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ABSTRACT

A study conducted by the Ford Motor Company in late 1983 found only 50% of
Ford suppliers' processes capable of meeting requirements. Common sense suggests that
a process incapable of meeting requirements should not be used in the long run. Processes
incapable of meeting requirements result in resources being allocated to the identification
and repair/replacement of non-conforming output. Some aspects of process capability and

its measure are examined.

Various properties of the process capability index are examined. The stochastic
nature of the traditional estimator is stressed and analytical tools that promote stochastic
interpretations and warnings are presented and discussed. The robustness of the traditional
estimator with respect to departures from normality and a general procedure designed to
detect departures from distributional assumptions are presented. As well, a Bayesian
technique that alleviates some of the problems encountered in drawing stochastic inferences

from the sampling results is suggested.

A measure of process capability is proposed that incorporates some of the new
philosophies arising in quality control methodology. The new measure takes into
consideration proximity to the target value. Some properties associated with a proposed
estimator are presented and comparisons drawn among other competing measures. A

multivariate analogue is presented and discussed as well.

Finally a graphical procedure for monitoring a process is presented. The procedure
provides an alternative to the boxplot style of simultaneous control charting now being
suggested in the literature and the traditional X and s control chart. It provides information
regarding the process' proximity to the target value as well as the variability for both the

univariate and multivariate cases.
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Chapter 1
Introduction

1.1. OVERVIEW

Many early Quality Control (QC) procedures were developed for specific
applications. These procedures often relied heavily on the intuition of the originator and the
constraints associated with the problem being dealt with. Most of the early techniques have
evolved, some through necessity others through general interest. Statistical theory and
methods have had an impact on mahy techniques, however, there is still much that can be

done.

In QC, the practicality of a method is as important as its mathematical elegance.
Many methods are not the most statistically appealing, however a loss in efficiency is often
sacrificed for administrative appeal. This is not to say advanced techniques should be
disregarded. As practitioners become more sophisticated in their statistical and computing
backgrounds, techniques once shunned as impract(ical will gain popularity. This is
particularly true for those systems which are adaptable to a computer, where much of the
more difficult material can be written into the operating system. Administrative ease and
intuitive appeal must however be considered when proposing changes to existing
procedures. QC procedures must be user friendly, for without co-operation and
commitment, the most sophisticated technique will not be used. Most procedures will be
administered by engineers and technicians not statisticians, hence discussions should be

directed to them.

With this in mind two fundamental areas of statistical process control (SPC) are
discussed. Current methods are examined and modifications suggested. The modifications

are generally motivated from a statistical point of view but with attention paid to intuitive
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and practical appeal. Empbhasis has been placed on the study of process capability and

simultaneous control charting.
1.2. PROCESS CAPABILITY

Process capability has recently received a growing amount of attention. This new
focus is due partly to the changing philosophy occurring in QC. Slogans such as "doing
things right the first time" and "building a quality product" are good motivators but if a
process is not capable of meeting requirements resources will be wasted. For example, if a
mechanical process is not capable, the operators, regardless of their dedication and effort,
will be unable fo produce a quality product. Similarly if the operators are not capable of
meeting the demands of the machinery a quality product will not result. Processes that are

not capable regardless of their incapacity, waste resources.

Waste results from i) resources used to produce a non-conforming product, ii) the
cost of identifying non-conforming product (either through inspection or customer
dissatisfaction) and iii) repair/replacement of any non-conforming product. Some of these
costs are tangible (such as repair/replacement) others (such as loss of business due to

customer dissatisfaction) may be more difficult to quantify, but certainly exist.

Although it seems like common sense to use a process that is capable of meeting
engineering requirements, it is not always the practice. In November 1983, Ford Motor
Company reported that only 50% of those processes surveyed from suppliers with some
sort of Quality Assurance-program were capable! Regardless of how one defines process

capability there is evidence that a problem exists.

In the past many companies have tried to inspect quality into the product. That is
inspection teams were created whose role was to inspect the output for non-conforming

product. This is both costly and in certain cases ineffective. By designing a process that is



capable and robust to input fluctuations, inspection becomes unnecessary. Once a process
has been deemed capable, sampling is used only to monitor the procedure or to assess
modifications made to the process. The ideal process would produce "identical" units
under conditions which may include heterogeneous raw materials, different operators and a

variety of operating conditions.

Process capability has become synonymous with process variability or process
spread, while process capability indices relate process variability to the specification limits.
There is however a growing demand to include proximity to the target value when
considering process capability. Proximity to the target is part of the philosophy fostered by

Dr. Genichi Taguchi.

Taguchi defines quality as the "the loss a product causes to society"! and promotes
the use of a squared error loss function in assessing quality. Taguchi suggests such a loss
function because it has zero loss only when the product is produced at the target value. As
the product moves away from the target there is a loss in quality (Figure 1.2.1). Note that
even small deviations from the target result in a loss of quality when using Taguchi's
definition of quality. This approach to quality is substantially different from the classical
approach where no loss in quality is assumed until the product is outside specifications

(Figure 1.2.2).

Untroduction to Quality Engineering, by Genichi Taguchi (1986).
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Taguchi's loss function highlights the need to have small variability around the
target. The best process in terms of Taguchi's definition of quality would be one that
produced all its product at the target. When this is not the case the loss function suggests
that both process variation and proximity to the target should be considered when assessing
product quality. A process with all its product just inside the upper (or lower) specification
may not be as desirable as a process with larger variation but centered on the target.
Clearly the best process will be one that produces all of its product at the target, with the
next best being the process with the smallest variability around the target. Figure 1.2.3

relates three populations with different levels of variation to the loss function.

Loss

i -
LSL Target USL

Figure 123 Loss Function with Three Normal Populations.



Changes in the definition of a quality product have forced changes in the procedures
used to assess process capability. The ability of a process must now be measured in terms
of process variability and proximity to the target. Small variability but not on target is just

as undesirable as on target but with large variation.

Process capability has been defined in many ways and as a result several measures
of process capability exist. The most common definition describes process capability as the
range over which the output of a process varies. This quantity is also referred to as the
actual process spread. Measures 'in this group depend upon the measuring units (i.e.,
meters, kilograms, ...) and hence do not encourage comparisons among processes with

different quality characteristics.

The process capability index however relates the allowable process spread (usually
an engineering requirement) to the actual process spread in the form of a ratio

allowable process spread
actual process spread

The index will be unitless, thereby inviting comparisons among processes with different
quality variables and promoting similar inferences regardless of the product or quality
characteristic measured ( i.e., widgets, televi»sions, ... ). For example, an index value of
one indicates that the allowable process spread is equivalent to the actual process spread.
While a process capability index of two indicates that the allowable process spread is twice
that of the actual process spread suggesting that the process is quite capable of producing

within specifications (Figﬁre 1.2.4).
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Figure 12 4. An Example of a Process with a Capability Index of 2.

Index values less than one indicate that the actual process spread is larger than the allowable

process spread, suggesting that non-conforming product results (Figure 1.2.5).



[ non-conforming
product

LSL USL

actual process spread

allowable process spread

Figure 125 A Process with Actual Process Spread greater than Allowable S pread.

The actual process spread is generally taken to be 66 which represents, in normal
theory, the width of the interval that contains 99.73% of the population. The difference in
the specification limits is used to indicate allowable process spread. The allowable process
spread is considered fixed while the actual process spread in general must be estimated,

hence the resultant measure of process capability will be stochastic.

It has become the practise among practitioners to ignore the stochastic nature of the

estimated process capability index and to simply judge a process capable if the estimated

process capability index is greater than one, and incapable if less than one. This is

equivalent to drawing an inference from a point estimator without an accompanying

confidence level,



There have been some recent attempts to rectify this unfortunate practise, most have
met with limited success. The techniques suggested are statistically sound but lack
administrative appeal. A Bayesian procedure is promoted here that has both administrative

and intuitive appeal while providing sound statistical inferences.

A second practise whose abuse is not unique to QC practitioners is the failure to
consider effects of non-normality on inferences drawn, The process capability index relies
heavily on the assumption of normality. Clearly 66 may not represent an interval that will
contain 99.73% of the measuremeﬁts outside of the normal family. However little or no

warning is made regarding non-normal population characteristics.

For example Taguchi in the now famous example where a quality characteristic of
televisions manufactured in Japan and the United States are compared, fosters the concept

of comparing a normal distribution and an uniform distribution (Figure 1.2.6).

Japan

u.s.

LSL T UsL

Figure 12.6 Taguchi's Television Example.
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Although the example is usefu] in illustrating the problem associated with proximity to the

target, it does not invite good statistical comparisons.

If 60 is used to measure actual process spread it is not at all clear what 6G
represents outside the normal family of distributions. Hence the process capability index is
not consistent in its interpretation when non-normal populations are encountered. Five
populations (Figure 1.2.8), all such that Pr(LSL < x < USL) =0.9973, have process
capabilities that range from 0.577 to 1.4030. Clearly a caution should be issued if

distributional assumptions are not verified.

X
Figure 1.2.8. Five Populations with various Process Capabilities.

-10-



The non-robustness of the traditional process capability index estimator to
departures from normality is also established and corrective procedures suggested for some
identifiably non-normal populations. The non-robustness of the traditional estimator is not
unexpected as it is, up to a constant, simply the inverse of the sample standard deviation,

which is known to be non-robust with respect of departures from normality.

The process capability index can also be considered as a measure of non-
conforming product. A value of one for the index represents 2700 parts per million (ppm)
non-conforming, while 1.33 représents 63 ppm; 1.66 corresponds to .6 ppm; and 2
indicates <.1 ppm. These values are correct if the process measurement arise from a
normal distribution centered on the midpoint of the specification limits. If this is not true
the process capability index will underestimate the percent non-conforming. Processes 1
and 2 of Figure 1.2.9 have the same index values, but process 2 has roughly 30% non-

conforming, where process 1 has near zero percent non-conforming,

Capable Process Incapable Process

LSL USL LSL USL

Process 1 Process 2

Figure 1.2.9. Processes with Equivalent Capability Index but different Non-conforming.
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The process capability index's failure to consider proximity to the target value
makes it incompatible with Taguchi's loss function concept of assessing quality. However
a measure that is similar to the process capability index but with the ability to assess
proximity to the target in addition to process variation is proposed. The changes are subtle
but powerful, leaving the original measure largely unchanged but with superior statistical
properties and more intuitive appeal than competing measures. This modified process
capability index reflects the current feeling in QC and relates well with Taguchi's definition
of quality. The modified process capability index behaves in much the same manner as the
squared error loss function (inversely in terms of magnitude). At the target, for a given
variability, the modified index is a maximum while the loss function is at is minimum. As
the process drifts from the target the loss function increases, the modified index decreases.
Similarly as the variability increases the modified index gets smaller while the loss function

increases as the observations tend to move away from the target.

The modified index falls into a group of second generation measures of process
capability that consider both process variation and proximity to the target when assessing
the ability of a process. The shift from the original index to the modified index in terms of

calculation is subtle but the inferences and interpretations are vastly different.
1.3. Contro! Charting

Control charts provide a graphical technique for monitoring the behaviour of some
characteristic(s) of a process. There are many different categories of control charts whose
use depends upon the nature of the quality characteristic(s) under investigation. However
within a particular category of charts there are often several ways of displaying the sample
results. For example when measuring a continuous quality variable practitioners often use

x and R charts to monitor a process, while a statistician may use x and s charts, The first
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pair of charts are more likely to be used on the manufacturing floor while the second group

are more likely to be used by the data analyst in the Quality Assurance department.

Both the X and R procedure and the X and s procedure provide similar information
regarding the behaviour of the quality characteristic under surveillance. The X chart
monitors the central tendency of the process with respect to the grand mean )=(, while an R
or s chart monitors the behaviour of the variability. Either set of charts monitor two
characteristics of the process and involve plotting summary statistics for small groups of
observations drawn periodically ffom the output of the process. Boundaries are created

that aid in the identification of unusually large or small results. As well any trends or

cycles that may occur can also be detected from these charts.

In either case (i.e., X and R or X and s) the plotting procedure requires two charts
to illustrate the results. The latest trends in control charting procedures have focussed on
fitting these charts on a single plot. Simultaneous control charts refer to the family of
control charts that use a single plot to monitor a process. A plotting procedure is suggested
that provides much of the information attainable from the traditional charts but with the
added feature of requiring a single plot. The proposed plotting procedure brings control
charts in step with the changing philosophy in QC. The univariate and multivariate
procedures both provide good inferences, while being reasonably easy to use. Additional
features include boundaries that are developed in a more statistically astute manner than the
boundaries associated with the traditional charts. In terms of calculations the univariate
procedure is easily performed using a hand calculator, while the multivariate case requires
more computing power. For technicians working on the floor the procedure requires much
the same level of sophistication as that of the X and s charts in the univariate case, but for

the multivariate case a suitable software package is required.



1.4. Assessing Distributional Assumptions

The concept of distributional properties and assumptions is of general importance in
the field of statistics and this carries over to the area of Quality Control. A test procedure is
proposed that can be used in identifying the distribution from which a set of observations
arise. The test procedure is motivated from probability plot results and is analogous to the
Shapiro-Wilk test for normality. It suffers from some statistical drawbacks for small
sample sizes but as sample sizes increase it behaves quite well. It has the advantage of
being easy to calculate and its inference can be enhanced with an accompanying probability

plot.

All too often an assumption regarding the underlying distribution of a population is
made without verification. In most procedures distributional assumptions are made for
theoretical reasons. However some procedures provide reasonable inferences when the
distributional assumptions are not valid. The t and F statistics are good examples of
robustness to moderate non-normal populations. On the other hand both Bartlett's and
Hartley's tests for homogeneity of variance are extremely sensitive to departures from

normality.

It has become the practise in many applications to ignore the distributional aspects
of the underlying distribution. Seldom does one see the results of a test for normality
included in a procedure that uses a t or F statistic. This can be quite dangerous even though
both statistics have some propensity to operate in the face of non-normal distributions. In
control charting and process capability procedures the assumption of normality plays a
major role in ascertaining limits and distributional properties of estimators. Certain aspects

of these procedures do not behave well when the assumption of normality is violated,

One major drawback in assessing distributional assumptions in QC procedures is

the small sample sizes. In control chart procedures subgroup sizes are generally around
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size five. There simply is not enough information in a sample of size five to provide an
assessment of the underlying distribution. Hence the assumption is made but no warning
is mentioned regarding non-normality and its consequences. Process capability studies
suffer from the same practise but for different reasons. In many studies there is sufficient
information to assess normality but this is seldom done. A graphical technique for
assessing process capability, that is a modified normal probability plot, may help to

alleviate this practise.

The inferences drawn from the graphical technique are subjective in that the linearity
of the resultant plot provides information regarding the aptness of the distributional
function in describing the population. In those cases where the linearity is borderline the
graphical procedure becomes quite subjective. A procedure that can provide additional

information in assessing the linearity of the plot is proposed.

The procedure is analogous to existing procedures for the Normal and exponential
distributions, but is designed for use with the uniform distribution. For small sample sizes
the procedure is not very powerful, however in conjunction with a uniform probability plot
it can provide reasonably good inferences. The test procedure is quite easy to use and has
the added features that i) a uniform probability plot does not require special probability
paper and ii) the probability integral transformation results in U[0, 1] variates. A test

statistic is proposed and several properties examined.

-15-



Chapter 2
Examining Goodness-of-fit

2.1, INTRODUCTION

Probability plots are an old and useful tool for examining the goodness-of-fit of a
particular probability model to a data set. However probability plots provide no
objective method for analyzing or testing goodness-of-fit. In fact, interpretation of
probability plots is left to the judgement of the observer. In those cases where the
resultant probability plot is quite dbviously linear or definitely non-linear the probability
plot procedure is very useful in assessing goodness-of-fit, however, in those cases
where the linearity of the probability plot is borderline, subjectivity enters into the

judgement regarding the aptness of a particular hypothesized distribution.

Shapiro and Wilk ({1}, [2]) presented techniques for the normal and
exponential distributions which examine the results of the probability plot procedure and
quantify goodness-of-fit. The Shapiro-Wilk technique in conjunction with the
probability integral transformation (PIT) and the uniform distribution allows investigation

of distributional assumptions regarding almost every distribution imaginable.

With this thought an analogous test to the Shapiro-Wilk Analysis of Variance test

for goodness-of-fit has been developed for the uniform distribution.
2.2. PROBABILITY PLOTS

Probability plots ar<;, used in several ways to aid in examining the nature of a set of
observations arising from some population. Probability plots can be used to examine
the data for outliers, goodness-of-fit, and systematic deviations from certain
distributional assumptions. The probability plot procedure is quite straight forward in

that it simply plots the order statistics of a data set versus the expected value of the order
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statistics. If the resultant plot appears linear with no dramatic deviations, the data are
said to have no outliers and arise from a population with probability density function (up to

a constant) f(x).

For some probability distributions the expected value of the associated order
statistics can be quite difficult fo calculate, however, the uniform distribution lends itself
quite nicely to the probability plot procedure by having a concise and uncomplicated

algorithm for determining the expected value of its order statistics.

All distributions from the (continuous) uniform family can be expressed in the form

% O<x<a
f(x) = (2.2.1)
0 elsewhere.
with cdf
0 x <0,
Fx)=| &  O<x<a, 2.2.2)
e 1 X>a

The expected value of the ith order statistic xj , from a sample of size n will be

==

E(xp n) = '(%j‘f J X[i][F(X[i])]i_][I-F(X;i])]n_idF(x[i]) (2.2.3)

fori=1,2,3,..,n

Substituting the results of (2.2.2) for F(xp;p) in (2.2.3) and integrating, the expected

value of the order statistics from any uniform distribution with pdf (2.2.1) is
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a

n! Xpyi-lr, Xme-idxp ai
B ) = eyl [1- ML A
0

fori=1,2,3,...,n.

A probability plot (for any distribution) simply plots the order statistics (Xpip)
versus the expected value of the order statistics (E(x;jpn)). Any inference regarding the
aptness of the distribution function used to calculate the expected value of the order

statistics is formulated from the shape of the plot.

If the probability plot does not readily availitself to an inference (ie., the plot is
borderline linear) then an additional test can be performed which will allow quantification
of the results. A natural inclination is to conduct a regression type analysis of the points

(x).Elxgj;n]) and to analyze them for linearity using traditional regression techniques.
Consider the following model
X = A+ BIE(xsn)] + ¢ (2.2.4)
where i=1, 2, 3, ... n, and e, is a suitable error term.

Equation (2.2.4) denotes a linear regression of the order statistics on their
respective hypothesized expected values. Because the explanatory variable is the expected
values of the order statistics, ordinary least squares (OLS) regression techniques will
not generate the best lim?ar unbiased estimates (BLUE) of A and B [3]. However using
the general least squares (GLS) technique the resultant estimates for A and B will be

BLUE (Searle [4]).

The GLS estimators of A and B, where the hypothesized distribution is uniform, are
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R

A n+l
B =17 (Xpy - xp1p) -

Lloyd [5], as well as Kendall and Stuart [6], indicate that when regressing the order
statistics on their respective standardized expected values the parameter A represents the
population mean (1) and B the population standard deviation (c). Hence, K and ﬁ will
provide estimates for | and ©, respectively. Shapiro and Wilk use the result from [5] and
[6] in conjunction with the sample variance, to examine distributional assumptions for
data thought to have come from a normally distributed population and laterly for an

exponentially distributed population.
2.3. THE Wy TEST PROCEDURE
The general form of the W-test as proposed by Shapiro and Wilk is

W =

kY

A
where B is (up to a constant) the GLS estimate of B, when regressing the order statistics on

their standardized expected values, and s? is the corrected sums of squares (i.e.,

n
-2
Z(xi - X)) for the sample results.

i=]

In the case where the hypothesized distribution is from the uniform family, the

proposed test statistic becomes
n+1 2
w1 X))

|13 n

Z(xi - %)’

i=

19



Computationally the W, statistic is quite straight forward, however the exact

distribution of the W, statistic is difficult to determine.
2.4. TABULATION OF THE Wy; STATISTIC

For each of the sample sizes n=3(1)25, 30, 40, 50, 10,000 samples (of size

n) were generated using a uniform(0,1) random number generator, and the Wy, statistic
calculated. Using these results the cumulative relative frequency distribution of the Wy,

statistic has been sketched for several sample sizes ranging (some have been left out for

clarity) from 5 to 50 (Figure 2.4.1).

6.0 1.0 1.8 3.0 .0

J

Figure 24.1.Cdfs of W u Sfor various sample sizes*,

In addition, certain critical quantiles (as calculated from the simulations) have

been tabulated and included in Table 2.4.1. These quantiles provide approximate W

acceptance-rejection regions for the various sample sizes included in the simulations.
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Lower
Bound
6.0000
2.7778
1.8750
1.3067
1.0370
0.8265
0.7031
0.5975
0.5280
0.4656
0.4213
0.3804
0.3499
0.3211
0.2988
0.2776
0.2605
0.2443
0.2310
0.2181
0.2074
0.196%
0.1881
0.1524
0.1105
0.0867
0.0600

Table 2.4.1

Quantiles and Bounds for the Wy, distribution

UANTILES

W o1, Wos Wio Wy W gs W o9

6.0300  6.1500 63000 7.9700 7.9900  8.0000
3.0800 3.4400 3.7400 5.3100 5.4300 5.5300
23966  2.4256 2.5758 4.0199 4.1802  4.3884
1.7133  1.8801  2.0004 3.2287 3.4072  3.6698
1.3909  1.5456  1.6422  2.6763  2.8528 3.1341
1.1840 13168 1.4003 23176 2.4679  2.7716
1.0366  1.1525 12235 2.0403 2.1877 2.4592
0.9182  1.0161 1.0824 17929 1.9256 2.1799
0.8268  0.9177 09747 1.6046 1.7331  1.9909
0.7560  0.8386 0.8898 1.4530 1.5678  1.7882
0.6918  0.7656  0.8113  1.3186 1.4227 1.6358
0.6430  0.7101 0.7541 1.2164 13090 1.5181
0.6035 0.6639 0.7023  1.1157 12073  1.3901
0.5611  0.6184 0.6537 1.0345 1.1118  1.3062
0.5331 05803 0.6136 0.9663 1.0426  1.2047
0.5026  0.5498 0.5809 0.9054 0.9774 1.1244
0.4745  0.5223 0.5516 0.8534 09210 1.0461
0.4551  0.4978 0.5235 0.8036 0.8644  0.9849
0.4332 0.4733 04967 0.7603 0.8135 0.9250
0.4156 0.4510 0.4740 0.7206 0.7779  0.8917
03971 04313 0.4538 0.6809 0.7321  0.8362
0.3798 © 0.4169 0.4365 0.6524 0.6982  0.7998
0.3656  0.3979 0.4176 0.6238 0.6666  0.7632
03092 0.3348 03498  0.5091 05415 0.6121
0.2355 0.2535 0.2633 0.3689 0.3894  0.4359
0.1915  0.2048 0.2132 0.2878 0.3016 0.3310
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Upper
Bound
8.0000
5.5556
4.5000
3.9200
3.5556
3.3061
3.1250
2.9877
2.8800
2.7934
2.7222
2.6627
2.6122
2.5689
2.5313
2.4983
2.4691
2.4432
2.4200
2.3991
2.3802
2.3629
2.3472
2.2854
2.2104
2.1666
2.0000



2.5. THEORETICAL RESULTS OF THE Wy; STATISTIC

Theorem 2.5.1: The central value of W with the assumption that the variable under

investigation is from a uniform distribution will be

12(n+1)
n{n-1) *

Proof: Assume that x is a random variable with a standard uniform density function. Then
the order statistics should be spread uniformly across the interval (0,1). If this is the case
the squared deviations from the mean depend only on sample size. If n is odd the mean of
the order statistics will be the (n+1)/2th ordered observation. If n is even the mean of the
order statistic will be the mean of the n/2th and the (/2 +1)th ordered observations. In

either case the squared deviation from the mean for the jth order statistic will be

i- > for j=1,2,3, .., n

Hence Wy, will then be

(m+1)?

W, = ol ;-ntl
i (n_l)Zj:J 2 ]
A n-1

4(n+1)°
=| $0j-n-17
j=1

2

4n+1)
= 2 & - 2
X -24(n+1)1+2(n+1)
= A =1




4(n+ 1)2

=| 4n(n+1)(2n+1) 2 2
: - 2n(n+1)" + n(n+1)

12(n+1)

=1 n(n-1)

Theorem 2.5.2: The Wy statistic is location and scale invariant under the null hypothesis

that the sampled population has an uniform distribution.

Proof: Let x be a random variable with a standard uniform distribution, and let y=ax+b

where a, b are i) constants and ii) elements of the interval (-eo,00). Then the Wu(y) statistic

for the random variable y will be

Sy~ Yy @+1)’
| @, -9
i=1

2 2
(n+1) (ax[n] +b- axm - b)

| a-1)? Y (ax, + b - a% - b’
i=1

2 2
(IH-].) (X[n] - X[l])

A ROV YO
i=1

=W (x)

.23



Theorem 2.5.3: For samples of size two, the pdf of the Wy, statistic is degenerate.

(m+1)” (<11 - )
@1 Y-’
i=1

Proof: For n=2, by definition Wll =

2
X i1y

X ..+ X
2
(X{2]— _E.ZJT_IL].) + (x

_XI+X2)2
11 2

2
36(x,, - %)

)2 + (x[

2
Xy Xy 1" Xy

Theorem 2.5.4: For samples of size 3 the probability density function of the W, statistic is

—35—4‘@_ 6<W, <8,
W," J8-W,
f(Wy)
0 elsewhere.
Proof: From Bol'shev [7]
473 3 < % <2,
W W
Wy _ ['S_T 4~ [Tf
g(‘g‘) =
y elsewhere,
2 (X - %) (n+1)*w? w2
where w = x___ - x ands=z 1 . Then since W = '‘—"5—5- =2 — the
37 P U (1) s

theorem holds.
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Th

eorem 2.5.5: For samples of size 4 the probability density function of the W, statistic is

25nd2 . 2. . 25 Sqrar 50 5.-1 25 100
Pt—z——{l--farcsm {[1+2(3—M-2) B DTN 2SW,<2
u

oW " 9 u= 7

2512,y 2, 50 4vSirar 50 gyl 100 . 225

fwW )= 9w_2{1 arcsin {{2(——---3Wu 4) ]{3(———9Wu Dl 7 SW, < 54
u

__2VV§ 5, T "u 9

Proof: From Khakhubiya [8] the distribution of x=(52/w2) is

2 1 2
. o
18n 5 < X < 3
2 2 . J8(9x-2). 2 1
a(x) = 18n {1 - narcsm[—m-]} S < X< 7
\/ 1 811:2 {1- Earcsin[-‘-l—'k—zgi%]} 1 <X< 1
_ T 3/6x-1 ~ 4 3

r

2 2
Then since W =-(-(n—tll))-% and n=4, Wu = 22% , the theorem holds.
n-17s

.25.



Theorem 2.5.6: For all values of n, Wy, is bounded above by

2(n+1)?
(n-1)*

and below by

2
Mz- if nis even, or
n(n-1)

4n{n+1)

3 if n is odd.
(n-1)

Proof: Under the assumption that Wy, will be a minimum when half the data points reside

at one end point (e.g. a) of the distribution and the other half of the points at the opposite
end point (e.g. b) (if the sample size is odd then one end point will have one additional

point) with d={b-al, it follows

(n+1)2 (il2 _ 4(n+1)2

2 2
a’  n-1)
(n-1)22| 5]

2 2
)W, = d (n+1)

e[ -]

_4n(n+1)
(n-1)°

DW= where n is even, and

where n is odd.
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Assuming that W, will be a maximum when all but two of the data points reside at the

mean (e.g. (a+b)/n) of the data, while one point resides at one endpoint (a) of the data and

the second point at the opposite end point (b) with d=|b-a|, W, becomes

1)

o4

(n-1)°

W =

un

Theorem 2.5.7: For a non-specific alternative hypothesis the Wy, test will be two sided.

Proof: Assuming a fixed range, if the data follow a distribution with lighter tails than the

uniform distribution, then in general
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Thus if the data follow distributions with lighter tails than the uniform distribution, the

rejection region will be in the upper tail of the W, distribution.

Similarly for distributions with heavier tails

2
n+l
al 2 7’
CIR e . Vi
xx) 2 2] n+l {
2
2
n+1
al 2 !
-2
Z(x}.—x) 22X E ol :
2
s?> §?
n
W <WwW

and hence the rejection region will be in the lower tail of the W, distribution.

2.6. THE SENSITIVITY OF THE Wy TEST

The strength of any statistical test lies in its ability to provide correct inferences

based on sample results, In order to assess the ability of the W, statistic in

discriminating against sample results from non-uniform distributions, random samples

from various distributions were generated and analyzed using the Wy, statistic. Samples

from the normal, chi-square, exponential, and Weibull families of distributions were

generated and the Wy, statistic was used to test the hypothesis Hy: (Sample results arise



from a population with a uniform distribution). As a quality control measure, samples

from the uniform family of distributions were generated and subjected to the Wy test.

Table2.6.1

Percentage of Samples with W, outside acceptance bounds for various distributions

tion

Distribu

Exponential(6=1)

Normal(0,1)

Chi-Square(2)

Chi-Square(5)

Chi-Square(10)

Chi-Square(20)

Weibull(a=1,b=2)
Weibull(a=1,b=5)
Weibull(a=1,b=10)
Cauchy (standard)
Logistic (standard)

Uniform

10

12.2%
22.7%
12.2%
18.2%
21.4%
22.0%
18.6%
22.3%
22.6%
50.9%
30.5%
10.1%

Table2.6.2

Sample size
20
47.6%
57.5%
48.0%
51.7%
53.8%
56.5%
46.2%
56.5%
58.9%
97.2%
72.7%

9.8%

40
84.2%
93.8%
84.3%
88.3%
90.9%
92.2%
84.8%
91.8%
93.1%
100.0%
97.9%
10.1%

Comparison of Shapiro-Wilk W , statistic and the W, statistic for testing the hypothesis
Hy: X ~exponential(6=1) for various simulated distributions

Sample size
Normal{4,1)
Weibull(a=1,b=2)
Weibull(a=1,b=5)
Chi-Square(2)

10
65.11%
38.02%
72.76%
10.16%

We

20 40
96.14% 99.98%
76.80%  98.49%
98.13% 100.00%
10.02% 9.74%

10
12.17%
15.04%
21.38%
12.18%

Wu
20
62.76%
35.00%
56.39%
17.15%

40
94.29%
74.17%
92.00%
20.25%



Table2.6.3
Comparison of performance by Shapiro-Wilk W, and W,, for the hypothesis

Hg: X~Weibull(a=1,b=2) for various simulated distributions

We Wy
Sample size 10 20 40 10 20 40
Normal(4,1) 38.88% 76.99% 98.22% 0224% 8741% 99.87%
Exponential(6=1) 52.71% 82.08% 97.68% 3557% T7322% 96.26%

Chi-Square(2) 53.39% 82.02% 97.33% 46.34% 7748% 94.74%
Weibull(a=1,b=5) 50.30% 88.65% 99.79% 17.11% 43.62% 83.93%

Plotting the cumulative distribution curves of the simulated results (Figure
2.4.1) illustrates the relationship that exists between the test statistic and the sample
size. For small sample sizes the 100(1-0)% intervals are much wider than those similar
100(1-c}% for large sample sizes, this result affects the discriminating power of the
W, test for small samples. For example, in samples of size 20, the percentage of
identified samples from other distributions ranges from 46.2% (for the Weibull1, 2])
t0 97.2% (for the Cauchy distribution), while for samples of size 40, the percentages

range from 84.2% (for the exponential) to 100% (for the Cauchy) (Table 2.6.1).

From the comparisons between the Shapiro-Wilk test statistic for the exponential

distribution (W) and our proposed test statistic Wy, for testing the exponential (Table

2.6.2) and Weibull distributions (Table 2.6.3), it is evident that the W, statistic (at least

for small sample sizes) does not do as well as other results currently available. For this

reason W, should not be used for small sample size cases. However it does have the

advantage that it is easy to calculate. It (theoretically) can be used to test any continuous
distribution, and for larger sample sizes it performs almost as well as the more widely

known tests.
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There are many situations where the distribution function is completely specified

under Ho’ however there are equally many situations where the parameter vector is not

completely specified and/or the functional form of the distribution function is unknown. If
the distribution function is not completely specified the PIT can not be used to produce
uniform variates. A solution is presented for the case where the functional form of the
distribution function is assumed but where the parameter vector has at least one unknown

value.
2.7. THE GENERAL Wy; PROCEDURE

The W, statistic can be used to examine goodness-of-fit for any distribution

function, provided the parameter values and the functional form of the distribution function

are completely specified. The ability of the W, statistic to test every continuous

completely specified distribution function results directly from properties of the PIT . The

general form of the PIT is

Yi=FXj 0 ),

where under the hypothesis

Ho: X ~ f(x, 6 ),

the Yj's will be independent identically distributed (iid) U(0, 1) variates. Hence if the
functional form (i.e., f(,-)) and the values of the parameter vector (i.c., 9=(91,62,...,9m))
are known, a uniform probability plot of the transformed observations can be created and
the W), statistic calculated. In many cases the functional form of the distribution function is

more important than the actual value of the parameters. For example most commercially

produced probability paper assumes only the functional form of the observations, while
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actually providing estimates for unknown parameters. Normal, Weibull and uniform

probability paper are examples of such. In the normal and uniform cases, with pdfs

_u-m2

1 26°

f(x, 6) = = , -a<x<oo, G>0
- yonro?

1
and f(X, 9) = 6-

for (u - —g—) <x<(L+ %) respectively, estimates for the location (U) and scale (o)

parameters arise from the intercept and slope of the resultant probability plot. For the

Weibull distribution with cdf
X n
Fx;o,m)=1-exp ) - [‘(;] 0<x<ecando,n >0

estimates for the scale (0) and shape () parameters can be determined using the slope and
intercept of the probability plot. In all cases only the functional form of the distribution

function need be assumed.

The form of the W procedure is the same for all distribution functions. Under the

null hypothesis the PIT results in a set of U(0, 1) observations regardless of the original

distribution function. Hence the test procedure and critical values are those of the W,

procedure for all distribution functions. Thus the W, procedure has the advantage of being

unchanged regardless of the distribution function under investigation.

In many cases the null hypothesis does not completely specify the distribution
function. When this occurs the PIT can not be used as it requires all parameter values as

well as the functional form of the distribution function to be specified before if can be
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performed. However in those cases where the functional form of the distribution function
is known or assumed but where one or more of the parameter values are unspecified, a
transformation analogous to the PIT exists that results in iid U(0, 1) variates. This
transformation makes it possible to extend the Wy, procedure to the case where only the
functional form of the distribution function is specified.

The transformed variates obtained by substituting moment estimates for the missing

parameter value(s) and performing the PIT are notiid U(0, 1)'s [9]. As a result the W, test

for

HO: transformed observations are uniform

will not be a similar test for

HO: non-transformed values are F(x, g )

where g is the parameter vector with at least one unknown value.

OReilly and Quesenberry [10] discuss this problem and provide a solution derived

from a result first obtained by Rosenblatt [11]. Rosenblatt shows that if (X1s X9, v s Xp)

is a vector of m random variables with absolutely continuous multivariate cdf F, then the
Uj's, where
U; = F(xy)
Uy = F(x,]x;)
Uy = F(x3lxy, X9)

U = Flxplxys X9, o0y Xm-1)
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are a set of m iid U(O, 1)'s. O'Reilly and Quesenberry [10] use this result and a result

from [9] to establish that if T};, a p-component vector, is a complete and sufficient statistic

for the parameter vector of missing values Bp =(04, 6,, ..., BP), the Uj's

Uy = Falxplxy)

Upp = E, (Xn-plX1, X2, - » Xpp.1) Will be iid U(0,1).

15n (x1), I;n (xalxp), - s Fa(Xpoplxq, X2, e s Xn.p-1) are the marginal and conditional cdfs

of I;ﬂ(xl, X9, .., Xp), Where ign(xl’ X9, ..., Xp) is the cdf of (X1, X2, w5 Xp| Tp).

This general result provides the basis for extending the W, procedure to the case

where the distribution function is not completely specified. O'Reilly and Quesenberry refer
to the resultant transformation as the conditional probability integral transformation (CPIT).

By conditioning on the complete and sufficient statistic (T,) for the missing parameter

values, a subset of the original observations can be transformed il}to iid U(0, 1). Once the

transformation is complete a probability plot can be created and the W, statistic calculated

for the transformed variates. Both may be of aid in assessing the hypotheses

HO: Uij's ~U(0, 1)

versus

Ha: Uj's are not U(0, 1)

which is a similar test for the hypotheses



H;: X ~FX, 8)
VErsus
H:X~FX, 1)

where 8 27,

The CPIT can be mathematically intractable for many distribution functions.
Quesenberry [12] has examined the CPIT for some of the more common distribution

functions with the following results

1) Exponential Distribution

. 1 il
functional form f(x, 6) = B-exp g | xH

X1, X2, ... )X, denote the observed sample values

Y1> ¥2: -+ ¥n-1 denote the observed sample values with x(;; deleted

Case 1: 6 = (u, 9), p=py, 6=6y known (PIT)

Xi‘Ho
Uj=1-exp| - 8, fori=1,2,..,n

5

Case 2: 6 = (14, 0 ), 1 unknown, 6=0; known (CPIT)

Yi T X
Uj=1- exp| - 5 fori=1,2,..,n-1
(4]
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Case 3: 6 = (i, 0 ), u=py known, 6 unknown (CPIT)

- .
D -1
j=1

PYORR
]

i-1

Uij.1=1- for i=2,3,...,n

Cased: 6 =(1,0), 1,0 unknown (CPIT)

po— I i-l

i-1

Z(xj Xy

e for i=2,3,..,n-1
Z("j Ky
=1 -

2) Pareto Distribution

functional form f(x, 6) = -—‘Ti for x>8, 0,850
~ + O

X1, X2, ... , X denote the observed sample values

Y1, Y2, --- » ¥p.1 denote the observed sample values with Xp13 deleted

Case 1: 0 = (0, 8 ), a=0, 6=3; known (PIT)

B

&

Uj=1- x—o fori=1,2,..,n
i

Case 2: © = (0, &), o=0p known, 8 unknown (CPIT)

o

X
Ui=1—[ L fori=1,2,..,n1
i

-36-



Case 3: 6 = (a, §), o unknown, 6=8; known (CPIT)
) - -i-1

i-1

D (in(x) - In(3,))
j=1

fori=1,2,..,n

D (tn(x) - In(8,)
j=1

Case4: 6 =(0,8), o, d unknown'(CPIT)

— -—i-1

i-1

Ui =1- |5 fori=1,2,..,n1
Zln(y] 'X[l])
=1 -
3) Normal Distribution
. (x - wy?
functional form f(x, 6) = €xp - ol -co<x <eo, 0>0
- G

210

X1, X3, ... ,Xp denote the observed sample values
- X. 2 (X. = p'o) 2 (X. - x')
= l g= )y 3 = =y 3
RPN 2 2~
j=1 =1 j=1
@(z) denote the cdf of the N(0, 1) distribution

1,(z) denotes the cdf of the t distribution with v degrees of freedom

Case 1: 6 = (4, 0), U=}y, =0y known (PIT)

_—

U= ® r fori=1,2,..,n
o, |

% Ky
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Case 2: 8 = (i, ¢), U unknown, 6=0y known (CPIT)

Ji-1x -% )
Uj1=9 > fori=2,...,n
16,

Case 3: 6 = (i, 6), U=l known, ¢ unknown (CPIT)

X - Ky
Uj.i = A for i=2,3,...,n

i-1

Case 4: 8 = (U, ©), W, ¢ unknown (CPIT)

i-1 =
—_ (X. - X._ ) .
Ujg=t, i 1 RV for 23,4, ... ,n
2
i-1
4) Lognormal Distribution

1 [In(x) - u?
functional form f(x, 6) = —————=exp\ "~ 5, -co<x<es, 650
~ 22 20
21X G

X1, X2, .. ,Xp denote the observed sample values

¥i = In(x;)

- i y] 2 Zl(y] - “’0)2 2‘ Zl(y:} - ;i)z
yi=,2’;’si‘j_l*‘i—= P
j= =

=1

O(z) denotes the cdf of the N(0, 1) distribution

1,(z) denotes the cdf of the t distribution with v degrees of freedom
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Case 1: 6 = (u, ), =Yg 6=0, known (PIT)
3@ ¥lo
Ui:d){t—_} fori=1,2,...,n

Case 2: 6 = (U, 6 ), U unknown, 6=0 known (CPIT)

fori= 2,...,n

Ji' 1 (yl -.S;i-l)

Uj.1= @ \/-_2
1(50

Case 3: 6 = (i, 0 ), U=}y known, G unknown (CPIT)

yi-l'l’o
Uj.1= ti_l S for i=2,3,...,n

i-1

Case 4: 9 = (i, ©), |, o unknown (CPIT)

i-1 =
Uip=t, 5 Ui for i=3,4,..,n
2*
$i1
5) Weibull Distribution
. M 1 _ zéﬂ_]
functional form f(x, 6) = 5 X exp[ S

X1, X2, ... ,Xp, denote the observed sample values

Case 1: 6 = (0, M), 0=0p, N=")y known (PIT)
) o

X,
Ui=1-SXp{-G’ J fori=1,2,..,n
o
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Case 2: 6 = (06, M ), ©unknown, N=", known (CPIT)

Ujp=1-] 2 fori=2,3,..,n

For each of the above distribution functions the proposed transformations result in

iid U(O0, 1) variates, allowing a uniform probability plot and the W, statistic to be used to
assess goodness-of-fit. The CPIT transformations allow the Wy, statistic to perform exact
tests for those cases where some or all of the parameter values associated with the

distribution function are not specified.

Care must be exercised when performing the CPIT. For distribution functions
other than the general exponential and uniform, different permutations of the data may lead
to different values for the transformed variable. Quesenberry [12] discusses this topic and

warns against ordering the data (in any fashion) prior to performing the CPIT.
2.8. ASSESSING MULTIVARIATE NORMALITY

The univariate results for the PIT and CPIT can be extended to multivariate (MV)
distribution functions. However, as is the case with many multivariate procedures that are

adaptations of univariate r::sults, both the PIT and CPIT can be difficult to administer.

For any completely specified multivariate distribution the PIT will continue to result

in iid U(0, 1) variates. Hence the W, procedure in conjunction with a uniform probability

plot of the transformed results can be used to assess MV goodness-of-fit. Similar to the

univariate case, if the functional form and/or the parameter vector of the multivariate
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distribution function is unknown the PIT can not be made. Assuming the functional form
to be specified and substituting estimates for the missing parameter values into the PIT,
provides only asymptotically iid U(0, 1) variates. For large sample sizes and where (n-p)
(p being the number of missing parameter values) is large this technique is a reasonable

approximate test, however if an exact test is required this procedure can not be used.

OReilly and Quesenberry [10] and Rincon-Gallardo, Quesenberry and O'Reilly
[13] have extended the CPIT to the MVN case. The resultant transformations in
conjunction with the W\, procedure (or any test for uniformity) will result in an exact test
procedure for assessing MVN goodness-of-fit. However like other MV test procedures,
the CPIT can be difficult to administer. In addition, Rincon-Gallardo, Quesenberry and
O'Reilly [13] suggest that sample sizes of between 100 and 200 are required in order to
obtain good results, while again cautioning that different orderings of the observations will
produce different transformed values. Although the PIT and CPIT are theoretically

appealing, practical applications in the MV case are few.

There is a widely used graphical technique that is relatively easy to use while also
being intuitively appealing. The procedure however depends on the subjective
interpretation of a probability plot, while also belonging to the group of MVN procedures
that rely on asymptotic theory. The general procedure proposed by Healy [14] uses a
probability plot of the ordered Mahalanobis distances to assess MVN. However by using
the PIT associated with the chi-square distribution function and the W, procedure, a
method for statistically assessing multivariate normality is presented that, in conjunction
with the multivariate probability plot, is easy to use and eliminates the subjectivity involved
in assessing borderline probability plots. The W, procedure, in conjunction with the MVN
plot , provides quantitative interpretation of the aptness of the MVN distribution function.

Rather than subjective interpretation of the linearity of the MVN plot for those cases where
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the linearity is suspect, a procedure that provides analytical results is possible, resulting in a

general test for MVN,
Let Yl, Y2, e s Yn denote a sample of n independent v dimensional vectors

thought to come from a MVN distribution with dimension v. The hypothesis of interest is

H: Y ~MVNy
VEIsus
H :Y is not MVNy,.
a4 o~

That is, we want to determine the aptness of the MVNy, pdf in describing the underlying

distribution of the sampled vectors.

The first step in the procedure will be to determine the ordered Mahalanobis

distances [15] associated with each observed vector,

ju]

DiZ - ('Y:l _ &:r)! S'l (¥i - E’) i = 1, 2, .

hil
where ‘Z = n’l(&:l + 1’2 + ... + ‘gn) and S =Z Q’i-Y)(Y.-Y)'. Under the null
i=1

~] -~

hypothesis the Diz's will follow a xi distribution.

Healy's procedure plots the ordered Diz's versus the expected value of the ordered
Diz’s assuming a xﬁ distribution. The inference drawn regarding the MV normality of the
data will depend upon the linearity of the plot. A reasonably linear plot indicates that the
data do arise from a MVN distribution. A non-linear plot suggests that the MVN pdf is not

appropriate in describing the population from which the observations were drawn.



Rather than plotting the ordered Diz‘s versus the quantiles of the expected values of

the ordered statistics as determined from the xi distribution, the PIT performed on the

Diz’s will result in iid U(O, 1) variates under the null hypothesis. A uniform probability

plot of the transformed distances will then provide the same information as the xi

probability plot of the original distances. This result in turn permits an easy and general

procedure for assessing MVN for any dimensionality under investigation.

The transformed procedure plots HU(DiZ) where

t
Hv(t) = jfu(x) dx
0

L
2 i) X
1|1 2t
fU(X)= 2l X e D<x<oo
re)

versus the expected value of the order statistics now assumed to arise from a Uniform (0,1)
distribution. If the resultant plot is linear, the assumption that the Diz‘s arise from a xi

distribution is not unjustified, suggesting that the MVN distribution is not inappropriate for

representing the distributions of the sampled vectors. On the other hand if the plot is
definitely non-linear the xi distribution will not be representative of the Mahalanobis

distances and hence the underlying distribution of the sampled vectors will not be MVN.

For those borderline linear plots, the W, procedure can be used. Once the

probability integral transformation has been made on the Diz's,

U;=HyD) i=1,2,..,n

the resulting U;'s will follow a Uniform (0, 1) distribution under the null hypothesis.

Using the W, procedure for testing the hypothesis
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H,: U ~ Uniform (0, 1)
versus

Ha: U is not Uniform (0, 1)

results in the following test statistic

n-1

Y,
i=1

[ (Upy - Up)n+1) ]2
W =

u-

n
U.
i

1

where U = —m— .
n

Failing to reject H, suggests that the uniform distribution is adequate in describing

the transformed distances, which in turn suggests that the original distances do arise from a

xi and hence that the original sample vectors are in fact from the MVN family.

2.9. EXAMPLES

Three examples of the applicability of the Wy, statistic have been included. The first
example illustrates the use of the W, statistic when investigating results thought to arise

from a Weibull distribution. Example 2.9.2 illustrates the use of the W statistic for

investigating a set of dat4 thought to arise from a population possessing an exponential

distribution. Example 2.9.3 illustrates the W, procedure when used in conjunction with

Healy's multivariate normal plot.



Example 2.9.1: The data were taken from Example 2.2, page 46 of Sinha {16] and
were said to have been generated from a two parameter Weibull distribution with pdf of
the form

Xb

fx;,b)=2x>1€ * 0<x <o with a=d, b=2.

A probability plot (Figure 2.9.1) casts sufficient doubt as to whether the data arises
from a population with an underlying Weibull (a=4, b=2) distribution to warrant further

investigation.

The above Weibull distribution has a cdf of the form

2

X
Fx)=1-€ 4 O<x<oo.
from which the following were found

Rank X EFx)
1 0.3761 0347
2 0.5903 .0834
3 0.6288 .0950
4 0.6461 .0991
5 0.7500 1312
6 0.7705 1379
7 1.0509 2413
8 1.3162 3515
9 1.3545 3679
10 1.3592 3699
11 1.5319 4438
12 1.5700 4600
13 1.6173 4800
14 1.6560 4962
15 : 1.7172 5215
16 1.7708 5434
17 1.7961 5536
18 1.8487 5745
19 1.8802 5868
20 1.8889 5902
21 1.8889 5902
22 1.9310 .6063
23 3.0349 9018
24 3.3546 9027
25 3.9558 9865
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Figure 2.9.1 . Probability Plot for Example 2.9.1.
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Treating F(xj),1=1,2, ..., 25 asthe variable of interest (F(x;)=y;) results in

Yo Yy = 0.9865 - 0.0347 =0.9518

, B _2
(n-1)s"= Y ;-5 = 1.64367
i=1

2 2
w _ (9518)%26)

> = 0.64685 .
U 1.64367(24)

Then from Table 2.4.1, the approximate acceptance region for n=25, o=.1 is (.398,

.667). Therefore, since Wy, is an element of the acceptance region, one could conclude

that there is not enough evidence to suggest that the data do not arise from a Weibull

(a=4, b=2) distribution.

Example 2.9.2: Suppose that fifty-one observations (actually generated from a normal
distribution with l=4 and 6=1) were thought to arise from a population with an exponential

distribution function (U=0 and & unknown), i.e.,

f(x, 6) = Lext| - 5 | x>0.

Because G is unknown in this case, the CPIT

- ~i-1

Ujy=1-{32 for i=2,3,..,n

was used with the following results
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Xj
3.46699
4.56077
3.71026
2.67077
2.86051
4.61174
4.42081
3.19812
2.51814
4.86938
3.90443
2.68995
2.95665
4.34931
2.67675
2.16189
4.69168
3.06715
4.25339
4.62955
3.23884
3.03853
4.14997
4.10856
4.11375
4.27908
3.88213
3.61455
2.83205
3.80442
2.96548
2.16314
4.90936
2.63017
3.91565
4.76996
2.86131
4.77197
4.24827
3.45063
3.20351
3.24542
4.47897
4.22079
3.45160
3.06617
4.12335
4.09604
5.12119
4.24984
5.69706
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Uj
0.568125
0.532266
0.459368
0.515369
0.693780
0.668495
0.552129
0.480713
0.720328
0.634364
0.504636
0.545893
0.687720
0.512798
0.448214
0.726261
0.569661
0.689343
0.715746
0.583901
0.563303
0.677840
0.672159
0.670856
0.683295
0.646273
0.619952
0.533137
0.641958
0.551964
0.446488
0.739180
0.512873
0.658401
0.727849
0.541461
0.727208
0.683226
0.606513
0.580247
0.586113
0.703604
0.680548
0.606384
0.564154
0.672893
0.669577
0.747794
0.679241
0.780041
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Figure2.9.2 . Probability Plot for Example 2.9.2.
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A probability plot (Figure 2.9.2) of the resultant U;'s casts doubt as to whether the

data arise from a population with an exponential distribution function.

Using the W, procedure,
1 2 [s1 2
n+
{Tf (U[n] - UIIJ)} {-4—9— (0.780041 - 0.446488)} -
Wy = 50 = 0.370053 =0.3257 .
,- 0y

A linear interpolation from Table 2.4.1 suggests a p-value of 0.0344 for W, = 0.3257

indicating that the data are in fact not exponentially distributed. The value of the Shapiro-
Wilk test for the exponential distribution with known origin is W.=0.2849 (p-value <

0.01), which is in agreement with the W, procedure.
Example 2.9.3: Fifty pairs of observations (X = (x1, X9)) (generated independently from

two U(0,1) populations) are thought to arise from a population possessing a Bivariate

Normal distribution function, i.e.,

2 2
1 Gl _szl-p”l wie N (Xy-Hyp)

2
2 G

£(X, 9)=-—1—-—2-ex . -

2
~ 2mf1l-p 21-pH | 1 @

2

To examine this claim, Healy's procedure first calculates the sample Mahalanobis distances

for each set of observations. The distances are then plotted on chi-square (V=2) probability
paper and the linearity of the plot used to assess goodness-of-fit. By employing the PIT
associated with the X; distribution function an uniform probability plot of the transformed
values will provide the same information. The observed values (X = (xy, x5)), the
Mahalanobis distances (Dj's) and the results of the PIT (U;) for the fifty pairs of

observations are
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Xy
0.187892
0.158867
0.538657
0.365064
0.886303
0.635174
0.313890
0.665011
0.417821
0.992919
0.058372
0.312426
0.867790
0.612469
0.922171
0.099271
0.913334
0.618213
0.820695
0.575715
0.083141
0.361104
0.270909
0.268493
0.257458
0.918656
0.891344
0.180900
0.168098
0.594946
0.902094
0.292795
0.898434
0.420613
0.624813
0.060599
0.383403
0.652861
0.982719
0.917294
0.909504
0.275453
0.000593
0.772428
0.614798
0.498718
0.304777
0.512108
0.988910
0.259543

X2
0.602599
0.884684
0.390221
0.245086
0.093749
0.362487
0.543742
0.833904
0.313976
0.991079
0.050850
0.946027
0.945357
0.769258
0.935806
0.442906
0.411353
0.313847
0.414921
0.046831
0.346365
0.077603
0.165602
0.566029
0.095729
0.849223
0.826155
0.394667
0.215719
0.253341
0.495823
0.012846
0.973548
0.250528
0.234787
0.486606
0.847364
0.637293
0.564165
0.967925
0.026255
0.546082
0.966013
0.194717
0.910246
0.945279
0.383323
0.950836
0.610297
0.139205
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Dy
1.47748
3.53558
0.15089
0.73670
3.89823
0.43070
0.53013
0.99304
0.38766
3.44292
3.28287
2.82103
2.33278
0.61615
2.58568
1.85734
1.93769
0.56650
1.18847
2.23935
1.99596
1.73644
1.39253
0.81760
1.86134
2.09958
1.82044
1.20319
1.66996
0.78990
1.57761
2.38026
2.69182
0.63051
0.99133
2.28513
1.57159
0.24977
2.17665
2.76407
4.86434
0.73345
6.25673
2.04535
1.45351
1.90590
0.53425
2.27802
2.19323
1.58265

Uj
0.522286
0.829290
0.072672
0.308125
0.857600
0.193742
0.232845
0.391354
0.176203
0.821193
0.806298
0.755983
0.688511
0.265140
0.725510
0.604922
0.620480
0.246670
0.448015
0.673614
0.631377
0.580302
0.501557
0.335554
0.605710
0.649989
0.597563
0.452063
0.566116
0.326287
0.545614
0.695818
0.739697
0.270396
0.390833
0.681000
0.544242
0.117401
0.663220
0.748933
0.912154
0.307000
0.956211
0.640368
0.516525
0.614397
0.234424
0.679865
0.666000
0.546757
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Figure 2.9.3. Probability Plot for Example 2.9.3.
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An uniform probability plot (Figure 2.9.3) of the Uj's does not appear strongly linear.
The W, statistic in this case is

2
[-‘5-1—;- (0.956211 - 0.0726715)]

W = = 0.36265

v 2.33194

which for sample size 50 is not an element of the acceptance region ([0.1915, 0.3310])
resulting in a p-value < 0.02, suggesting that the observations do not arise from a

population possessing a bivariate normal distribution function.

2.10. COMMENTS

A limiting requirement of the Wy, test is that the cumulative distribution function

(F(x)) must possess the ability to be evaluated at all points observed in the data set. For
many distributions (e.g., exponential, logistic, extreme-value, Rayleigh, uniform,
Weibull) computations are quite straight forward and F(x[i]) is quite easily found,
while for some distributions the calculations can be quite difficult. However, many of
these distributions have been extensively studied and their cumulative distribution

functions are well documented (e.g., normal, Student's t, chi-square, gamma) which

again makes application of the W, test quite easy.

In theory every continuous distribution can be represented, and a test, designed
to determine whether a set of observations does in fact arise from a population possessing
the distribution of interest, can also be conducted. The values associated with
acceptance-rejection regions for these tests will depend on sample size as will the ability

of the test to discriminate against "odd" distributions.
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The performance of the W), statistic can be enhanced by expressing a specific
alternative hypothesis. However, when investigating distributional assumptions it is

generally unrealistic to be able to assume a specific alternative.

D'Agostino and Stephens [17] point out that the Shapiro-Wilk test statistic

(where they define W=(n-1)(Xn—X 1)ZSZ) (sic) is not consistent, which they go on to say

(page 224 of [17]) is the case for most tests based on ratios of two variance estimators.

In conjunction with the probability-integral transformation the W, test can be

used to investigate the nature of any completely specified continuous distribution, which

makes the distribution of the Wy statistic invariant with respect to hypothesized

distribution. Hence, the Wy, test may provide an alternative to the traditional chi-

square test procedure, alleviating the need to subjectively create class boundaries

necessary in the chi-square analysis.

The general Wy, procedure is presented as a tool that is used in conjunction with an

associated probability plot. Together the two procedures can provide good insights into the

behavior of the data. In those cases where the sample sizes are small (i.e., n<20) the

procedure is cautioned against. Both the W, procedure and the probability plot procedure

are not very powerful for small sample sizes.

The techniques used to extend the W, procedure allow other inferences to be drawn

from the probability plot as well. Outliers are more easily identified and alternative

distributions may be suggested in those cases where the probability plot and the W

procedure suggest that the assumed distribution function does not adequately describe the

observed data.

The multivariate normal procedure is only an approximate procedure. The PIT is

performed on the Mahalanobis distances which have been determined from sample results.



As a result the Di‘s may not be iid. The PIT is performed on these transformed variables

which Healy states are iid under the null hypothesis. Asymptotically the Di's will be iid.

Healy's procedure is suitable for any MVN distribution function requiring only that
X, probability paper be available. Chi-square probability paper is unique for each value of
v hence commercially produced paper is not always available. However by performing the
PIT associated with the Xi distribution function, uniform probability paper can be used to

examine goodness-of-fit. Uniform probability paper is easily created from ordinary

arithmetic graph paper and can be used to investigate all MVN distribution functions.

The PIT (for the completely specified distribution function) and the CPIT (for the
case where the functional form is known) permit the Wy, procedure to provide an exact test
for goodness-of-fit. Approximate tests that involve substituting sample based estimates
into the PIT for those missing parameter values are reasonably good for large samples.
Results indicate that as sample size increases the transformation produces variates that are
very nearly uniform. In addition as (n-p) (n being sample size, p being the number of

missing parameter values) increases the dependence becomes negligible.

To examine the "ability" of the random number generator used in the simulations, the

Wy, statistic was calculated for 10,000 samples of size 10, 20 and 40 from the uniform

distribution and the percentage of observations lying outside the W, bounds (c=0.1)

found in Table 2.4.1, calculated. The results were 10.1%, 9.8%, and 10.1% respectively.

As a second check on the generator 10,000 samples of size 3 were generated and

the Wy values associated with certain quantiles of cumulative relative frequency

calculated. The theoretical p-value (denoted p(distribution)) associated with the W, result

(determined from the simulations) has been determined using the theoretical results of
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Theorem 2.5.4. The numerical difference that exists between the simulated and theoretical

results is denoted by |p(s)-p(d)]. The results were as follows

Wy p(simulations) p(distribution)  |p(s)-p(d)|

1.73649 .01 .0103 .0003
1.75396 .05 .0509 .0009
1.77454 10 0996 .0004
1.99671 .90 9005 .0005
1.99913 .95 .9489 .0011

1.59996 .99 9890 .0010
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Chapter 3
Bayesian Analysis of Process Capability

3.1. INTRODUCTION

The goal of a process capability study is to determine whether the production
process is capable of reaching the required tolerance levels. If the actual process spread is
greater than the allowable process spread the process is generally deemed incapable of

reaching the required tolerances.

The process capability index, Cp, has been introduced as a tool to aid in the
assessment of process performance. It is defined as

USL - LSL
Cp =—rni—
6c
where the allowable process spread is defined to be the difference between the maximum
allowable upper limit (USL) and the minimum allowable lower limit (LSL) of the process,

and 60, the actual process spread, is a function of the variance (02) of the process.

A process will be judged capable if Cp is greater than some real valued constant c,
and incapable if Cp is less than ¢. In many process studies, c is taken to be one (see Figure

3.1.1).

Capable Process Incapable Process
g i
LSL usL LSL UsL
L |
actual process spread actuzla'f-[:mlead
1 } 1 ]
allowable process spread aliowable process spread

Figure 3.1.1 Examples of a capable and incapable Process.
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The general form of the Cp estimator is

8o  USL - LSL
66

A

where ¢ is an estimate of 6. The most frequently used estimator of Cp is

A USL-LSL

Cp N (3.1.1)

is the sample variance of n process measurements X;, X, ... , X,

There are many estimators for the population standard deviation, with the most
appropriate estimator for any particular application depending upon such things as the
distribution associated with the process measurements, the desired qualities of the
estimator, and the number of sampling units examined. Due to its extensive use in process
capability studies some of the statistical properties associated with the estimator in (3.1.1)

are examined.

N
Practitioners often overlook the fact that Cp will be stochastic. A bayesian

technique for analyzing the outcome of a process capability study is presented as an
alternative to the practise of judging a process capable based solely on the value of a point

estimator.

In most process capability studies, the process measurements are assumed to

come from a normal distribution with mean L and variance 2. If this assumption is correct

A
Cp can be used to examine some of the characteristics of the production process. However

when the assumption of normality can not be made, or is made incorrectly, the statistical

properties and procedures formulated under the assumption of normality may be invalid.
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The effect departures from normality have on the outcome of a process capability study are

also investigated.

3.2. PROPERTIES OF (A:p

Under the assumption that the process measurements come from a normal

distribution, the following have been found

Theorem 3.2.1: The pdf of ép is

1l o)
2 2 A
A 1 1 -1 2 A
f (Cp) - — — (CP [:1 }) e 2Cp 0<Cp<oo
r—) — -1 Cp"
( 5 ) 52
(n-1)s (0-1)Cp°
Proof: X ~ N(p,cz) = ~ x2 = ,\ X2
2 n-1 2 n-1
O Cp
LetCp = C «/ni here y ~ 2
p=Cp\ 5~ wherey ~ ) °..
-l cpin-l)
2 2 A
A 1 1 Cp“(n-1 2 A
Then g(CP) = 1 o1 [ P (:1 )] e 2Cp O<Cp<oo
r— S5 -! Cp
( 5 ) 52 P

Theorem 3.2.2: ép is a biased estimator of Cp.
Proof: By definition E(Cp) = J. Cp g(Cp)dCp
0

2
Jp D) e
2Cp2

letr
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M=) 0 To) F5)
n-2
A n-1 r("z—)
Hence E(Cp)-Cp=Cp|~/—75 —7 ~!
T(—)

A
Theorem 3.2.3: Cp is asymptotically unbiased for Cp.

n-2 n-2
I'(—=-) I'(—)
. A . n-1 2 . n-1 2
Proof: lim E(Cp)=1imCp /T — = Cplim - — =Cp
o oo n— oo I'(—) B o T(—-—z )
2

from [18] (page 257).

A
Theorem 3.2.4: Cp is mean square consistent,

Proof: Similar to the Proof of Theorem 3.2.2 one can show

- -2
| T PED

. (-1)Cp"f __ 2~ _
MSE(Cp) — | o1, n-1
T T

Then the lim MSE(Cp) becomes the difference between two limits we have shown to be one,

n— oo

ie, limMSECp)=0

n— o
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The relative bias of Cp (i.e., Bias/Cp) is quite small (less than 3%) for moderately

sized samples (i.e., n>30) which in conjunction with its MSE consistency, makes Cp
a reasonable estimator of Cp. Note that the above properties all depend upon the

assumption of normality and may be invalid when the normal assumption is not true.

Several authors ({19], [20]) point out that departures from normality may

have a serious effect on the ability of the sample variance (s2) to accurately depict the

population variance (6%). These results cast doubt on the ability of Cp to estimate Cp in

the presence of non-normal process distributions.
3.3. A TEST PROCEDURE AND ITS ROBUSTNESS

A
Because Cp is stochastic, the decision rule associated with judging a process
A A
capable using Cp will depend upon the distribution of Cp and the level of confidence that

will be associated with the resulting decision. The hypotheses of interest is of the form
Hy: The process is capable versus H,: The process is incapable
which can be rewritten in the following form
Hy:Cp=zc VErsus H,: Cp<c
where c is some real valued constant. Then by considering the conditional probability
A
Pr(Cp2b|Cp=c)

for some hypothesized value of ¢ and for p = 1- o, where o is the probability of making a

Type-I error, b will become the critical value associated with judging a process capable.

The decision rule associated with the hypothesis will be to reject Hy:Cp = ¢ and

A
conclude that the process is not capable at the ¢ level of significance if Cp < b and fail to
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reject Hy:Cp 2 ¢, and conclude that the process is capable at the o level of significance if

A
Cp2b.

Under the assumption that the process measurements follow a normal

distribution,

p=Pr(Cp>b|Cp=c)=[ y] Cp = cray

A 2 T2
=Pr(Cp2b | Cp=c) = Pr{(n-1)s" < (n-1)wl Cp=c)

(n- l)czo

= Pr((n-1)s% < | Cp=c)

where v=(n-1)s.2 will have the following pdf

ol
2 n-1 v
—_1 T3
h (V) [ ] 1“( ) 2 e 2¢

O<vcoo

(3.3.1)

For fixed values of &, ¢, n and p it is simply a matter of evaluating an incomplete gamma

function to determine the critical value b .

When the distribution of the process measurements is not normal, the distribution

A

of Cpwill change, which may cause the critical value b to change as well. If the critical

values change incorrect inferences may result. To avoid this, the robustness of the Cp

procedure was examined. One general method that can be used involves finding the

A
distribution of Cp for various distributions of the process measurements and then

determining the appropriate critical value b' where
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p=Pr(Cp2b'|Cp=c) ,

for these various distributions.

An alternate procedure derived from a technique first discussed iﬁ [21] for the t-
distribution can be considered. In order to examine the robustness of the t-distribution
with respect to departures from normality, Gayen found the joint distribution of nX and
(n-1)s? for the population distribution specified by the truncated Edgeworth series. Using
only those terms up to and including the fourth population cumulant, Gayen found an
approximation of the t-distribution that allowed him to emulate changes in the population

distribution by varying the numerical values of the third and fourth cumulants.

Consider a population with mean 0 and variance 1, integrating the joint distribution
of nx and (n—l)s2 for nx over the range (-eo, o), the marginal Edgeworth series for v=(n-

l)s2 is

(n-l)2 . v2 2v

g(-V)=h(MI1+4, 8n '(n+1)(n-1) -1 +1

, (@-1)(n-2) v 3v2 3v

T 1n e ed) - Do T a1~

where h(v) is equivalent to (3.3.1) with 02=I, A4 is the third cumulant and A4 the fourth

cumulant.

Using the relationship

p=Pr( Cp2b [Cp=C)=Pr((n-1)52S(n-1)% ICp=c)
6b
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the effect non-normality has on the conditional probability statement for values of
n=5(5)100, 200, 300 and ¢/b = 1, 1.5, 2 has been examined. Tables 3.3.1, 3.3.2 and
3.3.3 include the value of p associated with the normal theory result, the maximum and

minimum values of p associated with varying Az (0.0 (0.1) 0.4) and A, (0.0 (0.5) 4.0)

(chosen to ensure g(-,v) is a proper pdf (see [22])), the maximum change in p due to

2

()5 (o-1)=

6b b

='[ g(., v)dv = j g(., v)dv
0 0

variations in A3 only, and the maximum change in p due to variations in A, only.

Table33.1
The values of p with ¢/b=1.0 for various sample sizes.
maxAp
varying
n_ Normal p min. p max. p Az only
5 5940 5940 7384 .0000
10 5627 5627 7018 0031
15 5503 5503 6762 .0042
20 5432 5432 .6580 0045
25 5384 5384 .6444 .0046
30 5349 5349 6337 .0046
35 5323 5323 6251 0045
40 5301 ~ 5301 6180 .0044
45 5284 5284 6119 .0043
50 5269 .5269 .6067 .0042
100 5189 5189 5772 .0033
200 5133 5133 5552 .0025
300 5109

5109 5453 .0021

maxAp

varying

Asonly
1444
1359
1217
1103
1013
.0920
0883
.0834
.0792
0756
0549
.03%4
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100
200
300

Table332

The values of p with c/b=15 for various sample sizes.

Normal p
.9389

9836
9953
9986
9996
.9999
.99996
99699
1.0000
1.0000
1.0000
1.0000
1.0000

2

min. p
.8489

.8953
9502
9793
9919
.9969
9989
.9996
9999
.9999
1.0000
1.0000
1.0000
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maxAp

varying
max. p Az only
9417 .0028
9836 0011
.9953 .0014
9986 .0008
9996 .0004
.9999 .0002
1.0000 .0001
1.0000 .0000
1.0000 .0000
1.0000 .0000
1.0000 .0000
1.0000 .0000
1.0000 .0000

maxAp
varying

A4 only
.0900

.0872
.0436
.0185
.0073
0028
.0010
.0004
.0001
.0000
.0000
.0000
.0000



100
200
300

Table333

The values of p with c/b=2.0 for various sample sizes.

maxAp

varying
Normal p min. p max. p Az only
9970 9675 9970 .0009
.9999 9987 1.0000 .0001
1.0000 1.0000 1.0000 0000
1.0000 1.0000 1.0000 .0000
1.0000 1.0000 1.0000 .0000
1.0000 1.0000 1.0000 .0000
1.0000 1.0000 1.0000 .0000
1.0000 1.0000 1.0000 .0000
1.0000 1.0000 1.0000 .0000
1.0000 1.0000 1.0000 .0000
1.0000 1.0000 1.0000 .0000
1.0000 1.0000 1.0000 .0000

1.0000 1.0000 1.0000 .0000
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maxAp
varying

A only

.0286
0012
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000



The results suggest that the value of p, particularly for smaller sample sizes, is
sufficiently unstable to jeopardize inferences that may be drawn from a study. For example
from Table 3.3.1 the value of p for a sample of size 10 ranges from 0.5627 to 0.7018 for
various combinations of A3 and A, with the normal theory value being 0.5627. The range
of values that p can take on is quite substantial even for large sample sizes, as witnessed by
the fact that for samples of size 100 the value of p ranges from 0.5189 to 0.5772 with the
normal theory value being 0.5189. These results suggest that ép is non-robust with

respect to departures from normality.

A further example of the non-robustness of ép to departures from normality is
illustrated by the results summarized in Table 3.3.4. In this case the value of c¢/b
that would ensure p=.95 for the normal distribution was fixed, and the
probabilities associated with the various values of Ay (0.0 (0.1) 0.4) and A4 (0.0(1.0)4.0)
calculated. This allows examination of the robustness of ép in the tail areas of the
distribution. For example it was found for a sample of size 40 that the minimum value of P
that arose for the various combinations of A3 and A, was 0.7844, while the normal
distribution value of p is 0.95. This represents a difference of 0.1656. Similar to the
results observed above, the skewness of the distribution appears to have little effect on the
value of p, while the kurtosis appears to affect the value of p significantly. Again using
sample size 40 as an example, 0.1647 of the overall difference of 0.1656 in the normal
distribution value and the minimum value of p is attributable to the kurtosis of the

distribution, while only 0.6010 is attributable to the skewness.
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Table334.

Ranges of p by varying values of A; and ) where p=0.95 in the normal distribution,

maxAp maxAp

varying varying
n b min. p Asonly Aqonly
5 1.5401 .8589 .0023 0911
10 13711 .8186 .0011 1314
15 1.3001 ' .8037 .0007 .1463
20 1.2596 7960 .0002 1538
25 1.2318 7912 .0005 1583
30 1.2114 7881 .0007 1743
35 1.1956 7860 .0008 1632
40 1.1829 7844 .0009 .1647
45 1.1724 .7833 .0009 1658
50 1.1636 7823 .0010 1667
55 1.1559 7816 .0010 1674
60 1.1493 7811 .0010 1679
65 1.1434 .7805 .0010 1684
70 1.1382 7802 .0010 .1688
75 1.1335 7800 .0010 1691
80 1.1293 7796 .0010 .1694
85 1.12%4 1794 .0010 .1696
90 1.1219 7792 .0010 1698
95 1.1187 7789 .0010 1700

100 1.1157 71788 .0010 1702
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To further illustrate the effect that the standardized fourth moment has on the
distribution of ép , the pdfs associated with six values of A4 (-0.5, 0.0, 1.0, 2.0, 3.0 and
4.0) have been sketched, first for the distribution of the process measurements (Figure
3.3.1) and then for the distribution of ép for the samples sizes 10, 30 and 50 (Figures
3.3.2, 3.3.3 and 3.3.4). Several interesting results are apparent from these sketches.
Relatively small changes in the shape of the pdf associated with the process
measurements result in substantial changes in the shape of the pdf associated with ép.
Although the peakedness of the six distributions associated with the process measurements
is markedly different, for moderately sized samples one would have difficulty in
discerning between these distributions. The same is not true for the pdfs associated with
ép. In each of the Figures 3.3.2, 3.3.3 and 3.3.4 the shape of the pdfs range from a

slightly skewed unimodal curve to a skewed bimodal curve.

A
The bimodal nature of the pdfs associated with Cp is also of interest, as the central
tendencies of those pdfs with A4=-0.5, 0.0 and 1.0 are reversed from those pdfs with
A4=2.0, 3.0 and 4.0. The pdfs of ép associated with A4=2.0, 3.0 and 4.0 indicate that

A
one should expect clustering of sample results away from Cp =1, while for those pdfs

associated with 24 =-0.5, 0.0 and 1.0 one would expect clustering of sample
results in the vicinity of Cp =1. Thus for those cases where A4 = 2.0, 3.0 and 4.0

estimated values of Cp in the neighborhood of one will be "relatively rare".
3.4. CORRECTION FACTORS FOR THE OC CURVE

Correction factors for the Cp procedure that take into account the degree with which

the distribution of the process measurements departs from the assumed normal distribution
A
can be determined. These correction factors allow one to use the Cpprocedure for

analyzing a capability study when the process measurements are identifiably non-normal.
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Formulating the correction factors involved finding the value of ¢/b that would ensure
p=0.95 for various values of n, where the process measurements were assumed to come
from a family of populations with non-zero values of the fourth cumulant. The effect of
the third cumulant on the value of p was ignored as over the range considered the skewness

of the distribution had little effect on the value of p. The corrected values for ¢/b of the
conditional probabilities were found for A, = (-0.5, 1, 2, 3 and 4) and included in Table

3.4.1.
Table3.41
Corrected values of c/b for five values of A4 and the normal distribution (},,=0), p=0.95.
Ag

n -0.5 0 1.0 2.0 3.0 4.0
5 1.500 1.540 1.643 1.749 1.832 1.895
10 1.333 1.371 1.458 1.530 1.580 1.617
15 1.267 1.300 1.374 1.430 1.469 1.496
20 1.229 1.260 1.323 1.370 1.402 1.426
25 1.204 1.232 1.289 1.330 1.358 1.378
30 1.185 1.211 1.263 1.300 1.325 1.343
35 1.171 1.196 1.243 1.277 1.300 1.317
40 1.160 1.183 1.227 1.258 1.280 1.295
45 1.151 1.172 1.214 1.243 1.263 1.277
50 1.142 1.163 1.203 1.230 1.249 1.262
55 1.136 1.156 1.194 1.220 1.237 1.250
60 1.130 1.149 1.185 1.210 1.226 1.239
65 1.125 1.143 1.178 1.201 1.217 1.229
70 1.121 1.138 1.171 1.193 1.209 1.220
75 1.116 / 1.134 1.165 1.187 1.201 1.213
80 1.113 1.129 1.160 1.181 1.195 1.206
85 1.109 1.125 1.155 1.175 1.189 1.199
90 1.105 1.122 1.151 1,170 1.183 1.192
95 1.103 1.119 1.147 1.165 1.178 1.188

100 1.101 1.116 1.143 1.161 1.174 1.183

-74-



Corrections were also made to the analytical procedure Kane presented in [23], [24]
that uses the Operating Characteristic (OC) curve approach to judge the capability of a
process. In the OC curve approach the hypothesis of interest remains the same as the
hypothesis discussed earlier. However rather than conditioning on a single value of Cp,

the OC curve approach uses two values of Cp, Cp(A) and Cp(R) such that
p=Pr(Cp=b|Cp=Cp(A)) = 1-0x
and p=Pr(Cp2b|Cp=Cp®) = p

where o is the probability of a Type-Ieror, B is the probability of a Type-II error
and Cp(A) > Cp(R). The acceptable quality level (AQL) is often used for Cp(A) and the
rejectable quality level (RQL) for Cp(R) but this is not absolutely necessary as any

reasonable values may be used.

Fixing the values of o, B and one of either Cp(A) or Cp(R) allows the critical value
b to be determined. However, rather than fixing an explicit value for either Cp(A) or

Cp(R) the results can be summarized using the ratios

b _ n-1
and SR\ 42 (1-p)

where xi_idenotes the chi-squared distribution with n-1 degrees of freedom. The value of
these ratios have been corrected (for Ay = 0.5, 1, 2, 3 and 4 with 0=B=.05) and included

in Table 3.4.2.
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5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100

A
Correction Ratios for Kane's OC curve approach for C p.

Table34.2

A

-0.5 1.0 2.0 3.0 4.0
339 442 421 390 478 .366 528 347 5.71
210 634 257 568  2.83 .541 3.04 520 3.0
178 711 213 646 231 .620 244 601 255
1.63 754 191 .693 205 .668 215 651 224
154 783 178 725 190 .701 1.98 685  2.05
148 803 169 .748 179 .726 1.87 710 1.92
1.43 .819 1.63 .766 1.71 .745 1.78 .731 1.83
1.39 .832 1.57 .781 1.65 .761 1.71  .747 1.76
1.37 .842 1.53 .794 1.61 774 1.66 .761 1.70
134 850 150 .804 157 .785 1.62 773 1.65
1.32 .858 1.47 813 1.53 .795 1.58 .783 1.62
1.31 .864 1.44 821 1.51 .803 1.55 .791 1.58
129 870 142 .828 148 .811 152 799 155
1.28 .875 1.40 .834 1.46 .818 1.50 .806 1.53
127 879 139 839 144 .824 148 813 151
1.26 .883 1.37 .844 1.42 829 1.46 .818 1.49
1.25 .887 1.36 .849 1.41 .834 1.44 824 1.47
124 890 135 853 139 .839 143 828 145
1.24 .893 1.34 .857 1.38 .843 1.41 .833 1.44
123 896 133 .861 137 .847 140 837  1.43
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3.5. EXAMPLES

Example 3.5.1: The data were taken from question 5.1 page 113 of [25], where it was
stated that a sample of size 54 was taken from a process. Assuming that the upper and
lower allowable limits of the process are 87 and 115, a capability analysis was conducted.

The following sample values were found:

14V E1F001115 o) R 90
MAXIMUM —-emmmmmmmmem 115
5 (11 | —— 101

standard deviation ----- 5.40
kurtosis ---------vum-- 0.9577

A normal probability plot was constructed (Figure 3.5.1) which along with an
estimated kurtosis of 1, suggested that the critical value b should be adjusted to reflect the

apparent departure of the process measurements from normality. For illustration purposes

the moment estimator of A, is used to adjust for non-normality.

The estimated value of Cp was found to be

o [115-87)

5G40 - 0.8641

)

Under the assumption that the data comes from a population with a normal distribution, for

the hypotheses

Hy:Cp21 VEIsus H;:Cp<1
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Figure 35.1. Probability Plot for Example 3.5.1,
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with n=54 and o = .05, the critical value b is 0.8643. Then since the estimated value of Cp
is less than the critical value, the process would be judged incapable of meeting the
imposed limits. However, adjusting the critical value to reflect the fact that the data appear
to arise from a moderately non-normal distribution, the critical value for Ay=1,00=0.05
and n=54 is 0.8368. On the basis of this result the process would be judged capable at the

.05 level of significance.

Example 3.5.2: A second example arising from a generated dataset of 30 observations
illustrates the same concept. Assuming that the following observations come from a

process where the upper and lower specification limits are 2.80 and -2.80 respectively

-2.8227 -0.4670 0.5606 -0.3823 0.1166 0.5807
0.7059 0.9571 0.2129 -0.3924 -2.7676 -1.1087
0.1631 2.0094 -2.4940 0.0809 0.5543 0.9775
0.1323 -0.3611 0.2311 -0.2496 0.3560 -0.2607

-0.5868 0.3911 -0.0115 2.5092 -0.1194 -0.0349

the following estimates were found

TINHNUM ~-=-emmemmm e e -2.8227
MAXIMUIM ==-=n==n=mmmmmmmm 2.5092
TNEAN -=ommmmmommmmmmeeeae -0.0507
s standard deviation ------- 1.1484
kurtosis ------===--nuev- 1.8953

A [2.80 - (-2.80)]

Then Cp = S 148a) - 0.813, assuming that the measurements arise from a Normal

distribution, the critical value (from Table 3.3.1) for the hypothesis

=79



Hy:Cp21 VErsus H,:Cp<l1

is 0.826, Hy is rejected at the 0.05 level of significance. However adjusting for an
estimated kurtosis of approximately 2 the critical value for the above hypotheses (from

Table 3.4.1) will be 0.769 suggesting that the process is capable.

A probability plot (Figure 3.5.2) of the data suggests that the observations in the tail
regions of the plot do not behave as though arising from a normal distribution . Hence the
probability plot was again useful in indicating that the measurements were substantially

non-normal, suggesting that the critical value for the hypothesis should be modified.
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Figure 35.2. Probability Plot for Example 3.5.2.

-B1-

T TTTTT



3.6. ASSESSING PROCESS CAPABILITY: A BAYESIAN APPROACH

A second important concept, often overlooked by quality control practitioners, is

that, regardless of form, Cpwill be stochastic. Consider a process that will be deemed

capable if Cp21 and incapable if Cp<1, but where the actual value of Cp is unknown. The

current practice is to estimate Cp from the sampling results using an appropriate estimator

and to judge the process capable if Cp21 or incapable if Cp<l1. The use of point

estimators as the sole criteria for judging a process capable can be misleading.

A

Kane [23] presents a pair of techniques that consider the stochastic nature of Cp,

while Wies and Burr [26] have developed a sequential technique based on the sample range
that provides confidence levels for the estimated process capability. Both techniques
circumvent the problem of having to know the explicit value of Cp, while neither

completely eliminates the need to know, or at least condition on, the actual value of Cp.

An alternative to the approaches presented in [23] and [26] has been derived using
Bayesian statistical techniques. The general Bayesian approach assumes that the parameter
of interest (in this case a function of the process standard deviation, ©) is stochastic with an
associated statistical distribution. The sampling results are used to adjust the assumed
(prior) distribution to reflect the behaviour of the data. The end result is a posterior
distribution for the parameter of interest, which is based on an assumed prior distribution

and the likelihood function associated with the observed measurements.

In choosing a prior distribution that reflects a general "lack” of knowledge or
information (i.e., a non-informative or diffuse prior), the posterior distribution is said to be
data dominated [27]. This result reduces the subjectivity inherent in the general Bayesian

approach (i.e., the choice of prior) from that encountered and criticized when an
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informative prior distribution is used. Some informative priors require fairly large sample
sizes before the posterior distribution becomes data dominated. For this reason
conservatively choosing a non-informative prior distribution for the general Bayesian
approach to analyzing Cp, will be the approach taken here. In those cases where good
prior information exists an appropriate informative prior should enhance the inference

drawn.

Under the assumption that the process measurements follow a normal distribution

(.e., x~N(u,02 ), the likelihood function for the sample X ={xXy, Xy, X3, .. , X} will

be
L(,0%)=—— > k)
,0 )=———s—5 exp - ,
" [Zawz]n’2 P &1 26°
assuming a non-informative prior for 1L and ¢ of the form
2, 1
h(L,6%) = —, ~oogfl<oo, (<G<oo
o
the marginal posterior distribution of & is
1
5 2 ) (n-1)s
(01X )= 2 [(n-lz)s ] 1. 2 . (3.6.1)
E‘_l_] I
2

Now consider the following statement

Pr(process is capable | sample) = Pr(Cp >c¢ | X))

—Pr( USL-LSL sclX)
6o ~
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USL-LSL
=Pr(c < G ]?S ).

Therefore evaluating Pr(process is capable | X ) is equivalent to determining a one-sided

credible interval for 6. That is

USL-LSL o1
2

6c . ) (ﬂ-1}32
Pr(process is capable | X ) = j 2 (n-1)s -] 1. 2" 4o
) 0 F[E‘I‘J N
2

USLLSL

6¢c a
=b _[ 6" e Pdg (3.6.2)

0

2 2
where a and b are constants such that a =(—n-})i and b = 2 [(n-l)s ](n'l)’2
2 r[ﬂ] 2
2

. In order

to evaluate the Pr(process is capable | sample) the sample size, n, the sample variance, 52,
the specification limits, USL and LSL, and the critical value, ¢, must be known. If this is

the case then the Pr{process is capable | sample) can be determined simply by evaluating the

incomplete gamma function. The minimum values of Cp that will ensure probabilities of

0.90, 0.95, and 0.99 for ¢ = 1, 4/3, 5/3 and n = 5(1)20, 25(5)50, 60(10)100 have been
determined and included in Tables 3.6.1, 3.6.2 and 3.6.3.

Equation (3.6.2)'in conjunction with the Wilson-Hilferty [28] transformation
provides an approximatio‘n that is easy to evaluate and good for most values of n. The
resulting algorithm requires evaluation of a standard normal function rather than an
incomplete gamma function. Using the posterior distribution of ¢ (i.e., equation (3.6.1))

and letting y=(n-1)32/02, results in
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m1
2

. n-1 1 y
1 3l g .
21X =H v e O<y<

which is the pdf of a xn21 random variable. The Wilson-Hilferty [28] transformation states

that in the case of a normal distribution (82/62)(“3) follows an approximate normal

distribution (i.e., N(1- -9-(523)-, -9(112_—1)))' Hence

2 22
Pr(Cp>cl X )=Pr( %5 >36 - )
- o T2

(2> ()

1-0{ (ECI;) o - Wz_n-) }

9(n-1)
where @ denotes the cdf of the standard normal distribution,

With the knowledge of the sample results, an approximate probability statement
regarding the capability of a process can be determined. In addition, by fixing the
probability of judging a process capable given the sample (e.g., p=0.95) it is easy to
determine the approximate ép (i.e., ép) that will be required to attain this probability.

For example suppose that one wishes to ensure that the Pr(Cp > 1| X )=0.95 for a process

under study, then using the Bayesian approach, Pr(Cp=1| X ) = 0.95
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~

-213 9n-11

=1-0{ 2021 _ .95
on-9
Cp 23 _ 9n-11
= of 221 0.05
on-9

= Cp =(\[%_—§ [@7¢0.05)] + 9—31;_191 32

The value ép required to ensure that Pr{(Cp = 1| X ) = 0.95 can then be determined.

Values of (~3p associated with n = 5(1)20, 25(5)50, 60(10)100, p = 0.90, 0.95,

0.99 and for ¢ = 1, 4/3, 5/3 have been included in Tables 3.6.1, 3.6.2 and 3.6.3.
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100

p=0.99
Cp
3.6692
3.0034
2.6230
2.3769
2.2043
2.0762
1.9771
1.8980
1.8333
1.7792
1.7332
1.6936
1.6592
1.6288
1.6019
1.5778
1.4868
1.4262
1.3825
1.3492
1.3227
1.3012
1.2680
1.2433
1.2241
1.2086
1.1958

Cp

4.0242
3.1603
2.7093
2.4310
2.2413
2.1032
1.9977
1.9143
1.8465
1.7902
1.7425
1.7017
1.6662
1.6350
1.6074
1.5827
1.4900
1.4286
1.3843
1.3506
1.3240
1.3023
1.2688
1.2440
1.2247
1.2092
1.1963

Table 3.6.1
A ~
Minimum Values of Cp and C p required to ensure PH Cp21/)£ )>=p.

p=0.95

Cp
2.3724
2.0893

1.9154
1.7972

-1.7110

1.6452
1.5931
1.5506
1.5153
1.4854
1.4597
1.4373
1.4176
1.4001
1.3845
1.3704
1.3165
1.2797
1.2528
1.2320
1.2154
1.2017
1.1805
1.1645
1.1521
1.1420
1.1336
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Cp

2.4074
2.1054
1.9243
1.8026
1.7146
1.6477
1.5949
1.5520
1.5164
1.4863
1.4604
1.4379
1.4181
1.4006
1.3849
1.3707
1.3166
1.2798
1.2528
1.2320
1.2154
1.2018
1.1805
1.1646
1.1521
1.1420
1.1336

p=0.90

Cp

1.9393
1.7621
1.6499
1.5719
1.5141
1.4694
1.4337
1.4043
1.3797
1.3588
1.3406
1.3248
1.3108
1.2983
1.2871
1.2770
1.2380
1.2112
1.1914
1.1761
1.1638
1.1536
1.1378
1.1258
1.1165
1.1088
1.1025

~

Cp

1.9406
1.7611
1.6484
1.5703
1.5126
1.4681
1.4324
1.4032
1.3786
1.3578
1.3397
1.3239
1.3100
1.2976
1.2864
1.2763
1.2375
1.2108
1.1910
1.1758
1.1635
1.1534
1.1375
1.1256
1.1163
1.1087
1.1023
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p=0.99
Cp

4.8923
4.0045
3.4973
3.1692
2.9390
2.7682
2.6362
2.5307
2.4443
2.3722
2.3109
2.2582
2.2122
2.1718
2.1358
2.1037
1.9824
1.9017
1.8433
1.7989
1.7637
1.7349
1.6906
1.6577
1.6321
1.6115
1.5944

~

Cp

5.3656
4.2138
3.6124
3.2413
2.9884
2.8042
2.6636
2.5524
2.4620
2.3869
2.3234
2.2689
2.2216
1.1800
2.1432
2.1103
1.9867
1.9048
1.8457
1.8008
1.7653
1.7364
1.6917
1.6586
1.6329
1.6122
1.5951

Table 3.62
A ~
Minimum Values of Cp and C p required to ensure Pr( Cp24/3/X )=p.

Cp

3.2100
2.8072
2.5657
2.4034
2.2861
2.1970
2.1266
2.0694
2.0219
1.9817
1.9472
1.9172
1.8908
1.8674
1.8465
1.8276
1.7555
1.7064
1.6705
1.6427
1.6206
1.6023
1.5740
1.5528
1.5361
1.5226
1.5114

p=0.90
Cp
2.5857
2.3495
2.2000
2.0958
2.0188
1.9592
1.9116
1.8724
1.8396
1.8117
1.7875
1.7664
1.7477
1.7311
1.7162
1.7027
1.6507
1.6150
1.5886
1.5681
1.5517
1.5382
1.5170
1.5011
1.4886
1.4784
1.4700

~

Cp

2.5875
2.3482
2.1979
2.0937
2.0168
1.9574
1.9099
1.8709
1.8382
1.8103
1.7863
1.7652
1.7467
1.7301
1.7152
1.7018
1.6500
1.6144
1.5881
1.5677
1.5513
1.5378
1.5167
1.5008
1.4884
1.4782
1.4698
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Table 3

63

Minimum Values of é pand Cp required to ensure Pr( Cp2513/X )=p.

p=0.99

Cp

6.1153
5.0057
4.3716
3.9615
3.6738
3.4603
3.2952
3.1634
3.0554
2.9653
2.8887
2.8227
2.7653
2.7147
2.6698
2.6296
2.4781
2.3771
2.3041
2.2486
2.2046
2.1687
2.1133
2.0721
2.0401
2.0144
1.9931

Cp

6.7070
5.2672
45155
4.0517
3.7355
3.5053
3.3295
3.1905
3.0775
2.9836
2.9042
2.8361
2.7770
2.7250
2.6790
2.6378
2.4834
2.3809
2.3072
22510
2.2066
2.1705
2.1147
2.0733
2.0411
2.0153
1.9939

p=0.95

Cp

3.9539
3.4821
3.1924
2.9953
2.8517
2.7420
2.6551
2.5844
2.5255
2.4757
2.4328
2.3955
2.3627
2.3336
2.3075
2.2840
2.1941
2.1328
2.0879
2.0533
2.0256
2.0029
1.9675
1.9409
1.9201
1.9033
1.8893

Cp

4.0124
3.5090
3.2071
3.0043
2.8577
2.7462
2.6582
2.5867
2.5274
2.4771
2.4340
2.3965
2.3635
2.3343
2.3081
2.2845
2.1944
2.1330
2.0881
2.0534
2.0257
2.0029
1.9675
1.9409
1.9201
1.9033
1.8893

p=0.90

Gy

3.2321
2.9368
2.7498
2.6198
2.5235
2.4491
2.3895
2.3405
2.2995
2.2646
2.2344
2.2080
2.1847
2.1639
2.1452
2.1284
2.0634
2.0187
1.9857
1.9602
1.9396
1.9227
1.8963
1.8764
1.8607
1.8481
1.8375

~

Cp

3.2344
2.9352
2.7473
2.6172
2.5211
2.4468
2.3873
2.3386
2.2977
2.2629
2.2328
2.2065
2.1833
2.1626
2.1440
2.1272
2.0625
2.0180
1.9851
1.9596
1.9391
1.9223
1.8959
1.8760
1.8604
1.8478
1.8372



3.7. COMPARISON BETWEEN THE BAYESIAN AND OC CURVE APPROACH

The Bayesian approach to analyzing process capabilities is philosophically different
from that of the OC curve approach to analyzing process capabilities. However both
techniques promote the use of a probabilistic statement or region in addition to a simple

point estimator,

In the case where a non-informative prior is chosen for o, the resultant posterior
distribution is proportional to the likelihood function. Hence a credible interval for Cp is
similar to a confidence interval for ép ag derived from the OC curve approach. Boundary
values associated (0=0.05) with sample sizes 10(10)100 have been determined for both
procedures and are identical hence inferences regarding the capability of a process will be
similar regardless of the approach taken. However the Bayesian approach with or without
the Wilson-Hilferty transformation is more flexible and easier to administer than the OC
curve approach. It should be pointed out that the Bayesian approach requires that a prior
distribution be assumed for ¢ which is not the case for the OC curve approach. However
the OC curve approach requires that maximum and minimum acceptable values of Cp be
set, which may also introduce subjectivity into the analysis. As well when wishing to
evaluate the probability that the estimated Cp index is greater than some value, the OC

curve approach does not lend itself well to this type of analysis.
3.8. EXAMPLES

Example 3.8.1: Consider an example that deals with the parallelism and radial length of a
machined hole in a transmission differential case [23]. The process is a new undertaking

and capability study was performed. The sampling results were as follows
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Stage Parallelism Radial Length

n X s Cp n X s Cp
1 268 8.8 83 .80 201 4.7 8.7 7
2 79 83 7.8 85 % 104 21.1 32
3 300 55 43 1.55 316 50 54 1.23

Now without some accompanying probabilistic statement there is little that can be said
regarding the capability of the process at the different stages of the production. Using the
Bayesian approach in conjunction with the Wilson-Hilferty transformation these results can

be reported as follows assuming a non-informative (uniform) prior for unknown &

Stage Parallelism Radial Length
n X $ ép Pr(Cp>1f ép ) n X S ép Pr(Cp>1] ép)
1 268 8.8 83 .80 0000 201 47 87 .77 .0000
2 79 83 7.8 .85 0139 % 104 211 .32 0000
3 300 55 43 155 1.0000 316 50 54 1.23 1.0000

Example 3.8.2: Consider example 5.3 from page 107 of [25] where a quality control
department wanted to assess the capability of a process that involved the manufacturing of a
shaft. The product manager set the upper and lower allowable limits as 2.15 and 2.01

respectively (with a target value of 2.08). A random sample (n=50) of shafts was taken

and measurements recorded. The results were summarized as x = 2.08 and s = 0.022,

hence the estimated Cp index turned out to be

A (USL-LSL) _2.15-2.01

Cp - = =
6o 6(0.022)

1.06 .
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Using the Bayesian approach with the Wilson-Hilferty transformation results in the

following

23 439
1.06°7° - m}

Pr(Cp > 1| Cp =1.06) = 1-0%

441
= 1-0(-0.50)
= 0.6915

Hence although the estimated process capability is greater than 1, the probability that the

actual Cp value is greater than 1 is only about 0.7. From Table 3.6.1, the value of Cp

required to judge the process capable at the 0.05 level of significance will be 1.20.

The OC curve approach requires that both the type-I and type-II error probabilities
be fixed. Assuming a=p=0.05, the ratios for n=50 are Cp(A)/Cp(R)=1.40 and

b/Cp(R)=1.20. Letting the minimum requirement of Cpbe 1 (ie., Cp(R)=1), Cp(A)=1.40
and b=1.20. That is the minimum acceptable value of ép that will ensure the actual Cp
between 1.00 and 1.40 (with a=P=0.05) will be 1.20. Hence in this case since
ép =1.06, the process is not capable at the 0.05 level of significance. This is the same
conclusion arrived at using the Bayesian procedure. Note however that this technique
provides no method for attaching an actual probability statement to the outcome of the

sampling results, that is, no interpretation of how "poor" Cp=1.06 can be made.

Secondly the technique forces one to consider a finite interval for Cp (in this case (1.00,

1.40)) which may not be aiapropriate in some applications.
3.9. COMMENTS

Some of the statistical properties of the estimated process capability index Cp

have been examined. As was assumed, the traditional estimator of Cp is non-robust to



departures from normality. Some general correction factors have been included that may
aid practitioners in assessing process capabilities when the process measurements do not
arise from a normal distribution.

The Bayesian approach to analyzing process capability has also been presented as
an alternative to techniques currently available. Under the assumption of a non-
informative prior, critical regions have been created for the sample results, that allow a
probabilistic statement to accompany estimates determined from the sample results. In
addition fo giving equivalent results to the OC curve, the Bayesian approach permits an

easy method for determining how extreme the results of one’s study are.
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Chapter 4
A New Measure of Process Capability

4.1. INTRODUCTION

The process capability index Cp has been criticized for its inability to reflect
departures from the target value while assessing process capability. Due to this inherent
inability, several indices have been proposed that take the target value into account when
assessing the capability of a process. The indices considered to date perform quite well in
assessing the ability of a process to meet the required specification limits and be close to the
target value. However the statistical distributions associated with the estimators of these

indices can be quite complicated, which makes study of their statistical properties difficult.

A new index, Cpm, is proposed that takes into account departures from the target
value as well as process variation when assessing process capability. The new index and
its proposed estimator are presented and some of the associated properties investigated.
Two analytical procedures that can be used to investigate process sampling results are

examined and an example illustrating use of the new index is provided.

A graphical procedure that provides insights into process capability is presented.
The procedure uses modified probability plots to examine the assumption of normality,
proximity to target value and process variation. The general procedure is discussed and an

example given which focuses on some of the highlights of the procedure.
4.2. SOME PROCESS CAPABILITY INDICES AND THEIR ESTIMATORS

As several authors have pointed out (23], [29], [30]), the Cp index does not take

into consideration proximity of the measurements to the target value. For example in

Figure 4.2.1, samples arising from any of the five populations (N(ui’ 02) for

populations i=1, 2, 3, 4 and 5) would yield similar estimates for the Cp index. Because the
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actual process spreads of the five populations are smaller than the allowable process
spread, the corresponding estimates of Cp should all indicate that the processes are capable.

However processes from populations 2, 3, 4 and 5 all deviate from the target value.

It can be argued that processes with characteristics similar to populations 2 and 3 are
still within the specification limits and hence should be judged capable even though they are
not centered at the target value. However additional work or costs may be incurred due to
adjustments made necessary by these departures from the target value. Processes with
population characteristics similar to 4 and 5 will be incapable of meeting the specifications
required as they both have non-conforming output. Hence it is important to find an index

that will reflect departures from the target value as well as changes in the process variation.

Processes with small variability, but poor proximity to the target value T, have
sparked the derivation of several indices which are similar in nature to the Cp index. These
indices attempt to take into account process variation as well as departures from the target

value. Some of these indices include

cpy- LK @.2.1)
30
cpL = - (4.2.2)
30
Cpk = minimum(CPL, CPU) (4.2.3)
and Cpk = (1-K)Cp (4.2.4)

2|T -yl : .
h — o
where k G IS0 with [ representing the process mean and LSL < pt < USL.
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Figure 4.2.1. Five Normal Populations with identical values of Cp.



The two definitions of Cpk are presented interchangeably. They are algebraically

equivalent for 0<k<1 and where the target value is the midpoint of the specification limits.

Each of the indices involve the unknown parameters i and o’ which generally

must be estimated. The usual estimators are

CPU = USL-x
3s

CPL < x - LSL
3s

A A A
Cpk = minimum(CPU, CPL)

43 A A
or Cpk=(1-kCp

r 2|T-X
where “=GSL-TsT

These are the maximum likelihood estimators and provide reasonable point estimates
for their respective indices. However the statistical distributions associated with these

estimators are quite complicated, making inferences from the sampling results difficult.

Assuming that the process measurements follow a normal distribution, CPU and CPL will

have a probability density function proportional to that of the non-central t distribution.

A
The pdf of Cpk is a function of two dependent non-central t distributions and is difficult to

4

derive.
4.3, THE Cpm INDEX, ITS PROPERTIES AND ESTIMATOR

The proposed Cpm index is defined as
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_USL-LSL

Cpm
P 60"

where

and T is the target value of the process. Similar to o° , 6'%isa population parameter

that is usually unknown and will have to be estimated. The general form of the estimator

will be

A USL - LSL

A
O

2

Cpm =

where

(4.3.1)

It is easy to verify that Cpm will possess the necessary properties required for assessing
process capability. If the ﬁrocess variance increases (decreases) the denominator of (4.3. 1)
increases (decreases) and Cpm will decrease (increase). If the process drifts from its target
value (i.e., if U moves away from T), the denominator of (4.3.1) will again increase

causing Cpm to decline. In the case where the process variance changes and the process



mean drifts from T concurrently, the Cpm index possesses the ability to reflect these

changes as well.

As an illustration (Figure 4.3.1) of how Cpm reacts to departures from the target
value, consider an example from [23] with a target value of 14 rather than 16. As the
process mean moves away from the target value, the value of Cpm decreases and although
the comparison of absolute magnitudes will be subjective, it becomes obvious that the Cpm
reacts to changes in the process in much the same manner as Cpk, while Cp remains
constant regardless of the proximity to the target value. There is a one-to-one relationship

between Cpk and Cpm for fixed values of Cp.

Theorem 4.3.1: For a fixed value of Cpand T = [—J-SL;E—I% Cpk and Cpm have a one-to-
one relationship.

[T
Proof: By definition Cpk=Cp(1-k) and Cp=Cpm 1+-—-?—,

therefore Cpk = (1-k)Cpm~\ | 1+ (H;‘) . Hence the relationship is one-to-one.

The indices Cpm and Cp will be identical when the process mean |, and the target
N
value T coincide (see Theorem 4.3.2). This implies that épm and Cp are estimates for the

same measure when T={L. In this case, the magnitude of the bias associated with Cpm is

A A
always less than that for Cp given a fixed sample size (see Theorem 4.3.3) with Cpm also
having a smaller mean square error (MSE). Hence, in those cases where the target value is

A
assumed to coincide with the process mean, Cpm has better statistical properties than that

A
of Cp.



LSL T USL

L Cp CPL CPU Cpk Cpm

13 2 1.5 2.5 1.5 1.11

LSL T USL

B Cp CPL CPU Cpk Cpm

14 2 2.0 2.0 2.0 2.00

10 11 12 p 14 15 16 17 18
5 16

10 11 12 13 p 1
LSL T usL

B Co CPL CPU _Cpk Cpm

15 2 2.5 1.5 1.5 1.11

10 11 12 13 14 p 16 17 18
LSL T USL

M Cp CPL CPU Cpk Com

16 2 3.0 1.0 1.0 0.63

10 11 12 13 14 15 . 17 18
LSL T US

L
i Cp CPIL, CPU Cpk Cpm
i7 2 3.5 0.5 0.5 0.43
8

10 11 12 13 14 15 16 p 1

Figure 4.3.1 Comparisons of Cp, CPL, CPU, Cpk and Cpm.
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Theorem 4.3.2: For =T, Cpm = Cp.
2 2 2_ 2
Proof : When u=T, ¢ =EX-T)" = E(X-W)" =0".

Therefore Cp = Cpm.

Theorem 4.3.3: When p=T, épm has smaller bias than ép.
n-1
="

T'(3)

Proof: From Theorem 4.5.2, E(épm):x}% Cp,

IGz-1)

while from Theorem 3.2.2 E(Cpy=/Z5- Cp.

r&H

rG-1) I&D
r&h @

}

- B(Cp)-B(Cpm)=~/Z- Cpf

rGra-1) - r’(%H

-1 PV

réréh
-1
r@re-1) - T’
>{ I cp20
rérd 2
N TErE-n-r2%h
because MSE(Cpm)z{ 22 ) 2 %sz =0
rare)
-1
= {rerg-n-r’ém} 2o

Hence E(ép)-Cp 2 E((A?pm)-Cp = E((Afpm)-Cpm since T=| and Cp = Cpm.
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Assuming that the process measurements arise from a normal distribution, the

probability density function of épm is

B>

j=0

2
-T
where a = Cpm2(1 +%-) (n-1) and A= H_(L_)_

o]

O<y<eoo

(see Theorem 4.3.4)., From the pdf of

épm, the expected value (see Theorem 4.3.5) and the MSE (see Theorem 4.3.6) of épm

can be shown to be functions of the inverse moments of a non-central chi-square

distribution. The probability Pr(épm >¢) (see Theorem 4.3.7) is

Theorem 4.3.4: If the process measurements are N (p,cs2 ), then the pdf of (ﬁ‘pm is

2.1

Ed|EEE)

2 j

f(y)=ex
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n

=0

—+j-1

SENELEE

exp(-w) dw

-n—+j—1

2
) .
y

n o, 2.
r(-2-+3)2~‘_1!

O<y<eo,



A'2

c
Proof: When the process measurements are from a N(u,cs2 ), x = (n-1) -—Zfollows a non-
c

2
n(p-T
central chi-square distribution with n df and non-centrality parameter A = ® = ) . The
o]

pdf of x is

A '2
A
The result follows from noting that x = (n-1) 9-5- = 7ra—2 and Cpm>0.
c Cpm

Theorem 4.3.5: E(épm) =+a E(x'm).

9 A
Cpm“(n-1)(1+ ﬁ—) _a
— A 2"

Proof: letx = )
Cpm Cpm

x~ y’ , and E(Cpm)= Va _[x‘“zf(x)dx
0

_ \[E E(X-IIZ).

. A -1y w2, 112
Theorem 4.3.6: MSE(Cpm) = a[E(x ™) -E“(x"'9)]
Proof: Let x be as defined in Proof 4.3.5.

épm2 —ax! = E(épmz) = aE(x’l)
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A A ) A )
Hence MSE(Cpm) = E(Cpm®)-[E(Cpm)]

~EG Ha-[Ex %) Va P

—a[Ex )-[Ex 2.

BEY
o A
A s 2
Theorem 4.3.7: Pr(Cpm>w) = exp - 2 S S B
=0 | o B
_:1. I 5 + 1)
A A -
Proof: Pr(Cpm>w)=Pr(c'< [-—J%i‘i“i )=Pxf(x2][l ) <

From [31] page 132,

Pr(a‘pm>w)= eXp['

a
2
2w n
—+
2
X

j-1

Sy

0

Cpm*(n-1)(1+2)

o .
LI
R e
- 2
Letting x = -g-results in
- 2
oo A
2 A H R
Pr(Cpm>w) =exp-| 5| 2 | L4 2 exp(-x) dx
o l. n .
HO TG+ o
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4.4. THE OC CURVE APPROACH FOR ANALYZING Cpm

Suppose that the sample size and the critical value b are to be determined for the case

where the probability of a Type I error is to be no more than o if the true value of Cpm is

greater than the Acceptable Quality Level Cpm(A), and the probability of a Type II error is
to be no more than [ if the true value of Cpm is less than the Rejectable Quality Level

Cpm(R). Under the assumption that the process measurements are from a N(u,cz)

A R 2
Pr(Cpm >b)=Pr(o '2<@4€2%4)_)

(mDo? _ (n-))(USL-LSL)’

=P 2 2E
(n-DCpm*(1+\/n)
=Pr()(n’27L < 2

Then the probabilities of making a Type I and Type I error are

(-1) (1+A/n) Cpm(AY?
;’2 PIEA | Ccom(a))

(0-1(1 +M/mCpmRY>
n-1 1+3,:an Cpm | Cpm(R)).

oz=P1r()¢B’2;L >

P=Pr(x % <

(n-1)Cpm(A)*(1+A/n)
2
b

Therefore %5 (1-0) =

(-1 Cpm(RYZ(1+3/n)
b2

X5 (B)=

where x[fl(ﬁ) is the 1008th percentile of a non-central x2 distribution with n df

and non-centrality parameter A. The above results can be summarized for various values

of o, B, 2, and n using the following ratios
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Cpma) [ X5 (1-%)
Cpm(R) %, (B

q b (1+A/m)(n-1)
an N ’_2_.___
Cpm(R) % n,x(B)

As derived, the Cpm index possesses the property of reflecting changes in a
process that affect the ability of the process to meet some preset specification limits. For
the general case where the target value is not assumed to be the same as the process mean,
an estimate for Cpm, along with sbme of its statistical properties have been found that
allow stochastic analyses of the sampling results. The calculations associated with
obtaining either a measure of variability or a probability statement for the estimate of Cpm

can be quite difficult, however the ability to do so exists.

A special case of the Cpm where the target value and the process mean are

identical (i.e.,, u=T) has some additional properties.
4.5. SOME PROPERTIES OF Cpm WHEN =T

A
Assuming p=T, where T is known, the pdf of Cpm for the case where the process

measurements arise from a normal distribution is (see Theorem 4.5.1)

=-1

2 1 2 n+l1 2
1 1 (n-1)Cpm

A
while the expected value of Cpm is (see Theorem 4.5.2)

A n-1
E(Cpm)= / 5

-1
)

7| Cpm
I'e)
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and the MSE of épm is (see Theorem 4.5.3)

-1
IG - D) - ')

n-1

2 211
()

Cpmz.

MSE(Cpm)=

A )
Cpm is a biased estimator of Cpm (see Theorem 4.5.2) however Cp is also a
biased estimator of Cp (see Theorem 3.2.2). See Figure 4.5.1 for a comparison of the
A
biases of both estimators. Asymptotically the bias associated with Cpm is zero (see

A
Theorem 4.5.3) implying that Cpm is an asymptotically unbiased estimator of Cpm.

Theorem 4.5.1: If p=T then the pdf of épm is

n
-1 n
2 1 e 2
2 .2 -C
gCpmy= | L — || (@-1)Chm) @G | oo
p) - || ————— JeXp AD
C;mn+1 2Cpm
A --T 2
Proof: When 0'2=2(XL-)—

n-1 °

"t 2
o'
y= gl%S—has a chi-square distribution with n df, Its pdf is

Loz 1 oz,
) = (D" = y** T éxp(- ) O<y<eo
2
So&pm - USL;LSL _ (USL- LSLyaT _, Ny
60 6oVy y

2
:W:Egrg(_nzﬁ

Cpm

-107-



- 2 - )
=dy = 2Ccm (;1 1) dCpm
pm

L o ,
2 .2 -1HC
oepmy= [ L o || @DGw? | DO A
2 T2 | e 2Com
Cpm pm
-1
- F(EZ_)
Theorem 4.5.2: If p=T, E(Cpm) Cpm 5 -
I'G)
2
Proof: LetQ =PI (-1)
2Cpm
Cpm +vn-1 I“(n—_l oo
Then E(&pm) = 2 j . QU2 expn(-Q) dQ
- n n 1 P
T (7)@ 0 T
-1
- r(nT)
=Cpmy\/ 5~ ——-
')
r2 n-1
»an G D D
Theorem 4.5.3: If p=T, MSE(Cpm)=Cpm {

. ]
re I’e
Proof: Let Q be as in Proof 4.5.2.

Ig-UF

—| —— Q" exp(-Q dQ
2Tz I'G-1

A2 2
Then E(Cpm”) = Cpm” (n-1)
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So MSE(Cpm)=E(Cpm?)-[E(Cpm)]>

Pg- D r&h
repy r’@

}.

~cpm (5 {

From Figure 4.5.1 it becomes evident that the magnitude of the relative bias
decreases quite rapidly as the sample size increases. For example, the relative bias for epm
associated with samples of size 10 is about 3%. While for sample sizes greater than 235, the
relative bias will be less than 1%. Note as well that the magnitude of the bias is sample size

dependent while also being dependent upon the magnitude of the Cpm index.

épm has been shown to be less biased than ép for all values of n. As a comparison,
the relative bias for ép has been included in Figure 4.5.1. Again for small samples the bias
associated with ép is quite significant while for larger samples the bias becomes irrelevant,
In addition to having a smaller bias, épm has a smaller MSE than (Ajp, making (Afpm a more

A
efficient estimator than Cp (see Figure 4.5.2).
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0.30 A

Figure 4.5.1. Relative Bias for é pand 6 pm for various values of n.
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Figure 4.5.2, Relative MSE for é\ pand 6 pm for various values of n.
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The mean square error associated with épm is a function of the value of the Cpm
A
index and the sample size (see Theorem 4.5.3) and is asymptotically 0, implying that Cpm

converges in probability to Cpm (see Theorem 4.5.4).

Theorem 4.5 .4: épm is MSE consistent .

Proof: From Proof 4.5.3 as n tends to infinity

) r&ra-1y - r2y
tim MSE(Cpm) =lim {—2—2—— 23 @D 2
N—yes n— 1—~2(2_)
2 1@-nrd - il
i {22 2 o)
-1
rg-1 TG
=cp{lim G- —=— - [1m 7[G- H—2T}
) I'z)

From [18], both limits are 1. Hence

A A
lim MSE(Cpm)=0 and this implies that Cpm converges in probability to Cpm.
n—soo

4.6. THE OC CURVE APPROACH TO ANALYZING Cpm WHEN pu=T

7 A
When =T, a result analogous to the OC curve procedure for Cp can be derived

A
for Cpm. Suppose that the sample size and critical value b are to be determined for those

cases where the probability of a Type I error is to be no more than o if the true value of

Cpm is greater than the Acceptable Quality Level Cpm(A), and the probability of a Type II
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error is to be no more than B if the true value of Cpm is less than the Rejectable Quality

Level Cpm(R). Consider the following

2
Pr(Cpm 2 b) =Pr(y’ < QP%@)

where in is a chi-square random variable with n degrees of freedom. The probabilities of

making Type I and Type II errors become

2
a=pr(y, > SRELED| cpma)

2
p = Prog} < SRRCYEL | cpmew))

and as a result

2
- Sneed

Cpm(A) X, (1-o)
Cpm(R) x> (B)
i b _ n-
Com@) | o2 ()

have been found for various values of a, B, and n (Table 4.6.1).

2
2 (1-0) - CEm(ig (n-1)

Values for the ratios

This approach for evaluating the stochastic properties of the estimated Cpm index is

rather cumbersome although it does allow a probabilistic statement to accompany the point
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Table 4.6.1

. Cpm(A b
Values of the ratios CﬁZgRi and Con®) for o=0=0.05, a=3=0.10.

o 0=£=0.05 o=0=0.10
i 652% Cprz(R) %_;% Ep_:x(_RS
10 2.1555 1.5113 1.8127 1.3601
20 1.7014 1.3233 1.5111 1.2357
30 1.5385 1.2523 1.3979 1.1865
40 1.4503 1.2129 1.3354 1.1587
50 1.3935 1.1872 1.2946 1.1402
60 1.3532 1.1688 1.2655 1.1259
70 1.3228 1.1548 1.2433 1.1167
80 1.2988 1.1437 1.2258 1.1086
90 1.2794 1.1347 1.2115 1.1020
160 1.2632 1.1271 1.1995 1.0964
110 1.2494 1.1207 1.1893 1.0916
120 1.2375 1.1151 1.1805 1.0875
130 1.2272 1.1102 1.1728 1.0839
140 1.2180 1.1059 1.1660 1.0806
150 1.2098 1.1020 1.1599 1.0778
160 1.2025 1.0985 1.1544 1.0752
170 1.1959 1.0954 1.1495 1.0728
180 1.1898 1.0925 1.1450 1.0707
190 1.1843 1.0899 1.1408 1.0687

200 1.1792 1.0875 1.1370 1.0669
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estimate. The cumbersomeness arises from the requirement that the Type I and Type II
error probabilities must be fixed and co-ordination with the sample size done prior to
sampling in order to establish a critical value that can be used to judge the capability of a
process. The number of tables required to document all possible results for the OC curve

approach will be large.

4.7. A BAYESIAN APPROACH FOR ANALYZING Cpm WHEN p=T

An approach similar to that proposed for the Cp index can be used to find exact and
approximate credible intervals for the Cpm index. These intervals are in turn used in a
procedure that is more general, easier to interpret, and less restrictive than those associated

with the OC curve approach.

Assuming the measurements follow a N(T, 02), the likelihood function for the

sample Xz{xl, Xps e s xn} is
-1 A 2
5 (n-1)¢'
L(c”) = 2n6") > exp| ~——5—
20
For the non-informative prior
1
hi, 0)=—, 0<O<eo, ~cocflceo
o}
the posterior distribution of G is
I
A 2 A
2 | @no?] 1 _(n-1)o’
flo|lX) = —— ex 2 0<O<ee 4.7.1)
. n 2 n+l 26
r (-5 o
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where ¢ = —————— . The posterior probability becomes

p=Pr(Cpm>c IX):Pr(I—JEI;LS}»c (X)
~ 60 ~

—Pr(o< USL6-CLSL %)

Co= f f(ol)f) do
0

~2
-LSL n-1)o' 12
where a = USL-L3 , ¥ =( ) andb = _T___(n 1)c . Given an observed value of épm,

6w 26° 2Cpm?

the probability that Cpm is greater than ¢ can be found. The minimum values of (A?pm
required to ensure p=0.90, 0.95, 0.99 for c=1, 4/3, 5/3 and n=3(1)100 have been tabulated
and included in Tables 4.7.1, 4.7.2 and 4.7.3. In order to judge the capability of a process
using this procedure, one need only calculate épm and compare it with the minimum value

required as determined from the tables.

The Wilson-Hilferty transformation [28] provides a very good approximation to the
posterior probability (equation (4.7.1)). Itis easy to evaluate, good for large and small
values of n, and uses the standard normal distribution instead of the incomplete gamma

function. The approximation is
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{‘able 471 A
Minimum value of C pm for p=Pr(Cpm>1{ C pm).

2
0.90 0.95 0.99
1.8500 23842  4.1733
1.6795 20545  3.1776
1.5761 1.8687  2.6863
1.5061 17485  2.3944
14553  1.6638  2.2006
14163 16005  2.0619
13854  1.5511 1.9575
13601 1.5113 1.8757
13390 14785  1.8097
13210 14508 1.7552
13054 14271 1.7094
12919 14066 1.6702
12799  1.3886 1.6362
12692 13726  1.6065
12596 13583 1.5802
12509 13455 1.5567
12430 13339 1.5357
12357 13233 1.5166
1.2291 1.3136 1.4993
12229 13046  1.4835
12173 12964  1.4689
12120  1.2887 1.4555
12070 12806  1.4431
12024 12750 14316
1.1981 1.2688 1.4209
11940 12629 1.4108
11902 12575 14014
11865 12523 1.3926
11831  1.2474 1.3843
11798  1.2428 1.3765
1.1768  1.2384 1.3690
11738 12342 1.3620
11710 1.2302 1.3553
1.1683 . 1.2265 1.3490
11657 12228 1.3430
11633 12194 . 1.3372
11609 12161 1.3317
1.1587 12129 1.3265
11565 12099 1.3215
11544 12070  1.3167
11524 12042 1.3120
11505 12015 1.3076
11486 1.1989 1.3034
11468 11964 1.2993
1.1451 1.1940 1.2953
11434 1.1917 1.2915
1.1418 1.1894 1.2879
1.1402 L1872 1.2843
1.1387 11851 1.2809
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0.90 0.95 (.99
1.1372 1.1831 1.2776
1.1358 1.1811 1.2744
1.1344 1.1792 1.2713
1.1331 1.1773 1.2683
1.1318 1.1755 1.2654
1.1305 1.1738 1.2626
1.1293 1.1721 1.2598
1.1281 1.1704 1.2572
1.1269 1.1688 1.2546
1.1258 1.1673 1.2521
1.1247 1.1657 1.2496
1.1236 1.1642 1.2473
1.1225 1.1628 1.2449
1.1215 1.1614 1.2427
1.1205 1.1600 1.2405
1.1195 1.1587 1.2384
1.1186 1.1574 1.2363
1.1176 1.1561 1.2342
1.1167 1.1548 1.2323
1.1158 1.1536 1.2303
1.1150 1.1524 1.2284
1.1141 1.1512 1.2266
1.1133 1.1501 1.2248
1.1125 1.1490 1.2230
1.1117 1.1479 1.2213
1.1109 1.1468 1.2196
1.1101 1.1458 1.2179
1.1094 1.1447 1.2163
1.1086 1.1437 1.2147
1.1079 1.1428 1.2132
1.1072 1.1418 1.2116
1.1065 1.1408 1.2102
1.1058 1.1399 1.2087
1.1051 1.1390 1.2073
1.1045 1.1381 1.2059
1.1038 1.1372 1.2045
1.1032 1.1364 1.2031
1.1026 1.1355 1.2018
1.1020 1.1347 1.2005
1.1014 1.1339 1.1992
1.1008 1.1331 1.1980
1.1002 1.1323 1.1967
1.0996 1.1315 1.1955
1.0991 1.1307 1.1%43
1.0985 1.1300 1.1932
1.0980 1.1293 1.1920
1.0974 1.1285 1.1909
1.0969 1.1278 1.1898
1.0964 1.1271 1.1887
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aable 4.72 A
Minimum value of C pm for p=Pr{ Cpn»‘é—/ Cpm).

DB
0.90 0.95 0.99
2.4667 3.1789 5.5645
2.2393 2.7394 4.2368
2.1014 2.4916 3.5818
2.0082 23314 3.1926
1.9404 2.2185 2.9341
1.8884 2.1340 2.7492
1.8472 2.0681 2.6099
1.8135 2.0151 2.5009
1.7853 1.9713 2.4129
1.7613 1.9344 2.3403
1.7406 1.9028 22791
1.7225 1.8755 2.2269
1.7065 1.8514 2.1816
1.6922 1.8301 2.1420
1.6794 1.8111 2.1069
1.6678 1.7940 2.0756
1.6573 1.7785 2.0476
1.6476 1.7644 2.0222
1.6388 1.7514 1.9991
1.6306 1.7395 1.9780
1.6230 1.7285 1.9586
1.6159 1.7183 1.9407
1.6094 1.7088 1.9242
1.6032 17000 1.9088
1.5974 1.6917 1.8945
1.5920 1.6839 1.8811
1.5869 1.6766 1.8686
1.5820 1.6697 1.8568
1.5774 1.6632 1.8457
1.5731 1.6570 1.8353
1.5690 1.6512 1.8254
1.5650 1.6456 1.8160
1.5613 1.6403 1.8071
1.5577 1.6353 1.7987
1.5543 1.6305 1.7906
1.5510 1.6259 1.7830
1.5479 1.6215 1.7757
1.5449 1.6172 1.7687
1.5420 1:6132 1.7620
1.5392 1.6093 1.7556
1.5365 1.6056 1.7494
1.5340 1.6020 1.7435
1.5315 1.5985 1.7378
1.5291 1.5952 1.7324
1.5278 1.5920 1.7271
1.5246 1.5889 1.7220
1.5224 1.5859 17171
1.5203 1.5830 1.7124
1.5183 1.5802 1.7079
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0.90 0.95 0.99
1.5163 1.5774 1.7035
1.5144 1.5748 1.6992
1.5126 1.5723 1.6951
1.5108 1.5698 1.6911
1.5091 1.5674 1.6872
1.5074 1.5650 1.6834
1.5057 1.5628 1.6798
1.5041 1.5606 1.6762
1.5026 1.5584 1.6728
1.5010 1.5563 1.669%4
1.4996 1.5543 1.6662
1.4981 1.5523 1.6630
1.4967 1.5504 1.6599
1.4954 1.5485 1.6569
1.4940 1.5467 1.6540
1.4927 1.5449 1.6511
1.4%14 1.5431 1.6484
1.4902 1.5414 1.6456
1.4890 1.5398 1.6430
1.4878 1.5381 1.6404
1.4866 1.5365 1.6379
1.4855 1.5350 1.6354
1.4844 1.5335 1.6330
1.4833 1.5320 1.6307
1.4822 1.5305 1.6284
1.4812 1.5291 1.6261
1.4802 1.5277 1.6239
1.4791 1.5263 1.6217
1.4782 1.5250 1.6196
1.4772 1.5237 1.6176
1.4763 1.5224 1.6155
1.4753 1.5211 1.6135
1.4744 1.5199 1.6116
1.4735 1.5187 1.6097
1.4726 1.5175 1.6078
1.4718 1.5163 1.6060
1.4709 1.5152 1.6042
1.4701 1.5140 1.6024
1.4693 1.5129 1.6007
1.4685 1.5118 1.5990
1.4677 1.5108 1.5973
1.4669 1.5097 1.5957
1.4662 1.5087 1.5940
1.4654 1.5077 1.5925
1.4647 1.5067 1.5909
1.4640 1.5057 1.5894
1.4632 1.5047 1.5879
1.4625 1.5038 1.5864
1.4619 1.5028 1.5849



a'able 4.73 .
Minimum value of C pm for p=PH Cpm>§3-/ Cpm).

2 P
n 0.90 0.95 0.99 n 0.90 0.95 0.99
3 3.0833 3.9736 6.9556 52 1.8954 1.9718 2.1293
4 2.7991 3.4242 5.2960 53 1.8930 1.9685 2.1240
5 2.6268 3.1145 44772 54 1.8907 1.9653 2.1188
6 2.5102 2.5142 3.9907 55 1.8885 1.9622 2.1138
7 2.4255 2.7731 3.6676 56 1.8863 1.9592 2.1090
g 2.3606 2.6675 3.4365 57 1.8842 1.9563 2.1043
9 2.3090 2.5852 3.2624 58 1.8821 1.9535 2,0997
10 2.2668 2.5189 3.1261 59 1.8801 1.9507 2.0953
11 2.2316 24641 3.0161 60 1.8782 1.9480 2.0910
12 22016 2.4180 -2.9253 61 1.8763 1.9454 2.0868
13 2.1757 2.3786 2.8489 62 1.8745 1.9429 2.0827
14 2.1531 2.3443 2.7836 63 1.8727 1.9404 2.0788
15 2.1331 2.3143 2.7270 64 1.8709 1.9380 2.0749
16 2.1153 2.2877 2.6775 65 1.8692 1.9356 2.0711
17 2.0993 2.2639 2.6336 66 1.8675 1.9333 2.0675
18 2.0848 2.2425 2.5%46 67 1.8659 1.9311 2.0639
19 2.0716 2.2231 2.5594 68 1.8643 1.9289 2.0604
20 2.0595 2.2054 2.5277 69 1.8627 1.9268 2.0571
21 2.0485 2.1893 2.4988 70 1.8612 1.9247 2.0537
22 2.0382 2.1744 2.4724 71 1.8597 1.9227 2.0505
23 2.0287 2.1606 2.4482 72 1.8583 1.9207 2.0474
24 2.0199 2.1479 24259 73 1.8569 1.9187 2.0443
25 2.0117 2.1360 2.4052 74 1.8555 1.9168 2.0413
26 2.0040 2.1250 2.3860 75 1.8541 1.9150 2.0383
27 1.9968 2.1146 2.3681 76 1.8528 1.9131 2.0354
28 1.5500 2.1049 2.3514 77 1.8515 19114 2.0326
29 1.9836 2.0958 2.3357 78 1.8502 1.9096 2.0299
30 1.9775 2.0871 23210 79 1.8489 1.9079 2.0272
31 1.9718 2.0790 23072 80 1.8477 1.9062 2.0245
32 1.9664 2.0713 2.2941 81 1.8465 1.9046 2.0219
33 1.9612 2.0640 2.2817 82 1.8453 1.5030 2.0194
34 1.9563 2.0570 2.2700 83 1.8442 1.9014 2.0169
35 1.9516 2.0504 2.2589 84 1.8430 1.8998 2.0145
36 1.9471 2.0441 2.2483 85 1.8419 1.8983 2.0121
37 1.9429 2.0381 2.2383 86 1.8408 1.8968 2.0098
38 1.9388 2.0323 22287 87 1.8397 1.8954 2.0075
39 1.9349 2.0268 22196 88 1.8387 1.8939 2.0052
40 1.9311 2.0215 2.2108 89 1.8376 1.8925 2.0030
41 1.8275 2.0165 2.2025 90 1.8366 1.8911 2.0008
42 1.9240 20116 2.1944 91 1.8356 1.8898 1.9987
43 1.9207 2.0070 2.1868 92 1.8346 1.8884 1.9966
44 1.9175 2.0025 2.1794 93 1.8337 1.8871 1.9946
45 1.9144 1.5982 2.1723 94 1.8327 1.8858 1.9925
46 19114 1.9%40 2.1654 95 1.8318 1.8846 1.9906
47 1.9085 1.9900 2.1589 96 1.8309 1.8833 1.9886
48 1.9057 1.9861 2.1525 97 1.8300 1.8821 1.9867
49 1.9030 1.9823 2.1464 98 1.8291 1.8809 1.9848
50 1.9004 1.9787 2.1405 99 1.8282 1.8797 1.9830
51 1.8979 1.9752 2.1348 100 1.8273 1.8785 1.9811
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1
(n-l)ch3 [1-_2_}
p=Pr(Cpm>c|X)=1- @3 |[nCpm? | "L 9njp

\ On P

where @ denotes the cdf of the standard normal distribution. This approximation provides
a reasonably easy method for attaining critical values for those sample sizes or values of ¢

not included in the tables.
4.8. A GENERALIZATION OF Cpm

To this point T has been assumed to be the midpoint of the specification limits (i.e.,
(USL-T)=(T-LSL)). However the Cpm index can be generalized to the case where T is
not the midpoint of the specification limits. Rather than considering the allowable process
spread to be the difference between the USL and LSL, and the actual process spread to be

60, consider the following definition of Cpm

* _ minimum[USL-T, T-LSL]
3¢

Cpm

Clearly Cpm* will continue to take the proximity to the target value into consideration while
now also taking into account the non-symmetric specification limits. To illustrate how
Cpm* reacts to departures from the target value and non-central target values, an example

(from [23]) has been appended to include Cpm* (see Figure 4.8.1).
f=}
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USL

Il ¢o CPL CPU_ Cpk Com
13 1 1.5 0 0 0.22

10 18
LSL USL
L Cp CPIL CPU C(Cpk CDm*
14 1 2.0 0 0 0.32
10 18
LSL UsL
B Cp CPL  CPU_ Cpk CDm*
15 1 2.5 0.5 0.5 0.56
10 11 18
LSL USL
B Co CPI, CPU Cpk CDm*
16 1 3.0 1.0 1.0 1.00
10 11 12 16 17 18
LSL USL .
B cp cpPL cPU Ccpk  Com
17 1 2.5 0.5 0.5 0.56
10 11 12 13 17 18

Figure 4.8.1. Comparisons of Cp, CPL, CPU, Cpk and Cpmr*.

-121-



The proposed estimate of Cpm”< is

minimum[USL-T, T-LSL]

30"

épm* =

A

where ¢' =

A * . %
The pdf of Cpm™ will depend upon the values T, USL, LSL and Cpm".
Assuming the process measurements follow a normal distribution and the parameters T,

USL and LSL are fixed for any particular process, the pdf of épm>i= is

£ T
(n-1)Cpin(1+A/n) ol [(n-ncp?ﬁ(ux/n)J )
f(x)=exp| - x> 5 x> T O<x<oo
j“°_ Xl_‘(%+j)22 o i
where ?\,=n(u_2T) i .
G

Knowing the pdf of (Alpm* allows functional forms for E(épm*), MSE(épm*) and
A y
Pr(Cpm* >b | Cpm™) to be determined, which in turn permits statistical analysis of the

estimate. The OC curve procedure results in the following ratios

Com*(a) . [%an{1®)
Cpm™(R) %2 (B)

b (1+A/m)(n-1)

d b __ (UrAn@l)
an o' ® T\ 1 2®
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where the probability of a Type I error is to be no more than a if the true value of Cpm”™
is greater than Cpm*(A), the probability of a Type II error is to be no more than B if the
true value of Cpm"F is less than Cpm*(R) and xnzk denotes the non-central chi-square

n(-T)

5 .
o

distribution with n degrees of freedom and non-centrality parameter A=

Cpm  permits analysis of one-sided specification limits as well. For example
consider the situation where the LSL=10, T=12 and where there is no need to consider

USL. For computational purposes let USL=co, resulting in

* _ min[USL-T, T-LSL] _ min[12-10, e=-12] 2
30" 3¢’ 3¢’

Cpm

It is then simply a matter of estimating 6" in order to find an estimate for process capability

in the one-sided specification limit case. For the case where only the USL is of interest set

LSL=-ce.

Cpm* has the ability to assess process capability for a wide variety of situations. It can
be used in the one-sided and non-symmetric target cases, while it is easy to show that

Cpm* reduces to Cpm in the case where T =-—IE'2+—L—§£‘- .

4.9. PROCESS CAPABILITY PAPER

The proposed graphical technique uses modified normal probability plots to first
assess the assumption ofjnormaiity and then to graphically attain estimates of process
capability. The resultant probability plot also provides indications of proximity to the
target value as well as an indication of the magnitude of the process capability (65). The

graphical results allow visual comparisons of process capability and proximity to target
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value for various stages or periods of time in order to get an indication of how the

capability of the process is changing.

If for example we want to examine the capability of a process after some
modification has been made we would simply examine the before and after modified
probability plots to (a) assess the underlying distribution of the process measurements, (b)

proximity to the target value, (c) process variability and (d) process capability.

The proposed procedure involves creating a series of modified normal probability
plots from which inferences regarding the assumption of normality, the proximity to the
target value, and the magnitude of the process variation can be made. Customized normal
probability paper has been used to create process capability paper (PC paper) (Figure
4.9.1).

The horizontal axis of the proposed PC paper has been scaled identical to normal
probability paper while the vertical axis has an arithmetic scale with the upper (USL)
specification and lower (LSL) specification limits included. In addition three vertical lines
labeled L, M and U have been included that are used to attain numerical estimates for the
mean, standard deviation and the process capability indices Cp, Cpk or Cpm for any

process under investigation.

The procedure requires a sample to be drawn from the process. The sample results
are ordered and plotted versus their associated percentiles, similar to common probability
plot procedures. Immediate insight into the nature of the distribution from which the
process measurements arise becomes available. If the resultant PC plot (process capability
plot) is linear the assumption of normality is not unjustified, which then allows one to draw

further inferences regarding the capability of the process.
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A measure of proximity to the target value is attained by examining the intersection
of the PC plot with M (i.e., the 50th percentile) and its location with respect to T. The
point of intersection with M, in the case of the normal family, results in an estimate of the
population mean (i.e., ﬁ), hence as the intercept moves closer to T the estimated process
mean moves closer to the target value. A numerical measure of proximity to the target

value is obtained by taking the difference between the point of intersection {1 and T.

A visual, as well as numerical, measure of the process standard deviation can be
determined from the plot. The slope of any probability plot which has been deemed linear
represents a measure of the standard deviation associated with the population under
investigation. Hence probability plots can be used to indicate those distributions which
have larger or smaller standard deviations. Assuming equivalent scaling, those probability
plots with "steeper” slopes will have larger standard deviations while those plots with
"flatter” slopes will possess smaller standard deviations. Hence all other things being equal
those probability plots with "steeper" slopes will have smaller values of Cp, while those
with "flatter” slopes will have larger values of Cp. Therefore by keeping (i) the
specification limits and (ii} the scaling of the vertical axis of the process capability paper
constant, the slope of the PC plots at different stages in the process's history can be used to
assess changes in the process standard deviation and hence changes in the value of Cp. A
numerical estimate for the standard deviation associated with the process measurements
can be determined by taking the difference between two values determined from the
intersection of the PC plot‘with U and L. These lines are located such that the difference in
their intercepts results directly in an estimate of the standard deviation. Using the results

attained from the plot numerical estimates for Cp, Cpk or Cpm can be determined.

Repeating this procedure at various stages or periods in the history of the process

then provides the practitioner with a series of process capability plots that can be used to
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examine any changes that have occurred in the ability of the process to meet target values

and fall within the specification limits.
4.10. EXAMPLES

Example 4.10.1: Consider those measurements taken on the radial length of machined
holes in Example 3.8.1 and where the upper and lower specification limits were set at 20

and -20 units respectively with a target value of T=0. The estimate of Cpm is

where

o n-1 n-1
The results can now be summarized as follows
Radial Length (x103 inches)
- A A A A A
Stage n X $ Cp Pr(Cp>1|Cp) Cpk Cpm Pr(Cpm>1|Cpm)

1 201 47 87 0.77 0.0000 0.59 0.67 0.0000
2 96 104 21,1 032 0.0139 0.15 0.28 0.0000
3 316 5.0 54 1.23  1.0000 0.93 0.91 0.0067

The estimates associated with Cpm for the three stages are somewhat different from those
A A
estimates of Cpk and Cp. The Pr(Cp>1|Cp) and Pr(Cpm>1|Cpm) have been calculated

using the Bayesian approach and the Wilson-Hilferty approximation.
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To illustrate the Bayesian procedure, consider the results obtained in Stage 1,
where USL=20, LSL=-20, T=0, x =4.7, s=8.7 and n=201. From these results the

following were found

A USL-LSL 20-(-20) 40 _
Cp= 6 6@ 522 077

épm __USL-1SL _ 20 - (-20) - 0.67

X 2 201(4.7- 0)
6VS + H(J; 'f) 6V8.7 00—

The p-value associated with the Bayesian approach (using the Wilson-Hilferty

approximation) is

e 3\

1
3

(nl)c:] [1L
p="Pr(Cpm > ¢ | Cpm) = 1 -@< nCpm? | -9n:|>

2
. 9n J
where @ denotes the cumulative distribution function of the standard normal distribution.

Substituting the observed values from Stage 1 and assuming that the process will be judged

capable if Cpm>1 (i.e., c=1),

)

2
l —_
p=1-0 [201(0 67) ] [ 9(201)]
\/ 9(201) 0(201




1.3039 - 0.9989
=1-2 0.0333

= 1-®{9.1592} .

From any standard normal table ©{9.1592}=1.00, resulting in p=(1-1.00)=0.00,
indicating that the probability of Cpm 2 1 given the sample results is 0.00, ie., the

process is not capable.

The OC curve approach for Cpm results in the same inference but in a slightly

different manner. Again using the information USL=20, LSL=-20, T=0, x=4.7, s=8.7,
n=201 results in the estimates (Alp=0.77 and épm=0.67. Letting a=Pr(Type I
error)=B=Pr(Type II error)=0.03,

Cpm(A) _ . [%201 0.95)
Cpm(R) %p5,(0.05)

b
and = .
Cpm(R 2
pm(R) \/ X501 (0-05)

Solutions for the above equations involve finding the associated percentiles for the chi-
square distribution with 201 df, which are x,¢ (0.95)=235.076 and .2 (0.05)=169.20.

Substituting these values into the equations, finds

Cpm(A) .
i = 1. 1 7
Cpm®) "\ 169.20 78

F

and b =
Cpm(R) ™ "V 169.20
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Setting the rejectable quality level Cpm(R)=1 (i.e., the point where the probability of
finding a process capable is no more than 0.05 if the actual value of Cpm<1), the
acceptable quality level is Cpm(A)=1.1787 (i.e., the point where the probability of finding
a process incapable is no more than 0.05 if the actual Cpm=1.1787) and a critical value of
b=1.0872. Thus since 6pm=0.67<1.0872=b, one can conclude that the process is not

capable.

In order to determine the values of Cpm(A) and b in the above example, the 5t and

95th percentiles of the ngl distribution were required. To avoid determining the

percentiles of the ngl distribution, an approximation using the results from Table 4.6.1

for n=200, could have been used

Cpm(A)

Com(®) = =1.0875 .

b
1.1792 and Cpm(R)

In this case, these ratios differ from the exact values only in the third decimal point,

resulting in the same inference formulated above.

The nature of the estimates that consider both the process variance and the
proximity to the target value (i.e., Cpk and Cpm) is highlighted in Stage 3, where a
ép=1.23 becomes misleading if proximity to the target value is important. Suppose that a
process is considered to be capable if Cp>1, the value of ép=1.23 indicates that with
probability one the procegs is capable. On the other hand, if the proximity to the target
value is important and the process is considered capable if Cpm>1, the value of epm=0.91
indicates that it is very unlikely (with probability 0.0067) the process is capable. This is

essentially the finding of Kane [23] whose inference is based on the subjective
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interpretations of the magnitudes of ép and épk. Note that in order to attach a probabilistic

A
statement to Cpk its distribution must be known (which is currently not the case).

Example 4.10.2: An example illustrating use of the proposed PC paper has been
included. In this example the ability of a hypothetical process for three simulated stages in
its history is examined. The data were generated independently for each stage using the
normal random number generator resident in SAS, version 5. For stage one, thirty
observations were generated from a N(-2, 2) distribution, twenty-five from a N(0, 2)

distribution in stage two, and in stage three, 35 observations from a N(0, 0.5) distribution.

Assuming the target value of the process to be 0, and with USL=3.0 and
LSL= -3.0 the vertical axis of the PC paper can now be scaled to reflect the magnitude of
the USL and LSL with the target value suitably indicated. In order to compare the

graphical results for the three stages the PC paper should be scaled identically at each stage.

The mechanics of the graphical procedure are identical for the three stages and
involve plotting the order statistics at each stage versus their associated percentiles. In this
example the plotting positions [(i - .5)/n]100% for the percentile where i denotes the rank
of the it order statistic have been used. The choice of plotting positions is arbifrary as
many possible plotting conventions exist. For a discussion of plotting positions see [32].
At each stage the order statistics (scaled arithmetically along the vertical axis) versus the
percentiles (scaled to reflect standard normal probability paper along the horizontal axis) are
plotted. This has been éone for the three hypothetical stages denoted above (Figure

4.10.1).
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Once the ordered statistics have been plotted a judgement as to the validity of the
normal assumption can be ascertained from the linearity (non-linearity) of the plot. If the
plot appears linear then further inferences can be drawn, while in those cases where the plot
is non-linear any further inferences regarding the capability of the process are cautioned
against. The plots for the three stages in the example all appear linear thereby supporting

the assumption of normality and permitting additional inferences.

Prior to making any numerical estimates some general conclusions can be drawn
from the plots. First, by noting the distance between the M intercept and T it appears that
the mean of the process measurements moves closer to the target value. At stage one the
mean of the process measurements appears substantially different from the target value
where in stage two the process mean appears to move closer to the target value while in

stage three the process mean and the target value appear to coincide.

A similar type of inference can be drawn from the slopes of the plots associated
with the three stages. The slope of a PC plot provides insight into the relative magnitude of
both ¢ and Cp. Disregarding location, the steeper the slope the greater the magnitude of ¢
and hence the smaller the value of Cp. It appears that the slopes at stage one and stage two
are similar suggesting that the Cp does not appear to change over this period. However the
slope of the line in stage three appears smaller than that of stage one and two indicating that
the process variability has been reduced in stage three. Thus stage three appears to have
smaller variability as well as attaining its target value suggesting that the process would be

deemed most capable at stage three.

Numerical estimates of Cp, Cpk, and Cpm can be obtained from the plots by

substituting the estimates of |t and G, determined from the plot for each of the three stages.

These values have been determined and are included in Figure 4.10.1. Note that these

values reflect the visual results discussed above.
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4.11. COMMENTS

The Cpm index and the Cpk index are two techniques which can be used to evaluate
the ability of a process to attain a preset target value and to fall within required specification
limits concurrently. The Cpm index can be estimated using épm for those cases where

=T as well for those cases where p=T. é\pm has a distribution similar to that of ép
when W=T. This result in conjunction with additional statistical techniques allows a
probabilistic statement to be made regarding the likelihood of incorrectly judging the ability
of a process. In addition, it has been shown that when the process attains its target value,
the Cpm index is identical to the Cp index while épm is less biased and more efficient than

A
Cp.

The estimate for the Cpk index also possesses some of the properties associated with
the Cpm index. The Cpk index is identical to the Cpm index when the process mean equals
its target value and the target value is the midpoint of the upper and lower specification
limits. However, the statistical distribution of épk is difficult to determine. Under the

assumption that the process measurements arise from a N(T, 02), the distributions

A A
associated with CPU and CPL are proportional to non-central t distributions which can be

A A A
computed. However Cpk is defined as the minimum(CPU, CPL) and as a result its

A
distribution is further complicated. Simulations indicate that Cpm is less biased and more

efficient than épk.

A generalization of Cpm has been developed that permits assessment of the process
capability for those cases where a) T is not the midpoint of the specification limits or b)
one-sided specification limits are required. The distribution of the associated estimate

(based on the assumption that the measurements of interest possess a normal distribution)
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has been determined which in turn permits a stochastic statement to accompany the estimate
determined from the sampled units.

A graphical result is examined that permits insights into the process capability. Cpk
and Cpm are used as single measures of process capability that consider proximity to T and
process variation when assessing process capability. The graphical result allows
verification of normality while indicating whether the magnitude of Cpm is due strictly to

process variation, proximity to T or some combination of the two.
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Chapter 5
A Multivariate Measure of Process Capability
5.1, INTRODUCTION

For those cases where the process must be capable of attaining specification limits
for more than one variable, the practice has been to examine each variable independently.
A process is then considered capable if all components of interest are found capable. This
procedure can be misleading in those situations where the variables being considered do not

behave independently.

An index is proposed, Cpm, that provides a general measure of process capability
for those cases where any number of variables are used to assess capability. The new
measure is analogous to the univariate measure Cpm in that Cpm considers both proximity

to the target value and process variation while quantifying process capability.

In the multivariate case the specification limits and the actual process spread will be
more difficult to define than their univariate counterparts. The specification limits will not
simply be points on the number Line and the actual process spread will no longer be a

straightforward function of the process standard deviation.

Some of the troubles associated with assessing multivariate process capability are
considered. These include problems associated with creating specification limits as well as
some of the computational difficulties inherent in the procedure. Several properties
associated with the proposed measure are examined and two examples illustrating use of

the measure are given.
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Discussions will focus on the bivariate case as explanations can be enhanced with
the use of graphical aids. However all results, unless otherwise stated, hold for the general

multivariate case,
5.2. MULTIVARIATE SPECIFICATION LIVITS

One of the major problems in assessing multivariate process capability is in
establishing specification limits. In the univariate case the specification limits are
boundaries representing the range of acceptable results arising from a process. These
boundaries are generally a reflection of some engineering or manufacturing requirement
often representing the maximum and minimum acceptable values (see Figure 5.2.1). In the
multivariate case the specification boundaries will continue to represent the region of
acceptable results, however these boundaries will be more complex than simply two points

on a number line,

LSL T USL

allowable process spread

Figure 52.1. Typical Univariate Specification Limils.

In the case where two or more variables are used in assessing process capability,
the most common practice is to examine the univariate capabilities on an individual basis,
with the process being deemed capable if all variables are judged capable. This is
equivalent to considering all variables independent, resulting in specification boundaries for

the bivariate case similar to those illustrated in Figure 5.2.2.
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LSL, T

USL,

Figure 5.2.2. An Example of Bivariate Specifications for the Independent Variables Case.

In Figure 5.2.2 USL,, LSL, and T, denote the univariate upper, lower and target
values for variable 1 and USL,, LSL, and T, the univariate upper, lower and target values
for variable 2. An appropriate measure of multivariate process capability in this situation
would be Cpmlx Cpm2 where Cpm1 is the value of Cpm for variable 1 and Cpm2 the
value of Cpm for variable 2. This measure of process capability, and the above
boundaries, assume that the magnitude of variable 1 is not influenced by the magnitude of

variable 2, and vice versa.

Where the specification limits of the variables do not behave independently, the
product of individual pr‘;)cess capability measurements will not provide an accurate
indication of process capability. As an example consider the case where there is no
physical relationship between the two variables, but where combinations of their extreme
values are not acceptable in the manufacturing process. Specification boundaries reflecting

this situation are shown in Figure 5.2.3.
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T

1

Figure 52.3. An Example of Ellipsoidal Specification Limits for Uncorrelated Case.

Figure 5.24. An Example of Ellipsoidal Specification Limits Jor Correlated Case.
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The specification limits are denoted by the inscribed ellipse with the interior of the
ellipse indicating the region of acceptable combinations of the two variables. Although the
specification limits do not behave independently, the variables of interest are depicted as
being uncorrelated. In such cases, the individual specification limits for either variable

depend upon the level of the other variable used in assessing process capability.

The specification limits denoted by the ellipse in Figure 5.2.4 represent the
acceptable combinations of variables 1 and 2 when the variables are assumed to have a
positive linear relationship, Again the individual specification limits for any one variable
will depend upon the value or level of the second variable. The product of the individual
measures of process capability will not reflect the multivariate capabilities of the process in
cases such as this. Hence the need for a2 multivariate measure of process capability when

two or more related variables are to be used to assess the capability of a process.
5.3. CREATING MULTIVARIATE SPECIFICATION LIMITS

Other than the case where the capability variables are considered uncorrelated with
independent boundaries, ellipsoidal specification limits are assumed. This assumption is
made necessary by the assumption of multivariate normality (MVN) which will be made

when examining some of the statistical properties associated with the proposed measure.

In the univariate case unilateral specification limits arise from time to time.
Unilateral specification limits occur when only the upper or lower limit is of interest (e. g,
specification regions of the form (-eo, USL) or (LSL, eo)). Multivariate analogues of such
regions cannot be represented using ellipsoids. In those cases where one or more of the
capability variables have unilateral limits, fitting an ellipsoidal region within the required
specification region will be equivalent to imposing more stringent engineering

requirements than required (Figure 5.3.1).
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actual specification limits

Figure 53.1. An Example of an Unilateral Specification.

actual specification limits

Figure 53.2. An Example of Non-symmetric Specifications.
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A second univariate case for which no multivariate analogue currently exists, occurs
when the target value is not the center of the specification ellipsoid. Because symmetric
covariance structures will be assumed for the specification limits, when such cases occur,
smaller symmetric ellipsoidal regions will again provide more stringent requirements than

required (Figure 5.3.2).

The alternatives presented for these two cases are made in the presence of the

assumption of MVN,

Given that the specification region is ellipsoidal all points lying on or within the

specification boundary satisfy the inequality
X-DATX-T<c’

with those points lying precisely on the boundary represented by the strict equality
X-D'A'X-T)=¢ (5:3.1)

where T is the v-dimensional target vector, A a vXb matrix denoting the covariance
structure of the capability variables and ¢ a numerical constant. T and A completely
determine the shape and center of the ellipsoid, while ¢ determines the coverage of the
ellipsoid. The coverage is the percentage of observations expected to be within the
boundaries. If the engineering requirements are specified in terms of T and A, the
specification limits are then fixed for some minimum level of coverage. Analogous to the

univariate case, coverage will generally be taken to be 99.73%.

As an example, consider a hypothetical process with T = [ggo] being the vector

representing the optimum values of the capability variables and A= [ 19%4 335] the

covariance structure representing the univariate variance of both variables (ie., 0’12=144
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and 022=225) and the covariance between the two variables (i.e., 0,,=90). Substituting

these values into equation (5.3.1) results in the equation

.—1___.. 2 2
0 T [x-?’SJ ) %0 x-75][y-100] [y-lOO] 2
2 12 ] ° 12 15 || 15 e
1{ T3 5)] 12(15)‘

In general ?= xi(a) will result in an ellipsoid with 100a% coverage. In the bivariate case

lettin cz=-21n(1-a) also results in an ellipse with 100a% coverage [33], which for
g P

a=0.9973 results in the following equation

2 2
x-75 90 I x-75 | y-100 y-100

and specification boundaries as illustrated in Figure 5.3.3.

When the covariance structure is completely specified the specification boundaries
are relatively easy to determine. Regardless of the number of capability variables

considered, knowledge of T, A and ¢ completely determine the specification boundaries.

In the bivariate case, the form and equation of the specification limits are of interest
as graphical illustrations are often used. However in the general multivariate case no
analogous graphical procedures currently exist, hence the actual form of the equation is of

little consequence once T ,“A and c are such that the equation
t _1 2
K-D'at X-D=c

represents a 99.73% coverage region. The numerical values of T and A are necessary for

computation of the proposed measure of process capability.
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5.4. A MULTIVARIATE PROCESS CAPABILITY MEASURE

The proposed measure of multivariate process capability is

Cpm = il (5.4.1)

~ ju]
DX - AT X - T)
X - T AT (X - T

i=1

h vector of dimension v, v the number of variables used in

where Xl_ denotes the it
assessing capability, n the sample size, T the target vector, and A a Lx matrix representing

the covariance structure as determined from the specification limits.

The numerator of (5.4.1) is the product of the sample size and the number of
variables used in assessing capability. This value represents the degrees of freedom
associated with the denominator. The denominator is the sum of the observed Mahalanobis
distances (Dz) measured from the target. For any given process the numerator is a constant

while the denominator reflects the "cluster" of the observations around the target.

The Mahalanobis distances are standardized measures of distance that possess the
ability to account for any correlations that may exist among the variables. Letting A™
denote the inverse of the covariance matrix of the capability variables, these distances are
standardized to reflect the variability inherent in the various dimensions. These individual

distances are analogous to the univariate distance measure
2
{X- p}
p .

-145-



For processes with observations clustered around the target (e.g., B of Figure
5.4.1), the denominator of equation (5.4.2) will be smaller in magnitude than that of the
same process with observations more scattered and/or with a center of mass not at the target
value (e.g., A and C of Figure 5.4.1). As the denominator grows, the value of gpm, fora
fixed nv, will diminish. Smaller values of Cpm suggest that the process is unable to meet
the specification limits, casting doubt on the capability of the process, while larger values
of Cpm suggest that the process is indeed capable of meeting its specifications. Thus

Cpm behaves in much the same fashion as the univariate measures of process capability.

A B C

Figure 5.4.1. Three Examples of Bivariate Capability Studies.

The following statistical properties are derived under the assumption that the

process measurements arise from a MVN,,[T, Al population.

Theorem 5.4.1: Iy, Y, .. Y, areiid MVND[:[‘, A] the pdf of Cpm is

nu
27 2w
1 |1 2
fx) = [_2] () e ¥ O<x<eo
I“ nv v+ I
&



n
Proof: Letw =) (Y, - T)' A™ (Y, - T). IfY,, Y,,

wo s Y are iid MVN[T, A]
i=1
)
then w ~ xﬁu . Therefore since gpm R s R
7! =om
1 |1 v 2
it follows that f(x) = [5] (o) e &
L no o 1
&

Theorem 5.4.2: If }_’1, ‘{2, vy gn are iid MVND[:I“, A] then

ny 1
E(Cpm) = / no F(—i— i _2-) .
2 no
I()
Proof: Iff{l, ‘.52, v s Xjn are iid MVNU[I, Al then

=]

E(x) = [x f(x)dx where f(x) is as defined in Theorem 5.4.1, hence

0
ny 1
y [ Do
E(x) = nzu 2 2 _

res)

-147-



Theorem 5.4.3: Ile, ¥2, vy &:n are iid MVNU{I, A] then

1
FEANGE- D -T2 )

ny
Iz(—z—)

Var(Cpm) = 22

Proof: If 1’1, ¥2, v s ‘gn are iid MVND{I, A]l, then

2

o o

Var(x) = X f(x)dx - "-x f(x)dx | , where f(x) is as defined in Theorem 5.4.1.
0 0

rEpres- - rE - )

nv
rE&)

Therefore Var(x) = %?-

Theorem 5.4.4: If ‘i’l, 1:2, s ‘{n are iid MVND[’E‘, A], the asymptotic mean of (Epm is 1.

Proof: If}fl, 1’2, e s gn are iid MVNU[I, A]l, from Theorem 5.4.2

nv 1
no r(-:’l_ ) -2-) Then as nv approaches oo
E(x) = -— pp

D)

:
4

o L)
from [18] lim 2 o =1
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Theorem 5.4.5: If Yy, 1’2, ey Ypare 1id MVND{I, A], the asymptotic variance of (Epm is 0.

Proof: Ifgl, Y, s gn are iid MVN.U[I, A], from Theorem 5.4.3

ny__ no n 1
oo | T DT )
Var(x) = 5 , then the limit as nv—eo i
nv
I‘2(—2--)
o LU
o I'—-1 nv 1_‘2( ) B 2)
= lim __2_._1__ Y E——
o n
n— 1_,(-1122) n—yo0 rz(—j—)

From [18] both limits are 1, thus the asymptotic variance of gpm is 0.

5.5. HYPOTHESIS TESTING

Knowledge of the pdf of Cpm permits statistically based inferences to be made
regarding the capability of the process. The hypotheses
H,: Process is capable

VEISus

H,: Process is not capable

can be tested to determine whether or not a process is capable of meeting the specification

limits for a particular process.

The specification limits completely determine the covariance matrix (i.e., A) used in
the computations of Cpm. If this matrix is an accurate reflection of the variations inherent
in the process then the sample results should have a similar covariance structure. If this is
the case, then the sum of the Mahalanobis distances will be close to nv and hence gpm

should be in the vicinity of 1. If the sample covariance structure is not similar to that of A,
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the value of Cpm should reflect these departures. If for example the variations in the
sample results are larger than the variation specified in A, Cpm should be smaller than 1.
Similarly if the covariance structure found in the sample results is different from that of A,
Cpm should again be smaller than 1. On the other hand if the variation found in the sample

is smaller than that specified in A the value of Cpm should be larger than 1.

Because only small values of Cpm are of interest, one-sided critical regions are
appropriate for testing the hypotheses stated above. Using the value of Cpm determined
from the sample results as a test statistic, the rejection region for the hypothesis will be [0,
W], where Pr( gpm<W)=0‘,, given A fo be an accurate measure of the inherent process
variation. The value of W for values of nv = 40(5)250 and ®=0.05 are included in Table
5.5.1.

5.6. EXAMPLES

Example 5.6.1: Sultan [34] discusses an example in the context of control charts where the
brinell hardness (H) and the tensile strength (S) of the output of a process are of interest.
Assuming that the process is in control, consider the following hypothetical capability

study of the process using the observed data.

Suppose that an engineering study suggests that the variance associated with H
should be no more than 324, the variance of S no more than 25 with H and S having a
covariance of 65, and with the target values of 177 for H and 53 for S. With this

information specification limits for this capability study can be created (Figure 5.6.1).

The region created by the specification limits in Figure 5.6.1 being long and thin
reflects the fact that there is greater variability inherent in H than in S. The positive
covariance between H and S is depicted by the angle between the principal axis and the co-

ordinate axis. The specification boundaries are completely specified by a=0.9973,
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Table55.1

Values of W for a=0.01,0.025, 0.05 and 0.10 where Pr( C pin < W=

Woor

0.7925
0.8020
0.8103
0.8175
0.8239
0.8297
0.8349
0.8396
0.8439
0.8479
0.8515
0.8549
0.8581
0.8611
0.8638
0.8664
0.8689
0.8712
0.8734
0.8755
0.8774
0.8793
0.8811
0.8828
0.8845
0.8860
0.8875
0.8890
0.8904
0.8917
0.8930
0.8942
0.8954
0.8966
0.8977
0.8988
0.8998
0.9008
0.9018
0.9028
0.9037
0.9046
0.9054

W,

0.8294
0.8367
0.8431
0.8487
0.8537
0.8583
0.8624
0.8662
0.8696
0.8728
0.8758
0.8785
0.8811
0.8835
0.8858
0.8879
0.8899
0.8918
0.8936
0.8953
0.8970
0.8985
0.9000
0.9014
0.9028
0.9041
0.9053
0.9065
0.9076
0.9088
0.9068
0.9109
0.9119
0.9128
0.9138
0.9147
0.9155
0.9164
0.9172
0.9180
0.9188
0.9195
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0.6550

W,

003
0.8470
0.8543
0.8606
0.8662
0.8710
0.8754
0.8793
0.8829
0.8861
0.8891
0.8919
0.8944
0.8968
0.8990
0.9011
0.9030
0.9048
0.9066
0.9082
0.9097
0.9112
0.9126

. 0.9139

0.9152
0.9164
0.9176
0.9187
0.9198
0.9208
0.9218
0.9227
0.9236
0.9245
0.9254
0.9262
0.9270
0.9277
0.9285
0.9292
0.9299
0.9306
0.9312
0.9319

Wy

=010
0.8797

0.8846
0.8897
0.8941
0.8980
0.9015
0.5047
0.9075
0.9101
0.9125
0.9147
0.9167
0.9186
0.9204
0.9220
0.9236
0.9251
0.9264
0.9277
0.9290
0.9301
0.9312
0.9323
0.9333
0.9343
0.9352
0.9361
0.9369
0.9377
0.9385
0.9393
0.9400
0.9408
0.9414
0.9420
0.9426
0.9432
0.9438
0.9444
0.9450
0.9455
0.9460
0.9465



80

704

60T

50+

++ e

40+

;i i 1
100 120 140 160 180 200 220 240

Figure 5.6.1 Boundaries for Example 5.61.
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Figure 5.6 2 Boundaries values and observations for Example 5.6.1.
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1
T =|: 5737] and A = [ 224 gg] and are of the form

Hig}{lgﬂ [3% 32]_1 [{2} {1527}] ~11.829 .

Figure 5.6.2 contains both the specification limits and the plotted observations.
From the plot it becomes clear that i) all but one obscrvétjon falls within the specification
boundaries and ii) the points tend to be clustered in the vicinity of the target. This
graphical result appears to suggest that the process is capable of meeting the engineering
requirements. In some situations the graphical result may be all that is required. However
in order to draw comparisons with other processes, or to make judgements regarding
changes in the capability of the process over time, a numerical measure of process

capability is required.

Using the proposed numerical measure

nv

Cpm = z
> X -TAT X - T)

X, - T X, - T
i=1

and T = [ 15737], A= [ 224 gg], V=2 and n=25. The observed values of brinell hardness

and tensile strength along with their Mahalanobis distances (D2) have been included

7

-153-



2

H_ S_ D

143 34.2 15.5661
200 57.0 1.6643
160 47.5 1.2570
181 53.4 0.0629
148 47.8 2.6276
178 51.5 0.2449
162 45.9 2.0936
215 59.1 4.6508
161 48.4 0.9517
141 47.3 4.1937
175 57.3 1.8603
187 58.5 1.3293
187 58.2 1.1615
186 57.0 0.6526
172 49.4 0.6410
182 57.2 0.9317
177 50.6 0.4816
204 55.1 3.1698
178 50.9 0.4456
196 57.9 1.2132
160 45.5 2.2903
183 53.9 0.1188
179 51.2 0.4175
194 57.5 0.9912
181 55.6 0.3195

resulting in a Cpm of 1.0067 . From Table 5.5.1 the critical value for nv=50 and 0=0.05
is 0.8606. Then because 1.0067>0.8606 we fail to reject H, and conclude that the process

is capable.

Example 5.6.2: The same process is again considered, but with more stringent
engineering specifications. Assume that in this case an engineering study suggested that
the variance associated with H should be no more than 196, the variance of S no more than

9 with H and S having a covariance of 25, and with the target values of 175 for H and 55

for S. With a=0.9973, T = [15755} and A =[ égﬁ 295] the equation specifying the

specification boundaries is

1

Hﬁ}{@iﬂ [132 23] N Hﬁ;}_{lgﬂzuﬁzg.
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From Figure 5.6.3 it is clear that i) one of the 25 observations falls outside the
specification bounds and i) the points are now much closer to the specifications and do not
appear to be clustered around the target . These graphical results suggest that the process

is incapable of meeting the more stringent engineering requirements.

The Mahalanobis distances (D*) have been calculated using T = [15755}

A= [ 526 295:| , =25 and v=2 and along with Hand S are

70

40

30 j 1 f j t
120 140 160 180 200 220 240

Figure 5.6.3 Boundaries and observations for Example 5.6.2.
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2

H_ S D

143 34.2 53.3217
200 57.0 3.4320
160 47.5 6.5189
181 53.4 1.1464
148 47.8 6.1472
178 51.5 2.6400
162 45.9 10.3922
215 59.1 8.3360
161 48.4 4.9884
141 47.3 7.8445
175 57.3 0.9103
187 58.5 1.4021
187 58.2 1.2143
186 57.0 0.6787
172 49.4 4.7301
182 57.2 0.5440
177 50.6 3.7494
204 55.1 6.5197
178 50.9 3.5037
196 57.9 2.2584
160 45.5 11.0527
183 53.9 1.1002
179 51.2 3.2785
194 57.5 1.8428
181 55.6 0.1884

resulting in a Cpm of 0.5818. The critical value for the hypotheses
H,: Process is capable
VErsus
H,: Process is not capable

is 0.8606 (=0.05). Then because 0.5818<0.8606, one would reject Hy concluding that
the process is not capable of meeting the more stringent engineering requirements (again

agreeing with the graphical result).
5.7. COMMENTS

A multivariate measure of process capability is proposed that considers proximity to

the target and dispersion around the target while having some reasonably good statistical
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properties. The index provides a unitless measure that will permit comparisons within a

process as well as among competing processes.

A benchmark of 1 for judging a process capable is suggested, as this represents the
case where the sample covariance structure (centred on the target) is similar to the
covariance structure (around the target) specified by the specification limits. As the
engineering requirements change or the process changes, modifications to the specification

boundaries can be made to maintain the benchmark of 1.

Because the degrees of freedom associated with the sum of the Mahalanobis
distances are the product of the sample size and the number of capability variables used,
this value will generally be reasonably large. As a result the asymptotic properties of Cpm

will be of importance.

It has been assumed that the engineering specifications are given in terms of the
required target and covariance structure. Situations may arise where these specifications
are not given in terms of T, A and c. If only the physical region is given, the engineering
information must be converted to an ellipsoid with known T and A, as both must be known
before gpm can be determined. Shakun [35] and Jackson and Bradley [36] discuss two

possible techniques.
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Chapter 6
An Alternate Variables Control Chart

6.1. INTRODUCTION

Much attention has been focussed on the concept of simultaneous control charts.
Boxplots ([37], [38]) are the latest in a series of improvements made to the traditional
control chart originally developed by Shewhart [39]. In general boxplots can be very
informative but tend to be quite overpowering. Unless users are familiar with the plots, the
vast amount of information containéd in a single plot can be confusing. Proposed additions
to the charts regarding robust and resistant measures only serve to further clutter the
inferences drawn. In the hands of an experienced data analyst boxplots and the proposed
resistant and robust measures can be enlightening. However they may only serve to
detract from the general inferences required on the manufacturing floor. Because of their
complexity, boxplots are rarely performed by hand. In fact they are rather difficult and
time consuming to construct, however most common statistical packages provide some
form of the boxplot. In those cases where a computer is available or where the data are

entered directly to a computer, boxplots may be quite convenient.

There is an abundance of newly developed control chart procedures designed to
enhance the analysis of a process. However as pointed out by Woodall [40], none reflect
the current change of philosophy in Quality Control. The proposed technique attempts to
reflect the change of philosophy currently taking place in Quality Control on the North
American continent. Both proximity to target and the variability are of concern in today's
quality assurance programs. No longer is "conforming to specifications", without a
nominal value, sufficient. The proposed procedure attempts to adopt this philosophy in a

simultaneous control chart.
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The technique proposed here is similar to the traditional control charts outlined by
Shewhart. The resultant charts are clear and uncluttered (similar to the traditional charts)
with the added advantage of appearing on a single plot. Control limits for the proposed
measures are also included. The new control chart is highly visible with inferences easily
drawn. The procedure is straightforward and can easily be carried out by employees
whose major task is to monitor and adjust the process. The plots can be produced by hand
with the univariate case requiring only the aid of a hand-held calculator while the
multivariate case generally requires a computer capable of performing accurate matrix
operations. In either case the procedure is adaptable to the computer and computer

graphics.
6.2. THE PROPOSED PROCEDURE AND RESULTANT CONTROL CHART

Traditional North American Quality Control techniques are being challenged by
innovative philosophies imported from Japan. One particular philosophy which has been
discussed by many stresses the need of a nominal (target) value when assessing the quality
levels of a process. In the past, attention has focussed on bringing a process within
specification while placing little or no emphasis on attaining target values. Sullivan [29]
among others gives examples that stress the importance of controlling target values as well
as variability. Control charts that do not employ a target value are very much a part of the
old guard. Good information can be drawn from the traditional control chart, however by

integrating targets into the plotting procedure additional information is made available.

Traditional controi charts plot the mean and either the sample range or standard
deviation of each subgroup. If both of these measures reside within the control limits the
process is deemed "in-control”. The boundaries used to aid in drawing inferences
regarding the process (i.e., the control limits) are also created from the sample results. The

control limits for the subgroup means (i.e., the X 's) are of the form
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j=1 j=1 j=1
the mean of the k subgroup ranges and standard deviations respectively and A,, Ay are
statistically determined constants. The control limits associated with the subgroup range,

R, and the subgroup standard deviation, s, are of the form

D,R and D,R,

B3S and B4S

respectively. D,, D, and Bj, B, are again statistically determined constants.

The technique proposed here incorporates proximity to the target value into the
plotting procedure while continuing to examine the inherent variability of the process. The
procedure maintains the ability to draw similar inferences to those of the traditional control
charts while being ideally suited to the new philosophies being incorporated into North

American Quality circles.

The suggested measures of process performance are derived from the Mean Square
Error (MSE). The MSE is a measure of the squared distances from some nominal value, in

this case taken to be the target value. The MSE is then

n 2
MSE = Z-(ﬁ——T)—

ie1 O

where X, denotes the ith measure of a particular subgroup, n the subgroup sample size and

T the target or nominal value,

The MSE associated with the target value measures both the variability and

proximify to the target value simultaneously, actually confounding the two measures.
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However the MSE is easily partitioned into components which provide individual measures

for the inherent variability and proximity to the target. Consider that the MSE
n n n
1 2 1 — — 2 1 2 2 n-1 2 . _ .2
MSB:ﬁ_;(xi' T) = HZ(xi- X+x - T) = HZ(xi- x) +(x-T) =5+ (x-T)
- 1= 1=

breaks down into two terms, the first being a function of the sample variance and the other
the squared difference between the subgroup mean and the target value. The proposed
technique uses the numerical value of the MSE as a measure of overall variability and the
squared difference between the subgroup mean and the target as a measure of proximity to
the target value. Occasionally the subgroup variance will be of interest and can be added to
the plot on an individual basis as required. Assuming the measures arise from a normal
distribution, procedures for determining the control limits for the new measures will be

illustrated and the associated constants determined.

The proposed monitoring measures are

&-T)"

% (x; - T

and MSE= —
i=1

n N - 2
9 x,-x)" . . .
(s"= Z L - will also receive occasional attention) where T denotes the general target
-

i=1
value of the entire process, n the sample size associated with each subgroup sample taken,

x; the ith measure of a subgroup, x the subgroup mean and s? the sample variance of the

subgroup.

The statistical distributions associated with these measures can be found for the case

where the process measurements are assumed to be iid N(u,o?‘). Knowledge of the
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distributions permits calculation of the control limits for various sample sizes. The control
limits associated with the measures will be shown to be of the form

y AG2 for (X-T),

i) Co? for MSE

and i) BoZ for §2

where A, B and C are constants derived from the statistical distributions associated with

each of the measures.
6.3. DERIVATION OF THE CONTROL LIMITS AND CONSTANTS

In each of the following cases the process measurements are assumed to be

independently distributed normal variates with mean | and variance 62 (i.e., iid N(i, 02 N.

For reasons discussed later only upper control limits (UCL) will be developed.

UCL for (x -T)?

2
Assuming X~N(i, 02) it follows that (X - T)2 ~ %—xi N (see Theorem 6.7.1),

where %? ,, denotes the non-central chi-square distribution with one degree of freedom (df)

2
-T

and non-centrality parameter l:n[f———] . Defining the UCL to be the (1-0)100%
c

percentile of the distribution function associated with (x - T)2results in
5.2
‘ UCL()-( R T)2 =

n xi: ?"! (1-(1)

=02 A
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Table 6.3.1 contains the values of A, denoted Aj for (1-0)100%=99.73%, n=2(1)10 and
2

values of [ M- T] ~0.00(0.05)0.95.

c

L -

T

2
] must be known. This is
o

In order to determine A for a particular process, [
seldom the case as | and © are process population parameters. In practice X = Z

k

j and

i Ml

i=1
, where k denotes the number of subgroups and ;(j ,s? the sample mean and
variance of the jth subgroup, are substituted for | and o respectively, resulting in a

reasonable estimate (see Theorem 6.7.4 for discussion) for the value of A and hence for the
UCL. As aresult the control limit for (x - T)2 will generally be of the form

UCL(SE -T)2 =A S2 .
Other values of (1-0:)100% may be used when creating the UCL. If, for example,

the practitioner wishes to use boundaries equivalent to #2¢ then (1-)100% is set to
. w2
95.44% and the values of A redetermined using XL A 0.0544°

Note that a lower control limit will not be required for this measure as the minimum

- 2 . . . .
value (x - T} can assume will be zero which arises when the subgroup mean is the same as
the target (i.e., the optimal situation).



for M

n 2
x.-T)
The MSE = E ln will follow a %xﬁ », distribution (see Theorem 6.7.2),
i=1

2

2 -
where xn' 5, denotes the non-central chi-square distribution withn df and ) = “l:u__T.J .
c

Similar to the UCL for (x - T)2 the (1-00)100% percentile associated with % 7§ 5, will be

used as the UCL for MSE, resulting in
o> .2
UCLmse = 5 Xa, &, (1-o)
=02 C .

Table 6.3.2 contains values associated with C, denoted C; when (1-0)100%=99.73%, for

2
n=2(1)10 and [E_T] = 0.00(0.05)0.95. Analogous to the UCL for (X - T)2, the

c
statistical distribution associated with MSE has a non-centrality parameter that is a function

of the population parameters 1 and 62. Since 1 and 62 are rarely known the practice is to
' 2

S 2 : -
again substitute X and S™ respectively and to use the result as a measure of [ K T} . In
o

practice the form of the UCL for MSE will be
)
UCLMSE = C S .
L for s*

. . . 2
Again assuming the process measurements to be iid N(L, 02), 5%~ X351, 0 (see

Theorem 6.7.3) where Xﬁ-l, o denotes the central chi-square (i.e., A=0) distribution.
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Defining the UCL to represent the (1-0)100% percentile of the distribution associated with

UCL82 we get

2
(n-1},0, (1-a)

2
- _C
UCL, = o) %

=02B

The value of B for n=2(1)20, (1-)=0.9973 and 0.9544 (denoted B; and B, respectively)
have been determined and included in Table 6.3.3. The coefficients in Table 6.3.3 result in
more stringent UCL than those associated with the traditional ¢ charts. The reason is that it
is our philosophy not to consider (at least physically) a lower control limit for s%. In this
way the control chart becomes a single-tailed problem. Identification and investigation of
"sharp" declines in subgroup variation is encouraged, but not seen as an "error". For this

reason only the UCL for both s* and MSE is considered.

The UCLsz depends upon the value of the population parameter 62 and B. B is
easily determined for a fixed n and (1-¢), however 62 is rarely known. The practice is

again to replace 62 with §2, resulting in
UCL 2= B -S-E
§
6.4, COMPUTATIONS, PLOTTING STRATEGIES AND INFERENCES

The procedure for creating the proposed plots is very similar to the procedure

followed for traditional x ‘and s charts. The subgroup means and variances, x and 52, as

k= k .2
. X. — S
wellas X = T{i and % = % must be determined. In addition the practitioner must
j=1 i=1

find (x - T )2for each subgroup, noting the cases where X < T. The MSE for each

subgroup can then be determined using



, N I . .
Table 6.3.1. Cocflicient A3 used to determing the boundary value associated with (x - 'T)” for various values of n and A

2
7 l“"l‘l
(o)

n 000

0.05

0,10

0.20

0,25

0,30

Q.35

0,40

0.45

0,50

0.60

0.65

0.70

0,75

0.80

0,85

0.90

0.95

2 4350

3 3.00

4 225

5 180

6 150

7 129

9 1.00

10 0.90

4.91

3.39

2.63

217

1.85

1.63

1.46

1.33

1.22

5.26

371

2.92

2.44

1.87

1.69

1.55

1.43

5.56

3.98

3.16

2.66

2.32

2.07

1.88

1.73

1.61

5.84

4.22

3.38

2.86

2.51

2.25

2.05

1.89

1.76

6.09
4.44
3.58
3.04
2.68
2.41
2.20
2.04

1.90

6.33

4.64

3.76

3.21

2.83

2.56

2.35

2.18

2.04

6.55

4.83

3.93

3.37

2.98

2.70

2.48

2.31

2.17

6.76

5.01

4.09

3.52

3.13

2.84

2.61

2.43

2.29

6.96

5.19

4.25

3.67

3.26

2,97

2.74

2.55

2.40

7.15

5.35

4.40

3.81

3.40

3.09

2.86

2.67

2,52

4.55

3.94

3.52

3.22

2.98

2.79

2.63

7.52

5.67

4.69

4.08

3.65

3.33

3.09

2.90

2.74

71.69

5.82

4.83

4.20

3.77

3.45

3.20

3.01

2.84

7.86

5.97

4.96

4,33

3.89

3.57

3.31

2,95

8.03

6.11

5.09

4.45

4.01

3.68

3.42

3.22

3.05

8.19

6.25

5.22

4.57

4.12

3.79

3.53

3.32

3.15

8.35

6.39

535

4.69

4.23

3.89

3.63

3.42

3.25

8.50

6.53

5.47

4.81

4.35

4.00

3.73

3.52

3.34

8.66

6.66

5.60

4.92

4.45

3.84

3.62

3.44

-166-



n

I~ . . . o VXY - .
Table 6,3.2. Coefficient C_j uscd to determine the boundary value associated with w (xi - l)2 for various values of n and A.

4
.
g

=

000 (05 010

0.15

0.20

0.25

030

0.35

0.40

0.45

0,50

i=1

0.53

0.60

0.65

0.70

(.25

0.80

0.85

0.90

095

o8]

11.82 12.39 12,91

3 7.08 742 7.73

4 542

5 455

6 4.0t

7 3.64

8§ 337

9 3.16

10 2.99

5.68

4.77

4.21

3.82

3.53

3.31

3.13

5.92

4.98

4.39

3.98

3.69

3.46

3.27

13.40

8.02

6.15

5.17

4.56

4.14

3.83

3.59

3.25

13.85

8.30

6.37

5.36

4.73

4.29

3.97

373

3.53

14.28

8.57

6.57

5.53

4.89

4.44

4.11

3.86

3.66

14.69

8.82

6.77

5.70

5.04

4.58

4.24

3.98

3.78

15.08

9.07

6.97

3.87

5.19

4.72

4.37

3.89

15.45

9.30

7.15

6.03

5.34

4.85

4.50

423

4.01

15.82

9.53

7.34

6.19

548

4.99

4.62

4.35

4.12

16.17

9.76

71.51

6.35

5.62

5.12

4.75

4.46

4.23

16.51

9.97

7.69

6.50

5.75

5.24

4.87

4.57

4.34

16.85

10.19

7.86

6.65

5.89

5.37

4.98

4.69

4.45

17.17

10.39

8.03

6.79

6.02

5.49

5.10

4.80

4.56

17.49

10.60

8.19

6.93

6.15

5.61

5.21

4.91

4.66

17.80

10.80

8.35

7.08

6.28

5.13

5.33

5.01

4.76

18.11 18.41

11.00 11.19

8.51

7.21

6.41

5.85

5.447

5.12

4.87

8.67

7.35

6.53

5.97

5.55

5.23

4.97

18.71

11.38

8.82

7.49

6.66

6.08

5.66

3.33

5.07

19.00

11.57

8.98

7.62

6.78

6.19

5.76

5.43

5.17
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Fable 6.3.3. Cocfficicnts B, und B, used to determine the boundary value associated with s” for various values of n.

- S R

[ B I I o T T R
QY0NS R W = O

B3

9.00
5.91
4.72
4.06
3.64
3.34
3.12
2.95
2.81
2.69
2.59
2.51
2.44
2.37
2.31
2.26
2.22
2.18
2.14

By
4.00
3.00
2.67
2.43
2.26
2.14
2.05
1.97
1.91
1.86
1.82
1.79
1.75
1.72
1.69
1.67
1.64
1.62
1.6}
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MSE= 2Ly (zoT e
Finally the UCL for each of the measures must be found using the appropriate algorithms

presented earlier.

The suggested plotting strategy is to first plot the values of (X - T )2 for each of the

subgroups, along with the UCL(}—( T )2. Use of the plotting characters "-" if x <T and

"+"if X 2 T when plotting (x - T )2 is suggested. In this way any trends which may have

been obscured through examining sduared differences from the target can be identified.

The practitioner may now proceed to plot MSE for each of the subgroups along
with the UCL for both s2 and MSE. The plotting characters used here are of little
consequence and any useful character can be used. Any trends that may occur here should
be obvious regardless of the units used. Piotting the MSE rather than s is suggested, as
the MSE must always be greater than or equal to (x - T )2 for each subgroup. This results
in no overlapping of plots, which is not necessarily the case with s2. One reason for X and
§ Tequiring two plots is because a single plot can become extremely difficult to draw
inferences from when crossovers are common (see Figure 6.4.1). The boxplot technology
eliminates the s chart and the associated UCL by using boxes proportional in size to the
subgroup standard deviation. If the standard deviation of a subgroup exceeds the UCL the
proportional box representing the subgroup standard deviation is then drawn in a slightly

different manner. The boxplot technique does use a visible UCL for s.

)
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Figure 6.4.1. An Example of crossovers affecting the clarity of the plot.
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Once the plot is complete inferences regarding the process are possible. Similar to
the standard control charts those subgroups with either (or both) of the proposed measures
above the appropriate UCL should be highlighted and investigated. As well if any sharp
declines, unusual trends or actions appear they too should be investigated. Any decisions
and actions made at this stage will be similar to those taken for the traditional control charts.
If for example the subgroup means appear to be drifting away from the target or if the

overall variability is changing in a systematic fashion, adjustments should be made.

As part of the plotting procedure it was suggested that the UCL for both 5% and
MSE be included on the chart however s> was not included in the procedure. s?can
disturb the clarity of the plot to the extent that visual inferences become quite difficult.
However MSE may not in appearance provide all necessary information. In some
subgroups it may occur that both MSE and (x - T )? are within the acceptable boundaries
but s* exceeds its UCL. This may occur when the (x - T )2is small. In cases such as this
the difference between plotted points (X - T )2 and MSE will be large indicating that s> is
large. Although the plot will in fact indicate this, the result is similar to boxplot
representations of the standard deviation, in that the result does not immediately "jump off"
the plot. Users familiar with the procedure will look for this phenomenon but others may
miss it. To ensure detection, the value of s> for all cases where MSE exceeds the UCLg2
should be included in the plot. In this way good visual inferences will result without the
excess clutter associated with the entire set of values for s>. An example has been selected

that illustrates this particular situation (see Example 6.8.1).
6.5. MULTIVARIATE CASE

Similarly styled control charts can be created for those situations where more than
one variable (i.e., multivariate case) is used to monitor a process. Target values continue to

be important in the multivariate case, while Alt [41] states that "development of one control

-171-



chart for simultaneous monitoring of both location and dispersion is needed”. Hence the
motivation for a simultaneous control chart that reflects the changing nature of Quality

Control for the multivariate case is identical to that for the univariate case.

Notation for the multivariate case will be slightly different from that of the
univariate case. Vectors of measurements rather than a single value will result from the
sampling schemes used to monitor the process. As the number of variables used to
monitor a process increases, calculations become more complex. While it is possible to
perform the required calculations by hand (using a hand-held calculator) for the case where
two variables are used (i.e., bivariate case), the calculations can be tedious and time
consuming. A computer capable of performing accurate matrix operations will be required

for cases where more than two variables are used.

The methods and sampling schemes used to gather the measurements are assumed
to be identical to the univariate case (i.e., k subgroups consisting of n samples are drawn
from a process). However in the multivariate case a set of p measurements are made on

each sampling unit resulting in a p-dimensional vector of the form

[

for each sampling unit. A subgroup mean will now be a vector of means
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The subgroup mean vector ):( and the grand mean vector X are completely analogous to the

subgroup mean (x) and the grand mean (}=() in the univariate model. For p=1 the

multivariate results are exactly those of the univariate case.

The target must also be stated in the form of a vector (denoted T)

-
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where Ty, Ty, ..., Tj represent the univariate target values associated with each of the p

variables used in monitoring the process.

The measures used to monitor a multivariate process will be similar to those used in
the univariate models. They are derived in much the same fashion as their univariate
counterparts and have associated distribution functions that will be used to create control
limits. The proposed measures, although determined from multivariate data, will be

scalars.

The measure

~

p=(

e

- 1‘)'):'1(

1

-T)

where X is the variance-covariance matrix, will be used to assess proximity to the target

value. For each of the k subgroups Q_.( - 1‘)‘2'1():( - T) provides a scalar measure of

proximity to the target. The multivariate analogue of (x - T )2 uses standardized squared
distances, which on the surface appear different from the univariate case. However the
univariate standardization is reflected in the control limits where 62 is used to modify the

UCL. Hence the multivariate measure ():( - 1‘)‘}:'1()—5 - T) provides much the same

information as its counterpart (x - T )? in the univariate case.

The measure proposed for assessing the variability within a subgroup for the
multivariate case is analogous to the univariate measure MSE. In appearance the
multivariate measure differs from its univariate counterpart as it again uses standardized

distance measures. However the inferences drawn will be identical to those of the

univariate case. The proposed measure is

1l
-1
MSE,= £ D06 - 12 (- 1)
i=1 - ~
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and is completely consistent with the univariate measure MSE. The algorithm results in a
scalar measure that incorporates both proximity to the target and the inherent variability
associated with a particular subgroup into a single measure. Similar to the univariate case,
MSE, can be partitioned into the following components
1i 5 12 vy e 2Ty Lo
P& DE 06D L 20X XD &2
with the first component being a measure of variation within a subgroup and the second

measuring proximity to the target. Similar to the univariate case each of the terms in the

above equation will be used to monitor the process. The proposed measures in the

multivariate case are then
) Tp=X-DE'X-D,
= -1
i) MSB, = > (%, - D' (x,-T)
i=1 77 -
- 1
. 1 Nty ¥
and occasionally iii) Si = 'ﬁ'z()fi -)E) z ()Si - )f).

i=1

The above algorithms result in scalar measures of proximity to the target, variability
around the target and variability around the subgroup mean. Once these have been found

they can be plotted using similar strategies to those in the univariate case. Tt is again

suggested that only '}p and MSE, be plotted for each subgroup as Si can cause the plot to

y

be cluttered.

Inferences drawn here will be slightly different from the univariate case but identical
to those inferences drawn from the multivariate control charts based on Hotelling's T2

results [42]. See Alt [41] for more discussion.
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6.6. DERIVATION OF THE CONTROL LIMITS AND CONSTANTS

The UCL for the multivariate measurements will be based on the assumption that
the process measurements (i.e., p-dimensional vectors) are independent with a MVNP(E,

X) distribution.
UCL for 'T‘p
Assuming X~MVNp(y, ) it follows that (X Ty = (X T ~ '—XP 5 (see

Theorem 6.7.5) with A=n(l-T)' =~ (0 -T) and p the number of variables used to

monitor the process. Defining the UCL to be the (1-0)100% percentile of the distribution

function associated with %p, the UCL will be of the form

UCIT n p A, (1-o)

=D .

Table 6.6.1 contains the values of D, denoted D3 when (1-0)100%=99.73%, for n=2(1)6,
p=2, 3, 4 and values of (- T)' 7! (L - T) = 0.00(0.05)0.90.

UCL for MSE,

Assuming the process measurements follow a MVNp(y, Z), the MSE, ~1 xnp 2

(see Theorem 6.7.6) where A=n(lL- T)' Z-! (0 - T) . The UCL, being the (1-0.)100%

s
percentile of the distribution function, will be

1.2
UCLwse, = 1 Xup, 2, (1-a)

=E
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Table 6.6.2 contains the value of E, denoted E; when (1-01)100%=99.73%, for n=2(1)6,
p=2,3,4and (-T) Z7 (- T) = 0.00(0.05)0.90.

2

L _for b

Assuming MVNp(u, ) for the process measurements,

o]

N -1 _
?11- ()fi - )~()' z ()Ei - )~() will follow a %x%n_l)p’g (see Theorem 6.7.7). As a result

i=1

the UCL associated with the (1-0t)100% percentile of the distribution function will be

1.2
UCLs2 = 1 Xin-1p,g, (1-0)

=F

Table 6.6.3 contains the value of F, denoted F; and F, for the case where

(1-0)100%=99.73% and 95.44%, n=2(1)6 and p=2, 3, 4.

The population parameters [ and £ will seidomly be known, analogous to the

k
- - — 1 2
univariate case we suggest substituting X and s respectively, where S*= X Z Sj with
=t "

)1
2 ' :
§j=% Z()"(i - T)(}Ei - T~) forj=1,2, ..,k

i=1
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Table 6.6,1. Coefficient D3 used to determine the boundary value associated with 'T‘p for various values of n, p and A.

383

w

B I -~ T e " I o - N V. S -

6

0.00

0.05

0,10

0.15

0.20

0,25

0.30

0.35

A== Ty X7 =T

0.40

0.45

0.50

0.33

0.60

0.65

0.70

0.75

0.80

0,90

5.91
3.94
296
2.37
1.97
7.08
4.72
3.54
2.83
2.36
8.13
5.42
4.06
3.25
2,71

6.20
4.22
3.23
2.63
2.23
7.31
4.94
3.76
3.05
2.58
8.32
5.61
4.26
3.44

6.46
4.47
3.46
2.86
2.45
7.52
5.15
3.96
3.25
2.77
8.52
5.80
4.44
3.62

2,90 3.07

6.70
4.69
3.67
3.05
2.64
7.73
5.35
4.15
3.43
2.94
8.70
5.98
4.61
3.79
3.24

6.92
4.90
3.86
3.23
2.81
7.93
5.54
4.33
3.59
3.10
8.88
6.15
417
3.94
3.39

7.14
5.09
4.04
3.40
2,97
8.12
5.7
4.49
3.75
3.25
9.05
6.31
4.93
4.09
3.53

7.34
5.27
4.21
3.56
3.12
8.30
5.88
4.65
3.90
3.40
9.22
6.47
5.08
4.24
3.67

71.54
5.45
4.37
371
3.26
8.48
6.04
4.80
4.05
3.53
9.39
6.62
5.22
4.37
3.80

7.73
5.62
4.33
3.86
3.40
8.65
6.20
4.95
4.19
3.67
9.55
6.77
5.37
4.51
3.93

7.91
5.78
4.68
4.00
3.53
3.82
6.35
5.09
4.32
3.79
2.71
6.92
5.50
4.64
4.05

8.09
5.93
4.82
4.13
3.66
8.99
6.50
5.23
4.45
3.92
0.86
7.06
5.64
4.77
4.18

8.26
6.09
4.96
4.26
3.78
9.15
6.65
5.37
4.58
4.04
10.01
7.20
5.77
4.89
430

8.42
6.24
5.10
4.39
301
9.30
6.79
5.50
4.70
4.16
10.16
7.34
5.89
5.01
4.41

8.59
6.38
5.23
4.52
4.03
9.46
6.93
5.63
4.83
4.28
10.31
7.47
6.02
5.13
4.53

8.75
6.52
5.36
4.64
4.14
9.61
7.07
5.75
4.94
4.39
10.45
7.60
6.14
5.25
4.64

8.90
6.66
5.49
4.76
4.26
9.76
7.20
5.88
5.06

450

10.59
7.73
6.26
5.36
4.75

9.00
6.80
5.61
4.88
4.37
9.90
7.33
6.00
5.18
. 4.61
‘10.73
7.86
6.38
5.48
4.86

9.35
7.06
5.86
5.11
4.59
10.19
7.59
6.24
5.40
4.83
11.00
8.11
6.62
5.70
5.07
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Table 6.6.2, Coefficient E3 used to determine the boundary value associated with MSE; for various values of n, p and A

B e o I - T ¥ L U N = Y " I )

n

0.00

0.05

0.10

0.15

0.20

0,25

0,30

0.35

A=(-T) 27 -y

0.40

0.45

0.50

0.55

0.60

0.63

0.70

0.73

0.80

0.85

0.90

8.13
6.69
5.89
5.38
5.02
10.03
8.42
7.52
6.94
6.53
11.79
10.03
9.05
8.42
7.96

8.32
6.85
6.04
5.51
5.14
10.20
8.56
7.65
7.06
6.64
11.93
10.16
9.17
8.52
8.06

8.52
7.01
6.18
5.64
5.26
10.36
8.69
7.717
71.17
6.74
12.08
10.28
9.28
8.62
8.16

8.70
7.16
6.32
5.77
5.38
10.52
8.83
7.89
7.28
6.85
12.22
10.40
9.39
8.73
8.25

8.88
7.31
6.45
5.89
5.49
10.67
8.96
8.01
7.39
6.95
12.36
10.52
9.50
8.83
8.35

9.05
7.46
6.58
6.01
5.61
10.82
9.09
8.13
7.50
7.05
12.50
10.64
9.60
8.93
8.45

9.22
7.60
6.71
6.13
3.72
10.97
9.21
8.24
7.61
7.16
12.63
10.76
9.71
9.03
8.54

9.39
7.74
6.83
6.24
5.83
11.12
9.34
8.35
7.71
7.26
12.77
10.87
9.82
9.13
8.63

9.55
7.88
6.96
6.36
5.93
11.26
9.46
8.47
7.82
7.35
12.90
10,99
9.92
9.22
8.73

92.71
8.01
7.08
6.47
6.04
11.40
9.59
8.58
7.92
1.45
13.03
11.10
10.02
9.32
8.82

9.86
8.14
7.20
6.58
6.14
11.54
9.71
8.69
8.02
7.55
13.16
11.21
10.13
9.42
8.91

10.01
8.27
7.31
6.69
6.25

11.68
9.82
8.79
8.12
7.65

13.29

11.32

10.23
9.51
9.00

10.16
8.40
7.43
6.80
6.35

11.82
9.94
8.90
8.22
7.74

13.41

11.43

10.33
92.61
9.09

10.31
8.53
7.54
6.90
6.45

11.95

10.06
9.01
8.32
7.84

13.54

11.54

10.43
9.70
9.18

10.45
8.65
7.65
7.01
6.55

12.08

10.17
9.11
8.42
7.93

13.66

11.65

10.53
9.80
9.27

10.59
8.77
7.77
7.11
6.65

12.21

10.29
9.22
8.52
8.02

13.79

11.76

10.63
92.89
9.36

10.73
8.89
7.88
7.22
6.75

12.34

10.40
9.32
8.62
8.12

B

13.91

11.87

10.73
9.98
9.45

10.87
9.01
7.99
7.32
6.85

12.47

10.51
9.42
8.71
8.21

14.03

11.97

10.83

10.08
9.54

11.00
9.13
8.09
7.42
6.94

12.60

10.62
9.53
8.81
8.30

14.15

12.08

10.92

10.17
9.63
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6.7. PROPERTIES

2
L - 2 ~ G— 2
Theorem 6.7.1: (x - T) o xl’ X

Proof: If X~N(, 0'2) then x-1) Je-h N(O, 1), from page 130 of [31]
S_ S_
Jooo o
2

G- @-T)  @-D) 2
O_ o) * o) ~ X% , With 7L=n[-u(;—T:' hence

oo

i 2
2
(K-T)z"'%—xl A with A=n —] ;

2
2 2 -
Theorem 6.7.2: MSE ~ r? XB, awith ) = “{E_I:'
o

Ty
Proof: T X~N(i, 6% then S 2 =T N, 1) forali=1,2, .1

o c

If the x;'s are independent then, from page 130 of [31],

i 2

1t (x.-T _ -

Z[(1 )_(u T)+(u T)] ..Xil,asaresult
i=1

o G )

N -T2 o i
i 8] . -
Z n ~ n xn’ A'Wlth K:"[L—J .

i=1 o
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2
Theorem 6.7.3; s2~-r-%xﬁ_1 .

2
(n-1)s 2
~ %1

Proof: If X~N(}, 02) then from page 135 of [31]
2
c

2 .2
As aresult skfjxn_l .

Theorem 6.7.4: =~ 1k Fl K(n-1), A where n is the subgroup sample size, k the
S 2 ¥

number of subgroups and F1 k(n'_ b2 the non-central F distribution with 1 and k(n-1)

2
u-T
df and non-centrality parameter A=nkj ——| .
o)

Proof: If X~N(u, 02) analogous to the proof for Theorem 6.7.1

2
X - 2.0%,°2 with A=nk p-T
X-T) nkxl, ! l: -

2
If the k subgroups are assumed to be independent and since sj." ~ %—X%_l for all j

k
Zl k(n-l) xk(n S)E

Then f 189 of [31] S F
en from page of [ ;z- E CL k@), &
4 _ 5 2
X-T), 1 1 | u-T
From page 190 of {31] the expected value of ——=— is > —+
2 1- nk S

k(1)

2
. : . -T .
which for a moderate number of subgroups is approximately equal to l:u jl . This
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result suggests that substituting X and S? for 1 and o2 respectively should provide a

2
reasonable estimate of I:E———T:I .
o

. - 1 -
Theorem 6.7.5: (X - T)' &' (X -T) ~ ;x; , With A=n(U-T)'Z ' -7 .
- i
Proof: If)S~MVNp(p, Z)then X ~MVNp(pq = x)

] 4 - 2 i
From page 113 of [43]n(X - T)' " (X-T)~X, 5 withA=n@-Ty =" (u = T).

0
1 -1
Theorem 6.7.6: MSE, = E—Z(Xi - X;-T~ Ell'xip, A
i=1 T~ T

1 -1 2
Proof: If X~MVNp(i, Z) then from Theorem 6.7.5, (X-1)'Z " (X-T) ~ X, 5 with

A= - T 2'1 (E, - 1). Assuming the X's to be independent it follows that

bt
Z(Xi D'z (X, -D~ %%, , whereA=n(u-T)'E" (1 - T). Therefore

i=1

n
1 5 1.2
HE()Ei'T)Z ()Ei"pﬂ'ﬁ_xnp,k’

i=

n
-1 -
Theorem 6.7.7; %Z(Xij- XY X-X)~ -111- X(zn_l)p

i=1

Proof: If X~MVNp(y, ) then (X, - X~MVNp(0, Zlx)

1
: vy : 2
Then it follows that 'rlT 2(}1(i - }5) z ()Ei - )5) ~ -11; Xta-13p -

i=1
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6.8. EXAMPLES

Example 6.8.1: The example presented is taken from question 6.10, page 144 of [25]. An

arbifrary target value of 12 is assumed resulting in the following

subgrowp# X; X, X3 X, X ®-TY°  MSE §
1 5 12 10 3 75 20.250 44.67 17.667
2 1 2 18 525 45563  133.67 72.917
3 1 8 316 7 25.000 78.00 44.667
4 7 14 18 1 10 4.000 62.00 56.667
5 3 19 5 8 875  10.563 65.00 50.917
6 18 16 14 0 12 0.000 66.67 66.667
7 9 0 3 5 425  60.063 94.33 14.250
8 14 11 0 4 725 22563 71.00 40.917
9 20 12 23 13 17 25.000 62.00 28.667
10 16 8 18 22 16 16.000 56.00 34.667
11 2 14 17 825  14.063 91.00 72.250
12 5 1 2 6 3.5 72250 102.00 5.667
13 5 20 6 2 825  14.063 83.00 64.250
14 9 16 12 8 11.25 0.563 13.67 12.917
15 3 35 15 0 1325 1.563 54.33 252.250
16 11 11 3 4 725 22563 49.00 18.917
17 19 4 9 21 13.25 1.563 67.67 65.583
18 17 14 4 19 135 2.250 47.33 44.333
19 5 6 22 11 11 1.000 62.00 60.667
20 4 319 12 95 6.250 64.67 56.333
21 8 18 0 7 825  14.063 73.67 54.917
22 20 21 5 14 15 9.000 66.00 54.000
23 16 0 7 6 11 8.25  14.063 65.67 46.917
24 13 8 11 8 10 4.000 11.33 6.000
25 11 5 25 12 1325 1.563 73.00 70.917
26 1 3 1 7 3 81.000  116.00 8.000
27 4 12 4 13 825  14.063 43.00 24.250
28 11 17 12 10 125 0.250 10.00 9.667
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k X — k g2 - 2
For T=12 and with X = Zﬁ —973and S Z-f(— = 48.42, the value of [“ _ ] =
j=1 j=1 o

[9.73 - 12]°

R - 0.1064. Rounding off to the nearest 0.05 for computational purposes, finds

2
[ﬂ] = 0.10. The UCL for the measures of interest are then
o
i) Ay02 =29202 =292 S*= 1414,

i) C302 =59202 =592 S°= 286.6,

iii)By 02 =4.7202 = 472 §°= 2285,

n

2
Plotting (X - T) , and the UCL's for (X - T)Z, 52 and MSE results in the plot depicted in
Figure 6.8.2.
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Figure 6.8.2. The Plot of (% - T)° and the UCL's for (% -T)., s° and MSE.

From Figure 6.8.7 it is apparent that none of the subgroups exceed the UCL for
(X - T)? and generally most of them appear to be relatively close to 0 indicating
reasonable proximity to the target. Subgroups 7, 12 and 26 appear to have the largest
departures from the target but are well within the control limits. Nineteen of the subgroups

have sampling means below the target as denoted by the negative signs. The longest
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sequence of similar signs is five (subgroups 1 to 5), indicating that the longest run of
subgroup means either above or below (in this case below) the target is five. There does
not appear to be any significant drifting from the target nor does there appear to be any
cyclical relationships occurring. However before any formal inferences can be drawn the

MSE for each subgroup must be plotted (see Figure 6.8.3).
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Figure 6.8.3. The Plot of (¥ - T)', MSE and the UCLSs.
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From Figure 6.8.3, none of the subgroups exceed the UCL for MSE, but
subgroup 15 has a MSE that exceeds the UCL for s2. Closer investigation finds (% - T)? to
be quite small for subgroup 15 resulting in a large difference between (X - T)2 and MSE.
Clearly this difference will exceed the UCL for s2 however 5125 should be included in the
plot (see Figure 6.8.4). Analysis of the rest of the plot follows in a predictable fashion.
Subgroups 14, 24 and 28 may require investigation as they appear to have small variability

while being quite close to the target.
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Figure 6.84. The Plot of (x” - T)z, MSE and one extreme value of sz.
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Example 6.8.2: The data as taken from [34] consists of 30 bivariate observations taken
from a steel manufacturing process. In order to illustrate the multivariate control chart
procedure the 30 observations were taken in groups of size five with the groupings formed
using the sequential sample numbers. An arbitrary target of (175, 55) was assumed with

the following results

Subgroup  Sample Number X=(x.y) I MSE
1 1 143, 34.2
2 200, 57.0

3 160, 47.5 1.12 2.92
4 . 181, 53.4
5 148, 47.8
2 6 178, 51.5
7 162, 45.9

8 215, 59.1 0.54 2.18
9 161, 48.4
10 141, 47.3
3 11 175, 57.3
12 187, 58.5

13 187, 58.2 0.10 0.43
14 186, 57.0
15 172, 49.4
4 16 182, 57.2
17 177, 50.6

18 204, 55.1 0.79 1.30
19 178, 50.9
20 196, 57.9
5 21 160, 45.5
22 183, 53.9

23 179, 51.2 0.42 0.86
24 194, 57.5
25 181, 55.6
6 26 195, 58.0
427 134, 47.5

28 187, 42.0 0.72 4.32
29 135, 40.5
30 159, 58.0

From Tables 6.6.1,6.6.2 and 6.6.3, '52’ 5. 035 = 3.71 , MSEZ’ 5, 035 = 6.24 and
82 = 4.71. The control chart associated with this set of data (Figure 6.8.5)

2,5 035

indicates that none of the subgroups have centers of mass dramatically different from the
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target (T ) and although there appears to be a large jump in MSE,, in subgroup 6 all have

MSE,, and 8}2, values well within the upper control limits. These results tend to suggest that
the process is in-control. If additional information regarding individual observations is
required this could be included in Figure 6.8.5. For example a closer examination of the

observations in Subgroup 6 may be warranted here.
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Figure 6.85. Control Chart for Example 6.8.2.
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6.9. COMMENTS

A simultaneous control chart has been presented that mirrors the recent changes
occurring in Quality Control circles. The proposed chart is analogous to the traditional X
and s chart providing much of the information available from the traditional control charts
while incorporating additional pertinent information. The additional information has been

incorporated in a single plot without loss of clarity.

The calculations required for the univariate case are straightforward requiring only a

hand-held calculator. The procedure is easily adapted to computer analysis and graphics.

The theory used to derive the results, in our opinion is clearer than that associated
with the traditional charts as all UCLs represent a specific percentile of the distribution

associated with the measurement.

Many of the properties derived and examined for the traditional control charts apply
to the new procedure as the measures used are very similar in nature. Replacing the target
value in the new procedure with )={ results in a plot that provides all the information
included in the traditional control chart. However in current philosophy much emphasis is

placed on proximity to the target value when monitoring and assessing a process.

The simultaneous nature of the proposed procedure has been achieved without
sacrificing clarity. The resultant control chart appears to purvey more information than is
available in traditional charts while not being dramatically different from the traditional
charts in their motivationlor inference. Although the new procedure does not provide all

the information that may be contained in a boxplot style chart it does have some features

such as explicit boundary values for s? and MSE that are not available in a boxplot.
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The proposed multivariate procedure is similar to the traditional Hotelling T2 style
of chart. The proposed plot allows investigation of both proximity to the target and overall

variability where Hotelling's procedure confounds these measures.
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