
Efficient Deep Learning Models for Video
Abstraction

by

Mrigank Rochan

A Thesis submitted to the Faculty of Graduate Studies of

The University of Manitoba

in partial fulfilment of the requirements of the degree of

DOCTOR OF PHILOSOPHY

Department of Computer Science

University of Manitoba

Winnipeg

Copyright c© 2020 by Mrigank Rochan

Thesis advisor Author

Yang Wang Mrigank Rochan

Efficient Deep Learning Models for Video Abstraction

Abstract

With the revolution in digital video technology, video data are ubiquitous and

explosively growing. There is a compelling need to develop efficient automated tech-

niques to manage video data. Therefore, video abstraction is of significant interest

to the computer vision research community. The objective in video abstraction is

to automatically create a short visual summary of a long input video so that a user

can get certain perspectives of the video without watching or accessing it entirely.

This mechanism would allow to easily preview, categorize, search, and edit the huge

amount of video data. In this thesis, we push the state of the art in video abstraction

in several ways. Firstly, we develop fully convolutional sequence deep learning mod-

els that address the computational limitations of the previous deep learning models

for video abstraction. Secondly, we propose a new formulation of unpaired training

data for the model learning to reduce the need of expensive labeled training data for

supervised learning. Thirdly, since video abstraction has a degree of subjectiveness to

it, we realize a model that yields personalized and user-specific predictions by refer-

ring to the user’s previously created summaries. Lastly, we extend this user adaptive

model such that it can handle natural language textual queries from users and make

predictions that are semantically related to the queries. Although we focus on video

ii

Abstract iii

abstraction in this thesis, we believe that our models can potentially be applied to

other video understanding problems (e.g., video classification, action recognition, and

video captioning).

Contents

Abstract . ii
Table of Contents . vi
List of Figures . vii
List of Tables . xi
Acknowledgments . xiv
Dedication . xv
Publications . xvi

1 Introduction 1
1.1 Thesis Contributions . 5
1.2 Thesis Outline . 6

2 Related Work 7
2.1 Video Summarization . 7
2.2 Video Highlight Detection . 8
2.3 Dynamic Video Thumbnail Generation 9
2.4 Non-recurrent Deep Learning Models 11
2.5 Learning from Unpaired Data . 12
2.6 Personalized Models . 12

3 Fully Convolutional Sequence Networks 15
3.1 Chapter Overview and Introduction 15
3.2 Problem Formulation . 18
3.3 Architecture of FCSN . 19
3.4 Unsupervised SUM-FCN . 23
3.5 Experiments . 24

3.5.1 Datasets . 24
3.5.2 Implementation Details and Setup 25
3.5.3 Main Results and Comparisons 30
3.5.4 Analysis . 31

3.6 Summary . 35

iv

Contents v

4 Learning Video Summarization from Unpaired Data 37
4.1 Chapter Overview and Introduction 37
4.2 Our Approach . 40

4.2.1 Formulation . 40
4.2.2 Network Architecture . 40
4.2.3 Learning . 43
4.2.4 Learning with Partial Supervision 45

4.3 Experiments . 46
4.3.1 Setup . 46
4.3.2 Baselines . 48
4.3.3 Main Results . 49
4.3.4 Comparison with Supervised Methods 50
4.3.5 Effect of Partial Supervision 51
4.3.6 Transfer Data Setting . 53
4.3.7 Qualitative Analysis . 54

4.4 Summary . 55

5 Learning to Adapt Video Highlight Detection using User History 57
5.1 Chapter Overview and Introduction 57
5.2 Our Approach . 61

5.2.1 Background: Temporal Convolution Networks 62
5.2.2 Temporal-Adaptive Instance Normalization 62
5.2.3 Adaptive Highlight Detector 64

Highlight Detection Network 65
History Encoder Network . 66

5.2.4 Learning and Optimization . 68
5.3 Experiments . 69

5.3.1 Dataset . 69
5.3.2 Setup and Implementation Details 70
5.3.3 Baselines . 71
5.3.4 Results and Comparison . 72
5.3.5 Analysis . 74

Effect of affine parameters . 74
Effect of user’s history size . 75

5.3.6 Application to Video Summarization 76
5.4 Summary . 77

6 Learning to Generate Dynamic Video Thumbnail using Sentences 79
6.1 Chapter Overview and Introduction 79
6.2 Our Approach . 82

6.2.1 Sentence-Guided Video Thumbnail Generation Model 83
Video Thumbnail Generation Network 84

vi Contents

Self-Attention Sentence Encoder Network 85
Sentence-Guided Temporal Modulation 86
Auxiliary Network . 87

6.2.2 Learning and Optimization . 87
6.3 Experiments . 89

6.3.1 Setup . 89
6.3.2 Main Results and Comparisons 90
6.3.3 Analysis . 91

6.4 Summary . 94

7 Conclusion 96

Bibliography 114

List of Figures

3.1 An illustration of the relationship between video summarization and
semantic segmentation. (Left) In video summarization, our goal is to
select frames from an input video to generate the summary video. This
is equivalent to assigning a binary label (0 or 1) to each frame in the
video to indicate whether the frame is selected for summary. This
problem has a close connection with semantic segmentation (Right)
where the goal is to label each pixel in an image with its class label. . 18

3.2 The architecture of SUM-FCN. It is based on the popular semantic
segmentation architecture FCN [54]. Unlike FCN, SUM-FCN performs
convolution, pooling and deconvolution operation across time. 21

3.3 Example summaries for two videos in the SumMe [26] dataset. The
black bars on the green background show the frames selected to form
the summary video. For each video, we show the ground-truth (top
bar) and the predicted labels (bottom bar). 35

4.1 Learning video summarization from unpaired data. Given a set of raw
videos {vi}Mi=1 (v ∈ V) and real summary videos {sj}Nj=1 (s ∈ S) such
that there exists no matching/correspondence between the instances
in V and S, our aim is to learn a mapping function F : V → S (right)
linking two different domains V and S. The data are unpaired because
the summary set S does not include ground truth summary videos for
raw videos in V , and vice versa. 39

vii

viii List of Figures

4.2 Overview of our proposed model. (a) Network architecture of the key
frame selector network SK . It takes a video v and produces its summary
video s′ (i.e., SK(v)) by selecting k key frames from v. The backbone of
SK is FCSN [71]. We also introduce a skip connection from the input
to retrieve the frame-level features of k key frames selected by SK . (b)
Network architecture of the summary discriminator network SD. It
differentiates between an output summary video s′ and a real summary
video s. SD consists of the encoder of FCSN (FCSNenc), followed by a
temporal average pooling (Ωt) and sigmoid (σ) operations. In (c) and
(d), we show the training scheme of SK and SD, respectively. SK tries
to produce video summaries that are indistinguishable from real video
summaries created by humans, whereas SD tries to differentiate real
summary videos from the summaries produced by SK . As mentioned
in Sec. 4.2.1, there is no correspondence information available to match
raw videos and summary videos in the training data. 42

4.3 Two example results from the SumMe dataset [26]. The two bars at the
bottom show the summaries produced by UnpairedVSN and humans,
respectively. The black bars denote the selected sequences of frames,
and the blue bar in background indicate the video length. 55

4.4 Example videos from SumMe [26] and predicted summaries by SUM-FCNunsup
[71] and UnpairedVSN. Frames in the first row are sampled from the
video, whereas frames in the second row are sampled from the sum-
maries generated by different approaches. 56

5.1 The definition of highlight of a video is inherently subjective and de-
pends on each user’s preference. In contrast to a generic highlight
detection model, an adaptive highlight detection model (like ours) in-
corporates a user’s previously created highlights (e.g., GIFs from mul-
tiple videos) when predicting highlights of an input video. This allows
the model to make more accurate and user-specific highlight predictions. 59

5.2 Overview of a temporal-adaptive instance normalization layer (T-AIN).
For an input video v, let oi be the activation map with channel dimen-
sion Ci and temporal length T i in the i-th layer of a temporal convolu-
tional network fT . Let gT be another temporal convolutional network
that encodes external data (e.g., user’s history H) into a vector rep-
resentation m of dimension 2Ci. T-AIN firstly temporally normalizes
oi in each channel to obtain oi

norm. It then uniformly scales and shifts
oi
norm in channel c (where c ∈ Ci) over time by γic and δic, respectively.

The values of γic and δic are obtained from m. As can be seen, the main
characteristics of T-AIN include temporal operation, no learnable pa-
rameters, and conditional on external data. 64

List of Figures ix

5.3 Overview of our proposed model, Adaptive-H-FCSN. The model con-
sists of two sub-networks, a highlight detection network H and a history
encoder network M . H is an encoder-decoder architecture that takes
a frame-level vector feature representation of a user input video with
T frames. It then generates scores (highlight vs. non-highlight) for
each frame in the video while taking information from M . M takes
vector feature representation of each element (i.e., highlights the user
has previously created) in the user’s history as an input and encodes
it to a vector zh. This vector zh is then simply fed to a fully connected
layer FC to produce the affine parameters γj and δj in the j-th T-AIN
layer of decoder Dv where j = 1, 2. This way the highlight detection
for the input video is adapted to the user. 66

5.4 Qualitative examples for different methods. We show examples of the
generic highlight detection model (H-FCSN) and our user-adaptive
model (Adaptive-H-FCSN) on four videos. For each video, we show
the user’s history (multiple GIFs) and few sampled frames from the
highlight predictions of the two models. Based on the user’s history,
we find that in (a) the user has interest in animals; (b) the user is inter-
ested in faces that dominate a scene; (c) the user is inclined to highlight
goal scoring scenes; and (d) the user focuses on cooking. These visu-
alizations indicate that adaptation to the user’s interest is important
for a meaningful and accurate highlights. Compared with H-FCSN,
the prediction of Adaptive-H-FCSN is more consistent with the user’s
history. 74

6.1 Illustration of the difference between static video thumbnails and sen-
tence specified dynamic video thumbnails. The latter considers the
user query sentence when creating the thumbnail. 81

x List of Figures

6.2 An overview of our sentence-guided video thumbnail generation model.
The model consists of a video thumbnail generation network (T), a self-
attention sentence encoder network (Senc), and an auxiliary network
(Taux). A sentence-guided temporal modulation (SGTM) mechanism
is introduced to allow interaction between T and Senc. The network
T consists of an encoder Tenc and a decoder Tdec. T takes features of
video clips in an input video V and predicts whether or not each clip
belongs to the video thumbnail. Senc encodes the word-level embed-
ding of user query sentence (S) to a vector z which is then used by
SGTM to modulate the temporal activations from the encoder of T
(i.e., Tenc) to determine sentence-specific video content over time. The
role of Taux is to reconstruct z to further ensure that the generated
video thumbnail aligns well with S. We use two losses for learning:
a thumbnail generation loss Lthumb on the prediction of Tdec and an
auxiliary loss Laux on the output of Taux. 83

6.3 Example qualitative results produced by Guided-DVTG. The gray, green
and orange bars indicate the video length, ground truth and thumbnail
predictions, respectively. 93

List of Tables

3.1 Ground-truth (GT) annotations used during training and testing for
different datasets. ‡We convert frame-level importance scores from
multiple users to single keyframes as in [79; 103]. †We follow [103] to
convert multiple frame-level scores to keyshots. §Following [23; 103], we
generate one set of keyframes for each video. Note that the YouTube
and OVP datasets are only used to supplement the training data (as
in [103; 58]), so we do not test our methods on them. 27

3.2 Comparison of summarization performance (F-score) between SUM-
FCN and other approaches on the SumMe dataset under different set-
tings. 30

3.3 Performance (F-score) of SUM-FCN and other approaches on the TV-
Sum dataset. †Zhang et al.[103] (vsLSTM) use frame-level importance
scores. ‡Zhang et al.[103] (dppLSTM) use both frame-level importance
scores and keyframes in their method. Different from these two meth-
ods, our method only uses keyframe-based annotations. 31

3.4 Performance (F-score) comparison of SUM-FCNunsup with state-of-the-
art unsupervised methods. 32

3.5 Performance (F-score) of SUM-DeepLab in different settings. We in-
clude the performance of SUM-FCN (taken from Table 3.2 and Table
3.3) in brackets. We also replace the bilinear upsampling with learn-
able deconvolutional layer and report the result in the transfer setting
(last column). 33

3.6 Performance (F-score) of our models on longer-length videos (i.e., T=640)
and original (i.e., variable length) videos in the transfer data setting.
In brackets, we show the performance of our model for T=320 (ob-
tained from Tables 3.2, 3.3, and 3.5). 34

4.1 Key characteristics of different datasets used in our experiments. †The
YouTube dataset has 50 videos, but we exclude (following [23; 103])
the 11 cartoon videos and keep the rest. 46

xi

xii List of Tables

4.2 Performance (%) of different methods on the SumMe dataset [26]. We
report summarization results in terms of three standard metrics in-
cluding F-score, Precision and Recall. 50

4.3 Performance (%) of different methods on TVSum [79]. 50
4.4 Quantitative comparison (in terms of F-score %) between our meth-

ods and state-of-the-art supervised methods on SumMe [26] and TV-
Sum [79]. ‡Results are taken from [104]. 52

4.5 Performance (%) of UnpairedVSNpsup on the SumMe [26] and TV-
Sum [79] datasets. In the bracket, we include the performance of our
final model UnpairedVSN reported in Table 4.2 and Table 4.3 to help
with the comparison. 53

4.6 Performance (%) of different methods on SumMe [26] under transfer
data setting. 54

4.7 Performance (%) of different methods on TVSum [79] under transfer
data setting. 54

5.1 Performance (mAP%) comparison between Adaptive-H-FCSN and other
approaches. We compare with both non-adaptive and adaptive high-
light detection methods. Our method Adaptive-H-FCSN outperforms
the other alternative methods. We also compare with Adaptive-H-FCSN-attn

that uses self-attention in the history encoder (see Sec. 5.2.3). Note
that all the listed methods use C3D feature representation. 73

5.2 Impact of affine parameters on highlight detection. Here we show the
performance (mAP%) for different choices of affine parameters γic and
δic in Eq. 5.2. 75

5.3 Impact of an user’s history size (i.e., number of history elements/highlights)
on different methods. Here we vary the history size h as 0 (no history),
1, 5, and n (full history). The performance of our model improves with
the increase in history size. 76

5.4 Performance comparison in term of F-score (%) on SumMe. Note that
unlike other methods, we do not train on SumMe rather directly test
our trained (using PHD-GIFs) model for summarization. Results of
other methods are taken from [92]. 77

6.1 Performance comparison (in terms of F1 and IoU) between Guided-DVTG

and other alternative methods. Results of previous methods is taken
from [99]. Best and second best methods are highlighted in gray and
cyan, respectively. 92

6.2 Impact of modulation parameters on video thumbnail generation. Here
we indicate F1 and IoU (in bracket) for different solutions of parameters
αc and βc in Eq. 6.3. 93

List of Tables xiii

6.3 (a) Impact of auxiliary network and its loss. (b) Performance com-
parison of unsupervised methods. Result of BeautThumb [78] is taken
from [99]. 94

Acknowledgments

I would like to begin by thanking my advisor Prof. Yang Wang for his support

and guidance without which this thesis would not have been possible. His enthusiasm

and dedication towards research has consistently motivated me. I am thankful to

him for his timely and insightful feedback that played a crucial role in successfully

completing the research in this thesis. I am grateful to him for creating time on

weekdays, weekends and even holidays, for research discussions. I must also thank

him for teaching me different aspects of research in computer vision and the craft of

effectively communicating ideas.

I gratefully acknowledge the positive and encouraging feedback from my thesis

committee members Prof. Jim Little, Prof. Lorenzo Livi, and Prof. Ekram Hossain.

I thank them for serving on my committee.

Besides the generous funding I received from my advisor, I acknowledge the fund-

ing from the University of Manitoba Graduate Fellowship (UMGF) by the Faculty of

Graduate Studies and the Guaranteed Funding Package (GFP) by the Department

of Computer Science. I would also like to thank the support staff in the department,

especially Lynne Hermiston and Gilbert Detillieux, for their help.

I am fortunate to have wonderful friends like Devinder, Nikhil, Peter, Hao, Kyle,

Terry, Aoran, Debajyoti, Saeed, Praveen, Arjun, and Shyam, who made my life enrich-

ing and enjoyable. I am also extremely thankful to all my labmates for the amazing

collaboration and interesting discussions.

Finally, I am deeply thankful to my family for their unwavering faith and encour-

agement. I cannot imagine reaching this far without their support and care.

xiv

This thesis is dedicated to my parents.

xv

Publications

Most of the materials, ideas and figures in this thesis have previously appeared in

the following publications by the author:

1. M. Rochan, L. Ye, and Y. Wang, “Video Summarization Using Fully Convolu-

tional Sequence Networks,” European Conference on Computer Vision (ECCV),

2018, Springer Nature.

2. M. Rochan and Y. Wang, “Video Summarization by Learning From Unpaired

Data,” 2019 IEEE/CVF Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2019.

3. M. Rochan, M. K. Krishna Reddy, L. Ye, and Y. Wang, “Adaptive Video

Highlight Detection by Learning from User History,” European Conference on

Computer Vision (ECCV), 2020, Springer Nature (accepted and forthcoming).

4. M. Rochan, M. K. Krishna Reddy, and Y. Wang, “Sentence Guided Tempo-

ral Modulation for Dynamic Video Thumbnail Generation,” British Machine

Vision Conference (BMVC), 2020 (accepted and forthcoming).

xvi

Chapter 1

Introduction

With the ever-increasing popularity and decreasing cost of video capture devices,

the amount of video data has increased drastically in the past few years. According

to Cisco Visual Networking Index 2017 [1], it is estimated that it will take around

5 million years for an individual to watch all the videos that are uploaded on the

Internet each month in 2021! Video has become a prevalent mode of visual data. On

the one hand, the huge video data present an exciting opportunity to make major

scientific advances in video understanding applications such as search, recommenda-

tion, browsing, security, robotics, and video analytics. But on the other hand, it is

challenging to exploit and manage this enormous amount of available video data for

many of these applications. It is unrealistic for humans to browse and watch these

videos to identify relevant and useful information. Hence, it is becoming increas-

ingly important to develop automated methods that enable easier ways to preview,

search, edit, and categorize videos. Consequently, video abstraction has emerged as

an exciting area of research in computer vision. Video abstraction is an automatic

1

2 Chapter 1: Introduction

technique for generating a short and compact visual summary of a long original (raw

or unedited) video [35; 84].

Based on the perspective of a video that needs to be retained in its summary,

video abstraction can take various forms that are suitable for different applications

[84]. In this thesis, we focus on three forms of video abstraction, namely video

summarization, video highlight detection, and dynamic video thumbnail generation.

In video summarization, the goal is to produce a short overview of a video (e.g.,

documentaries and instructional videos) [35; 48; 84] while satisfying certain properties

such as diversity (no redundancy), interestingness (capture important objects crucial

in visual narration), and representativeness (describe the main content of the video)

[23]. In video highlight detection, the goal is to reduce a video to its interesting and

important moments/events (e.g., movie trailers and sports highlights) [35; 48; 84].

Recently, a new task of dynamic video thumbnail generation is proposed which aims

to compose a video thumbnail by selecting and concatenating a small number of clips

of a video that may not be consecutive but are semantically related to the user query

sentence [99]. The idea is to dynamically generate video thumbnails that match with

user search intentions in video search websites like YouTube.

The output from video abstraction is commonly represented as either keyframes

or interval-based keyshots. Keyframes [14; 23; 60; 52; 93; 103] are a subset of isolated

defining frames of the video. Interval-based keyshots [26; 27; 68; 79; 103] are a

set of segments or subshots of the video, where each segment or subshot consists of

temporally continuous frames extending for a small time duration.

Video abstraction is a promising tool and mechanism to cope with the overwhelm-

Chapter 1: Introduction 3

ing amount of video data. It can also be useful in many real world applications. For

example, in video surveillance, it is tedious and time-consuming for humans to browse

through many hours of videos captured by surveillance cameras. If we can provide a

short summary video that captures the important and meaningful information from a

long video, it will greatly reduce human efforts required in video surveillance. Video

abstraction can also provide better user experience in video search, retrieval, edit-

ing and understanding. Since short videos are easier to store and transfer, they can

be effective in mobile applications. Furthermore, the summary videos can help in

many downstream video analysis tasks, for instance, it is faster to run any other

analysis algorithms (e.g., action recognition) on short videos. Thus, it is critical to

develop models that can automatically understand the content of a video and produce

a meaningful and optimal shorter version of it.

Despite being previously studied in the computer vision literature, the problem of

video abstraction is unsolved and the state-of-the-art techniques (which are mainly

deep learning based) are prone to various technical limitations. One limitation is that

prior best methods mainly use recurrent deep learning models (e.g., Long Short-Term

Memory (LSTM) [30]) in their approach. Since temporal information (such as motion,

actions) in the frames of a video is helpful to perform video abstraction, recurrent

models are natural and popular choice. This is due to their design and operational

ability which is suitable to learn the temporal relationships in sequential data, for

instance, videos. However, these models process the input data sequentially, e.g., for

an input video it will process one frame at a time from left (first frame) to right (last

frame). As a result, these models are hard to parallelize so as to take full advantage of

4 Chapter 1: Introduction

modern graphics processing units (GPUs) hardware. Another limitation is that prior

superior methods are mainly supervised that require human-labeled training data

for model learning which is very challenging and expensive to collect. Additionally,

applications of many existing methods are also limited due to the fact that they

usually learn a generic model for video abstraction, whereas the notion of a summary

or highlight of a video is to a degree subjective [16]. Different users may not share

same interests, and as a result it is very unlikely that different users will create exactly

same summary for a given video [16]. Even though there is a degree of subjectivity

in video abstraction, the major thrust of research is in developing generic models.

In this thesis, we conduct research to tackle the above limitations. We propose

efficient deep learning models for video abstraction and advance the state of the art

in video abstraction in several ways. Firstly, we develop non-recurrent deep learning

models that are computational efficient than the existing deep learning based meth-

ods. Secondly, we introduce a new learning formulation that minimizes the need of

labeled training data. Thirdly, we incorporate user preference (available in the form

of past video highlights created by the user) in our learning framework and propose

an adaptive model that is capable to make personalized and user-specific predictions.

Lastly, we extend our model to include and leverage natural language textual queries

from users while generating a concise preview of a video.

We envision that the technical and experimental contributions of this thesis will

not only stimulate further research in video abstraction but also has potential to

influence a variety of problems in video understanding (e.g., action recognition, mo-

ment localization, and video caption generation) and many application domains (e.g.,

Chapter 1: Introduction 5

healthcare and surveillance).

1.1 Thesis Contributions

In this thesis, we develop efficient deep learning models for video abstraction. In

particular, we make the following contributions:

• We propose fully convolutional sequence models for video summarization (Chap-

ter 3). Unlike recurrent models for summarization that prevent parallelization

due to sequential computation, our models offer better parallelization while

achieving superior performance.

• We introduce a new formulation of learning video summarization from unpaired

data (Chapter 4) which is much easier to collect than the standard supervised

training data. The unpaired data consists of a set of raw videos and a set

of video summaries where there exists no correspondence information between

these two sets. Given this unpaired data, we use adversarial learning to learn

a model that yields promising results on the benchmark video summarization

datasets.

• We develop an adaptive model that learns to make user-specific and personalized

highlight of a video by referring to the user’s highlights history (Chapter 5).

We introduce a temporal-adaptive instance normalization mechanism to induce

personalization signal from the user history in the model.

• We present a new architecture for sentence-guided video thumbnail generation

(Chapter 6). We propose a sentence-guided temporal modulation to adapt the

6 Chapter 1: Introduction

video thumbnails to the user natural language sentence query. In addition, we

introduce self-supervision through an auxiliary task to improve the performance

of the model and also develop an unsupervised approach.

1.2 Thesis Outline

The remainder of this thesis is structured as follows. In Chapter 2, we briefly

discuss the related work. In Chapter 3, we present a novel non-recurrent model

for video summarization. In Chapter 4, we introduce a new formulation of learning

video summarization with unpaired data. In Chapter 5, we present an adaptive video

highlight detection model that produces user-specific video highlights by looking at

the user’s highlight history. In Chapter 6, we present a method for sentence-guided

dynamic video thumbnail generation. In Chapter 7, we conclude this thesis and

discuss some interesting future directions.

Chapter 2

Related Work

In this chapter, we briefly discuss the related work to this thesis. We firstly cover

the related literature for the different forms of video abstraction that we study in

this thesis, i.e., video summarization, video highlight detection, and dynamic video

thumbnail generation. Next, we discuss the related deep learning architectures that

partly inspired our models, followed by a brief description on work with weak super-

vision through unpaired data. Finally, we present relevant work on personalization

that aims to address the issue of subjectivity in video abstraction.

2.1 Video Summarization

Video summarization aims to generate a concise overview of a video [16; 84]. Most

of the prior approaches in video summarization fall in the realm of unsupervised and

supervised learning.

Unsupervised methods [12; 14; 36; 39; 44; 52; 55; 57; 61; 64; 68; 79; 101; 108]

7

8 Chapter 2: Related Work

typically use hand-crafted heuristics to satisfy certain properties (e.g., diversity, rep-

resentativeness, and coherency) in order to create the summary videos. Some sum-

marization methods also provide weak supervision through additional cues such as

web images/videos [9; 38; 39; 79] and video category information [63; 68] to improve

the performance.

Supervised methods [23; 26; 27; 47; 58; 71; 73; 102; 103; 104; 105; 106; 110]

learn video summarization from labeled data consisting of raw videos and their cor-

responding ground-truth summary videos. Supervised methods tend to outperform

unsupervised ones, since they can learn useful cues from ground-truth summaries that

are hard to capture with hand-crafted heuristics. Although supervised methods are

promising, they are limited by the fact that they require expensive labeled training

data in the form of videos and their corresponding summaries. This kind of training

data is also referred as paired training data.

2.2 Video Highlight Detection

Different from video summarization which tries to create the overview of the video,

the goal of video highlight detection is to identify moments and events in the video

that a user is likely to find interesting [16].

A ranking-based learning formulation is popular in video highlight detection [16;

28; 34; 80; 96; 97]. These methods collect a set of positive and negative segments

from videos. These video segments are also usually fixed in length (e.g., 5 seconds).

Positive segments belong to the highlights in the ground truth, whereas segments that

do not belong to highlights are denoted as negative segments. These methods sample

Chapter 2: Related Work 9

a fixed number of positive and negative segments from each video. A ranking-based

model typically learns to score interesting/positive segments of a video higher than

non-interesting/negative segments. In testing, the learned model is used to score

segments in the test video. The video segments that receive high scores are included

in the final highlight prediction of the video, while the low scored video segments are

discarded.

Note that one major limitation of ranking-based highlight detection methods is

that they typically do not process the entire video for training and learning as they

operate on a fixed number of positive and negative segments on each video. Since

an entire video is not processed, we believe that this approach may not efficiently

understand video structure and temporal dependencies shown to be crucial in a closely

related task, video summarization [103]. Another one is that they often rely on shot

boundary detection algorithms (e.g., [25]) to detect shot boundaries or transitions

in the videos as a preprocessing step. This results increase in both computational

cost and complexity of the methods. In this thesis, we address these limitations and

develop efficient models for video highlight detection.

2.3 Dynamic Video Thumbnail Generation

Traditional methods [17; 21; 29; 37; 59; 78] for video thumbnail generation operate

entirely on visual features and characteristics. These methods do not consider any

other information related to the video such as textual queries from the user when

generating the thumbnail. Video thumbnails are obtained by extracting meaningful

keyframes which has been the main focus in this line of research. For instance, Gao

10 Chapter 2: Related Work

et al.[21] propose a video theme-based model that selects keyframes on an underlying

video theme so as to produce semantically representative thumbnails. Additionally,

Song et al.[78] present a method that selects attractive thumbnails by examining

visual aesthetic quality and relevance to the content of the video. In short, traditional

methods for thumbnail generation are static and often less expressive.

Some recent methods on automatic thumbnail selection [49; 53; 99] propose to

leverage user textual queries to generate video thumbnails. Most of these methods,

however, do not handle complex user queries and are inspired by multi-modal seman-

tic matching models [19; 62] that are popular for image search and tagging. The work

by Yuan et al.[99] is the most relevant one to ours. This method combines a variant

of pointer network [89], graph convolution network [41] and BiGRU [11] to address

thumbnail selection based on the user query. This method produces dynamic thumb-

nails for videos by referring to user query sentences but is computationally complex.

In this thesis, we propose a simple yet effective model for dynamic video thumbnail

generation using user sentences.

Since dynamic video thumbnail generation includes natural language textual queries,

it is related to the task of temporal sentence localization in videos that aims to de-

termine the starting and ending of a continuous video segment that matches with

the given natural language sentence [5; 20; 50; 98]. Unlike this task, dynamic video

thumbnail generation may contain several nonconsecutive video segments [99]. Ad-

ditionally, temporal sentence localization mainly focuses on matching a sentence to a

video segment. In contrast, a dynamic video thumbnail should also present a quick

preview of the video content along with establishing the relationship with the user

Chapter 2: Related Work 11

query sentence [99].

2.4 Non-recurrent Deep Learning Models

Recently, non-recurrent models, namely convolutional and self-attention models,

are emerging for learning long-range dependency in sequential data (e.g., language

and speech). They are computationally and statistically more efficient than recur-

rent models such as Long Short-Term Memory (LSTM) [30] commonly applied for

problems in sequential data [7; 88].

Some recent work [43; 22; 7] in action detection, audio synthesis, and machine

translation shows that convolutional networks can outperform recurrent networks.

The benefit of convolutional networks is that they can process all the frames in a video

simultaneously, and therefore can take the full advantage of GPU parallelization.

There is another line of research that proposes self-attention [88; 90; 100] network

for long-range dependency modeling in sequences. Self-attention (also known as intra-

attention) measures the response at a position in a sequence (such as language) by

attending to all the positions in the given sequence [100]. Vaswani et al.[88] propose

a self-attention model that achieves superior performance on machine translation.

Wang et al.[90] apply self-attention to learn spatial and temporal information in

video sequences.

In spite of above progress, non-recurrent models are yet to be explored in many

video understanding problems including video abstraction. In this thesis, we develop

non-recurrent solutions for this problem.

12 Chapter 2: Related Work

2.5 Learning from Unpaired Data

Recently, in image-to-image translation problem [32] (e.g., convert a grayscale

image to color image) where the goal is to translate an input image to output image

of different style is addressed using unpaired data [4; 111]. An unpaired training data

consists of two sets: a source set (e.g., grayscale images) and a target set (e.g. color

images), with no information regarding which source data matches with which target

data [111]. These works take advantage of generative adversarial networks (GANs)

[24] to learn the mapping between the source and target set. The key advantage of

unpaired data is that it is much easier and cheaper to obtain than the paired training

data used in supervised learning setting.

We find this unpaired data setting can be applied to approaches in video abstrac-

tion such as video summarization, where collecting labeled training data (videos and

their summaries) is extremely expensive and time-consuming. We propose a model

that leverage unpaired data for learning video summarization.

2.6 Personalized Models

Summarizing a video to present its overall synopsis or interesting moments is very

challenging. To consider something in a video as relevant or interesting is subjective

since different users may not share same interests [16; 77]. This may result in different

summaries for the same video, implying there is no single summary possible for a

video unless users interact and adapt among themselves [75]. Hence, an ideal method

should aim to adapt to a user interests and preferences when summarizing a video.

Chapter 2: Related Work 13

Early methods propose to perform personalization using annotated meta-data [3;

6; 33; 82]. Some approaches produce personalized summaries by allowing user input

(e.g., textual queries) in the learning and prediction. Sharghi et al. [74; 75] introduce

query-focused video summarization. They consider user preference in the form of

textual queries (e.g., a word, car) related to a video in their summarization frame-

work. Vasudevan et al.[87] extend these works by proposing a method that is able

generate video summaries based on more complicated text queries (e.g., hairstyles for

men). The main limitation of these approaches is that they require the user to know

the content of the video. More recently, Molino and Gygli [16] propose a model that

takes a user’s history as an input to make personalized predictions, making it more

suitable and promising in practice as it does not expect the user to know the content

of the video. However, their method is a yet another ranking model that operates on

a few sample positive and negative segments of a video combined with the user’s pre-

viously created highlights (i.e., user’s history) for generating personalized highlights

for the input video. Again, this technique is computationally expensive as it requires

shot boundary detection. Furthermore, it does not process an entire video in model

learning which precludes efficient capturing of long-term temporal dependencies in

the video.

In this thesis, we develop a model that seamlessly learns to combine a user’s prefer-

ences or interests in learning to predict personalized and user-specific video highlights.

At the core of our technique is a newly designed conditional normalization scheme

for videos that is partly inspired from conditional batch normalization [15] and adap-

tive instance normalization [31]. These methods spatially normalize the activation

14 Chapter 2: Related Work

from a layer to zero mean and unit variance, and then apply an affine transformation

whose parameters are computed using external data [66]. These methods have been

successfully applied in image understanding tasks such as visual question answering

(e.g., Vries et al.[15]) and image-to-image translation (e.g., Liu et al.[51]). In contrast,

we propose a conditional normalization mechanism that is suitable for videos. We

demonstrate its application in adaptive video highlight detection that takes the user’s

history (i.e., previously created video highlights) into consideration while making a

highlight prediction for an input user video.

Chapter 3

Fully Convolutional Sequence

Networks

3.1 Chapter Overview and Introduction

In this chapter, we propose a novel non-recurrent model for video summarization,

a common form of video abstraction. The focus in video summarization is to generate

a short summary of a video such that it presents an overview of the content in the

video.

We consider video summarization as a keyframe selection problem. Given an

input video, our goal is to select a subset of the frames to form the summary video.

Equivalently, video summarization can also be formulated as a sequence labeling

problem, where each frame is assigned a binary label to indicate whether it is selected

in the summary video.

Current state-of-the-art methods [58; 103] consider video summarization as a se-

15

16 Chapter 3: Fully Convolutional Sequence Networks

quence labeling problem and solve the problem using a variant of recurrent neural

networks known as the Long Short-Term Memory (LSTM) [30]. Each time step in

the LSTM model corresponds to a frame in the input video. At each time step, the

LSTM model outputs a binary value indicating whether this frame is selected in the

summary video. The advantage of LSTM is that it can capture long-term structural

dependencies among frames. But these LSTM-based models have inherent limita-

tions. The computation in LSTM is usually left-to-right. This means we have to

process one frame at a time and each frame must wait until the previous frame is

processed. Although Bi-directional LSTM (Bi-LSTM) [72] exists, the computation

in either direction of Bi-LSTM still suffers the same problem. Due to this sequential

nature, the computation in LSTM cannot be easily parallelized to take full advan-

tage of the GPU hardware. In our work, we propose fully convolutional models that

can process all the frames simultaneously, and therefore take the full advantage of

GPU parallelization. Our model is partly inspired by some recent work [43; 22; 7]

in action detection, audio synthesis, and machine translation showing that convolu-

tional models can outperform recurrent models and can take full advantage of GPU

parallelization.

We propose to use fully convolutional networks for video summarization. Fully

convolutional networks (FCN) [54] have been extensively used in semantic segmenta-

tion. Compared with video summarization, semantic segmentation is a more widely

studied topic in computer vision. Traditionally, video summarization and semantic

segmentation are considered as two completely different problems in computer vi-

sion. Our insight is that these two problems in fact share a lot of similarities. In

Chapter 3: Fully Convolutional Sequence Networks 17

semantic segmentation, the input is a 2D image with 3 color channels (RGB). The

output of semantic segmentation is a 2D matrix with the same spatial dimension as

the input image, where each cell of the 2D matrix indicates the semantic label of the

corresponding pixel in the image. In video summarization, let us assume that each

frame is represented as a K-dimensional vector. This can be a vector of raw pixel

values or a precomputed feature vector. Then the input to video summarization is a

1D image (over temporal dimension) with K channels. The output is a 1D matrix

with the same length as the input video, where each element indicates whether the

corresponding frame is selected for the summary. In other words, although semantic

segmentation and video summarization are two different problems, they only differ in

terms of the dimensions of the input (2D vs. 1D) and the number of channels (3 vs.

K). Figure 3.1 illustrates the relationship between these two tasks. By establishing

the connection between these two tasks, we can directly exploit models in semantic

segmentation and adapt them for video summarization. In this chapter, we develop

our video summarization method based on popular semantic segmentation models

such as FCN [54]. We call our approach the Fully Convolutional Sequence Network

(FCSN).

FCSN is suitable for video summarization due to two important reasons. First,

FCSN consist of stack of convolutions whose effective context size grows (though

smaller in the beginning) as we go deeper in the network. This allows the network

to model the long-range complex dependency among input frames that is necessary

for video summarization. Second, FCSN is fully convolutional. Compared to LSTM,

FCSN allows easier parallelization over input frames.

18 Chapter 3: Fully Convolutional Sequence Networks

0

1

1

0

1

1

0

0

1

0

0 0 0 0 0
0 0 1 0 0
0 2 1 1 0
0 2 2 1 2
0 2 2 2 2
0 0 0 0 2

Video Label

Video summary

Image Label Semantic
segmentation

Figure 3.1: An illustration of the relationship between video summarization and se-
mantic segmentation. (Left) In video summarization, our goal is to select frames
from an input video to generate the summary video. This is equivalent to assigning
a binary label (0 or 1) to each frame in the video to indicate whether the frame is se-
lected for summary. This problem has a close connection with semantic segmentation
(Right) where the goal is to label each pixel in an image with its class label.

3.2 Problem Formulation

Previous work has considered two different forms of output in video summariza-

tion: 1) binary labels; 2) frame-level importance scores. Binary label outputs are usu-

ally referred to as either keyframes [14; 23; 60; 103] or keyshots [26; 27; 68; 79; 103].

Keyframes consist of a set of non-continuous frames that are selected for the summa-

rization, while keyshots correspond to a set of time-intervals in video where each in-

terval consists of a continuous set of frames. Frame-level importance scores [26; 79] in-

dicate how likely a frame should be selected for the summarization. Existing datasets

have ground-truth annotations available in at least one of these two forms. Although

frame-level scores provide richer information, it is practically much easier to collect

annotations in terms of binary labels. It may even be possible to collect binary label

annotations automatically from edited video content online. For example, if we have

Chapter 3: Fully Convolutional Sequence Networks 19

access to professionally edited summary videos and their corresponding raw videos,

we can automatically create annotations in the form of binary labels on frames. In

this chapter, we focus on learning video summarization from only binary label-based

(in particular, keyframe-based) annotations.

Let us consider a video with T frames. We assume each frame has been prepro-

cessed (e.g., by a pretrained CNN) and is represented as a feature vector. We denote

the frames in a video as {F1, F2, F3,, FT} where Fi is the feature descriptor of

the t-th (t ∈ {1, 2, .., T}) frame in the video. Our goal is to assign a binary label

(0 or 1) to each of the T frames. The summary video is obtained by combining the

frames that are labeled as 1 (see Fig. 3.1). We assume access to a training dataset

of videos, where each frame has a ground-truth binary label indicating whether this

frame should be selected in the summary video.

3.3 Architecture of FCSN

Our models are inspired by fully convolutional models used in semantic segmenta-

tion. Our models have the following properties. 1) Semantic segmentation models use

2D convolution over 2D spatial locations in an image. In contrast, our models apply

1D convolution across the temporal sequence domain. 2) Unlike LSTM models [103]

for video summarization that process frames in a sequential order, our models process

all frames simultaneously using the convolution operation. 3) Semantic segmentation

models usually use an encoder-decoder architecture, where an image is first processed

by the encoder to extract features, then the decoder is used to produce the segmenta-

tion mask using the encoded features. Similarly, our models can also be interpreted as

20 Chapter 3: Fully Convolutional Sequence Networks

an encoder-decoder architecture. The encoder is used to process the frames to extract

both high-level semantic features and long-term structural relationship information

among frames, while the decoder is used to produce a sequence of 0/1 labels. We call

our model the fully convolutional sequence network (FCSN).

Our models mainly consist of temporal modules such as temporal convolution,

temporal pooling, and temporal deconvolution. This is analogous to the modules com-

monly used in semantic segmentation models, such as 2D convolution, 2D pooling, 2D

deconvolution. Due to the underlying relationship between video summarization and

semantic segmentation, we can easily borrow the network architecture from existing

semantic segmentation models when designing an FCSN for video summarization. In

this section, we describe an FCSN based on a popular semantic segmentation net-

work, namely FCN [54]. We refer to this FCSN as SUM-FCN. It is important to note

that FCSN is certainly not limited to this particular network architecture. We can

convert almost any existing semantic segmentation models into an FCSN for video

summarization.

SUM-FCN: FCN [54] is a widely used model for semantic segmentation. In this

section, we adapt FCN (in particular, FCN-16) for the task of video summarization.

We call the model SUM-FCN. In FCN, the input is an RGB image of shape m×n×3

where m and n are height and width of the image respectively. The output/prediction

is of shape m× n× C where the channel dimension C corresponds to the number of

classes. In SUM-FCN, the input is of dimension 1 × T × D where T is the number

of frames in a video and D is the dimension of the feature vector of a frame. The

output of SUM-FCN is of dimension 1 × T × C. Note that the dimension of the

Chapter 3: Fully Convolutional Sequence Networks 21

output channel is C = 2 since we need scores corresponding to 2 classes (keyframe or

non-keyframe) for each frame.

Figure 3.2 shows the architecture of our SUM-FCN model.

 Conv+BN+ReLU

Pooling Deconv

Frame features

Prediction

conv1

conv2

conv3

conv4

conv5

conv6

conv7

conv8

video

F2 F3 FTF4F1

deconv1

deconv2

Figure 3.2: The architecture of SUM-FCN.
It is based on the popular semantic seg-
mentation architecture FCN [54]. Un-
like FCN, SUM-FCN performs convolu-
tion, pooling and deconvolution operation
across time.

We convert all the spatial convolutions

in FCN to temporal convolutions. Simi-

larly, spatial maxpooling and deconvolu-

tion layers are converted to correspond-

ing temporal counterparts. We orga-

nize our network similar to FCN. The

first five convolutional layers (conv1 to

conv5) consist of multiple temporal con-

volution layers where each temporal con-

volution is followed by a batch normal-

ization and a ReLU activation. We add

a temporal maxpooling next to each con-

volution layer. Each of conv6 and conv7

consists of a temporal convolution, fol-

lowed by ReLU and dropout. We also

have conv8 consisting of a 1×1 convolu-

tion (to produce the desired output chan-

nel), batch normalization, and deconvo-

lution operation along the time axis. We

then take the output of pool4, apply a

22 Chapter 3: Fully Convolutional Sequence Networks

1 × 1 convolution and batch normalization and then merge (element-wise addition)

it with deconv1 feature map. This merging corresponds to the skip connection in

[54]. Skip connection is widely used in semantic segmentation to combine feature

maps at coarse layers with fine layers to produce richer visual features. Our intuition

is that this skip connection is also useful in video summarization, since it will help

in recovering temporal information required for summarization. Lastly, we apply a

temporal deconvolution again and obtain the final prediction of length T .

Learning: In keyframe-based supervised setting, the classes (keyframe vs. non-

keyframe) are extremely imbalanced since only a small number of frames in an in-

put video are selected in the summary video. This means that there are very few

keyframes compared with non-keyframes. A common strategy for dealing with such

class imbalance is to use a weighted loss for learning. For the c-th class, we define

its weight wc = median freq
freqc

, where freqc is the number of frames with label c divided

by the total number of frames in videos where label c is present, and median freq

is simply the median of the computed frequencies. Note that this class balancing

strategy has been used for pixel labeling tasks as well [18].

Suppose we have a training video with T frames. We also have a ground-truth

binary label (i.e., number of classes, C = 2) on each frame of this video. We can

define the following loss Lsum for learning:

Lsum = − 1

T

T∑
t=1

wct log
(exp(φt,ct)∑C

c=1 exp(φt,c)

)
, (3.1)

where ct is the ground-truth label of the t-th frame. φt,c and wc indicate the score of

predicting the t-th frame as the c-th class and the weight of class c, respectively.

Chapter 3: Fully Convolutional Sequence Networks 23

3.4 Unsupervised SUM-FCN

In this section, we present an extension of the SUM-FCN model. We develop an

unsupervised variant (called SUM-FCNunsup) of SUM-FCN to learn video summa-

rization from a collection of raw videos without their ground-truth summary videos.

Intuitively, the frames in the summary video should be visually diverse [103; 58].

We use this property of video summarization to design SUM-FCNunsup. We de-

velop SUM-FCNunsup by explicitly encouraging the model to generate summary videos

where the selected frames are visually diverse. In order to enforce this diversity, we

make the following changes to the decoder of SUM-FCN. We first select Y frames

(i.e., keyframes) based on the prediction scores from the decoder. Next, we apply a

1 × 1 convolution to the decoded feature vectors of these keyframes to reconstruct

their original feature representations. We then merge the input frame-level feature

vectors of these selected Y keyframes using a skip connection. Finally, we use a 1× 1

convolution to obtain the final reconstructed features of the Y keyframes such that

each keyframe feature vector is of the same dimension as its corresponding input

frame-level feature vector.

We use a repelling regularizer [109] Ldiv to enforce diversity among selected

keyframes. We define Ldiv as the mean of the pairwise similarity between the se-

lected Y keyframes:

Ldiv =
1

|Y |(|Y | − 1)

∑
t∈Y

∑
t′∈Y,t′ 6=t

d(ft, ft′), where (ft, ft′) =
fT
t ft′

‖ft‖2‖ft′‖2

(3.2)

and where ft is the reconstructed feature vector of the frame t. Ideally, a diverse

subset of frames will lead to a lower value of Ldiv.

24 Chapter 3: Fully Convolutional Sequence Networks

We also introduce a reconstruction loss Lrecon that computes the mean squared er-

ror between the reconstructed features and the input feature vectors of the keyframes.

The final learning objective of SUM-FCNunsup becomes Ldiv + Lrecon. Since this ob-

jective does not require ground-truth summary videos, SUM-FCNunsup is an unsuper-

vised approach.

It is worth noting that SUM-FCN will implicitly achieve diversity to some extent

because it is supervised. SUM-FCN learns to mimic the ground-truth human anno-

tations. Presumably, the ground-truth summary videos (annotated by humans) have

diversity among the selected frames, since humans are unlikely to annotate two very

similar frames as keyframes.

3.5 Experiments

In this section, we first introduce the datasets in Sec. 3.5.1. We then discuss the

implementation details and setup in Sec. 3.5.2. Lastly, we present the main results

in Sec. 3.5.3 and additional ablation analysis in Sec. 3.5.4.

3.5.1 Datasets

We evaluate our method on two benchmark datasets: SumMe [26] and TVSum

[79]. The SumMe dataset is a collection of 25 videos that cover a variety of events

(e.g., sports and holidays). The videos in SumMe are 1.5 to 6.5 minutes in length. The

TVSum dataset contains 50 YouTube videos of 10 different categories (e.g., making

sandwich, dog show, and changing vehicle tire) from the TRECVid Multimedia Event

Detection (MED) task [76]. The videos in this dataset are typically 1 to 5 minutes

Chapter 3: Fully Convolutional Sequence Networks 25

in length.

Since training a deep neural network with small annotated datasets is difficult,

previous work [103] has proposed to use additional videos to augment the datasets.

Following [103], we use 39 videos from the YouTube dataset [14] and 50 videos from

the Open Video Project (OVP) dataset [14; 2] to augment the training data. In

the YouTube dataset, there are videos consisting of news, sports and cartoon. In

the OVP dataset, there are videos of different genres such as documentary. These

datasets are diverse in nature and come with different types of annotations. We

discuss in Sec. 3.5.2 on how we handle different formats of ground-truth annotations.

3.5.2 Implementation Details and Setup

Features: Following [103], we uniformly downsample the videos to 2 fps. Next, we

take the output of the pool5 layer in the pretrained GoogLeNet [81] as the feature

descriptor for each video frame. The dimension of this feature descriptor is 1024.

Note that our model can be used with any feature representation. We can even use

our model with video-based features (e.g., C3D [83]). We use GoogLeNet features

mainly because they are used in previous work [103; 58] and will allow fair comparison

in the experiments.

Ground-truth: Since different datasets provide the ground-truth annotations in

various format, we follow [23; 103] to generate the single set of ground-truth keyframes

(small subset of isolated frames) for each video in the datasets. These keyframe-based

summaries are used for training.

To perform fair comparison with state-of-the-art methods (see Evaluation Metrics

26 Chapter 3: Fully Convolutional Sequence Networks

below), we need summaries in the form of keyshots (interval-based subset of frames

[26; 27; 103]) in both the final generated predictions and the ground-truth annotations

for test videos. For the SumMe dataset, ground-truth annotations are available in

the form of keyshots, so we use these ground-truth summaries directly for evaluation.

However, keyshot annotations are missing from the TVSum dataset. TVSum provides

frame-level importance scores annotated by multiple users. To convert importance

scores to keyshot-based summaries, we follow the procedure in [103] which includes

the following steps: 1) temporally segment a video using KTS [68] to generate disjoint

intervals; 2) compute average interval score and assign it to each frame in the interval;

3) rank the frames in the video based on their scores; 4) apply the knapsack algorithm

[79] to select frames so that the total length is under certain threshold, which results

in the keyshot-based ground-truth summaries of that video. We use this keyshot-

based annotation to get the keyframes for training by selecting the frames with the

highest importance scores [103]. Note that both the keyframe-based and keyshot-

based summaries are represented as 0/1 vector of length equal to the number of frames

in the video. Here, a label 0/1 represents whether a frame is selected in the summary

video. Table 3.1 illustrates the ground-truth (training and testing) annotations and

their conversion for different datasets.

Training and Optimization: We use keyframe-based ground-truth annotations

during training. We first concatenate the visual features of each frame. For a video

with T frames, we will have an input of dimension 1×T ×1024 to the neural network.

We also uniformly sample frames from each video such that we end up with T = 320.

This sampling is similar to the fixed size cropping in semantic segmentation, where

Chapter 3: Fully Convolutional Sequence Networks 27

Dataset # annotations Training GT Testing GT

SumMe 15-18 frame-level scores‡ keyshots

TVSum 20 frame-level scores‡ frame-level scores †

YouTube 5 keyframes§ -

OVP 5 keyframes§ -

Table 3.1: Ground-truth (GT) annotations used during training and testing for differ-
ent datasets. ‡We convert frame-level importance scores from multiple users to single
keyframes as in [79; 103]. †We follow [103] to convert multiple frame-level scores to
keyshots. §Following [23; 103], we generate one set of keyframes for each video. Note
that the YouTube and OVP datasets are only used to supplement the training data
(as in [103; 58]), so we do not test our methods on them.

training images are usually resized to have the same spatial size. Note that our

proposed model, SUM-FCN, can also effectively handle longer and variable length

videos (see Sec. 3.5.4).

During training, we set the learning rate to 10−3, momentum to 0.9, and batch

size to 5. Other than using the pretrained GoogLeNet to extract frame features, the

rest of the network is trained end-to-end using stochastic gradient descent (SGD)

optimizer.

Testing: At test time, a uniformly sampled test video with T = 320 frames is

forwarded to the trained model to obtain an output of length 320. Then this output

is scaled to the original length of the video using nearest-neighbor. For simplicity, we

use this strategy to handle test videos. But since our model is fully convolutional, it is

not limited to this particular choice of video length. In Sec. 3.5.4, we experiment with

sampling the videos to a longer length. We also experiment with directly operating

28 Chapter 3: Fully Convolutional Sequence Networks

on original non-sampled (variable length) videos in Sec. 3.5.4.

We follow [103; 58] to convert predicted keyframes to keyshots so that we can

perform fair comparison with other methods. We first apply KTS [68] to temporally

segment a test video into disjoint intervals. Next, if an interval contains a keyframe,

we mark all the frames in that interval as 1 and we mark 0 to all the frames in

intervals that have no keyframes. This results in keyshot-based summary for the

video. To minimize the number of generated keyshots, we rank the intervals based

on the number of keyframes in intervals divided by their lengths, and finally apply

knapsack algorithm [79] to ensure that the produced keyshot-based summary is of

maximum 15% in length of the original test video.

Evaluation Metrics: Following [103; 58], we use a keyshot-based evaluation metric.

For a given video V , suppose SO is the generated summary and SG is the ground-

truth summary. We calculate the precision (P) and recall (R) using their temporal

overlap:

P =
|SO ∩ SG|
|SO|

, R =
|SO ∩ SG|
|SG|

(3.3)

Finally, we use the F-score F = (2P × R)/(P + R) × 100% as the evaluation

metric. We follow the standard approach described in [79; 27; 103] to calculate the

metric for videos that have multiple ground-truth summaries.

Experiment Settings: Similar to previous work [102; 103], we evaluate and compare

our method under the following three different settings.

1. Standard Supervised Setting : This is the conventional supervised learning set-

ting where training, validation and test data are drawn (such that they do not overlap)

Chapter 3: Fully Convolutional Sequence Networks 29

from the same dataset. We randomly select 20% for testing and leave the remain-

ing 80% for training and validation. Since the data is randomly split, we repeat the

experiment over multiple random splits and report the average F-score performance.

2. Augmented Setting : For a given dataset, we randomly select 20% of data for

testing and leave the remaining 80% for training and validation. In addition, we use

the other three datasets to augment the training data. For example, suppose we are

evaluating on the SumMe dataset, we will then have 80% of SumMe videos combined

with all the videos in the TVSum, OVP, and YouTube dataset for training. Likewise,

if we are evaluating on TVSum, we will have 80% of TVSum videos combined with

all the videos in SumMe, OVP, and YouTube for training. Similar to the standard

supervised setting, we run the experiment over multiple random splits and use the

average F-score for comparison.

The idea of increasing the size of training data by augmenting it with other

datasets is well-known in computer vision. This is usually referred as data aug-

mentation. Recent methods [103; 58] show that data augmentation improves the

performance. Our experimental results show similar conclusion.

3. Transfer Setting : This is a challenging supervised setting introduced by Zhang

et al.[102; 103]. In this setting, the model is not trained using the videos from the

given dataset. Instead, the model is trained on other available datasets and tested on

the given dataset. For instance, if we are evaluating on the SumMe dataset, we will

train the model using videos in the TVSum, OVP, and YouTube datasets. We then

use the videos in the SumMe dataset only for evaluation. Similarly, when evaluating

on TVSum, we will train on videos from SumMe, OVP, YouTube, and then test on

30 Chapter 3: Fully Convolutional Sequence Networks

the videos in TVSum. This setting is particularly relevant for practical applications.

If we can achieve good performance under this setting, it means that we can perform

video summarization in the wild. In other words, we will be able to generate good

summaries for videos from domains in which we do not have any related annotated

videos during training.

3.5.3 Main Results and Comparisons

We compare the performance of our approach (SUM-FCN) with prior methods

on the SumMe dataset in Table 3.2. Our method outperforms other state-of-the-art

approaches by a large margin.

Dataset Method Supervised Augmented Transfer

SumMe

Gygli et al.[26] 39.4 – –

Gygli et al.[27] 39.7 – –

Zhang et al.[102] 40.9 41.3 38.5

Zhang et al.[103] (vsLSTM) 37.6 41.6 40.7

Zhang et al.[103] (dppLSTM) 38.6 42.9 41.8

Mahasseni et al.[58] (supervised) 41.7 43.6 –

Li et al.[45] 43.1 – –

SUM-FCN (ours) 47.5 51.1 44.1

Table 3.2: Comparison of summarization performance (F-score) between SUM-FCN
and other approaches on the SumMe dataset under different settings.

Table 3.3 compares the performance of our method with previous approaches on

Chapter 3: Fully Convolutional Sequence Networks 31

the TVSum dataset. Again, our method achieves state-of-the-art performance. In the

standard supervsised setting, we outperform other approaches. In the augmented and

transfer settings, our performance is comparable to other state-of-the-art methods.

Note that Zhang et al.[103] (vsLSTM) use frame-level importance scores and Zhang et

al.[103] (dppLSTM) use both keyframe-based annotation and frame-level importance

scores. But we only use keyframe-based annotation in our method. Previous method

[103] has also shown that frame-level importance scores provide richer information

than binary labels. Therefore, the performance of our method on TVSum is very

competitive, since it does not use frame-level importance scores during training.

Dataset Method Supervised Augmented Transfer

TVSum

Zhang et al.[103] (vsLSTM) 54.2 57.9 56.9†

Zhang et al.[103] (dppLSTM) 54.7 59.6 58.7‡

Mahasseni et al.[58] (supervised) 56.3 61.2 –

Li et al.[45] 52.7 – –

SUM-FCN (ours) 56.8 59.2 58.2

Table 3.3: Performance (F-score) of SUM-FCN and other approaches on the TVSum
dataset. †Zhang et al.[103] (vsLSTM) use frame-level importance scores. ‡Zhang et
al.[103] (dppLSTM) use both frame-level importance scores and keyframes in their
method. Different from these two methods, our method only uses keyframe-based
annotations.

3.5.4 Analysis

In this section, we present additional ablation analysis on various aspects of our

model.

32 Chapter 3: Fully Convolutional Sequence Networks

Unsupervised SUM-FCNunsup: Table 3.4 compares the performance of SUM-

FCNunsup with the other unsupervised methods in the literature. SUM-FCNunsup

achieves state-of-the-art performance on both the datasets. These results suggest

that our fully convolutional sequence model can effectively learn how to summarize

videos in an unsupervised way. This is very appealing since collecting labeled training

data for video summarization is difficult.

Dataset [14] [46] [38] [79] [108] [58] SUM-FCNunsup

SumMe 33.7 26.6 – 26.6 – 39.1 41.5

TVSum – – 36.0 50.0 46.0 51.7 52.7

Table 3.4: Performance (F-score) comparison of SUM-FCNunsup with state-of-the-art
unsupervised methods.

SUM-DeepLab: To demonstrate the generality of FCSN, we also adapt DeepLab

[10] (in particular, DeepLabv2 (VGG16) model), another popular semantic segmen-

tation model, for video summarization. We call this network SUM-DeepLab. The

DeepLab model has two important features: 1) dilated convolution; 2) spatial pyra-

mid pooling. In SUM-DeepLab, we similarly perform temporal dilated convolution

and temporal pyramid pooling.

Table 3.5 compares SUM-DeepLab with SUM-FCN on the SumMe and TVSum

datasets under different settings. SUM-DeepLab achieves better performance on

SumMe in all settings. On TVSum, the performance of SUM-DeepLab is better

than SUM-FCN in the standard supervised setting and is comparable in the other

two settings.

We noticed that SUM-DeepLab performs slightly worse than SUM-FCN in some

Chapter 3: Fully Convolutional Sequence Networks 33

settings (e.g., transfer setting of TVSum). One possible explanation is that the bi-

linear upsampling layer in DeepLab may not be the best choice. Unlike semantic

segmentation, a smooth labeling (due to bilinear upsampling) is not necessarily de-

sirable in video summarization. In other words, the bilinear upsampling may result

in a sub-optimal subset of keyframes. In order to verify this, we replace the bilinear

upsampling layers of SUM-DeepLab with learnable deconvolution layers (also used

in SUM-FCN) and examine the performance of this modified SUM-DeepLab in the

transfer setting. The performance of SUM-DeepLab improves as a result of this

simple modification. In fact, SUM-DeepLab now achieves the state-of-the-art perfor-

mance on the transfer setting on TVSum as well (see the last column in Table 3.5).

Dataset Supervised Augmented Transfer Transfer (deconv)

SumMe 48.8 (47.5) 50.2 (51.1) 45.0 (44.1) 45.1

TVSum 58.4 (56.8) 59.1 (59.2) 57.4 (58.2) 58.8

Table 3.5: Performance (F-score) of SUM-DeepLab in different settings. We include
the performance of SUM-FCN (taken from Table 3.2 and Table 3.3) in brackets. We
also replace the bilinear upsampling with learnable deconvolutional layer and report
the result in the transfer setting (last column).

Length of Video: We also perform experiments to analyze the performance of our

models on longer-length videos. Again, we select the challenging transfer setting to

evaluate the models when the videos are uniformly sampled to T=640 frames. Table

3.6 (first two columns) shows the results of our models for this case. Compared with

T = 320 (shown in brackets in Table 3.6), the performance with T = 640 is similar.

34 Chapter 3: Fully Convolutional Sequence Networks

This shows that the video length is not an issue for our proposed fully convolutional

models.

Dataset
SUM-FCN SUM-DeepLab SUM-FCN

T=640 (T=320) T=640 (T=320) variable length

SumMe 45.6 (44.1) 44.5 (45.0) 46.0

TVSum 57.4 (58.2) 57.2 (57.4) 56.7

Table 3.6: Performance (F-score) of our models on longer-length videos (i.e., T=640)
and original (i.e., variable length) videos in the transfer data setting. In brackets, we
show the performance of our model for T=320 (obtained from Tables 3.2, 3.3, and
3.5).

As mentioned earlier, the main idea behind uniformly sampling videos is to mimic

the prevalent cropping strategy in semantic segmentation. Nevertheless, since our

model is fully convolutional, it can also directly handle variable length videos. The

last column of Table 3.6 shows the results of applying SUM-FCN (in the transfer

setting) without sampling videos. The performance is comparable (even higher on

SumMe) to the results of sampling videos to a fixed length.

Qualitative Results: In Fig. 3.3, we visualize examples of the video summarization

results produced by SUM-FCN. The marked black bars on two green backgrounds are

the ground truth and predicted summaries, respectively. In the first video, the content

changes smoothly which results in higher performance. The second video is more

challenging since it contains fast motions, multiple objects, and complex activities.

The generated summaries are clustered across time and the performance is not as

good as that on the first video. As future work, we believe our work can benefit from

Chapter 3: Fully Convolutional Sequence Networks 35

Figure 3.3: Example summaries for two videos in the SumMe [26] dataset. The black
bars on the green background show the frames selected to form the summary video.
For each video, we show the ground-truth (top bar) and the predicted labels (bottom
bar).

incorporating higher-level semantic information, such as object detection and action

recognition.

3.6 Summary

We have introduced fully convolutional sequence networks (FCSN) for video sum-

marization. Our proposed models are inspired by fully convolutional networks in

semantic segmentation. In computer vision, video summarization and semantic seg-

36 Chapter 3: Fully Convolutional Sequence Networks

mentation are often studied as two separate problems. We have shown that these two

seemingly unrelated problems have an underlying connection. We have adapted pop-

ular semantic segmentation networks for video summarization. Our models achieve

very competitive performance in comparison with other supervised and unsupervised

state-of-the-art approaches that mainly use LSTMs. We believe that fully convolu-

tional models provide a promising alternative to LSTM-based approaches for video

summarization. Finally, our proposed method is not limited to FCSN variants that

we introduced. Using similar strategies, we can convert almost any semantic segmen-

tation networks for video summarization.

Chapter 4

Learning Video Summarization

from Unpaired Data

4.1 Chapter Overview and Introduction

In this chapter, we introduce a new problem formulation of learning video summa-

rization from unpaired data, which consists of a set of raw videos and a set of video

summaries that do not share any correspondence. Although we develop this formu-

lation for video summarization, we believe this technique can be also be adapted for

other approaches in video abstraction such as video highlight detection.

A major limitation of supervised video summarization is that it relies on labeled

training data. Common datasets in the community are usually collected by asking

human annotators to watch the input video and select the key frames or key shots.

This annotation process is very expensive and time-consuming. As a result, we only

have very few benchmark datasets available for video summarization in the computer

37

38 Chapter 4: Learning Video Summarization from Unpaired Data

vision literature. Moreover, each dataset usually only contains a small number of

annotated data (see Table 4.1).

To address the flaws of supervised learning, we propose a new formulation of learn-

ing video summarization from unpaired data. Our key insight is that it is much easier

to collect unpaired video sets. First of all, raw videos are easily accessible as they

are abundantly available on the Internet. At the same time, good summary videos

are also readily available in large quantities. For example, there are lots of sports

highlights, movie trailers, and other professionally edited summary videos available

online. These videos can be treated as ground-truth summary videos. The challenge

is that these professionally curated summary videos usually do not come with their

corresponding raw input videos. In this chapter, we propose to solve video summa-

rization by learning from such unpaired data (Fig. 4.1 (left)). We assume that our

training data consist of two sets of videos: one set of raw videos (V) and another set

of human created summary videos (S). However, there exists no correspondence be-

tween the videos in these two sets, i.e., the training data are unpaired. In other words,

for a raw video in V , we may not have its corresponding ground-truth summary video

in S, and vice versa.

We propose a novel approach to learn video summarization from unpaired training

data. Our method learns a mapping function (called the key frame selector) F : V →

S (Fig. 4.1 (right)) to map a raw video v ∈ V to a summary video F (v). It also trains a

summary discriminator that tries to differentiate between a generated summary video

F (v) and a real summary video s ∈ S. Using an adversarial loss [24], we learn to

make the distribution of generated summary videos F (v) to be indistinguishable from

Chapter 4: Learning Video Summarization from Unpaired Data 39

Unpaired data

V S

V SF:

Videos (V) Summary videos (S)

Figure 4.1: Learning video summarization from unpaired data. Given a set of raw
videos {vi}Mi=1 (v ∈ V) and real summary videos {sj}Nj=1 (s ∈ S) such that there
exists no matching/correspondence between the instances in V and S, our aim is to
learn a mapping function F : V → S (right) linking two different domains V and
S. The data are unpaired because the summary set S does not include ground truth
summary videos for raw videos in V , and vice versa.

the distribution of real summary videos in S. As a result, the mapping function F

will learn to generate a realistic summary video for a given input video. We also add

more structure to our learning by introducing a reconstruction loss and a diversity

loss on the output summary video F (v). By combining these two losses with the

adversarial loss, our method learns to generate meaningful and visually diverse video

summaries from unpaired data.

In summary, our contributions include: (i) a new problem formulation of learning

video summarization from unpaired data, which consists of a set of raw videos and

a set of video summaries that do not share any correspondence; (ii) a deep learning

model for video summarization that learns from unpaired data via an adversarial

process; (iii) an extensive empirical study on benchmark datasets to demonstrate the

effectiveness of the proposed approach; and (iv) an extension of our method that

introduces partial supervision to improve the summarization performance.

40 Chapter 4: Learning Video Summarization from Unpaired Data

4.2 Our Approach

4.2.1 Formulation

We are given an unpaired dataset consisting of a set of raw videos {vi}Mi=1 and a

set of real summary videos {sj}Nj=1, where vi ∈ V and sj ∈ S. We define the data

distribution for v and s as v ∼ pdata(v) and s ∼ pdata(s), respectively. Our model

consists of two sub-networks called the key frame selector network (SK) and the

summary discriminator network (SD). The key frame selector network is a mapping

function SK : V → S between the two domains V and S (see Fig. 4.1). Given an

input video v ∈ V , the key frame selector network (SK) aims to select a small subset of

k key frames of this video to form a summary video SK(v). The goal of the summary

discriminator network (SD) is to differentiate between a real summary video s ∈ S

and the summary video SK(v) produced by the key frame selector network SK . Our

objective function includes an adversarial loss, a reconstruction loss and a diversity

loss. We learn the two networks SK and SD in an adversarial fashion. In the end,

SK learns to output an optimal summary video for a given input video. In practice,

we precompute the image feature of each frame in a video. With a little abuse of

terminology, we use the term “video” to also denote the sequence of frame-level feature

vectors when there is no ambiguity based on the context.

4.2.2 Network Architecture

The key frame selector network (SK) in our model takes a video with T frames

as the input and produces the corresponding summary video with k key frames. We

Chapter 4: Learning Video Summarization from Unpaired Data 41

use the fully convolutional sequence network (FCSN) [71], an encoder-decoder fully

convolutional network, to select key frames from the input video. FCSN encodes the

temporal information among the video frames by performing convolution and pooling

operations in the temporal dimension. This enables FCSN to extract representations

that capture the inter-frame structures. The decoder of FCSN consists of several tem-

poral deconvolution operations which produces a vector of prediction scores with the

same length as the input video. Each score indicates the likelihood of the correspond-

ing frame being a key frame or non-key frame. Based on these scores, we select k key

frames to form the predicted summary video. In order to define the reconstruction

loss used in the learning (see Sec. 4.2.3), we apply convolution operations on the de-

coded feature vectors of these k key frames to reconstruct the corresponding feature

vectors in the input video. We also introduce a skip connection that retrieves the

frame-level feature representation of the selected k key frames, which we merge with

the reconstructed features of the k key frames. Fig. 4.2 (a) shows the architecture of

SK .

The summary discriminator network (SD) in our model takes two kinds of input:

(1) the summary videos produced by SK for the raw videos in V ; and (2) the real

summary videos in S. The goal of SD is to distinguish between the summaries pro-

duced by SK and the real summaries. We use the encoder of FCSN [71] to encode the

temporal information within the input summary video. Next, we perform a temporal

average pooling operation (Ωt) on the encoded feature vectors to obtain a video-level

feature representation. Finally, we append a fully connected layer (FC), followed by

a sigmoid operation (σ) to obtain a score (Rs) indicating whether the input sum-

42 Chapter 4: Learning Video Summarization from Unpaired Data

mary video is a real summary or a summary produced by SK . Let s be an input

summary video to SD, we can express the operations in SD by Eq. 4.1. The network

architecture of SD is shown in Fig. 4.2 (b).

Rs = SD(s) = σ (FC (Ωt (FCSNenc(s)))) (4.1)

Video
(v) FCSN

0/1 vector

Summary
(s')

Summary
(s)

FCSNenc σ s

(a) Key frame selector network, SK (b) Summary discriminator network, SD

(c) Training SK (d) Training SD

SK

SD

Video
(v)

Summary
(s') SD s′

adv

+reconst div

Summary
(s)

SK
Video
(v)

Summary
(s')

{s, }s′

adv

Training UnpairedVSN

Ωt

conv

Figure 4.2: Overview of our proposed model. (a) Network architecture of the key
frame selector network SK . It takes a video v and produces its summary video s′

(i.e., SK(v)) by selecting k key frames from v. The backbone of SK is FCSN [71]. We
also introduce a skip connection from the input to retrieve the frame-level features of
k key frames selected by SK . (b) Network architecture of the summary discriminator
network SD. It differentiates between an output summary video s′ and a real summary
video s. SD consists of the encoder of FCSN (FCSNenc), followed by a temporal
average pooling (Ωt) and sigmoid (σ) operations. In (c) and (d), we show the training
scheme of SK and SD, respectively. SK tries to produce video summaries that are
indistinguishable from real video summaries created by humans, whereas SD tries to
differentiate real summary videos from the summaries produced by SK . As mentioned
in Sec. 4.2.1, there is no correspondence information available to match raw videos
and summary videos in the training data.

Chapter 4: Learning Video Summarization from Unpaired Data 43

4.2.3 Learning

Our learning objective includes an adversarial loss [24], a reconstruction loss, and

a diversity loss.

Adversarial Loss: This loss aims to match the distribution of summary videos

produced by the key frame selector network SK with the data distribution of real

summary videos. We use the adversarial loss commonly used in generative adversarial

networks [24]:

Ladv(SD, SK) = Es∼pdata(s)[logSD(s)]

+Ev∼pdata(v)[log(1− SD(SK(v)))], (4.2)

where SK aims to produce summary videos SK(v) that are close to real summary

videos in domain S, and SD tries to differentiate between output summary videos

{SK(v) : v ∈ V } and real summary videos {s : s ∈ S}. A minimax game occurs

between SK and SD, where SK pushes to minimize the objective and SD aims to

maximize it. This is equivalent to the following:

min
SK

max
SD

Ladv(SD, SK). (4.3)

Reconstruction Loss: We introduce a reconstruction loss to minimize the difference

between the reconstructed feature representations of the k key frames in the predicted

summary video SK(v) and the input frame-level representation of those k key frames

in the input video v. Let ΛK be a set of k indices indicating which k frames in the

input video are selected in the summary. In other words, if f ∈ Λk, the f -th frame

in the input video is a key frame. We can define this reconstruction loss as:

Lreconst(SK(v), v) =
1

k

k∑
t=1

‖SK(v)t − vft‖2
2, (4.4)

44 Chapter 4: Learning Video Summarization from Unpaired Data

where SK(v)t and vft are the features of the t-th frame in the output summary video

SK(v) and the ft-th frame (i.e., ft ∈ Λk) of the input video v, respectively. The

intuition behind this loss is to make the reconstructed feature vectors of the key

frames in the summary video SK(v) similar to the feature vectors of those frames in

the input video v.

Diversity Loss: It is desirable in video summarization that the frames in the sum-

mary video have high visual diversity [58; 103; 110]. To enforce this constraint, we

apply a repelling regularizer [109] that encourages the diversity in the output sum-

mary video SK(v) for the given input video v. This diversity loss is defined as:

Ldiv(SK(v)) =
1

k(k − 1)

k∑
t=1

k∑
t′=1,t′ 6=t

(SK(v)t)T · SK(v)t
′

‖SK(v)t‖2‖SK(v)t′‖2

, (4.5)

where SK(v)t is the frame-level reconstructed feature representation of frame t in the

summary video SK(v). We aim to minimize Ldiv(SK(v)), so that the selected k key

frames are visually diverse.

Final Loss: Our final loss function is:

L(SK , SD) = Ladv(SD, SK) + Lreconst(SK(v), v)

+β Ldiv(SK(v)), (4.6)

where β is a hyperparameter that controls the relative importance of the visual di-

versity. The goal of the leaning is to find the optimal parameters Θ∗SK
and Θ∗SD

in

SK and SD, respectively. We can express this as the following:

Θ∗SK
,Θ∗SD

= arg min
ΘSK

,ΘSD

L(SK , SD). (4.7)

For brevity, we use UnpairedVSN to denote our unpaired video summarization

Chapter 4: Learning Video Summarization from Unpaired Data 45

network that is learned by Eq. 4.7. In Fig. 4.2(c) and Fig. 4.2(d), we show the

training scheme of SK and SD in our model UnpairedVSN.

4.2.4 Learning with Partial Supervision

In some cases, we may have a small amount of paired videos during training. We

use Vp (Vp ⊂ V) to denote this subset of videos for which we have the ground truth

summary videos. Our model can be easily extended to take advantage of this partial

supervision. In this case, we apply an additional objective Lpsup on the output of

FCSN in the key frame selector network SK . Suppose a training input video v ∈ Vp

has T frames, δt,l is the score of the t-th frame to be the l-th class (key frame or non-

key frame) and lt is the ground-truth binary key frame indicator. We define Lpsup(v)

as:

Lpsup(v) = − 1

T

T∑
t=1

log
(exp(δt,lt)∑2

l=1 exp(δt,l)

)
. (4.8)

Our learning objective in this case is defined as:

L(SK , SD) = Ladv + Lreconst + β Ldiv

+γ · 1(v) · Lpsup, (4.9)

where 1(·) is an indicator function that returns 1 if v ∈ Vp, and 0 otherwise. This

means that Lpsup is considered if the video v is an instance in Vp for which we have

the ground-truth summary video. The hyperparameters β and γ control the rela-

tive importance of the diversity and supervision losses, respectively. We denote this

variant of our model as UnpairedVSNpsup.

46 Chapter 4: Learning Video Summarization from Unpaired Data

4.3 Experiments

4.3.1 Setup

Data and Setting: We conduct evaluation on two standard video summarization

datasets: SumMe [26] and TVSum [79]. These datasets have 25 and 50 videos,

respectively. Since these datasets are very small, we use another two datasets, namely

the YouTube [14] (39 videos) and the OVP dataset [2] (50 videos), to help the learning.

Table 4.1 shows the main characteristics of the datasets. We can observe that these

datasets are diverse, especially in terms of ground-truth annotations. We follow prior

work [23; 103] to convert multiple ground truths with different format to generate a

single keyframe-based annotation (a binary key frame indicator vector [103]) for each

training video.

Dataset # videos Video types Ground-truth annotation type

SumMe [26] 25 User Interval-based shots and frame-level score

TVSum [79] 50 YouTube Frame-level importance score

YouTube [14]† 39 Web videos Collection of key frames

OVP [2] 50 Various genre Collection of key frames

Table 4.1: Key characteristics of different datasets used in our experiments. †The
YouTube dataset has 50 videos, but we exclude (following [23; 103]) the 11 cartoon
videos and keep the rest.

From Table 4.1, we can see that we have in total 164 videos available for experi-

ments. When evaluating on the SumMe dataset, we randomly select 20% of SumMe

videos for testing. We use the remaining 80% of SumMe videos and all the videos in

Chapter 4: Learning Video Summarization from Unpaired Data 47

other datasets (i.e., TVSum, YouTube, and OVP) for training. We create the unpaired

data from the training subset by first randomly selecting 50% of the raw videos (ig-

noring their ground-truth summaries) and then selecting the ground-truth summaries

(while ignoring the corresponding raw videos) of the remaining 50% videos. In the

end, we obtain a set of raw videos and a set of real summary videos, where there is

no correspondence between the raw videos and the summary videos. We follow the

same strategy to create the training (unpaired) and testing set when evaluating on

the TVSum dataset.

Features: Firstly, we uniformly downsample every video to 2 fps. Then we use

pool5 layer of the pretrained GoogLeNet [81] to extract 1024-dimensional feature

representation of each frame in the video. Note that our feature extraction follows

prior work [58; 71; 103; 110]. This allows us to perform a fair comparison with these

works.

Training Details: We train our final model (UnpairedVSN) from scratch with a

batch size of 1. We use the Adam optimizer [40] with a learning rate of 0.00001 for

the key frame selector network (SK). We use the SGD [8] optimizer with a learning

rate of 0.0002 for the summary discriminator network (SD). We set β = 1 for SumMe

and β = 0.001 for TVSum in Eq. 4.6. Additionally, we set β and γ to 0.001 for

SumMe and TVSum in Eq. 4.9.

Evaluation Metrics: We evaluate our method using the keyshot-based metrics as

in previous work [58; 103]. Our method predicts summaries in the form of key frames.

We convert these key frames to key shots (i.e., an interval-based subset of video frames

[26; 27; 103]) following the approach in [103]. The idea is to first temporally segment

48 Chapter 4: Learning Video Summarization from Unpaired Data

the videos using KTS algorithm [68]. If a segment contains a key frame, we mark

all the frames in that segment as 1, and 0 otherwise. This process may result in

many key shots. In order to reduce the number of key shots, we rank the segments

according to the ratio between the number of key frames and the length of segment.

We then apply knapsack algorithm to generate keyshot-based summaries that are

at most 15% of the length of the test video [26; 27; 79; 103]. The SumMe dataset

has keyshot-based ground-truth annotation, so we directly use it for evaluation. The

TVSum dataset provides frame-level importance scores which we also convert to key

shots as done by [58; 103] for evaluation.

Given a test video v, let X and Y be the predicted key shot summary and the

ground-truth summary, respectively. We compute the precision (P), recall (R) and

F-score (F) to measure the quality of the summary as follows:

P =
overlap in X and Y

duration of X
,R =

overlap in X and Y

duration of Y
(4.10)

F =
2× P ×R
P +R

(4.11)

We follow the evaluation protocol of the datasets (SumMe [26; 27] and TVSum [79])

to compute the F-score between the multiple user created summaries and the pre-

dicted summary for each video in the datasets. Following prior work [58], we run our

experiments five times for each method and report the average performance over the

five runs.

4.3.2 Baselines

Since our work is the first attempt to learn video summarization using unpaired

data, there is no prior work that we can directly compare with. Nevertheless, we

Chapter 4: Learning Video Summarization from Unpaired Data 49

define our own baselines as follows:

Unsupervised SUM-FCN: If we remove the summary discriminator network

from our model, we can learn video summarization in an unsupervised way. In this

case, our learning objective is simply Lreconst + Ldiv. This is equivalent to the un-

supervised SUM-FCN in [71]. We call this baseline model SUM-FCNunsup. Note that

SUM-FCNunsup is a strong baseline (as shown in [71]) since it already outperforms many

existing unsupervised methods ([14; 38; 46; 58; 79; 108]) in the literature.

Model with Adversarial Objective: We define another baseline model where

we have the summary discriminator network SD and the key frame selector network

SK , but the objective to be minimized is Lreconst + Ladv (i.e., we ignore Ldiv). We

refer to this baseline model as UnpairedVSNadv.

4.3.3 Main Results

In Table 4.2, we provide the results (in terms of F-score, precision and recall) of

our final model UnpairedVSN and the baseline models on the SumMe dataset. Our

method outperforms the baseline methods on all evaluation metrics. It is also worth

noting that when our summary generator and discriminator networks are trained

using unpaired data with the adversarial loss (i.e., UnpairedVSNadv), we observe a

significant boost in performance (1.7%, 1.1% and 2.9% in terms of F-score, precision

and recall, respectively) over the unsupervised baseline SUM-FCNunsup. Adding an

additional regularizer Ldiv (i.e., UnpairedVSN) further improves the summarization

performance.

Table 4.3 shows the performance of different methods on the TVSum dataset.

50 Chapter 4: Learning Video Summarization from Unpaired Data

Again, our final method outperforms the baseline methods. Moreover, the trend in

performance boost is similar to what we observe on the SumMe dataset.

SUM-FCNunsup [71] UnpairedVSNadv UnpairedVSN

F-score 44.8 46.5 47.5

Precision 43.9 45.0 46.3

Recall 46.2 49.1 49.4

Table 4.2: Performance (%) of different methods on the SumMe dataset [26]. We
report summarization results in terms of three standard metrics including F-score,
Precision and Recall.

SUM-FCNunsup [71] UnpairedVSNadv UnpairedVSN

F-score 53.6 55.3 55.6

Precision 59.1 61.0 61.1

Recall 49.1 50.6 50.9

Table 4.3: Performance (%) of different methods on TVSum [79].

Results in Table 4.2 and Table 4.3 demonstrate that learning from unpaired data is

advantageous as it can significantly improve video summarization models over purely

unsupervised approaches.

4.3.4 Comparison with Supervised Methods

We also compare the performance of our method with state-of-the-art supervised

methods for video summarization. Recent supervised methods [58; 71; 102; 103;

Chapter 4: Learning Video Summarization from Unpaired Data 51

104; 107; 110] also use additional datasets (i.e., YouTube and OVP) to increase the

number of paired training examples while training on the SumMe or the TVSum

dataset. For example, when experimenting on SumMe, they use 20% for testing and

use the remaining 80% videos of SumMe along with the videos in TVSum, OVP and

YouTube for training. However, the main difference is that we further divide the

combined training dataset to create unpaired examples (see Sec. 4.3.1). In other

words, given a pair of videos (a raw video and its summary video), we either keep

the raw video or the summary video in our training set. In contrast, both videos

are part of the training set in supervised methods. As a result, supervised methods

use twice as many videos during training. In addition, supervised methods have

access to the correspondence between the raw video and the ground-truth summary

video. Therefore, it is important to note that the supervised methods utilize far more

supervision than our proposed method. We show the comparison in Table 4.4.

Surprisingly, on the SumMe dataset, our final method outperforms most of the

supervised methods (except [71]) by a big margin (nearly 3%). On the TVSum

dataset, we achieve slightly lower performance. Our intuition is that if we have more

unpaired data for training, we can reduce the performance gap on TVSum. To sum

up, this comparison study demonstrates that our unpaired learning formulation has

potential to compete with supervised approaches.

4.3.5 Effect of Partial Supervision

We also examine the performance of our model when direct supervision (i.e.,

correspondence between videos in V and S) is available for a small number of videos

52 Chapter 4: Learning Video Summarization from Unpaired Data

Method SumMe TVSum

Zhang et al.[102] 41.3 –

Zhang et al.[103] (vsLSTM) 41.6 57.9

Zhang et al.[103] (dppLSTM) 42.9 59.6

Mahasseni et al.[58] (supervised) 43.6 61.2

Zhao et al.[107]‡ 43.6 61.5

Zhou et al.[110] (supervised) 43.9 59.8

Zhang et al.[104] 44.1 63.9

Rochan et al.[71] 51.1 59.2

UnpairedVSN (Ours) 47.5 55.6

Table 4.4: Quantitative comparison (in terms of F-score %) between our methods
and state-of-the-art supervised methods on SumMe [26] and TVSum [79]. ‡Results
are taken from [104].

in the training set. Our aim is to study the effect of adding partial supervision to the

framework.

In this case, for the first 10% of original/raw videos that are fed to the key frame

selector network, we use their ground-truth key frame annotations as an additional

learning signal (see Eq. 4.9). Intuitively, we should be able to obtain better perfor-

mance than learning only with unpaired data, since we have some extra supervision

during training.

Table 4.5 shows the performance of our model trained with this additional partial

supervision. We observe a trend of improvement (across all evaluation metrics) on

both the datasets. This shows that our proposed model can be further improved if

Chapter 4: Learning Video Summarization from Unpaired Data 53

we have access to some paired data in addition to unpaired data during the training.

SumMe TVSum

F-score 48.0 (47.5) 56.1 (55.6)

Precision 46.7 (46.3) 61.7 (61.1)

Recall 49.9 (49.4) 51.4 (50.9)

Table 4.5: Performance (%) of UnpairedVSNpsup on the SumMe [26] and TVSum [79]
datasets. In the bracket, we include the performance of our final model UnpairedVSN
reported in Table 4.2 and Table 4.3 to help with the comparison.

4.3.6 Transfer Data Setting

In our standard data setting (see Sec. 4.3.1), it is possible that some of the

unpaired examples consist of raw videos or video summaries from the dataset under

consideration. In order to avoid this, we conduct additional experiments under a

more challenging data setting where the unpaired examples originate totally from

different datasets. For instance, if we evaluate on SumMe, we use the videos and

user summaries of TVSum, OVP and YouTube to create unpaired training data, and

then use the entire SumMe for testing. We follow the similar process while evaluating

on TVSum. This kind of data setting is referred as transfer data setting [102; 103],

though it has been defined in the context of fully supervised learning. We believe

that this data setting is closer to real scenarios, where we may need to summarize

videos from domains that are different from those used in training.

Table 4.6 and Table 4.7 show the performance of different approaches on SumMe

and TVSum, respectively. Although we notice slight degradation in performance

54 Chapter 4: Learning Video Summarization from Unpaired Data

compared with the standard data setting, the trend in results is consistent with our

findings in Sec. 4.3.3.

SUM-FCNunsup [71] UnpairedVSNadv UnpairedVSN

F-score 39.5 41.4 41.6

Precision 38.3 40.4 40.5

Recall 41.2 43.6 43.7

Table 4.6: Performance (%) of different methods on SumMe [26] under transfer data
setting.

SUM-FCNunsup [71] UnpairedVSNadv UnpairedVSN

F-score 52.9 55.0 55.7

Precision 58.2 60.6 61.2

Recall 48.5 50.4 51.1

Table 4.7: Performance (%) of different methods on TVSum [79] under transfer data
setting.

4.3.7 Qualitative Analysis

Figure 4.3 presents example summaries generated by our method UnpairedVSN.

We observe that the output summaries from our approach have a higher overlap with

the human generated summaries. This implies that our method is able to preserve

information essential for generating optimal and meaningful summaries.

We compare the results of different approaches in Fig. 4.4. The first video in

Fig. 4.4(a) is related to cooking. SUM-FCNunsup extracts the shots from the middle of

Chapter 4: Learning Video Summarization from Unpaired Data 55

the video and misses the important video shots towards the end. In contrast, we ob-

serve that UnpairedVSN preserves the temporal story of the video by extracting video

shots from different sections while focusing on key scenes. This has resulted in better

agreement with the human created summaries. The second video in Fig. 4.4(b) is

about scuba diving. Unlike the first video, there is not a huge performance gap be-

tween SUM-FCNunsup and UnpairedVSN. However, it still noticeable that SUM-FCNunsup

captures less diverse scenes compared with UnpairedVSN.

Video 25 (Playing ball)Video 4 (Bike polo)

Figure 4.3: Two example results from the SumMe dataset [26]. The two bars at the
bottom show the summaries produced by UnpairedVSN and humans, respectively.
The black bars denote the selected sequences of frames, and the blue bar in back-
ground indicate the video length.

4.4 Summary

We have presented a new formulation for video summarization where the goal is

to learn video summarization using unpaired training examples. We have introduced

a deep learning framework that operates on unpaired data and achieves much better

performance than the baselines. Our proposed method obtains results that are even

comparable to the state-of-the-art supervised methods. If a small number of paired

videos are available during training, our proposed framework can be easily extended

to take advantage of this extra supervision to further boost the performance. Since

56 Chapter 4: Learning Video Summarization from Unpaired Data

(a) Cooking

UnpairedVSN, F-score = 61.3SUM-FCN
unsup

, F-score = 33.8

(b) Scuba

SUM-FCN
unsup

, F-score = 40.6 UnpairedVSN, F-score = 47.6

Figure 4.4: Example videos from SumMe [26] and predicted summaries by
SUM-FCNunsup [71] and UnpairedVSN. Frames in the first row are sampled from the
video, whereas frames in the second row are sampled from the summaries generated
by different approaches.

unpaired training data are much easier to collect, our work offers a promising direction

for future research in video summarization. As future work, we plan to experiment

with large-scale unpaired videos collected in the wild. Moreover, we also aim to study

the application of proposed approach to other approaches in video abstraction such

as highlight detection.

Chapter 5

Learning to Adapt Video Highlight

Detection using User History

5.1 Chapter Overview and Introduction

In this chapter, we propose an adaptive video highlight detection model that

leverages the user’s previously created video highlights to produce a user-specific

highlight of an input user video.

There is a proliferation in the amount of video data captured and shared everyday.

It has given rise to multifaceted challenges, including editing, indexing and brows-

ing of this massive amount of video data. This has drawn attention of the research

community to build automated video highlight detection tools. The goal of highlight

detection is to reduce an unedited video to its interesting visual moments and events.

A robust highlight detection solution can enhance video browsing experience by pro-

viding quick video preview, facilitating video sharing on social media and assisting

57

58 Chapter 5: Learning to Adapt Video Highlight Detection using User History

video recommendation systems.

Even though we have made significant progress in highlight detection, the existing

methods are missing the ability to adapt its predictions to users. The main thrust of

research in highlight detection has been on building generic models. However, differ-

ent users have different preferences in term of detected highlights [16; 77]. Generic

highlight detection models ignore the fact that the definition of a video highlight

is inherently subjective and depends on each individual user’s preference. This can

greatly limit the adoption of these models in real-world applications. In Fig. 5.1, we

illustrate the subjective nature of highlights. The input video contains events such

as cycling, cooking, and eating. A generic highlight detection model mainly predicts

the cycling event as the highlight. But if we examine the user’s history (previously

created highlights by the user), we can infer that this user is interested in cooking

scenes. Therefore, a highlight detection model should predict the cooking event as the

highlight instead. Motivated by this observation, we propose an adaptive highlight

detection model that explicitly takes user’s history into consideration while generating

highlights.

Although a user’s visual highlight history can provide a stronger and more reliable

cue of their interests than non-visual meta-data [16], there is very limited research

on adapting highlight detection using this visual information. To the best of our

knowledge, the recent work by Molino and Gygli [16] is the only prior work on this

topic. Their method considers a user’s previously created highlights (available as

GIFs1) from multiple videos when generating new highlights for that user. They

propose a ranking model that predicts a higher score for interesting video segments

1GIF is an image format with multiple frames played in a loop without sound [28].

Chapter 5: Learning to Adapt Video Highlight Detection using User History 59

Adaptive
Highlight
Model

Generic
Highlight
Model

User's GIFs

Input video

Result from generic model Result from adaptive model

Figure 5.1: The definition of highlight of a video is inherently subjective and de-
pends on each user’s preference. In contrast to a generic highlight detection model,
an adaptive highlight detection model (like ours) incorporates a user’s previously cre-
ated highlights (e.g., GIFs from multiple videos) when predicting highlights of an
input video. This allows the model to make more accurate and user-specific highlight
predictions.

as opposed to non-interesting ones while conditioning on the user’s past highlights

(i.e., user’s history). However, their method has some limitations. Firstly, it operates

at the segment-level and samples a fixed number of positive and negative segments

from a video for learning. This means that the method does not process an en-

tire video which is essential to capture temporal dependencies shown to be vital in

many video understanding tasks [43; 58; 71; 103]. Moreover, it is sensitive to the

number of positive and negative samples used in the learning. Secondly, it requires

precomputing shot boundaries using a shot detection algorithm [25] for sampling a

set of positive/negative video segments. This makes their pipeline computationally

complex and expensive. Lastly, their model directly combines user’s history features

60 Chapter 5: Learning to Adapt Video Highlight Detection using User History

with the features of sampled video segments to predict user-specific highlights. We

demonstrate in our experiments that this is not as effective as our proposed model.

In this chapter, we introduce a novel user-adaptive highlight detection framework

that is simple and powerful. Given an input user video for highlight detection and

the user’s history (highlight GIFs from multiple videos that the user has previously

created), our model seamlessly combines the user’s history information with the in-

put video to modulate the highlight detection so as to make user-specific and more

precise highlight prediction. Our framework consists of two sub-networks: a fully

temporal convolutional highlight detection network H which produces the highlight

for an input video, and a history encoder network M that encodes the user’s history

information. We propose temporal-adaptive instance normalization (T-AIN), a con-

ditional temporal instance normalization layer for videos. We introduce T-AIN layers

to H where the interaction between the two sub-networks H and M takes place. T-

AIN layers have affine transformation parameters that are predicted from M based

on the user’s history. In other words, M acts a guiding network to H. Through the

adjustable affine parameters in T-AIN layers, H can adapt highlight predictions to

different users based on their preferences as expressed in their histories. Note that

our method does not require expensive shot detection. Moreover, it can utilize an

entire video for learning instead of a few sampled video segments.

To summarize, the main contributions of this chapter are the following. (1) We

study user-adaptive highlight detection using user history in the form of previously

created highlights by the user. This problem has many commercial applications,

but is not well studied in the literature. (2) Different from ranking models [28;

Chapter 5: Learning to Adapt Video Highlight Detection using User History 61

16; 95; 96] commonly used in highlight detection, we are first to employ a fully

temporal convolutional model in highlight detection. Our model does not require

expensive shot detection algorithm and can process an entire video at once. This

makes our proposed model simpler operationally. (3) We propose temporal-adaptive

instance normalization layer (T-AIN) for videos. T-AIN layers have adjustable affine

parameters which allow the highlight detection network to adapt to different users.

(4) We experiment on a large-scale dataset and demonstrate the effectiveness of our

approach. (5) We further explore the application of our model as a pre-trained model

for video summarization, a task closely related to highlight detection.

5.2 Our Approach

Given a video v, we represent each frame in the video as a D-dimensional feature

vector. The video can be represented as a tensor of dimension 1×T×D, where T and

D are the number of frames and dimension of frame feature vector of each frame in

the video, respectively. T varies for different videos. For a user U , letH = {h1, ..., hn}

denotes the user’s history which is a collection of visual highlights that the user has

created in the past.

Given v and H, our goal is to learn a mapping function G that predicts two scores

for each frame in v indicating it being non-highlight and highlight. Thus, the final

output S is of dimension 1× T × 2 for the input video v:

S = G(v,H) = G(v, {h1, ..., hn}). (5.1)

We refer to G as the adaptive highlight detector.

62 Chapter 5: Learning to Adapt Video Highlight Detection using User History

5.2.1 Background: Temporal Convolution Networks

In recent years, temporal convolution networks (e.g., FCSN [71]) have shown to

achieve impressive performance on video understanding tasks. These networks mainly

perform 1D operations (e.g., 1D convolution, 1D pooling) over the temporal dimen-

sion (e.g., over frames in a video). This is analogous to the 2D operations (e.g., 2D

convolution, 2D pooling) commonly used in CNN models for image-related tasks. For

example, the work in [71] uses temporal convolutional networks for video summariza-

tion, where the task is formulated as predicting a binary label for each frame in a

video. Our proposed model is based on the temporal convolution network proposed

in [71], but we extend the model to perform user-specific video highlight detection.

5.2.2 Temporal-Adaptive Instance Normalization

Let oi indicate the activations of i-th layer in the temporal convolution neural

network (fT) for the input video v. We use Ci and T i to denote the number of

channels and temporal length of activation in that layer, respectively. We define

the Temporal-Adaptive Instance Normalization (T-AIN), a conditional normalization

layer for videos. T-AIN is inspired by the basic principles of Instance Normalization

[86]. The activation is firstly normalized channel-wise along the temporal dimension

(obtaining oi
norm), followed by a uniform modulation with affine transformation. Dif-

ferent from InstanceNorm [86], the affine parameters, scale and bias, in T-AIN are

not learnable but inferred using external data (i.e., a user’s history (H) in our case)

which is encoded to a vector m using another temporal convolution network (gT).

Thus, T-AIN is also conditional (on H) in nature. The activation value from T-AIN

Chapter 5: Learning to Adapt Video Highlight Detection using User History 63

at location c ∈ Ci and t ∈ T i is(
oic,t − E[oic]√
Var[oic] + ε

)
γic + δic, (5.2)

where oic,t, E[oic] and Var[oic] are the activation before normalization, expectation and

variance of the activation oi in channel c, respectively. T-AIN computes the E[oic]

and Var[oic] along the temporal dimension independently for each channel and every

input sample (video) as:

E[oic] = µi
c =

1

T i

(∑
t

oic,t
)
, (5.3)

Var[oic] = E[(oic − E[oic])
2] =

1

T i

∑
t

(
oic,t − µi

c

)2
. (5.4)

In Eq. 5.2, γic and δic are the modulation parameters in the T-AIN layer. We

obtain γic and δic from the encoded vector m generated using the external data. T-

AIN firstly scales each value along the temporal length in channel c of temporally

normalized activations oi
norm by γic and then shifts it by δic. Similar to InstanceNorm,

these statistics vary across channel Ci. We provide details on how we compute these

parameters when using user’s history H as an external data in Sec. 5.2.3. In Fig.

5.2, we visualize the operations in a T-AIN layer.

T-AIN is related to the conditional batch normalization (CBN) [15] and the adap-

tive instance normalization (AIN) [31]. The main difference is that CBN and AIN

work spatially, so they are appropriate for image-related tasks like style transfer. In

contrast, T-AIN is designed to operate along time, which makes it suitable for video

highlight detection and video understanding tasks in general.

64 Chapter 5: Learning to Adapt Video Highlight Detection using User History

External data (e.g.,
user's history, ()

��

Temporal
Instance Norm

�
�
����

activation map �
�

� �
� ��

�

dim = 2�
�

� �

T-AIN

� �

element-wise temporally

�
�

�
�

�

Figure 5.2: Overview of a temporal-adaptive instance normalization layer (T-AIN).
For an input video v, let oi be the activation map with channel dimension Ci and
temporal length T i in the i-th layer of a temporal convolutional network fT . Let gT
be another temporal convolutional network that encodes external data (e.g., user’s
history H) into a vector representation m of dimension 2Ci. T-AIN firstly temporally
normalizes oi in each channel to obtain oi

norm. It then uniformly scales and shifts oi
norm

in channel c (where c ∈ Ci) over time by γic and δic, respectively. The values of γic and
δic are obtained from m. As can be seen, the main characteristics of T-AIN include
temporal operation, no learnable parameters, and conditional on external data.

5.2.3 Adaptive Highlight Detector

The adaptive highlight detector G consists of two sub-networks: a highlight de-

tection network H and a history encoder network M . H is responsible for scoring

each frame in an input video to indicate whether or not it should be included in the

highlight. The role of M is to firstly encode the user’s history information and then

guide H in a manner that the generated highlight is adapted to the user’s history.

Next, we discuss the sub-networks design and learning in detail.

Chapter 5: Learning to Adapt Video Highlight Detection using User History 65

Highlight Detection Network

The highlight detection network H is based on FCSN [71]. It is an encoder-

decoder style architecture which is fully convolutional in nature. One advantage of

this network is that it is not restricted to fixed-length input videos. It can handle

videos with arbitrary lengths. Another advantage is that it is effective in capturing

the long-term temporal dynamics among the frames of a video beneficial for video

understanding tasks such as highlight detection.

H accepts a video v with feature representation of dimension 1 × T × D, where

T is number of frames in v and D is the dimension of each frame feature vector. It

produces an output of dimension 1 × T × 2 indicating non-highlight and highlight

scores for the T frames.

The encoder (Fv) of H has a stack of seven convolutional blocks. The first five

blocks (i.e., conv-blk1 to conv-blk5) consist of several temporal convolution followed

by a ReLU and a temporal max pooling operations. The last two blocks (conv6 to

conv7) have a temporal convolution, followed by a ReLU and a dropout layer. The

encoder Fv gives two outputs: a feature map from its last layer and a skip connection

from block conv-blk4.

The output of encoder Fv is fed to the decoder network (Dv). We introduce T-

AIN layers at sites where these two outputs enter Dv. We obtain a feature map by

applying a 1×1 convolution and a temporal fractionally-strided convolution operation

(deconv1) to the output of first T-AIN, which is added with the feature map from

a 1 × 1 convolution to the output of second T-AIN layer. Finally, we apply another

fractionally-strided temporal convolution (deconv2) to obtain a final prediction of

66 Chapter 5: Learning to Adapt Video Highlight Detection using User History

shape 1×T ×2 denoting two scores (non-highlight or highlight) for each frame in the

video. Fig. 5.3 (top) visualizes the architecture of H.

�ℎ

�1

�2

�3

��

ℎ1

ℎ2

ℎ�

Highlight Detection Network

History Encoder Network

input
user
video

user's
history

FC

T-
AI
N

T-
AI
N

co
nv

-b
lk

1

co
nv

-b
lk

2

co
nv

-b
lk

3

co
nv

-b
lk

4

co
nv

-b
lk

5

co
nv

6

co
nv

7

de
co

nv
1

de
co

nv
2

1x
1

co
nv

1x
1

co
nv

co
nv
-b
lk
1

co
nv
-b
lk
2

co
nv
-b
lk
3

co
nv
-b
lk
4

co
nv
6

co
nv
7

co
nv
-b
lk
5

frame-level
scores �

��

��

, �

, �

,�1 �1

,�2 �2

(v)

()

Figure 5.3: Overview of our proposed model, Adaptive-H-FCSN. The model consists
of two sub-networks, a highlight detection network H and a history encoder network
M . H is an encoder-decoder architecture that takes a frame-level vector feature
representation of a user input video with T frames. It then generates scores (highlight
vs. non-highlight) for each frame in the video while taking information from M .
M takes vector feature representation of each element (i.e., highlights the user has
previously created) in the user’s history as an input and encodes it to a vector zh.
This vector zh is then simply fed to a fully connected layer FC to produce the affine
parameters γj and δj in the j-th T-AIN layer of decoder Dv where j = 1, 2. This way
the highlight detection for the input video is adapted to the user.

History Encoder Network

The history encoder network M is an integral piece of our framework. It acts as

a guiding network that guides the highlight network H by adaptively computing the

affine transformation parameters of its T-AIN layers. Using these affine parameters,

Chapter 5: Learning to Adapt Video Highlight Detection using User History 67

M modulates the activations in H to produce adaptive highlight predictions.

The configuration of this network is same as the encoder Fv in H with few changes

towards the end. It performs an average temporal pooling to the output of convolution

blocks, which is combined with a skip connection from the input that is then fed to

a fully-connected layer. The skip connection involves an average pooling and a fully-

connected operation to match dimensions.

The network accepts the user’s history collection H of shape 1 × n × D as an

input, where n is the number of elements/highlights in the user’s history and D is the

dimension of the vector representation of each element. In our implementation, we

obtain a D-dimensional vector from a highlight using C3D [83]. Note that n varies

for different users. After the combining stage, the network generates a latent code zh

which is a fixed-length user-specific vector.

Next, we forward zh to a fully connected layer (FC) to decode the latent code

zh into a set of vectors (γj, δj) where j = 1, 2. The parameters γj and δj denote the

scaling and bias parameters of j-th T-AIN layer in the decoder Dv of H, respectively.

These affine parameters are uniformly applied at every temporal location in the fea-

ture map. This allows to incorporate the user’s history information in H and adjust

it in a way that the predicted highlight is adapted to the user’s history. This way we

obtain a user-specific highlight prediction for the input user video. Fig. 5.3 (bottom)

presents the architecture of M .

With Fv, Dv and M , we can rewrite Eq. 5.1 as:

S = Dv(Fv(v),M({h1, ..., hn})). (5.5)

By applying this design, we learn a generic video representation using Fv and extract

68 Chapter 5: Learning to Adapt Video Highlight Detection using User History

a user-specific latent representation with M . Finally, by injecting user-specific latent

information to Dv through T-AIN layers, we allow the model to adapt the highlight

detection to the user’s history.

Note that we use temporal convolutions over the highlights in the user history. In

addition, we also investigate a non-local model [90; 100] with self-attention instead

of temporal convolutions for M . Here, the output of self-attention is firstly average

pooled to produce a single vector and then fed to a fully-connected layer. We find that

the non-local model performs slightly inferior to the temporal convolutions model.

This is probably because the highlights in the history are ordered based on their time

of creation in the dataset, so the temporal convolutions allow the history encoder M

to capture some implicit temporal correlations among them.

5.2.4 Learning and Optimization

We train our adaptive highlight detector G using a cross-entropy loss. For an

input video v with T frames and corresponding binary indicator ground-truth label

vector (indicating whether a frame is non-highlight or highlight), we define a highlight

detection loss Lhighlight as:

Lhighlight = − 1

T

T∑
t=1

log

(
exp(λt,lc)∑2
c=1 exp(λt,c)

)
, (5.6)

where λt,c is the predicted score of t-th frame to be the c-th class (non-highlight or

highlight) and λt,lc is the score predicted for the ground-truth class.

The goal of our learning is to find optimal parameters Θ∗Fv
, Θ∗Dv

and Θ∗M in the

encoder Fv, decoder Dv of the highlight detection network H, and the history encoder

Chapter 5: Learning to Adapt Video Highlight Detection using User History 69

network M , respectively. The learning objective can be expressed as:

Θ∗Fv
,Θ∗Dv

,Θ∗M = arg min
ΘFv ,ΘDv ,ΘM

Lhighlight(Fv, Dv,M). (5.7)

For brevity, we use Adaptive-H-FCSN to denote our adaptive highlight detection

model learned using Eq. 5.7.

5.3 Experiments

In this section, we present the experimental details, results and analysis.

5.3.1 Dataset

We conduct experiments on the largest publicly available highlight detection

dataset, PHD-GIFs [16]. It is also the only large-scale dataset that has user his-

tory information for highlight detection. The released dataset consists of 119, 938

videos, 13, 822 users and 222, 015 annotations. The dataset has 11, 972 users in train-

ing, 1, 000 users in validation, and 850 users in testing. There is no overlap among

users in these three subsets.

Apart from being large-scale, this dataset is also interesting because it contains

user-specific highlight examples indicating what exactly a user is interested in when

creating highlights. The ground-truth segment-level annotation comes from GIFs that

a user creates (by extracting key moments) from YouTube videos. In this dataset,

a user has GIFs from multiple videos where the last video of the user is considered

for highlight prediction and the remaining ones are treated as examples in the user’s

history.

70 Chapter 5: Learning to Adapt Video Highlight Detection using User History

The dataset only provides YouTube video ID for the videos and not the original

videos. So we need to download the original videos from YouTube to carry out the

experiments. We were able to download 104, 828 videos and miss the remaining videos

of the dataset since they are no longer available on YouTube. In the end, we are able

to successfully process 7, 036 users for training, 782 users for validation and 727 users

for testing. Note that code of previous methods on this dataset are not available

(except pre-trained Video2GIF [28]), so we implement several strong baselines (see

Sec. 5.3.3).

5.3.2 Setup and Implementation Details

Evaluation metrics: We use the mean Average Precision (mAP) as our evaluation

metric. It measures the mean of the average precision of highlight detection calculated

for every video in the testing dataset. Different from object detection where all the

detections are accumulated from images to compute the average precision, highlight

detection treats videos separately because it is not necessary a highlighted moment

in a particular video is more interesting than non-highlighted moments in a different

video [80]. This metric is commonly used to measure the quality of predictions in

highlight detection [28; 16; 80; 95].

Feature representation: Following prior work [16], we extract C3D [83] (conv5)

layer features and use it as feature representation in the model for the input videos

and user’s history. For an input video, we extract C3D-features at frame-level. For

a highlight video in the user’s history, we prepare a single vector representation by

averaging its frame-level C3D features.

Chapter 5: Learning to Adapt Video Highlight Detection using User History 71

Training details: We train our models from scratch. All the models are trained

with a constant learning rate of 0.0001. We use Adam [40] optimization algorithm for

training the models. Note that we apply this training strategy in all our experiments

including the other analysis (Sec. 5.3.5).

Since the dataset has users that create multiple GIFs for a video, we follow [16]

to prepare a single ground truth for the video by taking their union.

Testing details: Given a new test user video and the user’s history, we use our

trained model to predict a highlight score for each frame which is then sent to the

evaluation metrics to measure the quality of predicted highlight. We follow the eval-

uation protocol of previous work [28; 16] for fair comparison. Note that our model

can handle variable length input videos and a variable number of history elements.

We consider the full user’s history while predicting highlights.

5.3.3 Baselines

We compare the proposed Adaptive-H-FCSN with the following strong baselines:

FCSN [71]: This network is the state of the art in video summarization which

we adapt as our highlight detection network. FCSN has no instance normalization

layers. We train and evaluate FCSN on the PHD-GIFs dataset.

Video2GIF [28]: This baseline is a state-of-the-art highlight detection model.

We evaluate the publicly available pre-trained model.

FCSN-aggregate: In this baseline, we train FCSN [71] by directly combining

the user history with the input video. More specifically, we firstly obtain a vector

representation for the user history by averaging the features of elements in the history.

72 Chapter 5: Learning to Adapt Video Highlight Detection using User History

Next, we add this aggregated history with the feature representation of each frame

in the input video.

H-FCSN: This baseline is a variant of highlight detection network H we pre-

sented in Sec. 5.2.3, where we replace the T-AIN layers in the decoder of H with

the unconditional temporal instance normalization layers. We do not have the his-

tory encoder network M . This results in Adaptive-H-FCSN transformed to a generic

highlight detection model with no adaptation to users.

H-FCSN-aggregate: Similar to FCSN-aggregate, we directly combine the user’s

history features with an input video features and learn H-FCSN. Different from H-

FCSN, this is not a generic highlight detection model but a user-adaptive highlight

detection model as we allow the model to leverage the user’s history information in

the training and inference.

5.3.4 Results and Comparison

In Table 5.1, we provide the experiment results (in terms of mAP %) of our final

model Adaptive-H-FCSN along with the baselines and other alternative methods.

Adaptive-H-FCSN outperforms all the baselines. Results show that directly com-

bining (i.e., FCSN-aggregate and H-FCSN-aggregate) history information with input

video only slightly improves the highlight detection results in comparison to FCSN

and H-FCSN that do not leverage users history information. However, we notice a

significant performance gain for Adaptive-H-FCSN model. This result validates that

directly combining user history information with the input video is a sub-optimal

solution for user-adaptive highlight detection. Additionally, this result reveals that

Chapter 5: Learning to Adapt Video Highlight Detection using User History 73

Method mAP (%) User-adaptive

Random 12.27 7

FCSN [71] 15.22 7

Video2GIF [28] 14.75 7

H-FCSN 15.04 7

FCSN-aggregate 15.62 3

H-FCSN-aggregate 15.73 3

Adaptive-H-FCSN-attn 16.37 3

Adaptive-H-FCSN 16.73 3

Table 5.1: Performance (mAP%) comparison between Adaptive-H-FCSN and other
approaches. We compare with both non-adaptive and adaptive highlight detection
methods. Our method Adaptive-H-FCSN outperforms the other alternative meth-
ods. We also compare with Adaptive-H-FCSN-attn that uses self-attention in the
history encoder (see Sec. 5.2.3). Note that all the listed methods use C3D feature
representation.

proposed T-AIN layer plays a critical role in producing more accurate and user-specific

highlight detection. It is also noteworthy that we obtain a lower performance (nearly

1%) for Video2GIF [28] than reported in PHD-GIFs [16] which implies that our test

set is more challenging.

Fig. 5.4 shows some qualitative examples for the generic baseline model (H-FCSN)

and our proposed adaptive highlight detection model (Adaptive-H-FCSN). We can

see that our model successfully captures the information in the user’s history and

produces a video highlight that is adapted to the user.

74 Chapter 5: Learning to Adapt Video Highlight Detection using User History
U

se
r’

s
h

is
to

ry
 G

IF
s

H
-F

C
S
N

A
d
ap

ti
v
e
-H

-F
C

S
N

U
se

r’
s

h
is

to
ry

 G
IF

s
H

-F
C

SN
A

d
ap

ti
v
e
-H

-F
C

S
N

U
se

r’
s

h
is

to
ry

 G
IF

s
H

-F
C

S
N

A
d
a
p
ti

v
e-

H
-F

C
SN

U
se

r’
s

h
is

to
ry

 G
IF

s
H

-F
C

SN
A

d
ap

ti
v
e
-H

-F
C

S
N

(a) (b)

(c) (d)

Figure 5.4: Qualitative examples for different methods. We show examples of
the generic highlight detection model (H-FCSN) and our user-adaptive model
(Adaptive-H-FCSN) on four videos. For each video, we show the user’s history (mul-
tiple GIFs) and few sampled frames from the highlight predictions of the two models.
Based on the user’s history, we find that in (a) the user has interest in animals; (b)
the user is interested in faces that dominate a scene; (c) the user is inclined to high-
light goal scoring scenes; and (d) the user focuses on cooking. These visualizations
indicate that adaptation to the user’s interest is important for a meaningful and ac-
curate highlights. Compared with H-FCSN, the prediction of Adaptive-H-FCSN is
more consistent with the user’s history.

5.3.5 Analysis

Effect of affine parameters

We analyze the importance of affine parameters γic and δic (Eq. 5.2) for adaptive

highlight detection. In Table 5.2, we report the highlight detection performance for

different possible choices of these parameters. We find that when these parameters

are adaptively computed (γic=γ
h
c , δic=δ

h
c) from another network capturing the user

history information (i.e., Adaptive-H-FCSN) significantly boosts the highlight detec-

Chapter 5: Learning to Adapt Video Highlight Detection using User History 75

Method γic=1, δic=0 γic=γ
∗
c , δic=δ

∗
c γic=γ

h
c , δic=δ

h
c

H-FCSN 14.64 15.04 -

H-FCSN-aggregate 14.87 15.73 -

Adaptive-H-FCSN - - 16.73

Table 5.2: Impact of affine parameters on highlight detection. Here we show the
performance (mAP%) for different choices of affine parameters γic and δic in Eq. 5.2.

tion performance as opposed to cases when it is directly learned (γic=γ
∗
c , δic=δ

∗
c) and

set to a fixed value (γic=1, δic=0) in the main highlight detection network. Thus, the

proposed T-AIN layer is key to obtain user-adaptive highlights.

Effect of user’s history size

We perform an additional study to analyze how sensitive our model is to the

length of a user’s history (i.e., numbers of highlights previously created). We restrict

the number of history elements for users in the training. That is, we consider only h

highlight videos from the user’s history in training. During testing, we consider the

user’s full history.

Table 5.3 shows the results of various methods as a function of number of elements

(h = 0, 1, 5, n) in user’s history. We observe that Adaptive-H-FCSN outperforms

generic highlight model (H-FCSN) even when there is a single highlight in the user’s

history. We notice the performance of Adaptive-H-FCSN gradually improves when

we increase the number of history elements, whereas H-FCSN-aggregate doesn’t show

a similar performance trend. It achieves the best results when we utilize a user’s full

history (i.e., h=n).

76 Chapter 5: Learning to Adapt Video Highlight Detection using User History

History size (H) h = 0 h = 1 h = 5 h = n

H-FCSN 15.04 - - -

H-FCSN-aggregate - 15.62 15.04 15.73

Adaptive-H-FCSN - 15.57 15.69 16.73

Table 5.3: Impact of an user’s history size (i.e., number of history elements/highlights)
on different methods. Here we vary the history size h as 0 (no history), 1, 5, and n
(full history). The performance of our model improves with the increase in history
size.

5.3.6 Application to Video Summarization

Video summarization is closely related to highlight detection. Highlight detection

aims at extracting interesting moments and events of a video, while video summariza-

tion aims to generate a concise synopsis of a video. Popular datasets in summarization

are very small [70], making learning and optimization challenging. We argue that pre-

training using a large-scale video data from a related task, such as PHD-GIFs [16] in

highlight detection, could tremendously help video summarization models. In video

summarization, this idea remains unexplored. In order to validate our notion and

compare with recent state-of-the-art in [92], we select the SumMe dataset [26] which

has only 25 videos.

We evaluate our trained H-FCSN (i.e., the generic highlight detection model we

proposed in Sec. 5.3.3) directly on SumMe. In Table 5.4, we compare the performance

of our H-FCSN (trained on the PHD-GIFs [16] dataset) on SumMe with state-of-the-

art supervised video summarization methods. Following prior work [92], we randomly

select 20% of data in SumMe for testing. We repeat this experiment five times (as

Chapter 5: Learning to Adapt Video Highlight Detection using User History 77

in [92]) and report the average performance. Surprisingly, even though we do not

train on SumMe, our model achieves state-of-the-art summarization performance,

outperforming contemporary supervised models. Therefore, we believe that future

research in video summarization should consider pretraining their model on a large-

scale video data from a related task such as highlight detection. We envision that

this way we can simultaneously make progress in both highlight detection and video

summarization.

Method F-score (%)

Interesting [26] 39.4

Submodularity [27] 39.7

DPP-LSTM [103] 38.6

GANsup [58] 41.7

DR-DSNsup [110] 42.1

S2N [92] 43.3

Ours (H-FCSN) 44.4

Table 5.4: Performance comparison in term of F-score (%) on SumMe. Note that
unlike other methods, we do not train on SumMe rather directly test our trained
(using PHD-GIFs) model for summarization. Results of other methods are taken
from [92].

5.4 Summary

We have proposed a simple yet novel framework Adaptive-H-FCSN for adaptive

highlight detection using the user history which has received less attention in the

78 Chapter 5: Learning to Adapt Video Highlight Detection using User History

literature. Different from commonly applied ranking-based models, we introduced a

convolutional model for highlight detection that is computationally efficient as it can

process an entire video of any length at once and also does not require expensive

shot detection computation. We proposed temporal-adaptive normalization (T-AIN)

that has affine parameters which is adaptively computed using the user history in-

formation. The proposed T-AIN leads to high-performing and user-specific highlight

detection. Our empirical results on a large-scale dataset indicate that the proposed

framework outperforms alternative approaches. Lastly, we further demonstrate an ap-

plication of our learned model in video summarization where the learning is currently

limited to small datasets.

Chapter 6

Learning to Generate Dynamic

Video Thumbnail using Sentences

6.1 Chapter Overview and Introduction

In this chapter, we propose a sentence-guided temporal modulation for dynamic

video thumbnail generation. In addition, we introduce self-supervision through an

auxiliary task in our framework that not only improves the performance of the model

but also yields an unsupervised approach for dynamic video thumbnail generation.

With the massive rise in videos available online, video thumbnails play a vital role

in defining the browsing and searching experience of users. A video thumbnail shows

viewers a quick and condensed preview of the entire content in the video [78; 53; 99].

Viewers often decide whether to watch or skip the video based on its thumbnail

[13; 78]. Given its importance, there is increasing interest in how to create attractive

and expressive thumbnails.

79

80 Chapter 6: Learning to Generate Dynamic Video Thumbnail using Sentences

Most of the existing approaches [17; 29; 37; 56; 78; 91] focus on static thumbnail

generation, where a thumbnail is generated solely based on the input video. These

static thumbnail generation methods overlook rich semantic information such as user

query sentence which is usually provided in searching a video. Static thumbnails

are not tailored to each viewer’s unique interest and may not provide the best on-

line videos browsing experience. Some approaches [49; 53] consider the user search

query for video thumbnail generation. But they either limit the thumbnail to a single

keyframe or confine queries to a single word or a short phrase [99]. In this chapter,

we study the recently proposed challenging problem of sentence specified dynamic

video thumbnail generation (DVTG) [99]. Given an input video and a user query

expressed as a free form natural language sentence, the goal of DVTG is to generate

a video thumbnail that semantically corresponds to the sentence while giving a con-

cise preview of the video. Figure 6.1 shows the difference between static thumbnail

generation and DVTG. Despite many potential real world applications (e.g., video

search), there is limited work on the DVTG problem.

The existing state-of-the-art method [99] for the DVTG task achieves promising

results but has some limitations. First, it heavily relies on fine-grained modeling of

semantic relationship within the user query sentence and clips or segments of the video

[99]. It does not consider the overall guiding and modulating role that a user query

sentence can play in temporally correlating video clips over time. Intuitively, global

sentence semantics can serve as a reference in determining and associating sentence-

specific video segments over time. Second, the method uses recurrent models (BiGRU

[11] and pointer networks [89]) that are hard to parallelize as they inherently perform

Chapter 6: Learning to Generate Dynamic Video Thumbnail using Sentences 81

Dynamic
video

thumbnails
Static

thumbnail

Input video

Two men are playing drums with her

She is playing the violin.

User A query:

User B query:

Two men are playing drums with her

She is playing the violin.

User A query:

User B query:

Single video thumbnail Two different video thumbnails

Figure 6.1: Illustration of the difference between static video thumbnails and sentence
specified dynamic video thumbnails. The latter considers the user query sentence
when creating the thumbnail.

sequential computation.

In this chapter, we propose a sentence-guided temporal modulation (SGTM)

mechanism for the DVTG task. We use a self-attention network [90] for encoding

the user query sentence and adapt a fully convolutional temporal network [71] for the

thumbnail generation of an input video. The SGTM mechanism leverages the seman-

tic information from the user query sentence to modulate the normalized temporal

activations in the video thumbnail generation network. We also introduce a small

auxiliary network to further ensure that the generated video thumbnail semantically

corresponds to the given user sentence. Our framework is computationally efficient as

its computations are easily parallelizable on GPU architectures. It is also noteworthy

that our framework is free from sophisticated multimodal feature fusion (unlike prior

method [99]), making it computationally less complex. We also propose an unsu-

pervised extension of our method that does not need ground-truth video thumbnails

82 Chapter 6: Learning to Generate Dynamic Video Thumbnail using Sentences

during training.

In summary, our contributions in this chapter are as follows. (1) We propose

a sentence-guided temporal modulation (SGTM) mechanism for sentence specified

dynamic video thumbnail generation (DVTG). Our method dynamically modulates

the temporal activations in video thumbnail generation network using the semantic

information of the query sentence. (2) We propose a computationally efficient and

simple framework for the DVTG task that offers better parallelization and is free from

complex multimodal feature fusion. (3) We propose both supervised and unsupervised

version of our method. (4) We conduct extensive experiments and analysis on a large-

scale dataset to evaluate our framework.

6.2 Our Approach

The input to DVTG consists of a video V and a user query sentence S. We denote

video by V = {vc}Cc=1, where vc is the feature representation of c-th video clip and

C is the total number of clips in the video. Similarly, we represent the user query

sentence by S = {xn}Nn=1, where xn denotes the word embedding of n-th word and N

denotes the total number of words in the sentence. The goal of DVTG is to identify a

set of video clips (which may not be consecutive) from V that provide a good preview

of the original video V and are semantically consistent with the sentence S.

Given V and S, our goal is to learn a mapping function F (V, S) ∈ R1×C×2, where

the output of F (V, S) indicate the scores of whether or not a video clip should be

included in the video thumbnail. We call the function F the sentence-guided video

thumbnail generation model.

Chapter 6: Learning to Generate Dynamic Video Thumbnail using Sentences 83

6.2.1 Sentence-Guided Video Thumbnail Generation Model

We propose the sentence-guided video thumbnail generation model F which con-

sists of three sub-networks, namely a video thumbnail generation network (T), a

self-attention sentence encoder network (Senc) and an auxiliary network (Taux). A

sentence-guided temporal modulation (SGTM) mechanism is proposed to modulate

certain activations in T using the output from Senc. Figure 6.2 shows an overview of

our proposed model. In the following, we discuss our model in detail.

Video (V)

C3D features

Self-
attention

User query
 sentence (S)

word embedding
Avg.
pool

SGTM

SGTM

FC

crop

prediction

Video Thumbnail Generation Network, T

Self-Attention Sentence Encoder Network,

Auxiliary
Network

Figure 6.2: An overview of our sentence-guided video thumbnail generation model.
The model consists of a video thumbnail generation network (T), a self-attention
sentence encoder network (Senc), and an auxiliary network (Taux). A sentence-guided
temporal modulation (SGTM) mechanism is introduced to allow interaction between
T and Senc. The network T consists of an encoder Tenc and a decoder Tdec. T takes
features of video clips in an input video V and predicts whether or not each clip
belongs to the video thumbnail. Senc encodes the word-level embedding of user query
sentence (S) to a vector z which is then used by SGTM to modulate the temporal
activations from the encoder of T (i.e., Tenc) to determine sentence-specific video
content over time. The role of Taux is to reconstruct z to further ensure that the
generated video thumbnail aligns well with S. We use two losses for learning: a
thumbnail generation loss Lthumb on the prediction of Tdec and an auxiliary loss Laux

on the output of Taux.

84 Chapter 6: Learning to Generate Dynamic Video Thumbnail using Sentences

Video Thumbnail Generation Network

The video thumbnail generation network T is an encoder-decoder style temporal

convolution network. A temporal convolution network mainly performs 1D operations

(e.g., 1D convolution, 1D pooling) over time. For instance, given a video with frame-

level feature representations, this network can operate over frames enabling it to

capture the temporal dependencies among the frames. In this chapter, we adapt

FCSN [71] which is a form of encoder-decoder based temporal convolution network

designed for video summarization.

The input to T is a sequence of clip-level feature representations of video V , i.e.,

V ∈ R1×C×Dc where C is the total number of clips and Dc is the dimension of the

feature representation of each video clip. The output of T is of dimension 1× C × 2

which denotes the scores of each clip being a part of the thumbnail or not.

T consists of an encoder Tenc and a decoder Tdec. Tenc has seven convolutional

blocks. Each of the first five convolution blocks (conv1 to conv5) consists of multiple

temporal convolution and ReLU operations, with a max pooling at the end. The

last two blocks (fc6 and fc7) has a temporal convolution, a ReLU and a dropout

operation. Tenc produces two feature maps as outputs, one from the last layer and

another one as a skip connection from conv4 block. The outputs of Tenc is fed to Tdec

as inputs. The first input to Tdec goes through a 1× 1 convolution and a temporally

fractionally-strided convolution (deconv1) which is then combined with the second

input after applying a 1 × 1 convolution to it. Lastly, it has another temporally

fractionally-strided convolution (deconv2) and a crop operation so as to obtain the

final prediction of dimension 1× C × 2.

Chapter 6: Learning to Generate Dynamic Video Thumbnail using Sentences 85

Self-Attention Sentence Encoder Network

The self-attention sentence encoder network (Senc) is responsible for encoding the

user query sentence S to a fixed length vector z.

Self-attention [65; 88] has been shown to be a powerful technique in natural lan-

guage processing. We apply the non-local model [90; 100] with self-attention mech-

anism in Senc. This enables Senc to effectively model relationships between different

words in the sentence.

We represent each word in the sentence using its word embedding vector. The

sentence S can be written as S ∈ RDw×N , where N is the number of words in the

sentence and Dw is the dimension of word embedding. The attention between two

words can be computed as:

Φj,i =
exp(Aij)∑N
i=1 exp(Aij)

, where Aij = f1(xi)
Tf2(xj), (6.1)

Here f1 and f2 represent two distinct feature spaces, i.e., f1 (xi) = Wf1xi and f2 (xj) =

Wf2xj. The attention score Φj,i denotes the extent with which i-th word is related to

j-th word. The output of self-attention is Λ = (Λ1,Λ2, ...,ΛN) ∈ RDw×N , where

Λj =
N∑
i=1

Φj,ih(xi), where h(xi) = Whxi. (6.2)

Note that Wf1 ∈ Rd×Dw , Wf2 ∈ Rd×Dw and Wh ∈ RDw×Dw are the learnable weights

implemented using 1×1 convolutions. In our experiments, we set d = Dw/8 . Lastly,

we apply average pooling on the resultant self-attended features Λ to obtain the vector

z ∈ RDw representing the whole sentence S.

86 Chapter 6: Learning to Generate Dynamic Video Thumbnail using Sentences

Sentence-Guided Temporal Modulation

In order to generate a video thumbnail that corresponds to a user sentence, it is

necessary to establish the relationships between the clips of video and the sentence.

The rich semantics in the sentence provides a strong signal to temporally associate

it with the video clips. Motivated by this, we propose the sentence-guided temporal

modulation (SGTM) mechanism. In practice, SGTM is similar to temporal-adaptive

instance normalization [69] that extends adaptive instance normalization [31] (initially

designed for images) to videos. SGTM plays a key role in our proposed model. It

allows the interaction between the video thumbnail generation network T (Sec. 6.2.1)

and the self-attention sentence encoder network Senc (Sec. 6.2.1) so as to generate a

video thumbnail that closely relates to the given user query sentence. SGTM uses the

semantic information in the sentence to guide and temporally modulate the features

of the input video fed to the video thumbnail generation network T .

Let z be the sentence vector representation from Senc and A ∈ R1×M×C be the

activations from one specific layer in the temporal convolution network T , where M

is the temporal length of the activation and C is the number of channels. We firstly

forward z to a fully-connected layer (FC) to generate a vector of length 2C. We use

this generated vector to obtain two modulation vectors α ∈ RC and β ∈ RC . Next,

we use these modulation vectors to modulate the each channel of activation map A.

We can express the modulated activation map at m ∈M and c ∈ C as Âm,c which is

computed as:

Âm,c = αc ·
Am,c − µc(A)

σc(A)
+ βc, (6.3)

where µc and σc are the channel-wise mean and standard deviation calculated in-

Chapter 6: Learning to Generate Dynamic Video Thumbnail using Sentences 87

dependently for each input video along the temporal length of the activation map

A.

From Eq. 6.3, we can infer that a normalized temporal activation map with

zero mean and unit variance in each channel is subjected to an affine transformation

(scale and shift) whose values are predicted using the sentence representation z. Note

that the affine transformation is temporally invariant and there are no learnable

parameters involved in this mechanism. By using this translation-based design, our

goal is to allow the sentence semantics information to modulate each temporal feature

map of the input video.

In our model, we apply SGTM to the two output activations of the encoder Tenc

(see Fig. 6.2). We use the sentence representation z from Senc to produce two sets of

affine parameter vectors (αi, βi where i = 1, 2) using a FC layer. The parameters αi

and βi correspond to the i-th SGTM.

Auxiliary Network

To further ensure that the generated thumbnail aligns well with the query sen-

tence, we introduce an auxiliary network (Taux) next to the decoder Tdec of T (Sec.

6.2.1). It is a small network whose input is the output of deconv2 layer in Tdec which is

forwarded to a 1×1 convolution and an average pooling operation so as to reconstruct

the user sentence vector representation z learned by Senc (Sec. 6.2.1).

6.2.2 Learning and Optimization

Our learning objective includes a thumbnail loss and an auxiliary loss.

88 Chapter 6: Learning to Generate Dynamic Video Thumbnail using Sentences

Thumbnail loss: For an input video V with C clips and the ground-truth binary

indicator label vector denoting whether a clip belongs to thumbnail or not, we define a

cross-entropy loss Lthumb on the prediction of the video thumbnail generation network

T as:

Lthumb = − 1

C

C∑
c=1

log

(
exp(δc,lc)∑2
j=1 exp(δc,j)

)
, (6.4)

where δc,j is the predicted score of c-th video clip to be labeled as j-th class (non-

thumbnail or thumbnail) and δc,lc is the score for the ground-truth class lc for the c-th

video clip.

Auxiliary loss: This loss aims to minimize the difference between the sentence

representation z from Senc and the reconstructed sentence representation ẑ from Taux.

We define the reconstruction loss Laux as:

Laux = ||z− ẑ||2, (6.5)

where z, ẑ ∈ RDw and || · || denotes the L2 norm.

Final loss: We define the final loss Lfinal as:

Lfinal = Lthumb + Laux. (6.6)

The aim of the learning is to find the optimal parameters Θ∗T , Θ∗Senc
and Θ∗Taux

of

the networks T , Senc and Taux, respectively. We can express the learning objective as

follows:

Θ∗T ,Θ
∗
Senc

,Θ∗Taux
= arg min

ΘT ,ΘSenc ,ΘTaux

Lfinal(T, Senc, Taux). (6.7)

Chapter 6: Learning to Generate Dynamic Video Thumbnail using Sentences 89

For simplicity, we denote our proposed sentence-guided dynamic video thumbnail

generation model (Sec. 6.2.1) learned from Eq. 6.7 by Guided-DVTG.

In summary, Guided-DVTG captures the global information of the video through

its video thumbnail generation network (Sec. 6.2.1) which is crucial to generate

thumbnails that provide overall content preview. It also has the ability to dynamically

modulate its prediction using the user sentence via the sentence-guided temporal

modulation (Sec. 6.2.1). Moreover, it further ensures semantic correspondence with

the sentence using the auxiliary network (Sec. 6.2.1). As a result, Guided-DVTG can

produce dynamic video thumbnails that provide a quick preview of the video while

satisfying the user query sentence.

6.3 Experiments

6.3.1 Setup

Dataset: We conduct experiments on the sentence specified dynamic video thumbnail

generation dataset by Yuan et al.[99]. This dataset is based on the ActivityNet

Captions dataset [42]. It has 10, 204 video-sentence pairs where each pair is labeled

with 4 video thumbnail annotations. The thumbnail annotation for each video is at

clip-level where each clip is of 2 seconds and with no more than 5 clips from the video

included in the final video thumbnail. 70% of the dataset is used for training, 15%

for validation and the remaining 15% for testing.

Feature representation: We follow prior work [99] for video and word embedding

representation. We evenly split every video in the dataset into 2 second clips and

90 Chapter 6: Learning to Generate Dynamic Video Thumbnail using Sentences

represent each clip with the C3D features [83] provided by the ActivityNet Challenge

2016. For each word, we obtain a 300 dimensional word embedding using Glove [67].

Training details: We train all our models from scratch with a constant learning

rate 0.0001 using the Adam optimizer [40]. During training, for a video-sentence

pair, we find the most consistent video thumbnail annotation among the 4 thumbnail

annotations and treat it as the ground-truth annotation. However, in testing, we

evaluate the predicted video thumbnail by comparing it against all the 4 thumbnail

annotations. Note that similar process is followed by previous work [99].

Evaluation metrics: Following prior work [99], we use the F1 and IoU scores to

measure the performance of our methods. These metrics measure the agreement

between the generated thumbnail and the ground-truth thumbnail annotations. A

higher value is desirable on these metrics.

6.3.2 Main Results and Comparisons

In addition to comparing with prior state-of-the-art video thumbnail generation

methods, we also define several strong baselines that are as follows:

FCSN [71]: This is a state-of-the-art model in video summarization task. We extend

it to create our video thumbnail generation network T (see Sec. 6.2.1). We directly

train and evaluate FCSN on the dataset in this chapter. Note that this is a generic

video thumbnail model that does not consider the user query sentence.

IN-FCSN: This baseline is a variant of video thumbnail generation network T where

we replace the proposed SGTM mechanism (see Sec. 6.2.1) with the temporal instance

normalization layer [85] with learnable affine transformation parameters. Note that

Chapter 6: Learning to Generate Dynamic Video Thumbnail using Sentences 91

we do not have the networks Senc and Taux in this model. This results in another

generic thumbnail model.

IN-FCSN-concat: We obtain this baseline when we train video thumbnail gener-

ation network T by concatenating the user sentence vector representation (obtained

by averaging the words embedding) with the video-clip features of the input video.

We again replace SGTM mechanism with temporal instance normalization layer with

learnable affine transformation parameters. This results in a dynamic video thumb-

nail generation model as it incorporates user sentence information in the model.

In Table 6.1, we compare our final model Guided-DVTG with the prior and baseline

methods. We outperform the baselines and other alternative methods except GTP

[99]. Unlike GTP, we do not use sophisticated multimodal feature fusion. Moreover,

GTP uses recurrent models that perform sequential computation within training sam-

ples which prevents parallelization, whereas our model is completely non-recurrent

that allows much more parallelization. Figure 6.3 shows example video thumbnails

generated by our Guided-DVTG model.

6.3.3 Analysis

Role of Modulation Parameters: We analyze the importance of modulation pa-

rameters αc and βc (Eq. 6.3) in the SGTM mechanism (Sec. 6.2.1). Table 6.2

compares the performance for different possible solutions of these parameters. We

find that when these parameters are predicted (αc=α
s
c, βc=β

s
c) from another network

using the user query sentence (i.e., in Guided-DVTG), the model achieves much better

performance as compared to cases when they are set to fixed values (αc=1, βc=0)

92 Chapter 6: Learning to Generate Dynamic Video Thumbnail using Sentences

Method F1 IoU

Random 0.3604 0.2379

RankNet [28] 0.4013 0.2770

VSEM [53] 0.4386 0.3098

QARE [87] 0.4285 0.2986

CTRL [20] 0.4303 0.3084

ACRN [50] 0.4456 0.3271

GTP [99] 0.5285 0.3933

FCSN [71] (ours) 0.4295 0.3101

IN-FCSN (ours) 0.4426 0.3140

IN-FCSN-concat (ours) 0.4286 0.3084

Guided-DVTG (ours) 0.4758 0.3405

Table 6.1: Performance comparison (in terms of F1 and IoU) between Guided-DVTG

and other alternative methods. Results of previous methods is taken from [99]. Best
and second best methods are highlighted in gray and cyan, respectively.

or directly learned (αc=α
∗
c , βc=β

∗
c) in the main video thumbnail generation network

(Sec. 6.2.1). Therefore, the proposed SGTM is key to dynamic video thumbnail

generation.

Impact of Auxiliary Network: We study the impact of auxiliary network (Sec.

6.2.1) and the loss Laux (Sec. 6.2.2) associated with it in learning the thumbnail

model. In order to verify their contribution, we remove them from our final model

Guided-DVTG and perform learning. We call the learned model Guided-DVTG-NA and

compare the performance in Table 6.3(a). We notice a drop in performance which

Chapter 6: Learning to Generate Dynamic Video Thumbnail using Sentences 93

A man is seen jumping over a set of bars while text is shown across the screen.

A man is standing outside in his front lawn with his mower.

Ground truth

Prediction

Ground truth

Prediction

Figure 6.3: Example qualitative results produced by Guided-DVTG. The gray, green
and orange bars indicate the video length, ground truth and thumbnail predictions,
respectively.

Method αc = 1, βc=0 αc=α
∗
c , βc=β

∗
c αc=α

s
c, βc=β

s
c

IN-FCSN 0.4062 (0.2904) 0.4426 (0.3140) -

IN-FCSN-concat 0.4480 (0.3192) 0.4286 (0.3084) -

Guided-DVTG - - 0.4758 (0.3405)

Table 6.2: Impact of modulation parameters on video thumbnail generation. Here
we indicate F1 and IoU (in bracket) for different solutions of parameters αc and βc
in Eq. 6.3.

highlights the importance of the auxiliary network and its loss in our Guided-DVTG

model.

Unsupervised Guided-DVTG: We develop an unsupervised variant of our Guided-DVTG

94 Chapter 6: Learning to Generate Dynamic Video Thumbnail using Sentences

model. When we remove the supervised loss Lthumb (Sec. 6.2.2 and Eq. 6.6) and per-

form learning only using the auxiliary loss Laux which is completely unsupervised,

we obtain the unsupervised version of our model to which we call Guided-DVTGunsup.

In Table 6.3(b), we compare its performance with the state-of-the-art unsupervised

method, BeautThumb [78], when evaluated on the dataset in this chapter. Our model

Guided-DVTGunsup significantly outperforms BeautThumb [78]. This result is very ap-

pealing since gathering labeled video thumbnail data is extremely expensive.

Method F1 IoU

Guided-DVTG 0.4758 0.3405

Guided-DVTG-NA 0.4644 0.3296

Method F1 IoU

Random 0.3604 0.2379

BeautThumb [78] 0.3837 0.2544

Guided-DVTGunsup 0.4222 0.2835

(a) (b)

Table 6.3: (a) Impact of auxiliary network and its loss. (b) Performance comparison
of unsupervised methods. Result of BeautThumb [78] is taken from [99].

6.4 Summary

In this chapter, we have proposed a simple yet effective framework for the DVTG

task. At the core of our framework is the proposed SGTM mechanism that modu-

lates the normalized temporal activations in the video thumbnail generation network

to effectively correlate sentence-specific video clips over time. Instead of applying

recurrent neural architectures, we propose a non-recurrent solution that offers much

more parallelization on GPU hardware. Our proposed framework does not involve

complex multimodal feature fusion commonly used in vision-language tasks such as

Chapter 6: Learning to Generate Dynamic Video Thumbnail using Sentences 95

DVTG. The experimental results and analysis on a large-scale dataset demonstrate

that our proposed method achieves superior or competitive performance against the

state-of-the-art methods.

Chapter 7

Conclusion

We have witnessed rapid growth in video data over the past few years. There is a

pressing need for developing automated tools for video abstraction so as to support

efficient video browsing, editing, searching, and categorizing. Video abstraction can

provide viewers a quick perspective of the content of videos without watching them.

Consequently, it can make the enormous video data more accessible and informative

for users. In this thesis, we have developed deep learning models and techniques that

push the frontier in video abstraction.

In Chapter 3, we proposed fully convolutional sequence networks for video summa-

rization. Different from the state-of-the-art recurrent models for video summarization

that precludes parallelization withing training examples due to sequential operations,

our models offered better GPU parallelization and also achieved superior performance.

In Chapter 4, we introduced a novel formulation of learning video summarization

using unpaired training data. The unpaired data consists of a set of raw videos and

a set of video summaries, where there exists no correspondence information between

96

Chapter 7: Conclusion 97

these two sets. We argued that the proposed unpaired training data is much easier

to obtain than the standard paired training data in supervised learning. With this

unpaired training data, we learned a model through an adversarial framework that

produced promising results on the benchmark video summarization datasets.

In Chapter 5, we developed a high-performing adaptive video highlight detection

model that learns to produce user-specific and personalized highlights by leveraging a

user’s previously created visual highlights history from different videos. We proposed

a conditional temporal-adaptive instance normalization layer to induce personaliza-

tion signal from the user history in the model.

Finally, in Chapter 6, we presented a new architecture for sentence-guided dynamic

video thumbnail generation. We introduced sentence-guided temporal modulation

that modulates the activations in the video thumbnail generation network based on a

natural language textual query. In addition, we explored self-supervision through an

auxiliary task that not only improved the performance of the model but also resulted

in an unsupervised dynamic video thumbnail generation method.

We hope that this thesis can help inspire future research in video abstraction.

There are several interesting and fascinating avenues for future research in this area.

For example, currently vision and text modality, to an extent, have been well studied

for model learning in video abstraction. However, the usage of audio modality that

could also provide a strong learning signal is often ignored. We should aim to leverage

the multimodal nature of videos for video abstraction in the future. Another exciting

direction is to extend the proposed models to the rapidly growing 360◦ videos. It

would be also exciting direction to explore video abstraction on compressed videos.

98 Chapter 7: Conclusion

There is evidence in the computer vision literature (e.g., [94]) suggesting that operat-

ing directly on compressed videos can be advantageous. The video compression algo-

rithms (e.g., MPEG-4) already remove redundant information from a video, making

useful content of the video more prominent. However, existing research decompresses

a video to raw RGB frames in which usually most of the frames could possibly be

repeating and redundant. Our intuition is that this superfluous information makes

harder for models to find meaningful information for video abstraction. Lastly, al-

though we emphasized on video abstraction in this thesis, we wish that our proposed

models can be reused in other video understanding tasks (e.g., video classification, ac-

tion recognition, and video caption generation) that share very close connections with

it. We envision that this would pave the way for comprehensive video understanding

and ultimately enable machines to understand videos like humans.

Bibliography

[1] Cisco visual networking index: Forecast and methodology, 2016-2021. https:

//www.cisco.com/.

[2] Open video project. https://open-video.org/.

[3] L. Agnihotri, J. Kender, N. Dimitrova, and J. Zimmerman. Framework for per-

sonalized multimedia summarization. In ACM SIGMM International Workshop

on Multimedia Information Retrieval, pages 81–88, 2005.

[4] A. Almahairi, S. Rajeswar, A. Sordoni, P. Bachman, and A. Courville. Aug-

mented cyclegan: Learning many-to-many mappings from unpaired data. In

International Conference on Machine Learning, pages 195–204, 2018.

[5] L. Anne Hendricks, O. Wang, E. Shechtman, J. Sivic, T. Darrell, and B. Russell.

Localizing moments in video with natural language. In IEEE International

Conference on Computer Vision, pages 5803–5812, 2017.

[6] N. Babaguchi, K. Ohara, and T. Ogura. Learning personal preference from

viewer’s operations for browsing and its application to baseball video retrieval

and summarization. IEEE Transactions on Multimedia, 9(5):1016–1025, 2007.

99

https://www.cisco.com/
https://www.cisco.com/
https://open-video.org/

100 Bibliography

[7] S. Bai, J. Z. Kolter, and V. Koltun. An empirical evaluation of generic con-

volutional and recurrent networks for sequence modeling. arXiv:1803.01271,

2018.

[8] L. Bottou. Large-scale machine learning with stochastic gradient descent. In

International Conference on Computational Statistics, pages 177–186, 2010.

[9] S. Cai, W. Zuo, L. S. Davis, and L. Zhang. Weakly-supervised video summariza-

tion using variational encoder-decoder and web prior. In European Conference

on Computer Vision, pages 193–210, 2018.

[10] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Deeplab:

Semantic image segmentation with deep convolutional nets, atrous convolution,

and fully connected crfs. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 40(04):834–848, 2018.

[11] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,

H. Schwenk, and Y. Bengio. Learning phrase representations using rnn encoder–

decoder for statistical machine translation. In Conference on Empirical Methods

in Natural Language Processing, pages 1724–1734, 2014.

[12] W.-S. Chu, Y. Song, and A. Jaimes. Video co-summarization: Video summa-

rization by visual co-occurrence. In IEEE Conference on Computer Vision and

Pattern Recognition, pages 3584–3592, 2015.

[13] S. J. Cunningham and D. M. Nichols. How people find videos. In ACM/IEEE

Joint Conference on Digital Libraries, pages 201–210, 2008.

Bibliography 101

[14] S. E. F. De Avila, A. P. B. Lopes, A. da Luz, and A. de Albuquerque Araújo.

Vsumm: A mechanism designed to produce static video summaries and a novel

evaluation method. Pattern Recognition Letters, 32(1):56–68, 2011.

[15] H. De Vries, F. Strub, J. Mary, H. Larochelle, O. Pietquin, and A. C. Courville.

Modulating early visual processing by language. In Advances in Neural Infor-

mation Processing Systems, pages 6594–6604, 2017.

[16] A. G. del Molino and M. Gygli. Phd-gifs: Personalized highlight detection for

automatic gif creation. In ACM International Conference on Multimedia, pages

600–608, 2018.

[17] F. Dirfaux. Key frame selection to represent a video. In IEEE International

Conference on Image Processing, pages 275–278, 2000.

[18] D. Eigen and R. Fergus. Predicting depth, surface normals and semantic labels

with a common multi-scale convolutional architecture. In IEEE International

Conference on Computer Vision, pages 2650–2658, 2015.

[19] A. Frome, G. S. Corrado, J. Shlens, S. Bengio, J. Dean, M. Ranzato, and

T. Mikolov. Devise: A deep visual-semantic embedding model. In Advances in

Neural Information Processing Systems, pages 2121–2129, 2013.

[20] J. Gao, C. Sun, Z. Yang, and R. Nevatia. Tall: Temporal activity localization

via language query. In IEEE International Conference on Computer Vision,

pages 5277–5285, 2017.

102 Bibliography

[21] Y. Gao, T. Zhang, and J. Xiao. Thematic video thumbnail selection. In IEEE

International Conference on Image Processing, pages 4333–4336, 2009.

[22] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin. Convolu-

tional sequence to sequence learning. In International Conference on Machine

Learning, pages 1243–1252, 2017.

[23] B. Gong, W.-L. Chao, K. Grauman, and F. Sha. Diverse sequential subset se-

lection for supervised video summarization. In Advances in Neural Information

Processing Systems, pages 2069–2077, 2014.

[24] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio. Generative adversarial nets. In Advances in Neural

Information Processing Systems, pages 2672–2680, 2014.

[25] M. Gygli. Ridiculously fast shot boundary detection with fully convolutional

neural networks. In International Conference on Content-Based Multimedia

Indexing, pages 1–4, 2018.

[26] M. Gygli, H. Grabner, H. Riemenschneider, and L. Van Gool. Creating sum-

maries from user videos. In European Conference on Computer Vision, pages

505–520, 2014.

[27] M. Gygli, H. Grabner, and L. Van Gool. Video summarization by learning

submodular mixtures of objectives. In IEEE Conference on Computer Vision

and Pattern Recognition, pages 3090–3098, 2015.

[28] M. Gygli, Y. Song, and L. Cao. Video2gif: Automatic generation of animated

Bibliography 103

gifs from video. In IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 1001–1009, 2016.

[29] S. Hasebe, M. Nagumo, S. Muramatsu, and H. Kikuchi. Video key frame selec-

tion by clustering wavelet coefficients. In European Signal Processing Confer-

ence, pages 2303–2306, 2004.

[30] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Compu-

tation, 9(8):1735–1780, 1997.

[31] X. Huang and S. Belongie. Arbitrary style transfer in real-time with adaptive

instance normalization. In IEEE International Conference on Computer Vision,

pages 1510–1519, 2017.

[32] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with

conditional adversarial networks. In IEEE Conference on Computer Vision and

Pattern Recognition, pages 5967–5976, 2017.

[33] A. Jaimes, T. Echigo, M. Teraguchi, and F. Satoh. Learning personalized video

highlights from detailed mpeg-7 metadata. In International Conference on Im-

age Processing, 2002.

[34] Y. Jiao, X. Yang, T. Zhang, S. Huang, and C. Xu. Video highlight detection

via deep ranking modeling. In Pacific-Rim Symposium on Image and Video

Technology, pages 28–39, 2017.

[35] H.-B. Kang. A scene-level analysis for video abstraction. In Asian Conference

on Computer Vision, pages 81–86, 2002.

104 Bibliography

[36] H.-W. Kang and X.-Q. Chen. Space-time video montage. In IEEE Conference

on Computer Vision and Pattern Recognition, pages 1331–1338, 2006.

[37] H.-W. Kang and X.-S. Hua. To learn representativeness of video frames. In

ACM International Conference on Multimedia, pages 423–426, 2005.

[38] A. Khosla, R. Hamid, C.-J. Lin, and N. Sundaresan. Large-scale video summa-

rization using web-image priors. In IEEE Conference on Computer Vision and

Pattern Recognition, pages 2698–2705, 2013.

[39] G. Kim and E. P. Xing. Reconstructing storyline graphs for image recommen-

dation from web community photos. In IEEE Conference on Computer Vision

and Pattern Recognition, pages 3882–3889, 2014.

[40] D. Kingma and J. Ba. Adam: A method for stochastic optimization. In Inter-

national Conference on Learning Representations, 2015.

[41] T. N. Kipf and M. Welling. Semi-supervised classification with graph convo-

lutional networks. In International Conference on Learning Representations,

2017.

[42] R. Krishna, K. Hata, F. Ren, L. Fei-Fei, and J. C. Niebles. Dense-captioning

events in videos. In International Conference on Computer Vision, pages 706–

715, 2017.

[43] C. Lea, M. D. Flynn, R. Vidal, A. Reiter, and G. D. Hager. Temporal convo-

lutional networks for action segmentation and detection. In IEEE Conference

on Computer Vision and Pattern Recognition, pages 1003–1012, 2017.

Bibliography 105

[44] Y. J. Lee, J. Ghosh, and K. Grauman. Discovering important people and objects

for egocentric video summarization. In IEEE Conference on Computer Vision

and Pattern Recognition, pages 1346–1353, 2012.

[45] X. Li, B. Zhao, and X. Lu. A general framework for edited video and raw

video summarization. IEEE Transactions on Image Processing, 26(8):3652–

3664, 2017.

[46] Y. Li and B. Merialdo. Multi-video summarization based on video-mmr. In

International Workshop on Image Analysis for Multimedia Interactive Services,

pages 1–4, 2010.

[47] Y. Li, L. Wang, T. Yang, and B. Gong. How local is the local diversity?

reinforcing sequential determinantal point processes with dynamic ground sets

for supervised video summarization. In European Conference on Computer

Vision, pages 156–174, 2018.

[48] R. Lienhart, S. Pfeiffer, and W. Effelsberg. Video abstracting. Communications

of the ACM, 40(12):54–62, 1997.

[49] C. Liu, Q. Huang, and S. Jiang. Query sensitive dynamic web video thumbnail

generation. In IEEE International Conference on Image Processing, pages 2449–

2452, 2011.

[50] M. Liu, X. Wang, L. Nie, X. He, B. Chen, and T.-S. Chua. Attentive moment

retrieval in videos. In ACM SIGIR Conference on Research & Development in

Information Retrieval, pages 15–24, 2018.

106 Bibliography

[51] M.-Y. Liu, X. Huang, A. Mallya, T. Karras, T. Aila, J. Lehtinen, and J. Kautz.

Few-shot unsupervised image-to-image translation. In IEEE International Con-

ference on Computer Vision, pages 10550–10559, 2019.

[52] T. Liu and J. R. Kender. Optimization algorithms for the selection of key frame

sequences of variable length. In European Conference on Computer Vision,

pages 403–417, 2002.

[53] W. Liu, T. Mei, Y. Zhang, C. Che, and J. Luo. Multi-task deep visual-semantic

embedding for video thumbnail selection. In IEEE Conference on Computer

Vision and Pattern Recognition, pages 3707–3715, 2015.

[54] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for se-

mantic segmentation. In IEEE Conference on Computer Vision and Pattern

Recognition, pages 3431–3440, 2015.

[55] Z. Lu and K. Grauman. Story-driven summarization for egocentric video. In

IEEE Conference on Computer Vision and Pattern Recognition, pages 2714–

2721, 2013.

[56] J. Luo, C. Papin, and K. Costello. Towards extracting semantically meaningful

key frames from personal video clips: from humans to computers. IEEE Trans-

actions on Circuits and Systems for Video Technology, 19(2):289–301, 2008.

[57] Y.-F. Ma, L. Lu, H.-J. Zhang, and M. Li. A user attention model for video

summarization. In ACM International Conference on Multimedia, pages 533–

542, 2002.

Bibliography 107

[58] B. Mahasseni, M. Lam, and S. Todorovic. Unsupervised video summarization

with adversarial LSTM networks. In IEEE Conference on Computer Vision

and Pattern Recognition, pages 2982–2991, 2017.

[59] T. Mei, B. Yang, S.-Q. Yang, and X.-S. Hua. Video collage: presenting a video

sequence using a single image. The Visual Computer, 25(1):39–51, 2009.

[60] P. Mundur, Y. Rao, and Y. Yesha. Keyframe-based video summarization using

delaunay clustering. International Journal on Digital Libraries, 6(2):219–232,

2006.

[61] C.-W. Ngo, Y.-F. Ma, and H.-J. Zhang. Automatic video summarization by

graph modeling. In IEEE International Conference on Computer Vision, pages

104–109, 2003.

[62] Y. Pan, T. Yao, T. Mei, H. Li, C.-W. Ngo, and Y. Rui. Click-through-based

cross-view learning for image search. In ACM SIGIR Conference on Research

and Development in Information Retrieval, pages 717–726, 2014.

[63] R. Panda, A. Das, Z. Wu, J. Ernst, and A. K. Roy-Chowdhury. Weakly su-

pervised summarization of web videos. In IEEE International Conference on

Computer Vision, pages 3677–3686, 2017.

[64] R. Panda and A. K. Roy-Chowdhury. Collaborative summarization of topic-

related videos. In IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 4274–4283, 2017.

[65] A. Parikh, O. Täckström, D. Das, and J. Uszkoreit. A decomposable attention

108 Bibliography

model for natural language inference. In Conference on Empirical Methods in

Natural Language Processing, pages 2249–2255, 2016.

[66] T. Park, M.-Y. Liu, T.-C. Wang, and J.-Y. Zhu. Semantic image synthesis with

spatially-adaptive normalization. In IEEE Conference on Computer Vision and

Pattern Recognition, pages 2332–2341, 2019.

[67] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word

representation. In Conference on Empirical Methods in Natural Language Pro-

cessing, pages 1532–1543, 2014.

[68] D. Potapov, M. Douze, Z. Harchaoui, and C. Schmid. Category-specific video

summarization. In European Conference on Computer Vision, pages 540–555,

2014.

[69] M. Rochan, M. K. K. Reddy, L. Ye, and Y. Wang. Adaptive video highlight

detection by learning from user history. In European Conference on Computer

Vision, 2020.

[70] M. Rochan and Y. Wang. Video summarization by learning from unpaired

data. In IEEE Conference on Computer Vision and Pattern Recognition, pages

7894–7903, 2019.

[71] M. Rochan, L. Ye, and Y. Wang. Video summarization using fully convolutional

sequence networks. In European Conference on Computer Vision, pages 358–

374, 2018.

Bibliography 109

[72] M. Schuster and P. K. Kuldip. Bidirectional recurrent neural networks. IEEE

Transactions on Signal Processing, 45(11):2673–2681, 1997.

[73] A. Sharghi, A. Borji, C. Li, T. Yang, and B. Gong. Improving sequential

determinantal point processes for supervised video summarization. In European

Conference on Computer Vision, pages 533–550, 2018.

[74] A. Sharghi, B. Gong, and M. Shah. Query-focused extractive video summariza-

tion. In European Conference on Computer Vision, pages 3–19, 2016.

[75] A. Sharghi, J. S. Laurel, and B. Gong. Query-focused video summarization:

Dataset, evaluation, and a memory network based approach. In IEEE Confer-

ence on Computer Vision and Pattern Recognition, pages 2127–2136, 2017.

[76] A. F. Smeaton, P. Over, and W. Kraaij. Evaluation campaigns and trecvid.

In ACM International Workshop on Multimedia Information Retrieval, pages

321–330, 2006.

[77] M. Soleymani. The quest for visual interest. In ACM International Conference

on Multimedia, pages 919–922, 2015.

[78] Y. Song, M. Redi, J. Vallmitjana, and A. Jaimes. To click or not to click:

Automatic selection of beautiful thumbnails from videos. In ACM International

on Conference on Information and Knowledge Management, pages 659–668,

2016.

[79] Y. Song, J. Vallmitjana, A. Stent, and A. Jaimes. Tvsum: Summarizing web

110 Bibliography

videos using titles. In IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 5179–5187, 2015.

[80] M. Sun, A. Farhadi, and S. Seitz. Ranking domain-specific highlights by analyz-

ing edited videos. In European Conference on Computer Vision, pages 787–802,

2014.

[81] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In IEEE

Conference on Computer Vision and Pattern Recognition, pages 1–9, 2015.

[82] Y. Takahashi, N. Nitta, and N. Babaguchi. User and device adaptation for

sports video content. In IEEE International Conference on Multimedia and

Expo, pages 1051–1054, 2007.

[83] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning spa-

tiotemporal features with 3d convolutional networks. In IEEE International

Conference on Computer Vision, pages 4489–4497, 2015.

[84] B. T. Truong and S. Venkatesh. Video abstraction: A systematic review and

classification. ACM Transactions on Multimedia Computing, Communications,

and Applications, 3(1):3, 2007.

[85] D. Ulyanov, A. Vedaldi, and V. Lempitsky. Instance normalization: The missing

ingredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

[86] D. Ulyanov, A. Vedaldi, and V. Lempitsky. Improved texture networks: Max-

imizing quality and diversity in feed-forward stylization and texture synthesis.

Bibliography 111

In IEEE Conference on Computer Vision and Pattern Recognition, pages 4105–

4113, 2017.

[87] A. B. Vasudevan, M. Gygli, A. Volokitin, and L. Van Gool. Query-adaptive

video summarization via quality-aware relevance estimation. In ACM Interna-

tional Conference on Multimedia, pages 582–590, 2017.

[88] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

 L. Kaiser, and I. Polosukhin. Attention is all you need. In Advances in Neural

Information Processing Systems, pages 5998–6008, 2017.

[89] O. Vinyals, M. Fortunato, and N. Jaitly. Pointer networks. In Advances in

Neural Information Processing Systems, pages 2692–2700, 2015.

[90] X. Wang, R. Girshick, A. Gupta, and K. He. Non-local neural networks. In

IEEE Conference on Computer Vision and Pattern Recognition, pages 7794–

7803, 2018.

[91] Z. Wang, M. Kumar, J. Luo, and B. Li. Extracting key frames from consumer

videos using bi-layer group sparsity. In ACM International Conference on Mul-

timedia, pages 1505–1508, 2011.

[92] Z. Wei, B. Wang, M. H. Nguyen, J. Zhang, Z. Lin, X. Shen, R. Mech, and

D. Samaras. Sequence-to-segment networks for segment detection. In Advances

in Neural Information Processing Systems, pages 3507–3516, 2018.

[93] W. Wolf. Key frame selection by motion analysis. In IEEE International Con-

ference on Acoustics, Speech, and Signal Processing, pages 1228–1231, 1996.

112 Bibliography

[94] C.-Y. Wu, M. Zaheer, H. Hu, R. Manmatha, A. J. Smola, and P. Krähenbühl.

Compressed video action recognition. In IEEE Conference on Computer Vision

and Pattern Recognition, pages 6026–6035, 2018.

[95] B. Xiong, Y. Kalantidis, D. Ghadiyaram, and K. Grauman. Less is more: Learn-

ing highlight detection from video duration. In IEEE Conference on Computer

Vision and Pattern Recognition, pages 1258–1267, 2019.

[96] T. Yao, T. Mei, and Y. Rui. Highlight detection with pairwise deep ranking

for first-person video summarization. In IEEE Conference on Computer Vision

and Pattern Recognition, pages 982–990, 2016.

[97] Y. Yu, S. Lee, J. Na, J. Kang, and G. Kim. A deep ranking model for spatio-

temporal highlight detection from a 360 video. In AAAI Conference on Artificial

Intelligence, 2018.

[98] Y. Yuan, L. Ma, J. Wang, W. Liu, and W. Zhu. Semantic conditioned dynamic

modulation for temporal sentence grounding in videos. In Advances in Neural

Information Processing Systems, pages 536–546, 2019.

[99] Y. Yuan, L. Ma, and W. Zhu. Sentence specified dynamic video thumbnail

generation. In ACM International Conference on Multimedia, pages 2332–2340,

2019.

[100] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena. Self-attention generative

adversarial networks. In International Conference on Machine Learning, pages

7354–7363, 2019.

Bibliography 113

[101] H. J. Zhang, J. Wu, D. Zhong, and S. W. Smoliar. An integrated system for

content-based video retrieval and browsing. Pattern recognition, 30(4):643–658,

1997.

[102] K. Zhang, W.-L. Chao, F. Sha, and K. Grauman. Summary transfer: Exemplar-

based subset selection for video summarization. In IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 1059–1067, 2016.

[103] K. Zhang, W.-L. Chao, F. Sha, and K. Grauman. Video summarization with

long short-term memory. In European Conference on Computer Vision, pages

766–782, 2016.

[104] K. Zhang, K. Grauman, and F. Sha. Retrospective encoders for video summa-

rization. In European Conference on Computer Vision, pages 391–408, 2018.

[105] Y. Zhang, M. Kampffmeyer, X. Liang, M. Tan, and E. P. Xing. Query-

conditioned three-player adversarial network for video summarization. In

British Machine Vision Conference, 2018.

[106] Y. Zhang, M. Kampffmeyer, X. Liang, D. Zhang, M. Tan, and E. P. Xing. Di-

lated temporal relational adversarial network for generic video summarization.

Multimedia Tools and Applications, 78(24):35237–35261, 2019.

[107] B. Zhao, X. Li, and X. Lu. Hierarchical recurrent neural network for video

summarization. In ACM International Conference on Multimedia, pages 863–

871, 2017.

[108] B. Zhao and E. P. Xing. Quasi real-time summarization for consumer videos.

114 Bibliography

In IEEE Conference on Computer Vision and Pattern Recognition, pages 2513–

2520, 2014.

[109] J. Zhao, M. Mathieu, and Y. LeCun. Energy-based generative adversarial net-

work. In International Conference on Learning Representations, 2017.

[110] K. Zhou, Y. Qiao, and T. Xiang. Deep reinforcement learning for unsuper-

vised video summarization with diversity-representativeness reward. In AAAI

Conference on Artificial Intelligence, 2018.

[111] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image trans-

lation using cycle-consistent adversarial networks. In IEEE International Con-

ference on Computer Vision, pages 2242–2251, 2017.

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	Dedication
	Publications
	Introduction
	Thesis Contributions
	Thesis Outline

	Related Work
	Video Summarization
	Video Highlight Detection
	Dynamic Video Thumbnail Generation
	Non-recurrent Deep Learning Models
	Learning from Unpaired Data
	Personalized Models

	Fully Convolutional Sequence Networks
	Chapter Overview and Introduction
	Problem Formulation
	Architecture of FCSN
	Unsupervised SUM-FCN
	Experiments
	Datasets
	Implementation Details and Setup
	Main Results and Comparisons
	Analysis

	Summary

	Learning Video Summarization from Unpaired Data
	Chapter Overview and Introduction
	Our Approach
	Formulation
	Network Architecture
	Learning
	Learning with Partial Supervision

	Experiments
	Setup
	Baselines
	Main Results
	Comparison with Supervised Methods
	Effect of Partial Supervision
	Transfer Data Setting
	Qualitative Analysis

	Summary

	Learning to Adapt Video Highlight Detection using User History
	Chapter Overview and Introduction
	Our Approach
	Background: Temporal Convolution Networks
	Temporal-Adaptive Instance Normalization
	Adaptive Highlight Detector
	Highlight Detection Network
	History Encoder Network

	Learning and Optimization

	Experiments
	Dataset
	Setup and Implementation Details
	Baselines
	Results and Comparison
	Analysis
	Effect of affine parameters
	Effect of user's history size

	Application to Video Summarization

	Summary

	Learning to Generate Dynamic Video Thumbnail using Sentences
	Chapter Overview and Introduction
	Our Approach
	Sentence-Guided Video Thumbnail Generation Model
	Video Thumbnail Generation Network
	Self-Attention Sentence Encoder Network
	Sentence-Guided Temporal Modulation
	Auxiliary Network

	Learning and Optimization

	Experiments
	Setup
	Main Results and Comparisons
	Analysis

	Summary

	Conclusion
	Bibliography

