UNIVERSITY
oF MANITOBA

Frequency Domain System Identification
of Fixed-Wing Unmanned Aerial Vehicles

By
KAIWEN XU
8/14/2014

A Thesis
Submitted to the Faculty of Graduate Studies olth&ersity of Manitoba
In Partial Fulfillment of the Requirements of theddee of

MASTER OF SCIENCE

Department of Mechanical Engineering

The University of Manitoba

Winnipeg, Manitoba

Copyright 2014 © Kaiwen Xu



Abstract

The goal of this thesis is to identify airplanesduced order transfer functions, and aerodynamic
derivatives in the longitudinal channel. The outeoofithe research will benefit aircraft systems’
controller design, modeling and simulation. Air¢rahder study are a conventional fixed wing
airplane called Cropcam, and a nonconventionaladeilhg aircraft. To identify the system
transfer functions and aerodynamic derivatives,edirand indirect frequency domain
identification methods are applied. For the dinewtthod, the Equation Error (EE) method is
adopted to process the Cropcam’s input-output get;is and identify the aerodynamic
derivatives from the flight data directly. The ireit approach is called the Transfer Function
(TF) method. For this method, a commercially avddasystem identification tool kit called
CIFER is utilized to identify the longitudinal trsfer function of the aircraft first. Then the
aerodynamic derivatives are extracted from the tifled transfer function. The derivatives
identified by the EE method and transfer functiogtimd are compared with the ones computed
from a Vortex Lattice based program called AVL. Titentification results are further verified
by comparing computer simulation outputs with ftiglest responses. Issues such as input
excitation design, data gathering, data reliabibtyalysis and result verification are also

investigated in this thesis.
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1 Introduction

1.1 Motivation

Unmanned Aerial Vehicles (UAVs) are being used msiesly in applications such as
surveillance, search and rescue missions, remotEngeand geographic studies (Ryamnal,
2004; Fahimi, 2009; Nonanat al, 2010). Compared to piloted aerial vehicles, ¢batrol of
UAVs is more challenging — because all flight cohtnavigation and guidance operations must
be carried out by an onboard computer. Usuallyd#sgn and tuning of the control systems are
done by trial-and-error on actual prototype airtat his method is time-consuming and costly.
In some cases, the tests do not cover the enight fenvelope, leading to unsatisfactory
performance during unseen real world scenariosa Assult, it is a common practice to develop
time-domain computer simulation models of UAVs tregemble the actual behaviour of aircraft
in flight. The autopilot control systems used on\$Aare then designed and tested using the
simulation program first, before being deployed ogal platforms. This approach, if
implemented well, reduces the need for extensimenguand validation. However, one problem
which often plagues this approach is that the cderpsimulation results may not match the
actual responses obtained from the actual flightis Tdiscrepancy is mainly caused by
inaccuracies of the time-domain model structure,ntagnitudes of its parameters, or the manner
in which it is numerically simulated. These issuegduce the reliability of any design based on
the available simulation software. Therefore, abtay accurate models of UAVs is critical for
the development of algorithms or software toolg tamn be used to design and analyze the UAV

autopilot control systems under different flightnddions. System identification techniques
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allow the derivation of reliable analytical modelkich can be used, not only in simulations of
different flight scenarios, but also for the deystent of more advanced controllers for the

UAVSs.

1.2 Objectives

One major challenge in composing an analytical rhotlan aircraft is to accurately characterize
its aerodynamic behavior by a set of coefficient®wn as aerodynamic derivatives. These
derivatives relate the host aircraft motion vamabto the aerodynamic forces and moments.
Since autopilots are commonly designed to fly aemidriety of airframes, identifying the
aerodynamic characteristics of the platform, eithetine or off-line, could significantly ease the
control system design process. The conventionahodefor finding these derivative values
involves conducting wind tunnel experiments onalext vehicle. While this method is effective,
it is expensive, often preventing civilian UAV mdacturers from adopting it. Also, some of the
dynamic aerodynamic derivatives are not calculatetturately by this method. The
computational program Athena Vortex Lattice (AVL)jogram, produces estimates of the
aerodynamic derivatives given the aircraft geomdiowever, AVL does not take into account
the viscous effects of aerodynamic and, thus, dapraxluce accurate results for small UAVs
flying at low speeds. Recently, off-line or on-lisgstem identification techniques have been
adopted by aircraft manufacturers and industryameders to build mathematical models for
UAVs by using measurements of input-output dataspdinese techniques process certain inputs

excited aircraft frequency (Theodoe¢ al, 2004; Tischler and Remple, 2006; Debeskal.,
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2011; Dorobantiet al, 2013; Lee and Park, 2009; Morelli, 1999) or tidmmain (Klein and

Morelli, 2006; Jategaonkar, 2006; Chowdhary andgkinkar, 2006) responses.

The objective of this research is to find an effectool that can process flight data, and either
extract the aerodynamic derivatives directly oragbthem indirectly from the platform transfer
functions, given minimum flight test data and liedtsensory information. The outcome of this
research will provide a technology that improves téliability of UAVs computer simulation
software and, as a result, enhances fidelity ofdésigned control system. Also, the optimal
design of the autopilot control system without esstee flight tests will reduce manufacturing

costs.

Input-output data pairs of two UAVSs, including anconventional delta-wing aircraft and a
conventional fixed wing aircraft, are availablelte processed in this thesis. It is expected that
the system transfer functions in the longitudinbarmel, as well as the related aerodynamic

derivatives will be identified.

1.3 Methodology

Two frequency domain system identification techegjare implemented in this research. The
first approach is the Transfer Function (TF) methbais method uses spectral densities of the
measured input-output signals to obtain systemsteanfunction (Tischleret al, 2006;

Dorobantuet al, 2011). For this method, an empirical estimatthefsystem frequency response
is calculated by using auto Power Spectral Den(8i§D) of the input and cross Power Spectral

Density of the input and the output signals. Thennchallenge here is how to calculate PSD
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functions accurately. The main source of errorsiaaecuracies in sensor measurements and

insufficient frequency resolution for identifyingghtly damped modes of the aircraft.

The second approach is the Equation Error methddthais also called the recursive Fourier
Transform Regression (FTR) method (Kl@nhal, 2006; Tischlert al, 2006; DeBuslet al.,
2009). The advantage of the FTR method is thaDiiegains and zero biases can be removed
from the measured data by omitting the zero frequdrom the frequencies over which the
Fourier Transform is calculated. Also, the highegtiency components of the measured data,

which are usually due to noise or external distndesa, can be removed.

The research is built and expanded upon an in-haismilation model, as well as a
commercially available identification software tam@lled CIFER (Tischleet al, 2006). CIFER

is short for Comprehensive Identification from Fdégcy Responses. Appropriate tools are
adopted and further developed for extracting thedygmamic derivatives used by the model. It
was jointly developed by the U.S. Army and the @msity of California, Santa Cruz (UARC).
The most significant feature of CIFER is that ihoaxtract high-quality frequency responses
from multi-input/multi-output time domain data. lgglvanced Chirp-transform and composite
optimal window techniques allow it to extract siggantly higher quality frequency responses

compared to standard Fast Fourier Transforms (FFTSs)

After the simulation model system identification desne, both the TF and EE methods are
initially will be applied on the platform called @vcam. As the research unfolds, it will be
expanded to a nonconventional delta-wing UAV. Idemattion of longitudinal aerodynamic

derivatives during cruise flight mode is investaghtfirst, followed by the derivation of
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appropriate frequency-domain models (transfer fons) of the aircrafts. The following issues

are commonly addressed in the context of UAVS &ysidentification (Morelli, 2009):

Vi.

Vii.

which states should be measured, and how they easured;

which states cannot be measured and need to henitetd post flight;

what kind of filter(s) and/or post processing pihoe(s) are required to eliminate
undesired and unnecessary components from the redagata;

how should the aircraft be excited effectively tesare that the measured data is
sufficiently rich for system identification purpasm the frequency domain;

what is the required sampling rate to guarantee ttie fastest mode of the aircraft
model can be reconstructed;

how high should the input excitation amplitude bé&haut violating the small
perturbation criteria, while providing a sufficigntarge signal-to-noise ratio;

how should the input excitation be implemented:the Pilot in Control (PIC) or

Computer in Control (CIC) mode.

In this research, the following questions are itigased:

How can the aerodynamic derivatives be obtainewh filee transfer functions in UAVs
using frequency domain method?
What method (transfer function/equation error idemttion, or AVL estimation) is

more accurate in obtaining the aerodynamic derxiea®

Figure 1.1 shows the procedure by what the frequeseponse system identification method is

applied in this research (Tischler and Remple, 2012

5|Page



Chirp Input |5 Aircraft |>| Data Pre-processing>] Spectral Analysis

L

— Transfer Function Modeling Conditioned Frequency Respor |

Frequency Response
Identification Criterior

Identification Algorithm

Initial Model Structure
Building

Stability Derivatives

Dissimilar Flight Data Not Used
in lIdentification (Unseen Signal

Verification

Application: Simulation Validation

Figure 1.1 Frequency-response system identificatigorocedure

Chirp input is designed first as input excitatiaor the UAV under investigation. Then, the
aircraft responses are measured and processed.t@ncata are processed, the identification
methods can be applied to identify the system femn&inctions and/or the aerodynamic
derivatives. The identification results need to \mified before applying to enhance the

performance of simulation model.

1.4 Thesis outline

In Chapter 2, the theoretical background of systdentification will be introduced. In order to

discuss aerodynamic characteristics of UAVs, bastodynamic theory needs to be studied as
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well. Therefore, Chapter 3 gives an introductionbtasic aerodynamic theory. It starts by
introducing the coordinate systems that are usetsoribe aircraft motion both in the body and

wind axes, as well as the axes transformations.

In Chapter 4, the general aircraft equations ofiomoare derived, and the effect of aerodynamic
forces and moments on the motion variables areusissrl. In addition, the complete dynamic
equations are decoupled for the convenience oésygtentification. In Chapter 5, the frequency
domain system identification input excitations regmnents are discussed, and the computer-

based method for generating the Chirp signal redhiced.

Chapter 6 presents the two system identificatiothods used in the thesis, namely the transfer
function method and the equation error method. mapger 7, the system identification
techniques are applied to the flight test datahef two fixed-wing UAVs. For Cropcam, the
transfer function method is implemented to obt&rangitudinal channel transfer functions first;
and then the related aerodynamic derivatives araa®rd from the identified transfer functions.
Next, the equation error method is applied to idgrhe longitudinal aerodynamic derivatives.
For the second aircraft, the delta-wing, first litwegitudinal system transfer function is identified
and then some aerodynamic derivatives are extratted the identified transfer function.
Chapter 8 summarizes the contributions made intti@sis and potential future research is also

discussed.

In Appendix 1, the aerodynamic derivatives’ coni@mrdetween different notations is tabulated.
In Appendix 2, first the aircraft simulation modeldiscussed; then the transfer function method
is applied to identify the simulation model’s longlinal channel transfer functions, and some

aerodynamic derivatives by using the simulatiorpoeses; next, the equation error method is
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applied to identify the longitudinal aerodynamicridatives. At the end of the appendix, the
longitudinal channel derivatives calculated by #gmation error method, the transfer function

method and AVL are compared, to examine and vénéyr accuracy.
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2 Background

This chapter comprised of two parts. The first gares a brief introduction of UAV and its state
of development. In this part, the UAV’s applicatisnintroduced first, its development prospect
is discussed next. In the second part, the cormfegpystem identification and system modeling
are introduced first. Typical system identificatioethods are discussed and compared followed

by a literature review.

2.1 Preliminary remark

For two decades, UAVs have been utilised for nmjifaurposes, such as geographical study and
national security. More recently, several applmasi have been introduced for UAVs in the
civiian sector. UAVs are now employed for searchd arescue missions, facility and
infrastructure inspections, and environmental ssdiOther UAV applications includei)”
wildfire detection and managemerit) pollution monitoring;iii) event security; iv) traffic
monitoring; v) disaster reliefyi) fisheries managementji) pipeline & oil and gas security
monitoring; viii) meteorology - storm trackingx) remote aerial mapping) transmission line

inspection” (Horet al,, 2013).

The UAVs’ market will continue to expand and therldts spending on UAVs is expected to
double in the coming decade. The annual expenddar&AVs will increase from 5.2 billion
dollars to 11.6 billion dollars, representing aataif about 89 billion dollars (Zalogzt al, 2011).
The predictions about world UAV expenditure suggdsit UAVs will have a booming

development in the near future.
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2.2  System identification

Presently, computer simulation is largely usedugp®rt control design and validation. Normally,
modeling of a system can be visually classifiedhase types: white-box modeling, grey-box

modeling and black-box modeling (Khan and Khan,201

The white-box modeling approach is based on a gadspxioms or postulates, or some
foundational propositions or assumptions that cateodeduced from any other proposition or
assumption. The white-box model is almost a fulaliption which describes the details of the
physical system. Most of the time, white-box maalglis either difficult or else it may take an

unreasonable length of time due to the high coniyiex the identified system or process.

In grey-box modeling, the incipient model can beastoucted on the basis of the insight gleaned
from the system or experimentally measured dataveier, the prior built model is incomplete,
because some of the model parameters or coefficanihe system are unknown. In this case,

system identification is required to find the unimoparameters.

In black-box modeling, as its name implies, theteysis an unknown unit. There is no prior
model available to use or to refer to. In practites common method used for grey-box and
black-box modeling is “system identification”. Sgst identification is a general term referring
to mathematical tools and algorithms which are useddetermine dynamical models’
characteristics from measured data (Pintelon ahd@ens, 2012). It is widely used in the fields
of Mechanical Engineering, Chemical Engineering &helctrical Engineering, for prediction,
control, physical interpretation and design of nasbal and electrical systems (Pintelon and
Schoukens, 2012). System identification is basedroanalysis of the system experimental data
and insight into the system.
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System identification methods can be classifiedtwo categories: time domain system
identification methods and frequency domain systéemtification methodsThe time domain
methods are straightforward to implement, but twairmissues commonly plague accurate
system identification: noise and data informatiantent (Morelli, 1999). In the context of
aircraft system identification, if the signal-toise-ratio (SNR) is too low, the time domain
identification method usually fails to provide edie estimates of the unknown parameters. Also,
most of the time domain identification studies pldao limitations on computational power,

which is rather restrictive for low-cost on-boambgessors of UAV autopilots.

Two optimization algorithms, Least Mean Square (DM&d the Maximum Likelihood (ML,
Klein and Morelli, 2006; Crassidis and Junkins, £08imon, 2006) are commonly used for the
time domain system identification. The LMS techmigattempts to identify the unknown
parameters by minimizing the sum of the squareh®festimation error. Estimation results are
validated using the available statistical metrinshsas the Cramer-Rao band, or the residual
auto-correlation sequence. The major problem wisamguthe LMS method is not robust in deal
with data collinearity. This may result in inacderar fail estimates. The ML method (Crassidis
and Junkins, 2001; Simon, 2006) offers estimatestie unknown parameters so that the
probability of obtaining the measured set of daamaximized. This technique allows the
estimation results to become minimum variance sdalaas the number of measured samples
increases. However, as the dimension of the ideatibn problem grows, increasing
computational complexity of the ML algorithm becar@oblematic. Furthermore, in practice,
the ML cost function is barely quadratic having tijplé minima which makes finding the global

minimum rather difficult.
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Compared to the time domain methods, frequency dosystem identification techniques are
more robust in coping with noise and inaccuracreshie measurements (Morelli, 1999). In
addition, they require a smaller number of datangzofor identification, and can process signal
components at different frequency ranges separafghgy usually provide more physical
characteristics over the entire frequency conteotnpared to the time domain approaches
(Morelli, 1999). Frequency domain system identtiiza techniques have been proved to be
efficient in determining a UAV’s aerodynamic modebntrol system tuning and validation

(Theodoreet al,, 2004).

In this thesis, two frequency domain system ideraifon methods are discussed. For the TF
method, it uses CIFER to obtain the system Bode autd transfer function first. CIFER uses
power spectra method to estimate the system tmahgifetions. The approach is based on the
lower-order equivalent system (LOES) concept. Tb@cept was initially presented by
Hodgkinson et al. (1976), and was used by Bischaft Palmer (1982), Bischoff (1983) and
Hodgkinson (1998). Once the transfer function isawied, the aircraft aerodynamic derivatives
are then extracted from the system transfer functituch research was done to get the transfer
function using this method and for using in corléobesign. To name a few, CIFER was first
used to identify the system transfer function fribight test data by Tischler et al. (1983, 1987)
and Tischler (1987b). Dorobanat al (2011, 2013) and Carnduff (2008) also used CIF&R f
identifying the aircraft system transfer functiohile, many institutes have used CIFER for
doing frequency response system identificatiortht best of the author’'s knowledge, nobody
applied the identified system transfer functionetdract the aerodynamic derivatives. In this

thesis, the method of using the identified tranéfection to calculate aerodynamic derivatives
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will be investigated. The calculated derivativedl Wwe examined and verified, and they will be

compared with the ones computed by the other metbhodources.

The second method used in this thesis is the Equatiror (EE) method. This method, which is
regression identification type, has proven effectior frequency domain system identification.
This method was used by many researchers and foougaaircraft. For example, NASA
Langley used this method for the fighter F-18 Higlipha Research Vehicle’'s system
identification (Kleinet al, 1990). Science Applications International/Navsedi it for F/A-18E’s
system identification (Paris and Bonner, 2004). RASangley also applied EE method for
identification of aerodynamic derivatives of a T#4LL aircraft (Morelli, 2003b). Boeing used it
for B717, B737, B747, B757, B767 and B777’'s systdemtification (Hodgkinson, 1998). The
method have also it is also largely in the UAV systidentification. For example, NASA
Langley/Dryden used it for the X-43A’s (Hyper-X) WAsystem identification (Chowdhary,
2006). Stanford University applied the method foe DragonFly UAV aerodynamic coefficient
identification (Jang, 2003). In this research, bbthand EE methods will be used to identify the
Cropcam’s system aerodynamic derivatives; the tesull be compared for verifying reliability

of each method.
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3 Basic Aerodynamic Theory

In this chapter, the aircraft coordinate systenastfeand aircraft body-fixed) will be discussed
first. Next, aircraft motion variables will be deéid and explained based on the coordinate
systems discussed. Then the transformations amiffegedt coordinate systems are derived.

Finally, typical aircraft geometry and control agés parameters are introduced.
3.1 Coordinate axes

Aircraft motion has six degrees of freedom and iqjuite complex. Describing aircraft’s motion
needs several notations and nomenclatures, anchdtagions should correspond to suitable
coordinate frames. Commonly used frames are eamls and body-fixed axes coordinate

systems.
3.1.1 Earth axes

In cases where only normal atmospheric flightscamesidered, the aircraft motion is described
with respect to the earth-fixed coordinate framedk; 2012). For defining a coordinate frame,
the reference point needs to be determined fimttlke purpose of study, the reference pont

is defined on the earth surface, amdis the origin of a right-handed orthogonal cooadin
system @oXoyoZo), Which is shown in Figure 3.1. Planeduyo) is tangential to the earth surface,
which is defined as horizontal plane. Ax@%, andogyp always point north and east, respectively.
The direction of axispz coincides with the direction of gravity. This cdorate system is also

called North-East-Down (NED) reference frame.
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arth axes system

rence axes
PEm

Figure 3.1 Earth axes (adapted from Cook, 2012)

Since the earth is approximately round, and ttghflhappen in normal atmosphere, the flight
path is trans-global, and the aircraft is actuiyiyng in a spherical path. In this case, the aagul
velocity of the earth needs to be considered. Toeret is necessary to define a spherical
coordinate frameogxeyeze), which is a fixed spatial axes system, to oftbes natural angular
velocity effect. Referring to Figure 3.1, plareXgye) is defined as a horizontal plane, which is
parallel to &o0oyo) plane. For short-range UAV application, the eantller the flight path can be
assumed as a level and straight plane, which ierithesl by planedpxoyo). For the coordinate
frame Qexeyeze), the origin pointog coincides with the aircraft body-fixed coordinatgstem’s
origin. Pointog is usually put in the atmosphere at the most colewe place. Axixe can point

in any direction of the aircraft flight rather thaumst to the north, while axiez points in the

same direction as gravity.
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3.1.2 Aircraft body-fixed axes

The body-fixed axes system is a commonly used oomi@ system. Since only small

perturbation is analysed, only generalised body axel wind (or stability) axes are discussed.

Body axes

Figure 3.2 shows a typical body axis system,y,z,). Since the body axis system is always
constrained to move with the aircraft fuselage,akes direction is changing with the motion of
the aircraft. The origin of the axis system is Ulsudefined by the aircraft gravity center. In
Figure 3.2, thedx:z,) plane is determined by the symmetry plane ofdineraft in which axis
0X% points to the forward direction, ax®, directs to the starboard of the aircraft (in the

direction of the right wing), and axts, is downward.

x: (Stability axis)
Xy (Wind axis)

o (Angle of attack)
Zb

Vw

}.b; ,".’ 4 7:

Figure 3.2 General aircraft coordinate system
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Wind axes

Sometimes, it is more convenient to describe theaft's motion in a coordinate system which
is defined with respect to the relative wind (an) airection. As shown in Figure 3.2, the wind
axes coordinate system is defined bywzv). When the aircraft sideslip angle is zero, wind
axes is also known as aerodynamic or stability aXbe direction of th@x, axis is set parallel
to the total velocity, of the aircraft; xz,) is the symmetry plane of the aircraft. The anmgle
between axesx, andox, is called the aircraft angle of attack. When aifcare flying under a
steady state conditiom= ae, Whereo, is called equilibrium angle. The value af is different
under different flight conditiong? is called the sideslip angle. It is the angle leetwthe aircraft
total velocity and the symmetry plane. Therefohe body axes system is always fixed to the

aircraft body, and the wind axes orientation alwelyanges under different flight conditions.

3.2 Definition of variables

The aircraft motion can be generalised by quastitie terms of force, moment, linear and
angular velocities of the aircraft. In this thesid, these variables are defined in body-fixed
coordinate system for convenience. In order toaepe perturbed states of aircraft, the trimmed
equilibrium state is defined. Trimmed equilibriugnthe state in which the aircraft is flying under
a steady state condition. When the aircraft imflyunder an trimmed equilibrium condition, the
forces and moments are in balance and sum to ten@fore, there is no linear acceleration and

the angular velocities are all equal to zero.
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When the aircraft is excited with an external inputlisturbance, the force and moment balance
is broken and the aircraft deviates from the ebuiim state. The perturbation variables are

shown in Figure 3.3 below.

y M, q, 6
4 $ Z,w

Figure 3.3 Aircraft motion variables

Table 3.1 Motion variables’ notation(Cook, 2012)

Trimmed equilibrium state Perturbed state
Orientation (0)1¢ oy 0z 0X oy oz
Force 0 0 0 X Y Z
Moment 0 0 0 L M N
Linear velocity Ue Ve We U=U¢t+u V=Vetv W=We+w
Angular velocity 0 0 0 p q r
Attitude 0 O 0 ® 0 %

X, 'Y, Z— Axial, side and lift force

L, M, N— Rolling, pitching and yawing moment

Ue, Ve, We — Axial, lateral and normal component of steady Bopiim velocity

U, V, W— Axial, lateral and normal velocity, total lineaglacity of gravity centerog)
u, v, w — Axial, lateral and normal velocity perturbation

p, g, r — Roll, pitch and yaw rate
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¢, 0, w — Roll, pitch and yaw angle with respectaxq oy andoz axes, respectively

06— Equilibrium pitch angle

In Figure 3.3, the signs of the variables are defiby the right-handed axes system. All the
components of rotary quantity, moment, velocity attdude are defined as positive based on the
right-handed axes system. A positive roll occuremvthe right wing goes down; positive pitch is
defined when the aircraft's nose goes up; and ipesjtaw is achieved when the aircraft turns
right. An alternate way of describing the variabkgn is: positive roll is axi®y going toward
axisoz, positive pitch is axi®z going toward axi®x, and positive yaw is axisx moving toward
axisoy. The notations of motion variables in trimmed estahd disturbed state are tabulated in

Table 3.1.

Figure 3.4 shows the moment, angle and force coemenfor longitudinal channel flight

situation.

g (Pitch rate) <

i o (Angle of attack) V
Normal force
" ; Flight path

Relative wind

& (Pitch angle)
\]}’ (Flight path angle)

|

Horizon

Figure 3.4 Longitudinal channel terms for typical arcraft climbing
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When the aircraft is flying under a symmetric sitoia in which there is no lateral perturbation,

the angle and velocity quantities can be simplyiated by Figure 3.5.

Perturbed state
body axis

Figure 3.5 Quantities in body axes under symmetritlight (adapted from Cook, 2012)
In Figure 3.5, the angles and velocities have dtlewing relation:

O = ae + Ve (3.1)

_Wetw (3.2)
U, +u

tan(a, + 0) =

<=

[\

When the aircraft body-fixed axes coincide with tied axesge = 0. For the specific case, in
which the aircraft is flying in a level situatiomnd accounting for the flight in wind axes

coordinate system, the following relation holds:

a,=6,=0 (3.3)

20| Page



3.3 Axes transformations

3.3.1 Linear acceleration, velocity and displacement tragformation

The body attitude angles, 0, y are known as Euler angles. These angles are defingdein
body-fixed axes system. Since the commutative Bwnapplicable to angles, the order of the
rotation is very important. Figure 3.6 shows a gahexample of the coordinate system rotation.
(oxoyoz0) is the reference axes frame, anokgys;zs) is the body-fixed axes frame. The
transformation order shown in Figure 3.6 is: firstate the body-fixed axes about agig with

an angle ofp. Thus the body-fixed axes are broughtd®y.z,); next, rotate the frame aboay,
axis by an angle af. The body-fixed axes are brought touf/12;); last, rotate the current axes
system aboubz axis by a yaw angle af. Thus, the §xsysz;3) coordinatesystem is brought to the

new coordinate systenoXpyozo).

Figure 3.6 Axes transformation(adapted from Cook, 2012)
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Let (0xs, 0¥s, 03) represents the linear quantity components in{dkgy;z;) axes system, anadxp,
OYo, 0%) represents the linear quantity components in (theyoZ)) axes system. The linear
guantities can be velocity, displacement or acaéiten. The transformation of quantities in

different axes systems can be described by thewollg equations (Cook, 2012):

For the first step, rotating abowoit; by a roll angle ob,

OX3 = 0x2 (34)
0Y3 = 0Y,C0SQ + 0Z,Sing (3.5)
0Z3 = —0Y,Sing + 0z,cosQ (3.6)

Equations (3.4) to (3.6) can be written in matigiation form as:

0X3 1 0 0
[oygl = [0 cosp  sing

0X5
oyzl (3.7)
0z3 0 —sing cose

07,

The second step is similar to step one, but thig tiotate the coordinate system about ays

by a pitch angle of. The following relation holds:

0X; cos8@ 0 —sinfB][0X1
0y21=1 0 1 0 0y (3.8)
0z, sin@ 0 cosO 110z

Similarly, for the last step, yawing about the add@swith a yaw angle of, the following have:

0X1 cosyp sinyp  0][%%o
[0)’1] = [—simp cosy 0] [0)’0] (3.9)
0z 0 0 1110Zg
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According to Equations (3.7), (3.8) and (3.9)s( 0y5, 02) can be combined witloX,, 0y, 02)

as:

0X3 1 0 0 cos@ 0 —sinO][ cosyp sinmp 0][0Xo
[0y3] = [0 cosp sing|| 0 1 0 ] [—sim/) cosy 0] [03’0] (3.10)
0Z3 0 —sing cospllsind 0 cosf 0 0 1110z
Equation (3.10) can be expressed in the concisgiontas:
0X3 0X
[03’3 = D [0Yo (3.11)
0Z3 0Zy
where,D is a matrix given by:
cosOcosy cosOsiny — sinf
D = |sing@sinfcosy — cospsiny singsinfsiny + cospcosy  sinpcosH (3.12)
cosgsinfcosy + singsiny cospsinfsiny — singpcosyy  cospcosl
The reverse transformation, fromxgyszs) to (0%oyo2o) is written as follows:
0X 0X3
[0)’0 =D 03’3] (3.13)
0z 0Z3
where,
cosBcosy singsinfcosy — cospsinyd cospsinBcosy + singsiny
D™ = | cosOsiny singsinfsiny + cospcosy cos@sindsing — sinpcosy (3.14)

—sinf singcosO cospcos6

Next, the transformation matrix given by Equati®ilé) is used to determine the relevance of
the body axes system componebtsV, W with the wind axes system componelts a, S.
Figure 3.7 shows the resolution of the velocityteet¢hrough incidence and sideslip angles to

the body coordinate system.
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Figure 3.7 Transformation of velocities through inadence and sideslip anglefCook, 2012)

In the earth axes coordinate systemypz), the motion vector can be written as:

(0%, OYb, 02) = (Vo, 0, 0)

and, Oxs, 0ys, 02) = (Ue, Ve, W)

(3.15)
(3.16)

For the case shown in Figure 3.7, the roll angl@,ipitch angle isx, and yaw angle ife.

Therefore for the attitude quantities, the follog/imolds:

((P, 0, ll)) = (0, a., Be)

Thus, the transformation of quantities from eartlesato body axes for the specific case of

Equation (3.17) can be described as:

U, cosa,cosfl, — cosa,sinf,
V.| = sinf, cosf,
1A sina,cosf, — sina,sinf,

which can be further written in the following form:
U, =V, cosa,cosp,
Ve = Vosinfe

W, = V, sina,cosf,

— sina,
0
cosa,

Vo
0
0

(3.17)

(3.18)

(3.19)
(3.20)

(3.21)
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The D matrix in Equation (3.12) is not only applicabte the trimming flight condition, but also
can be applied by relating the perturbed velocggter to the trim velocity vector:

U, U
V.|=D1|V
w, w
cosOcosy  singsinBcosy — cospsinyg cospsinfcosy + sinpsin 11U
= [cos@sinlp singsinfsiny + cospcosy cospsinfdsinyg — singpcosy ||V (3.22)
—sin6 singcosO cosgpcos w

Since the flight heighh in earth axes is defined as positive in the upwdirdction, and the

positiveW, is defined as downward, therefore the followingplso
h=-w, (3.23)
According to Equations (3.22) and (3.23), the fellog can be derived:

h = Usinf — VcosOsing — WcosOcosg (3.24)
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3.3.2 Angular velocities transformation

Figure 3.8 Transformation of angular velocity(adapted from Cook, 2012)

The body angular rates are expresseg,as andr, which are shown inoksyszs) coordinate
system in Figure 3.8. Similar to linear quantitiesformation, the order of angular velocities’
transformation is very important. In Figure 3.8 thansformation order can be described as the
following: i) roll about axisox; by angle ofp, with angular velocity o; ii) pitch angle of9
about axi®ys, with rotating velocity o; iii) yaw angle ofy with respect to axiez, by rotating
velocity ofi. In this way, the body axes system variables amesformed into the variables

referring to the earth axes. The transformatioraégos corresponding to each step are:

First, roll aboutoxs by ¢, the roll ratep is a combined action of the componept® andy

which resolved alongxs,

p = ¢ —Psind (3.25)
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Second, pitch abouy, by 6, pitch rateq is a combined action of the componept® andy)

which resolved alongys,
q = Ocosg + Psinpcos (3.26)

Third, yaw aboubz by v, yaw rater is a combined action of the componepit® andy which

resolved alon@z,
r = Ycospcosd — Osing (3.27)

The transformation equations (3.25) to (3.27) carcimbined and expressed in concise matrix

expression as:

p 1 0 — sinf @
[q] = [O cose  singcosO | |0 (3.28)
r 0 —sing cospcosd ||

Equation (3.28) shows the transformation from Eudées to the angular velocities in the body
coordinate system. The inverse transformation wklatws how angular velocities transformed

to attitude rates is given below:

[ 1 singtan® cosptand]p
g[=10 cosp — sing [q] (3.29)
¢ 0 singsecf cos@secd 1Llr

When the aircraft is undergoing very little pertatibns in whichyp, 8 andy are all very small.

Equation (3.28) can be simplified and written apprately as:

p=¢ (3.30)

(3.31)

e
Il
.
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r=1 (3.32)

Equations (3.30) to (3.32) are commonly used etieglin aircraft flight data processing and

system identification.

3.4  Aircraft reference geometry and control surfaces

3.4.1 Reference geometry

Measurement of aircraft geometry is very import@antboth aircraft modeling and simulations.
Figure 3.9 shows a typical way to define aircraibgetric parameters. With reference to Figure
3.9, b stands for wing spas,denotes wing semi-spafijs the standard mean chord of the wing,

andcg is short for the centre of gravity.

"Cg

Figure 3.9 Reference geometry
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UsuallySis used to denote the reference area of the véing a

S=kr (3.33)

3.4.2 Aircraft control surfaces

The most conventional control surfaces for airsrafte aileron, elevator and rudder, which
control the rolling, pitching and yawing motion tfie aircraft, respectively. Figure 3.10

illustrates the aircraft control surfaces and dicets of their positive deflections.

— Eéa
Starboard aileron
Elevator

Rudder

The angles shown
Port aileron are all positive

Figure 3.10 Aircraft control surfaces(adapted from Cook, 2012)

As shown by Figure 3.10, positive deflection foe tbontrol surfaces is defined as direction
causing the aircraft to generate a negative ratattsponse. For the positive aileron input, it is
defined as left aileron going up and right ailegming down. This positive aileron input causes
the aircraft right aerofolil trailing edge to go apd the left wing trailing edge to go down. This is

called a negative aircraft rolling response. Fasifpee elevator input, the elevator trailing edge
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goes up. And the aircraft nose goes up accordifgy.positive rudder input, the rudder trailing

edge turns to the left and the aircraft nose tigfis

Usuallyé,, 6, andd, are used to denote aileron, elevator and ruddglesnrespectively. And
the perturbation angles (angular displacementhefdileron, elevator and rudder are denoted by

&, n andd, respectively.

3.5 Summary

In this chapter, the aircraft coordinate systenastfeand body-fixed) were discussed first. Next,
the aircraft motion variables were defined and ax@d on the basis of the coordinate systems
discussed. The manner the parameters can be tmaesfédrom one coordinate system to another

was described. Finally, typical aircraft geometng @ontrol surfaces parameters were defined.
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4 Aircraft Motion Equations

For system identification of an aircraft, grey bakcraft motion modeling is required. The
aircraft analytical model describes an aircraftshévioural characteristics in a mathematical
way, which is developed on the basis of physicad amthematical laws. In this chapter,

equations describing the motion of aircraft areveet.

4.1 General equations of motion

For aircraft analytical modeling, the airplane @grmnonly assumed to be rigid and symmetric.
The rigid body assumption implies that effects l&iecraft structure deformation, the control
surface motion effect ong and the fuel slosh are all omitted (Klein and Miare006). The

generalisation of Newton’s second law and Eulexs &re the basis for aircraft modeling:

d
- - 4.1
F I (mV)=m X a (4.1)
M=i(1w) =IX ® (4.2)
dt

whereF is the force appliedy is translational velocitymV is linear momentum ani is
applied moment about the centre of gravity.is angular momentum about the centre of gravity.

w is angular velocity, antis the inertia matrix.
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_Fx_

F = Fy

| Fz

U7

V=|V

N4

_Mx

M= |M,

_MZ

14

o=

T
Ix Ixy Ixz
I=|-Lx L -1,
sz _Ixy Iz

where

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)
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Since the aircraft is rigid and symmetric about (e plane, the inertia matrix is symmetric

and,

Ly =1Ly =1,=1,=0 (4.14)

As a result, the inertia matrix can be simplified a

L, 0 —I,
1= o 1, o0 (4.15)
Ly I,
Thus,
pr - Ixzr
—lyzp + Izr

For the rotating axes system, the derivative operagbplied to vectors has two parts: one is the
rate of change of the vector components expressedei rotating system; another one is the
effect of the axes system rotation of the rotaipgtem with respect to a fixed frame. Therefore

the operator can be written as:
d )
—()=— 4.17
dt() 61:()+wx() ( )

Equations (4.1) and (4.2) are then written as,

F=mV+wxmV (4.18)

M=Iw+wXIw (4.19)
Combining Equations (4.3) and (4.18), the forceagigms can be written as (Cook, 2013):

33| Page



E,=m(U + qW —1V) (4.20)
F, =m(V +rU — pW) (4.21)

E, =m(W + pV — qU) (4.22)

Similarly, combining Equations (4.5) and (4.19),menmt equations can be written as:

My = pL, — 7l + qr(l, — ) — qpl,, (4.23)
My, = ql, + pr(l, —1,) — (p? —rd)l,, (4.24)
M, =71, = pLy, + pq(L, — L) — qrly, (4.25)

The total force and moment acting on the aircraft the combined effects of aerodynamic
(F4, My), gravity (F;) and propulsion K, M;). Therefore total force and moment can be

denoted as:

Since the moment equation is written with respec¢hé centre of gravity, the moment due to the

gravity is omitted in Equation (4.27). For the anoamic forces, the following holds,

X Cx
7 C,

where,Cx, Cy andC; are non-dimensional aerodynamic force coefficiemtihe body-axesj is
the dynamic pressure, afdlenotes the aircraft reference area. Dynamic pregss a function

of the air density which is given by:
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1 1
G=5pWU2+V2+W?) =-pV? (4.29)

In Equation (4.26), the thrust forég is given by:

Tx
Ty
Tz

F,= (4.30)

where,Ty, Ty andT, are the engine trust components in the body frarhe.gravity force; is

given by:

where,g is the gravitational acceleration vector expressdte body frame,

Ix 1 0 0
g = gy] = [O cosp sing

9z 0 —sing cose

cos§@ 0 —sin@|[cosy sinyp 0][0
0 1 0 [[-siny cosy 0]|0 (4.32)
sind 0 cos6 0 0 11'lg

g can be simplified as:

Ix —gsinf
g= gy] = | gsingcosb (4.33)
9z gcosgcos
Therefore,
Ix —mgsinf
Fo=m [gy] = [mgsingocos@ (4.34)
9z mgcospcosf

By combining Equations (4.20) to (4.22), (4.26)2@) and (4.34), the followings can be derived:
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F, = m(U +qW — rV) =Ty + qSCx — mgsinf (4.35)
E, = m(V +rU —pW) = Ty + gSCy + mgsinpcos6 (4.36)

E, =m(W + pV — qU) = T + §SC; + mgcosgcosh (4.37)

whereu, v andw are linear velocity (air-speed) componergsg andr are angular velocity
components (measured by the gyroscopes onboattginircraft body framep and@ are the
roll and pitch attitude of the aircraft, which dabe the aircraft body orientation with respect to

the inertial reference frame.

The right hand side of Equations (4.35), (4.36) &h87) can be written in terms of wind axes

components (drag, lift and side force) as the Vaithg:

E. = m(U +qW — rV) =Ty — Dcosa + Lsina — mgsin@ (4.38)
F, =m(V +1U —pW) =Ty + Y + mgsingcos6 (4.39)
E, =m(W + pV — qU) = T, — Dsina — Lcosa + mgcosgcos6 (4.40)

whereD, Y andL are drag, sideslip and lift forces, respectively:

D Cp
Y|=gS|Cy (4.41)
L C,

where Cp, Cy and C_ in Equation (4.41) are dimensionless drag, sidesid lift force
coefficients, respectively. For the specific sitoatin which the sideslip anglg=0, the body

axes force coefficients are related to the windsdgece coefficients by angle of attaclas:

C, = —Czcosa + Cysina (4.42)
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Cp = —Cxcosa — Czsina (4.43)

Next, the moment equations are derived in the comps form expressed in the body

coordinate system. For the moment components imatiqu(4.27), the following relation holds:

l bC,
M, = [m] =3s [ECm] (4.44)
n bC,

where(C;, C, and C, are dimensionless rolling, pitching and yawing neaincoefficients,

respectively.

My, 0
MT = MTy = Ipﬂpr (445)
My, —Ip{pq

wherel, is the inertia of the rotating mass, such as topgdler, andl, is its angular velocityg
andr are the pitch and yaw rate of the aircraft body.@®mbining Equations (4.23), (4.24),

(4.25), (4.27), (4.44) and (4.45), the following alerived:

My = LixD = LpT — Iz;pq + (Izz - Iyy)CIT = quCl + MTx (446)
My =Ly + (e — L7 + L, (p* —1%) = §SCC + My, (4.47)
M, = ;7 — LyP + Lpqr + (I — L )pq = qSbC, + My, (4.48)

The equations of motion discussed above can be asnmed as four parts: force, moment,

kinematics and navigation equations. They are de=tin Sections 4.1.1 to 4.1.4.
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4.1.1 Force equations

The force equations in the body axes coordinateesyare given by Equations (4.35) to (4.37),

which can be rewritten as:

. T §SCy

U=rV—-—gqW +—+——— gsinf (4.49)
m m
) qgSC
V=pW-—-rU+ % + gcosOsing (4.50)
. qScC
W =qU—pV + % + gcosBcosg (4.51)

They can also be given with respect to wind-axesdinate system as:

qs

V= _ECDW + Ecosacos[)’ + g(cos@cosOsinacosp + singcosOsinfs — sinfcosacospf)
(4.52)
= a5 C, + t ( + rsina) + ( ) + sinfsina)
¢ = T eosg Y anp(pcosa + rsina Veosp (COSPeosbeosa + sinbsina
_ Tsina (4.53)
mVcosp
; - 90 : 9 o sinB . .
b= oy O T pSina —rcosa + VCOSﬁsm(pcosH t— (gcosasinf — gsinacosgpcosd
Tcosa w50
m
where,
Cp,, = —CxcosacosP — Cysinf — Czsinacosf = Cpcosp — Cysinf (4.55)
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Cy,, = —Cxcosasinf + Cycosp — Czsinasinfy = Cycosf — Cpsinf (4.56)

V= \/UZ + V2 + w2 (4.57)
a= tan‘l(%) (4.58)
B = sin‘l(%) (4.59)

v, in Equations (4.57) and (4.59) is the total velpcomponent in a lateral directio¥.is the
total velocity whilea andg are incidence and sideslip angles respectivelgiti®e directions of
the lift force coefficientC,_ and the drag force coefficie@p are along the-z and—xs stability
axes (referring to Figure 3.2), whereas positivealions of wind-axes drag coefficie@p, and

side force coefficienCyy are along-x, and+y,, axes, respectively.

The onboard accelerometers can sense all the ispdoites except those from gravity.

Therefore, the general equation of the translatiaceeleration can be written as:
. F, 1
— V X V — — F F 460
a +w = m( 2+ Frp) ( )

which can be rewritten in the extended form as,

i 1

@y =U =1V +qW +gsing = —(GSCx +T) (4.61)
i 1

a, =V —pW +1rU — gcosOsing = E(qSCy) (4.62)
. 1 _

a, =W —qU + pV — gcosOcosp = E(qSCz) (4.63)
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and,

ma, — T
e S 4.64
Cy =S (4.64)
Cy = 2y (4.65)
Y — qS -
c, = % 4.66

In Equations (4.64) to (4.66), all the quantitie® aneasurable or computable for system
identification, by using flight test data. For aaft modeling, however, the acceleration
components are all unknowns; thus, they need tdeseribed using the aerodynamic equations
which will be discussed in Sections 4.2 and 4.4r &sing the aerodynamic equations, the
aerodynamic derivatives need to be identified waade. This is another motivation for carrying

out system identification for UAVs.

4.1.2 Moment equations

Referring to Equations (4.46) to (4.48), the moneguations can be rewritten as:

_ bz c — 4z (4.67)
I, I l I qr I qap
Sc I, —1 I L
q= 4 Cn ————pr ——=@*—1) +L0,r (4.68)
L L L L
1 qSh I, —1 I I
L L, L L L

where(, is the propeller angular rate.
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4.1.3 Kinematics equations

Kinematics equations describe the attitudes oftreraft. Equations (4.70) to (4.72) give the roll,
pitch and yaw angular rates as functions of theimgates in the body coordinate system:
¢ =p + tanf(qsing + rcose) (4.70)
6 = gqcosp — rsing (4.71)

. qsing +rcosp (4.72)

cos@

4.1.4 Navigation equations

Navigation equations depict the aircraft’'s positiith respect to the earth axes coordinate

system, which are shown as:
Xg = Vcosacosfcosycosh + Vsinf(cosysinfsing — sinpcosg)

+Vsinacosf (cosypsinBcose + sinpsing) (4.73)

yg = Vcosacosfsinpcos + Vsinf(sinysinfsing + cospcosp)

+Vsinacosf (sinysinfsing — cosysing) (4.74)

h = Vcosacosfsint — VsinfcosOsing — Vsinacosfcosfcosp (4.75)

The force, moment, kinematics and navigation equatidescribed above are developed under

the following assumptions (Klein and Morelli, 2006)

i. the aircraft body is rigid;
ii. the earth surface is flat;

iii. the aircraft mass and its distribution are constant
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iv. the aircraft's mass and geometry is symmetricabatie plane of symmetry;
v. direction thrust is along thex body axis and through the center of gravity;

vi. the earth is fixed in inertial space.

The aircraft motion equations can further be exggdsn general form by a set of first order

nonlinear differential equations:
x=f(x,u) (4.76)

where x is a vector of state variables:= [u,v,w,p,q,7,9,0,9,xg, ye, h]T in body axes
coordinate system (except fog, vg, h); x = [V, a, B,p,9,7, 9, 0,3, xg, g, h]T with respect to
wind axes coordinate system (exceptAgyyg, h). u = [8,1, 8,4, 8., 5,]7 is a vector of inputs,
which is composed of throttle position and conswifaces such as elevator, aileron and rudder
deflections. The input variables are not showrheforce and moment equations above, but they

are included implicitly, since they influence thetion of aircraft.

Output variables of the aircraft mathematical modet measured aircraft responsgs=
V,a,B,0.q9,7,9,0,,h,ay,ay,a,7p,q,7]". The quantitiese andyg are not included, since they
are not related to the aircraft dynamics. Positianableh is included, because it has effect on
the air density and air pressure (Klein and Moreédld06). The output equations show the
dependency of the output variables, to the airataties, state derivatives and control inputs. The

output equations can be written in a general fasm a
y = h(x, x,u) (4.77)

QuantitiesV, a, £, p, Q, I, ¢, @ andy are both states and outputs (referring to Equat{dm9) to

(4.51), and (4.67) to (4.75)).

42 |Page



4.2  Aerodynamic terms

When the aircraft is excited by an input from autipcommand or wind/gust disturbances, it
deviates from its equilibrium state and the balamic#he aircraft is broken. In this research, it is
assumed that aerodynamic force and the moment tare®nly dependent on the disturbed
motion variables. The aerodynamic force and the emdncan be expressed mathematically as

the sum of a number of Taylor series which is sha&(Cook, 2013):

0X +62Xu2+63Xu3+64Xu4+
au” Jdu? 2!  ou3 3! ou*4!

X N 02X v? N 23X v3 N 04X v* N
avV ov2 2!  gv33!  Jv* 4l

X N 02X w? N a3x w3 N 94X w? N
aw” Towz 2l Towd 3l ' aw* 4l

|
=
+

0X  0%Xp? 03Xxp o9*Xpt
_+ _+ _+ cee
p dp? 2!  0p3 3! adp* 4!

(4.78)

Q
+

0X  0%Xq? 03Xq® 0*Xq*
—_— _+ _+ _+ eee
q 0q? 2!  09q3 3!  0dq* 4!

X 0%X r? +63Xr3 +64Xr4+
arz 2! 9r3 3!  Jr* 4!

0X N 92X u? N 93X u3 N X ut N
ou ou? 2! 0ud 3!  ou*4!
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Wl et tae T

+<ax, 92X v? 93X vd  9tX vt )

+series terms inw,p,q,1T
+series terms in higher order derivatives

where,X,, is a constant term. For small perturbations, dhly first term of each series is

significant. Further, for higher order derivativegrhs, only terms that involug are significant.

Therefore, Equation (4.78) can be truncated anglgied in linear format as (Cook, 2013):

ooy LO0X X 0X  0x  ox  0X  0X (4.79)
e = e T G T Y T aw T ap? T g T ar T Taw W '

By definingX,, = Z—z and extending this manner to other terms, Equddor9) can be rewritten

with the shorthand notations as:
Xg = Xq, + Xu + Xv + Xyw + X,p + X,q + Xor+X,w (4.80)

where, coefficientX,,, X,, X, X,, X;, X, andX,, are known as aerodynamic stability derivatives.
The dressing ®” denotes that they are dimensional. EquationO@&n also be written in

dimensionless form as (Klein and Morelli, 2006):
CXa == CXae + CXuﬁ + +CXvi7\ + CXWW + Cxpﬁ + Cxqq\ + CXT‘P + CXWW (481)

A A AN A A A

conversions between dimensional and non-dimensiesahbles are expressed as (Klein and

Morelli, 2006):
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)

%4 pb . qc rb ac s B

V, v 4=y "=y 4=y BEgy (4.82)

Equation (4.81) can be further expressed as:

C—Cu v w pb qc rb wc
LT MY Ve Ve 2V 2V 2V 2V (4.83)
where,i =D, Y, L, I, m n. Vg is the airspeed at the equilibrium condition dteown as trimg

stands for the control inputs, which can be elavatiteron or rudder deflection.

4.3 Equations of motion for small perturbations

When the aircraft is perturbed from the steadyestigght, the aircraft will have a perturbation,
which is a response to the input excitation. THeducraft motion equations are comprised of
aerodynamic force, gravitational, aerodynamic adnénd thrust terms. The equations can be
written by combining Equations (4.35) to (4.37).4@) to (4.48), and (4.78). Since the aircraft is
assumed to be initially flying in trimming statéetroll, yaw and sideslip angles are all zeroes,
and the angular rates are all zeroes or negligibigll. Because the sideslip angle is 0, therefore
Ve=0. According to definition, quantities, v, w, p, g andr are small; therefore, the terms
involving their products and squares can be ignofsb by removing the higher order terms of

the motion variables, Equations (4.84) to (4.88)a@btained (Cook, 2013):

m(u+ qW,) = Xae+)°(uu + X,v + X ow + )u(pp + )o(qq + X r+XyW — mgsinb,

—mg6cosl, + )O(EE + )o(nn + )0(({ +X.T (4.84)

45| Page



m(@w —pW, +rU,) = Yae+{(uu +Yv+ Yow + {(pp + \u(qq + Y, r4+Y W + mgysing,

+mgecosf, + XO(EE + \o(nn + \O((( +Y.T (4.85)

m(w —qU,) = Zae+2uu + 720 + Zyw + 2pp + 2qq + 2,7+ 24W + mgcosh,

—-mg0sinf, + 25‘ + Znn + Z{ + 7.7 (4.86)

Lp — L, =Ly +Lyu + Lyv + Lyw + Lyp + Lyg + Lir+Lgw + Lef + Ly

+]‘:§( + ]_O.-ET (487)

I

»q =M, +Myu + Myv + Myw + Mpp + Myq + Myr+Mgw + Meé

+M,n + M + M,z (4.88)

1,7 = L, = Ny +Nyu + Nyv + Nyw + Npp + Ngq + Ner+Ngw + Ne§
+N,n + Ned + Not (4.89)

In Equation (4.86)(—mgsin8, —mgfcosb,) is the gravitational effectXs& + X,n + X;0) is
the aerodynamic control ter,t is the thrust term, and the other terms are a@adic terms.
These definitions are applicable for the other @#qna above. At steady state, there is no
perturbation. Therefore, some of the terms in Hqoat(4.84) to (4.89) are reduced to the
following equalities for the magnitudes of the abnmmamic forces and moments at the trim

condition:

X,, = mgsinb, (4.90)
Y, =0 (4.91)
Z,, = —mgcos6, (4.92)
L, =0 (4.93)
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M, =0 (4.94)

N, =0 (4.95)

By substituting Equations (4.90) to (4.95) into Bjons (4.84) to (4.89), the aircraft’'s perturbed

equations of motion can be written as (Cook, 2013):

m(@ + qW,)=X,u + X,v + X, w + )u(pp + )u(qq + X, r+X,Ww — mgBcosb, + )o(ff + )u(nn
g + Kot (4.96)

m@ — pW, + rU,)=Y,u+ Y,v + Y,w + {(pp + \u(qq + Y, r+Y,W + mgysiné, + mgecosh,
+\0(g€ + \0(,,77 + \0(({ +Y,7 (4.97)

mWw — qU,) = Zyu + Z,v + Z,w + pr + 2qq + 2. r+2,Ww — mgOsin, + fo + 2,777
Y20+ (4.98)

Lp—Lyi=Lu+Lv+L,w+Llp+Llq+Lr+lyw+Lef +Ln+L0+ Lt (4.99)
L,g = Myu + M,v + M,w + M,p + Myq + M,r+Myw + M€ + Myn + M;¢ + M,z (4.100)

L7 — L,p =Nyu+ N+ Nyw + Nyp + Nog + Nr+Nyw + Ne& + N + N, + N7 (4.101)

4.4 Decoupled motion equations
4.4.1 Longitudinal motion equations

The motion equations (4.96) to (4.101) can be @rrttecoupled and simplified. By keeping only
the longitudinal channel related input and stedes, setting the lateral channel related inputs and

states to zero, decoupled longitudinal channel teopugcan be obtained. In this case, the aileron
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and rudder perturbations, statesp andr are all zeroes. Therefore Equations (4.96), (4298

(4.100) can be simplified as (Cook, 2013):

mit — Xyu — Xyw— Xy W — (5.(q —mW,)q + mgfcosh, = X, + Xt (4.102)
—Zut(m — LW — Zyw — (Zq + mU,)q + mgOsing, = Zyn + 2.7 (4.103)
L,g — Myu — My,w — Mqq—Myw = M1 + M7 (4.104)

Equations (4.102) to (4.104) can be further writisn

=X +)D(W +§(W'+ Xq W, 0cos, + Xn + X 4.105
CERE T T Y T e |47 g7C05%e T g7 T AT (4.105)
iu 2v'v 2w iq g S (4106)
= St 2w+ 2w+ (24U, ) g - gbsinb, + Z,n + 7 :
YEWE T Y (m e |4 GUSBe T Lgl] T LT
M M M M, M M
qz_uu+_WW+_qq+_WW+_Tln+_TT (4107)
Iy I I I I I

The aerodynamic derivatives with™ dressing in above equations are dimensionalatves
in British notation. In this thesis, North Americaatations are used, Equations (4.105) to (4.107)

can then be rewritten by using North American notet as:

u =X, u+X,w+Xw+ (Xq — We)q — g0cosb, +X5,6. + Xs5,,0tn (4.108)
W= Zyu+ Zyw + ZyWw + (Z, + U, )q — gOsinb, + Zs,8, + Ls,, 6¢n (4.109)
q = Myu + M,w + Myw + Myq + M, 8, + Mg, 6¢p, (4.110)

Where, d. and oy, stand for elevator and propeller thrust pertudretiin American notation,

which correspond tg andz in British notation. The aerodynamic derivativesd in Equations
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(4.108) to (4.110) are the ones needed to be fa=hthrough system identification, which is the
main objective of this research. Usually propelilerust is constant; thus, propeller thrust
perturbation can be set to zero. The reduced argetel of the aircraft given by Equations

(4.108) to (4.110) can also be written in the failog matrix form (Cook, 2013):

1 =X, 0 0][xu Xu Xy Xgq—W. —gcosb.7ru Xs,
0 1-7, 0 O||w Z, 1, Z,+U, —gsing, |(w Zs
. — + e 5
0 -M, 1 0]f4 M, M, M, 0 q Mg, e (4.111)
0 o o 1llél | 0 0 1 0 Itel | 0 |
Equation (4.111) can be written as,
Mx(t) = A'x(t) + B'u(t) (4.112)
which can also be further rewritten as,
x(t) = M~ 1A'x(t) + M~1B'u(t) (4.113)

Therefore the reduced order longitudinal state eguacan be derived from Equations (4.111)

and (4.113) as,

U Xu Xw Xq Xg |ru Xy
v:v lzu zw zg zg ||W Zy 4114
q|— | my m, my mqu t m, n ( )
7] 0 O 1 0 6 0

The conversion betweer, and X, is shown in Appendix 1, and the other coefficients
conversions are also shown in Appendix 1. Equafil4) can be expressed in general

equation as,

x(t) = Ax(t) + Bu(t) (4.115)
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wherex is called state vector is input vectorA is state matrix, an@& is input matrix. The
coefficients in matrixA andB are the aerodynamic derivatives needed to beifeehin this

research. Usually the output equation is written as
y(t) = Cx(t) + Du(t) (4.116)

which is usually combined with Equation (4.115d&scribe the full aircraft motion. Commonly
the aircraft output vector is the same as the s&ttor. In this cas€ is an identity matrix an®

iS a zero matrix.

In aircraft system identification, sometimes it msore convenient to use dimensionless
aerodynamic parameters likp, Cx, C_ or Cz, Cy, C;, Cy,, C,, than dimensional derivatives. Since
dimensionless derivatives remove the known deperedemn the airspeed and air density
(dynamic pressure), they are normalised partiavdives. The aerodynamic equations (4.108)

to (4.110) can be written as general dimensiorftassat as:
C, =C,(u,w,w,q,98) ,fora=D, L, m (4.117)
which is short for,

¢
Cor o 4 Casl6, fora=L,D,m (4.118)

u
Ca = Cay + Ca, 37~ + Ca, W + Ca a5y
0 0

wc N
A

where, the dimensionless coefficients are defirseed a

Cay = Voo (4.119)
acC,
Caw = 5210 (4.120)
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Cqs — Control derivatives.

2V, 0€,

4121
Qo oow ' ( )
_ 2o 0Ca, (4.122)
aq - C_‘ aq ]
acC
Cas =a—5a|o fora = D,L,m (4.123)

Cq,— Static stability derivatives (derivatives assaeiatvith the air-relative velocity quantities

such asy, v, w, Vg, p)).

Cay— Dynamic stability derivatives (derivatives asstaibwith angular ratep( g, 1)).

Cq, — Unsteady derivatives (derivatives associated witsteady aerodynamics, (w)).

An example showing how to use the equations on finag is:

u wc c
Cp = Cp, + Cp, 37+ Co, W + Cp,, 50 + Ci, 2+ p,a8 (4.124)
0 0

4.4.2 Lateral motion equations

2V,

Lateral motion equations can be written in conéismat as (Cook, 2013):

mv — \O(vv - (\o(p + mWe)p — (\O(r — mUe)r — mgysinf, —mgpcosl, = \o(gg" + \OQZ (4.125)

~Lyv + Lep — Lop — Lpi — Lo = Leg + g (4.126)

—Nyv — Lyp — Npp + L7 — Nor = Ng& + K¢ (4.127)
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Recalling Equations (4.39), (4.46) and (4.48), Higua (4.125) to (4.127) can be rewritten as:

Y = Yyv + Ypp + Yor + mgysing, + mgpcosb, + Yeé + ¥{ (4.128)
L=Lyw+Lp+ Lo+l +10 (4.129)
N = Nyv + Npp + Nor + Ne& + N ¢ (4.130)

where Y, L and N denote lateral force, rolling aymiving moment, respectively. Equations

(4.128) to (4.130) can be written in general dinnemess format as:

b rb
Cq = Cqy + CaBAﬁ + Cap 57 + Carﬁ + Co 46 fora=Y,Ln (4.131)
0 0
where,
oC
CaB = a_ﬁa lo (4.132)
_ 2V 9Cq (4.133)
ap - b ap o] '
= %% (4.134)
@  p or '°
oC
Cos = a—;lo,fora =Y, Ln (4.135)

The decoupled equations of motion discussed abmesually the basis for system modeling
and identification. The structures presented hezeeasential for system identification algorithm

used in this thesis.
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4.5 Summary

This chapter discussed the mathematical model efaticraft system. Section 4.1 focused on
equations of motion for the aircraft. The aircrafbtion was described by force equations,
moment equations, kinematic equations and navigadiguations. Section 4.2 discussed the
aircraft motion from the aerodynamic view point.Section 4.3, the aircraft motion with respect
to small perturbations was studied. It was alsowshdow the dynamic equations can be
decoupled into longitudinal mode motion and latenalde motion, which facilitated the reseach

conducted in thus thesis.
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5 Input Excitation

The quality of the system identification resultshighly dependent on two points (Tischler and
Remple, 2012):i) a properly designed and executed flight tast; an accurate system
characteristics analysis. This chapter will focustbe proper input design. The recommended
input excitation for frequency domain system idigcdtion is a frequency sweep signal called
“Chirp”. Chirp is a signal which can provide a fgiruniform spectral excitation over the
frequency range of interest for high quality fregeye response identification (Tischler and
Remple, 2012). The topics to be covered in thigptdraare:i) general data requirements for

system identificationij) optimal excitation designij ) frequency sweep excitation generation.

5.1 Input excitation requirements of system identificaton

For system identification, the desired aircraftrelegeristics need to be captured in the flightstest
Thus, an eligible input excitation should be capabf exciting those characteristics of the
aircraft that need to be captured. The requiremehisput excitation include frequency range,
excitation length and signal amplitude. Besidesrdwiirements of input signal, the flight test

condition is also essential for gathering datasfmtem identification.
5.1.1 Frequency range

The desired frequency range of input for systermtifieation depends on an aircraft's
characteristics. The primary requirement on theuemcy range is that it should include the
natural frequencies. In another words, the signapper frequency bound should cover the

54 |Page



aircraft’'s natural frequencies. As a result, befaesigning the input excitation, a rough
estimation of the aircraft’'s natural frequency re¢al be made. The requirement for the high
frequency part of the input excitation is also lyagetermined by the sampling frequency of the
data recording device. For example, given a datgpbag rate of 30 Hz, the frequency over the
Nyquist frequency of 15 Hz cannot be recorded ately (Dorobantiet al, 2011). The fastest
mode of an aircraft flight is its short period mo&hort period mode is a damped oscillation
motion in pitch about they axis. For Cropcam and the delta-wing aircraftjrtisort period
mode natural frequencies are estimated to be |dkaar 4 Hz; thus, a 7 Hz input frequency

which includes 4 Hz frequency components is highugh to excite the aircraft characteristics.

Aircraft input excitation’s low frequency part i$sa very important. The selection of the low
frequency bound is usually depends on the airsrédiel flight time competency. For example,
if an aircraft can achieve 20 seconds level fliglofsidering the requirements of trimming after
each turn, a 10 second data window is realistierdfore, the signal frequency lower than 0.1
Hz cannot be identified (Dorobanét al, 2011). By trial and error, a reference input frexgcy

range of 0.05 ~ 6 Hz is proven appropriate for dieta-wing and Cropcam aircrafts’ system

identification.

In data processing, the coherence distributionbeansed to guide the frequency range selection.
Coherence quantifies the linear correlation betwiepnt and output (Dorobantet al, 2011).

The coherence function is given by:

|Sy,u(w)|2
Su,u((‘))sy,y ((‘))

Yiey(w) = (5.1)
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where,y? is coherence functiotg represents a complex valued spectral density ifomat is the

input to the system, andis the system output signal.

Coherence is an indication of the frequency respdingarity. Its variation interval is 0 to 1. A
high coherence indicates that there is a good fliceaelation between the input and output,
while a low coherence means the output was nottexkdy the control input (Lawlest al,
2006). A coherence value of zero implies that there correlation between input and output. A
coherence value of one signifies a perfect linearetation between input and output signals.
The presence of low coherence may be caused byathienearity or low signal-to-noise ratio
(SNR) of the signal. It may also be cause by thergospectral density of the input-output
signals which have not been estimated correctlfrequency range with coherence over 0.6 is
considered acceptable for frequency domain systiemtification, and the coherence above 0.8
indicates that the data’s linearity is very good $gstem identification (Tischler and Remple,
2012). When selecting the proper frequency compsnér system identification, the low

coherence frequency part is truncated and dropped.
5.1.2 Length of input excitation

The length of data must be consistent with theopksriof interest (Dorobantat al 2013).
Roughly, an individual sweep record length showdehat least two or ideally four or five times
the maximum dynamic period of interest. A full a&it dynamic period includes both a short
period and a phugoid mode. That is because, altha@ugheory an individual mode can be
identified from one dynamic period, the practicsues such as presence of measurement noise,
multiple closely spaced modes, atmospheric turlmgemd model structure uncertainty, all drive

the need for a longer record length.
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For the sake of safety, the aircraft needs to yiadlin the line of sight all the time. Therefore

the maximum level flight time of Cropcam is limitéol 10 seconds. Considering the trimming
requirement after each turn, the ideal experimatda @indow is limited to 5 seconds. However,
5 seconds is too short for system identificatiomerefore a trade-off is made by setting the input
excitation length to 8 seconds. As a result, tilenting requirement may not be met ideally, but
that is the physical limitation of the experimefnt.fact, the identification results demonstrate

that this setting works.
5.1.3 Amplitude of input signal

In order to achieve a sufficiently high signal-toise ratio (SNR), it is desirable that the
amplitudes of output angular rates are over 6 degis linear accelerations are beyond 1.5 m/s
(Dorobantuet al, 2013). However, if the amplitudes of input are kagh, outputs of the aircraft

will deviate far from the nominal condition and wilot remain in the linear region anymore.
Preliminary simulation and experiments showed #traboutput amplitude of 20 deg/s is large
enough for the angular rate to distinguish dynahresponse from noise while maintaining the
nominal flight characteristics. Typical effectivegput (elevator deflection) and output (body pitch

rate) pair plots are shown in Figure 5.1 and Figuge
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Figure 5.1 Elevator deflection
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Figure 5.2 Body pitch rate
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From Figure 5.2, it is seen that the amplitude adybpitch rate follows the output requirements

exactly. This demonstrated that the input excitaisodesigned properly.

5.1.4 Flight test conditions

The important flight conditions include wind spead, pressure, air humidity and the trimming
condition. The flight condition requirements areedmined by the purpose under investigation.
For instance, in order to obtain the aircraft’soglgnamic model in the cruise, the aircraft must
be trimmed in a steady state level flight at a tamisaltitude before deploying the input
excitations. For this particular case, air pressume humidity mostly remain constant. Therefore,
wind speed and trimming condition are the factbi tnatter the most. It is desirable that the
flight experiments are executed under a low-win@twer condition to avoid the effect of a large
external disturbance. Besides, in order to avoittriarence from disturbance, the input
excitation must be executed only when the airgsalying at level condition. In other words, the
aircraft should be flying at a steady speed, sthbight and an almost zero angular rate before

deploying the input excitation.

To make sure that the data quality is high, theegrgents should to be repeated. For the flight
test in this research, several frequency sweep cpmmands are executed by the control stick.
Also a few doublets are executed to ensure thigtagt one is free of large disturbance and the
results are consistent. A typical doublet inpuhaigand its corresponding response body pitch
rate are shown in Figure 5.3 and Figure 5.4 (sitedl&dy Horizon software which developed by

MicroPilot).
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Figure 5.3 Doublet input excitation
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Figure 5.4 Body pitch rate
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From Figure 5.3 it is seen that the elevator pmsisitarts and ends at trim state, and the input

amplitude is symmetric about the trim value.

5.2 Optimal input design

Design of input excitation has been widely studiddot of literature on optimal input design

has been published (Hamel, 1991; Chen, 1975; MamdaGupta, 1975; Morelli, 1997; Tischler
and Remple, 2012). A good excitation should be lolgpaf using minimum maneuver time and
minimum peak response to obtain maximum informatiomtent €.g.power spectral density). In

other words, an input signal can excite a goodflgffect with low operation amplitude in short
time length. The input excitation design is basedhe prior knowledge of model structure and
dynamical response characteristics. But usuallfprbedoing system identification, the model
structure and dynamical characteristics are unknowadvance. Therefore the initial design is

mainly dependent on prior experience and rougimesion (Tischler and Remple, 2012).

Different input excitation modes are required fdfedent ways of system identification. In time
domain system identification, multistep inputs g@reven to be effective. Popular inputs like
doublet and 3-2-1-1 are categorized within the nutép inputs. The 3-2-1-1 test input was
developed by researchers in the German DLR Resdaibratory (Marchand and Koehler,
1974). Doublet and 3-2-1-1 test signals and thaitants have been demonstrated to be able to
excite the aircraft modes of interest in conjunttwith time-domain system identification
techniqgues such as the widely used maximum likeithdML) method (Jategaonkar and
Monnich, 1997). Morelli (1993, 1997) used optimgbut design based on multistep inputs for a
high performance aircraft application. Figure S%itypical 3-2-1-1 signal.
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Figure 5.5 Typical 3-2-1-1 signal

A well-established input for frequency domain sgstedentification is the Schroeder-phase
signal (Tischler and Remple, 2012). The Schroettase signal is a multi-frequency signal
which is composed of a large number of harmoniejatlly spaced frequencies. Young (1989)
and Young and Patton (1990) demonstrated that ¢theo8der-phase design minimizes the peak
excitation amplitude and can result in a flat powpectral density, which makes it ideal for
frequency domain system identification methods.eBasn the Schroeder-phase signal, Morelli
(2003) designed an optimal input with minimum pe&dlch is designed for real time parameter
estimation in the frequency domain. The above dssiginimized the flight test duration and

proved to be suitable for frequency domain systentification.

The input excitation used for system identificatiarthis research is a frequency sweep signal

called “Chirp”. It is a multi-frequency and amplikel variation wave. Frequency sweep was first
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used for frequency response identification by Sysieechnology Inc. (Holet al, 1981) in

applications to fixed-wing aircraft.

The reasons for using Chirp signal for frequencgpoase identification are (Tischler and

Remple, 2012):

i. Chirp’s spectral content (also called power spécteasity, PSD) is fairly rich and the
excitation has a uniform distribution across thesigel frequency range. This
characteristic guarantees that input and outpue lagpersistent high level of frequency
response accuracy across the frequency rangecoéatt

ii. time history of Chirp magnitude is roughly symmetithis means that deviations in the
input are generally symmetric with respect to tfreference) state;

iii. the frequency range can be strictly controlled miyithe test. The input start frequency

and end frequency are all predefined, and the &eqyis smoothly changing with time.

Figure 5.6 shows a typical frequency sweep input.
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Figure 5.6 Frequency sweep input excitation

When using frequency-sweep signal, some importaimt$ need to be considered (Tischler and

Remple, 2012):

i. sweeps should start and end with at least 3 seafrtde state in the test record;
ii. after the initial trim period, execute two compl&tRirps;
iii. make sure the input frequency increases smoothithout rushing through mid-
frequencies;
iv. adjust the input to make sure its amplitude is swtni with respect to the control
surface trim value;

v. the required frequency range should be determieéatdthe flight test.

Other points also considered:
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i. constant input amplitude is unnecessary;
ii. exact sinusoidal input shape is unnecessary, gndlcnot desirable;
lii. exact frequency progression is unnecessary;,
iv. exact repeatability is unnecessary and not desirabl
v. high frequency input is not needed;

vi. increase input amplitude at high frequency is resded.

Computer generated frequency sweep input is has fr@een to be time efficient and effective
for flight test. Tischler (2012) developed an audded frequency sweep testing method for
frequency domain system identification. The sigealomposed of exponential sweep and white
noise. The advantage of exponential sweep is thakeés a longer time at low frequencies where
most of the aircraft modes and characteristics Whjle it takes a shorter time at higher

frequencies. Figure 5.7 shows the increasing tofikde sweep frequency.
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Figure 5.7 Increasing trend of sweep frequency
A frequency sweep generating equation is (Tisciher Remple, 2012),
Osweep = Asin[0(1)] (5.2)

where,A is the amplitude of the sweep signal, and it %16 the control surface deflection

limit. 4(t) is defined as:

TTEC
6(c) = f w(©)dt 5.3)
0

whereT is the sweep time duration, andt) is given as,
w(t) = Wmin + K@) (Wmax — Omin) (5.4)

In Equation (5.4)K (t) is given as:
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K(t) = Cy[exp (Tclt) 1] (5.5)

The requirement of Chirp frequency range ist at0, the frequencw = w,,;,; and att = T,
W = Wmae- ThereforeC,; can be set arbitrarily, whil€, needs to be set accordingly to satisfy
the above requirement. A typical setting p&ir= 4, andC,= 0.0187, have been proven suitable

for a wide range of applications (Tischler and Remp012).

Combining Equations (5.2) to (5.5), the followinoldks,

Trec Cit

5sweep = ASiTlf [(‘)min + CZ (em - 1) ((‘)max - wmin)]dt (5.6)

0

In the implementation of the input excitation, sofeatures are recommended to add to the

signal (Tischler and Remple, 2012):

i. zero starts and zero ends, to ensure a steadyestadéion;

ii. constantwmi, for one full period, to ensure sufficient spectcaintent at the starting
frequency;

lii.  White Gaussian Nois&\(GN should be added to the excitation, to enrichetkatation
spectral content. Because the computer-generated ssieeps alone may not have
sufficient spectral content due to it having negularities in signal shape;

iv. amplitude fade in and fade out, to avoid sharp stad end,;

v. the excitation should be low pass filtered, to sapp high frequency content in the

excitation.

Given the above requirements, the final input eth can be expressed mathematically as:
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(5.7)

6excitaion = 5sweep + 6white noise

where, typical noise signal level is set as:

Swhite noise: 0 = 0.14 (5.8)

Figure 5.8 shows a typical final sweep input exita

Control surface deflection (deg)
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Figure 5.8 Typical Chirp input excitation

Figure 5.9 is the finite Fourier transform plot thie input excitation shown in Figure 5.8. It
displays the frequency range of the implementedpChput excitation, which is in the range of

0.5to 5 Hz.
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Figure 5.9 Finite Fourier transform of input signal

A computer generated frequency sweep signal candaahe needed excitation content over the
frequency range of interest. It has been demoestitat be fairly effective for frequency domain
system identification. And, it has wide supportasuccessful application in the development of

aircraft system modeling.

5.3 Summary

As discussed before, the quality of system ideraiion is highly dependent on the quality of
flight test, and in turn, the input excitation. Kenin the Section 5.1, the optimum input
excitation was discussed, and the key points ingdagy the input excitation were highlighted

and clarified. In Section 5.2, different excitatisignals were introduced and compared. Among
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them, the “Chirp” signal was determined as a goaddaate for the flight test in this research
due to its rich frequency components property. AfCgenerating algorithm was introduced that

effectively determines the optimum input excitation
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6 Estimation of Aerodynamic Derivatives

In system identification, two issues influence #ozurate parameter estimation: one is noise,
another one is low information content. It is ditfit to design a parameter estimation technique
which can perfectly distinguish the response frém hoise while still responding rapidly to
sudden changes in the system dynamics (Morelli919%his is because distinguishing the
system response from noise requires long term tlat@éme domain, this problem is solved by
using recursive least squares and a “forgettingpfagBodson, 1995), or by using sequential
batch least squares with short data records andding cost function (Chandlest al, 1995;
Ward et al, 1996). In frequency domain, it is dealt with bging correlation and spectrum
algorithms. The transfer function method has a @riypof immunity to noise. If an extended

Kalman Filter approach is applied, the signal camlistinguished from noise more clearly.

A lack of data information content is a universadlgem in system identification. Time domain
methods are more sensitive to the lack of datarimétion content (Morelli, 1999). Another
known problem associated with the data informationtent is the data co-linearity. In a flight
test, several control surfaces frequently mov&atseme time, or else the control surfaces move
in proportional to state variables with a tiny tirdelay. When the states and controls move
proportional to one another, it is hard to identif individual stability derivatives from the
response (Morelli, 1999). The effects of these |@mmis can be relieved in frequency domain

calculation.

There are a couple of algorithms for identificatioh unknown aerodynamic derivatives.

However, the field is narrowed if only the real-immethods are considered (Tischler and

71| Page



Remple, 2012). The current task is to examine gleistep frequency domain method for real-

time longitudinal channel aerodynamic parametezatification.

In this thesis, two frequency domain system ideaifon approaches are implemented and
tested to extract the unmanned aircraft aerodynaiivatives from flight data. The first one,
transfer function method, is more appropriate féfrline calculations. For this method the
aircraft transfer functions corresponding to thedmoof interest are developed first. The
aerodynamic derivatives are then calculated froentthnsfer function parameters. The second
method, Equation Error method (complex linear regimmmethod), is more suitable for real-
time parameter estimations. Both methods assundhtbaaircraft remains in the linear region
during the flight test. An important requirementr fonplementing these two identification
approaches is that the dynamic model should haveear structure with time-varying

parameters to account for the changes in the fighdition or the aircraft configuration.

6.1 Transfer function method

Before applying any system identification techngjua general understanding of the aircraft
dynamics is required. In this section, ways of wiig the transfer function are discussed.
Section 6.1.1 explains how to derive it empiricdigm the measured input-output data pairs.

Section 6.1.2 discusses how to derive it analytsidedsed on theory.
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6.1.1 Obtaining transfer function empirically

There are several methods to acquire transferifurecbf a dynamical system from experimental
data. In this section the Empirical Transfer-FumctiEstimate (ETFE) method and Power

Spectra method are discussed.

1. Empirical transfer-function estimate (Keesman, 2011)

Recalling that’ (s) = G(s)U(s), by substitution of = jw, the following can be obtained,
Y(jw)=G6(w)U(w) (6.1)

Therefore for a given inpui(t), and outputy(t), by doing finite Fourier transform, the transfer

function referring to input and output can be at¢ai and expressed as,

_Y(w) 6.2)

For each of the frequency components containetienrtput and output, the relationship (6.2)
holds. This allows the construction of both magiéwand phase response of the signal for a

number of frequencies.

2. Transfer-function estimate using power spectra (Keesman, 2011)

The Empirical Transfer-Function Estimate is simygeise, however, the disadvantage is that it
uses the raw input-output data, which means thatagproach is sensitive to noise. Therefore,
another algorithm called “power spectra method”’d&sveloped to offer robustness to the

measurement of noise. In order to implement theegpospectra method, autocorrelation and
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cross-correlation of the input-output pairs needse calculated. The autocorrelation of the input

signalu(t) can be expressed as:
(7, 8) = E[u(®)u(t + 7)) (6.3)

whererz is the time lag and the notati&f « ] stands for the expectation operator. Equatio®)(6.

can be further rewritten as,
1 T
7, (7) = lim —j u®)u(t + v)dt 6.4
uu T-0 2T J_; (6.4)

Since in practice, the input signal is measuredlistrete data, a discrete time algorithm is

needed to process the data, which is shown as:

N

zz w@u(i+ 1) (6.5)

=—N

1
2N +1
L

T (D) = 1\1]1_120

The cross-correlation of input-output can be exgedsas:
Tuy (T, t) = E[u(®)y(t + 1)] (6.6)

which can be further written as,

1 T
= lim — (6.7)
Tuy(T) = lim T f_ Tu(t)y(t +1)dt
For the discrete time case, Equation (6.7) is mids,

1
2N +1
l

Ty = 1\1]1_{120

N
Z w@y (i + D) 6.8)
==N
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Recalling the time domain input-output relevapc€e) = Y-, g(k)u(t — k), at the time instant

oft=i+1,

[ee]

Y+ 1) = Z gUuli+ 1 —k) 6.9)

k=0

Practically,y(t) = y(t) + v(t), wherev is noise. Thus the cross-correlation of inpft}- output

y(@t) is,

Ty (D) = lim

N-ocw 2N

N oo
u@[)Y gul+1—-k)+v(i+D] (6.10)

Therefore, as long asis unrelated ta and has a zero mean, the long-term averagé )ofi+l)
is close to zero. This is the reason why the pa@pectra method is immune to noise. Equation

(6.10) can be deduced as:

N o)
y () = lim — Z u(i) [;goc)u(i Fl— k) +v(i + D)

Z g(k) llm

Z w@uli +1—k) (6.11)

i=—N
= 90 - k)
k=0

Equation (6.11) is called the Wiener-Hopf equatidbhe auto-spectrum and cross-spectrum of
signals are obtained by taking the finite Fouriansform of the auto-correlation and cross-

correlation of the signals. The auto-spectrum fiomcis defined as:
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[oe]

(@) = ) Ty (De (6.12)

l=—0o0

while cross-spectrum is:

[ee]

By (@) = z Ty (De 1! (6.13)

l=—0o0

The relationship ofb(w) and ®,(w) can be derived by substituting, from Equation (6.11)

into (6.13), which is:

[ee]

Puy(@) = D iy e !

l=—00

g, (L — ke !

Il
s
s

0

m
|

8
&
I

g()e 7@y, (1 — k)e j@l=k) (6.14)

Il
s
NgE

~
1l

&
Il

0

— 00

[ee]

= > g0eTk D gy (= keIt
k=0

l=—0o0

(o 9] o)

= zg(k)e‘f“”‘ z T (D)e 04

k=0 A=—00

= G(ejw)(puu(w)

Thus, an alternative approach to ETFE is given as:
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G(w) = z”ygz; (6.15)

Since the power spectra method is immune to nasepare to the ETFE method, it is widely
used in practice. Some commercial software like MAB and CIFER are also using this

method for system identification.

6.1.2 Obtaining transfer function analytically

Since aircraft motion can be decoupled into sherigd and phugoid modes, they can be

explained separately.

Short - period mode response

Short-period mode is a typical damped oscillatiothie pitch with respect to tloy axis. One of
the features of the short-period mode responsehisn the aircraft is disturbed from its pitch
equilibrium state, the aircraft response quantiiesh as incidence angi€or w), pitch rateq

and pitch attitudey change significantly. Since the short period m&ishort, the effects of
inertia and momentum on speed are negligible, feed can be considered as approximately
constant. Thus, axial velocity perturbatior0. The short-period mode flight feature can be

visually shown as Figure 6.1.
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Figure 6.1 Short-period mode flight(adapt from Cook, 2012)

Phugoid mode response

Phugoid mode is a lightly damped low-frequency ltaan in speedl, which couples into pitch
attitude @ and altitudeh. One of the characteristics of the phugoid modthat the incidence
anglea remains constant when the aircraft is in the phdigoode (Cook, 2012). The phugoid

flight mode can be visually shown as Figure 6.2.

. ' c ‘
fi [>G
! %3 U>v, Lis lift force

[>G i< weigh
U7, Gis weight
Figure 6.2 Phugoid mode flight(adapt from Cook, 2012)
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When the aircratft is flying downhill, the potentehergy is decreasing; thus, the kinetic energy
is increasing and therefore the aircraft velocitgréases accordingly. That is why, when the

aircraft goes down, it is accelerating and whego#s up, it is decelerating.

Figure 6.3 and Figure 6.4 show typical longitudinade responses to a 1° elevator deflection

step input.

0 T T T T T T T T
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_20 | | | | | | | | |
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Time (s)
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q (deg/s)
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-5 | | |
0 10 20 30 40 50 60 70 80 90 100
Time (s)
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g
S -2 1
N
-4 I

0 10 20 30 40 50 60 70 80 90 100
Time (s)

Figure 6.3 Aircraft responses W, g, «) to a 1° elevator step input
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Figure 6.4 Aircraft responses (, 8, ) to a 1° elevator step input

From the figures, it is seen that the variablgsq and a are significant short period mode
dominated variables, while variablasé and )y are less dominant in short period mode. The
short period response characteristic of aircraéisisential. The short-period mode has a natural
frequency close to the human pilot's natural fremye Therefore, the probability of dynamic
coupling with the pilot occurring under certain ddions is relatively higher than in the phugoid

mode. This may lead to severe or catastrophic hamgiroblems (Cook, 2012). On the other

hand, the phugoid mode’s natural frequency is mMaaler. Therefore, the phugoid mode is less

influenced by the piloting task; the human piloh a@asily control the aircraft even when the

aircraft phugoid is mildly unstable.
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Short-period mode approximation

The short-term response is dominated by the stesibgh mode. It is more convenient to obtain

the reduced-order aircraft motion equations if pheigoid mode is suppressed or omitted. It is
possible to simplify the longitudinal motion equas to a reduced-order set of equations, which
describe only the short-period mode. Since the dantiquantities of short-period motion axe

w, g andd, whileu is essentially almost zero, Equation (4.114) cafulsther written as:

v:v Zw Zq Zgl[W Zy
[q] = [mw m, my [ql+ my|n (6.16)
0 0 1 o1lte6 0

Assuming that the motion equations are written wetspect to the wind axes coordinate system,

and the aircraft is initially in steady level flighihen the following holds,

0, =a,=0andU, =V, (6.17)
further,
ng
zo=——97e g (6.18)
m— ZW
my = — wmgsinfe _ (6.19)
Iy(m — ZW)

Therefore Equation (6.16) can be further reduced as

m B [;lv:v rf{;] m + [Z’n] n (6.20)

The derivatives in equation (6.20) are given inlbdy axes system. The transfer functions can
be derived from Equation (6.20) (Cook, 2012):
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my,
Zy s+mq+zqz—

wis) _ n (6.21)
ns)  s2—(my +2y)s + (Myzyy, — Myzy)
m,(s+m I, )
q(s) _ 7 Ymy TV (6.22)
n(s) s2-— (mq + Zw)s + (mgz,, — my,z4)
Sincez, TZ—: » My, —z,, B> m,y, ;—’; and,
Zq + mU, U 6.23
Zg=———— = .
1 m — ZW ¢ ( )
also,Z, € mU, andm > Z.
Thus, the transfer functions can be decoupled enplifed as,
Zp(s+U i}
nis) s?- (mq +2,)s + (Mgzy —myU,) S+ 285055 + Wi
a(s) _ my (s = 2) k(s +1/Ty)
n(s) s?- (mq + Zw)s + (mqz,, —my,Ue) 5%+ 2805 + wd (6.25)
The characteristic equation is,
A(s) = s? — (my + z)s + (myzy, — My U,) = 52 + 2&,ws5 + @? (6.26)

6.1.3 Applying the transfer function method

Once the numerical and parameter transfer functwaobtained, the TF method can be applied
to extract the aerodynamic derivatives. By obsenkiquations (6.24) and (6.25), the following

can be deduced:
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—(my + z,) = 2&w; (6.27)
M2y — My U, = wf (6.28)

The above equations can also be rewritten usindithensional derivatives as:

o

M, Z, M,U,

28swg = _(I_ +?+ I ) (6.29)
y y
wg = %Z—W—MWU"’ (6.30)
s I, m L,

For a typical aeroplane, the aerodynamic derivativan be written as a crude approximation

(Cook, 2012)

250, = =% (6.31)

MU, (6.32)

Normally, Z,, is dependent on the lift curve slope of the wilﬁg,is largely determined by the

viscous “paddle” damping properties of the tailglamnd they are both negativé,, is a
measure of aerodynamic stiffness in pitch and $® alominated by the aerodynamics of the
tailplane. Its sign depends on the position of adgeWhen thecg moves forward, it becomes
increasingly negative. Therefore the short-periaatienis stable if theg is far enough forward
on the airframe Gook, 2012) These three aerodynamic derivatives are the nmogbrtant

derivatives in longitudinal channel aircraft modeli

By observing Equations (6.24) and (6.25), the feillg equalities can be set,
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Zy = ky
my = kq
—2zy = 1/Tg, (6.33)
l—(mq + ZW) = 2&,wq
mgyz,, — my, U, = wf
Since ky, T, Te, & ws and Ue are all known from the identified transfer functjothe
aerodynamic parameters m,, z,, my andm, can be calculated easily. It should be noticed tha
z,, m,, Zy, My andm,, are neither dimensional nor dimensionless parasetéey are shorthand

notations denoting concise derivatives, which apgaéto their dimensional derivatives divided

by the appropriate mass or inertia parameters.céheersions are shown in Appendix 1.

In this research, the aircraft's input-output datars are fed to the CIFER to obtain the
corresponding frequency responses and the trafshetions. An advantage of the transfer
function method is that it requires less data gtiaatcompared to other methods. For example,
for longitudinal channel parameters’ estimatiorg #ircraft's input and outputs that need to be
known are only elevator deflectiop vertical velocityw and pitch rateg. Theseare readily

available from the aircraft onboard autopilot.

Although the transfer function method is simplartgplement, its identification result is not as
accurate as the ones given by the direct methodhb, & the Equation Error method which will
be discussed in the next section. The TF methddsts accurate because several simplifying
approximations are madg:the longitudinal mode state space model is ddedujpom the full
aerodynamic state space equatioh;the transfer functions used are a reduced orfieheo
decoupled state space modg; phugoid mode related aerodynamic derivativesoangted;iv)
some extra terms are further simplified, while asting the aerodynamic derivatives from

transfer function®.g Equation (6.23))y) some approximations were made, when converting
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the derivatives from the concise format to theirresponding dimensional or dimensionless

format derivatives(see the Appendix 1).

Since the transfer function method is consideredapproximate method for identifying
aerodynamic derivatives, an alternative way needretdeveloped for identifying the derivatives
more accurately. The equation error method, whighbe introduced in Section 6.2, is chosen

as the main method for identifying aerodynamic\dgives in this research.

6.2 Equation error method

Since it is assumed that the dynamic model haseadistructure in the given period of flight, the
airplane dynamics can be described by the followingar state space model (referring to

Equations (4.115) and (4.116)):

x(t) = Ax(t) + Bu(t) (6.34)
y(t) = Cx(t) + Du(t) (6.35)
Zl-=yl-+vi i= 1,2,...,N (636)

Matrices A, B, C and D contain the aerodynamic stability and control \ives (refer to
Equation (4.111) ) of the aircraft, which are alkamed to be constantgt) is the input which
contains quantities of the control surfaces’ deitecde, J, andd,. Matrix x is comprised of the
states of the system, such as linear body velsaiti® andw; the angular body velocitigs g

andr; or Euler angle®, # andy. Here the output quantities are also states o$ysemy is the
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output vector and it is usually the samexagz is the measured output vector andlenotes

measurement error.
6.2.1 Data transformation

The Fourier transform is necessary for frequencgnalo data processing, to map the time
domain data into frequency domain. The Fourierdi@mn algorithm for converting a time

domain continuous vectaft) to a frequency domain vect®fw) is:
Flx(®)] = ¥(w) = f x(t)e Jotdt (6.37)

wherej = V-1, o is the angular frequency which its unit is raddy. applying the inverse
Fourier transform, frequency domain data can aks@dnverted into time domain. The inverse

Fourier transform algorithm is:
1 (° .
x(®) = f *(w)el“t do (6.38)

The Fourier transform of a continuous time functxgt) on a finite time interval [OT] is called

the finite Fourier transform (Klein and Morelli, @6), which is defined as,

T

X(w) = f x(t)e I@tdt (6.39)
0
or,

T

%(f) = f x(t)e /2t gt (6.40)
0

where,w = 2nf, fis frequency with a unit of Hz.
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Since the continuous time domain da¢g is sampled at discrete sample in the physicaldyor
the sampling time is evenly distributed bt (dt), therefore Equation (6.40) can be

approximated written as:

N-1
¥ (w) = At Z x;eJot (6.41)

i=0
wherex; is the sampled signal magnitude at tigpendt; = i4t . The discrete Fourier transform

(DFT) is then defined as:

N-1
X(w) = Z x;e-jot (6.42)
i=0

Thus for recursive calculation of the DFT of thgnsilx, given frequenc, the discrete Fourier

transform at sample pointan be related to the sample poitl as:

Xi(0) = X;_1(w) + x;e7 @it (6.43)

where,

e—jwiAt — e—ijte—jw(i—l)At (644)

and terme~/“4t s constant for the given frequency and sampiimg t
6.2.2 Equation error method in frequency domain

By writing Equations (6.34) and (6.35) in frequemmmain format, the following have:

jwX(w) = AX(w) + Bu(w) (6.45)

y(w) = Cx(w) + Di(w) (6.46)
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The basis of the Equation Error method (also knasrComplex Linear Regression method) is

the cost function which is derived from Equatiot#f and shown as:

Ji = %Z () — AER) ~ B (6.47

where,Jy is the cost function df" state equationd, andBy are thek™ row of matriceA andB
respectively. Notation “~” is a symbol of frequendymain data¥(n) andii(n) are the Fourier
transformed states and inputs data vector at frexyue,; %) (n) is thek element of vectdF at
frequency w,. There arem terms in the summation, which correspond nto frequency

components:

n
W = 2fy = 2m—, =012, N =1 (6.48)

whereN is the total number of the time domain data poititdenoting the unknown parameters

in matricesA andB by a matrixd, Equations (6.45) and (6.46) can be further writtecompact

form as,
Y=X0+v (6.49)
where,
[ jw X (1) T
jw X (2)
Y = : (6.50)
Lj W X (M)
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F&T(1) wT(D) ]
*¥(2) w'(2)
: : (6.51)

| %7 ('m) u’ .(m) l

And v is the complex equation error or the fit errotthe frequency domain. The least squares

cost function (6.47) can also be written in staddgradratic form as,

J= %(Y—XG)T(Y—XB) (6.52)

which is essentially identical to Equation (6.4®here the dressing™

stands for “complex
conjugate transpose”. In order to acquire the mimmcost, the value d® at which the

derivative of the cost functiahmust be found by setting:

aJ
9 _ 6.53
5 =0 (6.53)
Since,
1
J = E(Y—XB)T(Y—XB)
1
=5 (rty —v'xe — o'xty + otxtxe) (6.54)
therefore,
a 1
Y _ 2yt tyxty) — 6.55
5 2(YX+0XX) 0 (6.55)
thus,
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ot = yTxX(xTx)™? (6.56)

as a result,

0 =[Ytxxtx)t
= [(XTX)]'XTY
= [XTX)'XTY (6.57)
= (XTx)"xty
By picking the real part of Equation (6.57), thegmaeter matrix can be solved by:
8 = Re[(XTX)] 'Re(X'Y) (6.58)
where,d is a row vector which is comprised of the ideetifiderivatives.

In order to know how accurate the identified derxes are, a parameter standard error
algorithm is developed for examining identified graeters’ accuracy based on the identification

error covariance matrix. The identification errovariance matrix is defined as:

cov(@® =E{(6-06)(6-6)}
=E[X'X)"'X'(Z-YV)(Z-"TXXTX)™]
= (XTX) I XTE(WVHX(Xtx)™1] (6.59)

=o?(XTX)™!

where,Z = X0, V is the Fourier transformed complex equation errhe fit error).
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E(WvYH) = ¢?I (6.60)

o°is equation error covariance, which can be estithfrem the residuals and calculated as,
Gr=_ 1 [(Y — X8)T(Y — X8)] (6.61)
m-—p

wherep is the number of elements of parameter veétar’ is a real number representing the
squared magnitude of the complex residuals vettoe. parameter standard error corresponding

to each identified derivative is then computedhesdquare root of the diagonal elements of the

matrix cov ().

So far, the EE method in frequency domain has heeoduced. A linear regression based
algorithm is derived to compute the unknown paramekector from the states and inputs
measurement vectors. The advantage of the EE meéshtidht it requires low computational
power to identify the aerodynamic derivatives, #merefore it is very suitable for the real-time

parameter estimations.

6.3 Summary

In this chapter, the two frequency domain systeenmtification methods were introduced. The
first method is transfer function method, whiclsgscalled indirect method. The second method
is the equation error method, namely the directhotkt Section 6.1 discussed the principle of
using transfer function (TF) method. In this methtite system transfer function needs to be
obtained both analytically and experimentally. Titamsfer functions were derived first based on

the physical and mathematical laws. The softwaleE®Rl could then be used in experiment for
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getting the system transfer functions. It was abown how the unknown aerodynamic
derivatives can be calculated from the obtainedsfex functions. Section 6.2 discussed the
implementation of equation error (EE) method. A moelt for transforming time domain data to
frequency domain data was introduced. The mannehioh the transformed data determine the

aerodynamic derivatives was explained.
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/ EXxperimental Results

In this chapter, the transfer function and equagoor methods will be applied to identify the
transfer functions and aerodynamic derivatives ofoaventional fixed-wing UAV called-

Cropcam. First, the Cropcam’s longitudinal chantrahsfer functions are identified using
CIFER, and some aerodynamic derivatives are exulaitom the identified transfer functions.
Then, the equation error method is implemented dentify the longitudinal channel

aerodynamic derivatives. Lastly, the derivativesiclvhare computed in different ways are
compared to verify the accuracy of the identificatiresults and the applicability of the
identification methods. After the applicability tfe transfer function method is validated, it is
used to identify a delta-wing UAV’s longitudinal atmel transfer function and its related
aerodynamic derivatives. For the flight test, PilotControl (PIC) mode is used to execute the
target input excitation. And MicroPilot’s autopiléMP2128 Heli” is used to execute the
Computer in Control (CIC) mode flight and recorchsars’ data. The flight test was executed

and the data were gathered by MicroPilot Inc.
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7.1 Identification of Cropcam UAV

Figure 7.1 Cropcam aircraft

Figure 7.1 is a picture of the Cropcam aircraftr lemgitudinal channel system identification,
the required variables are linear body velocitieend w, body pitch rateq, and elevator
deflection de. There is a Kalman filter onboard the autopiloticihcombines the sensors,
including the inertial sensors (gyro, acceleron®{eBPS, barometric sensor, and the magnetic
compass. The onboard Kalman filter removes the ungaps Gaussian noise and calculates
accurate estimates of velocity and attitude of #weraft which are used in the system
identification algorithm. Also, the gyro and accelmeter sensor bias errors are estimated by the
Kalman filter and therefore used to compensateéhfeiinertial sensor measurement errors. Based
on the onboard measurements, the Kalman filtemes#is the aircraft velocities in the North-
East-Down (NED) frame. The NED velocities are tloemverted to the body velocities. For
translating NED velocity components into body-axefocities, the attitude angles 60, v are

needed. These are calculated by integrating thelangelocitiesp, g, andr. The angular
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velocity measurements from the onboard gyros dileded after correction of the bias errors

by the Kalman filter. The aircraft position estimatas well as its altitude are also provided by

the onboard Kalman filter. The sampling frequendytte autopilot is 30 Hz. the Nyquist

frequency (15 Hz) is much higher than the frequeoicyhe signals that need to be measured

(usually less than 7 Hz). Therefore, 30 Hz sampfriegiuency is adequate for recording the

flight response of Cropcam. The ways of obtainimg tlata and the data accuracy are listed in

Table 7.1.

Table 7.1 Data measuring

Variables Methods of obtaining Sensor| Post-filter
accuracy | accuracy
GPS velocitiest andy Measured by GPS 0.5 m/s N/A
Altitude z Measured by Barometric senspr 0.5m N/A
Angular velocities, q andr Measured by Gyros 0.25degfs 0.05 deg/s
Accelerationsa,, a, anda, Measured by Accelerometers 0.15Mm/s 0.02 m/$
Heading angle Measured by magnetic compass 1 deg A N
Attitude angles, 6, v Integrated from angular N/A 0.5 deg
velocitiesp, g, andr by Kalman
filter
Linear velocitieay, vandw | Calculated from GPS velocities  N/A 0.3 m/s
and attitude angles by Kalman
filter

The input excitation used for Cropcam’s longitudliclannel system identification is shown in

Figure 7.2, which is a manually generated Chirpalig
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Figure 7.2 Manually generated Chirp input excitation

Figure 7.3 shows the FFT plot of the input excitation whdisplay the frequency range of the

input signal.
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Figure 7.3 FFT of input signal

From the FFT graph, it can be seen that the inpditagion’s frequency range is 035 Hz,
which is reasonably appropriate for the currentesysidentification application. Also, from
Figure 7.3, it can be seen that the frequency compoof the input signal is fairly rich for
system identification. The system output resporg®@sesponding to the input are shown in
Figure 7.4 to Figure 7.13J, V andW are the components of total velocity in axialetat and
vertical direction, respectivelyp, q and r are the aircraft body roll, pitch and yaw rate,
respectively;p, 0 andy are the aircraft attitude angles, which represémtraft body roll, pitch

and yaw angles, respectively; wheris the aircraft altitude.
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Figure 7.7 Body roll ratep
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Body pitch rateq (deg/s)
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Figure 7.8 Body pitch rateq
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Figure 7.12 Yaw angley
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Figure 7.13 Altitude z
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In this section 7.1, the EE method will be usedh&smain approach to identify the Cropcam’s
aerodynamic derivatives. The transfer function méthwill be applied to identify the

longitudinal channel transfer functions, and itiso chosen as an auxiliary way of identifying
derivatives. The derivatives extracted from ideediftransfer functions will be compared to the
ones identified by the EE method for verificatiéimally, various approaches will be applied for

verifying the identification results.

7.1.1 Transfer function method

The utilized input and outputs are shown as Figudel and Figure 7.15. Theoretically, the
output body pitch ratey should have a negative correlation with respectnfmut elevator
deflectiond. (When elevator rear-end moves up for a pitch uproand, the body pitch rate sign
goes positive, and vice versa). However by obsgriAigure 7.14, it can be seen that for most of
the time, the input and output keep a positiveatation. This is due to the existence of delay

between the commanded elevator signal and thededagitch rate measurement.

The total delay is comprised of servo delay, siggathering delay, as well as the delay
inherently associated with the dynamical systemaese in the longitudinal channel. The servo
delay is due to the dynamics of the motors. Theadigathering delay is caused by the sampling
time inconsistency. The dynamical system resporedaydis due to the UAV nature; every

dynamical system has response delay.

The same problem exists in the linear velocity degavell. Figure 7.15 shows that the delay
exists in the vertical velocity signal. Since CIFER can deal with the delay automaticalsy
existence can be ignored when processing the dathusing the transfer function method. The

Bode plots ob,.-w andé,-q are shown as Figure 7.16 and Figure 7.17, respedgti
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From Figure 7.17, it is seen that the phase cutartssat -200 degrees. Theoretically saying, it
should starts at -180 degrees. However, the phaifieds due to the existence of delay. By
observing the coherence range, the applicable émyurange for identifying transfer functions
can be selected as: 6.7 ~ 26 rad/séfew; and 3.54 ~ 34 rad/s fd-g. By utilizing CIFER,

these transfer functions are obtained:

w(s) —17.3(s +235.44)e~ %075

- (7.1)
5,(s)  s2+1692s + 22333

q(s) _ —82.37(s +9.03)e~00867s

- (7.2)
6e(S) s? 4+ 21.52s + 158.19

The costs of these two transfer functions are 8antb9.04 respectively, which are all under the
acceptable cost guideline of 100. Cost (Tischled &emple, 2012) is an indication of the
consistency between the transfer function’s freguyaesponse and the flight data’s frequency

response. The cost function is given by (Tischiet Remple, 2012):

Wn
20 , , 7.3)
] = 72 WY[%(leatal - ITmodelI) + VVp(ZTdata — ZTmode) ] )

w1

where,n is number of frequency points (default value i$; 26) andw, are starting and ending
frequencies of fit;W, is coherence weighting to emphasize most reliall@, which equals
1.58(1.0 — e "*»); W, is weighting on gain error (default value is 1a@)dW, is weighting on

phase error (default value is 0.01745).

The low cost preliminarily proved that the idergditransfer functions’ accuracies are acceptable,
but further verification is still required. Thetfitgs of transfer functions and flight frequency
responses are shown in Figure 7.18 to Figure 7.21.
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From the graphs it is seen that the curves matasoreably well. This means that the identified
transfer functions are fairly accurate. So far, fleguency domain verification method has been
applied and the accuracy of transfer functions been demonstrated. However, the most
convincing way to verify the accuracy of transfendtions is time domain verification. For time

domain verification, the flight test input excitati is fed to the identified transfer functions to
simulate the time domain responses. The simulatsgonses are compared with the flight
measurements. Figure 7.22 shows the comparisonebetwsimulatedv and the measured.

Figure 7.23 shows the comparison between the sietddgand the measurey
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Figure 7.22 Comparison of simulatedv and measuredw
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Figure 7.23 Comparison of simulated) and measured

The comparison shown in Figure 7.23 demonstratatl ttie transfer function simulated body
pitch rateq, and the flight test measuredare matching quite well. For the vertical veloaity
the simulated one is also quite similar to the maess$ one, the largest difference gap between
the simulatev and flight test measured occurred at the less oscillation part (the pacillages
mildly, which is also low frequency part). Becaubke difference is not large, the matching is
still acceptable. Actually the appearance of défere matches to the coherence plot shown in
Figure 7.16. In the coherence graph, the cohernsngaite low at low frequency. Low coherence
indicates low accuracy; therefore, it is reason#ide the matching is not that accurate at the low
frequency part. Low coherence is caused by soméneanities involved in the input-output

model. Therefore, the linear transfer function carperfectly match the nonlinear behaviour.
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To further validate the identified transfer functsp Equations (7.1) and (7.2) were tested with
the unseen Doublet signal. The unseen Doublet Isigrsnown in Figure 7.24. Figure 7.25 and

Figure 7.26 show the comparisons between simulatedand measured, g.
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Figure 7.24 Unseen Doublet signal
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Figure 7.25 Comparison of simulatedv and measuredw with the unseen Doublet signal
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Figure 7.26Comparison of simulatedg and measuredg with the unseen Doublet signal
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In Figure 7.25 and Figure 7.26, it is seen thatphase of the simulated andq match closely
with flight test measured andq. However, the magnitudes do not match well. Teibacause
the model describing the system was linearizedrat@n operating point, and the aerodynamic
derivatives and transfer functions were identif&dhis operating point. Now this set of transfer
functions are used for simulating the output aroandther operating point (the doublet input
test). Therefore, it is reasonable that the sinsdlatutput cannot match well with the measured
output. Also from the figures it is seen that ¢hglot matches slightly closer than teplot. The
reason was already explained when referring toafiginal signal verification. This further

proves that the identified transfer functions aleble.

Theoretically, the denominators &f-w andé,-g transfer functions should be the same or very
close, but due to some deficiencies in the datditgutne results are inconsistent. However, the
difference is not large. Since verification showattthe transfer function @éf-q has a higher

accuracy thai,-w, the transfer function af,-q is used for extracting aerodynamic derivatives

Cnger Cmy» Caz, andC,,,,. The transfer function af.-w is only used to calculat;, .

Applying the algorithm discussed in Section 6.1.2:

mge
w(s) Zs,(s + Ue 7% —17.3(s + 235.44)

8.(5) 52— (mg + zy)s + (mgz,, —my,U,)  S%+16.92s +223.33

(7.4)

q(s) ms, (s — zy) —82.37(s + 9.03)

= = (7.5)
8e(s) 52— (my +z,)s + (myz,, —m,U;) 2 +21.525 +158.19

By extracting the equal terms from Equations (a”g (7.5), the following equalities hold,
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zs, = —17.3
ms, = —82.37
-z, = 9.03
—(my + 2,) = 21.52
myz,, —m,U, = 158.19

whereU, = 55 ft/s. By solving the above equations, théfeing concise notated derivatives are

obtained,
{ Zse =-17.3
ms, = —82.37
z,, = —9.03
lmq = —12.49
m,, = —0.83

For convenience, the above derivatives are cortveiteo North American dimensionless
derivatives (refer to Appendix 1). The final resudtre listed in Table 7.2. Here is an example
showing how to convert concise notated derivatiag to North American dimensionless

derivativeCmq. Other derivatives conversion can be found inAppendix 1.

i. Convertm, to dimensional British format derivativé,:

Mg =1, x m, (7.6)

. Converthto dimensionless British derivatind,;:

M, = M, /0.5pV,S¢ (7.7)

ii. ~ ConvertMqto dimensionless North American derivatig, :

Cim, = 2M, (7.8)
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Thus, dimensionless North American notation dei\'mafmq can be acquired. The conversion of
dimensionless North American notation derivatty,% to dimensional North American notation

derivative M, is shown as,

My = Cp, X pVoSE2/AL, (7.9)

wherep = 0.002286 slugft S= 5.31 £, & = 0.77 ft,V, = 68.26 ft/s andy= 3.04 Ib-ff. In this

way, all the derivatives can be converted to dinweriess North American derivatives.

Table 7.2 Transfer function method identified aerognamic derivatives

Cy -6.4492
Cr, -0.2246
Cmy -0.3036
Cm, -11.9227
Comg, -0.5506

The accuracy of the derivatives will be examinegetber with the ones identified by the EE

method in the coming section.

7.1.2 Equation error method

For applying the EE method, data analysis and pregssing is essential. In this section, typical
data analysis and pre-processing methods will Ipdiexh As shown in Figure 7.14 and Figure
7.15, there are delays between the input and ttutsu Since the priori model (e.g. Equation
(4.110)) utilised for the EE system identificatiorethod does not expect the physical delay, the
delay in the input-output data pair must be remofies. Otherwise, the identification results
will not be accurate. By analyzing and pre-procegsihe data, the delay is found to be

approximately 100 ms. This is in agreement with deday shown in the identified transfer
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function (7.2). From Equation (7.2), it is seentttiee delay between the input and the output is
86.7 ms. Therefore, the angular velocity resporsesshifted ahead by 3 data points in time
(equivalent to 100 ms in the 30 Hz data samplifige linear velocities are found to have the
same problem, and from the Equation (7.1), it isnsthat the delay between input elevator
deflection and output vertical velocity is 75 m#iefefore the vertical velocity is shifted ahead

by 3 data points as well. The shift€dq, §.-w andd,.-u data pairs are shown in Figure 7.27 to

Figure 7.29.
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Figure 7.27 Delay removed.-g data pair
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From Figure 7.27 to Figure 7.29, it can be seenhtthere is a negative correlation between the
shifted input-output data pairs. In addition to greblem of delay, sampling time inconsistency
is another issue that needs to be addressed. Thieacsampling frequency of the autopilot data
recording device is 30 Hz. Therefore, the samptinge is expected to be around 33.33 ms.
However, in the real measurement, the actual saggiline is fluctuating near the average 33.33
ms. The actual sampling time of the gathered dashown by Figure 7.30. The sampling time

inconsistency problem is solved by interpolating drstributing the data evenly on the time axis.
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Figure 7.30 Original data sampling time

The sampling time of interpolated data is 33.9 Afger pre-processing the flight data, the EE

method is applied for derivatives identification.

118 |Page



Pitching moment related derivatives identification

Equation (7.10) derived from Equation (4.110) is gostulated aerodynamic model used for the

pitching moment derivatives identification:

q =Muu + M,w + M,q + Mg, 6, (7.10)

The derivatives M My, Mq andM;,, are all dimensional, therefore, the states, g and inputie

should also be dimensional. Thus, the followingresgion matrix is derived from Equation

(6.51):
(a() W) g ()]
u2 w2) q@) 6.2
X = . . . : (7.11)
w(m) wim) qim) §,(m).
For theY vector as shown in Equation (6.50), there arevags to obtain it:
1) First calculatey from g using2-point regression,
. qm)—q(m—-1)
q(m) = It (7.12)
Then perform the finite Fourier transformgotherefore the following have,
(q(1)]
q(2)
y=| - (7.13)
Lq(m)]
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This method requires that the flight data has dicsemtly high SNR. If the SNR is low, the
calculatedj will be extremely inaccurate because the 2-pagtession differentiation of noise
causes high magnitude spikes. Multiple-point regioesdifferentiation is immune to signal noise.

However, it introduces delay between input and attwhich the EE method is sensitive to.

2) Perform finite Fourier transform apdirectly instead of calculating the time derivatof

q,
F(@) =sq = joq (7.14)
Therefore the following have,
[jw g (1) 7
jw,q(2)
: (7.15)
Y =
Ljwp g(m)

Next, the pitching moment aerodynamic derivativas be calculated by using Equation (6.58).
In order to compare the EE identified derivativathvwhe ones estimated by AVL, the two sets

of derivatives are put together as shown in Tat8e 7
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Table 7.3 Pitching moment related aerodynamic deriatives

EE (use Parameter EE (use Parameter AVL
Equation (7.13)| Standard Error| Equation (7.15)) Standard Errof
Cmu 0.0009 0.0447 0.0414 0.0465 0
me -0.0984 0.0607 -0.0485 0.0689 -0.64~0.018
Cmq -8.9382 0.8496 -13.3980 0.9515 -13.8
Cm&e -0.3058 2.8735 -0.2295 1.9892 -1.772

In Table 7.3, the second column is the EE methedtitied dimensionless derivatives calculated
by using Equation (7.13)" vector. The third column is their correspondingapaeter standard
errors. Similarly the fourth column is the derivas calculated using Equation (7.15Y vector.
The fifth column is their corresponding paramet@andard errors. The last column shows the
dimensionless derivatives estimated by AVL. In thiresis, all the AVL coefficients are
calculated by MicroPilot Inc. and are used in traicraft flight simulation and ground control
station software called Horizon. By comparing thecaxd and fourth column identified
derivatives, it can be seen that these two metltmdified derivatives are close. Comparing the

identified derivatives with the ones calculated AyL in the last column(,, andeq are
found to be very close, bdt, andese do not match very well. Therefore, it is necesdary

examine which set of derivatives are more acculaterder to examine the accuracy of the
derivatives, the estimated body pitch rateis calculated using the identified derivatives &me

priori model (referring to Equation (7.10)):

g = Myu + M,w + Myq + M;_8, (7.16)

121 |Page



as well as the measured statew, q andde from the flight test. The estimated body pitcrerat
is compared with thg, which was calculated by taking the first timeidative of the measured

g- This comparison helps to find out which set afvdgives can simulate the flight dajebetter.

By feeding the flight data af, w, q andd.to model equation (7.16), the EE (Column 4 in Table
7.3) and AVL derivatives verification plot can begaired, as shown by Figure 7.31 and Figure

7.32, respectively.
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Figure 7.31 Verification of EE identified pitching moment related derivatives
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Figure 7.32 Verification of AVL estimated pitchingmoment related derivatives

From the plots, it can be seen that EE identifiedvdtives can track the flight test response
more accurately than the AVL calculated ones. Bguiating the Mean Square Error (MSE), it
is seen that for EE derivatives’ fitting, the M&& = 1.8; for AVL derivatives’ fitting, the
MSEnav) = 31.8. Therefore the MSE of EE identified denwes’ fitting is much lower than the
AVL calculated derivatives’ fitting. Note that MSEdex cannot always quantify the accuracy of
simulated data since it only quantifies magnitudd aot phase. Nevertheless, from Figure 7.31
and Figure 7.32, it can be visually determined thatderivatives identified by EE method can

track the flight response more accurately that®lé estimated ones.

To validate the identification results, an unseigna is now utilized to test the accuracy of the

identified derivatives. The unseen signal usedhews in Figure 7.33 below. The unseen
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random signal verification results of EE and AVLridatives are shown in Figure 7.34 and

Figure 7.35.
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Figure 7.33 Unseen random signal used for verificetn
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Figure 7.34 Verification of EE identified pitching moment related derivatives with unseen
random signal
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Figure 7.35 Verification of AVL computed pitching moment related derivatives with
unseen random signal

From Figure 7.34 and Figure 7.35, it is seen tlet EE-based identified aerodynamic
derivatives can track the real flight response nmaweurate than the AVL estimated ones. The
Mean Square Error of the simulation responsesifjttising two sets of derivatives are: M&E

= 1.5 and MSkv) = 22.2. This is also indicates that the derivativentified by the EE method
can track the aircraft’s actual response more ately: To further verify the applicability of the
identified derivatives, a Doublet signal is als@légr as an unseen signal for verification. The

Doublet truncated from the flight test is showrfigure 7.36.
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Figure 7.36 Unseen Doublet signal

By feeding the EE, AVL derivatives and the modahwhe unseen Doublet signal, the simulated

output can be calculated. The verification resatesshown by Figure 7.37 and Figuir88.
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Figure 7.37Verification of EE identified pitching moment related derivatives with unseen
Doublet signal
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Figure 7.38Verification of AVL computed pitching moment related derivatives with
unseen Doublet signal

From Figure 7.37 and Figure 7.38, it is seen thet EE-based identified aerodynamic
derivatives can track the real flight response nameurately than the AVL estimated ones. The
phases shown in the figures are matching very wigivever, the magnitudes do not match as
well as the phases. The Mean Square Errors of EEAML derivatives fitting are: MSkg) =
4.7, and MSkv,) = 35.5. This once again indicates that the davigatidentified by EE method
can track the real flight test response more atelyréghan the AVL estimated ones. Therefore,

the EE method is more accurate than AVL in thewaton of pitch moment related derivatives.

Lift forcerelated derivatives identification

The model used for lift force related derivativdsntification is adapted from Equation (4.109):
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w —qU, + gOsinb, = Zyu + Z,w + Z4q + 75,6, (7.17)

The state matriXX is the same as the one used for identificatiopitwhing moment related

derivatives. However, thé vector needs to be changed. The lift force dividganass is:

Z=w—-qU,+ gBsinb, (7.18)

Equation (7.18) is used to calculate the time dardaiBy performing finite Fourier transform to
Z, frequency domaid is obtained, which comprises thfematrix. Therefore,
_Z(l) -

Z(2)
(7.19)

|Z(m).

By performing the EE algorithm to the informatioho&e, the lift force related aerodynamic

derivatives are calculated. The results are shovilrable 7.4.

Table 7.4 EE method identified lift force related &rodynamic derivatives

EE value

(dimensional)

EE value

(dimensional)

Standard Error

AVL value

(dimensionless)

Z,=-0.5579 Cz,= 0.3210 0.4074 Cz,=0
Z,= -2.8831 Cz,,= -1.6590 0.6038 Cp, = -4.12
Z=-30.5650 | C, =-45.6833 8.3425 Cy,= 9.4

Zse=-57.6947 | Cz,=-0.4864 17.4406 Cz,,= -0.56

In Table 7.4, the first column is the EE identifiddnensional derivatives, while the second

column showing the non-dimensionalized derivativEse third column is the corresponding
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parameter standard errors. The last column is ithertsionless derivatives estimated by AVL.
By comparing the dimensionless derivatives idesdifoy EE and AVL methods, it is seen that

most of the corresponding derivatives are closeegix forCy, . In the following context,

different sets of derivatives will be checked te séhich one is more accurate in tracking the real
aircraft response. The verification method is tlene as the one utilized for verifying the
pitching moment derivatives. The verification beginvith the original signal and the
comparisons are shown as Figure 7.39 and Figute 7.4
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Figure 7.39 Verification of EE identified lift force related derivatives with original signal
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Figure 7.40 Verification of AVL computed lift force related derivatives with original signal

From Figure 7.37 and Figure 7.38, it is seen tlet EE-based identified aerodynamic
derivatives can track the real flight response nmaweurate than the AVL estimated ones. The
Mean Square Error of the simulation responsesifjttising two sets of derivatives are: M&iE

= 13.5, and MSgv) = 27.9. Which also indicates that the EE idendifeerivatives are more
capable of tracking aircraft flight responses tti@a AVL calculated ones. For validation of the
identified derivatives and further examination lo¢ general applicability of them, their accuracy
can be tested with an unseen random signal. Theearsignal verification is shown by Figure

7.41 and Figure 7.42.
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Figure 7.41 Verification of EE identified lift force related derivatives with unseen random
signal
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Figure 7.42 Verification of AVL computed lift force related derivatives with unseen
random signal

By observing the comparison plots and calculatimgrtMean Square Error: M@ = 11.1,

MSEnvy = 22.9. It can be seen that the EE’s derivatiastcack the flight test response more
accurately. Like verification for pitching momemated derivatives, the Doublet signal can also
be used for further verification. The verificatiogsult using the unseen Doublet input is shown

in Figure 7.43 and Figure 7.44.
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Figure 7.43 Verification of EE identified lift force related derivatives with unseen Doublet
signal

135|Page



40 . ' ' '

--------- From AVL derivatives
From flight test

20} |

i(fr /82

=20 1 | | |
848 848.5 849 849.5 850 850.5

Time (s)

Figure 7.44 Verification of AVL computed lift force related derivatives with unseen
Doublet signal

The Mean Square Error of EE and AVL derivativeBrig are 16.8 and 44.8, respectively. This

also indicates that the derivatives calculated BycEn track the flight test response better.

Axial force related derivatives identification

The model used for axial force related aerodynaseigvatives identification is adapted from

Equation (4.108):

u+ qW, + gOcost, = X,u + X, w + Xq + X556, (7.20)

By setting:

X =u+qW, + gbcosé, (7.21)
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Executing finite Fourier transform to the time domx, theY vector can be acquired, which is
equal to the frequency domaXh

_X(l) -
X(2)
Y=~ (7.22)

% (m)]

By performing EE algorithm to the above informatidhe axial force related aerodynamic

derivatives can be identified as shown in Table 7.5

Table 7.5 EE method identified axial force relatecherodynamic derivatives

EE value EE value Standard Error AVL value
(dimensional) | (dimensionless) (dimensionless)
X,=-0.1796 Cx,=-0.1034 0.6957 Cx,=0
Xuw= -1.2083 Cx,= -0.6953 1.0312 Cx,=-0.44
Xq=-5.1463 CXq= -7.6918 14.2461 Cqu 0
Xse=-11.0759 CXsf -0.0934 29.7825 CX58= 0

In the table, the first column is the dimensionativhtives identified using the EE method. The
second column is the dimensionless derivatives edeg from the dimensional derivatives. The
third column is their corresponding parameter stath@rrors, which quantify the accuracy of the
identified derivatives. The last column shows tivaeahsionless derivatives estimated by AVL.

In the last column, the derivativeg , Cx, andCXse are all shown as zeroes. This means that

they exist, but are negligibly small, and AVL diticalculate them. The original signal and the
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unseen signal are used to examine the accuracyialf farce related derivatives. First start

verifying with original signal, the verification salts are shown as Figure 7.45 and Figure 7.46.
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Figure 7.45 Verification of EE identified axial force related derivatives with original signal
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Figure 7.46 Verification of AVL computed axial force related derivatives with original
signal

From Figure 7.45 and Figure 7.46, it is hard tcedatne which simulated output matches the
flight output more closely. However, by calculatititge Mean Square Error of the simulation
responses fitting using two sets of derivatives:B4S = 4.8, and MSEy) = 6.1, it can be seen

that the derivatives calculated by the EE methedstightly more accurate in tracking the flight
test response. In order to test the broad appliabf the identified derivatives, the derivatives
are examined and tested with an unseen randoml|sagnavell. The unseen random signal

verification is shown in Figure 7.47 and Figure8/.4
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Figure 7.47 Verification of EE identified axial force related derivatives with unseen

random signal
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Figure 7.48 Verification of AVL computed axial force related derivatives with unseen
random signal

The Mean Square Error of the above fittings areEM§ = 5.8, and MSEy) = 7.2. It is seen
that the EE method identified derivatives aretéelibit more accurate in tracking flight response.
As before, a Doublet signal is also used for furtherifying the accuracy of the calculated
derivatives. The unseen Doublet signal verificatiesults are shown in Figure 7.49 and Figure

7.50.
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Figure 7.49 Verification of EE identified axial force related derivatives with unseen

Doublet signal
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Figure 7.50 Verification of AVL computed axial force related derivatives with unseen
Doublet signal

The Mean Square Error of the simulation respongBsgf using two sets of derivatives are:
MSEgg) = 4.4, and MSRyy) = 5.3. This indicates that the derivatives estadaby the EE
method are slightly more accurate in tracking teal flight test response. It is seen that the
identified axial force related derivatives are astaccurate as the pitching moment and lift force

related derivatives.

According to the above verification analysis, itssmmarized that, for most cases, the EE
identified derivatives can track the real flighsttéetter than the AVL estimated ones, especially

for pitching moment related derivatives, , G, , Cing and Cins, - Nevertheless, for some

derivatives like axial force related derivativebe taccuracy of EE identified ones are not
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significantly higher than the AVL computed ones fmme scenarios. This is a point which

requires further investigation.

For comparing and verifying the identification riswbtained from different methods, all the

identified or computed derivatives are put in calglé as shown in Table 7.6 below.

Table 7.6Different ways calculated Cropcam aerodynamic derigtives

Dimensionless AVL Value EE Value TF Value
Coefficient
Cx, 0 -0.103¢ —
()
[&] - ~ . - ‘ _
53 Cx, 0.44~0.4 0.695:
T - Cy 0 7.691¢ -
Cxs, 0 -0.093¢ —
2 Cz, 0 -0.321( —
T O
o S| cu-c 412 1.650( 6.449:
o ‘§ :
g q:_) CZq(_CLq) '94 '45683. —
+= o
= CZae(_CLae) -0.5¢ -0.486¢ -0.224¢
= Crn,, 0 0.(414 —
(]
E © Crn, -0.64~0.01 -0.C48¢E -0.303¢
g 2 Y
< _
< @ Cmq -13.¢ -13.398( -11.922°
a Crmg, -1.77: -0.229¢ -0.550¢

From Table 7.6, it is seen that most of the derreatidentified and computed in different ways
are close, except fcﬁXq andCZq. This could probably be due to the effect of coupland
nonlinearities which are not considered in the iidieation process. Or it may be because of the

poor data content (e.g andw), and this can be seen from the coherence plathwikishown on

Figure 7.16.
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Before executing the identification of Cropcam, tBE and TF methods were tested for the
identification of the aircraft simulation model (aodel built by students in Fluid Power and

Telerobotics Research Laboratory, at the Univemsitianitoba). The simulation response and
identification of model are presented in AppendixTBe identification results of the simulation

model show that the transfer function and equatimar methods are accurate in identifying the
aerodynamic derivatives (Refer to Table A 5). Frbable A 5, it is seen that the values of the
derivatives identified by the EE method are faiclpse to the model using ones (the ones

estimated by AVL), except foCXq. This explains why most of the identified Cropcam
derivatives are reasonable, Wrﬂ]gaq is a exception. In Table A 5, the transfer functroethod

identified derivatives are a little bit differenitiv the model using ones, but they are still close.
This is because the transfer function method usedesapproximations in calculating the
derivatives. Therefore, it is reasonable that tRerdsult shown in Table 7.6 is slightly different

with the EE result.

The correctness of the derivatives can be furtiecked by comparing them with the ones
estimated by AVL as shown in Table 7.7, and by cammg them to the typical aircrafts’

aerodynamic derivatives as shown in Table 7.8.
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Table 7.7 Comparison of two methods identified an&VL estimated derivatives

Dimensionlesy  AVL AVL AVL AVL EE Result| TF Result
Derivative | (@ =-8") | (@a=—-4") | (@=0° | (a=4)
CXu -0.10094- -0.06910! -0.03689 -0.00449: -0.103¢ —
Cx,, -0.93946! -0.24415: 0.45135! 1.143744 -0.695: —
Cxq -1.22439! -0.68379! -0.14649. 0.38523. -7.691¢ —
CX& -0.00119: -0.00068: -0.00015: 0.00038! -0.093: —
Cz, -0.43753 -0.82506° -1.20641. -1.57981 -0.321( —
Cz, -5.86401 -5.91965: -5.94658 -5.94469: -1.659( -6.449;:
Czq -9.43481. -9.40888. -9.34046! -9.22971. -45.683: —
Czs, -0.00968 -0.00984. -0.00990: -0.00986' -0.486¢ -0.224¢
Crm, -0.02742: -0.03878: -0.04292 -0.04019: 0.C414 —
Cn,, -1.474771 -1.61001: -1.73662! -1.85402! -0.C48¢ -0.303¢
Cmq -13.51879 | -13.86071 | -14.14108 | -14.35825 -13.398( -11.922
Crng, -0.03036:! -0.03126: -0.03186! -0.03216. -0.229¢ -0.550¢

In Table 7.7, the AVL’s derivatives are estimatédifferent angle of attacks.
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Table 7.8 Aerodynamic derivatives of typical aircrdts

Dimensionlesy NAVION F104-A A 4D Jetstar Convair| Boeing
Derivative 880 747
Cp, (—Cy,,) 0.3 0.450.3¢ | 0.30/0.03 | 0.75/0.¢ | 0.27/0.1' | 0.66/0.4
CLa(_CZW) 4.4 3.44/2.( 3.45/4.( 5.0/6. 4.52/4.¢ 5.7/5.k
C1,(—Cz,) 3.8 0.C 0.C 0.C 7.72[7% | 5.4/6.5¢

CLy(—Cz,.) 0.35¢ 0.68/0.5. | 0.36/0. | 0.4/0.4 | 0.213/0.1' | 0.338/0.
Cma -0.68: -0.64-1.2 | -0.38-0.41 | -0.8-0.7z | -0.90/-0.6% | -1.26-1.€
Cmq -9.9¢ -5.8-4.€ -3.6-4.2 -8.0-0.92 -12.1-4.5 -208/-25
Cmge 0.92: -1.46-0.1 -0.5-0.€ -0.81-0.8¢ | -0.€4/-0.57 | -1.34-1.Z

In Table 7.8, the numbers are derivative valuegiféérent types of aircraft. In some cells there

are two numbers, which corresponding to differeintraft mass situations. Comparing the

identified derivatives with the ones shown in Tablé and Table 7.8, it is seen that most of them
are fairly close. This further validates the rellity of the derivatives identified by the two

methods.
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7.2 Identification of a delta-wing UAV

Figure 7.51 A delta-wing UAV (From uas.trimble.com)

Figure 7.51 shows a typical delta-wing aircrafteTiain goal of system identification for the
delta-wing UAV is to identify the longitudinal chael transfer functiondé¢-q). Pitch ratey is the

only state variable that is required. The deltagMimAV’s input excitation for elevator is a pilot
generated Chirp signal. The output collected isylmtth rateg. The input-output pair is shown

by Figure 7.52 and Figure 7.53.
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Figure 7.52 Input excitation for delta-wing aircraft
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Figure 7.54 is the FFT plot of the manually gereta@hirp input excitation.

2.5

Amplitude (deg

0 5 10 15
Frequency (Hz)

Figure 7.54 Finite Fourier transform plot of input excitation

From the FFT plot, it is seen that the frequencgygeaof the input excitation is 0.473.7 Hz,
which indicates that the signal is very suitable identification of the system, from the
frequency range point of view. For the system itfieation with flight test data, some data pre-
processing work needs to be done. Sampling timensistency is one of the typical problems

which need to be resolved by regulating the datapsatimes. The actual sampling time of the

gathered data is shown by Figure 7.55.
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Figure 7.55 Sampling time

From Figure 7.55, it is seen that average sampiimg is around 34 ms, and the actual sampling
is between 33 and 35 ms. Since CIFER is sensitited deviation of the sampling time in data
processing, it is recommended that the data pair@sevenly distributed on the time axis first.
This is done by interpolating the original datadrdey the autopilot. After pre-processing and
performing the required unit conversions, the datfed to CIFER for system identification
processing. The method that CIFER uses to obtaguéncy response is the Power Spectra
method which was discussed in Section 6.1.1. Thguincy response (Bode plot) Qf q

obtained from CIFER is shown in Figure 7.56.

151 |Page



Magnitude (dB)

-200
-400

Phase (det

Coherence
o
(6)]

Frequency (rad/s)

Figure 7.56 Bode plot obe-q

From the coherence graph it is seen that the optifinequency range for obtaining the transfer
function is 2.53 ~ 23 rad/s, which has the cohexemer 0.89. The transfer function is obtained

by using the FRESPID and NAVFIT utilities of CIFE®Rhich is acquired as,

q(s) = —64.95(s + 3.23)e 01022
8,(s) s2+2x0.74 X 10.54s + 10.542 (7.23)

whereU. = 20 m/s= 65.62ft/s. The transfer function cost is 39.7, whichwsll below the
maximum acceptable value of 100. The comparisongleritified Bode plots (one is plotted
from identified transfer function, the other onedentified from flight test data) are shown in

Figure 7.57 and Figure 7.58.
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Figure 7.58 Comparison of phases
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From Figure 7.57 and Figure 7.58, it can be seahttie magnitudes and phases are matching
fairly well, which means that the transfer functioreets the frequency domain verification
requirement. The next step is to verify it in timkemain. By feeding the transfer function with
the same input excitation used in the flight tésg output from the transfer function can be
calculated (simulated). Figure 7.59 shows the cospa of simulated output (pitch rate) with

flight test measured output.

200 | ‘
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0 T From flight test |

100+ I I [ 7
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_150 1 1 1 1 1 1 1
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Figure 7.59 Comparison of simulated output and meased output

From Figure 7.59, it can be seen that the trarfsfestion simulated output can track the flight
test measured response very well. This means tieatransfer function describes the system
characteristics precisely. For examining the appiliiity for other flight scenarios of the transfer
function, an unseen signal is used. The unseert gignal used is shown in Figure 7.60. Figure

7.61 shows the comparison of the flight test respand the transfer function simulated output.
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Figure 7.60 Unseen input excitation used for transf function verification
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Figure 7.61 Comparison of simulated and measured ¢puts with unseen input signal

155 |Page



From Figure 7.61, it is seen that the simulateghaibbtained by the transfer function, can track
the flight test measured output fairly well, whithither demonstrate that the identified transfer
function is accurate. The time domain responsespeoison demonstrates that the identified
transfer function can predict the aircraft’s longiinal mode responses reasonably accurately.
Next, the unknown longitudinal channel aerodynarderivatives are extracted from the
identified transfer function.

q(s) ms, (s — zy,) —64.95(s + 3.23)

8e(s) 52— (my +2z,)s + (myz, —m,U,) s?+155s+111.1

As the following equality holds,
s? 4+ 2wsés + w? =s? +15.55 + 111.1
Therefore, the natural frequeney is
ws = V111.1 = 10.54 rad/s

And the damping ratid; is

In addition, by solving Equation (7.24), the follog have:

ms, = —64.95
2, = —3.23
m, = —12.27
m,, = —1.09
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Following the conversion procedures used on Cropthmabove concise notated derivatives
can be converted to the North American dimensiantiesivatives which are given as:
Cm,, = —0.04
C,, = —3.18
Cm, = —0.83
lme = —0.044
Since the identified transfer function is validatasl quite accurately, and the TF method is

proven reliable in identifying aerodynamic deriva8 of the Cropcam, it is expected that the

identified delta-wing aircraft aerodynamic derivas are reliable.

7.3 Summary

This chapter presented the experimental resultsshwmtomprised of the identification of two
classes of UAVs: a Cropcam and a delta-wing aitcildfe identification results were examined
and validated in various ways. Before the two ideation methods were applied to identify the

actual system, they were examined and proven eféeasing a simulation model of a UAV.

For the identification of the Cropcam system, tlams$fer function method was applied first, and
the system Bode plots and transfer functions wértaimed accordingly. The accuracy of the
obtained transfer functions was validated next.eBasn the validated transfer functions, some
aerodynamic derivatives were extracted and condent® the dimensionless format. Equation
error method was then used to directly identify dleeodynamic derivatives. The identification
results were verified by various ways. From thefigation, it was seen that the EE method

identified derivatives are more accurate than thé. Arogram estimated ones.
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For the identification of the delta-wing aircradily TF method was applied, since the purpose
of identification of the delta-wing aircraft was tbtain the system transfer function. The
accuracy of the identified transfer function wasoaéxamined. Certain aerodynamic derivatives

of this UAV were also calculated from validatednster function.
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8 Conclusions

8.1 Contributions made by this thesis

In this thesis, the following research questionsensddressed) design and implementation of
appropriate identification algorithms, which satighie need for low computational complexity
and limited measurements while maintaining highueacy of parameters estimatian), design
and implementation of proper input excitations tta adequately stimulate different modes of
aircraft behaviour and provide rich informationthe output measurements in both time and

frequency-domainiji) poor sensory information of the vehicle variables

For frequency domain system identification, theigle®f input excitation is an essential step
which can affect the quality of the identificatioh.sweep input excitation generating program
was developed in this research. Two types of irgxaitation were executed in the flight test:
Chirp and Doublet. Chirp was proved to be more appate for frequency domain system

identification due to its rich frequency componeilisublet was selected for result verification.

The main aim of this research was to identify tbegitudinal channel transfer functions of
UAVs, as well as the corresponding aerodynamicvdévies. Two approaches were developed
for identifying the derivatives: one is the Transknction (TF) method; the other one is the
Equation Error (EE) method. The EE method was clemed as the main approach for
identifying aerodynamic derivatives, because it ddentify more derivatives with better

accuracy as compared to the TF method. The TF methmvever, has some unique positive
characteristics. In particular, it requires fewereasurements. The TF method is also
demonstrated as an alternative approach for ideatidn of aerodynamic derivatives. In order to
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check the feasibility, both identification methodsre first tested with a simulation scenario,
before they were applied to the real aircraft datse identification for the simulation model

system demonstrated that both of the methods gilecable and effective.

For identification of the Cropcam, both transfendtion and EE methods were applied. Using
the transfer function method, the longitudinal #f@n functions of the aircraft were obtained.
Based on the identified transfer functions, soméhefaerodynamic derivatives were extracted.
By applying the EE method, an entire set of lordjital channel aerodynamic derivatives were
identified. The derivatives identified by the twe@thods were compared and verified in multiple
ways. To further verify the reliability of identdfation results, the identified derivatives were
compared with the derivatives from two other sosyeceamely AVL estimated derivatives and
derivatives of some conventional aircrafts publéshley the aircraft manufacturer. The
verification showed that most of the identified idatives are fairly reliable, especially for
pitching moment derivatives. For some axial forelated derivatives, the simulation responses
do not match very well with the flight responsdsisimainly due to the deficiency of the data
measurements, such as the coupling between thatudim@l and lateral channels, and
nonlinearities or data recording deficiencies. Tifismatch may also be attributed to the built in

models of the identification algorithm (EE methad¢ not accurate or have too many unknowns.

For identification of the delta-wing aircraft systethe transfer function method was applied. As
a result, the longitudinal transfer function of thecraft was obtained, and some corresponding
aerodynamic derivatives were extracted from thetifled transfer function. Since the objective

of the delta-wing aircraft identification is to @t the system transfer function, the transfer

function method is the only method used rather tharEE method.
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The TF and EE methods were first implemented amd @s the simulation model to examine
and analyze the efficiency of each method. By yarg the derivatives based on computer
simulation, the EE method identified derivativeswhd a better ability to track the actual flight
responses than the AVL estimated derivatives. Tamgit is expected that the EE method is
more capable of calculating aerodynamic derivatihas the AVL software. By comparing the
derivatives identified by the TF and EE methodss geen that their results are close. Therefore,
the transfer function method is believed to be d&®ctve alternative for aerodynamic
derivatives identification. The identification rdéisuare expected to improve the simulation

program developed by MicroPilot Inc.

8.2 Future research

For the future research, the following issues rtedsk addressed) poor flight test dataj) data

delay;iii ) applicability validation.

i. Some of the identified derivatives have high pat@amstandard errors indicating that
they are not accurate. This could be due to the fimht test, improper data delay
processing, or even the algorithm deficiency. Tfogee more work is required to focus
on the data pre-processing and the identificatimygam optimizing. Also, ways need
to be found to solve the problem of poor paramateuracy.

ii. Since the EE identification method was found higsgysitive to the delay (identified as
shifting between the input and output), the delegbfem should be resolved. The delay

is caused by the control servos response delayekhss the delay inherently associated
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with the system’s dynamics. Other sources of delagg method(s) to rectify their
effects on the identification must be investigatethe future.

To validate the applicability of the identificatioresults in practice, the identified
derivatives should be applied to further enhaneesiimulation model. Currently the
values of derivatives used by ‘Horizon’ (a simuatisoftware developed by MicroPilot
Inc.) are taken from the open-source AVL prograithe degree on enhancement that

can be achieved using the newly obtained derivatsh®uld be tested on Horizon.
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Appendix 1 Derivatives Conversion

Tables A 1 to A 4 show the conversions of longitadiiaerodynamic stability and control

derivatives.

Table A 1 British notation longitudinal derivatives conversion (Cook, 2012)

Dimensionless Multiplier Dimensional
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Control derivatives

X 1 ¢
n EPVOZS Xy
1 .
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M 1 _ y
’7 5 PVo?SE My
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Table A 2 North American notation longitudinal derivatives conversion (Cook, 2012)

Dimensionless Multiplier Dimensional
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Table A 3 British and North American notation longitudinal dimensionless derivatives
conversion (Cook, 2012)

North American British North American British
Cxy Xu Czy 27,
Cy, Xw C, 50 Zy
Cy, 2X,, Cn,, M,
C, 2X, Cm,, M,,
Cxs, X, Cm,, 2My,
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Table A 4Longitudinal concise and dimensional derivatives aoversion (Cook, 2012)

Concise Dimensional Derivative Concise Dimensional Derivative
Derivative Derivative
%, Xy N X2y, %, X, —mw, N (Zy + mU)Xy,
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Appendix 2 Simulation Results

In this appendix, an aircraft simulation modelngraduced first. Then, by using the computer
simulation data, both the TF and EE methods ardieappo the identification of longitudinal

channel aerodynamic derivatives. Additionally, tin@nsfer function method will be used to
identify the longitudinal channel system transfendtions, and the EE method will be used to

identify the lateral channel aerodynamic derivaive

A2.1 Simulation responses

Based on the aerodynamic motion equations presé@ntédapter 4, a model of Cropcam is built.
The geometric parameters such as mass, wing sphwiag area are physically measured for
Cropcam. The initial aerodynamic derivatives aentbbtained by AVL. Input excitations, such
as Chirp and Doublet, are implemented and emplagethe simulation model to test the

accuracy of the aircraft model response.

Since the Doublet signal is easy to generate amaadtresponding responses are simple to
analyse, it is used to test and excite the modsl fThe model is revised based on the analysis of
simulation responses. After the reliability of tiredel is validated with Doublet, it is excited
with the Chirp input signal. Meanwhile, the air¢reéhaviour is studied. Figure A 1 shows the

Chirp input used.
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Figure A 1 Input excitation

The input excitation design obeys the criteria uésed in Section 5.1. In Figure A 1, it is seen
that the aircraft is flying under trim conditionfbee deploying significant elevator perturbation.
And the input excitation ends up with the trim stas well. Figure A 2 to Figure A 13 display

the aircraft corresponding responses.
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The responses are examined and demonstrated make &ea certain extent. For example,
positive elevator deflection causes negatwandg responses. So far, the signs (phases) of the
responses are make sense, however, their magnauel@®t that convincing. It seems that some
of the states’ magnitudes are incredibly high, @/isibme of them are too low. It is believed that
this is caused by the inaccurate estimation ofdyaramic derivatives, since when modifying the
model, some of the derivatives are tuned. This destnates that the AVL is deficient in
estimating the aerodynamic derivatives precisehatTs why the system identification is given

wide attention.
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A2.2 Identification using transfer function based method

For the longitudinal channel system identificatitime chirp input signal is used to excite the
simulation model. The main parameters used by thegpCare: time duration, 15 seconds;
maximum elevator deflection, 2 degrees; and frequerange, 0.1 ~ 5 Hz. The computer

generated input excitation is shown as Figure A 14.
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Figure A 14 Chirp input excitation

The Chirp input excitation’s frequency range iswhdoy the FFT plot in Figure A 15.
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Figure A 15 FFT of input excitation

From Figure A 15, it is seen the Chirp frequenaygmis 0.1 to 5 Hz, which is exactly as set.
And also it is seen that the frequency componenthef signal is rich, which is ideal for
frequency domain system identification. The tran&fection based algorithm is mainly based
on Equations (6.24) and (6.25) for longitudinal & system identification. The output
responses needed are vertical body velogignd pitch rate. For data processing, the variables’
units should be normalized. Here the infiiit unit is set as rad, outpwts unit is set as ft/s, and
g's unit is rad/s. By using the CIFER batch worKitytj the Bode plots ob,.-w andé,.-g can be

obtained, and are shown in Figure A 16 and Figufi& A
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The two plots show that both-w andé,.-q's coherences are good (coherence over 0.8) or

acceptably high (above 0.6) between 2.58 and 38.r&d guarantee good linearity, a frequency

range of 2.58 ~ 27 radis picked for the identification of transfer furatis. This maintains the

coherence over 0.8. By using the CIFER NAVFIT medthe transfer functions éf-w andé,-

g are acquired and are shown as:
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The cost of thé,-w transfer function is 36.9, and 28.2 #yrqg. These are all satisfactorily under

the guideline of 100.

Figure A 18 to Figure A 21 show the verification tfo transfer functions’ accuracy by
comparing the identified Bode plots (from the fliglata) with the ones plotted from the transfer

functions.
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Figure A 18 Magnitude of §.-w

184 |Page



Phase (det

Magnitude (dB

-22(

-230r

-240¢

)
a
=

-260r-

-270r

-280r

-290

S From transfer fucntion
\ From flight test data

10

10 10
Frequency (rad/s)

Figure A 19 Phase oB.-w

-10+-

-20

****** From transfer fucntion
- — From flight test data

10

1 2
10 10
Frequency (rad/s)

Figure A 20 Magnitude oféd.-q

185 |Page



-220
N e From transfer fucntion

-230- \ — From flight test data |

-240F

-250r

-260r

Phase (deg)

-270r

-280r

-290 0 ‘ ‘ ‘ ‘ B 1 2
10 10 10
Frequency (rad/s)

Figure A 21 Phase 08.-q

From Figure A 18 to Figure A 21, it can be seert bwh of the magnitude and phase plots of
theé,.-w andé,-q's transfer functions match fairly well with thetdadentified ones. To further
examine the accuracy of the transfer functionsy re fed with the simulation inpdt (refer to
Figure A 14) to get the simulated outp@t@andg, which are compared with the flight measured
outputsw andq. The simulated outputg andg are calculated and the comparisons are shown as

Figure A 22 and Figure A 23.
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The comparison plots show that the transfer funcBonulated outputs can track the aircraft
responses quite well. This indicates that the fearfsinctions are fairly accurate in describing
the system characteristics. Thus, next, the trafisfetion method discussed in Chapter 6 can be

applied to extract the aerodynamic derivatives.

ms
Zé‘e(S + Ue e)

w(s) B Zg, 3 —26.37(s + 8.95) (A 3)
8.(s) 52— (mg +2z,)s + (mgz, —m,U,) 2+ 881s+20.9
q(s) _ ms, (S — Zw) _ —391(s +8.14) (A 4)

8.(5) 52— (mg +2,)s + (mgz, —myU,) s+ 881s+20.9

To extract the derivatives, the homologous ternthéntransfer functions are set as equal:

z5, = —26.37
ms, = —3.91
~z, = 8.14 (A5)

—(my +z,) =881
mgyzy, — my, U, = 20.9

whereU, = 69.34 ft/s. Therefore the concise aerodynamiwvatéves are solved:

(25, = —26.37
ms, = —3.91
z,, = —8.14
mg = —0.67
m,, = —0.22

Note the derivatives here are neither dimensionaldimensionless. They are notated concisely.
The way of converting them to North American dimenkss notated derivatives can refer to
Section 7.1.1. Some parameters used in the coowsrarep = 0.002286 slugft S=5.31 f¢, &

= 0.77 ft,Vo = 69.34 ft/s),= 3.04 |b-ft.
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By converting them to dimensionless North Americkamivatives, they can be compared with
the ones that will be identified by the EE methblde dimensionless derivatives identified by the

transfer function method can then be summarized as:

C,, = —4.6083
Cyys, = —0.0094
Cpm,, = —2.0861

S

Cn, = —16.4153
lcm& = —0.0294

A2.3 Identification using equation error method

For the identification of the simulation model, #ike derivatives used in this research are non-
dimensional. The prior model equations used fogikoiinal channel system identification are

summarized as (adapted from Equations (4.108).1d.(3):

u = Xu + Xy w + X,w + (X; — W,)q — gOcosb, + Xs,0, (A 6)
W= Zyu + ZyWw + Zyw + (Z, + U, )q — gOsinb, + Zs 5, (A7)
q =Myu+ Myw + M,w + M,q + Ms_6, (A 8)

Equations (A 6) to (A 8) can be further written as,

u+qW, + gbcosb, = X,u + X,w + X,q + X5,6, + Xyw (A9
w—qU, + gOsinb, = Zyu + Z,w + Z4q + 75,6, + Z;,w (A 10)
q =Myu + M,,w + Myq + Mg, 6, + My, w (A11)
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By combining the Equations (4.35) to (4.111), Ecqret (A 9) to (A 11) can be rewritten in

dimensionless case, and shown as,
Cx = m(i + qW, + g6cos6,)/qS = Cx, & + Cx, W + Cx,q + Cx,, 8, + Cx, W
Cz = m(W — qU, + g0sinb,)/qS = Cz, 4 + Cz,, W + Cz,§ + Cz; 8¢ + Cz, W

Cm = G *1,/GSC = Cpnp i+ Cpn, W + Cpn G + Cryg B + Crn, W

where, the quantities with dressing “*” denotelb@-dimensionalized variables.

(A 12)

(A 13)

(A 14)

For the Equation Error method identification, &léttime domain parameters and varial@lgs

Cz Cm @1, W, §, 8, andw are converted into the frequency domain by appglyite finite Fourier

transform. The frequency domain variables can bgenrin vector form as follows by referring

to Equations (6.50) and (6.51):

For the axial forc€x case,

For the lift forceC; case,

[C,(1)]

[ Cx(D)]

Cx(2)

[ Cy ém)_

C;(2)

(A 15)

(A 16)
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For the pitching momer@,,case,

[Crn(D)]
Crn(2)
v=| - (A17)
_f:n'(m)_
For Cx, Cz andC,, matrixX is the same, which is,
A1) B GO 1) w)]
u2) w2 @) 5.2 w(2)
X = : . . . (A 18)

Gim) w(m) §om) &,(m) w(m)]

wherem is the total number of frequency components. Stheemodel quantities in Equations
(A 15) to (A 18) are all determined, the EE methiiscussed in Chapter 6 can be applied.
Equation (6.58) can be executed to obtain axiatefptift force and pitching moment related
derivatives by substitutiny matrix. Also, the parameter standard errors cancdraputed
according to Equations (6.59) to (6.61). Table Aabulates the longitudinal channel system
identification results identified by the EE methothe derivatives estimated by AVL and

extracted by transfer function method are alsedish Table A 5 for comparison.
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Table A 5 Derivatives of simulation model

Derivative EE method Parameter TF Result AVL software
Standard Error

8 Cmu 0.0543 0.0125 N/A -0.032~ 0.015
T
 n me -1.7914 0.1848 -2.0861 -1.9219~ -1.1H6
£ ¢
= g Cmq -10.4704 3.7187 -16.4153 -14.43~ -12.6
o =
E o
% © Cmé‘e -0.0310 0.0004 -0.0294 -0.032~ -0.027
E

me 0.0002 0.0066 N/A N/A
0
'% Czu 0.0918 0.0269 N/A -2.5~0.2
=
% CZW -4.7180 0.3972 -4.6083 -5.47~-5.73
©
% C, -8.3151 7.9937 N/A -9.1~- -84
- q
[¢D]
8 Czé‘e -0.0100 0.0006 -0.0094 -0.0091~ -0.0099
o
e Cz, 0.0025 0.0141 N/A N/A
I

Cy -0.1591 0.0075 N/A -0.15~ 0.07
-c u
[¢D)
% $ Cxw 2.0796 0.1113 N/A -2~ 2.85
= =2
S @ Cx, -40.3759 2.2394 N/A -2.1~ 1.67
(@) =
= o
.g © Cx5e 0.0002 0.0002 N/A -0.00198~ 0.0018
<

CXW -0.0002 0.0039 N/A N/A

By comparing the EE identified derivatives with trees estimated by AVL, it can be seen that

most of the values are identical or fairly closéeTonly defect is tha(IXq which seems to be

inaccurate. The deviation needs to be exploredha future. Beyond this, the identified

parameter results are in good agreement. By congpére derivatives’ values acquired by using

two identification methods, it can also be seen tinay are reasonably close. This further proves
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that the two methods are effective and valid feniifying aerodynamic derivatives. In addition,

the low Parameter Standard Error also indicatesthigaidentified derivatives are fairly reliable.

To summarize, in this appendix, an aircraft simalamodel was introduced first. Then, both the
TF and EE methods were applied to identify the tmainal mode aerodynamic derivatives,
using the simulation data. The TF method was ueedéntify the system transfer functions;
some longitudinal mode aerodynamic derivatives wextacted from the identified transfer
functions. The EE method was used to directly dateuthe aerodynamic derivatives from the
simulation data. The identification results demaated that both the TF and EE methods are
reliable in identifying aerodynamic derivatives.eféfore, they can be used for identification of

the actual aircraft system.
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