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ABSTRACT

Th'is thes'is is an exhaust'ive study of equ'ivalent bandpass fjlters in

canonic ladcler structure. Theorems are developed to determine and generate

the exact nunber of equìvalent canonìc ladder networks based on the sequence

of transm'ission zero removal at extrenre frequencies. It is proven that

there exists a unjque equivalent network correspondìng to each independent

sequence of the transmission zero removal. A strajghtforward procedure is

developed that synthesìzes the two-element-k'ind driving-poìnt functions in

all possìble canonjc ladder structures. The procedure is applied to the

realizatjon of equ'ivalent canonic ladder networks for a given bandpass transfer

functjon. An expìicjt formula is established for the exact number of sìngìy

terminated equìvalent canonjc ladder networks. Comparjsons of equivalent net-

works are made for the 4th and 6th order bandpass functions wjth respect to

certain criteria.

A direct conr¿ersìon from the single terminatìon to double terminatjon

is invest'igated for the normal bandpass transfer function,'i.ê., the transfer

function with an equal distributìon of transmission zeros at s=0 and s=æ.

it is proven that there always exists a p(s), the zeros of which satisfvine a

quadrantal symnetry requirement, and the ladder two-ports directly derived

from the s'ingly terminated networks forrn a compiete set of doubly term'inated

equivaìent canonjc ladder two-ports. It 'is also shown that those equìvalent

networks are conformable to the bandpass characteristic within a multiplicative

constant. A comparison among equìvalent networks for certain specified

crjteria is given with the emphasis on the nragnitude sens'itiv'ity of the

(j)



transfer function with respect to component value varjations.

The equivalent canonjc ladder networks are subsequently used as

reference prototype networks for transforming, b.Y means of component

simulation techniÇuês,into a correspond'ing set of active filters. A similar

approach, using a bilinear transformation, is taken to obtain wave dìgita1

filters, all in canonic ladder Structures.In the wave Cigíta1 fil¡e: tea''iza'lion,

a new analysis method for the transfer function magnitude sens'itjvity with

respect to multìpìier coefficient is presented and an actual sensitìvity

compa¡ison is made for the 4th order maximally f'lat bandpass fjlter as an

examp I e.

It is concluded that newly generated canonic bandpass ladder networks

reveal superior features in comparìson with the conventional network in the

passìve filter realizat'ion. The superior characteristics are preserved in

both act'ive RC and wave digita'l fjlters which are directly derived from the

prototype reference networks.
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CHAPÏER I

INTRODUCT ION

A filter, jn the most general sense, js a device or a system that alters

in a prescribed way the input that passes through ìt. Since the basic concept

of a fi I ter was ori g'inal ly j ntroduced by G. Campbe'll and K. l.lagner i ndependently

in .¡9.¡5, the developrnent of filter knowledge and filter technolog'ies has been

and js stiìì expanding. Today, fjlters have permeated the electronic

technology so much that jt js difficult to think of any system or devjce that

does not employ a filter in one form or another.

The fjlter synthesis involves two phases: one, called the approx'imation

phase, consìsts of findìng a realizable network function which approximates

the specifjcations, wh'ile the other, the realizat'ion phase, deals with the

synthesis of the obtained network function. After the approximation problem

is solved and a real'izable netv¡ork function (driving-point or transfer) is at

hand, what remains to be found is a suitable network having the given funct'ion

as its driving-point or transfer funct'ion. In thjs study, we assurne that the

network functjons are given, therefore' vre deal w'ith the second phase

excl usively.

Hjstorically the fjrst and still the most wide'ly used network structure

is the ladder network. It'is a restricted form of network in that it can have

transmission zeros only in the reg'ion of the comp'lex s-plane where the poìes

of the drjving-point immittances are located. Hence, in an LC ladder, alì

the transmjssion zeros rnust lie on the imaginary axis" including the orìgin

and i nfi n'ity.



Since S. Darìington Ill] presented an jnsertion loss synthesjs method,

the doubìy terminated LC ladder neturorks have been widely used ìn fjlter
design. The ladder networks exhjbit excellent sensitjvity characterjstjcs

and alsorendereasy tunabil'ity. Furthermore, due to the nature of the

structure they are readi'ly amenable for conversion into active and djgìtal

filters, retain'ing all the desìrable features of the ladder networks.

The network class which utìlizes a minimum number of elementsis saìd

to be canonjc. For econom'ical reasons, the canonic networks are attractive.

The fjrst canonjc realization was described by Foster for the LC immittance

function, hovJever, the circuit configuratìon was not of much practical

applìcations. The canonic ladder forms presented by Cauer, however, have

been used extens'ively'in filter designs, because they yield ladder structures

of high-pass or ìow-pass characterjstics. For the bandpass realization, jt

has been a generaì pract'ice to obtain a prototype low-pass network first and

apply the frequency transformation element by elenent. Recently, Kim [23]

presented a formula for the generatjon of equivalent bandpass ladder net-

works and suggested possible comparjsons of equìvalent networks for specìfìed

meri ts .

Th'is thesjs is a thorough investigation of the single terminated canonjc

ladder structures and their direct transformation into doubly termjnated

equivalent bandpass networks within the canonicity. As a consequence,

numerous non-conventjonal networks are generated that sat'isfy superìor design

criteria. Subsequently, these equivalent networks are used as prototypes

for the realization of RC active and dig'ital fjlters.

In Chapter II, theorems are presented that determine and generate the



exact number of equivalent canon'ic realizations of driving-poìnt jmmjttance

functi onsof two-elenent-ki nd.

Chapter IiI extends the theorems developed in Chapter iI to generate

all the equivalent canonjc LC ladder two-ports for the specìfìed pattern of

the transmjssion zeros. Sjngly terminated LC ladder two-ports are fjrst

developed and various design parameters are tabulated for comparison. The

results are djrec¡y appl'ied to generate doubly term'inated equìvalent canonjc

ladder networks. It has been proved that the process of equivalent network

generatìon is exhaust'ive and complete. A straightforward synthesìs procedure

ì s advanced w1 th ì I I ustrati ve examp'les. A brief i ntroductj on on sensi tj vi ty

funct.ions is presented to make comparisons among equivalent networks.

In Chapter IV, using those equìvalent canon'ic LC ladder two-ports as

reference prototypes, a method of dìrect conversion into act.ive RC and dig'itaì

fìlters is developed. In the first section, an optimum Generalized Immittance

Converter (GIC) is discussed and a component simulation techn'ique'is appl'ied to

the prototype ladder networks to generate equivalent act'ive RC bandpass filters.

The ladder embedding technique is empìoyed for the minimum number of opt'imum

GICs. In the second section, a wave digitaì filter realization method is

introduced and the equ'ivalent reference canonìc ladders are direct'ly converted

into true ladder wave djgita'l filters that are canonic jn both the number

of detays and multip'lìers. A new anaìysis method for transfer function

sensjtivity w'ith respect to mult'ipl'ier coefficjent varjatjons is presented.

An example is provjded to jllustrate the basis for comparison among canonjc

equìva'lent wave dìg'ita'l f ilters jn ladder structures'



Concludìng remarks are made and subsequent extens'ion to the desìgn of

precìs'ion monoljthic high-order fjlters usìng MOS swjtched capacitor technìques

is suggested in Chapter V.



CHAPTER II

EQUIVALENT CANONIC LADDER NETWORKS OF

Tt¡lO- TLEMINT- KI ND

Networks contain'ing the minimum number of elements to meet given

specifications are said to be canonjc. A method for the realization of

driving-point functjons of two-elenent-k'ind networks jnto canonic form was first
proposed by Foster for LC networks. The procedure is straightforward: a

partial-fraction expansion js appìied on either impedance Z(s) or admittance

Y(s), and each term is synthesìzed, and interconnected accordingly either

i n series (tfre fi rst Foster form) or i n para'ìl el (the second Foster form) .

The other two canonic realizations named after Cauer, are based on the

continued-fraction expansion. The fjrst type is the continuous removal of

the po'le at s = * and the second type of the expansion removes the poles

at s = 0 continuously. The corresponding ladder networks are called the

first Cauer form and the second Cauer form,respectively Il - 2].

Generatjon of new canonic structures, for obvious reasons! has aìways

been å. topic of interest. Lee [9, 9] recent'ly showed the exjstence of

other canonic structures; one is the non-symmetrical lattice, where the

series elements are of opposìte kinds and the other is the bridged-T

structure. In both cases, the canonic cycìe reduces the order of reactance

function by four.

More recent'ly, Ramachandran, et. al . ['10] presented a new canonjc

realization cyc'le of order six for the realization of lossless inrmittance



functions, which is based on a twin-T network.

In practice, often one canonic form may be deemed preferable to others

under specified criteria such as element sìze, compensation for paras'it'ic

effects, element value spread, tunability, structure, etc. The canonjc net-

work in the ladder structure is most preferred by filter designers for

a number of reasons:

The ladder is a network structure which has a topology such that the

alternating series and shunt arms are made up of sìmpie L or C elements,

or sìmple combjnationsof these. As a consequence, each arm is responsible

for creat'ing a transmission zero, and, vice versa, each finjte non-zero

transm'ission zero can be identified with a branch. Thjs makes the tuning

of the ladder fjlter relatively simpìe. Equa'l'ly important, due to this

property, the transm'ission zeros of ladders are fa'irly insens'itive to element

variations, as compared to the transmission zeros in circuits which depend

on a bridge-type balance of several branch impedances to obtain a zero 0f

transmi ss'ion. Above al I , most app'l i cati ons requ'ire a fi I ter wi th a

common ground (i.e., unbalanced structure) for wh'ich the ladder structure is

a natural choice.

The realization of the required reactive ladder networks can be reduced

to the synthesis of the associated driving-point function implement'ing

simultaneously the given transmission zeros. Therefore, the theory of LC

driving-point function synthesis and its appìications were well developed

[r - 7].

It is essential to generate all the possible equivalent canonic ladder

networks if we are to compare various merjtorious features for a specific



application. In this chapter, a new straightforward procedure is developed

that synthesizes the two-element-k'ind drjving-point network functions into

canonic ladder structure. A closed form formula is presented to determine

the exact number of equivalent canonìc ladder networks for the specified

dri v j ng-po'int functi on.

?.1 CANONIC LADDER REALIZATION OF LC DRIVING.POINT FUNCTIONS

2.1 .1 Cl assi f ì cati on and Def i n'iti ons

The LC drivjng-poìnt ìmpedances are rational polynomìaì functions of

the complex frequency varìabìe, and can be classifìed into four dist'inct

types as follows:

urn'n * uzn-zr?n-? * ... * urrz * uo
z^(s) =A\'/ - .^ *2*l i u^ ^r2n-3 *... * a^s3 * u.,

lz.ra)
zn_ls-"' * u,n_3t ...+ a3s- * ul

2n-1 2n-3 3

- r, u2n_lt'"' * uzn_3sL' v + ... + a3s- + als
Zr(s) = (2.1b)

z^(s) =

2n+1 2n-3 ?
azn+lscr'I * u2n-lt'"-'+ ... + ars" + als

(2.1c)
u .z¡* u,rn_rrzn-Z * ... * urrz * u

u'nr'n * urn-rrzn-Z * ... + ars2 + ao
(2. I d)zo(s) =_?

a1n+jsLrr¡r * u,,n-la'" '+... + a3s" + als

c\"' 2n- u2nt * u2n-2t



It is to be noted that ZO and Z, are of even order, and structurally dua'l

to each other. They possess the propertìes:

ZA(0) =Z¡(-) =- and ZB(0) =ZU(*) =0

0n the other hand, Z, and ZO are of odd order, and structually dual to each

other exhjbitìng the propertìes:

ZC(0) =Zr(*) =- and ZD(O) =Zo(-) =0

It js easìly seen that Z, and ZO can be reduced to ZO, or 7, type, by simpìy

removing a single element as shown in F'ig. 2.1. Because of this reduction,

,ffi=ru
,ffi ,i*-E

Fig. 2.1 Reduction of 7, and ZO types into ZO or
Ze tYP



the synthesìs procedure developed for ZO and ZU types can be directly

applicable to the realization of 7, and ZO types. Therefore, we will

consider only the synthesis of ZO and Z, types of order 2n.

To realize the LC driv'ing-po'int ìmpedance of order 2n into a canonic

form, 2n elements are required, and all the transmjssion zeros occur on

the j¿¡ axis. Depend'ing on the locat'ion of transmissíon zeros on the jur

axjs, LC canonic ladder network can be class'ifjed as follows:

(l) Low Pass (LP) Network; all the transmjssion zeros are at s = æ (first

Cauer form).

(Z) High Pass (HP) Network; all the transmissjon zeros are at s = 0 (second

Cauer form).

(3) Band Pass (BP) Network; an equal or non-equa'l distrjbution of trans-

mission zeros at s = - and s = 0. t^le shall cal I the one that has an

equal distrjbution "normal BP network" to distinguìsh from others.

(4) Band Stop (BS) Type; all the transmission zeros are at non-zero finite

freq uenc i es .

The networks for LP and HP are well known as Cauer forms, and they are

un1que. However, the networks for BP are structurally diVerse, thus

suggesting the possible equivalent networks. The canonic realization in BS

type results in a unique structure, but element values djffer depending on

the order of realization of the non-zero finite frequencies.

2.1.2 Properties of LC Driving-Point Impedance of Zo and Zu Type

The driving-po'int impedances of type ZO and Z, are the speciaì kjnds

of positive real functions. They have the follow'ing properties:
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(i) The numerator and denominator of ZO are even and odd, respectìvely,

and Zr(s) 'is the dual of ZO(s). Consequentìy,

zo(s) = - Zo(-s) zr(s) = - Zu(-s)

(ii) The degree of the numerator and denominator polynomìals djffers by

one at most.

(iji) All the poìes are simple wjth real and positive residues, and occur

only on the imagìnary axis of the s-plane. Since the'inverse of 7O

or Z, is functionally ident'ical, the same statements hold for the

zeros of the functions.

(iv) The poles and zeros must always ìnter'lace on the imaginary axis.

2.1.3 Total Number of Canonic LC Ladder Networks

The fundamental operation of passive network synthesis is the po'le

removal operation. Poles are removed impìementing simultaneously the trans-

mission zeros Il - 7].

The canonic ladder realization of the LC driving-point immifrance

function of order 2n requìres that:

(i) Due to canonjcìty, the number of elements is 2n.

(ii¡ Due to structure, the transmission zeros are realized as the poles

of series arm impedances or shunt arm admjttances.

The requirement (1), in turn,'implies that 2n full removal operations

are required'if removed at s = 0 and/or S = æ only, and n full operations

if removed at non-zero finite frequencies on'ly.



ll

Let us first consider the variety involved in the removal of po'les

at extrene frequenc'ies, viz. at s = 0 and s = æ. It is straightforward

to show that by removing the pole of the LC immittance function twice

ejther at infinity, at the origin or at both, we can reduce the order of

the function bY two.

The follow1ng development for the systematic order reduction is based

on the property that "the LC'imm'ittance has a zero at s = 0 (s = ') if

it is devoid of a Po'le at s = 0 (s = -¡".

Let us consider ZO type first,ZO(s) has a po'le at s = 0 and another

ât 5=-. After remov'ing thepo'le at S = 0,71(s) has a zero at s = 0

retajning the Pole at s = æ

zo(s) = {!n+ 2.,(s) Q'2)

Then, by remov'ing the poìe of Y1(s) at s = 0, we have,(Yrfs) * t/Z1Cs))

v,(s) = {þ + v*(s)

where V*(s) has a zero at s = 0 retaining the zero at s = æ. Thus, the

remainder function Z*(s) of order 2(n-l) is of ZO type'

Secondly, if we remove the pole at s = - fjrst we have

zo(s) = L-s + Zl(s)

where 2.,(s) now possesses a zero at S = ær retain'ing the pole s = 0'

Further remov'ing a pole of Y.t(s) at s = -, wê write

(2.3)

(2 .4)
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v., (s) = C- s + Yo(s) (2.5)

where Y*(s) has a zero at S = ær retajning the zero at s = 0. Thus, the

remainder function Z*(s) of order 2(n-l) is agaìn of ZO type.

For the last case, we may remove the two extreme poles or Zo(s)

simultaneously; i.e.,

zA(s)-llco*L-S+Z*(s) (2.6)

then, the remainder function ZR(s) has a zero at S = 0, and another zero

at s = æ, têsulting in the Z* type.

l,le can conclude that the type of irnpedance function changes on'ly when

a pole is removed alternately at s = 0 and s = *. since Z, type is a dual

of 7O type, the sar¡e statement holdswìth a dual configuratìon.

These processes of reducing the order of a given function by two are

named three reduction cycìes, and they are summarized in Fig. z.z(a) for

both ZO and Z, types.

The reduction cycìes may be classified by the two homogeneous pairs

(00)' (*-) of the transmission zeros and a heterogeneous pair (0 -) as

shown in Fig. 2.2(b) depending on the type of the impedance function to be

real ized.



l3
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Recal'lìng the fact that a canonic ladder network is reaìized by a

process of continuous poìe removal in a specific way, w'ith the aid of the

table ìn Fiçr. 2.2(b) we can eas'ily show that a different combination of

pairs in sequence will produce a different canonìc ladder. For example,

the sequence consisting of only (--) pa'irs produces the first Cauer form

and consìsting of only (00) pairs, the second Cauer forrn. The sequence that

is made of only (0-) pa'irs y'iel ds a normal BP network.

Now, we will present theorems by which we can deterrnine the exact

number of independent sequences, therefore, the exact number of equivalent

canonic ladder networks.

Theorem 2. I

Given an LC drivi ng-po'int ir,rpedance function of ZO(s) or Zr(s) type

of order 2n, there exist 3n-l canonic ladder realizations.

Proof:

For simp'l'icity'let us represent ZO and Z, by symbols A and B, and each

reduction cycle by transmjssion zero pairs. Then we can develop the

schematic reduction procedures as illustrated ìn Fig. 2.3. At each reduction

cycìe, three nerv networks are generated and hence, presumabìy 3n networks

in total. However, since the last element in the driving-point function

synthesis is to be closed, three sectjons in rovr A and row B in F'ig. 2.2(b)

degenerate into one identical sectíon. Thus the total number of canonic

I adder rea I 'izati on i s 3n- 
I 

.



2n Z(n-l) 2$-2\ 2(n-3) --'?--O 2n

i5

Z(n-l) ?h-?\ 2(n-3)--- - ?-- - O

B F(-

( b)

Fj g. 2.3 (a)

Corol I ary 2. I

Given an LC driv'ing-point impedance function of Zr(s) or Z¡(s) type

of order Znlf, there exist 2 x 3n-l canon'ic ladder realizations.

Proof:

we make use of the proof of theorem 2.1. since there are

reducing Z,(s) (or Zo(s)) to zo(s) or Zr(s) type of order 2n as

in Fig. 2.1, there exjst 2 x 3n-l equ'ivalent canonic ladder networks'

Excluded is the BS type canonjc ladder network. This is obtained when

pole renmva'l operat'ions are carried out only at non-zero finìte po'le

freqrcnc'ies. Structuralìy, there exjsts a sing'le network for the BS type '

but by changing the sequence of resonant po'le removal,for the functions of

third order or greaterrat each reduction step, a famiiy of networks of

Schematìc reduction procedure for the canonic

i;;Ë-rãal izations bf Zo tvpe ' (b) The same

for Z, tYPe.

r(O O) B

r(O O) g þt- -) e
I L(Oæ)A
I r(oo)B

O )B l-t- o¡ g þ1- -) B

I L(o-)A
I ¡(o o)a
L( o -) A f(- -)AL(O -) B

r(O O) B

-(OO)Bl-(--)aI L(o-)A
I r(oo)B

-) Bl- (- -) B [-(--) B

I L(o-)A
I r(oo)A
L(O -) A l-(- @) A

L(o -) B

r(OO)A
r(OO)A[-(--)AI L(o-)B
I -(o o)¡

- )A l- (- -) A l-(- -)a-l L(o-)B
I r(oo)BL(O -) B þ1o -¡ g

L(o- ) a

r(O O) A
r(O O) A þ(- -) a
I L(O @)B
I .(OO)A

(o o) A l-(- -) A þi- -l a' I L(O-)B
I -too)eL(o-)Bþ(--)e

u1g ø) A
r(O O) A

r(O O) A þ(- -) a
I L(o-)B
I t(o o) A

(- -)Al-(- -)Al-(--)AI L(o -)BI r(oO)B
L (O -)B þq- -¡ B

L(o -) A
r(O O) B

r(O O)Bþ(--)a
| 

.- -' L1g_)A
I r(oo)B

(O-)BI-(--)Bþ(--)a
I L(o-)A
I r(oo)AL(O -) A þ(æ -) A

L(O æ) B

(o )

two ways of

i I I ustrated
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identical configurat'ion with different elenent values may be generated.

However,'in thìS case, to ensure that all the transmjssjon zeros are

realized at non-zero finite frequencies, a rule'is to be'inrposed on the

choice of elements in the fjrst arm. This can be best explained by example.

Exampl e 2.1

Let us consider LC drjvjng-point impedance functjons;

-7 t-\ = (12*u2)(.2*.2)LI\r/ 
,112 * u2¡

(a)

' 2 2)(zz * 
22)(zz 

*"2) (b)

These functions are of ZO type w'ith n=2 and n=3, respectively. As

illustrated in Fig. 2.4 for Zr(s), the first arm must be a series arm of

the ladder, othenvise, the result'ing network is not of BS type. For the

same reason, the first arm of Zrr(s) must be a shunt arm.

From this example, we can derive general configurations of BS type

canonic networks as shown'in F'ig. 2.5 depending on the value of n. It

can be eas'i'ly seen in Fig. 2.4(b) that if the first shunt arm is derived

from remov'ing the poìe e instead of a, then a different set of element

values is obtained.
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zls)
@

----+ Yr(s)#---€- y'OoÞ rernoved
ôs L¡,C¡

/ode remo¿d
' 'os L¡,C¡

zero\ shi fted
Z¡(s)

Y2(s)

Z¡(s)

- -- --x Y¡(s) o------------x-- - -{

L¡

_fiì__ L{ir I
oT

BS network

o----4----{
Pole rernoved
os L2,C2

o ob c d e

Ze(s)H---{1- pole remc^/ed Pole rcnoved

l2
c2

os L2,C2 os Lt

lpole remoled
os L2,Cz

zero shifted

os Lg,C3

( s2+o2)(s2+ c2)
tol Zrts,=- t Y(s)= l/Z¡G\

o bc d e

Y"( sl Ña--*4---x- - - - --os' lpde removeid
os L¡, C¡

Z¡(s)

Z,(s) E-----.-------+-"#v2(sìff'' fpoÞ removed pole re'nrcved t pole removecl

Y¡(s) {&------++- --- o Z¡(s)
( pde removeo
os L2, C2

Y2(s) o--------------x- - - - < Z2(s)

os C3 os L3

lüon-BS network BS network

(b) zs(s) = ffi , Y¡(s) = t / ztlsl

Non- BS network

þle removed
os L¡,C¡
zero shifled

Fig. 
".4. 

I llustrotion of the rule .
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ffi frl -T{Jl
Za(s) I j I fo( s) I t

(o) when n is even

"Ê Tq ã,ffiza(st J
"T ï --r r

(b ) when n is odd

Ftg. 2.5 General configurations
networks.

of BS type canonic ladder
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Theorem 2.2

Gjven an LC driv'ing-poìnt impedance functjon of ZO(s) or Zr(s) type

of order 2n, there exjst N djfferent sets of element values ìn a famiìy

of BS type canonjc ladder networks, determined by

n-2
¿

N- n tn-(zu+1¡f
k=0

n-l---ã-
¿

N=n II (n-Zk)z
k=l

(for even n)

(for odd n)

(2.7a)

(2.7b)

Proof:

Let us consider the case of even n fjrst for the ZO type function. The

ZO has n paìrs of zeros and (n-l) pairs of po'les at non-zero finite frequencies.

Let us denote this characteristic as

1 - [n]z-o - f¡-lf

From Fìg. 2.5, the first arm must be in series. Since there are (n-l) finite

poles, we have (n-l) different ways to remove a finite poìe. Th'is will

result in 2., such that

, - [n-l]'t - In-ZI

Then, the inverse of 7, is
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Therefore, again there are (n-l) different ways to remove a finjte poìe

from Y., . After a removal of a finite pole from Y., , then, the remainder

Y, is

', - [n-3]
'z - fi:{

The inverse of Y, then, allows (n-3) different ways to remove finite poles.

This process js continued unt'il a given function is exhausted. It is now

obvious that the total number of ways to remove fjnjte po]es ìs,

(n-l ) (n-l ) (n-s) (n-3) (n-5) (n-5)

A similar argument may be made for the case of odd n, resulting ìn

n(n-Z) (n-2) ( n-a) ( n-a)

Since Z, type is a dual of 7O type, the total number is the same.

2.2 CANONIC LADDER REALIZATION OF RC AND RL DRIVING-POINT FUNCTIONS

2.2.1 RC Dri vì ng-Poi nt Functìons

There are four types of RC driving-point impedance functions:

n n-l
T /^\ _ cns" + cn_ls" + .... + c.ts + co
¿n\5/ -LA\J/ 

bnsn + bn-rrn-l * .... + brs
(2.8a)

; t_\ _ an-rrn-l * an-zrn-? * .... + c1s + co
¿B\si (2 .8b )
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7r(s) =

n n-lc s" + c .s" + .... + c-S + cn n-l I o

bnsn + bn-r'n-l * "" + brs + bo

n n-lC S" + C ,S" + .... + C.S + Cn n-l I o
.n+ln?bna1s"'' + bns" + .... + bzs- + b.ts

(2.8c)

(2 .8d )-zo(s ) =

Making use of RC: LC transformatjon, we will present a theorem by

which we can determ'ine the exact number of canonic ladder network realizations.

Theorem 2.3

Gjven an RC drjvjng-point impedance of -ZO(s) or ZU(s) type of order n,

there exjst 3n-l canonjc ladder real'izations excluding the BS type ladder.

Proof:

Applying RC : LC transformation, we obtain

s [Zo(R)Jp*sz = Zo(s) (2.9a)

s[23(p)]p*s2 - zu(s) . (z.eb)

Therefore, instead of7r, or Z* we may realize TOor 7, and then repìace

the'inductance of L henries by a resistor L ohms keepìng aìì capacitors

unchanged. Since there exist 3n-l canonic ladder networks for ZO or ZU,

there must exist 3n-l realizatjons for ToorZU.
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Corollary 2.2

Gjven an RC driving-poìnt ìmpedance of Zr(s) or ZO(s) type of order

n*1, there ex1st 2 x 3n-l canonic ladder realjzations excluding the BS type

ladder.

Proof is obtajned as a consequence of Corolìary 2.ì and theorem 2.3.

2.2.2 RL Driving-Poìnt Functions

Recalling the fact that the RL impedance expressìon has the same form

as the RC admittance expressjon and RL admìttance is identical in form to

RC'impedance, the conclusions reached for the RC ìmpedance are d'irectiy

applìcable to the RL admjttance and vice versa. Therefore, the theorems

and the assocjated corollaries for RL functions are omitted for brevity.



CHAPTER III

GENERATION OF EQUIVALENT BAND-PASS

LADDIR NETWORKS IN CANONIC FORM

Resjstively-term'inated LC two-port ladder networks have been used most

common]y in realìz'ing transfer functions whjch exhjbit such characterjstjcs

as low-pass, high-pass, band-pass, band-stop, etc. The reason for this is

rna.in'ly due to the fact that the two-port LC ladder has a common ground (i'e''

unbalanced network) and transmjssion zeros may be easiìy impìemented and

adjusted by the proper choice of LC ìrnpedances in the serìes and shunt arms'

In para'llel with the theory of LC driv'ing-point function synthesjs, the theory

of LC two-port ladder realization has been well developed, and an extensjve

tabulat.ion has been prepared for filter desìgns [l - 7, ll - 221' However,

the utìlizations of canonic LC ladders were somewhat limited to the realizations

of LP and HP networks. For the realization of BP filters it has been the

general practice to directìy rep'lace the elements of prototype LP networks by

means of LP-BP frequency transfornration.

Recently, however, Kim [23] presented a formula for determinìng the

number of equ'ivalent LC canonic ladder networks for the case of singly

terminated networks.

In this chapter, we deal with the canonic ladder realizations of a vo]tage

transfer funct"ion of BP type in generaì. Theorems are developed to determine

the nunùer of equ'ivalent canonic ladders for the singìy terminated networks

and the results are directly extended to cover the case for the doub'ly

terminated normal BP networks. Examples are provided to illustrate the
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possibility of comparing the equìvaìent canonjc ladders with respect to

certain specìfied nreri ts.

3. I FORMULATION OF PROBLEM

Let us consjder a voìtage transfer funct'ion of order 2n,

ut= 
^ ^!?t (3.r)

vl urnrtn * uzn-lr2n-l +.... * aìs * âo

where 0 < m < 2n. The above function encompasses LP (rn=O), HP (m=Zn) and

BP (0<m<2n).

Th'is transfer function is to be realìzed into terminated canonic

ladder structures impienentjng m transmissjon zeros at the orioin and (2n-m)

transmission zeros at infinity.

The objective of this jnvestigation is to generate al'l the equivalent

canonjc ladder two-ports and to develop a closed form formula for obtaining

the exact number of such equivalent netowrks that may be compared under

specified criteria [20].

3.2 SINGLY TERMINATED BP CANONIC LADDER REALIZATION BASTD ON TRANSMISSION

ZERO REMOVAL SEQUENCES

3.2.1 Real ization Procedure

The two-port pararneters z* and V.,j may be used to obtain generaì

expressions for the various network functions. For the singìy terminated

networks shown in F'ig. 3.1, we have
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+

V¡

+

V¡

(a) Source termination

Fig. 3. I Singìy terminated LC two-port networks

(b) Load termination

V^ z.n
'=-,''forvl t*'11

u'= -t" 
rn-

I T=w ¡uI

Fig. 3.1(a)

Fig. 3.1(b)

Gvrr) be the

coefficient

identify:

(3.2)

(3. 3)

quotient

con di ti onsof odd

1121.

For LC ladder networks, it is necessary that 2.,,

to even or even to odd polynomials to satisfy the

Thus, from (3.1), (3.2) and (3.3), we can easily

for even m

u2nr2n * uzn-?rzn'Z * .... + arsz + ao

= 
'11 

for Fig' 3'l(a)

= lZZ for Fig. 3.1(b)
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for odd m

?n-l 2n-3azn_ls +a2n_3s t.
.+42s2+ao

,11 for Fì9. 3.1(a)

J22 for Fì0. 3.1(b)

The properties that 2.,.,(0) = z.t.t(-) = - and yzzrc) = trr(-) = -
jndjcate that 2.,.,(s) and trr(s) are of ZO(s) and Yr(s) types, respectively'

Thus, the realjzation of (3.1) is reduced to the realizatjon of the driving

point function zl j oy JZZ implement'ing the m transmission zeros at the

origin, and (2n-m) transmission zeros at jnfjnity.

Theorem 3. I

In the singly terminated canonic ladder realjzation of the vo'ltage

transfer function of (3.1), there exìst N equ'ivalent networks determíned by

rär
N- I

i=0
(n + f - m)l i I (m - 2i):

(3.4)

where tlJ tufr.s on the nearest inteqer on the lower side, and the terms with

negat'ive ìntegers are ignored.

Proof:

Us.ing Fìg. 2.2, we can dev'ise the schematic reduction charts as shown

in Fig. 2.3 for Type A and Type B. wjth the a'id of charts we may obtain the

groups as shown in Fig. 3.2,each having different combinations of homogeneous

and heterogeneous pairs,but aìì possessing m zeros at the origìn. The number

ni
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of independent sequences'is determined from each group by the rule of'

permutation. Let NO, N., *O/, be the number of independent sequences

of group l, 2, k/2" respectÌvely, then we have

ruo=ffi
Nr = 

{

Niäl =

rfll rll-Lil L7J

N - I I'1. = t

{n - tfl: tft: o :

nl

and

nl

ilo ''i .¡10 Tnt(j-t)): il(m-2i)l

It is to be noted that for ffi)n, No, Nl, Nr_n_l are ìgnored in the

summation because they require the order to exceed 2n.

ffiffiffi ffiffi
Gror.pO Gror.Pl Grorp2 (mer¡en'*uor(modd)

Fig. 3.2 Groupìng of transmission zero pairs.



2B

Theorem 3.2

In the singìy termjnated canonic ladder realizatjon of the voltage

transfer function

vz_ _ _ Krt (s.s¡
vl a2n+rr2n+ì * a'nsfl + ...' * ur' * uo

there ex'ist N equj valent networks determi ned by

r9r
N- I

rËr
+I

ni

i=O tn + i - (m - l)]l i l{(m - l) - 2i}:

nl

ilo (n-m+i):il(m-2i):

i=o (n-m+i):il(m-zi)i

m

z
I n1

for odd m and ( 3.6a )

for even m. (3.6b)

N-

-ffi-1.L-z-J
+I ni

i]o tn - (m - l) + iÌ: i:{(m - l) - Zi}i

where [ ] takes on the lower side integer, and -q: (q > 0) = -.

Proof:

When m is odd, we can identify
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a2n+r'2n+1 * uzn-'t"n-l * ' " ltrt
'll or lzz =

(s. z)

2.,.,(0) = 0 2.t.,(-) = - implies z't't(s)

reduced to ZO and/or Zt tYPe' we use

Theorem 3.2.

is of Z, type. Since Z, tYPe can be

Corolìary 2.ì andÍheorem 3.ì to prove

t4ljth the table ìn Fig. 2.?(b), it js now straightfonvard to generate

the unique network coryespondìng to each 'independent sequence observing the

fol I owing condi tj ons :

(l) No degeneration of elements is to occur at the cascading junctìon

of two pairs; e.g., A(00)-B(00), B(0 0)-A(0 0), A(-- )-B(-- ), B(-- )-A(*- )'

A(0- )-n1O*¡, B(0-)-B(0-), etc. are to be avoided.

(2) The connection patterns, such as A(00)-B(-- ), B(-- )-A(00) '
B(00)-A(-- ), A(-- )-B(00), etc., are not permìtted. This is because the

pole has been fulìy removed in the prevìous pa'ir, hence, it is simp'ly

imposs'ible for these patterns to occur.

(3) Since 2.,.,(0) = zll(-) = - for even m (i.e., Zo type), and zll(0)

= 2.,1(-) = 0 for odd m (i.e., Z, type), the first pair in z.t.t(s) realization

shall be one of A type paìrs for even m, and B type pa'irs for odd m,

respecti ve ly.

(4) The last section, in accordance with the definjtion of z't', (i.e.,

open-circuit drjvjng-po'int impedance), 'is to be either A(00), A(--) or

B(0-) pair. A simiìar argument may be made for the realization of yZ,'

Thus, it js impossible to generate another network for a given

independent sequence wjthout violating conditions stipulated above.
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The realjzatjon procedure, then, may be summarized as follows:

(j) Given the BP vo]tage transfer function of (3.1), identirv z't't(s) or

YZZß) ìn accordance with the integer m'

(ii) ClassifV 2.,.,(s) or yrr(s) into one of four types of LC ìmpedance functions

and fjnd the nunber of independent sequences according to Jheorem

3..l or 3.2whjcheverthe case may be'

(jii) conforming w'ith the Ínterconnectjon conditions, sketch the combination

of reduction cyc'le pai rs j n accordance wi th an 'independent sequence '

(jv) Find elements values by applying the continued fract'ion expans'ion to

,ll(,) or y,,(s) following the sketch obta.ined in (jii).

3.2.2 Normal BP Networks

The normal Bp networks are used more widely than any other kind of

filter network. For the normal BP, (3.1) can be written as

'r=_ k.n (3.8)

\=

and from (3.4), the total number of equivalent canon'ic ladder networks N is'

rhl
LCJLr.t

^r - s! r¡'
lI-L^

i=0 [i:]' (n - 2i)l
( r.s¡

It should be noted that the number of equìvalent canonic ladder

networks increasegrapidly with order n of the function as shown jn Table 3'l'
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Table 3.1 Number of tqujvalent Canonic Ladder Networks.

Example 3. I

For the illustratìon purpose, let us generate aì1 equivaìent networks

for n=3; i.e.o

o, 
=

vl

,3KS

,o*usru+....narr*uo

For the case of lCI load termination, we can proceed as follows:

( i ) Identi fy yZZ(s) as
Ã?

a-s'+ a.s" + a-, !,
5J¡

v22G) =

^642s + â4S o UZa- '- ao

(ii) Since ylzrc) = vrr@) - t , vrrß) is of V^(s) type. For n=3n rhere are

independent sequences as fol lows,

l. (-* , 00, 0*)

4. (00, 0- , ** )

7. (0-, 0-, Q*).

2. (-* , 6-, 00)

5. (0* , *-,00)
3" (00, --,0-)
5. (0-, 00 o --)

Note that in each sequence, there are exactly three transmission zeros

at the origln and three at infinity.

(i'ii) Since yZZ@) = Vr2@) = 0, the first pair must be one of A type, and

sjnce V2r(s) 'is a short circuit admittance, the ìast pa'ir must be one of

B type. The intermediate pairs are chosen so as to avoid degeneration

n I J ¿, 5 6 7

N I 3 I 7 I l9 I 5l I l4l 393
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of elenents at the junctÍons. The sketch of equivalent networks

corresponding to each jndependent sequence is shown in Fig. 3'3

(iv) Now element values can be easi]y obtained by applying the contjnued

fractjon expansion on uzzb) 'in accordance with the sketch'

CÞ-" ,-T---*s----=l ¡-'eu-î--ji---J C>--'"r_.|l--*,-l-l !--c*-t-rY-'-O

NzîiNujï
r¡*---!- ês.---

O-1F-¡-<;-ñ^1---6:-^'^*ìrc O-^lþ+--¡--1-ei-!H;
Ns j r Nz lT

6;.- r--ar-----L-----a1 : 0_-.-..---6-i -- r -c'-----*-.---l'ì

Oi FT-@-^rr-\-l l--+ 1 
w-O

I\A

Fig. 3.3 Sketch of seven equìvalent BP networks'
CExcluding the terminating resistor)

3.2.3 Comparison of Equ'ivalent Networks

Let us realize the maximally flat 4th order BP filter with bandwith

B, and center frequency oo llle start with 2nd order Butten¡rorth ìowpass

fun cti on
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Hro(n) =f;*; 
I

and appìy the transformatiotì p + (12 *'l)/Bns where, for convenience, the

bandwjdth is normalized as Bn = B/oo Then the required BP function is

H(s) =
Ks2

,4 * /7 Bns3 + gf, + z) rz * lz Bns +'l

and for the load-terminated case yZZ is identified as

(3. lo)

(3. r r )

(3.12)
s4*(øl+z)s2+llzz=ffi

Independent sequences for transmission zero removal are (ææ00), (00,-)

and (".0 f_q). Three equivaìent networks, and their element values, and

other parameters are given in terms of normalized bandwidth Bn in Table 3.2.

A similar approach may be carried out for the côsêofasource-terminated

network. Table 3.3 shows three equivalent networks, thejr element values, and

other parameters in terms of the normaLizeà bandwídth Bn.

It is to be noted that networks N.,., and Nr., coincide with BP networks

directly obtainable from an LP network by the elenrent transformation.
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Table 3.2 Equivalent Networks and their Paranreters - Load Term'inated

Tabl e 3.3 Equi valent Networks and the'ir Paranieters - Source Terminated

IQUIVALENT NETI.IORKS Ll L2 cì c2 tL.
I

rc.
ì

K

Nlr
la n

ç
ñBn

B
n l

ñB
n

,E(øn2+1¡

---E;-
B 2*l

n

EBn
s2

n

Niz

Jzs 3
n

{#--l7
JzB

n

B 2*l
n

rzlj
n

tn'*t

ãBn

øs lg 4+ag 2*l)
n' n n

(sFãlã-
(sn2* l ) 

2

a":- B 2*l
n

N-^IJ
jitËF,¡,,
(9_!. - -)

,Ee 3
n

;,;
n

ñBn

44r
( an2*t ¡ 

2

tz\T-
I

I ló
n

ñB
n

B 4+38 2*l
nn*-3--tzÉ

n

B
n
2+j

EQUIVALENT NETI,IORKS L,t L2 cl c2 tLi rc.
I

K

Nzl

I l

(0 -) (0 -)

I

ÐB
n

B
n

¡¿
ñB

n

t¿
B

n

B 2+l
n

=-{¿6n

B2
n

Nzz

ln L j L

(- -) (o o)

t

ñBn

1t+enz)2

¿%'-
¡ZB

n

t*z
n

ÌZsn3

ì.sJ
Bn4*38n2*l

arl- frtn 1+B 2

N^^
¿J

la ul ItFe+-{l.i-4èå<

. ."? ic,
(o o) (- -)

r*B 2
n

¿Bn

r*B 2
n

lr^j-
n

ÆBn
ÌzBn2

("47
(l+s 2\2
'n-Jr"3-

n
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The equ'ivalent networks may be compared wìth respect to certajn criteria

such as:

(j) Total inductance IL

N.,, has the smallest XL as calculated in the following

.tZ s3
rl(Ntr) =rt-(tl.,r) -, , rl(Nll)=rL(Nl2) +:#--::z

1afr + r ¡2 
: "'\"1 l/ "-\"fzt 

Bn('fr + r ¡

rL(Nl,) . rr-(Nie) . rl(Nll) (3.13)

(i i ) Total capac'itance IC

g2+l
rc(Nt2) =rc(Nll) * #, rc(Nl3) =rc(Nlz) *!-

n 'r ¡' 
'/? Bn

rC(Nll) < rc(Niz) . rC(Nl3)

(iii) Relative gain K

K(Nl2)=K(N13)>K(Nil)

(3. I 4)

(3. l5)

In the narrow band case of Bn a4 l, the gain of N.,., becomes very ìow.

It js also seen that the element value spread is roughìy comparable

among the Lhree networks,

if we define the cost functìon as

f=o,IL+SIC*y(Kru*-K)

where cr = cost of inductance/Henry, ß = cost of capacitance/farad,

*^.. = maxjmum qajn among the equivalent networks,
max
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N.,, wììì normally be favored because of the higher per unit cost of

the ì nductance.

(iv) Sensjtjvities

The magn'itude sensjtivjties with respect to the component variations

are calculated and p'lotted for the load termjnated case in F'ig. 3.4,

for Bn = 0.1. As can be observed, the magnitude sensitjvities are

roughìy comparable among equìvalent networks. It is observed that

the magnìtude sensitivity wìth respect to 1., almost coincides wjth

that of C., and so does the magnitude sensjtivjty with respect to L,

with that of Cr.

Sjrnilar comparìson may be made for the caseofû source-terminated

network. It is omitted here for brevity'

A simjìar comparison table 'is provided 'in Appendix I for n=31 i.ê',

H(s) = K s3

It is to be noted that

(i) The descending order of ILt is

t{6 > N5 t N7 N4 > NZ > I'll t Il3
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(ii) descending order of IC, isIhe

N^
J

rNl>N7>N2=N4tN5tN6

(iii) The descendìng order of gaìn K is

Nl = N3, t'1, = t{O > N7 > N5 = N6

Since ro = LILZL¡C'C,C, = 1, in each network the value of Lr's is'inverse'ly

proportional to that of C., 's. Thus, 'it can be seen from (i) and (ii) that

the total inductance increases, the total capacitance decreases, i.ê., Nt has

the smallest total jnductance, but has the 'largest total capacìtance. The

networks tend to have less total'inductance when they are realized by homo-

geneous reduction cycle pairs first (see N.t , I'lt and N5, t'16).

Also, from (i) and ('i'ij) we can see that there is an inverse relation-

ship betureen total inductance and ga'in, i.e., the less the total inductance,

the greater the ga'in K. From these comparisons, we can conclude that the

conventional network N, is not necessarily a good choice. The network I'lt

appears to be the best, because it has the smallest total inductance and the

highest gain.

3.3 DiRECT DERIVATION OF DOUBLY TERMINATED NORIv141 BP CANONIC LADDER

NETI^lORKS

Sjnce Darlington Il]] presented a synthesis method based on the jnsertjon

loss characteristjcs, the doubìy-terminated LC network has been well accepted
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as the preferable structure in filter realization. Such a network is capable

of producìng any physical'ly realizable. loss response wìth a near minimum

number of components for most fiìter specifications [l - 2, l4 - l7]. More

ìmportantly, the sensjtivity of the transfer functjon to changes in the

elenent values is minimized [24 - 30]. Another advantage includes a possib'ility

of ladder network realizatjon whjch is mostìy preferred in practica'l app'l'ications.

One of the reasons for extensive use of ladder is due to the fact that

in the multjpath structures such as lattice, brìdged-T, twin-T or para'lìel

ladders, transmissjon zeros are generated by cancellation of energ'ies arrivìng

at the output term'inals along different paths. These cancellations are very

sensjt'ive to element variatìons. Due to the structure, such cancellation

cannot occur in the ladder networks. 0n the other hand, because of this fact

an LC ladder must have all its transmission zeros on the imaginary axis only.

Although normal BP ladders can easììy be obtainable from the LP

prototype by means of the element transformation, we may instead find the BP

function through frequency transformation and invest'igate various ways of

realizing the BP functìon. l,.latanabe [14], however, derived sufficient condjtions

for the possibilíty of construct'ing an LC ladder BP fjlter with the use of an

ideal transformer.

In thjs section, we deal with the canonic realization of the doubly

te rmi nate d LC I adder two-port di rect'ly f rom a gi ven trans fer f un ct'ion . We

shall restrict ourselves to the case of the normal BP network.

3.3.1 Doubly-Terminated Network

Basically,Dar'l'ington's synthesis nethod Ill] is to reduce the prob'lem

of realizing a transfer function to that of a driving po'int impedance function
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z.-(s) of the Fig. 3.5. Thjs confìguratìon has been a focal point ìn
tn'

filter synthesis ma'inìy due to its excellent low sensitjv'ity of the transfer

functjon to changes jn the element values of the LC networks [24 - 30]'

-+
V2

Z¡n (.)

Fig. 3.5 The Darlington c'ircu'it structure

In order to extend the applìcatjons of the theorems deveìoped

previously, we need to introduce the two coeffic'ients: the transmission

coefficient, and the reflection coefficient. .The transmission coefficient

is defjned as the ratio of the output pov{,er Po be'ing dìss'ipated in R, to

the maximum available power Pu from the source wjth source resistanc. Rl.

without loss of generaìly let us des'ignate Rl = I and R, = R. Then, we obtain

I v,(ir) I 
2

Po(jtr) = ri------r (3.r6)

LC
?

Two - Port
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Hence, the transmission coefficient ìs given by

and

where H(s) is the voltage-ratio

It(i') l2 +

lv,(i')12
P-(io) =#.
cl+

,.,.,,2 Po(jur) 4 lvr(jr) l2
It(i,) t'= ir¡tD- 

= Ë"frra-ï-,

_4
R

2' I H(ir) l'

transfer function

(3. I 7)

(3. lB)

(3.1e)

v"(s)
H(s) = 

",rtr
Because the power sent to R from

the maximum power available from

the

the

source must be less than or equal

source, we have

to

I
I t(j,) l'

The reflection coefficient is defined simpìy to be the complement of the

transmission coefficient as

In sinusoidal steady-state, the power Pi supplied

two-port is equaì to the power Po supplied to the

Pi = R.[Zrn(s)l lr.,(jr) l2

From the Fig. 3.5 we have

(3.20)

to port I of the lossless

load, where

( 3.21 )

I p(i,) l2 =
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ur=.',
Ii ¡

which together with (3.2.l)

lH(i') l2 =

Substi t uti ng (3.22) i nto

we obtai n

+ 7. (s)ln'

yieì ds

R.ReIZin(jr)l

ll * Zin(ir)12

(3. l8) and the

. ( 3.22)

resul ti ng expression i nto ( 3.20)

By writinq Z*-(jo) as1n'-

zrn(jo) - R(r) +ix(i,¡)

and substituting this into (3.23) we have

p(jo) . p(-j,¡)

p(io) p(-jo)

P(s) = +

I p(i,) l2

I - lt(¡r) l2

_ lzrn(ir) - ll2
lzin(ir) + ll2

Zin(r) = I

n R.R^[2,-(ir)], + e" rn
'- R ñ#j,lz

(3. 23 )

This implies that

Zrn(s) + I

or that

(3.24)
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I + p(s)
Z.-(s) = -

(3.25)
rn'-' I Tp(s)

Through the coefficjents t(j,¡) and p(ir), we have reduced the problem of

realizing a voltage-transfer functjon H(s) to that of realizing a driv'ing

point function Zrn(s) of (3.25), bearjng in m'ind the locations of the trans-

mission zeros of H(s). l^Je have noted that in the process of obtain'inS Zrn(s),

we have tlvo possible values of p(s) and therefore two values of Lrn(s). Also

we should select a Hun¡litz denominator, as in the case of transfer functions,

since from (3.18) ure conclude that t(s) has the same Hurw'itz denominator as

H(s) and from (3.23) u¡e can see that p(s) will also have this denomjnator.

3.3.2 Canoni c Ladder Real'izati on Procedure

Based on the preceding discussion, we can describe a step-by-step

procedure for the canonic realjzatìon of the doubly-termìnated ladder network

as fol I ows.

Step 'l : Fi nd the p(s) from a given H(s).

From (3.18) and (3.24), we have

p(s) p(-s)=l-*ttrlH(-s). (3.26)

Finding p(s) is the most important step in the realizatjon procedure.

To start wjth, (3.?6) may not have solutions.

Let

F(s) i p(s) p(-s) ß.27)

and

er'l Ê.1 - *ry Hj'l (3.28)
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It is apparent that both the poles and zeros of F(s) are requ'ired

to occur w'ith quadrantal symmetry. However, since H(s) share¡the same

denominator, the poles of G(s) will also exhib'it quadrantal symmetry but

not necessarily the zeros. This is because the nunerator of G(s) is onìy

an even poìynomial, not necessarì'ly Wìtüx quadranta'l symmetry. If the

zeros of G(s) do not occur with quadrantal symnetry, then we cannot find

p(s) from (3.26), and the procedure that we are describ'ing wìì1 not realize

a circuit for H(s).

Step 2: Fjnd Zrn(s).

0nce p(s) is determined, we write

Zin(,1 = i-låt* or Zrn(,1 = ffi$ (s'zs)

There are two cho'ices for Zrn(s). Since one choice is the 'inverse of the

other we can expect that one will gÌve R, and the other wiìì yìeld l/R as the

terminat'ing load resistance. If the termjnating load is to be R' then only

one cho'ice of t.,n(t ) wi I 'l g'i ve the desi red sol uti on'

Step 3: Realization of Zin(t) into canon'ic ladder network.

l^lith thìs procedure in mind, let us now consider a normal BP type

transfer function of order 2n. Th'is type of transfer functions are generated

from the Lp transfer funct'ions by means of a simple LP-BP frequency transformat'ion.

The transformation requires the replacement of the variable s in the LP function

with the variable (s2*l)/Bns, where for convenience, the bandwidth is normal-

ìzed as Bn = B/oo. The constants oo and B represent the center frequency and

the bandwjdth of the BP filter, respectively.
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Let us start with the all po'le LP transfer function of order n,

Gb
Hro(sl = (3.30)

where the denominator is strictly Hurwitz.

A LP-BP frequency transformation gives a normal type of BP transfer

functi on,

H(s) = | tn= (3.31)

where the denominator is also strictìy Hurwitz and, due to the nature of

the transformation, possesses the property of the so-called rec'iprocal poly-

nomial (j..., uzn_i = ui) [13].

Now let us consider the existence of the solution for (3.26).

Theorem 3.3

Given a realizable BP function

ksnH(s) = (3.32)

where the denominator is & reciprocal polynomial, and

G(s) Al -*H(s) H(-s) (3.33)

there exjst a set of zeros of G(s) whjch satisfy the quadrantaì symnetry

req ui remen t.

Proof:

Let us wri te
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H(s) = *i#*t
where M(s) and N(s) are the even and odd

Substjtut'ing (3.34) into (3.33),

N2(s) - ruZ(r)

parts of the denominator.

we obtain

* o' ts)n(-s)n

( 3. 34)

s'r nce

that -

a'lways

zeros

G(s) =
u2(s) - n2(r)

(3.35 )

Suppose that so is a zero of M + N so that t't(so) + N(so) = 0. Then

M is even and N js odd, M(-so) - N(-to) = M(so) + ru(to) = 0 and we see

s^ 'is a zero of M - N. Thus the poìes of G(s) appearin pa'irs, one
o

being the negative of the other. Since M+ N 'is strictìy Hurwitz, the

of M2 - N2 occu¡in a quadrup'le manner, i.e., in a quadrantal symmetry.

Let

A(s) =M2(s) -tl2(r) kz (s)n(-s)n ( 3.36 )

Since 14 and N are reciprocal polynomials of order 2n and 2n-1, respectively,

tl2 - t¡2 is an even and reciprocal polynomial of order 4n. The last term in

(3.36) can be added or substracted depending on the integer n, however, sìnce

the center of coefficient synmetry is the coefficient of s2n, this term does

not disturb the nature of the reciprocaì polynomial. In other words, A(s)

is an even, reciprocal po'lynomial of order 4n. Since A(s) is even, 2n zeros

must be in the left half p'lane and the other 2n in the right half plane.

Furthermore, since A(s) is reciprocaì, 'if s¡ 'is a zero then so it I . Recall-
sk

ing that zeros of polynomialswith real coefficjentsoccur in coniugate, we can

see that zeros of A(s) occur in quadranta'l symmetry.

4
F
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3.3.3. Number of Doubly-Terminated Canonic Ladders

In the sectjon 3.2.2 we have shown that there exist N equ'ivalent

singiy terminated canonic ladder two-ports determìned by (3.9) in the synthesis

of a normal BP transfer function. As far as the lossless two-ports are

concerned, the equìvaìent networks of source termination and those of load

termjnatjon are structural'ly identicaì for even n, and dual jn the case of odd

n. Since the topo'logica'l dual exists for the case of even n, the total of 2N

equ.ivaìent canonic networks can aìways be generated in the doubly terminated

ladder confjgurations within certain constraints on the load resjstances. For

n=2 and n=3, for examp'le, there are 2N=6, and 2N=14 canon'ic ladder structures'

respectively, as shown in Fig. 3.6. Two networks'in the first rows are the

conventjonal Bp filters directly obta'inable from the LP networks through the

element transformat'ion. The rest are the equivalent networks wjth different

sequence of the transmission zero removal.

it can be easily shown that all the equ'ivaìent networks derived direct'ly

from the singly terminated networks are of normal BP type.

Since the LC two-ports 'in Fjg. 3.7 are reciprocal , we can represent

Fig. 3.7(a) by an equivaìent T as shown in F'ig' 3'B'

A simpìe anaìYsis Yields

v., Rzrlz
n"\5/ - v- -"a'-' vl ,lrzz - ,12'+ Rrz,l * Rltzz* RlRz

( 3. 37)

Then for Fig. 3.7(b), the transfer function HO(s) is obtajned by simpìy

repìaci ng 7, -> Z, ZZ * 7i, Rl * RZ, R2 * Rl , Z3 * 73 in (3'37)'
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vz

q 65S +AS

Equ'ivalent normal
{b) for n=3.

+bs4*.r3+bsz+as+

BP canonic networks (a)

I

for

e4qþâñf-.¡+l duority
*t' "-*--lj*J .+ " "n t . T

(Oøl (O..1 (O-l (O-)

N32

-"ÏTtÏ
(oo ) (*-)

V^(a) n=2 f =,l
K s2

,4*ur3+bsZ+as+l

(@ o(oo)(@o)

Ks3

(*Él (oo)

n=2



49

(o) fr = Ho(s)

(b) v
vl = H6(s)

(c )

Fi g. 3.7 Doubly termj nated networks wi th 'interchanged
- 

LC two-Ports and terminations

Vz

vl = Hç (s )

'll Ll? zzz- ze
I c-c- tLl +

z3 vz

Fig. 3.8 Equ'ivalent T network of Fig. 3.7(a)
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Ho(s) =

Rl 'lz
,1ltzz - trr' * Rztlì * Rl ,zz * RlRz

= 5 r-,r, (3.38)
n2 cl

Simjlarìy, by repìacing 7l * 72, Z, * 7,,

in (3.37) we wrjte the transfer function

* 73, and retaining R.' and Rt

Fj g. 3.7( c) as

zs

for

H.(s) =

Rz'iz
2tlj=Z, - r1Z- * Rltl j * RZTZZ* RlRz

H^(s)
cl

(3 .3e )

The implication of (3.38) is that jf the realization exists in configuratìon

of F'ig. 3.7(a), we can physica'l'ly rotate the network 180" about the vertical

axis to real'ize the sane transfer functjon,with a scaling factor of R.'/Rt.

0n the other hand, (3.39) impljes that if we keep R., and R, fjxed and rotate

the LC two-port alone, the denominator changes as shown. Consequently, a new

set of element values for the LC two-port results. The dual networks can be

obta'ined readjly by inspectìon as shown in Fig. 3.6. it should be noted that

the dual networks realize the g'iven normal BP transfer function within the

mul tipl icati ve constant.

The preceding deveìopnent confjrms the fact that all the equivalent

networks generated directly from the single termìnation cases are conformable

to the BP transfer function. Then, one may ask "Is the set of equiva'lent

doub'ly term'inated canonic ladder networks complete and exhaustive?" The

affirmative answer can be derived as follows.

If there are to be any more equ'ivalent networks, the LC two-port part

must be generated at the expense of vìolating the rules of interconnecting

the reduction cycles. Then the order of the driving-point parameters of the
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two-port js reduced in (3.37) - (3.39). As a consequence, no additional

equivaìent canonic networks can be generated-

3. 3.4 Constrai nt on Termi nati ng Resi stances

gnce a p(s) is determined, it is straightforward to determine Z.,n(s)

and carry out continued fraction expansion on Zjn(t) ìn accordance with the

given canon'ic ladder networks. To determÌne the value R of the terminatìng

resistor for a given choice of Lrn(s), for the LP and HP network, we can find

easi ly by

R = Zrn(-) for HP

and

R = Zrn(g) for LP (3.40)

However, for the normal BP network, there is no sìmpìe way of determin-

ing R. It should be noted that sìnce R., is normalized, R actualìy represents

a resistance ratio. The determjnation of constraints on R ìn conjunction wìth

the equivalent canonjc ladder networks can be best explained by examples.

Exarnple 3.2

Let us first consider the maximally flat 4th order normal BP transfer

f unct'ion wh'i ch 'is gi ven i n ( 3. l2) .

Step I : Dete rmj nat'i on of p( s ) .

From (3.26) we have,

s8 + 4 s6 + (o * Bn4 = * *t) 14 * 4 s2 + I
p(s) p(-s) =

( 3.41 )
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There is no freedom in the choice of the denominator of p(s) because

its roots must lie ìn the left half p'lane. However, since as given jn (3.23),

onìy the squared magnitude of p(jo) is fixed by the specification of the

transmission coefficient, the zero distribution of p(s) ìs optional, as ìong

as p(io) p(-io) represents the numerator of lp(jr)12. Since the numerator

is a reciproca'l polynomiaì of order 8, the root distrjbutjon would appear as

shown in Fig. 3.9.

Fig. 3.9 Zero-pair distribution of p(s).

Thus, p(s) with all its roots in the left half pìane,yieìds a unique1y

defined minimum phase p(s); the other root distributions may be obtained from

this one by replacing any pair of compìex conjugate roots by its mirror image.

cr

Jû',
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S'ince for a p(s) coryesponding to p(s), the root distrjbution p(-s)

corresponds to the reflectjon coeffic'ient of the other part of the same

network [4], each different network corresonds to a pair of root distrjbutions.

Therefore, jt can be easily shown that for integer n, 2(n-1) djffe"ent

combjnations of pajrs of root distribut'ions exjst. An actual partition of the

Bth order nunerator into p(s) p(-s) can be carried out eìther by usìng computer

or by analytìc method as follows:

From (3.41), we can write

sB * 4 16 * (6 * Bn4 - * *t) 14 * 4 s2 + j

(r4 * o 13 * ß 12 *os + l) (r4 -or3 * ßr2 -os + l) (3.42)

By match'ing coefficient of each term, we have

u=ã.(Bno-**t,*

ß=2+

Let

( 3.43)

then

cr= ã /Ã

ß- 2+A

Now, from (3.41)

as

can identify the mjnimum Phase

(3.44)

function p(s)and (3.42), we
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_4, ? 
A) s2+,2,/Ä's+lp(s) =s1 +'Æ'/Ãsl+(z+ - -' 

s+ +,8 Bns" + (2 + Bn) tt*'Z Bn s +l

Step 2: Determination of Ztn(s).

From (3.25) and (3.45), we have either

(r.+s1

zs4 + ,2. tÃ) +A)12* Ð /Ã)s +z2

A

B
n

B
n

(

2

+

s3 + (4 + lB +'n
z.,n(s) =

S,Ã) (Bn s' + ,2. (B'n - ,/Ã)

.)
J0r ,2*-A) ,tr (e'n s

(3.46)

( 3. 47)

(3.48)

:
s

lÃ)

lA)

B
n

;
n

(n
ã

+ (B'n
+ (4 B +A) st + ,8. /Ã) S+

Note that (3.46) isttedual of (3.a7).

Step 3: Realization of Zjn(t) into N3l, N3Z, N33 networks shown in

Fig. 3.6(a). .

If we use the djvjde-and-invert procedure to find the necessary con-

tinued fraction expansion of Zin(t) such that the final elenent is R, we can

find that the proper Zrn(s) is (3.46), the last elerent being for Nt't

(sn2*A)/(B'Z-A)

for N'

(sn2* r*:r2/(Bn4 -n2) (3.4e)
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for N..
JJ

(e2 +z'n

Since Nr., 'is the direct transform

- nz) . (3.50 )

LP realization, the gaìn K ìs

(3.51)

For other

(3.52 )

= (2K)2

(3.5 3)

n)z / (Bn4

from the

K = BnZ (l-+-R=)

substìtut'ing (3.51) into A, we can check that (3.48) js indeed R.

structures, we must select K and R values such that

(g2 * Z + A\2'n
ì;4-?-= R

Subst'itut'ing A i nto

Reamang'ing, we have

Let us choose

Then, we have

2+

2ç=gn? +Z

(3.52),

l,' *
ln

we obta'in

I'

2K-(rnt*Ð=qf-m

R and K such that ,no - 4K27n = 9.

gz + z
tr- n

" - -z--
e + Bnz)z

R = ---¿- .

Bn'

( 3.54)
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Table 3.4 shows the element values in terms of Bn wjth other

parameters.

Table 3.4 Equivaìent Networks and their Parameters - Doubly Termìnated

*A=Bn2 {å-.+

_ 1z + ønz)z
R=-

Bn*

There are three Points to be noted.

Fjrstly, the value of A defined in (3.43) must always be pos'itìve

real. Therefore, the gain and the terminating resistance are constrained

by

Second'ly, the elenent values of network Ng¡ can be obtained from

those of N' by inspect'ion due to a coefficjent symmetry in Zrn(s), i'e',

Cl in N* is the inverse of 1., in Nr' CZ ln N33 the inverse of L, in Nrt'

¿,

K2 , Br'
( 3 .55 )

TQUIVALENT NETWORKS Ll L^
¿

cl c2 tL.
l

tc.
I

K

N¡¡

(o -) (o -)

t

%*
B 2+A

n

,u(Bn-/Ã)

B -lÃ
n

t¿

Ì¿(Bn-¡Ã)

if-A
Bn2*A*?

/¿( Bn-/Ã)

Bn2+A+2

nßn+JÃ)

lz+ø n2 )2 x1o-2

,B^4---4Bi-4

N^^
3¿

l L I L 2

(- -) (o o)
q-

1z*ønz)z

t¿\'3-
T¿B

n

"r3

tnt

¡zarB1
B 4*68 2*4
nn---:_ã-
QBn'

B
n

,,2

82r*+

N¡3

l"l-2

::,rEï-
(o o) (- -)

z*Bn2

ãB
n

¡z(z+Bnz)

B-3-
n

Þ
"n

¿z

ëunt

Q*:f
(z+s 2\2
' n'
¿Bl-

ønl' z+Bn2\2+zzn21
t

r*+



57

etc. Also, three other equìvalent networks are the duals of those shown jn

Table 3.4, therefore, elenent values are readi'ly obtainable by simple

ì nspecti on.

Third'ly, the other possible chojce for p(s) produces a Zrn(s) that

does not have a coefficjent symmetry. As a result, the continued fraction

expansìon procedure in accordance with the given canonic networks faìls.

However, ìt should be noted that the choice of the zero distribution of the

reflectjon coefficjent does not affect the minimum phase property of the

transfer functìon.

Example 3.3

As a second example, let us consider a nax'imally flat 6th order normal

Bp transfer function. hJe start with 3rd order Buttenvorth LP function

HLP(PI =ffi (3'56)

2.
and app'ly the transformation p + \| , where Bn is the normalized band-

n

wjdth. For convenience, let us assìgn Bn = 0.ì. Then the required BP

funct'ion i s

H(s) = Ks3 . (3-57)
s' + o-r= .2s + l

Step ì: Determination of P(s).

From (3.26), we obtain
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p(s) p(-s) =

Since the numerator is a reciprocaì

distributjon pattern would appear as shown

(3.58)

polynomìa'l of order 12, the root

'in Fig. 3.10.

- p(s) p(-s)- qfsl qf-Ð

q

Fjg. 3.10 Zero-pai r distribut'ion of p(s).

,12*6, lo + lssB
Ã,l5s'+6s2+

(20 - ro
0+l5s (20 - ro
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I

I

I
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I
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I
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I

l¡
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Then, there are four different ways to choose p(s). Again using

an analytìcaì procedure, we can partìtìon the nunerator N(s) of (3.58) âS,

N(s) = (16 * ur5 * bs4 *.r3 * bs2 * as + l)(16 - ur5 * bs4 - çs3*bs2-as+l).

Matchìng the coefficjents of each term, we obtain

2b-a?=6

Zb - Zac + b2 = 15

2 + 2b2 - 2a? - ,2 = 20 - Y

where Y=lo-u-**t

Because lp(ir)|2. 1, Y must be in the range of

( 3.5ea)

(3.5eb)

(3.5ec)

(3.6r)

_F.0<Y<'l0"

Therefore, R and K must sat'isfy the relatjon,

o.1K2.lo-6 (3.60)_K

To find the positìve and real values of a, b and c jn (3-59) in terms of

y requires the solution of the fourth order po'lynom'iaì equation. Two sets

of solutions are found to be:

a=0,b=3,a=Y3/6

a = 2yl/6, b= 3+ zyzla, c = qy1/a + f/6
and

(3.62)
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Therefore, we can ident'ify for (3.61)'

QI =

for (3.62),

+ 0.2s

4Y1 
/6 +Y] /2 3+2Y1 / 3

(3.6 3 )

( 3.64)

(3.65a)

(3.65b)

+ 0.2s

+l
+l

+ 2Y1/6s
5 * (3*2yll3yr4 +

+ 0.2s +3.02s-+0.401s + 3.02s +0.2s+l

Two orher possible choices are excluded, because they faj1 to produce p(s)

with coefficìent symmetrY.

Step Determinatjon of 7rn(s).

From (3.63) and (3.64), we can identify, respectively,

zs6 + o. 2s5 + 6.ols4 + (o.4ol +Y1/z 3 + 6 .ols? +0.?s + 2
zr=

0.2s + 0.02s + (0.40'l - Y'")s + 0.02s + 0.2s

7r

and

,3* s2+zYl /6 s+1

or
I=.-

LT

zs6 + 0.? + zv1 /A s5 + (6 .02+ZY1/g s4 + [0.401+

(0.2 - 2Y't')s" + (o.oz-2Yll31s4 + [0.401-(4Y +y'/') ]s
qyl /6*rl /z ,3*

Lrr -

û,3 s'
A,

3.02s'

,1/2.3 + 3s
2

+ 0.401s- +

(6.02 + zyll3\rz + (0. z+zY1/u), * , (3.66a)
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or

trr -

.-lo-3 -Y\/z

. _ (o.2or _ yilz)z 110-3 + yl/Z)
R= 

,

_F,'t0 " - Y
R = 

ßro;TTTf

I

4t
(3.66b)

Step 3: Realizatjon of Zìn(t) into canonic ladder networks listed

'in Fis. 3.6(b).

Elenent values can readily be obta'ined by continued fraction expansjon

on impedances'in accordance with the configuratìons. It is to be noted that

due to dualjty reìations and coefficient synmetry shown'in impedance expressions,

it is sufficient to calculate element values for network N.t, N3, NO and NU.

For example, due to coeffjcient symnretry, in the continued fraction expansion

for the N, and N. the quot'ients are exactly the same. The same statement

holds true for the pairs ofN+-NS and NU - N7. The element values of the

other seven networks can be obtained by inspectìon due to duality. In order

to develop these networks such that the last resistance element is R, the

proper choice of impedances is of (3.65b) and (3.66b)'

The last resistance elements are found to be:

ror 2r(s)

Nl

N2&N3

N4&N5
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N6&N7

for Zrr(s)

Nl

N2&N3 ft=

N4&N5

N.&N-ot

and

for

3.3.b Sensitivity Considerations jn Doub'ly Terminated Networks

The characteristics of actjve and passive elemenb used in a fjlter

design may vary from their nominal values because of aging, environmental

changes, and other causes. These variatjons may cause a network to depart

sign.ificantly from jts desìred performance. It is of little use to expend

effort to obtajn an ideal transfer functìon only to fjnd' after the filter

has been constructed using practicaì components, that the fi'lter performance

does not satjsfy the specificatjons. For exampìe, in an actjve fjlter, the

o-rc.20!-v1/2)z
lo-o - Y

_ lo-3 _Y1/2
n = ',0-;t7z

- (0. I -yl /6 
) (0. ol -0. I vl /6+v216 r ( o, ol +q. I vl /6+v216 

)=m1l/6+Y2/6)z

D - - (z.ol+o.lvl/6+v2l6)2 (o.l-vl/6)R= .

As in ExamPle 3.2' we can choose R

resistance js R. This process js omitted

(2.01 + o.lYl /6 *v2/6 2(o.oi - o.lYl /6*v2/6)(0. t-vl/a

tz¡l-o .wl/6+Y2/6) (0 . 01+0 .

K such that the terminating

b re vi ty.

tyl/6+yz/6)(o.l*y
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gain of active elenent may change to the extent that the transfer function

poìes are shifted to the right half s-plane, result'ing'in instabjìity.

In fiìter synthesjs, once a transfer function is obtajned, the solutìon

of synthes'is problem is not un'ique. Dìfferent networkscan be realized to

produce the same 'input-output relationshìp. As long as ideal elenpnts are

used under jdeal conditions, one network works iust as well as the other. In

practìce, however, one network may outperform another because it is less

sensitive to elenent variations and to environmentaì changes. This network

may be no more expensive to construct than the other. Therefore, â guantìtat'ive

measure ís needed not oniy to compare networks wjth regard to element variations

but also to make an appropriate allowance for component varjatjons in realizing

a transfer function. Sensitivity functjons are used for this purpose. These

functjons provìde a numerical measure of how much an important aspect of the

network or response varies, as an elenrent or a combinat'ion of elements varies

from the nominal design values.

In the following, defin'ition of sensjtivity function is introduced, and

sensjt'ivìty comparisons are made between s'ing1y terminated and doubly terminated

LC ladders.

3.3.5.1 Definìtions

The sensitivity function p'lays an important pract'ica'l and conceptuaì

role in transfer function variability studies, and it is a measure of the

change of the overall transfer function with respect to change of an element

or parameter of interest'in the network. I^le defjne the neasure of the change

Ây in some performance characteristjc y, resulting from a change Ax in a

network pararneter x, to be the sens'itivity of y wìth respect to x, given by
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qy = sjm N4 - .Q,im I +Y (3.67)Jx - Ax*O Ax/x - Ax+O Y Àx

Thus the changes'in x and y have been normalized, i-ê., SI ìs a ratio of

normal'ized changes or percentages. For sufficiently sma'll Ax., and well

behaved higher order derivatives, we may make the first order approximat'ion,

av: I +t.^x,-J iix. 1l= I I

(3 .68 )

to obtain the devjatjon. It should be noted that the validity of (3.68)

depends on Ax, be'ing "small" and the higher order derivat'ives being "we11

behaved". Thìs may not aìways be the case and the fírst order approx'imation

may not be relied upon when such pathologicaì cases arises. From (3.67) and

(3.68), we have

ey = 
*i 

-êy- = a[.q,n y], . ( 3. 69 )
"*i y ð*j ãL.q,n\J

3.3.5.2 Transfer Function Sens'itivity

Let us consider a transfer function

H(s) = Ët:l (3'70)

For sinusoidal inputs, we are more concerned wìth the variation of H(i,¡)

with respect to the variat'ion of the parameter x. For s = i1¡ , we have

H(j,¡) = ltt(ir) ¡.jO(') (3.7r)
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In (3.72) ¿nlH(jr¡)l and 0(o) are known as the gain function and phase function,

respectively. From the definitjons (3.69) and (3.72), we have

wh ere

ô(') = ars [H(ir) ] .

Then

Ln H(io) = en lH(¡') | * øn ¡ejÖ(o),

,lH(j,r) I - Re tsH(jr),

.iO(o) rS- = 1¡r ¡5H(j')1X -X -

(3.72)

(3.74)

(3.75)

sH(ir) = slH(ir)l *rejO(')XXX

= ,lt(i,¡) I + ja(r) 5o(o) (3.73)

If x is real (which js true in most cases), then 5lH(jo)l an¿ 50('r) are

real and by (3.73), we obtain

Thus the ga'in and phase sensit'ivity may be calculated directly by definìtion

or they may be obtained from sH(i') using (3.74) and (3.75).

3.3.5.3 Loss Sensitivities in LC Filters

It is well known that the loss of a doubly terminated LC filter is

far less sensitive than the loss of s'ing'ly terminated one. This is the main

reason why high quafity filters neeting stringent specifications reìy heavìly
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on the doubly terminated LC ladder structure [3-5, 24-301.

The primary objectjves in a filter design are to obtajn a passband

whose loss rernajns constant w'ithin prescribed l'imits over its assigned

frequency interval and one or two stopbands where the loss, relatìve to that

in the passband, exceeds some prescribed d'iscrjmination by an amount whose

prec.ise value is unimportant as long as it remaíns constant. The important

point to note about the behavior in the passband is that the response 'is

required to be flat, and that the flatness is spec'ified by upper and lower

limits between which the response must lje. What is not so important is the

absolute level at which these lim'its occur. if, due to component variations,

the loss increases or decreases by the same amount at all frequencies, the

flatness of the passband wì'11 be unchanged and the resulting small level shift'

(which is nereìy equ'ivalent to insertìng an attenuator), while not des'irable,

is not particularly troublesome. But if the component variations cause the

passband loss to develop a systematic ripp'le, it will almost certainìy prove

objectionable to the user and may make the loss exceed the prescribed limjts

on flatness.

¡¡e now examjne how the component variations affect the loss of both

doubly terminated and s'ingìy terminated LC filters'

( i ) DoublY Termi nated Fi I ters .

First, for the circu'it shown in Fig. 3.11, we define the transducer

function T(s), the loss a (in nepers), and the phase ß (in radjans) by [30]'

o + jß =.Q,n T(io)

.Vr Æ= rnuu q (3.76)
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Fi g. 3.lt

(o)

(b)

(a) Doubìy terminated and (b)
filter.

Singìy terminated

Note that

2a=[n lr(i,) l2

l v, l 
2/+n,

lrn;gn
P

=sn Ë
>l

where Pru* js the maximum power available from the source R., and P, is the

power dissipated'in Rr. As the two-port is assumed passive, the loss cr js

aìways non-negatjve and is equaì to zero when P, = Prur. From (3.18), we

can identify that

It(¡r) 12 = 
"-2o 

,

(3.77)

LC

ïwo - Port

( 3. 78)
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The logarithmic sensit'ivìty of the loss e(jo) to changes of the'inductance

Li and capacitance CO are given as follows:

'âot-=-

1 dLi
Im [p Lir j2/2f

rm [p cK ukz lzf

ûJ

v
u_J

6
âa 

=\at"K

( 3. 79a )

(3. 7eb)

(3.80 )

where p js the input reflect'ion coeffjc'ient defined jn (3.23).

To establish the bound on these sens'itivities, let us examine the

behavior of p(jo). Consider a filter wìth a transducer loss response which

varies between oo and oo * op in the passband. Then, from (3.78) the locus

of p(jo) must be contained'in a ring-shaped area with an inside radius,

ct<

as sh own 'i n Fi g . 3.12.

lpl,nin =

-0 m tPl

Re tPl

( r - IP l.¡n) o,

Fig. 3.12 Locus of p(io).
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Then, from

couo? /? are

Li and CO"

vari ati ons

where e., is the

worst case loss

average energy stored

sensjtìvity to R.t and

the component x-

can be obta'ined

. Simi I arj ly, the

âSt

(3.79a) and (3.79b), recogn'izing the fact that L, trz/2 and

the average magnetic energy and average eìectric energy stored

respectively, the worst case sensit'ivity of the loss response to

of any reactance eìement x, can be written,

äo,xi\
,aj
n; (3.8r )

'ln

Rz

R.'l
ðs

5R=:-'l

I
2

i=f ,2 (3.82)

( 3.83)

Therefore, jf one designs a conventional equì-rìppìe passband filter with the

usual magn'itude of pippìe and arranges to get maximum transfer of power at the

frequencies of minimum loss, then both o and 3o/âxt are exactly zero at these

frequencies, and because of small passband ripple, âcr/âx., also rema'ins small

ever¡nvhere else jn the passband. This is the basjs of the low sensitivity of

conventional doubìy terminated LC filters.

If UZ is the output quantity of jnterest, from (3.76), we obtain,

slvzlxi

ì f x, 'is any elenent i ns j de the

ãcr-xi 
\

two-port, then

^ ão,
=-l¿ "l ãRl

I-z,ÅT,' (3.Baa)
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'|)r' = - R2 *î
,t-2

d defi ne the

(3.84b)

(3.86)

for R., and R, respect'ive'ly. Thus lVZl wi I I share the zero sensi ti vi ty of a

with respect to all the elenents inside the two-port, but due to the terms

+ 1lZ in (3.84a) and (3.84b), a change in ejther R.t or Rt wiì'l produce a

frequency'independent shift in lVZlin addition to the small effects

proportiona'l to âu/âRi. As rnent'ioned prevjously, these frequency independent

shifts have no effect on the quality of the passband and are normally of no

c0nseq uence.

( i'i ) Si ngìy Termi nated F j I ters -

Now, we consider the case of Fig. 3.ll(b)'

transducer function T(io), the loss ü3 and the phase ß

an

by

¡¿* jß =.onT(io) =.tn(UluZ) ( 3.85 )

it must be noted here that there is no upper lìmit to the power that can be

dissipated in R, and so there is no possibjlity of desensitizing the loss by

working at maximum transfer of power. l,Je can derive a formula similar to

(Z.gl) and (3.83) for case where x, represents an element insjde the two-port'

nameìy

,lvrl . 5xi : 
'z

The absence from (3.86) of the factor

clearìy shows that the sensitivity in

many times greater than in the doubly

that appears jn (3.81)

termi nated fi I ter w'il I be

fi I ter.

r:---2a/ I -e
the singly

term'inated
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To examine the sensitivity with respect

output admittance seen into port 2 with the

we can obtain

to R' let Y, =

source V., set to

jB, be the

zero. Then,

( 3. B7)

Y, is a positive real odd function and most of ìts poìes and zeros will lie
in the passband and so, as one traverses the passband, Y, w'iìl oscillate back

and forth through posìtìve values between zero and infin'ity. Hence the

sensitivity w'il'l oscillate between zero, at the poìes of Y, and unity at the

zeros of Yr. Thus we find that an emor in R, wiì1 produce in the output

voltage a systematic rippìe whose maxima and minima coincide with the zeros

and poles of Yr.

3.3.6 Comparison of Equivalent Networks

l^le have made comparison of equivalent networks for singly terminated

maxjmally flat 4th order fjlter in section 3.2.3. A s'imi'lar comparison for

doubly terminated fjlters which are shown in table 3.4 may be nrade with respect

to specified criteria.

For the normalized bandwith Bn = 0.1, we have found that the N'
(conventional network) requires a total inductance about two ordersof magnitude

more than those of non-conventjonal ones. However, for a total capacitance

requirenrent, the statement is reversed, i.e., non-conventional ones requ'ire

approximately two ordersof magnitude more. Two non-conventional filters are

comparab'le in this respect.

"lv.l - Rz âlvzl - r

'or' - lrtf fR' ];qq
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The gaìn of Nr., js much lower than that of networks Nrz' and Nrr.

Th e gai n of th e non-convent'ional ones 'i s j denti ca l but much h'i gher than that

of the conventional network Nr.,. Thus, jn terms of the gaìn, the two non-

conventjonal networks are preferable to the conventional one.

A further advantage of non-conventional fjlters is observed when we

compare the transfer function nngnìtude sens'itivity wjth respect to elenent

vari ati ons .

As shown in Fìg. 3.4 the magnitude sens'itjv'ities with respect to the

LC component variatjons jn a s'ingly ìoad-terminated case are roughly comparabìe

among equìvalent networks. This js also true for the case of singly source-

terminated networks. Therefore, we conclude that as far as the magn'itude

transfer funct'ion sens'itivity is concerned, there is no real pfeference i n

choosi ng one network over another.

To make comparìsons for the case of doubìy terminated structures, the

magn'itude sens'itjvjties wjth respect to LC components are calculated, and the

results are plotted in F'ig. 3.13 for the value of Bn = 0-ì. As can be seen

the networks N' and N* exhib'it much better sensitìvity performance than that

of network N¡1.
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CHAPTER IV

DIRTCT CONVERSION TO ACTIVE AND DIGITAL

FILTERS IN CANONiC LADDTR STRUCTURES

Electrjcal filters may be classifjed jn a number of ways. Analog filters

are used to process analog signais or continuous-time signaìs; dìgital filters

are used to process d'igitai s'ignals (discrete-tinre signals with quantjzed

magnitude levels). Anaiog fi lters may be class'ifjed as 'lumped or distrjbuted

depending on the frequency ranges for whìch they are desìgned. Fjnalìy, anaìog

fìlùers may also be classjfied as pass'ive or active depend'ing on the type of

elements used in thejr realjzation. So far we have dealt with analog, passive

and lumped filters with a specifjc structure, i.ê., canonjc ladder filter

networks.

The doubly term'inated canonjc ladders (so called LC prototypes or

reference networks) may be d'irectly converted to active and dig'itaì filters ìn

canonic ladder structures sustain'ing all the desìrable features of LC proto-

types. In this chapter, using the component simulation technique' equal number

of act'ive ladder networks are generated. In particular, imp'lenentatjon of the

Generalized Immjttance Converter (GIC) [6, 35, 38, 39, 43, 56] is studjed.

Since the number of required GIC's depends on the relative location of

inductancê, €. g. r laddelimbedding, jn the reference networks, econom'ic filters

with optimum design of GIC are sought anþng the active counterparts'

The digital filters with true ladder confjguration [67] are also directìy

obtainable from the reference equ'ivalent networks us'ing wave d'igitaì fj lter

real i zati on nethod 1621. A new ana'lysìs nethod for the magni tude sens'iti vi ty
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of the transfer function with respect to mul t'ipl'ier coeff jcients is

presented and equ'ivalent wave digìta1 fìlters are compared from a sensitivìty

point of vjew.

4.1 ACTIVE CANONIC FILTERS

It is well known that among passive elements the inductor js the most

non-jdeal one. This is especialìy true at low frequencies where inductors

become 'impractical because of their bulky sÍze and considerable departure

from ideal behavior. Thjs fact coupled with other technology deveiopnent ìed

circu'it desjgners to the investigation of ìnductorless networks. Particularly,

research jn active RC filters inìtiated more than two decades ago, matured

quickìy with the advent of integrated circujt technology in the mid and late

sixties [40]. As most of the communication and instrumentatjon systems became

smal ler ì n si ze, the f i I ters' part appeared to be the bul kiest. Itlore

se¡iously, inductors are not readììy adaptable to 'integration whjch dominates

most of today's systems. Attempts to produce integrated circuit inductor have

generally failed. The search, therefore, started for developing methods of

retaining the effect of inductors while avojdìng their actual use. The methods

come under the generaì heading of active filter synthesis, in which the circuit

elernents used are resistors, capacjtors and one or more active devices

[3 I -58].

There are basicaìly two djstinct approaches to the design of active

filters with an order greater than 2. The first approach starts directly

from real'iz'ing the given transfer function H(s) as the vo'ltage transfer function

of a feedback structure containing amplifiers and RC networks 16,37,44-46f.
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It turns out, however, that if one attempts a direct realization of even

a moderately hìgher order transfer function in one feedback loop, the

resulting network 'is quite sensjtìve to component variations. For this

reason, a more pract'ica1 and sìmp'ler technique, naneìy the cascaded real j z-

atjon of biquad, had been developed. Due to sensitìvity considerations,

however, its utjlity is ljmited to filter functions of moderate stringency

141, 46, 47, 52).

The other major approach is based on the simulation of LC ladder

filters. The starting point is an LC ladder prototype which may be readi]y

obtajnable from the wealth of knowledge'in the anaìysis, design and

manufacture of LC fjlters. As previousìy demonstrated, doubly terminated

passive LC ladders designed by Darl'ington's nethod exhibit excellent

sensitìv'ity performance over the fìlter passband. One of the reasons for

the reduced transfer funct'ion sensjt'ivity with respect to each ladder

component is that the ladder transfer function is dependent on all the net-

work components. Hence, the transfer function js spread out, with each

indjvidual sensitivity being small in value. This spreading out of

sensitivity functions in an LC ladder may be visual'ized as if the ladder

possesses internal negative feedback that reduces the transfer function

sensitivity to each component. This point of view had led to the coupled

biquad structures, which Índeed have lower sensitivities than the cascaded

structures [6, 50].

Also, the low sensitivity performance of LC ladders provided a strong

motivat'ion to seek nethods for designing active filters based on simuìating

LC ladder prototypes 124,42). The simplest of these methods, at least
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conceptually, 'is the component simulation nethod. The component simulation

method js based on replacing the inductors by simulated inductors [3]-43,

48, 5?-54, 57f. An alternative method exists that simulates the operatìon

of the LC ladder rather than simuìating an inductor in the LC ladder. Thjs

nethod is generaìly terned operationaì simulation aga'inst component s'imulation

for the former case [6,5l]. It'is generaì'ly recognized that the design

method based on LC ladder simulation rnethod should be used whenever the filter
specifications are stringent.

4.1.1 Component Simulation - Optimum GIC

The use of more than one ampììfier to realjze an RC-actjve filter is

now economicalìy vìable because of the relatively low cost of high performance

operational amplifiers. As a result, the topic of mult'iple-amplifier RC

active filter des'ign has become increasingly important in recent years; this

is basically because multipìe-ampìifier RC active filters may be designed so

that the magnitude transfer function is highly insensitive to the tolerance

errors associated with the RC elenents and to the'imperfections of the op

amp's. The major technique that is currently used most to'impìement high-

quality RC actjve filters is to simulate the behavior of doubìy terminated

LC filters by directly replacing inductors by simulated inductors. A number

of circuits for jnductor simulatjon has been proposed [3]-34,57]. The use

of the Generalized Immittance Converter (GIC), particuìarly the Antoniou GIC

is the most widely accepted for the s'imulation of inductors and for the

design of high quality RC active filters in general.

Fig. 4.1 shows the Antonìou GIC embeded in an arbitrary network.

Assuming ideaì op amps with finite ga'ins, Al and A. a strajghtforward
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Fig. 4.1 The Anton'iou GIC embedded jn an arbitrary network.

(4.1)

and further approxjmateIf we represent op amps by the one-pole rolloff model'

't, 'to
0., =# , Az=# and üi<< ttl¡ t
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where 0t., and 0t, are

(ü)', we have

Iz Yr Y¡

uYll

the gaìn bandwidth products, then, ignoring the terms

tt 
=vt

.,*Y zY 4vz .l 9l ",.rtE qqj
(4..2)

#ü].,['.'tü-J ['

Y2 Vt
- 

J+v L

Y2"4r2 l#f
I tzJ

t,,
Y;-

J

For ideal performance it is desired to have

Yr Ys"w

i ndependent of ot., and 't, . Thus, from (+.2¡, 'it i s requi red that

l-= ttvl uz

I

Ç
Y^r-t'.

(+. s)

V^ Y^
v l- J
'4 rz Yz

tç= 
o 1+. +)

(4.5 )

(4.6)

'L--,,'r'ovz-ltr=nE-'*5-r-\
Since in g.n.rul þ is a functìon of frequency and

Y^ L?

compìex vaìue, (l - #l term must be linearly independent
, I^ 'z

\.úr. 
Thrì: t"ot (4.4) or (4.5), we can see that it is

(l-*l =owhichimplies,2

takes on a

Vo Yt
of (Yo, 

V
necessary to have

Y2=Y3

Substitut'ing (4.6) into either (4.4) or (4.5), we see that it is also
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necessary to have

Il - rz Yr

5-5f i'- I

(4.7)

(4.8)

(+.9 )

(4. ro )

uz - r

rz Yq

(4.6) is easily sat'isfjed by lettìng YZV=^ Y3 = I where g is reaì. However,

satisfying (4.7) is seldom possìb'le as t' has in general components
."2

orthogonal to f . Substituting (4.6) jnto (4.2) results in
'4

For the best performance, we make the quantity M = y4(UZ/IZ)-(l/Yq)

UZ/U Z) as smal I as possi ble at the most crj ti cal frequency, oc, i n the

filter transfer function. This frequency 'is the one where the greatest

group de'lay occurs and is usually close to the passband edge.

Letting Y4 = irC4 where CO 'is rea'l , M is minimized if

^ - llzl
'. u4 - lEl

| ¿luJ=0c

The corresponding value for the GIC transfer function is

r trll
ç',Jj{'.'[\.+J

(u rl I
| * + * I cos ol

["., ^rr) J

write that for most

Ir iz Yr i.
q=EY;l', -L

From (4.9), we may

at n= 0c

ideal performance one selects
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Yq (4.11)

Taking the absolute value of both sides of (4.10) at o= trr. ând

assuming o<<o+ , o((o+ , we see that satisfying equation (4.11) is approx--tr"?
imateìy equivalent to making

(q.tz)

l,Je can'interpret (4.11) and (4.12) as follows: at the critical frequency

o. the magnitude of the end-admittance tO o1^on. side of the GIC must be

matched to the magnitude of the admjttance t' , te.n by that sjde of the
uz

GiC. The magnitude of the other end-admiarl:.. Y., wi1ì then be approxìmately

matched to the magnitude of the admittance /, s..n by the other side of the
ur

GIC. It must be noted that this condjtion imp'lies some sort of "proper

termìnation of" the GIC; and this together with the fact that Y, =Y, ensures

optimum GIC performance.

Now let us simulate a grounded inductor with an opt'imum GIC. The

circuit for simulating an jnductor is shown in Fig. 4.2.

Setti ng YZ = Y, neans that

Izl
vzlr=r.

û) =ûJ
c

Rz=R3 (4. I 3)

'oll0=0c
- I 

tz 
I- 

lEl,=,Also, setti ng impìies that
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'.c4Rs = (4.r4)

(4.15)

(4. r6 )

Ir Tz

+

v2

+
V¡

Fi g. 4.2 The Anton.iou GIC used to realjze a grounded inductor.

Substituting (4.9), (4.17) and i nto ( 4.8), we have
V,,L=Drz "5

Ir 
I

5lr =,.

which implìes that at t¡ =

but undergoes a deviation

the i nput 'i nd uctance

value given by

has infjnjte Q-factor

0cì
_t,rr)

=iRr [,-
z l:e.5l

lrtr ,t) 
)

(¡
c

in

^LlTIl(¡=(¡'c

(4.15) also suggests that R.'

the i nput 'i nductance.

0c

-+
û).tl

may be used to adjust or trim the value of
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In practì ce, oc .. ,rrt , therefore, i t can be seen that an accurate

and high Q inductor can be sjmulated wjth the GIC circuit.

4.1.2 Active Realizat'ions - GIC Ladder Embedding Technìque

The LC ladder real'izatjons of BP filters have, by necessity, floating

inductors. Although a number of circuits has been proposed for simulatjnq

ungrounded'inductors [32, 33, 53, 57], none has been found to be practically

viable [6]. Although no pract'ical op. amp. implenientation of a floatìng

ìnductor exists, a number of technìques have been developed for the realizatìon

of BP filters using GIC s. All these technjques ìnvolve a comp'lex frequency

transformat'ion of a part, or parts, of the LC ladder prototypes [35, 36, 38].

Gorsk j -Popiel 's l adder embedd j ng næthod has l ai d the foundat'ion for the

realization of LP and general BP filters using GIC s. Let us now refer to

Fi g. 4.3. The resist'ive n-port N' is connected to the mult'i-GIC network N.,

to form the composite n-port N. Note that N., is formed of n identical (ks)

GIC s of the current-transformat'ion type, i.ê., the ith GIC is described by

Vi = Vi' and Ii = ft- Ii'.

Let N' be characterized by

V'=7'1t

then we may write

v=v' =7,T'=7,(ks)T = (ksz')T
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V2

V2

Fig. 4.3 Simulation of an
the connect'ion of
resì st'ive network

inductive network N through
a topo'logì ca1 1y ì dent'ical
N' and n GIC s.

Thus, the composite n-port network N wìll be characterjzed by an impedance

matrix 7 given by

Z = ksZ'

Sjnce Z'descrjbes a resistive network, then Z describes a topoìogicaììy

identical inductive network with each jnductance in N equaì to the resìstance

of the correspondíng resistor in N' multiplied by the constant k. Note that

the number of GIC s requ'ired, and correspondingly the number of capacjtors,

is not equal to the number of inductors in the subnetwork be'ing simulated.

Rather, it'is equal to the number of terminals that connects the inductance

subnetwork to the rest of the LC ladder network, djscounting ground. A

I

I
N'

Resistire

Network
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floating inductor has to be considered as a two-port and realized using

two GIC s, with two capacitors.

A possìble realizatjon of three equivaìent doubly terminated LC ladder

networks developed in the previous chapter for n=2, Bn=0.'l is shown in

Fig. 4.4 using ìadder embedding technìque. As can be noted, the network

Nr, reQuires three GIC s where others require only two. The resuiting net-

works are opt'imum in the sense of mininrized dependence on the op. amps.

frequency response. This is achieved by ensuring that each GiC is properìy

terminated as mentioned prevìous1y. Aìso, N,., and N* are canonic in the

sense of min'imum number of GICs required. It should be noted that the dual

of N' requires on'ly two GICs r.thereas the dual of N* requires three GIC s.

Since the non-conventional equivalent reference networks Nr* and N* are less

sensitive to inductance deviations as compared to the conventional prototype

N3T, it'is equalìy valid to conclude that the'ir counterparts Nrt and Nr, ìn

Fig. 4.4 are less sensitive than N' with respect to GIC coefficients.

For the case when n=3, each one from N., to N, in Fig.3.6 requìres

three GIC s, however, the duals of N, to N, requires four GIC s, while the

dual of N., requi res only two.

4.2 D'ig'itaì Canoni c Fi I ters

D'i gi ta'l f i I teri ng i s the process of spectrum shapi ng usi ng di g'itaì

hardware as the basic building bìock. Thus the aim of digitaì filterjng is

the same as that of analog fíltering, but the phys'ica1 realizatìon is different.

Real-tjne digital filters have several advantages over analog fìlters [59].

A greater degree of accuracy can be attained in the digital filter realization.
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A great va¡iety of digital filters, can be built, since certajn realjzation

probìems associated with negative element value do not arise.

No special components are required to realize filters with tìme vary'ing

coeffic'ients. No aging process can affect the paraneters of the dìgìta1

fjlters. In addjtìon, they can operate down to extrenely ìow frequenc'ies

(e.g. 0.01 to I Hz) where the size of analog components becomes appreciable.

As is jn the case of analog filters, the des'ign of digita'l filters
jnvolves the process of findìng appropriate transfer functjons

requ'ired specifications. These spec'ifications are often gìven

frequency doma'in in the same way as those for analog filters.

There are at least three techniques for designing'infinite impu'lse

response recursive digital filters, which are derived from a transformation

of the transfer function of analog filters: the impu'lse invariance, the

bìlìnear transformation and the matched z-transform techn'ique [66]. Since

there are many transformations, so are many network realizations of the same

transfer functÍon. in practise, there are a number of bas'ic network structures

COmmOnìy encguntered, SUCh AS, direct form, canonic form, caSCade form,

paral lel form and so forth [69, 70]. One cons'iderat'ion j n the choice between

these different structures is computational complexity, i.e., networks wìth

the fewest constant multìpliers and the fewest delay branches are often most

desirable. 0n the other hand, the effects of finite register'length in actual

hardware realizatìons of digìtal fjlters depend on the structure, and it is

sometimes desirable to use a structure that does not have the min'imum number

of multìp'liers and de'lays but is less sensitive to finite-register-length

effects. It is to be expected that some of these structures will be less

to

'in

meet the

the
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sensitive than others to quantization of the parameters [6a]. Unfortunateìy,

no systemat'ic method has yet been developed for determining the best

real'ization, under gìven constraints on the number of multipliers, word

length and the number of delays. In pìace of a detailed mathematjcal analysìs

of the parameter-sensitivity prob'lem, a comnon practicai approach is the use

of simulations for determining acceptabìe quantization of the parameters of

a given network. Another aspect is that due to the finite word length, zero

input limit cycles and overflow osc'illations can occur in recursive djgìtal

fjlters [60,6l]. Some structures have been reported which are free of lim'it

cylces when nngnitude truncation is used for quantization, and which do not

have overflow osc'illations [73]. However, due to the complexìty of the

nathematics involved, the important results have so far been límited to

sections of order not exceeding two. This is sufficient, in principle, since

convent'ional dig'ita'l filters are bujlt by cascading first- and second-order

secti ons .

An alternative way to overcome these sensitiv'ity and stabiìity problems

was proposed by Fettweis [62]. Fettweís has derived a class of digìta'l filters

which has the ìow passband ìnsensitiv'ity whjch doubly terminated LC filters

are known to have. These filters, known as wave digital filters (l^lDF)" have

been essentialìy derived from analog reference networks by app'lying the

bilinear transformation directly to the cjrcuÍt elenents.

4.2.1 l^Jave Di gi tal Fi I ter

The design procedure for l^lDF s imjtating ordinary LC ladder fìlters is
based on the voltage wave scattering representat'ion of the reference analog
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fjlter structure together with the application of the bjlinear z-transformation

1621. t¡'ith this nethod, the frequency s in the analog fjlteris replaced by

the frequency variab'le rf., defined by

r=*S=i+=tann ()l) (4.i7)

't

where I = * js the sampling ìnterval, and z is the discrete-time domain
,S

comp'lex frequency variable. Voìtage waves are used as the signal variables so

that the reactance elenænts are characterized by a de'lay. For s = io, we thus

can wrì te

rþ=i0 0=tant*l (+.le)

where þ is the analog frequency and o js the digital frequency.

A list of some basjc circuit elements with thejr correspond'ing wave flow

diagrams as derived by Fettweis 'is g'iven in Appendix II -

By nreans of wave adaptors such as the two-port adaptor, the n-port

para'11e1 adaptor and the n-port series adaptor, Fettwe'is and Sedlmeyer have

obtained a true ladder wave dig'ital structure from a doub'ly termìnated LC

ladder network [67, 74f. Such a wave digital realization is elegant in the

sense that jt is not only simple ìn concept and impìementation but also has

salient advantages over the conventional digital realizations" Name'ly, due

to the insensìtivity of the doub'ìy termìnated ladder networks, the coefficient

sensjtivity is much smaller, which in turn imp'ìies that a significant

reduction in the coefficient word length is possible [63,76,77]. Also,
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it has been shown by Fettweis and Meerkötter [65, 7?] that it is stable

and much easier to eljminate parasitic oscillations, both granuìarity and

overflow, in such a structure. Furthermore, it ìs relativeìy sittipìe to

translate any well{<nown classjcal ladder filter d'irect'ly into a I,JDF form

when companed with other approaches [7], 78].

4.2.2 Wave Djgitaì F'ilter Realization

4.2.2.1 Wave Transfer Function

The Darlington circuit structure, which is reproduced in Fig. 4.5

for convenience, is the most preferred anaìog filter structure. Such a

structure is normalìy descrìbed by ejther its voltage transfer function,

V"('l,)
H(rl,) = Vî,rT

or by its transmission coefficient

(4.1e)

(4.20)t(rl,) = I H(ú)

where r! is the contjnuous-time domajn compìex frequency variable.

[þJ-

v2

Z¡n (r)

Fig. 4.5 Doubly terminated

LC
2

Two - Port

lossless network.
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For a given port wìth

current i(t) as shown

voltage waves a(t) and

associ ated references

in Fig. 4.6, we define

b(t) respectìvely by,

for voltage v(t) and the

the incident and reflected

of the signais

for the port.

and R is

a(t)=v(t)+Ri(t) ( a.2l a)

(4.2rb)

(a.22a)

(4.22b)

the

b(t)=v(t)-Ri(t)

or in the compìex frequency domain,

where A, B, V and I are the

reference resistance, normal

V+RI

compìex ampì itudes

ìy pos i t'i ve, chosen

,\-
,'{

B- RI

t)-Þ
t)*

Fig. 4.6 Definition of port variables.

By us'ing these defin'itions, from the Fig.

for port 1,

o(

b(

4.5 we can obtain,

Al=Vi+R.,I1 =V., (4.23)
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for port 2,

AZ=VZ+RZIZ

BZ = VZ - RZTZ

Since Y, = - RrI, , from (4.24) and (4.25), we have

Az -o

BZ = 2 Vz

respecti ve'ly.

Substitutìng these into (4.24) and (4.25), we obtain,

B^
t{(,r) = +̂

l

='u,vr

where W(rp) is the voltage wave transfer function by defjnition.

Thus, from (4.19), (4.20) and (4.26), we have

(4.24)

(4.?5)

(4.26a)

(4.26b)

(a.27 a)

(4.27b)

It is important to note that the magnitude of H(rl,), t(rl) and hJ(rt,)

d'iffer by, at most, a frequency independent constant, and hence a realization

l^J(u) = 2 H(u)

Iorl 
*

= lf'J t(Ú)
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of any of these functions produces the desjred frequency response.

As previously nentioned, the hlDF desìgn technique is essentiaìly based

on the ana'log filter configurat'ion by applying the bilinear transformatìon

(defined in (4.17)) directìy to the circujt elements of the analog reference

network and by connecting each transformed elenent (see Appendjx II) through

wave adaptors [62,67,74]. An alternative wave díg'ital structure in the

form of a sìngìe n-port adaptor terminated with feedback through memory has

been proposed by Martens, et.al. 175,797. Unljke the procedure taken by

Fettweis et.al., this method utilizes the voltage wave scattering matrix of

the n-port consistìng of the reference network interconnections which results

in a wave dìgital n-port adaptor direct'ly. Thìs method is not restricted to

the transformatjon of ladder prototypes. However, it should be noted that

both approaches result in exactly the same multjplier coefficients. It is

the direct transformat'ion of the elements that differs from the convent'ional

recursive digital fjlter desìgn techniques where the transformation into the

discrete-time domain js made directly on the transfer funct'ion [66,69, 70].

4.2.2.2 Wave AdaPtors

The adaptors form the maìn bui'lding blocks in a l^lDF design. Parallel

adaptors serve to simulate the paralìeì connections and series adaptors the

corresponding serìes connections ll+7. Since the elements in a ladder

structure are arranged in a series-paral'ìel form" ít 'is straightforward to

replace them with elementary three-port series and para'llel wave adaptors.

These adaptors are descrjbed in detail in Appendix III.
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4.2.2.3 Canoni c WDF Rea I i zati on

We have seen how various circuìt elements ('inductance, capacitance,

resistance and source), and adaptors (three-port paralìe1 and series), can

be built whjch serve as building bìocks for the wave flow diagrams to be

realized. I^lhen interconnecting these build'ing b'locks, the folìowing

principìe must be observed [62]:

l) The building blocks are interconnected port by port, i.e., the two

wave terminals of one wave port are connected wjth the two wave

termi nals of precise'ly one other wave port.

2) The waves correspondìng to any two wave terminals that are ioined

together are compatible, 'i .ê., they f'low in the same directìon.

3) The port resistance of two wave ports that are interconnected are

the same.

In earlier publications, Fettweis has introduced a cascaded unit element

to sat'isfy the realizability condition for the resulting signal flow diagram,

i.ê., to satjsfy the requírement that no closed loop wìthout a delay may

occur when the adaptors and elements are interconnected. Although, the unìt

elements introduced can be used perfectly well for improving the filtering

capabilities, filters of that type do not really correspond to what are

commonly considered to be true ladder filters.

Thjs drawback has been overcome in a later publication by Sedìneyer

and Fettweis [67] by introducing the concept of a wave adaptor wìth a reflectjon

free port. Also, it has been shown that by means of reflection free wave
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adaptors, ôhy LC ladder filter can very easiìy be transforned into a

corresponding digita'l structure in which the number of multip'liers

corresponds to the number of degrees of freedom in the origìna'l LC filter.
By using the above mentioned rules and building blocks, for I,JDF

obtained from doubly termjnated LC canonic ladder networks, it can be

easily shown that,

(l) the realizatjon is always possìble with on'ly three-port wave adaptors,

(2) the number of three-port adaptors required is the same as the number

of energy storage elements in the original LC network,

(3) only one of those three-port adaptors used in the realization does not

have a reflection free port,

(4) the number of dependent ports is equaì to the number of the three-port

adaptors used, and

(5) the number of required multipìiers ìs equal to the number of the three-

port adaptors used plus one.

Therefore, the l,lDF resulting from a canonic ladder network is also canoníc

in the sense that the number of required mult'ipììers and the number of

required wave adaptors is minfmum.

Three different structures of fourth order bandpass canonic ladder net-

works with their corresponding hlDF realizat'ions are shown 'in Figs. 4.7, 4.8

and 4.9. As can be noted in Fig. 4.7, the conventional BP netvrork can be

realized with either two four-port adaptors or four three-port adaptors, and

in either case, the number of multiplier requìred is the san'€, i.e., both

are canonic.
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In Fig. 4.8 and 4.9, it can be seen that two WDF realizations are

exactly the same except for the positions of the inverted delay eiements.

This is due to the LP-HP frequency transformation, i.e., the reference net-

work N' can be obtained from NSg by L-C interchange whìch in effect

exchanges the role of each reactive element.

4.2.3 Sensitivity Considerations and Comparisons

Since wave digìtaì ladder filters are designed in such a way that they

imitate the behav'ior of doubly termjnated LC ladder filters, it is possible

to achieve the extremeìy low sensitivity characteristic with respect to

paraneter variations [79]. Although tolerance problems as such do not exist

for digitaì fjlters in general, major probìems occur due to coefficient word

length ljmitation and roundoff or truncation noise generat'ion [60,61,69,

701.

It has been shown by Fettweìs [63] that for digital filters there

exists a direct and an indìrect connection between the generation of round-

off noise by a multìpìier and the effect that the coefficient word length

limitation of this multiplier has upon the response characteristic: rounding

can be interpreted as coefficient fluctuation, and any design nethod requiring

fewer digits for the multip'liers makes it possible to increase the signaì

word lengths without an increase in overall compìexìty. It confirms why

digital filters with reduced attenuation sensitivity" such as ladder hlDF,also

produce less roundoff noise. Subsequently, Fettweis has proved the stab'iìity

property of the WDF's in a direct way, i.ê., without be'ing inferred from

certain analogies with analog filters [65].
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Furthermore, usi ng s.impìe arithmetic operat'ion Fettwe js and Meerkötter

have been able to guarantee the absence of parasitic nonljnear oscillations,

such as, l'iniìt cycle oscillatíons and overflour osc'illations in the I¡JDF

structures for which all port resistances are posit'ive [72].

It appears then that jn I,JDF realizations, the sensitivìty wìth respect

to varjatjons of the multiplier coeffjc'ients is the most important desìgn

criterja. l^le have shovrn ìn Chapter IiI that the non-conventional canonic BP

ladder networks tend to have better sensitiv'ity performance. As expected,

this tendency 'is consistent with lnlDF realizations [80].

To compare the sensìt'ivity characteristics of lnlDF directìy derived from

the Coubly terminated canonic ladder filters, a new anaìysis method is given

be I ow.

From l^lDF realìzations such as shown in F'ig. 4.7" 4.8,4.9, it is

strajghtforward to obtajn multiplier coefficients in terms of element values.

Let us consider a reference network with n elements in Ít, say, Ri. By
R.

takìng ratjos of element values, sây oi = * (i I j)o we can always reduce
J

the degree of freedom by one.

For convenience, let us nornralize the element values w'ith respect to
R

Rl, i.e., pj = Rill(i*n-t¡,then the transfer function can be written as
I

(4.28)

to show the expìicit dependence

Recal'l'ing the fact that in

mul tipi i er coeffic jents 'requi red

on the 0.,.

the canonic realization the number of

is (n-l)" let us designate multiplìer
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coefficients as c¿ke k = 1,2" 3, n-1. Then each oO js a function of
element values R.. Thusu 'it is aìways possìble to represent p., as a

function of oO, i.e.o

pi=0i(cr1 ,or"o3o on_l) ,i=1"2 n-l (4.2g)

Now, suppose that the functions i n (4.29) have part-ial derivatiu., lot
ook

with respect to each variabìe aO, then on fixing in (4.2g) all variables
except cxk' we obtain a composite function H(ü) of just one variabìe o¡. Thus,

the derivative of H(r¡) with respect to ak can be computed by the chain ruìe,
and we obtain,

=äH = jt¡. 
att 

+ âH.aPz + r_ôH âp*l
aon noi-*t - apz"a.'l. r"'*ap*i l%

- 
n:j âH 3oi

- ¡'=l q'a"o (+.so)

Thjs is valid whenever H(p) is differentiable and the derivatives þook
exist" which is true in our case.

The sensitjvity function of H(,1,) with respect to a¡ is by definition,

çH(,p) 4 ok. 
âH

'oi = T'aon (4.31)

Substitutìng (4.28) "into (4.31) we have
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^H ok n:l àH 30ì
J = ì:--0, H ... . äo. ðo,K l=l ,.t 

K

n-l
- r ok aH . äo.i

H ão. äo,l=l ,1 
K

By manipulating (4.32), and from the definition of sensitivity

function, ule obtain

n-l
.H - x' gi â Ft ok ¡oi
'oo i=1 T-"ãeì'q"acio

n-l
I ^H ^o.= 5 " 5'1

i=1 Pi ok

(4.32)

That is, the transfer function sensítivity with respect to multiplier

coefficient ok can be represented as a multiplication of two sensitivity

f unctions, sH(!-/) and sf i , surnmed over the nunrber of normal i zed-Pjok
elements in the network. This can be represented convenientìy ín a matrix

form as below.

SHpf

.HJ
a2

,;
an-l

( 4. 33)

. (4.34)

.HJ
or

U
¡l I

J
oz

U

S"
0n- I

sPl s0z SPn-lor or ol

sPt sP¿ spn-lo¿^ 0,^¿¿

::

sPt soa0.,cyn-t n-l

d,^
¿

:

Son -l
0,n-t
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Using this analysis method, the IllDF realization of two equivalent

reference networks, N3l and Nr' in Table 3.4 has been examined. Fìgs.

a.l0(a) and 4.10(b) show the magn'itude senst'itivitjes of the transfer

functjons with respect to multjplier coefficients in the passband as a

function of digitaì frequency. It can be noted that the non-conventional

reference network yields much better characteristjcs. In partìcuìar, we

note that the sens'itìv'ity curves ìn Fig. 4.10(b) in contrast to those jn

Fig. 4.10(a) are almost constant across the passband and hence multiplier

quantization will have l'ittle effect on the shape of the frequency response

produc'ing onìy a change ìn gaìn. This is confirmed by Fettwejs' [68]

observation with respect to mult'iplier coefficients.
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CHAPTER V

CO NC LUS I ON

A novel approach, based on the removal sequences of the transmission

zeros, has been taken to generate all equivalent networks in canonic ladder

configuratìons. Theorems have been developed to generate independent

sequences of transrnission zero removal, and the unjque relatjonship between

the independent sequencesand the equivalent canonjc networks has been

demonstrated by means of six basic sections whìch are respons'ible for the

removaì of pairs of transmjssion zeros. A new straightforward procedure

has been developed that synthesìzes the two-element-kind driving-point

imm'ittance functions 'in al I poss'ible ladder confì gurat'ions us j ng a mi nimum

number of elements.

The procedure has been applied to the realization of sing'ly termìnated,

equivalent, canonic ladder networks. A closed form formula has been advanced,

which determined the exact number of equìvalent canonic ladder networks for

a given bandpass type transfer function. An illustrative example is provided

to compare all equivalent networks w'ith respect to certain specified design

criteria. A possible cost minimizatjon scheme has also been suggested. A

method of deriv'ing the doubly terminated equ'ivaìent canonic networks d'irectly

from singly terminated networks has been developed. Using duality, it js

shown that the total number of doubly terminated canonjc ladder networks, is

twice the number of singìy terminated networks. A proof has been given

regardìng the completeness of the set of equ'ivalent canonic networks.

Equivalent networks are compared with particular enphasis on the transfer
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function magnitude sensitiv'ity with respect to vaniations of element values.

An illustratjve example'is provided using a maximally flat fourth order

bandpass fjlter. In general, ìt has been shown that the newly generated non*

convent'ional networks require lower IL and render better sensjtìvity performance.

It has been pointed out, that for realizability, the value of the terminatìng

resistance is subject to certain constraints. These constraints are illustrated

for the cases of maxima'ìly flat fourth and sixth order bandpass functions

respectìveìy.

Subsequently, these doubly terminated canonic ladder networks are used

as reference prototypes for conversion into a corresponding set of RC act'ive

filters and a set of digitaì filters. They are all in canon'ic ladder

structure, and retain all the excellent features of the reference networks.

For the RC active filters, the component simulation technique, that util'izes

a ladder embedding technìque of opt'imum GICs, is studied, and an example of

three equ'ivalent realizations for the given functjon is presented. In dígita'l

filter realization, a wave dig'ital filter concept js adopted, and onìy three-

port, serjes and paraììeì adaptors are utilized. It has been shown, that alì

the reference canonic networks result in canonic wave d'igital filters, in
the sense of a minimum number of mulìtpì'ier as well as adaptors. To compare

the transfer functìon magn'itude sensjtivities with respect to variatìons of

the multipl'ier coefficients, a new analysis nethod is proposed. Three canonjc

wave digital filters obtained from three reference canonic networks of

order four are compared, based on this method. As expected, the wave

digitaì filter obtained from the non-conventional reference netu¡ork

exhibits better performance than the conventional counterpart.
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The new canonjc reference networks discovered 'in this study' havjng

ladder structures, may also serve as the prototype jn the design of

precision monclithìc high-order filters [81,82f using MOS switched capac'itor

techni ques .
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APPTNDIX I

Element values in terms of the 6th order BP transfer functionu

H(s) =
Ks3

.b * urrb * urr4 + a3s3 * urrz + ars + I

Table I Gain Values

Network Values of K

Nt ".3-tl

Nz (at-at ) (a,a2-a3-a¡ )

ar az -a;--

N: a3-al

(a:-ar ) (a,ar-a3-a, )
N4

Ns

Ne

Nz

d1 a2 -a3

(Ei-¿ar ) (at ar-ar-a1 )

€¡42 -â3

(a3-a2?) Gßz-a¡-ar )

atal-a3

ar-2a,
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Table 2. Inductance Values

Ì{etwork Ll L2 L.
J

tL.
1

I

N¡ ;r
o¡ô2-ar-a, (ar-2a, ) (a,ar'ar-a,, 

","t'*r.,'-"tt*"
2a

t
a r(ar'a12 a12(a3-a, )2

a.'z-a3 olô2-43 (0,"2-a3)2(ar-2a,) (arar'a3)2(a32'a,.2-"12)

, ^t e ¡ro,ÇlãlÇ e¡ (ar-a,)2(a,ae-a¡-ar) a¡2(ar-a,)2(a¡a,-a3-a,)

I alô2-43.ål (ar-2a, ) (atar-ar'a, )

"3 ol a1 (aa-ar) o,2(ar-a¡)

ôP7-â3

atZ

Gpr-a12 (a,ar'ar)2 
"l2ur2r"l2"z'"t2'.1"r'2"t"?"3*u32

l,¡4l@a¡2(a,.a¡)(e1o2-a3.a1)a,2(a1a2-a,-a1)

Elô2-a3 a¡42-43 (a, ar'ar) 2 (a1ar-ar)2 (a¿-ar )

N5 -{ ôJ"t'?-a3-al @ a¡2(ar-241)(a¡a2-ar-a1)

I (a,at -ut) 2 (a,er-a3)2 | (ar-ar) (az.r-u¡)2

No 
", @@ ã,*u,t(a3-2a¡)(a1a2-a3'as)

I alå2-s3-år r!¡62-43-a, ôla2ô3-a32-al2a2+ðte3-åt¿

li7 ,, ",2
a,2(a3'2a,);G-r-ÃJ
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Table 3. Capacìtance Values

Nr

¿lt e¡ (ar-a¡ ) a,2{ar-a¡ ) ",' {urrr-., -2a,a2i3a ¡ )

a¡a2-ô3-a¡ Gr-2a1) (a¡a2-a3-a¡) h3-2a1) (a'at-ar-a¿ )

"r a, (a3-a, ) (a,ar-ar-a, )

(a¡42-ar)z

ar 2(a3-al ) (at ar-ar-a, )

(a3 -2a, ) (a, ar'a,)2

7

o¡'tar (a3- a¡ )^(a1a2 -ar -a1 )

,.t'zarX"É,-a3)2N2

8¡ _1él

å 
I 
ô2 -a3-a 

I

a, (ar'a, ) 2

(e¡ar-43-a1 ) (ar-za, ¡

a,2(arar-2a,a2+a¡)

G,ð,-a;ã¡GFÐN:

utl
N4 ala2-43

a¡ (a,ar-ar-a, ) e1 (ar-a1)2(a,a2-ar-a,) o¡ta, (a3-a¡)2(a,ar-a.r-a' )

ô ¡ô2-43
(a3-2a, ) (a,a2-a3)2 (ar-2at ) (arar-ar-a¡ )

8ì a, (ar¿r-a3'4, )

(a1a2-ar)2

a, (ar-2a, ) (a, ar-ar-a¡ )

-

(a, a, -a3 ) 
¿

. t 

2 (o 
t a22*¿t -.r.t'", o, )

(a 
1 
o2 -a3 )zN.

þ

u,2 a, (a,a2-a3-a1 ) a, (ar-2a, ) (a¡ cr-ar-a, ) a ¡ 
2 (a 

¡ o22 -o2a3+a3 -2a ¡ a¡+ 2a¡)

(a, a2 -a3) 2 (a¡42-a3)2N.
b ala 2'a3 ðla2-â3

a,aat e¡ (ar-ta¡) a,2 (a2-l)

a 
I 
a?-ð3 -8 

I ô,42-ô3'a¡
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APPENDIX i I

Wave Fl ow Di aqrams of Bas'ic Ci rcui t El enents

This append'ix Presents the wave

elements as derived by Fettweis upon

formation to these elements. For a

for the voltage v(t) and the current

a(t) and the reflected wave b(t) are

f I ow dì agrams of some bas j c c i rc ui t

appìyìng directly the bilinear trans-

g'i ven port wì th associ ated references

i (t), the i nstantaneous 'incident wave

defi ned as fol lows;

a(t) = v(t) + n i(t)

b(t) = u1t¡ - R i(t)

where R is the reference resistance constant, normally posjtive, chosen for

the port. The following tab'le g'ives the wave flow diagrams of such basic

elements aS a reSistjve S6urce, A resistance, an inductance and a

capacitance together with the difference equations which result from the

wave digital realization.
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ELEMENT WAVE FLOW
DI AGRAM

DIFFERENCE
EQUATIO N

Ri
b-;-+

e(r )

Resistive sou rce

o

b
o(t) = e(t)

"-*{

b=O
&

b (t ) =

+
V RìÍ

duc-torrce of impedonce
R.l/

b(t) = -o (t-T)

+

V
R

t/,*b
tpocitonce d inpedonce

R /ú/

b(t)= o (t-T)
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APPENDIX I II

Wave Àdaptors

Thìs appendìx presents the descrìptìon of elementary three-port wave

adaptors that are required for the I,IDF real'izatìon of the canonic LC ladder

reference networks.

( 1 ) Three-Port Paral le1 AdaPtor

Cons'ider three ports wì th port resi stances R] , R2, and R' respecti vely'

and assume these three ports are connected in para'lìel as shown in Fig. A.l(a).

The jnc'ident waves an and reflected waves bn are related to the voltage

vn and current in bY

ân = vn + Rn in bn = un - Rn in

(A.l )

n = 11 2, 3 .

From the equafit'ies ul = u2 = v, and il * iZ* i3 = 0" we obtain the

adaptor equations

bn = (olul * o?u.* o3ug) - an (A'2)

wh ere
2G f

fln-lan=6¡-6;+¡;,on-Ç

ol*o2*o3 =2

(A.3)

(A.4)
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b2a2

o¡

b¡

b3

o3

(o ) (b)

F'is. A. 1 (a)

(b)

(c )

b3

(c )

Parallel connectjon of three ports

Correspondi ng adaPtor

Sìgnal flow dìagram corresponding to this
ãoãptor with poit 2 chosen as dependent port'
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By making use of (4.4), the coefficient on of one of the ports, called

the dependent port, can be eliminated. By choos'ing port 3 as dependent port,

i.ê., o3= 2 - (ol * oZ)' (4.2) can be rewritten as

bl=b3*(ar-a.,)

bZ=b3+(aS-uZ)

b, = a, - o., (a, - a.,) - o, (a, -

Fig.A.l(b) is a symbol of three-port paraìle'l adaptor and Fig. A.l(c)

represents a signal flow diagram of three-port adaptor w'ith port 3 being a

dependent port. As can be seen, this adaptor requires two multip'liers and

has six adders since one of the fjve adders has three jnputs. 0f particular

interest are paraìlel adaptors for whjch one of the ports, sâV port 3, is

reflection free. In this case we must have,

uz)

(A.5 )

(A.6 )

o3=l

G3=Gl *Gzl.e.

Therefore, we have

or* oz= f

Gr

(A.7)

(A.8 )or =q '
G^

¿or=q

Then, by choos'ing port 2 as the dependent port, i.ê., o2=J-ol'wehave
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bl = bZ * (a, - a.,)

br=bo+a,

br=bo+a,

where bo=-ol (ar-a.,)

Note that the output wave b, is independent of

Fig. 4.2(a) is a symboì of three-port paral'le1

reflection free and the port 2 beìng the dependent

the input wave ar.

adaptor wìth the port 3

port, and Fig.4.2(b) is

o¡

b¡

02 b2

(o)

b3

b¡

Three-port parallel adaptor with
and port 2 bei ng dependent

Signaì flow diagram corresponding

a3

Fis.4.2 (a)

(b)

b2

(b)

port 3 reflection free,

to this adaptor.
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.?R2 v2 b2 a2

(b)

I

'1 1

-l

R3

v3

3
t

I

o¡

bl

b3

o3

Rl

Fi s. 4.3

i3 3

(o )

(a)

(b)

(c)

b3

(c )

Serjes connection of three Ports
Corresponding three-port series adaptor

Signaì flow djagram corresponding to this
with port 2 chosen as dependent port.

ad apto r
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the s'ignal flow djagram of the correspondìng adaptor. This adaptor requires

onìy one multjplier and four adders.

(2) Three-port Series Adaptor

Consider three ports with port resistances R.,, R2, and R' respectiveìy,

and assume these three ports are connected in series as shown in Fig. A.3(a).

The incjdent and reflected waves are again given by (A.l). However, 'in this

case, from the equalÍties il = iZ= i, and v., * rZ u3 = 0, we obtajned

different adaptor equations as follows:

wh ere

bn=un- crn(ul*ar+ar)

2R_n
% - Fif-RttE

(A.e )

(A.lo)

wi th (4.4) sti I I hol dì ng.

The dependent port is aga'in that port for which the corresponding on

is elimjnated by neans of (4.4). Fig.A.3(b) is the symboì for a three-

port series adaptor and F'ig. 4.3(c) is a signal flow djagram of the three-

port adaptor with port 3 being the dependent port. Th'is adaptor requires

two multip'liers and six adders since two of the four adders have three

i nputs.

0f particular interest are series adaptors for which one of the ports,

say port 3, is reflection free. In thìs case, we must have,

o3=l (A.l I )



i.e.

Thus, we have

or

or

Then, by choos'ing port 2

i.e., oZ= 1- crl , wê

oz=

as the dependent port,

have

R3= Rr*R2

llB

(A.12)

(A.l 3)

(A. l4)
Rz

E

+ az= 1

= 
o't

Rg'

bl =ul -cÌl (al +ar+a,)

bZ=-(ar+br)

b3=-(a., +ar)

Note that the output wave b, is independent of the input wave a3.

The symbol for the three-port series adaptor w'ith port 3 reflection

free js shown'in Fig. 4.4(a), and Fì9. 4.4(b) is the signal flow diagram of

the corresponding adaptor with port 2 chosen as the dependent port. Again,

this adaptor requires only one multìpìier and four adders.

o¡

bl

b3

o3

(d)

Series adaptor with
dependent

Signal flow diagram

port 3 reflectjon

correspondíng to

free" port 2 being

thìs adaptor.

(a)

(b)

Fig.A.4
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