Pawliszak et al. BMC Genomics 2020, 21(Suppl 2):252
https://doi.org/10.1186/s12864-020-6612-2

BMC Genomics

RESEARCH Open Access

Operon-based approach for the
inference of rRNA and tRNA evolutionary
histories in bacteria

Tomasz Pawliszak’, Meghan Chua®, Carson K. Leung and Olivier Tremblay-Savard”

Check for
updates

From 17th RECOMB Satellite Conference on Comparative Genomics
Montpellier, France. 1-4 October 2019

Abstract

Background: In bacterial genomes, rRNA and tRNA genes are often organized into operons, i.e. segments of closely
located genes that share a single promoter and are transcribed as a single unit. Analyzing how these genes and
operons evolve can help us understand what are the most common evolutionary events affecting them and give us a
better picture of ancestral codon usage and protein synthesis.

Results: We introduce BOPAL, a new approach for the inference of evolutionary histories of rRNA and tRNA genes in
bacteria, which is based on the identification of orthologous operons. Since operons can move around in the genome

alignments

but are rarely transformed (e.g. rarely broken into different parts), this approach allows for a better inference of
orthologous genes in genomes that have been affected by many rearrangements, which in turn helps with the
inference of more realistic evolutionary scenarios and ancestors.

Conclusions: From our comparisons of BOPAL with other gene order alignment programs using simulated data, we
have found that BOPAL infers evolutionary events and ancestral gene orders more accurately than other methods
based on alignments. An analysis of 12 Bacillus genomes also showed that BOPAL performs just as well as other
programs at building ancestral histories in a minimal amount of events.

Keywords: Operons, rRNA and tRNA genes, Phylogeny, Evolutionary histories, Ancestral gene orders, Global

Background

With all the advancements in sequencing and culturing
methods, coupled with burgeoning interests in gut micro-
biomes [1, 2] and transmission risks of pathogenic
microbes [3, 4], bacterial genomes are now being
sequenced at a very fast pace. This wealth of genetic infor-
mation provides a great opportunity to study bacterial
genome evolution, compare evolutionary rates between

*Correspondence: tremblao@cs.umanitoba.ca
*Tomasz Pawliszak and Meghan Chua contributed equally to this work.
Department of Computer Science, University of Manitoba, Winnipeg, Canada

K BMC

different genera, and study the prevalence, frequencies
and average size of different evolutionary events.

An interesting aspect of bacterial genomes is the pres-
ence of operons [5] (operons have been identified more
recently in eukaryotes [6], but they seem to be more
prevalent in prokaryotes). An operon is basically a cluster
of closely located genes (also called polycistronic genes)
that share a single promoter and are transcribed simul-
taneously into a single polycistronic messenger RNA
(mRNA). These genes can then be translated together, or
separately when spliced into separate mRNAs (differential
expression of polycistronic genes has also been observed
[7]). Some of the most studied and well-defined operons

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were

made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-020-6612-2&domain=pdf
mailto: tremblao@cs.umanitoba.ca
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Pawliszak et al. BMC Genomics 2020, 21(Suppl 2):252

in bacteria are ribosomal RNA (rRNA) and transfer
RNA (tRNA) operons [8, 9]. There are several reasons
for the interest in these operons, since those genes are
fundamental for protein synthesis, and their numbers
and organization can be used to better understand codon
usage [10]. Comparing the rRNA and tRNA gene contents
and organization in different species and inferring evolu-
tionary scenarios allows to make predictions about core
sets of tRNA genes, ancestral protein synthesis, ancestral
codon usage and evolutionary rates.

In 2012, a new method was developed to infer evolu-
tionary histories of rRNA and tRNA genes that was based
on a gene order alignment approach and considered
duplication and loss events [11]. The alignment of the
gene orders was used to identify orthology relationships
between the genes (since there are multiple copies of
each type of rRNA and tRNA genes), instead of using
traditional methods for identifying gene orthologies
from sequence information. The rationale for using this
approach is that tRNA genes especially are very short
(maximum length is around 90 nucleotides), and the
sequences are highly conserved [12]. As a consequence,
there is simply not enough signal in the sequences
themselves to identify orthology relationships. This align-
ment problem was then shown to be NP-hard for the
duplication and losses model of evolution [13-15]. The
exact algorithm proposed in [11], based on integer linear
programming (ILP), was designed to solve the 2-Small
Phylogeny Problem (2-SPP), which is to find a common
ancestor A of two gene orders X and Y that minimizes the
number of events on each of the two branches. Andreotti
et al. [15] then proposed a faster and more efficient linear
programming algorithm for the duplication-loss model,
and generalized it to the median of three genomes setting.
More recently, OrthoAlign [16] and multiOrthoAlign
[17] were developed to generalize the evolutionary model
to account for rearrangements (inversions and trans-
positions) in addition to duplications and losses. The
idea there was to use dynamic programming to align
the rRNA and tRNA gene orders and identify orthologs,
and then explain the mismatches and gaps in the align-
ment by inferring rearrangement events (inversions and
transpositions) and content-modifying events (dupli-
cations and losses). While OrthoAlign was designed
for pairwise comparisons between gene orders (2-SPP),
multiOrthoAlign was created to compare a full set of
gene orders related through a phylogenetic tree by taking
initial ancestral assignments (inferred by OrthoAlign or
another method) and improving them using a heuristic
for the median of three problem.

The gene order alignment approach used in the meth-
ods described previously is well adapted to the study of
bacterial genera which have a relatively low amount of
divergence between the genomes. However, just like with

Page 2 of 14

traditional sequence alignment, when the gene orders
being compared are not very well conserved, it quickly
becomes difficult to correctly identify matches (which
correspond to orthologous genes in this case). Moreover,
existing methods do not consider the physical proximity
of the genes in their inference of events, which might lead
to evolutionary histories that are not necessarily realistic
— inferring events on blocks of genes that are contiguous
in terms of gene order but not necessarily close to each
other on the chromosome for example.

In this paper, we propose BOPAL (Bacterial OPeron
AlLigner), a new approach that is designed to consider the
organization of genes into operons and to be more flexi-
ble to the relocation of operons into different regions of
the genome because of rearrangements. Instead of try-
ing to find orthologous genes, which might not be located
in the same region in both gene orders being compared,
our method is based on identifying orthologous operons
of rRNA and tRNA genes. Indeed, these operons tend to
be more conserved in general, since rearrangement events
mostly change their location inside the genome, but rarely
modify their composition (e.g. a rearrangement event is
unlikely to split an operon into two parts) [16]. Consider-
ing operons also allows our method to infer more realistic
events by not considering events that would affect blocks
of genes that are not part of the same operon, so tech-
nically not close to each other on the chromosome. Our
heuristic, which considers duplications, deletions, inver-
sions, transpositions and substitutions, can be used for
pairwise comparisons (2-SPP), or it can be used to recon-
struct the complete evolutionary history and ancestors of
a set of gene orders on a phylogeny by solving instances of
the 2-SPP in a post-order traversal of the tree.

We validate our new approach on simulated datasets
(cherries and cherries with a neighbor), and we also test
it on the same Bacillus dataset of 12 genomes used in
[15, 17]. Our results show that with our simulated data,
BOPAL has the ability to infer events and ancestral gene
orders with higher accuracy than other gene alignment
algorithms. Similarly, on a biological dataset, BOPAL has
performed equally as well as multiOrthoAlign [17] and
DupLoCut [15] at generating the ancestral tree in a mini-
mal amount of events.

Methods

Evolutionary model

Our evolutionary model is based on the results and obser-
vations of previous studies on bacterial genome, operon
and tRNA gene evolution, as described below.

In bacterial genomes, genes tend to be located mostly on
the leading strand of DNA (pointing away from the origin
of replication or in other words pointing towards the ter-
minus of replication) [18], so as to avoid potential head-on
collisions between the RNA and DNA polymerases [19].

Pawliszak et al. BMC Genomics 2020, 21(Suppl 2):252

As observed in a previous study of the Bacillus genus [16],
inversions are mostly occurring around one of the axes
of replication (origin or terminus) because this causes the
genes to stay on the leading strand.

It was observed in [16] that duplications can either
insert the copied genes inside or outside other operons,
thus extending pre-existing operons or creating new ones.
Also, rearrangements (inversions and transpositions) do
not seem to break operons into separate parts. In the
study of 50 Bacillus genomes, the inferred rearrangements
always affected entire operons and not just a part of them
[16]. Although these constraints on rearrangements were
observed in a study of the Bacillus genus specifically, we
assume that they can be generalized to other bacteria,
since a rearrangement affecting only part of an operon
would most likely leave one part of it without a promoter.

Multiple sites in tRNA sequences, extending beyond the
anticodon region, are responsible for their recognition by
the aminoacyl-tRNA synthetases, which charge the tRNA
molecules with the appropriate amino acid [20]. Muta-
tions in these identity elements can sometimes change the
identity class of tRNA genes [21, 22], which can be viewed
as a substitution to a different tRNA gene.

Based on these observations, our evolutionary model
aims to represent realistic histories. We define a real-
istic history as an evolutionary history (series of events
transforming a genome into another) that considers: (1)
the organization of genomes into operons, (2) that rear-
rangements do not split operons into separate parts, (3)
events that move or copy genes across an axis of replica-
tion (origin or terminus) reverse the genes, and (4) block
(or segmental) duplication/deletion events can only affect
genes that are closely located (part of the same operon).

More specifically, our evolutionary model considers the
following events:

e A duplication copies either a singleton, a gene or a
segment of genes inside an operon, or a full operon to
another position in the genome. If the duplicated
gene(s) are copied to the other side of an axis of
replication, an inversed duplication occurs, which
involves reversing the order and changing the signs
(representing transcriptional orientation/strand) of
the genes in the duplicated segment.

® A deletion (or a loss) removes either a singleton, a
gene or a segment of genes inside an operon, or a full
operon from the genome.

e An inversion (or reversal) reverses the order and
changes the sign of the genes affected. Inversion
events can only affect singletons or entire operons
(not breaking an operon into separate parts), and
must occur around an axis of replication, i.e. the
segment that is reversed must be immediately next to
either the origin or terminus of replication. These

Page 3 of 14

constraints are based on the prevalence of these types
of inversions as described in [16].

e A transposition moves either singletons or entire
operons to a different place in the genome (for the
same reasons described above for inversions).
Similarly to duplications, transpositions that move
genes to the other side of an axis of replication will be
reversed transpositions, also reversing the order and
changing the signs of the transposed segment.

e A substitution is an event that modifies the
anticodon of a tRNA gene and/or reassigns a tRNA
gene to another identity class.

Problem statement

Input

The algorithm we propose takes as input a phylogeny
representing a bacterial genus, and annotated rRNA and
tRNA gene orders, ie. circular unichromosomal gene
orders in which the locations of the origin and terminus
of replication, the operons, the anticodons (in the case of
tRNA genes), and the signs of the genes have been iden-
tified. The rRNA genes and tRNA genes are either part of
an operon (polycistronic) or not (monocistronic), in which
case we refer to them as singletons in this paper. Each gene
order for each extant genome studied is associated to a
leaf node. For conciseness, in this paper we will not make
a distinction between a node and its associated gene order.

Problem

The problem is to infer a parsimonious realistic history
for the annotated gene orders with duplicates, consider-
ing the evolutionary model described above, and ancestral
gene orders (corresponding to internal nodes) on the full
input phylogeny.

Annotation of the gene orders

Location of the origin and terminus of replication

To annotate the gene orders with the locations of the
origin and terminus of replication, we use the SeqUtils
module from the Biopython package [23]. The SeqUtils
module allows us to calculate the GC skews using a
sliding window in the full genome sequences, and iden-
tify the minimum and maximum values of GC skews.
The extrema of the GC skew function are known to be
correlated with the loci of the origin and terminus of
replication [24].

Location of the operons

Several methodologies have been proposed to find oper-
ons in microbial genomes, which are based on several
different genomic features like intergenic distances [25],
metabolic pathways [26], expression profiles [27], phy-
logenetic information [28], etc. Since rRNA and tRNA
operons do not contain any other types of genes in the
biological dataset presented below, we used a simple
rule for determining operons: a maximum intergenic

Pawliszak et al. BMC Genomics 2020, 21(Suppl 2):252

size of 200 bp is allowed between each consecutive
rRNA or tRNA gene to consider them part of the same
operon. Note that more sophisticated approaches, and/or
databases of annotated bacterial operons would be nec-
essary if one were to consider all types of operons in the
genomes. An even more precise approach would be to
consider experimentally identified transcriptional units,
such as those integrated into the DOOR 2.0 database of
prokaryotic operons [29] (unfortunately, the DOOR 2.0
database was inaccessible at the time of writing).

Algorithm

The proposed approach traverses the whole input phy-
logeny in post-order, and compares two siblings (left and
right child of an internal node, also called cherry) at a
time to produce an evolutionary scenario and an ances-
tral gene order for the internal node. Once the ancestral
gene order is produced, the post-order traversal continues
to produce the next ancestral genomes and so on until the
full evolutionary history (on all branches of the phylogeny)
has been inferred. Below is a description of the four steps
of the algorithm for each comparison of two child nodes
(each instance of the 2-SPP), when a neighboring species
is available (also see Fig. 1 for a flowchart describing the
steps on an example).

Step 1: inference of orthologous operons and singletons

We first use all-vs-all pairwise global alignments between
the operons of the two genomes compared to identify
orthologous operons. This is one of the major differences
between our approach and the previous ones presented
in [11, 16, 17]: instead of aligning the full gene orders
to identify orthologous genes, we align only the oper-
ons, which tend to be more conserved. Moreover, the
global alignments are not used to label events at this
time, but only to find similar operons, which allows us to
use a simpler scoring mechanism. Once pairs of orthol-
ogous operons have been identified, the matched genes
contained in the paired operons are considered to be
orthologous.

Let M be the dynamic programming table for the global
alignment of operons X and Y, and M[i — 1,j — 1] be the
optimal score of aligning the prefix of X ending at posi-
tion i — 1 and the prefix of ¥ ending at position j — 1,
the score M[i,j] can be calculated using the following
recursive function:

M[i—1,j—1]+41, full match
M[i—1,j — 1] 40.5, partial match
M[i,jl=Max { M[i—1,j— 1] —1, mismatch
Ml[i,j—1] -1, gap in X
M[i—-1,j]-1, gapinY

1)

Page 4 of 14

where a full match is when both the gene and the anti-
codon match, a partial match is when the gene matches
but with a different anticodon and a mismatch is when
both the gene identity class and (necessarily) the anti-
codon don’t match. This notion of partial match only
applies to tRNA genes and not rRNA genes, which are not
annotated with anticodons. Note that many different scor-
ing schemes could be used here, as long as the score for a
match is greater than the score of a partial match, which
itself should be greater than the score of mismatches and
gaps. The main assumption for setting the score of a par-
tial match in between the one of a full match and the
one of a mismatch is that more mutations (not just in the
anticodon) would be necessary to completely change the
identity class of a tRNA gene, as opposed to a change in
the anticodon that preserves the identity class. We ended
up using this specific scoring system because it performed
well in practice.

After completing all the comparisons, we discard all
pairs that have an alignment score < 0. We then label pairs
of operons from the two genomes as orthologous starting
from the highest alignment scores to the lowest. In case of
ties (e.g. an operon from genome X aligns with two oper-
ons of genome Y with the same score), we select the pair of
operons that is closest in terms of their respective indexes
in the genomes.

As for singletons between the two genomes, we simply
label them as orthologous if they are identical (same iden-
tity class and same anticodon, in the case of tRNA genes).
When there are mutliple choices, we choose the pairs that
are located in the same (or most similar) position in the
genome based on their respective indexes.

Step 2: inference of duplications, deletions and substitutions
During this step, we first infer duplications, losses and
substitutions within the orthologous operons, based on
the alignments that were made in Step 1. Mismatches or
partial matches simply correspond to substitutions. Gaps
in the alignment can be labeled either as duplications in
one genome, or deletions in the other genome. We follow
a simple rule for determining if a gap is a duplication or a
loss:

o if the gap has a size > 2 and there exists an identical
sequence of genes somewhere else in the same
genome, we label it as a duplication;

e otherwise, we arbitrarily label the gap as a deletion.

This simple rule is prone to produce errors, especially
for gaps of size one which are always considered to be
deletions. The problem with gaps of size 1 is that, since
there are almost always multiple copies of each rRNA
and tRNA genes in each genome, we could almost always
either infer a duplication (recall that to infer a duplication,
we must find the same gene — same identity class and

Pawliszak et al. BMC Genomics 2020, 21(Suppl 2):252

Page 5 of 14
A: <o0>,[16S,23S,55, lle_AUC, Ala_GCG, Ser_UCG, Met_AUG], Lys_AAA, Phe_UUC, < t >, -[Met_AUG, Ser_UCG], -Gly_GGA, -Thr_ACG
B: <o>,[165,235,55, lle_AUC, Ala_GCG], [16S, 235, 55, Ala_GCG], [His_CAU, Ser_UCG, Met_AUG], < t >, -Phe_UUC, -Lys_AAA, -Gly_GGA
A B C
C: <o0>,[165,23S, 55, lle_AUC, Ala_GCG, Glu_GAG], Lys_AAA, Phe_UUC, < t >, -[Met_AUG, Ser_UCG, His_CAU], -Gly_GGA, -Thr_ACG
Input genomes and phylogeny

- =

[A: <o0>,[165, 235, 55, lle_AUC, Ala_GCG, Ser_UCG, Met_AUG], Lys_AAA, Phe_UUC, < t >, -[Met_AUG, Ser_UCG], -Gly_GGA, -Thr_ACG

B: <0>,[16S, 23S, 5, lle_AUC, Ala_GCG], [16S, 23S, 5S, Ala_GCG], [His_CAU, Ser_UCG, Met_AUG], <t >, -Phe_UUC, -Lys_AAA, -Gly_GGA

Step 1: Inference of orthologous operons and singletons

.

/ /Duplication\ Deletion \
Ortholo gous [16S, 235, 55, lle_AUC, Ala_GCG, Ser_UCG, Met_AUG]

[, Ser_UCG, Met_AUG]
operons: [16S, 23S, 5, lle_AUC, Ala_GCG, ---- ,] [His_CAU, Ser_UCG, Met_AUG]
Operon duplication
Unmapped " P (165, 235, 55, lle_AUC, Ala_GCG]
. , 1165, 23S, 55, lle_AUC, Ala_GCG], [16S, 23S, 55, Ala_GCG], ...
operon: B: <ol b a.6cal [a-6cql [16S, 235, ss,-, Ala_GCG]
/ AN
Deletion
Unmapped
. PP A: - because no identical singleton is found in the same genome
singleton: i
Deletion
K Step 2: Inference of duplications, deletions and substitutions /
Dot-plot o ©)
c [c o
of ortho- -7 =
9 Dot-plot of ¢ o
logous X o . =
[} comparison o No inversion:
operons 2 . ° '
£ o of Awith £ @® inpliesthe
and . . :
i oletons: ® ersion neighbor C: °® inversion was
singletons: on the branch
leading to B

indexes in A indexes in A
KStep 3: Inference of rearrangement% K Step 4a: locating rearrangements /

AB: <o> [165,235, 55, lle_AUC, Ala_GCG], Lys_AAA, Phe_UUC, <t >, -[Met_AUG, Ser_UCG, His_CAU], -Gly_GGA, -Thr_ACG AB

Step 4b: Inference of the ancestral gene order A B C

Fig. 1 Flowchart describing the 4 main steps of BOPAL on a cherry (A, B) with a neighboring genome C. Operons are enclosed in square brackets,
whereas singletons are not, and < 0 > and < t > represent the origin and terminus of replication respectively

Pawliszak et al. BMC Genomics 2020, 21(Suppl 2):252

anticodon — somewhere else in the genome) or a loss. To
alleviate this problem, we allow our algorithm to correct
itself by changing deletions into duplications during the
next comparison with the neighboring genome, i.e. when
we compare the produced ancestor with another sibling
(see Step 4 below for more details).

Once all the orthologous operon pairs have been
resolved, we deal with the operons that have not been
mapped to an orthologous one in the other genome. We
must then infer if these “leftover” operons are the prod-
uct of a whole operon duplication in one genome (thus
being paralogous operons), or a whole operon deletion
in the other genome. For each of them, we perform a
global alignment with all the other operons within the
same genome to find the strongest match with a score > 0.
If it exists, we label the whole operon as being duplicated
and then we infer duplications, losses and substitutions to
explain the gaps and mismatches/partial matches in the
alignment in the same manner described above. This is
another strength of our approach, because it allows us to
infer overlapping, or non-visible events, i.e. consecutive
events on the same genes that do not directly appear on an
alignment of the two genomes. This is another improve-
ment over the previous algorithms, which were designed
to consider only visible events [11, 16, 17]. If no match
within the same genome is found with a score > 0, we
simply infer that the non-mapped operon was deleted in
the other genome. We proceed in the same manner for
the non-mapped singletons, except that the alignment is
not required: we simply infer them as duplicated if there
is an identical singleton in the same genome, and deleted
otherwise.

Step 3: inference of rearrangements

Another advantage of our approach is that we infer rear-
rangements independently of duplications, deletions and
substitutions, which once again permits the inference of
overlapping events, in the sense that a gene affected by a
duplication, deletion or substitution can also be affected
by a rearrangement.

In this step, we produce a dot-plot representing all the
orthologous operons and singletons paired in Step 1 (each
axis represents a genome and there is one dot for each pair
of orthologs; see Fig. 1 for an example). We use this dot-
plot to identify conserved segments, inversed segments
and transposed segments. Just like in any dot-plot, con-
served segments are series of dots that are located on
the main diagonal. Inversed segments can be identified
on the dot-plot as a series of dots that cross the main
diagonal in the opposite orientation. The other dots or
series of dots which are not found on the main diagonal
and not inversed are simply identified as transposed seg-
ments (either forward transposed or reversed transposed,
depending on their orientation).

Page 6 of 14

Step 4: inference of the ancestral gene order

One important detail about inversions and transpositions,
as described in [16], is that they can be applied to any
of the two sequences. There is simply not enough infor-
mation in a pairwise comparison that can allow us to
discriminate between the two equally probable scenar-
ios. To identify the genome in which the event occured,
we use the same strategy proposed in [16], where we
use one of the two sibling genomes X and compare it
with another neighboring genome N. N is simply the
first resolved genome (either a leaf or a previously built
ancestor) encountered in the subtree that is the sibling
of the cherry’s parent. If the same segment is found to
be inversed (respectively transposed) again in that other
comparison, then we know that the event occurred on
the branch leading to X. Otherwise, if the segment is not
inversed (respectively transposed) again, then we know
that the event occurred on the branch leading to the other
sibling Y (see Fig. 1 for an example).

Once all the events have been inferred on the correct
branches (leading either to genome X or Y), the ancestral
gene order can trivially be produced simply by “undo-
ing” the events (e.g. a deleted gene will be placed back
into the ancestor, etc.). Once the ancestor is produced,
the next comparison can be made following a post-order
traversal of the phylogeny. Similarly to how we deal with
rearrangement events, we use the next comparison with
a neighboring genome to potentially correct for errors in
inferred deletions. We keep track of all the genes that
were added back into the ancestor because of a deletion
event, and if they cause a gap in an alignment (dur-
ing Step 1), we replace the previously inferred deletion
event by a duplication event and modify the ancestor
accordingly.

Complexity

For each comparison of two child nodes (each cherry),
suppose for simplicity that both gene orders contain
n genes, distributed among ¢ operons. On average, an
operon will contain about #n/c genes. Step 1 of the algo-
rithm requires a global alignment of all pairs of operons
between the two genomes: there are ¢? such pairs, and
each alignment can be done in O((1/c)?), which results
in O(n?) time for Step 1. In Step 2, labeling the gaps in
the selected alignments (representing orthologous oper-
ons) requires scanning the genome for potential sources
of duplications: each scan takes O(n) and there is a max-
imum of O(n) gaps in total (because selected alignments
must have a score > 0), which results in O(#?) time. The
other part of Step 2 that identifies whole operon duplica-
tions takes O(#%), similarly to Step I, for all the pairwise
global alignment of operons within the same genome.

Pawliszak et al. BMC Genomics 2020, 21(Suppl 2):252

Finally, Step 3 can be done in linear time, and Step 4 is sim-
ilar to Step I but with a neighboring genome, so it takes
O(n?) as well. This leads to a worst-case complexity of
O(n?) for each cherry.

Potential strategy for dealing with horizontal gene transfer
Although we did not consider horizontal gene transfer
(HGT) in our evolutionary model, we propose a poten-
tial strategy to infer these events. Assuming that an HGT
event could copy an operon from an unrelated genome,
which is not necessarily present in the considered phy-
logeny, this operon would not be mapped to an ortholog
in the sibling genome in Step 1. In Step 2, this operon
would probably not be mapped to another operon in the
same genome either, which would not allow the algo-
rithm to infer a duplication of the operon. Currently,
this would result in the method labeling this operon as
lost in the sibling genome, and it would be placed back
into the ancestor. However, we could then compare this
operon with a neighboring genome N, to see if it actu-
ally matches. If it matches well with an operon in N,
then we keep it as lost, otherwise, the algorithm could
label it as being the result of an HGT, and similarly to
a duplication, the operon would not be added to the
ancestor.

Results and discussion

We implemented our algorithm in Python 2.7 and named
it BOPAL — Bacterial OPeron ALigner. We then evaluated
it on simulated and biological datasets.

Evaluation on simulated datasets

We developed a simulated data generator that takes as
input a tree topology of L leaves, an ancestral genome size
denoted by a number of genes #, and the number of events
to be generated on each branch of the tree E. The gen-
erator creates a random ancestral gene order (note that
we do not simulate sequences, since our approach does
not use sequence information, other than the tRNA anti-
codons), annotated with operons and anticodons, at the
root of the phylogeny and randomly simulates evolution of
each branch according to the selected parameters. We use
a geometric distribution, with a parameter that we named
Pop» to sample the size of the operons and then we pop-
ulate them with genes. Singletons are randomly added to
genomes using a probability prob,, and the probability of
adding an operon instead is 1 — prob,. During the simu-
lated evolution, when an event is chosen to be performed
on a branch, a random starting point is selected and its
size (number of genes or operons affected) is also sampled
from a geometric distribution (we named the parameter
of this geometric distribution peyeys). In accordance with
the evolutionary model described earlier, the generator
will not simulate rearrangements that break operons into

Page 7 of 14

separate parts, simulate inversions that are not occurring
around an axis of replication, etc.

Accuracy on cherries with neighbor

We tested how our new approach compares with the 2-
SPP algorithm of [11] (hereafter referred to as DupLoss)
and OrthoAlign [16] on cherries, i.e. two sibling leaves
that share the same parental node. We also added to
our simulations a third neighboring genome to test how
OrthoAlign and BOPAL perform with the additional infor-
mation coming from the neighbor. Note that we did not
test the DupLoCut algorithm because the output only
reports the total number of events, which would not allow
us to analyse all the types of accuracy that we consider
below. Also, we were not able to perform tests with mul-
tiOrthoAlign because no implementation was available
online at the time of writing.

For this test we used a triplet phylogeny (L = 3 leaves), a
constant ancestral genome size n = 120, p,, = 0.125 (pro-
ducing an average operon size of 8.2), prob, = 0.35 (result-
ing in an average number of singletons and operons of 7.8
and 13.7 respectively), and peyensr = 0.7. These probabili-
ties and parameters were chosen to represent as closely as
possible the biological dataset studied below (see Table 1
for more information on the biological dataset). As for
the simulated events, we used one inversion randomly
applied to one of the branches of the cherry, and x times
a duplication, a deletion, a transposition and a substitu-
tion on each branch (so the total number of events per
branch are multiples of 4, excluding the single inversion).
Note that we simulated only one inversion because our
model considers inversions around an axis of replication
only, and multiple consecutive inversions tend to can-
cel each other out. Based on the previous analysis of 50
Bacillus genomes [16], inversions do not seem to occur
very frequently (only 23 inversions were inferred in total,
for an average of 0.232 inversions per branch), which
makes the simulation of 1 inversion per cherry reason-
able. All the results presented below are averaged over 100
replicates.

To measure the accuracy of the different approaches, we
first compared the total number of events inferred by the
three different methods with the total number of events
that were simulated by the data generator (see Fig. 2).
Unsurprisingly, DupLoss, which does not consider rear-
rangements, has to infer a lot more events to explain
these evolutionary scenarios. All the other methods tend
to underestimate the number of events when more events
are generated, which is expected since the traces of some
events can disappear after successive events, and some
shortcuts can be found in the evolutionary scenarios. The
use of a neighbor with BOPAL does not make much of
a difference in the total number of events inferred, since
the neighbor is used only to place rearrangements on the

Pawliszak et al. BMC Genomics 2020, 21(Suppl 2):252

Page 8 of 14

Table 1 Description of the 12 Bacillus genomes studied, their NCBI accession number and information about the annotated

rRNA/tRNA singletons (sing.) and operons (op.)

Genome name Accession # # of sing. # of op. Avg. op. size % of genes
Bacillus cereus ATCC 10987 NC_003909 6 15 847 246
Bacillus cereus E33L NC_006274 5 16 8.13 230
Bacillus cereus ATCC 14579 NC_004722 7 15 933 2.69
Bacillus thuringiensis BMB171 NC_014171 5 17 8.29 2.58
Bacillus thuringiensis serovar kurstaki str. HD73 NC_020238 6 15 8.93 245
Bacillus thuringiensis serovar konkukian str. 97-27 NC_005957 9 14 9.79 277
Bacillus subtilis subsp. spizizenii str. W23 NC_014479 9 11 8.36 2.57
Bacillus subtilis subsp. spizizenii TU-B-10 NC_016047 9 13 8.69 2.99
Bacillus subtilis subsp. subtilis str. 168 NC_000964 9 11 9.73 2.56
Bacillus amyloliquefaciens FZB42 NC_009725 9 15 7.20 3.17
Bacillus amyloliquefaciens subsp. plantarum CAU B946 NC_016784 8 15 7.80 330
Bacillus amyloliquefaciens DSM 7 NC_014551 9 16 7.19 3.20

The "% of genes” column represents the proportion of all tRNA and rRNA genes over the total number of coding genes in the genome

correct branch and potentially modify a deletion of size 1
into a duplication of size 1. In OrthoAlign however, using
aneighbor increases the number of events, probably when
it modifies deletions of a block of genes for more smaller
duplications.

We also measured how accurate the ancestral gene
orders produced were. To do this, we used DupLoss [11]
to align the inferred gene order with the simulated one and
counted the gaps in this alignment (DupLoss [11] does not
allow mismatches and only produces matches and gaps).
Matches in this comparison of ancestral gene orders were

counted as true positives (TP), gaps in the inferred ances-
tor, which correspond to missing genes, were counted
as false negatives (FN), and finally gaps in the simulated
ancestor, which correspond to extra genes, were counted
as false positives (FP). These allowed us to calculate recall
and precision:

P
recall = ———— (2)
TP + FN
TP 3)
rec. = —————
P TP + FP

Average Number of Events

120 4 —®— BOPAL
—&— Generator
—— OrthoAlign
100 4+ =< DuplLoss
BOPAL with Neighbour
9 OrthoAlign with Neighbour
S 801
>
w
G
g 60
€
=
=

5 10 15

20 25 30

Number of Events per Branch

Fig. 2 Total number of events inferred, for multiples of 4 events per branch and one inversion on one of the branches leading to the cherry

Pawliszak et al. BMC Genomics 2020, 21(Suppl 2):252

Page 9 of 14

Average F-measure

0.95 1

0.90 A1

0.85 1

0.80 A

F-measure

0.75 A

0.70

0.65 A

0.60 -

—8— BOPAL

—— OrthoAlign

—»— Duploss
BOPAL with Neighbour
OrthoAlign with Neighbour

5 10 15

20 25 30

Number of Events per Branch

Fig. 3 F-measure of the reconstructed ancestral gene orders

We then combined recall and precision into one mea-
sure by calculating their harmonic mean, which is tradi-
tionally called the F-measure:

recall * prec.
F=oy 2 2PEC @
recall + prec.

Results on the F-measure for the inferred ancestors
are presented in Fig. 3. In general, all methods perform

similarly, except BOPAL with the neighbor which infers
considerably more accurate ancestors. BOPAL without the
help of the neighbor seems to perform the worst, however,
this was expected, since BOPAL does make some arbitrary
choices between deletions and duplications when there
is no neighbor, and might infer rearrangements on the
wrong branches. Interestingly, having a neighbor does not
seem to improve the ancestral prediction of OrthoAlign.

Average Strict Accuracy

60 -

50 A

I
o
1

w
o
!

Accuracy Percentage

N
o
!

10 A

—8— BOPAL

—— OrthoAlign

—»— Duploss
BOPAL with Neighbour
OrthoAlign with Neighbour

Fig. 4 Strict event accuracy

Number of Events per Branch

Pawliszak et al. BMC Genomics 2020, 21(Suppl 2):252

Page 10 of 14

Average Relaxed Accuracy
—e— BOPAL
60 - —— OrthoAlign
—— DuplLoss
BOPAL with Neighbour

50 7 OrthoAlign with Neighbour
&
8
T 40
I
9]
o
>
@ 304
=}
9]
1)
<

20 1

10 T

— —_— e
5 10 15 20 25 30
Number of Events per Branch
Fig. 5 Relaxed event accuracy

As for DupLoss, it performs similarly to OrthoAlign for
the F-measure, but it is still reasonably accurate in its
inference of the ancestral gene order, even if it has to use
a lot more events.

Finally, we measured the accuracy of the events that
were inferred on each branch of the cherry in two differ-
ent ways: strict event accuracy and relaxed event accuracy.
On the one hand, we define the strict event accuracy as

the ratio of the number of events inferred completely
correctly (i.e. with the exact same length and position)
over the total number of events generated. On the other
hand, we define the relaxed event accuracy as the ratio of
genes labeled with the correct event over the total num-
ber of genes affected by events in the simulated data. In
other words, the relaxed ratio focuses on the genes being
labeled with the correct event, and not on the number or

Average Runtime

Runtime (s)

e

BOPAL

OrthoAlign

DuplLoss

BOPAL with Neighbour
OrthoAlign with Neighbour

ki

Fig. 6 Average runtimes of the different methods compared

Number of Events per Branch

Pawliszak et al. BMC Genomics 2020, 21(Suppl 2):252

size of the events. For example, if a deletion of two consec-
utive genes a1, ap was simulated on a branch by the data
generator, and the algorithm inferred two separate dele-
tions a; and ay, the strict event accuracy would be 0%, but
the relaxed event accuracy would be 100%.

The strict and relaxed event accuracy graphs are shown
in Figs. 4 and 5. Clearly, inferring accurate events is very
difficult in general, and it becomes more difficult as the
number of events per branch increases. Note that the tests
went up to 32 events per branch, which is much more
than what we would typically expect in a real dataset (in
the study of 50 Bacillus genomes [16], an average of 2.525
events were inferred per branch). In terms of strict event
accuracy, BOPAL with a neighboring genome performs
the best, with values in the range of 60% to 25%. BOPAL
without a neighbor performs similarly to OrthoAlign with
a neighbor, while OrthoAlign without a neighbor and
DupLoss exhibit the worst performances.

For the relaxed event accuracy, we observe a small
improvement of BOPAL both with and without the neigh-
bor compared with the values of strict accuracy. On the
other hand, all the other methods (except OrthoAlign
without the neighbor) perform worse in terms of relaxed
accuracy than for the strict accuracy. To better inter-
pret this result, we analyzed the average size (in number
of genes) of all the events inferred completely correctly
(the ones that were counted in the strict event accuracy),
and found that BOPAL infers more of the longer events
on average than its competitors (see Figure S1 of the
Supplementary material). BOPAL with a neighbor per-
forms the best all the time, with values ranging between
63% and 27%. Interestingly, it is followed by BOPAL

Page 11 of 14

Table 2 Number of events identified by BOPAL,
multiOrthoAlign, DupLoCut on the dataset of 12 Bacillus genomes

Algorithm Reported events
BOPAL 117
multiOrthoAlign 123
DuploCut 120

without a neighbor, and then OrthoAlign both with and
without a neighbor performing almost similarly. The
curve for DupLoss is relatively flat and very low, which is
a bit surprising considering that half of the events inferred
on each branch are duplications and losses.

Accuracy on varying genome sizes We also evaluated
how the number of genes in the gene orders affects the
accuracy of the different approaches, for a fixed number of
events. Basically, we used the same parameters described
above, except that x was set to 4 (resulting in 16 events
per branch plus one inversion), and we used an ancestral
genome size n varying from 50 to 250. The results, pre-
sented in the Supplementary material (Figures S2, S3 and
S4), show that all the types of accuracy increase with the
number of genes. These results suggest that considering
more types of operons in the bacterial genomes could lead
to even better inferences of evolutionary scenarios and
ancestors.

Runtime

We also measured the average runtimes of the 5 dif-
ferent methods (see Fig. 6), using an Intel Core i5 2.5
GHz with 8GB of memory. The runtimes of OrthoAlign

Distribution of Duplications

30 A
28 A
26
24 A
22 A
20 A
18 4
16 A
14 4
12 4
10 A
8 -
6
4
24

Number of Occurrences

1 2 3 5

Size of Occurrence
Fig. 7 Size distribution of the duplications inferred by BOPAL on the 12 Bacillus genomes

7 9 13 15 25

Pawliszak et al. BMC Genomics 2020, 21(Suppl 2):252

and BOPAL without the neighbor are not affected by the
number of events. BOPAL with a neighbor is unsurpris-
ingly slower than BOPAL without a neighboring genome,
and becomes a little bit slower with more events, which
can be explained by the comparisons that have to be made
with the neighbor for each rearrangement event to infer it
on the correct branch. DupLoss, which uses ILP is unsur-
prisingly the slowest method of all. BOPAL is a little bit
slower in practice than OrthoAlign, with average runtimes
of just over 1 s without a neighbor, and between 2 and 3 s
with a neighbor, in comparison with average runtimes of
approximately 0.5 s for OrthoAlign.

We also measured the speed of our approach on large
genomes (values of n going up to 1000 genes). BOPAL
with a neighbor took a little over 2 min to complete
for n = 1000 (see Figure S5 and Table S1 of the
Supplementary material). Even though our methodology
is slower than OrthoAlign, it is scalable to large genomes.

Evaluation on biological datasets

We compared the performance of our algorithm to multi-
OrthoAlign and DupLoCut on the same biological dataset
of 12 Bacillus gene orders used in [15] and [17], to which
we added the operon annotations (see Table 1 for details
on the genomes studied and their operon annotations, and
Figure S6 in the Supplementary material for the phylogeny
used). BOPAL completed the analysis of the whole tree
with a runtime of 6.45 s (on the same Intel Core i5 2.5 GHz
with 8GB of memory used for the simulations).

BOPAL inferred 56 duplications, 37 deletions, 8 transpo-
sitions and 16 substitutions for a total of 117 events. Based
on the results presented in [15] and [17], multiOrthoAlign
converged at 123 events and DupLoCut converged to a

Page 12 of 14

minimum of 120 events on this dataset (see Table 2 for
a summary). However, multiOrthoAlign was restricted to
inferring duplications and losses only, just like DupLoCut,
whereas BOPAL was using its full evolutionary model.
Interestingly, the added constraints of the operon bound-
aries and the fact that BOPAL does not calculate multiple
iterations of the median problem did not result in a sce-
nario with more events. The transposition events inferred
by BOPAL probably played a role in the inference of a
slightly lower number of events.

87.5% of the duplications inferred by BOPAL were affect-
ing 1, 2 or 3 genes, whereas the rest of the duplications
were of size greater than 5, with the largest one being a
whole operon duplication of size 25 (see Fig. 7 for the size
distribution of duplication events). Similarly, the majority
of the inferred deletions were short (see Fig. 8 for the size
distribution of deletion events). About 75% of the dele-
tion events were of size 1, 2 or 3, and the rest of them
had a length in the range of 5 to 17 genes. Out of the 8
transpositions inferred, three were of size 3, two of size 5,
and one of each sizes 6, 12 and 15. Although we were not
able to analyze the events inferred by the other methods,
it is quite possible that the restrictions of our evolution-
ary model have given rise to a different but equivalent (in
terms of the total number of events) evolutionary history.

Conclusion

In this paper, we presented BOPAL, a new approach for
the inference of realistic evolutionary histories of rRNA
and tRNA genes. Our method is based on the identifica-
tion of orthologous operons, which ultimately helps with
the identification of orthologous genes when the genomes
have been transformed by many evolutionary events. Our

Distribution of Deletions

Number of Occurrences

= - = =
H [e)} [e¢] o N H (o)}
1 1 1 1 1 1 1

N
1

7 12 15 17

Size of Occurrence
Fig. 8 Size distribution of the deletions inferred by BOPAL on the 12 Bacillus genomes

Pawliszak et al. BMC Genomics 2020, 21(Suppl 2):252

tests on simulated datasets have shown that BOPAL is able
to infer more accurate events and ancestors than previous
approaches, with a reasonably fast runtime. Results on a
biological dataset of 12 Bacillus gene orders showed that
our method can infer realistic evolutionary scenarios with
a similar number of events than existing methods.

Even though the analyses presented here were focused
on the evolution of rRNA and tRNA genes, our approach
can effectively be adapted to the inference of realistic evo-
lutionary scenarios of any type of genes that are organized
into operons. Future work will be devoted to the analysis
of more types of operons and other bacterial genera.

In the future, a lot more work will be necessary to
improve even more the accuracy of the events inferred. In
order to accomplish that, more information will probably
be necessary: exact position of the operons and single-
tons on the genome, intergenic distances between each
pair of consecutive genes, and alignments of the flanking
regions of each gene considered in the analysis are poten-
tial sources of additional information that could be lever-
aged. Also, similarly to the generalization of OrthoAlign
to multiOrthoAlign, it would be interesting to general-
ize the proposed algorithm to compute the median of
three genomes, which could then be used iteratively on a
phylogeny with initialized ancestors to further reduce the
number of events inferred.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/512864-020-6612-2.

Additional file 1: Supplementary material, evaluation on simulated datasets.

Abbreviations

2-SPP: 2-Small phylogeny problem; BOPAL: Bacterial operon aligner; DNA:
Deoxyribonucleic acid; DOOR: Database of prokaryotic Operons; FN: False
negatives; FP: False positives; Gb: Gigabyte; GHz: Gigahertz; HGT: Horizontal
gene transfer; ILP: Integer linear programming; mRNA: Messenger ribonucleic
acid; RNA: Ribonucleic acid; rRNA: Ribosomal ribonucleic acid; TP: True
positives; tRNA: Transfer ribonucleic acid

Acknowledgements

The authors wish to thank Adam Grabowiecki, Chamath Welihinda and
Michelle Wiebe for their help with the tools developed for data collection and
preliminary analyses. The authors also wish to thank the reviewers for their
helpful comments and suggestions.

About this supplement

This article has been published as part of BMC Genomics Volume 21 Supplement
2, 2020: Proceedings of the 17th Annual Research in Computational Molecular
Biology (RECOMB) Comparative Genomics Satellite Workshop: genomics. The full
contents of the supplement are available online at https://bmcgenomics.
biomedcentral.com/articles/supplements/volume-21-supplement-2.

Authors’ contributions

TP, MC and OTS have contributed to the design of the algorithm. TP and MC
have worked on the implementation of the algorithm and have conducted
the experiments. MC has implemented the simulated data generator. OTS
drafted the manuscript and supervised the research. All the authors have
contributed to the writing and proofreading of the manuscript. All authors
have read and approved the final manuscript.

Page 13 of 14

Funding

This publication was funded by the Natural Sciences and Engineering
Research Council of Canada (NSERC) [RGPIN-2016-06051]. Cette publication a
été financée par le Conseil de recherches en sciences naturelles et en génie du
Canada (CRSNG) [RGPIN-2016-06051].

Availability of data and materials
The software, genome generator and biological dataset are available at: http://
bioinformatics.cs.umanitoba.ca/software/BOPAL/.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Published: 16 April 2020

References

1. Forster SC, Kumar N, Anonye BO, Almeida A, Viciani E, Stares MD, Dunn
M, Mkandawire TT, Zhu A, Shao Y, et al. A human gut bacterial genome
and culture collection for improved metagenomic analyses. Nat
Biotechnol. 2019;37(2):186.

2. Dominguez-Bello MG, Godoy-Vitorino F, Knight R, Blaser MJ. Role of the
microbiome in human development. Gut. 2019,68(6):1108-14.

3. Parthasarathy A, Wong NH, Weiss AN, Tian S, Ali SE, Cavanaugh NT,
Chinsky TM, Cramer CE, Gupta A, Jha R, et al. Selfies and cellfies: Whole
genome sequencing and annotation of five antibiotic resistant bacteria
isolated from the surfaces of smartphones, an inquiry based laboratory
exercise in a genomics undergraduate course at the rochester institute of
technology. J Genom. 2019;7:26.

4. Kaczmarek M, Avery SV, Singleton I. Microbes associated with fresh
produce: Sources, types and methods to reduce spoilage and
contamination. Adv Appl Microbiol. 2019;107:29-82.

5. JacobF, Perrin D, Sdnchez C, Monod J. Operon: a group of genes with
the expression coordinated by an operator. Compt Rendus
hebdomadaires des Seances de I'’Acad des Sci. 1960;250:1727-9.

6. Blumenthal T. Operons in eukaryotes. Brief Funct Genom. 2004;3(3):
199-211.

7. Conway T, Creecy JP, Maddox SM, Grissom JE, Conkle TL, Shadid TM,
Teramoto J, San Miguel P, Shimada T, Ishihama A, et al. Unprecedented
high-resolution view of bacterial operon architecture revealed by rna
sequencing. MBio. 2014,5(4):01442-14.

8. Klappenbach JA, Dunbar JM, Schmidt TM. rrna operon copy number
reflects ecological strategies of bacteria. Appl Environ Microbiol.
2000,66(4):1328-33.

9. TranTT, Belahbib H, Bonnefoy V, Talla E. A comprehensive trna genomic
survey unravels the evolutionary history of trna arrays in prokaryotes.
Genome Biol Evol. 2015;8(1):282-95.

10. Dong H, Nilsson L, Kurland CG. Co-variation of trna abundance and
codon usage in escherichia coli at different growth rates. J Mol Biol.
1996,260(5):649-63.

11. Holloway P, Swenson K, Ardell D, El-Mabrouk N. Ancestral genome
organization: an alignment approach. J Comput Biol. 2013;20(4):280-95.

12. Withers M, Wernisch L, Dos Reis M. Archaeology and evolution of
transfer ma genes in the escherichia coli genome. Rna. 2006;12(6):933-42.

13. Dondi R, El-Mabrouk N. Aligning and labeling genomes under the
duplication-loss model. In: Conference on Computability in Europe.
Springer; 2013. p. 97-107. https://doi.org/10.1007/978-3-642-39053-1_11.

14. Benzaid B, DondiR, El-Mabrouk N. Duplication-loss genome alignment:
Complexity and algorithm. In: International Conference on Language and
Automata Theory and Applications. Springer; 2013. p. 116-27. https://
doi.org/10.1007/978-3-642-37064-9_12.

15. Andreotti S, Reinert K, Canzar S. The duplication-loss small phylogeny
problem: from cherries to trees. J Comput Biol. 2013;20(9):643-59.

16. Tremblay-Savard O, Benzaid B, Lang BF, El-Mabrouk N. Evolution of trna
repertoires in bacillus inferred with orthoalign. Mol Biol Evol. 2015;32(6):
1643-56.

https://doi.org/10.1186/s12864-020-6612-2
https://bmcgenomics.biomedcentral.com/articles/supplements/volume-21-supplement-2
https://bmcgenomics.biomedcentral.com/articles/supplements/volume-21-supplement-2
http://bioinformatics.cs.umanitoba.ca/software/BOPAL/
http://bioinformatics.cs.umanitoba.ca/software/BOPAL/
https://doi.org/10.1007/978-3-642-39053-1_11
https://doi.org/10.1007/978-3-642-37064-9_12
https://doi.org/10.1007/978-3-642-37064-9_12

Pawliszak et al. BMC Genomics 2020, 21(Suppl 2):252

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Benzaid B, El-Mabrouk N. Gene order alignment on trees with
multiorthoalign. BMC Genomics. 2014;15(6):5.

Rocha EP. The replication-related organization of bacterial genomes.
Microbiology. 2004;150(6):1609-27.

Brewer BJ. When polymerases collide: replication and the transcriptional
organization of the e. coli chromosome. Cell. 1988;53(5):679-86.

Giegé R, Sissler M, Florentz C. Universal rules and idiosyncratic features in
trna identity. Nucleic Acids Res. 1998;26(22):5017-35.

Saks ME, Sampson JR, Abelson J. Evolution of a transfer rna gene through
a point mutation in the anticodon. Science. 1998;279(5357):1665-70.
Lavrov DV, Lang BF. Transfer rna gene recruitment in mitochondrial dna.
Trends Genet. 2005;21(3):129-33.

Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg |,
Hamelryck T, Kauff F, Wilczynski B, et al. Biopython: freely available
python tools for computational molecular biology and bioinformatics.
Bioinformatics. 2009;25(11):1422-3.

Frank A, Lobry J. Asymmetric substitution patterns: a review of possible
underlying mutational or selective mechanisms. Gene. 1999,238(1):65-77.
Taboada B, Estrada K, Ciria R, Merino E. Operon-mapper: a web server for
precise operon identification in bacterial and archaeal genomes.
Bioinformatics. 2018;34(23):4118-20.

Zheng Y, Szustakowski JD, Fortnow L, Roberts RJ, Kasif S. Computational
identification of operons in microbial genomes. Genome Res. 2002;12(8):
1221-30.

Price MN, Huang KH, Alm EJ, Arkin AP. A novel method for accurate
operon predictions in all sequenced prokaryotes. Nucleic Acids Res.
2005;33(3):880-92.

Bergman NH, Passalacqua KD, Hanna PC, Qin ZS. Operon prediction for
sequenced bacterial genomes without experimental information. Appl
Environ Microbiol. 2007;73(3):846-54.

Mao X, Ma Q, Zhou C, Chen X, Zhang H, Yang J, MaoF, LaiW, Xu.
Door 2.0: presenting operons and their functions through dynamic and
integrated views. Nucleic Acids Res. 2013;42(D1):654-9.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Page 14 of 14

Ready to submit your research? Choose BMC and benefit from:

o fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Evolutionary model
	Problem statement
	Input
	Problem

	Annotation of the gene orders
	Location of the origin and terminus of replication
	Location of the operons

	Algorithm
	Step 1: inference of orthologous operons and singletons
	Step 2: inference of duplications, deletions and substitutions
	Step 3: inference of rearrangements
	Step 4: inference of the ancestral gene order

	Complexity
	Potential strategy for dealing with horizontal gene transfer

	Results and discussion
	Evaluation on simulated datasets
	Accuracy on cherries with neighbor
	Accuracy on varying genome sizes

	Runtime

	Evaluation on biological datasets

	Conclusion
	Supplementary informationSupplementary information accompanies this paper at https://doi.org/10.1186/s12864-020-6612-2.
	Additional file 1

	Abbreviations
	Acknowledgements
	About this supplement
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher's Note

