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Abstract 

The goal of this thesis is to identify airplanes’ reduced order transfer functions, and aerodynamic 

derivatives in the longitudinal channel. The outcome of the research will benefit aircraft systems’ 

controller design, modeling and simulation. Aircraft under study are a conventional fixed wing 

airplane called Cropcam, and a nonconventional delta-wing aircraft. To identify the system 

transfer functions and aerodynamic derivatives, direct and indirect frequency domain 

identification methods are applied. For the direct method, the Equation Error (EE) method is 

adopted to process the Cropcam’s input-output data pairs and identify the aerodynamic 

derivatives from the flight data directly. The indirect approach is called the Transfer Function 

(TF) method. For this method, a commercially available system identification tool kit called 

CIFER is utilized to identify the longitudinal transfer function of the aircraft first. Then the 

aerodynamic derivatives are extracted from the identified transfer function. The derivatives 

identified by the EE method and transfer function method are compared with the ones computed 

from a Vortex Lattice based program called AVL. The identification results are further verified 

by comparing computer simulation outputs with flight test responses. Issues such as input 

excitation design, data gathering, data reliability analysis and result verification are also 

investigated in this thesis.  
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1 Introduction 

1.1 Motivation 

Unmanned Aerial Vehicles (UAVs) are being used extensively in applications such as 

surveillance, search and rescue missions, remote sensing and geographic studies (Ryan et al., 

2004; Fahimi, 2009; Nonami et al., 2010). Compared to piloted aerial vehicles, the control of 

UAVs is more challenging – because all flight control, navigation and guidance operations must 

be carried out by an onboard computer. Usually, the design and tuning of the control systems are 

done by trial-and-error on actual prototype aircrafts. This method is time-consuming and costly. 

In some cases, the tests do not cover the entire flight envelope, leading to unsatisfactory 

performance during unseen real world scenarios. As a result, it is a common practice to develop 

time-domain computer simulation models of UAVs that resemble the actual behaviour of aircraft 

in flight. The autopilot control systems used on UAVs are then designed and tested using the 

simulation program first, before being deployed on real platforms. This approach, if 

implemented well, reduces the need for extensive tuning and validation. However, one problem 

which often plagues this approach is that the computer simulation results may not match the 

actual responses obtained from the actual flight. This discrepancy is mainly caused by 

inaccuracies of the time-domain model structure, the magnitudes of its parameters, or the manner 

in which it is numerically simulated. These issues reduce the reliability of any design based on 

the available simulation software. Therefore, obtaining accurate models of UAVs is critical for 

the development of algorithms or software tools that can be used to design and analyze the UAV 

autopilot control systems under different flight conditions. System identification techniques 
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allow the derivation of reliable analytical models which can be used, not only in simulations of 

different flight scenarios, but also for the development of more advanced controllers for the 

UAVs.  

 

1.2 Objectives 

One major challenge in composing an analytical model of an aircraft is to accurately characterize 

its aerodynamic behavior by a set of coefficients known as aerodynamic derivatives. These 

derivatives relate the host aircraft motion variables to the aerodynamic forces and moments. 

Since autopilots are commonly designed to fly a wide variety of airframes, identifying the 

aerodynamic characteristics of the platform, either on-line or off-line, could significantly ease the 

control system design process. The conventional method for finding these derivative values 

involves conducting wind tunnel experiments on a scaled vehicle. While this method is effective, 

it is expensive, often preventing civilian UAV manufacturers from adopting it. Also, some of the 

dynamic aerodynamic derivatives are not calculated accurately by this method. The 

computational program Athena Vortex Lattice (AVL) program, produces estimates of the 

aerodynamic derivatives given the aircraft geometry; however, AVL does not take into account 

the viscous effects of aerodynamic and, thus, cannot produce accurate results for small UAVs 

flying at low speeds. Recently, off-line or on-line system identification techniques have been 

adopted by aircraft manufacturers and industry researchers to build mathematical models for 

UAVs by using measurements of input-output data pairs. These techniques process certain inputs 

excited aircraft frequency (Theodore et al., 2004; Tischler and Remple, 2006; Debusk et al., 
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2011; Dorobantu et al., 2013; Lee and Park, 2009; Morelli, 1999) or time domain (Klein and 

Morelli, 2006; Jategaonkar, 2006; Chowdhary and Jategaonkar, 2006) responses.  

The objective of this research is to find an effective tool that can process flight data, and either 

extract the aerodynamic derivatives directly or obtain them indirectly from the platform transfer 

functions, given minimum flight test data and limited sensory information. The outcome of this 

research will provide a technology that improves the reliability of UAVs computer simulation 

software and, as a result, enhances fidelity of the designed control system. Also, the optimal 

design of the autopilot control system without excessive flight tests will reduce manufacturing 

costs. 

Input-output data pairs of two UAVs, including a nonconventional delta-wing aircraft and a 

conventional fixed wing aircraft, are available to be processed in this thesis. It is expected that 

the system transfer functions in the longitudinal channel, as well as the related aerodynamic 

derivatives will be identified. 

 

1.3 Methodology 

Two frequency domain system identification techniques are implemented in this research. The 

first approach is the Transfer Function (TF) method. This method uses spectral densities of the 

measured input-output signals to obtain system transfer function (Tischler et al., 2006; 

Dorobantu et al., 2011). For this method, an empirical estimate of the system frequency response 

is calculated by using auto Power Spectral Density (PSD) of the input and cross Power Spectral 

Density of the input and the output signals. The main challenge here is how to calculate PSD 
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functions accurately. The main source of errors are inaccuracies in sensor measurements and 

insufficient frequency resolution for identifying lightly damped modes of the aircraft.  

The second approach is the Equation Error method, which is also called the recursive Fourier 

Transform Regression (FTR) method (Klein et al., 2006; Tischler et al., 2006; DeBusk et al., 

2009). The advantage of the FTR method is that the DC gains and zero biases can be removed 

from the measured data by omitting the zero frequency from the frequencies over which the 

Fourier Transform is calculated. Also, the higher frequency components of the measured data, 

which are usually due to noise or external disturbances, can be removed.  

The research is built and expanded upon an in-house simulation model, as well as a 

commercially available identification software tool called CIFER (Tischler et al., 2006). CIFER 

is short for Comprehensive Identification from FrEquency Responses. Appropriate tools are 

adopted and further developed for extracting the aerodynamic derivatives used by the model. It 

was jointly developed by the U.S. Army and the University of California, Santa Cruz (UARC). 

The most significant feature of CIFER is that it can extract high-quality frequency responses 

from multi-input/multi-output time domain data. Its advanced Chirp-transform and composite 

optimal window techniques allow it to extract significantly higher quality frequency responses 

compared to standard Fast Fourier Transforms (FFTs).  

After the simulation model system identification is done, both the TF and EE methods are 

initially will be applied on the platform called Cropcam. As the research unfolds, it will be 

expanded to a nonconventional delta-wing UAV. Identification of longitudinal aerodynamic 

derivatives during cruise flight mode is investigated first, followed by the derivation of 
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appropriate frequency-domain models (transfer functions) of the aircrafts. The following issues 

are commonly addressed in the context of UAVs’ system identification (Morelli, 2009): 

i. which states should be measured, and how they are measured; 

ii.  which states cannot be measured and need to be determined post flight; 

iii.  what kind of filter(s) and/or post processing procedure(s) are required to eliminate 

undesired and unnecessary components from the measured data; 

iv. how should the aircraft be excited effectively to assure that the measured data is 

sufficiently rich for system identification purposes in the frequency domain; 

v. what is the required sampling rate to guarantee that the fastest mode of the aircraft 

model can be reconstructed; 

vi. how high should the input excitation amplitude be without violating the small 

perturbation criteria, while providing a sufficiently large signal-to-noise ratio; 

vii. how should the input excitation be implemented: in the Pilot in Control (PIC) or 

Computer in Control (CIC) mode. 

In this research, the following questions are investigated: 

i. How can the aerodynamic derivatives be obtained from the transfer functions in UAVs 

using frequency domain method? 

ii.  What method (transfer function/equation error identification, or AVL estimation) is 

more accurate in obtaining the aerodynamic derivatives? 

Figure 1.1 shows the procedure by what the frequency-response system identification method is 

applied in this research (Tischler and Remple, 2012).  
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Figure 1.1 Frequency-response system identification procedure  

Chirp input is designed first as input excitation for the UAV under investigation. Then, the 

aircraft responses are measured and processed. Once the data are processed, the identification 

methods can be applied to identify the system transfer functions and/or the aerodynamic 

derivatives. The identification results need to be verified before applying to enhance the 

performance of simulation model. 

 

1.4 Thesis outline 

In Chapter 2, the theoretical background of system identification will be introduced. In order to 

discuss aerodynamic characteristics of UAVs, basic aerodynamic theory needs to be studied as 

Chirp Input Aircraft Data Pre-processing Spectral Analysis 

Conditioned Frequency Response  

Verification 

Identification Algorithm 

Transfer Function Modeling 

Frequency Response 
Identification Criterion  

Application: Simulation Validation 

Initial Model Structure 
Building 

Dissimilar Flight Data Not Used 
in Identification (Unseen Signal) 

Stability Derivatives  
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well. Therefore, Chapter 3 gives an introduction to basic aerodynamic theory. It starts by 

introducing the coordinate systems that are used to describe aircraft motion both in the body and 

wind axes, as well as the axes transformations.  

In Chapter 4, the general aircraft equations of motion are derived, and the effect of aerodynamic 

forces and moments on the motion variables are discussed. In addition, the complete dynamic 

equations are decoupled for the convenience of system identification. In Chapter 5, the frequency 

domain system identification input excitations requirements are discussed, and the computer-

based method for generating the Chirp signal is introduced. 

Chapter 6 presents the two system identification methods used in the thesis, namely the transfer 

function method and the equation error method. In Chapter 7, the system identification 

techniques are applied to the flight test data of the two fixed-wing UAVs. For Cropcam, the 

transfer function method is implemented to obtain its longitudinal channel transfer functions first; 

and then the related aerodynamic derivatives are extracted from the identified transfer functions. 

Next, the equation error method is applied to identify the longitudinal aerodynamic derivatives. 

For the second aircraft, the delta-wing, first the longitudinal system transfer function is identified, 

and then some aerodynamic derivatives are extracted from the identified transfer function. 

Chapter 8 summarizes the contributions made in this thesis and potential future research is also 

discussed. 

In Appendix 1, the aerodynamic derivatives’ conversion between different notations is tabulated. 

In Appendix 2, first the aircraft simulation model is discussed; then the transfer function method 

is applied to identify the simulation model’s longitudinal channel transfer functions, and some 

aerodynamic derivatives by using the simulation responses; next, the equation error method is 



8 | P a g e  

 

applied to identify the longitudinal aerodynamic derivatives. At the end of the appendix, the 

longitudinal channel derivatives calculated by the equation error method, the transfer function 

method and AVL are compared, to examine and verify their accuracy.   
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2 Background 

This chapter comprised of two parts. The first part gives a brief introduction of UAV and its state 

of development. In this part, the UAV’s application is introduced first, its development prospect 

is discussed next. In the second part, the concept of system identification and system modeling 

are introduced first. Typical system identification methods are discussed and compared followed 

by a literature review.  

2.1 Preliminary remark 

For two decades, UAVs have been utilised for military purposes, such as geographical study and 

national security. More recently, several applications have been introduced for UAVs in the 

civilian sector. UAVs are now employed for search and rescue missions, facility and 

infrastructure inspections, and environmental studies. Other UAV applications include: “i) 

wildfire detection and management; ii ) pollution monitoring; iii ) event security;  iv) traffic 

monitoring; v) disaster relief; vi) fisheries management; vii) pipeline & oil and gas security 

monitoring; viii ) meteorology - storm tracking; ix) remote aerial mapping; x) transmission line 

inspection” (Hon et al., 2013). 

The UAVs’ market will continue to expand and the world’s spending on UAVs is expected to 

double in the coming decade. The annual expenditure on UAVs will increase from 5.2 billion 

dollars to 11.6 billion dollars, representing a total of about 89 billion dollars (Zaloga et al., 2011). 

The predictions about world UAV expenditure suggest that UAVs will have a booming 

development in the near future. 
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2.2 System identification 

Presently, computer simulation is largely used to support control design and validation. Normally, 

modeling of a system can be visually classified as three types: white-box modeling, grey-box 

modeling and black-box modeling (Khan and Khan, 2012).  

The white-box modeling approach is based on a grasp of axioms or postulates, or some 

foundational propositions or assumptions that cannot be deduced from any other proposition or 

assumption. The white-box model is almost a full description which describes the details of the 

physical system. Most of the time, white-box modeling is either difficult or else it may take an 

unreasonable length of time due to the high complexity of the identified system or process.   

In grey-box modeling, the incipient model can be constructed on the basis of the insight gleaned 

from the system or experimentally measured data. However, the prior built model is incomplete, 

because some of the model parameters or coefficients of the system are unknown. In this case, 

system identification is required to find the unknown parameters.  

In black-box modeling, as its name implies, the system is an unknown unit. There is no prior 

model available to use or to refer to. In practice, the common method used for grey-box and 

black-box modeling is “system identification”. System identification is a general term referring 

to mathematical tools and algorithms which are used to determine dynamical models’ 

characteristics from measured data (Pintelon and Schoukens, 2012). It is widely used in the fields 

of Mechanical Engineering, Chemical Engineering and Electrical Engineering, for prediction, 

control, physical interpretation and design of mechanical and electrical systems (Pintelon and 

Schoukens, 2012). System identification is based on an analysis of the system experimental data 

and insight into the system.  
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System identification methods can be classified in two categories: time domain system 

identification methods and frequency domain system identification methods. The time domain 

methods are straightforward to implement, but two main issues commonly plague accurate 

system identification: noise and data information content (Morelli, 1999). In the context of 

aircraft system identification, if the signal-to-noise-ratio (SNR) is too low, the time domain 

identification method usually fails to provide reliable estimates of the unknown parameters. Also, 

most of the time domain identification studies placed no limitations on computational power, 

which is rather restrictive for low-cost on-board processors of UAV autopilots. 

Two optimization algorithms, Least Mean Square (LMS) and the Maximum Likelihood (ML, 

Klein and Morelli, 2006; Crassidis and Junkins, 2004; Simon, 2006) are commonly used for the 

time domain system identification. The LMS technique attempts to identify the unknown 

parameters by minimizing the sum of the squares of the estimation error. Estimation results are 

validated using the available statistical metrics such as the Cramer-Rao band, or the residual 

auto-correlation sequence. The major problem when using the LMS method is not robust in deal 

with data collinearity. This may result in inaccurate or fail estimates. The ML method (Crassidis 

and Junkins, 2001; Simon, 2006) offers estimates for the unknown parameters so that the 

probability of obtaining the measured set of data is maximized. This technique allows the 

estimation results to become minimum variance unbiased as the number of measured samples 

increases. However, as the dimension of the identification problem grows, increasing 

computational complexity of the ML algorithm becomes problematic. Furthermore, in practice, 

the ML cost function is barely quadratic having multiple minima which makes finding the global 

minimum rather difficult.  
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Compared to the time domain methods, frequency domain system identification techniques are 

more robust in coping with noise and inaccuracies in the measurements (Morelli, 1999). In 

addition, they require a smaller number of data points for identification, and can process signal 

components at different frequency ranges separately. They usually provide more physical 

characteristics over the entire frequency content, compared to the time domain approaches 

(Morelli, 1999). Frequency domain system identification techniques have been proved to be 

efficient in determining a UAV’s aerodynamic model, control system tuning and validation 

(Theodore et al., 2004). 

In this thesis, two frequency domain system identification methods are discussed. For the TF 

method, it uses CIFER to obtain the system Bode plot and transfer function first. CIFER uses 

power spectra method to estimate the system transfer functions. The approach is based on the 

lower-order equivalent system (LOES) concept. This concept was initially presented by 

Hodgkinson et al. (1976), and was used by Bischoff and Palmer (1982), Bischoff (1983) and 

Hodgkinson (1998). Once the transfer function is obtained, the aircraft aerodynamic derivatives 

are then extracted from the system transfer function. Much research was done to get the transfer 

function using this method and for using in controller design. To name a few, CIFER was first 

used to identify the system transfer function from flight test data by Tischler et al. (1983, 1987) 

and Tischler (1987b). Dorobantu et al (2011, 2013) and Carnduff (2008) also used CIFER for 

identifying the aircraft system transfer function. While, many institutes have used CIFER for 

doing frequency response system identification, to the best of the author’s knowledge, nobody 

applied the identified system transfer function to extract the aerodynamic derivatives. In this 

thesis, the method of using the identified transfer function to calculate aerodynamic derivatives 
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will be investigated. The calculated derivatives will be examined and verified, and they will be 

compared with the ones computed by the other methods or sources.    

The second method used in this thesis is the Equation Error (EE) method. This method, which is 

regression identification type, has proven effective for frequency domain system identification. 

This method was used by many researchers and for various aircraft. For example, NASA 

Langley used this method for the fighter F-18 High Alpha Research Vehicle’s system 

identification (Klein et al, 1990). Science Applications International/Naval used it for F/A-18E’s 

system identification (Paris and Bonner, 2004). NASA Langley also applied EE method for 

identification of aerodynamic derivatives of a Tu-144LL aircraft (Morelli, 2003b). Boeing used it 

for B717, B737, B747, B757, B767 and B777’s system identification (Hodgkinson, 1998). The 

method have also it is also largely in the UAV system identification. For example, NASA 

Langley/Dryden used it for the X-43A’s (Hyper-X) UAV system identification (Chowdhary, 

2006). Stanford University applied the method for the DragonFly UAV aerodynamic coefficient 

identification (Jang, 2003). In this research, both TF and EE methods will be used to identify the 

Cropcam’s system aerodynamic derivatives; the results will be compared for verifying reliability 

of each method.  
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3 Basic Aerodynamic Theory 

In this chapter, the aircraft coordinate systems (earth and aircraft body-fixed) will be discussed 

first. Next, aircraft motion variables will be defined and explained based on the coordinate 

systems discussed. Then the transformations among different coordinate systems are derived. 

Finally, typical aircraft geometry and control surfaces parameters are introduced.  

3.1 Coordinate axes 

Aircraft motion has six degrees of freedom and it is quite complex. Describing aircraft’s motion 

needs several notations and nomenclatures, and the notations should correspond to suitable 

coordinate frames. Commonly used frames are earth axes and body-fixed axes coordinate 

systems. 

3.1.1 Earth axes 

In cases where only normal atmospheric flights are considered, the aircraft motion is described 

with respect to the earth-fixed coordinate frame (Cook, 2012). For defining a coordinate frame, 

the reference point needs to be determined first. For the purpose of study, the reference point o0 

is defined on the earth surface, and o0 is the origin of a right-handed orthogonal coordinate 

system (o0x0y0z0), which is shown in Figure 3.1. Plane (x0o0y0) is tangential to the earth surface, 

which is defined as horizontal plane. Axes o0x0 and o0y0 always point north and east, respectively. 

The direction of axis o0z0 coincides with the direction of gravity. This coordinate system is also 

called North-East-Down (NED) reference frame. 
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Figure 3.1 Earth axes (adapted from Cook, 2012) 

Since the earth is approximately round, and the flight happen in normal atmosphere, the flight 

path is trans-global, and the aircraft is actually flying in a spherical path. In this case, the angular 

velocity of the earth needs to be considered. Therefore it is necessary to define a spherical 

coordinate frame (oExEyEzE), which is a fixed spatial axes system, to offset this natural angular 

velocity effect. Referring to Figure 3.1, plane (oExEyE) is defined as a horizontal plane, which is 

parallel to (x0o0y0) plane. For short-range UAV application, the earth under the flight path can be 

assumed as a level and straight plane, which is described by plane (o0x0y0). For the coordinate 

frame (oExEyEzE), the origin point oE coincides with the aircraft body-fixed coordinate system’s 

origin. Point oE is usually put in the atmosphere at the most convenient place. Axis oxE can point 

in any direction of the aircraft flight rather than just to the north, while axis ozE points in the 

same direction as gravity. 
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3.1.2 Aircraft body-fixed axes 

The body-fixed axes system is a commonly used coordinate system. Since only small 

perturbation is analysed, only generalised body axes and wind (or stability) axes are discussed. 

Body axes 

Figure 3.2 shows a typical body axis system (oxbybzb). Since the body axis system is always 

constrained to move with the aircraft fuselage, the axes direction is changing with the motion of 

the aircraft. The origin of the axis system is usually defined by the aircraft gravity center. In 

Figure 3.2, the (oxbzb) plane is determined by the symmetry plane of the aircraft in which axis 

oxb points to the forward direction, axis oyb directs to the starboard of the aircraft (in the 

direction of the right wing), and axis ozb is downward.  

 

Figure 3.2 General aircraft coordinate system 
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Wind axes 

Sometimes, it is more convenient to describe the aircraft’s motion in a coordinate system which 

is defined with respect to the relative wind (or air) direction. As shown in Figure 3.2, the wind 

axes coordinate system is defined by (oxwywzw). When the aircraft sideslip angle is zero, wind 

axes is also known as aerodynamic or stability axes. The direction of the oxw axis is set parallel 

to the total velocity V0 of the aircraft; (oxbzb) is the symmetry plane of the aircraft. The angle α 

between axes oxb and oxw is called the aircraft angle of attack. When aircraft are flying under a 

steady state condition, α= αe, where αe is called equilibrium angle. The value of αe is different 

under different flight conditions. β is called the sideslip angle. It is the angle between the aircraft 

total velocity and the symmetry plane. Therefore, the body axes system is always fixed to the 

aircraft body, and the wind axes orientation always changes under different flight conditions.  

 

3.2 Definition of variables 

The aircraft motion can be generalised by quantities in terms of force, moment, linear and 

angular velocities of the aircraft. In this thesis, all these variables are defined in body-fixed 

coordinate system for convenience. In order to depict the perturbed states of aircraft, the trimmed 

equilibrium state is defined. Trimmed equilibrium is the state in which the aircraft is flying under 

a steady state condition. When the aircraft is flying under an trimmed equilibrium condition, the 

forces and moments are in balance and sum to zero; therefore, there is no linear acceleration and 

the angular velocities are all equal to zero. 
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When the aircraft is excited with an external input or disturbance, the force and moment balance 

is broken and the aircraft deviates from the equilibrium state. The perturbation variables are 

shown in Figure 3.3 below. 

 

Figure 3.3 Aircraft motion variables  

Table 3.1 Motion variables’ notation (Cook, 2012) 

 Trimmed equilibrium state Perturbed state 

Orientation ox oy oz ox oy oz 

Force 0 0 0 X Y Z 

Moment 0 0 0 L M N 

Linear velocity Ue Ve We U=Ue+u V=Ve+v W=We+w 

Angular velocity 0 0 0 p q r 

Attitude 0 θe 0 φ θ ψ 

X, Y, Z — Axial, side and lift force 

L, M, N — Rolling, pitching and yawing moment  

Ue, Ve, We — Axial, lateral and normal component of steady equilibrium velocity 

U, V, W — Axial, lateral and normal velocity, total linear velocity of gravity center (cg) 

u, v, w — Axial, lateral and normal velocity perturbation 

p, q, r — Roll, pitch and yaw rate 
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φ, θ, ψ — Roll, pitch and yaw angle with respect to ox, oy and oz axes, respectively 

θe— Equilibrium pitch angle 

In Figure 3.3, the signs of the variables are defined by the right-handed axes system. All the 

components of rotary quantity, moment, velocity and attitude are defined as positive based on the 

right-handed axes system. A positive roll occurs when the right wing goes down; positive pitch is 

defined when the aircraft’s nose goes up; and positive yaw is achieved when the aircraft turns 

right. An alternate way of describing the variables’ sign is: positive roll is axis oy going toward 

axis oz, positive pitch is axis oz going toward axis ox, and positive yaw is axis ox moving toward 

axis oy. The notations of motion variables in trimmed state and disturbed state are tabulated in 

Table 3.1.  

Figure 3.4 shows the moment, angle and force components for longitudinal channel flight 

situation.  

 

Figure 3.4 Longitudinal channel terms for typical aircraft climbing 
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When the aircraft is flying under a symmetric situation in which there is no lateral perturbation, 

the angle and velocity quantities can be simply depicted by Figure 3.5.  

 

Figure 3.5 Quantities in body axes under symmetric flight (adapted from Cook, 2012) 

In Figure 3.5, the angles and velocities have the following relation: 

0 = & D �  (3.1) 

@EF(& D 0) = $� = $ D G� D B  (3.2) 

When the aircraft body-fixed axes coincide with the wind axes, αe = 0. For the specific case, in 

which the aircraft is flying in a level situation, and accounting for the flight in wind axes 

coordinate system, the following relation holds: 

& = 0 = 0 (3.3) 
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3.3 Axes transformations 

3.3.1 Linear acceleration, velocity and displacement transformation 

The body attitude angles φ, θ, ψ are known as Euler angles. These angles are defined in the 

body-fixed axes system. Since the commutative law is inapplicable to angles, the order of the 

rotation is very important. Figure 3.6 shows a general example of the coordinate system rotation. 

(ox0y0z0) is the reference axes frame, and (ox3y3z3) is the body-fixed axes frame. The 

transformation order shown in Figure 3.6 is: first, rotate the body-fixed axes about axis ox3 with 

an angle of φ. Thus the body-fixed axes are brought to (ox2y2z2); next, rotate the frame about oy2 

axis by an angle of θ. The body-fixed axes are brought to (ox1y1z1); last, rotate the current axes 

system about oz1 axis by a yaw angle of ψ. Thus, the (ox3y3z3) coordinate system is brought to the 

new coordinate system (ox0y0z0).   

 

Figure 3.6 Axes transformation (adapted from Cook, 2012) 
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Let (ox3, oy3, oz3) represents the linear quantity components in the (ox3y3z3) axes system, and (ox0, 

oy0, oz0) represents the linear quantity components in the (ox0y0z0) axes system. The linear 

quantities can be velocity, displacement or acceleration. The transformation of quantities in 

different axes systems can be described by the following equations (Cook, 2012):  

For the first step, rotating about ox3 by a roll angle of φ, 

I3J = I3K (3.4) 

ILJ = ILK�IMN D I%KMOFN (3.5) 

I%J = −ILKMOFN D I%K�IMN (3.6) 

Equations (3.4) to (3.6) can be written in matrix equation form as: 

PI3JILJI%JQ = P1													0													0			0									�IMN						MOFN0					 − MOFN					�IMNQ P
I3KILKI%KQ (3.7) 

The second step is similar to step one, but this time rotate the coordinate system about axis oy2 

by a pitch angle of θ. The following relation holds: 

PI3KILKI%KQ = P�IM0						0					 − MOF0			0										1												0					MOF0						0									�IM0	Q P
I3SILSI%SQ (3.8) 

Similarly, for the last step, yawing about the axis oz1 with a yaw angle of ψ, the following have: 

PI3SILSI%SQ = P		�IMT						MOFT							0−MOFT					�IMT							0						0												0											1Q P
I3�IL�I%�Q (3.9) 
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According to Equations (3.7), (3.8) and (3.9), (ox3, oy3, oz3) can be combined with (ox0, oy0, oz0) 

as: 

PI3JILJI%JQ = 	 P1													0											0				0									�IMN					MOFN0					 − MOFN				�IMNQ P
�IM0						0				 − MOF0		0										1											0				MOF0						0							�IM0	 Q P

		�IMT						MOFT						0−MOFT					�IMT						0						0												0										1Q P
I3�IL�I%�Q (3.10) 

Equation (3.10) can be expressed in the concise notation as: 

PI3JILJI%JQ = U PI3�IL�I%�Q (3.11) 

where, D is a matrix given by:	 
D = P 														�IM0�IMT																																										�IM0MOFT																								 − MOF0MOFNMOF0�IMT − �IMNMOFT									MOFNMOF0MOFT + �IMN�IMT							MOFN�IM0�IMNMOF0�IMT + MOFNMOFT									�IMNMOF0MOFT − MOFN�IMT							�IMN�IM0	Q (3.12) 

The reverse transformation, from (ox3y3z3) to (ox0y0z0) is written as follows: 

PI3�IL�I%�Q = UVS PI3JILJI%JQ (3.13) 

where,  

UVS = P	�IM0�IMT					MOFNMOF0�IMT − �IMNMOFT				�IMNMOF0�IMT + MOFNMOFT�IM0MOFT					MOFNMOF0MOFT + �IMN�IMT				�IMNMOF0MOFT − MOFN�IMT−MOF0																										MOFN�IM0																																					�IMN�IM0															 Q (3.14) 

Next, the transformation matrix given by Equation (3.14) is used to determine the relevance of 

the body axes system components U, V, W with the wind axes system components V0, α, β. 

Figure 3.7 shows the resolution of the velocity vector through incidence and sideslip angles to 

the body coordinate system.  
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Figure 3.7 Transformation of velocities through incidence and sideslip angles (Cook, 2012) 

In the earth axes coordinate system (ox0y0z0), the motion vector can be written as: 

For the case shown in Figure 3.7, the roll angle is 0, pitch angle is αe, and yaw angle is βe. 

Therefore for the attitude quantities, the following holds: 

(N, 0, TA = ?0, & , ' A (3.17) 

Thus, the transformation of quantities from earth axes to body axes for the specific case of 

Equation (3.17) can be described as: 

P� # $ Q = P�IM& �IM' 						− �IM& MOF' 						− MOF& MOF' 																							�IM' 																				0MOF& �IM' 							− MOF& MOF' 										�IM& 		Q P
#�00 Q (3.18) 

which can be further written in the following form: 

�  =	#�	�IM& �IM'  (3.19) 

# =	#�sin'  (3.20) 

$ = 	#�	sin& cos'  (3.21) 

(ox0, oy0, oz0) = (V0, 0, 0) (3.15) 

and, (ox3, oy3, oz3) = (Ue, Ve, We) (3.16) 
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The D matrix in Equation (3.12) is not only applicable for the trimming flight condition, but also 

can be applied by relating the perturbed velocity vector to the trim velocity vector: 

P� # $ Q = UVS P�#$Q	  

=	P	�IM0�IMT					MOFNMOF0�IMT − �IMNMOFT				�IMNMOF0�IMT D MOFNMOFT�IM0MOFT					MOFNMOF0MOFT D �IMN�IMT				�IMNMOF0MOFT − MOFN�IMT−MOF0																										MOFN�IM0																																					�IMN�IM0															 Q P�#$Q  

(3.22) 

Since the flight height h in earth axes is defined as positive in the upward direction, and the 

positive We is defined as downward, therefore the following holds: 

ℎ] = −$  (3.23) 

According to Equations (3.22) and (3.23), the following can be derived: 

ℎ] = �MOF0 − #�IM0MOFN −$�IM0�IMN (3.24) 
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3.3.2 Angular velocities transformation 

 

Figure 3.8 Transformation of angular velocity (adapted from Cook, 2012) 

The body angular rates are expressed as p, q and r, which are shown in (ox3y3z3) coordinate 

system in Figure 3.8. Similar to linear quantities transformation, the order of angular velocities’ 

transformation is very important. In Figure 3.8, the transformation order can be described as the 

following: i) roll about axis ox3 by angle of φ, with angular velocity of N] ; ii ) pitch angle of θ 

about axis oy2, with rotating velocity of 0]; iii ) yaw angle of ψ with respect to axis oz1, by rotating 

velocity of T] . In this way, the body axes system variables are transformed into the variables 

referring to the earth axes. The transformation equations corresponding to each step are: 

First, roll about ox3 by φ, the roll rate p is a combined action of the components N] , 0]  and T]  
which resolved along ox3, 

^ = N] − T] MOF0 (3.25) 
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Second, pitch about oy2 by θ, pitch rate q is a combined action of the components N] , 0]  and T]  
which resolved along oy3, 

_ = 0]�IMN D T]MOFN�IM0 (3.26) 

Third, yaw about oz1 by ψ, yaw rate r is a combined action of the components N] , 0] and T]  which 

resolved along oz3, 

` = T] �IMN�IM0 − 0]MOFN (3.27) 

The transformation equations (3.25) to (3.27) can be combined and expressed in concise matrix 

expression as: 

a_̀̂b = P	1										0										 − MOF0				0						�IMN						MOFN�IM00			 − MOFN				�IMN�IM0 Q c
N]0]T] d (3.28) 

Equation (3.28) shows the transformation from Euler rates to the angular velocities in the body 

coordinate system. The inverse transformation which shows how angular velocities transformed 

to attitude rates is given below: 

cN]0]T] d = P1					MOFN@EF0				�IMN@EF00										�IMN									 − MOFN			0				MOFNM��0					cosφsecθ	Q a_̀̂b (3.29) 

When the aircraft is undergoing very little perturbations in which φ, θ and ψ are all very small. 

Equation (3.28) can be simplified and written approximately as: 

^ = N]  (3.30) 

_ = 0] (3.31) 
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` = T]  (3.32) 

Equations (3.30) to (3.32) are commonly used equalities in aircraft flight data processing and 

system identification. 

 

3.4 Aircraft reference geometry and control surfaces 

3.4.1 Reference geometry 

Measurement of aircraft geometry is very important for both aircraft modeling and simulations. 

Figure 3.9 shows a typical way to define aircraft geometric parameters. With reference to Figure 

3.9, b stands for wing span, s denotes wing semi-span, � ̅is the standard mean chord of the wing, 

and cg is short for the centre of gravity. 

 

Figure 3.9 Reference geometry 
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Usually S is used to denote the reference area of the wing as: 

S = b�̅ (3.33) 

3.4.2 Aircraft control surfaces 

The most conventional control surfaces for aircrafts are aileron, elevator and rudder, which 

control the rolling, pitching and yawing motion of the aircraft, respectively. Figure 3.10 

illustrates the aircraft control surfaces and directions of their positive deflections. 

 

Figure 3.10 Aircraft control surfaces (adapted from Cook, 2012) 

As shown by Figure 3.10, positive deflection for the control surfaces is defined as direction 

causing the aircraft to generate a negative rotation response. For the positive aileron input, it is 

defined as left aileron going up and right aileron going down. This positive aileron input causes 

the aircraft right aerofoil trailing edge to go up and the left wing trailing edge to go down. This is 

called a negative aircraft rolling response. For positive elevator input, the elevator trailing edge 
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goes up. And the aircraft nose goes up accordingly. For positive rudder input, the rudder trailing 

edge turns to the left and the aircraft nose turns left.  

Usually �*, �  and �+ are used to denote aileron, elevator and rudder angles, respectively. And 

the perturbation angles (angular displacement) of the aileron, elevator and rudder are denoted by 

ξ, η and ζ, respectively.  

 

3.5 Summary 

In this chapter, the aircraft coordinate systems (earth and body-fixed) were discussed first. Next, 

the aircraft motion variables were defined and explained on the basis of the coordinate systems 

discussed. The manner the parameters can be transformed from one coordinate system to another 

was described. Finally, typical aircraft geometry and control surfaces parameters were defined.  
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4 Aircraft Motion Equations 

For system identification of an aircraft, grey box aircraft motion modeling is required. The 

aircraft analytical model describes an aircraft’s behavioural characteristics in a mathematical 

way, which is developed on the basis of physical and mathematical laws. In this chapter, 

equations describing the motion of aircraft are derived. 

 

4.1 General equations of motion 

For aircraft analytical modeling, the airplane is commonly assumed to be rigid and symmetric. 

The rigid body assumption implies that effects like aircraft structure deformation, the control 

surface motion effect on cg and the fuel slosh are all omitted (Klein and Morelli, 2006). The 

generalisation of Newton’s second law and Euler’s law are the basis for aircraft modeling: 

h = ii@ (jk) = j	 × 	m (4.1) 

n = ii@ (op) = 	o	 × 	p]  (4.2) 

 

where F is the force applied, V is translational velocity, mV is linear momentum and M is 

applied moment about the centre of gravity. Iω is angular momentum about the centre of gravity. 

ω is angular velocity, and I is the inertia matrix. 
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h = cq
q�q�d (4.3) 

k = P �#$Q (4.4) 

n = cr
r�r� d (4.5) 

p = a_̀̂b (4.6) 

o = c   �
       − �
�    −�
�−��
       ��      − ���−��
     − �
�       ��   d (4.7) 

where  

�
 = s 3Kij (4.8) 

�� = s LKij (4.9) 

�� = s %Kij (4.10) 

�
� = s 3Lij = ��
 (4.11) 

��� = s L%ij = ��� (4.12) 

�
� = s 3%ij = ��
 (4.13) 
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Since the aircraft is rigid and symmetric about the (oxz) plane, the inertia matrix is symmetric 

and,  

�
� = ��
 = ��� = ��� = 0 (4.14) 

As a result, the inertia matrix can be simplified as: 

o = c				�
								0					−�
�		0								��							0−��
					0								�� d (4.15) 

Thus, 

op = c �
^ − �
�`��_−�
�^ D ��`d (4.16) 

For the rotating axes system, the derivative operator applied to vectors has two parts: one is the 

rate of change of the vector components expressed in the rotating system; another one is the 

effect of the axes system rotation of the rotating system with respect to a fixed frame. Therefore 

the operator can be written as: 

ii@ (	) = ��@ (	) D p × (	) (4.17) 

Equations (4.1) and (4.2) are then written as, 

h = jk] D p ×jk (4.18) 

n = op] D p × op (4.19) 

Combining Equations (4.3) and (4.18), the force equations can be written as (Cook, 2013): 
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q
 = j(�] D _$ − `#) (4.20) 

q� = j(#] D `� − ^$) (4.21) 

q� = j($] D ^# − _�) (4.22) 

Similarly, combining Equations (4.5) and (4.19), moment equations can be written as: 

r
 = ]̂�
 − ]̀�
� D _`t�� − ��u − _^�
� (4.23) 

r� = _] �� D ^`(�
 − ��) − (^K − `K)�
� (4.24) 

r� = ]̀�� − ]̂�
� D ^_t�� − �
u − _`�
� (4.25) 

The total force and moment acting on the aircraft are the combined effects of aerodynamic 

(hv ,	nv ), gravity (hw ) and propulsion (hx , nx ). Therefore total force and moment can be 

denoted as: 

h = hv D hx D hw (4.26) 

n = nv Dnx (4.27) 

Since the moment equation is written with respect to the centre of gravity, the moment due to the 

gravity is omitted in Equation (4.27). For the aerodynamic forces, the following holds,  

hv = P8yzQ = _{| P�:�}�~Q (4.28) 

where, CX, CY and CZ are non-dimensional aerodynamic force coefficients in the body-axes, _{ is 

the dynamic pressure, and S denotes the aircraft reference area. Dynamic pressure _{ is a function 

of the air density ρ which is given by: 
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_{ = 12�(�K D #K D$K) = 12�#K (4.29) 

In Equation (4.26), the thrust force qx is given by: 

hx = P�:�}�~Q (4.30) 

where, �:, �} and �~ are the engine trust components in the body frame. The gravity force qw is 

given by: 

hw = j� (4.31) 

where, � is the gravitational acceleration vector expressed in the body frame,  

� = P�
����Q = P1													0												0			0									�IMN					MOFN0					 − MOFN				�IMNQ P
�IM0					0				 − MOF00									1												0	MOF0						0								�IM0	Q P

	�IMT							MOFT							0−MOFT					�IMT							0						0													0											1Q P
00�Q (4.32) 

� can be simplified as: 

� = P�
���� Q = P −�MOF0�MOFN�IM0��IMN�IM0Q (4.33) 

Therefore,  

hw = j P�
���� Q = P −j�MOF0j�MOFN�IM0j��IMN�IM0Q (4.34) 

 

By combining Equations (4.20) to (4.22), (4.26), (4.28) and (4.34), the followings can be derived: 
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q
 = jt�] D _$ − `#u = �: D _{|�: −j�MOF0 (4.35) 

q� = jt#] D `� − ^$u = �} D _{|�} Dj�MOFN�IM0 (4.36) 

q� = jt$] D ^# − _�u = �~ D _{|�~ Dj��IMN�IM0 (4.37) 

where u, v and w are linear velocity (air-speed) components; p, q and r are angular velocity 

components (measured by the gyroscopes onboard) in the aircraft body frame; φ and θ are the 

roll and pitch attitude of the aircraft, which describe the aircraft body orientation with respect to 

the inertial reference frame. 

The right hand side of Equations (4.35), (4.36) and (4.37) can be written in terms of wind axes 

components (drag, lift and side force) as the following: 

q
 = jt�] D _$ − `#u = �: − U�IM& D �MOF& −j�MOF0 (4.38) 

q� = jt#] D `� − ^$u = �} D y Dj�MOFN�IM0 (4.39) 

q� = jt$] D ^# − _�u = �~ − UMOF& − ��IM& Dj��IMN�IM0 (4.40) 

where D, Y and L are drag, sideslip and lift forces, respectively: 

PUy�Q = _{| P���}�	 Q (4.41) 

where CD, CY and CL in Equation (4.41) are dimensionless drag, sideslip and lift force 

coefficients, respectively. For the specific situation in which the sideslip angle β=0, the body 

axes force coefficients are related to the wind axes force coefficients by angle of attack α as:  

�	 = −�~�IM& D �:MOF& (4.42) 
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�� = −�:�IM& − �~MOF& (4.43) 

Next, the moment equations are derived in the components form expressed in the body 

coordinate system. For the moment components in Equation (4.27), the following relation holds: 

nv = P �jF Q = _{| P ����̅�
���Q (4.44) 

where �� , Cm and Cn are dimensionless rolling, pitching and yawing moment coefficients, 

respectively. 

nx = crx�rx�rx�
d = c 0�-�-`−�-�-_d (4.45) 

where �- is the inertia of the rotating mass, such as the propeller, and �- is its angular velocity, q 

and r are the pitch and yaw rate of the aircraft body. By combining Equations (4.23), (4.24), 

(4.25), (4.27), (4.44) and (4.45), the following are derived:  

r
 = �

 ]̂ − �
� ]̀ − �
�^_ + t��� − ���u_` = _{|��� + rx�  (4.46) 

r� = ���_] + ?�

 − ���A^` + �
�?^K − `KA = _{|�̅�
 + rx�  (4.47) 

r� = ��� ]̀ − �
� ]̂ + �
�_` + t��� − �

u^_ = _{|��� + rx� (4.48) 

The equations of motion discussed above can be summarized as four parts: force, moment, 

kinematics and navigation equations. They are described in Sections 4.1.1 to 4.1.4. 
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4.1.1 Force equations 

The force equations in the body axes coordinate system are given by Equations (4.35) to (4.37), 

which can be rewritten as: 

�] = `# − _$ D �j D _{|�:j − �MOF0 (4.49) 

#] = ^$ − `� D _{|�}j D ��IM0MOFN (4.50) 

$] = _� − ^# D _{|�~j D ��IM0cosφ (4.51) 

They can also be given with respect to wind-axes coordinate system as: 

#] = − _{|j ��� + �j �IM&�IM' + �?�IMN�IM0MOF&�IM' + MOFN�IM0MOF' − MOF0�IM&�IM'A 

 (4.52) 

	&] = − _{|j#�IM' �	 D _ − @EF'(^�IM& D `MOF&) D �#�IM' (�IMN�IM0�IM& D MOF0MOF&) 
− �MOF&j#�IM' (4.53) 

'] = _{|j# �}� D ^MOF& − `�IM& D �# �IM'MOFN�IM0 D MOF'# (��IM&MOF0 − �MOF&�IMN�IM0 

D��IM&j ) (4.54) 

where, 

��� = −�:�IM&�IM' − �}MOF' − �~MOF&�IM' = ���IM' − �}MOF' (4.55) 
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�}� = −�:�IM&MOF' D �}�IM' − �~MOF&MOF' = �}�IM' − ��MOF' (4.56) 

# = ��K D #	K D$K (4.57) 

& = @EFVS($�) (4.58) 

' = MOFVS(#	# ) (4.59) 

#	 in Equations (4.57) and (4.59) is the total velocity component in a lateral direction. V is the 

total velocity while α and β are incidence and sideslip angles respectively. Positive directions of 

the lift force coefficient CL and the drag force coefficient CD are along the –zs and –xs stability 

axes (referring to Figure 3.2), whereas positive directions of wind-axes drag coefficient CDw and 

side force coefficient CYw are along –xw and +yw axes, respectively.  

The onboard accelerometers can sense all the specific forces except those from gravity. 

Therefore, the general equation of the translational acceleration can be written as: 

m = k] D p × k − hwj = 1j (hv D hx) (4.60) 

which can be rewritten in the extended form as, 

E
 = �] − `# D _$ D �MOF0 = 1j (_{|�: D �) (4.61) 

E� = #] − ^$ D `� − ��IM0MOFN = 1j (_{|�}) (4.62) 

E� = $] − _� D ^# − ��IM0�IMN = 1j (_{|�~) (4.63) 
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and, 

�: = jE
 − �_{|  (4.64) 

�} = jE�_{|  (4.65) 

�~ = jE�_{|  (4.66) 

In Equations (4.64) to (4.66), all the quantities are measurable or computable for system 

identification, by using flight test data. For aircraft modeling, however, the acceleration 

components are all unknowns; thus, they need to be described using the aerodynamic equations 

which will be discussed in Sections 4.2 and 4.4. For using the aerodynamic equations, the 

aerodynamic derivatives need to be identified in advance. This is another motivation for carrying 

out system identification for UAVs.  

4.1.2 Moment equations 

Referring to Equations (4.46) to (4.48), the moment equations can be rewritten as: 

]̂ = �
��
 ]̀ D _{|��
 �� − �� − ���
 _` D �
��
 _^ (4.67) 

_] = _{|�̅�� �
 − �
 − ���� ^` − �
��� (^K − `K) D �-�� �-` (4.68) 

]̀ = �
��� ]̂ D _{|��� �� − �� − �
�� ^_ − �
��� _` − �-�� �-_ (4.69) 

where �p is the propeller angular rate. 
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4.1.3 Kinematics equations 

Kinematics equations describe the attitudes of the aircraft. Equations (4.70) to (4.72) give the roll, 

pitch and yaw angular rates as functions of the angular rates in the body coordinate system:  

N] = ^ D @EF0(_MOFN D `�IMN) (4.70) 

0] = _�IMN − `MOFN (4.71) 

T] = _MOFN D `�IMN�IM0  (4.72) 

4.1.4 Navigation equations 

Navigation equations depict the aircraft’s position with respect to the earth axes coordinate 

system, which are shown as: 

3]� = #�IM&�IM'�IMT�IM0 D #MOF'(�IMTMOF0MOFN − MOFT�IMN)  

D#MOF&�IM'(�IMTMOF0�IMN D MOFTMOFN) (4.73) 

L]� = #�IM&�IM'MOFT�IM0 D #MOF'(MOFTMOF0MOFN D �IMT�IMN)  

D#MOF&�IM'(MOFTMOF0MOFN − �IMTMOFN) (4.74) 

ℎ] = #�IM&�IM'MOF0 − #MOF'�IM0MOFN − #MOF&�IM'�IM0�IMN (4.75) 

The force, moment, kinematics and navigation equations described above are developed under 

the following assumptions (Klein and Morelli, 2006): 

i. the aircraft body is rigid; 

ii.  the earth surface is flat; 

iii.  the aircraft mass and its distribution are constants; 
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iv. the aircraft’s mass and geometry is symmetrical about its plane of symmetry; 

v. direction thrust is along the ox body axis and through the center of gravity; 

vi. the earth is fixed in inertial space. 

The aircraft motion equations can further be expressed in general form by a set of first order 

nonlinear differential equations: 

�] = �(�, �) (4.76) 

where x is a vector of state variables: � = [B, !, G, ^, _, `, N, 0, T, 3� , L� , ℎ]x	 in body axes 

coordinate system (except for 3� , L� , ℎ); � = [#, &, ', ^, _, `, N, 0, T, 3� , L� , ℎ]xwith respect to 

wind axes coordinate system (except for 3� , L� , ℎ). � = [��� , �*, � , �+]x is a vector of inputs, 

which is composed of throttle position and control surfaces such as elevator, aileron and rudder 

deflections. The input variables are not shown in the force and moment equations above, but they 

are included implicitly, since they influence the motion of aircraft. 

Output variables of the aircraft mathematical model are measured aircraft responses: � =
[#, &, ', ^, _, `, N, 0, T, ℎ, E
 , E�, E� , ]̂ , _] , ]̀ ]x. The quantities xE and yE are not included, since they 

are not related to the aircraft dynamics. Position variable h is included, because it has effect on 

the air density and air pressure (Klein and Morelli, 2006). The output equations show the 

dependency of the output variables, to the aircraft states, state derivatives and control inputs. The 

output equations can be written in a general form as, 

� = ℎ(�, �] , �) (4.77) 

Quantities V, α, β, p, q, r, φ, θ and ψ are both states and outputs (referring to Equations (4.49) to 

(4.51), and (4.67) to (4.75)).  
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4.2 Aerodynamic terms 

When the aircraft is excited by an input from autopilot command or wind/gust disturbances, it 

deviates from its equilibrium state and the balance of the aircraft is broken. In this research, it is 

assumed that aerodynamic force and the moment terms are only dependent on the disturbed 

motion variables. The aerodynamic force and the moment can be expressed mathematically as 

the sum of a number of Taylor series which is shown as (Cook, 2013): 

8* = 8*� D ��8�B B D �K8�BK BK2! D �J8�BJ BJ3! D ��8�B� B�4! D ⋯� 
 

	D �∂X∂v v D ∂KX∂vK vK2! D ∂JX∂vJ vJ3! D ∂�X∂v� v�4! D ⋯�	  

	D ��8�GG D �K8�GKGK2! D �J8�GJGJ3! D ��8�G�G�4! D ⋯�	  

	D ��8�^ ^ D �K8�^K ^K2! D �J8�^J 3̂! D ��8�^� ^�4! D ⋯� 
 

	D ��8�_ _ D �K8�_K _K2! D �J8�_J _J3! D ��8�_� _�4! D ⋯� (4.78) 

	D ��8�` ` D �K8�`K `K2! D �J8�`J `J3! D ��8�`� `�4! D ⋯� 
 

	D ��8�B] B] D �K8�B] K B] K2! D �J8�B] J B] J3! D ��8�B] � B] �4! D ⋯� 
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	D ��8�!] !] D �K8�!] K !] K2! D �J8�!] J !]J3! D ��8�!] � !]�4! D ⋯� 
 

	DM�`O�M	@�`jM	OF	G] , ]̂ , _] , ]̀  

	DM�`O�M	@�`jM	OF	ℎO�ℎ�`	I`i�`	i�`O!E@O!�M  

where, 8*�  is a constant term. For small perturbations, only the first term of each series is 

significant. Further, for higher order derivative terms, only terms that involve G]  are significant. 

Therefore, Equation (4.78) can be truncated and simplified in linear format as (Cook, 2013):  

8* = 8*� D �8�B B D �8�! ! D �8�GG D �8�^ ^ D �8�_ _ D �8�` ` D �8�G] G]  (4.79) 

By defining X  � = ¡:¡� and extending this manner to other terms, Equation (4.79) can be rewritten 

with the shorthand notations as: 

X* = X*� + X  �B + X  ¢! + X  �G + X  -^ + X  �_ + X  £`+X  �] G]  (4.80) 

where, coefficients X  �, X  ¢, X  �, X  -, X  �, X  £ and X  �]  are known as aerodynamic stability derivatives. 

The dressing “ ͦ ” denotes that they are dimensional. Equation (4.80) can also be written in 

dimensionless form as (Klein and Morelli, 2006): 

�:¤ = �:¤� + �:7BC + +�:¥!C + �:� G< + �:¦ ^̂ + �:¨_C + �:© `̂ + �:�] G]ª (4.81) 

where, BC , !C, G< ,	^̂, _C, ̀ ̂ and G]ª  are non-dimensionalized u, v, w, p, q, r and G] , respectively. The 

conversions between dimensional and non-dimensional variables are expressed as (Klein and 

Morelli, 2006): 
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#; = ##� 					 ^̂ = ^�2#					_C = _�̅2# 						 `̂ = `�2#						&]; = &] �̅2# 					']« = ']�̅2# (4.82) 

Equation (4.81) can be further expressed as: 

�" = �"( B#� , !#� , G#� , ^�2# , _�̅2# , `�2# ,G] �̅2# , �) (4.83) 

where, i = D , Y, L, l, m, n. V0 is the airspeed at the equilibrium condition also known as trim, δ 

stands for the control inputs, which can be elevator, aileron or rudder deflection. 

 

4.3 Equations of motion for small perturbations  

When the aircraft is perturbed from the steady state flight, the aircraft will have a perturbation, 

which is a response to the input excitation. The full aircraft motion equations are comprised of 

aerodynamic force, gravitational, aerodynamic control and thrust terms. The equations can be 

written by combining Equations (4.35) to (4.37), (4.46) to (4.48), and (4.78). Since the aircraft is 

assumed to be initially flying in trimming state, the roll, yaw and sideslip angles are all zeroes, 

and the angular rates are all zeroes or negligibly small. Because the sideslip angle is 0, therefore 

Ve=0. According to definition, quantities u, v, w, p, q and r are small; therefore, the terms 

involving their products and squares can be ignored. Also by removing the higher order terms of 

the motion variables, Equations (4.84) to (4.89) are obtained (Cook, 2013): 

            j(B] D _$ )	=	XaeDX­=B D X­®! D X­¯G D X­°^ D X­±_ D X­ £`DX­ ]̄ G] − j�MOF0   

                                         −j�0�IM0 D X­ ², D X­³/ D X­ ´µ D X­ ¶· (4.84) 



46 | P a g e  

 

j(!] − ^$ D `� )	=	YaeDYͦ=B D Yͦ®! D Yͦ¯G D Yͦ°^ D Yͦ±_ D Yͦ£`DYͦ ]̄ G] D j�TMOF0 		  

                                         Dj�N�IM0 D Y­ ², D Y­³/ D Y­ ´µ D Y­ ¶· (4.85) 

             j(G] − _� )	=	ZaeDZ­=B D Z­ ®! D Z­¯G D Z­°^ D Z­±_ D Z­ £`DZ­ ]̄ G] D j��IM0   

                                         −j�0MOF0 D Z  ², D Z ³/ D Z  ´µ D Z  ¶· (4.86) 

                  �
 ]̂ − �
� ]̀ 	=	LaeDL =B D L ®! D L ¯G D L °^ D L ±_ D L  £`DL  ]̄ G] D L  ², D L ³/ 
 

                                         DL  ´µ D L  ¶· (4.87) 

                              ��_] 	=	MaeDM  =B D M  ®! D M  ¯G DM  °^ DM  ±_ D M  £`DM  ]̄ G] D M  ², 
 

                                         DM  ³/ D M  ´µ D M  ¶· (4.88) 

                  �� ]̀ − �
� ]̂ 	=	NaeDN=B D N®! D N¯G D N°^ D N±_ D N£`DN ]̄ G] D N²,  

                                         DN³/ D N´µ D N¶· (4.89) 

In Equation (4.86), (−j�MOF0 −j�0�IM0 ) is the gravitational effect, (X­ ², + X­ ³/ + X­ ´µA is 

the aerodynamic control term, X­ ¶· is the thrust term, and the other terms are aerodynamic terms. 

These definitions are applicable for the other equations above. At steady state, there is no 

perturbation. Therefore, some of the terms in Equations (4.84) to (4.89) are reduced to the 

following equalities for the magnitudes of the aerodynamic forces and moments at the trim 

condition: 

Xae = j�MOF0  (4.90) 

Yae = 0 (4.91) 

Zae = −j��IM0  (4.92) 

Lae = 0 (4.93) 
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Mae = 0 (4.94) 

Nae = 0 (4.95) 

By substituting Equations (4.90) to (4.95) into Equations (4.84) to (4.89), the aircraft’s perturbed 

equations of motion can be written as (Cook, 2013): 

j?B] + _$ A=	X­ �B + X­ ¢! + X­ �G + X­ -^ + X­ �_ + X­ +`+X­ �] G] − j�0�IM0 + X­ ¾, + X­ )/ 

  +X­ ´µ + X­ ¿· (4.96) 

j?!] − ^$ + `� A=	Yͦ�B D Yͦ¢! D Yͦ�G D Yͦ-^ D Yͦ�_ D Yͦ+`DYͦ�] G] D j�TMOF0 Dj�N�IM0  
                                       DY­ ¾, D Y­)/ D Y­ Àµ D Y­ Á· (4.97) 

j(G] − _� ) = Z­�B + Z­ ¢! + Z­�G + Z­-^ + Z­�_ + Z­ +`+Z­�] G] − j�0MOF0 + Z  ¾, + Z )/ 

                                      +Z  Àµ + Z  Á· (4.98) 

�
 ]̂ − �
� ]̀=	L �B + L ¢! + L �G + L -^ + L �_ + L  +`+L �] G] + L ¾, + L )/ + L Àµ + L  Á· (4.99) 

��_] = M  �B +M  ¢! + M  �G +M  -^ + M  �_ + M  +`+M  �] G] + M  ¾, + M  )/ + M  Àµ	 + M  Á· (4.100) 

�� ]̀ − �
� ]̂ 	=	N  �B + N  ¢! + N  �G + N  -^ + N  �_ + N  +`+N  �] G] + N  ¾, + N  )/ + N  Àµ + N  Á· (4.101) 

 

4.4 Decoupled motion equations  

4.4.1 Longitudinal motion equations 

The motion equations (4.96) to (4.101) can be further decoupled and simplified. By keeping only 

the longitudinal channel related input and states, and setting the lateral channel related inputs and 

states to zero, decoupled longitudinal channel equations can be obtained. In this case, the aileron 
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and rudder perturbations, states, v, p and r are all zeroes. Therefore Equations (4.96), (4.98) and 

(4.100) can be simplified as (Cook, 2013): 

jB] − Xͦ=B − Xͦ¯G−	Xͦ ]̄ G] − tXͦ± −j$ u_ D j�0�IM0 = X­³/ D X­ ¿· (4.102) 

−Zͦ=BD(j − Zͦ ]̄ )G] − Zͦ¯G − (Zͦ± Dj� )_ D j�0MOF0 = Z ³/ D Z  ¿· (4.103) 

��_] − M  =B − M  ¯G − M  ±_−M  ]̄ G] = M  ³/ + M  ¿· (4.104) 

Equations (4.102) to (4.104) can be further written as, 

B] = Xͦ=j B D Xͦj̄ G D Xͦ ]̄j G] D �Xͦ±j −$ �_ − �0�IM0 D X­)/ D X­ Á· (4.105) 

G] = Zͦ=j B D Z­ ]̄j G] D Zͦj̄ G D �Zͦ±j D� �_ − �0MOF0 D Z )/ D Z  Á· (4.106) 

_] = M  =�� B + M  ¯�� G + M  ±�� _ + M  ]̄�� G] + M  ³�� / + M  ¿�� · (4.107) 

The aerodynamic derivatives with “ ͦ ”  dressing in above equations are dimensional derivatives 

in British notation. In this thesis, North American notations are used, Equations (4.105) to (4.107) 

can then be rewritten by using North American notations as: 

B] = X�B D X�G D X�] G] D tX� −$ u_ − �0�IM0 D XÂ�� D XÂÃÄ��� (4.108) 

G] = Z�B D Z�G D Z�] G] D tZ� D � u_ − �0MOF0 D ZÂ�� D ZÂÃÄ��� (4.109) 

_] = M�B + M�G + M�] G] + M�_ + MÂ�� + MÂÃÄ��� (4.110) 

Where, δe and δth stand for elevator and propeller thrust perturbations in American notation, 

which correspond to / and · in British notation. The aerodynamic derivatives used in Equations 
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(4.108) to (4.110) are the ones needed to be identified through system identification, which is the 

main objective of this research. Usually propeller thrust is constant; thus, propeller thrust 

perturbation can be set to zero. The reduced order model of the aircraft given by Equations 

(4.108) to (4.110) can also be written in the following matrix form (Cook, 2013): 

Å1								−X�] 						0					00						1 − Z�] 				0					00							 − M�] 				1					00												0								0					1Æ Å
B]G_0]]
] Æ = ÇÈÈ

ÉX�	 X�					X� −$ 					− ��IM0 Z� Z� 					Z� D � 					− �MOF0 M�					M� 										M� 																			0								0								0														1																					0						 ÊË
ËÌ cBG_0d D ÇÈÈ

ÉXÂ�ZÂ�MÂ�0 ÊËË
Ì �  (4.111) 

Equation (4.111) can be written as, 

n�] ?@A = ÍÎ�?@A + ÏÎ�?@A (4.112) 

which can also be further rewritten as, 

�] ?@A = nVÐÍÎ�?@A + nVÐÏÎ�?@A (4.113) 

Therefore the reduced order longitudinal state equation can be derived from Equations (4.111) 

and (4.113) as, 

ÅB]G_0]]
] Æ = Å 		3�				3�					3� 				3�			%�					%�					%�					%�			j�			j� 			j� 			j�	0						0								1						0 Æ cBG_0 d + Å 3)%)j)0 Æ / (4.114) 

The conversion between xu and Xu is shown in Appendix 1, and the other coefficients’ 

conversions are also shown in Appendix 1. Equation (4.114) can be expressed in general 

equation as, 

�] ?@A = Ñ�?@A + Ò�?@A (4.115) 
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where x is called state vector, u is input vector, A is state matrix, and B is input matrix. The 

coefficients in matrix A and B are the aerodynamic derivatives needed to be identified in this 

research. Usually the output equation is written as, 

�(@) = Ó�(@) D Ô�(@) (4.116) 

which is usually combined with Equation (4.115) to describe the full aircraft motion. Commonly 

the aircraft output vector is the same as the state vector. In this case C is an identity matrix and D 

is a zero matrix. 

In aircraft system identification, sometimes it is more convenient to use dimensionless 

aerodynamic parameters like CD, CX, CL or CZ, CY, Cl, Cm, Cn than dimensional derivatives. Since 

dimensionless derivatives remove the known dependence on the airspeed and air density 

(dynamic pressure), they are normalised partial derivatives. The aerodynamic equations (4.108) 

to (4.110) can be written as general dimensionless format as: 

�* = �*(B, G,G] , _, �) , for a=D, L, m (4.117) 

which is short for, 

�* = �*Õ D �*7 B#� D �*�G D �*�] G] �̅2#� D �*¨ _�̅2#� D �*Ö×�,			for	E = �, U,j (4.118) 

where, the dimensionless coefficients are defined as: 

�*7 = #� ��*�B |Û (4.119) 

�*� = ��*�G |Û (4.120) 
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�*�] = 2#��̅ ��*�G] |Û (4.121) 

�*¨ = 2#��̅ ��*�_ |Û (4.122) 

�*Ö = ��*�� |Û		for	E	 = 	U, �,j (4.123) 

�*Ö — Control derivatives. 

�*7— Static stability derivatives (derivatives associated with the air-relative velocity quantities 

such as (u, v, w, V, α, β)). 

�*¨— Dynamic stability derivatives (derivatives associated with angular rates (p, q, r)). 

�*�]  — Unsteady derivatives (derivatives associated with unsteady aerodynamics (&] , G] )). 
An example showing how to use the equations on drag force is: 

�� = ��Õ D ��7 B#� D ���G D ���] G] �̅2#� D ��¨ _�̅2#� D ��Ö×� (4.124) 

4.4.2 Lateral motion equations 

Lateral motion equations can be written in concise format as (Cook, 2013): 

j!] − Yͦ®! − tYͦ° Dj$ u^ − tYͦ£ −j� u` − j�TMOF0 −j�N�IM0 = Y­ ², D Y­ ´µ (4.125) 

−L6 ®! D �
 ]̂ − L6 °^ − �
� ]̀ − L6 £` = L  ², D L  ´µ (4.126) 

−N  ®! − �
� ]̂ − N  °^ + �� ]̀ − N  £` = N  ², + N  ´µ (4.127) 
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Recalling Equations (4.39), (4.46) and (4.48), Equations (4.125) to (4.127) can be rewritten as: 

Y = Yͦ®! D Yͦ°^ D Yͦ£` D j�TMOF0 Dj�N�IM0 D Y­ ², D Y­ ´µ (4.128) 

L = L6 ®! D L6 °^ D L6 £` D L  ², D L  ´µ (4.129) 

N = N6 ®! D N6 °^ D N6 £` D N  ², D N  ´µ (4.130) 

where Y, L and N denote lateral force, rolling and yawing moment, respectively. Equations 

(4.128) to (4.130) can be written in general dimensionless format as: 

�* = �*Õ D �*Ü×' D �*¦ ^�2#� D �*© `�2#� D �*Ö×�				for	E = y, �, F (4.131) 

where, 

�*Ü = ��*�' |Û (4.132) 

�*¦ = 2#�� ��*�^ |Û (4.133) 

�*© = 2#�� ��*�` |Û (4.134) 

�*Ö = ��*�� |Û, for	E	 = 	y, �, F	 (4.135) 

The decoupled equations of motion discussed above are usually the basis for system modeling 

and identification. The structures presented here are essential for system identification algorithm 

used in this thesis. 
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4.5 Summary 

This chapter discussed the mathematical model of the aircraft system. Section 4.1 focused on 

equations of motion for the aircraft. The aircraft motion was described by force equations, 

moment equations, kinematic equations and navigation equations. Section 4.2 discussed the 

aircraft motion from the aerodynamic view point. In Section 4.3, the aircraft motion with respect 

to small perturbations was studied. It was also shown how the dynamic equations can be 

decoupled into longitudinal mode motion and lateral mode motion, which facilitated the reseach 

conducted in thus thesis.  
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5 Input Excitation 

The quality of the system identification results is highly dependent on two points (Tischler and 

Remple, 2012): i) a properly designed and executed flight test; ii ) an accurate system 

characteristics analysis. This chapter will focus on the proper input design. The recommended 

input excitation for frequency domain system identification is a frequency sweep signal called 

“Chirp”. Chirp is a signal which can provide a fairly uniform spectral excitation over the 

frequency range of interest for high quality frequency response identification (Tischler and 

Remple, 2012). The topics to be covered in this chapter are: i) general data requirements for 

system identification; ii ) optimal excitation design; iii ) frequency sweep excitation generation. 

 

5.1 Input excitation requirements of system identification 

For system identification, the desired aircraft characteristics need to be captured in the flight tests. 

Thus, an eligible input excitation should be capable of exciting those characteristics of the 

aircraft that need to be captured. The requirements of input excitation include frequency range, 

excitation length and signal amplitude. Besides the requirements of input signal, the flight test 

condition is also essential for gathering data for system identification. 

5.1.1 Frequency range  

The desired frequency range of input for system identification depends on an aircraft’s 

characteristics. The primary requirement on the frequency range is that it should include the 

natural frequencies. In another words, the signal’s upper frequency bound should cover the 
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aircraft’s natural frequencies. As a result, before designing the input excitation, a rough 

estimation of the aircraft’s natural frequency needs to be made. The requirement for the high 

frequency part of the input excitation is also partly determined by the sampling frequency of the 

data recording device. For example, given a data sampling rate of 30 Hz, the frequency over the 

Nyquist frequency of 15 Hz cannot be recorded accurately (Dorobantu et al., 2011). The fastest 

mode of an aircraft flight is its short period mode. Short period mode is a damped oscillation 

motion in pitch about the oy axis. For Cropcam and the delta-wing aircraft, their short period 

mode natural frequencies are estimated to be lower than 4 Hz; thus, a 7 Hz input frequency 

which includes 4 Hz frequency components is high enough to excite the aircraft characteristics.  

Aircraft input excitation’s low frequency part is also very important. The selection of the low 

frequency bound is usually depends on the aircraft’s level flight time competency. For example, 

if an aircraft can achieve 20 seconds level flight, considering the requirements of trimming after 

each turn, a 10 second data window is realistic. Therefore, the signal frequency lower than 0.1 

Hz cannot be identified (Dorobantu et al., 2011). By trial and error, a reference input frequency 

range of 0.05 ~ 6 Hz is proven appropriate for the delta-wing and Cropcam aircrafts’ system 

identification. 

In data processing, the coherence distribution can be used to guide the frequency range selection. 

Coherence quantifies the linear correlation between input and output (Dorobantu et al., 2011). 

The coherence function is given by: 

��,�K (2) = ||�,�(2)|K|�,�(2)|�,�(2) (5.1) 
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where, �2 is coherence function, S represents a complex valued spectral density function, u is the 

input to the system, and y is the system output signal. 

Coherence is an indication of the frequency response linearity. Its variation interval is 0 to 1. A 

high coherence indicates that there is a good linear correlation between the input and output, 

while a low coherence means the output was not excited by the control input (Lawler et al., 

2006). A coherence value of zero implies that there is no correlation between input and output. A 

coherence value of one signifies a perfect linear correlation between input and output signals. 

The presence of low coherence may be caused by the nonlinearity or low signal-to-noise ratio 

(SNR) of the signal. It may also be cause by the power spectral density of the input-output 

signals which have not been estimated correctly. A frequency range with coherence over 0.6 is 

considered acceptable for frequency domain system identification, and the coherence above 0.8 

indicates that the data’s linearity is very good for system identification (Tischler and Remple, 

2012). When selecting the proper frequency components for system identification, the low 

coherence frequency part is truncated and dropped.  

5.1.2 Length of input excitation  

The length of data must be consistent with the periods of interest (Dorobantu et al, 2013). 

Roughly, an individual sweep record length should have at least two or ideally four or five times 

the maximum dynamic period of interest. A full aircraft dynamic period includes both a short 

period and a phugoid mode. That is because, although in theory an individual mode can be 

identified from one dynamic period, the practical issues such as presence of measurement noise, 

multiple closely spaced modes, atmospheric turbulence and model structure uncertainty, all drive 

the need for a longer record length. 
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For the sake of safety, the aircraft needs to be flying in the line of sight all the time. Therefore 

the maximum level flight time of Cropcam is limited to 10 seconds. Considering the trimming 

requirement after each turn, the ideal experiment data window is limited to 5 seconds. However, 

5 seconds is too short for system identification. Therefore a trade-off is made by setting the input 

excitation length to 8 seconds. As a result, the trimming requirement may not be met ideally, but 

that is the physical limitation of the experiment. In fact, the identification results demonstrate 

that this setting works. 

5.1.3 Amplitude of input signal  

In order to achieve a sufficiently high signal-to-noise ratio (SNR), it is desirable that the 

amplitudes of output angular rates are over 6 deg/s, and linear accelerations are beyond 1.5 m/s2 

(Dorobantu et al., 2013). However, if the amplitudes of input are too high, outputs of the aircraft 

will deviate far from the nominal condition and will not remain in the linear region anymore. 

Preliminary simulation and experiments showed that an output amplitude of 20 deg/s is large 

enough for the angular rate to distinguish dynamical response from noise while maintaining the 

nominal flight characteristics. Typical effective input (elevator deflection) and output (body pitch 

rate) pair plots are shown in Figure 5.1 and Figure 5.2.  
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Figure 5.1 Elevator deflection 

 

Figure 5.2 Body pitch rate 
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From Figure 5.2, it is seen that the amplitude of body pitch rate follows the output requirements 

exactly. This demonstrated that the input excitation is designed properly. 

5.1.4 Flight test conditions 

The important flight conditions include wind speed, air pressure, air humidity and the trimming 

condition. The flight condition requirements are determined by the purpose under investigation. 

For instance, in order to obtain the aircraft’s aerodynamic model in the cruise, the aircraft must 

be trimmed in a steady state level flight at a constant altitude before deploying the input 

excitations. For this particular case, air pressure and humidity mostly remain constant. Therefore, 

wind speed and trimming condition are the factors that matter the most. It is desirable that the 

flight experiments are executed under a low-wind weather condition to avoid the effect of a large 

external disturbance. Besides, in order to avoid interference from disturbance, the input 

excitation must be executed only when the aircraft is flying at level condition. In other words, the 

aircraft should be flying at a steady speed, stable height and an almost zero angular rate before 

deploying the input excitation.  

To make sure that the data quality is high, the experiments should to be repeated. For the flight 

test in this research, several frequency sweep input commands are executed by the control stick. 

Also a few doublets are executed to ensure that at least one is free of large disturbance and the 

results are consistent. A typical doublet input signal and its corresponding response body pitch 

rate are shown in Figure 5.3 and Figure 5.4 (simulated by Horizon software which developed by 

MicroPilot).  
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Figure 5.3 Doublet input excitation 

 

Figure 5.4 Body pitch rate 
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From Figure 5.3 it is seen that the elevator position starts and ends at trim state, and the input 

amplitude is symmetric about the trim value. 

 

5.2 Optimal input design 

Design of input excitation has been widely studied. A lot of literature on optimal input design 

has been published (Hamel, 1991; Chen, 1975; Mehra and Gupta, 1975; Morelli, 1997; Tischler 

and Remple, 2012). A good excitation should be capable of using minimum maneuver time and 

minimum peak response to obtain maximum information content (e.g. power spectral density). In 

other words, an input signal can excite a good flight effect with low operation amplitude in short 

time length. The input excitation design is based on the prior knowledge of model structure and 

dynamical response characteristics. But usually, before doing system identification, the model 

structure and dynamical characteristics are unknown in advance. Therefore the initial design is 

mainly dependent on prior experience and rough estimation (Tischler and Remple, 2012). 

Different input excitation modes are required for different ways of system identification. In time 

domain system identification, multistep inputs are proven to be effective. Popular inputs like 

doublet and 3-2-1-1 are categorized within the multi-step inputs. The 3-2-1-1 test input was 

developed by researchers in the German DLR Research Laboratory (Marchand and Koehler, 

1974). Doublet and 3-2-1-1 test signals and their variants have been demonstrated to be able to 

excite the aircraft modes of interest in conjunction with time-domain system identification 

techniques such as the widely used maximum likelihood (ML) method (Jategaonkar and 

Monnich, 1997). Morelli (1993, 1997) used optimal input design based on multistep inputs for a 

high performance aircraft application. Figure 5.5 is a typical 3-2-1-1 signal.  
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Figure 5.5 Typical 3-2-1-1 signal 
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used for frequency response identification by System Technology Inc. (Hoh et al., 1981) in 

applications to fixed-wing aircraft. 

The reasons for using Chirp signal for frequency response identification are (Tischler and 

Remple, 2012): 

i. Chirp’s spectral content (also called power spectral density, PSD) is fairly rich and the 

excitation has a uniform distribution across the desired frequency range. This 

characteristic guarantees that input and output have a persistent high level of frequency 

response accuracy across the frequency range of interest; 

ii.  time history of Chirp magnitude is roughly symmetric. This means that deviations in the 

input are generally symmetric with respect to trim (reference) state; 

iii.  the frequency range can be strictly controlled during the test. The input start frequency 

and end frequency are all predefined, and the frequency is smoothly changing with time.  

Figure 5.6 shows a typical frequency sweep input. 
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Figure 5.6 Frequency sweep input excitation 
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i. constant input amplitude is unnecessary; 

ii.  exact sinusoidal input shape is unnecessary, and actually not desirable; 

iii.  exact frequency progression is unnecessary; 

iv. exact repeatability is unnecessary and not desirable; 

v. high frequency input is not needed; 

vi. increase input amplitude at high frequency is not needed. 

Computer generated frequency sweep input is has been proven to be time efficient and effective 

for flight test. Tischler (2012) developed an automated frequency sweep testing method for 

frequency domain system identification. The signal is composed of exponential sweep and white 

noise. The advantage of exponential sweep is that it takes a longer time at low frequencies where 

most of the aircraft modes and characteristics lie, while it takes a shorter time at higher 

frequencies. Figure 5.7 shows the increasing trend of the sweep frequency. 
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Figure 5.7 Increasing trend of sweep frequency 

A frequency sweep generating equation is (Tischler and Remple, 2012), 

�.�  - = ÝMOF[0(@)] (5.2) 
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limit. θ(t) is defined as: 

0(@) = s 2(@)i@x©�Þ
�  (5.3) 

where Trec is the sweep time duration, and 2(@) is given as, 

2(@) = 2
"� D ß(@)(2
*
 −2
"�) (5.4) 
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ß(@) = �K[�3^ à�S@�+ áâ − 1] (5.5) 

The requirement of Chirp frequency range is: at t = 0, the frequency 2 = 2
"�; and at t = �+ á, 
2 = 2
*
. Therefore, C1 can be set arbitrarily, while C2 needs to be set accordingly to satisfy 

the above requirement. A typical setting pair, C1 = 4, and C2 = 0.0187, have been proven suitable 

for a wide range of applications (Tischler and Remple, 2012).  

Combining Equations (5.2) to (5.5), the following holds, 

�.�  - = ÝMOFs [2
"� D �K �� ãä�x©�Þ − 1� (2
*
 − 2
"�)]i@x©�Þ
�  (5.6) 

In the implementation of the input excitation, some features are recommended to add to the 

signal (Tischler and Remple, 2012): 

i. zero starts and zero ends, to ensure a steady-state condition; 

ii.  constant ωmin for one full period, to ensure sufficient spectral content at the starting 

frequency; 

iii.  White Gaussian Noise (WGN) should be added to the excitation, to enrich the excitation 

spectral content. Because the computer-generated sine sweeps alone may not have 

sufficient spectral content due to it having no irregularities in signal shape; 

iv. amplitude fade in and fade out, to avoid sharp start and end; 

v. the excitation should be low pass filtered, to suppress high frequency content in the 

excitation.  

Given the above requirements, the final input excitation can be expressed mathematically as: 
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� 
á"�*"Û� = �.�  - D ���"� 	�Û".  (5.7) 

where, typical noise signal level is set as: 

���"� 	�Û". :	æ = 0.1Ý (5.8) 

Figure 5.8 shows a typical final sweep input excitation. 

 

Figure 5.8 Typical Chirp input excitation 
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Figure 5.9 Finite Fourier transform of input signal 
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them, the “Chirp” signal was determined as a good candidate for the flight test in this research 

due to its rich frequency components property. A Chirp generating algorithm was introduced that 

effectively determines the optimum input excitation.  

 

 

  



71 | P a g e  

 

6 Estimation of Aerodynamic Derivatives  

In system identification, two issues influence the accurate parameter estimation: one is noise, 

another one is low information content. It is difficult to design a parameter estimation technique 

which can perfectly distinguish the response from the noise while still responding rapidly to 

sudden changes in the system dynamics (Morelli, 1999). This is because distinguishing the 

system response from noise requires long term data. In time domain, this problem is solved by 

using recursive least squares and a “forgetting factor” (Bodson, 1995), or by using sequential 

batch least squares with short data records and including cost function (Chandler et al, 1995; 

Ward et al, 1996). In frequency domain, it is dealt with by using correlation and spectrum 

algorithms. The transfer function method has a property of immunity to noise. If an extended 

Kalman Filter approach is applied, the signal can be distinguished from noise more clearly.  

A lack of data information content is a universal problem in system identification. Time domain 

methods are more sensitive to the lack of data information content (Morelli, 1999). Another 

known problem associated with the data information content is the data co-linearity. In a flight 

test, several control surfaces frequently move at the same time, or else the control surfaces move 

in proportional to state variables with a tiny time delay. When the states and controls move 

proportional to one another, it is hard to identify the individual stability derivatives from the 

response (Morelli, 1999). The effects of these problems can be relieved in frequency domain 

calculation.  

There are a couple of algorithms for identification of unknown aerodynamic derivatives. 

However, the field is narrowed if only the real-time methods are considered (Tischler and 
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Remple, 2012). The current task is to examine a single-step frequency domain method for real-

time longitudinal channel aerodynamic parameters identification. 

In this thesis, two frequency domain system identification approaches are implemented and 

tested to extract the unmanned aircraft aerodynamic derivatives from flight data. The first one, 

transfer function method, is more appropriate for off-line calculations. For this method the 

aircraft transfer functions corresponding to the mode of interest are developed first. The 

aerodynamic derivatives are then calculated from the transfer function parameters. The second 

method, Equation Error method (complex linear regressionmethod), is more suitable for real-

time parameter estimations. Both methods assume that the aircraft remains in the linear region 

during the flight test. An important requirement for implementing these two identification 

approaches is that the dynamic model should have a linear structure with time-varying 

parameters to account for the changes in the flight condition or the aircraft configuration.  

 

6.1 Transfer function method  

Before applying any system identification techniques, a general understanding of the aircraft 

dynamics is required. In this section, ways of obtaining the transfer function are discussed. 

Section 6.1.1 explains how to derive it empirically from the measured input-output data pairs. 

Section 6.1.2 discusses how to derive it analytically based on theory. 
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6.1.1 Obtaining transfer function empirically 

There are several methods to acquire transfer functions of a dynamical system from experimental 

data. In this section the Empirical Transfer-Function Estimate (ETFE) method and Power 

Spectra method are discussed. 

1. Empirical transfer-function estimate (Keesman, 2011) 

Recalling that y(M) = è(M)�(M), by substitution of M = �2, the following can be obtained, 

y(�2) = è(�2)�(�2) (6.1) 

Therefore for a given input u(t), and output y(t), by doing finite Fourier transform, the transfer 

function referring to input and output can be obtained and expressed as, 

è(�2) = y(�2)�(�2) (6.2) 

For each of the frequency components contained in the input and output, the relationship (6.2) 

holds. This allows the construction of both magnitude and phase response of the signal for a 

number of frequencies. 

2. Transfer-function estimate using power spectra (Keesman, 2011) 

The Empirical Transfer-Function Estimate is simple to use, however, the disadvantage is that it 

uses the raw input-output data, which means that this approach is sensitive to noise. Therefore, 

another algorithm called “power spectra method” is developed to offer robustness to the 

measurement of noise. In order to implement the power spectra method, autocorrelation and 
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cross-correlation of the input-output pairs needs to be calculated. The autocorrelation of the input 

signal u(t) can be expressed as: 

�̀�(·, @) = é[B(@)B(@ D ·)] (6.3) 

where τ is the time lag and the notation E[·] stands for the expectation operator. Equation (6.3) 

can be further rewritten as, 

�̀�(·) = limx→í 12� s B?@AB?@ + ·Ai@x
Vx  (6.4) 

Since in practice, the input signal is measured in discrete data, a discrete time algorithm is 

needed to process the data, which is shown as: 

�̀�?�A = limî→í 12> + 1 ï B?OAB?O + �Aî
"ðVî  (6.5) 

The cross-correlation of input-output can be expressed as: 

�̀�?·, @A = é[B?@AL?@ + ·A] (6.6) 

which can be further written as, 

�̀�?·A = limx→í 12� s B?@AL?@ + ·Ai@x
Vx  (6.7) 

For the discrete time case, Equation (6.7) is written as, 

�̀�?�A = limî→í 12> + 1 ï B?OAL?O + �Aî
"ðVî  (6.8) 
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Recalling the time domain input-output relevance L(@) = ∑ �(�)B(@ − �)íòð� , at the time instant 

of @ = O D 1, 

L(O D �) = ï�(�)B(O D � − �)í
òð�  (6.9) 

Practically, L(@) = L{(@) D !(@), where v is noise. Thus the cross-correlation of input u(t)- output 

y(t) is, 

�̀�(�) = limî→í 12> + 1 ï B?OAî
"ðVî [ï �?�AB?O + � − �Aí

òð� + !?O + �A] (6.10) 

Therefore, as long as v is unrelated to u and has a zero mean, the long-term average of u(i)v(i+l) 

is close to zero. This is the reason why the power spectra method is immune to noise. Equation 

(6.10) can be deduced as: 

�̀�?�A = limî→í 12> + 1 ï B?OAî
"ðVî [ï �?�AB?O + � − �Aí

òð� + !?O + �A]  

= ï �?�Aí
òð� limî→í 12> + 1 ï B?OAî

"ðVî B?O + � − �A (6.11) 

= ï �?�Aí
òð� �̀�?� − �A 

 

Equation (6.11) is called the Wiener-Hopf equation. The auto-spectrum and cross-spectrum of 

signals are obtained by taking the finite Fourier transform of the auto-correlation and cross-

correlation of the signals. The auto-spectrum function is defined as: 
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ó��(2) = ï �̀�(�)�Vôõ�í
�ðVí  (6.12) 

while cross-spectrum is: 

ó��(2) = ï �̀�(�)�Vôõ�í
�ðVí  (6.13) 

The relationship of Φuy(ω) and Φuu(ω) can be derived by substituting �̀� from Equation (6.11) 

into (6.13), which is: 

ó��(2) = ï �̀�(�)�Vôõ�í
�ðVí  

 

= ï ï�(�) �̀�(� − �)�Vôõ�í
òð�

í
�ðVí  

 

= ï ï�(�)�Vôõò �̀�(� − �)�Vôõ(�Vò)í
òð�

í
�ðVí  (6.14) 

= ï�(�)�Vôõòí
òð� ï �̀�(� − �)�Vôõ(�Vò)í

�ðVí  
 

= ï�(�)�Vôõòí
òð� ï �̀�(ö)�Vôõ÷í

÷ðVí  
 

= è(�ôõ)ó��(2)  

Thus, an alternative approach to ETFE is given as: 
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è(2) = ó��(2)ó��(2) (6.15) 

Since the power spectra method is immune to noise compare to the ETFE method, it is widely 

used in practice. Some commercial software like MATLAB and CIFER are also using this 

method for system identification.  

6.1.2 Obtaining transfer function analytically 

Since aircraft motion can be decoupled into short period and phugoid modes, they can be 

explained separately. 

Short - period mode response 

Short-period mode is a typical damped oscillation in the pitch with respect to the oy axis. One of 

the features of the short-period mode response is, when the aircraft is disturbed from its pitch 

equilibrium state, the aircraft response quantities such as incidence angle α(or w), pitch rate q 

and pitch attitude θ change significantly. Since the short period mode is short, the effects of 

inertia and momentum on speed are negligible, the speed can be considered as approximately 

constant. Thus, axial velocity perturbation u=0. The short-period mode flight feature can be 

visually shown as Figure 6.1. 
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Figure 6.1 Short-period mode flight (adapt from Cook, 2012) 

Phugoid mode response 

Phugoid mode is a lightly damped low-frequency oscillation in speed u, which couples into pitch 

attitude θ and altitude h. One of the characteristics of the phugoid mode is that the incidence 

angle α remains constant when the aircraft is in the phugoid mode (Cook, 2012). The phugoid 

flight mode can be visually shown as Figure 6.2. 

 

Figure 6.2 Phugoid mode flight (adapt from Cook, 2012) 
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When the aircraft is flying downhill, the potential energy is decreasing; thus, the kinetic energy 

is increasing and therefore the aircraft velocity increases accordingly. That is why, when the 

aircraft goes down, it is accelerating and when it goes up, it is decelerating. 

Figure 6.3 and Figure 6.4 show typical longitudinal mode responses to a 1° elevator deflection 

step input. 

 

Figure 6.3 Aircraft responses (w, q, α) to a 1° elevator step input 
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Figure 6.4 Aircraft responses (u, θ, �) to a 1° elevator step input 

From the figures, it is seen that the variables w, q and α are significant short period mode 

dominated variables, while variables u, θ and γ are less dominant in short period mode. The 

short period response characteristic of aircraft is essential. The short-period mode has a natural 

frequency close to the human pilot’s natural frequency. Therefore, the probability of dynamic 

coupling with the pilot occurring under certain conditions is relatively higher than in the phugoid 

mode. This may lead to severe or catastrophic handling problems (Cook, 2012). On the other 

hand, the phugoid mode’s natural frequency is much lower. Therefore, the phugoid mode is less 

influenced by the piloting task; the human pilot can easily control the aircraft even when the 

aircraft phugoid is mildly unstable. 
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Short-period mode approximation 

The short-term response is dominated by the short-period mode. It is more convenient to obtain 

the reduced-order aircraft motion equations if the phugoid mode is suppressed or omitted. It is 

possible to simplify the longitudinal motion equations to a reduced-order set of equations, which 

describe only the short-period mode. Since the dominant quantities of short-period motion are u, 

w, q and θ, while u is essentially almost zero, Equation (4.114) can be further written as: 

PG_0]]
] Q = P%� 					%�						%�j� 			j� 				j�0							1							0 Q aG_0 b + P %)j)0 Q / (6.16) 

Assuming that the motion equations are written with respect to the wind axes coordinate system, 

and the aircraft is initially in steady level flight, then the following holds, 

0 ≡ & = 0 and � = #� (6.17) 

further, 

%� = − j�MOF0 j − Z6 �] = 0 (6.18) 

j� = −M6 �] j�MOF0 ��(j − Z6�] ) = 0 (6.19) 

Therefore Equation (6.16) can be further reduced as: 

ùG_]] ú = û %� 					%�j� 			j�ü ûG_ü D û %)j)ü / (6.20) 

The derivatives in equation (6.20) are given in the body axes system. The transfer functions can 

be derived from Equation (6.20) (Cook, 2012): 
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G(M)/(M) = %) àM D j� D %�j)%) âMK − tj� D %�uM D (j�%� −j�%�) (6.21) 

_(M)/(M) = j)(M D j� %)j) − %�)MK − tj� D %�uM D (j�%� −j�%�) (6.22) 

Since %� 
ý�ý ≫ j�, −%� ≫ j� �ý
ý, and, 

%� = −Z6 � Dj� j − Z6�] ≅ �  (6.23) 

also, Z6 � ≪ j�  and j ≫ Z6�] . 
Thus, the transfer functions can be decoupled and simplified as,  

G(M)/(M) = %)(M D � j)%) )MK − tj� D %�uM D (j�%� −j�� ) ≡ ��(M D 1 ��⁄ )MK D 2,.2.M D 2.K (6.24) 

_(M)/(M) = j)(M − %�)MK − tj� D %�uM D (j�%� −j�� ) ≡ ��(M D 1 ���⁄ )MK D 2,.2.M D 2.K (6.25) 

The characteristic equation is, 

×(M) = MK − tj� D %�uM D tj�%� −j�� u = MK D 2,.2.M D 2.K (6.26) 

6.1.3 Applying the transfer function method 

Once the numerical and parameter transfer functions are obtained, the TF method can be applied 

to extract the aerodynamic derivatives. By observing Equations (6.24) and (6.25), the following 

can be deduced: 
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−tj� D %�u = 2,.2. (6.27) 

j�%� −j�� = 2.K (6.28) 

The above equations can also be rewritten using the dimensional derivatives as: 

2,.2. = −(r6 ��� D z6�j Dr6 �] � �� ) (6.29) 

2. = �r6 ��� z6�j −r6�� ��  (6.30) 

For a typical aeroplane, the aerodynamic derivatives can be written as a crude approximation 

(Cook, 2012): 

2,.2. = −r6 ���  (6.31) 

2. = �−r6 �� ��  (6.32) 

Normally, z6� is dependent on the lift curve slope of the wing, r6 � is largely determined by the 

viscous “paddle” damping properties of the tailplane, and they are both negative. r6 �  is a 

measure of aerodynamic stiffness in pitch and is also dominated by the aerodynamics of the 

tailplane. Its sign depends on the position of the cg. When the cg moves forward, it becomes 

increasingly negative. Therefore the short-period mode is stable if the cg is far enough forward 

on the airframe (Cook, 2012). These three aerodynamic derivatives are the most important 

derivatives in longitudinal channel aircraft modeling. 

By observing Equations (6.24) and (6.25), the following equalities can be set, 
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��
�
�	 %) = ��j) = ��−%� = 1/��� 	−tj� D %�u = 2,.2.j�%� −j�� = 2.K

 

 

(6.33) 

Since kw, Tα, Tθ2, ξs, ωs and Ue are all known from the identified transfer function, the 

aerodynamic parameters zη, mη, zw, mq and mw can be calculated easily. It should be noticed that 

zη, mη, zw, mq and mw are neither dimensional nor dimensionless parameters. They are shorthand 

notations denoting concise derivatives, which are equal to their dimensional derivatives divided 

by the appropriate mass or inertia parameters. The conversions are shown in Appendix 1. 

In this research, the aircraft’s input-output data pairs are fed to the CIFER to obtain the 

corresponding frequency responses and the transfer functions. An advantage of the transfer 

function method is that it requires less data quantities compared to other methods. For example, 

for longitudinal channel parameters’ estimation, the aircraft’s input and outputs that need to be 

known are only elevator deflection η, vertical velocity w and pitch rate q. These are readily 

available from the aircraft onboard autopilot. 

Although the transfer function method is simple to implement, its identification result is not as 

accurate as the ones given by the direct methods, such as the Equation Error method which will 

be discussed in the next section. The TF method is less accurate because several simplifying 

approximations are made: i) the longitudinal mode state space model is decoupled from the full 

aerodynamic state space equation; ii ) the transfer functions used are a reduced order of the 

decoupled state space mode; iii ) phugoid mode related aerodynamic derivatives are omitted; iv) 

some extra terms are further simplified, while extracting the aerodynamic derivatives from 

transfer functions(e.g. Equation (6.23)); v) some approximations were made, when converting 
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the derivatives from the concise format to their corresponding dimensional or dimensionless 

format derivatives(see the Appendix 1).  

Since the transfer function method is considered an approximate method for identifying 

aerodynamic derivatives, an alternative way needs to be developed for identifying the derivatives 

more accurately. The equation error method, which will be introduced in Section 6.2, is chosen 

as the main method for identifying aerodynamic derivatives in this research. 

 

6.2 Equation error method  

Since it is assumed that the dynamic model has a linear structure in the given period of flight, the 

airplane dynamics can be described by the following linear state space model (referring to 

Equations (4.115) and (4.116)): 

�] (@) = Ñ�(@) D Ò�(@) (6.34) 

�(@) = Ó�(@) D Ô�(@) (6.35) 

                   �" = �" D �"      i= 1, 2,…, N (6.36) 

Matrices A, B, C and D contain the aerodynamic stability and control derivatives (refer to 

Equation (4.111) ) of the aircraft, which are all assumed to be constants. u(t) is the input which 

contains quantities of the control surfaces’ deflection δe, δa and δr. Matrix x is comprised of the 

states of the system, such as linear body velocities u, v and w; the angular body velocities p, q 

and r; or Euler angles φ, θ and ψ. Here the output quantities are also states of the system. y is the 
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output vector and it is usually the same as x. z is the measured output vector and v denotes 

measurement error. 

6.2.1 Data transformation 

The Fourier transform is necessary for frequency domain data processing, to map the time 

domain data into frequency domain. The Fourier transform algorithm for converting a time 

domain continuous vector x(t) to a frequency domain vector �
(2) is: 

q[�(@)] = �
(2) = s �(@)�Vôõ�i@í
Ví  (6.37) 

where � = √−1, ω is the angular frequency which its unit is rad/s. By applying the inverse 

Fourier transform, frequency domain data can also be converted into time domain. The inverse 

Fourier transform algorithm is: 

�(@) = 12�s �
(2)�ôõ�i2í
Ví  (6.38) 

The Fourier transform of a continuous time function x(t) on a finite time interval [0, T] is called 

the finite Fourier transform (Klein and Morelli, 2006), which is defined as, 

�
(2) = s �(@)�Vôõ�i@x
�  (6.39) 

or, 

�
(�) = s �(@)�VôK���i@x
�  (6.40) 

where, 2 = 2��, f is frequency with a unit of Hz. 
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Since the continuous time domain data x(t) is sampled at discrete sample in the physical world, 

the sampling time is evenly distributed by ∆t (dt), therefore  Equation (6.40) can be 

approximated written as: 

�
(2) = ×@ï �"�Vôõ��îVS
"ð�  (6.41) 

where xi is the sampled signal magnitude at time ti, and ti = i∆t . The discrete Fourier transform 

(DFT) is then defined as: 

�(2) = ï �"�Vôõ��îVS
"ð�  (6.42) 

Thus for recursive calculation of the DFT of the signal �, given frequency ω, the discrete Fourier 

transform at sample point i can be related to the sample point i – 1 as: 

�"(2) = �"VS(2) D �"�Vôõ"�� (6.43) 

where, 

�Vôõ"�� = �Vôõ���Vôõ("VS)�� (6.44) 

and term �Vôõ�� is constant for the given frequency and sampling time. 

6.2.2 Equation error method in frequency domain 

By writing Equations (6.34) and (6.35) in frequency domain format, the following have: 

�2�
(2) = Ñ�
(2) D Ò�
(2) (6.45) 

�
(2) = Ó�
(2) D Ô�
(2) (6.46) 
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The basis of the Equation Error method (also known as Complex Linear Regression method) is 

the cost function which is derived from Equation (6.45) and shown as: 

�ò = 12ï |�2��
ò(F) − Íò�
(F) − Ïò�
(F)|K

�ðS  (6.47) 

where, Jk is the cost function of kth state equation, Ak and Bk are the kth row of matrices A and B 

respectively. Notation “~” is a symbol of frequency domain data; �
(F) and �
(F) are the Fourier 

transformed states and inputs data vector at frequency ωn; 3�ò(F) is the kth element of vector �
 at 

frequency ωn. There are m terms in the summation, which correspond to m frequency 

components: 

2� = 2��� = 2� F>×@ ,				F = 0, 1, 2,… , > − 1 (6.48) 

where N is the total number of the time domain data points. If denoting the unknown parameters 

in matrices A and B by a matrix θ, Equations (6.45) and (6.46) can be further written in compact 

form as, 

� = �� + � (6.49) 

where, 

� =
ÇÈ
ÈÈÈ
É �2S�
ò?1A�2K�
ò?2A...�2
�
ò?jAÊË

ËËË
Ì
 (6.50) 
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� =
ÇÈ
ÈÈÈ
É �
x(1)					�
x(1)�
x(2)					�
x(2).																..																..																.�
x(j)					�
x(j)ÊË

ËËË
Ì
 

 

(6.51) 

And � is the complex equation error or the fit error in the frequency domain. The least squares 

cost function (6.47) can also be written in standard quadratic form as, 

� = 12 (�− ��)�(�− ��) (6.52) 

which is essentially identical to Equation (6.47), where the dressing “†” stands for “complex 

conjugate transpose”. In order to acquire the minimum cost, the value of �  at which the 

derivative of the cost function J must be found by setting: 

���� = 0 (6.53) 

Since, 

� = 12 ?� − ��A�?� − ��A 
 

= 12 ?��� − ���� − ����� + ������A (6.54) 

therefore, 

���� = 12 ?−��� + �����A = 0 (6.55) 

thus, 
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�� = ���(���)VS (6.56) 

as a result, 

� = [���(���)VS]�  

= [(���)VS]����  

= [(���)�]VS��� (6.57) 

= (���)VS���  

By picking the real part of Equation (6.57), the parameter matrix can be solved by: 

�ª = ��[(���)]VS��(���) (6.58) 

where, �ª is a row vector which is comprised of the identified derivatives. 

In order to know how accurate the identified derivatives are, a parameter standard error 

algorithm is developed for examining identified parameters’ accuracy based on the identification 

error covariance matrix. The identification error covariance matrix is defined as: 

�I!(�ª) ≡ é{t�ª − �ut�ª − �)x�  

= é[(���)VS��(�− �)(�− �)��(���)VS]  

= (���)VS��é(kk�)�(���)VS] (6.59) 

= æK(���)VS 
 

where, � = ��, V is the Fourier transformed complex equation error v (the fit error). 
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é(kk�) = æKo (6.60) 

σ
2 is equation error covariance, which can be estimated from the residuals and calculated as, 

æCK = 1j − ^ [(� − ��ª)�t� − ��ªu] (6.61) 

where p is the number of elements of parameter vector θ. σ2 is a real number representing the 

squared magnitude of the complex residuals vector. The parameter standard error corresponding 

to each identified derivative is then computed as the square root of the diagonal elements of the 

matrix	�I!(�ª). 
So far, the EE method in frequency domain has been introduced. A linear regression based 

algorithm is derived to compute the unknown parameter vector from the states and inputs 

measurement vectors. The advantage of the EE method is that it requires low computational 

power to identify the aerodynamic derivatives, and therefore it is very suitable for the real-time 

parameter estimations.  

 

6.3 Summary 

In this chapter, the two frequency domain system identification methods were introduced. The 

first method is transfer function method, which is so-called indirect method. The second method 

is the equation error method, namely the direct method. Section 6.1 discussed the principle of 

using transfer function (TF) method. In this method, the system transfer function needs to be 

obtained both analytically and experimentally. The transfer functions were derived first based on 

the physical and mathematical laws. The software CIFER could then be used in experiment for 
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getting the system transfer functions.  It was also shown how the unknown aerodynamic 

derivatives can be calculated from the obtained transfer functions. Section 6.2 discussed the 

implementation of equation error (EE) method. A method for transforming time domain data to 

frequency domain data was introduced. The manner in which the transformed data determine the 

aerodynamic derivatives was explained.  
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7 Experimental Results 

In this chapter, the transfer function and equation error methods will be applied to identify the 

transfer functions and aerodynamic derivatives of a conventional fixed-wing UAV called- 

Cropcam. First, the Cropcam’s longitudinal channel transfer functions are identified using 

CIFER, and some aerodynamic derivatives are extracted from the identified transfer functions. 

Then, the equation error method is implemented to identify the longitudinal channel 

aerodynamic derivatives. Lastly, the derivatives which are computed in different ways are 

compared to verify the accuracy of the identification results and the applicability of the 

identification methods. After the applicability of the transfer function method is validated, it is 

used to identify a delta-wing UAV’s longitudinal channel transfer function and its related 

aerodynamic derivatives. For the flight test, Pilot in Control (PIC) mode is used to execute the 

target input excitation. And MicroPilot’s autopilot “MP2128 Heli” is used to execute the 

Computer in Control (CIC) mode flight and record sensors’ data. The flight test was executed 

and the data were gathered by MicroPilot Inc. 
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7.1  Identification of Cropcam UAV 

 

Figure 7.1 Cropcam aircraft 

Figure 7.1 is a picture of the Cropcam aircraft. For longitudinal channel system identification, 

the required variables are linear body velocities u and w, body pitch rate q, and elevator 

deflection δe. There is a Kalman filter onboard the autopilot which combines the sensors, 

including the inertial sensors (gyro, accelerometers), GPS, barometric sensor, and the magnetic 

compass. The onboard Kalman filter removes the measuring Gaussian noise and calculates 

accurate estimates of velocity and attitude of the aircraft which are used in the system 

identification algorithm. Also, the gyro and accelerometer sensor bias errors are estimated by the 

Kalman filter and therefore used to compensate for the inertial sensor measurement errors. Based 

on the onboard measurements, the Kalman filter estimates the aircraft velocities in the North-

East-Down (NED) frame. The NED velocities are then converted to the body velocities. For 

translating NED velocity components into body-axes velocities, the attitude angles φ, θ, ψ are 

needed. These are calculated by integrating the angular velocities p, q, and r. The angular 
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velocity measurements from the onboard gyros are calculated after correction of the bias errors 

by the Kalman filter. The aircraft position estimates as well as its altitude are also provided by 

the onboard Kalman filter. The sampling frequency of the autopilot is 30 Hz. the Nyquist 

frequency (15 Hz) is much higher than the frequency of the signals that need to be measured 

(usually less than 7 Hz). Therefore, 30 Hz sampling frequency is adequate for recording the 

flight response of Cropcam. The ways of obtaining the data and the data accuracy are listed in 

Table 7.1. 

Table 7.1 Data measuring 

Variables Methods of obtaining Sensor 

accuracy 

Post-filter 

accuracy 

GPS velocities 3]  and L]  Measured by GPS 0.5 m/s N/A 

Altitude z Measured by Barometric sensor 0.5 m N/A 

Angular velocities p, q and r Measured by Gyros 0.25 deg/s 0.05 deg/s 

Accelerations ax, ay and az Measured by Accelerometers 0.15 m/s2 0.02 m/s2 

Heading angle Measured by magnetic compass 1 deg N/A 

Attitude angles φ, θ, ψ Integrated from angular 

velocities p, q, and r by Kalman 

filter 

N/A 0.5 deg 

Linear velocities u, v and w Calculated from GPS velocities 

and attitude angles by Kalman 

filter 

N/A 0.3 m/s 

The input excitation used for Cropcam’s longitudinal channel system identification is shown in 

Figure 7.2, which is a manually generated Chirp signal. 
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Figure 7.2 Manually generated Chirp input excitation 

Figure 7.3 shows the FFT plot of the input excitation which display the frequency range of the 

input signal.  
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Figure 7.3 FFT of input signal 

From the FFT graph, it can be seen that the input excitation’s frequency range is 0.3 ~ 5 Hz, 

which is reasonably appropriate for the current system identification application. Also, from 

Figure 7.3, it can be seen that the frequency component of the input signal is fairly rich for 

system identification. The system output responses corresponding to the input are shown in 

Figure 7.4 to Figure 7.13. U, V and W are the components of total velocity in axial, lateral and 

vertical direction, respectively; p, q and r are the aircraft body roll, pitch and yaw rate, 

respectively; φ, θ and ψ are the aircraft attitude angles, which represent aircraft body roll, pitch 

and yaw angles, respectively; where z is the aircraft altitude. 
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Figure 7.4 Total axial velocity U 

 

Figure 7.5 Total lateral velocity V 
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Figure 7.6 Total normal velocity W 

 

Figure 7.7 Body roll rate p 
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Figure 7.8 Body pitch rate q 

 

Figure 7.9 Body yaw rate r 
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Figure 7.10 Roll angle φ 

 

Figure 7.11 Pitch angle θ 
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Figure 7.12 Yaw angle ψ 

 

Figure 7.13 Altitude z 
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In this section 7.1, the EE method will be used as the main approach to identify the Cropcam’s 

aerodynamic derivatives. The transfer function method will be applied to identify the 

longitudinal channel transfer functions, and it is also chosen as an auxiliary way of identifying 

derivatives. The derivatives extracted from identified transfer functions will be compared to the 

ones identified by the EE method for verification. Finally, various approaches will be applied for 

verifying the identification results. 

7.1.1 Transfer function method 

The utilized input and outputs are shown as Figure 7.14 and Figure 7.15. Theoretically, the 

output body pitch rate q should have a negative correlation with respect to input elevator 

deflection δe (when elevator rear-end moves up for a pitch up command, the body pitch rate sign 

goes positive, and vice versa). However by observing Figure 7.14, it can be seen that for most of 

the time, the input and output keep a positive correlation. This is due to the existence of delay 

between the commanded elevator signal and the recorded pitch rate measurement.  

The total delay is comprised of servo delay, signal gathering delay, as well as the delay 

inherently associated with the dynamical system response in the longitudinal channel. The servo 

delay is due to the dynamics of the motors. The signal gathering delay is caused by the sampling 

time inconsistency. The dynamical system response delay is due to the UAV nature; every 

dynamical system has response delay.  

The same problem exists in the linear velocity data as well. Figure 7.15 shows that the delay 

exists in the vertical velocity signal w. Since CIFER can deal with the delay automatically, its 

existence can be ignored when processing the data, and using the transfer function method. The 

Bode plots of � -w and � -q are shown as Figure 7.16 and Figure 7.17, respectively. 



104 | P a g e  

 

 

Figure 7.14 ��-q data pair 

 

Figure 7.15 ��-w data pair 

504 505 506 507 508 509 510 511 512 513
-60

-40

-20

0

20

40

60

Time (s)

δ e 
(d

eg
),

 q 
(d

eg
/s

)

 

 

Input excitation δe

Body pitch rate q

504 505 506 507 508 509 510 511 512 513
-30

-25

-20

-15

-10

-5

0

5

10

15

20

Time (s)

δ e
 (

d
eg

),
 w

 (
ft

/s
)

 

 

Input excitation δe

Vertical velocity perturbation w



105 | P a g e  

 

 

Figure 7.16 Bode plot of ��-w 

 

Figure 7.17 Bode plot of ��-q 
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From Figure 7.17, it is seen that the phase curve starts at -200 degrees. Theoretically saying, it 

should starts at -180 degrees. However, the phase shifted due to the existence of delay. By 

observing the coherence range, the applicable frequency range for identifying transfer functions 

can be selected as: 6.7 ~ 26 rad/s for � -w; and 3.54 ~ 34 rad/s for � -q. By utilizing CIFER, 

these transfer functions are obtained: 

G(M)� (M) = −17.3(M D 235.44)�V�.�!".MK D 16.92M D 223.33  (7.1) 

_(M)� (M) = −82.37(M D 9.03A�V�.�&'!.MK D 21.52M D 158.19  (7.2) 

The costs of these two transfer functions are 81.45 and 9.04 respectively, which are all under the 

acceptable cost guideline of 100. Cost (Tischler and Remple, 2012) is an indication of the 

consistency between the transfer function’s frequency response and the flight data’s frequency 

response. The cost function is given by (Tischler and Remple, 2012): 

� = 20F ï $([$)?|�**�*| − |�
Û* �|AK + $-?∠�**�* −∠�
Û* �AK]õ+

õä
 (7.3) 

where, n is number of frequency points (default value is 20); ω1 and ωn are starting and ending 

frequencies of fit; W, is coherence weighting to emphasize most reliable data, which equals 

1.58?1.0 − �V(��); Wg is weighting on gain error (default value is 1.0) and Wp is weighting on 

phase error (default value is 0.01745). 

The low cost preliminarily proved that the identified transfer functions’ accuracies are acceptable, 

but further verification is still required. The fittings of transfer functions and flight frequency 

responses are shown in Figure 7.18 to Figure 7.21.  
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Figure 7.18 Verification of magnitude of ��-w 

 

Figure 7.19 Verification of phase of ��-w 
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Figure 7.20 Verification of magnitude of ��-q 

 

Figure 7.21 Verification of phase of ��-q 
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From the graphs it is seen that the curves match reasonably well. This means that the identified 

transfer functions are fairly accurate. So far, the frequency domain verification method has been 

applied and the accuracy of transfer functions has been demonstrated. However, the most 

convincing way to verify the accuracy of transfer functions is time domain verification. For time 

domain verification, the flight test input excitation is fed to the identified transfer functions to 

simulate the time domain responses. The simulated responses are compared with the flight 

measurements. Figure 7.22 shows the comparison between simulated w and the measured w. 

Figure 7.23 shows the comparison between the simulated q and the measured q. 

 

Figure 7.22 Comparison of simulated w and measured w 
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Figure 7.23 Comparison of simulated q and measured q 

The comparison shown in Figure 7.23 demonstrated that the transfer function simulated body 

pitch rate q, and the flight test measured q are matching quite well. For the vertical velocity w, 

the simulated one is also quite similar to the measured one, the largest difference gap between 

the simulate w and flight test measured w occurred at the less oscillation part (the part oscillates 

mildly, which is also low frequency part). Because the difference is not large, the matching is 

still acceptable. Actually the appearance of difference matches to the coherence plot shown in 

Figure 7.16. In the coherence graph, the coherence is quite low at low frequency. Low coherence 

indicates low accuracy; therefore, it is reasonable that the matching is not that accurate at the low 

frequency part. Low coherence is caused by some nonlinearities involved in the input-output 

model. Therefore, the linear transfer function cannot perfectly match the nonlinear behaviour. 
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To further validate the identified transfer functions, Equations (7.1) and (7.2) were tested with 

the unseen Doublet signal. The unseen Doublet signal is shown in Figure 7.24. Figure 7.25 and 

Figure 7.26 show the comparisons between simulated w, q and measured w, q. 

 

Figure 7.24 Unseen Doublet signal 
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Figure 7.25 Comparison of simulated w and measured w with the unseen Doublet signal  

 

Figure 7.26 Comparison of simulated q and measured q with the unseen Doublet signal 
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In Figure 7.25 and Figure 7.26, it is seen that the phase of the simulated w and q match closely 

with flight test measured w and q. However, the magnitudes do not match well. This is because 

the model describing the system was linearized around an operating point, and the aerodynamic 

derivatives and transfer functions were identified at this operating point. Now this set of transfer 

functions are used for simulating the output around another operating point (the doublet input 

test). Therefore, it is reasonable that the simulated output cannot match well with the measured 

output. Also from the figures it is seen that the q plot matches slightly closer than the w plot. The 

reason was already explained when referring to the original signal verification. This further 

proves that the identified transfer functions are reliable. 

Theoretically, the denominators of � -w and � -q transfer functions should be the same or very 

close, but due to some deficiencies in the data quality, the results are inconsistent. However, the 

difference is not large. Since verification shows that the transfer function of � -q has a higher 

accuracy than � -w, the transfer function of � -q is used for extracting aerodynamic derivatives 

�
Ö�, �
¨, �~� and �
�. The transfer function of � -w is only used to calculate �~Ö�. 
Applying the algorithm discussed in Section 6.1.2: 

G(M)� (M) =
%Â�(M D � jÂ�%Â� )MK − tj� D %�uM D (j�%� −j�� ) = −17.3(M D 235.44)MK D 16.92M D 223.33 (7.4) 

_(M)� (M) = jÂ�(M − %�)MK − tj� D %�uM D (j�%� −j�� ) = −82.37(M D 9.03AMK + 21.52M + 158.19 (7.5) 

By extracting the equal terms from Equations (7.4) and (7.5), the following equalities hold, 
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���
�	 %Â� = −17.3jÂ� = −82.37−%� = 9.03	−tj� D %�u = 21.52j�%� −j�� = 158.19

 

where Ue = 55 ft/s. By solving the above equations, the following concise notated derivatives are 

obtained, 

��
�
�	

%Â� = −17.3jÂ� = −82.37%� = −9.03	j� = −12.49j� = −0.83
 

For convenience, the above derivatives are converted into North American dimensionless 

derivatives (refer to Appendix 1). The final results are listed in Table 7.2. Here is an example 

showing how to convert concise notated derivative mq to North American dimensionless 

derivative �
¨. Other derivatives conversion can be found in the Appendix 1.   

i. Convert mq to dimensional British format derivative M­ �: 

M­ � = �� × j� (7.6) 

ii.  Convert M­ �to dimensionless British derivative Mq: 

r� = Mͦ�/0.5�#�|� ̿ (7.7) 

iii.  Convert Mq to dimensionless North American derivative �
¨: 

�
¨ = 2r� (7.8) 
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Thus, dimensionless North American notation derivative �
¨ can be acquired. The conversion of 

dimensionless North American notation derivative �
¨ to dimensional North American notation 

derivative Mq is shown as, 

M± = �
¨ × �#�|� ̿K/4�� (7.9) 

where ρ = 0.002286 slug/ft3, S = 5.31 ft2, � ̿ = 0.77 ft, V0 = 68.26 ft/s and Iy= 3.04 lb·ft2. In this 

way, all the derivatives can be converted to dimensionless North American derivatives.  

Table 7.2 Transfer function method identified aerodynamic derivatives 

�~� -6.4492 �~Ö� -0.2246 �
� -0.3036 �
¨  -11.9227 �
Ö� -0.5506 

The accuracy of the derivatives will be examined together with the ones identified by the EE 

method in the coming section. 

7.1.2 Equation error method  

For applying the EE method, data analysis and pre-processing is essential. In this section, typical 

data analysis and pre-processing methods will be applied. As shown in Figure 7.14 and Figure 

7.15, there are delays between the input and the outputs. Since the priori model (e.g. Equation 

(4.110)) utilised for the EE system identification method does not expect the physical delay, the 

delay in the input-output data pair must be removed first. Otherwise, the identification results 

will not be accurate. By analyzing and pre-processing the data, the delay is found to be 

approximately 100 ms. This is in agreement with the delay shown in the identified transfer 
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function (7.2). From Equation (7.2), it is seen that the delay between the input and the output is 

86.7 ms. Therefore, the angular velocity responses are shifted ahead by 3 data points in time 

(equivalent to 100 ms in the 30 Hz data sampling). The linear velocities are found to have the 

same problem, and from the Equation (7.1), it is seen that the delay between input elevator 

deflection and output vertical velocity is 75 ms. Therefore the vertical velocity is shifted ahead 

by 3 data points as well. The shifted � -q, � -w and � -u data pairs are shown in Figure 7.27 to 

Figure 7.29.    

 

Figure 7.27 Delay removed ��-q data pair 
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Figure 7.28 Delay removed ��-w data pair 

 

Figure 7.29 Delay removed ��-u data pair 
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From Figure 7.27 to Figure 7.29, it can be seen that there is a negative correlation between the 

shifted input-output data pairs. In addition to the problem of delay, sampling time inconsistency 

is another issue that needs to be addressed. The nominal sampling frequency of the autopilot data 

recording device is 30 Hz. Therefore, the sampling time is expected to be around 33.33 ms. 

However, in the real measurement, the actual sampling time is fluctuating near the average 33.33 

ms. The actual sampling time of the gathered data is shown by Figure 7.30. The sampling time 

inconsistency problem is solved by interpolating and distributing the data evenly on the time axis.  

 

Figure 7.30 Original data sampling time 

The sampling time of interpolated data is 33.9 ms. After pre-processing the flight data, the EE 

method is applied for derivatives identification. 
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Pitching moment related derivatives identification 

Equation (7.10) derived from Equation (4.110) is the postulated aerodynamic model used for the 

pitching moment derivatives identification: 

_] = M�B D M�G DM�_ D MÂ��  (7.10) 

The derivatives Mu, Mw, Mq and MÂ� are all dimensional, therefore, the states u, w, q and input δe 

should also be dimensional. Thus, the following regression matrix is derived from Equation 

(6.51): 

� =
ÇÈÈ
ÈÈÈ
É �
(1)					.
(1)					/
(1)					��0 (1)�
(2)					.
(2)					/
(2)					��0(2)			.													.														.													.								.													.														.													.								.													.														.													.					�
(j)				.
(j)				/
(j)				��0(j)ÊËË

ËËË
Ì
 

 

(7.11) 

For the Y vector as shown in Equation (6.50), there are two ways to obtain it: 

1) First calculate /]  from q using 2-point regression, 

/] (j) ≈ /(j) − /(j − 1)i@  (7.12) 

Then perform the finite Fourier transform to /] , therefore the following have, 

� =
ÇÈÈ
ÈÈÈ
É/]2(1)
/]2(2)...
/]2(j)ÊËË

ËËË
Ì
 

 

(7.13) 
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This method requires that the flight data has a sufficiently high SNR. If the SNR is low, the 

calculated _]  will be extremely inaccurate because the 2-point regression differentiation of noise 

causes high magnitude spikes. Multiple-point regression differentiation is immune to signal noise. 

However, it introduces delay between input and output, which the EE method is sensitive to. 

2) Perform finite Fourier transform on /]  directly instead of calculating the time derivative of 

q, 

h(_] ) = M/
 = �2/
 (7.14) 

Therefore the following have, 

� =
ÇÈ
ÈÈÈ
É �2S/
(1)�2K/
(2)...�2
/
(j)ÊË

ËËË
Ì
 

 

(7.15) 

Next, the pitching moment aerodynamic derivatives can be calculated by using Equation (6.58). 

In order to compare the EE identified derivatives with the ones estimated by AVL, the two sets 

of derivatives are put together as shown in Table 7.3.  
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Table 7.3 Pitching moment related aerodynamic derivatives  

 EE (use 
Equation (7.13)) 

Parameter 
Standard Error 

EE (use 
Equation (7.15)) 

Parameter 
Standard Error 

AVL 

�
7 0.0009 0.0447 0.0414 0.0465 0 �
� -0.0984 0.0607 -0.0485 0.0689 -0.64~0.018 �
¨ -8.9382 0.8496 -13.3980 0.9515 -13.8 �
Ö�  -0.3058 2.8735 -0.2295 1.9892 -1.772 

In Table 7.3, the second column is the EE method identified dimensionless derivatives calculated 

by using Equation (7.13)’s Y vector. The third column is their corresponding parameter standard 

errors. Similarly the fourth column is the derivatives calculated using Equation (7.15)’s Y vector. 

The fifth column is their corresponding parameter standard errors. The last column shows the 

dimensionless derivatives estimated by AVL. In this thesis, all the AVL coefficients are 

calculated by MicroPilot Inc. and are used in their aircraft flight simulation and ground control 

station software called Horizon. By comparing the second and fourth column identified 

derivatives, it can be seen that these two methods identified derivatives are close. Comparing the 

identified derivatives with the ones calculated by AVL in the last column, �
7  and �
¨  are 

found to be very close, but �
� and �
Ö� do not match very well. Therefore, it is necessary to 

examine which set of derivatives are more accurate. In order to examine the accuracy of the 

derivatives, the estimated body pitch rate  _];  is calculated using the identified derivatives and the 

priori model (referring to Equation (7.10)): 

_]; = M�B D M�G DM�_ D MÂ��  (7.16) 
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as well as the measured states u, w, q and δe from the flight test. The estimated body pitch rate _]; 
is compared with the _] , which was calculated by taking the first time derivative of the measured 

q. This comparison helps to find out which set of derivatives can simulate the flight data _]  better.  

By feeding the flight data of u, w, q and δe to model equation (7.16), the EE (Column 4 in Table 

7.3) and AVL derivatives verification plot can be acquired, as shown by Figure 7.31 and Figure 

7.32, respectively.  

 

Figure 7.31 Verification of EE identified pitching moment related derivatives  
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Figure 7.32 Verification of AVL estimated pitching moment related derivatives 

From the plots, it can be seen that EE identified derivatives can track the flight test response 

more accurately than the AVL calculated ones. By calculating the Mean Square Error (MSE), it 

is seen that for EE derivatives’ fitting, the MSE(EE) = 1.8; for AVL derivatives’ fitting, the 

MSE(AVL)  = 31.8. Therefore the MSE of EE identified derivatives’ fitting is much lower than the 

AVL calculated derivatives’ fitting. Note that MSE index cannot always quantify the accuracy of 

simulated data since it only quantifies magnitude and not phase. Nevertheless, from Figure 7.31 

and Figure 7.32, it can be visually determined that the derivatives identified by EE method can 

track the flight response more accurately that the AVL estimated ones. 

To validate the identification results, an unseen signal is now utilized to test the accuracy of the 

identified derivatives. The unseen signal used is shown in Figure 7.33 below. The unseen 
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random signal verification results of EE and AVL derivatives are shown in Figure 7.34 and 

Figure 7.35. 

 

Figure 7.33 Unseen random signal used for verification 
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Figure 7.34 Verification of EE identified pitching moment related derivatives with unseen 
random signal 
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Figure 7.35 Verification of AVL computed pitching moment related derivatives with 
unseen random signal 

From Figure 7.34 and Figure 7.35, it is seen that the EE-based identified aerodynamic 

derivatives can track the real flight response more accurate than the AVL estimated ones. The 

Mean Square Error of the simulation responses fitting using two sets of derivatives are: MSE(EE) 

= 1.5 and MSE(AVL)  = 22.2. This is also indicates that the derivatives identified by the EE method 

can track the aircraft’s actual response more accurately. To further verify the applicability of the 

identified derivatives, a Doublet signal is also applied as an unseen signal for verification. The 

Doublet truncated from the flight test is shown in Figure 7.36. 
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Figure 7.36 Unseen Doublet signal 

By feeding the EE, AVL derivatives and the model with the unseen Doublet signal, the simulated 

output can be calculated. The verification results are shown by Figure 7.37 and Figure 7.38. 
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Figure 7.37 Verification of EE identified pitching moment related derivatives with unseen 
Doublet signal 
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Figure 7.38 Verification of AVL computed pitching moment related derivatives with 
unseen Doublet signal 

From Figure 7.37 and Figure 7.38, it is seen that the EE-based identified aerodynamic 

derivatives can track the real flight response more accurately than the AVL estimated ones. The 

phases shown in the figures are matching very well. However, the magnitudes do not match as 

well as the phases. The Mean Square Errors of EE and AVL derivatives fitting are: MSE(EE) = 

4.7, and MSE(AVL)  = 35.5. This once again indicates that the derivatives identified by EE method 

can track the real flight test response more accurately than the AVL estimated ones. Therefore, 

the EE method is more accurate than AVL in the calculation of pitch moment related derivatives. 

Lift force related derivatives identification 

The model used for lift force related derivatives identification is adapted from Equation (4.109): 
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G] − _� D �0MOF0 = Z�B D Z�G D Z�_ D ZÂ��  (7.17) 

The state matrix X is the same as the one used for identification of pitching moment related 

derivatives.  However, the Y vector needs to be changed. The lift force divided by mass is: 

3 = G] − _� D �0MOF0  (7.18) 

Equation (7.18) is used to calculate the time domain Z. By performing finite Fourier transform to 

Z, frequency domain �2 is obtained, which comprises the Y matrix. Therefore, 

� =
ÇÈ
ÈÈ
ÈÉ�2(1)�2(2)...�2(j)ÊË

ËË
ËÌ
 

 

(7.19) 

By performing the EE algorithm to the information above, the lift force related aerodynamic 

derivatives are calculated. The results are shown in Table 7.4. 

Table 7.4 EE method identified lift force related aerodynamic derivatives 

EE value 

(dimensional) 

EE value 

(dimensional) 

Standard Error AVL value 

(dimensionless) 

Zu= -0.5579 �~7= -0.3210 0.4074 �~7= 0 

Zw= -2.8831 �~�= -1.6590 0.6038 �~�= -4.12 

Zq= -30.5650 �~¨= -45.6833 8.3425 �~¨= -9.4 

Zδe = -57.6947 �~��= -0.4864 17.4406 �~��= -0.56 

In Table 7.4, the first column is the EE identified dimensional derivatives, while the second 

column showing the non-dimensionalized derivatives. The third column is the corresponding 
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parameter standard errors. The last column is the dimensionless derivatives estimated by AVL. 

By comparing the dimensionless derivatives identified by EE and AVL methods, it is seen that 

most of the corresponding derivatives are close, except for �~¨ . In the following context, 

different sets of derivatives will be checked to see which one is more accurate in tracking the real 

aircraft response. The verification method is the same as the one utilized for verifying the 

pitching moment derivatives. The verification begins with the original signal and the 

comparisons are shown as Figure 7.39 and Figure 7.40. 

 

Figure 7.39 Verification of EE identified lift force related derivatives with original signal 
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Figure 7.40 Verification of AVL computed lift force related derivatives with original signal 

From Figure 7.37 and Figure 7.38, it is seen that the EE-based identified aerodynamic 

derivatives can track the real flight response more accurate than the AVL estimated ones. The 

Mean Square Error of the simulation responses fitting using two sets of derivatives are: MSE(EE) 

= 13.5, and MSE(AVL)  = 27.9. Which also indicates that the EE identified derivatives are more 

capable of tracking aircraft flight responses than the AVL calculated ones. For validation of the 

identified derivatives and further examination of the general applicability of them, their accuracy 

can be tested with an unseen random signal. The unseen signal verification is shown by Figure 

7.41 and Figure 7.42. 
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Figure 7.41 Verification of EE identified lift force related derivatives with unseen random 
signal 
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Figure 7.42 Verification of AVL computed lift force related derivatives with unseen 
random signal 

By observing the comparison plots and calculating their Mean Square Error: MSE(EE) = 11.1, 

MSE(AVL)  = 22.9. It can be seen that the EE’s derivatives can track the flight test response more 

accurately. Like verification for pitching moment related derivatives, the Doublet signal can also 

be used for further verification. The verification result using the unseen Doublet input is shown 

in Figure 7.43 and Figure 7.44. 
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Figure 7.43 Verification of EE identified lift force related derivatives with unseen Doublet 
signal 
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Figure 7.44 Verification of AVL computed lift force related derivatives with unseen 
Doublet signal 

The Mean Square Error of EE and AVL derivatives fitting are 16.8 and 44.8, respectively. This 

also indicates that the derivatives calculated by EE can track the flight test response better.  

Axial force related derivatives identification 

The model used for axial force related aerodynamic derivatives identification is adapted from 

Equation (4.108): 

B] D _$ D �0�IM0 = X�B D X�G D X�_ D XÂ��  (7.20) 

By setting: 

4 = B] D _$ D �0�IM0  (7.21) 
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Executing finite Fourier transform to the time domain X, the Y vector can be acquired, which is 

equal to the frequency domain �2: 

� =
ÇÈ
ÈÈ
ÈÉ�2(1)�2(2)...
�2(j)ÊË

ËË
ËÌ
 

 

(7.22) 

By performing EE algorithm to the above information, the axial force related aerodynamic 

derivatives can be identified as shown in Table 7.5. 

Table 7.5 EE method identified axial force related aerodynamic derivatives 

EE value 

(dimensional) 

EE value 

(dimensionless) 

Standard Error AVL value 

(dimensionless) 

Xu= -0.1796 �:7= -0.1034 0.6957 �:7= 0 

Xw= -1.2083 �:�= -0.6953 1.0312 �:�= -0.44 

Xq= -5.1463 �:¨= -7.6918 14.2461 �:¨= 0 

Xδe = -11.0759 �:Ö�= -0.0934 29.7825 �:Ö�= 0 

In the table, the first column is the dimensional derivatives identified using the EE method. The 

second column is the dimensionless derivatives converted from the dimensional derivatives. The 

third column is their corresponding parameter standard errors, which quantify the accuracy of the 

identified derivatives. The last column shows the dimensionless derivatives estimated by AVL. 

In the last column, the derivatives �:7, �:¨ and �:Ö�  are all shown as zeroes. This means that 

they exist, but are negligibly small, and AVL didn’t calculate them. The original signal and the 
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unseen signal are used to examine the accuracy of axial force related derivatives. First start 

verifying with original signal, the verification results are shown as Figure 7.45 and Figure 7.46. 

 

Figure 7.45 Verification of EE identified axial force related derivatives with original signal 
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Figure 7.46 Verification of AVL computed axial force related derivatives with original 
signal 

From Figure 7.45 and Figure 7.46, it is hard to determine which simulated output matches the 

flight output more closely. However, by calculating the Mean Square Error of the simulation 

responses fitting using two sets of derivatives: MSE(EE) = 4.8, and MSE(AVL)  = 6.1, it can be seen 

that the derivatives calculated by the EE method are slightly more accurate in tracking the flight 

test response. In order to test the broad applicability of the identified derivatives, the derivatives 

are examined and tested with an unseen random signal as well. The unseen random signal 

verification is shown in Figure 7.47 and Figure 7.48.  
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Figure 7.47 Verification of EE identified axial force related derivatives with unseen 
random signal 



141 | P a g e  

 

 

Figure 7.48 Verification of AVL computed axial force related derivatives with unseen 
random signal 

The Mean Square Error of the above fittings are: MSE(EE) = 5.8, and MSE(AVL)  = 7.2. It is seen 

that the EE method identified derivatives are a little bit more accurate in tracking flight response. 

As before, a Doublet signal is also used for further verifying the accuracy of the calculated 

derivatives. The unseen Doublet signal verification results are shown in Figure 7.49 and Figure 

7.50. 



142 | P a g e  

 

 

Figure 7.49 Verification of EE identified axial force related derivatives with unseen 
Doublet signal 
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Figure 7.50 Verification of AVL computed axial force related derivatives with unseen 
Doublet signal 

The Mean Square Error of the simulation responses fitting using two sets of derivatives are: 

MSE(EE) = 4.4, and MSE(AVL)  = 5.3. This indicates that the derivatives estimated by the EE 

method are slightly more accurate in tracking the real flight test response. It is seen that the 

identified axial force related derivatives are not as accurate as the pitching moment and lift force 

related derivatives.   

According to the above verification analysis, it is summarized that, for most cases, the EE 

identified derivatives can track the real flight test better than the AVL estimated ones, especially 

for pitching moment related derivatives �
7 , �
� , �
¨  and �
Ö� . Nevertheless, for some 

derivatives like axial force related derivatives, the accuracy of EE identified ones are not 



144 | P a g e  

 

significantly higher than the AVL computed ones for some scenarios. This is a point which 

requires further investigation. 

For comparing and verifying the identification results obtained from different methods, all the 

identified or computed derivatives are put in one table as shown in Table 7.6 below. 

Table 7.6 Different ways calculated Cropcam aerodynamic derivatives 

 Dimensionless 

Coefficient 

AVL Value EE Value TF Value 

A
xi

al
 fo

rc
e 

re
la

te
d

 

d
er

iv
at

iv
es

 

�:7  0 -0.1034 — �:�  -0.44~0.44 -0.6953 — �:¨ 0 -7.6918 — �:Ö� 0 -0.0934 — 

Li
ft

 fo
rc

e 
re

la
te

d
 

d
er

iv
at

iv
es

 �~7 0 -0.3210 — �~�(−�	�) -4.12  -1.6590 -6.4492 �~¨(−�	¨) -9.4  -45.6833 — �~Ö�(−�	Ö�) -0.56 -0.4864 -0.2246 

P
itc

h
 m

om
en

t 

re
la

te
d

 

d
er

iv
at

iv
es

 

�
7 0 0.0414 — �
� -0.64~0.018 -0.0485 -0.3036 �
¨ -13.8 -13.3980 -11.9227 

�
Ö� -1.772 -0.2295 -0.5506 

From Table 7.6, it is seen that most of the derivatives identified and computed in different ways 

are close, except for �:¨  and �~¨ . This could probably be due to the effect of coupling and 

nonlinearities which are not considered in the identification process. Or it may be because of the 

poor data content (e.g. δe and w), and this can be seen from the coherence plot which is shown on 

Figure 7.16.  
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Before executing the identification of Cropcam, the EE and TF methods were tested for the 

identification of the aircraft simulation model (a model built by students in Fluid Power and 

Telerobotics Research Laboratory, at the University of Manitoba). The simulation response and 

identification of model are presented in Appendix 2. The identification results of the simulation 

model show that the transfer function and equation error methods are accurate in identifying the 

aerodynamic derivatives (Refer to Table A 5). From Table A 5, it is seen that the values of the 

derivatives identified by the EE method are fairly close to the model using ones (the ones 

estimated by AVL), except for �:¨ . This explains why most of the identified Cropcam 

derivatives are reasonable, while �:¨ is a exception. In Table A 5, the transfer function method 

identified derivatives are a little bit different with the model using ones, but they are still close. 

This is because the transfer function method used some approximations in calculating the 

derivatives. Therefore, it is reasonable that the TF result shown in Table 7.6 is slightly different 

with the EE result. 

The correctness of the derivatives can be further checked by comparing them with the ones 

estimated by AVL as shown in Table 7.7, and by comparing them to the typical aircrafts’ 

aerodynamic derivatives as shown in Table 7.8. 
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Table 7.7 Comparison of two methods identified and AVL estimated derivatives 

Dimensionless 

Derivative 

AVL 

(& = −8°) AVL 

(& = −4°) AVL 

(& = 0°A 

AVL 

(& = 4°A 

EE Result TF Result 

�:7  -0.100944 -0.069100 -0.036897 -0.004492 -0.1034 — �:�  -0.939468 -0.244152 0.451359 1.143740 -0.6953 — �:¨ -1.224395 -0.683795 -0.146494 0.385232 -7.6918 — �:Ö�  -0.001194 -0.000683 -0.000152 0.000389 -0.0934 — �~7 -0.437534 -0.825067 -1.206411 -1.579810 -0.3210 — �~� -5.864017 -5.919652 -5.946587 -5.944692 -1.6590 -6.4492 �~¨ -9.434812 -9.408881 -9.340460 -9.229713 -45.6833 — �~Ö� -0.009687 -0.009843 -0.009903 -0.009867 -0.4864 -0.2246 

�
7 -0.027421 -0.038784 -0.042927 -0.040193 0.0414 — �
�  -1.474770 -1.610013 -1.736625 -1.854029 -0.0485 -0.3036 �
¨ -13.518798 -13.860711 -14.141084 -14.358251 -13.3980 -11.9227 �
Ö�  -0.030368 -0.031263 -0.031865 -0.032164 -0.2295 -0.5506 

In Table 7.7, the AVL’s derivatives are estimated at different angle of attacks.  
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Table 7.8 Aerodynamic derivatives of typical aircrafts 

Dimensionless 

Derivative 

NAVION F104-A A 4D Jetstar Convair 

880 

Boeing 

747 ���(−�:�) 0.33 0.45/ 0.38 0.30/0.038 0.75/0.6 0.27/0.15 0.66/0.47 �	�(−�~�) 4.44 3.44/2.0 3.45/4.0 5.0/6.5 4.52/4.8 5.7/5.5 �	¨(−�~¨) 3.8 0.0 0.0 0.0 7.72/7.5 5.4/6.58 

�	Ö�(−�~Ö�) 0.355 0.68/0.52 0.36/0.4 0.4/0.44 0.213/0.19 0.338/0.3 �
� -0.683 -0.64/-1.3 -0.38/-0.41 -0.8/-0.72 -0.90/-0.65 -1.26/-1.6 �
¨ -9.96 -5.8/-4.8 -3.6/-4.3 -8.0/-0.92 -12.1/-4.5 -20.8/-25 

�
Ö� 0.923 -1.46/-0.1 -0.5/-0.6 -0.81/-0.88 -0.64/-0.57 -1.34/-1.2 

In Table 7.8, the numbers are derivative values of different types of aircraft. In some cells there 

are two numbers, which corresponding to different aircraft mass situations. Comparing the 

identified derivatives with the ones shown in Table 7.7 and Table 7.8, it is seen that most of them 

are fairly close. This further validates the reliability of the derivatives identified by the two 

methods.  
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7.2 Identification of a delta-wing UAV 

 

Figure 7.51 A delta-wing UAV (From uas.trimble.com) 

Figure 7.51 shows a typical delta-wing aircraft. The main goal of system identification for the 

delta-wing UAV is to identify the longitudinal channel transfer function (δe-q). Pitch rate q is the 

only state variable that is required. The delta-wing UAV’s input excitation for elevator is a pilot 

generated Chirp signal. The output collected is body pitch rate q. The input-output pair is shown 

by Figure 7.52 and Figure 7.53.  
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Figure 7.52 Input excitation for delta-wing aircraft 

 

Figure 7.53 Measured output of the delta-wing aircraft 
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Figure 7.54 is the FFT plot of the manually generated Chirp input excitation. 

 

Figure 7.54 Finite Fourier transform plot of input excitation 

From the FFT plot, it is seen that the frequency range of the input excitation is 0.47 ~ 3.7 Hz, 

which indicates that the signal is very suitable for identification of the system, from the 

frequency range point of view. For the system identification with flight test data, some data pre-

processing work needs to be done. Sampling time inconsistency is one of the typical problems 

which need to be resolved by regulating the data sample times. The actual sampling time of the 

gathered data is shown by Figure 7.55.  
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Figure 7.55 Sampling time 

From Figure 7.55, it is seen that average sampling time is around 34 ms, and the actual sampling 

is between 33 and 35 ms. Since CIFER is sensitive to the deviation of the sampling time in data 

processing, it is recommended that the data points are evenly distributed on the time axis first. 

This is done by interpolating the original data read by the autopilot. After pre-processing and 

performing the required unit conversions, the data are fed to CIFER for system identification 

processing. The method that CIFER uses to obtain frequency response is the Power Spectra 

method which was discussed in Section 6.1.1. The frequency response (Bode plot) of � - q 

obtained from CIFER is shown in Figure 7.56. 
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Figure 7.56 Bode plot of δe-q 

From the coherence graph it is seen that the optimum frequency range for obtaining the transfer 

function is 2.53 ~ 23 rad/s, which has the coherence over 0.89. The transfer function is obtained 

by using the FRESPID and NAVFIT utilities of CIFER, which is acquired as, 

_(M)� (M) = −64.95(M D 3.23)�V�.S�KK.MK D 2 × 0.74 × 10.54M + 10.54K (7.23) 

where Ue = 20 m/s = 65.62 ft/s. The transfer function cost is 39.7, which is well below the 

maximum acceptable value of 100. The comparisons of identified Bode plots (one is plotted 

from identified transfer function, the other one is identified from flight test data) are shown in 

Figure 7.57 and Figure 7.58. 
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Figure 7.57 Comparison of magnitudes  

 

Figure 7.58 Comparison of phases  
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From Figure 7.57 and Figure 7.58, it can be seen that the magnitudes and phases are matching 

fairly well, which means that the transfer function meets the frequency domain verification 

requirement. The next step is to verify it in time domain. By feeding the transfer function with 

the same input excitation used in the flight test, the output from the transfer function can be 

calculated (simulated). Figure 7.59 shows the comparison of simulated output (pitch rate) with 

flight test measured output. 

 

Figure 7.59 Comparison of simulated output and measured output 

From Figure 7.59, it can be seen that the transfer function simulated output can track the flight 

test measured response very well. This means that the transfer function describes the system 

characteristics precisely. For examining the applicability for other flight scenarios of the transfer 

function, an unseen signal is used. The unseen input signal used is shown in Figure 7.60. Figure 

7.61 shows the comparison of the flight test response and the transfer function simulated output. 
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Figure 7.60 Unseen input excitation used for transfer function verification 

 

Figure 7.61 Comparison of simulated and measured outputs with unseen input signal 
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From Figure 7.61, it is seen that the simulated output obtained by the transfer function, can track 

the flight test measured output fairly well, which further demonstrate that the identified transfer 

function is accurate. The time domain responses comparison demonstrates that the identified 

transfer function can predict the aircraft’s longitudinal mode responses reasonably accurately. 

Next, the unknown longitudinal channel aerodynamic derivatives are extracted from the 

identified transfer function.  

_(M)� (M) = jÂ�(M − %�)MK − tj� D %�uM D (j�%� −j�� ) = −64.95(M D 3.23)MK D 15.5M D 111.1 (7.24) 

As the following equality holds, 

MK D 22.,.M D 2.K = MK D 15.5M D 111.1 

Therefore, the natural frequency 2. is 

2. = √111.1 = 10.54	rad/s	
And the damping ratio ,. is 

,. = 15.522. = 0.74 

In addition, by solving Equation (7.24), the following have: 

��
	jÂ� = −64.95%� = −3.23		j� = −12.27j� = −1.09		  
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Following the conversion procedures used on Cropcam, the above concise notated derivatives 

can be converted to the North American dimensionless derivatives which are given as: 

���
�	�
Ö� = −0.04		��� = −3.18	�
¨ = −0.83		�
� = −0.044 

Since the identified transfer function is validated as quite accurately, and the TF method is 

proven reliable in identifying aerodynamic derivatives of the Cropcam, it is expected that the 

identified delta-wing aircraft aerodynamic derivatives are reliable.  

 

7.3 Summary 

This chapter presented the experimental results, which comprised of the identification of two 

classes of UAVs: a Cropcam and a delta-wing aircraft. The identification results were examined 

and validated in various ways. Before the two identification methods were applied to identify the 

actual system, they were examined and proven effective using a simulation model of a UAV.  

For the identification of the Cropcam system, the transfer function method was applied first, and 

the system Bode plots and transfer functions were obtained accordingly. The accuracy of the 

obtained transfer functions was validated next. Based on the validated transfer functions, some 

aerodynamic derivatives were extracted and converted into the dimensionless format. Equation 

error method was then used to directly identify the aerodynamic derivatives. The identification 

results were verified by various ways. From the verification, it was seen that the EE method 

identified derivatives are more accurate than the AVL program estimated ones.  
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For the identification of the delta-wing aircraft, only TF method was applied, since the purpose 

of identification of the delta-wing aircraft was to obtain the system transfer function. The 

accuracy of the identified transfer function was also examined. Certain aerodynamic derivatives 

of this UAV were also calculated from validated transfer function. 
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8 Conclusions 

8.1 Contributions made by this thesis 

In this thesis, the following research questions were addressed: i) design and implementation of 

appropriate identification algorithms, which satisfy the need for low computational complexity 

and limited measurements while maintaining high accuracy of parameters estimation; ii ) design 

and implementation of proper input excitations that can adequately stimulate different modes of 

aircraft behaviour and provide rich information in the output measurements in both time and 

frequency-domain; iii ) poor sensory information of the vehicle variables. 

For frequency domain system identification, the design of input excitation is an essential step 

which can affect the quality of the identification. A sweep input excitation generating program 

was developed in this research. Two types of input excitation were executed in the flight test: 

Chirp and Doublet. Chirp was proved to be more appropriate for frequency domain system 

identification due to its rich frequency components. Doublet was selected for result verification.  

The main aim of this research was to identify the longitudinal channel transfer functions of 

UAVs, as well as the corresponding aerodynamic derivatives. Two approaches were developed 

for identifying the derivatives: one is the Transfer Function (TF) method; the other one is the 

Equation Error (EE) method. The EE method was considered as the main approach for 

identifying aerodynamic derivatives, because it can identify more derivatives with better 

accuracy as compared to the TF method. The TF method, however, has some unique positive 

characteristics. In particular, it requires fewer measurements. The TF method is also 

demonstrated as an alternative approach for identification of aerodynamic derivatives. In order to 
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check the feasibility, both identification methods were first tested with a simulation scenario, 

before they were applied to the real aircraft data. The identification for the simulation model 

system demonstrated that both of the methods are applicable and effective.  

For identification of the Cropcam, both transfer function and EE methods were applied. Using 

the transfer function method, the longitudinal transfer functions of the aircraft were obtained. 

Based on the identified transfer functions, some of the aerodynamic derivatives were extracted. 

By applying the EE method, an entire set of longitudinal channel aerodynamic derivatives were 

identified. The derivatives identified by the two methods were compared and verified in multiple 

ways. To further verify the reliability of identification results, the identified derivatives were 

compared with the derivatives from two other sources, namely AVL estimated derivatives and 

derivatives of some conventional aircrafts published by the aircraft manufacturer. The 

verification showed that most of the identified derivatives are fairly reliable, especially for 

pitching moment derivatives. For some axial force related derivatives, the simulation responses 

do not match very well with the flight responses. It is mainly due to the deficiency of the data 

measurements, such as the coupling between the longitudinal and lateral channels, and 

nonlinearities or data recording deficiencies. The mismatch may also be attributed to the built in 

models of the identification algorithm (EE method) are not accurate or have too many unknowns.  

For identification of the delta-wing aircraft system, the transfer function method was applied. As 

a result, the longitudinal transfer function of the aircraft was obtained, and some corresponding 

aerodynamic derivatives were extracted from the identified transfer function. Since the objective 

of the delta-wing aircraft identification is to obtain the system transfer function, the transfer 

function method is the only method used rather than the EE method.  
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The TF and EE methods were first implemented and used on the simulation model to examine 

and analyze the efficiency of each method. By verifying the derivatives based on computer 

simulation, the EE method identified derivatives showed a better ability to track the actual flight 

responses than the AVL estimated derivatives. Therefore, it is expected that the EE method is 

more capable of calculating aerodynamic derivatives than the AVL software. By comparing the 

derivatives identified by the TF and EE methods, it is seen that their results are close. Therefore, 

the transfer function method is believed to be an effective alternative for aerodynamic 

derivatives identification. The identification results are expected to improve the simulation 

program developed by MicroPilot Inc. 

 

8.2 Future research 

For the future research, the following issues need to be addressed:  i) poor flight test data; ii ) data 

delay; iii ) applicability validation. 

i. Some of the identified derivatives have high parameter standard errors indicating that 

they are not accurate. This could be due to the poor flight test, improper data delay 

processing, or even the algorithm deficiency. Therefore, more work is required to focus 

on the data pre-processing and the identification program optimizing. Also, ways need 

to be found to solve the problem of poor parameter accuracy.  

ii.  Since the EE identification method was found highly sensitive to the delay (identified as 

shifting between the input and output), the delay problem should be resolved. The delay 

is caused by the control servos response delay, as well as the delay inherently associated 
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with the system’s dynamics. Other sources of delay and method(s) to rectify their 

effects on the identification must be investigated in the future.  

iii.  To validate the applicability of the identification results in practice, the identified 

derivatives should be applied to further enhance the simulation model.  Currently the 

values of derivatives used by ‘Horizon’ (a simulation software developed by MicroPilot 

Inc.) are taken from the open-source AVL program.  The degree on enhancement that 

can be achieved using the newly obtained derivatives should be tested on Horizon. 
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Appendix 1 Derivatives Conversion 

Tables A 1 to A 4 show the conversions of longitudinal aerodynamic stability and control 

derivatives. 

Table A 1 British notation longitudinal derivatives conversion (Cook, 2012) 
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Table A 2 North American notation longitudinal derivatives conversion (Cook, 2012) 
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Table A 3 British and North American notation longitudinal dimensionless derivatives 
conversion (Cook, 2012) 
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Table A 4 Longitudinal concise and dimensional derivatives conversion (Cook, 2012) 
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Appendix 2 Simulation Results 

In this appendix, an aircraft simulation model is introduced first. Then, by using the computer 

simulation data, both the TF and EE methods are applied to the identification of longitudinal 

channel aerodynamic derivatives. Additionally, the transfer function method will be used to 

identify the longitudinal channel system transfer functions, and the EE method will be used to 

identify the lateral channel aerodynamic derivatives. 

 

A2.1 Simulation responses 

Based on the aerodynamic motion equations presented in Chapter 4, a model of Cropcam is built. 

The geometric parameters such as mass, wing span and wing area are physically measured for 

Cropcam. The initial aerodynamic derivatives are then obtained by AVL. Input excitations, such 

as Chirp and Doublet, are implemented and employed in the simulation model to test the 

accuracy of the aircraft model response.  

Since the Doublet signal is easy to generate and its corresponding responses are simple to 

analyse, it is used to test and excite the model first. The model is revised based on the analysis of 

simulation responses. After the reliability of the model is validated with Doublet, it is excited 

with the Chirp input signal. Meanwhile, the aircraft behaviour is studied. Figure A 1 shows the 

Chirp input used. 
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Figure A 1 Input excitation  

The input excitation design obeys the criteria discussed in Section 5.1. In Figure A 1, it is seen 

that the aircraft is flying under trim condition before deploying significant elevator perturbation. 

And the input excitation ends up with the trim state as well. Figure A 2 to Figure A 13 display 

the aircraft corresponding responses. 
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Figure A 2 Total velocity V 

 

Figure A 3 Angle of attack α 
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Figure A 4 Sideslip angle β 

 

Figure A 5 Roll rate p 
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Figure A 6 Pitch rate q 

 

Figure A 7 Yaw rate r 
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Figure A 8 Roll angle φ 

 

Figure A 9 Pitch angle θ 
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Figure A 10 Yaw angle ψ 

 

Figure A 11 Axial position x 
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Figure A 12 Lateral position y 

 

Figure A 13 Altitude z 

48 50 52 54 56 58 60 62 64 66
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

y 
(f

t)

48 50 52 54 56 58 60 62 64 66
-4973

-4972.9

-4972.8

-4972.7

-4972.6

-4972.5

-4972.4

-4972.3

-4972.2

-4972.1

Time (s)

z 
(f

t)



179 | P a g e  

 

The responses are examined and demonstrated make sense to a certain extent. For example, 

positive elevator deflection causes negative w and q responses. So far, the signs (phases) of the 

responses are make sense, however, their magnitudes are not that convincing. It seems that some 

of the states’ magnitudes are incredibly high, while some of them are too low. It is believed that 

this is caused by the inaccurate estimation of aerodynamic derivatives, since when modifying the 

model, some of the derivatives are tuned. This demonstrates that the AVL is deficient in 

estimating the aerodynamic derivatives precisely. That is why the system identification is given 

wide attention. 
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A2.2 Identification using transfer function based method 

For the longitudinal channel system identification, the chirp input signal is used to excite the 

simulation model. The main parameters used by the Chirp are: time duration, 15 seconds; 

maximum elevator deflection, 2 degrees; and frequency range, 0.1 ~ 5 Hz. The computer 

generated input excitation is shown as Figure A 14. 

 

Figure A 14 Chirp input excitation 

The Chirp input excitation’s frequency range is shown by the FFT plot in Figure A 15.  
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Figure A 15 FFT of input excitation 

From Figure A 15, it is seen the Chirp frequency range is 0.1 to 5 Hz, which is exactly as set. 

And also it is seen that the frequency component of the signal is rich, which is ideal for 

frequency domain system identification. The transfer function based algorithm is mainly based 

on Equations (6.24) and (6.25) for longitudinal channel system identification. The output 

responses needed are vertical body velocity w and pitch rate q. For data processing, the variables’ 

units should be normalized. Here the input � ’s unit is set as rad, output w’s unit is set as ft/s, and 

q’s unit is rad/s. By using the CIFER batch work utility, the Bode plots of � -w and � -q can be 

obtained, and are shown in Figure A 16 and Figure A 17. 
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Figure A 16 Bode plot of ��-w 
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Figure A 17 Bode plot of ��-q  

The two plots show that both � -w and � -q’s coherences are good (coherence over 0.8) or 

acceptably high (above 0.6) between 2.58 and 30 rad/s. To guarantee good linearity, a frequency 

range of 2.58 ~ 27 rad/s is picked for the identification of transfer functions. This maintains the 

coherence over 0.8. By using the CIFER NAVFIT module, the transfer functions of � -w and � -
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The cost of the � -w transfer function is 36.9, and 28.2 for � -q. These are all satisfactorily under 

the guideline of 100.  

Figure A 18 to Figure A 21 show the verification of two transfer functions’ accuracy by 

comparing the identified Bode plots (from the flight data) with the ones plotted from the transfer 

functions.  

 

Figure A 18 Magnitude of ��-w  

10
0

10
1

10
2

0

5

10

15

20

25

Frequency (rad/s)

M
ag

ni
tu

de
 (

dB
)

 

 

From transfer fucntion
From flight test data



185 | P a g e  

 

 

Figure A 19 Phase of ��-w  

 

Figure A 20 Magnitude of ��-q  
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Figure A 21 Phase of ��-q  

From Figure A 18 to Figure A 21, it can be seen that both of the magnitude and phase plots of 

the � -w and � -q’s transfer functions match fairly well with the data identified ones. To further 

examine the accuracy of the transfer functions, they are fed with the simulation input �  (refer to 

Figure A 14) to get the simulated outputs G<  and _C, which are compared with the flight measured 

outputs w and q. The simulated outputs G<  and _C are calculated and the comparisons are shown as 

Figure A 22 and Figure A 23. 
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Figure A 22 Verification of vertical velocity w 

 

Figure A 23 Verification of pitch rate q 
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The comparison plots show that the transfer function simulated outputs can track the aircraft 

responses quite well. This indicates that the transfer functions are fairly accurate in describing 

the system characteristics. Thus, next, the transfer function method discussed in Chapter 6 can be 

applied to extract the aerodynamic derivatives. 

G(M)� (M) =
%Â�(M D � jÂ�%Â� )MK − tj� D %�uM D (j�%� −j�� ) = −26.37(M D 8.95)MK D 8.81M D 20.9 (A 3) 

_?MA� ?MA = jÂ�?M − %�AMK − tj� + %�uM + ?j�%� − j�� A = −3.91?M + 8.14AMK + 8.81M + 20.9 (A 4) 

To extract the derivatives, the homologous terms in the transfer functions are set as equal: 

��
�
�	

%Â� = −26.37jÂ� = −3.91−%� = 8.14	−tj� D %�u = 8.81j�%� −j�� = 20.9
 

(A 5) 

where Ue = 69.34 ft/s. Therefore the concise aerodynamic derivatives are solved: 

��
�
�	

%Â� = −26.37jÂ� = −3.91%� = −8.14	j� = −0.67j� = −0.22
 

Note the derivatives here are neither dimensional nor dimensionless. They are notated concisely. 

The way of converting them to North American dimensionless notated derivatives can refer to 

Section 7.1.1. Some parameters used in the conversions are: ρ = 0.002286 slug/ft3, S = 5.31 ft2, � ̿ 
= 0.77 ft, V0 = 69.34 ft/s, Iy= 3.04 lb·ft2. 
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By converting them to dimensionless North American derivatives, they can be compared with 

the ones that will be identified by the EE method. The dimensionless derivatives identified by the 

transfer function method can then be summarized as: 

��
�
�	 ��� = −4.6083��Ö� = −0.0094�
� = −2.0861	�
¨ = −16.4153�
Ö� = −0.0294

 

 

A2.3 Identification using equation error method 

For the identification of the simulation model, all the derivatives used in this research are non-

dimensional. The prior model equations used for longitudinal channel system identification are 

summarized as (adapted from Equations (4.108) to (4.110)): 

B] = X�B D X�] G] D X�G D tX� −$ u_ − �0�IM0 D XÂ��  (A 6) 

G] = Z�B D Z�] G] D Z�G D tZ� D � u_ − �0MOF0 D ZÂ��  (A 7) 

_] = M�B D M�] G] D M�G DM�_ D MÂ��  (A 8) 

Equations (A 6) to (A 8) can be further written as, 

B] D _$ D �0�IM0 = X�B D X�G D X�_ D XÂ�� D X�] G]  (A 9) 

G] − _� D �0MOF0 = Z�B D Z�G D Z�_ D ZÂ�� D Z�] G]  (A 10) 

_] = M�B DM�G DM�_ D MÂ�� DM�] G]  (A 11) 
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By combining the Equations (4.35) to (4.111), Equations (A 9) to (A 11) can be rewritten in 

dimensionless case, and shown as, 

�: = j(B] D _$ D �0�IM0 )/_{| = �:7BC D �:�G< D �:¨_C D �:Ö�� D �:�] G<]  (A 12) 

�~ = j(G] − _� D �0MOF0 )/_{| = �~7BC D �~�G< D �~¨_C D �~Ö�� D �~�] G<]  (A 13) 

�
 = _] ∗ ��/_{|�̅ = �
7BC D �
�G< D �
¨_C D �
Ö�� D �
�] G<]  (A 14) 

where, the quantities with dressing “^” denote the non-dimensionalized variables.  

For the Equation Error method identification, all the time domain parameters and variables CX, 

CZ, Cm, BC , G< , _C, �  and G<]  are converted into the frequency domain by applying the finite Fourier 

transform. The frequency domain variables can be written in vector form as follows by referring 

to Equations (6.50) and (6.51): 

For the axial force CX case, 

� ≡
ÇÈ
ÈÈ
ÈÉ8:0(1)
8:0(2)...8:0(j)ÊË

ËË
ËÌ
 

 

(A 15) 

For the lift force CZ case, 

� ≡
ÇÈ
ÈÈ
ÈÉ8~0(1)
8~0(2)...8~0(j)ÊË

ËË
ËÌ
 

 

(A 16) 
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For the pitching moment Cm case, 

� ≡
ÇÈ
ÈÈ
ÈÉ8
0 (1)
8
0 (2)...8
0 (j)ÊË

ËË
ËÌ
 

 

(A 17) 

For CX, CZ and Cm, matrix X is the same, which is, 

� ≡
ÇÈÈ
ÈÈÈ
É �<2(1)					.<2(1)					/<2(1)					��90(1)				.]ª2(1)�<2(2)					.<2(2)					/<2(2)					��90(2)				.]ª2(2).													.													.														.													.		.													.													.														.													.		.													.													.														.													.		�<2(j)			.<2(j)				/<2(j)				��90(j)			.]ª2(j)ÊËË

ËËË
Ì
 

 

(A 18) 

where m is the total number of frequency components. Since the model quantities in Equations 

(A 15) to (A 18) are all determined, the EE method discussed in Chapter 6 can be applied. 

Equation (6.58) can be executed to obtain axial force, lift force and pitching moment related 

derivatives by substituting Y matrix. Also, the parameter standard errors can be computed 

according to Equations (6.59) to (6.61). Table A 5 tabulates the longitudinal channel system 

identification results identified by the EE method. The derivatives estimated by AVL and 

extracted by transfer function method are also listed in Table A 5 for comparison. 
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Table A 5 Derivatives of simulation model  

 Derivative EE method Parameter 

Standard Error 

TF Result AVL  software 

P
itc

h 
m

om
en

t r
el

at
ed

 

d
er

iv
at

iv
es

 

�
7  0.0543 0.0125 N/A -0.032~ 0.015 

�
� -1.7914 0.1848 -2.0861 -1.9219~ -1.15 

�
¨  -10.4704 3.7187 -16.4153 -14.43~ -12.6 

�
Ö� -0.0310 0.0004 -0.0294 -0.032~ -0.027 

�
�]  0.0002 0.0066 N/A N/A 

Li
ft

 fo
rc

e 
re

la
te

d
 d

er
iv

at
iv

es �~7  0.0918 0.0269 N/A -2.5~ 0.2 

�~�  -4.7180 0.3972 -4.6083 -5.47~ -5.73 

�~¨  -8.3151 7.9937 N/A -9.1~ -8.4 

�~Ö� -0.0100 0.0006 -0.0094  -0.0091~ -0.0099 

�~�]  0.0025 0.0141 N/A N/A 

A
xi

al
 f

o
rc

e 
re

la
te

d 

d
er

iv
at

iv
es

 

�:7 -0.1591 0.0075 N/A -0.15~ 0.07 

�:�  2.0796 0.1113 N/A -2~ 2.85 

�:¨  -40.3759 2.2394 N/A -2.1~ 1.67 

�:Ö� 0.0002 0.0002 N/A -0.00198~ 0.0018 

�:�]  -0.0002 0.0039 N/A N/A 

By comparing the EE identified derivatives with the ones estimated by AVL, it can be seen that 

most of the values are identical or fairly close. The only defect is that �:¨ which seems to be 

inaccurate. The deviation needs to be explored in the future. Beyond this, the identified 

parameter results are in good agreement. By comparing the derivatives’ values acquired by using 

two identification methods, it can also be seen that they are reasonably close. This further proves 
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that the two methods are effective and valid for identifying aerodynamic derivatives. In addition, 

the low Parameter Standard Error also indicates that the identified derivatives are fairly reliable. 

To summarize, in this appendix, an aircraft simulation model was introduced first. Then, both the 

TF and EE methods were applied to identify the longitudinal mode aerodynamic derivatives, 

using the simulation data. The TF method was used to identify the system transfer functions; 

some longitudinal mode aerodynamic derivatives were extracted from the identified transfer 

functions. The EE method was used to directly calculate the aerodynamic derivatives from the 

simulation data. The identification results demonstrated that both the TF and EE methods are 

reliable in identifying aerodynamic derivatives. Therefore, they can be used for identification of 

the actual aircraft system. 

 


