

Adaptive Chaotic Injection to Reduce

Overfitting in Artificial Neural Networks

By

Siobhan Reid

A Thesis submitted to the Faculty of Graduate Studies of

The University of Manitoba

In partial fulfillment of the requirements of the degree of

MASTER OF SCIENCE

Department of Electrical and Computer Engineering

University of Manitoba

Winnipeg, Manitoba, Canada

Copyright © 2022 by Siobhan Reid

ii

Abstract

Artificial neural networks (ANNs) have become an integral tool in various fields of

research. ANNs are mathematical models which can be trained to perform various prediction

tasks. The effectiveness of an ANN can be impacted by overfitting which occurs when the ANN

overfits to the training data. As a result, the ANN does not generalize well to novel data. In our

research, we assess the feasibility of using a chaotic strange attractor to generate sequences of

values to inject into an ANN to reduce overfitting. An adaptive method was developed to scale

and inject the values into the neurons throughout training. The chaotic injection (CI) was tested

on three benchmark datasets using different ANN models. The results were compared against the

baseline ANN, dropout (DO), and Gaussian noise injection (GNI). The CI improved the

performance of the ANN and converged faster than DO and GNI.

iii

Acknowledgements

I would like to thank the following individuals and organizations:

1) Professor Ferens for his guidance and supervision throughout my master’s degree.

2) Professor Kinsner for his guidance while working on my research and coursework.

3) Canadian Tire and Mitacs for their support and funding throughout my research.

iv

Table of Contents

Abstract ... ii

Acknowledgements .. iii

List of Figures ... vii

List of Tables ... viii

List of Acronyms ... ix

List of Symbols ... x

1 Introduction ... 1

1.1 Motivation .. 1

1.2 Thesis Statement and Objectives.. 1

1.3 Organization of Thesis ... 2

2 Background and Related Work.. 3

2.1 Artificial Neural Networks ... 3

2.2 Overfitting in Artificial Neural Networks .. 5

2.3 Common Techniques to Reduce Overfitting .. 6

2.4 Noise Injection to Reduce Overfitting ... 8

2.5 Chaotic Injection to Reduce Overfitting .. 8

2.6 Chaos Theory ... 10

3 Implementation .. 16

v

3.1 Selection of the Attractor ... 16

3.2 Initialization and Setup... 17

3.3 Offset and Adaptive Scaling .. 18

3.4 Method of Injection .. 19

3.5 Effects on Backpropagation ... 22

4 Testing ... 23

4.1 Datasets and Data Preprocessing.. 23

4.1.1 Fashion-MNIST .. 23

4.1.2 CIFAR-10 ... 24

4.1.3 Stanford Cars .. 24

4.2 Models .. 25

4.2.1 Multilayer Perceptron Model .. 25

4.2.2 Convolutional Model .. 26

4.2.3 EfficientNet-B7 Model ... 26

4.3 Cross-Validation... 27

4.4 Hyperparameter Selection .. 28

5 Results ... 30

5.1 Training Convergence .. 30

5.1.1 Accuracy and Loss Per Epoch .. 30

5.1.2 Runtime ... 35

vi

5.2 Performance Metrics .. 36

6 Conclusion ... 39

6.1 Thesis Conclusions ... 39

6.2 Future Work ... 39

6.3 Thesis Contributions .. 40

References ... 41

Appendix A ... 49

A.1 Imports.. 49

A.2 Main.. 51

A.3 Load Dataset ... 56

A.4 Create Model .. 58

A.5 Train Model .. 63

A.6 Display Results ... 68

Appendix B ... 75

vii

List of Figures

Fig. 2-1. Multilayer perceptron ANN. .. 3

Fig. 2-2. (a) No overfitting versus (b) overfitting. .. 6

Fig. 2-3. (a) Iterative maps versus (b) differential equations. ... 11

Fig. 2-4. Logistic map with different bifurcation parameters. .. 12

Fig. 2-5. Bifurcation diagram and Lyapunov exponent diagram of the tent map. 14

Fig. 2-6. The PDF of different chaotic iterative maps. ... 15

Fig. 3-1. Adaptive scaling parameter. ... 19

Fig. 3-2. Various injection methods. ... 20

Fig. 3-3. (a) Neuron using the CI and (b) ANN using the CI. .. 21

Fig. 4-1. Sample images from the Fashion-MNIST dataset. .. 23

Fig. 4-2. Sample images from the CIFAR-10 dataset. .. 24

Fig. 4-3. Sample images from the Stanford Cars dataset. ... 24

Fig. 4-4. Multilayer perceptron ANN used for testing the Fashion-MNIST dataset. 25

Fig. 4-5. CNN used for testing the CIFAR-10 dataset. ... 26

Fig. 4-6. EfficientNet-B7 model used for testing the Stanford Cars dataset. 27

Fig. 4-7. Ten-fold cross-validation setup. ... 28

Fig. 5-1. Accuracy and loss per epoch for the Fashion-MNIST dataset. 32

Fig. 5-2. Accuracy and loss per epoch for the CIFAR-10 dataset. ... 33

Fig. 5-3. Accuracy and loss per epoch for the Stanford Cars dataset. .. 34

viii

List of Tables

Table 1-1. Organization of Thesis. ... 2

Table 2-1. ANN symbol definitions.. 4

Table 2-2. Techniques to reduce overfitting. .. 7

Table 3-1. CI algorithm pseudo-code. .. 17

Table 3-2. CI ANN symbol definitions... 22

Table 4-1. Hyperparameter Selection. .. 29

Table 5-1. Accuracy and loss for the Fashion-MNIST dataset. .. 32

Table 5-2. Accuracy and loss for the CIFAR-10 dataset. ... 33

Table 5-3. Accuracy and loss for the Stanford Cars dataset. .. 34

Table 5-4. Average runtimes (s) of the models... 35

Table 5-5. Performance metric formulas. ... 36

Table 5-6. Performance metrics of the test data for the Fashion-MNIST dataset. 38

Table 5-7. Performance metrics of the test data for the CIFAR-10 dataset. 38

Table 5-8. Performance metrics of the test data for the Stanford Cars dataset. 38

Table B-1. Performance metrics of the validation data for the Fashion-MNIST dataset. 75

Table B-2. Performance metrics of the validation data for the CIFAR-10 dataset....................... 75

Table B-3. Performance metrics of the validation data for the Stanford Cars dataset.................. 75

ix

List of Acronyms

Acronyms Description

ACC Accuracy

ANN Artificial Neural Network

BERT Bidirectional Encoder Representations from Transformers

CI Chaotic Injection

CIFAR Canadian Institute for Advanced Research

CNN Convolutional Neural Network

DO Dropout

F1 F1-Score

FN False Negative

FP False Positive

GNI Gaussian Noise Injection

GPU Graphic Processing Unit

MNIST Modified National Institute of Standards and Technology

NI Noise Injection

NPV Negative-Predictive Value

PDF Probability Density Function

PPV Positive-Predictive Value

ReLU Rectified Linear Unit

RGB Red Blue Green

SN Sensitivity

SP Specificity

TN True Negative

TP True Positive

x

List of Symbols

Symbol Description

𝛼 Scaling value of the tent map

𝑎𝑖
(𝑘)

 Activation value of the 𝑖𝑡ℎneuron in the output layer of an ANN

𝛼_𝑎𝑟𝑟𝑎𝑦 Array containing the 𝛼 values for each epoch

𝛼_𝑚𝑎𝑥 Desired maximum scaling value of the tent map

𝛽 Bias value of the tent map

𝑏𝑖
(𝑘−1)

 Bias connection to the 𝑖𝑡ℎneuron in the layer 𝑘

𝑐[𝑛] Output of the circular map at iteration 𝑛

𝑑𝑦/𝑑𝑥 Derivative

𝑒𝑝𝑜𝑐ℎ_𝑛𝑢𝑚 Epoch number

𝑖 Position of 𝑖𝑡ℎneuron in the layer 𝑘

𝑗 Position of 𝑗thneuron in the layer 𝑘 − 1

𝑘 Layer number of a neuron in an ANN

𝐾 Bifurcation parameter of the circular map

𝑙[𝑛] Output of the logistic map at iteration 𝑛

𝑙𝑜𝑔 Logarithmic function with base 𝑒

𝑚𝑎𝑥 Maximum function, returns the maximum number in a list

𝑚𝑖𝑛 Minimum function, returns the minimum number in a list

𝑛 Discrete time-step of an iterative map

𝑁 Number of neurons in layer 𝑘 − 1 of an ANN

Ω Bifurcation parameter of the circular map

𝜋 Value of Pi

xi

𝑟 Bifurcation parameter of the logistic map

𝑠[𝑛] Scaled tent map value at iteration 𝑛

𝑠[𝑛]𝑖
(𝑘)

 Scaled tent map value of the 𝑖𝑡ℎ neuron of layer 𝑘 at iteration 𝑛

𝑠𝑖𝑛 Sine function

𝑡[n] Output of the tent map at iteration 𝑛

𝑡[𝑛]𝑖
(𝑘)

 Tent map value of the 𝑖𝑡ℎ neuron of layer k at iteration 𝑛

𝜇 Bifurcation parameter of the tent map

𝜔 Growth parameter of the logarithmic function

𝑤𝑖,𝑗
(𝑘−1)

Weight connection from the 𝑗𝑡ℎneuron in the layer 𝑘 − 1 to the 𝑖𝑡ℎneuron in

the layer 𝑘

𝑥𝑖
(𝑘)

 Input into the 𝑖𝑡ℎ neuron of layer 𝑘

𝑦𝑖
(𝑘)

 Activation value of the 𝑖𝑡ℎ neuron of layer 𝑘

Adaptive Chaotic Injection Chapter 1: Introduction

1

1 Introduction

1.1 Motivation

Artificial neural networks (ANNs) are mathematical models inspired by the biological

brain [1]. ANNs are used for prediction tasks, such as classification and regression. The use of

ANNs has become widespread in various fields. Applications include object detection for self-

driving cars [2], disease prediction in medicine [3], and malware detection in cybersecurity [4].

ANNs can be impacted by overfitting, which occurs when an ANN overfits to the training data.

As a result, the ANN does not generalize well to novel data [5].

Common techniques to reduce overfitting include early stopping [6], dropout (DO) [7],

regularization [8], and noise injection (NI) [9]. Similar to NI, chaotic strange attractors can be

used to generate sequences of values, which we will refer to as chaotic values, to inject into an

ANN. Injecting chaotic values into an ANN may better reflect the behaviour of the biological

brain [10]–[13]. However, there is limited research in this area [14]–[17]. We want to expand

this area of research by developing an adaptive method to inject chaotic values into an ANN to

reduce overfitting.

1.2 Thesis Statement and Objectives

In this research, we assess the feasibility of using a chaotic strange attractor to generate

sequences of values to inject into an ANN to reduce overfitting. We propose an adaptive method

to scale and inject the values into the neurons throughout training.

Adaptive Chaotic Injection Chapter 1: Introduction

2

The main objectives of this research include:

1) Developing an adaptive method to inject chaotic values or noise into an ANN.

2) Assessing the effectiveness of the chaotic injection (CI) to prevent overfitting.

3) Comparing the CI to NI.

1.3 Organization of Thesis

The thesis is organized into six main chapters, as described below in Table 1-1.

Table 1-1. Organization of Thesis.

Chapter Description

1: Introduction Chapter 1 introduces the thesis topic and objectives.

2: Background

Chapter 2 provides background information on ANNs, overfitting,

techniques to reduce overfitting, NI, CI, and chaos theory.

3: Implementation

Chapter 3 provides the implementation details of the CI, including the

selection of the attractor, the initialization and setup, the adaptive scaling

method, the injection method, and the effects on backpropagation.

4: Testing

Chapter 4 provides a description of the datasets and ANN models used for

testing the CI.

5: Results

Chapter 5 presents the results, including the ANNs’ accuracy and loss per

epoch, runtimes, and performance metrics.

6: Conclusion

Chapter 6 provides concluding remarks, recommendations for future work,

and a summary of the contributions made to this field of study.

Adaptive Chaotic Injection Chapter 2: Background and Related Work

3

2 Background and Related Work

2.1 Artificial Neural Networks

ANNs are mathematical models used for prediction tasks, such as classification and

regression [18]. When input data is passed to an ANN, the ANN processes the data and outputs a

prediction. In supervised machine learning, a basic multilayer perceptron ANN consists of layers

of artificial neurons connected via parameters referred to as weights. Input data is passed into the

first layer of the ANN. In the following layers, the input into a neuron is the sum of outputs from

the neurons in the previous layer multiplied by their weight values, in addition to a bias value. A

neuron’s input is passed through a non-linear activation function and then sent to the next layer.

The neurons in the final layer output the predictions. Fig. 2-1 shows the structure of a basic

multilayer perceptron ANN with two hidden layers and two neurons per hidden layer. Table 2-1

defines the corresponding symbols.

𝑥𝑖
(𝑘) = ∑𝑦𝑗

(𝑘−1)𝑤𝑖,𝑗
(𝑘−1) + 𝑏𝑖

(𝑘−1) , for k < 1 (1)

𝑁

𝑗=1

 𝑦𝑖
(𝑘) = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑥𝑖

(𝑘)) (2)

Fig. 2-1. Multilayer perceptron ANN.

 1,1
1

 2,1
1

 2,2
1

 1,2
1

 1
1

 2
1

 1,1
2

 2,1
2

 2,2
2

 1,2
2

 1
2

 2
2

 1,1

 1,2

 1

 1

 1
1

1

 2
1

1 1 1

 1

 2

 1
2

 2
2 2

 1

 1
2

 2
2

Adaptive Chaotic Injection Chapter 2: Background and Related Work

4

Table 2-1. ANN symbol definitions.

Symbol Definition

𝑥𝑖
(𝑘)

 Input into the 𝑖𝑡ℎ neuron of layer 𝑘

𝑦𝑖
(𝑘)

 Activation value of the 𝑖𝑡ℎ neuron of layer 𝑘

𝑤𝑖,𝑗
(𝑘−1)

Weight connection from the 𝑗𝑡ℎneuron in the layer k − 1 to the 𝑖𝑡ℎneuron in the

layer 𝑘

𝑏𝑖
(𝑘−1)

 Bias connection to the 𝑖𝑡ℎneuron in the layer 𝑘

𝑁 Number of neurons in layer 𝑘 − 1

During a training phase, the weights and the biases of an ANN are optimized to minimize the

error between the ANNs’ predictions and the true labels of the input data [18]. Labels are

numerical values which can represent a class, regression value, or other types of data. During

training, the input data and the labels are passed into the ANN. The input data is propagated

through the ANN which then attempts to predict the label for the given input data, in a process

referred to as forward propagation. The ANN then updates the weights and biases, in a process

referred to as gradient descent. During gradient descent, a loss function is used to calculate the

error between the predicted value and the label. The backpropagation algorithm [19] is used to

find the partial derivatives of the weights with respect to the loss function. The partial derivatives

of the weights are multiplied by a scaling factor, referred to as the learning rate, and then

subtracted from the original weight values to update the weights.

An ANN can be trained for multiple epochs. Each epoch, the training dataset is passed into

the ANN in batches. The number of training samples in a batch is referred to as the batch size.

During training, a separate set of data, referred to as validation data, can be used to assess how

well the ANN performs on data it has not trained on [20]. The validation data can be used to

Adaptive Chaotic Injection Chapter 2: Background and Related Work

5

fine-tune the hyperparameters of the ANN, such as the learning rate, number of training epochs,

and number of neurons per layer in the ANN. After the training process is complete, the ANN is

used to perform predictions on data it has not seen before, referred to as test data.

There are many different types of ANNs, such as convolutional neural networks (CNNs)

[21], recurrent ANNs [22], and transformer ANNs [23]. Different types of ANNs can be used to

solve different types of problems. For example, CNNs are commonly used for image

classification and transformer ANNs are commonly used for text classification. More complex

ANN architectures can contain millions of trainable parameters. Different types of ANNs have

different structures and connections between the neurons and weights. However, many ANNs

build upon the ideas of a basic multilayer perceptron ANN and follow a similar training process.

2.2 Overfitting in Artificial Neural Networks

Overfitting is a phenomenon which occurs when an ANN “overfits” to the training data [5].

The ANN learns the distinct characteristics and noise of the training dataset instead of learning a

general pattern to solve the problem. As a result, the ANN performs well on the training data,

however, the ANN does not generalize well to novel data. The accuracy for the training data is

high, whereas the accuracy for the test data is low. The loss per epoch for the validation data

increases throughout training. Overfitting is most likely to occur when there is a small training

dataset or when the ANN has a very large number of parameters. Fig. 2-2 illustrates an example

of overfitting occurring on training data with two classes, where the red line represents a decision

boundary created by the ANN.

Adaptive Chaotic Injection Chapter 2: Background and Related Work

6

Fig. 2-2. (a) No overfitting versus (b) overfitting.

2.3 Common Techniques to Reduce Overfitting

Overfitting can be improved by increasing the size of the training dataset. However, it can

be time-consuming and expensive to collect more data. Therefore, techniques have been

developed to reduce overfitting. Common techniques include data augmentation, DO, early

stopping, NI, regularization, and weight constraints [5]. Table 2-2 provides a description of each

technique.

OverfittingNo Overfitting

 a b

Adaptive Chaotic Injection Chapter 2: Background and Related Work

7

Table 2-2. Techniques to reduce overfitting.

Technique Description

Data

augmentation

Data augmentation involves performing transformations on the training data to

increase the size of the training dataset [24]. For example, data augmentation

performed on images could involve cropping, rotating, and adjusting the contrast

of the images.

Dropout

DO randomly turns off a specified percent of neurons each iteration during

training [7]. DO simulates the effect of training multiple models and then taking

the average of the models.

Early

stopping

Early stopping is when the training phase is ended before overfitting begins [6].

Overfitting is more likely to occur when an ANN is trained for a long time.

Noise

injection

NI involves injecting noise into the ANN [9]. NI has a similar effect to DO.

Additional information on NI is provided in Section 2.4.

L1 and L2

regularization

Regularization involves adding a term to the loss function [8]. There are two

main regularization techniques: L1-regularization and L2-regularization. L1-

regularization adds the sum of the weights, multiplied by a scaling factor, to the

loss function. L2- regularization adds the sum of the weights squared, multiplied

by a scaling factor, to the loss function. Regularization penalizes large weights

and prevents the ANN from focusing too much on one feature.

Weight

constraints

Weight constraints can be added to prevent the weights from increasing past a

threshold value. Adding weight constraints has a similar effect to regularization.

Adaptive Chaotic Injection Chapter 2: Background and Related Work

8

2.4 Noise Injection to Reduce Overfitting

Researchers have investigated injecting noise into ANNs to improve generalizability. NI adds

randomness to an ANN during training, distorting the data, making it difficult for the ANN to

overfit. NI can prevent co-adaptation, which causes overfitting. Co-adaptation occurs when

neurons learn to make up for errors made by other neurons to improve the accuracy of the

training data [25]. NI has been found to perform better than other techniques, such as weight

decay and early stopping [9]. NI can make an ANN more resistant to input perturbations [26] and

is a form of regularization [26] [27]. NI has also been found to improve the detection of

adversarial examples [28], [29]. Adversarial examples are input examples that have been

slightly modified, intentionally causing an ANN to misclassify them.

Various NI methods have been proposed, including injecting the noise into the input data

[30]–[32], hidden layers [28], [29], [33]–[35], output layer [31], weights [31], [36], and loss

function [37]. Noise can be injected additively or multiplicatively. The most common form of NI

is Gaussian noise injection (GNI), which uses Gaussian noise [32]–[37]. Recently, adaptive

techniques have been proposed to calculate the variance of the Gaussian noise throughout

training [33]–[35]. These techniques use the variance of the weights or neurons’ inputs.

2.5 Chaotic Injection to Reduce Overfitting

Several researchers have proposed injecting chaotic values into ANNs, as opposed to noise.

Chaotic values are bounded, yet non-repeating [38]. Injecting non-repeating values may allow an

ANN to search a larger solution space and improve its ability to escape local minimums. As well,

chaotic strange attractors have been found in the biological brain [10]–[13]. Modelling an ANN

to mimic the behaviour of the biological brain may improve its performance. Additional

information on chaotic strange attractors can be found in section 2.6.

Adaptive Chaotic Injection Chapter 2: Background and Related Work

9

Several CI methods have been proposed. In [16], the neuron's input into the sigmoid

activation function [39] is multiplied by a chaotic value produced by a modified version of the

logistic map. In [14], the chaotic values are injected into the weight updates during

backpropagation and into the sigmoid activation function’s temperature coefficient. Three

chaotic strange attractors were tested: the logistic map, the Mackey–Glass equations, and the

Lorentz attractor. In [17], the effects of adding chaotic values to the weight updates during

backpropagation are analyzed. The logistic map was used to generate the chaotic values. Lastly,

in [15], the chaotic values are added to the weight updates during backpropagation. The tent map

was used to generate the chaotic values. In these studies, adding chaotic values was found to

improve the performance and reduce the convergence times of the ANNs.

Limitations to the previous studies include small datasets and ANN models. Previous

research has primarily focused on injecting the chaotic values into the weight updates during

backpropagation [14], [15], [17]. There is limited research assessing injecting the chaotic values

into the neurons during forward propagation. Only the sigmoid activation function has been

tested when injecting chaotic values into the neurons [14], [16]. Also, note that chaotic values

have been used in the particle swarm optimization and simulated-annealing algorithms [40].

However, no significant improvements were found when using chaotic values instead of noise.

Adaptive Chaotic Injection Chapter 2: Background and Related Work

10

2.6 Chaos Theory

Chaos is a behaviour that can arise in dynamical systems [41]. Dynamical systems are

systems which can exhibit different types of behaviour depending on the parameters of the

system. The outputs of a dynamical system exhibiting chaotic behaviour are bounded between a

set of values and non-repeating. A small change in the initial conditions of the system will lead

to different sequences of outputs. The outputs may appear to be unpredictable and random,

however, they are deterministic.

There are two main types of systems which can exhibit chaotic behaviour: iterative maps

and differential equations [42]. An iterative map is a function or set of functions used to model

discrete-time systems. The outputs from the functions are saved and used as inputs into the

functions in the following time-step. Differential equations are used to model continuous-time

systems. The outputs of the system can be found given the system's differential equations and

initial conditions. Iterative maps directly provide the outputs of the system, whereas differential

equations must be solved using analytical or numerical methods to find the outputs of the system,

as shown in Fig. 2-3.

Adaptive Chaotic Injection Chapter 2: Background and Related Work

11

Fig. 2-3. (a) Iterative maps versus (b) differential equations.

In dynamical systems, the parameters which control the behaviour of the system are

referred to as bifurcation parameters [41]. These parameters cause the system to converge to

either fixed, periodic, cyclic, or chaotic behaviour. When the system’s variables are initialized

between a given range of values, the system will converge to the state determined by the

bifurcation parameters. The state which the system settles into is called the attractor; if the state

is chaotic, it is referred to as a chaotic strange attractor. The set of initial values which allow the

system to converge to the given state are called the basin of attractors. The system may fluctuate

between various values for a given number of iterations before settling into its state; these values

are referred to as transient values. Fig. 2-4 illustrates the outputs of the logistic map with

different bifurcation values, where 𝑟 is the bifurcation parameter and 𝑛 is the iteration number.

The logistic map is defined by Equation (3).

𝑙[𝑛 + 1] = 𝑟 (𝑙[𝑛])(1 − 𝑙[𝑛]) ()

 terative ap

 iscrete Time

 ifferential uation olver

 ontinuous Time

 ()

 ()/ ()

 ()

 b

 a

Adaptive Chaotic Injection Chapter 2: Background and Related Work

12

(a)

(b)

(c)

Fig. 2-4. Logistic map with different bifurcation parameters.

Adaptive Chaotic Injection Chapter 2: Background and Related Work

13

A bifurcation diagram can be used to show how different bifurcation parameters affect a

dynamical system [38]. The bifurcation diagram plots the value or values which the system has

converged to versus the bifurcation parameter. Additionally, a Lyapunov exponent diagram can

be used to show the Lyapunov exponents for different bifurcation parameters. The Lyapunov

exponent is a measure of how fast two close initial trajectories diverge. A Lyapunov exponent

greater than zero is a characteristic of chaos.

Fig. 2-5 illustrates (a) the bifurcation diagram and (b) the Lyapunov exponent diagram

for the tent map. The tent map is defined by Equation (4), where 𝜇 is the bifurcation parameter.

When the bifurcation parameter is between 1.0 and 2.0, exclusive, the system converges to

chaotic behaviour. The Lyapunov exponents for these bifurcation parameters are greater than

zero. Note that the upper and lower bounds of the chaotic values depend on the bifurcation

parameter. As shown in the bifurcation diagram, when the bifurcation parameter is set to 1.5, the

chaotic values are bound between [0.35, 0.75]. When the bifurcation parameter is set to 1.99, the

chaotic values are bound between [0, 1].

𝑡[𝑛 + 1] = 𝜇(𝑚𝑖𝑛(𝑡[𝑛], 1 − 𝑡[𝑛])) = {
𝜇(𝑡[𝑛]), 𝑡[𝑛] < .5

𝜇(1 − 𝑡[𝑛]), 𝑡[𝑛] ≥ .5
()

Adaptive Chaotic Injection Chapter 2: Background and Related Work

14

Fig. 2-5. Bifurcation diagram and Lyapunov exponent diagram of the tent map.

Different chaotic strange attractors have different probability density functions (PDFs).

Given a specific bifurcation parameter, the sequence of chaotic outputs will follow a unique PDF

[40]. Fig. 2-6 shows different chaotic strange attractors and their empirical PDFs. The circular

map is defined by Equation (5), where 𝐾 and Ω are the bifurcation parameters.

𝑐[𝑛 + 1] = (𝑐[𝑛] + Ω −
𝐾

2𝜋
sin(2𝜋𝑐[𝑛]))𝑚𝑜𝑑1 (5)

 ifurcation arameter
 b a

ya
p
un
o
v

 p
o
ne
nt

 ifurcation iagram yapunov ponent iagram

 ifurcation arameter

Adaptive Chaotic Injection Chapter 2: Background and Related Work

15

 (a) (b)

 (c)

Fig. 2-6. The PDF of different chaotic iterative maps.

Adaptive Chaotic Injection Chapter 3: Implementation

16

3 Implementation

3.1 Selection of the Attractor

The tent map was selected to generate the chaotic values. The tent map is an iterative map

defined by Equation (4), where 𝑡 represents the tent map value, 𝑛 represents the time-step, and μ

represents the bifurcation parameter. A bifurcation parameter of 1.99 was selected. When the

bifurcation parameter is set to 1.99, the tent map becomes a chaotic strange attractor generating a

sequence of pseudo-random values between 0 and 1. The tent map was selected for several

reasons:

1) The tent map produces a uniform distribution of values between 0 and 1, whereas other

iterative maps’ PDFs tend to be skewed towards certain values, as shown in Fig. 2-6.

Injecting chaotic values which follow a uniform distribution may perform better than

other distributions because it allows the neurons to search a broader solution space. Other

iterative maps primarily output chaotic values centered around the distribution’s peak,

potentially narrowing the ANN’s search space.

2) The tent map can be computed quickly. The tent map produces the outputs directly,

unlike differential equations which must be solved either numerically or analytically.

3) The tent map only contains one variable. Some chaotic strange attractors contain multiple

variables. The outputs of the chaotic strange attractor must be saved to be used as input

into the attractor in the following time-step. Therefore, memory may be a concern if a

large number of neurons are using the CI and multiple variables must be saved.

Adaptive Chaotic Injection Chapter 3: Implementation

17

3.2 Initialization and Setup

In our research, we will assess the feasibility of injecting the chaotic values into neurons in

the hidden layers during forward propagation. Each neuron in a layer using the CI has its own

tent map. The initial values of the tent maps are initialized randomly between 0 and 1. The tent

maps are then iterated for 1000 iterations before training to remove transient values. Each batch

iteration during training, the tent maps are iterated to generate a new chaotic value. The chaotic

values are saved to be used as input into the tent maps in the following iteration. The chaotic

values are multiplied by a scaling factor and then injected into their respective neuron. The

scaling factor is an adaptive parameter which changes each epoch. The scaling factors are

initialized before training begins. The CI only occurs on the training data. Table 3-1 provides an

overview of the algorithm.

Table 3-1. CI algorithm pseudo-code.

 Algorithm

1 Initialize the tent maps and remove transient values, initialize the scaling values

2 For each epoch during training:

3 Update the scaling value

4 For each batch in the epoch:

5 Update and save the state of the chaotic values

6 Scale the chaotic values

7 Inject the scaled chaotic values into the neurons during forward propagation

8 Perform backpropagation and update the weights

Adaptive Chaotic Injection Chapter 3: Implementation

18

3.3 Offset and Adaptive Scaling

Before a chaotic value is injected into a neuron, an offset value is added, and it is scaled.

An offset value, 𝛽, of 0.5 is added to shift the chaotic value from the range [0,1] to the range [-

0.5, 0.5]. The value is then multiplied by a scaling factor, 𝛼, to either amplify or diminish its

effect. 𝛼 is an adaptive parameter which starts at zero and is logarithmically increased each

epoch during training. 𝛼 initially dampens the chaotic values allowing the ANN to converge. 𝛼 is

then increased to allow the ANN to explore a larger solution space and prevent overfitting.

Equation (6) shows how the scaled chaotic value, 𝑠[𝑛], is calculated.

𝑠[𝑛] = 𝛼(𝑡[𝑛] − 𝛽) , 𝛽 = .5 (6)

The values of 𝛼 are calculated and initialized into an array before training begins. The 𝛼

values are calculated in two steps. Firstly, the 𝛼 value for each epoch is calculated using

Equation (7), where 𝜔 is a hyperparameter which controls the growth rate of the log function.

The 𝑒𝑝𝑜𝑐ℎ_𝑛𝑢𝑚 ranges from [0, number of epochs-1]. Secondly, the array of 𝛼 values is

rescaled between [0, 𝛼_𝑚𝑎𝑥] using Equation (8), where 𝛼_𝑚𝑎𝑥 is a hyperparameter which sets

the maximum value of 𝛼. Fig. 3-1 shows an example of the 𝛼 values throughout training, when

𝜔 is set to 25, 𝛼_max is set to 5, and the number of epochs is set to 50.

𝛼_𝑎𝑟𝑟𝑎𝑦[𝑒𝑝𝑜𝑐ℎ_𝑛𝑢𝑚] = 𝑙𝑜𝑔(𝜔 × 𝑒𝑝𝑜𝑐ℎ_𝑛𝑢𝑚 + 1) (7)

𝛼_𝑎𝑟𝑟𝑎𝑦[:] =
𝛼_𝑎𝑟𝑟𝑎𝑦[:]

max (𝛼_𝑎𝑟𝑟𝑎𝑦[:])
× 𝛼_𝑚𝑎𝑥 (8)

Adaptive Chaotic Injection Chapter 3: Implementation

19

Fig. 3-1. Adaptive scaling parameter.

3.4 Method of Injection

After the chaotic value is scaled, it is injected into the neuron. There are various ways to

inject the chaotic value into the neuron. The chaotic value can be added or multiplied into the

neuron, before or after the activation function. Fig. 3-2 illustrates how the various injection

methods can affect the rectified linear unit (ReLU) activation function. The ReLU activation

function [43], defined by Equation (9), was selected because it is commonly used in practice and

it has a simple derivative, as shown in Equation (10).

𝑅𝑒𝐿𝑈(𝑥) = {
 , 𝑖𝑓 𝑥 <
𝑥, 𝑖𝑓 𝑥 >

 (9)

𝑑(𝑅𝑒𝐿𝑈(𝑥))

𝑑𝑥
= {

 , 𝑖𝑓 𝑥 <
1, 𝑖𝑓 𝑥 >

 (1)

Adaptive Chaotic Injection Chapter 3: Implementation

20

Fig. 3-2. Various injection methods.

Option (h) from Fig. 3-2 was selected for the final implementation, which is defined by

Equation (11). In this injection method, the additive and multiplicative injection approaches are

combined. The chaotic value is first multiplied by the activation value to scale its effect; it will

have a larger effect on neurons with a large activation value and it will not affect neurons with an

activation value less than zero. This method is similar to the adaptive methods proposed by [33]–

[35], where either the weights or neurons’ inputs were used to determine the variance of the

Gaussian noise. Fig. 3-3 (a) illustrates the setup for the CI. Table 3-2 defines the corresponding

symbols. Fig. 3-3 (b) illustrates a multilayer perceptron ANN using the CI. The ANN contains

two hidden layers, with two neurons per hidden layer.

𝑦 = 𝑅𝑒𝐿𝑈(𝑥) + 𝑅𝑒𝐿𝑈(𝑥) × 𝑠[𝑛] (11)

 e f g h

 a b c d

 = = + [] = × [] = + × []

 = + [] = × [] = + × [] = + × []

Adaptive Chaotic Injection Chapter 3: Implementation

21

(a)

(b)

Fig. 3-3. (a) Neuron using the CI and (b) ANN using the CI.

 =

 1
 1 +

 1

 =1

 []

= _ ([1]

)

 [1]
 []

 =

 +

 × []

 []

 ([]
)

 1,1
1

 2,1
1

 2,2
1

 1,2
1

 1
1

 2
1

 1,1
2

 2,1
2

 2,2
2

 1,2
2

 1
2

 2
2

 1,1

 1,2

 1

 1

 1
1

1

 2
1

1 1 1

 1

 2

 2

 1
2

 2
2

 2

 1

 1

 1
2

 1
2

 2
2

 2
2

Adaptive Chaotic Injection Chapter 3: Implementation

22

Table 3-2. CI ANN symbol definitions.

Symbol Definition

𝑥𝑖
(𝑘)

 Input into the 𝑖𝑡ℎ neuron of layer 𝑘

𝑦𝑖
(𝑘)

 Output of the 𝑖𝑡ℎ neuron of layer 𝑘

𝑡[𝑛]𝑖
(𝑘)

 Tent map value of the 𝑖𝑡ℎ neuron of layer 𝑘 at iteration 𝑛

𝑠[𝑛]𝑖
(𝑘)

 Scaled tent map value of the 𝑖𝑡ℎ neuron of layer 𝑘 at iteration 𝑛

𝑎𝑖
(𝑘)

 Activation value of the 𝑖𝑡ℎneuron in the output layer

𝑤𝑖,𝑗
(𝑘−1)

Weight connection from the 𝑗𝑡ℎneuron in the layer 𝑘 − 1 to the 𝑖𝑡ℎneuron in the

layer 𝑘

𝑏𝑖
(𝑘−1)

 Bias connection to the 𝑖𝑡ℎneuron in the layer 𝑘

𝑁 Number of neurons in layer k − 1

3.5 Effects on Backpropagation

During backpropagation, the CI affects the derivative of neurons with a positive activation

value. The CI does not affect the derivative of neurons with a negative activation value. Equation

(12) shows the derivative of a neuron using the CI. If a neuron has a positive activation value, the

derivative is 1 + 𝑠[𝑛]. The extent to which 𝑠[𝑛] affects the weights depends on the tent map

scaling factor (𝛼) and the overall structure of the ANN. The CI adds pseudo-randomness to the

ANN, causing the weights to be slightly increased or decreased throughout training.

𝑑𝑦𝑖
(𝑘)

𝑑𝑥𝑖
(𝑘)

=
𝑑 (𝑅𝑒𝐿𝑈(𝑥𝑖

(𝑘)) + 𝑅𝑒𝐿𝑈(𝑥𝑖
(𝑘)) × 𝑠[𝑛]𝑖

(𝑘))

𝑑𝑥𝑖
(𝑘)

= {
 , 𝑖𝑓 𝑥𝑖

(𝑘) <

1 + 𝑠[𝑛]𝑖
(𝑘), 𝑖𝑓 𝑥𝑖

(𝑘) >
 (12)

Adaptive Chaotic Injection Chapter 4: Testing

23

4 Testing

The code used for implementation and testing was developed using Python (version 3.7.13)

[44]. The code was developed in Google Colab Pro+ [45]. All code can be found in Appendix A.

4.1 Datasets and Data Preprocessing

Three open-source classification datasets were used for testing: Fashion-MNIST (Modified

National Institute of Standards and Technology database) [46], CIFAR-10 (Canadian Institute for

Advanced Research) [47], and Stanford Cars [48]. The datasets were obtained and preprocessed

using the TorchVision library (version 0.13.0+cu113) [49], which is a Python library used for

image processing and computer vision tasks.

4.1.1 Fashion-MNIST

The Fashion-MNIST dataset contains 70,000 greyscale images. The images are of the

size 28x28 pixels. The dataset contains 10 classes, consisting of the following articles of

clothing: t-shirts, trousers, pullovers, dresses, coats, sandals, shirts, sneakers, bags, and ankle

boots. Fig. 4-1 shows sample images from the dataset. Prior to training, the pixel values of the

images were normalized between [-1,1] and the images were flattened to the size 784x1 pixels.

Fig. 4-1. Sample images from the Fashion-MNIST dataset.

Adaptive Chaotic Injection Chapter 4: Testing

24

4.1.2 CIFAR-10

The CIFAR-10 dataset contains 60,000 RGB images. The images are of the size 3x32x32

pixels. The dataset contains 10 classes: airplanes, automobiles, birds, cats, deer, dogs, frogs,

horses, ships, and trucks. Fig. 4-2 shows sample images from the dataset. Prior to training, the

pixel values of the images were normalized between [-1,1].

Fig. 4-2. Sample images from the CIFAR-10 dataset.

4.1.3 Stanford Cars

The Stanford Cars dataset contains 16,185 RGB images of varying sizes. The dataset

contains 196 classes of different types of cars. Fig. 4-3 shows sample images from the dataset.

The images were resized to 224x224 pixels. The pixel values were rescaled between 0 and 1. The

RGB channels were normalized using the following parameters:

mean=[0.485, 0.456, 0.406], standard deviation=[0.229, 0.224, 0.225].

Fig. 4-3. Sample images from the Stanford Cars dataset.

Adaptive Chaotic Injection Chapter 4: Testing

25

4.2 Models

The models were developed using the PyTorch machine learning library (version

1.12.0+cu113) [50]. The CI was compared against the baseline ANNs, DO, GNI without

adaptive scaling, and CI without adaptive scaling. The CI was compared against DO because it is

commonly used in practice. The CI was compared against GNI due to their similar mechanisms

of action. The Gaussian noise used a mean of zero and variance of one. The GNI used the same

injection method as the CI, as described in Section 3.4. The CI was tested with and without

adaptive scaling to assess its effects. When adaptive scaling wasn’t used, the 𝛼 value was set to a

constant value throughout training. The CI, DO, and GNI were used in the hidden dense layers of

the ANNs. The hidden dense layers were selected for the CI because DO is commonly used in

these layers to prevent overfitting. The PyTorch cross-entropy loss function [51] was used as the

loss function for all models.

4.2.1 Multilayer Perceptron Model

The Fashion-MNIST dataset was tested using a multilayer perception ANN. The ANN

contained 2 hidden layers. Each hidden layer contained 512 neurons. Fig. 4-4 illustrates the

model.

Fig. 4-4. Multilayer perceptron ANN used for testing the Fashion-MNIST dataset.

 nput ayer

 ense ayer

 ense ayer

Output ayer

Adaptive Chaotic Injection Chapter 4: Testing

26

4.2.2 Convolutional Model

The CIFAR-10 dataset was tested using a CNN model. The CNN consisted of three

convolutional layers, three 2D-max-pooling layers, followed by two hidden dense layers, and the

output layer. The convolutional layers used a filter size of 3x3 and a padding size of one. The

first convolutional layer used 16 filters, the second convolutional layer used 32 filters, and the

last convolutional layer used 64 filters. A 2D-max-pooling layer followed each convolutional

layer. The 2D-max-pooling layers used a kernel size of two and a stride of two. The two dense

layers each contained 512 neurons. Fig. 4-5 illustrates the model.

Fig. 4-5. CNN used for testing the CIFAR-10 dataset.

4.2.3 EfficientNet-B7 Model

The Stanford Cars dataset was tested using the EfficientNet-B7 model [52]. EfficientNet-

B7 is a state-of-the-art CNN architecture, containing ~66 million trainable parameters. The

output layer of the model was removed and replaced by two dense layers containing 512 neurons

and an output layer containing 196 neurons. The weights of the model were pre-trained on

ImageNet [53], which is a large dataset, containing thousands of classes. The pre-trained weights

were loaded into the model prior to training. The Adam optimizer [54] was used during training

with an initial learning rate of 0.0001. Fig. 4-6 illustrates the model.

 latten ense

 ayer

 ense

 ayer

Output

 ayer

Original

 mage

 onvolutional

 ayer

 a

 ooling

 onvolutional

 ayer

 a

 ooling

 onvolutional

 ayer

 a

 ooling

Adaptive Chaotic Injection Chapter 4: Testing

27

Fig. 4-6. EfficientNet-B7 model used for testing the Stanford Cars dataset.

4.3 Cross-Validation

Ten-fold cross-validation was used for fine-tuning the models and selecting the

hyperparameters [20]. In ten-fold cross-validation, the training data is randomly separated into

ten folds. Ten training runs are performed. For each training run, a different fold is selected as

the validation data. A portion of the data was excluded from cross-validation to be used as the

test data. The Scikit-Learn library (version 1.0.2) [55] was used for implementing the cross-

validation. Fig. 4-7 illustrates the ten-fold cross-validation.

During each training run, the accuracy and loss per epoch for the training and validation

data were saved. As well, the model was saved at the epoch when the validation data had the

lowest loss value. After the ten training runs were completed, the average accuracy and loss per

epoch for the training and validation data were found to produce the overall results. As well, the

ten saved models were used to get the average performance metrics of the test data.

 latten ense

 ayer

 ense

 ayer

Output

 ayer

Original

 mage

Adaptive Chaotic Injection Chapter 4: Testing

28

Fig. 4-7. Ten-fold cross-validation setup.

The training and test data were well-balanced with respect to their classes for all datasets.

The datasets were separated into training and test data using the train/test splits created by the

authors of the datasets. For the Fashion-MNIST dataset, 60,000 images were used for cross-

validation and 10,000 images were used for testing. For the CIFAR-10 dataset, 50,000 images

were used for cross-validation and 10,000 images were used for testing. For the Stanford Cars

dataset, 8144 images were used for cross-validation, and 8041 images were used for testing.

4.4 Hyperparameter Selection

The training and validation data were used to finetune the hyperparameters, such as the

learning rate, the batch size, and the CI parameters. Table 4-1 shows the hyperparameter values

selected. The models were trained for a set number of epochs. Early stopping was not used

because it is a technique to prevent overfitting; we wanted to assess how well the CI performed

without using other overfitting techniques.

 un old old old old old old old old old old Test data

Training data

 alidation data

Test data

Adaptive Chaotic Injection Chapter 4: Testing

29

Table 4-1. Hyperparameter Selection.

Parameter Fashion-MNIST CIFAR-10 Stanford Cars

Batch size 100 100 20

CI bias value (𝛽) 0.5 0.5 0.5

CI bifurcation parameter (𝜇) 1.99 1.99 1.99

CI scale value (constant 𝛼) 3.0 5.0 5.5

CI maximum scale value (𝛼_𝑚𝑎𝑥) 3.0 5.5 6.5

CI scale growth rate (𝜔) 25 25 25

DO value 0.5 0.7 0.6

GNI bias value (𝛽) 0 0 0

GNI scale value (constant 𝛼) 0.9 1.5 1.5

Learning rate 0.05 0.05 0.0001

Number of epochs 50 50 20

Number of test images 10,000 10,000 8041

Number of weights and biases 669,706 816,170 65,461,396

Number of training images 60,000 50,000 8144

Optimizer None None Adam

Adaptive Chaotic Injection Chapter 5: Results

30

5 Results

Two methods were used to assess the ’s performance. irstly, the training convergences of

the models were analyzed. The average accuracies and losses per epoch were plotted, and the

runtimes of the models were compared. Secondly, the average results of the test data were

analyzed, using the following performance metrics: accuracy (ACC), F1-score (F1), negative-

predictive value (NPV), positive-predictive value (PPV), sensitivity (SN), and specificity (SP).

5.1 Training Convergence

5.1.1 Accuracy and Loss Per Epoch

Fig. 5-1, Fig. 5-2, and Fig. 5-3 show (a) the loss per epoch for the training data, (b) the loss

per epoch for the validation data, (c) the accuracy per epoch for the training data, and (d) the

accuracy per epoch for the validation data for the three datasets. Table 5-1, Table 5-2, and Table

5-3 show the accuracy and loss at the end of training for the three datasets. The accuracy is the

number of correctly classified true-positive samples versus the total number of samples, and the

loss is the cross-entropy loss function.

The baseline ANNs produce the highest accuracy and lowest loss for the training data.

However, the baseline ANNs produce the lowest accuracy and highest loss for the validation

data. As well, the validation data’s loss for the baseline ANNs increases throughout training.

These characteristics indicate the baseline ANNs are overfitting to the training data. When the

ANNs are trained for a long time, they begin learning the distinct characteristics and noise of the

training data. As a result, the ANNs’ performance on the validation data begins decreasing,

causing the loss to increase.

Adaptive Chaotic Injection Chapter 5: Results

31

The CI, DO and GNI methods reduce overfitting. These methods add randomness to the

ANNs, making it difficult for the ANNs to overfit to the training data. As a result, the accuracy is

lower and the loss is higher for the training data compared to the baseline ANNs. However, the

accuracy is higher and the loss is lower for the validation data. These methods allow the ANNs

to generalize better to novel data.

The CI with adaptive scaling reduces the final loss of the validation data compared to the

baseline ANNs by 21.85%, 65.42%, and 29.77% for the Fashion-MNIST, CIFAR-10, and

Stanford Cars datasets, respectively. Likewise, the CI with adaptive scaling increases the final

accuracy of the validation data by 0.53%, 1.70%, and 5.55% for the Fashion-MNIST, CIFAR-10,

and Stanford Cars datasets, respectively.

The baseline ANNs converge the fastest. The CI, DO, and GNI models take longer to

converge because they decrease the accuracy of the training data, in exchange for better

generalizability. The CI with adaptive scaling converges faster than DO and GNI, as shown on

the Stanford Cars dataset. The adaptive scaling method initially dampens the chaotic values

allowing the ANNs to converge, and then amplifies the chaotic values allowing the ANNs to

explore a larger solution space.

Adaptive Chaotic Injection Chapter 5: Results

32

 (a) (b)

 (c) (d)

Fig. 5-1. Accuracy and loss per epoch for the Fashion-MNIST dataset.

Table 5-1. Accuracy and loss for the Fashion-MNIST dataset.

Metric
Base

CI

(𝛂 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭)
CI

(𝛂 𝐚𝐝𝐚𝐩𝐭𝐢𝐯𝐞)
DO

GNI

(𝛂 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭)

Train Valid Train Valid Train Valid Train Valid Train Valid

Accuracy (%) 97.28 89.86 93.13 90.28 93.09 90.39 91.91 90.14 92.58 90.18

Loss 0.077 0.357 0.184 0.279 0.184 0.279 0.217 0.281 0.199 0.283

Adaptive Chaotic Injection Chapter 5: Results

33

 (a) (b)

 (c) (d)

Fig. 5-2. Accuracy and loss per epoch for the CIFAR-10 dataset.

Table 5-2. Accuracy and loss for the CIFAR-10 dataset.

Metric
Base

CI

(𝛂 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭)
CI

(𝛂 𝐚𝐝𝐚𝐩𝐭𝐢𝐯𝐞)
DO

GNI

(𝛂 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭)

Train Valid Train Valid Train Valid Train Valid Train Valid

Accuracy (%) 100.0 73.99 89.88 75.58 88.12 75.69 87.43 75.59 87.97 75.83

Loss 0.000 2.308 0.288 0.860 0.339 0.798 0.358 0.859 0.347 0.833

Adaptive Chaotic Injection Chapter 5: Results

34

 (a) (b)

 (c) (d)

Fig. 5-3. Accuracy and loss per epoch for the Stanford Cars dataset.

Table 5-3. Accuracy and loss for the Stanford Cars dataset.

Metric
Base

CI

(𝛂 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭)
CI

(𝛂 𝐚𝐝𝐚𝐩𝐭𝐢𝐯𝐞)
DO

GNI

(𝛂 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭)

Train Valid Train Valid Train Valid Train Valid Train Valid

Accuracy (%) 98.08 76.61 89.03 80.94 86.00 82.16 94.71 80.49 86.23 80.29

Loss 0.065 1.169 0.357 0.834 0.459 0.821 0.186 1.028 0.442 0.878

Adaptive Chaotic Injection Chapter 5: Results

35

5.1.2 Runtime

Table 5-4 shows the average runtimes of the models. Empirically, the results show that

the CI does not have a significant impact on the runtime. The CI adds three computations to the

training algorithm: (1) generating the chaotic values, (2) scaling the chaotic values, and (3)

injecting the chaotic values into the neurons. Note that the models were run in Google Colab

Pro+, therefore the runtimes may vary based on GPU (Graphics Processing Unit) availability.

Table 5-4. Average runtimes (s) of the models.

Dataset Base
CI

(𝛂 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭)
CI

(𝛂 𝐚𝐝𝐚𝐩𝐭𝐢𝐯𝐞)
DO

GNI

(𝛂 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭)

Fashion-

MNIST
501.71 512.89 509.59 493.92 529.22

CIFAR-10 600.32 595.25 839.93 581.96 630.97

Stanford Cars 6146.46 5954.48 6711.64 4108.73 4355.58

Adaptive Chaotic Injection Chapter 5: Results

36

5.2 Performance Metrics

The test data was used to assess the models’ performances. The models were assessed

using the following metrics: (1) accuracy, (2) F1-score, (3) negative-predictive value, (4)

positive-predictive value, (5) sensitivity, and (6) specificity. The metrics were calculated for each

class using the number of true positive (TP), true negative (TN), false positive (FP), and false

negative (FN) samples. Table 5-5 provides the corresponding formulas. After the metrics were

found for each class, the averages were taken.

Table 5-5. Performance metric formulas.

Metric Formula

Sensitivity 𝑆𝑁 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 (1)

Specificity 𝑆𝑃 =
𝑇𝑁

(𝑇𝑁 + 𝐹𝑃)
(1)

Positive-Predictive Value 𝑃𝑃𝑉 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 (15)

Negative-Predictive Value 𝑁𝑃𝑉 =
𝑇𝑁

(𝑇𝑁 + 𝐹𝑁)
(16)

F1-Score 𝐹1 =
2 × 𝑆𝑁 × 𝑃𝑃𝑉

(𝑆𝑁 + 𝑃𝑃𝑉)
(17)

Accuracy 𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)
(18)

Adaptive Chaotic Injection Chapter 5: Results

37

Table 5-6, Table 5-7, and Table 5-8 show the results of the test data for the three datasets.

Appendix B shows the results of the validation data for the three datasets. The CI with adaptive

scaling achieves the highest performance metrics on the test data, with results similar to DO and

GN . The ’s improvements over the baseline ANNs range between 0.04% and 7.36% for

various performance metrics. The ’s improvements over DO and GNI range between 0.01%

and 2.40% for various performance metrics. The greatest improvements are seen on the F1-score,

sensitivity, and positive-predictive value metrics.

The results indicate the CI is more effective on difficult datasets and large ANN models.

The Stanford Cars dataset contains the smallest number of training samples and uses the largest

ANN model, containing ~66 million trainable parameters. Whereas, the Fashion-MNIST dataset

contains the largest number of training samples and uses the smallest ANN model, containing

less than one million trainable parameters. Therefore, the Stanford Cars model is more likely to

suffer from overfitting than the Fashion-MNIST model. Consequently, the Stanford Cars model

likely benefits more from the CI than the Fashion-MNIST model. Additional testing on large

ANN models could be performed to confirm these findings.

Adaptive Chaotic Injection Chapter 5: Results

38

Table 5-6. Performance metrics of the test data for the Fashion-MNIST dataset.

Metric Base
CI

(𝛂 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭)
CI

(𝛂 𝐚𝐝𝐚𝐩𝐭𝐢𝐯𝐞)
DO

GNI

(𝛂 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭)

ACC 97.79 97.92 97.92 97.88 97.90

F1 88.95 89.58 89.59 89.39 89.48

NPV 98.77 98.85 98.85 98.83 98.83

PPV 89.06 89.63 89.62 89.42 89.51

SN 88.95 89.60 89.62 89.42 89.50

SP 98.77 98.84 98.85 98.82 98.83

Table 5-7. Performance metrics of the test data for the CIFAR-10 dataset.

Metric Base
CI

(𝛂 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭)
CI

(𝛂 𝐚𝐝𝐚𝐩𝐭𝐢𝐯𝐞)
DO

GNI

(𝛂 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭)

ACC 94.32 95.04 95.11 94.98 95.02

F1 71.39 75.17 75.50 74.84 75.11

NPV 96.86 97.25 97.29 97.21 97.24

PPV 72.10 75.38 75.77 74.94 75.32

SN 71.59 75.20 75.54 74.90 75.10

SP 96.84 97.24 97.28 97.21 97.23

Table 5-8. Performance metrics of the test data for the Stanford Cars dataset.

Metric Base
CI

(𝛂 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭)
CI

(𝛂 𝐚𝐝𝐚𝐩𝐭𝐢𝐯𝐞)
DO

GNI

(𝛂 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭)

ACC 99.74 99.79 99.82 99.79 99.80

F1 74.45 79.40 81.78 79.39 79.80

NPV 99.87 99.90 99.91 99.90 99.90

PPV 76.94 81.13 83.05 80.97 81.31

SN 74.53 79.54 81.89 79.49 79.95

SP 99.87 99.90 99.91 99.90 99.90

Adaptive Chaotic Injection Chapter 6: Conclusions

39

6 Conclusion

6.1 Thesis Conclusions

This thesis presented a method to inject chaotic values into the neurons of an ANN. In

Chapter 3, the injection method is presented. The chaotic values are generated using the tent

map, which is a chaotic strange attractor when the bifurcation parameter is set to 1.99. Each

neuron in a layer using the CI has its own tent map. The chaotic values are scaled and then

injected into the neurons using a combined additive and multiplicative approach. An adaptive

scaling parameter was developed to increase the effect of the chaotic values throughout training.

In Chapter 4, the models used for testing were presented. A variety of different datasets and

models were used to assess the performance of the CI. Three datasets were used for testing:

Fashion-MNIST, CIFAR-10, and Stanford Cars. In Chapter 5, the results were presented. The CI

was able to reduce overfitting and improve the performance of the ANNs. The CI achieves

higher accuracy than the baseline ANN on all datasets. The CI converges faster than DO and

GNI using the adaptive scaling method.

6.2 Future Work

Recommendations for future work are listed below:

1) A method could be developed to determine the optimal maximum scaling value, 𝛼_𝑚𝑎𝑥.

If 𝛼_𝑚𝑎𝑥 is too large, the ANN will not learn. If 𝛼_𝑚𝑎𝑥 is too small, it will not have an

effect on the ANN. 𝛼_𝑚𝑎𝑥 is not a trainable parameter because the ANN may learn to set

it to zero to increase the accuracy of the training data, however, then overfitting would

not be improved.

Adaptive Chaotic Injection Chapter 6: Conclusions

40

2) Additional testing could be performed. Firstly, the CI was only injected into the dense

layers of the ANNs. Further testing is required to determine its effects on other layers,

such as convolutional layers. Secondly, the CI could be tested on other large ANN

models, such as BERT (Bidirectional Encoder Representations from Transformers) [56].

Our results indicate the CI has the greatest impact on large ANN models. Lastly, the CI

could be compared against other adaptive injection methods [33]–[35] which have

recently been proposed.

3) Additional research could be performed to determine the optimal distribution of values

used for the injection. In this research, the tent map was used which follows a uniform

distribution. Previous work has primarily focused on NI using a Gaussian distribution

[32]–[37]. An adaptive method could be developed to determine the optimal distribution

of values for each individual neuron throughout training.

6.3 Thesis Contributions

In this thesis, several contributions have been made to this area of research:

1) A method for injecting chaotic values or noise into an ANN was developed, which

combines the previous additive and multiplicative injection methods.

2) An adaptive method was developed for scaling the chaotic values. This method uses a

logarithmic function to scale the values, allowing the ANN to initially converge and then

explore a larger solution space. This method can be applied to the CI and NI.

3) The effectiveness of using a chaotic strange attractor to generate sequences of values to

inject into the neurons of an ANN was assessed. The CI successfully reduces overfitting

and improves the performance of ANNs.

Adaptive Chaotic Injection References

41

References

[1] J. chmidhuber, “ eep earning in neural networks: An overview,” Neural Networks, vol.

61, pp. 85–117, 2015, doi: 10.1016/j.neunet.2014.09.003.

[2] . . achute and J. . ubhedar, “Autonomous riving Architectures: Insights of

 achine earning and eep earning Algorithms,” Mach. Learn. with Appl., vol. 6, p.

100164, 2021, doi: https://doi.org/10.1016/j.mlwa.2021.100164.

[3] . Yamashita, . Nishio, . K. G. o, and K. Togashi, “ onvolutional neural networks:

an overview and application in radiology,” Insights Imaging, vol. 9, no. 4, pp. 611–629,

2018, doi: 10.1007/s13244-018-0639-9.

[4] . Gibert, . ateu, and J. lanes, “The rise of machine learning for detection and

classification of malware: Research developments, trends and challenges,” J. Netw.

Comput. Appl., vol. 153, p. 102526, 2020, doi: https://doi.org/10.1016/j.jnca.2019.102526.

[5] X. Ying, “An Overview of Overfitting and its olutions,” J. Phys. Conf. Ser., vol. 1168,

no. 2, pp. 0–6, 2019, doi: 10.1088/1742-6596/1168/2/022022.

[6] . rechelt, “ arly topping — But When? BT - Neural Networks: Tricks of the Trade:

 econd dition,” G. ontavon, G. . Orr, and K.-R. Müller, Eds. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2012, pp. 53–67.

[7] N. rivastava, G. Hinton, A. Krizhevsky, . utskever, and . alakhutdinov, “ ropout: A

 imple Way to revent Neural Networks from Overfitting,” J. Mach. Learn. Res., vol. 15,

no. 1, pp. 1929–1958, Jan. 2014.

[8] A. Y. Ng, “ eature election, vs. egularization, and otational nvariance,” in

Adaptive Chaotic Injection References

42

Proceedings of the Twenty-First International Conference on Machine Learning, 2004, p.

78, doi: 10.1145/1015330.1015435.

[9] R. M. Zur, Y. Jiang, L. L. Pesce, and K. Drukker, “Noise injection for training artificial

neural networks: A comparison with weight decay and early stopping,” Med. Phys., vol.

36, no. 10, pp. 4810–4818, 2009, doi: 10.1118/1.3213517.

[10] H. Korn and . aure, “ s there chaos in the brain? . perimental evidence and related

models,” Comptes Rendus - Biol., vol. 326, no. 9, pp. 787–840, 2003, doi:

10.1016/j.crvi.2003.09.011.

[11] . mall, H. . . obinson, . . Kleppe, and . K. Tse, “Uncovering bifurcation

patterns in cortical synapses,” J. Math. Biol., vol. 61, no. 4, pp. 501–526, 2010, doi:

10.1007/s00285-009-0312-5.

[12] A. elletti and A. . . illa, “ etermination of chaotic attractors in the rat brain,” J. Stat.

Phys., vol. 84, no. 5–6, pp. 1379–1385, 1996, doi: 10.1007/BF02174137.

[13] G. Rodríguez-Bermúdez and P. J. García- aencina, “Analysis of G signals using

nonlinear dynamics and chaos: A review,” Appl. Math. Inf. Sci., vol. 9, no. 5, pp. 2309–

2321, 2015, doi: 10.12785/amis/090512.

[14] S. U. Ahmed, M. Shahjahan, and K. Murase, “ njecting chaos in feedforward neural

networks,” Neural Process. Lett., vol. 34, no. 1, pp. 87–100, 2011, doi: 10.1007/s11063-

011-9185-x.

[15] A. Azamimi, Y. Uwate, and Y. Nishio, “An Analysis of haotic Noise njected to

Backpropagation Algorithm in Feedforward Neural Network,” in International Workshop

Adaptive Chaotic Injection References

43

on Vision, Communications and Circuits, 2008, vol. 1, no. 1, pp. 70–73.

[16] Y. Uwate and Y. Nishio, “ haotically Oscillating igmoid unction in eedforward

Neural Network,” in Proceedings of International Symposium on Nonlinear Theory and

its Applications (NOLTA’06), 2006, pp. 215–218.

[17] H. Zhang, Y. Zhang, . Xu, and X. iu, “ eterministic convergence of chaos injection-

based gradient method for training feedforward neural networks,” Cogn. Neurodyn., vol.

9, no. 3, pp. 331–340, 2015, doi: 10.1007/s11571-014-9323-z.

[18] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. The MIT Press, 2016.

[19] . . umelhart, G. . Hinton, and . J. Williams, “ earning representations by back-

propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986, doi:

10.1038/323533a0.

[20] . aschka, “ odel valuation, odel election, and Algorithm election in achine

 earning,” . [Online]. Available: http://ar iv.org/abs/ . .

[21] A. Krizhevsky, . utskever, and G. . Hinton, “ mageNet lassification with eep

 onvolutional Neural Networks,” in Advances in Neural Information Processing Systems,

2012, vol. 25, [Online]. Available:

https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-

Paper.pdf.

[22] A. herstinsky, “ undamentals of ecurrent Neural Network NN and ong hort-

Term emory T network,” Phys. D Nonlinear Phenom., vol. 404, no. March, pp.

1–43, 2020, doi: 10.1016/j.physd.2019.132306.

Adaptive Chaotic Injection References

44

[23] A. Vaswani et al., “Attention is All You Need,” in Proceedings of the 31st International

Conference on Neural Information Processing Systems, 2017, pp. 6000–6010.

[24] . horten and T. . Khoshgoftaar, “A survey on mage ata Augmentation for eep

 earning,” J. Big Data, vol. 6, no. 1, 2019, doi: 10.1186/s40537-019-0197-0.

[25] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“ mproving neural networks by preventing co-adaptation of feature detectors,” CoRR, vol.

abs/1207.0, 2012, [Online]. Available: http://arxiv.org/abs/1207.0580.

[26] A. amuto, . Willetts, . Holmes, and . oberts, “ plicit regularisation in Gaussian

noise injections,” NeurIPS, no. NeurIPS, pp. 1–12, 2020, doi:

https://doi.org/10.48550/arXiv.2007.07368.

[27] C. M. Bishop, “Training with Noise is uivalent to Tikhonov egularization,” Neural

Comput., vol. 7, no. 1, pp. 108–116, Jan. 1995, doi: 10.1162/neco.1995.7.1.108.

[28] S. Wang, W. Liu, and C.-H. hang, “ etecting Adversarial amples for eep Neural

Networks via ayer irected iscriminative Noise njection,” in 2019 Asian Hardware

Oriented Security and Trust Symposium (AsianHOST), 2019, pp. 1–6, doi:

10.1109/AsianHOST47458.2019.9006702.

[29] A. iu, X. iu, H. Yu, . Zhang, Q. iu, and . Tao, “Training obust eep Neural

Networks via Adversarial Noise ropagation,” IEEE Trans. Image Process., vol. 30, pp.

5769–5781, 2021, doi: 10.1109/TIP.2021.3082317.

[30] X. Meng, C. Liu, Z. Zhang, and D. Wang, “Noisy training for deep neural networks,” in

2014 IEEE China Summit & International Conference on Signal and Information

Adaptive Chaotic Injection References

45

Processing (ChinaSIP), 2014, pp. 16–20, doi: 10.1109/ChinaSIP.2014.6889193.

[31] G. An, “The ffects of Adding Noise uring ackpropagation Training on a

Generalization erformance,” Neural Comput., vol. 8, no. 3, pp. 643–674, 1996, doi:

10.1162/neco.1996.8.3.643.

[32] . Zheng, Y. ong, T. eung, and . Goodfellow, “ mproving the robustness of deep

neural networks via stability training,” Proc. IEEE Comput. Soc. Conf. Comput. Vis.

Pattern Recognit., vol. 2016-Decem, pp. 4480–4488, 2016, doi: 10.1109/CVPR.2016.485.

[33] B. Khalfaoui, J. Boyd, and J.- . ert, “A N : Adaptive tructured Noise njection for

shallow and deep neural networks,” pp. –16, 2019, [Online]. Available:

http://arxiv.org/abs/1909.09819.

[34] Y. i and . iu, “Adaptive Gaussian Noise njection egularization for Neural

Networks,” in Advances in Neural Networks – ISNN 2020, 2020, pp. 176–189, doi:

https://doi.org/10.1007/978-3-030-64221-1_16.

[35] Y. X. arcus Tan, Y. lovici, and A. inder, “Adaptive Noise njection for Training

 tochastic tudent Networks from eterministic Teachers,” in 2020 25th International

Conference on Pattern Recognition (ICPR), 2021, pp. 7587–7594, doi:

10.1109/ICPR48806.2021.9412385.

[36] . Adilova, N. aul, and . chlicht, “ ntroducing Noise in ecentralized Training of

Neural Networks,” , doi: . / -3-030-13453-2_21.

[37] Z. ai, . eng, and . u, “Jitter: andom Jittering oss unction,” Proc. Int. Jt. Conf.

Neural Networks, vol. 2021-July, no. 1, 2021, doi: 10.1109/IJCNN52387.2021.9533462.

Adaptive Chaotic Injection References

46

[38] J. . prott and . H. Abraham, “ trange Attractors: reating atterns in haos,” Am. J.

Phys., vol. 63, no. 5, pp. 477–477, 1995, doi: 10.1119/1.17885.

[39] . ing, H. Qian, and J. Zhou, “Activation functions and their characteristics in deep

neural networks,” in 2018 Chinese Control And Decision Conference (CCDC), 2018, pp.

1836–1841, doi: 10.1109/CCDC.2018.8407425.

[40] . Gagnon, A. April, and A. Abran, “An investigation of the effects of chaotic maps on the

performance of metaheuristics,” Eng. Reports, vol. 3, no. 8, pp. 1–14, 2021, doi:

10.1002/eng2.12369.

[41] S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology,

Chemistry, and Engineering, 2nd ed. CRC Press, 2015.

[42] A. S. Mikhailov and A. Y. Loskutov, Foundations of Synergetics II: Chaos and Noise.

Berlin, Heidelberg: Springer Berlin Heidelberg, 1996.

[43] . Nair and G. . Hinton, “ ectified Linear Units Improve Restricted Boltzmann

 achines,” in Proceedings of the 27th International Conference on International

Conference on Machine Learning, 2010, pp. 807–814.

[44] G. Van Rossum and F. L. Drake, Python 3 Reference Manual. Scotts Valley, CA:

CreateSpace, 2009.

[45] Google, “Google olab,” . https://colab.research.google.com/?utm_source=scs-index

(accessed Jul. 01, 2022).

[46] H. Xiao, K. asul, and . ollgraf, “ ashion-MNIST: a Novel Image Dataset for

Benchmarking Machine Learning Algorithms,” pp. –6, 2017, [Online]. Available:

Adaptive Chaotic Injection References

47

http://arxiv.org/abs/1708.07747.

[47] Ale Krizhevsky, “ earning ultiple ayers of eatures from Tiny mages,” .

[Online]. Available: https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf.

[48] J. Krause, M. Stark, J. Deng, and L. Fei- ei, “ object representations for fine-grained

categorization,” Proc. IEEE Int. Conf. Comput. Vis., pp. 554–561, 2013, doi:

10.1109/ICCVW.2013.77.

[49] . arcel and Y. odriguez, “Torchvision the achine-Vision ackage of Torch,” in

Proceedings of the 18th ACM International Conference on Multimedia, 2010, pp. 1485–

1488, doi: 10.1145/1873951.1874254.

[50] A. Paszke et al., “ yTorch: An imperative style, high-performance deep learning library,”

Adv. Neural Inf. Process. Syst., vol. 32, no. NeurIPS, 2019.

[51] yTorch, “ ross ntropy oss,” .

https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html (accessed Jul.

01, 2022).

[52] . Tan and Q. . e, “ fficientNet: ethinking model scaling for convolutional neural

networks,” 36th Int. Conf. Mach. Learn. ICML 2019, vol. 2019-June, pp. 10691–10700,

2019.

[53] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and F.- . i, “ mageNet: a arge-Scale

Hierarchical mage atabase,” in IEEE Conference on Computer Vision and Pattern

Recognition, Jun. 2009, pp. 248–255, doi: 10.1109/CVPR.2009.5206848.

[54] D. Kingma and J. a, “Adam: A ethod for tochastic Optimization,” Int. Conf. Learn.

Adaptive Chaotic Injection References

48

Represent., Dec. 2014.

[55] F. Pedregosa et al., “ cikit-learn: achine earning in ython,” J. Mach. Learn. Res., vol.

12, no. 85, pp. 2825–2830, 2011, [Online]. Available:

http://jmlr.org/papers/v12/pedregosa11a.html.

[56] J. evlin, . W. hang, K. ee, and K. Toutanova, “ T: re-training of deep

bidirectional transformers for language understanding,” NAACL HLT 2019 - 2019 Conf.

North Am. Chapter Assoc. Comput. Linguist. Hum. Lang. Technol. - Proc. Conf., vol. 1,

no. Mlm, pp. 4171–4186, 2019.

Adaptive Chaotic Injection Appendix A

49

Appendix A

Appendix A provides the code used for all the experiments. The code consists of 6 modules, as

listed below:

1) imports.ipynb

2) main.ipynb

3) load_dataset.ipynb

4) create_model.ipynb

5) train_model.ipynb

6) display_results.ipynb

Note: To run the code, the user should update the “selected_dataset” variable in main.ipynb to

select either the Fashion-MNIST, CIFAR-10, or Stanford Cars dataset. The user must also update

the number of epochs, CI, DO, and GNI hyperparameters accordingly. Lastly, the user must

update the paths to where their code, models, and results are stored.

A.1 Imports

#**

MODULE: Imports

PURPOSE: Imports the libraries and .ipynb files, sets the seed values, and

connects to the GPUs.

AUTHOR: Siobhan Reid

VERSION: 2

DATE: August 1, 2022

#**

Download PyTorch if not already installed

!pip install torch

!pip install torchvision

PyTorch imports

Adaptive Chaotic Injection Appendix A

50

import torch

import torch.nn as nn

import torchvision

import torchvision.datasets as datasets

import torchvision.transforms as transforms

from torch.autograd import Variable

from torch.utils.data import DataLoader

from torchvision.utils import make_grid

Other imports

from sklearn.metrics import confusion_matrix

from sklearn.model_selection import KFold

import autoreload

from matplotlib import pyplot as plt

import numpy as np

import timeit

import os

import random

import math

import gc

import seaborn as sns

import pandas as pd

Set Pandas display options

pd.set_option('display.max_columns', None)

Set seed values

def set_seed() :

 seed = 0

 torch.manual_seed(seed)

 torch.cuda.manual_seed_all(seed)

 torch.cuda.manual_seed(seed)

 np.random.seed(seed)

 random.seed(seed)

 torch.backends.cudnn.deterministic = True

 torch.backends.cudnn.benchmark = False

set_seed()

Connect to GPU

if torch.cuda.is_available():

 device = torch.device("cuda:0")

 print("Running on the GPU")

else:

 device = torch.device("cpu")

Adaptive Chaotic Injection Appendix A

51

 print("Running on the CPU")

torch.cuda.device_count()

Run .ipynb files

%run load_dataset.ipynb

%run create_model.ipynb

%run train_model.ipynb

%run display_results.ipynb

A.2 Main

#**

MODULE: Main

PURPOSE: Loads the dataset, trains the ANN models, and displays the results.

AUTHOR: Siobhan Reid

VERSION: 2

DATE: August 1, 2022

#**

Connect to Google Drive

from google.colab import drive

drive.mount('/content/drive/', force_remount=True)

%cd "/content/drive/My Drive/ColabNotebooks/v2/code"

Import libraries

%run imports.ipynb

Select the dataset

fashion_mnist = 1

cifar_10 = 2

stanford_cars = 3

load_dataset = Load_Dataset()

dataset_download_path = "Downloads"

selected_dataset = fashion_mnist

Download and load the dataset

if (selected_dataset == fashion_mnist):

 train_data, test_data, test_gen, input_size, num_classes, batch_size = load_dataset.load_fashio

n_mnist_dataset(dataset_download_path)

 save_model_path = "/content/drive/My Drive/ColabNotebooks/v2/models/fashion_mnist/"

 train_data_shape = np.zeros((len(train_data), input_size))

if (selected_dataset == cifar_10):

Adaptive Chaotic Injection Appendix A

52

 train_data, test_data, test_gen, input_size, num_classes, batch_size = load_dataset.load_cifar_

10_dataset(dataset_download_path)

 save_model_path = "/content/drive/My Drive/ColabNotebooks/v2/models/cifar_10/"

 train_data_shape = np.zeros((len(train_data), input_size[0], input_size[1], input_size[2]))

if (selected_dataset == stanford_cars):

 train_data, test_data, test_gen, input_size, num_classes, batch_size = load_dataset.load_stanfo

rd_cars_dataset(dataset_download_path)

 save_model_path = "/content/drive/My Drive/ColabNotebooks/v2/models/stanford_cars/"

 train_data_shape = np.zeros((len(train_data), input_size[0], input_size[1], input_size[2]))

Path to where the models and results will be saved

aci_save_model_path = save_model_path + "/aci/"

ci_save_model_path = save_model_path + "/ci/"

base_save_model_path = save_model_path + "/base/"

do_save_model_path = save_model_path + "/do/"

gni_save_model_path = save_model_path + "/gni/"

Show batch of images from the dataset

load_dataset.show_batch(test_gen)

Create a k-fold object using Sklearn

Used to perform the 10-fold cross-validation; separates the training data into ten folds

num_kfolds = 10

rand_state = 1

kf = KFold(n_splits = num_kfolds, random_state = rand_state, shuffle = True)

Specify which ANN model should be used

The Fashion-MNIST dataset uses a MLP model

The CIFAR-10 dataset uses a CNN model

The Stanford Cars dataset uses the EfficientNet-B7 model

if (selected_dataset == stanford_cars) :

 use_optim = True # Boolean which specifies whether the Adam optimizer should be used

 use_conv = False # Boolean which specifies whether the CNN model should be used

 use_eff_net = True # Boolean which specifies whether the Efficient-B7 model should be used

if (selected_dataset == cifar_10) :

 use_optim = False

 use_conv = True

 use_eff_net = False

if (selected_dataset == fashion_mnist) :

 use_optim = False

 use_conv = False

 use_eff_net = False

Specify the ANN models' hyperparameters depending on whether the MLP, CNN, or EfficientNet-B7

model was selected

Adaptive Chaotic Injection Appendix A

53

num_epochs = 50 # Number of training epochs

learning_rate = 0.05 # Learning rate

hidden_size_layer1 = 512 # Size of first dense layer

hidden_size_layer2 = 512 # Size of second dense layer

ci_bifur_val = 1.99 # Tent map bifurcation parameter

ci_offset_val = 0.5 # Tent map offset value

do_val = 0.6 # Dropout value

gni_scale_val = 0.9 # Gaussian noise scaling value

loss_function = nn.CrossEntropyLoss() # Loss function

Five different ANN models are trained: baseline ANN, CI with adaptive scaling, CI without adapt

ive scaling, GNI without adaptive scaling, and Dropout

Boolean values (use_ci, use_do, use_gni, and use adapt_scale) are used to specify which model i

s being trained

Each model is trained using 10-fold cross-validation

Train the CI model without adaptive scaling

use_ci = True

use_gni = False

use_do = False

ci_scale_val = 3.0 # Tent map scaling value

use_adapt_scale = False

set_seed()

train_model = Train_Model(input_size, hidden_size_layer1, hidden_size_layer2, num_classes, batch_

size,

 ci_scale_val, gni_scale_val, ci_bifur_val, ci_offset_val,

 do_val, use_conv, use_eff_net, use_ci, use_gni, use_do, use_adapt_scale,

 num_epochs, learning_rate, use_optim, loss_function, kf, train_data_shape, train_d

ata)

train_model.kfold_train_model(ci_save_model_path)

Train the CI model with adaptive scaling

use_ci = True

use_gni = False

use_do = False

ci_scale_val = 3.0

use_adapt_scale = True

set_seed()

train_model = Train_Model(input_size, hidden_size_layer1, hidden_size_layer2, num_classes, batch_

size,

Adaptive Chaotic Injection Appendix A

54

 ci_scale_val, gni_scale_val, ci_bifur_val, ci_offset_val,

 do_val, use_conv, use_eff_net, use_ci, use_gni, use_do, use_adapt_scale,

 num_epochs, learning_rate, use_optim, loss_function, kf, train_data_shape, train_d

ata)

train_model.kfold_train_model(aci_save_model_path)

Train the baseline model

use_ci = False

use_gni = False

use_do = False

use_adapt_scale = False

set_seed()

train_model = Train_Model(input_size, hidden_size_layer1, hidden_size_layer2, num_classes, batch_

size,

 ci_scale_val, gni_scale_val, ci_bifur_val, ci_offset_val,

 do_val, use_conv, use_eff_net, use_ci, use_gni, use_do, use_adapt_scale,

 num_epochs, learning_rate, use_optim, loss_function, kf, train_data_shape, train_d

ata)

train_model.kfold_train_model(base_save_model_path)

Train the Dropout model

use_ci = False

use_gni = False

use_do = True

use_adapt_scale = False

set_seed()

train_model = Train_Model(input_size, hidden_size_layer1, hidden_size_layer2, num_classes, batch_

size,

 ci_scale_val, gni_scale_val, ci_bifur_val, ci_offset_val,

 do_val, use_conv, use_eff_net, use_ci, use_gni, use_do, use_adapt_scale,

 num_epochs, learning_rate, use_optim, loss_function, kf, train_data_shape, train_d

ata)

train_model.kfold_train_model(do_save_model_path)

Train the GNI model

use_ci = False

use_gni = True

use_do = False

Adaptive Chaotic Injection Appendix A

55

use_adapt_scale = False

set_seed()

train_model = Train_Model(input_size, hidden_size_layer1, hidden_size_layer2, num_classes, batch_

size,

 ci_scale_val, gni_scale_val, ci_bifur_val, ci_offset_val,

 do_val, use_conv, use_eff_net, use_ci, use_gni, use_do, use_adapt_scale,

 num_epochs, learning_rate, use_optim, loss_function, kf, train_data_shape, train_d

ata)

train_model.kfold_train_model(gni_save_model_path)

After all models are trained, the results are displayed

use_ci = False

use_gni = False

use_do = False

use_adapt_scale = False

display_results = Display_Results(input_size, hidden_size_layer1, hidden_size_layer2, num_classes

, batch_size,

 ci_scale_val, gni_scale_val, ci_bifur_val, ci_offset_val,

 do_val, use_conv, use_eff_net, use_ci, use_gni, use_do, use_adapt_scale,

 num_epochs, kf, train_data_shape, train_data, test_gen, save_model_path)

Plot the loss and accuracy per epoch for the training and validation data

aci_plots_df = pd.read_csv(aci_save_model_path + "/plots.csv")

ci_plots_df = pd.read_csv(ci_save_model_path + "/plots.csv")

gni_plots_df = pd.read_csv(gni_save_model_path + "/plots.csv")

base_plots_df = pd.read_csv(base_save_model_path + "/plots.csv")

do_plots_df = pd.read_csv(do_save_model_path + "/plots.csv")

display_results.plot_loss_and_acc_per_epoch(aci_plots_df.valid_loss, ci_plots_df.valid_loss, base

_plots_df.valid_loss, do_plots_df.valid_loss, gni_plots_df.valid_loss, 'upper right', "Loss per E

poch - Validation Data", "Loss (Cross-Entropy)")

display_results.plot_loss_and_acc_per_epoch(aci_plots_df.train_loss, ci_plots_df.train_loss, base

_plots_df.train_loss, do_plots_df.train_loss, gni_plots_df.train_loss, 'upper right', "Loss per E

poch - Train Data", "Loss (Cross-Entropy)")

display_results.plot_loss_and_acc_per_epoch(aci_plots_df.valid_acc, ci_plots_df.valid_acc, base_p

lots_df.valid_acc, do_plots_df.valid_acc, gni_plots_df.valid_acc, 'lower right', "Accuracy per Ep

och - Validation Data", "Accuracy (%)")

display_results.plot_loss_and_acc_per_epoch(aci_plots_df.train_acc, ci_plots_df.train_acc, base_p

lots_df.train_acc, do_plots_df.train_acc, gni_plots_df.train_acc, 'lower right', "Accuracy per Ep

och - Train Data", "Accuracy (%)")

Adaptive Chaotic Injection Appendix A

56

Display the performance metrics for the validation data

get_valid_results = True

display_results.kfold_display_metrics(get_valid_results)

Display the performance metrics for the test data

get_valid_results = False

display_results.kfold_display_metrics(get_valid_results)

A.3 Load Dataset

#**

MODULE: Load_Dataset

PURPOSE: Loads the training and test data for the Fashion-MNIST, CIFAR-10, and Stanford

Cars datasets, and preprocesses the images.

AUTHOR: Siobhan Reid

VERSION: 2

DATE: August 1, 2022

#**

class Load_Dataset():

 #**

 # FUNCTION: show_batch

 # PURPOSE: Displays a batch of samples images from a data generator.

 # PARAMS: The data generator.

 # RETURNS: NA.

 #**

 def show_batch(self, gen):

 for images, labels in gen:

 fig, ax = plt.subplots(figsize=(12, 6))

 ax.set_xticks([]); ax.set_yticks([])

 ax.imshow(make_grid(images, nrow=16).permute(1, 2, 0))

 break

 return

 #**

 # FUNCTION: load_cifar_10_dataset

 # PURPOSE: Downloads the CIFAR-10 dataset and preprocesses the images.

 # PARAMS: The download path.

 # RETURNS: The training data, the test data, the test data loaded into a generator,

 # the image input size, the number of classes, and the selected batch size.

 #**

Adaptive Chaotic Injection Appendix A

57

 def load_cifar_10_dataset(self, dataset_download_path):

 num_classes = 10

 input_size = (3,32,32)

 batch_size = 100

 transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5,0.5,0.5), (0.

5,0.5,0.5)),])

 train_data = datasets.CIFAR10(root = dataset_download_path, train=True, download=True, transf

orm=transform)

 test_data = datasets.CIFAR10(root = dataset_download_path, train=False, download=True, transf

orm=transform)

 test_gen = torch.utils.data.DataLoader(test_data, batch_size=batch_size, shuffle=False)

 return train_data, test_data, test_gen, input_size, num_classes, batch_size

 #**

 # FUNCTION: load_stanford_cars_dataset

 # PURPOSE: Downloads the Stanford Cars dataset and preprocesses the images.

 # PARAMS: The download path.

 # RETURNS: The training data, the test data, the test data loaded into a generator,

 # the image input size, the number of classes, and the selected batch size.

 #**

 def load_stanford_cars_dataset(self, dataset_download_path):

 num_classes = 196

 input_size = (3,224,224)

 batch_size = 20

 transform=transforms.Compose([transforms.ToTensor(), transforms.Resize((224,224)), transforms

.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])

 train_data = datasets.StanfordCars(root = dataset_download_path, split = "train", download =

True, transform=transform)

 test_data = datasets.StanfordCars(root = dataset_download_path, split = "test", download = Tr

ue, transform=transform)

 test_gen = torch.utils.data.DataLoader(test_data, batch_size=batch_size, shuffle=False)

 return train_data, test_data, test_gen, input_size, num_classes, batch_size

 #**

 # FUNCTION: load_fashion_mnist_dataset

 # PURPOSE: Downloads the Fashion-MNIST dataset and preprocesses the images.

 # PARAMS: The download path.

 # RETURNS: The training data, the test data, the test data loaded into a generator,

 # the image input size, the number of classes, and the selected batch size.

 #**

 def load_fashion_mnist_dataset(self, dataset_download_path):

 num_classes = 10

 input_size = 28*28

Adaptive Chaotic Injection Appendix A

58

 batch_size = 100

 transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])

 train_data = datasets.FashionMNIST(dataset_download_path, download = True, train = True, tran

sform = transform)

 test_data = datasets.FashionMNIST(dataset_download_path, download = True, train = False, tran

sform = transform)

 test_gen = torch.utils.data.DataLoader(test_data, batch_size = batch_size, shuffle = True)

 return train_data, test_data, test_gen, input_size, num_classes, batch_size

 #**

 # FUNCTION: seed_worker

 # PURPOSE: Used to set the seed for the training data generator.

 # PARAMS: The worker ID for the generator.

 # RETURNS: NA.

 # REFERENCE: https://discuss.pytorch.org/t/reproducibility-with-all-the-bells-and-

whistles/81097

 #**

 def seed_worker(self, worker_id):

 worker_seed = torch.initial_seed() % 2**32

 np.random.seed(worker_seed)

 random.seed(worker_seed)

A.4 Create Model

#**

MODULE: Net

PURPOSE: Creates the ANN model.

The Fashion-MNIST dataset uses a MLP model.

The CIFAR-10 dataset uses a CNN model.

The Stanford Cars datset uses the EfficientNet-B7 model.

AUTHOR: Siobhan Reid

VERSION: 2

DATE: August 1, 2022

#**

class Net(nn.Module):

 #**

 # FUNCTION: __init__

 # PURPOSE: Initializes the class variables and ANN layers. Inherits from the PyTorch

 # class.

 # PARAMS: The hyperparameters of the ANN (described in main.ipynb).

 # RETURNS: NA.

Adaptive Chaotic Injection Appendix A

59

 #**

 def __init__(self, input_size, hidden_size_layer1, hidden_size_layer2, num_classes, batch_size,

 ci_scale_val, gni_scale_val, ci_bifur_val, ci_offset_val,

 do_val, use_conv, use_eff_net, use_ci, use_gni, use_do, use_adapt_scale, num_epoch

s):

 super(Net, self).__init__()

 self.num_epochs = num_epochs

 self.batch_size = batch_size

 self.hidden_size_layer1 = hidden_size_layer1

 self.hidden_size_layer2 = hidden_size_layer2

 self.use_conv = use_conv

 self.use_eff_net = use_eff_net

 self.do = nn.Dropout(do_val)

 self.relu = nn.ReLU()

 self.use_ci = use_ci

 self.use_gni = use_gni

 self.use_do = use_do

 self.ci_bifur_val = ci_bifur_val

 self.ci_offset_val = ci_offset_val

 self.ci_scale_val = self.init_scale_val(ci_scale_val, num_epochs, use_adapt_scale)

 self.gni_scale_val = self.init_scale_val(gni_scale_val,num_epochs,use_adapt_scale)

 self.layer1_ci_vals = self.init_tent_map((batch_size, hidden_size_layer1))

 self.layer2_ci_vals = self.init_tent_map((batch_size, hidden_size_layer2))

 if (use_conv == True) :

 self.conv1 = nn.Conv2d(3, 16, 3, padding=1)

 self.conv2 = nn.Conv2d(16, 32, 3, padding=1)

 self.conv3 = nn.Conv2d(32, 64, 3, padding=1)

 self.pool = nn.MaxPool2d(2, 2)

 self.fc1 = nn.Linear(1024, hidden_size_layer1)

 self.fc2 = nn.Linear(hidden_size_layer1, hidden_size_layer2)

 self.fc3 = nn.Linear(hidden_size_layer2, num_classes)

 elif (use_eff_net == True) :

 self.model = torchvision.models.efficientnet_b7(pretrained = True)

 self.model = nn.Sequential(*list(self.model.children())[:-1])

 self.fc1 = nn.Linear(2560, hidden_size_layer1)

 self.fc2 = nn.Linear(hidden_size_layer1, hidden_size_layer2)

 self.fc3 = nn.Linear(hidden_size_layer2, num_classes)

 else:

 self.fc1 = nn.Linear(input_size, hidden_size_layer1)

 self.fc2 = nn.Linear(hidden_size_layer1, hidden_size_layer2)

Adaptive Chaotic Injection Appendix A

60

 self.fc3 = nn.Linear(hidden_size_layer2, num_classes)

 #**

 # FUNCTION: forward

 # PURPOSE: Passes the input to the selected ANN model (MLP model, CNN model, or

 # EfficientNet-B7 model) to perform forward propagation.

 # PARAMS: The input images, the boolean parameters which select whether the CI, GNI,

 # or DO should be used, and the epoch number.

 # RETURNS: The output.

 #**

 def forward(self, x, use_ci, use_gni, use_do, epoch_num):

 self.use_ci = use_ci

 self.use_gni = use_gni

 self.use_do = use_do

 self.epoch_num = epoch_num

 if (self.use_conv == True) :

 x = self.forward_conv(x)

 elif (self.use_eff_net == True) :

 x = self.forward_eff_net(x)

 else :

 x = self.forward_mlp(x)

 return x

 #**

 # FUNCTION: forward_conv

 # PURPOSE: Performs forward propagation for the CNN model.

 # PARAMS: The input images.

 # RETURNS: The output.

 # REFERENCE: https://shonit2096.medium.com/cnn-on-cifar10-data-set-using-pytorch-34be87e09844

 #**

 def forward_conv(self,x):

 x = self.pool(self.relu(self.conv1(x)))

 x = self.pool(self.relu(self.conv2(x)))

 x = self.pool(self.relu(self.conv3(x)))

 x = x.view(-1, 64 * 4 * 4)

 x = self.forward_mlp(x)

 return x

 #**

 # FUNCTION: forward_eff_net

 # PURPOSE: Performs forward propagation for the EfficientNet-B7 model.

Adaptive Chaotic Injection Appendix A

61

 # PARAMS: The input images.

 # RETURNS: The output.

 #**

 def forward_eff_net(self, x) :

 x = self.model(x)

 x = x.view(-1, 2560)

 x = self.forward_mlp(x)

 return x

 #**

 # FUNCTION: forward_mlp

 # PURPOSE: Performs forward propagation for the mlp model containing the 2 dense layers.

 # The dense layers either use the CI, GNI, DO or none.

 # PARAMS: The input images.

 # RETURNS: The output.

 #**

 def forward_mlp(self,x):

 x = self.fc1(x)

 x = self.relu(x)

 if (self.use_gni == True):

 x = x + x * self.gni_scale_val[self.epoch_num] * Variable(torch.randn(self.batch_size, self

.hidden_size_layer1)).cuda()

 if (self.use_ci == True):

 self.layer1_ci_vals = self.tent_map(self.layer1_ci_vals)

 temp = self.ci_scale_val[self.epoch_num] * (self.layer1_ci_vals - self.ci_offset_val)

 x = x + x * temp

 if (self.use_do == True) :

 x = self.do(x)

 x = self.fc2(x)

 x = self.relu(x)

 if (self.use_gni == True):

 x = x + x * self.gni_scale_val[self.epoch_num] * Variable(torch.randn(self.batch_size, self

.hidden_size_layer2)).cuda()

 if (self.use_ci == True):

 self.layer2_ci_vals = self.tent_map(self.layer2_ci_vals)

 temp = self.ci_scale_val[self.epoch_num] * (self.layer2_ci_vals - self.ci_offset_val)

 x = x + x * temp

 if (self.use_do == True) :

 x = self.do(x)

Adaptive Chaotic Injection Appendix A

62

 x = self.fc3(x)

 return x

 #**

 # FUNCTION: tent_map

 # PURPOSE: Iterates the tent map function.

 # PARAMS: The input into the tent map.

 # RETURNS: The output of the tent map.

 #**

 def tent_map(self, chaotic_input) :

 chaotic_input = self.ci_bifur_val * torch.min(chaotic_input, 1 - chaotic_input)

 return chaotic_input

 #**

 # FUNCTION: init_tent_map

 # PURPOSE: Initializes the tent map values between 0 and 1, and iterates them for

 # 1000 iterations to remove transient values.

 # PARAMS: The size of the hidden layers using the tent maps (batch size, hidden size).

 # RETURNS: The output of the tent maps.

 #**

 def init_tent_map(self,hidden_size) :

 chaotic_input = Variable(torch.rand(hidden_size)).cuda()

 for i in range(1000):

 chaotic_input = self.ci_bifur_val * torch.min(chaotic_input, 1 - chaotic_input)

 return chaotic_input

 #**

 # FUNCTION: init_scale_val

 # PURPOSE: Initializes the scaling values of the tent maps. If use_adapt_scale if true,

 # the scaling value changes depending on the epoch number, otherwise the

 # scaling value is constant.

 # PARAMS: The maximum scaling value, the number of epochs, and the boolean value

 # used to select adaptive scaling.

 # RETURNS: An array containing the scaling values for each epoch.

 #**

 def init_scale_val(self, max_scale_val, num_epochs, use_adapt_scale) :

 scale_val_arr = []

 if (use_adapt_scale == True) :

 for n in range(num_epochs):

 scale_val = (math.log(25 * n + 1)) # w = 25, growth rate parameter

Adaptive Chaotic Injection Appendix A

63

 scale_val_arr.append(scale_val)

 scale_val_arr = np.array(scale_val_arr)

 scale_val_arr = ((scale_val_arr) / np.max(scale_val_arr)) * max_scale_val

 else :

 for n in range(num_epochs):

 scale_val_arr.append(max_scale_val)

 scale_val_arr = np.array(scale_val_arr)

 return scale_val_arr

A.5 Train Model

#**

MODULE: Train_Model

PURPOSE: Train the ANN model.

AUTHOR: Siobhan Reid

VERSION: 2

DATE: August 1, 2022

#**

class Train_Model():

 #**

 # FUNCTION: __init__

 # PURPOSE: Initializes the class variables.

 # PARAMS: The hyperparameters of the ANN (described in main.ipynb) and the parameters

 # used to train the ANN, such as the loss function, the k-fold object used to

 # perform 10-fold cross-validation, and the training data.

 # RETURNS: NA.

 #**

 def __init__(self, input_size, hidden_size_layer1, hidden_size_layer2, num_classes, batch_size,

 ci_scale_val, gni_scale_val, ci_bifur_val, ci_offset_val,

 do_val, use_conv, use_eff_net, use_ci, use_gni, use_do, use_adapt_scale,

 num_epochs, learning_rate, use_optim, loss_function, kf, train_data_shape, train_d

ata):

 self.input_size = input_size

 self.hidden_size_layer1 = hidden_size_layer1

 self.hidden_size_layer2 = hidden_size_layer2

 self.num_classes = num_classes

 self.batch_size = batch_size

 self.ci_scale_val = ci_scale_val

Adaptive Chaotic Injection Appendix A

64

 self.gni_scale_val = gni_scale_val

 self.ci_bifur_val = ci_bifur_val

 self.ci_offset_val = ci_offset_val

 self.do_val = do_val

 self.use_conv = use_conv

 self.use_eff_net = use_eff_net

 self.use_ci = use_ci

 self.use_gni = use_gni

 self.use_do = use_do

 self.use_adapt_scale = use_adapt_scale

 self.num_epochs = num_epochs

 self.use_optim = use_optim

 self.loss_function = loss_function

 self.kf = kf

 self.train_data_shape = train_data_shape

 self.train_data = train_data

 self.learning_rate = learning_rate

 #**

 # FUNCTION: calc_valid_loss_and_acc

 # PURPOSE: Calculate the loss and accuracy of the validation data.

 # PARAMS: The validation data generator and the ANN model.

 # RETURNS: The loss and accuracy.

 #**

 def calc_valid_loss_and_acc(self, gen, net):

 net.eval()

 running_loss=0

 correct=0

 total=0

 with torch.no_grad():

 for i ,(images,labels) in enumerate(gen):

 if (selected_dataset == fashion_mnist):

 images = Variable(images.view(-1, self.input_size)).cuda()

 labels = Variable(labels).cuda()

 else :

 images = Variable(images).cuda()

 labels = Variable(labels).cuda()

 outputs = net(images, False, False, False, 0)

 loss = self.loss_function(outputs,labels)

Adaptive Chaotic Injection Appendix A

65

 running_loss += loss.item()

 _, predicted = outputs.max(1)

 total += labels.size(0)

 correct += predicted.eq(labels).sum().item()

 loss = running_loss/len(gen)

 acc = 100.*correct/total

 return loss, acc

 #**

 # FUNCTION: train_model

 # PURPOSE: Trains the ANN model. Saves the ANN model at the epoch with the lowest

 # validation loss.

 # PARAMS: The path where to save the model, and the training and validation data.

 # RETURNS: The loss and accuracy per epoch for the training and validation data.

 # REFERENCE: Reference: https://towardsdatascience.com/how-to-save-and-load-a-model-

 # in-pytorch-with-a-complete-example-c2920e617dee

 #**

 def train_model(self, best_model_path, net, train_gen, valid_gen):

 print("Learning rate: ", self.learning_rate)

 print("Num epochs: ", self.num_epochs)

 train_loss_arr = []

 train_acc_arr = []

 valid_loss_arr = []

 valid_acc_arr = []

 min_valid_loss = 1000000

 if (self.use_optim == True) :

 lr = 1e-4

 optimizer = torch.optim.Adam(

 (p for p in net.parameters() if p.requires_grad), lr=lr

)

 for epoch in range(self.num_epochs):

 print('\nEpoch : %d'%epoch)

 net.train()

 running_loss=0

 correct=0

 total=0

Adaptive Chaotic Injection Appendix A

66

 for i, (images,labels) in enumerate(train_gen):

 if (selected_dataset == fashion_mnist):

 images = Variable(images.view(-1, self.input_size)).cuda()

 labels = Variable(labels).cuda()

 else :

 images = Variable(images).cuda()

 labels = Variable(labels).cuda()

 outputs = net(images, self.use_ci, self.use_gni, self.use_do, epoch)

 if (self.use_optim == True) :

 optimizer.zero_grad()

 loss = self.loss_function(outputs, labels)

 loss.backward()

 optimizer.step()

 else :

 net.zero_grad()

 loss = self.loss_function(outputs, labels)

 loss.backward()

 for name, param in net.named_parameters():

 if (param.requires_grad) :

 param.data -= self.learning_rate * param.grad.data

 running_loss += loss.item()

 _, predicted = outputs.max(1)

 total += labels.size(0)

 correct += predicted.eq(labels).sum().item()

 train_loss = running_loss/len(train_gen)

 train_acc = 100.*correct/total

 valid_loss, valid_acc = self.calc_valid_loss_and_acc(valid_gen, net)

 print('Train Loss: %.3f | Accuracy: %.3f'%(train_loss,train_acc))

 print('Valid Loss: %.3f | Accuracy: %.3f'%(valid_loss,valid_acc))

 train_loss_arr.append(train_loss)

 train_acc_arr.append(train_acc)

 valid_loss_arr.append(valid_loss)

 valid_acc_arr.append(valid_acc)

 if (valid_loss < min_valid_loss) :

 print("best " , min_valid_loss)

 print("curr ", valid_loss)

Adaptive Chaotic Injection Appendix A

67

 checkpoint = { 'epoch': epoch, 'valid_loss_min': valid_loss, 'state_dict': net.state_dict

() }

 min_valid_loss = valid_loss

 torch.save(checkpoint, best_model_path)

 return train_loss_arr, train_acc_arr, valid_loss_arr, valid_acc_arr

 #**

 # FUNCTION: kfold_train_model

 # PURPOSE: Performs 10-fold cross validation. The kf object separates the training data

 # into 10 folds. Each training run, a different fold is used as the

 # validation data. The training and validation data are passed to the

 # train_model() function. After training, the average loss and accuracy per

 # epoch are calculated for the 10 training runs.

 # PARAMS: The path where to save the model.

 # RETURNS: NA.

 #**

 def kfold_train_model(self, save_model_path) :

 start = timeit.default_timer()

 kfold_num = 0

 kfold_train_loss_arr = []

 kfold_train_acc_arr = []

 kfold_valid_loss_arr = []

 kfold_valid_acc_arr = []

 for train_indexes, valid_indexes in self.kf.split(self.train_data_shape) :

 print("***")

 print("Kfold Number: ", kfold_num)

 train_set = torch.utils.data.Subset(self.train_data, train_indexes)

 valid_set = torch.utils.data.Subset(self.train_data, valid_indexes)

 train_gen = torch.utils.data.DataLoader(train_set, batch_size = self.batch_size,num_workers

 = 0, worker_init_fn = load_dataset.seed_worker, drop_last = True, shuffle = True)

 valid_gen = torch.utils.data.DataLoader(valid_set, batch_size = self.batch_size, shuffle=Fa

lse)

 net = Net(self.input_size, self.hidden_size_layer1, self.hidden_size_layer2, self.num_class

es, self.batch_size,

 self.ci_scale_val, self.gni_scale_val, self.ci_bifur_val, self.ci_offset_val, sel

f.do_val,

 self.use_conv, self.use_eff_net, self.use_ci, self.use_gni, self.use_do, self.use

_adapt_scale, self.num_epochs)

Adaptive Chaotic Injection Appendix A

68

 if torch.cuda.is_available():

 net.cuda()

 best_model_path = save_model_path + "kfold_" + str(kfold_num) + "_best_model.pt"

 train_loss_arr, train_acc_arr, valid_loss_arr, valid_acc_arr = self.train_model(best_model_

path, net, train_gen, valid_gen)

 df = pd.DataFrame({"train_loss": train_loss_arr, "train_acc": train_acc_arr, "valid_loss":

valid_loss_arr, "valid_acc": valid_acc_arr})

 df_save_path = save_model_path + "/plots_" + str(kfold_num) + ".csv"

 df.to_csv(df_save_path)

 kfold_train_loss_arr.append(train_loss_arr)

 kfold_train_acc_arr.append(train_acc_arr)

 kfold_valid_loss_arr.append(valid_loss_arr)

 kfold_valid_acc_arr.append(valid_acc_arr)

 net = None

 torch.cuda.empty_cache()

 gc.collect()

 kfold_num += 1

 kfold_train_loss_arr = np.mean(np.array(kfold_train_loss_arr), axis = 0)

 kfold_train_acc_arr = np.mean(np.array(kfold_train_acc_arr), axis = 0)

 kfold_valid_loss_arr = np.mean(np.array(kfold_valid_loss_arr), axis = 0)

 kfold_valid_acc_arr = np.mean(np.array(kfold_valid_acc_arr), axis = 0)

 kfold_df = pd.DataFrame({"train_loss" : kfold_train_loss_arr, "train_acc" : kfold_train_acc_a

rr, "valid_loss" : kfold_valid_loss_arr, "valid_acc" : kfold_valid_acc_arr})

 kfold_df_save_path = save_model_path + "/plots.csv"

 kfold_df.to_csv(kfold_df_save_path)

 stop = timeit.default_timer()

 print('Time: ', stop - start)

 return

A.6 Display Results

#**

MODULE: Display_Results

PURPOSE: Plots the accuracy and loss per epoch, and calculates the performance metrics

(accuracy, sensitivity, specificity, etc) of the ANN models.

AUTHOR: Siobhan Reid

Adaptive Chaotic Injection Appendix A

69

VERSION: 2

DATE: August 1, 2022

#**

class Display_Results():

 #**

 # FUNCTION: __init__

 # PURPOSE: Initializes the class variables.

 # PARAMS: The hyperparameters of the ANN (described in main.ipynb) and the parameters

 # used to display the ANN results, such as the loss function and the k-fold

 # object.

 # RETURNS: NA.

 #**

 def __init__(self, input_size, hidden_size_layer1, hidden_size_layer2, num_classes, batch_size,

 ci_scale_val, gni_scale_val, ci_bifur_val, ci_offset_val,

 do_val, use_conv, use_eff_net, use_ci, use_gni, use_do, use_adapt_scale,

 num_epochs, kf, train_data_shape, train_data, test_gen, save_model_path):

 self.input_size = input_size

 self.hidden_size_layer1 = hidden_size_layer1

 self.hidden_size_layer2 = hidden_size_layer2

 self.num_classes = num_classes

 self.batch_size = batch_size

 self.ci_scale_val = ci_scale_val

 self.gni_scale_val = gni_scale_val

 self.ci_bifur_val = ci_bifur_val

 self.ci_offset_val = ci_offset_val

 self.do_val = do_val

 self.use_conv = use_conv

 self.use_eff_net = use_eff_net

 self.use_ci = use_ci

 self.use_gni = use_gni

 self.use_do = use_do

 self.use_adapt_scale = use_adapt_scale

 self.num_epochs = num_epochs

 self.kf = kf

 self.train_data_shape = train_data_shape

 self.train_data = train_data

 self.test_gen = test_gen

 self.save_model_path = save_model_path

 #**

Adaptive Chaotic Injection Appendix A

70

 # FUNCTION: plot_loss_and_acc_per_epoch

 # PURPOSE: Used to plot the loss or accuracy per epoch for the training and validation

 # data.

 # PARAMS: The average loss or accuracy arrays for the ANNs, the location

 # where the legend should be placed on the plot, the title of the plot,

 # and the title of the y axis.

 # RETURNS: NA.

 #**

 def plot_loss_and_acc_per_epoch(self, aci, ci, base, drop, gni, text_loc, title, y_label) :

 plt.figure()

 plt.rcParams["figure.figsize"] = (12,10)

 plt.rcParams['font.family'] = 'serif'

 plt.rcParams['font.serif'] = ['Times New Roman'] + plt.rcParams['font.serif']

 plt.plot(base, linewidth=5)

 plt.plot(drop, linewidth=5)

 plt.plot(gni, linewidth=5)

 plt.plot(ci, linewidth=5)

 plt.plot(aci, linewidth=5)

 plt.xticks([0,10,20,30,40,50], fontsize = 25)

 # plt.xticks([0,5,10,15,20], fontsize = 25)

 plt.yticks(fontsize = 25)

 plt.legend(["Baseline", "DO", "GNI (Non-Adaptive α)", "CI (Non-

Adaptive α)", "CI (Adaptive α)"], loc=text_loc, prop={'size': 25})

 plt.title(title, fontsize=25)

 plt.xlabel("Epoch", fontsize=25)

 plt.ylabel(y_label, fontsize=25)

 return

 #**

 # FUNCTION: get_preds

 # PURPOSE: Get the predictions from the ANN model for the validation or test data.

 # PARAMS: The ANN model and the validation or test data generator.

 # RETURNS: The predicted classes and the labels.

 #**

 def get_preds(self, net, gen) :

 preds_tensor = torch.Tensor().cuda()

 labels_tensor = torch.Tensor().cuda()

Adaptive Chaotic Injection Appendix A

71

 net.eval()

 with torch.no_grad():

 for i ,(images, labels) in enumerate(gen):

 if (selected_dataset == fashion_mnist):

 images = Variable(images.view(-1, self.input_size)).cuda()

 labels = Variable(labels).cuda()

 else :

 images = Variable(images).cuda()

 labels = Variable(labels).cuda()

 outputs = net(images, False, False, False, 0)

 preds_tensor = torch.cat((preds_tensor, outputs), dim=0)

 labels_tensor = torch.cat((labels_tensor, labels), dim=0)

 preds = list(preds_tensor.detach().cpu().numpy())

 preds = np.stack(preds)

 preds = preds.argmax(axis=1)

 labels = list(labels_tensor.detach().cpu().numpy())

 labels = np.stack(labels)

 return preds, labels

 #**

 # FUNCTION: display_metrics

 # PURPOSE: Calculates the performance metrics (accuracy, sensitivity, specificity,

 # positive-predictive value, negative-predictive value, and f1-score)

 # of the ANN models for the validation and test data.

 # PARAMS: The ANN model, the data generator for the validation or test data,

 # the path to where the trained weights are stored for the ANN model,

 # and the name of the model (either baseline, CIA (adaptive), CI, DO, or GNI).

 # RETURNS: A dataframe containing the calculated metrics for each class and the

 # averages.

 # REFERENCE: https://stackoverflow.com/questions/31324218/scikit-learn-how-to-obtain-

 # true-positive-true-negative-false-positive-and-fal

 #**

 def display_metrics(self, net, gen, best_model_path, name) :

 checkpoint = torch.load(best_model_path)

 net.load_state_dict(checkpoint['state_dict'])

 preds, labels = self.get_preds(net, gen)

 conf_mat=confusion_matrix(labels, preds)

 class_accuracy=100*conf_mat.diagonal()/conf_mat.sum(1)

Adaptive Chaotic Injection Appendix A

72

 fp = conf_mat.sum(axis=0) - np.diag(conf_mat)

 fn = conf_mat.sum(axis=1) - np.diag(conf_mat)

 tp = np.diag(conf_mat)

 tn = conf_mat.sum() - (fp+fn+tp)

 sn = tp/(tp+fn)

 sp = tn/(tn+fp)

 ppv = tp/(tp+fp)

 npv = tn/(tn+fn)

 f1 = 2*(sn*ppv)/(sn+ppv)

 acc = (tp+tn)/(tp+fp+fn+tn)

 df = pd.DataFrame({"sn" + name : sn, "sp" + name: sp, "ppv" + name: ppv, "npv" + name: npv, "

acc" + name : acc, "f1" + name : f1})

 df.loc['mean'] = df.mean()

 return df

 #**

 # FUNCTION: kfold_display_metrics

 # PURPOSE: Calculates the performance metrics for each of the ten models created during

 # cross-validation, and then takes the average. Displays the average cross-

 # validation metrics and saves them into a csv file. This is done for each of

 # ANN models (baseline, CI, CIA, DO, and GNI).

 # PARAMS: A boolean value used to determine whether the results should be calculated

 # for the validation or test data.

 # RETURNS: NA.

 #**

 def kfold_display_metrics(self, get_valid_results):

 kfold_df = pd.DataFrame()

 kfold_num = 0

 pd.set_option('display.max_columns', None)

 for train_indexes, valid_indexes in self.kf.split(self.train_data_shape) :

 set_seed()

 net = Net(self.input_size, self.hidden_size_layer1, self.hidden_size_layer2, self.num_class

es, self.batch_size,

 self.ci_scale_val, self.gni_scale_val, self.ci_bifur_val, self.ci_offset_val, sel

f.do_val,

Adaptive Chaotic Injection Appendix A

73

 self.use_conv, self.use_eff_net, self.use_ci, self.use_gni, self.use_do, self.use

_adapt_scale, self.num_epochs)

 if torch.cuda.is_available():

 net.cuda()

 train_set = torch.utils.data.Subset(self.train_data, train_indexes)

 valid_set = torch.utils.data.Subset(self.train_data, valid_indexes)

 train_gen = torch.utils.data.DataLoader(train_set, batch_size = self.batch_size,num_workers

 = 0, worker_init_fn = load_dataset.seed_worker, drop_last = True, shuffle = True)

 valid_gen = torch.utils.data.DataLoader(valid_set, batch_size = self.batch_size, shuffle =

False)

 if (get_valid_results == True) :

 gen = valid_gen

 else :

 gen = self.test_gen

 model_path = self.save_model_path + "/aci/kfold_" + str(kfold_num) + "_best_model.pt"

 aci_df = self.display_metrics(net, gen, model_path, "_cia")

 model_path = self.save_model_path + "/base/kfold_" + str(kfold_num) + "_best_model.pt"

 base_df = self.display_metrics(net, gen, model_path, "_base")

 model_path = self.save_model_path + "/ci/kfold_" + str(kfold_num) + "_best_model.pt"

 ci_df = self.display_metrics(net, gen, model_path, "_ci")

 model_path = self.save_model_path + "/do/kfold_" + str(kfold_num) + "_best_model.pt"

 do_df = self.display_metrics(net, gen, model_path, "_do")

 model_path = self.save_model_path + "/gni/kfold_" + str(kfold_num) + "_best_model.pt"

 gni_df = self.display_metrics(net, gen, model_path, "_gni")

 df = pd.concat([base_df, ci_df, aci_df, do_df, gni_df], axis = 1)

 df = df.reindex(sorted(df.columns), axis=1)

 kfold_df = pd.concat([kfold_df, df])

 net = None

 torch.cuda.empty_cache()

 gc.collect()

 kfold_num += 1

 kfold_df = kfold_df.groupby(level=0).mean()

 kfold_df = kfold_df * 100

Adaptive Chaotic Injection Appendix A

74

 kfold_df = kfold_df.round(2)

 display(kfold_df)

 if (get_valid_results == True):

 kfold_df.to_csv(self.save_model_path + "/results/valid_results.csv")

 else :

 kfold_df.to_csv(self.save_model_path + "/results/test_results.csv")

 return

Adaptive Chaotic Injection Appendix B

75

Appendix B

Table B-1. Performance metrics of the validation data for the Fashion-MNIST dataset.

Metric Base
CI

(𝛂 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭)
CI

(𝛂 𝐚𝐝𝐚𝐩𝐭𝐢𝐯𝐞)
DO

GNI

(𝛂 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭)

ACC 97.98 98.06 98.08 98.04 98.05

F1 89.88 90.26 90.35 90.15 90.22

NPV 98.88 98.92 98.93 98.91 98.92

PPV 89.99 90.31 90.37 90.18 90.24

SN 89.90 90.30 90.38 90.19 90.25

SP 98.88 98.92 98.93 98.91 98.92

Table B-2. Performance metrics of the validation data for the CIFAR-10 dataset.

Metric Base
CI

(𝛂 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭)
CI

(𝛂 𝐚𝐝𝐚𝐩𝐭𝐢𝐯𝐞)
DO

GNI

(𝛂 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭)

ACC 94.35 95.11 95.14 95.04 95.04

F1 71.57 75.54 75.65 75.17 75.23

NPV 96.87 97.29 97.30 97.25 97.25

PPV 72.32 75.78 75.93 75.32 75.48

SN 71.72 75.56 75.71 75.21 75.20

SP 96.86 97.28 97.30 97.25 97.24

Table B-3. Performance metrics of the validation data for the Stanford Cars dataset.

Metric Base
CI

(𝛂 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭)
CI

(𝛂 𝐚𝐝𝐚𝐩𝐭𝐢𝐯𝐞)
DO

GNI

(𝛂 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭)

ACC 99.74 99.80 99.82 99.79 99.80

F1 75.11 80.71 82.32 79.98 80.78

NPV 99.87 99.90 99.91 99.89 99.90

PPV 76.95 82.24 83.81 80.90 81.39

SN 75.04 80.48 82.27 79.92 80.20

SP 99.87 99.90 99.91 99.89 99.90

