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Abstract

In general, the notion of data depth enables us to describe how deep or central
a given p-dimensional point x is with respect to a p-variate distribution F'.
The sample version of data depth is nonparametric in nature, and enables us
to order multivariate data in a centre-outward ranking, giving us a notion of
order statistics in multiple dimensions. Liu (1990) defined a particular depth
function based on simplices that has come to be widely studied and applied.

In this thesis, Liu’s simplicial depth function, along with its empirical
estimate, are examined, with focus on some of their important properties,
including continuity and consistency, respectively. Some new properties are
asserted and examined, including a tractable form for the simplicial depth
function, as well as an upper bound on the mean of a random version of
simplicial depth.

Two new depth functions are defined which, in two dimensions, are based
on circles and rectangles, as Liu’s simplicial depth is based on triangles.
Properties analogous to those for simplicial depth are asserted for our new
circular and rectangular depth functions, and the three are compared to
illustrate some benefits and downfalls of each.

One important application of simplicial depth is studied, namely, that of
nonparametric multivariate quality control, based on the work of Liu (1995).
Control charts based on simplicial depth are defined for a multivariate pro-
cess, and an analogue is presented using our new rectangular depth function.
Rectangular depth posesses some distinct advantages over simplicial depth
in its application to these charts, specifically, the reduction in the size of the

reference sample required in order to construct the charts.
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Chapter 1

Introduction

1.1 General Motivation

‘The notion of order statistics for univariate random variables is both straight-
forward and simply defined. Let X, Xs,..., X, be a random sample repre-
senting one-dimensional data from a distribution. Then the kth order statis-
tic XJ) is defined to be the kth smallest of X, X,,..., X,,. In particular,
X = miny <, X; while KA} = MaxX)<i<n X;.

There is, however, no simple definition of order statistics in the general
p-dimensional case. For example, which data point is “greater”, (2,7) or
(4,3)7 More complicated still, how do we compare the points (—2,3,1,9)
and (6,0,7,—4)? The problem becomes increasingly more difficult as the
dimension p increases.

'The problem of multivariate order statistics can be dealt with by the no-

tion of data depth. This area of statistics was first proposed by Mahalanobis



(1936) and came to prominence some four decades later with the work of
Tukey (1975).

The basic principle of data depth is that multi-dimensional observations
are ordered based on how central or “deep” they are, with respect to a
“depth function”, whose shape is determined by (but is different from) the
distribution (probability density function) from which the observations arise.

In the context of data depth, if X, X5, ..., X, is a random sample from a
multi-dimensional distribution, the kth order statistic Xix) is now defined to
be that value of X;,i =1,2,...,n with the kth greatest depth (Liu, 1990).

Data depth has become a valuable statistical tool, both in theory and
application. One very desirable property of sample depth is that it is non-
parametric in nature, and so it lends its use to multivariate problems in which
the underlying multivariate distribution is either unknown, or does not be-
long to a specific class of distributions. In particular, we must often deal
with the problem that multivariate normality is not a valid assumption in
many applications, and the notion of data depth can help us in these circum-
stances. This is illustrated in the use of data depth in multivariate quality
control.

Univariate quality control methods are readily available, frequently used,
and often easy to understand by practitioners. Even when the distributional
form of a variable is unknown, some relatively simple nonparametric control
charts are available. However, quite often we may wish to simultaneously
examine several quality characteristics of a process, as individual variable
examination ignores the correlation structure of the various attributes. There

are some multivariate quality control techniques currently in common use,
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but they rely on an often unrealistic assumption of multivariate normality.
In contrast, the notion of data depth allows us to construct nonparametric
multivariate control charts that will be useful regardless of the underlying

probability distribution (see Liu (1995) and Stoumbos & Jones (2000)).

1.2 The Notion of Data Depth

Before giving specific examples of depth functions which have already ap-
peared in the literature, we state a rough heuristic definition of data depth.

See Appendix A for all relevant notation.

Definition 1.2.1 Let F be a probability distribution on R?, p>1. A data
depth D(z) is a measure of how deep or central a given point z € RP is with
respect to the underlying distribution F. In the case of sample data depth

D, (z), we examine how deep or central a given point 2 € R? is with respect

to the data cloud X, X, ..., X,..

For the remainder of this section, X, X5, ..., X, is an independently and
identically distributed (i.i.d.) random sample from a cumulative distribution
function {c.d.f.) F' on RP, where each sample point X; can be viewed as a
1 x p row vector. We now examine several useful forms of data depth, stated

in the chronological order of their discovery.

Definition 1.2.2 The Mahalanobis depth D™(z) [Mahalanobis, (1936)] at

z € R?, a row vector, with respect to F is defined as

D™) = [1 + (& — pp)Zr Ya — pup)T) ",
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a real number, where yir and Ly are the mean vector and dispersion matrix

of F, respectively.

Note that pr = (111, 12, ..., ttp) and Tp = (0] (2 p x p matrix), i.e. the ith
entry in pp is E(Xy;) and the entry o;; in the ith row and the jth column
of ¥p (4,7 = 1,2,...,p,i # j) is the covariance of Xo; and Xo;, and the
values 0;; (i = 1,2, ...,p) on the diagonal are the variances of the Xoi, where
X = (Xo1, Xo2, ..., Xop) has c.d.f. . The sample Mahalanobis depth D™(z)
is calculated by replacing these terms with their respective sample estimates,
Tand S. Here, T = (Z), %3, ..., Tp) and S = [s;;], i.e. the ith entry in 7 is Z; and
the entry s;; in the ith row and the jth column of S (4,7 =1,2,.,p,1 # 7)
is the sample covariance and the values s;; (1=1,2,...,p) on the diagonal are
the sample variances of the given data.

If ' has a density with elliptic contours, then D™(z) is, intuitively, a
good measure of how close a point z is to the mean or “centre” pr of the
underlying distribution . As must be the case, observations close to the
centre will have a higher depth value. Indeed, although nonparametric in
nature, Mahalanobis depth is clearly best suited to situations where the
underlying density f(z) has elliptic contours. The remaining notions of depth

discussed here do not have that shortcoming.

Definition 1.2.3 In general, a half-space is defined to be H = {z € RP|z
lies on or below (above) a (p — 1)-dimensional hyperplane}. For example,
when p = 1, H = (~o00,a] or [a,00) for some o € R. When p = 2, half-
spaces are determined by a line; that is, H = {(z,y) € R?|ly < az + b} or
H ={(z,y) € R”|y > az + b} for some a,b € R. When p = 3, a half-space
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is determined by a plane, z = az + by + ¢, where a,b,c € R, and so on.

Definition 1.2.4 The half-space depthor Tukey depth D"(z) [Hodges (1955),
Tukey (1975)] at € R? with respect to F' is defined as

D™z) = inf{F(H): H is a closed half-space C R” and z € H}.

The sample version of half-space depth D!(z) is calculated by replacing
F(H) with the proportion of all data points falling in the closed half-space
H, where z ¢ H.

D"(z) gives us the lowest probability under F' of any halfspace H con-
taining z. Clearly, if ' has a unimodal and symmetric distribution about 8,
0 € R?, then D"(z) for values of z € R” near 8 will have higher values of
D"(z), while values of  in low-probability regions will have depths close to

Zero.

Definition 1.2.5 The convex hull peeling depth D [Barnett (1976)] of a
data point X}, with respect to the data cloud X1, X, ..., X, is defined to be

the “level” of convex layer to which X belongs.

"To determine the level of the convex layer of X}, we start by constructing
the convex hull which encloses all of the sample points X 1, X2, ..., Xn. (See
Appendix A for the definition of a convex hull.) All data points X;, i =
1,2,...,n on the perimeter of this convex hull are designated to belong to
the first convex layer and all such points are then removed. The process is
repeated with all remaining data points and those on the perimeter of the

convex hull of the remaining set of points constitute the second convex layer.
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We keep repeating the process until no points remain. As such, any point
X on the perimeter of the convex hull of all remaining points during the
jth iteration of the process is said to belong to the jth convex layer, i.e. the
jth level. For an illustration, see Figure 1.1. The higher the level of a point,
the greater its depth. Note that only a sample version of depth is defined
for the convex peeling technique. Note also that this method represents only
one version of convex peeling. See Huber (1972) and Eddy (1982) for further

discussion on other versions.

Figure 1.1: An illustration of the convex hull peeling technique. In this

illustration, there are four convex layers (i.e. levels).

Definition 1.2.6 The Oja depth D°(z) [Oja (1983)] at z with respect to F

is defined as

D%(z) = [1 4+ Efvolume(S(z, X1,..., X)),



where S[z, X1, ..., X,] is the closed simplex with vertices z, and p random
observations X7, ..., X, from F (see Section 2.1 for the definition of a simplex).
The sample Oja depth D2(z) at = € RP with respect to the data cloud
X1, X, .. X, is defined as

De.(z) = (Z)_ 1+ Z{’uolume(S[:c, Xil,...,Xip])}_l],

where * indicates all p-plets (41, ...,7,) such that 1 <4, < --- < ip < n. Intu-
itively, points close to “thicker” parts of the distribution (or data cloud, in
the sample case) will form simplices with smaller volumes than observations
close to the perimeter of the distribution or data cloud, and so will have a

greater Oja depth.

Definition 1.2.7 Given z;, z,, ..., z, € RP, a major side is that half-space
of R? bounded by the hyperplane containing {z1, 29, ..., z,} which has prob-

ability > 0.5 under F.

Definition 1.2.8 The majority depth D™ (z) [Singh (1991)] of € R? with
respect to £ is defined as

D™(z) = P(z is in the major side determined by (X1,..., X)),

where X1, Xy, ..., X,, are i.i.d. random variables with c.d.f. F.
The sample majority depth D7 (z) at z € RP with respect to the data
cloud Xi, X, ..., X, is defined as

L

-1
p) > I(zisin the major side determined by {(Xi), - X)),

D) = (



where * is defined as above and T is the indicator function. That is,

1, when A occurs,
I{A) =
0, otherwise

In the sample case, the major side is that side of the hyperplane containing
the majority of the data points. In two dimensions, a hyperplane is generated
by passing a (unique) line through two random points X;, and X;,. The
major side is that side of the line containing more of the data points. In
three dimensions, a hyperplane is generated by passing a (unique) plane
through the three random points X;,, X;, and X;,. The major side is that
side of the plane containing the majority of the data points. We generate
one hyperplane for each combination of p data points. Obviously, the more

major sides that contain a point z, the greater its majority depth.

Definition 1.2.9 The likelihood depth D'(z) [Fraiman and Meloche (1996)]
of & with respect to F is defined simply as its probability density, and so

D!(z) = f(x).
The sample version of D'(z) can be any consistent density estimate at z.

(It should be noted that, in general, likelihood and depth are two distinct,

albeit complimentary concepts).

1.3 Overview of Thesis

This thesis concentrates on a specific notion of depth not listed above, namely
Liu’s simplicial depth, a notion of data depth that has received much atten-

tion since its introduction in Liu (1990).
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Liu based her depth function on random p-dimensional simplices. She
originally proposed the idea as a means to obtain a notion of a multivariate
median, which is not formally or uniquely defined for a general distribution
Fon RP,p > 2. Liu suggested using that value x € R? with the highest sim-
plicial depth D*(z) as the multivariate median p. The sample multivariate
median fi, is then defined analogously as the sample point X; attaining the
highest sample simplicial depth D2(z). In Section 2.1, we formally define
these notions. In Sections 2.2 and 2.3, several properties of the simplicial
depth function D*(z) are given, including its continuity, monotonicity and
maximum value. Some of the results will require an additional assumption
of angular symmetry, which is defined in Section 2.3. The unbiasedness and
consistency of Dj(x) will also be asserted. All of these results have appeared
in Liu (1990).

Section 2.4 deals with some new properties of Liu’s simplicial depth not
discussed in her 1990 paper or, to our knowledge, any subsequent papers.
Included is an explicit form for the depth function D*(z) in the case of p = 2
dimensions, which has heretofore gone uncalculated. Also, an upper bound
for E(D*(X)) is given, where D*(X) is a random version of simplicial depth.
The bound, given in Theorem 2.4.6 may be crude compared to Liu’s upper
bound for D*(z) itself, but removes the restrictive assumption of angular
symnetry.

After having examined the various forms of data depth, with particular
emphasis on Liu’s simplicial depth, we are led to define and explore two new
notions of depth. Like simplicial depth, which in two dimensions is based on

the triangle, our two newly defined depth functions will be based on other
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simple geometic shapes; circles and rectangles. In Chapter 3, we define both
the circular depth D°(z) and the rectangular depth D"(z). We examine
properties similar to those explored for simplicial depth in Chapter 2. We
define and study unbiased estimators D¢ (z) and D7(z) for the circular and
rectangular depth functions, respectively. The advantages and disadvantages
of using these forms of depth over simplical depth are discussed in Section
3.3. In any dimension p, both of our new depth functions are based on only
two points in space, rather than the p+ 1 points required for simplicial depth.
Whereas this implies a larger variance for the two new depth functions as
compared to simplicial depth, our new notions of depth have many merits
over simplicial depth. For example, they are easier to visualize, and the
actual functional form of the depth functions are far simpler than that of
simplicial depth. In addition, the empirical estimates D¢(z) and D7 (z) are
quick to calculate in practice, in contrast to D2 (z). (See Liu, Parelius & Singh
(1999) for a discussion on the computational complexities in the evaluation
of D} (x).)

Chapter 4 details one specific multiparameter control chart — that for in-
dividual observations — that is nonparametric in nature and based on Liu’s
simplicial depth. We extend the results to make a new kind of individuals
multivariate control chart, based this time on our rectangular depth from
Chapter 3. A discussion on the required sample size is provided, and the ad-
vantage of using rectangular depth for these charts is highlighted. Extending
these charts to circular depth will be examined in future work.

This thesis also contains two appendices. Appendix A provides some nec-

essary notation, definitions and results which form the mathematical (prob-

12



abilistic) foundation for many of our calculations and results throughout the
thesis. Appendix B contains some graphical displays which are very illus-

trative in the calculation of one of our results, namely that of the functional

(tractable) form of Liu’s simplicial depth D*(z) when p = 2.
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Chapter 2
Liu’s Simpicial Depth

Since its inception in Liu (1990), simplicial depth has become a. widely studied
and applied depth function. When F' is bivariate, i.e. p = 2, it is based on
the triangle, a simple geometric shape. This enables us to better visualize the
associated notion of depth, and enhances our understanding of the concept

substantially.

2.1 Simplicial Depth and Sample Simplicial
Depth

Suppose we have an i.i.d. bivariate data set X1, Xo, ..., X, with c.df. F.
With any three data points X, X;,, X;,, we can form the closed triangle
with vertices X;,, X;, and X;; (denoted A(X;,, X;,, Xy,)). If we use every
combination of three data points, (’31) triangles will be generated from our

sample. To any point € R?, we can associate the proportion of the gener-
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ated triangles which enclose the point z. Intuitively, this proportion should
be relatively large if « is “deep” in the data cloud, and lower on its periphery.

The p-dimensional generalization of a triangle is a simplex, hence the
name of Liu’s depth function. A simplex in p dimensions is the convex hull
formed by p + 1 distinct points in R?. In one dimension, the “simplex” is
simply a line segment. In two dimensions, it is a triangle. In three dimen-
sions, it is a pyramid, and so on. We begin with the definition of the sample

simplicial depth function in the bivariate case, since it is easier to visualize:

Definition 2.1.1 The sample simplicial depth D2(z) for a point z € R? is
equal to the proportion of all triangles A(X;,, X;,, Xi,),1 < 4 < iy <iz < n
which contain z. That is,
-1
D= (3) ¥ e at, X, %) (2.1
1< <ia<ig<n
We see that the depth given by Equation (2.1) is clearly the proportion
of all generated triangles containing the fixed point . D?(z) is the empirical

(sample) version of the true simplicial depth D*(z):

Definition 2.1.2 The simplicial depth D*(z) for a point & € R? is equal
to the probability that z is contained in the random triangle A(X7, Xg, X3).
That is,

D*(z) = Pz € A(X1, X, X3)), (2.2)

where X;, 1 =1,2,3 are i.i.d. with c.d.f. F.

When the density function f(z) is unimodal and symmetric about, a point

0 € R?, it is intuitively clear (and indeed can be proven) that D%(z) assumes
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higher values for z near 8, which coincides with the mode and mean of F. As
such, @ can be viewed as the “centre” of the distribution. Conversely, when
f(z) is not symmetric, D*(z) can be used to define a centre (inultivariate
median) of F.

To motivate the definition of Liu’s simplicial multivariate median, we

consider the univariate version of simplicial depth:
Di(z) = Pz € X1 Xy),

where z € R and X, and X, are i.i.d. with c.d.f. F. X1 X5 represents the
closed line segment connecting X; and X,. That is, X1 X5 = {Xl,Xg] U
[X2, X1], a disjoint union (= [min(X;, X2), max(X1, X5)]). When F is abso-

lutely continuous,

Di(2) = P(X;<z<Xp)+P(Xy<z<X)
= P(X1 <2)P(z < Xp) + P(X2 < 2)P(z < X))
= F(z)(1 - F(z)) + Flz)(1 - F(z))
= 2F(z)(1 — F(a)). (2.3)

As such, we have that

d
dF(x)

D¥(z) =2—4F(z) =0

when F(z) = 0.5, i.e. z is the median of F, and since the second derivative
of D*(z) is negative, the median is that value which maximizes the simplicial

depth. Hence, Liu (1990) proposes the following definition:
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Definition 2.1.3 A bivariate simplicial median p is any point z € R? which
maximizes the simplicial depth. If there is a finite number of such points, we

can uniquely define the simplicial median as the average of those values.
Similarly, the sample version of the bivariate median is then:

Definition 2.1.4 Given an i.i.d. random sample X;, X5, ..., X,, with c.d.f. F
on R?, the sample bivariate simplicial median itn is that data point X; which
attains the highest sample simplicial depth. If there is more than one point

X; attaining this highest value, we define fi,, as the average of those values.

All of these concepts can easily be extended to higher dimensions. For a
distribution F' on R?, the triangle in Definitions 2.1.1 and 2.1.2 is replaced
by the simplex whose vertices are formed by p + 1 independent observations
from F. In general, given p+ 1 distinct points z;, zs, ..., ZTpy1 € RP, we define

the simplex
i=1 i=1

p+1 ptl
S(z1, %2, tpr1) =z €RP iz = aqay, ai=1, a;>0Vi}.

The general definition of the sample simplicial depth in any dimension p is

as follows:

Definition 2.1.5 The sample simplicial depth D3(z) for a point = € R” is
equal to the proportion of all simplices S(X;,, X;,, s Xip ), 1 <4 < dp <

«++ <py1 < n which contain z. That is,

Di(z) =( " )_ ) I(z € S(Xiy, Xign Xi L))y (24)

p+1 1<) <ig < <ipp1 <

17



where Xy, Xy, ..., X, is a random sample from F, and p + 1 < n.

Definition 2.1.6 The simplicial depth D*(z) for a point z € R? is equal to
the probability that z is contained in the random simplex S (X1, Xay ooy Xpp1)
generated by the p 4+ 1 i.i.d. observations X, X5, ..., Xpr1:

DS(HI) = P(iE < S(X],XQ, ""XP+1))' (25)

The definitions of the p-dimensional simplicial median and sample sim-

plicial median follow similarly:

Definition 2.1.7 The multivariate simplicial median u is that value (or the
average of those values) z € R” that maximizes the depth function given by

Equation (2.5).

Definition 2.1.8 The multivariate sample simplicial median fi, is that data
value X; (or the averages of those data values) which maximizes the function

given in Equation (2.4).

Given a point z € R? and p + 1 random observations from F, our next
task is to determine whether x is contained in the simplex generated by
these p 4+ 1 points. We can check whether z € S(zy, zo, ..., Tp41) by solving

the system of linear equations:
r=ao1% + QoTo + -+ + O!p+1$p+1, o1 + Qg o0 Qpy1 = 1, (26)

under the constraint that a; > 0 V 7.

18



Remark 2.1.9 For a nondegenerate simplex (which occurs almost surely
when taking random observations from an absolutely continuous distribution,
ie. P(X1,Xy,...,Xpq1 are “co-hyperplanar”) = 0), this system with p + 1
unknowns ajy, o, ..., &,41 has a unique solution, and z is in the interior of

the simplex if and only if oy, ay, ..., ap41 are all positive.

Example 2.1.10 From Figure 2.1, it is obvious that, the bivariate point zg =
(5,4) is inside the triangle A(zy, zq, 23), where z; = (1,2),20 = (4,6), 13 =
(6,3). We can verify this fact by solving Equation (2.6):

a1(1,2) +C¥2(4, 6) -f—G.’g(G, 3) = (5,4),(11 +oagt+az=1
:>(}11+4(1'2+60[3=5

2051 -+ 6(12 +3a'3 =4

ap+oaytaz=1

6 10

=>Cfl=ﬁ,a’2:ﬁ,053=1—7,

and by Equation (2.6), we conclude that zy is in fact in the simplex.
It we look at the point zj = (2,5) in Figure 2.1, it is clear that it is not
contained in the triangle. We use Equation (2.6) to verify this:

a1(1,2) + 0{2(4, 6) + Ofg(ﬁ, 3) = (2,5), art+oagtaz3=1
= o1 + 4ag -+ Bag = 2
201 + 6ag + 33 = 5

o +ag+a3=1

19



14 5
= ) = ﬁ)a2= —ﬁ:a-g:_ﬁa

which does not satisfy the constraint that o; > 0V ¢, and so we conclude

that zj is not in the simplex.

']._
6 x2
.
5 - .XO
4_
7 x3
2_
x1

1_

i i } f t } } f

1 2 3 4 S 6 7 8

Figure 2.1: The triangle A(z1,22,%3) generated by the points z; =
(1,2), 22 = (4,6), z3 = (6, 3).

In practice, especially when working in higher dimensions, it is much
easier to use (or create) a computer program to make these determinations,

rather than row reducing large matrices.
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2.2 Properties of Liu’s Simplicial Depth

We will now look at some important results from Liu’s (1990) paper which
describe the behaviour of D*(z). Theorems 2.2.1 and 2.2.4 are stated but
not proven in Liu (1990). Theorems 2.2.2 and 2.2.3 are stated and proven in
Liu (1990), but the proofs are given here in more detail, and in the general
case of p dimensions, whereas the proofs in Liu (1990) were only given for

p =2

Theorem 2.2.1 D°(z) is invariant under affine transformations. That s,

if A is a non-singular p X p matriz and b € R?, then
D3 (Az +b) = D*(a),

where Dy (y) is the probability that y € R? is contained inside the simplex
with vertices AX;; +b,j = 1,2,..,p+ 1. In our case, y = Az + b, and we

view all elements in R? as p x 1 column vectors.
Proof. 1t is enough to show that
z € S(x1, %y, ..., Tpy1) & Az + b € S{Az) + b, Az + b, ..., Azpir +b)

Now,

ptl ptl
T E€S(T1,T2,..,Tp41) & T= Zaifci where Zai =1, 0; >0V

i=1 i=1

p+1
& Az+b=A Za,;:t:i +b
i=1
pt+1
= ZO.’{(A.’B;‘) +b

i=1
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ptl

=Y o;(Az; +b)

i=1

& Az +be S(ACEl + b, Az + b, "':A:L‘P-!-l -+ b)
This completes the proof. Note that the second to last step is possible since
b= Z‘:;l a;b. Dj(z) is also invariant under affine transformations by a sim-

ilar argument. QED

In other words, instead of forming simplices using X;,, Xi,, ..., Xip+1 and
finding the proportion of these simplices containing z, we can equivalently
form simplices using AX; +b, AX;, +, ..., AX; ,,+b, and find the proportion
of the latter simplices containing Az + b. The proportion will be the same,
as asserted by this property.

The following result asserts that D*(z) vanishes uniformly fast as ||z|| —

oo. The norm, ||z|| is defined in Appendix A.
Theorem 2.2.2 For any c.d.f. F on R?, Sup=mD°(z) — 0 as M — oo,

Proof. Let X1, X,,...,X,41 be iid. with c.df F. Given any ¢ € R?,
we observe that {z € S(X1,Xa, ..., Xpu1)} € U {|IXi]| > ilz|[}. This is
because, if  is further from the origin than any of the p + 1 random points,
it clearly cannot be contained in the simplex generated by the p + 1 points.

Using the above inclusion and Lemma A.2.1, we get

DS(:L.) = P(:E € S(X15X21 "':XP-I-I))

< P(UZSHIX > ll1y)
p+l
< ZP(”XiH > ||z|l) (by subadditivity)
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= (+DPX = [|=]])-

Note that the last step is possible by the identical distributions of the Xj.

So clearly, since P(||X1]| > ||z|} is decreasing in ||z||, it follows that

sup D*(z) < sup (p+ DP([IX0]] = |lzl]) < (p+ DP(1X4]] = M)
> M leli<

Since P(|[X1]} = |[M]]) — 0 as M — oo, we get the desired result, namely

sup D*(z) — 0as M — oo.
=] > M

This completes the proof. QED

The following result asserts the continuity of the simplicial depth function.

Theorem 2.2.3 If F' is an absolutely continuous distribution on R?, then

D*(z) is continuous at every x € RP.

Proof: Let Xy, Xs,..., Xpy1 be iid. with c.df. F. We let {z,} be a

sequence in R? such that z, — z, and show that
|D*(z) — D*(z,)| < (p+ 1)P(CH(X,, Xo, o Xp) NTT,),

where CH(X1, Xy, ..., X;) is the convex hull of p points in R?. Note that this
represents a “face” of the simplex S(X, X5, ..., X,+1).

Note that, in the context of intersecting line or hyperplane segments, “N”
refers to the two crossing one another at some point. This differs from our
usual use of the intersection symbol “N”, meaning the intersection of two

sets or events.
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A random simplex can contribute to the difference D*(z)— D*(x,,) only if

it contains one point but not the other. This however implies that Tz, passes
through exactly one face of the simplex S(X, X, vy Xpy1). See Figure 2.2
for an illustration for the case when p = 2.

X

X3

Figure 2.2: z, € A(X), Xy, X3) and z & A(Xy, X2, X3), and so T, N X.X3.

Therefore, this simplex contributes to the difference D*(z) — D*(z,).

For any two events A and B, P(A\B) = P(4)—P(ANB) > P(A)—P(B).
Therefore, if we define
= [’L € S(Xl, Xg, . Xp+1)]
== [Sl'fn & S(Xl,Xg, viay Xp+1)],

we have, by Lemma A.2.1,
D¥(z) - D*(z.) = P(A) - P(B)
S P(CE e S(Xl,Xg, "':Xp+l) ﬂfﬂn ¢ S(X],Xg, '-':Xp+1))

< P( U (CH(Xl,XQ,...,Xi_l,Xi+l,...,Xp+1)ﬂm))

i=1,2,...,p+1
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p+1
D P(CH(X1, Xoy ooy Xi1y Xig1, ooy Xpp1) N TT)
i=1

= (p+1)P(CH(X,, Xs, .., X;) NFZ,)

IA

< @+ D)PX1 Xy X, NTT,),

where X; X5... X, is the p-dimensional hyperplane containing the points X, D T
Xp. This follows since, CH(X1, X, ..., X,) € X1X,...X, and since X1, Xy, ..., X,
are identically distributed. It can similarly be shown (or simply understood

by symmetry) that
D*(zn) — D*(z) < (p+ 1)P(X1 X2.. X, N TT;,).
As such, we have
|D*(z) — D*(za)| < (p+ 1) P(X1 Xa.. X, N TT5).
We define the event
An = (XX X NET5) Vo

Then
limsup A, = ) {U Ak} ={r € X1 X0.. X, }.

n—00

n=1 Lk=n

By Lemma A.2.2, we know that

limsup P(A,) < P(limsup 4,) = P(z € X1 X,... X,) = 0, (2.7}

n—o0 n—oo

since I is absolutely continuous.
We can make the above assertion because of the following: We note that,

by conditioning on X, Xy, ..., X,_; (Lemma A2.4),
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Pz € X:X;..X,)

= Jfp Pla € BT XX = 21, X0 = 23, Ky = 2,1)
@) f(me) - flzpo1)dziday - - dz,

- ffRz)p_ (z € w1mo... X)) (1) f(22) -+ flapor)dmrdsy - - dpy

=/ f( g OF @)1 (@2) - flpoa)desdas - dapey =0,
by the absolute continuity of F. That is,
Pz € z129..X,) = P(X, € TT1T3..Tp 1)
= P(X, lies on a p—dimensional hyperplane) = 0

Therefore, |D*(z) — D*(2,)| — 0 as n — co. This completes the proof, using

the sequential characterization of continuity. QED
Theorem 2.2.4 D;(z) is an unbiased estimator for D%(z).

Proof. Let X1, Xo,..., X, be 1.i.d. with c¢.d.f. F. Since expectation is a

linear operator, we have

-1
E[Dyz) = E ( " ) >, Mwe S(Xi, Xy oy X))
p+1 1<) <ig <o <ipp1<n
— ) Z E []I(:L‘ s S(Xil)Xi2) "‘)Xip-*-l))]
P+ 1<) <da <o <ipp1<n
n
= (TES(Xz ;Xi :--')Xi ))
(p + 1) 1<11<12<Z<1p+; <n 1 ’ il

_ (p 1) (+1)P(:c€S(X1,X2:---,Xp+1))
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= Pz € S(X1,Xq, ..., Xp11))
= D*%z).

This completes the proof. QED

It can be shown that
Var(D;(z)) = E[(Dy(z) — Da(z)) — 0 (2.8)

as n — oo (See Lemma 3.3.1.) A consequence of Equation (2.8) is that
Dy (z) is a weakly consistent estimator of D*(z) at each fixed z € R?, i.c.
D;(z) — D*(z) in probability for every fixed z € R?. (See Appendix A for
the definition of convergence in probability.) The following theorem, which
appears in Liu (1990), asserts something much stronger, namely, the uniform
strong consistency of Dj(z). Its proof uses Gilvenko-Cantelli classes and
other in-depth notions in probability theory, and is therefore omitted in this

thesis.

Theorem 2.2.5 If F' is an absolutely continuous distribution on RP with

bounded density f, then DS is uniformly consistent, i.e.
SUDP zery |D3(z) — D3(z)| — 0 a.s. as n — oo.
(See Appendiz A for the definition of almost sure convergence).

In fact, Liu (1990) gives conditions under which /i, the sample simplicial

median, is a strongly consistent estimator of .
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Theorem 2.2.6 If F is absolutely continuous on RP with bounded density
f(z) which does not vanish in a neighbourhood of p and if D*(z) is uniquely

mazimized at ji, then i, — u almost surely as n — co.

2.3 Angularly Symmetric Distributions and
Their Depth

In this section, we study the class of angularly symmetric distributions, a
class for which it is natural to speak of a “median point”. This will be
reflected in the properties of the associated depth functions. We will first

define a better known class of distributions.

Definition 2.3.1 A random variable X € RP has a centrally symmetric

distribution about 8 € R? if
X-0%9_Xx,

where “2” denotes equality in distribution.

Zuo and Serfling (2000) give the following lemma:
Lemma 2.3.2 Definition 2.3.1 is equivalent to stating that
PX-0eH)=P(X—-0¢€-H)
for each closed halfspace H C R?, where —H = {~z: x € H}.

In other words, a random variable X which follows a centrally symmetric

distribution about ¢ has the same probability of falling in any halfspace
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H C RP? as it does in the halfspace —H C RP?, which is the mirror image of

H across the point of symmetry .

Definition 2.3.3 A random variable X € R? has an angularly symmetric

distribution about # € R? if

X—-6 4, 6-X
X =6l X —elf

Lemma 2.3.4 Definition 2.3.8 s equivalent to stating that
P(X-8€ H)=PX -0 —-H*
for each closed halfspace H* C RP which passes through the origin.

In other words, a random variable X which follows a distribution which
is angularly symmetric about 6 has the same probability of falling in any
halfspace H* determined by 6 as it does in the halfspace which is the mirror
image of H* across the point of angular symmetry. Consequently, if F is
absolutely continuous, P(H*) = % for every half-space determined by 8. In
this sense, # can be viewed as a multivariate median of F.

By Definitions 2.3.1 and 2.3.3, it follows that X has an angularly sym-
metric distribution about ¢ if and only if (X — 8)/(||X — 0]|) has a centrally
symmetric distribution about the origin. Clearly, X is (angularly) symmetric
about @ if and only if X — @ is (angularly) symmetric about the origin.

Central symmetry (or just symmetry as it is usually called) is stronger
than angular symmetry, as is apparent from Definitions 2.3.1 and 2.3.3. That
is, symmetry implies angular symmetry. All multivariate normal distribu-

tions are both symmetric and thus angularly symmetric about their mean
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vector . The difference between symmetry and angular symmetry is appar-
ent in the following example:

Example 2.3.5 Consider a bivariate random variable X which has density

ifz<0,y<0,22+9%2< 1

51; whenz > 0,y > 0,22 +y% <4
fley)=1 2
0 otherwise

-

to g

y=2-x

Figure 2.3: An illustration of a probability density function f(z) that is

angularly symmetric but not symmetric. The support of f (x) is shaded. f
is constant with fi(z) = 2 and fo(z) = L.

30



See Figure 2.3 for an illustration of this probability density function
(p.d.f) X obviously has an angularly symmetric about the origin. Any
halfspace determined by (0,0} will have equal probability on either side.
However, the condition for central symmetry does not hold. If we consider
the halfspace H = {(z,y): v > 2 —z} and its mirror image about the origin,

—H ={(z,y): y<-2- 2z}, we see that
PXeH)>0#£P(Xe—-H)=0.

Since the condition in Lemma 2.3.2 must hold for all halfspaces H C R?, it
follows that the distribution of X is angularly symmetric about the origin,

but not symmetric.

Theorem 2.3.6 Fvery univariate p.d.f f (x) is angularly symmetric about

its median M.

Proof. There is only one hyperplane that passes through the origin,
namely the “line” z = 0. This creates two closed halfspaces H* = [0, 00]
and —H* = [~00,0]. By definition of the median, P(X — M € H*) =1 =
P(X — M € —H*), and the proof is complete. QED

The following two theorems require that the c.d.f. F be angularly sym-
metric. Their proofs can be found in Liu (1990).

‘The first result is that of monotonicity, a useful property for a depth
function. It states that the depth decreases steadily as we move away from

the centre of the distribution in any given direction.
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Theorem 2.3.7 If I is absolutely continuous and angularly symmetric about
the origin, then D*(az) is a monotone nonincreasing function ina >0 V z €

R

Theorem 2.3.8 If F is an absolutely continuous distribution on R? and it

is angularly symmetric about a point & € RP, then D*(f) = 277,

Note that Theorems 2.3.7 and 2.3.8 imply that D*(z) attains its maximum
at its point of angular symmetry ¢, where its depth is D*(#) = 277, and that
for every point z € R?, we have D*(z) < 27P. Consequently, by Definition
2.1.7, 8 is the multivariate simplicial median of X.

One application of the above property is in testing the centre of angular
symmetry. As mentioned above, if F' is angularly symmetric, then D* (z) is
maximized at the centre of angular symmetry and takes there the value 2-7.
As such, if fy is a hypothesized centre of angular symmetry for some density
function f(z), then a large value of (277 — D3(f,)) is an indication of the
null hypothesis being false. For a more in-depth discussion of the inference

procedure, see Gregory (1977).

2.4 New Properties of Liu’s Simplicial Depth

Liu (1990) proposed the simplicial depth function and established some very
important properties thereof. The unbiasedness and consistency of D2 (x)
were asserted and proven. It was shown that D*(z) — 0 uniformly as ||z|
tends to infinity, and that D*(z) is continuous and affine invariant. For an-

gularly symmetric distributions, it was also shown that D*(z) is a monotone
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nonincreasing function, which attains its maximum value of 27 at the point
of angular symmetry.

We now examine some properties of the simplicial depth function D (x)
that, to our knowledge, have heretofore gone unmentioned or uncalculated in
the literature. Unless otherwise noted, all results in this section are proven
for the case of p = 2. This case is the simplest non-trivial setting for Liu’s
depth function, as well as the easiest to visualize. All of our theorems and
proofs can be extended or generalized to the p-dimensional case by making
the obvious modifications.

One difficulty encountered with Liu’s simplicial depth function is that it
is generally intractable. That is, there are no results published that enable
us to actually calculate D°(2) for a given distribution . This is due to
the complexity of the mathematical description of a “random simplex”. In
Theorem 2.4.3, we will find an expression for this function, which will clearly
illustrate its complexity. How do we go about calculating the probability
that a fixed point z¢ will fall within a random triangle generated by ii.d.
random variables X, X, X37

We will do this with the help of the process of conditioning. We ask the
question: Given the values X; = z; (=(z11,212)) and Xy = 29 (=(291, T22)),
where must the value of X3 fall in order for the triangle A(X;, Xa, X3) to
contain a fixed point zg (=(xo1, Zp2))? It turns out that this is not a simple

problem to solve. The conditional probability
P(QI() - A(X;,Xg,Xg)le = .’El,Xg == .’1,'2) = P(CE{) € A(IEl,IEg,Xg))
is itself conditional on the ordering of the components of 2o, z; and z5. The
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first components (which we normally speak of as the z-components) of the
three points can be ordered in 3! = 6 ways, as can the second {y-) compo-
nents. As such, we have to consider 36 separate cases. For any given case,
in order for zo to be in the triangle, X5 must fall in the region (labelled A)
bounded by L) and Lj, the line segments formed by passing through zo and

z1, and between z¢ and s, respectively. See Figure 2.4 for an illustration.

Figure 2.4: z3 € A, and so zo € A(z1,29,23), whereas z% & A, and so

7o & A(ﬂiz, Tz, 333)'

We find equations for the lines, using our usual notion of z- and Y-
components:
For any point (z,y) € R? on the line L;, we have that

Y—Zo2  Ti1a— Zp
T — Ip Ti1 — Zo1
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aj — —
= y= ( 12 3302)(3? 2701) + 2o
11 — Zo

T2 — 1‘02)%1 L12 — To2
= gy = (————— +Zoy | + | ——m= | =,
Tolr —Tn Ti1 — To

which is the equation for L;. Equivalently, L; can be expressed as a function
of y.
Similarly, we can find the equation of Lo:

Y—Zox T2 — T2

T — Zpy To1 — T

Tog — rT—x
= y= ( 22 2702)( 01) + T
Tg1 — Zoi

Tog — Tga )T Tog — I
= oy= (( 922 02) 01+$02)+( 22 02)3;,

To1 — T2 L1 — To1
which is the equation for L,. Equivalently, Ly can be expressed as a function

of y.

Example 2.4.1 We consider the case for zq; < z1; < To; and Zgy < T1p <
Toz. We can see from Figure B.6 that even this case must be divided into two
further cases. The region in which X3 must fall in order for zg € A(z1, 22, X3)
depends on whether the angle between zy and z; is steeper than the angle

between z¢ and z,. Now, in the first case (pictured on top in Figure B.6),
zo1 pla
P(ZE() - A(CEl,iEQ,Xg)) = P(Xg = A) = / L f(ﬂ?gl, $32)d$32d$3;.
o0 L,
Similarly, in the second case (pictured on the bottom),
zo1 ply
P(CEO c A(IEI,CEQ,Xg)) = P(Xg < A) = / j; f($31,$32)d$32d1731.
—o00 J Ly
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So in total, regardless of the aforementioned angles,

P(zo € Azy, 29, X3)) =

2
fxa1, T32)dzaadas | .
1

"This last result is derived from the calculus property

b(y) a(y)
/ f z,y)dzdy = f / flz,y)dzdy.

Fortunately, we only need to separate a case into two distinct cases when
the second highest z- and y-components both belong to the same point (i.e.

either (xg, z1, or z5)). The other cases generally go as follows:

Example 2.4.2 Consider now the case for z9; < ©g1 < 213 and 5 < Toy <
Zop. We see from Figure B.28 that the slopes of the two lines L; and L, do

not matter in this case; we will get the same result either way:

o To1
Pz € A{z1,22,X3)) = P(X3€ A) = f s fz31, za2)dwsydaas
€02 1

+ f _/ f(z31, z32)dzsades;.
zp1 Y Ly

As mentioned, there are 36 separate cases we have to consider. For a
complete illustration of each case, see Appendix B. We are now ready to

give the general result:

Theorem 2.4.3 Liu’s simplicial depth function D*(z) can be expressed as:

Do) = :Y;[ L S MR, 2103 21, 220) £ 1) f(arg)dxld."cgJ
(2.9)
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where Aj is the set of all (211, T12; T2y, T22) € R which satisify the condition

in the event A; in the proof that follows, where X is replaced by z therein,

and where
zo1 pla
hi(z11, T12; a1, Tge) = / Lf($31,$32)d3332d$31
oo JLs
o L2
h2(3311,3312;$21,$22) = /f f($31,3332)d3732d$31
zo1/ L1
zoz rLa
ha(z11, T12; Ta1, Tag) = / [Lf($31,$32)d$31d3332
oo JI,
oo Lz
ha(z11, T12; To1, Tag) = f/ f(zs1, z30)dz31dz30
zg24 Ly
ZT01 (e9)
h5($11,$12;$21,$22) = / /Lf(3331,$32)d$32d$31
oo J s
oo ply
+/ f f(za, Ta2)dr31dzas
oz Y IOl
02 To
he(z11, T12; Tar, Teg) = f . fzs1, xa2)dzsydeay
oo JLy
oo ply
—I-/ / f(zs1, 32)dz3adzs;
Tp1 J —00
zo2 rly
he(z11, T1g; o1, Tag) = / / 31, T32)dza dzsy
—00 JIp]
' za1 pLa
+] f fx31, T32)dz3adzs;
-0 —00
oo r0o1
hs(z11, T12; Tog, Toe) = ff flzs1, z32)dz31dzag
zo2 v/ Lo
oo ies]
"|‘f fL fl@a1, Ta2)dz30dzs;
x
OO01%}1
ho(®11, T19; Zoy, Taz) = //L f(zs1, z32)dza daas
b of
0200100
+/ fL F#s1, x32)dwaadzs;
o1 2
xoz2 plo
hio(z11, T12; To1, 90) = / f f(xa1, z32)dz31dT3s
—00 Jzg;
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Ay
Ag
Az
Ay
As

Ag
Az
Ag
Ag
Aro
An
Apz

AI;

x01 pLly
“7”/ / f(zs1, z32)dwaadzs
—00 V=00

To2 To1
f f (231, T32)dz3 das
—ooJIy

hi(z11, T12; To1, Tag)

leo] Lz
+f / f(za1, $32)d$32d$31
oY —

hia(@11, T1g; Ta1, Taz)

Proof. We define events

= [zo1 < Xu1]) N[zor < Xo1)
= [X11 < zo1) N [Xa1 < zg]
= [zoz < X129 N0y < Xog] N [(Xo1 < Toy < X11) U (X1 < 201 < Xa)
= [Xig <zeNXpg < Too] N [(Xa1 < mop < Xi)U(Xp <zp < Xo1)]
Xag — zgg X2 — oz
= [XH < Zn <X21]ﬂ[X12 < Zpa <X22]ﬂ [ <
Xo1 — o1 X1 —zoy
Xoo — Zop Xi2 — To2
= [Xn <zm < Xa|N [X12 < zpa < Xop] N [ 22 021 S
Xo1 — zgy X1 —zm
[ Xoo — & X9~z
== [XH < g < Xgl] N [XQQ < Zpp < Xlz] N 2 92 < 12 o2
X9 — zos X1 — zor L]
1~ 1 X2 — o2 X12 — zo2]
= [Xn < xp < Xgl] M [X22 < Ty < X12] N X 0 > 02
[ X1 — 201 X1 — zo1 1)
[| X2 — oo X12 — Zoa ]
= X21<$1<X11QX12<$02<X220 <
[ 0 Inl ) || X91 — o1 X1 —zor |
(1 Xoo — 2 X190 — T il
= [Xgl < Ty < Xll} N [Xm < Ty < XQQ] M 22 02 > 12 02
U Xo1 — zos X1 — Zop |
[ Xay — 2 X19 — zga |
= [Xgl < g < Xll} M [ng < Zgg < X12] N 22 02 < 12 02
| X9, — zoq Xi1 — Top |
[| Xoo — X2 — zga|]
= [X21 < T < XH] M [_ng < Iy < X}g] N 02 > 12 .
U X9 — o1 X1 — 2o |
Ay, ..., Az are pairwise mutually exclusive and exhaustive. Therefore, by

38

/ f(il?31, T32)dT31dT39
g2+ o1
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Lemma A.2.3,

D*(zo) = Plzo € A(Xy, Xo, X))
12
= Y Plzo € A(Xy, Xo, X[ 4;) P(A)
i=1
12
= Y Plzo € A(X1,Xa, X3NA)

i=1
= ZfRz}z hi(@11, T19; To1, Too) f (1) f (x2)dz 1 dizs.

In particular by Lemma A.2.5,

P(zo € A(Xy, X5, X3) N A7)
= E[l(zo € A(Xy, Xa, X5))L(AL)]

= B(E[(zo € A(Xy, Xo, X3))I(A:)|(X1, X2)])

= [, [, Bl € A,z X)) (A f 1) (@2)dordzs
= [, [ AP0 € Aler, 22, X2)) (@) £ (w2)dordzy

= [fR2 /fRz h(zy1, T19; To1, To2) f(z1) F(29)da 1 ds

Note that we also used the identical distributions of X; and X5. The rest
of the proof follows from tedious but straighforward calculations similar to
those in Examples 2.4.1 and 2.4.2, based on the cases depicted in Appendix
B. Note that we have grouped the 36 original cases into 12 by “gathering
terms”. The terms that were gathered into the respective cases will also be

outlined in Appendix B. QED

It is clear from Theorem 2.4.3 that the functional form of D*(z) is very

complex. Even P(A,}, P(Ay),..., P(As2) would be very difficult to calculate

39



for most distributions. We notice that it would be even more difficult to
calculate D*(z) for a distribution f(z) with a finite support. Even if we were
to consider the basic Uniform[0, 1]* distribution on R2?, we would have to
break each of the 12 cases up even further to account for the possibility that
Ly and Ly may intersect the edge of the support on any of the four lines
z=0z=1Ly=0,ory=1.

At the very least, the preceding calculation offers a perspective of why
we need the estimator D7 (z) in order to estimate D*(z).

Liu (1990) proved for any absolutely continuous angularly symmetric dis-
tribution F' on RP, that D*(z) < 277 V z € R?. The family of angularly
symmetric distributions is large, but we might have to deal with distributions
which do not have this property. We will now determine an upper bound for
the mean of a random version of simplicial depth function in two dimensions,
for any continuous bivariate distribution #. This will involve the concept
of extreme points of a random sample, a topic studied extensively in Efron

(1965).

Definition 2.4.4 Given a random sample X;, X5, ..., X, the discrete ran-

dom variable E™ denotes the number of extreme points in the convex hull

determined by X, X, ..., X,.

In a bivariate sample, we picture spikes sticking out from the plane at
every point X; from the random sample. We wrap a string around the
periphery of the spikes, and the number of spikes touched by the string

corresponds to the number of extreme points in the sample.
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Given X, X, X, X35, an iid. random sample with c.d.f. F on RP, we
define the random variable D*(X), where, on the event {X =1}, © € R?,
D3(X) = D*(z). That is, D*(X) can be viewed as a random version of
De(z).

Theorem 2.4.5 Let F be any absolutely continuous distribution on R2.
Then E(D*(X)) < 1.

Proof: Let X, Xa, X3, X4 be i.i.d. random variables with absolutely con-
tinuous c.d.f. F'. Then, conditioning on Xy, by the “law of the unconscious

statistician”,

P(X; € A(X1, Xg, X3)) = f/ (24 € A(X1, Xo, X3)) f(€4)dza
= B(D(X4)) = E(D(X)),
and so
P(EW =3) = P(X; e A(Xy, Xy, X3))
+P(X3 € A(Xy, Xy, X4))
+P(Xy € A(X1, X3, Xy))
+P(X: € A(Xy, X3, X4))
= 4FE(D*(X)). (2.10)
Equation (2.10) follows from the fact that, if there are only three extreme

points in a sample of four points, then the convex hull, a triangle, must

contain the fourth point. By mutual exclusivity,
P(EW = 3) = 4B(D*(X)) = P(E®W = 4) = 1 — 4B(D*(X)).
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This follows from the fact that there must be either three or four extreme
points in a sample of size four from an absolutely continuous distribution F.

By definition of expectation, it follows that

E(EW) = 3(4B(D*(X))) +4(1 — 4E(D*(X)))
— 4—4E(DY(X)).

Since

£l <4

oo
IA

4
IA

E(EYW) <4

¢
IN

4—4B(D°(X)) <4

4
Yoy
o
A IA
&L
S W
= 9
I/\é

I

o

this completes the proof. QED

We now extend the result to the general case of p dimensions.

Theorem 2.4.6 Let F' be any absolutely continous distribution on RP. Then

. 1
E(D¥(X)) < st

Proof: Let X1, Xy, ..., Xp42 be i.i.d. random variables with absolutely con-
tinuous c.d.f. F. Then, conditioning on X,
P(Xp+2 E S(.Xl,XQ, taey Xp_|_1))
= o Plapsa € S(X0, X s Xpy))f (p12) s
= B(D*(Xp12)) = B(D*(X)),
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and so

P(EPH) — 5 4 1)
= P(Xp12 € S(X1, Xoy ooy Xpy1)) + P(Xpp1 € S(X1, Koy oo Xy K1)
oo P(Xs € S(X1, X3, Xpi2)) + P(X1 € S(Xa, X, ooy Xpso))
= (p+2)E(D*(X)). (2.11)

Equation (2.11) follows from the fact that, if there are only p 4+ 1 extreme
points in a sample of p 4+ 2 points, then the convex hull, a simplex, must

contain the (p + 2)th point. By mutual exclusivity,
P(B® = p+1) = (p+2)B(D*(X)) = P(E"? = p42) = 1-(p+ ) B(D* (X))

This follows from the fact that there must be either p+ 1 or p + 2 extreme
points in a sample of size p + 2 from an absolutely continuous distribution

F. By definition of expectation, it follows that

E(ECY) = (p+1)((p+2)E(D*(CO)) + (p +2)(1 - (p+ 2B(D*(X)))
= (p+2) - (p+2)E(D*(X)),

Since

pt+1 < ECD <pyo

IA

=p+1 < BEF)<p+2

IA

=p+1

IN

(p+2) - (P +2E(D(X)) < p+2

—(p+2)E(D*(X)) <0
s 1

= —1

IA

=0

IA
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our upper bound for any dimension p is E(D*(X)) < }%. QED

Recall the result of Liu from Section 3.3: If F' is absolutely continuous and
angularly symmetric, then D*(z) < 277 ¥V 2 € R?. Hence, under these con-
ditions, F(D*(X)) < 277 by conditioning on X. The precision of Theorem
2.4.6 relative to Liu’s result for angularly symmetric distributions decreases
with the dimension p, but our main goal was to attain an upper bound for
E(D*(X)) for any continuous distribution F, which is not necessarily angu-

larly symmetric.
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Chapter 3

New Types of Data Depth
Based on Other Simple

Geometric Shapes

In Chapter 2, we thoroughly examined the definition and many properties of
Liv’s simplicial depth function D*(z). In two dimensions, D*(z) is based on
a triangle, a simple geometric shape. In this chapter, we examine two new
depth functions in particular, the circular depth D¢(z) and the rectangular
depth D"(z). In two dimensions, these are based on equally simple geometric
objects, namely, circles and rectangles, respectively. We derive results for
these two depth functions similar to some of those asserted for Liu’s simplicial
depth function D*(z) in Chapter 3. We will also discuss the advantages and
disadvantages of using circular or rectangular depth functions as opposed to

simplicial depth.
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3.1 Circular Depth

For any two distinct points z; and x5 in the plane, we can generate a unique
closed disc O (1, 22) containing both points, with the centre of the circle
located at the centre of the two points. That is, the points #; and xg will
be at opposite sides of the disc, and the distance between them will be the
circle’s diameter. See Figure 3.1 for an illustration. If we have an i.i.d.
random sample X3, X», ..., X, from a distribution F on R?, we can generate
(Z) such discs, and for any point z € R?, we can find the proportion of discs

which contain z. Naturally, the higher the proportion, the greater the depth

of the point in the data cloud.

X2

x1

Figure 3.1: The circle O(z1, z2) with centre 21422 and diameter [|z; — z4||.
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Definition 3.1.1 Let X, Xs,..., X,, be an ii.d. random sample with c.d.f.
F. Then the sample circular depth D:(z) for a point z € R? is equal to the
proportion of all discs O (X;,,X5,), 1 < 4; < iy < n which contain z, where
O (X, Xi,) is defined as above. That is,
2\
1< <ig<ln

Dy (x) is the empirical (sample) version of the true simplicial depth D*(z):

Definition 3.1.2 The circular depth D*(z) for a point z € R2 is equal to
the probability that z is contained in the random disc (X1, Xs). That is,

DC(IIC) = P(SE i~ @ (X;,Xg)), (32)
where X;, ¢ = 1,2 are i.i.d. with c.d.f. F.

Note that the univariate form of D°(x) reduces to the exact form of
Equation (2.3) that we had for the simplicial depth D*(z).

All of these concepts can easily be extended to higher dimensions. For a
distribution F' on R?, the disc in Definitions 3.1.1 and 3.1.2 is replaced by
the closed ball C{X}, X3) formed by two independent observations X 1 and
X3 from F. This time, the p-dimensional ball will be that unique ball passing
through both X; and X, and with diameter ||X; — X3|| and centre Xitdo,
The general definition of the sample circular depth in any dimension p is as

follows:

Definition 3.1.3 The sample circular depth DS(z) for a point # € RP is
equal to the proportion of all closed balls C(X;,, Xiy), 1 <4y < iy < n which
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contain x. That is,

De(z) = @_ 1<-Z- Tz € O(Xi, X)), (3.3)

where X1, Xy, ..., X, is an i.i.d. random sample from F.

Similarly, the circular depth of a point z € R? is defined as:

Definition 3.1.4 The circular depth D°(z) for a point = € R? is equal to the
probability that z is contained in the random closed ball C(X;, X,) generated

by the two i.i.d. observations X; and Xs:
Df(z) = P(z € C(Xy, X3)). (3.4)

We now look at some important properties of D°(z), as well as its em-
pirical estimate Df(z). The first three resemble those for simplicial depth

found in Section 2.2.
Theorem 3.1.5 Dy () is an unbiased estimator for D*(x), for any z € RP.

Proof. By the linearity of the expectation operator,

() N > Iz € C(Xy, Xi,))

1<ij<ia<n

E[Di()] = E

- () = sueeou,x)
1<11 <ig<kn

;”) S P e (X, X))

( 1<i1<ia<n
(n

9 ( ) ZE S C(Xl,XQ))
P(fE e’ XI,XQ))
= D(z).
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‘This completes the proof. QED
Theorem 3.1.6 For any c.d.f F on R?, SUP|>a D°(z) — 0 as M — oo.

Proof. Let Xy, Xy be i.i.d. with c.d.f. F. Given any z € R?, we observe
that {z € C{X1,X2)} C UL, {l|X:|| > ||z||}. This is because, if z is further
from the origin than either of the two random points, it clearly cannot be
contained in the ball generated by the two points. Using the above inclusion,

we get

Dz) = Pz e C(X1,X,))
P (U1 2 [1a11})

2
- P(|IX:]] = ||zl]) (by subadditivity)
i=1

IA

IA

= 2P([|X:]l > [|=[]).

Note that the last step is possible by the identical distributions of X 1 and
X3. So clearly, since P(|[X1|| > ||z|[) is decreasing in ||2]|, it follows that
sup D%(z) < sup 2P(||Xi]] 2 |[z]]) < 2P(I1Xy]] > M).

[l=l|=0f l|l=|= A

Since P([|X1]| > M} — 0 as M — oo, we get the desired result. This com-
pletes the proof. QED

Our next assertion is that of the continuity of D%(z).

Theorem 3.1.7 If F is an absolutely continuous distribution on R?, then

De(x) is continuous on R,
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Proof. 'We prove the theorem for p = 2. A more general proof for any
dimension p would follow analogously.
Let X1, X3 be iid. with c.df. F. To establish continuity at z € R?, we

let {z,} be a sequence in R? such that z, — =, and we will show that
|D¥() — D*(za)| < PO((OD(X1, X2)) NTZ) — 0

as n — 00, where 9(O(X1, X»)) denotes the boundary of O(X;, Xs).

Note again that, in the context of intersecting line (or arc) segments, “N”
refers to the two crossing one another at some point. This differs from our
usual use of the intersection symbol “\’, meaning the intersection of two
sets or events.

A random disc can contribute to the difference D°(x) — D°(z,,) only if it
contains one point but not the other. This however implies that there must
be a point on the boundary of the disc (X1, X3) which intersects the line
segment TZ,,. See Figure 3.2 for an illustration for the case when p=2

For any two events A and B, P(A\B) = P(A)— P(ANB) > P(A)—P(B).

Therefore, if we define
= [z € (DX, Xa)|
= [z, € (O(X1, X)),
then we have that
D%z) — D%(za) = P(A)- P(B)

P((z € (X1, X2)) N (20 & (X1, X0)))
< PO, Xa)) N7z5).

IA
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x1

X2

Figure 3.2: 2 € O(z1,22) and z,, € O(z1, 22), 50 TZ,; N 9{O(z1, %2)). There-

fore, this circle contributes to the difference D*(z) — D°(z,,).
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It can similarly be shown (or simply understood by symmetry} that
D(zn) — D*(z) < PO((O(X1, Xa)) NTTy,).

As such, we have
| D(z) = D*(zn)] < PA(O(X1, X2)) N7Ty),

where X and X, are i.i.d. with ¢.d.f. F.

We define the events

‘Then
limsup A, = ﬁ {Ej Ak} = {z € 8((D)(X1, X))}

n—eo n=1 Lk=n

By Lemma A.2.2, we know that

limsup P(4,) < P(limsup A,) = P(z € d((D(X1, X2))) =0, (3.5)

n—oo n—00

since ' is absolutely continuous. We can make the above assertion because

of the following: We note that, by conditioning on X; (Lemma A.2.4),

Plo(z € (D(X1, X1)))
- [/R . Pz € 0((D(w1, X)) f (211, 12)dwyydays. (3.6)

We must now ask, where must X lie (given fixed points z, and z1) in
order for x = xy to lie on the boundary of the disc O(zy, X2)?
We note that X, must be a point such that the distance from Tg to the

centre of the disc O(z1,zq) is equal to the distance from z7 to the centre.
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This must be the case, as 29 and z; are both on the boundary of the disc,

and so must be equidistant to the center. In other words, we must have:

T1y + 291\ 2 Tia + Tag\?
oy — —— | +{zgp — ——

2 2
211 + To1\? T1g + Too\ 2
= | ZT11 — 5 + [ ®12 — T

which implies

2 2
(2z01 — z11 — 291)” + (2To2 — F12 — Z97)
—_ 2 _ 2 9 . 2
= (2211 — 11 To1)* + (2212 — 219 T22)
4z2 2 2 —dzgzy —4 2
= 4Tg + 27 + 25 — 4x01T11 — 4T01T91 + 224120

2 2 2
”1‘42702 + Tiq -+ Tog — 417022712 — 4$02$22 -+ 2$12$22

i

2 2 2 2
:Lll "I‘ $21 - 23:113:21 + 'rEIQ '%‘ $22 — 21:123:22

2 . .2 . .
= Tgp — To1T1 — To1Ta1 + Thy — Toaiz — TeaTig = 0
. .2 2 . S

= (z11 — 3301)2321 + (212 — 3302)3322 + Zgy + Tgy — To1T11 — ToaZae =

2 2

Toy + Tgo — To1T11 — Too1z + (T11 — Zo1)T

01 02 01T11 02T12 i1 01)Z21

= Tgy = = L{zy). (3.7)
To2 — T12

(See the illustration in Figure 3.3.) In order for zp to be in the disc O(z1, Xa),
we see that X, must lie along this straight line, a one-dimensional subspace
of R2. But by the absolute continuity of F, the probability of this happening
is zero.

From Equations (3.6) and (3.7), we thus have that

Plz € H(O(X1, X1))]
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] 5

Figure 3.3: In order for @y € 8(O(z1, X2)), X, must lie on the line L.
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- j[gz P(Xs € L) f(zu, T19)dxq1dT1o

- /L,2 Of(:l)u, $12)d$11d$12 = (). (38)

Therefore, |D%(z) — D*(,,)| — 0 as n — oo. This completes the proof, using

the sequential characterization of continuity. QED

We would now like to find a tractable form for D°(z) in two dimensions.
Similar to our derivation of D*(z) in Chapter 2, we must identify where two
points must lie in the plane in order for a fixed point zp to be in the disc

O(X1, X3). Again, we use the method of conditioning.

Theorem 3.1.8 Given a fized point zo = (z¢1, Tg2) in the plane,

Df(zo) = Plazo € (X1, X2)}

o0 L(z21)
= ffm I(B) /_ f_ [(za1, To2)dzandrar | f(z11, 212)d211d2 10

+/f I(B°) {/ / f(ib‘m,i‘zz)dl"zzdil?m} F(z11, T19)dz1dzys,
R? —0o J L{z21)

where

B = {(11711,3712) € R2]$12 > Zg2}

B¢ = {(211,212) € R*|w13 < mgo} (3.9)

TolTi1 — ZTo1r) + Tea(Ti9 — Zoo) + (201 — 11 )2
L(a;gl): 01( i1 01) 0273(1212_ $0202) ( 01 11) 21.

Proof. Toward a conditioning argument, we fix a value T1 = (211, T12) €
R? for X, and we would like to determine where Xy must lie in order for a

fixed point z¢ to lie in the disc Oz, X3), where the disc is defined as above.
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We note that we will have zy € O(w1, z9) if the distance from z, to the centre

of the disc O(x1,z2) is less than the radius of the circle. See Figure 3.4 for

an illustration.

L

)

Figure 3.4: X, must lie on the opposite side of L from z, in order for z4 €

Ofz1, Xs).

That is, we must have that

Z11 + 91\ 2 T12 + T
\/(%1——11—2—2) +($02~ 22 22) _—\/ (11 — z91)? + (212 ~ z92)?

= (2201 — 21y — 3321)2 + (2z00 — 712 — 2322)2 < (2 — 11321)2 + (212 — 3322)2

2, .0 2 .
= dzg + 21 + 25 — dxe121 — 4301 To1 + 221129

56



.2 2 2 .

< @h +ady 42l + 2l — 2en30 — 23150
= 33(2)1 — ZTo1T11 — To1T21 + T11&91 + Sﬂgg — ToaZ12 — To2To2 + Z12T9g < 0
= (zn — zo1)z2 + zo1(zo1 — z11) + (212 — To2)Tan + Zoo(To2 — Z12) <0
= ($12 - 3702)$22 < $01($11 — 3301) + $02($12 - 3302) + (3301 — Z11)Ta1

Tog < Liza) if 212 > Ty,

oy > L(’L‘g;) if L9 < Zpo,

where
o121 — o) + — Toz) + (To1 — z11 )
L($21) — 01(z11 01) 02(T12 02) (zo1 11) 21 (3‘10)
T2 — Toz

Assuming X; and X, are i.i.d. random variables from a distribution F ,
we condition with respect to the event A = [X12 > Zg2]. Since A and A€ are

exhaustive and mutually exclusive, then by Lemma A.2.3 we have
DC(SE()) = P([IEO < @(Xl,Xg)] n A) + P([’Lg S O(X},Xg)] ﬂAC).

Now, by Lemma A.2.5, for B defined in the statement of the theorem, we

have

Pleo € (X1, X2)] N A)
= E[I{zo € (H(X1, X3))I(A4)]
= BlE(I(zo € (D(X1, Xa))I(A)|X;)]
- f /R . E[I(z0 € (21, X2))I(B)f (@11, z12)dz11d12
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B /./13{2 L(B)Pzo € (D21, X2)) f (211, T12)dz11d712
oo L(:rgl)
N f-/l;tz H(B) [- f f(@a, 22)dTordTn f(mllafl:l?)diﬁ'ud.’]:lg.
Following the same steps, we can show that

P([zo € (O(X1, X3)] N A%)

/f 1(B°) [[ / f(3321,$22)d$22d9321] flz11, z12)dz11dT10,
R2? —oo J L{zr21)

and the proof is complete. QED

We will now seek to find a functional (i.e. tractable) form of the variance

of D¢ (z).

Theorem 3.1.9 The variance of D¢(z) is

Tt

2) . [Dc(mo) + 2{n — 2)D(02)(:cg) + (3 — Zn)(DC(a:O))Q] ,

Var(D(a) = (

where

L(:Egl) 2
Dy 2 330 ’Ezl, 3322)d$22d$21 dz1dzgs +
{2) R2 B

2
f/ I(B°) L/ / f(Zo1, zen d’C22d3321} dz11dzas,
R? —oco J L{xa1)

(3.11)

and where B and B® are as defined in Equation (3.9) and L{zy,) is as defined
in Equation (8.10).

Proof We know that
Var[D(z)] = E[Di(2)]’ — (E[D;(=)))?
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> ﬂ(xon(Xi,Xj))r

1<i<j<n

SR> ﬂ(mon(Xi,Xj))DQ‘

1<i<i<n

(3.12)

Now we consider only the first term of the sum in Equation (3.12):

1<i<j<n

> T(me O(Xian))}

1<i<ji<n

- () N {(#[2me e 00 0 < 1600 O )

%

E [Z[H(iﬁo € OUXG, X)) x Wzo € @(stXl))]D

&k

E [Z[]I(g;o € (DX, X;)) x Uz € @(Xk,Xl))]D } , (3.13)

L 2

where

# = {1<i<j<nl<k<i<ni=kj=1I}
¥ = {l1<i<j<n,1<k<l<n,
(neither (i = k,j = {}nor (i # j # k £ 1))}
ok ok = {I§i<j§n,1§k<l§n,i%j7ék#l}.

In other words, * represents all pairs (i, j) and (k, ) such that i = k and j =l
That is, the sum is over all identical pairs of variables. This is equivalent

to squaring each term within the sum. In the second term, ** represents all
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pairs (,7) and (k,1) with exactly one equal index. This will be the most
complicated sum to determine. Finally, *** represents all pairs (i,9) and
(%, 1) with no indices in common, so the two terms are independent and the
expectation of their product will the the product of their expectations.

Now, continuing with Equation (3.13), we have

n ({z E[I(zo € (O(Xe X;)) x Nz € @(Xk,Xe))]D
i ( {z Ell(zs € O)(Xs, X)) x Tz € @(Xk,leD } . (3.14)

Now we must determine how many terms are being added for each of the
three sums. For *, it is quite obvious that there are precisely (g) terms for
which ¢ = %k and j = . Moreover, squaring the indicator function just gives
us the indicator again, so we can remove the square. For ***, for every (4, 1),
for which there are (g) combinations, in order for i # j # k # [ (i.e. all
distinct), we must have & and { be two of the other n — 2 possible indices.
As such, there are (2‘) (";2) ways this can happen. That leaves us with **
the most complex case. In all, there must be (;‘)2 combinations of pairs of
indices, and so there are (’2’)2 — (;) (I + (”;2)) = (’2‘) (2(n — 2)) terms in

the second sum. Because each expectation within each sum is equal for any

values of the indices, continuing from Equation (3.14), we have

_ @ ” { (;L)E[]I(:vg e O(X1, X))
+(§) (2(n = 2) BTz € (X1, X)) x Tao € (X1, X))
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{P(zo € O(X1, X2))

= (;) i {Dc(a;o) +2(n — 2)E[I(z € (D(X1, Xa) Nzo € (D(X1, X3))]
+

") (e} (3.15)

Now we are left with the middle term. We will use conditioning. Note that

zo € [(O(X1, X2) N (X1, X))

implies X5 and X3 must be on one side of the line L, which is perpendicular
to zp X and passes through zy. See Figure 3.5 for an illustration. L is defined
in Equation (3.10) and is random, depending on the value of Xj.

Now we have

E[I((zo € (O(X1, X2)) N (z0 € (X1, X3))))
= P(iEg c O(XI,XQ) Nzg € O(Xl,Xg)) (316)

Continuing from Equation (3.16) and examining Figure 3.5, if we define A =

[X12 > 20o), applying conditioning using Lemmas A.2.3, A.2.4 and A.2.5,

P($0 = O(XI,XQ) MNaxp € @(Xl,Xg))
= P(il?() € O(Xl,Xg) Mxy € O(XI,XS) ﬂA)
—I—P(.’E{} € O(Xl,Xg) Nxy € @(Xl,Xg) ﬂAc)
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%v

x1

Figure 3.5: X, and X3 must both lie on the opposite side of I, from i in
order for zg € O(x1, X2) and zp € O(z1, X3).
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- ffﬁz I(B)P(zo Q(El’X?) Mo € O(II:XS))f(i‘n, T12)dr11dT
+ fm I(B)P(zo € (D(21, Xa) Nzo € (D (21, X3)) f (211, T10)dz11d 712
= /:/1{2 H(B)(P($D € @(mlaXQ)))2f($11,ZE}Q)d:EHdCEIQ

+ /R2 I(B*)(P(zo € (D(m1, X2)))2 F (511, 210)dz 11 dTrn

00 L(xa1) 2
= /./R? 1(B) [f_oo f_oo f($21,$22)d3322d$21} flz11, T12)dzdagg

- 9
+f/R2 1(B°) [/_m [L(m)f($21,$22)d$22d$21} Flz11, 12)dzridzog
(3.17)

We also used the independence and identical distributions of X, and X3
in the above calculations. We denote the above probability as Dy (o) to
facilitate our notation.

In total, from Equation (3.15), we have

E

@ 2 H(%EO(XI»XJ-))T

1<i<j<n

n—2

_ (;) [Dc(a:0)+2(n—2)ng)(a;0)+( 5 )(DC(:cQ))Q],(s.lS)

and so

Var(D:(z0)) (3.19)
= B(D;(0))* — [E(D (o))

T

() [reosse-aminrs [ (57)- (o]
= (g) Do) + 2(n — 2) Dfgy(wo) + (3 — 2n)(D°(x0))?] . (3:20)
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This completes the proof. QED

The variance for Dg(z) in any dimension p can simply be obtained by
altering the variance in two dimensions by replacing the line L with the
{(p — 1)-dimensional hyperplane H which is perpendicular to zpX;, and by
using p-tuple integration rather than double integration. Otherwise, it has
the same functional form as the case for p = 2.

We now find an upper bound for our circular depth function De(x).

Theorem 3.1.10 The circular depth D°(x) has value less than. or equal to

% for every z € RP. That is,

De(z) <

1
_§V$€Rp.

Proof: We state the proof for p = 2. Recall that
Dzo) = Pz € (H(X, X2)). (3.21)
We can also write the circular depth function in two dimensions as

D(zo) = P(wo € (D{X1, X2)| X1z > To2) P(X19 > Top)
+P(xo € (O(X1, X2)|X12 < o2) P(X 12 < 202)
= P(Xp < L(X21)|X12 > 202) P(X12 > o)
+P(Xpr > L(Xo1)| X1z < 209)P(X13 < 702)y  (3.22)

where L is defined in Equation (3.10). Now, let

a = P(.X22 < L(X21)|X12 > 11302) and
b= P(Xlg < 11702). (323)

64



Then from Equation (3.22), we have
D(zo) = a(l—0)+b1—a)=a+b— 2ab.

We maximize the depth by taking partial derivatives with respect to both a

and b and setting them to zero:

oD

= 1—-2b=0
da
oDe

== —_ 2 =
£ 1 a=1{

and so by Equation (3.24), we have that

vaysted-2(2) ()=

This completes the proof. To extend the proof to p dimensions, we simply

replace L by H, the (p — 1)-dimensional hyperplane which is perpendicular
to z0X. QED

Theorem 3.1.11 If X, Xy, X5 are i.i.d. random variables with c.df F,
then the probability that © is contained in both O(X1, X2) and O(X1, X3) is

less than or equal to ; for every x € R?. That s,
c 1 7

Proof. Again we give the proof for p = 2 dimensions. Recall from Equa-

tion (3.11) that

oo L{za1) 2
@) = ffR2 1(B) U_ f_ f($21,3322)d$22d$21] dz1ydzes

2
+ [, 1) [ Lol f($21,$22)d$22d$21J d1ydi.
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However, similar to what we did in Equation (3.22), we can express

Digy(zo) as

(z0) = Plzo € (O(X1,X2) Nwo € (D(X1, X3)| X12 > og) P(X1p > Too)

+P(zo € (D(X1, Xa) Nzp € (X1, X3)| X1 < £02) P(X12 < Tg2)

= P(X3 < L(Xa1), X5 < L(Xs1)| X12 > 202) P(X12 > Z03)
+P(Xp > L(Xa1), X2 > L(Xa1)| X1z < 202) P(X12 < 20n)

= P(Xap < L(X01)|X12 > 202) P(Xap < L(Xs1)| X1 > 00)
XP(X12 > zo2)
+P (X9 < L(X91)| X12 > Z02) P(X33 < L(X51}| X129 > zop)
X P(X19 < zga)

= (P(Xas < L{(X01)|X12 > 262))2P(X 15 > Z2)
HP{Xg2 > L{X91)| Xi2 < 202))2P(X 12 < Zog) (3.25)

The above calculation follows the same steps as in Equation (3.22), again

using the identical distributions of X3 and X5 and now, the fact that [Xp <

L(Xn)] and [X33 < L(X3)] are conditionally independent given [Xq3 > wga).
We let

a = P(X22 < L(XQI)IXlg > CE()Q)
b = P(X12<3302),

then Equation (3.25) becomes

Dy (o) = a*(1 = b) + (1 — a)*.
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We maximize this function by taking partial derivatives:

D5 1

2) 2 — a2 — 1 _ — —

o - ¢ + (1 — a) 1-2a=0 = a 3
oD¢ 1
Tfl:2a(1—-b)—2(1—a)b=2a~2b:0 = b=a=g

and so by Equation (3.25), we have that

oo = () +4-2(2) () -4

This completes the proof. To extend the proof to p dimensions, we simply
replace L by H, the (p — 1)-dimensional hyperplane which is perpendicular
to QIOX 1- QED

Lemma 3.1.12 For any p > 2, the variance of the sample circular depth

can be bounded above by | 471_6)3;1(”_1) + ?!&‘_21) for alln > 2. That is,

3 n n—2
(dn—6n(n—1)  nln—1)

Var(D:(zo)) < Vn>2

Proof: 1t is sufficient to prove prove the result for p = 2. Recall from

Equation (3.19) that

Var(Dg(z0)) = E(Di(z0))* — [E(D:(z0))]?

B (Z)  [DGe0) + 200 - B0y w0 + 3~ 2 (D))
= ;;(nzfl) [ D°(@o) + 2(n — 2) Diyy (o) + (3 — 2n)(D*(z0))’]
2 ey dnm8 . 6—dn a2
~ nfn- 1)D (7o) + n{n — 1)D(2)( o) + n(n — 1)D (o)

(3.27)
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The second term in the sum is strictly positive for 7 > 2 (which we assume),

and so

x % - %_2—1) (3.28)

4dn — 8 dn — 8
n(n — 1)

by Theorem 3.1.11. We now maximize the sum of the first and third terms

in Equation (3.27). Maximizing the sum —?;(n%ﬁDc(a:g) + n‘z;ﬂ}Dc(mg)z is

equivalent to maximizing the sum of the numerators, as n(n — 1) > 0V n.

Letting D¢(x¢) = z, define
g(2) = 22+ (6 — 4n)2°.

To maximize g(z) with respect to z (for n > 2):

dg

5, = 2+(12-8n)z=0

1

= =
# dn — 6

. (3.29)

By Equations (3.28) and (3.29), substituting 1= for D%(z), we have that

Var(D;(z0)) = ;ﬁDC(l‘o) + %{%Dfm (zo) + ;6(7;—_4%90(3«‘0)2
< 2 1 n— 2 6—4n
= (n(n 1) (4n "6 T atn—1) T n—6)nin= 1))
3 n-—32

(4n — 6)n(n — 1) + n(n—1)

This completes the proof. QED

Note that Lemma 3.1.12 does not necessarily give the optimal upper

bound on Var(Dg(ze)), as both D*(z,) and Dy (zo) are functions of a and
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b, and De(zo) + =20 D(24)? and 22=8. Doy (zo) will not necessarily

n(n 1) n{n—1) nln—1)

achieve their respective maxima for the same pair (a,b). Nonetheless, it

provides a very useful (i.e. explicit) upper bound for the variance.

Corollary 3.1.13 D} () is a weakly consistent estimator of D°(z), i.e. De(z)
converges to D%(x) in probability for any z € RP.

The proof follows from Lemma 3.1.12 and Markov’s inequality applied to
= | D5 (x) — D*(z)| (see Lemma A.2.6).

3.2 Rectangular Depth

We now focus on another alternative to simplicial depth, based on an equally
basic geometric shape. For any two points z; and x5 in the plane, we can
generate a unique rectangle R{z;, z3) with sides parallel to the z- and y-axes
and diagonal corners z; and z,. See Figure 3.6 for an illustration. If we have
an i.i.d. random sample X;, Xy, ..., X,, from a distribution F, we can generate
(g) such rectangles, and for any point z € R?, we can find the proportion
of such rectangles which contain z. Again, the higher this proportion, the

greater the depth of z in the data cloud.

Definition 3.2.1 The sample rectangular depth D?(z) for a point = € R? is
equal to the proportion of all rectangles R(X:,X:,), 1 <4y <iy <n which

contain z, where R(X;,, X;,) is defined as above. That is,

D= () ¥ e R, 5 (3.30)

1< <ig<n
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x2

x1

x2

x1

Figure 3.6: Two possible rectangles generated by points =, and z.
D7, (z) is the empirical (sample) version of the true simplicial depth D (z):

Definition 3.2.2 Let X1, X, ..., X,, be an i.i.d. random sample from a c.d.f.
F. The rectangular depth D"(z) for a point z € R2 is equal to the probability

that z is contained in the random rectangle R(X, X,). That is,
DT(QZ) = P(JB S R(Xl, Xg)), (331)
where X;, i = 1,2 are i.i.d. with c.d.f. F.

Note that the univariate form of D"(z) reduces to the exact form of
Equation (2.3) that we had for both the simplicial depth D*(z) and circular
depth D°(z).

For a distribution F' on RP, the random rectangle in Definitions 3.2.1
and 3.2.2 is replaced by the random closed box B (X1, X2) formed by two
independent observations X; and X» from F. The p-dimensional box will be
that unique box with diagonal corners X; and X5. The general definition of

the sample rectangular depth in any dimension p is as follows:
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Definition 3.2.3 The sample rectangular depth D7(z) for a point z € R?
is equal to the proportion of all boxes B(X,, Xi,), 1 <41 < ip < n which
contain z. That is,
)L
Di{z) = ( ) Z I(z € B(X;,, X)), (3.32)
2 1<i1<is<n
it Xy, Xs,..., X, is an i.i.d. random sample from F'.

Similarly, the rectangular depth of a point z € R? is defined as:

Definition 3.2.4 The rectangular depth D" (z) for a point z € RP is equal to
the probability that z is contained in the random box B (Xi, X») generated

by the two i.i.d. observations X; and Xj:
D"(z) = P(z € B(Xy, X5)) (3.33)

As done in Section 3.1 for circular depth, we establish several key prop-
erties for rectangular depth resembling those for simplicial depth. We begin

by asserting the unbiasedness of D (z), z € RP:
Theorem 3.2.5 Dj,(z) is an unbiased estimator for D' (z).

Proof: By the linearity of the expectation operator,

ED)()] = B (Z) > 1€ B(X,, X))

1<i;<iz<n

_ (’“)_1 S E[I(z € B(X,, X))

1< <ig<n

_ (’21)_1 S Pl e B(X:, X,))

1<i1<iz<n
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- (;) _1(;) P(z € B(X1, X2))
= P(z € B(X), Xa))

= D"(x).
This completes the proof. QED
Theorem 3.2.6 For any c.d.f. F' on R?, SUP)zsm D°(z) — 0 as M — oo.

Proof: Let Xy, X3 be i.id. with c.d.f. F. Given any z € R?, we observe
that {z € B(Xy, X3)} C UL {||X:|| > ||||}. This is because, if z is further
from the origin than either of the two random points, it clearly cannot be
contained in the box generated by the two points. Using the above inclusion,

we get

D'(z) = Pz € B(Xy,X,))

< P (U_ {101 > ll=ll})
< 2P 2 sl (by subadditivity)

= 2P(|I X = ||=])).

Note that the last step is possible by the identical distributions of X 1 and

Xy So clearly, since P(|[X1]] > ||z]]) is decreasing in ||z][, it follows that

sup D'(z) < sup 2P([|X4]| > ||z) < 2P(||X1]] > M).
lel>5 [

Since P(}|X1]| > M) — 0 as M — co, we get the desired result. This com-
pletes the proof. QED

We now assert the continuity of D7 (z):
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Theorem 3.2.7 If F' is an absolutely continuous distribution on R?, then

D(z) is continuous on RP,

Proof. We prove the theorem for p = 2. A similar proof for any dimension
p would follow. To establish continuity at 2 € R?, we take a sequence {z.}

in R? such that z,, — z, and we will show that
|D"(z) — D"(z,)] = 0

as n — oo.

Let X1, Xy, ..., X, be an i.id. sample from a c.d.f. F. The random rect-
angle R(Xy, X5) can contribute to the difference D" (z) — D"(z,,) only if it
contains one point but not the other. This however implies that there must

be exactly one line segment of the four in our rectangle which intersects the

line segment ZZ5,. See Figure 3.7 for an illustration. For notational purposes,

we define the lines

Ly {X;) = vertical line with constant value X

Lg(X;) = horizontal line with contant value X;,.

For any two events A and B, P(A\B) = P(A)—P(ANB) > P(A)-P(B).

Therefore, if we define the events

= [CE & R(X},Xg)]
= [z, € R(X1, X5)],

we have



T~ Ly(X2) -

T

xn

L, (X1) Lv(X2)

x1 Lu(X1)

Figure 3.7: z, € R(X1, X2) and = & R(X1, X»), so 72, N Ly (X,). Therefore,

this rectangle contributes to the difference D"™(z) — D" (z,,).

IA

Plz € R(X1, X2) Nz, ¢ R(X1, X))

IN

P([Lv(Xl) ﬂm} U [LH(Xl) ﬂm] U
[Lv (X2) NTZn] U [Lu(X5) Nz

IN

P([Lv(X) NZz2]) + P([Le(X0) N773))
+P([Lv(X2) NTZ]) + P([Lu(X2) NTT)).

Note again that, in the context of intersecting line segments, “N” refers to
the two lines crossing one another at some point. This differs from our usual
use of the intersection symbol “1Y’, meaning the intersection of two sets or
events.

It can similarly be shown (or simply understood by symmetry) that

D'(xn) = D™(z) < P(Ly(X1)NTZ5) + P(Lu(Xy) NZ7T5)
+P(Ly(Xo) NZT3) + P(Lp(Xs) NTZy,).
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As such, we have

|D7(z) = D"(za)l < P(Ly(X1) NZT7) + P(Ly(X1) N775)
+P(Ly (X2) NTT,) + P(Lu(X,) N TT;5,)
= 2P(LV(X1) ﬂm) + QP(LH(Xl) N ﬁ;), (334)

since X; and X, are identically distributed.

JWe define the events

A, = [L[/(X;) ﬂm—] Vn
B, = [LH(Xl) ﬂm] Y n.

Then, if 2 = (20, To2),

}iHlSllp An = ﬁ {D AL:' = [33 = LV(Xl)] = [X11 = 11?01].

oo n=1 Lk=n

By Lemma A.2.2, and since we know that F is absolutely continuous (hence

has absolutely continuous marginals),

limsup P(A,) < P(limsup A,) = P(X}; = To1) = 0. (3.35)

n—00 Nn—oo

By a similar argument, it can be shown that lim SUP,_,o0 P(Brn) = 0 There-
fore, [D"(z) — D"(xn)} — 0 as n — co. This completes the proof, using the

sequential characterization of continuity. QED

We give an explicit form for the rectangular depth D" (x) in two dimen-

sions:
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Theorem 3.2.8 Given a fized point To = (201, %) in the plane,

D*{xy) = Plzpe R(X1,X5)}

- [ / fI L flz y)da:dyJ Mm fx: f(:r:,y)datdy]
+ [2 ]m . f(:c,y)dxdy} U_m;z fx: f(a:,y)da:dy].

Proof. From Figure 3.8, we see that the only way for zy to be in the
rectangle R(X,, X,) is for X, to lie in the “quadrant” diagonal from the
“quadrant” containing X;. We define a quandrant as one of the four sections
of the plane generated by passing lines through z, that are parallel to the z-

and y-axes. In other words:

[z € R(X1, X0)] = {[X11 < mor < Xa1] N [X1g < Zg2 < Xoa)} U
{[X11 < mor < Xo1] N [Xaa < 2og < Xya|} U
{{Xa1r <201 < X11] N [Xi2 < mog < Xag]} U
{{Xo1 <oy < X11) N [Xap < 202 < X1of}
= AUBUCUD.

Note that A, B,C and D are mutually exclusive and exhaustive.

Now, by the independence of X and X,,

P(A) = P([XH < IEOI] M [Xlg < 3302] N {1‘01 < Xgl] M [33[)2 < ng])
= P({Xll < CE()l] N {Xlg < ’L‘OQDP([Xm > 3301] M [ng > 3502])

= [/ ] f(z11, T12 dll?lldﬂiu] [/ / $21,122)d$21d2?22J
o2 JYTo1
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Q4 Q1

X1

X0

Q3 Q2

X2

Figure 3.8: X; and X, must lie in opposite (diagonal) “quadrants” in order

for Iy & R(Xl, XQ)
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Similarly, since X; and X, are identically distributed,

P(D) = P([Xa < zo] N [Xas < 0] N 201 < X11] N Jge < X13))

= [/ / flza1, 229 dl?g;dﬂ?gg] [/m /xm f($11,$12)d$11d5812]

By a similar argument, it can be shown that

PB) =P©) = [ [ t@adads] [ [7 pto iwa]

This completes the proof. QED

We now give an explicit form for the variance of the sample rectangular

depth function:

‘Theorem 3.2.9 The variance of the sample rectangular depth function DI (xg)

18
o\ !
Var(D,(zp)) = (2) [D’"(cco) +2(n — 2)D22) (o) + (3 — Qn)(Dr(zg))ﬂ ,
where
Dy (o) = a®b+ b%a + c*d + d’,
in which
a = / f($11,$12)d$11d$12
oz YTo1
T02 o1
b = j_ f_ {11, z12)dz11dT19
gy OO
S f_ / f(iUll, $12)d$11d~"f312
d = / fz11, 212)dz11dz 5.
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Proof. Let X1,X,,..., X, be ani.i.d. random sample from a c.d.f. F. We

know that
Var(D}(z0)] = E[D}(0)]’ — (E[D}(z0)]) )
(Z) > ﬂ(a:oeR(Xi,Xj))}

1<i<j<n
+ (E

The first term in Equation (3.36) yields the expansions in Equation (3.14),

= K

(’;)_1 S II(:cgER(Xi,Xj))])Q.

I<i<i<n

(3.36)

with 12 replacing . Hence, by the argument following Equation (3.14), we

have

E[D?Ega:g)]Q (3.37)
_ @ {(E)E[]I(:EOER(Xl,Xﬂ)]

+(;) (2(n — 2))E[I{zo € R(X,, X2)) x Tzo € R(X1, X3))]

“) (” ; 2) E[I(zo € R(X1, X)) x I(zg € R(X&X‘*))]}

{P(IEO - R(Xl,Xg))
+2(n - 2)E[E(SEO € R(Xl,Xg) N Tg € R(Xl, X3))]
+(" 2) [P0 € R(Xl,Xg))]g}

T (“ ) 2) (DT‘(:CO))Q} (3.38)
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Now we are left with the middle term. We’ll use conditioning. Note that
Zo € [R(X1, X2) N R(X;, X3)]

implies X and X3 must both be in the “quadrant” opposite X 1, where the
quadrants, @1, Q2, @3, Q4 are formed by passing lines through z parallel to

the z- and y-axes. In particular,

QL = {(z,y) € R*z > 201,y > o3}
Q2 = {(z,y) € R’z > 201,y < 29}
Q3 = {(z,y) € R’z < z01,y < Toz}
Q4 = {(z,y) € Rz < 201,y > 202}

Since Q1 and Q3 are opposite quadrants and Q2 and Q4 are also opposite,

then

E[(zg € R(Xy, Xo) Nxp € R(X1, X3))]

= Pz € R(X, X2) Nzp € R(X1, X3))

= P(X;€Ql,X;€Q1,X; €Q3)
+P(X2 € Q2,X;5 € Q2, X, € Q4)
+P(X2 € Q3, X3 € Q3,X; € Q1)
+P(Xy € Q4, X3 € Q4,X; € Q2)

= P(X, € Q1)P(X; € Q1)P(X, € Q3)
+P(Xy € Q2)P(X3 € Q2)P(X; € Q4)
+P(X; € Q3)P(X5 € Q3)P(X; € Q1)
+P(X; € Q4)P(X5 € Q4)P(X; € Q2)
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= [P(zo1 < X11,202 < X12)*P(zor > X11, Tog > X12)
+[P(zor < X11, T2 > X12)]2P(9301 > X1, %02 < X19)
+H[P(@or > X1, 202 > X12)]*P(zor < X11, 2oz < Xp2)
+[P(o1 > X1, 202 < X12)]*Plaor < X11,200 > X12).  (3.39)
Note that the second last and last steps in Equation (3.39) are due, respec-

tively, to the independence and identical distributions of X1, Xo and X5,

Finally, continuing with Equation (3.39), we have

o2 o1
[/_ ]_ f(a:ll) $12)d$11d2}12}

[ roc  poC 2
X / f(iEll, 3‘312)d$11d$12]
Toz Y Xo1

o1
/ fz, 212 d$11d3/12]

o

[ rxo2 o0 2
X f f f{z11, 10 d$11d$12]
&

01

+/ / flzn, 212) dl‘udfﬂlz}
T2 Yol

X [f f f( $11,$12)d$11d$12]2

Zg2
+ [/ f($11, $12)d$11d3712] (3.40)

2
{f f flz11, 219 dfCudiEw]
o2 -

We denote P(zo € R(X1, Xo) Nzp € R(X,, X3)) as Dy (zq) to facilitate our

+

notation. Repeating Equations (3.18) and (3.19) with 7 in the place of ¢, the
proof is complete. QED

Analogous to that for circular depth, the variance for Dy (z) in any di-

mension p can simply be obtained by altering the above variance calculations
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in two dimensions by replacing the quadrants Qi,i = 1,2,3, 4 by p— dimen-
sional boxes Q7,7 = 1,2,..., 27, and by using p-tuple integration rather than
double integration.

In the Lagrange multiplier method, we can minimize or maximize an equa-
tion

H(zy, 29, ..., z,)

subject to m restrictions
Yi(z1,22,..,20) =0, 1=1,2,....m

by solving the equations

oz +A13:L'i +)\za$i —I-...-i—)\m—(%;—o, 1=1,2,...,n.

There are » + m unknowns and n + m equations, and so a unique solution,

&1, Ta, .-, Tn May exist. We will use this method to find an upper bound on

D™(zo) and Dy (x):

Theorem 3.2.10 The rectangular depth D" (z) has value less than or equal
to 1 for every € R?. That is,

D) < % VzeR?

Proof. We will begin with the proof the theorem for p = 2. Recall from
the proof of Theorem 3.2.8 that

D'(zo) = [P(X2 € QL)[P(X; € @3)] + [P(X; € Q2)][P(X: € Q4)]
HP(Xz € Q3)|[P(X1 € QU)][P(X; € Q4))[P(X, € Q2)]
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= 2{[P(X1 € QU)][P(X: € Q3)]}
+2{[P(X1 € Q2))[P(X;1 € Q4)]}

= 2ab+ 2cd, (3.41)
where
a = P(X;eQl)
b = P(X;€eQ3)
c = P(X;€Q2)
d = P(X;eQ4).

Note that the last step in Equation (3.41) is possible by the identical distri-
butions of X; and X,. We now want to maximize 2ab + 2cd, subject to the

restrictions
Pi(a,b,e,d) = a+bt+c+d—1=0
Pala,byc,d) = ab>0, and
¥s(a,be,d) = cd > 0.
We can equivalently maximize ab + cd. We let
f=ab+cd+ Mla+b+c+d)+ Aafab) + As(cd).

Using the Lagrange multiplier method, we have

. b+ A +bra=0

da

a

5';:— = a+)\1+a)\2=0

—a—i = d+ A +dr3=0

de

d

52‘ = C+)\}+C/\3:O. (342)
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From Equations (3.42), we have that

(14+X)b = (I1+X)e =a=0b and
(I+X)d = (1+XM)e =c=d. (3.43)

From ¥4 (a,b, ¢,d) = 0, we have
1
a+bt+c+d=1 =2a+2c=1 =>c=§—a,

and so

1 1
ab+cd=a2+c2=a2+(§——a)2=2a2—a—?—?4—.

But sincea=0band a+b+c+d =1, it follows that a < %, and so

1 N2 111
b+ed = 2a° — _<2(_) SR
Gt =20"—at 7 <2|5 5T 171

Therefore we have that

D" (xp) = 2ab + 2cd <

[N

Note that conditions %, and 13 are equivalent to saying that a, b, c and d
are all greater than or equal to zero. Although the product of two negatives
gives a positive, if a and b were both negative, then ¢ and d would have to
be as well. Conditions 13 and 93 would be satisfied, but the first condition,
%1, would be violated. This is therefore impossible, and this completes the
proof for p = 2. Note that D"(z) can in fact attain this maximum value

when either
11 11
(a,b,¢,d) = (5, 5,0,0) or (a,b,ec,d)= (0,0, Y 5) )
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In p dimensions, we would have
2r
DT‘(CL'U) = ZP(X € Q?,)P(X € —Qi)
i=1

ar
= Z a;b;,
i=2

where a; = P(X € Qi),b; = P(X € —Q4), and where —Qi is the quadrant

opposite of Qi. By a simple extension of the above argument, Dr(zg) < %

and D" (zy) = % when a;, = b;, = % for some 4y, and a; = b; = 0 for all ¢ # 4.

QED

Theorem 3.2.11 If X1, Xy, X5 are i.i.d. with c.d.f. F, the probability that a
fized point zg is contained in both B(X1, Xs) and B(Xy, X3) is less than or

equal to ;. That is,

Proof. We will begin with the proof for p = 2. Recall from Theorem 3.2.9
that
Digy(zo) = [P(X2 € QUPIP(X, € @3)] + [P(X, € Q2)P[P(X, € Q4)]
HP(X> € @3)[P(X1 € QU[P(X, € QUP[P(X) € Q2)]
= a’b+ b+ Ad + e, (3.44)
where a, b, ¢ and d are defined as in Theorem 3.2.10. Note that the last step

in Equation (3.44) is possible by the identical distributions of X, and Xs.

To maximize Equation (3.44), we proceed as follows:

a®b + b%a + c*d + d*c = ab(a +b)+cdlc+d) < ab+ed
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since a +b <1 and ¢+ d < 1. But we found the maximum value for ab + ed
to be ﬁ in the proof for Theorem 3.2.10. This completes the proof. We note

that Dfy) (o) can actually attain this value if

11

11
5,5,0,0> or (a,b,c,d)—(0,0,— )

(a,b,c,d)=( 2’5

The proof for any dimension p would follow analogously to that stated at the

end of the proof for Theorem 3.2.10. QED

We now find an upper bound for the variance of D7 (z).

Lemma 3.2.12 For any dimension p > 2, the variance of the sample rect-

angular depth has an upper bound of (471_6)1(”_1) + ng:_zl) foralln > 2. That
18,

< 3 n n—2
T (dn-6)n(n—1) nn-1

Var(D](z0)) Vn>2

Proof In light of Theorems 3.2.10, 3.2.9 and 3.2.11, the proof is identical
to that of Lemma 3.1.12. QED
Another consequence of Theoremn 3.2.9 is the following corollary:

Corollary 3.2.13 Dj(x) is a weakly consistent estimator of D™ (z), i.e. Dr(z)

converges to D" (z) in probability for any x € RP.

The proof follows from Lemma 3.1.12 and Markov’s inequality applied to
Y = |D}(x) — D"(z)| (see Lemma A.2.6).
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3.3 A Comparison of Our Three Geometric

Depth Functions

Now that we have examined the simplicial, circular and rectangular depth
functions, we can compare them and discuss some of the potential advantages
and disadvantages of their use in practice.

To date, Liu’s simplicial depth has proven to be a very useful and valu-
able tool, both in theory and in practice. As discussed in Chapter 2, the
sample simplicial depth function D$(z) has some very desirable properties,
including unbiasedness and consistency. The simplicial depth function De(z)
was shown to be continuous and to decrease to zero as z gets further and fur-
ther away from the “centre” of the distribution F. Furthermore, for angularly
symmetric distributions, D*(z) was shown in Liu (1990) to be monotone non-
increasing, and to have a maximum of 277, attained at the point of angular
symmetry.

We obtained many similar results for both the circular and rectangular
depth functions. Both DZ(z) and D (z) were found to be unbiased and
weakly consistent. (The property of strong consistency will be examined in
my doctoral thesis.) The circular and rectangular depth functions D°(z)
and D"(z) were both shown to be continuous. Conditions on F ensuring
monotonicity will also be examined in my doctoral thesis. The maximum
values for both D¢(z) and D"(z) were found to be 3, regardless of the
probability distribution F.

A question of obvious interest is the use of circular and rectangular depth
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in defining (locating) the centre of a multivariate distribution. The omission
of this topic in this thesis was deliberate.

While attending the DIMACS Workshop on Data Depth (held May 12-
14, 2003 at Rutgers University, U.S.A.), my supervisor became acquainted
with a group at Penn State University (Pittsburgh, U.S.A.) that were pur-
suing this very direction. This group, consisting of Professor Thomas P.
Hettmansperger and graduate students Ryan T. Elmore and Fengjuan Xuan
studied the analogues of j1, and 1 (see Section 2.1) using circles and rectangles
instead of simplices. Included was a study of the variance and consistency
of fi,. At the time of completion of this thesis, their work had not yet been
published, or to our knowledge, been completely drafted. This explains our
omission of their work in the bibliography.

It is important to note that, while they formulated the definition of cir-
cular and rectangular depth simultaneously, yet independent of us, they had
not, to my supervisor’s knowledge, studied any of the properties for them

found in this chapter.

3.3.1 Advantages of Circular and Rectangular Depth

In Theorem 2.4.3, it was shown that the “tractable” form of D*(z) is ex-
tremely diflicult, if not impossible, to calculate in practice. On the contrary,
the tractable forms for D°(z) and D"(z) may be tedious, depending on the
form of f(z), but are nonetheless much simpler to calculate and the reasoning
motivating the formulae for their calculations is much more apparent.

Calculating the sample simplicial depth, D2(z) can also be quite tedious,
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and represents a hurdle in the practical applications of Liu’s simplicial depth.
Among other related complexities, to determine whether a point lies in a
given simplex S(X;, X, ..., X)), we must solve a system of p -1 linear equa-
tions. In contrast, the methods for determining whether a point falls in a
ball C(X1, X3) or a box B(X;, Xy) for the circular and rectangular depths,
respectively, are comparatively much simpler and straightforward, especially
if p is large.

We have also calculated explicit tractable forms for the variances of D¢ (z)
and D} (r). In principle we could have proceeded along the same lines to
“calculate” the variance of Liu’s sample simplicial depth function Ds(z).
Here, rather than separating the pairs of pairs of indices {i,7} and {k, 1}
into three cases, we would have had to separate the pairs of triplets of indices
{t,4,k} and {¢,u,v} into four cases which are more difficult to describe and
count. One can only imagine how much more complex the calculation of
the variance would be. For example, even in the plane, the expansion of

E[Dg(z0)])* would include terms of the form
P((’LO & A(X;,XQ,X:;)) n (2?0 c A(Xl,X4,X5))),

which are much more complicated (i.e. involve many more cases) than the
already-complex D*(xo) itself. (See Theorem 2.4.3).
Related to the variance, Liu (1990) states the following lemma, the proof

of which can be found in Serfling (1980):

Lemma 3.3.1 Let F be a distribution on R? and X, X, ey Xn @ Tandom
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sample from F. Let

-1
u,:(") S R(X, Xy X))

M/ 1<ii<o<im<n

be a U-statistic with kernel h of degree m. If h is bounded by a constant c,

then for any r > 2,

=

E(U, - E(U,)) <

;31

where K depends only on c.

The simplicial depth, circular depth and rectangular depth functions are
all U-statistics with respective kernels I(z € A(X;, Xa, ..., X,,)) (of degree
p+1), I(z € C(X1, X)) (of degree 2) and I(z € B(Xi, X)) (of degree
2). As such, if we let r = 2, Lemma 3.3.1 gives an upper bound of {% for
the variances of all three sample depth functions, where X is some constant.
Clearly, Lemmas 3.1.12 and 3.2.12 improve on this result, in that they yield
specific, although possibly not optimal rates of convergence for Var(D,(z0))

and Var(Dg(x)).

3.3.2 Advantages of Simplicial Depth

Up to this point, we have focused on advantages of circular and rectangular

depth over simplicial depth. One of the potential drawbacks of using the

circular and rectangular depth functions is that we do not get as many balls

or boxes generated for a given sample size as we would simplices in the case of

simplicial depth. Recall that, given a sample of size 7 in R?, we can generate
p+1

( " ) simplices, but only (’2‘) balls or boxes. If p = 2, this is a ratio of

"2 s 1vn>5)
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For example, if we have a sample of size n = 20, we get six times as many
triangles generated as we would circles or rectangles. The discrepancy be-
comes even greater as n and p increase. As such, for a given sample size,
D7 (z) will give a better estimate for D*(z) than D¢(z) and D7(z) will for
D¢(z) and D7"(z), respectively.

We also notice that a simplex is formed in a way that (at least for uni-
modal, continuous and monotone densities f(z)) will enclose a “more rea-
sonable” region than will a ball or a box. This is due to the fact that all
extreme points of the simplex have come directly from our sample, and so
they likely are found in regions of substantial probability. In contrast, only
two of the points on a ball or two corners of a box actually came from our
sample of data values. As such, they may contain points in areas of very
low probability. To further illustrate, if f(z) has finite support, C(X;, X;)
and R(X;, X,) will, with positive probability, contain points that are not
even in the support of f(z). A possible solution to this latter problem
is to simply alter our definitions of D:(z) and D7 (z) by multiplying each
I(z € C(Xy, X3)) (respectively, I(z € R(X), X3))), by an indicator function
I{z € S) where S is the support of f(z). In contrast, note that a random
simplex, S(X1, Xy, ..., X,41) will lie entirely in the support of f, provided the
support is a convex subset of R?. For an illustration of the above discussion,

see Figure 3.9.
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Figure 3.9: The circle O(Xy, X,), the rectangle R(X;, X;) and the triangle
A(X1, X3, X3) superimposed on the support (dotted region) of f, respec-
tively.
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Chapter 4

The Use of Data Depth in
Quality Control

Univariate quality control charts are commonly used in industry to monitor
quality characteristics of items being produced. We now examine some prob-
lems associated with the use of these charts in a multivariate setting, and we
examine the application of Liu’s simplicial depth in this important area of

statistics.

4.1 Statistical Process Control

Roughly stated,

Definition 4.1.1 Statistical process control (or quality control as it is often
referred to) is the set of methods for monitoring and improving the quality

characteristics of a process.
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Quality control may be employed, for example, on the production line
of an automobile manufacturer. In the context of statistical process control,
quality does not refer to luxurious options such as leather seats and high-tech
stereo systems. Rather, quality refers to conformance to requirements, or as
quality expert Joseph M. Juran (1992) describes it, “fitness for use”.

For a vehicle to be fit for use, we are not concerned with the clarity of
sound of the stereo system, but rather the reliability and smooth operation
of the automobile. We need all the parts to properly fit together so as to
function properly and safely. After all, faulty brakes will be of far graver
consequence than seats which may not be as soft as leather.

In statistical process control (SPC), we are concerned with controlling the
variability of a process. If certain quality characteristics vary excessively,
they may not conform to requirements. As such, variability is seen as the
enemy of quality.

Moore (1995) gives the following definitions:

Definition 4.1.2 A variable (quality characteristic) that continues to be

described by the same c.d.f. over time is said to be in control

Definition 4.1.3 Control charts are graphical tools used to monitor the

control of a process and alert us when the process has been disturbed.

Shewhart (1931) introduced the notion of control charts to monitor a
single quality characteristic of a process. Shewhart Z charts are used to
monitor the process mean when a variable is assumed to follow a normal

distribution with mean p and standard deviation ¢. The chart consists of
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a, centre line drawn at p and parallel lines drawn at the upper and lower
control limits (UCL and LCL, respectively), drawn at y + 375 Values of z
are plotted on the chart for samples taken over time.

As long as the process is in control, points should be randomly scattered
about the centre line, and, by properties of the normal distribution, a point
will only fall outside the control limits 0.3% of the time. When we see such a
point (known as an out-of-control signal), the process is stopped to determine
if the mean or variance of the process has changed significantly, or if the signal
was simply the result of an exceptional sample (which we expect to occur
randomly in 3 of 1000 cases, even when the process is in control). In the
former case, the problem must be investigated and action taken to correct
the shift in parameters before resuming production. As such, it is hoped that
any problem can be detected and remedied as soon as possible, so time and
money are not wasted manufacturing items that are not fit for use.

Note that a point falling outside the control limits is not the only potential
out-of-control signal. A trend of increasing or decreasing points over time
is also an indication of a gradual shift in the process mean, and should be
investigated.

Furthermore, the assumption of known mean and variance are not often
valid. In such cases, Shewhart control charts based on sample means and
ranges are available and frequently used.

Due to time or cost constraints, it is often not feasible to take samples of
size greater than one, and so the Central Limit Theorem cannot be invoked.
In such cases, individual control charts are available. Most any SPC textbook

will provide a more in-depth discussion of Shewhart contro! charts. See
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Montgomery (2001), for example.

4.2 The Use of Data Depth in Multivariate
Quality Control

We now consider one very important application of data depth, namely, its
use in the longstanding and difficult problem of multivariate quality control.
The discussion in this section is based in large part on that found in Stoumbos

and Jones (2000).

4.2.1 The Problem

The traditional approach to control charts has been parametric and univari-
ate. The problem encountered with these methods is two-fold. Firstly, most
methods include the assumption that a specific quality characteristic’s mea-
surements follow a normal distribution. We often suspect (or know) this
not to be the case, and when only small sample sizes are feasible, as is the
case with individuals control charts, we cannot rely on the invocation of the
central limit theorem. Furthermore, most control charts examine only one
quality characteristic, when in reality, most items produced must be “fit for
use” with respect to several different correlated variables. The examination
of all variables separately is of little use, as it ignores the correlation structure
of the characteristics.
Hotelling (1947) introduced the first multivariate control chart, a Shewhart-

type chart that was later extended by Jackson and Morris (1957) using prin-
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ciple component analysis. Such multivariate charts, however, involve the
often-unrealistic assumption of multivariate normality. In addition, when
the production run is short, we may not have sufficient data to estimate all
the necessary parameters. Coleman (1997) asserted that he “would never
believe the multivariate normal assumption for industrial data”, and that he
“cannot believe that there are tests for multivariate normality with sufficient
power for practical sample sizes.” His conclusion was simple: “Distribution-

free multivariate SPC is what we need.”

4.2.2 The Use of Liu’s Simplicial Depth in Multivari-
ate SPC

Liu (1995) proposed a new Shewhart-type control chart based on her notion
of simplicial depth (Liu, 1990). The chart is nonparametric in nature, and
can be used to detect a significant change in the centre or variation of a
process. The central idea underlying these control charts is to “reduce each
multivariate measurement to a univariate index — namely, its relative centre-

outward ranking induced by a data depth measure” (Liu, 1995).

Individuals Control Charts Based on Liu’s Simplicial Depth

Liu (1995) used the name 7 chart for her multivariate control chart based on
simplicial depth. To avoid confusion with the commonly used R chart for
sample ranges, Stoumbos and Jones (2000) refer to the chart as the simplicial
depth for individuals chart (SDI chart), as we will do here.

Let X1, Xy, ..., X,, be a random sample. Assume that, when the process
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is in control, the X; have absolutely continuous distribution ¥ on R”. When
the process is out of control, the X; have absolutely continuous distribution
G on R?. Let X7, X3, ..., X} be an i.i.d. reference sample from F, where n >
(p+ 1), which we use to construct an SDI chart. After the reference sample
is selected, we take a further sample of independent p-variate observations
X1, Xo, ... at specified sampling points ¢ = 1,2, ... respectively. The following

definition is taken from Stoumbos and Jones (2000):
Definition 4.2.1 The control statistic for the SDI chart is

ra(X) = —— 1+ 3 MDA < DA, Viz12.,  (41)

n+1 =

where Dy (X7} and D;(X;) are calculated with respect to the ezpanded ref-
erence sample (ERS) X7, X5, ..., X} X;, fori=1,2, ...

The control statistic 7,(X;) represents the proportion of observations in the
ERS that have simplicial depths at least as low as D (X;). Large values
of 7,(X;) indicate that the point X; is relatively deep within the data cloud
generated by the ERS, and so there is no cause for concern. Exceptionally low
values of 7, (X;) indicate that X; is an outlying point and may be indicative of
the process being out-of-control. As such, fixing a pre-assigned control limit
g, at the ¢th sampling point, if r,(X;) < g, we stop sampling and declare the
process out-of-control. If »,,(X;) > g, the process is declared in control and
the sampling is continued.

Liu’s SDI chart plots ¢ against r,(X;). Because of the centre-outward
notion of ranking associated with data depth, this chart only has, i.e. only

requires, a lower control limit, g. The control limit g, as is the case for most
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any control chart, is chosen in a manner so as to attain a reasonable “average

run length” when the process is in control:

Definition 4.2.2 The average run length (ARL) of a process is the expected

number of observations to be taken before an out-of-control signal occurs.

When the process is in control (i.e. X;'s represent a random sample from c.d.f.
F), we would like for the ARL to be high, as we do not wish to frequently
stop the process to examine causes of the signal when in fact the process is in
control. The inverse of the ARL computed under the in-control distribution
£ is known as the false alarm rate (FAR). Conversely, we would like the ARL
to be low when the process is out-of-control (i.e. the data represent a random
sample from c.d.f. G, which is different from F).

The FAR is simply the probability of an observation from F being repre-
sented as out-of-control. For the classic univariate Shewhart control charts
with the control limits at p+ 3-%=, this value is known to be 0.0027. Assum-
ing observations are i.i.d. with c.d.f. F (when the process is in control), the
waiting time Y for an out-of-control signal is a geometric random variable

with parameter 0.0027. As such,

11
FAR  0.0027

E(Y) = ARL = = 370.4.

In general, the in-control ARL of the SDI chart is the mean of a geometric
distribution,

ARL = l,
o

where o = FAR.
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Liu and Singh (1993) showed that, when F is absolutely continuous,
ra(X;) 5 Ul0,1] asn — oo, (4.2)

where “%” denotes convergence in distribution and U[0,1] is the uniform
distribution on [0,1]. In other words, if we take a sufficiently large reference
sample, 7,(X;) will behave approximately like a U [0,1] random variable.
Equation 4.2 suggests that we use o = ¢ as the lower control limit in our

SDI chart. See Liu (1995) for illustrations of such charts.

The Effect of the Reference Sample Size in SDI Charts

Liu (1995) recommended using a reference sample of size n = 500 when
p = 2, and more in higher dimensions. However, the recommendation was
more heuristic than mathematically justified. As such, Stoumbos and Jones
(2000) investigated the problem of determining the smallest required refer-
ence sample size for SDI charts, in order that r,(X;) could even possibly
attain a value lower than g. Stoumbos and Jones (2000) state and prove the

following theorem:

Theorem 4.2.3 Let Xy, Xs,..., X, be an i.i.d. random sample from a c.d.f.

F on RP. The minimum sample simplicial depth any sample point can have

ig EEL
n

Proof. Clearly, a sample point X; € {X1, Xy, ..., X,,} will attain the mini-

mum sample simplicial depth if and only if X; ¢ S(X,,, Xy, ..., X; .,) when-

p+l )

ever i ¢ {i1,43,...,%41}. That is, X; is contained only inside the closed

100



simplices for which Xj is a vertex. X; is a vertex of precisely (";1) simplices.

In total, (pil) simplices are generated. As such,

-1
Di(X;) = (p” ) ) 1(X; € S(Xiy, Xig, s Xipy1))

1) 1cicin<icipzn
- (56
(p!(v(zn—_pllim) ((p+ 1)!(2!—39 - 1)!) _ pi 1

The proof is complete. QED

Stoumbos and Jones (2000) show that a sample point assumes this min-
imum sample simplicial depth if and only if it is an extreme point in the
convex hull determined by X, X, ..., X,,. They also assert and prove the
fact that at least p+ 1 points share the minimum simplicial depth. As such,
lower bounds for r,,{(X;) are given as

(n+1)
- Ei > p+ 1

nXi
T( )" n+l " n+1

fori=1,2, .., (4.3)

where Ei(nH) is the number of extreme points in the ERS X7, X3, ..., X X
(See Definition 2.4.4).

Equation (4.3) implies that the smallest possible FAR that can be used
in an SDI chart is ¢ = a = f:r—i For any value of ¢ lower than this, the
control chart will never signal, thereby defeating our purpose. The largest
attainable in-control ARL that can be attained is thus é = g{%. When
n = 500 and p = 2, this corresponds to an ARL of §-g—1 = 167. Note however

that this represents the best-case scenario, as %i— is the absolute lower bound
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for r,(X;). It is quite possible that there will be more than p + 1 extreme

sample points in the expanded reference sample, and so our control limit

(n+1)
must be at least —S——.
: gint . L (n+1)
Since g = —i—— is a random variable, the distribution of E must

be examined. A comprehensive examination of asymptotic distributions for
E§”+1) for various distributions F' is provided in Stoumbos and Jones (2000),
based on earlier work, such as that in Efron (1965). They use the expectation
of the extreme number of points in the lower bound of 7,(X;), rather than
the number of extreme points Et-(nﬂ) itself. They obtain some remarkable
conclusions, notably that Liu severely underestimated the number of points
required in the reference sample to obtain a reasonable in-control ARL.

For example, as calculated in Stoumbos and Jones (2000), using n = 500
data points from a bivariate standard normal distribution gives an expected
minimum FAR ‘of 0.0215, corresponding to an in-control ARL of only 46.53.
Using n = 500 data points from a bivariate uniform distribution on the unit
circle gives an expected minimum FAR of 0.0530, corresponding to an in-
control ARL of only 18.86. In quality control, false alarm rates of at most
0.0027 are usually used, corresponding to an in-control ARL of 370.4.

Also from Stoumbos and Jones {2000), to achieve an expected minimum
FAR of 0.0027 for a bivariate standard normal distribution, a reference sam-
ple of size n = 4,816 is required. For a trivariate standard normal distribu-
tion, n = 11, 498 observations are required. Worse still, 7 = 44, 347 bivariate
uniform observations on the unit disc and n = 2, 745, 678 trivariate uniform
observations on the unit sphere are required to achieve an expected minimum

FAR of 0.0027. The reference sample size requirements increase quickly as
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the number of dimensions increases. (See Stombous and Jones (2000)). Still,
nonparametric multivariate control charts such as the SDI charts require far
fewer reference sample observations than, say, Hotelling’s (1947) T? chart,

which requires the estimation of several parameters as well.

4.2.3 The Use of Rectangular Depth in Individuals
Control Charts

Replacing simplicial depth with rectangular depth and simplices with boxes,
we can construct an individuals control chart analogous to the SDI chart
using rectangular depth. We will call it a Rectangular Depth for Individuals
(RDI) chart.

Definition 4.2.4 The control statistic for the RDI chart is

() = g [+ S IDL6G) < D) (4.4)

where D} (X;) and D} (X;) are calculated with respect to the expanded ref-

erence sample X}, X5, ... X7, X;, fori=1,2, ...

The control statistic 7,(X;) represents the proportion of all observations
in the ERS that have rectangular depths at least as low as D7(X;). The
chart is constructed and monitored in the same manner as the SDI chart.

In my doctoral thesis, I will investigate, among other things, conditions
ensuring the limit law in Equation (4.2) when r,(X;) is defined with respect
to rectangular depth, as per Definition 4.4. Following the same argument as
that for SDI charts, such a result would suggest that we take g = o = FAR

as the lower limit in our RDI charts.
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The Effect of the Reference Sample Size in RDI Charts

In light of the above discussions, we would like to determine the smallest
required reference sample size for the RDI chart in order that ro{X;) can
attain its lower bound g (using 0.0027 as an example). But firstly, we state

an analogue to Theorem 4.2.3.

Theorem 4.2.5 Let X1, X,,..., X, be an i.i.d. random sample from a c.d.f.
F on R?. The minimum sample rectangular depth any sample point can have

8 %, regardless of the dimension p.

Proof: Clearly, a sample point X; € {X;, X3, ..., X,,} will attain the min-
imum sample rectangular depth if and only if X; ¢ B(X,,, X,,) whenever
i ¢ {i1,92}. That is, X; is contained in only those boxes for which X; is one
of the generating corners. X; is a generating corner of precisely n — 1 boxes.

In total, (’;) boxes are generated. As such,

o) = () ¥ utkiener, x.)

1<is<ia<n
n—1

o

e (22 e

nl n

The proof is complete. QED

It can easily be shown that, in any sample, the maximum number of
sample points that can share the minimum sample rectangular depth is 2p.

For example, in the case of p = 2, a maximum of four points do not lie
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in any rectangles other than those generated by the point itself. These four
points correspond to those with the minimum and maximum values of the z—
and y— components. This argument obviously extends to higher dimensions,
Each sample point X; possessing either the minimum or maximum value of
some component will have the minimum sample rectangular depth. As such,

sharp lower bounds for r,(X;) are given as

2
(X)) > nfl fori=1,2,., (4.5)

unlike Equation (4.3), which actually depends on the number of extreme
points in the expanded reference sample, which in turn is a function of the
distribution F' of the random variable X.

Equation (4.5) implies that the smallest possible FAR that can be used
in an RDI chartis g = o = ;%% When n = 500, this corresponds to an ARL

of B = 125.25.

Theorem 4.2.6 To achieve a minimum FAR of 0.0027 for an RDI chart

for any bivariate distribution, we require 1481 observations.

Proof. By Equation (4.5), the minumum FAR is -2 so we have

n+1?
4

— = 0.0027

n+1

4

1=—— = 1481.

= n -+ 0.0097 1481.48

= n = 1480.48,

which we round up to 1481. The proof is complete. QED
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Note that this represents a distinct advantage over using an SDI chart.
Firstly, the required sample size does not depend on the distribution of the
Xi’s, nor on any heavy calculations. Secondly, and more importantly, many
fewer observations are required in the construction of an RDI chart. From
Section 4.2, to construct an SDI chart when F' is bivariate standard normal,
a reference sample of 4,816 observations is required, whereas 44,347 observa-
tions are required in the case of a uniform distributionon on the unit disc.
These represent, respectively, sample sizes over times and 29 times greater

than those required for an RDI chart for the same random variables.

Theorem 4.2.7 To achieve a minimum FAR of 0.0027 for an RDI chart

for any trivariate distribution, we require 2222 observations.

Proof. By Equation 4.5, the minumum FAR is £, so we have

n+1’
5 o007
n+1
6
1= 2 —999999
== 00007
= = 2221.22,

which we round up to 2222. The proof is complete. QED

Note that this again represents a distinct advantage over using an SDI
chart. From Section 4.2, to construct an SDI chart when F is trivariate
standard normal, 11,498 observations are required in the reference sample,
whereas 2,745,678 observations are required in the case of a uniform distri-

bution on the unit sphere. These represent, respectively, sample sizes over 5
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times and 1235 times greater than those required for an RDI chart for the
same distributions, a remarkable improvement, especially in the latter case.

It is obvious from the preceding examples that the relative efficiency of
the RDI chart in terms of required sample size with respect to the SDI chart
continues to increase with the dimension p. Although not quantified in this
thesis, these results should be tempered by the fact that D7 (z) will converge
more slowly to D"(x) than D3(z) will to D*(z), for the reasons discussed in
Section 3.3.2. Therefore, the rate of convergence in the rectangular depth
analogue of Equation (4.2) may be considerably slower. These issues will be
examined in my doctoral thesis.

It should be noted that while r,(X;) can, in principle be defined using
circular depth, the determination of the maximum number of sample points
X; attaining the minimum sample circular depth DS(X;) is rather geomet-
rically and mathematically complicated. The notion of the potential use of

circular depth in quality control will be explored in my doctoral thesis.
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Appendix A

Statistical Notation and Basic

Results in Probability

A.1 Basic Terminology and Notation

In this thesis, we will frequently work with points in p-dimensional Euclidean
space, denoted RP,p > 1. We express points zg, 2y, Zs, ... in RP by zy =
(33@1, Tog, .-y .’Egp), T = ($11, 192,04y $1p), Tg = (3]21, o9,y iy IEQP), ... When there
is no ambiguity in doing so, we will sometimes use z and y to refer either to
points in R?, or to numbers in R.

The distance between z; and z, in R? is defined as

P
l|z1 — 29| = J (T1 — 29:)%.
=1

1

Given a random variable X taking values in R?, the cumulative distribu-
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tion function (c.d.f.), F: R? — R of z is defined as
F(z)=P(X <zx), v €R?,

where the relation X < z is defined co-ordinate-wise.
F (equivalently, X) is said to be absolutely continuous if F has a density
function, f: R? — [0, 00). That is,

/Rp flz)dz =1

and

F(B)=P(X € B) = fB f(@)dz

for any Borel set, B C R?. In particular,

Top Toz fTOL
Fl(zo) = f_oo f_oo _/_oo f($11,$12,---,331p)d$11d$12"'d$1p~

If X has density f on R” and h : R? — R, then the ezpectation of h(X)
is
B = [ h(@)f@)d(z).
This is the so-called “law of the unconscious statistician”.

Two continuous random variables X; and X, are said to be independent

if and only if
P(Xl < :l}l,Xg < IEg) = P(Xl < LEl)P(XQ < 1132) Y Z1,Tn € R?

The two random variables are said to be i.i.d. (independently and identically
distributed) if and only if they are independent and both have the same

distribution £ in R”.
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A set A C RP” is said to be convez if, given any z,y € A,
ar+(l1-a)ye A Vae|0,1].

Given ), s, ..., 2, € RP, the convezr hull, denoted CH(zy,Za,...,Zs) 18
the smallest closed, convex subset of R? containing the points z1, s, ..., Z».
If X, is a sequence of random variables, we say that X, converges in

probability to a random variable X if, for every fixed € > 0,
P(|X,—X]|>¢€)— 0 asn — oo.

The sequence X, is said to converge almost surely (a.s.) to X if

300

P(iim X, = X) ~ 1

A.2 Basic Results in Probability

The following lemmas provide some basic tools from probability, frequently
used throughout the thesis. Their basic proofs can be found in most standard

probability texts. See Billingsley (1986), for example.

Lemma A.2.1 If P is a probability measure and Ay, As, ..., A, are any events

pl

then

(i) (monotonicity) A; C Ay = P(A;) < P(A,),

n

(i) (subadditivity) P (CJI Ai) <> P(4).

i=1
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Lemma A.2.2 (Fatou’s lemma)

Given events A1, Ay, ..., limsup,_,, P(A,) < P(limsup, . A,) , where

limsup A, = ﬂ {L:j ]

—00
K n=1

Lemma A.2.3 (Conditioning 1)

Given mutually exclusive, exhaustive events B, Bs, ..., B, and an event A,

P(A) = anp AN B;)

i=1

= L PAIBIP(B)

i=1
Lemma A.2.4 (Conditioning 2)
Given an event A and an absolutely continuous random variable X with p-

dimensional density f(z),z € R?

P(A) = /W P(AIX = 2)f(z)dx.

Lemma A.2.5 (Conditioning 3)
Gwen a random variable X and another random variable Y, the latter abso-

lutely continuous with p-dimensional density f (y),y € RP,
E(X) = B(E(X|Y))
= F(XY = .
fm (XY =y) f(y)dy

Lemma A.2.6 (Markov’s Inequality)

Given a random variable, Y > 0 and a constant o > 0,

1

PlY > a] < (Y).

2
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Appendix B

Illustrations for Calculating
Simplicial Depth in Two

Dimensions

‘This appendix contains the 36 graphs necessary in formulating the proof for
Theorem 2.4.3.

Recall that the probability of X3 being a point such that 2, lies in the
triangle A(zy,zs, X3) for fixed values of zg,2; and Ty is dependent on the
ordering of the z- and y- components of zg, z; and z,.

'The following graphs represent the illustrations for each combination of
these orderings. Recall that probabilities of the 36 cases were grouped into
12 expressions h;, @ = 1,2,...,12. The case (i.e. the function %;) to which
each diagram belongs will be given in the caption. In each graph, we denote

L, that unique line which passes through both zg and z;, whereas L, is that
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unique line passing through both zy and z,. We denote as A the region in
which X3 must fall in order to have 4 € Az, 20, X3).
Note that some cases are divided into two illustrations, as the region A

depends on the slopes of the lines L; and L.
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L1

A

Figure B.1: The case where zg; < z1; < Z9 and zge < T19 < Zgp. Both

sub-cases contribute to the function A; in Theorem 2.4.3.
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x1

x2

x0
L2

A

L1

Figure B.2: The case where zo; < 217 < #9; and Zoz < Tog < Zi2. This case

contributes to the function A in Theorem 2.4.3.
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L1 X2

A

x0

x1

L2

Figure B.3: The case where zo; < 21, < 9; and ;9 < Tos < Tgo. This case

contributes to the function &; in Theorem 2.4.3.
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ALl

L2

x0

x2
x1

Figure B.4: The case where zg; < 211 < z9; and T1g < T9g < Zge. This case

contributes to the function A; in Theorem 2.4.3.
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Figure B.5: The case where zg; < 11 < ®g9; and oy < ZToe < Z12. This case

contributes to the function h; in Theorem 2.4.3.
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x1

x2

Figure B.6: The case where zo; < 71; < Zg; and Zgy < Z19 < Zge. Both

sub-cases contribute to the function 4; in Theorem 2.4.3.
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x2

x1

x0
L1

A

L2

Figure B.7: The case where 2g; < zg9; < 217 and zgy < ZT12 < T99. This case

contributes to the function A; in Theorem 2.4.3.
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x1

A 12

Figure B.8: The case where z¢; < 291 < z1; and zg < Tog < X13. Both

sub-cases contribute to the function #; in Theorem 2.4.3.
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X2
L1

L2 x1

Figure B.9: The case where zg; < 291 < z1; and 219 < Toa < Xgg. This case

contributes to the function A, in Theorem 2.4.3.
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x2

x1

Figure B.10: The case where zg; < 291 < z1; and 715 < Toy < Tgg. Both

sub-cases contribute to the function A; in Theorem 2.4.3.
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L2 X
A x0

X2
L1

Figure B.11: The case where zg; < 29 < z11 and Zoy < Xge < T19. This case

contributes to the function k; in Theorem 2.4.3.
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L1

x0

x1

x2

Figure B.12: The case where zp; < z91 < 211 and 29y < Z19 < ZTpg. This case

contributes to the function h; in Theorem 2.4.3.

125



x2

x1

x0

L2AL1

Figure B.13: The case where 21, < Zo; < o1 and zgs < T19 < Zgo. This case

contributes to the function hs in Theorem 2.4.3.
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x1

x0

1) A L1

Figure B.14: The case where z1; < 2¢; < 291 and zgy < T9g < 9. This case

contributes to the function Az in Theorem 2.4.3.
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x1

Figure B.15: The case where z;; < zg; < 297 and T1g < Zgg < Toe. These

sub-cases contribute to the functions g (top case) and hs (bottom case) in

Theorem 2.4.3,
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L2

x0

x2

x1

Figure B.16: The case where z1; < zp; < 291 and Tiy < Tgy < Tpy. This case

contributes to the function A4 in Theorem 2.4.3.
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Figure B.17: The case where 213 < Zg; < &2 and zg < Zgy < Z12. These
sub-cases contribute to the functions kg (top case) and hy (bottom case) in

Theorem 2.4.3.
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x0

x1

x2

Figure B.18: The case where x1; < g1 < Za; and gy < T19 < Tgg. This case

contributes to the function A4 in Theorem 2.4.3.
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x1

x0

L1

A

L2

Figure B.19: The case where z1; < 33 < zo; and zgy < 215 < ZT99. This case

contributes to the function Ay in Theorem 2.4.3.

132



x1

Figure B.20: The case where 711 < z9; < zo; and gy < 9y < z12. Both

sub-cases contribute to the function 4s in Theorem 2.4.3.
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X2
L1

x0

L2

x1

Figure B.21: The case where x1; < 91 < 2o and 215 < Zge < Ty, This case

contributes to the function A, in Theorem 2.4.3.
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x1

Figure B.22: The case where 21, < z9 < g and T1a < Tog < Tgy. Both

sub-cases contribute to the function As in Theorem 2.4.3.
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x1

L2

x0 A

X2
L1

Figure B.23: The case where z1; < 29, < 2o and gy < To2 < x12. This case

contributes to the function hy in Theorem 2.4.3.
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L2

L1

x0

x1

X2

Figure B.24: The case where z,; < 29, < zo; and Tag < Tyg < Toe. This case

contributes to the function /5 in Theorem 2.4.3.
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x2

x0

L2
L/ A

Figure B.25: The case where z9; < 201 < 217 and zgy < Tig < Zg99. This case

contributes to the function hz in Theorem 2.4.3.
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x1

X2

x0
L2

L1/ A

Figure B.26: The case where z3; < %o, < 211 and zgy < T9p < Z19. This case

contributes to the function ks in Theorem 2.4.3.
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Figure B.27: The case where 79, < 201 < 2 and T1g < Tgg < Tge. These
sub-case contribute to the functions kg (top case) and hyp (bottom case) in

Theorem 2.4.3.
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L1 A L2

x0

x2

x1

Figure B.28: The case where z9; < z¢; < 217 and z1o < Top < Zga. This case

contributes to the function A4 in Theorem 2.4.3.
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Figure B.29: The case where x9; < zo; < 717 and Tog < Toy < Tye. These

sub-cases contribute to the functions hy; (top case) and A5 (bottom case) in

Theorem 2.4.3.
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1 L2

x0

x1

x2

Figure B.30: The case where x9; < z¢1 < 211 and zgs < z15 < Zge. This case

contributes to the function A4 in Theorem 2.4.3.
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x2

Figure B.31: The case where zg; < 711 < zg; and zgy < Z13 < Ty. Both

sub-cases contribute to the function Ay in Theorem 2.4.3.
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x1

x2

x0

L2

A

L1

Figure B.32: The case where z9; < 211 < 20 and zgy < Tog < x12. This case

contributes to the function A, in Theorem 2.4.3.
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X2
L1

x0 A

x1

L2

Figure B.33: The case where zo; < 711 < 2g1 and zy2 < Zgg < T99. This case

contributes to the function ks in Theorem 2.4.3.
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L1

L2
x0

x2

x1

Figure B.34: The case where za; < 211 < 2o and T2 < Z9g < Zgz. This case

contributes to the function Ay in Theorem 2.4.3.
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x1 1.2

x0

L1
x2

Figure B.35: The case where z9; < 711 < 201 and 29y < Ty < z15. This case

contributes to the function ks in Theorem 2.4.3.
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x2

Figure B.36: The case where z9; < 317 < zg; and zo < 219 < ZTg2. Both

sub-cases contribute to the function s in Theorem 2.4.3.
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