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Abstract

Iu general, the notion of data depth enables us to describe how deep or central

a given p-dimensional point r is with lespect to a p-variate distribution F.
The sample version of data depth is nonparametlic in nature, and enables us

to order nultivariate data in a centre-outward ranking, giving us a notion of
order statistics in rnultiple dimensions. Liu (1990) defined a particular depth

function based on sirnplices that has come to be rvidely studied and applied.

In tliis thesis, Liu's simplicial depth function, along with its empirical
estimate, are examined, with focus ou sotne of their important properties,

including continuity and consistency, respectively. Some new properties are

asserted and examined, including a tractable form for the sirnplicial depth
function, as well as an uppeÌ bound on the mean of a r.andom version of
simplicial depth.

Two new depth functions are defined which, in two dimensions, ar.e based

on circles and rectangles, as Liu's simplicial depth is based on triangles.

Ploperties analogous to those for simplicial depth are asserted for our new

cilcular and rectangular depth functions, and the thlee are compared to
illustrate some beneflts and downfalls of each.

One irnportant application of sirnplicial depth is studied, narnely, that of
nonpararnetric nultivariate quality control, based on the work of Liu (1g95).

Control charts based on simplicial depth are defined for a multivariate pro-

cess, and an analogue is presented using our new rectangular deptli function.
Rectangular depth posesses some distinct advantages over simplicial depth
in its applicatiou to these charts, specifically, the reduction in the size of the
reference sarnple required in order to construct the charts.
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Chapter 1

Introduction

1.1 General Motivation

The notion of order statistics for univariate random variables is both straiglit-

forrvard and simply defined. Let Xr, X2, ..., Xn be a random sample repre-

senting one-dimensional data frorn a distribution. Then the kúå order statis-

tic X1*1 is defined to be the ,kúh. smallest of X1, X2, ..., Xn. In particular,

X¡¡ : minla¿q" X¿ while X¡,"¡ : rnaxla¿q,, X¿.

There is, however, no simple definition of order. statistics in the general

p-dimensional case. For example, rvhich data point is ,,greater,,, (2,7) ot

(4,3)? More cornplicated still, how do rve compare the points (-2, S, 1, g)

and (6, 0, 7 , -4)7 "lhe problem becomes increasingly more difficult as the

dirnension ¡r incleases.

The problem of multiva.riate orde¡ statistics can be dealt tvith by the no-

tion of data depth. This area of statistics rvas first proposed by Mahalanobis



(1936) and came to pÌominence some fouÌ decades later with the work of

Tükey (1975).

The basic principle of data depth is that multldimensional observations

are ordered based on how central or. "deep', they are, rvith respect to a
"depth function", whose shape is determined by (but is different from) the

distribution (probability density function) fro.r rvhich the observations arise.

In the context of data depth, if. Xl, X2,..., X" is a random sample from a

¡nulti-dimensional distribution, the kth order statistic X1*1 is now defined to

be that value of X¡,i : 1,2,...,n witli the Èth greatest depth (Liu, 1990).

Data depth ltas become a valuable statistical tool, both in theory and

application. One very desirable propetty of sarnple depth is that it is non-

parametric in nature, and so it lends its use to lnultivariate problems in which

the underlying multivariate distribution is either uuknorvn, or does not be-

long to a specific class of distributions. In par.ticular, we must often deal

rvith the problem that rnultivariate normality is not a valid assurnption in

rnany applications, and the notion of data depth can help us in these circum-

stances. This is illustrated in the use of data depth in multivariate quality

control.

Univariate quality control methods ar.e readily available, frequently used,

a'd ofte'easy to understand by practitioners. Even'rvhen the distributio'al

form of a variable is unknorvn, some relatively simple nonparametric cont¡ol

charts are available. However, quite often lve may wish to simultaneously

examine several quality characteristics of a process, as iudividual variable

examination ignores the correlation structure ofthe various attributes. There

are some multivariate quality control techniques currently in comrnon use,



but they rely on an often unrealistic assumption of multivariate normality.

In contrast, the notion of data depth allorvs us to construct nonpa.rametric

multivariate control charts tliat rvill be useful rega.rdless of the underlying

probability distribution (see Liu (199b) and Stoumbos & Jones (2000)).

L.2 The Notion of Data Depth

Before giving specific examples of deptli functions rvhich have already ap-

peared iu the literature, rve state a rough heuristic definition of data depth.

See Appendix A for all relevant notation.

Definition I.2.L Let .F be a probability distribution on Rp, p > L A d.ata

d.epth D(r) is a measure of how deep or central a given point ø € Rp is rvith

respect to tlre underlying distribution F. In the case of sample d.ata d,epth

D"(ø), we examine how deep or central a given point ø € Rp is rvith respect

to the data cloud Xr, Xz, ..., X".

For the remainder- of this section, X1, X2, .., X" is an independently and

identically distributed (i.i.d.) ra.dorn sample frorn a cur¡ulative distribution

function (c.d.f.) F on Rp, where each sample point X¿ can be viewed as a

1 x p rorv vector. We notv examine several useful forms of data depth, stated

in the chronological order of their discovery.

Definition 1.2,2 T\e Mahalanobis d,epth D^ (r) [Mahalanobis, (1936)] at

í¿ € Re, a row vector, with respect to F is defined as

D-(x): [1 +(ø- pr)Dr-t(x -/r¡,)t]-'



a real number, lvhere l,a and D¡ are the mean vectoÌ aDd dispersion rnatrix

of .F, respectively.

Note tlrat p,r : (h, þ2,..., ¡zo) and Ðe : [o,¡) (u p * p rnatrix), i.e. the ith
entry in ¡rp is E(Xs¿) and the entry o¿¡ in the riúh, rou, and the júå columu

of Dp (i, j : 7,2,...,p,.i I j) is the covariance of X6¿ and X6¡, and the

values orr (i: 1,2,...,p) on the diagonal a.re the va.riances of the X6;, where

X : (Xot, X02,..., Xop) has c.d.f. -F. The sample Mahalanobis depth Df;(ø)

is calculated by replacing these terms with thei. respective sample estir,'ates,

¿ and,9. Here, u : (21,22,...,tr) and.9 : [s¡¡], i.e. the ríth entry in z is r¿ and

tlre entry s¿¡ in the iúå. row and the júå column of S þ, j : 1,2,...,p,i, + j)
is tlre sample covariance aud the values s;¿ (i : 1,2, ...,p) on the diagonal are

the sarnple variances of the given data.

lf F has a density with elliptic contours, then D-(ø) is, intuitively, a

good measure of horv close a point c is to the rnean or ,,centre,, ¡l¡ of the

underlyi'g distribution .P. As 
'rust 

be the case, observations close to the

centre will have a higher depth value. Indeed, although nonparametric in

'ature, Mahalanobis depth is clea.rly best suited to situations where the

underlying density /(ø) lias elliptic contours. The remaining notions ofdepth

discussed here do not have that shortcoming.

Definition 1.2.3 In general, a half-space is defined to be II : {ø e Rrlr
lies on or belorv (above) a (1r - l)-dimensional hyperplane). For example,

whetrp:1, -II : (-oo,a] or'[a,co) for some o € R. When p:2, ltalf-
spaces are deterrnined by a line; that is, II : {(*,A) € Rplg/ < ar -l b} or

H: {(",g) € Rolg > aø*å} for some ø,ö € R. When p:3, ahalf-space



is determined by a plane, z: ar + ö9 * c, rvìrere a,b,c e H, and so on.

Definition L.2.4 "Ihe half-space depth or Tukey depth Dh(r) [Hodges (195b),

Tirkey (1975)] at ¿ € Rp rvith respect to F is defined as

Oh (x1 : inf{F(H): H is a closed half-space C Rp and r, € H}.

The sample version of half-space depth D|(ø) is calculated by replacing

F'(H) rvith the proportion of all data points falling in the closed half-space

fl,rvhereø€^H.

D/'(o) gives us the lowest probability under F of any halfspace ä con-

taining ø. Clearly, if tr' has a unirnodal and symrnetric distribution about d,

0 € W, then Då(ø) for values of ø € Rp uear á will liave higher values of

Dà(r), while values of ø in low-probability regions will have depths close to

zero,

Definition 1.2.5 The conuer hull peeli,ng depth Did [Bar.nett (1976)] of a

data point X¡ with respect to tlie data cloud X1, X2, ..., X, is defined to be

the "level" of convex layer to which X¡ belongs.

To determine the level of the convex layer of X¡, we stalt by constructing

tlre convex lrull rvliich encloses all of the sample points Xt, Xz, ..., X.. (See

Appendix A for the definition of a convex hull.) All data points Xi, i :
1,2.,...,n on the perimeter of this convex hull are desigtated to belong to

the first convex layer and all such points are theu removed. The process is

lepeated rvith all rernaining data points and those on the perimeter of the

convex hull of the remaining set of points constitute the second convex layer.



We keep repeating the process until no points rernain. As such, any point

X¡ on the pet'imeteÌ of the convex hull of all remaining points during the

jfå iteration of the process is said to belong to the júft. convex layer, i.e. the

jth level. For an illustration, see Figure 1.1. The higher the level of a point,

the greater its depth. Note that only a sample version of depth is defined

fo¡ the convex peeling technique. Note also that this method represents only

one version of couvex peeling. See Huber (1922) and Ðddy (1982) for further

discussion on other versions.

Figr.rre 1.1: An illustration of the convex hull peeling technique. In this

illustration, there are four convex layers (i.e. ìevels).

Definition 1.2,6 The Oja depth D"(c) [Oja (1933)] at z rvith respecr to F
is defined as

I

i\jr
/ rrltutt-tl

D'(x) : 17 + Eluolume(S(r, \,..., Xo))ll-t,



ivlrere ,9[r, X1, ...,Xo] i. the closed sirnplex rvith vertices r, a.nd. p randorn

observations X1, ..., X, from F' (see Section 2.1 for the definition of a sirnplex).

The sa.mple Oja deptli Di@) at i¿ € Rp rvith respect to the data cloud

Xr, X2, ...X^ is defined as

u r -1
D""(r) : (:\ tr + I {uotume(sfx,x¿,,..,x.,1)}-'1,\P)

rvhere * indicates all p-plets (ü,...,io) such that L <,it <... <.¿e <n. Intu-

itively, points close to "thicker" parts of the distribution (or data cloud, in

the sa'rple case) will form simplices with smaller volumes than observations

close to the perimeter of the distribution or data cloud. and so will have a

gleater Oja depth.

Definition 1.2,7 Given î1)i:2,...)rp € Re, a major szcle is that half-space

of Rp bounded by the hyperplane containing {x1,c2,...,xo} which has prob-

ability > 0.5 under F.

Definition 1.2.8 The majori.tg d,epth D*i (x) [Singh (199i)] of r e Rp ivith
respect to .F is defined as

n i @) : P(c is in the rnajor side determined bV (Xr, ..., Xo)),

rvlrere X1, X2, ..., Xo are i.i.d. random vatiables rvith c.d.f. F.

'Ihe sample majoritg depth Dii (x) at ø € Rp with respect to the data

cloud X1, X2, ..., X" is defrned as

z r -1, I 't1 \Dit @) : I ; I I f (r is in the major side detennined by {(X¿,,,.., X,,)}),
\p/



rvhere I is defined as above and I is the indicator function. That is.

I 1. *hun ,4 occrrrs.
t(.4) : i

[ 0, otherrvise

In the sample case, the major side is that side ofthe hyperplane containing

the majority ofthe data points. In two dimensions, a hyperplane is generated

by passing a (unique) line through two random points Xil and X¿r. The

major side is that side of the line containing more of the data points. In
three dimensions, a hyperplane is generated by passing a (unique) plane

tlrrougli the thlee tandon points Xi' X¡" ãt1d X;r. The rnajor side is that

side of the plane containing the majority of the data points. We generate

one hyperplane for each combination ofp data points. Obviously, the more

major sides that contain a point r, the greater its rnajority depth.

Definition 1.2.9 The likelihood d.epth DI(r) [Ftaiman and Meloche (1996)]

of ø rvith respect to F is defined simply as its probability density, and so

DI(c): f(x).
The sarnple version of D¿(z) can be any consistent density estimate at z.

(It should be noted that, in general, likelihood and depth are two distinct,

albeit complimentary concepts).

1.3 Overview of Thesis

This thesis concentrates on a speciflc notion of depth not listed above, namely

Liu's sirnplicial depth, a notion of data depth that has received much atten-

tion since its introduction in Liu (1990).

10



Liu based her depth function on random p-dimensional simplices. She

originally proposed the idea as a rneans to obtain a notion of a multivariate

median, rvhich is not forrnally or uniquely defined for a general distribution

.F on Re,p > 2. Liu suggested using that value ¿ € Rp rvith the highest sirn-

plicial depth D"(r) as the multivariate rnedian ,p. The sarnple multivariate

median /3n is then defined analogously as the sample point X¿ attaining the

highest sample sirnplicial depth D[(r,). In Section 2.1, rve formally define

tlrese notions. In Sections 2.2 and 2.3, several properties of the simplicial

depth function D" (r) arc given, including its continuity, rnouotonicity and

maximum value. Sone of the results will require an additional assumptiou

of angular symrnetry, which is defined in Section 2.3. The unbiasedness and

consistency of Di@) will also be asserted. All of these results have appeared

in Liu (1990).

Section 2.4 deals with some new properties of Liu,s sirnplicial depth not

discussed in her 1990 papet' or, to our knowledge, any subsequent papeÌs.

Included is an explicit form for the depth function D"(ø) in the case of p:2
dimensions, which has heretofore gone uncalculated. Also, an upper bound

for E(D"(X)) is given, rvhere D"(X) is a random version of simplicial depth.

Tlre bound, given in Theorem 2.4.6 may be cr.ude compared to Liu,s upper

bound for D"(ø) itself, but removes tlie restrictive assumption of angular

symmetry.

After having exar¡ined the various forms of data depth, rvith particular

emphasis on Liu's simplicial depth, we are led to define and exploÌe two new

notions of depth. Like simplicial depth, which in two dimensions is based on

the triangle, oul two nervly defined depth functions rvill be based on other

11



simple geometic shapes; circles and rectangles. In Chapter 3, rve define both

the circulal depth D"(z) and the rectangula.r. depth D'(ø). We examine

properties similar to those explor.ed for simplicial depth in Chapter 2. We

define and study unbiased estimators Di(r) and Di@) for the circular and

rectangular depth functions, respectively. The advantages and disadvantages

of using these forms of depth over simplical deptli are discussed in Section

3.3. hr any dimension p, both of ouÌ ltelv depth functions are based on only

tlo points in space, rather than the p* 1 points required for simplicial depth.

Whereas this irnplies a largeÌ variance for the two nerv depth functions as

compared to simplicial depth, our new notions of depth have many merits

over sirnplicial deptìr. For example, they are easier to visualize, and the

actual functional forr¡ of the depth functions are fa.r simpler than that of

simplicial depth. In addition, the empirical estimates Di@) and, Di@) .^,*e

qr.rick to calculate in practice, in contrast to Di (ø). (See Liu, parelius & Singh

(1999) for a discussion ou the cornputational cornplexities in the evaluation

of Di(z).)

Chapter 4 details one specific rnultiparameter control chart - that for in_

dividual observations - that is nonparametric in nature and based on Liu,s

simplicial depth. We extend the results to make a nerv kind of individuals

multivari¿te control chart, based this time on our rectangular depth fro'r
Chapter 3. A discussion on the required sample size is provided, and the ad-

vantage of using rectanguìar depth for these charts is highlighted. Ex.tending

these charts to circular depth rvill be exarnined in future work.

This thesis also contains ttvo appendices. Appendix A provides some nec_

essary notation, definitions and results which form the mathematical (prob_

t2



abilistic) foundation for many of ou¡ calculations and results throughout the

thesis. Appendix B contains sorne graphical displays rvhich are very illus-

trative in the calculation of one of our results, namely that of the functional

(tractable) fo¡m of Liu's simplicial depth D"(r) when p : l.



Chapter 2

Liu's Simpicial Depth

Since its inception in Liu (1990), simplicial depth has become a widely studied

ard applied depth function. When F' is bivariate, i.e. p :2, it is basecl on

the tria'gle, a sirnple geometric shape. This enables us to better visualize the

associated notion of depth, and enhances our understanding of the concept

substantially.

2.L Simplicial Depth and Sample Simplicial

Depth

Suppose we have an i.i.d. bivariate data set X;,X2,...,X^ rvith c.d.f. F.
With any three data points X¿,,X¿r,X;r, we can forrn the closed triangle

rvith vertices X¡,,Xr, and X¿" (denoted L(X;r, X¡", X¿")). If we use every

combination of three data points, (|) ttiu"gt"r will be generated from our

sanrple. To any point r ePc2, tve can associate the proportion of the geuer_

L4



ated triangles which enclose the point z. Intuitively, this proportion should

be relatively large if z is "deep" in the data cloud, and lower on its periphery.

The p-dimensional generalization of a triangle is a simplex, hence the

name of Liu's depth function. A simplex in p dimensions is the convex hull

formed by p * 1 distinct points in Rp. In one dimension, the ,,simplex,, is

simply a line segment. In trvo dimensions, it is a triangle. In three dir¡en-

sions, it is a pyramid, and so on. We begin with the definition of the sample

simplicial depth function in the bivariate case, since it is easier to visualize:

Deffnition 2.1.1 The sample sámpli,ci,at d,epth Di(ø) for a point z € R2 is

equal to the proportion of all triangles L(Xi.,, Xi", Xí"), 1 < i1 ( i.2 1 i4 1 n
which contain ø. That is,

(2.1)

We see that the depth giveu by Equation (2.1) is clearly the proportion

of all generated triangles containing the fixed point ø. Di(z) is the ernpirical

(sample) version of the true simplicial depth D,(ø):

Definition 2.L,2 The simplicial d,epth D" (x) for a point ø € R2 is equal

to tlre probability that o is contained in the random triangle L(XrX2,&).
That is,

D"(x): P(r e A'(X1,X2,Xs)),

rvhere X¿, i: L,2,3 ar.e i.i.d. rvith c.d.f. F.

(2 2)

Wlren tlie density function /(ø) is unirnodal and symr.netric about a point

I € R2, it is intuitively clear (and indeed can be proveu) that D"(ø) assumes

qr,l:(i) ' t n@eL(x¡,,xi,,x¡"))
\ó/ llir <,-¡<;¡<n

l5



higher values for c near á, rvhich coincides ivith the mode and mean of F'. As

such, d can be vierved as the "centre" of the distribution. Conversel¡ rvhen

/(z) is not symmetric, D'(ø) can be used to define a centre (rnultivar.iate

rnedian) of F.

To motivate the definition of Liu's simplicial r¡ultivariate median, rve

consider the univariate veÌsion of sirnplicial depth:

D"(x): P(r eX.fi),

where ø e R and X1 and X2 a.re i.i.d. with c.d.f. F. Xtñ represents the

closed liue segnent connecting X1 and X2. That is, X1X2 : [Xr, X2] U

lxz, Xtl, a disjoint union (: þnin(X1, X2), max(X1, Xr)]). When F is abso-

lutely continuous,

D"(") : P(X' < 
" 

< xz) + P(X2., < Xù

: P(X,, < x)p(r < Xz) t p(Xz 3 x)p(c < X)
: F(ø)(1 - ¡("))+ F'(z)(l - F'(r))

: 2F (r)(I - r'(r)). (2.3)

As such, rve have that

d

dF(ùD"(r) 
:2 - 4F(r) = o

rvhen F(r) : 0.5, i.e. r is the median of F, and since the second derivative

of D"(z) is negative, the median is that value rvhich maximizes the simplicial

depth. Hence, Liu (1990) pÌoposes the following definition:

l6



Definition 2.L.3 A biuariate sirnpl.icial medi,an p is any point ø € R2 whicli

maximizes the simplicial depth. If there is a finite number of such points, lve

can uniquely defrne the simplicial median as the average of those values.

Similarly, the sample version of the bivar.iate median is then:

Definition 2.1.4 Given an i.i.d. random sarnple X1, X2, ..., X" with c.d.f. F
on R2, tlre sample biuariate simplicial medzan þo is that data point X¿ which

attains the highest sample sirnplicial depth. If there is more than one point

X¿ attaining this highest value, we define p" as the average of those values.

All of these concepts can easily be extended to higher dirnensions. For a

distribution F on RP, the triangle in Definitions 2.1.1 and 2.1.2 is replaced

by the sirnplex whose vertices are formed by p + t independent observations

from F. In general, given p * 1 distinct points tl1r.2 ...,Íp+1€ Rp, rve define

the simplex

( p+l p+r ìS(x1,12,...,rp+t): {ø e Re:¿ = Ia¡ø¡, !a¡:1, a¡ > 0Vi f .

I '=t i=r )

The general definition of the sarnple simplicial depth in any dimension p is

as follows:

Definition 2.1,5 The sample szmpliciat d,epth Di(c) for a point z e Rp is

equal to tlre proportion of all simplices S(Xi,Xir,...,X;o*r), I < ù < i2 <
..' 1io*t ( n rvhich contain ø. Tliat is,

z r -1¿i('): (_',', ) I n@e s(x¿,,x¡",...,xu"*,)), (2.4)
\P + r/ 1li1(i2 (...(ip ¡r ln
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where X1, X2, ..., X" is a random sample fi.om F, and p * 1 < n.

Definition 2,1.6 The simplicial d,epth D"(x) for. a point ¿ € Rp is equal to

tlre probability tliat ø is contained in the random sirnplex S(Xr X2, ..., Xp+)
gerìerated by the p + 1 i.i.d. observations X1, X2,..., Xr¡1:

D"(r) : P(r e S(Xy, X2, ..., Xo*t)). (2.5)

The definitions of the 7:-dimensional simplicial median and sarnple sirn-

plicial rnedian follorv similar.ly:

Definition 2.1,7 The multi,uariate si.mpti,ci,al med,i,an ¡t is that value (or the

average of those values) ,r € Rp that maximizes the depth function given by

Equation (2.5).

Definition 2.1,8 The multzuariate sample simpli,ci,al med,ian þ*is that data

value X¿ (or the averages of those data values) which maximizes the function

given in Equation (2.4).

Given a point z € Re and p * 1 random observations from F, our next

task is to determine whether ¿ is contained in the sirnplex generated by

tlrese p * 1 points. We can check rvhether x e S(r1,r.2,...,Íp+\) by solving

the system of linear equations:

r : dlîl * azrz * ..'+ dp+rÍp+r, al + a2 + ... I ao*r: 1, (2.6)

undel the constraint that o¿ ) 0 V i.
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Remark 2.1.9 For a londegenerate simplex (rvhich occurs almost surely

when taking random observations flom an absolutely contiuuous distribution,

i.e. P(X1, X2, ..., Xp+t are "co-hyperplanar" ) : 0), this system lvith p + 1

utrknowns ar,d2t...,cxp+t Ìtas a unique solution, and ¿ is in the interior of

the sirnplex if and only if a1,a2,..., op11 âÌe all positive.

Example 2.1.10 Flom Figure 2.1, it is obvious that the bivariate point øe :
(5,4) is inside the triangle L(q,q,a3), where 11 : (7,2),r.2: (4,6),rs:
(6,3). We caÌì velify this fact by solving Equation (2.6);

a1(1,2) + a2(4,6) + a3(6,3) : (5,4), a1 + a2 + 03 : 1

=è a1 l4a2 * 6a3 : 5

2c¡1 l6o2 * 343 : 4

ût+d2+03:1

=> a, :1.o": g.r.: !' t7'-'' 17'-" 17'

and by Equation (2.6), we conclude that ø¡ is in fact in the simplex.

If we look ât the poiÌrt r,'o: Q,5) in Figure 2.1, it is clear that it is not

contained in the triangle. We use Equation (2.6) to verify this:

a1(1,2) + a2(4,6) +a3(6,3) : (2,5),a¡* az + o¡ : 1

) at * 4az * 6a3:2

2at * 6az * 3a3 :5

dttaz*as:!
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8145+or: l|,a2:n,a3:-17,
ivhich does not satisfy the constraint that o¿ ) 0 V i, and so we conclude

that øl is rrot ill the sitnplex.

7

6

5

4

3

2

I

Figure 2.1: The triangle L(x1,r2,rs) generated by the points ø1 :
(r,2), x2 : (4, 6), ø3 : (6, 3).

In practice, especially when rvorking in higher dirlensions, it is rnuch

eâsier to use (or create) a computer progÌam to make these deterrninatio's,

rather than rorv leducing large rnatrices.
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2.2 Properties of Liu's Simplicial Depth

We rvill norv look at some irnportant results from Liu's (1gg0) paper rvhich

describe the behaviour of D"(z). Theorems 2.2.7 and 2.2.4 arc stated but

not proven in Liu (1990). Theorer¡s 2.2.2 at¡d 2.2.3 arc stated and proven in

Liu (1990), but the proofs are given here in more detail, and in the general

case of p dimensions, whereas the proofs in Liu (1gg0) were only given for

P :2'

Theorem 2.2,t D" (x) is ,inuariant und.er ffine transforntations. That i,s,

i.f A is a non-singular p x p matrix and b e W, then

D),u(Ax+ð):D,(ø),

uhere D"o,,,(g) i,s the probabitity that g € Rp zs conta,¿ned, insid,e the simpler

wzth uertzces AX¡, ]-b, j:1,2,...,p-l 1. In our case, U: Ax * b, and, ue

uiew all eLements i,n Rp as p x I column uectors.

Proof. It is enough to show that

t € S(x1,n2,...,øp+r) ë Ar+be S(Ar1 *b,Ax2-1 b,...,At;r¡1 ].b)

Noiv,

x e S(x1,x2,,..,rp+) ++ .L:of o,"n l"h.r. "Ë", : 1, a¿ > OVii=1 
/p+t 

ti
ë Ar+ö:,4 l)-c,ø, l+å

\=)
P+1: \a¡(Ax¡) + b
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p+1
: Da¿(Ar¿ + b)

ë Ar + b e S(Acy * b, Ax2 I b,..., Axr¡ ¡ b)

This cornpletes the proof. Note that the second to last step is possible since

å : tili a¡b. Di@) is also invar.iant under affine transformations by a sirn-

ilar algurnent. QED

In other rvords, instead of forming simplices using X¿, , X¿, , ..., X¿p+r and

finding the proportion of these simplices containing ,;, 1ve can equivalently

forrn simplices using ,4X¿, aå,.4 X¿"|b, ..., AXb*, *ä, and find the proportiou

of the latter simplices containing Aø * å. The proportion will be the sarne,

as asserted by this property.

The following result asserts that D,(c) vanishes uniforrnly fast as lløll --+

co. The norm, llzl I is defined in Appendix A.

Theorem 2,2.2 For ang c.d.f. F onPte, sup¡1,¡¡¡¡,¡D"(ø) -r 0 os M ---+ oo.

Proof. Let Xl, X2, ..., Xp+t be i.i.d. rvith c.d.f. F. Given any z € Rp,

rve observe tìrat {ø € S(Xt,X2, .,xo*,)} g Uil,t{llx,ll > llcll}. This is

because, if z is further from the origin than any of the p * 1 random points,

it clearly cannot be contained in the simplex generated by the p * 1 poiuts.

Using the above inclusion and Lemma 4.2.1, rve get

D"(x) : P(r e S(X1,Xz,...,Xp+ù)

< P(uili{ilx.il>lt"il})
P+1

< Ðpflælt> ll'll) (¡v subadditivity)
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: (P+ l)P(llxlll > ll'll)

Note that the last step is possible by the identical distributions of tlie X;.

So clearly, since P(llxlll > ll"ll) Ir decreasing in lløll, it follows ttrar

qgr. D"(z)l qop (p+ l)P(llxlll > ll'll) s (p+L)P(llxll> M)
llcllz¡t,t llsll<n/

Since P(llxlll > llMll) ---+ 0 as rll---r co, we get the desired result, namely

suP D'(ø) --+ 0 as M --+ co.
llrll>^'l

This cornpletes the proof. QED

The following result asserts the continuity of tlie simplicial depth function.

Theorem 2,23 If F is an absolutely continuous d,i,stribution on Rp , then

D"(x) is continuous at euery x €PcP.

Proof. Let Xr, X2, ..., Xe+t be i.i.d. rvith c.d.f. F. We let {r",} be a

sequence in Rp such that 2," --+ ø, and show that

lr"(') - ,'(r")l < (n + t¡elcnçx1,x2,...,x) nrr;),

rvhere C11(X1, Xr, ..., Xr) is tìre convex hull of p points in Rp. Note that this

represents a "face" of the simplex S(Xl, X2,..., Xp+r).

Note that, in the context of intersecting line or hyperplane segments, ,,1ì,,

refers to the trvo crossing one another at some point. This differs frorn our

usual use of the intersection symbol "lì", meaning the intersection of two

sets or events.
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A random simplex can contribute to the difference D,(z) - D"(ø,) only if
it contains one point but not the other. This however irnplies that Uu; passes

tlrrough exactly one face of the simplex S(X1, Xz, . ., Xp+ù. See Figure 2.2

for an illustration for the case rvhen p : !.

Figure 2.2: x^ € L(Xt,Xz,X3) and r, / L(X1,X2,Xs), and so rT;ìX;&.
Tlrerefore, tlris simplex contributes to the difference D"(r) - D"(x").

For any two events .4 and B, P(.A.\B) : P(A)- p(AìB) > p(A)- p(B).

Therefore, if rve define

,q : þ e S(XbX2,...,&*,)l

B : lr" e S(Xb X2,..., Xo*,)],

we have, by Lemma 4.2.1,

P(A) - P(B)

P(c e S(X¡ X2,..., Xp+t) r, r, Ç S(X1, X2, ..., Xo*,))

, ( U (cH(xLx2,...,x¡-t,x¡+t,...,x'*r)n.---;))
\i=1.2'. 'p+r /



p+l

< D p(c H(x1, X2,..., x¿_1, x¿+1,..., xe+ù nîr;)
i=1

: (P + r) P(C H (x\ X2,..., xò 1'îr;)

S (p + 1) P(X1X;:$ 1,îr;),

whercX1X2.-\is the p-dirnensional hyperplane containing the points X1, X2,...,

Xo. This follows since, C.H(X1, Xz, . ,Xr) cXlX¡-Xu and since X1, X2, ..., Xo

are identically distributed. It can simila.rly be shown (or simply understood

by syrnmetry) that

D" ("") - D"(r) S (p + t) p (XtXz.l$ ntr;).

As such, we have

lD'(r) - D" ('òl s (n + t) P(X1X"-$ nm;¡.

We define the event

A": {Nrx;:Çnîai} y n.

Then
- f co I

ti3sgn.a. = n I U .aul : {, cx¿-l:$}.
n=l Li.=" I

By Lemma A.2.2, we knorv that

lias¡nP(-a") ! P(limsup,4") : P(, eXtEzJ4) : o, (2.7)

since F is absolutely continuous.

We can make the above assertion because of the follorving: We note that,

by conditioning on X1,X2,...,Xp_r (Lemma 4.2.4),



P(r eX1X2.-$)
l1

I l._". . P(x e X1X2...XrlXt : q,Xz : 12,...,Xp_t : rp_ù)
J J (R')P-1

f @r)f þù "' f @,-ùdrfic2 ''d'rp-t

IL",",, P(x € xp2...Xo)f @r)Í(rr). .. f (ro-)d.xfir2...d,x:p-t
J J (R')P- I

: 
llr*,r-,0f (a1)f (n2)''' I@r-t)d':ri,x2 'd,xo-1 :0,

by the absolute continuity of F. That is,

P@ e øtrz.-Ç) : P(X, er¡tø::eo-')
: P(Xp lies on a p-dimensional hyperplane) : 0

Tlrerefore, lD" (r) - D"(x")l * 0 as n ---+ æ. This completes the proof, using

the sequential chalacterization of continuity. QED

Theorem 2.2.  D".(r) is an unbiased, estirnator for D'(r,).

Proof. Let X1, X2, ..., X, be i.i.d. with c.d.f. F'. Since expectation is a

linear opelator, we have

f t r -1
EtDì(r)l : r l(/_ î,) D r(z e s(x¡,,xø, ..,x,"-,))l

L\z + t/ l sil<i2<_<ip_r sn

I n. \'
b; tJ rsi,ai,|a¡o*,çnr [l(ø e s(xi"xi"" x",,))]
z r -1ln,\
(r i,J,.,,.,,.Ð,-,,."P(r e s(x¡,, xi,,...,xi,*,))

/ ,, \-rl ,. \: 
bì t7 bi t/tø € s(xl'x2' 

'xP+t))



P(r e S(X1, Xr,..., Xo+))

D"(r).

This cornpletes the proof

It can be shown that

QED

var(D""(r)): E[(Di@) - D"(ø))]'+ 0 (2 8)

as ?¿ ---+ co (See Lemma 3.3.1.) A consequence of Equation (2.g) is that

Di(ø) is a weakly consistent estimator of D"(r) at each fixed ø € Re, i.e.

Di@) -- D"(z) in probability for every fixed ø € Re. (See Appendix A for

the definitio¡t of convergence in probability.) The follorving theorem, which

appears in Liu (1990), asserts sor¡ething much stronger, narnely, the uniform

strong consistency of Di(r). Its proof uses Gilvenko-Cantelli classes and

other in-depth notions in probability theor¡ and is therefore omitted in this

thesis.

Theorem 2.2 ,5 If F is an absolutelg continuous d,t stributi.on on Rp ui,th

bound,ed, d.ensitg f , then D"^ i,s unifot-rnly consistent, i.e.

sup,ep¡ lni@) - D"(ø)l -* 0 a.s. as 7¿ -) oo.

(See Appenrli,x A for the def,ni,tion of almost sure conuergence).

In fact, Liu (1990) gives conditions under which ¡i,, tìre sample simplicial

median, is a strongly consistent estirnator of ¡2.
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Theorem 2.2.6 Il F is absolutely continuous on Rp uith bound,ed, density

f (x) which d,oes not uani.sh i,n a nei.ghbourhood, of ¡.t and Lf D"(x) i,s untquely

mari,mized at ¡1,, then þn --+ ¡1, almost surely as r¿ ---+ Õo.

2.3 Angularly Symmetric Distributions and

Their Depth

In this section, rve study the class of a.ngularly symmetric distributions, a

class for rvhich it is natural to speak of a ,,median point,, . This will be

reflected in the properties of the associated depth functions. We will first

define a better knorvn class of distributions.

Definition 2.3.1 A random variable X € Rp has a centrallg sgmmetric

d.i,stributi,on about 0 e RP if

x-o!o-x,
rvhere "4" denotes equality in distribution.

Zuo and Serfling (2000) give the follorving lemma:

Lemma 2,3.2 Definition 2.3.1 is equiualent to stating that

p(X-e€H):p(x-ee-H)

for each closed halfspace H çP.P, where -H: {-ø: r a H}.

In other words, a random variable X rvhich follows a centrally symmetric

distribution about d has the sarne probability of falling in any ìralfspace
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¡I C RP as it does in the halfspace -11 C RP, tvhich is the mirror image of

fI across the point of symmetry d.

Deffnition 2.3,3 A t'andom variable X € Rp has an angularlg symmetric

d.i.stri,buti,on about 0 €W if

x-e d e-x
W-o¡ lx-=il

Lemma 2.3.4 Def,ni,ti,on 2.3.3 i,s equàualent to stating that

p(X - 0 e H-) -_ 
p(X - 0 € -r1*)

for each closed halfspace ¡1* C RP wh,t ch passes through the orígàn.

In other rvords, a random variable X which follows a distribution rvhich

is angularly symmetric about d has the same probability of falling in any

halfspace .É1* determined by á as it does in the halfspace which is the mirror

irnage of .F1* across the poiut of angular symmetry. Consequently, if F is

absolutely continuous, P(H.) : j for every half-space deterr¡ined by d. In
this sense, d can be viewed as a multivariate rnedian of F.

By Definitions 2.3.1 and 2.3.3, it follows that X has an angular.ly sym-

metric distribution about á if and only if (X - 0) l(llx - gll) has a centrally

symmetric distribution about the origin. Clearly, X is (angularly) syrnmetric

about 9 if and onìy if X - 0 is (angularly) syrnmetric about the origin.

Central symrnetry (or just symmetr.y as it is usually called) is stronger

than angular symrnetry, as is apparent from Definitions 2.3.1 and 2.3.3. That

is, symrnetry implies angular symmetry. All multivariate normal distribu-

tions are both symmetric and thus angularly svmmetric about their rnean
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vector /-¿. The differeuce betrveen symmetry and angular. synmetry is appar-

ent in the following example:

Example 2,3.5 Consider a bivar.iate random variable X which has density

(,
l,;; whenø ) 0,y > O,r2 + g2 < 4
I

Í@,a) : \ i lc <o,y <0,t2 +a2 <7
I

[ 0 otherwise

Figure 2.3: An illustration of a probability density function /(z) that is

angularly symmetric but not syrnmetric. TIie support of /(r) is shaded, /
is constant with fi(ø) : 2 and h@): *.
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See Figure 2.3 for an illustratiou of this probability density function

(p.d.f.) X obviously has an angularly symrnetric about the origin. Any

halfspace determined by (0,0) will have equal probability on either side.

Horvever, the condition for central symmetty does not hold. If rve consider

tlre lralfspace H : {(",a) : g > 2-r} and its mirror image about the origin,

-H : {(",A) : A < -2 - r}, rve see rhat

P(XeH)>0*p(X€-s):0.

Since the condition in Ler¡ma 2.3.2 must hold fo¡ all halfspaces 11 C R2, it
follorvs that the distributio' of x is angularly symmetric about the origi',
but not symmetlic.

Theorem 2.3.6 Euery uniuariate p.d.Í.Í(t) is angularly sgmmetric about

'its medaan M.

Proof There is only one hyperplane that passes through the origin,

namely tìre "line" r : 0. Tliis creates two closed halfspac.. ¡¡. : [0, oo]

and -11* : [--,0]. By definition of the median, p(X - M e H-) : I:
P(X - M € -¡1*), and the proof is complete. eED

The following two theorerns require that the c.d.f. .1,- be angularly syrn-

metric. Their proofs can be found in Liu (19g0).

The first result is that of monotonicity, a useful property for a deptli

fu'ctio'. It states that the depth decreases steadily as .\¡,¡e move arvay from

the centre of the distribution in any given direction.



Theorem 2,3.7 If F i,s absolutelg continuous and, angularly sgmmetric about

the origin, then D" (ar) ,is a monotone nonincreas,ing functi,on i,n a > 0 V ø e

Re.

Theorem 2.3.8 If F i,s an absolutely cont'inuous d,istribution on W and. it
i,s anguLarlg symmetric about a poi,nt 0 e Re , then D" (0) : 2-n .

Note that Theorems 2.3.7 and 2.3.8 imply that D,(ø) attains its rnaximum

at its point of angular symmetry d, where its depth is D,(g) : 2-r, and that

for every point ø € RP, we have D"(r) < 2-e. Consequently, by Definition

2.7.7, 0 is the multivariate simplicial median of X.

One application of the above prope¡ty is in testing the centre of angular

symmetry. As mentioned above, if F is angularly symmetric, then D"(ø) is

rnaximized at the centre of angular symmetry and takes there the value 2-p.

As such, if de is a hypothesized centre of angular symmetry for sorne density

function /(r), then a large value of (2-e - Di(á6)) is an indication of the

null þpotliesis being false. For a more in-depth discussion of the infe¡ence

procedure, see Gregory (1977).

2.4 New Properties of Liu,s Simplicial Depth

Liu (1990) proposed the sirnplicial depth function and established some very

irnportant properties tìrereof. The unbiasedness and consistency of D"^(r)

were asserted and proven. It was shorvn that D"(ø) ---+ 0 uniforrnly as llrll
tends to infinity, and that D"(ø) is continuous and affine invariant. For an-

gularly symmetlic distributions, it rvas also shorvn that D"(ø) is a monotone
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norlincreasing function, rvhich attains its maxit¡um value of 2-p at the point

of angular symmetry.

We norv examine some properties of the simplicial depth function D"(z)

that, to our knowledge, have heretofore gone unrnentioned or uncalculated in

the literature. Unless otherrvise noted, all results in this section are proverì

for tlre case of p : 2. This case is the simplest non-trivial setting for Liu's

deptìr function, as rvell as the easiest to visualize. All of our theorems and

proofs can be extended or generalized to the p-dimeusional case by making

the obvious modifications.

One difrculty encountered with Liu's simpliciaì depth function is that it
is generally intractable. That is, there are no results published that enable

us to actually calculate D"(ø) for a given distribution F'. This is due to

the cornplexity of the mathematical description of a ,,random simplex',. In

Theorem 2.4.3, we will find an expression for this function, which will clearly

illustrate its complexity. How do we go about calculating the probability

that a fixed point ø6 will fall rvithin a ra¡dom triangle generated by i.i.d.

random variables Xt, X2, X37

We will do this rvith the help of the process of conditioning. We ask the

question: Given the values X1 : ø1 (:(ø11, r1z)) and Xz : x2 (:(r21,x22)),

where must the value of X3 fall in order for the triangle A(X1, X2, X3) to

contain a fixed point 16 (:(ø61,262))? It turns out that this is not a simple

problem to solve. The conditional probability

P (co e A(X t Xz, Xs) IXr : rt, Xz : xz) : P (no e L(r t, cz, Xs))

is itself conditional on the ordering of the components of ø¡, ø1 and 22. The
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first components (which we nornally speak of as the z-components) of the

three points can be ordered in 3! :6 ways, as can the second (g-) compo-

nents. As such, we have to consider 36 separ.ate cases. For any given case,

in order for u6 to be in the triangle, X3 must fall in the region (labelled á)
bounded by ,L1 and .L2, the line segments formed by passing through z6 and

ø1) and between:¿o and u2, respectively. See Figure 2.4 for an illustration.

Figure 2.4: e € A, and so jao e A(q,r2,q), whereas zl
rs / L(x1, c2,rs).

We find equations for the lines, using our usuâl notion

cornponents:

For arry point (z,g) €

( A, and so

of ø- and gr-

R2 on the line .L1, rve have that

012 - l:02

Xi - ÌOt îtI - IO1

! - axoz
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+ g: (rn- r62)(x - xs1)
-r r'O2rÍ - rol

((xn - xoz)xu - \ (xn - xoz\
- Y- t--TL(Ðt-1- t-t¿.

\ øor -¿ll ,/ \zlr -rot./
which is the equation for 21. Equivalently, tr1 can be expressed as a function

of g.

Sirnila.rly, we can find the equation of ,L2:

A-ro2:I22-IO2
I - at\t aL27 - r\l

+ a: (r22-x6)þ-z6)
-r r,O2

IZt - lÛot

+ g: ((¡zz - xoz)xot 
+ rorl + ('.zz - xoz\ 

*.
\ .¿or - uzl / \rn - rot./

wlriclr is the equation for 22. Equival ently, L2 can be expressed as a function

ol a.

Example 2,4.L We consider the case for e61 ( r¡ 1 r21 and. r22 1 xp 1
ø¡2. We can see from Figure 8.6 that even this case must be divided into two

further cases. The region in tvhich X3 must fall in order for ø6 € L(x1,x2, X3)

depends on whether the angle between øo and ø1 is steeper thau the angle

between øo arÌd ø2. Now, in the first case (pictured on top in Figure 8.6),

P(xo € L(xt,xz,x")) : p(xs e A) : ['"' [.t' f (rr1,ns2)d:42dx31.
J_æJLt

Similally, in the second case (pictured on the bottom),

P (co e A(xt, xr, xr)) : p (x" e o¡ : ll I l,' ¡ (ca1, 42)d,xs2d.xs1



So in total, regardless of the aforene¡rtioned angles,

p(ro e a(ør, ¿ z, xs)) : I ['"' [ " f (r"r, xs2) d xrrdx rrl .yJ_,æJL! 
|

This last result is derived fi'om the calculus property

1." l"::,' r(x'Y)rtcd'Y: - l.' l,::,' r(x,s)dcd'v

Fortunately, we only need to separate a case into two distinct cases rvhen

the second highest r- and g-cornponents both belong to the same point (i.e.

either (26, 11, or r2)). The other cases generally go as follorvs:

Example 2.4.2 Considel now the case for 221 ( u61 ( ï11 and r12 1r22 I
foz. We see from Figure 8.28 that the slopes of the two lines L1 anð, L2 do

rÌot nìatter in this case; tve will get the same result either rvay:

p(x e L(x1,,,2,Xr)) : p(Xs e A) : l,i,li,"' ,Os1,xs2)d,x,s1d.x32

+ 
l"-, l] rc"1, x32)rtx32dxs¡.

As mentioned, there are 36 separate cases we have to consider. Fo¡ a

cornplete illustration of each case, see Appendix B. We are now ready to

give the general lesult:

Theorem 2.4.3 Liu's simplicial depth functi,on D" (x) can be erpressed, as:

!r ¡r îr
D " (r) : Ðll J 

", 
I I *, qa:n¡ n,1', 1, r e ; r 21, r 22) f (x 1) f (x 2) d'x þ'x 2]

(2.s)
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where Aln i.s the set of all (x¡,xp;nzt,azz) €Fca which satisify the cond:iti,on

in the euent A¿ in the prooJ that follows, where X is replaced, by r theretn,

and where

h 1 (x 11, r 12; r 21, i.rr) : ll:: t,, ¡ ç",, r,r¡ d r rrd r,rl

h 2(r: 1 7, r 12; x: 27, r rr) : 
I 
L:, I :,' ¡ lr rr, 

" 
rr¡ drrrdr r,l

h3(x:7¡,r12;t:21,rù : | ['o' ["" .f(rrr,rrr)dx,d.x"rl
lr*æJLr I

ha(x 1 1, x 12; rzr, r zz) : 
ll,: | :," r r" s,, r,2) d x 3' dr 321

h5(ry, t)¿; x21,:Lrr) : l:: l: f (xy, xs2)d.xs2d,q1

* l,*, l,u, I {r r,, 
q2) dr s 1 d 42

h6(x)11,r12',it21,xr,) : I:: l:"o' f 
(qy,42)d,ns1dq2

+l,*,l" Ít u,42)d42d41

h7(û ¡, :x 12; !121, itrr) : l:: I:, f (xsy, q2)d"41d,ns2

* l'- l"i rø,,,42)dq2d41

hs(r ¡,.x 12i r21, !t) rr) : l,:" l:,"' f (41, r s2) d,r s1d.q2

+ l,*,ll rc","22)d42d41

hs(r ¡, r p; r21, r,rr) : l,: l:,"' f (r s, xs2) rtrs1d,x,s2

+ l,*,l* Ít u,rsz)dns2d.rsy

hß(r11, ï12; x21, xzz) : l_Ï l,t"i, ø", 
"sz)d.xstd.rsz



A1

A2

A3

A4

A5

+l" l" r{ru,42)d42dq1

h¡(r11,ty2;r21,uz) : 
|_"* |i,"' f f"rr,"sz)dn31da32

+ l,*,1"' f {ru,42)d42d41

h12(r¡, !t:12; c2y, xzz) : l,il,¡ ø", "sz)d4fi42
+ l'- ll, t ø., t42)d,q2rlxsy.

Proof. We define events

: l¿ot < X11] fì [261 < X21]

: lXn < 
"ot] 

o [Xzr < ror]

: [coz < Xpltx¡2 < Xzz] ñ [(Xr, < 
"0, 

< Xrr)U (Xrr < øor < Xzr)]

: lXtz 1!r621t X22 < rorl O [(Xzr < ro, < Xrr) U(X11 < a61 < X21)]

: [xr, ( ø¡¡ ( x2lîlx,' 1x¡21 xrr1nll4z-:.1 . l{rz - øæ¡1

ll z\21 - x)611 l-.frr - zor lJ

: lxrr ( z6¡ ( x2t]ìlxn 1xs2 1 xrrlnfl4z- "tl t l{', - "r¡1
Ll-{21 - Í61 I lãtt -:ror lj

: [x,, (261 ( x2t]ì[x22 1x62 1xrr1n[l4z-ttl .l{t,-tt¡1
tt -\21 -iüsy l |ã - øor ll

A8 : [x,( ø61 ( x2rì[x22 1.roz 1 *',]"ll##l' läffi|]
As : Ixx( Í¡1 ( xnlnlxnlrs2 1xr;nll4rrr-'orl .l4-"-,*11

Ll Ã21 - lts1l |ã -¿olll
A1o : lx2t ( c61 ( xrjn[xn 1xs21 xr¿nllIz- 3vl t lë', -.rll

Lt ,\27 _ :tDl I I .^ It _ øOr lJ

Ar : lxn ( Í61 ( x,'lnlx22( øs2 ( xrrlnllIZ-:.1 . lxt, - "llLt z'21 - ¡re1 | - lXrr - cot ll

An : lx21( ø61 ( xn)nlx221xs21 x,¿nllP-+l t l{', - *rllLt,\27 _ .J;01I l.^I1 _ øOt lJ

41,A2,...,Ap ale pairwise mutually exclusive and exhaustive. Ther.efore, by
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Lemma 4.2.3,

D"(to) : P(xo e L(xr, xz, xz))
12: IP("0 e L(xt,x2,xslAùP(A)

12: ÐP("0 e L(xrx2,/-1"nAí)
í=1
12r

= \' / n(A')h¡(x11,rp;r21,q2)f(x)f(x2)d:rfi:r2.
!11':,"¡"

In particular by Lemma 4.2.5,

P(ro e L(Xr, Xz, h) ì Ai)

: Eln@o e L(XtX2,Xs))l(1')l

: E@fn@s € L(Xt, X2, x3))r(,4r)l(x1, xr)l)

: I l^" I l*" nlt {r, e A(c1, ø2, x3) )nØ,t)l f @ t) Í (rz) dx fi.r2

: 
ll*" ll*,qa;¡r1'o e a'(x1,x2, xs))f (r1)f (x2)d'xfi'r2

: I I *, | | *, q4¡ nçr rr, x p; r 21, a 22) f (r 1) f (x 2) d,r 1 d.r 2

Note that we also used the identical distributions of X1 and X2. Tlie rest

of the proof follows frorn tedious but straighforward calculations similar to

tlrose in Examples 2.4.7 and 2.4.2, based on the cases depicted in Appendix

B. Note that rve have grouped the 36 original cases into 12 by ,,gather.ing

terms". The te¡rns that were gathered iuto the respective cases will also be

outlined in Appendix B. QED

It is clear fror¡ Theore¡n 2.4.3 that the functional form of D,(ø) is very

conrplex. trven P(,41), P(Ar),..., P(,412) rvould be very difficult to calculate



fo¡ most distributions. We notice that it would be even more difficult to

calcuìate D" (r) for a distribution /(r) with a finite support. Even if we rvere

to consider the basic Uniform[O, 1]2 distribution on R2, we would have to

break each of the 12 cases up even further to account for the possibility that

L1 a:nd L2 may intersect the edge of the support on any of the four lines

r :0,r : t,a :0, or g:1.
At the very least, the preceding calculation offers a perspective of rvlry

rve need the estimator Di(z) in order to estirnate D"(r).
Liu (1990) proved for arìy absolutely continuous angularly symmetric dis-

tlibution tr' on Rp, that D"(ø) < 2-p V r € Rp. The family of angularly

symmetric dist¡ibutions is lalge, but rve might have to deal rvith distributions

rvhich do not have this property. We will norv determine an uppet. bound for

the mean of a random version of simplicial deptli function i'two dime'sions,

for any continuous bivariate distribution F. This will involve the concept

of extrene points of a random sample, a topic studied extensively in Efron

(1s65).

Definition 2.4,4 Given a random sample X1, X2, ,.., X", the discrete r.an_

dom variable .Ð(") denotes the numbel of extreme points in the convex hull

detelnrined by X1, X2,..., X-.

In a bivariate sample, we picture spikes sticking out fi.om the plane at

every point X¿ fi'ora the random sample. We tvrap a string around the

periphery of the spikes, and tlie number of spikes touched by the string

corresponds to the number of extr.eme points in the sarnple.

40



Given X,X1,X2,Xs, an i.i.d. random sarnple rvith c.d.f. -F on Rp, rve

define the random va¡iable D"(X), where, on the event {X 
= 

t}, r € Re,

D"(X) : D"(z). That is, D"(X) can be viewed as a random version of

D"(").

Theorem 2,4,5 Let F be any absolutelg continuous distribution on Pi2.

Then E(D"(X\\ < tr.\ \ // - 4

Proof : Let X1, X2, Xs, X4 be i.i.d. randon variables rvith absolutely con-

tinuous c.d.f. F. Then, conditiouing on Xa, by the ,'law of the unconscious

statistician",

P(xa ç L(xr,xz,x3)) : ll*,r("^ e L(xr,x2,xs))f (ra)d,ra

: E(D(xò): E(D(x)),

and so

P(E@ :Ð : P(XA e A(Xrx2,&))

+P(Xt e L(X\X2,X4))

+P(Xz e 
^(Xr, 

X3, X4))

+P(XI€ L(X2,h,Xò)
: 4E(D"(x)). (2,10)

Equatiou (2.10) follorvs from the fact that, if there are only three extrer¡e

points in a sample of four points, then the convex ìtull, a triangle, rnust

contain the fourth point. By mutual exclusivity,

P(EØ\ - 3) :  E(D"(X)) + elprat : q : 1 - 4E(D"(X)).
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This follos's flom the fact that there must be either three or four extreme

points in a sarnple of size four from an absolutely continuous distribution F.

By definitiou of expectation, it follows that

E(n{a)¡ - 3(48(r"(x)))+4(1 - 4E(D"(x)))

: 4 -  E(D"(X)).

Since

3 < Eø\<4

+3 < E(E@)<4

+3 < 4_48(D"(X))<4

=+ -1 < -48(D"(X)) < 0

+0 < E(D,(X))<1,
4

this cornpletes the proof. QED

We norv extend the result to the general case of p dimensions.

Theorem 2.4.6 Let F be any absolutely continous d,istribution onPtp . Then

E(D"(X\\. t 
, .p+2

Proof : Let X1, X2, ..., Xo¡2 be i.i.d. randon variables witìr absolutely con-

tinuous c.d.f. F. Then, conditioning on Xp+2,

P(Xr+, e S(X\X2, .' Xo+t))
f: 

J* P(to*, € S(xr, x2, .', xo¡1))f (xoa2)d,ara2

: E(D"(xp+z)) : E(D"(x)),
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and so

P(E(P+2):p+1)

: P(Xp+z €. S(XLX2,...,Xo*t)) + P(Xe+t e S(XrX2,...,X,Xp+z))

+ "' + P(X2€,S(Xr,X3, ..., Xp+z))+ P(X1 6 S(X2, h,..., Xp+z))

: (p + 2)E(D"(x)) (2.11)

Equation (2.11) follows from the fact that, if there are only p f 1 extreme

points in a sample of p + 2 points, then the convex hull, a simplex, must

contain the (p + 2)th point. By rnutual exclusivity,

P(E(t+z) : p+1): (p+z)E(D"(x)) + p(Ee+2 : p+2) : t-(p+z)E(o"(x))

This follows f¡om the fact that there must be either p l7 or p + 2 extteme

points in a sample of size p * 2 from an absolutely continuous distribution

F. By definition of expectation, it follows that

E (E(e+2\ : Ø + 1) ((p + z) E (o"(x))) + @ + z¡çt - (r) + z) E (D" (x)))
: (P + 2) - (P + 2)E(D" (x))

Since

p+1

+ p+7

+ p+l

+0

s

I

I

E(e+2) <p+z

E(E(n+2)) <p+2

@ + z¡ - (p + 2)E(D" (x)) s p + z

-þt+2)E(D"(x)) <o

E(D"(X))= -1=,p+2



our upper bound for any dirnension e is E(O"(X)) ! |;1. eED

Recall the result of Liu frorn Section 3.3: IfF is absolutely continuous and

angularly symmetric, then D'(ø) < 2-p V ø € Rp. Hence, under these con-

ditions, E(D"(X)) S Z-o by conditioning on X. The precision of Theor.em

2.4.6 relative to Liu's result for angularly syrnmetric distributions decreases

rvith the dimension p, but our main goal rvas to attain an uppet bound for

E(D"(X)) for any continuous distributiou F, which is not uecessarily angu-

Iarly symtretric.
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Chapter 3

New Types of Data Depth

Based on Other Simple

Geometric Shapes

In Chapter 2, rve thoroughly exarnined the definition and many properties of

Liu's simplicial depth function D"(r). hr two dimensions, D"(ø) is based on

a triangle, a sirnple geornetric shape. In this chapter, rve examine tlvo new

depth functions in palticular, the circular depth D"(r) and the rectangular

depth D'(ø). In two dimensions, these are based on equally simple geometr.ic

objects, namely, circles and rectangles, respectively. We derive results for

these two depth fu'ctions similar to some of those asserted for Liu,s simplicial

depth function D"(z) in Chapter 3. We rvill also discuss the advantages and

disadvantages of using circular or rectangular depth functious as opposed to
sinplicial depth.



3.1 Circular Depth

For any trvo distinct points or and 12 in the plane, we can generate a unique

closed disc O(rt,rr) containing both points, rvith the centre of the circle

located at the centre of the two points. That is, the points ø1 and 12 will

be at opposite sides of the disc, aud the distance betrveen them rvill be the

circle's diameter. See Figure 3.1 for an illustration. If rve have an i.i.d.

random sample X1, X2, ..., X,, frorn a distribution F on R2, we can generate

(i) suar discs, and for any point .x e FÙ2, we can find the proportion of discs

which contain z. Naturally, the higher the proportion, the gr.eater the depth

of the point in the data cloud.

Figure 3. 1: The circle O(rt., nz) rvitìr centre Ðp and diameter ll7, - "rll.
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Definition 3.1,1 Let Xr, X2,..., Xn be an i.i.d. random sample ivith c.d.f.

.F'. Tlren the sarnple circular d,epth Di@) for a point ø € R2 is equal to the

proportion of all discs O(Xo,X¡r),1 < ir < i2 ( n rvhich contain ø, rvhere

O (Xu,, X¿r) is defined as above. That is,

(3 i)

Di(ø) is the empirical (sample) version of the true sirnplicial depth D"(ø):

Definition 3.1.2 The c'ircular d,epth D"(r) for a point Í € R2 is equal to

the probability that ø is contained in the random disc e (X1, X2). That is,

D'(r):P(ceQ6¡Xz)), (3.2)

rvhere X¿, i.: L,2 are i.i.d. rvith c.d.f. F.

Note that the univariate form of D"(ø) reduces to the exact form of

Equation (2.3) tìrat rve had for the simplicial depth D,(z).

All of these concepts can easily be extended to higher dimensions. For a

distribution F on Re, the disc in Definitions 3.1.1 and 3.1.2 is replaced by

tlre closed ball C(X1, X2) forrned by t'wo independent observations X1 and

X2 from F', This time, the p-dirnensional ball will be that unique ball passing

tluouglr both Xl and X2 and rvith diameter llx, - Xzll and centre x'åx,.

The general definition of the sarnple circula.r. depth in any dirnension 7: is as

follorvs:

Deffnition 3,1.3 The sample circular d,epth Di@) for a point ø € Rp is

equal to tlre ploportion of all closed balls C(X¿,, X¡"), 1 < ¿l ( i2 ( ¡¿ 1a,þish

z t -1
Di@ : (':l t r(ree (x,,,x,,)).

\ -,/ 1li r <iu ln



contain ¿. That is,

/.\ -rDi@: l';) I n@e c(x¡,,x¡,)), (3.3)
\¿/ r3i, <-r3n

rvhere X1, X2, ..., X" is an i.i.d. random sample from F.

Similally, the circular depth of a point z e Rp is defined as:

Deffnition 3.1.4 The ci,rcular depth D.(x) for a point z € Rp is equal to the

probability that ø is contained in the random closed ball C(Xb Xr) generated

by the tivo i.i.d. observations X1 and X2:

D'(r) : P(r e C(x¡ X2)). (3.4)

We now look at sorne irnportant properties of D"(r), as well as its em-

pirical estimate Di(r). The first three resemble those for simplicial depth

found iu Section 2.2.

Theorem 3,t.5 Di@) i,s an unbi,ased estzmator for D.(x), for ang r ePte.

Proof. By the linearity of the expectation oper.ator,

n [oi@)] :, 
l(Ð 

_,,=,à=,0(, 
e c(x., x,))]

/"t -t: 
\;) ,=,à="tlo(' 

€ c(xr" x"))l

- /tt -t: 
\;) ,.,à=""(' € c(xi"xi2))

: (Ð '(;)'o€c(xl'x'z))

: P(r Ç C(Xb Xr))

: D"(*).



This courpletes the proof. QED

Theorem 3.1.6 For ang c.rL.J. F onPte, sup¡¡,¡¡¡¡¡D.(ø) ---+ 0 as M ---+ æ.

Proof. Let X1, X2 be i.i.d. rvith c.d.f. F. Given any o € Rp, rve observe

that {c € C(XbX2)} Ç U'2=,{llX.ll > ll"ll} Tliis is because, if ø is furrtrel

fi'om the origin thau either of the two random points, it clearly cannot be

contained in the ball generated by the two points. Using the above inclusion,

rve get

D'(r) : p(reC(X¡Xr))

< P(ul,{lx,l>l,l})
2

f IP(llx,ll > llrll) þv subadditivity)
i=1: 2P|lxtll > ll"ll)

Note that the last step is possible by the identical distributions of X1 and

X2. So clearly, since P(llxlll > ll"ll) i. decreasing in lløll, it follows that

.qlp.-r"(ø) I sup 2P(llx'll> Il'll) < 2P(llxll> M).ll'll>v ll,lllM

Since P(llxlll > M) -- 0 as M ---+ oo, we get the desired result. This com-

pletes the proof. QED

Our next assertion is that of the coutinuity of D"@).

Theolem 3.1.7 IÍ F is an absolutely cont'inuous d.istribution on Hp , then

D" (c) i,s continuous on Èp .
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Proof. We prove the theorem for p : 2. A more general proof for any

dimension p would follow analogously.

Let X1,X2 be i.i.d. rvith c.d.f. tr'. To establish continuity at z € R2, rve

let {ø"} be a sequence in R2 such that 2," ---+ z, and rve will shorv that

lD"(") - D.(ùl t p(0(O6Lx,))nzz;) ._+ o

as n -ì cÐ, rvhere â(Q(X1, X2)) denotes the boundar.y of O(Xr, Xz).

Note again that, in the context of inter-secting line (or arc) segrnents, ',f-l',

refels to the trvo cr.ossing o¡re anothel at some point. This differs from our

usual use of the iutersection syrnbol ,,lì',, meaning the intersectiou of trvo

sets or events.

A random disc can contribute to the difference D.(r) - D"(ø,) only if it
contains one point but not tlie other. This however implies that there rnust

be a point o' the boundary of the disc e(x1, x2) rvhich intersects the li'e
segment Zu". See Figure 3.2 for an illustlation for the case rvhen p : !.

For any two events .4 and B, P(,4\B) : p (A) - p (Aì B) > p (A) - p (B).

Therefore, if we define

A: lr€O(X1,Xr)l

" 
: [""€O(Xr,xr)],

then rve have that

D'(r) - D"(r,) : P(A) - P(B)

S p((ø € O(x,,Xr)) ì(r" # O6r,xr)))
< p(a(O(xr ,X2)) nrr;).
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Fignre 3.2: xe Q(r1,x.2) andxn/ O(rr,rr), soez;nô(e(ø1,ø2)). There-

fore, tlris circle contributes to the difference D. (r) - D"(x,).



It cau similarly be shorvn (or sirnply understood by syrnmetry) that

D"(r") - D.(r) < p@(O6bX2)) nrr;).

As such, we have

lo. (r) - D" (ròl < p@(O6 b x2)) n -u;),

where X1 a.nd X2 are i.i.d. with c.d.f. F.

We define the events

A" : {a(O6¡ x2)) nto;} y n.

Then
co f oo I

tf1sgn.a" : I, tE 
Aul: {" € a(O(x,,x,))}.

By Lernma A.2.2, wet nolJ tnut

linisupP(,4") < P(timsup,4,): p(t € A(O(X1,Xr))) :0, (3.5)

si'ce F is absolutely continuous. we ca' make the above assertion because

of the follotving: We note that, by conditioning on X1 (Lernrna A.2.4),

P[a(c e o(x,,¿))]
: 

ll^"P(x e 0(Q(xy,x2))f (x¡,xe)d,n11d.xp. (3.6)

We must now ask, rvhere must X2 lie (given fixed points ø6 and ø1) in

ordel for x : xo to lie ou the boundary of the disc O(xr Xz)?

We note that X2 must be a point such tliat the distance from z6 to the

centle of the disc O(rr,rz) is equal to the distance frorn ø1 to the centre.



This must be the case, as ø¡ and Í1 a.re both on the boundary of the disc,

and so must be equidistant to the center. In other lvords, rve must have:

( r¡* r21 \', /_ :.nlrzz\2
\¿or- 2 / *("'- , )
/ tt * xzt\, , /_. . ,,, _l ?u\,: ('"--ï) +(''r-ä /

rvhich implies

(2r¡¡¡ - r¡ - :tzt)2 + (2c62 - rp - 122)2

: (2r¡ - rn - rzt)2 -l (2re - rn - azz)2

+ 4rf;1 + r.l, + r2r, - 4a612:11 - 4xs1r2y l2r¡r21
+4xf;, + r2r, + rl, - 4cs2x12 - 4x62x22 I 2ixpr22

: r?t*xlr-2x¡r21 + xlr+ rlr-2cpr22

+ 13, - o0lo11 - r,syr,21 * rf;2 - ro2x12 - ro2ÍD:0
+ (trt - xot)rzt * (at - xoz)¡:zz * xf;,+,f;, - rotirtt -:xo2Ì22:0

1ï + x\z - rotÌtt - ro2Ín i (x¡ - a,61)z.21"'. r'22 - : L\xzt). (J.7)

(See the illustratiou in Figure 3.3.) In order for z6 to be in the disc O(zr, Xz),

we see that X2 rnust lie along this str.aight line, a one-dimensional subspace

of R2. But by the absolute continuity of F, the probability of this happening

is zero.

Flom Equations (3.6) and (3.7), ive thus liave that

Plx e a(Q@¡x2))l

<o



Fignre 3.3: In ordel for øo € ô(Oþ¡Xù), X2 must lie on the liue I



: 
Il*"P(x2 e L)f (c11,xp)dn¡ttrp

= ll*,of (n¡, rp)dx11drp: s.

Therefore, lD'(c) - D"þ")l - 0 as r¿ --+ co. This completes the proof, using

the sequential chalacterization of continuity. QED

We rvould norv like to find a tractable form for D" (r) in trvo dimensions.

Similar to our derivation of D"(x) in Chapter 2, rve must identify rvhere two

points must lie in the plane in order for a fixed point øe to be in the disc

O(Xt Xr). Again, rve use the method of conditioning.

Theorem 3.L.8 Giuen a fixed, point øo : (øor, 162) in the plane,

D'(to) : P{øoe O(X,,Xz)}
Î [ '' -' l læ rL('^\ 'l

: 
JJ^"n@ lJ-*l-* J(r21'q2)d'x22dr21f f (x1,a,)dn¡axp

11 l¡- ¡- l
+ JJR,n@") ll-*lro,uf 

(x21,q2)dx22dq1f f @1¡,xp)dx7firp,

where

(3.8)

(3.s)

B : {@t,xo) e Ft2lry2> 16r}

B" : {(ørr,ørz) €R2lør2 <ø¡2}

¡ /-^-\ - 
øot(ør - xot) * xoz(xn - zoz) * (t6 - x¡)x21

I12 - aÛo2

Proof. Toward a conditioning argument, rve fix a value 11 : (ø11, ø12) e

R2 for X1 aud rve rvould like to detennine rvhere X2 rnust lie in order for a

fixed point ze to lie in the disc O(xr, Xù, rvhere the disc is defiued as above.



We note that rve rvill have ø6 € O(xr,rz) if the distance fi.om ø6 to the centle

of the disc O(xt,cz) is less than the radius of the circle. See Figure J.4 for

an illustration.

Figure 3.4: X2 must lie on the opposite side of I from ø1 in order for z6 €

O(ør,xz).

That is, we tnust have that

< )ø,, - -,1' . f",, - .,f
+ (2aú - rn - xzt)2 * (2x62 - rn - rzz)2 ( (rr, - e.21)2 t (xp - x22)2

=+ 4xf;, + xl, + x2r, - 4x61x¡ - 4n61r21 I 2x¡r21
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+4cf;, + rl, + nl, - 4r62c12 - 4cs2n22 * 2!rer22

rl, + xl, + ü?2 + r32 - 2ryr21 - 2:Lp:r22

ûf;1 - r'slø11 - txotr2t * î¡x21 + r.f;, - q2r9 -:xo2x)22* cpx22 !0
(t¡ - r¡1)x21* ø¡1(ø¡1 - ,11) + (rp - x¡2)c22 -l rs2(rs2 - o12) < 0

(h - xs2)r22 ( c61(ø11 - ¿01) + xoz(rn - xoz) I (ru - rr)xzt

. I ,rr a L(r21) it x:n) îs2,

I x22 > L(x21) if rtz 1 xoz,

¡vhere

r t^ \ ¡ot(xu - xot) t roz(w - xoz) -l (161 - x,y)r21
-\'2! l :

Assuming X1 and X2 are i.i.d. randorn variables from a distribution .F,

rve condition with respect to the event A: lXn > ø62]. Since A and A arc
exhaustive and nutually exclusive, then by Lemrna 4.2.3 we have

D"(rs) : P(['o e O(x',æ)]n,4)+p([ro € O(xl,xr)]n,4").

Norv, by Lemma 4.2.5, for B defined in the statement of the theorem, rve

have

P(['o e e6txr)]¡t)
: E[n@s € O(x1,x,))r(,4)]
: E[E(nþs € O(x1,xr))I(1)lx')]
: I I*, Eln@s e O(r,, x,)) l(¡ )l f (c 11, r p) dx 11d,r p

+

(3.10)



: 
Il*"n@)P@6 e Q@1,x2))f (x11,xe)d'x¡d'rp

[[ untl [* ["'u I
JJn, , '1"/-- J-- f (x21,x22)dx22dx21lt@¡.xe)dr¡dxp'

Follotving the same steps, we can shorv that

P(lro e 06,, xr)l n ,q")

: I l*, "@) ll : I ;",,, r (',,,',,) d'',,a',,) ¡ ç',,, tz) d'x 11 d,x 12,

and the proof is complete. QED

We will norv seek to find a functional (i.e. tractable) form of the variance

ol Di@).

Theorem 3.L.9 The uariance of Di@) is

var(Di@)): (Ð ' 
[r(øo) + 2(n - 2)D(2¡@o) + (3 - 2n)(D"(ro)),],

uhere

. rî I ¡c* ¡ L(x21) f2Di2¡@o) : 
I J^,n@) LJ_* I__-" Í(,2,,r22)dx22dr21) dr¡7d,x22 t

I I ̂
, 

o r n ll : I :,, ",, r 
( x 2 v, x 22) d,x, 22 d,,,]' d,, d,,,,

(3.1 1)

anrl where B and, B' are as d,efined, in Equati.on (S.g) and, L(r2) is as d,efined,

i.n Equati.on (3.10).

Proof. We know that

varfDi@)l : E[Diþ)]2 _ (ElDi@)l),



: ' l(;) 
' 
,=,ì=" 

o('o ' e(x"x'))]

-' 
þ l(Ð 

',=å"0("0. e,*,orl)'
(3.12)

Norv rve consider only the first term of the sum in Equation (3.12):

t 
l(;) 

',=à'o''o 
' o(x''x'))]

t ', -2 t 12l'ì øl r- Í("oe O(x,,x¡))l\2) l'tãs^ r

(Ð ' 
{ (u lf rot", e O(¿, x¡)) x rr(ø6 € Otx^, x,ll1])

* (" llror. e O(x,,x¡))x 1r(ø¡ € g1x,,xllr])

* (" frrot. e O(x,,x¡)) x rr(ø6 e or* ,llrl)i , (3 i3)

where

: {1 <i<j<n,1 <fr<l<n,i:k,j:t}
: {1 <i<j<n.,7<k<t<n,

þreither (i. : k, j : l)nor(i + j + k # t))]

*** : {1 <¿< j<n,I<k<t<n,tl jlklt}.

In other rvords, * repÌesents all pails (ri,j) and (fr, l) such that z : fr and j :1.

That is, the sum is over all identical pairs of variables. This is equivalent

to squaling each term rvithin the sum. In the second telm, *+ represents all



pairs (e,j) and (k, l) rvith exactly one equaì index. This rvill be the most

cornpÌicated surn to determine. Finally, tx* repLesents all pairs (ri, j) and

(ft, l) rvith no indices in common, so the two terr¡s ale independent and the

expectation of tlieir product rvill the the ploduct of their- expectations.

Norv, continuing with Equation (3.13), we have

- ("\-' //l- o,nr". z /-)tw v \\.. .,,/- - ^ l\- \z) I \LZ-''t'(¿o 
€ e(x,,xi)) x 1l(ø6 € e{x-,x,1111;

/l- r\+ (|.tEtl(ø. € O(x¿,xj))x r(16 € e(xÀ,x,))]])

* llt¿tnr'^ € O(&,xj))x rr(ø¡ € Orx^,x,ll1])) (3.14)\Lñ
Norv we must determine how many terms a.re beiug added for each of the

three sums. For *, it is quite obvious that the¡e are precisely (|) t"r-. fol.

ivliich ri : Æ and j : l. Moreover, squaring the indicator function just gives

us the indicator again, so lve can Ìemove the square. For **x, for every (i,7),

for wlricli tlrere are (|) combinations, in ord.er for i, I j I k I t (i.e. aII

distinct), we must have k and I be two of the other n - 2 possible indices.

As suclr, there are (;)(";') rvays this can happen. Tliat leaves us with **,

the most courplex case. In all, there must be (i)2 co,nUinutions of pair.s of

indices, and so rhere .* (;)' - (Ð (r * (";,)) : (i)ef"- 2)) rerms i'
the second sum. Because each expectation rvithin each surn is equaì for any

values of the iudices, continuing from Equation (3.14), rve have

t t-2 ¡ t t

["\ ) ln\rrn,- .tr/ 1lz/'L't" € O(xl'x'))l

+l';)(2(n- 2))E[r(c¡ e O(x,,xr)) x r(ø6 e O(x,,¿))]



. (Ð (" ì')u¡oi,,e O(x,,x,))x 1r(r¡ € o(x,,x,))ii

: (;)' {'('0. o(x',¿))
+2(n - 2)Eln@o e Q(X,, ¿¡ n øo e O(Xr, X¡))l

. (";')tp(,. e O(x,,x,))l')

: (;)' {4"{ø.) +2(n- 2)Eln@se O(x,,x,)nøo e O(xr,x¡))l

* (";')o"øorl (3.15)

Norv ive are left rvith the rniddle term. we rvill use co'ditio'i'g. Note tìrat

øo e [Q(x,,xr) n o(x1, x3)]

implies X2 and X3 must be on one side of the line tr, which is perpendiculal

to ãffi and passes through 16. See Figure 8.5 for an illustration. .L is defined

in Ðquation (3.i0) and is random, depending on the value of X1.

Norv rve have

E[r((ø6 € O(xl,xr))n (øo € O(x,,xB)))]
: P(ro € O(x',xr)nøo e O(x,,x¡)). (3.16)

Continuing from Equation (3.16) ard exarnining Figure 3.b, if rve define á :
[Xo > xoz), applying conditioning using Lernmas A.2.J, A.2.4 and 4.2.b,

P("0 e O(xt,xz) nøo e O(xt,xr))
: P(ro e O6bxr)nøo € O(xl,xs) n,4)

'tP(x6 ç O@u xr) n øo e e(xr, x¡) n,4")
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Figure 3.5: X2 and X3 must both lie on the opposite side of .L fi.om ø1 in

order for ro e O(r1, X2) and øo € O(rr, Xr).
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: 
ll^,n@)P(r6e Q(z1,xr) nøo e O(¿r,xs))f (c11,x¿)dr11rl.r12

+ | l*" t ça'¡ e lxo e O@ t, xz) n z¡ e Q (ø1, x3 )) f (t: 11, x p) d,r 11rtr 12

: I l*"n@)e @s e Q(c1, xr)))'z f (t:11, x p)d'x¡d'xp

+ | l*, t'1e"¡ g(,0 e O (r,, x, )))2 f (c ¡, a p) dx v1 dr p

r r f r* ¡L(rtr\ 12: 
JJ^,n(B) U_"" J_' I@"',rr2)dx22dx27l f(,"¡,xp)dr11dx22

+ | l^"tça"¡ ll: l:,,,,, f (x2v, x22)d'x22d,,,,f' ¡ p,,,,,,¡d,r11dr22

(3.17)

We also used the independence and identical distributions of Xz and Xs

in the above calculations. We denote the above probabiÌity as Dir¡(ro) to
facilitate our notation.

In total, from Equation (3.15), we have

" 
l.1"\-' \- 12

L\2/ ,=ã=,n@o 
e O(x"x¡))l

(î)-' 1"",",, 
+ 2(n - z)Di2¡@o) * (" ;')<o't o¡¡'] , ls rs¡

and so

Var(Di@s)) (3. ie)

: E(Di,þo))" - lE(Di@6))1,

: (Ð ' lo"or*2(n-2)Di,¡@0,. l(" ;') - (;)lr¡.(",)),]
: (;) '[n"1ro)+ 2(n- 2)D(2¡þo) + (3 - 2n)(D.(x6))2] (3.20)



This completes the proof. QED

Tlre variance for Di@) in any dimension Z carì simply be obtained by

altering the variance in two dimensions by replacing the line .L with tlie
(p - l)-dirnensional hyperplane 11 rvhich is perpendicular. to ãffi, and by

using p-tuple integlation rather than double integration. Otherwise, it has

the same functional form as the case for p:2.
We norv find an upper bound for our circular depth function D"(ø).

Theorem 3,1,.1,O The c,ircular depth D"(r) has ualue less than or equal to

| Ío, eueru x ÇPtP. That is,

D'(x\<1 vøeRr."-'¿

Proof. We state the proof for p : 2. Recall that

D'(r6) : ,P(¿o e O(Xr,xz)). (3.21)

We can also rvrite the circula.r depth function in two dimensio¡rs as

D'(xs) : P(ro € O(Xt, X2)lXe > 162)p(Xn ) roz)

*P(26 ç O(xl, xr)lxn < r62)P(xp < ¡,62)

: P(Xzz < L(X2r)lX¡-> rs2)p(Xn> ro2)

+P(X22 > L(X2t)lXn < x62)p(Xn < rs2), (9.22)

rvhere -L is defined in Equation (3.10). Now, let

a: P(Xzz < L(X2t)lXn ) ø62) and

b: P(Xe < z'62). (3.23)
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Then fi'om Equation (3.22), rve have

D'@¡) : a(t-b)+ö(1 -ø) :a-tb-2ab.

We r¡axirnize the depth by taking partial derivatives rvith respect to both ø

and å and setting them to zero:

aD.
0. : l-2b:0
aD' 1-)n -('tab

+ a:b=, (3.24)

and so by Equation (3.24), rve have that

D"(,o) <;.;_r(;) (Ð:I
This cornpletes the proof. To extend the proof to p dimeusions, we simply

replace .L by .F1, the (1r - l)-dirnensional hyperpla.ne rvhich is perpe'dic'lar
to ãã8. eED

Theorem 3.1.11 # X1, X2, X3 are i.i.d,. rand,om uartables ui.th c.d.f. F,
then the probabi.li,tg that x is contained, i,n both e(X¡ X2) and. e(X1, X3) is

Iess than or equal to f, for eaery û ÇP'e. That as,

Diz¡(x)Slv'eno.

Proof. Aga\n rve give the proof for p: 2 dirnensions. Recall from Equa-

tion (3.11) tliar

. tr I ¡æ ¡Lþ¡) 12Di,¡@o) : 
JJ*"Í(B) U_."/__'' 

!(x21,x22)dx22dr21) dx¡dx22

+ | l*" t{ a" ¡ ll : I ;,,, r (x 2 1' x 22) dx 22d "']' d',, d',,



Horvever, similar to rvhat rve did in Equation (2.22), lve can express

D[a (zo) as

Diz¡@o) : P(ro € O(xl, xr) n ¿o e O(xr, xs)lxn > rsùp(xn ) xoz)

*P(øo e O(xt,xr) nco € O(X1,x3)lXn<xs2)p(Xnlcoz)
: P(Xzz < L(X2t),Xs2 < L(&ùlXn > xs2)P(Xn > !xo2)

+P(X22 > L(X2t), Xs2 > L(&)lX¡12 < xs2)p(Xn < r,o2)

: P(Xzz < L(X2t)lXn > rs2)P(Xr2 < L(X3)lXp > q2)

x P(Xp > :162)

+ P (X22 < L(X2t)lXn > rs2) P(Xs2 < L(XsùlXn > cs2)

xP(Xp < 162)

: (p(X2, < L(X2t)lXn > ror))2 p(Xr2 > cor)

+(P(X22> L(X21)lXn < 162))2P(Xn < xs2) (3.25)

The above calculation follows the same steps as in Equation (3.22), again

using the identical distributions of X2 and X3 and now, the fact that [Xzz <
L(X21)l and l&2 < L(&l)l are conditionally independent given [X12 > 262].

We let

a : P(Xzz < L(X21)lXn> rs2)

b : p(Xp<a¡2),

then Equation (3.25) becomes

Diz¡@o) : a2 (r - b) + (1 - a)rb.



We maximize this function by taking partial der.ivatives:

AD,^,"+ : -a2 + (r - a)2 : t -2a : 0 + o : Io02
aDt^,"+P : 2a(1 - b) - 2(1 - o)b : 2a - 2b : 0 =+ ¡ : o : 1oa2

t o:; (326)

and so by Equation (3.25), ive have that

D(2¡@o)= (;)' *i-,(å) (å) : å

This completes the proof. To extend the proof to p dirnensions, rve simply

leplace .L by 11, the (p - l)-dimensional hyperplane rvhich is perpendicular

to ãffi. QED

Lemma 3.!,L2 For anA p > 2, the aariance of the sample circular d,epth

can be bounded aboue bg 1¡;=Ê1;_, + ffi for all n > 2. That i.s,

Var(Di@o)) S --- ^:--,-------- + :-2,, V n> 2.
(4n _ o)n (n _ r) n\n _ I)

Proof. It is sufficient to prove prove the result for p : 2. Recall frorn

Equation (3.19) tliat

var(Diþù) : E(Di@ù), -lE(Diþ6)))2
z r -1

lil ll"1øo)+ 2(n-2)D(2¡@o)+ (3 - 2n)(D"þ6)),1
o: ,6_t [1"(øo) + 2(n - 2)Dþ¡(xo) + (3 - 2n)(D"(r¡))2f

2 _^. 4n-8: 

-,

n(n- t¡Ð"(xo)n #Åo"o,øa + ffiD"@o)''
/ o .\-\
\¿,L r )
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Tlre second term in the su¡r is strictly positive for n ) 2 (rvhich we assurne),

and so

(3.28)

by Theorern 3.1.11. We now maximize the sum of the first and third terms

in Equation (3.27). Maxinizing the sum rf¡D"(øo) + ffiA"("o¡, is

equivalent to maxiurizing the sum of the numerators, as n(n - 1) > 0 V n.

Letting D"(øe) : z, define

s(z) :22 + (6 - 4n)22

To maximize 9(z) rvith respect to z (for n > 2):

4n-8 ^^ 4n-8 I n-2
,1n - ¡Diz>\xo) 

s 
dn _ Ð " a: ;1" -

do+ : 2+(12-8n)z:0
d,z

1

4n-6
B¡' Equations (3.28) and (3.29), substituting 

o"_u--L for D"(re), we have that

var(Di(rs)) : ffi*aa + 
ffiDi21@o) + ffin"ç,]¡,

. f--J-l ( t * n-2 * 6-4n \- \n("-t)) \+n-6' n(n-1)' (an _6:P;6_l])
3 n-2

(4n-6)n(n-1) 'n(n-1)

This cornpletes the proof. QED

Note that Lemrna 3.1.12 does not necessarily give the optimal upper

bound on Var(Di@l), as both D.(ø6) and Dia(øo) ale functions of ¿ and

(3.2e)
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b, and ffiD'(xo) + ffiD.(r6)2 and ffini".,(ro) rvill nor necessarily

achieve their respective maxima for the same pair (ø, ò). Nonetheless, it
provides a very useful (i.e. explicit) upper bound for the variance.

Corollary 3.L.1,3 Di@) i,s a weakly consistent estimator of D"(r,), i.e. Di@)

conuerges to D" (n) i,n probabili,ty for ang r € P.p.

The proof follows from Lemma 3.1.12 and Mar.kov,s inequality applied to

Y : lni@) - D"(")l (see Lernma A..2.6).

3.2 Rectangular Depth

We now focus on another alternative to simplicial depth, based on an equally

basic geometric sìrape. For any trvo points 11 and ø2 in the plane, we can

gerìerate a unique lectaugle R(r1, r2) with sides parallel to the ø_ and 3r_axes

and diagonal corners ø1 and ø2. see Figure 3.6 for a'illustratio'. If rve have

¿n i.i.d. random sample X1, X2,..., X" from a distribution F, we can geneÌå,te

(î) ro"fr rectangÌes, and for any poiut z € R2, rve can find the proportion

of such rectangles which coutain c. Again, the liigher this proportion, the

greater the depth of ¿ in the data cloud.

Deffnition 3.2.1 The sample rectangular depth Di@) fot a point o € R2 is

equal to tlre proportion of all rectangles R(Xi,Xi"),1 < il < iz ( n which

contain u, rvhere .R(X¿,, X¿r) is defined as above. That is,

z r -l
DI@: (':l Ð n@ e R(x¡,,x¡,))

\-,/ llir (iz(n
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Figure 3.6: Tivo possible rectangles generated by points 11 ald. r.2.

Di(z) is the empirical (sarnple) version of the true simplicial depth D'(ø):

Definition 3.2,2 Let Xt, X2, ..., X. be an i.i.d. random sample from a c.d.f.

F. "lhe rectangular depth D, (r) for a point ø € R2 is equal to the probability

tlrat ¿ is contained in the random rectangle R(Xb X2). That is,

D'(r): p@ e R(X1,Xr)),

rvhere X¿, i. : 7,2 arc i.i.d. with c.d.f. F.

(3.31)

Note that the univariate form of D'(ø) reduces to the exact form of

Equation (2.3) that rve had for.both the simplicial depth D"(r) and circular

depth D"(ø).

For a distribution F' on ¡1e, the random rectangle in Definitions 3.2.1

a;ad 3.2.2 is replaced by the random closed box B(Xt, X2) formed by two

independent observations x1 ard x2 from .F. The p-dirnensional box rvill be

that unique box ivith diagonal corners x1 a'd x2. The ge'eral definition of

the sarnple rectangular depth in any dimension p is as follotvs:
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Definition 3.2,3 The sample rectangular d,epth Diþ) for a point ø € Re

is equal to the propor.tion of all boxes B(X¡,,X¿"),7 3 i, < iz ( n which

contaiu ø. That is,

,;t'l: li) ' t rr(ø e B(x¡,,x;,)), (3.32)
\2/ ,3,!,,3n-'' - <\¡¡¿r'i^

\f Xr,X2,. , X" is an i.i.d. randon sample from F'.

Similarly, the lectangular depth of a point ø € Rp is defined as:

Definition 3.2.4 The rectangular depth D, (r) for a point ø € Rp is equal to

the probability tìrat u is contained iu the random box B(X1, X2) generated

by the two i.i.d. obser-vations X1 and X2:

D'(t) : P(r € B(x1, x2)) (3.3s)

As done in Section 3.1 for circular depth, rve establish several key prop_

erties for rectangular depth resembling those for simplicial depth. We begin

by asserting the unbiasedness of Di(ø), ø e Rr:

Theorem 3,2,5 Di@) 'is an unbi,ased, estimator for D,(x).

Proof. By the linearity of the expectation operator,

l(,1-' t il(re B(x¡,,x,,))l
L\'/ lSir <izln J

/n\-lf ;) t E[n@ e B(xi,,xÐ)]
\21 lsir <irrn

/n\ -l(;) I p@eB(x¡,,x¡"))
\'/ 1<ir <i2<n

7l



(:\-' ("\r,, € B(x, x.\\
\2) \2/- '- - -\-''I'¿'z/r

: p(x e B(Xb X2))

: o,(x).

This completes the proof. QED

Theorem 3,2,6 For any c.d,.f. F onFcp, sup¡¡"¡¡r¡¡D"(z) -- 0 as AI --+ æ.

Proof. Let X1, X2 be i.i.d. rvith c.d.f. F. Given any ø € Re, we observe

tlrat {r e B(xl,xr)} ç U-?.t{ll&ll > ll"ll}. This is because, if r is furrher

from the origin than either of the trvo random points, it clearly ca'not be

contained i'the box ge'erated by the two points. usi'g the above inclusion,

Ive get

D'(x) : P(xeB(X1,Xr))

r P(U:,{ilx,il>lt,ll})
2

< tP(llx,ll > ll'll) (¡v subaddftivfty)
i=1: 2p(llxlll > ll"ll).

Note that the last step is possible by the identical distributions of X1 a'd
X2. So clearly, since P(llxlll > ll"ll) r decreasing in lløll, it follows rhat

,q11n..D'(ø) I sup..2P(llx,lll ll'll) < 2P(llx,ll> ¡z).lf'lj>¡¿ ll,ll>¡¿

Since P(llxlll > M) -- 0 as 11 --+ oo, we get the desired result. This com_

pletes the proof. QED

We now assert the continuity of D, (r):



Theorem 3,2.7 IÍ F is an absolutelg cont'ínuous d,i.stribution on W , then

D'' (x) i.s continuous on W .

Proof. We prove the theorem Íor p :2. A similar proof for any dimension

p would follow. To establish coutinuity at ø € R2, we take a sequence {ø,,}
in R2 such that ø," -+ ø, and we rvill show th¿t

lD'(") - D'(x,")l -- 0

aS n -+ CO.

Let Xy, X2, ..., Xn be an i.i.d. sample from a c.d.f. F. The random rect-

angle .R(X1, X2) can contribute to the difference D, (r) - D'(ø") only if it
contains o.e point but not the other. This however i'rplies that there must

be exactly one li'e segment of the four in our rectangle which intersects the

li.e segnent zã'. see Figure 3.7 fo. a'illustration. For notatio'al purposes,

we define the lines

Lv(Xt) : vertical line with constant value X¿t

LH(XI) : horizontal line with contant value X¿2.

For any trvo events -4 and B, P(,4\B) : p(A)-p(AnB) > p(A)-p(B).
Therefore, if we define the events

A : lr€R(Xt,X2)l
B : [a" €-R(X1,X2)],

we have

D' (r) - D'(r") : P(A) - P(B)



Figure 3.7: c" e R(XyXz) arLd r /. R(XrX2), soÍÍiñLø(Xz). Therefore,

tlris rectangle contributes to the differenc e D, (r) - D, (r"),

< Plr e R(Xt, X2) n r" ( R(Xy Xr)l

S p(Lv(Xl) nru-"ju lLn(Xù nr..ø,lu

lLv(Xz) nr-r.lu ILH(xr) ìî-rÅ)
< p(Lv(Xl) n uu;l) + P([LH(Xò ìrr-Å)

+P(ILr(Xr) nrr;]) + p(LH(xr) nr--x)).

Note agai' that, in the context of intersecting line segrnents, ,'ll,' refe's to
the t'rvo lines crossi'g one another ât some point. This difers from our usual

use of the iutersection syrnbol ',O',, meaning the intersection of two sets or

events.

It can sirnilarly be shown (or simply understood by syrnmetry) that

D'(r") - D'(") < p(Lv(Xù nîr;) + P(LH(X) ìrr;)
+P(Lv(Xr) nrr;) + p(LH(Xr) nTî;).
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As such, u'e have

lD'(") - D'(x")l < p(Lv(Xù ìrr;) + P(LH(Xò ìî7'.:.)

+P(LT(X2) net;) + p(LH(Xr) ìîr;)
2P(Lv(X1) ¡o¡;) + 2p(LH(x) n uu;), (3.34)

since X1 and X2 are identically distributed.

We define tìre events

A": lLv(Xl) ctÍ-x)y n

B": ILH(Xù t}Í-c)y n.

Tlren, if rs : (rú, ro2),

By Lemma 4.2.2, and since we knorv that .F' is absolutely continuous (hence

has absolutely continuous rnarginals),

UAsgnr(a") < P(limsup,A"): P(Xrr: øor):0. (9.35)

By a similar argument, it can be shown that lim. sup,"*_ p(8,):0 There_

fore, lD'(ø) - D'(x,)l --+ 0 as r¿ --+ oo. This cornpletes the proof, using the

sequentialcha.racterizationofcontinuity. eED

We give an explicit form for the rectangular depth D'(z) in two dimen_

sions:
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Theorem 3,2.8 Giuen a fi,t:ed, point rs : (161, rn2) in the plane,

D'(r6) : P{rse R(X1,X2)}

: lz ['"' ["- ¡1,,s)dxds][],* l,*,ta,ø*or]I J-,- J

. 
1, l.:, 1:: Í @, y) d rda]ll'* 

l.*, r a, o)d rda]

Proof. Ftom Figure 3.8, we see that the only rvay for ø¡ to be in the

rectangle R(Xr, X2) is for X2 to lie in the ,,quadrant', diagonaÌ from the

"quadrant" containing X1. We define a quandr.ant as one ofthe four sections

of the plane generated by passing lines through ø6 that are parallel to the ø-

and g-axes. ht other words:

lxo e R(Xt,Xz)] : {[Xtr ( øsl ( X2l¡[Xn 1r.62 1 Xrr]]U

{ [X,, < rot < Xzt] L lXr, < rs2 < Xn]] l)

{lXr, < øor < X¡j r [X,, < r¡2 < X22]] Lt

{[Xr, < rot < X¡'] ìlXr, < xoz < XnI]
: AUBUCUD.

Note that A,B,C and D are rnutually exclusive and exhaustive.

Norv, by the independence of X1 and X2,

P(A) : P([Xr, < r¡lnlXp <ror] îlaot<Xziîlxn2<X221)
: P([Xrr < ,0,] f [X12 < 262])p([X21 ] r,61]]1,1X22> xs2l)

: 
V :: I _) r t,,, ",,¡ d,x 11d,x ef |l,l" I,i, r ø",,,2) d.r2,d.x22f



Figure 3.8: X1 and X2 must lie in opposite (diagonal) ,,quadrants,, in order

for øe € R(Xt,Xù.



Similarly, since X1 and X2 are identically distributed,

P(D) : P(lXr, < x¡rlnlX22 < ,02] n løor < X,r] t[xs2 < Xn])

U :: I :: r (x 2 1, x 22) d. r 21 d-'l ll,: l.:, r @ 1 1, :t p) rr x v fi c 12f

: P(A).

By a similar argument, it can be shown that

p(B) : p(c) : 
V.: l:: f @,s)arasf [l_ï 1.7,,a,,)d,,do]

This completes the proof. QED

We norv give an explicit form for- the variance of the sarnple rectangular.

depth function:

Theorem 3.2.9 The uariance of the sample rectangular depth function Di@s)

i,s

z r -1
v ar(Di@ù : l';) [a'(øo) + 2(n - 2) Di2.¡@o) + (s _ zn)(o, (cl),] ,

uhere

Dir¡@o) : a2b + b2 a + c2 d + d,2 c,

tn ul¿zch

" : l,i 1,7,r(x¡,rp)dr11dx¡2

o : l'- l'- r(r,,.,rrr)d.rrrd,r,,

" : l:: l.*,r(,,,,,,,)d,,,d,,,,
, : L: l:: r(x17,xp)rtxlnrp
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Proof. Let X1,X2,...,X^ be an i.i.d. random sample fi.om a c.d.f. F'. We

know that

VarfDi@s)l

(3.36)

The first term in Equation (3.36) yields the expansions in Equation (3.14),

with.R replacing Q. Hence, by the argument following Equation (S.14), we

have

(3.37)

= E[D;(ïo)], - (E[oiþ)]),

= "l(Ð 

"=à"o('o 

€R(xüx))f

-, 
þ i(Ð 

',=à"0('o € Ã(x.'x,))])

ElDi@ù|'z

: (;)' {(;)u'o'" €R(x"x'z))l

.(î)o, - 2))E[n@6 e R(xI, x')) x f (ø6 e A(xr, x¡))]

. (;)("ì')u¡o1,, e R(xI,x2))x f(ø6 € ,q(x.,x'))l)

: (;)' {P(,0 e R(xbx2))

+2(n - 2)Eln@o € R(Xt, X2) n rs e A(X1, X3))l

. (";')P@oe n6,,x,Dt'I

: (;)' {D' ("0) + 2(n - 2)E[n@s € R(xh x2)n zo e A(x,, xs))]

* (";')ro'øarj (3 3s)



Norv we are left witli the r¡iddle term. We'll use conditionil.rg. Note that

xo e lR(Xt Xz) n A(Xr, X3)l

irnplies X2 and X3 must both be in the ,,quadrant,, opposite X1, where the

quadrants, QI, Q2, Q3, Q4 are formed by passing lines through o0 parallel to

the ø- and gr-axes. In particular,

QI : {(",s)€R2lø> q1,!)r02}

QZ : {(r,s) €R2lz> rú,y1rs2}

Q3 : {þ,y) €R210< o6,!1x62}

Qa : {@,y) €R2lø< ro1,!}rs2}.

Since Ql and Ç3 are opposite quadrants and e2 anð, e4 are also opposite,

then

ð[f(øe e R(XI, X2)n re e Ã(X1,X3))]

P(ro c R(Xt, Xz) n 
"o 

e Ã(xr, X¡))

P(X2 € Q|, Xs ç Qt, Xt e eJ)

+P(Xz e Q2, Xe € Q2, Xr € Q4)

*P(XzeQ3,XseQ3,heQI)

+P(XzeQ4,X"eQa,heQ2)

P(x2 € Qr)P(& e Qr) P(h € eB)

+P(X2 ç Qz)P(& e Q2)P(X1e Q4)

+P(x2 € Q3)P(& e QJ)P(h e et)
-tP(X2 ç Q4)P(& e Q4)P(X1e Qz)



: [P(øor 1 X¡,r62 < Xp))2 P(x6 ] Xr,rs2 ) Xy,)

+[P(ø61 z-Xn,rs2> X¡.)]2p(rü ) X1-,t:¡2 1Xp)
+lP(r(\ ) X¡,r62 > Xþ)12 p(rú 1 Xr, xs2 < X".)

+[P(ø61 ] X¡¡,x:62 < Xe)l2pþ.61 1 Xú,rs2 ] Xn). (3.39)

Note that the second last and last steps in Equation (3.a0) are due, respec-

tively, to the independence and identical distributions of Xt, X2 and X3.

Finally, coutinuing with Equation (3.3g), we have

I f* f"' f(r11,r¡2)dxyldxp]tt
LJ _co J _oo I

t "." .." ao
* 

lJ'"" J'"' f 
(x 1 1' x ¡2)dx ¡d xPl

. U.: l :: r @ 1 ¡, x p) dr ¡tu 72]

I rro2 rtæ 12

" lJ -* J'"' f 
(x 1 1' r P)dx ¡dx ¡2)

+ ll,* l,*, t ø,y, r p) dr 1 fi x pf

f 1.to2 lror 12

" lJ_* l_* f(x11,xp)dx¡dxpl

+l ['o' '* r

LJ-,- J,o,f þ¡'xP)dx1þxel (3 40)

f roo ¡øor 12

" LJ'"' l-* f(x¡1'xP)dt¡drP)

We denote P(xo€ R(X¡Xz) nc6 e R(XI,&)) as Dþ¡(ro) to facititate our

¡rotation. Repeating Equations (3.18) and (3.1g) rvith r in the place of c, the

proof is cornplete. QED

Analogous to that for circular depth, the variance for Di(ø) in anv di_

mension p can sinply be obtained by altering the above variance calculations
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in trvo dimensions by replacing the quadrants Qà,i: L,2,3,4by p- dirnen-

sional boxes Q¿,i : 1,2,...,2p, and by using p-tuple integration rather than

double integration.

Irt the Lagrange multiplier method, rve can minimize or maximize an equa-

tion

H(q,12,...,r.)

subject to nz restrictions

ú;(u,x2, .., ø,,) : 0, i: 7,2,...,m

by solving the equations

AH,.,Ath,,0úr. ,ðtþ^
a*,* o'a,u + 

^'z Art + " + 
^m a;: o' i : 7'2'"''n'

There are n * zn unknowns and n + m equations, and so a unique solution,

11,:x2,...trn may exist. We will use this method to find an upper bound on

D'(øe) and Diz.,@o):

Theorem 3.2.LO The rectangular d,epth D, (x) has ualue less than or equal

to I for eaery r € PlP. That is,

D'(ù<1 VøeRo."-2

Proof. We rvill begin rvith the proof tlie theorem for p : 2. Recall from

the proof of Theorer¡ 3.2.8 that

D' ("o) : lP(xz e Qt)l[P(h € 83)] + lP(xz c ez)l[e@1 e ee]
+[P(x2 € Q3)]lP(xl€ Ql)llP(x2 e ea)llp(\ e e2)l
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: 2{lP(h € 81)l[P(x, € 83)]]

+2 {lP (h e Q2))lP (h e Q4)l}

: 2ab+2cd, (3.41)

rvhere

a : P(\<Ql)
b : P(X1e Q3)

c : P(heQ2)

d : P(Xle Q4).

Note that the last step in Equation (3.a1) is possible by the ide'tical distri-

butions of X1 and X2. We norv want to maximize 2ab + 2cd, subject to the

restrictions

tþ{a,b,c,d) : a -t b -t c-t d, - 7 : 0

tþ2(a,b,c,d.) : ab ) 0, and

þ3(a,b,c,d) : cd>0.

We can equivalently maximize ab + cd. We let

f : ab + cd + À1(a+ å + c + d) + ).r(ab)+ À3(cd).

Using the Lagrange rnultiplier rnethod, we have

H : o*),*åÀz:o

H : "*Àr*øÀz:o

H : o*Àr *d)¡: o

ffi : .*Àr rcÀ¡:0. (3.42)



F)'om Equations (3.a2), rve have that

(1 +Àr)ð : (1 + À2)a +¿:b and

(1 + )3)d : (1 + \)c + c: d,. (s.43)

Fbom ry'1(ø, å, c, d) : 0, we have

a*b-lc*d,:I + 2a *2c:7 =+c:1t-4,
and so

ab + cd : a2 + c2 : 
"t + f| - a)2 : 2a2 -. + i.

But since o: å and a+b+ c+ d:L, it follows that ø < j, and so

ab+ cd :2a2 - a+1 . z 11)' - I * I : 14--\2) 2'4 4'

Tìrerefore rve have that

D' (ro\ : Zab + Zcd < !.-2
Note tlrat conditions rþ2 and tfu are equivalent to saying tl.Lal a,b, c and, d,

are all greater tÌran or equal to zero. Although the pr.oduct of two negatives

gives a positive, if a and å were botìr negative, then c and d tvould have to
be as well. Conditions tþ2 and rfu would be satisfied, but the first condition,

ry'1, would be violated. This is therefo¡e inpossible, and this completes the

proof for p : 2. Note that D'(ø¡) can in fact attain this maximum value

when either

., /1 | \ / 1 1\(ø,b,c,d): (¡ ¡,0 0) or (a,b,c,ø: 
lo,o,;,;1



In p dimensions, rve rvould have

D'('o) : irfreeùP(xe -e¡)

= To,ou,
i=2

where a; : P(X € Qi),U: P(X e -Qi), and rvhere -Çi is tlie quadrant

opposite of Qi. By a simple extension of the above argument, D, (ro) 
= à

and D'(ø¡) : j rvhen a¡o: b¡o: I for some ri6, and ø; : å¿ : 0 fot all i, I is.

QED

Theorem 3,2.LL If XbX2,X3 ar.e i,.i.d. wi,th c.d.f. F, the probabili,tg that a

f,red, point 16 i,s contazned in both B(X1, X2) and, B(X1, Xs) is less than or

equal to j. That is,

Di,¡@o)slvroeRo.

Proof. We rvill begin with the ploof for p : 2. Recall from Theoren 3.2.g

that

Diz¡@o) : lP(x, € Q1)l2lP6t € 83)l + lp(x, € eÐl2lp6t € e4)l

+[P (x 2 € 83)]'z [p(xr e el)]lp (x, Ç e 4)12 [p 6 t e ez)]
: a2b + b2a + c2d + d,2c, (3.44)

where ø, å, c and d are defined as in Theorem 3.2.10. Note that the last step

iu Equation (3.4a) is possible by the identical distributions of X1 and X2.

To maxirnize Equation (3.44), we proceed as follorvs:

a2b + b2a + c2d, + d,zc : ab(a * b) + cd,(c + d) < ab + cd



since ¿ + å < 1 and c + d < L But we found the maximum va.lue fo¡ ¿å + cd

to be I in the proof for Theorem 3.2.10. This completes the proof. We note

Tllat Di2)@o) can actually attain tliis value if

/t | \ / 1 1\(a,b,c,d): (;,; 0,0) oL (a,b,c,d): (o,o z,r)
The proof for any dirnension p tvould follow analogously to that stated at the

eud of the proof for Tlieorem 3.2.10. QED

We norv find an upper bound for the variance of Di@).

Lemma 3,2.1.2 For ang d,i.mension p > 2, the uar.iance of the sample rect-

angular d,epth has an upper bound, of 7*_ft6_¡ + ffi for alln> 2. That

is,

Var(Di(r6))f ----j^ + ?-2, V n) 2.¡4n-6)n(n-1) 'n(n-l)

Proof. In light of Theorerns 3.2.10, 3.2.g and 3.2.11, the proof is identical

to that of Lemma 3.1.12. QED

Another cousequence of Theorem 3.2.g is the follorving corollary:

Colollary 3.2.L3 Di@) zs a ueaklg consistent estimator of D, (x), i.e. Di@)
conaerges to D'(r) i,n probabiLity for any n Ç He .

The proof follorvs from Lemma 3.1.12 and Markov,s inequality applied to

Y : lDi@) - n'@)l (see Lernma 4.2.6).
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3.3 A Comparison of Our Three Geometric

Depth F\rnctions

Now that we have examined the simplicial, circula¡ and rectangulal depth

functions, we can compare thern and discuss some ofthe potential advantages

and disadvantages of theil use in practice.

To date, Liu's sirnplicial depth has proven to be a very useful and valu-

able too1, both in theory and in practice. As discussed in Chapter 2, the

sarnple simplicial depth function Di(ø) has sonìe veÌy desirable properties,

includiug unbiasedness and consistency. The simplicial depth function D"(ø)

rvas shown to be continuous and to decrease to zero as r gets further and fur-

ther away from the "centre" ofthe distribution F. Ftrrthermor.e, for angularly

syrnrnetric distributions, D"(ø) was shorvn in Liu (1990) to be monotone non_

increasing, and to have a maximum of 2-p, attained at the point of angular

syrnmetry.

We obtained many sirnilar results for both the circular and rectangular

deptìr functions. Both Di(ø) and Di(ø) were found to be unbiased and

weakly consistent. (The pÌoperty of strong consistency tvill be examined in

my doctolal thesis.) The circular and rectangular depth functions D"(r)
ard D'(x) rvere both shown to be continuous. Conditions on F' ensuriug

monotonicity rvill also be exarnined in rny doctoral thesis. The maximum

values for both D"(ø) and D'(ø) we¡e found to be |, regardless of the

probability distribution F.

A question of obvious inte¡est is the use of circular and rectangular depth
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in defining (locating) the centr-e of a multivariate distribution. The omission

of this topic in this thesis rvas deliberate.

While attending the DIN4ACS Workshop on Data Depth (held May 12-

14, 2003 at Rutgers University, U.S.A. ), my supervisor became acquainted

with a group at Penn State University (Pittsburgh, U.S.A.) that were pur-

suing this very direction. This group, consisting of P¡ofessor. Thomas p.

Hettrnansperger and graduate students Ryan T. Ehnore and Fengjuan Xuan

studied the analogues of ¡-r,, and r¿ (see Section 2.1) using circles and rectangles

instead of sitrplices. Included was a study of the variance and consistency

of ¡r". At the time of completion of this thesis, their work had not yet been

published, oÌ to oulknowledge, been completely drafted. This explains our

o¡nission of their work in the bibliography.

It is important to note that, while they formulated the definition of cir-

cular and rectangular depth simultaneously, yet independent of r.rs, they had

not, to my supervisor's knorvledge, studied any of the properties for them

found in this chapter.

3.3.1 Advantages of Circular and Rectangular Depth

In Tlreoren 2.4.3, it was shorvn that the ,,tractable', form of D"(ø) is ex-

trernely difficult, if not irnpossible, to calculate in practice. On the contrary,

tlre tractable forms for D"(ø) and D, (x) nay be tedious, depending on the

forrn of /(ø), but are nonetheless much simpler ttr calculate and the reasoning

motivating the formulae for their calcul¿tions is much mol.e appaÌent.

Calcuìating the sample simplicial depth, Di(ø) can also be quite tedious,
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and repÌesents a hurdle in the practical applications of Liu,s simplicial depth.

Among other related complexities, to determine whether a point lies in a

given sirnplex S (Xr X2, .., Xo), ive must solve a systern of .¡r * 1 linear equa-

tions. In corìtrast, the methods for determining whether a point falls in a
ball C(X¡ X2) or â, box B(X1, X2) for the circular and rectangular depths,

respectively, a.re comparatively rnuch sirnpler and straightforward, especially

if p is large.

We have also calculated explicit tractable forms for the variances of Dfl(ø)

and Di@). In principle we could have proceeded along the same lines to

"calculate" the variance of Liu's sample simplicial depth function Di(ø).
Here, rather than separating the pairs of pairs of indices {z,j} and {k, l}
into three cases, we rvould have had to sepa,r.ate the pairs of triplets of indices

{i,j, k} and {t,u,u} into four cases which are more difficult to describe and

count. One can only irnagine how much more complex the calculation of

the variance would be. For example, even in the plane, the expansion of

E[Di@6)12 ¡vould include terms of the form

P(("0 e L(Xb X2, &)) n (zo e A(Xr, X¿,xs))),

rvhich ale much more complicated (i.e. involve ma.ny more cases) than the

already-complex D"(26) itself. (See Theor.em 2.4.3).

Related to the variance, Liu (iggO) states the follorving lemrna, the pr.oof

of which can be found in Serfling (1980):

Lemma 3.3,7 Let F be a distribution onPip and X1,X2,...,X, a rand,om
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sarnple Írorn F. Let

/-\ -l
u": (:l t h(xi,,xiz,...,xi^)

llir < <i- ln
be a U-statistic wi.th kernel h of degree m If h i,s bounded, by a constant c,

then for ang r ) 2,

E(U,- E(u,))'=+,
n2

uhere K depends onlg on c.

The simplicial depth, circular depth and rectangular depth functions ale

all U-statistics with respective kernels f (ø e L(Xt, X2, ..., Xo)) (of degree

n+1), n@ € C(X1X2)) (of degr.ee 2) and 1l(ø € B(XbXr)) (of degree

2). As such, if we let r : 2, Lemma 3.3.1 gives an upper bound of { for.

the variances of all three sample depth functions, where 1( is some constant.

Clearly, Lernmas 3.1.12 and 3.2.12 improve on this result, in that they yield

specific, although possibly not optirnal rates of convergence for V ar(Di@))
and Var(Di@s)).

3.3.2 Advantages of Simplicial Depth

Up to this point, we have focused on advantages of circular and rectangular

depth over simplicial depth. One of the potential drawbacks of using the

cilcular and rectangular depth functions is that we do not get as many balls

or boxes generated for a given sample size as tve would simplices in the case of

sirnplicial depth. Recall that, given a sarnple of size n in Rp, lve can generâte

Çî,) sinlpticus, but only (;) U.fr. or boxes. If p :2, this is a ratio of

n-2
3 (>1Vnà5).



For example, if rve have a sample of size n : 20, rve get six tirnes as many

tliangles generated as we rvould circles or rectangles. The discrepancy be-

comes even greater as n aîd p increase. As such, for a given sample size,

Di(ø) will give a bettel estimate for D"(ø) than Di(r) and Di(z) will for

D"(ø) and D'(ø), respectively.

rrVe also notice that a simplex is formed in a way that (at least for uni-

modal, continuous and monotone densities /(ø)) will enclose a ,,more Lea-

sonable)' region than will a ball or a box. This is due to the fact that all

extreme points of the simplex have corne directly frorn our sanple, and so

tliey likely are found in regions of substantial probability. In contrast, only

trvo of the points ou a ball or two corners of a box actually carne fr.om our

sample of data values. As such, they may contain points in areas of vely

lorv probability. To further illr.rstrate, if /(ø) lias finite support, C(Xb Xr)
and ,R(X1, X2) rvill, .rvith positive probability, contain points that ar.e uot

even in the support of /(ø). A possible solution to this latter pr.oblem

is to simply alter our definitions of Diþ) and Di(c) by rnultiplying each

n@ e C(X¡X2)) (r'espectively, n@ e R(X¡X2))), bV an indicator funcrion

T(ø e S) where S is the suppor.t of f(c). In contrast, note that a r.andom

simplex, S(X\X2,...,Xp+t) will lie entirely inthesupportof /, provided the

support is a convex subset of Rp. For au illustration of the above discussion.

see Figure 3.9.
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Figure 3.9: The circle O(Xr, Xz), the rectangle R(XI, X2) and the triangle

L(X1,X2,Xù superimposed on the support (dotted region) of /, respec-

tively.



Chapter 4

The IJse of Data Depth in

Quality Control

univariate quality co'trol charts are commonly used i'industry to mo'itor
quality characteristics of items being produced. We norv examine some prob_

le'rs associated rvith the use of these charts in a multivariate setting, and rve

exarnine the application of Liu's sirnplicial depth in this important area of

statistics.

4.L Statistical Process Control

Roughly stated,

Definition 4,l.L Statistical process control (ot quali,tg control as it is often

referled to) is the set of methods for monitoring and improving the quality

characteristics of a process.
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Quality control rnay be ernployed, for example, on the production line

of an automobile manufacturer. In the context of statistical process control,

qualitg does not refer to luxurious options such as leather seats and high-tech

stereo systems. Ratbet, qualitg refers to conformance to requiremeuts, or as

quaìity expert Joseph M. Juran (1992) describes it, ,,fitness for use,,.

For a vehicle to be fit for use, we are not concerned with the clarity of

souud of the steleo system, but rather the reliability and smooth operation

of the automobile. We need alÌ the parts to properly fit together so as to

function properly and safely. Aftel all, faulty brakes will be of far.graver

colsequel.ce than seats tvhich may not be as soft as leather.

In stati,sti,cal process control (SPC), rve are concerned with controlling the

variability of a process. If certain quality chal.acteristics vary excessively,

they may not confou¡ to requirements. As such, variability is seen as the

enemy of quality.

Moore (1995) gives the following definitions:

Definition 4.L.2 A variable (quality characteristic) that continues to be

described by the same c.d.f. over time is said to be i,n control.

Deffnition 4,I.3 Control charts are graphical tools used to monitor the

control of a process and alert us when the process has been disturbed.

Shewliart (1931) introduced the notion of control charts to ¡nonitor a

single quality characteristic of a process. Shewhart ¿ charts are used. to

monitor the process mean tvhen a variable is assumed to follorv a normal

distribution with mean p aud standard deviation o. Tìre chart consists of
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a, centre line dratvu at p and pa.rallel lines drawn at the upper and lorver

control lir¡its (UCL and LCL, respectively), drarvn af ¡.t +3ft. Values of z

are plotted on tìre chart for sarnples taken over time.

As long as the process is in control, points should be randornly scattered

about the centre line, and, by properties of the nor.mal distribution, a point

will only fall outside the control limits 0.3% of the time. IVhen we see such a

point (known as a\ out-oÍ-control si,gnal), the process is stopped to determine

if the nean or varia'ce ofthe process has changed significa'tly, or if the signal

was simply the result of an exceptioual sarnple (which we expect to occur

randomly in 3 of 1000 cases, even when tìre process is in control). In the

former case, the problem rnust be i'vestigated arìd action taken to correct

the shift in parameters before resurning production. As such, it is hoped that

any problem can be detected and remedied as soorì as possible, so time and

Ìroney are not wasted manufacturing items that ale not frt for use.

Note that a poi't falli'g outside the control limits is not the o'ly pote'tial

out-of-coutrol signal. A trend of increasing ol decreasing poilìts oveÌ time

is also an indication of a gradual shift in the pÌocess mean, and should be

investigated.

F\rtherrnore, the assumption of known nean and variance are not often

valid. In such cases, Shervhart control charts based on sampì.e means and

Ìanges are available and fi.equently used.

Due to time or cost constraints, it is often not feasible to take samples of

size greater than one, and so the Central Limit Theorern cannot be invoked.

hr such cases, individual control charts are available. Most any SpC textbook

rvill provide a more iu-depth discussion of Shervhart control cìra¡ts. See
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Montgomery (2001), for example.

4.2 The Use of Data Depth in Multivariate

Quality Control

We now consider one very important application of data depth, namely, its

use in the longstanding and difficult problern of multivariate quality control.

The discussion in this section is based in large part on that found in Stour¡bos

and Jones (2000).

4.2.L The Problem

The traditional approach to control charts has been par.ametric and univari-

ate. Tlie problen encountered with these ¡nethods is two-fold. Firstly, most

metìrods include the assumption that a specifrc quality characteristic,s mea-

surements follow a normal distribution. We ofteu suspect (or know) this

uot to be the case, and when only small sample sizes are feasible, as is the

case with individuals control charts, we cannot rely on the invocation of the

ceutral limit theorem. F\rrthermore, most control charts examine only one

quality characteristic, when in reality, most items produced must be ,,fit for

use" rvith respect to several different correlated variables. The examination

of all variables separately is of little use, as it ig'ores the correlation structure

of the characteristics.

Hotelling (1947) introduced the first nultivariate control chart, a Shervhart-

iype chart that rvas later extended by Jackson and Morris (1957) using prin-
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ciple conìponent analysis. Such multivariate charts, horveveL, involve the

often-unrealistic assumption of multivariate norrnality. In addition, when

the production run is short, we may not have sufficient data to estirnate all

the necessary pal'ameters. Coleman (1997) asserted that he ,,rvould never

believe the multivariate uormal assumption for industrial data,, , aud that he

"cannot believe that the¡e are tests for multivariate normality with sufficient

porver for practical sample sizes." His conclusion rvas simple: ,,Distribution-

free rnultivariate SPC is what we need."

4.2.2 The Use of Liu's Simplicial Depth in Multivari-

ate SPC

Liu (1995) ploposed a new Shewhatt-type control cliart based on her notion

of sirnplicial depth (Liu, 1990). The chart is nonparametric in nature, and

can be used to detect a significant change in the centre or variatiou of a
process. The central idea underlying these control charts is to ,,reduce each

multivariate measurement to a univariate index - narnely, its relative centre-

outward ranking induced by a data depth measure,, (Liu, lggb).

Individuals Control Charts Based on Liu's Simplicial Depth

Liu (1995) used the natne r chart for her rnultivariate control chart based on

simplicial depth. To avoid confusiou with the commonly used .¡B cft.¿rf for

sample ranges, Stoumbos and Jones (2000) refer to the chart as the simplicial

depth Jor ind,iaiduals chart (SDI chart), as we rvill do here.

Let X1,X2,...,Xnbe a random sample. Assume that, when the process
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is in control, the X¿ have absolutely continuous distribution F' on Rp. When

tlre process is out of control, the X¿ have absolutely continuous distribution

G on Rp. Let Xi, X$,..., Xj be an i.i.d. reference sanple frorn F, rvhere n )
(p + 1), whictlrve use to construct an SDI chart. After. the reference sample

is selected, we take a further sample of i'dependent pvariate observations

Xt, X2,... at specifred saurpling points ¿ : 1,2,... respectively. The follorvûrg

definition is taken from Stoumbos and Jones (2000):

Definition 4.2.1 The control statisti,c for the SDI chart is

,lnlr,(x,):;i lr+tf(D;(xrî)r¡i(x,))l , v i:1,2,..., (41),¿_rr L j=l 
J

rvhere Di(Xj) and Di(X;) are calculated rvith respect to the erpand.ed, ref-

erence sample (ERS) Xi, X;, ..., Xi, X;, for i : t,2,...

The co'trol statistic r,,(x¿) represents the proportion of observatio's in the

ERS that have sirnplicial depths at least as low as Di(X,). Large values

of r"(X;) indicate that the point X¿ is relatively deep within the data cloud

generated by the ERS, and so there is no cause fo¡ concern. Exceptionally low

values of r"(X¿) i'dicate tliat X; is an outlyi'g point a'd may be indicative of

the process bei'g out-of-control. As such, fi-xing a pre-assigned control limit
g, at the zth sampling point, if r,(X¿) ( 9, we stop sampling and declare the

process out-of-control. If r"(X¿) > 9, the process is declared in control and

the sampling is continued.

Liu's SDI chart plots i against r"(X¿). Because of the centre_outrvard

notion of ralking associated with data depth, this chart only has, i.e. only

requires, a lower control lirnit, g. The control limit g, as is the case for most
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any contÌol chaÌt, is chosen itì a m.anner so as to attain a l.easonable ,,average

run length" rvhen the process is in control:

Definition 4.2.2 'Ihe dnerage run length (,\F.L) of a process is the expected

number of observations to be takeu before an out-of-control signal occurs.

When the process is in control (i.e. X;,s represent a random sample from c.d.f.

.F'), we would like for the ARL to be high, as we d.o not wish to frequently

stop tìre process to examine causes of the signal tvhen in fact the pÌocess is in

coutrol. The inverse of the ARL co'rputed under the in-control distribution

F' is known as the /alse alarrn rate (FAR). Conversely, we would like the ARL

to be low when the process is out-of-control (i.e. the data represent a random

sample from c.d.f. G, which is diferent fi.om F).

The FAR is simply the probability of an observation from F being repre-

sented as out-of-contro1. For the classic univariate shewhart control charts

with tlre control limits at p.+3ft, this value is known to be 0.0027. Assum-

ing observations are i.i.d. with c.d.f. F' (when the process is in control), the

waiting time Y for an out-of-control signal is a geometric random variable

rvith parameter 0.0027. As such,

E(Y) : ARL: :370.4.11
FAR- 

: 
0^0027

In general, the in-control

distribution,

rvhere o : FAR.

ARL of the SDI chart is tìre meau of a geometric

1

ARL = :,(\
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Liu and Singh (1993) shorved that, when ¡'is absolutely continuous,

,-., à --,^,,?'n\^i) ---t U lU, ll as n ---+ oo, (4.2)

where "4" denotes convergence in distribution and U[0, 1] is the uniform

distribution on [0, 1]. In other words, if we take a sufficiently large reference

satrple, r"(X;) will behave approximately like a t/[0, 1] r.andom variable.

Equation 4.2 suggests that we use o : 9 as the lower control lir¡it in our

SDI chart. See Liu (1995) for illustrations of such charts.

The Effect of the Reference Sample Size in SDI Charts

Liu (1995) recommended using a reference sanple of size n: 500 when

? : 2, and more in higher dimensions. Horvever, the recommendation tvas

rnore heuristic than mathematically justified. As such, Stoumbos and Jones

(2000) investigated the problem of deterrnining the srnallest required refer-

ence sample size for SDI charts, in order that r"(X;) could eveu possibly

attain a value lower tha.n g. Stournbos and Jones (2000) state and prove the

following theorem:

Theolem 4.2.3 Let X1,X2,...,Xn be an i,.i.d,. rand,om sample from a c.d,.J.

F on Rp. The minimum sample simplici.al d,epth any sam.ple point can haue

is+'

Proof. CIeaIy, a sample point X¿ e {X1,X2,...,X,} will attain the mini-

munr sanple sirnplicial depth if and only if Xí# S(Xi,,Xi,,...,X¿o*,)when-

ever i f {\,i2,...,i,p¡t}. That is, X¿ is contained only inside the closed
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simplices for rvhich X¿ is a vertex. X¿ is a vertex of precisely (";1) simplices.

In total, (olr) sirnplices are generated. As such,

Di(xn) : I l.)-' t n(x¡r_s(x,,x¡",...,x¡o*,))
\n + t1 

r sir <i2<...<ipln

/'-'ll " \-'\ z /\r+t/
/ (n-t)! \/(p+l)l(n-e-l)!\ p*t: (¡ø:;-/ \-----;.-):;

The proof is complete. QED

Stoumbos and Jones (2000) shorv that a saurple point assumes this min-

imum sample simplicial depth if and only if it is an extreme point in the

convex lrull determined by X1,X2,..., X". They also assert and prove the

fact that at least p * 1 points share the minimurn simplicial depth. As such,

lorver bounds for r"(X¡) are given as

-l¿+1.l
r,(X;) > t: - >!!i tui : r,2,...,' n+r n+I

where.Ð{"+r) is the number of extreme points in the ÐRS Xi, X;,..., Xi", Xr.

(See Definition 2.4.4).

Equation (4.3) implies that the smallest possible FAR that can be used

in an SDI chart is 9 : a : ,"*4. Fot any value of g lower thau this, the

control chalt rvill nevel signal, thereby defeating our purpose. The largest

attainable in-control ARL that can be attained is thus j : !#. \\i]ren

n : 500 ard p:2, this correspouds to au ARL of + : 167. Note horvever

that this represents the best-case scena.rio, as ffi is the absolute lorver bound

(4.3)
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for r,,(X,). It is quite possible that there rvill be more than p * 1 extreme

sample points in the expanded reference sample, and so our control lirnit
n(¡+r)

must be at least l;¡.
F,'(n+ r)

Since g : ];| i. a randorn variable, the distribution of -øj"+1) nust

be exa'ri'ed. A comprehensive examination of asymptotic distributio's for

Ej"*t) for. various distributions F is provided in Stoumbos and Jones (2000),

based on earlier work, such as that in Efron (1g6b). They use the expectation

of the extrerne number of points in the lower bound of r,(X¡), rather than

the number of ext¡eme points ¿11"+1) itself. They obtain some remarkable

conclusions, notably that Liu severely underestimated the number of points

required in the reference sample to obtain a reasonabl.e in-control ARL.

For example, as calculated in Stoumbos and Jones (2000), using n:500
data points from a bivariate standard normal distr.ibution gives an expected

tninimum FAR"of 0.0215, corresponding to an in-control ARL of only 46.53.

Using n : 500 data points from a bivariate uniform distribution on the unit

circle gives an expected minimum FAR of 0.0b30, corresponding to an in-

control ARL of only 18.86. In quality control, false alarm rates of at most

0.0027 are usually used, corresponding to an in-control ARL of 370.4.

Also from Stoumbos and Jones (2000), to achieve an expected minimum

FAR of 0.0027 for a biva.riate standard norrnal distribution, a reference sam-

p1e of size n : 4,876 is required. For a trivariate standard normal distribu-

tion, n : 11,498 observations are required. Worse still, n: 44,347 bivariate

uniform observations on the unit disc and n:2,745,678 trivariate uniforn

observations on the unit sphere are required to achieve an expected minimum

FAR of 0.0027. The ¡eference sample size requirements increase quickly as
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the number of dimensions increases. (See Stombous and Jones (2000)). Still,

nonpararnetric multivariate control charts such as the SDI cha.rts require far

felver reference sample observations than, sa¡ Hotelling,s (Lg47) T2 char*t.,

rvhich lequires the estimation of several parameters as well.

4,2.3 The Use of Rectangular Depth in Individuals

Control Charts

Replacing simplicial depth rvith rectangular depth and simplices with boxes,

lve can constt'uct an individuals cont¡ol chart analogous to the SDI cliart

using rectangular depth. We will call it a Rectangular Depth for Ind.iuiduals

(RDI) chart.

Definition 4.2,4 "llte control stati.sti,c for the RDI cha¡t is

r"(xi) : # lt 
* ¡ r1a;1";¡ r r;(x,))], (4.4)

where Di(Xf) and Di(X¡) are calculated rvith respect to the expanded ref-

ereuce sarnple Xi,X;,. ,Xï,Xn, for i,:1,2,...

The control statistic r"(X¿) represents the proportion of all observatious

in the ERS that have rectangular depths at least as low as Di(X,). The

chart is constructed and monitored in the same manner as the SDI ctrart.

In rny doctoral thesis, I will investigate, atnong other things, conditions

ensuring the limit law iu Equation (4.2) when r"(X,) is defined with respect

to rectangular depth, as per Definition 4.4. Following the sarne argument as

that for SDI charts, such a result lvould suggest that tve take c : o : FAR

as the lorver limit in our RDI charts.
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The Efrect of the Reference Sample Size in RDI Charts

In liglrt of the above discussions, we rvould like to determine the smalìest

required reference sample size for the RDI chart in o¡der that rn(X¡) can

attain its lorver bound 9 (using 0.0027 as an exampÌe). But firstly, we state

au analogue to Theorem 4.2.3.

Theorem 4.2,5 Let Xl,X2,...,X. be an i,.i,.d,. rand,om sample from a c.d,.f.

F onRp. The minimum sample rectangular d,epth ang sample poi,nt can haue

is | , regardless of the d.imension p.

Proof. Cleaùy, a sarnple point X¿ e {Xt, X2,..., X"} will attain the min_

imum sample rectangular depth if and only tf Xi ç. B(Xi,,Xr,) whenever

i # {ü,i2}. That is, X¿ is contained in only those boxes for rvhich X¿ is one

of the generating colnets. X¿ is a gener.ating cotner of precisely r¿ - 1 boxes.

In total, (î) Uo"". are generated. As such,

/n\ *1

Di6,) : (;) t n(x;e B(x;,,x¡"))
\-/ llir<iz(n

: n- 7

(Ð

: (n-¡(2t(" ,2)t\:?'\ n! ) n

The proof is cornplete. QED

It can easily be shotvn that, in any sample, the maximurn number of

sample points that can share the urinimum sample rectangular depth is 2p.

For exa.nrple, in the case of p : 2, a maximum of four points do not Ìie
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in any lectangles other than those generated by the point itself. Tliese four

points corlespond to those rvith the rnininum and maximum values ofthe ø-
and gr- cornponents. This argurnent obviously extends to higlier dimensions.

Each sarnple point X¿ possessing either the minimum or rnaximum value of

some component .çvill have the minimum sample rectangular depth. As such,

slrarp lower bounds for rn(Xi) are given as

r.(x¡) 2 ft1 ^, 
i : r, 2,..., (4 5)

unlike Equation (4.3), which actually depends on the number of extreme

points in the expanded reference sample, whicli in turn is a function of the

distribution tr' of tìre randorn var.iable X.

Equation (4.5) implies that tlie sr¡allest possible FAR that can be used

in an RDI chalt is g : a: fr. When n : b00, this corresponds to an ARL

or ff : P5.25.

Theorem 4,2.6 To ach,ieue a min¿rnum FAR of 0.00p7 Jor an RDI chart

for any biuariate d,istribution, ue requ'ire 1181 obseraati,ons.

Proof. By Equation (a.5), the minumum FAR is jft, so we have

4

n + t:0.OOZZ

+z¿+l:#:1481.48
=+ n: 1480.48,

which we round up to 1481. The proof is complete. eED
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Note that this represents a distinct advantage over using au SDI chart.

Firstly, the required sample size does not depend on the distributiou of the

X¿'s, nor on any hear,y calcuìations. Secondly, aud more irnportantly, many

fewer observations are required in the constÌuctiÕn of an RDI chart. F\.om

Section 4.2, to consttuct an SDI chart rvhen .F. is bivar.iate standa.r.d normal,

a reference sample of 4,816 observations is required, whereas 44,347 observa-

tions are requiÌed in the case of a uniforrn distributionon on the uuit disc.

These represent, Ìespectively, sample sizes over times and 2g times greater

than those required for an RDI chart for the same random variables.

Theorem 4.2,7 To achzeue a tninim,um FAR of 0.00p7 for an RDI chart

for any triuariate d,istribut'ion, ue requ,ire PPZ2 obsenati,ons.

Proof. By Equation 4.5, the rninumurn FAR is fr, so we have

f)

n + I:0.0027

=+n+l- 6 :2222 ).?.- - 0.0027

+ n:222L.22,

wliich we round up to 2222. The proof is complete. QED

Note that this again represents a distinct advantage over using an SDI

chart. F\'om Section 4.2, to construct an SDI chart when ^t' is trivariate

standard normal, 11,498 observations are required in the reference sample,

rvlrereas 2,745,678 observations a.re required in the case of a uniform distri-

bution on the unit sphere. These tepresent, respectively, sample sizes over b
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times and 1235 tirnes greater than those required for an RDI cha.rt for the

same distributions, a remarkable improvement, especially in the latter case.

It is obvious from the preceding exarnples that the relative eficiency of

the RDI chart in terms of required sarnple size with respect to the SDI chart

continues to increase with the dimeusion p. Although not quantified in this

thesis, these results should be tempered by the fact that Di(z) rvill convelge

more slorvly to D'(r) than Di(ø) will to D"(r), for the reasons discussed in

Section 3.3.2. Therefore, the rate of convergence in the rectangular depth

analogue of Ðquation (4.2) may be considerably slower. These issues rvill be

examilred in my doctoral tliesis.

It slrould be noted that rvhile r.(X¡) can, in principle be defined using

circular depth, the determination of the maximum nurnber of sarnple points

X¿ attaining the rninimum sample circular. depth Di(X) is rather geomet-

rically and rnathematically cornplicated. The notion of the potential use of

circular depth in quality control rvill be explored in rny doctoral thesis.

107



Appendix A

Statistical Notation and Basic

Results in Probability

4.1 Basic Terminology and Notation

In this thesis, rve rvill frequently rvor.k with points in p-dirnensional Euclidean

space, denoted F.r,p ) 1. We express points Í0, rl, 02, ... i¡ Rp by z6 :
(xot,roz,...,ïop),rt : (r¡¡,rn,...,rry),Í2 : (trr,rrr,..,, r2p)t ... When there

is no ambiguity in doing so, we .rvill sometimes use ø and g to refer either to

points iu RP, or to numbers in R.

Tlre distance between 11 a\d Í2 in Rp is defined as

llal - qll:

Given a random variable X taking values in Rp , lhe curnulati.ue d,istribu-

D@tu- nzu)2'
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t'ion function (c.d,.f.), F: Rp ---+ R of ø is defined as

F(r):P(X (z), r€Re,

rvhere the relation X ( ø is defined co-o¡dinate-wise.

F (equivalently, X) is said tobe absolutely continuous if .P has a density

function, / : Re -r [0, oo). That is,

l* r{,)a, :,
and

F(B): p(x € B): !"t{,)0"
for any Borel set, B C Re. In particular.,

If X lras density / on Rp and ñ. : Rp -+ R, then the expectatton of h@)
is

EIh(x)l = lonp¡ ¡ 1"7a1"¡.

This is the so-called "larv of the unconscious statistician,,.

Two continuous random variables X1 and X2 are said to be independent

if and only if

P(Xt < l..1,X2 1rz):P(Xt<ry)P(X2 <øz) V 11,!02€R!

Tlre two random variables are said to be i.i.d. (i,ndependently and identicallg

d.'istributed,) if and only if tlie¡' ¿¡g independent and both have the same

distribution F- in RP.
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A set á C Rp is said to be conaer if, given arry x,y e A,

ar-t(L-c")ye A Voe [0, 1].

Given ø1, c2, ...,Ín € R,r, the conuer hull, denoted CH(q,x2,..., r") is

tlre smallest closed, convex subset of Rr containing the points ï1,ï2,...,x1n.

If X" is a sequence of random variables, rve say that X, conuerges i,n

probabi.li.ty to a random variable X if, for evely fixed e > 0,

P(IX"- Xl > e) -+ 0 asn --u cn.

The sequence X, is said to conuerge almost surely (a.s.) to X if

p(tinx.=x):r.
\n+co ,/

4.2 Basic Results in Probability

The following lemrnas provide some basic tools frorn probability, frequently

used throughout the thesis. Their basic proofs can be found in most standard

probability texts. See Billingsley (1986), for example.

Lemma 4.2.L IÍ P i,s a probability measure and, A1, A2,..., A^ are ang euents,

then

(i) þnonotonicity) 1r c A2+ P(Ar) < P(Ar),

(ii) (subadditivt,r) 
" (g a,) < Ë rta,l.
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Lemma A,2.2 (Fatou's lemma)

Giuen euents At, Az,...,lim sup,,-- P(A") < p(lirn sup"_." An) , uhere

c€ f 6 l
tir1sup,A": [ì lU e-1.

"=r L¡=" J

Lemma 4..2.3 (Conditi,on'ing 1)

Gi,uen mutuallg exclus'iue, erhaust'iue euents 81, Bz,..., B^ and, an euent A,

p(A) : ieq,+na,)

: ieçap,¡e{a,).

Lemma A,,2.4 (Cond,.itioning 2)

Gzuen an euent A and an absolutely continuous rand,om uaróable X uith p_

d'ímensi,onal d,ensì,ty f (c),x e Rr

P(A): l*e{e1x : x)f (c)d.x.

Lemma A,,2,5 ( Cond,iti,oning S)

G'iuen a random uanable X and another rand,om uariabley, the latter abso_

lutelg continuous with p- rli,menszonal d,ensitg f @),A e W,

E(x) : E(E(xlY))

= 
J,.p 

E(xlY : s)Í(a)da.

Lemma A.2.6 (Markou's Inequali,tg )
Giuen a random uariable, Y > 0 and. a constantrr>0,

PIY>ols!ø(v)
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Appendix B

Illustrations for Calculating

Simplicial Depth in Two

Dimensions

This appendix contains the 36 grapìrs necessaty in formulating the proof for

Theorern 2.4.3.

Recall that the probability of X3 being a point such that ø6 lies in the

triangle L(r1,r2,Xs) for fixed values of 16,lu1 and ø2 is dependent on the

ordering of the c- and gr- components of 26, .q a;nd, 7.2.

The folloiving graphs represent the illustrations for each combination of

these orderings. Recall that probabilities of the 36 cases rvere gr.ouped into

12 expressions h¿, i:7,2,...,72. The case (i.e. the function å¿) to which

eacìr diagram belongs will be given in the caption. In each graph, we denote

.Li that unique line rvhich passes through both ø6 and ø1, lvheÌeas.L2 is that



urìique line passing through both ø6 and 12. We denote as A the region in

wlriclr X3 must fall in order to have ø6 e L(x1,x,2,X3).

Note that some cases are divided into trvo illustrations, as the region ,4

depends ou the slopes of the lines L1 and L2.



Figure 8.1: The case where 261 1 r¡ 1u21 and ûs2 1 rD 1 r22.

sub-cases contribute to the function å1 in Theorern 2.4.3.
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Figure 8.2: The case where 161 ( ø11 ( r21 arld rs2 l rzz 1ø12. This case

contributes to the function å.1 in Theorern 2.4.3.



Figure 8.3: The case where ø61 1x:¡ 1221 and Ín < ro2 ( ø22. This case

contributes to the function h1 in Theorem 2.4.3.
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Figure 8.4: The case rvhere ø¿1 ( r11 ( :x2r a;nd ïn 1r22 1øs2. This case

contÌibutes to the fuuction å.1 in Theorem 2.4.3.



Figure 8.5: The case rvhere ø61 ( ø11 ( r21 a\d it22 1xs2 1ø12. This case

contributes to the function h1 in Theorem 2.4.3.



Figure 8.6: The case rvhere re1 ( r11 ( r21 and ix22 < rn ( øs2. Both

sub-cases contÌibute to the function å1 in Theorem 2.4.3.
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Figure 8.7: The case rvhere 261 1:t:21 1211 and 162 1x,p 1222. This case

contributes to the function å1 in Theorem 2.4.8.
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Figure 8.8: The case where z¡1 1 r21 1ø11 and ro2 < Í22 < ø12. Botll

sub-cases contÌibute to the function /21 in Theorem 2.4.3.

L2t



Figure 8.9: The case where 161 1!x21 z-Í11 arìd Ø12 4. x62 1ø22. This case

contÌibutes to the function å1 in Theorem 2.4.3.



Figure 8.10: The case where ø61 1Ì21 1ø11 and ïn <.tz2 ( ø¡2. Both

sub-cases contribute to the function å1 in Theorem 2.4.3.
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Figui-e 8.11: The case where ø61 1 Ì21 1rÍ à\d r22 1rç2 1112. This case

contÌibutes to the function lz1 iu Theorern 2.4.3.
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Figure B.12: The case where ø61 1r21 1 rÍ and î22 1xp 1c62. This case

contributes to the function h1 in Theorern 2.4.3.
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Figure 8.13: The case tvhere ø11 ( øe1 ( r.21 and..to2 4. rp 1ø22. This case

contributes to the function å3 in Theorern 2.4.3.
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Figure 8.14: The case where 211 ( 161 ( r21 a.!1d !xs2 1x,22 1ø12. This case

contÌibutes to the function lz3 in Theorern 2.4.3.



Figure 8.15: The case where ø11 ( f61 ( r21 a\d rn < .Lo2 ( ø22. These

sub-cases contÌibute to the functions lz6 (top case) and à5 (bottom case) in

Theorem 2.4.3.
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Figule 8.16: The case where e;11 ( r;61 ( !D2t a\d x)n 4. r22 1ø62. This case

contributes to the fuuction åa in Theorern 2.4,3.



Figure 8.17: The case where ø11 ( 161 ( ø2r and î22 < ro2 ( ø12. These

sub-cases contÌibute to the functions å6 (top case) ând fr.7 (bottorn case) in

Theorem 2.4.3.
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Figure B.18: The case where u11 ( 161 ( r2r and !x22 1rp 1ø¡2. This case

co¡ìtributes to the function åa in Theorem 2.4.3.



Figure 8.19: The case rvhere ø11 1r21 1Í61 and :c62 1rp 1122. This case

contlibutes to the function å2 in Theorern 2.4.3.



Figr.rre 8.20: The case where ø11 1 r21 1 ø¡1 and .Do2 < r22 < r12. Both

sub-cases contribute to the functiou ä2 in Theorern 2.4.3.



Figure 8.21: The case where ø11 1r21 1r¡¡ and re 1r,62 1ø22. This case

contributes to the function lz2 in Theoreur 2.4.3.
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Figure 8.22: The case where ø11 1 r21 1ø¡1 and tn < r22 < ø62. Both

sub-cases contribute to the function år in Theorem 2.4.3.
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Figure B.23: The case n'here ø11 1r21 1ûú and r22 1c62 1ø12. This case

contributes to the function å2 in Theorem 2.4.3.



Figule 8.24: The case rvhere 211 1t:21 1ro1 a;nd î22 1Ìp 1ø62. This case

contributes to the function lz2 in Theorem 2.4.8.



Figure B.25: The case where 221 ( c61 ( ¿11 and ø02 1xe 1øzt. This case

contlibutes to the function å3 in Theorem 2.4.3.



Figure 8.26: The case where ø21 ( ø61 ( ø11 and ø02 1x22 1212. This case

contÌibutes to the function å.3 in Theorem 2.4.3.



Figure B.27: The case where r21 ( ø61 ( :rtl and ro 1roz ( r22. These

sub-case contÌibute to the functions åe (top case) and lz16 (bottorn câse) in

Theolern 2.4.3.
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Figure 8.28: The case where ø21 ( øe1 ( rn a\d W < r22 < 162. This case

contributes to the function ha in Theorem 2.4.3.



Figure B.29: The case where ø21 ( ø¡1 ( Í11 altd r22 < ro2 ( c12. These

sub-cases contt'ibute to the functions lz11 (top case) and ft.12 (bottom case) in

Theorem 2.4.3.
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Figure 8.30: The case where ø21 ( ø¡1 ( .tt and .022

contributes to the function ha in Theorem 2.4.3.

1 x12 1 ø¡2. This case



Figure 8.31: The case rvhere ø21 ( ø11 ( ûei and î02 < xlr2 1 r,22. Both

sub-cases contribute to the function lr2 in Theorern 2.4.3.



Figure 8.32: The case rvhere 221 ( ø11 ( rot ând. ¿02 1r22 1ø12. This case

contributes to the function å2 in Theorem 2.4.3.
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Figure B.33: The case rvhere ø21 ( ør1 ( ror and W --ïs2 1222. This case

contributes to the function lr2 in Theorem 2.4.3.
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Figure 8.34: The case where 221 ( ø11 ( 161 and r12 1r22 1ø¡2. This case

contributes to the function À2 in Tlieorem 2.4.3.



Figure 8.35: The case rvhere ø21 ( ø11 ( lEú and r22 1x62 1212. This case

cont¡ibutes to the fuuction l¿z in Theorem 2.4.3.

i48



Figure 8.36: The case where ø21 ( ø11 ( ø¡1 and r22 < rn < ca2. Both

sub-cases conttibute to the function h2 in Theorern 2.4.3.
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