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Details of the electronic and ionic structure of the absorption eneÌgy

and the ground and excited state reorientation energies of the FO(Na)

arfd FA(Li) centers have been stbdied theoretically. Ihe variational

method is used to estimate the energy levels and wave functions, and one-

parameter Gaussian-localized trial wave functions are used. The lattice is

treated as unpolarizable point ions plus the ion-size correction arising

fro¡n the approximate pseudopotential method developed by Bartram, Stoneham,

and Gash. The lattice energy is the surn of the Coulon'b interaction and the

Born-Mayer repulsion, with Tosits single exponential parameters as devised

for perfect KCl, NaCl, æd LiCl lattices. The lattice distortions and

the electronic wave function are calculated self-consistently, using the

urethod of lattice statics as modified for the case of an excess-electron

defect with non-harmonic lattice distortion. The Franck-Condon principle

is used for absorption and eurission. The FOr-absorption energy agrees with

the experiment but wi.th FRf-FRZ splittings about three ti-ues too large'

This discrepancy is probably largely due to ion-size correctì.on. Energies

of the refaxedexcited state (lfSl in yacancy and saddle-point configurations
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are also estimated. The RES of FACLi) is found stabilized in the saddle-

point configuration in agreernent with experiment, but the FO(Na)

stabilization is vlrong, although the error in the energy is less than 0.2

eV. Ground state reorientation energies agree with experiment for both

centers. The role of the impurity cation in lowering the activation energies

in both states is about equally divided between lattice enetgy and Coulomb

electron-lattice interaction. Tentative results suggest that the saddle-

point configurations for F- and FO - centers may be quite different.
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CI.{APTER

fN TRÕDUCTIÕN

T?re main ain of the present u¡ork was to theoretically estimate the
ll l

energy levels of FA[I) and FA(II) - centers"' in KCI crystal,

including both electronic transitions and the reorientation Process. The

trpe I or type II Fo - center in KCl is basically an F - center

adjacent to a Na+ or Li+ substitutional impurity ion respectively

CFig. 1). The following physical paraneters of these defects have been

extensively studied:

(1) Optical absorption energy;

(2) Optical emission energY;

(.31 Activation energies for reorientation and dissociation.

I{hen the center has absorbed the photon, the bound excess-electron will be

excited from its ground state to an excited state in a potential similar

to the square we1l. The energy of the absorbed photon is called the

absorption energy. The final state of the excess-electron in absorption,

is called the unrelaxed excited state. The lattice then relaxes' until the

excess-electron and the defect lattice are in rnechanica1 equilibriun. This

is called the relaxed excited state. The most striking single feature of

4
å
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Figure 1

The ordina'ry F - center, Fn (I) - center and

F fTTì - eenfcr in KC1.¡A\f¡./

(a) Ordinary F - center in KCI

(b) FA(I) - center in KCl : Na

(c) 
fo,tt) 

- center in KCl : Li



(o)

(b )

(c)
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these centers occurs in the FA(II) - center, where the relaxed excited

state is stabilized in the saddle-point configulation (Fig. 2h). In the

sâdd1e-point configuration, a negative ion lies half-way between tlo vacant

anion sites. Frorn the relaxed excited state, the emission process occurs

and the final state of the optical emission process is the unrelaxed ground

state. Again, the lattice relaxes to the equilibrium state, which is the

relaxed ground state. In the reorientation process (Fig. 3), the FA - center

moves from one anion site to the nearest one which is adjacent to the int-

purity by the step-diffusion process, passing through the saddle-point

configuration. In the dissociation process the FA - center moves from one

anion site to the nearest one which is not adjacent to the impurity.

1.1 Experirnental Situation

Experimentall-y, the three-fold degenerate F - center absorption

transition has been observed to be split into two lines in the FO - centers.

This is due to reduction of the F - centerrs symmetTy by the impurity

cation. One of the absorption lines is polarized along the Z (or X)

axis, if the impurity cation is at [010), and is called the FnZ level

(Fig. 4a), and the other is polarized along the y-axis (Fig. 4b), in the

direction of the neíþnUoring impurity cation, and is called the FRt 1eve1.

The position and shape of the ernission band of the FO(Na) - center is

similar to that of the F - center, but for the FA(Li) - center, it has a

larger Stokes shift, a narrower emission band and the absence of thermal

and field ionization of the excited state. lüt,r(1) concluded that

the emission processes occur in the vacancy configuration for the FO(Na)

center, and in the saddle point configuration for the FAGi) - center. The

experirnental values for
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F-igure 2

Vacancy and saddle - point configurations of the

lattice for F^ - centers in KCl. t denotes theA

cation, - denotes the anion, and * denotes the

impurity substitutional cation.

(a) vacancy configuration

(b) saddle - point configuration



r¡\.-/@
O

O
O oo

-ß\ód

O
O

E
O oo@

Ð\¡d



-

Figure 3

Model for reorientation of the FO - center in KCl.

t denotes the K+ ion, - denotes the Cl- ion, fr denotes

the.impurity cation and e- denotes the trapped electron

(a) initial state

(b) intermediate state (saddle point configuration)

(c) final state
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Figure 4

FO, and FO, unrelaxed excited states for FO - centers

in KCl. t denotes K+ ion, - denotes C1- ion, 7þ denotes

impurity ion, and ---- schenatically indicates excess

- electron.

(a) FO, unrelaxed excited state

(b) FO, unrelaxed excited state
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(A) FO, absorPtion energy;

(B) FRZ - FRr absorption splitting;

(C) even parity reorientation activation energ)';

(D) even parity relaxation energy in the saddle-point configuration;

(E) emission energy in the saddle-point configuration;

CF) odd parity reorientation activation energy

are sholn in Figure 5. All the experimental data are taken from ref. (i).

The energy 1evels relating to both vacancy configuration and saddle-point

configuration are shown. The question marks in the figure means that the

experimental values are not available.

The FRt and F AZ transition lueasurements haye been done by f,üty

(ref. (1), p. 1BB) by optical methods. FRt and F,.Z absorption spectra

can be observed by shining unpolarized light onto the crystal. The over-

lapping of the F¡l and FeZ spectra is decreased by using a dichroic

crystal rvith suitable choice of polarization of the incident light. The

reorientation process can be observed by the change in its FRt or F,.Z

polatlzation on heating. Analysis of the tenperature dependence of the

relative absorption constant (ref. (1), p . 200) yields the reorientation

enerrgy.
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7.2 Previous Theoretical Investigations

Three theoretical investigations of the absorption processes of both

the Fo(Na) and FA(Li) centers have previously been done Q) ' (3) ' (4) . Trvo

other investigations have studied Fo(Na) absorption only(5), (6). 
None

of the authors attenpt to verify the peculiar relaxed excited state of the

FA(Li) centers or the reorientation process for either center.

rn order to understand the origin of the splitting, one has to go

beyond the point ion approxiination. The point ion lattice appïoximation

has been used in an F - center absorption calculation by Gourary and

Rdtiun(7). Their result is in rnoderate agreement with experiment. In the
point ion lattice approximation, the ions are treated as point charges of
appropriate sign. In other words, we neglect the size oftire ion core; that
is, we neglect the exchange interaction between the excess- electron and the

core electron and the interaction of the excess F - electron with the

point ion is taken to be purely electrostatic. Thus, the one electron

Hamiltonian of the F - electron is the surm of the kinetic energy of the



B.

Figure 5

Experimental energies (ev) for Fo(Li) and Fo(Na) - centeïs

in KCl.

(A) FRt - absorption ener[Jy

(B) Fn" - Fn., absorption splittingA¿ 1\.L

(C) even parity reorientation activation energy

(D) even parity relaxation energy in the saddle-point

configuration

(E) emission energy in the saddle point configuration

(F) odd parity reorientation activation energy

The unlabelled energies 1.12 for FO(Na)_center

is the.ernission energy in the vacancy configuration.
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F - electron and the electrostatic interaction of the

point ion lattice.

F - electron and

Hoivever, the electrostatic and exchange interactions between the

excess-electron and the core electrons i, ioportant for the Fa - center

study. I(ojima et al(%r"¿ a linear combination of tlìe atomic orbitals of

the six nearest neighbors to the FO - center as ground and excited state

waye functions. They thus íncluded the ion-size effect of the nearest

neighbours and neglected the contribution from the other ions. They

concluded that the energy differences between the unrelaxed F¡,t - levels

and unrelaxed F - levels are functions of the difference in ionization
ra\

energy of the host and impurity cation. smitÁ'Jhas calculated the shift

in the absorption energy between F and FO - centers. He treated the

difference of pseudopotentials of the nearest neighbour impurity cation

and host cation as the perturbation on the point-ion approximation. The

pseudopotential is determined from the requirement of the oïthogonality of

the FA - center waye function to the core orbitals. Weber and ¡ick(S)rr"d

the approxirnate pseudopotentials for the ion-size correction, as evaluated
fclby Bartram et at"/(hereafter'referred to as BSG), and which rvil1 be

discussed further in Chapter 2. In order to get agreement rtrith experiment,

they discarded the reduction factor 0.53 t'¡hich is suggested by BSG. Lattice

distortion and ionic polarization are not included in their calculation.
(4)

Alig has deyeloped an approximate form for ion size correction, sinilar

to BSG, but without the reduction factor 0.53. He also included the lattice

distortion and ionic polarization of the six nearest neighbours to the
('7\

vacancy by the method of Gourary-Adrian"/ (GA). GA - type wave functions

have been used for the later three investigations but only lìleber arrd li.n(4)

rnake thern self-consistent with the lattice potential.
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I.3 Brief Description of our llodel and l{ethod

In all previous inrrestigations, and in the present-work, the lattice

is considered as static, i.e. no dynamical effects are included. The

adiabatic approxirnarroÍn) is used to decouple the electronic state from

that of the lattice. In the adiabatic approxirnation, the electron is

assurned to move very fast in the potential provided by the lattice, and

therefore follorvs the lattice motion adiabaticalTy. 0n the other hand, the

lattice cannot respond to the electronrs instantaneous position, only to

its average position. The Franck-Condon principle is also applied, which

states that the transition of the electron from one state to another occurs

while the lattice remains fixed. In fact. in some states the excess

electron may interact rvith the optical phonon modes to behave like a

polaron and such electron lattice interaction is non-adiab"tic(10) ' (11).

Two rnain problerns involved in point-defect calculations are:

(1) to determine the appropriate interionic potential;

(2) for .a given potential, to calculate the distortion field about

the defect.

For the Fn - center, one further problem has to be solved: the eXCêss-
A

electron waye function.
-t

In the present work, the Born-Mayer potential with Tosirs single

exponential paramea"t!t')was used. That is, we used perfect lattice

parameters for the defect lattice. This approximation seems to have been

justified in Tosits calculutlolldof the vacancy migration energy in KC1

It remains to be seen hol well justified it is in other defects.

The nethod we used in calculating the excessielectron hlave function

was variational. The trial wave functions which we used were Gaussian-

localized, lol-order Legendre polynornials. TTre ion-size effect has õeen
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included by using BSG approximate pseudopotential with the reduction factor

o, = 0.55. In this approximation, the pseudopotential introduces an extra term

into the Hamiltonian. The justification for q has been discussed by Stoneh u G2) 
.

The displacements of the ions around the defect from their perfect lattice

sites have been calculated and the resulting contribution to the defect systemrs

energy has been included. The method rvhich we used for this is called the

lattice statics rethod(l4) ' 
(15) 

' 
(16), in which the whole lattice is treated

as discrete and the results can be made exact within the harmonic approximation.

The method has been extended by Vrii(17) to include non-harmonic lattice

distortion near the defect. The criterion that we used for identifying the

ions with non-harrnonic displacements is that convergency of the solution of

E- failed if they were included in region II. (see equation (2.83) and

appendix (c)). The further merit of this nìethod is that the distortion field

of the lattice is nade self-consistent within the excess-electron wave

function. There i, no doubt that the wave function of the excess-electron

will alter as the lattice distorts

In short, our estirnates of electronic defect energies are based on a

variational procedure in which parameters in a trial electronic wave function

and the ionic displacements are determined self-consistently to minimize
J

the total energy of the system.

L.4 Brief Summary of our Results

Corqparison of our calculated results lvith erçeriments show: the

following:

(1)

/'11
tL)

(3)

the even-parity reorientation energies of both FA(Li) and

fO(Na) centels are in good agreement rvith experirnent;

the FO, absorption eneïgy for both FA(Li) and FOOa) centers,

agrees r.rith the experinent;

the relaxed excited state of FAILÌ) is stabilized in the sadCle

point configuration;
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t4)

Our results

(1)

the splitting of FO,

large, compared with

fail to describe:

the emission process

figuration;

- F^^ absorption

avnarì manf

(2) the relaxed excited state of

configuration.

is about three times too

FO(Na) stabilized in the vacancy

of the FA(Li) in the saddle-point con-

Throughout the project, we refused to rnake any enpirical correction

to improve our agreement rvith the experiment, because this would hide the

weakness of the model and method, which is one of our objectives to

ASSESS.

1.5. .Relevance of this Inyestigation

There are three areas of releyance for this investigation:

(1) qualitatiye features

In the present investigation, the systemts energy can be con-

veniently expressed in five parts: the electronrs kinetic energy,

the point ion potential, the ion-size correction, the lattice defect

energy, and the harmonic lattice distortion energy. Thus, the role
-t

which the excess-electron plays in the step-diffusion process in both

odd-paritY and even-parity states, can be understood qualitatively.

Also by comparison of the contribution from the different terms to the

actiyation energy of the FO - center and the ordinary F - center,

the role of the impurity ion in the activation Drocess can be

qualitatively assessed.

C2) theo¡et1cq! ¡qtelellg
The results of the present calculatlon wÌl1 gìve some indication
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of horv well our model and approximations can describe the properties

of defects. Discrepancies rvith experiment will give sone indication

of possible nodifications and inprovements which should be made to

the nodel and methods.

(3) Applications

The Fo - center occurs in photochromic naterial{18)"rrd there-

fore, has some relevance in design of photochromic devices. Photo-

chrornic materials are those which change color in a reversible way

under illumination. The reversible photochromic process for FA -

center is

hv
5 I

F. + F. .- FA + vacancyAAhlt

where hv is the energy needed to ionize the FA - center electron

to the conduction ba¡rd. The electron can then be trapped by another

FO - center to form an ,Ot - center, the ,Ot - center consisting of

two electrons trapped in the anion vacancy. The position and sharp-
I

ness of the Fn - center lines are very different frorn those of the
n

FO - center. . Sirnilarly, one of the electrons of the ,Ot - center

can be ionized into the conduction band and be trapped by a vacancy

to forn anothe'r FO - centers, giving the original configuration.

Some of the factors which determine whether a photochromic device

can be based on a given electronic defect, and which could be assessed

using the present model and rnethods are:

(1) the defect energy levels relatiye to the conduction band;

C2) the relative rnagnitudes of the absorption energy for related

but different defects (e.g. Fn dnd Fnt - center)AA

C3) the presence or ahsence of conpetìng absorption and emissÌon
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process es.

1.6. Brief 0utline of Remainder of Thesis

The basic elenents of our model and methods, narnely, Tosits single-

exponential fo:m of Born-Mayer repulsion, Franck-Condon approximation, the BSG ion

siz.e'conrection, and the method of lattice statics will be described and discussed

in chapter 2. The details of the calculation and the results will be re-

ported and analysed in chapter 3. This will include the energy levels and

distortions for both relaxed and unrelaxed states in each of the two

configurations. The role of the impurity ion in the activation process is

also discussed. The critical assessment is given and suggestions are made

in chapter 4.



CHAPTER 2

iIÅËTHÖD5 AND ÅdODET

The purpose of this chapter is to provide the theoretical background

for the point defect calculation. In the present calculation, the lattice

is treated as discrete point charges bound by Coulonb interaction and

stabilized by a repulsive force. Tosirs single eçonential forrn of Born-

ldayer repulsion has been used. Tt¡-e ion-size effect of the lattice is taken

care ofby the BSG approximation with the enpirical factor o, = 0.53,

which is based on a pseudopotential nethod. For the electronic part of this

problem, a one electron Hamiltonian is used. The variational nethod is

used for calculating the electronic wave function and energy levels. In

the yariational method, the ion-size correction is just an extra terrn in

the electronic Haniltonian. For the lattice part of this problen, the

lattice distortion is calculated rigorously by the lattice static method.

Furthermore, the excess-electron wave function is not only made self-consistent

with the given potential but also with the lattice distortion. However,

ionic polarization and electron-phonon interaction are not included. The

Franck-Condon approxi-mation is used for calculating absotption and emission

energ)¡. In the follorting sections, we are going to di.scuss
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(t) the lattice energy (.2) the Franck-Condon approxirnation (3) the ion

size correction and C4) the rnethod of lattice statics.

2.I. The Lattice Energy

In the point ion rnodel, the ionic interaction can be written as the

sr¡n of Coulornb (c) and repulsive (R) parts,

w=¡a¡(c) *w(R) c2.t)

rori[12) has developed a Born-Mayer type single exponential (SE)

fo::n for w(R) '

w[R) = B exp i- Ë) Q.z)

WCR) applies only to nearest neighbour interactions. The paraneters B

and p are deternined fro¡r the following equations of state which included

the ternperature correction.

dW Tß
æ=:P*È c2.3)

'#={*þF+,,.*,åå,rl (2.4)

where K is the isotherrnal compressibility and ß is the volume coefficient

of the:r¡nal expansion. The deter¡nined value of ß and p have been given

in ref. C12) table VII 2nd coh¡nn. The SE form is known to give reasonable

results for vacancy rnigration(l3J

2.2. Franck-Condon Principle

The following discussion of the Franck-Condon principle will be

restricted to the static lattice model which we haye used in the present
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calculation.

There are tr{o electronic bound states involved for each electronic

transiti-on considered in this work. For each of the electronic states,

there is a different set of equilibrium lattice distortion parameters

G,g), because of the different charge distributions of the excess-electron

interacting ivith the lattice. In order to describe the Franck-Condon

principle for the transition of the electron from one state to the other,

we are going to introduce the so-called "configuration coordinatet' diagram.

The configuration coordinate can be understood by reference to figure 6,

where the defect systernrs energies are plotted as a function of a single

coordinate, different values of which coïrespond to different lattice

configurations. The lower curve of Fig. 6 is the energy curve corresponding

to the electronic state a, or ground state. The upper curve is the

energy curye for the electronic state b, or first excited state. The

optical absorption and emission processes for the color center can be

visualized from th-is configuration diagram, as follows. I{hen FO - center

is in the ground state A, it will be excited to the first excited state

B after absorbing. a photon. Thereafter, the lattices has to readjust to

the new charge density of the electron, and so it relaxes to C by giving

up energy æ phorrorr. The emission process occurs from state C. Again,

the system relaxes fron state D to state A by giving up the corresponding

energy as phonons.

The configuration coordinates of the state A and B are the same,

namely Rg in Fig. 6. Similar1y, state C and state D have the saine

configuration coordinate R"*.- This is the essence of the Franck-Condon

principle, rvhich assumes that in the most probable transiti.ons, the ionic

coordinates do not change, or'(vertical transitionst'occur in the configur-
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Figure 6

Configuration coordinate diagram for

A + B is the absorption process and C

emission process, in Franck - Condon

E is the total defect systemrs energy

I'configuration coordinate".

an Fn
Ã

-+D

- center.

is the

approximation.

and R is the
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ation diagram. In short, in terms of the confìguration coordinates, the

Franck-Condon principle describes the absorption energy and ernission energy

as the magnitude of A -> B and C -+ D, as in Fig. 6, while the Stokes

sh-ift is described as the diffeTence of the äragnitudes A + B and C + D.

The limits of validity of the Franck-Condon principle are not obvious.

It depends on details of the phonon distribution and on the electron

phonon interaction both of rvhich are ignored in our treatt"r,t(10)'C11).

2 .3. Ion-size Comection

The following discussion on the ion-size correction is based on ref.

(21).

Consider the Schrödinger equation

Hü = Etl.' c2.s)

where H = one electron Harniltonian = T + V

T = kinetic energy operator

Y = the potential enercgy due to all the ions, and the eigenfunction

tl., of the excess-electron must be orthogonal to the core states lc> of

the ions. Now, lêt us define I O t by

l,l ) = | O , - r l. t . " I Q >î

= (1- X l" t. ")l O >
L

c2.6)

where I O t is a smooth wave function which is not orthogonal to the core

state. write

P=Ilc><cl
c

l¿.r)
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which is known as the projection oPerator,

Then, equation (2,6) becomes

proj ecting onto the core states.

lut=(l -p)lor Q.8)

In the pseudopotential method, instead of solving the eigenvalue

equation [2.5) for þ, one considers another eigenvalue problem

(u + Vo) (2.e)

which is solyed for Ô, called the pseudo-waye function. Let us write

V_=po (2.10)Kp

where O- is an arbitrary operator. There are two different fo::ns of VR
P

which are of interest in color center calculations, namely:

(t) cotren and Hein519)pr"rrdopotential (uotn)
fonl ¡

[2) Phillips and ¡Cteinmalzo'p.",rdopotential (v-PK)-p
For y*CH operating with Cr - p) from the left on equation (2.9) gives:

P

C1 - P) (H + Vn) O = (1 -P i i O (2.1L)

Making use of equation (2.10), I = P and IH,PI = 0, equation Cz.Il)

becomes;

H(l - P) Q = E Cl - Ð 0 (2. L2)

denote the eigen-

v-!v

Therefore Ci

yalue E = E.

(T+.V+

- P)0 is a eigenfu¡rction

Then, equation L2.9) can

Potô=Eö

of H and

be written

we

AS

(r+Yn)Q=E0 (2.r3)
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hthere

V-=(V+p0-)vv
(2. t4)

(2. t6)

c2.t7)

is called the pseudopotential.

Since O* is arbitrary, thusfar, we fix O- by requiring smootirnesspP
of the waye function. This corresponding to minimizing the kinetic energy

or maxi:lizing y, with respect to the variations of 0, i.e.

ôV=0 (2. 1s)

where

v=
<ö¡v*v*lô>

<010>
We eyaluate equation (2.15) by the Lagrangia¡nultiplier method

ô [< 0 | v+v*l 0> - À< 0 | 0t) =Q

where À is the Lagrangian multiplier. Thus

<6 0 lv* v*l Or + < þ ¡ v*vol ô 0>

-.^ < 6 O I O t - L < O | ô ".Ôt = o

.l

,l'lConsider <01 and l0t separately. Then

<ö O [v*v*l 0> - À<ô O I 0> =o

Since this must be true for arbitrary < ô 0 l,

[v+v*)lOt-rlOt=o

whence;
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|=
<olv+v*l 0ì -v (2. 18)

<olot
Tbus equation (2.1,7) becomes

< 6 O I v * v* I O > - V. o ô | 0 t = o (2.1e)

Ifwesubstitue lO')=lOt*r o^1"> for lO> in

""equation C2.S), where o. are arbitrary constants, then we have:

(i - p) I O r = ir - p)(l O' t - t" "" | . t)

= | O' , - x dc | " > - P lô' > + x n o" I c )

¡¡f
= I O r-xo.| ">-PI O >+xe"I c>

cc
. I t-

=10 >-Pl0 >

= Ct - p) | O' > (2.20)

Thus, the result in equation (2.8) will not change if we replace Q by
t.

O'. Thus, take lO Ot=åo" I.t andsubstituteintoequation (2.i9)

!o". " I v+ YR I O> - vr o". " I Ot = o

ec

Io" I.. I v+v* | O>-V. " I 0>I = o

c

Then since the o"'t are arbitrary,

< c I v * vR I o r - V. " I 0 > = o c2.2t)

u*lOt=Popl0t

=f,, l"'r."'lo.^lo, e.zz)cp

But



And

<c. I v I Q>*<c I on I Or-v." I 0>=o

th-en

<clonlOt=('clCV-v)l0t (2.24)

Then equatiorl (2.22) becomes

Yn | ô>=x I s)(c I (V-v) I Ot
c

(c I V* | *t=t", <c | .' r."' I on I Ot

=(clool0t

Substituting equation (2.23) into equation (2.2I), we get

=p(V-y)10>

Therefore, the optimun pseudopotential in this case is

u;n =v+P(v-Y)

H(l -p) lOt=e C1-p) lOt

lH+PtE-H)llOt=ElOt

Identifying equation (2.27) rvith equation L2.9), we get

(2.23)

(2.2s)

c2.26)

c2.27)

For the Philips and Kleirunean pseudopotentiat U;*, one substitutes

equation C2.8) into equation (2.5). Then:

uå*=PtE-H) Q.28)
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Thus

u;*=v+PtE-H) c2.2e)

There is also some arbitrariness of the wave fr¡rction 0 for the Philips
('>t)

and Kleinman pseudopotential. However, Bartram and Gasli-^'believe that if

the pseudo-wave function Q is appropriate fot Cohen and Heine pseudo-

potential, ttren, it will be appropriate for Philips and Kleiru'nan pseudo-

potential too.

ïtre most important different feature between {* and V:n is thatpp
/K is He::nitian but yCH is not. $Ie must notice that the variation

P

principle cann:t in general be used to solve the eigenvalue probls¡n for

no;r- Fþ::rri tian Hamil tonian.
IRì

BSGL'r ernployed the Cohen a¡d Heine pseudopotential (equation C2.26))

in calculating the F - center absorption energy. They rewrote equation

(2.26) in a form such that they could corqpare their results with the point-

ion lattice calculation, and introduced the ion-size correction terrn for

color centers, as follows:

NH
V;" = Vpr * (v - Ypr) + p (V - V) (2. 30)

where V_, is the potential energy operator when all the lattice ions arepr

approximated as point charges. Neglecting the overlap of ion cores on

diff,erent sites, we have:

P=X p (2,3L)
Y'(-Y

where y labels the ion at site y. Similarly, V and Vpr can be

expressed as

V=IVYY Y
c2.32)
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unr=T

The summation

V-
DI^Y

T

v
is over all the ion sites.

(2.s3)

The equation (2.30) becomes:

VCH=VpI * I I(t -.Y

is the potential energy

all the other ions in the

of an excoss-electron at

crystal, which can be w

V'pInv)% -

V- d'r
PtY

1/ r- Þ,PT ) 'Y
-^f

I

+PYY

where

y due

r.¡

lattice

ritten as

Iv-

site

U^,= X Y^., : E V-,Y yr ly Y' y, /\ Pty'

Since the core orbitals are assumed

Y.

At this stage, one has to note that çf * VlH¡ is not Hemitian and
P'

therefore the yariational principle cannot be assuned to give an uppeï

bowrd of the eigenvalues. BSG(8) avoid this by assuming that the variation

of the waye function inside the ion core can be neglected, since the pseudo-

waye function given by V:H must be the tfsmoothest". Thus, the solution.P
of equation Q.9) is

U
v

to

f
Itr=.l

urnerica

c2. 3s)

to be highly localized within ion core

c2.36)

c2. s7)

E < < o I r + vnr I o ' * x | ö (Ìr) l' {o, + (V - ur)

o, = I cr - PvJ cv, - unrr) .' - 
| *

P, dt

1 yalues of \ 
and Uï have been computed

tr]

where

and

(2.38)

fot a nuuber ofThe n
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ions by BSG (see ref. 8, table I). Then, the form of the ion-size correction

is

r¡ - r fn^. + B^. (V - U^.)l ô (ì - ì,),"IS - 3 t^y "y "\" 
r\/

f

rvhich can be used in a variational calculation.

(2.3e)

(2.40)

BSG have used this approxirnation in calculating F - center absorption

energies. Their calculated results indìcated that in order to get agreement

with experiment, one has to use (o Ar) instead of Ay, rvith o = 0.55.

After introducing the enpirical factor c = 0.53, they found the calculated

F - center absorption energies of 16 of the 17 a1ka1i halides rvith rocksalt

structure to be in agreernent r^Iith the experimental values. The theoretical
(->'

origin of this factor o has been pursued by Curù.'l1 He

found thåt the main source of error cane fron the assr.rmption of negligible

variation of the pseudo-wave function over the ion cores. Furthermore,
(zù

Gash-* have developed an exact pseudopotential calculation to

take care of the ion-size effect. He used the Philips and Kleinrnan

pseudopotential instead of the Cohen and Heine form because VIK is
P

Hermitian. Consider the pseudopotential equation

IH*p(E-H),1 0=80

The variational method can be rigorously applied here to give

or

- - < ô | H + pfå_rt)1_e .b< ' -

<olo'

then

EI<ô | O'-.0 | p I O'l ..0 | H I O>-<O I pu I Q>
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<olulo>-<ôlpHlo,
(<olö'-<olplo')

Using normalized rvave functions, i.e. < O I O t = 1, tve have

<olHlo>-<olpHlo>

E<

E< (l-<olplo')
< o I u I o > - I r. < ôlc, > < c, I u | 0 >

c1-rr
^tĴv

<olHlo>

¿^lo tv 1/
I

r."ylOr)

l..rlOtl'-TIEYC YC (2.4r)
[1 -rrl

Yc

is given by:

tr +ã +
-¡ ònE

lo'l2l<c
Y

r,¡here E
Yc

tr-
Yc

l¡
I

where E = free-ion Hartree-Fock eigenvalues for state | . >

E"F = Coulornb and exchange interaction

orbital and the excess-electron

rhbetween free-core

Coulomb potential at site y due to the rest of the ions and

the anion vacancy

The upper bound of the eigenvalue can be located by a numerical method.

We are not going to pursue this approach any further here, since we have

used the BSG approximation with the enpirical factor o = 0.53 in the

present work.
(? 1\

There is no doubt; that the ruork of Gash--'is well beyond

that of BSG. The reason tqe used BSG in the present work is that the

\/
t-
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information of

work rvas cornpleted.

Gashrs work was

In fact his h¡ork is

not available before the pïesent

not yet published.

2.4. Method of Lattice Statics

Once rve introduce a point defect into a perfect lattice, the nearer

ions rvill be displaced from their perfect lattice sites. The metlrod we used

to calculate this lattice distortion is the method of lattice statics,

which was first introduced by Kanz.ti(14). In this method, the ions in the

lattice are treated as discrete. Ttre actual displacements of the ions

from the perfect lattice sites can be calculated from norrnal coordinates

wh-ich are essentially the Fourier inverses of the direct space displacements.

tA) General Formulae

In the follorving illustration of the method of lattice statics, we follol
117 )Vailrs notation-' closely. In this method, those ions which have harmonic

displacements in the resultant distorted defect latti.ce configuration are

treated separately from those which haye non-harnonic displacements or

which r,¡ere not present in the perfect lattice. We distinguish these two

classes of ions by denoting those ions which were present in the host lattice

and whose displaiements from perfect lattice sites are within the validity

of the harmonic approxi,nation as Region II. The rest rvill be denoted as

Region I, wh-ich consists of the defect and possibly some of its surrounding

ions including impurity ions. The components of the harmonic displacernents

of the Region II ions are taken to be elements of the colurnn matrix E- and

the generalized coordinates of ions in the Region I are written as the colunn

matrix I. The nrunber of elements of l-t will be sma11 for a well-Localízed

defect.
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In the frarnework of the harmonic approximation, we imagine a perfect

lattice in which Region II has been distorted into the configuration E

which will be in equilibrium with the defect. The systemts energy can

then be expanded by a Taylor e)q)ansion up to second order in g. Thus

E (g) =uo*I ET'-A'g (2.42)

wheré A is the force constant matrix of the perfect lattice, -ET is the

transpose of 9 and Uo is the energy of the perfect, undistorted lattice.

Now, 1et us introduce an excess-electron defect. The electronic state

is described by a trial tr¡ave function ö Ci , l,), where ¿ is the

variational pararneters of the wave function. Then, the extra terms assoc-

iated with the excess-electron defect have to be added to the total energy.

ïhus:

ECE, T, À) =

where

"A"t+E",CtrU,À)u
(2.43)

(2.44)

uo *å -gr

and

v, CE, l)
L_

T (,rl

is the energy to create the lattice defect fron the perfect

lattice in distortion field I ;

is the expectation yalue of the excess-electronts kinetic
.>

energy in state 0 6, l); and

is the electron-lattice interaction energy.

will minimize equation f2.43) wittr ë. = o to obtain the zeroth

-{

v(8,t,À)

.F]-rstry, we

order 1t^,--u



30.

The partial derivatives h
each of the cornponents "f l.
terms in t, A lr and 

^ 
À

Ajr:u-!o

aÀ:À-¿"

and

(2.4sa)

+U=ULrc (2.4sb)

denotes partial. derivatives with respect to

Ttren, expanding E¡(3., g,-¿) to quadratic

by the Taylor oçansion, where

(2.46a)

(2.46b)

9

'uol -o
â À lE = o

'uol =Q
a u lE = o

u{

-{
o

I
Il'
IlI = I_o

À=À-€
5=o

auo 
I. ti lu = u^ ' o

n

l'l| .Â^+r.t-uo | .aÀ
ll=:b -- z âg,axlr=lb :3
t^=.\ -1tr=4
å= o 5.= o

I

âEn 
IE ls=
tr=

t=
âEo

lr + 

-
ts âÀ

= Eo[O, ]1o, 4) *

AÀ

^2^ t
tdtr^lt-ul+ 
- 

| o 

- 

lll = 1l' 4 > a lF r^
Z- ^ -Z l- 

-d 9 lr _ r.A 
= An

;=;

n2n I' otnl
Â l: ' + lp = U^ " A Un

^-.sIo u t^¿ ,^ = ^^
;=;

1-1t\ - tr^

È-a

=

t'uo

. E*t

*|al.
z- à^2
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â2e^ |

Âu" t 
IL ôp¡ ÀlI=:5
l¿=\Ir
lg=o
c2.47)

Ilu=ul-rc
11. = À
lJ{

lE= o

ô-Ear

n2-o"D
"ÀÀ+E' " aF*

We now denote the coefficients in this expansion as follows:

âF
- ""D
F=-:-o Ðg

n2-ot^
t)ts=-å1 )

-1¡- oÇ

n2-

^ 
o"D

Lt= rV

c2.48)

(2.4e)

c2. so)

(2.sr)

1! 
- 

llu-uLrc
1,=tr--o
E=o

I

lt = t
lr = r-

lr=î

n2_ i

, o"D 
I¡t=-l

a >^ a IÔ \ d ^ lU = U^n
I
lr ^IA = Al- -{
lã = o
t-

n2^ |oEtr Iv = 
--" 

I

- âta.Ell=}{
It^ 4l^ = ^-l- -3It = ot-

Q.s2)



32.

)
^-FoE^

u
tYt=-

:l t

d]l

¡2not^
t)

l\=-
âLâu

'll 
- 

1l

1,=1,-{È-^

(2. s3)

(2.s4)
1l - 1l

--1J

F-n

Substituting equations (2.48) to (2.54) into equation (2.47), we get

EoG, x, ¿) = Eo(o, lå, 4) + F " E. rE " -81' g

11++Ail.M, "^F+*4tr"Â,.41
L--¡-L

+ E.Â. 
^¿* 

E oM" ¡U* AU"I" 
^¿ 

(2.55)

Conbining this with equation (2.43), we obtain the total systemts energy.

ltle now obtain the first order small quantities by ninirnizing the systemrs

energy with respect to E, Â u A 1; that is:

âE(9,u,À)
- 0; c2.s6)

oç

A E (E, tr, 1)
-0; (2. s7)

aC r)

aE(Ë,u,À)
= Q.

â (^.1)

üle get the conditìons;

c2. s8)
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1\

=
+F +

--o

A),+lvlM- -1

+N.AU

î-l .6+Â.Á1.+ 'U=0Itdc^

"r-o

=Q

(2. se)

(2.60)

(2 .6r)

(2.62)

(2.63)

(2 .64)

(2.6s)

(2.66)

(2 .67)

" AJ-t+ N.
=

=1

.F

Decoupling equations (2.59) to (2.61), we have

1

A -M-
-t 

_l

'1.
o llrjf t +:

' rt)-t ' (y;t ' f T

^-l=

oKl
v1)_I

Rìva )Ç=(F,+Â.ßr+

-1-N-"
=

-1ß, = (N -'

,,7t\
--

E.

In general, if 3_ is known, the non-harmonic displacements Â g can

be solved frorn equation (2.64) and the change A À of the trial wave

function païameters''due to the distortion is given in equation (2.63).

Jtre har¡nonic displacements E can be solved frorn equation (2.62), but it

is difficult in ionic crystals due to the long-range Coulonrb forces that

make the direct inversion of 4 particularly difficult. The solution of

E- will be discussed in the next session.

(B) Solution for 6

The equation of equilibrium has been derived fequation f2.62\ in

section (A). It can be solved by expanding the displacernentb 3- in terms
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of normal coordinates; that is, the lattice equi.libriurn equations are

solved in reciprocal space. Then the results are tTansformed back to

configuration space by sumrning over the alloled wave vectors rvithin the

first Brillouin zone. lve rervrite equation (2.62) as follols:

(2.68)

(2.6e)

(2.70)

-lF=-A-'F>-

r,¡here

l¿

and write

L
llt

q-r9',k

where

F=F +
-o

the component form:

(L' ì r&lf t=F"l, I
t k' ) - [ k J

8) in

=c[ I

equation (2.6

rLLtrIt
A.t Icro, lrt,)

ã f.trl-ol 
IIkJ

atom in the
fol

E" 
IoJ

t be restricted in range

owed i vectors aïe

of allowed value of

defect. Substituting

r 0t rli-^Iu I f 'rIt* )=T^. 1 | (2.72)
u,t,ltK)

is the vector in reciprocal sPace,

eriodic boundary condition such that a

irst Brillouin zone. Therefore, the n

rs is equal to the nurnber of unit ce1l

(2.7I) into [2.70), we have

(n Q.rI" íà, 1 -Ì
I R^^,iL,"' fi a^lq'le

0,r[rkr lr, l+¡ "l 
t

'. ^ k' J q' -. \ k' J

where q

by the p

in the f
-)q vecto

equation

1
IT
.tì

is the d Cartesian component
+h

of displacement of the k"'

lth unit cell. Then, introduce the Fourier transform of

L2.77)

.>
q mus

11 all

.umber

s pel

->t ->
.t

^

r.or , ^ ftl -it.ìi;]so[.[=#Iq,l [ "*tkJ " t *tkJ
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-icä,-ðr.i { : ]

(2.7 3)

(2.74)

(2.7s)

(2 .76)

fa 11\

ob tain :

.-' + ,9"-
I elQ " x (kJ, 

we
!" f ?: ¡ .lj-'l t" | ->l L I' txt t-xt I

lll o',l ^i u Jl"

Operating on the left of equation (2.72) wìth

rLL't ,ã,' r -it'I n^^,f I q^t [ukrJ *tk')
o'¡r{' \ K

1

ñ

r.0r .+ ->

I t lq'x
F I lec)¿ l, ItKl

.* 
I,, o,l,ô, 

Ao.,, 
[:"., I -. [ :, I "'u' 

' ; Ilo' I

*fllcxLuJr9,t+r +t f-q).*loj =rF t:.Ì ";'0tKlx/ll

FxL e
ñt)

.;+ -'.\ *f gl
1n -rLq-q'J xltl
ñ )e \"'/ =ô-* -+.

n 9'9'

ïL
001

f.*likJ

Notv Aoc¿t depends only on 9" - 9"r = [rr, and so does:

(L'
Io'

Thus, equation C2.73) can be written as

-i (a''

The sum

This is the orthonorrnality of basis functions
+ *(L\-iq'xl I. IKJ

-T-L
!,

rLL'ttt
I k k' J

ì *f [" ]J=*[rrJ
* [L ] -'*[oJ-x

.->r_q

rLtö*[. t. q IKJ

Then equation l¿. /5) Decomes

(L" )
^l'l^ss,ltt,j

I

=-- g
z

-+ .'+ *(L" Ì
^ f q.y i,e"xtoo,,J
aott'j e

\.
L

-à
ctktq

I
Ltl
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-Lr
o

rÍr

"{:i"'a'iL'.i
.+ *(r q'x 

I

as the dynarnic rnatrix

ion rocksalt lattice.

Thus equation (2.78)

eEc.

and has been calculated
-+ro \t.lc I listheGIKJ

has the matrix form:

c2.78)

(2.7e)

(2.80)

(2.81)

(2.81) by

of the atoms

(2.82)

(2. B3)

We now define
911 'r

kk')
Dco,'

and

wh-ere D ( q'
rudr I

Ikk'
by Kellerm ann[-22)

Fourier transform

-> -+I (q) ' Q[r)

lqIk
ì_tl-L

1, 1 |¡\ ) grr

Aso, 
[l"o,J "

^ (ãl , - (uì "ra'Ìt:Ìtofo)='rtoloj

known

point
'fl.)
tt
I k j'

ì
I

)

for

of

=G

:^I5

the

F0

cil

Now, we can solve g Ctl for a given A from equation

using equation (2.79) and equation (2.80). The displacements

in configuration space are then given by equation (2.7L).

In practiÊe, the solution of equation (2.68) is done by the perturbative-

iteration procedure, whiclt is to staït lvith F = å in equation (2.69),

as follows:

,(o) = _ A-1 cF
-o

This can be continued to self-consistency.

In the actual nr¡nerical calculation, one rakes use of tire s¡2nnetry
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properties of rhe defect crystal lattice to si-uBlif,¡ tire calculation. Instead

of doing th-e suninati.on I in equation t2.80), one calculateS I, where nt

[-no
is a group of ions all of which have the sarne value of a given F0Ç). The

range of m will be smal1 if the defect i.s well localized.

(B) Energy Formulae

lil The Relaxed S.tate

lh.e relaxed state energy E(Ë, U, À) of equation (2'43) can

be simplified by using the minimizing condition equations (2.59) to (2.6I).

From equation (2.59)

. 4' g = - % - tr ' E - ^' À1- E' Â u

Frorn equation (2.60)

M.'^u=-]rJ 'AÀ-I{'E
-l

From equation (Z.Ol)

^.. 
A À = - 

^ 
c g - N ' A P

(2.84)

(2. Bs)

(2.86)

Substituting equarions (2.84) to (2.86) into equation (2.43) using equation (255),

we get simplY:

(2.87)

If we set the energy of the perfect undistorted latticeUo = 0, then

equation L2.87) becomes

rT
¡CE, u, -D = EDCo, !.o, \) * ï\"'g C2.BB)

which is the energy of the relaxed state.



(ii) Absorption Egïgy

The Franck-Condon principle is used in calculating the absorptìon

energy. Accordingly , the absorption energl E^, h-r ã . X . ?. 
t. 

) isr ----- -----Þ¿ "alrs.Jg' :g' :g' jle>.

E lrt ï 1 1 
tì 

- ËL-L^ \F-, 9-t tt^t lleX J.1ur -B -ts -ts

state, made self-consistent r^¡ith (¡o, Er).

where the subscript g denotes the ground state and the su.bscript ex

denotes the first excited state. Eo(¡o, !-, 1r) is the relaxed ground
Ë -5 -'É -b

state energy and E"*.@g, _ãg, 4* ) ìs the unrelaxed first excited state

energ"y with the position of the ions Go, Ëo) deterrnined by the ground

state wave function and ).^..' is the rul'rr" irr,.tion parameters of the excited--€x

The unrelaxed excited state energy in the presence of the ground state

distortions can be written, similar to equation (2.43), as

t"*'Gu, xs, 4;)= i g;' ' A ' €, * to Gr, !r, l",. I

with U^ = 0. From equatìon (2.62), A o g^ is given aso:g

a.
-ts

=-fF +C E)--o- :g 'g'
è

where Fo- and C_ are the matrices rvhich have been defined in equation
-g+O.èõ

(2.48) and (2,64, determined by the ground state wave function. Now,

ex Qg, Ëe, 4" ) - urGr, gs, ¿s) (2.89)

(2.e0)

(2.e1)

operating with (E"T ' ) fron the left on equation (2.gI)

Ë*t'é'%= -rort'-ãs-%t'g, " Ë, (2.s2)

By using equation (2.92), equation (2.90) becomes

^ t.- - f. 1'- T.E -lET.c_. E_"u* tgs' +' 4*F 'Z Loe ' 4 - 2 9e " -" -ts

*E¡€s'%;4*) c2.e3)
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Wtrich is the energy of the unrelaxed f,i.rst exci.ted state including the ground

state di.stortion. Substituting equation (2.93) and L2.88) into equati.on

(2.89), r,¿e get the for¡ula for absorption energy.

E"6rÇ, !", \, 4*,) = - Iogr' %

+ F (E-, É-, 1^-. ) - F (r\ 11 x^ I (2.94)' "D -s --E ---c.\ "Dt"' 'rol' :"g'

[iii) Emission Energy

According to the Franck-Condon principle , the ernission energy is

obtained from Eabs, equation (2. 89) by changing the sign and interchanging

the subscripts g and ex. Thus

tr Ár Ç 'l 'l l\!^*\F^--, t^-.t /r^-., r\- )çlll ---çã. -ç^ ---YÀ -8,

= E"*(!"*, %x, trex) - urt (x"*, Ë"*, rrt)

where E^-.(u^_-, E^-., 
^^_.) 

is the relaxed excited state CRES) energy and
ur{ --'c_Ã ---eì. '--Ë_^

E-'(u^--, E^-., À^t) is the unrelaxed ground state eneïgy, for rvhich the
g --i-^ ---ËÁ -E 

r

position of the ions are those of the RES. \ is the wave function para-

meters coïresponding to this r¡rrelaxed ground state. Thus, we obtain the

analogue of equatíon (2.94)

E"r[u"*' 4*' 4*' À, )

= Fo T" f +*E T. c . E
-ex =€x ¿4x :ex rex

- Et(Ç*, lL*, ls ) * Eo(O, go"*, þo)

where Fo__- and C__- are the matrices whi.ch haye been defined in equation
- ex :ex

(2.48) and L2.6n Jeter¡nined by the RES.

c2.ss)

(2.s6)
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ÁND ÐfSCUSSfON

In the present calculation, the lattice ions haye been divided into two

regions. Region I includes the defect and perhaps some of its surrounding

ions. Region II includes the rest of the ions. The idea is that the dis-

placernents of the ions in Region I is so large that the harmonic approximation

ís not valid. Special care must be taken for those ions in Region I denoted

by U in chapter'2. For those in Region II, the displacements from perfect

lattice sites are.small and within the range of validity of the harmonic

approximation, and these displacements have been denoted 9 in chapter 2.

The calculation can be divided into tivo major steps namely, the zeroth

order calculation and the higher order calculatíon. In the zeroth order

calculation, r4/e minimize the system rs energy with Tespect to the non-

harrnonic displacernents p and wave function parameter 
^, 

while E is

kept equal to zero.

aEG,.lr,À) 
I =s -+u=!g

âI lÀ=tro
ca.l)
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a E G-, !., À)
=Q + )=Ào ca.2)

dA
u=xo

Thus, we obtain a zeroth order solution, go and þ, neglecting harmoni.c

distortion, E. Substitutìng equation (2.44j into (2,+31 and puttìng

B = -Eo, À = Ao, E = 0 and Uo = 0, we have the zeroth order solution for

the defect systemts energy:

E(0, go, Ào) = vr(o, go) *. I lr * Vnr * VI=l õ t

where:

0 is the excess-electTonts trial psuedo-wave fimction with triaL

palameters I = Àoi

T is the excess-electronrs kinetic energy; Vpt is the Coulornb

interaction between the point-ion lattice and the excess-electron;

VL is the BSG ion-size correction; ana Vr(O, go) is the energy to

create the lattice defect, including non-harmonic distortion.

In the higher order calculation, the following terrs are calculated:

(1) A U = (g - -Uo), the change of the non-harmonic displacements

induced by harrnonic lattice distortion, g (see equation (2.64)).

(2) Â À = (À - ¡o), the change of the wave function paraneter due to

harmonic lattice distortion (see equation (2.63)). Thus, the corrected

valuesof À and p areobtained,namely À=Ào*^¿ and U=go+^U
(3) E, the harmonic lattice distortion field of the ions in Region

II, due to the electronic point defect (see section (2-48)).
t(4) ; Io . -9., the change in total energy induced by ha:rnonic

relaxation of the lattice up to second order, while Fo Ìs defined in

equation (2.48).

(3.3)
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3.1. Vacancy Configuration

CA) Zeroth Ofder Calculation

In the vacancf configuration, the vacancy site ancl substìtutional

inpurity cation constitute Region r (see Figure 2(a)). Although it is
known experimentally that the Li* ion occupies an off-center site in

( 17\
FACLi) "ut , there are four equivalent sites that Li+ can occupy, so

that the defect shols C4, syrnnetïy as a statistical average. It is not

possible to includetheseoff-center properties in our static mode1, so r{e

consider only C4u symnetry vacancy configurations, witlt the impurity

alkali ion (Li* or t'Ju*) lying on the y-axis.

The trial pseudo-wave functions which we ciroose for the present

calculation are Gaussian localized witir low orders of Legendre po11-nornía1s.

Even parity is assr¡ned for the ground state and odd parity for the first
excited state. The following trial wave functions are used in the vacancy

configuration:

for vacar:cy ground state:

ôt = At .*pç-ar42)

for FRf

.lv2

for Fn"
AL

absorption:
-t

= AZ t (cosO y' exp (-aZ

- Az y exp ç-or'tz)

absorption:

a-

(3.4)

ca. s)

þS = AS t [cosO") exp C:oa

22-=A-zexD(-0-rl'-3 - ---r I -'3 - r

)t
TI

c3.6)
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and for yacancy relaxed excited state:

þn = An r(cosO.,) exp L-on'r')
TTJA

))
= AO I exP (-o¿-t-)

where A_, (.j = 1, 2, 3, 4) is the normalized constant, c, (j = 1, 2, 3, 4)
JJ

is the wave function localization parameterc, r is the radial variable

with origin at the vacancy site, 0y is the polar angle rvith the y-axis

as polar axis in spherìcal coordinates and A, is the polar angle rvith

z-axis as polar axis in spherical coordinates. The reason \{e used this

type of pseudo-wave function is that all the rnatrix elements involved can

be eyaluated explicitly or in teïms of an error function, rvhich is a

built in subroutine in the IBM 360/65 computer. Furthermore, Brown and
(? 

^\Vail'-'' have shown that the Gaussian localized wave function is qualita-

tively very sinilar to the type II and type III Gourary-Adrian wave function(7).

(s.7)

(3. 8)

First

energy with

do the zeroth order calculation, so we nLininized the systernrs

= 0, with respect to p and 
^,, 

where

$/e

r

vpr *urr*tl Ôrt

In the case of the ground state in the vacancy configuration, l = ol, the

trial wave functionts localization parameter and. U is the non-harmonic

displacement of the impurity ion along the y-axis from the perfect lattice

site (010) and is denoted yo. Here, we notice that the pseudo-wave

function 01 is centered at th.e origin of figure (2a) but that the lattice

configuration is asyrnmetrical due to the irnpurity ions. Thus, the center

of the wave function should be allowed to rnoye out fron ttr-e ori.gin. How-

eyer, we fîxed the center of waye functîon because Ìt makes the calculation

much easier to handle.
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an

We

vrCo, -u), which is th-e energy requi¡ed to create the yacancy with

adjacent ùnpurity cationrincludes a non-harsnonic distortion X = Io.

for¡nulate the procedure for calculating V, (o, g) as follows:

(1) create the ordînary yacanc¡ defect;

(2) remove the positiye ion frorn (0f0);

C5) put in th-e impurity i.on (N"* or Li*)

at lattice site v¿hich has been dìsplaced fo along the y*axis from the

C010) site.

We used Tosits single exponential parameters (ref. 12 Table ltlll 2nd

colunn) for the Born-Mayer repulsion.

lpì ?
lllL"/ = B exp C- -:J

v
c3. e)

in evaluating Vr(o, l). The perfect lattice KC,C parameters were used in

the K* - Cl- interaction, and perfect lattice NaCl or LiCl par¿Lmeters

were used for the interaction of the i:npurity Na* or Li+ ion with

Cl- ions. As we know, the interionic spacing in KCl is quite different

fro¡n that in LiCl, and the second nearest neighbor òf the Li+ ion in

FACLi) KCl and in LiCl are also different. It is a fundarnental

question whether the above approximation is valid. Tosi and ooyarn.(2s)

haye shown that it yields reasonable result for the activation energy for

diffusion of Rb* in NaCl and in KCl. The Coulomb contribution to

vr(o, p) is calculated by Evjen'r(12) method with Evjen cubes of sides

up to 6a, where a is. the interionic spacing of the crystal.

The Coulornb potential energy of the excess-electron in the presence

of ttre defect lattice of ch-arged point ions, ypICT), is given by

vnilì) = - t çQit'* *rr 11 =ril
c3.10)



r^¿here the factor 2 is Ìntroduced because the energy is expressed in
,=+Rydbergs, if r and r^ are:rrìeasured in units of the fìrst Bolrr orbit

ão, where

.)

A'A = -".-o¿
luu

e

and t" is the mass of the electron, and if Qi is rneasured in units of
the protonts charge e. Th,e expression

¡-à ì' tlr - r- |

4

can be expaaded in terrns of Legendre polynomials as:

f,itu.o
Ê | = L g,+r 'L (cos Y-) C3.11)
lr - ril g=o

where

angle between i and ii (ref (26),p.62, Fig. 3.3). We use rhe addition

theorem for spherical harrnonics, written in the following fonn (ref 26,

p. 69 equation f3.68)):

Pn(cosyr) = Pn(cos0) Pn(cos0r)

.tL
+ 2 I *I+ nf, (coso) {(coser) cos[m(Q - 0i) ] G.r2)

m=1 [1,+n) !

where (o,O) .and [0i, 0i) are the angular variables of ì and Ìi
respectively in spherical polar coordinates. From equation (3.11),

equation (3. 10) becomes



Aa.

vo' tÌ) = ^) I-L

i

LiÌ Qi - Ï;f Pt [cos 1r)
[=o

-a In¿-i

[=o

t-
IlçILli
I

lr >r^
-1

r.i0t

pg Ccos y-)

,"
]C-

1a-n;T P p. [cos Y. )
T

rr.\\^-4lqt
r (r J{'=o

I

rrlo

n
+-r (3. 13)

where a^ is the charge on tb-e ion at ì. = Q.'Ol

The above expression, expanding the potential energy in ter¡ns of a

linear conbination of spherical harmonics has been used by Gourary and

Rdtiurr(7) and by others ß) 'C27) in F-center calculation to evaluate

< O I y*, I O t. Further simplification can be made by adding to andPI

subtracting frorn equation (3. lJ) the term

¡T-L
i

r- (r
l-

r. y'O
l-'

Then, equation

:. í -L l
) Qr, [ *-¡; I Po (cos Y;)

I N' L I N I\?¿.0=0 -i

(3.13) becomes:

-) I ç 
^¿\i +t x,=o

r-#oI'

vr, ci) =

r9"\| 'f' l-

| -i* | p^ [cos 1r)I r..&-t ,) 'I
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+) ç.L
i

r-<r
1

T -lo

of equation

,.

+ -l 
Pu[cos1r)1_l

ær-9-
l^l'I

^t, \1 I -T*1&=o I ï;
l_ +.

0try
lT
I ----o*1 -
I e'¡Çr-

I

-zQoT

Making use

* l, (s-n)!. L 
[.Q,+m) !

m=l .

o

T

case of the FO-center ground state, the

çalz t2) can be written as

exp (-o: t2) pofcoso)

Dr"Lo Ccos0) ef,(cosor) cos lrn (0 - 0i) I ]

tJ. t4J

c3.1s)

rvave function

(3.16)

zeroth- order

only terrns with-

(3.12), equation (.3.14) becomes

ær9'\
.l ar[ -]¡;if {on(coso) Pn(cosor)
Xr=O l f- ¿

1

Vr.,r[r) = - I
r-

TLi
r -*o

l-'

- f ,## {Ccoso) nf,(cosor) cos[m(Q - Oi)]]
m=1

2I
i

r. (r
].

r-l0
l-'

Tn/V;
X,=O

9"
?

I

-i-ú | {os (coso) PuCcosor)
r

In the

01 = A, exP

Ô1=Al

i. e. the spherically spunetrÌc waye function contains a

Legendre polynornial, and is azimuthallys¿rnnetric. Thus



[=o and m

rôrIon,I
fore Qo = 0.

= o in equation f3.15) ::o¿ke a non-zero contributÌon to

0t t . Furtherrnore, there is no ion at ir- = 0 , and there-

Then, fron equation (3.16),

48.

(3.18)

tor lört='t ¡I
rrlo

(3. L7)

In the case of the ÎO-center relaxed excited state, the wave

function 04 = A4 T cos 0, exp Ga42 ,2) correspond to [ = 1 and is

azinuthallysytmretric. Thus only 9, = 2, 9, = o and m - o in equation

(5.15) -have non-zero contri-outions to . ö¿ | on, I Oo t. There is still
no ion at ì" = o. Thus, the ex¡lectation value of y-, in trial stater- * 'pr

04 becornes;

lun,
Ñ.1I rl
t-l
triJ

{+2 ìl to,l2e,{t-$u,
L )*rtlo ^i

, Þ+ I vn, cÌl

For the BSG

V-=XTA +
IS *Y

T

^ ( 2¡
la.l" I t =fp-fcoso)dtrY4r t 

"-S1'Z'-"t-

lOot-=-t I qrPr(cosor)
].

rrlo

f
I

Jo

^2t.2
4|'" + +J Pr(coso)dt

ti''

I
I
I

Qi Pz (cosor) | | O

J

+2 Ii
rrlo

+) tt
i

*JriFo

ion-size correction

By út - uy)l o ti - i1)

r.
l_

løol2 I+:-å d't-zl +ri1
rrl0

i-
Qil

Jr.
I

we had , in equation Q.39)t

c3.1e)
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where

V=<o.lv-*y- lo..t ,pl lS , .l

for the

(1)

(2)

(3.20)

(3)

ground state. TTre procedure for the zeroth order calculation is:

make an initial guess for the value of Ì;

makìng use of this yalue in equation (3.19) and using (3.I7),

mÌnimize E(o, p, 1) of equation (3.8) with Tespect to yo and

0, and set y = y (1). .,. = .,- 
(1) 

'r. - 'o ¿o ' -'1 *1 t

11ì rl lusing Io = Iot-' and oI = ol*-', calculate V by equation

(3.20);

t4) repeat the cycle to a self-consistency of 0.001 rydbergs, that

is until two consecutive esti¡ates of V differ by less than

0.001 rydbergs.

The ninimization program was obtained from the library of subroutines at
( )R\ÆÆ, Harwell'--', The srrnmation in equation (3.18) is over the ions up

to the sixth nearest neighbours to the vacancy, or 85 ions in 29 groups, such

that the convèrgence is obtained to within 0.001 Ryb. The results of'the zeroth

-order calculation of the FO-center relaxed ground st.ate and.relaxed excited

state in the vaca'r7çy configuration are reported in Table (1) and Table (2)

respectively.
CB) Second Order Calculation (relaxed state)

The next step is to do the second order calculation. Our aim is to

solve equation Q.st) for g(ä) " !CA) is Kellermannts dynanic rnatrix,
( )q\ ->

which has beencorrectedby Dayal and Tripathi*-"' for 1000 q vectors in

the first Brillouin zone. A brief review of Kellernannrs dynarnic matrix

is given in appendix A. As described in section 2.3(B), we eyaluate
-+gtq) .by su,mring over groups of ions in equivalent posi.tions relatìye tp
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Tab]e 1

Zeroth order calculation of FO^center

state in the vacancy configuration: a

spacing of the crystal

relaxed ground

is the interionic

Fo(Na) FA(Li)

v, (o,ro)

_:V-pr

V,,

T

v'o

d
o

E, (o,ro,oo)

6.64

-7.t7

0 .08

7.44

0.077

1.I2

1 .05

6. 39

-6.95

0 .08

7.43

0.115

1.114

0.95

Iev)

(ev)

(ev)

(ev)

(a)

(7/ a)

(ev)
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TabIe 2

Zeroth order calculation of FO-center relaxed

state (RES) in the vacancy configuration: a

interionic spacing of the crystal

Fo(Na)

excited

is the

FA (Li)

vr(o,lo)

v_p1

V,,

T

v'o

0
o

E"* (0 ,Io,0o)

(ev)

(ev)

(ev)

(ev)

(a)

(r/ a)

(ev)

6.62

-6.28

0.31

2.68

0.071

1.18

3.33

6.4r

-6.11

0.30

2.64

0.103

7.77

3.24
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the defect, the groups being denoted bf at index Jn, instead of sruurning

oyer the individual Ìons. In the case of the FO-center relaxed ground

state and relaxed excìted state Ìn the vacancy confìguratîon, we included

the contribution fron fÌfteen groups, whÌch- contain a total of 49 ions.

The groupings of ions and the matrix elements of g(t) are gìven explicitly

ìn Appendix B.

Therefore, the Fourier transfo::rn of q(ä) into configuration space E,

the corrected value of 1 and T, and the distortion energy + Io " g,

are calculated and are reported in Tables (3) and (4) for the relaxed

gror.urd state and the relaxed excited state respectively in the vacancy

configuration. We notice that the war¡e function parmeter o¿ has changed

fron ao = 1.114 (Table 1) to o, = 1.07 (Table 3) in the case of FA(Li),

as the lattice has relaxed. It is a merit of our ¡rodel and methods that

the wave functions are self-consistent wìth lattice distortion. The

rela:ration energy is small in the case of the ground state but is still

not negligible. The contribution frøm the relaxation energy is larger in

the case of relaxed excited state, as expected.

In Tables (5) and (6), displacement corrponents of some near neighbours

to the yacancy for the relaxed excited and relaxed ground states respectively

are given. Although no experimental work on the displacements of the near

neighbours of the Fo-center have been reported, Lüty et 
"1 

(30) h"rr"

dete:r¡ined the volt¡ne expansion per F-center, which corresponds to an

outward displacement of the nearest neighbours by 2-3eo. The displacement

of the fiye nearest K+ ion to the FO-center agrees with this result.

Since the excess-electron stabìli zes at the Lorvest energy, it apparently

prefers to enlarge the ïacancf Ìnstead of increase its kinetlc energì¡.

Furthermore, we found that the outward relaxation of Ìmpurrìty LÌ+ (pr



Table 3

Second order calculation of FO-center relaxed ground

state in the vacancy configuration. The total relaxed

state energy E_(E_,)¡_,G_) is given in equation (2.88)
w '<Ç" Ç' A'Þèöè

a is the interionic spacing of the crystal

Fo(Na) FA (Li)

.to
è

yo

1T¡-
, Lo.--' 9n

Ò

1 , T. 
" " F¿a :g 4

E, (o,ro,oo)

E" (L,ro,0o)ÞÞèò

(L/ a)

(a)

(ev)

(ev)

(ev)

(ev)

I .08

0.072

-0.04

-0.01

I .05

1 .01

1 .09

0.119

-0.085

-0.01

0.95

0.87
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Table 4

calculation of F^-center relaxed excited

^" ^^-€ì^"-atlon. The total relaxedv4u4rrv/ uu¡rrrËur

Second order

state in the

state energy

(2 .88) . a

is given in equation

spacing of the crystal

Fn (Na) F. tlil

EX

v'ex

T
Fo
-ex

T
¿ex

"F

(I/ a)

(a)

(ev)

(ev)

(ev)

0. 96

0.115

-0 .49

-0.15

3.33

0.93

0.116

-0.5s

-0.L2

5.¿+

2.69

z

I
2

.r._Ã

E"* (0 ,Yo ,0o)

E fã..v .cÌ I
ex t+x " ex' ex'

Elt.y.cxl
UÃ 

-A 
EA YA

is the interionic
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Table 5

Cartesian components of displacements of the ions neighboring the FO(Na)-

center in KCl in even and odd (ground and excited)parity relaxed states in

the vacancy confíguration, in units of the perfect KCl nearest neighbor distance.

10n

.FO (Na) -Center

even parity odd parity

(0, 1,0)
(1 ,0,0)
(0,-1,0)
(1,1,0)
(1,-1,0)
(1,0,1)
(1,1,1)
(1,-1,1)
(0,2,0)
(2 ,0,0)
(0,-2,0)
(1 ,2 ,0)
(2 ,1,0)
(1, -2 ,0)
(2,-L ,o)
(1 ,0,2)(2,r,r)
(2,-1,1)
(1,2,1)
(1, -2,r)
(2,2 ,0)
(2,-2,o)
(2,0,2)
(2,2,r)
(2,-2,7)
(2,r,2)
(2,-I ,2)
(0,3,0)
(0, - 3,0)
(0,0, 3)

0 ,0.072,0
0 .022,0.004,0
0.0,-0.025,0
0.004 ,0. 01 , o
-0. 001 ,0 . 001 , 0
-0 . 003,0 . 003, - 0. 003
0,0.005,0
0,0.001 ,0
0,-0.008,0
0,0. 002 , o
0, -0 . 003,0
0. 01 ,0. 009 ,0
0. 008 ,0 . 006 ,0
0.004,-0.006,0
0.005,-0.004,0
0,0.001,-0.001,
0 . 002 ,0 .002,0 .001
0.001,0,0
0 . 004 ,0 . 008 ,0. 004
0.001,-0.003,0.001
0.006,0.005,0
0 .002 , -0. 002 ,0
-0. 001 ,0 ,0
0.002,0. 002,0.001
0.001,-0.001,0.001
0,0 . 001 ,0
0,0 ,0
0,-0.004,0
0,-0.002,0
0,0,0

0,0.115,0
0.1,0,0
0,-0.073,0
0.035,-0.025,0
0 .027, -0. 017,0
-0.023 ,-0.0r2,-0 .023
-0.006,0.002,-0.006
-0.002,-0.025,-0.002
0,-0.033,0
0.017,-0.011,0
0, -0. 02,0
0. 055 , -0. 006, 0
0. 025 ,0 . o09 ,0
0.011 ,-0.027,0
0.028,-0.026,0
-0.001,-0.005,-0.006
0. 004 , -0 . 003 ,o .002
0.005,-0.009 ,o.oo2
0.001,0.001,0.001
0.001 ,-0.020,0.001
0. 007.0 . 003,0
0.01,-0.016,0
-0 .004, - 0. 003 , - 0. 004
0,-0.001,0.001
0.003,-0.008,0.002
-0.001,-0.001,-0.001
0.001,-0.004,0.001
0,-0.015,0
0,-0.015,0
0,-0.003,0.006



Cartesian components of

in KC1 in even and odd

in units of the perfect
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Table 6

displacements of the ions neighboring the FA(Li)-center

parity relaxed states in the vacancy configuration,

KCl nearest neighbor distance.

10n

FA (Li) - center

even parity odd parity

(0,1,0)
(1,0,0)
(0,-1,0)
(1,1 ,0)'(1,-1,0)
(1 ,0,1)
(1,1,1)
(1,-1,1)
(0,2 ,0)
c2,o,o)
(0,-2,0)
(1 ,2 ,0)
(2,1,0)
(r,-2,o)
(2,-1,0)
(1 ,0 '?)(2,1,0)
(2,-1,1)
(1,2,1) ,
(L,-2,IJ
(2,2,0)
(2,-2,0)
(2,0,2).
(2,2,1'\
(2,-2,r)
(1 1?l
lL tL t-J

(2,-L ,2)
(0 , 3,0)
(0,-3,0)
(0,0, 3)

0,0.119,0
0 .026,0 . 012 ,0
o,-0. t27 ,o
0 . 011 ,o .023 ,o
0,0.004,0
-0 .001 ,0.008,-0. 001
0.001,0.007,0.001
-0.001,0.003,-0.001
0,-0. 029 ,0
0. 002 ,0 . 004 ,0
0,-0.002 ,0
0.02,0.011,0
0.011,0.008,0
0. 004, -0. 004 ,0
0.005,-0.002,0
0.001,0.003,0
0 .004,0. 002 ,0 . 001
0.001,0.001,0
0.007,0.011,0.007
0,-0.001,0
0.011,0.007,0
0.002,-0.001,0
0,0. 001 , o
0.003,0.003,0.002
0,0.001,0. 001
0 . 001 ,0 .002,0 . 001
0,0.001,0
0,-0.0L2,0
0,-o.oo1,o
0,0.001 ,0:oo2

0,0 . 116 ,0
0.098,-0.031,0
o,-o.ogg,o
0.041,-0.028,0
0.027,-0.017,0
-0.022,-0.014 ,-0.022
-0.006,-0.002,-0.006
-0.002,-0.025,-0.002
0 ,-0:062 ,0
0.018,-0.013,0
0,-0.024,o
0.009,-0.012,0
0.028,0.006,0
0.01.2,-0.029,0
0.029 ,-0.027 ,0
-0. 001 ,:0;006, j0. 006
0.005,-:0.004,-0.003
0. 005 , -0. 000 ,0. 002
0.002,:0.002 ,0.002
0.001,-0.002,0.001
0. 009,0. ool , o

0.010,-0. 017,0
-0. 003, -0. o04, -0. 003
0i001,-0.003,0.001
0.004,-0.009,0.002
0, -0. 001 ;Û
0. 001 , o. oo4 ,0.-00.1
0,-0.026,0
0,-0.017,0
0,-0 . 004,0. 007



+
Na' ) ion is more than th,at of the

since the ùupuritf ion is slnaller

distant ions are smal1.

In Table (7), ive compaïe our results rvìt[ those of erig(4) for the

radial component of nearest neÌghbor displacements in the ground state of

th-e FO-center. Qualìtatively, our dÌsplacements are someli'hat larger than

Aligrs. The displacement of the host cation K* at ¡OlO; is approximately

the sarne as that of the K+ at (100), as Alig assumed, but we find that the

four equivalent K* haye a small non-zero f-cornponent of displacsment, as

vrel1.

CF) Absorption Energy

In the calculation of absorption energy, one needs only to do a zeroth

order calculation. The displacements field and non-harmonic disolace-

ments u
ò

zerotTt order cai.culatíon, one needs onty to rninimize the systernts energy

with respect to the unrelaxed excited state trial pseudo-wave function
I

parameter 4* . The FO, - F,,Z absorptÍon splitting corresponds to the tlo in-

equivalent orientations of the unrelaxed excíted state wave function (Fig. 5).

The details of the FRt and FAZ absorption energies are shown in

Tables C8) and (9) respectively. The agreement of FRt absorption with

experiment is withln 7%. This result is encouraging because the absorption

energy is a simple test of the theoretical model. Any respectable ¡odel

must give a reasonable agreenent for the absorption energy.

Table C10) gives the contributions to the FRZ - FRf absorption splitting.

This table maF indicate the origîn of the absorption splitting and pin-

point an inadequacy in our ¡ode1. The theoretÌcally estirnated fA2 - IAt

host 
- 
C catìon, wh-ich is not su¡p¡islng,

i¡ sÌze. The displacements of the lìore

lation. The displacements field 4 and non-harmonic displac

are supplied by the relaxed ground state calculation. For the
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Table 7

Conparison of the theoretically estimated radial component of nearest

neighbor ions displacements in the ground state of FO-centers in KCl, in

units of the perfect KC1 nearest neighbor distance, with positive direction

outward from the vacancy.

Fn (Na) E TT ì ì
A-

10n

A1ì o*

(0,10) (0,-1,0) (1,0,0) (0,1,0) (0,-1,0) (1,0,0)

+0 .061 0. 018 0. 018 0. 104 0. 016 0. 016

Present work 0.072 0.025 0.022+ 0.119 0.027 0.026+

a, reference 4 Table II

+ there is â non-zero y-component
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Table 8

F^, absorption energy with contributions as given
AI

in equation (2.g4), where oZ' is the wave .function

parameter of the FO, unrelaxed excited state

made self-consistent tt'ith (+,%). Energies in
I

eV, d,, in units of reciprocal interionic spacing.

Fo(Na) FA Gi)

-2 1.16

3.03

-1.05

+0. 08

+0.01

2.07

2.r2

1.14

2.63

-0. 95

+0.17

+0.01

1. 86

1 .98

to %'%'o, )

-ED (o'uog'\r)

-Fo
-o|è

1-
2h

Ò

ò
ol

ò

t
E"u, Q'%'\P, '

I

E¡ Pt
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Table 9

FO, absorption energy rvith contributions as given in

equation (2.94) where or' is the wave function parameter

of the F¡Z unrelaxed excited state made self-consistent

with (+,%). Energies in eV, oS in unirs of reciprocal

interionic spacing.

FoNa) FA (Li)

J

to t!,5,or')

-ED (0,Eor,Àor)

-roo ' LÞè
'l

--Þola) =ç 
Js,ò

1.36

3.82

-1.05

+0. 08

0.01

2.86

2.35

L.34

3.39

-0.95

0.17

0.01

2.62

2.25

¿cr

I
IE"u, (!e,gds'%

I
Ex pt
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Contribution to the F 
nZ

functions þ2, 0S are

absorption respectively,

.in tables (8) and (9)

Table 10

- FRt absorption splitting (êV),

given in equation (3.5), (3.6) for

and their localization Daraneters

where wave

FRt and FRz

o¿ are given

Fo (Na) - center FA (Li) - center

F'^2 FRa-FRl F'^2'A1 FRt F -F.'42 '41

.Olr.lO'

<qlvrrlo>

<olvprlo'

ur%'I')

Totals, theor.

expft

3. 55

1 .09

-6.91

6.09

3.82

2.60

0.30

-5 .96

6.09

3.03

0. 9s

0.79

-0. 9s

0

0.79

0.23

3.44

1 .04

-6.52

5.43

3.39

2.50

0.29

-s.59

J. +J

¿.oJ

0. 94

0. 75

-0. 93

I

0.76

0.27
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absorption splittings ale a factor of about three tj:nes larger than the

experinental results. In Table (10), we note that the contribution of

electron kinetìc eneïgy t, poÌnt Ìon potential energy ÌoI, and BSG

ion-size correction lr, to the splittÌng are ecluaLly in,portant. In fact,

the contribution of the electron kinetic energy and the point-ion potential

eneïgy almost cancel. Therefore, the net contribution cornes from the ion-

size correctÌon. One-may concluded that BSG ion-size correction is over-

estinated. In Aligts calculation, he also came to the conclusion that tire

splitting was largely due to ion-size correction. Actually, he discarded

the e:¡pirical factor c¿ = 0.53 in the ion-size correction, and his result

was then only a factor of about tlo times too large. Neglect of other

features that may contribute to the discrepancy; for exarqple, the electronic

polarization, the off-axis properties of Li*, and the over-simplified

fonn of trial pseudo=wave function, :Inay also be important

Table (11) shorr's the comparison of the previous theoretical investigations

with the present calculation, for the shifts of the FRt and FnZ absorp-

tion lines of FO-centers relative to the F-center absorption in KCl, and

the FRZ - FRt absorption splitting. Smith and the present work give a

result which is about three times too large, Alig and Weber and Dick have

a factor of about tilo tirnes too large. Although our result is quite close

to theirs, one cannot get a significant conclusíon from this, since

their approxi-mation is quite different fro¡n ours. A qualitatir¡e comparison

among the four theoretical investigatiors is given in Table (L2). As far

as the lattice distortion is concerned, our method is more accurate than

the others.

In conclusion, the results of the FRZ - F¡,f absorptr-on splltting

suggests that-rnore precìse ion-size correctlon must be ìntroduced.
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Table 11

Shift in the absorþtion energies (eV) of FA-centers relative to F-centers

in KCl, and the absorption line splitting

Fo(Na) center FA(Li) center

FRt toz split. FRt F tz Splir.

^ . .. a
bm]-En

WÊDb

Aligc

-0. 38 +0 . 16 0. 54 -0 .54 +0 .24 0 .78

-0,34 +0.05 0.39 -0.46 +0.07 0.53

-0. 30 +0. 06 0 . 36 -0 . 38 +0 .08 0.46

,1

Present work* -0.20 +0.59 0.79 -0.43 +0.33 0.76

Exptt.a -0. 19 +0. 04 0.23 -0. 33 -0. 06 0.27

a Reference 1, Table 3-2, p. 193

b Reference 3 Table 9, columns I.

c Reference 4, Table 1, columns III.

d The F-absorption energies are taken from reference 24, Table 3.



Qualitative comparison

investigations and in

of the methods and model

the present work.

Smith

Wèber and Dick

Method for
ion- s i ze
comection

Alig

pseudopotential
method

BSG without
cr = 0.53

basically BSG

without o = 0.53

BSG with
cr = 0.53

Table 12

in FO-absorption study in the three previous theoretical

lattice
distortion

Present work

lattice
polari zation

neglected

neglected

only nearest
neighbors

'.including
farther out
ions

trial wave
function

noal anf o¡l

neglected

Gourary-Adrian
Type I

Gourary-Adrian
Type i, II , III

Gourary-Adrian
Type I,II,III
and others

Gaussian

wave function
self- consistent
with the lattice
¡nf anf i o'l an I

lattice distortion

nearest
neighbors

neglected

no

only with
lattice potential

no

Dynamical
lattice
effects

no

no

yes

o\Þ
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3.2. Saddle-Point Configuration

(-A) Zeroth Order Calculation

We haye investigated the following states in the saddle-point configur-

ation of figure (Z(b)): even parit¡ relaxed state; odd parity relaxed state

and urrelaxed eyen parity state.

Brown and Yail (24) n^u" treated the saddle-point configuration of the

F-center as the mid-point of the straight line connecting the ðiffusing

anion and the original F-center vacancF. In the FA-center activation

process, some other, indirect path may be far¡ourable, nanely (1) motion of

the saddle-point anion out of the y' - zt p1a4e (Fig. 2b); (2) displace-

ment of the saddle-point ion along the ¡rr-axis. An investigatioñ of the

possibility of path (1) will be described in section [3.2D), in which we

seek to minimize the energy by displacing the saddle-point C1- ion out

of the yt - zt plane, tlorrg xt-axis. T?¡-e results of this investigation

u¡ere tentatively negative for the FO-centers. In the following calculation

we used patin (2) as the favourable trajectory for the FO-centers vacancy

diffusion. IVith this trajectory we maintain some syrnetry of the lattice

configuration, namely the reflection slrnnetry with respect to the xr - yt

and y' - zt planes

In the saddle-point configuration, Region I contains saddle-point C1-

ion, two vacant anion sites, æd the two straddling positive ions, one the

iurpurity Na* or Li+ and the other a host K+ 'ion. The trial pseudo-

waye functions which rve çhoose for the saddle-point configuration are

sirnilar to those which we used for the yacancy configuration. They are

Gaussian localized nith low order Legendre polynornials dependence,. girring

douhle-lobed charged densities, fi.tting into the tt¡o-well potentr'.al gf the

two vacant anion sites which are separated by the saddle-point ion.
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The following trial wave fwrctions are used:

For the odd parity relaxed state:

ó5 = A, r' cos 0rr exp (- arz "'21

! A. zr exp (- o-2 
"r2).b --'r \ -5 - )'

for the even parity unrelaxed state:

06 = A6 r'2 cos2 o rt exp (- auz rt27

= A.z z'2 e*p (-o.2 ,t2);-b

and for the even parity relaxed state:

(3.2r)

c3.22)

þ7 = Ãz r'2 cos2 ê z, exp (- urz t'27

= A7 ,' 2 exp ç oz2 ,'2) , (3"23)

where t (j = 5, 6, 7) is the normalization constant and a, (j = 5, 6, 7)

is the wave function localization parameters, r' is the radial variable

with origin at the saddle-point and Qr' is the polar angle with zr-axis

(Fig. 2(b)) as polar axis in spherical coordinates.

For the zeroth order calculation in the saddle-point configuration,

we rniniurized the systemts energy with respect to the wave function parameter

oj, the non-harmonic displacernent yL of the irrpurity cation along the

yr-axis from the perfect lattice site, the non-harmonic displacernent y2

of the host cation along the yt-axis frour the perfect lattice site, and

the displacement y3 of the saddle-point ion along yr-axis. As in the

vacancy configuration, we here keep the center of the wave function fixed

at the origin also.

We fo::nulate the procedure for calculating the energy Vr(o, Ð



67.

required to create the saddle-point defect as follows (Fig. 2Cb)).

ti) remoye the Cl- ion fron fo,, o, ñtZ)
(2) remove the Cl- ion from (o, o, - l2/Z)

(3) remove the K* ion from (o, J7¡2, o1

(4) remove the K* ion from (o, - ñ/2, o)

(.5) put in the Cl ion at the saddle-point (o, y-, o)

(6) put in the K* ion e' t^ ñ ' 
r

rr Co, - 3:r* o)

(t7) put in i:npurity cation at þ, * * y1, o)

Regarding the poinr ion potential u-:, in the case of rhe oddpI'
parity relaxed state, the trial wa-ve function which we used (equation

(3.21) has g'=! or first o:'der Legendre polynornial dependence. Since we

let the saddle-point cl- ion mcve to (o, rg, o) along yr-axis in the

prirned côordinates of the Fig. 2(b), there is no lattice charge at the

origin. Hence, the expression for the expectation value of vpr is the

same as equation ('3.18) for the case of relaxed excited state in the

vacancy configuration. In the case of the even parity unrelaxed state,

the angular dependent part of equation (3.22) can be written as:

L.
î Po * Pz (cos orr) (3.24)

which has g'=o and g,=2 dependence. Thus, only terns in 9.,=o¡ g,=2 and

9'=4 with m=o in equation (3.15) have non-zero contribution to
:<ò.lv-lo-- Y6 , 'pI I t6 ' ' Again, there is no charge point ion at l, = o.

Thus, the expression for VpI becomes
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vnr{ì) --/ I lrr,t
rr#o l-

nr(cos0) lr(cos0.)
2't'

-1- 

-- Jî
a

4
T

-L -:-'5
r.

t-

,)
IT'r | ---ã -IJt r.

a

lO(cos0) P4(cosrr,ll . ç

i
t,<x

l-

r.4ol-'

,tLr(r-
l_l_,,

l¡
T

2T. ì

, I p2 (cos0) P, (cos0')
J I

/,
r 4 r.-\+ h= ål P4(coso) Po ("""'r);l '

r_l
(3,2s)

The procedure for the zeroth order calculation is the same as described

in section 3.1(A) for the case of the vacancy configuration except that

the calculation is done in the prirned coordinate (Fig. 2(b)) here and the

sun is ove'r 232 ions in 87 groups near the saddle-point configuration.

The results of the zeroth order calculation for FO- center relaxed

odd and even parìty, states in the saddle-point configuration are reported

in Tables (13) and (1a) respectively. These results indicate that both

straddling ions move outward from the saddle-point with the inipurity cation

rnoving further out than the host cation. Tlre saddle'point ion also moves

along the positive yt-axis a significant distance.

(B) Second Order Calculation (relaxed state)

For the second order calculation, vle included the contributions from

thirty-five groups of ions, containing 55 ions in all. The grouping of
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Tab1e 13

Zetotln order calculation of FO-centers relaxed

state in the aaddle-point configuration. a is

interionic spacing of the prefect crystal.

odd parity

the

Fo(Na) FA (Li)

Yto

Yzo

Yso

g
50

v, (o,rro,y20,y30)

%t'
:VI,

T

E(o,Ito,Y26,Y369so)

(a)

(a)

(a)

CL/ a)

(ev)

(ev)

(ev)

(ev)

(ev)

0. 159

- 0. 093

0.076

0.824

6.23

-4.67

0.34

1. 31

3.2L

0.139

-0. 061

0.L32

0.831

5.85

-4.76

0.33

1. 33

2.75
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Table 14

Zeroth order calculation of FO-centers relaxed

state in the saddle-point configuration. a is

ionic spacing of the crystal.

even parity

the inter-

Fo (Na) FA (Li)

Yto

Yzo

rgo

o7o

v¡ (o ,r1g ,y 20,y 30)

\7'pI

fr,

T

g (o,rto ,Y20,Y 30,d7o)

(a)

(a)

(a)

(r/ a)

(ev)

(ev)

(ev)

(ev)

(ev)

0. 159

-0.098

0.072

0.967

6.22

-5.28

0,23

1. 56

2.73

0.148

-0. 061

0. 139

0.972

5 .82

-5. J/

0.22

1.57

2.24
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ions and the matrix elements of 9(A) are given explicitly in Appendix B.

There ¿1s ttvo rectangular coordinated systems involved in the saddle-

point configuration calculation. One is the unpriined system and the other

is the primed system (defect oriented) as in Fig. 2(b). l{e may obtain

the unprimed systern by rotating. the pri:ried system by an angle of 45o. In

order to use Kellermannts dynamical matrix, IVe have to do the calculation in

the unprimed coordinates but f^(ig¡) are easier to calculate in the primed

system.

Since the relationship of the tlo

Fl

Fl

coo

(
I

I

rdinat

ì-

'y

-

es system is

E"'l
)

_1
7;v¿

1

y¿

I
v¿

1

Y¿

cs.26)

(3.27)

(3.28)

(3.2e)

We have:

p=
x

E-
v

F=

lrt

" 
(lY *F')

_l

| (t,' - ,.,')
/2

Therefore, the solution of E in equation (2,62) is in the unprimed

coordinated systern. The results reported in Tables (15) and (16), the

displacement cornponents of the ions neighboring the FO(Na) and FA(Li)

center in KC1 in eyen a¡d odd parity relaxed states in the saddle-point

configuration respectively, are in the primed coordinates system. Tables

(15) and (16) cover all the ions shown in Fig. 2(b), plus the ions in the
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Table 15

Cartesian components of displacements of the ions

the FO(Na)-center in KCI in even and odd parity

states in the saddle-point configuration in units

perfect KCl nearest neighbor distance.

neighboring

relaxed

of the

10n

F.lNa) Center
n

odd parity even parity

1¡
(o ,; /2,o)

-l(o ,i ,/2,o)

(0,0,0)

1-(t,o,; /2)

(L,V2,o)

-1Q,i /2,o)

1-(0,; /2,/2)

-'l(0,i /2,- /2)

(0, fi,I nl
- -1(0 , -/2,i tz)

@ J,n/z,0)
(0,-3,ñ./2,0)

(0,0, 3rñ./2)

0,0.160,0

o,-0.094,0

0 ,0. 0ø6 ,0

0.017,0.006,-0. 053

0.050,0.056,0

0.026 ,-0.032 ,0

0,0.056,0.020

0,-0.041,-0.031

0,0.040,-0.013

o,-0.007,0.008

0 ,0. 055 ,0

0,-0.027,0

0,0.005,-0.025

0,0.161,0

0,-0.101,0

0,0.072,0

0 .02r,0 .007 ,-0 .032

0 .044,0 . 050 ,0

0.02r,-0.025,0

0 ,0.035 ,0. 030

0,-0.019,-0.039

0,0.028,-0.011

o,0.o05,o.ooB

o ,0. 048 ,0

0,-0.02r,0

0 ,0 . 004 ,0 .002
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Table 16

cartesina conponents of displacernents of the ions neighboring

the Fo(Li)-center in KCr in even and odd parity relaxed states

in the saddle-point configuration in units of the perfect

KCl nearest neighbor distance.

F^ (Li) Cenrer
n

ion odd parity even parity

(0,v2,0)

-l(0,i t/2,0)

(0,0,0)

0 ,0.I4 
.2,0

0,-0.069,0

0,0.134,0

0,0.151,0

0,-0:069,0

0,0. 140,0

't-
(L,0,; /2) 0.035,0.004,-0.041 0.040,0.00s,-0.019

1-
(L ,; /2 ,o) o . 06g, o . o4o , o o. 065,0. o3s, o

-'lQ,i/2,0) 0.021,-0.019,0 0.015,-0.009,0

@ ,, ,n ,,ñ.) o,o. os8 ,o.ozs o,o . os8 ,o .os4

@ ,+ ñ ,-,ñ.) 0, -0. 038 ,-0.042 0,-0. 0r7 ,:0.0s2

Q ,ñ ,þl o ,o.oz3,-o.ozz o ,o.or2,-0.024

--1(0,-r'2,i lz) 0,0.013,0.010 0,0.029,0.011

ç0,{,0¡ o,o.o41,o o,o.o37,o
t^

(0,-3 3,q o,-0.011,0 o,-o. ooz,o

(0,0, s !+) 0,0.005,-0.0r9 0,0.006,0.009
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two nearest planes parallel to the y' - zt plane which are immediately

adjacent to the Region I. The most important displacements are those of

the straddling positive ions and of the saddle-point ions. The impurity

ion Li+ or Na* at (0, /Z/2, 0) 5ilsmoves atong positive yr-axis a

dístance about 0.15 time the perfect lattice spacing, and the saddle-point

ionfollotvs it about the sarne amount for the FA(Li)-center, and about half

that distance for the FO(Na)-center. On the other hand, the host K"

ion' at (0, - JZ/2, 0), i.e. on the other side of the saddle-point move

outlard by about 0.07 and 0.09 nearest neighbor distances in FA(Li) and

FO(Na) respectively.

The results for the relaxed odd and even parity states are given in

Tables (17) and (18). The second-order corrected wave function has its

TocalLzation pararneter changed by 0.04 and 0.06 for odd and even parity

respectively, in units of reciprocal nearest neighbor spacing. This shows

how the wave function of the FO-center in the saddle-point configuration

responds to the lattice distortion. The relaxation energy is larger in

the case of the odd parity state than for the even parity state, as one

:night expected, for both fO(Na) and FA(Li)-centers. The splitting

between the odd parity state and even parity relaxed state is 0. 37 eY

and 0,32 eY for n^il,i; and Fn(Na) respectively. This separation is not
nÃ

enough to allol for the emissíon process for FA(Li)-center in the saddle-

point configuration, which is 0.46 eV. Therefore, we do not expect our

estimated emission energy to agree r,¡ith the experirnent, except possibly

in the order of magnitude. The calculation to be reported in the next

section shols that our model and approximation fails to describe the emission

process at all. Further discussion of this point will be deferred to

section (3.2c). Regarding the odd parity relaxed state in the saddle-



Table 1 7

Second order calculation of Fo-centers relaxed odd parity

state in the saddle-point conflguration. The total relaxed

state energy E (Ë,y' y 
2,y 3,d5) is given in equation (2. B8)

a is the interionic spacing of the crystal.

Fn (Na) F^ (Li)

(r/ a)

(a)

(a)

(a)

(ev)

(ev)

(ev)

(ev)

+0.81

0. 160

-0.094

0.076

-0.4s

3.2r

0. 04

2.76

0.79

0.r42

-0.068

0. 135

-0.48

2.75

0.06

2.27

v1

y2

y3

t -T_ Fô
a ^v

E (0,y
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2z

E (å,y

\/\¡ruì
L0'r 20,/ 30,e50r

let:
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I aDte 1ð

Second order calculation of Fo-centers relaxeci even

state in the saddle-point .onfìgurarion. The rotal
ç.f qfc ênêTov F(F v \/ \¡ ru I

a is the interionic spacing of the cïystal.

-^-ì +,,
P4t r vJ

relaxed

(2. BB) .

Fn (Na) F. rli)
AT

d.7

,l 1I

y2

'3

1 *'r
- 

Frf
L_

e [o,rto,Y29,y3g,d7c)

f "'FvÞ

Fl> v v 1¡ õ I
- \_zrl Itt 2tr 3t-7t

(r/ a)

(a)

(a)

(a)

(ev)

(ev)

(ev)

(ev)

0 .93

0.161

-0.101

0.072

-0.29

2.73

0.02

. AÀ

0.91

0. 151

0. 069

0. 140

-0 .34

1 1À

0.02

I .90

z-
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point configuration, it is 0.42 eY lower than in the vacancy configuration

for the FA(Li)-center. This means that the relaxed excited state is

stabilized in the saddle-point configuration, in agreement with the
. 11)experiment'^'. For the fO(Na)-center, the relaxed excited state in the

saddle-point configuration lies lower than in the yacancy configuration by

0.08 eV. This means that the relaxed excited state is also stabilized in

the saddle-point configuration for this center, which contradicts the

experimental result, wirere it is for¡rd to be stabilized in the vacancy

configuration by 0.09 eV. This result then indicates that our nodel and

approxinations are not generally accurate to better than a few tenths of

an eV, when dealing with the relaxed excited state.

(C) E¡rission Energy

It has been found experinentally that the emission process occurs in

the saddle-point configuration for the FA(ti)-center. Similar to the

absorption energy, section 5.1(c), we calculated the unrelaxed even parity

state in the presence of the distortion field of the odd parity state,

uinimizing the energy with respect to the even parity wave function para-

meter on1y. The result of the calculation is shown in Table (19), where

the superscripts (e), (o) refer to even and odd parity. The square bracket

in Table (19) means that a negative (rnphysical) result is obtained; i.e.

our even parity unrelaxed state lies higher than the odd parity relaxed

excited state in the saddle-point configuration. In order to understa¡rd

the origin of this discrepancy, r¡Ie re-exa¡uined our even-parity wave

firnction 06 in the saddle-point configuration. we observe that 06,

with only one variational parameter, fits its two charge-density lobes to

the two-wel1 potential in the relaxed even-parity state, but apparently
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Table 19

Enission energy (eV) of FA(Li) in KCl in the sadclle-point

configuration rvith contributions as given in equation (2.96)
lel I

lvhere À'"' is the r{ave function parameters of the un-

retaxe¿ even parity state made self-consistent ivith cr(oJg(o))-! 
)-

fal I

À\"J in units of reciprocal interionic spacing

a.o o6' ö6"

^ 

(e)

',, ," (o)
'L \¿

'öo lr

b;ß
cl

fo)-,u''J

ld, >r'6

.öo lurrl ôo'

<ö- lv -l ô->'b pl' 'o

_tr ,,r(o),,(o) r(e)'r
"n\b J|.¡ ,'\ Ju--

p rn ,, (ó) ., (o)..,
"n\v,|..,,.J

,o (o) r. g (oJ

å g("lt " . (o) " , (o) 
o. 06

,"r([(o),-{o),À (o),\(")' ) [0. 2o]

0.985

5.13

1.61

o.17

-4. 86

-2.0s

¿. tJ

-0.96

0.182

0.979

5.13

0.18

-4.81

-2.0s

2.75

-0.96

0.06

[0. 18]

0 ,362

0.931

5.13

1.55

0.17

-+.ó/

-1.98

2.75

-0.96

0. 06

10.131
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cannot do so well in the unrelaxed state, where the lattice distortion field

(3 ,U) is deterrnined by the relaxed odd-parity state, 0S. It needs more

than one variational parameter to adjust sirnultaneously the position and

sharpness of its two charge-density lobes to the two-well potential. We

therefore tried two other forms of two-parameters trial wave functions in

place of þ¿, in an attempt to deseribe the ernission process, nanely:-o

o6' = A6' (b2 * * ''' cosor,)

06" = A7' Ir - oç (-ß2 t'217

.a ,.exp L-c¿ r

)
cos-O r n

?

(3.30)

(3.31)

t)-)

exp ço2 "'2)

The results of the calculation (1ast two coh¡nn of Table. 19) show that the

above two trial wave functions, each having two variational paraneters

(b,c¿) and (ßra) Tespectively, are just slightly more feasible than ö0,

Lowering the energy by 0.02 eV and 0.07 eV respectively.

Seyeral. deficiencies of the ¡nodel may contribute to the failure to

describe this emission process. The most likely is the lack of flexibility

of the waye function. Secondly, the Condon approximation nay not apply in

this enission process. Thirdly, interaction of the excess-electron with

phonons, ild parity mixing of the wave function may occur, as in the RES

of the ordinary F-center in KCl. Ionic polarization nay also be important.

Further discussion of these points will be deferred to Chapter 4.

(D) Investigation of the Stability of the Saddle-Point Configuration

A preliminary investigation of the stability of the saddle-point

configuration has been made in the present work.

The question is whether the diffusing anion C1- will move out of the

y' - zt plane (Fig. 2Cb)). The procedure we have used is to evaluate

the defectts energy in zeroth order as a furction of displacement xf of
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the diffusi:rg [saddle-point) ion along the .xf -axis. for the FO(Na),

FA(Li) and ordinary F-centers, in KCl. That is, for a given value of xt,

we rninirnize the systemrs energy with respect to the odd-parity wave functionrs

localtzation parameter and rvitfr- respect to displacements along the yr-axis

of the trr¡o straddling cations. There is difficulty in the nr¡rnerical

calculation because the energy is such that it becomes a relativeJ.y sna11

difference betrveen very large nunbers for xr - 0.01, so that double-

precision accuracy is required ín the computation, and the results become

unreliable for xr < 0.01, though they are reliable for xt = Q.

The results are plotted in Fig. 7. For the FA(Li) and FO(Na)

centers in KCl, figure 7(a) and (h) respectively, apart from the vicinity

of xr= 0.01, there is a flat niinimum around xr = 0.1 times the ne¿rest

neighbour spacing. The difference in energy between xr = o (strict

saddle-point) and the flat ninimurn is about 0.02 eV. Accordingly, we

have carried out all the calculations in the saddle-point configuration

for xr = 0, because this configuration stil1 preserves the. reflection

syrnmetry rvith respect to the y' - zt and xr - y' plane for which it is

analytically much easier to calculate than rvith xt I 0. Furthernore, we

do not find that.our model and approxirnations are generally accurate to

better than a few tenths of an eV.

In the case of the F-center in KCl, Figure 7(c), apart fron the vicinity

xf = 0.01, the curve appears to be monotonic decreasing with increasing

å(r. lrle have calculated only up to xt = 0.3a because the calculation

becorne complicated beyond that due to the Born-N{.ayer repulsion and

displacenent of the two nearest C1- ions as rve1l as of the two nearest cations

and the wave function must be a11orr¡ed to displace i¡ the -xr-direction as r*e11, for
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Figure 7

The zeroth order odd - parity energy (ev) r(o)

as a function of the displacements of the saddle

point ions along xr - axis (see fig. 2(b)).

xf in units of perfect KCl nearest neighbor

distance.

(a) FR (Li) - center in KCl

(b) FR (Na) - center in KCl

(c) F - center in KCI
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a highly asfrnmetric saddle-point.

fn summary, I{e do not consider that the question of the saddle-point

configuration is settled. However, the results of Fig. 7 suggest that for
the Fo(Na) and FA(Li)-centers in Kcl, a value x' < 0.1 gives the

stable configuration ivith energy only slightly loler than that for xr = o,

while for the ordinary F-center, an asymmetrical saddle-point configuration

seems probable.

3.'5 Reori.entation Activation Processes

The reorientation activation eneïgy for both even and odd parity
states of the Fo-centers are analysed in Tabler(20), rvhere "d:"." is the

change :in total energy induced by harmonic relaxation of the lattice (to

second order). The total differences in Table (20) represent the activation

energies. For the even parity reorientation activation energy, the relaxed

states are relatively low-lying in both the vacancy and saddle-point

configurations. The agreement with the experirnent is rvithin 15%, the

theoretical result being 0.18 eV too high for Fo(Na) and 0.12 ev too high for
FA(Li). llle notice that the excess-electronrs kinetic energy T and ion

size conectj-on rises slightly in going from vacancy to saddle-point

configuration, but the point ion term rises considerably, and the lattice
defect energy VL(0, U) drops considerably,

For the odd parity state, our calculation predicts a relatively large

stabiTization energy of 0.42 ev for the FA(Li)-center, in the saddle-

point configuration, in qualitative agreement with experiment. The FO(Na)-

center is found experimentalTy to have a srnal1 positive reorientation

energy 0.09 eV, our theoretical results give a srna11 value of opposite sign

namely -0.08 ev. This discrepancy perhaps gives arr indication of ,'



Contributions (eV) to energy. differences

and odd parity relaxed states of the FR

Center

parity

.01 r lO'

<ôlvprlo>

<olvrslo>

vL (o 
'uo)

d.e

Table 20

between saddle-point (s.p.) and vacancy (vac.) configurations for even

center in KCl.

even

+1.56

-5.28

+0.23

+6.22

vac.

Fo (Na)

+I.44

-7 .LT

+0.08

+6.64

-0. 04

di ff.

Totals rtheor.

+0,12

+1.83

+0. 15

-0.42

-0.25

Experirnent

odd

+1.31

-4.67

+2 ,44

vac.

+2.68

'6.28

+0. 31

+6.62

-0.49

diff.

+1.01

+0.34

+6.23

-0. 4s

-r.37

+1.61

+L ,43

even

+I.25

+1.57

-5,37

+0.22

+5 .82

-0.34

FA (Li)

+2,76

vac.

+0. 03

-0. 39

+0.04

+L 43

-6.9s

+0. 08

+6. 39

-0. 08

diff.

+0.14

+1.58

+0.14

-0.57

-0.26

-0.08

odd

+0. 09

+1.33

-4.76

+0.33

+5.85

-0.48

+1.90

+2.64

-6.11

+0. 30

+6 .4I

-0.55

di ff.

+0. 87

-1.31

+1.35

+0. 03

-0.56

+0. 07

+1.03

+0. 91

+2.27 +2.69 -0 .42

oo
(¡¡
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the linit of accuracy of our roodel and approximation. IVe notice that the

odd parity excess-electronfs kinetic energy drops considerably in going

from vacancy to sâdd1e-poínt configuration, since the electron goes from

Iocaltzation near two positive ions adjacent to the vacancy, to 1ocali zation

in the rather shallorv double-ive11 potential of the saddle-point configuration,

and the wave function delocalizes somewhat. TLe point-ion potential rises

considerably and ion-size correction rises slightly and the lattice defect

energy drops considerably, in going from vacancy to saddle-point configura-

tion, as in the even parity case. Thus, the major difference betleen the

odd parity and even parity reorientation energy are the different behaviour

of the electronts kinetic energy, and the different effect of harmonic

(Region II) distortion, which lowers the even parity energy, but raises

the odd paríty energy

In order to understand the role of the impurity cations in the

activation process, r{e are going to cornpare rvith the resul-ts for the

ordinary F-center rvhich has been analyzed, by Brown and Vail(3f). The

theoretically estimated reorientation energies of ro(Na)-, FA(Li): and

ordinary F-centers in KC1 are analysed in Table (2I). Let r:s look

at the even parily states first (Table 21(A)). The contribution from the

harmonic distortion-(d.e.) energy is almost the same for all cases. The

same is true for the elect,ronrs kinetic energy and for the ion-size

correction. Regarding VpI, it is 0.57 eV lower for FA(Li) and 0,32

eV lower for FO(Na) than for the F-center. For V' it is 0.61 eV lower

for FA(L1) and 0.46 eY lower for FO(Na) tha¡ for the F-center. Thus,

we see that the irnpurity ion lolers the even parity activation energy of

the F-center through its effects on the lattice energy and on the point-

ion potential for the excess-electron about equa11y.
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Table 21

Comparison of the contributions (eV) to the

energies of roOa), FA(Li) and F-centers

(A) Even parity

reorientation activation

1n KLI.

FA (Li) Fo(Na) FA(Li)-F Fo(Na)-F

T

ç_pr

V,,

v' (o,u)

d. e.

0. 14

1.58

0. 14

-0.57

-0.26

0.12

1 .83

0. 15

-0.42

-0.25

0.09

2.LS

0.20

0 .04

-0. 25

0 .05

-.0.57

-0.06

-0.61

-0.01

0 .03

-0.32

-0 .05

-0.46

0

(B) Odd parity

FA (Li ) Fo(Na) FA(Li)-F FR(Na)-F

T

v_
pr.

V,,

V, (0,u)
L_

d. e.

-1.31

1. 35

0. 03

-0.56

0.07

-r.37

'1. 61

0. 03

-0. 39

0.04

-1.48

2.05

0.17

0. 06

-0.29

0.17

-0 "70

-0. 14

-0.62

0.36

0. 11

-0 .44

-0.14

-0.45

0.33
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.ì: .''

In the case of the odd-parity reorientation activation energy, the irnpurity

ion not only decreases the contribution from VpI and the lattice'defect
i,energy Vl but also increases the distortion energ'y of the lattice

(Tab1e 21(B)). Furthermore, the increases of the electronts kinetic energy

and the decreases of the ion-size correction are smal1 but not negligible.
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e cNe rusf oNs

We have applied the nodel and methods for point defects in general and

color centers in particular to study the Type I and Type II FO-centers jrn

KCl, and these have been described ful1y in previous chapters. Several

basic approximations are rnade in this calculation:

(1) Adiabatic approximation;

C2) Franck-Condon principle to describe the optical transitions;

(3) neglect of lattice dynami c effects;

(4) perfect lattice repulsive parameters for LiCl and NaCl have

been used for Li+ and Na* impurities in the KCI crystal;

(5) one parameter Gaussian localization with low order Legendre

polynonial for the trial wave functions;

(6) neglect of ionic polarizability

lrle used a variational nethod to locate the energy 1eve1s and calculate the

wave functions. Lattice distortion and lattice relaxation energy have been

treated rigorously by the -nethod of lattice statics, and the change of the

r,¡êvê.function paraneter due to distortion has been calculated self-consist-

ently.
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As we have discussed in chapter 3, our theoretical results only partially

agree with experiment: the theoretical values for the absorption energy

and ground state reorientation enerEy are in good agreement with experiment,

but the model a:rd methods fail to give the FA(Li) emissio:r energ-y or the

FO(Na) excited state reorientation energy. It is rve1l-knoir'n that the

RES of the F-center in NaCl type ionic crystals is very complicated. For

example, tlre RES may be diffuse and the wave functionofthe excess-electlon

may be a 2s-2p parr-ty nixture due to coupling rvith the longitudinal optical
(\)\ r<?'lphonons*"-'. Recently, Mollenauer et a1t""/ found experimentaTly that the

RES of KI is diffuse but not a parity mixture. In view of this conplexity, it
is perhaps not surprising that th-e present type of treatùent failed to give the

ernission ènergy in agreement with experimentQ4). Since the present model

is over-simplified for the RES of F-centers we have not estimated the

emission energy of the FO(Na)-centers in the vacancy configuration. In the

present calculation, we have resisted the temptation to mahe any kind of

enpirical adjustment to irnprove the agreement with experiment since it rvi11

cover the weakness of the ¡rode1 andmethods. It is one of the objects of

the present work to contribute to the undêrstanding of how current models

of ionic crystals describe the properties of defects and to suggest how

-l

the model and rnethods could be improved.

For the absorption process, the agreement of the FOr-absorption energy

with e4perirnent indicates that our model and methods are reasonable. As

far as FRt - FeZ absorption splitting is concerned, by examining the

electronic structure of the splitting and comparing it with other rvorks,

we conclude that the ion-size correction needs to be improved. An

improvenent of the BSG ion-size correction has been given by Bartra¡a and

rtl l
Gash\o'l who attempt to give the exact pseudopotential solution by using
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the Philips and Kleinma:r pseudopotential(20) .

the Cohen and Heine(tn) or",rdopotential is the

Horvever, it seems to us that

better fo:rm for the

variational procedure, since it is the optimum pseudopotential t,rith respect

to wave-function smoothness. Some transformation of this pseudopotential

may be possible to al1orv the use of the variational nethod with an accurate

treatment of the Cohen-Heine pseudopotential. Others types of corrections

for the ion-size correction have been girren by Martirro(34), öpik and Wood(35)'

a:rd lr{atthew and Green(36).

Ionic polarizatil-on can be incorporated through the she11 model(37) in

two r^Iays. First, both shell and core can be assumed to respond adiabatically

to the excess-electron. This has been done by Stoneharn and B"tt"u*(16).

The extension of Kellermannts dynamical natrix to include the shell model is

straightforward and has been done by Woods et aI(38). On the other hand,

it nay be more realistic to assume that only the ionic cores follol the

excess-electron adiabatic ally. The core-she11 displacernents would then be

treated as elements of À in the method of lattice statics. This has been

done by the author (ref. (39) section (3.3)) including the polarization of

only a few near neighbors in a preliminary analysis of the F-center saddle-

point configuration.

The failure tà dçscribe the e¡rission process for the FA(Li)-center in

the saddle-point configuration suggests that the electron-phonon inter-

action may be importafit. If the emission process for the FA(Li)-center

in the saddle-point configuration emits phonons simultaneously with the

photon, the emission energy rvi11 approach the difference between the

relaxed odd and even parity states in the saddle-point configuration.

This difference is equal to 0.37 eY and the experirnental emission energy

is 0.46 eY. A formulation to include the lattice dynanic effects in the
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l.attice statics treatment of the excess-electron defect has been developed

. r40)by Vail''-', but has not yet been applied. Another factor rvhich nay be

cesponsible for the failure to describe the enission energy is the trial

wave function. ltlore than one trial wave function pararneter is probably

necessary for the even parity state to fit in the relaxed odd-parity lattice

confì-guration. Furthermore, the center of the wave fr¡rction should not be

restricted to the origin since the defect lattice is asymmetric.

The fact that our method shows the stabilization of the FA(Li)-center

in the saddle-point configuration suggests that our treatment of the saddle-

point configuration is appropriate. Our theoretical results shoiv the

FO(Na)-center is weakly stabilized in the saddle-point configuration,

contrary to experiment, and the error is of the order of 0.2 eY. This may

arise largely from the use of perfect repulsive parameters in the defect

configuration, but other'factors may be equally important.

The calculations for the reorientation energy not only show the role

of the impurity ion in the activation process but also indicates that the

present nodel and methods can adequately describe

are well beloiv the. conduction band.

relaxed states which

In general, the accuracy of these calculations could be improved by

alloling for lower syffnetry in the relaxed states, by taki-ng account of the

off-axis property of the Li+ ion, and by including the possibility of Jahn-

Te1ler distortions. One may also irnprove the accuracy of the displacements

found for the distorted lattice by increasing the nurnber of allowed wave

->vectors q in the reciprocal space, that is, by increasing the nu¡nber of

unit cel1s per defect. In this way, the displacements of the ions farthest

from the point defect rvould not be affected by the defects in the adjacent

super-cells generated by the periodic boundary conditions.
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In conclusion, the results of the extensive study of the electronic and

ionic structuïe of the FO(Na) and FACLi) - centers in optical transitions

and reorientation processes lead us to suggest that the following improve-

ments to our nodel and nethods should be incorporated and systenatically

investigated, namely:

(1) a more precise ion-size correction;

(2) a more'flexible wave function;

C3) introduction of ionic polarization;

C4) introduction of electron-phonon effects;

(5) consideration of parity mixing in the relaxd excited states;

C6) consideration of configurations of lower syiüretïy.
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I

I

(A) Kellermannrs Dynanical Matrix

The dynamical matrix?2) D is a 6 x 6 rnatrix with the elements:

)l-l
I

"l

+2l
I

I

-lLJ

1l [' 'l [' 'l [' '1 [' '1 t'
.-l L. r-l L. ,) L* *l L* tl L,.

rl Ir rl Ii rl It zl ft z] l-1tttttttrrl
'l L' '-l L' ,J L* '..l L' ,) L'

'li"lft'li '1
z_l Lx zJ Ly z) Lz z)

f r rl It tl
f . ,)1, ,)

'1 l' '1, l' '1
.J [x yl Lx z)l' '1i'

lx xJ lx

1

I

[r \ frttl
l- x Y,_l _Ly

[' ] ['ltl
L 
. ,_l 

l_r

lr

l¡
t-lr
It,L-

lr
I
I

Lx

D=

zrTz,lf

2112
,l l,.

IL

zl fz
,|]1,.

;l l-,
"_l l_,.

,rl

1
v-l

2l12 2l
,Jl" ,-l

;l l; ;lIl
"_l l: '_l

;l l;
tl

, I l"_ll'

Ir
I

Lv

t-
l1l"
l_'

(A1)

(^2)
. -> c * í n" ì

^1 
q *[on' 

Je\
( o¡¡

t; k,

where

l'r t' jll=
[e s)

) A^& rvRoil sY
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where 4 is the force constant matrix. !
Hermitian. The contribution frorn different

so

I t k' I
L" ß J=

is syrunetric and

interactions to

of the unit cell. Thus we define:

=A+28

real, so it is

D are additive,

f t rl(c) f r k, l,*,
L. ßl .Lo 

ß l
(A3)

(As)

(A6)

(A7)

where superscripts (c) and (R) denotes the Coulomb contribution and

repulsive contribution respectively.

In the NaCl structure ionic crystal, the poûential energy of the

crystal can be written as

, ,(c) ,(R)0 _ 0.-, + 0r../ (A4)

and defíne

r f a
-t-aldr

AandBby

o(*) 
] 
"=^= 

*

t

where

)
e-A=-2v

,2(l

-dr

V=

{A cos 2nq* a

¡ r 2l(R)
ll=L0 g.t

^(R) 
IY Jr=a

Rrr(cl,a) = [

the volume

I I 
1(R)

cr .,J

^3zãs

¡.r , .(R)nrr(a,o) = | |¡lYrv¿

1(n)l=I

+ Blcos 2r1, a + cos 2nq, af) (A8)

¡11
ILcl R

for s/g (Ae)



^-

2,,^ 3-1n unl.ts oÏ e / l¿a ),

has been calculated bY

and for the contribution from Coulonb interaction,

Keller¡oann using the Ervald nethod. If tve tvrite

(A10)

(A11)

Then (AI) can be simplified as

Ct I (cl, ß)

cl¡ (s, ß)

in units of e

rl(c)
ßl

]t.,

=- |
L

-Tt-
=l

L0

'/ (ru

T

1

R

".ì

I

+

(
!= I

t

ttt

ctz

Rtt

p
"12

,,,

czz

Rrr I
I

Rl1 '
(Ai2)

Each term of (412) represents a (3 x 3) matrix,

1abel1ed by cl and ß; i. e. the elernents of Ctr.

(410), etc. Notice that equations (47) and (48) ,

(6.11) of Kellernann(22) , which was incorrect.
Deteïmining the number of allowed values of ä

The number of allowed values of 4 vectoïs means the number of unit

ce11s rvithin the boundaries which we take to repeat periodically throughout

an infinite crystal. It can be determined by the cyclic bor¡tdary condition.

If the unit cells are defined by å1, à2, àS and the volume which is

repeated periodieally is (Nfãf. Nrãrx N3ås), then the cyclic boundary
.t

condition requires

whose rorvs and colurnns are

are C,, (o, ß), equationrl -

differ in sign from equation

-+ ->
i 2T q ' N.ia.i

ê.rr=lv -t i = L, 2, 3.

hre use the reciprocal lattice to find the
+q specified by the above equation (413).

reciprocal lattice. Then, in the NaCl

of the rmit cel1 in direct space are:

(A13)

alloled values of the rvave vectors
-> -> -+

Let b1, b2, o3 detlne a

structuÌe, if the generating vectors



oR,

->
a1 = ro(0, 1, l),

-> ^r 1),à2 = toLI' U

a3 = ro(1, 1' 0).

Then the reciprocal vectors C4t ) 
"t"

-.| Ib, = 7i (-1, 1, 1),
o

+lb, = 7i (L, -1, 1),
o

+1b, = 7i (1, 1, -1).
o

herefore, the'al1owed values of ä which satisfy equation (413) are given

by

+ I Piti
q = L -- P1 = l, 2, ... Ni (416)

i=1 N.
1

So, each unit cel1 of the reciprocal lattice contains NrNrN, = N distinct
+ ( )')\

value of q. Keller¡nann'--' subdivided the range of the basic vectors of

the-reciprocal lattice into tenths. Therefore, lhe total nrmber of ät,
in the first Brillouin zone is 1000. lrJe rewrite equation (416) as

(A14)

(A1s)

(Ar7)t = I n, t, = 7|- (c*, ey, er)

where

9*=k2+kr-k,

9y=kg*kt-kz

9r=kIokZ-ks

(A18)



99.

The prinitive cell in A space is the truncated octahedron, which is the

first Brillouin zone od the f.c.c. crystal lattice with the boundary conditions.

q-- t q- + q- = + 3/2'x 1¡ 'z

o =È1'x

o =Jl'v

a-+1\{2- z t

(A1e)

(A2o)

Since the orthogonal transformations of the dynarnical matrix will leave its

eigenvalues invariant, we do the calculation only for those points which

lie in r/48 th of the first BrilLouin zone; that is, oniy in the region:

o79"5qrSe*:l
z

Q* o gy .* q, Íá

There are 48 points in ü space which satisfy the latter inequalities (A2O).

Each point has to be weighted appropriately according to the.number of

equivalent points in the whole of the zone. The total number of allowed

values of i vector is then 1000.

(B) Grouping of Ions for the Second Order Calculation

As we have described in chapter 2, instead of sunming over all ions in:
+ ^ .-> *rJ¿ì

f ql - f r) 1q"*[rJ
c-. 1,-l=) F^. |,_le \"r (81)crtK) " oIK)

L

We group together those ions which haye equal values of F^, f:j.. ïheO TKJ

equation (BX) can be written as
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iL
0l

-àrq I
G f l=Id,t,lL\K/m

and I uu'/ is
0t

group of m. In

each group mr

+

rqlGll=0lt(la ,m

LlüJ - I.t' I0[

rl,t\-+->,t
Lt r iqoxl I.'f 

^-- --tk 
).lK/

a sum oyer all values of Lt rvhich corresponci to a single

this appendix, the explicit form of the rnatrix element of

ID¿)

(83)ç (n)
L
ol

( L') i õ . i I 
u' 

ìF^ t te \k ),
\l( )

are given for the relaxed ground state, the FRI relaxed excited state in
the vacancy configuration, rvhich has the same grouping as the ground state,

and the odd-a¡rd even-parity relaxed states in the saddle-point configuration.
->

^ ,q.9(il), is a 6 x 1 column matrix, whose first three elements are the x, y, z

components of S Cflr" of the anion *(k = 1) and the last three elements

are the x, L z components of g (i)," of the cation (k = 2).

(i) Fo-Centers Ground State and Fo, Relaxed Excited State in the Vacancy

The following fifteen groups of ions are included in the sunmation of

equation (Bi)

group 1

group 2

group 3

group 4

group 5

group 6

group 7

group 8

(0, 1, 0)

(1,0,0) (0,0,1),

rn î nr
Lv ¡ r ¡ u.J

(1,1,0), (1,1,0),

(1,1,0), (J, r,01,

(1,0,1), (1,0,1),

Cl,1,1), (1,1,1),

Cl,i,1), (1,1,1),

(0,0,1), (1,0,0)

(0, 1,1) ,

(0,i,1),

[1,0,I) ,

C1,1,1),

(.1,1,1),

(0,1, l)
(0, 1',1')

(r ,0, 11

(1 1 iì
\ I 

' 

¿ 

' 
I-'

Ll.rlrlJ
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group I (0 ,2,0)

group 10

group 11

group 12

grouÈ 13

group 14

(2 ,o ,o) , (2, o, o) , (o ,0 ,2) , (0,0, 2)

(0,2,0)

(7 ,2 ,0) , (l ,2,0), C0, 2 ,r) , (O ,Z ,17

(2,r,0) , (2,r,0) , (o ,r,2) , (o ,r,2)

(7,2,0) , (1 ,2,0) , (O ,2,r) , (o,2,11

group 15 C2,1,0) , ç2,1,0¡ , (0,1,2) , (0,1,2)

The explicit form of the matrix of gCtl for each group, except group

1, rvhich is included in Region I, is shown below:

Fx(1,0,0,) (i sin qra)

g(â), = z (84)

G(ä)3 = (Bs)

L

sín q*a)

soa+cosoa)'x 'z'

Fx(1,o,o) (i

Fy(1,0,0) (co

0

0L

0

Fy(0,1,0) (cos qra - i sin qra)

0

0

0

0
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r I
0

0

cG)o= z

G(i), = z

.0

F*(1,1,0)[- sin (c*a¡ sin[qra)

FyC1,1,o)[cos(tra) {cos(q*a) +

{cos (e*a¡

Fx(l,1,0)I- sin(qra) sin(qra) +

i

Fx(t,I,o) [sin(qra)

+ i cos(Cr")sin(q*a)l

cos (qra) Ì+i sin(eua;

cos (qra) Ìl
cos (qra) sin (qra)1

(86)

0

0

0

Fx[1,i,0) [sin(qra) sin(q*a) * i sin(qxa) cos(qra)

Fy(1,1,0) Icos qra (cos q*a + cos qza)

sin(qra)(cos q*a + cos gra)J

sin(qra) + i sin (lr^1 cos
I

(c.,r"¡ ¡ 
¡,)

CB7)
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0

0

c(ã)6 = 2

0

Fx(1,0,1) (i)[sin(q* * 1r)a + sin(q* - er)aJ

,0,1)[cos(q* * gr)a + cos(Q* - l)aJ

Fz(I,0'1) Ci) [sin(q* * 9")a - sin(q* - C")aJ

(88)
?

I r*Cr,1,1)[-sin(cra){sin(q* * ¡r)a + sin(q* - er)a}

+ i cos(Cra¡{sin(q* * \")a + sin(q* - Ar)a}l

Fy(l,1,1) [cos(cra){cos(q* * gr)a + cos(C* : 4)a}

+ i sin(Cr"¡{cos(q* * 9")a + cos(g* - qr)a}]

,1,1)[- sin(tra){sin(q* * 1r)a - sin(q* - 4)a}

+ i cos(Cra){sin(q* * 9r)a - sin(e* - Cr)a}]

Fy (1

Fx(1

->
G(q), -2

I
I

I
L

0

0

0

cBe)
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o(t), = ,

F_x(1,1,r11ç.sin

rr(r,1,r1¡6cos

F*[1, r, r) [ (sin

Fy(0,2,0){cos

ey" * i cos Qra) sin(qx + qz)a + sinCg*-l")al

Qy" - i sin Qyu) {.ot (qi * 9.r)a + cos (q*-qr)a}l

Qy. * i cos Qya){sin(qx + qz)a - sin(q*-e")a}¡

0

0

0

0

0

0

cB10)

(811)

s(i)e =

0

Czqr^) i sin(zqr^)l

0
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0

0

c(ä)ro = ,

0

FxC2,o,0) (.i) sin[2 q*a)

Fy(2,0,0) lcos 2 Q*" * cos 2qra)

FxC2,o,o) (i) sin CZq"a)

0

0

0

0

I

(812)

(813)

c(d) rr =

c (ä) 
re

Fy(o,2,0) [cos(2qr) - i sin(2Qy")] 

|oJ
1

Fx(1,2,0)[{-sin(Zqra) sin(q*a)} + i cos(2qra) sin(q*a)] 
|

Fy(1,2,0)lcos(2qr^) (cosq*a + cos q"a)

+ i sin(2qr^) (cos q*a + cos e"a)-]

Fx(.l,2,0)l-sin (2q.vu)sinCq"a) + i cos LÀqva) sin[qra)]

0

0

0

=l

(814)
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l*Q,1,0)I- sin(qra) sin(2q*a) + i cosCCra) sin(2q*a)l

Fy(2,1,0)[ cos (errl ]cos 2q*a + cos Zq"rJ

+ i sin(tr")(cos 2q*a + cos zqzr)J

c(t)rs = 2 Fx(z ,1,0) [- sin (qra) sin(2qra) + i cos (Crr¡ sin (2q"a) ]

0

0

0

cBls)

Fx(1,2,0)l{sin(zqr^) + i cos (zqr^)} sin q al

e(â)u = z

Fy(1,2,0¡ [{cos (2qr^) - i sin (zqr^)} (cos Q*. * cos qra)]

Fx(1,2,0)[{sin(2qr^) + i cos (zqr^)} sin qra]

0

0

0

cBl6)
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Fx1z,î,011¿sin

,r(, ,i, o) [ ¡cos

F *(2 ,Ì, o¡ ¡ (si_n

qa

qa
I

v4
I

+1

+i

+i

0

0

0

cos qra) sin C2qxa)l

sin qra)'{cos(2q*u)

cos qra) sin(2qra)J

+ cos (zq"a)IJ

c(ä)rs =

(817)

(ril Fo-center, 
"lrun 

and odd parity relaxed státe in thé säddlê-poinr

configúration

The folloruing 35 groups of ions, , expressed in the unprimed coordinate

systen (Fig. 2(b)) , ar:e included in the surnrnation of equation (81):-

group 1

group 2

group 3

group 4

group 5

group 6

group 7

group 8

group 
.9

group 10

group 11

(0, 4, -4)

(0,- -%, ,,)

(0, 0, 0)

(I, ,á, ,4) , (-I, ,4" ,4)

(7, -'4, -'4J, (-1, -'4, -U)

(7, '4, -'4) , (-L, ,4, -U)

(r, -'4, '4), .(-r, -%, lr)

(0, 3/2, -2)

c0, *3/2, -%)

CIr'4, 3/2)

(0, +, ^3/2)
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sroup t2 Co; s/2, -rr)

group 13 CO, ^3/2, 1)

group 14 ill, ,4r-S/Z)

gronp 15 (0, -t, 3/Z)

group 16 (t, s/2, -r4), (-1 , Z/2, -r4r)

group 17 (I, %, -3/2), (-I , ,2., -3/2)

group 18 (t, -S/2, ,r), C-1, -3/2, t4)

group 19 (7, -r4.,3/2), (-I, -U,3/Z)

group 20 (L, -,4, -3/Z), (-1 , -h, -S/2)

group 21 (7, 3/2, Lr), C-1, 3/2, 14)

group 22 |.I, ,4, 3/2) , C-1, ,4, 3/Z)

group 23 tL, -S/2, -r.â), (-1 , -3/2, -r4)

group 24 (0, 3/2, -3/2)

group 25 (0, -3/2, 3/Z)

group 26 (0, S/2, S/Z)

group 27 iil, -S/2, -S/2)

group 28 (2,'4, t4), (-2, ,4, ,á)

group 29 (2, -'.r,, ,4), (-2, -%, Þ")

group 30 C2,,4, -4), (-2, r", -r¿)

group st (2, -\, -14) , C-2, -r4, -r4)

group 32 C7, 3/2, -3/Z), (-1 , 3/2, -S/Z)

group 33 (1, -S/2, 3/Z), C-1, -S/2, 3/2)

group 34 (7, S/2, 3/2), (-1 , 3/2, 3/2)

group 35 (I, -S/2, -S/2), C-l , -S/2, -S/2)
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The explicit forn of the ¡atrix of gCA) for
groups Ir 21 3, which are included in Region I, is

F.LI,'e,1<) l-sin qla
qa

{sin (_J¡-
2

.oâ
{cos (J- a

G (ð)o =z

F,,(7,Lr,\) [cos q_ ay'x

F ,(\,>r,%)lcos q- a

2

qä
{cos (J- *

2

0

0

0

qa
+-J

2

Qa
+

2

qa
- )+
2

qa
-_J+

2

qa

2

qa

-J+r2

each group, except

shown below:-

q..a q-a 1- i cos¡J- + -l ll:l221
q.,a q-a 

Ii sin(J- * " )]l I))l
Iq,,a q-a Ii sin(J- + --¡11 |221
I

I

I

I
I

I

I

J

(818)

qa I
;:-:-) ]l 

I,T
Qa Ija_ )]l I)l

q-a 
I:ì]l 
I2l
I

I

I

I

I

I

II

Scil, = ,lrre,-14,-4)[cos q*a{"or¡Jt". -" lL -x 
z

Fx (1, -4,-%) Isin

Fy(r,-r4,-%) [cos

..-O â.r'.\/
9*at -s rn

2

-qa
?-tV

9*atcos ( '
2

..:O â
icos('Y,

2

-oa
sin (-J- -

2

-qa
sin ¡J_ -

2

(B1e)
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G(i)6 =

G(i) 7 =

-N) {sin

-ta,ra) lsin

qa
9*a{-sin P-

2

qa

2

qa

2

.qa
__J+

2

.qar\t
L cos L-¿--

2

QA-^v1 Sl_n[' -

oa- '' )]l
2

qa
-?-¡ 11-!) lcos

I
I

,l

l'*" 
'''

l""'''
lr , (t ,re,

L-

-ra,ta) leos

-t",Lr)lcos

t
I

I

I

I

I2l
I

l'* "'
I

I 
r,, {r,

I

I r, cr,

L"

qa
q-a{cos ('L4z

r.\r-- r ,9y^-'4) Lcos q--atcos (---x2

22
qa oaLa

i sin(' - =-)]l
22

(820)

0

oa.r'V
Qxa tstn L-î

lqa
r¿'Yqxatcos en- *

-qa.?,'v
Q*atcos t-2- +

qä
? 

-¡

)J

9ra -Q.,â
-Z-) + i sin ?ï

4"^ - .-9u't) + i sinG*

+ i cos( :
qa'v_T

qa
, '¿ \ìl- -¿:ttJ

qa
. *ttl
QA

*ttt

(821)
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s(a)8 =

["., ,s¡2,'e)r
;ióq-a

cos É
2

3ö'á¡^
COS [--

2

0

.3q a'y(0 ,-3/ 2, -!) [ cos CJ
2

z(0,-3/2,-!) [cos ,l.
2

3g-a q-a
sin(- ^ + 3-¡¡

22
3Çr q-a

sin (-- *- + - =-¡¡
2)

qaz 
¡1

2

39,,ê q-a
sin(J-- + J--¡¡

22

0

qa

2

;^vé

2

0

0

0

+i

+1

-l_
qal

-l

.,

.3qa
sin (J- ,.

2

(822)

(823)

qa
.a\

'_J - 1
2

ccä)e =



t72.

0

Fr(,,r,,J/2)[cos Cl¿ . g, 
+ i sin,l¿ . 1¿r,

2222

Fr(0,'z,B/2)[cos(5¿ . g; + i sinå¿ . 1å,
2 2 2 z--

G(c)ro =

0

0

0

c (i)rr =

l-o
I
I

frr,o,-r, 
-s/z),.",,T .Y),- i sin rT.Y¡

I

f 
trco ,-'e,-s¡z7t"o.¡li " 

t'+) 
- i sin,3¿. lt¡

12222I

I

lo
Il.
I

lo
L

(.Bz4)

(B2s)
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0

0

->
gtqJ12 =

Fy(o ,3/2,

0

0

3q..á
-%) Icos

2

3öä
-!) [cos r.-'Y

2

qà

)

9rA
- -)

2

qa
-'21+

2

qa
*'r)

2

3qá qa
sin(-J- - j-li

22

3q a .q a
sin(--Z- - 3-ll
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(C) Block Diagran for the Coml¡utational Work for the Relaxed State

The function of this appendi-x is to srrnnarize the co:nputational work

for a relaxed state, which has been discussed in the text. (sections

5' 1 [A), 3.1 (B) , 3.2(A) , 3.2 (B) ) . Except for the ninimization progran which

has been'obtained frorn Harwell (p. 49) , the program for g-1Cd'l ruhich was

supplied by Dr. R.J. Broln and nodifiedby the author for Tosirs single

exponential parameters, a¡rd the built-in subroutine for the error function

in the IBll 360/65 computer (p. 43), the author l.rad to develop the rest of

the prograrns hi-nself. The fturction of the ninimization program is to find

a minimun of a function of several variables. The user must supply initial

approximations to the values of the variables at the rninimum, and a sub-

routine to evaluate the function for any values of the variables. The

function of the [tCäl pïogïain is to calculate and invert Kellermann's

dynamical matrix. In the block diagram, Figure 8, the function of Block D

is to calculate the displacemenr coefficienr, f*Cfl/Fo(l). The Fourier

transform pïocesses of equation (2.80) and (2.71) are calculated here.

The input for Block E is the displacement coefficients from Block D,

matrix elements from Block B, and zeroth order solution of u , À from

Block A. The function of Block D is to calculate E by the perturbative-

iteration procedure as indicated by equations (2.82) - (2.83), It essen-

tially just multiplies the displacement coefficients by ¡^,Cll. First, we' cL 'K-

set F=Io asineqution(2.82) andthenset F=lo*C.E(o) asin

euation (2.83), where ,(o) is given by equation (2.g2). The iterative

procedure substitutes the updated value ã(1) into equation (2.8g) for
- lo)E'-' and proceeds until convergence is obtained, i.e. untit trt¡o consecutive

esti:nates of f, differ by less than 0.001 ti¡nes the perfect lattice



!¿o.

Figure B

Block Diagran for the computational work for the Relaxed state
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spacing. A¿ of equation

are evaluated in Block F.

(2.63), À1.,. of equation (2 .64) . 1 -TAno ; .t'o
L_


