
Shikder et al. BMC Res Notes          (2019) 12:220  
https://doi.org/10.1186/s13104-019-4256-6

RESEARCH NOTE

An OpenMP‑based tool for finding longest 
common subsequence in bioinformatics
Rayhan Shikder2, Parimala Thulasiraman2, Pourang Irani2 and Pingzhao Hu1,2,3*

Abstract 

Objective:  Finding the longest common subsequence (LCS) among sequences is NP-hard. This is an important 
problem in bioinformatics for DNA sequence alignment and pattern discovery. In this research, we propose new 
CPU-based parallel implementations that can provide significant advantages in terms of execution times, monetary 
cost, and pervasiveness in finding LCS of DNA sequences in an environment where Graphics Processing Units are not 
available. For general purpose use, we also make the OpenMP-based tool publicly available to end users.

Result:  In this study, we develop three novel parallel versions of the LCS algorithm on: (i) distributed memory 
machine using message passing interface (MPI); (ii) shared memory machine using OpenMP, and (iii) hybrid platform 
that utilizes both distributed and shared memory using MPI-OpenMP. The experimental results with both simulated 
and real DNA sequence data show that the shared memory OpenMP implementation provides at least two-times 
absolute speedup than the best sequential version of the algorithm and a relative speedup of almost 7. We provide 
a detailed comparison of the execution times among the implementations on different platforms with different 
versions of the algorithm. We also show that removing branch conditions negatively affects the performance of the 
CPU-based parallel algorithm on OpenMP platform.

Keywords:  Longest common subsequence (LCS), DNA sequence alignment, Parallel algorithms for LCS, LCS on MPI 
and OpenMP, Tool for finding LCS

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/
publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction
Finding Longest Common Subsequence (LCS) is a clas-
sic problem in the field of computer algorithms and has 
diversified application domains. A subsequence of a 
string is another string which can be derived from the 
original string by deleting none or few characters (contig-
uous or non-contiguous) from the original string. A long-
est common subsequence of two given strings is a string 
which is the longest string that is a subsequence of both 
the strings. The sequential version of the LCS algorithm 
using “equal-unequal” comparisons takes Ω(mn) time, 
where m and n represent the length of the two sequences 
being compared [1, 2]. It is necessary to mention that the 

problem of finding the LCS of more than two strings is 
NP-hard in nature [3, 4].

LCS has various applications in multiple fields includ-
ing DNA sequence alignment in bioinformatics [5–7], 
speech and image recognition [8, 9], file comparison, 
optimization of database query etc. [10]. In the field 
of bioinformatics, pattern discovery helps to discover 
common patterns among DNA sequences of interest 
which might suggest that they have biological relation 
among themselves (e.g., similar biological functions) 
[11]. In discovering patterns between sequences, LCS 
plays an important role to find the longest common 
region between two sequences. Although a praiseworthy 
amount of efforts have been made in the task of pattern 
discovery, with the increase of sequence lengths, algo-
rithms seemingly face performance bottlenecks [12]. Fur-
thermore, with the advent of next-generation sequencing 
technologies, sequence data is increasing rapidly [13], 
which demands algorithms with minimum possible 

Open Access

BMC Research Notes

*Correspondence:  pingzhao.hu@umanitoba.ca 
1 Department of Biochemistry and Medical Genetics and The George 
and Fay Yee Centre for Healthcare Innovation, University of Manitoba, 
Room 308‑Basic Medical Sciences Building, 745 Bannatyne Avenue, 
Winnipeg, MB R3E 0J9, Canada
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13104-019-4256-6&domain=pdf


Page 2 of 6Shikder et al. BMC Res Notes          (2019) 12:220 

execution time. Parallel algorithms can play a vital role in 
this regard.

Out of the parallel solutions of the LCS problem, anti-
diagonal [14] and bit-parallel [15] algorithms are few of 
the firsts and noteworthy attempts. Recently, with the 
rise of Graphics Processing Unit (GPU)-based accel-
erators, several Compute Unified Device Architecture 
(CUDA)-based GPU targeted solutions to the LCS prob-
lem have been proposed. Yang et al. [16] are one of the 
firsts to propose an improved row-wise independent par-
allel version of the LCS algorithm by changing the data 
dependency used by a dynamic programming approach 
and using unique memory-access properties of GPUs. 
More recently, Li et  al. [17] have proposed a parallel 
formulation of the anti-diagonal approach to the LCS 
algorithm using a GPU-based model. Although these 
GPU-based models offer faster execution times, GPU 
devices are still quite expensive in nature, hence only 
few computers are equipped with GPUs. In such cases, 
to achieve performance improvement, CPU-based paral-
lel LCS algorithms (e.g. message passing interface (MPI) 
and open multi-processing (OpenMP)) are still greatly 
demanded. However, to the best of our knowledge, there 
is no such publicly available CPU-based tool for the 
end users. We addressed this gap by developing a new 
OpenMP-based tool for the end users by improving the 
row-wise independent version [16] of the LCS algorithm. 
Moreover, we also developed two other CPU-based par-
allel implementations (MPI, hybrid MPI-OpenMP) of 
the algorithm and provided a detailed benchmarking of 

3.	 A comparison of the newly developed OpenMP-
based LCS algorithm with and without branch condi-
tions.

Main text
Preliminaries
Given two sequence strings A[1, 2, . . . ,m] and 
B[1, 2, . . . , n] , the LCS of the two strings can be found by 
calculating the longest common subsequence of all pos-
sible prefix strings of A and B . The LCS of a prefix pair 
A[1, 2, . . . , i] and B[1, 2, . . . , j] can be calculated using 
the previously calculated prefix pairs with the following 
recurrence relation:

Here, R is a score table consisting of the lengths of the 
longest common subsequences of all the possible prefixes 
of the two strings. The length of longest common subse-
quence of A and B can be found in the cell R[m, n] of table 
R . From Eq. 1, we can see that the value of a cell R[i, j] in 
the scoring table R depends on R[i − 1, j − 1] , R[i, j − 1] 
and R[i − 1, j].

Row‑wise independent algorithm (Version 1)
Yang et al. [16] has devised a row-wise independent par-
allel algorithm by removing dependency among the cells 
of the same row. The modified equation is as follows:

Here, k denotes the number of steps required to find 
either a match, such as A[i] = B[j− k] or j− k = 0 . Yang 
et  al. [16] has divided their algorithm into two steps. 
First, they calculated the values of j− k for every i and 
stored these values in another table named P. The equa-
tion to calculate the value of P is given below.

Here, C is the string comprised of the unique characters 
of string A and string B . After that the value of score table 
R were calculated using the following updated equation.

(1)

R[i, j] =







0
R[i − 1, j − 1]+ 1
max

�

R[i − 1, j],R[i, j − 1]
�

if i = 0 or j = 0
if A[i] = B[j]
otherwise

(2)R[i, j] =











0 if i = 0 or j = 0
R[i − 1, j − 1]+ 1 if A[i] = B[j]
max

�

R[i − 1, j],R[i − 1, j − k − 1]+ 1
�

if A = B[j − k]
max

�

R[i − 1, j], 0
�

if j − k = 0

(3)P[i, j] =







0 if j = 0
j − 1 if B[j − 1] = C[i]
P[i, j − 1] otherwise

all these implementations on simulated and real DNA 
sequence data, which was absent for this version of the 
LCS algorithm. The main contributions of this study are 
listed below.

1.	 A new OpenMP-based publicly available tool for 
finding length of LCS of DNA sequences for the end 
users.

2.	 A detailed benchmarking of the newly developed 
CPU-based parallel algorithms using different per-
formance metrics on both simulated and real DNA 
sequence data, where we found that our OpenMP-
based algorithm provides at-least 2 times absolute 
speedup (compared to the best sequential version) 
and 7 times relative speedup (compared to using only 
1 thread).



Page 3 of 6Shikder et al. BMC Res Notes          (2019) 12:220 

Here, c denotes the index of character A[i − 1] in string 
C.

Row‑wise Independent Algorithm (Version 2)
As branching can hamper the performance of parallel 
algorithms, Yang et al. [16] further modified the calcula-
tion of P matrix using the following equation.

Then Eq.  (4) can be rewritten as follows with one 
branching condition reduced.

From the two versions of row-wise independent algo-
rithms, we can see that the calculation of values of table 
P only depends on the same row. In contrast, the calcula-
tion of the values of score table R depends on the previ-
ous row only.

Methodology
For the calculation of the P table, each row is independent 
and can be calculated in a parallel way. Therefore, in our MPI 
implementation, we scattered the P table to all the processes 
in the beginning. After calculating the corresponding chunk 
values, process number zero gathers the partial results from 
all the other processes. For the calculation of score table R, 
elements in each row can be scattered among the processes 
and gathered afterwards. This scatter and gather operations 
need to be done for every row. Hence, the communication 
and synchronization overheads are expected to be higher 
for the MPI implementation approach.

A shared memory implementation can largely mitigate 
the communication and synchronization overheads of 
distributed memory implementations which inspired us 
to develop the shared memory (OpenMP) implementa-
tion. In case of the OpenMP implementation, we used 
work-sharing construct #pragma omp parallel for (an 
OpenMP directive for sharing iterations of a loop among 
the available threads) to compute the elements of a sin-
gle row of the score table R in parallel. We tried different 

(4)R[i, j] =











0 if i = 0 or j = 0
R[i − 1, j − 1]+ 1 if A[i] = B[j]
max

�

R[i − 1, j],R[i − 1, j − k − 1]+ 1
�

if A = B[j − k]
max

�

R[i − 1, j], 0
�

if j − k = 0

(5)P[i, j] =







0 if j = 0
j if B[j − 1] = C[i]
P[i, j − 1] otherwise

(6)R[i, j] =







0
max

�

R[i − 1, j], 0
�

max(R[i − 1, j], R[i − 1,P[c, j]− 1]+ 1)

if i = 0 or j = 0
if P[c, j] = 0
otherwise

scheduling strategies (static, dynamic, and guided) for 
sharing works among the threads. The calculation of the 
P table was also shared among threads. This time, the 
outer loop was parallelized using #pragma omp parallel 
for construct, as every row is independent of each other.

In the hybrid MPI-OpenMP approach, we selected 
the optimum number of processes and threads from the 
experiments of MPI and OpenMP approach. After that 
we scattered every row among processes and inside a sin-
gle process we further shared the chunk of rows among 
threads using #pragma omp parallel for. To account for 
longer DNA sequences, we optimized the space complex-
ity of all the three implementations where we kept only 
the current and the previous row of the score table.

Results and discussion
Data sets and specifications of the computer
We used two different data sets for our experiments. 
First one is a simulated DNA sequence data, collected 
from University of California Riverside’s (UCR) random 
DNA sequence generator [18]. The lengths of the dif-
ferent pairs of sequences are between 128 base pairs to 
32,768 base pairs. The second data set consists of 8 virus 
genome sequence pairs and two entire chromosome 
genome sequence pairs of two eukaryotes, collected 
from the website of National Center for Biotechnology 
Information (NCBI) [19]. The selected sequence lengths 
vary from 359 base pairs to 32,276 base pairs for the 
viruses, and from 15,05,371 base pairs to 1,61,99,981 
base pairs for the eukaryotes. Table  1 represents the 
selected virus and eukaryote pairs and their sequence 
lengths.

All the experiments were run on University of Mani-
toba’s on-campus cluster computing system (Mercury 
machine). The cluster consists of four fully connected 
computing nodes with 2-gigabit ethernet lines between 
every pair of nodes. Each node consists of two 14-core 
Intel Xeon E5-2680 v4 2.40  GHz CPUs with 128  GB of 
RAM. Having a total of 28 cores inside, with the help of 
hyper-threading, each node is capable of running twice 
as many hardware threads (56 threads) at a time.



Page 4 of 6Shikder et al. BMC Res Notes          (2019) 12:220 

Table 1  Information of real DNA sequence data sets collected from NCBI [19]

bp stands for the number base pairs

# Species types Sequence A Sequence B

1 Virus Potato spindle tuber viroid (360 bp) Tomato apical stunt viroid (359 bp)

2 Rottboellia yellow mottle virus (4194 bp) Carrot mottle virus (4193 bp)

3 Rehmannia mosaic virus (6395 bp) Tobacco mosaic virus (6395 bp)

4 Potato virus A (9588 bp) Soybean mosaic virus N (9585 bp)

5 Chicken megrivirus (9566 bp) Chicken picornavirus 4 (9564 bp)

6 Microbacterium phage VitulaEligans (17,534 bp) Rhizoctonia cerealis alphaendornavirus 1 (17,486 bp)

7 Lucheng Rn rat coronavirus (28,763 bp) Helicobacter phage Pt1918U (28,760 bp)

8 Lactococcus phage ASCC368 (32,276 bp) Uncultured mediterranean phage uvMED (32,133 bp)

9 Eukaryotes Athene cunicularia (Chromosome 25, 1,505,370 bp) Bombus terrestris (Chromosome LG B18, 3,078,061 bp)

10 Athene cunicularia (Chromosome 25, 1,505,370 bp) Bombus terrestris (Chromosome LG B01, 16,199,981 bp)

Fig. 1  Tuning number of threads and chunk sizes of OpenMP using simulated data. a Relative speedup with different number of threads. b 
Execution times (in seconds) for different scheduling strategies and chunk sizes. Number of threads was 16. Sequence lengths were set to 32,768 for 
both cases

Fig. 2  Performance evaluation using both simulated and real data. a Execution times for different implementations with varying sequence lengths 
for the simulated dataset. b Execution times for different implementations with different real DNA sequences. Here “SP” stands for sequence pairs 
from Table 1. The primary (left side) y-axis (execution times in seconds) describes the timing of sequence pairs SP 1 to SP 8 for virus, the secondary 
(right side) y-axis (execution times in hours) describes the timings of SP 9 and SP 10 for Eukaryotes. Points marked by cross signs denote that those 
experiments took more than 7 days to complete. c Execution times for different lengths of sequence strings from sequential implementation of the 
two versions of the row-wise independent algorithm



Page 5 of 6Shikder et al. BMC Res Notes          (2019) 12:220 

Comparison among different approaches
For the MPI approach, we tuned for the number of pro-
cesses and found that using 4 process gives better rela-
tive speedup. For the OpenMP approach, we tuned for 
the number of threads and the scheduling strategy (static, 
dynamic, and guided). We found that using 16 threads 
and a static scheduling of work sharing among the 
threads provided 7 times relative speedup (see Fig. 1a, b). 
Finally, for the hybrid MPI-OpenMP approach, we used 4 
processes (or nodes) and 16 threads.

For comparison purpose, we experimented with a vary-
ing number of sequence lengths. Figure 2a, illustrates the 
execution times for different implementations where we 
can see that our OpenMP implementation outperforms 
all the other approaches and is almost 2 times faster than 
the best sequential version. However, the MPI approach 
provides poor results due to the increased amount of 
communication and synchronization overhead caused by 
m scatter and gather operations (blocking in nature). The 
hybrid MPI-OpenMP approach performs the worst. As 
in the hybrid approach, the number of scatter and gather 
operations is the same as the MPI approach, and it also 
adds synchronization overheads of the OpenMP, and 
therefore this implementation provides the worst result. 
This observation indicates that distributed memory 
implementation is discouraged for the LCS algorithm. In 
order to validate our results, we also experimented with 
the real-DNA sequence data (see Table 1). From Fig. 2b, 
we can see that even for the real data the OpenMP imple-
mentation is having at-least 2 times speedup from the 
best sequential version. For longer DNA sequences (SP 9, 
SP 10 in Fig. 2b), the OpenMP speedups are even higher, 
whereas the MPI and the hybrid implementations took 
more than a week to complete.

Comparison between the two versions of the algorithm 
in OpenMP approach
In the above experiments, we used version 2 (without 
branching) of the row-wise independent algorithm. In 
order to compare the execution times of the two versions 
(version 1 and version 2), we also developed the version 
1. Figure  2c illustrates the execution times for the two 
versions with varying sequence sizes and 1 thread only 
where we can see that version 1 performs relatively bet-
ter than version 2 of the algorithm. Although version 2 
has removed branching conditions, it has added more 
computations which might be the reason for its relatively 
bad execution times. Furthermore, CPU architectures are 
much better at branch predictions than GPUs. Therefore, 
the second version of the row-wise independent paral-
lel algorithm performed well on GPUs [16] but not on 
CPUs.

Limitations
Our study investigated parallelization of the row-wise 
independent version of the LCS algorithm only, as it pro-
vided ease in parallelization using the MPI, and OpenMP 
frameworks. As we found that the version of the row-
wise independent algorithm with branching performs 
better than the other version, we will investigate this ver-
sion in more detail in the future. We will also investigate 
other versions of the algorithm with the goal of finding 
better parallelization strategies.

Availability and requirements

Project name:	� LCS row parallel (CPU)
Project home page:	� https​://githu​b.com/Rayha​

nShik​der/lcs_paral​lel
Operating systems:	� Platform independent
Programming language:	� C
Other requirements:	� gcc 4.8.5 or later, OpenMPI 

version 1.10.7 or later, 
OpenMP version 3.1 or 
later

License:	� MIT License
Any restrictions to use by non-academics:	� None.

Abbreviations
CUDA: compute unified device architecture; GPU: graphics processing unit; 
LCS: longest common subsequence; MPI: message passing interface; OpenMP: 
open multi-processing; UCR​: University of California Riverside; NCBI: National 
Centre for Biotechnology Information.

Authors’ contributions
RS formulated the problem, developed the implementations and drafted 
the manuscript. PT and PH conceived the study design. PH directed the data 
collection and analysis procedure. PT, PH and PI interpreted the results and 
significantly revised the manuscript. All authors read and approved the final 
manuscript.

Author details
1 Department of Biochemistry and Medical Genetics and The George and Fay 
Yee Centre for Healthcare Innovation, University of Manitoba, Room 308‑Basic 
Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, 
Canada. 2 Department of Computer Science, University of Manitoba, Winni-
peg, MB, Canada. 3 Research Institute in Oncology and Hematology, Winnipeg, 
MB, Canada. 

Acknowledgements
We would like to thank all the members of the Hu Lab for their valuable 
suggestions.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The source code, used data set, and documentation is available at https​://
githu​b.com/Rayha​nShik​der/lcs_paral​lel.

https://github.com/RayhanShikder/lcs_parallel
https://github.com/RayhanShikder/lcs_parallel
https://github.com/RayhanShikder/lcs_parallel
https://github.com/RayhanShikder/lcs_parallel


Page 6 of 6Shikder et al. BMC Res Notes          (2019) 12:220 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ?  Choose BMC and benefit from: 

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Funding
This work was supported in part by Natural Sciences and Engineering 
Research Council of Canada and the University of Manitoba, which provided 
with the research assistantship for Rayhan Shikder to perform the study.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 21 February 2019   Accepted: 3 April 2019

References
	1.	 Ullman JD, Aho AV, Hirschberg DS. Bounds on the complexity of the 

longest common subsequence problem. J ACM. 1976;23:1–12.
	2.	 Wagner RA, Fischer MJ. The string-to-string correction problem. J ACM. 

1974;21:168–73.
	3.	 Maier D. The complexity of some problems on subsequences and 

supersequences. J ACM. 1978;25:322–36.
	4.	 Garey MR, Johnson DS. Computers and intractability: A guide to the 

theory of np-completeness (series of books in the mathematical sci-
ences), ed. Comput Intractability. 1979. p. 340.

	5.	 Ossman M, Hussein LF. Fast longest common subsequences for bioinfor-
matics dynamic programming. Population (Paris). 2012;5:7.

	6.	 Pearson WR, Lipman DJ. Improved tools for biological sequence compari-
son. Proc Natl Acad Sci. 1988;85:2444–8.

	7.	 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment 
search tool. J Mol Biol. 1990;215:403–10.

	8.	 Guo A, Siegelmann HT. Time-warped longest common subsequence 
algorithm for music retrieval. In: ISMIR. 2004.

	9.	 Petrakis EGM. Image representation, indexing and retrieval based on 
spatial relationships and properties of objects. Rethymno: University of 
Crete; 1993.

	10.	 Kruskal JB. An overview of sequence comparison: time warps, string edits, 
and macromolecules. SIAM Rev. 1983;25(2):201–37.

	11.	 Ning K, Ng HK, Leong HW. Analysis of the relationships among longest 
common subsequences, shortest common supersequences and patterns 
and its application on pattern discovery in biological sequences. Int J 
Data Min Bioinform. 2011;5:611–25.

	12.	 Hu J, Li B, Kihara D. Limitations and potentials of current motif discovery 
algorithms. Nucleic Acids Res. 2005;33:4899–913.

	13.	 Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C, Efron MJ, et al. Big 
data: astronomical or genomical? PLoS Biol. 2015;13:e1002195.

	14.	 Babu KN, Saxena S. Parallel algorithms for the longest common subse-
quence problem. In: HiPC. 1997. p. 120–5.

	15.	 Crochemore M, Iliopoulos CS, Pinzon YJ, Reid JF. A fast and practical 
bit-vector algorithm for the longest common subsequence problem. Inf 
Process Lett. 2001;80:279–85.

	16.	 Yang J, Xu Y, Shang Y. An efficient parallel algorithm for longest common 
subsequence problem on gpus. In: Proceedings of the world congress on 
engineering. 2010. p. 499–504.

	17.	 Li Z, Goyal A, Kimm H. Parallel Longest Common Sequence Algorithm 
on Multicore Systems Using OpenACC, OpenMP and OpenMPI. In: 2017 
IEEE 11th international symposium on embedded multicore/many-core 
systems-on-chip (MCSoC). 2017. p. 158–65.

	18.	 Random DNA Sequence Generator. http://www.facul​ty.ucr.edu/~mmadu​
ro/rando​m.htm. Accessed 2 Apr 2018.

	19.	 National Center for Biotechnology Information (NCBI). https​://www.ncbi.
nlm.nih.gov/. Accessed 20 Sept 2018.

http://www.faculty.ucr.edu/%7emmaduro/random.htm
http://www.faculty.ucr.edu/%7emmaduro/random.htm
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/

	An OpenMP-based tool for finding longest common subsequence in bioinformatics
	Abstract 
	Objective: 
	Result: 

	Introduction
	Main text
	Preliminaries
	Row-wise independent algorithm (Version 1)
	Row-wise Independent Algorithm (Version 2)

	Methodology
	Results and discussion
	Data sets and specifications of the computer
	Comparison among different approaches
	Comparison between the two versions of the algorithm in OpenMP approach


	Limitations
	Availability and requirements

	Authors’ contributions
	References




