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Abstract

The ranking method used for testing the equivalence of two distributions has been

studied for decades and is widely adopted for its simplicity. However, due to the

complexity of calculations, the power of the test is either estimated by normal

approximation or found when an appropriate alternative is given. Here, via a

Finite Markov chain imbedding (FMCI) technique, we are able to establish the

marginal and joint distributions of the rank statistics considering the shift and

scale parameters, respectively and simultaneously, under two continuous distribution

functions. Furthermore, the procedures of distribution equivalence tests and their

power functions are discussed. Numerical results of a joint distribution of two rank

statistics under the standard normal distribution and the powers for a sequence of

alternative normal distributions with mean from −20 to 20 and standard deviation

from 1 to 9 and their reciprocals are presented. In addition, we discuss the powers

of the rank statistics under the Lehmann alternatives.

Wallenstein et al. (1993, 1994) discussed power via combinatorial calculations for

the scan statistic against a pulse alternative; however, unless certain proper conditions

are given, computational difficulties exist. Our work extends their results and

provides an alternative way to obtain the distribution of a scan statistic under various

alternative conditions. An efficient and intuitive expression for the distribution as

well as the power of the scan statistic are introduced via the FMCI. The numerical

results of the exact power for a discrete scan statistic against various conditions

are presented. Powers through the finite Markov chain imbedding method and a



combinatorial algorithm for a continuous scan statistic against a pulse alternative

of a higher risk for a disease on a specified subinterval time are also discussed and

compared.

Keywords: FMCI; hypothesis test; Lehmann alternative; rank statistic; rank-sum

test; scan statistic; shift parameter, scale parameter, power
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Chapter 1

Introduction

Data express opinions through statistical analyses and the duties for statisticians

are to dig out the information hidden in the numbers with appropriate statistical

analysis methods. In the field of Statistics, descriptive statistics and inferential

statistics are two well-known broad subdivisions. Descriptive statistics draws the

basic features of the given data by simple summaries or graphical representations.

Moreover, developing conclusions, making decisions, and having predictions are

cases of statistical inference. Procedures, such as modeling, correlation analysis

and hypotheses testing, are based on the population assumptions. When specific

assumptions are known not to hold or when one is not willing to verify such

assumptions, nonparametric statistical procedures fill the need. The advantage of

using certain nonparametric statistics is its distribution-free property under the

null hypothesis. However, one of the disadvantages is that the power function

for the nonparametric test in most cases could only be found by either assuming

an appropriate alternative distribution function or using the normality limiting

distribution. The main difficulty of finding power for a nonparametric test is due

to the complexity in mathematical calculations. Since nonparametric statistics are
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widely applied to the studies of real-world phenomena, the method of the Finite

Markov Chain Imbedding, brought out by the end of the twentieth century, is used

to study the distributions of proposed nonparametric statistics and their power

functions.

1.1 Finite Markov Chain Imbedding Technique

Suppose we have a index set Γ = {0, 1, . . .} and a state space of a finite number

of possible values Ωt = {a1, . . . , amt}, t ∈ Γ. A stochastic process {Yt, t ∈ Γ} is

a set of random variables that takes values on Ωt where Yt is referred to as the

state of the process at time t. Here, the stochastic process is called a discrete-time

process since the index set is countable. The index set could also be an interval

of the real line in which case the corresponding stochastic process is said to be a

continuous-time process. Stochastic process is a branch of probability theory that

offers sophisticated solutions to many practical questions. A first order Markov chain

can be interpreted as the conditional distribution of any future state Yt+1 given the

past states Y0, . . . , Yt−1 and the present state Yt is independent of the past states

and depends only on the present state (Ross, 2000, Chap. 4). The Markov chain

is said to be homogeneous if Ωi = Ωj,∀i, j ∈ Γ and heterogeneous if at least one

Ωi 6= Ωj,, for any i 6= j.

The outcome of a trial which is either a success or a failure is called a Bernoulli or

bistate trial. A sequence of consecutive successes or failures is defined as a successes

or failures run. For example, a successes or failures run of size 3 represents the

sequence of outcomes SSS or FFF, respectively. In the statistical model there are

five commonly used statistics of success runs:

2



(i) the number of success runs of size exactly k;

(ii) the number of success runs of size greater than or equal to k;

(iii) the number of non-overlapping consecutive k successes;

(iv) the number of overlapping consecutive k successes;

(v) the size of the longest success run.

More generally, there are m possible outcomes for one trial. A simple or compound

pattern, instead of runs, is of interest for multi-state cases. For instance the number

of the DNA pattern “ACT” in the sequence “ACGGTCACTGGTCACT” is 2.

Traditionally, the occurrence of runs and patterns in a sequence of n trials is studied

through combinatorial calculations which are complicated and tedious. Fu and

Koutras (1994) propose the finite Markov chain imbedding technique (FMCI), a

simple unified approach, for the distribution theory of runs and the waiting time for

the mth occurrence of a specific run or pattern. Since then, there has been a good

number of studies adopting the method of FMCI to the distribution theory of runs

and patterns in a sequence of multi-state trials, see Koutras and Alexandrou (1995),

Fu (1996), Lou (1996), Smit (1996), Lou (1997), Fu (2001), Fu et al. (2002), Fu

and Lou (2008). This FMCI technique has also been applied in various studies, for

instance distribution theory of waiting time (Koutras, 1996; Koutras and Alexandrou,

1997; Chang, 2005; Fu and Lou, 2006), reliability systems (Koutras, 1996; Fu, 2002;

Fu et al., 2002; Koutras and Maravelakis, 1997; Zhao et al., 2007; Zhao and Cui, 2009;

Antzoulakos et al., 2009), random permutations (Fu, 1995; Fu and Jonson, 2000;

Fu and Lou, 2000; Johnson, 2001, 2002), DNA sequence analysis (Lou, 2003; Nuel,
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2006), continuity of care measure (Lou, 1997, 1999; Fu and Lou, 2000), distributions

of Eulerian and Simon Newcomb numbers (Fu et al., 1999), and boundary crossing

probabilities for Brownian motion (Fu and Wu, 2010). A decade after the method

was introduced, Fu and Lou (2003) summarize the studies in the book Distribution

of runs and patterns and its applications and point out:

However, finding the appropriate combinatorial identities to derive the probability

distribution can be difficult, if not impossible, for complex runs and patterns, and

this perhaps is the reason why the exact distributions of many common statistics

defined on runs and patterns remain unknown.

Recently, Fu and Lou (2007) show that the number of simple or compound

patterns in a sequence of multi-states trials has a asymptotically normal distribution.

Fu and Jonson (2009) and Fu et al. (2012) approximate the tail probability for

the distribution of the number of patterns in a long sequence of independent and

identically distributed (i.i.d.) multi-state or Markov-dependent trials through finite

Markov chain imbedding.

1.2 Rank-sum tests

Suppose that after observing X1, . . . , Xm and Y1, . . . , Yn from the cumulative distri-

bution functions F and G, respectively, we wish to test the hypothesis, for some

θ 6= 0:

Ho : F (x) = G(x) versus Ha : F (x) = G(x− θ), for all x.

4



This is known as the shift alternative. Wilcoxon (1945) proposes a ranking method

for testing the significance of the difference of the means of the two populations,

which is also known as the Wilcoxon-Mann-Whitney (WMW) test or Wilcoxon

rank-sum test. Wilcoxon defines a statistic WY which is the sum of the ranks of the

y′s in the ordered sequence of x′s and y′s, equivalent to

WY =
n∑
j=1

{ # of x′is < yj }+
n(n+ 1)

2
.

Mann and Whitney (1947) introduce an elaborate idea on ranking tests and

proposed the statistic

U =
n∑
j=1

{ # of x′is > yj } = mn−WY +
1

2
n(n+ 1).

They also prove that the limiting distribution, in terms of the Wilcoxon form of the

test, is normal

ZW =
WY − E(WY )√

Var(WY )

L→ N(0, 1)

as m and n tend to infinity in any arbitrary manner. Hence the normal approximation

with continuity correction gives

power ≈ 1− Φ

 c− 1
2
mnp1√

Var(WY )
| Ha
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where c is the value such that

Φ

 c− 1
2
mn√

1
12
mn(m+ n+ 1)

∣∣∣∣∣∣ Ho

 ≥ 1− α,

p1 = P (X < Y ),

and the variance of the test statistic is defined by

Var(ZW ) = mnp1(1− p1) +mn(n− 1)(p2 − p21) +mn(m− 1)(p3 − p21),

with

p2 = P (X < Y and X < Y ′),

X, Y and Y ′ being independently distributed, X with distribution F , and Y and Y ′

having the same distribution G, and

p3 = P (X < Y and X ′ < Y ),

X,X ′ and Y being independently distributed, X and X ′ having the same distribution

F , and Y with distribution G. Over the years, there have been studies on finding

the exact or approximate power for the Wilcoxon rank-sum test. For instance, Shieh

et al. (2006) derive the exact power for the uniform, normal, double exponential

and exponential shift models by choosing an appropriate alternative distribution

function in order to determine the values of p1, p2, and p3. Rosner and Glynn (2009)

discuss power against alternatives of the form

6



Φ−1(FY (y)) = Φ−1(FX(y)) + µ for some µ 6= 0,

where the underlying distributions FX and FY are normal. Collings and Hamilton

(1988) presented a bootstrap method to find the empirical distribution functions

in order to approximate the power against the shift alternative. Lehmann (1953)

drives the power function as

P (S1 = s1, S2 = s2, · · · , Sn = sn) =
kn(
m+n
m

) n∏
j=1

Γ(sj + jk − j)
Γ(sj)

Γ(sj+1)

Γ(sj+1 + jk − j)
,

where sj is the rank of yj in the combined samples for the alternative hypothesis of

GY (x) = FX(x)k, for all x,

where k is a positive integer. However Lehmann (1998) mentions that the power of the

Wilcoxon rank-sum test obtained here was only qualitative due to the computation

of numerical values of the power is considerably complicated when F and G are

continuous distributions with F 6= G.

As the rank-sum test is widely adopted for testing the centre difference of two

distributions, it is natural to study the efficiency of a rank-sum test for variability

(Ansari and Bradley, 1960). For decades, studies have been focused on proposing

new definitions of the rank statistic and using the methods of Chernoff and Savage

to show the efficiency of the proposed statistic relative to the F-test. Four definitions

of the rank statistics considering scale parameter are introduced below.
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Let Di = i be the rank assigned to the ith smallest value in the combined and

ordered sample of X ′s and Y ′s and define I(Di) as the indicator variable such that

I(Di) =

{
1 if Di is from X-sample
0 otherwise.

Mood (1954) proposes to use Di = i and the test statistic

m+n∑
i=1

(
Di −

m+ n+ 1

2

)2

(1− I(Di)),

the sum of the squared deviations of each rank of the y observations to the mean

rank. The larger/smaller the rank statistic, the more/less variability the distribution

will be. Klotz (1962) proposes the statistic

m+n∑
i=1

(
Φ−1

(
Di

m+ n+ 1

))2

I(Di) (1.1)

where Φ−1 is the inverse of the standard cumulative normal distribution and Di = i.

The idea of this definition is originated from giving more weight to the extreme

ranks. Siegel and Tukey (1960) address assigning the rank Di in the following sense:

rank 1 to the smallest data point, rank 2 and 3 to the two largest numbers in the

data, ranks 4 and 5 to the next two lowest, etc. This ranking procedure, given m = 8

and n = 9, is presented in the following example:

Data: 0 3 5 6 8 8 10 10 11 12 13 13 14 15 16 17
Sample: X Y X Y X Y Y Y Y Y X X Y X X X

Rank Di: 1 4 5 8 9 12 13 16 15 14 11 10 7 6 3 2

8



Ansari and Bradley (1960) suggests to assign DI starting from both ends beginning

with unity and working towards the centre. Hence, if m + n is even, the array of

ranks Di are given by

1, 2, 3, . . . , (m+ n)/2, (m+ n)/2, . . . , 3, 2, 1;

and , if m+ n is odd, the array of ranks Di becomes

1, 2, 3, . . . , (m+ n− 1)/2, (m+ n+ 1)/2 (m+ n− 1)/2, . . . , 3, 2, 1.

Both Siegel and Tukey (1960) and Ansari and Bradley (1960) defined the associated

rank statistic as

m+n∑
i=1

DiI(Di),

except Di, i = 1, . . . ,m + n are defined accordingly. Ansari and Bradley (1960)

mention that if the means of the X and Y samples cannot be considered equal, the

difference in location has severe impact on all the tests of dispersion. Klotz (1962)

shows that the power of a rank test can be found by integrating the joint density

of X and Y samples over that part of the m+ n dimensional space defined by the

alternative orderings which lie in the critical region of the test, for which conditions

are very strict.
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1.3 Scan Statistics

Let X1, X2, . . . , Xn be a sequence of bistate trials with outcomes 1 (or S ) and 0 (or

F ). The scan statistic of window size r is defined as

Sn(r) = max
1≤i≤n−r+1

Sn(r, i), (1.2)

where

Sn(r, i) =
i+r−1∑
j=i

Xj.

The main idea of scan statistics is to detect whether there is an unusual number of

specified outcomes in any r-consecutive trials among a sequence of n trials. Statistics

can help identify that a change has taken place in the underlying process if any

r-consecutive trials have plenty of specified outcomes relative to the null assumption,

which is known as cluster analysis (Naus, 1974). Scan statistics have been one of

the most widely used methods in many fields, such as astronomy, bioinformatics,

electrical engineering, epidemiology, genetics, reliability and quality control, and

telecommunication. For instance, one interesting application of scan statistic is to

the problem of gene mapping. Hoh and Ott (2000) use a scan statistic with varying

length to examine the genome for susceptibility genes to autism. In their work, they

successfully detected a possible marker associated with the disease. This motivated

authors to investigate power of tests based on scan statistics, an important issue to

establish the credibility of a hypothesis test.
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For bistate trials, it is common to assume the null distribution of a Bernoulli

sequence of n independent trials with a constant probability of success

Ho : πt = π for t = 1, 2 . . . , n.

Wallenstein et al. (1994) present approximations as well as bounds for power func-

tions of a scan statistic against some contiguous sequence of Ir events with higher

probability of observing a success which starts at unknown trial τ

Ha : πt =

{
φ τ ≤ t ≤ τ + Ir − 1
π otherwise,

(1.3)

where φ > π and I is a positive integer. Let sα be the critical value at the α level of

significance, such that

P (Sn(r) ≥ sα|Ho) ≤ α.

Then, the approximation for the power function performs well for I = 1 and is

defined as

1−Q(φ, π, π)

(
Q(π, π, π)

Q(π, π)

)n/r−3
(1.4)

where

Q(p, q) = F (sα − 1, n, q)F (sα − 1, n, p)− b(sα, n, p)
sα−1∑
j=1

θ−jF (sα − j − 1, n, q)

11



and

Q(p, q, v) = F (sα − 1, n, p)F (sα − 1, n, q)F (sα − 1, n, v)

− b(sα, n, q)F (sα − 1, n, v)
sα−1∑
j=1

{
p/(1− p)
q/(1− q)

}j
F (sα − j − 1, n, p)

− b(sα, n, q)F (sα − 1, n, p)
sα−1∑
j=1

{
v/(1− v)

q/(1− q)

}j
F (sα − j − 1, n, v)

+
∑
y

∑
x

∑
z

b(x, n, p)b(y, n, q)b(z, n, v)f(x, y, z) {g(x, y, z) + h(x, y, z)} ,

where

θ =
φ(1− π)

π(1− φ)

b(sα, n, q) =

(
n

sα

)
qsα(1− q)n−sα

F (sα, n, q) =
sα∑
j=0

b(j, n, q),

f(x, y, z) = x!(n− x)!y!(n− y)!z!(n− z)!,

g(x, y, z) = ((x+ y − sα)!(n+ sα − x− y)!(y + z − sα)!(n+ sα − y − z)!(2sα − y)!(n+ y − 2sα)!)
−1

,
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h(x, y, z) = ((x+ y + z − 2sα)!(n+ 2sα − x− y − z)!)−1

×
(
(sα!(n− sα)!)−2 − (y!(n− y)!(2sα − y)!(n+ y − 2sα)!)−1

)
,

where g and h are set to be 0 when any expression w! for w < 0 and the summation

is taken over 1 ≤ x, y, z ≤ sα − 1 for τ equal to 1,

1− Q(π, φ, π)Q(φ, π, π)

Q(φ, π)

(
Q(π, π, π)

Q(π, π)

)n/r−4
(1.5)

for τ equal to r + 1 or n− 2r + 1, and

1−Q(π, φ, π)
Q(φ, π, π)2

Q(φ, π)2

(
Q(π, π, π)

Q(π, π)

)n/r−5
(1.6)

for 2r + 1 ≤ τ ≤ n− 3r + 1. Moreover, the value of τ can only be 1, r + 1, 2r + 1,

. . . . Due to the tediousness of the equations, the power functions can be found in

Wallenstein et al. (1994) when 1 < I ≤ bn−τ+1
r
c. The approximate power functions

provided in their work not only require that the number of events with a higher

chance of a success is a multiple of the window size but also the ratio of the length

of the sequence to the size of the window has to be larger than 3, 4 or 5, depending

on the value of τ .

Fu (2001) discusses that the distribution of a discrete scan statistic can be derived

from a waiting time distribution of a special type of compound pattern which follows

P (Sn(r) < s) = P (W (Λr,s) > n)

= ξ0N
n
r,s1

′, (1.7)
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where the variable W (Λr,s) is defined as the minimum number of trials required to

obtain any one of the simple pattern which is associated with the scan statistic Sn(r),

ξ0 is the initial distribution of the embedded Markov chain, Nr,s is the transition

probability matrix defined on the state space of the embedded Markov chain with

the absorbing state excluded and 1′ is the transpose of the row vector 1 = (1, . . . , 1).

Let N(t) be the total number of successes that have occurred up to time t, which

is a Poisson process. Considering a time frame (0, 1], a continuous scan statistic

is defined as the maximum number of successes in a subinterval of fixed length w

moving over the entire time interval

S(w) = sup
0<t≤1−w

S(w, t) = sup
0<t≤1−w

{N(t+ w)−N(t)} .

Through combinatorial calculations Wallenstein et al. (1993) derive the approximate

power for a scan statistic to test

Ho : N(t) ∼ Poisson(λ) for 0 < t ≤ 1− w

against a pulse alternative of a higher risk of disease on a specified subinterval time

Ha : N(t) ∼ Poisson(θλ) for τ − w ≤ t < τ + w
Poisson(λ) for [0 < t < τ − w)

⋃
[τ + w < t ≤ 1− w],

(1.8)

where θ > 1 and w ≤ τ ≤ 1 − 2w. That the number of successes should be

considered unknown in designing trials to detect clustering was pointed out in their

work, which implied that the unconditional scan statistic is more useful comparing
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to the conditional one. Let sα be the critical value at the α level of significance, that

is

P (S(w) ≥ sα|Ho) ≤ α,

and the approximations for finding the power is given by

1−QLH(Q3/Q2)
1/w−2, (1.9)

where

QLH = F (sα − 1, θλ)F (sα − 1, λ)

− p(sα, θλ)
{
F (sα − 1, λ)− θ1−sα exp(θλ− λ)F (sα − 1, θλ)

}
/(θ − 1),

where

p(sα, θ) =
eθθsα
sα!

, and F (sα, θ) =
sα∑
i=0

eθθi

i!

for the case where the pulse begins at τ = w, and by

1−QLHL(Q3/Q2)
1/w−3, (1.10)

where
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QLHL = F (sα − 1, θλ)F 2(sα − 1, λ)− 2F (sα − 1, λ)p(sα, θλ)

×
{
F (sα − 1, λ)− θ1−sα exp(θλ− λ)F (sα − 1, θλ)

}
/(θ − 1)

+
sα−1∑
j=1

p(sα + j, θλ)θ−2jF 2(sα − j − 1, λ) + S(λ, θ)

where

S(λ, θ) =
sα−2∑
j=1

(F (sα − j − 2, λ)(sα − j − 1− λ) + λp(sα − j − 2, λ))

×
(
p(sα, λ)p(sα, θλ)θ−j − p(sα + j, λ)p(sα − j, θλ)

)

for the case where the pulse begins in the interval w < τ ≤ 1− 2w. The expressions

for Q2 and Q3 in Equations (1.6) and (1.10) are identical to QLH and QLHL evaluated

under θ = 1. The disadvantage of these approximations is that the length of the

sub-interval time with a higher rate is fixed to be 2w.

Fu et al. (2012) discretize the interval to n equal subintervals and proved that

for a sufficient large n the limiting distribution can be found by

P ( sup
0<t≤1−w

S(w, t) < s) = lim
n→∞

P (Sn(bnwc+ k) < s)

= lim
n→∞

ξ0N
n
r,s(pn)1′, (1.11)

where k is an arbitrary positive integer, pn = λ/n, r = bnwc+ k, and bc is the floor

function mapping a real number to the largest previous integer.
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Rothman (1967, 1969) have shown that the scan statistic is uniformly most

powerful for testing the null hypotheses of randomness against the clustering alter-

natives. Power analysis is used not only for calculating the minimum requirement

of the sample size, but also to make comparisons between different statistical test-

ing procedures. Our understanding is that power functions through combinatorial

calculations exhibit computation difficulties unless specific conditions are imposed,

such as choosing a proper starting point or number of events with a higher chance

of success. These conditions significantly limit the use of these tests in practice.

1.4 Summary

Nonparametric procedures assess the hypotheses based on the level of the preference

or the rank of the numerical observations. The term of rank is used in most of the

nonparametric studies. A full-scale development of ranking methods was sparked by

a paper(Wilcoxon, 1945) in which a test for comparing two treatments is discussed.

There has been a good number of publications ever since. The ranking method

is widely used; however, in most cases, the power of associated tests has been

approximated or evaluated only in very specific settings. Our approach aims at

releasing some of the conditions for finding the distribution of the proposed rank

statistic under the null hypothesis as well as alternative.

We first focus on applying the FMCI method to study the distribution of the rank

statistic considering shift and scale parameters, respectively. A joint distribution

of rank statistics considering shift and scale parameters simultaneously is induced

throughout our work which, to the best of our knowledge, has not been studied in

the literature. The main strength of using FMCI is to derive the distribution of the
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rank statistic without giving any conditions. Therefore, under the null hypothesis of

F = G, we are able to identify a proper critical region and, under the alternative

assumption, the power of the test can be determined naturally. The distribution-free

property of the statistic Un is also demonstrated under the null hypothesis of the

distribution equivalence.

Wallenstein et al. (1993, 1994) discuss the power, via combinatorial calculation,

for scan statistics against a pulse alternative; however, there exist computational

difficulties unless given certain proper conditions. An alternative method to retrieve

the distribution of discrete and continuous scan statistics given an alternative

distribution is proposed to eliminate the conditions for determining the power of the

scan statistic.

This dissertation is organized in the following way. Chapter 2 introduces some

preliminary results regarding the basic ideas and techniques of finite Markov chain

imbedding.

Chapter 3 proposes procedures for deriving the distribution of the rank statistic

considering either the shift or scale parameter, respectively. The procedures are

general and can be applied to either two identical distribution functions of interest or

two continuous density functions; therefore, their power function can be defined via

FMCI. One significant contribution of this dissertation is to retrieve the joint distri-

bution of the rank statistics considering location and scale parameters simultaneously

as well as its power function due to the property of the proposed statistic. Numerical

results of a joint distribution and some powers of the rank statistics against shift

parameter and scale parameter, individually and simultaneously, and the powers of

the rank statistics under a family of Lehmann alternatives are presented.
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Chapter 4 first gives the expressions for both exact and approximate distributions

of a scan statistic for a k-block independent Bernoulli trials and for Markov dependent

trials. Using the proposed method, we present numerical results of power for a

discrete scan statistic of a sequence of n homogeneous independent bistate trials

against alternatives (i) 2-block independent trials, (ii) a certain number of trials with

higher chance of success which starts at various positions in a sequence of n bistate

trials, (iii) the chance of a success for n trials following a cyclic pattern, and (iv) a

sequence of n Markov dependent trials; and powers for a continuous scan statistic

against a pulse alternative stated in (1.8). We end the dissertation with a summary

and a discussion of possible topics for future research in Chapter 5.
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Chapter 2

Preliminary Results

2.1 Patterns

Let {Xt}nt=1 be a sequence of multi-state trials that takes value in a set S =

{a1, a2, . . . , ad} of d possible outcomes. If the value of d is 2, {Xt}nt=1 is reduced to

a sequence of Bernoulli trials.

Definition 1. Λ is called a simple pattern of length k if Λ is composed of a specified

k symbols in S.

Definition 2. Patterns are said to be distinct if and only if each of the patterns is

not part of the other patterns.

Definition 3. Λ is called a compound pattern if it is a union of l distinct simple

patterns.

For example, let S = {a, c, g, t} and Λ1 = act, Λ2 = tcc, Λ3 = ata, and Λ4 =

Λ1 ∪ Λ2 ∪ Λ3. We have three simple patterns Λ1, Λ2, and Λ3. Patterns Λ1, Λ2, and

Λ3 are distinct as each of the patterns is not part of the other two patterns. Finally,

Λ4 is a compound pattern.

20



2.2 Finite Markov Chain Imbedding

Let Γn = {0, 1, 2, · · · , n} be an index set, and let Ωt = {a1, . . . , amt}, t ∈ Γn be a

finite state space where mi, . . . ,mt are positive integers.

Definition 4. The non-negative integer-valued random variable R(Λ) is finite

Markov chain imbeddable if:

(a) there exists a finite Markov chain {Yt : t ∈ Γn} defined on a finite state space

Ωt with initial probability vector ξ0,

(b) there exists a finite partition {Cr : r = 1, · · · , kn} on the state space Ωn, and

(c) for every r = 1, · · · , kn, we have

P (R(Λ) = r) = P (Yn ∈ Cr|ξ0).

Definition 5. A state α is called an absorbing state if and only if the system never

leaves the state α once it enters α; i.e. pαα ≡ 1.

Let {Mt}nt=1 be the sequence of mt−1 ×mt transition probability matrices of the

finite Markov chain Yt defined on the state space Ωt and the initial probability

distribution ξ0 = (P (Y0 = a1), P (Y0 = a2), . . . , P (Y0 = am1)).

The following Theorems (1) to (5) can be found in (Fu and Lou, 2003). We omit

the proofs.

Theorem 1. R(Λ) is finite Markov chain imbeddable, and
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P (R(Λ) = r) = ξ0(
n∏
t=1

Mt)U
′(Cr),

where U(Cr) =
∑
k:ak∈Cr ek, ek is a 1 × m unit row vector corresponding to state

ak, ξ0 is the initial probability vector, and Mt, t = 1, 2, . . . , n, are the transition

probability matrices of the imbedded Markov chain.

Let Ω0 = · · · = Ωn = Ω and A = {α1, α2, . . . , αa} be the set of all absorbing states

of a homogeneous Markov Chain {Yt} with transition probability matrix M . After

some proper arrangement of the state space Ω, the transition probability matrix can

be expressed in the form

M =

[
N(m−a)×(m−a) C(m−a)×a

Oa×(m−a) Ia×a

]
, (2.1)

where m and a(m > a) are the numbers of states in Ω and A. Practically, the system

always starts in a non-absorbing state. Consequently, we assume that the initial

probability distribution is in the form

ξ0 = (ξ : 0)1×m,

where ξ = (ξ1, ξ2, . . . , ξm−a), 0 = (0, 0, . . . , 0)1×a and
∑m−a
i=1 ξi = 1.

Theorem 2. Given a transition probability matrix M of a homogeneous Markov

Chain {Yt} in the form of Eq. (2.1), the probability that the the system first enters

the set of absorbing states at time n can be obtained from
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P (Yn ∈ A, Yn−1 /∈ A, · · · , Y1 /∈ A|ξ0) = ξNn−1(I−N)1′. (2.2)

Theorem 3. For any transitive state i ∈ Ω− A, we have

P (Yn = i, Yn−1 /∈ A, · · · , Y1 /∈ A|ξ0) = ξNne′i. (2.3)

Theorem 4. For any absorbing state j ∈ A, the probability of the system first

entering the absorbing state j at the nth step is

P (Yn = j, Yn−1 /∈ A, · · · , Y1 /∈ A|ξ0) = ξNn−1C′j, (2.4)

where C′j is the jth column of matrix C.

2.3 Waiting-Time Distribution

Let Λ = b1b2 . . . bl be a pattern of interest of size l of interest and the random variable

W (Λ) be defined as the waiting time for the first occurrence of the pattern Λ, i.e.

W (Λ) = inf{n : Xn−l+1 = b1, Xn−l+2 = b2, · · · , Xn = bl},

in a sequence of i.i.d. multistate trials {Xt}nt=1. For instance, given an observed DNA

sequence ACGGTCACTGGTCACT , W (ACT ) = 9 means the pattern of interest

ACT occurs for the first time at the 9th trial. It is known that the waiting-time

random variable W (Λ) is homogeneous finite Markov chain imbeddable (Fu and Lou,

2003).
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Theorem 5. Given a pattern Λ, there exists a homogeneous Markov chain {Yt} on

a state space Ω with transition probability matrix

M =
Ω\α
α

[
N C

O I

]
, (2.5)

such that

(i)

P (W (Λ) = n) = ξNn−1(I−N)1′, n = 1, 2, · · · ,

where α is the set of all absorbing states in the state space Ω, ξ is the initial

distribution, I denotes an identity matrix, and 1 is a row vector with each

entry equal to one;

(ii) the probability generating function of W (Λ) is given by

ϕW (s) = 1 + (s− 1)ξ(I− sN)−11′; (2.6)

(iii) the mean of W (Λ) is

µW = ϕ
(1)
W (1), (2.7)

and the variance of W (Λ) is given by

σ2
W = ϕ

(2)
W (1) + ϕ

(1)
W (1)− (ϕ

(1)
W (1))2 (2.8)

where ϕ
(i)
W = (∂/∂s)iϕW (s)|s=1, for i = 1, 2.
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Let Xn(Λ) be the number of non-overlapping patterns occurring in the sequence

{Xi}ni=1 and Wi(Λ) be the inter-arrival times of the pattern Λ, which are i.i.d. random

variables having the same distribution as W (Λ) given in the previous theorem. There

exists a duality relationship between the non-overlapping counts and inter-arrival

times, which is given by

P (Xn(Λ) < k) = P (W1(Λ) +W2(Λ) + · · ·+Wk(Λ) > n), (2.9)

for all k ∈ N. As n→∞, Feller (1968) showed that

EXn(Λ) =
n

µW
(1 + o(n−

1
2 )). (2.10)

Theorem 6. Under non-overlap counting, the random variable Xn(Λ) is asymptoti-

cally normally distributed in the sense

Xn(Λ)− n
µW√

σ2
Wµ
−3
W n

L→ N(0, 1)

as n → ∞, where
L→ stands for convergence in law and µW and σ2

W are given in

Theorem 5.

The proof of this theorem can be found in Feller (1968) and Fu and Lou (2007).
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Chapter 3

Distributions of Rank Statistics

The Mann-Whitney-Wilcoxon(MWW) test was first addressed by Wilcoxon (1945)

and used for testing the equalites of two population location parameters. Here we

apply FMCI on this ranking method for determining the distribution of the rank

statistics considering the location and scale parameters respectively and the power of

the test. Through the procedure, we find the joint distribution of the rank statistics

against location and scale parameters, simultaneously.

3.1 Distributions of the rank statistic in the loca-

tion case

Let {X1, . . . , Xm} and {Y1, . . . , Yn} be two independent samples from the continuous

cumulative density distributions F (x) and G(x − θ), respectively. Given x =

{x1, . . . , xm} and x[i] is the ith smallest number in the sample, we have

pi = P (x[i−1] < Y < x[i]) =
∫ x[i]

x[i−1]

g(y)dy = G(x[i])−G(x[i−1]),
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for i = 1, 2, . . . ,m+ 1 where x[0] = −∞ and x[m+1] =∞. Therefore, we define the

sampling distribution of Y in the (m+ 1) intervals as

p =
(
G(x[1])−G(x[0]), . . . , G(x[m+1])−G(x[m])

)
= (p1, p2, . . . , pm+1) . (3.1)

Given m, for t = 1, 2, . . . , n, define the state space

Ωt = {Ut = (u1(t), · · · , um+1(t)) :
m+1∑
i=1

ui(t) = t and ui(t) ≥ 0, i = 1, . . . ,m+ 1},

where ui(t) is the number of y′s in the interval [x[i−1], x[i]) among y1, . . . , yt. For

each un = (u1(n), · · · , um+1(n)), we have a corresponding rank-sum Rl of y’s in the

combined sequence

Rl(Un |X) =

∑m+1
i=1 u2i (n) +

∑m+1
i=1 ui(n)

2
+

m∑
i=1

(ui(n) + 1)

 m+1∑
j=i+1

uj(n)

 . (3.2)

Theorem 7. The statistic Rl is equivalent to the statistic WY , which is addressed

by Wilcoxon in 1945.

Proof. Let

I(xi, yj) =

1 if xi < yj

0 otherwise.
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Then
∑m
i=1 I(xi, yj) is the rank of y[j] within the x observations and

∑m
i=1 I(xi, yj) + j

is the rank of y[j] in the combined sample. The rank statistic WY , sum of the ranks

of y observations, can be determined by

n∑
j=1

(
m∑
i=1

I(xi, yj) + j

)
=

n∑
j=1

m∑
i=1

I(xi, yj) +
n∑
j=1

j

=
m∑
i=1

n∑
j=1

I(xi, yj) +
n(n+ 1)

2
. (3.3)

The first summation of the first term in Equation (3.3) can be interpreted as the

number of y observations larger than xi which is
∑m+1
j=i+1 uj(n) in our expression.

It is not difficult to see that
∑m+1
i=1 ui(n) equals n the size of y sample. Therefore,

Equation (3.3) can be rewritten as

m∑
i=1

 m+1∑
j=i+1

uj(n)

+
(
∑m+1
i=1 ui(n))(

∑m+1
i=1 ui(n) + 1)

2

=
m∑
i=1

 m+1∑
j=i+1

uj(n)

+

∑m+1
i=1 ui(n)2 + 2

∑m
i=1 ui(n)(

∑m+1
j=i+1 uj(n)) +

∑m+1
i=1 ui(n)

2
.

It is then easy to see that

m∑
i=1

(ui(n) + 1)

 m+1∑
j=i+1

uj(n)

+

∑m+1
i=1 ui(n)2 +

∑m+1
i=1 ui(n)

2
= Rl.
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Next, we demonstrate that for two random samples having the same distribution

function, the distribution of the random vector Un is independent of the form of

the distribution function. The distribution of the random vector Un is discrete

uniform with the mass function one over the number of possible outcomes of the

random vector Un only when assuming F = G. In other words, the distribution

of the random variable Un can be found by the traditional combinatorial analysis

when F = G.

Theorem 8. Distribution-free property of Un

P (Un = un|Ho) =
1

Card(Ωn)
=

1(
m+n
n

) . (3.4)

Proof. We know the joint PDF of the ordered sample of x′s is given by

f(x[1], . . . , x[m]) = m!
m∏
i=1

f(xi)

and, when F = G, the conditional probability of the random variable Un given

x = (x1, . . . , xm) is

P (Un = un| x1, . . . , xm ) =
n!∏m+1

i=1 ui(n)!

m+1∏
i=1

(∫ x[i]

x[i−1]

f(y)dy

)ui(n)

=
n!∏m+1

i=1 ui(n)!

m+1∏
i=1

(
F (x[i])− F (x[i−1])

)ui(n)
,(3.5)
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where x[0] = −∞ and x[m+1] =∞. By taking the expected value of the conditional

probability, we have

P (Un = un|Ho)

=
∫
· · ·

∫
−∞ ≤ x[1] ≤ · · · ≤ x[m] ≤ ∞

P (Un| x1, . . . , xm, Ho)f(x[1], . . . , x[m]) dx[1] · · · dx[m]

=
∫
· · ·

∫
−∞ ≤ x[1] ≤ · · · ≤ x[m] ≤ ∞

n!∏m+1
i=1 ui(n)!

(F (x[1]))
u1(n)(F (x[2])− F (x[1]))

u2(n)

· · · (1− F (x[m]))
um+1(n)m!

m∏
i=1

f(xi) dx[1] · · · dx[m]

=
∫ ∞
−∞

∫ ∞
x[1]

· · ·
∫ ∞
x[m−1]

n!∏m+1
i=1 ui(n)!

(F (x[1]))
u1(n)(F (x[2])− F (x[1]))

u2(n)

· · · (1− F (x[m]))
um+1(n)m!dF (x[1]) · · · dF (x[m])

=
n!m!

(n+m)!

∫ ∞
−∞

∫ ∞
x[1]

· · ·
∫ ∞
x[m−1]

(n+m)!∏m+1
i=1 ui(n)!

(F (x[1]))
u1(n)(F (x[2])− F (x[1]))

u2(n)

· · · (1− F (x[m]))
um+1(n)dF (x[1]) · · · dF (x[m]). (3.6)

Using variable transformation, it is clear to see that the random variables F (x[1]), . . . , F (x[m])

have a Dirichlet distribution with parameters u1(n) + 1, u2(n) + 1, . . . um+1(n) + 1.

Therefore, we have

P (Un = un|Ho) =
n!m!

(n+m)!
=

1

Card(Ωn)
,

30



which is independent of the distribution function.

This is the reason that the distribution of the rank statistic Un is said to be

distribution-free under the null hypothesis. Unfortunately, when F 6= G, we will not

be able to establish the distribution of Un through Equation (3.5) as solving the

multiple integral in Equation (3.6) is either tedious or difficult given some appropriate

alternative distribution function. To overcome this difficulty, we bring in the FMCI

approach.

Let Ωt, t = 0, 1, . . . , n, be the state space which has

(
m+ t

t

)
(3.7)

possible states, Γn = {0, 1, . . . , n} be an index set, and {Zt : t ∈ Γn} be a non-

homogeneous Markov chain on the state space Ωt. As a transition probability matrix

Mt for this chain, t = 1, . . . , n, consider

Ωt

Mt = Ωt−1

 put−1,ut


(m+t−1

t−1 )×(m+t
t )

,

where

put−1,ut = P (Zt = ut|Zt−1 = ut−1)

=

{
pi if ui(t− 1) + 1 = ui(t) and uj(t− 1) = uj(t) ∀ j 6= i
0 otherwise

,
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and pi is defined in Equation (3.1).

Theorem 9. Rl(Un|X) is finite Markov chain imbeddable, and

P (Rl(Un) = r|X) = ξ(
n∏
t=1

Mt)B
′(Cr), (3.8)

where B(Cr) =
∑
k:Rl(Un)=r ek, ek is a 1×

(
m+n
n

)
unit row vector corresponding to

state un, ξ(P (Z0 = 1) = 1) is the initial probability and Mt, t = 1, . . . , n, are the

transition probability matrices of the imbedded Markov chain defined on the state

space Ωt.

Proof. For each un = (u1(n), · · · , um+1(n)) in the state space Ωn, we have a corre-

sponding rank Rl as shown in Equation (3.2). Intuitively, the minimum rank rls is

n(n+ 1)/2 and the maximum rank rlb is n(2m+ n+ 1)/2. In accordance with the

possible values of the rank Rl, we define a finite partition {Cr : r = rls, . . . , rlb} such

that

P (Zn ∈ Cr|p) = ξ(
n∏
t=1

Mt)B
′(Cr)

where B(Cr) =
∑
r:Rl(Un)=r ek, ek is a 1×

(
m+n
n

)
unit row vector corresponding to

state Un, we then obtain the conditional probability of the rank Rl.

Then, the Law of Large Numbers (LLN) is used to determine the probability of Un

for two continuous F and G
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1

N

N∑
i=1

P (Un = un| xi)
p−→ P (Un = un) (3.9)

where xi is the ith sample of size m from the distribution function F . It is not

difficult to see that

P (Rl(Un) = r) =
∑

Un:R(Un)=r

P (Un = un). (3.10)

Example 1. Suppose we have two samples with size m = 2 and n = 3 selected from

N(0, 1) which implies F = G. Let x = {x1, x2} = {−1.25, 0.8} be a random sample.

The sampling distribution of y observations in the m+ 1 = 3 intervals is

p = (.1056, .6825, .2119),

and the state spaces for the Markov chain are

Ω0 = {(0, 0, 0)}

Ω1 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

Ω2 = {(2, 0, 0), (1, 1, 0), (1, 0, 1), (0, 2, 0), (0, 1, 1), (0, 0, 2)}

Ω3 = {(3, 0, 0), (2, 1, 0), (2, 0, 1), (1, 2, 0), (1, 1, 1), (1, 0, 2)

(0, 3, 0), (0, 2, 1), (0, 1, 2), (0, 0, 3)}.

The transition probability matrices, then, are as follows
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Table 3.1: For m = 2 and n = 3
the conditional distribution of Un
given x = {−1.25, 0.8}

Un Rl P (Un|x)
(3, 0, 0) 6 0.0012

(2, 1, 0) 7 0.0228

(2, 0, 1) 8 0.0071

(1, 2, 0) 8 0.1476

(1, 1, 1) 9 0.0916

(1, 0, 2) 10 0.0142

(0, 3, 0) 9 0.3179

(0, 2, 1) 10 0.2961

(0, 1, 2) 11 0.0919

(0, 0, 3) 12 0.0095

Table 3.2: For m = 2 and n = 3
the conditional distribution of Rl
given x = {−1.25, 0.8}

Rl Un’s P (Rl|x)
6 (3, 0, 0) 0.0012

7 (2, 1, 0) 0.0228

8 (2, 0, 1), (1, 2, 0) 0.1547

9 (1, 1, 1), (0, 3, 0) 0.4095

10 (1, 0, 2), (0, 2, 1) 0.3103

11 (0, 1, 2) 0.0919

12 (0, 0, 3) 0.0095

M1 = (0, 0, 0)
[
.1056 .6825 .2119

]

M2 =
(1, 0, 0)
(0, 1, 0)
(0, 0, 1)

 .1056 .6825 .2119 0 0 0
0 .1056 0 .6825 .2119 0
0 0 .1056 0 .6825 .2119



M3 =

(2, 0, 0)
(1, 1, 0)
(1, 0, 1)
(0, 2, 0)
(0, 1, 1)
(0, 0, 2)



.1056 .6825 .2119 0 0 0 0 0 0 0
0 .1056 0 .6825 .2119 0 0 0 0 0
0 0 .1056 0 .6825 .2119 0 0 0 0
0 0 0 .1056 0 0 .6825 .2119 0 0
0 0 0 0 .10560 0 0 .6825 .2119 0
0 0 0 0 0 .10560 0 0 .6825 .2119



From the proposed Theorem (9), the conditional distributions of Un and Rl are given

in Tables 3.1 and 3.2, respectively.

Then, with ten million simulations and applying Equations (3.9) and (3.10), the

distributions of the random variables Un and Rl can be found, as shown in Tables

3.3 and 3.4.
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Table 3.3: For m = 2 and n = 3
the distribution of Un

Un Rl P (Un)
(3, 0, 0) 6 0.1000

(2, 1, 0) 7 0.1000

(2, 0, 1) 8 0.1000

(1, 2, 0) 8 0.1000

(1, 1, 1) 9 0.1000

(1, 0, 2) 10 0.1000

(0, 3, 0) 9 0.1000

(0, 2, 1) 10 0.1000

(0, 1, 2) 11 0.1000

(0, 0, 3) 12 0.1000

Table 3.4: For m = 2 and n = 3
the distribution of Rl

Rl Un’s P (Rl)
6 (3, 0, 0) 0.1000

7 (2, 1, 0) 0.1000

8 (2, 0, 1), (1, 2, 0) 0.2000

9 (1, 1, 1), (0, 3, 0) 0.2000

10 (1, 0, 2), (0, 2, 1) 0.2000

11 (0, 1, 2) 0.1000

12 (0, 0, 3) 0.1000

It is worth mentioning that using a simulation size of ten million in order to have

the distribution of Un or Rl converging (accurate to four decimal places) to the

theoretical values. Why do we need such a large number of samples in order to

have the sampling distribution converge to the theoretical one? One conjecture is

that the cardinal of the random vector Un is small. To illustrate our conjecture, we

constructed the distribution of Un or Rl given m = 3 and n = 4 for which less than

two million simulations were needed to have the distribution of Un or Rl converging

(accurate to four decimal places) to the theoretical values. And it only took 30,000

simulations to converge for m = 5 and n = 7. We also want to clarify that there is

no doubt that using Theorem 8 is easy and efficient to find the distribution of Rl

under the null hypothesis. Since from Equation (3.7), we know that the number of

possible states for the random vector Un is 10. Therefore, the distribution of Un is

discrete uniform with probability 1
10

.

To test
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Ho : F (x) = G(x) versus Ha : F (x) = G(x− θ),

for some θ 6= 0, the power function is approximated by

P (Rl(Un) ≤ r1α|Ha) + P (Rl(Un) ≥ r2α|Ha)

=
r1α∑
r=rls

P (Rl(Un) = r|Ha) +
rlb∑

r=r2α

P (Rl(Un) = r|Ha)

=
r1α∑
r=rls

∑
Un:R(Un)=r

P (Un = un|Ha) +
rlb∑

r=r2α

∑
Un:R(Un)=r

P (Un = un|Ha)

≈
r1α∑
r=rls

∑
Un:R(Un)=r

1

N

N∑
i=1

P (Un|Ha; Xi) +
rlb∑

r=r2α

∑
Un:R(Un)=r

1

N

N∑
i=1

P (Un|Ha; Xi)

=
1

N

 r1α∑
r=rls

N∑
i=1

∑
Un:R(Un)=r

P (Un|Ha; Xi) +
rlb∑

r=r2α

N∑
i=1

∑
Un:R(Un)=r

P (Un|Ha; Xi)



=
1

N

N∑
i=1

(
r1α∑
r=rls

P (Rl(Un) = r|Ha; Xi) +
rlb∑

r=r2α

P (Rl(Un) = r|Ha; Xi)

)
,

where

P (Rl(Un) ≤ r1α|Ho) + P (Rl(Un) ≥ r2α|Ho) ≤ α.

Note that the alternative hypothesis is subject to the purpose of the test. This

simply needs to slightly modified if a one-sided test is adopted. For example Table

3.4, we can choose a critical region as {Rl(Un) ≤ 6} ∪ {Rl(Un) ≥ 12} at the level of
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significance 20% for the alternative hypothesis of θ 6= 0. Note that in our example

the probability of the smallest and largest value of rank statistic Rl under the null

hypothesis is 10%, respectively. The minimum level of significance for a two-sided

test can only be set at 20% in this case.

3.2 Distributions of the rank statistic in the scale

case

We studied the distribution and the power function of the rank statistic Rl considering

a shift in location. Now, the distribution and the power function of the rank statistic

considering the scale parameter will be addressed. For this purpose, we consider

F (x) = G(xσ−1) and state the null and alternative hypotheses as

Ho : σ = 1 versus Ha : σ 6= 1.

To do so, we begin with the procedure of finding the distribution of the rank statistic,

denoted Rs, considering the scale parameter through the random vector Un. The

array of ranks are given by

(m+ n)/2, . . . , 3, 2, 1, 1, 2, 3, . . . , (m+ n)/2;

if m+ n is even, and

(m+ n− 1)/2, . . . , 3, 2, 1, 0 1, 2, 3, . . . , (m+ n− 1)/2

if m+n is odd. We first introduce how to determine the rank-sum of y′s observations

in the combined samples, Rs, with respect to
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Ωn = {un = (u1(n), . . . , um+1(n)) :
m+1∑
i=1

ui(n) = n}

where ui(n) means the number of y observations belonging to [x[i−1], x[i]). Let

med(x, y) be the median among x′s and y′s and belongs to [x[i], x[i+1]) which will

then break Un into two parts U−n and U+
n . If m + n is odd and med(x, y) = x[i],

then

U−n = (u−1 = ui(n) , u−2 = ui−1(n) , · · · , u−i = u1(n))

is a 1× i vector and

U+
n = (u+1 = ui+1(n) , u+2 = ui+2(n) , · · · , u+m+1−i = um+1(n))

is a 1 × (m + 1 − i) vector. The second possible case is, if m + n is odd and

med(x, y) = y
[
∑i

k=1
uk(n)+j]

, then U−n , a row vector with length i+ 1, has the form

(u−1 = j − 1 , u−2 = ui(n) , · · · , u−i+1 = u1(n))

and U+
n , a row vector with length m+ 1− i, is given by

(u+1 = ui+1(n)− j , u+2 = ui+2(n) , · · · , u+m+1−i = um+1(n)).

The third possible case is, if m + n is even and x[i] is the smallest number larger

than med(x, y), the vectors are now defined as

U−n = (u−1 = ui(n) , u−2 = ui−1(n) , · · · , u−i = u1(n))
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and

U+
n = (u+1 = 0 , u+2 = ui+1(n) , · · · , u+m+2−i = um+1(n)).

The last possibility is, if m+ n is even, y[ i∑
k=1

uk(n)+j

] is the smallest number larger

than med(x, y). The vectors are now defined as

U−n = (u−1 = j − 1 , u−2 = ui(n) , · · · , u−i+1 = u1(n))

and

U+
n = (u+1 = ui+1(n)− j + 1 , u+2 = ui+2(n) , · · · , u+m+1−i = um+1(n)).

Let n− be the length of the vector U−n and n+ be the length of the vector U+
n .

Theorem 10. Rs(Un|X) is finite Markov chain imbeddable, and

P (Rs(Un) = r|X) = ξ(
n∏
t=1

Mt)B
′(Cr),

where B(Cr) =
∑
k:Rs(Un)=r ek, ek is a 1×

(
m+n
n

)
unit row vector corresponding to

state Un, ξ(= P (Z0 = 1) = 1) is the initial probability and Mt, t = 1, . . . , n are the

transition probability matrices of the imbedded Markov chain defined on the state

space Ωt.
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Proof. For each Un in the state space Ωn, we have a corresponding

Rs(Un|X) = Rs(U
−
n |X) +Rs(U

+
n |X)

=

∑n−

k=1(u
−
k )2 +

∑n−

k=1 u
−
k

2
+

n−−1∑
k=1

(u−k + 1)(
n−∑

j=k+1

u−j )

+

∑n+

k=1(u
+
k )2 +

∑n+

k=1 u
+
k

2
+

n+−1∑
k=1

(u+k + 1)(
n+∑

j=k+1

u+j ). (3.11)

The smallest possible value of Rs(Un) is

rss =



n(n+2)
4

if m+ n is even and n is even
(n+1)(n+3)

4
if m+ n is even and n is odd

n2

4
if m+ n is odd and n is even

(n+1)(n−1)
4

if m+ n is odd and n is odd

(3.12)

and the largest possible value is

rsb =



n(2m+n+2)
4

if m+ n is even and n is even
n(2m+n+2)−1

4
if m+ n is even and n is odd

n(2m+n−1)
4

if m+ n is odd and n is even
n(2m+n)−1

4
if m+ n is odd and n is odd

(3.13)

In accordance with Equation (3.11), we use the possible value of Rs as a rule of the

partition. The rest of the proof follows along the same line as that of Theorem 9,

and here, is omitted.
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Similarly, we apply the LLN to conclude that

1

N

N∑
i=1

P (Rs| Xi )
p−→ P (Rs)

which establishes the distribution of Rs.

Through FMCI we, again, successfully retrieved the distribution of Rs under

selected alternative distributions, for which the procedures are similar to those in

the previous section. In addition, it is quite intuitive to approximate the power

function by

1

N

N∑
i=1

(
s1α∑
s=rss

P (Rs(Un) = s| Xi) +
rsb∑

s=s2α

P (Rs(Un) = s| Xi)

)
,

where

P (Rs(Un) ≤ s1α|Ho) + P (Rs(Un) ≥ s2α|Ho) ≤ α.

The following example is to illustrate our procedure.

Example 2. Following the previous example, suppose that we have two samples

with sizes m = 2 and n = 3 from a standard Normal distribution. By Equations

(3.12) and (3.13), we calculate rss = (3+1)(3−1)
4

= 2 and rsb = 3((2)(2)+3)−1
4

= 5. Given

a sample of x = {−1.25, 0.8}, Table 3.6 shows the median for each possible Un,

how Un is split into Us− and Us+, the corresponding value of Rs(Un), and the

conditional distribution of Rs. Once again, by applying the Law of Large numbers,

we got the distribution of Rs in Table 3.7.
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Table 3.5: For m = 2 and n = 3 the list of Un, median, {Us−,Us+}, Rs and its
conditional probability given x = {−1.25, 0.8}

Un med(x, y) Us− Us+ Rs P (Us|x)

(3, 0, 0) y[3] (2) (0, 0, 0) 3 0.0012

(2, 1, 0) x[1] (2) (1, 0) 4 0.0228

(2, 0, 1) x[1] (2) (0, 1) 5 0.0071

(1, 2, 0) y[2] (0, 1) (1, 0) 3 0.1476

(1, 1, 1) y[2] (0, 1) (0, 1) 4 0.0916

(1, 0, 2) x[2] (0, 1) (2) 5 0.0142

(0, 3, 0) y[2] (1, 0) (1, 0) 2 0.3179

(0, 2, 1) y[2] (1, 0) (0, 1) 3 0.2961

(0, 1, 2) x[2] (1, 0) (2) 4 0.0919

(0, 0, 3) y[1] (0, 0, 0) (2) 3 0.0095

Table 3.6: For m = 2 and n = 3 the conditional distribution of Rs given x =
{−1.25, 0.8}

Rs Un’s P (Rs|x)
2 (0, 3, 0) 0.3179

3 (3, 0, 0), (0, 0, 3) , (1, 2, 0), (0, 2, 1) 0.5544

4 (2, 1, 0), (1, 1, 1) , (0, 1, 2) 0.2063

5 (2, 0, 1), (1, 0, 2) 0.0213

Table 3.7: For m = 2 and n = 3 the distribution of Rs

Rs Un’s P (Rs)
2 (0, 3, 0) 0.1000

3 (3, 0, 0), (0, 0, 3) , (1, 2, 0), (0, 2, 1) 0.4000

4 (2, 1, 0), (1, 1, 1) , (0, 1, 2) 0.3000

5 (2, 0, 1), (1, 0, 2) 0.2000
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Note that the distribution of Rs when F = G is not symmetric and can be obtained

efficiently by Theorem 8. Because of this, one should be careful choosing the critical

region when conducting a hypothesis testing.

3.3 Joint distributions of the rank statistics in the

shift and scale case

We have derived the marginal distributions of Rl and Rs in terms of Un, respectively,

which yield the following theorem.

Theorem 11. (Rl(Un|X), Rs(Un|X)) is finite Markov chain imbeddable, and

P (Rl(Un) = r1;Rs(Un) = r2|X) = ξ(
n∏
t=1

Mt)B
′(Cr)

where B(Cr) =
∑
k:Rl(Un)=r1 & Rs(Un)=r2 ek, ek is a 1×

(
m+n
n

)
unit row vector corre-

sponding to state Un, ξ(P (Z0 = 1) = 1) is the initial probability and Mt, t = 1, . . . , n

are the transition probability matrices of the imbedded Markov chain defined on the

state space Ωt.

Proof. By Equations (3.2) and (3.11), we know each un in the state space Ωn has

corresponding values of Rl and Rs. The combinations of the values Rl and Rs are

used to be the standard of the partition. The rest of the proof follows along the

same line as that of Theorem 9.

Example 3. Using the same setting, we show the conditional joint distribution of

Rl and Rs given a sample of x = {x1, x2} = {−1.25, 0.8} from N(0, 1) in Table 3.8
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Table 3.8: For m = 2 and n = 3 the
conditional joint distribution of Rl and
Rs given x = {−1.25, 0.8}

Un’s Rl Rs P (Rl, Rs|x)
(3, 0, 0) 6 3 0.0012

(2, 1, 0) 7 4 0.0228

(1, 2, 0) 8 3 0.1476

(2, 0, 1) 8 5 0.0071

(0, 3, 0) 9 2 0.3179

(1, 1, 1) 9 4 0.0916

(1, 0, 2) 10 5 0.0142

(0, 2, 1) 10 3 0.2961

(0, 1, 2) 11 4 0.0919

(0, 0, 3) 12 3 0.0095

Table 3.9: For m = 2 and n = 3
the joint distribution of Rl and Rs

Un’s Rl Rs P (Rl, Rs)
(3, 0, 0) 6 3 0.1000

(2, 1, 0) 7 4 0.1001

(1, 2, 0) 8 3 0.1001

(2, 0, 1) 8 5 0.0999

(0, 3, 0) 9 2 0.0999

(1, 1, 1) 9 4 0.1001

(1, 0, 2) 10 5 0.1000

(0, 2, 1) 10 3 0.1001

(0, 1, 2) 11 4 0.1000

(0, 0, 3) 12 3 0.1000

and the joint distribution of Rl and Rs in Table 3.9 approximated using a simulation

of size ten million. Again, these can be obtained by Theorem 8.

The joint distribution of the ranks considering both the location and scale

parameters which can be determined through our algorithm is yet to be studied

in the literature. Our result allows us to test the homogeneity of the distribution

functions F (x) = G((x− θ)σ−1). We state the hypotheses as follows

Ho : θ = 0 and σ = 1 v.s. Ha : θ 6= 0 or σ 6= 1. (3.14)

Also we are able to decide a critical region under the null hypothesis and discuss its

power when F 6= G. For example, a rectangular critical region can be

Cα = {Rl ≤ r1l, Rl ≥ r2l, Rs ≤ r1s or Rs ≥ r2s}
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where r1l, r2l, r1s and r2s are the critical values such that

P (Rl ≤ r1l|Ho) + P (Rl ≥ r2l|Ho) + P (r1l < Rl < r2l, Rs ≤ r1s|Ho)

+P (r1l < Rl < r2l, Rs ≥ r2s|Ho) ≤ α

or an elliptic critical region

C ′α =
{
R2
l

a
+
R2
s

b
> C

}

for some positive constants a and b such that

P

(
R2
l

a
+
R2
s

b
> C|Ho

)
≤ α.

According to the above defined rejection region, the power of the test can be found

as

P (Rl ≤ r1l|Ha) + P (Rl ≥ r2l|Ha) + P (r1l < Rl < r2l, Rs ≤ r1s|Ha)

+P (r1l < Rl < r2l, Rs ≥ r2s|Ha) (3.15)

or

P

(
R2
l

a
+
R2
s

b
> C|Ha

)
. (3.16)
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Note that unless having a conjecture about the values of θ and σ, we tend to use

a two-sided test. However, with the knowledge of the centre and shape of the

distribution of interest, deciding a sectorial critical region is a better choice, for

which an example is demonstrated in the numerical studies.

3.4 Numerical Studies

3.4.1 A joint distribution of Rl and Rs

Let {X1, . . . , X5} ∼ N(0, 1) and {Y1, . . . , Y7} ∼ N(θ, σ). Figure 3.1 gives the joint

distribution of the random variables Rl and Rs under the null hypothesis of θ = 0

and σ = 1. The marginal distributions of Rl and Rs can be easily established from

their joint distribution, see Figures 3.2 and 3.3. Figure 3.1 also shows that, given

the largest possible value of Rl, there is only one possible value of Rs; given Rl a

value close to the centre of the distribution, there is a higher probability of having

Rs closer to the mean value and less probability of being an extreme value; and

given the smallest possible value of Rl, there is also one possible value of Rs, which

implies that the two random variables Rl and Rs are dependent. We construct two

critical regions as shown in Figures 3.4 and 3.5, according to their joint distribution.

The rows are the possible values of Rl from 28 to 63; the columns are the possible

values of Rs from 16 to 33; and the numbers in the cell are the probabilities. Outside

the yellow area in Figure 3.4 is the selected rectangular critical region C0.1738 and

outside the red shadow in Figure 3.5 is the elliptic one C ′0.1738.
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Figure 3.1: Joint distribution of Rl and Rs in the case where m = 5, n = 7 and
F = G ∼ N(0, 1).
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Figure 3.2: Marginal distribution of Rl in the case where m = 5, n = 7 and
F = G ∼ N(0, 1).
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Figure 3.3: Marginal distribution of Rs in the case where m = 5, n = 7 and
F = G ∼ N(0, 1).
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Figure 3.4: Rectangular critical region at size 17.38% for Rl and Rs in the case
where m = 5 and n = 7.
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Figure 3.5: Elliptic critical region at size 17.38% for Rl and Rs in the case where
m = 5 and n = 7.
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3.4.2 Powers for a joint test using Rl and Rs

The alternative of interest is stated in the preceding section (see Equation (3.14)).

The power functions of the test statistics Rl and Rs for a sequence of normally

distributed populations with θ from -20 to 20 with an increment of 0.5 and σ from 1

to 10 with an increment of 1, and its reciprocal under two types of critical regions are

provided in Figures 3.6 and 3.7. We adopt a two-sided test because of the selected

values of the parameters. It should be slightly modified the critical region in the

previous step in order to calculate the powers if a one-sided test is adopted. Both

critical regions roughly perform equally well as shown in Figures 3.6 and 3.7. Figure

3.8 presents the performance of the two critical regions for given various parameter

settings. Figures 3.8 and 3.9 show that given a standard deviation of 1 or a mean of

0, the powers of the two critical regions, rectangular and elliptic, are high and similar.

However, when the variation of the alternative population reduces (σ = 1/10) or

increases (σ = 10), the elliptic critical region performs better than the rectangular

one as shown in Figures 3.10 and 3.11. Therefore, we suggest that when conducting

a test for the equivalence of two distributions, an elliptic rejection area should be

used.

Next, we consider the problem of determining an optimum rank test. To conduct

a test of distributions equivalency, we can use either Rl or Rs as the test statistic.

As mentioned earlier, the marginal distribution Rl or Rs can be easily established

from their joint distribution. Figures 3.12 and 3.13 provide the power functions for

the test statistics Rl and Rs at the level of significance 17.38%, respectively. Figure

3.13 shows that the rank test against scale parameter is badly effected by the centre

of the alternative population. This was seen before by Ansari and Bradley (1960).
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Figure 3.6: Power functions of Rl and Rs in the case where m = 5 and n = 7 under
Cα.
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Figure 3.7: Power functions of Rl and Rs in the case where m = 5 and n = 7 under
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n = 7 and σ = 1.
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Figure 3.9: Power comparisons of the joint test Rl and Rs in the case where m = 5,
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Figure 3.11: Power comparisons of the joint test Rl and Rs in the case where m = 5,
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By comparing Figures 3.12 and 3.13 with Figure 3.7, it seems that the joint test

would be much more reliable than either Rl or Rs alone for distributions equivalence

tests. A joint test for distributions equivalency would like a better option under

most circumstances.

3.4.3 Lehmann alternatives

Consider the one-sided alternative F (x; θ, σ) > G(x; θ, σ). Lehmann (1953) proposed

a test of Ho : F (x; θ, σ) = G(x; θ, σ) against Ha : F (x; θ, σ)k = G(x; θ, σ) which is

known as the family of Lehmann alternative. Note F (x; θ, σ)k is the cumulative

distribution of max1≤i≤k(xi) when Xi ∼ F and, under the alternative hypothesis,

G(x; θ, σ) is stochastically larger than F (x; θ, σ). First of all, we know

Ek(X) =
∫ 0

−∞
[−G(x)] dx+

∫ ∞
0

[1−G(x)] dx

>
∫ 0

−∞
[−F (x)] dx+

∫ ∞
0

[1− F (x)] dx = E(X). (3.17)

Therefore, the larger the Rl is, the stronger the evidence against the null hypothesis

will be. For the variation of the distribution per se, the codomain of the density

function is compressed to larger numbers; therefore, in most cases, we have Var(Xk) <

Var(X). We then propose to reject the null hypothesis when Rs is large. For example,

given F ∼ U(0, 1) and G = F k, it is easy to see

Ek+1(X)

Ek(X)
=

(k + 1)2

k(k + 2)
> 1 (3.18)
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Figure 3.12: Power functions of Rl in the case where m = 5 and n = 7.
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Figure 3.13: Power functions of Rs in the case where m = 5 and n = 7.
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and

Vark+1(X)

Vark(X)
=

(k + 1)3

k(k + 2)(k + 3)
< 1 (3.19)

for all k. We first find the marginal and joint distributions of the ranks Rl and Rs in

order to define critical regions for Rl and Rs individually and simultaneously. Due

to the properties of the mean and variance of the alternative distribution, as shown

in Equations (3.17), (3.18) and (3.19), we are cautious to define the critical regions.

Table 3.10 provides powers for the tests as we choose uniform, standard Normal,

student-t with 3 degrees of freedom, exponential distributions for the hypothesized

distribution, a couple of different settings for sample sizes m and n, and 2, 3, 6 for

k. Clearly, a joint test considering both Rl and Rs for the equality of distributions

is best suited in comparison with tests considering only one of the rank statistics.
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Chapter 4

Scan Statistics

4.1 Distributions of the scan statistics

We first use a simple example to show how the distribution of a scan statistic Sn(r)

can be derived from a waiting time random variable of a compound pattern. Given

the window size r = 4 and number of successes s = 3, the event Sn(4) < 3 does not

occur in a sequence of n bistate trials if and only if zero occurrence of the three

simple patterns Λ1 = SSS, Λ2 = SFSS and Λ3 = SSFS is observed in the sequence.

Let Λ4,3 =
⋃3
i=1 Λi be the compound pattern and W (Λ4,3) be the waiting time of the

compound pattern, then we have

P (Sn(4) < 3) = P (W (Λ4,3) > n).

One key point to apply the dual relationship between the events {Sn(r) < s}

and {W (Λr,s) > n} is to find all the simple patterns with a length less than or equal

to r that starts and ends with a success, and associates with the event {Sn(r) = s}.

Fu (2001) showed that the number of simple patterns associated with the event

{Sn(r) = s} is
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l =
r−s∑
i=0

(
s− 2 + i

i

)
.

Therefore, given r and s, we are able to define l distinct simple patterns associated

with the scan statistic. Let

Fr,s = {Λi, i = 1, . . . , l}

be a collection of simple patterns and

Λr,s =
l⋃
i

Λi

be the compound pattern; S(Λi) be a collection of all sub-patterns in Λi and Λi ∈ Fr,s.

For instance, given r = 4 and s = 3,

F4,3 = {SSS, SFSS, SSFS}

and

3⋃
i=1

S(Λi) = {SS, SF, SFS, SSF, SSS, SFSS, SSFS}.

4.1.1 Sequence of k-block trials

Suppose there are some consecutive bistate trials, each of which has the same

probability of observing a success event. These consecutive bistate trials are said
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to form a block. In this setting, the sequence of n identical and independent trials

forms only one block. If the chance of success changes after the ith trial, we have

the chance of success p1 for the first i trials and p2 for the remaining n − i trials.

We then call {Xi} a sequence of 2-block trials.

Theorem 12. Let X1, X2, . . . , Xn be a sequence of k-block independent bistate

trials, mt trials with chance of success π(t) in the tth block for t = 1, 2, . . . , k and∑k
t=1mt = n. Then, the waiting time random variable W (Λr,s) for the compound

pattern Λr,s associated with the scan statistic Sn(r) is finite heterogeneous Markov

chain imbeddable on the state space

Ω = {∅, S, F}
l⋃

i=1

S(Λi) for Λi ∈ Fr,s (4.1)

with a transition probability matrix

Mr,s(π(t)) =

[
Nr,s(π(t)) Cr,s(π(t))

O I

]

where Fr,s is a collection of simple patterns associated with the event Sn(r) = s,

S(Λi) is a collection of all sub-patterns in Λi and Λi ∈ Fr,s and π(t) is the probability

of observing a success in the tth block. For k = n,

P (W (Λr,s) > n) = ξ0
k∏
t=1

Nr,s(π(t))mt1′ (4.2)
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where ξ0 = (1, 0, . . . , 0) is one row vector and 1′ is the transpose of the row vector

1 = (1, 1, . . . , 1).

Proof. As Fu (2001) pointed out,

Sn(r) < s
1−1⇐⇒ W (Λr,s) > n for any 1 ≤ s ≤ r ≤ n.

Suppose the chance of observing a success at block t is π(t), the transition probability

matrix M(π(t)) for a random variable of waiting time of a compound pattern can

be arranged in the form

M(π(t)) =
Ω− Fr,s
Fr,s

[
Nr,s(π(t)) Cr,s(π(t))

O I

]
.

Equation (4.2) follows directly.

Let πi be the chance of observing a success for ith trial. To test the null hypothesis

of a constant probability of a success against the alternative of k-block independent

trials, we thus state

Ho : πi = π for i = 1, 2, . . . , n

versus

Ha : πi = π(t) if
t−1∑
i=1

mi + 1 ≤ i ≤
t∑
i=1

mi.

By Equation (4.2) we are able to determine a critical region sα such that
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P (Sn(r) ≥ sα|Ho) = P (W (Λr,sα) ≤ n|Ho)

= 1− ξ0Nr,sα(π)n1′ ≤ α

and the power function can be found as

P (Sn(r) ≥ sα|Ha) = P (W (Λr,sα) ≤ n|Ha)

= 1− ξ0
∏k
t=1Nr,sα(π(t))mt1′. (4.3)

Remark 1. The scan statistic discussed by Fu (2001) is a special case of this theorem

when k = 1.

Remark 2. When k = 2, the distribution of Sn(r) for m1 = m, π(1) = p1, and

π(2) = p2 will be the same as the distribution of Sn(r) for m1 = n−m, π(1) = p2

and π(2) = p1.

Remark 3. The power, addressed by Wallenstein et al. (1994), for a scan statistic

to detect a changed segment in a Bernoulli sequence is also a special case of this

theorem when (i) k = 2 and m1 = Ir, (ii) k = 2 and m2 = Ir, or (iii) k = 3 and

m2 = Ir.

4.1.2 Sequence of Markov dependent trials

Theorem 13. Suppose {Xi}ni=1 is a sequence of homogeneous Markov dependent

bistate trials with transition probability matrix

A =

[
pSS pSF
pFS pFF

]
.
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Then, the waiting time random variable W (Λr,s) for the compound pattern Λr,s

associated with the scan statistic Sn(r) is finite homogeneous Markov chain imbeddable

on the state space Ω, presented in (4.1), with transition probability matrix

Mr,s(A) =

[
Nr,s(A) Cr,s(A)
O I

]
,

where Fr,s is a collection of simple patterns associated with the event Sn(r) = s,

S(Λi) is a collection of all sub-patterns in Λi and Λi ∈ Fr,s. Also,

P (W (Λr,s) > n) = ξ0Nr,s(A)n1′, (4.4)

where ξ0 = (1, 0, . . . , 0) is one row vector and 1′ is the transpose of the row vector

1 = (1, 1, . . . , 1).

Proof. As mentioned earlier, the probability of observing a success for a trial only

affects the transition probability matrix and the theorem follows immediately.

Let πi|i−1 be the transition probability matrix of ith trial. To test for

Ho : πi|i−1 ∼ A0 v.s. Ha : πi|i−1 ∼ Aa for all A0 6= Aa, i = 1, . . . , n

we have the power function of

P (Sn(r) ≥ sα|Ha) = P (W (Λr,sα) ≤ n|Ha)

= 1− ξ0Nr,sα(Aa)
n1′,
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where sα is the critical region such that

P (Sn(r) ≥ sα|Ho) = P (W (Λr,sα) ≤ n|Ho)

= 1− ξ0Nr,sα(A0)
n1′ ≤ α

through Equation (4.4).

Theorem 14. Let {Xi}ni=1 be a sequence of first-order homogeneous Markov depen-

dent bistate trials taking values in A, let Λr,s be a compound pattern, associated with

the scan statistic Sn(r), with transition probability matrix Mr,s(A). If

(i) λ1 has algebraic multiplicity m and λ1 > |λj| for all j > m, and

(ii) there exist constants a1, a2, . . . , ad such that 1′ =
∑d
i=1 aiη

′
i and a1(ξ0η

′
1) > 0,

then

P (W (Λr,s) > n) =
m∑
i=1

aiξ
′
1η
′
iλ
n−1
1

[
1 + o(e−n(log λ1−log λj))

]

where ηi, i = 1, 2, . . . , d, is the eigenvector associated with λi for N s
r,s(A), a submatrix

of Nr,s(A).

Proof. It is not difficult to see that Equation (4.4) can be expressed as

P (W (Λr,s) > n) = ξ1Nr,s(A)n−11′ (4.5)
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where ξ1 = (0, p, q, . . . , 0) is a row vector, 1′ is the transpose of the row vector

1 = (1, 1, . . . , 1), and the matrix Nr,s(A) can be shown to be of the form

Nr,s(A) =

[
0 p q 0 · · ·
0 N s

r,s(A)

]
.

As the first entry in ξ1 and the components of the first column in Nr,s(A) are zero,

Equation (4.5) can be easily rewritten as

P (W (Λr,s) > n) = ξ′1N
s
r,s(A)n−11′,

where ξ′1 = (p, q, . . . , 0) is one row vector and 1′ is the transpose of the row vector

1 = (1, 1, . . . , 1).

Inspired by Fu and Jonson (2009), since λ1 = · · · = λm, ηiη
′
i = 1, and ηiη

′
j = 0, we

have

P (W (Λr,s) > n) = ξ′1N
s
r,s(A)n−11′

= ξ′1

[
d∑
i=1

λn−1i η′iηi

] [
d∑
i=1

aiη
′
i

]

=
m∑
i=1

aiξ
′
1η
′
iλ
n−1
1

1 +
d∑

i=m+1

elog ai+logξ
′
1+logη

′
i−log(

∑m

i=1
aiξ
′
1η
′
i)+(n−1)(log λi−log λ1)

 .
As n→∞. This equation can be rewritten as

m∑
i=1

aiξ
′
1η
′
iλ
n−1
1

[
1 + o(e−n(log λ1−log λj))

]
.
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4.2 Numerical Results

4.2.1 Powers for a discrete scan statistic in a bistate se-

quence

4.2.1.1 The i.i.d. case

We first consider a common case which has only two blocks in a sequence of n bistate

trials with different chance of success within each block. We state the hypotheses as

Ho : π(1) = π(2) = π v.s. Ha : π(1) = φ, π(2) = π , φ > π.

Given the value of the type I error α, Table 4.1 provides the exact power for the

discrete scan statistic under various settings of the sample size n and the number

of trials with a higher success chance m1. Notice that we are testing against the

entire sequence of binomial trials with a higher chance of a success φ when m1 = n.

We can see in Table 4.1 that the power increases from 6.44% to 12.54% when m1

increases from 10 to 20, and from 6.44% to 24.50% when φ increases from 0.6 to 0.9.

Therefore, we conclude that there might be a positive association between power

and m1, and between power and φ in this case. However, φ has a stronger effect on

the power than m1. Also the scan statistic test can easily detect two patterns in

the sequence as long as there is a certain number of events with a higher chance of

a success. For example, given that m1 is 20, power would be 96.85%, 89.33%, and

72.20% when n is 50, 100, and 500, respectively.

In order to compare the performance between approximate power (see Equations

(3) and (4) in Wallenstein et al., 1994) and exact power calculated by Equation
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Table 4.1: Evaluations of power of the discrete scan statistic for k = 2

π = 0.5 m1

n r sα α φ 10 20 30 40 50

50 20 16 0.0487 0.6 0.0644 0.1254 0.1879 0.2427 0.2733

0.7 0.0951 0.3423 0.5149 0.6419 0.7111

0.8 0.1509 0.7060 0.8699 0.9474 0.9736

0.9 0.2450 0.9685 0.9950 0.9996 0.9999

100 20 17 0.0317 0.6 0.0367 0.0605 0.0883 0.1149 0.1407

0.7 0.0477 0.1792 0.2996 0.4021 0.4900

0.8 0.0705 0.4915 0.6948 0.8245 0.8986

0.9 0.1143 0.8933 0.9709 0.9949 0.9989

500 20 18 0.0345 0.6 0.0356 0.0420 0.0504 0.0587 0.0669

0.7 0.0383 0.0872 0.1445 0.1976 0.2475

0.8 0.0447 0.2762 0.4488 0.5857 0.6886

0.9 0.0584 0.7220 0.8789 0.9582 0.9845

(4.2), our second example considers a segment of Ir = 20 consecutive trials with

a higher chance of a success φ starting at 1st, 11th, and 21st trial in the sequence.

Apparently, the combinatorial method of Wallenstein et al. (1994) performs quite

well as powers found through FMCI and combinatorial calculation are similar. In

Table 4.2 the blank cells in the 6th and 9th columns are the results of the violation

of the constraint: the length of the sequence must be a multiple of the window

size. Moreover, the approximations can only be applied when the τ = 1, r + 1, · · · ;

therefore, the equation is not applicable when the 20 consecutive trials with a high

chance of a success starting at the 11th trial. Note that the number of blocks reduces

to 2 when the starting point is at the beginning of the sequence. It is seen that

power increases from 12.54% to 15.37% when we move the 20 consecutive trials with

a higher chance of a success from starting at the 1st trial to starting at the 11th trial;
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Table 4.2: Power comparisons of the discrete scan statistic given 20 contiguous
events with a higher chance of a success that starts at the 1st, 11th, and 21st trial

k = 2, π(1) = φ k = 3, π(2) = φ k = 3, π(2) = φ
m1 = r m1 = 10,m2 = r m1 = m2 = r

π(2) = 0.5 π(1) = π(3) = 0.5 π(1) = π(3) = 0.5

n r sα φ (4.3) W1 (4.3) (4.3) W2
50 20 16 0.6 0.1254 0.1537 0.1537

0.7 0.3423 0.4023 0.4023

0.8 0.7060 0.7553 0.7553

0.9 0.9685 0.9763 0.9763
100 20 17 0.6 0.0605 0.0606 0.0729 0.0741 0.0742

0.7 0.1792 0.1793 0.2178 0.2197 0.2198

0.8 0.4915 0.4916 0.5445 0.5460 0.5461

0.9 0.8933 0.8933 0.9120 0.9123 0.9123
500 20 18 0.6 0.0420 0.0420 0.0456 0.0460 0.0460

0.7 0.0872 0.0873 0.1040 0.1047 0.1048

0.8 0.2762 0.2763 0.3149 0.3158 0.3158

0.9 0.7220 0.7220 0.7525 0.7528 0.7528

Note: W1 and W2 were determined by Equations (4) and (5a) in Wallenstein et al., 1994.

however, power remains similar to 15.37% when once again moving these trials with

a higher chance of a success to starting at the 21st trial. In general, it seems that a

different pattern in the sequence is more likely to be detected if it does not occur

early.

Next, we consider an example of a cyclic pattern of success probabilities in the

Bernoulli sequence to show that the proposed method has no constraints to derive

the power function for a discrete scan statistic. We consider three cyclic paths:

(i)0.5-0.6-0.7-0.8-0.9, (ii)0.50-0.55-0.60-0.65-0.70, and (iii)0.50-0.51-0.52-0.53-0.54 in

the sequence of n bistate trials, and the exact powers are provided in Table 4.3. This

suggests that the longer the sequence is, the larger the power would be.
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Table 4.3: Power comparisons of the discrete scan statistic given a cyclic pattern of
success chances

cyclic path

n r sα α (i) (ii) (iii)
50 20 16 0.0487 0.6839 0.2650 0.0732

100 20 17 0.0317 0.7129 0.2371 0.0512

500 20 18 0.0345 0.9248 0.3459 0.0601

4.2.1.2 Markov dependent case

As our next example, consider a sequence of n first-order Markov dependent trials

with transition probability matrix

πt|t−1 ∼ Aa =

[
p 1− p

1− p p

]
for t = 2, 3, . . . , n.

We test the null hypothesis of p = 0.5 against the alternative hypothesis of

p > 0.5, which means that the chance of having the same outcome as in the previous

trial is higher than 50%, given the window size of 20. It is no surprise to see that

the larger the value of p is, the higher the power would be, as seen in Figure 4.1.

4.2.2 Powers for a continuous scan statistic in detecting

change segments in a time interval

By adapting Equation(1.11), we have for sufficiently large n,

P

(
sup

0<t≤1−w
S(w, t) < s

)
≈ ξ

n∏
i=1

Nr,s(pi)1
′, (4.6)
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Figure 4.1: Probability curves of observing at least s successes in a window size 20
over a sequence of n Markov dependent trials

76



where r = bnwc+ k and

pi =

{
θλ/n if i ∈ [τ − w, τ + w]
λ/n if i ∈ (0, τ − w)

⋃
(τ + w, 1− w].

Given λ > 0, we want to test the following hypotheses about the counting process

N(t)

Ho : θ = 1 v.s. Ha : θ > 1.

Applying Equation (4.6), the critical value sα of the test is determined from

P (S(w) ≥ sα|Ho) ≈ P (W (Λr,sα) ≤ n|Ho)

= 1− ξ∏n
i=1Nr,s

(
λ
n

)
1′ ≤ α,

and the approximate power function can be derived as

P (S(w) ≥ sα|Ha) ≈ P (W (Λr,sα) ≤ n|Ha)

= 1− ξ∏n
i=1Nr,s(pi)1

′.

There is no constraint when using FMCI to determine the power for a continuous

scan statistic, such as the length of the subinterval time with a higher rate. In order

to investigate the performance of approximate power equations, we choose τ = w

and τ = 0.25 to meet the conditions of approximate power equations and show the

powers along with the simulation results of size 200,000 accordingly in Table 4.4.

The numerical results suggest, by comparing columns 6, 7 and 8, that the value of
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Table 4.4: Power comparison for the continuous scan statistic

τ = w τ = 0.25

n w λ sα θ (4.6) (1.9) simulation (4.6) (1.10) simulation

250 0.08 10 5 1 0.0579 0.0580 0.0581

1.4 0.0811 0.0672 0.0813 0.0845 0.0705 0.0816

1.8 0.1257 0.0813 0.1245 0.1331 0.0888 0.1269

2.2 0.1935 0.1032 0.1927 0.2049 0.1154 0.1930

2.6 0.2814 0.1335 0.2789 0.2958 0.1504 0.2802

3 0.3823 0.1719 0.3822 0.3986 0.1932 0.3816

500 0.04 24 6 1 0.0443 0.0498 0.0440

1.4 0.0565 0.0539 0.0564 0.0584 0.0559 0.0565

1.8 0.0859 0.0628 0.0864 0.0906 0.0678 0.0863

2.2 0.1390 0.0788 0.1396 0.1470 0.0875 0.1400

2.6 0.2171 0.1033 0.2169 0.2282 0.1163 0.2167

3 0.3161 0.1372 0.3147 0.3295 0.1544 0.3167

power through FMCI is closer to the simulation results than the ones through the

combinatorial method.
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Chapter 5

Conclusion and Future Work

Since Fu and Koutras (1994) proposed the FMCI approach to study the distribution

theory for the runs in a sequence of Bernoulli trials, the method has been applied to

various topics as we introduced in Chapter 1. In this thesis, we defined the random

vector Un and systematically imbed the random vector Un into a Markov chain to

induce the marginal and joint distributions of the rank statistics Rl and Rs for the

location and scale parameters. Our approach provides not only a simple and clear

matrix equation to derive the distribution function but also a solution for finding

power for distributions equivalence tests considering the shift and scale parameters,

separately and simultaneously. Secondly, numerical studies showed that a joint

test should always be adopted for the test homogeneity of distributions as well as

under Lehmann alternatives by comparing Figures 3.6 and 3.5 with Figures 3.12

and 3.13 and Table 3.10. Figures 3.8 to 3.11 also show that an elliptic critical region

is always a better choice rather than a rectangular one for a joint test. Note that

Figures 3.4 and 3.5 show how we decide a rectangular and elliptic critical region,

respectively. In practice, it is reasonable to have neither the normality assumption

nor equal mean/variance of the interested distributions when conducting a test for
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distributions equivalence. The development of the joint distribution of the rank

statistics Rl and Rs along with the discussion of its power is considered the main

contribution of this dissertation.

Thirdly, we define blocks in a sequence of Bernoulli trials and apply the FMCI

method to study the distribution of the scan statistic against (i) k-block independent

trials with mt events in tth block and
∑k
t=1mt = n in which the probability of

success is π(t) and (ii) a sequence of n Markov dependent trials. Our approach

releases the conditions of τ and Ir in the alternative hypothesis (1.3). Numerical

studies show that the power is dependent on τ and Ir and high. Fourthly, through

modifying Equation (1.11), we are able to find the distribution of the continuous

scan statistic considering a pulse alternative stated in (1.8) as well as the power

of the scan statistic in detecting clustering. Wallenstein et al. (1993) used Poisson

process to approximate the power under a condition which requires the length of the

subinterval time τ with a higher success rate to be a multiple of the scan window

size w. In our approach, the scan window size and the length of the subinterval time

are independent. Table 4.4 showed that the power determined through our method

is quite accurate even if τ is not a multiple of w.

The numerical results have been done using the software MATLAB R©. Our

program takes 1.6 hours to run a simulation of size one million for m = 2 and n = 3,

7 hours for m = 3 and n = 4, and 24 hours for m = 5 and n = 7 using a Macintosh

desktop for finding the joint distribution of Rl and Rs. There is no problem for

finding the joint distribution of Rl and Rs for up to sample sizes m = 20 and n = 30

using a computer with 8 GB of random-access memory (RAM); however, the process

is time consuming. The main issue that affects the computer’s performance is that
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the size of the transition probability matrix Ωn grows rapidly. For example, Ωn is a

6-by-10 matrix when m = 2 and n = 3 and 462-by-792 when m = 5 and n = 7 which

are two examples used in this thesis. Increasing the size of random-access memory

can solve the issue of out of available memory but the speed of the calculations

is a unsolvable issue in this thesis. One possible solutions could be to reduce the

dimension of Ωn, to upgrade the central processor unit (CPU) of the computer, or

to use parallel computation. For example, to use a laptop with Intel Core i-7 2.90

GHz CPU can reduce the above times by roughly half. Regarding the numerical

results for scan statistics, as long as the window size is smaller than or equal to 21,

the program can determine the power in less than one minute using a Macintosh

desktop. When the window size increases to 24, it takes around 20 hours to find

the power. Even though the concept of FMCI is straightforward, the size of the

transition probability matrix is always the main issue.

For nearly two decades the FMCI method has been applied to various topics,

for example distribution theory of runs and patterns, waiting time distributions,

boundary crossing, reliability, nonparametric tests, etc. However, most studies still

focus on finding equations and simulating data to strengthen the theoretical results.

Practically, this approach has not been recognized widely. One of the possible

reasons is that this approach is not accessible for researchers from other fields due

to the complexity in computations. Therefore, it is necessary to integrate programs

in a suitable platform.

Given x = (x1, . . . , xm), the conditional distribution of Un = (u1(n), . . . , um+1(n))

is multinomial with parameters p = (G(x[1])−G(x[0]), . . . , G(x[m+1])−G(x[m])). Find-

ing the limiting distribution of Rl or Rs in terms of the random vector Un may be
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another possible solution to deal with the problem of large sample sizes m and n.

To extend this method to more than two samples might become possible.

Responses might be expensive or time consuming to collect in certain cases even

though a larger sample can yield more accurate results. That makes the minimal

sample size to achieve a desired power an important feature in inferential statistics.

The relative efficiency of our proposed joint rank statistic to parametric tests has

not been investigated yet.
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