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ABSTRACT

This study considered the development of an aid to sleep classifica-
tion system, and discussed a method which used the clinician as feedback
to the classification process. This scheme allowed the the clinician to
effect the heuristic process of sleep classification, while allowing the
computer to reduce the effort expended in the classification of 1like
segments.

The use of inexpensive microprocessing hardware for sleep signal
spectral estimation was considered, and a scheme using digital filters
implemented with Intel 2920s was developed. The estimation subsystem was
interfaced with a Motorola EXORcisor microcomputer for real-time data
collection, and the collected estimates transferred to an Amdahl main-—
frame computer for post—analysis.

Preliminary studies showed a gross correlation between the éxtracted
spectral estimates and the manually classified sleep record. The spec-
tral estimates, as sampled once a second, were found to be non-station-—
ary within manually classified sleep stage segments. The use of spec—
tral averaging was considered, and found to simplify the correlation
between the spectral estimates and the manual classification for normal
sleep. For abnormal sleep, however, it was found that such averaging

could blur the correlation.
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Chapter 1

INTRODUCTION

1.1 BACKGROUND

The analysis and evaluation of human sleep has become a valuable aid
in the diagnosis and treatment of sleep related disorders, and is widely
used today. The United States Food and Drug Administration, for example,
requires that sleep studies be used in the evaluation of all new hypnot~
ics and sedatives [1]. The evaluation of sleep is also very useful .in
the investigation and assessment of sleep related disorders. Insomnia,
narcolepsy, chronic hypersomnia, obstructive sleep apnea, sudden infant
death syndrome, and many other disordefs have been studied with sleep
evaluation [1,2,3]. It has been speculated that with increasing under-
standing and related technical advances, the evaluation of sleep can be-
come a standard clinical procedure [1].

Although sleep has been investigated scientifically for more than 100
years, most activity has occured in the past 25 years. The evaluation of
sleep state is based primarily on the electroencephalogram (EEG), the
electrooculogram (EOG), and the electromyogram (EMG). There have been
many studies which have examined these signals as they occur during
sleep, and these studies have led to a set of commonly accepted stan-
dards and rules for classifying sleep [1,4]. These rules define the
sleep stages numbered 1 through 4, as well as the rapid eye movement

(REM) and awake sleep stages. Traditionally, the sleep record is divided



into fixed (time) length segments or epochs, and the record is staged or
scored on an epoch-by-epoch Lasis. This scoring is made primarily on the
basis of the specfral distribution of the waveforms within each epoch.

In one of the largest sleep studies conducted, the rules for scoring
sleep were exercised through the classification of over 6000 recordings
of sleep periods for several hundreds of patients [l1]. These and other
studies have revealed that the signals observed during sleep, while
characteristic to the rules of scoring, are quite variable with each pa-
tient [5]. Even the signals observed within one sleep session can vary
significantly. The variability of these signals can arise from a variety
of physiological differences as a function of patient age and state, as
well as monitoring problems in electrode contact and noise.

The value of sleep evaluation as a clinical technique is offset by
the labour-intensity and tediousness of the manual scoring of sleep sig—
nals recorded on paper. This labour-intensity represents a significant
barrier in the investigation of sleep related disorders. The classifi-
cation of a severely disturbed (8 hour) sleep record can require up to
one man-week of effort. There have been many attempts to automate the
scoring of sleep signal records [6,7,8,9,10,11,12,13,14]}. Such automa-
tion is desirable to reduce the labour-intensity of the activity as well
as to reduce the variability of interpretation from clinician to clini-
cian [15]. The automation of the sleep signal classification process is
difficult, however, and past attempts have achieved only limited success
and marginal acceptance [15].

Most attempts at automated sleep signal classification have focused

on the use of large main-frame computers and analog signal processing



equipment in the activity of classifying normal sleep. A number of fac~-
tors have contributed to the limited success of these attempts. Classi-
fication of sleep is based primarily on the spectral distribution ob-
served in the sleep signals [4]. This implies that the frequency spec-—
trum of these signals must be estimated. In the past, such estimation
was feasible only with delicate and expensive analog hardware or power-
ful main-frame computers. The large costs associated with such schemes
have been a significant factor limiting their adoption. These costs are
dropping, however, as recent developments in microelectronics have made
inexpensive digital implementations of spectral estimation hardware pos-—
sible.

A more serious problem has been that of developing a system which is
capable of accommodating the high variability which is present in sig-
nals observed during sleep. This problem is similar to that of speech
recognition. In both problems, it is difficult to construct a system
which is able to classify observed signals at a given moment of time for
a broad class of subjects. The clinician’s evaluation of a sleep record
is based on a wide range of experience and understanding of signal con-
sidered. Often the clinician must scan back and forth through a sleep
record in order to locate representative segments of each sleep stage.
These representative segments are used as reference points in the rela-
tional classification of the record. When a particular segment of a pa-
tient’s record is classified, it is desired that ‘similar’ segments be
classified in the same way throughout the record. The term ‘similar’ im-
plies similarity in the most general sense; that is, a generalized me-

tric considering the syntactic or context relations of the segment. It
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has been observed that the clinician frequently deviates from the rigid-
ly defined scoring rules for reasonable but poorl: defined reasons [15].
The heuristic methods used by clinicians are difficult to describe.
Most attémpts at automatic sleep staging, however, have pursued a search
for a simple, causal model for sleep classification. In other words,
they have attempted to classify the sleep record with no perception of
the record as a Whole, or input from the clinician [7]. This implies
that these studies have attemptéd to have the computer replicate the ac-
tivity of the clinician with less information than the clinician re-
quires. It can be argued that with the current state of technology and
understanding of sleep, it is not possible to replicate the entire ac~—
tivity of the clinician [7].

Another significant limitation of these studies is that they have fo-
cused on the classification of normal sleep. Normal, healthy sleep has
the characteristic that sleep stage transitions typically occur over ex-
tended time intervals. As a result, most studies have based their clas-
sification scheme on a fixed-length epoch rule. The entire night’s re-
cord is divided into fixed length periods with only one decision or
classification made over each interval. Epoch lengths of 30 seconds to 2
minutes have commonly been used. It has been found that patients with
sleep disorders can demonstrate cyclic disruptions or periodicities in
their sleep patterns. These changes can occur as frequently as every 15
seconds. For such patients, the application of a fixed-length epoch rule
may prohibit the identification of brief sleep segments. An investigator
may wish to relate sleep to some other physiological variable (respira-

tion, for example). If the resolution of the sleep classification is




much less than the time constant associated with the other physiological
variable, the correlation of the two functions may be lost. While past
studies have achieved controlled successes on fixed healthy patient
groups, the direct applicability of the work to a broad class of pa-

tients is questionable.

1.2 OBJECTIVES OF STUDY

The approach to sleep signal classification considered in this study
is the use of the computer to assist the clinician in the process of
classifying sleep. As in past studies, the computer will be used to ex-
tract features from the signals which are presently used to stage sleep.
Then, howeﬁer, the clinician will be used to identify examplary segments
to the computer for like classification. In this way, the experience of
the clinician 1is used to effect the heuristic process of sleep signal
classification, and the strength of the computer is used to reduce the
effort expended in the classification of repeated segments.

The method under study represents a significant departure from past
attempts in the use of computers for sleep classification in that the
experience of the clinician is used as feedback to the system. Since it
is desired that like record segments be classified in a like manner, and
since sleep patterns tend to repeat themselves in cyclic patterns, the
use of such a computer—aided system should provide a reliable method
which reduces the labour-intensity of classifying normal and abnormal
sleep records. The variability of the sleep record will be accommodated,
as only like segments will be classified alike. If there is a high de-

gree of variability within a given patient’s record, the clinician will




have to identify more examplary segments in order to classify the re-
corde If a patient presents a record which has no repetitious segment:
and high variability, the system will effectively reduce to the manual
classification method commonly used now. Areas of the record which the
system has been unable to classify with the provided definitions can be
related to the clinician for further clarification.

Beyond the specific application of sleep signal classification, this
method represents a powerful approach for a Qide variety of problems in-
volving extended duration signal characterization and feature extrac-—
tion.

The objectives of this study are to:

1. Study the digital signal processing required to effect sleep sig-

nal spectral estimation;

’2. Evaluate the use of recent low-cost microprocessor hardware for

the task of such estimation;

3. Develop an interface between such estimation hardware and an ex-

isting microcomputer;

4., Study the systematic procedures for evaluating an aid to sleep

classification system; and

5. Conduct a preliminary evaluation of the correlation between the

characterizations of the sleep signals and the manually classi-

fied sleep record.




Chapter II

SLEEP CLASSIFICATION METHODS

2.1 CHARACTERISTIC FEATURES AND RULES

Sleep signal classification rules commonly used today are based pri-
marily on the scoring criteria established by Dement and Kleitman in
1957 [16]. These rules were reaffirmed by the U.S. Department of Health
in the Rechtschaffen and Kales (1968) standardization manual for sleep
scoring [4]. These studies reflect the firmly established fact that
sleep is not a homogeneous state, and that sleep stages follow fairly
orderly cyclic patterns [4]. Sleep can be subdivided into two broad
classes of REM (rapid eye movement) and non-REM sleep. Non-REM sleep is
further subdivided into sleep stages numbered 1 through 4, or as awake
sleep. These definitions are based on characteristics observed in the
electroencephalogram (EEG), the electromyogram (EMG) and the electroocu-
logram (EOG). The EEG signal electrodes are commonly applied at posi-
tions C4/Al and or C3/A2 according to the international 10-20 placement
system [17]. It is often desirable to record 2 channels of EEG, having
one as a backup in case a pair of electrodes cease to function or exhib-
it excessive amounts of artifact. The EOG is derived from electrodes
placed around the eyes, and the EMG is often taken from an electrode
placed under the chin. These signals are generally recorded with a po-
lygraphic recorder with a minimum paper speed of 10 mm/second, and a

minimum sensitivity of approximately 5 microvolts per mm. The classifi-




cation of sleep is based primarily on the spectral distribution of the
EEG within established bands as a function of time [4]. The spectral
bands which are considered most important are the low (0.25 to 2.0 Hz)
and mixed (2.0 to 7.0 Hz) frequency bands. The appearance of sleep spin-
dles (rhythmic bursts of at least 0.5 second duration in the 12 to 14 Hz
range) and K complexes (well delineated negative sharp waves which are
immediately followed by a positive component [4]) are also considered
significant. The EOG is commonly considered only within the band of 2.0
to 10.0 Hz, and the EMG is considered primarily from the perspective of
average signal power.

Just after a patient has fallen asleep, the EEG activity is quite
similar to that present when the patient is awake. This period repre-—
sents the highest neurological state during sleep, and is referred to as
awake sleep. The awake sleep stage has the EEG characteristic of predo-
minately high frequency activity with some low amplitude, mixed frequen-
cy activity. Most of a night is spent in non-REM sleep, with some inter-
mixed periods of REM sleep. During REM sleep, the EEG activity reflects
a fairly ’light’ level of sleep (stage 1), yet there is only a low am-
plitude EMG in conjunction with episodic rapid eye movements (REMs). REM
appears to correspond with a “deep’ level of sleep in that there is lit-
tle EMG activity, while the EEG activity corresponds with that of light
sleep. As a result, REM sleep is sometimes referred to as paradoxical
sleep, and is commonly thought to be associated with dreaming. Sleep
stages 1 and 2 can be grouped as mixed frequency sleep, and represent
‘light’ sleep. Sleep stages 3 and 4 can be grouped as slow wave sleep,

and Tepresent ‘deep’ sleep. Stage 1 is defined as an interval of rela-




tively low amplitude, mixed frequency EEG with absolute absence of REMs,
K complexes, or spindles. Stage 2 is defined as relatively low ampli-
tude, mixed frequency EEG background with the occurence of sleep spin-
dles and/or K complexes. If more than 3 minutes of stage 2 sleep pass
without a sleep spindle or K complex, the classification defaults back
to stage 1. Stage 3 is defined by an EEG segment in which at least 20%
but not more than 50%Z of the epoch consists of predominately low fre-
quency activity. Stage 4 is defined by an EEG segment in which more
than 50% of the epoch consists of primarily slow frequency activity. It
is often difficult to differentiate between stages 3 and 4, and they
are, therefore, sometimes classified together as slow wave sleep.

Normal sleep pattern distributions vary dependent on factors such as
as patient age and sex [l]. Sleep patterns can also be altered by a va-
riety of clinical disorders. An example of a disorder which can alter
sleep is sleep apnea syndrome [2]. Sleep apnea is a disruption of res-
piration where breathing is diminished or stops for periods exceeding 10
seconds. During such events, the oxygen content of the patient’s blood
may drop. Events of this nature are typically terminated with an arous—
al, although the patient is generally not aware of the event. Frequent
disruptions of sleep may lead to variety of symptoms or disorders, and

can have a significant impact on the patient [2].




2.2  MANUAL CLASSIFICATION METHODS

The most commonly accepted method for sleep signal classification is
a manual review of the polygraphic recording. Traditionally, the entire
night’s record is divided into fixed-length sections or epochs. Epoch
lengths of 30 seconds to 2 minutes have commonly been used. Classifica-
tion is based on the visually observed waveforms averaged over each ep-
och interval. A single classification is made for each epoch, and the
record is classified on an epoch~by=-epoch basis. The clinician will of-
ten scan through the entire record in order to ‘calibrate’ for the scor-
ing, and must often refer to other portions of the record in order to
classify a particular epoch. For the classification of abnormal sleep,
a variable length epoch method has been used [18]. With this scheme,
sleep stage transitions are identified wherever they may occur (with a
minimum epoch length of 15 seconds). This method allows a more accurate
tracking of disturbed sleep patterns. The classification data is then
commonly entered into a computer for further analysis. The classifica-
tion data has, for example, been correlated with respiration variables

concurrently recorded during sleep [19].

2.3  AUTOMATED CLASSIFICATION ATTEMPTS

There have been many attempts to automate the classification of sleep
signal records. These attempts have used a variety of signal processing
techniques, and have considered many different decision algorithm meth-
ods. In general, these attempts have focused on trying to achieve total
automation of the sleep classification process. In a review of attempts

to automate sleep classification [15], it was noted that most studies
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that have achieved some satisfactory results have had much in common.
These systems have, in general, used REM detectors to discriminate stage
1 from REM, and have tried to establish some algorithm to mimic the heu-
ristic decision making of a clinician on the basis of some wave features
extracted from the EEG. The EMG, although valuable according to the Re-
chtschaffen standards, has often not been considered as it has been
found to be unreliable [15].

Direct amplitude analysis, spectral analysis, Walsh expansions, and
period analysis have all been considered in the problem of sleep classi-
fication [20,21,22]. Although different studies have used widely varied
signal processing techniques and implementations, the more advanced at-
tempts have achieved approximately the same level of controlled success.
Frequently used methods for the wave feature extraction have been band~-
pass filtering, fast Fourier transforms (FFTs), matched filtering or
correlation detection, zero crossing and pitch period detection, or the
use of hybrid wave-form detection circuitry. The most frequently used
technique for the wave feature extraction has been bandpass filtering.
The filters have, in the past, commonly been implemented with analog
circuitry. The low frequency nature of the passbands has made such
equipment difficult and costly to implement. Many other studies have re-
corded the entire sleep record and have conducted post-analysis FFT
studies. There has been much study of the detection of sleep spindles,
K complexes, and rapid eye movements (REMs)
[23,24,25,26,27,28,29,30,31]. K-complexes are frequently not considered
as they are poorly defined and difficult to detect in both manual and

computer—-aided analysis. REMs are very valuable in distinguishing be-
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tween stage 1 and REM, and sleep spindles are also generally consiaered.
Overall, the primary factor considered in sleep classification is the
amplitude of the EEG within spectral bands as distributed over time.
Independent of the wave features extracted, the first study to accu-
rately classify all stages of sleep was a scheme which incorporated pat-
tern recognition [15]. The early work with pattern recognition was
criticized because it could not accommodate a patient group with a large
variance in age without changing the recognition scheme. Also, these
systems often consumed very large amounts of expensive computer time to
effect the wave feature extraction and pattern recognition. Pattern rec-—
ognition is a field which has received much study of late, however, and
holds promise in its application to a number of areas including sleep
classification [7,6,32]. Many of the other studies which achieved some
success used decision tree algorithms to try to directly mimic the ac-
tivity of the clinician. These studies were frustrated by the very heu-
ristic nature of manual sleep classification, and as a result achieved

success only within confined patient groups.
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Chapter III

PROPOSED METHOD

The general method considered in this study is one of having the com-
puter aid the clinician in the classification of sleep. The computer is
used to extract the wave features which are considered significant in
the classification of sleep, and the clinician identifies to the system
examplary segments of the sleep stages. In this way, the experience of
the clinician is used to effect the heuristic process of sleep classifi-
cation, and the computer is used to reduce the effort expended in the
classification of 1like segments. When a particular segment of a sleep
record is classified, it is desired that like segments be classified in
a like manner. Since sleep patterns tend to repeat themselves during the
course of a night, a system which could identify repeated segments could
reduce the labour-intensity of the activity. This is especially true for
the classification of disturbed sleep in that, for patients with such
disorders, the frequency of sleep stage transitions is greatly din-
creased. In a more general sense, this method represents a powerful ap-
proach for a wide variety of problems involving extended duration signal
characterization and classification.

The conjecture of this approach is supported by much of the work done
on automated sleep classification. Gath and Bar-on [7] studied a system
which extracted linear predictive coding (LPC) coefficients for the EEG,

EOG, and EMG during sleep in order to characterize the entire nights ac-
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tivity. The spectrum of the signals was then estimated on the basis of
the LPC coefficients, and a scheme using.fuzzy set theory was used to
classify the sleep (fuzzy set theory is closely related to pattern rec-
ognition). This work reinforced the conjecture that the average spectrum
presented in the EEG is ‘somewhat’ stationary during sleep. The term
‘somewhat’ in thiskcase implies that the average spectrum is constant
for some time, although varying over longer time intervals. In fact,
this work suggested that the transitions in the average signal spectrums
were quite distinct, and that an 8-hour recording could be reduced to
about 3500 record segments with somewhat constant average spectral char-
acteristics. Bourne [6] has extensively studied the use of syntactic
pattern recognition for sleep classification, and has had promising re-
sults.

The primary reasons for considering a feature extraction/pattern rec-
ognition scheme are because the characteristics observed during sleep
vary greatly between patients, and because the classification process
effected by the clinician is so heuristic. This is not to criticize cli-
nicians for their inability to describe completely the process which
they effect. An analogy might be that an individual, on hearing two dis~-
tinct pieces of music, is clearly able to distinguish between them al-
though generally unable to say exactly why. What is implied is that the
human brain is an extremely capable processing element which is able to
conduct very heuristic decision making. Given the heuristic nature of
the sleep classification process, and the fact that repeated attempts to
establish decision-tree 1like structures to model the process have

achieved only marginal success, a generalized pattern recognition scheme
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which bases the classification on identified examplary segments seems
like an appropriate avenue for considera’ sii. The consideration of high-
ly variable, disturbed sleep records further intensifies the need to
move away from a fixed-model approach.

Some of the studies which have considered pattern recognition have
been found to be very intensive in their computer usage. These costs
have 1limited their use. The ever increasing complexity and dropping
costs of microprocessing hardware provide strong motivation for their
use in problems like sleep classification. Recent developments in mi-
croelectronics have led to microprocessors well suited for use in signal
processing. The Intel 2920 is an example of such a microprocessor [33].
The use of such microprocessing hardware for the task of sleep classifi-
cation may lead to the development of an inexpensive labour-saving aid.
Therefore, this study has considered the use of inexpensive microproces-—

sor hardware for sleep signal classification.
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Chapter IV

SLEEP SIGNAL PROCESSING

4.1 INTRODUCTION TO DIGITAL SIGNAL PROCESSING

Analog signals are those which are continuous as a function of time.
Digital signal processing is the general subject associated with sampled
signals which are represented numerically. Sampling a signal and pro-
cessing it numerically has a number of advantages over processing a sig-
nal with analog components. Numerical processing is frequently accom-
plished with a digital computer. This fact implies that there is a high
degree of flexibility in the processing which can be accomplished by ad~-
justing software algorithms. Achieving such flexibility with analog
hardware is, in general, not economically feasible. When an analog cir-—
cuit is specified, the components with which it is constructed are only
approximations of the values desired. This implies that precise analog
circuits require fine tuning after the components particular to the cir-
cuit have been installed. Also, after the components have been installed
and fine tuned, the circuit function can drift as the analog components
age and change in characteristics. This drift may require that the cir-
cuit be periodically fine tuned to reestablish its function. Indepen-—
dent of the approximation and drift problems, it may be difficult to fa-
bricate the components required in an analog circuit. This problem is
often true when working with low frequency signals. Also, whenever an

analog signal is processed, there is almost always some noise added to
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it. Systematic and expensive design and fabrication procedures can min-
imize (although not eliminate) these problems.

Digital signal processing does not solve the problems identified with
analog processing, but rather replaces them with problems that can some-
times be more easily addressed. In general, digital components which are
stable and drift free can be fabricated quite accurately and repeatably.
Also, functions which may be difficult to implement with analog compo-
nents are often straightforward with digital signal processing techni-
qués. Once a signal is sampled, there is no additive electrical noise
since the processing occurs through numerical operations. Like most
things in life, however, there are tradeoffs to counter the benefits re-
alized in using digital signal processing techniques. Today, most digi-
tal' signal processing hardware implementations are more costly than
their analog counterparts (unless very delicate, noise immune, or low
frequency analog circuits are required). In place of additive electrical
noise in processing a signal, finite register quantization error, round
off and truncation errors, and register overflow errors introduce noise
into the signal. Also, the cost of the digital hardware system increases
sharply if real-time high frequency signal processing is required.
Therefore, digital signal processing is not an automatic choice over its

analog counterpart.
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4.2 CONSIDERATIONS IN SAMPLING A SIGNAL

Sampling a signal, or establishing a digital representation for the
value of a signal at a specific moment in time, is generally accom—
plished with an analog to digital (A/D) converter. Since A/D converters
require a finite time to perform such a conversion, an analog sample and
hold circuit is often used as a buffer between the input signal and the
A/D converter. This circuit acquires the value of the continuous signal
at the moment of sampling, and holds the value constant while the A/D
conversion is completed. The digital signal processing algorithm which
is applied to such a sampled signal depends on what processing function
is desired. Whatever algorithm, the function of the process is imple-
mented through a sequence of numerical processes, in general operating
on the sampled or quantized input. Since the process is effected through
numerical operations, a digital computer is ideally suited for the im-
plementation of such algorithms. The processing of such an input signal
may occur while the signal is occuring (in real-time), or the signal
samples may be stored for later processing.

The type of result which is obtained from a digital signal processing
algorithm depends on the algorithm being performed. The results may be
processed further by other algorithms, or the result of the algorithm
may be a stream of digital values which correspond to a transform of the
analog input signal., It may, therefore, be desired to reconstruct an an-
alog output signal from such a stream. This function is accomplished
with a digital to analog (D/A) converter. A D/A converter produces an
analog output which is proportional, at a given moment, to the digital

value which is supplied to it.
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The sampling of a continuous signal affects the frequency domain
characteristic or spectrum of that signal, depending on the relationship
of the sampling rate to the highest spectral component of the signal.
Intuitively, it seems reasonable that if a signal is varying 10 times a
second, sampling the signal once a second will not ‘capture’ the infor-
mation in the signal. The Nyquist relation states that, for an infinite
duration signal, sampling at twice the frequency of the highest spectral
component of the input signal will result in a complete capture of the
information contained in the signal. Sampling at rates below the Nyquist
rate results in aliasing distortion or noise. This relationship is best
explained by a diagram. In Fig. 4.1, it can be seen that the spectrum of
the sampled signal is that of its analog counterpart, except that the
spectrum repeats itself or is folded by the sampling frequency. If a
sampling frequency of less than two times the highest spectral component
of the input signal is used, aliasing noise is added into the sampled
spectrum. In practice, sampling rates well in excess of twice the high-
est component are used. Bandlimiting lowpass or anti-aliasing filters
are often used to bandlimit the input signal and ensure a minimum of
aliasing noise.

Since the continuous signal is represented by digital values of fi-
nite length, quantization noise is also introduced. If an N bit repre-
sentation is used, 2N values can be represented. If a signal variation
smaller than 1/(2N) of the input signal range occurs, the variation will
go ‘unnoted’. This problem manifests itself as additive quantization

noise which is a function of the number of bits of resolution used.
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Figure 4.1: Spectrum aliasing with decreasing sampling frequency

Taken from Intel Corp., 2920 Analog Signal Processor
Design Handbook. Santa Clara, 1980.

- 20 -



If an analog output is required from a digital system, this is accom-
plished with a D/A converter. The output of such a system remains con-
stant until a new output is available. At that time, the output jumps to
the new output value. These jumps introduce high frequency components
into the output. A lowpass reconstruction filter is often used to smooth

the output waveform.

4,3 SPECTRAL AMPLITUDE ESTIMATION FOR EEG AND EOG

The first step in any system which is to aid in the sleep signal
classification process is the consideration of spectral amplitude esti-
mation. The most frequently used method for such estimation has been an-
alog bandpass filtering. The low frequency nature of these signals,
however, makes analog solutions difficult and costly to implement. As a
result, various digital signal processing techniques have been attempted
with varying degrees of success. Pitch period detection algorithms have
been used, and are based on a time domain analysis of a waveform. The
algorithm detects the rise or fall of a‘signal, thereby determining when
peaks and troughs have occured. With the time between peaks and troughs
and the difference between the peak and the trough, a crude estimate of
the amplitude spectrum is made. These algorithms are desirable because
of their simplicity, but have had only limited success when applied to
the problem of EEG amplitude spectrum estimation. Fast Fourier trans-—
forms and Walsh transforms have been applied to the problem, and both
have achieved good success. Between the two methods, FFTs are more com-
monly accepted and used. Linear predictive coding has been used as a

method of characterizing the EEG and EOG in real-time, with Fourier
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transform techniques applied in post-analysis to evaluate the spectrum.
Correlation techniques for spectral estimation of sleep signals have not
commonly been used, although recent publications on spectral analysis
have advocated their use [34].

The decision on which method to use in an implementation for the
épectral amplitude estimation is influenced by several factors. A sig-
nificant factor steering any such practical decision is the cost of the
solution. Many of the attempts at this problem have been based in large
and well funded laboratories which have been able to afford main-frame
computers dedicated in real-time to the problem. Less expensive but
still costly solutions have been to store all the samples from an entire
night’s sleep and analyze the signals after the fact. This alternative
is costly in that a large capacity of bulk storage is required for the
samples (at least 1.5 Megabytes formatted per EEG track).

Microprocessor based solutions are comparatively inexpensive. Most
inexpensive microprocessors, however, have instruction sets and word
sizes which are not well suited for digital signal processing applica-
tions. As a result, the use of microprocessors for real-time digital
signal processing can be difficult. More advanced configurations of
general purpose microprocessors can be used, but recent advances have
also been made in the development of microprocessors which are oriented
towards digital signal processing. The Intel 2920 is such a device, as
it contains analog multiplexers, sample and hold circuitry, an A/D con-
verter, random access memory (RAM), a programmable permanent memory
(EPROM), a D/A converter, and output demultiplexer and hold circuitry on

one integrated circuit (IC). The 2920 is able to implement a shift and
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add/subtract in one instruction, and is able to conduct parallel digital
-nd analog operations. All internal registers are 24 bits wide, with a 9
bit bipolar A/D and D/A converters. This single chip signal processor is
quite suitable for real-time signal processing. Real-~time signal pro-
cessing reduces the need for a bulk storage device to save the samples,
thereby significantly reducing the cost of the system.

Given the attempt to try to reduce the cost of the system through
real-time signal processing with the Intel 2920, it is nessesary to re-
view the processing requirements of the various algorithmic alterna-
tives. The fast Fourier transform is an algorithm which performs a time
domain to frequency domain transformation. Civen a set of time domain
samples, this algorithm provides a transformation to a set of values
which correspond to estimates of the frequency domain characteristics
presented in the time domain samples. The results of this algorithm are,
in general, complex values which estimate the magnitude and phase of the
spectral components. The larger the set of samples taken in such a cal-
culation, the better the resolution or spacing between the values calcu-
lated in the frequency domain. The FFT , however, is subject to a phe-
nomenon known as windowing. Briefly, there is distortion in the
calculated spectrum which results from the fact that the input signal
has not been considered for an infinite time. Any real FFT algorithm is
of finite size, and therefore windowing distortion is always present in
the calculated spectrum. Advanced techniques can be applied to reduce
this problem, although it can not be totally removed. The FFT is also
quite processing intensive. In order to perform the FFT, a large number

of complex arithmetic calculations, and enough memory to store at least
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the samples for thé FFT and the results are required. Although the 2920
is limite:s in the amount of available memory, and does not implement
complex arithmetic very easily, it is well suited for digital filtering.
Digital filtering is a technique which facilitates a digital approxima-
tion of an analog filter. Primarily for this reason, together with the
experience in EEG analysis based on spectral estimation within bands,

digital filtering was chosen as the method for the spectral estimation.

4.4 SPECTRAL ESTIMATION USING DIGITAL FILTERS

The scheme used to estimate the amplitude spectrum of the EEC using
digital filters can be described as follows. A set of bandpass filters
is used to separate out the spectral bands of interest from the incoming
EEG and EOG signals. The bands which have been found to be of signifi-
cance are: 0.25 to 2.0 Hz, 2.0 to 7.0 Hz, and 12 to 14 Hz for the EEG,
and 2.0 to 10.0 Hz in the EOG. In order to establish reasonably narrow
passbands, fourth order Butterworth bandpass filters were chosen to pass
the segments of interest. Since the passbands all exist above dc, the dc
component of each of the output waveforms should equal zero. The output
from each of the bandpass filters is then passed through a full wave
rectifier. The output of the full wave rectifier is then passed through
a low pass filter with a break frequency very near dc. The effect of the
scheme is that the output of the low pass filter is a value which corre-
sponds to the dc or average in the rectified bandpass signal. A block
diagram of this process is shown in Fig. 4.2. 1In an attempt to minimize
the ripple from the rectified bandpass in the low pass filter output,

break frequencies for the low pass filters were chosen at least a factor
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Figure 4.2: Process block diagram

of 10 less than the lower break frequency of the bandpass filter. Also,
second order Butterworth lowpass filters were chosen to reduce the rip-

ple in the output.

4.5 FILTER DESIGN CONSIDERATIONS

Infinite-Impulse Response (IIR) digital filters are those which which
have a response of infinite duration to an impulse input. An IIR filter

has a transfer function, H(z), of the form:

b zN + b zN“l + b zN_2 + ... + b
0 1 2 N
H(z)= - 5 57" o (4.1)
z + alz + azz + eee + aN

where all the a’s are not zero. IIR filters are desirable because they
provide good transfer characteristics from a comparatively simple struc-
ture. The feedback in these structures, however, introduce the possibil-
ity of the filter being unstable. The design of the digital filter is
generally accomplished through a transformation of an analog filter de-
sign. The design objective is to arrive at a filter design which meets
not only the specifications, but is also stable, causal, and is simple

enough to be realized with available hardware.
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Specification of a filter can include amplitude and ©phase
characteristics, as well as trarsicnt performance specifications. There
are basically three types of transformation methods which can be used to
transform an analog filter design to a digital design. Each of these
methods has specifications which are ensured in the digital design. The
impulse-invariant and step-invariant methods ensure that the resulting
digital filter will have the same impulse or step transient performance
as their analog counterparts. Amplitude and/or phase characteristics are
usually sacrificed for these results. The third common method is the
bilinear transform method. This method provides a filter which approxi-
mates the amplitude characteristic of its analog counterpart quite well.
For this reason, the bilinear technique was chosen for the design of the
bandpass and lowpass filters.

The bilinear transform method maps the left-half of the s-plane into
the interior of the unit circle of the z-plane. The jw axis of the s-
plane is mapped onto the |z|=1 circle of the z-plane. For a stable fil-
ter in the z-plane, all poles must reside inside the unit circle. Since
all the poles of a stable analog filter reside in the left-half of the
s-plane, the digital filter obtained by the bilinear transformation of a
stable analog filter is always stable. This mapping is obtained by sub-
stituting z=(1l+s)/(l-s). Since an infinite space is mapped into a finite
space, the mapping cannot be linear. The analog frequencies are there-
fore prewarped with the tan function W = tan(wT/2) where T is the sam-
pling period of the digital filter. The derivations of the digital fil-

ter designs are included in the Appendix.
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The choice of sampling rate is based on many factors. If the sampling
rate is chosen too low, significant ali+.ing noise can be introduced
into the spectrum. To counter this problem, a sampling rate much higher
than the highest critical frequency is desirable. The sampling rate,
however, also affects the positions of the poles of thé filter on the
z-plane. This can be seen in Fig. 4.3. For the example of the 12-14 Hz
bandpass filter (4th order Butterworth), it can be seen that as the sam~
pling rate increases, the poles are in general shifted towards the |z|=1
circle. Since the |z|=1 circle represents the limit of stability, the
sensitivity of the system is increased as the poles approach that limit.
Any real digital filter can only approximate a designed system to a fi-
nite accuracy. As the poles approach the |z|=1 limit, the possibility of
the approximation residing outside that limit increases. For each of the
filters used in this study, the difficulty of realizing each pole was
considered. The tradeoffs between sampling rate, pole sensitivity and
scaling were considered somewhat heuristically, and the resulting sam-
pling rates are shown in Table 4.1. Complete data on filter coefficients

and scaling are included in the Appendix.
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TABLE 4.1

Filter characteristics and operating rates

|

}

|

|

|

|

e e e e e e e e e e —t
| Filter Characteristics (Butterworth): Operating Rate |
: ——————— —t
| 1/4 - 2.0 Hz 4th order bandpass : 50 Hz

i .025 Hz 2nd order lowpass : 12.5 Bz |
| 2.0 - 7.0 Hz 4th order bandpass : 50 Hz

| 0.2 Hz 2nd order lowpass : 50 Hz |
| 2.0 - 10.0 Hz 4th order bandpass : 50 Hz

] 12.0 - 14.0 Hz 4th order bandpass "~ : 200 Hz

| 1.0 Hz 2nd order lowpass : 200 BHz

| |
+ e ——— e}
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4.6 IMPLEMENTATION CONSIDERATIONS

The design considered in the previous seétion must be implemented
with a structure of arithmetic operations and delays. The implementation
is best described with a block diagram. These block diagrams use delays,
multipliers, and adders. Transfer functions are most often realized in
blocks of first or second order sections, since higher order sections
are quite sensitive to parameter variations. Direct or canonical-forms
are two common realization methods. The poles associated with the fil-
ters are neither close to the |z|=0 point or the Im(z)=0 line. Given
this fact, and the fact that there are complex conjugate poles, Chen
[35] recommends the use of parallel (second order) canonical-form reali-
zation blocks. This choice is based on a comparison of the sensitivity
of the poles, the number of arithmetic operations required, and the
flexibility to realize complex conjugate poles with each form. The
transfer functions for the filters are:

K (z-1)(z+1) (z=1)(2z+1)

Bandpass: H(z)= - 3 (4.2)
z" - Az + B z"- - Cz+D

K(z2 + 2z +1)

22 + alp z + bet

(4.3)

Lowpass : H(z)=

These transfer functions can be realized with the block structure seen

in Fig. 4.4.
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4.7 INTRODUCTION TO THE 2920 SIGNAL PROCESSOR

The Intel 2920 signal processor is a microprocessor designed for sig-
nal processing. The device contains on a single chip: a 9 bit bipolar
A/D converter with a 4 channel multiplexer and sample & hold, a D/A con-
verter with 8 demultiplexed output channels with sample & holds, a 25
bit arithmetic logic unit, 40 - 24 bit dual port RAM locations, 192 - 24
bit program (EPROM) memory locations, a shifter unit, and an instruction
set which is designed for doing digital signal processing. Each instruc-
tion has an arithmetic and an analog part. Arithmetic and analog pro-
cesses are conducted in parallel. An arithmetic shift and add/subtract
can be implemented with one instruction. No internal bus signals are
available, and the device is simply supplied with input signals, power,
and a crystal. A diagram of the architecture of the device is shown in

Fig. 4.5.
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2920 block diagram

Taken from Intel Corp., 2920 Analog Signal Processor

Design Handbook. Santa Clara, 1980.
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4.8 2920 PROGRAM DEVELOPMENT

The 2920 is programmed via an EPROM which resides in the device.
This implies that an EPROM programming circuit must be available to pro-
gram a 2920. Also, the 2920 instructions are 24 bits long and comprised
of 5 operands. The bit string is also jumbled before it is programmed
into the device. The effective result is that an assembler is essential
to the development of 2920 code. The assembly/programming function can
be purchased from Intel in two forms. The best solution is to buy an In-
tel development system. This option, however, costs approximately
$50,000. A second alternative is to purchase a dedicated development
board from Intel for a cost of approximately $1,400. (The University of
Manitoba has purchased such a board). This board is, however, somewhat
unreliable and less than optimal in terms of ease of use. Therefore, Mr.
Andy Weirich and I designed and implemented a 2920 assembler and pro-
grammer for the Motorola EXORcisor laboratory computer. Programming is
accomplished through a programmer board inserted in the EXORcisor system
bus. The assembler was developed in Motorola MPL [36] (a PL/1-like com-
piler which compiles to 6800 assembly mnemonics), is 940 lines long, and
operates in the EXORcisor. It allows free format entry of 2920 programs,
with full error diagnostics and error recovery during assembly and pro-
gramming. Programs are entered and edited with the EXORcisor editor, and
are stored on floppy disk. An interface between the EXORcisor and a
Heath H14 printer was also developed, to allow paper copy of disk files.

A listing of the assembler source code is included in the Appendix.
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4.9 FILTER PERFORMANCE CONSIDERATIONS

The coeff;cients for the digital filters were calculated with a
FORTRAN program which is included in the Appendix. The 2920 is able to
multiply with shifts and adds/subtracts, and therefore a sign digit can-
onic form breakdown of each of the coefficients was also evaluated by
the program. The 2920 used in this implementation was supplied with a
5.0 MHz crystal. The 2920 requires 4 crystal cycles/ instruction, and
therefore a maximum length program of 192 instructions results in a sam-
pling rate of approximately 6.5 kHz (assuming only one sample is per-—
formed per program pass). At this sampling rate the poles of the digital
filters are very sensitive and difficult to realize. Therefore, a sub-
multiple sampling scheme was implemented. The submultiple sampling
scheme is based on software counters and conditional delays. The calcu-
lations for all the filters are conducted at a rate of 6.5 kHz, with de-
lays effected only when certain software conditions have been met with
the counters. Through this scheme, software adjustable operating rates
were established to effect each of the desired operating rates. The in-
terested reader can refer to Intel’s design handbook [33].

Anti-aliasing filters were not implemented as the EEG and EOG signals
available for this processing were already bandlimited. The outputs of
the digital filters were transferred to a second computer digitally, and
therefore, reconstruction filters were not considered.

Overflow and scaling considerations were addressed as follows. Given
a realization of a structure with a given machine, it is a nontrivial
problem to establish which (bandlimited) input sequences will result in

the highest probability of overflow [37,38]. 1In order to determine some
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estimate of appropriate scaling factors, the 2920 operations were simu-—
lated on tv: Amdahl computer in FORTRAN, Practicing saturation arith-
metic as effected by the 2920, a full scale input signal at the center
frequency of each bandpass segment was passed through each of the filter
setups. After operating each of the filters long enough to settle down,
several cycles of the input waveform were passed to determine if over-
flows were occuring anywhere in the structure. If overflows did occur,
the appropriate scaling factor was reduced by a power of 2 and the pro-
cess repeated. In this way, a set of scaling factors was determined
which provided a reasonable, though not optimal, use of the implementa-
tion hardware. A listing of the simulation software is included in the

Appendix.

4.10 FILTER TESTING PROCEDURES

Each of the filter setups was tested with sinusoidal signals, with
the outputs from the filters converted to analog by the 2920, The low
frequency nature of the filters allowed for accurate paper plotting of
the output. The performance of each of the setups was measured with
standard frequency response techniques. This was accomplished by apply-
ing a sinusoidal input and measuring the amplitude of the output. The
filters were found to perform very well, and the spectral amplitude
characteristics for each of the filters matched that theoretically pre~
dicted almost exactly. This level of performance can be attributed, for
the most part, to the large word (data) path provided by the 2920. As
mentioned earlier, the 2920 provides a 9 bit A/D conversion, and uses/

stores 24 bits for all calculations. Also, all calculations are conduct-
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ed with 25 bits of accuracy, with the result rounded to 24 bits. The
spectral amplitude cherscteristics for the bandpass filters is shown in

Fig. 4.6.
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Chapter V

TEST SYSTEMS AND PROCEDURES

5.1 SYSTEM OVERVIEW

In order to implement the proposed aid for sleep classification, it
is necessary to collect the spectral estimates extracted during the re-
cording, and to store them for post-analysis. To accomplish this task,
it is necessary to interface the 2920s to a second computer or intelli-
gent storage system. With the extracted features stored, the post-pro-
cessing can be conducted by the data collection processor, or the data
can be transmitted to a more suitable computer.

Within the confines of this study, the objectives were to investigate
the proposed method, and to study the use of inexpensive microprocessing
hardware for the spectral estimation. Given those objectives and the
budget constraints of the project, a system hardware scheme was devised
using available equipment. For these reasons, the 2920s were interfaced
to a Motorola EXORcisor laboratory microcomputer, and the collected data
was transmitted to an Amdahl V7 main-frame computer. The EXORcisor is a
6800 based microcomputer with 56 Kbytes of RAM, 2 floppy disk drives,
parallel and serial interface ports, and a disk operating system (Moto-
rola EXORdisk II MDOS). The Amdahl is a large computer which supports
many online users, and has a Versatec graphics plotter attached to it.

The EXORcisor does not use a dedicated floppy disk control device,

and therefore the 6800 processor itself controls all disk operation ac-
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tiyities. This fact, combined with the time required to conduct floppy
disk activities, imply that the 6800 may be usccupied for periods of up
to several seconds in a disk read or write. Since it was desired to sam-
plé the spectral estimates from the 2920s many times within the briefest
sleep stage interval (approximately 15 seconds), a sampling rate was
chosen to be 1 Hz. Given this desired sampling rate, it was not possible
to conduct disk operations in real-time without missing some sample
times. Therefore, it was decided to collect data only to the limit of
the EXORcisor’s RAM storage capacity, with storage on disk after collec-—
tion. The collected data was then transmitted to the Amdahl through an
RS-232 asynchronous communications link for post-analysis. A system data

flow diagram of this configuration can be seen in Fig. 5.1.
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5.2  2920/EXORCISOR INTERFACE

5.2.1 Transfer Method

A 2920 is capable of producing analog or digital output from any of
its 8 output lines. Since the outputs of the spectral estimation algor-—
ithms in the 2920s are numerical, it was decided to transfer the esti~
mates digitally. Because of the architecture of the 2920 and the fact
than several estimates had to be transfered out of each 2920, it was de-
cided to transfer the estimates out of the 2920s serially. A parallel
rather than serial interface to the EXORcisor was chosen in an attempt
to maintain as universal as possible an interface. Serial in, parallel
out shift registers (74164) were used to construct this interface. Be-
cause a submultiple sampling rate was used to effect the required filter
sampling rates, a number of effectively wasted program passes were spent
between actual filter iterations. These program passes were used to
transfer out the bits of the digital spectral estimates. It was decided
to pass an 8 bit (twos complement) spectral estimate, and therefore 8
successive program passes were used to shift out the values. The 2920 is
capable of generating an end of program pulse (EOP) through the use of
the EOP instruction. The EOP pulse was, therefore, used to control the
shifting of the regiséers. Since it was desired to have the shift regis-
ters stop shifting after the 8 passes, a control output was produced by
the 2920 (through software timers) to enable the shifting for only 8
program passes. Software timers in the 2920 were also used to establish
one second intervals, and the operations of the filters were arranged so
that no new filter output values were determined within the 8 program

pass period. The shift control signal was also used to trigger an in-
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terrupt in the EXORcisor, thereby signalling that a read of the estimate

values should occur.

5.2.2 Interface Problems

There were a number of problems encountered in developing this inter-
face. The two most serious problems stemmed from glitches which were
present in the 2920 output signals. The first of these problems was that
the EOP pulse generated by the 2920 contained 2 spikes, each distinct
enough to trigger a TTL gate input. This waveform can be seen in Fig.
5.2. The second problem was related to the control signal used to ena-
ble the shifting. A digital output of the 2920 was used to produce a lo-
gical one, under software control, for the required 8 program pass peri-
od. This implies, given the architecture of the 2920, that the outpﬁt
was successively ‘rewritten’ with each program pass. The successive
writing of a logical one with a 2920 is corrupted with a glitch, also
large enough to trigger a TTL gate input. This waveform can be seen in
Fig. 5.3.

These problems were addressed as follows. The end of program pulse
was used to trigger a monostable multivibrator (one-shot) circuit
(7418221) in order to generate the desired single pulse. This circuit
was not affected by the second spike of the pulse. The control line was
deglitched through the use of a CMOS NOR gate, and a resistor-capacitor
pair. A CMOS logic gate input threshold voltage is 507 of its supply
voltage. Since the gate draws very little current, a resistor—capacitor
pair can be arranged to ensure that one of the gate input lines does not

reach the threshold voltage unless a change in the input voltage occurs
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Figure 5.2: 2920 End of program pulse waveform

Figure 5.3: 2920 successive logic 1 output waveform
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for longer than a selected time. In this way, the control line can be
effectively deglitched. Complete circuit diagrams for the
2920/EXORCisor interface and the 2920 programs are included in the ap-

. @
pendix.

5.2.3 2920/EXORcisor Synchronization

Since three 2920s were used to accomplish the signal processing, syn-
chronization between the devices and the EXORcisor had to be considered.
First of all, it was desired that the 2920s all have their estimates
shifted into their shift registers synchronously. In order to accom-
plish this, one 2920 was chosen as the master. The end of program pin on
the 2920 can act as an input or output, and so the EOP generated by the
master 2920 (used to control the shift registers) was also used to syn-
chronize the program passes of the 2920s. If the EOP lines of two 2920s
are tied together, the devices will be assured to be operating within 6
program steps of each other (the difference arises from the fact that
the 2920 prefetches instructions in order to increase its operating
rate). On powerup, therefore, the 2920s will all be synchronized after
the master 2920 reaches its end of program instruction the first time.
In order to synchronize the software timers in each of the 2920s, a
start control signal was generated using a CMOS NOR gate and a resistor-
capacitor pair. This circuit provided a signal which remained high for
several seconds after powerup, and then went low for the remainder of
the powered on period. This signal, taken as input by each of the 2920s,
provided a means of synchronizing all the software timers. The 2920s all

derived their clocks from a common circuit, and therefore all operated
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in complete synchronism. The interface and synchronization scheme is
general enough to accomodate any number of 2920s, and additional ele-

ments can simply be added to the structure in parallel.

5.2.4 EXORcisor Data Acquisition

In order to accommodate the acquisition of the parallel data from the
2920/shift registers, four Motorola 6821 parallel interface adapters
(PIAs) were used. This scheme provided parallel access to 8 bytes of in-
put. The outputs of the shift registers were simply connected to the
PIAs. A clock was added to the EXORcisor in order to allow correlation
of the recorded information to the manually classified sleep record. A
Motorola 6840 programmable timer was used to accomplish this function.

As mentioned earlier, the choice of realization structure for the im-
plementation of a digital filter is based on many factors. The form cho-
sen in this study was based on recommendations suggested by Chen [35].
One of the considerations in such a decision is whether the filter
structure will always return, from a given state, to a stable zero out-
put for a continuous zero input. For a stable filter design, the struc-
ture suggested by Chen assures that the implementation will always be
stable, given an initial state of zero in all the filter delays and a
bandlimited input signal. Recent studies have shown, however, that
these structures may lead to unstable filters given a completely random
initial state [39,40]. The memory in the 2920 is in a random state on
powerup. Given the architecture of the 2920, it is not possible to ef-
fect a zero initial state for all the filter delays without sacrificing

many program imstruction steps. It was decided, therefore, to implement

- 46 -




the filters without establishing an initial zero state. The possiblity
of having an unstable structure was realized only late in the study, as
only a few of the many possible initial random states of the 2920 lead
to unstable conditions. While the recent studies of this instability
have suggested structures less susceptible to the problem, they were not
implemented in this study. To accomodate the problem, therefore, a pro-
gram was developed for the EXORcisor to display the 2920 outputs. This
routine, which is included in the appendix, allows the user to see the
outputs of the 2920s once a second. When no signals are being applied to
the 2920s, the outputs should equal zero. After the 2920s are powered
on, time is required for the outputs of the filters to stabilize to zero
(given the initial random state). Should a structure become unstable,
the output will not settle to zero. If this occurs, the 2920s can be
powered down for a moment, and a different random state will be estab-
lished in the 2920 RAM on powerup. In practice, it was found that the
filters were almost always stable, and that a single powerdown/up gener-
ally cleared any problem which might be present. In order to stop the

display process, the user simply enters any key on the keyboard.

5.3 EXORCISOR/AMDAHL INTERFACE

The interface between the EXORcisor and the Amdahl was implemented in
the following manner. A program was developed for the EXORcisor to allow
it to look like an intelligent terminal to the Amdahl. The user initi-
ates the terminal emulation program (included in the Appendix), and re-
ceives a prompt from the program. The user can then logically establish

communications between the EXORcisor system terminal and the Amdahl
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through the use of an asynchronous communications interface adapter
(ACIA) card in the EXORcisor bus. The EXORcisor program passes the mes-
sages between the two ports until an escape character is sent from the
user’s terminal. At that time, the EXORcisor program sends the user a
prompt, and allows the user to either go back ‘on line’, upload an EXOR~
cisor file, or end the procedure.

In order to conduct machine to machine communications, there must not
exist the possibility of one machine sending information to the other
more quickly than the second can accomodate. Most large, multi-user sys—
tems, however, are managed by complex operating systems and activity
schedulers, and have difficulty assuring that absolutely no data “over-
runs’ will occur with their online users. This can present problems for
the user of a microprocessing system who wishes to transfer data to the
main-frame. The University of Manitoba Computer Centre has addressed
this problem in the following manner. The terminal control program oper-
ating in their Amdahl main-frame site has been modified to allow the
user to specify a character which is to be sent to the users terminal
just before dinput will be accepted. This feature, when used within a
very limited range of main-frame activities, will assure that data
over-runs will not occur for a single burst of input of up to 150 char-
acters followed by a carriage return. The user then has to wait until
the Amdahl responds with the specified character before the next burst
can be sent. The software operating in the Amdahl which is accepting the
incoming data, however, must not provide any input prompting (ie. line
numbers), or the assurance is lost. Also, the user should disable the

message receive capability of the userid in order to assure that nothing
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disrupts the data transfer. For the University of Manitoba Amdahl site,
th can be accomplished (with the MANTES monitor system) by locating to
the file in which the data is to be placed, and entering: ‘t profile
noopmsgs nointercom;t terminal write(xon);i la sup noi’. The data can
then be sent in the manner described. This scheme is effected by the
terminal emulation routine operating in the EXORcisor. If the EXORcisor
waits for the start character from the Amdahl for more than 10 seconds,
the routine assumes that there has been a breakdown in communications
and terminates the procedure. (In practice it has been found that, when
the Amdahl is heavily loaded, this period can be exceeded even though
communications have not broken down). The EXORcisor routine provides a
line count as the lines are being sent, and logically reconnects the
user terminal to the Amdahl when the upload has been completed. (For the
MANTES user, the the following should then be entered to reset the user-

id: ‘t terminal nowrite;t profile opmsgs intercom’).

5.4 SYSTEM TESTING

The system was tested in the following manner. As mentioned earlier,
the filter performances were tested with standard frequency response
techniques. The digital transfer scheme was tested with a 2920 and the
EXORcisor programmed to simply sample an input signal, transfer the di- '
gital sample to the EXORcisor, and store the sample on the EXORcisor
disk. Sinusoidal and dc test patterns were captured in this manner.
These patterns were then transfered from the EXORcisor to the Amdahl,
and were plotted on the Versatec plotter. The actual filter programs

with the digital interface scheme were also checked by running the pow-—
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er—~on routine in the EXORcisor, and observing the spectral estimates as
passed from t:.e 2920s. Various frequencies and amplitudes of a sinusoi-
dal input were applied in this test.

For evaluation purposes, 2 hours of sleep signals (2 EEG and an EOG)
were recorded with a Hewlett Packard 3960 FM instrumentation tape re-
corder. These signals were also plotted with a polygraphic recorder for
manual classification. The beginning of the recorded signal was identi-
fied with a synchronization mark to allow correlation with the manually

classified sleep record.

5.5 OPERATION OVERVIEW

In order to process a given sleep signal recording, the following
procedure is used. Finding the synchronization mark on the tape is ac-
complished with a Hewlett Packard 7402A strip chart recorder. With time
zero of the recording established, the 2920s are powered on and allowed
to stabilize. This is checked with the power-on routine, as explained
earlier. When the filters are stable, the power-on routine is terminated
by entering any key on the system terminal.

Recording of the spectral characteristics is conducted as follows.
The user initiates the record program in the EXORcisor (the program
listing is included in the Appendix). The record command is appended
with the name of an EXORcisor disk file into which the recorded data is
to be stored. The routine checks for disk space and opens the file. The
routine then prompts the user and waits for a carriage return to syn-
chronize time zero. The user then starts the tape recorder and enters a

carriage return at the same time. The real~time clock in the EXORcisor
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is zeroed when the carriage return is received, and the interrupt from
the 2920s is enabled. T+ EXORcisor is then interrupted once a second by
the 2920s to read the current spectral estimates. The 2920s shift their
most current estimates into the shift registers just before the inter-
rupt, and the shift registers remain ‘frozen’ until just before the next
interval arrives. The EXORcisor routine compares the values read with
those last recorded, and determines if any of the newly read values dif-
fer beyond a threshold from those corresponding in the last record iter-
ation. The difference allowed is adjustable for each of the estimates.
If a difference is exceeded, the newly read values are added to the list
of recorded values, and appended by the current reading of the clock.
These values are then taken as the comparison values. This scheme ef-
fects some data compression in that no new entries are added to the list
of recorded values if the incoming estimates are the same within the
thresholds. The recording process is terminated if either the end of the
EXORcisor RAM is reached, or the user enters any key on the system con-
sole. At that time, the recorded hexadecimal values are written into
the specified disk file. While the recording is in progress, the current
number of records written into the list is displayed on the system con-
sole.

Before the collected estimates can be transfered to the Amdahl, they
must be converted into ASCII character images of the hexadecimal values.
It is also desirable to have the times of the recording transitions
placed in the frame of reference of the polygraphic recording (for com-—
parision with the manually classified record). The polygraphic recording

paper is numbered, with one page corresponding to 30 seconds of record-
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ing. The MAP routine, which is run in the EXORcisor, is used to accom-
plish these functions (program is ::ciuded in the Appendix). This rou—
tine prompts the user for the input hex file name, an output file name s
the starting page number of the recording, and the offset of the start-
ing pulse (in seconds) from the start of the page. The recorded values
(2s complement 8 bit) are converted to an ASCII image of signed base 10
integers (ranging between -128 and +127), with one line used for each
recorded transition. The mapped image of the estimates is then transmit-

ted to the Amdahl with the scheme described earlier.
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Chapter VI

RESULTS AND DISCUSSION

The described system was used to estimate the spectrum for a patient
exhibiting normal and abnormal sleep waveforms. The sensitivity in de-
tecting changes in the incoming spectral estimates was set at any change
beyond the least significant bit of an estimate. With this sensitivity
to change, a 90 minute recording was possible before a memory limit of
25 Kbytes of data was reached in the EXORcisor. The record which was
chosen provided examples of sleep stages 1 through 4, and of awake
sleep. Approximately 60 minutes into the recording, the patient began a
period of frequently aroused or disturbed sleep. The EOG channel, al-
though processed and recorded, was not considered in the preliminary
evaluation of the recorded estimates. Likewise, the 12 to 14 Hz band es-
timate used to detect sleep spindles was not considered in this study.
The primary concern in thié preliminary evaluation was the correlation
between the observed spectral estimates in the low and mixed bands, and
the manually classified sleep record.

The direct plot of these estimates, as recorded at the end of each
one second interval over approximately the first 36 minutes, can be seen
in Fig. 6.1. The classifications of the record, as determined manually,
have been superimposed on the plot. (The manual classification was done
without the clinician seeing the recorded spectral estimates). It can

be observed that the spectrum does not appear very stationary over that
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Figure 6.1:
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interval, although general trends can be seen to correlate fairly well
with the manually classified record. The clinician appl.es some averag-
ing when manually assessing the plotted sleep signals. It is also clear,
from Fig. 6.1, that it would be difficult to establish a pattern recog-
nition scheme able to accomodate the detail presented in a long sleep
segment without some averaging. In an attempt to establish what averag-
ing or epoch interval would be most suitable for the classification of
normal and abnormal sleep, various epoch rules were applied to the re-
corded estimates. Plots of the spectral estimates with the application
of 5, 10, 30, and 60 second epoch rules can be seen in Figs. 6.2, 6.3,
6.4, and 6.5. The program generating these plots is included in the Ap-
pendix. From these plots it can be seen that the spectral estimates be-
come less variable when considered with a longer averaging period. Past
studies have commonly used epoch averaging periods of 30 to 60 seconds.
These plots show that, with such an averaging period, there is a dis-
tinct gross correlation between the spectral estimates and the manually
classified sleep stage. The 30 and 60 second epoch rule plots show how
past studies have been able to use simple level detectors to establish
sleep stage. The exact threshold levels to be applied, however, can vary
even within a single recording.

The difficulty in the application of a longer averaging period arises
when sleep stage transitions occur in fairly rapid succession. An exam-
ple of this problem can be seen in Fig. 4.5, where a 10 second epoch
rule has been applied to a later portion of the same patient’s record.
During this period, the patient went through a number of sleep stages in

a short time. The correlation between the superimposed manual classifi-
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cation and the spectral estimafes is not at all clear. Past studies
have justified the use of long averaging periods with the fact that nor-
mal sleep patterns see changes which occur only over long time inter-
vals. The use of such an averaging rule may affect the ability of a sys-
tem to identify a brief sleep segment. If a brief averaging rule is used
however, the spectral estimates are not stationary. The close depen-
dence on chosing an averaging period of 30 to 60 seconds in order to ob-
serve a stationary spectrum has not been reported and was somewhat unex-—
pected.

It appears, therefore, that a tradeoff must occur in the use of an
averaging period. For a given pattern recognition scheme, the use of a
short averaging period will require the consideration of a large amount
of detail in the classification of a normal, lengthy sleep stage inter-
val. The application of a long averaging interval, however, may prevent
the identification of a brief sleep stage segment (the averaging implied
by the step responses of the filters estimating the spectrum may prevent
such an identification). The evaluation of this problem must be inte-
grated into a study considering a specific pattern recognition scheme.

A variable averaging technique make be an avenue for consideration.
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Chapter VII

CONCLUSIONS AND RECOMMENDATIONS

This study has focused on the development of a computer-aided method
for sleep signal classification, and has considered the use of inexpen-
sive microprocessing hardware for the task of sleep signal spectral es-
timation. It was found that, for normal sleep, the spectral estimates
evaluated by the developed system correlated well with the manually
classified sleep record. These estimates (as sampled once a second) were
found to be non-stationary within the manually classified sleep stage
segments, although a gross correlation between the estimates and the
manual classification was still apparent. The application of averaging
to the spectral estimates was examined, and it was found that the aver-
aged spectral estimates became progressively more stationary with din-
creasing averaging period. This averaging simplified the correlation be-
tween the manual classifications and the spectral estimates. An
abnormal sleep record was also examined, and it was found that the ap-
plication of even a brief averaging period could blur the correlation
between the manual classification and the spectral estimates. This dif-
ficulty arose because disturbed sleep can present frequent sleep stage
transitions. It appears, therefore, that a tradeoff must occur in the
use of such an averaging or epoch rule.

As a result of this work, it is recommended that the use of syntactic

pattern recognition for sleep signal classification be evaluated in a
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scheme using the clinician as feedback to the system. This study will
have to evaluate, for the specific reéognition scheme, the use of a
spectral averaging period. The use of a variable averaging period may
be an avenue for consideration. Recent advances in pattern recognition,
coupled with the approach developed in this study, may lead to an inex-—
pensive scheme to aid in the classification of normal and abnormal
sleep. In order to conduct this study, a clinical evaluation of the
scheme will be required. It is strongly suggested that a library of re-
corded and manually classified sleep records be established for this
purpose. Such a library will be invaluable to any further study of this
subject.

Beyond the specific application considered, the developed method rep-
resents a general approach which should be applicable to a number of
problems involving extended duration signal characterization and classi-

fication.
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Appendix A

FILTER DERIVATIONS

BANDPASS FILTER

ml = upper cutoff frequency [Hz]
w, = lower cutoff frequency [Hz]
f = sampling frequency [Hz]

cos[(wl + wz) 2n/2(f)]
cos[(wl - wz) 2n/2(£f)]

(A.1)

h - cos[wl(Zn)/f]

Sinlw, (Z1)/E] (4.2)

Design a Butterworth Lowpass (2nd order) with cutoff at ;

H(s) = X second order Butterworth with cutoff (A.3)
s2 +V2 s + 1 normalized
K'
H(s) = second order Butterwork L.P. with cutoff (A.4)

s2 +V2 w s +wd at o

K'
= G=aD(s=a2) (A.5)

"’(Vfi u—)) + f éﬁ;)z - 4(:)-2 (Ao6)

where: ml, m2
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TRANSFORMATION: Analog lowpass to digital bandpass

z2 - 2hz + 1

S = 7 (A.7)
H(z) = = (2.8)
(z2—2hz+l _ ml)(zz—th+l - m2)
z2-1 z2-1
2.1)2
H(z) = K(z"-1) (A.9)
[ (z22-2h+1) - ml(z2-1)]+[(z2=2hz+1)-m2(z2-1)]
= R(z2-1)* (A.10)
[(1-m1)zZ = 2h + (ml+1) ][ (1-m2)z2 = 2hz + (m2+1)]
o, 1 1
K(z2-1)2( Y=
_ 1-ml”*1-m2 (A.11)
14ml 2h 1+m2
[2% - 1) + o2 - &2 + )]
K'(z-1)(z+1)(z-1)(z+1)
{20y )2y ) (203 ) (205, ) (4.12)
-2h 2h 14ml
G ¢ /é————oz - b=
where: aj,a, = 1-ml lgml 1-ml (A.13)
- 14m2
(1_2-22 + ,/(__)2 - 4(__-'_1‘;)
Qg 0y, = 2 (A.14)

Poles oy & a3 and o, & o are complex conjugates
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BANDPASS FILTER TRANSFER FUNCTION:

K(z-1)(z+1) . (z-1)(z+1)

H(z) =
z% - (a1+a3)z + ajasz z2 - (aptay )z + apay

LOW PASS FILTER

cutoff frequency = wp [Hz]
sampling frequency = fs [Hz]
wp = tan wggézg = x (A.16)
- 1 2
H(s) = o 1amn - =
(22 +=———s+1 s + /2 x s + %2
X X
z-1
BILINEAR TRANSFORM: s = —7 (A.18)
x2
= z=1., - z-1 2 (A.19)
(D2 +Y/2x (D +x
= %2 (z+1)2 (A.20)

(z-1)2 + V2 x (z-1)(z+1) + x2(z+1)2

x2 (z+1)(z+1) .
(z-1)(z-1) + V2 x (z-1)(z+l1) + x2(z+1)(z+1)
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x2 (z2+42z+1)

= (A.22)
(22-2z+1) + V2 x (22-1) + x2(z22+2z+1)
_ x2 (22+2z+1) (A.23)
(x24+/2 x+1)22 + (2x2-2)z + (x2-V2 x+1)
x2 2
_ G2 2wty - (FH2zHD)
- A.24
2 + 2x2 -2 . + x2- 27 x+1 ( )
(x24+/2 x+1) x2+/2 x+1
K(z2 + 2z + 1) (A.25)
22 + gz +8
2 o
where: q = 2x 2 (A.26)

X2 +v2 x + 1

g = x2 - V2 x + 1
x2 =/2 x+ 1 (4.27)
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VR~NNNFUNHOYONNNFUNR

b s 1 b b

$J0B WATFIV REIMER, NOEXT
=
€ XK XK XK K K K XK K XK K K K K XK KK KKK XK K K K KK K K K KK K K K K K 3K K XK %K K KK K K K K K K K K K K KK X
C x *
C * PROGRAM TO CALCULATE BANDPASS AND LOWPASS FILTER COEFFICIENTS X
C % AND EXPERIMENTALLY EVALUATE SCALING FACTORS TO THE NEAREST *
C *x POWER OF 2 TO AVOID SATURATIONS IN THE FILTER CALCULATIONS x
C x *
C XXXEXKKKRELXKKK KKK KKK KRR KKK KRR E R IR KX RER KK KKK E LR KKK KKK KKK KX
c
REAL W1,W2,F,WP,FS,A,B.,C.,D,ALP,BET,FIN,K1l,K2,KZ
INTEGER N. I
READ., N
DO 989 I=1,N
READ. W2, W1,F,WP,FS, FIN
CALL BAND(W1,W2,F,A.B.C.,D)
CALL LOW(WP.FS,ALP,BET) :
CALL SCALE(A.B,C,D.F,ALP,BET.FS,FIN,K1,K2,K3, K%)
PRINT %401, IFIX(K1)
PRINT 402, IFIX(K2)
PRINT %03, IFIX(K3)
PRINT %0%., K%
401 FORMAT(® *, "Kl1=2%x%",I3)
%02 FORMAT("® *, "K2=2%x%',I3)
%03 FORMAT(" *, "K3=2x%xx",1I3)
%04 FORMAT(® ", LARGEST OBSERVED OUTPUT = °*,F9.7)
999 CONTINUE
sTOP
END
c
© 230 0K 5K K K K KK 3K K KKK KK K3 KK KKK KK KK K K K K K 3K 0K K 3K 3K K 3K K K K R K 3K K K KK K KK K K K K K K K
Cc x : *
C %X PROGRAM TO COMPUTE THE COEFFICIENTS FOR A FOURTH ORDER x
C x BUTTERWORTH DIGITAL BANDPASS FILTER USING THE BILINEAR x
C % ANALOG LOWPASS TO DIGITAL BANDPASS METHOD. *
C x *
C 30K 20K K K 5K KK 3K KK K KK K 3K K 3K K 3K 3K 3K K 5K 3K K K K K 0K K K K K 3K 3K ok oK oK oK K 3K oK K 3K 3K 3K KK K K K K 3K K K K ok K K K K
[~

SUBROUTINE BAND(W1l.,W2,F,A.B,C,D)
COMPLEX M1, M2, TEMP2, TEMP3, ALP1, ALP2, ALP3, ALPY
REAL W1, W2,DIG,H,PI,F,TEMPO,TEMP1,A,B,C,D
PRINT 100

100 FORMAT(*1")
PRINT, "BANDPASS FILTER®
PRINT 101, w2

i01 FORMAT(" *, "LOWER CUTOFF FREQUENCY = ",FS.5)
PRINT 102, W1

1p2 FORMAT(" °, "UPPER CUTOFF FREQUENCY = °,F9. 85)
PRINT 103.,F

103 FORMAT(® *, "SAMPLING FREQUENCY = ',F6.1)
PI=3, 1%4158265%
TEMPOD=((W1+W2)%2%PI)/(2%F)
TEMPl=((W1-W2)X2XPI)/(2%F)
H=(COS(TEMPO))>/(COG(CTEMP1))
TEMPO»s (W1%x2%PI)/F
DIG=(H-(COS(TEMPO)))/(SINC(TEMPEO))
TEMPO=(SQRT(2. 0))*DIG
TEMPl=(TEMPOXX2)-(4%x(DIG*%2))
TEMP3=CMPLX(TEMP1, 0. B>
Mls((-TEMPOD)+CSQRT(TEMP3))/2. 0
M2=((-TEMPO)-CSQRT(TEMP3)3/2. 0
TEMP2= (2%H)/(1-M1)
TEMP3=(TEMP2X%XX2)-(4%X((1+M1)/(1-M1)))
ALP1=(TEMP2+CSQRT(TEMP3)>72. 0
ALP2=(TEMP2-CSQRT(TEMP3))/2. 0
TEMP2= (2%H)/(1-M2)
TEMPI=(TEMP2X%X%X2)~(4X((1+M2)/C1-M2)))
ALP3=(TEMP2+CSRRT(TEMP3))/2. 0
ALPY=(TEMP2-CSQRT(TEMP3))/2. 0
TEMPO=REAL(ALPL)
TEMP1=AIMAGC(ALP1)
A=-(2*%¥TEMPD)D
Be(TEMPDX%2)+(TEMP1XX2)
PRINT 104, A

1D4% FORMATC 0", A = °,F10.7)
TEMPGe=.p
CaALL SIGNC(TEMPI9)
PRINT 105, B

10sS FORMAT(C 0", "B = °*,F10.7)
TEMPS=1
CALL SIGN(TEMPS)
TEMPO=REALC(ALP2)
TEMP1=AIMAGC(ALP2)
Ce-(2%XTEMPD)
De(TEMPOXX2)+(TEMP1x%*2)
PRINT 106.,C

106 FORMAT(C D', *C = *,F10.7)
TEMPO=-C
CALL SIGN(TEMP9)
PRINT 107.,D

ip07 FORMATC(*O0", "D = ~,F10.7)
TEMPS=D
CALL SIGNC(TEMPI)
RETURN
END
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112
113
1iy
115
116
117
118
118
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

136

137
138
139
i40
1%l
142
143
144
145
146
147
148
149
150

[sRedsdeReXeXs]

K 2K XK KK KK KKK KK KK X K K K K 3K K KK KX K K K K KN K KKK K KK K R KK K K K K X KK K Kk

x x
X SUBROUTINE TO LIST THE SIGN DIGIT CANONIC FORM OF A NUMGKER *
x x

KK KK KK KK KO K K KK 3K KK 0K K K K K K 3K K K KK KK KK K XK K KKK K KKK 0K K K KK 3K K K 3K K K K K

SUBROUTINE SIGNCA)D
REALX8 TABLE(16),DIFF,DIFF1,DIFF2
INTEGER I, J,NUM(C18)
PRINT 98, A
FORMATC( 0", "SIGN DIGIT BREAKDOWN OF ~,F11.7)
NUM(1)=2
TABLEC1)=%. D
I=1
DO 1 J=2,16
TABLE(J)=TABLE(J-1)%0. 5
NUM(J)=T
I=I-1
CONTINUE
DIFF=n
WHILE(DABS(DIFF) .GT. .0001) DO
I=16
WHILE(TABLEC(I) .LT. DABS(DIFF)) DO
I=I-1
END WHILE
IF(I .EQ. 16) GO TO 2
DIFF1=DABS(TABLECI) - DABS(DIFF))
DIFF2«DABS(TABLE(I+1) - DABS(DIFF))
IF(BIFF2 .LT. DIFF1l) I=I+1
IF(DIFF .GT. 0) THEN DO
PRINT 210, NUMCI)
10 FORMAT(" °,5X, ADD 2 TO THE POWER °,I1I3)
DIFF=DIFF-TABLE(I)
ELSE DO
PRINT 30.NUMCI)D
30 FORMAT(" °,5X, "SUBTRACT 2 TO THE POWER *,I3)
DIFF=TABLE(ID+DIFF
END IF
END WHILE
RETURN
END

32K K 3K KK KKK 3K KK KK KK K K 30K K KK K KK 3K 3K KR KK K K KKK K K K K K K K K O K K K K 3K K 3K K K K K K K K K
L3 x
% PROGRAM TO CALCULATE THE COEFFICIENTS FOR A SECOND ORDER *
X BUTTERWORTH LOWPASS SECOND ORDER SECTION L3
* X
3K 0K 22K K KK KK KKK KK KK K K KK K K 3K K K 3K K KK K K 0K K K K A0 K KK K K KOK KK KK K K K K K K K KK K X K K K XK

0O0O00000

SUBROUTINE LOW(WP,FS,ALP,BET)
REAL X, ALP,BET,PI.FS, WP, TEMP
PRINT, ™ ~
PRINT., °"LOWPASS FILTER"
PRINT 200, WP

200 FORMATC® ~, "BREAK FREQUENCY =*,Fi10.%>
PRINT 201, FS

201 FORMAT(® °*, "SAMPLE FREQUENCY =',F1D. %)
PI=3.14%4159
Xu(WPX2%XPI)/(2%XFS5)
X=TANCX)
TEMP=1+(1. YI4XX)+(XX%2)
ALP=( (2% (X%x%x2))-2)/TEMP
PRINT 202, ALP

202 FORMAT( B’ , "ALPHA = *,F10.7)
TEMPl=-~ALP
CALL SIGN(TEMP1)
BET=C1-(1. %14%XX)+(X%*%X2))/TEMP
PRINT 203.BET

203 FORMAT('0", "BETA = °,F1D0.7)
TEMP1=BET
CaALL SIGN(TEMP1)
RETURN
END

EERKKEKKEKEM KKK KK ERE KR KKK R KR KX KKK LKA KR KR KK KK KKK KKK KKK ERKK KA K

*
% PROGRAM TO EXPERIMENTALLY EVALUATE THE SCALING FACTORS

x* REQUIRLCD TO AVOID OVERFLOWS (SATURATIONS) IN THE BAMNDPAGS

x LOWPASS FILTER SETS. THE SCALING FACTORS ARE EVALUATED TO THC
* NEAREST POWER OF 2 WHICH RESULTS IN NO SATURATION.

x*

x

RO W TN KR

2K KKK K KKK K K K K XK KKK KK K K K K 2K K KK K K KK K O 3K K KKK K K K K K K K K X K K K K

[eXsRedeReReNeRoXeNel

SUBROUTINE SCALE(A.B.,C.,D,FREQ.ALP,BET.FS, FREQIN,
®K1, K2, K3, K%)

REAL A,B.C.D,D1,D2,D3.D4%, FREGIN, FREQ, X

REAL INCREM, K1l,K2,K3, K%, DX, DY, ALP,BET
INTEGER NMAX, N, I,CNTL,LAST,CNTL1, NUM, NUMEND
Ki=1

Ka=1

K3=1

NMAX=TIFIX(FREQ/FREQIN)

INCREM=(2%3, 14159)/NMAX
NUMEND=IFIX(FREQ/FS)

CNTL1=1

1 N=0

X=0

NUM= O

D1=0
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151
152
153
15%
155
156
157
158
159
160

161
162
163
164
165

166
167
l68
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184%
185
186
187
188
189
180
181
192
193

194

195
196
197
188
199
200
201
202
203
20%
205
206
207
208
209
210
211
212
213
21%
215
216
217
218
219
220
221
222
223
22%
225
226
227
228
223
230
231
232
233
23%4%
235
236
237
238
239
2%0

o0o0n0o00n00n

10

20

99

98

87

86

D2=D
D3=D
D4%=D
DX=0
DyY=0
CNTL=D
LAST=10xNMAX
K% =D
DO 10 I=1,LAST
CALL CYCLE(CCNTL,A,B,C,D.,K1l,K2,K3,D1,D2,D3,D4,
x N, X.NMAX, INCREM, NUM, NUMEND, DX, DY, ALP, BET, K4%)
CONTINUE
CNTL=CNTL1
Ki=0n
DO 20 XI=1.LAST
CALL CYCLE(CNTL,A,B,C,D,K1l,K2.,K3,D1,D2, D3, D%,
x N, X, NMAX, INCREM, NUM, NUMEND, DX, DY, ALP, BET, K4
IF (CNTL .EQ@. 838) GO 70 99
IF (CNTL .EQ. S8) GO TO 98
IF (CNTL .EQ. 87) GO T0 97
CONTINUE
CNTL1I=CNTL1+1
IF (CNTL1 .EQ. %) RETURN
GO TO 1
Kl=K1l-1
IF (K1 .EQ. -1%) THEN DO
PRINT, "K1 SCALING POWER LESS THAN 2%%-14%"
GO TO 96
END IF
GO TC 1
K2=K2-1
IF (K2 .EQ. -1%) THEN DO
PRINT, K2 SCALING POWER LESS THAN 2%%-14°
Go 70 96
END IF
GO TO 1
K3=K3-1
IF (K3 .EQ. -1%) THEN DO
PRINT., "K3 SCALING POWER LESS THAN 2%%-14%"
GO TO 96
END IF
GO TO 1
PRINT, "SCALING ABORTED"
RETURN
END

KK 03K KK K 2K KK KKK KKK KN KKK K KK KSR R K K KKK KK K KK SR K K R KK K MK K KK K K K K K KK XK

*

* %
* SUBROUTINE TO SIMULATE A DELAY ITERATION OF THE DIGITAL FILTERSX
x

KK KK K KK KK KK KK KKK K XK KK K KKK K KK KK KK K K XK KK KK K K K K XK K K K K 3K K K 0K KK K K KX KK KK X

SUBROUTINE CYCLE(CNTL.A,B,C,D,K1,K2,K3,D1,D2,D3, D%,
XN, X, NMAX, TNCREM, NUM, NUMEND, DX, DY, ALP, BET, K't)
INTEGER CNTL,NMAX, N, NUM, NUMEND
REAL A,B,C.,D,VAL,K1,K2,K3,K4%,D1,D2,D3,D4%, %, INCREM
REAL TEMP1, TEMP2, TEMPI3, TEMPY, TEMPS, DX, DY, ALP, BET
VAL=SIN(X)D
N=N+1
X=X+INCREM
IF (N .EQ. NMAX) THEN DO
N=D
X=0
END IF
TEMP1=D1xn

IF (TEMP1 .GT. 1) TEMP1l=1
IF (TEMP1L .LT. -1) TEMP1l=-1
TEMP2=D2xB

IF (TEMP2 .GT. 1) TEMP2=1

IF (TEMP2 . LT. -1) TEMP2=-1
TEMP3=( -TEMP1)+4(-TEMP2)

IF (TEMP3 .GT. 1) TEMP3=1
IF (TEMP3 .LT. =-1) TEMP3=-1
TEMPY = (VALX(2. DXXK1I))+TEMP3
IF (TEMPY . GT. 1) TEMPY4=1
IF CTEMPY . LT. =10 TEMP4=-1
TEMPS5=TEMPY-D2

IF (TEMPS ,CGT. 1) TEMPS«]
IF (TEMPS . LT. ~-1) TEMPS=-1
IF (CNTL .EQ. 1) THEN DO

IF (ABS{TEMP1) .GE. 1) CNTL=9S
IF (ABS(TEMP2) .GE. 1) CNTL=9S
IF (ABS(TEMP3) .GE. 1) CNTL=99
IF (ABS(TEMP4) .GE. 1) CNTL=99
IF (ABS(TEMPS) .GE. 1) CNTL=99

END IF

D2=D1

D1=TEMPY

TEMP1=D3x%C

IF (TEMP1 . CT. 1 ) TEMP1=1

IF (TEMP1 . LT. -1) TEMPlr-1

TEMP2=D4%D

IF (TEMP2 .GT. 1 ) TEMP2=1

IF (TEMP2 LT, -1) TEMP2=-.1
EMP3I=(-TEMP1)+(-TEMP2)
F (TEMP3 .GT. 1 ) TEMP3=1

CTEMP3 . LT. -1) TEMP3=-1

(TEMPY% . GT. 1 ) TEMP4%=1

T
I
IF 1
TEMPY4= (TEMPS5X (2, DXx%XK2))+TEMP3
IF
IF (TEMPY% .LT. -1) TEMPH4=-1
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241 TEMPS5=TEMP4-DY%

242 IF (TEMP5 . GT. 1 ) TEMPS=1
2%43 IF (TEMPS LY. -1) TEMPS=-1
2'%% IF (CNTL .EQ. 2) THEN DO
245 IF (ABS(TEMP1l) .GE. 1) CNTL=Sgp
2% 6 IF (ABS(TLCMP2) .GE. 1) CNTL=98
2147 IF (ABSCTEMP3I) . GE. 1) CNTL=98
248 IF (ABS(TEMP4) .GE. 1) CNTL=838
249 IF (ABSITEMPS5) .GE. 1) CNTL=98
250 END IF
251 D4=D3
252 D3=TEMPY
253 NUM= NUM+1
254 IF ¢NUM . EQ. NUMEND) THEN DO
255 NUM=0
256 TEMPl=AaLPXDX
257 IF (TEMP1 .GT. 3 ) TEMP1=1
258 IF (TEMP1 .LT. -1) TEMP1l=-1
259 TEMP2=BETXDY
260 IF (TEMP2 .GT. 1 ) TEMP2=1
261 IF (TEMP2 ,LT. -1) TEMP2«-1
262 TEMP3I=(-TEMP1)+(-TEMP2)
263 IF (TEMP3 .GT. 1 ) TEMP3e1
264 IF (TEMP3 .LT. -1) TEMP3=-1
265 TEMP5=ABS(TEMPS)
266 TEMPY4« (TEMPSEX (2. OXXK3))+TEMP3
267 IF (TEMPY . GT. 1 ) TEMP4Y=1
268 IF (TEMPY . LT. -1) TEMP4Y=-1
269 TEMPS5=(DXX2)+DY+TEMPY
270 IF (TEMP5 .G7. 1 ) TEMPSe1
271 IF (TEMPS .LT. -1) TEMP5=-1
272 DY=DX
273 DX=TEMPY
274 IF (CNTL .E@. 3) THEN DO
275 IF (ABSC(TEMP1) .GE. 1) CNTL=87
276 IF (ABS(TEMP2) .GE. 1) CNTL=97
277 IF (ABS(TEMP3) .GE. 1) CNTL=-87
278 IF (ABS(TEMP4) .GE. 1) CNTL=97
2738 IF (ABSC(TEMPS5) .GE. 1) CNTL=97
280 END IF
281 IF (K% .LT. TEMPS5) K4=TEMPS
282 END IF
283 RETURN
28% END
$ENTRY
BANDPASS FILTER
LOWER CUTOFF FREQUENCY = D. 25000
UPPER CUTOFF FREQUENCY = 2. 00000
SAMPLING FREQUENCY = 50. 0

A = -1 9555290

SIGN DIGIT BREAKDOWN OF 1.9585290
ADD 2 TO THE POWER 1
SUBTRACT 2 TO THE POWER -5
SUBTRACT 2 TO THE POWER -7
SUBTRACT 2 TO THE POWER -9
SUBTRACT 2 TO THE POWER -11

B = 0. 9597065

SIGN DIGIT BREAKDOWN OF D. 8597065
ADD 2 TO THE POWER 0
SUBTRACT 2 TO THE POWER -5
SUBTRACT 2 TO THE POWER -7
SUBTRACT 2 TO THE POWER -10
SUBTRACT 2 TO THE POWER -12

C = -1.7178450

SIGN DIGCIT BREAKDOWN OF 1.7178450
ADD 2 TO THE POWER 1
SUBTRACT 2 TO THE POWER -2
SUBTRACT 2 TO THE POWER -5
SUBTRACT 2 TO THE POWER -10

D = 0. 7634901

SIGN DIGIT BREAKDOWN OF 0. 7634901
ADD 2 TO THE POWER ]
SUBTRACT 2 TO0 THE POWER -2
ADD 2 TO THE POWER -6
SUBTRACT 2 TO THE POWER -9
SUBTRACT 2 TO THE POWER -13

LOWPASS FILTER

BREAK FREQUENCY = 0. 0250

SAMPLE FREQUENCY = 12. 5000

ALPHA = -1, 9822320

SIGN DIGIT BREAKDOWN OF 1.9822320
ADD 2 TO THE POWER 1
SUBTRACT 2 TO THE POWELR -6
SUBTRACT 2 TO THE POWER -9
SUBTRACT 2 TO THE POWER -12

BETA = 0. 9823886

SIGN DIGIT BREAKDOWN OF 0.8823886
ADD 2 TO THE POWER o
SUBTRACT 2 7O THE POWER -6
SUBTRACT 2 70 THE POWER -9

Kl=2x%xx -9

K2=2x% -1

K3=2%%x-11
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LARGEST OBSERVED OUTPUT = 0. 6824680

BANDPASS FILTER

LOWER CUTOFF FREQUENCY = 2.00000

UPPER CUTOFF FREQUENCY = 7.00000

SAMPLING FREQUENCY = 50.0

A = -1, 7083410

SIGN DIGIT BREAKDOWN OF 1. 70934%10
ADD 2 TO THE POWER 1
SUBTRACT 2 TO THE POWER -2
SUBTRACT 2 TO THE POWER -5
SUBTRACT 2 TO THE POWER -7
SUBTRACT 2 TO THE POWER -9
ADD 2 TO THE POWER -12
ADD 2 TO THE POWER -13

B = 0.7812762

SIGN DIGIT BREAKDOWN OF 0. 7812762
ADD 2 TO THE POWER 0
SUBTRACT 2 TO THE POWLER -2
ADD 2 TO THE POWER -5

C = -1.0809290

SIGN DIGIT BREAKDOWN OF 1. 0808290
ADD 2 TO THE POWER 0
ADD 2 TO THE POWER -4
ADD 2 TO THE POWER -6
ADD 2 7O THE POWER -9
ADD 2 TO THE POWER -10
SUBTRACT 2 TO THE POWER -13

D = D. 528368Y4%

SIGN DIGIT BREAKDOWN OF 0. 5283684
ADD 2 TO THE POWER -1
ADD 2 TO THE POWER -5
SUBTRACT 2 TO THE POWER -3
SUBTRACT 2 TO THE POWER -10

LOWPASS FILTER

BREAK FREQUENCY - 0.2000

SAMPLE FREQUENCY = 50.0000

ALPHA = =-1. 9644670

SIGN DIGIT BREAKDOWN OF 1. 9644670

ADD 2 TO THE POWER 1
SUBTRACT 2 TO THE POWER -5
SUBTRACT 2 TO THE POWER -8
SUBTRACT 2 TO THE POWER -11
ADD 2 TO THE POWER -13

BETA = 0.8650878

SIGN DIGIT BREAKDOWN OF 0. 89650878
ADD 2 TO THE POWER 0
SUBTRACT 2 TO THE POWER -5
SUBTRACT 2 TO THE POWER -8
ADD 2 TO THE POWER -12

Kl=2%%x -4

K2=2%x% 2]

K3=2%xx-~12

LARGEST OBSERVED OUTPUT = D.S679318

BANDPASS FILTER

LOWER CUTOFF FREQGUENCY = l2. 00000

UPPER CUTOFF FREQUENCY » i14.00000

SAMPLING FREQULNCY = 200. 0

A = -1, 8149230

SIGN DIGIT BREAKDOWN OF 1.8149230
ADD 2 TO THE POWER 1
SUBTRACT 2 TO THE POWER -3
SUBTRACT 2 TO THE POWER -4
ADD 2 TO THE POWER -9
ADD 2 TO THE POWER -11

B = 0.8587363

BICN DIGIT BREAKDOWN OF 0. 9527363
ADD 2 TO THE POWER o
SUBTRACT 2 TO THE POWER -5
SUBTRACT 2 TO THE POWELR -7
SUBTRACT 2 TO THE POWER -9
SUBTRACT 2 TO THE POWER -12

C = -1.7763690

SIGN DIGIT BREAKDOWN OF 1. 7763690
ADD 2 TO THE POWER 1
SUBTRACT 2 TO THE POWER -2
ADD 2 TO THE POWER -5
SUBTRACT 2 TO THE POWER -8
SUBTRACT 2 TO THE POWER -10

D = D. 9543562

SIGN DIGIT BREAKDOWN OF 0. 8543562
ADD 2 YO THE POWER [+]
SUBTRACT 2 TO THE POWER -5
SUBTRACT 2 TO THE POWER -6
ADD 2 TO THE POWER -10
ADD 2 TO THE POWER -12

LOWPASS FILTER

BREAK FREQUENCY - 1.0000

SAMPLE FREQUENCY = 200. 0000

ALPHA =« -1 9555860

SIGN DIGIT BREAKDOWN OF 1.9555860
ADD 2 7O THE POWER 1
SUBTRACT 2 TO THE POWER -5
SUBTRACTY 2 TO THE POWER -6
ADD 2 TO THE POWER -8
ADD 2 TO THE POWER -11

BETA = 0. 9565516

SIGN DIGIT BREAKDOWN OF 0. 9565516
ADD 2 TO THE POWER o
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SUBTRACT 2 TO THE POWER -5
SUBTRACT 2 TO THE POWER -6
ADD 2 TO THE POWER -8
SUBTRACT 2 70 THE POWER -11

Kle2%x% -7

K2=2%%x -5

K3=2xx-10

LARGEST OBSERVED QUTPUT = 0. 6799301

BANDPASS FILTER

LOWER CUTOFF FREQUENCY = 2. 00000
UPPER CUTOFF FREQUENCY = l10. 00000
SAMPLING FREQUENCY = 50.0

A = -1.6701810

SIGN DIGIT BREAKDOWN OF 1.6701810
ADD 2 TO THE POWER 1
SUBTRACT 2 TO THE POWER -2
SUBTRACT 2 TO THE POWER -4
SUBTRACT 2 TO THE POWER -6
SUBTRACT 2 TO THE POWER -9
ADD 2 TO THE POWER -12

B = D. 7330358

SIGN DIGIT BREAKDOWN OF D. 7350358
ADD 2 7O THE POWER -1
ADD 2 TO THE POWER -2
SUBTRACT 2 TO THE POWER -7
SUBTRACT 2 TO THE POWER -8
ADD 2 TO THE POWER -10
SUBTRACT 2 TO THE POWER -12

C = -0.5517535

SIGN DIGIT BREAKDDWN OF 0. 5517535
ADD 2 TO THE POWER -1
ADD 2 TO THE POWER -4
SUBTRACT 2 TO THE POWER -7
SUBTRACT 2 TO THE POWER ~8
ADD 2 TO THE POWER -10

D = D. 3414242

SIGN DIGIT BREAKDOWN OF 0. 3414242
ADD 2 TO THE POWER -2
ADD 2 TO THE POWER -4
ADD 2 TO THE POWER -5
SUBTRACT 2 TO THE POWER -9
SUBTRACT 2 TO THE POWER -11
ADD 2 TO THE POWER -13

LOWPASS FILTER

BREAK FREQUENCY - 0.2000

SAMPLE FREQUENCY = 50. 0000

ALPHA = -1 9644670

SIGN DIGIT BREAKDOWN OF 1.964%670
ADD 2 TO THE POWER 1
SUBTRACT 2 TO THE POWER -5
SUBTRACT 2 TO THE POWER -8
SUBTRACT 2 TO THE POWER -11
ADD 2 TO THE POWER -13

BETA = 0. 8650878

SIGN DIGIT BREAKDOWN OF 0. 9650878
ADD 2 TO THE POWER 0
SUBTRACT 2 70 THE POWER -5
SUBTRACT 2 TO THE POWER -8
ADD 2 TO THE POWER -12

Kl=2%x%x .3

K2=2x%xx% [+}

K3=22%x%x-12

LARGEST OBSERVED OUTPUT = 0.9086537
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33 K 3K XK K N KKK K K K K K 3K 0K K 3K K K K K 2 0K K K 2K 3K K 3K K 3K 3K KK K K oK K 0K K K KOk KKK XK KK K KK

x *
%X PROGRAM OPERATING IN 2920 NUMBER 1- EEC TAKEN AS INPUT ATX
* A RATE OF 6.5 KHZ, WITH BANDPASS/FW RECT/LOWPASS FILTERS X
* OPERATING AT 200, 50, & 12.5 HZ. THIS 2520 ALSO PRODUCES X
®x THE SHIFT CONTROL PULSE WHICH PERMITS THE SHIFT IN OF THEX
®* SERIAL DATA. THIS SHIFT PULSE OCCURS ONCE A SECOND, *
x PERMITTING A BURST OF SHIFTS CONTROLLED BY THE EOP PULSE. x
* THE 8 MOST SIGNIFICANT BITS OF A VALUE ARE SHIFTED. x
3 x
20K KK KK KK K K KK KK K 3K K K K K K K KK K KKK KK K 3K 3K K K K K K K K K K K K KK K K K K K X XK
LDA DAR KP2 ; LOAD DAR WITH FS/% FOR DIGITAL INPUT
LDA WORK1 F1D1 L01 IN1 ; OF CONTROL SIGNAL TO SYNCH TIMERS
SUB WORK1 FiD1 RO5 INl1 ; ALSO. D.25 TO 2.0 HZ BANDPASS "A° CALC-
SUB WORK1 FiD1 RO7 INl1 ; ULATION. THE 0.25 70 2.0 HZ FILTER IS
SUB WORK1 F1iD1 R09 IN1 ; OPERATING AT 50 HZ.
SUB WORK1 FiD1 R11 IN1 ;
LDA WORK2 FiD2 RO0 IN1 ; D.25 TO 2.0 HZ BANDPASS "B° CALCULATION
SUB WORK2 Fip2 RO5 IN1 ;
SUB WORK2 Fip2 RO7 IN1 ;
SUB WORK2 Fip2 R10 ; SAMPLE DONE-ALLOW TO SETTLE
SUB WORKZ2 Fip2 R12 CVT3; CNVRT BIT 3 TO DETERMINE IF 1 OR O
LDA WORKS3 F1D3 LOL ; 0.25 TO 2.0 HZ BANDPASS °C’° CALCULATION
SUB WORK3 F1D3 RO2 ;
LDA FIFTY KPPy CND3; RESET 50 H2Z TIMER IF CNTL LINE =°1°
LDA ONE KP3 CND3; RESET 1 H2 TIMER IF CNTL LINE="1"
SUB DAR DAR ; CLEAR DAR FOR EEG1 A/D CONVERSION
SUB WORKS3 FiD3 RO5 INO ; SAMPLE EEG1
SUB WORK3 F1D3 R10 INO ;
LDA WORKY F1D% ROO INO ; 0.25 TO 2.0 H2Z BANDPASS *D°' CALCULATION
SUB WORKHY F1D4 RO2 INO ;
ADD WORKHY FiD% RO6 IND ;
SUB WORKHY F1D% ROS IND ;
SUB WORKHY F1D4 R13 INO ;
SUB WORK1 WORK2 IND ; 0.25 TO 2.0 HZ BANDPASS CALCULATION
ADD WORK1 EEG ROS ; ADD IN EEG SAMPLE MULT BY K1
LDA WORK2 WORK1 CVTS; BP CALCULATION, START A/D CONVERSION
ADD DAR KM2 ROD CNDG; A/D FIXUP - 2920 PROBLEM
SUB WORK2 FiD2 ; BP CALCULATION
SUB WORK3 WORNKY ; BP CALCULATION
ADD WORK3 WORK2 RO1 CVT7;, ADD RESULT OF FIRST SECTIOW MULT BY K2
LDA WORKY4 WORK3 ; BP CALCULATION
SUB WORKHY4 F1D4 ; BP CALCULATION
LDA WORKZ2 F2D1 LO1 CVT6; LOWPASS FILTER FOR 0.25-2.0 HZ BP "ALPHA"
SUB WORK2 F2D1 ROG ; CALCULATION
SUB WORK2 Fapi RDY ;
SUB WORK2 F2D1 R12 CVTS;
NOP
ABA WORK2Z WORK! R11 ; ADD IN RECT BP DUTPUT MULT BY K3
LDA WORKHY F2D2 ROD CVT4%; 'BETA' CALCULATION
SUB WORKY F2D2 ROG ;
SUB WORKHY FaD2 ROS ;
SUB WORK2 WORKY CVT3; LP CALCULATION
CND%; A/D FIXUP - 2920 PROBLEM
L.DA WORKY WORK?2 ; LP CALCULATION
ADD WORKY F2D1 LO1 CVYT2; LP CALCULATION
CND%; A/D FIXUP - 2820 PROBLEM
ADD WORKHY F2p2 ; LP CALCULATION
LDA CNTL KM7 CVT1; SET DEFAULT FOR DIGITAL OUTPUT-5>0
CND%; A/D FIXUP - 2820 PROBLEM
SUB FIFTY KP1 ROS ; DECREMENT 50 HZ TIMER
SUB TWOHUND KP1 RO5 CVTO; DECREMENT 200 Hz TIMER
SUB TWELVE KP1 RO7 ; DECREMENT 12.5 HZ TIMER
LDA EEG DAR ; SAVE THE A/D CONVERTED EEG1l SAMPLE
LDA DAR FIFTY ; LOAD 50 HZ TIMCR FOR CONDITIONAL DLCLAYS
LDA FiD2 F1D1 CNDS; CONDITIONAL DCLAY
LDA F1D1 WORK1 CNDS; CONDITIONAL DELAY
LDA F1D% F1D3 CNDS; CONDITIONAL DELAY
LDA F1D3 WORK3 CNDS; CONDITIONAL DELAY
ADD ONE KM1 RO% CNDS; DECREMENT 1 HZ TIMER
LDA DAR TWELVE ; LOAD 12.5 HZ TIMER FOR CONDITIONAL DELAYS
LDA F2D2 F2D1 CNDS; CONDITIONAL DELAY
L.DA F2D1 WORK2 CNDS; CONDITIONAL DELAY
LDA F20UT WORKY CNDS; CONDITIONAL DELAY
LDA TWELVE KP4 CNDS; RESET 12. 5 HZ TIMER
LDA DAR ONE ; LOAD 1 HZ TIMER FOR SHIFT CONTROL
LDA EIGHT KMa CNDS; RESET THE COUNT 8 TIMEPR FOR SHIFTING
LDA TEMP2 F20oUT CNDS; CATCH FILTER OUTPUTS FOR (DESTRUCTIVE)
LDA TEMPG FEOUT CNDS; SHIFT OUT OF VALUES (50 HZ IN SYNCH)
LDA ONE KP3 CNDS; RESET 1 HZ TIMER
LDA DAR EIGHT ; LoOAD COUNT 8 TIMER TO SET CONTROL OUTPUT
ADD EIGHT KP1 CNDS; °"DECREMENT® COUNT 8 TIMER
LDA CNTL KP7 CNDS; SET CONTROL OUTPUT HIGH IF IN COUNTDOWN
LDA DAR CNTL ; LOAD CONTROL IN DAR FOR OUTPUT
LDA WORK1 F3D1 Lo1 ; 2.0 TO 7.0 HZ BANDPASS FILTER °'A° CALC
SUB WORK1 F3D1 RO2 ;
SUB WORK1 F3D1 ROS :
SUB WORK1 F3D1 RUY9 OUT7; SHIFT CONTROL OUTPUT
ADD WORK1 F3D1 R12 OUT7; SHIFT CONTROL OUTPUT
LDA CNTL KM7 ; SET DEFAULT DIGITAL OUTPUT TO "D’
LDA DAR TEMP2 ; LOAD CAPTURED OUTPUT FOR SERIAL OUTPUT
LDA CNTL KP7 CND1; SEND OUT BIT 1 (LEAST SIG OF UPPER B BITS
LDA TEMP2 DAR RO1 ; SAVE BACK SHIFTED VALUE FOR NEXT SHIFT
LDA DAR CHNTL ; LOAD DAR WITH CONTROL VALUE FOR OUTPUT
LDA WORK2 F3D2 ROD ; BANDPASS FILTER °B° CALCULATION
ADD WORK3 F3D3 ROY OUTE; AND BANDPASS FILTER °'C° CALCULATION
ADD WORK3 F3ID3 ROG ;
ADD WORK3Z F3D3 RO9 ;
ADD WORK3 F3D3 R10D ;
SUB WORK3 F3D3 R13 ;
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LDA
ADD
SuUB
SUB
sSuB
LDA
LOA
LDA
LDA
LDA
ADD
suB
LDA
5uUB
ADD
LDA
s5uB
LDA
5uB
s5uB
sSuUB
ADD
ABA
LDA
sug
sSUB
ADD
SUB
LDA
ADD
ADD
LDA
LODA
LDA
LDA
LDA
LDA
L.DA
LDA
L.DA
LDA
LDA
LDA
LDA
LDA
LDA
sug
suUB
ADD
ADD
LDA
SuUB
suB
s5uB
suB
LDA
suB
ADD
SuRB
suB
LDAa
SuUR
SUB
ADD
ADD
5UB
ADD
LDA
5uUB
suB
ADD
LDA
sSuUB
LDA
suB
suUB
ADD
nDD
ABA
LDn
5uB
suB
ADD
sUB
sUB
LDA
ADD
ADD
LDA
LDA
LDA
LDA
LDA
LDA
LDaA
LDA

LDA

WORKY
WORKY
WORKY
WORKY%
WORK1
CNTL
DAR
CNTL
TEMPG
b
Lt |
ViiRK2
WORK2
WORK3
WORK?Z
WORKY
WORKY
WORK2
WORK2
WORK2
WORK2
WORK2
WORK2
WORKY
WORKY
WORKY%
WORKY
WORK2
WORKY
WORKY
WORKY
DAR
F3D2
F3D1
F3D%
F3D3
F4D2
F4D1
F4YOUT
FIFTY
CNTL
DAR
CNTL
F4OoUT
DAR
WORK1
WORK1
WORK21
WORK1
WORK1
WORKZ2
WORK2
WORK2
WORK2
WORKZ2
WORK3
WORKX
WORK3
WORK3
WORK3
WORK!Y
WORKY
WORK*Y
WORKY®
WORKY
WORKI
WORKI1
WORK2
WORK2
WORK3
WORK3
WORKY
WORKY
WORK2
WORK2
WORK2
WORK2
WORK2
WORK2
WORKY
WORKY
WORK
WORKY
WORKY
WORK2
WORKY
WORKY
WORKY
DAR
F&D2
F&5D1
FS5D%
F5D3
FGD2
F6D1
FEOUT

TWOHUND

F3D%
F3D4%
F3D4
F3D%
WORK2
KM7
TEMPB
KP7
DAR
CNTL
EEG
F3ID2
WORK1
WORKY
WORK?2
WORK3
F3D%
F4D1
F%D1
F4D1
F4D1
F4D1
WORK?Y
FuwD2
F4D2
F4D2
F4D2
WORKY
WORKZ2
F%D1
FuD2
FIFTY
F3D1
WORK1
F3D3
WORK3
Fi4D1
WORK2
WORKY
KP't
KM7
F40OUT
KP7
DAR
CNTL
F5D1
FED1
F5D1
F5D1
F5D1
FsD2
F5D2
F5D2
F5D2
F5D2
F5D3
F5D3
F5D3
F5D3
F5D3
F5D%
F5D%
F5D4%
FSDY%
F5D
WORK2
EEG
WORIKI1
F5D2
WORK!Y
WORK2
WORK3
F&EDY
F6D1
F6ED1
F6ED1
F6ED1
F&ED1
WORKY
F6D2
FeD2
Feb2
F&h2
F6ED2
WORK*Y%
WORK2
F6D1
F6ED2
TWOHUND
F&D1
WORIK1
F5D3
WORK?3
F6D1
WORK2
WORKY

KP1

RD1
ROS
RO9
R1D

RO1
ROY%

RODD

tn1
RDS
RDB8
R11
R13
R12
ROD
ROS
ROB
R12

L0l
ROD

CND1
RO1

Lol
ROD3
ROt
ROS
R11
ROD
ROS5
RD7
ROS9
R12
L0
RO2
ROS
ROB8
R1D
ROO
ROS
ROG
R10
R12

RO7

RO5

LOl
ROS
RO6
ROS
R11
R10
ROO
ROS
RO6
rRO8
R11

LOY

CND1

L S T S R

oUTH;
OUTH;

R T I T O S PR W Sy SR

CNDS;
CNDS;
CNDS;
CNDS;
CNDS;
CNDS;
CNDS;
CNDS;

L S A S

oUTS5;
oUTS;

D T I T T I T LT LT T

CNDS;
CNDS;
CNDS;
CNDS;
CNDS;
CNDS;
CNDS;
EOP ;
CNDS;
NOP ;
NOP ;

BANDPASS FILTER D" CALCULATION

2 T0 7 HZ AMP ESTIMATION OUTPUT x%xx%x

BP CALCULATION

SET DEFAULT DIGITAL OUTPUT 1O °O0°

LOAD CAPTURED OUTPUT FOR SERIAL OUTPUT
SEND OUT BIT 1 (LEAST SIG OF UPPER 8 BITS
SAVE BACK SHIFTED VALUE FOR NEXT SHIFT
LOAD DAR WITH CONTROL WVALUE FOR OUTPUT
ADD IN EEG SAMPLE MULT BY K1

BP CALCULATION

BP CALCULATION

12 TO 1% HZ AMP ESTIMATION OQUTPUT XxxXxx
ADD FIRST SECTION OUTPUT MULT BY K2

BP CALCULATION

BP CALCULATION

2 - 7 HZ BP/FW RECT/ LOWPASS “ALPHA® CALC

ADD RECT BP OUTPUT MULT BY K3
LOWPASS FILTER "BETA® CALCULATION

LP CALCULATION

LP CALCULATION

LP CALCULATION

LP CALCULATION

LOAD 50 HZ TIMER FOR CONDITIONAL DELAYS
CONDITIONAL DELAY

CONDITIONAL DELAY

CONDITIONAL DELAY

CONDITIONAL DELAY

CONDITIONAL DELAY

CONDITIONAL DELAY

CONDITIONAL DELAY

RESET 50 HZ TIMER

SCT DEFAULT DIGITAL OUTPUT TO 0"

LOAD CAPTURED OQUTPUT FOR SERIAL OUTPUT
SEND OUT BIT 1 (LEAST SIC OF UPPER 8 BITS
SAVE BACK SHIFTED VALUE FOR NEXT SHIFT
LOAD DAR WITH CONTROL VALUE FOR OUTPUT
12 TO 1% HZ BANDPASS FILTER “A° CALC

BANDPASS FILTER 'B° CALCULATION

BANDPASS FILTER "C° CALCULATION

BANDPASS FILTER 'D” CALCULATION

8P CALCULATION

ADD IN EEG1 SAMPLE MULT BY K1

BP CALCULATION

BP CALCULATION

BP CALCULATION

ADD FIRST SECTION OUTPUT MULT BY K2

BP CALCULATION

BP CALCULATION

12 - 1% HZ BP/RECT/LOWPASGS TALPHA™ CaALC

ADD IN THE FW RECTIFIED MULT BY K3
"BETA " CALCULATION

LP CALCULATION

LP CALCULATION

LP CALCULATION

LP CALCULATION

LOAD 200 HZ TIMER FOR CONDITIONAL DELAYS
CONDITIONAL DELAY

CONDITIONAL DELAY

CONDITIONAL DELAY

CONDITIONAL DELAY

CONDITIONAL DELAY

CONDITIONAL DELAY

CONDITIONAL DELAY

SIGNAL END OF PROGRAM (PREFETCHED % INST)
RESET 200 HZ TIMER
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OF
BITS OF A VALUE ARE SHIFTED.
WITH A CONTROL

A RATE OF 6.5 KHz,
OPERATING AT 200,
SHIFT CONTROL PULSE WHICH IS
THIS SHIFT PULSE OCCURS ONCE A SECOND, PERMITTING A BURSTX

50,

*

PROGRAM OPERATING IN 23820 NUMBER 2- EEG TAKEN AS INPUT ATX
WITH BANDPASS/FW RECT/LOWPASS FILTERS x
& 12.5 HZ. THIS 2920 USES THE *

PROVIDED BY 2920 NUMHER 1. *

SHIFTS CONTROLLED BY THE EOP PULSE. THE 8 MOGT SIGNIF X%

ENPUT AND WITH

THEC 28205 ARE ALL SYNCED *
THEIR EOPS TIED TOGETHER. *
x*

K KA K KKK KK KKK KK K 3K KK K KK K K K K KR K K K K 3K K K K K K KK K K K K K X KK K K K K K K

LDA
LDA
SUB
5uUB
suB
suB
LDA
sSuB
s5uB
suB
sSuB
LDA
suB
LDA
LDa
sSuB
5uB
suUB
LDA
SUB
ADD
s5uUB
suB
suURB
ADD
LDA
ADD
suB
suUB
ADD
LDA
s5uUB
LDA
suB
suUB

s5uUB
ABA
LDA
SuUB
S5UB
SuUB

LDA
ADD

ADD
LDA

suUB
suB
s5UB
LDA
LDA
LDA
LDa
LDn
LDA
ADD
LDn
LDn
LDA
LDA
LDA
LDA
LDA
LDA
LDA
LDA
LDA
ADD
LDA
SUB
sSuB
5uB
ADD
LDA
LDA
LDA
LDA
LDA
suB
ADD
L DA
ADD
ADD
ADD
ADD

DAR

WORK21
WORK1
WORK1
WORK1
WORK]
WORK2
WORK2
WORK2
WORK2
WORK2
WORK3
WORK3
FIFTY
ONE

DAR

WORK3
WORK3
WORK?Y
WORKY
WORKY%
WORKY
WORKY
WORK1
WORK1
WORK2
DAR

WORK2
WORK3
WORKX
WORKY
WORK?Y
WORKZ2
WORK2
WORK2

WORK2
WORKZ2
WORKY
WORKY
WORKY
WORKZ2

WORK!?}
WORKI

WORKY%
CNTL

FIFTY
TWOHUND
TWELVE
EEG
DAR
Fibp2
FiD1
FiD%
FiD3
ONE
DAR
Fa2D2
F2D1
F20UT
TWELVE
DAR
EIGHT
TEMPZ2
TEMPGE
ONE
DAR
EIGHT
WORKI1
WORK1
WORK1
WORK1
WORKI1
DAR
CNTL
TEMP2
DAR
WORK2
WORK2
WORK2
WORK3
WORK3
WORK3
WORK3
WORK3

Kp2
FiD1
F1D1
F1D1
F1D31
F1D1
F1D2
FiD2
FiD2
F1iD2
F1D2
F1lD3
F1D3
KPi
KP3
DAR
F1D3
F10D03
Fl1D%
F1D4
Fl1D%
F1DY%
F1D%
WORK2
EEG
WORKI1
KM2
FiD2
WORKY
WORKZ2
WORK3
F1D%
Fa2D1
F2D1
F2D1

F2D1
WORK!'Y
Fa2p2
F2D2
Fa2D2
WORKY

WORK2
F2D1

F2D2
KM7

KP1
KP1
KP1
DAR
FIFTY
FiD1
WORK1
FiD3
WORK3
KM1
TWELVE
F2D1
WORK2
WORK!
Ky
ONE
KM8
F20UT
F6E0OUT
KP3
EIGHT
KP1
F3D1
F3D1
F3D1
F3D1
F3D1
TEMP2
KP7
DAR
CNTL
F3p2
F3D2
F3D2
F3D3
F3D3
F3D3
F3D3
F3D3

LO1
RO5
RD7
RO9
R11
ROD
ROS5
RO7
R10
R1l2
LOo1
RO2

ADNAIA
[=X-F-2"¥-]
CNootn

R13
R0OS9S
ROO

ROl

LOY
ROS6
ROS

R12
R11
ROD
RO6
RO9

Lol

ROS
ROS
RO7

RO

Lol
RO2
ROS
ROY
R12

RO1

ROO
RO2
ROS5
ROO
RO%
RO6
ROS9
R10

,
IN1 ;
IN1
IN1 ;
IN1 ;
IN1 ;
IN1 ;
IN1 ;
INL ;

’

CVvT3

,
CND3;
CND3;

’
IND
ING
INGD
IND
IND
INO
IND
IND

N M S e e e N N s

cVvTS;
CNDG:

cVT7;
H
CVT6,;

NOP ;
CVTS5;

CVTY;

CVT3;
CNDH,

cvT2;
CNDY;
CVT1;
CNDH,

cvTo;

CNDS;
CNDS;
CNDS;
CNDS;
CNDS;

CNDS;
CNDS;
CNDS;
CNDS;
CNDS;
CNDS;
CNDS;
CNDS;

CNDS;

CND1

T R LI T Ir SRR RPN

oUTE;
oUTE;

LOAD DAR WITH FS5/% FOR DIGITAL INPUT

OF CONTROL SIGNAL TO SYNCH TIMERS

ALSO, 0.25 TOo 2.0 H2Z BANDPASS "A° CALC-
ULATION. THE 0.25 TO 2.0 HZ FILTER IS
OPERATING AT 50 HZ.

0.25 TO 2.0 HZ BANDPASS "B° CALCULATION

SAMPLE DONE-ALLOW TO SETTLE
CNVRT BIT 3 TO DETERMINE IF 1 OR O
0.25 70 2.0 HZ BANDPASS "C° CALCULATION

RESET 50 HZ TIMER IF CNTL LINE e"1°
RESET 1 H2 TIMER IF CNTL LINE="1"
CLEAR DAR FOR EEG1 A/D CONVERSION
SAMPLE EEG1

0.25 TO 2.0 HZ BANDPASS D" CALCULATION

0.25 70 2.0 HZ BANDPASS CALCULATION
ADD IN EEG SAMPLE MULT BY K1

BP CALCULATION, START A/D CONVERSION
A/D FIXUP - 2920 PROBLEM

BP CALCULATION

BP CALCULATION

ADD RESULT OF FIRST SECTION MULT BY K2
BP CaLCULATION

BP CALCULATION

LOWPASS FILTER FOR D.25-2.0 H2 BP "ALPHA®
CALCULATION :

ADD IN RECT 8P OUTPUT MULT BY K3
"BETA® CALCULATION

LP CALCULATION

A/D FIXUP - 2920 PROBLEM

LP CALCULATION

LP CALCULATION

A/D FIXUP - 2820 PROBLEM

LP CALCULATION

SET DEFAULT FOR DIGITAL OUTPUT->0

A/D FIXUP - 2920 PROBLEM

DECREMENT 50 HZ2 TIMER
DECREMENT 200 HZ TIMER

DECREMENT 12.5 HZ TIMER

SAVE THE A/D CONVERTED EEG1 SAMPLE
LOAD 50 HZ TIMER FOR CONDITIONAL DELAYS
CONDITIONAL DELAY .
CONDITIONAL DCLAY

CONDITIONAL DELAY

CONDITIONAL DLCLAY

DECREMENT 1 HZ TIMER

LOAD 12. 5 HZ TIMER FOR CONDITIONAL DELAYS
CONDITIONAL DELAY

CONDITIONAL DELAY

CONDITIONAL DELAY

RESET 12.5 HZ TIMER

LOAD 1 HZ TIMER FOR SHIFT CONTROL
RESET THE COUNT 8 TIMER FOR SHIFTING
CATCH FILTER OUTPUTS FOR (DESTRUCTIVE)
SHIFT OUT OF VALUES (50 HzZ IN SYNCII)
RESET 1 HZ TIMER

LOAD COUNT 8 TIMER TO SET CONTROL OUTPUT
"DECREMENT® COUNT 8 TIMER

2.0 TO 7.0 HZ BANDPASS FILTER "A° CALC

LOAD CAPTURED OUTPUT FOR SERIAL OUTPUT
SEND OUT BIT 1 (LEAST SIG OF UPPER 8 BITS
SAVLE BACK SHIFTED VALUL FOR NEXT SHIFT
LOAD DAR WITH CONTROL VALUE FOR OUTPUT
BANDPASS FILTER *B° CALCULATION

.25 TO 2 H2 AMP ESTIMATION OUTPUT XxxxX
AND BANDPASS FILTER "C° CALCULATION
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suB
LbDna
ADD
suB
suB
suB
LDA
LDA
LDA
LDA
LDA
ADD
LDA
SuB
SUB
ADD
LDA
suB
LDA
suUB
5uUB
SuB

ABA
LDA
suB
SURB
ADD
s5UB
LDA
ADD
ADD
LDA
LDA
LDA
LDA
LDA
LDaA
LDA
LDA
LDA
LDA
LDA
LDA
LDA
LDn
L.Da
sSuB
suB
ADD
ADD
LDA
suUB
S5uUB
suB
s5uB
LDA
suB
ADD
suUB
sSuB
LDA
suB
suB
ADD
ADD
SUB
ADD
LDA
5uUB
suB
ADD
LDA
sSuB
LDA
suUB
5UB
ADD
ADD
ABN
LDA
sSuUB
SUB
ADD
s5uUB
sUB
LDA
ADD
ADD
LDA
LDn
LDA
LDA
LDA
LDA
LDA
LDA
LDA

WORK3
WORKY
WORKHY
WORK#Y
WORK?%
WORK1
CNTL
DAR
CNTL
TEMPG
DAR
WORK1
WORKZ2
WORK?2
WORK3
WORK3
WORK*Y
WORKY
WORK2
WORK2
WORK2
WORK2
WORK2
WORK2
WORKY
WORK*Y
WORK*Y%
WORKY
WORK2
WORKY
WORK"Y
WORK!H
DAR
F3D2
F3D1
F3DY4
F3D3
F4D2
F4D1
F4OoUT
FIFTY
CNTL
DAR
CNTL
F4+OouUT
DAR
WORK1
WORK1
WORK21
WORK1
WORK1
WORK2
WORK2
WORK2
WORK2
WORK2
WORK3
WORK3
WORK3
WORK3
WORK3
WORK®Y
WORKY
WORKY
WORKY
WORKY
WORKL
WORK1
WORK2
WORK2
WORK3
WORK3
WORKY
WORKY
WORKZ2
WORK2
WORK2
WORKZ2
WORK2
WORK2
WORK?%
WORK*Y
WORKY4
WORK*Y
WORKY
WORK?2
WORKY
WORK*Y
WORK!Y
DAR
F5D2
FLD1
F5D%
F503
F&D2
F&6D1
FEOUT
TWOHUND

WORK1

WORK!}
WORK2
WORK3
F3D4
Fu4D1
FuD1
F4D1
F4D1
F4D1
WORK?Y
F4D2
F%D2
Fu4D2
F4D2
WORKY
WORK2
F4D1
F4D2
FIFTY
F3Dl
WORK1
F3D3
WORK3
F4D1
WORK2
WORK!'Y
KP '
KM7
F4OUT
KP7
DAR
CNTL
F5D1
F5D1
F5D1
F5D1
FSD1
F5D2
F5D2
F5D2
F502
F5D2
F5D3
F5D3
F5D3
FS5D3
F5D3
FS5DY4%
FSDY4
FSD%
F5D4%
FSDY%
WORK2
EEG
WORK1
FsD2
WORKY
WORK2
WORK3
F5D4
F6eD1
FGD1
FGD1
F6D1
F6ED1
WORK?Y
F6D2
F6D2
F6D2
FeD2
F&D2
WORKY
WORK2
FGD1
F6D2
TWOHUND
F5D1
WORK1
F5D3
WORK3
F6D1
WORK2
WORK*Y%
KPPl

R13
ROl
ROS
RO9
R1O

RO1
ROY%

RGO

L01
ROS
rRO8
R11
R13
R12
ROD
RUS
RO8
R12

LO1
ROO

CND1
ROl

LO1
RO3
RO
RO9
R11
ROQO
ROS5
RO7
RO9
R12
Lo1
ROD2
ROS
RO8
R10
ROD
ROS
ROG
R10
R12

RO7

ROS

LO1
ROS5
RO6
ROS9
R11
R1D
ROO
ROS
RO6

R11

oo
o

or

L S R

CND1;

-~

L R

OUTHY;
OUTHY;

L I I S S S O SO oY

CNDS;
CNDS;
CNDS;
CNDS;
CNDS;
CNDS;
CNDS;
CNDS;

e N s N e e

CUTS;
CUTS;

WTRS N ML M M M R MG MG N B N AL N Ne we e ML S B B N W % A %o % M B e we 8e we Mo Nl W

.~

CNDS;
CNDS;
CNDS;
CNDS;
CNDS;
CNDS;
CNDS;
CNDS;
NOP
NOoP

BANDPASS FILTER "D° CALCULATION

2 TO 7 HZ AMP ESTIMATION QUTPUT XXxx

BP CALCULATION

SET DEFAULT DIGITAL OUTPUT TO "0°

LOAD CAPTURED OUTPUT FOR SERIAL OUTPUT
SEND OUT BIT 1 (LEAST SIG OF UPPER 8 BITS
SAVE BACK SHIFTED WALUE FOR NEXT SHIFT
LCAD DAR WITH CONTROL VALUE FOR OUTPUT
ADD IN EEGC SAMPLE MULT BY K1

BP CALCULATION

BP CALCULATION

12 TO 1% HZ ANMP ESTIMATION OUTPUT *xxx%
ADD FIRST SECTION OUTPUT MULT BY K2

BP CALCULATION

B CALCULATION

2 - 7 HZ BP/FW RECT/ LOWPASS "ALPHA® ChALC

ADD RECT BP OUTPUT MULT BY K3
LOWPASS FILTER °*BETA° CALCULATION

LP CALCULATION

LP CALCULATION

LP CALCULATION

LP CALCULATION

LOAD 50 H2Z TIMER FOR CONDITIONAL DELAYS
CONDITIONAL DELAY

CONDITIONAL DELAY

CONDITIONAL DELAY

CONDITIONAL DELAY

CONDITIONAL DEILAY

CONDITIONAL DELAY

CONDITIONAL DELAY

RESET 50 HZ TIMER

SET DEFAULT DIGITAL OUTPUT TO "0°

LOAD CAPTURED OUTPUT FOR SERIAL OUTPUT
SEND OUT BIT 1 (LEAST SIG OF UPPER 8 BITS
SAVE BACK SHIFTED VWALUE FOR NEXT SHIFT
LOAD DAR WITH CONTROL VALUE FOR OUTPUT
12 70 1% HZ BANDPASS FILTER "A° CalLC

BANDPASS FILTER "B” CALCULATION

BANDPASS FILTER "C° CALCULATION

BANDPASS FILTER °"D° CALCULATION

BP CALCULATION

ADD IN EEG1 SAMPLE MULT BY K1

BP CALCULATION

BP CALCULATION

BP CALCULATION

ADD FIRST SECTION OUTPUT MULT BY K2

BP CALCULATIONR

B8P CALCULATION

12 - 1% HZ BP/RECT/LOWPASS "ALPHA® CALC

ADD IN THE FW RECTIFIED MULT BY K3
"BETA® CALCULATION

LP CALCULATION

LP CALCULATION

LP CALCULATION

LP CALCULATION

LOAD 200 HZ TIMER FOR CONDITIONAL DELAYS
CONDITIONAL DILCLAY
CONDITIONAL DELAY
CONDITIONAL DELAY
CONDITIONAL DELAY
CONDITIONAL DELAY
CONDITIONAL DELAY
CONDITIONAL DELAY
RESET 200 HZ TIMER
NOPS FOR REMAINDER OF
FULL 192 PROGRAM STEPS
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* PROGRAM OPERATING IN 2920 NUMBER 3- EOGL TAKEN AS INPUT ATx

X A RATE OF 6.5 KHZ., WITH BANDPASS/FW RECT/LOWPASS FILTER %

x OPERATING AT 50 H2. THIS 2920 USES THE SHIFT CONTROL *

%X PULSE WHICH IS PROVIDED BY 23920 NUMBER 1. *

% THIS SHIFT PULSE OCCURS ONCE A SECOND. PERMITTING A BURSTxX

X OF SHIFTS CONTROLLED BY THE EOP PULSE. THE 8 MOST SIGNIF x%

x BITS OF A VALUE ARE SHIFTED. THE 29205 ARE ALL SYNCED x

%x WITH A CONTROL INPUT AND WITH THEIR EOPS TIED TOGETHER. *

*x 3

EEEKKEKEE KKK RKEX KKK KKK KKK KKK KRR EKANKE 0 MEXKEEKEEEERKEE KRR KR

LDA DAR KP2 ; LOAD iR WITH FS/% FOR DIGITAL INPUT

LDA WORK1 FiD1 LO1 IN1 ; OF CORNTROL SIGNAL TO SYNCH TIMERS

SUB WORK1 FiD1 R0O2 INl1 ; ALSO, 2.0 TO 1D HZ BANDPASS A" CALC-

SUB WORK1 FiD1 RO% INl ; ULATION. THE 2.0 TO 10 H2 FILTER IS

SUB WORK1 F1D1 RO6 IN1 ; OPERATING AT 5D HZ.

SUB WORK1 FiD1 RO9 IN1 ;

ADD WORKI1 Fip1 R12 IN1 ;

LDA WORK2 Fip2 RO1 IN1 ; 2.0 TO 10 HZ BANDPASS "B CALCULATION

ADD WORK2 F1D2 RO2 IN1 ;

SUB WORK2 Fib2 RO7 ; SAMPLE DONE~ALLOW TO SETTLE

SUB WORK2 Fibpz RO& CVT3; CNVRT BIT 3 TO DETERMINE IF 1 OR 0

ADD WORK2 F1iD2 R1D ;

SUB WORK2 Fip2 R12 ;

LDA FIFTY KPPty CND3; RESET 50 H2 TIMER IF CNTL LINE =°1°

LDA ONE KP3 CND3; RESET 1 HZ TIMER IF CNTL LINE="1"

SUB DAR DAR ; CLEAR DAR FOR EOG A/D CONVERSION

LDA WORKS3 Fi1D3 RO1 IND ; SAMPLE EOG, BANDPASS °*C° CALCULATION

ADD WORK3 F1D3 RO4 IND ;

SUB WORK3 F1D3 RO7 INO ;

SUB WORK3 F1D3 RO8 IND ;

ADD WORKS3 F1D3 R10 INO ;

LDA WORKY FiD RO2 IND ; BANDPASS "D° CALCULATION

ADD WORKY Fi1D% RO% IND ;

ADD WORKY FiD% ROS IND ;

SUB WORK' F1D% ROS ;

SUB WORKHY FiD' R11 CVTS; START A/D CONVERSION

ADD DaAR KM2 ROG CND6; A/D FIXUP - 2920 PROBLEM

ADD WORKY FiD4% R13 ;

SUB WORK1 WORK2 ; BP CALCULATION

ADD WORK21 EOCG RO3 CVT7; ADD IN SAMPLE MULT BY Ki

LDA WORK2 WORK1 ; BP CALCULATION

SUB WORK2 FiD2 ; BP CALCULATION

SUB WORK3 WORK?} CVT6; BP CALCULATION

ADD WORK3 WORK2 ROD ; ADD RESULT OF FIRST SECTION MULT BY K2

LDA WORKHY WORK?3 ; BP CALCULATION

SUB WORK! F1D% CVT5; BP CALCULATION

LDA WORK2 F2D1 Lo1 ; LOWPNSS FILTER "ALPHA® CALCULATION

SUB WORK2 F2D1 ROS ;

SUB WORK2 F2D1 RO8 CVTH;

SUB WORKZ2 F2D1 R11 ;

ADD WORK2 F2D1 R13 ;

ABS WORKHY WORK?® CVT3; FULL WAVE RECTIFY THE BP OUTPUT
CNDY; A/D FIXUP - 2920 PRORBLEM

ADD WORK2 WORK!'Y+ R12 ; ADD IN SECOND SECTION MULT BY K3

LDA WORK! Fa202 ROG CVT2, LOWPASS FILTER "BETA" CALCULATIOM
CND%; A/D FIXUP - 2920 PROBLEM

SUB WORKY F2D2 ROS ;

SUB WORKY Fa2D2 RD8 CVT1;
CNDY%; A/D FIXUP - 29520 PROBLEM

ADD WORKHY F2p2 R12 ;

SUB WORK2 WORKY CVTO0; LP CALCULATION

LDA WORKY WORK2 ; LP CALCULATION

ADD WORK'Y Fa2D1 LO1 ; LP CALCULATION

ADD WORKHY Fa2p2 ; LP CALCULATION

LDA EOG DAR ; SAVE THE A/D CONVERTED ECGC SAMPLE

LDA CNTL KM7 ; SET DEFAULT FOR DIGITAL OUTPUT->0

SUB FIFTY KP1 ROS ; DECREMENT 50 H2 TIMER

LDA DAR FIFTY ; LOAD 50 HZ TIMER FOR CONDITIONAL DELAYS

LDA F1D2 FiD1 CNDS; CONDITIONAL DELAY

LDA F1D1 WORK1 CNDS; CONDITIONAL DECLAY

LDA F1D4 F1D3 CNDS,; CONDITIONAL DELAY

LDA F1D3 WORK3 CNDS; CONDITIONAL DELAY

ADD ONE KM1 RO% CNDS; DECREMENT 1 HZ TIMER

LDA F2D2 Fa2p1 CNDS,; CONDITIONAL DELAY

LDA F2D1 WORK2 CNDS; COMDITIONAL DELAY

LDA F20UT WORKY CNDS,; CONDITIONAL DELAY

LDA FIFTY KPY CNDS; RESET THE 50 HZ TIMCR

LDA DAR ONE ; LOAD 1 HZ TIMER FOR SHIFT CONTROL

LDA EIGHT KM8 CNDS; RESET THE COUNT 8 TIMER FOR SHIFTING

LDA ONE KP3 CNDS; RESET 1 HZ TIMER

LDA DAR EIGHT ; LOAD COUNT 8 TIMER

ADD EIGHT KP1 CNDS; DECREMENT COUNT 8 TIMER

LDA DAR F20uT ; LOAD LP OUTPUT FOR SHIFTOUT

LDA CNTL KP7 CND1; SET OUT BIT 1(LEAST SIG OF UPPER 8 BITS)

LDA F20UT DAR RO1 ;i SAVE BACK SHIFTED WALUE FOR NEXT SHIFT

LDA DAR CNTL N ; LOAD DAR WITH CONTROL VALUE FOR OUTPUT

oP ;

NOP ;

SUB WORK2 F3D2 RD2 ;

ADD WORK2 F3D2 RDS ;

LDA WORK3 F3D3 RDO OUTE; .25 TO 2 HZ AMP ESTIMATION OUTPUT XxxxXxx
NOP
OUTE; 2.0 TO 1D HZ AMP ESTIMATION OUTPUT X*xxx
DUTH;

NOP ; NOPS FOR REMAINDER OF FULL 192
NOP ; PROGRAM STEPS
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//REIMER JOB ",.,,T=15,R=*=256,I=30,C=0,L=5", "REIMER"
/%DB800 VPLOT
// EXEC FORTHCLG, USERLIB='SYS2. VPLOTLIB"
//FORT. SYSIN DD x
**#******************#************#ﬂ********x****#*****#*******
x
* PROGRAM TO APPLY A GIVEN EPOCH RULE (ADJUSTABLE LENGTH) AND #
X PLOT THE RESULTING IMAGE ON THE VERSATEC PLOTTER
x *
2K 2K KK KK K K K KK 3K KK KK K K K K K 3K K KK K K 3K K K K K 3K KK K K K K KK YK K K KK K K 0K K Kk X K
IKTECER IBUF (%0003, INDEX, INDEX1.N. NOW, LAST
REAL INCR, EPOCH, AVER1., AVER2, AVER3
REAL BPM1(3000).PAGE(3000), SECS(3000), TIME(3000). PGS
REAL DUMMY, LARGE, Y, X, BPL1(3000),BPH1(3000), BPL, BPM, BPH
61 FORMAT(F4%. 0, %(F5.02)
BPL=0
BPM=0
BPH=0
INDEX=1
1 READ(5,61,END=10) PAGECINDEX), SECSCINDEX), BPL1ICINDEX),

x BPM1(INDEX), BPH1(INDEX)
TIMECINDEX)=PAGE(INDEX)+{SECS(INDEX)/30D0.0)
IF(BPL1CINDEX) .GT. BPL) BPL=BPL1C(INDEX)

IF(BPM1ICINDEX) .GT. BPM) BPM=BPM1(INDEX)
IF(BPH1L(INDEX) .GT7. BPH) BPH="BPH1(INDEX)
INDEX=INDEX+1
GO 70 1
10 LAST=INDEX-1
DO 20 INDEX=1, LAST
BPL1CINDEX)=BPL1(INDEX)/8PL
BPM1(INDEX)=BPM1I(INDEX)/BPM
BPH1(INDEX)=BPH1(INDEX)/BPH
20 CONTINUE
Ne=D
AVER1=D
AVERZ2=0
AVER3=D
INCR=10.0/30.0
PGS=PAGE(LAST)-PAGE(1)+1
PGS=D0. 25%PGS
Cnall SIZE(PGS)
CALL PLOTS(IBUF.,%000)
EPOCH=TIME(1)+INCR
DO 6 INDEX=1,LAST
N=N+1
AVER1sAVLER1+BPL1ICINDEX)
AVERZ=AVER2+BPM1(INDEX)
AVER3I=*AVER3I+BPH1(INDEX)
IFCTIMECINDEX) .LT. EPOCHY GO TO &
AVER1=AVER1/N
AVER2=AVER2/N
AVER3I=AVER3/N
PO 5 INDEX1=«1.N
NOW=INDEX-INDEX1+1
BPL1(NOW)=AVER1
BPM1(NOW)=AVERZ2
BPH1(NOW)Y=AVER3
5 CONTINUE
N=D
AVER1=~0
AVER2=0
AVERZ=D
EPOCH=EPOCH+INCR
6 CONTINUE
Y=1.0/%.0
X=4. 0
caLt PLOTCD. O, -PGS, -3)
CALL PLOT(0.0,0.5,-3)
TIMECLAST+1)=PAGCE(1)
BPMI(LAST+1)=0.0
TIME(LAST+2)=X
BPL1C(LAST+2)eY
CALL AXIS(CO0. D,
CAlL AXIS(OD. 0,
ME
o}

000000

0,0.25 T0 2.0
0, "TIME(PAGE) ",
BPLY1,LAST,1,0,0)
1:-3)

o. »80.0,0.0,Y)

0. 0.0,PAGE(C1), X)
CALL LINECCTI
CALL PLOTCO. O, %.
BPM1(LAST+1)=0.

BPM1(LAST+2)=Y

CALL AXIS(D.0,0.0,72.0 TO 7.0°,10,%.0,90.0,0.0.Y)
CALL LINECTIME,BPM1,LAST.1,0,0)

CALL PLOT(D.0.%.1,-3)>

BPH1(LAST+1)>=0.0

BPH1(LAST+2)=0. 5

CaLt AXIS(0.0,0.0,°12 70 14%°,8,2.6,90.0,0.0,0.5)

CALL LINE(TIME,BPH1,LAST,1.0,0)

CALL PLOT((PGS+4%.0),0.0,9899)

&TOP
END
/%
//GO.FTO1FDO1 DD DSN+=&&FTO1F001, UNIT=SYSDA, SPACE=(CYL, (2.2)),
/77 DISP=(NEW, PASS)
//GO. VWORK DD DSN=B88VWORK, UNIT=SYSDA, SPACE=(CYL, (2,2)),
/77 DISP=(NEW, PASS)

//GO0. SYSIN DD DSN=JRLEIMER. PLOT.DATA,VOL=SER=USERD2,
// DCB={LRECL=80,BLKSIZE=6080), UNIT=SYSDA.DISP=(0OLD, KEEP)
// EXEC VPLOT,COND=(0D.NE)
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* *
X PROGRAM TO ALLOW THE EXORCISOR TO APPEAR AS AN INTELLECGENT *
* TERMINAL TO THE AMDAHL COMPUTER *
x x*
XK K KA KK MK K K K K KKK KK K K KKK K KK K K KK X K K 0K K 3K KR K Sk K K K K K K 0K K 3 K K XK K K K K K K X
0010 TERM:

D020 PROC OPTIONS(MAIN)

0030 s NAM TERM
D040 DCL

0050 1 Iocs.

DOGO 2 STATUS BINC1),

op7o 2 MODE BINC1).

008D 2 BUFFP BIN(C2).

009D 2 BUFFS BIN(2).

0100 2 BUFFE BINC2),.

0116 2 TYPE CHARC(CZ2).

0120 2 UNIT CHARC1),

0130 2 NAME CHARCS8).

0140 2 SUF  CHAR(2),

D150 2 pUMO  BINC2).

0160 2 FORMAT BINC1).

0170 2 DUM1I  BINC3).

0120 2 DuUM2 BIN(2),

0190 2 ALLOC BINCZ2).

0200 2 SECTS BINC2),

D210 2 SECTE BINC2),

0220 2 SECTP BINC2)

0230 DCL INPUT CHAR(S8)

0240 DCL DUMMY CHARC1)

D250 DCL INPUT1 CHAR(13)

0260 DCL INDEX1 BINC1)

D270 DCL PRMPT CHARC12) INITC ' EXORCISOR=»>")
0280 PDCL EOTCH CHAR(1) INITC$4%)

0290 DCL CMD1 CHAR({8) INIT( ONLINE")
0300 DCL CMD2 CHAR(B) INIT( END")
D310 DCL CMD3 CHARC(8) INITC UPLOAD")
0320 DCL CMDS5 CHAR(8) INIT( HELP')
0330 DCL BUFFER CHAR(G60)

0340 DCL BUFEND CHAR(C1) INIT($D)
0350 DECLARE

0360 1 BUF,

0370 2 BUFF(133) CHARC(C1)

0380 DCL LAST BIN(2)

D390 DCL HOLD CHAR(2)

0400 DCL SECTO CHAR(256)

0410 DCL SECT1 CHAR(C256)

D420 DCL SECT2 CHAR(256)

0430 DCL SECT3 CHAR(256)

0440 DCL SECT% CHAR(C256)

0450 DCL SECTS5 CHAR(256)

0460 DCL SECT6 CHAR(C256)

D470 DCL SECT7 CHAR(256)

D480 DCL SECT8 CHAR(256)

0490 DCL SECT9 CHAR(256)

0500 DCL INDEX BINC1)

0510 DCL PACK1 BIN(C2)

0520 DCL PACK2 BIN(C2)

0530 DCL 1 QUTY,

0540 2 XX7 CHAR(C189) INITC'ENTER NAME OF FILE'),
0550 2 XXB CHAR(15) INIT(® TO BE UPLOADED'),
0560 2 XX3 CHARC1) INIT(4D)
0570 DCL FEED CHAR(C1) INIT(zC)

0580 DCL LINE CHAR(C1) INITCgA)

0590 DCL LCU CHAR(1) INITC375)

0600 DCL CNTT CHARC1) INITCgi4)

0610 DCL CNTQ CHARC1) INITC11)

0620 DCL ESCP CHAR(C1) INIT(£1B)

0630 DCL CNTO CHAR(C1) INITC3DF)

D640 DCL CNTN CHAR(C1) INITC$DE)D

0650 DCL HOLDD BINC1)

0660 DCL HOLD1 BINC2)

0670 DCL HOLD2 CHAR(1)>

0680 DCL NUM BIN(C1)

D690 DCL ONE CHAR(1)

D700 DCL LNUM BINC2)

0710 DCL COUNT2 BIN(2) DEF sEO03C
0720 DCL LATCH3 BIN(2) DEF $EO03E
D730 DCL LATCHR2 BINC2) DEF $C03C
0740 DCL CNTL3 BIN(1) DEF sED38
0750 DCL CNTL2 BINC1) DEF $E039
D760 DCL CNTL1 BIN(1) DEF s$EO038
0770 DCL TIME BINC2)

0788 DCL TERMCT BIN(1) DEF s$FCFY%
0790 DCL TERMTR BIN(C1) DEF $FCF5
D800 DCL CARDCT BINC1) DEF $E00D
0810 DCL CARDTR BIN(1) DEF s$EO0D1
0820 DCL STATE BIN(1)

D830 DCL 1 OUTE,

0840 2 XX1D0 CHAR(18) INIT( SENDING RECORD =%:
0850 2 XX11 CHARC1) INITC$04%)
DB6ED  DCL 1 OUTY.

0s70 2 XX12 CHAR(C4),

o820 2 XX13 CHAR(C1) INIT(%D8),
D90 2 XX1% CHAR(1) INITC208).
0300 2 XX15 CHAR(C1) INIT(%08),
0310 2 XX16 CHAK(C1) INIT(3D08),
0820 2 XX17 CHAR(1) INITC$04)
0930 CARDCT=*3

0840 TERMCT=3 !



0850
0360
0970
0980
0990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
13&£0
1390
1400
1410
1420
1430
1440
1450
1460
1470

CARDCT=3%49
TERMCT=349
COMMND:
CaLL DSPLY<, , ADDR(BUFEND)>
$ LDX #PRMPT
% SCALL .DS5PLZ
CALL KEYIN<, B, ADDRCINPUT)I> GIVING<, NUM>
IF NUM EQ@ 0 THEN GO TO HELP
PACK1=ADDRCINPUT)
PACK1«PACK1+NUM
DO WHILE NUM LE 7
PACK1->ONE=" °
PACK1=PACK1+1
NUM=NUM+1
END
IF INPUT EQ CMD1 THEN GO TO ONLIN
IF INPUT EQ CMD2 THEN GO TO ENDER
IF INPUT EQ CMD3 THEN GO TO UPLOAD
IF INPUT EQ@ CMDS THEN GO TO HELP
BUFFER="ERROR, ENTER “HELP™ FOR HELP"
CALL DSPLY<, . ADDR(BUFFER)>
GO TO COMMND
HELP: BUFFER='SUPPORTED COMMANDS ARE: ’
CALL DSPLY<, . ADDR(BUFFER)>
BUFFER="ONLINE END UPLOAD”

CALL DSPLY<, . ADDR(BUFFER)>
GO TO COMMND
ONLIN:
BUFFER="GOING ONLINE THROUGH ACIA CARD"
CALL DSPLY<, . ADDRCBUFFER)>
BUFFER="ENTER "ESC™ TO END ONLINE"
CALL DSPLY<, ., ADDRC(BUFFER)>
STATE+=D
TOP:

CALL TERMIN
IF NUM EQ 0 THEN GO TO CONT1
IF ONE EQ ESCP THEN GO TO COMMND
CALL CARDOU
CONT1: CALL CARDIN
IF NUM EG 0 THEN GO TO TOP
IF ONE EQ CNTN THEN STATE=1
IF ONE EQ CNTO THEN STATE=O
IF STATE EQ 1 THEN GO TO TOP
caLL TERMOU
GO TO TOP
ENDER: CalLL MDOS
UPLOAD:
BUFFER=QUTY
CALL DSPLY<, . ADDR(BUFFER)>
INPUT1="
CALL KEYIN<, 1%, ADDRCINPUT1)> GIVING<, NUM>
IF NUM EQ O THEN GO TO NOGO
DUMMY =", ~
LDX #DUMMY
STX PACK1
PACK2*ADDR(UNIT)
LDX 3#PACK1
SCALL . PFNAM
STAB STATUS
IF STATUS NE O
THEN DO
STATUS=7
GO TO ERRUP
END
MODE=31
TYPE="DK”
% LDX anIocn
$ SCALL .RESRV
IF STATUS NE 0 THEN GO 70 ERRUP
BUFFS = ADDR(BUFF)
BUFFE = 132+BUFFS
FORMAT = &5
ALLOC =
SECTS = ADDR{SECTOD)
SECTE = 2559+SECTS
LDX mIocCcB
SCALL . OPEN
IF STATUS NE 0 THEN GO 70 ERRUP
CALL TERMIN
CALL CARDIN
3 LDX u0UTH
$ SCaLL .DSPLZ
LNUM=]
GOS:
XX12=LNUM
LNUM=LNUM+1
GOX:
3 LDX sIocn
t SCALL . GETRC
IF STATUS NE O THEN GO 70 CLOSE
% LDX sOUT7
+ SCaLL . DSPLZ
GO10: DO INDEX=1 TO 129
ONE=BUFF { INDEX)
IF ONE EQ BUFEND AND INDEX E@ 1 THEN GO TO
CnLL CARDOU
e IF ONE EQ@ BUFEND THEN GO TO ENDRC
ND
ENDRC: CALL INSYS
IF NUM EQ 101 THEN GO TO CLOSE
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1930
1940
1950
1860
1970
1880
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2080
2100
2110
2120
2130
2140
2150
2160
2170
2180
2180
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
23140
2320
2330
2340
2350
2360
2370
2380
2390
2400
24%10
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
26%0
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790
2800
2810
2820

GO TO GO9

CLOSE:

L 4

3
%+
3

CALL DSPLY<¢, ., ADDR(BUFEND)>>
LDX #IOCB

sScaLlL . CLOSE

IF STATUS NE D THEN GO 70O ERRUP
LDX sIocCB

SCALL . RELES

IF STATUS NE 0 THEN GO TO ERRUP
IF NUM EQ 101 THEN GO TO NOGO
BUFFER=*"UPLONAD COMPLETED™

CALL DSPLY<., ., ADDR(BUFFER)>
STATE=D

caLL CARDIN

CALL TERMIN

ONE=BUFEND

CALL CARDOU

GO TO TOP

ERRUP:

3
E-4
-4

CLRB
LDX aIOoCB
SCAaLL . MDERR

NOGO: BUFFER=°UPLOAD ABORTED”

CALL DSPLY<, . ADDR(BUFFER)>
GO TO TOP

END
TERMIN: PROC

3

s
£
3
3

LDA A TERMCT
ASR A

BCC ENDTRM
LDA A TERMTIR
STA A ONE
NUM=]1

RETURN

ENDTRM: NUM=2D

RETURN

END
CARDOU: PROC

LDA A ONE

$
£TRANS1 LDA B CARDCT

% BIT B u#02H
+ BEQ TRANG1
5Ta A CARDTR
RETURN
END

CARDIN: PROC

ansvan

LDA A CARDCT
ASR A
BCC ENDCRD
LDa A CARDTR
STA A ONE
NUM= 1
RETURN

ENDCRD: NUM=0

RETURN

END
TERMOU: PROC

LDA A ONE

+
$TRANSZ2 LDBA B TERMCT

T BIT B #02H
3 BEQ TRANS2
STAa A TERMTR
RETURN
END

INSYS: PROC

LATCH3=60282
LATCH2=65535
CNTL3=383
CNTL2=501
CNTL1=300
PACK1=COUNT2
TIME=D
INDEX1=1
BUFFER=" ~
DO WHILE TIME LE 10
CalllL CARDIN
IF NUM NE 0 THEWN DO
IF ONE EG@ CNTQ THEN GO TO GO1
INDEX1=INDEX1+1
1F INDEX1 EG 60 THEN GO TO GO2
END
TIME=65535-COUNT2
END

GO2: BUFFER" "COMMUNICATIONS TIMEOUT"®

CALL DSPLY<, ., ADDR{BUFFER)>
NUM=1D1
RETURN

GOl1: NUM-D

RETURN

END
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* PROGRAM 7O MAP THE RECORDED SPECTRAL CHARACTERISTICS TO THE
¥ FRAME OF REFERENCE OF THE POLYGRAPHIC PAPER RECORDING FOR

¥ CORRELATION WITH THE MANUALLY CLASSIFIED RECORD

x

A KKK KK KKK KK K KK KK KK KK KK K K K K K K 0K K 2K o 5K K 3K K KK K K% KK 3K 3K K KK KK 3 K KK KK Xk K
0010 CONVRT:

0020 PROC OPTIONS{MAIN)

0030 £ NAM CONVRT

0040 DCL

0050 1 1I0CB(2),

EE X X X 3

0060 2 STATUS BINC(C1),
0070 2 MODE BIN(1),
ooso 2 BUFFP BIN(C2).
0090 2 BUFFS BIN(C2),
0100 2 BUFFE BIN(Z2).
0110 2 TYPE CHAR(2),
0120 2 FILE,

0130 3 UNIT CHAR(1),
ol40 3 NAME CHARC(B),
0150 3 SUF CHAR(2),
0160 2 DUMDB BINC(C2),
0170 2 FORMAT BIN(1),
6120 2 DUM1 BINC3),
0190 2 DUMZ2 BINC2),
0200 2 ALLOC BIN(Z2).,
0210 2 SECTS BIN(2).,
0220 2 SECTE BIN(2),
6230 2 SECTP BINC(2)
0240 DCL 21 TFILE.

0250 2 TUNIT CHARC(C1).,
0260 2 TNAME CHAR(8).
o270 2 TSUF CHAR(2)
D280 DCL DUMMY CHARC(1)
0290 DCL INPUT1 CHARC(C13
0300 DCL BUFFER CHAR(40
06310 DCL BUFEND CHARC(1) INIT(%D)
D320 DCL SECTO CHAR(256
0330 DCL SECT1 CHAR(256
0340 DCL SECT2 CHAR(256
0350 DCL SECT3 CHAR(256
0360 BCL SECT4 CHAR(256
0370 DCL SECTS CHAR(2S56
0380 DCL SECT6 CHAR(256
03930 DCL SECT7 CHAR(256
6400 DCL SECT8 CHAR(256

o410 DCL SECTY CHAR(256

on20 DCL SECT10 CHAR(256)
D430 DCL SECT11 CHAR(256)
0%%0 DCL SECT12 CHAR(CZ256)
0450 DCL SECT13 CHAR(256)
0460 DCL SECT1% CHAR(256)
o470 DCL SECT15 CHAR(C256)
080 DCL SECT16 CHAR(2506)
0490 BCL SECT17 CHAR(256)
0500 DCL SECT18 CHAR(256G)
0510 DCL SECT198 CHAR(256)

0520 DCL PAGE BIN(C2)
0530 DCL SECS BINC(C1)
o540 DCL NOWVAL BIN(2)
0550 DCL NUM1 BINC(C1
0560 DCL NUM2 BINC(1
0570 DCL NUM10 BIN(
0580 DCL INDEX1 BIN
0590 DCL PACK1 BINC
0600 DCL PACK2 BIN(2)

0610 DCL ONE SIGNED BIN(1)

0620 DCL POINT BIN(2)

0630 DCL POINT1 BINCC2)

D640 DCL BUFFl1(256)

0650 DCL NUM BINC1)

0660 DCL INDEX2 BIN(C1)

0670 DCL BUFOUT CHAR(®5) INIT(" )

0680 DCL HOLD CHAR(Y4)

0690 DCL PACMAX BINCZ)

0700 DCL PAGMIN BIN(C2)

0710 DCL PAGREF BINC(2)

0720 DCL NOGOC BINC(C1)

0730 BUFFER="ENTER INPUT HEX FILE NAME"

0740 CALL DSPLY<, , ADDR(BUFFER)>

0750 INPUTY1=" -~

0760 CHLL KEYIN«,13, ADDRCINPUT1)> GIVING <, NUM>
Q770 IF NUM EQ 0 THEN GO 70 NOGO

0780 DUMMY =", *

0790 % LDX sDUMMY

0800 3 STX PACK1

0810 PACK2-ADDR(TFILE)
0820 3 LDX auPACK2L

0830 3 SCALL . PFNAM

080 8¢ S5TAB NUM

0850 IF NUM NE 0O

D860 THEN DO

0870 STATUS(1)=7 .
oB8e0 GO TO ERRUP
D890 END

0900 FILEC1)=TFILE
0910 TYPE(1)="DK"
0920 TYPE(2)="DK"
0930 MODE(1)=1
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MODE(2)=2

LDX #IOCCB

SCaLL . RESRV

IF STATUS(1) NE 0 THEN GO TO ERRUP

BUFFS(1)=ADDR(BUFF1)

BUFFS(2)*ADDR(BUFOUT)

BUFFE(1)=255+BUFFS(1)

BUFFE(2)*4%+BUFFS(2)

FORMAT(1)=3

FORMAT(2)=5

1)=0

2)=200

1)=ADDR(SECTOD)

SECTS(2)*ADDR(SECT10
C
C

>

r

-

(o}

(o]
~e

SECTE(1)=2559+SECTS
SECTE(2)=2558+SECTS
LDX sIOCB
SCalLl . OPEN
IF STATUS(1) NE 0 THEN GO TO ERRUP
BUFFER=*"ENTER OUTPUT FILE NAME"
CALL DSPLY<, , ADDR(BUFFER)>
INPUT1=" ~
CALL KEYIN<,13,ADDRCINPUT1I> GIVING<.NUM>
IF NUM EQ D THEN GO TO NOGO
DUMMY =", ~
LDX 8DUMMY
STX PACK1
PACK2=ADDR(TFILE)
LBbX 8PACK1
SCALL . PFNaAM
SThA B NUM
IF NUM NE 0 THEN DO
STATUS(1)=7
GO TO ERRUP
END
FILEC2)=TFILE
LDX 3I0OCB+37
SCALL . RESRV
IF STATUS(2) NE 0 THEN DO
STATUS(1)*STATUS(2)
GO TO ERRUP
END
LDX #I0OCB+37
sScalLl . OPEN
IF STATUS(2) NE 0 THEN DO
STATUS({1)=STATUSC2)
GO TO ERRUP
END
PACK1=ADDR{BUFOQOUT)
INDEX2=1
NOGOC=0
NOWVAL=0
NUM10O=D
NUM1+~0
BUFFER="ENTER STARTING PAGE =7
CALL DSPLY<, , ADDR(DBUFFER)>
CALL KEYIN<, 3, ADDRCINPUT1)>> GIVING<¢, NUM>
IF NUM EG 0O THEN GO TO NOGO
PACK1=ADDR(INPUTL)
DO WHILE HNUM GE 1
CalLlL HEXIN
IF NOGOC EQ 1 THEN GO TO NOGO
END
PAGE=NOWVAL
NOWwvAL=0
BUFFER="ENTER STARTING SEC ON PAGE"
CALL DSPLY<, , ADDR(BUFFER))>
CALL KEYIN¢, 2, ADDRCINPUT1)I> GIVING<, NUM>
IF NUM EQ@ 0O THEN GO TO NOGO
PACK1=ADDR(INPUT1)
DO WHILE NUM GE 1
CalLL HEXIN
IF NOGOC EQ 1 THEN GO TO NOGO
END
SECS=NOWVAL
PAGMIN=0
PAGMAX=30-SECS
PAGREF=PALGMAX

)
1)
2)

LoOP:

kS
E 3

POINT1=ADDR(BUFF1)

LDX nIOCHB

SCaLL . GETRC

IF STATUS(1l) EQ@ B8 THEN GO TO CLOSE
IF STATUS(1l) NE 0 THEN GO TO ERRUP
CaLlL ASCII

IF INDEX1 NE DB THEN GO TO ERRUP

GO TO LooOP

CLOSE:

“#4H

IF INDEX2 NE 1 THEN DO
LDX sITOCH+37
‘SCALL . PUTRC
IF STATUS(2) NE 0 THEN DO
STATUS(1)=STATUS(2)
GO 7O ERRUP
END
END
LDX 8IOCB
SCALL . CLOSE
IF STATUS(1) NE 0 THEN GO TO ERRUP
LDX sIOoCB
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1940
1950
1960
1970
1980
1930
200D
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
21%0
2150
2160
2170
2180
2180
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
24%70
2480
2490
2500
2510
2520
2530
25%0
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
26380
2700
2710
2720
2730
2740
2750
2760
2770
2780
2780
2800
2810
2820

$ ScaLl .RELES
IF STATUS(1) NE 0O THEN GO TO ERRUP
LDX #IOCB+37
SCALL .CLOSE
IF STATUS(2) NE 0 THEN DO
STATUS(1)=STATUS(2)
GO TO ERRUP
END
LDX sIOCB+37
SCALL .RELES
IF STATUS(2) NE 0 THEN DO
STATUS(1)=*STATUS(2)
GO TO ERRUP
END
BUFFER="CONVERSION COMPLETE”
calLl DSPLY<, , ADDR(BUFFER)>
CaLlL MDOS
ERRUP:
+ CLRB
¢ LDX #IOCHB
4 SCALL . MDERR
NOGO: BUFFER=*CONVERT ABORTED®
CALL DSPLY<, ., ADDR(BUFFER)>
CaLL MDOS
END
ASCII: PROC
DO POINT=POINT1 TO BUFFP(1)
IF INDEX2 EQ 1 THEN DO
NUM1=POINT->NUM1
INDEX2=INDEXZ2+1
GO TO CONT1
END
IF INDEX2 EQ@ 2 THEN DO
NUM2=POINT ~> NUM2

LR

LX)

IF NUM2 GT 150 AND NUM1 NE NUM1O THEN NUMI=NUM1O

NUM10=NUML
PACK2=ADDR(NUM1)
PACKZ=PACK2->PACK2

DO WHILE PACK2 GT PAGMAX
PAGE=PAGE+1
PAGMAX=PAGMAX+30
PAGMIN=PAGMAX-30

END

PACK2=PACKZ2-PACMIN

IF PAGMAX EQ PAGREF THEN PACK2=PACK2+SECS

PACK1->HOLD=PAGE

PACK1=PACK1+5

PACK1->HOLD=PACKR2

PACK1=PACK1+S5S

INDEX2«INDEX2+1

CO TO CONT1

END
PACK1->HOLD=POINT->ONE
PACK1=PACK1+5
INDEX2=INDEX2+1

IF INDEX2 EQ 10 THEN DO

PACK1=ADDR(BUFOUT)

INDEXZ2=1

LDX #I0CB+37

SCaLL . PUTRC

BUFOUT =" *

IF STATUS(2) NE 0 THEN DO
STATUS(1)=STATUS(2)
INDEX1=99
RETURN

END

END
CONT1:

END

INDEX1=0

RETURN

END

HEXIN: PROC
PACK2=NOWVAL
DO INDEX1=1 TO 9
NOWVAL =NOWVAL+PACK2
END
DUMMY = PACK1 - > DUMMY
LDA A DUMMY
SCALL . NUMD
BCS NO
STA A NUM1
NOWVAL=NOWVAL + NUM1
PACK1=PACK1+1
NUMe=NUM-1
RETURN
NO: NOGOC=1
RETURN
END

w4

LR X2
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D010 RECORD: PROC OPTIONS(MAIN)

0020 3 NAM RECORD

0030 DCL 1 IOCB,

0040 2 STATUS BINC(C1l),
0050 2 MODL BINC1),
0060 2 BUFFP BINC2),
0870 2 BUFFS BINC(2),
ooaso 2 BUFFE BINCC2),
00so 2 TYPE CHAR(2) INIT('DK"),
0100 2 UNIT CHARC1),
0110 2 NAME CHAR(S8),
0120 2 SUF CHAR(C2),
0130 2 DUMD BINC2),
014%0 2 FORMAT BIN(C1l),
0150 2 DuMl BINC3),
0160 2 DuM2 BINC2),
0170 2 ALLOC BINC2),
s180 2 SECTS BIN(2),
0150 2 SECTE BIN(2),
0200 2 SECTP BINC2)

0210 DCL 1 BUFFD(C100D),

0220 2 BUFF1(256) BINC(C1)
0230 DCL CNTL BINC1)

0240 DCL IRQST LABEL INITCINDATA)
0250 DCL SECTOR BIN(128)

0260 DCL BUFFER CHAR(4D)

0270 DCL BUFEND CHAR(C1) INIT($D)
0280 DCL. 1 OUT.

0250 2 PRT1 CHAR(22) INITC(° TRANSITIONS DETECTED: *),
0300 2 PRT2 CHAR(5),

g310 2 PRT3 CHAR(1) INIT(304%)
0320 DCL 1 BACK,

D330 2 PRTY CHAR(C1) INITC(z08),
0340 2 PRT5 CHAR(1) INIT(308),
0350 2 PRTE CHAR(C1) INIT(308),
0360 2 PRT7 CHAR(CL1l) INIT(308),
0370 2 PRT8 CHAR(1) INIT(308),
0380 2 PRT9 CHAR(SE),

0390 2 PRTO CHAR(C1) INIT(z304%)
o400 DCL INPUT CHARC1)

0410 DCL PACK1 BINCZ)D
o420 DCL PACK?2 BINC2)
o430 DCL INDEX1 BIN(1)

D40 DCL NuUM "BINC1)
0450 DCL. NUM1 SIGNED BINC1)
0460 DCL ONE CHAR(C1)

o470 DCL PAST(7)> BINC1)
o480 DCL NOW(7)> BINC1)
0490 DCL SENSE(7) SIGNED BIN(C1)
0500 DCL POINT3I BINC2)
0510 DCL TRANS BINC2)

0520 DCL DIFF SIGNED BINC(C1)D
6530 DCL XX SIGNED BIN(C1)
0S40 DCL VYY SIGNED BIN(C1)
0550 DCL Z2 SIGNED BINC1)

0560 DCL POINT BINC2)
0570 DCL POINTO BIN(Z2)
06580 DCL POINT1 BINC
0590 DCL POINT2 BIN
0600 DCL COUNT2 BIN
0610 DCL LATCHI BIN
0620 DCL LATCHZ2 BIN
0630 DCL CNTL3 BIN
0640 DCL CNTLZ2 BIN
0650 DCL CNTL1 BIN
0660 DCL TERMCT BIN
0670 DCL TERMTR BIN
0680 DCL PIAl1AD BIN
0690 DCiL. PIAl1AC BIN
0700 DCL PInlBD BIN
0710 DCL PIAL1BC BIN
0720 DCL PIAZAD BIN
0730 DCL PIA2nC BIN
0740 DCL PIAZ2BD HIN
0750 DCL PIAZ2BC BIN
0760 DCL PIA3AD BIN
0770 DCL PIA3AC BIN
0780 DCL PIA3BD BIN
0790 DCL PIA3BC BIN
0800 DCL PIAYAD
0810 DCL PIAWAC
gL20 DCL PIauBD
0830 DCL PIauBC

DEF sEO03C
DEF $EO3E
DEF gZE0D3C
DEF 3EO038
DEF %ED3S
DEF gEO038
DEF gFCF%
DEF gFCFS
DEF $ED010
DEF g3ED11
DEF gED12
DEF #E013
DEF gEQ020
DEF gE021
DEF gED22
DEF sED023
DEF %FEOD30D
DEF sE031
DEF sEO032
DEF $E033
DEF g3LE03%
DEF =2E035
DEF 3E036
DEF 3E037

OANTNONPNINLVEONONTNINIVNINLNTNPVNONTNINONTNINN NP
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omlwm
o
2Z22

0840 % LDX CBUFPg

0850 3 STX PACK21

0860 PACK2=ADDR{URNIT)

0870 £ LDX s$PACK21

0880 % SCALL . PFNAM

8230 3 STA B STATUS

bsoo IF STATUS GT 1 THEN DO
0910 STATUS=7

0820 GO TO ERR

03830 END
090 PIA1AD=0
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PIA1BD=0D
PIA2AD=0
PIAZ2BD=0
PIA3AD=0
PIA3BD=0
PIAYAD=0
PIA4BD«UO
PIAl1AC=%
PIA1BC=%

PTA2AC=%

PIA%4BC=4%

TERMCT=203

TERMCT=349

LDX IRQST

STX IRQsUV

MODE=2

BUFFS=ADDR(BUFF0)

BUFFE=3S3+BUFFS

FORMAT=3

ALLOC=100D0

SECTS=ADDR(SECTOR)

SECTE=127+SECTS

LDX s=I0CB

SCAalLL . RESRV

IF 8TATUS NE 0O THEN GO TO ERR

LDX 8I0CB

SCALL . OPEN

IF STATUS NE 0 THEN GO TO ERR

POINT1=ADDR(BUFFO)

POINT2=«POINT1+25599

CNTL=0

TRANS= 0

POINTO=ADDR(PAST)

DO INDEX1=1 TO 7
POINTD->NUM=(D
POINTOPOINTO+1

END

SENSE(1)=3

SENSE(2

SENSGE(3

SENSE(Y

SENSE(S

SENSE(H

SENSE(7)=25

BUFFER® "ONCE RECORDING HAS BEGUN, ”

CALL DSPLY<, . ADDR(BUFFER)>

BUFFER="ENTER ESC TO TERMINATLE"

CALL DSPLY<, , ADDR(BUFFER)>

BUFFER=*"RETURN TO SYTART RECORDING”

CALL DSPLY<, , ADDR(BUFFER)J>

Ltba B 200H

LDX INPUT

SCcaALL . KEYIN

LATCH3=60282

LATCH2=65535

CNTL3*383

CNTL2=301

CNTL1=300

PACK1=COUNT2

PRT2=«0

LDX xOUT

SCaLL . DSPLZ

PIAlAC=12

)=3
)=3
=3
=3
3=3

LOOP:

3
3
+

LDA A TERMCT

ASR A

BCC NOIN

PIAlLAC=}4

BUFFER=" *

CALL DSPLY<, , ADDR(BUFFER)>
GO TO OUTREG

NOIN: IF CNTL NE O THEN GO TO OUTNOWVW

GO TO LOOP

OUTNOW: PIAl1AC=Y4

BUFFER=" ~
CALL DSPLY<, , ADDR{BUFFER)>
BUFFER="MEMORY LIMIT REACHED"
CALL DSPLY<, , ADDR(BUFFER)>
OUTREQ: BUFFER='RECORDING TERMINATED-®
CALL DSPLY<, ., ADDR(BUFFER)>
POINTO=BUFFS
DO WHILE BUFFE LE POINT1
3 LDX sIOoCE
3 SCALL . PUTRC
IF STATUS NE 0 THEN LO TO ERR
BUFFS=BUFFS5+100
BUFFE=BUFFS+99
END
IF BUFFE NE POINT1 THEN DO
BUFFE=POINT1
3 LOX nIOCB
3 SCALL .PUTRC
IF STATUS NE 0 THEN GO TO ERR
END
3 LDX sIoCB
% SCALL . CLOSE
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1950 IF STATUS NE 0 THEN GO TO ERR
1960 $ LDX sIOCB

1870 % SCALL . RELES

1880 IF STATUS NE 0 THEN GO TO ERR
19S50 CALL MDOS

2000 ERR:

2010 3 CLRB

2020 $ LDX #IOCEB .

2030 3 SCALL . MDERR

2040 CALL MDOS

2050 END

2060 INDATA: PROC

2070 POINT=ADDR(NOW)
2080 POINTO=ADDR(PAST)
2090 POINT3=ADDR(SENSE)
2100 NOW(1)=PIAlAD

2110 NOW(2)=PIAl1BD

2120 NOW(3)=PIA2AD

2130 NOW(%4)=PIAZ20D

21%0 NOW(5)=PIA3AD

2150 NOW(6)=PIA3CD

2160 NOW(73=PIA4AD

2170 DO INDEX1=1 TO 7

2180 XX=POINT-~>NUM1

2190 YY=POINTO->NUMY

2200 Z2Z2=POINT3->NUM1

2210 DIFF=0

2220 IF XX GT YY THEN DIFF~XX-VYY
2230 IF YY OT XX THEN DIFF=YY-XX
22%0 IF DIFF GE 22 THEN GO TO CHANGE
2250 POINT=POINT+1

2260 POINTO=POINTO+1

2270 POINT3I*POINT3I+1

2280 END

2290 % RTIX

2300 CHANGE: POINT=ADDR(NOW)

2310 POINTO=ADDR(PAST)

2320 POINT1->PACK1=65535-COUNT2
2330 POINT1=POINT1+2

2340 DO INDEX1=1l TO 7

2350 POINTO~->NUM=POINT->NUM
2360 POINT1~>NUM=POINT->NUM
2370 POINT=POINT+1

2380 POINTO=POINTO+1

2380 POINT1=POINT1+1

2400 END

2410 TRANG=TRANS+1

2420 PRTIS=TRANS

2430 % LDX #BACK

2440 $ SCALL . DSPLZ

2450 PACK1=POINT2-POINT1

2460 IF PACK1 LT 9 THEN CNTL=21
2470 % RTI

280 END
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* . *
* PROGRAM TO VERIFY CORRECT OPERATION OF 2920S ON POWERUP :
%

x*x*x**xxxx*mxx*xx*xxxx*****xx*x*xm**x*xx**x**xx***x*x***xx****xx
D010 POWER: PROC OPTIONS(MAIN)

0020 x NAM POWER

0030 DCL IRGST LABEL INITCINDATA)
o040 DCL ouT CHAR(45)

D0Ss50 DCL OUTEND CHARC1) INIT?+D)
0060 DCL INDEX1 BINC1)

0070 DCL NUM1 SIGNED BINC: &

0080 DCL ONE21 CHAR(S5)

0030 DCL NOW(7) BINC1)

pioo0 DCL POINT BINC2)

0110 DCL POINT1 BINC2)

0120 DCL TERMCT BIN(1) DEF s$FCFY%
0130 DCL TERMTR BIN(1) DEF #FCFS
o140 DCL PIAlAD BIN(1) DEF gED1O
D150 DCL PIAIAC BINC1) DEF 3E011
0160 DCL PIA1IBD BINC1) DEF #$E012
0170 DCL PYIA1BC BIN(1) DEF $E013
0i8¢0 DCL PIn2aAD BINC1) DEF s3E020
g180 DCL PIA2AC BIN(1) DEF gEU21
D200 DCL PIA2BD BIN(1) DEF gE022
0210 PCL PInA2BC BIN(1) DEF g$ED023
D220 DCL PIA3AD BIN(1) DEF $ED30
0230 DCL PIA3AC BIN(1) DEF $ED31
0240 DCL PIA3ZBD BIN(1) DEF $ED32
0250 DCL PIA3BC BIN(1) DEF g$EO033
0260 DCL PIA4AD BINC1) DEF 3EO03Y4
0270 DCL PIAYAC BIN(1) DEF g$EO035
0280 DCL PIAYWBD BIN(1) DEF %EO036
0290 DCL PIA4BC BINC1) DEF £E037

0300 PIAl1AD=Q

0310 PIA18BD=0

0320 PIA2nD=D

0330 PIA2BD=0

03%D PIA3AD=0

B350 PIA3BD~D

0360 PIA4AD=D

0370 PIAYRBD=0

D380 PInincsy

0390 PIA1BCe='%

o400 PIA2AC=4

0410 PIAZ2BC=%

0420 PIA3AC=4

o430 PIA3BCe=t

0440 PIAYAC=Y

045D PIA4YBC=4

C460 TERMCT=103
b®70 TERMCT=349
o480 ouT=" -°

O4%SD 3 LDX IRQST
0500 3 STX IRQ1UV
0510 PIA1NAC=12
0520 LOOP:

D530 & LDA A TERMCT
05%0 3 ASR A

0550 3 BCC LOOP

0560 PIA1AC=Y4%

0570 CALL MDOS
0580 END

0530 INDATA: PROC
D600 POINT=ADDR(NOW)
0610 NOW(1)=PIAL1NAD
0620 NOW(2)=PIALIBD
0630 NOW(3)=PIAZ2AD
0640 NOW(4Y)=PIAZ2BD
0650 NOW(5)=PIA3AD
0660 NOW(GE)=PIA3BD
0670 NOW(7)=PIA%AD
0620 POINT1=ADDR(OUT)
06980 DO INDEX1=1 TO 7

0700 POINT1->ONE1=POINT->NUML
D710 POINT1=POINT1+5
0720 POINT=POINT+21

0730 END

0740 CALL DSPLY<, , ADDR(OUT)>
0750 3 RTI

D760 END
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0010 AS2920: PROC OPTIONS(MAIND /% MAINLINE ROUTINE
0020 = NAM AS2920D /%

0030 DECLARE /x

o040
0050
0060
6070
ooan
00380
pico
Dlio
0120
0130
0140
0150
0160
0170
0180
01S0
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0380
0400
o410
o420
o430
D440
o450
o460
o470
o480
o490
0500
0510
0520
0530
0540
0550
0560
0570
058D
0590
0600
0610
0620
0630
064D
D650
0660
0670
[ X=%:30)
069D
0700
D710
0720
0730
0740
0750
0760
0770
0780
0790
gapo
0810
0820
pa3o
0EYD
0850
0860
0870
osago
0890
0900
0810
0920
D930
0940

DECLARE
1

DECLARE

DCL
DCL
DCL
DCL
DCL
bCl
DCL
DCL
DCL

DECLARE

DECLARE
1

DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL

DECLARE

DECLARE

DECLARE

1

1

1

1

1

1

IOCB(3), /% FILE I/0 CONTROL BLOCKS
2 STATUS BIN (1), /*x RETURN CODE
2 MODE BIN €1). /% INPUT., OUTPUT,OR UPDATE
2 BUFFP BIN (2), /% RECORD BUFFER POINTER
2 BUFFS BIN (2). /% RECORD BUFFER START ADDR
2 BUFFE BIN (2), /% RECORD BUFFER END ADDRESS
2 TYPE CHARC(C2), /% DEVICE TYPE
2 FILE, /* FILE NAME STRUCTURE
3 UNIT CHAR(C1), /% LOGICAL UNIT NUMBER
3 NAME CHARC2), /% FILE NAME
3 SUF CHAR(2), /% FILE SUFFIX
2 DUMD BIN (2), /% RESERVED
2 FORMAT BIN (1), /% BIN, ASCITI, OR ASCII CONV
2 DUM1 BIN (5), /* RESERVED
2 ALLOC BIN (2), /% ALLOCATION INCREMENT
2 SECTS BIN (2). /% SECTOR BUFFER START ADDR
2 SECTE BIN (2), /% SECTOR DUFFER END ADDRESS
2 SECTP BIN (2) /* SECTOR BUFFER POINTER
Vg 3
TFILE, /% TEMP FILE NAME STRUCTURE
2 TUNIT CHARC1), /% LOGICAL UNIT NUMBER
2 TNAME CHAR(B8), /% FILE NAME
2 TSUF CHARC(C2) /% FILE SUFFIX
/%
CNTL, /% ASSEMBLY CONTROL
2 PRINT BIN (1), /% LISTING PRINT CONTROL
2 OBJECT BIN (1), /% OBJLCT FILE CONTROL
2 PAGEL BIN (1), /% PAGE LENGTH CONTROL
2 INST BIN (1) INITCO), /* EPROM INSTRUCTION COUNTER
2 LINE BIN (1), /% LISTING LINE COUNTER
2 PAGE BIN (1) INITC1), /% PAGE COUNTER
2 ERROR BIN (1) INITCG). /% ERROR COUNT
2 RTRN BIN (1), /% RETURN cODC
2 KIND BIN (1), /% TYPE OF TOKEN DECODED
2 RTRNT BIN (1), /% TOKEN PARSER RETURN CODE
2 VAR BIN (1) INITCD). /% SYMBOL TAKLE POINTER
2 STATE BIN (1), /% STATE INDICATOR
2 ENDYET BIN (1) /% SCAN REMAINDER OF RECORD?
BUFFER CHAR(78) /* RECORD I/0 BUFFER
BUFEND CHAR(C1) INIT(zD)> /% CR MARKER
BUFEOT CHAR(1) INTIT(%4) /% EOT CHARACTER
SECT1 CHAR(128) /% INPUT FILE SECTOR BUFFER
SECT2 CHAR(256) /% LISTING FILE SECTOR BUFFER
SECTI CHAR(128) /% OBJECT FILE SCCTOR BUFFER
PARSE1 BIN (2) /% MDOS PARSER BUFFER
PARSE2 BIN (2) /% MDOS PARSER RBUFFER
EPROMP BIN (2) /* EPROM POINTER
7/ x
EPROM(192), /% EPROM MEMORY SPACE
2 SEGE1 BINC1), /% MOST SIGNIFICANT BYTE
2 SEGE2 BINC1), /% MIDDLE BYTE
2 SEGE3 BIN(C1) /* LEAST SIGNIFICANT BYTE
7%
BUFFO, /% ORBJECT FILE I/0 STRUCTURE
2 SEG1 BINC1), /% MOST SIGNIFICANT BUTE
2 SEG2 BINC1), /* MIDDLE BYTE
2 SC63 BINC1)D /% LEAST SIGNIFICANT BYTE
RAMNAM (%0) CHARCS) INITC" ) /% RAM SYMBOL TARBLE
ENDRAM CHARC1) INIT(3D)
INDEX1 BIN (1) /* GENERAL UTILITY COUNTER
INDEX2 BIN (1) /% GENLCRAL UTILITY COUNTLCR
INDEX3 BIN (1) /% GENERAL UTILITY COUNTER
NUM BIN (1> /% GENERAL UTILITY BINC1)D
BUFF(80) CHARC1) /% GENERAL CHAR DY 1 BUFFER
BUFFI CHAR(B80) /% INPUT FILE BUFFER
BUFFL CHAR(132) /% LISTING FILE I/0 BUFFER
LAST BIN (2) /* GENERAL UTILITY POINTER
ONE CHARC1) /% GENCRAL UTILITY CHAR
/%
FOUR, /* FOUR CHAR STRUCTURE
2 FOURX (4) CHAR(1)> /* ADDRESSABLE BY ONE
/%
HEADER, /% ASSEMBLER TITLES
2 crTo CHARC{1> INIT(g3C), /% FORM FECD CHARACTER
2 HEAD1, /*x TOP OF PAGE MESSAGE
3 cPT1 CHAR(31) INIT( MDOS 2820 ASSEMBLER VER 1.00°),
3 CPT20 CHARC12) INITC® °),
3 CPT21 CHAR(S8),
3 CPT22 CHARC1) INITC . ),
3 CPT23 CHAR(2),
3 CPT2% CHARC1Y INITC: "),
3 CPT25 CHARC1),
3 CPT26 CHAR(C16) INITC" '),
3 cPT3 CHAR(S) INITC PAGE "),
3 CPTY CHAR(2),
3 cPTS CHARC1) INIT(3D)>
/%
HEADZ, /% SECOND LINE OF HEADER
2 CPT1% CHAR(27) INIT( LOC OBJECT SOURCE STATEMENT ),
2 CPT15 CHARC1) INIT(3D).
2 CPTi6 CHAR(C1) INIT(3D)

0950 DECLARE

/%

x/
x/

x/



0960
0970
0880
0890
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
lie60
1170
l1i1a0
1190
1200
1210
1220
1230
1240
1250
1260
1270
l28¢0
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1380
1400
1410
1420
1430
1440
1450
1460
w70
1480
1490
1500
1510
1520
1530
15%0
1550
1560
1570
1580
1590
1600
1610
1620
1630
16%0
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
i84D
1850
1860
1870
1880
1890
1900
1910
1820
18930
13840
1950

ouT,

1 /% GENERAL OUTPUT LINE SHELL
2 Loc CHAR(3)., /% MEMORY LOCATION
2 CPT12 CHARC1) INITC® '), 7%
2 INSTL CHAR(6) INITC® "), /% INSTRUCTION (HEX) SPACE
2 CPT13 CHAR(C1) INIT(C" "), /%
2 ININST CHAR(80) /% SUPPLIED SOURCE STATEMENT
DCL THREE BIN(3) /% UTILITY 3 BYTE VARIABLE
DECLARE /%
1 MESSGE, /% GENERAL MESSAGE STRUCTURE
2 PO CHAR(%0), /%X MESS 7 PART
2 Pi1 CHARC1) INITC%D) /% LINE ,EED/CR
DECLARE /%
1 TOTALS, /% END OD ASSEM-TOTAL ERRORS
2 MESSO CHAR(14%) INITC"TOTAL ERRORS: ),
2 NUMPRT CHARC(3). /% NUMBER OF ERRORS
2 ENDPRT CHAR(C1) INIT(3D) /% CR
DCL MESS1 CHAR(4D0) INIT( "% ERROR: TOKEN OVER 8 CHAR')
DCL MESS2 CHAR(HD0) INIT(**%* ERROR: INVALID SYNTAX")
DCL MESS3 CHAR(40) INITC' %X ERROR: OUT AFTER DAR AS DEST')
DCL MESS4% CHARCH0Y INITC'* ERROR: OUT AFTER COND SUB®)
DCL MESSS5 CHAR(%0) INIT(C'"* ERROR: CVWT AFTER DAR AS DEST")
DCL MESS6 CHAR(%0) INIT( % ERROR: CVT AFTER CVT')
DCL MESS7 CHAR(4D) INIT( %X ERROR: CVT AFTER COND SURB')
DCL MESS8 CHAR(40) INIT(°X ERROR: CVT WITH DAR AS DEST')
DCL MESSS CHAR(4D) INIT(C X ERROR: CND USED WITH AND')
DCL MESS10 CHAR(C40) INIT(C’ % ERROR: CND USED WITH LIM")
DCL MESS11 CHAR(40) INITC'*x ERROR: CND USED WITH ABS")
DCL MESS12 CHAR(4%0) INIT('* ERROR: CND/SURB & DAR AS DEST')
DCL MESS13 CHAR(40) INIT(** ERROR: LIM WITH SHIFT NOT RO')
DCL MESS1% CHAR(Y0) INITC % ERROR: MORE THAN %0 VAR USED')
DCL MESS15 CHARC40) INITC'* ERROR: END-EQU NOT ALLOWED®)
DCL MESS16 CHAR(C40) INITC'% ERROR: INVALID VAR NAME®)
DCL DAROUT(2) BINC(C1)
DCL CONSUB(C2) BINC1)
DCL CVTX(2) BINC1)
DCL ANDX BIN(C1)
DCL LIMX BINC1)
DCL ABSX BINC1)
DCL SUBX BIN(1)
DECLARE /%
1 SCREEN, /%
2 CPT6 CHAR(30) INIT( MDOS 2920 ASSEMBLER VER 1.00°),
2 CcPT7 CHARC1) INITC3D),
2 CPT10 CHARC1)> INIT(3D),
2 CPT11 CHAR(C1) INITCsY%)
DECLARE /%
1 TOKENA, /% TOKEN STRUCTURE
2 TOKEN (8) CHARC(C1) /% ADDRESSABLE BY 1
DECLARE /%
1 TOP, /% 2% BIT INSTRUCTION STRUCT
2 ADFO BIT (1), /% I/0 CODE
2 ADK2 BIT (1), /% 1/0 CODE
2 ADK1 BIT (1), /% 1/0 CODE
2 ADKOD BIT (1), /%¥x I/0 CODE
2 a2 BIT (1), /% SOURCE FIELD OPERAND
2 B1 BIT (1), /% DESTINATION FIELD OPERAND
2 a1 BIT (1), /% SOURCE FIELD OPERAND
2 ADF1 BIT (1), /% 1/0 CODE
2 Ay BIT (1), /% SOURCE FIELD OPERAND
2 83 BIT (1), /% DESTINATION FIELD OPERAND
2 A3 BIT (1), /% SOURCE FIELD OPERAND
P 2 B2 BIT (1), /% DESTINATION FIELD OPERAND
2 Aap BIT (1), /% SOURCE FIELD OPERAND
2 BS5 BIT (1), /% DESTINATION FIELD OPERAND
2 as BIT (1), /% SOURCE FIECLD OPERAND
2 B4 BIT (1), /% DESTINATION FIELD OPERAND
2 s2 BIT (1), /% SHIFT CODE
2 s1 BIT (1), /% SHIFT CODE
2 sop BIT (1), /% SHIFT CODE
2 Bo BIT (1), /% DESTINATION FIELD OPERAND
2 L2 BIT (1), /% OP CODE
2 L1 BIT (1), /% OP CODI
2 Lo BIT (1), /% OP CODE
2 53 BIT (1) /% SHIFT CODE
DECLARE /%
a BITUPR, /% BYTE ADDRESSABLE BY BIT
2 BIT7 BIT (1), /% MS BIT
2 BIT6 BIT (1), /7
2 B1Ts BIT (1), /%
2 BITY BIT (1), zs
2 BIT3 BIT (1), /%
2 BIT2 BIT (1), /7%
2 BIT? BIT 1), /%
2 BITO BIT (1) /% LS BIT
DECLARE /%
1 BREAK, /% BY ONE CHAR ADDRESSABLE
2 CHARSG CHAR (1), /% MOST BIGNIFICANT CHAR
2 CHnARS CHAR (1), /%
2 CHaRy CHAR (1), /%
2 CHARS3 CHAR (1), /%
2 CHAR2 CHAR (1), /%
2 CHAR1 CHAR (1) /%
DCL OPCODE (87) CHARCY) /% TABLE OF OPCODES
INITC XOR™, "AND", "LIM", "ABS", "ABA", "SUB", "ADD", "LDA",
"IND®, *IN1", "IN2°, "IN3", "NOP", "EOP", "CVYTS"', "CNDS",
TOUTOD®, "OUT1", "OUT2", "OUT3", "OUTH", "OUTS", "OUTL", "OUT7",
TCVTO0®, TCVT1", *CVT2°, "CVYT3", "CVT4%", "CVT5E", "CVT6", "CVT7",
"CNDD", "CND1", "CND2", "CND3", *CND%", "CND5", "CND6", "CND7 ",
"RO1°, "RO2°, "RO3°, "RO4", "RO5°, "RO6", "RO7", "RD8", "R0S", "R10",
*R11°, *R12°, "R13°, "LD2°, "LO1", "ROD", "RO*, "R1°, "R2°, "R3", "R4",

x/
%/
X/
x/
x/
L ¥4
x/
*/
x/
x/
x/
*/
x/

x/
x/

*/
x/




1960
1870
1980
1890
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
21%0
2150
2160
2170
2180
2180
2200
2210
2220
2230
2240
2250
2260
2270
22810
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
24%4% 0
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
26%0
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
2900
23810
2820
2830
2340
2850

"R5","R6", "R7":,°R8", "R9", "L2", "L1", "KM1", "KM2", "KM3",
"KM%*, "KM5", "KMB", "TKM7", "KM8", "KPD", *KP1", "KP2", "KP3",
KP4, "KPS5", "KPE", "KP7', "DAR', "EQU", "END")

DCL CODE (87) BIN (1D /% OPCODE BIT STRINGS x/
INIT(CD,1,2,3,%.5,6,7,0,%,8,12,16,20,2%,28,1,5,9,13,17.21,25,
29,2,6.,10,1%,18,22,26,30,3,7,11,15,19,23,27.31,0,1,2.3,
“,5.6,7.8,9,10,11,12,13,1%,15,15,0,1,2,3,%,5.,6,7,8,13,1%,
63,62.61, 60,53, 58,57, 56, %8, 49, 50,51,52,53.54,55,40,0,0)
DCL CODET (87) BIN (1) /% OPCODE TYPES x/
INITC2,2,2,2,2,21,2,1,5.,5.,5.5,5,5,5,5,5,5,5,5,5,5,5,5,". ",
5,5,5,5,5,5,5,5,5,5,5,5, 5,85, %, %, %, %, %, %, %, %, %, %, ¢,
o Mo e L, 4, 3,3,3,3,.3,3,.3.3,5.3,
3.3,3,3.3,.3,2,6.,6)
DCL CBUFP BIN (2) /% MDOS COMMAND 1TLINE POINTER X/
DCL OFFSET BIN (2) /% OFFSET FOR IOCB x/
DCt INAME CHARC(CE) /% DEFAULT FILE NAME HOLD x/
DCL IUNIT CHARC(C1) /7% DEFAULT FILE UNIT HOLD */
DECODE: /%X DECODE COMMAND INPUT * /
DAROUT(1)d)=0
DAROCUT(2)=0D
CONSUB(1)=0
CONSUB(2)=0
CVTX(1)=0D
CVTX(2)=1p
ANDX=0
LIMX=>0
PRINT~0 /7% SET DEFAULTS: NO LISTING */
ABSX=D
SUBXeD
OBJECT=0 /% NO OBJECT CODE % /
PAGEL=*GE2 /% PAGELENGTH = 66 LINES X/
TUNIT="D" /% INPUT FILE DEFAULT UNIT 0 */
TSUF="SAa" /% INPUT FILE SUFFIX *Sa° x/
3 LDX CBUFPs3 /% LOAD MDOS POINTER * /
g STX CBUFP /% SAVE FOR MPL x/
LAST=CBUFP /% POINT TO CURRENT MDOS END =%/
LOOP: IF LAST->ONE EQ@ BUFEND THEN GO TO CONTO
LAST=LAST+1 /% INCREMENT END OF LINE CNTR X/
GO TO LOOP /7% AND REPEAT CHECK x/
CONTO: PARSE1=CBUFP /% POINT TO START OF COMMAND */
PARSE2=ADDR(TFILE) /% SET UP FILE NAME CNTL BLK x/
3 LDX #PARSEL1 /% LOAD X WITH ADDR OF CNTL B %/
g SCALL . PFNAM /*% PARSE OUT NAME X/
$ STh B INDEXZ2 /% STORE RETURN CODL x/
IF INDEX2 LE 1 THEN GO TO CONT21 /% OF OK, CONTINUE */
INDEX1=7 /% ELSE: SET ERROR STATE */
GO TO ERR1 /% AND MOP UP-END x /
CONT1: FILE(C1)=TFILE /¥ MOVE TEMP STRUCT TO 1o0cCQk L ¥4
CPT21=TNAME /% MOVE INPUT NAME TO PAGE HDRx/
CPT23=TSUF /% MOVE INPUT NAME TO PAGE HDRXx/
CPT25=TUNIT /% MOVE INPUT UNIT TO PAGE HDR%/
INAME=TNAME /% SAVE DEFAULT FILE NAME %/
TUNIT=TUNIT /% SAVLE DEFAULT UNIT NUMBER %/
PARSEl1=*PARSE1+21 /% MOVE POINTER TO NEXT CHAR */
TYPE(1)="DK" /% DEVICE TYPE DISK x/
TYPE(2)="DK" /k * /
TYPE(3)="DK"~ /X x/
MODE(1)=1 /% INPUT FILE: OLD FILE INPUT %/
MODE(2)=2 /% LISTING FILE: NEW FILE QUTPUx/
MODE(3)=2 /% OBJECT FILE: NEW FILE QUTPUT®/
BUFFS(1)=ADDR(BUFFI) /% POINT TO START OF RECORD X/
BUFFS(2)*ADDR{BUFFL) /7% I/0 BUFFERS */
BUFFS(3)=ADDR(EPROM) /¥ x/
EPROMP=ADDR(EPROM) /% SAVE START ADDRESS OF EPROMX/
BUFFE(1)=BUFFS(1)+79 /% POINT TO END OF RECORD x/
BUFFE(2)=BUFFS(2)+131 /% I/0 BUFFERS */
BUFFE(3)=BUFFS(3)+71 /% x/
FORMAT(1)=5 /% ASCII FILES x/
FORMAT(2)=5 /% x/
FORMAT(3)=3 /% */
SECTS(1)ADDR(SECT1) /% POINT TO START OF SECTOR * /
SECTS(2)«ADDR(SECT2) /% I/0 BUFFERS */
SECTS(3)=ADDR(SECT3) /% %/
SECTE(1)«SECTS(1)Y+127 /7% POINT TO END OF SECTOR x/
SECTE(2)=*5ECTS(2)+255 /7% I/0 BUFFERS */
SECTE(3)=5ECTS(3)+127 /x x /
ALLOC(1)=0 /% NO NEW SPACE REQUIRED %/
ALLOC(2)=100 /% 100 SECTORS FOR LISTING */
ALLOC(3)>+=10 /% 10 SECTORS FOR OBJECT CODE */
£ LDX 3#IO0CB /% LOAD I0CB ADDRESS FOR SCALLX/
3 SCALL . RESRV /% RESERVE PISIKK : INPUT FILE x/
IF STATUS(1) NE 0 THEN DO /% IF ERROR IN RESERVING, SUT %/
INDEX1I=STATUS(1) /% ERROR CODE AND GO TO ERROR %/
GO TO ERR1 /% ROUTINE x/
END /% x/
4 LDX 3#I0CCB /7% POINT TO INPUT TIOCB x/
% SCALL . OPEN /% DPEN INPUT FILE */
IF STATUS{1) NE 0 THEN DO /% IF ERROR OPENING, SET ERRORX/
INDEX1=STATUS(1l) /7% CODE AND GO TO ERROR x/
GO TO ERRZ2 /% ROUTINE x/
END /% % /
LOOP1: DO WHILE PARSEl1 LT LAST /% SCAN OPTIONS IN COMMAND LIN*/
IF PARSEl1->0ONE EQ ° * THEN DO /7% IF A BLANK, PASS DVER x/
PARSE1="PARSE1+1 /% INCREMENT POINTER * /
GO TO LOOP1 /% AND REPEAT SCAN X/
END /% */
IF PARSEl1l~-> ONE EQ "0° THEN DO /7% IF OPTION IS OBJECT FILE x/
INDEX3=3 /% PROC INDICATE OBJECT FILE%/
OFFSET=T7T4% /7% SET I0CB OFFSET *x/
TSUF="LX" /7% SET DEFAULT FILE TYPE * /

~-96—




2960
2970
2980
2990
3000
3010
3020
3030
3040
3050
3060
3070
3080
3080
3100
3110
3120
3130
31%0
3150
3160
3170
3180
3190
3200
3210
3220
3230
3240
3250
3260
3270
3280
3290
3300
3310
3320
3330
330
3350
3360
3370
3380
33980
3400
3410
3420
3430
344 g
3450
360
470
3480
34950
3500
3510
3520
3530
3540
3550
3560
3570
35L0
3590
3600
3610
3620
3630
3640
3650
3660
3670
3680
3690
3700
3710
3720
3730
3740
3750
3760
3770
3780
3790
3800
3810
3820
3830
a0
3850
3860
3870
isg80
38380
39300
3910
3920
3930
3940
3950

caALL OPTION GIVING<OBJECT. .,>
GO TO (LOOP1l, ERR,ERR7),RTRN

END

IF PARSELYI->
INDEX3=2
OFFSET=37
TSUF="AL"
CALL OPTION GIVING<PRINT, ,>»

ONE EQ "L" THEN DO

GO TO (LOOP1,ERR,ERR7), RTRN
END
GO TO ERR
END

GO TO CONT2
ERR: BUFFERs= "%xx INVALID OPTIONS
cnLL DSPLY<, . ADDR(BUFFER)>
INDEX1+0
ERR7:
S LDX sIOCB+7%
$ SCALL . CLOSE
3 LDX 2%I0OCB+7%
% SCALL . RELES
ERRS:
LDX sI0CB+37
SCaLL . CLOSE
LDX 8IOCB+37
SCALL . RELES
RR3:
LDX #I0CB
SCaLL . CLOSE
RR2:
LDX sIOCB
SCALL . RELES
RR1: STATUS(1)=INDEX1

CLRB
LDX aI0CB
ScalLl . MDERR
caLl MDOS
CONTZ2:
$ LDX #SCREEN
$ SCall .DSPLZ
SEG1=340
SEG2=300
SEG3=2EF
DO INDEX1=1 TO 182
EPROM(INDEX1)=BUFFO
END
CALL TOPPG
IF RTRN NE 0 THEN GO TO ERR7Y
Loopr2:
SEG1l=34%0
SEG2=1300
SEG3=3EF
ENDYET=0
STATE=1
RTRNT =23
PARSEL=ADDRCTOP)
PARSEL->NUM=SEGL
PARSE1=PARSEL1+1
PARSEL1->NUM=SEG2
PARSE1=PARSEl1+1
PARSEL->NUM=SEG3
DAROUT(2)=DAROUT(1)
DARCUT(1)5+<0
CONSUB(2)=CONSUB(1)
CONSUR(1)>=0
CVTX(2)=CVTX(1)
CVTX(1)=0
ANDX=10
LIMX=0
LDOX sIoCH
SCnalLL . GETRC
ABSX=0
SUBX=0

HEH MEpameasmsassy

HH

IF STATUS(1) EG@ D THEN GO TO CONT3
IF STATUS(1) EQ 9 THEN GO TO EOF

INDEX1=STATUS(1)

BUFFER="ERROR IN READING INPUT FILE"

CALL DSPLY<¢, ,

GO TO ERR7
CONT3:

PARSE1=ADDR(BUFFI)

ININST=BUINFI

IF PARSEl->0ONE EQ °*x°

NUM=PARSEl - > NUM

ADDR(BUFFER)>

IF NUM GE 48 AND NUM LE 57 THEN DO

LOOP3: PARSE1=PARSE1+1
ONE=PARSEl - > ONE
IF ONE EQ * °

GO TO LoOPY
END
GO TO LOOP3
CONTS5: PARSE1=PARSE1+1
LooP3: CALL PARSE

IF OBJECT NE 1 THEN GO TO ERRS

IF PRINT NE 1 THEN GO TO ERRSJ

IF STATUS(1) EQ D THEN CALL MDOS

THEN GO TO CONTS
IF ONE EQ BUFEND THEN GO TO EOR

THEN GO TO COMMND

/%
/%
/*
/%
/%
/%
/¥
/X
/X
/%
/%

PROCESS OPTIONS x /

CHECK RETURN CODE x/
END OBJECT FILE PROCESSING %/
LISTING FILE OPTION 7 x/
INDICATE PRINT FILE x/
SET IOCBR OFFSET x/
SET DEFAULT FILE TYPE x/
PROCLCSS OPTIONS x/
CHECK RETURN CODE /

END PRINT FILE PROCESSGING -/
IF NOT O.L,CR,OR ° "~ERROx %/
END WHILE X/
IF DOROPPED THROUGH WHILE-OINXx/
SET MESSAGE FOR OPTIONS NOTx/
UNDERSTOOD AND DISPLAY */
SET MSC NUMBER FOR MDERR */

IF OBJECT FILE NOT OPENED x/
POINT TO OBJECT JocCcB x/
AND CLOSE FILE x/
POINT 7O OBJECT IoCB x/
RELEASE FILE x/
IF NO PRINT FILE - BYPASS X/

ELSE : POINT TO PRINT I0CHB %/
CLOSE PRINT FILE x/
POINT 70 PRINT 10CB */
RELEASE FILE x/
ENTRY TO CLOSE INPUT FILE x /
POINT TO INPUT FILE IOCB x/

AND CLOSE FILF x/
ENTRY POINT TO RELES INPUT x/
POINT TO INPUT FILE IOCRH *x/

AND RELEASE x/
LOAD ERROR CODE x/
IF NO MDERR ERROR - S5TOP x/
CLENAR ACCB FOR MDERR */
POINT TO RETURN CODf X/
DISPLAY ERROR MESSAGE X/
AND STOP PROCESSING X/
CONTINUATION POINT */
LOAD X WITH START OF MESSAGX/
AND DISPLAY ON CONSOLE */
SET DEFAULT EPROM VALUES * /
x/
x/
x/
* /
x /
PRINT TOP PAGE HEADING x /
IF I/0 PROBLEM-MOPUPEEND */
*/
SET DEFAULT OBJECT CODE */
x/
*/
NOT END OF RECORD YET */
SET STARTING STATE x/
CLENAR RETURN CODE ¥/
POINT T0O TOP OF BIT STRUC 3

x /
SAVE DLEFAULT IN BIT STRUCT %/
INCREMENT POINTLER */
SAVE DEFAULT IN BIT STRUCT x/
INCREMENT POINTER x/
SAVE DEFAULT IN BIT STRUCT x*x/

POINT I0CB 7O INPUT FILE X/
AND GET NEXT INPUT RECORD */

IF NO PROBLEM - CONTINUE */
IF END OF FILE DETECTED- * /
IF NEITHER- OTHER ERROR */
DISPLAY MESSAGE x/

x/
AND GO TO MOP UP ROUTINE x/
CONTINUE x/

POINT TO START OF RECORD */

"MOVE SOURCE STATEMENT FOR Lx/

SAVE CHAR TO CHECK FOR LINEX/

IF FIRST CHAR A NUMERIC x/
CHECIK NEXT CHARACTER x/
GET NEXT CHARACTER x /
IF SPACE, END OF LINE NUMBEx/

IF CR FOUND, END OF RICORD %/
IF NEITHER, CONTFINULE TO LO X/
END OF LINE NUMBLR CHEICK */
IF NO LINE NUMBERS CONTINUEX/
POINT TO FIRST CHAR AFTER Lx/
PARSE OUT NEXT TOKEN */

GO TO (EOR,CALPRO, CALPRO, CALPRO, EORF, CALPRO, EORF ), RTRNT

CALPRO: CALL PROCES
IF STATE E@ 8 THEN GO TO EORF
IF ENDYET EQ@ 1 THEN GO TO EOR
IF ENDYET EQ 2 THEN 6O TO EORF

-97~

& 3
/%
/%
/%

PROCESS TOKEN x/
LOCIC ERROR, SKIP REMAINDERX/
IF CR AT END, EMD OF RECORDxX/
SKIP REST OF RECORD * /



3960
3870
3980
3990
400D
4010
4020
4030
4040
4050
4060
“070
4080
%0380
4100
%110
%120
+130
$1i%0
4150
%160
%170
4120
%190
4200
4210
4220
%230
4240
4250
4260
4270
4280
4290
4300
4310
%320
330
4340
350
4360
4370
+380
43930
400
4410
“420
w430
$440
450
4460
4470
4430
4490
4500
4510
4520
4530
4540
4550
4560
4570
%580
45930
4600
4610
4620
4630
4640
4650
4660
%670
%680
4680
4700
4710
4720
4730
%740
%750
4760
4770
4780
%790
4800
4810
4820
4830
4840
%850
4860
4870
4880
%890
4900
4810
4820
%930
4940
“950

COMMND:

GO TO LOOP3

/%

GET NEXT TOKEN

X/

IF PARSEl1->ONE E® BUFEND THEN GO TO EORC /X SCAN TO END OF CMx/

PARSEl1*PARSE1+1 /% MOVE POINTER TO NLEXT CHAR x/
GO TO COMMND /% REPEAT x /
EORC: LOC=" ° /% SET COMMAND PORTION TO BLANX/
INSTLe" ~* /% x/
RTRNT=D /% x/
GO TO CONTH /% MOVE TO PRINT TG OUTPUT %/
EORF: IF PARSE1->ONE EQ BUFEND THEN GO TO EOR
PARSE1sPARSEL1+1 /% SKIP OVER COMMNT AT END OF %/
GO 70O EORF /% RECORD- THEN END OF RECORD %/
EOR: /% END OF RECORD x /
PARSE2=ADDR(TOP) /% GET ADDRESS OF BIT STRUCT x/
NUM=PARSEZ2- > NUM /* GET MS EIGHT BITS OF STRUCT*/
3+ LDA A NUM /% HEX-ASCII OF MS NIBGBLE x/
% JUSR CNVERM /% x/
3 STA A CHARG /% STORE RESULT x /
$ LDA A NUM /% HEX-ASCII OF LS NIBBLE x /
%+ JUSR CNVERL /% x/
3 STA A CHARS /% STORE RESULT %/
PARSE2=PARSE2+1 /% POINT TO NEXT HEX IN BIT */
NUM=PARSE2~-3>NUM /% GET NEXT EIGHT BITS OF STRIxXx/
s LDA A NUM /* HEX-ASCII OF MS NIBBLE */
3 JSR CNVERM /% * /
+ STA A CHARY% /% STORE RESULT x/
$ LDA A NUM /% HEX~-ASCII OF LS NIBBLE %/
3 JSR CNVERL /% x/
4 STA A CHAR3 /% STORE RESULT */
PARSE2=PARSEZ2+1 /% GET NEXT EIGHT BITS OF STRI%/
NUM=PARSE2- 5 NUM /% */
3 LDA A NUM /% HEX-ASCII OF MS NIBULE x/
% JSR CNVERM /% x/
3 STA A CHAR2 /% STORE RESULT x/
3T LDA A NUM /% HEX-ASCII OF LS NIBBLE *x/
T JSR CNVEPRL /% * /
+ 5TA A CHAR1 /% STORE RESULT x/
INSTL=BREAK /% WRITE HEX-ASCII 0OBJECT x /
LOC=INST /% INSTRUCTION COUNT TO OUT * /
INST=INST+1 /% INCREMENT INSTRUCTION PTR %/
IF INST EQ 193 THEN DO
BUFFER="ASSEMBLY ABORTED"
CALL DSPLY<, ., ADDR(BUFFER)»
BUFFER="MORE THAN 192 INSTRUCTIONS®
CALL DSPLY<, . ADDR(BUFFER)>
GO TO EOF
END
PARSE2=ADDR(TOP) /% POINT TO TOP OF BIT STRUCT %/
BUFFO=PARSE2-3>BUFFOQ /% LOAD OVER BIT STRING */
EPROMP->BUFFO=BUFFO /% COPY 3 BYTES INTO EPROM x/
EPROMP=EPROMP+3 /x INCREMENT POINTER FOR NEXT %/
CONTH: LINE=LINE+1 /% INCREMENT LINE COUNTER x /
ININST=BUFFI /% MOVE INPUTTED INSTRUCTION *k/
IF PRINT EG 1 THEN BO /% IF FILE LISTING REQUESTED x/
BUFFL=0UT /% MOVE OUT TO RECORD BUFFER %/
BUFFE(2)"BUFFS(2)+(PARSE1-ADDR(BUFFIY>)+11 /% SET END POINT *x/
CALL WRITE<,,> /% WRITE LINE */
IF RTRN NE 8 THEN GO TO ERR7 /% IF 1I/0 PROBLEM-MOPUP&END * /
END /% %/
IF PRINT EQ@ 2 THEN CALL DSPLY<, , ADDR(COUT)>
PAGER: /% IF END OF PAGE x/
IF LINE GT PAGEL THEN DO /% x /
CALL TOPPG /% WRITE PAGE HEADER */
IF RTRN NE 0 THEN GO TO ERR7 /% IF I/0 ERROR-MOPUP&BEND %/
END /% END OF PAGE BREAK * /
IF RTRNT GE 7 THEN DO /% IF ERROR IN ASSEMBLY x/
LINE=LINE+2 : /% INCREMENT LINE COUNTER x /
RTRNT= 0 /% CLEAR STATE x/
IF PRINT EQ@ 1 THEN DO /% IF FILE LISTING x/
BUFFL=MESSGE /* MOVE MESSAGE TO RECORD BUFF%/
BUFFE(2)=BUFFS(2)+4%1 /% SET END POINTER x/
CALL WRITE¢1l, ,» /% WRITE RECORD x/
IF RTRN NE 0 THEN GO 10 ERR7 /% IF I/0 PROBLEM-MOPUP&REND x/
END 7% x /
IF PRINT EQ@ 2 THEN CALL DSPLY<, . ADDR{(MESSGCE)>
IF LINE GT PAGEL THEN GO TO PAGER /% IF PAGE BREAK REQUIRED-GO %/
END /% END OF RTRNT GT 8 IF */
GO TO LOOP2 /% PICK UP NEXT INPUT RECORD x/
EOF: /% ALL RECORDS OF INPUT DONE %/
NUMPRT=ERROR /% SAVE TO CHAR NUMBER OF ERRS%x/
CALL DSPLY<, , ADDR(TOTALS)> /% DISPLAY NUMBER OF ERRS x /
IF PRINT EQ 1 THEN DO /% IF FILE LISTING x/
BUFFL=TOTALS /% MOVE ERRORS MESS TO BUFFL  x/
BUFFE(2)="BUFFS(2)+18 /% SET END OF MESSAGE POINTER %/
CALL WRITE<1,.> /% WRITE MESSAGE 70O FILE */
IF RTRN NE 0 THEN GO TO ERR7Y7 /x IF PROBLEMS, MOPUP&END * /
PARSE1=ADDR(RAMNAM)
BUFFE(2)*BUFFS(2)+81
DO INDEX1=1 TO %
BUFFL*PARSE1l->BUFFER
CALL WRITE<¢1l.,,>
IF RTRN NE O THEN GO TO ERRY
PARSEY1=PARSE1+80
END .
T LDX sIOCB+37 /%X POINT TO LISTING IOCB x/
3 SCALL . CLOSE /% CLOSE LISTING FILE x/
IF STATUS(2) NE 0 THEN DO /x IF I/0 PROBLEM-MOPUP&END x/
INDEX1=STATUS(2) /% SAVE ERROR cODC x /
PRINT=0 /% DON'T TRY CLOSING AGAIN x/
GO TO ERR7 /% AND GO TO MOPUP x/
END /% */
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4960
4970
%980
49590
5000
5010
5020
5030
5040
5050
5060
5070
5080
50980
5100
5110
5120
5130
5140
5150
5160
5170
5180
5190
5200
5210
5220
5230
5240
5250
5260
5270
5280
5290
5300
5310
5320
5330
5340
5350
5360
5370
53&0
5390
5400
5410
54%20
5430
5440
5450
5460
5470
5480
5490
5500
5510
5520
5530
5540
5550
5560
5570
5580
5590
5600
5610
5620
5630
564%D
5650
5660
5670
5680
5690
5700
5710
5720
5730
5740
5750
5760
5770
5780
5780
5800
5810
5820
5830
5840
5250
5860
5870
5880
5890
5900
5810
5820
5930
5940
5850

E 3
$

“# 8 LX)

S8

“# a8

HHEVARBBBBRBUE/HYE

CNVERL

IF PARSE1->ONE

LDX #I0CB+37
SCALL .RELES :
IF STATUS(2) NE D THEN DO
INDEX1=STATUS(2)
PRINT=D
GO TO ERR7Y
END

END
IF OBJECT EQ 1 THEN DO

DO INDEX1=1 TO 8
ChaLlL WRITE<D, ,>
IF RTRN NE D THEN GO TO ERR7
BUFFS(3)=BUFFS(3)+72
BUFFE(3)*BUFFS(3)+71

END

LOX #I0CB+7%

ScALL . CLOSE

IF STATUS(3) NE 0 THEN DO
INDEX1=STATUS(3)
OBJECT=0
GO TO ERR7

END

LDX 2I0QCB+7%

ScALL .RELES

IF STATUS(3) NE D THEN DO
INDEX1=STATUS(3)
OBJECT=D
GO TOC ERR7

END

END

LDX sIOCHB
SCALL
IF STATUS(1) NE 0O THEN DO

. CLOSE

INDEX1=STATUS(1)
GO TO ERR1

END

LDX sIOCB
sScAaLL
IF STATUS(1) NE 0 THEN DO

. RELES

INDEX1=STATUS(C1)
GO TO ERR21

END

CALL MDOS
END
$CNVERM AND

S0FOH
LSR
LSR
LSR
LSR
ADD
Dan
ADC
Dan
RTS
AND
ADD
Dan
ADC A #4%0H
Dan
RTS

PROC

2#90H

> DPOD>>D>>>

BYOH

BOFH
®90H

>>

EQ *
PARSE1=PARSE1+1
GO TO LEAD1

THEN DO

END
TOKENA=" ~
INDEX3=0
SCAN:
IF ONE EQ@ BUFEND THEN DO

ONE=PARSE1~>ONE

IF INDEX3 EQ@ D THEN DO
RTRNTu1
RETURN

END

RTRNT=2

ENDYET =1

GO TO SEARCH

END
IF ONE EQ -, °

THEN DO

IF INDEX3 EQ@ 0 THEN DO
RTRNT=5
RETURN

END

RTRNT =4

ENDYET=»2

GO TO SEARCH

END
IF ONE EQ ":°

THEN DO

RTRNT=3

PARSE1=PARSE1+1

IF INDEX3 EG 0 THEN DO
RTRNT=7
ERROR=ERROR+1
PO=MESS2

END

RETURN

END
IF ONE EQ *,°

OR ONE E@ "~ °
THEN DO
IF INDEX3 EG ©
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/% POINT TO LISTING I0CB X/
/% RELEASE FILE x/
/% IF I/0 PROBLEM-MOPUPEEND x /
/% SAVE ERROR CODE x /
/% DON'T TRY RELEASING AGAIN X/
/% GO TO MOP UP x/
/% x/
/% x /
/% IF FILE OBJUECT x /
/% WRITE OUT EPROM X/
/7% WRITE OUT RECORD x /
/% IF I/70 PROBLEM-MOPUPEEND x /
/% ADJUST POINTERS FOR NEXT x /
/% RECORD x /
/% CONTINUE DO x/
/% POINT TO OBJECT IOCRH */
/% CLOSE FILE x/
/% IF I/0 PROBLEM-MOPUP&END x /
/7% SAVE ERROR CODE * /
/7% DON'T TRY TO CLOSE AGAIN x /
/% GO TO MOPUP * /
/% x /
/% POINT TO OBJECT IO0OCB %X/
/% RELEASE FILE x /
/% IF PROBLEMS-~-MOPUP & END x/
/*% SAVE ERROCR CODE x /
/% DON'T TRY RELEASING AGAIN x /
/% GO TO MOP UP x /
/% x /
/% x/
/% POINT TO INPUT I0CSH x /
/% CLOSE INPUT FILE * /
/% IF XI/0 PROBLEM-MOPUP&END X/
/% SAVE ERROR CODE x /
/7% GO TO MOP uUP * /
/% %/
/7% POINT TO INPUT IOCB * /
/% AND RELEANSE INPUT FILE * /
/% IF I/0 PROBLEM-MOPUP&END x /
/% SAVE ERROR CODE x/
/% AND GO TO MOP UP x/
/% x/
/*% PASS CONTROL BACK TO MDOS x* /
/% END OF MAIN PROC x /
/% HEX-ASCII OF MS NIBRLE X/
/% SHIFT MS NIBBLE TO LS NIDBL*x/
/x % /
/% X/
/% x/
/% * /
/% x/
/* * /
/% */
/% RETURN TO MAINLINE *®/
/XHEX-ASCII OF LS NIBRLE x/
/* x/
/% %/
/¥ */
/% x/
/% RETURN TO MATINLIMNE *x/
/% TOKEN PARSER ROUTINE * /
/% REMOVE LEADING SPACES x* /
/7% IF A BLANK-IGNORE x/
/% INCREMENT POINTER x/
/% AND REPEAT SCAN %/
/x x/
/7% ASSIGN CURRENT TOKEN BLANK %/
/% ZERO CURRENT CHARACTER COUNX/
/7% SINGLE OUT CURRENT CHARCTER=%®/
/7% IF A CR x /
/% AND TOKEN LENGTH EQ O x /
/% SET RETURN CODE, CR NO TOKEN%®/
/% AND RETURN TO MAIN PROGRAM x/
/% * /
/7% OTHERWISE, SET RETURN CODLC %/
/% DON'T SEARCH RECORD ANY MORxX/
/% AND SEARCH FOR ogpPcoDLC x /
/% x/
/% IF A COMMEMT DELIMITER * /
/% AND ZERC LENGTH TOKEN X/
/% SET RTRNT CODE */
/% AND RETURN FOR NEXT RECORD =%/
P x/
/% OTHERWISE, SET RETURN CODE %/
/% PASS OVER REMAINDER OF RECOX/
/% AND LOOK FOR OPCODE x /
/% * /
/% IF LABEL DELIMITER x/
/7% NORMALLY., IGNORE LABEL x /
/% POINT TO NEXT CHAR FOR PARSx*/
/% IF ZERO LENLGTH, SYNTAX ERDROKx/
/% 2ERO LENCTH SYNTAX ERROR x* /
/7% INCREMENT ERROR COUNTER x /
/% SET MESSAGE x /
/% %/
/7% RETURN TO MAINLINE, NEXT TOKx%x/
/% * /
/7% IF NORMAL DELIMITER x/
/% THEN CHECK FOR Z2ERO LENGTH x/
/* 1IF S0. SYNTAX ERROR * /




5960
5970
5980
5990
6000
6010
6020
6030
6040
6050
6060
6070
6080
6090
6100
6110
6120
6130
6140
6150
6160
6170
6180
6190
6200
6210
6220
6230
6240
6250
6260
6270
6280
6290
6300
6310
6320
6330
6340
6350
6360
6370
6380
6390
6400
6410
6420
6430
6440
6450
6460
6470
6480
6490
6500
6510
6520
6530
6540
6550
6560
6570
6580
6590
6600
6610
6620
6630
6640
6650
6660
6670
6680
6690
6700
6710
6720
6730
6740
6750
6760
6770
6780
6790
6800
6810
6820
6830
6840
6850
6860
6870
6880
6890
69800
6910
6920
6930
6810
6950

THEN DO
RTRNT=7
ERROR=ERROR+1
PD~MESS2
RETURN
END
RTRNT=6
PARSE1=PARSE1+1
GO TO SEARCH
END

INDEX3I=INDEX3+1

IF INDEX3 GT 8 THEN DO
RTRNT=7
ERROR*ERROR+1
PD=MESS1
RETURN

END

TOKENC(INDEX3I)«=ONE

PARSE1=PARSE1+1

GO TO SCAN

SEARCMH:

IF INDEX3 LE % THEN DO
PARSEZ2=ADDR(TOKENA)
FOUR=PARSE2-5>FOUR
DO INDEX2=1 T0 87

IF OPCODE(INDEX2) EQ FOUR
THEN DO
KIND=CODET(INDEX2)
RETURN
END
END

END

PARSE2=ADDR(TOKENA)

KIND=0

NUM=PARSE2->NUM

IF NUM GE 65 AND NUM LE S0 THEN GO TO

ERROR=ERROR+1

PO=MESS16

RTRNT =7

RETURN

OK99:

IF VAR EQ O THEN DO
RAMNAMCL) = TOKENA
VAR=1
INDEX2=1
RETURN

END

ELSE DO
DO INDEX2=1 TO VAR

IF RAMNAM(INDEX2) EQ@ TOKENA THEN
END
IF VAR EQ %0 THEN DO
ERROR®ERROR+1
PO=MESS1Y%
RTRNT=7
RETURN
END
VAR=*VAR+1
INDEX2=INDEX2+1
PARGSE2=ADDR(RAMNAM)
PARSE2=(PARSE2+ (8%VAR) )-8
PARSE2->TOKENA=TOKENA
RETURN
END
END
WRITE: PROCWTYPE, .,>»
DCL WTYPE BIN(C1)
RTRN=0
IF WTYPE EQ 1

THEN DO
LDX #I0OCB+37
SCALL . PUTRC
IF STATUS(2) NE 0

THEN DO
BUFFER="LISTING FILE PROBLEM®
CALL DSPLY<, , ADDR(BUFFER)>
INDEX1=STATUS(2)
RTRN=1
END
RETURN

END

ELSE DO
LDX RIOCB+7TY%

SCALL . PUTRC
IF STATUS(3) NE 0
THEN DO
BUFFER="OBJUECT FILE PROBLEM"
CALL DSPLY<, , ADDR(BUFFER)>
INDEX1=STATUS(3)
RTRN=21
END
RETURN
END

LX)

“ &

END

OPTION: PROC
RTRN=1
TUNIT=IUNIT
TNAME = INAME
PARSE1=PARSEl1+1
PARSE2=PARSE1+1

-100-

/%
/%
/%
/%
/%
/%X
/%
/%
/%
/%
/X
/%
/%
/%
/%
/%
/%
/%
/%
/%

/ *x
/%
/%
/X
/%
/%
/%
/%
/%
/%
/%X

/%

/%
OK
/X
/%
/X
/%
/%
/%
/%
/%
/ %
/*
/%
/%
/%
RET
/%
/ x
/%X
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%

/x
/%

/%
/%

/%
/%
/%
/%
/%
/%

SET RETURN CODE AND RETURN X/

x/
INCREMENT ERROR COUNT %/
SET MESSAGE x/
RETURN FOR NEXT TOKEN x/
X/

ELSE, NORMAL RETURN CODE x/
POINT TO NEXT CHAR FOR PARSxX/
AND SEARCH FOR OPCODE x/

X/
IF NONE OF ABOVE., VALID CHAx/
IF TOC MANY CHAR IN TOKEN x/

SET RETURN CODE x/
INCREMENT ERROR COUNT x/
SET MESSAGE x/

x/

x/
ASSIGN VALID CHAR TO TOKEN x/
INCREMENT PARSE POINTER x/
AND CONTINUE SCAN L 4
IF POSSIBLE INSTRUCTION x/
POINT TO TOKEN DECODED x/
SAVE FIRST 4% IN % LONG STRUx/
SCAN INSTRUCTION TABLE x/

IF TOKEN AND INSTRUCTION = x/
THEN SET FLAGS AND RETURN %/

INDEX IN INDEX2 */

x/
END IF */
CONTINUE DO x/
END LE % IF x/
IF NOT INSTRUCTION-VARIADLEX/
GET FIRST C€CHAR OF TOKEN x/
39 /% IF CHAR ALPHA */
IF FIRST NOT ALPHA, ERROR x/
LOAD ERROR MESSAGE x/
RELAY MESS-ERR x/
AND RETURN 70 MAINLINE x/

x/

CHECK IF NO VWARS USED YET x /
SAVE TOKEN AS VARIABLE NAMEX/

SET RAMNAM POINTER x/
SET POINTER TO FIRST VAR x/
AND RETURN TO MAINLINE X/

X/

ELSE LOCOK FOR NAME IN TABLEX/
LOOK THROUGH NAMES IN TABLEX/

URN /% FOUND NAME X/
INDEX TO RAMNAM IN INDEX2 x/
CHECK IF TABLE FULL x /

NEW NAME AND TABLE FULL-ERRx%x/
INCREM ERR COUNTERZLOAD MESX/
RTRN CODE TO SKIP RESTE&ERR */

AND GO BACK TO MAINLINE */
END VAR E@ 40 IF x/
IF NO ERR, NEW NAME FOR TABx%/
POINT TO VARIABLE */
CALCULATE ADDRESS FOR TOKENX/
OFFSET IN RAMNAM x/
STORE TOKENA IN RAMNAM */
RETURN TO MAINLINE x/
END VAR EQ 0 ELSE DO CLAUSE®/
END OF PARSE PROC X/
LISTING/OULJECT FILE WRITE x/
LISTING OR OBJECT PARM x/
SET NORMAL RETURN CODE x/
IF LISTING FILE WRITE */
THEN PUT OUT RECORD x/

POINT JIOCfs TO LISTING FILE %/
WRITE RECORD TO DISKETTE */

IF PROBLEMS WRITING */
THEN DISPLAY MESSAGE */
%/
SAVE RETURN CODE FOR MDERR %/
SET RETURN CODE ®/
x/
AND RETURN x/
x/
ELSC OBJECT FILE x/
POINT IOCB TO OBJUECT FILE x/
ANGC WRITE OUT RECORD x/
IF PROBLEM, DISPLAY MESSnGE*;
x
%®/
%/
SAVE RETURN CODE FOR MDERR %/
SET RETURN CODE :;
AND RETURN x/
x/
OPTION PROCECSSING ROUTINE X%/
SET DEFAULT RETURN CODE x/
SET DEFAULT UNIT NUMRER %x/
SET DEFAULT FILE NAME x/
POINT 7O NEXT CHAR */
POINT TO CHAR AFTER x/




6860
6970
6980
6990
7000
7010
7020
7030
7040
7050
7060
7070
7080
7080
7100
7110
7120
7130
71%0
7150
7160
7170
7180
7190
7200
7210
7220
7230
7240
7250
7260
7270
7280
7290
7300
7310
7320
7330
T340
7350
7360
7370
7380
7390
7400
7410
7420
%30
TH4 0
7450
7+60
T470
7480
7490
7500
7510
7520
7530
75%0
7550
7560
7570
7580
7590
7600
7610
7620
7630
7640
7650
7660
7670
7680
76980
7700
7710
7720
7730
7740
7750
7760
7770
7780
7790
7800
7810
7820
7830
7840
7850
7860
7L70
7280
78390
79500
7910
7920
7930
7840
7950

IF PARSE1->ONE EQ =" AND PARSE2->O0ONE EQ “8°

THEN DO /% IF CONSOLE INDICATED THEN %/
PARSE1=PARSE1+5S /% MOVE POINTER PAST saCN AND x/
RETURN<¢2, .> /% AND RETURN INDICATING CONSOX%/

END /x x/

IF PARSE1->ONE EQ "=~ /% SPECIFIED FILE NAME %/

THEN DO /% PFNAM FILE NAME x/
PARSE1->ONE=", " /% SET CURRENT CHAR AS DEL */
PARSE2=ADDR(TFILE) /7% SET PFNAM CONTROL BLOCK */

% LDX #PARSE1 /% POINT TO CNTL BLOCK x/
% SCALL . PFNAM /% PARSE NAME x/
3 STA B INDLEX2 /%* STORE RETURN CODE */
IF INDEX2 LE 1 /% 1F NAME OK N */

THEN DO /% THEN LOAD NAME INO IOCB *x/
PARSE1=PARSEl1+1 /% INCREMENT CHAR POINTER x/

GO TO OKD /% AND ATTEMPT TO RESERV&OPEN x/

END /% x/

ELSE DO /% IF NAME NOT OK x/

RTRNe=2 /% SET RETURN CODE x/

RETURN<O, , > /% AND RETURN x/

END /X %/

END /% END = IF CLAUSE */
OKD: FILECINDEX3)=*TFILE /% LOAD DECODED FILE NAME x/
T LDX 2I0CB /% X/
*T STX PARSEZ2 /% AND STORE FOR MPL */
PARSEZ2*PARSE2+0FFSET /% CALCLATE RELATIVE ADDRESS X/

% LDX PARSEZ2 /% POINT TO IOCB x/
T SCALL . RESRV /#% RESERVE FILE *x/
IF STATUSCINDEX3) NE O /% IF AN ERROR OCCURED IN RESEXx/

THEN DO /% THEN SET RETURN CODLS * /
INDEX1=STATUS(INDEX3) /% SAVE STATUS CODE x /
RTRN=3 /% SET RETURN CODE X/
RETURN<OG, ,> /% AND RETURN x/

END /* */

$ LDX PARSE2 /% SET IOCB FOR OPEN x/
% SCalL . OPEN /% OPEN FILE * /
IF STATUSC(INDEX3) NE 0 /% IF ERROR IN OPENING FILE x/
THEN DO /% THEN RELES IOCB AND MOP UP x/
INDEX1«STATUS(INDEX3) /% SAVE STATUS */
3 LDX PARSLC2 /% POINT 70 IOCB */
o S5CaLtl. . RELES /% RELEASE FILE x/
RTRN=3 /% SET RETURN CODE * /
RETURN<D, .,> /% AND RETURN x/
END /x */
RETURN<¢1, ,> /% IF NORMAL., RETURN OK x /
END /% END OF OPTION PROC x/
TOPPG: PROC /% PRINT PAGE HEADER X/
CPT4=PAGE /% PAGE NUMBER TO HEADER x/
PAGE=PAGE+1 /% INCREMENT PAGE COUNTER x/
LINE=3 /% SET LINE COUNTER %/
RTRN=D /% CLEAR RETURN CODE */
IF PRINT EG 1 THEN DO /% IF LISTING FILE REQUESTED x/

BUFFL=HEADER /% HEADER TO RECORD BUFFER */

BUFFE(2)=BUFFS5(2)+79 /% SET END OF RECORD POINTER */

CALL WRITE<1, .,> /% WRITE RECORD 70 LISTING FILx/

IF RTRN NE 0 THEN GO TO ENDTOP /* 1IF I/0 PROBLEM - MOPUP/END #/

BUFFL=HEAD2 /% ELSE WRITE SGIZCOND LINC HDR %/

BUFFE(2)=BUFFS(2)+29 /% SET END OF RECORD POINTER */

CALL WRITE<1, .> /% WRITE RECORD TO FILE x/

IF RTRN NE 0 THEN GO TO ENDTOP /¥ IF I/0 PROBLEM-MOPUPR & END ¥/

END /% x/
IF PRINT EQ 2 THEN DO /% IF LISTING TO CONSOLE */

ChALlL DSPLY<, , ADDR(CBUFFL)> /% DISPLAY FIRST LINE x/

CALL DSPLY<. , ADDR(HEADZ2)> /% DISPLAY SECOND LINE x/

BUFFER=" 7 /% ADVANCE BLANK LINE %/

CalL DSPLY<, . ADDR(BUFFER)> /* */

END /¥ x/
ENDTOP: /% x/
RETURN /% RETURN TO MAINLINE x/
END /7% END OF TOPPG PROC x/
PROCES: PROC /% STATE MACHINE, LOGIC PROC %/

PARSE2=«ADDR(BITUP) /% GET POINTER TO BIT WISLK DBYTx/

IF KIND EQ 0 THEN NUM=INDEX2-1 /*% IF VAR, USE BASE 0 AHADDRESS %/

ELSE NUM=CODE(INDEX2) /% ELSE GET BIT CODE * /

PARSEZ2->NUM=NUM /7% LOAD ADDR/BITS TO BITUP x/

IF KIND EG & THEN GO TO NONSUP /% OUT FOR NONSUPPORTED CODE x/

GO TO (ST1.ST2,5T3,8T4%, STE, 876, STAERR), STATE
ST1: IF RTRNT EQ 3 THEN DO /% IF LABEL, NO CODE WRITTEN X/

STATE=2 /% MOVE TO STATE 2 x/
GO TO ENDSTA /% RETURN TO MAINLINE x/
END /¥ x/

IF KIND EQ@ 1 THEN GO 70 ARITH /% IF ARITH OP CODE. PROCESS x /

IF KIND EQ@ 5 THEN GO TO IOCODE /% XIF I/0 CODE, PROCESS x/

GO TO STAERR /% OTHERWISGE, SYNTAX ERROR %/
S7T2: IF KIND E@ 1 THEN GO TO ARITH /% IF ARITH OP CODE, PROCESS x/

IF KIND E@ 5 THEN GO 70 IOCODE /x% IF I/70 CODE. PROCESS * /

GO TO STAERR /% OTHERWISE, SYNTAX ERROR */
ST3: IF KIND E®@ 0 THEN GO TO VARDES /% VARIABLE AS A DESTINATION %/

IF KIND E@ 2 THEN GO 7O DARDES /% DAR AS DESTINATION x/

GO TO STAERR /% OTHERWISE, SYNTAX ERROR x/
6§T4: IF KIND E@ O THEN GO TO VARSOU /% VARIAUBLE AS SOURCE x/

IF KIND EQ@ 2 THEN GO TO DARSDU /% DAR AS THE SOURCE */

IF KIND EQ 3 THEN GO TO CONXXX /% CONSTANT AS SOURCE x/

CO TO STAERR /% OTHERWISE, SYNTAX ERROR x/
S75: IF KIND EGQG 5 THEN GO TO IOCODE /% 1/0 CODE. PROCESS */

IF KIND EQ % THEN GO TO SHXXX /% SHIFT CODE, PROCESS X/

GO TO STAERR /% OTHERWISE, SYNTAX ERROR x /
ST6: IF KIND EQ S THEN GO TO IOCODE /% XI/0 CODE., PROCESS x/
STAERR: ERROR~ERROR+1 /% INCREMENT ERROR COUNTER x/

PO~*MESS2 /% LOAD ERROR MESSAGE x/
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7960
7970
7980
7890
8000
8010
8020
8030
8040
8050

060
8070
8080
8090
8100
8110
8120
8130
81%0
8150
8160
8170
8180
8190
8200
8210
8220
8230
8240
8250
8260
8270
8280
8290
8300
83140
8320
8330
8340
8350
8360
8370
380
B39O0
8400
84%10
8420
8430
84% 0
8450
8460
8470
8480
8430
8500
8510
8520
8530
8540
8550
8560
8570
8580
8590
8600
8610
8620
8630
86't0
8650
8660
8670
8680
8690
8700
8710
8720
8730
8740
8750
8760
8770
8780
8790
8800
8810
8820
BB30
8840
8850
8860
8870
8880
8890
8900
8910
8920
8930
8940
8950

PNTS0: STATE=S8
RTRNT=7
RETURN

ARITH: STATE=3
IF INDEX2 E@
IF INDLX2 EQ
IF INDEX2 EQ

INDEX2 EQ

IF
LD
L1
L2

ooco

IF BITD E@ 1
IF BITl1 E@ 1
IF BIT2 EQ@ 1
GO TO ENDSTA

IOCODE: STATE=<7

IF INDEX2 EQ
IF INDEX2 GE
PNT97: IF SUBX

/% INDICATE ERROR TO MAINLINE x/

/%
/% RETURN TO MAINLINE
/% SET NEW STATE CODE
THEN ANDX«=3
THEN LIMX=1
THEN ABGXe=1
THEN SUBX=1

hFwn

THEN LO=1
THEN L1=1
THEN L2=1 i

/% RETURN TO MAINLINE
/7% SET NEW STATE CODE
16 THEN GO TO PNT97

33 AND INDEX2 LE %D THEN DO

NE 1 THEN GO TO PNT98

GO TO PNT96

END .
GO TO PNTSS
PNT96: CONSUB(1
IF DAROUT (1)
ERROR«*ERROR
PO=MESS12
GO TO PNTSO
END
GO TO PNT99
PNTS8: IF ANDX
ERROR=ERROR
* PO=MESSS
GO TO PNTSO
END
IF LIMX EG 1
ERROR=ERROR
PO=MESS10
GO TO PNTSO
END
IF ABSX EQ@ 1
ERROR=ERROR
PO=MESS11
GO TO PNTSO
END
PNT99: TIF INDEX
IF INDEX2 GE
PNT100: CVTX(1)
IF DAROUT (2
ERROR*ERR
PO=MESSS
GO TO PNT
END
IF CVTX(2)
ERROR=ERR
PO=MESSH
GO 70 PNT
END
IF CONSUB(2
ERROR=ERR
PO=MESSY
GO TO PNT
END
IF DAROUT(1
ERROR=ERR
PO=MESSS
GO TO PNT
END
END
IF INDEXZ2 GE
IF DAROUT(2
ERROR=ERR
PO=MESS3
GO TO PNT
END
IF CONSUR(2
ERROR=ERR
PO=*MESSGY
GO TO PNT
END
END
ADFO=0
ADF1=0
ADKU=O
ADK1=0
ADK2=0
IF BITO E@
IF BIT1 EQ
IF BIT2 EQ
IF BIT3 EQ@
IF BIT% EQ
GO TO ENDSTA
DARDES:
DAROUT(1)>=1
VARDES: SBTATE=Y%
BO=0
Blegp
B2=0D
B3=0
B4=0
B5=0

R

)=1
EQ 1 THEN DO
+1

EQ@ 1 THEN DO
+1

THEN DO
+1

THEN DO
+1

2 EQ 15 THEN GO TO PNT1DO0
25 AND INDEX2 LE 32 THEN DO
=1

J E@Q 1 THEN DO

OR+1

S0

EQ 1 THEN DO
OR+1

80

> E@ 1 THEN DO
OR+1

S0

) E@ 1 THEN DO
OR+1

S0

17 AND INDEXZ2 LE 2% THEN DO
) E@ 1 THEN DO
OR+1

[0

> EG 1 THEN DO
OR+1

S0

THEN ADFO=1
THEN ADF1=1
THEN ADKD~*1
THEN ADKl=1
THEN ADK2=1
/% RETURN TO MAINLINE

/% FLAG DAR AS DES IN CURRENT

/% SET NEW STATE CODE
/% COPY IN BIT ADDRESS
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%/
x/
*/

x/
*/




8960
8970
8880
8990
89p00
So10
8020
8030
S040
8050
BSD60
S070
5080
9030
8100
8110
8120
8130
8140
8150
8160
8170
8180
8190
sS200
9210
9220
9230
9240
9250
9260
9270
gaso
8290
8300
8310
9320
8330
9340
8350
89360
8370
8380
8330
S4+00

CONY  STATE=S

H
n
@
P
o
n
T m
2
B pa e

IF BIT5 EQ
GO TO ENDSTA
SHXXX: STATE=6

IF LIMX EQ 1 AND CODE(INDEX2) NE $0F

ERROR=ERROR
PO~MESS13
GO TO PNT90
END
S0=0D
Si=0
S2=0
S3+0
IF BITO EQ@
IF BITl E@
IF BIT2 E@
IF BIT3 E@
GO TO ENDSTA

[EYRYPYIN

THEN
THEN
THEN
THEN
THEN
THEN

THEN
THEN
THEN
THEN
THEN
THEN

+1

THEN
THEN
THEN
THEN

BO~1
Bl=1
B2=1
B3=1
By=1
B5=1

AD=1
Al=l
A2=1
A3=1
A=l
AS=3

Soe=1
Si=1
§52=1
§3=1

NONSUP: ERROR*ERROR+1

PO=MESS15

STATE=8

RTRNT =7

RETURN
ENDSTA: RETURN
END
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/% RETURN TO MAINLINE
/*

/%
/% SET NEW STATE CODE
/% COPY IN BIY ADDRESS
/%
/¥
/X
/%
/%

/% RETURN TO MAINLINE
/% SET NEW STATE CODE
THEN DO

/% COPY IN SHIFT BIT CODE

7%

/% NON-SUPPORTED INSTRUCTION
/%

/% FLAG PROBLEM TO MAINLINE
/%

/% RETURN TO MAINLINE

/%

x/
x/
x/
x/
* /
%/

*/
*/
x/

*/
*/

*/
*/

x/
*/
X/
X/




Appendix C

CIRCUIT DIAGRAMS
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EXORcisor

RS232

Amdahl

7N

DISK

]
SHIFT INTERRUPT |
Analog CONTROL |
%cordin LOGIC ' I ACIA
7 SHIFT [
|
EOP ?'
' HPIA 1
EEG?‘2920—1/////A |
¥
8'
iy X (Master) 4.‘ REAL
TIME
S— : CLOGCK
8
EOP ': PIA 2
EEG }\l5920 Z\HIT_I__ :
\F_\ I[

Plotter, ~ -

!

PIA 3 ACIA

.

——}EoP

EQG_ 45920 -

~

PIA 4

;‘—&
1

SYNC
START
LOGIC

RS232
\‘\

SHIFT O
REGISTERS

DISK

SYSTEM CONFIGURATION
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VIDEO

TERMINAL




?MTZ
LT
DO——‘} | *DD — XTAL1
ALL CLOCK LOGIC 47

SUPPLIED WITH GRND & -5V p{XTALE‘
470

Clock for 2920s

——VREF

Reference Voltage

5V
SHIFT . ;1-5k GMOS
o? 7_>o___ . SHIFT
conTRoL" o L — D i)o © REGISTER
L
5V
§2k —
MASTER_ 1 ~
EOP —
74221 °
=L 10k
' 5V
L
: F
100p

Shift Control
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1.5k
svostig[) Do Jo—ww—r—o

Synch Start =

5V
2920 19K
OuTPUT 3{
5Vo— ;
74164 - | ouTPUTS
5Vo—— + TO PlAs
i
CLOCK T J
INPUT 3} |
Shift Register
ouT 3 =T 7 . OUT 2
ouUT4 -t - OUT 1
OUT 5—t . ouUTO
ANALOG GRND——
oOuUT6——fF + -5V
- OuUT7 +— 2
__i»v{oK !—-—J\/\."\-"
1 A\ ' . L—sv
300p —— VREF- 4+t Y
R g I0K
10K ——1000u
INO——+ AN 1
N 0 IN3—+ -
_ - L.
N2 I
00 —Natp . XTAL2
2 o i 15 XTAL |

2920 Run Socket
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