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Abstract 

Artificial neural networks (ANNs) have become an integral tool in various fields of 

research. ANNs are mathematical models which can be trained to perform various prediction 

tasks. The effectiveness of an ANN can be impacted by overfitting which occurs when the ANN 

overfits to the training data. As a result, the ANN does not generalize well to novel data. In our 

research, we assess the feasibility of using a chaotic strange attractor to generate sequences of 

values to inject into an ANN to reduce overfitting. An adaptive method was developed to scale 

and inject the values into the neurons throughout training. The chaotic injection (CI) was tested 

on three benchmark datasets using different ANN models. The results were compared against the 

baseline ANN, dropout (DO), and Gaussian noise injection (GNI). The CI improved the 

performance of the ANN and converged faster than DO and GNI.   
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1 Introduction 

1.1 Motivation 

Artificial neural networks (ANNs) are mathematical models inspired by the biological 

brain [1]. ANNs are used for prediction tasks, such as classification and regression. The use of 

ANNs has become widespread in various fields. Applications include object detection for self-

driving cars [2], disease prediction in medicine [3], and malware detection in cybersecurity [4]. 

ANNs can be impacted by overfitting, which occurs when an ANN overfits to the training data. 

As a result, the ANN does not generalize well to novel data [5].  

Common techniques to reduce overfitting include early stopping [6], dropout (DO) [7], 

regularization [8], and noise injection (NI) [9]. Similar to NI, chaotic strange attractors can be 

used to generate sequences of values, which we will refer to as chaotic values, to inject into an 

ANN. Injecting chaotic values into an ANN may better reflect the behaviour of the biological 

brain [10]–[13]. However, there is limited research in this area [14]–[17]. We want to expand 

this area of research by developing an adaptive method to inject chaotic values into an ANN to 

reduce overfitting.  

1.2 Thesis Statement and Objectives 

In this research, we assess the feasibility of using a chaotic strange attractor to generate 

sequences of values to inject into an ANN to reduce overfitting. We propose an adaptive method 

to scale and inject the values into the neurons throughout training.  

 

 



Adaptive Chaotic Injection  Chapter 1: Introduction 

2 

 

The main objectives of this research include:  

1) Developing an adaptive method to inject chaotic values or noise into an ANN. 

2) Assessing the effectiveness of the chaotic injection (CI) to prevent overfitting.  

3) Comparing the CI to NI. 

1.3 Organization of Thesis 

The thesis is organized into six main chapters, as described below in Table 1-1. 

Table 1-1. Organization of Thesis. 

Chapter Description 

1: Introduction Chapter 1 introduces the thesis topic and objectives. 

2: Background 

 

Chapter 2 provides background information on ANNs, overfitting, 

techniques to reduce overfitting, NI, CI, and chaos theory.  

3: Implementation 

 

Chapter 3 provides the implementation details of the CI, including the 

selection of the attractor, the initialization and setup, the adaptive scaling 

method, the injection method, and the effects on backpropagation. 

4: Testing 

 

Chapter 4 provides a description of the datasets and ANN models used for 

testing the CI.  

5: Results 

 

Chapter 5 presents the results, including the ANNs’ accuracy and loss per 

epoch, runtimes, and performance metrics.  

6: Conclusion 

 

Chapter 6 provides concluding remarks, recommendations for future work, 

and a summary of the contributions made to this field of study. 
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2 Background and Related Work     

2.1 Artificial Neural Networks 

ANNs are mathematical models used for prediction tasks, such as classification and 

regression [18]. When input data is passed to an ANN, the ANN processes the data and outputs a 

prediction. In supervised machine learning, a basic multilayer perceptron ANN consists of layers 

of artificial neurons connected via parameters referred to as weights. Input data is passed into the 

first layer of the ANN. In the following layers, the input into a neuron is the sum of outputs from 

the neurons in the previous layer multiplied by their weight values, in addition to a bias value. A 

neuron’s input is passed through a non-linear activation function and then sent to the next layer. 

The neurons in the final layer output the predictions. Fig. 2-1 shows the structure of a basic 

multilayer perceptron ANN with two hidden layers and two neurons per hidden layer. Table 2-1 

defines the corresponding symbols.  

 
 

𝑥𝑖
(𝑘) = ∑𝑦𝑗

(𝑘−1)𝑤𝑖,𝑗
(𝑘−1) +  𝑏𝑖

(𝑘−1) ,  for k < 1          (1) 

𝑁

𝑗=1

  𝑦𝑖
(𝑘) = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑥𝑖

(𝑘))             (2) 

 

Fig. 2-1. Multilayer perceptron ANN. 
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Table 2-1. ANN symbol definitions. 

Symbol Definition 

𝑥𝑖
(𝑘)

  Input into the 𝑖𝑡ℎ neuron of layer 𝑘 

𝑦𝑖
(𝑘)

   Activation value of the 𝑖𝑡ℎ neuron of layer 𝑘 

𝑤𝑖,𝑗
(𝑘−1)

  
Weight connection from the 𝑗𝑡ℎneuron in the layer k − 1 to the 𝑖𝑡ℎneuron in the 

layer 𝑘 

𝑏𝑖
(𝑘−1)

  Bias connection to the 𝑖𝑡ℎneuron in the layer 𝑘 

𝑁  Number of neurons in layer 𝑘 − 1 

 

During a training phase, the weights and the biases of an ANN are optimized to minimize the 

error between the ANNs’ predictions and the true labels of the input data [18]. Labels are 

numerical values which can represent a class, regression value, or other types of data. During 

training, the input data and the labels are passed into the ANN. The input data is propagated 

through the ANN which then attempts to predict the label for the given input data, in a process 

referred to as forward propagation. The ANN then updates the weights and biases, in a process 

referred to as gradient descent. During gradient descent, a loss function is used to calculate the 

error between the predicted value and the label. The backpropagation algorithm [19] is used to 

find the partial derivatives of the weights with respect to the loss function. The partial derivatives 

of the weights are multiplied by a scaling factor, referred to as the learning rate, and then 

subtracted from the original weight values to update the weights. 

An ANN can be trained for multiple epochs. Each epoch, the training dataset is passed into 

the ANN in batches. The number of training samples in a batch is referred to as the batch size. 

During training, a separate set of data, referred to as validation data, can be used to assess how 

well the ANN performs on data it has not trained on [20]. The validation data can be used to 
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fine-tune the hyperparameters of the ANN, such as the learning rate, number of training epochs, 

and number of neurons per layer in the ANN. After the training process is complete, the ANN is 

used to perform predictions on data it has not seen before, referred to as test data. 

There are many different types of ANNs, such as convolutional neural networks (CNNs) 

[21], recurrent ANNs [22], and transformer ANNs [23]. Different types of ANNs can be used to 

solve different types of problems. For example, CNNs are commonly used for image 

classification and transformer ANNs are commonly used for text classification. More complex 

ANN architectures can contain millions of trainable parameters. Different types of ANNs have 

different structures and connections between the neurons and weights. However, many ANNs 

build upon the ideas of a basic multilayer perceptron ANN and follow a similar training process. 

2.2 Overfitting in Artificial Neural Networks 

Overfitting is a phenomenon which occurs when an ANN “overfits” to the training data [5]. 

The ANN learns the distinct characteristics and noise of the training dataset instead of learning a 

general pattern to solve the problem. As a result, the ANN performs well on the training data, 

however, the ANN does not generalize well to novel data. The accuracy for the training data is 

high, whereas the accuracy for the test data is low. The loss per epoch for the validation data 

increases throughout training. Overfitting is most likely to occur when there is a small training 

dataset or when the ANN has a very large number of parameters. Fig. 2-2 illustrates an example 

of overfitting occurring on training data with two classes, where the red line represents a decision 

boundary created by the ANN.  
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Fig. 2-2. (a) No overfitting versus (b) overfitting. 

 

2.3 Common Techniques to Reduce Overfitting 

Overfitting can be improved by increasing the size of the training dataset. However, it can 

be time-consuming and expensive to collect more data. Therefore, techniques have been 

developed to reduce overfitting. Common techniques include data augmentation, DO, early 

stopping, NI, regularization, and weight constraints [5]. Table 2-2 provides a description of each 

technique. 

 

 

 

 

 

 

OverfittingNo Overfitting 

 a  b 
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Table 2-2. Techniques to reduce overfitting. 

Technique Description 

Data 

augmentation 

 

Data augmentation involves performing transformations on the training data to 

increase the size of the training dataset [24]. For example, data augmentation 

performed on images could involve cropping, rotating, and adjusting the contrast 

of the images. 

Dropout 

 

DO randomly turns off a specified percent of neurons each iteration during 

training [7]. DO simulates the effect of training multiple models and then taking 

the average of the models.  

Early 

stopping 

 

Early stopping is when the training phase is ended before overfitting begins [6]. 

Overfitting is more likely to occur when an ANN is trained for a long time.  

Noise 

injection 

 

NI involves injecting noise into the ANN [9]. NI has a similar effect to DO. 

Additional information on NI is provided in Section 2.4. 

L1 and L2 

regularization 

 

Regularization involves adding a term to the loss function [8]. There are two 

main regularization techniques: L1-regularization and L2-regularization. L1- 

regularization adds the sum of the weights, multiplied by a scaling factor, to the 

loss function. L2- regularization adds the sum of the weights squared, multiplied 

by a scaling factor, to the loss function. Regularization penalizes large weights 

and prevents the ANN from focusing too much on one feature. 

Weight 

constraints 

 

Weight constraints can be added to prevent the weights from increasing past a 

threshold value. Adding weight constraints has a similar effect to regularization.  
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2.4 Noise Injection to Reduce Overfitting 

Researchers have investigated injecting noise into ANNs to improve generalizability. NI adds 

randomness to an ANN during training, distorting the data, making it difficult for the ANN to 

overfit. NI can prevent co-adaptation, which causes overfitting. Co-adaptation occurs when 

neurons learn to make up for errors made by other neurons to improve the accuracy of the 

training data [25]. NI has been found to perform better than other techniques, such as weight 

decay and early stopping [9]. NI can make an ANN more resistant to input perturbations [26] and 

is a form of regularization [26] [27]. NI has also been found to improve the detection of 

adversarial examples [28], [29].  Adversarial examples are input examples that have been 

slightly modified, intentionally causing an ANN to misclassify them.  

Various NI methods have been proposed, including injecting the noise into the input data 

[30]–[32], hidden layers [28], [29], [33]–[35], output layer [31], weights [31], [36], and loss 

function [37]. Noise can be injected additively or multiplicatively. The most common form of NI 

is Gaussian noise injection (GNI), which uses Gaussian noise [32]–[37]. Recently, adaptive 

techniques have been proposed to calculate the variance of the Gaussian noise throughout 

training [33]–[35]. These techniques use the variance of the weights or neurons’ inputs. 

2.5 Chaotic Injection to Reduce Overfitting  

Several researchers have proposed injecting chaotic values into ANNs, as opposed to noise. 

Chaotic values are bounded, yet non-repeating [38]. Injecting non-repeating values may allow an 

ANN to search a larger solution space and improve its ability to escape local minimums. As well, 

chaotic strange attractors have been found in the biological brain [10]–[13]. Modelling an ANN 

to mimic the behaviour of the biological brain may improve its performance. Additional 

information on chaotic strange attractors can be found in section 2.6. 
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Several CI methods have been proposed. In [16], the neuron's input into the sigmoid 

activation function [39] is multiplied by a chaotic value produced by a modified version of the 

logistic map. In [14], the chaotic values are injected into the weight updates during 

backpropagation and into the sigmoid activation function’s temperature coefficient. Three 

chaotic strange attractors were tested: the logistic map, the Mackey–Glass equations, and the 

Lorentz attractor. In [17], the effects of adding chaotic values to the weight updates during 

backpropagation are analyzed. The logistic map was used to generate the chaotic values. Lastly, 

in [15], the chaotic values are added to the weight updates during backpropagation. The tent map 

was used to generate the chaotic values. In these studies, adding chaotic values was found to 

improve the performance and reduce the convergence times of the ANNs.  

Limitations to the previous studies include small datasets and ANN models. Previous 

research has primarily focused on injecting the chaotic values into the weight updates during 

backpropagation [14], [15], [17]. There is limited research assessing injecting the chaotic values 

into the neurons during forward propagation. Only the sigmoid activation function has been 

tested when injecting chaotic values into the neurons [14], [16]. Also, note that chaotic values 

have been used in the particle swarm optimization and simulated-annealing algorithms [40]. 

However, no significant improvements were found when using chaotic values instead of noise.  
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2.6 Chaos Theory 

Chaos is a behaviour that can arise in dynamical systems [41]. Dynamical systems are 

systems which can exhibit different types of behaviour depending on the parameters of the 

system. The outputs of a dynamical system exhibiting chaotic behaviour are bounded between a 

set of values and non-repeating. A small change in the initial conditions of the system will lead 

to different sequences of outputs. The outputs may appear to be unpredictable and random, 

however, they are deterministic.  

There are two main types of systems which can exhibit chaotic behaviour: iterative maps 

and differential equations [42]. An iterative map is a function or set of functions used to model 

discrete-time systems. The outputs from the functions are saved and used as inputs into the 

functions in the following time-step. Differential equations are used to model continuous-time 

systems. The outputs of the system can be found given the system's differential equations and 

initial conditions. Iterative maps directly provide the outputs of the system, whereas differential 

equations must be solved using analytical or numerical methods to find the outputs of the system, 

as shown in Fig. 2-3.  
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Fig. 2-3. (a) Iterative maps versus (b) differential equations. 

 

In dynamical systems, the parameters which control the behaviour of the system are 

referred to as bifurcation parameters [41]. These parameters cause the system to converge to 

either fixed, periodic, cyclic, or chaotic behaviour. When the system’s variables are initialized 

between a given range of values, the system will converge to the state determined by the 

bifurcation parameters. The state which the system settles into is called the attractor; if the state 

is chaotic, it is referred to as a chaotic strange attractor. The set of initial values which allow the 

system to converge to the given state are called the basin of attractors. The system may fluctuate 

between various values for a given number of iterations before settling into its state; these values 

are referred to as transient values. Fig. 2-4 illustrates the outputs of the logistic map with 

different bifurcation values, where 𝑟 is the bifurcation parameter and 𝑛 is the iteration number. 

The logistic map is defined by Equation (3).  

𝑙[𝑛 + 1] = 𝑟 (𝑙[𝑛])(1 − 𝑙[𝑛]) ( ) 

 terative  ap 

  iscrete Time 

 ifferential   uation  olver

  ontinuous Time 
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 b 
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(a) 

 

 
(b) 

 

 
(c) 

 

Fig. 2-4. Logistic map with different bifurcation parameters. 
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A bifurcation diagram can be used to show how different bifurcation parameters affect a 

dynamical system [38]. The bifurcation diagram plots the value or values which the system has 

converged to versus the bifurcation parameter. Additionally, a Lyapunov exponent diagram can 

be used to show the Lyapunov exponents for different bifurcation parameters. The Lyapunov 

exponent is a measure of how fast two close initial trajectories diverge. A Lyapunov exponent 

greater than zero is a characteristic of chaos.  

Fig. 2-5 illustrates (a) the bifurcation diagram and (b) the Lyapunov exponent diagram 

for the tent map. The tent map is defined by Equation (4), where 𝜇 is the bifurcation parameter. 

When the bifurcation parameter is between 1.0 and 2.0, exclusive, the system converges to 

chaotic behaviour. The Lyapunov exponents for these bifurcation parameters are greater than 

zero. Note that the upper and lower bounds of the chaotic values depend on the bifurcation 

parameter. As shown in the bifurcation diagram, when the bifurcation parameter is set to 1.5, the 

chaotic values are bound between [0.35, 0.75]. When the bifurcation parameter is set to 1.99, the 

chaotic values are bound between [0, 1].  

𝑡[𝑛 + 1] = 𝜇(𝑚𝑖𝑛(𝑡[𝑛], 1 − 𝑡[𝑛])) =  {
𝜇(𝑡[𝑛]),           𝑡[𝑛] <  .5

𝜇(1 − 𝑡[𝑛]),   𝑡[𝑛] ≥  .5
( ) 
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Fig. 2-5. Bifurcation diagram and Lyapunov exponent diagram of the tent map. 

Different chaotic strange attractors have different probability density functions (PDFs). 

Given a specific bifurcation parameter, the sequence of chaotic outputs will follow a unique PDF 

[40]. Fig. 2-6 shows different chaotic strange attractors and their empirical PDFs. The circular 

map is defined by Equation (5), where 𝐾 and Ω are the bifurcation parameters. 

𝑐[𝑛 + 1] = (𝑐[𝑛] +  Ω −
𝐾

2𝜋
sin(2𝜋𝑐[𝑛]))𝑚𝑜𝑑1 (5) 
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          (a)                                                                    (b) 

 
         (c) 

 

Fig. 2-6. The PDF of different chaotic iterative maps.
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3 Implementation  

3.1 Selection of the Attractor   

The tent map was selected to generate the chaotic values. The tent map is an iterative map 

defined by Equation (4), where 𝑡 represents the tent map value, 𝑛 represents the time-step, and μ 

represents the bifurcation parameter. A bifurcation parameter of 1.99 was selected. When the 

bifurcation parameter is set to 1.99, the tent map becomes a chaotic strange attractor generating a 

sequence of pseudo-random values between 0 and 1. The tent map was selected for several 

reasons: 

1) The tent map produces a uniform distribution of values between 0 and 1, whereas other 

iterative maps’ PDFs tend to be skewed towards certain values, as shown in Fig. 2-6. 

Injecting chaotic values which follow a uniform distribution may perform better than 

other distributions because it allows the neurons to search a broader solution space. Other 

iterative maps primarily output chaotic values centered around the distribution’s peak, 

potentially narrowing the ANN’s search space. 

2) The tent map can be computed quickly. The tent map produces the outputs directly, 

unlike differential equations which must be solved either numerically or analytically.  

3) The tent map only contains one variable. Some chaotic strange attractors contain multiple 

variables. The outputs of the chaotic strange attractor must be saved to be used as input 

into the attractor in the following time-step. Therefore, memory may be a concern if a 

large number of neurons are using the CI and multiple variables must be saved.  
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3.2 Initialization and Setup  

In our research, we will assess the feasibility of injecting the chaotic values into neurons in 

the hidden layers during forward propagation. Each neuron in a layer using the CI has its own 

tent map. The initial values of the tent maps are initialized randomly between 0 and 1. The tent 

maps are then iterated for 1000 iterations before training to remove transient values. Each batch 

iteration during training, the tent maps are iterated to generate a new chaotic value. The chaotic 

values are saved to be used as input into the tent maps in the following iteration. The chaotic 

values are multiplied by a scaling factor and then injected into their respective neuron. The 

scaling factor is an adaptive parameter which changes each epoch. The scaling factors are 

initialized before training begins. The CI only occurs on the training data. Table 3-1 provides an 

overview of the algorithm.  

Table 3-1. CI algorithm pseudo-code. 

 Algorithm 

1 Initialize the tent maps and remove transient values, initialize the scaling values 

2 For each epoch during training:  

3        Update the scaling value 

4        For each batch in the epoch: 

5               Update and save the state of the chaotic values 

6               Scale the chaotic values 

7               Inject the scaled chaotic values into the neurons during forward propagation 

8               Perform backpropagation and update the weights 
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3.3 Offset and Adaptive Scaling 

Before a chaotic value is injected into a neuron, an offset value is added, and it is scaled. 

An offset value, 𝛽, of 0.5 is added to shift the chaotic value from the range [0,1] to the range [-

0.5, 0.5]. The value is then multiplied by a scaling factor, 𝛼, to either amplify or diminish its 

effect. 𝛼 is an adaptive parameter which starts at zero and is logarithmically increased each 

epoch during training. 𝛼 initially dampens the chaotic values allowing the ANN to converge. 𝛼 is 

then increased to allow the ANN to explore a larger solution space and prevent overfitting. 

Equation (6) shows how the scaled chaotic value, 𝑠[𝑛], is calculated. 

𝑠[𝑛] = 𝛼(𝑡[𝑛] − 𝛽) , 𝛽 =  .5 (6) 

The values of 𝛼 are calculated and initialized into an array before training begins. The 𝛼 

values are calculated in two steps. Firstly, the 𝛼 value for each epoch is calculated using 

Equation (7), where 𝜔 is a hyperparameter which controls the growth rate of the log function. 

The 𝑒𝑝𝑜𝑐ℎ_𝑛𝑢𝑚 ranges from [0, number of epochs-1]. Secondly, the array of 𝛼 values is 

rescaled between [0, 𝛼_𝑚𝑎𝑥] using Equation (8), where 𝛼_𝑚𝑎𝑥 is a hyperparameter which sets 

the maximum value of 𝛼. Fig. 3-1 shows an example of the 𝛼 values throughout training, when 

𝜔 is set to 25, 𝛼_max is set to 5, and the number of epochs is set to 50. 

𝛼_𝑎𝑟𝑟𝑎𝑦[𝑒𝑝𝑜𝑐ℎ_𝑛𝑢𝑚] = 𝑙𝑜𝑔(𝜔 × 𝑒𝑝𝑜𝑐ℎ_𝑛𝑢𝑚 + 1) (7) 

𝛼_𝑎𝑟𝑟𝑎𝑦[: ] =
𝛼_𝑎𝑟𝑟𝑎𝑦[: ]

max (𝛼_𝑎𝑟𝑟𝑎𝑦[: ])
× 𝛼_𝑚𝑎𝑥 (8) 
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Fig. 3-1. Adaptive scaling parameter. 

3.4 Method of Injection 

After the chaotic value is scaled, it is injected into the neuron. There are various ways to 

inject the chaotic value into the neuron. The chaotic value can be added or multiplied into the 

neuron, before or after the activation function. Fig. 3-2 illustrates how the various injection 

methods can affect the rectified linear unit (ReLU) activation function. The ReLU activation 

function [43], defined by Equation (9), was selected because it is commonly used in practice and 

it has a simple derivative, as shown in Equation (10).  

𝑅𝑒𝐿𝑈(𝑥) =  {
 , 𝑖𝑓 𝑥 <  
𝑥, 𝑖𝑓 𝑥 >  

 (9) 

𝑑(𝑅𝑒𝐿𝑈(𝑥))

𝑑𝑥
=  {

 ,   𝑖𝑓 𝑥 <   
1,   𝑖𝑓 𝑥 >  

 (1 ) 
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Fig. 3-2. Various injection methods.  

Option (h) from Fig. 3-2 was selected for the final implementation, which is defined by 

Equation (11). In this injection method, the additive and multiplicative injection approaches are 

combined. The chaotic value is first multiplied by the activation value to scale its effect; it will 

have a larger effect on neurons with a large activation value and it will not affect neurons with an 

activation value less than zero. This method is similar to the adaptive methods proposed by [33]–

[35], where either the weights or neurons’ inputs were used to determine the variance of the 

Gaussian noise. Fig. 3-3 (a) illustrates the setup for the CI. Table 3-2 defines the corresponding 

symbols. Fig. 3-3 (b) illustrates a multilayer perceptron ANN using the CI. The ANN contains 

two hidden layers, with two neurons per hidden layer.  

𝑦 =  𝑅𝑒𝐿𝑈(𝑥) +  𝑅𝑒𝐿𝑈(𝑥)  × 𝑠[𝑛] (11) 

    
 e  f  g  h 

 a  b  c  d 

 =        =      +  [ ]   =       ×  [ ]  =      +   ×  [ ]

 =      +  [ ]   =       ×  [ ]   =      +  ×  [ ]  =      +      ×  [ ]
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(a) 

 

(b) 

Fig. 3-3. (a) Neuron using the CI and (b) ANN using the CI. 
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Table 3-2. CI ANN symbol definitions. 

Symbol Definition 

𝑥𝑖
(𝑘)

  Input into the 𝑖𝑡ℎ neuron of layer 𝑘 

𝑦𝑖
(𝑘)

  Output of the 𝑖𝑡ℎ neuron of layer 𝑘 

𝑡[𝑛]𝑖
(𝑘)

  Tent map value of the 𝑖𝑡ℎ neuron of layer 𝑘 at iteration 𝑛 

𝑠[𝑛]𝑖
(𝑘)

  Scaled tent map value of the 𝑖𝑡ℎ neuron of layer 𝑘 at iteration 𝑛 

𝑎𝑖
(𝑘)

  Activation value of the 𝑖𝑡ℎneuron in the output layer 

𝑤𝑖,𝑗
(𝑘−1)

  
Weight connection from the 𝑗𝑡ℎneuron in the layer 𝑘 − 1 to the 𝑖𝑡ℎneuron in the 

layer 𝑘 

𝑏𝑖
(𝑘−1)

  Bias connection to the 𝑖𝑡ℎneuron in the layer 𝑘 

𝑁  Number of neurons in layer k − 1 

 

3.5 Effects on Backpropagation 

During backpropagation, the CI affects the derivative of neurons with a positive activation 

value. The CI does not affect the derivative of neurons with a negative activation value. Equation 

(12) shows the derivative of a neuron using the CI. If a neuron has a positive activation value, the 

derivative is 1 +  𝑠[𝑛]. The extent to which 𝑠[𝑛] affects the weights depends on the tent map 

scaling factor (𝛼) and the overall structure of the ANN. The CI adds pseudo-randomness to the 

ANN, causing the weights to be slightly increased or decreased throughout training. 

𝑑𝑦𝑖
(𝑘)

𝑑𝑥𝑖
(𝑘)

=
𝑑 (𝑅𝑒𝐿𝑈(𝑥𝑖

(𝑘)) +  𝑅𝑒𝐿𝑈(𝑥𝑖
(𝑘))  × 𝑠[𝑛]𝑖

(𝑘))

𝑑𝑥𝑖
(𝑘)

=  {
 ,                              𝑖𝑓 𝑥𝑖

(𝑘) <   

1 +  𝑠[𝑛]𝑖
(𝑘),           𝑖𝑓 𝑥𝑖

(𝑘) >  
   (12) 
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4 Testing  

The code used for implementation and testing was developed using Python (version 3.7.13) 

[44]. The code was developed in Google Colab Pro+ [45]. All code can be found in Appendix A. 

4.1 Datasets and Data Preprocessing  

Three open-source classification datasets were used for testing: Fashion-MNIST (Modified 

National Institute of Standards and Technology database) [46], CIFAR-10 (Canadian Institute for 

Advanced Research) [47], and Stanford Cars [48]. The datasets were obtained and preprocessed 

using the TorchVision library (version 0.13.0+cu113) [49], which is a Python library used for 

image processing and computer vision tasks.  

4.1.1 Fashion-MNIST 

The Fashion-MNIST dataset contains 70,000 greyscale images. The images are of the 

size 28x28 pixels. The dataset contains 10 classes, consisting of the following articles of 

clothing: t-shirts, trousers, pullovers, dresses, coats, sandals, shirts, sneakers, bags, and ankle 

boots. Fig. 4-1 shows sample images from the dataset. Prior to training, the pixel values of the 

images were normalized between [-1,1] and the images were flattened to the size 784x1 pixels. 

 

Fig. 4-1. Sample images from the Fashion-MNIST dataset. 
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4.1.2 CIFAR-10 

The CIFAR-10 dataset contains 60,000 RGB images. The images are of the size 3x32x32 

pixels. The dataset contains 10 classes: airplanes, automobiles, birds, cats, deer, dogs, frogs, 

horses, ships, and trucks. Fig. 4-2 shows sample images from the dataset. Prior to training, the 

pixel values of the images were normalized between [-1,1]. 

 

Fig. 4-2. Sample images from the CIFAR-10 dataset. 

4.1.3 Stanford Cars 

The Stanford Cars dataset contains 16,185 RGB images of varying sizes. The dataset 

contains 196 classes of different types of cars. Fig. 4-3 shows sample images from the dataset. 

The images were resized to 224x224 pixels. The pixel values were rescaled between 0 and 1. The 

RGB channels were normalized using the following parameters: 

mean=[0.485, 0.456, 0.406], standard deviation=[0.229, 0.224, 0.225].  

 

Fig. 4-3. Sample images from the Stanford Cars dataset. 
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4.2 Models 

The models were developed using the PyTorch machine learning library (version 

1.12.0+cu113) [50]. The CI was compared against the baseline ANNs, DO, GNI without 

adaptive scaling, and CI without adaptive scaling. The CI was compared against DO because it is 

commonly used in practice. The CI was compared against GNI due to their similar mechanisms 

of action. The Gaussian noise used a mean of zero and variance of one. The GNI used the same 

injection method as the CI, as described in Section 3.4. The CI was tested with and without 

adaptive scaling to assess its effects. When adaptive scaling wasn’t used, the 𝛼 value was set to a 

constant value throughout training. The CI, DO, and GNI were used in the hidden dense layers of 

the ANNs. The hidden dense layers were selected for the CI because DO is commonly used in 

these layers to prevent overfitting. The PyTorch cross-entropy loss function [51] was used as the 

loss function for all models. 

4.2.1 Multilayer Perceptron Model 

The Fashion-MNIST dataset was tested using a multilayer perception ANN. The ANN 

contained 2 hidden layers. Each hidden layer contained 512 neurons. Fig. 4-4 illustrates the 

model.  

 

Fig. 4-4. Multilayer perceptron ANN used for testing the Fashion-MNIST dataset. 
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4.2.2 Convolutional Model 

The CIFAR-10 dataset was tested using a CNN model. The CNN consisted of three 

convolutional layers, three 2D-max-pooling layers, followed by two hidden dense layers, and the 

output layer. The convolutional layers used a filter size of 3x3 and a padding size of one. The 

first convolutional layer used 16 filters, the second convolutional layer used 32 filters, and the 

last convolutional layer used 64 filters. A 2D-max-pooling layer followed each convolutional 

layer. The 2D-max-pooling layers used a kernel size of two and a stride of two. The two dense 

layers each contained 512 neurons. Fig. 4-5 illustrates the model. 

 

Fig. 4-5. CNN used for testing the CIFAR-10 dataset. 

4.2.3 EfficientNet-B7 Model  

The Stanford Cars dataset was tested using the EfficientNet-B7 model [52]. EfficientNet-

B7 is a state-of-the-art CNN architecture, containing ~66 million trainable parameters. The 

output layer of the model was removed and replaced by two dense layers containing 512 neurons 

and an output layer containing 196 neurons. The weights of the model were pre-trained on 

ImageNet [53], which is a large dataset, containing thousands of classes. The pre-trained weights 

were loaded into the model prior to training. The Adam optimizer [54] was used during training 

with an initial learning rate of 0.0001. Fig. 4-6 illustrates the model.  

                    

 latten  ense

 ayer

    

 ense

 ayer 

    

Output 

 ayer

                                                  

Original 

 mage

 onvolutional 

 ayer

    a  

 ooling

 onvolutional 

 ayer

    a  

 ooling

 onvolutional

 ayer 

    a 

 ooling



Adaptive Chaotic Injection  Chapter 4: Testing 

27 

 

 

Fig. 4-6. EfficientNet-B7 model used for testing the Stanford Cars dataset. 

4.3 Cross-Validation  

Ten-fold cross-validation was used for fine-tuning the models and selecting the 

hyperparameters [20]. In ten-fold cross-validation, the training data is randomly separated into 

ten folds. Ten training runs are performed. For each training run, a different fold is selected as 

the validation data. A portion of the data was excluded from cross-validation to be used as the 

test data. The Scikit-Learn library (version 1.0.2) [55] was used for implementing the cross-

validation. Fig. 4-7 illustrates the ten-fold cross-validation. 

During each training run, the accuracy and loss per epoch for the training and validation 

data were saved. As well, the model was saved at the epoch when the validation data had the 

lowest loss value. After the ten training runs were completed, the average accuracy and loss per 

epoch for the training and validation data were found to produce the overall results. As well, the 

ten saved models were used to get the average performance metrics of the test data. 
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Fig. 4-7. Ten-fold cross-validation setup.  

The training and test data were well-balanced with respect to their classes for all datasets. 

The datasets were separated into training and test data using the train/test splits created by the 

authors of the datasets. For the Fashion-MNIST dataset, 60,000 images were used for cross-

validation and 10,000 images were used for testing. For the CIFAR-10 dataset, 50,000 images 

were used for cross-validation and 10,000 images were used for testing. For the Stanford Cars 

dataset, 8144 images were used for cross-validation, and 8041 images were used for testing.  

4.4 Hyperparameter Selection 

The training and validation data were used to finetune the hyperparameters, such as the 

learning rate, the batch size, and the CI parameters. Table 4-1 shows the hyperparameter values 

selected. The models were trained for a set number of epochs. Early stopping was not used 

because it is a technique to prevent overfitting; we wanted to assess how well the CI performed 

without using other overfitting techniques.  
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Table 4-1. Hyperparameter Selection. 

Parameter Fashion-MNIST CIFAR-10 Stanford Cars 

Batch size 100 100 20 

CI bias value (𝛽) 0.5 0.5 0.5 

CI bifurcation parameter (𝜇) 1.99 1.99 1.99 

CI scale value (constant 𝛼) 3.0 5.0 5.5 

CI maximum scale value (𝛼_𝑚𝑎𝑥 ) 3.0 5.5 6.5 

CI scale growth rate (𝜔) 25 25 25 

DO value 0.5 0.7 0.6 

GNI bias value (𝛽) 0 0 0 

GNI scale value (constant 𝛼) 0.9 1.5 1.5 

Learning rate 0.05 0.05 0.0001 

Number of epochs 50 50 20 

Number of test images 10,000 10,000 8041 

Number of weights and biases 669,706 816,170 65,461,396 

Number of training images 60,000 50,000 8144 

Optimizer None None Adam 
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5 Results 

Two methods were used to assess the   ’s performance.  irstly, the training convergences of 

the models were analyzed. The average accuracies and losses per epoch were plotted, and the 

runtimes of the models were compared. Secondly, the average results of the test data were 

analyzed, using the following performance metrics: accuracy (ACC), F1-score (F1), negative-

predictive value (NPV), positive-predictive value (PPV), sensitivity (SN), and specificity (SP). 

5.1 Training Convergence  

5.1.1 Accuracy and Loss Per Epoch 

Fig. 5-1, Fig. 5-2, and Fig. 5-3 show (a) the loss per epoch for the training data, (b) the loss 

per epoch for the validation data, (c) the accuracy per epoch for the training data, and (d) the 

accuracy per epoch for the validation data for the three datasets. Table 5-1, Table 5-2, and Table 

5-3 show the accuracy and loss at the end of training for the three datasets. The accuracy is the 

number of correctly classified true-positive samples versus the total number of samples, and the 

loss is the cross-entropy loss function.  

The baseline ANNs produce the highest accuracy and lowest loss for the training data. 

However, the baseline ANNs produce the lowest accuracy and highest loss for the validation 

data. As well, the validation data’s loss for the baseline ANNs increases throughout training. 

These characteristics indicate the baseline ANNs are overfitting to the training data. When the 

ANNs are trained for a long time, they begin learning the distinct characteristics and noise of the 

training data. As a result, the ANNs’ performance on the validation data begins decreasing, 

causing the loss to increase.  
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The CI, DO and GNI methods reduce overfitting. These methods add randomness to the 

ANNs, making it difficult for the ANNs to overfit to the training data. As a result, the accuracy is 

lower and the loss is higher for the training data compared to the baseline ANNs. However, the 

accuracy is higher and the loss is lower for the validation data. These methods allow the ANNs 

to generalize better to novel data.  

The CI with adaptive scaling reduces the final loss of the validation data compared to the 

baseline ANNs by 21.85%, 65.42%, and 29.77% for the Fashion-MNIST, CIFAR-10, and 

Stanford Cars datasets, respectively. Likewise, the CI with adaptive scaling increases the final 

accuracy of the validation data by 0.53%, 1.70%, and 5.55% for the Fashion-MNIST, CIFAR-10, 

and Stanford Cars datasets, respectively. 

The baseline ANNs converge the fastest. The CI, DO, and GNI models take longer to 

converge because they decrease the accuracy of the training data, in exchange for better 

generalizability. The CI with adaptive scaling converges faster than DO and GNI, as shown on 

the Stanford Cars dataset. The adaptive scaling method initially dampens the chaotic values 

allowing the ANNs to converge, and then amplifies the chaotic values allowing the ANNs to 

explore a larger solution space.   
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                                         (a)                                                                          (b) 

 

 
                                         (c)                                                                          (d)  

 

Fig. 5-1. Accuracy and loss per epoch for the Fashion-MNIST dataset. 

 

Table 5-1. Accuracy and loss for the Fashion-MNIST dataset. 

Metric 
Base 

CI 

(𝛂 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭) 
CI 

(𝛂 𝐚𝐝𝐚𝐩𝐭𝐢𝐯𝐞) 
DO 

GNI 

(𝛂 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭) 

Train Valid Train Valid Train Valid Train Valid Train Valid 

Accuracy (%) 97.28 89.86 93.13 90.28 93.09 90.39 91.91 90.14 92.58 90.18 

Loss 0.077 0.357 0.184 0.279 0.184 0.279 0.217 0.281 0.199 0.283 
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                                         (a)                                                                          (b) 

 

 
                                          (c)                                                                         (d)  

 

Fig. 5-2. Accuracy and loss per epoch for the CIFAR-10 dataset. 

 

Table 5-2. Accuracy and loss for the CIFAR-10 dataset. 

Metric 
Base 

CI 

(𝛂 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭) 
CI 

(𝛂 𝐚𝐝𝐚𝐩𝐭𝐢𝐯𝐞) 
DO 

GNI 

(𝛂 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭) 

Train Valid Train Valid Train Valid Train Valid Train Valid 

Accuracy (%) 100.0 73.99 89.88 75.58 88.12 75.69 87.43 75.59 87.97 75.83 

Loss 0.000 2.308 0.288 0.860 0.339 0.798 0.358 0.859 0.347 0.833 
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               (a)                                                                          (b)  

 

 
                 (c)                                                                          (d)  

 

Fig. 5-3. Accuracy and loss per epoch for the Stanford Cars dataset. 

 

Table 5-3. Accuracy and loss for the Stanford Cars dataset. 

Metric 
Base 

CI 

(𝛂 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭) 
CI 

(𝛂 𝐚𝐝𝐚𝐩𝐭𝐢𝐯𝐞) 
DO 

GNI 

(𝛂 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭) 

Train Valid Train Valid Train Valid Train Valid Train Valid 

Accuracy (%) 98.08 76.61 89.03 80.94 86.00 82.16 94.71 80.49 86.23 80.29 

Loss 0.065 1.169 0.357 0.834 0.459 0.821 0.186 1.028 0.442 0.878 
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5.1.2 Runtime 

Table 5-4 shows the average runtimes of the models. Empirically, the results show that 

the CI does not have a significant impact on the runtime. The CI adds three computations to the 

training algorithm: (1) generating the chaotic values, (2) scaling the chaotic values, and (3) 

injecting the chaotic values into the neurons. Note that the models were run in Google Colab 

Pro+, therefore the runtimes may vary based on GPU (Graphics Processing Unit) availability.  

Table 5-4. Average runtimes (s) of the models. 

Dataset Base 
CI 

(𝛂 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭) 
CI 

(𝛂 𝐚𝐝𝐚𝐩𝐭𝐢𝐯𝐞) 
DO 

GNI 

(𝛂 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭) 

Fashion-

MNIST 
501.71 512.89 509.59 493.92 529.22 

CIFAR-10 600.32 595.25 839.93 581.96 630.97 

Stanford Cars 6146.46 5954.48 6711.64 4108.73 4355.58 
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5.2 Performance Metrics 

The test data was used to assess the models’ performances. The models were assessed 

using the following metrics: (1) accuracy, (2) F1-score, (3) negative-predictive value, (4) 

positive-predictive value, (5) sensitivity, and (6) specificity. The metrics were calculated for each 

class using the number of true positive (TP), true negative (TN), false positive (FP), and false 

negative (FN) samples. Table 5-5 provides the corresponding formulas. After the metrics were 

found for each class, the averages were taken. 

Table 5-5. Performance metric formulas. 

Metric Formula 

Sensitivity 𝑆𝑁 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 (1 ) 

 

Specificity 𝑆𝑃 =
𝑇𝑁

(𝑇𝑁 + 𝐹𝑃)
(1 ) 

Positive-Predictive Value 𝑃𝑃𝑉 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 (15) 

Negative-Predictive Value 𝑁𝑃𝑉 =
𝑇𝑁

(𝑇𝑁 + 𝐹𝑁)
(16) 

F1-Score 𝐹1 =
2 × 𝑆𝑁 × 𝑃𝑃𝑉

(𝑆𝑁 +  𝑃𝑃𝑉)
(17) 

Accuracy 𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)
(18) 
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Table 5-6, Table 5-7, and Table 5-8 show the results of the test data for the three datasets. 

Appendix B shows the results of the validation data for the three datasets. The CI with adaptive 

scaling achieves the highest performance metrics on the test data, with results similar to DO and 

GN . The   ’s improvements over the baseline ANNs range between 0.04% and 7.36% for 

various performance metrics. The   ’s improvements over DO and GNI range between 0.01% 

and 2.40% for various performance metrics. The greatest improvements are seen on the F1-score, 

sensitivity, and positive-predictive value metrics. 

The results indicate the CI is more effective on difficult datasets and large ANN models. 

The Stanford Cars dataset contains the smallest number of training samples and uses the largest 

ANN model, containing ~66 million trainable parameters. Whereas, the Fashion-MNIST dataset 

contains the largest number of training samples and uses the smallest ANN model, containing 

less than one million trainable parameters. Therefore, the Stanford Cars model is more likely to 

suffer from overfitting than the Fashion-MNIST model. Consequently, the Stanford Cars model 

likely benefits more from the CI than the Fashion-MNIST model. Additional testing on large 

ANN models could be performed to confirm these findings.  
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Table 5-6. Performance metrics of the test data for the Fashion-MNIST dataset. 

Metric Base 
CI 

(𝛂 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭) 
CI 

(𝛂 𝐚𝐝𝐚𝐩𝐭𝐢𝐯𝐞) 
DO 

GNI 

(𝛂 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭) 

ACC 97.79 97.92 97.92 97.88 97.90 

F1 88.95 89.58 89.59 89.39 89.48 

NPV 98.77 98.85 98.85 98.83 98.83 

PPV 89.06 89.63 89.62 89.42 89.51 

SN 88.95 89.60 89.62 89.42 89.50 

SP 98.77 98.84 98.85 98.82 98.83 

 

Table 5-7. Performance metrics of the test data for the CIFAR-10 dataset. 

Metric Base 
CI 

(𝛂 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭) 
CI 

(𝛂 𝐚𝐝𝐚𝐩𝐭𝐢𝐯𝐞) 
DO 

GNI 

(𝛂 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭) 

ACC 94.32 95.04 95.11 94.98 95.02 

F1 71.39 75.17 75.50 74.84 75.11 

NPV 96.86 97.25 97.29 97.21 97.24 

PPV 72.10 75.38 75.77 74.94 75.32 

SN 71.59 75.20 75.54 74.90 75.10 

SP 96.84 97.24 97.28 97.21 97.23 

 

Table 5-8. Performance metrics of the test data for the Stanford Cars dataset. 

Metric Base 
CI 

(𝛂 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭) 
CI 

(𝛂 𝐚𝐝𝐚𝐩𝐭𝐢𝐯𝐞) 
DO 

GNI 

(𝛂 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭) 

ACC 99.74 99.79 99.82 99.79 99.80 

F1 74.45 79.40 81.78 79.39 79.80 

NPV 99.87 99.90 99.91 99.90 99.90 

PPV 76.94 81.13 83.05 80.97 81.31 

SN 74.53 79.54 81.89 79.49 79.95 

SP 99.87 99.90 99.91 99.90 99.90 
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6 Conclusion 

6.1 Thesis Conclusions 

This thesis presented a method to inject chaotic values into the neurons of an ANN. In 

Chapter 3, the injection method is presented. The chaotic values are generated using the tent 

map, which is a chaotic strange attractor when the bifurcation parameter is set to 1.99. Each 

neuron in a layer using the CI has its own tent map. The chaotic values are scaled and then 

injected into the neurons using a combined additive and multiplicative approach. An adaptive 

scaling parameter was developed to increase the effect of the chaotic values throughout training. 

In Chapter 4, the models used for testing were presented. A variety of different datasets and 

models were used to assess the performance of the CI. Three datasets were used for testing: 

Fashion-MNIST, CIFAR-10, and Stanford Cars. In Chapter 5, the results were presented. The CI 

was able to reduce overfitting and improve the performance of the ANNs. The CI achieves 

higher accuracy than the baseline ANN on all datasets. The CI converges faster than DO and 

GNI using the adaptive scaling method.  

6.2 Future Work 

Recommendations for future work are listed below:   

1) A method could be developed to determine the optimal maximum scaling value, 𝛼_𝑚𝑎𝑥. 

If 𝛼_𝑚𝑎𝑥 is too large, the ANN will not learn. If 𝛼_𝑚𝑎𝑥 is too small, it will not have an 

effect on the ANN. 𝛼_𝑚𝑎𝑥 is not a trainable parameter because the ANN may learn to set 

it to zero to increase the accuracy of the training data, however, then overfitting would 

not be improved.  



Adaptive Chaotic Injection  Chapter 6: Conclusions 

40 

 

2) Additional testing could be performed. Firstly, the CI was only injected into the dense 

layers of the ANNs. Further testing is required to determine its effects on other layers, 

such as convolutional layers. Secondly, the CI could be tested on other large ANN 

models, such as BERT (Bidirectional Encoder Representations from Transformers) [56]. 

Our results indicate the CI has the greatest impact on large ANN models. Lastly, the CI 

could be compared against other adaptive injection methods [33]–[35] which have 

recently been proposed.  

3) Additional research could be performed to determine the optimal distribution of values 

used for the injection. In this research, the tent map was used which follows a uniform 

distribution. Previous work has primarily focused on NI using a Gaussian distribution 

[32]–[37]. An adaptive method could be developed to determine the optimal distribution 

of values for each individual neuron throughout training. 

6.3 Thesis Contributions 

In this thesis, several contributions have been made to this area of research: 

1) A method for injecting chaotic values or noise into an ANN was developed, which 

combines the previous additive and multiplicative injection methods.  

2) An adaptive method was developed for scaling the chaotic values. This method uses a 

logarithmic function to scale the values, allowing the ANN to initially converge and then 

explore a larger solution space. This method can be applied to the CI and NI.  

3) The effectiveness of using a chaotic strange attractor to generate sequences of values to 

inject into the neurons of an ANN was assessed. The CI successfully reduces overfitting 

and improves the performance of ANNs. 
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Appendix A 

Appendix A provides the code used for all the experiments. The code consists of 6 modules, as 

listed below: 

1) imports.ipynb 

2) main.ipynb 

3) load_dataset.ipynb 

4) create_model.ipynb 

5) train_model.ipynb 

6) display_results.ipynb 

Note: To run the code, the user should update the “selected_dataset” variable in main.ipynb to 

select either the Fashion-MNIST, CIFAR-10, or Stanford Cars dataset. The user must also update 

the number of epochs, CI, DO, and GNI hyperparameters accordingly. Lastly, the user must 

update the paths to where their code, models, and results are stored. 

A.1 Imports 

#******************************************************************************************** 

# MODULE:    Imports  

# PURPOSE:   Imports the libraries and .ipynb files, sets the seed values, and  

#            connects to the GPUs.   

# AUTHOR:    Siobhan Reid 

# VERSION:   2 

# DATE:      August 1, 2022 

#******************************************************************************************** 

 

# Download PyTorch if not already installed 

# !pip install torch 

# !pip install torchvision 

 

# PyTorch imports 
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import torch 

import torch.nn as nn 

import torchvision 

import torchvision.datasets as datasets 

import torchvision.transforms as transforms 

from torch.autograd import Variable 

from torch.utils.data import DataLoader 

from torchvision.utils import make_grid 

 

# Other imports 

from sklearn.metrics import confusion_matrix 

from sklearn.model_selection import KFold 

import autoreload 

from matplotlib import pyplot as plt 

import numpy as np 

import timeit 

import os  

import random 

import math 

import gc 

import seaborn as sns 

import pandas as pd 

 

# Set Pandas display options 

pd.set_option('display.max_columns', None) 

 

# Set seed values  

def set_seed() :  

  seed = 0 

  torch.manual_seed(seed) 

  torch.cuda.manual_seed_all(seed) 

  torch.cuda.manual_seed(seed) 

  np.random.seed(seed) 

  random.seed(seed) 

  torch.backends.cudnn.deterministic = True 

  torch.backends.cudnn.benchmark = False 

 

set_seed() 

 

# Connect to GPU 

if torch.cuda.is_available(): 

    device = torch.device("cuda:0")   

    print("Running on the GPU") 

else: 

    device = torch.device("cpu") 
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    print("Running on the CPU") 

torch.cuda.device_count() 

 

# Run .ipynb files 

%run load_dataset.ipynb 

%run create_model.ipynb 

%run train_model.ipynb 

%run display_results.ipynb 

 

A.2 Main 

#******************************************************************************************** 

# MODULE:    Main  

# PURPOSE:   Loads the dataset, trains the ANN models, and displays the results.  

# AUTHOR:    Siobhan Reid 

# VERSION:   2 

# DATE:      August 1, 2022 

#******************************************************************************************** 

 

# Connect to Google Drive 

from google.colab import drive 

drive.mount('/content/drive/', force_remount=True) 

%cd "/content/drive/My Drive/ColabNotebooks/v2/code" 

 

# Import libraries  

%run imports.ipynb 

 

# Select the dataset  

fashion_mnist = 1 

cifar_10 = 2 

stanford_cars = 3 

 

load_dataset = Load_Dataset() 

dataset_download_path = "Downloads" 

selected_dataset = fashion_mnist 

 

# Download and load the dataset 

if (selected_dataset == fashion_mnist): 

  train_data, test_data, test_gen, input_size, num_classes, batch_size = load_dataset.load_fashio

n_mnist_dataset(dataset_download_path) 

  save_model_path = "/content/drive/My Drive/ColabNotebooks/v2/models/fashion_mnist/" 

  train_data_shape = np.zeros((len(train_data), input_size)) 

if (selected_dataset == cifar_10): 
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  train_data, test_data, test_gen, input_size, num_classes, batch_size = load_dataset.load_cifar_

10_dataset(dataset_download_path) 

  save_model_path = "/content/drive/My Drive/ColabNotebooks/v2/models/cifar_10/" 

  train_data_shape = np.zeros((len(train_data), input_size[0], input_size[1], input_size[2])) 

if (selected_dataset == stanford_cars): 

  train_data, test_data, test_gen, input_size, num_classes, batch_size = load_dataset.load_stanfo

rd_cars_dataset(dataset_download_path) 

  save_model_path = "/content/drive/My Drive/ColabNotebooks/v2/models/stanford_cars/" 

  train_data_shape = np.zeros((len(train_data), input_size[0], input_size[1], input_size[2])) 

 

# Path to where the models and results will be saved 

aci_save_model_path = save_model_path + "/aci/" 

ci_save_model_path = save_model_path + "/ci/" 

base_save_model_path = save_model_path + "/base/" 

do_save_model_path = save_model_path + "/do/" 

gni_save_model_path = save_model_path + "/gni/" 

 

# Show batch of images from the dataset 

load_dataset.show_batch(test_gen) 

 

# Create a k-fold object using Sklearn 

# Used to perform the 10-fold cross-validation; separates the training data into ten folds  

num_kfolds = 10 

rand_state = 1 

kf = KFold(n_splits = num_kfolds, random_state = rand_state, shuffle = True) 

 

# Specify which ANN model should be used 

# The Fashion-MNIST dataset uses a MLP model 

# The CIFAR-10 dataset uses a CNN model 

# The Stanford Cars dataset uses the EfficientNet-B7 model 

if (selected_dataset == stanford_cars) :  

  use_optim = True    # Boolean which specifies whether the Adam optimizer should be used 

  use_conv = False    # Boolean which specifies whether the CNN model should be used  

  use_eff_net = True  # Boolean which specifies whether the Efficient-B7 model should be used  

if (selected_dataset == cifar_10) : 

  use_optim = False    

  use_conv = True   

  use_eff_net = False   

if (selected_dataset == fashion_mnist) :  

  use_optim = False    

  use_conv = False   

  use_eff_net = False   

 

# Specify the ANN models' hyperparameters depending on whether the MLP, CNN, or EfficientNet-B7 

model was selected 
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num_epochs = 50                       # Number of training epochs 

learning_rate = 0.05                  # Learning rate 

hidden_size_layer1 = 512              # Size of first dense layer 

hidden_size_layer2 = 512              # Size of second dense layer 

ci_bifur_val = 1.99                   # Tent map bifurcation parameter 

ci_offset_val = 0.5                   # Tent map offset value 

do_val = 0.6                          # Dropout value  

gni_scale_val = 0.9                   # Gaussian noise scaling value 

loss_function = nn.CrossEntropyLoss() # Loss function 

 

# Five different ANN models are trained: baseline ANN, CI with adaptive scaling, CI without adapt

ive scaling, GNI without adaptive scaling, and Dropout 

# Boolean values (use_ci, use_do, use_gni, and use adapt_scale) are used to specify which model i

s being trained 

# Each model is trained using 10-fold cross-validation 

 

# Train the CI model without adaptive scaling 

use_ci = True 

use_gni = False 

use_do = False 

ci_scale_val = 3.0 # Tent map scaling value 

use_adapt_scale = False 

 

set_seed() 

 

train_model = Train_Model(input_size, hidden_size_layer1, hidden_size_layer2, num_classes, batch_

size,   

               ci_scale_val, gni_scale_val, ci_bifur_val, ci_offset_val,  

               do_val, use_conv, use_eff_net, use_ci, use_gni, use_do, use_adapt_scale,  

               num_epochs, learning_rate, use_optim, loss_function, kf, train_data_shape, train_d

ata) 

 

train_model.kfold_train_model(ci_save_model_path) 

 

# Train the CI model with adaptive scaling 

use_ci = True 

use_gni = False 

use_do = False 

ci_scale_val = 3.0 

use_adapt_scale = True 

 

set_seed() 

 

train_model = Train_Model(input_size, hidden_size_layer1, hidden_size_layer2, num_classes, batch_

size,   
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               ci_scale_val, gni_scale_val, ci_bifur_val, ci_offset_val,  

               do_val, use_conv, use_eff_net, use_ci, use_gni, use_do, use_adapt_scale,  

               num_epochs, learning_rate, use_optim, loss_function, kf, train_data_shape, train_d

ata) 

 

train_model.kfold_train_model(aci_save_model_path) 

 

# Train the baseline model 

use_ci = False 

use_gni = False 

use_do = False 

use_adapt_scale = False 

 

set_seed() 

 

train_model = Train_Model(input_size, hidden_size_layer1, hidden_size_layer2, num_classes, batch_

size,   

               ci_scale_val, gni_scale_val, ci_bifur_val, ci_offset_val,  

               do_val, use_conv, use_eff_net, use_ci, use_gni, use_do, use_adapt_scale,  

               num_epochs, learning_rate, use_optim, loss_function, kf, train_data_shape, train_d

ata) 

 

train_model.kfold_train_model(base_save_model_path) 

 

# Train the Dropout model 

use_ci = False 

use_gni = False 

use_do = True 

use_adapt_scale = False 

 

set_seed() 

 

train_model = Train_Model(input_size, hidden_size_layer1, hidden_size_layer2, num_classes, batch_

size,   

               ci_scale_val, gni_scale_val, ci_bifur_val, ci_offset_val,  

               do_val, use_conv, use_eff_net, use_ci, use_gni, use_do, use_adapt_scale,  

               num_epochs, learning_rate, use_optim, loss_function, kf, train_data_shape, train_d

ata) 

 

train_model.kfold_train_model(do_save_model_path) 

 

# Train the GNI model 

use_ci = False 

use_gni = True 

use_do = False 
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use_adapt_scale = False 

 

set_seed() 

 

train_model = Train_Model(input_size, hidden_size_layer1, hidden_size_layer2, num_classes, batch_

size,   

               ci_scale_val, gni_scale_val, ci_bifur_val, ci_offset_val,  

               do_val, use_conv, use_eff_net, use_ci, use_gni, use_do, use_adapt_scale,  

               num_epochs, learning_rate, use_optim, loss_function, kf, train_data_shape, train_d

ata) 

 

train_model.kfold_train_model(gni_save_model_path) 

 

# After all models are trained, the results are displayed 

use_ci = False 

use_gni = False 

use_do = False 

use_adapt_scale = False 

 

display_results = Display_Results(input_size, hidden_size_layer1, hidden_size_layer2, num_classes

, batch_size,   

               ci_scale_val, gni_scale_val, ci_bifur_val, ci_offset_val,  

               do_val, use_conv, use_eff_net, use_ci, use_gni, use_do, use_adapt_scale,  

               num_epochs, kf, train_data_shape, train_data, test_gen, save_model_path) 

 

# Plot the loss and accuracy per epoch for the training and validation data 

aci_plots_df = pd.read_csv(aci_save_model_path + "/plots.csv") 

ci_plots_df = pd.read_csv(ci_save_model_path + "/plots.csv") 

gni_plots_df = pd.read_csv(gni_save_model_path + "/plots.csv") 

base_plots_df = pd.read_csv(base_save_model_path + "/plots.csv") 

do_plots_df = pd.read_csv(do_save_model_path + "/plots.csv") 

 

display_results.plot_loss_and_acc_per_epoch(aci_plots_df.valid_loss, ci_plots_df.valid_loss, base

_plots_df.valid_loss, do_plots_df.valid_loss, gni_plots_df.valid_loss, 'upper right', "Loss per E

poch - Validation Data", "Loss (Cross-Entropy)")  

display_results.plot_loss_and_acc_per_epoch(aci_plots_df.train_loss, ci_plots_df.train_loss, base

_plots_df.train_loss, do_plots_df.train_loss, gni_plots_df.train_loss, 'upper right', "Loss per E

poch - Train Data", "Loss (Cross-Entropy)")  

display_results.plot_loss_and_acc_per_epoch(aci_plots_df.valid_acc, ci_plots_df.valid_acc, base_p

lots_df.valid_acc, do_plots_df.valid_acc, gni_plots_df.valid_acc, 'lower right', "Accuracy per Ep

och - Validation Data", "Accuracy (%)")  

display_results.plot_loss_and_acc_per_epoch(aci_plots_df.train_acc, ci_plots_df.train_acc, base_p

lots_df.train_acc, do_plots_df.train_acc, gni_plots_df.train_acc, 'lower right', "Accuracy per Ep

och - Train Data", "Accuracy (%)")  
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# Display the performance metrics for the validation data 

get_valid_results = True  

display_results.kfold_display_metrics(get_valid_results) 

 

# Display the performance metrics for the test data 

get_valid_results = False 

display_results.kfold_display_metrics(get_valid_results) 

 

A.3 Load Dataset 

#******************************************************************************************** 

# MODULE:    Load_Dataset 

# PURPOSE:   Loads the training and test data for the Fashion-MNIST, CIFAR-10, and Stanford  

#            Cars datasets, and preprocesses the images.  

# AUTHOR:    Siobhan Reid 

# VERSION:   2 

# DATE:      August 1, 2022 

#******************************************************************************************** 

 

class Load_Dataset():  

 

  #****************************************************************************************** 

  # FUNCTION:  show_batch  

  # PURPOSE:   Displays a batch of samples images from a data generator.  

  # PARAMS:    The data generator.  

  # RETURNS:   NA. 

  #****************************************************************************************** 

 

  def show_batch(self, gen): 

    for images, labels in gen: 

        fig, ax = plt.subplots(figsize=(12, 6)) 

        ax.set_xticks([]); ax.set_yticks([]) 

        ax.imshow(make_grid(images, nrow=16).permute(1, 2, 0)) 

        break 

    return  

 

  #****************************************************************************************** 

  # FUNCTION:  load_cifar_10_dataset  

  # PURPOSE:   Downloads the CIFAR-10 dataset and preprocesses the images.  

  # PARAMS:    The download path. 

  # RETURNS:   The training data, the test data, the test data loaded into a generator,  

  #            the image input size, the number of classes, and the selected batch size.  

  #****************************************************************************************** 
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  def load_cifar_10_dataset(self, dataset_download_path): 

    num_classes = 10 

    input_size = (3,32,32) 

    batch_size = 100 

    transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5,0.5,0.5), (0.

5,0.5,0.5)),]) 

    train_data = datasets.CIFAR10(root = dataset_download_path, train=True, download=True, transf

orm=transform) 

    test_data = datasets.CIFAR10(root = dataset_download_path, train=False, download=True, transf

orm=transform) 

    test_gen = torch.utils.data.DataLoader(test_data, batch_size=batch_size, shuffle=False) 

    return train_data, test_data, test_gen, input_size, num_classes, batch_size 

 

  #****************************************************************************************** 

  # FUNCTION:  load_stanford_cars_dataset  

  # PURPOSE:   Downloads the Stanford Cars dataset and preprocesses the images.  

  # PARAMS:    The download path. 

  # RETURNS:   The training data, the test data, the test data loaded into a generator,  

  #            the image input size, the number of classes, and the selected batch size.  

  #****************************************************************************************** 

 

  def load_stanford_cars_dataset(self, dataset_download_path): 

    num_classes = 196  

    input_size = (3,224,224) 

    batch_size = 20 

    transform=transforms.Compose([transforms.ToTensor(), transforms.Resize((224,224)), transforms

.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) 

    train_data = datasets.StanfordCars(root = dataset_download_path, split = "train", download = 

True, transform=transform) 

    test_data = datasets.StanfordCars(root = dataset_download_path, split = "test", download = Tr

ue, transform=transform) 

    test_gen = torch.utils.data.DataLoader(test_data, batch_size=batch_size, shuffle=False) 

    return train_data, test_data, test_gen, input_size, num_classes, batch_size 

 

  #****************************************************************************************** 

  # FUNCTION:  load_fashion_mnist_dataset  

  # PURPOSE:   Downloads the Fashion-MNIST dataset and preprocesses the images.  

  # PARAMS:    The download path. 

  # RETURNS:   The training data, the test data, the test data loaded into a generator,  

  #            the image input size, the number of classes, and the selected batch size.  

  #****************************************************************************************** 

 

  def load_fashion_mnist_dataset(self, dataset_download_path): 

    num_classes = 10 

    input_size = 28*28 
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    batch_size = 100 

    transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) 

    train_data = datasets.FashionMNIST(dataset_download_path, download = True, train = True, tran

sform = transform) 

    test_data = datasets.FashionMNIST(dataset_download_path, download = True, train = False, tran

sform = transform) 

    test_gen = torch.utils.data.DataLoader(test_data, batch_size = batch_size, shuffle = True) 

    return train_data, test_data, test_gen, input_size, num_classes, batch_size 

 

  #****************************************************************************************** 

  # FUNCTION:  seed_worker  

  # PURPOSE:   Used to set the seed for the training data generator.  

  # PARAMS:    The worker ID for the generator.  

  # RETURNS:   NA.  

  # REFERENCE: https://discuss.pytorch.org/t/reproducibility-with-all-the-bells-and-

whistles/81097 

  #****************************************************************************************** 

   

  def seed_worker(self, worker_id): 

    worker_seed = torch.initial_seed() % 2**32 

    np.random.seed(worker_seed) 

    random.seed(worker_seed) 

 

A.4 Create Model 

#******************************************************************************************** 

# MODULE:    Net 

# PURPOSE:   Creates the ANN model.  

#            The Fashion-MNIST dataset uses a MLP model. 

#            The CIFAR-10 dataset uses a CNN model.  

#            The Stanford Cars datset uses the EfficientNet-B7 model. 

# AUTHOR:    Siobhan Reid 

# VERSION:   2 

# DATE:      August 1, 2022 

#******************************************************************************************** 

 

class Net(nn.Module): 

 

  #****************************************************************************************** 

  # FUNCTION:  __init__  

  # PURPOSE:   Initializes the class variables and ANN layers. Inherits from the PyTorch  

  #            class.  

  # PARAMS:    The hyperparameters of the ANN (described in main.ipynb).  

  # RETURNS:   NA. 
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  #****************************************************************************************** 

 

  def __init__(self, input_size, hidden_size_layer1, hidden_size_layer2, num_classes, batch_size,

   

               ci_scale_val, gni_scale_val, ci_bifur_val, ci_offset_val,  

               do_val, use_conv, use_eff_net, use_ci, use_gni, use_do, use_adapt_scale, num_epoch

s):  

 

    super(Net, self).__init__() 

 

    self.num_epochs = num_epochs  

    self.batch_size = batch_size  

    self.hidden_size_layer1 = hidden_size_layer1  

    self.hidden_size_layer2 = hidden_size_layer2  

    self.use_conv = use_conv  

    self.use_eff_net = use_eff_net  

    self.do = nn.Dropout(do_val)  

    self.relu = nn.ReLU()  

    self.use_ci = use_ci  

    self.use_gni = use_gni  

    self.use_do = use_do  

    self.ci_bifur_val = ci_bifur_val  

    self.ci_offset_val = ci_offset_val  

    self.ci_scale_val = self.init_scale_val(ci_scale_val, num_epochs, use_adapt_scale) 

    self.gni_scale_val = self.init_scale_val(gni_scale_val,num_epochs,use_adapt_scale) 

    self.layer1_ci_vals = self.init_tent_map((batch_size, hidden_size_layer1)) 

    self.layer2_ci_vals = self.init_tent_map((batch_size, hidden_size_layer2))  

 

    if (use_conv == True) :  

      self.conv1 = nn.Conv2d(3, 16, 3, padding=1) 

      self.conv2 = nn.Conv2d(16, 32, 3, padding=1) 

      self.conv3 = nn.Conv2d(32, 64, 3, padding=1) 

      self.pool = nn.MaxPool2d(2, 2) 

      self.fc1 = nn.Linear(1024, hidden_size_layer1) 

      self.fc2 = nn.Linear(hidden_size_layer1, hidden_size_layer2) 

      self.fc3 = nn.Linear(hidden_size_layer2, num_classes) 

    elif (use_eff_net == True) :  

      self.model = torchvision.models.efficientnet_b7(pretrained = True) 

      self.model = nn.Sequential(*list(self.model.children())[:-1]) 

      self.fc1 = nn.Linear(2560, hidden_size_layer1) 

      self.fc2 = nn.Linear(hidden_size_layer1, hidden_size_layer2) 

      self.fc3 = nn.Linear(hidden_size_layer2, num_classes)  

    else: 

      self.fc1 = nn.Linear(input_size, hidden_size_layer1) 

      self.fc2 = nn.Linear(hidden_size_layer1, hidden_size_layer2) 
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      self.fc3 = nn.Linear(hidden_size_layer2, num_classes) 

 

  #****************************************************************************************** 

  # FUNCTION:  forward  

  # PURPOSE:   Passes the input to the selected ANN model (MLP model, CNN model, or  

  #            EfficientNet-B7 model) to perform forward propagation.  

  # PARAMS:    The input images, the boolean parameters which select whether the CI, GNI,  

  #            or DO should be used, and the epoch number.  

  # RETURNS:   The output. 

  #****************************************************************************************** 

 

  def forward(self, x, use_ci, use_gni, use_do, epoch_num): 

 

    self.use_ci = use_ci 

    self.use_gni = use_gni 

    self.use_do = use_do 

    self.epoch_num = epoch_num 

 

    if (self.use_conv == True) :  

      x = self.forward_conv(x) 

    elif (self.use_eff_net == True) :  

      x = self.forward_eff_net(x) 

    else :  

      x = self.forward_mlp(x) 

    return x 

 

  #****************************************************************************************** 

  # FUNCTION:  forward_conv  

  # PURPOSE:   Performs forward propagation for the CNN model.  

  # PARAMS:    The input images.  

  # RETURNS:   The output. 

  # REFERENCE: https://shonit2096.medium.com/cnn-on-cifar10-data-set-using-pytorch-34be87e09844 

  #****************************************************************************************** 

 

  def forward_conv(self,x): 

    x = self.pool(self.relu(self.conv1(x))) 

    x = self.pool(self.relu(self.conv2(x))) 

    x = self.pool(self.relu(self.conv3(x))) 

    x = x.view(-1, 64 * 4 * 4) 

    x = self.forward_mlp(x) 

    return x 

 

  #****************************************************************************************** 

  # FUNCTION:  forward_eff_net  

  # PURPOSE:   Performs forward propagation for the EfficientNet-B7 model.  
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  # PARAMS:    The input images.  

  # RETURNS:   The output. 

  #****************************************************************************************** 

 

  def forward_eff_net(self, x) :  

    x = self.model(x) 

    x = x.view(-1, 2560) 

    x = self.forward_mlp(x) 

    return x 

 

  #****************************************************************************************** 

  # FUNCTION:  forward_mlp  

  # PURPOSE:   Performs forward propagation for the mlp model containing the 2 dense layers. 

  #            The dense layers either use the CI, GNI, DO or none.   

  # PARAMS:    The input images.  

  # RETURNS:   The output. 

  #****************************************************************************************** 

 

  def forward_mlp(self,x): 

    x = self.fc1(x) 

    x = self.relu(x) 

 

    if (self.use_gni == True): 

      x = x + x * self.gni_scale_val[self.epoch_num] * Variable(torch.randn(self.batch_size, self

.hidden_size_layer1)).cuda() 

    if (self.use_ci == True): 

      self.layer1_ci_vals = self.tent_map(self.layer1_ci_vals) 

      temp = self.ci_scale_val[self.epoch_num] * (self.layer1_ci_vals - self.ci_offset_val)  

      x = x + x * temp 

    if (self.use_do == True) :  

      x = self.do(x) 

 

    x = self.fc2(x) 

    x = self.relu(x) 

 

    if (self.use_gni == True):  

      x = x + x * self.gni_scale_val[self.epoch_num] * Variable(torch.randn(self.batch_size, self

.hidden_size_layer2)).cuda() 

    if (self.use_ci == True): 

      self.layer2_ci_vals = self.tent_map(self.layer2_ci_vals) 

      temp = self.ci_scale_val[self.epoch_num] * (self.layer2_ci_vals - self.ci_offset_val) 

      x = x + x * temp  

    if (self.use_do == True) :  

      x = self.do(x) 
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    x = self.fc3(x) 

    return x 

 

  #****************************************************************************************** 

  # FUNCTION:  tent_map  

  # PURPOSE:   Iterates the tent map function. 

  # PARAMS:    The input into the tent map.  

  # RETURNS:   The output of the tent map.  

  #****************************************************************************************** 

   

  def tent_map(self, chaotic_input) : 

    chaotic_input = self.ci_bifur_val * torch.min(chaotic_input, 1 - chaotic_input) 

    return chaotic_input 

 

  #****************************************************************************************** 

  # FUNCTION:  init_tent_map  

  # PURPOSE:   Initializes the tent map values between 0 and 1, and iterates them for  

  #            1000 iterations to remove transient values.  

  # PARAMS:    The size of the hidden layers using the tent maps (batch size, hidden size).  

  # RETURNS:   The output of the tent maps.  

  #****************************************************************************************** 

   

  def init_tent_map(self,hidden_size) :   

    chaotic_input = Variable(torch.rand(hidden_size)).cuda() 

    for i in range(1000):  

      chaotic_input = self.ci_bifur_val * torch.min(chaotic_input, 1 - chaotic_input) 

    return chaotic_input 

 

  #****************************************************************************************** 

  # FUNCTION:  init_scale_val  

  # PURPOSE:   Initializes the scaling values of the tent maps. If use_adapt_scale if true, 

  #            the scaling value changes depending on the epoch number, otherwise the 

  #            scaling value is constant.  

  # PARAMS:    The maximum scaling value, the number of epochs, and the boolean value  

  #            used to select adaptive scaling.  

  # RETURNS:   An array containing the scaling values for each epoch.  

  #****************************************************************************************** 

   

  def init_scale_val(self, max_scale_val, num_epochs, use_adapt_scale) :  

 

    scale_val_arr = [] 

 

    if (use_adapt_scale == True) :  

      for n in range(num_epochs): 

        scale_val = (math.log(25 * n + 1)) # w = 25, growth rate parameter 
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        scale_val_arr.append(scale_val) 

      scale_val_arr = np.array(scale_val_arr) 

      scale_val_arr = ((scale_val_arr) / np.max(scale_val_arr)) * max_scale_val 

    else :  

      for n in range(num_epochs): 

        scale_val_arr.append(max_scale_val) 

      scale_val_arr = np.array(scale_val_arr) 

 

    return scale_val_arr 

 

A.5 Train Model 

#******************************************************************************************** 

# MODULE:    Train_Model 

# PURPOSE:   Train the ANN model. 

# AUTHOR:    Siobhan Reid 

# VERSION:   2 

# DATE:      August 1, 2022 

#******************************************************************************************** 

 

class Train_Model(): 

 

  #****************************************************************************************** 

  # FUNCTION:  __init__  

  # PURPOSE:   Initializes the class variables.  

  # PARAMS:    The hyperparameters of the ANN (described in main.ipynb) and the parameters 

  #            used to train the ANN, such as the loss function, the k-fold object used to  

  #            perform 10-fold cross-validation, and the training data.  

  # RETURNS:   NA. 

  #****************************************************************************************** 

 

  def __init__(self, input_size, hidden_size_layer1, hidden_size_layer2, num_classes, batch_size,

   

               ci_scale_val, gni_scale_val, ci_bifur_val, ci_offset_val,  

               do_val, use_conv, use_eff_net, use_ci, use_gni, use_do, use_adapt_scale,  

               num_epochs, learning_rate, use_optim, loss_function, kf, train_data_shape, train_d

ata):  

 

    self.input_size = input_size 

    self.hidden_size_layer1 = hidden_size_layer1  

    self.hidden_size_layer2 = hidden_size_layer2 

    self.num_classes = num_classes  

    self.batch_size = batch_size   

    self.ci_scale_val = ci_scale_val  
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    self.gni_scale_val = gni_scale_val 

    self.ci_bifur_val = ci_bifur_val 

    self.ci_offset_val = ci_offset_val 

    self.do_val = do_val 

    self.use_conv = use_conv 

    self.use_eff_net = use_eff_net 

    self.use_ci = use_ci 

    self.use_gni = use_gni 

    self.use_do = use_do 

    self.use_adapt_scale = use_adapt_scale  

    self.num_epochs = num_epochs 

    self.use_optim = use_optim 

    self.loss_function = loss_function 

    self.kf = kf 

    self.train_data_shape = train_data_shape 

    self.train_data = train_data 

    self.learning_rate = learning_rate 

 

  #****************************************************************************************** 

  # FUNCTION:  calc_valid_loss_and_acc  

  # PURPOSE:   Calculate the loss and accuracy of the validation data.  

  # PARAMS:    The validation data generator and the ANN model.  

  # RETURNS:   The loss and accuracy. 

  #****************************************************************************************** 

 

  def calc_valid_loss_and_acc(self, gen, net): 

 

    net.eval() 

    running_loss=0 

    correct=0 

    total=0 

   

    with torch.no_grad(): 

 

      for i ,(images,labels) in enumerate(gen): 

        if (selected_dataset == fashion_mnist):  

          images = Variable(images.view(-1, self.input_size)).cuda() 

          labels = Variable(labels).cuda() 

        else : 

          images = Variable(images).cuda() 

          labels = Variable(labels).cuda() 

           

        outputs = net(images, False, False, False, 0)  

 

        loss = self.loss_function(outputs,labels) 
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        running_loss += loss.item() 

         

        _, predicted = outputs.max(1) 

        total += labels.size(0) 

        correct += predicted.eq(labels).sum().item() 

 

    loss = running_loss/len(gen) 

    acc = 100.*correct/total 

   

    return loss, acc 

 

  #****************************************************************************************** 

  # FUNCTION:  train_model  

  # PURPOSE:   Trains the ANN model. Saves the ANN model at the epoch with the lowest  

  #            validation loss.  

  # PARAMS:    The path where to save the model, and the training and validation data.  

  # RETURNS:   The loss and accuracy per epoch for the training and validation data.  

  # REFERENCE: Reference: https://towardsdatascience.com/how-to-save-and-load-a-model- 

  #            in-pytorch-with-a-complete-example-c2920e617dee 

  #****************************************************************************************** 

 

  def train_model(self, best_model_path, net, train_gen, valid_gen):  

 

    print("Learning rate: ", self.learning_rate) 

    print("Num epochs: ", self.num_epochs) 

    train_loss_arr = [] 

    train_acc_arr = []  

    valid_loss_arr = [] 

    valid_acc_arr = []  

 

    min_valid_loss = 1000000 

 

    if (self.use_optim == True) :  

      lr = 1e-4 

      optimizer = torch.optim.Adam( 

          (p for p in net.parameters() if p.requires_grad), lr=lr 

      ) 

 

    for epoch in range(self.num_epochs): 

 

      print('\nEpoch : %d'%epoch) 

      net.train() 

      running_loss=0 

      correct=0 

      total=0 
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      for i, (images,labels) in enumerate(train_gen): 

        if (selected_dataset == fashion_mnist):  

          images = Variable(images.view(-1, self.input_size)).cuda() 

          labels = Variable(labels).cuda() 

        else : 

          images = Variable(images).cuda() 

          labels = Variable(labels).cuda() 

         

        outputs = net(images, self.use_ci, self.use_gni, self.use_do, epoch) 

 

        if (self.use_optim == True) : 

          optimizer.zero_grad() 

          loss = self.loss_function(outputs, labels) 

          loss.backward() 

          optimizer.step() 

         

        else :  

          net.zero_grad() 

          loss = self.loss_function(outputs, labels) 

          loss.backward() 

          for name, param in net.named_parameters(): 

            if (param.requires_grad) :  

              param.data -= self.learning_rate * param.grad.data  

 

        running_loss += loss.item() 

        _, predicted = outputs.max(1) 

        total += labels.size(0) 

        correct += predicted.eq(labels).sum().item() 

 

      train_loss = running_loss/len(train_gen) 

      train_acc = 100.*correct/total 

      valid_loss, valid_acc = self.calc_valid_loss_and_acc(valid_gen, net) 

 

      print('Train Loss: %.3f | Accuracy: %.3f'%(train_loss,train_acc)) 

      print('Valid Loss: %.3f | Accuracy: %.3f'%(valid_loss,valid_acc)) 

       

      train_loss_arr.append(train_loss) 

      train_acc_arr.append(train_acc) 

      valid_loss_arr.append(valid_loss) 

      valid_acc_arr.append(valid_acc) 

 

      if (valid_loss < min_valid_loss) : 

        print("best " , min_valid_loss) 

        print("curr ", valid_loss) 
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        checkpoint = { 'epoch': epoch, 'valid_loss_min': valid_loss, 'state_dict': net.state_dict

() } 

        min_valid_loss = valid_loss 

        torch.save(checkpoint, best_model_path) 

 

    return train_loss_arr, train_acc_arr, valid_loss_arr, valid_acc_arr 

 

  #****************************************************************************************** 

  # FUNCTION:  kfold_train_model  

  # PURPOSE:   Performs 10-fold cross validation. The kf object separates the training data  

  #            into 10 folds. Each training run, a different fold is used as the  

  #            validation data. The training and validation data are passed to the  

  #            train_model() function. After training, the average loss and accuracy per  

  #            epoch are calculated for the 10 training runs.  

  # PARAMS:    The path where to save the model.  

  # RETURNS:   NA.  

  #****************************************************************************************** 

 

  def kfold_train_model(self, save_model_path) :  

 

    start = timeit.default_timer() 

    kfold_num = 0 

    kfold_train_loss_arr = [] 

    kfold_train_acc_arr = []  

    kfold_valid_loss_arr = [] 

    kfold_valid_acc_arr = []  

 

    for train_indexes, valid_indexes in self.kf.split(self.train_data_shape) :  

 

      print("*****************************************************************") 

      print("Kfold Number: ", kfold_num) 

 

      train_set = torch.utils.data.Subset(self.train_data, train_indexes) 

      valid_set = torch.utils.data.Subset(self.train_data, valid_indexes) 

      train_gen = torch.utils.data.DataLoader(train_set, batch_size = self.batch_size,num_workers

 = 0, worker_init_fn = load_dataset.seed_worker, drop_last = True, shuffle = True) 

      valid_gen = torch.utils.data.DataLoader(valid_set, batch_size = self.batch_size, shuffle=Fa

lse) 

 

      net = Net(self.input_size, self.hidden_size_layer1, self.hidden_size_layer2, self.num_class

es, self.batch_size,  

                self.ci_scale_val, self.gni_scale_val, self.ci_bifur_val, self.ci_offset_val, sel

f.do_val,  

                self.use_conv, self.use_eff_net, self.use_ci, self.use_gni, self.use_do, self.use

_adapt_scale, self.num_epochs) 
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      if torch.cuda.is_available(): 

        net.cuda() 

 

      best_model_path = save_model_path + "kfold_" + str(kfold_num) + "_best_model.pt" 

      train_loss_arr, train_acc_arr, valid_loss_arr, valid_acc_arr = self.train_model(best_model_

path, net, train_gen, valid_gen) 

 

      df = pd.DataFrame({"train_loss": train_loss_arr, "train_acc": train_acc_arr, "valid_loss": 

valid_loss_arr, "valid_acc": valid_acc_arr}) 

      df_save_path = save_model_path + "/plots_" + str(kfold_num) + ".csv" 

      df.to_csv(df_save_path) 

 

      kfold_train_loss_arr.append(train_loss_arr) 

      kfold_train_acc_arr.append(train_acc_arr) 

      kfold_valid_loss_arr.append(valid_loss_arr) 

      kfold_valid_acc_arr.append(valid_acc_arr) 

       

      net = None 

      torch.cuda.empty_cache() 

      gc.collect() 

      kfold_num += 1 

 

    kfold_train_loss_arr = np.mean(np.array(kfold_train_loss_arr), axis = 0) 

    kfold_train_acc_arr = np.mean(np.array(kfold_train_acc_arr), axis = 0) 

    kfold_valid_loss_arr = np.mean(np.array(kfold_valid_loss_arr), axis = 0) 

    kfold_valid_acc_arr = np.mean(np.array(kfold_valid_acc_arr), axis = 0) 

    kfold_df = pd.DataFrame({"train_loss" : kfold_train_loss_arr, "train_acc" : kfold_train_acc_a

rr, "valid_loss" : kfold_valid_loss_arr, "valid_acc" : kfold_valid_acc_arr}) 

    kfold_df_save_path = save_model_path + "/plots.csv" 

    kfold_df.to_csv(kfold_df_save_path) 

 

    stop = timeit.default_timer() 

    print('Time: ', stop - start)   

     

    return  

 

A.6 Display Results 

#******************************************************************************************** 

# MODULE:    Display_Results 

# PURPOSE:   Plots the accuracy and loss per epoch, and calculates the performance metrics 

#            (accuracy, sensitivity, specificity, etc) of the ANN models.  

# AUTHOR:    Siobhan Reid 
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# VERSION:   2 

# DATE:      August 1, 2022 

#******************************************************************************************** 

 

class Display_Results(): 

 

  #****************************************************************************************** 

  # FUNCTION:  __init__  

  # PURPOSE:   Initializes the class variables.  

  # PARAMS:    The hyperparameters of the ANN (described in main.ipynb) and the parameters 

  #            used to display the ANN results, such as the loss function and the k-fold  

  #            object.  

  # RETURNS:   NA. 

  #****************************************************************************************** 

 

  def __init__(self, input_size, hidden_size_layer1, hidden_size_layer2, num_classes, batch_size,

   

               ci_scale_val, gni_scale_val, ci_bifur_val, ci_offset_val,  

               do_val, use_conv, use_eff_net, use_ci, use_gni, use_do, use_adapt_scale,  

               num_epochs, kf, train_data_shape, train_data, test_gen, save_model_path): 

     

    self.input_size = input_size 

    self.hidden_size_layer1 = hidden_size_layer1  

    self.hidden_size_layer2 = hidden_size_layer2 

    self.num_classes = num_classes  

    self.batch_size = batch_size   

    self.ci_scale_val = ci_scale_val  

    self.gni_scale_val = gni_scale_val 

    self.ci_bifur_val = ci_bifur_val 

    self.ci_offset_val = ci_offset_val 

    self.do_val = do_val 

    self.use_conv = use_conv 

    self.use_eff_net = use_eff_net 

    self.use_ci = use_ci 

    self.use_gni = use_gni 

    self.use_do = use_do 

    self.use_adapt_scale = use_adapt_scale  

    self.num_epochs = num_epochs 

    self.kf = kf 

    self.train_data_shape = train_data_shape 

    self.train_data = train_data 

    self.test_gen = test_gen  

    self.save_model_path = save_model_path 

 

  #****************************************************************************************** 
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  # FUNCTION:  plot_loss_and_acc_per_epoch  

  # PURPOSE:   Used to plot the loss or accuracy per epoch for the training and validation 

  #            data.  

  # PARAMS:    The average loss or accuracy arrays for the ANNs, the location  

  #            where the legend should be placed on the plot, the title of the plot,  

  #            and the title of the y axis.  

  # RETURNS:   NA. 

  #****************************************************************************************** 

 

  def plot_loss_and_acc_per_epoch(self, aci, ci, base, drop, gni, text_loc, title, y_label) :  

 

    plt.figure() 

    plt.rcParams["figure.figsize"] = (12,10) 

    plt.rcParams['font.family'] = 'serif' 

    plt.rcParams['font.serif'] = ['Times New Roman'] + plt.rcParams['font.serif'] 

 

    plt.plot(base, linewidth=5) 

    plt.plot(drop, linewidth=5) 

    plt.plot(gni, linewidth=5) 

    plt.plot(ci, linewidth=5) 

    plt.plot(aci, linewidth=5) 

 

    plt.xticks([0,10,20,30,40,50], fontsize = 25) 

    # plt.xticks([0,5,10,15,20], fontsize = 25) 

    plt.yticks(fontsize = 25) 

    plt.legend(["Baseline", "DO", "GNI (Non-Adaptive α)", "CI (Non-

Adaptive α)", "CI (Adaptive α)"], loc=text_loc, prop={'size': 25}) 

    plt.title(title, fontsize=25) 

    plt.xlabel("Epoch", fontsize=25) 

    plt.ylabel(y_label, fontsize=25) 

 

    return 

 

  #****************************************************************************************** 

  # FUNCTION:  get_preds  

  # PURPOSE:   Get the predictions from the ANN model for the validation or test data. 

  # PARAMS:    The ANN model and the validation or test data generator.  

  # RETURNS:   The predicted classes and the labels.  

  #****************************************************************************************** 

 

  def get_preds(self, net, gen) :  

     

    preds_tensor = torch.Tensor().cuda() 

    labels_tensor = torch.Tensor().cuda() 
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    net.eval() 

 

    with torch.no_grad(): 

 

      for i ,(images, labels) in enumerate(gen): 

        if (selected_dataset == fashion_mnist):  

          images = Variable(images.view(-1, self.input_size)).cuda() 

          labels = Variable(labels).cuda() 

        else : 

          images = Variable(images).cuda() 

          labels = Variable(labels).cuda() 

           

        outputs = net(images, False, False, False, 0) 

        preds_tensor = torch.cat((preds_tensor, outputs), dim=0) 

        labels_tensor = torch.cat((labels_tensor, labels), dim=0) 

 

    preds = list(preds_tensor.detach().cpu().numpy()) 

    preds = np.stack(preds) 

    preds = preds.argmax(axis=1) 

    labels = list(labels_tensor.detach().cpu().numpy()) 

    labels = np.stack(labels) 

 

    return preds, labels 

 

  #****************************************************************************************** 

  # FUNCTION:  display_metrics  

  # PURPOSE:   Calculates the performance metrics (accuracy, sensitivity, specificity,  

  #            positive-predictive value, negative-predictive value, and f1-score)  

  #            of the ANN models for the validation and test data.  

  # PARAMS:    The ANN model, the data generator for the validation or test data,  

  #            the path to where the trained weights are stored for the ANN model,  

  #            and the name of the model (either baseline, CIA (adaptive), CI, DO, or GNI).  

  # RETURNS:   A dataframe containing the calculated metrics for each class and the  

  #            averages.  

  # REFERENCE: https://stackoverflow.com/questions/31324218/scikit-learn-how-to-obtain- 

  #            true-positive-true-negative-false-positive-and-fal 

  #****************************************************************************************** 

 

  def display_metrics(self, net, gen, best_model_path, name) :  

 

    checkpoint = torch.load(best_model_path) 

    net.load_state_dict(checkpoint['state_dict']) 

    preds, labels = self.get_preds(net, gen) 

    conf_mat=confusion_matrix(labels, preds) 

    class_accuracy=100*conf_mat.diagonal()/conf_mat.sum(1) 
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    fp = conf_mat.sum(axis=0) - np.diag(conf_mat)   

    fn = conf_mat.sum(axis=1) - np.diag(conf_mat) 

    tp = np.diag(conf_mat) 

    tn = conf_mat.sum() - (fp+fn+tp) 

 

    sn = tp/(tp+fn) 

    sp = tn/(tn+fp)  

    ppv = tp/(tp+fp) 

    npv = tn/(tn+fn) 

    f1 = 2*(sn*ppv)/(sn+ppv) 

    acc = (tp+tn)/(tp+fp+fn+tn)  

 

    df = pd.DataFrame({"sn" + name : sn, "sp" + name: sp, "ppv" + name: ppv, "npv" + name: npv, "

acc" + name : acc, "f1" + name : f1}) 

    df.loc['mean'] = df.mean() 

 

    return df 

 

  #****************************************************************************************** 

  # FUNCTION:  kfold_display_metrics  

  # PURPOSE:   Calculates the performance metrics for each of the ten models created during  

  #            cross-validation, and then takes the average. Displays the average cross- 

  #            validation metrics and saves them into a csv file. This is done for each of  

  #            ANN models (baseline, CI, CIA, DO, and GNI).  

  # PARAMS:    A boolean value used to determine whether the results should be calculated  

  #            for the validation or test data.  

  # RETURNS:   NA.  

  #****************************************************************************************** 

 

  def kfold_display_metrics(self, get_valid_results):  

 

    kfold_df = pd.DataFrame() 

    kfold_num = 0  

 

    pd.set_option('display.max_columns', None) 

 

    for train_indexes, valid_indexes in self.kf.split(self.train_data_shape) :  

 

      set_seed() 

      net = Net(self.input_size, self.hidden_size_layer1, self.hidden_size_layer2, self.num_class

es, self.batch_size,  

                self.ci_scale_val, self.gni_scale_val, self.ci_bifur_val, self.ci_offset_val, sel

f.do_val,  
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                self.use_conv, self.use_eff_net, self.use_ci, self.use_gni, self.use_do, self.use

_adapt_scale, self.num_epochs) 

 

      if torch.cuda.is_available(): 

        net.cuda() 

 

      train_set = torch.utils.data.Subset(self.train_data, train_indexes) 

      valid_set = torch.utils.data.Subset(self.train_data, valid_indexes) 

      train_gen = torch.utils.data.DataLoader(train_set, batch_size = self.batch_size,num_workers

 = 0, worker_init_fn = load_dataset.seed_worker, drop_last = True, shuffle = True) 

      valid_gen = torch.utils.data.DataLoader(valid_set, batch_size = self.batch_size, shuffle = 

False) 

 

      if (get_valid_results == True) :  

        gen = valid_gen 

      else :  

        gen = self.test_gen 

 

      model_path = self.save_model_path + "/aci/kfold_" + str(kfold_num) + "_best_model.pt" 

      aci_df = self.display_metrics(net, gen, model_path, "_cia")       

 

      model_path = self.save_model_path + "/base/kfold_" + str(kfold_num) + "_best_model.pt" 

      base_df = self.display_metrics(net, gen, model_path, "_base") 

 

      model_path = self.save_model_path + "/ci/kfold_" + str(kfold_num) + "_best_model.pt" 

      ci_df = self.display_metrics(net, gen, model_path, "_ci") 

       

      model_path = self.save_model_path + "/do/kfold_" + str(kfold_num) + "_best_model.pt" 

      do_df = self.display_metrics(net, gen, model_path, "_do") 

 

      model_path = self.save_model_path + "/gni/kfold_" + str(kfold_num) + "_best_model.pt" 

      gni_df = self.display_metrics(net, gen, model_path, "_gni")     

 

      df = pd.concat([base_df, ci_df, aci_df, do_df, gni_df], axis = 1) 

      df = df.reindex(sorted(df.columns), axis=1) 

 

      kfold_df = pd.concat([kfold_df, df]) 

 

      net = None 

      torch.cuda.empty_cache() 

      gc.collect() 

      kfold_num += 1 

 

    kfold_df = kfold_df.groupby(level=0).mean() 

    kfold_df = kfold_df * 100 
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    kfold_df = kfold_df.round(2) 

    display(kfold_df) 

 

    if (get_valid_results == True):  

      kfold_df.to_csv(self.save_model_path + "/results/valid_results.csv") 

    else :  

      kfold_df.to_csv(self.save_model_path + "/results/test_results.csv") 

 

    return 
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Appendix B 
 

Table B-1. Performance metrics of the validation data for the Fashion-MNIST dataset. 

Metric Base 
CI 

(𝛂 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭) 
CI 

(𝛂 𝐚𝐝𝐚𝐩𝐭𝐢𝐯𝐞) 
DO 

GNI 

(𝛂 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭) 

ACC 97.98 98.06 98.08 98.04 98.05 

F1 89.88 90.26 90.35 90.15 90.22 

NPV 98.88 98.92 98.93 98.91 98.92 

PPV 89.99 90.31 90.37 90.18 90.24 

SN 89.90 90.30 90.38 90.19 90.25 

SP 98.88 98.92 98.93 98.91 98.92 

 

Table B-2. Performance metrics of the validation data for the CIFAR-10 dataset. 

Metric Base 
CI 

(𝛂 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭) 
CI 

(𝛂 𝐚𝐝𝐚𝐩𝐭𝐢𝐯𝐞) 
DO 

GNI 

(𝛂 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭) 

ACC 94.35 95.11 95.14 95.04 95.04 

F1 71.57 75.54 75.65 75.17 75.23 

NPV 96.87 97.29 97.30 97.25 97.25 

PPV 72.32 75.78 75.93 75.32 75.48 

SN 71.72 75.56 75.71 75.21 75.20 

SP 96.86 97.28 97.30 97.25 97.24 

 

Table B-3. Performance metrics of the validation data for the Stanford Cars dataset. 

Metric Base 
CI 

(𝛂 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭) 
CI 

(𝛂 𝐚𝐝𝐚𝐩𝐭𝐢𝐯𝐞) 
DO 

GNI 

(𝛂 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭) 

ACC 99.74 99.80 99.82 99.79 99.80 

F1 75.11 80.71 82.32 79.98 80.78 

NPV 99.87 99.90 99.91 99.89 99.90 

PPV 76.95 82.24 83.81 80.90 81.39 

SN 75.04 80.48 82.27 79.92 80.20 

SP 99.87 99.90 99.91 99.89 99.90 

 


