THEORETICAL ANALYSIS OF THE TYPE I
F,(Na) AND TYPE II F,(Li) CENTERS

IN KC1

A Thesis
submitted in partial fulfilment of
the requirements for the degree of
Doctor of Philosophy
| at

The University of Manitoba

by.
Chong Kim Ong

March, 1973




ACKNO WLEDGEMENTS

The author would like to express his sincere thanks and deep
appreciation to his super¥isor, Dr. J.M. Vail, for his guidance through-
out the course of the work. Dr. R.J. Brown's computer programs have been

much appreciated.



ABSTRACT

Details of the electronic and ionic structure of the absorption energy
and the ground and excited state reorientation energies of the -FA(Na)
arld FA(Li) centers have been studied theoretically. The variational
method is used to estimate the energy levels and wave functions, and one-
parameter Gaussian-localized trial wave functions are used. The lattice is
treated as unpolarizable point ions plus the ion—size‘correction arising
from the approximate pseudopotential method develoﬁed by Bartram, Stoneham,
and Gash. The lattice energy is the sum of the Coulomb interactian and the
Born-Mayer repulsion, with Tosi's single exponential parameters as devised
for perfect KC1, NaCl, and LiCl lattices. The lattice distortions and
the electronic wave function aie calculated self-consistently, using the
method of lattice statics as modified for the case of an excess-electron
defect with non-harmonic lattice distortion. The = Franck-Condon principle
is used for absorption and emission. The FAl—absorption energy agrees with
the‘experiment but with FAl_FAZ vsplittings about three times too large.
This discrepancy is probably 1?rge1y due to ion-size correction. Energies

of the relaxedexcited state (RES) in vacancy and saddle-point configurations

ii



iii

are also estimated. The RES of FA(Li) is found stabilized in the saddle-
point configuration in agreement with experiment, but the FA(Na)
stabilization is wrong, although the error in the energy is less than 0.2

eV. Ground state reorientation energies agree with experiment for both
centers. The role of the impurity cation in lowering the activation energies
in both states is about equally divided between lattice energy and Coulomb
electron-lattice interaction. Tentative results suggest that the saddle-

point configurations for F- and F, - centers may be quite different.
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CHAPTER 1

INTRODUCTION

The main aim of the present work was to theoreticgllyvestimate the
energy levels of FA(I) and FA(II) - centers(l) in KC1 crystal,
including both electronic transitions and the reorientation process. The
type I or type II FA - center in KC1 1is basically an F - center
adjacent to a Na' or Li' substitutional impurity ion respectively
(Fig. 1). The following physical parameters of these defects havé been
extenéively studied: |

(1) Optical absorption energy;

(2) Optical emission energy;

(3) Activation energies for reorientation and dissociation;

‘When the center has absorbed the photon, the bound excess-electron will be
excited from its ground state to an excited state in a potential similar
to the square well. The energy of the absorbgd photon is called the
absorption energy. The final state of the excess-electron in absorption,

is called the unrelaxed excited state. The lattice then relaxes, until the

excess-electron and the defect lattice are in mechanical equilibrium. This

is called the relaxed excited state. The most striking single feature of



Figure 1

The ordinary F - center, FA(I) - center and

FA(II) - center in KC1.

(a) Ordinary F - center in KC1
(b) _FA(I) - center in KC1 : Na

(c) FA(II) - center in KC1 : Li






these centers occurs in the-‘FA(II) - center, where the relaxed excited

state is stabilized in the saddle-point configuration (Fig. 2b). In the
sdddle-point configuration, a negative ion lies half-way between two vacant
anion sites. ‘From the relaxed excited state, the emission process occurs

and the final state of the optical emission process is the unrelaxed ground
state. Again, the lattice relaxes to the equilibrium state, which is the
relaxed ground state. In the reorientation process (Fig. 3), the FA - center
moves from one anion site to the nearest one which is adjacent to the im-
purity by the step-diffusion process, passing through the saddle-point
configuration. In the dissociation process the F, - center moves from one

A

anion site to the nearest one which is not adjacent to the impurity.

1.1 Experimental Situation

Experimentally, the three-fold degenerate F - center absorption
transition has been observed to be split into two lines in the F, - centers.
This is due to reduction of the F - center's symmetry by the impurity
cation. One of the absorption lines is polarized along the Z (or X) -
axis, if the impurity cation is at (010), and is called fhe FAZ level
(Fig. 4a), and the other is polarized along the y-axis (Fig. 4b), in the
direction of the neiéhboring impurity cation, and is called the FA1 level.
The position and shape of the emission band of the FA(Na) - center is
similar to that of the F - center, but for the FA(Li) - center, it has a
larger Stokes shift, a narrower emission band and the absence of thermal

(1

and field ionization of the excited state. © Luty concluded that
the emission processes occur in the vacancy configuration for the FA(Na) -

center, and in the saddle point configuration for the FA(Li) - center. The

experimental values for



Figure 2

Vacancy and saddle - point configurations of the
lattice for FA - centers in KCl. T denotes the
cation, - denotes the anion, and # denotes the

impurity substitutional cation.

(a) vacancy configuration

(b) saddle - point configuration






Figure 3

Model for reorientation of the FA - center in KC1.
+ denotes the K ion, - denotes the C1° jon, # denotes

the impurity cation and e denotes the trapped electron

(a) dinitial state
(b) intermediate state (saddle point configuration)

(c) final state
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Figure 4

FAl and PAZ unrelaxed excited states for FA - centers
in KC1. + denotes K  ion, - denotes C1~ iom, - denotes
impurity ion, and ---- schematically indicates excess

- electron.

(a) FA2 unrelaxed excited state

(b) FAl'unrelaxed excited state
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(A) Fry absorption energy;

(B) FAZ - FA1 absorftion splitting;

(C) even parity reorientation activation energy;

(D) even parity relaxation energy in the saddle»poiﬁt configuration;

(E) emission energy in the saddle-point configuration;

(F) odd parity reorientation activation energy
are shown in Figure 5. All the experimental data are taken from ref. (1).
The energy levels relating to both vacancy configuration and saddle-point
configuration are shown. The question marks in the figure means that the

experimental values are not available.

The F and PAZ transition measurements haye been done by Luty

Al
(ref. (1), p. 188) by optical methods. FA1 and FAZ absorption spectra
can be observed by shining unpolarized light onto the crystal. The over-
lapping of the FAl and FA2 spectra is decreased by using a dichroic
crystal with suitable choice of polarization of the incident light. The
reorientation process can be observed by the change in its FAl or Fy,
polarization on heating. Analysis of the temperature dependence of the

relative absorption constant (ref. (1), p. 200) yields the reorientation

energy.
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1.2 Previous Theoretical Investigations

Three theoretical investigations of the absorption processes ofbboth
the FA(Na) and FA(Li) centers have previously been done (2)’(3)’(4). Two
other investigations have studied FA(Na) absorption only(s)’(6). None
of the authors attempt to verify the peculiar relaxed excited state of the
FA(Li) centers or the reorientation process for either center.

In order to understand the origin of the splitting, one has to go
beyond the point ion approximation. The point ion lattice approximation
has been used in an F - center absorption calculation by Gourary and
Adrian(7). Their result is in moderate agreement with experiment. In the
point ion lattice approximation, the ions are treated as point charges of
appropriate sign. In other words, we neglect the size of the ion core; that
is, we neglect the exchange interaction between the excess—eléctron and the
core electron and the interaction of the excess F - electron with the

point ion is taken to be purely electrostatic. Thus, the one electron

Hamiltonian of the F - electron is the sum of the kinetic energy of the



Experimental energies (eV) for FA(Li) and FA(Na) - centers

Figure 5

in KC1.
- (A) FAl - absorption energy
(B) FAZ - FA1 absorption splitting
fC) even parity reorientation activation energy
(D) even parity relaxation energy in the saddle-point
configuration
(E) emission energy in the saddle point configuration
(F) odd parity reorientation activation energy

The unlabelled energies 1.12 for FA(Na)~center

is the emission energy in the vacancy configuration.



—1Faz

(B) 0.27 | | FA(Li y-center
~W'Zs FAI . '
{RES) ——=—=="""
(0DD) | ;[(F)?- |
| hXe RES (0DD)
3 (E)0.46
-{A) 1.98 {1 (even,unrelaxed)
' i > (even,
: (D)MF Y relaxed)
i
{C) 0.2l
|
{ground —————————=———mo s =TT T ——
state ,0DD) o |
| VACANCY SADDLE ~ POINT
CONFIGURATION .CONFIGURATION
e % - F, (Na)-center
{B) 0.23: , Az i | A : : .’
— Fal g N
| Lo e~ RES (ODD)
RES ——T—3™NF)0.09 |
* (0DD) :
(A} 2.12 .2 |- . (even,
| ' = X ‘reloxed)
- a‘
(EVEN)—A— (C)1.25
b |
égréund Uy I O i
sfote ' ,EVEN) .
' ~ VACANCY SADDLE - POINT
CONFIGURATION CONFIGURATION




F - electron and the electrostatic interaction of the F - electron and

point ion lattice.

However, the electrostatic and exchange interactions between the

w

excess-electron and the core electrons is important for the F, - center

(5)

study. Kojima et al "used a linear combination of the atomic orbitals of

A

the six nearest neighbors to the FA - center as ground and excited state

wave functions. They thus included the ion-size effect of the nearest
neighbours and neglected the contribution from the other ions. They

concluded that the energy differences between the unrelaxed FA1 - levels

and unrelaxed F - levels are functions of the difference in ionization

@

energy of the host and impurity cation. Smith “has calculated the shift

in the absorption energy between F and FA - centers. He treated the
difference of pseudopotentials of the nearest neighbour impurity cation
and host cation as the perturbation on the point-ion approximation. The

pseudopotential is determined from the requirement of the orthogonality of

k(s)

the F, - center wave function to the core orbitals. Weber and Dic used

A

the approximate pseudopotentials for the ion-size correction, as evaluated
by Bartram et afg)(hereafter“ referred to as BSG), and which will be
discussed further in Chapter 2. In order to get agreement with experiment,
they discarded the reduction factor 0.53 which is suggested by BSG. Lattice

distortion and ionic polarization are not included in their calculation.

(4)
Alig has developed an approximate form for ion size correction, similar

to BSG, but without the reduction factor 0.53. He also included the lattice

distortion and ionic polarization of the six nearest neighbours to the

(7) (GA). GA - type wave functions

have been used for the later three investigations but only Weber and DicK(4)

vacancy by the method of Gourary-Adrian

make them self-consistent with the lattice potential.
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1.3 Brief Description of our Model and Method

In all previous investigations, and in the present-work, the lattice
is considered as static, i.e. no dynamical effects are included. The
adiabatic approximatiogg)is used to decouple the electronic state from
that of the lattice. In the -adiabatic approximation, the electron is
assumed to move very fast in the potential provided by the lattice, and
therefore follows the lattice motion adiabatically. On the other hand, the
lattice cannot respond to the electron's instantaneous position, only to
its average position. The Franck-Condon principle is also applied, which
states  that the transition of the electron from one state to another occurs
while the lattice remains fixed. In fact, in some states the excess
electron may interact with the optical phonon modes to behave like a
polaron and such electron-lattice interaction is non~adiabatic(lo)’(11).

Two main problems involved in point-defect calculations are:

(1) to determine the appropriate interionic potential;

(2) for a given potential, to calculate the distortion field about

the defect.
For the F, - center, one further problem has to be solved: the excess~-

A

electron wave function.

In the preseng work, the Born-Mayer potential with Tosi's single
ekponential parameterglz)was used. That is, we used perfect lattice
parameters for the defect lattice. This approximation seems to have been
justified in Tosi's calculatiogls)of the vacancy migration energy in KCI1
It remains to be seen how well justified it is in other defects.

The method we used in calculating the excess-electron wave function

was variational. The trial wave functions which we used were Gaussian-

localized, low-order Legendre polynomials. The ion-size effect has been
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‘included by using BSG approximate pseudopotential with the reduction factor
o = 0.53. In this approximation, the pseudopotential introduces an extra term
into the Hamiltonian. The justification for o has been discussed by Stoneham(42).

The displacements of the ions around the defect from their perfect lattice
sites have been calculated and the resulting contribution to the defect system's SR
energy has been included. The method which we used for this is called the

(143, (15), (16)

lattice statics metho , in which the whole lattice is treated

as discrete and the results can be made exact within the harmonic approximation.

(17)

The method has béen extended by Vail to include non-harmonic lattice
distortion near the defect. The criterion that we used for identifying the
ions with non-harmonic displacements is that convergency of the solution of
& failed if they were included in region II. (see equation (2.83) and
appendix (c)). The further merit of this method is that the distortion field
of the lattice is made self-consistent within the excess-electron wave
function. There is ﬁo doubt that the wave function of the excess-electron
will alter as the lattice distorts.

In short, our estimates of electronic defect energies are based on a
variational procedure in which parameters in a trial electronic wave function

and the ionic displacements are determined self-consistently to minimize

the total energy of the system.

1.4 Brief Summary of our Results

Compar;son of our calculated results with experiments show: the
following:
(1) the even-parity reorientation energies of both FA(Li) and
FA(Na) centers are in good agreement with experiment;

(2) the FA absorption energy for both FA(Li) and FA(Na) centers,

1
agrees with the experiment;

(3) the relaxed excited state of FA(Li) is stabilized in the saddle

point configuration;
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AL " FA2 absorption is about three times too

large, compared with experiment.

(4) the splitting of F

Our results fail to describe:
(1) the emission process of the FA(Li) in the saddle-point con-
figuration;
(2) the relaxed excited state of FA(Na) stabilized in the vacancy
configuration.
Throughout the project, we refused to make any empirical correction
to improve our agreement with the experiment, because this would hide the
weakness of the model and method, which is one of our objectives to

assess.

1.5, Relevance of this Investigation

There are three areas of relevance for this investigation:

(1) qualitative features

In the present investigation, the system's energy can be con-
veniently expressed in five parts: the electron's kinetic energy,
the point ion potential, the ion-size correction, the lattice defect
energy, and the harmonic lattice distortion energy. Thus, the role
which the excéss—electron plays in the step-diffusion process in both
odd-parity and even-parity states, can be understood qualitatively.
Also by comparison of the contribution from the different terms to the
activation energy of the FA - center and the ordinary F - center,
the role of the impurity ion in the activation process can be

qualitatively assessed.

(2) theoretical relevance

The results of the present calculation will give some indication
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of how well our model and approximations can describe the properties
of defects. Discrepancies with experiment will give some indication
of possible modifications and improvements which should be made to
the model and methods.

(3) Applications

. . .o
The FA -~ center occurs in photochromic materlalslg)and there-
fore, has some relevance in design of photochromic devices. Photo-
chromic materials are those which change color in a reversible way

under illumination. The reversible photochromic process for F, -

center is
F‘ + F <~EX—-> F ' + vacancy
A A “ht A
where hy is the energy needed to ionize the F, - center electron

A

to the conduction band. The electron can then be trapped by another
1 1

FA - center to form an FA -~ center, the FA - center consisting of

two electrons trapped in the anion vacancy. The position and sharp-

1
ness of the FA - center lines are very different from those of the

\
FA - center. Similarly, one of the electrons of the F, - center

A
can be ionized into the conduction band and be trapped by a vacancy
to form another FA - centers, giving the original configuration.
Some of the factors which determine whether a photochromic device
“can be based on a given electronic defect, and which could be assessed
using the present model and methods are:
(1) the defect energy levels relative to the conduction band;
(2) the relative magnitudes of the absorption energy for related
but different defects-(e.g. FA and FAl - center)

(3) the presence or absence of competing absorption and emission
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processes.

1.6. Brief Outline of Remainder of Thesis

The basic elements of our model and methods, namely, Tosi's single-
exponential form of Born-Mayer repulsion, Franck-Condon approximation, the BSG ion
size correction, and the method of lattice statics will be described and discussed
in chapter 2. The details of the calculation and the results will be re-
ported and analysed in chapter 3. This will inciude the energy levels and
distortions for both relaxed and unrelaxed states in each of the two
configurations. The role of the impurity ion in the activation process is
also discussed. The critical assessment is given and suggestions are made

in chapter 4.



CHAPTER 2

METHODS AND MODEL

The purpose of this chapter is to provide fhe theoretical background
for the point defect calculation. In the present calculation, the lattice
is treated as discrete point charges bound by Coulomb interaction énd
‘stabilized by a repulsive force. Tosi's single exponentiél form of Born-
Mayer repulsion has been used. The ion-size effect of the lattice is taken
care of by the BSG approximation with the empirical factor o = 0.53,
which is based on a pseudopotential method. For the electronic part of this
problem, a one electron Hamiltonian is used. The variational method is
used for calculating the electronic wave.function and energy levels. 1In
the variational method, the ion-size correction is just an extra term in
the electronic Hamiltonian. For the lattice part of this problem, the
lattice distortion is calculated rigorously by the lattice static method.
Furthermore, the excess-electron wave function isinot only made self-consistent
with the given potential but also with the lattice distortion. However,
ionic polarization and electron-phonon interaction are not included. The
Franck-Condon approximation is uéed for calculating ébsorption and emission

energy. In the following sections, we are going to discuss

-
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(1) the lattice energy (2) the Franck-Condon approximation (3) ‘the ion

size correction and (4) the method of lattice statics.

2.1. The Lattice Energy

In the point ion model, the ionic interaction can be written as the

sum of Coulomb (c) and repulsive (R) parts,
w=wl® . y® (2.1)

Tosiclz) has developed a Born-Mayer type single exponential (SE)
(R),

form for W

w(R) = B exp (_ g.) (20 2)

W(R) applies only to nearest neighbour interactions. The parameters B

and p are determined from the'following equations of state which included

the temperature correction.

aw _ I8 ’
TPy , . : (2.3)
Vd2w=.1+:1:_[(95) LB @K~ 2.4)
av? K K2 ol"'p K "op’T_

where K 1is the isothermal compressibility and B is the volume coefficient
of thermal expansion. The determined value of B and p have been given
in ref. (12) table VII 2nd column. The SE form is known to give reasonable

‘results for vacancy migrationl3

2.2, Franck-Condon Principle

The following discussion of the Franck-Condon principle will be

restricted to the static lattice model which we have used in the present
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calculation.

There are two electronic bound states involved for each electronic
transition considered in this work. For each of the electronic states,
there is a different set of equilibrium lattice distortion parametexrs
(4,8), because of the different charge distributions of the excess-electron
interacting with the lattice. In order to describe the Franck-Condon
principle for the transition of the electron from one state to the other,
we are going to introduce the so-called "configuration coordinate! diagram.
The configuration coordinate can be understood by reference to figure 6,'
where the defect system's energies are plotted as a function of a single
coordinate, different values of which correspond to different 1éttice
configurations. The lower curve of Fig. 6 is the energy curve corresponding
to the electronic state a, or ground state. The upper curve is the
energy curve for the electronic state b, or first excited state. The
optical absorption and emission processes for the color center can be
visualized from this configuration diagram, as follows. When FA - center
is in the ground state A, it will be excited to the first excited state
B after absorbing.a bhoton. Thereafter, the lattices has to readjust to
the new charge density of the electron, and so it relaxes to C by giving

A
up energy as phonons. The emission process occurs from state C. Again,
the system relaxes from state D to state A by giving up the corresponding
energy as phonons.

The configuration coordinates of the state A and B are the same,
namely Rg in Fig. 6. Similarly, state C and state D have the same
configuration coordinate Rex’- This is the essence of the Franck-Condon
principle, which assumes that in the most probable transitions, the ionic

coordinates do not change, or '"'vertical transitions' occur in the configur-



Figure 6

Configuration coordinate diagram for an F, - center.

A

A > B is the absorption process and C > D is the
emission process, in Franck - Condon approximation.
E is the total defect system's energy and R is the

"configuration coordinate'.

18.
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ation diagram. In short, in terms of the configuration coordinates, the
Franck-Condon principle describes the absorption energy and emission energy
as the magnitude of A~> B and C ~» D, as in Fig. 6, while the Stokes
shift is described as the difference of the magnitudes A+ B and C =~ D.

Thé limits of validity of the Franck-Condon principle are not obvious.
It depends on details of the phonon distribution and on the electron

(10), (1)

phonon interaction both of which are ignored in our treatment

2.3, Ion-size Correction

The following discussion on the ion-size correction is based on ref.

(21).
Consider the Schrodinger equation
HYy = Ey (2.5)
where H = one electron Hamiltonian =T + V
T = kinetic energy operator

V = the potential energy due to all the ions, and the eigenfunction

i

¥ of the excess-electron must be orthogonal to the core states |c> of

the ions. Now, let us define [ ¢ > by

v >=]¢>-3]c><c| o>
c
= (1-Zlc><c)] ¢> (2.6)
c e .
where | ¢ > is a smooth wave function which is not orthogonal to the core

state. Write

P=ZI]c><c ' @.7n
C
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which is known as the projection operator, projecting onto the core states.

Then, equation (2.6) becomes
lv>=0-91]¢> (2.8)

In the pseudopotential method, instead of solving the eigenvalue

equation (2.5) for Y, one considers another eigenvalue problem

H + VR) ¢ = E ¢. ' | (2.9)
which is solved for ¢, called the pseudo-wave function. Let us write

v -po, e

where 0p is ‘an arbitrary operator. There are two different forms of VR
which are of interest in color center calculations, namely:

CH)

) :
(1) Cohen and Heing19 pseudopotential (Vp
’ (20)
(2) Phillips and Kleinman20 pseudopotential (VPPK)
For VbCH operating with (1 - p) from the left on equation (2.9)' gives:

~

¢ | | (2.11)

71

(1-P H+V)¢=(-P)

P and [H,P] = 0, equation (2.11)

Making use of equation (2.10), I;

becomes:
HOL-P) 6 =EF(lL- P ¢ - (2.12)

Therefore (1 - P)¢ is a eigenfunction of H and we denote the eigen-

~

value E = E. Then, equation (2.9) can be written as

3

(T+V+PO) ¢=E¢

or »
(T+Vy) ¢=E9 ' ' (2.13)



where
Vv = V + PO 2.14

is called the pseudopotential.
Since OP is arbitrary, thusfar, we fix OP by requiring smoothness
of the wave function. This corresponding to minimizing the kinetic energy

or maximizing V, with respect to the variations of ¢, i.e.
V=20 (2.15)

where

s vev] e
V= (2.16)
<¢ o>

We evaluate equation (2.15) by the Lagrangianmultiplier method

§ (<o | VeVl o>-2r<o]¢>)=0
where A is the Lagrangianmultiplier. Thus

<6¢|v+vR|q>_>+<¢|V+vR|5¢>

SA<8 9| d>-A<9 | 89>=0
A

Consider < ¢ | and | ¢ > separately. Then

<d¢l,V+VR|¢>—A<6¢|¢>=O (2.17)
Since this must be true for arbitrary < § ¢ |,

(V+VR)|¢>—A|¢>=0

whence;

21.
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<¢|v+vR]¢>:

A = =V - (2.18)
<o | o>
Thus equatioh (2.17) becomes
<8¢ | V+V | 9>-V<8¢|>=0 (2.19)
' | L
If we substitue | ¢ >=[¢>+2 a | c> for | ¢ > in
c
equation (2.8), where a, are arbitrary constants, then we have:
V t
A-ple>=a-p(¢ >-2a |c>
. c
? ' t
= I ¢ > -z O | ¢>-P |¢ >+ L P O l c >
c ‘ c
v i 7
= | ¢ >-Zaclc>-Pl¢'>+Zac|c>
c c
o S
=l ¢ >-P|9 >
. t
=(1-p ¢ > (2.20)

Thué, the result in equation (2.8) will not change if we replace ¢ by

1

¢ . Thus, take |6 d > = é o | ¢ > and substitute into equation (2.19)

[ne]

cac<c|v+VR|¢>—V§ac<c|¢>=o

[ne]

o [<c|VH+ Ve | 9> - V<c|]¢>]=0
c

Then since the ac's are arbitrary,

<clv+vR|¢>-V<c|¢>=o ‘ (2.21)
But
Vgle>=po | o>
=z,|c'><c'|op|¢> (2.22)

C
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And
t '
<clVRl¢>=i'<clc ><c|0pl¢>
=<c|0p|¢> (2.23)

Substituting equation (2.23) into equation (2.21), we get
<c‘|V[q>>A+<c|OP|¢>-v<c|¢>=0

then
<c|0p|¢>=<'c| ('\?—V)|<b>.v- : (2.24)

Then equation (2.22) becomes

vR | $>=2 | c><c l CV - V) | ¢ >
: c

P(V-W]|¢> - (2.25)

Therefore, the optimum pseudopotential in this case is

CH

YPV=V+P('\7—V) - (2.26)

For the Philips and Kleinmean pseudopotential ViK, one substitutes

eéuation (2.8) into equation (2.5). Then:
HQL -p) | ¢>=E (1 -p) | ¢>
H+PE-W]]¢>=E]¢> | (2.27)

Identifying equation (2.27) with equation (2.9), we get

-

VEK =P (E - H) (2.28)
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Thus
ng =V +P (E-H (2.29)

There is also some arbitrariness of the wave function ¢ for the Philips
and Kleinman pseudopotential. However, Bartram and GaséZI)believe that if
the pseudo-wave function ¢ is appropriate for Cohen and Heine pseudo-
potential, then, it will be appropriate for Philips and Kleimman pseudo-
potential too.

The most important different feature between V;K and VSH

is that
ViK is Hermitian but VgH is not. We must notice that the variation
principle cannot in general be used to solve the eigenvalue problem for
non-tbrmitién ﬁamiltonian.

BSGCs) employed the Cohen and Heine pseudopotential (equation (2.26))
in calculating the F - center absorption energy.‘ They rewrote eﬁuation
(2.26) in a form sucﬁ that they could compare their results with the point-

ion lattice calculation, and introduced the ion-size correction term for

color centers, as follows:

CH ' = |
Vi=y _+ V-V )+p V-V ' 2.30
p PI'( pI) p( ) (2.30)

where VpI is the potential energy operator when all the lattice ions are
approximated as point charges. Neglecting the overlap of ion cores on

different sites, we have:

P =1 . 2.31
Ypr | (2.31)

where Y labels the ion at site vy. Similarly, V and VﬁI can be

expressed as

V=3xV ' 2.32
Yoy Y (2.32)
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V.. =3V (2.33)
I I
P v Py .
The summation I is over all the ion sites. The equation (2.30) becomes:
¥ .
Vel _ oy 1+ 2 [a - PY)(VY - VPI')- PY Vi +p V-u
PPy Y Py T Yy Y]

where UY is the potential energy of an excess-electron at lattice site

Y due to all the other ions in the crystal, which can be written as

Uz IV, >~ IV (2.35)
I
Ty Y iy P

Since the core orbitals are assumed to be highly localized within ion core
\E |

At this gtage; one has to note that (T + V;H) is not Hermitian and
therefore the variational Principle cannot be assumed to give an upper
bound of the eigenvalues. BSG(S) avoid this by éssuming that the variation
of the wave function inside the ion core can be neglected, since the pseudo-
wave function given by VVCH must be the '"smoothest". Thus, the solution

of equation (2.9) is

= . - 2., —

Esso|T+v,|¢> 5! ¢ () |7+ T -u) B (2.36)
where

AY = ['(1 - pY} (VY - VPIY) dt - [ Py VPIY dt (2.37)
and

13Y = J pY dt 4 : (2.38)

The numerical values of AY and BY have been computed for a.number of
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ions by BSG (see ref. 8, table I). Then, the form of the ion-size correction

is

Vig =1 [AY + BY v - UY)] S (r - ry), (2.39)

Y

S

which can be used in a variational calculation.

BSG have used this approximation in calculating F - center absorption
eﬁergies. Their calculated results indicated that in order to get agreement
with experiment, one has to use (o AY) instead of Ay’ with o = 0.53.
After introducing the empirical factor a = 0.53, they found the calculated
F - center absorption energies of 16 of the 17 alkali halides with rocksalt
structure to be in agreement with the experimental values. The theoretical
origin of this factor « has been pursued by Gasgzlq He
found that the main source of error came from the assumption of negligible
variation of the pseudo-wave function over the ion cores. Furthermore,

Gas£21)have developed an exact pseudopotential calculation to
take care of the ion-size effect. He used the Philips and Kleinman

pseudopotential instead of the Cohen and Heine form because VgK is

Hermitian. Consider the pseudopotential equation

[H+p (E-HJ ¢=E ¢

The variational method can be rigorously applied here to give

Ei<¢|H+;f;Hﬂ¢> (2.40)
< >

or

EJ<¢ | ¢>-<o|p|lo¢>T<<¢|H|d>-<¢|pH] ¢>

then
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<o |H]| ¢>-<9¢|pH]| ¢>
<ol o>-<odlpl|o>)

Using normalized wave functions, i.e. < ¢ I ¢ > =1, we have

<o |H|¢>-<¢|pH]| $>
Q-<9¢|pld>)

<¢ | H| ¢>- 3E< blc. ><c | H| ¢>
(1-322% <¢|c ><c | ¢>)
Y e Y
2
< H >- %L E < c >
_<elEle ELE l<c [o>] o0
a-zxl<c [o>]?%)
Y ¢ i
where EYC is given by:
EYC = Ec * ch * VY
where Ec = free-ion Hartree-Fock eigenvalues for state i c >

h

= Coulomb and exchange interaction between Yt free-core

ch
orbital and the excess-electron

VY = Coulomb potential at site <Yy due to the rest of the ions and
the anion vacancy
The upper bound of the eigenvalue can be located by a numerical method.
We are not going to pursue this approach any further here, since we have
used the BSG approximation with the empirical factor o = 0.53 in the
present work.
. £21),
There is no doubt: that the work of Gas is well beyond

that of BSG. The reason we used BSG in the present work is that the
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information of Gash's work was not available before the present

work was completed. In fact his work is not yet published.

2.4, Method of Lattice Statics

Once we introduce a point defect into a perfect lattice, the nearer
ions will be displaced from their perfect lattice sites. The method we used
to calculate this lattice distortion is the method of lattice statics,

(14). In this method, the ions in the

which was first introduced by Kanzaki
lattice are treated as discrete. The actual displacements of the ions

from the perfect lattice sites can be calculated from normal coordinates

which are essentially the Fourier inverses of the direct space displacements.

(A) General Formulae

In the following illustration of the method of lattice statics, we follow
Vail's notatio£17)cldsely. In this method, those ions which have harmonic
displacements in the resultant distorted defect lattice configuration are
treated separately from those which have ﬁon-harmonic displacements or
which were not present in the perfect lattice. We distinguish these two
classes of ions by‘denoting those ions which were present in the host lattice
and whose displacements from perfect lattice sites are within the validity
of the harmonic approximation as Region II. The rest will be denoted as
Region I, which consists of the defect and possibly some of its surrounding
ions including impurity ions. The components of the harmonic displacements
of the Region II ions are taken to be elements of the column matrix §& and
the generalized coordinates of ions in the Region I are written as the column
matrix Q. The number of elements of } will be small for a well-localized

defect.
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In the framework of the harmonic approximation, we imagine a perfect
lattice in which Region II has been distorted into the configuration §
which will be in equilibrium with the defect. The system's energy can

then be expanded by a Taylor expansion up to second order in §. Thus

E@ =U +5 & *A*E (2.42)

[l

where A 1is the force constant matrix of the perfect lattice, ET is the
transpose of § and Uo is the energy of the perfect, undistorted lattice.
Now, let us introduce an excess-electron defect. The electronic state
is described by a trial wave function ¢ C; » A), where A is the
variational parameters of fhe wave function. Then, the e'xtra terms assoc-

iated with the excess-electron defect have to be added to the total energy.

Thus:

EE, 1, 2) = U, +2 B A E+E (5 BN (2.43)
where

EpE wmAN=V EGEW+TM+VE LY / (2.44)
m

VL (&, 1) 1is the energy to create the lattice defect from the perfect

lattice in distortion field & ;
'_1"“(_1_) is the expectation value of the excess-electron's kinetic
-
energy in state ¢ (, A); and

V(E,u,A) is the electron-lattice interaction energy.

Firs:cly, we will minimize equation (2.43) with & = o to obtain the zeroth

order o —?ﬁo
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BED

—— =0 -—)& =-&O 62.453)
23l g

3ED

- = 0 T H= (2.45b)
I M £E=0

The partial derivatives g_l denotes partial derivatives with respect to

each of the components of A. Then, expanding ED(_£_, y_,‘ A) to quadratic

texms in §, Au and A A by the Taylor expansion, where

A.E-‘-.E"‘_Eo' (2.46a)
AA=2A-"A, (2.46b)
and
3Ep
ED(E’ H, 2-_) = EDLO: BO’&O) +'§'z o ‘_g_
1=k
A=A
- =0
g=o0
3E P):
D D
+ — _ c AP+ c A A
O B =1, Biy_:_go
l=2‘_o 2\_=_)_\_O
£=o £=o0
. 2%E, . 2%E,
rz& 7 (B=2, *&+7 AR —u=H, 41
98 -2 2B 1y -2
=" >0 =~ >0
g=o E=o
. 2%, 2%k,
t3lAc—5 - TAX+E ' *AA
A (BT H 22T H
2=2 A=3,
g=o E=o0



90"E 9“E
D D
+ & - cAu+ Ay =
T sgop BT E T mo AR
21:10 A=—A-o
_§_=O é:o.
(2.47)
We now denote the coefficients in this expansion as follows:
F =B—E—Q (2.48)
0 9E& =Y
A=A
- =0
£=0
a%e
E=—= : (2.49)
9E |lu=1u
= = =0
A=A,
£=0
2%, | |
A = — (2.50)
A" jp=m1 . .
e =)
A=A
- =0
E=o
2’E,
A= (2.51)
980X |u=1,
A=A
- =0
E=0
2k, .
M= (2.52)
. 9B M= .
A =2
E=o0
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8°E
M = — , (2.53)
du” u=x
A= A
-0
=0
BZED
N=—0"? (2.54)
dAdu M= Y,
A=A
g=o0

Substituting equations (2.48) to (2.54) into equation (2.47), we get

EpE 1, A) = Ey(o,

+§_°Ao[§1+§e£eAﬁ+AﬁoNoA& (2.55)

Combining this with eduation (2.43), we obtain the total system's energy.
We now obtain the first order small quantities by minimizing the system's

energy with respect to &, Ay, A J; that is:

9 E (& 1, ) :
= O; ) (2.56)
2 E
9E (&, 1, M) .
9(4 1)
3E (& 1, ) _ ’
= 0. (2.58)
9(8.2)

We get the conditions;



S R A S SR F A RS 2.5
M ocAp+NeAX+M* E=0 (2.60)
A v BAs A EsN-Ap=0 (2.61)

Decoupling equations (2.59) to (2.61), we have

§=~§"1 F,+c-8 (2.62)

br=8 " E , (2.63)

bu=8,°% , (2.64)
where

R A A PR @2.65)

By = -7t N ) (2.66)

C=(F +A-8 +M-8) | (2.67)

In general, if § 1is known, the non-harmonic displacements A u can
be solved from equétion (2.64) and the change A A of the trial wave
function parameters-'due to the distortion is given in equation (2.63).
The harmonic displacements & can be solved from equation (2.62), but it
is difficult in ionic crystals due to the long-range Coulomb forces that

make the direct inversion of A particularly difficult. The solution of

§_ will be discussed in the next session.

(B} Solution for &

The equation of equilibrium has been derived (equation (2.62) in

section (A). It can be solved by eﬁpanding the displacements & in terms

33.
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of normal coordinates; that is, the lattice equilibrium equations are
solved in reciprocal space. Then the results are trans formed back to
configuration space by summing over the allowed wave vectors within the

first Brillouin zone. We rewrite equation (2.62) as follows:
C '
E=-A"F (2.68)
where

-]i.-:

+
[fe

- g O (2.69)

and write equation (2.68) in the component form:

; g L 2! )
A =F |- 2.70
ok o (k‘ k! 1 o [k' } o k] 2. 70)

where

h

k

. h . . .
atom in the gt unit cell. Then, introduce the Fourier transform of

£ (1)

> S o
% - q -iq-°x ]
Ea( }=-§—§Qa( ] e Lk (2.71)
q

Ea ( % is the o Cartesian component of displacement of the Kt

where a is the vector in reciprocal space, a must be restricted in range
by the periodic boundary condition such that all allowed a veétors are

in the first Brillouin zone. Therefore, the number of allowed value of

a' yectors is equal to fhe number of unit cells per defect. Substituting
equation (2.71) into (2.70), we have

[ g9 gt ' Tl T _5;[‘ ; { k' J ’ L
LA R B S = F, ( ]L (2.72)
kk')q "Lk
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. > %
121) ° X (k)

Operating on the left of equation (2.72) with I e we obtain:
% . -
> > - Q' ’+ 9 I G L
1 L q' -iqt e x| T —x( 1 -i{q'-q)°x K
N z Z A Q € n k ( k e -
N N A N O g -
/Q/Q:'a'k‘q'
L
(2] ia";(kl (2.73)
= Z Fa e
2 k
L
Now A depends only on 2 - &' = &", and so does:
oo,
k k!
% L oA
> -> -
X ( X ] - X ( K ] = X ( K Kkt ] (2.74)
Thus, equation (2.73) can be written as
QI'X
, - . > >
1 A 2t a’y. 19" " x k k!
"2 z AI Q [
-N 4 e K k! O e
/Q/”a'k'q'
L L
-i(EI'-ZI)-?(R] % ia“§(k} (2.75)
X e =) F ( X } e
) . g ¢
The sum
) 2
> -> - {.
TR IS
N—Ze =6++'. (2.76)
) 9, 9
This is the orthonormality of basis functions
. > +(2}
-1iqg-° X
1 k
o, = e (2.77)
q ik N*

Then equation (2.75) becomes

" > > s [
2 q L4 " X g ke
Pl Bt [k kt ] Q| k) © |

: >

,Q,” a'k'q
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> o [*
: 2 iq-°x l Kk }
= z F(], (k} e (2.78)
2
We now define
,Q'H
: (]
q . L o kkt) . (2.79)
oa! X k! oQ K k! )
. JAl ,
and
> - . > - L
rq 2y 1q x| 4 .
G =) F e (2.80)
o o .
k 2 1 k
-
where Daa' L is known as the dynamic matrix and has been calculated
_k k! a
by Kellermann{22) for the point ion rocksalt lattice. G { K J is the

t 2L

Fourier transform of E, L K }. Thus equation (2.78) has the matrix form:

> -> >
D(q) » QM@ =6 (@ (2.81)
Now, we can solve Q,CEJ for a given a from equation (2.81) by

using equation (2.79) and equation (2.80). The displacements of the atoms

in configuration space are then given by equation (2.71).

In practice, the solution of equation (2.68) is done by the perturbative-

iteration procedure, which is to start with F = Eo in equation (2.69),

as follows:
(o) _ -1,
£ = - A F, (2.82)
_E_(l) ‘= - é—l o (Eo + g_ J E_(O)] etc. (2.83)

This can be continued to self-consistency.

In the actual numerical calculation, one makes use of the symmetry



properties of the defect crystal lattice to simplify the calculation. Instead
of doing the summation & in equation (2.80), one calculates I, wherem

2 m
2
3.

is a group of ions all of which have the same value of a given 'Fack The

range of m will be small if the defect is well localized.

(B} Energy Formulae

(1) The Relaxed State

The relaked state energy Egg,.23 A) of equation (2.43) can
be simplified by using the minimizing condition equations (2.59) to (2.61).

From equation (2.59)

=

© E = - _1~g—_4°AA—y_°AE (2.84)

M cAu=-N-Ar-ME (2.85)

From equation (2.6D

c M) = -

HES
=

4 °_§_V—N_'AU C2.86)

Substituting equations (2.84) to (2.86) into equation (2.43) using equation (255),
we get simply:

1 .7

E (&, B, A) = UO + ED(O, Eo’-zo) + E_Eo - £ (2.87)

If we set the energy of the perfect undistorted latticer = (0, then
equation (2.87) becomes

T

E(E, w1, M) = Ep(0, p, A + %_110 - £ (2.88)

which is the energy of the relaxed state.
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(ii) Absorption Energy

The Franck-Condon principle is used in calculating the absorption
’

energy. Accordingly , the absorption energy*E (u , E s —g Zex ) is

bS(’,—Eg’ _g_g: &g: A ) = E (JJ ) E ) - E (]J ) (S ) (2'89)

—eX ex —8

where the subscript g denotes the ground state and the subscript ex

. denotes the first excited state. E ( lg) is the relaxed ground

ug ~g
state energy and Eex{QE s> & 5 zei') is the unrelaxed first excited state
energy with the positibn of the ions QEg’ ég) determined by the ground
state wave function and zexl is the wave function parameters of the excited
state, made self-consistent with QEg’ gg).

The unrelaxed excited state energy in the presence of the ground state

distortions can be written, similar to equation (2.43), as

t -

Eox B By A= 55, © A By + By (o by A ) (2.90)

s A
g’ —ex —ex

with UO = 0. From equation (2.62), A - ég is given as

A - =~ (R +C - 2.91

Brfy=- U + & £ (2.91)
where Epg and C_  are the matrices which have been defined in equation
(2.48) and (2.67), determined by the ground state wave function. Now,

operating with QggT ¢ ) from the left on equation (2.91)

T ' = 'TO — L] o .
Eg tA- L=l tE -5t Lt g (2.92)

By using equation (2.92), equation (2.90) becomes

' T
ex C-E—g’ =g’ lﬂ): f-og gﬂ _2—§ —g ég
PEE, ML AL ) (2.93)
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Which is the energy of the unrelaxed first excited state including the ground
state distortion. Substituting equation (2.93) and (2.88) into equation

(2.89), we get the formula for absorption energy.

. , 1
Fas Gy By By dot) < BT B FET G By
+ EDC—E-g’ }_j_g,_ Z\'QX ) = ED(O; ‘EO?, _?\_Og) (2.94)

(11i) Emission Energy

According to the Franck-Condon principle , the emission energy is

obtained from Eabs’ equation (2.89) by changing the sign and interchanging

the subscripts g and ex. Thus

, . A .
EemCEex’ éex* &ex* 1-g )
t Lt
= Eexcgex’ gex’ 3ex) B Eg QEex’ gex’ Zg ) _ (2.95)
where Eei(Eek’ gex’ Zex) is the relaxed excited state (RES) energy and
1 1
E (., &E., A ) 1is the unrelaxed ground state energy, for which the
g —ex’ 2ex’ —g

t
position of the ions are those of the RES. &g is the wave function para-

meters corresponding to this unrelaxed ground state. Thus, we obtain the

analogue of equation (2.94)

— < l L) L]
- fpe£7 gex ) Ee;?' =ex §ex
. 1 o . 2
- EDﬂgeX, By, 3g ) + ED(O, HO . —pex) (2.96)

where Fo and L., are the matrices which have been defined in equation

- (2.48) and (2. 67 Jetermined by the RES.



CHAPTER 3

CALCULATIONS, RESULTS
AND DISCUSSION

In the present calculation, the lattice ions have been divided into two
regions. Region I includes the defect and perhaps some of its surrounding
ions. Region II includes the rest of the ions. The idea is that the dis-
placements of the ions in Region I is so large that the harmonic approximation
is  not valid. Special care must be taken for those ions in Region I denoted
by M in chapter 2. For those in Region II, the displacements from perfect
lattice sites are.small and within the range of validity of the harmonic
approximation, and these displacements have been denoted § 1in chapter 2,

The calculation can be divided into two major steps namely, the zeroth
order calculation and the higher order calculation. In the zeroth oxder
calculation, we minimize the system 's energy with respect to the non-
harmonic displacements 1 and wave function parameter A, while £ 1is
kept equal to zero. |

BEE 1 2)

=0 =+ =0 (3.1
9 A\ = '



= == = Q _)_A_ = Ao (_3.2)

Thus, we obtain a zeroth order solution, po and 2o, neglecting harmonic

distortion, §&. Substituting equation (2.44} into (2.43) and putting

p=po, A=2o, E=0and U

the defect system's energy:

-~

E(0, Ho, 20) = V, (0, po) + < ¢ |T + Vor + Vsl ¢ (3.3)

where:
; is the excess-electron's trial psuedo-wave function with trial
parameters A = A0; |
T is the excess-electron's kinetic energy; VbI is the Coulomb
interaction between the point-ion lattice and the excesé~electron;

v 'is the BSG ion-size correction; and VL(Q, po) 1is the energy to

Is
create the laftice defect, including non-harmonic distortion.
In the higher order calculation, the following terms are calculated:
(1) Au= (- o), the change of the non-harmonic displacements
induced by harmonic lattice distortion, § (see equation (2.64)).
| (2 AA= (A - 20), the change of the wave function parameter due to
harmonic lattice distortion (see equation (2.63)). Thus,vthe corrected
values of A and p are obtained, namely A =20 + A X and p=po+A1q
(3) &, the harmonic lattice distortion field of the ions in Region
II, due to the electronic point defect (see section (2.4B}).
) %—Ep ¢ §, the change in total emergy induced by harmonic

relaxation of the lattice up to second order, while Fo 1is defined in

equation (2.48].

0, we have the zeroth order solution for

41.



3.1. Vacancy Configuration

(A) Zeroth Order Calculation

In the vacancy configuration, the vacancy site and substitutional
impurity cation constitute Region I (see Figure 2(a)]. Although it is
known ekperimentally that the Li® ion occuples an off-center site in
FA(Li)CZS), there are four equivalent sites that Li® can occupy, SO
that the defect shows C4V symmetry as a statistical average. It is not
possible to include these off-center properties in our static model, so we
consider only C4V symmetry vacancy configurations, with the impurity
alkali.ion (Li+ or Na+) lying on the y—aXis.

The trial pseudo-wave functions which we choose for the present

calculation are Gaussian localized with low orders of Legendre polynomials.

Even parity is assumed for the ground state and odd parity for the first
excited state. The following trial wave functions are used in the vacancy

configuration:

for vaéancy ground state:
_ 22 '
(;bl = Al eXp(—Otl r ) (3'4)

for FAl absorptloni

2
¢2 = A2 T (c059>) exp (—azzlf)
. 22 S
= Ayyexp (ay’xh) (3.5)
for FA2 absorption:
by = Ay T (cosB ) exp (~a,’r)
3 = Az T (cosO ) exp (~a,"r

; —
A3 Z exp [~a3

b

%) (3.6)

42.
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and for yacancy relaxed excited state;

¢4 = A4 r(cos?y) exp (¢d47r2)

2.2
Ay ¥ exp (-0, 1) (3.7)

1

where Aj(j =1, 2, 3, 4) is the normalized constant, dj G =1, 2, 3, 4
is the wave function localization parameter, T is the radial variable

with origin at the vacancy site, Oy 1is the polar angle with the y-akis

as polar axis in spherical coordinates and 8Z is the polar angle with
z-axis as polar axis in spherical coordinates. The reason we used this

type of pseudo-wave function is that all the matrix elements involved can

be evaluated explicitly or in terms of an error function, which‘is a

built in subroutine in the IBM 360/65 computer. Furthermore, Brown and
VailC24) have shown that the Gaussian localized wave function is qualita-
tively very similar to the type II and type III Gourary-Adrian wave function(7).

First we do the zeroth order calculation, so we minimized the system's

energy with § = 0, with respect to U and A, where

E(o, 1, M) = Vo, W) + <o | Vg + Vo + T] 4 > (3.8)

In the case of the %round state in the vacancy configuration, A = s the
trial wave function;s localization parameter and M is the non-harmonic
displacement of the impurity ion along the y-axis from the perfect lattice
site (010) arid is denoted Yo Here, we notice that the pseudo-wave
function ¢1 is centered at the origin of figure (2a) but that the lattice
configuration is asymmetrical due to the iImpurity ions. Thus, the center
of the wave function should be allowed to move out from the origin. How-
ever, we fiied the center of waye function because it makes the calculatioﬁ

much easier to handle.



VL(p, M), which is.the energy required to create the yacancy with
an adjacent impurity cation,includes a non-harmonic distortion £'= Yo
We formulate the procedure for calculating VLCO’QE) as follows:

(1) create the ordinary vacancy defect;

(2) remove the positive ion from (010);

(3) put-in the impurity ion (Na+ or Li+)
at lattice site which has been displaced Yo along the y-axis from the
(OlQ) site.

We used Tosi's single eiponential parameters (ref. 12 Table VII 2nd

column) for the Born-Mayer repulsion.
w®) 2B oexp (- 5 (3:9)

in evaluating VL(o, 1). The perfect lattice KCZ parameters were used in
the K - C1™ interaction, and perfect lattice NaCl or LiCl parameters
were used for the interaction of the-impufity Na' or Lif ion with

Cl™ ions. As we know, the interiénic spacing in KC1 is quité different
from that in LiCl, and the second nearest neighbor of the Li* ion in
FA(Li) in KC1 and in LiCl are also different. It is alfundamental
question wﬁether the above approximation is valid. Tosi andlDoyama(ZS)
have shown that it yields reasonable result for the activation energy for
diffusionbof Rb™ in NaCl and in KCl. The Coulomb contribution to

(12)

VL(o, 1) 1is calculated by EVjen's method with_Evjen cubes pf-sides;
up to 6a, where -a is the interionic spacing of the crystal.

The Coulomb potential energy of the excess-electron in the pfesence
of the defect lattice of charged point ions, VPIC;), is given by

pl NEEEN
‘ 1

@ =-21-3 - (3.10)

44.
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where the factor 2 1is introduced because the energy is expressed in
+ ._} R - - -
Rydbergs, if =z and T, are measured in units of the first Bohr orbit

a , where
0

and m, is the mass of the electron, and if Qi is measured in units of

the proton's charge e. The expression

can be‘expanded in terms of Legendre polynomials as:

1 E r£<

T
Ir - ril

T Pl (cos Yi) (3.11)
2=0 >

where r_ (r,) 1is the smaller (larger) of !;] and I;i[ and Y; is the
angle between T and ;i (ref (26),p.62, Fig. 3.3). We use the addition
theorem for spherical harmonics, written in the following form (ref 26,

p. 69 equation (3.68)):

Pz(cosyi) = Rz(cbsﬁ) PQCCOSGi)

A4
+ 2 Z Erm) ! PE (cosb) ??(cos@.) cos[m($ - ¢.)] (3.12)
m=1 (L+m) ! . *

where (0,¢) and (ei, ¢i) are the angular variables of T and ;i

respectively in spherical polar coordinates. From equation (3.11),

equation (3.10) becomes
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2
V. G&l=-2 ] ] Q Is (cos ¥.)
pI N T P i
i f=0 TS
;] e '
= -2 Q. p, (cos v.)
1 ’ 1 . 2+1 % 1
T > 0= 1
| e 0
ri#O
2
+ 1) QG g Py (cos vp) + — (3.13)
> 2=0 T
Ty<T _
ri#o

- . ->
where Qo 1s the charge on the ion at T, = 0.
The above expression, expanding the potential energy in terms of a

linear combination of spherical harmonics has been used by Gourary and

(7 (8), (27)

Adrian and by others in F-center calculation to evaluate

<9 | Vbl | ® >. Further simplification can be made by adding to and

subtracting from equation (3.13) the term

o 2

2 11y, (“‘%—1] Py, (cos ;)

. T. .
i 2=0 i

r.<T
i

ri#O ,

Then, equation (3.13) becomes:

%
r
Q. ( ;——m} P,Q, (cos 'Yi]

1

%ﬂuﬂ=-—2 g RZ
ri#o

0o
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- 2 v rgg —
X 1

g+1 2+l
T T

- Q,
PQCQOSYi] - 2 =

r;#0 (3.14)

Making use of equation (3.12), equation (3.14) becomes

o0 2
VPI(r) = - 2 g QZO Qi( ;ZE;TI'{Pz(cose) P, (cos6,)
ri#o *
N % 2 Eﬁ;ﬁ%i P?(cose) Pﬁ(cosei) cos[m(¢ - ¢i)]}
m=1
v rg riz oy
+ 2 Z 22 Qi [: s il _] {Pz (cos8) Pchosei)
i - &=0 T. T —
T.<Tr *
ri#O

+

L .
)2 %%i%%% Pz (cosB) Pg(cosei) cos[m(¢ - ¢i)]}

m=1 .

~

O .
-2 | (3.15)

In the case of the FA—center ground state, the wave function

¢l = A exp (Fulz r2) can be written as
9, = Ap exp (-a,% 7) P_(cos0) (3.16)
1 = Ap exp 1 o (cos .

i.e. the spherically symmetric wave function contains a zeroth order

- Legendre polynomial, and is azimuthallysymmetric. Thus only terms with
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2 =0 and m= o in equation (3.15) make a non-zero contribution to
. . . ->
< ¢1 I YbI ] ¢1 >, Furthermore, there is no ion at T, = 0, and there-

fore Q0 = 0, Then, from equation (3.16),

Qs 2
<Cb1 IypI I ¢1>=~2 ]Z-: {—;;—-‘]»’*2% J |¢1| Qi[%—%} dt
ri%o ri#o 1

- (3.17)
In the case of the FA—center relaxed excited state, the wave
function ¢4'= A4 T cos ey exp(—a42 rz) cérrespond to & =1 and is
aiimuthallysyﬁmetric. Thus only 2 =2, £ =0 and m= o in equatiop

(3.15) -have non-zero contributions to < ¢4 l VfI | ¢4 >. There is still

no ion at ;i = o. Thus, the'eipectation value of Vbl in trial state
¢4 becomes:'
(o]
f ” 2
“(r = - r
< 9, | VPI(r) | 9, >= -2 E Q; P,(cos8,) Jo l¢4] (r SIPz(cose)dT
;70
)
2

2 T.
2 .r i
+ 2 g Q; P,lcost) | |o,] [———r 5 - ?J P, (cos@)dt
i

ri#o T,
) 2.1 1 kel
v2 ]y |641° L= -3 dv- 2] 5 (318
i i i
T, #0 T, T, #0
For the BSG ion-size correction we had, in equation (2.39);
X;—ZA B (¥-U)]6 (x -1 (3.19)
Is™ I Y + . w - Y)] r - Ty .

Y
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where

;1 > | | (3.20)

Vo= soy Vo + Vg |

for the ground state. The procedure for the zeroth order calculation is:
&8 make an initial guess for the value of V;
(2) making use of this value in equation (3.19) and using (3.17),

minimize E(o, B, A) of equation (3.8) with respect to Yo and

(1) _ (1),
o * %479 ’

S

Oy and get Yo =7

v, (1)

and o , calculate V by equation

(3) using Yo = 1

(3.20);
(4) repeat the cycle to a self-consistency of 0.001 rydbergs, that
is until two consecutive estimates of V differ by less than
0.001 rydbergs.
The minimization program was obtained from the library of subroutines at
AERE, Harwellczs). The summation in.equation (3.18) is over the ions up
to the sikth.nearest neighbours to the vacancy, or.85 ions in 29 groups, such
that the convergence is obtained to within 0.001 Ryb. The results of the zeroth
order calculation of the FA—center relaxed ground state and relaxed excited

state in the vacancy configuration are reported in Table (1) and Table (2)
respectively.

(B) Second Oxrder Calculation (relaxed state)

The next step is to do the second order calculation. Our aim is to
solve equatioﬁ (2.81) for Qﬁa)e .Qfa) is Kellermann's dynamic matrix,
which has beencorrected by Dayal and Tripathiczg) for 1000 a-vectors in
the first Brillouin zone. A brief review of Kellermann's dynamic matrix
is given in appendi& A. As described in section 2.3(B), we evaluate

> . . oy -
- G(q) by suming over groups of ions in equivalent positions relative to



Table 1
Zeroth order calculation of FA—center relaxed ground
state in the vacancy configuration: a is the interionic

spacing of the crystal

v

F, (Na) | ‘FACLi)

00, (eV) 6.64 6.39

va (eV) | -7.11 -6.95
VIS .- (eV) 0.08 0.08
T | _‘ (e\)) 1.44 1.43
Y, (a) 0.077 0.115
o | (1/2) 1.12 1.114

Eg (O,yo,ao) (eV) 1.05 0.95

50.



Table 2

Zeroth order calculation of FA—center relaxed excited

state (RES) in the Vacancy'configuration: a 1is the

interionic spacing of the crystal

F, (Na) F, (Li)
v (0,7,) (V) 6.62 6.41
va' .(eV) -6.28 -6.11
VIS (eV) 0.31 0.30
T (eV) 2.68 2.64
Yo (a) 0.071 01103
o (1/a) 1.18 1.17

Eex(o’yo?ao) (eV) 3.33 3.24




52.

the defect, the groups being denoted by an index m, instead of summing
over the individual fons. In the case of the FA-center relaxed ground
‘state and rela&ed eécited state in the vacancy configuration, we included
the contribution from fifteen groups, which contain a total of 49 ions.
The groupings of ions and the matrix elements of Eﬁ;) are given explicitly
in Appendix B.

Therefore, the Fourier transfofm of gfa) into configuration space g,
the corrected value of 3 and E) and the distortion energy %- Fo ¢« g,
are calculated and are reporfed in Tables (3) and (4) for the relaxed
ground state and the relaxed excited state respectively in the vacancy
configuration. We notice that the wave function parameter o has changed
from o = 1.114 (Table 1) to oy = 1.07 (Table 3) in the case of F,(Li),
as the lattice has relaxed. It is a merit of our model and methods that
the wave functions are éelf—Consistent with lattice distortion. The
relaxation energy is small in the case of the ground state but is still
not negligible. The cdntribution from the relaxation energy is larger in
the case of relaxed excited state, as expected,

In Tables (5) and (6), displacement components of some near neighbours

to the vacancy for the relaxed excited and relaxed'ground states respectively

are given. Although no experimental work on the displacements of the near
neighbours of the FA—center have been reported, Luty et al(so) have
determined the volume expansion per F-center, which corresponds to an
outward displacement of the nearest neighbours by 2-3%. The displacement
of the five nearest K  ion to the FA—center agrees with this result.
Since the excess-electron stabilizes at the lowest energy, it apparently
prefers tc‘enlarge the vacancy instead.of increase its kinetic energy.

- N ~ ~t
Furthermore, we found that the outward relaxation of Impurity Li  (or
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Table 3

Second order calculation of FA—center relaxed ground
state in the vacancy configuration. The total relaxed
state energy Eg(g ,¥ _,0 ) is given in equation (2.88)

g7°g 8
a 1is the interionic spacing of the crystal

FA(Na) FA(Ll)

% (1/2) 1.08 1.09

Ye (a) 0.072 0.119

7 Fog.* gg (eV) -0.04 -0.085

tToc -t (eV) 0.01 0.01
2=g “g g ‘ o

Eg(O,yo,ao) (eV) 1.05 0.95

E (5 .7, v 1.01 0.87
g &goYgs0g) (eV) 8




Table 4

Second order calculation of FA—center relaxed excited

state in the vacancy configuration. The total relaxed

tate ener E L0 i i in e tion
sta gy exgéex ex) s given i qua

(2.88). a is the interionic spacing of the crystal.

F, (Na) F, (L1)
Oy (1/a) 0.96 0.93
Yeox (a) 0.115 0.116
Lpo * v 0.55
5 Fo_. __g_e_x (eV) -0.49 -0.5
1 T‘o ° - -
§§ex C .y gex (eV) 0.15 0.12
EeX(O,yo,uo) (eV) 3.33 3.24
(€ ) (eV) 2.84 2.69

ex Zex’ ex

54,
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Table 5

Cartesian components of displacements of the ions neighboring the FA(Na)—
center in KC1 in even and odd(ground and excited)parity relaxed states in

the vacancy configuration, in units of the perfect KCl nearest neighbor distance.

FA(Na)—Center

ion even parity odd parity
(0,1,0) 0,0.072,0 0,0.115,0
(1,0,0) 0.022,0.004,0 0.1,0,
(0,-1,0) 0.0,-0.025,0 0,-0.073,0
(1,1,0) 0.004,0.01,0 0.035,-0.025,0
1,-1,0) -0.001,0.001,0 0.027,-0.017,0
(1,0,1) -0.003,0.003,-0.003 -0.023,-0.012,-0.023
(1,1,1) 0,0.005,0 -0.006,0.002,-0.006
(1,-1,1) 0,0.001,0 -0.002,-0.025,-0.002
(0,2,0) 0,-0.008,0 0,-0.033,0 '
(2,0,0) 0,0.002,0 0.017,-0.011,0
(0,-2,0) 0,-0.003,0 0,-0.02,0
(1,2,0) 0.01,0.009,0 0.055,-0.006,0
2,1,0) 0.008,0.006,0 0.025,0.009,0
(1,-2,0) 0.004,-0.006,0 0.011,-0.027,0
(2,-1,0) 0.005,-0.004,0 0.028,-0.026,0
(1,0,2) 0,0.001,-0.001, -0.001,-0.005,~0.006
(2,1,1) 0.002,0.002,0.001 0.004,-0.003,0.002
(2,-1,1) 0.001,0,0 0.005,-0.009,0.002
(1,2,1) 0.004,0.008,0.004 0.001,0.001,0.001
(1,-2,1) 0.001,-0.003,0.001 0.001,-0.020,0.001
(2,2,0) 0.006,0.005,0 0.007.0.003,0
(2,-2,0) 0.002,-0.002,0 0.01,-0.016,0
(2,0,2) -0.001,0,0 -0.004,-0.003,-0.004
(2,2,1) 0.002,0.002,0.001 0,-0.001,0.001
(2,-2,1) 0.001,-0.001,0.001 0.003,-0.008,0.002
(2,1,2) 0,0.001,0 -0.001,-0.001,-0.001
(2,-1,2) 0,0,0 0.001,-0.004,0.001
(0,3,0) 0,-0.004,0 0,-0.015,0
(0,-3,0) 0,-0.002,0 0,-0.015,0
(0,0,3) 0,0,0 0,-0.003,0.006
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Table 6

Cartesian components of displacements of the ions neighboring the FA(Li)—center
in KC1 in even and odd parity relaxed states in the vacancy configuration,

in units of the perfect KC1 nearest neighbor distance.

FA(Ll)—center

ion even parity odd parity

(0,1,0) 0,0.119,0 0,0.116,0

(1,0,0) 0.026,0.012,0 0.098,-0.031,0
(0,-1,0) 0,-0.027,0 0,-0.089,0

(1,1,0) 0.011,0.023,0 0.041,-0.028,0
(1,-1,0) 0,0.004,0 0.027,-0.017,0
(1,0,1) -0.001,0.008,-0.001 -0.022,-0.014,-0.022
(1,1,1) 0.001,0.007,0.001 -0.006,-0.002,-0.006
(1,-1,1) -0.001,0.003,-0.001 -0.002,-0.025,-0.002
(0,2,0) 0,-0.029,0 0,-0.062,0

(2,0,0) 0.002,0.004,0 0.018,-0.013,0
(0,-2,0) 0,-0.002,0 0,-0.024,0

(1,2,0) 0.02,0.011,0 0.009,-0.012,0
(2,1,0) 0.011,0.008,0 0.028,0.006,0
(1,-2,0) 0.004,-0.004,0 0.012,-0.029,0
(2,-1,0) 0.005,-0.002,0 0.029,-0.027,0
(1,0,2) 0.001,0.003,0 -0.001,-0:006,-0.006
(2,1,0) 0.004,0.002,0.001 0.005,-.0.004,-0.003
(2,-1,1) 0.001,0.001,0 0.005,-0.000,0.002
(1,2,1) . - 0.007,0.011,0.007 0.002,20.002,0.002
(1,-2,1) 0,-0.001,0 0.001,-0.002,0.001
(2,2,0) 0.011,0.007,0 0.009,0.001,0
(2,-2,0) 0.002,-0.001,0 0.010,-0.017,0
(2,0,2) 0,0.001,0 -0.003,-0.004,-0.003
(2,2,1°) 0.003,0.003,0.002 0.001,-0.003,0.001
2,-2,1) 0,0.001,0.001 0.004,-0.009,0.002
(2,1,2) 0.001,0.002,0.001 0,-0.001,0

(2,-1,2) 0,0.001,0 0.001, 0.004,0.001
(0,3,0) 0,-0.012,0 0,-0.026,0

(0,-3,0) 0,-0.001,0 0,-0.017,0

(0,0,3) - 0,0.001,0:002 0,-0.004,0.007
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Na+) ion is more than that of the host K cation, which is not surprising,
since the impurity ion is sﬁaller iﬁ size. The displacements of the more
distant ions are small.

In Table (7), we compare our results with those of Aligc4) for the
radial component of nearest neighbor displacements in the ground state of
the FA—center. Qualitatively, our displacements are somewhat larger than
Alig's. The displacement of the host cation K" at (OTO) is approximately
the same as that of the K at (100}, as Alig assumed, but we find that the

- + .
four equivalent K have a small non-zero y-component of displacement, as

well.

(C) Absorption Energy

In the calculation of absorption energy, one needs only to do a zeroth
order calculation. The displacements field Eg and non-harmonic displace-
ments Eg are supplied by the relaxed ground state calculation. For the
zeroth order calculation, one needs only to minimize the system's energy
with respect to the unrelaxed excited state trial pseudo-wave function

1

parameter -Aex . The ‘FAl - Fps absorption splltt;ng corresponds to the two in-

equivalent orientations of the unrelaxed excited state wave function (Fig. 5).
The details of the Fri and FA2 absorption energies are shown in

Tables (8) and (9) respectively. The agreement of FA absorption with

1
experiment is within 7%. This result is encouraging because the absorption
energy is a simple test of the theoretical model. Any respectable. model
must give a reasonable agreement for the absorption energy.

Table (10) gives the contributions to the FA2 - FAl absorption splitting.
This table may indicate the origin of the absorption splitting and pin-

- point an inadequacy in our model. The theoretically estimated TAZ - FAl
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Comparison of the theoretically estimated radial component of nearest

neighbor ions displacements in the ground state of FA—centers in KC1, in

units of the perfect

outward from the vacancy.

KC1 nearest neighbor distance, with positive direction

F, (Na) F,(L1)
iOTl (0310) (03—130:) (1’050) (0’130) (O,—l,O) (190:0)
Aliga +0.061 0.018 0.018 0.104 0.016 0.016
Present work 0.072 0.025 0.022+ 0.119 0.027 0.026+
a. reference 4 Table 11

+ there is & non-zero y-component



Table 8

FAl absorption energy with contributions as given

]
in equation (2.94), where «ay is the wave function

parameter of the FAl unrelaxed excited state

made self-consistent with s . Energies in
(yg §g) g

1

ev, o, in units of reciprocal interionic spacing.

FA(Na) FA(Ll)
t
a, 1.16 1.14
¥
EDgég’Hg’ 5 ) 3.03 2.63
-ED(O,uog,Aog) -1.05 -0.95
-Fo, & | +0.08 +0.17
O N - +0.01 +0.01
2 =g =g =3
¥

abs(Eg’gg’&ggz ) 2.07 1.86




Table 9

FA2 absorption energy with contributions as given in

3

of the FA2 unrelaxed excited state made self-consistent

equation (2.94) where « is the wave function parameter

1
with s& ). Energies in eV, o in units of reciprocal
(g E,) g 3 P

interionic spacing.

F, (Na) F, (Li)
1
o 1.36 1.34
1
ED(E ’Eg’as ) 3.82 3.39
'ED(O’EP ,Apg) -1.05 -0.95
-Fo_* : +0.08 0.17
By " &, ;
Sl o oo 0.01 0.01
2-=g =g g
1
,0
EabS(Eg,E %) 2.86 2.62
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Table 10
Contribution to the FAZ - FAl absorption splitting (&V), where wave
functions ¢2, ¢3 are given in equation (3.5), (3.6) for FAl and FAZ

absorption respectively, and their localization parameters o are given

in tables (8) and (9)

FA(Na)—center FA(Ll)-center
Fa2 Fa1 FrpaoFar Faz Fa1 Fa2 a1
<¢|T.|¢> 3.55  2.60 0.95 3.44  2.50 0.94
<¢}VIS]¢> 1.09 .0.30 ~ 0.79 1.04 0.29 0.75
<¢[vpll¢> -6.91 -5.96 -0.95 -6.52 -5.59 -0.93
V. (&, 6.09 6.09 0 5.43 5.43 0
L(gg gg) , _
Totals, theor. 3.82 3.03 0.79 3.39 2.63 0.76

exp't - - 0.23 - - 0.27
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absorption splittings are a factor of about three times larger than the
ekperimental results. In Table (10), we note that the contribution of
electron kinetic energy T, point fon potential energy ?EI’ and BSG
ion-size correction vIs to the splitting are equally important. In fact,
the contribution of the electron kinetic energy and the point-ion potential
energy almost cancel. Therefore, the net contribution comes from the ion-
size correction. One may concluded that BSG ion-size correction is over-
estiﬁated. In Alig's calculation, he also came to the conclusion that the
splitting was largely due to ion-size correction. Actually, he discarded
the empirical factor o = 0.53 in the ion-size correction, and his result
was then only a factor of about two times too large. Neglect of other
features that may contribute to the discrepancy; for ekample, the electronic
polarization, the off-axis properties of Li+, and the over-simplified
form of trial pseudo-wave function, may also be important.

Table (11) shows the comparison of the previous theoretical investigations
with the present calculation, for the shifts of the Fa1 and Fry absorp-
tion lines of F,-centers relative to the F-center absorption in KC1, and
the FAZ - FAl absorption splitting. Smith and the present work give a
result which is about three times too large, Alig and Weber and Dick have
a factor of about two times too large. Although our result is quite close
to theirs, one cannot get a’ significant conclusion from this, since
their approximation is quite different from ours. A qualitative comparison
among the four theoretical investigationsis given in Table (12). As far
as the lattice distortion is concerned, our method is more accurate than
the others.

In conclusion, the results of the F,, - F, absorption splitting

suggests that more precise ion-size correction must be Introduced.



Table 11

Shift in the absorption energies (eV) of FA-centers relative to F-centers

in KC1, and the absorption line splitting

63.

FA(Na) center

FA(Li) center

FA1 FA2 Split, FAl FA2 SPllt.
smith? -0.38 +0.16 0.54 -0.54 +0.24 0.78
W& Db -0.34 +0.05 0.39 . -0.46 +0.07 0.53
Alig© -0.30 +0.06 0.36 -0.38 +0.08 0.46
Present work®  -0.20 +0.59 0.79  -0.43 +0. 33 0.76
Exp't.? -0.19  +0.04 0.23 -0.33 -0.06 0.27
a Reference 1, Table 3-2, p. 193
b Reference 3 Table 9, columns I.
c Reference 4, Table 1, columns III.

d The F-absorption energies are taken from reference 24, Table 3.



Qualitative‘comparison of the methods and model in F

Table 12

previous theoretical

A—absorption study in the three
investigations and in the present work.
Method for lattice lattice trial wave wave function Dynamical
ion-size . distortion polarization function self-consistent lattice
correction with the lattice effects
potential and
lattice distortion
Smith pseudopotential neglected neglected Gourary-Adrian no no
method Type 1
Weber and Dick BSG without neglected neglected Gourary-Adrian only with no
o = 0.53 Type I,II,III lattice potential
Alig basically BSG only nearest nearest Gourary-Adrian no no
without o = 0.53 neighbors neighbors Type I,II,III
- and others
Present work BSG with ~including neglected Gaussian yes no
o = 0.53 farther out

ions

79
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3.2, Saddle-Point Configuration

(A) Zeroth Order Calculation

" We have investigated the following states in the saddle-point configur-
ation of figure (2(b)}: even parity relaxed state; odd parity}relaﬁed state
and ﬁnrelaxed even parity state. |

Brown and Vai1(24) have treated the saddle—péint coﬁfiguration of the
F-center as the mid-point of the sfraight line connecting the diffusing
anion and the original F-center vacancy. In the F,-center activation
process, some other, indirect path may be favourable, namely (1) motion of
the saddle-point anion out of the y' - z' plane (Fig. 2b); (2) displace-
ment of the saddlé-point ion along the y‘;aiis. An investigation of the
possibility of path (1) will be described in section (3.2D), in which we
seek té'minimize the energy by displacing the saddle-point c1 ion out.
of the y!' - z' plane, aiong i'-aiis. The results of this investigation
were tentatively negative for the FA-centers. In the following calculation
we used path (2) as the favourable trajectory for the FA—centers vacancy
diffusion. With this trajectory we maintain some symmetry of the lattice.
configuration, nemely the reflection symmetry with respect to the x' - y!'
and y' - z' planes. |

In the saddle-point configuration, Region I contains saddle-point c1”
ion, two vacant anion sites, and the two straddling positive ions, one the
impurity Na* or Li" and the other a host K -ion. The trial pseudo-
wave functions which we choose for the sad&le«point configurationAare
similar to those which we used for the vacancy configuration. They are
Gaussian localized with low order Legendre polynomials dependence, giving
double-lobed charged densities, fitting into the two-well poténtial of the

two vacant anion sites which are separated by the saddle-point ion.
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The following trial wave functions are used:

For the odd parity relaxed state:

¢5 AS r' cos ez' eXp (- asz r'2)

Ac z' exp (- o’ r'9); (3.21)

for the even parity unrelaxed state:

¢6 = A6 r'2 0052 92' exp (- a62 r'z)
= A6 z'2 exp (-a62 r'z); ' (3.22)

and for the even parity relaxed state:

2 2 2,2
¢, = A, ' cos ez' exp (- a,” r'7)

A, 212 exp (- a%z r'z), (3.23)

where Aj (j =5, 6, 7) 1is the normalization constant and uj(j =5,6,7)
is the wave function‘loéalization parameters, 1r' is the radial variable
with origin at the saddle-point and Gz' is the polar angle with z'-axis
(Fig. 2(b)) as polar axis in spherical coordinates.

For the zeroth order calculation in the saddle-point configuration,
we minimized the system's energy with respect to the wave function parameter
aj,
y'-axis from the perfect lattice site, the non-harmonic displacement Yo

the non-harmonic displacement Y1 of the impurity’cation along the

of the host cation along the y'-axis from the perfect lattice site, and
the displacement Y3 of the saddle-point ion along y'-axis. As in the
vacancy configuration, we here keep the center of the wave function fixed
at the origin also. - |

We formulate the procedure for calculating the energy VL(O, ig
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required to create the saddle—point.defect as follows (Fig. 2(b)).
(1) remove the Cl  ion from~ (o, o, ¥2/2)
(2) remove the Cl1 ion from (o, o, - ¥2/2)
(3) remove the K' ion from (o, ¥2/2, o)
(4) remove the X' ion from (o, - ¥3/2, o)’

(5) put in the C1~ ion at the saddle-point (o, y., o)

3
(6) put in the K* ion at (o, - z% * Yoo o)
(7) put in impurity cation at (o, Zg: * Y 0)

Regarding fhe-point ion potential v in the case of the odd

pl’
parity relaxed state, the trial wave function which we used (equation
(3.21) has 2=1 oi-first order Legendre polynomial dependence. Since we
let the saddle—point Cl1™ ion move to (o, yé, o) along y'-axis in the -
primed coordinates of the Fig. 2(b), there is no lattice charge.at the
origin. Hence, the expression for the expectation value of VPI is the
same as equation (3.18) for the case of relaxed excited state in the

vacancy configuration. In the case of the even parity unrelaxed state,

the éngular dependent part‘of equation (3.22) can be written as:

1 | .

3 Py * Py (c0S 0,0) | (3.24)
which has %=0 and £=2 dependence. Thus, only terms in &=o,  %=2 and
2=4 with m=o0 in equation (3.15) have non-zero contribution to
< d>6 l VPI l dJ6 7 Again, there is no charge point ion at ;i = o.

Thus, the expression for VpI becomes
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- 2
7y = 1 .
VPI(r) == 2 g Q {ri + =3 pz(cose) pz(cosei)
ri#o — +
+—£li (cos®) p,( 6>}—+2 j ) & -
5 Py, (c0oSY) P, Reost; ¢ Q r, ot
i - r,<r
i
ri#o
2 r.2 .
+ ( £~§-— —%—} Py (cosB) Py (cosei)
T, r
1
r4 ri4 B
+ (;~g - ;ETJ P, (cosb) P, (cosei)} , : (3.25)
1 -

The procedure for the zeroth order calculation is the same as described
in section 3.1(A) for the case of the vacancy configuration except that
" the calculation is done in the primed coordinate (Fig. 2(b)) here and the
sum is over 232 ions in 87 groups near the saddle-pointconfiguration.

The results of the zeroth order calculation for FA— center relaxed
odd and even parity states in'the saddle-point configuration are reported
in Tables (13) and (14) respectively. These results indicate that both
straddling ions move outward from the saddle-point with the impurity cation
moving further out than the host cation. The saddle-point ion also moves

along the positive y'-axis a significant distance.

(B) Second Order Calculation (relaxed state)
For the second order calculation, we included the contributions from

thirty-five groups of ions, containing 55 ions in all. The grouping of



Zeroth order calculation of

Table 13

" a

FA—centers relaxed odd parity"

state in the saddle-point configuration.
interionic spacing of the prefect crystal.

F, (Na) FA(Li)
Y10 (a) 0.159 0.139
Yo0 (a) -0.093 -0.061
Y30 (a) 0.076. 0.132
o
*20 (1/a) 0.824 0.831
VL(O,ylo,yZO,ySO) (eV) 6.23 5.85
VPI: (eV) -4.67 -4.76
VIS (eV) 0.34 0.33
T (eV) 1.31 1.33
E(0,Y10:Y202Y 302 507 (eV) . 3.21 2.75
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Zeroth order calculation of F

Table 14

A

state in the saddle-point configuration.

ionic spacing of the crystal.

a

-centers relaxed even parity

is the inter-

F, (Na) Fj (Li)
Y10 (a) 0.159 0.148
Y20 (a) -0.098 -0.061
Y30 (a) 0.072 0.139
. (1/a) 0.967 0.972
VL (0,Y105Y202Y 307 (eV) 6.22 5.82
V§I (eV) -5.28 -5.57
ﬁis - (eV) 0.23 0.22
T (eV) 1.56 1.57
E(0,Y105Y20:Y30°%707 (eV) 2.73 - 2.24

70.
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ions and the matrix elements of §(3) are given explicitly in Appendix B.
There are twWo rectangular coordinated systems involved in the saddle-

point configuration calculation. One is the unprimed system and the other
is the primed system (defect oriented) as in Fig. 2(b). We may obtain

the unprimed system by rotating the primed system by an angle of 45°. In
order to use Kellermann's dynamical matrix, we have to do the calculation in
the unprimed coordinates but Fa(;ﬁk) are easier to calculate in the primed
system.

Since the relationship of the two coordinates system is

Y Y

g, 1 0 0 £,
: 1 1
A = . &y (3.26)
1 1
g 0o = e g
z JZ v) L z
U k ) )

We have:
F = F (3.27)
X X
Fo=1 '+ (3.28)
Yy /2 -y z

A

F =1 ' -8 (3.29)
Z Nl Z y :

Therefore, the solution of £ in equation (2.62) is in the unprimed
coordinated system. The results reported in Tables (15) and (16), the
displacement components of the ions neighboring the FA(Na) and FA(Li)
center in KCl1 in even and odd parity relaxed states in the saddle-point
configuration respectively, are in the primed coordinates system. Tables

(15) and (16) cover all the ions shown in Fig. 2(b), plus the ions in the



Table 15

Cartesian components of displacements of the ions neighboring

the FA(Na)—center in KCI in even and odd parity relaxed

states in the saddle-point configuration in units of the

perfect KC1 nearest neighbor distance.

FA(Na) Center

ion odd parity even parity
(O,%-/E,O) 0,0.160,0 0,0.161,0
(0,1% v2,0) '0,-0.094,0 0,-0.101,0
(0,0,0) 0,0.06,0 030.072;0

1
(;’O:E'/E)

(1,52,0)
(1,75 v3,0)
(o,%—/é,/é)
0L V3, /2)
0, 3L
©, -/3,°% /3

(0,3v2/2,0)
(03—3/5/2:0)

(0,0,3v2/2)

0.017,0.006,-0.053
0.050,0.056,0

0.025,-0.632,0
0,0.056,0.020
0,-0.041,-0.031
0,0.040,-0.013
0,-0.007,0.008

0,0.055,0

0,-0.027,0

0,0.005,-0.025

0.021,0.007,-0.032
0.044,0.050,0

0.021,-0.025,0

0,0.035,0.030

1 0,-0.019,-0.039

0,0.028,-0.011
0,0.005,0.008

0,0.048,0

0,-0.021,0

0,0.004,0.002




Table 16
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Cartesina components of displacements of the ions neighboring

the FA(Li)—center in KC1 in even and odd parity relaxed states

in the saddle-point configuration in units of the perfect

KC1 nearest neighbor distance.

FA(Ll) Center

ion odd parity even parity
(0,2/2,0) 0,0.142,0 0,0.151,0
(o,:% /E,d) 0,-0.068,0 0,-0.069,0
(0,0,0) 0,0.134,0 0,0.140,0

1,0, VD)
(1,%-/5,0)
1,2 /2,0
(b,%-/i,/i)
0,5 V2 ,-/2)
0,/2,4/2)
0,-/2,7% /2)
0,32,0)

V2

(O:"S —,0)

0.035,0.004,-0.041
10.063,0.040,0

0.021,-0.019,0

0,0.058,0.023

0,-0.038,-0.042
0,0.023,-0.022
0,0.013,0.010
0,0.041,0
0,-0.011,0

0,0.005,-0.019

0.040,0.005,-0.019

0.063,0.033,0
0.015,-0.009,0
0,0.038,0.034

0,-0.017,-0.052

0,0.012,-0.024

. 0,0.029,0.011

0,0.037,0
0,-0.002,0

0,0.006,0.009




two nearest planes parallel to the y' - z' plane which are immediately
adjacent to the Region I. The most important displacements are those of
the straddling positive ions and of the saddle-point ions. The impurity
ion Li* or Na' at (0, V/2/2, 0) sitemoves along positive y'-axis a
distance about 0.15 time the perfect lattice spacing, and the saddle-point
ion follows it about the same amount for the FA(Li)—center, ahd about half
that distance for the FA(Na)—center. On the other hand, the host K+

ion' at (0, - ¥2/2, 0), i.e. on the other side of the saddle-point move
outward by about 0.07 and 0.09 nearest neighbor distances in FA(Li) and
FA(Na). respectively.

The results for the relaxed odd and even parity states are given in
Tables (17) and (18). The second-order corrected wave function has its
localization parameter changed by 0.04 and 0.06 for odd and even parity
respectively, in units of reciprocal nearest neighbor spacing. This shows

how the wave function of the F,-center in the saddle-point configuration

A
responds to the lattice distortion. The relaxation energy is larger in

the case of the odd parity state than for the even parity state, as one

might expected, fo? both FA(Na) and FA(Li)-centers. The splitting

between the odd parity state and even parity relaxed statei is 0.37 eV
and‘0.32 eV for FAfLi) and FA(Na) respectively. This separation is not
enough to allow for the emission process for FA(Li)—center in the saddle-
point configuration, which is 0.46 eV. Therefore, we do not expect our
estimated emission energy to agree with the experiment, except possibly

in the order of magnitude. The calculation to be reported in the next
section shows that our model and approximation fails to describe the emission

process at all. Further discussion of this point will be deferred to

section (3.2c¢). Regarding the odd parity relaxed state in the saddle-



Table 17

Second order calculation of FA—centers relaxed odd parity
state in the saddle-point configuration. The total relaxed
state energy E(é,yl,yz,ys,as) is given in equation (2.88)

a is the interionic spacing of the crystal.

F,(Na) F, (Li)
% (1/a) +0.81 0.79
Y1 | (a) 0.160 0.142
Y, (@) -0.094 -0.068
Y3 '  (a) 0.076 0.135
%——g " & (eV) ~0.45 -0.48
E(O’ylo,’_}'zo’?so’o‘so3 (eV) 3.21 2.75
s g\‘ﬁ (eV) 0.04 0.06

\

Egg,yl,yz,ys,usj (eV) 2.76 2.27
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Table 18

Second order calculation of FA—centers relaxed even parity
state in the saddle-point configuration. The total relaxed
state energy Egg,yl,yz,yg,a7) is given in equation (2.88).

a 1is the interionic spacing of the crystal.

F,(Na) F, (Li)
G (1/a) 0.93 | O.;l_
Y1 | (a) 0.161 0.151
Yy (a) -0.101 0.069
Y3 - (a) 0.072 0.140
PR (eV) -0.29 0.3
E(0,105Y20+Y30:%¢ ) (eV) 2.73 2.24
| %.‘?_T' < - § | (eV) 0.02 0.02

E(g,yl,yz,ys,a7) (eV) _ 2.44 1.90
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point configuration, it is 0.42 eV lower than in the vacancy configuration
for the FA(Li)-center. This means that the relaxed excited state is
stabilized in the saddle-point configuration, in agreement with the

(1)

~experiment For the FA(Na)-center, the relaxed excited state in the
saddle-point configuration lies lower than in the vacancy configuration by
0.08 eV. This means that the relaxed excited state is also stabilized in
the'saddle—point configuration for this center, which contradicts the
experimenfal result, where it is found to be stabilized in the vacancy
configuration by 0.09 eV. This result then indicates that our model and

approximations are not generally accurate to better than a few tenths of

an eV, when dealing with the relaxed excited state.

(C) Emission Energy

It has been found experimentally thét the emission process occurs in-
the saddle-point configuration for the FA(Li)—center., Similar to the
absorption energy; section 3.1(c), we calculated the unrelaxed even parity
state in the presence of the distortion field of the odd parity state,
minimizing the energy with respect to the even parity wave funqtion para-
meter only. The result of the calculation is shown in Table (19), where
the superscripts (e}, Co) refer to even and odd parity. The square bracket
in Table (19) means that a negative (unphysical) result is obtained; i.e.
our even périty unrelaxed state lies.higher than the odd parity relaxed
excited state in the saddle-point configuration. ' In order to understand
the origin of this discrepancy, we re-examined our even-parity wave
function ¢6 in the saddle-point configuration. We observe that ¢6’
with only one variational parameter, fits its two charge-density lobes to

"the two-well potential in the relaxed even-parity state, but apparently



Table 19

Emission energy (eV) of FA(Li) in KC1 in the saddle-point

configuration with contributions as given in equation (2.96)

H
where X(e) is the wave function parameters of the un-
relaxed even parity state made self-consistent with (E(éggﬁojj.
'Aﬁe)' in units of reciprocal interionic spacing

1 1"
% % %
-~ |

RS N 0.182 0.362

o 0.983 - 0.979 1 0.931
VL(Q(O),E(O)) 5.13 5.13 5.13

T
<¢¢ | |¢6>_ 1.61 1.53 1.55
<d¢ IV1§| 9¢> o 0.17 0.18 0.17
<b¢ ]val ¢¢> -4.86 -4.81 ~4.87
. 1
—ED(_E_(O),E(O),&(G) ) -2.05 -2.03 -1.98
By (0,00 20y 2.75 2.75 2.75
Fo(0)T. (o) ~0.96 -0.96 -0.96
T
20 ). gl 0.06 0.06 0.06
.

Eém(B("),ng),&(o),x(e) ) [0.20] [0.18] [0.13]

78.
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cannot do so well in the unrelaxed state, where the 1aftice distortion field
€ ,w 1is détermined by the relaxed odd-parity state, ¢5. It needs more
than one variational parameter to adjust simultaneously the position and
sharpness of its two charge—deﬁsity lobes to the two-well potential. We
therefore tried two other forms of two-parameters trial wave functions in

place of ¢6, in an attempt to deseribe the emission process, namely:

2 3 2 : 2 "2
¢6' A6'(b *3 T cost,) exp (&~ r %) (3.30)

¢6" A 1 - eXP(-BZ r'z)] coszez"' exp (-az r'z) (3.31)

The results of the calculation (last two column of Table 19) show that the
above two trial wave functians, each having two variational parameters
(b,0) and (B,a) respectively, are just slightly more feasible than ¢6?
lowering the energy by 0.02 eV and 0.07 eV respectively.

Several deficiencies of the model-may contribute tb the failure to
describe this emission process. The most likely is the lack of flexibility
of the wave function. Secondly, the Condon approximation may not apply in
this emission process. Thirdly, interaction of the excess-electron with
phonons, énd périty mixing of the wave function may occur, as in the RES
of the ordinary F-center in KCl. Ionic polarization may also be important.

Further discussion of these points will be deferred to Chapter 4.

(D) Inveétigation of the Stability of the Saddle-Point Configuration

A preliminary investigation of the stability of the saddle-point
configuration has been made in the present work.

Tpe questinn is whether the diffusing anion Cl~ will move out of the
y' - z' plane (Fig. 2(b)). The procedure we have used is to evaluate

the defect's energy in zeroth order as a function of displacement x' of
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the diffusing tsaddle—point) ion aldng the x'-axis for the FA(Na),

FA(Li) and ordinary F-centers, in KCi. That is, for a given value of jx',

we minimize the system's energy with respect to the odd—parity‘wgve function's
localization parameter and with respect to displacements along the y'-axis

of the two straddling cations. There is difficulty in the numerical
calculation because the energy is such that it begomes a relatively small
difference between very large numbers for x' ~ 0701, so that double-
precision accuracy is required in the computation, and the results become

unreliable for x' < 0.01, though they are reliable for x' = 0.

The results are plotted in Fig. 7. For the FA(Li) and FA(Na) -
centers in KC1, figure 7(a) and (h) respectively, apart from the vicinity
of x' = 0.01, there is a flat minimum around x' = 0.1 times the nearest
neighbour spacing. The difference in energy between x' = o (strict
saddle-point) and the flat minimum is about 0.02VeV. Accordingly, we
have carried out all the calculations in the saddle-point configuration
for x' = 0, because this configuration still preserves the reflection
symmetry with respect to the y' - z' and x' - y' plane for which it is
analytically much easier to calculate than with x' # 0. Furthermore, we
do not find that .our model and approximations are generally accurate to

better than a few ténths of an eV.

Iﬁ the case of the F-center in KC1l, Figure 7(c), apart from the vicinity
x' = 0.01, the curve appears to be monotonic decreasing with increasing
x'. We have calculated only up to x' = 0.3a because the calcuiation
become complicated beyond that due to the Born-Mayer repulsion and.
‘displacement of the two nearest Cl~ ions as well as of the two nearest cations

and the wave function must be allowed to displace in the x'-direction as well, for



Figure 7

Thé zeroth order odd - parity energy (eV) E(O)
as a function of the displacements of the saddle
point ions along x' - axis (see fig. 2(b)).

x! iﬁ units of perfect KCl nearest neighbor

distance.

(a) FA (Li) - center in KC1
(b) Fo (Na) - center in KC1

(¢) F - center in KC1
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a highly asymmetric saddle-point.

In summary, we do not consider that the question of the saddle-point
configuration is settled. However, the results of Fig. 7 suggest that for
the FA(Na) and FA[Li)—centers in KC1, a value x'" < 0.1 gives the
stable configuration with energy only slightly lower than that for x' = 0,
while for the ordinary F-center, an asymmetrical saddle-point configuration

seems probable.

3.3 Reorientation Activation Processes

The reorientation activation energy for both even and odd parity
states of the FA—centers are analysed in Table (20), where_ ”dfe.” is the
change in total energy induced by harmonic relaxation of the lattice (to
second order). The total differences in Table (20) represent the activation
energies. For the even parity reorientation activation energy, the relaxed
states are relativelf low-lying in both the vacancy and saddle-point
configurations. The agreement with the experiment is within 15%, the
theoretical result being 0.18 eV too high for FA(Na) and 0.12 eV too high for
FA(Li). We notice thaﬁ the excess-electron's kinetic energy T and ion
size correction rises slightly in going from vacancy to saddle-point
configuration, but Fpe point ion term rises considerably, and the lattice
defect energy VL(O’.E) drops considerably,

For the odd Earity state, our calculation predicts a relatively large
stabilization'energy of 0.42 eV for the FA(Li)—center, in the saddle-
point configuration, in qualitative agreement with experiment. The F, (Na)-
center is found experimentally to have a small positive reorientation
energy 0.09 eV, our theoretical results give a small value of opposite sign

namely -0.08 eV. This discrepancy perhaps gives an indication of



Table 20

Contributions (eV) to energy differences between saddle-point (s.p.) and vacancy (vac.) configurations for even

and odd parity relaxed states of the FA center in KC1.
Center . .
F, (Na) | Fo(Li)
parity even . odd even’ odd
s.p. vac. diff. s.p. vac. diff. s.p. vac. diff. s.p. vac. diff,
<¢| T|¢> +1.56  +1.44  +0.12  +1.31  +2.68  -1.37  +1.57  +1.43  +0.14  +1.33  +2.64  -1.31
<¢lvp1|¢> -5.28  -7.11  +1.83  -4.67  -6.28  +1.61  -5.37  -6.95  +1.58  -4.76  -6.11  +1.35

<¢lvif¢>  |+0.23  +0.08  +0.15  +0.34  +0.31  +0.03  +0.22  +0.08  +0.14  +0.33  +0.30  +0.03

VL(O*EO) +6.22 +6.64 -0.42 +6.23 +6.62 -0.39 +5.82 +6.39 -0.57 +5.85 +6.41 -0.56
d.e -0.29 -0.04  -0.25 -0.45 -0.49 +0.04 ~-0.34 -0.08 -0.26 -0.48 -0.55 +0.07
Totals,theor. |+2.44 +1.01 +1.43 +2,76 ~ +2.84 .~0.08 +1.90 +0.87 +1.03 +2.27 +2.69 -0.42

Experiment - - +1.25 - - +0.09 - - +0.91 . - - <0

B
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the limit of accuracy of our model and approximation. We notice that the
odd parity excess—electron'é kinetic energy drops considerably in going
from vacancy to saddle-point configuration, since the electron goes from
localization near two positive ioné adjacent to the vacancy, to localization
in the rather shallow double-well potential of the saddle-point configuration,
and the wave function delocalizes somewhat. The point-ion potential rises
considerably and ion-size correction rises slightly and the lattice defect
energy drops considerably, in going from vacancy to saddle-point configura-
tion, as in the even parity case. Thus, the major difference between the
odd parity and even parity reorientation energy are the different behaviour
of the electron's kinetic energy, and the different effect of harmonic
(Region II) distortion, which lowers the even parity energy, but raises
the odd parity energy. |

In order to understand the role of the impurity cations in the
activation procesg, we are going to compare with the results for the

(31). The

ordinary F-center which has been analyzed by Brown and Vail
theoretically estimated reorientation energies of FA(Na)—, FA(Li)j and
ordinary F-centers in - KC1 are analysed in Table (21). Let ﬁs look
at the even Eari§y~states first (Table 21(A)). The contribution from the
harmonic distortion-(d.e.) energy is almost the same for all cases. The
same is true for the electron's kinetic energy and for the ion-size

correction. Regarding Y it is 0.57 eV lower for FA(Li) and 0,32

pl’
eV lower for FA(Na) than for the F-center. For VL, it is 0.61 eV lower
for FA(Li) and 0.46 eV lower for FA(Na) than for the F-center. Thus,
we see that the impurity ion lowers the even parity activation energy of

the F-center through its effects on the lattice energy and on the point-

ion potential for the excess-electron about equally.



Comparison of the contributions (eV) to the reorientation activation

energies of FA(Na), FA(Li) and F-centers in KCl.

(A) Even parity

Table 21

85.

Fj (L) F, (Na) F F,(Li)-F F, (Na)-F
T 0.14 0.12 0.09 0.05 0.03
v%t 1.58 1.83 2.15 -0.57 -0.32
Vis 0.14 0.15 0.20 -0.06 -0.05
v (0,1) -0.57 -0.42 0.04 -0.61 -0.46
d.e. -0.26 -0.25 -0.25 -0.01 0
(B) . Odd parity

Fy (L) F, (Na) F F,(Li)-F F, (Na)-F
T -1.31 -1.37 -1.48 0.17 0.11
Vv 1.35 ‘1.61 2.05 -0.70 -0.44
pl
'Vis 0.03 0.03 0.17 -0.14 -0.14
Vv (0,1) -0.56 -0.39 0.06 -0.62 -0.45
d.e. 0.07 0.04 -0.29 0.36 0.33
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In the case of the odd-parity reorientation activation eﬁérgy, the impurity
ion not only decreases the contribution from VPI and the lattice defect
energy VL but also increases the distortion energy of the lattice

(Table 21(B)). Furthermore, the increases of the electron's kinetic energy

and the decreases of the ion-size correction are small but not negligible.



CHAPTER 4

CONCLUSIONS

We have applied the model and methods for point defects in general and
color centers in particular to study the Type I and Type II FA-centers n
KC1, and these have been described fully in previous chapters. Several
basic approximations are made in this calculation:

(1) Adiabatic approximation;

(2) Franék-Condon principle to describe the optical transitions;

(3) neglect of_lattice dynamic effects; |

(4) perfect lattice repulsive parameters for LiCl1 and NaCl haﬁe

been used for Li* and Na impurities in the KC1 crystal;

(5) One parémeter Gaussian localization with low order Legendre

polynomial for the trial wave functions;

" (6) neglect of ionic pdlarizability‘

We used a variational method to locate the energy levels and calculate the

wave functipns, Lattice distortion and lattice relaxation energy have been
treated rigorously by the method of lattice statics, and the change of the-
wave- function parameter due to distortion has been calculated self-consist-

ently.
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As we have discussed in chapter 3, our theoretical results only partially
agree with experiment: the theoretical values for the absorption energy
and ground state reorientation energy are in good agreement with experiment,
but the model and methods fail to give the FA(Li) emission energy or the
FA(Na) excited state reorientation energy. It is well-known that the
RES of the F-center in NaCl\type ionic crystals is very complicated. For
example, the RES may be diffuse and the wave function.of the excess-electron
may be a 2s-2p parity mixture due to coupling with the longitudinal optical

CSZ). Recently, Mollenauer et a1(33) found experimentally that the

phonons
RES of KI is diffuse but not a parity mixture. In view of thiscomplexity, it
is’perhaps_not surprising that the present type of treatment failed to give the

(24). Since the present model

erission énergy in agreement with experiment
is over-simplified for the RES of F-centers we have not estimated the
emission energy of the PA(Na)—centers in the vacancy configuration. In the
present calculation, we have resisted the temptation to make any kind of
empirical adjustment to improve the agreement with experiment since it will
cover the weakness of the model qnd methods. It is one of the objects of
the present work tpjcdntribute to the understanding of how current models
of ionic crystals describe the properties of defects and to suggest how

the model and methoés could be improved.

For the absorption process, the agreement of the FAl—absorption energy
with experiment indicates that our model and methods are reasonable. As
far as FA1 - FAZ absorption splitting is concerned, by examining the
electronié structure of the splitting and comparing it with other works,
we conclude that the ion-size correction needs to be improved. An

improvement of the BSG ion-size correction has been given by Bartram and

Gash(21) who attempt to give the exact pseudopotential solution by using
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(20)

the Philips and Kleinman pseudopotential However, it seems to us that
the Cohen and Heineclg) pseﬁdopotential is the better form for the
variational procedure, since it is the optimum pseudopotential with respect
~ to wave-function smoothness. Some transformation of this pseudopotential
may be possible to allow the use of the variational method with an accurate
treatment of the Cohen-Heine pseudopotential. Others types of corrections

for the ion-size correction have been given by Martino(34), Opik and Woodcss)’

and Matthew and Green(36).

Ionic polarization can be incorporated through the shell mode1(37) in
two ways. First, both shell and core can be assumed to respond adiébatically
to the-excess-electron. This has been done by Stoneham and Barﬁramclé).
The extension of Keliermann's dynamical matrix to include the shell model is

(38). On the other hand,

straightforward and has been done by Woods et al
it may be more realistic to assume that only the ionic cores follow the
excess-electron adiaﬁatically. The core-shell displacements would then be
treated as elements of A in the method of lattice statics. This has been
done by the author (ref. (39) section (3.3)) including the polarization of
only a few near neighbors in a preliminary analysis of the F-center saddle-
point configuration. |

The failure to dgscribe the emission process for the FA(Li)—center in
the saddle-point configuration suggests that the electron-phonon inter-
action may be important. If the emission process for the FA(Li)-center
in the saddlé—point configuration emits phonons simultaneously with the
photon, the emission energy will approach the difference between the
relaxed odd and even parity states in the saddle-point configuration.
This differencé is equal to 0.37 eV and the experimental emission energy

is 0.46 eV. A formulation to include the lattice dynamic effects in the
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Tattice statics treatment of the excess-electron defect has been developed
by Vail(40), but has not yet been applied. Another factor which may be
responsible for the failure to describe the emission energy is the trial
wave function. More than one trial wave function parameter is probably
necessary for the even parity state to fit in the relaxed odd-parity lattice
configuration. Furthermore, the center of the wave function should not be
restricted to the origin since the defect lattice is asymmetric.

The fact that our method shows the stabilization of the FA(Li)—center
in the saddle-point configuration suggests that our treatment of the saddle-
point configuration is appropriate. Our theoretical results show the
FA(Na)—center is weakly stabilized in the saddle-point configuration,
contrary to experiment, and the error is of the order of 0.2 eV. This may
arise largely from the use of perfect repulsive parameters in the defect
configuration, but other factors may be equally important.

The calculations for the reorientation energy not only show the role
of the impurity ion in the activation process but also indicates that the
present model and methods can adequately describe relaxed states which
are well below the‘coﬁduction band.

In general, the accuracy of these calculationé could be improved by
allowing for lower ;ymmetry in the relaxed states, by taking account of the
off-axis property of the Li* ion, and by including the possibiiity of Jahn-
Teller distortions. One may also improve the accuracy of the displacements
found for the distorted lattice by increasing the number of allowed wave
vectors a in the reciprocal space, that is, by increasing the number of
unit cells per defect. In this way, the displacements of the ions farthest

from the point defect would not be affected by the defects in the adjacent

super-cells generated by the periodic boundary conditionms.
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In conclusion, the results of the extensive study of the electronic and
ionic structure of the FA(NQ) and FA(Li) - centers in optical transitions
and reorientation processes lead us to suggest that tﬁe following improve-
ments to our model and methods should be incorporated and systematically
investigated, namely:

(1) a more precise 1ion-size correctionm;

(2) a more flexible wave function;

'(3)'introduction of ionic polarization;
(4) introduction of electron-phonoﬁ effects;
(5) consideration of parity mixing in the relaxed excited states;

(6) consideration of configurations of lower symmetry.
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APPENDICES

(A) "Kellermann's Dynamical Matrix

(22)

The dynamical matrix is a 6 x 6 matrix with the elements:

IR
|

N

1
X
1
y

1 2‘(1 27 1 2]

"1 171 17 T 1'[1 2 1 2 1 {1 27
Lx Yyl LYy Y1 LY 2] X y | ylly zJ
1 17117 [1 1’[
lx z ] |y 2] Lz z]|lx z]ly zJ [z 2z
D =
D ] ] r ) )
1 2 1 27 1 2912 21702 2702 2
| x x] | x vy Lx oz g x x| lx oyl x zJ
(1 .27 T 2] [1 2772 2772 2712 27
AR I P Ly z | x y]ly v]lly =z
1 2 1 2 1 2 2 2112 2112 2
X A y Z Z A X Z y VA Z Z
0 (A1)
where _)°+(,Q ]
1 { gn iq X .
k k _z A L,Q.. }e k k (AZ)
o B ,QI” CXB k k'
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where A 1is the force constant matrix. D 1is symmetric and real, so it is

Hermitian. The contribution from different interactions to D are‘additive,

T x k k] Tk ok TR
= + v (AB)
o B a8 a B

where superscripts (c) and (R) denotes the Coulomb contribution and

SO

repulsive contribution respectively.
In the NaCl structure ionic crystal, the potential energy of the

crystal can be written as
b = o) 4 () Y

and define. A and B by

' 2
11].d (R) B :
g™ ] -<2 (a5)
T=a . .
2 2
d (R) ] _e"A
| o a2 - e

where v = 2a3, the volume of the unit cell. Thus we define:

1 1 (R)
Ry, (e,0) = [a i ] = A+ 2B (A7)
(R)
1
Rlz(a,a) = [ Lo
= - {A cos 2mq a + Blcos Zﬂqy a + cos 2mq, al]} (A8)
1 19(R) 1 2R
[ ] = [ ] =0 for o # 8 (A9)
a B o B » . -



in units of e2/(2a3), and for the contribution from Coulomb interaction,

has been calculated by Kellermann using the Ewald method. If we write

Cip (@,8) = - [ i ; }(C) (A10)
I JAq(c)
Cr3 (o, B) = [a B} (Al1)

C + R C + R
12 ] (A12)

€12 * Ry Cp * Ryg

Each term of (A12)repfesents a (3 x 3) matrix, whose rows and columns are

labelled by o and B; i.e. the elements of C are Cll(a, B), equation

11
(A10), etc. Notice that equations (A7) and (A8), differ in sign from equation
(6.11) of Kellermannczz), which was incorrect.

Determining the number of allowed values of a

The number of allowed values of a vectors means the number of unit
cells within the boundaries which we take to repeat periodically throughout

an infinite crYstal. It can be determined by the cyclic boundary condition.

If the unit cells are defined by a,, 4a,, a; and the volume which is
repeated periodically is (ngla NZZZX N3;3)’ then the cyclic boundary
condition requires ’
> >
L 2mac Niap g i=1, 2, 3. (A13)

We use the reciprocal lattice to find the allowed values of the wave vectors
-> o . . > > > .

q specified by the above equation (Al13). Let bl’ b2, b3 define a
reciprocal lattice. Then, in the NaCl structure, if the generating vectors

of the unit cell in direct space are:
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-5
a1=ro[0, 1: 1)’
>
a, = r_(1, Q, 1), (Al4)
N .
ag = r°(1, 1, 0).
Then the reciprocal vectorse41) are
5 =L
b1_2r (1: 1: 1):
B.o=-1 (1, -1, 1 - L cAls).
Z_F(:": ), . :
o]
o> 1
b3 = 5;; gl, 1, -1).

Therefore, the allowed values of E which satisfy equation (Al3) are given

by
>
3 p. b, .
q= ) =*1 p; =1, 2, ... N, (A16)
i=1 N, : o
i
So, each unit cell of the reciprocal lattice contains N.N,N, = N distinct

123

subdivided the range of the basic vectors of

(22)

>
value of gq. Kellermann
. - - . +.
the _reciprocal lattice into tenths. Therefore, the total number of q's

in the first Briilouin zone is 1000. We rewritelequation'(Al6) as

> > 1 :
q= g ki b]_ Z (qX’ q}” qZ) - (A17)

where

Kol

L]
-~
+
ot

)
=

(A18)



The primitive cell in E space is the truncated octahedron, which is the

first Brillouin zone of the f.c.c. érystal lattice with the boundary conditions.

qxiqyiqz=13/2

qx=il

=% 1 Al9
dy, (A19)
qz=i1

Since the orthogonal transformations of the'dynamical matrix will leave its
eigenvalues invariant, we do the calculation only for those points which

lie in 1/48 th of the first Brillouin zone; that is, only in the region:

02q,29q 1

| A

y = %

(A20)

»

QG * 9 * 9, <

There are 48 points in a space which satisfy the latter inequalities (A20).
Each point has to be weighted appropriately according to the number of
equivalent points in the whole of the zone. The total number of allowed

values of a' vector is then 1000.

(B) Grouping of Ions for the Second Order Calculation

As we have described in chapter 2, instead of summing over all ions in:

-

| Y [
W(rn ()T

: )
We group together those ions which have equal values of Fa (k}’ The

equation (Bl) can be written as
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2]!
q () (-2' } iqg-x ( K }
G } = F (B2)
o ( k ; %' aly J°

and Z (m) is a sum over all values of 4! which correspond to a single
A :
group of m. In this appendix, the explicit form of the matrix element of

each group m,

. QI '
q (m) v ta §'[ ]
G ( K } =) F, ( ] e k 7, (B3)
& m g kK J
are given for the relaxed ground state, the F relaxed excited state in

Al

the vacancy configuration, which has the same grouping as the ground state,

and the odd-and even-parity relaxed states in the saddle-point configuration.
>

Qﬁﬁ)m is a6 x1 iolumn matrix, whose first three elements are the x, y, z

components of §_(g)m of the anion (k = 1) and the last three elements

+
are the x, y, z components of g_(g)m of the cation (k = 2).

(1) FA—Centers Ground State and FA1 Relaxed Excited State in the Vacancy

Configuration

The following fifteen groups of ions are included in the summation of

equation (B1)

group 1 - (0, 1, 0)

group 2 (1,0,0) (0,0,1), (o,o,ij, (1,0,0)
group 3 (0,1,0)

group 4 (1,1,0), (1,1,0), (0,1,1), (0,1,T)
group 5 (1,1,0), (1,1,0), (0,i,1), (0,1I,1)
group 6 - (1,0,1), (1,0,1), (1,0,1), (1,0,1)
group 7 1,1,1, (1,1,1, (1,1,D, (1,1,0)

group 8 (1,1,1), (1,1,1, 1,1,1), (1,1,



group 9

group 10
group 11
group 12
group 13
group 14

group 15

(0,2,0)
(2,0,0), (2,0,0), (0,0,2), (0,0,2)
(0,2,0)
(1,2,0), (1,2,0), (0,2,1), (0,2,1)
(2,1,0), (2,1,0), (0,1,2), (0,1,2)
(1,2,0), (1,2,0), (0,2,1), (o0,2,1)

cz)i)0)> (é)i,o), (OQiﬁz)} (O,i,é)
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The explicit form of the matrix of Eﬁa) for each group, except group

1, which is included in Region I, is shown below:

S,

6@ =

FXCI,O,O) (i sin qxa)

‘Fx(l,0,0,) (i sin qza)

Fy(l,0,0) {cos q,2 *+ cos qza)

Fy(O,i,O) (cos qya - i sin qya)

(B4)

(BS)



6@, = 2

Fx(l,l,O)[— sin (qxa) sin'(qya) + i cos (qya)sin(qxa)]
Fy(l,l,o)[cds (,qya)' {p§s (qxa) + cos (qza) i sin(qya)

{cos (a,2) + cos (q,2)}]

Fx(l,l,O)I- sin(qy-a) sin(qza) + i cos(qza) sin (qza)

(B6)

0
FJ’((,l,i,O) [sin(qya) sin(q.a) + i sin(q,a) cos(qya)
Fy(l,l,O) [cos _qya (cos q,a * cos qza)

- i sin(qya) (cos q,a + cos qza)]

FX(I,T,O) [sin(qya) sin(qza) + i sin(qza) cos (qya)j

-

(B7)
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G@g = 2

s@, =2

.
F (1,0,1) (1) Isin(qy + q,)a + sin(q, - q,)a]

chl,O,l)ICOS(qx +q,)a + cos(q, - q,)a]

F (1,0,1) (1) [sin(qy + q,)a - sin(q, - q,)a]

+ i cos(qya){sin(qx + qz)a - sin(qx - qz)a}]

0

Fy(l,l,l)[cos(qya){COS(qX *q,)a + cos(q, - qz)a}

(B8)

Ei(l,l,l)[—sin(qya){sin(qx + qz)a + sin(qx - qz)a}

+ i co‘s(qya){sin(qx +q,)a + sin(q, - qz)a}]

+ i_sin(qya){costqx +q,)a + cos(qx - qz)a}]

EX(l,l,l)[— sin(qya){sin(qx + qz)a - sin(qX - qz)a}

(B9)
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-

104,

,Ex(l,I,l)I(sin qya + i cos qya) sin(qi + qz)a + sin(qx—qz)a]
Fy(l,l,l)I(cos qa - i sin qya){cos(qi + qz)a + cos(qx—qz)a}]

Ex(l,i,l)[(sin q,2 + i cos qya){sin(qx + qz)a - sin(qx-qz)a}]

0
0
0
.
(B10)
-
0 -
0
0

Fy(O,Z,O)[cos (2qya) i sin(qua)]

0

(B11)



6@, = 2
I
6@, = 2

chz,o,O) [cos 2 q,a *+ cos 2qza]

FXCZ,O,O) (i) sin(2 qxa)

F (2,0,0) (1) sin (2q,a)

Fy(o,?,O) [co§(2qy) - i sin(2qya)]

O .

-4

B FX(I,Z,O)[{—sin(2qya) sin(qxa)} + i coé(qua) sin(qxa)] 1

Fy(l,Z,O)[cos(qua)Ccosqxa + cos qza)

+ i sin(2qya)(cos q.a + cos qza)]

EXCI,2,O)I—sin(2qya)sinﬁqza) + 1 cos(qua) sin(qza)J

0

0

(B12)

(B13)

(B14)
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=
6@);5 =2

S@y, =2

FXCZ,I,O)I— sincqya) sin(2qka) + i cos(qya) sinCZar)]
Fy(2;1;0)[ cos (qyaj Jcos ZQXa + c?s 2qza]

4 i sin(qya)(cos 2qka + CcOoS 2qza)]
FX(Z;I;O)[~ sin(qya) sin(2qia) + 1 cos(qya) sin(Zan)]

0

(B15)

Fk(l,Z,O)[{sinCqua) + i cos(2qya)} sin qxa]
Fy(l,?,O)[{COSCqua) -1 sinCqua)} (cos qa + cos q,a)]
FXCI,Z,O)[{sin(qua) + i cos(2qya)} sin q_a] -

0

(Ble)

106,
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Fx(Z,l,O)ICsin qya + 1 cos qya) sin (2qia)]
Fy(2,I,O)[(cos qya + i sin qya)'{cosCqua) + cos(2qza)}]
Fi(Z,l,O)[(sin 2 + i cos qya) sinCZqia)]

_G_(a)ls = 2 k 0

d o

(B17)

(ii)_,FA-centeré even and odd parity_relé%ed'stétefin”théfSéddlé#pbint

configuration

The following 35 groups of ions , expressed in the unprimed coordinate

system (Fig. 2(b))) aré included in the summation of equation (B1):-

group 1 0, %, %)

group 2 (0,-%, %)

group 3 (0, 0, 0)

group 4 (1, %, 58),(-1, 4, %)
group 5 1, -4, %), (-1, -4, -%)
group 6 (1, %, =), (-1, %, -%)
group 7 (L, =%, %), (-1, -, %)
group 8 ©, 3/2, %)

grow 9 (0, -3/2, k)

~group 10 (0; %; 3/2)

group 11 0, %, -3/2)



group
group
group
group
group
group
group
group
group
group
group
group
group
group
group
group
group
group
group
group
group
group
group

group

12
13
14
15
16
17
18

19

20

22
23
24
25
26
27
28
29
30
31
32
33
34

35

©,
(0,
(0,
(o,
(1,
1,
(L,

(1,

a,

(1,

a,

(L,
(0,
(o,
(0,
(o,
2,
(2,
2,
(2,
a,
(1,
,

a,

3/2': "1/2)

32, 9, (-1, 32,
5, -3/2), (-1, %, -3/2)
-3/2, %), (-1, -3/2, ¥)
S, 3/2), (-1, -k, 3/2)
S, =3/2), (-1, -%, -3/2)
3/2, %), (-1, 3/2, %)

5, 3/2), (-1, %, 3/2)
-3/2, k), (-1, -3/2, -¥)
3/2, -3/2)

_3/2, 3/2)

3/2, 3/2)

-3/2, -3/2)

3/2, -3/2), (-1, 3/2, ~3/2)
-3/2, 3/2), (-1, -3/2, 3/2)
3/2, 3/2), (-1, 3/2, 3/2)
-3/2, -3/2), (-1, -3/2, -3/2)

108.
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The explicit form of the matrix of gﬁa) for each group, except
groups 1, 2, 3, which are included in Region I, is shown beloW:—
- . oG8 aqa g2 . qa ]
F (1,%,%)]-sin q a {sin(—<— + ) - i cos(-L- + -2}
* x 2 2 2
‘ . ..q.a .. ..q.,a . .q.a
Fy(’l,l/z,‘/z) [cos g a {cos (L-+ 29 + i sin(-L- + 2}
2 2 2 2
. ) ..q.a ..q.a q.a .q.a
G(3)4 =2| F_(1,%,%)]cos q.a {cos(L—+ -2 ) + i sin(—L— + =31
- Z X v
2 2 2 2
0
0
] 0
(B18)
_ - _ ..=q.a ..q.a .-qa qa
Fi(l:-l/Z:"l/Z)ISin qka.{-—sin( y . _z.._)+ i cos c Yy ?'__Z_:__)}]
' 2 2 2
. 9,2 q.a -q.a a
F (1,-%,-%) [cos q alcos(—L— - -2 + i sin (—L - 2 1}
.Y X 2 ) ) )
-q,a2 . 9.2 -q, a a
2(3)5 = 2|F_(1,-%,-%)[cos q_alcos(—— - —Z ) + i sin (—— - “Z91
z X
2 2 2 2
0
0
0

(B19)



S(@g = 2

&@, = 2

b

110,

) 0
0
0
: _ . q q.a . q.a ..q.a
F. (1,%,-%)][sin q}'(a{—sinC—y— 2 cos (—— - 2 Y]
X 2 2 2 2
- aa qa s a
F_(1,%,-%)]cos q)'ca{cos(j— - ) + i sin(-X - £9}]
Y 2 2 2 2
- . .qa . qa q.a .q.a
F,(1,%,-%) [cos q alcos L 2y 4 i osin - 2]
z 2 2
(B20)
i 0
0
0
S . %}a - q,a qya q,a
5,35 [sin g a {sin (--Y_ C eoep - 952
FxCl, 5,%) [sin qxa {sin ( 5 + > ) o+ i COS(,“ 5 + 2)}]
' -q,a q,a . -q.a q.a
-1 1 Y ___Z__ . . y z .
Fy(l, 5,%) [cos qxa{cos( 5+ T ) + i sin (- T+ —= )}
: . -q,2  q.a . .'—'q'a 2
F_(1,-%,%)[cos q)’(a.t{cos(, g + ——) + i sin( %’ + _2_)}]




GO

B 0
: : ..L'Sq;é . q a 3g.a q;a
F (0,3/2,%)]cos ¢ + 2y 4+ i sin( + =]
Y 2 2 2 2
3&1"2’1 t{'é 3q;a _.q‘z‘a
F (0 3/2 z)[cos C——-— + ——) + i 51nC + —]
2 2 2 2
0
0
0
i 0
........ déé _3q.}} ‘qza.
F (O 3/2,-2)[cos(, + =) - i sm( )]
2 2 2 2 :
..3q . a . q,2a 3q.a  q.a
FZCO,-S/Z,—lz)[cos( +—-—) - i 51n( Y 4+ % )]
‘ 2 2 2
0
0
0

111,

(B22)
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(C) Block Diagram for the Computational Work for the Relaxed State

The function of this appendix is to summarize the computational work
for a relaxed state, which has been discussed in the text. (sections
3.1(A), 3.1(B), 3.2(A), 3.2(B)). Except for the minimization program which

1> .
(q) which was

has been obtained from Harwell (p. 49), the program for Qﬁ
supplied by Dr. R.J. Brown and modified by the author for Tosi's single
exponential parameters, and the built-in subroutine for the error function
in the IBM 360/65 computer (p. 43), the author had to develop the rest of
the programs himself. The function of the minimization program is to find
a minimum of a function of several variables. The user must supply initial
approximations to the values of the variables at the minimum, and a sub-
routine to evaluate the function for any values of the variables. The
function of the Qfl(a) program is to calculate and invert Kellermann's
dynamical matrix. In the block diagram, Figure 8, the function of Block D
is to calculate the displacement coefficient, Ea(i)/Fa(ﬁ). The Fourier
transform processes of equation (2.80) and (2.71) are calculafed here.

The input for Block E is the displacement coefficients from Block D,

matrix elements from Block B, and zeroth order solution of M, A from
Block A. The function of Block D is to calculate & by the perturbative-
iteration procedure'as indicated by equations (2.82) - (2.83). It essen-
tially just multiplies the displacement coefficients by Fa(ﬁj. First, we
g0

set F = Fo .as in eqution (2.82) and then set F = Fo + C - as in

euation  (2.83), where -g(o) is given by equation (2.82). The iterative
procedure substitutes the updated value _§(1) into equation (2.83) for
_§(o) and proceeds until convergence is obtained, i.e. until two consecutive

estimates of & differ by less than 0.001 times the perfect lattice
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Figure 8

Block Diagram for the computational work for the Relaxed State
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spacing. AA of equation (2.63), Ap of equation (2.64) and %— EpT - &

are evaluated in Block F.



