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ABSTRACT Spectral clustering is a well-known graph-theoretic clustering algorithm. Although spectral
clustering has several desirable advantages (such as the capability of discovering non-convex clusters and
applicability to any data type), it often leads to incorrect clustering results because of high sensitivity to
noise points. In this study, we propose a robust spectral clustering algorithm known as KNN-SC that can
discover exact clusters by decreasing the influence of noise points. To achieve this goal, we present a novel
approach that filters out potential noise points by estimating the density difference between data points
using k-nearest neighbors. In addition, we introduce a novel method for generating a similarity graph in
which various densities of data points are effectively represented by expanding the nearest neighbor graph.
Experimental results on synthetic and real-world datasets demonstrate that KNN-SC achieves significant
performance improvement over many state-of-the-art spectral clustering algorithms.

INDEX TERMS k-nearest neighbors, nearest neighbor graph, potential noise detection, spectral clustering.

I. INTRODUCTION
Clustering is an unsupervised data mining technique that =N
partitions unlabeled data points into different groups based on '
their similarity. Over the last three decades, many clustering
algorithms have been proposed, and these algorithms have
achieved significant results in applications across multiple
domains. We can categorize clustering algorithms into par-
titioning, hierarchical, graph-theoretic, model, and density- .
based approaches [1].

Considering the various clustering algorithms, spectral
clustering [2] is a well-known graph-theoretic clustering
algorithm. It generates a similarity graph for data points
and embeds the data points into an eigenspace spanned
by k eigenvectors through eigendecomposition on the sim-
ilarity graph. By clustering the data points embedded in
the eigenspace, non-convex clusters can be discovered.
Particularly, spectral clustering can be easily applied to any
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FIGURE 1. Performance of spectral clustering (SC) being affected by noise
points: (a) discovery of exact clusters by SC; (b) failure of SC.

data type because it relies only on the similarity graph [3].
Practically, it is widely applied in various fields such as
network analysis [4], [5], computer vision [6], [7], and pat-
tern recognition [8]-[11]. However, spectral clustering has a
critical limitation that it leads to incorrect clusters because of
high sensitivity to noise points [3].
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An example is illustrated in Fig. 1. For a dataset con-
sisting of two moon shape clusters shown in Fig. 1a, the
result of spectral clustering is exactly the same as the ground
truth clusters. On the contrary, spectral clustering discovers
completely incorrect clusters when some noise points are
added to the same dataset as shown in Fig. 1b. Considering
that noise points often define inter-cluster relationships that
disturb exact clustering, these noise points corrupt a similarity
graph of data points, and when the corrupted similarity graph
embeds the data points into the eigenspace, spectral clustering
leads to incorrect clustering results.

To address this issue, many researchers have proposed
new clustering approaches, which are extensions of spectral
clustering. One representative clustering approach [12]-[16]
incorporates spectral clustering into density-based clustering.
The density-based spectral clustering approach aims to dis-
cover clusters consisting of data points with similar densities.
The clusters discovered by the density-based spectral cluster-
ing are robust to noise points because the noise points are
typically sparse; therefore, they have no similar density to
the data points included in the clusters. Consequently, the
density-based spectral clustering approach discovers clus-
ters that are robust to noise points using a similarity graph
that represents the relationships between data points with
similar densities. However, as the number of noise points
increases, the density of the clusters is deformed, which
may lead to incorrect clustering results. Other representa-
tive approaches [3], [17]-[19] proposed methods to learn a
graph representation that minimizes the influence of noise
points on the clustering result. To do this, many researchers
have proposed optimization techniques for estimating and
pruning noise points. However, similar to the density-based
spectral clustering approaches, graph learning representation
techniques are negatively influenced by the number of noise
points. Specifically, the increased number of noise points
reduces the sparsity of the data points and eventually corrupts
the similarity graph, often leading to incorrect clustering
results. Furthermore, because these approaches must assign
all the data points to specific clusters, the noise points are
treated as regular data points rather than outliers.

In this study, we propose a novel spectral clustering
algorithm using k-nearest neighbors known as KNN-SC.
KNN-SC first generates a nearest neighbor graph and uses a
statistical method to estimate the density difference between
vertices to filter the potential noise points. Thereafter,
it expands the nearest neighbor graph based on the local
density of each vertex to generate a density-based similar-
ity graph, representing a density-based clustering structure.
Finally, the KNN-SC discovers clusters using spectral clus-
tering optimized to maximize the average density of clusters
for the similarity graph. Therefore, it effectively improves the
clustering performance and robustness against noise points by
combining the advantages of the density-based spectral clus-
tering and potential noise detection approaches. In addition,
we demonstrate that the proposed method is robust against
the number of noise points using extensive experiments.
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The main contributions of this study are summarized
below.

(1) By utilizing a density estimator based on the k-nearest
neighbors and a statistical method, we can explicitly filter
out potential noise points without the learning process of
a graph representation.

(2) We introduce a novel method that generates a
density-based similarity graph representing the adaptive
density-based relationships between data points using the
nearest neighbor graph and k-nearest neighbors.

(3) We propose a robust spectral clustering algorithm, KNN-
SC, which overcomes the shortcomings of the existing
algorithms.

(4) We provide experimental evaluations conducted on syn-
thetic and real-world datasets to demonstrate the perfor-
mance of the KNN-SC.

The rest of this study is organized as follows. Section II
reviews the related studies. Section III introduces the foun-
dational definitions and details of the proposed algorithm.
Section IV compares the performance of KNN-SC to other
clustering algorithms using several synthetic and real-world
datasets, and Section V concludes the article.

Il. RELATED STUDIES

In this section, we describe the basic concepts of spectral
clustering and the definitions used in our study. Furthermore,
we review the existing clustering algorithms to address the
aforementioned issue of spectral clustering in Section I.

A. SPECTRAL CLUSTERING

Spectral clustering can be summarized in three steps [3].
First, it generates a similarity graph G = (V,E).
Whereas various strategies for generating the similarity
graph exist, we focus on an e-neighborhood graph using
the radius €. Thus, the set of edges E is defined as
{G.)ld (vi,vj)) e viovie V.1 <ij<m,i+#j}, where
d (vi, vj) is the Euclidean distance between the vertices, V is
the set of vertices, and m is the number of data points. Here,
the similarity graph can be represented by a symmetric adja-
cency matrix A € {0, 1}, Each element a; j (1 < i,j < m)
of the adjacency matrix A is 1 if (i, j) € E; if otherwise, it is
ZerO0.

Second, a solution of the minimized ratio-cut or normal-
ized cut for the similarity graph G, an objective of spectral
clustering, is obtained. For example, an approximation of the
ratio-cut is obtained using the trace minimization problem
for the eigendecomposition of a Laplacian matrix L of the
adjacency matrix A:

min Tr (HTLH)

H cRmxk
st H'H =1
L=D—-A 1)

where Tr (-) denotes the trace operator, m is the number of
data points, k is the rank of the eigendecomposition, D is
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a diagonal degree matrix whose elements are column-wise
sums of A (i.e., a;j = Zj sij), and H € R™*k is the solution
of the trace minimization problem in which the eigenvectors
corresponding to the k-smallest eigenvalues of the Laplacian
matrix L are concatenated. The normalization of A changes
the Laplacian matrix L to a symmetric (D~'/2LD'/2) or ran-
dom walk (D~'L) Laplacian matrix.

Finally, the existing clustering algorithms (e.g., k-means
[20]), are applied to the spectral embedding set H to discover
the final clusters.

B. EXISTING ALGORITHMS

Various algorithms have been introduced to improve spec-
tral clustering by alleviating issues related to noise points.
One representative approach of these algorithms is to learn
a graph representation (such as a similarity graph and an
affinity matrix) to minimize the influence of noise points on
the clustering result [3], [17]-[19], [21]-[23]. This approach
strengthens the robustness against noise points by iteratively
updating the graph representation based on the clustering
results until an optimal solution is obtained. For example,
Bojchevski et al. [3] proposed a robust spectral clustering
algorithm (known as RSC) that minimized the influence of
potential noise points by decomposing a similarity graph into
two latent graphs: good and corrupted graphs. Specifically,
they optimized a trace minimization problem on a good graph
by updating the potential noise points corresponding to the
corrupted graph. Thereafter, they minimized the influence of
the potential noise points by performing spectral clustering on
the good graph only. Other studies [17]-[19], [21] have pro-
posed feature selection algorithms that minimized the influ-
ence of noise points using subspace learning. Zhu et al. [21]
utilized the Frobenius norm and half-quadratic optimization
to learn an affinity matrix from a low-dimensional space of
the original data. This optimized affinity matrix represents an
ideal clustering structure that removes the influence of noise
points and redundant features.

The other approach is to incorporate ideas of the density-
based clustering algorithms, such as utilizing a similarity
computed by density estimation techniques [12]-[16], [24].
These algorithms [12], [14], [15], [24] reduce the influence
of noise points by generating a similarity graph using the
density-sensitive similarity. Beauchemin [13] proposed a new
density-based similarity matrix through density estimation
using k-means with subbagging. Hess et al. [16] presented
a technique for optimizing the eigenvectors of a similar-
ity graph to discover clusters with a large average density.
By performing this optimization, an appropriate density for
each cluster is automatically determined, and considering this
process, the clustering structure becomes robust against noise
points (see [16] for details).

Recently, researchers have proposed an approach that
employs deep learning for spectral clustering [25]-[27]. For
example, Tian er al. [25] proposed a deep learning-based
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FIGURE 2. Example of the nearest neighbor graph, consisting of vertices
corresponding to data points and directed edges from each vertex to its
nearest neighbor.

spectral clustering algorithm that significantly improved the
clustering performance by extracting latent representations
using an autoencoder. Yang et al. [27] proposed a dual autoen-
coder network to extract robust latent representations of noise
points and to discover the optimal clusters through deep
spectral clustering.

Ill. PROPOSED ALGORITHM: KNN-SC

The proposed algorithm aims to generate an accurate simi-
larity graph from the data points. As mentioned in Section II,
traditional spectral clustering discovers clusters based on the
eigenvectors obtained by decomposing the similarity graph.
However, the similarity graph is easily corrupted by noise
points, leading to incorrect clustering as shown in Fig. 1b.
Therefore, considering the influence of noise points, we pro-
pose a novel approach that generates a density-based sim-
ilarity graph using k-nearest neighbors to handle the noise
points. We first identify locally dense data points as core
vertices by utilizing the properties of the nearest neighbor
graph. Thereafter, we filter out the potential noise points
based on two assumptions. (i) The density of a noise point
differs significantly from the average density of the data
points, and (ii) the density of a noise point differs signifi-
cantly from that of the neighbors that are not noise points.
Subsequently, we generated a similarity graph by adaptively
expanding the nearest neighbor graph based on the density
of each core vertex. Because the similarity graph consists of
vertices corresponding to the data points that are not filtered
as potential noise points, the proposed algorithm can perform
clustering by decreasing the influence of noise points.

A. SIMILARITY GRAPH GENERATION
First, we generate a nearest neighbor graph to identify locally
dense data points as core vertices.

Let X be a set of m data points in the d-dimensional space
of real values (i.e., Vx € X : x € R9). The nearest neighbor
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FIGURE 3. Example of the nearest neighbor graph in which the edges of
locally sparse vertices are pruned.

graph is denoted by G,, = (V,E), where V is a set of
vertices corresponding to the data points, E is a set of edges
between each vertex v; € V and its nearest neighbor, and
the weight w (i,j) of (i,j) € E is the Euclidean distance
d (vi, vj) between vertices v; and v;. Fig. 2 illustrates the
nearest neighbor graph for some samples of the data points
shown in Fig. 1b. As shown in Fig. 2, the nearest neighbor
graph is composed of connected components that include at
least one pair of vertices which are nearest neighbors to each
other. For example, the nearest neighbor graph is composed
of six connected components, and pairs of vertices (vi, 12),
(v8,v9), (vio, vi1)s (Vis,vie)s (vi8,vi9), and (v20, v21) are
nearest neighbors to each other. In addition, because such
pairs of vertices have the smallest weights among the edges
of each connected component, they can be locally dense
data points. Based on the properties of the nearest neighbor
graph, we define pairs of vertices that are nearest neighbors to
each other as core vertices. On the contrary, considering the
nearest neighbor graph, as the path from a vertex to a core
vertex increases, this vertex becomes locally sparse because
the distance from its nearest neighbor increases. Based on
the density-based clustering paradigm that considers locally
dense data points separated by locally sparse data points
as clusters, we identify locally sparse vertices and prune
all edges of these vertices from the nearest neighbor graph.
To identify the locally sparse vertices, we utilize the Z-test,
a statistical technique that probabilistically evaluates whether
two sample sets are similar to each other in a normal dis-
tribution. Generally, because a dense vertex is close to its
neighbors and a sparse vertex is opposite, it is possible to
effectively identify a locally sparse vertex by comparing the
distribution of k-nearest neighbors for each vertex. Let the set
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FIGURE 4. Example of filtering out high-priority potential noise based on
a parameter p: (a) visualization for the result of aligning the core vertices
according to the sum of global density difference and local density
difference; (b) nearest neighbor graph with filtered connected
components whose core vertices are potential noise points when the
parameter p = 2.3.

of k-nearest neighbors of vertex v; be Nl.k. The Z-test for two
vertices (v; and v;) is defined as follows:

> dist (vi,ui) — > dist (vj, uj)

u,'GNik uje]\/jk

ky/o? (i) + a2 (vj) ’

Z (Vi, Vj) = 2)
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FIGURE 5. Visualization of the proposed similarity graph.

where Z (-) denotes a test statistic score, which is the result
of the Z-test for the two vertices, and o2 (-) is the standard
deviation of the distances between the vertex and its k-nearest
neighbors.

According to the statistical interpretation, when two sam-
ple sets are similar, Z is small, and in the opposite case, Z
is large. Particularly, it is possible to calculate a confidence
interval (CI) probabilistically, representing the statistical sim-
ilarity of the two sample sets from Z. Typically, the two
sample sets have a statistically significant similarity at a 95%
confidence interval, indicating that Z is less than or equal to
two. Hence, in this study, we consider all pairs of vertices
for which Z is larger than two as dissimilar. Alternatively,
we prune V (i, j) € E, satisfying 8 (v;, vj) > 2. Fig. 3 shows
the result of the pruning of the locally sparse vertices in
the nearest neighbor graph generated for the data points in
Fig. 1b. We have visualized the nearest-neighbor graph in
an undirected graph to reduce the visual complexity. The
red vertices represent the core vertices, the blue vertices
indicate vertices with similar distance distributions for the
core vertices, and the green vertices indicate locally sparse
vertices identified by Eq. (2).

Generating the nearest neighbor graph for a dataset enables
us to identify the connected components composed of data
points with similar densities. These connected components
correspond to the initial clusters of a given dataset. How-
ever, if there are noise points in the dataset, the connected
components can be incorrectly generated for the noise points,
considering them as core vertices. Because our proposed
algorithm generates a density-based similarity graph by com-
bining the connected components, noise points can corrupt
the similarity graph. Therefore, we filter out the connected
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FIGURE 6. Visualization of moons, blobs, and mixed shape synthetic
datasets based on the set values of a noise parameter: (a) examples of
synthetic datasets with internal noise point; (b) examples of synthetic
datasets with external noise points.

components whose potential noise points are the core vertices
to address this corruption on the similarity graph. To filter out
the potential noise points, we first define the local density
of a vertex v; € V, denoted by d (v;), as the average dis-
tance from its k-nearest neighbors, indicating that d (v;) =
Zu; enk dist (vi, u;) / k. Thereafter, we filter out the potential
noise f)oints based on two assumptions. (i) The density of a
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FIGURE 7. Comparison of the best ARIs (the higher, the better) of clustering algorithms based on the variation of a noise parameter: (a) case by

internal noise point; (b) case by external noise points.

noise point differs significantly from the average density of
data points because the noise point is relatively sparse; (ii)
the density of a noise point differs significantly from that
of neighbors that are not noise points. Therefore, we define
two density difference measures: global density difference
(GDD) and local density difference (LDD). The GDD is the
difference between the density of a vertex v; € V and the
average density of all the data points. LDD is the average
density difference between a vertex v; € V and its neighbors.
The GDD and LDD are defined by the following equations:

GDD; = (d Vi) —d (X)) [d X, 3
|d (vi) — d (u;)]
LDD; = — Zka T )

where d (X) = {d (x) |x € X}, d (X) is the average of d (X),
and |-| is the absolute value function.

Because the vertices with large GDDs are sparse com-
pared to those with small GDDs and the vertices with large
LDDs are not similar to their neighbors, we can prioritize
the potential noise points by aligning the core vertices using
the sum of GDD and LDD. Considering the aligned core
vertices, we sequentially filter out the high-priority potential
noise points using the parameter p, which is the maximum
threshold of the density difference between the data points
that can create a cluster. The core vertices, which are not
noise points, have small GDDs and LDDs because they are
generally similar to each other, whereas the noise points have
large GDDs and LDDs. Regarding this nature of the noise
point, the parameter p can be easily determined the parameter
p by selecting the sum of GDD and LDD with the largest
gradient for the aligned core vertices.
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Fig. 4 shows the result of filtering out the potential noise
points by setting the parameter p to the sum of GDD and
LDD, corresponding to the largest gradient. Considering
Fig. 4a, all the core vertices of the nearest neighbor graph are
prioritized by the sum of GDD and LDD, and the parameter
p is set to 2.3, corresponding to the largest gradient indicated
by the red line. Fig. 4b shows the nearest neighbor graph that
filtered the potential noise points (black vertices) using the
parameter p.

By filtering out the potential noise points, the connected
components of the nearest neighbor graph are refined to
consist of similar vertices. However, the nearest neighbor
graph cannot sufficiently represent the similarity relation-
ships between the vertices because there are no edges between
the connected components. Therefore, we expand the nearest
neighbor graph by adding new edges between the connected
components with similar densities to generate a similarity
graph. Let G.. = (V;, E;) be a connected component of the
nearest nelghbor graph G,, = (V,E) and v,,, be its core
vertex. We define the approximate density of a connected
component as the density of its core vertex, that is, d (v, ),
because the vertices of the connected components are similar
to each other. Thereafter, we add new edges to the two vertices
(v and u ), satisfying dist (v, u) < d (v,,.). V' € Vi,u €
V, to expand the nearest neighbor graph. Each connected
component expands adaptively according to its density, and
the vertices connected by edges have similar densities. This
expanded nearest neighbor graph is our proposed similarity
graph, which can sufficiently represent the similarity relation-
ships between vertices. Fig. 5 shows the similarity graph for
the dataset shown in Fig. 4b. We used this graph to conduct
spectral clustering.
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FIGURE 8. Example of filtering out high-priority potential noise based on
a parameter p: (a) visualization for the result of aligning the core vertices
according to the sum of global density difference and local density
difference; (b) nearest neighbor graph with filtered connected
components whose core vertices are potential noises when the
parameter p = 2.3.

B. KNN-SC ALGORITHM

The clustering process of KNN-SC can be divided into three
key steps: (i) filter out potential noise points from a dataset,
(i1) generate a similarity graph, and (iii) apply optimized
spectral clustering to discover clusters with the maximum
average density.

Algorithm 1 describes the main procedures of KNN-SC
and the detailed process of step (iii). We generate the pro-
posed similarity graph in lines 1-2. Considering lines 3-5,
we apply eigendecomposition after normalizing the similarity
graph to calculate its eigenvalues A and eigenvectors H.
Regarding line 6, we discover optimal clusters from the simi-
larity graph through k-means by utilizing a simple projection
introduced in [16]. Algorithm 2 performs step (i) by finding
the core vertices and connected components of the nearest
neighbor graph and filtering out the potential noise points
based on Egs. (2), (3), and (4). Finally, Algorithm 3 fulfills
step (ii) by adaptively expanding the nearest neighbor graph
based on the local densities of the core vertices.

Algorithms 2 and 3 demonstrate the advantages of
KNN-SC over the other spectral clustering algorithms
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Algorithm 1. KNN-SC

Input
X: the dataset;
k: the number of neighbors;
p: the maximum threshold;
c: the number of clusters;
Output

label: the list of cluster labels for each data point;
1: G, = NearestNeighborGraph(X, k, p)

2: A = SimilarityGraph(G,,,,)

3: D is the degree matrix of A

4:L=D"1Y2(D — A)D'/?
5
6
7

: A, H = Eigendecomposition(L)
: label = k-means(|A|*/?|H]|, c)
: return label

because they use the properties of the nearest neighbor graph
to alleviate the clustering corruption caused by the potential
noise points and they reflect various densities of core vertices
in the similarity graph.

IV. EXPERIMENTAL RESULTS

To illustrate the clustering results of KNN-SC, we conducted
experiments on the synthetic and real-world datasets and
compared the performance with those of other state-of-the-
art clustering algorithms, including k-means [20], spectral
clustering (SC) [2], RSC [3], and SPECTACL [16]. To ensure
the validity of the experimental results, we used the scikit-
learn Python library (k-means and SC) and the source code
provided by the author (RSC and SPECTACL). KNN-SC
was implemented in the Python programming language. All
the algorithms were run on a machine that was equipped
with a 3.2-GHz Intel CPU and 32 GB of memory, and the
operating system was Windows 10 64 bit. To measure the
clustering performance for each algorithm, we used two well-
known evaluation metrics: normalized mutual information
(NMI) [28] and adjusted rand index (ARI) [29]. The NMI
is a measure used to evaluate clustering quality based on
information theory. It is able to compare different clustering
algorithms that have different numbers of clusters. However,
the NMI may lead to erroneous evaluation because the num-
ber of clusters increases owing to the finite size effect [30].
Hence, we evaluated the clustering algorithms utilizing the
ARI, which calculates the similarity between the ground
truth labels and clustering results based on all the pairwise
comparisons.

A. EXPERIMENTAL ANALYSIS OF SYNTHETIC DATASETS

Here, we evaluate the effectiveness of our algorithm using
three synthetic datasets with different shapes. The three syn-
thetic datasets were moons, blobs, and mixed shapes. These
datasets were generated using the scikit-learn Python library.
Particularly, to evaluate the robustness of our algorithm
against noise points, we added internal and external noise
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Algorithm 2. NearestNeighborGraph

Algorithm 3. SimilarityGraph

Input
X: the dataset;
k: the number of neighbors;
p: the maximum threshold;
Output
Gy the nearest neighbor graph;

: Initialize G,,, = (V,E)
: for each v; € V do
. v;.nn is the nearest neighbor of v;

1

2

3

4: v.d= Zu,-ezv{‘ dist(v;,u;)/k
5: Devd

6: Z = 6(v;, v;.nn) (Equation (2))
7

8

if Z < 2 then
if v; = v;.nn.nn then
9: v;.iscore = true
10:  endif
11: else
12: v.nn=0
13: endif
14: end for

15: for each v; € V do
16: if v;.iscore = true then

. 1 lvid—u;.d| .
170 v LDD =%, cnk # (Equation (4))
18:  v,.GDD = (v;.d — D)/D (Equation (3))
19:  ifv;.LDD + v;.GDD > p then

20: v;.iscore = false
21:  vpnn=0

22:  endif

23: endif

24: end for

25: return G,

points to each synthetic dataset. The internal noise point is
Gaussian, as provided by the noise parameter of the scikit-
learn Python library that adjusts the distribution of data
points in a cluster. Considering each shape specification,
we generated ten datasets by increasing the noise parameter
from O to 0.225 in increments of 0.025. The external noise
points are a set of random data points that are not included
in any cluster. We also generated ten datasets for each shape
specification by adding external noise points equal to the
ratio of the noise parameter to the number of original data
points. The moon and blob shape datasets have 1000 data
points, and the mixed shape dataset has 1400 data points.
Fig. 6 shows examples of the synthetic datasets with noise
parameters of 0.075, 0.15, and 0.225. Fig. 6a shows the syn-
thetic datasets with internal noise points. Because the noise
parameter is larger, the data points of each cluster are widely
distributed; therefore, the boundaries between the clusters are
ambiguous. Fig. 6b shows the synthetic datasets with external
noise points. As the noise parameter increases, the number of
noise points (black points) also increases. These noise points
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Input
Gy the nearest neighbor graph;

Output

A: the adjacency matrix for the similarity graph;
1: for each v; € V do
2: if v;.iscore = true then
3: Gt = (V,, E;) is the connected component for v;
4: V<V,
5: Ejs < E;
6.
7
8

for each v} € V; then
for cachu € V do
if dist(v},u) < v;.d then

9: Vye<u
10: E, < (vji,u)
11: end if
12: end for
13: end for
14: end if
15: end for

16: A is the unweighted adjacency matrix for (V, E4)
17: return A

corrupt the similarity graph, leading to incorrect clustering
results.

To compare the best performance of the five clustering
algorithms, we iteratively conducted experiments by increas-
ing the parameters of each clustering algorithm. Considering
SC, we adopted the traditional k-nearest neighbor graph as
the similarity graph, and gradually increased the parameter
k by one from 2 to 400. The RSC uses a parameter 6, a con-
straint for maximal number of corruptions. We also increased
0 by one from 0 to 1000. SPECTACL uses an e-neighborhood
graph as the similarity graph, and we gradually increased the
radius parameter € by 0.001 from 0.001 to 3. Our KNN-
SC uses two parameters, k and p. We increased k by one
from 2 to 400, and set p to be the sum of GDD and LDD with
the largest gradient of the aligned core vertices as mentioned
in Section III-A. The number of clusters c for the five cluster-
ing algorithms, including k-means, was set to be equal to the
ground truth ones. Through these iterations, we determined
the parameters for which the clustering algorithms had the
best ARIL.

In Fig. 7, we demonstrate the performance of each clus-
tering algorithm in terms of ARI against the two types of
noise points. From Fig. 7, we can observe that KNN-SC
typically achieves the highest ARI, showing the least variance
of ARIs against the noise points. Although KNN-SC has a
noticeable ARI degradation when the internal noise points
are greater than 0.15, it is relatively robust to the noise points
because the ARI fluctuates less than the other clustering algo-
rithms. As Fig. 8a illustrates, KNN-SC detects the trajectory
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FIGURE 9. Clustering result of KNN-SC on the Faces dataset. The clusters for the first hundred human faces are shown in different colors.

TABLE 1. Description of real-world datasets.

TABLE 2. Comparison of competing algorithms on real-world datasets.

Dataset Samples Dimensions Clusters Dataset KNN-SC  k-means SC RSC  SPECTACL
Iris 150 4 3 Iris ARI 0.875 0.716 0.745 0.746 0.731
Banknote 1372 4 2 NMI  0.841 0.742 0.778 0.798 0.722
Wine 178 13 3 Banknote  ARI 0.995 0.022 0.004 0.626 0.884
Ecoil 336 7 8 NMI  0.988 0.017 0.016 0.611 0.835
Seeds 210 7 3 Wine ARI 0.922 0.899 0.869 0.882 0.831
Ionosphere 351 33 2 NMI 0910 0.878 0.853 0.852 0.789
Sonar 208 60 2 Ecoil ARI 0.750 0.485 0.377 0.476 0.533
Leaf 340 15 30 NMI 0.714 0618 0576  0.601 0.586
Vehicle 940 18 4 Seeds ARI 0.810 0.705 0.663 0.671 0.727
Faces 400 4096 40 NMI  0.760 0.674 0.673 0.658 0.673
Ionosphere ARI 0.645 0.178 0.115 0.154 0.345
NMI  0.502 0.135 0.076 0.117 0.325
of moons, whereas the other clustering algorithms cut both Sonar ARI  0.161  0.011 0 0 0.022
moons into half. We can also observe that all the algorithms NMI 0184 0012 0001 —0.002 0.086
achieve high ARIs on the blobs dataset, which is the easiest Leaf ARL0.371 0322 0308 0301 0.262
. . .. NMI 0.679 0.672 0.656  0.651 0.596
to cluster. Particularly interesting is the result of SPECTACL Vehicle ARI 0204 0076 0106  0.107 0131
on a mixed dataset in which clusters of two shapes, such NMI 0219 0100 0.169  0.167 0.172
as moon and blob, are combined. We can easily observe Faces ARI 0570 0496  0.530  0.448 0.273

that SPECTACL can detect the trajectories of the moons.
However, because the similarity graph generated with a fixed
radius € is corrupted by internal noise points, blob-shaped
clusters are also corrupted. On the contrary, KNN-SC is
robust against internal noise points by generating a similarity
graph with radius adaptive to the densities of the core ver-
tices. In addition, because KNN-SC identifies and filters out
external noise points as potential noise points, it has noise-
independent performance as shown in Fig. 7b. In contrast,
other clustering algorithms have lower ARIs as the number
of noise points increases. The sole exception is the result of
SPECTACL on the moons dataset with external noise points.
As shown in Fig. 7b, SPECTACL has a lower ARI when the
external noise points are less than 0.075 on the moons dataset.
SPECTACL tends to regard external noise points as a cluster
which can be seen from the clustering results for the blobs
and mixed datasets in Fig. 8b; nevertheless; it often fails like
the moons dataset.

B. EXPERIMENTAL ANALYSIS ON REAL-WORLD DATASETS
Here, we use ten real-world datasets of varying sizes, densi-
ties, and dimensionalities, and their characteristics are sum-
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NMI  0.834 0.801 0.815 0.774 0.669

marized in Table 1. These datasets were taken from the UCI
dataset repository [31]. All the real-world datasets were nor-
malized in advance.

To evaluate the clustering performance on real-world
datasets, we used both evaluation metrics, ARI, and NMI. The
parameters of the clustering algorithms were determined in a
similar way to the experiments on synthetic datasets.

Table 2 summarizes the ARI and NMI for the five cluster-
ing algorithms on real-world datasets. According to Table 2,
KNN-SC outperforms the other algorithms for all the real-
world datasets. More importantly, KNN-SC has significantly
higher ARI and NMI than the other clustering algorithms,
regardless of the dimensionality of the dataset and the number
of clusters.

Considering Fig. 9, KNN-SC can intuitively cluster similar
human faces and detect noise points (denoted in gray color)
using the direction of the face and gaze, or whether glasses
are worn.

To evaluate the parameter sensitivity of KNN-SC, we also
conducted experiments by changing the two parameters, k

VOLUME 9, 2021



J.-H. Kim et al.: KNN-SC: Novel Spectral Clustering Algorithm Using k-Nearest Neighbors

IEEE Access

10

0.0

10

0.0

10

0.0

FIGURE 10. Parameter sensitivity of KNN-SC for nine real-world datasets: (a) Iris dataset; (b) Banknote dataset; (c) Wine dataset; (d) Ecoil dataset;
(e) Seeds dataset; (f) lonosphere dataset; (g) Sonar dataset; (h) Leaf dataset; and (i) Vehicle dataset.

and p, on nine real-world datasets, excluding the Faces
dataset. Parameters k and p are increased by 1 and 0.1,
respectively, until we achieve the best ARIs for real-world
datasets.

Fig. 10 shows the experimental results for the parameter
sensitivity of KNN-SC. There is no significant variance in
the ARI, even if the parameters are changed for the seven
datasets: Banknote, Wine, Ecoil, Seeds, Ionosphere, Leaf,
and Vehicle. We can only observe that the ARI is notably
changed on the Iris and Sonar datasets. Particularly, the ARI
is more sensitive to parameter k than parameter p because
parameter k determines the densities of the core vertices in
KNN-SC, and a threshold parameter p is affected by the
parameter k.

VOLUME 9, 2021

Considering these experiments, we observe that the
KNN-SC is not sensitive to the parameters. In addition, if we
determine parameter k first, then the parameter p can be
easily determined.

V. CONCLUSION

In this article, we introduced a new spectral clustering algo-
rithm known as KNN-SC, which is robust against noise
points. Utilizing the properties of the nearest neighbor graph,
we determine the locally dense data points that can repre-
sent the density variations of the dataset. Thereafter, we fil-
ter out the potential noise points that corrupt a similarity
graph by estimating the difference in the density between
the data points based on the k-nearest neighbors. Moreover,
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we decrease the influence of noise points by generating a sim-
ilarity graph representing the adaptive density-based relation-
ships between data points. Therefore, we can significantly
reduce the sensitivity of spectral clustering to noise points.
The results of comparative experiments show that, KNN-

SC

is the most robust to noise points on the synthetic

datasets, competing with k-means, spectral clustering, RSC,
and SPECTACL. Moreover, the superiority of KNN-SC over
other clustering algorithms was demonstrated using several
synthetic and real-world datasets. Particularly, the experiment
on the Faces dataset illustrates the usefulness of KNN-SC in
the field of computer vision.

In the future, we will optimize the proposed algorithm for
extremely skewed or sparse datasets. Furthermore, we will
apply KNN-SC to various application fields.
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