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Abstract

Artificial neural networks (ANNSs) have become an integral tool in various fields of
research. ANNSs are mathematical models which can be trained to perform various prediction
tasks. The effectiveness of an ANN can be impacted by overfitting which occurs when the ANN
overfits to the training data. As a result, the ANN does not generalize well to novel data. In our
research, we assess the feasibility of using a chaotic strange attractor to generate sequences of
values to inject into an ANN to reduce overfitting. An adaptive method was developed to scale

and inject the values into the neurons throughout training. The chaotic injection (CI) was tested

on three benchmark datasets using different ANN models. The results were compared against the

baseline ANN, dropout (DO), and Gaussian noise injection (GNI). The CI improved the

performance of the ANN and converged faster than DO and GNI.
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1 Introduction

1.1 Motivation

Artificial neural networks (ANNSs) are mathematical models inspired by the biological
brain [1]. ANNs are used for prediction tasks, such as classification and regression. The use of
ANNSs has become widespread in various fields. Applications include object detection for self-
driving cars [2], disease prediction in medicine [3], and malware detection in cybersecurity [4].
ANNSs can be impacted by overfitting, which occurs when an ANN overfits to the training data.

As a result, the ANN does not generalize well to novel data [5].

Common techniques to reduce overfitting include early stopping [6], dropout (DO) [7],
regularization [8], and noise injection (NI) [9]. Similar to NI, chaotic strange attractors can be
used to generate sequences of values, which we will refer to as chaotic values, to inject into an
ANN. Injecting chaotic values into an ANN may better reflect the behaviour of the biological
brain [10]-[13]. However, there is limited research in this area [14]-[17]. We want to expand
this area of research by developing an adaptive method to inject chaotic values into an ANN to

reduce overfitting.

1.2 Thesis Statement and Objectives

In this research, we assess the feasibility of using a chaotic strange attractor to generate
sequences of values to inject into an ANN to reduce overfitting. We propose an adaptive method

to scale and inject the values into the neurons throughout training.
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The main objectives of this research include:

1) Developing an adaptive method to inject chaotic values or noise into an ANN.
2) Assessing the effectiveness of the chaotic injection (ClI) to prevent overfitting.

3) Comparing the CI to NI.

1.3 Organization of Thesis

The thesis is organized into six main chapters, as described below in Table 1-1.

Table 1-1. Organization of Thesis.

Chapter Description

1: Introduction Chapter 1 introduces the thesis topic and objectives.

Chapter 2 provides background information on ANNS, overfitting,

2: Background _ .
techniques to reduce overfitting, NI, CI, and chaos theory.

Chapter 3 provides the implementation details of the ClI, including the
3: Implementation | selection of the attractor, the initialization and setup, the adaptive scaling

method, the injection method, and the effects on backpropagation.

Chapter 4 provides a description of the datasets and ANN models used for

4: Testing )

testing the CI.

Chapter 5 presents the results, including the ANNs’ accuracy and loss per
5: Results ) )

epoch, runtimes, and performance metrics.

Chapter 6 provides concluding remarks, recommendations for future work,
6: Conclusion

and a summary of the contributions made to this field of study.
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2 Background and Related Work

2.1 Artificial Neural Networks

ANNs are mathematical models used for prediction tasks, such as classification and
regression [18]. When input data is passed to an ANN, the ANN processes the data and outputs a
prediction. In supervised machine learning, a basic multilayer perceptron ANN consists of layers
of artificial neurons connected via parameters referred to as weights. Input data is passed into the
first layer of the ANN. In the following layers, the input into a neuron is the sum of outputs from
the neurons in the previous layer multiplied by their weight values, in addition to a bias value. A
neuron’s input is passed through a non-linear activation function and then sent to the next layer.
The neurons in the final layer output the predictions. Fig. 2-1 shows the structure of a basic
multilayer perceptron ANN with two hidden layers and two neurons per hidden layer. Table 2-1

defines the corresponding symbols.

N
x® = Z y].(k_l)wi(';‘?_l) + b* Y fork < 1 (1D y* = activation_function(x™) (2)
j=1

Fig. 2-1. Multilayer perceptron ANN.
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Table 2-1. ANN symbol definitions.

Symbol Definition

xi(k) Input into the i" neuron of layer k

7 Activation value of the i" neuron of layer k

WD Weight connection from the j*neuron in the layer k — 1 to the i**neuron in the
LJ layer k

bl.(k_l) Bias connection to the i**neuron in the layer k

N Number of neurons in layer k — 1

During a training phase, the weights and the biases of an ANN are optimized to minimize the
error between the ANNs’ predictions and the true labels of the input data [18]. Labels are
numerical values which can represent a class, regression value, or other types of data. During
training, the input data and the labels are passed into the ANN. The input data is propagated
through the ANN which then attempts to predict the label for the given input data, in a process
referred to as forward propagation. The ANN then updates the weights and biases, in a process
referred to as gradient descent. During gradient descent, a loss function is used to calculate the
error between the predicted value and the label. The backpropagation algorithm [19] is used to
find the partial derivatives of the weights with respect to the loss function. The partial derivatives
of the weights are multiplied by a scaling factor, referred to as the learning rate, and then

subtracted from the original weight values to update the weights.

An ANN can be trained for multiple epochs. Each epoch, the training dataset is passed into
the ANN in batches. The number of training samples in a batch is referred to as the batch size.
During training, a separate set of data, referred to as validation data, can be used to assess how

well the ANN performs on data it has not trained on [20]. The validation data can be used to
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fine-tune the hyperparameters of the ANN, such as the learning rate, number of training epochs,
and number of neurons per layer in the ANN. After the training process is complete, the ANN is

used to perform predictions on data it has not seen before, referred to as test data.

There are many different types of ANNSs, such as convolutional neural networks (CNNS)
[21], recurrent ANNSs [22], and transformer ANNSs [23]. Different types of ANNSs can be used to
solve different types of problems. For example, CNNs are commonly used for image
classification and transformer ANNs are commonly used for text classification. More complex
ANN architectures can contain millions of trainable parameters. Different types of ANNs have
different structures and connections between the neurons and weights. However, many ANNs

build upon the ideas of a basic multilayer perceptron ANN and follow a similar training process.

2.2 Overfitting in Artificial Neural Networks

Overfitting is a phenomenon which occurs when an ANN “overfits” to the training data [5].
The ANN learns the distinct characteristics and noise of the training dataset instead of learning a
general pattern to solve the problem. As a result, the ANN performs well on the training data,
however, the ANN does not generalize well to novel data. The accuracy for the training data is
high, whereas the accuracy for the test data is low. The loss per epoch for the validation data
increases throughout training. Overfitting is most likely to occur when there is a small training
dataset or when the ANN has a very large number of parameters. Fig. 2-2 illustrates an example
of overfitting occurring on training data with two classes, where the red line represents a decision

boundary created by the ANN.
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No Overfitting Overfitting

(b)

Fig. 2-2. (a) No overfitting versus (b) overfitting.

2.3 Common Techniques to Reduce Overfitting

Overfitting can be improved by increasing the size of the training dataset. However, it can
be time-consuming and expensive to collect more data. Therefore, techniques have been
developed to reduce overfitting. Common techniques include data augmentation, DO, early
stopping, NI, regularization, and weight constraints [5]. Table 2-2 provides a description of each

technique.
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Table 2-2. Techniques to reduce overfitting.

Technique Description

Data augmentation involves performing transformations on the training data to

S increase the size of the training dataset [24]. For example, data augmentation
ata

augmentation | nerformed on images could involve cropping, rotating, and adjusting the contrast

of the images.

DO randomly turns off a specified percent of neurons each iteration during
Dropout training [7]. DO simulates the effect of training multiple models and then taking

the average of the models.

ot Early stopping is when the training phase is ended before overfitting begins [6].
arly

Stopping | Overfitting is more likely to occur when an ANN is trained for a long time.

- NI involves injecting noise into the ANN [9]. NI has a similar effect to DO.
oise

injection | Additional information on NI is provided in Section 2.4.

Regularization involves adding a term to the loss function [8]. There are two
main regularization techniques: L1-regularization and L2-regularization. L1-
regularization adds the sum of the weights, multiplied by a scaling factor, to the
Lland L2
regularization | |oss function. L2- regularization adds the sum of the weights squared, multiplied

by a scaling factor, to the loss function. Regularization penalizes large weights

and prevents the ANN from focusing too much on one feature.

e Weight constraints can be added to prevent the weights from increasing past a
eig

constraints | threshold value. Adding weight constraints has a similar effect to regularization.
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2.4 Noise Injection to Reduce Overfitting

Researchers have investigated injecting noise into ANNSs to improve generalizability. NI adds
randomness to an ANN during training, distorting the data, making it difficult for the ANN to
overfit. NI can prevent co-adaptation, which causes overfitting. Co-adaptation occurs when
neurons learn to make up for errors made by other neurons to improve the accuracy of the
training data [25]. NI has been found to perform better than other techniques, such as weight
decay and early stopping [9]. NI can make an ANN more resistant to input perturbations [26] and
is a form of regularization [26] [27]. NI has also been found to improve the detection of
adversarial examples [28], [29]. Adversarial examples are input examples that have been

slightly modified, intentionally causing an ANN to misclassify them.

Various NI methods have been proposed, including injecting the noise into the input data
[30]-[32], hidden layers [28], [29], [33]-[35], output layer [31], weights [31], [36], and loss
function [37]. Noise can be injected additively or multiplicatively. The most common form of NI
is Gaussian noise injection (GNI), which uses Gaussian noise [32]-[37]. Recently, adaptive
techniques have been proposed to calculate the variance of the Gaussian noise throughout

training [33]-[35]. These techniques use the variance of the weights or neurons’ inputs.

2.5 Chaotic Injection to Reduce Overfitting

Several researchers have proposed injecting chaotic values into ANNS, as opposed to noise.
Chaotic values are bounded, yet non-repeating [38]. Injecting non-repeating values may allow an
ANN to search a larger solution space and improve its ability to escape local minimums. As well,
chaotic strange attractors have been found in the biological brain [10]-[13]. Modelling an ANN
to mimic the behaviour of the biological brain may improve its performance. Additional

information on chaotic strange attractors can be found in section 2.6.
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Several Cl methods have been proposed. In [16], the neuron's input into the sigmoid
activation function [39] is multiplied by a chaotic value produced by a modified version of the
logistic map. In [14], the chaotic values are injected into the weight updates during
backpropagation and into the sigmoid activation function’s temperature coefficient. Three
chaotic strange attractors were tested: the logistic map, the Mackey—Glass equations, and the
Lorentz attractor. In [17], the effects of adding chaotic values to the weight updates during
backpropagation are analyzed. The logistic map was used to generate the chaotic values. Lastly,
in [15], the chaotic values are added to the weight updates during backpropagation. The tent map
was used to generate the chaotic values. In these studies, adding chaotic values was found to

improve the performance and reduce the convergence times of the ANNSs.

Limitations to the previous studies include small datasets and ANN models. Previous
research has primarily focused on injecting the chaotic values into the weight updates during
backpropagation [14], [15], [17]. There is limited research assessing injecting the chaotic values
into the neurons during forward propagation. Only the sigmoid activation function has been
tested when injecting chaotic values into the neurons [14], [16]. Also, note that chaotic values
have been used in the particle swarm optimization and simulated-annealing algorithms [40].

However, no significant improvements were found when using chaotic values instead of noise.
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2.6 Chaos Theory

Chaos is a behaviour that can arise in dynamical systems [41]. Dynamical systems are
systems which can exhibit different types of behaviour depending on the parameters of the
system. The outputs of a dynamical system exhibiting chaotic behaviour are bounded between a
set of values and non-repeating. A small change in the initial conditions of the system will lead
to different sequences of outputs. The outputs may appear to be unpredictable and random,

however, they are deterministic.

There are two main types of systems which can exhibit chaotic behaviour: iterative maps
and differential equations [42]. An iterative map is a function or set of functions used to model
discrete-time systems. The outputs from the functions are saved and used as inputs into the
functions in the following time-step. Differential equations are used to model continuous-time
systems. The outputs of the system can be found given the system's differential equations and
initial conditions. Iterative maps directly provide the outputs of the system, whereas differential
equations must be solved using analytical or numerical methods to find the outputs of the system,

as shown in Fig. 2-3.

10
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Iterative Map >

(Discrete Time)

x(0)
d(x)/d(t)

Differential Equation Solver 3
(Continuous Time)

1=
=

Fig. 2-3. (a) Iterative maps versus (b) differential equations.

In dynamical systems, the parameters which control the behaviour of the system are
referred to as bifurcation parameters [41]. These parameters cause the system to converge to
either fixed, periodic, cyclic, or chaotic behaviour. When the system’s variables are initialized
between a given range of values, the system will converge to the state determined by the
bifurcation parameters. The state which the system settles into is called the attractor; if the state
is chaotic, it is referred to as a chaotic strange attractor. The set of initial values which allow the
system to converge to the given state are called the basin of attractors. The system may fluctuate
between various values for a given number of iterations before settling into its state; these values
are referred to as transient values. Fig. 2-4 illustrates the outputs of the logistic map with
different bifurcation values, where r is the bifurcation parameter and n is the iteration number.

The logistic map is defined by Equation (3).

lIn+1] =7 {[nDA —[n]) (3)

11
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r = 2.5 (Fixed Bahaviour)

1.0
€0.5
0.07% 10 20 30 40 50
Iteration (n)
(@
1.0 r = 3.2 (Periodic Bahaviour)
‘=0.5
0.0 10 20 30 40 50
Iteration (n)
(b)
r = 4 (Chaotic Bahaviour)
10 L 4 . w L 4
‘=0.5
[ } ® [ J
0.075 10 20 30 40 50
Iteration (n)
(©

Fig. 2-4. Logistic map with different bifurcation parameters.

12
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A bifurcation diagram can be used to show how different bifurcation parameters affect a
dynamical system [38]. The bifurcation diagram plots the value or values which the system has
converged to versus the bifurcation parameter. Additionally, a Lyapunov exponent diagram can
be used to show the Lyapunov exponents for different bifurcation parameters. The Lyapunov
exponent is a measure of how fast two close initial trajectories diverge. A Lyapunov exponent

greater than zero is a characteristic of chaos.

Fig. 2-5 illustrates (a) the bifurcation diagram and (b) the Lyapunov exponent diagram
for the tent map. The tent map is defined by Equation (4), where u is the bifurcation parameter.
When the bifurcation parameter is between 1.0 and 2.0, exclusive, the system converges to
chaotic behaviour. The Lyapunov exponents for these bifurcation parameters are greater than
zero. Note that the upper and lower bounds of the chaotic values depend on the bifurcation
parameter. As shown in the bifurcation diagram, when the bifurcation parameter is set to 1.5, the
chaotic values are bound between [0.35, 0.75]. When the bifurcation parameter is set to 1.99, the

chaotic values are bound between [0, 1].

u(t[n)), t[n] < 0.5

u(1 — t[n]), tln] = 05 )

tln+1] = p(min(t[n], 1 - t[n])) = {

13
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Bifurcation Diagram Lyapunov Exponent Diagram
1.00 1.0
0.75 g 05
2
Q
- i
2 0.50 0.0
) Qe
5
g
0.25 = o5
0.00————
0.5 1.0 1.5 20 05 1.0 1.5 2.0
Bifurcation Parameter () Bifurcation Parameter ()
(a) (b)

Fig. 2-5. Bifurcation diagram and Lyapunov exponent diagram of the tent map.

Different chaotic strange attractors have different probability density functions (PDFs).
Given a specific bifurcation parameter, the sequence of chaotic outputs will follow a unique PDF
[40]. Fig. 2-6 shows different chaotic strange attractors and their empirical PDFs. The circular

map is defined by Equation (5), where K and Q are the bifurcation parameters.

cln+1] = (c[n] + Q- £sin(27tc[n]))mod1 (5)
21

14
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Circular Map (Q = 0.2, K = 0.5)
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Fig. 2-6. The PDF of different chaotic iterative maps.

15



Adaptive Chaotic Injection Chapter 3: Implementation

3 Implementation

3.1 Selection of the Attractor

The tent map was selected to generate the chaotic values. The tent map is an iterative map

defined by Equation (4), where t represents the tent map value, n represents the time-step, and p

represents the bifurcation parameter. A bifurcation parameter of 1.99 was selected. When the

bifurcation parameter is set to 1.99, the tent map becomes a chaotic strange attractor generating a

sequence of pseudo-random values between 0 and 1. The tent map was selected for several

reasons:

1)

2)

3)

The tent map produces a uniform distribution of values between 0 and 1, whereas other
iterative maps’ PDFs tend to be skewed towards certain values, as shown in Fig. 2-6.
Injecting chaotic values which follow a uniform distribution may perform better than
other distributions because it allows the neurons to search a broader solution space. Other
iterative maps primarily output chaotic values centered around the distribution’s peak,
potentially narrowing the ANN’s search space.

The tent map can be computed quickly. The tent map produces the outputs directly,
unlike differential equations which must be solved either numerically or analytically.

The tent map only contains one variable. Some chaotic strange attractors contain multiple
variables. The outputs of the chaotic strange attractor must be saved to be used as input
into the attractor in the following time-step. Therefore, memory may be a concern if a

large number of neurons are using the CI and multiple variables must be saved.
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3.2 Initialization and Setup

In our research, we will assess the feasibility of injecting the chaotic values into neurons in
the hidden layers during forward propagation. Each neuron in a layer using the CI has its own
tent map. The initial values of the tent maps are initialized randomly between 0 and 1. The tent
maps are then iterated for 1000 iterations before training to remove transient values. Each batch
iteration during training, the tent maps are iterated to generate a new chaotic value. The chaotic
values are saved to be used as input into the tent maps in the following iteration. The chaotic
values are multiplied by a scaling factor and then injected into their respective neuron. The
scaling factor is an adaptive parameter which changes each epoch. The scaling factors are
initialized before training begins. The CI only occurs on the training data. Table 3-1 provides an

overview of the algorithm.

Table 3-1. Cl algorithm pseudo-code.

Algorithm

1 | Initialize the tent maps and remove transient values, initialize the scaling values

2 | For each epoch during training:

3 Update the scaling value

4 For each batch in the epoch:

5 Update and save the state of the chaotic values

6 Scale the chaotic values

7 Inject the scaled chaotic values into the neurons during forward propagation
8 Perform backpropagation and update the weights

17



Adaptive Chaotic Injection Chapter 3: Implementation

3.3 Offset and Adaptive Scaling

Before a chaotic value is injected into a neuron, an offset value is added, and it is scaled.
An offset value, S, of 0.5 is added to shift the chaotic value from the range [0,1] to the range [-
0.5, 0.5]. The value is then multiplied by a scaling factor, «, to either amplify or diminish its
effect. « is an adaptive parameter which starts at zero and is logarithmically increased each
epoch during training. « initially dampens the chaotic values allowing the ANN to converge. a is
then increased to allow the ANN to explore a larger solution space and prevent overfitting.

Equation (6) shows how the scaled chaotic value, s[n], is calculated.
s[n] = a(tln] -p), =05 (6)

The values of « are calculated and initialized into an array before training begins. The «
values are calculated in two steps. Firstly, the a value for each epoch is calculated using
Equation (7), where w is a hyperparameter which controls the growth rate of the log function.
The epoch_num ranges from [0, number of epochs-1]. Secondly, the array of a values is
rescaled between [0, a_max] using Equation (8), where a_max is a hyperparameter which sets
the maximum value of a. Fig. 3-1 shows an example of the « values throughout training, when

w is setto 25, a_max is set to 5, and the number of epochs is set to 50.
a_array[epoch_num] = log(w X epoch_num + 1) (7)

a_arrayl: ]

a_array[:] = X a_max (8)

max (a_arrayl:])
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Adaptive Scaling Values throughout Training

>

w

Scaling Value (a)
[\]

[

0 10 20 30 40 50
Epoch

Fig. 3-1. Adaptive scaling parameter.
3.4 Method of Injection
After the chaotic value is scaled, it is injected into the neuron. There are various ways to
inject the chaotic value into the neuron. The chaotic value can be added or multiplied into the
neuron, before or after the activation function. Fig. 3-2 illustrates how the various injection
methods can affect the rectified linear unit (ReLU) activation function. The ReLU activation

function [43], defined by Equation (9), was selected because it is commonly used in practice and

it has a simple derivative, as shown in Equation (10).

0, ifx<0

ReLU(x) = {x if x>0 9

d(ReLU(x)) (0, if x< 0
- {1, if x>0 (10)
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y = RelLU (x) y = ReLU (x + s[n]) y = ReLU (x X s[n]) y = ReLU(x 4+ x X s[n])

10|
10

> > 5
0 0
-10 -5 0 5 10 -10 -5 0 5 10
x x x
(@) (®) (©) (d)
y = ReLU (x) + s[n] y = RelLU (x) X s[n] y = ReLU (x) + x X s[n] y = ReLU (x) + ReLU (x) X s[n]
10 20
10|
5 15
> 5 > 0 > 10
0.
10 0
T S I T T o5 10 S T

(€9)
Fig. 3-2. Various injection methods.

Option (h) from Fig. 3-2 was selected for the final implementation, which is defined by
Equation (11). In this injection method, the additive and multiplicative injection approaches are
combined. The chaotic value is first multiplied by the activation value to scale its effect; it will
have a larger effect on neurons with a large activation value and it will not affect neurons with an
activation value less than zero. This method is similar to the adaptive methods proposed by [33]-
[35], where either the weights or neurons’ inputs were used to determine the variance of the
Gaussian noise. Fig. 3-3 (a) illustrates the setup for the CI. Table 3-2 defines the corresponding
symbols. Fig. 3-3 (b) illustrates a multilayer perceptron ANN using the CI. The ANN contains

two hidden layers, with two neurons per hidden layer.

y = ReLU(x) + ReLU(x) X s[n] (11)
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t [n]l(k) = tent_map(t[n — 1]?‘))
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tln— 11 = ¢

v
0= ReLU (x() +
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Fig. 3-3. (a) Neuron using the CI and (b) ANN using the CI.
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Table 3-2. CI ANN symbol definitions.

xi(k) Input into the i" neuron of layer k

7 Output of the i™" neuron of layer k

t[n]gk) Tent map value of the i*" neuron of layer k at iteration n

s[n] Ek) Scaled tent map value of the i*" neuron of layer k at iteration n

agk) Activation value of the i**neuron in the output layer

D Weight connection from the j*neuron in the layer k — 1 to the i**neuron in the
L layer k

bl.("_l) Bias connection to the i**neuron in the layer k

N Number of neurons in layer k — 1

3.5 Effects on Backpropagation

During backpropagation, the CI affects the derivative of neurons with a positive activation
value. The ClI does not affect the derivative of neurons with a negative activation value. Equation
(12) shows the derivative of a neuron using the ClI. If a neuron has a positive activation value, the
derivative is 1 + s[n]. The extent to which s[n] affects the weights depends on the tent map
scaling factor («) and the overall structure of the ANN. The CI adds pseudo-randomness to the
ANN, causing the weights to be slightly increased or decreased throughout training.
dy®  d(ReLU(x() + ReLU(x() x s[n]®®) (o, if 2 < 0

l
(r) x) (k) .o (k)
dx; dx; 1+ s[n];", if x;7 >0
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4 Testing

The code used for implementation and testing was developed using Python (version 3.7.13)

[44]. The code was developed in Google Colab Pro+ [45]. All code can be found in Appendix A.

4.1 Datasets and Data Preprocessing

Three open-source classification datasets were used for testing: Fashion-MNIST (Modified
National Institute of Standards and Technology database) [46], CIFAR-10 (Canadian Institute for
Advanced Research) [47], and Stanford Cars [48]. The datasets were obtained and preprocessed
using the TorchVision library (version 0.13.0+cul13) [49], which is a Python library used for

image processing and computer vision tasks.

4.1.1 Fashion-MNIST

The Fashion-MNIST dataset contains 70,000 greyscale images. The images are of the
size 28x28 pixels. The dataset contains 10 classes, consisting of the following articles of
clothing: t-shirts, trousers, pullovers, dresses, coats, sandals, shirts, sneakers, bags, and ankle
boots. Fig. 4-1 shows sample images from the dataset. Prior to training, the pixel values of the

images were normalized between [-1,1] and the images were flattened to the size 784x1 pixels.

Fig. 4-1. Sample images from the Fashion-MNIST dataset.
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412 CIFAR-10

The CIFAR-10 dataset contains 60,000 RGB images. The images are of the size 3x32x32
pixels. The dataset contains 10 classes: airplanes, automobiles, birds, cats, deer, dogs, frogs,
horses, ships, and trucks. Fig. 4-2 shows sample images from the dataset. Prior to training, the

pixel values of the images were normalized between [-1,1].

Fig. 4-2. Sample images from the CIFAR-10 dataset.

4.1.3 Stanford Cars

The Stanford Cars dataset contains 16,185 RGB images of varying sizes. The dataset
contains 196 classes of different types of cars. Fig. 4-3 shows sample images from the dataset.
The images were resized to 224x224 pixels. The pixel values were rescaled between 0 and 1. The
RGB channels were normalized using the following parameters:

mean=[0.485, 0.456, 0.406], standard deviation=[0.229, 0.224, 0.225].

Fig. 4-3. Sample images from the Stanford Cars dataset.
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4.2 Models

The models were developed using the PyTorch machine learning library (version
1.12.0+cul13) [50]. The CI was compared against the baseline ANNs, DO, GNI without
adaptive scaling, and CI without adaptive scaling. The Cl was compared against DO because it is
commonly used in practice. The Cl was compared against GNI due to their similar mechanisms
of action. The Gaussian noise used a mean of zero and variance of one. The GNI used the same
injection method as the CI, as described in Section 3.4. The ClI was tested with and without
adaptive scaling to assess its effects. When adaptive scaling wasn’t used, the a value was set to a
constant value throughout training. The CI, DO, and GNI were used in the hidden dense layers of
the ANNS. The hidden dense layers were selected for the Cl because DO is commonly used in
these layers to prevent overfitting. The PyTorch cross-entropy loss function [51] was used as the

loss function for all models.

4.2.1 Multilayer Perceptron Model
The Fashion-MNIST dataset was tested using a multilayer perception ANN. The ANN
contained 2 hidden layers. Each hidden layer contained 512 neurons. Fig. 4-4 illustrates the

model.

= | =/ =]

10x1
512x1 s12  OutputLayer
Dense Layer Dense Layer
784x1 1) 1)
Input Layer

Fig. 4-4. Multilayer perceptron ANN used for testing the Fashion-MNIST dataset.
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4.2.2 Convolutional Model

The CIFAR-10 dataset was tested using a CNN model. The CNN consisted of three
convolutional layers, three 2D-max-pooling layers, followed by two hidden dense layers, and the
output layer. The convolutional layers used a filter size of 3x3 and a padding size of one. The
first convolutional layer used 16 filters, the second convolutional layer used 32 filters, and the
last convolutional layer used 64 filters. A 2D-max-pooling layer followed each convolutional
layer. The 2D-max-pooling layers used a kernel size of two and a stride of two. The two dense

layers each contained 512 neurons. Fig. 4-5 illustrates the model.

r% =0= %%E&b@@@@ﬂ

32x32x3 32x32x16 16x16x16 16x16x32 8x8x32 8x8x64 4x4x64
Original Convolutional 2D-Max Convolutional 2D-Max Convolutional 2D-Max
Image Layer Pooling Layer Pooling Layer Pooling

IOZXI 512x1  512x1 10x1

Flatten = Dense Dense  Output
Layer  Layer Layer
(CI) (o))

Fig. 4-5. CNN used for testing the CIFAR-10 dataset.

4.2.3 EfficientNet-B7 Model

The Stanford Cars dataset was tested using the EfficientNet-B7 model [52]. EfficientNet-
B7 is a state-of-the-art CNN architecture, containing ~66 million trainable parameters. The
output layer of the model was removed and replaced by two dense layers containing 512 neurons
and an output layer containing 196 neurons. The weights of the model were pre-trained on
ImageNet [53], which is a large dataset, containing thousands of classes. The pre-trained weights
were loaded into the model prior to training. The Adam optimizer [54] was used during training

with an initial learning rate of 0.0001. Fig. 4-6 illustrates the model.

26



Adaptive Chaotic Injection Chapter 4: Testing

— EfficientNetB7 = | |=| = |:>|:|

224x224x3
Original L |
Image 2560x1 512x1 S12x1  196x1

Flatten Dense Dense Output
Layer Layer  Layer
€ (@

Fig. 4-6. EfficientNet-B7 model used for testing the Stanford Cars dataset.

4.3 Cross-Validation

Ten-fold cross-validation was used for fine-tuning the models and selecting the
hyperparameters [20]. In ten-fold cross-validation, the training data is randomly separated into
ten folds. Ten training runs are performed. For each training run, a different fold is selected as
the validation data. A portion of the data was excluded from cross-validation to be used as the
test data. The Scikit-Learn library (version 1.0.2) [55] was used for implementing the cross-

validation. Fig. 4-7 illustrates the ten-fold cross-validation.

During each training run, the accuracy and loss per epoch for the training and validation
data were saved. As well, the model was saved at the epoch when the validation data had the
lowest loss value. After the ten training runs were completed, the average accuracy and loss per
epoch for the training and validation data were found to produce the overall results. As well, the

ten saved models were used to get the average performance metrics of the test data.
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Run Foldl Fold2 Fold-3 Fold4 Fold-5 Fold6 Fold-7 Fold-8 Fold-9 Fold-10

1

2

3

4

5

6

7

8

9

10
Training data
Validation data

- Test data

Fig. 4-7. Ten-fold cross-validation setup.

The training and test data were well-balanced with respect to their classes for all datasets.
The datasets were separated into training and test data using the train/test splits created by the
authors of the datasets. For the Fashion-MNIST dataset, 60,000 images were used for cross-
validation and 10,000 images were used for testing. For the CIFAR-10 dataset, 50,000 images
were used for cross-validation and 10,000 images were used for testing. For the Stanford Cars

dataset, 8144 images were used for cross-validation, and 8041 images were used for testing.

4.4 Hyperparameter Selection

The training and validation data were used to finetune the hyperparameters, such as the
learning rate, the batch size, and the Cl parameters. Table 4-1 shows the hyperparameter values
selected. The models were trained for a set number of epochs. Early stopping was not used
because it is a technique to prevent overfitting; we wanted to assess how well the CI performed

without using other overfitting techniques.
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Table 4-1. Hyperparameter Selection.

Chapter 4: Testing

Parameter Fashion-MNIST CIFAR-10 Stanford Cars
Batch size 100 100 20
Cl bias value (B) 0.5 0.5 0.5
Cl bifurcation parameter (u) 1.99 1.99 1.99
Cl scale value (constant @) 3.0 5.0 55
CI maximum scale value (a_max) 3.0 55 6.5
Cl scale growth rate (w) 25 25 25
DO value 0.5 0.7 0.6
GNI bias value (B) 0 0 0
GNI scale value (constant ) 0.9 1.5 1.5
Learning rate 0.05 0.05 0.0001
Number of epochs 50 50 20
Number of test images 10,000 10,000 8041
Number of weights and biases 669,706 816,170 65,461,396
Number of training images 60,000 50,000 8144
Optimizer None None Adam
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5 Results

Two methods were used to assess the CI’s performance. Firstly, the training convergences of
the models were analyzed. The average accuracies and losses per epoch were plotted, and the
runtimes of the models were compared. Secondly, the average results of the test data were
analyzed, using the following performance metrics: accuracy (ACC), F1-score (F1), negative-

predictive value (NPV), positive-predictive value (PPV), sensitivity (SN), and specificity (SP).

5.1 Training Convergence

5.1.1 Accuracy and Loss Per Epoch

Fig. 5-1, Fig. 5-2, and Fig. 5-3 show (a) the loss per epoch for the training data, (b) the loss
per epoch for the validation data, (c) the accuracy per epoch for the training data, and (d) the
accuracy per epoch for the validation data for the three datasets. Table 5-1, Table 5-2, and Table
5-3 show the accuracy and loss at the end of training for the three datasets. The accuracy is the
number of correctly classified true-positive samples versus the total number of samples, and the

loss is the cross-entropy loss function.

The baseline ANNSs produce the highest accuracy and lowest loss for the training data.
However, the baseline ANNSs produce the lowest accuracy and highest loss for the validation
data. As well, the validation data’s loss for the baseline ANNs increases throughout training.
These characteristics indicate the baseline ANNs are overfitting to the training data. When the
ANN:Ss are trained for a long time, they begin learning the distinct characteristics and noise of the
training data. As a result, the ANNSs’ performance on the validation data begins decreasing,

causing the loss to increase.
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The CI, DO and GNI methods reduce overfitting. These methods add randomness to the
ANNs, making it difficult for the ANNSs to overfit to the training data. As a result, the accuracy is
lower and the loss is higher for the training data compared to the baseline ANNs. However, the
accuracy is higher and the loss is lower for the validation data. These methods allow the ANNs

to generalize better to novel data.

The CI with adaptive scaling reduces the final loss of the validation data compared to the
baseline ANNs by 21.85%, 65.42%, and 29.77% for the Fashion-MNIST, CIFAR-10, and
Stanford Cars datasets, respectively. Likewise, the CI with adaptive scaling increases the final
accuracy of the validation data by 0.53%, 1.70%, and 5.55% for the Fashion-MNIST, CIFAR-10,

and Stanford Cars datasets, respectively.

The baseline ANNs converge the fastest. The CI, DO, and GNI models take longer to
converge because they decrease the accuracy of the training data, in exchange for better
generalizability. The CI with adaptive scaling converges faster than DO and GNI, as shown on
the Stanford Cars dataset. The adaptive scaling method initially dampens the chaotic values
allowing the ANNSs to converge, and then amplifies the chaotic values allowing the ANNs to

explore a larger solution space.
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Fig. 5-1. Accuracy and loss per epoch for the Fashion-MNIST dataset.

Table 5-1. Accuracy and loss for the Fashion-MNIST dataset.

Cl Cl DO GNI
(ax constant) (aadaptive) (a constant)

Train Valid ‘ Train ‘ Valid ‘ Train Valid Train Valid Train Valid

Base

Accuracy (%) | 97.28 | 89.86 | 93.13 | 90.28 | 93.09 | 90.39 | 91.91 | 90.14 | 92.58 | 90.18

Loss 0.077 | 0.357 | 0.184 | 0.279 | 0.184 | 0.279 | 0.217 | 0.281 | 0.199 | 0.283
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Fig. 5-2. Accuracy and loss per epoch for the CIFAR-10 dataset.

Table 5-2. Accuracy and loss for the CIFAR-10 dataset.

Cl Cl DO GNI
(ax constant) (aadaptive) (a constant)

Base

Train VaIid‘Train‘Valid‘Train Valid Train Valid Train Valid
Accuracy (%) | 100.0 | 73.99 | 89.88 | 75.58 | 88.12 | 75.69 | 87.43 | 75.59 | 87.97 | 75.83

Loss 0.000 | 2.308 | 0.288 | 0.860 | 0.339 | 0.798 | 0.358 | 0.859 | 0.347 | 0.833
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Fig. 5-3. Accuracy and loss per epoch for the Stanford Cars dataset.

Table 5-3. Accuracy and loss for the Stanford Cars dataset.

Cl Cl DO GNI
(ax constant) (aadaptive) (a constant)

Train Valid ‘ Train ‘ Valid ‘ Train Valid Train Valid Train Valid

Base

Accuracy (%) | 98.08 | 76.61 | 89.03 | 80.94 | 86.00 | 82.16 | 94.71 | 80.49 | 86.23 | 80.29

Loss 0.065 | 1.169 | 0.357 | 0.834 | 0.459 | 0.821 | 0.186 | 1.028 | 0.442 | 0.878
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5.1.2 Runtime

Table 5-4 shows the average runtimes of the models. Empirically, the results show that
the CI does not have a significant impact on the runtime. The CI adds three computations to the
training algorithm: (1) generating the chaotic values, (2) scaling the chaotic values, and (3)
injecting the chaotic values into the neurons. Note that the models were run in Google Colab

Pro+, therefore the runtimes may vary based on GPU (Graphics Processing Unit) availability.

Table 5-4. Average runtimes (s) of the models.

Cl ClI GNI
Dataset o constant ( adative ) DO ( constant
Fashion-
MNIST 501.71 512.89 509.59 493.92 529.22
CIFAR-10 600.32 595.25 839.93 581.96 630.97
Stanford Cars 6146.46 5954.48 6711.64 4108.73 4355.58
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5.2 Performance Metrics

Chapter 5: Results

The test data was used to assess the models’ performances. The models were assessed

using the following metrics: (1) accuracy, (2) F1-score, (3) negative-predictive value, (4)

positive-predictive value, (5) sensitivity, and (6) specificity. The metrics were calculated for each

class using the number of true positive (TP), true negative (TN), false positive (FP), and false

negative (FN) samples. Table 5-5 provides the corresponding formulas. After the metrics were

found for each class, the averages were taken.

Table 5-5. Performance metric formulas.

Metric Formula

(TP+FP+TN +FN)

TP
SenSitiVity SN = (TP+—FIV) (13)
Soecificit p TN i
ecifici =
5 U (TN + FP)
Positive-Predictive Val PPV P (15)
ositive-Predictive Value -
y (TP + FP)
Negative-Predictive Val NPV N (16)
egative-Predictive Value S S
° (TN + FN)
F1-Score F1 = 2 x SN x PPV 17)
~ (SN + PPV)
TP+ TN
Accuracy ACC = (18)
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Table 5-6, Table 5-7, and Table 5-8 show the results of the test data for the three datasets.
Appendix B shows the results of the validation data for the three datasets. The CI with adaptive
scaling achieves the highest performance metrics on the test data, with results similar to DO and
GNI. The CI’s improvements over the baseline ANNs range between 0.04% and 7.36% for
various performance metrics. The CI’s improvements over DO and GNI range between 0.01%
and 2.40% for various performance metrics. The greatest improvements are seen on the F1-score,

sensitivity, and positive-predictive value metrics.

The results indicate the CI is more effective on difficult datasets and large ANN models.
The Stanford Cars dataset contains the smallest number of training samples and uses the largest
ANN model, containing ~66 million trainable parameters. Whereas, the Fashion-MNIST dataset
contains the largest number of training samples and uses the smallest ANN model, containing
less than one million trainable parameters. Therefore, the Stanford Cars model is more likely to
suffer from overfitting than the Fashion-MNIST model. Consequently, the Stanford Cars model
likely benefits more from the CI than the Fashion-MNIST model. Additional testing on large

ANN models could be performed to confirm these findings.
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Table 5-6. Performance metrics of the test data for the Fashion-MNIST dataset.

Cl GNI

(a constant) (o adaptive) (a constant)
ACC 97.79 97.92 97.92 97.88 97.90
F1 88.95 89.58 89.59 89.39 89.48
NPV 98.77 98.85 98.85 98.83 98.83
PPV 89.06 89.63 89.62 89.42 89.51
SN 88.95 89.60 89.62 89.42 89.50
SP 98.77 98.84 98.85 98.82 98.83

Table 5-7. Performance metrics of the test data for the CIFAR-10 dataset.

VB ECE (a c01c1:sltant) (a adgrl)tive) e (a C(ﬁ}'::ant)
ACC 94.32 95.04 95.11 94.98 95.02
F1 71.39 75.17 75.50 74.84 75.11
NPV 96.86 97.25 97.29 97.21 97.24
PPV 72.10 75.38 15.77 74.94 75.32
SN 71.59 75.20 75.54 74.90 75.10
SP 96.84 97.24 97.28 97.21 97.23

Table 5-8. Performance metrics of the test data for the Stanford Cars dataset.

MBIAE ECE (x corcl:sltant) (a adgll)tive) e (a C(il:tlant)
ACC 99.74 99.79 99.82 99.79 99.80
F1 74.45 79.40 81.78 79.39 79.80
NPV 99.87 99.90 99.91 99.90 99.90
PPV 76.94 81.13 83.05 80.97 81.31
SN 74.53 79.54 81.89 79.49 79.95
SP 99.87 99.90 99.91 99.90 99.90
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6 Conclusion

6.1 Thesis Conclusions

This thesis presented a method to inject chaotic values into the neurons of an ANN. In
Chapter 3, the injection method is presented. The chaotic values are generated using the tent
map, which is a chaotic strange attractor when the bifurcation parameter is set to 1.99. Each
neuron in a layer using the CI has its own tent map. The chaotic values are scaled and then
injected into the neurons using a combined additive and multiplicative approach. An adaptive
scaling parameter was developed to increase the effect of the chaotic values throughout training.
In Chapter 4, the models used for testing were presented. A variety of different datasets and
models were used to assess the performance of the CI. Three datasets were used for testing:
Fashion-MNIST, CIFAR-10, and Stanford Cars. In Chapter 5, the results were presented. The ClI
was able to reduce overfitting and improve the performance of the ANNSs. The CI achieves
higher accuracy than the baseline ANN on all datasets. The CI converges faster than DO and

GNI using the adaptive scaling method.

6.2 Future Work

Recommendations for future work are listed below:

1) A method could be developed to determine the optimal maximum scaling value, a_max.
If a_max is too large, the ANN will not learn. If a_max is too small, it will not have an
effect on the ANN. a_max is not a trainable parameter because the ANN may learn to set
it to zero to increase the accuracy of the training data, however, then overfitting would

not be improved.
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2)

3)

Additional testing could be performed. Firstly, the Cl was only injected into the dense
layers of the ANNSs. Further testing is required to determine its effects on other layers,
such as convolutional layers. Secondly, the CI could be tested on other large ANN
models, such as BERT (Bidirectional Encoder Representations from Transformers) [56].
Our results indicate the CI has the greatest impact on large ANN models. Lastly, the CI
could be compared against other adaptive injection methods [33]-[35] which have
recently been proposed.

Additional research could be performed to determine the optimal distribution of values
used for the injection. In this research, the tent map was used which follows a uniform
distribution. Previous work has primarily focused on NI using a Gaussian distribution
[32]-[37]. An adaptive method could be developed to determine the optimal distribution

of values for each individual neuron throughout training.

6.3 Thesis Contributions

In this thesis, several contributions have been made to this area of research:

1) A method for injecting chaotic values or noise into an ANN was developed, which

combines the previous additive and multiplicative injection methods.

2) An adaptive method was developed for scaling the chaotic values. This method uses a

logarithmic function to scale the values, allowing the ANN to initially converge and then

explore a larger solution space. This method can be applied to the Cl and NI.

3) The effectiveness of using a chaotic strange attractor to generate sequences of values to

inject into the neurons of an ANN was assessed. The CI successfully reduces overfitting

and improves the performance of ANNs.
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Appendix A

Appendix A provides the code used for all the experiments. The code consists of 6 modules, as

listed below:

1) imports.ipynb

2) main.ipynb

3) load_dataset.ipynb
4) create_model.ipynb
5) train_model.ipynb

6) display_results.ipynb

Note: To run the code, the user should update the “selected _dataset” variable in main.ipynb to
select either the Fashion-MNIST, CIFAR-10, or Stanford Cars dataset. The user must also update
the number of epochs, CI, DO, and GNI hyperparameters accordingly. Lastly, the user must

update the paths to where their code, models, and results are stored.

A.1 Imports
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impo
impo
impo
impo
impo
from
from

from

from
from
impo
from
impo
impo
impo
impo
impo
impo
impo

impo

pd.s

se
to
to
to
np
ra
to

to

set

if t

rt torch

rt torch.nn as nn

rt torchvision

rt torchvision.datasets as datasets

rt torchvision.transforms as transforms
torch.autograd import Variable
torch.utils.data import DataLoader

torchvision.utils import make grid

sklearn.metrics import confusion matrix
sklearn.model selection import KFold
rt autoreload

matplotlib import pyplot as plt

rt numpy as np

rt timeit

rt os

rt random

rt math

rt gc

rt seaborn as sns

rt pandas as pd

et option('display.max columns',

set seed()

ed =0

rch.manual seed (seed)
rch.cuda.manual seed all (seed)
rch.cuda.manual seed (seed)
.random. seed (seed)

ndom. seed (seed)
rch.backends.cudnn.deterministic =

rch.backends.cudnn.benchmark =

seed ()

orch.cuda.is available() :

device = torch.device ("cuda:0")

print ("Running on the GPU")

device torch.device ("cpu")

Appendix A
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print ("Running on the

torch.cuda.device count ()

load dataset.ipynb
create model.ipynb
train model.ipynb

display results.ipynb

A.2 Main

from google.colab import drive

drive.mount ('/content/drive/', force remount=

%cd "/content/drive/My Drive/ColabNotebooks/v2/«

$run imports.ipynb

fashion mnist
cifar 10 = 2

stanford cars

load dataset = Load Dataset ()
dataset download path = "Downloads"

selected dataset = fashion mnist

if (selected dataset == fashion mnist):

train data, test data, test gen, input size, num classes, batch size = load dataset.load fashio
n mnist dataset (dataset download path)

save model path ‘content/drive/My Drive/Colab o 72 /mo /fashion mnist/"

train data shape = np.zeros((len(train data), input size))

if (selected dataset == cifar 10):
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train data, test data, test gen, input size, num classes, batch size = load dataset.load cifar
10 dataset (dataset download path)

save model path = "/content/drive/My Drive/ColabNotebooks/v2/models/cifar 10/"

train data shape = np.zeros((len(train data), input size[0], input size[l], input size[2]))
if (selected dataset == stanford cars):

train data, test data, test gen, input size, num classes, batch size = load dataset.load stanfo
rd cars_dataset (dataset download path)

save model path = "/content/drive/My Drive/ColabNotebooks/v2/models/stanford c

train data shape = np.zeros((len(train data), input size[0], input size[l], input size[2]))

aci save model path = save model path + "

ci save model path = save model path + "/ci/"
base save model path = save model path + "/base/"
do_save model path = save model path + "/do/"

gni save model path = save model path + "/gni/"

load dataset.show batch(test gen)

num_kfolds 10
rand_state 1

kf = KFold(n _splits = num kfolds, random state = rand state, shuffle =

if (selected dataset == stanford cars)
use optim =
use conv =
use eff net =
if (selected dataset == cifar 10)
use optim =
use_conv =
use eff net =
if (selected dataset == fashion mnist)
use_optim =
use conv =

use eff net =
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num_epochs = 50
learning rate = 0.05
hidden size layerl =
hidden size layer2
ci bifur val = 1.99
ci offset val 0.5
do val = 0.6

gni scale val 0.9

loss_function nn.CrossEntropyLoss ()

use ci =

use gni =

use do =
ci_scale val =

use adapt scale =

set seed()

train model = Train Model (input size, hidden size layerl, hidden size layer2, num classes, batch
size,
ci scale val, gni scale val, ci bifur val, ci offset val,
do val, use conv, use eff net, use ci, use gni, use do, use adapt scale,
num_epochs, learning rate, use optim, loss function, kf, train data shape, train d

ata)

train model.kfold train model (ci save model path)

use ci =

use gni =

use do =

ci scale val = 3.0

use_adapt scale =

set seed()

train model = Train Model (input size, hidden size layerl, hidden size layer2, num classes, batch

size,
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ci scale val, gni scale val, ci bifur val, ci offset val,
do val, use conv, use eff net, use ci, use gni, use do, use adapt scale,
num_epochs, learning rate, use optim, loss function, kf, train data shape, train d

ata)

train model.kfold train model (aci save model path)

UEE_cil =
use gni =
use do =

use adapt scale =

set seed()

train model = Train Model (input size, hidden size layerl, hidden size layer2, num classes, batch
size,
ci scale val, gni scale val, ci bifur val, ci offset val,
do val, use conv, use eff net, use ci, use gni, use do, use adapt scale,
num_epochs, learning rate, use optim, loss function, kf, train data shape, train d

ata)

train model.kfold train model (base save model path)

use ci =
use gni =
use do =

use adapt scale =

set seed()

train model = Train Model (input size, hidden size layerl, hidden size layer2, num classes, batch
size,

ci scale val, gni scale val, ci bifur val, ci offset val,

do val, use conv, use eff net, use ci, use gni, use do, use adapt scale,

num epochs, learning rate, use optim, loss_ function, kf, train data shape, train d

ata)

train model.kfold train model (do_save model path)
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use adapt scale =

set seed()

train model = Train Model (input size, hidden size layerl, hidden size layer2, num classes, batch
size,

ci scale val, gni scale val, ci bifur val, ci offset val,

do val, use conv, use eff net, use ci, use gni, use do, use adapt scale,

num epochs, learning rate, use optim, loss function, kf, train data shape, train d

ata)

train model.kfold train model (gni_ save model path)

use ci =
use gni =
use do =

use adapt scale

display results = Display Results (input size, hidden size layerl, hidden size layer2, num classes
, batch size,

ci scale val, gni scale val, ci bifur val, ci offset val,

do_val, use conv, use eff net, use ci, use gni, use do, use adapt scale,

num_epochs, kf, train data shape, train data, test gen, save model path)

aci plots df = pd.read csv(aci save model path + "/plots

ci plots df = pd.read csv(ci save model path + "/plots

gni plots df = pd.read csv(gni save model path + "/plots

base plots df = pd.read csv(base save model path + "/plots.csv")

do plots df = pd.read csv(do save model path + "/plots 7"")

display results.plot loss and acc per epoch(aci plots df.valid loss, ci plots df.valid loss, base
_plots df.valid loss, do plots df.valid loss, gni plots df.valid loss, 'upper right', "Loss per E
poch - Validation Data", "Loss (Cr -Entropy)")

display results.plot loss and acc per epoch(aci plots df.train loss, ci plots df.train loss, base
_plots df.train loss, do plots df.train loss, gni plots df.train loss, 'upper right', "Loss per E

poch - Train Data", "Lo (

Cross—-Entropy) ")

display results.plot loss and acc per epoch(aci plots df.valid acc, ci plots df.valid acc, base p

lots_df.valid acc, do plots df.valid acc, gni plots df.valid acc, 'lower \ccuracy per Ep
Validation Data", "Accuracy (%)")

display results.plot loss and acc per epoch(aci plots df.train acc, ci plots df.train acc, base p

lots _df.train acc, do plots df.train acc, gni plots df.train acc, ' er

Train Data", \ccuracy (%)")
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get valid results =

display results.kfold display metrics(get valid results)

get valid results =

display results.kfold display metrics(get valid results)

A.3 Load Dataset

Load Dataset () :

show batch (self, gen):
for images, labels in gen:
fig, ax = plt.subplots (figsize=(12, 6))
ax.set xticks([]); ax.set yticks([])
ax.imshow (make grid(images, nrow=16) .permute(l, 2, 0))

break
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load cifar 10 dataset (self, dataset download path) :

num classes = 10

input size (3,32,32)

batch size 100

transform = transforms.Compose ([transforms.ToTensor (), transforms.Normalize ((0.5,0.5,0.5), (O.
5,0.5,0.5)),1)

train data = datasets.CIFAR1O (root = dataset download path, train= , download= , transf
orm=transform)

test data = datasets.CIFAR1LO (root = dataset download path, train= , download=
orm=transform)

test gen = torch.utils.data.DatalLoader (test data, batch size=batch size, shuffle=

return train data, test data, test gen, input size, num classes, batch size

load stanford cars dataset (self, dataset download path):

num_classes = 196

input size = (3,224,224)

batch size = 20

transform=transforms.Compose ([transforms.ToTensor (), transforms.Resize((224,224)), transforms
.Normalize (mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])1)

train data = datasets.StanfordCars (root = dataset download path, split = "train", download =

, transform=transform)

test data = datasets.StanfordCars(root = dataset download path, split = "test", download =

transform=transform)

test gen = torch.utils.data.DatalLoader (test data, batch size=batch size, shuffle=

return train data, test data, test gen, input size, num classes, batch size

load fashion mnist dataset (self, dataset download path):
num classes = 10

input size = 28%*28
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batch size = 100
transform = transforms.Compose ([transforms.ToTensor (), transforms.Normalize((0.5,), (O.
train data = datasets.FashionMNIST (dataset download path, download = , train =
sform = transform)
test data = datasets.FashionMNIST (dataset download path, download =
sform = transform)
test gen = torch.utils.data.DatalLoader (test data, batch size = batch size, shuffle =

return train data, test data, test gen, input size, num classes, batch size

seed worker (self, worker id):
worker seed = torch.initial seed() % 2**32
np.random. seed (worker seed)

random. seed (worker seed)

A.4 Create Model

Net (nn.Module) :
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__init (self, input size, hidden size layerl, hidden size layer2, num classes, batch size,

ci scale val, gni scale val, ci bifur val, ci offset val,

do val, use conv, use eff net, use ci, use gni, use do, use adapt scale, num epoch

super (Net, self). init ()

.num_epochs num_epochs

.batch size = batch size
.hidden size layerl = hidden size layerl
.hidden size layer?2 hidden size layer2
.use_conv = use_conv

.use eff net = use eff net

.do = nn.Dropout (do_val)

.relu = nn.RelU ()

.use ci = use ci

.use _gni = use gni

.use do = use do

.ci bifur val = ci bifur val

.ci offset val = ci offset val
.ci scale val = self.init scale val(ci scale val, num epochs, use adapt scale)
.gni_scale val = self.init scale val(gni scale val,num epochs,use adapt scale)

.layerl ci vals self.init tent map((batch size, hidden size layerl))

.layer2 ci vals self.init tent map((batch size, hidden size layer2))

if (use conv
self.convl nn.Conv2d (3, 16, 3, padding=1)
self.conv2 nn.Conv2d (16, 32, 3, padding=1)
self.conv3 nn.Conv2d (32, 64, 3, padding=1)
self.pool = nn.MaxPool2d (2, 2)
self.fcl nn.Linear (1024, hidden size layerl)
self.fc2 nn.Linear (hidden size layerl, hidden size layer2)
seli.fed nn.Linear (hidden size layer2, num classes)
elif (use eff net == )
self.model = torchvision.models.efficientnet b7 (pretrained =
self.model = nn.Sequential (*list (self.model.children()) [:-11])
self.fcl nn.Linear (2560, hidden size layerl)
seli.fe2 nn.Linear (hidden size layerl, hidden size layer2)

self.fc3 nn.Linear (hidden size layer2, num classes)

.Linear (input size, hidden size layerl)

.Linear (hidden size layerl, hidden size layer2)
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self.fc3 = nn.Linear (hidden size layer2, num classes)

forward(self, x, use ci, use gni, use do, epoch num):

use ci = use ci
use gni = use gni
use do = use do

epoch num = epoch num

if (self.use conv == )
x = self.forward conv (x)
elif (self.use eff net ==

= self.forward eff net (x)

self.forward mlp (x)

forward conv(self,x):
self.pool (self.relu(self.convl (x)))
self.pool (self.relu(self.conv2(x)))
self.pool (self.relu(self.conv3(x)))
x.view (-1, 64 * 4 * 4)
self.forward mlp (x)

return x
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forward eff net(self, x)
= self.model (x)

x.view (-1, 2560)
= self.forward mlp (x)

return x

forward mlp (self,x) :
= self.fcl (x)

self.relu(x)

if (self.use gni == ) :

X = x + x * self.gni_scale val[self.epoch num] * Variable(torch.randn(self.batch size, self

.hidden size layerl)) .cuda ()

if (self.use ci == )8

self.layerl ci vals = self.tent map(self.layerl ci vals)

temp = self.ci scale val[self.epoch num] * (self.layerl ci vals - self.ci offset val)

= X + x * temp

if (self.use do ==

= self.do(x)

self.fc2(x)

self.relu(x)

if (self.use gni == I
X = x + x * self.gni scale val[self.epoch num] * Variable(torch.randn(self.batch size, self
.hidden size layer2)) .cuda ()
1f (seli.use el == ) g
self.layer2 ci vals = self.tent map(self.layer2 ci vals)
temp = self.ci scale val[self.epoch num] * (self.layer2 ci vals - self.ci offset val)
X = x + x * temp
if (self.use do ==

= self.do(x)
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self.fc3(x)

return x

tent map(self, chaotic input)
chaotic input = self.ci bifur val * torch.min(chaotic input, 1 - chaotic input)

return chaotic input

init tent map (self,hidden size)
chaotic_input = Variable (torch.rand(hidden size)) .cuda/()
for i in range (1000) :
chaotic input = self.ci bifur val * torch.min(chaotic input, 1 - chaotic_ input)

return chaotic input

init scale val(self, max scale val, num epochs, use adapt scale)

scale val arr = []

if (use_ adapt scale == )

for n in range (num epochs) :

scale val = (math.log(25 * n + 1))
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scale val arr.append(scale val)

scale val arr

scale val arr

np.array(scale val arr)

((scale val arr) / np.max(scale val arr))

for n in range (num epochs) :

scale val arr

scale val arr

return

A.5 Train Model

__init (self,

ci_scale val,
do val,

num_epochs,

.input size

.hidden size layerl

.hidden size layer2

.num_classes

.batch size

.ci scale val

.append (max_scale val)

np.array (scale val arr)

scale val arr

input size, hidden size layerl, hidden size layer2,

gni scale val, ci bifur val, ci offset val,

learning rate, use optim, loss_ function, kf,

input size

hidden size layerl

hidden size layer2

num_classes

batch size

ci scale val

* max scale val

num classes, batch size,

use conv, use eff net, use ci, use gni, use do, use adapt scale,

train data shape, train d
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.gni_scale val = gni scale val

.ci bifur val = ci bifur val
.ci_offset val = ci_offset val

.do _val = do val

.use_conv = use_conv

.use_eff net = use eff net

UEE @l = use_ @i

.use gni = use gni

.use_do = use do

.use adapt scale = use adapt scale
.num_epochs = num epochs

.use optim = use optim
.loss_function = loss_function

.kf = kf

.train data shape = train data shape
.train data = train data

.learning rate = learning rate

calc valid loss and acc(self, gen, net):

net.eval ()
running loss=0
correct=0

total=0
with torch.no grad() :
for i , (images,labels) in enumerate (gen) :
if (selected dataset == fashion mnist):
images = Variable (images.view (-1, self.input size)) .cuda()

labels Variable (labels) .cuda ()

images Variable (images) .cuda ()

labels Variable (labels) .cuda ()

outputs = net (images,

loss = self.loss function (outputs, labels)
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running loss += loss.item()

_, predicted = outputs.max (1)
total += labels.size (0)

correct += predicted.eqg(labels) .sum() .item()

loss = running loss/len (gen)

acc = 100.*correct/total

return loss, acc

train model (self, best model path, net, train gen, valid gen):

print ("Learning rate: ", self.learning rate)
print ("Num epochs: ", self.num epochs)

train loss arr = []

train acc_arr = []

valid loss arr = []

valid acc_arr = []

min valid loss = 1000000

if (self.use optim ==
= le-4
optimizer = torch.optim.Adam(

(p for p in net.parameters() if p.requires grad), lr=lr

for epoch in range(self.num epochs) :

print ("\nEpoch : %d'%epoch)
net.train()

running loss=0

correct=0

total=0
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for i, (images,labels) in enumerate (train gen) :
if (selected dataset == fashion mnist):
images = Variable (images.view (-1, self.input size)) .cuda()
labels Variable (labels) .cuda ()

elsz

images Variable (images) .cuda ()

labels Variable (labels) .cuda ()

outputs = net (images, self.use ci, self.use gni, self.use do, epoch)

if (self.use optim ==
optimizer.zero grad()
loss = self.loss function (outputs, labels)
loss.backward ()

optimizer.step ()

net.zero grad()

loss = self.loss function (outputs, labels)

loss.backward()

for name, param in net.named parameters () :
if (param.requires grad)

param.data -= self.learning rate * param.grad.data

running loss += loss.item()
_, predicted = outputs.max (1)
total += labels.size (0)

correct += predicted.eqg(labels) .sum().item()

train loss = running loss/len(train gen)
train acc = 100.*correct/total

valid loss, valid acc = self.calc valid loss_and acc(valid gen, net)

print ('Train Loss: %.3 Accuracy: %.3f'%(train loss,train acc))

print ('Valid L 5. 3f A r : %.3f'%(valid loss,valid acc))

train loss arr.append(train loss)
train acc_arr.append(train acc)
valid loss arr.append(valid loss)

valid acc arr.append(valid acc)

if (valid loss < min valid loss)
print ("best " , min valid loss)

print ("curr ", valid loss)
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checkpoint = { 'epoch': epoch, 'valid loss min': valid loss, 'state dict': net.state dict

min valid loss = valid loss

torch.save (checkpoint, best model path)

return train loss arr, train acc_arr, valid loss arr, valid acc_arr

kfold train model (self, save model path)

start = timeit.default timer ()
kfold num = 0

kfold train loss arr = []
kfold train acc arr = []

kfold valid loss arr = []

kfold valid acc _arr = []

for train indexes, valid indexes in self.kf.split(self.train data shape)

print (17K KKK KK KK K K K KK K KK K K K K K K K K K K K K K K K Kk K Kk K K K K Kk K K R K KR R Kk R Kk Rk kK T

print ("Kfold Number: ", kfold num)

train set torch.utils.data.Subset (self.train data, train indexes)
valid set torch.utils.data.Subset (self.train data, valid indexes)

train gen

torch.utils.data.Dataloader (train_set, batch size = self.batch size,num workers
worker init fn = load dataset.seed worker, drop last = , shuffle = )

valid gen

torch.utils.data.Dataloader (valid set, batch size = self.batch size, shuffle=

net = Net(self.input size, self.hidden size layerl, self.hidden size layer2, self.num class
es, self.batch size,
self.ci scale val, self.gni scale val, self.ci bifur val, self.ci offset val, sel
f.do val,
self.use conv, self.use eff net, self.use ci, self.use gni, self.use do, self.use

adapt scale, self.num epochs)
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if torch.cuda.is available() :

net.cuda ()

best model path = save model path + "kfold " + str(kfold num) + " best model.pt"
train loss_arr, train acc_arr, valid loss arr, valid acc_arr = self.train model (best model

net, train gen, valid gen)

df = pd.DataFrame ({"train loss": train loss arr, "train acc": train acc_arr, "valid loss":
| loss_arr, "valid acc": valid acc arr})
df save path = save model path + "/plots " + str(kfold num) + ".csv"

df.to_csv(df save path)

kfold train loss arr.append(train loss arr)
kfold train acc arr.append(train acc_arr)
kfold valid loss arr.append(valid loss arr)

kfold valid acc arr.append(valid acc_arr)

net =
torch.cuda.empty cache ()
gc.collect ()

kfold num += 1

kfold train loss arr = np.mean(np.array(kfold train loss arr), axis = 0)

kfold train acc arr = np.mean(np.array(kfold train acc arr), axis = 0)

kfold valid loss_arr = np.mean(np.array(kfold valid loss_arr), axis = 0)

kfold valid acc _arr = np.mean(np.array(kfold valid acc_arr), axis = 0)

kfold df = pd.DataFrame ({"train loss" : kfold train loss arr, "train acc" : kfold train acc a
"valid 1lc " : kfold valid loss arr, "valid acc" : kfold valid acc_arr})
kfold df save path = save model path + "/plots.csv

kfold df.to csv(kfold df save path)

stop = timeit.default timer ()

1

print ('Time: ', stop - start)

A.6 Display Results
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Display R

__init (self,

ci scale val

do val,

num_epochs,
.input size = input
.hidden size layerl
.hidden size layer?2
.num_classes =
.batch size = batch
.ci scale val =
.gni_scale val = gn
.ci bifur val =
.ci offset val = ci
.do val = do val
.use_conv = use_con
.use _eff net =
.use_ci = use ci
.use_gni = use _gni
.use do = use do
.use_adapt scale =
.num_epochs = num e
.kf = kf
.train data shape =
.train data = train
.test gen = test ge

.save_model path =

input

use

num_

@il

@il |

use_

size, hidden size layerl,
;, gni_scale val,
conv, use eff net,

kf, train data shape,

_size

= hidden size layerl
= hidden size layer2

classes

_size

scale val
i scale val

bifur val

_offset val

v

eff net

use_adapt scale

pochs

train data shape

_data

n

save _model path

ci bifur val,

train data,

Appendix A

hidden size layer2, num classes, batch size,

ci offset val,

use ci, use gni, use do, use adapt scale,

test gen, save model path):
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plot loss and acc per epoch(self, aci, ci, base, drop, gni, text loc, title, y label)

plt.figure ()
plt.rcParams|["figure.figsize"]
plt.rcParams|['font.family']

plt.rcParams|['font.serif'] = s New Rc ) + plt.rcParams|['font.seri

plt.plot (base, linewidth=5)
plt.plot (drop, linewidth=5)
plt.plot(gni, linewidth=5)
plt.plot (ci, linewidth=5)

plt.plot (aci, linewidth=5)

plt.xticks([0,10,20,30,40,50], fontsize = 25)

plt.yticks (fontsize = 25)

plt.legend(["Baseline", "DO", "GNI (Non-Adaptive o)", CI (Non-
Adaptive a)", "CI (Adaptive a)"], loc=text loc, prop={'size': 25})

plt.title(title, fontsize=25)

plt.xlabel ("Epoch", fontsize=25)

plt.ylabel (y label, fontsize=25)

get preds(self, net, gen)

preds_tensor = torch.Tensor () .cuda ()

labels tensor = torch.Tensor () .cuda ()
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net.eval ()

with torch.no grad():

for i , (images, labels) in enumerate (gen) :
if (selected dataset == fashion mnist):
images = Variable (images.view (-1, self.input size)) .cuda()

labels Variable (labels) .cuda ()

elsz

images Variable (images) .cuda ()

labels Variable (labels) .cuda ()

outputs = net (images, , , , 0)
preds_tensor = torch.cat ((preds_tensor, outputs), dim=0)

labels tensor = torch.cat((labels tensor, labels), dim=0)

preds list (preds_tensor.detach () .cpu () .numpy () )
preds np.stack (preds)

preds preds.argmax (axis=1)

labels list (labels tensor.detach () .cpu () .numpy ())
labels np.stack (labels)

1 preds, labels

display metrics(self, net, gen, best model path,

checkpoint = torch.load(best model path)
net.load state dict (checkpoint['state dict'])
preds, labels = self.get preds(net, gen)
conf mat=confusion matrix(labels, preds)

class accuracy=100*conf mat.diagonal () /conf mat.sum (1)
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conf mat.sum(axis=0) - np.diag(conf mat)
conf mat.sum(axis=1) - np.diag(conf mat)
np.diag(conf mat)

conf mat.sum() - (fp+fn+tp)

tp/ (tp+£n)
tn/ (tn+fp)
= tp/ (tp+fp)
npv tn/ (tn+fn)
f1 = 2*(sn*ppv) / (sn+ppv)

acc = (tp+tn)/ (tp+fp+fn+tn)
df = pd.DataFrame ({"sn" + name : sn, "sp" + name: sp, "ppv" + name: ppv, "npv" + name: npv, "
+ name : acc, "fl" + name : fl1})

df.loc['mean'] = df.mean()

return df

kfold display metrics(self, get valid results):

kfold df = pd.DataFrame ()
kfold num = 0

pd.set option('display.max columns',

for train indexes, valid indexes in self.kf.split(self.train data shape)

set seed()
net = Net (self.input size, self.hidden size layerl, self.hidden size layer2, self.num class
es, self.batch size,
self.ci scale val, self.gni scale val, self.ci bifur val, self.ci offset val, sel

f.do val,
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self.use conv, self.use eff net, self.use ci, self.use gni, self.use do, self.use

_adapt scale, self.num epochs)

if torch.cuda.is _available():

net.cuda ()

train_set torch.utils.data.Subset (self.train data, train indexes)

valid set torch.utils.data.Subset (self.train data, valid indexes)

train gen = torch.utils.data.DatalLoader (train set, batch size = self.batch size,num workers
= 0, worker init fn = load dataset.seed worker, drop last = , shuffle = )

valid gen = torch.utils.data.DataLoader (valid set, batch size = self.batch size, shuffle =

)

(get_valid results ==

= valid gen

self.test gen

model path = self.save model path + "/aci/kfold " + str(kfold num) + " best model.pt"

aci df = self.display metrics(net, gen, model path, " cia")

model path = self.save model path + "/base/kfold " + str(kfold num) + " best model.pt"

base df = self.display metrics(net, gen, model path, " base")

model path = self.save model path + "/ci/kfold " + str(kfold num) + " best model.pt"

ci df = self.display metrics (net, gen, model path, " ci")
model path = self.save model path + "/do/kfold " + str(kfold num) + " best model.pt"

do df = self.display metrics(net, gen, model path, " do")

model path = self.save model path + "/gni/kfold " + str(kfold num) + " best model.pt"

gni df = self.display metrics(net, gen, model path, " gni")
pd.concat ([base df, ci df, aci df, do df, gni df], axis = 1)

df.reindex (sorted (df.columns), axis=1)

kfold df = pd.concat ([kfold df, df])

net =
torch.cuda.empty cache ()
gc.collect ()

kfold num += 1

kfold df kfold df.groupby (level=0) .mean ()
kfold df kfold df * 100
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kfold df = kfold df.round(2)
display (kfold df)

if (get valid results == )3

kfold df.to csv(self.save model path + "

kfold df.to csv(self.save model path + "
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Appendix B
Table B-1. Performance metrics of the validation data for the Fashion-MNIST dataset.

. Cl Cl GNI
ML 22t (ax constant) (o adaptive) == (a constant)

ACC 97.98 98.06 98.08 98.04 98.05

F1 89.88 90.26 90.35 90.15 90.22

NPV 98.88 98.92 98.93 98.91 98.92

PPV 89.99 90.31 90.37 90.18 90.24

SN 89.90 90.30 90.38 90.19 90.25

SP 98.88 98.92 98.93 98.91 98.92

Table B-2. Performance metrics of the validation data for the CIFAR-10 dataset.

Cl GNI
(ax constant) (o adaptive) (a constant)
ACC 94.35 95.11 95.14 95.04 95.04
F1 71.57 75.54 75.65 75.17 75.23
NPV 96.87 97.29 97.30 97.25 97.25
PPV 72.32 75.78 75.93 75.32 75.48
SN 71.72 75.56 75.71 75.21 75.20
SP 96.86 97.28 97.30 97.25 97.24

Table B-3. Performance metrics of the validation data for the Stanford Cars dataset.

WETTE ERES (x corcl:sltant) (a adgll)tive) e (a C(il:tlant)
ACC 99.74 99.80 99.82 99.79 99.80
F1 75.11 80.71 82.32 79.98 80.78
NPV 99.87 99.90 99.91 99.89 99.90
PPV 76.95 82.24 83.81 80.90 81.39
SN 75.04 80.48 82.27 79.92 80.20
SP 99.87 99.90 89.91 99.89 99.90
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