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ABSTRACT

This thesis is an exhaustive study of equivalent bandpass filters in
canonic ladder structure. Theorems are developed to determine and generate
the exact number of equivalent canonic ladder networks based on the sequence
of transmission zero removal at extreme frequencies. It is proven that
there exists a unique equivalent network corresponding to each independent
sequence of the transmission zero removal. A straightforward procedure is
developed that synthesizes the two-element-kind driving-point functions 1in
all possible canonic ladder structures. The procedure is applied to the
realization of equivalent canonic ladder networks for a given bandpass transfer
function. An explicit formula is established for the exact number of singly
terminated equivalent canonic ladder networks. Comparisons of equivalent net-
works are made for the 4th and 6th order bandpass functions with respect to
certain criteria.

A direct conversion from the single termination to double termination
js investigated for the normal bandpass transfer function, i.e., the transfer
function with an equal distribution of transmission zeros at s=0 and s = .

It is proven that there always exists a o(s), the zeros of which satisfying a
quadrantal symmetry requirement, and the ladder two-ports directly derived

from the singly terminated networks form a complete set of doubly terminated
equivalent canonic ladder two-ports. It is also shown that those equivalent
networks are conformable to the bandpass characteristic within a multiplicative
constant. A comparison among equivalent networks for certain specified

criteria is given with the emphasis on the magnitude sensitivity of the

(1)



transfer function with respect to component value variations.

The equivalent canonic ladder networks are subsequently used as
reference prototype networks for transforming, by means of component
simulation techniques,into a corresponding set of active filters. A similar
approach, using a bilinear transformation, is taken to obtain wave digital
filters, all in canonic ladder structures.In the wave digital filter realization,
a new analysis method for the transfer function magnitude sensitivity with
respect to multiplier coefficient is presented and an actual sensitivity
comparison is made for the 4th order maximally flat bandpass filter as an
example.

It is concluded that newly generated canonic bandpass Tadder networks
reveal superior features in comparison with the conventional network in the
passive filter realization. The superior characteristics are preserved in
both active RC and wave digital filters which are directly derived from the

prototype reference networks.

(i1)
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CHAPTER 1

INTRODUCTION

A filter, in the most general sense, is a device or a system that alters
in a prescribed way the input that passes through it. Since the basic concept
of a filter was originally introduced by G. Campbell and K. Wagner independently
in 1915, the development of filter knowledge and filter technologies has been
and is still expanding. Today, filters have permeated the electronic
technology so much that it is difficult to think of any system or device that
does not employ a filter in one form or another.

The filter synthesis involves two phases: one, called the approximation
phase, consists of finding a realizable network function which approximates
the specifications, while the other, the realization phase, deals with the
synthesis of the obtained network function. After the approximation problem
is solved and a realizable network function (driving-point or transfer) is at
hand, what remains to be found is a suitable network having the given function
as its driving-point or transfer function. In this study, we assume that the
network functions are given, therefore, we deal with the second phase
exclusively.

Historically the first and still the most widely used network structure
is the ladder network. It is a restricted form of network in that it can have
transmission zeros only in the region of the complex s-plane where the poles
of the driving-point immittances are located. Hence, in an LC ladder, all
the transmission zeros must lie on the imaginary axis, including the origin

and infinity.



Since S. Darlington [11] presented an insertion loss synthesis method,
the doubly terminated LC ladder networks have been widely used in filter
design. The ladder networks exhibit excellent sensitivity characteristics
and alsorender easy tunability. Furthermore, due to the nature of the
structure they are readily amenable for conversion into active and digital
filters, retaining all the desirable features of the ladder networks.

The network class which utilizes a minimum number of elementsis said
to be canonic. For economical reasons, the canonic networks are attractive.
The first canonic realization was described by Foster for the LC immittance
function, however, the circuit configuration was not of much practical
applications. The canonic ladder forms presented by Cauer, however, have
been used extensively in filter designs, because they yield ladder structures
of high-pass or low-pass characteristics. For the bandpass realization, it
has been a general practice to obtain a prototype low-pass network first and
apply the frequency transformation element by element. Recently, Kim [23]
presented a formula for the generation of equivalent bandpass ladder net-
works and suggested possible comparisons of equivalent networks for specified
merits.

This thesis is a thorough investigation of the single terminated canonic
ladder structures and their direct transformation into doubly terminated
equivalent bandpass networks within the canonicity. As a consequence,
numerous non-conventional networks are generated that satisfy superior design
criteria. Subsequently, these equivalent networks are used as prototypes
for the realization of RC active and digital filters.

In Chapter II, theorems are presented that determine and generate the



exact number of equivalent canonic realizations of driving-point immittance
functionsof two-element-kind.

Chapter III extends the theorems developed in Chapter II to generate
all the equivalent canonic LC Tadder two-ports for the specified pattern of
the transmission zeros. Singly terminated LC ladder two-ports are first
developed and various design parameters are tabulated for comparison. The
results are directly applied to generate doubly terminated equivalent canonic
Tadder networks. It has been proved that the process of equivalent network
generation is exhaustive and complete. A strajghtforward synthesis procedure
is advanced with illustrative examples. A brief introduction on sensitivity
functions is presented to make comparisons among equivalent networks.

In Chapter IV, using those equivalent canonic LC ladder two-ports as
reference prototypes, a method of direct conversion into active RC and digital
filters is developed. In the first section, an optimum Generalized Immittance
Converter (GIC) is discussed and a component simulation technique is applied to
the prototype ladder networks to generate equivalent active RC bandpass filters.
The ladder embedding technique is employed for the minimum number of optimum
GICs. In the second section, a wave digital filter realization method is
introduced and the equivalent reference canonic ladders are directly converted
into true ladder wave digital filters that are canonic in both the number
of delays and multipliers. A new analysis method for transfer function
sensitivity with respect to multiplier coefficient variations is presented.

An example is provided to illustrate the basis for comparison among canonic

equivalent wave digital filters in ladder structures.



Concluding remarks are made and subsequent extension to the desian of
precision monolithic high-order filters using MOS switched capacitor techniques

is suggested in Chapter V.



CHAPTER 11

EQUIVALENT CANONIC LADDER NETWORKS OF
TWO-ELEMENT-KIND

Networks containing the minimum number of elements to meet given
specifications are said to be canonic. A method for the realization of
driving-point functions of two-element-kind networks into canonic form was first
proposed by Foster for LC networks. The procedure is straightforward: a
partial-fraction expansion is applied on either impedance Z(s) or admittance
Y(s), and each term is synthesized, and interconnected accordingly either
in series (the first Foster form) or in parallel (the second Foster form).
The other two canonic realizations named after Cauer, are based on the
continued-fraction expansion. The first type is the continuous removal of
the pole at s = « and the second type of the expansion removes the poles
at s = 0 continuously. The corresponding ladder networks are called the
first Cauer form and the second Cauer form,respectively [1 - 2].

Generation of new canonic structures, for obvious reasons, has always
been & topic of interest. Lee [ 8, 9] recently showed the existence of
other canonic structures; one is the non-symmetrical lattice, where the
series elements are of opposite kinds and the other is the bridged-T
structure. In both cases, the canonic cycle reduces the order of reactance
function by four.

More recently, Ramachandran, et. al. [10] presented a new canonic

realization cycle of order six for the realization of lossless immittance



functions, which is based on a twin-T network.

In practice, often one canonic form may be deemed preferable to others
under specified criteria such as element size, compensation for parasitic
effects, element value spread, tunability, structure, etc. The canonic net-
work in the ladder structure is most preferred by filter designers for
a number of reasons:

The ladder is a network structure which has a topology such that the
alternating series and shunt arms are made up of simple L or C elements,
or simple combinationsof these. As a consequence, each arm is responsible
for creating a transmission zero, and, vice versa, each finite non-zero
transmission zero can be identified with a branch. This makes the tuning
of the ladder filter relatively simple. Equally important, due to this
property, the transmission zeros of ladders are fairly insensitive to element
variations, as compared to the transmission zeros in circuits which depend
on a bridge-type balance of several branch impedances to obtain a zero of
transmission. Above all, most applications require a filter with a
common ground (i.e., unbalanced structure) for which the ladder structure is
a natural choice.

The realization of the required reactive ladder networks can be reduced
to the synthesis of the associated driving-point function implementing
simultaneously the given transmission zeros. Therefore, the theory of LC
driving-point function synthesis and its applications were well developed
[1-71.

It is essential to generate all the possible equivalent canonic ladder

networks if we are to compare various meritorious features for a specific



application. In this chapter, a new straightforward procedure is developed
that synthesizes the two-element-kind driving-point network functions into

canonic ladder structure. A closed form formula is presented to determine

the exact number of equivalent canonic ladder networks for the specified

driving-point function.

2.1 CANONIC LADDER REALIZATION OF LC DRIVING-POINT FUNCTIONS

2.1.1 Classification and Definitions
The LC driving-point impedances are rational polynomial functions of
the complex frequency variable, and can be classified into four distinct

types as follows:

_ a2n5 + azn_zs + 4+ azs + a
Zp(s) = 2n-1 2n-3 3 (2.7a)
a2n_]s + aZn-3S + ...+ a3s + a]s
a R sen-3 +a.sS + a.s
_ 2n-1 2n-3 3 1
Zg(s) = =5 2n-2 2 (2.1b)
azns + azn_zs + .. + aZS + a
a st Lo 23 pa s has
_ 2n+] 2n-1 3 1
Zels) = =5 2n-2 2 (2.1c)
azns + azn_zs + . + azs + ao
a s2n + a szn'2 + + a 52 + a
2n 2n-2 2 0 2
fpls) = 2R, FI) R (2.1d)
Bn+1S %n-18 e T A3 1



It is to be noted that ZA and ZB are of even order, and structurally dual

to each other. They possess the properties:
ZA(O) = ZA(m) = o and ZB(O) = ZB(m) =0

On the other hand, ZC and ZD are of odd order, and structually dual to each
other exhibiting the properties:
ZC(O) = ZC(w) = o and ZD(O) = ZD(w) =0 .

It is easily seen that ZC and ZD can be reduced to ZA’ or ZB type, by simply

removing a single element as shown in Fig. 2.1. Because of this reduction,

af
i

Fig. 2.1 Reduction of Z. and Z

types into ZA or
ZB types.
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the synthesis procedure developed for ZA and ZB types can be directly
applicable to the realization of ZC and ZD types. Therefore, we will
consider only the synthesis of ZA and ZB types of order 2n.

To realize the LC driving-point impedance of order 2n into a canonic
form, 2n elements are required, and all the transmission zeros occur on
the jw axis. Depending on the location of transmission zeros on the juw

axis, LC canonic ladder network can be classified as follows:

(1) Low Pass (LP) Network; all the transmission zeros are at s = « (first
Cauer form).

(2) High Pass (HP) Network; all the transmission zeros are at s =0 (second
Cauer form).

(3) Band Pass (BP) Network; an equal or non-equal distribution of trans-
mission zeros at s = » and s = 0. We shall call the one that has an
equal distribution "normal BP network" to distinguish from others.

(4) Band Stop (BS) Type; all the transmission zeros are at non-zero finite

frequencies.

The networks for LP and HP are well known as Cauer forms, and they are
unique. However, the networks for BP are structurally diverse, thus
suggesting the possible equivalent networks. The canonic realization in BS
type results in a unique structure, but element values differ depending on

the order of realization of the non-zero finite frequencies.

2.1.2 Properties of LC Driving-Point Impedance of ZA and ZB Type

The driving-point impedances of type ZA and ZB are the special kinds

of positive real functions. They have the following properties:
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(i) The numerator and denominator of ZA are even and odd, respectively,

and ZB(s) is the dual of ZA(s). Consequently,

(ii)  The degree of the numerator and denominator polynomials differs by

one at most.

(iii) A1l the poles are simple with real and positive residues, and occur
only on the imaginary axis of the s-plane. Since the inverse of ZA
or ZB is functionally identical, the same statements hold for the

zeros of the functions.

(iv) The poles and zeros must always interlace on the imaginary axis.

2.1.3 Total Number of Canonic LC Ladder Networks

The fundamental operation of passive network synthesié is the pole
removal operation. Poles are removed implementing simultaneously the trans-
mission zeros [1 - 7].

The canonic ladder realization of the LC driving-point immittance

function of order 2n requires that:

(1) Due to canonicity, the number of elements is 2n.
(i1) Due to structure, the transmission zeros are realized as the poles

of series arm impedances or shunt arm admittances.

The requirement (1), in turn, implies that 2n full removal operations
are required if removed at s = 0 and/or s = «» only, and n full operations

if removed at non-zero finite frequencies only.
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Let us first consider the variety involved in the removal of poles
at extreme frequencies, viz. at s =0 and s = «. It is straightforward
to show that by removing the pole of the LC immittance function twice
either at infinity, at the origin or at both, we can reduce the order of
the function by two.

The following development for the systematic order reduction is based
on the property that "the LC immittance has a zero at s = 0 (s = «) if
it is devoid of a pole at s = 0 (s = «)".

Let us consider ZA type first,ZA(s) has a pole at s = 0 and another
at g = =». After removing the pole at s = 0, Z](s) has a zero at s = 0

retaining the pole at s =

1/Co

S * Z](s)

Then, by removing the pole of Y](s) at s = 0, we have,(n(§)=1/2gs))

1/Lo
S

+ Yp(s)

where YR(s) has a zero at s = O retaining the zero at s = ». Thus, the

remainder function ZR(s) of order 2(n-1) is of ZA type.

Secondly, if we remove the pole at s = = first we have
ZA(s) =L s+ Z](s)

where Z](s) now possesses a zero at s = «, retaining the pole s = 0.

Further removing a pole of Y](s) at s = «, we write

(2.2)
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Vi(s) = C s+ Yo(s) (2.5)

where YR(s) has a zero at s = =, retaining the zero at S = 0. Thus, the

remainder function ZR(S) of order 2(n-1) is acain of ZA type.

For the last case, we may remove the two extreme poles of ZA(S)

simultaneously; i.e.,

Z)(s) = o, 54 Zo(s) (2.6)

then, the remainder function ZR(s) has a zero at s = 0, and another zero
at s = =, resulting in the ZB type.

We can conclude that the type of impedance function changes only when
a pole is removed alternately at S =0 and S = ». Since ZB type is a dual
of ZA type, the same statement holdswith a dual configuration.

These processes of reducing the order of a given function by two are
named three reduction cycles, and they are summarized in Fig. 2.2(a) for
both ZA and ZB types.

The reduction cycles may be classified by the two homogeneous pairs
(00), (») of the transmission zeros and a heterogeneous pair (0 «) as
shown in Fig. 2.2(b) depending on the type of the impedance function to be

realized.



—] 2(n-1) F—2tn-n
B Zp [ Zg

(0 0) (0 0)
2n =1 20-10) 2n | ST 2-1
Ipn [T T.12a Zg[™ T Zg

(a0 ©) (O @)
o—{Fo21n-1) 2(n-1)
— Zg — Zp

{0 ) (0

(a)
(0 0) (00 ) (0O )

Fig. 2.2 (a) Degree reduction cycle for Z, or Zy type

(b) Table to be used to sketch all equivalent canonic
Tadders.
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Recalling the fact that a canonic Tadder network is realized by a
process of continuous pole removal in a specific way, with the aid of the
table in Fig. 2.2(b) we can easily show that a different combination of
pairs in sequence will produce a different canonic ladder. For example,
the sequence consisting of only (o« ) pairs produces the first Cauer form
and consisting of only (00) pairs, the second Cauer form. The sequence that
is made of only (0=) pairs yields a normal BP network.

Now, we will present theorems by which we can determine the exact
number of independent sequences, therefore, the exact number of equiva]ent‘

canonic ladder networks.

Theorem 2.1

Given an LC driving-point impedance function of ZA(s) or ZB(s) type
of order 2n, there exist 3n-1 canonic ladder realizations.

Proof:

For simplicity let us represent ZA and ZB by symbols A and B, and each
reduction cycle by transmission zero pairs. Then we can develop the
schematic reduction procedures as illustrated in Fig. 2.3. At each reduction
cycle, three new networks are generated and hence, presumably 3" networks
in total. However, since the last element in the driving-point function
synthesis is to be closed, three sections in row A and row B in Fig. 2.2(b)
degenerate into one identical section. Thus the total number of canonic

ladder realization is 3n-1.



i5

2n 2(n-1} 2(n=2) 2(n-3)---2--0  2n 2(n-1) 2(n-2) 2n-3)----2---0
(00)A (008
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(00)A {00}B
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(0)B (0=)A
(00)B i (00)A
L(Ow)BE(ww)B . (O°°)AE(°°°°)A
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b { OO OO co oo -] |- (o0 @ - -
(0 ®)B |- =) B tow;i\\ (5o18 >
(0o0)a S ] (00)B ~o
L (0 =) A (= =) A ~ (0 =)B (= ®)B
{0) B (0=)A

(a) (b)

Fig. 2.3 (a) Schematic reduction procedure for the canonic
Jadder realjzations of ZA type. (b) The same
for ZB type.

Corollary 2.1

Given an LC driving-point impedance function of ZC(S) or ZD(s) type

of order 2n+1, there exist 2 X 3n—1 canonic ladder realizations.

Proof:

We make use of the proof of theorem 2.1. Since there are two ways of
reducing ZC(S) (or ZD(s)) to ZA(S) or ZB(s) type of order 2n as illustrated
in Fig. 2.1, there exist 2 x 3"’1 equivalent canonic ladder networks.

Excluded is the BS type canonic ladder network. This is obtained when
pole removal operations are carried out only at non-zero finite pole
frequencies. Structurally, there exists a single network for the BS type,
but by changing the sequence of resonant pole removal,for the functions of

third order or greater,at each reduction step, a family of networks of
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jdentical configuration with different element values may be generated.

However, in this case, to ensure that all the transmission zeros are

realized at non-zero finite frequencies, a rule is to be imposed on the

choice of elements in the first arm. This can be best explained by example.
Example 2.1

Let us consider LC driving-point impedance functions;

i (52'+32)(52'+C2)
ZI(S) 5(52+b2) (a)
SR OICRT ICSTONT

s(sz-+b2)(s -+d2)

These functions are of ZA type with n=2 and n=3, respectively. As
illustrated in Fig. 2.4 for ZI(S), the first arm must be a series arm of
the ladder, otherwise, the resulting network is not of BS type. For the
same reason, the first arm of ZII(S) must be a shunt arm.

From this example, we can derive general configurations of BS type
canonic networks as shown in Fig. 2.5 depending on the value of n. It
can be easily seen in Fig. 2.4(b) that if the first shunt arm is derived
from removing the pole e instead of a, then a different set of element

values is obtained.



0O ¢ b ¢ o
Zys) —-———X
[ pole removed
as LI,Cl
zevo\ shifted
Z|(S) --= =X

Yo(s) O—@————-=-—0
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cee—0O
Zpole removed
as LI,CI

YI(S)

Y|(S) O a3

Zols) ®@—————0—=--—®x

pole removed pole removed pole removed
as L5,Cp as L»,Co as L,
Ly o
C
:2 e
2 T {
BS network Non- BS network
2402} (s2+ a2 '
(a) Zz(s) = (s2+02)(s% c?) s Y (s) = 1/2Z7(s)
s (s2+b%)
Oab c d e oo Oa bc d e oo
Zg(s) - --—X Ygls) ---—0

pole removed
as L,Cy

zero shifted

’pole removed

Z,(s) ---——X Y|(s)

Y((s) —-- =0 Zi(s)

4 pole removed “pole removed
as L2,C2 as Lp,C2
zero shifted

Yao(s) O ¥} == - =0 Zo(s)

22(5) - "ﬁ Yz(S) (e, - —0
pole removed pole removed 4 pole removed
as C3 as L3 as L3,C3

L
LI C3 4“.(?72‘4\_1
o g‘-z L3 %Ll Cz él—s
c c
T ; T T
Non-BS network BS network
(s2+a2)(s2+c@)(s2+e?)

(b) Zyls) =

(s2+b2)(s2+d?)

» Ygls) =17 Zpls)

Fig. 2.4. ILllustration of the rule.
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Zp(s) E %"‘CD—E ZB(s)g %""'Em’]
. T T T o T T T |

(a) when n is even

Zp(s) T§ Tg g g ZB(S%"__E

-

(b) when n is odd

Fig. 2.5 General configurations of BS type canonic ladder
networks.
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Theorem 2.2
Given an LC driving-point impedance function of ZA(s) or ZB(s) type
of order 2n, there exist N different sets of element values in a family

of BS type canonic ladder networks, determined by

2
N= T [n-(2k+1)72 (for even n) (2.7a)

(for odd n) (2.7b)

Proof:
Let us consider the case of even n first for the ZA type function. The
ZA has n pairs of zeros and (n-1) pairs of poles at non-zero finite frequencies.

Let us denote this characteristic as

N
1
=
11>
[l

From Fig. 2.5, the first arm must be in series. Since there are (n-1) finite
poles, we have (n-1) different ways to remove a finite pole. This will

result in Z] such that

_ In-1]
Z] ~ [n-2
Then, the inverse of Z] is
_ [n-2]
L
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Therefore, again there are (n-1) different ways to remove a finite pole
from Y1. After a removal of a finite pole from Y], then, the remainder

Y2 is

The inverse of Y,, then, allows (n-3) different ways to remove finite poles.
This process is continued until a given function is exhausted. It is now

obvious that the total number of ways to remove finite poles is,
(n-1)(n-1)(n-3)(n-3)(n-5)(n-5) .....

A similar argument may be made for the case of odd n, resulting in
n(n-2)(n-2)(n-4)(n-4) .......

Since ZB type is a dual of ZA type, the total number is the same.

2.2 CANONIC LADDER REALIZATION OF RC AND RL DRIVING-POINT FUNCTIONS

2.2.1 RC Driving-Point Functions

There are four types of RC driving-point impedance functions:

n-1

n
_ c,s *tc, 1S t.... tcyste
Z,(s) = "=l L (2.8a)
bys” + b, _4s + ... F b]s
n-1 n-2
_ C._4S + C. S + tcis te
Z(s) = ] n-2 L (2.8b)
b s +b 15 +o..... *bys + by
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. cnsn + cn_]sm'1 oot oS ey
Zo(s) = — — (2.8¢c)
bs +b_ s + .... ¥ bys+b
n-1 1 0
SR cnsn + cn_]sn_] .ot Cys FCy
Z.(s) = (2.8d)
D n+l n 2
bn+]s + bns LN & bzs + b]s

Making use of RC : LC transformation, we will present a theorem by

which we can determine the exact number of canonic ladder network realizations.

Theorem 2.3

Given an RC driving-point impedance of 7A(S) or 7é(s) type of order n,

there exist 3n—] canonic ladder realizations excluding the BS type Tadder.

Proof:

Applying RC : LC transformation, we obtain

s [Z,(p) 15,2 = Z,(s) (2.9a)

s[?é(p)]p+52 = ZB(s) . (2.9b)

Therefore, instead of 7# or 7&, we may realize ZA or ZB and then replace

the inductance of L henries by a resistor L ohms keeping all capacitors

1

unchanged. Since there exist 3""' canonic ladder networks for ZA or ZB’

there must exist 3n-1 realizations for 7A or Z,.
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Corollary 2.2

Given an RC driving-point impedance of 7&(5) or ZD(S) type of order
n+1, there exist 2 x 3n—1 canonic ladder realizations excluding the BS type
ladder.

Proof is obtained as a consequence of Corollary 2.1 and theorem 2.3.

2.2.2 RL Driving-Point Functions

Recalling the fact that the RL impedance expression has the same form
as the RC admittance expression and RL admittance is identical in form to
RC impedance, the conclusions reached for the RC impedance are directly
applicable to the RL admittance and vice versa. Therefore, the theorems

and the associated corollaries for RL functions are omitted for brevity.



CHAPTER III

GENERATION OF EQUIVALENT BAND-PASS
LADDER NETWORKS IN CANONIC FORM

Resistively-terminated LC two-port ladder networks have been used most
cormmonly in realizing transfer functions which exhibit such characteristics
as low-pass, high-pass, band-pass, band-stop, etc. The reason for this is
mainly due to the fact that the two-port LC ladder has a common ground (i.e.,
unbalanced network) and transmission zeros may be easily implemented and
adjusted by the proper choice of LC impedances in the series and shunt arms.

In parallel with the theory of LC driving-point function synthesis, the theory
of LC two-port ladder realization has been well developed, and an extensive
tabulation has been prepared for filter designs [1-7, 11 - 22]. However,

the utilizations of canonic LC ladders were somewhat limited to the realizations
of LP and HP networks. For the realization of BP filters it has been the
general practice to directly replace the elements of prototype LP networks by
means of LP-BP frequency transformation.

Recently, however, Kim [23] presented a formula for determining the
number of equivalent LC canonic ladder networks for the case of singly
terminated networks.

In this chapter, we deal with the canonic ladder realizations of a voltage
transfer function of BP type in general. Theorems are developed to determine
the number of equivalent canonic ladders for the singly terminated networks
and the results are directly extended to cover the case for the doubly

terminated normal BP networks. Examples are provided to illustrate the
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possibility of comparing the equivalent canonic ladders with respect to

certain specified merits.

3.1 FORMULATION OF PROBLEM

Let us consider a voltage transfer function of order 2n,

£ = 3.1)
7h Zn-1 (
Vi a5 F a3, 4s oo tags tag

where 0 < m < 2n. The above function encompasses LP (m=0), HP (m=2n) and
BP (0<m<2n).

This transfer function is to be realized into  terminated canonic
ladder structures implementing m transmission zeros at the origin and (2n-m)
transmission zeros at infinity.

The objective of this investigation is to generate all the equivalent
canonic ladder two-ports and to develop a closed form formula for obtaining
the exact number of such equivalent netowrks that may be compared under
specified criteria [20].

3.2 SINGLY TERMINATED BP CANONIC LADDER REALIZATION BASED ON TRANSMISSION

ZERO REMOVAL SEQUENCES

3.2.1 Realization Procedure

The two-port parameters z.

ij
expressions for the various network functions. For the singly terminated

and yij may be used to obtain general

networks shown in Fig. 3.1, we have
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Y
o AAMA e oG 4 + O o= ]
L.C LC S
Vi Ladder 2o Vi Ladder | "2 § "
B S S— - O o
(a) Source termination (b) Load termination
Fig. 3.1 Singly terminated LC two-port networks
v z
—2=TT‘-ZZ-— for Fig. 3.1(a) (3.2)
V] 11
v -y
2 21 .
£ = —%£__ for Fig. 3.1(b). (3.3)
v, Y2

For LC ladder networks, it is necessary that 217 ('yZi) be the quotient
of odd to even or even to odd polynomials to satisfy the coefficient conditions

[12]. Thus, from (3.1), (3.2) and (3.3), we can easily identify:

for even m
2n 2n-2 2
S F Ay, oS T T a,st tag
2n-1 2n-3 3
a2n_]s + a2n_3s +...-+a3S +a15

il

Zy4 for Fia. 3.1(a)

Yoy for Fig. 3.1(b) .
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for odd m
a2n—152n—] + a2n—352n—3 + ...+ a353 tags
0y P ray P L a,s’ +

= z,, for Fig. 3.1(a)

= y,, for Fig. 3.1(b) .

The properties that z]](O) = z]](w) = o and y22(0) = y22(w) = o
indicate that z]](s) and y22(s) are of ZA(S) and YB(S) types, respectively.
Thus, the realization of (3.1) is reduced to the realization of the driving
point function Zy7 Or Yoo jmplementing the m transmission zeros at the

origin, and (2n-m) transmission zeros at infinity.

Theorem 3.1
In the singly terminated canonic ladder realization of the voltage

transfer function of (3.1), there exist N equivalent networks determined by

m
[
N= Z
i=0

n'
(hn+1i-mti?! (m-2i)!

(3.4)

where [%] takes on the nearest integer on the lower side, and the terms with

negative integers are ignored.

Proof:

Using Fig. 2.2, we can devise the schematic reduction charts as shown
in Fig. 2.3 for Type A and Type B. With the aid of charts we may obtain the
groups as shown in Fig. 3.2,each having different combinations of homogeneous

and heterogeneous pairs,but all possessing m zeros at the origin. The number



of independent sequences is determined from each group by the rule of

permutation. Let N, N ... N be the number of independent sequences

0> 1 k/2
of group 1, 2, ... k/2, respectively, then we have

N = n'
o (n-m>0tm-0):

N = n.
1 {n-(m-1FTH{m-2):

N[g_ - n.
n- G Flto:

and
[5] [5]
X

- n'
A BN (N SR R R AN

H

N =

It is to be noted that for m>n, N, N.» .... Noon-y are ignored in the

summation because they require the order to exceed 2n.

(0 = i {00 , [00© 00 0 0

0w 00 mJ]OoO m-1 JO O
- ]

m 40]& m~240.°’ Q0 = 2 : 2 I
i ' 4 Q e 0 00
Lolw Q'm m= : ______ @ e | oy i {0 @
’mm -] o oD o0 oD
~ o oo o oo n-m : n— - -3 - -]

n-— t 2 1

n-megeo ® ~ < ) n-—- w.m [} m+ | N

' " ' (m-2) ' -
-.,“ LO” o eGP oo e < @
Group O Group | Group 2 {(m even ) {m odd)

Group m

Fig. 3.2 Grouping of transmission zero pairs.

27
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Theorem 3.2

In the singly terminated canonic ladder realization of the voltage

transfer function

v
2 _ K s (3.5)

V. 2n+1 n
1 a2n+1s +a, s + .... ta,s+a

there exist N equivalent networks determined by

m-1
[l |
N= 2 : :
520 It - (m-1)I 3 H{{m-1) - 271"
m
2] .
+ izo T i)!.i = 23] for odd m and (3.6a)
n
2
N = T nt
520 (n-m+ 1) i H(m- 21)"
[
n.
+ 150 R e I { (T Dy for even m. (3.6b)

where [ ] takes on the Tower side integer, and -q! (q > 0) = <.

Proof:

When m is odd, we can identify
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217 O Yoo = oy ? (3.7)

211(0) = 0 zqy(=)

reduced to ZA and/or ZB type, we use Corollary 2.1 and Theorem 3.1 to prove

o jmplies z]](s) is of ZC type. Since ZC type can be

Theorem 3.2.

With the table in Fig. 2.2(b), it is now straightforward to generate
the unique network corresponding to each independent sequence observing the
following conditions:

(1) No degeneration of elements is to occur at the cascading junction
of two pairs; e.g., A(00)-B(00), B(0 0)-A(0 0), Ao )-B(eow ), B(ww)-A(wx),
A(0w )-A(0»), B(0x)-B(0=), etc. are to be avoided.

(2) The connection patterns, such as A(00)-B(we ), B(x«)-A(00),
B(00)-A(ww» ), A(xx )-B(00), etc., are not permitted. This is because the
pole has been fully removed in the previous pair, hence, it is simply

impossible for these patterns to occur.

(3) Since z]](O) = 211(w) = » for even m (i.e., Zp type), and z]](O)
= z]](w) = 0 for odd m (i.e., ZB type), the first pair in z]](s) realization
shall be one of A type pairs for even m, and B type pairs for odd m,

respectively.

(4) The last section, in accordance with the definition of Z14 (i.e.,
open-circuit driving-point impedance), is to be either A(00), A(w=) or
B(0w) pair. A similar argument may be made for the realization of y,,-

Thus, it is impossible to generate another network for a given

independent sequence without violating conditions stipulated above.
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The realization procedure, then, may be summarized as follows:
(1) Given the BP voltage transfer function of (3.1), identify z]](s) or

y22(s) in accordance with the integer m.

(ii) Classify z]](s) or yzz(s) into one of four types of LC impedance functions
and find the number of independent sequences according to Theorem

3.1 or 3.2 whichever the case may be.

(iii) Conforming with the interconnection conditions, sketch the combination

of reduction cycle pairs in accordance with an independent sequence.

(iv) Find elements values by applying the continued fraction expansion to

z]](s) or y22(s) following the sketch obtained in (ii1).

3.2.2 Normal BP Networks
The normal BP networks are used more widely than any other kind of

filter network. For the normal BP, (3.1) can be written as

-

2 k s
& = 3.8)
7n Znol (

V] S + a2n_1s + ...t a]s + 2,

and from (3.4), the total number of equivalent canonic ladder networks N is,

[5]
n.

z .
i=0 [117° (n - 2i):

(3.9)

It should be noted that the number of equivalent canonic ladder

networks increasesrapidly with order n of the function as shown in Table 3.1.
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Table 3.1 Number of Equivalent Canonic Ladder Networks.

n 2 3 4 5 6 7
N 3 7 19 51 141 393
Example 3.1

For the illustration purpose, let us generate all equivalent networks

for n=3; i.e.,

Yg k 53
6 5
V1 s+ ass + ...+ a1s + aO

For the case of 12 Toad termination, we can proceed as follows: -

(1) Identify yzz(s) as

a55 + a3S + a'l g

86 *t a 34 + a 2

Yopls) =

(ii) Since y22(0) = yzz(w) =0, yzz(s) is of {A(s) type. For n=3, thereare?
independent sequences as follows,
1. (0o, 00, Ox) 2. (oo, 0w, 00) 3. (00, ©w, O=)
4. (00, O , wo) 5. (0= , = ,00) 6. (0=, 00 , )
7. (0w, Qw, Q).
Note that in each sequence, there are exactly three transmission zeros
at the origin and three at infinity.
(iii) Since y22(0) = yzz(w) =0, the first pair must be one of A type, and
since yZZ(S) is a short circuit admittance, the last pair must be one of

B type. The intermediate pairs are chosen so as to avoid degeneration
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of elements at the junctions. The sketch of equivalent networks

corresponding to each independent sequence is shown in Fig. 3.3

(iv) Now element values can be easily obtained by applying the continued

fraction expansion on y22(s) in accordance with the sketch.

Q-—‘"”’\I-«v A O (@ S S | S S, T W S S g
T e

(¢ ® — — o - & s

O-—N-’»T--Aa—qu 0 O] F~@-~~§—% b ()
N2 T Ne 50T

e — e — O e o g

C—i %...._‘__.._g.,.f\rﬂ"j_,__.@_m."!.__() O._m_} }._.{,_T_*_r_.@__n“r\_{ H)
N 3 } ._IJL N 7 N :#:

O L—g — D @ O ~@~—L~wj~w@~"~«m~m~{w

Fig. 3.3 Sketch of seven equivalent BP networks.
(Excluding the terminating resistor)

3.2.3 Comparison of Equivalent Networks
Let us realize the maximally flat 4th order BP filter with bandwith

B, and center frequency Wy - We start with 2nd order Butterworth Towpass

function
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. ‘-
H, o(p) = (3.10)
LP pz e 2 p 41

and apply the transformation p - (s2 + 1)/an where, for convenience, the

bandwidth is normalized as Bn = B/w0 . Then the required BP function is

2
Ks
H(s) = (3.11)
st 2 an3 + (Bg +2) 2+ /?'an + 1

and for the load-terminated case y22 is identified as

st 4 (Bi +2) 2+

3

Yoo =

(3.12)

Ve an + /2 an

Independent sequences for transmission zero removal are (2=00), (00,2« )

and (20 = 0). Three equivalent networks, and their element values, and
other parameters are given in terms of normalized bandwidth Bn in Table 3.2.

A similar approach may be carried out for the caseofa source-terminated
network. Table 3.3 shows three equivalent networks, their element values, and
other parameters in terms of the normalized bandwidth Bj.
and N

1t is to be noted that networks N coincide with BP networks

11 21
directly obtainable from an LP network by the element transformation.
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Table 3.2 Equivalent Networks and their Parameters - Load Terminated
EQUIVALENT NETWORKS L Ly 4 C, Il zC, K
2 2
‘ oA A | 7 /8 —Bﬂ 1 vZ(B,"+1) B+ N
i B B n
(=0 =0) n vz 28, n /28,
3 2 2 4,02 2,912
V2B B, “+1 B “+1 | V2B _(B_"+3B “+1) (B_“+1)
L B 2
1 Cz]!l!]ﬂ 1 /28 n . nn__n n B 41
M2 ! (8.241)° /28 3 V28 (B2 +1)2 /78 3 n
(= 00) n n n
1 12 B +
13 B 41 B “+1 V28 V78 n /28
(00 == n n n n n
Table 3.3 Equivalent Networks and their Parameters - Source Terminated
EQUIVALENT NETWORKS L L, c, C 3Ly IC; K
1Q G L] ) )
oA Amt—d|
- A 5 ] B, 7 ég B, “+1 /?(;+Bn ) 52
n n
© =) (0 JZBn V2 n J?Bn n
1 L1 T
g 2 . (148 3% | VB 7z 3 | B fe P )
—_— +
Na2 b ! VZ8 V28 3 '|+Bn2 14B_° V28 3 " B
(= =) (00) n n n n n
% 6 T
e : : 148 2 148 2 «? 728 ? (148,%)° /28 (8,438, %41) g 2
1 2, — B +
N23 0 0) (=) JZBn v’an n (1+Bn2)2 v’ZBn3 ('l*l'an)2 n
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The equivalent networks may be compared with respect to certain criteria
such as:

(1) Total inductance zIL

N]3 has the smallest XL as calculated in the following
)= L) ¢ g ) )+ —22
L(N = ¥L(N + —5—5 , ZL(N = ZL(N +
12 13 (82 + ])2 11 12 B (82 + ])2
n n‘t°n
" ZL(N]S) < ZL(N12) < ZL(N]]) . (3.13)
(ii) Total capacitance =C
| | B + 1 ) :
ZC(N = 2C(N + ———— , ZC(N = %C(N,,) + —
12 11 /7 83 13 12 /5 B
n n
ZC(N]]) < ZC(N]Z) < ZC(N]B) . (3.14)
(ii1) Relative gain K
K(N12) = K(N]3) > K(N]]) . (3.15)

In the narrow band case of Bn << 1, the gain of NH becomes very Tow.
It is also seen that the element value spread is roughly comparable

among the three networks,

If we define the cost function as

£ = orl + BIC + y(K - K)

max

{

where o = cost of inductance/Henry, B = cost of capacitance/farad,

~
fl

_— maximum gain among the equivalent networks,



(iv)
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N]B will normally be favored because of the higher per unit cost of

the inductance.

Sensitivities

The magnitude sensitivities with respect to the component variations
are calculated and plotted for the load terminated case in Fig. 3.4,
for Bn = 0.1. As can be cbserved, the magnitude sensitivities are
roughly comparable among equivalent networks. It is observed that
the magnitude sensitivity with respect to L1 almost coincides with

that of C, and so does the magnitude sensitivity with respect to L2

1

with that of C2.

Similar comparison may be made for the caseof a source-terminated

network. It is omitted here for brevity.

A similar comparison table is provided in Appendix I for n=3; i.e.,

K 53
6 5 4 3 2
s + a]s + azs + a3s + azs + a]s + ]

H(s) =

It is to be noted that

(1) The descending order of IL; is

N6 > N5 > N7 > N4 > N2 > N] > N3
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Fig. 3.4 Plot of magnitude sensitivity - Load terminated.
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(i1) The descending order of IC. fis

N3 > N] > N7 > N2 = N4 > N5 > N6

(iii) The descending order of gain K is

N1 = N3 > N2 = N4 > N7 > N5 = N6 .

Since Wy = L]L2L3C]C2 3= 1, in each network the value of Li's is inversely
proportional to that of Ci's. Thus, it can be seen from (i) and (ii) that
the total inductance increases, the total capacitance decreases, i.e., N3 has
the smallest total inductance, but has the largest total capacitance. The
networks tend to have less total inductance when they are realized by homo-
geneous reduction cycle pairs first (see Nys Mg and Ng, N6).

Also, from (i) and (iii) we can see that there is an inverse relation-
ship between total inductance and gain, i.e., the less the total inductance,
the greater the gain K. From these comparisons, we can conclude that the
conventional network N7 is not necessarily a good choice. The network N3

appears to be the best, because it has the smallest total inductance and the

highest gain.

3.3 DIRECT DERIVATION OF DOUBLY TERMINATED NORMAL BP CANONIC LADDER
NETWORKS

Since Darlington [11] presented a synthesis method based on the insertion

loss characteristics, the doubly-terminated LC network has been well accepted
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as the preferable structure in filter realization. Such a network is capabTle
of producing any physically realizable loss response with a near minimum
number of components for most filter specifications [T -2, 14 ~17]. More
importantly, the sensitivity of the transfer function to changes in the
element values is minimized [24 - 30]. Another advantage includes a possibility
of ladder network realization which is mostly preferred in practical applications.
One of the reasons for extensive use of ladder is due to the fact that
in the multipath structures such as lattice, bridged-T, twin-T or parallel
Jadders, transmission zeros are generated by cancellation of energies arriving
at the output terminals along different paths. These cancellations are very
sensitive to element variations. Due to the structure, such cancellation
cannot occur in the ladder networks. On the other hand, because of this fact
an LC ladder must have all its transmission zeros on the imaginary axis only.
Although normal BP ladders can easily be obtainable from the LP
prototype by means of the element transformation, we may instead find the BP
function through frequency transformation and investigate various ways of
realizing the BP function. Watanabe [14], however, derived sufficient conditions
for the possibility of constructing an LC ladder BP filter with the use of an
ideal transformer.
In this section, we deal with the canonic realization of the doubly
terminated LC ladder two-port directly from a given transfer function. We

shall restrict ourselves to the case of the normal BP network.

3.3.1 Doubly-Terminated Network
Basically,Darlington's synthesis method [11] is to reduce the problem

of realizing a transfer function to that of a driving point impedance function
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7. (s) of the Fig. 3.5. This configuration has been a focal point in

in
filter synthesis mainly due to its excellent low sensitivity of the transfer

function to changes in the element values of the LC networks [24 - 30].

I, R L2 +
¥ + LC )
v, Y, | 2 Ryt Vo
‘ '_l—_’ Two - Port
Zuw(s)

Fig. 3.5 The Darlington circuit structure

In order to extend the applications of the theorems developed
previously, we need to introduce the two coefficients: the transmission
coefficient, and the reflection coefficient. The transmission coefficient
is defined as the ratio of the output power P0 being dissipated in R2 to
the maximum available power Pa from the source with source resistance R].
Without Toss of generally let us designate R] = 1 and R2 = R. Then, we obtain

Vo(Jw) 2

Po(jw) = R . (3.16)
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and . 2
o L8 (3.17)
Pa(Jw) = 7 . .

Hence, the transmission coefficient is given by

. o,
1t(juw)|? = PO(J_‘*’) _ 4 Vo (Juw)
ﬁgIazﬁ_ i V](jw) 2
: % H(jw)lz (3.18)

where H(s) is the voltage-ratio transfer function

H(S) = v;rgy

Because the power sent to R from the source must be less than or equal to

the maximum power available from the source, we have

[tGw) 2 < 1 . (3.19)

The reflection coefficient is defined simply to be the complement of the

transmission coefficient as
. 2 . v 2 -
[t(Jw) | + |o(jw)]™ = 1 . (3.20)

In sinusoidal steady-state, the power Pi supplied to port 1 of the lossless

two-port is equal to the power P0 supplied to the Toad, where

2

Py = R[Z;,(5)1 |1, (dw)] (3.21)

From the Fig. 3.5 we have
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«

1 _
T_ 1+ Z_in(S)

which together with (3.21) yields

ReR [Z. (jw)]
H(jw)|® = elZin'J . (3.22)
|1 + Zin(jw)l

Substituting (3.22) into (3.18) and the resulting expression into (3.20)

we obtain

o(jo) - p(-jw) = |o(jw)]?

li
—
1
o+
—~~
[
£
~—

- 4,
= 1 - R . (3.23)

By writing Zin(jw) as

Z;,(Juw) = Rw) +J X (Ju)

and substituting this into (3.23) we have

12, (Gu) - 1/

. 2
!Zin(Jw) + 1]

p(jw) p(-juw) =

This implies that
. Zin(s) -1
Zin(s) + ]

or that
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1 (s) =22 (3.25)
1+ p(s)

Through the coefficients t(jw) and o(juw), we have reduced the problem of
realizing a voltage-transfer function H(s) to that of realizing a driving
point function Zin(s) of (3.25), bearing in mind the locations of the trans-
mission zeros of H(s). We have noted that in the process of obtaining Zin<s)’
we have two possible values of p(s) and therefore two values of Zin(s)' Also
we should select a Hurwitz denominator, as in the case of transfer functions,
since from (3.18) we conclude that t(s) has the same Hurwitz denominator as

H(s) and from (3.23) we can see that p(s) will also have this denominator.

3.3.2 Canonic Ladder Realization Procedure

Based on the preceding discussion, we can describe a step-by-step
procedure for the canonic realization of the doubly-terminated ladder network
as follows.

Step 1:  Find the p(s) from a given H(s).

From (3.18) and (3.24), we have

o(s) p(-s) =1 - g H(s) H(=s) . (3.26)

Finding p(s) is the most important step in the realization procedure.
To start with, (3.26) may not have solutions.
Let
F(s) 2 o(s) of-s) (3.27)
and

G(é)\é “Jw:,f- (S)»ﬁ(fs) . (3.28)
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It is apparent that both the poles and zeros of F(s) are required
to occur with quadrantal symmetry. However, since H(s) sharesthe same
denominator, the poles of G(s) will also exhibit quadrantal symmetry but
not necessarily the zeros. This is because the numerator of G(s) is only
an even polynomial, not necessarily with quadrantal symmetry. If the
zeros of G(s) do not occur with quadrantal symmetry, then we cannot find
o(s) from (3.26), and the procedure that we are describing will not realize

a circuit for H(s).
Step 2: Find Zin(s)‘

Once p(s) is determined, we write

7. (s) = 1+ p(s) or 7. (s) = +=els) (3.29)

There are two choices for Zin(s)’ Since one choice is the inverse of the
other we can expect that one will give R, and the other will yield 1/R as the
terminating load resistance. If the terminating load is to be R, then only

one choice of Zin(s) will give the desired solution.

Step 3: Realization of Zin(s) into canonic Tladder network.

With this procedure in mind, let us now consider a normal BP type
transfer function of order 2n. This type of transfer functions are generated
from the LP transfer functions by means of a simple LP-BP frequency transformation.
The transformation requires the replacement of the variable s in the LP function
with the variable (52-+1)/an, where for convenience, the bandwidth is normal-
ized as Bn = B/wo. The constants W, and B represent the center frequency and

the bandwidth of the BP filter, respectively.
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Let us start with the all pole LP transfer function of order n,

G b
s) = ° (3.30)

n n-1
s +b S + o000+ b]s + bO

where the denominator is strictly Hurwitz.

A LP-BP frequency transformation gives a normal type of BP transfer

function,

k s
H(s) = (3.31)
2N 4 a2n_132n'] oo tags +

where the denominator is also strictly Hurwitz and, due to the nature of
the transformation, possesses the property of the so-called reciprocal poly-
on-i = 23) [13).

Now let us consider the existence of the solution for (3.26).

nomial (i.e., a

Theorem 3.3

Given a realizable BP function

k s"
H(s) = (3.32)
N 4 a2n_152n'] oo tags

where the denominator is @ reciprocal polynomial, and

G(s) & 1 - % H(s) H(-s) (3.33)

there exist a set of zeros of G(s) which satisfy the quadrantal symmetry

requirement.

Proof:

let us write
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H(s) = « (3.34)

where M(s) and N(s) are the even and odd parts of the denominator.

Substituting (3.34) into (3.33), we obtain

M (s) - N(s) - & k2 (5)"(=s)"

M2(s) - N(s)

Suppose that s is a zero of M + N so that M(so) + N(so) = 0. Then

since M is even and N is odd, M(-s_) - N(-s_ ) = M(s_ ) + N(

S =
o o o O) 0 and we see

that -s_ is a zero of M- N. Thus the poles of G(s) appear in pairs, one
always being the negative of the other. Since M+N is strictly Hurwitz, the
zeros of M2 - N2 occur in a quadruple manner, i.e., in a quadrantal symmetry.

Let

As) = M(s) - N%(s) - %—kz (s)"=s)" . (3.36)

Since M and N are reciprocal polynomials of order 2n and 2n-1, respectively,

M2 - N2 is an even and reciprocal pq]ynomia] of order 4n. The Tast term in
(3.36) can be added or substracted depending on the integer n, however, since
the center of coefficient symmetry is the coefficient of SZn, this term does
not disturb the nature of the reciprocal polynomial. In other words, A(s)

is an even, reciprocal polynomial of order 4n. Since A(s) is even, 2n zeros
must be in the left half plane and the other 2n in the right half plane.
Furthermore, since A(s) is reciprocal, if Sk is a zero then so is ét-. Recall-
ing that zeros of polynomialswith real coefficientsoccur in conjugate, we can

see that zeros of A(s) occur in quadrantal symmetry.
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3.3.3. Number of Doubly-Terminated Canonic Ladders

In the section 3.2.2 we have shown that there exist N equivalent
singly terminated canonic ladder two-ports determined by (3.9) in the synthesis
of a normal BP transfer function. As far as the lossless two-ports are
concerned, the equivalent networks of source termination and those of Toad
termination are structurally identical for even n, and dual in the case of odd
n. Since the topological dual exists for the case of even n, the total of 2N
equivalent canonic networks can always be generated in the doubly terminated
ladder configurations within certain constraints on the load resistances. For
n=2 and n=3, for example, there are 2N=6, and 2N=14 canonic ladder structures,
respectively, as shown in Fig. 3.6. Two networks in the first rows are the
conventional BP filters directly obtainable from the LP networks through the
element transformation. The rest are the equivalent networks with different
sequence of the transmission zero removal.

It can be easily shown that all the equivalent networks derived directly
from the singly terminated networks are of normal BP type.

Since the LC two-ports in Fig. 3.7 are reciprocal, we can represent
Fig. 3.7(a) by an equivalent T as shown in Fig. 3.8.

A simple analysis yields

v R,z

H (s) = Vg - aAY . (3.37)

a
1 2992y - 2y * Rpzyp Rz T RRy

Then for Fig. 3.7(b), the transfer function Hb(s) is obtained by simply

replacing Z] +-ZZ 22 = Z], R] > RZ’ R2 - R], 23 > Z3 in (3.37).
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Fig. 3.6 Equivalent normal BP canonic networks (a) for n=2
(b) for n=3.
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z R
Hy(s) = 2 = 2 H(s) (3.38)

211295 = 39 2211 T RyZpp T R{Ry 2

Similarly, by replacing Z] > ZZ’ 22 - Z], Z3 > 23, and retaining R] and R2

in (3.37) we write the transfer function for Fig. 3.7(c) as

R, z
H (s) = 21 4 H(s) . = (3.39)

[} a
211200 =~ Z1p t Ryzyp F Ryzpn T R{R,

The implication of (3.38) is that if the realization exists in configuration
of Fig. 3.7(a), we can physically rotate the network 180° about the vertical
axis to realize the same transfer function,with a scaling factor of R1/R2’

On the other hand, (3.39) implies that if we keep R] and R2 fixed and rotate
the LC two-port alone, the denominator changes as shown. Consequently, a new
set of element values for the LC two-port results. The dual networks can be
obtained readily by inspection as shown in Fig. 3.6. It should be noted that
the dual networks realize the given normal BP transfer function within the
multiplicative constant.

The preceding development confirms the fact that all the equivalent
networks generated directly from the single termination cases are conformable
to the BP transfer function. Then, one may ask "Is the set of equivalent
doubly terminated canonic Tadder networks complete and exhaustive?" The
affirmative answer can be derived as follows.

If there are to be any more equivalent networks, the LC two-port part

must be generated at the expense of violating the rules of interconnecting

the reduction cycles. Then the order of the driving-point parameters of the
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two-port is reduced in (3.37) - (3.39). As a consequence, no additional

equivalent canonic networks can be generated.

3.3.4 Constraint on Terminating Resistances
Once a p(s) is determined, it is straightforward to determine Zin(s)
and carry out continued fraction expansion on Zin(s) in accordance with the
given canonic ladder networks. To determine the value R of the terminating
resistor for a given choice of Zin(s)’ for the LP and HP network, we can find
easily by
R = Zin(m) for HP
and
R = Zin(o) for LP . (3.40)
However, for the normal BP network, there is no simple way of determin-
ing R. It should be noted that since R] is normalized, R actually represents

a resistance ratio. The determination of constraints on R in conjunction with

the equivalent canonic ladder networks can be best explained by examples.

Example 3.2

Let us first consider the maximally flat 4th order normal BP transfer

function which is given in (3.12).

Step 1: Determination of p(s).

From (3.26) we have,

58 + 4 56 + (6 +.BA4 - .K2) s4 + 4 52 + 1
p(S) p(-S) = g 6 4_
s +4s + (6+ Bn S

ENFVES

+ 4 52 + 1

= p(s) p(-s) (3.41)
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There is no freedom in the choice of the denominator of o(s) because
its roots must lie in the left half plane. However, since as given in (3.23),
only the squared magnitude of p(jw) is fixed by the specification of the
transmission coefficient, the zero distribution of p(s) is optional, as Tong
as p(jw) p(-jw) represents the numerator of ]p(jw)fz. Since the numerator
is a reciprocal polynomial of order 8, the root distribution would appear as

shown in Fig. 3.9.

Fig. 3.9 Zero-pair distribution of p(s).

Thus, p(s) with all its roots in the left half plane,yieldsa uniquely
defined minimum phase p(s); the other root distributions may be obtained from

this one by replacing any pair of complex conjugate roots by its mirror image.
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Since for a p(s) corresponding to p(s), the root distribution p(-s)

corresponds to the reflection coefficient of the other part of the same

network [4], each different network corresonds to a pair of root distributions.
Therefore, it can be easily shown that for integer n, 2(n—1) different
combinations of pairs of root distributions exist. An actual partition of the
8th order numerator into p(s) p(-s) can be carried out either by using computer
or by analytic method as follows:

From (3.41), we can write

s8+4s6+(6+8n4'-%i<2) s4+452+1
=(s4+<1s3+ Bsz+as +1)(s4—as3+852-wxs+1). (3.42)

By matching coefficient of each term, we have

n
_ 4 42

B=2+ /B -k
Let

Aéén“-%Kz (3.43)
then

a= V2 JA

g= 2+A . (3.44)

Now, from (3.41) and (3.42), we can identify the minimum phase function p(s)

as
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A S (2 a) P B RS 4]

p(s) = . (3.45)
s4+JiB 53+(2+BZ)52+J2’B s +1
n n n
Step 2: Determination of Zin(s)'
From (3.25) and (3.45), we have either
4 3 2 2
(6] 2s + V2 (Bn + J/R) s + (4 + B~ + A) s° + /2 (Bn + /A)s +2
Z. (s) =
in Z (8, - ) s+ (B, - A) S“ 4 /2 (B - /A) s
(3.46)
or 3 2 2
) V2 (Bn - JA) s +(Bn -A) s+ V2 (Bn - /A) s
Z. (s)= .
n 2s4+E(Bn+/}X) s3+(4+Bn2+A) 52+E(Bn+/K)s+2
(3.47)
Note that (3.46) isthedual of (3.47).
Step 3: Realization of Zin(s) into Ngy» N32, N33 networks shown in
Fig. 3.6(a).

If we use the divide-and-invert procedure to find the necessary con-
tinued fraction expansion of Zin(s) such that the final element is R, we can

find that the proper Zin(s) is (3.46), the last element being for Ng,

2

(8,

+ A)/(Bn2 - A) (3.48)

for N32

(an 2+ A)z/(Bn4 _ A% (3.49)

-
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for N33
(8,2+2+m%/6" - A . (3.50)
Since N31 is the direct transform from the LP realization, the gain K is
5 2 R
K = Bn (1 n R) (3.51)

Substituting (3.51) into A, we can check that (3.48) is indeed R. For other

structures, we must select K and R values such that

(an + 2+ A)2
i 5 =R . (3.52)

Substituting A into (3.52), we obtain
2

82404+ /8% skl = (20)°

n n

Rearranging, we have

2K - (an +2) = /8" - weR . (3.53)
Let us choose R and K such that Bn4 - 4K2/R = 0.
Then, we have 2
B~ +2
K= 2
2
(2 +8 5"
R = ——F— . (3.54)
B



Table 3.4 shows the element values in terms of Bn with other

parameters.
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Table 3.4 Equivalent Networks and their Parameters - Doubly Terminated

EQUIVALENT NETWORKS L] LZ C.1 02 ELi ZCi K
C, L *
i 7 | B2 B VK | Z(B -/B) |B a2 | B ZeA%2 (248 2)2x1072
3 2 B K | 2B, | 2 | B eA | 2R | 2B ) 28 "+as 24
(0 =) éO =)
1 L G 2.2 3 4, 2 2
N, -M-'8‘1—-4c1 ™ o E,;?—_ (2+Bg) mnz B, 2 B, wzn +4 B, L
T 000 n JZBn 248, »/’.2'(2+Bn ) JZBn V3
1 2 2 3 2,2
et 2+B /2248 %) | B 728 (248 %) B_[(2+8 2)%+28 2] B 2
N33 L e 3 - 57 3 Tl = 1+ 5
T o 28, B, 7z (2+8,%) 28, 2(2+8,°) 2
«r-pné (R-1
A=B" R+
(2 + 8772
i B
n
There are three points to be noted.
Firstly, the value of A defined in (3.43) must always be positive
real. Therefore, the gain and the terminating resistance are constrained
by
K2 Bn4
R < =z (3.55)
Secondly, the element values of network N33 can be obtained from
those of N32 by inspection due to a coefficient symmetry in Zin(s)’ ji.e.,
C1 in N33 is the inverse of L] in N32, C2 in N33 the inverse of L2 in N32,
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etc. Also, three other equivalent networks are the duals of those shown in
Table 3.4, therefore, element valuesare readily obtainable by simple
inspection.

Thirdly, the other possible choice for p(s) produces a Zin(s) that
does not have a coefficient symmetry. As a result, the continued fraction
expansion procedure in accordance with the given canonic networks fails.
However, it should be noted that the choice of the zero distribution of the
reflection coefficient does not affect the minimum phase property of the

transfer function.

Example 3.3

As a second example, let us consider a maximally flat 6th order normal

BP transfer function. We start with 3rd order Butterworth LP function

k
H p(P) = (3.56)
LP p3 + 2p2 + 2p + 1
52 + 1] .
and apply the transformation p ~ F s ° where Bn is the normalized band-
n

width. For convenience, let us assign Bn = 0.1. Then the required BP

function is

H(s) = K s® (3.57)
(s) = 5 ] 3 . .

6 4 0257 + 3.0257 + 0.40Ts° + 3.025° + 0.25 + 1

Step 1: Determination of p(s).

From (3.26), we obtain
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2 4

§1216510 41558 + (20 - 1070 + AE + 155% 4657 41

p(s) p(-s) = Z
126510 11558 + (20-1070) s + 15s% + 65 + 1

- 2(§) q(:? . (3.58)

Since the numerator is a reciprocal polynomial of order 12, the root

distribution pattern would appear as shown in Fig. 3.10.

— e o s e s e o i e o

Fig. 3.10 Zero-pair distribution of p(s).



Then, there are four different ways to choose p(s).
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Again using

an analytical procedure, we can partition the numerator N(s) of (3.58) as,

6 5 4 3 6 5

N(s) = (s +as” + bs +cs™ + bs2 +as + 1)(s - as™ + bs4

Matching the coefficients of each term, we obtain

2 - a% =6

o%b - 2ac + b° = 15

2+ 262 - 2a% - c® =20 - Y
where y=10"°- % K2 .

Because lp(juﬁ]2;3 1, Y must be in the range of

0<vy<10?®

Therefore, R and K must satisfy the relation,

- cs3+ bsz- as+1).

(3.59a)

(3.59b)

(3.59c¢)

(3.60)

To find the positive and real values of a, b and ¢ in (3.59) in terms of

Y requires the solution of the fourth order polynomial equation.

of solutions are found to be:

and

1/6 + Y

[V}
i
)
-

, b=3+2Y"", c=4Y

3/6

Two sets

(3.61)

(3.62)
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Therefore, we can identify for (3.61),

56 + 3 54 + Y]/Zs3 + 352 + 1
3 5 7 3 7 (3.63)
s” + 0.2 + 3.02s ' + 0.401s” + 3.02s” + 0.2s + 1

pI_

for (3.62),

58 4 o165 4 (a1 3)sh 4 (a1 /0y 1/2) 3 4 (3uav!/3)sPuay Osuy

p =t
IT 7 6 4 0.2s943.0257 +0.401s 3+ 3.025° + 0.25 + 1

(3.64)
Two other possible choices are excluded, because they fail to produce o(s)
with coefficient symmetry.
Step 2: Determination of Zjn(s).
From (3.63) and (3.64), we can identify, respectively,
;2?4028 6.025% + (0.401+Y1/2)s3 + 6.02s% +0.25 + 2 (3.652)
I~ 70.28% +0.025% + (0.401 - Y'/?)s® + 0.025% + 0.2s
or
S
ZI = ZI (3.65b)
and
- 2564 0.2+ 2YV6)s5 + (5.02+2v173)s" + [0.401+(ay/8+v1/2) 353
117 (0.2-27176)s5 + (0.02-2v173)s® + [0.401-(aY/04v1/2) 1%+
(6.02 + 21/ 3)s% + (0.2+2Y/8)s + 2 (3.662)

(0.02-2Y173)s2 + (0.2-2Y'/8)s
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or

7. =1 (3.66b)

Step 3: Realization of Zin(s) into canonic ladder networks listed

in Fig. 3.6(b).

Element values can readily be obtained by continued fraction expansion
on impedances in accordance with the configurations. It is to be noted that
due to duality relations and coefficient symmetry shown in impedance expressions,
jt is sufficient to calculate element values for network N], N3, N4 and N6'
For example, due to coefficient symmetry, in the continued fraction expansion

for the N, and N2, the quotients are exactly the same. The same statement

3
holds true for the pairs oqu_—N5 and N6 - N7. The element values of the
other seven networks can be obtained by inspection due to duality. In order
to develop these networks such that the last resistance element is R, the
proper choice of impedances is of (3.65b) and (3.66b).

The last resistance elements are found to be:

for EI(S)
-3 _y1/2
Ny R = 19:§_:_XT7?
10° +Y
N, &N o < (0.200 - Y32 (107% 4 ¥1/2)
2 (0.201 + Y722 (107% - y1/%)
N, & N 107 -y

R_
4705 (0.201 + v/%)?



As in Example 3.

resistance is R.
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(0:201 - Y/%)?
5

1070 -y
10t Y12
1073 + y1/2

_ (2.01+0.17/6 +¥2/8)2(0 01 - 0.1¥1/64v2/6) (0.1-y'/®)

(2.01-0. 17 /64v27612(0 0140.17 1 /04v2/8) (0. 14v1/®)

_ (0.1-Y6)(0.01-0.1"/0+v2/8) (0. 01+0.1v!/04v?/®)
(0.14Y /8y (2.01+0.171/84v2/6)¢

_ (2.0140.17/64v2/6)2 (9.1-y!/6)
(0.0140. 1Y 784v2/6) (0.01-0.1Y/84v2/6) (0.14v1/8)

2, we can choose R and K such that the terminating

process is omitted for brevity.

3.3.5 Sensitivity Considerations in Doubly Terminated Networks

The characteristics of active and passive elementsused in a filter

design may vary from their nominal values because of aging, environmental

changes, and other causes. These variations may cause a network to depart

significantly from its desired performance. It is of 1little use to expend

effort to obtain an ideal transfer function only to find, after the filter

has been constructed using practical components, that the filter performance

does not satisfy the specifications. For example, in an active filter, the
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gain of active element may change to the extent that the transfer function
poles are shifted to the right half s-plane, resulting in instability.

In filter synthesis, once a transfer function is obtained, the solution
of synthesis problem is not unique. Different networks can be realized to
produce the same input-output relationship. As long as ideal elements are
used under ideal conditions, one network works just as well as the other. In
practice, however, one network may outperform another because it is less
sensitive to element variations and to environmental changes. This network
may be no more expensive to construct than the other. Therefore, a quantitative
measure is needed not only to compare networks with regard to element variations
but also to make an appropriate allowance for component variations in realizing
a transfer function. Sensitivity functions are used for this purpose. These
functions provide a numerical measure of how much an important aspect of the
network or response varies. as an element or a combination of elements varies
from the nominal design values.

In the following, definition of sensitivity function is introduced, and
sensitivity comparisons are made between singly terminated and doubly terminated

L.C Tadders.

3.3.5.1 Definitions

The sensitivity function plays an important practical and conceptual
role in transfer function variability studies, and it is a measure of the
change of the overall transfer function with respect to change of an element
or parameter of interest in the network. We define the measure of the change
Ay in some performance characteristic y, resulting from a change Ax in a

network parameter x, to be the sensitivity of y with respect to x, given by
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Y = MmNy Lim - x Ay (3.67)
x  Ax>0 AX/X Ax>0 'y Ax )

is a ratio of

Thus the changes in x and y have been normalized, i.e., Si

normalized changes or percentages. For sufficiently small Axi and well

behaved higher order derivatives, we may make the first order approximation,

n
Ay 2z 2L bx; (3.68)

to obtain the deviation. It should be noted that the validity of (3.68)
depends on AX; being “small" and the higher order derivatives being "well
behaved". This may not always be the case and the first order approximation
may not be relied upon when such pathological cases arises. From (3.67) and

(3.68), we have
y _ iy . »8fenyl. (3.69)
Sx. y axi a[&n &l

3.3.5.2 Transfer Function Sensitivity

Let us consider a transfer function

H(s) = Dls) (3.70)

For sinusoidal inputs, we are more concerned with the variation of H(jw)

with respect to the variation of the parameter x. For s = jw , we have

HGjw) = |H(Gw)| 3% (3.71)
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where
o(w) = arg [H(jw)] .

Then i
on H(GGw) = @ [H(Gjw)| + e [e3%00)y (3.72)

In (3.72) 2n|H(jw)]| and ¢(w) are known as the gain function and phase function,

respectively. From the definitions (3.69) and (3.72), we have

L3 (w)

SH(jw) = SlH(jw)l + S
X X

X

SLH(jw)] v jolw) si<“) : (3.73)

(]

If x is real (which is true in most cases), then SLH(jw)l and Si(w) are

real and by (3.73), we obtain

jo(w) .
siJ = I [si(Jw)] (3.75)

Thus the gain and phase sensitivity may be calculated directly by definition

or they may be obtained from Si(jw) using (3.74) and (3.75).

3.3.5.3 Loss Sensitivities in LC Filters

It is well known that the loss of a doubly terminated LC filter is
far less sensitive than the loss of singly terminated one. This is the main

reason why high quality filters meeting stringent specifications rely heavily
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on the doubly terminated LC ladder structure [3-5, 24-30].

The primary objectives in a filter design are to obtain a passband
whose loss remains constant within prescribed Timits over its assigned
frequency interval and one or two stopbands where the loss, relative to that
in the passband, exceeds some prescribed discrimination by an amount whose
precise value is unimportant as long as it remains constant. The important
point to note about the behavior in the passband is that the response is
required to be flat, and that the flatness is specified by upper and Tower
limits between which the response must lie. What is not so important is the
absolute level at which these limits occur. If, due to component variations,
the loss increases or decreases by the same amount at all frequencies, the
flatness of the passband will be unchanged and the resulting small level shift,
(which is merely equivalent to inserting an attenuator), while not desirable,
is not particularly troublesome. But if the component variations cause the
passband Toss to develop a systematic ripple, it will almost certainly prove
objectionable to the user and may make the Toss exceed the prescribed limits
on flatness.

We now examine how the component variations affect the loss of both

doubly terminated and singly terminated LC filters.

(i) Doubly Terminated Filters.
First, for the circuit shown in Fig. 3.11, we define the transducer

function T(s), the loss o (in nepers), and the phase 8 (in radians) by [30],

a + jB = T(jw)
v
= gn vl ﬁé (3.76)
2 1
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Fig. 3.11 (a) Doubly terminated and (b) Singly terminated
filter.

Note that
_ . 112
20 = | T(jw)]
2
|V,|“/4R
= 1 1 _ max
= M e = -5 > 1 (3.77)
[V, /R 2
2 2
where Pmax is the maximum power available from the source R1 and P2 is the

power dissipated in R2. As the two-port is assumed passive, the loss a is

always non-negative and is equal to zero when P, = P From (3.18), we

max’
can identify that

It = e < . (3.78)
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The logarithmic sensitivity of the Toss a(jw) to changes of the inductance

Li and capacitance Ck are given as follows:

3o _ w — 2
L'l S‘L—:I‘ = - —'*-Pz Im [p LiIi /2] (3.79&)
C, 2% - W onrsc, V,2/2] (3.79b)
K aCy P, Ptk Yk .

where p is the input reflection coefficient defined in (3.23).

To establish the bound on these sensitivities, let us examine the
behavior of p(jw). Consider a filter with a transducer loss response which
varies between oy and o, + ap in the passband. Then, from (3.78) the locus

of p(jw) must be contained in a ring-shaped area with an inside radius,

lplmin = 1-e o (3.80)
as shown in Fig. 3.12.
JIm Pl
&
Q
, Re [P]
I

(1 =17 1min) a,

Fig. 3.12 Locus of p(jw).
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Then, from (3.79a) and (3.79b), recognizing the fact that LiIiZ/Z and
Cka2/2 are the average magnetic energy and average electric energy stored
Li and Ck, respectively, the worst case sensitivity of the loss response to

variations of any reactance element X; can be written,

< Y B (3.81)

where €; is the average energy stored in the component X; - Similarily, the

worst case loss sensitivity to R] and R2 can be obtained as,

- € i=1,2 . (3.82)

Therefore, if one designs a conventional equi-ripple passband filter with the
usual magnitude of ripple and arranges to get maximum transfer of power at the
frequencies of minimum loss, then both o and aa/axi are exactly zero at these
frequencies, and because of small passband ripple, Ba/axi also remains small
everywhere else in the passband. This is the basis of the low sensitivity of
conventional doubly terminated LC filters.

If V2 is the output quantity of interest, from (3.76), we obtain,

ol - da
sxiz K5 (3.83)

if X; is any element inside the two-port, then

S]V2| = - R Be 1 (3.84a)
R] P
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Vsl - Ba 4 1
Sp2t = - R, R t5 (3.84b)
2 2
for R1 and R2 respectively. Thus |V2| will share the zero sensitivity of a

with respect to all the elements inside the two-port, but due to the terms

+ 1/2 in (3.84a) and (3.84b), a change in either R] or R2 will produce a
frequency independent shift in [V21 in addition to the small effects
proportional to 3@/3R1. As mentioned previously, these frequency independent
shifts have no effect on the quality of the passﬁand and are normally of no

consequence.

(ii) Singly Terminated Filters.
Now, we consider the case of Fig. 3.11(b), and define the

transducer function T(jw), the loss o, and the phase B by
o+ jB = 2n T(jw) = 2&n (V1/V2) . (3.85)

It must be noted here that there is no upper limit to the power that can be
dissipated in R2 and so there is no possibility of desensitizing the loss by
working at maximum transfer of power. We can derive a formula similar to
(2.81) and (3.83) for case where Xs represents an element inside the two-port,

namely

S)l(\-lzl < __;_ . (3.86)
1

The absence from (3.86) of the factor v/ 1 - e'za that appears in (3.81)

clearly shows that the sensitivity in the singly terminated filter will be

many times greater than in the doubly terminated filter.
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To examine the sensitivity with respect to R2’ let Y2 = sz be the
output admittance seen into port 2 with the source V1 set to zero. Then,

we can obtain

Vz‘ _ 122 8|V2| ) ,.__,;L___7? (3.87)
2 Vo[ 3R, 1+R,2

|
SR

Y2 is a positive real odd function and most of its poles and zeros will lie
in the passband and so, as one traverses the passband, Y2 will oscillate back
and forth through positive values between zero and infinity. Hence the
sensitivity will oscillate between zero, at the poles of Y2 and unity at the
zeros of Y2. Thus we find that an error in R2 will produce in the output

voltage a systematic ripple whose maxima and minima coincide with the zeros

and poles of Y2.

3.3.6 Comparison of Equivalent Networks

We have made comparison of equivalent networks for singly terminated
maximally flat 4th order filter in section 3.2.3. A similar comparison for
doubly terminated filters which are shown in table 3.4 may be made with respect
to specified criteria.

For the normalized bandwith Bn = 0.1, we have found that the N3]
(conventional network) requires a total inductance about two ordersof magnitude
more than those of non-conventional ones. However, for a total capacitance
requirement, the statement is reversed, i.e., non-conventional ones require
approximately two ordersof magnitude more. Two non-conventional filters are

comparable in this respect.
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The gain of N31 is much lower than that of networks N32, and N33.

The gain of the non-conventional ones is identical but much higher than that
of the conventional network N3]. Thus, in terms of the gain, the two non-
conventional networks are preferable to the conventional one.

A further advantage of non-conventional filters is observed when we
compare the transfer function magnitude sensitivity with respect to element
variations.

As shown in Fig. 3.4 the magnitude sensitivities with respect to the
LC component variations in a singly load-terminated case are roughly comparable
among equivalent networks. This is also true for the case of singly source-
terminated networks. Therefore, we conclude that as far as the magnitude
transfer function sensitivity is concerned, there is no real preference in
choosing one network over another.

To make comparisons for the case of doubly terminated structures, the
magnitude sensitivities with respect to LC components are calculated, and the
results are plotted in Fig. 3.13 for the value of Bn = 0.1. As can be seen
the networks N32 and N33 exhibit much better sensitivity performance than that

of network N31‘
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CHAPTER 1V

DIRECT CONVERSION TO ACTIVE AND DIGITAL
FILTERS IN CANONIC LADDER STRUCTURES

Electrical filters may be classified in a number of ways. Analog filters
are used to process analog signals or continuous-time signals; digital filters
are used to process digital signals (discrete-time signals with quantized
magnitude levels). Analog filters may be classified as lumped or distributed
depending on the frequency ranges for which they are designed. Finally, analog
filters may also be classified as passive or active depending on the type of
elements used in their realization. So far we have dealt with analog, passive
and Tumped filters with a specific structure, i.e., canonic ladder filter
networks.

The doubly terminated canonic ladders (so called LC prototypes or
reference networks) may be directly converted to active and digital filters in
canonic ladder structures sustaining all the desirable features of LC proto-
types. In this chapter, using the component simu]ation technique, equal number
of active ladder networks are generated. In particular, implementation of the
Generalized Immittance Converter (GIC) [6, 35, 38, 39, 43, 56] is studied.
Since the number of required GIC's depends on the relative location of
inductance, e.g., ladder imbedding, in the reference networks, economic filters
with optimum design of GIC are sought among the active counterparts.

The digital filters with true ladder configuration [67] are also directly
obtainable from the reference equivalent networks using wave digital filter

realization method [62]. A new analysis method for the magnitude sensitivity
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of the transfer function with respect to multiplier coefficients is
presented and equivalent wave digital filters are compared from a sensitivity

point of view.

4.1 ACTIVE CANONIC FILTERS

It is well known that among passive elements the inductor is the most
non-ideal one. This is especially true at low frequencies where inductors
become impractical because of their bulky size and considerable departure
from ideal behavior. This fact coupled with other technology development led
circuit designers to the investigation of inductorless networks. Particularly,
research in active RC filters initiated more than two decades ago, matured
quickly with the advent of integrated circuit technology in the mid and late
sixties [40]. As most of the communication and instrumentation systems became
smaller in size, the filters' part appeared to be the bulkiest. More
seriously, inductors are not readily adaptable to integration which dominates
most of today's systems. Attempts to produce integrated circuit inductor have
generally failed. The search, therefore, started for developing methods of
retaining the effect of inductors while avoiding their actual use. The methods
come under the general heading of active filter synthesis, in which the circuit
elements used are resistors, capacitors and one or more active devices
[31-58].

There are basically two distinct approaches to the design of active
filters with an order greater than 2. The first approach starts directly
from realizing the given transfer function H(s) as the voltage transfer function

of a feedback structure containing amplifiers and RC networks [6, 37, 44-46].
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It turns out, however, that if one attempts a direct realization of even

a moderately higher order transfer function in one feedback Toop, the
resulting network is quite sensitive to component variations. For this
reason, a more practical and simpler technique, namely the cascaded realiz-
ation of biquad, had been developed. Due to sensitivity considerations,
however, its utility is limited to filter functions of moderate stringency
[41, 46, 47, 52].

The other major approach is based on the simulation of LC Tadder
filters. The starting point is an LC 1adder prototype which may be readily
obtainable from the wealth of knowledge in the analysis, design and
manufacture of LC filters. As previously demonstrated, doubly terminated
passive LC ladders designed by Darlington's method exhibit excellent
sensitivity performance over the filter passband. One of the reasons for
the reduced transfer function sensitivity with respect to each ladder
component is that the ladder transfer function is dependent on all the net-
work components. Hence, the transfer function is spread out, with each
individual sensitivity being small in value. This spreading out of
sensitivity functions in an LC ladder may be visualized as if the ladder
possesses internal negative feedback that reduces the transfer function
sensitivity to each component. This point of view had led to the coupled
biquad structures, which indeed have lower sensitivities than the cascaded
structures [6, 50].

Also, the Tow sensitivity performance of LC ladders provided a strong
motivation to seek methods for designing active filters based on simulating

LC ladder prototypes [24, 42]. The simplest of these methods, at least
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conceptually, is the component simulation method. The component simulation
method is based on replacing the inductors by simulated inductors [31-43,

48, 52-54, 57]. An alternative method exists that simulates the operation

of the LC ladder rather than simulating an inductor in the LC ladder. This
method is generally termed operational simulation against component simulation
for the former case [6, 51]. It is generally recognized that the design
method based on LC ladder simulation method should be used whenever the filter

specifications are stringent.

4.1.1 Component Simulation - Optimum GIC

The use of more than one amplifier to realize an RC-active filter is
now economically viable because of the relatively low cost of high performance
operatijonal amplifiers. As a result, the topic of multiple-amplifier RC
active filter design has become increasingly important in recent yearss this
is basically because multiple-amplifier RC active filters may be designed so
that the magnitude transfer function is highly insensitive to the tolerance
errors associated with the RC elements and to the imperfections of the op
amp's. The major technique that is currently used most to implement high-
quality RC active filters is to simulate the behavior of doubly terminated
LC filters by directly replacing inductors by simulated inductors. A number
of circuits for inductor simulation has been proposed [31-34, 57]. The use
of the Generalized Immittance Converter (GIC), particularly the Antoniou GIC
is the most widely accepted for the simulation of inductors and for the
design of high quality RC active filters in general.

Fig. 4.1 shows the Antoniou GIC embeded in an arbitrary network.

Assuming ideal op amps with finite gains, A] and A2, a straightforward
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analysis yields

) Y v £y Y
1 2 1 2 1 2 2
1T+ — (1T +Y, =& |+ — = {1+Y, «—| t+—|1+t—]{1+Y, —
El.: _Ig-Y]Y3 A] ( 4 12 A2 Y3 [ 4 IZ] A1A2 Y3 4 12}
1 V2 Y2Y4 1+ _]_X.:i ]+_Lig_+_1__ ]+_LE.2_ + 1 ]+X§\ ]+_]_I_2_
A] Y2 Y4 V2 A2 Y4 V2 A]A2 Y2 Y4 V2
(4.7)
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Fig. 4.1 The Antoniou GIC embedded in an arbitrary network.

If we represent op amps by the one-pole rolloff model, and further approximate
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where wt] and “t, are the gain bandwidth products, then, ignoring the terms

2
(éiﬁz, we have
t
(
Lo LY b 3 0% Y3 L w2 o TV 1 D
Nl e il L] Pro K P w0 I e il O PRl A A%
1 2 24 t] 2 2 24 °2 t2 3 372 4 °°2
(4.2)
For ideal performance it is desired to have
Y. Y
b N3 (4.3)
1 Vo Yoly
independent of wt] and wtz. Thus, from (4.2), it is required that
Y ) Y I
R L 10
2 2 2 4 72
Y2 Y2Y4 V2 1 I _
v lty oy v, 70 (4.5)
3 3 2 4 "2
Y5
Since in general T is a function of frequency and takes on a
Y, "2 V, Y
complex value, (1 - 7§) term must be linearly independent of (Y, Tg"Vi .
2 P22
J . VZ). Thus, from (4.4) or (4.5), we can see that it is necessary to have
4 2 Y
(1 - 32 = 0 which implies
2
Y2 = Y3 (4.6)

Substituting (4.6) into either (4.4) or (4.5), we see that it is also
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necessary to have

AN (4.7)

(4.6) is easily satisfied by letting Y2 = Y3 = g where g is real. However,
v

satisfying (4.7) is seldom possible as Tg' has in general components
2
orthogonal to ¢ . Substituting (4.6) into (4.2) results in
4

-
=<

I I
1 _ 72 1 o W
B hesfe e

w W
1 2 4 t,

( 1 )
1
lY4 - v—“z“}l : (4.8)
“t

2 472 J

For the best performance, we make the quantity M = Y4(V2/12)—(1/Y4)

(IZ/VZ) as small as possible at the most critical frequency, w_, in the

c
filter transfer function. This frequency is the one where the greatest
group delay occurs and is usually close to the passband edge.

Letting Y4 = ij4 where C4 is real, M is minimized if

L
U)C C4 = 'V—Z— _ (49)
w—wc
The corresponding value for the GIC transfer function is
I LN 6, w
Uil 1-2|—+ ZT_% cos © at w = w, - (4.10)
1 2 4 t] t2)

From (4.9), we may write that for most ideal performance one selects
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I
2
v (4.11)

2

W= w
C

Taking the absolute value of both sides of (4.10) at 0= w, and

assuming w<<w, , w<<w, , We see that satisfying equation (4.11) is approx-
1 2
imately equivalent to making

I

1
vy

(4.12)

(JJ"(L)C

We can interpret (4.11) and (4.12) as follows: at the critical frequency
we the magnitude of the end-admittance Y4 o? one side of the GIC must be
matched to the magnitude of the admittance Vé" seen by that side of the
GIC. The magnitude of the other end-admittance Y] will then be approximately
matched to the magnitude of the admittance é%—, seen by the other side of the
GIC. It must be noted that this condition implies some sort of "proper
termination of" the GIC; and this together with the fact that Y2 =Y3 ensures
optimum GIC performance.

Now let us simulate a grounded inductor with an optimum GIC. The
circuit for simulating an inductor is shown in Fig. 4.2.

Setting Y2 = Y3 means that

R, = R (4.13)

Also, setting implies that
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Fig. 4.2 The Antoniou GIC used to realize a grounded inductor.

Substituting (4.9), (4.17) and TZ' = R5 into (4.8), we have

h
vy

w=w

1

C

JR]

W
1+2{C

Wi

1

+J

which implies that at w = w, the input inductance has infinite Q-factor

but undergoes a deviation in value given by

(4.15) also suggests that R] may be used to adjust or trim the value of

the input inductance.
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(4.14)

(4.15)

(4.76)
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In practice, w, << Wy therefore, it can be seen that an accurate

and high Q inductor can be simulated with the GIC circuit.

4.1.2 Active Realizations - GIC Ladder Embedding Technique

The LC ladder realizations of BP filters have, by necessity, floating
inductors. Although a number of circuits has been proposed for simulating
ungrounded inductors [32, 33, 53, 57], none has been found to be practically
viable [6]. Although no practical op. amp. implementation of a floating
inductor exists, a number of techniques have been developed for the realization
of BP filters using GIC s. A1l these techniques involve a complex frequency
transformation of a part, or parts, of the LC ladder prototypes [35, 36, 387.

Gorski-Popiel's ladder embedding method has Taid the foundation for the
realization of LP and general BP filters using GIC s. Let us now refer to
Fig. 4.3. The resistive n-port N' is connected to the muTti-GIC network N

1

to form the composite n-port N. Note that N1 is formed of n identical (ks)

GIC s of the current-transformation type, i.e., the ith GIC is described by

— t = ]— !
Vi = Vi and Ii s Ii'

Let N' be characterized by

then we may write
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Fig. 4.3 Simulation of an inductive network N through
the connection of a topologically identical
resistive network N' and n GIC s.

Thus, the composite n-port network N will be characterized by an impedance

matrix Z given by

Z=ksZ

Since 7'describes a resistive network, then Z describes a topologically
jdentical inductive network with each inductance in N equal to the resistance
of the corresponding resistor in N' multiplied by the constant k. Note that
the number of GIC s required, and correspondingly the number of capacitors,
is not equal to the number of inductors in the subnetwork being simulated.
Rather, it is equal to the number of terminals that connects the inductance

subnetwork to the rest of the LC ladder network, discounting ground. A
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floating inductor has to be considered as a two-port and realized using
two GIC s, with two capacitors.

A possible realization of three equivalent doubly terminated LC Tadder
networks developed in the previous chapter for n=2, Bn:=0.1 is shown in
Fig. 4.4 using ladder embedding technique. As can be noted, the network
N32 requires three GIC s where others require only two. The resulting net-
works are optimum in the sense of minimized dependence on the op. amps.
frequency response. This is achieved by ensuring that each GIC is properly
terminated as mentioned previously. Also, N3] and N33 are canonic in the
sense of minimum number of GICs required. It should be noted that the dual
of N32 requires only two GICs whereas the dual of N33 requires three GIC s.
Since the non-conventional equivalent reference networks N32 and N33 are less
sensitive to inductance deviations as compared to the conventional prototype
N3j, it is equally valid to conclude that their counterparts N3z and N33 in
Fig. 4.4 are less sensitive than N31 with respect to GIC coefficients.

For the case when n=3, each one from N] to N7 in Fig.3.6 requires
three GIC s, however, the duals of N2 to N7 requires four GIC s, while the

dual of N1 requires only two.

4.2 Digital Canonic Filters
Digital filtering is the process of spectrum shaping using digital

hardware as the basic building block. Thus the aim of digital filtering is

the same as that of analog filtering, but the physical realization is different.
Real-time digital filters have several advantages over analog filters [59].

A greater degree of accuracy can be attained in the digital filter realization.
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A great variety of digital filters, can be built, since certain realization
problems associated with negative element value do not arise.

No special components are required to realize filters with time varying
coefficients. No aging process can affect the parameters of the digital
filters. In addition, they can operate down to extremely low frequencies
(e.g. 0.01 to 1 Hz) where the size of analog components becomes appreciable.

As is in the case of analog filters, the design of digital filters
involves the process of finding appropriate transfer functions to meet the
required specifications. These specifications are often given in the
frequency domain in the same way as those for analog filters.

There are at least three techniques for designing infinite impulse
response recursive digital filters, which are derived from a transformation
of the transfer function of analog filters: the impulse invariance, the
bilinear transformation and the matched z-transform technique [66]. Since
there are many transformations, so are many network realizations of the same
transfer function. In practise, there are a number of basic network structures
commonly encountered, such as, direct form, canonic form, cascade form,
parallel form and so forth [69, 70]. One consideration in the choice between
these different structures is computational complexity, i.e., networks with
the fewest constant multipliers and the fewest delay branches are often most
desirable. On the other hand, the effects of finite register length in actual
hardware realizations of digital filters depend on the structure, and it is
sometimes desirable to use a structure that does not have the minimum number
of multipliers and delays but is less sensitive to finite-register-length

effects. It is to be expected that some of these structures will be less
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sensitive than others to quantization of the parameters [64]. Unfortunately,
no systematic method has yet been developed for determining the best
realization, under given constraints on the number of multipliers, word
length and the number of delays. In place of a detailed mathematical analysis
of the parameter-sensitivity problem, a common practical approach is the use
of simulations for determining acceptable quantization of the parameters of

a given network. Another aspect is that due to the finite word length, zero
input 1imit cycles and overflow oscillations can occur in recursive digital
filters [60, 61]. Some structures have been reported which are free of limit
cylces when magnitude truncation is used for quantization, and which do not
have overflow oscillations [73]. However, due to the complexity of the
mathematics involved, the important results have so far been limited to
sections of order not exceeding two. This is sufficient, in principle, since
conventional digital filters are built by cascading first- and second-order
sections.

An alternative way to overcome these sensitivity and stability problems
was proposed by Fettweis [62]. Fettweis has derived a class of digital filters
which has the Tlow passband insensitivity which doubly terminated LC filters
are known to have. These filters, known as wave digital filters (WDF), have
been essentially derived from analog reference networks by applying the

bilinear transformation directly to the circuit elements.

4.2.1 Wave Digital Filter
The design procedure for WDF s imitating ordinary LC Tadder filters is

based on the voltage wave scattering representation of the reference analog
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filter structure together with the application of the bilinear z-transformation
[62]. With this method, the frequency s in the analog filter is replaced by

the frequency variable y defined by

-sT -1
p=lot =12 - am (3 (4.17)
1 +e 1 +z
where T= %L~ is the sampling interval, and z is the discrete-time domain
s

complex frequency variable. Voltage waves are used as the signal variables so
that the reactance elements are characterized by a delay. For s = jw, we thus

can write

Y= J¢ ¢ = tan (%I) (4.18)

where ¢ is the analog frequency and w is the digital frequency.

A list of some basic circuit elements with their corresponding wave flow
diagrams as derived by Fettweis is given in Appendix II.

By means of wave adaptors such as the two-port adaptor, the n-port
parallel adaptor and the n-port series adaptor, Fettweis and Sedlmeyer have
obtained a true ladder wave digital structure from a doubly terminated LC
ladder network [67, 74]. Such a wave digital realization is elegant in the
sense that it is not only simple in concept and implementation but also has
salient advantages over the conventional digital realizations. Namely, due
to the insensitivity of the doubly terminated ladder networks, the coefficient
sensitivity is much smaller, which in turn implies that a significant

reduction in the coefficient word length is possible [63, 76, 77]. Also,
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it has been shown by Fettweis and Meerkotter [65, 72] that it is stable
and much easier to eliminate parasitic oscillations, both granularity and
overflow, in such a structure. Furthermore, it is relatively simple to

translate any well-known classical ladder filter directly into a WDF form

when compared with other approaches [71, 78].
4.2.2 Wave Digital Filter Realization

4.2.2.1 Wave Transfer Function

The Darlington circuit structure, which is reproduced in Fig. 4.5
for convenience, is the most preferred analog filter structure. Such a

structure is normally described by either its voltage transfer function,

(9) = 22 (4.19)
V](wi ’
or by its transmission coefficient
1
R] 2
t(y) =2 {‘]:\72_} H(w) (4.20)

where ¥ is the continuous-time domain complex frequency variable.

+0—£—|—b———j\/\lr'0————-——- “<]:2 +
¥ LC |
\4 \ﬁ ___,,l 2 R23 Vé
_ Two - Port
Zin(s)

Fig. 4.5 Doubly terminated lossless network.
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For a given port with associated references for voltage v(t) and the
current i(t) as shown in Fig. 4.6, we define the incident and reflected

voltage waves a(t) and b(t) respectively by,

a(t) = v(t) + R i(t) (4.27a)

b(t) = v(t) - R i(t) (4.27b)

or in the complex frequency domain,

>
I

V + RI (4.22a)

B = V - RI (4.22b)

where A, B, V and I are the complex amplitudes of the signals and R is the

reference resistance, normally positive, chosen for the port.

i (t)

B,
L4

a(t) — +
vit) R

b(t)e—— -

-
oS-

Fig. 4.6 Definition of port variables.

By using these definitions, from the Fig. 4.5 we can obtain,

for port 1,

A]= % +Rﬁ]=v] (4.23)



for port 2,
A2 = V2 + R212
B = V2 - Ry
Since V2 = - R2I2 , from (4.24) and (4.25), we have
Ay =0
B, =2V,

respectively.

Substituting these into (4.24) and (4.25), we obtain,

W(y) = .

where W(y) is the voltage wave transfer function by definition.

Thus, from (4.19), (4.20) and (4.26), we have

i
™~
e g
——
<
g

W(y)

It is important to note that the magnitude of H(y), t(v) and W(y)
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(4.24)

(4.25)

(4.26a)

(4.26b)

(4.27a)

(4.27b)

differ by, at most, a frequency independent constant, and hence a realization
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of any of these functions produces the desired frequency response.

As previously mentioned, the WDF design technique is essentially based
on the analog filter configuration by applying the bilinear transformation
(defined in (4.17)) directly to the circuit elements of the analog reference
network and by connecting each transformed element (see Appendix II) through
wave adaptors [62, 67, 74]. An alternative wave digital structure in the
form of a single n-port adaptor terminated with feedback through memory has
been proposed by Martens, et.al. [75, 79]. Unlike the procedure taken by
Fettweis et.al., this method utilizes the voltage wave scattering matrix of
the n-port consisting of the reference network interconnections which results
in a wave digital n-port adaptor directly. This method i3 not restricted to
the transformation of ladder prototypes. However, it should be noted that
both approaches result in exactly the same multiplier coefficients. It is
the direct transformation of the elements that differs from the conventional
recursive digital filter design techniques where the transformation into the

discrete-time domain is made directly on the transfer function [66, 69, 707].

4.2.2.2 Wave Adaptors

The adaptors form the main building blocks in a WDF design. Parallel
adaptors serve to simulate the parallel connections and series adaptors the
corresponding series connections [74]. Since the elements in a ladder
structure are arranged in a series-parallel form, it is straightforward to
replace them with elementary three-port series and parallel wave adaptors.

These adaptors are described in detail in Appendix III.
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4.,2.2.3 Canonic WDF Realization

We have seen how various circuit elements (inductance, capacitance,
resistance and source), and adaptors (three-port parallel and series), can
be built which serve as building blocks for the wave flow diagrams to be
realized. When interconnecting these building blocks, the followina
principle must be observed [62]:

1) The building blocks are interconnected port by port, i.e., the two
wave terminals of one wave port are connected with the two wave
terminals of precisely one other wave port.

2) The waves corresponding to any two wave terminals that are joined
together are compatible, i.e., they flow in the same direction.

3) The port resistance of two wave ports that are interconnected are

the same.

In earlier publications, Fettweis has introduced a cascaded unit element
to satisfy the realizability condition for the resulting signal flow diagram,
j.e., to satisfy the requirement that no closed Toop without a delay may
occur when the adaptors and elements are interconnected. Although, the unit
elements introduced can be used perfectly well for improving the filtering
capabilities, filters of that type do not really corresponﬂ to what are
commonly considered to be true ladder filters.

This drawback has been overcome in a later publication by Sedlmeyer
and Fettweis [67] by introducing the concept of a wave adaptor with a reflection

free port. Also, it has been shown that by means of reflection free wave
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adaptors, any LC Tadder filter can very easily be transformed into a

corresponding digital structure in which the number of multipliers

corresponds to the number of degrees of freedom in the original LC filter.
By using the above mentioned rules and building blocks, for WDF

obtained from doubly terminated LC canonic ladder networks, it can be

easily shown that,

(1) the realization is always possible with only three-port wave adaptors,

(2) the number of three-port adaptors required is the same as the number
of energy storage elements in the original LC network,

(3) only one of those three-port adaptors used in the realization does not
have a reflection free port,

(4) the number of dependent ports is equal to the number of the three-port
adaptors used, and

(5) the number of required multipliers is equal to the number of the three-

port adaptors used plus one.

Therefore, the WDF resulting from a canonic ladder network is also canonic
in the sense that the number of required multipliers and the number of
required wave adaptors is minimum.

Three different structures of fourth order bandpass canonic ladder net-
works with their corresponding WDF realizations are shown in Figs. 4.7, 4.8
énd 4.9. As can be noted in Fig. 4.7, the conventional BP network can be
realized with either two four-port adaptors or four three-port adaptors, and
in either case, the number of multiplier required is the same, i.e., both

are canonic.
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In Fig. 4.8 and 4.9, it can be seen that two WDF realizations are
exactly the same except for the positions of the inverted delay elements.
This is due to the LP-HP frequency transformation, i.e., the reference net-
work N32 can be obtained from N33 by L-C interchange which in effect

exchanges the role of each reactive element.

4.2.3 Sensitivity Considerations and Comparisons

Since wave digital ladder filters are designed in such a way that they
imitate the behavior of doubly terminated LC ladder filters, it is possible
to achieve the extremely low sensitivity characteristic with respect to
parameter variations [79]. Although tolerance problems as such do not exist
for digital filters in general, major problems occur due to coefficient word
length limitation and roundoff or truncation noise generation [60, 61, 69,
70].

It has been shown by Fettweis [63] that for digital filters there
exists a direct and an indirect connection between the generation of round-
off noise by a multiplier and the effect that the coefficient word length
limitation of this multiplier has upon the response characteristic: rounding
can be interpreted as coefficient fluctuation, and any design method requiring
fewer digits for the multipliers makes it possible to increase the signal
word lengths without an increase in overall complexity. It confirms why
digital filters with reduced attenuation sensitivity, such as ladder WDF,also
produce less roundoff noise. Subsequently, Fettweis has proved the stability
property of the WDF's in a direct way, i.e., without being inferred from

certain analogies with analog filters [65].
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Fig. 4.7 (a) Fourth order canonic bandpass filter

(b) Corresponding wave digital filter using two
four-port wave adaptors

(c) Corresponding wave digital filter using four
three-port wave adaptors.
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Furthermore, using simple arithmetic operation Fettweis and Meerkdtter
have been able to guarantee the absence of parasitic nonlinear oscillations,
such as, limit cycle oscillations and overflow oscillations 1in the WDF
structures for which all port resistances are positive [72].

It appears then that in WDF realizations, the sensitivity with respect
to variations of the multiplier coefficients is the most important design
criteria. We have shown in Chapter III that the non-conventional canonic BP
ladder networks tend to have better sensitivity performance. As expected,
this tendency is consistent with WDF realizations [80].

To compare the sensitivity characteristics of WDF directly derived from
the doubTy terminated canonic ladder filters, a new analysis method is given
below.

From WDF realizations such as shown in Fig. 4.7, 4.8, 4.9, it is
straightforward to obtain multiplier coefficients in terms of element values.
Let us consider a reference network with n elements in it, say, Ri' By

R.
taking ratios of element values, say Py = El' (i # j)s we can always reduce
J

the degree of freedom by one.
For convenience, let us normalize the element values with respect to

R.
R1, i.e., p; = ﬁltlcisn-U,then the transfer function can be written as

1
H(w) = H(ys 05 055 -2 ) (4.28)

to show the explicit dependence on the Ps-

Recalling the fact that in the canonic realization the number of

multiplier coefficients required is (n-1), let us designate multiplier
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coefficients as ay s k=1,2, 3, ... n-1. Then each e is a function of
element values Ri' Thus, it is always possible to represent p; as a

function of o s i.e.,

o5 = 0y (a], Gps Ogs wvv G 4) 5 1= 1,2, ...n=-1. (4.29)

i

ap.
Now, suppose that the functions in (4.29) have partial derivatives §&l
k

with respect to each variable o> then on fixing in (4.29) all variables
except o , we obtain a composite function H(y) of just one variable o . Thus,

the derivative of H(y) with respect to o can be computed by the chain rule,

and we obtain,

oH . aH %P, e % w0
Bak 8p1 aak sz Bak T apn_] aak
n-1 EIsP
oH i
= 3 = . (4.30)
=g P 9y
Bpi
This is valid whenever H(y) is differentiable and the derivatives CY
' k

exist, which is true in our case.

The sensitivity function of H(y) with respect to oy is by definition,

T T - (4.37)

Substituting (4.28) into (4.31) we have
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o n-1 30 -
S = H I 5T T
k i=1 k
n-1
=Z akoaHuap.l (432)
i= H Bpi Bak
By manipulating (4.32), and from the definition of sensitivity
function, we obtain
n-1 a 5
H _ = Py 9 H k P
Sa, H " 3p.  b. 3o
k i=1 Py i k
n-1
=T i (4.33)
i=1 Py k

That is, the transfer function sensitivity with respect to multiplier

coefficient oy can be represented as a multiplication of two sensitivity

GH(Y)
;

elements in the network. This can be represented conveniently in a matrix

and  SPi . symmed over the number of normalized

functions, o
k

form as below.

[ H 5Py P2 L. Pn-1] [SM
| & % * Py
s 5Py T s
C!.2 OLZ 052 &2 QZ
_ : : : ’ : . (4.34)
sH Py P2 $Pa-1 sh
“n-1 “n-1 “n-1 n-1 | Pn-1]
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Using this analysis method, the WDF realization of two equivalent
reference networks, N3] and N33, in Table 3.4 has been examined. Figs.
4.10(a) and 4.10(b) show the magnitude senstitivities of the transfer
functions with respect to multiplier coefficients in the passband as a
function of digital frequency. It can be noted that the non-conventional
reference network yields much better characteristics. In particular, we
note that the sensitivity curves in Fig. 4.10(b) in contrast to those in
Fig. 4.10(a) are almost constant across the passband and hence multiplier
quantization will have Tittle effect on the shape of the frequency response
producing only a change in gain. This is confirmed by Fettweis' [68]

observation with respect to multiplier coefficients.
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Fig. 4.10 Magnitude sensitivity with respect to multiplier
coefficients; (a) for N31’ (b) for N33.



CHAPTER V
CONCLUSION

A novel approach, based on the removal sequences of the transmission
zeros, has been taken to generate all equivalent networks in canonic ladder
configurations. Theorems have been developed to generate independent
sequences of transmission zero removal, and the unique relationship between
the independent sequencesand the equivalent canonic networks has been
demonstrated by means of six basic sections which are responsible for the
removal of pairs of transmission zeros. A new straightforward procedure
has been developed that synthesizes the two-element-kind driving-point
immittance functions in all possible ladder configurations using a minimum
number of elements.

The procedure has been applied to the realization of singly terminated,
equivalent, canonic ladder networks. A closed form formula has been advanced,
which determined the exact number of equivalent canonic ladder networks for
a given bandpass type transfer function. An illustrative example is provided
to compare all equivalent networks with respect to certain specified design
criteria. A possible cost minimization scheme has also been suggested. A
method of deriving the doubly terminated equivalent canonic networks directly
from singly terminated networks has been developed. Using duality, it is
shown that the total number of doubly terminated canonic ladder networks, is
twice the number of singly terminated networks. A proof has been given
regarding the completeness of the set of equivalent canonic networks.

Equivalent networks are compared with particular emphasis on the transfer
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function magnitude sensitivity with respect to variations of element values.
An illustrative example is provided using a maximally flat fourth order
bandpass filter. In general, it has been shown that the newly generated non-
conventional networks require lower IL and render better sensitivity performance.
It has been pointed out, that for realizability, the value of the terminating
resistance is subject to certain constraints. These constraints are illustrated
for the cases of maximally flat fourth and sixth order bandpass functions
respectively.

Subsequently, these doubly terminated canonic ladder networks are used
as reference prototypes for conversion into a corresponding set of RC active
filters and a set of digital filters. They are all in canonic ladder
structure, and retain all the excellent features of the reference networks.
For the RC active filters, the component simulation technique, that utilizes
a ladder embedding technique of optimum GICs, is studied, and an example of
three equivalent realizations for the given function is presented. In digital
filter realization, a wave digital filter concept is adopted, and only three-
port, series and parallel adaptors are utilized. It has been shown, that all
the reference canonic networks result in canonic wave digital filters, in
the sense of a minimum number of mulitplier as well as adaptors. To compare
the transfer function magnitude sensitivities with respect to variations of

the multiplier coefficients, a new analysis method is proposed. Three canonic

wave digital filters obtained from three reference canonic networks of
order four are compared, based on this method. As expected, the wave
digital filter obtained from the non-conventional reference network

exhibits better performance than the conventional counterpart.
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The new canonic reference networks discovered in this study, having
ladder structures, may also serve as the prototype in the design of

precision monclithic high-order filters [81, 82] using MOS switched capacitor

techniques.



APPENDIX I

Element values in terms of the 6th order BP transfer function,
3
H(s) = 5 —

3 2
s+ a]s + azs + a3s + azs + a]s + 1

Table 1 Gain Values

Network Values of K

N, a7 4

Nz. (as-a1) (a az-a3-2,) .
aja,-az
N, 2374
(a3-a;)(a a,-a3-a))
N4
a a,-a;
(a3-2a;)(aja,-a3-a)
N5 aja;-a,
y (a3-232)(aja,-a3-a)
alaz-aa
N a,-2a

7 3 7
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Table 2. Inductance Values
Network L1 L2 L3 ZL}.
! 8,2;73,°2 (a3-Zal)(alaz-a3-al) ala32+25l3-833+a132832-ax2aza3-a‘3
Ny 3, alz al(a‘-,-a‘)2 612(33-3‘)2
EIEPRER 8,2,"33 (a‘az-a3)2(a3-2al) (3132'33)2(332'3132’312)
N ——
2 a 8 (s a,-23-2)) e‘(aa-al)z(alaz-ag-al) a‘z(aa-al)z(a\az-ayal)
1 38,7238, (23-2a)) (a)2,-24-2,) 8187733
N — - ——————————
3 8, 3y (a,-8)) alz(a3-a1) a2
1 (alaz-aa)z (alaz*ai‘)2 alzazz‘fa‘2a2-alz-axa3—Za|aza3+a32
N4 .a—l al(aa‘al)(a‘az'as’al) 512(83’ d‘)(alaz’as‘a‘) axz(a‘az-aa-al)
2 -2.)2(a,~
a 8,23 a13,-33 (alaz-a3) (312, a;) (az-ay)
N5 ‘12 8, (alaz-as-al) a‘(a3—2a1) (31‘62'63'3‘) alz(a3-2a1)(a1a2-a3-a[)
1 (ala2-a3)2 (alaz-a3)2 1 (33-31)(a2a1-a3)2
N — - ¢
6 8 ay(a;3-22)) (8,2,-25-3)) 8, (a;-28\)(aj27-33-3,) 3, a,2(a3-2a) (aj3;-a3-3;)
b 212,78574, ay8;783"3 6152"3‘332'51232*5135‘312
NG a2 a, (az-2a;) a,%(a3-22,)




Table 3. Capacitance Values
Network C.‘ C2 C3 ZCi
a a(a,-a,) 2 ) 2 23 3+
1 i 3 \ a‘ 33’31 3 3233'33' alaz 3&1)
N] 31838374, (33’23;)(8|82'a3’8|) (a3°2a|)(a|a2-a3-al)
- -g - 2
a 3, (ay al)(ala2 8;-a;) alz(a3-a|)(a‘az-33—al) 31*31(33'31)(‘1132‘33‘51)
N -3.)2
2 (318,°25) (33-23;) (a,2,-2,)% (a;-2a,) (a,a,-a3)%
8 a,? al(a3-a\l)2 a‘z(a2a3-23‘az+a|)
N PR O U—
3 aj8,-a3-a, (aja,-83-a)) (a3-2a;) (aja,-a3-a1) (a3-22))
a? 8 (a a,-a,-3) a (33-a1)2(a1a2—a3-a,) 81t (a3-2))2(a,3;-25-2)
Ny a3,y 83,743 (a3~2a‘)(ala2-a3)2 (33-2a‘)(a1a2-a3-a\)
(a,-2a,)(2,3,-8,-8,) a2 (aa248-2,3,-8,85)
a, al(alaz-aS"al) aylay- a.)(a,3,-35-4, i 192 |T82937¢%2
N
5 (aja,-24)2 (ellaz-aa)2 (a,a5-23)%
‘12 a (s ay-a3-3;) a3 (3,-23 ) (a;ay-35-3)) a‘z(alazz-a2a3+a3-2a,a2+2a,)
Ng 313,733 813,723 (a,a;-23)2 (a|az-33)2
) a sl a; (a;-2a;) alzfaz-l)
7 8,8,73,-a, a,a,-8;-8, a,8,-83-3(
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APPENDIX II

Wave Flow Diagrams of Basic Circuit Elements

This appendix presents the wave flow diagrams of some basic circuit
elements as derived by Fettweis upon applying directly the bilinear trans-
formation to these elements. For a given port with associated references
for the voltage v(t) and the current i(t), the instantaneous incident wave

a(t) and the reflected wave b(t) are defined as follows;

[o7]
—
t
~—
]

v(t) + R i(t)

o
—
-+
~—
H]

v(t) - Ri(t)

where R is the reference resistance constant, normally positive, chosen for
the port. The following table gives the wave flow diagrams of such basic
elements as a resistive source, a resistance, an inductance and a
capacitance together with the difference equations which result from the

wave digital realization.
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WAVE FLOW DIFFERENCE
ELEMENT DIAGRAM EQUATION
R i D , &
7T ° ’
e(t) Vv 3 alt) = e(t)
- -b -~ b
©
Resistive source
0 o
b(t)= O
b=0 (t)
@
i . 6
+ ag—
v Ry T b(t) =-a(t-T)
o P b |
Inductance of impedance
Ry
+""§‘“"_ a &
v ::% T b(t)= a(t-T)
b | be—< |
Capacitance of impedance
R/y
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APPENDIX III

Wave Adaptors

This appendix presents the description of elementary three-port wave
adaptors that are required for the WDF realization of the canonic LC ladder
reference networks.

(1) Three-port Parallel Adaptor

Consider three ports with port resistances R1, RZ’ and R3, respectively,
and assume these three ports are connected in parallel as shown in Fig. A.1(a).

The incident waves a and reflected waves bn are related to the voltage

Vi and current in by

a, = v + Rn i bn =V, T Rn L
(A.1)
n=1,2, 3
From the equalities Vi T Vy T Vg and i + i, + 13 = 0, we obtain the
adaptor equations
bn = (a]a] tooya, * a3a3) - a (A.2)
where
2 Gn 1
o = , G = = (A.3)
n G] + G2 + G3 n Rn
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Fig. A.1 (a) Parallel connection of three ports

(b) Corresponding adaptor

(c) Signal flow diagram corresponding to this
adaptor with port 2 chosen as dependent port.
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By making use of (A.4), the coefficient o of one of the ports, called
the dependent port, can be eliminated. By choosing port 3 as dependent port,

i.e., oy = 2 - (u] + az), (A.2) can be rewritten as

o
1]
o
-+
—
o))

I
o))

o
w
1
<8
w
i
Q
—
—~
s}
w
1
oY)
—t
N
1
e
[A]
——
o
w
!
ol
N
S

Fig. A.1(b) is a symbol of three-port parallel adaptor and Fig. A.1(c)
represents a signal flow diagram of three-port adaptor with port 3 being a
dependent port. As can be seen, this adaptor requires two multipliers and
has six adders since one of the five adders has three inputs. Of particular
interest are parallel adaptors for which one of the ports, say port 3, is

reflection free. In this case we must have,

ay = 1
1-€ Gy = Gy + G, (A.6)
Therefore, we have
a; + o, = 1 (A.7)
ay = gl— s Oy = Eg . (A.8)
3 3

Then, by choosing port 2 as the dependent port, i.e., @, = T - o 5 we have
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o
it
o
(@}
+
[«3)

2 3
b3 B bo * 8
where b, = - o (a2 - a]) .

Note that the output wave b, is independent of the input wave as

3
Fig. A.2(a) is a symbol of three-port parallel adaptor with the port 3

reflection free and the port 2 being the dependent port, and Fig. A.2(b) is

(a) (b)

Fig. A.2 (a) Three-port parallel adaptor with port 3 reflection free,
and port 2 being dependent

(b) Signal flow diagram corresponding to this adaptor.
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Fig. A.3

(a) Series connection of three ports

(b) Corresponding three-port series adaptor

(c) Signal flow diagram corresponding to this adaptor
with port 2 chosen as dependent port.
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the signal flow diagram of the corresponding adaptor. This adaptor requires

only one multiplier and four adders.

(2) Three-port Series Adaptor

Consider three ports with port resistances R], R2, and R3, respectively,
and assume these three ports are connected in series as shown in Fig. A.3(a).
The incident and reflected waves are again given by (A.1). However, in this
case, from the equalities iy =1, = 1, and vy v, + Vg = 0, we obtained

different adaptor equations as follows:

bn =a - o (a1 ta, t a3) (A.9)
where 2 Rn
a = (A.10)
n R.l + R2 + R3

with (A.4) still holding.

The dependent port is again that port for which the corresponding o
is eliminated by means of (A.4). Fig. A.3(b) is the symbol for a three-
port series adaptor and Fig. A.3(c) is a signal flow diagram of the three-
port adaptor with port 3 being the dependent port. This adaptor requires
two multipliers and six adders since two of the four adders have three
inputs.

Of particular interest are series adaptors for which one of the ports,
say port 3, is reflection free. In this case, we must have,

ag = 1 (A.11)
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i.e. R. =R, +R (A.12)

Thus, we have

ay + o, = 1 (A.13)
R R
1 2

Uy = =— o, On = == . (A.14)
1 R3 2 R3

Then, by choosing port 2 as the dependent port,

i.e., 0, =1 - ar s we have

b, = a; - oy (a] ta, + a3)

o
1

p = - (ag*by)

o
it

- (ag *+ay)

Note that the output wave b3 is independent of the input wave as.

The symbol for the three-port series adaptor with port 3 reflection
free is shown in Fig. A.4(a), and Fig. A.4(b) is the signal flow diagram of
the corresponding adaptor with port 2 chosen as the dependent port. Again,

this adaptor requires only one multiplier and four adders.

(a)

Fig.A.4 (a) Series adaptor with port 3 reflection free, port 2 being
dependent

(b) Signal flow diagram corresponding to this adaptor.
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