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ABSTRACT 
 

It has been proven that the external environmental noises affect the human mental health and 

performances of works. To avoid these detrimental effects, different passive and active noise 

control system had been developed. Moreover, the focus on active noise control has been increased 

because of availability of efficient circuits and computational power. However, most of the active 

noise cancellation systems are based on traditional modelling with limited efficiency. However, in 

this study, I propose a deep learning based active noise cancellation system which can perform 

well under different environmental noises. It has been shown in this study that the performance of 

the proposed methodology is superior to traditional and machine learning based models. 
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Chapter 1. Introduction 

 

Increased environmental noise is detrimental to human health, causing increased blood pressure 

and long-term memory loss (Stansfeld and Matheson, 2003). Gupta and Ghatak (2011) noted that 

higher noise levels can cause insomnia, irregular heart rate, and speech-related problems. The main 

sources of environmental noise include airplanes, mining, electric transformers (Zhao and Liang, 

2016), construction sites (Suter et al., 2002), and construction machinery (Kwon and Park, 2016). 

In order to cancel noise, Kwon and Park (2016) proposed an active noise cancellation system for 

a construction site. This study shows that the system can cancel the noise generated by heavy 

equipment (i.e., earth augers and dump trucks). 

To avoid the negative effects of excessive noise, researchers have proposed ideas for both 

passive noise cancellation (Ross and Burdisso, 1999) and active noise cancellation (Gonzalez and 

Ferrer, 2003). Passive noise cancellation is an isolation of the space from external noises. This 

isolation can be achieved by using a design that absorbs noise and vibrational energy (Denenberg 

et al., 1992). Marburg et al. (2002) used structural-acoustic optimization to control environmental 

noises. Other than structural modification, materials such as soundproofing foam, mass loaded 

vinyl, and acoustic fabric can be used. 

On the other hand, active noise cancellation is the cancellation of external noises by 

producing anti-noises (Denenberg, 1992). This type of noise cancellation takes advantage of 

destructive interference (Denenberg, 1992), which cancels the noise waves with waves of the 

opposite phase. Researchers have proposed different types of active noise cancellation methods, 

such as adaptive feed-forward active noise cancellation (Elliott and Nelson, 1983) and feedback 
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active noise cancellation for ducts (Tichy and Warnaka, 1983). Each of these methods uses 

different approaches to generate the anti-noise to cancel external noises. 

As an adaptive/hybrid feed-forward system, Elliott and Nelson (1983) proposed a finite 

impulse response (FIR) filter using a filtered-x least mean square algorithm to generate anti-noises. 

This algorithm considers the secondary path [i.e., the path traveled by anti-noises from the point 

of origin (i.e., the noise cancellation speaker) to the error microphone]. The filtered-x least mean 

square algorithm is the most popular algorithm because of its simplicity. However, the algorithm 

does not work efficiently in certain environments where noises are nonstationary. Some methods 

have been proposed to overcome the limitations of this algorithm; for example, Rey and Bitmead 

(1991) introduced the “importance leakage” concept to calculate the weights of the FIR filter to 

address the stalling problem of the filtered-x least mean square algorithm. Hesselbach and 

Hoffmeister (2009) applied a recursive least mean square algorithm and a filtered-x least mean 

square algorithm to control the vibration noises in a wood machine. Hesselbach and Hoffmeister 

(2009) claimed that the algorithm could successfully reduce the noise amplitude due to vibration 

by 30 dB. Chang and Chen (2010) provided the applicability of the adaptive genetic algorithm in 

the field of active noise cancellation. The author mentions that this algorithm addresses the 

limitation of the filtered-x least mean square algorithm being stuck on the local minima while 

converging the weights for the FIR filters. 

Even though the aforementioned algorithms are simple, they are ineffective in cancelling 

complex noises. Traditional machine learning methods were used to overcome this drawback. 

Chen and Chiueh (1996) proposed multilayer perceptron (MLP) based active noise cancellation. 

Na and Chae (1997) applied the Elman recurrent neural network for active noise cancellation. Na 

and Chae (1997) showed that Elman recurrent neural network with 22.35 dB noise attenuation 
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performed better than MLP (20.83 dB noise attenuation) and filtered LMS (14.35 noise 

attenuation). These traditional machine learning-based approaches also only work well for noises 

coming from a specific environment; they are not adaptive to different noises that were not used 

to train the model, and they only work well in narrow-band noises. 

Introduction of deep learning have opened up the possibility of addressing the limitations 

of traditional machine learning-based noise cancellation methods. It is possible to train machines 

to learn very complex nonstationary patterns and behaviors since big data and computational 

power are available (Deng and Yu, 2014). Deep learning models have been successfully deployed 

for damage-detection tasks using computer vision images (Cha et al., 2017; Cha et al., 2018) and 

one-dimensional time series data (Cai and Pipattanasomporn, 2019; Wang and Cha, 2020). There 

are some deep learning-based active noise cancellation methods, but the performance must be 

improved for them to be robust methods that can be used in versatile environments. 

 

1.1 Problem definition 

In past few decades, researchers have shown the importance of noise cancellation and how it can 

improve the cognitive behaviour of human beings. Moreover, because of restriction on structural 

and economical limitation, the focus shifts towards the active noise cancellation. Because of the 

complex acoustic behaviours of the environmental noises, the traditional models have limitations 

to work well under those conditions. To avoid the negative effect on the people and to cancel out 

unwanted noises efficiently, a new active noise cancellation method is needed. 
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1.2 Research objective 

The main objective of this study is to create a deep learning network that can produce anti-noises 

effectively and efficiently for the noises coming from the vehicles, construction cites and airplane 

cockpits. Due to highly nonlinear and nonstationary characteristics of the noises, possibility of the 

implication of a new deep learning network is explored in this study. The model performance must 

surpass the previous algorithms used in the field of active noise cancellation. Moreover, specific 

objectives of this thesis are as follows: 

1. Developing a deep learning network to create the efficient anti-noise model. 

2. Study the behaviour of the model when is deployed in the new environmental noises.  

3. Fine tuning of the hyper-parameters of the proposed approach, so that it can work well in 

many types of noises. 

4. Comparative studies with existing machine learning and deep learning-based approaches. 

 

1.3 Methodology 

In order to generate effective anti-noises, a deep learning network as one of active noise 

cancellation methods is proposed. The role of deep learning is to produce anti-noises to cancel 

unwanted noises in many different environmental conditions. The proposed deep learning network 

is based on the feature extraction using a one-dimensional (1D) atrous convolution, casual 

convolution layers, recurrent neural network, etc. Exponential rates of 1D atrous convolutional 

layers are used to determine the atrous rate for each layer. These features then were fed into a 

recurrent unit which then is followed by dense layers. Different activation functions are used after 

the convolution layers. This deep architecture of the model enables to learn more invariant features 
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from the data set and provides the more detailed spatiotemporal information. A detailed 

explanation about the proposed deep learning network is given in the Chapter 3. 

 

1.4 Thesis organization 

Following are the chapters including: 

• Chapter 1 includes the introduction to the problem statement along with brief on the past 

studies done in the same field. Research objective and short methodology descriptions are 

also included in this chapter. 

 

• Chapter 2 includes the review of the literature for active noise cancellation. Detailed 

explanation of active noise cancellation systems and algorithms is provided in this chapter 

along with the drawbacks of those methods. 

 

• Chapter 3 provides detailed explanation of the proposed method. Details of the different 

components of the deep learning network are explained. 

 

• Chapter 4 describes detailed information on the database providing for different noises. 

 

• Chapter 5 describes the training and testing of the proposed method using various noises. 

Hyper parameters of the method are explained in this chapter. 

 

• Chapter 6 provides comparative studies of the performances of the proposed method and 

the models proposed by other researchers. 
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• Chapter 7 describes the summary, and conclusion of the study. Limitation and future scope 

are also discussed in this chapter. 
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Chapter 2. Literature Review 
 
 
Environmental noise can adversely affect human performance, making people prone to more 

mistakes (Nassiri and Monazam, 2013). To control environmental noise, many studies have been 

carried out, including active noise control and passive noise control. Active noise control includes 

secondary sound sources, such as speakers, which take advantage of destructive interference to 

control noise in the surrounding environment (Kuo and Morgan, 1999). These secondary sound 

sources produce sound waves or vibrations having the same amplitudes but opposite phases as that 

of the noises to cancel them out. On the other hand, passive noise control systems include noise 

absorbers, dampers, barriers, or similar items. However, these external materials make the 

structures heavy and hinder the working space (Liu and Lee, 2006). To reduce costs and to meet 

other structure-related constraints, such as weights and dimensions, active noise cancellation is 

preferred. This section covers an extensive review of active noise control systems and algorithms. 

 

2.1 Active noise cancellation systems 

A typical active noise cancellation (ANC) system consists of the primary noise source and an anti-

noise signal generator, such as a speaker, along with noise measurement sensors, such as 

microphones. The system produces an anti-noise signal by inputting the noise from noise 

measurement sensors to a digital controller and then to an anti-noise generator such as a speaker, 

actuator, or other device (Kuo and Morgan, 1999). The selection of sensors to capture the noise 

plays a critical role in the efficacy of these system. 

The suitability of the noise measurement sensors depends upon the nature of the primary 

noise source. Non-periodic and nonstationary noises are usually measured by microphones, while 

harmonic and repetitive noises are measured by tachometers (Kuo et al., 2000). Active noise 
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cancellation systems can be broadly classified into feed-forward ANC systems, feedback ANC 

systems, and hybrid ANC systems. A detailed explanation of these systems is given in the 

following sections.  

 

2.1.1 Feed-forward ANC system 

A feed-forward ANC system takes advantage of the reference signal coming directly from the 

primary noise measuring sensor placed near the primary noise source. Feed-forward ANC systems 

can be differentiated into broadband and narrow-band ANC systems. The broadband feed-forward 

ANC system consists of a primary noise sensor (e.g., a microphone), an anti-noise signal generator 

(e.g., a speaker), and a digital ANC controller. The reference sensor is placed near the primary 

noise source, as shown in Figure 2-1. G(z) and S(z) are the z-transforms that change discrete time 

signals to a complex frequency-domain representation. When the primary noise signal x(n) travels 

through the environment G(z), the environment modifies the incoming signal x(n). The path 

followed by the signal from the primary noise source to the primary noise sensor is known as the 

primary path. Similarly, when the anti-noise signal travels through the environment S(z), it is 

modified. This path from the anti-noise generator to the error sensor is called the secondary path. 

Figure 2-1 shows a feed-forward ANC system. The signal x(n) of primary noise passes through 

environment G(z) which changes it into p(n). The anti-noise signal y(n) passes through S(z), which 

converts it into h(n). The error e(n) is the remaining noise that the user hears. This feed-forward 

approach cannot address the actual remaining error noises, and it only works well in known 

environments. 
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Figure 2-1: Broadband feed forward ANC system 

 

 However, a narrow-band feed-forward ANC system is useful for harmonic or periodic 

noises, which are easy to predict in future noise patterns. In this type of system, the primary noise 

sensor is replaced by a non-acoustic sensor (i.e., a tachometer) (Kuo et al., 2000). The anti-noise 

signal is generated based on the electrical signal coming from the non-acoustic sensor. The 

availability of only driving frequency is what limits the applicability of this system to periodic 

noises. 

 

2.1.2 Feedback ANC system 

Feedback ANC systems are different from feed-forward systems in the way they use error noise 

measuring sensors, as shown in Figure 2-2. The error, which is the sum of the primary noise signal 

and the anti-noise, is inputted into an ANC controller to generate anti-noises to cancel the error 

noises. The anti-noise signal is generated from the error signal e(n), which is captured using a 

microphone. This is done with a single microphone, making the system more compact. The 

advantage of this approach is that the ANC controller can adjust to the remaining error noises if 

we can develop an advanced ANC controller. Furthermore, we do not need clear environmental 

information regarding the primary and secondary paths.  
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Figure 2-2: Feedback ANC system 

 

2.1.3 Hybrid ANC system 

A hybrid ANC system is the integration of feed-forward and feedback ANC systems. 

Therefore, it uses a primary noise sensor and an error noise sensor together, as shown in Figure 2-

3. It is the most efficient method of ANC, but it requires two sensors. Digital filters are traditionally 

used as feed-forward ANC controllers, receiving the primary noise signals and converting them 

into anti-noise signals based on the filter coefficients. These filter coefficients are calculated using 

different adaptive algorithms, such as the least mean square. Infinite impulse response (IIR) 

(Shynk et al., 1989) filters and FIR (NagaJyothi and SriDevi, 2017) filters are the most popular 

digital filters. 
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Figure 2-3: Hybrid ANC system 

  

In the past few decades, adaptive algorithms have been used in feedback and hybrid ANC 

controllers. The idea behind almost every adaptive method is to minimize the error by tuning the 

weight/filter coefficients of the controller. The most simplest form of adaptive method being used 

in the field is the least mean square (LMS) algorithm. There are some traditional adaptive 

algorithms. The filtered-X LMS algorithm (Bjarnason et al., 1995) was developed to consider that 

there are some components of the system that cause frequency and phase distortion of the anti-

noise signal from the adaptive filter to the error microphone. To counteract the effect of the 

secondary path, an inverse filter is introduced between the reference signal and the LMS algorithm 

(Kuo and Morgan, 1996; Douglas et al., 1999; Larsson et al., 2011). This algorithm is most 

commonly used in the application of ANC because of its simplicity and lower memory 

consumption. 

A leaky filtered-X LMS algorithm addresses the instability caused by finite arithmetic 

precision due to very small updates (Tobias and Seara, 2002; Cartes and Ray, 2002). The problem 

is corrected by eliminating a small part of the weight updates by implementing leakage with the 

gradient descent algorithm. 
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2.2 Machine learning-based ANC controllers 

Chen and Chiueh (1996) provide the applicability of multi-layered neural networks in the field of 

ANC. A multi-layered neural network uses stacked layers of neurons to approximate the function. 

Each layer of neurons is connected to another layer by a set of weighted connections. Along with 

these weighted connections, a bias is added to improve the prediction of the network. The set of 

weights is adjusted using back-propagation through a training process. Updating the set of weights 

depends on the cost function used to evaluate the performance of the multi-layered neural network. 

A stochastic gradient descent algorithm (Ruder et al., 2016) can be used to optimize the network 

parameters. The advantage of the algorithm is that it keeps moving in the direction of a negative 

gradient.  

Researchers have shown the efficacy of the Elman recurrent neural network in system 

identification and temporal prediction (Jaeger et al., 2003; Li and Ho, 2005; Coulibaly and 

Baldwin, 2005). The Elman recurrent neural network (Elman et al., 1990) consists of weighted 

looped connections. These internal hidden-layer looped connections, known as the recurrent layer, 

help the network to possess short-term memory. Therefore, these networks are used to extract the 

features and patterns from past data to predict the new system. Temporal supports come from the 

recurrent layers in Elman neural networks, and this support makes these networks more useful in 

series classification and prediction (Toha and Tokhi, 2008). The number of recurrent layers follows 

the number of hidden-layer neurons. Each neuron is connected to neurons in another layer using a 

set of weighted connections. Na and Chae (1997) have shown the application of an Elman recurrent 

neural network for a single-sensor feedback ANC system. It has been shown that the 

aforementioned network outperforms the traditional methods. The Elman recurrent neural network 
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achieved 22.35 dB of noise attenuation, whereas the filtered-x LMS algorithm achieved only 14.35 

dB, for noise from a moisture removing machine.   

Convolution neural networks (CNNs) have been successfully applied in the domain of 

image-based object recognition (Krizhevsky and Sutskever, 2012; Iandola and Han, 2016) and 

natural language processing (Britz et al., 2015). Recently, researchers have started to apply these 

CNN architectures to predict and classify time series data (Zhao and Lu 2017). CNNs use 

convolutions over time stamps (Fawaz and Forestier, 2019).) 

A number of filters can be applied to the input data to change the univariate time data into 

multi-variate. This multi-variation of the data helps a CNN to extract the features to classify or 

predict the time steps (Fawaz and Forestier, 2019). A CNN overcomes the limitation of single filter 

usage in a multilayer perceptron (MLP) network, which limits the ability of an MLP to generalize. 

In addition to convolution layers, different operations can be performed, such as max pooling, to 

control the spatial dimensionality (Aloysius and Geetha, 2017). These layers can help the network 

to learn well with fewer parameters. Toward the end of the network, the max pool layer is flattened 

and connected with a dense layer to generate the output. Long short-term memory (LSTM) is a 

one of the types of recurrent neural network (RNN) that includes a memory unit. This type of 

LSTM network addresses the problem of the vanishing gradient or gradient blow-up present in the 

Elman recurrent neural network (Hochreiter and Schmidhuber, 1997). Researchers have shown 

that LSTM works well by remembering long data for prediction problems (Fu and Zhang, 2016; 

Duan and Yisheng, 2016). An LSTM memory unit consists of a gate mechanism to control the 

flow of information. Gates can either let the information pass through or stop it, and they consist 

of pointwise multiplication with sigmoid activation functions. A typical LSTM unit is composed 

of an input gate, a forget gate, a cell state, and an output gate. The input gate regulates the passing 
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of incoming information to the LSTM unit. The forget gate decides if the LSTM unit needs to be 

kept or discarded. The cell state stores the important information in the LSTM unit. The output 

gate determines the next hidden state of the LSTM unit. The past hidden state and current state are 

passed through an activation function.   

 Park and Patterson (2019) applied an LSTM for active noise cancellation along with 

Convolution neural networks, Recurrent neural network and MLP. Park and Patterson (2019) used 

a simple LSTM unit with 20 input neurons. The results of this study show that the LSTM results 

closely mimic the results of an MLP, as LSTM is highly dependent on long-term temporal 

dependencies, but the input is relatively short. Based on these recent studies, a new deep learning-

based active noise cancellation algorithm is proposed to improve the performance of the ANC 

controller. The detailed method is described in Chapter 3. 
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Chapter 3. Methodology 
 

This chapter includes a detailed explanation of the proposed deep learning-based active noise 

cancellation system. Section 3.1 explains the schematics of the implementation of the proposed 

method in the active noise cancellation system. The remaining sections explain the proposed 

method and initialization of the hyperparameters. 

 

3.1 Overview of proposed method:  

In order to effectively cancel noises, a hybrid deep 1D atrous convolutional and recurrent neural 

network (ACRN) based active noise cancellation (ANC) method is proposed, as shown in Figure 

3-1. In Figure 3-1, S(z) is the z-function that represents the secondary environment due to 

secondary path environments, x(n) is the source of the noises, h(n) is the anti-noise generated by 

the ACRN, y(n) is the final anti-noise applied, and e(n) is the remaining noise error. 

 

 

Figure 3-1: Block diagram of proposed feedback ANC system 

 



 16 

 

3.2 Proposed architecture 

The proposed ACRN architecture is inspired by the Wavenet architecture (Oord and Dieleman, 

2016) for generating speech purposes and DaNSe (Mishra and Basu, 2019) for electricity load 

forecasting purposes. The details of the ACRN are illustrated in Figure 3-2. It is carefully designed 

by integration of traditional convolutions, atrous scaled convolution (ASC) modules [composed of 

1D atrous convolution, a scaled exponential linear unit (SeLU), and pointwise convolution], a 

recurrent neural network (RNN), and dense layers to generate anti-noise signals. The ASC modules 

use 1D atrous convolution to expand the receptive field without increasing computational cost and 

to extract multiple levels of invariant features from the input data. The RNN is used to capture 

spatiotemporal information of the noises. To avoid the problem of a vanishing gradient, 

skip/residual connections are provided from one block to another. He and Zhang (2016) suggest 

that residual connections can make network optimization easier and can boost accuracy.  

 

Figure 3-2: Proposed deep ACRN model 
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 The ASC module is concatenated, as shown in Figure 3-3. The extracted multi-level 

features are then fed into recurrent neural units along with the skip connections from the traditional 

convolution to avoid loss of low-level features. The recurrent cells in the RNN performs the 

recurrence and captures temporal information of the input data. Output from each residual unit is 

then feed-forward into the fully connected layers to predict the anti-noise needed to cancel noises. 

The details of each operator are explained in the following sections. 

 

 

Figure 3-3: Developed ASC module 

 

3.2.1 Convolution operation: 

The convolution layer is the main building block of traditional convolution neural networks 

(CNNs). The hyperparameters required for a typical convolution layer are the number of filters 

and the filter (i.e., kernel) sizes. The mathematical meaning of the convolution is the dot product 

using the filter, which has learnable parameters through the training process of the proposed 

network. These convolution layers mimic the response of the visual cortex when subject to 

different patterns (Chalkiadakis et al., 2016; Jogin and Madhulika, 2018). The main advantage of 

the convolution layer is spatial and local connectivity. The spatial and local connectivity is 
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maintained by convolving smaller filters over the input channels and then passing the output to the 

next neuron or filter. 

The filters possess the ability to extract the features from the input data. For example, a 

filter of size 32×32 has 1,024 trainable parameters. The initial values of these filters are randomly 

assigned. If the size of the filter is 1×1, it is called a pointwise convolution. The number of features 

extracted from a given input data series is dependent on the number of filters. The process of 

convolving the filters over the input refers to superimposing the filter on top of the input and 

calculating the dot product of the overlapping area, as shown in Figure 3-4. After one convolution, 

the filter moves one pixel to the right or down depending on the array of the input data and then 

performs the dot product again. The number of pixels that a filter moves is expressed as stride 

value. The size of the output feature map can be mathematically given in Equation (3.1). 

𝑂𝑂 =
𝐼𝐼 − 𝐾𝐾
𝑆𝑆

+ 1 (3.1) 

where O is the size of the feature map, I is the size of the input, K is size of the filter, and S is the 

stride size. Figure 3-4 shows the 2×1 filter convolving along the input data of dimension 5×1 with 

stride 1.  

 

Input (5×1) Kernel (2×1) Feature map (4×1) 
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Figure 3-4: Casual convolutional operation 

 
3.2.2 Atrous convolution:  

In order to cancel existing noises, an inverse noise pulse should be generated. The inverse noise 

signals can be predicted by the proposed deep ACRN controller. Noise prediction is dependent on 

the previous noise data points. To predict the likelihood of the data point x(t) at time t, a 1D atrous 

convolution is used. Figure 3-5 shows the schematic view of atrous convolution with rates of one, 

two, and four. These rates of filter convolution reduce the computational cost and increase the 

output speed.  

 

Figure 3-5: 1D atrous convolution 

 



 20 

The exponential growth of the dilation rate gives the exponential growth of the receptive 

field without increasing the number of computations. In the proposed method, the dilation rate for 

each dilated layer is given in Equation (3.2). Each dilated layer is then followed by a non-linearity.  

𝑑𝑑 ∈ {20, 21, 22, … . , 2𝐿𝐿−1}, (3.2) 

where 𝑑𝑑 is the dilation rate and L is the number of stacked ASC modules. The output feature maps 

from the 1D atrous convolution can be mathematically described in Equation (3.3) (Borovykh and 

Bohte, 2018). 

𝑧𝑧𝑙𝑙(𝑖𝑖, ℎ) = � �𝑤𝑤ℎ
𝑙𝑙 (𝑗𝑗,𝑚𝑚)

𝑀𝑀𝑙𝑙−1

𝑚𝑚=1

𝑓𝑓𝑙𝑙−1(𝑖𝑖 − 𝑑𝑑. 𝑗𝑗,𝑚𝑚)

𝑗𝑗=∞

𝑗𝑗=−∞

 
(3.3) 

 

where  𝑧𝑧𝑙𝑙(𝑖𝑖,ℎ) represents feature maps from dilation,  d is dilation rate, 𝑓𝑓𝑙𝑙−1 is the input feature 

map from the previous convolution, 𝑤𝑤ℎ𝑙𝑙 (𝑗𝑗,𝑚𝑚) is the filter weights, and 𝑀𝑀𝑙𝑙 is the number of 

channels. 

 

3.2.3 Recurrent neural networks: 

Recurrent neural networks (RNNs) are mostly used for their faster convergent capabilities to map 

non-linear prediction (Wang and Fang, 2016). A RNN captures the temporal information of the 

data by making recurrent connections. A simple recurrent unit has a loop to preserve the 

information over time. Figure 3-6 shows a traditional recurrent unit. In Figure 3-6, 𝑥𝑥0 is the input 

at time step 𝑡𝑡=0 and ℎ𝑡𝑡 is the output of the unit at the same time. Apart from computing the output 

at each time step, the hidden state of the unit (𝐹𝐹) is also calculated. Then this hidden state at time 

𝑡𝑡=0 is passed to next time step at time 𝑡𝑡=1. The hidden state from the previous hidden state is 

connected consecutively to next hidden state by set of weights. Equation 3.4 shows the 

mathematical form of recurrence relation related to each time step. 
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𝐹𝐹𝑡𝑡 = Ϝ(𝐹𝐹𝑡𝑡−1, 𝑥𝑥𝑛𝑛) (3.4) 

where  𝐹𝐹𝑡𝑡 = hidden state of the unit, 𝐹𝐹𝑛𝑛−1 = hidden state of the previous unit, 𝑥𝑥𝑛𝑛= input at time 

step 𝑡𝑡, Ϝ = function set by weighted connections.  

 

 

Figure 3-6: Traditional recurrent unit. 

 

  

Equation 3.5 represents the calculation of hidden state and Equation (3.6) output from a 

recurrent unit.  

𝐹𝐹𝑡𝑡 = tanh (𝑥𝑥𝑛𝑛.𝑈𝑈 + 𝑊𝑊.𝐹𝐹𝑡𝑡−1), (3.5) 

ℎ𝑡𝑡  =  softmax (𝑉𝑉.𝐹𝐹𝑡𝑡), (3.6) 

where 𝑥𝑥𝑛𝑛 = input at time ‘t’, 𝑈𝑈 =  the weights of input to hidden cell, 𝑊𝑊 = the weighted hidden 

state, 𝐹𝐹𝑡𝑡−1 = the previous hidden state, and 𝑉𝑉 = the weight of hidden cell to output. 

 

3.2.4 Fully connected layer: 

Fully connected layers shown in Figure 3-7 are sets of neurons connected to each other, similar to 

in an MLP. The connections are composed of a set of weights that are updated through back-
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propagation in the training process. The features from the previous layers are flattened down to a 

single vector.  

 

Figure 3-7: Example of fully connected layers 

 

 

3.2.5 Activation function: 

In the proposed architecture, two non-linear functions, a rectified linear unit (ReLU) and a scaled 

exponential linear unit (SeLU) are used. The following is the detailed explanation of these 

functions. 

ReLU:  is comparatively easy to train, mathematically defined in Equation (3.7), and 

visualized as shown in Figure 3-8(a). 

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = � 0 ;   𝑖𝑖𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢 ≤ 0
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ; 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 > 0 (3.7) 

Considering the close resemblance of ReLU to linear functions, they are easy to train using 

gradient-based optimizations. Unlike other nonlinear functions, such as sigmoid and tanh, it does 

not have the problem of gradient saturation. Most convolution neural networks use this activation 

function. Another main advantage of the ReLU is its sparsity (Nair and Hinton, 2010). The output 
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will be zero when the input is less than or equal to zero (Figure 3-8(a)), which makes some neurons 

inactive. These types of dead neurons make the model more concise and less overfitted to the data.   

  

(a) ReLU function (b) SeLU function 

Figure 3-8: Activation functions 

 

 

SeLU:  can be mathematically defined in Equation (3.8). 

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝜆𝜆 �𝛼𝛼𝑒𝑒
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝛼𝛼 ;   𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 0

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ;              𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 > 0  (3.8) 

Figure 3-8(b) shows the graphical representation of SeLU. This function mimics ReLU when the 

input is greater than zero. However, when the input is less than equal to zero than the output is 

defined by two parameters ‘𝛼𝛼’ and ‘𝜆𝜆’. The values of 𝜆𝜆 and 𝛼𝛼 are given as 𝛼𝛼 = 1.6733, 𝜆𝜆 = 1.0507 

(Klambauer and Unterthiner, 2017). This function converges the weights towards zero mean and 

unit variance. Because of scaled output SeLU is very robust and can be trained on the many deep 

layers.  
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3.2.6 Skip connections 

In order to address the problem of the accuracy saturation and degradation, skip connections were 

introduced (He and Zhang, 2016). The model needs to learn a mapping function ℵ given input 𝑥𝑥 

as shown in Equation (3.9). Figure 3-10 shows the ASC module from the proposed architecture of 

ACRN. 

ℵ(𝑥𝑥) = 𝑦𝑦 (3.9) 

 

 

Figure 3-9: Skip connection 

 

These skip connections help the model to take advantage of difference between the ℵ(𝑥𝑥) 

and 𝑥𝑥 given in Equation (3.10). 

ℵ(𝑥𝑥) = ℱ(𝑥𝑥) + 𝑥𝑥. (3.10) 

He and Zhang (2016) state the optimization of ℱ(𝑥𝑥), which is the function estimated by nonlinear 

layers, is easier than that of ℵ(𝑥𝑥). 

Four ASC modules are selected after casual convolution with one filter and kernel size of 

2. Tanh activation is used for casual convolution along with a bias. Table 3-1 shows the parameters 

used for the ASC modules. Zero padding is used to maintain the data size from convolution layers. 
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A dropout of 10% was used for the fourth atrous convolution layer to avoid overfitting. Two 

recurrent units are used, followed by two dense layers with 18 units plus ReLU activation and 1 

unit plus linear activation. The total number of trainable parameters is 444. 

 

 Table 3-1: Parameters for ASC module  

1D atrous convolution layers # of filters Size of filter Rate Activation 

Layer 1 10 2 1 SeLU  

Layer 2 20 2 2 SeLU 

Layer 3 30 2 4 SeLU 

Layer 4 40 2 8 SeLU 

 
3.2.7 Filter weight initialization 

The weights of filters are initialized from a Gaussian distribution having standard deviation 

between specified values and mean of zero. In order to make the results reproduceable, a random 

number generator was fed with the constant seed of 2019. In order to reduce the overfitting and 

better generalization, 𝑙𝑙2𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 in Equation (3.11) was applied on the kernels (Cortes and 

Mohri, 2012). 

𝑙𝑙2𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜆𝜆�𝑤𝑤𝑖𝑖
2

𝑛𝑛

𝑖𝑖=1

 (3.11) 

where 𝜆𝜆 is a regularization parameter and 𝑤𝑤𝑖𝑖 is 𝑖𝑖𝑡𝑡ℎ weight. 

 

3.2.8 Loss function: 
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A mean square error (MSE) was used as a Loss function in the suggested model to train the 

proposed ACRN. It is mean squared absolute difference of target and predicted values. Equation 

(3.12) shows the formula for MSE. 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁
�|𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐾𝐾 − 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐾𝐾|2
𝑁𝑁

𝐾𝐾=0

 (3.12) 

where 𝑁𝑁 is number of data points. 

Because we are using the mean squared difference of absolute values, the bigger weight 

changes were applied to the bigger errors. MSE is considered more suitable than mean absolute 

error for a dataset that is closer to zero (Hyndman and Koehler, 2006). 

 

3.2.9 Network optimizer 

To optimize the tunable parameters of the network, an ADAM optimizer (Kingma and Ba, 2014) 

is used. ADAM is a combination of the RMS prop (Tieleman and Hinton, 2012) and stochastic 

gradient descent with momentum (SGDM) (Qian et al., 1999). The optimization of the network is 

based on calculating momentum by moving average and correcting learning rates using the 

gradient squares. 

The loss function as 𝐸𝐸𝑤𝑤,𝑏𝑏 and gradient descent of mini batch for weights ‘𝑤𝑤’ and bias ‘𝑏𝑏’ 

is given in Equations (3.13-15), respectively. 

 

𝐸𝐸𝑤𝑤,𝑏𝑏 = 1
𝑁𝑁
∑ |𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡|2𝑁𝑁
𝐾𝐾=0  

𝐸𝐸𝑤𝑤,𝑏𝑏 = 1
𝑁𝑁
∑ |𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐾𝐾|2𝑁𝑁
𝐾𝐾=0  

 

(3.13) 

For individual data set,   
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𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 2. 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.
𝜕𝜕
𝜕𝜕𝜕𝜕

|𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒| (3.14) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 2. 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.
𝜕𝜕
𝜕𝜕𝜕𝜕

|𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒|. (3.15) 

 

The ADAM optimizer uses these mini batch gradients to calculate the moving average and 

squared gradients. The mathematical representation of the moving average gradient and squared 

gradient for mini batch ‘j’ is given in the Equation (3.16) and Equation (3.17).  𝛽𝛽1 and 𝛽𝛽2 are 

hyper-parameters having values of 0.9 and 0.999 (Kingma and Ba, 2014). 

𝑚𝑚𝑗𝑗 = 𝛽𝛽1𝑚𝑚𝑗𝑗−1 + (1 − 𝛽𝛽1) 
𝜕𝜕𝐸𝐸𝑗𝑗
𝜕𝜕𝑤𝑤𝑗𝑗

 (3.16) 

𝑣𝑣𝑗𝑗 = 𝛽𝛽2𝑣𝑣𝑗𝑗−1 + (1 − 𝛽𝛽2)
𝜕𝜕𝐸𝐸𝑗𝑗
𝜕𝜕𝑤𝑤𝑗𝑗

2

 (3.17) 

 

Bias corrections on the estimators 𝑚𝑚′
𝑗𝑗 and 𝑣𝑣′𝑗𝑗 are performed using the Equation (3.18) (Kingma 

and Ba, 2014). 

𝑚𝑚′
𝑗𝑗 =

𝑚𝑚𝑗𝑗

1 − 𝛽𝛽1
𝑗𝑗  

𝑣𝑣′𝑗𝑗 =
𝑣𝑣𝑗𝑗

1 − 𝛽𝛽2
𝑗𝑗  

 (3.18) 

Finally, the weight updating with learning rate 𝜂𝜂  and 𝜀𝜀 =  10−8 is given as follows: 

𝑤𝑤1 = 𝑤𝑤0 − 𝜂𝜂
𝑚𝑚′

1

�𝑣𝑣′1 + 𝜀𝜀
 

𝑤𝑤2 = 𝑤𝑤0 − 𝜂𝜂
𝑚𝑚′

1

�𝑣𝑣′1 + 𝜀𝜀
− 𝜂𝜂

𝑚𝑚′
2

�𝑣𝑣′2 + 𝜀𝜀
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𝑤𝑤3 = 𝑤𝑤0 − 𝜂𝜂
𝑚𝑚′

1

�𝑣𝑣′1 + 𝜀𝜀
− 𝜂𝜂

𝑚𝑚′
2

�𝑣𝑣′2 + 𝜀𝜀
− 𝜂𝜂

𝑚𝑚′
3

�𝑣𝑣′3 + 𝜀𝜀
 

𝑤𝑤𝑗𝑗 = 𝑤𝑤𝑗𝑗−1 − 𝜂𝜂
𝑚𝑚′

𝑗𝑗

�𝑣𝑣′𝑗𝑗 + 𝜀𝜀
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Chapter 4.  Network Training and Testing 
 

To train and test the proposed deep learning-based ANC, various noise data were established. 

Using these data sets, various parametric studies of the proposed method, including training and 

testing, are reported in this chapter.  

 

4.1 Established datasets  

To measure the performance of the model, four different types of noisy environments were 

considered: airplane cockpits, a vehicle interior, a military vehicle interior and construction sites. 

Noise data from the last three environments were collected from the online data repository Signal 

processing information base (SPIB, 2020). Details of the noise data sets from these environments 

are as follows:  

• Airplane cockpit noise data from various flights. The sounds were analyzed with the help 

of a NTiXL2 sound level meter with a type-1 NTi microphone. The sounds were recorded 

on a number of flights using an M-Audio data recorder, and the data extracted from these 

flights were divided into a number of small data sets named Flight1, Flight2, Aero1, Aero2, 

Aero3 and Aero4. Figure 4-1 shows the data used for the training. 

• Vehicle interior noise (Volvo 340): This data set was gathered while the vehicle was being 

driven at 140 km/h on an asphalt road in the rain. This noise data was recorded with a ½″ 

B&K condenser microphone and stored on a digital audio tape (DAT). 

• Military vehicle noise (Leopard): The noise samples were recorded using a ½″ B&K 

condenser and stored on DAT. The microphone was mounted on a Leopard-1 traveling at 

70 km/h. 
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• Construction/cutting and welding noises: The noise sample included noises coming from 

plate cutting machinery and welding equipment. The samples were collected using a ½″ 

B&K condenser microphone. 

Table 4-1 presents the nine training and nine testing noise datasets generated from the original 

four noise data sets, and Figure 4-1 shows the time history for each data set. For the training data 

sets, Flight1 (10,000), Flight2 (10,000), Aero1 (5,000), Aero2 (5,000), Aero3 (5,000), Aero4 

(5,000), Volvo (2,000), Construction/Cutting (2,000) and Leopard (2,000) samples were selected. 

The data sets were normalized within the range of 0 and 1 during the training. Flight1, Flight2, 

Aero1, Aero2, Aero3 and Aero4 were sampled at a sampling rate of 44.1 kHz, whereas Volvo, 

Construction/Cutting and Leopard were sampled at a rate of 19.98 kHz with 16-bit precision.  

 
Table 4-1: Established data sets 

Data Training samples Testing samples Samples per input 

Flight1 10,000 4,937 20 

Flight2 10,000 4,937 20 

Leopard 2,000 1,937 20 

Volvo 2,000 1,937 20 

Aero1 5,000 4,957 20 

Aero2 5,000 4,957 20 

Aero3 5,000 4,957 20 

Aero4 5,000 4,957 20 

Construction 2,000 1,937 20 
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(a)  Flight1 

 

(b) Flight2 

 

(c) Leopard (SPIB, 2020) 

 

(d) Volvo (SPIB, 2020) 

 

(e) Aero1 

 

(f) Aero2 
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(g) Aero3 (h) Aero4 

 

(i) Construction/ Cutting (SPIB, 2020) 

Figure 4-1: Noise training data sets 

 

4.2 Tuning model hyperparameters 

To configure the optimum hyperparameters for the ACRN model, a number of possible models 

were tested. The effects of the learning rate, dropout, optimizers and learning rate decay on the 

model losses were studied, and the hyperparameters were selected for the final network based on 

the studies described below. 

 

4.2.1 Effect of learning rate 

A learning rate highly affects the convergence of the algorithms based on back propagation 

(Wilson and Martinez, 2001). To investigate the effect of learning rate on the model, four learning 

rates, 0.001, 0.01, 0.05 and 0.1, were selected. Because of the complex nature of noise, a learning 

rate of 0.001 was initially selected, and the effects of the other parameters were studied using this 

learning rate. Figure 4-2 shows the model losses for the different learning rates. Model loss 1 

corresponds to a learning rate of 0.001, and model loss 2, model loss 3 and model loss 4 correspond 

to 0.01, 0.1 and 0.05, respectively. 
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Figure 4-2: Model training losses with different learning rate 

  

Figure 4-3 shows the effect of learning rate on the training loss. The training data sets were 

used to calculate the training loss. The highest training loss was observed when a learning rate of 

0.05 was selected. The training loss corresponding to this learning rate was 0.026200. However, 

the other learning rates provided remarkably less losses, as shown in Table 4-2.  
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Figure 4-3: Effect of learning rate on training loss 

 

 
Table 4-2 : Learning rates with training loss 

Learning rate Training loss 

0.001 0.000053 

0.010 0.000058 

0.100 0.000052 

0.050 0.026200 

 

4.2.2 Effect of dropout 

Dropouts were introduced in the model to avoid overfitting (Srivastava and Hinton, 2014). Three 

different dropout rates were selected: 0.1, 0.5 and 0.9. This meant that there were 1 in 10, 1 in 2 

and 1 in 1.11 chances that a node would be excluded from each weight update cycle. Figure 4-4 

shows the effect of dropout rate on training loss. 
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Figure 4-4: Effect of dropout on training loss 

 

 

  As seen in Table 4-3, a dropout rate of 0.1 corresponded to less training loss compared to 

dropout rates of 0.5 and 0.9. 

 

 Table 4-3: Dropout with training loss 

Dropout Training loss 

0.10 0.000053 

0.50 0.000060 

0.90 0.000054 

 
4.2.3 Effect of learning rate decay 

To investigate the effect of learning rate on the model, four learning rates of 0.00001, 0.0005, 

0.001 and 0.1 were selected. You and Long (2019) suggested that learning rate decay can help a 

network learn more complex data. Figure 4-5 shows the plot of training loss versus learning rate 

decay.  
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Figure 4-5: Effect of learning rate decay 

 

 Table 4-4 shows that the lower the decay rate, the lower the lower the training loss. The 

best result was yielded by a learning rate decay of 0.00001, corresponding to a training loss of 

0.000053. 

 
 Table 4-4: Learning rate decay with training loss 

Learning rate decay Training loss 

0.000010 0.000053 

0.000500 0.000056 

0.001000 0.000080 

0.100000 0.008457 

 
 
4.2.4 Effect of optimizer 

To select the best optimizer for the network, four network optimization methods were studied. 

Figure 4-6 shows the results of Adagrad (Duchi and Hazan, 2011), RMSprop (Tieleman and 
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Hinton, 2012), SGD (Qian et al., 1999) and ADAM optimizers in terms of training loss. ADAM 

outperformed the other three optimizers; it was the fastest and required much less fine tuning. 

 

Figure 4-6: Performances of optimizer on training 

 

  

Table 4-5 shows the training loss corresponding to the optimizer type. The best result was 

yielded by ADAM, with a training loss of 0.000053. 

  Table 4-5: Optimizers with training loss 

Optimizer Training loss 

ADAM 0.000053 

SGD 0.005573 

RMSprop 0.000096 

Adagrad 0.008057 

 

4.3 Training of network and model loss for flight1 dataset  

The training was performed using 10,000 samples and 100 epochs. The training data set was 

divided into 9,781 training samples and 219 validation samples. A batch size of 100 was selected 
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to speed up the process. The training was performed on a GPU (TESLA K80, NVIDIA) with 12 

GB available RAM. The time taken for each epoch was 3 seconds. The training and validation 

losses both flattened after 95 epochs. However, a slightly declining loss was still observed at 100 

epochs. The training mean square error at epoch 100 was 7.4460e-05, with an accuracy of 0.0019, 

as shown in Figure 4-7. Moreover, the mean square error for the validation data set at the same 

epoch was 5.4184e-05. The other data sets were similarly used for training and prediction. 

 

Figure 4-7: Training loss curve 

 

4.4 Testing results 

Testing samples Flight1(4,937), Flight2(4,937), Leopard(1,937), Volvo(1,937), Aero1 (4,957), 

Aero2 (4,957), Aero3 (4,957), Aero4 (4,957), and Construction/Cutting (1,937) were selected to 

test the model. This testing was also performed on a GPU (K80) with 12 GB available RAM. These 

samples were never used by the model during training. Figure 4-8 shows the outputs of the 

proposed method with the inputs and residual noise. 

 
 

Input noise Anti-noise generated Residual noise 
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(i) Construction 

Figure 4-8: Proposed model outputs and residual noises 
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Chapter 5. Comparative Studies 

In order to conduct comparative studies to investigate the performances of the proposed ACRN 

model, four different algorithms were selected: normalized least mean square (NLMS), multi-

layered perceptron (MLP), long short-term memory (LSTM) and convolution neural network 

(CNN). These algorithms, proposed by different researchers for ANCs, were used as benchmarks 

for the comparisons carried out in this study.  

 
5.1 Normalized least mean square algorithm   

To measure the performance of the NLMS algorithm (Dixit and Nagaria, 2017), a convergence 

controlling factor of 9.094947017729282e-13 was selected, and the number of taps selected for 

the Finite impulse response (FIR) was 20. Weight updating was achieved using Equation (5.1) as 

follows: 

𝑤𝑤(𝑛𝑛 + 1) = 𝑤𝑤(𝑛𝑛) + 𝜇𝜇(𝑛𝑛). 𝑥𝑥𝑓𝑓(𝑛𝑛). 𝑒𝑒(𝑛𝑛) (5.1) 

 
where 𝜇𝜇(𝑛𝑛) is the learning rate; 𝑤𝑤(𝑛𝑛) is the filter weight; 𝑥𝑥𝑓𝑓(𝑛𝑛) is the input sample and 𝑒𝑒(𝑛𝑛) is 

the error, which differs between the prediction and target value. Figure 5-1 shows the output of 

the NLMS algorithm. 

Input noise Controller output Residual noise 
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(f) Aero2 
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(h) Aero4 

   

(i) Construction 

Figure 5-1: Normalized least mean square (NLMS) algorithm outputs. 
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5.2 Multi-layered perceptron 

The MLP was used to predict the nine noise datasets. The MLP architecture (Park and Patterson, 

2019) is composed of 20 input unit layers followed by 20 hidden units and one output layer, as 

shown in Figure 5-2. Linear activation and tanh activation functions were used as the activation 

functions for neurons. The incoming training noise was normalized within the range of 0 and 1. 

 

Figure 5-2: Multi-layered perceptron (MLP) network. 

 

The training was performed using 200 epochs and a batch size of 100. The training and 

testing were performed on a GPU (TESLA K80, NVIDIA) with 12 GB available RAM. The input, 

output and residual noise are presented in Figure 5-3.   
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(i) Construction 

Figure 5-3: Outputs of MLP network. 

 

5.3 Long short-term memory  

An LSTM network with 20 inputs, 20 hidden states and one output (Park and Patterson, 2019) was 

selected, as shown in Figure 5-4.  

 

Figure 5-4: LSTM network. 

 

Tanh activation and linear activation functions were used for the hidden layer and output 

layer, respectively. A similar batch size of 100 and 200 epochs were selected for the data set, as 

explained in chapter 4. Data normalization was performed on the data set. A GPU (TESLA K80, 
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NVIDIA) with 12 GB available RAM was used to train and test the network. Figure 5-5 presents 

the input noise, controller output and residual noise. 
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(i) Construction 

Figure 5-5: Outputs of LSTM algorithm. 

 

5.4 Convolution neural network 

A CNN with one convolution layer, four filters and a kernel size of 1 × 5 was used. The tanh 

activation function was used for the convolution layer, and zero padding was used to keep the 

output size the same as the input size. A max pooling layer was applied after 1-D convolution, and 

the selected pooling size for this layer was two. The output from the max pooling layer was 

flattened and passed to a dense layer consisting of forty neurons, and this layer output one 

prediction as anti-noise sample. Figure 5-6 shows the CNN architecture proposed by Park and 

Patterson (2019).  
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Figure 5-6: Architecture of the CNN 

 

To train the network, a GPU (TESLA K80, NVIDIA) with 12 GB available RAM was 

used. A batch size of 100 was selected for training the network with the ADAM optimizer. The 

output, input noise and residual noise are presented in Figure 5-7. 
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(i) Construction 

Figure 5-7: Outputs of CNN algorithm. 
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5.5 Evaluation metrics 
 
To compare the performances of the four different ANCs, three evaluation metrics were used: 

noise attenuation, root mean square error (RMSE) and number of trainable parameters.  

 
5.5.1. Noise attenuation 

Noise attenuation is a representation of the amount of noise cancellation (i.e., the higher the noise 

attenuation value, the higher the amount of noise cancellation). The noise attenuation was 

calculated using Equation (5.2), as follows:  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝑑𝑑𝑑𝑑) = 10. 𝑙𝑙𝑙𝑙𝑙𝑙10.
𝐸𝐸𝑁𝑁
𝐸𝐸𝑅𝑅

 (5.2) 

where 𝐸𝐸𝑁𝑁 is the energy of noise signal and 𝐸𝐸𝑅𝑅 is the energy of the residual noise signal. The 

calculations for the proposed methods, LSTM, MLP and NLMS are given in Table 5-1. As 

shown in the Table 5-1, the proposed method resulted in the best performance.  

 

 Table 5-1: Noise attenuation levels (dB) 

Data/Method ACRN LSTM MLP NLMS CNN 

Flight1 37.83 34.81 36.63 13.69 35.31 

Flight2 32.65 32.29 31.63 10.24 32.54 

Leopard 36.35 28.86 31.15 10.83 35.99 

Volvo 33.76 32.76 31.11 13.89 31.68 

Construction/ 

Cutting 
17.89 16.90 16.28 12.38 16.58 

Aero1 40.70 35.18 40.67 10.62 37.60 

Aero2 43.76 39.98 33.73 11.03 40.86 

Aero3 42.08 38.50 40.28 12.44 39.83 
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Aero4 43.96 39.24 39.81 11.07 40.38 

Average 38.86 35.20 35.62 11.72 36.77 

 

5.5.2 Root mean square error 

Neill and Hashemi (2018) suggested the usefulness of the RMSE to compare the accuracies of 

different models. The performance of the proposed method was compared to the other methods 

based on RMSE metrics calculated using Equation (5.3). The RMSE is the square root of the mean 

of the square of the difference between the target value (𝑡𝑡𝑖𝑖) and the observed value (𝑜𝑜𝑖𝑖), as follows. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑛𝑛
�(𝑡𝑡𝑖𝑖 − 𝑜𝑜𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 (5.3) 

where 𝑛𝑛 is number of samples. Table 5-2 shows the RMSEs for the different methods when applied 

to the different noise data sets. The proposed ACRN model resulted in the best performance in 

terms of RMSE. 

 

 Table 5-2 : RMSE for all methods 

 Leopard Volvo Flight1 Flight2 Aero1 Aero2 Aero3 Aero4 
Const./ 

Cutting 
Average 

ACRN 0.00810 0.01050 0.00839 0.01073 0.00517 0.00352 0.00398 0.00345 0.06518 0.01322 

LSTM 0.01919 0.01178 0.01126 0.01118 0.00977 0.00545 0.00601 0.00594 0.07304 0.01707 

MLP 0.01475 0.01425 0.00938 0.01228 0.00519 0.01120 0.00490 0.00556 0.07841 0.01732 

NLMS 0.15304 0.10354 0.11586 0.16524 0.16530 0.16530 0.12064 0.15220 0.12260 0.14041 

CNN 0.00844 0.0133 0.01119 0.01078 0.00739 0.00493 0.00516 0.00521 0.07579 0.01580 
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5.5.3 Comparison of trainable parameters 
 
Table 5-3 shows the number of trainable parameters for each active noise cancellation model. The 

greater the number of parameters, the greater the time delay and the increased consumption of the 

system’s inbuilt memory. Active noise cancellation systems require minimum delay, and it is 

desirable to have a small number of trainable parameters to reduce the processing time. Table 5-3 

shows that the proposed architecture had just 444 parameters, while the LSTM and MLP 

algorithms had almost seven to two times more trainable parameters. However, the CNN algorithm 

had just 65 trainable parameters. 

 

 Table 5-3 : Numbers of trainable parameters 

Model Number of trainable parameters 

ACRN 444 

LSTM 3301 

MLP 861 

CNN 65 
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Chapter 6. Conclusion and Future Work 

 

Section 6.1 summarizes the testing of the proposed method as an ANC, and the limitations of the 

study and proposed work are listed in sections 6.2 and 6.3. 

 

6.1 Conclusions 

A deep learning model comprising an ASP module based on combining a 1-D atrous convolution 

and a recurrent unit was proposed in this study. The 1-D atrous convolution layer with an 

exponential dilation rate was selected to extract the high-level features from the input. Nine noise 

data sets were used to train and test the proposed model. To train the model, 10,000, 10,000, 2,000, 

2,000, 2,000, 5,000, 5,000, 5,000 and 5,000 samples were selected from the Flight1, Flight2, 

Leopard, Construction/Cutting, Volvo, Aero1, Aero2, Aero3 and Aero4 noise data sets, 

respectively. The high-level features were fed into a recurrent neural network followed by a dense 

layer to predict the anti-noise. The model parameters were tuned using the first four data sets 

(Flight1, Flight2, Leopard and Volvo), and the last five data sets (Aero1, Aero2, Aero3, Aero4 and 

Construction/Cutting) were used to test the robustness of the proposed method.  

 The input size for the proposed method was selected as 20 samples by considering previous 

studies in the same field (Park and Patterson, 2019). Each data set was normalized between the 

range of 0 and 1, and to regulate the input and output of the convolution layers, padding was used. 

The proposed model was optimized using the ADAM optimizer. To test the model, nine testing 

data sets were used, which were never seen by the model. The test data sets Leopard, Volvo, 

Construction/Cutting, Aero1, Aero2, Aero3, Aero4, Flight1 and Flight2 contained 1,937, 1,937, 
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1,937, 4,957, 4,957, 4,957, 4,957, 4,937 and 4,937 samples, respectively. To measure the 

performance of the proposed model, two metrics were used: RMSE and noise attenuation. It was 

shown that the proposed network outperformed the other methods based on these evaluation 

metrics. This thesis concluded the following: 

• The network optimizer, along with the learning weight decay, were the most sensitive 

hyperparameters of the proposed model based on model tuning. 

• The proposed method outperformed the traditional NLMS algorithm and other deep 

learning methods, including CNN, LSTM and MLP.  

• Based on the performance metrics, the model achieved higher noise attenuation from 1 dB 

to 10 dB compared to deep learning methods and about three times better noise attenuation 

than the NLMS algorithm. 

• The number of trainable parameters for each model was noted. The proposed model 

performed better with fewer trainable parameters, which is important for controlling the 

computational cost. 

 

6.2 Limitations 

The limitations of the proposed model are as follows: 

• The proposed model was studied by only considering pure delay between the samples. 

• The effect of a secondary path on the proposed ANC controller was not studied. 

• The noise data set used for the network came from a single channel. The network might 

have behaved differently under noise coming from more than one channel. 
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6.3 Future works 

To eliminate these limitations, the following future works are recommended:  

• Study the effect of a secondary path on the model.  

• Explore the behavior of the proposed model as a multichannel ANC system. 

• Explore the hardware implementation of the proposed method.  
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