_1¡p,6, qr_"¡

-F

Table 6.6.3 contains the value of F, denoted F3 and F2 for the case where

(1 - a)100Vo =99.7 3Vo atd 9 5.44Vo. n=2( 1 )6 and p=2, 3, 4.

The population parameters p and X will seldomly be known, analogous to the

univariate case we suggest subsrituting 8 and !2 respectivety, where S2= i å :í *u,
n

¡Î= * Itlt- rxxi - r)' ror j= 1,2, ... ,k.
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3.25 3.44 3.(t2 3.79 1.94 4.O9 4.24 4.37 4.st 4.64 4.7't

2.7 t 2.90 3.O't 3.24 3.39 3.53 3.67 3.80 3.93 4.05 4.l8

22
3

4

5

6

32
3

4

5

6

42
3

4

5

6



'lìblc 6.6.2. Coefficicnt E3 uscd to delermine lhc boundary v lue associ¿rtcd with MSIì' for various vahres of n, p and L

I=(p -'l)' I-r (lr -'l)

22
3

4

5

6

32
3

4

5

6

42
3

4

5

6

8.r3 8.32 8.s2 8.70 8.88 9.05 9.22 9.39 9.ss 9.7r 9.86 10.01 10.16 t0.31 r0.45 10.s9 10.73 10.87 11.00

6.69 6.85 1.Ot 7.t6 't.31 7.46 '1.60 7.74 7.88 8.0t 8.14 8.27 8.40 8.53 8.65 8.77 8.89 9.01 9.t3

5.89 6.04 6.18 6.32 6.45 6.58 6.71 6.83 6.96 7.08 7.20 7.3t 7.43 7.54 7.6s 7.77 7.88 7.99 8.09

5.38 5.sl 5.64 s.'17 5.89 6.01 6.t3 6.24 6.36 6.47 6.s8 6.69 6.80 6.90 1.Ot 1.tt 7.22 7.32 7.42

5.02 5.14 5.26 5.38 5.49 5.61 5.72 5.83 5.93 6.04 6.14 6.25 6.35 6.45 6.55 6.ó5 6.75 6.85 6.94

10.03 10.20 10.36 10.52 10.67 10.82 10.97 tl.tz 1t.26 11.40 1t.54 11.68 t1.82 n.95 t2.08 t2.21 12.34 12.47 12.60

8.42 8.56 8.69 8.83 8.96 9.09 9.21 9.34 9.46 9.59 9.71 9.82 9.94 t0.06 10.17 10.29 10.40 t0.51 10.62

7.s2 7.65 7.77 7.89 8.Ot 8.t3 8.24 8.35 8.47 8.58 8.69 8.79 8.90 9.01 9.ll 9.22 9.32 9.42 9.53

6.94 7.06 7.17 7.28 7.39 7.50 7.6t 7.71 7.82 7.92 8.02 8.12 8.22 8.32. 8.42 8.52 8.62 8.71 8.81

6.53 6.64 6.74 6.85 ó.95 7.05 't.t6 7.26 '1.35 7.4s 7.55 't.65 7.74 7.84 7.93 8.02 8.12 8.21 8.30

l r.79 11.93 t2.O8 t2.22 t2.36 t2.50 12.63 12.77 12.90 13.03 t3.16 13.29 13.41 13.54 t3.66 13.79 13.91 14.03 14.15

r0.03 10.16 10.28 10.40 10.52 10.64 10.76 10.87 10.99 ll.l0 tl.2t tt.32 11.43 11.54 I1.65 11.76 11.87 .97 12.08

9.05 9.17 9.28 9.19 9.50 9.60 9;lt 9.82 9.92 10.02 10.13 10.23 10.33 10.43 10.53 10.63 10.73 10.83 10.92

ft.42 8.52 tì.62 rì.73 1r.83 8.93 9.03 9.13 9.22 9.32 9.42 9.5r 9.61 9.?0 9.80 9.89 9.98 t0.08 10.t7

7.96 8.06 8.16 ft.25 It.35 8.45 8.54 8.ó3 8.73 8.82 8.9t 9.00 9.09 9.r8 9.2'1 9.36 9.45 9.54 9.63



:!:i!blç!É1. Cocltìcicnls l; aùd F3 l'ol lhc bound¿uy virluc ¡r$soc¡¡¡tcd with ,Sj lbr v¿rrious valucs of ¡¡ ard P .

\
3.09
3.24
3.21
3.16
3.10

4.01
4.28
4.30
4.27
4.22

4.86
5.26
5.34
5.33
5.30

f,l

5.91
5.42
5.02
4;tI
4.48

7.08
6.69
6.31
6.O2
5.79

8.13
'l -8(t
7.52
7.24
7.01

2
3
4
5
6

2
3
4
5
6

2
3
4
5
6



6.7, PROPERTßS

Theorem 6.7.7: R- T)2 - q'
" 

xt, t-'

Proof: IfX-N(¡r, o1 then 
? ? 

" N(0, 1), from page 130 of [31]

J-" $
r- .2lri-l tr,-r) (rr-Ðl t -+^ , " -'ì'|I -s- o " I - xf. 

^ 
with À=nl rl lence

L¡ l; 6,l Lo,

(x - r¡z - * *?, . *nn 
^=.1U" ]'

', rheotem 6.7 .2: vrsn - f Xl, lwith t = .li]'
ì

:

j t.of: If X-N(¡r, o2¡ th"n 
ç + 

" N(0, 1) for all i = 1,2, ..., n

If the xis are independent then, from page 130 of [31] ,

,12nf t-
¡..j 

(xi- r') 
_ 

(p_Ð * (rr_rll _xl,* , asaresutr
i-L 6 o ol

l

ås#'**i,with¡="[i:]'



Theorem 6.7.3' 
"2--{11-, 

.n-l "'

Proof: If X-N(p, o2) then from page 135 of I31l tn-t]tt - d-,&

As a¡esult t'-#*1-, .

d-n2 I -Theorem 6.7.4: -?- - t tsr, 
k(n_t), ¡, where n is the subgroup sample size, k the

number of subgroups and Fr, 
*1o_¡, ?! the non-cental F distribution with 1 and k(n-l)

df a¡d non-centrality parameter À=4O, 
]'

Proof: If X-N(p, oJ analogous to the proof for Theo¡em 6.7.1

d -rrz - *f,, *,* 
^=*lu-t]'.

If the k subgroups æe assumed to be independent and since s] - $Xl-, fot uff ¡

-' rt-, o2 .s-= t á'¡ 
- tln-tlxr'<o-r¡'

rhen ftom page 189 of [31] G2^ '- l a-
52 nk - 1' k(tr-l)' x'

which for a mode¡ate numbe¡ of subgroups is approximatety equat ro 
lu-f" ]t 

. ,n,,



result suggests that substituting i an¿ S1 for p and o2 respectively should provide a

f-2
reasonabte estima. "f I I-l I-*L;J

- -r----L1 -iTheorem6.7.5: (x-Ð'>'(I-? - 
"xí,x 

with À='(t-?'r-'(p-r)

Proof: lf ð-MVNO(!, t) then X - rnlw'tU f >l

_2
Frompage 113 of [43]n(* -Ð' >-' (* - \-Xr,xwith À= n (É -Ð' >-t (p - r).

1 rn
rheorem 6.7.6: Msq = 

"fl,l,- 
t)'¡-t(Xi -.tl - *x|r, 

^.i=l -

-t2
Proof: If l-l\,fvl\e(!" E) then from Theo¡em 6.7.5, (N - Ð' Ð ' (X - Ð - Xp, r, with

_1

À=(B - T)' > ' (g - !). Assuming the I's to be independent ir foltows that

n

I,t - T)' tt (Xt -o - x\r,tr where 1. = n (F - Ð' >-t (r¡ - T). Therefo¡e
i=1

-_!_

* à'o'-3'' 
'rï,-1 - *x3,, 

^'

D

rheorem 6.7.7: *Iq,. ;i)' >-t (x, - *l - * ,å-,"
i=t

Proof: lf ð-MVNp(¡¡ r) then A<, - Xl-vrrrNotO, $>l

Then it follows *., I i6, - T)' , 
-t 

(Xi - )i) - * *?,-r, .n ,=, -



6.8. EXAMPLES

Example 6.8.1: The example presented is taken from question 6.10, page 144 of [25]. An

arbiÍary target value of 12 is assumed resulting in the following

subgroup # X1 X2 X3 X4 X

1 5 12 10 3 7,5

2702i85.2s
3183167
4714 18 110
5319588.75
618i614012
790354.25
8 14 11 0 4 7.25

920 1223 13 17

10 1681822 16

11 2 0 14 17 8.25

1251263.5
13520628.25
14 9 16 12 8 11.2s

i5 3 3s 15 0 13.25

16 11 11 3 4 7.25

17 19 4 9 21 13.25

18 17 t4 4 19 13.5

195622 11 11

204319129.5
21818078.2s
222021 514 15

23 160"611 8.25

24 13811 810
25 il 5 25 12 13.25

26 13173
27 4 12 4 13 8.25

28 11 17 t2 t0 1.2.5

)2G-Tt MSE s

20.250 44.67 17.667

45.563 133.67 72.9r'7

25.000 78.00 44.667

4.000 62.00 s6.667

10.563 65.00 50.917

0.000 66.67 66.66'r

60.063 94.33 14.250

22.563 71.00 40.917

25.000 62.00 28.667

16.000 56.00 34.661

14.063 91.00 72.250

72.250 i02.00 5.667

14.063 83.00 64.250

0.s63 13.67 12.917

i.563 s4.33 252.250

22.563 49.00 18.917

1.563 67.67 65.583

2.250 47,33 44.333

1.000 62.00 60.667

6.250 64.67 56.333

14.063 73.67 54.917

9.000 66.00 54.000

14.063 65.67 46.917

4.000 11.33 6.000

1.563 73.00 70.9r'1

8i.000 116.00 8.000

14.063 43.00 24.250

0.250 10.00 9,667



- éi. - és? r -Í
ForT=t2andwithf =I+ =9.73and s'?=>+ =4l.42,thevatueof Itt-rl =,t:i* Fl ^ L " I
ro ¡z - t ¡'t2

ffi = 0.1064. Rounding off to the nearest 0.05 for computational purposes, finds

r'?
I 
gl I = 0. i0. The UCL for the measures of inreresr a¡e then
LoJ

i) A3 o2 =2.92o2 = zsz? = A7.4,

ü) c3 o2 = s.9z o2 = s.gz ? = zsø.ø,

üi) 83 o2 = 4.72 o2 = 
q.lzlz = zza.s.

Plotting fi - T)2, and the UCL's for (x - T)2, s2 and MSE ¡esulrs in the plot depicted in

Figure 6.8.2.
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Figtuz 6.8.2. The Plot of @ - T¡2 ad tttc I) CL's for @ - T)2, s2 ørd MS E.

From Figure 6.8.2 it is apparent that none of the subgroups exceed the UCL for

(X - 1¡z and generally most of them appear to be relatively close to 0 indicating

¡easonable proximity to the target. Subgroups 7, 12 and 26 appeæ to have the targest

deparnues from the target but a¡e well within the contol limits. Nineteen of the subgroups

have sampling means below the target as denoted by the negative signs. The longest



sequence of similar signs is five (subgroups I to 5), indicating that the longest run of

subgroup means either above or below (in this case below) the target is five. There does

not appear to be any significant drifting from the target nor does there appear to be any

cyclical relationships occurring. However before any formal inferences can be d¡awn the

MSE for each subgroup must be plotted (see Figure 6.8.3).
300.00

Â-a-À-À-Â-a-À-a-a-a-a-a-À-a-À-À- -À-a-a

o-o-o-o-o

200.00

I 50.00

f 00.00

50.00

0.00

0

L egen d

tr-(*-Ð'

^- MSE

A- UCL(MSE)

o- ucl(f)
2r- ucl(r _ Ð

E

I

r-t-t-¡-l-r-r-r-r

, ,ti-l
t)

Subgroups

Figure 6ß3.The Plot of (l - TS2 , MSE ard the IlCLs.



From Figwe 6.8.3, none of the subgroups exceed the UCL for MSE, but

subgroup 15 has a MSE that exceeds the UCL fo¡ s2. Closer investigation finds (x - T¡z ¡o

be quite small for subgroup 15 resulting in a large difference between (x - T)2 and MSE.

Clearly this difference will exceed the UCL fo¡ s2 however sft shouid be included in the

plot (see Figure 6.8.4). Alalysis of the rest of the plot follows in a predictable fashion.

Subgroups 14,24 and 28 may require investigation as they appea¡ to have small variability

while being quite close to the targeL

300.00
a-a-a-À-À-a-À-a-Â-Ä-a-a-Ä-À-Â-À-ô-À-a-Â-a-a-Â-Â-À-Ä-a-À

250.00

200.00

r 50.00

t00.00

s0.00

0.00

l-t-¡-r-l-l-t-r-r-l-l-l-l- -t-t-t-l-l-r-t-l-¡-r-l-l

0
Legend

tr-(x-Ðt

^- MSE

Â- UCL(MSE)

o- ucl(f)
r- ucl(Í - Ð

Subgroups

5 10 t5 20 25 30

Figure 63.4,The Ptot of (f - T)2 , MSE and one exhente value of s2



Example 6.8.2: T},e dat¿ as taken from [34] consists of 30 bivariate observations taken

f¡om a steel manufacturing process. In order to illusfate the multivariate controi chart

procedure the 30 observations were taken in groups of size five with the groupings formed

using the sequential sample numbers. An arbitrary target of (175, 55) was assumed with

the following results

Subproun
1

X=lx. v)
143,34.2
200, 57.0
160, 47.5
181, 53.4
148, 47.8

178,51.5
162, 45.9
215, s9.1
161,48.4
14t, 47.3

175, s7.3
187,58.5
187,58.2
186, 57.0
172, 49.4

r82, 57.2
t77,50.6
204, s5.1
178, 50.9
196,57.9

160, 45.5
183, s3.9
179,51.2
194, 57.5
181,55.6

195, 58.0
t34, 47.5
187, 42.0
135,40.5
i59, 58.0

F¡om Tables 6.6.1,6.6.2 and ó.6.3, Tz, s, o.¡s = 3,71 , MSEz, s, ,.r, = 6.24 and

53, r, O.r, = 4.71. The control cha¡r associated wirh this set of dara (Figure 6.g.5)

indicates that none of the subgroups have centers of mass d¡amatically different f¡om the

Sample Number
1
J

4
5

6
7
8
9

10

11
12
13
t4
15

16
17
i8
19
20

2r
7)
23
24
25

26
:27

28
29
30

1.12 2.92

r,

0.54

MSE

z.r8

0.10 0.43

0.79 1.30

0.42 0.86

0.72 4.32

189-



target (T ) and although there appears to be a large jump in MSEp in subgroup 6 all have

MSE' and Sl values well within the upper control limits. These results tend to suggest that

the process is in-control. If additional information regarding individual observations is

required this could be included in Figure 6.8.5. For example a closer examination of the

observations in Subgroup 6 may be warranted here.

Suþoup

F igure 6 8 5. Corrtrol Chart lor Emmple 6.8 2.



6.9. Cor,ßm¡Ts

A simultaneous conEol chart has been presented that miÍors the recent changes

occurring in Quality ConEol ci¡cles. The proposed chart is analogous to the traditional i
and s chart providing much of the i¡formation available from the taditional control charts

while inco¡porating additional pertinent information. The additional information has been

incorporated ín a single plot without loss of clarity.

The calculations required for ttre univariate case are straighforwa¡d requiring only a

hand-held calculator. The procedure is easily adapæd to computer analysis and graphics.

The theory used to derive the results, in our opinion is clearer than that associated

with the traditional charts as all UCLs represent a specific percentile of the distribution

associated with the measuremenl

Many ofthe properties derived and examined for the traditional conrol charts apply

to the new procedure as tle measu¡es used are very simila¡ in nature. Replacing the target

value in the new procedure with i results in a plot that provides ail the information

included in the taditional contol cha¡t. However in cunent philosophy much emphasis is

placed on proximity to the target value when monitoring and assessing a process.

The simultaneous nature of the proposed procedure has been achieved without

sacrificing clarity. The resultant contol chart appea$ to purvey more information than is

available in Íaditional charts while not being dramatically different from the raditional

charts in their motivation or inference. Although the new procedure does not provide all

the information that may be contained in a boxplot style chart it does have some features

such as explicit boundary values for s2 and MSE that are not available in a boxplol



The proposed multivariaæ procedure is similar to the Íaditional Hotelling T2 style

of cha¡L The proposed plot allows investigation of both proúmity to the target and overall

variability where Hotelling's procedure confounds these measures.
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