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ABSTRACT 

Diabetic cardiomyopathy is defined as changes in the structure and function of the 

myocardium that occur in diabetic patients in the absence of other cardiovascular risk 

factors. Our laboratory has shown that conjugated linoleic acid (CLA - a naturally-

occurring polyunsaturated fatty acid with multiple health benefits) prevents endothelin-1-

induced myocyte hypertrophy in vitro, as well as cardiac hypertrophy in vivo using a 

rodent model of spontaneously hypertensive heart failure.  These cardioprotective 

effects of CLA were mediated through activation of peroxisome proliferator activated 

receptors (PPAR isomers α and γ) and stimulation of diacylglycerol kinase ζ (DGKζ).  

Thus, the aims of this study were to (i) determine the effect of CLA on hyperglycemia-

induced structural and functional abnormalities of cardiomyocytes, and (ii) assess the 

role of PPAR-γ and DGK. 

 High glucose treatment induced hypertrophy of primary adult cardiomyocytes, as 

indicated by augmented cell size and protein synthesis compared to untreated 

cardiomyocytes. The hyperglycemia-induced hypertrophy was attenuated by 

pretreatment with CLA (30 µM). The ability of CLA to prevent hyperglycemia-induced 

hypertrophy was suppressed by GW9662 (1 µM) and R59022 (10 µM), pharmacological 

inhibitors of PPAR-γ and DGK, respectively. In addition to structural abnormalities, high 

glucose impaired contractile function of adult cardiomyocytes as measured by maximal 

velocity of shortening, maximal velocity of relengthening, and peak shortening.  

Hyperglycemia-induced contractile dysfunction was likewise prevented by pretreatment 

with CLA (30 µM). Collectively, these findings support the idea that hyperglycemia is an 

independent risk factor for the development of diabetic cardiomyopathy.  Hypertrophy 



iii	
  	
  

and contractile dysfunction elicited by high glucose were prevented by CLA.  The 

antihypertrophic actions of CLA are mediated, at least in part, by activation of PPAR-γ 

and DGK. 
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1.  Diabetic cardiomyopathy 

1.1.  Introduction to diabetic cardiomyopathy 

Diabetes mellitus is one of the most common chronic diseases affecting a large 

population worldwide.  The prevalence of diabetes mellitus is increasing, and it is 

estimated that the number of people affected with diabetes in the world will increase to 

552 million by 2030 compared to 366 million in 2011.1  Patients with diabetes mellitus 

exhibit increased risk of morbidity and mortality due to the increased incidence of 

cardiovascular risk factors such as coronary heart disease, peripheral arterial disease 

and congestive heart failure.  In the past, this high incidence of heart failure and 

mortality in diabetic patients was attributed to hypertension and coronary artery disease.  

However, several follow-up studies have shown that diabetes is a strong cardiovascular 

disease risk factor independent of other risk factors typically associated with diabetes 

such as hypertension and coronary artery disease.2  This condition is known as diabetic 

cardiomyopathy.  Diabetic cardiomyopathy is therefore defined as deterioration of the 

structure and the function of the myocardium which is associated with diabetes in the 

absence of other known concomitant cardiovascular risk factors that are frequently 

associated with diabetes mellitus such as hypertension, dyslipidemia, and coronary 

artery disease.3  The existence of diabetic cardiomyopathy as a distinct clinical entity 

was described for the first time by Rubler et al. in 1972 on the basis of post-mortem 

findings of four diabetic patients.  Despite the lack of evidence of coronary artery 

disease or hypertension, the autopsy dissection of their hearts showed fibrosis and an 

increase in left ventricular mass.4  Diabetic cardiomyopathy has since been the subject 

of a number of clinical, epidemiological, animal, and post-mortem studies.  
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1.2.  Epidemiology 

The association between diabetes and heart failure was well-established in older 

cardiovascular epidemiological studies.  The Framingham Study confirmed the strong 

link between diabetes and heart failure.  This study showed that in diabetic men aged 

45-74 years, the risk of congestive heart failure was increased by 2.36-fold compared to 

non-diabetic subjects.  The risk of developing heart failure was even higher among 

diabetic women (5-fold increase).  When subjects with coronary or rheumatic heart 

disease were excluded, the relative risk of congestive heart failure was higher still (3.8-

fold and 5.5-fold in diabetic men and women, respectively).5  Patients with idiopathic 

cardiomyopathy (ICM) also present with higher prevalence of diabetes (26.6%) 

compared to 17.2% in non-ICM subjects.  This association between diabetes and ICM 

was independent of age, race, income, or hypertension.6  Moreover, the incidence of 

diabetes detected in heart failure patients is very high.  In the Organized Program to 

Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure, among patients 

studied, 42% had diabetes.7  Left ventricular diastolic dysfunction, an early indicator of 

diabetic cardiomyopathy, was evident in 32% of normotensive diabetic patients.8  

However, this prevalence was based on standard echocardiography testing which was 

frequently unable to detect mild and early diastolic dysfunction.9  Using Doppler 

echocardiography to assess the prevalence of pre-clinical diabetic cardiomyopathy in a 

diabetic population with no previous evidence of heart failure, coronary or other 

structural heart disease, diabetic cardiomyopathy was evident in 48% of diabetic 

patients. Diastolic function was abnormal in 38% of the patients.10 
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1.3.  Physical characteristics 

1.3.1. Structural remodeling 

1.3.1.1. Left ventricular hypertrophy 

The 2003 European Society of Cardiology criterion for left ventricular hypertrophy (LVH) 

defines LVH as left ventricular mass that exceeds 125 g/m2 for men and 110 g/m2 for 

women.11  The Strong Heart Study indicated that type 2 diabetic patients exhibited 

increases in left ventricular mass and wall thickness independently of body mass index 

and arterial blood pressure compared to non-diabetic subjects.12  In a multiethnic 

population study including 443 patients with type 2 diabetes, transthoracic 

echocardiographic measurements showed an approximate 1.5-fold increased risk of 

LVH in diabetic patients compared to their age-matched, non-diabetic controls.13   

Several factors have been implicated in the risk of LVH in diabetic patients.  In the 

Strong Heart Study, LVH was positively correlated with microalbuminuria.14  Another 

study on normoalbuminuric type 2 diabetic patients showed that 43% of the patients had 

LVH that correlated with raised body mass index, poor glycemic control, and elevated 

urinary albumin excretion rate.15 

1.3.1.2. Interstitial fibrosis 

Increased collagen accumulation and interstitial fibrosis in human diabetic hearts 

contributes to diastolic left ventricular stiffness.  Ventricular myocyte hypertrophy and 

interstitial fibrosis were demonstrated in biopsy samples from diabetic patients without 

hypertension or coronary artery disease.16  Collagen remodeling in hearts of type 2 

diabetic patients was due to accumulation of collagen type III in the perimysium and 

perivascular regions.17  Accelerated formation of glucose-derived advanced glycation 
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end products (AGEs), as a result of hyperglycemia,18 also contributes to the 

development of left ventricular diastolic stiffness in diabetic hearts.  AGEs cross-link to 

collagen, thereby increasing the tensile strength of collagen.  AGEs can also augment 

collagen formation.19  These findings show the potential role of fibrosis and AGEs in the 

pathogenesis of heart failure in diabetic patients.20 

1.3.2. Diastolic dysfunction 

Diastole is the interval of the cardiac cycle during which the myocardium produces no 

active tension and returns to its relaxed length and force.20  Diastolic dysfunction occurs 

when the left ventricle exhibits abnormal mechanical properties including abnormal 

diastolic compliance, impaired filling, and slow diastole.21  Impaired left ventricular 

diastolic dysfunction is the earliest evidence of functional abnormalities in diabetic 

cardiomyopathy.22, 23  Romano et al. reported that left ventricular diastolic dysfunction 

was evident in 42% of patients within an otherwise cardiovascular-asymptomatic 

population with type 2 diabetes.  Of note, left ventricular systolic function was not yet 

impaired in these patients.22   The incidence of diastolic dysfunction in diabetic patients 

correlates with duration of diabetes and levels of glycated hemoglobin (HbA1C).24  This 

association between glycemic control and diastolic dysfunction in diabetes may be 

explained by increased AGEs accumulation in the diabetic myocardium resulting in 

increased collagen deposition and cardiac fibrosis.19  Since diastolic dysfunction is an 

early manifestation of diabetic cardiomyopathy, regular assessment of diabetic patients 

for the detection of subclinical diastolic dysfunction is important to limit the deterioration 

of cardiac function.25 
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1.3.3. Systolic dysfunction 

Systole is defined as the interval of the cardiac cycle during which the myocardium 

contracts and blood is ejected from the ventricles.  The relationship between diabetes 

and systolic dysfunction has been confirmed in a number of clinical studies.  In a study 

of 1046 asymptomatic diabetic patients without known coronary artery disease, 16.7% 

of the patients had reduced left ventricular ejection fraction (LVEF) and the annual 

mortality rate for this group was 7%.26  Many diabetic patients have normal left 

ventricular systolic function at rest and exhibit abnormalities during exercise.  For 

example, the effect of exercise was investigated in 30 diabetic men without coronary 

artery disease or other cardiovascular diseases and with normal LVEF at rest.  LVEF 

was reduced during exercise in 17% of the patients, and increased normally in only 56% 

of the patients.  No significant change in LVEF was observed in 27% of the patients.27 

Several clinical trials have shown that diabetic patients have deteriorated 

diastolic function and normal systolic function; this may be due to the lower sensitivity of 

systolic function evaluation vs. diastolic function assessment.28  Techniques such as 

strain, strain rate, and myocardial tissue Doppler velocity have since been shown to be 

more sensitive in detecting preclinical systolic dysfunction in diabetic patients.29 

1.4.  Pathophysiological mechanisms 

1.4.1. Metabolic aberrations 

1.4.1.1. Fatty acid transport and metabolism 

Under normal physiological conditions, 60-90% of ATP necessary to maintain the 

contractile function of the heart is generated through beta-oxidation of fatty acids, 

whereas glucose and lactate account for 10-40% of the energy provided to the heart.30  
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However, the diabetic heart is characterized by enhanced fatty acid oxidation and 

decreased carbohydrate metabolism.31  Furthermore, in type 1 and type 2 diabetes 

mellitus, glucose uptake, glycolysis, and pyruvate oxidation are impaired.31  The 

augmented fatty acid metabolism in the diabetic heart arises from enhanced lipolysis 

and fatty acid release from adipose tissue as a consequence of depressed insulin 

signaling with associated abnormalities in glucose uptake and utilization.  Accordingly, 

the diabetic heart rapidly switches to an exaggerated reliance on fatty acid metabolism 

as the exclusive source for ATP generation.31  Fatty acids are supplied to the heart 

either through lipolysis of endogenous triglycerides or from the circulation as free fatty 

acids bound to albumin.32  This leads to an abnormal increase in the oxygen 

requirement for catabolism and intracellular accumulation of toxic intermediates of fatty 

acid metabolism such as long chain acyl-CoA and acylcarnitine.32  Compared to glucose 

oxidation, enhanced fatty acid oxidation is less efficient at generating ATP since hearts 

utilize more oxygen for ATP production during fatty acids metabolism vs. glucose.31  In 

addition, increased fatty acid plasma concentration induces insulin resistance by 

activating protein kinase C-θ (PKC-θ), a serine/threonine kinase that phosphorylates 

and activates IkB kinase.  IkB kinase then phosphorylates insulin receptor substrate-1 

(IRS-1), which decreases activation of IRS-1-associated phosphatidyl inositol 3-kinase 

(PI3K), impairing insulin signal transduction (Figure 1).33, 34  This mechanism occurs in 

skeletal muscle and adipose tissue; however, its role is not known in cardiac muscle.35  

Free fatty acid overload can directly impair myocardial function and cause lipotoxic 

heart disease.36  An animal model of type 2 diabetes, the ob/ob mouse, exhibits 

increased expression of cardiac genes that enhance cardiac fatty acid uptake and 
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triglyceride storage.  Furthermore, lipid accumulation in the myocardium is associated 

with diastolic dysfunction.37  Collectively, these findings identify a critical role for 

enhanced fatty acid utilization in the development of diabetic cardiomyopathy by 

inducing myocardial lipid toxicity, insulin resistance, and by affecting cardiac 

contractility. 

 

 

Figure 1. Proposed mechanism of free fatty acid-induced insulin resistance. 
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1.4.1.2. Glucose transport and metabolism 

In the diabetic myocardium, glucose supply and utilization are impaired at several 

levels.  A reduction in glucose oxidation was observed in cardiomyocytes isolated from 

the streptozotocin (STZ)-induced diabetic rat.38  Similarly, myocardial glucose utilization 

rates in type 2 diabetic patients were reduced compared to normal subjects.39  Impaired 

glucose utilization in the diabetic heart is probably the result of diminished rates of 

glucose transport across the myocardial sarcolemmal membrane due to depletion of 

glucose transporters (GLUT1 and GLUT4).40, 41  However, impaired glucose transport 

and utilization can be corrected by insulin therapy40 and forced overexpression of 

GLUT4.42  Reduced glucose oxidation in the diabetic heart is also caused in part by the 

inhibitory effect of increased circulating free fatty acid levels.43  When free fatty acid 

supply to the heart increases, free fatty acid oxidation rate increases and glucose 

oxidation decreases.43  Again, fatty acid oxidation requires more oxygen per ATP 

produced compared to glucose oxidation.  Therefore, the net result of enhanced fatty 

acid oxidation and reduced glucose oxidation in the diabetic heart is decreased cardiac 

efficiency.  In other words, the amount of work produced per oxygen molecule 

consumed by the heart is reduced.43 

1.4.1.3. Calcium homeostasis 

Regulation of intracellular calcium concentration is a critical determinant of contractile 

performance of the heart.  Calcium influx triggered by activation of voltage-dependent L-

type calcium channels upon membrane depolarization induces the release of calcium 

via calcium release channels (ryanodine receptors) of sarcoplasmic reticula through a 

calcium-induced calcium release mechanism.44  Calcium ions then diffuse through the 



	
   10	
  

cytosolic space to contractile proteins to bind to troponin C resulting in the release of the 

inhibitory troponin I.  Calcium binding to troponin C triggers sliding of thin (actin, 

troponin, tropomyosin) and thick (myosin) filaments resulting in cardiac force generation 

and contraction.  Calcium is then returned to diastolic levels by activation of the 

sarcoplasmic reticulum (SR) calcium pump (SERCA2a), the sarcolemmal (SL) Na+/Ca2+ 

exchanger (NCX), and the SL Ca2+ pump.44  Impaired calcium homeostasis in the 

diabetic heart can result from diminished expression of NCX45 or SERCA2a.46  In the 

STZ-induced diabetic rat, defective calcium signaling was attributed to decreased 

expression of SR Ca2+ transport and NCX proteins,47 and was associated with systolic 

and diastolic dysfunction.47  Overexpression of SERCA2a in diabetic hearts protected 

from contractile dysfunction, possibly by improving the Ca2+ sequestration of the SR.48  

Impaired SR function in the diabetic myocardium may compromise cardiac performance 

in two ways.  The depressed Ca2+ uptake by SR causes a slower rate of cardiac 

relaxation.49  Furthermore, as a result of decreased Ca2+ release from the SR, Ca2+ 

levels available for force generation decrease, and this in turn lowers indices of tension 

generation in the diabetic myocardium.49 

1.4.2. Hyperglycemia-induced aberrations 

1.4.2.1. Advanced glycation end products 

Advanced glycation end products (AGEs) are formed mainly from the non-enzymatic 

reaction of reducing sugars with amino acids in proteins, lipids, or DNA.50  Chronic 

hyperglycemia promotes accumulation of AGEs51 and may contribute to the 

development of diabetic cardiomyopathy.52  AGEs affect proteins in the extracellular 

matrix such as collagen and elastin by creating cross-links, and excessive cross-linking 
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increases the rigidity of the extracellular matrix proteins.  This may contribute to the 

development of diastolic dysfunction in the heart.53  AGEs also enhance reactive 

oxygen species production by binding to the receptor for advanced glycation end 

products, RAGE.54  A study by Ma and colleagues showed increased methylglyoxal, 

AGEs, and receptors for AGEs (RAGE) levels in the STZ-rat heart, particularly in 

cardiomyocytes.55  These effects were blocked by in vivo short interfering RNA 

knockdown of RAGE expression.55  Furthermore, prolongation of time to peak 

shortening and time to relengthening of cardiomyocytes were blocked by an antibody to 

RAGE.55  Alagebrium chloride (ALT-T11), an AGE cross-link breaker, improved SR Ca2+ 

reuptake in cardiomyocytes, and prevented diastolic dysfunction in vivo.56  Thus, the 

AGE-RAGE axis clearly contributes to the pathogenesis of diabetic cardiomyopathy. 

1.4.2.2. Oxidative stress 

Oxidative stress is imbalance between free radical production and elimination by 

protective antioxidant systems.57  Continuous generation of reactive oxygen species 

(ROS) such as superoxide radical, hydroxyl radical, and hydrogen peroxide is normal, 

but ROS levels are regulated by antioxidant enzymes such as superoxide dismutase, 

glutathione, peroxidase, catalase, and thioredoxin.58  During pathological conditions, 

ROS production becomes excessive, resulting in oxidative stress and harmful effects of 

ROS on different body tissues.58  Hyperglycemia induces oxidative stress by elevating 

ROS levels through glucose autoxidation, AGEs formation, and activation of the polyol 

pathway.  The elevated free fatty acid levels in diabetes also contribute to the increased 

formation of ROS.59  Excess free fatty acids enter the citric acid cycle and generate 

acyl-CoA to produce excess NADH.  This in turn increases mitochondrial superoxide 
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production.59  In patients with uncomplicated type 1 diabetes of short duration, impaired 

total plasma antioxidant capacity and increased oxidative stress were detectable 

compared to control subjects.60  Activation of the renin-angiotensin system also 

increases oxidative stress, and in diabetes,61 hyperglycemia upregulates the local 

(myocyte) renin-angiotensin system to increase angiotensin II (AngII) levels.62  AngII 

induces oxidative damage and contributes to cardiac cell death.63  In the diabetic heart, 

enhanced ROS formation is associated with reduced antioxidant capacity of the heart; 

the resultant oxidative stress contributes to the onset of structural and functional 

abnormalities.58  Increased ROS formation as a result of high glucose levels in diabetes 

induces cardiomyocyte apoptosis through the cytochrome C-activated caspase-3 

pathway.64  These findings suggest that myocardial oxidative stress plays a major role 

in the pathogenesis of diabetic cardiomyopathy. 

1.4.2.3. Activation of the diacylglycerol-protein kinase C pathway 

In the hyperglycemic or diabetic state, diacylglycerol (DAG) levels are chronically 

elevated due to de novo synthesis through the glycolytic pathway.65  Augmented DAG 

levels occur in the aorta and hearts of STZ-induced diabetic rats,66 and high glucose 

treatment increased DAG levels in cultured endothelial and vascular smooth muscle 

cells.  These data suggest a relationship between DAG levels in diabetes and 

hyperglycemia.66  The high levels of DAG activate PKCs aberrantly in diabetes.  In the 

myocardium from diabetic rats, PKC translocation (activation) to the membrane fraction 

is elevated,67  and enhanced activity of PKC in the membrane fraction was attributed to 

translocation of PKC from the cytosolic to the membrane fraction.  Of the six PKC 
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isoforms, the PKC-β2 isoform is predominantly up-regulated in diabetes; moreover, 

increased PKC-β2 activity is associated with cardiac hypertrophy and fibrosis.68 

1.4.2.4. Experimental evidence of glucose-induced cardiomyopathy 

To examine the direct effect of hyperglycemia on cardiac structure and function, an in 

vitro model has been developed in primary cardiomyocytes derived from healthy 

animals to stimulate the hyperglycemic milieu of diabetes.  A typical experimental 

paradigm is exposure to concentrations of D-glucose (25 to 30 mM or 450 to 540 mg/dL 

vs. 5 mM or 100 mg/dL) to represent high and normal glucose levels, respectively, for 

12-72 hours.69-71  The effect of hyperglycemia on the structure of isolated 

cardiomyocytes has been assessed in many in vitro studies.   In neonatal rat 

cardiomyocytes, the presence of high glucose (25 mM) for 48 hours induced 

hypertrophy as indicated by increases in cell size and mRNA levels of hypertrophic 

genes (atrial natriuretic peptide, brain natriuretic peptide, and beta-myosin heavy 

chain).70  As hyperglycemia increases the intracellular content of DAG, in turn leading to 

increased expression and/or activity of PKC-α, PKC-β2, nuclear factor (NF)-kB and c-

Fos, these signals may contribute to the development of diabetic cardiomyopathy.72 

High glucose levels also impair contractile function of cardiomyocytes isolated 

from healthy animals.  In adult rat cardiomyocytes, high glucose (25.5 mM) altered 

excitation-contraction coupling by prolonging action potential duration, calcium 

transients, and relaxation after only a 24 hour exposure.73  Similar effects were 

observed in cardiomyocytes isolated from STZ-induced diabetic animals after only 4-6 

days of STZ injection.74  Others also reported that adult rat cardiomyocytes exposed to 

high glucose exhibit abnormal mechanical function including decreased peak 
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shortening, maximal velocity of shortening/relengthening, prolonged time-to-peak 

shortening, time-to-90% relengthening, and intracellular calcium clearance.  

Furthermore, sarcoplasmic reticulum Ca2+-ATPase activity was inhibited in response to 

high glucose.75  These high glucose-mediated contractile abnormalities of 

cardiomyocytes were inhibited by increased extracellular calcium.75 

1.5.  Management of diabetic cardiomyopathy 

1.5.1. Glycemic control 

As discussed previously, hyperglycemia causes abnormalities in the heart, including 

aberrant substrate supply and utilization, free fatty acid elevation, oxidative stress, and 

lipotoxicity.  Therefore, glycemic control is an important goal to reduce the 

cardiovascular risk in diabetic patients.  Elevated fasting plasma glucose and glycated 

hemoglobin (HbA1c) levels are associated with increased risk of myocardial infarction 

and angina.76	
  	
  Improved glycemic control in patients with type 1 diabetes mellitus is 

associated with reduced cardiovascular risk.  In the Diabetes Control and Complication 

Trial, 1441 type 1 diabetic patients received intensive diabetes therapy (>3 daily 

injections of insulin or treatment with an external insulin pump) or conventional therapy 

(1-2 daily injections of insulin) over 6.5 years.  The number of major macrovascular 

events in the conventionally-treated group was 40 compared to 23 in the intensive-

treatment group; however, the differences were not statistically significant.77	
  	
  93% of the 

1441 patients were subsequently followed in the Epidemiology of Diabetes Intervention 

and Complications study.  After 17 years of follow up, intensive diabetes treatment 

reduced the risk of cardiovascular events by 42% and the risk of myocardial infarction, 

stroke or death from cardiovascular disease by 57%.  These beneficial effects of 
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intensive therapy were associated with decreases in the glycosylated hemoglobin 

levels.78  However, even though optimal glycemic control is epidemiologically 

associated with a lower risk of cardiovascular events, many major prospective clinical 

trials, such as the Action to Control Cardiovascular Risk in Diabetes (ACCORD),79 

Action in Diabetes and Vascular Disease: Preterax and Diamicron MR Controlled 

Evaluation (ADVANCE),80 and Veterans Affairs Diabetes Trial (VADT),81 failed to 

confirm that tight glycemic control improves the macrovascular outcomes in patients 

with type 2 diabetes.  

1.5.2. Sulfonylureas 

Sulfonylureas are widely used in the management of type 2 diabetes mellitus.  These 

drugs exert their hypoglycemic action by stimulating insulin release from pancreatic beta 

cells.  They bind to the SUR subunit of ATP– sensitive potassium channels in the 

pancreatic beta cells.82  This maintains the channels in closed position and stimulates 

the influx of calcium ions into the cells resulting in insulin release by exocytosis.82  Few 

clinical studies have examined the outcome of sulfonylurea use in diabetic heart failure.  

Although one study indicated that sulfonylureas are not associated with increased risk 

of mortality compared with other insulin secretagogues,83 there is evidence that they 

may increase the risk of cardiovascular events in diabetic patients.84  Traditional 

sulfonylurea drugs are not specific for pancreatic beta cells.  For example, they also 

bind to ATP – sensitive potassium channels in cardiomyocytes and in vascular smooth 

muscle cells.84  A case – control study revealed that sulfonylurea drug use is associated 

with increased risk of in-hospital mortality among diabetic patients undergoing coronary 

angioplasty for acute myocardial infarction.85  This increased risk may reflect the 
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deleterious effects of these drugs on myocardial tolerance for ischemia and 

reperfusion.85  For surviving patients, sulfonylurea drug use was not associated with 

increased incidence of serious late adverse events.85  Due to their inhibitory effect on 

ATP – sensitive potassium channels found in the heart, the use of sulfonylureas in 

diabetic patients also attenuates echocardiographic ST-segment elevation during acute 

myocardial infarction which may delay its diagnosis.86  These findings suggest that 

another anti-diabetic agent should be considered in this high risk population.86  

Generally, the use of traditional sulfonylurea drugs, such as glibenclamide, should be 

avoided.  Instead, the use of more pancreas-specific agents that have less effect on 

myocardial ATP-sensitive potassium channels, such as glimepiride, glicizide and 

nateglinide, should be considered. 

1.5.3. Biguanides 

Biguanides belong to a class of anti-diabetic drugs of which metformin is the only drug 

still used in most countries.  Metformin exerts its anti-diabetic effects by inhibiting 

hepatic gluconeogenesis, stimulating peripheral glucose uptake, and reducing glucose 

absorption from the gastrointestinal tract.  Metformin also decreases glycated 

hemoglobin (HbA1c) and improves blood lipid profile.87  However, metformin use in 

diabetic patients with cardiovascular disease is strongly cautioned.  This is due to the 

theoretical risk of lactic acidosis, particularly in patients with conditions such as heart 

failure or myocardial infarction which increase the risk of lactic acidosis.87  Nevertheless, 

data from 3 cohort studies showed that metformin use is associated with a decrease in 

mortality and was not associated with risk in patients with heart failure compared to 

other anti-diabetic agents.83  Metformin was recently shown to be as safe as other anti-
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diabetic agents in diabetic patients with heart failure, even in patients with chronic 

kidney disease or reduced left ventricular ejection fraction.88  Furthermore, metformin 

decreased all-cause hospitalization without increased risk of lactic acidosis.88 

1.5.4. Thiazolidinediones (TZDs) 

TZDs are a class of oral anti-diabetic agents used in the treatment of type 2 diabetes 

mellitus.  They act by increasing insulin sensitivity in skeletal muscle and adipose tissue 

through peroxisome-proliferator activated receptor (PPAR) – γ.  PPAR-γ is a member of 

the nuclear hormone receptor superfamily of ligand-activated transcription factors that 

regulate gene transcription.89  Additionally, these agents have beneficial effects on lipid 

profile, blood pressure, inflammation, and peripheral and coronary endothelial 

function.89  However, TZDs contribute to fluid retention by PPAR-γ-mediated stimulation 

of sodium reabsorption through sodium channels in the renal collecting tubule cells,90 

and therefore increase the risk of heart failure.91  This increased risk of heart failure in 

patients randomized to TZDs compared with placebo occurred at high and low doses 

after a treatment duration of 24 weeks and was not limited to the elderly.91  Current 

evidence suggests that TZDs have equivalent efficacy to other anti-diabetic agents with 

significant safety concerns and contraindications.  TZDs are contraindicated in patients 

with congestive heart failure, bladder cancer, and severe osteoporosis.92  

1.5.5. Renin angiotensin system inhibition 

Angiotensin converting enzyme inhibitors (ACEI) and angiotensin II receptor blockers 

(ARB) are also beneficial in diabetic cardiomyopathy.  Administration of ramipril (2.5 

mg/day), or telmisartan (40 mg/day), or their combination to asymptomatic patients with 

type 2 diabetes for 3 months improved echocardiographic indices of left ventricular 



	
   18	
  

diastolic function and reduced plasma BNP levels.93  The possible beneficial effect of 

losartan in patients with type 2 diabetes was investigated in the Losartan Intervention 

For Endpoint reduction (LIFE) and Reduction of Endpoints in NIDDM with the 

Angiotensin II Antagonist Losartan (RENAAL) studies.  Losartan reduced the incidence 

of first hospitalization for heart failure compared to placebo in the RENAAL study and 

compared to atenolol in the LIFE study.94 

1.5.6. β-blockers 

β-blockers are now well-established in the treatment of heart failure. Due to concerns 

regarding dyslipidemia and worsening insulin resistance, diabetic patients with heart 

failure are less likely to be discharged from the hospital on a β-blocker.95  However, 

given that β-adrenoceptors modulate vasoactive substance release and that β-blockers 

improve left ventricular function and symptoms in chronic heart failure,96 β-blockers are 

now  accepted as a well-tolerated treatment in patients with heart failure and diabetes.97  

Chronic treatment with metoprolol (β1-selective inverse agonist) has been shown to 

ameliorate the decline in cardiac function in the STZ–induced diabetic 

cardiomyopathy.98  However, the effect of β-blockers in patients specifically with 

diabetic cardiomyopathy has not yet been investigated in clinical trials.   

1.5.7. Antioxidants 

As the progression of diabetic cardiomyopathy involves oxidative stress and 

accumulation of ROS, antioxidants have received considerable interest as potential 

therapeutic agents against diabetic cardiomyopathy.  However, clinical trials have been 

unable to demonstrate any protective effects from the use of antioxidants in patients at 

high risk for cardiovascular events. For example, in the Heart Outcomes Prevention 
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Evaluation (HOPE) Study that included patients at high risk for cardiovascular events, 

treatment with 400 IU of vitamin E daily for a mean of 4.5 years had no detectable 

beneficial effects on cardiovascular outcomes compared to placebo.99 

2.  Conjugated Linoleic Acid (CLA) 

The term conjugated linoleic acid (CLA) refers to a mixture of 28 positional and 

geometric isomers of unconjugated linoleic acid, an 18-carbon carboxylic acid with 2 cis 

double bonds located at carbons 9 and 12.100, 101  As distinct from unconjugated linoleic 

acid, in CLA double bonds are conjugated (separated by a single double bond) and are 

in cis or trans configurations.102  Most of the physiological effects of CLA have been 

reported to be produced by isomeric mixtures of CLA in which cis 9, trans 11 and trans 

10 cis 12 isoforms (Figure 2) are the main constituents.102	
  	
  CLA is found in dairy 

products from ruminant animals and is mainly produced in rumen (the first part of 

stomach of ruminant animals) during the microbial biohydrogenation of linoleic acid by 

Butyrivibrio fibrisolvens, or from biohydrogenation of transvacceninc acid in mammary 

tissue.103	
  	
  CLA has been reported to have numerous health benefits including effects to 

reduce carcinogenesis,102 atherosclerosis,104 and body fat mass.105 
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COOH C18:2 (c-9, c-12) 
 

 
 
 
 

COOH C18:2 (c-9, t-11) 

 

 

COOH C18:2 (t-10, c-12) 

	
  

Figure 2. Structures of unconjugated linoleic acid (top), c-9, t-11 CLA (middle) and t-10, 

c-12 CLA isomers (bottom).106  This figure was used with permission from the Turkish 

Journal of Veterinary and Animal Sciences. 

2.1.  Health properties of CLA 

2.1.1. Anticarcinogenic activities of CLA 

Data from many studies demonstrate that dietary CLA inhibits cancer in experimental 

models, including papilloma,107 stomach neoplasia,108 and mammary tumors.109  In 

addition, CLA was shown to inhibit tumor progression of prostatic carcinoma cells in the 

severe combined immunodeficient (SCID) mouse model.110  An epidemiological study 

investigated the association between dairy products consumption and breast cancer, 

and showed that milk consumption reduced the incidence of breast cancer in women 

during a 25 year follow-up period.111 

Even though the anti-tumor activity of CLA is well-established in different 

experimental models of cancer, some studies did not find any significant effect from 

CLA supplementation on tumorigenesis.  For example, CLA did not inhibit oncogenesis 
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in the Apc Min mouse, a genetic model of intestinal tumorigenesis,112 and did not affect 

the development of an invasive mammary tumor.113 

The exact mechanism by which CLA inhibits tumorigenesis is not fully 

understood.  However, it has been proposed that CLA exerts its anticarcinogenic effects 

by inhibiting carcinogen activation,105 inhibiting DNA adduct formation,108	
  or by inducing 

phase I detoxification pathways.105 

2.1.2. Fat reducing activity of CLA 

Dietary CLA reduces adipose tissue fat accumulation in experimental animals.  CLA 

reduced subcutaneous fat deposition and increased lean body mass in pigs fed a diet 

containing 2% CLA compared to pigs fed a control diet containing 2% sunflower oil.114	
  	
  

In addition, CLA was able to reduce body fat mass (BFM) in humans.  A randomized, 

double blind study to determine the effect of supplementation with CLA or placebo on 

BFM in overweight or obese subjects (body mass index 25-35 kg/m2) was conducted.105  

CLA supplementation (3.4 and 6.8 g/day for 12 weeks) decreased BFM compared with 

the control group (received 9 g olive oil).  No added beneficial effects on BFM were 

achieved with doses exceeding 3.4 g/day.  

2.1.3. CLA and atherosclerosis 

Several animal studies have found that CLA can protect against atherosclerosis 

development.  For example, CLA reduced serum triglycerides and low density 

lipoprotein levels in rabbits fed a pro-atherosclerotic diet for 22 weeks.104  Similar 

findings on cholesterol metabolism were reported in another study conducted in 

hamsters fed a pro-atherosclerotic diet containing different levels of CLA.  Hamsters fed 
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CLA had decreased levels of plasma total cholesterol and aortic atherosclerosis 

compared with hamsters fed a diet without CLA.115  Regardless of these beneficial 

effects of CLA on atherosclerotic plaque formation in rabbits and hamsters, a study by 

Munday et al. conducted in C57B1/6 mice showed that CLA promoted the development 

of aortic fatty streaks.116  Further studies are required to demonstrate conclusively 

whether CLA exerts beneficial or harmful effects against the development of 

atherosclerosis. 

3.  Peroxisome proliferator-activated receptors (PPARs) 

PPARs are nuclear hormone receptors that respond to xenobiotic stimulation with 

peroxisomal proliferation in the liver.117  Three types of PPARs have been identified: 

PPAR-α, PPAR-β, and PPAR-γ,117 which are encoded by 3 distinct genes and have 

different tissue distributions and functions.  PPARs heterodimerize with the retinoid X 

receptor (RXR) and bind to the promoter region of target genes involved in controlling 

fatty acid metabolism and storage.118  The main functional domains in the PPAR 

structure include an N-terminal domain that regulates PPAR activity, a DNA-binding 

domain that binds to the PPAR response element (PPRE) in the promoter region of 

target genes, and a C-terminal region which regulates ligand selectivity.119  When 

PPARs are stimulated by a specific ligand, they heterodimerize with RXR and bind to 

PPRE to regulate gene transcription.120  In the inactivated state, PPARs are bound to 

co-repressor proteins.  However, when PPARs are activated, they detach from co-

repressors and recruit transcriptional co-activator complexes such as PPAR-binding 

protein and steroid receptor coactivator-1 to stimulate gene expression.121 
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3.1.  Peroxisome proliferator activated receptor-α 

PPAR-α is activated by natural ligands such as fatty acids and eicosanoids, and by 

synthetic ligands, the lipid lowering fibrates.122  PPAR-α is mainly expressed in tissues 

with high demand for fatty acid catabolism such as hepatocytes, cardiomyocytes, the 

kidney cortex, and skeletal muscles.123  PPAR-α has a central role in fatty acid 

metabolism by regulating gene expression of enzymes involved in fatty acid 

metabolism, with examples that include fatty acid binding protein and acyl-CoA 

oxidase.122 

In the myocardium, the expression of PPAR-α is relatively high and it is 

responsible for modulation of cardiac fatty acid metabolism by regulating expression of 

enzymes directly involved in fatty acid oxidation.124  The expression of PPAR-α 

decreases as a part of the adaptation process to switch cardiac energy metabolism from 

fatty acids to glucose utilization.  This metabolic shift is mediated by the inhibitory effect 

of high glucose on free fatty acid metabolism by downregulating PPAR-α, and is 

particularly important in pathological conditions such as hypertrophy and ischemia.125 

The use of PPAR-α-knockout mouse model has advanced our understanding of 

the physiological role of this isoform of PPARs.126  For example, in the heart, a reduced 

fatty acid oxidative capacity was reported in the PPAR-α-deficient mouse model.  This 

effect was accompanied by decreased expression of at least seven mitochondrial fatty 

acid-metabolizing enzymes.  Thus, these data establish a central role for PPAR-α in 

cardiac fatty acid metabolism.  Furthermore, abnormalities in the expression of fatty 

acid-metabolizing enzymes are associated with myocardial damage and fibrosis.127 
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In addition to its role in fatty acid metabolism, PPAR-α activation has favorable 

effects on reducing insulin resistance in nutritional (high-fat diet), genetic (Zucker obese 

fa/fa rat), or lipoatrophic (A-ZIP/F-1) models of insulin resistance.128-130  This beneficial 

effect of PPAR-α activation on insulin sensitivity is explained by the fact that intracellular 

fatty acids and their derivatives inhibit insulin-mediated glucose metabolism either 

through metabolic competition or through a direct effect on insulin signaling pathway.  

Therefore, these protective effects of PPAR-α activation are mediated by increased fatty 

acid oxidation, thus decreasing tissue lipid accumulation and minimizing insulin 

resistance and lipotoxicity.131 

3.2.  Peroxisome proliferator activated receptor-β 

PPAR-β is widely expressed in many tissues including the heart.132  The main function 

of PPAR-β is to induce fatty acid oxidation by modulating transcriptional programs 

involved in fatty acid metabolism.133  The role of PPAR-β in myocardial fatty acid 

oxidation was investigated by cardiomyocyte-restricted PPAR-β knockout mice.  In 

these mice, cardiac-specific deletion of PPAR-β expression downregulates the 

expression of fatty acid oxidation genes and inhibits myocardial fatty acid oxidation.  

Furthermore, these mice exhibit cardiac dysfunction, progressive myocardial lipotoxicity, 

cardiac hypertrophy and increased mortality rate.133  In STZ-induced diabetes, 

cardiomyopathy was associated with a decrease in cardiac expression of PPAR-β.  The 

reduction in PPAR-β during hyperglycemia was associated with an increase in reactive 

oxygen species, cardiomyocyte hypertrophy, and augmented protein synthesis.134	
  	
  

Further studies are needed to understand the precise mechanistic function of PPAR-β 

ligands in diabetes mellitus and cardiovascular disease. 
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3.3.  Peroxisome proliferator activated receptor-γ 

PPAR-γ is expressed in many tissues including, adipose tissues, the heart, mucosa of 

colon, immune cells, and in the placenta.131, 135  PPAR-γ plays a critical role in 

modulating glucose metabolism and lipogenesis and has been shown to have beneficial 

effects on inflammation, hypertrophy, and atherosclerosis.128  Natural ligands for the 

PPAR-γ isoform include unsaturated fatty acids such as oleate, linoleate, 

eicosapentaenoic and arachidonic acids.122  In addition, TZDs, insulin sensitizing 

medications used in the treatment of type 2 diabetes, are PPAR-γ-selective ligands.136 

Even though TZDs use is associated with fluid retention and weight gain, 

particularly when used in combination with insulin,137  TZDs have been shown to have 

several health benefits in diabetic cardiomyopathy and hypertension.  For example, 

rosiglitazone may have an antiapoptotic effect in diabetic cardiomyopathy.138  

Rosiglitazone also reduced cardiac fibrosis and left ventricular diastolic dysfunction via 

inhibiting receptors for advanced glycation end products and connective tissue growth 

factor in the diabetic myocardium.139  Rosiglitazone treatment was shown to reverse 

high-fructose diet-induced hypertension in rats,140 prevent the development of 

hypertension and protect against impaired endothelial function in Zucker fatty rats.141  

These protective effects of rosiglitazone on blood pressure and vessel function are 

mediated, at least in part, by its direct effect on blood vessels.142 

4.  Diacylglycerol kinases (DGKs) 

Diacylglycerol (DAG) is a lipid second messenger, which is generated by hydrolysis of 

intracellular phospholipids by phospholipase C enzymes (PLC).143  DAG is known to be 
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involved in different biological processes by acting as an endogenous ligand for many 

important proteins including protein kinase C (PKC) isoforms,144 RasGRP nucleotide 

exchange factors,145 and some transient receptor potential channels.146  DAG is mainly 

metabolized by a group of nine enzymes collectively known as diacylglycerol kinases 

(DGKs).147  DGKs belong to a family of intracellular lipid kinases that catalyze the 

phosphorylation of DAG to generate phosphatidic acid (PA), thereby regulating DAG-

PKC signaling and the subsequent hypertrophic response.148, 149  The structural 

differences in DGK isoforms in mammals indicate that these enzymes have critical roles 

in higher vertebrates, including advanced neural functions, immune surveillance, or 

organogenesis.150  All of the DGK isoforms have two common structural subunits: a 

catalytic domain that is necessary for kinase activity, and two cysteine rich regions, the 

C1 domains, that bind to DAG and play a critical role in its subcellular localization.150, 151  

In addition to the catalytic domains and C1 domains, DGKs contain other structural 

motifs that have different regulatory functions.  Based on the existence of these 

structural motifs, DGK isoforms are divided into five subfamilies.152   

Type I DGKs (isoforms α, β, and γ) contain calcium binding EF hand motifs that 

increase their activity in the presence of calcium.153  Type II DGKs (isoforms δ and η) 

have pleckstrin homology (PH) domains,154 which have been demonstrated to bind 

weakly and non-selectively to phosphatidylinositols.155  The type III enzyme (DGKε) has 

specificity towards acyl chains of DAG, particularly arachidonate-containing DAG.154	
  	
  

Members of the type IV group (isoforms ζ and ι) have C-terminal ankyrin repeats and a 

PDZ-domain binding sequence, as well as myristoylated alanine-rich C-kinase substrate 
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(MARCKS) homology region upstream of the catalytic region.147  The type V enzyme, 

DGKθ, has three cysteine-rich domains and a PH domain.150 

4.1.  DGKζ 

DGKζ is a type IV DGK with ankyrin repeats, which are known to play a critical role in 

protein-protein interaction.148 In addition, DGKζ contains a MARCKS homology domain 

and a carboxy-terminal PDZ binding domain that play an important role in its 

translocation (localization) in different cellular compartments, such as the nucleus, 

plasma membrane, and cytoplasm.148 

Role of DGKζ in cardiac structure and function 

Of the nine DGK isoforms, only DGKζ, ε, and α have been demonstrated to be 

expressed in the heart, with DGKζ being the predominant isoform.156	
  	
  Several reports 

have shown that DGKζ has beneficial actions on cardiac structure and function in 

animal models.  For example, its overexpression in transgenic mice prevented cardiac 

hypertrophy, fibrosis, and left ventricular systolic dysfunction four weeks after thoracic 

transverse aortic constriction.157  These cardioprotective effects were speculated to be 

achieved by attenuating G-protein-coupled receptor (GPCR) signaling, thereby inhibiting 

pathological activation of DAG-PKC signaling.157  The cardiac-specific DGKζ transgene 

also attenuated cardiac dysfunction and fibrosis in the STZ-induced diabetic mouse 

model compared to diabetic wild type mice, and this was associated with inhibition of 

PKC-β and δ isoforms.156  These findings are consistent with those from another study 

showing that diabetic mice exhibit decreased expression of DGKζ with upregulation of 

PKC-β2 and myocardial injury.71 
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5.  Current study 

This study is based on previous findings from our laboratory on the antihypertrophic 

effects of CLA.158  CLA was shown to suppress endothelin-1 (ET1)-induced 

cardiomyocyte hypertrophy.  These antihypertrophic effects of CLA were mediated by 

the activation of PPARα and γ.  Furthermore, CLA upregulated the expression and 

activity of the antihypertrophic enzyme, DGKζ, and attenuated the activity of PKCε.158  

To our knowledge, no study has investigated the protective potential of CLA on the 

structural and functional abnormalities of cardiomyocytes in diabetic cardiomyopathy.  

Therefore, this study was designed to examine the effect of CLA on the structure and 

contractile function of cardiomyocytes maintained in normal or high glucose 

environments.  The involvement of PPARγ and DGK in the actions of CLA was also 

investigated.   

 

 

 

 

 

 

 



	
   29	
  

 

CHAPTER II 

STUDY PHASE ONE: 

EFFECTS OF CLA ON HYPERGLYCEMIA-INDUCED STRUCTURAL AND 

FUNCTIONAL ABNORMALITIES OF CARDIOMYOCYTES 
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1.  Rationale and hypothesis 

The development of diabetic cardiomyopathy and the increased risk of heart failure and 

poor prognosis in diabetic patients have been linked directly to poor glycemic control.159  

The strong association between glycemic control in diabetic patients and the 

development of diabetic cardiomyopathy has been demonstrated in major clinical 

trials.160  For example, the Diabetes Control and Complications Trial (DCCT) 

demonstrated that diabetic patients who are treated with conventional diabetes therapy 

(1-2 insulin injections/day) have an approximately double prevalence of diabetic 

cardiomyopathy as compared to the intensively treated diabetic patients (received 3 or 

more insulin injections/day or an external insulin pump).77  The United Kingdom 

Prospective Diabetes Study (UKPDS) demonstrated that for each 1% decrease in 

glycated hemoglobin (HbA1C), a measure of glycemic control over a prolonged period 

of time, there is a 14% decrease in the incidence of myocardial infarction.160  

Furthermore, patients with mild pre-diabetic hyperglycemia have an increased risk of 

diabetic cardiomyopathy, suggesting that impaired glucose tolerance is a risk for 

diabetic cardiomyopathy.160  Thus, hyperglycemia is an independent risk factor for 

diabetic cardiomyopathy.64  Experimental models for diabetic cardiomyopathy show that 

treatment of isolated cardiomyocytes with high glucose leads to the development of 

structural and functional abnormalities that characterize diabetic cardiomyopathy.  For 

example, treatment of neonatal rat cardiomyocytes with high glucose (25 mM) for 48 

hours causes myocyte enlargement (i.e. hypertrophy).161  Furthermore, high glucose 

impairs contractile function of adult rat ventricular myocytes and causes both diastolic 

and systolic dysfunction.162 
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This research project is based on previous findings regarding the cardiovascular 

effects of conjugated linoleic acid (CLA) from Dr. Hope Anderson’s laboratory.  Dr. 

Anderson previously reported in the Journal of Biological Chemistry158 that CLA 

prevented indicators of cardiomyocyte hypertrophy induced by endothelin-1 (ET1), 

including cell size augmentation, de novo protein synthesis, and fetal gene activation.  

Dietary supplementation with CLA also inhibited the development of cardiac 

hypertrophy in vivo in the spontaneously hypertensive heart failure (SHHF) rat, a 

genetic model of essential hypertension that would normally exhibit cardiac hypertrophy. 

The effect of CLA on cardiomyocytes in the context of diabetic cardiomyopathy 

remains undetermined.  The specific aim of this study was therefore to investigate the 

protective potential of CLA in high glucose-induced structural and functional 

abnormalities of adult rat cardiomyocytes.  Since cardiomyocyte hypertrophy and 

contractile dysfunction are the two main aberrations of diabetic cardiomyopathy at the 

cardiomyocyte level,75, 161 we investigated whether CLA exerts protective effects on 

hyperglycemia-induced cardiomyocyte hypertrophy and contractile dysfunction in 

isolated adult rat cardiomyocytes. 

To achieve this specific aim, an in vitro model of hyperglycemia in isolated 

cardiomyocytes was developed to test the following hypotheses: 

i. hyperglycemia is an independent risk factor for the development of diabetic 

cardiomyopathy.  Accordingly, treating cardiomyocytes with high levels of 

glucose would lead to cardiomyocyte hypertrophy and contractile dysfunction. 
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ii. pretreatment with CLA would prevent the development of these structural and 

functional aberrations. 

2.  Experimental design and methodology 

2.1. Adult rat cardiomyocyte isolation 

The experimental procedures used in this study were approved by the Animal Care 

Committee of the University of Manitoba and the Canadian Council of Animal Care.  In 

brief, adult male Sprague Dawley rats (200-250 g) were anesthetized with 3% isoflurane 

and injected with heparin into the saphenous vein (1000 U/ml at 1 ml/Kg body weight).  

The heart was immediately removed and placed into a perfusion chamber and 

cannulated through the aorta.  The heart was washed of blood with calcium-free buffer 

(mM: NaCl 90, KCl 10, KH2PO4 1.2, MgSO4. 7H2O 5.0, NaHCO3 15, taurine 30, glucose 

20, pH 7.4) for 5 minutes. The heart was then perfused for 20 minutes (at 37°C) with 

calcium free buffer containing 179 U/Ml collagenase II.  After perfusion, ventricles were 

removed, minced, and incubated for five minutes at 37°C with re-circulated collagenase 

buffer for further digestion.  Isolated cardiomyocytes were then plated on plates 

precoated with laminin (10 µg/ml) and maintained for 2 hours at 37°C and 5% CO2 in a 

medium consisting of medium 199 containing 5% fetal bovine serum, 5% horse serum, 

and 1% penicillin/streptomycin.  After two hours, the medium was replaced with medium 

199 supplemented with 5 mM taurine, 2 mM L-carnitine, 1 mM creatine, 2 µM insulin, 

and 100 IU/ml penicillin/streptomycin. 
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2.2. Treatments 

As previously mentioned, the aim of this study was to investigate the protective potential 

of CLA on hyperglycemia-induced cardiomyocyte hypertrophy and contractile 

dysfunction.  Vehicle (0.05% dimethylsulfoxide (DMSO)) or CLA (30 µM) were added to 

cultured cardiomyocytes 1 hour before the addition of glucose.  The CLA preparation 

used in this study contained a mixture of CLA isomers (39.1% c9,t11 and 40.7% t10,c12 

CLA); this preparation, according to the manufacturer, also included the following 

isomers: 1.8% c9,c11 CLA; 1.3% c10,c12 CLA; 1.9% t9,t11 and t10,t12 CLA; 1.1% 

c9,c12 linoleic acid; and 14% remainder. 

To mimic pathophysiological hyperglycemia, cells were treated with incremental 

concentrations of D-glucose (5, 15, 25 mM) for 24 or 48 hours.  These concentrations 

reflect normal, moderately high, and severely high plasma glucose levels 

respectively.163  In addition, the use of 25 mM D-glucose is based on previous studies 

performed on neonatal and adult rat cardiomyocytes.75, 161  A potential confounding 

factor is the increased osmolarity produced by high concentrations of glucose.  To 

isolate the effect of high glucose from any artifactual effect of increased osmolarity, 

normal glucose treated cells were treated with 5 mM D-glucose and 10 or 20 mM L-

glucose, to adjust the osmolarity to match that of groups treated with 15 or 25 mM D-

glucose, respectively (Table 1). 
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Group Descriptor CLA: 12-24 
or 48 h 

Time = -1 h 

Glucose: 12-24  or 48 h 
 

Time = 0 h 
1 Normal glucose  - 5 mM D-glc + 10 mM L-glc (for 

moderately high glucose 
levels) 

2 Normal glucose - 5 mM D-glc + 20 mM L-glc  (for 
severely high glucose levels) 

3 Moderately high 
glucose 

- 15 mM D-glc 

4 Severely high 
glucose  

- 25 mM D-glc 

5 Normal glucose 
+ CLA  

30 µM 5 mM D-glc + 10 mM L-glc (for 
moderately high glucose 

levels) 
6 Normal glucose 

+ CLA 
30 µM 5 mM D-glc + 20 mM L-glc  (for 

severely high glucose levels) 
7 Moderately high 

glucose + CLA 
30 µM 15 mM D-glc 

8 Severely high 
glucose + CLA 

30 µM 25 mM D-glc 

 

Table 1: Treatment paradigms.  Groups 1, 2, 5 & 6 were treated with normal D-glucose 

(osmotic control).  Groups 3 & 7 were treated with moderately high D-glucose.  Groups 

4 & 8 represent the severely high D-glucose treated groups.  Groups 5, 6, 7, & 8 were 

pretreated (1 h) with CLA before adding glucose. 

2.3. Measurement of ventricular myocyte hypertrophy 

Hypertrophic growth was detected by 2 distinct parameters: augmentation of myocyte 

size and de novo protein synthesis.  The presence of these 2 events provides evidence 

of myocyte hypertrophy. 

2.3.1. Cell size 

Cardiomyocyte size was determined with immunofluorescence microscopy.  Adult rat 

ventricular myocytes were cultured on 12-well plates (2 x 105 cells/well), changed to 
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serum free medium, cultured at 37°C and 5% CO2 for 24 hours, and then subjected to 

the treatments indicated in Table 1 for 48 hours.  Cells were then washed twice with 

phosphate-buffered saline (PBS) at room temperature and fixed with 1 ml 4% 

paraformaldehyde for 1 hour at room temperature.  The cells were permeabilized using 

0.1% triton X-100 in PBS for 5 minutes and blocked with a blocking solution containing 

2% milk in 0.1% triton X-100 for 1 hour.  Cardiomyocytes were then incubated with 

primary antibody (anti-alpha actinin) at a 1:800 dilution in 2% milk for 2 hours at room 

temperature.  Cells were washed with PBS3 times (5 minutes each) and incubated with 

Alexa 488-conjugated goat anti-mouse secondary antibody at room temperature for 1 

hour.  Cells were visualized using fluorescence microscopy.  Cell surface areas of 

individual cardiomyocytes were determined using ImageJ software.   

2.3.2. Protein synthesis 

De novo protein synthesis in cardiomyocytes was studied by [3H]-leucine incorporation 

assay.  Myocytes were cultured on 12-well plates (2 x 105 cells/well), changed to serum 

free medium, cultured at 37°C and 5% CO2 for 24 hours, and then subjected to the 

treatments indicated in Table 1 (groups 2, 4, 6, & 8) for 48 hours.  After treatments, cells 

were pulsed with [3H]-leucine (1 µCi/ml) in leucine-free medium for 4 hours.  The 

radioactive medium was removed and the cells were washed with ice-cold PBS. 10% 

trichloroacetic acid was added and incubated at 4°C for 30 minutes.  Cells were lysed 

with 0.25 N NaOH for 2 hours.  2.5 mM HCl in 1 mM Tris-HCl was added to neutralize 

the reaction. Radioactivity of the neutralized lysate was measured in a liquid scintillation 

counter. 
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2.4. Measurement of ventricular myocyte contractile function 

Contractile properties of ventricular myocytes were assessed using a video-based 

edge-detection system (the Ionoptix HyperSwitch Myocyte System; Figure 3). 

Cardiomyocytes were cultured on coverslips (1 x 106 cells/coverslip), changed to serum 

free medium, and then treated as indicated in table 1 (groups 2, 4, 6, & 8) for 12-24 

hours.  To measure the mechanical properties of the cells, coverslips were placed on a 

chamber mounted on the stage of an inverted microscope and perfused with a buffer 

containing (in mM): 131 NaCl, 4 KCl, 1 CaCl2, 1 MgCl2, 10 glucose,10 HEPES, at pH7.4.  

Cells were stimulated to contract using the IonOptix Myopacer at a frequency of 0.5 Hz.  

Cardiomyocytes were displayed on a monitor display using an IonOptix Myocam 

camera.  SoftEdge software (IonOptix) was used to compare changes in cell length 

during shortening (contraction) and relengthening (relaxation).  Indices used to evaluate 

cell contractility included maximal velocity of shortening (+dL/dt), maximal velocity of 

relengthening (-dL/dt), and peak shortening (PS).  These are representations of systolic 

contraction, diastolic relaxation, and peak force of contraction, respectively. 
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Figure 3. The Ionoptix HyperSwitch Myocyte System. This figure was used with 

permission from the IonOptix Corporation. 

2.5. Statistics 

Data analysis was performed with a statistical software package (GraphPad Prism 4.0.)  

All data are expressed as means ± SEM.  Data were subjected to one-way ANOVA and 

the Newman-Keuls multiple comparison test.  For peak shortening data, one-way 

ANOVA followed by Bonferroni’s test were performed.  A difference of p<0.05 was 

considered significant. 
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3.  Phase one results 

3.1. CLA inhibits high glucose-induced hypertrophy of adult rat cardiomyocytes 

Previous studies have shown that hyperglycemia induces hypertrophy in isolated 

neonatal rat cardiomyocytes.161  Here, we first reproduced the hyperglycemia model in 

adult rat cardiomyocytes, since this is a key structural aberration in diabetic 

cardiomyopathy.  Compared to the normoglycemic cells, treatment with moderately high 

D-glucose resulted in a significant increase in cardiomyocyte size (Figure 4).  Treatment 

with CLA inhibited moderately high glucose–induced cardiomyocyte hypertrophy (Figure 

4).  Likewise, exposing adult rat cardiomyocytes to severely high D-glucose levels 

caused enlargement of myocytes (Figure 5), and this was prevented by CLA (Figure 5).  

Furthermore, [3H]-leucine incorporation into protein was increased by severely high D-

glucose (Figure 6), and this was prevented by pretreatment with CLA (Figure 6). 

3.2.  CLA inhibits high glucose-induced cardiac contractile abnormalities in 

cultured adult rat cardiomyocytes 

Cardiomyocytes maintained in severely high D-glucose displayed reduced +/- dL/dt and 

PS compared to normal glucose treated myocytes (Figures 7, 8, and 9).  High glucose-

induced contractile dysfunctions were inhibited by CLA (Figures 7, 8, and 9). 
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Figure 4. CLA inhibits moderately high D-glucose-induced cardiomyocyte 

hypertrophy.  Cell surface areas are presented as percent of myocyte size (µm2) of the 

control group.  *p<0.05 compared to normoglycemic controls.  †p<0.05 compared to 

untreated hyperglycaemic myocytes.  Each bar represents the mean ± SEM from 5 

independent experiments.	
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Figure 5. CLA inhibits severely high D-glucose-induced cardiomyocyte 

hypertrophy.  Cells surface areas are presented as percent of myocyte size (µm2) of 

the control group. **p<0.01 compared to normoglycemic controls.  ‡p<0.01 compared to 

untreated hyperglycemic myocytes.  Each bar represents the mean ± SEM from 4 

independent experiments.	
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Figure 6. CLA inhibits severely high glucose-induced protein synthesis.  3H-Leucine 

incorporation into acid insoluble protein is presented as vehicle-treated controls. ** 

p<0.01 compared to normoglycemic controls.  †p<0.05 compared to untreated 

hyperglycemic myocytes.  Each bar represents the mean ± SEM from 4 independent 

experiments. 
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Figure 7. CLA inhibits severely high D-glucose-induced abnormalities in maximum 

velocity of shortening.  Treatment with severely high (25 mM) D-glucose impaired 

contractile function of adult rat myocytes as measured by maximum velocity of 

shortening, a representation of systolic contraction.  Hyperglycemia-induced contractile 

dysfunction was prevented by pretreatment with CLA. *p<0.05 vs. untreated 

normoglycemic myocytes.  †p<0.05 compared to untreated hyperglycemic myocytes.    

Each bar represents the mean ± SEM from 9 independent experiments. 

 

 

 



	
   43	
  

 

-130

-120

-110

-100

-90

-80

*
D-glucose (mM):      5           25            5            25
                   CLA:       -             -              +             +

   
 M

ax
im

um
 v

el
oc

ity
 o

f
   

   
   

re
le

ng
th

en
in

g
   

   
   

 (-
dL

/d
t; 
µm

/s
)

†

	
  

	
  

Figure 8. CLA inhibits severely high D-glucose-induced abnormalities in maximum 

velocity of relengthening.  Treatment with severely high (25 mM) D-glucose impaired 

contractile function of adult rat myocytes as measured by maximum velocity of 

relengthening, a representation of diastolic relaxation.  Hyperglycemia-induced 

relaxatory dysfunction was prevented by pretreatment with CLA.  *p<0.05 vs. untreated 

normoglycemic myocytes.  †p<0.05 compared to untreated hyperglycemic myocytes. 

Each bar represents the mean ± SEM from 9 independent experiments. 
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Figure 9. CLA inhibits severely high D-glucose-induced abnormalities in peak 

shortening. Treatment with severely high (25 mM) D-glucose impaired contractile 

function of adult rat myocytes as measured by peak shortening, a measure of peak 

force of contraction. Hyperglycemia-induced contractile dysfunction was prevented by 

pretreatment with CLA.  *p<0.05 vs. untreated normoglycemic myocytes.  †p<0.05 

compared to untreated hyperglycemic myocytes.  Each bar represents the mean ± SEM 

from 9 independent experiments. 

 

 



	
   45	
  

4.  Discussion 

Hyperglycemia in patients with diabetes mellitus usually compromises energy 

metabolism, and it is implicated in myocardial damage, cardiac hypertrophy, overt 

fibrosis, and myocardial dysfunction.75  Previous studies have investigated the direct 

effect of hyperglycemia on the structure of isolated ventricular myocytes, and indeed, 

hyperglycemia is associated with cardiomyocyte hypertrophy as evidenced by 

augmentation of myocyte size and activation of the hypertrophic gene program.72, 161  

However, these studies were performed using neonatal rat cardiomyocytes which are 

not truly representative of phenotypes of adult onset diseases.164  Therefore, our study 

of the effects of CLA on high glucose-induced structural and functional abnormalities of 

cardiomyocytes isolated from adult rats, and the effects of CLA, are novel and 

important. 

 Since the development of diabetic cardiomyopathy is directly related to metabolic 

perturbations associated with diabetes such as hyperglycemia, hyperinsulinemia, and 

enhanced free fatty acid oxidation,35 other experimental models to study diabetic 

cardiomyopathy may include exposing cardiomyocytes to high levels of insulin and free 

fatty acids.  The main advantage of using the hyperglycemia model alone is that it 

allows us to understand the isolated effect of hyperglycemia on cardiac structure and 

function. 

Our findings demonstrate that elevated extracellular glucose levels directly 

induce cardiomyocyte hypertrophy and contractile dysfunction as measured by 

depressed maximal velocity of shortening/relengthening and peak shortening.  These 

findings are consistent with those of other studies in diabetic animals.165  Our study 
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showed that the diabetes-like phenotype of cardiac contractile dysfunction of 

cardiomyocytes emerged early (12-24 hours after high glucose treatment).  This rapid 

effect of high glucose on the mechanical function of cardiomyocytes is explained partly 

by experimental evidence suggesting that high glucose levels inhibit sarco/endoplasmic 

reticulum Ca+2 – ATPase, an intracellular Ca+2 regulatory protein, shortly (6-12 hours) 

after treatment.75 

To stimulate the hyperglycemic milieu of diabetes, cardiomyocytes were exposed 

to two different concentrations of D-glucose, 15 and 25 mM, which reflect moderately 

high, and severely high plasma glucose levels respectively.163  We first verified whether 

moderately high glucose levels (15 mM) could induce a significant increase in the size 

of cardiomyocytes, a key structural aberration in diabetic cardiomyopathy.  However, 

based on previous experimental models of diabetic cardiomyopathy,69-71 and the fact 

that adult rat cardiomyocytes in culture are characterized by short life span, subsequent 

experiments were carried out with 25 mM glucose to rapidly induce morphological and 

functional abnormalities in isolated cardiomyocytes. 

Our findings determined that CLA prevented indicators of cardiomyocyte 

hypertrophy induced by high glucose, including cell size augmentation and de novo 

protein synthesis.  In addition, CLA abolished the detrimental effects of high glucose on 

maximal velocity of shortening/relengthening and peak shortening, suggesting that CLA 

has direct protective effects on cardiomyocytes.  These findings are consistent with the 

previous report from our laboratory indicating that CLA inhibits cardiac hypertrophy 

induced by ET1 in vitro as well as in vivo in the spontaneously hypertensive heart failure 

rat due to its direct actions on the heart instead of directly affecting blood pressure.158	
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Thus, taken together, these findings suggest that in addition to its protective effects 

against the development of cardiac hypertrophy in hypertension, CLA may attenuate 

diabetes-induced cardiac hypertrophy and contractile dysfunction. 

It should be noted that a mixed preparation of CLA isomers was used in this 

study, with c9,t11 and t10,c12 are the main (80%) isomers at an approximate 1:1 ratio.  

Therefore, the important query that arises is whether the protective potential of CLA in 

diabetic cardiomyopathy is supported by one or more of the isomers found in the 

preparation.  Based on experimental evidence, t10,c12 CLA is associated with adverse 

effects on insulin and glucose metabolism.  For example, feeding t10,c12 CLA to mice 

has been demonstrated to induce insulin resistance.166  These findings are consistent 

with those of another study showing that t10,c12 CLA induces isomer-specific insulin 

resistance in obese men with the metabolic syndrome.167  In contrast, feeding mice 

c9,t11 CLA has been shown to improve insulin resistance and reduce hyperglycemia.168  

Likewise, the beneficial effects of CLA on insulin resistance in clinical trials were 

attributed to c9,t11 CLA with t10,c12 CLA is associated with adverse effects on insulin 

sensitivity.169  Taken together, these findings suggest that the use of c9,t11 CLA should 

be considered in future studies investigating the impact of CLA on diabetic 

cardiomyopathy in animals and humans. 

Based on the average dietary intake of CLA in non-vegetarian women and men 

(152-212 mg/d, respectively), the basal human plasma levels of CLA range from 10-70 

µΜ.170  Because the local concentration of CLA in tissues can increase up to 10 times in 

relation to its plasma levels171 and CLA supplementation in healthy individuals (3 g/d) 
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causes 3-4-fold increases in plasma CLA levels, the concentration of CLA used in our 

study (30 µΜ) should be clinically relevant.158 

In summary, in this study we demonstrated that hyperglycemia impairs 

cardiomyocyte structure and function following 48 and 12-24 hours of high glucose 

treatment, respectively.  This difference may result from different pathophysiological 

mechanisms whereby high glucose induces these cardiomyocyte abnormalities.  We 

also demonstrated that CLA prevents cardiomyocyte hypertrophy and contractile 

dysfunction induced by hyperglycemia.  These findings suggest that dietary 

supplementation with CLA in diabetic patients might be an achievable strategy to 

prevent myocardial decompensation which leads to heart failure.  Further studies are 

required to investigate the protective potential of CLA in animal models of diabetic 

cardiomyopathy as well as in diabetic patients. 
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STUDY PHASE TWO 

CLA-INDUCED SIGNALING 
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1.  Rationale and hypothesis 

Accumulating evidence has indicated that peroxisome proliferator-activated receptors 

(PPARs) ligands protect against hypertrophic remodeling.172  PPARs are ligand-

activated nuclear hormone receptors belonging to the nuclear receptor superfamily of 

transcription factors, and their main function is to regulate genes involved in fatty acid 

and triglyceride metabolism.130  A number of studies have indicated that activation of 

PPAR isoforms inhibits cardiomyocyte hypertrophy induced by endothelin-1 (ET1) or 

angiotensin II,173-175 as well as cardiac hypertrophy in vivo in response to pressure 

overload.176 

Based on the previously mentioned study from Dr. Anderson’s laboratory, the 

antihypertrophic effects of conjugated linoleic acid (CLA) in neonatal rat ventricular 

myocytes are mediated by activation of PPAR isoforms α and γ,158 and this was 

associated with upregulation of the antihypertrophic enzyme, diacylglycerol kinase zeta 

(DGKζ).  DGKζ blocks cardiac hypertrophy induced by G protein coupled receptor 

agonists and pressure overload in vivo177 by depleting diacylglycerol (DAG) levels via 

phosphorylative conversion, thereby inhibiting hypertrophic protein kinase C (PKC) 

signaling.158  Therefore, DGKζ is critical in terminating DAG-PKC signaling to inhibit 

cardiac hypertrophy. 

It has been reported that sustained hyperglycemia in diabetes mellitus stimulates 

hypertrophy of cardiomyocytes by increasing formation of DAG and subsequent 

activation of PKC isoforms.72  In particular, PKCα and PKCβ2 isoforms have been 

shown to be activated in the early stage of diabetic cardiomyopathy, as well as in 

cardiomyocytes maintained in high glucose levels.72 
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The known antihypertrophic effects of CLA are mediated through activation of the 

PPAR-DGK signaling and subsequent attenuation of the pro-hypertrophic PKC 

signaling.158  Therefore, we investigated whether PPAR-DGK signaling is involved in the 

mechanisms whereby CLA inhibits high glucose-induced cardiomyocyte hypertrophy.  

Specifically, we investigated the role of PPARγ and DGK activation by CLA on 

cardiomyocyte hypertrophy induced by high glucose. 

To achieve this specific objective, pharmacological inhibitors of PPAR-γ and 

DGK were used to test the following hypothesis: 

PPAR-γ-DGK signaling mediates the antihypertrophic effects of CLA in glucose-

induced cardiomyocyte hypertrophy.   

2.  Experimental design and methodology 

2.1. Adult rat cardiomyocyte isolation 

Ventricular cardiomyocytes were isolated from adult male Sprague Dawley rats as 

previously described on page 32. 

2.2. Treatments 

2.2.1.  Pharmacological inhibition of PPAR-γ 

Isolated cardiomyocytes were plated on 12-well plates (2 x 105cell/well), serum-

deprived for 24 hours, then pretreated with a selective pharmacological inhibitor of 

PPAR-γ (GW9662, 1 µM,158 1 hour before CLA treatment).  Subgroups were 

subsequently treated with CLA and glucose as indicated in Table 1 (groups 2, 4, 6, & 8). 



	
   52	
  

2.2.2. Pharmacological inhibition of DGK 

Cardiomyocytes were plated on 12-well plates (2 x 105 cell/well) and serum-deprived for 

24 hours.  To study the participation of DGK (all isoforms) in the anti-hypertrophic 

actions of CLA, the non-selective DGK inhibitor, R59022 (10 µM172) was added to 

isolated cardiomyocytes 1 hour before adding CLA and glucose as indicated in Table 1 

(groups 2, 4, 6, & 8). 

2.3.  Measurement of ventricular myocyte hypertrophy 

2.3.1.  Cell size 

Cell size of ventricular myocytes was assessed by measuring surface areas of 

individual cardiomyocytes as described under measurement of ventricular myocyte 

hypertrophy on page 34. 

2.3.2. Protein synthesis 

Protein synthesis was measured using the [3H]-leucine incorporation assay as 

previously described, and the Click-iT AHA Alexa Fluor 488 Protein Synthesis Assay.  

Click-iT AHA (L-azidohomoalanine) is an amino acid analog of methionine that is 

incorporated into proteins during active protein synthesis.   After treating 

cardiomyocytes with the indicated treatments for 48 hours, cells were incubated with 50 

µM AHA in pre-warmed methionine-free medium for 2 hours, washed once with PBS, 

and fixed with 3.7% formaldehyde in PBS at room temperature for 15 minutes.  Cells 

were permeabilized with 0.5% Triton X-100 in PBS for 20 minutes at room temperature.  

The permeabilization solution was removed and the cells were washed with 3% albumin 

from bovine serum.  Protein synthesis was detected following the click reaction with 
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Alexa Fluor 488 alkyne.  Fluorescent activity measurement was performed using 

SpectraMax Gemini Fluorometer.  

3.  Phase two results 

3.1.  PPAR-γ mediates the anti-hypertrophic effects of CLA 

Severely high glucose increased cell size and protein synthesis, and this was 

attenuated by CLA (Figures 5 and 6 in Chapter 2).  GW9662 abolished the inhibitory 

effect of CLA on hyperglycemia-induced augmentation of cell size and protein synthesis 

(Figures 10 and 11).  GW9662 treatment did not alter high glucose-induced 

cardiomyocyte hypertrophy in the absence of CLA. 

3.2.  DGK is involved in the anti-hypertrophic actions of CLA 

The ability of CLA to inhibit high glucose-induced cardiomyocyte hypertrophy (Figures 5 

and 6 in Chapter 2) was abolished by R59022, (Figures 12 and 13). 
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Figure 10. The ability of CLA to prevent severely high D-glucose-induced 

cardiomyocyte hypertrophy is suppressed by the PPAR-γ antagonist, GW9662 (1 

µM). *p<0.05 vs. untreated normoglycemic myocytes.  Each bar represents the mean ± 

SEM from 4 independent experiments. 
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Figure 11. The ability of CLA to prevent severely high D-glucose-induced 

augmentation of protein synthesis is suppressed by the PPARγ antagonist, 

GW9662 (1 µM). **p<0.01 vs. untreated normoglycemic myocytes.  Each bar represents 

the mean ± SEM from 4 independent experiments	
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Figure 12. The ability of CLA to prevent severely high D-glucose-induced 

hypertrophy is suppressed by the non-selective DGK antagonist, R59022 (10 µM). 

**p<0.01 vs. untreated normoglycemic myocytes.  Each bar represents the mean ± SEM 

from 3 independent experiments. 
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Figure 13. The ability of CLA to prevent severely high D-glucose-induced 

augmentation of protein synthesis is suppressed by the non-selective DGK 

antagonist, R59022 (10 µM).  *p<0.05 vs. untreated normoglycemic myocytes. 

**p<0.01 vs. untreated normoglycemic myocytes.  Each bar represents the mean ± SEM 

from 5 independent experiments 
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4.  Discussion of phase two results 

Taken together, these findings suggest that CLA prevents cardiomyocyte hypertrophy 

induced by high glucose through activation of PPAR-γ and DGK.  Therefore, this study 

shows that the ability of CLA to inhibit cardiomyocyte hypertrophy in the context of 

diabetic cardiomyopathy is associated with, at least in part, the activation of PPAR-γ by 

CLA which is speculated to induce upregulation of DGK and inhibit hyperglycemia-

induced PKC activation.  As previously mentioned, expression and activity of DGKζ (the 

predominant DGK isoform in the heart) are decreased in diabetes mellitus.71  

Furthermore, activity of PKCα and PKCβ2 isoforms has been shown to be upregulated 

in diabetes mellitus and in response to high glucose levels.72  Therefore, we suggest 

that the inhibitory effect of CLA on glucose-induced cardiomyocyte hypertrophy is 

mediated via activation of DGKζ, leading to attenuation of PKCα/β2 signaling.  The 

involvement of the other PPAR isoforms and the full mechanistic pathways in which 

high glucose induces cardiomyocyte hypertrophy and the effect of CLA on signal 

transduction pathways induced by high glucose have yet to be fully elucidated.   
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1.  Conclusion 

Hyperglycemia is an independent risk factor for the development of diabetic 

cardiovascular complications.  Our study showed that high glucose levels can directly 

affect the structure and the function of the myocardium and cause adult cardiomyocyte 

hypertrophy and contractile dysfunction. 

CLA has received significant attention as a nutraceutical because of its 

numerous health benefits.  The focus of this study was to investigate the 

cardioprotective effects of CLA on the structural and functional abnormalities of 

cardiomyocytes in diabetic cardiomyopathy.  Our study demonstrated that CLA inhibits 

cardiomyocyte hypertrophy and contractile dysfunction stimulated by high glucose 

levels.  The antihypertrophic effects of CLA were possibly related, at least in part, to the 

ability of CLA to activate PPAR-γ and DGK.  This mechanistic contribution of DGKs in 

the antihypertrophic effects of CLA is likely due to the ability of DGKs to attenuate 

protein kinase C signaling by decreasing the availability of diacylglycerol, thereby 

inhibiting cardiomyocyte hypertrophy induced by hyperglycemia. 

1.1.  CLA – A clinical prospective 

The findings of this study provide new insight for the potential use of CLA as a 

cardioprotective dietary supplement toward the prevention of heart failure in diabetic 

patients.  However, despite the established beneficial health benefits of CLA, special 

caution should be taken when considering the use of CLA in diabetic patients with 

established heart disease.  This is due to the ability of CLA to activate PPAR-γ which 

may contribute to fluid retention by stimulating sodium reabsorption by sodium channels 

in the renal collecting tubule cells. 90  Therefore, if CLA supplementation is to be used in 
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diabetic patients, it should be used as a preventative strategy against heart failure 

rather than therapeutic management in diabetic patients with heart failure. 

1.2.  Final remarks 

The findings of this study indicate that CLA is effective in preventing cardiomyocyte 

hypertrophy and contractile dysfunction induced by high glucose.  Future studies are 

required to fully investigate the mechanistic pathway in which hyperglycemia induces 

diabetic cardiomyopathy and the effect of pure CLA isoforms on signaling pathways 

induced by high glucose. 
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